仙台市青葉区本町一丁目7番1号東 北 電 力 株 式 会 社取締役社長 社長執行役員
 樋口 康二郎

工事計画認可申請書の一部補正について

平成 25 年 12 月 27 日付け東北電原設第 9 号をもつて申請いたしました女川原子力発電所第 2 号機の工事計画認可申請書（令和 2 年 5 月 29 日付 け東北電原設第 1 号，令和 2 年 9 月 30 日付け東北電原設第 3 号，令和 2 年 11 月 30 日付け東北電原設第 5 号，令和 3 年 2 月 19 日付け東北電原設第 6号及び令和 3 年 3 月 31 日付け東北電原設第 7 号にて一部補正）について，別紙のとおり一部補正いたします。

目 次

1．工事計画認可申請書の補正項目を記載した書類

2．補正を必要とする理由を記載した書類

3．工事計画認可申請書の補正内容及び補正を行う書類

1．工事計画認可申請書の補正項目を記載した書類

補正項目
平成 25 年 12 月 27 日付け東北電原設第 9 号にて申請した工事計画認可申請書（令和 2 年 5 月 29 日付け東北電原設第 1 号，令和 2 年 9 月 30 日付け東北電原設第 3号，令和 2 年 11 月 30 日付け東北電原設第 5 号，令和 3 年 2 月 19 日付け東北電原設第 6 号及び令和 3 年 3 月 31 日付け東北電原設第 7 号にて一部補正）のうち，「I名称及び住所並びに代表者の氏名」，「II 工事計画」，「III 工事工程表」，「IV 設計及び工事に係る品質マネジメントシステム」，「V 変更の理由」及び「VI 添付書類」を補正し，その内容については，「3．工事計画認可申請書の補正内容及び補正を行う書類」に示す。

2．補正を必要とする理由を記載した書類

補正を必要とする理由
平成 25 年 12 月 27 日付け東北電原設第 9 号にて申請した工事計画認可申請書（令和 2 年 5 月 29 日付け東北電原設第 1 号，令和 2 年 9 月 30 日付け東北電原設第 3号，令和 2 年 11 月 30 日付け東北電原設第 5 号，令和 3 年 2 月 19 日付け東北電原設第 6 号及び令和 3 年 3 月 31 日付け東北電原設第 7 号にて一部補正）において，平成 25 年 12 月 27 日付け東北電原技第 8 号にて申請した発電用原子炉設置変更許可申請（令和元年 9 月 19 日付け東北電原技第 3 号，令和元年 11 月 6 日付け東北電原技第5号，令和元年11月19日付け東北電原技第6号及び令和2年2月7日付け東北電原技第 7 号にて一部補正）の許可を踏まえ，実用発電用原子炉及びその附属施設の基本設計方針等を一部変更したことに伴い，変更が必要となった事項の反映，説明書の充実，表現の明確化及び記載の適正化を行うことから，「I 名称及び住所並びに代表者の氏名」，「II 工事計画」，「III 工事工程表」，「IV 設計及び工事 に係る品質マネジメントシステム」，「V 変更の理由」及び「VI 添付書類」を補正する。

3．工事計画認可申請書の補正内容及び補正を行ら書類

（1）工事計画認可申請書補正内容
I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類
（2）補正を行う書類
補正を行う書類を別紙1に示す。

補正を行う書類

I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類

申請範囲

今回の申請範囲は，女川原子力発電所第 2 号機の次の部分であります。

1．原子炉本体
1．1 炉型式，定格熱出力，過剰反応度及び反応度係数（減速材温度係数，燃料棒温度係数，減速材ボイド係数及び出力反応度係数）並びに減速材
1.2 炉心
（1）炉心形状，格子形状，燃料集合体数，炉心有効高さ及び炉心等価直径
（2）燃料体最高燃焼度（初装荷及び取替えの別並びに燃料材，燃料要素及び燃料集合体の別に記載すること。）及び核燃料物質の最大装荷量
（3）燃料材の最高温度
（4）熱的制限値（最小限界出力比及び最大線出力密度）
1．3 燃料体
1.4 チャンネルボックス
1.6 炉心支持構造物
（1）炬心シュラウド及びシュラウドサポート
－炉心シュラウド
－シュラウドサポート
－炉心シュラウド支持ロッド
（2）上部格子板
（3）炉心支持板
（4）燃料支持金具

- 中央燃料支持金具
- 周辺燃料支持金具
（5）制御棒案内管
1．7 原子炉圧力容器
（1）原子炉圧力容器本体及び監視試験片
－原子炉圧力容器
（2）原子炉圧力容器支持構造物
个 支持構造物
－原子炉圧力容器支持スカート
ロ 基礎ボルト
－原子炉圧力容器基礎ボルト
（3）原子炉圧力容器付属構造物
イ 原子炉圧力容器スタビライザ
ロ 原子炉格納容器スタビライザ
八 中性子束計測ハウジング

二 制御棒駆動機構ハウジング
ホ 制御棒駆動機構ハウジング支持金具
ト ジェットポンプ計測管貫通部シール
チ 差圧検出・ほう酸水注入配管
－差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）
（4）原子炉圧力容器内部構造物
イ 蒸気乾燥器の蒸気乾燥器ユニット及び蒸気乾燥器ハウジング

- 蒸気乾燥器ユニット
- 蒸気乾燥器ハウジング

ロ 気水分離器及びスタンドパイプ
－気水分離器
－スタンドパイプ
ハ シュラウドヘッド
ニジェットポンプ
ホ スパージャ及び内部配管

- 給水スパージャ
- 高圧炉心スプレイスパージャ
- 低圧炉心スプレイスパージャ
- 残留熱除去系配管（原子炉圧力容器内部）
- 高圧炉心スプレイ系配管（原子炉圧力容器内部）
- 低圧炉心スプレイ系配管（原子炉圧力容器内部）
- 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）
～中性子束計測案内管
1.8 原子炉本体の基本設計方針，適用基準及び適用規格
1.9 原子炉本体に係る工事の方法

2．核燃料物質の取扱施設及び貯蔵施設
2.1 燃料取扱設備
（1）新燃料又は使用済燃料を取り扱う機器

- 燃料交換機（第 1,2 号機共用）
- 原子炉建屋クレーン（第 1,2 号機共用）
- 燃料チャンネル着脱機（第 1,2 号機共用）
2.3 使用済燃料貯蔵設備
（1）使用済燃料貯蔵設備
－使用済燃料プール（設計基準対象施設としてのみ第1，2号機共用）
（2）使用済燃料運搬用容器ピット
－キャスクピット（第 1，2号機共用）
（3）使用済燃料貯蔵ラック
－使用済燃料貯蔵ラック（設計基準対象施設としてのみ第 1,2 号機共用）
（4）破損燃料貯蔵ラック
－制御棒•破損燃料貯蔵ラック
（5）制御棒貯蔵ラック
（6）制御棒貯蔵ハンガ
（8）使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置
2.4 使用済燃料貯蔵槽冷却浄化設備

2．4．1 燃料プール泠却浄化系
（1）熱交換器（常設）
－燃料プール冷却浄化系熱交換器（設計基準対象施設としてのみ第 1,2 号機共用）
（2）ポンプ（常設）
－燃料プール冷却浄化系ポンプ（設計基準対象施設としてのみ第1，2号機共用）
（5）スキマサージ槽
－スキマサージタンク（設計基準対象施設としてのみ第 1，2号機共用）
（8）主配管（スプレイヘッダを含む。）（常設）
2．4．2 燃料プール代替注水系
（2）ポンプ（可搬型）
－大容量送水ポンプ（タイプI）
（8）主配管（スプレイヘッダを含む。）（常設）
（8）主配管（スプレイヘッダを含む。）（可搬型）
2．4．3 燃料プールスプレイ系
（2）ポンプ（可搬型）
－大容量送水ポンプ（タイプ I ）
（6）ろ過装置（可搬型）
－可搬型ストレーナ
（8）主配管（スプレイヘッダを含む。）（常設）
（8）主配管（スプレイヘッダを含む。）（可搬型）
2．4．4 放射性物質拡散抑制系
（2）ポンプ（可搬型）
－大容量送水ポンプ（タイプII）
（8）主配管（スプレイヘッダを含む。）（可搬型）
2.5 核燃料物質の取扱施設及び貯蔵設備の基本設計方針，適用基準及び適用規格
2.6 核燃料物質の取扱施設及び貯蔵施設に係る工事の方法

3．原子炉冷却系統施設
3.3 原子炉冷却材再循環設備

3．3．1 原子炉再循環系
（1）ポンプ
－原子炉再循環ポンプ
（3）主配管
3.4 原子炉冷却材の循環設備

3．4．1 主蒸気系
（3）容器

- 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
- 主蒸気逃がし安全弁自動減圧機能用アキュムレータ
（5）主蒸気流量制限器
（6）安全弁及び逃がし弁
（7）主要弁
（8）主配管
3．4．2 復水給水系
（7）主要弁
（8）主配管
3．4．3 給水加熱器ドレンベント系
（3）容器
－低圧第 1 給水加熱器ドレンタンク
（6）安全弁及び逃がし弁
（8）主配管
3．4．4 復水浄化系
（8）主配管
3．4．5 抽気系
（8）主配管
3.5 残留熱除去設備

3．5．1 残留熱除去系
（2）熱交換器（常設）
－残留熱除去系熱交換器
（3）ポンプ（常設）
－残留熱除去系ポンプ
（5）万過装置（常設）
－残留熱除去系ストレーナ
（6）安全弁及び逃がし弁（常設）
（7）主要弁（常設）
（8）主配管（常設）
3．5．2 原子炬格納容器フィルタベント系
（3）ポンプ（可搬型）
－大容量送水ポンプ（タイプI）
（6）安全弁及び逃がし弁（常設）
（7）主要弁（常設）
（8）主配管（常設）
（8）主配管（可搬型）

3．5．3 耐圧強化ベント系
（8）主配管（常設）
3.6 非常用炉心冷却設備その他原子炉注水設備

3．6．1 高圧炉心スプレイ系
（1）ポンプ（常設）
－高圧炉心スプレイ系ポンプ
（2）容器（常設）
－復水貯蔵タンク
（4）万過装置（常設）
－高圧炉心スプレイ系ストレーナ
（5）安全弁及び逃がし弁（常設）
（6）主要弁（常設）
（7）主配管（常設）
3．6．2 低圧炉心スプレイ系
（1）ポンプ（常設）
－低圧炉心スプレイ系ポンプ
（4）万過装置（常設）
－低圧炉心スプレイ系ストレーナ
（5）安全弁及び逃がし弁（常設）
（6）主要弁（常設）
（7）主配管（常設）
3．6．3 高圧代替注水系
（1）ポンプ（常設）
－高圧代替注水系タービンポンプ
（2）容器（常設）
－復水貯蔵タンク
（7）主配管（常設）
3．6．4 原子炉隔離時冷却系
（1）ポンプ（常設）
－原子炉隔離時冷却系ポンプ
（2）容器（常設）
－復水貯蔵タンク
（5）安全弁及び逃がし弁（常設）
（7）主配管（常設）
3．6．5 低圧代替注水系
（1）ポンプ（常設）

- 直流駆動低圧注水系ポンプ
- 復水移送ポンプ
（1）ポンプ（可搬型）
－大容量送水ポンプ（タイプI）
（2）容器（常設）
－復水貯蔵タンク
（5）安全弁及び逃がし弁（常設）
（7）主配管（常設）
（7）主配管（可搬型）
3．6．6 代替循環冷却系
（1）ポンプ（常設）
－代替循環冷却ポンプ
（4）万過装置（常設）
－残留熱除去系ストレーナ
（5）安全弁及び逃がし弁（常設）
（7）主配管（常設）
3．6．7 ほら酸水注入系
（1）ポンプ（常設）
－ほう酸水注入系ポンプ
（2）容器（常設）
－ほう酸水注入系貯蔵タンク
（5）安全弁及び逃がし弁（常設）
（7）主配管（常設）
3．6．8 残留熱除去系
（1）ポンプ（常設）
－残留熱除去系ポンプ
（4）万過装置（常設）
－残留熱除去系ストレーナ
（5）安全弁及び逃がし弁（常設）
（7）主配管（常設）
3．6． 9 代替水源移送系
（1）ポンプ（可搬型）
- 大容量送水ポンプ（タイプ I ）
- 大容量送水ポンプ（タイプII）
（7）主配管（常設）
（7）主配管（可搬型）
3.7 原子炉冷却材補給設備

3．7．1 原子炉隔離時冷却系
（1）ポンプ
－原子炉隔離時冷却系ポンプ
（4）主要弁
（5）主配管
3．7．2 補給水系
（1）ポンプ
－復水移送ポンプ
（2）容器
－復水貯蔵タンク
（5）主配管
3.8 原子炉補機冷却設備

3．8．1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）
（2）熱交換器（常設）
－原子炉補機冷却水系熱交換器
（3）ポンプ（常設）

- 原子炉補機冷却水ポンプ
- 原子炉補機冷却海水ポンプ
（5）容器（常設）
－原子炉補機冷却水サージタンク
（6）万過装置（常設）
－原子炉補機冷却海水系ストレーナ
（9）主配管（常設）
3．8．2 高圧炉心スプレイ補機泠却水系（高圧炉心スプレイ補機冷却海水系を含む。）
（2）熱交換器（常設）
－高圧灲心スプレイ補機冷却水系熱交換器
（3）ポンプ（常設）
- 高圧炉心スプレイ補機冷却水ポンプ
- 高圧炉心スプレイ補機冷却海水ポンプ
（5）容器（常設）
－高圧灲心スプレイ補機冷却水サージタンク
（6）万過装置（常設）
－高圧炬心スプレイ補機冷却海水系ストレーナ
（9）主配管（常設）
3．8．3 原子炉補機代替泠却水系
（2）熱交換器（可搬型）
－原子炉補機代替冷却水系熱交換器ユニット（熱交換器）
（3）ポンプ（可搬型）
- 原子炉補機代替冷却水系熱交換器ユニット（ポンプ）
- 大容量送水ポンプ（タイプ I ）
（5）容器（常設）
－原子炉補機冷却水サージタンク
（6）万過装置（可搬型）
－原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）
（9）主配管（常設）
（9）主配管（可搬型）

3.9 原子炉冷却材浄化設備

3．9．1 原子炉冷却材浄化系
（5）主要弁
（6）主配管
3.11 原子炉冷却系統施設（蒸気タービンを除く。）の基本設計方針，適用基準及び適用規格
3.12 原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法
3.13 蒸気タービン

3．13．1 蒸気タービン本体
（2）車室，円板，隔板，噴口，翼，車軸及び管
－蒸気タービンの管
（3）調速装置及び非常用調速装置並びに調速装置で制御される主要弁

- 主蒸気止め弁
- 蒸気加減弁
- 組合せ中間弁
（4）復水器
イ 復水器
3.13 .2 蒸気タービンの附属設備
（2）熱交換器（湿分分離器を含む。）
イ 熱交換器
－湿分分離加熱器
（4）管等
个 主配管
- タービン補助蒸気系
- 抽気系
- タービングランド蒸気系
- 復水器空気抽出系
- 復水給水系
- 給水加熱器ドレンベント系

ロ 蒸気だめ，ドレンタンク

- 湿分分離加熱器第 1 段加熱器ドレンタンク
- 湿分分離加熱器第 2 段加熱器ドレンタンク

八 安全弁及び逃がし弁
3．13．3 蒸気タービンの基本設計方針，適用基準及び適用規格
3．13．4 蒸気タービンに係る工事の方法

4．計測制御系統施設
4． 1 制御方式及び制御方法
（1）発電用原子炉の制御方式
（2）発電用原子炉の制御方法
4．2 制御材
（1）制御棒
（2）ほう酸水
4.3 制御材駆動装置
（1）制御棒駆動機構（常設）
（2）制御棒駆動水圧設備
（2．1）制御棒駆動水圧系
口 容器（常設）

- 水圧制御ユニット（アキュムレータ）
- 水圧制御ユニット（窒素容器）
- スクラム排出容器

二 主要弁（常設）
ホ 主配管（常設）
4.4 ほう酸水注入設備

4．4．1 ほう酸水注入系
（1）ポンプ（常設）
－ほう酸水注入系ポンプ
（2）容器（常設）
－ほう酸水注入系貯蔵タンク
（3）安全弁及び逃がし弁（常設）
（5）主配管（常設）
4.5 計測装置
（1）起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置 （常設）
（2）原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。）を計測する装置
a．圧力を計測する装置（常設）
b．温度を計測する装置（常設）
c．流量を計測する装置（常設）
（3）原子炉圧力容器本体内の圧力又は水位を計測する装置
a．圧力を計測する装置（常設）
b．水位を計測する装置（常設）
（4）原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置
a．圧力を計測する装置（常設）
b．温度を計測する装置（常設）
c．酸素ガス濃度を計測する装置（常設）
d．水素ガス濃度を計測する装置（常設）
（5）非常用炉心冷却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測す る装置（常設）
（7）原子炉冷却材再循環流量を計測する装置（常設）
（10）原子炉格納容器本体への冷却材流量を計測する装置（常設）
（11）原子炉格納容器本体の水位を計測する装置（常設）
（12）原子炉建屋内の水素ガス濃度を計測する装置（常設）
4． 6 原子炉非常停止信号（常設）
4．7 工学的安全施設等の起動信号（常設）
4．7．1 工学的安全施設の起動信号（常設）
4．7．2 ATWS 緩和設備（代替制御棒挿入機能）の起動信号（常設）
4．7．3 ATWS 緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号（常設）
4．7．4 ATWS 緩和設備（自動減圧系作動阻止機能）の起動信号（常設）
4．7．5 代替自動減圧回路（代替自動減圧機能）の起動信号（常設）
4．8 制御用空気設備
4．8．1 高圧窒素ガス供給系
（2）容器（可搬型）
－高圧窒素ガスボンベ
（3）安全弁（常設）
（5）主配管（常設）
（5）主配管（可搬型）
4．8．2 代替高圧窒素ガス供給系
（2）容器（可搬型）
－高圧窒素ガスボンベ
（3）安全弁（可搬型）
（5）主配管（常設）
（5）主配管（可搬型）
4.10 計測制御系統施設の基本設計方針，適用基準及び適用規格
4.11 計測制御系統施設（発電用原子炉の運転を管理するための制御装置を除く。）に係る工事の方法
4． 12 発電用原子炉の運転を管理するための制御装置
4．12．1 制御方式
4．12．2 中央制御室機能及び中央制御室外原子炉停止機能
4．12．4 発電用原子炉の運転を管理するための制御装置に係る工事の方法

5．放射性廃棄物の廃棄施設
5.2 気体，液体又は固体廃棄物処理設備

5．2．1 気体廃棄物処理系
（10）主配管
（16）排気筒
5．2．2 液体廃棄物処理系
5．2．2．1 放射性ドレン移送系
（9）主要弁
（10）主配管

5．2．2．2 機器ドレン系

（10）主配管
5．2．2．3 床ドレン・化学廃液系
（10）主配管
5．2．2．4 サプレッションプール水貯蔵系
（4）容器

- サプレッションプール水貯蔵タンク（第 1，2号機共用）
- サプレッションプール水貯蔵タンク（第 1 号機設備，第 1,2 号機共用）
（9）主要弁
（10）主配管
5．2．3 固体廃棄物処理系
5．2．3．1 サイトバンカ設備
（10）主配管
5．2．3．2 廃スラッジ系
（10）主配管

5．2．3．3 濃縮廃液系

（10）主配管
5.3 堰その他の設備

5．3．1 その他（堰）
（2）施設外への漏えいを防止するために施設する堰その他の設備
5.4 原子炉格納容器本体外の廃棄物貯蔵設備又は廃棄物処理設備からの流体状の放射性廃重物 の漏えいの検出装置又は自動警報装置
5.5 放射性廃棄物の廃棄施設の基本設計方針，適用基準及び適用規格
5.6 放射性廃棄物の廃棄施設に係る工事の方法

6．放射線管理施設
6． 1 放射線管理用計測装置
（1）プロセスモニタリング設備
イ 主蒸気管中の放射性物質濃度を計測する装置（常設）
口 原子炉格納容器本体内の放射性物質濃度を計測する装置（常設）

八 放射性物質により汚染するおそれがある管理区域から環境に放出する排水中又は排気中 の放射性物質濃度を計測する装置（常設）
（2）エリアモニタリング設備
八 緊急時対策所の線量当量率を計測する装置（可搬型）
ニ 使用済燃料貯蔵槽エリアの線量当量率を計測する装置（常設）
（3）固定式周辺モニタリング設備
（4）移動式周辺モニタリング設備
6.2 換気設備（中央制御室，緊急時制御室及び緊急時対策所に設置するもの（非常用のものに限 る。）並びに放射性物質により汚染された空気による放射線障害を防止する目的で給気又は排気設備として設置するもの。一時的に設置する可搬型のものを除く。）

6．2．1 中央制御室換気空調系
（3）主配管（常設）
（4）送風機（常設）

- 中央制御室送風機
- 中央制御室再循環送風機
（5）排風機（常設）
－中央制御室排風機
（6）フィルター（常設）
－中央制御室再循環フィルタ装置
6．2．2 緊急時対策所換気空調系
（3）主配管（常設）
（4）送風機（常設）
－緊急時対策所非常用送風機
（6）フィルター（常設）
－緊急時対策所非常用フィルタ装置
6．2．3 中央制御室待避所加圧空気供給系
（1）容器（可搬型）
－中央制御室待避所加圧設備（空気ボンベ）
（3）主配管（常設）
（3）主配管（可搬型）
6．2．4 緊急時対策所加圧空気供給系
（1）容器（可搬型）
－緊急時対策所加圧設備（空気ボンベ）
（3）主配管（常設）
（3）主配管（可搬型）
6.3 生体遮蔽装置
（2）二次遮蔽
－ 2 次しやへい壁（原子炉建屋原子炉棟外壁）
（3）補助遮蔽
- 補助しやへい（原子炉建屋）
- 補助しやへい（タービン建屋）
- 補助しやへい（制御建屋）
（4）中央制御室遮蔽
- 中央制御室しやへい壁
- 中央制御室待避所遮蔽
（5）原子炉遮蔽
－原子炉しやへい壁
（6）緊急時対策所遮蔽
6.4 放射線管理施設の基本設計方針，適用基準及び適用規格
6.5 放射線管理施設に係る工事の方法

7．原子炉格納施設
7.1 原子炉格納容器
（1）原子炉格納容器本体
－原子炉格納容器
（2）機器搬出入口

- 機器搬出入用ハッチ
- 逃がし安全弁搬出入口
- 制御棒駆動機構搬出入口
- サプレッションチェンバ出入口
（3）エアロック
－所員用エアロック
（4）原子炉格納容器配管貫通部及び電気配線貫通部
a．配管貫通部
（a）ベローズ付貫通部
（b）ベローズなし貫通部
［1］直結型
［2］二重管型
［3］計装用
b．電気配線貫通部
7.2 原子炉建屋
（1）原子炉建屋原子炉棟
－原子炉建屋原子炉棟（二次格納施設）
（2）機器搬出入口
－原子炉建屋大物搬入口
（3）エアロック
－原子炉建屋エアロック
（4）原子炉建屋基礎スラブ
－原子炉建屋基礎版
7．3 圧力低減設備その他の安全設備
（1）真空破壊装置
（3）ダウンカマ
（4）ベント管
（5）ベントヘッダ
（6）原子炉格納容器安全設備
a．原子炉格納容器スプレイ冷却系
ヌ 主配管（常設）
b．原子炉格納容器下部注水系
ハ ポンプ（常設）
- 復水移送ポンプ
- 代替循環冷却ポンプ

八ポンプ（可搬型）
－大容量送水ポンプ（タイプI）
ホ 容器（常設）
－復水貯蔵タンク
ト ろ過装置（常設）
－残留熱除去系ストレーナ
チ 安全弁及び逃がし弁（常設）
ヌ 主配管（常設）
ヌ 主配管（可搬型）
c．原子炉格納容器代替スプレイ冷却系
ハポンプ（常設）
－復水移送ポンプ
八ポンプ（可搬型）
－大容量送水ポンプ（タイプ I ）
ホ 容器（常設）
－復水貯蔵タンク
卜 過装置（可搬型）
－可搬型ストレーナ
ヌ 主配管（常設）
ヌ 主配管（可搬型）
d．代替循環冷却系
ロ 熱交換器（常設）
－残留熱除去系熱交換器
ハポンプ（常設）
－代替循環冷却ポンプ

卜 万過装置（常設）
－残留熱除去系ストレーナ
チ 安全弁及び逃がし弁（常設）
ヌ 主配管（常設）
e．高圧代替注水系
八 ポンプ（常設）
－高圧代替注水系タービンポンプ
小 容器（常設）
－復水貯蔵タンク
又 主配管（常設）
f．低圧代替注水系
八ポンプ（常設）
－復水移送ポンプ
ハポンプ（可搬型）
－大容量送水ポンプ（タイプ I ）
小 容器（常設）
－復水貯蔵タンク
ヌ 主配管（常設）
ヌ 主配管（可搬型）
g．ほう酸水注入系
八 ポンプ（常設）
－ほう酸水注入系ポンプ
ホ 容器（常設）
－ほう酸水注入系貯蔵タンク
于 安全弁及び逃がし弁（常設）
ヌ 主配管（常設）
h．残留熱除去系（格納容器スプレイ冷却モード）
口 熱交換器（常設）
－残留熱除去系熱交換器
八 ポンプ（常設）
－残留熱除去系ポンプ
卜 万過装置（常設）
－残留熱除去系ストレーナ
于 安全弁及び逃し弁（常設）
ヌ 主配管（常設）
i．残留熱除去系（サプレッションプール水冷却モード）
口 熱交換器（常設）
－残留熱除去系熱交換器

ハポンプ（常設）
－残留熱除去系ポンプ
ト 万過装置（常設）
－残留熱除去系ストレーナ
于 安全弁及び逃がし弁（常設）
ヌ 主配管（常設）
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 a．非常用ガス処理系

ホ 加熱器（常設）
－非常用ガス処理系空気乾燥装置
ヌ 主要弁（常設）
ル 主配管（常設）
ヨ 排風機（常設）
－非常用ガス処理系排風機
タ フィルター（常設）
－非常用ガス処理系フィルタ装置
b．可燃性ガス濃度制御系
ホ 加熱器（常設）
－可燃性ガス濃度制御系再結合装置加熱器
リ 安全弁及び逃がし弁（常設）
ヌ 主要弁（常設）
ル 主配管（常設）
ヲ ブロワ（常設）
－可燃性ガス濃度制御系再結合装置ブロワ
ワ 再結合装置（常設）
－可燃性ガス濃度制御系再結合装置
c．原子炉建屋水素濃度抑制系
ワ 再結合装置（常設）
－静的触媒式水素再結合装置
d．放射性物質拡散抑制系
ハ ポンプ（可搬型）
－大容量送水ポンプ（タイプII）
ル 主配管（可搬型）
e．放射性物質拡散抑制系（航空機燃料火災への泡消火）
ハポンプ（可搬型）
－大容量送水ポンプ（タイプII）
ル 主配管（可搬型）
f．可搬型窒素ガス供給系
二 圧縮機（可搬型）
－可搬型窒素ガス供給装置
ル 主配管（常設）
ル 主配管（可搬型）
g．原子炉格納容器フィルタベント系
ハポンプ（可搬型）
－大容量送水ポンプ（タイプI）
二圧縮機（可搬型）
－可搬型窒素ガス供給装置
へ 容器（常設）
－フィルタ装置
リ 安全弁及び逃がし弁（常設）
ヌ 主要弁（常設）
ル 主配管（常設）
ル 主配管（可搬型）
タ フィルター（常設）
－フィルタ装置
（8）原子炉格納容器調気設備
a．原子炉格納容器調気系
二 主要弁
木 主配管
（9）圧力逃がし装置
a．原子炉格納容器フィルタベント系
イ 容器（常設）
－フィルタ装置
口 主要弁（常設）
八 圧力開放板
二 主配管（常設）
二 主配管（可搬型）

- フィルター（常設）
- フィルタ装置
7.4 原子炉格納施設の基本設計方針，適用基準及び適用規格
7.5 原子炉格納施設に係る工事の方法

8．その他発電用原子炉の附属施設
8.1 非常用電源設備

8．1．1 常用電源設備との切換方法

8．1．2 非常用発電装置

8．1．2．1 非常用ディーゼル発電設備

（2）内燃機関
イ 機関（常設）
－非常用ディーゼル機関
ロ 調速装置及び非常調速装置

- 調速装置
- 非常調速装置

八 内燃機関に附属する冷却水設備（常設）
－機関付清水ポンプ
ニ 内燃機関に附属する空気圧縮設備
1 空気だめ（常設）

- 空気だめ（自動）
- 空気だめ（手動）

2 空気だめの安全弁（常設）
ホ 燃料デイタンク又はサービスタンク（常設）
－燃料デイタンク
（4）燃料設備
イポンプ（常設）
－燃料移送ポンプ
口 容器（常設）
－非常用ディーゼル発電設備軽油タンク
二 主配管（常設）
（5）発電機
イ 発電機（常設）
－非常用ディーゼル発電機
口 励磁装置（常設）
八 保護継電装置
二 原動機との連結方法
8．1．2．2 高圧炉心スプレイ系ディーゼル発電設備
（2）内燃機関
イ 機関（常設）
－高圧炉心スプレイ系ディーゼル機関
ロ 調速装置及び非常調速装置

- 調速装置
- 非常調速装置

八 内燃機関に附属する冷却水設備（常設）
－機関付清水ポンプ

二 内燃機関に附属する空気圧縮設備
1 空気だめ（常設）

- 空気だめ（自動）
- 空気だめ（手動）

2 空気だめの安全弁（常設）
ホ 燃料デイタンク又はサービスタンク（常設）
－燃料デイタンク
（4）燃料設備
イ ポンプ（常設）
－燃料移送ポンプ
口 容器（常設）
－高圧炉心スプレイ系ディーゼル発電設備軽油タンク
二 主配管（常設）
（5）発電機
イ 発電機（常設）
－高圧炉心スプレイ系ディーゼル発電機
口 励磁装置（常設）
八 保護継電装置
＝原動機との連結方法

8．1．2．3 ガスタービン発電設備

（1）ガスタービン
イ ガスタービン（常設）
－ガスタービン機関
八 調速装置及び非常調速装置

- 調速装置
- 非常調速装置
（4）燃料設備
イ ポンプ（常設）
－ガスタービン発電設備燃料移送ポンプ
ロ 容器（常設）
- ガスタービン発電設備軽油タンク
- ガスタービン発電設備燃料小出槽
- 非常用ディーゼル発電設備軽油タンク
- 高圧炉心スプレイ系ディーゼル発電設備軽油タンク

口 容器（可搬型）
－タンクローリ
二 主配管（常設）
二主配管（可搬型）
（5）発電機
イ 発電機（常設）
－ガスタービン発電機
口 励磁装置（常設）
八 保護継電装置
二原動機との連結方法
8．1．2．4 可搬型代替交流電源設備
（2）内燃機関
1 機関（可搬型）
－電源車（内燃機関）
口 調速装置及び非常調速装置

- 電源車（調速装置）
- 電源車（非常調速装置）

八 内燃機関に附属する泠却水設備（可搬型）
－電源車（冷却水ポンプ）
ホ 燃料デイタンク又はサービスタンク（可搬型）
－電源車（燃料タンク）
（4）燃料設備

- 容器（常設）
- 非常用ディーゼル発電設備軽油タンク
- 高圧炉心スプレイ系ディーゼル発電設備軽油タンク
- ガスタービン発電設備軽油タンク

口 容器（可搬型）
－タンクローリ
二 主配管（常設）
二 主配管（可搬型）
（5）発電機
ィ 発電機（可搬型）
－電源車（発電機）
口 励磁装置（可搬型）
八 保護継電装置
二 原動機との連結方法
8．1．2．5 可搬型代替直流電源設備
（2）内燃機関
イ 機関（可搬型）
－電源車（内燃機関）
口 調速装置及び非常調速装置

- 電源車（調速装置）
- 電源車（非常調速装置）

八 内燃機関に附属する泠却水設備（可搬型）
－電源車（冷却水ポンプ）
ホ 燃料デイタンク又はサービスタンク（可搬型）
－電源車（燃料タンク）
（4）燃料設備
口 容器（常設）

- 非常用ディーゼル発電設備軽油タンク
- 高圧炉心スプレイ系ディーゼル発電設備軽油タンク
- ガスタービン発電設備軽油タンク

口 容器（可搬型）
－タンクローリ
二主配管（常設）
二主配管（可搬型）
（5）発電機
イ 発電機（可搬型）
－電源車（発電機）
口 励磁装置（可搬型）
八 保護継電装置
二原動機との連結方法
8．1．2．6 緊急時対策所ディーゼル発電設備
（2）内燃機関
イ 機関（可搬型）
－電源車（緊急時対策所用）（内燃機関）
口 調速装置及び非常調速装置

- 電源車（緊急時対策所用）（調速装置）
- 電源車（緊急時対策所用）（非常調速装置）

八 内燃機関に附属する泠却水設備（可搬型）
－電源車（緊急時対策所用）（冷却水ポンプ）
ホ 燃料デイタンク又はサービスタンク（可搬型）
－電源車（緊急時対策所用）（燃料タンク）
（4）燃料設備
口 容器（常設）
－緊急時対策所軽油タンク
二主配管（常設）
二主配管（可搬型）
（5）発電機
イ 発電機（可搬型）
－電源車（緊急時対策所用）（発電機）
口 励磁装置（可搬型）

八 保護継電装置
二 原動機との連結方法
8．1．2．7 可搬型窒素ガス供給装置発電設備
（2）内燃機関
イ 機関（可搬型）
－可搬型窒素ガス供給装置発電設備（内燃機関）
ロ 調速装置及び非常調速装置

- 可搬型窒素ガス供給装置発電設備（調速装置）
- 可搬型窒素ガス供給装置発電設備（非常調速装置）

八 内燃機関に附属する冷却水設備（可搬型）
－可搬型窒素ガス供給装置発電設備（冷却水ポンプ）
ホ 燃料デイタンク又はサービスタンク（可搬型）
－可搬型窒素ガス供給装置発電設備（燃料タンク）
（4）燃料設備
口 容器（常設）

- 非常用ディーゼル発電設備軽油タンク
- 高圧炬心スプレイ系ディーゼル発電設備軽油タンク
- ガスタービン発電設備軽油タンク
- 容器（可搬型）
－タンクローリ
二主配管（常設）
二 主配管（可搬型）
（5）発電機
ィ 発電機（可搬型）
－可搬型窒素ガス供給装置発電設備（発電機）
口 励磁装置（可搬型）
八 保護継電装置
二原動機との連結方法
8．1．3 その他の電源装置
8．1．3．1 無停電電源装置
（1）無停電電源装置（常設）
－無停電交流電源用静止形無停電電源装置
8．1．3．2 電力貯蔵装置
（2）電力貯蔵装置（常設）
- 125 V 蓄電池 2 A 及び 2 B
- 125 V 蓄電池 2 H
- 125 V 代替蓄電池
- 250 V 蓄電池
（2）電力貯蔵装置（可搬型）
－主蒸気逃がし安全弁用可搬型蓄電池
8．1．4 非常用電源設備の基本設計方針，適用基準及び適用規格
8．1．5 非常用電源設備に係る工事の方法

8.2 常用電源設備

8．2．1 発電機
（1）発電機
（2）励磁装置
（3）保護継電装置
（4）原動機との連結方法
8．2．2 変圧器
（1）変圧器
（2）保護継電装置
8．2．3 遮断器
（1）遮断器

- 線路用 275 kV 遮断器（牡鹿幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）
- 線路用 275 kV 遮断器（松島幹線用）（第 3 号機設備，第 $1,2,3$ 号機共用）
（2）保護継電装置
- 線路用 275 kV 遮断器（牡鹿幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）（保護継電装置）
- 線路用 275 kV 遮断器（松島幹線用）（第3号機設備，第 $1,2,3$ 号機共用）（保護継電装置）

8．2．4 常用電源設備の基本設計方針，適用基準及び適用規格
8．2．5 常用電源設備に係る工事の方法
8.3 補助ボイラー

8．3．15 補助ボイラーの基本設計方針，適用基準及び適用規格
8．3．16 補助ボイラーに係る工事の方法
8.4 火災防護設備

8．4．1 火災区域構造物及び火災区画構造物

- 原子炉建屋
- タービン建屋
- 制御建屋
- 海水ポンプ室エリア
- 軽油タンクエリア
- 復水貯蔵タンクエリア
- 緊急時対策建屋
- 緊急用電気品建屋エリア

8．4．2 消火設備

8．4．2．1 水消火設備

8．4．2．1．1 屋内水消火系
（1）ポンプ（常設）
－電動機駆動消火ポンプ（第 1,2 号機共用）
（2）容器（常設）
－消火水タンク
（3）貯蔵槽（常設）
－消火水槽（第1，2号機共用）
（5）主配管（常設）
8．4．2．1．2 屋外水消火系
（1）ポンプ（常設）

- 屋外消火系電動機駆動消火ポンプ
- 屋外消火系ディーゼル駆動消火ポンプ
（2）容器（常設）
－屋外消火系消火水タンク
（5）主配管（常設）
8．4．2．2 ハロンガス消火設備
8．4．2．2．1 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系
8．4．2．2．2 LPCS ポンプ・ラック室／HPCS ポンプ・ラック室消火系
8．4．2．2．3 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系
8．4．2．2．4 RHR（C）室／RCICタービンポンプ室消火系
8．4．2．2．5 RCW 熱交換器・ポンプ（A）（C）室消火系
8．4．2．2．6 B2F 南側通路／バルブラッピング室消火系
8．4．2．2．7 $\mathrm{IA} \cdot \mathrm{SA}$ 空気圧縮機室／B2F 東側通路消火系
8．4．2．2．8 CRD ポンプ室消火系
8．4．2．2．9 MUWC ポンプ室消火系
8．4．2．2．10 B2F／B1F／1F 西側通路／排風機室消火系
8．4．2．2．11 PLR－VVVF 室／区分 II 非常用電気品室消火系
8．4．2．2．12 B1F インナー通路消火系
8．4．2．2．13 DC RCIC MCC 室消火系
8．4．2．2．14 区分 I 非常用電気品室消火系
8．4．2．2．15 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系
8．4．2．2．16 B1F ハッチ室消火系
8．4．2．2．17 区分III HPCS 電気品室消火系
8．4．2．2． 18 区分 II 非常用 MCC 室消火系
8．4．2．2．19 導電率計ラック室消火系
8．4．2．2．20 FPC ポンプ（A）（B）室消火系
8．4．2．2．21 HWH 熱交換器・ポンプ室消火系

8．4．2．2． 22 緊急用電気品室（1）／（2）消火系
8．4．2．2．23 区分 I 非常用 D／G 制御盤室消火系
8．4．2．2．24 区分III非常用 D／G 制御盤室消火系
8．4．2．2．25 ディーゼル発電機（HPCS）室消火系
8．4．2．2．26 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系
8．4．2．2．27 区分IIIバッテリ室消火系
8．4．2．2． 28 送風機•緊急用電気品室消火系
8．4．2．2．29 燃料デイタンク（B）室消火系
8．4．2．2．30 SOL 冷凍機室消火系
8．4．2．2．31 HECW 冷凍機・ポンプ（A）（C）室消火系
8．4．2．2．32 燃料デイタンク（A）室消火系
8．4．2．2．33 燃料デイタンク（HPCS）室消火系
8．4．2．2． 34 空調機械（A）室／（B）室消火系
8．4．2．2．35 250V 直流主母線盤室／125V（A）－ 1 室消火系
8．4．2．2．36 DC250V バッテリ室消火系
8．4．2．2．37 計測制御電源（B）室消火系
8．4．2．2． 38 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系
8．4．2．2． 39 常用•共通 M／C•P／C 室消火系
8．4．2．2．40 計測制御電源（A）室消火系
8．4．2．2．41 T．S（計測制御電源（B）室北）消火系
8．4．2．2．42 T．S（更衣室北）消火系
8．4．2．2．43 T．S（更衣室西）消火系
8．4．2．2．44 区分 I／II／常用系ケーブル処理室消火系
8．4．2．2．45 区分IIIケーブル処理室消火系
8．4．2．2．46 DC125V 代替バッテリ室消火系
8．4．2．2．47 T．S（区分 II ケーブル処理室北）消火系
8．4．2．2． 48 PCPS 区分 I エリア消火系
8．4．2．2． 49 PCPS 区分IIエリア消火系
8．4．2．2．50 PCPS 区分IIIエリア消火系
8．4．2．2．51 PCPS 区分 NONエリア消火系
8．4．2．2．52 緊急対策室他消火系
8．4．2．2．53 緊急時対策所軽油タンク（A）室消火系
8．4．2．2．54 緊急時対策所軽油タンク（B）室消火系
8．4．2．2．55 緊急時対策所軽油タンク（C）室消火系
8．4．2．2．56 E／B 電気品室消火系
8．4．2．2．57 R／B MCC 2SB－1 消火系
8．4．2．2．58 SLCポンプ（A）（B）消火系
8．4．2．2．59 HECW 冷凍機・ポンプ（B）（D）消火系

8．4．2．3 ケーブルトレイ消火設備

8．4．2．3．1 ケーブルトレイ消火系
8．4．3 火災防護設備の基本設計方針，適用基準及び適用規格
8．4．4 火災防護設備に係る工事の方法
8.5 浸水防護施設

8．5．1 外郭浸水防護設備
8．5．2 内郭浸水防護設備
8．5．3 浸水防護施設の基本設計方針，適用基準及び適用規格
8．5． 4 浸水防護施設に係る工事の方法

8． 6 補機駆動用燃料設備
8．6．1 燃料設備
（2）容器（常設）

- 非常用ディーゼル発電設備軽油タンク
- 高圧炉心スプレイ系ディーゼル発電設備軽油タンク
- ガスタービン発電設備軽油タンク
（2）容器（可搬型）
- 大容量送水ポンプ（タイプ I ）（燃料タンク）
- 大容量送水ポンプ（タイプII）（燃料タンク）
- 原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）
－タンクローリ
（4）主配管（常設）
（4）主配管（可搬型）
8．6．2 補機駆動用燃料設備の基本設計方針，適用基準及び適用規格
8．6． 3 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）に係る工事の方法
8.7 非常用取水設備

8．7．1 取水設備（非常用の冷却用海水を確保する構築物に限る。）

- 貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）
- 取水口
- 取水路
- 海水ポンプ室

8．7．2 非常用取水設備の基本設計方針，適用基準及び適用規格
8．7．3 非常用取水設備に係る工事の方法

8．9 緊急時対策所

8．9．1 緊急時対策所機能

8．9．2 緊急時対策所の基本設計方針，適用基準及び適用規格
8．9．3 緊急時対策所に係る工事の方法

女川原子力発電所第2号機
工事計画認可申請書本文及び添付書類

目 録

I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類

VI－1 説明書

VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書
VI－1－1－1－1 発電用原子炉設置変更許可申請書「本文（五号）」との整合性
VI－1－1－1－2 発電用原子炉設置変更許可申請書「本文（十一号）」との整合性
VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書
VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書
VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針
VI－1－1－2－1－2 防護対象施設の範囲
VI－1－1－2－2 津波への配慮に関する説明書
VI－1－1－2－2－1 耐津波設計の基本方針
VI－1－1－2－2－2 基準津波の概要
VI－1－1－2－2－3 入力津波の設定
VI－1－1－2－2－4 入力津波による津波防護対象施設への影響評価
VI－1－1－2－2－5 津波防護に関する施設の設計方針
VI－1－1－2－3 竜巻への配慮に関する説明書
VI－1－1－2－3－1 竜巻への配慮に関する基本方針
VI－1－1－2－3－2 竜巻の影響を考慮する施設及び固縛対象物の選定
VI－1－1－2－3－3 竜巻防護に関する施設の設計方針
VI－1－1－2－4 火山～の配慮に関する説明書
VI－1－1－2－4－1 火山への配慮に関する基本方針
VI－1－1－2－4－2 降下火砕物の影響を考慮する施設の選定
VI－1－1－2－4－3 降下火砕物の影響を考慮する施設の設計方針
VI－1－1－2－5 外部火災への配慮に関する説明書
VI－1－1－2－5－1 外部火災への配慮に関する基本方針
VI－1－1－2－5－2 外部火災の影響を考慮する施設の選定
VI－1－1－2－5－3 外部火災防護における評価の基本方針
VI－1－1－2－5－4 外部火災防護に関する許容温度設定根拠

VI－1－1－2－5－5 外部火災防護における評価方針
VI－1－1－2－5－6 外部火災防護における評価条件及び評価結果
VI $-1-1-2-5-7$ 二次的影響（ばい煙）及び有毒ガスに対する設計
VI－1－1－2－別添1 屋外に設置されている重大事故等対処設備の抽出
VI－1－1－3 取水口及び放水口に関する説明書
VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書（原子炉本体）
VI－1－1－4－1－1 炉心に係る設定根拠に関する説明書
VI－1－1－4－1－1－1 炉心シュラウド
VI－1－1－4－1－1－2 シュラウドサポート
VI－1－1－4－1－1－3 炉心シュラウド支持ロッド
VI－1－1－4－1－1－4 上部格子板
VI－1－1－4－1－1－5 炉心支持板
VI－1－1－4－1－1－6 中央燃料支持金具
VI－1－1－4－1－1－7 周辺燃料支持金具
VI－1－1－4－1－1－8 制御棒案内管
VI－1－1－4－1－2 原子炉圧力容器に係る設定根拠に関する説明書
VI－1－1－4－1－2－1 原子炉圧力容器
VI－1－1－4－1－2－2 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）
VI－1－1－4－1－2－3 ジェットポンプ
VI－1－1－4－1－2－4 給水スパージャ
VI－1－1－4－1－2－5 高圧炉心スプレイスパージャ
VI－1－1－4－1－2－6 低圧炉心スプレイスパージャ
VI－1－1－4－1－2－7 残留熱除去系配管（原子炉圧力容器内部）
VI－1－1－4－1－2－8 高圧炉心スプレイ系配管（原子炉圧力容器内部）
VI－1－1－4－1－2－9 低圧炉心スプレイ系配管（原子炉圧力容器内部）
VI－1－1－4－1－2－10 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）
VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書（核燃料物質の取扱施設及び貯蔵施設）

VI－1－1－4－2－1 使用済燃料貯蔵設備に係る設定根拠に関する説明書
$\mathrm{VI}-1-1-4-2-1-1$ 使用済燃料プール（設計基準対象施設としてのみ第1，2号機共用）
VI－1－1－4－2－1－2 使用済燃料貯蔵ラック（設計基準対象施設としてのみ第1，2号機共用）
VI－1－1－4－2－1－3 制御棒•破損燃料貯蔵ラック
VI－1－1－4－2－1－4 制御棒貯蔵ハンガ
VI－1－1－4－2－1－5 使用済燃料プール水位／温度（ガイドパルス式）
VI－1－1－4－2－1－6 使用済燃料プール水位／温度（ヒートサーモ式）
VI－1－1－4－2－2 使用済燃料貯蔵槽冷却浄化設備に係る設定根拠に関する説明書
VI－1－1－4－2－2－1 燃料プール冷却浄化系

VI－1－1－4－2－2－1－1 燃料プール冷却浄化系熱交換器（設計基準対象施設としてのみ第1，2号機共用）
VI－1－1－4－2－2－1－2 燃料プール冷却浄化系ポンプ（設計基準対象施設としてのみ第 1，2号機共用）
VI－1－1－4－2－2－1－3 スキマサージタンク（設計基準対象施設としてのみ第1，2号機共用）
VI－1－1－4－2－2－1－4 燃料プール冷却浄化系 主配管（スプレイヘッダを含む。）（常設）（設計基準対象施設としてのみ第1，2号機共用）
VI－1－1－4－2－2－2 燃料プール代替注水系
$\mathrm{VI}-1-1-4-2-2-2-1$ 大容量送水ポンプ（タイプ I ）
VI－1－1－4－2－2－2－2 燃料プール代替注水系 主配管（スプレイヘッダを含む。）（常設）
VI－1－1－4－2－2－2－3 燃料プール代替注水系 主配管（スプレイヘッダを含む。）（可搬型）
$\mathrm{VI}-1-1-4-2-2-3$ 燃料プールスプレイ系
VI $-1-1-4-2-2-3-1$ 燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（常設）
VI－1－1－4－2－2－3－2 燃料プールスプレイ系 主配管（スプレイヘッダを含む。）（可搬型）
VI－1－1－4－2－2－3－3 可搬型ストレーナ
VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書（原子炉冷却系統施設）
VI－1－1－4－3－1 原子炉冷却材再循環設備に係る設定根拠に関する説明書
VI－1－1－4－3－1－1 原子炉再循環系
VI－1－1－4－3－1－1－1 原子炉再循環系 主配管
VI－1－1－4－3－2 原子炉冷却材の循環設備に係る設定根拠に関する説明書
VI－1－1－4－3－2－1 主蒸気系
VI－1－1－4－3－2－1－1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
VI－1－1－4－3－2－1－2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ
VI－1－1－4－3－2－1－3 主蒸気系 安全弁及び逃がし弁
VI－1－1－4－3－2－1－4 主蒸気系 主配管
VI－1－1－4－3－2－2 復水給水系
VI－1－1－4－3－2－2－1 復水給水系 主配管
VI－1－1－4－3－3 残留熱除去設備に係る設定根拠に関する説明書
VI $-1-1-4-3-3-1$ 残留熱除去系
VI－1－1－4－3－3－1－1 残留熱除去系熱交換器
VI－1－1－4－3－3－1－2 残留熱除去系ポンプ
VI－1－1－4－3－3－1－3 残留熱除去系ストレーナ
VI－1－1－4－3－3－1－4 残留熱除去系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－3－1－5 残留熱除去系 主要弁（常設）

VI－1－1－4－3－3－1－6 残留熱除去系 主配管（常設）
VI－1－1－4－3－3－2 耐圧強化ベント系
VI－1－1－4－3－3－2－1 耐圧強化ベント系 主配管（常設）
VI－1－1－4－3－4 非常用炉心冷却設備その他原子炉注水設備に係る設定根拠に関する説明書

VI－1－1－4－3－4－1 高圧炉心スプレイ系
VI－1－1－4－3－4－1－1 高圧炉心スプレイ系ポンプ
VI－1－1－4－3－4－1－2 高圧炉心スプレイ系ストレーナ
VI－1－1－4－3－4－1－3 高圧炉心スプレイ系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－4－1－4 高圧炉心スプレイ系 主配管（常設）
VI－1－1－4－3－4－2 低圧炉心スプレイ系
VI－1－1－4－3－4－2－1 低圧炉心スプレイ系ポンプ
$\mathrm{VI}-1-1-4-3-4-2-2$ 低圧炉心スプレイ系ストレーナ
VI－1－1－4－3－4－2－3 低圧炉心スプレイ系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－4－2－4 低圧炉心スプレイ系 主配管（常設）
VI－1－1－4－3－4－3 高圧代替注水系
VI－1－1－4－3－4－3－1 高圧代替注水系タービンポンプ
VI－1－1－4－3－4－3－2 高圧代替注水系 主配管（常設）
VI－1－1－4－3－4－4 原子炉隔離時冷却系
VI－1－1－4－3－4－4－1 原子炉隔離時冷却系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－4－5 低圧代替注水系
VI－1－1－4－3－4－5－1 直流駆動低圧注水系ポンプ
VI－1－1－4－3－4－5－2 低圧代替注水系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－4－5－3 低圧代替注水系 主配管（常設）
VI－1－1－4－3－4－6 代替水源移送系
VI－1－1－4－3－4－6－1 代替水源移送系 主配管（常設）
VI－1－1－4－3－5 原子炉冷却材補給設備に係る設定根拠に関する説明書
VI－1－1－4－3－5－1 原子炉隔離時冷却系
VI－1－1－4－3－5－1－1 原子炉隔離時冷却系ポンプ
VI－1－1－4－3－5－1－2 原子炉隔離時冷却系 主配管
VI－1－1－4－3－5－2 補給水系
VI－1－1－4－3－5－2－1 復水移送ポンプ
VI－1－1－4－3－5－2－2 復水貯蔵タンク
VI－1－1－4－3－5－2－3 補給水系 主配管
VI－1－1－4－3－6 原子炉補機冷却設備に係る設定根拠に関する説明書
VI－1－1－4－3－6－1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）
VI－1－1－4－3－6－1－1 原子炉補機冷却水系熱交換器
VI－1－1－4－3－6－1－2 原子炉補機冷却水ポンプ
VI－1－1－4－3－6－1－3 原子炉補機泠却海水ポンプ

VI－1－1－4－3－6－1－4 原子炉補機冷却水サージタンク
VI－1－1－4－3－6－1－5 原子炬補機冷却海水系ストレーナ
VI－1－1－4－3－6－1－6 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管 （常設）
VI－1－1－4－3－6－2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系 を含む。）

VI－1－1－4－3－6－2－1 高圧炉心スプレイ補機冷却水系熱交換器
VI－1－1－4－3－6－2－2 高圧炉心スプレイ補機冷却水ポンプ
$\mathrm{VI}-1-1-4-3-6-2-3$ 高圧炉心スプレイ補機冷却海水ポンプ
VI－1－1－4－3－6－2－4 高圧灲心スプレイ補機冷却水サージタンク
VI－1－1－4－3－6－2－5 高圧炉心スプレイ補機冷却海水系ストレーナ
VI－1－1－4－3－6－2－6 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管（常設）

VI－1－1－4－3－6－3 原子炉補機代替冷却水系
VI－1－1－4－3－6－3－1 原子炉補機代替冷却水系熱交換器ユニット（熱交換器）
VI－1－1－4－3－6－3－2 原子炉補機代替冷却水系熱交換器ユニット（ポンプ）
VI－1－1－4－3－6－3－3 原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）
VI－1－1－4－3－6－3－4 原子炬補機代替冷却水系 主配管（常設）
VI－1－1－4－3－6－3－5 原子炉補機代替冷却水系 主配管（可搬型）
VI－1－1－4－3－7 原子炉冷却材浄化設備に係る設定根拠に関する説明書
VI－1－1－4－3－7－1 原子炉冷却材浄化系
VI－1－1－4－3－7－1－1 原子炉冷却材浄化系 主配管
VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書（計測制御系統施設）
VI－1－1－4－4－1 制御材に係る設定根拠に関する説明書
VI－1－1－4－4－1－1 制御棒
VI－1－1－4－4－2 制御材駆動装置に係る設定根拠に関する説明書
VI－1－1－4－4－2－1 制御棒駆動機構
VI－1－1－4－4－2－2 水圧制御ユニット（アキュムレータ）
VI－1－1－4－4－2－3 水圧制御ユニット（窒素容器）
VI－1－1－4－4－2－4 制御棒駆動水圧設備 主要弁（常設）
VI－1－1－4－4－2－5 制御棒駆動水圧設備 主配管（常設）
VI－1－1－4－4－3 ほら酸水注入設備に係る設定根拠に関する説明書
VI－1－1－4－4－3－1 ほう酸水注入系
VI－1－1－4－4－3－1－1 ほら酸水注入系ポンプ
VI－1－1－4－4－3－1－2 ほら酸水注入系貯蔵タンク
VI－1－1－4－4－3－1－3 ほう酸水注入系 安全弁及び逃がし弁（常設）
VI－1－1－4－4－3－1－4 ほう酸水注入系 主配管（常設）
VI－1－1－4－4－4 計測装置に係る設定根拠に関する説明書
VI－1－1－4－4－4－1 起動領域計測装置及び出力領域計測装置

VI－1－1－4－4－4－1－1 起動領域モニタ
VI－1－1－4－4－4－1－2 出力領域モニタ
VI－1－1－4－4－4－2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又 は流量を計測する装置
VI－1－1－4－4－4－2－1 高圧代替注水系ポンプ出口圧力
$\mathrm{VI}-1-1-4-4-4-2-2$ 直流駆動低圧注水系ポンプ出口圧力
$\mathrm{VI}-1-1-4-4-4-2-3$ 代替循環冷却ポンプ出口圧力
VI－1－1－4－4－4－2－4 原子炬隔離時冷却系ポンプ出口圧力
VI－1－1－4－4－4－2－5 高圧炬心スプレイ系ポンプ出口圧力
VI－1－1－4－4－4－2－6 残留熱除去系ポンプ出口圧力
$\mathrm{VI}-1-1-4-4-4-2-7$ 低圧炉心スプレイ系ポンプ出口圧力
$\mathrm{VI}-1-1-4-4-4-2-8$ 復水移送ポンプ出口圧力
VI－1－1－4－4－4－2－9 残留熱除去系熱交換器入口温度
VI－1－1－4－4－4－2－10 残留熱除去系熱交換器出口温度
VI－1－1－4－4－4－2－11 高圧代替注水系ポンプ出口流量
VI－1－1－4－4－4－2－12 残留熱除去系洗浄ライン流量（残留熱除去系へッドスプレイラ イン洗浄流量）
VI－1－1－4－4－4－2－13 残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却 ライン洗浄流量）
VI－1－1－4－4－4－2－14 直流駆動低圧注水系ポンプ出口流量
VI－1－1－4－4－4－2－15 代替循環冷却ポンプ出口流量
VI－1－1－4－4－4－2－16 原子炬隔離時冷却系ポンプ出口流量
VI－1－1－4－4－4－2－17 高圧炉心スプレイ系ポンプ出口流量
VI－1－1－4－4－4－2－18 残留熱除去系ポンプ出口流量
VI－1－1－4－4－4－2－19 低圧炉心スプレイ系ポンプ出口流量
VI－1－1－4－4－4－3 原子炉圧力容器本体内の圧力又は水位を計測する装置
VI－1－1－4－4－4－3－1 原子炉圧力
VI－1－1－4－4－4－3－2 原子炉圧力（SA）
VI－1－1－4－4－4－3－3 原子炉水位（広帯域）
VI－1－1－4－4－4－3－4 原子炉水位（燃料域）
$\mathrm{VI}-1-1-4-4-4-3-5$ 原子炉水位（SA広帯域）
VI－1－1－4－4－4－3－6 原子炉水位（SA燃料域）
VI－1－1－4－4－4－4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置
$\mathrm{VI}-1-1-4-4-4-4-1$ ドライウェル圧力
VI－1－1－4－4－4－4－2 圧力抑制室圧力
VI－1－1－4－4－4－4－3 ドライウェル温度
VI－1－1－4－4－4－4－4 圧力抑制室内空気温度
VI－1－1－4－4－4－4－5 サプレッションプール水温度

VI－1－1－4－4－4－4－6 原子炉格納容器下部温度
VI－1－1－4－4－4－4－7 格納容器内雰囲気酸素濃度
VI－1－1－4－4－4－4－8 格納容器内水素濃度（D／W）
VI－1－1－4－4－4－4－9 格納容器内水素濃度（S／C）
VI－1－1－4－4－4－4－10 格納容器内雾囲気水素濃度
VI－1－1－4－4－4－5 非常用炉心冷却設備その他原子炬注水設備に係る容器内又は貯蔵槽内の水位を計測する装置
VI－1－1－4－4－4－5－1 復水貯蔵タンク水位
VI－1－1－4－4－4－6 原子炉格納容器本体への泠却材流量を計測する装置
VI－1－1－4－4－4－6－1 原子炉格納容器代替スプレイ流量
VI－1－1－4－4－4－6－2 原子炉格納容器下部注水流量
VI－1－1－4－4－4－7 原子炉格納容器本体の水位を計測する装置
VI－1－1－4－4－4－7－1 圧力抑制室水位
VI－1－1－4－4－4－7－2 原子炉格納容器下部水位
VI－1－1－4－4－4－7－3 ドライウェル水位
VI－1－1－4－4－4－8 原子炉建屋内の水素ガス濃度を計測する装置
VI－1－1－4－4－4－8－1 原子炉建屋内水素濃度
VI－1－1－4－4－5 工学的安全施設等の起動信号に係る設定根拠に関する説明書
VI－1－1－4－4－5－1 ATWS緩和設備（代替制御棒挿入機能）の起動信号
VI－1－1－4－4－5－2 ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号
VI－1－1－4－4－5－3 ATWS緩和設備（自動減圧系作動阻止機能）の起動信号
VI－1－1－4－4－5－4 代替自動減圧回路（代替自動減圧機能）の起動信号
VI－1－1－4－4－6 制御用空気設備に係る設定根拠に関する説明書
VI－1－1－4－4－6－1 高圧窒素ガス供給系
VI－1－1－4－4－6－1－1 高圧窒素ガスボンベ
VI－1－1－4－4－6－1－2 高圧窒素ガス供給系 安全弁（常設）
VI－1－1－4－4－6－1－3 高圧窒素ガス供給系 主配管（常設）
VI－1－1－4－4－6－1－4 高圧窒素ガス供給系 主配管（可搬型）
VI－1－1－4－4－6－2 代替高圧窒素ガス供給系
VI－1－1－4－4－6－2－1 代替高圧窒素ガス供給系 安全弁（可搬型）
VI－1－1－4－4－6－2－2 代替高圧窒素ガス供給系 主配管（常設）
VI－1－1－4－4－6－2－3 代替高圧窒素ガス供給系 主配管（可搬型）
VI－1－1－4－5 設備別記載事項の設定根拠に関する説明書（放射性廃蓑物の廃棄施設）
VI－1－1－4－5－1 気体廃棄物処理設備に係る設定根拠に関する説明書（排気筒）
VI－1－1－4－5－1－1 気体廃棄物処理系
VI－1－1－4－5－1－1－1 排気筒
VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書（放射線管理施設）
VI－1－1－4－6－1 放射線管理用計測装置に係る設定根拠に関する説明書
$\mathrm{VI}-1-1-4-6-1-1$ プロセスモニタリング設備

VI－1－1－4－6－1－1－1 格納容器内雰囲気放射線モニタ（D／W）
VI－1－1－4－6－1－1－2 格納容器内雰囲気放射線モニタ（S／C）
VI－1－1－4－6－1－1－3 フィルタ装置出口放射線モニタ
VI－1－1－4－6－1－1－4 耐圧強化ベント系放射線モニタ
VI－1－1－4－6－1－2 エリアモニタリング設備
VI－1－1－4－6－1－2－1 緊急時対策所可搬型エリアモニタ
VI－1－1－4－6－1－2－2 使用済燃料プール上部空間放射線モニタ（低線量）
VI－1－1－4－6－1－2－3 使用済燃料プール上部空間放射線モニタ（高線量）
$\mathrm{VI}-1-1-4-6-1-3$ 固定式周辺モニタリング設備
VI－1－1－4－6－1－3－1 モニタリングポスト（第1号機設備，第1，2，3号機共用）
VI－1－1－4－6－1－4 移動式周辺モニタリング設備
$\mathrm{VI}-1-1-4-6-1-4-1$ 可搬型モニタリングポスト
VI－1－1－4－6－1－4－2 γ 線サーベイメータ
VI－1－1－4－6－1－4－3 β 線サーベイメータ
VI－1－1－4－6－1－4－4 α 線サーベイメータ
VI－1－1－4－6－1－4－5 電離箱サーベイメータ
VI－1－1－4－6－2 換気設備（中央制御室，緊急時制御室及び緊急時対策所に設置するもの （非常用のものに限る。）並びに放射性物質により汚染された空気による放射線障害を防止する目的で給気又は排気設備として設置するもの。一時的に設置する可搬型のものを除く。）に係る設定根拠に関する説明書
VI－1－1－4－6－2－1 中央制御室換気空調系
VI－1－1－4－6－2－1－1 中央制御室換気空調系 主配管（常設）
VI－1－1－4－6－2－1－2 中央制御室送風機
VI－1－1－4－6－2－1－3 中央制御室再循環送風機
VI－1－1－4－6－2－1－4 中央制御室排風機
VI－1－1－4－6－2－1－5 中央制御室再循環フィルタ装置
VI－1－1－4－6－2－2 緊急時対策所換気空調系
VI－1－1－4－6－2－2－1 緊急時対策所換気空調系 主配管（常設）
VI－1－1－4－6－2－2－2 緊急時対策所非常用送風機
VI－1－1－4－6－2－2－3 緊急時対策所非常用フィルタ装置
VI－1－1－4－6－2－3 中央制御室待避所加圧空気供給系
VI－1－1－4－6－2－3－1 中央制御室待避所加圧設備（空気ボンベ）
VI－1－1－4－6－2－3－2 中央制御室待避所加圧空気供給系 主配管（常設）
VI－1－1－4－6－2－3－3 中央制御室待避所加圧空気供給系 主配管（可搬型）
VI－1－1－4－6－2－4 緊急時対策所加圧空気供給系
VI－1－1－4－6－2－4－1 緊急時対策所加圧設備（空気ボンベ）
VI－1－1－4－6－2－4－2 緊急時対策所加圧空気供給系 主配管（常設）
VI－1－1－4－6－2－4－3 緊急時対策所加圧空気供給系 主配管（可搬型）

VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書（原子炉格納施設）
VI－1－1－4－7－1 原子炉格納容器に係る設定根拠に関する説明書
VI－1－1－4－7－1－1 原子炉格納容器
VI－1－1－4－7－1－2 機器搬出入用ハッチ
$\mathrm{VI}-1-1-4-7-1-3$ 逃がし安全弁搬出入口
VI－1－1－4－7－1－4 制御棒駆動機構搬出入口
VI－1－1－4－7－1－5 サプレッションチェンバ出入口
VI－1－1－4－7－1－6 所員用エアロック
$\mathrm{VI}-1-1-4-7-1-7$ ベローズ付貫通部
VI－1－1－4－7－1－8 直結型
VI－1－1－4－7－1－9 二重管型
VI－1－1－4－7－1－10 計装用
VI－1－1－4－7－1－11 電気配線貫通部
VI－1－1－4－7－2 原子炉建屋に係る設定根拠に関する説明書
VI－1－1－4－7－2－1 原子炉建屋原子炉棟（二次格納施設）
VI－1－1－4－7－2－2 原子炉建屋大物搬入口
VI－1－1－4－7－2－3 原子炉建屋エアロック
VI－1－1－4－7－3 圧力低減設備に係る設定根拠に関する説明書
VI－1－1－4－7－3－1 真空破壊弁
$\mathrm{VI}-1-1-4-7-3-2$ ダウンカマ
VI－1－1－4－7－3－3 ベント管
VI－1－1－4－7－3－4 ベント管ベローズ
VI－1－1－4－7－3－5 ベントヘッダ
VI－1－1－4－7－4 原子炉格納容器安全設備に係る設定根拠に関する説明書
VI－1－1－4－7－4－1 原子炉格納容器スプレイ冷却系
VI－1－1－4－7－4－1－1 原子炉格納容器スプレイ冷却系 主配管（常設）
VI－1－1－4－7－4－2 原子炉格納容器下部注水系
VI－1－1－4－7－4－2－1 原子炉格納容器下部注水系 主配管（常設）
VI－1－1－4－7－4－3 原子炉格納容器代替スプレイ冷却系
VI－1－1－4－7－4－3－1 原子炉格納容器代替スプレイ冷却系 主配管（常設）
VI－1－1－4－7－4－4 代替循環冷却系
VI－1－1－4－7－4－4－1 代替循環冷却ポンプ
VI－1－1－4－7－4－4－2 代替循環冷却系 安全弁及び逃がし弁（常設）
VI－1－1－4－7－4－4－3 代替循環冷却系 主配管（常設）
VI－1－1－4－7－5 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備に係る設定根拠に関する説明書

VI－1－1－4－7－5－1 非常用ガス処理系
VI－1－1－4－7－5－1－1 非常用ガス処理系空気乾燥装置
VI－1－1－4－7－5－1－2 非常用ガス処理系 主配管（常設）

VI－1－1－4－7－5－1－3 非常用ガス処理系排風機
VI－1－1－4－7－5－1－4 非常用ガス処理系フィルタ装置
VI－1－1－4－7－5－2 可燃性ガス濃度制御系
VI－1－1－4－7－5－2－1 可燃性ガス濃度制御系 安全弁及び逃がし弁（常設）
VI－1－1－4－7－5－3 原子炉建屋水素濃度抑制系
VI－1－1－4－7－5－3－1 静的触媒式水素再結合装置
VI－1－1－4－7－5－4 放射性物質拡散抑制系
VI－1－1－4－7－5－4－1 大容量送水ポンプ（タイプ II）
VI－1－1－4－7－5－4－2 放射性物質拡散抑制系 主配管（可搬型）
VI－1－1－4－7－5－5 可搬型窒素ガス供給系
VI－1－1－4－7－5－5－1 可搬型窒素ガス供給装置
VI－1－1－4－7－5－5－2 可搬型窒素ガス供給系 主配管（常設）
VI－1－1－4－7－5－5－3 可搬型窒素ガス供給系 主配管（可搬型）
VI－1－1－4－7－5－6 原子炉格納容器フィルタベント系
VI－1－1－4－7－5－6－1 原子炉格納容器フィルタベント系 安全弁及び逃がし弁（常設） VI－1－1－4－7－6 原子炉格納容器調気設備に係る設定根拠に関する説明書

VI－1－1－4－7－6－1 原子炉格納容器調気系
VI－1－1－4－7－6－1－1 原子炉格納容器調気系 主要弁
VI－1－1－4－7－6－1－2 原子炉格納容器調気系 主配管
VI－1－1－4－7－7 圧力逃がし装置に係る設定根拠に関する説明書
VI－1－1－4－7－7－1 原子炉格納容器フィルタベント系
VI－1－1－4－7－7－1－1 フィルタ装置
VI－1－1－4－7－7－1－2 原子炉格納容器フィルタベント系 主要弁（常設）
$\mathrm{VI}-1-1-4-7-7-1-3$ フィルタ装置出口側ラプチャディスク
VI－1－1－4－7－7－1－4 原子炉格納容器フィルタベント系 主配管（常設）
VI－1－1－4－7－7－1－5 原子炉格納容器フィルタベント系 主配管（可搬型）
VI－1－1－4－8 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設） VI－1－1－4－8－1 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（非常用電源設備））

VI－1－1－4－8－1－1 非常用発電装置に係る設定根拠に関する説明書
VI－1－1－4－8－1－1－1 非常用ディーゼル発電設備
VI－1－1－4－8－1－1－1－1 非常用ディーゼル機関
VI－1－1－4－8－1－1－1－2 機関付清水ポンプ
VI－1－1－4－8－1－1－1－3 空気だめ（自動）
VI－1－1－4－8－1－1－1－4 非常用ディーゼル機関 空気だめの安全弁
VI－1－1－4－8－1－1－1－5 燃料デイタンク
VI－1－1－4－8－1－1－1－6 燃料移送ポンプ
VI－1－1－4－8－1－1－1－7 非常用ディーゼル発電設備軽油タンク
VI－1－1－4－8－1－1－1－8 非常用ディーゼル発電設備 主配管（常設）

VI－1－1－4－8－1－1－1－9 非常用ディーゼル発電機
VI－1－1－4－8－1－1－1－10 励磁装置
VI－1－1－4－8－1－1－2 高圧灲心スプレイ系ディーゼル発電設備
VI－1－1－4－8－1－1－2－1 高圧炬心スプレイ系ディーゼル機関
VI－1－1－4－8－1－1－2－2 機関付清水ポンプ
VI－1－1－4－8－1－1－2－3 空気だめ（自動）
VI－1－1－4－8－1－1－2－4 高圧炉心スプレイ系ディーゼル機関 空気だめの安全弁
VI－1－1－4－8－1－1－2－5 燃料デイタンク
VI－1－1－4－8－1－1－2－6 燃料移送ポンプ
VI－1－1－4－8－1－1－2－7 高圧炉心スプレイ系ディーゼル発電設備軽油タンク
VI－1－1－4－8－1－1－2－8 高圧炉心スプレイ系ディーゼル発電設備 主配管（常設）
VI－1－1－4－8－1－1－2－9 高圧炬心スプレイ系ディーゼル発電機
VI－1－1－4－8－1－1－2－10 励磁装置
VI－1－1－4－8－1－1－3 ガスタービン発電設備
VI－1－1－4－8－1－1－3－1 ガスタービン機関
VI－1－1－4－8－1－1－3－2 ガスタービン発電設備燃料移送ポンプ
VI－1－1－4－8－1－1－3－3 ガスタービン発電設備軽油タンク
VI－1－1－4－8－1－1－3－4 ガスタービン発電設備燃料小出槽
$\mathrm{VI}-1-1-4-8-1-1-3-5$ ガスタービン発電設備 主配管（常設）
VI－1－1－4－8－1－1－3－6 ガスタービン発電機
VI－1－1－4－8－1－1－3－7 ガスタービン発電機励磁装置
VI－1－1－4－8－1－1－4 可搬型代替交流電源設備
VI－1－1－4－8－1－1－4－1 電源車（内燃機関）
VI－1－1－4－8－1－1－4－2 電源車（冷却水ポンプ）
$\mathrm{VI}-1-1-4-8-1-1-4-3$ 電源車（燃料タンク）
$\mathrm{VI}-1-1-4-8-1-1-4-4$ 電源車（発電機）
VI－1－1－4－8－1－1－4－5 電源車（励磁装置）
VI－1－1－4－8－1－1－5 緊急時対策所ディーゼル発電設備
VI－1－1－4－8－1－1－5－1 緊急時対策所軽油タンク
VI－1－1－4－8－1－1－5－2 緊急時対策所ディーゼル発電設備 主配管（常設）
VI－1－1－4－8－1－1－5－3 緊急時対策所ディーゼル発電設備 主配管（可搬型）
$\mathrm{VI}-1-1-4-8-1-1-5-4$ 電源車（緊急時対策所用）（内燃機関）
$\mathrm{VI}-1-1-4-8-1-1-5-5$ 電源車（緊急時対策所用）（冷却水ポンプ）
VI－1－1－4－8－1－1－5－6 電源車（緊急時対策所用）（燃料タンク）
$\mathrm{VI}-1-1-4-8-1-1-5-7$ 電源車（緊急時対策所用）（発電機）
$\mathrm{VI}-1-1-4-8-1-1-5-8$ 電源車（緊急時対策所用）（励磁装置）
VI－1－1－4－8－1－1－6 可搬型窒素ガス供給装置発電設備
VI－1－1－4－8－1－1－6－1 可搬型窒素ガス供給装置発電設備（内燃機関）
VI－1－1－4－8－1－1－6－2 可搬型空素ガス供給装置発電設備（冷却水ポンプ）

VI－1－1－4－8－1－1－6－3 可搬型窒素ガス供給装置発電設備（燃料タンク）
VI－1－1－4－8－1－1－6－4 可搬型窒素ガス供給装置発電設備（発電機）
VI－1－1－4－8－1－1－6－5 可搬型窒素ガス供給装置発電設備（励磁装置） VI－1－1－4－8－1－2 その他の電源装置に係る設定根拠に関する説明書

VI－1－1－4－8－1－2－1 電力貯蔵装置
VI－1－1－4－8－1－2－1－1 125V蓄電池
VI－1－1－4－8－1－2－1－2 125V代替蓄電池
VI－1－1－4－8－1－2－1－3 250V蓄電池
VI－1－1－4－8－1－2－1－4 主蒸気逃がし安全弁用可搬型蓄電池
VI－1－1－4－8－2 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（火災防護設備））
VI－1－1－4－8－2－1 消火設備に係る設定根拠に関する説明書
VI－1－1－4－8－2－1－1 水消火設備
VI－1－1－4－8－2－1－1－1 屋内水消火系
VI－1－1－4－8－2－1－1－1－1 電動機駆動消火ポンプ（第1，2号機共用）
VI－1－1－4－8－2－1－1－1－2 消火水タンク
VI－1－1－4－8－2－1－1－1－3 消火水槽（第1， 2 号機共用）
VI－1－1－4－8－2－1－1－1－4 屋内水消火系 主配管（常設）（第1，2号機共用）
VI－1－1－4－8－2－1－1－1－5 屋内水消火系 主配管（常設）
VI－1－1－4－8－2－1－1－2 屋外水消火系
VI－1－1－4－8－2－1－1－2－1 屋外消火系電動機駆動消火ポンプ
VI－1－1－4－8－2－1－1－2－2 屋外消火系ディーゼル駆動消火ポンプ
VI－1－1－4－8－2－1－1－2－3 屋外消火系消火水タンク
VI－1－1－4－8－2－1－1－2－4 屋外水消火系 主配管（常設）
VI－1－1－4－8－2－1－2 ハロンガス消火設備
VI－1－1－4－8－2－1－2－1 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系
VI－1－1－4－8－2－1－2－1－1 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 ハロ ン1301貯蔵容器

VI－1－1－4－8－2－1－2－1－2 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－2 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系
VI－1－1－4－8－2－1－2－2－1 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－2－2 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系主配管（常設）

VI－1－1－4－8－2－1－2－3 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系
VI－1－1－4－8－2－1－2－3－1 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 ハロン 1301貯蔵容器

```
VI－1－1－4－8－2－1－2－3－2 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管 （常設）
```

VI－1－1－4－8－2－1－2－4 RHR（C）室／RCICタービンポンプ室消火系
VI－1－1－4－8－2－1－2－4－1 RHR（C）室／RCICタービンポンプ室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－4－2 RHR（C）室／RCICタービンポンプ室消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－5 RCW熱交換器・ポンプ（A）（C）室消火系
VI－1－1－4－8－2－1－2－5－1 RCW熱交換器・ポンプ（A）（C）室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－5－2 RCW熱交換器・ポンプ（A）（C）室消火系 主配管（常設） VI－1－1－4－8－2－1－2－6 B2F南側通路／バルブラッピング室消火系
$\mathrm{VI}-1-1-4-8-2-1-2-6-1 \quad \mathrm{~B} 2 \mathrm{~F}$ 南側通路／バルブラッピング室消火系 ハロン 1301貯蔵容器

VI－1－1－4－8－2－1－2－6－2 B2F南側通路／バルブラッピング室消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－7 IA•SA空気圧縮機室／B2F東側通路消火系
VI－1－1－4－8－2－1－2－7－1 IA•SA空気圧縮機室／B2F東側通路消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－7－2 IA•SA空気圧縮機室／B2F東側通路消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－8 CRDポンプ室消火系
VI－1－1－4－8－2－1－2－8－1 CRDポンプ室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－8－2 CRDポンプ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－9 MUWCポンプ室消火系
VI－1－1－4－8－2－1－2－9－1 MUWCポンプ室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－9－2 MUWCポンプ室消火系 主配管（常設）
VI $-1-1-4-8-2-1-2-10 \quad B 2 F / B 1 F / 1 F$ 西側通路／排風機室消火系
$\mathrm{VI}-1-1-4-8-2-1-2-10-1 \quad \mathrm{~B} 2 \mathrm{~F} / \mathrm{B} 1 \mathrm{~F} / 1 \mathrm{~F}$ 西側通路／排風機室消火系 ハロン 1301貯蔵容器

VI－1－1－4－8－2－1－2－10－2 B2F／B1F／1F 西側通路／排風機室消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－11 PLR－VVVF室／区分II非常用電気品室消火系
VI－1－1－4－8－2－1－2－11－1 PLR－VVVF室／区分II非常用電気品室消火系 ハロン 1301貯蔵容器

VI－1－1－4－8－2－1－2－11－2 PLR－VVVF室／区分II非常用電気品室消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－12 B1F インナー通路消火系
VI－1－1－4－8－2－1－2－12－1 B1F インナー通路消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－12－2 B1F インナー通路消火系 主配管（常設）

VI－1－1－4－8－2－1－2－13 DC RCIC MCC室消火系
VI－1－1－4－8－2－1－2－13－1 DC RCIC MCC室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－13－2 DC RCIC MCC室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－14 区分 I 非常用電気品室消火系
VI－1－1－4－8－2－1－2－14－1 区分 I 非常用電気品室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－14－2 区分 I 非常用電気品室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－15 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 VI－1－1－4－8－2－1－2－15－1 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 八 ロン1301貯蔵容器

VI－1－1－4－8－2－1－2－15－2 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－16 B1F ハッチ室消火系
VI－1－1－4－8－2－1－2－16－1 B1F ハッチ室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－16－2 B1F ハッチ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－17 区分IIIHPCS電気品室消火系
VI－1－1－4－8－2－1－2－17－1 区分IIHPCS電気品室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－17－2 区分IIIHPCS電気品室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－18 区分 II 非常用MCC室消火系
VI－1－1－4－8－2－1－2－18－1 区分 II 非常用MCC室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－18－2 区分II非常用MCC室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－19 導電率計ラック室消火系
VI－1－1－4－8－2－1－2－19－1 導電率計ラック室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－19－2 導電率計ラック室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－20 FPCポンプ（A）（B）室消火系
VI－1－1－4－8－2－1－2－20－1 FPCポンプ（A）（B）室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－20－2 FPCポンプ（A）（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－21 HWH熱交換器・ポンプ室消火系
VI－1－1－4－8－2－1－2－21－1 HWH熱交換器・ポンプ室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－21－2 HWH熱交換器・ポンプ室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－22 緊急用電気品室（1）／（2）消火系
VI－1－1－4－8－2－1－2－22－1 緊急用電気品室（1）／（2）消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－22－2 緊急用電気品室（1）／（2）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－23 区分 I 非常用D／G制御盤室消火系
VI－1－1－4－8－2－1－2－23－1 区分 I 非常用D／G制御盤室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－23－2 区分 I 非常用D／G制御盤室消火系 主配管（常設） VI－1－1－4－8－2－1－2－24 区分III非常用D／G制御盤室消火系

VI－1－1－4－8－2－1－2－24－1 区分III非常用D／G制御盤室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－24－2 区分III非常用D／G制御盤室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－25 ディーゼル発電機（HPCS）室消火系
VI－1－1－4－8－2－1－2－25－1 ディーゼル発電機（HPCS）室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－25－2 ディーゼル発電機（HPCS）室消火系 主配管（常設） VI－1－1－4－8－2－1－2－26 区分 II 非常用D／G制御盤室／R－12階段室消火系 VI－1－1－4－8－2－1－2－26－1 区分II非常用D／G制御盤室／R－12階段室消火系 ハ口 ン1301貯蔵容器

VI－1－1－4－8－2－1－2－26－2 区分II非常用D／G制御盤室／R－12階段室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－27 区分IIIバッテリ室消火系
VI－1－1－4－8－2－1－2－27－1 区分IIIバッテリ室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－27－2 区分IIIバッテリ室消火系 主配管（常設）
$\mathrm{VI}-1-1-4-8-2-1-2-28$ 送風機•緊急用電気品室消火系
VI－1－1－4－8－2－1－2－28－1 送風機•緊急用電気品室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－28－2 送風機•緊急用電気品室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－29 燃料デイタンク（B）室消火系
VI－1－1－4－8－2－1－2－29－1 燃料デイタンク（B）室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－29－2 燃料デイタンク（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－30 S0L冷凁機室消火系
VI－1－1－4－8－2－1－2－30－1 SOL冷涷機室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－30－2 SOL冷涷機室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－31 HECW冷凍機・ポンプ（A）（C）室消火系
VI－1－1－4－8－2－1－2－31－1 HECW冷凍機・ポンプ（A）（C）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－31－2 HECW冷凍機・ポンプ（A）（C）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－32 燃料デイタンク（A）室消火系
VI－1－1－4－8－2－1－2－32－1 燃料デイタンク（A）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－32－2 燃料デイタンク（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－33 燃料デイタンク（HPCS）室消火系
VI－1－1－4－8－2－1－2－33－1 燃料デイタンク（HPCS）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－33－2 燃料デイタンク（HPCS）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－34 空調機械（A）室／（B）室消火系
VI－1－1－4－8－2－1－2－34－1 空調機械（A）室／（B）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－34－2 空調機械（A）室／（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－35 250V直流主母線盤室／ 125 V （A）－ 1 室消火系

VI－1－1－4－8－2－1－2－35－1 250V直流主母線盤室／ $125 \mathrm{~V}(\mathrm{~A})-1$ 室消火系 ハロン 1301貯蔵容器

VI－1－1－4－8－2－1－2－35－2 250V直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管 （常設）
VI－1－1－4－8－2－1－2－36 DC250Vバッテリ室消火系
VI－1－1－4－8－2－1－2－36－1 DC250Vバッテリ室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－36－2 DC250Vバッテリ室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－37 計測制御電源（B）室消火系
VI－1－1－4－8－2－1－2－37－1 計測制御電源（B）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－37－2 計測制御電源（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－38 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系
VI－1－1－4－8－2－1－2－38－1 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－38－2 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－39 常用•共通M／C•P／C室消火系
VI－1－1－4－8－2－1－2－39－1 常用•共通 M／C•P／C室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－39－2 常用•共通 M／C•P／C室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－40 計測制御電源（A）室消火系
VI－1－1－4－8－2－1－2－40－1 計測制御電源（A）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－40－2 計測制御電源（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－41 T．S（計測制御電源（B）室北）消火系
VI－1－1－4－8－2－1－2－41－1 T．S（計測制御電源（B）室北）消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－41－2 T．S（計測制御電源（B）室北）消火系 主配管（常設） VI－1－1－4－8－2－1－2－42 T．S（更衣室北）消火系

VI－1－1－4－8－2－1－2－42－1 T．S（更衣室北）消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－42－2 T．S（更衣室北）消火系 主配管（常設）

VI－1－1－4－8－2－1－2－43 T．S（更衣室西）消火系
VI－1－1－4－8－2－1－2－43－1 T．S（更衣室西）消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－43－2 T．S（更衣室西）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－44 区分 I／II／常用系ケーブル処理室消火系
VI－1－1－4－8－2－1－2－44－1 区分 I／II／常用系ケーブル処理室消火系 ハロン 1301貯蔵容器
VI－1－1－4－8－2－1－2－44－2 区分 I／II／常用系ケーブル処理室消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－45 区分IIIケーブル処理室消火系
VI－1－1－4－8－2－1－2－45－1 区分IIIケーブル処理室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－45－2 区分IIIケーブル処理室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－46 DC125V代替バッテリ室消火系
VI－1－1－4－8－2－1－2－46－1 DC125V代替バッテリ室消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－46－2 DC125V代替バッテリ室消火系 主配管（常設）

VI－1－1－4－8－2－1－2－47 T．S（区分 II ケーブル処理室北）消火系
VI－1－1－4－8－2－1－2－47－1 T．S（区分 II ケーブル処理室北）消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－47－2 T．S（区分 II ケーブル処理室北）消火系 主配管 （常設）

VI－1－1－4－8－2－1－2－48 PCPS区分 I エリア消火系
VI－1－1－4－8－2－1－2－48－1 PCPS区分 I エリア消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－48－2 PCPS区分 I エリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－49 PCPS区分IIエリア消火系
VI－1－1－4－8－2－1－2－49－1 PCPS区分IIエリア消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－49－2 PCPS区分 II エリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－50 PCPS区分IIIエリア消火系
VI－1－1－4－8－2－1－2－50－1 PCPS区分IIIエリア消火系 ハロン1301貯蔵容器 VI－1－1－4－8－2－1－2－50－2 PCPS区分IIIエリア消火系 主配管（常設）

VI－1－1－4－8－2－1－2－51 PCPS区分NONエリア消火系
VI－1－1－4－8－2－1－2－51－1 PCPS区分NONエリア消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－51－2 PCPS区分NONエリア消火系 主配管（常設）
VI－1－1－4－8－2－1－2－52 緊急対策室他消火系
VI－1－1－4－8－2－1－2－52－1 緊急対策室他消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－52－2 緊急対策室他消火系 主配管（常設）
VI－1－1－4－8－2－1－2－53 緊急時対策所軽油タンク（A）室消火系
VI－1－1－4－8－2－1－2－53－1 緊急時対策所軽油タンク（A）室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－53－2 緊急時対策所軽油タンク（A）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－54 緊急時対策所軽油タンク（B）室消火系
VI－1－1－4－8－2－1－2－54－1 緊急時対策所軽油タンク（B）室消火系 ハロン1301貯蔵容器

VI－1－1－4－8－2－1－2－54－2 緊急時対策所軽油タンク（B）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－55 緊急時対策所軽油タンク（C）室消火系
$\begin{array}{ll}\mathrm{VI}-1-1-4-8-2-1-2-55-1 & \text { 緊急時対策所軽油タンク（C）室消火系 ハロン1301貯 } \\ & \text { 蔵容呪 }\end{array}$蔵容器
VI－1－1－4－8－2－1－2－55－2 緊急時対策所軽油タンク（C）室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－56 E／B電気品室消火系
VI－1－1－4－8－2－1－2－56－1 E／B電気品室消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－56－2 E／B電気品室消火系 主配管（常設）
VI－1－1－4－8－2－1－2－57 R／B MCC 2SB－1消火系

VI－1－1－4－8－2－1－2－57－2 R／B MCC 2SB－1消火系 主配管（常設）
VI－1－1－4－8－2－1－2－58 SLCポンプ（A）（B）消火系
VI－1－1－4－8－2－1－2－58－1 SLCポンプ（A）（B）消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－58－2 SLCポンプ（A）（B）消火系 主配管（常設）
VI－1－1－4－8－2－1－2－59 HECW冷凍機・ポンプ（B）（D）消火系
VI－1－1－4－8－2－1－2－59－1 HECW冷凍機・ポンプ（B）（D）消火系 ハロン1301貯蔵容器
VI－1－1－4－8－2－1－2－59－2 HECW冷凍機・ポンプ（B）（D）消火系 主配管（常設）
$\mathrm{VI}-1-1-4-8-2-1-3$ ケーブルトレイ消火設備
VI－1－1－4－8－2－1－3－1 ケーブルトレイ消火系
VI－1－1－4－8－2－1－3－1－1 ケーブルトレイ消火系 FK－5－1－12貯蔵容器
VI－1－1－4－8－2－1－3－1－2 ケーブルトレイ消火系 主配管（常設）
VI－1－1－4－8－3 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（浸水防護施設））
VI－1－1－4－8－3－1 外郭浸水防護設備に係る設定根拠に関する説明書
VI－1－1－4－8－3－1－1 取放水路流路縮小工（第1号機取水路）
VI－1－1－4－8－3－1－2 取放水路流路縮小工（第1号機放水路）
VI－1－1－4－8－4 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（補機駆動用燃料設備））
VI－1－1－4－8－4－1 燃料設備に係る設定根拠に関する説明書
$\mathrm{VI}-1-1-4-8-4-1-1$ 大容量送水ポンプ（タイプ I ）（燃料タンク）
$\mathrm{VI}-1-1-4-8-4-1-2$ 大容量送水ポンプ（タイプII）（燃料タンク）
VI－1－1－4－8－4－1－3 原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）
$\mathrm{VI}-1-1-4-8-4-1-4$ タンクローリ
VI－1－1－4－8－4－1－5 補機駆動用燃料設備 主配管（常設）
VI－1－1－4－8－4－1－6 補機駆動用燃料設備 主配管（可搬型）
VI－1－1－4－8－5 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設（非常用取水設備））
VI－1－1－4－8－5－1 取水設備に係る設定根拠に関する説明書
VI－1－1－4－8－5－1－1 貯留堰
VI－1－1－4－8－5－1－2 取水口
VI－1－1－4－8－5－1－3 取水路
$\mathrm{VI}-1-1-4-8-5-1-4$ 海水ポンプ室
VI－1－1－4－別添 1 技術基準要求機器リスト
VI－1－1－4－別添2 設定根拠に関する説明書（別添）
VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書
VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書

VI－1－1－7 発電用原子炉施設の火災防護に関する説明書
VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書
$\mathrm{VI}-1-1-8-1$ 溢水等による損傷防止の基本方針
VI－1－1－8－2 防護すべき設備の設定
$\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定
VI－1－1－8－4 溢水影響に関する評価
VI－1－1－8－5 溢水防護施設の詳細設計
VI－1－1－9 発電用原子炉施設の蒸気タービン，ポンプ等の損壊に伴ら飛散物による損傷防護 に関する説明書
VI－1－1－10 通信連絡設備に関する説明書
VI－1－1－11 安全避難通路に関する説明書
VI－1－1－12 非常用照明に関する説明書
VI－1－2 原子炉本体の説明書
VI－1－2－1 原子炉本体の基礎に関する説明書
VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書
VI－1－3 核燃料物質の取扱施設及び貯蔵施設の説明書
VI－1－3－1 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書
VI－1－3－2 燃料取扱設備，新燃料貯蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達 しないことに関する説明書
VI－1－3－3 燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及 び使用済燃料貯蔵槽の機能喪失の防止に関する説明書
VI－1－3－4 使用済燃料貯蔵槽の泠却能力に関する説明書
VI－1－3－5 使用済燃料貯蔵槽の水深の遮蔽能力に関する説明書
VI－1－4 原子炉冷却系統施設の説明書
VI－1－4－1 原子炉格納容器内の原子炉冷却材の漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書
VI－1－4－2 流体振動又は温度変動による損傷の防止に関する説明書
VI－1－4－3 非常用灲心冷却設備その他原子灲注水設備のポンプの有効吸込水頭に関する説明書
$\mathrm{VI}-1-5$ 計測制御系統施設の説明書
VI－1－5－1 計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書
VI－1－5－2 工学的安全施設等の起動（作動）信号の設定値の根拠に関する説明書
VI－1－5－3 発電用原子炉の運転を管理するための制御装置に係る制御方法に関する説明書
VI－1－5－4 中央制御室の機能に関する説明書
VI－1－6 放射性廃棄物の廃棄施設の説明書
VI－1－6－1 排気筒の基礎に関する説明書

VI－1－7 放射線管理施設の説明書
VI－1－7－1 放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書

VI－1－7－2 管理区域の出入管理設備及び環境試料分析装置に関する説明書
VI－1－7－3 中央制御室の居住性に関する説明書
VI－1－8 原子炉格納施設の説明書
VI－1－8－1 原子炉格納施設の設計条件に関する説明書
VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書
VI－1－8－3 原子炉格納施設の基礎に関する説明書
VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書 VI－1－9 その他発電用原子炉の附属施設の説明書

VI－1－9－1 非常用電源設備の説明書
VI－1－9－1－1 非常用発電装置の出力の決定に関する説明書
VI－1－9－2 常用電源設備の説明書
VI－1－9－2－1 常用電源設備の健全性に関する説明書
VI－1－9－3 緊急時対策所の説明書
VI－1－9－3－1 緊急時対策所の機能に関する説明書
VI－1－9－3－2 緊急時対策所の居住性に関する説明書
VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書
VI－1－10－1 設計及び工事に係る品質マネジメントシステムに関する説明書
VI－1－10－2 本設工認に係る設計の実績，工事及び検査の計画 原子炉本体
VI－1－10－3 本設工認に係る設計の実績，工事及び検査の計画 核燃料物質の取扱施設及び貯蔵施設
VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設
VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－6 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－7 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－9 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－10 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－11 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画
VI－1－10－14 本設工認に係る設計の実績，工事及び検査の計画 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）
VI－1－10－15 本設工認に係る設計の実績，工事及び検査の計画 非常用取水設備
VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画 緊急時対策所

VI－2 耐震性に関する説明書

VI－2－1 耐震設計の基本方針
VI－2－1－1 耐震設計の基本方針
VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要
VI－2－1－3 地盤の支持性能に係る基本方針
VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
VI－2－1－5 波及的影響に係る基本方針
VI－2－1－6 地震応答解析の基本方針
VI－2－1－7 設計用床応答曲線の作成方針
VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
VI－2－1－9 機能維持の基本方針
VI－2－1－10 ダクティリティに関する設計方針
VI－2－1－11 機器•配管の耐震支持設計方針
VI－2－1－12 配管及び支持構造物の耐震計算について
VI－2－1－12－1 配管及び支持構造物の耐震計算について
VI－2－1－12－2 ダクト及び支持構造物の耐震計算について
VI－2－1－13 機器•配管系の計算書作成の方法
VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針
VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針
VI－2－1－13－6 管の耐震性についての計算書作成の基本方針
VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針
VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針
VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書
VI－2－2－1 原子炉建屋の地震応答計算書
VI－2－2－2 原子炉建屋の耐震性についての計算書
VI－2－2－3 制御建屋の地震応答計算書
VI－2－2－4 制御建屋の耐震性についての計算書
VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書
VI－2－2－6 復水貯蔵タンク基礎の耐震性についての計算書
VI－2－2－7 海水ポンプ室の地震応答計算書
VI－2－2－8 海水ポンプ室の耐震性についての計算書
VI－2－2－9 第3号機海水ポンプ室の地震応答計算書
VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書
VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書

VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書
VI－2－2－12－1 原子炉機器冷却海水配管ダクト（水平部）の耐震性についての計算書
VI－2－2－12－2 原子炉機器冷却海水配管ダクト（鉛直部）の耐震性についての計算書
VI－2－2－13 軽油タンク室の地震応答計算書
VI－2－2－14 軽油タンク室の耐震性についての計算書
VI－2－2－15 軽油タンク室（H）の地震応答計算書
VI－2－2－16 軽油タンク室（H）の耐震性についての計算書
VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書
VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書
VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書
VI－2－2－20 軽油タンク連絡ダクトの耐震性についての計算書
VI－2－2－21 緊急用電気品建屋の地震応答計算書
VI－2－2－22 緊急用電気品建屋の耐震性についての計算書
VI－2－2－23 緊急時対策建屋の地震応答計算書
VI－2－2－24 緊急時対策建屋の耐震性についての計算書
VI－2－2－25 排気筒基礎の地震応答計算書
VI－2－2－26 排気筒基礎の耐震性についての計算書
VI－2－2－27 排気筒連絡ダクトの地震応答計算書
VI－2－2－28 排気筒連絡ダクトの耐震性についての計算書
VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書
VI－2－2－30 第3号機海水熱交換器建屋の耐震性についての計算書
VI－2－3 原子炉本体の耐震性についての計算書
VI－2－3－1 原子炉本体の耐震性についての計算結果
VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書
VI－2－3－3 炉心の耐震性についての計算書
VI－2－3－3－1 燃料集合体の耐震性についての計算書
VI－2－3－3－2 炉心支持構造物の耐震性についての計算書
VI－2－3－3－2－1 炉心支持構造物の応力解析の方針
VI－2－3－3－2－2 炉心シュラウドの耐震性についての計算書
$\mathrm{VI}-2-3-3-2-3$ シュラウドサポートの耐震性についての計算書
VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書
VI－2－3－3－2－5 上部格子板の耐震性についての計算書
VI－2－3－3－2－6 炉心支持板の耐震性についての計算書
VI $-2-3-3-2-7$ 燃料支持金具の耐震性についての計算書
VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書
VI－2－3－4 原子炉圧力容器の耐震性についての計算書
VI－2－3－4－1 原子炉圧力容器本体の耐震性についての計算書
$\mathrm{VI}-2-3-4-1-1$ 原子炉圧力容器の応力解析の方針

VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書
VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性についての計算書
VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書
VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書
VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性についての計算書
VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の耐震性についての計算書
VI－2－3－4－3 原子炉圧力容器内部構造物の耐震性についての計算書
VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針
VI－2－3－4－3－2 蒸気乾燥器の耐震性についての計算書
VI $-2-3-4-3-3$ 気水分離器及びスタンドパイプの耐震性についての計算書
$\mathrm{VI}-2-3-4-3-4$ シュラウドヘッドの耐震性についての計算書
VI－2－3－4－3－5 ジェットポンプの耐震性についての計算書
VI－2－3－4－3－6 給水スパージャの耐震性についての計算書
VI－2－3－4－3－7 高圧及び低圧炉心スプレイスパージャの耐震性についての計算書
VI－2－3－4－3－8 残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書
VI－2－3－4－3－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の耐震性につ

VI－2－3－4－3－10 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の耐震性につい ての計算書

VI－2－3－4－3－11 中性子束計測案内管の耐震性についての計算書
VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算書
VI－2－4－1 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算結果
VI－2－4－2 使用済燃料貯蔵設備の耐震性についての計算書
VI－2－4－2－1 使用済燃料プール（キャスクピットを含む）（第1，2号機共用）の耐震性につ いての計算書
VI－2－4－2－2 使用済燃料貯蔵ラック（第1，2号機共用）の耐震性についての計算書
VI－2－4－2－3 制御棒•破損燃料貯蔵ラックの耐震性についての計算書
VI－2－4－2－4 使用済燃料プール水位／温度（ガイドパルス式）の耐震性についての計算書
VI－2－4－2－5 使用済燃料プール水位／温度（ヒートサーモ式）の耐震性についての計算書
VI－2－4－3 使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書
VI－2－4－3－1 燃料プール冷却浄化系の耐震性についての計算書
VI－2－4－3－1－1 燃料プール冷却浄化系熱交換器の耐震性についての計算書
VI－2－4－3－1－2 燃料プール冷却浄化系ポンプの耐震性についての計算書
VI－2－4－3－1－3 管の耐震性についての計算書（燃料プール泠却浄化系）
VI－2－4－3－2 燃料プール代替注水系の耐震性についての計算書
VI－2－4－3－2－1 管の耐震性についての計算書（燃料プール代替注水系）
VI－2－4－3－3 燃料プールスプレイ系の耐震性についての計算書
VI－2－4－3－3－1 管の耐震性についての計算書（燃料プールスプレイ系）

VI－2－4－4 核燃料物質の取扱施設及び貯蔵施設の基本設計方針の耐震性についての説明書 VI－2－4－4－1 使用済燃料プール監視カメラの耐震性についての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
VI－2－5－2 原子炉冷却材再循環設備の耐震性についての計算書
VI－2－5－2－1 原子炉再循環系の耐震性についての計算書
VI－2－5－2－1－1 管の耐震性についての計算書（原子炉再循環系）
VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書
VI－2－5－3－1 主蒸気系の耐震性についての計算書
VI－2－5－3－1－1 アキュムレータの耐震性についての計算書
VI－2－5－3－1－2 管の耐震性についての計算書（主蒸気系）
VI－2－5－3－2 復水給水系の耐震性についての計算書
VI－2－5－3－2－1 管の耐震性についての計算書（復水給水系）
VI－2－5－4 残留熱除去設備の耐震性についての計算書
VI－2－5－4－1 残留熱除去系の耐震性についての計算書
VI－2－5－4－1－1 残留熱除去系熱交換器の耐震性についての計算書
VI－2－5－4－1－2 残留熱除去系ポンプの耐震性についての計算書
VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書
VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）
VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）
VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書
VI－2－5－4－2－1 管の耐震性についての計算書（耐圧強化ベント系）
VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書 VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書

VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書
VI－2－5－5－1－2 高圧炉心スプレイ系ストレーナの耐震性についての計算書
VI－2－5－5－1－3 管の耐震性についての計算書（高圧炉心スプレイ系）
VI－2－5－5－1－4 ストレーナ部ティーの耐震計算書（高圧炉心スプレイ系）
VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－2－1 低圧炉心スプレイ系ポンプの耐震性についての計算書
VI $-2-5-5-2-2$ 低圧炉心スプレイ系ストレーナの耐震性についての計算書
VI－2－5－5－2－3 管の耐震性についての計算書（低圧炉心スプレイ系）
VI－2－5－5－2－4 ストレーナ部ティーの耐震計算書（低圧炉心スプレイ系）
VI－2－5－5－3 高圧代替注水系の耐震性についての計算書
VI－2－5－5－3－1 高圧代替注水系タービンポンプの耐震性についての計算書
VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）
VI－2－5－5－4 低圧代替注水系の耐震性についての計算書
VI－2－5－5－4－1 直流駆動低圧注水系ポンプの耐震性についての計算書
VI－2－5－5－4－2 管の耐震性についての計算書（低圧代替注水系）

VI－2－5－5－5 代替水源移送系の耐震性についての計算書
VI－2－5－5－5－1 管の耐震性についての計算書（代替水源移送系）
VI－2－5－6 原子炉冷却材補給設備の耐震性についての計算書
VI－2－5－6－1 原子炉隔離時冷却系の耐震性についての計算書
VI－2－5－6－1－1 原子炉隔離時冷却系ポンプの耐震性についての計算書
VI－2－5－6－1－2 原子炉隔離時冷却系ポンプ駆動用タービンの耐震性についての計算書
VI－2－5－6－1－3 管の耐震性についての計算書（原子炉隔離時冷却系）
VI－2－5－6－2 補給水系の耐震性についての計算書
VI－2－5－6－2－1 復水移送ポンプの耐震性についての計算書
VI－2－5－6－2－2 復水貯蔵タンクの耐震性についての計算書
VI－2－5－6－2－3 管の耐震性についての計算書（補給水系）
VI－2－5－7 原子炉補機冷却設備の耐震性についての計算書
VI－2－5－7－1 原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書
VI－2－5－7－1－1 原子炉補機冷却水系熱交換器の耐震性についての計算書
VI－2－5－7－1－2 原子炉補機冷却水ポンプの耐震性についての計算書
VI－2－5－7－1－3 原子炉補機冷却海水ポンプの耐震性についての計算書
VI $-2-5-7-1-4$ 原子炉補機冷却水サージタンクの耐震性についての計算書
VI－2－5－7－1－5 原子炉補機冷却海水系ストレーナの耐震性についての計算書
VI－2－5－7－1－6 管の耐震性についての計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）

VI－2－5－7－2 高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系の耐震性についての計算書
VI－2－5－7－2－1 高圧炉心スプレイ補機冷却水系熱交換器の耐震性についての計算書
VI－2－5－7－2－2 高圧炉心スプレイ補機冷却水ポンプの耐震性についての計算書
VI－2－5－7－2－3 高圧炉心スプレイ補機冷却海水ポンプの耐震性についての計算書
VI－2－5－7－2－4 高圧炉心スプレイ補機冷却水サージタンクの耐震性についての計算書
VI－2－5－7－2－5 管の耐震性についての計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）
VI－2－5－7－3 原子炉補機代替冷却水系の耐震性についての計算書
VI－2－5－7－3－1 管の耐震性についての計算書（原子炉補機代替冷却水系）
VI－2－5－8 原子炉冷却材浄化設備の耐震性についての計算書
VI－2－5－8－1 原子炉冷却材浄化系の耐震性についての計算書
VI－2－5－8－1－1 管の耐震性についての計算書（原子炉冷却材浄化系）
VI－2－6 計測制御系統施設の耐震性についての計算書
VI－2－6－1 計測制御系統施設の耐震性についての計算結果
VI－2－6－2 制御材の耐震性についての計算書
VI－2－6－2－1 制御棒の耐震性についての計算書
VI－2－6－3 制御材駆動装置の耐震性についての計算書
VI－2－6－3－1 制御棒駆動機構の耐震性についての計算書

VI－2－6－3－2 制御棒駆動水圧設備の耐震性についての計算書
VI－2－6－3－2－1 水圧制御ユニットの耐震性についての計算書
VI－2－6－3－2－2 管の耐震性についての計算書（制御棒駆動水圧系）
VI－2－6－4 ほう酸水注入設備の耐震性についての計算書
VI－2－6－4－1 ほう酸水注入系の耐震性についての計算書
VI $-2-6-4-1-1$ ほう酸水注入系ポンプの耐震性についての計算書
VI－2－6－4－1－2 ほう酸水注入系貯蔵タンクの耐震性についての計算書
VI－2－6－4－1－3 管の耐震性についての計算書（ほう酸水注入系）
VI－2－6－5 計測装置の耐震性についての計算書
VI－2－6－5－1 起動領域計測装置及び出力領域計測装置の耐震性についての計算書
VI－2－6－5－1－1 起動領域モニタの耐震性についての計算書
VI－2－6－5－1－2 出力領域モニタの耐震性についての計算書
VI－2－6－5－2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－2－1 一次冷却材圧力計測装置の耐震性についての計算書
VI－2－6－5－2－1－1 原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の耐震性に ついての計算書

VI－2－6－5－2－1－2 高圧代替注水系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－3 直流駆動低圧注水系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－4 代替循環冷却ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－5 原子炉隔離時冷却系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－6 高圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－7 残留熱除去系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－8 低圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－9 復水移送ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－2 一次冷却材温度計測装置の耐震性についての計算書
VI－2－6－5－2－2－1 残留熱除去系熱交換器入口温度の耐震性についての計算書
VI－2－6－5－2－2－2 残留熱除去系熱交換器出口温度の耐震性についての計算書
VI－2－6－5－2－3 一次冷却材流量計測装置の耐震性についての計算書
VI－2－6－5－2－3－1 原子炉冷却材浄化系入口流量の耐震性についての計算書
VI－2－6－5－2－3－2 高圧代替注水系ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－3 残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の耐震性についての計算書

VI－2－6－5－2－3－4 残留熱除去系洗浄ライン流量（残留熱除去系B 系格納容器冷却ライ ン洗浄流量）の耐震性についての計算書

VI－2－6－5－2－3－5 直流駆動低圧注水系ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－6 代替循環冷却ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－7 原子炉隔離時冷却系ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－8 高圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書

VI－2－6－5－2－3－9 残留熱除去系ポンプ出口流量の耐震性についての計算書 VI－2－6－5－2－3－10 低圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書 VI－2－6－5－3 原子炉圧力容器本体内の圧力又は水位を計測する装置（常設）の耐震性につ いての計算書
VI－2－6－5－3－1 原子炉圧力容器本体内圧力計測装置の耐震性についての計算書
VI－2－6－5－3－1－1 原子炉圧力の耐震性についての計算書
VI－2－6－5－3－1－2 原子炬圧力（SA）の耐震性についての計算書
VI－2－6－5－3－2 原子炉圧力容器本体内水位計測装置の耐震性についての計算書
VI－2－6－5－3－2－1 原子炉水位の耐震性についての計算書
VI－2－6－5－3－2－2 原子炉水位（広帯域）の耐震性についての計算書
VI－2－6－5－3－2－3 原子炉水位（燃料域）の耐震性についての計算書
VI－2－6－5－3－2－4 原子炉水位（SA広帯域）の耐震性についての計算書
VI－2－6－5－3－2－5 原子炉水位（SA燃料域）の耐震性についての計算書
VI－2－6－5－4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測 する装置（常設）の耐震性についての計算書
VI－2－6－5－4－1 原子炉格納容器内圧力計測装置の耐震性についての計算書
VI－2－6－5－4－1－1 ドライウェル圧力の耐震性についての計算書
VI－2－6－5－4－1－2 圧力抑制室圧力の耐震性についての計算書
VI－2－6－5－4－2 原子炉格納容器内温度計測装置の耐震性についての計算書
VI－2－6－5－4－2－1 ドライウェル温度の耐震性についての計算書
VI－2－6－5－4－2－2 圧力抑制室内空気温度の耐震性についての計算書
VI－2－6－5－4－2－3 サプレッションプール水温度の耐震性についての計算書
VI－2－6－5－4－2－4 原子炉格納容器下部温度の耐震性についての計算書
VI－2－6－5－4－3 原子炉格納容器内酸素ガス濃度計測装置の耐震性についての計算書
VI－2－6－5－4－3－1 格納容器内雾囲気酸素濃度の耐震性についての計算書
VI－2－6－5－4－4 原子炉格納容器内水素ガス濃度計測装置の耐震性についての計算書
VI－2－6－5－4－4－1 格納容器内水素濃度（D／W）の耐震性についての計算書
VI－2－6－5－4－4－2 格納容器内水素濃度（S／C）の耐震性についての計算書
VI－2－6－5－4－4－3 格納容器内雾囲気水素濃度の耐震性についての計算書
VI－2－6－5－5 非常用炉心冷却設備その他原子炉注水設備に係る容器又は貯蔵槽内の水位を計測する装置の耐震性についての計算書
VI－2－6－5－5－1 復水貯蔵タンク水位の耐震性についての計算書
VI－2－6－5－6 原子炉冷却材再循環流量を計測する装置の耐震性についての計算書
VI－2－6－5－6－1 原子炉再循環ポンプ入口流量の耐震性についての計算書
VI－2－6－5－7 原子炉格納容器本体への泠却材流量を計測する装置の耐震性についての計算書

VI－2－6－5－7－1 原子炉格納容器代替スプレイ流量の耐震性についての計算書
VI－2－6－5－7－2 原子炉格納容器下部注水流量の耐震性についての計算書

VI－2－6－5－8 原子炉格納容器本体の水位を計測する装置の耐震性についての計算書 VI－2－6－5－8－1 圧力抑制室水位の耐震性についての計算書

VI－2－6－5－8－2 原子炉格納容器下部水位の耐震性についての計算書
VI－2－6－5－8－3 ドライウェル水位の耐震性についての計算書
VI－2－6－5－9 原子炉建屋内の水素ガス濃度を計測する装置の耐震性についての計算書
VI－2－6－5－9－1 原子炉建屋内水素濃度の耐震性についての計算書
VI－2－6－6 制御用空気設備の耐震性についての計算書
VI－2－6－6－1 高圧窒素ガス供給系の耐震性についての計算書
VI－2－6－6－1－1 管の耐震性についての計算書（高圧窒素ガス供給系）
VI－2－6－6－2 代替高圧窒素ガス供給系の耐震性についての計算書
VI－2－6－6－2－1 管の耐震性についての計算書（代替高圧窒素ガス供給系）
VI－2－6－7 その他の計測制御設備の耐震性についての計算書
VI－2－6－7－1 計測制御設備の盤の耐震性についての計算書
VI－2－6－7－2 衛星電話設備（固定型）の耐震性についての計算書
VI－2－6－7－2－1 衛星電話設備（固定型）（中央制御室）の耐震性についての計算書
VI－2－6－7－2－2 衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算書
VI－2－6－7－2－3 衛星電話設備（固定型）（緊急時対策所）の耐震性についての計算書
VI－2－6－7－2－4 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書
VI－2－6－7－3 無線連絡設備（固定型）の耐震性についての計算書
VI－2－6－7－3－1 無線連絡設備（固定型）（中央制御室）の耐震性についての計算書
VI－2－6－7－3－2 無線連絡設備（屋外アンテナ）（中央制御室）の耐震性についての計算書
VI－2－6－7－3－3 無線連絡設備（固定型）（緊急時対策所）の耐震性についての計算書
VI－2－6－7－3－4 無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書
VI－2－6－7－4 安全パラメータ表示システム（SPDS）SPDS表示装置の耐震性についての計算書
VI－2－6－7－5 安全パラメータ表示システム（SPDS）無線通信用アンテナの耐震性について の計算書
VI－2－6－7－6 統合原子力防災ネットワークを用いた通信連絡設備の耐震性についての計算書

VI－2－6－7－7 統合原子力防災ネットワーク設備衛星アンテナの耐震性についての計算書
VI－2－6－7－8 統合原子力防災ネットワーク用通信機器収容架の耐震性についての計算書
VI－2－6－7－9 代替原子炉再循環ポンプトリップ遮断器の耐震性についての計算書
VI－2－6－7－10 原子炉圧力容器温度の耐震性についての計算書
VI－2－6－7－11 フィルタ装置水位（広帯域）の耐震性についての計算書
VI－2－6－7－12 フィルタ装置入口圧力（広帯域）の耐震性についての計算書
VI－2－6－7－13 フィルタ装置出口圧力（広帯域）の耐震性についての計算書
VI－2－6－7－14 フィルタ装置水温度の耐震性についての計算書

VI－2－6－7－15 フィルタ装置出口水素濃度の耐震性についての計算書
VI－2－6－7－16 原子炉補機冷却水系系䖻流量の耐震性についての計算書
VI－2－6－7－17 残留熱除去系熱交換器冷却水入口流量の耐震性についての計算書
VI－2－6－7－18 静的触媒式水素再結合装置動作監視装置の耐震性についての計算書 $\mathrm{VI}-2-7$ 放射性廃棄物の廃棄施設の耐震性についての計算書

VI－2－7－1 放射性廃棄物の廃棄施設の耐震性についての計算結果
VI－2－7－2 気体廃棲物処理系の耐震性についての計算書
VI－2－7－2－1 排気筒の耐震性についての計算書
VI－2－7－3 液体廃棄物処理系の耐震性についての計算書
VI－2－7－3－1 放射性ドレン移送系の耐震性についての計算書
VI－2－7－3－1－1 管の耐震性についての計算書（放射性ドレン移送系）
VI－2－7－3－2 サプレッションプール水貯蔵系の耐震性についての計算書
VI－2－7－3－2－1 管の耐震性についての計算書（サプレッションプール水貯蔵系）
VI－2－8 放射線管理施設の耐震性についての計算書
VI－2－8－1 放射線管理施設の耐震性についての計算結果
VI－2－8－2 放射線管理用計測装置についての耐震計算書
VI－2－8－2－1 プロセスモニタリング設備の耐震性についての計算書
VI－2－8－2－1－1 主蒸気管中の放射性物質濃度を計測する装置の耐震性についての計算書 VI－2－8－2－1－1－1 主蒸気管放射線モニタの耐震性についての計算書
VI－2－8－2－1－2 原子灲格納容器本体内の放射性物質濃度を計測する装置の耐震性につい ての計算書
VI－2－8－2－1－2－1 格納容器内雰囲気放射線モニタ（D／W）の耐震性についての計算書
VI－2－8－2－1－2－2 格納容器内雰囲気放射線モニタ（S／C）の耐震性についての計算書
VI－2－8－2－1－3 放射性物質により汚染するおそれがある管理区域から環境に放出する排水中又は排気中の放射性物質濃度を計測する装置の耐震性についての計算書
VI－2－8－2－1－3－1 原子炬建屋原子炬棟排気放射線モニタの耐震性についての計算書
VI－2－8－2－1－3－2 フィルタ装置出口放射線モニタの耐震性についての計算書
VI－2－8－2－1－3－3 燃料取替エリア放射線モニタの耐震性についての計算書
VI－2－8－2－1－3－4 耐圧強化ベント系放射線モニタの耐震性についての計算書
VI－2－8－2－2 エリアモニタリング設備の耐震性についての計算書
VI－2－8－2－2－1 使用済燃料貯蔵槽エリアの線量当量率を計測する装置の耐震性について の計算書
VI－2－8－2－2－1－1 使用済燃料プール上部空間放射線モニタ（低線量）の耐震性につい ての計算書

VI－2－8－2－2－1－2 使用済燃料プール上部空間放射線モニタ（高線量）の耐震性につい ての計算書
VI－2－8－3 換気設備の耐震性についての計算書
VI－2－8－3－1 中央制御室換気空調系の耐震性についての計算書

VI－2－8－3－1－1 中央制御室換気空調系ダクトの耐震性についての計算書 VI－2－8－3－1－2 中央制御室送風機の耐震性についての計算書 VI－2－8－3－1－3 中央制御室再循環送風機の耐震性についての計算書
VI－2－8－3－1－4 中央制御室排風機の耐震性についての計算書
VI－2－8－3－1－5 中央制御室再循環フィルタ装置の耐震性についての計算書 VI－2－8－3－2 緊急時対策所換気空調系の耐震性についての計算書

VI－2－8－3－2－1 緊急時対策所換気空調系ダクトの耐震性についての計算書
VI－2－8－3－2－2 管の耐震性についての計算書（緊急時対策所換気空調系）
VI－2－8－3－2－3 緊急時対策所非常用送風機の耐震性についての計算書
VI－2－8－3－2－4 緊急時対策所非常用フィルタ装置の耐震性についての計算書 VI－2－8－3－3 中央制御室待避所加圧空気供給系の耐震性についての計算書

VI－2－8－3－3－1 管の耐震性についての計算書（中央制御室待避所加圧空気供給系）
VI－2－8－3－3－2 差圧計（中央制御室待避所用）の耐震性についての計算書
VI－2－8－3－4 緊急時対策所加圧空気供給系の耐震性についての計算書
VI－2－8－3－4－1 管の耐震性についての計算書（緊急時対策所加圧空気供給系）
VI－2－8－3－4－2 差圧計（緊急時対策所用）の耐震性についての計算書
VI－2－8－4 生体遮蔽装置の耐震性についての計算書
VI－2－8－4－1 2次しゃへい壁の耐震性についての計算書
VI－2－8－4－2 補助しゃへいの耐震性についての計算書
VI－2－8－4－3 中央制御室しゃへい壁の耐震性についての計算書
VI－2－8－4－4 中央制御室待避所遮蔽の耐震性についての計算書
VI－2－8－4－5 緊急時対策所遮蔽の耐震性についての計算書
VI－2－9 原子炉格納施設の耐震性についての計算書
VI－2－9－1 原子炉格納施設の耐震性についての計算結果
VI－2－9－2 原子炉格納容器の耐震性についての計算書
VI－2－9－2－1 原子炉格納容器本体の耐震性についての計算書
VI－2－9－2－1－1 ドライウェルの耐震性についての計算書
VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書
VI－2－9－2－1－3 原子炉格納容器シヤラグの耐震性についての計算書
VI－2－9－2－1－4 ドライウェルベント開口部の耐震性についての計算書
VI－2－9－2－1－5 ボックスサポートの耐震性についての計算書
VI－2－9－2－2 機器搬出入口の耐震性についての計算書
VI－2－9－2－2－1 機器搬出入用ハッチの耐震性についての計算書
VI－2－9－2－2－2 逃がし安全弁搬出入口の耐震性についての計算書
VI－2－9－2－2－3 制御棒駆動機構搬出入口の耐震性についての計算書
VI－2－9－2－2－4 サプレッションチェンバ出入口の耐震性についての計算書 VI－2－9－2－3 エアロックの耐震性についての計算書

VI－2－9－2－3－1 所員用エアロックの耐震性についての計算書
VI－2－9－2－4 原子炉格納容器配管貫通部及び電気配線貫通部の耐震性についての計算書

VI－2－9－2－4－1 原子炉格納容器配管貫通部の耐震性についての計算書
VI－2－9－2－4－2 原子炉格納容器電気配線貫通部の耐震性についての計算書 VI－2－9－3 原子炉建屋の耐震性についての計算書

VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書
VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書
VI－2－9－3－2 原子炉建屋大物搬入口の耐震性についての計算書
VI－2－9－3－3 原子炉建屋エアロックの耐震性についての計算書
VI－2－9－3－4 原子炉建屋基礎版の耐震性についての計算書
VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書
VI－2－9－4－1 ダウンカマの耐震性についての計算書
VI－2－9－4－2 ベント管の耐震性についての計算書
VI－2－9－4－3 原子炉格納容器安全設備の耐震性についての計算書
VI－2－9－4－3－1 原子炉格納容器スプレイ椧却系の耐震性についての計算書
VI－2－9－4－3－1－1 管の耐震性についての計算書（原子炉格納容器スプレイ泠却系）
VI－2－9－4－3－2 原子炉格納容器下部注水系の耐震性についての計算書
VI－2－9－4－3－2－1 管の耐震性についての計算書（原子炉格納容器下部注水系）
VI－2－9－4－3－3 原子炉格納容器代替スプレイ冷却系の耐震性についての計算書

VI－2－9－4－3－4 代替循環冷却系の耐震性についての計算書
VI－2－9－4－3－4－1 代替循環冷却ポンプの耐震性についての計算書
VI－2－9－4－3－4－2 管の耐震性についての計算書（代替循環冷却系）
VI－2－9－4－4 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環
設備の耐震性についての計算書
VI－2－9－4－4－1 非常用ガス処理系の耐震性についての計算書
VI－2－9－4－4－1－1 非常用ガス処理系空気乾燥装置の耐震性についての計算書
VI－2－9－4－4－1－2 管の耐震性についての計算書（非常用ガス処理系）
VI－2－9－4－4－1－3 非常用ガス処理系排風機の耐震性についての計算書
VI－2－9－4－4－1－4 非常用ガス処理系フィルタ装置の耐震性についての計算書
VI－2－9－4－4－1－5 原子炉建屋ブローアウトパネル閉止装置の耐震性についての計算書 VI－2－9－4－4－2 可燃性ガス濃度制御系の耐震性についての計算書
VI－2－9－4－4－2－1 管の耐震性についての計算書（可燃性ガス濃度制御系）
VI－2－9－4－4－2－2 可燃性ガス濃度制御系再結合装置ブロワの耐震性についての計算書
VI－2－9－4－4－2－3 可燃性ガス濃度制御系再結合装置の耐震性についての計算書
VI－2－9－4－4－3 原子炉建屋水素濃度制御系の耐震性についての計算書
VI－2－9－4－4－3－1 静的触媒式水素再結合装置の耐震性についての計算書
VI－2－9－4－4－4 可搬型窒素ガス供給系の耐震性についての計算書
VI－2－9－4－4－4－1 管の耐震性についての計算書（可搬型空素ガス供給系）
VI－2－9－4－5 原子炉格納容器調気設備の耐震性についての計算書
VI－2－9－4－5－1 原子炉格納容器調気系の耐震性についての計算書

VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系） VI－2－9－4－6 圧力逃がし装置の耐震性についての計算書

VI－2－9－4－6－1 原子炉格納容器フィルタベント系の耐震性についての計算書
VI－2－9－4－6－1－1 管の耐震性についての計算書（原子炉格納容器フィルタベント系）
VI－2－9－4－6－1－2 フィルタ装置の耐震性についての計算書（原子炉格納容器フィルタ ベント系）

VI－2－9－4－6－1－3 遠隔手動弁操作設備の耐震性についての計算書
VI－2－9－4－6－1－4 遠隔手動弁操作設備遮蔽の耐震性についての計算書
VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書
VI－2－10－1 非常用電源設備の耐震性についての計算書
VI－2－10－1－1 非常用電源設備の耐震性についての計算結果
VI－2－10－1－2 非常用電源装置の耐震性についての計算書
VI－2－10－1－2－1 非常用ディーゼル発電設備の耐震性についての計算書
VI－2－10－1－2－1－1 非常用ディーゼル発電設備 機関•発電機の耐震性についての計算書

VI－2－10－1－2－1－2 非常用ディーゼル発電設備 空気だめの耐震性についての計算書
VI－2－10－1－2－1－3 非常用ディーゼル発電設備 燃料デイタンクの耐震性についての計算書

VI－2－10－1－2－1－4 非常用ディーゼル発電設備 燃料移送ポンプの耐震性についての計算書

VI－2－10－1－2－1－5 非常用ディーゼル発電設備 軽油タンクの耐震性についての計算書 VI－2－10－1－2－1－6 非常用ディーゼル発電設備 管の耐震性についての計算書
VI－2－10－1－2－1－7 非常用ディーゼル発電設備 制御盤の耐震性についての計算書
VI－2－10－1－2－2 高圧炉心スプレイ系ディーゼル発電設備の耐震性についての計算書
VI－2－10－1－2－2－1 高圧炉心スプレイ系ディーゼル発電設備 機関•発電機の耐震性に ついての計算書
VI－2－10－1－2－2－2 高圧炉心スプレイ系ディーゼル発電設備 空気だめの耐震性につい ての計算書

VI－2－10－1－2－2－3 高圧炉心スプレイ系ディーゼル発電設備 燃料デイタンクの耐震性 についての計算書

VI－2－10－1－2－2－4 高圧炉心スプレイ系ディーゼル発電設備 燃料移送ポンプの耐震性 についての計算書

VI－2－10－1－2－2－5 高圧炉心スプレイ系ディーゼル発電設備 軽油タンクの耐震性につ いての計算書
VI－2－10－1－2－2－6 高圧炉心スプレイ系ディーゼル発電設備 管の耐震性についての計算書

VI－2－10－1－2－2－7 高圧炉心スプレイ系ディーゼル発電設備 制御盤の耐震性について の計算書

VI－2－10－1－2－3 ガスタービン発電設備の耐震性についての計算書

VI－2－10－1－2－3－1 ガスタービン発電設備 機関•発電機の耐震性についての計算書 VI－2－10－1－2－3－2 ガスタービン発電設備 燃料移送ポンプの耐震性についての計算書

VI－2－10－1－2－3－3 ガスタービン発電設備 軽油タンクの耐震性についての計算書 VI－2－10－1－2－3－4 ガスタービン発電設備 燃料小出槽の耐震性についての計算書 VI－2－10－1－2－3－5 ガスタービン発電設備 管の耐震性についての計算書 VI－2－10－1－2－3－6 ガスタービン発電設備 制御盤の耐震性についての計算書
VI－2－10－1－2－4 緊急時対策所ディーゼル発電設備の耐震性についての計算書
VI－2－10－1－2－4－1 緊急時対策所軽油タンクの耐震性についての計算書
VI－2－10－1－2－4－2 緊急時対策所ディーゼル発電設備 管の耐震性についての計算書 VI－2－10－1－3 その他の電源装置の耐震性についての計算書

VI－2－10－1－3－1 無停電電源装置の耐震性についての計算書
VI－2－10－1－3－1－1 無停電交流電源用静止形無停電電源装置の耐震性についての計算書
VI－2－10－1－3－2 電力貯蔵装置の耐震性についての計算書
VI－2－10－1－3－2－1 125V蓄電池の耐震性についての計算書
VI－2－10－1－3－2－2 125V代替蓄電池の耐震性についての計算書
VI－2－10－1－3－2－3 250V蓄電池の耐震性についての計算書
VI－2－10－1－4 その他の非常用電源設備の耐震性についての計算書
VI－2－10－1－4－1 メタルクラッドスイッチギア（非常用）の耐震性についての計算書
VI－2－10－1－4－2 メタルクラッドスイッチギア（高圧炉心スプレイ系用）の耐震性につい ての計算書

VI－2－10－1－4－3 パワーセンタ（非常用）の耐震性についての計算書
VI－2－10－1－4－4 モータコントロールセンタ（非常用）の耐震性についての計算書
VI－2－10－1－4－5 モータコントロールセンタ（高圧炉心スプレイ系用）の耐震性について の計算書

VI－2－10－1－4－6 動力変圧器（非常用）の耐震性についての計算書
VI－2－10－1－4－7 動力変圧器（高圧炉心スプレイ系用）の耐震性についての計算書
VI－2－10－1－4－8 460V原子炉建屋交流電源切替盤（非常用）の耐震性についての計算書
VI－2－10－1－4－9 中央制御室120V交流分電盤（非常用）の耐震性についての計算書
VI－2－10－1－4－10 ガスタービン発電機接続盤の耐震性についての計算書
VI－2－10－1－4－11 メタルクラッドスイッチギア（緊急用）の耐震性についての計算書
VI－2－10－1－4－12 動力変圧器（緊急用）の耐震性についての計算書
VI－2－10－1－4－13 パワーセンタ（緊急用）の耐震性についての計算書
VI－2－10－1－4－14 モータコントロールセンタ（緊急用）の耐震性についての計算書
VI－2－10 $-1-4-15$ ガスタービン発電設備燃料移送ポンプ接続盤の耐震性についての計算書

VI－2－10－1－4－16 460V原子炉建屋交流電源切替盤（緊急用）の耐震性についての計算書
VI－2－10－1－4－17 120V原子炉建屋交流電源切替盤（緊急用）の耐震性についての計算書

VI－2－10－1－4－18 中央制御室120V交流分電盤（緊急用）の耐震性についての計算書 VI－2－10－1－4－19 メタルクラッドスイッチギア（緊急時対策所用）の耐震性についての計算書

VI－2－10－1－4－20 動力変圧器（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－21 モータコントロールセンタ（緊急時対策所用）の耐震性についての計算書

VI－2－10－1－4－22 105V交流電源切替盤（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－23 105V交流分電盤（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－24 120V交流分電盤（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－25 210V交流分電盤（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－26 125V直流主母線盤（緊急時対策所用）の耐震性についての計算書
VI－2－10－1－4－27 125V充電器2A及び2Bの耐震性についての計算書
VI－2－10－1－4－28 125V直流主母線盤2A及び2Bの耐震性についての計算書
VI－2－10－1－4－29 125V直流主母線盤2A－1及び2B－1の耐震性についての計算書
VI－2－10－1－4－30 125V直流分電盤2A－1，2A－2，2A－3，2B－1，2B－2及び2B－3の耐震性について の計算書

VI－2－10－1－4－31 125V直流電源切替盤2A及び2Bの耐震性についての計算書
VI－2－10－1－4－32 125V直流RCICモータコントロールセンタの耐震性についての計算書
VI－2－10－1－4－33 125V充電器2Hの耐震性についての計算書
VI－2－10－1－4－34 125V直流主母線盤2Hの耐震性についての計算書
VI－2－10－1－4－35 125V直流分電盤2Hの耐震性についての計算書
VI－2－10－1－4－36 125V代替充電器の耐震性についての計算書
VI－2－10－1－4－37 250V充電器の耐震性についての計算書
VI－2－10－1－4－38 250V直流主母線盤の耐震性についての計算書
VI－2－10－2 浸水防護施設の耐震性についての計算書
VI－2－10－2－1 浸水防護施設の耐震性についての計算結果
VI－2－10－2－2 防潮堤の耐震性についての計算書
VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性についての計算書
VI－2－10－2－2－2 防潮堤（盛土堤防）の耐震性についての計算書
VI－2－10－2－3 防潮壁の耐震性についての計算書
VI－2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性についての計算書 VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁）の耐震性についての計算書 VI－2－10－2－3－3 杭基礎構造防潮壁 鋼製扉の耐震性についての計算書
VI－2－10－2－3－4 防潮壁（第3号機海水熱交換器建屋）の耐震性についての計算書
VI－2－10－2－4 取放水路流路縮小工の耐震性についての計算書
VI－2－10－2－4－1 取放水路流路縮小工（第1号機取水路）の耐震性についての計算書
VI－2－10－2－4－2 取放水路流路縮小工（第1号機放水路）の耐震性についての計算書 VI－2－10－2－5 貯留堰の耐震性についての計算書
VI－2－10－2－6 逆流防止設備の耐震性についての計算書

VI－2－10－2－6－1 屋外排水路逆流防止設備の耐震性についての計算書
VI－2－10－2－6－1－1 屋外排水路逆流防止設備（防潮堤南側）の耐震性についての計算書 VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書 VI－2－10－2－6－2 補機冷却海水系放水路逆流防止設備の耐震性についての計算書 VI－2－10－2－7 水密扉の耐震性についての計算書

VI－2－10－2－7－1 水密扉（浸水防止設備）の耐震性についての計算書
VI－2－10－2－7－2 水密扉（溢水防護設備）の耐震性についての計算書
VI－2－10－2－8 浸水防止蓋の耐震性についての計算書
VI－2－10－2－8－1 浸水防止蓋（原子炉機器泠却海水配管ダクト）の耐震性についての計算書

VI－2－10－2－8－2 浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））の耐震性 についての計算書
VI－2－10－2－8－3 浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））の耐震性 についての計算書
VI－2－10－2－8－4 浸水防止蓋（第3号機補機冷却海水系放水ピット）の耐震性についての計算書
VI－2－10－2－8－5 浸水防止蓋（第3号機海水熱交換器建屋）の耐震性についての計算書
VI－2－10－2－8－6 浸水防止蓋（第2号機軽油タンクエリア）の耐震性についての計算書 VI－2－10－2－9 浸水防止壁の耐震性についての計算書
VI－2－10－2－10 逆止弁付ファンネルの耐震性についての計算書
VI－2－10－2－10－1 逆止弁付ファンネル（第2号機）の耐震性についての計算書
VI－2－10－2－10－2 逆止弁付ファンネル（第3号機）の耐震性についての計算書
VI－2－10－2－11 貫通部止水処置の耐震性についての計算書
VI－2－10－2－12 堰の耐震性についての計算書
VI－2－10－2－13 津波監視設備の耐震性についての計算書
VI－2－10－2－13－1 津波監視カメラの耐震性についての計算書
VI－2－10－2－13－2 取水ピット水位計の耐震性についての計算書 VI－2－10－3 補機駆動用燃料設備の耐震性についての計算書

VI－2－10－3－1 補機駆動用燃料設備の耐震性についての計算結果
VI－2－10－3－2 補機駆動用燃料設備 管の耐震性についての計算書
VI－2－10－4 非常用取水設備の耐震性についての計算書
VI－2－10－4－1 非常用取水設備の耐震性についての計算結果
VI－2－10－4－2 貯留堰の耐震性についての計算書
VI－2－10－4－3 取水口の耐震性についての計算書
VI－2－10－4－4 取水路の耐震性についての計算書
VI－2－10－4－4－1 取水路（漸拡部）の耐震性についての計算書
VI－2－10－4－4－2 取水路（標準部）の耐震性についての計算書
VI－2－10－4－5 海水ポンプ室の耐震性についての計算書
VI－2－10－5 緊急時対策所の耐震性についての計算書

VI－2－10－5－1 緊急時対策所の耐震性についての計算結果
VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書
VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針
VI－2－11－2 波及的影響を及ぼすおそれのある施設の耐震性についての計算書
VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書
VI－2－11－2－2 竜巻防護ネットの耐震性についての計算書
VI－2－11－2－3 タービン建屋の耐震性についての計算書
VI－2－11－2－4 補助ボイラー建屋の耐震性についての計算書
VI－2－11－2－5 第1号機制御建屋の耐震性についての計算書
VI－2－11－2－6 ほう酸水注入系テストタンクの耐震性についての計算書
VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書
VI－2－11－2－8 原子炉建屋クレーンの耐震性についての計算書
VI－2－11－2－9 燃料交換機の耐震性についての計算書
VI－2－11－2－10 原子炉しやへい壁の耐震性についての計算書
VI－2－11－2－11 原子炉ウェルカバーの耐震性についての計算書
VI－2－11－2－12 耐火隔壁の耐震性についての計算書
VI－2－11－2－13 制御棒貯蔵ラックの耐震性についての計算書
VI－2－11－2－14 燃料チャンネル着脱機の耐震性についての計算書
VI－2－11－2－15 第1号機排気筒の耐震性についての計算書
VI－2－11－2－16 前面護岸の耐震性についての計算書
VI－2－11－2－17 第1号機取水路の耐震性についての計算書
VI－2－11－2－18 第3号機取水路の耐震性についての計算書
VI－2－11－2－19 北側排水路の耐震性についての計算書
VI－2－11－2－20 アクセスルート（防潮堤（盛土堤防））の耐震性についての計算書
VI－2－11－2－21 CRD自動交換機の耐震性についての計算書
VI－2－11－2－22 防護設備（防潮堤（鋼管式鉛直壁））の耐震性についての計算書
VI－2－12 水平2方向及び鉛直方向地震力の組合せに関する影響評価
VI－2－12－1 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果
VI－2－13 地下水位低下設備の耐震性についての計算書
VI－2－13－1 地下水位低下設備の耐震計算の方針
VI－2－13－2 地下水位低下設備ドレーンの耐震性についての計算書
VI－2－13－3 地下水位低下設備接続桝の耐震性についての計算書
VI－2－13－4 地下水位低下設備揚水井戸の耐震性についての計算書
VI－2－13－5 地下水位低下設備揚水井戸の地震応答計算書
VI－2－13－6 地下水位低下設備揚水ポンプの耐震性についての計算書
VI－2－13－7 地下水位低下設備配管の耐震性についての計算書
VI－2－13－8 地下水位低下設備水位計の耐震性についての計算書
VI－2－13－9 地下水位低下設備制御盤の耐震性についての計算書 VI－2－13－10 地下水位低下設備電源盤の耐震性についての計算書

VI－2－別添1 火災防護設備の耐震性についての計算書
VI－2－別添1－1 火災防護設備の耐震計算の方針
VI－2－別添1－2 火災感知器の耐震性についての計算書
VI－2－別添1－3 火災受信機盤の耐震性についての計算書
VI－2－別添1－4 ガスボンベ設備の耐震性についての計算書
VI－2－別添1－5 選択弁の耐震性についての計算書
VI－2－別添1－6 制御盤の耐震性についての計算書
VI－2－別添1－7 消火配管の耐震性についての計算書
VI－2－別添1－8 火災防護設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果

VI－2－別添2 溢水防護に係る施設の耐震性に関する説明書
$\mathrm{VI}-2$－別添2－1 溢水防護に係る施設の耐震計算の方針
VI－2－別添2－2 溢水源としない耐震B，Cクラス機器の耐震性についての計算書
VI－2－別添2－3 溢水防護に関する施設の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果
VI－2－別添2－4 循環水系隔離システムの耐震性についての計算書
VI－2－別添2－5 タービン補機冷却海水系隔離システムの耐震性についての計算書
VI－2－別添2－6 逆流防止装置の耐震性についての計算書
VI－2－別添2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書
VI－2－別添2－8 復水器水室出入口弁の耐震性についての計算書
VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関する説明書
VI－2－別添3－1 可搬型重大事故等対処設備の耐震計算の方針
VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動
VI－2－別添3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書
VI－2－別添3－4 可搬型重大事故等対処設備のうちボンベ設備の耐震計算書
VI－2－別添3－5 可搬型重大事故等対処設備のうちその他設備の耐震計算書
VI－2－別添3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関す る影響評価結果

VI－3 強度に関する説明書
VI－3－1 強度計算の基本方針
VI－3－1－1 強度計算の基本方針の概要
VI－3－1－2 クラス 1 機器の強度計算の基本方針
VI－3－1－3 クラス 2 機器の強度計算の基本方針
VI－3－1－4 クラス 3 機器の強度計算の基本方針
VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針

VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針
VI－3－1－7 原子炉格納容器の強度計算の基本方針
VI－3－2 強度計算方法

VI－3－2－1 強度計算方法の概要
VI－3－2－2 クラス 1 管の強度計算方法
VI－3－2－3 クラス 1 弁の強度計算方法
VI－3－2－4 クラス 2 管の強度計算方法
VI－3－2－5 クラス 2 弁の強度計算方法
VI－3－2－6 クラス 3 容器の強度計算方法
VI－3－2－7 クラス 3 管の強度計算方法
VI－3－2－8 重大事故等クラス 2 容器の強度計算方法
VI－3－2－9 重大事故等クラス 2 管の強度計算方法
VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法
VI－3－2－11 重大事故等クラス 2 弁の強度計算方法
VI－3－2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法
VI－3－2－13 重大事故等クラス 2 支持構造物（ポンプ）の強度計算方法
VI－3－2－14 重大事故等クラス 3 機器の強度評価方法
VI－3－3 強度計算書
VI－3－3－1 原子炉本体の強度に関する説明書
VI－3－3－1－1 原子炉圧力容器の強度計算書
VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書
VI－3－3－1－1－2 原子炉圧力容器付属構造物の強度計算書
VI－3－3－1－1－2－1 管の強度計算書（原子炉圧力容器付属構造物）
VI－3－3－1－1－2－1－1 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の基本板厚計算書
VI－3－3－1－1－2－1－2 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書
VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書 VI－3－3－2－1 使用済燃料貯蔵設備の強度計算書

VI－3－3－2－1－1 使用済燃料プールの強度計算書 VI－3－3－2－2 使用済燃料貯蔵槽冷却浄化設備の強度計算書

VI－3－3－2－2－1 燃料プール冷却浄化系の強度計算書
VI－3－3－2－2－1－1 燃料プール冷却浄化系熱交換器の強度計算書
VI $-3-3-2-2-1-2$ 燃料プール冷却浄化系ポンプの強度計算書
VI－3－3－2－2－1－3 スキマサージタンクの強度計算書
VI－3－3－2－2－1－4 管の強度計算書（燃料プール冷却浄化系）
VI－3－3－2－2－1－4－1 管の基本板厚計算書（燃料プール冷却浄化系）
VI－3－3－2－2－1－4－2 管の応力計算書（燃料プール泠却浄化系）
VI－3－3－2－2－2 燃料プール代替注水系の強度計算書
VI－3－3－2－2－2－1 大容量送水ポンプ（タイプ I ）の強度評価書
VI－3－3－2－2－2－2 管の強度計算書（燃料プール代替注水系）
VI－3－3－2－2－2－2－1 管の基本板厚計算書（燃料プール代替注水系）

VI－3－3－2－2－2－2－2 管の応力計算書（燃料プール代替注水系）
VI－3－3－2－2－2－2－3 管（可搬型）の強度評価書（燃料プール代替注水系）
VI－3－3－2－2－3 燃料プールスプレイ系の強度計算書
VI－3－3－2－2－3－1 管の強度計算書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－1 管の基本板厚計算書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－2 管の応力計算書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－3 管（可搬型）の強度評価書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－4 可搬型ストレーナの強度評価書
VI－3－3－3 原子炉冷却系統施設の強度に関する説明書
VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書
VI－3－3－3－1－1 原子炉再循環系の強度計算書
VI－3－3－3－1－1－1 管の強度計算書（原子炉再循環系）
VI－3－3－3－1－1－1－1 管の基本板厚計算書（原子炉再循環系）
VI－3－3－3－1－1－1－2 管の応力計算書（原子炉再循環系）
VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書
VI－3－3－3－2－1 主蒸気系の強度計算書
VI－3－3－3－2－1－1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書
VI－3－3－3－2－1－2 主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書
VI－3－3－3－2－1－3 管の強度計算書（主蒸気系）
VI－3－3－3－2－1－3－1 管の基本板厚計算書（主蒸気系）
VI－3－3－3－2－1－3－2 管の応力計算書（主蒸気系）
VI－3－3－3－2－2 復水給水系の強度計算書
VI－3－3－3－2－2－1 管の強度計算書（復水給水系）
VI－3－3－3－2－2－1－1 管の基本板厚計算書（復水給水系）
VI－3－3－3－2－2－1－2 管の応力計算書（復水給水系）
VI－3－3－3－3 残留熱除去設備の強度計算書
VI－3－3－3－3－1 残留熱除去系の強度計算書
VI－3－3－3－3－1－1 残留熱除去系熱交換器の強度計算書
VI－3－3－3－3－1－2 残留熱除去系ポンプの強度計算書
VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書
VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5－1 管の基本板厚計算書（残留熱除去系）
VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系）
VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）
VI－3－3－3－3－2 耐圧強化ベント系の強度計算書
VI－3－3－3－3－2－1 管の強度計算書（耐圧強化ベント系）
VI－3－3－3－3－2－1－1 管の基本板厚計算書（耐圧強化ベント系）
VI－3－3－3－3－2－1－2 管の応力計算書（耐圧強化ベント系）

VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書
VI－3－3－3－4－1 高圧炉心スプレイ系の強度計算書
VI－3－3－3－4－1－1 高圧炉心スプレイ系ポンプの強度計算書
VI－3－3－3－4－1－2 高圧炉心スプレイ系ストレーナの強度計算書
VI－3－3－3－4－1－3 弁の強度計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4 管の強度計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4－1 管の基本板厚計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4－2 管の応力計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4－3 ストレーナ部ティーの強度計算書（高圧炉心スプレイ系）
VI－3－3－3－4－2 低圧炉心スプレイ系の強度計算書
VI－3－3－3－4－2－1 低圧炉心スプレイ系ポンプの強度計算書
VI－3－3－3－4－2－2 低圧炉心スプレイ系ストレーナの強度計算書
VI－3－3－3－4－2－3 管の強度計算書（低圧炉心スプレイ系）
VI－3－3－3－4－2－3－1 管の基本板厚計算書（低圧炉心スプレイ系）
VI－3－3－3－4－2－3－2 管の応力計算書（低圧炉心スプレイ系）
VI－3－3－3－4－2－3－3 ストレーナ部ティーの強度計算書（低圧炉心スプレイ系）
VI－3－3－3－4－3 高圧代替注水系の強度計算書
VI－3－3－3－4－3－1 高圧代替注水系タービンポンプの強度計算書
VI－3－3－3－4－3－2 弁の強度計算書（高圧代替注水系）
VI－3－3－3－4－3－3 管の強度計算書（高圧代替注水系）
VI－3－3－3－4－3－3－1 管の基本板厚計算書（高圧代替注水系）
VI－3－3－3－4－3－3－2 管の応力計算書（高圧代替注水系）
VI－3－3－3－4－4 原子炉隔離時冷却系の強度計算書
VI－3－3－3－4－4－1 弁の強度計算書（原子炉隔離時冷却系）
VI－3－3－3－4－5 低圧代替注水系の強度計算書
VI－3－3－3－4－5－1 直流駆動低圧注水系ポンプの強度計算書
VI－3－3－3－4－5－2 管の強度計算書（低圧代替注水系）
VI－3－3－3－4－5－2－1 管の基本板厚計算書（低圧代替注水系）
VI－3－3－3－4－5－2－2 管の応力計算書（低圧代替注水系）
VI－3－3－3－4－6 代替水源移送系の強度計算書
VI－3－3－3－4－6－1 管の強度計算書（代替水源移送系）
VI－3－3－3－4－6－1－1 管の基本板厚計算書（代替水源移送系）
VI－3－3－3－4－6－1－2 管の応力計算書（代替水源移送系）
VI－3－3－3－5 原子炉冷却材補給設備の強度計算書
VI－3－3－3－5－1 原子炉隔離時冷却系の強度計算書
VI－3－3－3－5－1－1 原子炉隔離時冷却系ポンプの強度計算書
VI－3－3－3－5－1－2 弁の強度計算書（原子炉隔離時冷却系）
VI－3－3－3－5－1－3 管の強度計算書（原子炉隔離時冷却系）
VI－3－3－3－5－1－3－1 管の基本板厚計算書（原子炉隔離時冷却系）

VI－3－3－3－5－1－3－2 管の応力計算書（原子炉隔離時冷却系）
VI－3－3－3－5－2 補給水系の強度計算書
VI－3－3－3－5－2－1 復水移送ポンプの強度計算書
VI－3－3－3－5－2－2 復水貯蔵タンクの強度計算書
VI－3－3－3－5－2－3 管の強度計算書（補給水系）
VI－3－3－3－5－2－3－1 管の基本板厚計算書（補給水系）
VI－3－3－3－5－2－3－2 管の応力計算書（補給水系）
VI－3－3－3－6 原子炉補機冷却設備の強度計算書
VI－3－3－3－6－1 原子炉補機冷却水系及び原子炉補機冷却海水系の強度計算書
VI－3－3－3－6－1－1 原子炉補機冷却水系熱交換器の強度計算書
VI－3－3－3－6－1－2 原子炉補機冷却水ポンプの強度計算書
VI－3－3－3－6－1－3 原子炉補機冷却海水ポンプの強度計算書
VI－3－3－3－6－1－4 原子炉補機冷却水サージタンクの強度計算書
VI－3－3－3－6－1－5 原子炉補機冷却海水系ストレーナの強度計算書
VI－3－3－3－6－1－6 管の強度計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）
VI－3－3－3－6－1－6－1 管の基本板厚計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）

VI－3－3－3－6－1－6－2 管の応力計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）
VI－3－3－3－6－2 高圧炉心スプレイ補機泠却水系及び高圧炉心スプレイ補機冷却海水系の強度計算書

VI－3－3－3－6－2－1 高圧炉心スプレイ補機冷却水系熱交換器の強度計算書
VI－3－3－3－6－2－2 高圧炉心スプレイ補機冷却水ポンプの強度計算書
VI－3－3－3－6－2－3 高圧炉心スプレイ補機冷却海水ポンプの強度計算書
VI－3－3－3－6－2－4 高圧炉心スプレイ補機冷却水サージタンクの強度計算書
VI－3－3－3－6－2－5 管の強度計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプ レイ補機冷却海水系）
VI－3－3－3－6－2－5－1 管の基本板厚計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）

VI－3－3－3－6－2－5－2 管の応力計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心 スプレイ補機冷却海水系）

VI－3－3－3－6－3 原子炉補機代替冷却水系の強度計算書
VI－3－3－3－6－3－1 原子炉補機代替冷却水系熱交換器ユニット（熱交換器）の強度評価書
VI－3－3－3－6－3－2 原子炉補機代替冷却水系熱交換器ユニット（ポンプ）の強度評価書
VI－3－3－3－6－3－3 原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）の強度評価書

VI－3－3－3－6－3－4 管の強度計算書（原子炉補機代替冷却水系）
VI－3－3－3－6－3－4－1 管の基本板厚計算書（原子炉補機代替冷却水系）

VI－3－3－3－6－3－4－2 管の応力計算書（原子炉補機代替冷却水系）
VI－3－3－3－6－3－4－3 管（可搬型）の強度評価書（原子炉補機代替冷却水系）
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書
VI－3－3－3－7－1 原子炉冷却材浄化系の強度計算書
VI－3－3－3－7－1－1 管の強度計算書（原子炉冷却材浄化系）
VI－3－3－3－7－1－1－1 管の基本板厚計算書（原子炉冷却材浄化系）
VI－3－3－3－7－1－1－2 管の応力計算書（原子炉冷却材浄化系）
VI－3－3－4 計測制御系統施設の強度に関する説明書
VI－3－3－4－1 制御材駆動装置の強度計算書
VI－3－3－4－1－1 制御棒駆動機構の強度計算書
VI－3－3－4－1－2 制御棒駆動水圧設備の強度計算書
VI－3－3－4－1－2－1 制御棒駆動水圧系の強度計算書
VI－3－3－4－1－2－1－1 水圧制御ユニット（アキュムレータ）の強度計算書
VI－3－3－4－1－2－1－2 水圧制御ユニット（窒素容器）の強度計算書
VI－3－3－4－1－2－1－3 弁の強度計算書（制御棒駆動水圧系）
VI－3－3－4－1－2－1－4 管の強度計算書（制御棒駆動水圧系）
VI－3－3－4－1－2－1－4－1 管の基本板厚計算書（制御棒駆動水圧系）
VI－3－3－4－1－2－1－4－2 管の応力計算書（制御棒駆動水圧系）
$\mathrm{I}-3-3-4-2$ ほう酸水注入設備の強度計算書
VI－3－3－4－2－1 ほら酸水注入系の強度計算書
VI－3－3－4－2－1－1 ほう酸水注入系ポンプの強度計算書
VI－3－3－4－2－1－2 ほう酸水注入系貯蔵タンクの強度計算書
VI－3－3－4－2－1－3 管の強度計算書（ほう酸水注入系）
VI－3－3－4－2－1－3－1 管の基本板厚計算書（ほう酸水注入系）
VI－3－3－4－2－1－3－2 管の応力計算書（ほう酸水注入系）
VI－3－3－4－3 制御用空気設備の強度計算書
VI－3－3－4－3－1 高圧窒素ガス供給系の強度計算書
VI－3－3－4－3－1－1 高圧窒素ガスボンベの強度評価書
VI－3－3－4－3－1－2 管の強度計算書（高圧窒素ガス供給系）
VI－3－3－4－3－1－2－1 管の基本板厚計算書（高圧窒素ガス供給系）
VI－3－3－4－3－1－2－2 管の応力計算書（高圧窒素ガス供給系）
VI－3－3－4－3－1－2－3 管（可搬型）の強度評価書（高圧窒素ガス供給系）
VI－3－3－4－3－2 代替高圧窒素ガス供給系の強度計算書
VI－3－3－4－3－2－1 管の強度計算書（代替高圧窒素ガス供給系）
VI－3－3－4－3－2－1－1 管の基本板厚計算書（代替高圧窒素ガス供給系）
VI－3－3－4－3－2－1－2 管の応力計算書（代替高圧窒素ガス供給系）
VI－3－3－4－3－2－1－3 管（可搬型）の強度評価書（代替高圧窒素ガス供給系）
VI－3－3－5 放射線管理施設の強度に関する説明書
VI－3－3－5－1 換気設備の強度計算書

VI－3－3－5－1－1 中央制御室換気空調系の強度計算書
VI－3－3－5－1－1－1 ダクトの強度計算書（中央制御室換気空調系）
VI－3－3－5－1－1－2 ダンパの強度計算書（中央制御室換気空調系）
VI－3－3－5－1－2 緊急時対策所換気空調系の強度計算書
VI－3－3－5－1－2－1 管の強度計算書（緊急時対策所換気空調系）
VI－3－3－5－1－2－1－1 管の基本板厚計算書（緊急時対策所換気空調系）
VI－3－3－5－1－2－1－2 管の応力計算書（緊急時対策所換気空調系）
VI－3－3－5－1－2－1－3 ダクトの強度計算書（緊急時対策所換気空調系）
VI－3－3－5－1－3 中央制御室待避所加圧空気供給系の強度計算書
VI－3－3－5－1－3－1 中央制御室待避所加圧設備（空気ボンベ）の強度評価書
VI－3－3－5－1－3－2 管の強度計算書（中央制御室待避所加圧空気供給系）
VI－3－3－5－1－3－2－1 管の基本板厚計算書（中央制御室待避所加圧空気供給系）
VI－3－3－5－1－3－2－2 管の応力計算書（中央制御室待避所加圧空気供給系）
VI－3－3－5－1－3－2－3 管（可搬型）の強度評価書（中央制御室待避所加圧空気供給系）
VI－3－3－5－1－4 緊急時対策所加圧空気供給系の強度計算書
VI－3－3－5－1－4－1 緊急時対策所加圧設備（空気ボンベ）の強度評価書
VI－3－3－5－1－4－2 管の強度計算書（緊急時対策所加圧空気供給系）
VI－3－3－5－1－4－2－1 管の基本板厚計算書（緊急時対策所加圧空気供給系）
VI－3－3－5－1－4－2－2 管の応力計算書（緊急時対策所加圧空気供給系）
VI－3－3－5－1－4－2－3 管（可搬型）の強度評価書（緊急時対策所加圧空気供給系）
VI－3－3－6 原子炉格納施設の強度に関する説明書
VI－3－3－6－1 原子炉格納容器の強度計算書
VI－3－3－6－1－1 原子炉格納容器本体の強度計算書
VI－3－3－6－1－1－1 ドライウェルの基本板厚計算書
VI－3－3－6－1－1－2 ドライウェルの強度計算書
VI－3－3－6－1－1－3 ドライウェル主フランジの強度計算書
VI－3－3－6－1－1－4 ドライウェルベント開口部の強度計算書
VI－3－3－6－1－1－5 ジェットデフレクタの強度計算書
VI－3－3－6－1－1－6 サプレッションチェンバの基本板厚計算書
VI－3－3－6－1－1－7 サプレッションチェンバの強度計算書
VI－3－3－6－1－1－8 ボックスサポートの強度計算書
VI－3－3－6－1－1－9 ジェット力を考慮した強度計算書
VI－3－3－6－1－2 機器搬出入口の強度計算書
VI－3－3－6－1－2－1 機器搬出入用ハッチの基本板厚計算書
VI－3－3－6－1－2－2 機器搬出入用ハッチの強度計算書
VI－3－3－6－1－2－3 逃がし安全弁搬出入口の基本板厚計算書
VI－3－3－6－1－2－4 逃がし安全弁搬出入口の強度計算書
VI－3－3－6－1－2－5 制御棒駆動機構搬出入口の基本板厚計算書
VI－3－3－6－1－2－6 制御棒駆動機構搬出入口の強度計算書

VI－3－3－6－1－2－7 サプレッションチェンバ出入口の基本板厚計算書 VI－3－3－6－1－2－8 サプレッションチェンバ出入口の強度計算書

VI－3－3－6－1－3 エアロックの強度計算書
VI－3－3－6－1－3－1 所員用エアロックの基本板厚計算書
VI－3－3－6－1－3－2 所員用エアロックの強度計算書
VI－3－3－6－1－4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書 VI－3－3－6－1－4－1 原子炉格納容器配管貫通部の基本板厚計算書
VI－3－3－6－1－4－2 原子炉格納容器配管貫通部の強度計算書
VI－3－3－6－1－4－3 原子炉格納容器配管貫通部ベローズの強度計算書
VI－3－3－6－1－4－4 原子炉格納容器電気配線貫通部の基本板厚計算書
VI－3－3－6－1－4－5 原子炉格納容器電気配線貫通部の強度計算書
VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書
VI－3－3－6－2－1 ダウンカマ及びベントヘッダの基本板厚計算書
VI－3－3－6－2－2 ダウンカマの強度計算書
VI－3－3－6－2－3 ベントヘッダの強度計算書
VI－3－3－6－2－4 ベント管の基本板厚計算書
VI－3－3－6－2－5 ベント管の強度計算書
VI－3－3－6－2－6 ベント管ベローズの強度計算書
VI－3－3－6－2－7 原子炉格納容器安全設備の強度計算書
VI－3－3－6－2－7－1 原子炉格納容器スプレイ冷却系の強度計算書
VI－3－3－6－2－7－1－1 管の強度計算書（原子炉格納容器スプレイ冷却系）
VI－3－3－6－2－7－1－1－1 ドライウェルスプレイ管の強度計算書
VI－3－3－6－2－7－1－1－1－1 ドライウェルスプレイ管の基本板厚計算書
VI－3－3－6－2－7－1－1－1－2 ドライウェルスプレイ管の応力計算書
VI－3－3－6－2－7－1－1－2 サプレッションチェンバスプレイ管の強度計算書
VI－3－3－6－2－7－1－1－2－1 サプレッションチェンバスプレイ管の基本板厚計算書
VI－3－3－6－2－7－1－1－2－2 サプレッションチェンバスプレイ管の応力計算書
VI－3－3－6－2－7－2 原子炉格納容器下部注水系の強度計算書
VI－3－3－6－2－7－2－1 管の強度計算書（原子炉格納容器下部注水系）
VI－3－3－6－2－7－2－1－1 管の基本板厚計算書（原子炉格納容器下部注水系）
VI－3－3－6－2－7－2－1－2 管の応力計算書（原子炉格納容器下部注水系）
VI－3－3－6－2－7－3 原子炉格納容器代替スプレイ冷却系の強度計算書
VI－3－3－6－2－7－3－1 管の強度計算書（原子炬格納容器代替スプレイ冷却系）
VI－3－3－6－2－7－3－1－1 管の基本板厚計算書（原子炉格納容器代替スプレイ冷却系）
VI－3－3－6－2－7－3－1－2 管の応力計算書（原子炉格納容器代替スプレイ冷却系）
VI－3－3－6－2－7－4 代替循環冷却系の強度計算書
VI－3－3－6－2－7－4－1 代替循環冷却ポンプの強度計算書
VI－3－3－6－2－7－4－2 管の強度計算書（代替循環冷却系）
VI－3－3－6－2－7－4－2－1 管の基本板厚計算書（代替循環冷却系）

VI－3－3－6－2－7－4－2－2 管の応力計算書（代替循環冷却系）
VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書
VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書
VI－3－3－6－2－8－1－1 非常用ガス処理系空気乾燥装置の強度計算書
VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－2－1 管の基本板厚計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－3 非常用ガス処理系フィルタ装置の強度計算書
VI－3－3－6－2－8－2 放射性物質拡散抑制系の強度計算書
VI－3－3－6－2－8－2－1 大容量送水ポンプ（タイプII）の強度評価書
VI－3－3－6－2－8－2－2 管（可搬型）の強度評価書（放射性物質拡散抑制系）
VI－3－3－6－2－8－3 可搬型窒素ガス供給系の強度計算書
VI－3－3－6－2－8－3－1 管の強度計算書（可搬型窒素ガス供給系）
VI－3－3－6－2－8－3－1－1 管の基本板厚計算書（可搬型空素ガス供給系）
VI－3－3－6－2－8－3－1－2 管の応力計算書（可搬型窒素ガス供給系）
VI－3－3－6－2－8－3－1－3 管（可搬型）の強度評価書（可搬型窒素ガス供給系）
VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書
VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書
VI－3－3－6－2－9－1－1 弁の強度計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）
VI－3－3－6－2－10 圧力逃がし装置の強度計算書
VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書
VI－3－3－6－2－10－1－1 フィルタ装置の強度計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－2 弁の強度計算書（原子炬格納容器フィルタベント系）
VI－3－3－6－2－10－1－3 管の強度計算書（原子灲格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－1 管の基本板厚計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－2 管の応力計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－3 管（可搬型）の強度評価書（原子炉格納容器フィルタベン卜系）
VI－3－3－7 その他発電用原子炉の附属施設の強度に関する説明書
VI－3－3－7－1 非常用電源設備の強度に関する説明書
VI－3－3－7－1－1 非常用発電装置の強度計算書
VI－3－3－7－1－1－1 非常用ディーゼル発電設備の強度計算書
VI－3－3－7－1－1－1－1 空気だめの強度計算書（非常用ディーゼル発電設備）
VI－3－3－7－1－1－2 高圧灲心スプレイ系ディーゼル発電設備の強度計算書

VI－3－3－7－1－1－2－1 空気だめの強度計算書（高圧炉心スプレイ系ディーゼル発電設備）

VI－3－3－7－1－1－3 可搬型代替交流電源設備の強度計算書
VI－3－3－7－1－1－3－1 電源車（冷却水ポンプ）の強度評価書
VI－3－3－7－1－1－3－2 電源車（燃料タンク）の強度評価書
VI－3－3－7－1－1－4 緊急時対策所ディーゼル発電設備の強度計算書
VI－3－3－7－1－1－4－1 電源車（緊急時対策所用）（冷却水ポンプ）の強度評価書
VI－3－3－7－1－1－4－2 電源車（緊急時対策所用）（燃料タンク）の強度評価書
VI－3－3－7－1－1－4－3 管（可搬型）の強度評価書（緊急時対策所ディーゼル発電設備）
VI－3－3－7－1－1－5 可搬型窒素ガス供給装置発電設備の強度評価書
VI－3－3－7－1－1－5－1 可搬型窒素ガス供給装置発電設備（冷却水ポンプ）の強度評価書

VI－3－3－7－1－1－5－2 可搬型窒素ガス供給装置発電設備（燃料タンク）の強度評価書 VI－3－3－7－2 火災防護設備の強度に関する説明書

VI－3－3－7－2－1 消火水タンクの強度計算書
VI－3－3－7－2－2 屋外消火系消火水タンクの強度計算書
VI－3－3－7－2－3 管の基本板厚計算書（火災防護設備）

VI－3－3－7－3 補機駆動用燃料設備の強度に関する説明書
VI－3－3－7－3－1 燃料設備の強度計算書
VI－3－3－7－3－1－1 大容量送水ポンプ（タイプ I ）（燃料タンク）の強度評価書
VI－3－3－7－3－1－2 大容量送水ポンプ（タイプII）（燃料タンク）の強度評価書
VI－3－3－7－3－1－3 原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）の強度評価書
VI－3－3－7－3－1－4 タンクローリの強度評価書
VI－3－3－7－3－1－5 管（可搬型）の強度評価書（燃料設備）
VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書
VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針
VI－3－別添1－1－1 竜巻より防護すべき施設を内包する施設の強度計算書
VI－3－別添1－1－2 原子炉補機冷却海水ポンプの強度計算書
VI－3－別添1－1－3 高圧炉心スプレイ補機冷却海水ポンプの強度計算書
VI－3－別添1－1－4 高圧炉心スプレイ補機冷却海水系ストレーナの強度計算書
VI－3－別添1－1－5 復水貯蔵タンクの強度計算書
VI－3－別添1－1－6 配管及び弁の強度計算書
VI－3－別添1－1－7 排気筒の強度計算書
VI－3－別添1－1－8 換気空調設備の強度計算書
VI－3－別添1－1－9 軽油タンクの強度計算書
VI－3－別添1－1－10 波及的影響を及ぼす可能性がある施設の強度計算書
VI－3－別添1－1－10－1 建屋の強度計算書
VI－3－別添1－1－10－2 海水ポンプ室門型クレーンの強度計算書

VI－3－別添1－1－10－3 消音器の強度計算書
VI－3－別添1－1－10－4 ミスト配管及びベント配管の強度計算書
VI－3－別添1－2 防護対策施設の強度計算の方針
VI－3－別添1－2－1 防護対策施設の強度計算書
VI－3－別添1－2－1－1 竜巻防護ネットの強度計算書
VI－3－別添1－2－1－2 竜巻防護鋼板の強度計算書
VI－3－別添1－3 屋外重大事故等対処設備の固縛装置の強度計算の方針
VI－3－別添1－3－1 屋外重大事故等対処設備の固縛装置の強度計算書
VI－3－別添2 火山への配慮が必要な施設の強度に関する説明書
VI－3－別添2－1 火山への配慮が必要な施設の強度計算の方針
VI－3－別添2－1－1 原子炉補機冷却海水ポンプの強度計算書
VI－3－別添2－1－2 高圧炉心スプレイ補機冷却海水ポンプの強度計算書
VI－3－別添2－1－3 復水貯蔵タンクの強度計算書
VI－3－別添2－1－4 鋼製ハッチの強度計算書
VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書
VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針
VI－3－別添3－2 津波への配慮が必要な施設の強度計算書
VI－3－別添3－2－1 防潮堤の強度計算書
VI－3－別添3－2－1－1 防潮堤（鋼管式鉛直壁）の強度計算書
VI－3－別添3－2－1－2 防潮堤（盛土堤防）の強度計算書
VI－3－別添3－2－2 防潮壁の強度計算書
VI－3－別添3－2－2－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の強度計算書
VI－3－別添3－2－2－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁）の強度計算書
VI－3－別添3－2－2－3 杭基礎構造防潮壁 鋼製扉の強度計算書
VI－3－別添3－2－2－4 防潮壁（第3号機海水熱交換器建屋）の強度計算書
VI－3－別添3－2－3 取放水路流路縮小工の強度計算書
VI－3－別添3－2－3－1 取放水路流路縮小工（第1号機取水路）の強度計算書
VI－3－別添3－2－3－2 取放水路流路縮小工（第1号機放水路）の強度計算書
VI－3－別添3－2－4 貯留堰の強度計算書
VI－3－別添3－2－5 逆流防止設備の強度計算書
VI－3－別添3－2－5－1 屋外排水路逆流防止設備の強度計算書
VI－3－別添3－2－5－1－1 屋外排水路逆流防止設備（防潮堤南側）の強度計算書
VI－3－別添3－2－5－1－2 屋外排水路逆流防止設備（防潮堤北側）の強度計算書
VI－3－別添3－2－5－2 補機冷却海水系放水路逆流防止設備の強度計算書
VI－3－別添3－2－6 水密扉の強度計算書
VI－3－別添3－2－7 浸水防止蓋の強度計算書
VI－3－別添3－2－7－1 浸水防止蓋（原子炉機器冷却海水配管ダクト）の強度計算書
VI－3－別添3－2－7－2 浸水防止蓋（第3号機補機冷却海水系放水ピット）の強度計算書
VI－3－別添3－2－7－3 浸水防止蓋（第3号機海水熱交換器建屋）の強度計算書

VI－3－別添3－2－7－4 浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））の強度計算書

VI－3－別添3－2－7－5 浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））の強度計算書
VI－3－別添3－2－7－6 浸水防止蓋（第2号機軽油タンクエリア）の強度計算書
VI－3－別添3－2－8 浸水防止壁の強度計算書
VI－3－別添3－2－9 逆止弁付ファンネルの強度計算書
VI－3－別添3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書
VI－3－別添3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書
VI－3－別添3－2－10 貫通部止水処置の強度計算書
VI－3－別添3－2－11 津波監視設備の強度計算書
VI－3－別添3－2－11－1 取水ピット水位計の強度計算書
$\mathrm{VI}-3$－別添3－3 溢水への配慮が必要な施設の強度計算の方針
VI－3－別添3－4 溢水への配慮が必要な施設の強度計算書
VI－3－別添3－4－1 水密扉の強度計算書（溢水）
VI－3－別添3－4－2 堰の強度計算書
VI－3－別添3－4－3 逆流防止装置の強度計算書
VI－3－別添3－4－4 貫通部止水処置の強度計算書（溢水）
VI－3－別添4 発電用火力設備の技術基準による強度に関する説明書
VI－3－別添5 非常用発電装置（可搬型）の強度に関する説明書
$\mathrm{VI}-3$－別添6 炉心支持構造物の強度に関する説明書
VI－3－別添6－1 灲心シュラウドの強度計算書
VI－3－別添6－2 シュラウドサポートの強度計算書
VI－3－別添6－3 炉心シュラウド支持ロッドの強度計算書
VI－3－別添6－4 上部格子板の強度計算書
VI－3－別添6－5 炬心支持板の強度計算書
VI－3－別添6－6 燃料支持金具の強度計算書
VI－3－別添6－7 制御棒案内管の強度計算書
VI－3－別添7 原子炉圧力容器内部構造物の強度に関する説明書
VI－3－別添7－1 ジェットポンプの強度計算書
VI－3－別添7－2 給水スパージャの強度計算書
VI－3－別添7－3 高圧及び低圧炬心スプレイスパージャの強度計算書
VI－3－別添7－4 残留熱除去系配管（原子炉圧力容器内部）の強度計算書
VI－3－別添7－5 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の強度計算書
VI－3－別添7－6 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の強度計算書
VI－4 その他計算書
VI－4－1 安全弁及び逃がし弁の吹出量計算書
VI－4－2 生体遮蔽装置の放射線の遮蔽及び熱除去についての計算書
VI－4－2－1 中央制御室の生体遮蔽装置の放射線の遮蔽及び熱除去についての計算書

VI－4－2－2 緊急時対策所の生体遮蔽装置の放射線の遮蔽及び熱除去についての計算書 VI－5 計算機プログラム（解析コード）の概要

VI－5－1 計算機プログラム（解析コード）の概要•TONBOS
VI－5－2 計算機プログラム（解析コード）の概要•BG0195HDW1
VI－5－3 計算機プログラム（解析コード）の概要•COSTANA
VI－5－4 計算機プログラム（解析コード）の概要•FLIP
VI－5－5 計算機プログラム（解析コード）の概要•LIQUEUR
VI－5－6 計算機プログラム（解析コード）の概要•SAC2D
VI－5－7 計算機プログラム（解析コード）の概要•SLIP02HDW1
VI－5－8 計算機プログラム（解析コード）の概要•stress－NLAP
VI－5－9 計算機プログラム（解析コード）の概要•suberi＿sf
VI－5－10 計算機プログラム（解析コード）の概要• suberi＿Type6789＿SAC2D－HD1
VI－5－11 計算機プログラム（解析コード）の概要•SuperFLUSH／2D
VI－5－12 計算機プログラム（解析コード）の概要•VESL－DYN
VI－5－13 計算機プログラム（解析コード）の概要•ABAQUS
VI－5－14 計算機プログラム（解析コード）の概要•FDTs
VI－5－15 計算機プログラム（解析コード）の概要•DORT
VI－5－16 計算機プログラム（解析コード）の概要•SCALE
VI－5－17 計算機プログラム（解析コード）の概要•ORIGEN2
VI－5－18 計算機プログラム（解析コード）の概要•QAD－CGGP2R
VI－5－19 計算機プログラム（解析コード）の概要•ANISN
VI－5－20 計算機プログラム（解析コード）の概要•G33－GP2R
VI－5－21 計算機プログラム（解析コード）の概要•MAAP
VI－5－22 計算機プログラム（解析コード）の概要•ANSYS
VI－5－23 計算機プログラム（解析コード）の概要•GOTHIC
VI－5－24 計算機プログラム（解析コード）の概要•ISAP
VI－5－25 計算機プログラム（解析コード）の概要•NX NASTRAN
VI－5－26 計算機プログラム（解析コード）の概要•SAP－V
VI－5－27 計算機プログラム（解析コード）の概要•SOLVER
$\mathrm{VI}-5-28$ 計算機プログラム（解析コード）の概要•ADMITHF
VI－5－29 計算機プログラム（解析コード）の概要•mflow
VI－5－30 計算機プログラム（解析コード）の概要•NUPP4
VI－5－31 計算機プログラム（解析コード）の概要•SHAKE
VI－5－32 計算機プログラム（解析コード）の概要•SLAP
VI－5－33 計算機プログラム（解析コード）の概要•Ark Quake
VI－5－34 計算機プログラム（解析コード）の概要•Soi1Plus
VI－5－35 計算機プログラム（解析コード）の概要•WCOMD Studio
VI－5－36 計算機プログラム（解析コード）の概要•microSHAKE／3D
VI－5－37 計算機プログラム（解析コード）の概要•TDAPIII

VI－5－38	計算機プログラム（解析コード	の概要•UC－win／WCOMD
VI－5－39	計算機プログラム（解析コー	の概要•NOVAK
VI－5－40	計算機プログラム（解析コー	の概要•MSC NASTRAN
VI－5－41	計算機プログラム（解析コー	の概要•KANDYN＿2N
VI－5－42	計算機プログラム（解析コード	の概要•SCC
VI－5－43	計算機プログラム（解析コー	の概要•BSPAN2
VI－5－44	計算機プログラム（解析コー	の概要•CAR0
VI－5－45	計算機プログラム（解析コー	の概要•FURST
VI－5－46	計算機プログラム（解析コー	の概要•PRIME
VI－5－47	計算機プログラム（解析コー	の概要•ASHSD
VI－5－48	計算機プログラム（解析コー	の概要•PIPE
VI－5－49	計算機プログラム（解析コー	の概要•STAX
VI－5－50	計算機プログラム（解析コー	の概要•A－SAFIA
VI－5－51	計算機プログラム（解析コー	の概要•DYNA2E
VI－5－52	計算機プログラム（解析コー	の概要•SAP－IV
VI－5－53	計算機プログラム（解析コー	の概要•KSAP
VI－5－54	計算機プログラム（解析コー	の概要•NuPIAS
VI－5－55	計算機プログラム（解析コード	の概要•microSHAKE
VI－5－56	計算機プログラム（解析コード	の概要•UC－win／Section
VI－5－57	計算機プログラム（解析コー	の概要•RC断面計算
VI－5－58	計算機プログラム（解析コード	の概要•APOLLO Analyzer
VI－5－59	計算機プログラム（解析コード	の概要•APOLLO SuperDesigner Section
VI－5－60	計算機プログラム（解析コー	の概要•FRAMEマネジャ
VI－5－61	計算機プログラム（解析コード	の概要•FRAME（面内）
VI－5－62	計算機プログラム（解析コード	の概要•Engineer＇s Studio
VI－5－63	計算機プログラム（解析コー	の概要•fappase
VI－5－64	計算機プログラム（解析コード	の概要•KANSAS2
VI－5－65	計算機プログラム（解析コード	の概要•MSAP（配管）
VI－5－66	計算機プログラム（解析コード）	の概要•STRUCT
VI－5－67	計算機プログラム（解析コー	の概要•NAPF
VI－5－68	計算機プログラム（解析コード	の概要•FRS Calculation System
VI－5－69	計算機プログラム（解析コード	の概要•LS－DYNA
VI－5－70	計算機プログラム（解析コード）	の概要•ADMIT
VI－5－71	計算機プログラム（解析コード	の概要•VIANA
VI－5－72	計算機プログラム（解析コード	の概要•F1uent
VI－5－73	計算機プログラム（解析コード	の概要•CHERRY
VI－5－74	計算機プログラム（解析コード	の概要•FACS
VI－5－75	計算機プログラム（解析コード	の概要•FRS Enveloping for BWR
VI－5－76	計算機プログラム（解析コー	の概要•COM3

VI－5－77 計算機プログラム（解析コード）の概要•GETFLOWS
VI－5－78 計算機プログラム（解析コード）の概要•AutoPIPE
VI－5－79 計算機プログラム（解析コード）の概要•CR－IN
VI－5－80 計算機プログラム（解析コード）の概要•Com3Eva1Sh
VI－5－81 計算機プログラム（解析コード）の概要•Com3F1dModRun
VI－5－82 計算機プログラム（解析コード）の概要•StrainCom3
VI－5－83 計算機プログラム（解析コード）の概要•波形処理プログラム k－WAVE for Windows $\mathrm{VI}-6$ 図面

1．発電所
1．1 送電関係一覧図
第1－1－1図 送電関係一覧図
1．2 工場又は事業所の概要を明示した地形図
第1－2－1図 工場又は事業所の概要を明示した地形図
1.3 主要設備の配置の状況を明示した平面図及び断面図

第1－3－1図 主要設備の配置の状況を明示した平面図及び断面図 発電所全体図
第1－3－2－1図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の1）（平面）
第1－3－2－2図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の 2 ）（平面）
第1－3－2－3図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の 3 ）（平面）
第1－3－2－4図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の4）（平面）
第1－3－2－5図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の5）（平面）
第1－3－2－6図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の 6 ）（平面）
第1－3－2－7図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の7）（平面）
第1－3－2－8図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の8）（平面）
第1－3－2－9図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図（そ の 9）（平面）
第1－3－2－10図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図 （その10）（平面）
第1－3－2－11図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図 （その11）（平面）
第1－3－2－12図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図 （その12）（平面）

第1－3－2－13図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図 （その 13 ）（断面）
第1－3－2－14図 主要設備の配置の状況を明示した平面図及び断面図 発電所機器配置図 （その14）（断面）
第1－3－3－1図 主要設備の配置の状況を明示した平面図及び断面図 緊急用電気品建屋機器配置図（その 1）（平面）
第1－3－3－2図 主要設備の配置の状況を明示した平面図及び断面図 緊急用電気品建屋機器配置図（その 2 ）（平面）
第1－3－3－3図 主要設備の配置の状況を明示した平面図及び断面図 緊急用電気品建屋機器配置図（その3）（平面）
第1－3－3－4図 主要設備の配置の状況を明示した平面図及び断面図 緊急用電気品建屋機器配置図（その4）（断面）
第1－3－4－1図 主要設備の配置の状況を明示した平面図及び断面図 緊急時対策建屋機器配置図（その1）（平面）
第1－3－4－2図 主要設備の配置の状況を明示した平面図及び断面図 緊急時対策建屋機器配置図（その 2 ）（平面）
第1－3－4－3図 主要設備の配置の状況を明示した平面図及び断面図 緊急時対策建屋機器配置図（その3）（平面）

第1－3－4－4図 主要設備の配置の状況を明示した平面図及び断面図 緊急時対策建屋機器配置図（その4）（平面）
第1－3－4－5図 主要設備の配置の状況を明示した平面図及び断面図 緊急時対策建屋機器配置図（その5）（断面）
第1－3－5－1図 主要設備の配置の状況を明示した平面図及び断面図 海水ポンプ室 機器配置図（その1）（平面）
第1－3－5－2図 主要設備の配置の状況を明示した平面図及び断面図 海水ポンプ室 機器配置図（その 2 ）（断面）
第1－3－6－1図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その1）（平面）
第1－3－6－2図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その 2 ）（平面）
第1－3－6－3図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その3）（平面）
第1－3－6－4図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その4）（平面）
第1－3－6－5図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その5）（平面）
第1－3－6－6図 主要設備の配置の状況を明示した平面図及び断面図 0－3 海水熱交換器建屋 機器配置図（その6）（断面）

第1－3－7－1図 主要設備の配置の状況を明示した平面図及び断面図 復水貯蔵タンクエリ ア 非常用発電設備軽油タンクエリア 機器配置図（その 1 ）（平面）
第1－3－7－2図 主要設備の配置の状況を明示した平面図及び断面図 復水貯蔵タンクエリ ア 非常用発電設備軽油タンクエリア 機器配置図（その 2）（平面）
第1－3－7－3図 主要設備の配置の状況を明示した平面図及び断面図 復水貯蔵タンクエリ ア 非常用発電設備軽油タンクエリア 機器配置図（その3）（断面）

1．4 単線結線図

第1－4－1図 単線結線図（その 1 ）
第1－4－2図 単線結線図（その 2）
第1－4－3図 単線結線図（その3）
第1－4－4図 単線結線図（その4）
第1－4－5図 単線結線図（その5）
1.5 環境測定装置の構造図及び取付箇所を明示した図面第1－5－1図 環境測定装置の構造図 代替気象観測設備第1－5－2図 環境測定装置の構造図 津波監視カメラ
第1－5－3図 環境測定装置の構造図 取水ピット水位計
第1－5－4図 環境測定装置の取付箇所を明示した図面 代替気象観測設備
第1－5－5図 環境測定装置の取付箇所を明示した図面 津波監視設備
1.6 通信連絡設備の取付箇所を明示した図面

第1－6－1図 通信連絡設備の取付箇所を明示した図面（1／35）
第1－6－2図 通信連絡設備の取付箇所を明示した図面（2／35）
第1－6－3図 通信連絡設備の取付箇所を明示した図面（3／35）
第1－6－4図 通信連絡設備の取付箇所を明示した図面（4／35）
第1－6－5図 通信連絡設備の取付箇所を明示した図面（5／35）
第1－6－6図 通信連絡設備の取付箇所を明示した図面（6／35）
第1－6－7図 通信連絡設備の取付箇所を明示した図面（7／35）
第1－6－8図 通信連絡設備の取付箇所を明示した図面（8／35）
第1－6－9図 通信連絡設備の取付箇所を明示した図面（9／35）
第1－6－10図 通信連絡設備の取付箇所を明示した図面（10／35）
第1－6－11図 通信連絡設備の取付箇所を明示した図面（11／35）
第1－6－12図 通信連絡設備の取付箇所を明示した図面（12／35）
第1－6－13図 通信連絡設備の取付箇所を明示した図面（13／35）
第1－6－14図 通信連絡設備の取付箇所を明示した図面（14／35）
第1－6－15図 通信連絡設備の取付箇所を明示した図面（15／35）
第1－6－16図 通信連絡設備の取付箇所を明示した図面（16／35）
第1－6－17図 通信連絡設備の取付箇所を明示した図面（17／35）
第1－6－18図 通信連絡設備の取付箇所を明示した図面（18／35）
第1－6－19図 通信連絡設備の取付箇所を明示した図面（19／35）
第1－6－20図 通信連絡設備の取付箇所を明示した図面（20／35）

第1－6－21図 通信連絡設備の取付箇所を明示した図面（ $21 / 35$ ）
第1－6－22図 通信連絡設備の取付箇所を明示した図面（ $22 / 35$ ）
第1－6－23図 通信連絡設備の取付箇所を明示した図面（ $23 / 35$ ）
第1－6－24図 通信連絡設備の取付箇所を明示した図面（ $24 / 35$ ）
第1－6－25図 通信連絡設備の取付箇所を明示した図面（ $25 / 35$ ）
第1－6－26図 通信連絡設備の取付箇所を明示した図面（ $26 / 35$ ）
第1－6－27図 通信連絡設備の取付箇所を明示した図面（ $27 / 35$ ）
第1－6－28図 通信連絡設備の取付箇所を明示した図面（ $28 / 35$ ）
第1－6－29図 通信連絡設備の取付箇所を明示した図面（ $29 / 35$ ）
第1－6－30図 通信連絡設備の取付箇所を明示した図面（ $30 / 35$ ）
第1－6－31図 通信連絡設備の取付箇所を明示した図面（ $31 / 35$ ）
第1－6－32図 通信連絡設備の取付箇所を明示した図面（ $32 / 35$ ）
第1－6－33図 通信連絡設備の取付箇所を明示した図面（33／35）
第1－6－34図 通信連絡設備の取付箇所を明示した図面（34／35）
第1－6－35図 通信連絡設備の取付箇所を明示した図面（ $35 / 35$ ）
1.7 安全避難通路を明示した図面

第1－7－1図 安全避難通路を明示した図面（ $1 / 40$ ）
第1－7－2図 安全避難通路を明示した図面（ $2 / 40$ ）
第1－7－3図 安全避難通路を明示した図面（ $3 / 40$ ）
第1－7－4図 安全避難通路を明示した図面（ $4 / 40$ ）
第1－7－5図 安全避難通路を明示した図面（ $5 / 40$ ）
第1－7－6図 安全避難通路を明示した図面（ $6 / 40$ ）
第1－7－7図 安全避難通路を明示した図面（ $7 / 40$ ）
第1－7－8図 安全避難通路を明示した図面（ $8 / 40$ ）
第1－7－9図 安全避難通路を明示した図面（9／40）
第1－7－10図 安全避難通路を明示した図面（ $10 / 40$ ）
第1－7－11図 安全避難通路を明示した図面（ $11 / 40$ ）
第1－7－12図 安全避難通路を明示した図面（ $12 / 40$ ）
第1－7－13図 安全避難通路を明示した図面（ $13 / 40$ ）
第1－7－14図 安全避難通路を明示した図面（ $14 / 40$ ）
第1－7－15図 安全避難通路を明示した図面（ $15 / 40$ ）
第1－7－16図 安全避難通路を明示した図面（ $16 / 40$ ）
第1－7－17図 安全避難通路を明示した図面（ $17 / 40$ ）
第1－7－18図 安全避難通路を明示した図面（ $18 / 40$ ）
第1－7－19図 安全避難通路を明示した図面（ $19 / 40$ ）
第1－7－20図 安全避難通路を明示した図面（ $20 / 40$ ）
第1－7－21図 安全避難通路を明示した図面（ $21 / 40$ ）
第1－7－22図 安全避難通路を明示した図面（ $22 / 40$ ）
第1－7－23図 安全避難通路を明示した図面（ $23 / 40$ ）

第1－7－24図 安全避難通路を明示した図面（24／40）
第1－7－25図 安全避難通路を明示した図面（25／40）
第1－7－26図 安全避難通路を明示した図面（26／40）
第1－7－27図 安全避難通路を明示した図面（27／40）
第1－7－28図 安全避難通路を明示した図面（28／40）
第1－7－29図 安全避難通路を明示した図面（29／40）
第1－7－30図 安全避難通路を明示した図面（30／40）
第1－7－31図 安全避難通路を明示した図面（31／40）
第1－7－32図 安全避難通路を明示した図面（32／40）
第1－7－33図 安全避難通路を明示した図面（33／40）
第1－7－34図 安全避難通路を明示した図面（34／40）
第1－7－35図 安全避難通路を明示した図面（35／40）
第1－7－36図 安全避難通路を明示した図面（36／40）
第1－7－37図 安全避難通路を明示した図面（37／40）
第1－7－38図 安全避難通路を明示した図面（38／40）
第1－7－39図 安全避難通路を明示した図面（39／40）
第1－7－40図 安全避難通路を明示した図面（40／40）
1.8 非常用照明の取付箇所を明示した図面

第1－8－1図 非常用照明の取付箇所を明示した図面（1／41）
第1－8－2図 非常用照明の取付箇所を明示した図面（2／41）
第1－8－3図 非常用照明の取付箇所を明示した図面（3／41）
第1－8－4図 非常用照明の取付箇所を明示した図面（4／41）
第1－8－5図 非常用照明の取付箇所を明示した図面（5／41）
第1－8－6図 非常用照明の取付箇所を明示した図面（6／41）
第1－8－7図 非常用照明の取付箇所を明示した図面（7／41）
第1－8－8図 非常用照明の取付箇所を明示した図面（8／41）
第1－8－9図 非常用照明の取付箇所を明示した図面（9／41）
第1－8－10図 非常用照明の取付箇所を明示した図面（10／41）
第1－8－11図 非常用照明の取付箇所を明示した図面（11／41）
第1－8－12図 非常用照明の取付箇所を明示した図面（12／41）
第1－8－13図 非常用照明の取付箇所を明示した図面（13／41）
第1－8－14図 非常用照明の取付箇所を明示した図面（14／41）
第1－8－15図 非常用照明の取付箇所を明示した図面（15／41）
第1－8－16図 非常用照明の取付箇所を明示した図面（16／41）
第1－8－17図 非常用照明の取付箇所を明示した図面（17／41）
第1－8－18図 非常用照明の取付箇所を明示した図面（18／41）
第1－8－19図 非常用照明の取付箇所を明示した図面（19／41）
第1－8－20図 非常用照明の取付箇所を明示した図面（20／41）
第1－8－21図 非常用照明の取付箇所を明示した図面（21／41）

第1－8－22図 非常用照明の取付箇所を明示した図面（22／41）
第1－8－23図 非常用照明の取付箇所を明示した図面（23／41）
第1－8－24図 非常用照明の取付箇所を明示した図面（24／41）
第1－8－25図 非常用照明の取付箇所を明示した図面（25／41）
第1－8－26図 非常用照明の取付箇所を明示した図面（26／41）
第1－8－27図 非常用照明の取付箇所を明示した図面（27／41）
第1－8－28図 非常用照明の取付箇所を明示した図面（28／41）
第1－8－29図 非常用照明の取付箇所を明示した図面（29／41）
第1－8－30図 非常用照明の取付箇所を明示した図面（ $30 / 41$ ）
第1－8－31図 非常用照明の取付箇所を明示した図面（31／41）
第1－8－32図 非常用照明の取付箇所を明示した図面（32／41）
第1－8－33図 非常用照明の取付箇所を明示した図面（33／41）
第1－8－34図 非常用照明の取付箇所を明示した図面（34／41）
第1－8－35図 非常用照明の取付箇所を明示した図面（35／41）
第1－8－36図 非常用照明の取付箇所を明示した図面（36／41）
第1－8－37図 非常用照明の取付箇所を明示した図面（37／41）
第1－8－38図 非常用照明の取付箇所を明示した図面（38／41）
第1－8－39図 非常用照明の取付箇所を明示した図面（39／41）
第1－8－40図 非常用照明の取付箇所を明示した図面（40／41）
第1－8－41図 非常用照明の取付箇所を明示した図面（41／41）
2．原子炉本体

2.1 炉心支持構造物

－炉心シュラウド構造図
【「炉心シュラウド」は，平成17年2月4日付け東北電原第145号にて届け出した工事計画 の添付図面「第1図 炉心シュラウド構造図」による。】
－シュラウドサポート構造図
【「シュラウドサポート」は，平成17年2月4日付け東北電原第145号にて届け出した工事計画の添付図面「第2図 シュラウドサポート構造図」による。】
－炉心シュラウド支持ロッド構造図
【「炉心シュラウド支持ロッド」は，平成17年2月4日付け東北電原第145号にて届け出し た工事計画の添付図面「第3図 炉心シュラウド支持ロッド構造図（タイプ 1 ）」及び「第 4図 炉心シュラウド支持ロッド構造図（タイプ 2 ）」による。】
－上部格子板構造図
【「上部格子板」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－2－3図 上部格子板構造図」による。】
－炉心支持板構造図
【「炉心支持板」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－2－4図 炉心支持板構造図」による。】
－燃料支持金具構造図
【「燃料支持金具」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－2－5図 燃料支持金具構造図」による。】
－制御棒案内管構造図
【「制御棒案内管」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－2－6図 制御棒案内管構造図」による。】

2． 2 原子炬圧力容器

－原子炉圧力容器構造図
【「原子炉圧力容器」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画 の添付図面「第5－3－1図 原子炉圧力容器全体構造図」，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－3－2図 原子炉圧力容器部分構造図（その1）」及び平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－3－3図 原子炉圧力容器部分構造図（その 2 ）」による。】

2.3 原子炬圧力容器付属構造物

－差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）構造図
【「差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－4－10図 差圧検出• ほう酸水注入系配管（原子炉圧力容器内部及びティーよりN11ノズルまでの外管）構造図」による。】

2.4 原子炉圧力容器内部構造物

－炉内構造図
【「炉内構造図」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－4－1図 炉内構造図」による。】
－ジェットポンプ構造図
【「ジェットポンプ」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画 の添付図面「第5－4－7図 ジェットポンプ構造図」による。】
－給水スパージャ構造図
【「給水スパージャ」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画 の添付図面「第5－4－5図 給水スパージャ構造図」による。】
－高圧及び低圧炉心スプレイスパージャ構造図
【「高圧及び低圧炉心スプレイスパージャ」は，平成4年1月13日付け3資庁第10518号に て認可された工事計画の添付図面「第5－4－6図 高圧及び低圧炬心スプレイスパージャ構造図」による。】
－残留熱除去系配管（原子炉圧力容器内部）構造図
【「残留熱除去系配管（原子炉圧力容器内部）」は，平成4年1月13日付け3資庁第10518号 にて認可された工事計画の添付図面「第5－4－8図 残留熱除去系配管（原子炉圧力容器内部）構造図」による。】
－高圧及び低圧灲心スプレイ系配管（原子炉圧力容器内部）構造図
【「高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）」は，平成4年1月13日付け 3 資庁第10518号にて認可された工事計画の添付図面「第5－4－9図 高圧及び低圧炉心スプ レイ系配管（原子炉圧力容器内部）構造図」による。】
－差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）構造図
【「差圧検出・ほう酸水注入采配管（原子炉圧力容器内部）」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第5－4－10図 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部及びティーよりN11ノズルまでの外管）構造図」による。】

3．核燃料物質の取扱施設及び貯蔵施設

3.1 使用済燃料貯蔵設備

－使用済燃料プール構造図
【「使用済燃料プール」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第8－3－1図 使用済燃料プール構造図」による。】
－使用済燃料貯蔵ラック構造図
【「使用済燃料貯蔵ラック」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第8－3－2図 使用済燃料貯蔵ラック構造図（その1）」及び「第8－3－3図 使用済燃料貯蔵ラック構造図（その 2 ）」による。】
－制御棒•破損燃料貯蔵ラック構造図
【「制御棒•破損燃料貯蔵ラック」は，平成4年1月13日付け3資庁第10518号にて認可さ れた工事計画の添付図面「第8－3－4図 制御棒•破損燃料貯蔵ラック構造図」による。】第3－1－1－1図 制御棒貯蔵ラック構造図
第3－1－1－2図 制御棒貯蔵ハンガ構造図
第3－1－2－1図 使用済燃料貯蔵設備 機器の配置を明示した図面（その1）
第3－1－2－2図 使用済燃料貯蔵設備 機器の配置を明示した図面（その 2 ）
第3－1－2－3図 使用済燃料貯蔵設備 機器の配置を明示した図面（その3）
第3－1－2－4図 使用済燃料貯蔵設備 機器の配置を明示した図面（その4）
第3－1－3－1図 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の検出器の取付箇所を明示した図面（1／2）
第3－1－3－2図 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の検出器の取付箇所を明示した図面（2／2）

3.2 使用済燃料貯蔵槽冷却浄化設備

3．2．1 燃料プール冷却浄化系

第3－2－1－1－1図【設計基準対象施設】燃料プール泠却浄化系系統図
第3－2－1－1－2図【重大事故等対処設備】燃料プール冷却浄化系系統図
－燃料プール泠却浄化系熱交換器構造図
【「燃料プール泠却浄化系熱交換器」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第8－4－3図 燃料プール冷却浄化系熱交換器構造図」 による。】
－燃料プール冷却浄化系ポンプ構造図
【「燃料プール泠却浄化系ポンプ」は，平成4年1月13日付け3資庁第10518号にて認可 された工事計画の添付図面「第8－4－4図 燃料プール泠却浄化系ポンプ構造図」によ る。】
第3－2－1－2－1図 スキマサージタンク構造図

第3－2－1－3－1図 燃料プール冷却浄化系
第3－2－1－3－2図 燃料プール冷却浄化系
第3－2－1－3－3図第3－2－1－3－4図第3－2－1－3－5図第3－2－1－4－1図第3－2－1－4－2図第3－2－1－4－3図第3－2－1－4－4図第3－2－1－4－5図第3－2－1－4－6図第3－2－1－4－7図 燃料プール泠却浄化系

機器の配置を明示した図面（その1）
機器の配置を明示した図面（その 2 ）
機器の配置を明示した図面（その3）
機器の配置を明示した図面（その4）
機器の配置を明示した図面（その5）
主配管の配置を明示した図面（その1）
主配管の配置を明示した図面（その 2 ）
主配管の配置を明示した図面（その3）
主配管の配置を明示した図面（その4）
主配管の配置を明示した図面（その 5 ）
主配管の配置を明示した図面（その6）
主配管の配置を明示した図面（その7）

3．2．2 燃料プール代替注水系
第3－2－2－1－1図【設計基準対象施設】燃料プール代替注水系系統図（ $1 / 2$ ）
第3－2－2－1－2図【設計基準対象施設】燃料プール代替注水系系統図（2／2）可搬
第3－2－2－1－3図【重大事故等対処設備】燃料プール代替注水系系統図 $(1 / 2)$
第3－2－2－1－4図【重大事故等対処設備】燃料プール代替注水系系統図（2／2）可搬
第3－2－2－2－1図 大容量送水ポンプ（タイプI）構造図
第3－2－2－3－1図 燃料プール代替注水系
第3－2－2－3－2図 燃料プール代替注水系
第3－2－2－3－3図燃料プール代替注水系
第3－2－2－3－4図第3－2－2－4－1図第3－2－2－4－2図燃料プール代替注水系燃料プール代替注水系燃料プール代替注水系第3－2－2－4－3図燃料プール代替注水系

第3－2－2－4－4図第3－2－2－4－5図
第3－2－2－4－6図
第3－2－2－4－7図
第3－2－2－4－8図
第3－2－2－4－9図 燃料プール代替注水系
第3－2－2－4－10図 燃料プール代替注水系
第3－2－2－4－11図 燃料プール代替注水系
第3－2－2－4－12図 燃料プール代替注水系

機器の配置を明示した図面（その1）
機器の配置を明示した図面（その 2 ）
機器の配置を明示した図面（その3）
機器の配置を明示した図面（その4）
主配管の配置を明示した図面（その1）
主配管の配置を明示した図面（その 2 ）
主配管の配置を明示した図面（その3）
主配管の配置を明示した図面（その4）
主配管の配置を明示した図面（その 5 ）
主配管の配置を明示した図面（その6）
主配管の配置を明示した図面（その7）
主配管の配置を明示した図面（その8）
主配管の配置を明示した図面（その9）
主配管の配置を明示した図面（その10）主配管の配置を明示した図面（その11）主配管の配置を明示した図面（その12）

3．2．3 燃料プールスプレイ系

第3－2－3－1－1図【設計基準対象施設】燃料プールスプレイ系系統図（1／2）
第3－2－3－1－2図【設計基準対象施設】燃料プールスプレイ系系統図（2／2）可搬
第3－2－3－1－3図【重大事故等対処設備】燃料プールスプレイ系系統図 $(1 / 2)$
第3－2－3－1－4図【重大事故等対処設備】燃料プールスプレイ系系統図（2／2）可搬第3－2－3－2－1図 可搬型ストレーナ構造図

第3－2－3－3－1図 燃料プールスプレイ系 機器の配置を明示した図面（その1）
第3－2－3－3－2図 燃料プールスプレイ系 機器の配置を明示した図面（その 2 ）
第3－2－3－3－3図 燃料プールスプレイ系 機器の配置を明示した図面（その3）
第3－2－3－3－4図 燃料プールスプレイ系 機器の配置を明示した図面（その4）
第3－2－3－4－1図 燃料プールスプレイ系 主配管の配置を明示した図面（その1）
第3－2－3－4－2図 燃料プールスプレイ系 主配管の配置を明示した図面（その 2）
第3－2－3－4－3図 燃料プールスプレイ系 主配管の配置を明示した図面（その3）
第3－2－3－4－4図 燃料プールスプレイ系 主配管の配置を明示した図面（その4）
第3－2－3－4－5図 燃料プールスプレイ系 主配管の配置を明示した図面（その5）
第3－2－3－4－6図 燃料プールスプレイ系 主配管の配置を明示した図面（その6）
第3－2－3－4－7図 燃料プールスプレイ系 主配管の配置を明示した図面（その7）
第3－2－3－4－8図 燃料プールスプレイ系 主配管の配置を明示した図面（その8）
第3－2－3－4－9図 燃料プールスプレイ系 主配管の配置を明示した図面（その9）
第3－2－3－4－10図 燃料プールスプレイ系 主配管の配置を明示した図面（その10）
3．2．4 放射性物質拡散抑制系
第3－2－4－1－1図【設計基準対象施設】放射性物質拡散抑制系系統図
第3－2－4－1－2図【重大事故等対処設備】放射性物質拡散抑制系系統図
第3－2－4－2－1図 放射性物質拡散抑制系 機器の配置を明示した図面（その1）
4．原子炉冷却采統施設
4． 1 原子炉冷却材再循環設備
4．1． 1 原子炬再循環系
第4－1－1－1－1図 原子炉再循環系
第4－1－1－1－2図 原子炬再循環系
主配管の配置を明示した図面（その1）

第4－1－1－1－3図 原子炉再循環系 主配管の配置を明示した図面（その3）
4． 2 原子炉冷却材の循環設備

4．2．1 主蒸気系

第4－2－1－1－1図【設計基準対象施設】主蒸気系系統図（1／3）（主蒸気系その1）
第4－2－1－1－2図【設計基準対象施設】主蒸気系系統図（2／3）（主蒸気系その 2 ）
第4－2－1－1－3図【設計基準対象施設】主蒸気系系統図（3／3）（高圧窒素ガス供給系そ の 2）
第4－2－1－1－4図【重大事故等対処設備】主蒸気系系統図（ $1 / 3$ ）（主蒸気系その 1）
第4－2－1－1－5図【重大事故等対処設備】主蒸気系系統図（2／3）（主蒸気系その 2）

第4－2－1－1－6図【重大事故等対処設備】主蒸気系系統図（3／3）（高圧窒素ガス供給系 その 2 ）
－主蒸気逃がし安全弁逃がし弁機能用アキュムレータ構造図
【「主蒸気逃がし安全弁逃がし弁機能用アキュムレータ」は，平成4年1月13日付け 3資庁第10518号にて認可された工事計画の添付図面「第6－1－14図 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ構造図」による。】
－主蒸気逃がし安全弁自動減圧機能用アキュムレータ構造図
【「主蒸気逃がし安全弁自動減圧機能用アキュムレータ」は，平成4年1月13日付け 3資庁第10518号にて認可された工事計画の添付図面「第6－1－15図 主蒸気逃がし安全弁自動減圧機能用アキュムレータ構造図」による。】
－主蒸気逃がし安全弁構造図
【「主蒸気逃がし安全弁」は，平成4年1月13日付け3資庁第10518号にて認可された工
事計画の添付図面「第6－1－5図 主蒸気逃がし安全弁構造図」による。】

第4－2－1－3－1図 主蒸気系 機器の配置を明示した図面（その1）
第4－2－1－3－2図 主蒸気系 機器の配置を明示した図面（その 2）
第4－2－1－3－3図 主蒸気系 機器の配置を明示した図面（その3）
主配管の配置を明示した図面（その1）
第4－2－1－4－2図
第4－2－1－4－3図主蒸気系
主蒸気系
第4－2－1－4－4図主蒸気系

第4－2－1－4－5図 主蒸気系
第4－2－1－4－6図主蒸気系
第4－2－1－4－7図 主蒸気系
第4－2－1－4－8図 主蒸気系
第4－2－1－4－9図 主蒸気系
第4－2－1－4－10図 主蒸気系
第4－2－1－4－11図主蒸気系主蒸気系主蒸気系主蒸気系主蒸気系主蒸気系主蒸気系主蒸気系
第4－2－1－4－18図土蒸気
第4－2－1－4－19図主蒸気系

第4－2－1－4－20図主蒸気系主蒸気系主蒸気系

主配管の配置を明示した図面（その 2 ）
主配管の配置を明示した図面（その3）
主配管の配置を明示した図面（その 4）
主配管の配置を明示した図面（その 5 ）
主配管の配置を明示した図面（その 6 ）
主配管の配置を明示した図面（その7）
主配管の配置を明示した図面（その8）
主配管の配置を明示した図面（その9）
主配管の配置を明示した図面（その 10 ）
主配管の配置を明示した図面（その11）
主配管の配置を明示した図面（その12）
主配管の配置を明示した図面（その 1 3）
主配管の配置を明示した図面（その14）
主配管の配置を明示した図面（その15）
主配管の配置を明示した図面（その16）
主配管の配置を明示した図面（その17）
主配管の配置を明示した図面（その18）
主配管の配置を明示した図面（その19）
主配管の配置を明示した図面（その 20 ）
主配管の配置を明示した図面（その 21 ）
主配管の配置を明示した図面（その 2 2）

4．2．2 復水給水系

第4－2－2－1－1図 復水給水系 機器の配置を明示した図面（その1）
第4－2－2－2－1図 復水給水系 主配管の配置を明示した図面（その1）
第4－2－2－2－2図 復水給水系 主配管の配置を明示した図面（その 2）
第4－2－2－2－3図 復水給水系 主配管の配置を明示した図面（その3）
4．2．3 給水加熱器ドレンベント系
第4－2－3－1－1図 給水加熱器ドレンベント系 機器の配置を明示した図面（その1）

4.3 残留熱除去設備

4．3．1 残留熱除去系
第4－3－1－1－1図【設計基準対象施設】残留熱除去系系統図（1／3）（残留熱除去系その 1）
第4－3－1－1－2図【設計基準対象施設】残留熱除去系系統図（2／3）（残留熱除去系その 2）

第4－3－1－1－3図【設計基準対象施設】残留熱除去系系統図（3／3）（原子炉再循環系）
第4－3－1－1－4図【重大事故等対処設備】残留熱除去系系統図（ $1 / 3$ ）（残留熱除去系その 1）
第4－3－1－1－5図【重大事故等対処設備】残留熱除去系系統図（2／3）（残留熱除去系そ

第4－3－1－1－6図【重大事故等対処設備】残留熱除去系系統図（3／3）（原子炉再循環系）
－残留熱除去系熱交換器構造図
【「残留熱除去系熱交換器」は，平成3年6月19日付け 3資庁第1003号にて認可さ れた工事計画の添付図面「第3－3－3図 残留熱除去系熱交換器構造図」による。】
－残留熱除去系ポンプ構造図
【「残留熱除去系ポンプ」は，平成3年6月19日付け 3 資庁第1003号にて認可され た工事計画の添付図面「第3－3－4図 残留熱除去系ポンプ構造図」による。】
－残留熱除去系ストレーナ構造図
【「残留熱除去系ストレーナ構造図」は，平成 20 年 4 月 7 日付け平成 $20 \cdot 02 \cdot 29$ 原第 30号にて認可された工事計画の添付図面「第1－3図 残留熱除去系ストレーナ構造図（そ の1）」及び「第1－4図 残留熱除去系ストレーナ構造図（その 2）」による。】第4－3－1－3－1図 E11－F048A，B構造図第4－3－1－3－2図 E11－F048C構造図第4－3－1－3－3図 E11－F050A，B構造図第4－3－1－3－4図 E11－F054A，B構造図第4－3－1－4－1図 E11－F008A，B構造図
－E11－F016A，B構造図
【「E11－F016A，B」は，平成3年6月19日付け 3 資庁第1003号にて認可された工事計画の添付図面「第3－3－13図 主要弁構造図（その9）」による。】
第4－3－1－4－2図 E11－F018A，B構造図

－E11－F021構造図

【「E11－F021」は，平成3年6月19日付け 3 資庁第1 0 0 3 号にて認可された工事計画 の添付図面「第3－3－16図 主要弁構造図（その12）」による。】
第4－3－1－5－1図 残留熱除去系 機器の配置を明示した図面（その1）
第4－3－1－5－2図 残留熱除去系 機器の配置を明示した図面（その 2 ）
第4－3－1－5－3図 残留熱除去系 機器の配置を明示した図面（その3）
第4－3－1－5－4図 残留熱除去系 機器の配置を明示した図面（その4）
第4－3－1－5－5図 残留熱除去系 機器の配置を明示した図面（その5）
第4－3－1－5－6図
第4－3－1－5－7図
残留熱除去系 機器の配置を明示した図面（その 6 ）

第4－3－1－6－1図 残留熱除去系
第4－3－1－6－2図 残留熱除去系
第4－3－1－6－3図
第4－3－1－6－4図残留熱除去系

第4－3－1－6－5図残留熱除去系

第4－3－1－6－6図残留熱除去系第4－3－1－6－7図第4－3－1－6－8図第4－3－1－6－9図残留熱除去系残留熱除去系残留熱除去系

4．3．2 原子炉格納容器フィルタベント系
第4－3－2－1－1図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（1／4）
第4－3－2－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（2／4） （原子炉格納容器調気系その 2 ）

第4－3－2－1－3図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（3／4）
第4－3－2－1－4図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（4／4）可搬

第4－3－2－1－5図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（ $1 / 4$ ）第4－3－2－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（2／4） （原子炉格納容器調気系その 2）
第4－3－2－1－7図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（3／4）第4－3－2－1－8図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（4／4）可搬

第4－3－2－2－1図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 1）

第4－3－2－2－2図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 2 ）

第4－3－2－2－3図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 3 ）
第4－3－2－2－4図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 4 ）

第4－3－2－2－5図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 5 ）

第4－3－2－2－6図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（その 6）
4．3．3 耐圧強化ベント系
第4－3－3－1－1図【設計基準対象施設】耐圧強化ベント系系統図（1／2）（原子炉格納容器調気系その 2）

第4－3－3－1－2図【設計基準対象施設】耐圧強化ベント系系統図（2／2）（非常用ガス処理系）
第4－3－3－1－3図【重大事故等対処設備】耐圧強化ベント系系統図（1／2）（原子炉格納容器調気系その 2）

第4－3－3－1－4図【重大事故等対処設備】耐圧強化ベント系系統図（2／2）（非常用ガス処理系）

第4－3－3－2－1図 耐圧強化ベント系 機器の配置を明示した図面（その1）
第4－3－3－2－2図 耐圧強化ベント系 機器の配置を明示した図面（その 2）
第4－3－3－2－3図 耐圧強化ベント系 機器の配置を明示した図面（その3）
第4－3－3－3－1図 耐圧強化ベント系 主配管の配置を明示した図面（その1）
第4－3－3－3－2図 耐圧強化ベント系 主配管の配置を明示した図面（その 2 ）
第4－3－3－3－3図 耐圧強化ベント系 主配管の配置を明示した図面（その3）
第4－3－3－3－4図 耐圧強化ベント系 主配管の配置を明示した図面（その4）
4． 4 非常用炉心冷却設備その他原子炉注水設備
4．4．1 高圧炉心スプレイ系
第4－4－1－1－1図【設計基準対象施設】高圧炉心スプレイ系系統図（1／2）
第4－4－1－1－2図【設計基準対象施設】高圧炉心スプレイ系系統図（2／2）（補給水系そ の 2 ）

第4－4－1－1－3図【重大事故等対処設備】高圧炉心スプレイ系系統図（ $1 / 2$ ）
第4－4－1－1－4図【重大事故等対処設備】高圧炉心スプレイ系系統図（2／2）（補給水系 その 2 ）
－高圧炬心スプレイ系ポンプ構造図
【「高圧炬心スプレイ系ポンプ」は，平成3年6月19日付け 3資庁第1003号にて認可された工事計画の添付図面「第3－5－2図 高圧炉心スプレイ系ポンプ構造図による。】 －高圧炉心スプレイ系ストレーナ構造図

【「高圧灲心スプレイ系ストレーナ構造図」は，平成 20 年 4 月 7 日付け平成 $20 \cdot 02 \cdot 29$原第30号にて認可された工事計画の添付図面「第2－2図 高圧炉心スプレイ系ストレ ーナ構造図（その1）」及び「第2－3図 高圧炉心スプレイ系ストレーナ構造図（その 2）」による。】
第4－4－1－3－1図 E22－F023構造図
第4－4－1－4－1図 高圧灲心スプレイ系 機器の配置を明示した図面（その1）
第4－4－1－4－2図 高圧炉心スプレイ系 機器の配置を明示した図面（その 2）
第4－4－1－4－3図 高圧炉心スプレイ系 機器の配置を明示した図面（その3）
第4－4－1－4－4図 高圧灲心スプレイ系 機器の配置を明示した図面（その4）
第4－4－1－4－5図 高圧炉心スプレイ系 機器の配置を明示した図面（その5）
第4－4－1－4－6図 高圧炉心スプレイ系 機器の配置を明示した図面（その6）
第4－4－1－4－7図 高圧炉心スプレイ系 機器の配置を明示した図面（その7）
第4－4－1－5－1図 高圧炉心スプレイ系 主配管の配置を明示した図面（その1）
第4－4－1－5－2図 高圧炉心スプレイ系
第4－4－1－5－3図
第4－4－1－5－4図高圧炉心スプレイ系主配管の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その 3）

第4－4－1－5－5図第4－4－1－5－6図高圧炬心スプレイ系主配管の配置を明示した図面（その4）高圧炬心スプレイ系 主配管の配置を明示した図面（その5）

第4－4－1－5－7図高圧炉心スプレイ系主配管の配置を明示した図面（その6）

第4－4－1－5－8図高圧炉心スプレイ系主配管の配置を明示した図面（その7）第4－4－1－5－9図 高圧灲心スプレイ系第4－4－1－5－10図 高圧炉心スプレイ系第4－4－1－5－11図 高圧灲心スプレイ系
第4－4－1－5－12図 高圧灲心スプレイ系
第4－4－1－5－13図 高圧灲心スプレイ系
主配管の配置を明示した図面（その8）主配管の配置を明示した図面（その9）主配管の配置を明示した図面（その10）主配管の配置を明示した図面（その11）主配管の配置を明示した図面（その12）主配管の配置を明示した図面（その13）
4．4．2 低圧炬心スプレイ系
第4－4－2－1－1図【設計基準対象施設】低圧炝心スプレイ系系統図
第4－4－2－1－2図【重大事故等対処設備】低圧炉心スプレイ系系統図
第4－4－2－2－1図 低圧炉心スプレイ系ポンプ構造図
－低圧灲心スプレイ系ストレーナ構造図
【「低圧炬心スプレイ系ストレーナ構造図（その1）」は，平成20年4月7日付け平成 $20 \cdot 02 \cdot 29$ 原第 30 号にて認可された工事計画の添付図面「第3－2図 低圧炉心スプレ イ系ストレーナ構造図（その1）」及び「第3－3図 低圧炉心スプレイ系ストレーナ構造図（その 2 ）」による。】
第4－4－2－3－1図 E21－F017構造図
第4－4－2－4－1図 低圧炉ふスプレイ系 機器の配置を明示した図面（その1）
第4－4－2－4－2図 低圧炬心スプレイ系 機器の配置を明示した図面（その 2 ）
第4－4－2－4－3図 低圧灲心スプレイ系 機器の配置を明示した図面（その3）第4－4－2－4－4図 低圧炬ふスプレイ系 機器の配置を明示した図面（その4）
－低圧炉心スプレイ系 主配管の配置を明示した図面（その1）
【「低圧炬心スプレイ系 主配管の配置を明示した図面（その1）」は，平成3年6月 19日付け 3 資庁第 1 0 0 3 号にて認可された工事計画の添付図面「第3－6－6図 主配管の配置を明示した図面（その1）」による。】
－低圧炉心スプレイ系 主配管の配置を明示した図面（その 2 ）
【「低圧炬心スプレイ系 主配管の配置を明示した図面（その 2 ）」は，平成3年6月 19日付け 3 資庁第 1 0 0 3 号にて認可された工事計画の添付図面「第3－6－7図 主配管の配置を明示した図面（その 2 ）」による。】

4．4．3 高圧代替注水系

第4－4－3－1－1図【設計基準対象施設】高圧代替注水系系統図（ $1 / 7$ ）
第4－4－3－1－2図【設計基準対象施設】高圧代替注水系系統図（2／7）（主蒸気系その1）
第4－4－3－1－3図【設計基準対象施設】高圧代替注水系系統図（3／7）（復水給水系その 4）
第4－4－3－1－4図【設計基準対象施設】高圧代替注水系系統図（4／7）（高圧灯心スプレ イ系）
第4－4－3－1－5図【設計基準対象施設】高圧代替注水系系統図（5／7）（原子炉隔離時冷却系）
第4－4－3－1－6図【設計基準対象施設】高圧代替注水系系統図（6／7）（補給水系その 2）
第4－4－3－1－7図【設計基準対象施設】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
第4－4－3－1－8図【重大事故等対処設備】高圧代替注水系系統図（ $1 / 7$ ）
第4－4－3－1－9図【重大事故等対処設備】高圧代替注水系系統図（2／7）（主蒸気系その 1）
第4－4－3－1－10図【重大事故等対処設備】高圧代替注水系系統図（3／7）（復水給水系そ の4）
第4－4－3－1－11図【重大事故等対処設備】高圧代替注水系系統図（4／7）（高圧炉心スプ レイ系）
第4－4－3－1－12図【重大事故等対処設備】高圧代替注水系系統図（5／7）（原子炬隔離時冷却系）

第4－4－3－1－13図【重大事故等対処設備】高圧代替注水系系統図（6／7）（補給水系その 2 ）

第4－4－3－1－14図【重大事故等対処設備】高圧代替注水系系統図 $(7 / 7$ ）（原子炉冷却材浄化系その1）
第4－4－3－2－1図 高圧代替注水系タービンポンプ構造図
第4－4－3－3－1図 高圧代替注水系 機器の配置を明示した図面（その1）
第4－4－3－3－2図 高圧代替注水系 機器の配置を明示した図面（その 2）
第4－4－3－3－3図 高圧代替注水系 機器の配置を明示した図面（その 3 ）
第4－4－3－3－4図 高圧代替注水系 機器の配置を明示した図面（その4）
第4－4－3－3－5図 高圧代替注水系 機器の配置を明示した図面（その5）
第4－4－3－3－6図 高圧代替注水系 機器の配置を明示した図面（その6）
第4－4－3－4－1図 高圧代替注水系 主配管の配置を明示した図面（その1）
第4－4－3－4－2図 高圧代替注水系 主配管の配置を明示した図面（その 2）
第4－4－3－4－3図高圧代替注水系 主配管の配置を明示した図面（その 3）

第4－4－3－4－4図 高圧代替注水系 主配管の配置を明示した図面（その4）
第4－4－3－4－5図 高圧代替注水系 主配管の配置を明示した図面（その5）
第4－4－3－4－6図 高圧代替注水系 主配管の配置を明示した図面（その6）
第4－4－3－4－7図 高圧代替注水系 主配管の配置を明示した図面（その7）
4．4．4 原子炉隔離時冷却系
第4－4－4－1－1図【設計基準対象施設】原子炉隔離時冷却系系統図（1／6）
第4－4－4－1－2図【設計基準対象施設】原子炉隔離時冷却系系統図（2／6）（主蒸気系そ の1）
第4－4－4－1－3図【設計基準対象施設】原子炉隔離時冷却系系統図（3／6）（復水給水系 その 4$)$

第4－4－4－1－4図【設計基準対象施設】原子炉隔離時冷却系系統図（4／6）（高圧炉心ス プレイ系）
第4－4－4－1－5図【設計基準対象施設】原子炉隔離時冷却系系統図（5／6）（補給水系そ の 2 ）

第4－4－4－1－6図【設計基準対象施設】原子炉隔離時冷却系系統図（6／6）（原子炉冷却材浄化系その1）
第4－4－4－1－7図【重大事故等対処設備】原子炉隔離時冷却系系統図（1／6）
第4－4－4－1－8図【重大事故等対処設備】原子炉隔離時冷却系系統図（2／6）（主蒸気系 その1）

第4－4－4－1－9図【重大事故等対処設備】原子炉隔離時冷却系系統図（3／6）（復水給水系その4）

第4－4－4－1－10図【重大事故等対処設備】原子炉隔離時冷却系系統図（4／6）（高圧炉心 スプレイ系）

第4－4－4－1－11図【重大事故等対処設備】原子炉隔離時冷却系系統図（5／6）（補給水系 その 2）

第4－4－4－1－12図【重大事故等対処設備】原子炉隔離時冷却系系統図（6／6）（原子炉冷却材浄化系その1）

第4－4－4－2－1図 E51－F059構造図
第4－4－4－3－1図 原子炉隔離時冷却系 機器の配置を明示した図面（その1）
第4－4－4－3－2図 原子炉隔離時冷却系 機器の配置を明示した図面（その 2 ）
第4－4－4－3－3図 原子炉隔離時冷却系 機器の配置を明示した図面（その3）
第4－4－4－3－4図 原子炉隔離時冷却系 機器の配置を明示した図面（その4）
第4－4－4－3－5図 原子炉隔離時冷却系 機器の配置を明示した図面（その5）
第4－4－4－3－6図 原子炉隔離時冷却系 機器の配置を明示した図面（その6）
第4－4－4－3－7図 原子炉隔離時冷却系 機器の配置を明示した図面（その7）
4． 4.5 低圧代替注水系
第4－4－5－1－1図【設計基準対象施設】低圧代替注水系系統図（1／6）（補給水系その 2 ）
第4－4－5－1－2図【設計基準対象施設】低圧代替注水系系統図（2／6）（高圧炉心スプレ イ系）

第4－4－5－1－3図【設計基準対象施設】低圧代替注水系系統図（3／6）（残留熱除去系そ の1）

第4－4－5－1－4図【設計基準対象施設】低圧代替注水系系統図（4／6）（残留熱除去系そ の 2 ）

第4－4－5－1－5図【設計基準対象施設】低圧代替注水系系統図（5／6）（直流駆動低圧注水系）

第4－4－5－1－6図【設計基準対象施設】低圧代替注水系系統図（6／6）可搬
第4－4－5－1－7図【重大事故等対処設備】低圧代替注水系系統図（1／6）（補給水系その 2 ）
第4－4－5－1－8図【重大事故等対処設備】低圧代替注水系系統図（2／6）（高圧炉心スプ レイ系）

第4－4－5－1－9図【重大事故等対処設備】低圧代替注水系系統図（3／6）（残留熱除去系 その1）
第4－4－5－1－10図【重大事故等対処設備】低圧代替注水系系統図（4／6）（残留熱除去系 その 2）

第4－4－5－1－11図【重大事故等対処設備】低圧代替注水系系統図（5／6）（直流駆動低圧注水系）

第4－4－5－1－12図【重大事故等対処設備】低圧代替注水系系統図（6／6）可搬第4－4－5－2－1図直流駆動低圧注水系ポンプ構造図

第4－4－5－3－1図 E71－F010構造図
第4－4－5－4－1図低圧代替注水系 機器の配置を明示した図面（その1）第4－4－5－4－2図低圧代替注水系 機器の配置を明示した図面（その 2）第4－4－5－4－3図低圧代替注水系 機器の配置を明示した図面（その3）

第4－4－5－4－4図低圧代替注水系 機器の配置を明示した図面（その4）第4－4－5－4－5図低圧代替注水系 機器の配置を明示した図面（その 5 ）

第4－4－5－4－6図第4－4－5－4－7図第4－4－5－5－1図第4－4－5－5－2図第4－4－5－5－3図第4－4－5－5－4図第4－4－5－5－5図第4－4－5－5－6図第4－4－5－5－7図第4－4－5－5－8図第4－4－5－5－9図第4－4－5－5－10図第4－4－5－5－11図第4－4－5－5－12図第4－4－5－5－13図第4－4－5－5－14図第4－4－5－5－15図第4－4－5－5－16図第4－4－5－5－17図第4－4－5－5－18図 低圧代替注水系第4－4－5－5－19図 低圧代替注水系第4－4－5－5－20図 低圧代替注水系第4－4－5－5－21図 低圧代替注水系第4－4－5－5－22図 低圧代替注水系 主配管の配置を明示した図面（その 2 2 ）

4．4．6 代替循環冷却系
第4－4－6－1－1図【設計基準対象施設】代替循環冷却系系統図（1／2）
第4－4－6－1－2図【設計基準対象施設】代替循環冷却系系統図（2／2）（残留熱除去系そ の1）

第4－4－6－1－3図【重大事故等対処設備】代替循環冷却系系統図（ $1 / 2$ ）
第4－4－6－1－4図【重大事故等対処設備】代替循環冷却系系統図（2／2）（残留熱除去系 その1）

第4－4－6－2－1図 代替循環冷却系 機器の配置を明示した図面（その1）
第4－4－6－2－2図 代替循環冷却系 機器の配置を明示した図面（その 2）
4．4．7 ほう酸水注入系
第4－4－7－1－1図【設計基準対象施設】ほら酸水注入系系統図
第4－4－7－1－2図【重大事故等対処設備】ほう酸水注入系系統図
第4－4－7－2－1図 ほう酸水注入系 機器の配置を明示した図面（その1）

4．4．8 残留熱除去系

第4－4－8－1－1図【設計基準対象施設】残留熱除去系系統図（1／2）（残留熱除去系その 1）

第4－4－8－1－2図【設計基準対象施設】残留熱除去系系統図（2／2）（残留熱除去系その 2 ）

第4－4－8－1－3図【重大事故等対処設備】残留熱除去系系統図（1／2）（残留熱除去系そ の1）
第4－4－8－1－4図【重大事故等対処設備】残留熱除去系系統図（2／2）（残留熱除去系そ の 2 ）

第4－4－8－2－1図 残留熱除去系 機器の配置を明示した図面（その1）
第4－4－8－2－2図 残留熱除去系 機器の配置を明示した図面（その 2）
4．4．9 代替水源移送系
第4－4－9－1－1図【設計基準対象施設】代替水源移送系系統図（1／3）（補給水系その 2 ）
第4－4－9－1－2図【設計基準対象施設】代替水源移送系系統図（2／3）可搬
第4－4－9－1－3図【設計基準対象施設】代替水源移送系系統図（3／3）可搬
第4－4－9－1－4図【重大事故等対処設備】代替水源移送系系統図（1／3）（補給水系その
2）
第4－4－9－1－5図【重大事故等対処設備】代替水源移送系系統図 $(2 / 3)$ 可搬
第4－4－9－1－6図【重大事故等対処設備】代替水源移送系系統図（3／3）可搬
第4－4－9－2－1図 代替水源移送系 機器の配置を明示した図面（その1）
第4－4－9－3－1図 代替水源移送系 主配管の配置を明示した図面（その1）
第4－4－9－3－2図 代替水源移送系 主配管の配置を明示した図面（その 2 ）
4.5 原子炉冷却材補給設備

4．5．1 原子炉隔離時冷却系
－原子炉隔離時冷却系ポンプ構造図
【「原子炉隔離時冷却系ポンプ」は，平成3年6月19日付け 3 資庁第1 0 0 3 号にて認可された工事計画の添付図面「第3－4－2図 原子炉隔離時冷却系ポンプ構造図」によ る。】
第4－5－1－2－1図 原子炉隔離時冷却系 機器の配置を明示した図面（その1）
第4－5－1－2－2図 原子炉隔離時冷却系 機器の配置を明示した図面（その 2 ）
第4－5－1－3－1図 原子炉隔離時冷却系 主配管の配置を明示した図面（その1）第4－5－1－3－2図原子炉隔離時冷却系主配管の配置を明示した図面（その 2 ）第4－5－1－3－3図原子炉隔離時冷却系主配管の配置を明示した図面（その 3）第4－5－1－3－4図原子炉隔離時冷却系主配管の配置を明示した図面（その4）第4－5－1－3－5図原子炉隔離時冷却系 主配管の配置を明示した図面（その5）第4－5－1－3－6図原子炉隔離時冷却系主配管の配置を明示した図面（その 6 ）第4－5－1－3－7図原子炉隔離時冷却系主配管の配置を明示した図面（その 7 ）
4．5．2 補給水系第4－5－2－1－1図

【設計基準対象施設】補給水系系統図（補給水系その 2）
－復水移送ポンプ構造図
【「復水移送ポンプ」は，平成4年4月3日付け4資庁第1992号にて認可された工事計画の添付図面「第2－2－3図 復水移送ポンプ構造図」による。】
－復水貯蔵タンク構造図
【「復水貯蔵タンク」は，平成3年6月19日付け 3 資庁第1003号にて認可された工事計画の添付図面「第3－4－2図 復水貯蔵タンク構造図」による。】
第4－5－2－3－1図 補給水系 機器の配置を明示した図面（その1）
第4－5－2－3－2図 補給水系 機器の配置を明示した図面（その 2）
第4－5－2－3－3図 補給水系 機器の配置を明示した図面（その3）
第4－5－2－3－4図 補給水系 機器の配置を明示した図面（その4）
第4－5－2－4－1図 補給水系 主配管の配置を明示した図面（その1）
第4－5－2－4－2図 補給水系 主配管の配置を明示した図面（その 2）
第4－5－2－4－3図 補給水系 主配管の配置を明示した図面（その3）
第4－5－2－4－4図 補給水系 主配管の配置を明示した図面（その4）
第4－5－2－4－5図 補給水系 主配管の配置を明示した図面（その5）
第4－5－2－4－6図 補給水系 主配管の配置を明示した図面（その6）第4－5－2－4－7図 補給水系 主配管の配置を明示した図面（その7）

4． 6 原子炉補機冷却設備

4．6．1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）
第4－6－1－1－1図【設計基準対象施設】原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）系統図（ $1 / 4$ ）（原子炉補機冷却水系及び原子炉補機冷却海水系そ の1）
第4－6－1－1－2図【設計基準対象施設】原子炉補機冷却水系（原子炉補機泠却海水系を含 む。）系統図（2／4）（原子炉補機冷却水系及び原子炬補機冷却海水系そ の 2）
第4－6－1－1－3図【設計基淮対象施設】原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）系統図（3／4）（原子炬補機冷却水系及び原子炬補機冷却海水系そ の4）

第4－6－1－1－4図【設計基準対象施設】原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）系統図（4／4）（原子炉補機冷却水系及び原子炉補機冷却海水系そ の5）
第4－6－1－1－5図【重大事故等対処設備】原子炉補機冷却水系（原子炉補機冷却海水系を含む。）系統図（ $1 / 4$ ）（原子炉補機冷却水系及び原子炉補機冷却海水系 その1）
第4－6－1－1－6図【重大事故等対処設備】原子炉補機冷却水系（原子炉補機冷却海水系を含む。）系統図（2／4）（原子炉補機冷却水系及び原子炉補機冷却海水系 その 2）

第4－6－1－1－7図【重大事故等対処設備】原子炉補機冷却水系（原子炬補機冷却海水系を含む。）系統図（3／4）（原子炉補機冷却水系及び原子炉補機冷却海水系 その4）

第4－6－1－1－8図【重大事故等対処設備】原子炉補機冷却水系（ 原子炉補機冷却海水系を含む。）系統図（4／4）（原子炉補機冷却水系及び原子炉補機泠却海水系 その5）
－原子炉補機冷却水系熱交換器構造図
【「原子炬補機冷却水系熱交換器」は，平成3年6月19日付け 3 資庁第1003号にて認可された工事計画の添付図面「第3－7－7図 原子炉補機冷却水系熱交換器構造図」 による。】
－原子炉補機冷却水ポンプ構造図
【「原子炉補機冷却水ポンプ」は，平成3年6月19日付け 3 資庁第1003号にて認可 された工事計画の添付図面「第3－7－8図 原子炉補機冷却水ポンプ構造図」による。】
－原子炉補機冷却海水ポンプ構造図
【「原子炉補機冷却海水ポンプ」は，平成3年6月19日付け 3 資庁第1003号にて認可された工事計画の添付図面「第3－7－9図 原子炬補機冷却海水ポンプ構造図」によ る。】
第4－6－1－2－1図 原子炉補機冷却水サージタンク構造図
－原子炉補機冷却海水系ストレーナ構造図
【「原子灲補機冷却海水系ストレーナ」は，平成3年6月19日付け 3資庁第1003号 にて認可された工事計画の添付図面「第3－7－10図 原子炉補機冷却海水系ストレーナ構造図」による。】
第4－6－1－3－1図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その1）

第4－6－1－3－2図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その 2）
第4－6－1－3－3図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その3）

第4－6－1－3－4図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その4）
第4－6－1－3－5図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その5）

第4－6－1－3－6図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）機器の配置を明示した図面（その6）
第4－6－1－4－1図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その1）
第4－6－1－4－2図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その 2 ）

第4－6－1－4－3図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その3）
第4－6－1－4－4図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その4）
第4－6－1－4－5図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 ）
第4－6－1－4－6図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 6 ）
第4－6－1－4－7図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その7）
第4－6－1－4－8図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その8）
第4－6－1－4－9図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その9）
第4－6－1－4－10図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その10）
第4－6－1－4－11図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その11）
第4－6－1－4－12図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その12）
第4－6－1－4－13図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その13）
第4－6－1－4－14図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その14）
第4－6－1－4－15図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その15）
第4－6－1－4－16図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その16）

第4－6－1－4－17図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その17）
第4－6－1－4－18図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その18）
第4－6－1－4－19図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その19）
第4－6－1－4－20図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 20 ）
第4－6－1－4－21図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 21 ）

第4－6－1－4－22図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 2 2 ）
第4－6－1－4－23図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 23 ）
第4－6－1－4－24図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 24 ）
第4－6－1－4－25図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その 25 ）
第4－6－1－4－26図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 26 ）
第4－6－1－4－27図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その 27 ）
第4－6－1－4－28図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 2 8）
第4－6－1－4－29図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 29 ）
第4－6－1－4－30図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 3 0）
第4－6－1－4－31図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その31）
第4－6－1－4－32図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 32 ）
第4－6－1－4－33図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 3 3）

第4－6－1－4－34図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 3 4）
第4－6－1－4－35図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 3 5）
第4－6－1－4－36図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 36 ）
第4－6－1－4－37図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その37）
第4－6－1－4－38図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 3 8）
第4－6－1－4－39図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 39 ）
第4－6－1－4－40図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その40）

第4－6－1－4－41図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 1）
第4－6－1－4－42図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 2）
第4－6－1－4－43図 原子灲補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 3）
第4－6－1－4－44図 原子炉補機冷却水系（原子炬補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 4）
第4－6－1－4－45図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 5）
第4－6－1－4－46図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 6）
第4－6－1－4－47図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その47）
第4－6－1－4－48図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 4 8）
第4－6－1－4－49図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その49）
第4－6－1－4－50図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その50）
第4－6－1－4－51図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 1）
第4－6－1－4－52図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その52）
第4－6－1－4－53図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 3）
第4－6－1－4－54図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その54）
第4－6－1－4－55図 原子炉補機冷却水系（原子炉補機冷却海水系を含去。）主配管の配置 を明示した図面（その 5 5）
第4－6－1－4－56図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 6 ）
第4－6－1－4－57図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その57）
第4－6－1－4－58図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 8）
第4－6－1－4－59図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 5 9）

第4－6－1－4－60図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 6 0）
第4－6－1－4－61図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 6 1）
第4－6－1－4－62図 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 62 ）
第4－6－1－4－63図 原子炬補機冷却水系（原子炉補機冷却海水系を含む。）主配管の配置 を明示した図面（その 6 3）
4．6．2 高圧灲心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）
第4－6－2－1－1図【設計基準対象施設】高圧炉心スプレイ補機冷却水系（高圧炉心スプレ イ補機冷却海水系を含む。）系統図
第4－6－2－1－2図【重大事故等対処設備】高圧炉心スプレイ補機冷却水系（高圧炉心スプ レイ補機冷却海水系を含む。）系統図
－高圧炉心スプレイ補機冷却水系熱交換器構造図
【「高圧炬心スプレイ補機冷却水系熱交換器」は，平成3年6月19日付け 3 資庁第10 03 号にて認可された工事計画の添付図面「第5－1－2図 高圧炉心スプレイ補機冷却水系熱交換器構造図」による。】
－高圧炉心スプレイ補機冷却水ポンプ構造図
【「高圧炬心スプレイ補機冷却水ポンプ」は，平成3年6月19日付け 3資庁第1003号にて認可された工事計画の添付図面「第5－1－3図 高圧炉心スプレイ補機冷却水ポ ンプ構造図」による。】
第4－6－2－2－1図 高圧炉心スプレイ補機冷却水サージタンク構造図
－高圧炉心スプレイ補機冷却海水ポンプ構造図
【「高圧炉心スプレイ補機冷却海水ポンプ」は，平成3年6月19日付け3資庁第100 3 号にて認可された工事計画の添付図面「第5－1－4図 高圧炉心スプレイ補機冷却海水ポンプ構造図」による。】
第4－6－2－2－2図 高圧灲心スプレイ補機冷却海水系ストレーナ構造図
第4－6－2－3－1図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）機器の配置を明示した図面（その1）
第4－6－2－3－2図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）機器の配置を明示した図面（その 2）
第4－6－2－3－3図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）機器の配置を明示した図面（その3）
第4－6－2－3－4図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）機器の配置を明示した図面（その4）
第4－6－2－4－1図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その1）
第4－6－2－4－2図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その 2 ）

第4－6－2－4－3図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その3）
第4－6－2－4－4図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その4）
第4－6－2－4－5図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その 5 ）
第4－6－2－4－6図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その6）
第4－6－2－4－7図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その7）
第4－6－2－4－8図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その8）
第4－6－2－4－9図 高圧炉心スプレイ補機泠却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その9）
第4－6－2－4－10図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その10）
第4－6－2－4－11図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その11）
第4－6－2－4－12図高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その12）
第4－6－2－4－13図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その13）
第4－6－2－4－14図 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）主配管の配置を明示した図面（その14）

4．6．3 原子炉補機代替冷却水系

第4－6－3－1－1図【設計基準対象施設】原子炉補機代替冷却水系系統図（1／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その1）
第4－6－3－1－2図【設計基準対象施設】原子炉補機代替冷却水系系統図（2／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その 2）
第4－6－3－1－3図【設計基準対象施設】原子炉補機代替冷却水系系統図（3／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その4）
第4－6－3－1－4図【設計基準対象施設】原子炉補機代替冷却水系系統図（4／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その5）
第4－6－3－1－5図【設計基準対象施設】原子炉補機代替冷却水系系統図（5／5）可搬
第4－6－3－1－6図【重大事故等対処設備】原子炉補機代替冷却水系系統図（1／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その1）
第4－6－3－1－7図【重大事故等対処設備】原子炉補機代替冷却水系系統図（2／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その 2 ）

第4－6－3－1－8図【重大事故等対処設備】原子炉補機代替冷却水系系統図（3／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その4）
第4－6－3－1－9図【重大事故等対処設備】原子炉補機代替冷却水系系統図（4／5）（原子炉補機冷却水系及び原子炉補機冷却海水系その5）
第4－6－3－1－10図【重大事故等対処設備】原子炉補機代替冷却水系系統図（5／5）可搬第4－6－3－2－1図 原子炉補機代替冷却水系熱交換器ユニット（熱交換器）構造図（その1）第4－6－3－2－2図 原子炉補機代替冷却水系熱交換器ユニット（熱交換器）構造図（その 2 ）
第4－6－3－2－3図原子炉補機代替冷却水系熱交換器ユニット（ポンプ）構造図第4－6－3－2－4図第4－6－3－3－1図原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）構造図第4－6－3－3－2図原子炉補機代替冷却水系機器の配置を明示した図面（その1）

第4－6－3－4－1図原子炉補機代替冷却水系機器の配置を明示した図面（その 2 ）第4－6－3－4－2図原子炉補機代替冷却水系主配管の配置を明示した図面（その1）第4－6－3－4－3図原子炉補機代替冷却水系主配管の配置を明示した図面（その 2 ）第4－6－3－4－4図原子炉補機代替冷却水系主配管の配置を明示した図面（その3）第4－6－3－4－5図原子炉補機代替冷却水系主配管の配置を明示した図面（その4）第4－6－3－4－6図原子炉補機代替冷却水系主配管の配置を明示した図面（その5）原子炉補機代替冷却水系主配管の配置を明示した図面（その6）

第4－6－3－4－8図原子炉補機代替冷却水系主配管の配置を明示した図面（その 7 ）

第4－6－3－4－9図原子炉補機代替冷却水系主配管の配置を明示した図面（その8）第4－6－3－4－10図 原子炉補機代替冷却水系主配管の配置を明示した図面（その10）第4－6－3－4－11図 原子炉補機代替冷却水系主配管の配置を明示した図面（その111）第4－6－3－4－12図 原子炉補機代替冷却水系主配管の配置を明示した図面（その12）第4－6－3－4－13図 原子炉補機代替冷却水系主配管の配置を明示した図面（その13）第4－6－3－4－14図 原子炉補機代替冷却水系主配管の配置を明示した図面（その14）第4－6－3－4－15図 原子炉補機代替泠却水系主配管の配置を明示した図面（その15）第4－6－3－4－16図 原子炉補機代替泠却水系主配管の配置を明示した図面（その16）第4－6－3－4－17図 原子炉補機代替冷却水系主配管の配置を明示した図面（その17）第4－6－3－4－18図 原子炉補機代替冷却水系主配管の配置を明示した図面（その18）第4－6－3－4－19図 原子炉補機代替冷却水系主配管の配置を明示した図面（その19）第4－6－3－4－20図 原子炉補機代替冷却水系主配管の配置を明示した図面（その20）第4－6－3－4－21図 原子炉補機代替冷却水系主配管の配置を明示した図面（その 21 ）第4－6－3－4－22図 原子炉補機代替泠却水系主配管の配置を明示した図面（その 2 2）第4－6－3－4－23図 原子炉補機代替泠却水系主配管の配置を明示した図面（その 23 ）第4－6－3－4－24図 原子炉補機代替冷却水系主配管の配置を明示した図面（その 2 4）第4－6－3－4－25図 原子炉補機代替冷却水系主配管の配置を明示した図面（その25）第4－6－3－4－26図 原子炉補機代替冷却水系主配管の配置を明示した図面（その 2 6）第4－6－3－4－27図 原子炉補機代替冷却水系主配管の配置を明示した図面（その27）

4． 7 原子炉冷却材浄化設備
4．7．1 原子炉冷却材浄化系
第4－7－1－1－1図 原子炉冷却材浄化系 機器の配置を明示した図面（その1）
第4－7－1－2－1図 原子炉冷却材浄化系 主配管の配置を明示した図面（その1）
第4－7－1－2－2図 原子炉冷却材浄化系 主配管の配置を明示した図面（その 2）
4.8 蒸気タービン

4．8．1 蒸気タービン本体
第4－8－1－1－1図 蒸気タービン本体 機器の配置を明示した図面（その1）
第4－8－1－1－2図 蒸気タービン本体 機器の配置を明示した図面（その 2）
第4－8－1－1－3図 蒸気タービン本体 機器の配置を明示した図面（その3）
第4－8－1－1－4図 蒸気タービン本体 機器の配置を明示した図面（その4）
5．計測制御系統施設

5.1 制御材

－制御棒構造図（ボロンカーバイド粉末型）
【「制御棒構造図（ボロンカーバイド粉末型）」は，平成18年5月8日付け平成18•04• 19原第29号にて認可された工事計画の添付図面「第1図 制御棒構造図（ボロンカーバ イド粉末型）（その 1 ）」及び「第2図 制御棒構造図（ボロンカーバイド粉末型）（その 2）」による。】
第5－1－2－1図 計測制御系統施設 制御材に係る機器の配置を明示した図面（その1）
第5－1－2－2図 計測制御系統施設 制御材に係る機器の配置を明示した図面（その 2 ）
第5－1－2－3図 計測制御系統施設 制御材に係る機器の配置を明示した図面（その3）
第5－1－2－4図 計測制御系統施設 制御材に係る機器の配置を明示した図面（その4）
5.2 制御材駆動装置

5．2．1 制御棒駆動機構

－制御棒駆動機構構造図
【「制御棒駆動機構」は，平成8年6月26日付け東北電原第22号にて届け出した工事計画の添付図面「第1図 制御棒駆動機構構造図」による。】
第5－2－1－2－1図 制御棒駆動機構 機器の配置を明示した図面（その1）
第5－2－1－2－2図 制御棒駆動機構 機器の配置を明示した図面（その2）
5．2．2 制御棒駆動水圧系
第5－2－2－1－1図【設計基準対象施設】制御棒駆動水圧系系統図
第5－2－2－1－2図【重大事故等対処設備】制御棒駆動水圧系系統図
第5－2－2－2－1図 C12－D001－126構造図
第5－2－2－2－2図 C12－D001－127構造図
－水圧制御ユニット構造図
【「水圧制御ユニット」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第7－3－1－3図 水圧制御ユニット構造図」による。】
－水圧制御ユニット（アキュムレータ）構造図
【「水圧制御ユニット（アキュムレータ）」は，平成4年1月13日付け3資庁第10518号に て認可された工事計画の添付図面「第7－3－1－4図 アキュムレータ構造図」による。】 －水圧制御ユニット（窒素容器）構造図

【「水圧制御ユニット（窒素容器）」は，平成4年1月13日付け3資庁第10518号にて認可 された工事計画の添付図面「第7－3－1－5図 窒素容器構造図」による。】第5－2－2－4－1図 制御棒駆動水圧系 機器の配置を明示した図面（その1）第5－2－2－4－2図 制御棒駆動水圧系 機器の配置を明示した図面（その 2）第5－2－2－5－1図 制御材駆動水圧系 主配管の配置を明示した図面（その1）第5－2－2－5－2図 制御材駆動水圧系 主配管の配置を明示した図面（その 2）第5－2－2－5－3図 制御材駆動水圧系第5－2－2－5－4図 制御材駆動水圧系第5－2－2－5－5図 制御材駆動水圧系第5－2－2－5－6図 制御材駆動水圧系第5－2－2－5－7図 制御材駆動水圧系 主配管の配置を明示した図面（その7）
5.3 ほう酸水注入設備

5．3．1 ほう酸水注入系

第5－3－1－1－1図【設計基準対象施設】ほう酸水注入系系統図
第5－3－1－1－2図【重大事故等対処設備】ほら酸水注入系系統図
－ほら酸水注入系ポンプ構造図
【「ほう酸水注入系ポンプ」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第7－3－2－2図 ほう酸水注入系ポンプ構造図」による。】
－ほう酸水注入系貯蔵タンク構造図
【「ほう酸水注入系貯蔵タンク」は，平成4年1月13日付け3資庁第10518号にて認可さ れた工事計画の添付図面「第7－3－2－3図 ほら酸水注入系貯蔵タンク構造図」による。】第5－3－1－3－1図 C41－F003A，B構造図
第5－3－1－3－2図 C41－F022構造図
第5－3－1－4－1図 ほら酸水注入系 機器の配置を明示した図面（その1）
第5－3－1－5－1図 ほう酸水注入系 主配管の配置を明示した図面（その1）
第5－3－1－5－2図 ほら酸水注入系 主配管の配置を明示した図面（その 2）
第5－3－1－5－3図 ほら酸水注入系 主配管の配置を明示した図面（その3）
第5－3－1－5－4図 ほら酸水注入系 主配管の配置を明示した図面（その4）
第5－3－1－5－5図 ほう酸水注入系 主配管の配置を明示した図面（その5）
第5－3－1－5－6図 ほう酸水注入系 主配管の配置を明示した図面（その6）
5.4 計測装置

第5－4－1－1図 計測制御系統施設 計測装置計測制御系統図（その1）
第5－4－1－2図 計測制御系統施設 計測装置計測制御系統図（その 2）
第5－4－1－3図 計測制御系統施設 計測装置計測制御系統図（その3）
第5－4－1－4図 計測制御系統施設 計測装置計測制御系統図（その4）

第5－4－1－5図 計測制御系統施設 計測装置計測制御系統図（その5）
－計測制御系統施設 計測装置計測制御系統図
【「計測制御系統施設 計測装置計測制御系統図」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第7－4－1図 核計装系統図」による。】

第5－4－2－1図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その1） （1／2）

第5－4－2－2図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その1） （2／2）

第5－4－2－3図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その 2 ） （1／2）

第5－4－2－4図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その 2） （2／2）

第5－4－2－5図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その3） （1／2）

第5－4－2－6図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その3） （2／2）

第5－4－2－7図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その4） （1／2）

第5－4－2－8図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その4） （2／2）

第5－4－2－9図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その5） （1／2）

第5－4－2－10図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その5） （2／2）

第5－4－2－11図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その6） （1／2）

第5－4－2－12図 計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その6） （2／2）
－計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その 7 ）
【「計測制御系統施設 計測装置の検出器の取付箇所を明示した図面（その7）」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第7－4－2図 核計装検出器炉心内配置図」による。】

5.5 工学的安全施設等の起動信号

第5－5－1図 工学的安全施設等の起動（作動）信号の起動（作動）回路の説明図（1／5）
第5－5－2図 工学的安全施設等の起動（作動）信号の起動（作動）回路の説明図（2／5）
第5－5－3図 工学的安全施設等の起動（作動）信号の起動（作動）回路の説明図（3／5）
第5－5－4図 工学的安全施設等の起動（作動）信号の起動（作動）回路の説明図（4／5）
第5－5－5図 工学的安全施設等の起動（作動）信号の起動（作動）回路の説明図（5／5）

5.6 制御用空気設備

5．6．1 高圧窒素ガス供給系

第5－6－1－1－1図【設計基準対象施設】高圧窒素ガス供給系系統図（1／3）（高圧窒素ガ ス供給系その1）
第5－6－1－1－2図【設計基準対象施設】高圧窒素ガス供給系系統図（2／3）（高圧窒素ガ ス供給系その 2）

第5－6－1－1－3図【設計基準対象施設】高圧窒素ガス供給系系統図（3／3）（主蒸気系そ の 2 ）
第5－6－1－1－4図【重大事故等対処設備】高圧窒素ガス供給系系統図（ $1 / 3$ ）（高圧窒素 ガス供給系その1）

第5－6－1－1－5図【重大事故等対処設備】高圧窒素ガス供給系系統図（2／3）（高圧窒素 ガス供給系その2）
第5－6－1－1－6図【重大事故等対処設備】高圧窒素ガス供給系系統図（3／3）（主蒸気系 その 2）

第5－6－1－2－1図 高圧窒素ガスボンベ構造図
第5－6－1－3－1図
P54－F065A，B構造図
第5－6－1－4－1図
高圧窒素ガス供給系
機器の配置を明示した図面（その1）
高圧窒素ガス供給系 主配管の配置を明示した図面（その1）
高圧窒素ガス供給系 主配管の配置を明示した図面（その 2 ）
高圧窒素ガス供給系 主配管の配置を明示した図面（その3）
高圧窒素ガス供給系 主配管の配置を明示した図面（その4）
高圧窒素ガス供給系 主配管の配置を明示した図面（その5）
高圧窒素ガス供給系 主配管の配置を明示した図面（その6）
高圧窒素ガス供給系 主配管の配置を明示した図面（その7）
高圧窒素ガス供給系 主配管の配置を明示した図面（その8）
高圧窒素ガス供給系 主配管の配置を明示した図面（その9）
高圧窒素ガス供給系 主配管の配置を明示した図面（その10）高圧窒素ガス供給系 主配管の配置を明示した図面（その11）高圧窒素ガス供給系 主配管の配置を明示した図面（その12）

高圧窒素ガス供給系 主配管の配置を明示した図面（その 1 3 ）
高圧窒素ガス供給系 主配管の配置を明示した図面（その14）高圧窒素ガス供給系 主配管の配置を明示した図面（その15）高圧窒素ガス供給系 主配管の配置を明示した図面（その16）
第5－6－1－5－17図 高圧窒素ガス供給系 主配管の配置を明示した図面（その17）
第5－6－1－5－18図 高圧窒素ガス供給系 主配管の配置を明示した図面（その18）
5．6．2 代替高圧窒素ガス供給系
第5－6－2－1－1図【設計基準対象施設】代替高圧窒素ガス供給系系統図（1／2）（高圧窒素ガス供給系その 2 ）

第5－6－2－1－2図【設計基準対象施設】代替高圧窒素ガス供給系系統図（2／2）（主蒸気系その 2 ）

第5－6－2－1－3図【重大事故等対処設備】代替高圧窒素ガス供給系系統図（1／2）（高圧窒素ガス供給系その2）
第5－6－2－1－4図【重大事故等対処設備】代替高圧窒素ガス供給系系統図（2／2）（主蒸気系その 2）

第5－6－2－2－1図 P54－F1005A，B構造図
第5－6－2－3－1図代替高圧窒素ガス供給系

機器の配置を明示した図面（その1）
第5－6－2－4－1図代替高圧窒素ガス供給系主配管の配置を明示した図面（その1）主配管の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その3）主配管の配置を明示した図面（その 4 ）主配管の配置を明示した図面（その 5 ）主配管の配置を明示した図面（その 6 ）主配管の配置を明示した図面（その7）主配管の配置を明示した図面（その8）主配管の配置を明示した図面（その9）
第5－6－2－4－9図 代替高圧窒素ガス供給系主配管の配置を明示した図面（その 1 0）

6 放射性廃棄物の廃棄施設

6.1 気体，液体又は固体廃棄物処理設備

6．1．1 気体廃棄物処理系
第6－1－1－1－1図 排気筒の構造図
第6－1－1－2－1図 気体廃棄物処理系 機器の配置を明示した図面（その1）
第6－1－1－3－1図 気体廃棄物処理系に係る基礎の状況を明示した図面 排気筒（その1）第6－1－1－3－2図 気体廃棄物処理系に係る基礎の状況を明示した図面 排気筒（その 2）

6．1．2 液体廃棄物処理系
6．1．2．1 放射性ドレン移送系
第6－1－2－1－1－1図 放射性ドレン移送系 機器の配置を明示した図面（その1）
6．1．2．2 サプレッションプール水貯蔵系
第6－1－2－2－1－1図【設計基準対象施設】サプレッションプール水貯蔵系系統図（変更前）

第6－1－2－2－1－2図【設計基準対象施設】サプレッションプール水貯蔵系系統図（変更後）

7 放射線管理施設
7． 1 放射線管理用計測装置
第7－1－1－1図 放射線管理用計測装置系統図
第7－1－2－1図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 1 ）（ $1 / 2$ ）

第7－1－2－2図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 1 ）（ $2 / 2$ ）

第7－1－2－3図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 2 ）$(1 / 2)$
第7－1－2－4図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 2 ）（ $2 / 2$ ）

第7－1－2－5図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 3 ）（ $1 / 2$ ）
第7－1－2－6図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 3 ）（ $2 / 2$ ）

第7－1－2－7図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 4$)(1 / 2)$
第7－1－2－8図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 4 ）（ $2 / 2$ ）

第7－1－2－9図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 5 ）（ $1 / 2$ ）
第7－1－2－10図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 5 ）（ $2 / 2$ ）

第7－1－2－11図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 6 ）（ $1 / 2$ ）
第7－1－2－12図 放射線管理用計測装置 計測装置の検出器の取付箇所を明示した図面（そ の 6 ）（ $2 / 2$ ）
第7－1－3－1図 放射線管理施設のうちエリアモニタリング設備の緊急時対策所可搬型エリ アモニタ構造図
第7－1－3－2図 放射線管理施設のうち移動式周辺モニタリング設備の可搬型モニタリング ポスト構造図
第7－1－3－3図 放射線管理施設のらち移動式周辺モニタリング設備の電離箱サーベイメー夕構造図

第7－1－3－4図 放射線管理施設のうち移動式周辺モニタリング設備の β 線サーベイメータ構造図
第7－1－3－5図 放射線管理施設のうち移動式周辺モニタリング設備の γ 線サーベイメータ構造図

第7－1－3－6図 放射線管理施設のうち移動式周辺モニタリング設備の α 線サーベイメータ構造図

7．2 換気設備

7．2．1 中央制御室換気空調系
第 $7-2-1-1-1$ 図【設計基準対象施設】中央制御室換気空調系系統図
第7－2－1－1－2図【重大事故等対処設備】中央制御室換気空調系系統図第7－2－1－2－1図 中央制御室送風機構造図

第7－2－1－2－2図 中央制御室再循環送風機構造図
第7－2－1－2－3図 中央制御室排風機構造図
第7－2－1－2－4図 中央制御室再循環フィルタ装置構造図
第7－2－1－3－1図
第7－2－1－4－1図
第7－2－1－4－2図
第7－2－1－4－3図
第7－2－1－4－4図第7－2－1－4－5図

中央制御室換気空調系 機器の配置を明示した図面（その1）

第7－2－1－4－6図中央制御室換気空調系中央制御室換気空調系主配管の配置を明示した図面（その1）主配管の配置を明示した図面（その 2 ）中央制御室換気空調系主配管の配置を明示した図面（その3）中央制御室換気空調系主配管の配置を明示した図面（その4）中央制御室換気空調系主配管の配置を明示した図面（その5）主配管の配置を明示した図面（その6）第7－2－1－4－7図 中央制御室換気空調系 主配管の配置を明示した図面（その7）
7．2．2 緊急時対策所換気空調系
第7－2－2－1－1図【設計基準対象施設】緊急時対策所換気空調系系統図
第7－2－2－1－2図【重大事故等対処設備】緊急時対策所換気空調系系統図
第7－2－2－2－1図 緊急時対策所非常用送風機構造図
第7－2－2－2－2図 緊急時対策所非常用フィルタ装置構造図
第7－2－2－3－1図 緊急時対策所換気空調系 機器の配置を明示した図面（その1）
第7－2－2－4－1図 緊急時対策所換気空調系 主配管の配置を明示した図面（その1）
第7－2－2－4－2図 緊急時対策所換気空調系 主配管の配置を明示した図面（その 2）
第7－2－2－4－3図 緊急時対策所換気空調系 主配管の配置を明示した図面（その3）
第7－2－2－4－4図 緊急時対策所換気空調系 主配管の配置を明示した図面（その4）
第7－2－2－4－5図 緊急時対策所換気空調系 主配管の配置を明示した図面（その5）
第7－2－2－4－6図 緊急時対策所換気空調系
第7－2－2－4－7図
第7－2－2－4－8図 緊急時対策所換気空調系
第7－2－2－4－9図 緊急時対策所換気空調系
第7－2－2－4－10図 緊急時対策所換気空調系
第7－2－2－4－11図 緊急時対策所換気空調系 主配管の配置を明示した図面（その11）
7．2．3 中央制御室待避所加圧空気供給系
第7－2－3－1－1図【設計基準対象施設】中央制御室待避所加圧空気供給系系統図
第7－2－3－1－2図【重大事故等対処設備】中央制御室待避所加圧空気供給系系統図
第7－2－3－2－1図 中央制御室待避所加圧設備（空気ボンベ）構造図
第7－2－3－3－1図 中央制御室待避所加圧空気供給系 機器の配置を明示した図面（その 1）
第7－2－3－3－2図 中央制御室待避所加圧空気供給系 機器の配置を明示した図面（その 2）
第7－2－3－4－1図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の1）

第7－2－3－4－2図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の 2 ）

第7－2－3－4－3図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の 3 ）
第7－2－3－4－4図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の4）

第7－2－3－4－5図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の 5 ）
第7－2－3－4－6図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の 6 ）

第7－2－3－4－7図 中央制御室待避所加圧空気供給系 主配管の配置を明示した図面（そ の 7 ）

7．2．4 緊急時対策所加圧空気供給系
第7－2－4－1－1図【設計基準対象施設】緊急時対策所加圧空気供給系系統図
第7－2－4－1－2図【重大事故等対処設備】緊急時対策所加圧空気供給系系統図
第7－2－4－2－1図 緊急時対策所加圧設備（空気ボンベ）構造図
第7－2－4－3－1図緊急時対策所加圧空気供給系

第7－2－4－3－2図緊急時対策所加圧空気供給系

第7－2－4－4－1図緊急時対策所加圧空気供給系

第7－2－4－4－2図緊急時対策所加圧空気供給系

第7－2－4－4－3図緊急時対策所加圧空気供給系第7－2－4－4－4図緊急時対策所加圧空気供給系

第7－2－4－4－5図緊急時対策所加圧空気供給系

第7－2－4－4－6図緊急時対策所加圧空気供給系

第7－2－4－4－7図緊急時対策所加圧空気供給系

機器の配置を明示した図面（その1）機器の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その1）主配管の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その3）主配管の配置を明示した図面（その4）主配管の配置を明示した図面（その5）主配管の配置を明示した図面（その6）主配管の配置を明示した図面（その7）
7.3 生体遮蔽装置

第7－3－1－1図 2 次しやへい壁，補助しやへい（原子炉建屋）構造図（その 1 ）（平面）第7－3－1－2図 2 次しやへい壁，補助しやへい（原子炉建屋）構造図（その 2 ）（平面）第7－3－1－3図 2次しゃへい壁，補助しやへい（原子炉建屋）構造図（その3）（平面）第7－3－1－4図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その4）（平面）第7－3－1－5図 2 次しやへい壁，補助しやへい（原子炉建屋）構造図（その 5 ）（平面）第7－3－1－6図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その 6 ）（平面）第7－3－1－7図 2 次しやへい壁，補助しやへい（原子炉建屋）構造図（その 7）（平面）第7－3－1－8図 2 次しやへい壁，補助しやへい（原子炉建屋）構造図（その 8 ）（平面）第7－3－1－9図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その9）（平面）第7－3－1－10図 2次しゃへい壁，補助しやへい（原子炉建屋）構造図（その 10 ）（平面）第7－3－1－11図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その 11 ）（平面）第7－3－1－12図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その 12 ）（平面）第7－3－1－13図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その 13 ）（平面）

第7－3－1－14図 2次しやへい壁，補助しやへい（原子炉建屋）構造図（その14）（断面）第7－3－1－15図 2次しゃへい壁，補助しやへい（原子炉建屋）構造図（その15）（断面）第7－3－1－16図 補助しやへい（タービン建屋）構造図（その1）（平面）
第7－3－1－17図 補助しやへい（タービン建屋）構造図（その 2 ）（平面）
第7－3－1－18図 補助しやへい（タービン建屋）構造図（その3）（平面）
第7－3－1－19図 補助しやへい（タービン建屋）構造図（その4）（平面）
第7－3－1－20図 補助しやへい（タービン建屋）構造図（その5）（平面）
第7－3－1－21図 補助しやへい（タービン建屋）構造図（その6）（平面）
第7－3－1－22図 補助しやへい（タービン建屋）構造図（その7）（断面）
第7－3－1－23図 補助しやへい（タービン建屋）構造図（その8）（断面）
第7－3－1－24図 中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい（制御建屋）構造図（その 1 ）（平面）
第7－3－1－25図 中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい（制御建屋）構造図（その 2 ）（平面）

第7－3－1－26図 中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい（制御建屋）構造図（その 3 ）（平面）

第7－3－1－27図 中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい（制御建屋）構造図（その 4）（平面）
第7－3－1－28図 中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい（制御建屋）構造図（その 5 ）（断面）

第7－3－1－29図 緊急時対策所遮蔽構造図（その1）（平面）
第7－3－1－30図 緊急時対策所遮蔽構造図（その2）（平面）
第7－3－1－31図 緊急時対策所遮蔽構造図（その3）（平面）
第7－3－1－32図 緊急時対策所遮蔽構造図（その4）（平面）
第7－3－1－33図 緊急時対策所遮蔽構造図（その5）（断面）
第7－3－2－1図 生体遮蔽装置 機器の配置を明示した図面（その1）
8 原子炉格納施設

8． 1 原子炉格納容器

－原子炉格納容器構造図
【「原子炉格納容器」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画 の添付図面「第2－1－1図 全体構造図」，「第2－1－4図 ドライウェル主フランジ及び上鏡構造図」及び「第2－1－9図 サンドクッション部構造図」による。】

第8－1－1－1図 ボックスサポート構造図
－機器搬出入用ハッチ構造図
【「機器搬出入用ハッチ」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－1－6図 機器搬出入用ハッチ構造図」による。】
－逃がし安全弁搬出入口構造図
【「逃がし安全弁搬出入口」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－1－7図 逃がし安全弁搬出入口構造図」による。】
－制御棒駆動機構搬出入口構造図
【「制御棒駆動機構搬出入口」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－1－8図 制御棒駆動機構搬出入口構造図」による。】
－サプレッションチェンバ出入口構造図
【「サプレッションチェンバ出入口」は，平成2年5月24日付け3資庁第14466号にて認可 された工事計画の添付図面「第2－1－10図 サプレッションチェンバ出入口構造図」によ る。】
－所員用エアロック構造図
【「所員用エアロック」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－1－5図 所員用エアロック構造図」による。】
第8－1－4－1図 貫通部一覧表（ドライウェル）
第8－1－4－2図 貫通部一覧表（サプレッションチェンバ）
－配管貫通部構造図（その1）
【「配管貫通部構造図（その1）」は，平成2年5月24日付け3資庁第14466号にて認可さ れた工事計画の添付図面「第2－2－1図 配管貫通部構造図（その1）」による。】
第8－1－5－1図 配管貫通部構造図（その 2 ）
第8－1－5－2図 配管貫通部構造図（その3）
第8－1－5－3図 配管貫通部構造図（その4）
第8－1－5－4図 配管貫通部構造図（その5）
－電気配線貫通部構造図（その1）
【「電気配線貫通部構造図（その1）」は，平成2年5月24日付け3資庁第14466号にて認
可された工事計画の添付図面「第2－2－5図 電気配線貫通部構造図（その1）」による。】
第8－1－5－5図 電気配線貫通部構造図（その 2 ）
第8－1－6－1図 原子炉格納容器 機器の配置を明示した図面（その1）
第8－1－6－2図 原子炉格納容器 機器の配置を明示した図面（その2）
第8－1－6－3図 原子炉格納容器 機器の配置を明示した図面（その3）
第8－1－6－4図 原子炉格納容器 機器の配置を明示した図面（その4）
第8－1－6－5図 原子炉格納容器 機器の配置を明示した図面（その5）

8．2 原子炉建屋

－原子炉建屋原子炉棟構造図 伏図
【「原子炉建屋原子炉棟構造図 伏図」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－1図 原子炉建屋伏図（その1）」及び「第9－1－2図 原子炉建屋伏図（その 2 ）」による。】
－原子炉建屋原子炉棟構造図 断面図
【「原子炉建屋原子炉棟構造図 断面図」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－3図 原子炬建屋断面図」による。】
－原子炉建屋原子炉棟構造図 矩計図
【「原子炉建屋原子炉棟構造図 矩計図」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－4図 原子炬建屋矩計図」による。】
－原子炉建屋原子炉棟構造図 壁断面リスト
【「原子炉建屋原子炉棟構造図 壁断面リスト」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－5図 原子炉建屋壁断面リスト」による。】
－原子炉建屋原子炉棟構造図 大ばり断面リスト
【「原子炉建屋原子炉棟構造図 大ばり断面リスト」は，平成元年6月8日付け元資庁第 2015号にて認可された工事計画の添付図面「第9－1－6図 原子炉建屋大ばり断面リスト」 による。】
－原子炉建屋原子炉棟構造図 柱断面リスト
【「原子炉建屋原子炉棟構造図 柱断面リスト」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－7図 原子炉建屋柱断面リスト」による。】
－原子炉建屋原子炉棟構造図 フレーム配筋詳細図
【「原子炉建屋原子炉棟構造図 フレーム配筋詳細図」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－8図 原子炉建屋フレーム配筋詳細図」による。】
－原子炉建屋原子炉棟構造図 1 次しやへい壁配筋図
【「原子炉建屋原子炉棟構造図 1 次しやへい壁配筋図」は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付図面「第9－1－9図 原子炉建屋シェル壁配筋図」による。】
－原子炉建屋原子炉棟構造図 床スラブ・小ばり断面リスト
【「原子炉建屋原子炉棟構造図 床スラブ・小ばり断面リスト」は，平成元年6月8日付 け元資庁第2015号にて認可された工事計画の添付図面「第9－1－10図 原子炉建屋床ス ラブ・小ばり断面リスト」による。】
－原子炉建屋原子炉棟構造図 鉄骨詳細図
【「原子炉建屋原子炉棟構造図 鉄骨詳細図」は，平成元年6月8日付け元資庁第2015号 にて認可された工事計画の添付図面「第9－1－11図 原子炉建屋鉄骨詳細図（その 1 ）」及び「第9－1－12図 原子炉建屋鉄骨詳細図（その 2 ）」による。】
第8－2－1－1図 原子炉建屋大物搬入口構造図
第8－2－1－2図 原子炉建屋エアロック構造図
第8－2－2－1図 原子炉建屋に係る機器の配置を明示した図面
8.3 圧力低減設備その他の安全設備

8．3．1 ベントヘッダ，ダウンカマ，真空破壊弁，ベント管及びベント管ベローズ第8－3－1－1－1図 ベントヘッダ及びダウンカマ構造図
－真空破壊弁構造図
【「真空破壊弁」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－3－2図 真空破壊装置構造図」による。】
－ベント管及びベント管ベローズ構造図
【「ベント管及びベント管ベローズ」は，平成2年5月24日付け3資庁第14466号にて認可された工事計画の添付図面「第2－1－11図 ベント管及びベント管ベローズ構造図」 による。】

第8－3－1－2－1図 ベントヘッダ，ダウンカマ，真空破壊弁，ベント管及びベント管ベロー ズ 機器の配置を明示した図面（その1）
第8－3－1－2－2図 ベントヘッダ，ダウンカマ，真空破壊弁，ベント管及びベント管ベロー ズ 機器の配置を明示した図面（その 2 ）

8．3．2 原子炉格納容器安全設備

8．3．2．1 原子炉格納容器スプレイ冷却系
－ドライウェルスプレイ管構造図
【「ドライウェルスプレイ管」は，平成2年5月24日付け3資庁第14466号にて認可さ れた工事計画の添付図面「第2－3－3図 ドライウェルスプレイ管構造図」による。】
－サプレッションチェンバスプレイ管構造図
【「サプレッションチェンバスプレイ管」は，平成2年5月24日付け3資庁第14466号
にて認可された工事計画の添付図面「第2－3－4図 サプレッションチェンバスプレ イ管構造図」による。】

8．3．2．2 原子炉格納容器下部注水系

第8－3－2－2－1－1図【設計基準対象施設】原子炉格納容器下部注水系系統図（1／5）（補給水系その 2）
第8－3－2－2－1－2図【設計基準対象施設】原子炉格納容器下部注水系系統図（2／5）（高圧炉心スプレイ系）
第8－3－2－2－1－3図【設計基準対象施設】原子炉格納容器下部注水系系統図（3／5）（残留熱除去系その1）

第8－3－2－2－1－4図【設計基準対象施設】原子炉格納容器下部注水系系統図（4／5）（代替循環冷却系）
第8－3－2－2－1－5図【設計基準対象施設】原子炉格納容器下部注水系系統図（5／5）可搬

第8－3－2－2－1－6図【重大事故等対処設備】原子炉格納容器下部注水系系統図 $(1 / 5)$ （補給水系その 2）
第8－3－2－2－1－7図【重大事故等対処設備】原子炉格納容器下部注水系系統図 $(2 / 5)$ （高圧炉心スプレイ系）

第8－3－2－2－1－8図【重大事故等対処設備】原子炉格納容器下部注水系系統図 $(3 / 5)$ （残留熱除去系その1）
第8－3－2－2－1－9図【重大事故等対処設備】原子炉格納容器下部注水系系統図 $(4 / 5)$ （代替循環冷却系）

第8－3－2－2－1－10図【重大事故等対処設備】原子炉格納容器下部注水系系統図 $(5 / 5)$可搬
第8－3－2－2－2－1図 原子炉格納容器下部注水系
第8－3－2－2－2－2図 原子炉格納容器下部注水系
第8－3－2－2－2－3図 原子炬格納容器下部注水系
第8－3－2－2－2－4図 原子炉格納容器下部注水系
第8－3－2－2－2－5図 原子炉格納容器下部注水系
機器の配置を明示した図面（その1）機器の配置を明示した図面（その 2 ）機器の配置を明示した図面（その3）機器の配置を明示した図面（その4）機器の配置を明示した図面（その 5 ）

第8－3－2－2－2－6図 原子炉格納容器下部注水系第8－3－2－2－2－7図 原子炉格納容器下部注水系第8－3－2－2－2－8図 原子炉格納容器下部注水系第8－3－2－2－3－1図 原子炉格納容器下部注水系第8－3－2－2－3－2図 原子炉格納容器下部注水系第8－3－2－2－3－3図 原子炉格納容器下部注水系第8－3－2－2－3－4図 原子炉格納容器下部注水系第8－3－2－2－3－5図 原子炉格納容器下部注水系

機器の配置を明示した図面（その6）機器の配置を明示した図面（その7）機器の配置を明示した図面（その8）主配管の配置を明示した図面（その1）主配管の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その3）主配管の配置を明示した図面（その4）主配管の配置を明示した図面（その5）

8．3．2．3 原子炉格納容器代替スプレイ冷却系
第8－3－2－3－1－1図【設計基準対象施設】原子炉格納容器代替スプレイ冷却系系統図 （ $1 / 5$ ）（補給水系その 2 ）
第8－3－2－3－1－2図【設計基準対象施設】原子炉格納容器代替スプレイ冷却系系統図 （2／5）（高圧炉心スプレイ系）

第8－3－2－3－1－3図【設計基準対象施設】原子炉格納容器代替スプレイ冷却系系統図 （3／5）（残留熱除去系その1）
第8－3－2－3－1－4図【設計基準対象施設】原子炉格納容器代替スプレイ冷却系系統図 （4／5）（残留熱除去系その 2 ）
第8－3－2－3－1－5図【設計基準対象施設】原子炉格納容器代替スプレイ冷却系系統図 （5／5）可搬
第8－3－2－3－1－6図【重大事故等対処設備】原子炉格納容器代替スプレイ冷却系系統図 （ $1 / 5$ ）（補給水系その 2 ）

第8－3－2－3－1－7図【重大事故等対処設備】原子炉格納容器代替スプレイ冷却系系統図 （2／5）（高圧炉心スプレイ系）
第8－3－2－3－1－8図【重大事故等対処設備】原子炉格納容器代替スプレイ冷却系系統図 （3／5）（残留熱除去系その1）
第8－3－2－3－1－9図【重大事故等対処設備】原子炉格納容器代替スプレイ冷却系系統図 （4／5）（残留熱除去系その 2 ）
第8－3－2－3－1－10図【重大事故等対処設備】原子炉格納容器代替スプレイ冷却系系統図（5／5）可搬
第8－3－2－3－2－1図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その1）
第8－3－2－3－2－2図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その 2 ）
第8－3－2－3－2－3図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その 3 ）

第8－3－2－3－2－4図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その4）
第8－3－2－3－2－5図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その5）

第8－3－2－3－2－6図 原子炉格納容器代替スプレイ冷却系 機器の配置を明示した図面 （その6）

第8－3－2－3－3－1図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その 1）
第8－3－2－3－3－2図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その 2）

第8－3－2－3－3－3図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その 3 ）
第8－3－2－3－3－4図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その4）
第8－3－2－3－3－5図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その 5 ）
第8－3－2－3－3－6図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その 6 ）
第8－3－2－3－3－7図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その7）
第8－3－2－3－3－8図 原子炉格納容器代替スプレイ冷却系 主配管の配置を明示した図面（その8）

8．3．2．4 代替循環冷却系

第8－3－2－4－1－1図【設計基準対象施設】代替循環冷却系系統図（1／4）
第8－3－2－4－1－2図【設計基準対象施設】代替循環冷却系系統図（2／4）（残留熱除去系 その1）
第8－3－2－4－1－3図【設計基準対象施設】代替循環冷却系系統図（3／4）（補給水系その 2）
第8－3－2－4－1－4図【設計基準対象施設】代替循環冷却系系統図（4／4）（残留熱除去系 その 2）
第8－3－2－4－1－5図【重大事故等対処設備】代替循環冷却系系統図（ $1 / 4$ ）
第8－3－2－4－1－6図【重大事故等対処設備】代替循環冷却系系統図（2／4）（残留熱除去系その1）
第8－3－2－4－1－7図【重大事故等対処設備】代替循環冷却系系統図（3／4）（補給水系そ の 2 ）
第8－3－2－4－1－8図【重大事故等対処設備】代替循環冷却系系統図（4／4）（残留熱除去系その 2）
第8－3－2－4－2－1図 代替循環冷却ポンプ構造図
第8－3－2－4－3－1図 E11－F084構造図
第8－3－2－4－3－2図 E11－F085構造図
第8－3－2－4－4－1図 代替循環冷却系 機器の配置を明示した図面（その1）
第8－3－2－4－4－2図 代替循環冷却系 機器の配置を明示した図面（その 2 ）
第8－3－2－4－4－3図 代替循環冷却系 機器の配置を明示した図面（その3）

第8－3－2－4－5－1図 代替循環冷却系 主配管の配置を明示した図面（その1）第8－3－2－4－5－2図 代替循環冷却系 主配管の配置を明示した図面（その 2 ）

8．3．2．5 高圧代替注水系

第8－3－2－5－1－1図【設計基準対象施設】高圧代替注水系系統図（ $1 / 7$ ）
第8－3－2－5－1－2図【設計基準対象施設】高圧代替注水系系統図（2／7）（主蒸気系その $1)$

第8－3－2－5－1－3図【設計基準対象施設】高圧代替注水系系統図（3／7）（復水給水系そ の4）
第8－3－2－5－1－4図【設計基準対象施設】高圧代替注水系系統図（4／7）（高圧炉心スプ レイ系）
第8－3－2－5－1－5図【設計基準対象施設】高圧代替注水系系統図（5／7）（原子炉隔離時冷却系）
第8－3－2－5－1－6図【設計基準対象施設】高圧代替注水系系統図（6／7）（補給水系その 2 ）
第8－3－2－5－1－7図【設計基準対象施設】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
第8－3－2－5－1－8図【重大事故等対処設備】高圧代替注水系系統図 $(1 / 7)$
第8－3－2－5－1－9図【重大事故等対処設備】高圧代替注水系系統図（2／7）（主蒸気系そ の1）
第8－3－2－5－1－10図【重大事故等対処設備】高圧代替注水系系統図（3／7）（復水給水系その4）

第8－3－2－5－1－11図【重大事故等対処設備】高圧代替注水系系統図（4／7）（高圧炉心 スプレイ系）
第8－3－2－5－1－12図【重大事故等対処設備】高圧代替注水系系統図（5／7）（原子炉隔離時冷却系）

第8－3－2－5－1－13図【重大事故等対処設備】高圧代替注水系系統図（6／7）（補給水系 その 2 ）
第8－3－2－5－1－14図【重大事故等対処設備】高圧代替注水系系統図（ $7 / 7$ ）（原子炉冷却材浄化系その1）
第8－3－2－5－2－1図 高圧代替注水系 機器の配置を明示した図面（その1）
第8－3－2－5－2－2図 高圧代替注水系 機器の配置を明示した図面（その 2 ）
第8－3－2－5－2－3図 高圧代替注水系 機器の配置を明示した図面（その3）
第8－3－2－5－2－4図 高圧代替注水系 機器の配置を明示した図面（その4）
8．3．2．6 低圧代替注水系
第8－3－2－6－1－1図【設計基準対象施設】低圧代替注水系系統図（1／5）（補給水系その 2 ）

第8－3－2－6－1－2図【設計基準対象施設】低圧代替注水系系統図（2／5）（高圧炉心スプ レイ系）

第8－3－2－6－1－3図【設計基準対象施設】低圧代替注水系系統図（3／5）（残留熱除去系 その1）

第8－3－2－6－1－4図【設計基準対象施設】低圧代替注水系系統図（4／5）（残留熱除去系 その 2 ）
第8－3－2－6－1－5図【設計基準対象施設】低圧代替注水系系統図（5／5）可搬
第8－3－2－6－1－6図【重大事故等対処設備】低圧代替注水系系統図（1／5）（補給水系そ の 2 ）
第8－3－2－6－1－7図【重大事故等対処設備】低圧代替注水系系統図（2／5）（高圧炉心ス プレイ系）

第8－3－2－6－1－8図【重大事故等対処設備】低圧代替注水系系統図（3／5）（残留熱除去系その1）
第8－3－2－6－1－9図【重大事故等対処設備】低圧代替注水系系統図（4／5）（残留熱除去系その2）

第8－3－2－6－1－10図【重大事故等対処設備】低圧代替注水系系統図（5／5）可搬
第8－3－2－6－2－1図 低圧代替注水系 機器の配置を明示した図面（その1）
第8－3－2－6－2－2図 低圧代替注水系 機器の配置を明示した図面（その 2）
第8－3－2－6－2－3図 低圧代替注水系 機器の配置を明示した図面（その3）
第8－3－2－6－2－4図 低圧代替注水系 機器の配置を明示した図面（その4）
第8－3－2－6－2－5図 低圧代替注水系 機器の配置を明示した図面（その5）
8．3．2．7 ほう酸水注入系
第8－3－2－7－1－1図【設計基準対象施設】ほう酸水注入系系統図
第8－3－2－7－1－2図【重大事故等対処設備】ほう酸水注入系系統図
第8－3－2－7－2－1図 ほう酸水注入系 機器の配置を明示した図面（その1）
8．3．2．8 残留熱除去系（格納容器スプレイ冷却モード）
第8－3－2－8－1－1図【設計基準対象施設】残留熱除去系（格納容器スプレイ冷却モード）系統図（ $1 / 2$ ）（残留熱除去系その 1 ）
第8－3－2－8－1－2図【設計基準対象施設】残留熱除去系（格納容器スプレイ冷却モード）系統図（2／2）（残留熱除去系その 2）

第8－3－2－8－1－3図【重大事故等対処設備】残留熱除去系（格納容器スプレイ冷却モー ド）系統図（1／2）（残留熱除去系その 1 ）
第8－3－2－8－1－4図【重大事故等対処設備】残留熱除去系（格納容器スプレイ冷却モー ド）系統図（2／2）（残留熱除去系その 2 ）

第8－3－2－8－2－1図 残留熱除去系（格納容器スプレイ冷却モード）機器の配置を明示 した図面（その1）
第8－3－2－8－2－2図 残留熱除去系（格納容器スプレイ冷却モード）機器の配置を明示 した図面（その 2）

第8－3－2－8－2－3図 残留熱除去系（格納容器スプレイ冷却モード）機器の配置を明示 した図面（その3）

8．3．2．9 残留熱除去系（サプレッションプール水冷却モード）

第8－3－2－9－1－1図【設計基準対象施設】残留熱除去系（サプレッションプール水冷却 モード）系統図（ $1 / 2$ ）（残留熱除去系その 1 ）
第8－3－2－9－1－2図【設計基準対象施設】残留熱除去系（サプレッションプール水冷却 モード）系統図（ $2 / 2$ ）（残留熱除去系その 2 ）

第8－3－2－9－1－3図【重大事故等対処設備】残留熱除去系（サプレッションプール水冷却モード）系統図（ $1 / 2$ ）（残留熱除去系その 1 ）
第8－3－2－9－1－4図【重大事故等対処設備】残留熱除去系（サプレッションプール水冷却モード）系統図（2／2）（残留熱除去系その 2 ）

第8－3－2－9－2－1図 残留熱除去系（サプレッションプール水冷却モード）機器の配置を明示した図面（その1）

第8－3－2－9－2－2図 残留熱除去系（サプレッションプール水冷却モード）機器の配置を明示した図面（その 2 ）

第8－3－2－9－2－3図 残留熱除去系（サプレッションプール水冷却モード）機器の配置を明示した図面（その3）

8．3．3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
8．3．3．1 非常用ガス処理系
第8－3－3－1－1－1図【設計基準対象施設】非常用ガス処理系系統図
第8－3－3－1－1－2図【重大事故等対処設備】非常用ガス処理系系統図
第8－3－3－1－2－1図 非常用ガス処理系排風機構造図
第8－3－3－1－3－1図 非常用ガス処理系 機器の配置を明示した図面（その1）
第8－3－3－1－3－2図 非常用ガス処理系 機器の配置を明示した図面（その 2）
第8－3－3－1－3－3図 非常用ガス処理系
第8－3－3－1－4－1図 非常用ガス処理系
第8－3－3－1－4－2図 非常用ガス処理系
第8－3－3－1－4－3図 非常用ガス処理系
第8－3－3－1－4－4図 非常用ガス処理系
第8－3－3－1－4－5図 非常用ガス処理系
第8－3－3－1－4－6図 非常用ガス処理系
第8－3－3－1－4－7図 非常用ガス処理系
第8－3－3－1－4－8図 非常用ガス処理系
第8－3－3－1－4－9図 非常用ガス処理系 主配管の配置を明示した図面（その9）
第8－3－3－1－4－10図 非常用ガス処理系 主配管の配置を明示した図面（その10）
8．3．3．2 可燃性ガス濃度制御系
第8－3－3－2－1－1図【設計基準対象施設】
可燃性ガス濃度制御系 系統図
第8－3－3－2－2－1図 T49－F007A，B構造図
第8－3－3－2－3－1図 可燃性ガス濃度制御系 機器の配置を明示した図面（その1）第8－3－3－2－3－2図 可燃性ガス濃度制御系 機器の配置を明示した図面（その 2 ）

8．3．3．3 原子炉建屋水素濃度抑制系

第8－3－3－3－1－1図 静的触媒式水素再結合装置構造図
第8－3－3－3－2－1図 原子炉建屋水素濃度抑制系 機器の配置を明示した図面（その1）
8．3．3．4 放射性物質拡散抑制系
第8－3－3－4－1－1図【設計基準対象施設】放射性物質拡散抑制系系統図
第8－3－3－4－1－2図【重大事故等対処設備】放射性物質拡散抑制系系統図
第8－3－3－4－2－1図 大容量送水ポンプ（タイプ II）構造図
第8－3－3－4－3－1図 放射性物質拡散抑制系 機器の配置を明示した図面（その1）
第8－3－3－4－4－1図 放射性物質拡散抑制系 主配管の配置を明示した図面（その1）
8．3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）
第8－3－3－5－1－1図【設計基準対象施設】放射性物質拡散抑制系（航空機燃料火災への泡消火）系統図

第8－3－3－5－1－2図【重大事故等対処設備】放射性物質拡散抑制系（航空機燃料火災へ の泡消火）系統図

第8－3－3－5－2－1図 放射性物質拡散抑制系（航空機燃料火災への泡消火）機器の配置 を明示した図面（その1）
8．3．3．6 可搬型窒素ガス供給系

第8－3－3－6－1－1図
【設計基準対象施設】可搬型窒素ガス供給系系統図（1／2）（原子炉格納容器調気系その 2 ）
第8－3－3－6－1－2図【設計基準対象施設】可搬型窒素ガス供給系系統図（2／2）可搬第8－3－3－6－1－3図【重大事故等対処設備】可搬型窒素ガス供給系系統図（1／2）（原子炉格納容器調気系その 2 ）

第8－3－3－6－1－4図【重大事故等対処設備】可搬型窒素ガス供給系系統図（2／2）可搬第8－3－3－6－2－1図第8－3－3－6－3－1図第8－3－3－6－4－1図第8－3－3－6－4－2図第8－3－3－6－4－3図第8－3－3－6－4－4図第8－3－3－6－4－5図第8－3－3－6－4－6図第8－3－3－6－4－7図第8－3－3－6－4－8図可搬型窒素ガス供給装置構造図

可搬型窒素ガス供給系 機器の配置を明示した図面（その1）可搬型窒素ガス供給系 主配管の配置を明示した図面（その1）可搬型窒素ガス供給系 主配管の配置を明示した図面（その 2）可搬型窒素ガス供給系 主配管の配置を明示した図面（その3）可搬型窒素ガス供給系 主配管の配置を明示した図面（その4）可搬型窒素ガス供給系 主配管の配置を明示した図面（その5）可搬型窒素ガス供給系 主配管の配置を明示した図面（その6）可搬型窒素ガス供給系 主配管の配置を明示した図面（その7）可搬型窒素ガス供給系 主配管の配置を明示した図面（その8）

8．3．3．7 原子炉格納容器フィルタベント系第8－3－3－7－1－1図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（ $1 / 4$ ）第8－3－3－7－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（2／4） （原子炉格納容器調気系その 2）

第8－3－3－7－1－3図 【設計基準対象施設】原子炉格納容器フィルタベント系系統図（3／4）第8－3－3－7－1－4図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（4／4）

可搬

第8－3－3－7－1－5図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （1／4）
第8－3－3－7－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （2／4）（原子炉格納容器調気系その 2 ）
第8－3－3－7－1－7図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （3／4）
第8－3－3－7－1－8図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （4／4）可搬

第8－3－3－7－2－1図 T63－F006構造図
第8－3－3－7－3－1図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の1）
第8－3－3－7－3－2図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 2）
第8－3－3－7－3－3図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の3）
第8－3－3－7－3－4図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の4）
第8－3－3－7－3－5図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の5）
8．3．4 原子炉格納容器調気設備
8．3．4．1 原子炉格納容器調気系
第8－3－4－1－1－1図【設計基準対象施設】原子炉格納容器調気系系統図（原子炉格納容器調気系その2）
第8－3－4－1－2－1図 T48－F011構造図
第8－3－4－1－2－2図 T48－F019構造図
第8－3－4－1－2－3図 T48－F022構造図
第8－3－4－1－3－1図 原子炉格納容器調気系
第8－3－4－1－3－2図 原子炉格納容器調気系
第8－3－4－1－3－3図 原子炉格納容器調気系
第8－3－4－1－3－4図 原子炉格納容器調気系
第8－3－4－1－3－5図 原子炉格納容器調気系
第8－3－4－1－3－6図 原子炉格納容器調気系
第8－3－4－1－4－1図 原子炉格納容器調気系
第8－3－4－1－4－2図 原子炉格納容器調気系
第8－3－4－1－4－3図 原子炉格納容器調気系
第8－3－4－1－4－4図 原子炉格納容器調気系
第8－3－4－1－4－5図 原子炉格納容器調気系
第8－3－4－1－4－6図 原子炉格納容器調気系
機器の配置を明示した図面（その1）
機器の配置を明示した図面（その 2）
機器の配置を明示した図面（その3）
機器の配置を明示した図面（その4）
機器の配置を明示した図面（その5）
機器の配置を明示した図面（その6）
主配管の配置を明示した図面（その1）主配管の配置を明示した図面（その 2 ）主配管の配置を明示した図面（その3）主配管の配置を明示した図面（その4）主配管の配置を明示した図面（その5）主配管の配置を明示した図面（その6）

8．3．5 圧力逃がし装置

8．3．5．1 原子炉格納容器フィルタベント系
第8－3－5－1－1－1図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（ $1 / 4$ ）第8－3－5－1－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（2／4） （原子炉格納容器調気系その 2）

第8－3－5－1－1－3図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（3／4）第8－3－5－1－1－4図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（4／4）可搬
第8－3－5－1－1－5図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （1／4）

第8－3－5－1－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （2／4）（原子炉格納容器調気系その 2 ）
第8－3－5－1－1－7図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （3／4）
第8－3－5－1－1－8図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図 （4／4）可搬

第 $8-3-5-1-2-1$ 図 フィルタ装置出口側ラプチャディスク構造図
第8－3－5－1－2－2図 フィルタ装置構造図
第8－3－5－1－3－1図 T63－F001構造図
第8－3－5－1－3－2図 T63－F002構造図
第8－3－5－1－4－1図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 1）
第8－3－5－1－4－2図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 2）

第8－3－5－1－4－3図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 3 ）
第8－3－5－1－4－4図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 4）

第8－3－5－1－4－5図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 5 ）
第8－3－5－1－4－6図 原子炉格納容器フィルタベント系 機器の配置を明示した図面（そ の 6 ）

第8－3－5－1－5－1図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その1）
第8－3－5－1－5－2図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 2 ）
第8－3－5－1－5－3図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 3 ）

第8－3－5－1－5－4図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その4）

第8－3－5－1－5－5図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その5）
第8－3－5－1－5－6図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 6 ）
第8－3－5－1－5－7図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 7 ）
第8－3－5－1－5－8図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 8 ）

第8－3－5－1－5－9図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その 9 ）
第8－3－5－1－5－10図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その10）

第8－3－5－1－5－11図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その11）

第8－3－5－1－5－12図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その12）
第8－3－5－1－5－13図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その13）

第8－3－5－1－5－14図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その14）
第8－3－5－1－5－15図 原子炉格納容器フィルタベント系 主配管の配置を明示した図面 （その15）

9 その他発電用原子炉の附属施設

9.1 非常用電源設備

9．1．1 非常用ディーゼル発電設備
第9－1－1－1－1図【設計基準対象施設】非常用ディーゼル発電設備系統図
第9－1－1－1－2図【重大事故等対処設備】非常用ディーゼル発電設備系統図
第9－1－1－1－3図【設計基準対象施設】非常用ディーゼル発電設備燃料移送系系統図
第9－1－1－1－4図【重大事故等対処設備】非常用ディーゼル発電設備燃料移送系系統図第9－1－1－2－1図 非常用ディーゼル機関構造図
－空気だめ構造図
【「空気だめ」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第12－1－3図 非常用ディーゼル発電設備空気だめ構造図」による。】
－R43－F318A，B，R43－F319A，B構造図
【「R43－F318A，B，R43－F319A，B」は，平成4年1月13日付け3資庁第10518号にて認可さ れた工事計画の添付図面「第12－1－4図 非常用ディーゼル発電設備空気だめ安全弁構造図」による。】

第9－1－1－2－2図 燃料デイタンク構造図
第9－1－1－2－3図 燃料移送ポンプ構造図
第9－1－1－2－4図 非常用ディーゼル発電設備軽油タンク構造図
第9－1－1－2－5図 非常用ディーゼル発電機構造図
第9－1－1－2－6図 励磁装置構造図
第9－1－1－2－7図 保護継電装置構造図
第9－1－1－3－1図 非常用ディーゼル発電設備 機器の配置を明示した図面（その1）
第9－1－1－3－2図 非常用ディーゼル発電設備 機器の配置を明示した図面（その2）
第9－1－1－3－3図 非常用ディーゼル発電設備 機器の配置を明示した図面（その3）
第9－1－1－3－4図 非常用ディーゼル発電設備 機器の配置を明示した図面（その4）
第9－1－1－3－5図 非常用ディーゼル発電設備 機器の配置を明示した図面（その5）
第9－1－1－4－1図 非常用ディーゼル発電設備 主配管の配置を明示した図面（その1）
第9－1－1－4－2図 非常用ディーゼル発電設備 主配管の配置を明示した図面（その 2）
第9－1－1－4－3図 非常用ディーゼル発電設備
第9－1－1－4－4図 非常用ディーゼル発電設備
第9－1－1－4－5図 非常用ディーゼル発電設備
第9－1－1－4－6図 非常用ディーゼル発電設備
第9－1－1－4－7図 非常用ディーゼル発電設備
第9－1－1－4－8図 非常用ディーゼル発電設備 主配管の配置を明示した図面（その8）
第9－1－1－4－9図 非常用ディーゼル発電設備 主配管の配置を明示した図面（その9）
9．1．2 高圧炉心スプレイ系ディーゼル発電設備
第9－1－2－1－1図【設計基準対象施設】高圧炉心スプレイ系ディーゼル発電設備系統図
第9－1－2－1－2図【重大事故等対処設備】高圧炉心スプレイ系ディーゼル発電設備系統図
第9－1－2－1－3図【設計基準対象施設】高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図
第9－1－2－1－4図【重大事故等対処設備】高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図
第9－1－2－2－1図 高圧灲心スプレイ系ディーゼル機関構造図
－空気だめ構造図
【「空気だめ」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第12－2－3図 高圧炬心スプレイ系ディーゼル発電設備空気だめ構造図」によ る。】
－R44－F318，R44－F319構造図
【「R44－F318，R44－F319」は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付図面「第12－2－4図 高圧灲心スプレイ系ディーゼル発電設備空気だめ安全弁構造図」による。】
第9－1－2－2－2図 燃料デイタンク構造図
第9－1－2－2－3図 燃料移送ポンプ構造図
第9－1－2－2－4図 高圧炉心スプレイ系ディーゼル発電設備軽油タンク構造図

第9－1－2－2－5図 高圧炉心スプレイ系ディーゼル発電機構造図
第9－1－2－2－6図 励磁装置構造図
第9－1－2－2－7図 保護継電装置構造図
第9－1－2－3－1図 高圧炉心スプレイ系ディーゼル発電設備 機器の配置を明示した図面 （その1）
第9－1－2－3－2図 高圧炉心スプレイ系ディーゼル発電設備 機器の配置を明示した図面 （その 2）
第9－1－2－3－3図 高圧炉心スプレイ系ディーゼル発電設備 機器の配置を明示した図面 （その 3 ）

第9－1－2－3－4図 高圧炉心スプレイ系ディーゼル発電設備 機器の配置を明示した図面 （その4）
第9－1－2－3－5図 高圧炉心スプレイ系ディーゼル発電設備 機器の配置を明示した図面 （その5）

第9－1－2－4－1図 高圧炬心スプレイ系ディーゼル発電設備 主配管の配置を明示した図面（その 1 ）
第9－1－2－4－2図 高圧炉心スプレイ系ディーゼル発電設備 主配管の配置を明示した図面（その 2 ）
第9－1－2－4－3図 高圧炉心スプレイ系ディーゼル発電設備 主配管の配置を明示した図面（その 3 ）

9．1．3 ガスタービン発電設備

第9－1－3－1－1図【設計基準対象施設】ガスタービン発電設備燃料移送系系統図（1／4）
第9－1－3－1－2図【設計基準対象施設】ガスタービン発電設備燃料移送系系統図（2／4）（非常用ディーゼル発電設備燃料移送系系統図）
第9－1－3－1－3図【設計基準対象施設】ガスタービン発電設備燃料移送系系統図（3／4）（高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）
第9－1－3－1－4図【設計基準対象施設】ガスタービン発電設備燃料移送系系統図（4／4）可搬
第9－1－3－1－5図【重大事故等対処設備】ガスタービン発電設備燃料移送系系統図（ $1 / 4$ ）第9－1－3－1－6図【重大事故等対処設備】ガスタービン発電設備燃料移送系系統図（2／4） （非常用ディーゼル発電設備燃料移送系系統図）
第9－1－3－1－7図【重大事故等対処設備】ガスタービン発電設備燃料移送系系統図（3／4） （高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）
第9－1－3－1－8図【重大事故等対処設備】ガスタービン発電設備燃料移送系系統図（4／4）可搬
第9－1－3－2－1図 ガスタービン機関，調速装置及び非常調速装置構造図
第9－1－3－2－2図 ガスタービン発電設備燃料移送ポンプ構造図
第9－1－3－2－3図 ガスタービン発電設備軽油タンク構造図
第9－1－3－2－4図 ガスタービン発電設備燃料小出槽構造図
第9－1－3－2－5図 ガスタービン発電機及びガスタービン発電機励磁装置構造図

第9－1－3－2－6図 ガスタービン発電機保護継電装置構造図
第9－1－3－3－1図 ガスタービン発電設備 機器の配置を明示した図面（その1）
第9－1－3－3－2図 ガスタービン発電設備 機器の配置を明示した図面（その 2 ）
第9－1－3－3－3図 ガスタービン発電設備 機器の配置を明示した図面（その3）
第9－1－3－3－4図 ガスタービン発電設備 機器の配置を明示した図面（その4）
第9－1－3－3－5図 ガスタービン発電設備 機器の配置を明示した図面（その5）
第9－1－3－4－1図 ガスタービン発電設備 主配管の配置を明示した図面（その1）
第9－1－3－4－2図 ガスタービン発電設備 主配管の配置を明示した図面（その2）
第9－1－3－4－3図 ガスタービン発電設備 主配管の配置を明示した図面（その3）
第9－1－3－4－4図 ガスタービン発電設備 主配管の配置を明示した図面（その4）
第9－1－3－4－5図 ガスタービン発電設備 主配管の配置を明示した図面（その5）

9．1．4 可搬型代替交流電源設備

第9－1－4－1－1図
【設計基準対象施設】可搬型代替交流電源設備燃料移送系系統図（1／4） （非常用ディーゼル発電設備燃料移送系系統図）

第9－1－4－1－2図【設計基準対象施設】可搬型代替交流電源設備燃料移送系系統図（2／4） （高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）

第9－1－4－1－3図【設計基準対象施設】可搬型代替交流電源設備燃料移送系系統図（3／4） （ガスタービン発電設備燃料移送系系統図）
第9－1－4－1－4図【設計基準対象施設】可搬型代替交流電源設備燃料移送系系統図（4／4）可搬

第9－1－4－1－5図【重大事故等対処設備】可搬型代替交流電源設備燃料移送系系統図（ $1 / 4$ ） （非常用ディーゼル発電設備燃料移送系系統図）
第9－1－4－1－6図【重大事故等対処設備】可搬型代替交流電源設備燃料移送系系統図（2／4） （高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）

第9－1－4－1－7図【重大事故等対処設備】可搬型代替交流電源設備燃料移送系系統図（3／4） （ガスタービン発電設備燃料移送系系統図）
第9－1－4－1－8図【重大事故等対処設備】可搬型代替交流電源設備燃料移送系系統図（4／4）可搬

第9－1－4－2－1図 電源車（内燃機関）構造図
第9－1－4－2－2図 電源車（燃料タンク）構造図
第9－1－4－2－3図 電源車（発電機及び励磁装置）構造図
第9－1－4－2－4図 電源車（保護継電装置）構造図
第9－1－4－3－1図
第9－1－4－3－2図
可搬型代替交流電源設備 機器の配置を明示した図面（その1）

第 $9-1-4-3-3$ 図
第9－1－4－3－4図
第 $9-1-4-3-5$ 図

可搬型代替交流電源設備 機器の配置を明示した図面（その 2 ）
可搬型代替交流電源設備 機器の配置を明示した図面（その3）
可搬型代替交流電源設備 機器の配置を明示した図面（その4）
可搬型代替交流電源設備 機器の配置を明示した図面（その5）

9．1．5 可搬型代替直流電源設備

第9－1－5－1－1図【設計基準対象施設】可搬型代替直流電源設備燃料移送系系統図（ $1 / 4$ ） （非常用ディーゼル発電設備燃料移送系系統図）

第9－1－5－1－2図【設計基準対象施設】可搬型代替直流電源設備燃料移送系系統図（2／4） （高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）

第9－1－5－1－3図【設計基準対象施設】可搬型代替直流電源設備燃料移送系系統図（3／4） （ガスタービン発電設備燃料移送系系統図）

第9－1－5－1－4図【設計基準対象施設】可搬型代替直流電源設備燃料移送系系統図（4／4）可搬

第9－1－5－1－5図【重大事故等対処設備】可搬型代替直流電源設備燃料移送系系統図（ $1 / 4$ ） （非常用ディーゼル発電設備燃料移送系系統図）
第9－1－5－1－6図【重大事故等対処設備】可搬型代替直流電源設備燃料移送系系統図（2／4） （高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）

第9－1－5－1－7図【重大事故等対処設備】可搬型代替直流電源設備燃料移送系系統図（3／4） （ガスタービン発電設備燃料移送系系統図）
第9－1－5－1－8図【重大事故等対処設備】可搬型代替直流電源設備燃料移送系系統図（4／4）可搬

第9－1－5－2－1図 可搬型代替直流電源設備 機器の配置を明示した図面（その1）
第9－1－5－2－2図 可搬型代替直流電源設備 機器の配置を明示した図面（その 2 ）
第9－1－5－2－3図 可搬型代替直流電源設備 機器の配置を明示した図面（その3）
第9－1－5－2－4図 可搬型代替直流電源設備 機器の配置を明示した図面（その4）
第9－1－5－2－5図 可搬型代替直流電源設備 機器の配置を明示した図面（その5）
9．1．6 緊急時対策所ディーゼル発電設備
第9－1－6－1－1図【設計基準対象施設】緊急時対策所ディーゼル発電設備燃料移送系系統図

第9－1－6－1－2図【重大事故等対処設備】緊急時対策所ディ－ゼル発電設備燃料移送系系統図

第9－1－6－2－1図 電源車（緊急時対策所用）（内燃機関）構造図
第9－1－6－2－2図 電源車（緊急時対策所用）（燃料タンク）構造図
第9－1－6－2－3図 緊急時対策所軽油タンク構造図
第9－1－6－2－4図 電源車（緊急時対策所用）（発電機及び励磁装置）構造図
第9－1－6－2－5図 電源車（緊急時対策所用）（保護継電装置）構造図
第9－1－6－3－1図 緊急時対策所ディーゼル発電設備 機器の配置を明示した図面（その
1）
第9－1－6－3－2図 緊急時対策所ディーゼル発電設備 機器の配置を明示した図面（その 2 ）

第9－1－6－4－1図 緊急時対策所ディーゼル発電設備 主配管の配置を明示した図面（そ の1）

第9－1－6－4－2図 緊急時対策所ディーゼル発電設備 主配管の配置を明示した図面（そ の 2）

9．1．7 可搬型窒素ガス供給装置発電設備

第9－1－7－1－1図【設計基準対象施設】可搬型窒素ガス供給装置発電設備燃料移送系系統図（1／4）（非常用ディーゼル発電設備燃料移送系系統図）

第9－1－7－1－2図【設計基準対象施設】可搬型窒素ガス供給装置発電設備燃料移送系系統図（2／4）（高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）第9－1－7－1－3図【設計基準対象施設】可搬型窒素ガス供給装置発電設備燃料移送系系統図（3／4）（ガスタービン発電設備燃料移送系系統図）

第9－1－7－1－4図【設計基準対象施設】可搬型窒素ガス供給装置発電設備燃料移送系系統図（4／4）可搬
第9－1－7－1－5図【重大事故等対処設備】可搬型窒素ガス供給装置発電設備燃料移送系系統図（1／4）（非常用ディーゼル発電設備燃料移送系系統図）

第9－1－7－1－6図【重大事故等対処設備】可搬型窒素ガス供給装置発電設備燃料移送系系統図 $(2 / 4)$（高圧炉心スプレイ系ディーゼル発電設備燃料移送系系統図）
第9－1－7－1－7図【重大事故等対処設備】可搬型窒素ガス供給装置発電設備燃料移送系系統図（3／4）（ガスタービン発電設備燃料移送系系統図）

第9－1－7－1－8図【重大事故等対処設備】可搬型窒素ガス供給装置発電設備燃料移送系系統図（4／4）可搬
第9－1－7－2－1図 可搬型窒素ガス供給装置発電設備（内燃機関）構造図
第9－1－7－2－2図可搬型窒素ガス供給装置発電設備（燃料タンク）構造図（その1）

第9－1－7－2－3図可搬型窒素ガス供給装置発電設備（燃料タンク）構造図（その 2 ）

第9－1－7－2－4図可搬型窒素ガス供給装置発電設備（発電機及び励磁装置）構造図

第9－1－7－2－5図可搬型窒素ガス供給装置発電設備（保護継電装置）構造図

第9－1－7－3－1図 可搬型窒素ガス供給装置発電設備 機器の配置を明示した図面（その
1 ）
第9－1－7－3－2図 可搬型窒素ガス供給装置発電設備 機器の配置を明示した図面（その 2 ）

第9－1－7－3－3図 可搬型窒素ガス供給装置発電設備 機器の配置を明示した図面（その
3 ）
第9－1－7－3－4図 可搬型窒素ガス供給装置発電設備 機器の配置を明示した図面（その 4）

第9－1－7－3－5図 可搬型窒素ガス供給装置発電設備 機器の配置を明示した図面（その

5 ）

9．1．8 その他の電源装置
9．1．8．1 無停電電源装置
第9－1－8－1－1－1図 無停電交流電源用静止形無停電電源装置構造図
第9－1－8－1－2－1図 無停電電源装置 機器の配置を明示した図面（その1）
第9－1－8－1－2－2図 無停電電源装置 機器の配置を明示した図面（その 2 ）

9．1．8．2 電力貯蔵装置

第9－1－8－2－1－1図 125 V 蓄電池構造図（その 1 ）
第9－1－8－2－1－2図 125 V 蓄電池構造図（その 2 ）
－高圧炉心スプレイ系蓄電池構造図
【「高圧炉心スプレイ系蓄電池」は，平成4年1月13日付け3資庁第10518号にて認可 された工事計画の添付図面「第12－3－3図 蓄電池架台図」による。】

第9－1－8－2－1－3図 125 V 代替蓄電池構造図
第9－1－8－2－1－4図 250 V 蓄電池構造図
第9－1－8－2－1－5図 主蒸気逃がし安全弁用可搬型蓄電池構造図
第9－1－8－2－2－1図 電力貯蔵装置 機器の配置を明示した図面（その1）
第9－1－8－2－2－2図 電力貯蔵装置 機器の配置を明示した図面（その 2）
第9－1－8－2－2－3図 電力貯蔵装置 機器の配置を明示した図面（その3）
第9－1－8－2－2－4図 電力貯蔵装置 機器の配置を明示した図面（その4）
第9－1－8－2－2－5図 電力貯蔵装置 機器の配置を明示した図面（その5）
第9－1－8－2－2－6図 電力貯蔵装置 機器の配置を明示した図面（その6）
9.2 常用電源設備

第9－2－1－1図 常用電源設備 機器の配置を明示した図面（その1）
第9－2－1－2図 常用電源設備 機器の配置を明示した図面（その 2）
第9－2－1－3図 常用電源設備 機器の配置を明示した図面（その3）
9．3 火災防護設備
9．3．1 火災区域構造物及び火災区画構造物
第9－3－1－1図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その1）
第9－3－1－2図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その 2 ）
第9－3－1－3図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その3）
第9－3－1－4図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その4）
第9－3－1－5図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その 5 ）
第9－3－1－6図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その6）
第9－3－1－7図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その7）

第9－3－1－8図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その8）

第9－3－1－9図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その9）

第9－3－1－10図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その 1 0 ）

第9－3－1－11図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その 1 1 ）
第9－3－1－12図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（原子炉建屋その12）

第9－3－1－13図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その1）
第9－3－1－14図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その 2 ）

第9－3－1－15図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その3）

第9－3－1－16図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その 4）

第9－3－1－17図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その 5 ）
第9－3－1－18図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その6）

第9－3－1－19図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その7）

第9－3－1－20図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（制御建屋その8）

第9－3－1－21図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（タービン建屋その1）

第9－3－1－22図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（タービン建屋その 2 ）
第9－3－1－23図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（タービン建屋その3）

第9－3－1－24図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（タービン建屋その 4）
第9－3－1－25図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（海水ポンプ室エリアその1）

第9－3－1－26図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（海水ポンプ室エリアその 2 ）
第9－3－1－27図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（海水ポンプ室エリアその3）

第9－3－1－28図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（海水ポンプ室エリアその 4 ）

第9－3－1－29図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（軽油タンク・復水貯蔵タンクエリア）

第9－3－1－30図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急時対策建屋その1）
第9－3－1－31図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急時対策建屋その 2 ）

第9－3－1－32図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急時対策建屋その3）
第9－3－1－33図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急時対策建屋その 4）

第9－3－1－34図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急用電気品建屋エリアその1）
第9－3－1－35図 火災区域構造物及び火災区画構造物に係る機器の配置を明示した図面及び構造図（緊急用電気品建屋エリアその 2 ）

9．3．2 消火設備

9．3．2．1 水消火設備

9．3．2．1．1 屋内水消火系

第9－3－2－1－1－1－1図 屋内水消火系の系統図（その1）
第9－3－2－1－1－1－2図 屋内水消火系の系統図（その 2 ）
第9－3－2－1－1－1－3図 屋内水消火系の系統図（その 3 ）
第9－3－2－1－1－1－4図 屋内水消火系の系統図（その4）
第9－3－2－1－1－2－1図 屋内水消火系の構造図 電動機駆動消火ポンプ（第1，2号機共用）

第9－3－2－1－1－2－2図 屋内水消火系の構造図 消火水槽（第1，2号機共用）
第9－3－2－1－1－2－3図 屋内水消火系の構造図 消火水タンク
第9－3－2－1－1－3－1図 屋内水消火系に係る機器の配置を明示した図面（その1）
第9－3－2－1－1－3－2図 屋内水消火系に係る機器の配置を明示した図面（その 2 ）
第9－3－2－1－1－4－1図 屋内水消火系に係る主配管の配置を明示した図面（その1）
第9－3－2－1－1－4－2図 屋内水消火系に係る主配管の配置を明示した図面（その 2）
第9－3－2－1－1－4－3図 屋内水消火系に係る主配管の配置を明示した図面（その3）
第9－3－2－1－1－4－4図 屋内水消火系に係る主配管の配置を明示した図面（その4）
第9－3－2－1－1－4－5図 屋内水消火系に係る主配管の配置を明示した図面（その5）
第9－3－2－1－1－4－6図 屋内水消火系に係る主配管の配置を明示した図面（その6）
第9－3－2－1－1－4－7図 屋内水消火系に係る主配管の配置を明示した図面（その7）
第9－3－2－1－1－4－8図 屋内水消火系に係る主配管の配置を明示した図面（その8）

9．3．2．1．2 屋外水消火系

第9－3－2－1－2－1－1図 屋外水消火系の系統図（その1）
第9－3－2－1－2－1－2図 屋外水消火系の系統図（その 2 ）
第9－3－2－1－2－2－1図 屋外水消火系の構造図 屋外消火系電動機駆動消火ポンプ

第9－3－2－1－2－2－2図 屋外水消火系の構造図 屋外消火系ディーゼル駆動消火ポ
ンプ
第9－3－2－1－2－2－3図 屋外水消火系の構造図 屋外消火系消火水タンク
第9－3－2－1－2－3－1図 屋外水消火系に係る機器の配置を明示した図面（その1）
第9－3－2－1－2－3－2図 屋外水消火系に係る機器の配置を明示した図面（その 2 ）
第9－3－2－1－2－4－1図 屋外水消火系に係る主配管の配置を明示した図面（その1）
第9－3－2－1－2－4－2図 屋外水消火系に係る主配管の配置を明示した図面（その 2 ）
第9－3－2－1－2－4－3図 屋外水消火系に係る主配管の配置を明示した図面（その3）
第9－3－2－1－2－4－4図 屋外水消火系に係る主配管の配置を明示した図面（その4）
第9－3－2－1－2－4－5図 屋外水消火系に係る主配管の配置を明示した図面（その5）
第9－3－2－1－2－4－6図 屋外水消火系に係る主配管の配置を明示した図面（その6）
第9－3－2－1－2－4－7図 屋外水消火系に係る主配管の配置を明示した図面（その7）
第9－3－2－1－2－4－8図 屋外水消火系に係る主配管の配置を明示した図面（その8）
第9－3－2－1－2－4－9図 屋外水消火系に係る主配管の配置を明示した図面（その9）第9－3－2－1－2－4－10図 屋外水消火系に係る主配管の配置を明示した図面（その 1 0 ）

第9－3－2－1－2－4－11図 屋外水消火系に係る主配管の配置を明示した図面（その 1

9．3．2．2 ハロンガス消火設備
第9－3－2－2－1－1図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 系統図
第9－3－2－2－1－2図 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 系統図
第9－3－2－2－1－3図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 系統図
第9－3－2－2－1－4図 RHR（C）室／RCICタービンポンプ室消火系 系統図
第9－3－2－2－1－5図 RCW熱交換器・ポンプ（A）（C）室消火系 系統図
第9－3－2－2－1－6図 B2F南側通路／バルブラッピング室消火系 系統図
第9－3－2－2－1－7図 IA•SA空気圧縮機室／B2F東側通路消火系 系統図
第9－3－2－2－1－8図 CRDポンプ室消火系 系統図
第9－3－2－2－1－9図 MUWCポンプ室消火系 系統図
第9－3－2－2－1－10図 B2F／B1F／1F 西側通路／排風機室消火系 系統図
第9－3－2－2－1－11図 PLR－VVVF室／区分II非常用電気品室消火系 系統図
第9－3－2－2－1－12－1図 B1Fインナー通路消火系 系統図（ $1 / 2$ ）
第9－3－2－2－1－12－2図 B1Fインナー通路消火系 系統図（2／2）
第9－3－2－2－1－13図 DC RCIC MCC室消火系 系統図
第9－3－2－2－1－14図 区分I非常用電気品室消火系 系統図
第9－3－2－2－1－15図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 系統図
第9－3－2－2－1－16図 B1Fハッチ室消火系 系統図
第9－3－2－2－1－17図 区分III HPCS電気品室消火系 系統図
第9－3－2－2－1－18図 区分II非常用MCC室消火系 系統図
第9－3－2－2－1－19図 導電率計ラック室消火系 系統図

第9－3－2－2－1－20図第9－3－2－2－1－21図第9－3－2－2－1－22図第9－3－2－2－1－23図第9－3－2－2－1－24図第9－3－2－2－1－25図第9－3－2－2－1－26図第9－3－2－2－1－27図第9－3－2－2－1－28図第9－3－2－2－1－29図第9－3－2－2－1－30図第9－3－2－2－1－31図第9－3－2－2－1－32図第9－3－2－2－1－33図第9－3－2－2－1－34図第9－3－2－2－1－35図第9－3－2－2－1－36図第9－3－2－2－1－37図第9－3－2－2－1－38図計測制御電源（B）室消火系 系統図代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 系統図

第9－3－2－2－1－39図 常用•共通M／C•P／C室消火系 系統図
第9－3－2－2－1－40図 計測制御電源（A）室消火系 系統図
第9－3－2－2－1－41図第 $9-3-2-2-1-42$ 図

T．S（計測制御電源（B）室北）消火系
T．S（更衣室北）消火系 系統図
第9－3－2－2－1－43図第9－3－2－2－1－44図第9－3－2－2－1－45図第9－3－2－2－1－46図第9－3－2－2－1－47図第9－3－2－2－1－48図第9－3－2－2－1－49図第9－3－2－2－1－50図第9－3－2－2－1－51図第9－3－2－2－1－52図第9－3－2－2－1－53図第9－3－2－2－1－54図第9－3－2－2－1－55図第9－3－2－2－1－56図第9－3－2－2－1－57図 R／B MCC 2 SB－1消火系 系統図

第9－3－2－2－1－58図 SLCポンプ（A）（B）消火系 系統図
第9－3－2－2－1－59図 HECW冷凍機・ポンプ（B）（D）消火系 系統図
第9－3－2－2－2－1図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－2図 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 ハロン 1301貯蔵容器構造図

第9－3－2－2－2－3図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－4図 RHR（C）室／RCICタービンポンプ室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－5図 RCW熱交換器・ポンプ（A）（C）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－6図 B2F南側通路／バルブラッピング室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－7図 IA•SA空気圧縮機室／B2F東側通路消火系 ハロン1301貯蔵容器構造図

CRDポンプ室消火系 ハロン1301貯蔵容器構造図
MUWCポンプ室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－10図 B2F／B1F／1F 西側通路／排風機室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－11図 PLR－VVVF室／区分II非常用電気品室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－12図 B1Fインナー通路消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－13図 DC RCIC MCC室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－14図 区分 I 非常用電気品室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－15図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－16図 B1Fハッチ室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－17図 区分III HPCS電気品室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－18図 区分II非常用MCC室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－19図 導電率計ラック室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－20図第9－3－2－2－2－21図第9－3－2－2－2－22図第9－3－2－2－2－23図

第9－3－2－2－2－24図
第9－3－2－2－2－25図

FPCポンプ（A）（B）室消火系 ハロン 1301 貯蔵容器構造図 HWH 熱交換器・ポンプ室消火系 ハロン1301貯蔵容器構造図緊急用電気品室（1）／（2）消火系 ハロン 1301 貯蔵容器構造図区分I非常用D／G制御盤室消火系 ハロン1301貯蔵容器構造図区分III非常用D／G制御盤室消火系 ハロン1301貯蔵容器構造図 ディーゼル発電機（HPCS）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－26図
区分 II 非常用D／G制御盤室／R－12階段室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－27図 区分IIIバッテリ室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－28図第9－3－2－2－2－29図第9－3－2－2－2－30図第9－3－2－2－2－31図 HECW冷凍機・ポンプ（A）（C）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－32図第9－3－2－2－2－33図第9－3－2－2－2－34図第9－3－2－2－2－35図

燃料デイタンク（A）室消火系 ハロン1301貯蔵容器構造図燃料デイタンク（HPCS）室消火系 ハロン1301貯蔵容器構造図空調機械（A）室／（B）室消火系 ハロン1301貯蔵容器構造図 250V直流主母線盤室／ 125 V （A）－ 1 室消火系 ハロン 1301 貯蔵容器構造図

第9－3－2－2－2－36図 DC250Vバッテリ室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－37図第9－3－2－2－2－38図計測制御電源（B）室消火系 ハロン1301貯蔵容器構造図代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 ハロ ン1301貯蔵容器構造図

第9－3－2－2－2－39図第9－3－2－2－2－40図第9－3－2－2－2－41図常用•共通M／C•P／C室消火系 ハロン 1301 貯蔵容器構造図計測制御電源（A）室消火系 ハロン1301貯蔵容器構造図 T．S（計測制御電源（B）室北）消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－42図 T．S（更衣室北）消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－43図
第9－3－2－2－2－44図
T．S（更衣室西）消火系 ハロン1301貯蔵容器構造図
区分 I／II／常用系ケーブル処理室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－45図
区分IIIケーブル処理室消火系 ハロン1301貯蔵容器構造図第9－3－2－2－2－46図第9－3－2－2－2－47図 DC125V代替バッテリ室消火系 ハロン1301貯蔵容器構造図 T．S（区分 II ケーブル処理室北）消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－48図第9－3－2－2－2－49図第9－3－2－2－2－50図第9－3－2－2－2－51図第9－3－2－2－2－52図第9－3－2－2－2－53図
，緊急時対策所軽油タンク（A）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－54図 緊急時対策所軽油タンク（B）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－55図 緊急時対策所軽油タンク（C）室消火系 ハロン1301貯蔵容器構造図

第9－3－2－2－2－56図 E／B電気品室消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－57図 R／B MCC 2SB－1消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－58図 SLCポンプ（A）（B）消火系 ハロン1301貯蔵容器構造図
第9－3－2－2－2－59図 HECW冷凍機・ポンプ（B）（D）消火系 ハロン1301貯蔵容器構造図第9－3－2－2－3－1図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 機器の配置を明示した図面
第9－3－2－2－3－2図 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 機器の配置を明示した図面

第9－3－2－2－3－3図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 機器の配置を明示 した図面
第9－3－2－2－3－4図 RHR（C）室／RCICタービンポンプ室消火系 機器の配置を明示し た図面

第9－3－2－2－3－5図 RCW熱交換器・ポンプ（A）（C）室消火系 機器の配置を明示した図面

第9－3－2－2－3－6図 B2F南側通路／バルブラッピング室消火系 機器の配置を明示し た図面

第9－3－2－2－3－7図 IA•SA空気圧縮機室／B2F東側通路消火系 機器の配置を明示し た図面

第9－3－2－2－3－8図 CRDポンプ室消火系 機器の配置を明示した図面
第9－3－2－2－3－9図 MUWCポンプ室消火系 機器の配置を明示した図面
第9－3－2－2－3－10図 B2F／B1F／1F 西側通路／排風機室消火系 機器の配置を明示 した図面

第9－3－2－2－3－11図 PLR－VVVF室／区分II非常用電気品室消火系 機器の配置を明示 した図面
第9－3－2－2－3－12－1図 B1Fインナー通路消火系 機器の配置を明示した図面（その 1）

第9－3－2－2－3－12－2図 B1Fインナー通路消火系 機器の配置を明示した図面（その 2 ）
第9－3－2－2－3－12－3図 B1Fインナー通路消火系 機器の配置を明示した図面（その 3 ）

第9－3－2－2－3－12－4図 B1Fインナー通路消火系 機器の配置を明示した図面（その
4 ）
第9－3－2－2－3－13図 DC RCIC MCC室消火系 機器の配置を明示した図面第9－3－2－2－3－14図 区分 I 非常用電気品室消火系 機器の配置を明示した図面第9－3－2－2－3－15図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 機器の配置 を明示した図面
第9－3－2－2－3－16図 B1Fハッチ室消火系 機器の配置を明示した図面

第9－3－2－2－3－17図第9－3－2－2－3－18図第9－3－2－2－3－19図第9－3－2－2－3－20図第9－3－2－2－3－21図第9－3－2－2－3－22図第9－3－2－2－3－23図第9－3－2－2－3－24図第9－3－2－2－3－25図第9－3－2－2－3－26図第9－3－2－2－3－27図第9－3－2－2－3－28図第9－3－2－2－3－29図第9－3－2－2－3－30図第9－3－2－2－3－31図

区分III HPCS電気品室消火系 機器の配置を明示した図面区分II非常用MCC室消火系 機器の配置を明示した図面導電率計ラック室消火系 機器の配置を明示した図面 FPCポンプ（A）（B）室消火系 機器の配置を明示した図面 HWH熱交換器・ポンプ室消火系 機器の配置を明示した図面緊急用電気品室（1）／（2）消火系 機器の配置を明示した図面区分 I 非常用D／G制御盤室消火系 機器の配置を明示した図面区分III非常用D／G制御盤室消火系 機器の配置を明示した図面 ディーゼル発電機（HPCS）室消火系 機器の配置を明示した図面区分 II 非常用D／G制御盤室／R－12階段室消火系 機器の配置を明示した図面
区分IIIバッテリ室消火系 機器の配置を明示した図面送風機•緊急用電気品室消火系 機器の配置を明示した図面燃料デイタンク（B）室消火系 機器の配置を明示した図面 SOL冷凍機室消火系 機器の配置を明示した図面 HECW冷涷機・ポンプ（A）（C）室消火系 機器の配置を明示した図面

第9－3－2－2－3－32図 燃料デイタンク（A）室消火系 機器の配置を明示した図面第9－3－2－2－3－33図第9－3－2－2－3－34図第9－3－2－2－3－35図工調機械（ A ）至（ B ）至消火系 機器の配亘を明示した図面 250V直流主母線盤室／ 125 V （A）－ 1 室消火系 機器の配置を明示 した図面
第9－3－2－2－3－36図 DC250Vバッテリ室消火系 機器の配置を明示した図面第9－3－2－2－3－37図第9－3－2－2－3－38図計測制御電源（B）室消火系 機器の配置を明示した図面代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 機器 の配置を明示した図面
第9－3－2－2－3－39図第9－3－2－2－3－40図第9－3－2－2－3－41図常用•共通M／C•P／C室消火系 機器の配置を明示した図面計測制御電源（A）室消火系 機器の配置を明示した図面 T．S（計測制御電源（B）室北）消火系 機器の配置を明示した図面
第9－3－2－2－3－42図 T．S（更衣室北）消火系 機器の配置を明示した図面第9－3－2－2－3－43図第9－3－2－2－3－44図 T．S（更衣室西）消火系 機器の配置を明示した図面区分 I／II／常用系ケーブル処理室消火系 機器の配置を明示 した図面
第9－3－2－2－3－45図
区分IIIケーブル処理室消火系 機器の配置を明示した図面
第9－3－2－2－3－46図
第9－3－2－2－3－47図
T．S（区分 II ケーブル処理室北）消火系 機器の配置を明示した図面
第9－3－2－2－3－48図 PCPS区分I エリア消火系 機器の配置を明示した図面

第9－3－2－2－3－49図 PCPS区分 IIエリア消火系 機器の配置を明示した図面第9－3－2－2－3－50図 PCPS区分IIIエリア消火系 機器の配置を明示した図面第9－3－2－2－3－51図 PCPS区分NONエリア消火系 機器の配置を明示した図面第9－3－2－2－3－52図 緊急対策室他消火系 機器の配置を明示した図面第9－3－2－2－3－53図 緊急時対策所軽油タンク（A）室消火系 機器の配置を明示した図面

第9－3－2－2－3－54図 緊急時対策所軽油タンク（B）室消火系 機器の配置を明示した図面

第9－3－2－2－3－55図 緊急時対策所軽油タンク（C）室消火系 機器の配置を明示した図面
第9－3－2－2－3－56図 E／B電気品室消火系 機器の配置を明示した図面
第9－3－2－2－3－57図 R／B MCC 2SB－1消火系 機器の配置を明示した図面
第9－3－2－2－3－58図 SLCポンプ（A）（B）消火系 機器の配置を明示した図面
第9－3－2－2－3－59図 HECW冷凍機・ポンプ（B）（D）消火系 機器の配置を明示した図面第9－3－2－2－4－1－1図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－1－2図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－1－3図 RHR（A）室／RHR（B）室／B3F通路・サンプ室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－2－1図 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 主配管 の配置を明示した図面（その1）

第9－3－2－2－4－2－2図 LPCSポンプ・ラック室／HPCSポンプ・ラック室消火系 主配管 の配置を明示した図面（その 2 ）

第9－3－2－2－4－3－1図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－3－2図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その 2 ）

第9－3－2－2－4－3－3図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－3－4図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その 4 ）

第9－3－2－2－4－3－5図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－3－6図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その 6 ）

第9－3－2－2－4－3－7図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その7）

第9－3－2－2－4－3－8図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その8）

第9－3－2－2－4－3－9図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置を明示した図面（その9）
第9－3－2－2－4－3－10図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置 を明示した図面（その 1 0 ）

第9－3－2－2－4－3－11図 RCW（B）（D）／HPCW／NSD／B2Fハッチ室消火系 主配管の配置 を明示した図面（その11）
第9－3－2－2－4－4－1図 RHR（C）室／RCICタービンポンプ室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－4－2図 RHR（C）室／RCICタービンポンプ室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－4－3図 RHR（C）室／RCICタービンポンプ室消火系 主配管の配置を明示した図面（その 3 ）
第9－3－2－2－4－4－4図 RHR（C）室／RCICタービンポンプ室消火系 主配管の配置を明示した図面（その4）

第9－3－2－2－4－4－5図 RHR（C）室／RCICタービンポンプ室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－5－1図 RCW熱交換器・ポンプ（A）（C）室消火系 主配管の配置を明示し た図面（その1）
第9－3－2－2－4－5－2図 RCW熱交換器・ポンプ（A）（C）室消火系 主配管の配置を明示し た図面（その 2 ）
第9－3－2－2－4－6－1図 B2F南側通路／バルブラッピング室消火系 主配管の配置を明示した図面（その1）

第9－3－2－2－4－6－2図 B2F南側通路／バルブラッピング室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－6－3図 B2F南側通路／バルブラッピング室消火系 主配管の配置を明示した図面（その 3 ）

第9－3－2－2－4－7－1図 IA•SA空気圧縮機室／B2F東側通路消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－7－2図 IA•SA空気圧縮機室／B2F東側通路消火系 主配管の配置を明示した図面（その 2 ）

第9－3－2－2－4－7－3図 IA•SA空気圧縮機室／B2F東側通路消火系 主配管の配置を明示した図面（その 3 ）
第9－3－2－2－4－8図 CRDポンプ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－9図 MUWCポンプ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－10－1図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その1）

第9－3－2－2－4－10－2図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その 2 ）

第9－3－2－2－4－10－3図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その 3 ）
第9－3－2－2－4－10－4図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－10－5図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－10－6図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その 6 ）

第9－3－2－2－4－10－7図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その7）
第9－3－2－2－4－10－8図 B2F／B1F／1F 西側通路／排風機室消火系 主配管の配置を明示した図面（その 8 ）
第9－3－2－2－4－11－1図 PLR－VVVF室／区分 II 非常用電気品室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－11－2図 PLR－VVVF室／区分II非常用電気品室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－11－3図 PLR－VVVF室／区分II非常用電気品室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－11－4図 PLR－VVVF室／区分II非常用電気品室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－11－5図 PLR－VVVF室／区分II非常用電気品室消火系 主配管の配置を明示した図面（その 5 ）

第9－3－2－2－4－12－1図 B1Fインナー通路消火系 主配管の配置を明示した図面（その 1）
第9－3－2－2－4－12－2図 B1Fインナー通路消火系 主配管の配置を明示した図面（その 2 ）

第9－3－2－2－4－12－3図 B1Fインナー通路消火系 主配管の配置を明示した図面（その
3 ）
第9－3－2－2－4－12－4図 B1Fインナー通路消火系 主配管の配置を明示した図面（その 4）

第9－3－2－2－4－12－5図 B1Fインナー通路消火系 主配管の配置を明示した図面（その
5 ）
第9－3－2－2－4－12－6図 B1Fインナー通路消火系 主配管の配置を明示した図面（その 6 ）

第9－3－2－2－4－12－7図 B1Fインナー通路消火系 主配管の配置を明示した図面（その 7 ）
第9－3－2－2－4－12－8図 B1Fインナー通路消火系 主配管の配置を明示した図面（その

8 ）
第9－3－2－2－4－13－1図 DC RCIC MCC室消火系 主配管の配置を明示した図面（その 1 ）
第9－3－2－2－4－13－2図 DC RCIC MCC室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－14－1図 区分 I 非常用電気品室消火系 主配管の配置を明示した図面 （その1）
第9－3－2－2－4－14－2図 区分 I 非常用電気品室消火系 主配管の配置を明示した図面 （その 2 ）
第9－3－2－2－4－15－1図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－15－2図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－15－3図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 3）
第9－3－2－2－4－15－4図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－15－5図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－15－6図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その 6 ）
第9－3－2－2－4－15－7図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その7）
第9－3－2－2－4－15－8図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その8）
第9－3－2－2－4－15－9図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その9）
第9－3－2－2－4－15－10図 D／G（A）室／（B）室／D／G補機（A）室／（B）室消火系 主配管の配置を明示した図面（その10）
第9－3－2－2－4－16図 B1Fハッチ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－17図 区分III HPCS電気品室消火系 主配管の配置を明示した図面第9－3－2－2－4－18－1図 区分II非常用MCC室消火系 主配管の配置を明示した図面（そ の1）
第9－3－2－2－4－18－2図 区分II非常用MCC室消火系 主配管の配置を明示した図面（そ の 2 ）

第9－3－2－2－4－18－3図 区分II非常用MCC室消火系 主配管の配置を明示した図面（そ の 3 ）
第9－3－2－2－4－19図 導電率計ラック室消火系 主配管の配置を明示した図面第9－3－2－2－4－20図 FPCポンプ（A）（B）室消火系 主配管の配置を明示した図面

第9－3－2－2－4－21－1図 HWH熱交換器・ポンプ室消火系 主配管の配置を明示した図面 （その1）
第9－3－2－2－4－21－2図 HWH熱交換器・ポンプ室消火系 主配管の配置を明示した図面 （その2）
第9－3－2－2－4－22－1図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－22－2図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（その 2）
第9－3－2－2－4－22－3図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－22－4図 緊急用電気品室（1）／（2）消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－23図 区分I非常用D／G制御盤室消火系 主配管の配置を明示した図面
第9－3－2－2－4－24図 区分III非常用D／G制御盤室消火系 主配管の配置を明示した図面
第9－3－2－2－4－25図 ディーゼル発電機（HPCS）室消火系 主配管の配置を明示した図面
第9－3－2－2－4－26－1図 区分II非常用D／G制御盤室／R－12階段室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－26－2図 区分II非常用D／G制御盤室／R－12階段室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－26－3図 区分II非常用D／G制御盤室／R－12階段室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－27図 区分IIIバッテリ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－28－1図 送風機•緊急用電気品室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－28－2図 送風機•緊急用電気品室消火系 主配管の配置を明示した図面（その 2）
第9－3－2－2－4－29図 燃料デイタンク（B）室消火系 主配管の配置を明示した図面第9－3－2－2－4－30－1図 SOL冷凍機室消火系 主配管の配置を明示した図面（その1）第9－3－2－2－4－30－2図 SOL冷凍機室消火系 主配管の配置を明示した図面（その 2）第9－3－2－2－4－31－1図 HECW冷凍機・ポンプ（A）（C）室消火系 主配管の配置を明示し た図面（その1）
第9－3－2－2－4－31－2図 HECW冷凍機・ポンプ（A）（C）室消火系 主配管の配置を明示し た図面（その 2 ）
第9－3－2－2－4－32図 燃料デイタンク（A）室消火系 主配管の配置を明示した図面第9－3－2－2－4－33図 燃料デイタンク（HPCS）室消火系 主配管の配置を明示した図面

第9－3－2－2－4－34－1図 空調機械（A）室／（B）室消火系 主配管の配置を明示した図面 （その1）
第9－3－2－2－4－34－2図 空調機械（A）室／（B）室消火系 主配管の配置を明示した図面 （その 2 ）

第9－3－2－2－4－35－1図 250V直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管の配置を明示した図面（その1）

第9－3－2－2－4－35－2図 250V直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－35－3図 $250 V$ 直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管の配置を明示した図面（その 3 ）

第9－3－2－2－4－35－4図 250 V 直流主母線盤室／ 125 V （A）－ 1 室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－36図 DC250Vバッテリ室消火系 主配管の配置を明示した図面
第9－3－2－2－4－37－1図 計測制御電源（B）室消火系 主配管の配置を明示した図面（そ の1）
第9－3－2－2－4－37－2図 計測制御電源（B）室消火系 主配管の配置を明示した図面（そ の 2 ）
第9－3－2－2－4－38－1図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その1）
第9－3－2－2－4－38－2図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－38－3図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その3）
第9－3－2－2－4－38－4図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－38－5図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－38－6図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その6）
第9－3－2－2－4－38－7図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その7）
第9－3－2－2－4－38－8図 代替充電器盤室／RSS盤室／DC125V（A）室／（B）室消火系 主配管の配置を明示した図面（その8）
第9－3－2－2－4－39－1図 常用•共通M／C•P／C室消火系 主配管の配置を明示した図面 （その1）
第9－3－2－2－4－39－2図 常用•共通M／C•P／C室消火系 主配管の配置を明示した図面 （その 2 ）
第9－3－2－2－4－40－1図 計測制御電源（A）室消火系 主配管の配置を明示した図面（そ の1）

第9－3－2－2－4－40－2図 計測制御電源（A）室消火系 主配管の配置を明示した図面（そ の 2）
第9－3－2－2－4－41－1図 T．S（計測制御電源（B）室北）消火系 主配管の配置を明示し た図面（その1）
第9－3－2－2－4－41－2図 T．S（計測制御電源（B）室北）消火系 主配管の配置を明示し た図面（その 2 ）
第9－3－2－2－4－42図 T．S（更衣室北）消火系 主配管の配置を明示した図面
第9－3－2－2－4－43－1図 T．S（更衣室西）消火系 主配管の配置を明示した図面（その 1）
第9－3－2－2－4－43－2図 T．S（更衣室西）消火系 主配管の配置を明示した図面（その 2）
第9－3－2－2－4－44－1図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示した図面（その1）

第9－3－2－2－4－44－2図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－44－3図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示した図面（その3）

第9－3－2－2－4－44－4図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－44－5図 区分 I／II／常用系ケーブル処理室消火系 主配管の配置を明示した図面（その 5 ）
第9－3－2－2－4－45図 区分IIIケーブル処理室消火系 主配管の配置を明示した図面第9－3－2－2－4－46図 DC125V代替バッテリ室消火系 主配管の配置を明示した図面第9－3－2－2－4－47図 T．S（区分IIケーブル処理室北）消火系 主配管の配置を明示し た図面
第9－3－2－2－4－48図 PCPS区分Iエリア消火系 主配管の配置を明示した図面
第9－3－2－2－4－49図 PCPS区分IIエリア消火系 主配管の配置を明示した図面
第9－3－2－2－4－50図 PCPS区分IIIエリア消火系 主配管の配置を明示した図面
第9－3－2－2－4－51－1図 PCPS区分NONエリア消火系 主配管の配置を明示した図面（そ の1）
第9－3－2－2－4－51－2図 PCPS区分NONエリア消火系 主配管の配置を明示した図面（そ の 2）
第9－3－2－2－4－51－3図 PCPS区分NONエリア消火系 主配管の配置を明示した図面（そ の 3 ）
第9－3－2－2－4－52－1図 緊急対策室他消火系
第9－3－2－2－4－52－2図 緊急対策室他消火系
主配管の配置を明示した図面（その1）
主配管の配置を明示した図面（その 2）
第9－3－2－2－4－52－3図 緊急対策室他消火系
主配管の配置を明示した図面（その3）
第9－3－2－2－4－52－4図 緊急対策室他消火系 主配管の配置を明示した図面（その4）
第9－3－2－2－4－52－5図 緊急対策室他消火系 主配管の配置を明示した図面（その5）

第9－3－2－2－4－52－6図 緊急対策室他消火系 主配管の配置を明示した図面（その6）第9－3－2－2－4－52－7図 緊急対策室他消火系 主配管の配置を明示した図面（その7）第9－3－2－2－4－52－8図 緊急対策室他消火系 主配管の配置を明示した図面（その8）第9－3－2－2－4－52－9図 緊急対策室他消火系 主配管の配置を明示した図面（その9）第9－3－2－2－4－52－10図 緊急対策室他消火系 主配管の配置を明示した図面（その 1 0 ）

第9－3－2－2－4－53図 緊急時対策所軽油タンク（A）室消火系 主配管の配置を明示し た図面
第9－3－2－2－4－54図 緊急時対策所軽油タンク（B）室消火系 主配管の配置を明示し た図面

第9－3－2－2－4－55図 緊急時対策所軽油タンク（C）室消火系 主配管の配置を明示し た図面
第9－3－2－2－4－56図 E／B電気品室消火系 主配管の配置を明示した図面
第9－3－2－2－4－57図 R／B MCC 2SB－1消火系 主配管の配置を明示した図面
第9－3－2－2－4－58－1図 SLCポンプ（A）（B）消火系 主配管の配置を明示した図面（その 1 ）

第9－3－2－2－4－58－2図 SLCポンプ（A）（B）消火系 主配管の配置を明示した図面（その 2）
第9－3－2－2－4－59－1図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 1 ）
第9－3－2－2－4－59－2図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 2 ）
第9－3－2－2－4－59－3図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 3 ）

第9－3－2－2－4－59－4図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 4）
第9－3－2－2－4－59－5図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 5 ）

第9－3－2－2－4－59－6図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その 6 ）
第9－3－2－2－4－59－7図 HECW冷凍機・ポンプ（B）（D）消火系 主配管の配置を明示した図面（その7）

9．3．2．3 ケーブルトレイ消火設備
9．3．2．3．1 ケーブルトレイ消火系
第 $9-3-2-3-1-1$ 図 ケーブルトレイ消火系系統図（その1）
第9－3－2－3－1－2図 ケーブルトレイ消火系系統図（その 2 ）
第 $9-3-2-3-1-3$ 図 ケーブルトレイ消火系系統図（その 3 ）
第 $9-3-2-3-1-4$ 図 ケーブルトレイ消火系系統図（その4）
第9－3－2－3－1－5図 ケーブルトレイ消火系系統図（その5）

第9－3－2－3－1－6図 ケーブルトレイ消火系系統図（その6）
第 $9-3-2-3-1-7$ 図 ケーブルトレイ消火系系統図（その 7）
第 $9-3-2-3-1-8$ 図 ケーブルトレイ消火系系統図（その 8）
第 $9-3-2-3-1-9$ 図 ケーブルトレイ消火系系統図（その 9 ）
第9－3－2－3－1－10図ケーブルトレイ消火系系統図（その10）
第9－3－2－3－1－11図 ケーブルトレイ消火系系統図（その11）
第9－3－2－3－1－12図 ケーブルトレイ消火系系統図（その12）
第9－3－2－3－1－13図 ケーブルトレイ消火系系統図（その13）
第9－3－2－3－1－14図 ケーブルトレイ消火系系統図（その14）
第9－3－2－3－1－15図 ケーブルトレイ消火系系統図（その15）
第9－3－2－3－1－16図 ケーブルトレイ消火系系統図（その16）
第9－3－2－3－1－17図 ケーブルトレイ消火系系統図（その17）
第9－3－2－3－1－18図 ケーブルトレイ消火系系統図（その18）
第9－3－2－3－1－19図 ケーブルトレイ消火系系統図（その19）
第9－3－2－3－1－20図 ケーブルトレイ消火系系統図（その20）
第9－3－2－3－1－21図 ケーブルトレイ消火系系統図（その21）
第9－3－2－3－1－22図 ケーブルトレイ消火系系統図（その2 2）
第9－3－2－3－1－23図 ケーブルトレイ消火系系統図（その23）
第9－3－2－3－1－24図 ケーブルトレイ消火系系統図（その24）
第9－3－2－3－1－25図 ケーブルトレイ消火系系統図（その25）
第9－3－2－3－1－26図 ケーブルトレイ消火系系統図（その26）
第9－3－2－3－1－27図 ケーブルトレイ消火系系統図（その27）
第9－3－2－3－1－28図 ケーブルトレイ消火系系統図（その28）
第9－3－2－3－1－29図 ケーブルトレイ消火系系統図（その29）
第9－3－2－3－1－30図 ケーブルトレイ消火系系統図（その30）
第9－3－2－3－1－31図 ケーブルトレイ消火系系統図（その31）
第9－3－2－3－1－32図 ケーブルトレイ消火系系統図（その32）
第9－3－2－3－1－33図 ケーブルトレイ消火系系統図（その33）
第9－3－2－3－1－34図 ケーブルトレイ消火系系統図（その34）
第9－3－2－3－1－35図 ケーブルトレイ消火系系統図（その35）
第9－3－2－3－1－36図 ケーブルトレイ消火系系統図（その36）
第9－3－2－3－1－37図 ケーブルトレイ消火系系統図（その37）
第9－3－2－3－1－38図 ケーブルトレイ消火系系統図（その38）
第9－3－2－3－1－39図 ケーブルトレイ消火系系統図（その39）
第9－3－2－3－1－40図 ケーブルトレイ消火系系統図（その40）
第9－3－2－3－1－41図 ケーブルトレイ消火系系統図（その41）
第9－3－2－3－1－42図 ケーブルトレイ消火系系統図（その42）
第9－3－2－3－1－43図 ケーブルトレイ消火系系統図（その43）
第9－3－2－3－1－44図ケーブルトレイ消火系系統図（その44）

第9－3－2－3－1－45図
ケーブルトレイ消火系系統図（その45）第9－3－2－3－1－46図第9－3－2－3－1－47図第9－3－2－3－1－48図第9－3－2－3－1－49図第9－3－2－3－1－50図第9－3－2－3－1－51図第9－3－2－3－1－52図第9－3－2－3－1－53図第9－3－2－3－1－54図第9－3－2－3－1－55図第9－3－2－3－1－56図第9－3－2－3－1－57図第9－3－2－3－1－58図第9－3－2－3－1－59図第9－3－2－3－1－60図第9－3－2－3－1－61図第9－3－2－3－1－62図第9－3－2－3－1－63図第9－3－2－3－1－64図第9－3－2－3－1－65図第9－3－2－3－1－66図第9－3－2－3－1－67図第9－3－2－3－1－68図第9－3－2－3－1－69図第9－3－2－3－1－70図第9－3－2－3－1－71図第9－3－2－3－1－72図第9－3－2－3－1－73図第9－3－2－3－1－74図第9－3－2－3－1－75図第9－3－2－3－1－76図第9－3－2－3－1－77図第9－3－2－3－1－78図第9－3－2－3－1－79図第9－3－2－3－1－80図第9－3－2－3－1－81図第9－3－2－3－1－82図第9－3－2－3－1－83図

ケーブルトレイ消火系系統図（その 4 6）
ケーブルトレイ消火系系統図（その47）
ケーブルトレイ消火系系統図（その 4 8）
ケーブルトレイ消火系系統図（その49）
ケーブルトレイ消火系系統図（その 5 0 ）
ケーブルトレイ消火系系統図（その51）
ケーブルトレイ消火系系統図（その 5 2 ）
ケーブルトレイ消火系系統図（その 5 3 ）
ケーブルトレイ消火系系統図（その54）
ケーブルトレイ消火系系統図（その 5 5 ）
ケーブルトレイ消火系系統図（その 56 ）
ケーブルトレイ消火系系統図（その57）
ケーブルトレイ消火系系統図（その 5 8）
ケーブルトレイ消火系系統図（その59）
ケーブルトレイ消火系系統図（その 6 0）
ケーブルトレイ消火系系統図（その61）
ケーブルトレイ消火系系統図（その62）
ケーブルトレイ消火系系統図（その63）
ケーブルトレイ消火系系統図（その64）
ケーブルトレイ消火系系統図（その 65 ）
ケーブルトレイ消火系系統図（その66）
ケーブルトレイ消火系系統図（その67）
ケーブルトレイ消火系系統図（その68）
ケーブルトレイ消火系系統図（その 6 9）
ケーブルトレイ消火系系統図（その70）
ケーブルトレイ消火系系統図（その71）
ケーブルトレイ消火系系統図（その72）
ケーブルトレイ消火系系統図（その73）
ケーブルトレイ消火系系統図（その74）
ケーブルトレイ消火系系統図（その75）
ケーブルトレイ消火系系統図（その76）
ケーブルトレイ消火系系統図（その77）
ケーブルトレイ消火系系統図（その78）
ケーブルトレイ消火系系統図（その79）
ケーブルトレイ消火系系統図（その 80 ）
ケーブルトレイ消火系系統図（その 81 ）
ケーブルトレイ消火系系統図（その 82 ）
ケーブルトレイ消火系系統図（その 8 3 ）

第9－3－2－3－1－84図第9－3－2－3－1－85図第9－3－2－3－1－86図第9－3－2－3－1－87図第9－3－2－3－1－88図第9－3－2－3－1－89図第9－3－2－3－1－90図第9－3－2－3－1－91図第9－3－2－3－1－92図第9－3－2－3－1－93図第9－3－2－3－1－94図第9－3－2－3－1－95図第9－3－2－3－1－96図第9－3－2－3－1－97図第9－3－2－3－1－98図第9－3－2－3－1－99図第9－3－2－3－1－100図第9－3－2－3－1－101図第9－3－2－3－1－102図第9－3－2－3－1－103図第9－3－2－3－1－104図第9－3－2－3－1－105図第9－3－2－3－1－106図第9－3－2－3－1－107図第9－3－2－3－1－108図第9－3－2－3－1－109図第9－3－2－3－1－110図第9－3－2－3－1－111図第9－3－2－3－1－112図第9－3－2－3－1－113図第9－3－2－3－1－114図第9－3－2－3－2－1図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P800用，P401（1），P404，P801，P803用及びP802用）
第9－3－2－3－2－2図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S100②）用，C400（2）用及びP400（1）用）

第9－3－2－3－2－3図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S100①）用及びC400（1）用）
第9－3－2－3－2－4図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S605用，C608用及びP607用）

第9－3－2－3－2－5図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C300②）用，S300（2）用，S300（3）用及びC300（3）用）

第9－3－2－3－2－6図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P403 ⑧，P101⑥用，C403（8），C100⑧用及びS101（4）用）

第9－3－2－3－2－7図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S101 3 ）用，C403（7），C100 7 用及びP403（7），P101（5）用）

第9－3－2－3－2－8図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P101 ⑦，C403（9），C100⑨用，P101⑧，C403（10），C100（10）用及びS101⑤）用）

第9－3－2－3－2－9図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C403 （6），C100⑥用及びP403（6），P101（4）用）
第9－3－2－3－2－10図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S101（2）用及びC100（5）用）

第 $9-3-2-3-2-11$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C403（5）用，P101③用及びP403⑤用）

第9－3－2－3－2－12図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S101①）用，P403（4），C403（4），C100（4）用及びP403（3），C403（3），C100（3）用）

第9－3－2－3－2－13図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C403 （2），C100②）用及びP403（2），P101（2），C749用）
第9－3－2－3－2－14図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P403 ①，P101①用及びC403①，C100①用）

第9－3－2－3－2－15図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P503 （1），C501（1）用）

第9－3－2－3－2－16図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S202①用）

第9－3－2－3－2－17図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502 （1），P503（2），C501（2）用）
第9－3－2－3－2－18図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S300 4 ）用及びC300（4）用）

第 $9-3-2-3-2-19$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P202①）用及びC202①用）
第 $9-3-2-3-2-20$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502②）用，P503（3）用及びC501（3）用）

第 $9-3-2-3-2-21$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S202②）用）
第9－3－2－3－2－22図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502 ③，P503（5），P202③用及びC501（4），C202（2）用）
第9－3－2－3－2－23図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502 （5），P503（7），P202（5）用）

第9－3－2－3－2－24図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502 （4），P503（6），P202（4）用，C501⑥，C20244用及びS202（4）用）

第 $9-3-2-3-2-25$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S202⑤用，C501（7），C202⑤用及びP502（6），P503（8），P202⑥用）
第9－3－2－3－2－26図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P769用及びC501－1用）

第9－3－2－3－2－27図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S703用，C736用，C729用及びS704用）

第 $9-3-2-3-2-28$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S202③）用及びC501⑤，C202（3）用）
第9－3－2－3－2－29図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P503 （4），P202（2）用）

第9－3－2－3－2－30図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C300①）用及びS300（1）用）

第 $9-3-2-3-2-31$ 図 ケーブルトレイ消火系 構造図 FK $-5-1-12$ 貯蔵容器（S10112）用及びC403（21）用）

ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S101⑪）用，P101（11），C403（19），C100（19）用及びP101（12），C403（20），C100（20）用）

第 $9-3-2-3-2-33$ 図 ケーブルトレイ消火系 構造図 FK $-5-1-12$ 貯蔵容器（S10110）用，C403（18）用及びC100（18）用）

第 $9-3-2-3-2-34$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S1019）用，C100（17）用及びC403177用）

第 $9-3-2-3-2-35$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S101 7 ）用及びS1018用）

第9－3－2－3－2－36図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P403 （13），C403（15），C100（15）用）
第9－3－2－3－2－37図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P403 （11），C403（13），C100（13）用，P403（12），C403（14），C100（14）用及 びC403 （16），C100（16）用）

第9－3－2－3－2－38図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P403 （9），C403（11），C100（11）用，S101⑥用及びP403（10，C403（12），C100（12）用）

第9－3－2－3－2－39図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P503 ⑨，P202⑦用，C501⑧，C202⑥用及びS202⑥用）
第 $9-3-2-3-2-40$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P503（11）用，P503（10，P202（8）用，C501⑨，C202（7）用及びS202（7）用）

第9－3－2－3－2－41図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C501 （11），C202（9）用及びP503（12），P202（10）用）

第9－3－2－3－2－42図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S2028）用，P202（9），C501（10），C202（8）用及びP202（11），C501（12），C202（10）用）

第9－3－2－3－2－43図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S709 1 ）用）

第 $9-3-2-3-2-44$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S708用及びC40324，C809用）
第9－3－2－3－2－45図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P101 （9），C403（23），C100（22）用）

第9－3－2－3－2－46図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P101 （10），C403（22），C100（21）用及びS101（13），S709（2）用）

第9－3－2－3－2－47図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P201 （1），C201用）

第9－3－2－3－2－48図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P701 ⑨，P700＠9，P610⑥用）

第9－3－2－3－2－49図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 ⑧，K706（8）用，K602（2）用及びP602（6），C606（4），C601（2）用）

第9－3－2－3－2－50図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P701 （8），P700（8，P610（5）用）

第 $9-3-2-3-2-51$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C606③）用及びS602③用）

第9－3－2－3－2－52図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 ⑦，K706（7），P701（7）用，P700（7），P610（4），P602（4）用及びP602（5）用）

第9－3－2－3－2－53図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 ⑥，K706⑥，P701⑥用及びP700⑥，P610③，P602③用）

第 $9-3-2-3-2-54$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C606（2）用及びS602（2）用）

第9－3－2－3－2－55図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 （5），K706（5），P701⑤）用及びP700（5），P610（2），P602（2）用）
第9－3－2－3－2－56図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器 （K601，P600，P601用及びS601（2）用）

第9－3－2－3－2－57図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 （4），K706（4），P7014）用及びP700（4），P610①，P602①用）
第 $9-3-2-3-2-58$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P2016）用）

第9－3－2－3－2－59図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 ①，K706①，P701①用及びP700①，P500①，P501①用）
第9－3－2－3－2－60図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 （2），K706（2），P701（2）用及びP700（2），P500（2），P501②）用）

第9－3－2－3－2－61図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C606（1）用）

第9－3－2－3－2－62図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K702 ③，K706③，P701③用及びP700③，P500③，P501③用）

第 $9-3-2-3-2-63$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S602①）用）

第9－3－2－3－2－64図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C602①用，C603（2）用及びS600（1）用）

第9－3－2－3－2－65図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C601①）用，C602（2）用及びS600（4）用）

第9－3－2－3－2－66図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S600③）用）

第 $9-3-2-3-2-67$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S6013）用及びS600（2）用）

第9－3－2－3－2－68図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P300 ①，C300⑤用及びS300⑤用）

第 $9-3-2-3-2-69$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P300 ③，C300⑦用，S300⑥用，P300（2），C300⑥用及びP300（4），C300（8）用）

第9－3－2－3－2－70図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K100 ③，P402（3）用，P102（5），C100（27）用及びS100（3）用）
第9－3－2－3－2－71図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K100 ⑥，P402⑥用，P102⑥，C100（28）用及びS100（4）用）

第9－3－2－3－2－72図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K100 （7），P402（7）用及びP102（7），C100（29）用）

第9－3－2－3－2－73図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K201 （2），P502（8）用及びP201③，C200②用）

第9－3－2－3－2－74図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P201 （4），C200③）用及びK201③），P502⑨用）

第 $9-3-2-3-2-75$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S200②）用，C200（4）用及びP201⑤用）

第 $9-3-2-3-2-76$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S100⑤用，P102（2），C100（24）用及びK100（2），P402（2）用）

第9－3－2－3－2－77図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P102 （1），C100（23）用及びK100①），P402（1）用）

第 $9-3-2-3-2-78$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S200①）用，S601（1）用及びK602（1），P603（1），C603（1）用）

第9－3－2－3－2－79図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P201 ②，C200①用及びK201①，P502（7）用）

第9－3－2－3－2－80図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P102 （4），C100（26）用及びK100（5），P402（5）用）

第9－3－2－3－2－81図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S100 7 ）用）

第9－3－2－3－2－82図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P102 （3），C100（25）用及びK100（4），P402（4）用）
第9－3－2－3－2－83図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S100⑥用）

第9－3－2－3－2－84図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K100 （8），P402（8）用，P102（8），C100（30用及びS100（9）用）
第 $9-3-2-3-2-85$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S1008）用，P102⑨，C100③1用及びK100⑨，P402⑨用）

第 $9-3-2-3-2-86$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P502（10）用及びK201（4） 用）

第 $9-3-2-3-2-87$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S300 7 ）用及びC300（9）用）

第 $9-3-2-3-2-88$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K610 （3），K611（3），K612（3）用，K610（2），K611（2），K612（2）用及 びK610 ①，K611（1），K612（1）用）

第 $9-3-2-3-2-89$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K003①用）
第9－3－2－3－2－90図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K003（2）用）

第9－3－2－3－2－91図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K003③）用）
第9－3－2－3－2－92図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S003 3 ）用及びC008③用）

第9－3－2－3－2－93図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S003（2）用及びC008（2）用）

第9－3－2－3－2－94図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S003①）用及びC008①用）

第 $9-3-2-3-2-95$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C004用）

第9－3－2－3－2－96図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C001（2）用及びS001（2）用）
第9－3－2－3－2－97図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K002用）

第9－3－2－3－2－98図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C001①）用及びS001①用）

第9－3－2－3－2－99図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S751①）用及びS750（1）用）

第9－3－2－3－2－100図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S750 （2）用）

第9－3－2－3－2－101図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S751 （2）用及びS750（3）用）
第9－3－2－3－2－102図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S751 （3）用及びS750（4）用）

第9－3－2－3－2－103図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S751 （4）用及びS750（5）用）
第9－3－2－3－2－104図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C002 （2）用，C003用及びS002用）

第9－3－2－3－2－105図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S750 （6） 用）

第9－3－2－3－2－106図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C002 （1） 用）

第 $9-3-2-3-2-107$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S750 （7）用，S751⑥用及びS751⑤用）

ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S754用及びS755用）

第9－3－2－3－2－109図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（S752 （1）用，S752（2）用及びS753用）

第9－3－2－3－2－110図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C400 （3）用，C401①用及びS100（10用）

第9－3－2－3－2－111図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K400 （1）用，P400（2）用及びP402（10用）

第 $9-3-2-3-2-112$ 図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（K400 （2）用，P400③用及びP603（2）用）

第9－3－2－3－2－113図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（C400 （4）用，C401（2）用及びS603用）

第9－3－2－3－2－114図 ケーブルトレイ消火系 構造図 FK－5－1－12貯蔵容器（P603 （3）用及びP401（2）用）
第9－3－2－3－3－1図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 1）

第 $9-3-2-3-3-2$ 図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 2 ）
第9－3－2－3－3－3図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 3 ）

第9－3－2－3－3－4図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 4）

第9－3－2－3－3－5図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 5 ）

第9－3－2－3－3－6図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 6 ）
第9－3－2－3－3－7図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 7 ）

第9－3－2－3－3－8図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 8 ）
第9－3－2－3－3－9図 ケーブルトレイ消火系に係る機器の配置を明示した図面（その 9 ）

第9－3－2－3－3－10図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の10）

第 $9-3-2-3-3-11$ 図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の11）

第 $9-3-2-3-3-12$ 図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の12）

第 $9-3-2-3-3-13$ 図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の13）

第9－3－2－3－3－14図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の14）

第9－3－2－3－3－15図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の15）

第9－3－2－3－3－16図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の16）

第9－3－2－3－3－17図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の17）

第9－3－2－3－3－18図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の18）

第9－3－2－3－3－19図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の19）
第9－3－2－3－3－20図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 20 ）

第9－3－2－3－3－21図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 21 ）
第9－3－2－3－3－22図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 22 ）

第9－3－2－3－3－23図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 23 ）

第9－3－2－3－3－24図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 24 ）

第9－3－2－3－3－25図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 25 ）
第9－3－2－3－3－26図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 26 ）
第9－3－2－3－3－27図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 27 ）
第9－3－2－3－3－28図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 28 ）
第9－3－2－3－3－29図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 2 9）
第9－3－2－3－3－30図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 30 ）
第9－3－2－3－3－31図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 31 ）

第9－3－2－3－3－32図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 32 ）

第9－3－2－3－3－33図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 3 3）

第9－3－2－3－3－34図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 34 ）
第9－3－2－3－3－35図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 35 ）

第9－3－2－3－3－36図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 36 ）
第9－3－2－3－3－37図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 37 ）

第9－3－2－3－3－38図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 38 ）
第9－3－2－3－3－39図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 3 9）

第9－3－2－3－3－40図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 40 ）
第9－3－2－3－3－41図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 41 ）
第9－3－2－3－3－42図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の42）

第9－3－2－3－3－43図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の43）

第9－3－2－3－3－44図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 44 ）
第9－3－2－3－3－45図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の45）

第9－3－2－3－3－46図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の46）
第9－3－2－3－3－47図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の47）

第9－3－2－3－3－48図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の48）
第9－3－2－3－3－49図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の49）

第9－3－2－3－3－50図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 5 0）
第9－3－2－3－3－51図 ケーブルトレイ消火系に係る機器の配置を明示した図面（そ の 51 ）

第9－3－2－3－4－1図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P800用）

第9－3－2－3－4－2図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P401①，P404，P801，P803用）

第9－3－2－3－4－3図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P802用）

第9－3－2－3－4－4図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100②）用）
第9－3－2－3－4－5図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400（2）用）

第9－3－2－3－4－6図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400①用）
第9－3－2－3－4－7図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100①）

第9－3－2－3－4－8図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400①）
第9－3－2－3－4－9図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S605用）
第9－3－2－3－4－10図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C608用）

第9－3－2－3－4－11図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P607用）

第9－3－2－3－4－12図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300（2）用）
第9－3－2－3－4－13図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（2）用）

第9－3－2－3－4－14図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300③）用）

第9－3－2－3－4－15図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300③）用）

第9－3－2－3－4－16図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P4038），P101⑥用）

第9－3－2－3－4－17図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C4038），C1008用）

第9－3－2－3－4－18図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（4）用）

ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（3）用）

第9－3－2－3－4－20図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（7），C100（7）用）

第9－3－2－3－4－21図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（7），P101（5）用）
第9－3－2－3－4－22図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101 7 ，C403（9），C100（9）用）

第9－3－2－3－4－23図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1018），C403（11），C100（11）用）
第9－3－2－3－4－24図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1015）用）

第9－3－2－3－4－25図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（6），C100⑥用）
第9－3－2－3－4－26図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（6），P101（4）用）

第9－3－2－3－4－27図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（2）用）
第9－3－2－3－4－28図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C100⑤用）

第9－3－2－3－4－29図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（5）用）

第9－3－2－3－4－30図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1013）用）

第9－3－2－3－4－31図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（5）用）
第9－3－2－3－4－32図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（1）用）

第9－3－2－3－4－33図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（4），C403（4），C100（4）用）

第9－3－2－3－4－34図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（3），C403（3），C100（3）用）
第9－3－2－3－4－35図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（2），C100（2）用）
第9－3－2－3－4－36図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（2），P101（2），C749用）
第9－3－2－3－4－37図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（1），P101（1）用）

ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（1），C100（1）用）
第9－3－2－3－4－39図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（1），C501①）用）

第9－3－2－3－4－40図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（1）用）

第9－3－2－3－4－41図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502①，P503（2），C501（2）用）

第9－3－2－3－4－42図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（4）用）
第9－3－2－3－4－43図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300（4）用）

第9－3－2－3－4－44図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P202①用）
第9－3－2－3－4－45図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C202（1）用）

第9－3－2－3－4－46図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（2）用）
第9－3－2－3－4－47図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（3）用）
第9－3－2－3－4－48図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501（3）用）

第9－3－2－3－4－49図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（2）用）

第9－3－2－3－4－50図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502 3 3，P503（5），P202（3）用）
第9－3－2－3－4－51図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501（4），C202（2）用）

第9－3－2－3－4－52図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（5），P503（7），P202（5）用）
第9－3－2－3－4－53図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（4），P503（6），P202（4）用）
第9－3－2－3－4－54図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑥，C202（4）用）

第9－3－2－3－4－55図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S2024）用）

第9－3－2－3－4－56図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202⑤用）
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501구，C202（5）用）

第9－3－2－3－4－58図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502⑥，P503（8），P202 6 ${ }^{\text {用）}}$

第9－3－2－3－4－59図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P769用）

第9－3－2－3－4－60図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501－1用）

第9－3－2－3－4－61図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S703用）
第9－3－2－3－4－62図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C736用）

第9－3－2－3－4－63図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C729用）
第9－3－2－3－4－64図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S704用）

第9－3－2－3－4－65図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202①用）
第9－3－2－3－4－66図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑤，C202（3）用）

第9－3－2－3－4－67図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（4），P202（2）用）

第9－3－2－3－4－68図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300①）用）

第9－3－2－3－4－69図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300（1）用）

第9－3－2－3－4－70図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（12）用）

第9－3－2－3－4－71図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（21）用）

第9－3－2－3－4－72図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（11）用）

第9－3－2－3－4－73図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（11），C403（19），C100（19）用）

第9－3－2－3－4－74図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101 122，C403（20），C100（20）用）

第9－3－2－3－4－75図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（10）用）

ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（18）用）

第9－3－2－3－4－77図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C100（18）用）

第9－3－2－3－4－78図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1019）用）

第9－3－2－3－4－79図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C100苚）

第9－3－2－3－4－80図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C40317）用）
第9－3－2－3－4－81図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S10177用）

第9－3－2－3－4－82図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1018用）
第9－3－2－3－4－83図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（13），C403（15），C100（15）用）

第9－3－2－3－4－84図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（11），C403（13），C100（13）用）
第9－3－2－3－4－85図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（12），C403（14），C100（14）用）
第9－3－2－3－4－86図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（16），C100（16） 用）

第9－3－2－3－4－87図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403⑨，C403（11），C100（11）用）
第9－3－2－3－4－88図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101⑥用）
第9－3－2－3－4－89図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P403（11），C403（12），C100（12）用）

第9－3－2－3－4－90図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503⑨，P202（7）用）
第9－3－2－3－4－91図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501®8，C202⑥用）
第9－3－2－3－4－92図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202⑥用）

第9－3－2－3－4－93図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（11）用）

第9－3－2－3－4－94図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（11），P202（8）用）

ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑨，C202（7） 用）

第9－3－2－3－4－96図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S202（7）用）

第9－3－2－3－4－97図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C501⑪，C2029）用）
第9－3－2－3－4－98図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P503（12），P202（11） ）

第9－3－2－3－4－99図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S2028用）
第9－3－2－3－4－100図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P202⑨，C501（11），C2028）用）

第9－3－2－3－4－101図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P20211），C501（12），C202（11）用）
第9－3－2－3－4－102図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S709（1）用）

第9－3－2－3－4－103図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S708用）
第9－3－2－3－4－104図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C403（24），C809用）

第9－3－2－3－4－105図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1019），C403（23，C100（22）用）

第9－3－2－3－4－106図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P101（10），C403（22），C100（21）用）

第 $9-3-2-3-4-107$ 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S101（13），S709（2）用）
第9－3－2－3－4－108図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201①，C201用）

第9－3－2－3－4－109図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P7019），P700＠9，P610⑥用）
第9－3－2－3－4－110図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K7028），K706⑧用）

第9－3－2－3－4－111図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K602（2）用）

第9－3－2－3－4－112図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P602⑥，C606（4），C601（2）用）

第9－3－2－3－4－113図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P7018），P7008，P610⑤）用）

第9－3－2－3－4－114図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606③）用）

第9－3－2－3－4－115図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602（3）用）

第9－3－2－3－4－116図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702 ${ }^{7}$ ），K706 ${ }^{(7)}$ ，P701（7）用）

第9－3－2－3－4－117図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700（7），P6104），P602（4）用）

第9－3－2－3－4－118図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P602⑤）用）

第9－3－2－3－4－119図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702⑥，K706⑥，P701⑥用）

第9－3－2－3－4－120図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700⑥，P610③，P602③）用）

第9－3－2－3－4－121図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606（2）用）

第9－3－2－3－4－122図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602（2）用）

第9－3－2－3－4－123図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（5），K706（5），P701（5）用）

第9－3－2－3－4－124図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700⑤，P610（2），P602（2）用）

第9－3－2－3－4－125図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K601，P600，P601用）

第9－3－2－3－4－126図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S601（2）用）
第9－3－2－3－4－127図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（4），K706（4），P701（4）用）

第9－3－2－3－4－128図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700④，P610①，P602①用）
第9－3－2－3－4－129図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201（6）用）

第9－3－2－3－4－130図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702①，K706①，P701①用）

第9－3－2－3－4－131図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700①，P500①，P501①用）

第9－3－2－3－4－132図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702（2），K706（2），P701（2）用）

第9－3－2－3－4－133図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700（2），P500（2），P501（2）用）

第9－3－2－3－4－134図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C606（1）用）

第9－3－2－3－4－135図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K702③），K706③，P701③）用）

第9－3－2－3－4－136図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P700③，P500（3），P501（3）用）

第9－3－2－3－4－137図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S602①用）
第9－3－2－3－4－138図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C602①用）

第9－3－2－3－4－139図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C603（2）用）

第9－3－2－3－4－140図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600①用）

第9－3－2－3－4－141図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C601①用）

第9－3－2－3－4－142図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C602（2）用）

第9－3－2－3－4－143図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600（4）用）

第9－3－2－3－4－144図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600③）用）

第9－3－2－3－4－145図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S601③）用）
第9－3－2－3－4－146図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S600（2）用）

第9－3－2－3－4－147図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300①），C300⑤用）

第9－3－2－3－4－148図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300⑤）用）

第9－3－2－3－4－149図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300③）C300⑦用）

第9－3－2－3－4－150図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S300⑥用）

第9－3－2－3－4－151図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P300②），C300⑥用）

第9－3－2－3－4－152図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P3004），C3008用）

第9－3－2－3－4－153図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100（3），P402（3）用）

第9－3－2－3－4－154図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102⑤），C100②7） 用）

第9－3－2－3－4－155図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（3）用）

第9－3－2－3－4－156図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100⑥，P402⑥用）

第9－3－2－3－4－157図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（6），C100②8用）

第9－3－2－3－4－158図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（4）用）

第9－3－2－3－4－159図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K10077，P40277用）

第9－3－2－3－4－160図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1027，C100（29）用）
第9－3－2－3－4－161図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201②），P502⑧用）

第9－3－2－3－4－162図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201③），C200（2）用）

第9－3－2－3－4－163図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P2014，C200③用）

第9－3－2－3－4－164図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201③，P502⑨用）

第9－3－2－3－4－165図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S200（2）用）

第9－3－2－3－4－166図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C200（4）用）

第9－3－2－3－4－167図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201⑤）用）

第9－3－2－3－4－168図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（5）用）

第9－3－2－3－4－169図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（2），C100（24）用）

第 $9-3-2-3-4-170$ 図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100（2），P402（2）用）

第9－3－2－3－4－171図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（1），C100②3用）

第9－3－2－3－4－172図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100①），P402（1）用）

第9－3－2－3－4－173図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S200①用）

第9－3－2－3－4－174図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S601（1）用）

第9－3－2－3－4－175図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K602①，P603①，C603①用）
第9－3－2－3－4－176図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P201（2），C200①）用）

第9－3－2－3－4－177図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201①，P502（7）用）

第9－3－2－3－4－178図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1024），C100（26）用）

第9－3－2－3－4－179図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100（5），P402（5）用）
第9－3－2－3－4－180図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S10077用）

第9－3－2－3－4－181図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102③，C100（25）用）

第9－3－2－3－4－182図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K1004），P402（4）用）

第9－3－2－3－4－183図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100⑥用）
第9－3－2－3－4－184図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K1008），P402（8）用）

第9－3－2－3－4－185図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P1028），C100（30）用）

第9－3－2－3－4－186図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100⑨）用）

第9－3－2－3－4－187図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S1008用）

第9－3－2－3－4－188図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P102（9），C100（31）用）

第9－3－2－3－4－189図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K100＠9，P402⑨用）

第9－3－2－3－4－190図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P502（10）用）

第9－3－2－3－4－191図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K201（4）用）

第9－3－2－3－4－192図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S30077用）

第9－3－2－3－4－193図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C300⑨）用）

第9－3－2－3－4－194図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K610③），K611（3），K612（3）用）

第9－3－2－3－4－195図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K610（2），K611（2），K612（2）用）

第9－3－2－3－4－196図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K610①），K611①，K612①用）

第9－3－2－3－4－197図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003（1）用）

第9－3－2－3－4－198図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003（2）用）

第9－3－2－3－4－199図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K003③）用）

第9－3－2－3－4－200図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（3）用）

第9－3－2－3－4－201図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008③用）

第9－3－2－3－4－202図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（2）用）
第9－3－2－3－4－203図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008（2）用）

第9－3－2－3－4－204図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S003（1）用）
第9－3－2－3－4－205図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C008①用）

第9－3－2－3－4－206図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C004用）

第9－3－2－3－4－207図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C001（2）用）

第9－3－2－3－4－208図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S001（2）用）

ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K002用）

第9－3－2－3－4－210図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C001①用）

第9－3－2－3－4－211図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S001（1）用）

第9－3－2－3－4－212図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（1）用）

第9－3－2－3－4－213図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750①用）
第9－3－2－3－4－214図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750（2）用）

第9－3－2－3－4－215図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（2）用）
第9－3－2－3－4－216図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750③）用）

第9－3－2－3－4－217図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（3）用）
第9－3－2－3－4－218図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750（4）用）

第9－3－2－3－4－219図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S7514）用）

第9－3－2－3－4－220図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750⑤）用）

第9－3－2－3－4－221図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C002（2）用）

第9－3－2－3－4－222図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C003用）

第9－3－2－3－4－223図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S002用）

第9－3－2－3－4－224図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S750⑥用）

第9－3－2－3－4－225図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C002①用）

第9－3－2－3－4－226図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S75077用）

第9－3－2－3－4－227図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751（6）用）

第9－3－2－3－4－228図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S751⑤）用）

第9－3－2－3－4－229図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S754用）

第9－3－2－3－4－230図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S755用）

第9－3－2－3－4－231図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S752（1）用）

第9－3－2－3－4－232図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S752（2）用）
第9－3－2－3－4－233図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S753用）

第9－3－2－3－4－234図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400③）用）

第9－3－2－3－4－235図
ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C401①用）

第9－3－2－3－4－236図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S100（10）用）
第9－3－2－3－4－237図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K400①）用）

第9－3－2－3－4－238図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400（2）用）

第9－3－2－3－4－239図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P402（10）用）

第9－3－2－3－4－240図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （K400（2）用）
第9－3－2－3－4－241図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P400③）用）
$\begin{aligned} & \text { 第9－3－2－3－4－242図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 } \\ & \text {（P603（2）用）}\end{aligned}$
第9－3－2－3－4－243図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C400（4）用）

第9－3－2－3－4－244図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （C401（2）用）
第9－3－2－3－4－245図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （S603用）
$\begin{array}{cl}\text { 第9－3－2－3－4－246図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 } \\ & (\mathrm{P} 603 \text {（3）用）}\end{array}$
第9－3－2－3－4－247図 ケーブルトレイ消火系に係る主配管の配置を明示した図面 （P401（2）用）
9． 4 浸水防護施設

第9－4－1－1－20図第9－4－1－1－21図第9－4－1－1－22図第9－4－1－1－23図第9－4－1－1－24図第9－4－1－1－25図第9－4－1－1－26図第9－4－1－1－27図第9－4－1－1－28図第9－4－1－1－29図第9－4－1－1－30図第9－4－1－1－31図第9－4－1－1－32図

防潮壁（第3号機海水ポンプ室）構造図（4／4）
防潮壁（第 3 号機放水立坑）構造図（ $1 / 4$ ）
防潮壁（第 3 号機放水立坑）構造図（ $2 / 4$ ）
防潮壁（第 3 号機放水立坑）構造図（ $3 / 4$ ）
防潮壁（第3号機放水立坑）構造図（4／4）
防潮壁（第3号機海水熱交換器建屋）構造図
取放水路流路縮小工（第1号機取水路）（No．1）（No．2）構造図
取放水路流路縮小工（第1号機放水路）構造図屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）構造図屋外排水路逆流防止設備（防潮堤北側）構造図（1／2）
屋外排水路逆流防止設備（防潮堤北側）構造図（2／2）
補機冷却海水系放水路逆流防止設備（No．1），（No．2）構造図
水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）構造図
第9－4－1－1－33図 水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）構造図

第9－4－1－1－34図 浸水防止蓋（原子炉機器冷却海水配管ダクト）構造図
第9－4－1－1－35図 浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））構造図第9－4－1－1－36図 浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））構造図第9－4－1－1－37図 浸水防止蓋（第3号機補機冷却海水系放水ピット）構造図
第9－4－1－1－38図 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア角落し部）構造図
第9－4－1－1－39図 浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置エリア点検用開口部）（No．1），（No．2）構造図
第9－4－1－1－40図 第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図
第9－4－1－1－41図 第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図

第9－4－1－1－42図 第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）構造図
第9－4－1－1－43図 第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図
第9－4－1－1－44図 第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル （No．1），（No．2）構造図
第9－4－1－1－45図 第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル （No．1），（No．2）構造図

第9－4－1－1－46図 第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2）構造図

第9－4－1－1－47図 第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図
第9－4－1－2－1図 外郭浸水防護設備 機器の配置を明示した図面（その1）第9－4－1－2－2図 外郭浸水防護設備 機器の配置を明示した図面（その 2 ）

9．4．2 内郭浸水防護設備

第9－4－2－1－1図 SGTSヒータユニット（A）室浸水防止水密扉構造図
第9－4－2－1－2図 RHR Hx（A）室－RHR Hx（B）室浸水防止水密扉構造図
第9－4－2－1－3図 原子炉建屋浸水防止水密扉（No．3）構造図
第9－4－2－1－4図 LPCSポンプ室浸水防止水密扉構造図
第9－4－2－1－5図 HPCSポンプ室浸水防止水密扉構造図
第9－4－2－1－6図 RHRポンプ（B）室浸水防止水密扉構造図
第9－4－2－1－7図 RHRポンプ（A）室浸水防止水密扉構造図
第9－4－2－1－8図 RHRポンプ（C）室－共通通路浸水防止水密扉構造図
第9－4－2－1－9図 FPMUWポンプ室浸水防止水密扉構造図
第9－4－2－1－10図 RCICタービンポンプ室－共通通路浸水防止水密扉構造図
第9－4－2－1－11図 HECW冷凍機（B）（D）室－HECW冷凍機（A）（C）室浸水防止水密扉構造図
第9－4－2－1－12図 制御建屋共通エリア浸水防止水密扉構造図

第9－4－2－1－13図
第9－4－2－1－14図
第9－4－2－1－15図
第9－4－2－1－16図第9－4－2－1－17図第9－4－2－1－18図第9－4－2－1－19図第9－4－2－1－20図第9－4－2－1－21図第9－4－2－1－22図第9－4－2－1－23図

第9－4－2－1－24図
第9－4－2－1－25図
第9－4－2－1－26図

第9－4－2－1－27図
第9－4－2－1－28図
第9－4－2－1－29図
第9－4－2－1－30図
第9－4－2－1－31図第9－4－2－1－32図
$D / G(B)$ 室 $-D / G(H P C S)$ 室浸水防止水密扉構造図
区分IIIHPCS電気品室－区分II非常用電気品室浸水防止水密扉構造図
RCW Hx（A）（C）室一共通通路浸水防止水密扉構造図
HPCW Hx室浸水防止水密扉構造図
HPCW Hx室－RCW Hx（B）（D）室浸水防止水密扉構造図
補助ボイラー建屋連絡階段管理区域外伝播防止水密扉構造図
計測制御電源（B）室浸水防止水密扉（No．1）構造図
計測制御電源（B）室浸水防止水密扉（No．2）構造図
RSSS盤室浸水防止水密扉構造図
計測制御電源室（A）－常用および共通M／C•P／C室浸水防止水密扉構造図制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉 （No．1）構造図

250V直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉構造図 ISI室浸水防止水密扉構造図
制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉 （No．2）構造図
燃料移送ポンプ（H）室－燃料移送ポンプ（A）室浸水防止水密扉構造図燃料移送ポンプ（A）室－燃料移送ポンプ（B）室浸水防止水密扉構造図 RSWポンプ（A）（C）室－TSWポンプ室浸水防止水密扉構造図 HPSWポンプ室浸水防止水密扉構造図 TSWポンプ室－RSWポンプ（B）（D）室浸水防止水密扉構造図 $R W$ 電気品室（B）浸水防止水密扉構造図

第9－4－2－1－33図第9－4－2－1－34図第9－4－2－1－35図第9－4－2－1－36図第9－4－2－1－37図第9－4－2－1－38図第9－4－2－1－39図第9－4－2－1－40図第9－4－2－1－41図第9－4－2－1－42図第9－4－2－1－43図第9－4－2－1－44図第9－4－2－1－45図第9－4－2－1－46図第9－4－2－1－47図第9－4－2－1－48図第9－4－2－1－49図第9－4－2－1－50図第9－4－2－1－51図第9－4－2－1－52図第9－4－2－1－53図第9－4－2－1－54図第9－4－2－1－55図第9－4－2－1－56図第9－4－2－1－57図第9－4－2－1－58図第9－4－2－1－59図第9－4－2－1－60図第9－4－2－1－61図第9－4－2－1－62図第9－4－2－1－63図第9－4－2－1－64図第9－4－2－1－65図第9－4－2－1－66図第9－4－2－1－67図

北西階段室管理区域外伝播防止水密扉構造図原子炉建屋管理区域外伝播防止水密扉（No．3）構造図 RW制御室管理区域外伝播防止水密扉構造図原子炉建屋管理区域外伝播防止水密扉（No．1）構造図原子炉建屋管理区域外伝播防止水密扉（No．2）構造図制御建屋管理区域外伝播防止水密扉（No．1）構造図 タービン建屋管理区域外伝播防止水密扉構造図主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉構造図原子炉建屋浸水防止水密扉（No．4）構造図

燃料移送ポンプ（A）室浸水防止水密扉構造図
燃料移送ポンプ（B）室浸水防止水密扉構造図
$\mathrm{R}-01$ 階段浸水防止堰（地上 3 階）構造図
$\mathrm{R}-02$ 階段浸水防止堰（地上 3 階）構造図
R － 01 階段浸水防止堰（地上 2 階）構造図
FCS再結合装置（A）室浸水防止堰構造図
FCS再結合装置（B）室浸水防止堰構造図
R－02階段浸水防止堰（地上 2 階）構造図
SGTSヒータユニット（B）室浸水防止堰構造図
CAMSラック（B）室浸水防止堰構造図
SGTSヒータユニット（A）室浸水防止堰構造図
CAMSラック（A）室浸水防止堰構造図
SGTSフィルタユニット室浸水防止堰構造図
R－01階段浸水防止堰（地上1階）構造図 $\mathrm{R}-02$ 階段浸水防止堰（地上 1 階）構造図

バルブ（B）室浸水防止堰構造図
バルブ（A）室浸水防止堰構造図
FPCポンプ室浸水防止堰構造図
$\mathrm{R}-01$ 階段浸水防止堰（地下 1 階）構造図
R－02階段浸水防止堰（地下1階）構造図
MSトンネル室浸水防止堰構造図
RCIC MCC 室浸水防止堰構造図
TIP駆動装置室浸水防止堰構造図
復水補給水ポンプ室浸水防止堰構造図
CUW配管・バルブ室浸水防止堰構造図
原子炉補機（A）室送風機室－原子炉補機（HPCS）室送風機室浸水防止堰構造図

第9－4－2－1－68図 原子炉補機（HPCS）室送風機室－原子炉補機（B）室送風機室および送風機 エリア浸水防止堰構造図
第9－4－2－1－69図 $2 F$ 通路浸水防止堰構造図

第9－4－2－1－70図第9－4－2－1－71図第9－4－2－1－72図第9－4－2－1－73図第9－4－2－1－74図第9－4－2－1－75図第9－4－2－1－76図第9－4－2－1－77図第9－4－2－1－78図第9－4－2－1－79図第9－4－2－1－80図第9－4－2－1－81図第9－4－2－1－82図第9－4－2－1－83図第9－4－2－1－84図第9－4－2－1－85図第9－4－2－1－86図第9－4－2－1－87図第9－4－2－1－88図第9－4－2－1－89図第9－4－2－1－90図第9－4－2－1－91図第9－4－2－1－92図第9－4－2－1－93図第9－4－2－1－94図第9－4－2－1－95図第9－4－2－1－96図第9－4－2－1－97図

第9－4－2－1－98図第9－4－2－1－99図第9－4－2－1－100図第9－4－2－1－101図 第2号機海水ポンプ室浸水防止壁構造図
第9－4－2－2－1図 内郭浸水防護設備 機器の配置を明示した図面（その1）
第9－4－2－2－2図 内郭浸水防護設備 機器の配置を明示した図面（その 2 ）
第9－4－2－2－3図 内郭浸水防護設備 機器の配置を明示した図面（その3）
第9－4－2－2－4図 内郭浸水防護設備 機器の配置を明示した図面（その4）
第9－4－2－2－5図 内郭浸水防護設備 機器の配置を明示した図面（その5）
第9－4－2－2－6図 内郭浸水防護設備 機器の配置を明示した図面（その6）
第9－4－2－2－7図 内郭浸水防護設備 機器の配置を明示した図面（その7）

第9－4－2－2－8図 内郭浸水防護設備 機器の配置を明示した図面（その8）
第9－4－2－2－9図 内郭浸水防護設備 機器の配置を明示した図面（その9）
第9－4－2－2－10図 内郭浸水防護設備 機器の配置を明示した図面（その10）
第9－4－2－2－11図 内郭浸水防護設備 機器の配置を明示した図面（その11）
第9－4－2－2－12図内郭浸水防護設備 機器の配置を明示した図面（その12）

第9－4－2－2－13図
第9－4－2－2－14図機器の配置を明示した図面（その 1 3 ）

第9－4－2－2－15図第9－4－2－2－16図

第9－4－2－2－17図第9－4－2－2－18図

内郭浸水防護設備内郭浸水防護設備 機器の配置を明示した図面（その15）内郭浸水防護設備 機器の配置を明示した図面（その16）内郭浸水防護設備 機器の配置を明示した図面（その17）内郭浸水防護設備 機器の配置を明示した図面（その18）

9.5 補機駆動用燃料設備

9．5．1 燃料設備

第9－5－1－1－1図
【設計基準対象施設】補機駆動用燃料設備系統図（1／4）可搬
第9－5－1－1－2図【設計基準対象施設】補機駆動用燃料設備系統図（2／4）（非常用ディー ゼル発電設備燃料移送系系統図）
第9－5－1－1－3図

第9－5－1－1－4図 レイ系ディーゼル発電設備燃料移送系系統図）
【設計基準対象施設】補機駆動用燃料設備系統図（3／4）（高圧炬心スプ

【設計基準対象施設】補機駆動用燃料設備系統図（4／4）（ガスタービン発電設備燃料移送系系統図）
第9－5－1－1－5図【重大事故等対処設備】補機駆動用燃料設備系統図（ $1 / 4$ ）可搬第9－5－1－1－6図【重大事故等対処設備】補機駆動用燃料設備系統図（2／4）（非常用ディ —ゼル発電設備燃料移送系系統図）
第9－5－1－1－7図【重大事故等対処設備】補機駆動用燃料設備系統図（3／4）（高圧灯心ス プレイ系ディーゼル発電設備燃料移送系系統図）
第9－5－1－1－8図【重大事故等対処設備】補機駆動用燃料設備系統図（4／4）（ガスタービ ン発電設備燃料移送系系統図）
第9－5－1－2－1図 大容量送水ポンプ（タイプI）（燃料タンク）構造図
第9－5－1－2－2図
大容量送水ポンプ（タイプII）（燃料タンク）構造図
第9－5－1－2－3図
原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）構造図
第9－5－1－2－4図
タンクローリ構造図
第9－5－1－3－1図
第9－5－1－3－2図
第9－5－1－3－3図
第9－5－1－3－4図
第9－5－1－3－5図
第9－5－1－4－1図
第9－5－1－4－2図第9－5－1－4－3図

補機駆動用燃料設備
補機駆動用燃料設備
補機駆動用燃料設備
補機駆動用燃料設備
補機駆動用燃料設備
補機駆動用燃料設備
補機駆動用燃料設備補機駆動用燃料設備 主配管の配置を明示した図面（その3）

第9－5－1－4－4図 補機駆動用燃料設備 主配管の配置を明示した図面（その4）
9.6 非常用取水設備

9．6．1 取水設備
第9－6－1－1－1図 貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）構造図
第9－6－1－1－2図 取水口構造図
第9－6－1－1－3図 取水路構造図
第9－6－1－1－4図 海水ポンプ室構造図
第9－6－1－2－1図 取水設備 機器の配置を明示した図面（その1）
9.7 緊急時対策所

第9－7－1－1図 緊急時対策所の設置場所を明示した図面（その1）

I 名称及び住所並びに代表者の氏名

I 名称及び住所並びに代表者の氏名
名 称 東北電力株式会社
住 所 宮城県仙台市青葉区本町一丁目7番1号
代表者の氏名 取締役社長 社長執行役員 樋口 康二郎

II 工事計画
一 発電用原子炉施設
1．発電用原子炉を設置する工場又は事業所の名称及び所在地
名 称 女川原子力発電所
所 在 地 宮城県牡鹿郡女川町及び石巻市
2．発電用原子炉施設の出力及び周波数
出 力 1650000 kW
第2号機 825000kW（今回申請分）
第 3 号機 825000 kW
周波数 50 Hz

1．原子炉本体
沸騰水型発電用原子炉施設に係るものにあっては，次の事項
1.1 炉型式，定格熱出力，過剰反応度及び反応度係数（減速材温度係数，燃料棒温度係

数，減速材ボイド係数及び出力反応度係数）並びに減速材

			変 更 前＊${ }^{\text {1 }}$	変 更 後
炉	型 式	－	濃縮ウラン，軽水減速，軽水冷却型（沸騰水型）	変更なし
定	格 熱 出 力	MW	2436	
過	剰 反 応 度	$\Delta \mathrm{k}$	0.14 以下	
反応度係数	減速材温度係数	$(\Delta \mathrm{k} / \mathrm{k}) /{ }^{\circ} \mathrm{C}$	$\begin{gathered} -0.12 \times 10^{-3} \sim-0.26 \times 10^{-3} \\ (\text { 高温 }, \text { ボイドなし) } \end{gathered}$	
	燃料棒温度係数 （ドップラ係数）	$(\Delta \mathrm{k} / \mathrm{k}) /{ }^{\circ} \mathrm{C}$	$-1.93 \times 10^{-5} \sim-2.09 \times 10^{-5}$ （運転状態 —原子炉定格熱出力時）	
	減速材ボイド係数	（ $\Delta \mathrm{k} / \mathrm{k}$ ）／\％ボイド	$-0.78 \times 10^{-3} \sim-0.96 \times 10^{-3}$ （運転状態 —原子炉定格熱出力時）	
	出力反応度係数	$(\Delta \mathrm{k} / \mathrm{k}) /(\Delta \mathrm{p} / \mathrm{p})$	-0.035以下 （運転状態 —原子炉定格熱出力時）	
$\begin{aligned} & \text { 減 } \\ & \text { 速 } \\ & \text { 材 } \end{aligned}$	名 称	－	軽水	
	種 類			
	組 成	－	導電率 $100 \mu \mathrm{~S} / \mathrm{m}$ 以下	

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対し て，基本設計方針の変更を行うことに伴い申請することを含む。

1．2 炉心

（1）炉心形状，格子形状，燃料集合体数，炉心有効高さ及び炉心等価直径

		変 更 前＊1	変 更 後
炉 心 形 状	－	円柱状（ 9×9 型燃料集合体形状，チャン ネルボックス（断面内寸法 \square mm× \square mm，板厚 \square mm， ジルカロイ－ 4 製）付き）	変更なし
格 子 形 状	－	S 格子	
燃 料集 合 体 数	－	560	
炉心有効高さ	mm		
炉心等価直径	mm		

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
（2）燃料体最高燃焼度（初装荷及び取替えの別並びに燃料材，燃料要素及び燃料集合体の別に記載すること。）及び核燃料物質の最大装荷量

		変更前＊${ }^{\text {1 }}$		変更後
燃料体最高燃焼度	MWd／t	取替燃料集合体 タイプ 1 （ 9×9 燃料（ A 型））	55000	変更なし
		取替燃料集合体 $\text { タイプ } 2$ （ 9×9 燃料（ B 型））	55000	変更なし
核燃料物質の最大装荷量	t	$\begin{gathered} 9 \times 9 \text { 燃料 }(\mathrm{A} \text { 型) } \\ \text { 炉心 } \end{gathered}$	約 $97 * 2$	変更なし
		9×9 燃料（ B 型）炉心	約 $96 * 2$	変更なし

注記＊1：記載内容は，既工事計画認可申請書（平成22年9月15日付け東北電原技第6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。 ＊2：ウラン装荷量を示す。
（3）燃料材の最高温度

		変 更 前＊1		変更後
燃料材の最高温度	${ }^{\circ} \mathrm{C}$	$9 \times 9 \text { 燃料 (} \mathrm{A} \text { 型) }$ 燃料集合体		変更なし
		$\begin{gathered} 9 \times 9 \text { 燃料 }(B \text { 型) } \\ \text { 燃料集合体 } \end{gathered}$		

注記＊1：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
＊2：ガドリニア混合二酸化ウラン燃料棒の場合。
（4）熱的制限値（最小限界出力比及び最大線出力密度）

			変 更 前		変更後
熱 的 制 限 値	最 小限界出力比	－	9×9 燃料（ A 型）	1． 23	変更なし
			9×9 燃料（ B 型）	1． 22	
	最大線出力密度	kW／m	44.0		

注記＊1：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。

				変更前＊${ }^{\text {1 }}$	変更後
		名称	－	取替燃料集合体タイプ 1 （ 9×9 燃料（ A 型））	変更なし
		種類	－	二酸化ウラン焼結ペレット及びガドリニア混合二酸化ウラン焼結ペレット ジルカロイ－2（ジルコニウム内張）管被覆	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	燃 料 集 体	全長	mm		変更なし
		$\begin{gathered} \text { ウォータロッド } \\ \text { 外径 } \end{gathered}$	mm	$\square * 3, * 4$	
		燃料棒ピッチ	mm		
		燃料棒間隙	mm		
	$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { 棒 } \end{aligned}$	有効長さ	mm	（部分長燃料棒の場合： \square ＊2，＊3）	
		燃料ペレット直径	mm	$\square * 3, * 4$	
		燃料ペレット長さ	mm	$\square * 3, * 4$	
		被覆管外径	mm	$\square * 3, * 4$	
		被覆管肉厚	mm	（うちジルコニウム内張 \square	
材料		ペレット	－	二酸化ウラン＊4 （一部ガドリニア入りを含む）	変更なし
	被覆管		－	$\begin{gathered} \text { ジルカロイ }-2 * 4 \\ (\text { ジルコニウム内張) } \end{gathered}$	

[^0]

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の「 9×9 燃料 （ A 型）燃料集合体構造図」による。
＊ 3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 22 年 10月26日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の添付書類「IV－4－1 熱出力計算書」による。

[^1]＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成22年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の「 9×9 燃料 （B型）燃料集合体構造図」による。

1．4チャンネルボックス

			変更前＊${ }^{\text {P }}$	変更後
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	断面内寸法	mm	＊ 2	変更なし
	板厚	mm	$\text { 】 }{ }^{2}$	
	材料	－	ジルカロイ -4	変更なし

注記 $* 1$ ：記載内容は，既工事計画認可申請書（平成 22 年 9 月 15 日付け東北電原技第 6号工事計画認可申請書）による。なお，本工事計画は，申請した工事計画に対 して，基本設計方針の変更を行うことに伴い申請することを含む。
＊2：公称値を示す。

1． 6 炉心支持構造物
（1）炉心シュラウド及びシュラウドサポート

注記＊ 1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原

[^2]子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「最高使用圧力」と記載。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：重大事故等時における使用時の値。
＊5 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「幅」と記載。
＊8 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊9：記載の適正化を行う。既工事計画書には「胴」と記載。
＊10：記載の適正化を行う。既工事計画書には「リング」と記載。

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} \& 変 更 前 \& 変 更 後

\hline 名 \& \& 称 \& シュラウドサポート \& シュラウドサポート＊1

\hline 種 \& 類 \& － \& 脚支持円筒形 \& 変更なし

\hline \& 高 使 用 圧 力 \& MPa \& \square（差圧） \& 変更なし
（差圧）

盆 $2, * 3$

\hline 最 \& 高 使 用 温 度 \& ${ }^{\circ} \mathrm{C}$ \& 302 \& $$
\begin{aligned}
& \text { 変更なし } \\
& 315 * 2, * 3
\end{aligned}
$$

\hline \multirow{7}{*}{| 主 |
| :--- |
| 要 |
| 寸 |
| 法 |} \& シリン ダ外径 \& mm \& \square \&

\hline \& 高 さ \& mm \& \&

\hline \& シリン ダ厚さ \& mm \& $$
\left.\square \square^{*}\right)
$$ \&

\hline \& \& mm \& \&

\hline \& $$
\begin{array}{lllll}
\text { シュラ } & \text { ヴサポート } \\
\text { プ } & \text { ー } & \text { ト } & \text { 厚 } & \text { さ }
\end{array}
$$ \& mm \& \[

\left.\square \square{ }^{*}\right)
\] \&

\hline \& \& mm \& $$
\square \square * 4
$$ \& 変更なし

\hline \& \& mm \& \&

\hline \multirow{4}{*}{材
料} \& シ リ ン ダ \& － \& NCF600－P \&

\hline \& レ グ \& － \& NCF600－P \&

\hline \& プレレート \& － \& NCF600－P \&

\hline \& リン グ \& － \& SUS316L \&

\hline 個 \& 数 \& － \& 1 \&

\hline
\end{tabular}

注記＊ 1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊3 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊ 4 ：公称値を示す。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「レグ厚さ」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「プレート厚さ」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「リング幅」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「リング厚さ」と記載。

（前頁からの続き）

		変		更
前	変 更 後			
個	数	2	2	変更なし

注記＊ 1 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心泠却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炬心スプレイ系，高圧代替注水系，原子炬隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊3 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心泠却設備そ の他原子炉注水設備（高圧灲心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炬隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）に使用する場合の記載事項。
＊4 ：公称値を示す。
＊5：下部スタビライザと組み立てられた状態で，上部タイロッド上端から下部スタビライザ上端までの長さ。
＊6 ：トグル，下部スタビライザと組み立てられた状態で，トグル下端から下部スタビライザ との取合位置までの長さ。
＊7 ：記載の適正化を行う。既工事計画書には「NCF750相当材（ASME SB－637 UNS N07750）」 と記載。
＊8：記載の適正化を行う。既工事計画書には「GXM1 相当材（ASME SA－182 F XM－19）」と記載。
（2）上部格子板

			変 更 前	変 更 後
名		称	上部格子板	上部格子板＊1
種	類	－	格子形	変更なし
	高 使 用 圧 力	MPa	（差圧）＊2	$\begin{aligned} & \text { 変更なし } \\ & \text { (差圧) } * 3, * 4 \\ & \hline \end{aligned}$
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$302 * 2$	変更なし $315 * 3, * 4$
主	外 径	mm	$\square^{* 5}$	変更なし
要	高 さ	mm	${ }^{* 5}$	
寸	リ ム 胴 板 厚 さ	mm	$]^{2} \quad \square * 2, * 5\right)$	
法	$\begin{aligned} & \text { グ リ ッドプレー ト } \\ & \text { 厚 } \end{aligned}$	mm	$\left.*^{2} \square{ }^{2, * 5}\right)$	
材 料	リ ム 胴	－	SUS316L	
	グリッドプレート	－	SUS316L	
個	数	－	1	

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
（3）炉心支持板

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
（4）燃料支持金具

注記 $~ * ~ 1 ~: ~$ 原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。

枠囲みの内容は商業機密の観点から公開できません。

							変 更 前	変 更 後
名						称	周辺燃料支持金具	周辺燃料支持金具＊1
種					類	－	1 体支持形	
	高	使	用	圧	力	MPa	（差圧）$*^{2}$	
最	高	使	用	温	度	${ }^{\circ} \mathrm{C}$	$302 * 2$	$\begin{aligned} & \text { 変更なし } \\ & 315 * 3, * 4 \end{aligned}$
主	外				径	mm	$\square{ }^{*}$	
要	高				d	mm	\square	
法	厚				さ	mm	$]^{* 2} \quad \square{ }^{* 2, * 5)}$	変更なし
材					料	－	SUS316LTP	
個					数	－	12	

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほら酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊3：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
（5）制御棒案内管

						変 更 前	変 更 後
名					称	制御棒案内管	制御棒案内管＊1
種				類	－	円筒形	変更なし
最	高	使	用	圧 力	MPa	（差圧）${ }^{*}$	
最	高	使	用	温 度	${ }^{\circ} \mathrm{C}$	$302 * 2$	変更なし $315 * 3, * 4$
主	外			径	mm		変更なし
要	長			さ	mm	$\square{ }^{*}$	
法	厚			さ	mm	$\left.\square^{* 2} \square 2, * 5\right)$	
材				ボディ＊6	－	SUS316L	
			料	ベース＊6	－	SUSF316L	
個				数	－	137	

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「材料」と記載。
1.7 原子炉圧力容器
（1）原子炉圧力容器本体及び監視試験片

（次頁へ続く）
（前頁からの続き）

（次頁へ続く）
（前頁からの続き）

（次頁へ続く）
（前頁からの続き）

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）と兼用。
＊2 ：S I 単位に換算したものである。
＊3：重大事故等時における使用時の値。
＊ 4 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び非常用炉心冷却設備そ の他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系，代替循環冷却系，ほう酸水注入系，残留熱除去系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，高圧代替注水系，低圧代替注水系，ほう酸水注入系）に使用する場合の記載事項。
＊5 ：公称値を示す。
＊6：記載の適正化を行う。既工事計画書には「全高」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。 記載内容は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画書の添付書類「IV－3－1－1－4 上部鏡板，鏡板フランジ及び胴板フランジの応力計算書」による。
＊ 8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画書の添付書類「IV－3－1－1－5 下部鏡板の応力計算書」による。
＊9：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「円筒部」と記載。
＊11：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊ 12 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 13 ：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊14：記載の適正化を行う。既工事計画書には「下部鏡板」と記載。
＊15：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊ 16 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－8 再循環水出口ノ ズル（N1）の応力計算書」による。
＊ 17 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－9 再循環水入口ノ ズル（N2）の応力計算書」による。
＊ 18 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－10 主蒸気出口ノズ ル（N3）の応力計算書」による。
＊19：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－11 給水ノズル（N4） の応力計算書」による。
＊20：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付
枠囲みの内容は商業機密の観点から公開できません。

け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－12 低圧炉心スプレ イノズル（N5）の応力計算書」による。
＊21：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－13 低圧注水ノズル （N6）の応力計算書」による。
＊22：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－14 上蓋スプレイノ ズル（N7）の応力計算書」による。
＊ 23 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－15 ベントノズル （N8）の応力計算書」による。
＊24：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－16 ジェットポンプ計測管貫通部ノズル（N9）の応力計算書」による。
＊25 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－17 差圧検出・ほう酸水注入ノズル（N11）の応力計算書」による。
＊26：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－18 計装ノズル（N12， N13，N14）の応力計算書」による。
＊27：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－19 ドレンノズル （N15）の応力計算書」による。
＊28：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－20 高圧炬心スプレ イノズル（N16）の応力計算書」による。
＊29：記載の適正化を行う。既工事計画書には「内張り厚さ」と記載。
＊30：記載の適正化を行う。既工事計画書には \square（最小）」と記載。
＊31：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－3 胴板の応力計算書」による。
＊32：記載の適正化を行う。既工事計画書には「ノズル」と記載。
＊33：記載の適正化を行う。既工事計画書には「内張り材」と記載。
（2）原子炉圧力容器支持構造物

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。

ロ 基礎ボルト

			変 更 前	変 更 後
名		称	原子炉圧力容器基礎ボルト	変更なし
種	類	－	埋込型	
最 高 使	用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
主要寸法	呼び 径	－		
	全 長	mm	＊2	
材 料		－	SNCM439	
個	数	－	120	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成元年6月8日付 け元資庁第 2015 号にて認可された工事計画の添付書類「IV－2－4－1－1 原子炉圧力容器基礎ボルトの耐震性についての計算書」による。
＊2 ：公称値を示す。
（3）原子炉圧力容器付属構造物
イ 原子炉圧力容器スタビライザ

			変 更 前	変 更 後
名		称	原子炉圧力容器スタビライザ	変更なし
種	類	－	皿ばね支持型	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$302 * 1$	
主要法	ロッド（呼び径）	－	\square	
	ブラケット厚さ	mm	$\square^{* 1} \square^{* 1} \square^{* 1, * 2}{ }^{* 2, * 3}$	
	ブラケット高さ	mm	」＊1，＊2	
材料	ヨ－ク	－	SF45A	
	ロ ド	－	SNCM439	
料	ブラ ケット	－	SGV49＊1	
個 数		－	8	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－2 原子炉圧力
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。

ロ 原子炉格納容器スタビライザ

			変 更 前	変 更 後
名	称		原子炉格納容器スタビライザ	変更なし
種	類	－	管形	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
	管 外 径	mm	457． $2^{* 2}$	
主		mm		
法	ガセットプレート厚さ	mm	$\square \square^{\left.* 1, *^{*}\right)}$	
	内側メイルシャラグ厚さ	mm	$\square^{* 1} \square^{\left.* 1, *_{2}\right)}$	
	管＊5	－	STS42	
枒	ガセットプレート	－	SM41B	
科	内側メイルシャラグ	－	SM41B＊1	
個 数		－	8	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－1 原子炉格納容器スタビライザの応力計算書」による。
＊2 ：公称値を示す。
＊3 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「第 5－5－1 図 原子炉格納容器スタビライザ構造図」による。
＊5 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－7 中性子束計測 ハウジング貫通孔の応力計算書」による。

二 制御棒駆動機構ハウジング

			変 更 前	変 更 後
名		称	制御棒駆動機構ハウジング	変更なし
種	類	－	円筒形	
	高 使 用 圧力	MPa	$\square^{* 1}$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	全 長＊2	mm	$\square{ }^{* 3}$	
	外径（貫通部）	mm		
	厚 さ	mm	$\left.\square^{* 4} \square{ }^{* 3}\right)$	
材	料	－	SUSF316	
個	数	－	137	

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－1－6 制御棒駆動機構ハウジング貫通孔の応力計算書」による。

ホ 制御棒駆動機構ハウジング支持金具

			変 更 前	変更後
名		称	制御棒駆動機構 ハウジング支持金具	
種	類	－	皿ばね支持型	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 1$	
	サポートビーム幅	mm	$\square^{* 1, * 2}$	
	サポートビーム厚さ	mm		
	吊 り 棒 外 径	mm	$\square^{*}+*_{2}$	
主	グリッドプレート幅	mm		
要	グリッドプレート厚さ	mm	$\square * 1 \square * 1, * 2)$	
寸	サポートバー 1 幅	mm	$\square^{* 1, * 2}$	
法	サポートバー 2 幅	mm	$\square_{1, * 2}^{k}$	変更なし
	レストレントビーム幅	mm		
	レストレントビーム高さ	mm		
	レストレントビーム厚さ	mm		
	サポートビーム＊4	－	SM41B，STPT38＊1，＊5	
	吊 り 棒	－	S35C	
枒	グリッドプレート	－	SM50B＊1	
料	サ ポード バー	－	SM50B，STPT38＊1	
	レストレントビーム＊4	－	SS41＊1，＊5	
個	数	－	1 式	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－3 制御棒駆動機構ハウジング支持金具の応力計算書」による。
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「ビーム類」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「SM41B，STPT38，SS41」と記載。

ト ジェットポンプ計測管貫通部シール

			変 更 前 ジェットポンプ計測管貫通部シール	変 更 後
名		称		変更なし
種	類	－	円筒形	
	高 使 用 圧 力	MPa	$\square * 1$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	
主	全 長＊2	mm	？${ }^{3}$	
要	外 径	mm	$\square * 3$	
法	厚 さ	mm	$\square \square^{* 4}{ }^{* 3}$	
材	料	－	SUSF316	
個	数	－	2	

注記＊1 ：S I 単位に換算したものである。
＊2 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－4 ジェットポン プ計測管貫通部シールの基本板厚計算書」による。

チ 差圧検出・ほう酸水注入配管

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の うち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－3－6 差圧検出・ほ う酸水注入系配管（ティーよりN11 ノズルまでの外管）の基本板厚計算書」による。
＊ 3 ：S I 単位に換算したものである。
＊ 4 ：重大事故等時における使用時の値。
＊5 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の うち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）に使用する場合の記載事項。
＊6 ：公称値を示す。
（4）原子炉圧力容器内部構造物
イ 蒸気乾燥器の蒸気乾燥器ユニット及び蒸気乾燥器ハウジング

				変 更 前	変 更 後
名			称	蒸気乾燥器ユニット	変更なし
種		類	－	平行波板形	
主要寸法	高	さ	mm	${ }^{* 1}$	
材		料	－	SUS316L	
個		数	－	18	

注記＊1 ：公称値を示す。

			変 更 前	変 更 後
名		称	蒸気乾燥器ハウジング	変更なし
種	類	－	円筒形	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	外 径	mm	\square	
	高 さ	mm	$\square{ }^{* 1} \quad\left(\begin{array}{l}\text { 乾燥器上部）} \\ { }^{*}(\text { 乾燥器下部 })\end{array}\right.$	
	サポートリング厚さ	mm	$\square^{* 2} \square^{* 1, * 2)}$	
材	料	－	SUS316L	
個	数	－	1	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

ロ 気水分離器及びスタンドパイプ

			変 更 前	変 更 後
名		称	気水分離器	変更なし
種 類		－	たて形軸流遠心式	
主要寸法	外 径	mm	$\square * 1, * 2, * 3$	
	厚 さ	mm	$\square * 2 \square * 1, * 2)$	
材 料	インナーチューブ	－	SUS316L	
個	数	－	163	

注記＊1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－4 気水分離器及びスタンドパイプの応力計算書」による。
＊3：記載の適正化を行う。既工事計画書にはアウターシェルの外径として \square と記載。

				変 更 前	変 更 後
名			称	スタンドパイプ	変更なし
種		類	－	円筒形	
主要寸法	外	径	mm	\square ＊ 1	
	厚	さ	mm	$\square * 2 \quad \square * 1, * 2)$	
材		料	－	SUS316LTP	
個		数	－	163	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－4 気水分離器及びスタンドパイプの応力計算書」による。

			変 更 前	変 更 後
名		称	シュラウドヘッド	変更なし
種	類	－	さら形	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	フランジ外径	mm	\square	
	高 さ	mm	$\square * 1, * 2$	
	鏡 板内半 径	mm		
	鏡 板 厚 さ	mm	$\square \square^{* 3}{ }^{\left.* 1,{ }^{* 3}\right)}$	
	フランジ厚 さ	mm	$\left.\square * 3 \square^{* 1, * 3}\right)$	
材	料	－	SUS316L	
個	数	－	1	

注記＊ 1 ：公称値を示す。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－3 シュラウドヘ ッドの応力計算書」による。

ニジェットポンプ

			変 更 前	変 更 後
名		称	ジェットポンプ	ジェットポンプ＊1
種	類	－	流体噴射駆動式	変更なし
主要寸法	ノズル ル 径	mm		
	混 合 室内径	mm		
	混 合 室 全 長	mm	$\square{ }^{* 2}$	
	ディフューザ全長	mm		
	ライザ 外 径	mm		
	ライ ザ 厚 さ	mm	$\square^{k 4} \square{ }^{k 2, * 4}$	
	ディフューザ外径	mm	$\square * 2, * 4$	
	ディフューザ厚さ	mm	$\left.\square{ }^{* 4} \square * 2, * 4\right)$	
材	料	－	$\begin{gathered} \hline \text { SCS19A, } \\ \text { SUS316TP, } \\ \text { SUS316L, } \\ \text { SUSF316L, } \\ \text { NCF600-B } \end{gathered}$	
個	数	－	20	

注記 $~ 1 ~: ~$ 原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）と兼用。
＊2 ：公称値を示す。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－7 ジェットポン プの応力計算書」による。

ホ スパージャ及び内部配管

			変 更 前	変 更 後
名		称	給水スパージャ	給水スパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	ヘッダ外径＊2	mm		
	ヘッダ厚さ	mm	$\left.\square^{* 4} \square * 3, * 4\right)$	
	テイ－外 径	mm		
	ティー厚さ	mm	$\left.\square * 4{ }^{* 3, * 4}\right)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	へ ツ ダ	－	SUS316LTP	
	テ ィ ー	－	SUS316L＊4	
個 数		－	4	

注記 $~$ 1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊ 3 ：公称値を示す。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－5 給水スパージ ヤの応力計算書」による。

			変 更 前	変 更 後
名		称	高圧炉心スプレイスパージャ	高圧炉心スプレイスパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	へツダ外径＊2	mm		
	ヘ タダ厚さ＊4	mm		
	テイ－外 径	mm	$\square * 3, * 5$	
	ティー厚さ	mm	$\square * 5 \square * 3, * 5)$	
材	へ ダ	－	SUS316LTP	
料	テ ィ ー	－	SUSF316L＊5	
個	数	－	2	

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプ レイ系，低圧代替注水系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－6 高圧及び低圧炉心スプレイスパージャの応力計算書」による。

			変 更 前	変 更 後
名		称	低圧炉心スプレイスパージャ	低圧炉心スプレイスパージャ＊1
種	類	－	ヘッダ形	変更なし
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	へツダ外径＊2	mm		
	へ ダ厚さ＊4	mm	$\left.\square^{* 5} \square{ }^{3}\right)$	
	テイ－外 径	mm	$\square * 3, * 5$	
	ティー厚さ	mm		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	へ シ	－	SUS316LTP	
	テ ィ－	－	SUSF316L＊5	
個	数	－	2	

注記＊1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプ レイ系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－6 高圧及び低圧炉心スプレイスパージャの応力計算書」による。

			変 更 前	変 更 後
名 称			残留熱除去系配管 （原子炉圧力容器内部）	残留熱除去系配管＊1 （原子炉圧力容器内部）
種	類	－	継手構造	変更なし
	ス リーブ外径	mm	$\square * 2, * 3$	
主要法	スリー ブ 厚さ	mm	$\square^{* 3} \square^{* 2, * 3}$	
	フランジネック外径＊4	mm	$\square{ }^{* 2}$	
	フランジネック厚さ＊5	mm	$\square^{* 6}\left(\square{ }^{* 2}\right)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	ス リーブ	－	SUSF316L	
	ベ ロ ー ズ	－	SUS316L	
	フランジネ	－	SUSF316L	
個	数	－	3	

注記 $* 1$ ：原子炉泠却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系，代替循環冷却系，残留熱除去系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，低圧代替注水系）と兼用。
＊5 ：記載の適正化を行ら。既工事計画書には「厚さ」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－2－3－7 残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書」による。

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプ レイ系，低圧代替注水系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊ 3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の応力計算書」による。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

注記＊1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプ レイ系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊ 3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の応力計算書」による。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「パイプ」と記載。

			変 更 前	変 更 後
名		称	差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）	差圧検出・ほう酸水注入系＊1配管（原子炉圧力容器内部）
種	類	－	管形	変更なし
主要法	ほう酸水注入管上部外	mm	$\square * 3, * 4$	
	$* 2$ 差 圧 検 出 管 外 径	mm	$\square * 3, * 5$	
	ほう酸注入管上部厚	mm	$\square * \square^{* 3, * 8)}$	
	$* 6$ 差 圧 検 出 管 厚 さ	mm		
	ほう酸水注入管上部	－	SUS316LTP＊11	
料	$\text { 差 圧 検 出 }{ }^{* 10} \text { 管 }$	－	SUS316LTP＊12	
個 数		－	1	

注記 $* 1$ ：原子炉冷却系統施設のらち非常用灲心椧却設備その他原子灲注水設備（ほう酸水注入系），計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系），原子炉格納施設の うち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「外径」と記載。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「34．0（ほう酸水注入管上部）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「34．0（差圧検出管）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「厚さ」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－10 差圧検出• ほう酸水注入系配管（原子炉圧力容器内部）の応力計算書」による。
＊ 8 ：記載の適正化を行う。既工事計画書には「3．4（ほう酸水注入管上部）」と記載。
＊9：記載の適正化を行う。既工事計画書には「4．5（差圧検出管）」と記載。
＊10：記載の適正化を行う。既工事計画書には「材料」と記載。
＊11：記載の適正化を行う。既工事計画書には「SUS316LTP（ほう酸水注入管上部）」と記載。
＊12：記載の適正化を行う。既工事計画書には「SUS316LTP（差圧検出管）」と記載。

へ 中性子束計測案内管

				変 更 前	変 更 後
名			称	中性子束計測案内管	変更なし
種		類	－	管形	
主	全	長＊1	mm	$\square^{* 2}$	
要	外	径	mm	${ }^{* 2}$	
法	厚	さ	mm	$]^{* 3} \square{ }^{* 2, * 3}$	
材		料	－	SUS316LTP	
個		数	－	39	

注記＊1 ：記載の適正化を行う。既工事計画書には「長さ」と記載。
＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－1－2－11 中性子束計測案内管の応力計算書」による。

1．8 原子炉本体の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針に ついては，原子炬冷却系統施設の基本設計方針「第1章 共通項目」に基づ く設計とする。	第1章 共通項目 原子炉本体の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全弁等，5．6 逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。）， 6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方 針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．炉心等 燃料体（燃料要素及びその他の部品を含む。）は，設置（変更）許可を受けた仕様となる構造及び設計とする。 燃料体，減速材及び反射材並びに炉心支持構造物の材料は，通常運転時 における原子炉運転状態に対応した圧力，温度条件，燃料使用期間中の燃焼度，中性子照射量及び水質の組み合わせのうち想定される最も厳しい条件において，耐放射線性，寸法安定性，耐熱性，核性質及び強度のうち必要な物理的性質並びに，耐食性，水素吸収特性及び化学的安定性のうち必要な化学的性質を保持し得る材料を使用する。	第2章 個別項目 1．炉心等 変更なし

変更前	変更後
燃料体は炉心支持構造物で支持され，その荷重は原子炉圧力容器に伝え られる設計とする。 燃料体は，通常運転時及び運転時の異常な過渡変化時における発電用原子炉内の圧力，自重，附加荷重，核分裂生成物の蓄積による燃料被覆管の内圧上昇，熱応力等の荷重に耐える設計とする。また，輸送中又は取扱中 において，著しい変形を生じない設計とする。 炉心支持構造物は，最高使用圧力，自重，附加荷重及び地震力に加え，熱応力の荷重に耐える設計とする。 炉心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及び安全保護装置の機能と併せて機能すること により燃料要素の許容損傷限界を超えない設計とする。 炉心部は燃料体，制御棒及び炉心支持構造物からなり，上下端が半球状 の円筒形鋼製圧力容器に収容される。原子炉圧力容器の外側には，遮蔽壁 を設置する。 燃料体（燃料要素を除く。），減速材及び反射材並びに炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電用原子炉を安全に停止し，かつ，停止後に炉心の冷却機能を維持できる設計とする。 なお，熱遮蔽材は設けない設計とする。	
2．原子炉圧力容器 2． 1 原子炉圧力容器本体 原子炉圧力容器の原子炉冷却材圧力バウンダリに係る基本設計方針	2．原子炉圧力容器 変更なし

変更前	変更後
については，原子炉冷却系統施設の基本設計方針「第2章 個別項目 3.2 原子炉冷却材圧力バウンダリ」に基づく設計とする。 原子炉圧力容器は，円筒形の胴部に半球形の下鏡を付した鋼製容器 に，半球形の鋼製上部ふたをボルト締めする構造であり，再循環水出口 ノズル，再循環水入口ノズル，主蒸気出口ノズル，給水ノズル等を取り付ける設計とする。 原子炉圧力容器内の原子炉冷却材の流路は，原子炉再循環ポンプによ り，再循環水入口ノズルから原子炉圧力容器内に導かれ，ジェットポン プによりチャンネルボックスが形成した原子炉冷却材の流路を炉心の下方から上方向に流れ，主蒸気出口ノズルから出る設計とする。 原子炉圧力容器の支持方法は，原子炉圧力容器支持スカートで下端を固定し，原子炉圧力容器スタビライザによって水平方向に支持する設計 とする。 原子炉圧力容器は最低使用温度を $10^{\circ} \mathrm{C}$ に設定し，関連温度（初期） を $-35^{\circ} \mathrm{C}$ 以下に設定することで，脆性破壊が生じない設計とする。 中性子照射脆化の影響を受ける原子炉圧力容器にあっては，日本電気協会「原子力発電所用機器に対する破壊靭性の確認試験方法」（J E A C 4 2 0 6 ）に基づき，適切な破壊じん性を有する設計とする。 チャンネルボックスは，制御棒をガイドし，燃料集合体を保護する設計とする。 2.2 監視試験片 1メガ電子ボルト以上の中性子の照射を受ける原子炉圧力容器は，当該容器が想定される運転状態において脆性破壊を引き起こさないよう	

変更前	変更後
にするために，施設時に適用された告示「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501 号）」を満足し，機械的強度及び破壊じん性の変化を確認できる個数の監視試験片を原子炉圧力容器内部に挿入することにより，照射の影響を確認できる設計とす る。 監視試験片は，適用可能な日本電気協会「原子炉構造材の監視試験方法」（J E A C 4 2 0 1）により，取り出し及び監視試験を実施する。	
3．流体振動等による損傷の防止 燃料体，炉心支持構造物及び原子炉圧力容器は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のあ る流体の混合その他の原子炉冷却材の挙動により生じる温度変動により損傷を受けない設計とする。	3．流体振動等による損傷の防止 変更なし
4．主要対象設備 原子炉本体の対象となる主要な設備について，「表 1 原子炉本体の主要設備リスト」に示す。	4．主要対象設備 原子炉本体の対象となる主要な設備について，「表 1 原子炉本体の主要設備リスト」に示す。

O 2 （6）II R 2

表1原子炉本体の主要設備リスト（1／4）

O 2 （6）II R 2

表1 原子炉本体の主要設備リスト（2／4）

O 2 （6）II R 2

表1 原子炉本体の主要設備リスト（3／4）

O 2 （6）II R 2

表1原子炉本体の主要設備リスト（4／4）

注記 $* 1$ ：表1に用いる略語の定義は「付表1」による。

付表1 略語の定義（ $1 / 3$ ）

		略語	定義
設計基準対潒施設		S	耐震重要度分類におけるSクラス（津波防護施設，浸水防止設備及び津波監視設備を除く）
		S＊	Sクラス施設のらち，津波防護施設，浸水防止設備及び津波監視設備。 なお，基準地震動による地震力に対して，それぞれの施設及び設備に要求される機能（津波防護機能，浸水防止機能及び津波監視機能をいう）を保持するものとする。
		B	耐震重要度分類における B クラス（ $\mathrm{B}-1$ ， $\mathrm{B}-2$ 及び $\mathrm{B}-3$ を除く）
		B－ 1	Bクラスの設備のうち，共振のおそれがあるため，弾性設計用地震動 S_{d} に2分の1を乗じたものによる地震力に対して耐震性を保持できる設計とするもの
		B－ 2	Bクラスの設備のらち，波及的影響によって，耐震重要施設がそ の安全機能を損なわないように設計するもの
		B－ 3	Bクラスの設備のらち，基準地震動による地震力に対して使用済燃料プールの泠却，給水機能を保持できる設計とするもの
		C	耐震重要度分類におけるCクラス（C－1，C -2 及び $\mathrm{C}-3$ を除 く）
		C－1	Cクラスの設備のらち，波及的影響によって，耐震重要施設がそ の安全機能を損なわないように設計するもの
		C -2	Cクラスの設備のらち，基準地震動による地震力に対して火災感知及び消火の機能並びに地震時の溢水伝播を防止する機能を保持 できる設計とするもの
		C－3	Cクラスの設備のらち，基準地震動による地震力に対して非常時 における海水の取水機能を保持できる設計とするもの
		－	当該施設において設計基準対象施設として使用しないもの

付表1 略語の定義（ $2 / 3$ ）

付表1 略語の定義（3／3）

注記＊1：「J SME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格」 における「クラスMC」である。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉本体に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 原子炉本体に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 原子炉本体に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） - J S ME S NC1－2005 発電用原子力設備規格 設計•建設規格 - 原子炉構造材の監視試験方法（J E A C 4 2 0 1－2007） - 原子炉構造材の監視試験方法（J E A C 4 2 O 1－2007（2010 年追補版））	第2章 個別項目 原子炉本体に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する構造等の技術基準（平成 6 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 - 原子炉構造材の監視試験方法（J E A C 4 2 0 1－2007） - 原子炉構造材の監視試験方法（J E A C 4 2 0 1－2007（2010 年追補版））

変更前	変更後
	－原子炉構造材の監視試験方法（J E A C 4 2 0 1－2007（2013 年追補版）） －原子力発電所用機器に対する破壊靭性の確認試験方法（J E A C 420 6 －2007）

1.9 原子炉本体に係る工事の方法

変更前	変更後
発電用原子炉施設の設置又は変更の工事並びに主要な耐圧部の溶接部における工事の	

1.2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検査

主要な耐圧部の溶接部に係る工事の手順を使用前事業者検査との関係を含め図 1－2 に示す。
1.3 燃料体に係る工事の手順と使用前事業者検査

燃料体に係る工事の手順を使用前事業者検査との関係を含め図 $1-3$ に示す。

2．使用前事業者検査の方法
構造，強度及び漏えいを確認するために十分な方法，機能及び性能を確認するために十分な方法，その他発電用原子炉施設が設計及び工事の計画に従つて施設されたもので あることを確認するために十分な方法により，使用前事業者検査を図 1－1，図 1－2 及び図 1－3 のフローに基づき実施する。使用前事業者検査は「設計及び工事に係る品質マネ ジメントシステム」に記載したプロセスにより，抽出されたものの検査を実施する。

また，使用前事業者検査は，検査の時期，対象，方法，検査体制に加えて，検査の内容と重要度に応じて立会，抜取り立会，記録確認のいずれかとすることを要領書等で定 め実施する。
2.1 構造，強度又は漏えいに係る検査

2．1．1 構造，強度又は漏えいに係る検査
構造，強度又は漏えいに係る検査ができるようになったとき，表 2－1に示す検査を実施する。

変更前				変更後
表 2－1 構造，強度又は漏えいに係る検査（燃料体を除く）＊1				
検査項目		検査方法	判定基準	
「設計及び工事 に係る品質マネ ジメントシステ ム」に記載した プロセスによ り，当該工事に おける構造，強度又は漏えいに係る確認事項と して次に掲げる項目の中から抽出されたもの。 - 材料検査 - 寸法検査 - 外観検査 - 組立て及び据付け状態 を確認する検査（据付検査） －状態確認検査 - 耐圧検査 - 漏えい検査 - 原子炉格納施設が直接設置される基盤の状態 を確認する検査 －建物•構築物の構造を確認する検査	材料検査	使用されている材料の化学成分，機械的強度等が工事計画の とおりであることを確認する。	設工認のとおり であること，技術基準に適合する ものであること。	
	寸法検査	主要寸法が工事計画のとおり であり，許容寸法内であること を確認する。	設工認に記載さ れている主要寸法の計測値が，許容寸法を満足す ること。	
	外観検査	有害な欠陥がないことを確認 する。	健全性に影響を及ぼす有害な欠陥がないこと。	
	組立て及び据付け状態を確認する検査 （据付検査）	組立て状態並びに据付け位置及び状態が工事計画のとおり であることを確認する。	設工認のとおり に組立て，据付け されていること。	
	状態確認検査	評価条件，手順等が工事計画の とおりであることを確認する。	設工認のとおり であること。	
	耐圧検査＊2	技術基準の規定に基づく検査圧力で所定時間保持し，検査圧力に耐え，異常のないことを確認する。耐圧検査が構造上困難 な部位については，技術基準の規定に基づく非破壊検査等に より確認する。	検査圧力に耐え， かつ，異常のない こと。	変更 なし
	漏えい検査＊2	耐圧検査終了後，技術基準の規定に基づく検査圧力により漏 えいの有無を確認する。なお，漏えい検査が構造上困難な部位については，技術基準の規定 に基づく非破壊検査等により確認する。	$\begin{aligned} & \text { 著しい漏えいの } \\ & \text { ないこと。 } \end{aligned}$	
	原子炉格納施設が直接設置 される基盤の状態を確認す る検査	地盤の地質状況が，原子炉格納施設の基盤として十分な強度 を有することを確認する。	設工認のとおり であること。	
	建物•構築物 の構造を確認 する検査	主要寸法，組立方法，据付位置及び据付状態等が工事計画の とおり製作され，組み立てられ ていることを確認する。	設工認のとおり であること。	
注記 $* 1$ ：基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。 ＊2：耐圧検査及び漏えい検査の方法について，表 2－1によらない場合は，基本設計方針の共通項目として定めた「耐圧試験等」の方針によるものとする。				

変更前
2.1 .2 主要な耐廍の溶接部に係る検查

主要な耐圧部の溶接部に係る使用前事業者検査は，技術基準第 17 条第 15 号，第 31 条，第 48 条第 1 項及び第 55 条第 7 号，並びに実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（以下「技術基準解釈」という。）に適合 するよう，以下の（1）及び（2）の工程ごとに検査を実施する。
（1）あらかじめ確認する事項
次の（1）及び（2）については，主要な耐圧部の溶接をしようとする前に，「日本機械学会 発電用原子力設備規格 溶接規格（J S M E S N B 1－2007）又は（ J SME S N B 1－2012／2013）」（以下「溶接規格」という。）第2部 溶接施工法認証標準及び第 3 部 溶接士技能認証標準に従い，表2－2，表2－3に示す検査を行う。その際，以下のいずれかに該当する特殊な溶接方法は，その確認事項 の条件及び方法の範囲内で①溶接施工法に関することを確認する。
－平成 12 年 6 月以前に旧電気工作物の溶接に関する技術基準を定める省令（昭和 45 年通商産業省令第 81 号）第 2 条に基づき，通商産業大臣の認可を受けた特殊な溶接方法。
－平成 12 年 7 月以降に，一般社団法人日本溶接協会又は一般財団法人発電設備技術検査協会による確性試験により適合性確認を受けた特殊な溶接方法。
（1）溶接施工法に関すること
（2）溶接士の技能に関すること

なお，（1）又は（2）について，既に，以下のいずれかにより適合性が確認されてい るものは，主要な耐圧部の溶接をしようとする前に表 2－2，表 2－3に示す検査は要さないものとする。
（1）溶接施工法に関すること
－平成 12 年 6 月 30 日以前に電気事業法（昭和 39 年法律第 170 号）に基づき国の認可証又は合格証を取得した溶接施工法。
－平成 12 年 7 月 1 日から平成 25 年 7 月 7 日に，電気事業法に基づく溶接事業者検査において，各設置者が技術基準への適合性を確認した溶接施工法。
－平成 25 年 7 月 8 日以降，核原料物質，核燃料物質及び原子炉の規制に関 する法律（昭和 32 年法律第 166 号）に基づき，各設置者が技術基準への適合性を確認した溶接施工法。
－前述と同等の溶接施工法として，核原料物質，核燃料物質及び原子炉の規制に関する法律（昭和 32 年法律第 166 号）における他の施設にて，認可を受けたもの，溶接安全管理検査，使用前事業者検査等で溶接施工法の確認 を受けたもの又は客観性を有する方法により確認試験が行われ判定基準

	変更前	変更後
表 2－3 あらかじめ確認すべき事項（溶接士）		
検査項目	検査方法及び判定基準	
溶接士の試験内容の確認	検査を受けようとする溶接士の氏名，溶接訓練歴等，及びその者が行う溶接施工法の範囲を碓認する。	
材料碓認	試験材の種類及び機械的性質が試験に適したものであることを確認する。	
開先確認	試験をする上で，健全な溶接が施工できることを確認する。	
溶接作業中確認	溶接士及びその溶接士が行ら溶接作業が溶接検査計画書のとお りであり，溶接条件が溶接検査計画書のとおり実施されること を確認する。	
外観確認	目視により外観が良好であることを確認する。	
浸透探傷試験確認	技術基準に適合した試験の方法により浸透探傷試験を行い，表面に開口した欠陥の有無を確認する。	
機械試験確認	曲げ試験を行い，欠陥の有無を碓認する。	
断面検査 確認	管と管板の取付け溶接部の断面について，技術基準に適合する方法により目視検査及びのど厚測定により確認する。	
（判定）＊	以上の全ての工程において，技術基準に適合していることが確認された場合，当該溶接士は技術基準に適合する技能を持った者とする。	
注記＊：（ ）内は検査項目ではない。		
（2）主要な耐発電用原 び第 55 条第 また，以 してテンパ方法を含む実施する。 （1）平成溶接 （2）以下 して －平成 （昭和受け －平成設備方法	王部の溶接部に対して確認する事項 子炉施設のらち技術基準第 17 条第 15 号，第 31 条，第 48 条第 1 項及 7 号の主要な耐圧部の溶接部について，表 2－4に示す検査を行う。下の（1）又は（2）に限り，原子炉冷却材圧カバウンダリに属する容器に対 ービード溶接を適用することができ，この場合，テンパービード溶接容接施工法の溶接部については，表 2－4に加えて表 2－5 に示す検査を 19年12月5日以前に電気事業法に基づき実施された検査において後熱処理が不要として適合性が碓認された溶接施工法 の規定に基づく溶接施工法確認試験において，溶接後熱処理が不要と適合性が碓認された溶接施工法 12 年 6 月以前に旧電気工作物の溶接に関する技術基準を定める省令 45 年通商産業省令第 81 号）第 2 条に基づき，通商産業大臣の許可を た特殊な溶接方法 12 年 7 月以降に，一般社団法人日本溶接協会又は一般財団法人発電技術検査協会による確性試験による適合性確認を受けた特殊な溶接	なし

変更前						変更後
表 2－5 溶接施工した構造物に対して確認する事項（テンパービード溶接を適用する場合）						変更 なし
$\begin{aligned} & \text { 梌 } \\ & \text { 頚 } \end{aligned}$	検査方法及び判定基準	同種材 の溶接	$\begin{aligned} & \text { クラッ } \\ & \text { ド材の } \\ & \text { 溶接 } \end{aligned}$	異種材 の溶接	$\begin{aligned} & \text { バタリ } \\ & \text { ング材 } \\ & \text { の溶接 } \end{aligned}$	
$\begin{aligned} & \text { 材 } \\ & \text { 籵 } \\ & \text { 梌 } \end{aligned}$	1．中性子照射 $10^{19} \mathrm{nvt以上}$ 受ける設備を溶接する場合に使用する溶接材料の銅含有量は， 0.10% 以下であることを確認する。	適用	適用	適用	適用	
	2．溶接材料の表面は，錆，油脂付着及び汚れ等がないことを確認する。	適用	適用	適用	適用	
閏梌场	1．当該施工部位は，溶接規格に規定する溶接後熱処理が困難な部位で あることを図面等で確認する。	適用	適用	適用	適用	
	2．当該施工部位は，過去に当該溶接施工法と同一叉は類似の溶接後熱処理が不要な溶接方法を適用した経歴を有していないことを確認す る。	適用	適用	適用	適用	
	3．溶接を行う機器の面は，浔透探偒試験又は磁枌探傷試験を行い，こ れに合格することを確認する。	適用	適用	適用	適用	
	4．溶接深さは，母材の厚さの2分の1以下であること。	適用	－	適用	－	
	5．個々の溶接部の面積は650 cm^{2} 以下であることを確認する。	適用	－	適用	－	
	6．適用する溶接施工法に，クラッド材の溶接開先底部とフェライト系母材との距離が規定されている場合は，その寸法が規定を満足して いることを確認する。	－	適用	－	－	
	7．適用する溶接施工法に，溶接開先部がフェライト系母材側へまたが って設けられ，そのまたがりの距離が規定されている場合は，その寸法が規定を満足していることを確認する。	－	－	適用	－	
$\begin{aligned} & \text { 溶 } \\ & \text { 接 } \\ & \text { 复 } \\ & \text { 検 } \end{aligned}$	自動ティグ溶接を適用する場合は，次によることを確認する。					
	1．自動ティグ溶接は，溶加材を通電加熱しない方法であることを確認 する。	適用	適用	適用	適用	
	2．溶接は，適用する溶接施工法に規定された方法に適合することを確認する。					
	（1）各層の溶接入熱が当該施工法に規定する範囲内で施工されてい ることを確認する。	適用	適用	適用	適用	
	② 2層目端部の溶接は，1層目溶接端の母材熱影響部（1層目溶接に よる粗粒化域）が適切なテンパー効果を受けるよう，1層目溶接端 と2層目溶接端の距離が 1 mm から 5 mm の䉓囲であることを碓認する。	適用	－	適用	－	
	（3）予熱を行ら溶接施工法の場合は，当該施工法に規定された予熱範囲及び予熱温度を満足していることを確認する。	適用	適用	適用	適用	
	（4）当該施工法にパス間温度が規定されている場合は，温度制限を満足していることを碓認する。	適用	適用	適用	適用	
	⑤ 当該施工法に，溶接を中断する場合及び溶接終了時の温度保持範囲と保持時間が規定されている場合は，その規定を満足している ことを確認する。	適用	適用	適用	適用	
	⑥ 余盛り溶接は，1層以上行われていることを碓認する。	適用	－	適用	－	
	（7）溶接後の温度保持終了後，最終層ビードの除去及び溶接部が平滑 となるよう仕上げ加工されていることを確認する。	適用	－	適用	－	
	溶接部の非破壊検查は，次によることを碓認する。					
	1．1層目の溶接終了後，磁粉探倶試験又は浸透探信試験を行い，これ に合格することを確認する。	適用	－	－	－	
	2．溶接終了後の試験は，次によることを確認する。					
	① 溶接終了後の非破壊試験は，室温状態で48時間以上経過した後に実施していることを確認する。	適用	適用	適用	適用	
	（2）予熱を行つた場合はその領域を含み，溶接部は磁粉探傷試験又は浸透探傷試験を行い，これに合格することを確認する。	適用	適用	適用	適用	
	③ 超音波探隹試験を行い，これに合格することを確認する。	－	適用	適用	－	
	（4）超音波探傷試験又は2層目以降の各層の磁粉探傷試験若しくは浸透探傷試験を行い，これに合格することを確認する。	適用	－	－	－	
	⑤放射線透過試験又は超音波探傷試験を行い，これに合格すること を確認する。	－	－	－	適用	
	3．温度管理のために取り付けた熱電対がある場合は，機械的方法で除去し，除去した面に欠陥がないことを確認する。	適用	適用	適用	適用	

	変更前	変更後
2.1 .3	燃料体に係る検査	

燃料体については，以下 $(1) \sim(3)$ の加工の工程ごとに表 2－6に示す検査を実施 する。なお，燃料体を発電用原子炉に受け入れた後は，原子炉本体として機能又 は性能に係る検査を実施する。
（1）燃料材，燃料被覆材その他の部品については，組成，構造又は強度に係 る試験をすることができる状態になった時
（2）燃料要素の加工が完了した時
（3）加工が完了した時
また，燃料体については構造，強度又は漏えいに係る検査を実施することによ り，技術基準への適合性が確認できることから，構造，強度又は漏えいに係る検査の実施をもつて工事の完了とする。

表2－6 構造，強度又は漏えいに係る検査（燃料体）＊

検査項目		検査方法	判定基準
（1）燃料材，燃料被覆材その他の部品の化学成分の分析結果の確認その他これ らの部品の組成，構造又 は強度に係る検査	材料検査	使用されている材料の化学成分，機械的強度等が工事計画のとおりである ことを確認する。	設工認のと おりである こと，技術基準に適合 するもので あること。
（2）燃料要素に係る次の検査 一 寸法検査 二 外観検査 三 表面汚染密度検査 四 溶接部の非破壊検査 五 漏えい検査（この表 の（3）三に掲げる検 査が行われる場合を除 く。）	寸法検査	主要寸法が工事計画のと おりであり，許容寸法内 であることを確認する。	
	外観検査	有害な欠陥等がないこと を確認する。	
	表面汚染密度検査	表面に付着している核燃料物質の量が技術基準の規定を満足することを確認する。	
	溶接部の非破壊検査	溶接部の健全性を非破壊検査等により確認する。	
（3）組み立てられた燃料体 に係る次の検査 一 寸法検査 二 外観検査 三 漏えい検査（この表 の（2）六に掲げる検査が行われる場合を除 く。） 四 質量検査	漏えい検査	漏えい試験における漏え い量が，技術基準の規定 を満足することを確認す る。	
	質量検査	燃料集合体の総質量が工事計画のとおりであり，許容値内であることを確認する。	

注記＊：基本設計方針のらち適合性確認対象に対して実施可能な検査を含む。

| 変更前 |
| :---: | :---: | :---: |
| 2.2 機能又は性能に係る検査 |
| 機能又は性能を確認するため，以下のとおり検査を行う。 |
| ただし，表 $2-1$ の表中に示す検査により機能又は性能に係る検査を実施する場合 |
| は，表 $2-7$, 表 $2-8$ 又は表 $2-9$ の表中に示す検査を表 $2-1$ の表中に示す検査に替えて |
| 実施する。 |
| また，改造，修理又は取替えの工事であって，燃料体を挿入できる段階又は臨界反 |
| 応操作を開始できる段階と工事完了時が同じ時期の場合，工事完了時の検査として実 |
| 施することができる。 |
| 構造，強度又は漏えいを確認する検査と機能又は性能を確認する検査の内容が同じ |
| 場合は，構造，強度又は漏えいを確認する検査の記録確認をもって，機能又は性能を |
| 確認する検査とすることができる。 |

2．2．1 燃料体を挿入できる段階の検査

発電用原子炉に燃料体を挿入することができる状態になったとき表 2－7 に示 す検査を実施する。

表2－7 燃料体を挿入できる段階の検査＊

検査項目	検査方法	判定基準
発電用原子炉に燃	発電用原子炉に燃料体を挿入するにあた	原子炉に燃料体
料体を挿入した状	り，核燃料物質の取扱施設及び貯蔵施設に	を挿入するにあ
態において必要な	係る機能又は性能を試運転等により確認	たり，確認が必
ものを確認する検	するほか，発電用原子炉施設の安全性確保	要な範囲につい
査及び工程上発電	の観点から，発電用原子炉に燃料体を挿入	て，設工認のと
用原子炉に燃料体	した状態において必要な工学的安全施設，	おりであり，技
を挿入する前でな	安全設備等の機能又は性能を当該各系統	術基準に適合す
ければ実施できな	の試運転等により確認する。	るものであるこ

変更
なし

注記 $*: ~$ 基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

2．2．2 臨界反応操作を開始できる段階の検査
発電用原子炉の臨界反応操作を開始することができる状態になったとき，表 2－ 8 に示す検査を実施する。

変更前		
表 2－8 臨界反応操作を開始できる段階の検査＊		
検査項目	検査方法	判定基準
発電用原子炉が臨	発電用原子炉の出力を上げるにあたり，発	原子炉の臨界反
界に達する時に必	電用原子炉に燃料体を挿入した状態での	応操作を開始す
要なものを確認す	確認項目として，燃料体の炉内配置及び原	るにあたり，確
る検査及び工程上	子炉の核的特性等を確認する。また，工程	認が必要な範囲
発電用原子炉が臨	上発電用原子炉が臨界に達する前でなけ	について，設工
界に達する前でな	れば機能又は性能を確認できない設備に	認のとおりであ
ければ実施できな	ついて，機能又は性能を当該各系統の試運	り，技術基準に
い検査	転等により確認する。	適合するもので あること。

注記＊：基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

2．2．3 工事完了時の検査

全ての工事が完了したとき，表 2－9に示す検査を実施する。

表 2－9 工事完了時の検査＊

検査項目	検査方法	判定基準
発電用原子炉の出	工事の完了を確認するために，発電用原子	当該原子炉施設
力運転時における	炉で発生した蒸気を用いる施設の試運転	の供用を開始す
発電用原子炉施設	等により，当該各系統の機能又は性能の最	るにあたり，原
の総合的な性能を	終的な確認を行う。	子炉施設の安全
確認する検査，そ	発電用原子炉の出力を上げた状態におけ	性を確保するた
の他工事の完了を	る確認項目として，プラント全体での最終	あに必要な範囲
確認するために必	的な試運転により発電用原子炉施設の総	について，設工
要な検査	合的な性能を確認する。	認のとおりであ
		り，技術基準に
		適合するもので
		あること。

注記 $~: ~$ 基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

2.3 基本設計方針検査

基本設計方針のうち「構造，強度又は漏えいに係る検査」及び「機能又は性能に係 る検査」では確認できない事項について，表 2－10に示す検査を実施する。

表 2－10 基本設計方針検査

検査項目	検査方法	判定基準
基本設計方針検査	基本設計方針のうち表2－1，表2－7，表2－8，	「基本設計方
	表2－9では確認できない事項について，基	針」のとおりで
	本設計方針に従い工事が実施されたこと	あること。
	を工事中又は工事完了時における適切な	
	段階で確認する。	

変更前		
2.4 品質マネジメントシステムに係る検査 実施した工事が，「設計及び工事に係る品質マネジメントシステム」に記載した ロセス，「1．工事の手順」並びに「2．使用前事業者検査の方法」のとおり行われて ることの実施状況を確認するとともに，使用前事業者検査で記録確認の対象となる事の段階で作成される製造メーカ等の記録の信頼性を確保するため，表2－11に示検査を実施する。 表 2－11 品質マネジメントシステムに係る検査		
検査項目	検査方法	判定基準
品質マネジメント システムに係る検查	工事が設工認の「工事の方法」及び「設計及び工事に係る品質マネジメントシステ ム」に示すプロセスのとおり実施している ことを品質記録や聞取り等により確認す る。この確認には，検査における記録の信頼性確認として，基となる記録採取の管理方法の確認やその管理方法の遵守状況の確認を含む。	設工認で示す 「設計及び工事 に係る品質マネ ジメントシステ ム」及び「工事の方法」のとおり に工事管理が行 われているこ と。

3．工事上の留意事項

3.1 設置又は変更の工事に係る工事上の留意事項

発電用原子炉施設の設置又は変更の工事並びに主要な耐圧部の溶接部における工事の実施にあたつては，発電用原子炉施設保安規定を遵守するとともに，従事者及び公衆の安全確保や既設の安全上重要な機器等への悪影響防止等の観点から，以下に留意し工事を進める。
（1）設置又は変更の工事を行う発電用原子炉施設の機器等について，周辺資機材，他 の発電用原子炉施設及び環境条件からの悪影響や劣化等を受けないよう，隔離，作業環境維持，異物侵入防止対策等の必要な措置を講じる。
（2）工事にあたつては，既設の安全上重要な機器等へ悪影響を与えないよう，現場状況，作業環境及び作業条件を把握し，作業に潜在する危険性又は有害性や工事用資機材から想定される影響を確認するとともに，隔離，火災防護，溢水防護，異物侵入防止対策，作業管理等の必要な措置を講じる。
（3）設置又は変更の工事を行う発電用原子炉施設の機器等について，必要に応じて，供用後の施設管理のための重要なデータを採取する。
（4）プラントの状況に応じて，検査•試験，試運転等の各段階における工程を管理す る。
（5）設置又は変更の工事を行う発電用原子炉施設の機器等について，供用開始後に必要な機能性能を発揮できるよう製造から供用開始までの間，維持する。

変更前
（6）放射性廃棄物の発生量低減に努めるとともに，その種類に応じて保管及び処理を
行う。

（7）現場状況，作業環境及び作業条件を把握し，放射線業務従事者に対して防護具の着用や作業時間管理等適切な被ばく低減措置と，被ばく線量管理を行う。 また，公衆の放射線防護のため，気体及び液体廃棄物の放出管理については，周辺監視区域外の空気中•水中の放射性物質濃度が「線量限度等を定める告示」に定める値を超えないようにするとともに，放出管理目標値を超えないように努める。
（8）修理の方法は，基本的に「図 1－1 工事の手順と使用前事業者検査のフロー（燃料体を除く）」の手順により行うこととし，機器等の全部又は一部について，撤去，切断，切削又は取外しを行い，据付，溶接又は取付け，若しくは同等の方法により，同等仕様又は性能•強度が改善されたものに取替えを行う等，機器等の機能維持又 は回復を行う。また，機器等の一部撤去，一部撤去の既設端部について閉止板の取付け，熱交換器又は冷却器の伝熱管への閉止栓取付け若しくは同等の方法により適切な処置を実施する。
（9）特別な工法を採用する場合の施工方法は，技術基準に適合するよう，安全性及び信頼性について必要に応じ検証等により十分確認された方法により実施する。
3.2 燃料体の加工に係る工事上の留意事項燃料体の加工に係る工事の実施にあたっては，以下に留意し工事を進める。
（1）工事対象設備について，周辺資機材，他の加工施設及び環境条件から波及的影響 を受けないよう，隔離等の必要な措置を講じる。
（2）工事を行うことにより，他の供用中の加工施設が有する安全機能に影響を与えな いよう，隔離等の必要な措置を講じる。
（3）工事対象設備について，必要に応じて，供用後の施設管理のための重要なデータ を採取する。
（4）加工施設の状況に応じて，検査•試験等の各段階における工程を維持する。
（5）工事対象設備について，供用開始後に必要な機能性能を発揮できるよう維持す る。
（6）放射性廃棄物の発生量低減に努めるとともに，その種類に応じて保管及び処理を行う。
（7）放射線業務従事者に対する適切な被ばく低減措置と，被ばく線量管理を行う。

変更前	更後
	変更 なし

変更前	変更後
図 1－2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検査フロー	変更 なし

2．核燃料物質の取扱施設及び貯蔵施設

2.1 燃料取扱設備

（1）新燃料又は使用済燃料を取り扱う機器

注記＊1 ：記載の適正化を行う。既工事計画書には「燃料交換機」と記載。
＊2 ：公称値を示す。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月 13日付け3資庁第10518号にて認可された工事計画書の添付書類「第8－1－1図 燃料交換機構造図」による。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書に よる。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「原子炉建屋クレーン」と記載。
＊2 ：公称値を示す。
＊ 3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月 13日付け3資庁第10518号にて認可された工事計画書の添付書類「第8－1－3図 原子炉建屋クレーン構造図」による。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書に よる。
＊ 5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月 13日付け3資庁第10518号にて認可された工事計画書の添付書類「IV－2－6－1－2 原子炉建屋クレーンの耐震性についての計算書」による。

[^3]

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書に よる。
＊2 ：公称値を示す。
2.3 使用済燃料貯蔵設備

注記＊1 ：記載の適正化を行ら。既工事計画書には「使用済燃料プール」と記載。
＊2：使用済燃料貯蔵槽冷却浄化設備（燃料プール冷却浄化系，燃料プール代替注水系，燃料プールスプレイ系）と兼用。
$* 3$ ：制御棒•破損燃料貯蔵ラックに最大 10 本の制御棒を貯蔵した場合。
＊ 4 ：公称値を示す。
＊5 ：使用済燃料プール内のりを示す。
＊6：記載の適正化を行う。既工事計画書には「 12.2 m 」と記載。記載内容は，設計図書による。
＊ 7 ：記載の適正化を行う。既工事計画書には「 $14.0 \mathrm{~m} 」$ と記載。記載内容は，設計図書による
＊ 8 ：記載の適正化を行う。既工事計画書には「 11.8 m 」と記載。記載内容は，設計図書による。
＊9：記載の適正化を行う。既工事計画書には「内張り材厚さ（最小）」と記載。
＊ 10 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊11：ライニング材を含む厚さを示す。
＊12：記載の適正化を行う。既工事計画書には「内張り材」と記載。
＊13：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画書の添付書類「IV－2－6－2－1 使用済燃料プール（キャスクピットを含む。）の耐震性についての計算書」による。
（2）使用済燃料運搬用容器ピット

				変 更 前	変 更 後	
名		称		キャスクピット （第 1,2 号機共用）＊1		
種		類	－	ステンレス鋼内張りプール形		
容		量	個	1＊2		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$		て	mm	$3200 * 3, * 4, * 5$		
	横		mm	$3200 * 3, * 4, * 6$		
		さ	mm	$11820 * 3, * 4, * 7$		
	ライニング材厚さ＊8		mm			
		東	mm	$800 * 2, * 3, * 11$		
		西	mm	$800 * 2, * 3, * 11$		
		南	mm	$800 * 2, * 3, * 11$		
		北	mm	$2100 * 2, * 3, * 11$		
		底	mm	$2100 * 2, * 3, * 11$		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	ライニング材 ${ }^{12}$		－	SUS304		
	壁		－	鉄筋コンクリート＊13		
個		数	－	1		

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「キャスクピット」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：公称値を示す。
＊ 4 ：キャスクピット内のりを示す。
＊5：記載の適正化を行う。既工事計画書には「3．2m」と記載。記載内容は，設計図書によ る。
＊6：記載の適正化を行う。既工事計画書には「3．2m」と記載。記載内容は，設計図書によ る。
＊ 7 ：記載の適正化を行う。既工事計画書には「 $11.8 \mathrm{~m} 」$ と記載。記載内容は，設計図書に よる。
＊8：記載の適正化を行う。既工事計画書には「内張り材厚さ（最小）」と記載。
＊9：記載の適正化を行う。既工事計画書には「4mm」と記載。記載内容は，設計図書によ る。
＊ 10 ：床部の厚さを示す。
＊11：ライニング材を含む厚さを示す。
＊12：記載の適正化を行う。既工事計画書には「材料（内張り材）」と記載。
＊13：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画書の添付書類「IV－2－6－2－1 使用済燃料 プール（キャスクピットを含む。）の耐震性についての計算書」による。
（3）使用済燃料貯蔵ラック

注記＊1：記載の適正化を行う。既工事計画書には「使用済燃料貯蔵ラック」と記載。
＊ 2 ：使用済燃料貯蔵槽冷却浄化設備（燃料プール冷却浄化系，燃料プール代替注水系，燃料プ ールスプレイ系）と兼用。
＊3：記載の適正化を行う。既工事計画書には「体（又は本）」と記載。
＊ 4 ：公称値を示す。
＊5：記載の適正化を行う。既工事計画書にはベースを含む高さである \square と記載。記載内容は，設計図書による。
＊6：長辺方向 \times 短辺方向の中心間距離を記載。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

$$
\text { O } 2 \text { (6) II R } 0
$$

［参考］ボロン添加ステンレス鋼規格表

材 料 名	機 械 的 性 質			化 学 成 分（wt\％）＊1								備考
	引張強さ （MPa）	降伏点 （耐力） （MPa）	伸び \％	C	Si	Mn	P	S	Ni	Cr	B	
$\begin{gathered} \text { ボロン添加 } \\ \text { ステンレス鋼 } \end{gathered}$	$\geqq 520$＊2	$\geqq 205^{* 2}$	$\geqq 20.0$									

注記＊1 ：記載の適正化を行う。既工事計画書には「 $\%$ ）」と記載。
＊2 ：S I 単位に換算した値を記載。
（4）破損燃料貯蔵ラック

注記＊1：使用済燃料貯蔵槽冷却浄化設備（燃料プール冷却浄化系，燃料プール代替注水系，燃料プ ールスプレイ系）と兼用。
＊2：記載の適正化を行う。既工事計画書には「体（又は本）」と記載。
＊ 3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書にはベースを含む高さである
 と記載。記載内容は，設計図書による。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（5）制御棒貯蔵ラック

注記＊1：記載の適正化を行う。既工事計画書には「体（又は本）」と記載。
＊2：公称値を示す。
＊3：記載の適正化を行う。既工事計画書にはベースを含む高さである \square と記載。記載内容は，設計図書による。
＊4：制御棒貯蔵ラックの長辺方向の中心間距離を記載。
＊5：制御棒貯蔵ラックの短辺方向の中心間距離を記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（6）制御棒貯蔵ハンガ

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「本」と記載。
＊2：記載の適正化を行う。既工事計画書には，「6」と記載。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
$* 4$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：記載の適正化を行う。既工事計画書には，「19」と記載。記載内容は，設計図書による。
（8）使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置

往記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊2 ：対象計器は，G41－TE001
＊3 ：対象計器は，G41－TE015
＊4 ：対象計器は，G41－LS016。
＊5 ：対象計器は，G41－LS020。
＊6 ：基準点は，使用済燃料貯蔵ラック上端（0．P． 25920 mm ）とする。
＊ 7 ：対象計器は，G41－LE201，G41－TE202，G41－TE203。
＊8 ：温度検出点2箇所。
＊ 9 ：対象計器は，G41－L／TE107，G41－L／TE108，G41－L／TE109，G41－L／TE110，G41－L／TE111，G41－L／TE112，G41－L／TE113，G41－L／TE114，G41－L／TE115，G41－L／TE116，G41－L／TE117，G41－L／TE118，G41－L／TE119 G41－L／TE120，G41－TE121。
$* 10$ ：検出点 15 箇所
2.4 使用済燃料貯蔵槽冷却浄化設備

2．4．1 燃料プール泠却浄化系

（次頁へ続く）
（前頁からの続き）

注記＊1 ：記載の適正化を行う。既工事計画書には「燃料プール冷却浄化系熱交換器」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「水室内径」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「水室胴部厚さ」と記載

＊8：記載の適正化を行う。既工事計画書には「水室鏡板厚さ」と記載。
＊9：記載の適正化を行う。既工事計画書には「胴体内径」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「胴体厚さ」と記載。
＊11：記載の適正化を行う。既工事計画書には「胴部鏡板厚さ」と記載
（2）ポンプ（常設）

注記＊1：記載の適正化を行う。既工事計画書には「燃料プール泠却浄化系ポンプ」と記載
＊2：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊6 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「第8－4－4図 燃料プール泠却浄化系ポンプ構造図」による。
（5）スキマサージ槽

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2：公称値を示す。
＊3：ライニング材を含む厚さ。
（8）主配管（スプレイヘッダを含む。）（常設）

注記 $* 1$ ：外径は公称値を示す

> *2: () 内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「STS42」と記載
＊ 4 ：S I 単位に換算したものである。
＊5：重大事故等クラス 2 配管に使用する場合の記載事項。
＊6 ：本設備は既存の設備である。
＊7 ：エルボを示す。
＊8：記載の適正化を行う。既工事計画書には「燃料プール泠却浄化系ポンプから燃料プール冷却浄化系ろ過脱塩器まで」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「燃料プール泠却浄化系ろ過脱塩器から燃料プール泠却浄化系熱交換器まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「燃料プール冷却浄化系熱交換器から使用済燃料プールまで」と記載。
$* 12$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による

2．4．2 燃料プール代替注水系
（2）ポンプ（可搬型）

（次頁へ続く）
（前頁からの続き）

						変更前	変 更 後
ポ ン プ	取	付	箇	所	－	－	－第 4 保管エリア 屋外 0．P．約 62 m 予備を含めた 5 個を第 1 保管エリア に 1 個，第 2 保管エリアに 1 個，第 3 保管エリアに 2 個及び第 4 保管エ リアに 1 個保管する。 取付箇所： $\left(\begin{array}{l}\text { •屋外 } 0 . \mathrm{P} . \text { 約 } 62 \mathrm{~m} \text { 淡水貯水槽（No．} \\ \text { 1）及び淡水貯水槽（No．2）付近＊15 } \\ \text { •屋外 0．P．約 } 14.8 \mathrm{~m} \text { 海水ポンプ室 } \\ \text { 付近＊16 } \\ \text { •屋外 0．P．約 } 3.5 \mathrm{~m} \text { 取水口付近 } * 16\end{array}\right)$
原 動 機	種			類	－		ディーゼルエンジン
	出			力	kW／個		847
	個			数	－		ポンプと同じ
	取	付	箇	所	－		

注記＊1 ：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系）及び原子炉補機冷却設備（原子炉補機代替冷却水系）並びに原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊2：重大事故等時における使用時の値。
＊ 3 ：本系統で使用する場合の値を示す。
＊ 4 ：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）で使用する場合の値を示す。
＊5 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）並び に原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベン ト系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）で使用する場合の値を示す。
＊6 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）及び原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）で使用する場合の値を示す。
＊ 7 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）で使用する場合の値を示す。
＊ 8 ：原子炉冷却系統施設のうち原子炉補機冷却設備（原子炉補機代替冷却水系）で使用す る場合の値を示す。
＊ 9 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の値を示す。
＊ 10 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）で使用する場合の値を示す。
＊11：公称値を示す。
＊ 12 ：淡水貯水槽を水源とし，本系統及び使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレ イ系），原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系）並 びに原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備 （原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系） で使用する場合の値を示す。
＊ 13 ：原子炉冷却系統施設のうち原子炉補機冷却設備（原子炉補機代替冷却水系）で使用する場合の値を示す。
＊14：海を水源とし，本系統及び使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系）並びに原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系）で使用する場合の値を示す。
＊15：当該取付箇所は，本系統及び使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系）並び に原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備 （原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベン ト系）として使用する場合の取付箇所を示す。
＊16：当該取付箇所は，本系統及び使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系），原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，代替水源移送系）及び原子炉補機冷却設備（原子炉補機代替冷却水系）並びに原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系）として使用する場合の取付箇所を示す。
（8）主配管（スプレイヘッダを含む。）（常設）

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：エルボを示す。
（8）主配管（スプレイヘッダを含む。）（可搬型）

	変 更 前								変 更 後								
	名称	$\begin{gathered} \text { 最高使用 } \\ \text { 大 } \begin{array}{c} \text { 力 } \\ (\mathrm{PPa}) \end{array}{ }^{2} \\ \hline \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 （mm）	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	個数	取付 箇所		名 称	最高使用 圧（M （MPa）	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$	材料	個数	取付箇所
$\begin{aligned} & \infty \\ & \approx \\ & = \\ & \text { (e) } \\ & \sim \\ & 0 \end{aligned}$				－					$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { フ } \\ & \text { । } \\ & \text { 岱 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	取水用ホース $(250 \mathrm{~A}: 5 \mathrm{~m}, ~ 10 \mathrm{~m}, ~ 20 \mathrm{~m})$	1.4	50	250A＊3	－＊4	$\begin{aligned} & \text { ポリエス } \\ & \text { テル, ポ } \\ & \text { リウレタ } \\ & \text { ン } \end{aligned}$	$\begin{aligned} & \quad{ }^{* 5} \\ & \text { (予備 } 3 \text {) } \end{aligned}$	保管場所： - 第1保管エリア 屋外 0．P．約62 m - 第2保管エリア 屋外 O．P．約62 m - 第3保管エリア 屋外 0．P．約 14.8 m - 第4保管エリア 屋外 0．P．約62 m 予備を含めた39本を第1保管エリアに 12本，第2保管エリアに12本，第3保管 エリアに12本及び第4保管エリアに3本保管する。 取付箇所：

変 更 前								変 更 後								
名称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{MPa}) \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	厚さ （mm）	$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	個 数	取付 箇所		名 称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	個数	取付箇所
$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { 1 } \\ & \text { 1 } \\ & \text { 帒 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$			－					$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { 俗 } \\ & \text { 帒 } \\ & \text { 替 } \\ & \text { 注 } \end{aligned}$	送水用ホース （300A：2m，5m，10m，20m，50m）	1． 4	50	$300 A^{* 3}$	－＊4	$\begin{aligned} & \text { ポリエス } \\ & \text { テル, ポ } \\ & \text { リウレタ } \\ & \text { ン } \end{aligned}$	217 （予備 5）	保管場所： - 第1保管エリア 屋外 0．P．約62 m - 第2保管エリア 屋外 O．P．約62 m - 第3保管エリア 屋外 0．P．約 14.8 m - 第 4 保管エリア 屋外 0．P．約 62 m 予備を含めた222本を第1保管エリアに 71本，第2保管エリアに72本，第3保管 エリアに74本及び第4保管エリアに5本保管する。 取付箇所： $\binom{$－屋外 $0 . \mathrm{P}$. 約 3.5 m 若しくは屋外 }{ 0．P．約 14.8 m 又は 屋外 0．P．約 62} m 大容量送水ポンプ（タイプI）～屋外 O．P．約 14.8 m 注水用ヘッダ （33本＊12，＊13） －屋外 O．P．約 3.5 m 又は屋外 0．P．約 14.8 m 大容量送水ポン プ（タイプII）～屋外 0．P．約62 m 淡水貯水槽（No．1）及び淡水貯水槽（No．2） （33本＊14，＊15） －屋外 O．P．約 3.5 m 又は屋外 0．P．約 14.8 m 大容量送水ポン プ（タイプI）～屋外 0．P．約 14.8 m 原子炉補機代替冷却水系熱交換器ユニット（北側設置）又は（西側設置） $(28 \text { 本 } * 16, * 17)$ －屋外 O．P．約 14.8 m 原子炬補機代替冷却水系熱交換器ユニット （北側設置）又は（西側設置）～放水槽 （ 6 本 $* 16, ~ * 18$ ） －屋外 O．P．約 3.5 m 又は屋外 0．P．約 14.8 m 大容量送水ポン プ（タイプII）～屋外 0．P．約 14.8 m 放水砲又は屋外 0. P．約 14.8 m 泡消火薬剤混合装置 （31本＊19，＊20） －屋外 0．P．約 14.8 m 泡消火薬剤混合装置～屋外 $0 . \mathrm{P}$ ．約 14.8 m放水砲 （1本＊21）

変 更 前								変 更 後							
名称	最高使用圧 力 （MPa）	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	厚さ （mm）	材料	個数	取付箇所		名 称		$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	厚さ （mm）	材料	個数	取付箇所
$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { I } \\ & \text { 华 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$			－					$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { フ } \\ & \text { 华 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	（前頁からの続き）		（前	の続き			

注記 $* 1$ ：重大事故等時における使用時の値
替注水系，代替水源移送系）及び原子炉補機冷却設備（原子炉補機代替冷却水系）並びに原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ泠却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系，放射性物質拡散抑制系（航空機燃料火災への泡消火），原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用する。
＊3 ：メーカにて規定する呼び径を示す。
 できるものを使用する。
＊5 ：必要本数 36 本（ $5 \mathrm{~m}: 12$ 本， $10 \mathrm{~m}: 12$ 本， $20 \mathrm{~m}: 12$ 本）に予備各 1 本の数量を示す。
代替水源移送系）並びに原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ椧却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）で使用する場合を示す。
替冷却水系）並びに原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系）で使用する場合を示す。
＊8：最長ルートである「海水ポンプ室～大容量送水ポンプ（タイプ I ）」に敷設した場合（ $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 2$ 本）の数量を示す。
 に格納容器再循環設備（放射性物質拡散抑制系，放射性物質拡散抑制系（航空機燃料火災への泡消火））で使用する場合を示す。
＊ 10 ：最長ルートである「海水ポンプ室～大容量送水ポンプ（タイプII）」に敷設した場合（ $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 2$ 本， $20 \mathrm{~m}: 2$ 本）の数量を示す。
＊ 11 ：必要本数 217 本（ $2 \mathrm{~m}: 6$ 本， $5 \mathrm{~m}: 7$ 本， $10 \mathrm{~m}: 6$ 本， $20 \mathrm{~m}: 14$ 本， $50 \mathrm{~m}: 184$ 本）に予備各 1 本の数量を示す。
代替水源移送系）並びに原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）で使用する場合を示す。
＊13：最長ルートである「屋外 0．P．約62 m大容量送水ポンプ（タイプI）～注水用ヘッダ（東側設置）」に敷設した場合（ $20 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 32$ 本）の数量を示す。
＊ 14 ：原子炉冷却系統施設のらち非常用灲心冷却設備その他原子炉注水設備（代替水源移送系）で使用する場合を示す。
＊ 15 ：最長ルートである「屋外 $0 . P$ ．約 14.8 m 大容量送水ポンプ（タイプII）～淡水貯水槽（No．1）及び淡水貯水槽（No．2）」に敷設した場合（ $2 \mathrm{~m}: 1 \mathrm{l}$ 本， $50 \mathrm{~m}: 32$ 本）の数量を示す。
＊ 16 ：原子炉冷却系統施設のらち原子炉補機冷却設備（原子炉補機代替冷却水系）で使用する場合を示す。
＊17：最長ルートである「屋外 O．P．約 3.5 m 大容量送水ポンプ（タイプ I）～原子炉補機代替冷却水系熱交換器ユニット（北側設置）」に敷設した場合（ $5 \mathrm{~m}: 1$ 本， $10 \mathrm{~m}: 1$ 本， $50 \mathrm{~m}: 26$ 本）の数量を示す。
＊ 18 ：最長ルートである「原子炉補機代替冷却水系熱交換器ユニット（西側設置）～放水槽」に敷設した場合（ $20 \mathrm{~m}: 2$ 本， $50 \mathrm{~m}: 4$ 本）の数量を示す。
抑制系，放射性物質拡散抑制系（航空機燃料火災への泡消火））で使用する場合を示す。
＊20：最長ルートである「屋外 0．P．約3．5 m大容量送水ポンプ（タイプII）～放水砲」に敷設した場合（5m： 1 本， $20 \mathrm{~m}: 2$ 本， $50 \mathrm{~m}: 28$ 本）の数量を示す。

送系）並びに原子炬格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炬格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント采）と兼用する
＊ 23 ：公称値を示す。
 の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ泠却系，低圧代替注水系）と兼用する。
＊ 25 ：必要本数 137 本（ $1 \mathrm{~m}: 6$ 本， $2 \mathrm{~m}: 10$ 本， $5 \mathrm{~m}: 21$ 本， $10 \mathrm{~m}: 21$ 本， $20 \mathrm{~m}: 79$ 本）に予備各 5 本の数量を示す。
＊ 26 ：本系統で使用する場合を示す。
＊ 27 ：最長ルートである「注水用ヘッダ～原子炉建屋原子炉棟」に敷設した場合（ $20 \mathrm{~m}: 3$ 本）の数量を示す。
＊28：最長ルートである「注水用ヘッダ（東側設置）～使用済燃料プール」に敷設した場合（ $5 \mathrm{~m}: 3$ 本， $10 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 6$ 本）の数量を示す。
＊ 29 ：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）で使用する場合を示す。
$* 30:$ 最長ルートである「注水用ヘッダ（東側設置）～クロスデバイザー管」に敷設した場合（ $2 \mathrm{~m}: 2$ 本， $5 \mathrm{~m}: 4$ 本， $10 \mathrm{~m}: 3$ 本， $20 \mathrm{~m}: 6$ 本）の数量を示す。
水系）で使用する場合を示す。
＊ 32 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）で使用する場合を示す。
＊33：最長ルートである「注水用ヘッダ（西側設置）～復水貯蔵タンク」に敷設した場合（ $5 \mathrm{~m}: 1$ 本， $20 \mathrm{~m}: 9$ 本）の数量を示す。
＊34：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）で使用する場合を示す。

2．4．3 燃料プールスプレイ系
（2）ポンプ（可搬型）

注記＊：本設備は，使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）として本工事計画で兼用とする。
（6）ろ過装置（可搬型）

注記 $~$ 1 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）と兼用。
＊2：重大事故等時における使用時の値。
＊ 3 ：本系統で使用する場合の値を示す。
＊ 4 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）で使用する場合の値を示す。
＊5：公称値を示す。
＊6：取合うホースの呼び径を示す。
（8）主配管（スプレイヘッダを含む。）（常設）

注記＊1：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：エルボを示す。
（8）主配管（スプレイヘッダを含む。）（可搬型）

＊2 ：本設備は，使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）として本工事計画で兼用とする。
＊3 ：メーカにて規定する呼び径を示す
 できるものを使用する。
＊5 ：使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）で使用する場合を示す。
＊6 ：燃料プールスプレイ系（可搬型）として6台及び燃料プールスプレイ系（常設配管）として6台に予備1台を合計した個数を示す。
＊ 7 ：使用済燃料プール周囲に6台設置する。

2．4．4 放射性物質拡散抑制系
（2）ポンプ（可搬型）

	変 更 前	変 更 後	
名	称	-	大容量送水ポンプ（タイプII）＊
7			

7．原子炉格納施設
7．3 圧力低減設備その他の安全設備
7．3．（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 7．3．（7）．d 放射性物質拡散抑制系

ハポンプ
に記載する。
注記＊：本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系）であ り，使用済燃料貯蔵槽冷却浄化設備（放射性物質拡散抑制系）として本工事計画で兼用と する。
（8）主配管（スプレイヘッダを含む。）（可搬型）

変 更 前								変 更 後								
名称	最高使用 圧 力 （MPa）	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	個数	取付箇所	名称		最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$	材料	個数	取付箇所
$\begin{aligned} & \text { 放 } \\ & \text { 射 } \\ & \text { 牲 } \\ & \text { 質 } \\ & \text { 桩 } \\ & \text { 散 } \\ & \text { 制 } \end{aligned}$	－－							$\begin{aligned} & \hline \\ & \text { 放 } \\ & \text { 射 } \\ & \text { 性 } \\ & \text { 物 } \\ & \text { 質 } \\ & \text { 啓 } \\ & \text { 抑 } \\ & \text { 制 } \end{aligned}$		2．核燃料物質の取扱施設及び貯蔵施設 2.4 使用済燃料貯蔵槽冷却浄化設備 2． 4.2 燃料プール代替注水系 （8）主配管（スプレイヘッダを含む。）（可搬型） に記載する。						
								放水砲＊2	7．原子炉格納施設 7．3 圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 d 放射性物質拡散抑制系 ル 主配管（可搬型） に記載する。							

注記 $* 1$ ：本設備は，使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，使用済燃料貯蔵槽冷却浄化設備（放射性物質拡散抑制系）として本工事計画で兼用とする。
備（放射性物質拡散抑制系）として本工事計画で兼用とする。
2.5 核燃料物質の取扱施設及び貯蔵施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．設備に対する要求（4．5 安全弁等，4．6逆止め弁，4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．そ の他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。	第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設の共通項目である「1．地盤等， 2 ．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．5 安全弁等， 5.6 逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．燃料取扱設備 1.1 燃料取扱設備の基本方針 燃料体等の取扱設備は，燃料交換機（第 1,2 号機共用（以下同じ。）），原子炉建屋クレーン（第 1，2号機共用（以下同じ。））及び燃料チャン ネル着脱機（第1，2号機共用（以下同じ。））で構成し，新燃料を原子炉建屋原子炉棟に搬入してから原子炉建屋原子炉棟外へ搬出するまで，燃料体等を安全に取り扱うことができる設計とする。 新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び燃料チャンネル着脱機を介して使用済燃料プール（第	第2章 個別項目 1．燃料取扱設備 1.1 燃料取扱設備の基本方針 燃料体等の取扱設備は，燃料交換機（第 1，2号機共用（以下同じ。）），原子炉建屋クレーン（第 1，2号機共用（以下同じ。））及び燃料チャン ネル着脱機（第 1，2 号機共用（以下同じ。））で構成し，新燃料を原子炉建屋原子炉棟に搬入してから原子炉建屋原子炉棟外へ搬出するまで，燃料体等を安全に取り扱うことができる設計とする。 新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫から原子炉建屋クレーン及び燃料チャンネル着脱機を介して使用済燃料プール（設計

変更前	変更後
1， 2 号機共用（以下同じ。））に移し，燃料交換機により炉心に挿入でき る設計とする。 また，燃料の取替えは，原子炉上部の原子炉ウェルに水を張り，水中 で燃料交換機を用いて行うことができる設計とする。 使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機によ り水中移送し，原子炉建屋原子炉棟内の使用済燃料プールの使用済燃料貯蔵ラック（第 1,2 号機共用（以下同じ。））に貯蔵できる設計とする。 使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用す る。 また，使用済燃料輸送容器に収納された使用済燃料を発電所外へ搬出 する場合には，キャスクピット（第1，2号機共用）で使用済燃料輸送容器に収納し，キャスク洗浄ピット（第1，2号機共用）で使用済燃料輸送容器の除染を行い発電所外へ搬出する。 燃料交換機及び燃料チャンネル着脱機は，燃料体等を一体ずつ取り扱 ら構造とすることにより，臨界を防止する設計とし，燃料体等の検査等 を行う際に水面に近づいた状態であっても，燃料体等からの放射線の遮蔽に必要な水深を確保できる設計とする。 原子炉建屋クレーンは，未臨界性を確保した容器に収納して吊り上げ る場合を除き，燃料体等を取り扱う場合は，一体ずつ取り扱う構造とし，臨界を防止する設計とする。 燃料交換機は，燃料体等の炉心から使用済燃料プールへの移送操作，使用済燃料プールから炉心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行うことで，崩壊熱により燃料体等が溶融せ	基準対象施設としてのみ第1，2号機共用（以下同じ。））に移し，燃料交換機により炉心に挿入できる設計とする。 また，燃料の取替えは，原子炉上部の原子炉ウェルに水を張り，水中 で燃料交換機を用いて行うことができる設計とする。 使用済燃料は，遮蔽に必要な水深を確保した状態で，燃料交換機によ り水中移送し，原子炉建屋原子炉棟内の使用済燃料プールの使用済燃料貯蔵ラック（設計基準対象施設としてのみ第 1,2 号機共用（以下同じ。）） に貯蔵できる設計とする。 使用済燃料の発電所外への搬出には，使用済燃料輸送容器を使用す る。 また，使用済燃料輸送容器に収納された使用済燃料を発電所外へ搬出 する場合には，キャスクピット（第 1，2号機共用）で使用済燃料輸送容器に収納し，キャスク洗浄ピット（第1，2号機共用）で使用済燃料輸送容器の除染を行い発電所外へ搬出する。 燃料交換機及び燃料チャンネル着脱機は，燃料体等を一体ずつ取り扱 ら構造とすることにより，臨界を防止する設計とし，燃料体等の検査等 を行ら際に水面に近づいた状態であっても，燃料体等からの放射線の遮蔽に必要な水深を確保できる設計とする。 原子炉建屋クレーンは，未臨界性を確保した容器に収納して吊り上げ る場合を除き，燃料体等を取り扱う場合は，一体ずつ取り扱う構造とし，臨界を防止する設計とする。 燃料交換機は，燃料体等の炉心から使用済燃料プールへの移送操作，使用済燃料プールから炉心への移送操作又は使用済燃料輸送容器への収納操作等をすべて水中で行うことで，崩壊熱により燃料体等が溶融せ

変更前	変更後
ず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とす る。 燃料チャンネル着脱機は，燃料体等の検査等のための昇降操作等をす べて水中で行うことで，崩壊熱により燃料体等が溶融せず，燃料体等か らの放射線に対して，適切な遮蔽能力を有する設計とする。 原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化することにより，燃料体等の重量物取り扱 い中に落下を防止できる設計とする。 なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。 燃料交換機の燃料つかみ具は，昇降を安全かつ確実に行うため，定格荷重を保持でき，必要な安全率を有するワイヤロープの二重化，フック部の外れ止めを有し，グラップルヘッドには機械的インターロックを設 ける設計とする。 燃料チャンネル着脱機は，下限リミットスイッチによるインターロッ ク及び燃料体等を上部で保持する固定具により燃料体等の使用済燃料 プール床面への落下を防止できる設計とする。 燃料交換機は，燃料体等の取り扱い中に過荷重となった場合に上昇を阻止するインターロックを設けるとともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。 燃料交換機は，地震時にも転倒することがないように，走行レール及	ず，燃料体等からの放射線に対して，適切な遮蔽能力を有する設計とす る。 燃料チャンネル着脱機は，燃料体等の検査等のための昇降操作等をす べて水中で行うことで，崩壊熱により燃料体等が溶融せず，燃料体等か らの放射線に対して，適切な遮蔽能力を有する設計とする。 原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化することにより，燃料体等の重量物取り扱 い中に落下を防止できる設計とする。また，想定される使用済燃料プー ル内への落下物によって使用済燃料プール内の燃料体等が破損しない ことを計算により確認する。 なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。 燃料交換機の燃料つかみ具は，昇降を安全かつ確実に行らため，定格荷重を保持でき，必要な安全率を有するワイヤロープの二重化，フック部の外れ止めを有し，グラップルヘッドには機械的インターロックを設 ける設計とする。 燃料チャンネル着脱機は，下限リミットスイッチによるインターロッ ク及び燃料体等を上部で保持する固定具により燃料体等の使用済燃料 プール床面への落下を防止できる設計とする。 燃料交換機は，燃料体等の取り扱い中に過荷重となった場合に上昇を阻止するインターロックを設けるとともに荷重監視を行うことにより，過荷重による燃料体等の落下を防止できる設計とする。 燃料交換機は，地震時にも転倒することがないように，走行レール及

変更前	変更後
び横行レール頭部を抱き込む構造をした転倒防止装置を設ける。 原子炉建屋クレーンは，地震時にも転倒することがないように走行方向及び横行方向に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けることで，クレーン本体等の車輪がレール上から落下しな い設計とする。 また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊つ た状態では，使用済燃料貯蔵ラック上を走行できないようにインターロ ックを設ける設計とする。 使用済燃料を収納する使用済燃料輸送容器（第 1 号機設備，第 1,2 ， 3 号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱うことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等により，き裂，破損等 が生じない設計とする。 さらに，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。 使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，内部 に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から 1 m 離れた位置に おける線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納される使用済燃料の放射能強度を考慮して十分な遮蔽を行うことができる設計とする。 燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が喪失した場合にも，つかんだ状態を保持し，燃料体等が外れない設計とする。 燃料交換機，原子炉建屋クレーン及び燃料チャンネル着脱機は，動力	び横行レール頭部を抱き込む構造をした転倒防止装置を設ける。 原子炉建屋クレーンは，地震時にも転倒することがないように走行方向及び横行方向に対して，クレーン本体等の浮上り量を考慮し，脱線防止ラグを設けることで，クレーン本体等の車輪がレール上から落下しな い設計とする。 また，原子炉建屋クレーンは，使用済燃料輸送容器等の重量物を吊つ た状態では，使用済燃料貯蔵ラック上を走行できないようにインターロ ックを設ける設計とする。 使用済燃料を収納する使用済燃料輸送容器（第 1 号機設備，第 1,2 ， 3 号機共用）は，取り扱い中における衝撃，熱，その他の容器に加わる負荷に耐え，容易かつ安全に取り扱うことができる設計とする。また，運搬中に予想される温度及び内圧の変化，振動等により，き裂，破損等 が生じない設計とする。 さらに，理論的若しくは適切な試験等により所定の機能を満足できる設計とする。 使用済燃料輸送容器（第 1 号機設備，第 $1,2,3$ 号機共用）は，内部 に使用済燃料が収納された場合に，放射線障害を防止するため，その容器表面の線量当量率が $2 \mathrm{mSv} / \mathrm{h}$ 以下及び容器表面から 1 m 離れた位置に おける線量当量率が $100 \mu \mathrm{~Sv} / \mathrm{h}$ 以下となるよう，収納される使用済燃料の放射能強度を考慮して十分な遮蔽を行うことができる設計とする。 燃料交換機の燃料つかみ具は空気作動式とし，燃料体等をつかんだ状態で圧縮空気が喪失した場合にも，つかんだ状態を保持し，燃料体等が外れない設計とする。 燃料交換機，原子炉建屋クレーン及び燃料チャンネル着脱機は，動力

変更前	変更後
電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とする。 1.2 設備の共用 燃料交換機及び原子炉建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすること で，共用により安全性を損なわない設計とする。	電源喪失時に電磁ブレーキによる保持機能により，燃料体等の落下を防止できる設計とする。 1.2 設備の共用 燃料交換機及び原子炉建屋クレーンは，第1号機と共用するが，第1号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすること で，共用により安全性を損なわない設計とする。
2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 燃料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プール を設ける設計とする。 新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切な貯蔵能力を有し，全炉心燃料の約 40% を収納できる設計とする。 使用済燃料プールは，第2号機の全炉心燃料の約 400% 相当分貯蔵が可能であり，さらに，放射化された機器等の貯蔵及び取り扱いができる スペースを確保した設計とする。なお，通常運転中，全炉心の燃料体等 を貯蔵できる容量を確保できる設計とする。 燃料体等の貯蔵設備は，燃料取扱者以外の者がみだりに立ち入らない よう，フェンス等により立ち入りを制限できる設計とする。 新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とする。新燃料貯蔵庫は，鉄筋 コンクリート構造とし，想定されるいかなる状態においても新燃料が臨界に達することのない設計とする。新燃料は，堅固な構造のラックに垂	2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 燃料体等を貯蔵する設備として，新燃料貯蔵庫及び使用済燃料プール を設ける設計とする。 新燃料貯蔵庫は，通常時の燃料取替を考慮し，適切な貯蔵能力を有し，全炉心燃料の約 40% を収納できる設計とする。 使用済燃料プールは，第2号機の全炉心燃料の約 400% 相当分貯蔵が可能であり，さらに，放射化された機器等の貯蔵及び取り扱いができる スペースを確保した設計とする。なお，通常運転中，全炉心の燃料体等 を貯蔵できる容量を確保できる設計とする。 燃料体等の貯蔵設備は，燃料取扱者以外の者がみだりに立ち入らない よう，フェンス等により立ち入りを制限できる設計とする。 新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とする。新燃料貯蔵庫は，鉄筋 コンクリート構造とし，想定されるいかなる状態においても新燃料が臨界に達することのない設計とする。新燃料は，堅固な構造のラックに垂

変更前
直に入れ，乾燥状態で保管し，新燃料貯蔵庫には水が充満するのを防止 するための排水口を設ける設計とする。

新燃料貯蔵庫に設置する新燃料貯蔵ラックは，貯蔵燃料の臨界を防止 するために必要な燃料間距離を保持し，たとえ新燃料を貯蔵容量最大で貯蔵した状態で，万一新燃料貯蔵庫が水で満たされるという厳しい状態 を仮定しても，実効増倍率を 0.95 以下に保つ設計とする。

使用済燃料プールは，原子炉建屋原子炉棟内に設け，燃料体等を水中 の使用済燃料貯蔵ラックに垂直に一体ずつ入れて貯蔵する。使用済燃料貯蔵ラックは，中性子吸収材であるほう素を添加したステンレス鋼を使用するとともに適切な燃料間距離をとることにより，燃料体等を貯蔵容量最大で貯蔵し，かつ使用済燃料プール水温及び使用済燃料貯蔵ラック内燃料貯蔵位置等について，想定されるいかなる場合でも実効増倍率を 0.95 以下に保ち，貯蔵燃料の臨界を防止できる設計とする。

使用済燃料プールは，鉄筋コンクリート造，ステンレス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とする。

使用済燃料プール内の壁面及び底部は，コンクリート壁による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を有する水深を確保 することにより，燃料体等からの放射線に対して適切な遮蔽能力を有 し，放射線業務従事者の被ばくを低減する設計とする。

万一，使用済燃料プールからの水の漏えいが発生し，かつ，使用済燃料プール水の補給に復水貯蔵タンク水が使用できない場合には，残留熱除去系を用いてサプレッションチェンバのプール水を補給できる設計 とする。

変更後

直に入れ，乾燥状態で保管し，新燃料貯蔵庫には水が充満するのを防止 するための排水口を設ける設計とする。

新燃料貯蔵庫に設置する新燃料貯蔵ラックは，貯蔵燃料の臨界を防止 するために必要な燃料間距離を保持し，たとえ新燃料を貯蔵容量最大で貯蔵した状態で，万一新燃料貯蔵庫が水で満たされるという厳しい状態 を仮定しても，実効増倍率を 0.95 以下に保つ設計とする。

使用済燃料プールは，原子炉建屋原子炉棟内に設け，燃料体等を水中 の使用済燃料貯蔵ラックに垂直に一体ずつ入れて貯蔵する。使用済燃料貯蔵ラックは，中性子吸収材であるほう素を添加したステンレス鋼を使用するとともに適切な燃料間距離をとることにより，燃料体等を貯蔵容量最大で貯蔵し，かつ使用済燃料プール水温及び使用済燃料貯蔵ラック内燃料貯蔵位置等について，想定されるいかなる場合でも実効増倍率を 0.95 以下に保ち，貯蔵燃料の臨界を防止できる設計とする。

使用済燃料プールは，鉄筋コンクリート造，ステンレス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とする。

使用済燃料プール内の壁面及び底部は，コンクリート壁による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を有する水深を確保 することにより，燃料体等からの放射線に対して適切な遮蔽能力を有 し，放射線業務従事者の被ばくを低減する設計とする。

万一，使用済燃料プールからの水の漏えいが発生し，かつ，使用済燃料プール水の補給に復水貯蔵タンク水が使用できない場合には，残留熱除去系を用いてサプレッションチェンバのプール水を補給できる設計 とする。

変更前	変更後
使用済燃料プールは，内面をステンレス鋼内張りに施設することによ り，燃料体等の取扱中に想定される燃料体等の落下により機能を失うよ らな損傷が生じない設計とする。 燃料体等の落下に関しては，模擬燃料体の気中落下試験（以下「落下試験」という。）での最大減肉量を考慮しても使用済燃料プールの機能 が損なわれない厚さ以上のステンレス鋼内張りを施設する設計とする。	使用済燃料プールは，内面をステンレス鋼内張りに施設することによ り，燃料体等の取扱中に想定される燃料体等の落下及び重量物の落下に より機能を失うような損傷が生じない設計とする。 燃料体等の落下に関しては，模擬燃料体の気中落下試験（以下「落下試験」という。）での最大減肉量を考慮しても使用済燃料プールの機能 が損なわれない厚さ以上のステンレス鋼内張りを施設する設計とする。 なお，使用済燃料輸送容器に使用済燃料を収納する場合などは，落下試験での落下高さを超えるため，水の浮力を考慮することにより落下試験時の落下エネルギを下回ることを確認する。 重量物の落下に関しては，使用済燃料プール周辺の状況，現場におけ る作業実績，図面等にて確認することにより，落下時のエネルギを評価 し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対して は，以下のとおり適切な落下防止対策を施し，使用済燃料プールの機能 を維持する設計とする。 使用済燃料プールからの離隔を確保できる重量物については，使用済燃料プールへ落下するおそれがないよう，転倒等を仮定しても使用済燃料プールに届かない距離に設置する。また，転倒防止のため床面や壁面 へ固定する設計とする。 原子炉建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊った状態で走行及び横行できないように可動範囲を制限するインターロックを設ける設計とする。 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動 S s に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しな い設計とする。また，屋根については鋼鈑（デッキプレート）の上に鉄

使用済燃料は，使用済燃料貯蔵ラックに貯蔵するが，使用済燃料貯蔵 ラックに収納できないような破損燃料体が生じた場合は，使用済燃料プ ール水の放射能汚染拡大を防ぐため，使用済燃料プール内の制御棒•破損燃料貯蔵ラックに収納できる設計とする。

使用済燃料を貯蔵する乾式キャスクは保有しない。

2.2 設備の共用

使用済燃料プール及び使用済燃料貯蔵ラックは，第1号機と共用す ることで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用すること により，燃料プール泠却浄化系の泠却能力が不足しないようにすること で，共用により安全性を損なわない設計とする。

変更後
ては，基準地震動 S s を考慮しても，地震時の各部発生応力が許容応力以下となる設計とすることで，使用済燃料プールへの落下物とならない設計とする。

使用済燃料は，使用済燃料貯蔵ラックに貯蔵するが，使用済燃料貯蔵 ラックに収納できないような破損燃料体が生じた場合は，使用済燃料プ ール水の放射能污染拡大を防ぐため，使用済燃料プール内の制御棒•破損燃料貯蔵ラックに収納できる設計とする。

地震時における使用済燃料プールの健全性確保のため，使用済燃料プ ールに設置されている制御棒貯蔵ハンガに使用済制御棒を貯蔵する場合は，制御棒貯蔵ハンガは 6 本掛け 9 列のうち 4 本 6 列の使用に制限 する運用とするとともに，その旨を保安規定に定めて管理する。

使用済燃料を貯蔵する乾式キャスク（兼用キャスクを含む。）は保有 しない。
2.2 設備の共用

使用済燃料プール及び使用済燃料貯蔵ラックは，第1号機と共用す ることで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用すること により，燃料プール冷却浄化系の冷却能力が不足しないようにすること で，共用により安全性を損なわない設計とする。

3．計測装置等
使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度

3．計測装置等
使用済燃料プールの水温を計測する装置として燃料貯蔵プール水温度，

変更前	変更後
及び燃料プール泠却浄化系ポンプ入口温度を設け，計測結果を中央制御室 に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プール冷却浄化系ポンプ入口温度は計測結果を記録できる設計とする。 使用済燃料プールの水温の著しい上昇又は使用済燃料プールの水位の著しい低下の場合に，これらを確実に検出して自動的に中央制御室に警報 （使用済燃料プール水温高又は使用済燃料プール水位低）を発信する装置 を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報 できる設計とする。	燃料プール泠却浄化系ポンプ入口温度及び使用済燃料プール水位／温度 （ガイドパルス式）を設け，計測結果を中央制御室に表示できる設計とす る。また，燃料貯蔵プール水温度，燃料プール泠却浄化系ポンプ入口温度及び使用済燃料プール水位／温度（ガイドパルス式）は計測結果を記録し，及び保存することができる設計とする。 使用済燃料プールの水位を計測するための装置として燃料貯蔵プール水位及び燃料プールライナドレン漏えいを設け，計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水位及び燃料プールライナ ドレン漏えいの記録はプロセス計算機から帳票として出力し保存できる設計とする。 使用済燃料プールの水位を計測するための装置として使用済燃料プー ル水位／温度（ガイドパルス式）を設け，計測結果を中央制御室に表示で きる設計とする。また，使用済燃料プール水位／温度（ガイドパルス式） は計測結果を記録し，及び保存することができる設計とする。 燃料貯蔵プール水温度，燃料プール泠却浄化系ポンプ入口温度，燃料貯蔵プール水位，燃料プールライナドレン漏えい及び使用済燃料プール水位 ／温度（ガイドパルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水温及び水位 を計測することができる設計とする。 使用済燃料プールの水温の著しい上昇又は使用済燃料プールの水位の著しい低下の場合に，これらを確実に検出して自動的に中央制御室に警報 （使用済燃料プール水温高又は使用済燃料プール水位低）を発信する装置 を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報 できる設計とする。

	変更前	変更後
N		「表1 核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」の「使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置」に示す重大事故等対処設備の他，使用済燃料プール監視カメラ（個数 1）とする。 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするとともに，重大事故等が発生 し，当該重大事故等に対処するために監視することが必要なパラメータの計測が困難となった場合に，代替パラメータにより推定ができる設計とす る。 また，重大事故等時に設計基準を超える状態における発電用原子炉施設 の状態を把握するための能力（計測可能範囲）を明確にするとともに，パ ラメータの計測が困難となった場合の代替パラメータによる推定等，複数 のパラメータの中から確からしさを考慮した優先順位を保安規定に定め て管理する。 使用済燃料プールの監視で想定される重大事故等の対応に必要となる パラメータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とする。 重大事故等の対応に必要となるパラメータは，安全パラメータ表示シス テム（SPDS）のうち SPDS 伝送装置にて電磁的に記録，保存し，電源喪失 により保存した記録が失われないとともに帳票が出力できる設計とする。 また，記録は必要な容量を保存できる設計とする。 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測する装

変更前	変更後
	置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等により計器電源が喪失した場合において，代替電源設備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計とする。 また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特 に重要なパラメータとして，炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するための パラメータを計測する装置については，温度及び水位に係るものについ て，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備 1 個を含む 1 セット 26 個（予備 26 個（緊急時対策建屋に保管）））（計測制御系統施設のうち「2．4 電源喪失時の計測」の設備を核燃料物質の取扱施設及び貯蔵施設のうち「3．計測装置等」の設備として兼用）により計測できる設計とし，これらを保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行う際の考え方として，同一の物理量について，複数のパラメータがある場合は， いずれか 1 つの適切なパラメータを選定し計測又は監視するものとする。
4．使用済燃料貯蔵槽冷却浄化設備 4． 1 燃料プール冷却浄化系 使用済燃料プールは，燃料プール冷却浄化系ポンプ（第 1,2 号機共用（以下同じ。）），燃料プール冷却浄化系熱交換器（第1，2号機共用（以下同じ。）），燃料プール泠却浄化系ろ過脱塩器（第1，2号機共用（以下同じ。））等で構成する燃料プール冷却浄化系を設け，通常運転時，運転	4．使用済燃料貯蔵槽冷却浄化設備 4． 1 燃料プール冷却浄化系 使用済燃料プールは，燃料プール泠却浄化系ポンプ（設計基準対象施設としてのみ第 1 ， 2 号機共用（以下同じ。）），燃料プール冷却浄化系熱交換器（設計基準対象施設としてのみ第1，2号機共用（以下同じ。）），燃料プール冷却浄化系ろ過脱塩器（第 1,2 号機共用（以下同じ。））等

変更前	変更後
時の異常な過渡変化時及び設計基準事故時において，使用済燃料からの崩壊熱を除去するとともに，使用済燃料プール水を浄化できる設計とす る。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計 とする。 さらに，全炉心燃料を使用済燃料プールに取り出した場合や燃料プー ル泠却浄化系での使用済燃料プールの泠却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壊熱を除去できる設計とする。 燃料プール冷却浄化系熱交換器で除去した熱は，原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海 へ輸送できる設計とする。	で構成する燃料プール冷却浄化系を設け，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，使用済燃料からの崩壊熱を除去するとともに，使用済燃料プール水を浄化できる設計とする。 また，補給水ラインを設け，使用済燃料プール水の補給が可能な設計 とする。 さらに，全炉心燃料を使用済燃料プールに取り出した場合や燃料プー ル泠却浄化系での使用済燃料プールの泠却ができない場合は，残留熱除去系を用いて使用済燃料からの崩壊熱を除去できる設計とする。 燃料プール泠却浄化系熱交換器で除去した熱は，原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海 へ輸送できる設計とする。 使用済燃料プールから発生する水蒸気による悪影響を防止するため の重大事故等対処設備として，燃料プール冷却浄化系を設ける設計とす る。 燃料プール泠却浄化系は，使用済燃料プールの水を燃料プール泠却浄化系ポンプにより燃料プール泠却浄化系熱交換器等を経由して循環さ せることで，使用済燃料プールを泠却できる設計とする。 燃料プール泠却浄化系は，非常用交流電源設備及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）が機能喪失した場合でも，常設代替交流電源設備及び原子炉補機代替冷却水系を用いて，使用済燃料プー ルを除熱できる設計とする。 燃料プール泠却浄化系で使用する原子炉補機代替冷却水系は，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I ）により原子炉補機代替冷却水系熱交換器ユ

	変更前	変更後
$\begin{aligned} & n \\ & 0 \\ & 1 \\ & \vdots \end{aligned}$		残留熱除去系（燃料プール水の泠却）及び燃料プール椧却浄化系 の有する使用済燃料プールの泠却機能喪失若しくは残留熱除去系 ポンプによる使用済燃料プールへの補給機能が喪失し，又は使用済燃料プールに接続する配管の破損等により使用済燃料プール水の小規模な漏えいにより使用済燃料プールの水位が低下した場合に，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（常設配管）を設ける設計とする。 燃料プール代替注水系（常設配管）は，大容量送水ポンプ（タイ プI）により，代替淡水源の水を燃料プール代替注水系配管等を経由して使用済燃料プールい注水することで，使用済燃料プールの水位を維持できる設計とする。 燃料プール代替注水系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。 また，使用済燃料プールは，使用済燃料貯蔵ラックの形状を維持 した状態において，燃料プール代替注水系（常設配管）による椧却及び水位確保により使用済燃料プールの機能を維持し，実効増倍率 が最も高くなる冠水状態においても実効増倍率は不碓定性を含め て 0.95 以下で臨界を防止できる設計とする。 大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジン により駆動できる設計とする。 大容量送水ポンプ（タイプI）は，想定される重大事故等時にお いて，使用済燃料プール内の燃料体等を椧却し，放射線を遮蔽し，

	変更前	変更後
$\begin{aligned} & \stackrel{N}{0} \\ & \stackrel{1}{\nu} \end{aligned}$		及び臨界を防止するために必要な注水流量を有する設計とする。 燃料プール代替注水系（常設配管）に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））により行ら設計とする。 なお，ホース延長回収車は，核燃料物質の取扱施設及び貯蔵施設 のらち「4．3 燃料プールスプレイ系」，「4．4 放射性物質拡散抑制系」，原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベ ント系」，「5．6 低圧代替注水系」，「5．10．2 代替水源移送系」，「7．3原子炉補機代替冷却水系」，原子炉格納施設の弓ち「3．2．2 原子炉格納容器下部注水系」，「3．2．3 原子炉格納容器代替スプレイ椧却系」，「3．2．6 低圧代替注水系」，「3．3．4 放射性物質拡散抑制系」， 「3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）」， 「3．3．7 原子炉格納容器フィルタベント系」，「3．5．1 原子炉格納容器フィルタバント系」の設備と兼用する設計とする。 燃料プール代替注水系（常設配管）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することか ら，流路に係る機能について重大事故等対処設備としての設計を行 う。 4．2．2 燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 残留熱除去系（燃料プール水の泠却）及び燃料プール泠却浄化系 の有する使用済燃料プールの泠却機能喪失若しくは残留熱除去系 ポンプによる使用済燃料プールへの補給機能が喪失し，又は使用済

	変更前	変更後
$\frac{1}{\infty}$		燃料プールに接続する配管の破損等により使用済燃料プール水の小規模な漏えいにより使用済燃料プールの水位が低下した場合に，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するための重大事故等対処設備として，燃料プール代替注水系（可搬型）を設ける設計とする。 燃料プール代替注水系（可搬型）は，大容量送水ポンプ（タイプ I）により代替淡水源の水をホース等を経由して使用済燃料プール へ注水することにより，使用済燃料プールの水位を維持できる設計 とする。 燃料プール代替注水系（可搬型）は，代替淡水源が枯渇した場合 において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用できる設計とする。 また，使用済燃料プールは，使用済燃料貯蔵ラックの形状を維持 した状態において，燃料プール代替注水系（可搬型）による冷却及 び水位確保により使用済燃料プールの機能を維持し，実効増倍率が最も高くなる冠水状態においても実効増倍率は不確定性を含めて 0.95 以下で臨界を防止できる設計とする。 大容量送水ポンプ（タイプ I ）は，空冷式のディーゼルエンジン により駆動できる設計とする。 大容量送水ポンプ（タイプ I ）は，想定される重大事故等時にお いて，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要な注水流量を有する設計とする。 燃料プール代替注水系（可搬型）に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））により行ら設計とする。

	変更前	変更後
N $\substack{1 \\ \hline \\ \hline}$		なお，ホース延長回収車は，核燃料物質の取扱施設及び貯蔵施設 のらち「4．3 燃料プールスプレイ系」，「4． 4 放射性物質拡散抑制系」，原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベ ント系」，「5． 6 低圧代替注水系」，「5．10．2 代替水源移送系」，「7．3原子炉補機代替冷却水系」，原子炉格納施設のらち「3．2．2 原子炉格納容器下部注水系」，「3．2．3 原子炉格納容器代替スプレイ冷却系」，「3．2．6 低圧代替注水系」，「3．3．4 放射性物質拡散抑制系」， 「3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）」， 「3．3．7 原子炉格納容器フィルタベント系」，「3．5．1 原子炉格納容器フィルタベント系」の設備と兼用する設計とする。 燃料プール代替注水系（可搬型）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラック及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 4． 3 燃料プールスプレイ系 使用済燃料プールからの大量の水の漏えいその他の要因により使用済燃料プールの水位が異常に低下した場合において，使用済燃料プール内の燃料体等の著しい損傷の進行を緩和し，及び臨界を防止するために必要な重大事故等対処設備として燃料プールスプレイ系を設ける設計 とする。 4．3．1 燃料プールスプレイ系（常設配管）による使用済燃料プールへの スプレイ

	変更前	変更後
n 0 1 1 0	（	使用済燃料プールからの大量の水の漏えい等により使用済燃料 プールの水位が異常に低下した場合に，燃料損傷を緩和するととも に，燃料損傷時には使用済燃料プール内の燃料体等の上部全面にス プレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系 （常設配管）を設ける設計とする。 燃料プールスプレイ系（常設配管）は，大容量送水ポンプ（タイ プ I ）により，代替淡水源の水を燃料プールスプレイ系配管等を経由してスプレイノズルから使用済燃料プール内の燃料体等に直接 スプレイすることで，燃料損傷を緩和するとともに，環境への放射性物質の放出をできる限り低減できるよう，使用済燃料プール内燃料体等の上部全面に向けてスプレイし，使用済燃料プール内燃料体等からの崩壊熱による蒸散量を上回る量をスプレイできる設計と する。 使用済燃料プールは，燃料プールスプレイ系（常設配管）にて，使用済燃料貯蔵ラック及び燃料体等を泠却し，臨界にならないよう に配慮したラック形状及び燃料配置において，いかなる一様な水密度であっても実効増倍率は不確定性を含めて 0.95 以下で臨界を防止できる設計とする。 燃料プールスプレイ系（常設配管）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。 大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジン により駆動できる設計とする。

変更前

4． 2 使用済燃料プールの水質維持使用済燃料プールは，使用済燃料からの崩壊熱を燃料プール泠却浄化系熱交換器で除去して使用済燃料プール水を泠却するとともに，燃料体 の被覆が著しく腐食するおそれがないよう，燃料プール冷却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット水の純度，透明度を維持で

変更後
備として，海洋への拡散抑制設備（シルトフェンス）は，シルトフ エンス（原子炉格納施設のうち「3．3．4 放射性物質拡散抑制系」 の設備を核燃料物質の取扱施設及び貯蔵施設のうち「4．4 放射性物質拡散抑制系」の設備として兼用）で構成する。シルトフェンス は，汚染水が発電所から海洋に流出する 4 箇所（南側排水路排水桝，タービン補機放水ピット，北側排水路排水桝及び取水口）に設置できる設計とする。

シルトフェンスは，海洋への放射性物質の拡散を抑制するため，設置場所に応じた高さ及び幅を有する設計とする。必要数は，各設置場所に必要な幅に対してシルトフェンスを二重に設置すること とし，南側排水路排水桝に 1 本 1 組（高さ約 5 m ，幅約 5 m ）として計 2 本，タービン補機放水ピットに 1 本 1 組（高さ約 7 m ，幅約 5 m ） として計 2 本，北側排水路排水桝に 1 本 1 組（高さ約 6 m ，幅約 11 m ） として計 2 本及び取水口に 3 本 1 組（ 1 本あたり高さ約 12 m ，幅約 $20 \mathrm{~m})$ として計 6 本の合計 12 本使用する設計とする。また，予備に ついては，破損時のバックアップとして，各設置場所に対して 1 組 の合計 6 本を保管する。
4.5 使用済燃料プールの水質維持

使用済燃料プールは，使用済燃料からの崩壊熱を燃料プール泠却浄化系熱交換器で除去して使用済燃料プール水を泠却するとともに，燃料体 の被覆が著しく腐食するおそれがないよう，燃料プール泠却浄化系ろ過脱塩器で使用済燃料プール水をろ過脱塩して，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット水の純度，透明度を維持で

変更前	変更後
4.4 設備の共用 燃料プール冷却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－F019）（第1，2号機共用）は，第1号機と共用するこ とで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵す ることが可能な設計としている。設備容量の範囲内で運用することによ り，燃料プール冷却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。	4.8 設備の共用 燃料プール泠却浄化系設備及び燃料プール冷却浄化系燃料プール注入逆止弁（G41－F019）（設計基準対象施設としてのみ第1，2号機共用） は，第 1 号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としている。設備容量の範囲内で運用することにより，燃料プール冷却浄化系の泠却能力が不足し ないようにすることで，共用により安全性を損なわない設計とする。
5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表1核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。	5．主要対象設備 核燃料物質の取扱施設及び貯蔵施設の対象となる主要な設備について，「表1 核燃料物質の取扱施設及び貯蔵施設の主要設備リスト」に示す。本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 核燃料物質の取扱施設及び貯蔵施設の兼用設備リ スト」に示す。

表1核燃料物質の取扱施設及び貯蔵施設の主要設備リスト（1／4）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 総 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス
燃糊取設備	－	新燃料又は使用済燃料 を取り扱ら機器	燃料交換機（第 1,2 号機共用）	$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \end{aligned}$	－		－	変更なし			－	
			原子炉建屋クレーン（第 1， 2 号機共用）	$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \end{aligned}$	－		－	変更なし			－	
			燃料チャンネル着脱機（第 1，2号機共用）	B－2	－		－	変更なし			－	
	使用済燃料貯蔵槽 使用済燃料運搬用容器 ピット		使用済燃料プール（第 1，2号機共用）	S	クラス 3		－	使用済燃料プール（設計基準対象施設としての み第 1，2号機共用）	変更なし		常設耐震／防止常設／緩和	SA クラス 2
			キャスクピット（第 1，2号機共用）	S	クラス 3		－	変更なし			－	
		使用済燃料貯蔵ラック	使用済燃料貯蔵ラック（第 1，2号機共用）	S	－		－	使用済燃料貯蔵ラック（設計基準対象施設とし てのみ第 1，2号機共用）	変更なし		常設耐震／防止常設／緩和	－
		破損燃料貯蔵ラック	制御棒•破損燃料貯蔵ラック	S	－		－	変更なし			常設耐震／防止常設／緩和	－
		制御棒貯蔵ラック	制御棒貯蔵ラック	$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \end{aligned}$	－		－	変更なし			－	
		制御棒貯蔵ハンガ	制御棒貯蔵ハンガ	$\begin{aligned} & \text { B-1 } \\ & \text { B-2 } \end{aligned}$	－		－	変更なし			－	
		使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置	燃料プール泠却浄化系ポンプ入口温度	C	－		－	変更なし			－	
			燃料貯蔵プール水温度	C	－		－	変更なし			－	
			燃料貯蔵プール水位	C	－		－	変更なし			－	
			燃料プールライナドレン漏えい	C	－		－	変更なし			－	
			－					使用済燃料プール水位／温度（ガイドパルス式）	C	－	常設／防止常設／緩和	－
			－					使用済燃料プール水位／温度（ヒートサーモ式）	－		常設／防止常設／緩和	－

表1核燃料物質の取扱施設及び貯蔵施設の主要設備リスト $(2 / 4)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & N \\ & N \\ & 1 \\ & N \\ & \infty \end{aligned}$		$\begin{aligned} & \text { 燃 } \\ & \text { 料 } \\ & \text { 1 } \\ & \text { 华 } \\ & \text { 却 } \\ & \text { 浄 } \\ & \text { 华 } \end{aligned}$	熱交換器	燃料プール泠却浄化系熱交換器 （第 1， 2 号機共用）	B	クラス 3		－	燃料プール泠却浄化系熱交換器（設計基準対象施設としてのみ第 1，2号機共用）		更なし	常設耐震／防止	SA クラス 2
			ポンプ	燃料プール椧却浄化系ポンプ （第 1， 2 号機共用）	B	Non＊2		－	燃料プール泠却浄化系ポンプ （設計基準対象施設としてのみ第 1，2号機共用）		更なし	常設耐震／防止	SA クラス 2
			スキマサージ槽	スキマサージタンク （第 1,2 号機共用）	B	クラス 3		－	スキマサージタンク （設計基準対象施設としてのみ第 1,2 号機共用）		更なし	常設耐震／防止	SA クラス 2
			主配管（スプレイヘッ ダを含む。）	スキマサージタンク～燃料プール泠却浄化系 ポンプ （第 1， 2 号機共用）	B－1	クラス 3		－	スキマサージタンク～燃料プール泠却浄化系ポ ンプ （設計基準対象施設としてのみ第 1,2 号機共用）		更なし	常設耐震／防止	SA クラス 2
				燃料プール泠却浄化系ポンプ～燃料プール泠却浄化系ろ過脱塩器バイパス配管分岐点 （第 1， 2 号機共用）	B－1	クラス 3		－	燃料プール泠却浄化系ポンプ～燃料プール泠却浄化系ろ過脱塩器バイパス配管分岐点 （設計基準対象施設としてのみ第 1,2 号機共用）		更なし	常設耐震／防止	SA クラス 2
				燃料プール泠却浄化系ろ過脱塩器バイパス配管分岐点～燃料プール泠却浄化系ろ過脱塩器 （第 1，2号機共用）	B－1	クラス 3		－	変更なし			－	
				燃料プール泠却浄化系ろ過脱塩器～燃料プー ル椧却浄化系ろ過脱塩器バイパス配管合流点 （第 1,2 号機共用）	B－1	クラス 3		－	変更なし			－	
				燃料プール泠却浄化系ろ過脱塩器バイパス配管合流点～燃料プール冷却浄化系熱交換器 （第 1，2号機共用）	B－1	クラス 3		－	燃料プール冷却浄化系ろ過脱塩器バイパス配管 合流点～燃料プール椧却浄化丢熱交換器 （設計基準対象施設としてのみ第 1,2 号機共用）		更なし	常設耐震／防止	SA クラス 2
				燃料プール椧却浄化系熱交換器～G41－F017 （第 1，2 号機共用）	B－1	クラス 3		－	燃料プール冷却浄化系熱交換器～G41－F017 （設計基準対象施設としてのみ第 1,2 号機共用）		更なし	常設耐震／防止	SA クラス 2
				G41－F017～使用済燃料プール （第 1，2 号機共用）	S	クラス 3		－	G41－F017～使用済燃料プール （設計基準対象施設としてのみ第 1，2号機共用）		更なし	常設耐震／防止	SA クラス 2
				燃料プール泠却浄化系ポンプ入口配管分岐点 ～E11－F029A，B （第 1,2 号機共用）	B－1	クラス 3		－	変更なし			－	
				E11－F030A，B～燃料プール泠却浄化系熱交換器出口配管合流点 （第 1,2 号機共用）	S	クラス 3		－	変更なし			－	
				－－					$\begin{aligned} & \text { 燃料プール冷却浄化系ろ過脱塩器バイパス配管 } \\ & \text { 分岐点~燃料プール椧却浄化系ろ過脱塩器バイ } \\ & \text { パス配管合流点 } \end{aligned}$		－	常設耐震／防止	SA クラス 2
				－					燃料プール冷却浄化系ポンプ出口配管分岐点～燃料プール冷却浄化系ろ過脱塩器出口配管合流点		－	常設耐震／防止	SA クラス 2

表1 核粠料物質の取扱施設及ぴ貯蔵施設の主要設備リスト（3／4）

表1核然料物質の取扱施設及び貯藏施設の主要設備リスト（4／4）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 倠 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1	
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
使 滅	放射性惣買散抑掣篍	ポンプ	－					大容量送水ポンプ（タイプ II）		－	可搬／緩和	SAクラス 3
$\begin{aligned} & \text { 料 } \\ & \text { 賥 } \end{aligned}$		主配管（スプレイヘッ ダを含む。）	－					取水用ホース（250A：5m，10m， 20 m ）		－	可搬／緩和	SAクラス 3
$\begin{aligned} & \text { 溚 } \\ & \text { 却 } \end{aligned}$			－					送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）		－	可搬／緩和	SA クラス 3
$\begin{aligned} & \text { 代 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			－					放水砲	－		可搬／緩和	SAクラス 3

表 2 核燃料物質の取扱施設及び貯蔵施設の兼用設備リスト（1／1）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設に適用する共通項目の基準及び規格 については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設に適用する共通項目の基準及び規格 については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 核燃料物質の取扱施設及び貯蔵施設に適用する個別項目の基準及び規格 は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉の設置，運転等に関する規則の規定に基づく線量限度等を定める告示（平成 13 年 3 月 21 日経済産業省告示第 187 号） －発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） - クレーン構造規格（平成 7 年 12 月 26 日労働省告示第 134 号） - クレーン等安全規則（昭和 47 年 9 月 30 日労働省令第 34 号）	第2章 個別項目 核燃料物質の取扱施設及び貯蔵施設に適用する個別項目の基準及び規格 は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示（平成 27 年原子力規制委員会告示第 8 号） －発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） - クレーン構造規格（平成 7 年 12 月 26 日労働省告示第 134 号） - クレーン等安全規則（昭和 47 年 9 月 30 日労働省令第 34 号） - J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格 - J S ME S N J 1－2012 発電用原子力設備規格 材料規格

上記の他「実用発電用原子炉に係る使用済燃料貯蔵槽における燃料損傷防止対策の有効性評価に関する審査ガイド（平成25年6月19日原規技発第

13061916 号原子力規制委員会）」を参照する。
2.6 核燃料物質の取扱施設及び貯蔵施設に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: | :---: |
| 核燃料物質の取扱施設及び貯蔵施設に係る工事の方法は，「原子炉本体」における | |
| 「1．9 原子炉本体に係る工事の方法」（「1．3燃料体に係る工事の手順と使用前事業 | |
| 者検査」，「2．1．3 更なし 然料体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意 | |
| 事項」を除く。）に従う。 | |

3．原子炉冷却系統施設
3．3 原子炉冷却材再循環設備
3．3．1 原子炉再循環系
（1）ポンプ

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
（2）主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「500」と記載。記載内容は，設計図書による。
＊ 7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F002A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「500」と記載。記載内容は，設計図書による。
＊ 7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（3）主配管

変 更 前							変 更 後													
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$		$\operatorname{lil}_{\text {外 }}^{\text {径*1 }}{ }_{(1 \mathrm{~mm})}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称		最高使用 温． $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料						
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炉 } \\ & \text { 再 } \\ & \text { 䅼 } \\ & \hline \text { 系 } \end{aligned}$	原子炉圧力容器 残留熱除去系原子炉停止時冷却モード吸込配管分岐点	8． $62^{* 4}$	302	520.6 520.6 530.6		SUS316TP ${ }^{* 5}$ SUSF316 SUSF316	原子炬圧力容器 残留熱除去系原子炉停止時冷却モード吸込配管分岐点		$\begin{gathered} \text { 変更なし } \\ 10.34^{* 8} \end{gathered}$	変更なし 315＊8	変更なし									
	残留熱除去系原子炉停止時冷却モード吸込配管分岐点 \sim原子炉再循環ポンプ（A）	8． $62 * 4$	302	520.6 520.6		SUSF316 SUS316TP	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炉 } \\ & \text { 再 } \\ & \text { 環 } \\ & \text { 系 } \end{aligned}$	変更なし												
	原子炉再循環ポンプ（A） 残留熱除去系原子炉停止時冷却モードA系注入配管合流点	10． 40 ＊	302	$\begin{aligned} & 520.6 \\ & 520.6 \end{aligned}$		SUS316TP SUSF316		変更なし												
	残留熱除去系原子炉停止時冷却モードA系注入配管合流点原子炉圧力容器	10． $40^{* 4}$	302	530.6		SUSF316		残留熱除去系原子炉停止時冷却モードA系注入配管合流点原子炉圧力容器	変更なし	変更なし	変更なし									
				520.6		SUSF316														
				426.0		SUSF316														
				416.0	${ }^{\prime}(26.2)$	SUSF316														
				279． 3	$\begin{aligned} & \square \\ & \hline(18.2) \end{aligned}$	SUSF316														
	原子炉圧力容器 原子炉再循環ポンプ（B）	8． $62 * 4$	302	520.6		SUSF316		変更なし												
				520.6	$\square_{(32.5)}^{* 6}$	SUS316TP														

	変更 前							変 更 後							
		名 称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }_{\left({ }^{\circ} \mathrm{C}\right)} \text {) } \end{aligned}$	$\begin{gathered} \text { 外 } \begin{array}{c} \text { 径*1 } \\ (\mathrm{mm}) \end{array} \\ \hline \end{gathered}$	厚 さ＊2	材 料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 压 } \\ & { }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 最高使用 } \\ \text { 温 } \\ \text { (}{ }^{\circ} \mathrm{C} \text {) } \end{array} \text { 度 } \\ \hline \end{gathered}$		$\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {さ2 }} \\ \hline \end{gathered}$	材	料
		原子炬再循擐ポンプ（B） \sim 残留熱除去系原子炉停止時冷却モードB系注入配管合流点	10． $40 * 4$	302	520.6 520.6		SUS316TP SUSF316	変更なし							
		残留熱除去系原子炉停止時冷却モードB系注入配管合流点原子炉圧力容器	10． 40 ＊4	302	530.6	$\square_{(37.5)}^{* 6}$	SUSF316		残留熱除去系原子炉停止時冷却モードB系注入配管合流点原子炉圧力容器	変更なし	変更なし	変更なし			
					520.6		SUSF316								
					426.0	$\square_{(31.2)}^{* 6}$	SUSF316								
					416.0	$\begin{aligned} & \hline(26.2) \\ & \hline{ }^{* 6} \end{aligned}$	SUSF316								
					279.3	$\square_{(18.2)}^{* 6}$	SUSF316								
\bigcirc		残留熱除去系原子炉停止時冷却モード吸込配管分岐点 E11－F014A，B	8． $62 * 4$	302	457.2	$\square{ }^{* 6}$	SUSF316		残留熱除去系原子炉停止時冷却モード吸込配管分岐点 E11－F014A，B	$\begin{aligned} & \text { 変更なし } \\ & \text { 10.34* } \end{aligned}$	変更なし	変更なし			
					457.2	（29．4）	STS42								
					＊ 12	＊ 12	＊ 12								
					457.2	（29．4）	STS42								
©					457.2	（34．9）									
					457.2	(34.9)	STS42								
					355.6	$\stackrel{\prime}{(27.8)}$									
					$\begin{gathered} 457.2 \\ 355.6 \end{gathered}$	$\begin{aligned} & (34.9) \\ & (27.8) \end{aligned}$	STS42								
					355.6	（23．8）	STS42								
					$355.6^{* 12}$	$(23.8)^{* 12}$	$\text { STS42 }{ }^{* 1 .}$								

変 更 前							変 更 後													
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	最高使用 温 （ ${ }^{\circ} \mathrm{C}$ ） 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称		最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料						
原炉再再環系	E11－F020A 残留熱除去系原子炉停止時冷却モードA系注入配管合流点	10． $40^{* 4}$	302	318.5	（25．4）	STS42	原炉再循㱟系	E11－F020A～残留熱除去系原子炉停止時冷却モードA系注入配管合流点	変更なし	$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$	変更なし									
				318.5	$(25.4)^{* 12}$	STS42 ${ }^{* 12}$														
				318.5		SUSF316														
	E11－F020B 残留熱除去系原子炉停止時冷却モードB系注入配管合流点	10． $40^{* 4}$	302	318.5	（25．4）	STS42		E11－F020B 残留熱除去系原子炉停止時冷却モードB系注入配管合流点	変更なし	$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$	変更なし									
				$318.5{ }^{* 12}$	$(25.4)^{* 12}$	STS42 ${ }^{* 12}$														
				318.5	$\square_{(25.4)}^{* 6}$	SUSF316														
	原子炉再循環ポンプ（B）入口配管分岐点G31-F001	8． $62{ }^{* 4}$	302	216.3		SUSF316		変更なし												
				216． 3	（15．1）	STS42														
				$216.3^{* 12}$	$(15.1)^{* 12}$	STS42 ${ }^{* 12}$														

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「原子炉圧力容器から原子炉再循環ポンプ（A）まで（原子炉再循環ポンプ（A）入口配管）」と記載。
＊4：S I 単位に換算したものである。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画書の添付書類「IV－2－1－1－1－1 管の基本板厚計算書」による。 ＊ 7 ：残留熱除去設備（残留熱除去系）と兼用。
＊8 ：重大事故等時の使用時の値。
＊9：記載の適正化を行う。既工事計画書には「原子炉再循環ポンプから原子炉圧力容器まで（原子炉再循環ポンプ出口配管）」と記載
＊ 10 ：記載の適正化を行う。既工事計画書には「原子炉圧力容器から原子炉再循環ポンプ（B）まで（原子炉再循環ポンプ（B）入口配管）」と記載。
＊11：記載の適正化を行う。既工事計画書には「原子炉再循環ポンプ（A）入口配管から残留熱除去系まで」と記載。
＊ 12 ：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊13：記載の適正化を行う。既工事計画書には「残留熱除去系から原子炉再循環ポンプ出口配管まで」と記載。
＊14：記載の適正化を行う。既工事計画書には「原子炉再循環ポンプ（B）入口配管から原子炉冷却材浄化系まで」と記載。
3.4 原子炉冷却材の循環設備

3．4．1 主蒸気系
（3）容器

注記 $~ 1 ~$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊ 3 ：S I 単位に換算したものである。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－2－1－2 主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書」による。

注記 $* 1$ ：計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊ 4 ：S I 単位に換算したものである。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－2－1－3 主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書」による。
（5）主蒸気流量制限器

注記＊1：S I 単位に換算したものである。

＊2：公称値を示す。

＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－2－1－1－1 管の基本板厚計算書」による。
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「主蒸気逃がし安全弁」と記載。記載内容は，設計図書による。
＊2 ：自動減圧機能を有する弁を示す
$* 3:$ 計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系）と兼用。
＊ 4 ：計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系，代替高圧窒素ガス供給系）と兼用。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付3資庁第10518号にて認可された工事計画の添付書類「IV－4－2 主蒸気逃がし安全弁の吹出量計算書」による。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「（A）」と記載。
＊8：記載の適正化を行う。既工事計画書には「150」と記載。記載内容は，設計図書による。
＊9 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊10：11個のうち自動減圧機能を有する弁の個数を示す。
（7）主要弁

注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F002A，B，C，D」と記載。記載内容は，設計図書 による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F003A，B，C，D」と記載。記載内容は，設計図書 による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「タービンバイパス弁」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「165．1mm」と記載。記載内容は，設計図書によ る。
＊6 ：記載の適正化を行う。既工事計画書には「タービン建屋内」と記載。記載内容は，設計図書による。
＊ 7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（8）主配管

	変 更 前							変 更 後						
		名 称		$\begin{array}{\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$	$\begin{gathered} \text { 外 } \begin{array}{c} \text { 径*1 } \\ (\mathrm{mm}) \end{array} \\ \hline \end{gathered}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料		名 称	$\begin{aligned} & \hline \text { 最高使用 } \\ & { }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}\right. \\ & \hline \end{aligned}$	$\text { 外 }_{\substack{\text { (mm) }}}^{\substack{\text { 径*1 }}}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
		B21－F001B分岐点 $\underset{\sim}{\sim}$ B21－F001B	8． $62 * 4$	302	228.6	\square （33．0）	SFVC2B		変更なし	$\begin{gathered} \text { 変更なし } \\ 10.34 * 5 \end{gathered}$	変更なし 315＊5		変更なし	
												267.4	（15．1）	$\begin{gathered} \text { STS42 } \\ \text { STS410 } \\ \hline \end{gathered}$
				－					B21-F001B	4． $71 * 5$	$262 * 5$	$\begin{gathered} \text { 267. } 4 \\ / \\ 267.4 \\ / \\ - \end{gathered}$	$\overbrace{(15.1)}^{(15.1)}$	STS42
									T－クエンチャ			$267.4{ }^{* 13}$	$(15.1)^{* 13}$	STS42 ${ }^{* 13}$
												267.4	$\square^{15.1)}$	SCS16A
\bigcirc												323.9	$\square 17.5)$	SCS16A
\％ $=$ （c）	$\begin{array}{\|l\|} \hline \text { 蒸 } \\ \text { 系 } \end{array}$	B21－F001C分岐点 $\underset{\sim}{\sim}{ }^{\text {B21－F001C }}$	8． $62 * 4$	302	228.6	\square	SFVC2B	$\begin{aligned} & \text { 蒸 } \\ & \text { 采 } \end{aligned}$	変更なし	変更なし 10．34＊	変更なし		変更なし	
○			3． $80 * 4$	249	267.4	（15．1）	$\begin{aligned} & \quad{ }^{* 10} \\ & \text { STS42 } \\ & \text { STS410 } \end{aligned}$			$\begin{gathered} \text { 変更なし } \\ 4.71^{*} 5 \end{gathered}$	$\begin{gathered} \text { 変更なして } \\ 262^{2} \end{gathered}$		変更なし	
					－				変更なし	$\begin{gathered} 3.80 \\ \text { 4. } 71 * 5, * 11 \end{gathered}$	$\stackrel{249}{262^{* 5, * 11}}$		$\underset{(15.1)}{\substack{\text {＊11，＊12 } \\(15.1)}}$	$\begin{aligned} & \quad{ }^{* 11, * 18} . \\ & \text { STS42 } \end{aligned}$
												267.4		
			3． $80 * 4$	249	323.9	$\square_{(17.5)}{ }^{66}$	SCS16A			$\begin{gathered} \text { 変更なし } \\ 4.71^{*} 5 \end{gathered}$	$\begin{gathered} \text { 変更なして } \\ 2622^{2} \end{gathered}$		変更なし	

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 压 力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \hline \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
主丞系	$\begin{aligned} & \text { タービンバイパス弁 } \\ & \text { ~ タービンバイパス弁減圧管 } \end{aligned}$	$7.35 * 4$	302	267.4	（15．1）	STPT49	$\begin{aligned} & \text { 主 } \\ & \text { 卺 } \\ & \text { 采 } \end{aligned}$	変更なし						
		8． $62{ }^{* 4}$	302	318.5	$(17.4)^{* 7}$	$\text { STS49 }{ }^{* 7}$		変更なし						
	主蒸気ヘッダ			318.5	（17．4）	STS49								
	原子炉給水ポンプ駆動用蒸気			318.5	（17．4）	STPT49								
	タービン			114.3	（13．5）	STPT49								
	原子炉給水ポンプ駆動用蒸気 タービン入口配管分岐点 N38－F023A，B及びN38－F024A，B	8． $62 * 4$	302	216.3	（12．7）	STPT49		変更なし						

変 更 前							変 更 後								
名 称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \quad \text { 度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料	名 称		$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$		$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		
	主蒸気逃がし安全弁自動減圧機能用アキュムレータ（A）出口配管合流点B21-F001A	1． 77	171	60.5	（3．9）	SUS304TP	主蒸気逃がし安全弁自動減圧機能用アキュムレータ（A）出口配管合流点B21-F001A		変更なし						
		\cdots							$1.77{ }^{* 11}$	$171{ }^{* 11}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 13 \\ & \text { SUS304 } \end{aligned}$		
							$* 11, * 12, * 21$ 61.5	$\begin{array}{r} * 11, * 12, * 21 \\ (0.4) \end{array}$			$\begin{aligned} & \quad * 11, * 12 \\ & \text { SUS304 } \end{aligned}$				
		1． 77	171	60.5	（3．9）	SUS304TP				主蒸気逃がし安全弁自動減圧機能用アキュムレータ（C）出口配管合流点 B21－F001C	変更なし				
								＊11	＊11		$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \\ \hline \end{gathered}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 13 \\ & \text { SUS304 } \\ & \hline \end{aligned}$		
				－				1． 77	171		$* 11, * 12, * 21$ 61.5	$\begin{array}{r} * 11, * 12, * 21 \\ \quad(0.4) \end{array}$	$\begin{aligned} & \quad{ }^{* 11, * 12} \\ & \text { SUS304 } \end{aligned}$		
		1． 77	171	60.5	（3．9）	SUS304TP		主蒸気逃がし安全弁自動減圧機能用アキュムレータ（E）出口配管合流点 B21－F001E	変更なし						
									＊11	＊11	$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \\ \hline \end{gathered}$	$* 11, * 12, * 13, * 19$ (6.1)	$\begin{aligned} & \hline * 11, * 12, * 13 \\ & \text { SUS304 } \\ & \hline \end{aligned}$		
				－					1． 77	171	$* 11, * 12, * 21$ 61.5	$* 11, * 12, * 21$	$* 11, * 12$ SUC304		
		1． 77	171	60.5	（3．9）	SUS304TP		主蒸気逃がし安全弁自動減圧機能用アキュムレータ（H）出口配管合流点 B21－F001H	変更なし						
主	主烝気逃がし安全并自動減 圧機能用アキュムレータ（H）						$\begin{aligned} & \text { 䒱 } \\ & \text { 采 } \end{aligned}$		＊11	＊11	$\begin{gathered} *+11, * 12, * 13, * 19 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \\ \hline \end{gathered}$	$\begin{aligned} & * 11, * 12, * 13 \\ & \text { SUS304 } \end{aligned}$		
$\begin{aligned} & \text { 枀 } \\ & \text { 系 } \end{aligned}$	出口配管合流点 B21-F001H			－					1． 77	171	$\begin{aligned} & * 11, * 12, * 21 \\ & 61.5 \end{aligned}$	$\xrightarrow{* 11, * 12, * 21}(0.4)$	$\begin{aligned} & \quad{ }^{* 11, * 12} \\ & \text { SUS304 } \end{aligned}$		
	＊17	1． 77	171	60.5	（3．9）	SUS304TP		変更なし							
	主蒸気逃がし安全弁自動減							主蒸気逃がし安全弁自動減圧機能用アキュムレータ（J）出口配管合流点 B21－F001J	$1.77^{* 11}$	$171{ }^{* 11}$	$* 11, * 12, * 13, * 19$ 61.1	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 13 \\ & \text { SUS304 } \end{aligned}$		
	出口配管合流点			－							$\begin{gathered} * 11, * 12, * 19, * 20 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 19, * 20 \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 20 \\ & \text { SUS304 } \end{aligned}$		
	B21-F001J										＊ $11, * 21$	＊11，＊21	＊ 11		
											77.0	（1．0）	SUS304		
		1． 77	171	60.5	（3．9）	SUS304TP		主蒸気逃がし安全弁自動減圧機能用アキュムレータ（L）出口配管合流点\simB21－F001L	変更なし						
	主蒸気逃がし安全弁自動減								$1.77^{* 11}$	171	$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \end{gathered}$	SUS304		
	出口配管合流占										＊11，＊12，＊19，＊20	＊11，＊12，＊19，＊20	＊11，＊12，＊20		
				－							61.1	（6．1）	SUS304		
	B21－F001L										＊11，＊12，＊21	＊11，＊12，＊21	＊11，＊12		
												（0．4）	SUS304		

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & { }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$		$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \begin{array}{c} \text { 度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{array}{\|l\|l} \text { 主 } \\ \text { 䘬 } \\ \text { 采 } \end{array}$	B21－F022F 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（F）出口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP	主卺奚	変更なし						
	B21－F022G 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（G）出口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP				変更なし				
	B21－F022H 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（H）出口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP				変更なし				
	B21－F022J 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（J）出口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP				変更なし				
	B21－F022K ～${ }^{* 17}$ 主蒸気逃がし安全弁逃がし弁 機能用アキュムレータ K ）出 口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP				変更なし				
	B21－F022L 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（L）出口配管合流点	1． 77	171	60.5	（3．9）	SUS304TP				変更なし				

変 更 前							変 更 後								
名 称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & \text { 力 } \\ & (\mathrm{MPa}) \end{aligned}$		$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料	名 称		$\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		
$\begin{aligned} & \text { 主 } \\ & \text { 巹 } \\ & \text { 采 } \end{aligned}$	主蒸気逃がし安全弁逃がし升機能用アキュムレータ（K）B21－F001K	－					変更なし		$1.77{ }^{* 11}$	$171{ }^{* 11}$	$\begin{gathered} * 11, * 12, * 19, * 20 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 19, * 20 \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 20 \\ & \text { SUS304 } \end{aligned}$		
		1． 77	171	60.5	（3．9）	SUS304TP			変更なし						
		（c）							$1.77{ }^{* 11}$	$171{ }^{* 11}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \\ \hline \end{gathered}$	$\begin{gathered} * 11, * 12, *_{13,},{ }^{* 19} \\ \quad(6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 13 \\ & \text { SUS304 } \end{aligned}$		
							$* 11, * 12, * 19$ 61． 1 61.1 61． 1	＊11，＊ 12 ，＊19 （6．1） （6．1） （6．1）			$\begin{aligned} & \quad{ }^{* 11, * 12} \\ & \text { SUS304 } \end{aligned}$				
							$\begin{aligned} & *_{111, * 12, * 21} \\ & 61.5 \end{aligned}$	$\begin{gathered} * 11, * 12, * 21 \\ (0,4) \\ \hline \end{gathered}$			$\begin{aligned} & \quad{ }^{* 11, * 12} \\ & \text { SUS304 } \end{aligned}$				
	$\begin{aligned} & \text { 主蒸気逃がし安全弁逃がし } \\ & \text { 升機能用アキュムレータ (L) } \\ & \text { B21-F001L } \\ & \text { B } \end{aligned}$	－							$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 采 } \end{aligned}$	変更なし	$1.77{ }^{* 11}$	$171{ }^{* 11}$	$\begin{gathered} * 11, * 12, * 19, * 20 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, w_{19}, \psi_{20} \\ (6.1) \end{gathered}$	$\begin{aligned} & * 11, * 12, * 20 \\ & \text { SUS304 } \\ & \hline \end{aligned}$
		1． 77	171	60.5	（3．9）	SUS304TP			変更なし						
		－					$1.77^{* 11}$	$171{ }^{* 11}$			$\begin{gathered} * 11, * 12, * 13, * 19 \\ 61.1 \end{gathered}$	$\begin{gathered} * 11, * 12, * 13, * 19 \\ (6.1) \\ \hline \end{gathered}$	$* 11, * 12, * 13$ SUS304		
							＊11，＊12，＊19 61.1 61.1 61.1				＊11＊ 12 ＊＊19 （6．1） （6．1） （6．1）	$\begin{aligned} & * 11, * 12 \\ & \text { SUS304 } \end{aligned}$			
							77.0				${ }_{(1.0)}^{* 11, * 21}$	SUS304			
	－							B21－F001A，L \sim 原子炉格納容器配管貫通部 $(\mathrm{X}-106 \mathrm{~B})$		4．計測制御系統施設 4． 8 制御用空気設備 4．8． 1 高圧窒素ガス供給系 に記載する。					
							原子炉格納容器配管貫通部 （X－106B）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。							
							\qquad 原子炉格納容器配管貫通部 （X－106B） 代替高圧窒素ガス供給系A系窒素供給配管分岐点	4．計測制御系統施設 4.8 制御用空気設備 4． 8.1 高圧窒素ガス供給系 に記載する。							

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「原子炉圧力容器から主蒸気ヘッダまで（主蒸気ヘッダ入口配管）」と記載。
＊ 4 ：S I 単位に換算したものである。
$* 5$ ：重大事故等時の使用時の値。
＊6：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－2－1－1－1 管の基本板厚計算書」による。 ＊7：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊ 8 ：記載の適正化を行う。既工事計画書には「主蒸気ヘッダ入口配管から主蒸気逃がし安全弁まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「主蒸気逃がし安全弁（自動減圧機能用）からサプレッションチェンバへ」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊11：重大事故等クラス2配管に使用する場合の記載事項。
$* 12$ ：本設備は既存の設備である。
＊ 13 ：エルボを示す。
＊14：非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊ 15 ：記載の適正化を行う。既工事計画書には「主蒸気ヘッダから原子炉給水ポンプ駆動用蒸気タービンまで（原子炉給水ポンプ駆動用蒸気タービン入口配管）」と記載。
＊16：記載の適正化を行う。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービン入口配管から湿分分離加熱器第2段加熱器へ」と記載。
＊ 17 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊ 18 ：計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系）と兼用。
＊ 19 ：差込継手の差込部内径及び最小厚さ。
＊20：フルカップリングを示す
＊21：伸縮継手部の外径及び厚さ。
＊ 22 ：本設備は，計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系）であり，原子炉冷却材の循環設備（主蒸気系）として本工事計画で兼用とする。
＊ 23 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部及び電気配線貫通部）であり，原子炉冷却材の循環設備（主蒸気系）として本工事計画で兼用とする。

3．4．2 復水給水系

（7）主要弁

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F052A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「450」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F053A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「450」と記載。記載内容は，設計図書による。
（8）主配管

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊$* 4$ ：S I 単工位に事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－8－8－1 管の基本板厚計算書」による。
$* 5$ ：記載の適正化を行う。既工事計画書には「復水浄化系（復水脱塩装置）から高圧復水ポンプまで（高圧復水ポンプ入口配管）」と記載。
＊6：記載の適正化を行う。既工事計画書には「高圧復水ポンプ入口配管から制御棒駆動水圧系まで」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
$* 8:$ 記載の適正化を行う。既工事計画書には「低圧第 4 給水加熱器から電動機駆動原子炉給水ポンプまで（給水ポンプ入口配管）」と記載
＊9：記載の適正化を行う。既工事計画書には「給水ポンプ入口配管からタービン駆動原子炉給水ポンプまで」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「タービン駆動原子炉給水ポンプから給水ポンプ出口配管まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「電動機駆動原子炉給水ポンプから高圧第1給水加熱器まで（給水ポンプ出口配管）」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「高圧第2給水加熱器から原子炉圧力容器まで（高圧第2給水加熱器出口配管）」と記載。
＊ 13 ：非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）及び原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。 ＊ 14 ：キヤップを示す。
＊ 15 ：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
$* 16$ ：重大事故等時の使用時の値。
＊ 17 ：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。

3．4．3 給水加熱器ドレンベント系
（3）容器

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3 ：S I 単位に換算したものである。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付 け 3 資庁第 1003 号にて認可された工事計画の添付書類「IV－2－1－9－1 低圧第 1 給水加熱器ドレンタンクの強度計算書」による。

枠囲みの内容は商業機密の観点から公開できません。
＊5 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊6：記載の適正化を行う。既工事計画書には管台高さを含んだ「7100」と記載。記載内容は，設計図書による。
（6）安全弁及び逃がし弁

			変	前＊${ }^{\text {c }}$	変 更 後
名	称		N23－F020A，B＊2		変更なし
種	類	－	平衡型		
	出 圧 力	MPa	2.55		
吹	出 量	kg／h／個	$421000^{* 3}$		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	－	150A		
	のど部の径	mm		3	
	弁 座口 の径	mm	115．0＊3		
	リフフト	mm			
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2		
駆	動 方 法	－			
個	数	－	2		
取	系 ${ }^{\text {（統 }}$ 名 （ライン名 $)$	－	N23-F020A 給水加熱器ドレン ベント系A系	N23－F020B 給水加熱器ドレン ベント系B系	
付	設 置 床	－	$\begin{gathered} \text { タービン建屋 } \\ \text { 0.P. } 7.60 \mathrm{~m} \end{gathered}$	$\begin{gathered} \text { タービン建屋 } \\ \text { 0.P. } 7.60 \mathrm{~m} \end{gathered}$	
箇 所	溢 水 防 護 上の区 画 番 号	－			－
	溢 水 防 護 上の配慮が必要な高さ	－			

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊3 ：公称値を示す。

注記 $~$ 1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊3 ：公称値を示す。

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（8）主配管

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変更前} \& \multicolumn{8}{|c|}{変更 後} \\
\hline \& 名 称 \& \[
\begin{aligned}
\& \text { 最高使用 } \\
\& \text { 压 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\
\& \hline
\end{aligned}
\] \& 最高使用
温
（ \({ }^{\circ} \mathrm{C}\) ） \& \[
\begin{gathered}
\text { 外 } \begin{array}{c}
\text { 径*1 } \\
(\mathrm{mm})
\end{array} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 料 \& \& 称 \& \[
\begin{aligned}
\& \text { 最高使用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { 最高使用 } \\
\& \text { 温 } \\
\& { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 }
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \\
(\mathrm{mm}) \\
\hline \text { 径*1 } \\
\hline
\end{gathered}
\] \& \& 材 \& 料 \\
\hline \& \begin{tabular}{l}
低圧第1給水加熱器ドレン椧却器 \\
復水器
\end{tabular} \& 0． \(35^{* 4}\) \& 149 \& 406.4
609.6 \& \begin{tabular}{l}
（9．5）
\(\square\) \\
（9． 5
\end{tabular} \& Scwv3

Scwv3 \& \& \& \& 変更なし \& \& \& \&

\hline
\end{tabular}

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「湿分分離加熱器第2段加熱器ドレンタンクより高圧第2給水加熱器まで」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱器ドレンタンクより高圧第2給水加熱器まで」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「湿分分離ドレンタンクより高圧第1給水加熱器まで」と記載。
＊ 7 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－9－2 管の強度計算書」による。

変 更 前							変 更 後							
	名 称	最高使用 圧 力 (MPa)	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$	材 料		称	最高使用 圧 （MPa）	最高使用 温 （ $\left.{ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$	材	料
$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 浄 } \\ & \text { 炛 } \end{aligned}$	復水給水系 復水ろ過装置復水ろ過器	1． $94^{* 3}$	66	406.4 406.4	（12．7） （12．7）	STPT38 SUS304TP	$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 争 } \\ & \text { 华 } \end{aligned}$	変更なし						
	復水ろ過装置復水ろ過器復水給水系	1． $94^{* 3}$	66	406.4 406.4	（12．7） （12．7）	SUS304TP STPT38		変更なし						
	復水給水系 復水脱塩装置復水脱塩塔	1． $94 * 3$	66	318.5	（10．3）	STPT38				変更なし				
	復水脱塩装置復水脱塩塔復水給水系	1． $94^{* 3}$	66	318.5	（10．3）	STPT38				変更なし				

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：S I 単位に換算したものである。

3．4．5 抽気系
（8）主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 最 高 使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \mathrm{E} \\ \hline \end{gathered}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \begin{array}{c} \text { (} \left.{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 抽 } \\ & \text { 気 } \\ & \text { 采 } \end{aligned}$	N36-F001A, B 高圧第 2 給水加熱器	2． $55 * 4$	227	318.5	（17．4）	STPA23	$\begin{aligned} & \text { 抽 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$	変更なし						
	 N36－F003A，B $* 5$ \sim 高圧第1給水加熱器	1． $67 * 4$	207	457.2	$\square^{66}(12.7)$	SCMV3		変更なし						
	N36-F006A, B 低圧第 4 給水加熱器	0.63 ＊4	230	457.2	$\square^{66}(9.5)$	SCMV3		変更なし						
	N36－F009A，B \sim 低圧第33給水加熱器	0． $38 * 4$	151	609.6	$\square^{* 6}(9.5)$	SCMV3		変更なし						
	低圧タービン	0． $35 * 4$		508.0	$]^{66}$（9．5）	ScMV3		変更なし						
	低圧第2給水加熱器	0.35	149	609.6	$\square^{* 6}(9.5)$	SCMV3								
	低圧タービン 低圧第1給水加熱器	$0.35{ }^{* 4}$	149	762.0	$\square^{* 6}$（9．5）	SCMV3		変更なし						
	N36－F022A，B \sim 原子炉給水ポンプ駆動用蒸気 タービン	1． $67 * 4$	302	216.3	（8．2）	STPA23		変更なし						
	原子炉給水ポンプ駆動用蒸気 ${ }^{* 10}$	$\begin{aligned} & 34^{* 4} \\ & (\mathrm{kPa}) \end{aligned}$	108	$\begin{gathered} \text { 角形 } 1186 \mathrm{~W} \times \\ 2586 \mathrm{H} \end{gathered}$	(15.9)	SCMV3		変更なし						
	$\begin{array}{\|l} \text { タービン } \\ \text { ~ } \\ \text { N36-F024A, B } \\ \hline \end{array}$			1422.4	$\square^{66}(15.9)$	SCMV3								

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
$* 3$ ：記載の適正化を行う。既工事計画書には「高圧タービンより高圧第2給水加熱器まで」と記載。
＊4：S I 単位に換算したものである
＊5 ：記載の適正化を行う。既工事計画書には「クロスアラウンド管より高圧第1給水加熱器まで」と記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－11－1 管の強度計算書」による。
＊7：記載の適正化を行う。既工事計画書には「低圧タービンより低圧第 4 給水加熱器まで」と記載。
＊8：記載の適正化を行う。既工事計画書には「低圧タービンより低圧第3給水加熱器まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「クロスアラウンド管より原子炉給水ポンプ駆動用蒸気タービンまで」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービンから復水器へ」と記載。
＊11：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
3.5 残留熱除去設備

3．5．1 残留熱除去系

（次頁へ続く）
（前頁からの続き）

注記＊1 ：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器」と記載。
全設備（原子炉格納容器下部注水系，代替循環冷却系，残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
去系（格納容器スブレイ伶却モート），残留熱除去系（サフレレッションブール水伶却モート））と兼用
＊4：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
$* 5$ ：公称値を示す。
＊6 ：S I 単位に換算したものである
＊7：記載の適正化を行う。既工事計画書には「水室内径」と記載。
$* 8$ ：記載の適正化を行う。既工事計画書には「水室胴部厚さ」と記載。
＊9 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－3－1 残留熱除去系熱交換器の強度計算書」による。
＊10：記載の適正化を行う。既工事計画書には「水室鏡板厚さ」と記載。
＊11：記載の適正化を行う。既工事計画書には「胴体内径」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「胴体厚さ」と記載。
＊13：記載の適正化を行う。既工事計画書には「胴体鏡板厚さ」と記載。
（3）ポンプ（常設）

注記＊1：記載の適正化を行う。既工事計画書には「残留熱除去系ポンプ」と記載。
 プレッションプール水泠却モード））と兼用
：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊4：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊ 8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「第3－3－4図 残留熱除去系ポンプ構造図」による。
（5）ろ過装置（常設）

			変 更 前			変 更 後		
名		称	残留熱除去系ストレーナ $(\mathrm{A}) * 1$	残留熱除去系ストレーナ （B）＊1	残留熱除去系ストレーナ $(\mathrm{C}) * 1$	残留熱除去系ストレーナ （A）＊2	残留熱除去系ストレーナ （B）＊3	残留熱除去系ストレーナ （C）＊4
種	類	－	カセット形			変更なし		
容	量	$\mathrm{m}^{3} / \mathrm{h} /$ 組 ${ }^{5}$	以上＊＊，＊7 $\left(1160{ }^{* 8}\right)$					
	高 使 用 圧 力	kPa＊9	－［427］＊10，＊11			$\begin{gathered} \text { 変更なし } \\ -[854] * 11, * 12 \\ \hline \end{gathered}$		
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$104^{* 13}$			$\begin{aligned} & \text { 変更なし } \\ & 200^{* 12, * 13} \end{aligned}$		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	外 径	mm				変更なし		
	長 さ	mm						
	ポケケット幅	mm						
	ポケット深さ	mm						
	ポケット数量	－						
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	外 筒	－						
	多孔プレート	－						
個 数		－	1＊15 ${ }^{*}{ }^{* 15}$	1＊15 ${ }^{*}{ }^{* 15}$	$* 15$ $1^{* 15}$			
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 算 } \end{aligned}$	$\begin{array}{ccc} \text { 系 } & \text { 統 } & \text { 名 } \\ (\text { ラ イ } \end{array}$	－	残留熱除去系ストレーナ（A）残留熱除去系A系	残留熱除去系ストレーナ（B）残留熱除去系B系	$\begin{gathered} \text { 残留熱除去系ストレーナ (C) } \\ \text { 残留熱除去系C系 } \\ \hline \end{gathered}$			
	設 置 床	－	原子炉格納容器内 0．P．-8.10 m	原子炉格納容器内 0. P． 8.10 m	原子炉格納容器内 0．P．-8.10 m			
	溢水防護上の区画番号	－	－					
	溢水防護上の配慮 が必要な高さ	－						

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「残留熱除去系ストレーナ」と記載。
熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
 プレッションプール水冷却モード））と兼用。
＊4 ：非常用炬心冷却設備その他原子炉注水設備（残留熱除去系）と兼用
＊5：記載の適正化を行う。既工事計画書には $「 \mathrm{~m}^{3} / \mathrm{h} 」$ と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7 ：残留熱除去系ポンプ1台の定格容量を示す。
＊ 8 ：公称値を示す。
＊9：記載の適正化を行う。既工事計画書には「一」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「—［427kPa］」と記載。
＊11：残留熱除去系ストレーナは，その機能及び構造上の耐圧機能を必要としないため，最高使用圧力を設定しないが，ここでは，サプレッションチェンバの最高使用圧力を［ ］内に示す。
＊ 12 ：重大事故等時における使用時の値。
＊13：サプレッションチェンバの最高使用温度を示す。
＊14：1列あたりのポケット数×列数を示す。

[^4] として使用する。

注記 $~$ 1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
 ド），残留熱除去系（サプレッションプール泠却水モード））と兼用。
＊ 4 ：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用
＊5 ：公称値を示す。

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
（7）主要弁（常設）

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F003A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「350」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004A，B，C」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F005A，B，C」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F010A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F011A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F012A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「300」と記載。記載内容は，設計図書による。
＊ 6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F015A，B」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「350」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F016A，B」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
$* 5$ ：記載の適正化を行う。既工事計画書には「350」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載
＊2 ：記載の適正化を行う。既工事計画書には「F018A，B」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「300」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F019A，B」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「300」と記載。記載内容は，設計図書による。

注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F021」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F022」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001A，B，C」と記載。記載内容は，設計図書に よる。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「500」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（8）主配管（常設）

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料
残熱涂䒬系	サプレッションチェンバ出口配管 A 系合流点 代替循環冷却系吸込配管分岐点	1． $37^{* 5}$	186	508.0 508.0 355.6	\square ${ }^{5}(9.5)$	$* 16$ SGV410 ＊16 SGV410	残鶹蒢係	サプレッションチェンバ出口配管 A 系合流点 代替循環冷却系吸込配管分岐点	変更なし				
		－							1． 37	186	$\begin{gathered} 508.0 \\ / \\ 508.0 \\ / \\ 267.4 \end{gathered}$	$\begin{gathered} (9.5) \\ \prime \\ (9.5) \\ \prime \\ (9.3) \end{gathered}$	STS410
	残留熱除去系ポンプ（A） 代替循環冷却系注入配管合流点	3． $73 * 5$	186	355.6 355.6	$\frac{(11.1)}{(11.1)^{* 6}}$	STS410 ${ }^{* 9}$ STS4 $^{* 6, * 9}$		残留熱除去系ポンプ（A） 代替循環冷却系注入配管合流点	変更なし				
	代替循環冷却系注入配管合流点 残留熱除去系熱交換器（A）バ イパス配管分岐点	－						代替循環冷却系注入配管合流点 残留熱除去系熱交換器（A）バ イパス配管分岐点	3． 73	186	$\begin{gathered} 355.6 \\ / \\ 355.6 \\ / \\ 165.2 \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ (11.1) \\ / \\ (7.1) \end{gathered}$	STS410
		3． $73 * 5$	186	355.6	$(11.1)^{* 6}$	$\begin{aligned} & { }^{* * 6, * 9} \\ & \text { STS42 } \\ & \text { STS410 } \\ & \hline \end{aligned}$							
				355.6	（11．1）	$\begin{array}{cc} & * 9 \\ \text { STS42 } & \\ \text { STS410 } & \\ \hline \end{array}$							
				$$	$\begin{gathered} (11.1) \\ \prime / \\ (11.1) \\ \vdots \\ (11.1) \end{gathered}$	STS42							
	残留熱除去系熱交換器（A）バ イパス配管分岐点 残留熱除去系熱交換器（A）			355.6	（11．1）	STS42		残留熱除去系熱交換器（A）バ イパス配管分岐点 残留熱除去系熱交換器（A）	変更なし				
		3． $73 * 5$	186	355.6	$(11.1)^{* 6}$	$\text { STS42 }{ }^{* 6}$							

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	最高使用 最高使用 圧 力 （MPa） 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	
残鶹涂係系	$\begin{aligned} & \text { 残留熱除去系熱交換器 (A) } \\ & \text { *19 } \\ & \text { 残留熱除去系熱交換器代替循 } \\ & \text { 環冷却系出口配管分岐点 } \end{aligned}$	3．73＊5	186	$355.6{ }^{* 6}$	$(11.1)^{* 6}$ (11.1)	STS42	残留熱除去系熱交換器（A） 残留熱除去系熱交換器代替循環冷却系出口配管分岐点		変更なし	変更なし			
				$\begin{gathered} 355.6 \\ / \\ 355.6 \\ / \\ - \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ (11.1) \\ / \\ - \end{gathered}$	STS42			$\begin{gathered} 355.6 \\ \underset{355.6}{/} \\ 165.2 \end{gathered}$	$\begin{gathered} (11.1) \\ (11.1) \\ \vdots \\ (7.1) \end{gathered}$	変更なし		
	残留熱除去系熱交換器代替循環冷却系出口配管分岐点 残留熱除去系熱交換器（A）バ イパス配管合流点	3． $73 * 5$	186	355.6	（11．1）	STS42		残留熱除去系熱交換器代替循環冷却系出口配管分岐点 残留熱除去系熱交換器（A）バ イパス配管合流点		変更なし			
	残留熱除去系熱交換器（A）バ イパス配管分岐点 残留熱除去系熱交換器（A）バ イパス配管合流点	3． $73 * 5$	186	355.6	（11．1）	STS42		残留熱除去系熱交換器（A）バ イパス配管分岐点 残留熱除去系熱交換器（A）バ イパス配管合流点	変更なし				
	残留熱除去系熱交換器（A）バ イパス配管合流点 原子炉停止時冷却モードA采注入配管分岐点	$3.73 * 5$	186	$\begin{gathered} 355.6 \\ / \\ 355.6 \\ / \\ 355.6 \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ (11.1) \\ / \\ (11.1) \end{gathered}$	STS42		残留熱除去系熱交換器（A）バ イパス配管合流点 原子炉停止時冷却モードA系注入配管分岐点	変更なし				
				355.6	（11．1）	$\begin{array}{ll} \hline{ }^{* 9} \\ \text { STS42 } \\ \text { STS410 } & \\ \hline \end{array}$							
				355.6	$(11.1)^{* 6}$	$\begin{aligned} & \quad{ }^{* 6, * 9} \\ & \text { STS42 } \\ & \text { STS410 } \end{aligned}$							
				$$	$\begin{aligned} & (11.1) \\ & \vdots \\ & (11.1) \\ & \vdots \\ & (8.2) * 10 \end{aligned}$	STS410 ${ }^{* 9}$							
				$\begin{gathered} 355.6 \\ \hline \\ 355.6 \\ / \\ \hline 18.5 \end{gathered}$	$\begin{gathered} (11.1) \\ (11.1) \\ / \\ (10.3) \end{gathered}$	STS410 ${ }^{* 9}$							

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後}

\hline \& \& 名 称 \& $$
\begin{aligned}
& \text { 最高使用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\
& \hline
\end{aligned}
$$ \& $$
\underbrace{}_{(\mathrm{mm})}{ }^{\text {外径*1 }}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 料 \& \& 名 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ 度 \& \[
外_{径*1}

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 料

\hline \& \& 原子炬停止時冷却モードA系注入配管分岐点

ドライウェルスプレイ注入配管A系分岐点 \& 3． $73 * 5$ \& 186 \& \[
$$
\begin{gathered}
355.6 \\
\hline 355.6 \\
/ \\
355.6 \\
/ \\
267.4 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(11.1) \\
\hline(11.1) \\
\vdots \\
(11.1) \\
\vdots \\
(9.3) \\
\hline
\end{gathered}
$$
\] \& STS410

STS410 \& \& 原子炉停止時冷却モードA系注入配管分岐点
ドライウェルスプレイ注入配管A系分岐点 \& \& \& 変更なし \& \&

\hline \& \& | ドライウェルスプレイ注入配管A系分岐点 |
| :--- |
| 低圧代替注水系A系注入配管合流点 | \& $3.73 * 5$ \& 186 \& \[

$$
\begin{gathered}
355.6 \\
\hline 355.6 \\
/ \\
267.4
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(11.1) \\
\hline(11.1) \\
/ \\
(9.3)
\end{gathered}
$$

\] \& $\underbrace{\text { STS410 }}{ }^{* 9}{ }^{* 9}$ \& \& | ドライウェルスプレイ注入配管A系分岐点 |
| :--- |
| 低圧代替注水系A系注入配管合流点 | \& \& \& 変更なし \& \&

\hline $$
0
$$ \& \& 低圧代替注水系A系注入配管合流点 \& 3． $73 * 5$ \& 186 \& \[

$$
\begin{gathered}
267.4 \\
/ \\
267.4 \\
/
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(9.3) \\
/ \\
(9.3) \\
/ \\
-
\end{gathered}
$$

\] \& STS410 ${ }^{* 9}$ \& \& | 低圧代替注水系A系注入配管合流点 |
| :--- |
| 原子㥫格納容品配管贯通部 | \& \& \& \[

$$
\begin{gathered}
267.4 \\
/ \\
267.4 \\
\vdots \\
114.3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(9.3) \\
\prime \\
(9.3) \\
/ \\
(6.0) \\
\hline
\end{gathered}
$$
\] \& 変更なし

\hline $=$ \& 残 \& （ $\mathrm{X}-31 \mathrm{~A}$ ） \& \& \& 267.4 \& （9．3） \& STS410 ${ }^{* 9}$ \& 残 \& （X－31A） \& \& \& \& 変更なし \&

\hline $$
\stackrel{\sim}{\circ}
$$ \& \[

$$
\begin{aligned}
& \text { 爇 } \\
& \text { 除 } \\
& \text { 藥 }
\end{aligned}
$$

\] \& | 原子炉格納容器配管貫通部 （X－31A） |
| :--- |
| 原子炉圧力容器 | \& 8． $62 * 5$ \& 302 \& \[

$$
\begin{array}{r}
267.4 \\
267.4
\end{array}
$$

\] \& $\underbrace{}_{(18.2)}{ }^{* 6}$ \& | | ${ }^{* 9}$ |
| :--- | :--- |
| STS42 | |
| STS410 | |${ }^{* 6}$ \& \[

$$
\begin{aligned}
& \text { 熱 } \\
& \text { 除 } \\
& \text { 樂 }
\end{aligned}
$$

\] \& | 原子炉格納容器配管貫通部 （X－31A） |
| :--- |
| 原子炉圧力容器 | \& 変更なし

$$
\text { 10. } 34^{* 7}
$$ \& \[

$$
\begin{gathered}
\text { 変更なし } \\
315^{* * 7}
\end{gathered}
$$
\] \& \& 変更なし \&

\hline \& \& 原子炉停止時冷却モードA系注入配管分岐点
サプレッションプール水冷却

モードA系戻り配管分岐点 \& 3． $73 * 5$ \& 186 \& \[
$$
\begin{gathered}
318.5 \\
\hline 318.5 \\
/ \\
318.5 \\
/ \\
318.5
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(10.3) \\
\hline(10.3) \\
(10.3) \\
/ \\
(10.3)
\end{gathered}
$$
\] \& STS42

STS410
STS42 \& \& 原子炉停止時冷却モードA系注入配管分岐点
サプレッションプール水泠却
モードA系戻り配管分岐点 \& \& \& 変更なし \& \&

\hline \& \& | サプレッションプール水泠却 モードA系戻り配管分岐点 |
| :--- |
| サプレッションチェンバスプ |
| レイ注入配管A系分岐点 | \& 3． $73 * 5$ \& 186 \& 318.5 \& （10．3） \& STS42 \& \& \[

$$
\begin{aligned}
& \text { サプレッションプール水椧却 } \\
& \text { モードA系戻り配管分岐点 } \\
& \text { ~ } \\
& \text { サプレッションチェンバスプ } \\
& \text { レイ注入配管A系分岐点 } \\
& \hline
\end{aligned}
$$
\] \& \& \& 変更なし \& \&

\hline
\end{tabular}

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最 高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array} \end{aligned}$	${ }^{\text {外 }} \underset{(\mathrm{mm})}{\text { 径 }}{ }^{* 1}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{array}{\|l} \hline \text { 最高使 用 } \\ \text { 圧 } \\ \text { (MPa) } \end{array}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\operatorname{lil}_{\text {外 径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 残 } \\ & \text { 缸 } \\ & \text { 除 } \\ & \text { 係 } \end{aligned}$	サプレッションチェンバスプ レイ注入配管A系分岐点 原子炉格納容器配管貫通部 （ $\mathrm{X}-32 \mathrm{~A}$ ）	3． $73 * 5$	186	318.5	（10．3）	STS42	変更なし						
	－						$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器配管貫通部 （X－32A）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。				
	原子炉格納容器配管貫通部 （X－32A） E11－F020A	10． $40 * 5$	302	318.5	（25．4）	STS42		変更なし	変更なし	$\begin{gathered} \text { 変更なし } \\ 315^{* 7} \end{gathered}$	変更なし		
	－							E11－F020A ～ 残留熱除去系原子炉停止時泠 却モードA系注入配管合流点 ＊3 残留熱除去系原子炉停止時泠 却モードA系注入配管合流点 \sim 原子炬圧力容器	3．原子炉冷却系統施設 3.1 原子炉泠却材再循環設備 3．3．1 原子炉再循環系 （3）主配管（常設） に記載する。				
	ドライウェルスプレイ注入配管A系分岐点 原子炉格納容器代替スプレイ冷却系A系注入配管合流点			267.4	（9．3）	STS410		ドライウェルスプレイ注入配管A系分岐点 原子炉格納容器代替スプレイ冷却系A系注入配管合流点	変更なし				
		3． $73 * 5$	186	$\begin{gathered} 267.4 \\ \text { 267. } 4 \\ \hline \\ \hline 114.3 \end{gathered}$	$\begin{gathered} (9.3) \\ / \\ (9.3) \\ / \\ (6.0) \end{gathered}$	$\text { STS410 }{ }^{* 9}$							
		－							3.73	186	$267.4^{* 31}$	$(9.3){ }^{* 31}$	STS410 ${ }^{* 31}$
	原子炉格納容器代替スプレイ冷却系A系注入配管合流点 原子炉格納容器配管貫通部 （X－30A） （次頁へ続く）			－					3.73	186	$\begin{gathered} 267.4 \\ / \\ \hline 267.4 \\ / \\ \hline 165.2 \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (9.3) \\ / \\ (7.1) \end{gathered}$	STS410

変 更 前							変 更 後										
名 称		$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \end{aligned}$		$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{array}{\|l} \hline \text { 最高使用 } \\ \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} \text { 最高 使 用 } \\ \text { 温 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料			
$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 係 } \end{aligned}$	原子炉格納容器配管貫通部 （ $\mathrm{X}-215 \mathrm{~A}$ ） サプレッションプール水冷却配管A系開放端	$\begin{aligned} & 427 * 5 \\ & (\mathrm{kPa}) \end{aligned}$	104	318.5	（10．3）	STS42	原子炉格納容器配管貫通部 （ $\mathrm{X}-215 \mathrm{~A}$ ）サプレッションプール水冷却配管A系開放端		$\begin{gathered} \text { 変更なし } \\ 854^{* 7} \\ (\mathrm{kPa}) \end{gathered}$	変更なし 200＊7							
				318.5	$(10.3)^{* 6}$	$\text { STS42 }{ }^{* 6}$											
	サプレッションチェンバスプ レイ注入配管A系分岐点 原子炉格納容器配管貫通部 （ $\mathrm{X}-213 \mathrm{~A}$ ）	3． $73 * 5$	186	152.3		SF50A	$\begin{aligned} & \text { サプレッションチェンバスプ } \\ & \text { レイ注入配管A系分岐点 } \\ & \text { ~ } \\ & \text { 原子炬格納容器配管貫通部 } \\ & (\mathrm{X}-213 \mathrm{~A}) \end{aligned}$			変更なし		変更なし					
				114.3	$]^{15}(6.0)$	SF50A											
				114.3	（6．0）	STS42											
			104	114.3	（6．0）	STS42			変更なし	変更なし $200 * 7$							
							$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器配管貫通部 （ $\mathrm{X}-213 \mathrm{~A}$ ）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炬格納容器配管貫通部及び電気配線貫通部 に記載する。								
								$\begin{aligned} & \text { サプレッションチェンバスプ } \\ & \text { レイ管 } \end{aligned}$	$\begin{array}{\|c} \text { 7. 原子炉格 } \\ 7.3 \text { 圧力但 } \\ \text { (6) . a. } \\ \text { 又 主 } \\ \text { に記載する。 } \end{array}$	納施設 減設備その他原子炉格納容配管（常設）	安全設備（原 スプレイ冷却	子炉格納容器	全設備）				
	E11－F029A ～ 残留熱除去系ポンプ（A）入口 配管合流点	1． $37 * 5$	186	216． 3	（8．2）	$\operatorname{STS} 4100^{* 9}$		変更なし									
	使用済燃料プールA系入口配管分岐点 E11-F030A	3． $73 * 5$	186	216.3	（8．2）	STS410 ${ }^{* 9}$		変更なし									
	E11-F014B 原子炉格納容器配管貫通部 （X－33B）	8． $62 * 5$	302	355.6	（23．8）	STS42		変更なし	$\begin{aligned} & \text { 変更なし } \\ & 10.34^{* 7} \end{aligned}$	変更なし$315 * 7$	変更なし						
				355.6	(23.8)	$\text { STS42 }{ }^{* 6}$											

変更 前							変 更 後							
名 称		$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 压 } \\ (\mathrm{MPPa}) \end{array}$		$\begin{gathered} \text { 外 } \\ \substack{\text { 径*1 } \\ (\mathrm{mm})} \end{gathered}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料	名 称		$\begin{array}{\|l\|} \hline \text { 最高使用 } \\ \text { (}{ }_{(1 \mathrm{MPa})} \end{array}$			$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	－							$\begin{aligned} & \text { 原子炉格納容器配管貫通部 } \\ & (\mathrm{X}-33 \mathrm{~B} \end{aligned}$	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。					
	原子炉格納容器配管貫通部 （X－33B） サプレッションチェンバ出口配管B系合流点	1． $37 * 5$	186					変更なし						
		$\underset{(\mathrm{kPa})}{-[427]}$	104	$\begin{gathered} 508.0 \\ \text { / } \\ 508.0 \\ 508.0 \end{gathered}$	$\underbrace{10}{ }^{10}(9.5)$	SNM $41 \mathrm{C}{ }^{* 12}$			$\begin{gathered} \text { 変更なし } \\ -[854] \\ (\mathrm{kPa}) \end{gathered}$	$\begin{aligned} & \text { 変更なして } 200 \text { (} \end{aligned}$		変更なし		
			－					$\left.\right\|^{\text {原子炉格納容器配管貫通部 }}{ }^{(\mathrm{X}-214 \mathrm{~B})}$		内施設格納容器炉格納容器		配線貫通部		
	原子炉格納容器配管貫通部	$\begin{aligned} & 427^{* 5} \\ & (\mathrm{kPa}) \end{aligned}$	104	$\begin{aligned} & { }^{* 6} \text { 508.0 } \\ & \hline 508.0 \\ & \hline \end{aligned}$	${ }^{{ }^{15(}(9.5)}{ }^{* 6}$	$\begin{array}{ll} \hline{ }^{* 6} \\ \text { SGV42 }^{*} & \\ \hline \text { SGV42 } \end{array}$		原子炉格納容器配管貫通部	変更なし 854＊7 （kPa）	変更なして 200 ＂				
	(X-214B) サプレッションチェンバ出口 配管B系合流点	1． $37 * 5$	186	\qquad	${ }^{*{ }^{15}(9.5)} \mid$			$\begin{aligned} & \text { (X-214B) } \\ & \text { サプレッションチェンバ出口 } \end{aligned}$ \| 配管B系合流点	変更			変更なし		
	サプレッションチェンバ出口配管B系合流点 残留熱除去系ポンプ（B）	1． $37 * 5$	186	$\begin{gathered} 508.0 \\ \vdots \\ 508.0 \\ \vdots 55.6 \\ \hline 508.0 \end{gathered}$				サプレッションチェンバ出口配管B系合流点 残留熱除去系ポンプ（B）			変更なし			

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 采 } \end{aligned}$	（前頁からの続き） 残留熱除去系熱交換器（B）バ イパス配管合流点 原子炉停止時冷却モードB系 注入配管分岐点	3．73＊5	186	$\begin{gathered} 355.6 \\ \underset{355.6}{/} \\ \hline \\ 318.5 \end{gathered}$	$\begin{gathered} (11.1) \\ (11.1) \\ / \\ (10.3) \\ \hline \end{gathered}$	STS410 ${ }^{* 9}$	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	（前頁からの続き） 残留熱除去系熱交換器（B）バ イパス配管合流点 原子炉停止時冷却モード B系注入配管分岐点	変更なし				
	原子炉停止時冷却モードB系注入配管分岐点 ドライウェルスプレイ注入配管B系分岐点	3． $73 * 5$	186	$\begin{gathered} 355.6 \\ \hline 355.6 \\ / \\ 355.6 \\ / \\ 267.4 \end{gathered}$	$\begin{gathered} (11.1) \\ \hline(11.1) \\ \vdots \\ (11.1) \\ \vdots \\ (9.3) \\ \hline \end{gathered}$	$\begin{aligned} & \text { STS410 }{ }^{* 9} \\ & \text { STS410 }^{* 9} \end{aligned}$		原子炉停止時冷却モードB系注入配管分岐点 ドライウェルスプレイ注入配管B系分岐点	変更なし				
	ドライウェルスプレイ注入配管B系分岐点 低圧代替注水系 B 系注入配管合流点	3． $73 * 5$	186	$\begin{gathered} 355.6 \\ \hline \frac{355.6}{/} \\ 267.4 \end{gathered}$	$\begin{gathered} (11.1) \\ (11.1) \\ \vdots \\ (9.3) \end{gathered}$	$\underbrace{}_{\text {STS410 }}{ }^{* 9}{ }^{* 9}$		ドライウェルスプレイ注入配管B系分岐点 低圧代替注水系 B 系注入配管合流点	変更なし				
	低圧代替注水系 B 系注入配管合流点 原子炬格納容器配管貫通部	3． $73 * 5$	186	$\begin{gathered} 267.4 \\ / \\ 267.4 \\ / \\ - \\ \hline \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (9.3) \\ / \\ - \end{gathered}$	STS410 ${ }^{* 9}$		低圧代替注水系B系注入配管合流点 原子炉格納容器配管貫通部	変更なし		$\begin{gathered} 267.4 \\ / \\ 267.4 \\ / \\ 114.3 \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (9.3) \\ / \\ (6.0) \end{gathered}$	変更なし
	（ $\mathrm{X}-31 \mathrm{~B}$ ）			267.4	（9．3）	STS410		（ $\mathrm{X}-31 \mathrm{~B}$ ）			変更なし		
	原子炉格納容器配管貫通部 （X－31B） 原子炉圧力容器	8． $62 * 5$	302	267.4	（18．2）	$\begin{array}{ll} & * 9 \\ \text { STS42 } \\ \text { STS410 } \end{array}$		原子炉格納容器配管貫通部 （ $\mathrm{X}-31 \mathrm{~B}$ ） 原子炉圧力容器	$\begin{aligned} & \text { 変更なし } \\ & 10.34^{* 7} \end{aligned}$	$\begin{gathered} \text { 変更なし } \\ 315^{* 77} \end{gathered}$	変更なし		
	原子炉停止時冷却モードB系注入配管分岐点 サプレッションプール水泠却 モードB系戻り配管分岐点	3． $73 * 5$	186	$\begin{gathered} 318.5 \\ \hline 318.5 \\ \text { 318.5 } \\ 318.5 \end{gathered}$	(10.3) (10.3) （10．3） （10．3）	STS42 STS410 STS42		原子炉停止時冷却モードB系注入配管分岐点 サプレッションプール水冷却 モードB系戻り配管分岐点	変更なし				
	サプレッションプール水泠却 モードB系戻り配管分岐点 サプレッションチェンバスプ レイ注入配管B系分岐点	3． $73 * 5$	186	318.5	（10．3）	STS42		サプレッションプール水冷却 モードB系戻り配管分岐点 サプレッションチェンバスプ レイ注入配管B系分岐点	変更なし				

	変 更 前							変更 後						
	名 称			$\begin{aligned} & \left.\begin{array}{l} \text { 最高使用 } \\ \text { 温 } \\ \\ \\ \\ \\ \\ \end{array}{ }^{\circ} \text { 度 }\right) \end{aligned}$	$\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \left(\begin{array}{l} \text { 径*1 } \end{array}\right. \\ \hline \end{gathered}$		材 料	名 称			$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$	$\text { 外 } \begin{gathered} \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
	残 熱 除 系	$\begin{aligned} & \text { サプレシションチェンバスプ } \\ & \text { ンイ注入配管B系分岐点 } \\ & \text { 原子炉格納容器配管貫通部 } \\ & \text { (X-32B) } \\ & \hline \end{aligned}$	3． $73 * 5$	186	318.5	（10．3）	STS42	変更なし						
		－							原子炉格納容器配管貫通部 （ $\mathrm{X}-32 \mathrm{~B}$ ）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。				
		原子炉格納容器配管貫通部 （X－32B） E11-F020B	10． 40 ＊5	302	318.5	（25．4）	STS42		変更なし	変更なし	変更なして $315 * 7$	変更なし		
$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & = \\ & \text { © } \\ & \text { N } \\ & 0 \end{aligned}$		－							E11－F020B 残留熱除去系原子炬停止時冷却モードB系注入配管合流点 残留熱除去系原子炉停止時冷却モードB系注入配管合流点 原子炉圧力容器	3．原子炉冷却系統施設 3.1 原子炉冷却材再循環設備 3．3．1 原子炉再循環系 （3）主配管（常設） に記載する。				
		ドライウェルスプレイ注入配 管B系分岐点 原子炉格納容器代替スプレイ泠却系B系注入配管合流点	3． $73 * 5$	186	267.4	（9．3）	STS410		ドライウェルスプレイ注入配 ${ }^{\text {＊}}$	変更なし				
			－						管B系分岐点 原子炬格納容器代替スプレイ泠却系B系注入配管合流点	3.73	186	267.4	$(9.3)^{*}$	STS410 ${ }^{* 31}$

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却材再循環設備（原子炉再循環系）であり，残留熱除去設備（残留熱除去系）として本工事計画で兼用とする。
＊4：記載の適正化を行う。既工事計画書には「原子炉再循環系から残留熱除去系ポンプ入口配管まで」と記載。
＊5 ：S I 単位に換算したものである。
＊6：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
$* 7$ ：重大事故等時の使用時の値。
＊ 8 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，原子炉冷却系統施設の残留熱除去設備（残留熱除去系）として本工事計画で兼用とする。
＊9：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊10：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊11：記載の適正化を行う。既工事計画書には「残留熱除去系ストレーナからサプレッションチェンバ」と記載。
＊12：記載の適正化を行う。既工事計画書にはSTS410に注記「JISの旧記号STS42の新記号である」と記載。
残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
＊14：記載の適正化を行う。既工事計画書には「サプレッションチェンバから残留熱除去系ポンプ（A）•（B）まで（残留熱除去系ポンプ入口配管）」と記載。
＊ 15 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け資庁第1003号にて認可された工事計画の添付書類「IV－2－1－3－2－1 管の基本板厚計算書」による。
＊16：記載の適正化を行う。既工事計画書には「SGV42」 」記載
＊17：記載の適正化を行う。既工事計画書には「残留熱除去系ポンプ（A）•（B）から残留熱除去系熱交換器まで（残留熱除去系熱交換器入口配管）」と記載。
 プレッションプール水冷却モード））と兼用。
＊19：記載の適止化を行う。既工事計画書には「残留熱除去系熱交換器から原子炉土力容器まで（残留熱除去系熱交換器（A）•（B）出口配管）」と記載。
＊ 20 ：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器入口配管から残留熱除去系熱換器（A）•（B）出口配管まで」と記載。
＊21：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
 レイ冷却モード），残留熱除去系（サプレッションプール水泠却モード））と兼用。
 レイ冷却モード））と兼用。
冷却系）と兼用。
水系）と兼用。
＊26：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器（A）•（B）出口配管から原子炉再循環系まで（原子炉冷却材戻り配管（A）•（B））」と記載。
＊27：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ椧却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。 $* 28$ ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ椧却モード））と兼用。
＊29：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器（A）出口配管からドライウェルスプレイ管へ（ドライウェルスプレイ管入口配管（A））」と記載。
＊ 30 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系，代替循環冷却系，残留熱除去系（格納容器スプレイ冷却モード））と兼用。 ＊31：エルボを示す。
＊ 32 ：本設備は，既存の原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器スプレイ椧却系）であり，残留熱除去設備（残留熱除去系）として本工事計画で兼用とする。 ＊33：記載の適正化を行う。既工事計画書には「ドライウェルスプレイ管入口配管（A）から原子炬圧力容器まで」と記載。
＊34：記載の適正化を行う。既工事計画書には「原子炉冷却材戻り配管（A）からサプレッションチェンバへ」と記載。
$* 35$ ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（サプレッションプール水冷却モード））と兼用。
＊36：記載の適正化を行う。既工事計画書には「原子炉泠却材戻り配管（A）•（B）からサプレッションチェンバスプレイ管へ」と記載。
＊37：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊38：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ椧却モード））と兼用。
＊39：非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）及び原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）と兼用。
＊40：非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，残留熱除去系）及び原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，低圧代替注水系）と兼用。
＊41：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器（B）出口配管からドライウェルスプレイ管へ」と記載。
＊ 42 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ泠却系，残留熱除去系（格納容器スプレイ椧却モード））と兼用。
＊ 43 ：記載の適正化を行う。既工事計画書には「原子炉泠却材戻り配管（B）からサプレッションチェンバへ」と記載。
＊44：記載の適正化を行う。既工事計画書には「サプレッションチェンバから残留熱除去系ポンプ（C）まで」と記載。
＊ 45 ：記載の適正化を行う。既工事計画書には「残留熱除去系ポンプ（C）から原子炉圧力容器まで」と記載。

3．5．2 原子炉格納容器フィルタベント系
（3）ポンプ（可搬型）

注記 $\boldsymbol{*}$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，残留熱除去設備（原子炉格納容器フィル タベント系）として本工事計画で兼用とする。
（6）安全弁及び逃がし弁（常設）

		変更前	変更後
名	称	－	T63－F006
7．原子炉格納施設 7．3圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 g．原子炉格納容器フィルタベント系 リ安全弁及び逃がし弁（常設） に記載する。			

注記＊：本設備は，原子炉格納施設のらち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）であり，残留熱除去設備（原子炉格納容器フィルタベン ト系）として本工事計画で兼用とする。
（7）主要弁（常設）

	変更前	変更後
名 称	－	T48－F019＊
7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （8）原子炉格納容器調気設備 a．原子炉格納容器調気系二主要弁 に記載する。		

注記 $*: ~$ 本設備は，既存の原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T48－F022＊
7．原子炉格納施設 7.3 圧力低減設備その他の （8）原子炉格納容器調気 a．原子炉格納容器調二主要弁 に記載する。	備	

注記 $*: ~$ 本設備は，既存の原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T63－F001＊
7．原子炉格納施設 7．3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系口 主要弁（常設） に記載する。		

注記 $*: ~$ 本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T63－F002＊
7．原子炉格納施設 7．3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系口 主要弁（常設） に記載する。		

注記 $*: ~$ 本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
（8）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊ 3 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
 とする。
 る。
容器フィルタベント系）として本工事計画で兼用とする。
（8）主配管（可搬型）

注記 $~$ 1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
容器フィルタベント系）として本工事計画で兼用とする。
＊4：本設備は，核燃料物質の取扱施設及び貯蔵施設のらち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
 る。

3．5．3 耐圧強化ベント系
（8）主配管（常設）

変 更 前								変 更 後							
	名		最高使用 圧力 (kPa)	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	外 径＊${ }^{*}$ （mm）	厚 さ＊2 （mm）	材 料			名 称	$\begin{gathered} \text { 最 高 使 用 } \\ \text { 圧 力*3 } \\ (\mathrm{kPa}) \end{gathered}$	最高使用温 度＊3 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
耐 圧 強 化 － － 卜 系				-				耐 圧 強 化 成 ン 卜 系	$\begin{array}{\|l\|} \hline \text { 非 } \\ \text { 常 } \\ \text { 用 } \\ \text { ガ } \\ \text { ス } \\ \text { 処 } \\ \text { 理 } \\ \text { 系 } \end{array}$	非常用ガス処理系フィルタ装置出口配管合流点排気筒	7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並び に格納容器再循環設備 a．非常用ガス処理系 ル 主配管（常設） に記載する。				

注記 $~$ 1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：重大事故等時の使用時の値。
＊4 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，残留熱除去設備（耐圧強化ベント系）として本工事計画で兼用とする。
＊5 ：本設備は，既存の原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，残留熱除去設備（耐圧強化べント系）として本工事計画で兼用とする。
＊ 6 ：本設備は既存の設備である。
＊7 ：エルボを示す。

3.6 非常用炉心冷却設備その他原子炉注水設備

3．6．1 高圧炉心スプレイ系
（1）ポンプ（常設）

注記＊ 1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 3 年 6 月 19 日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第3－5－2図 高圧炬心スプ レイ系ポンプ構造図」による。
（2）容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3．7原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉泠却材補給設備（補給水系）であり，非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系）として本工事計画で兼用とする。
（4）万過装置（常設）

			変 更 前	変 更 後
名		称	高圧炉心スプレイ系ストレーナ	
種	類	－	カセット形	変更なし
容	量	$\mathrm{m}^{3} / \mathrm{h} /$ 組 $* 1$	以上＊2，＊3（ $1074 * 4)$	
	高 使 用 圧 力	kPa＊5	－［427］＊6，＊7	$\begin{gathered} \text { 変更なし } \\ \text { —[854]*7,*8 } \\ \hline \end{gathered}$
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$104 * 9$	$\begin{aligned} & \text { 変更なし } \\ & 200 * 8, * 9 \end{aligned}$
	外 径	mm		
主	長 さ	mm		
要	ポケット幅	mm		
法	ポケット深さ	mm		
	ポケット数量	－		
材	外 筒	－		
	多孔プレート	－		
個	数	－	$1 \quad 1$	
取付籃所	$\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン 名 }) \end{gathered}$	－	高圧炬心スプレイ系ストレーナ高圧炉心スプレイ系	
	設 置 床	－	原子炉格納容器内 $\text { 0. P. }-8.10 \mathrm{~m}$	
	溢水防護上の区画番 号	－	－	－
	溢水防護上の配慮 が必要な高さ	－		

注記＊1 ：記載の適正化を行う。既工事計画書には「m³／h」と記載
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：高圧炉心スプレイ系ポンプの定格容量を示す。
＊4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「—」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「—［427kPa］」と記載。
＊ 7 ：高圧炉心スプレイ系ストレーナは，その機能及び構造上の耐圧機能を必要としないた め，最高使用圧力を設定しないが，ここでは，サプレッションチェンバの最高使用圧力 を［ ］内に示す。
＊ 8 ：重大事故等時における使用時の値。
＊9 ：サプレッションチェンバの最高使用温度を示す。
＊ $10: 1$ 列あたりのポケット数 \times 列数を示す。
（5）安全弁及び逃がし弁（常設）

			変 更 前＊1	変 更 後
名		称	E22－F023	E22－F023＊2
種	類	－	平衡型	
	出 圧 力	MPa	1.37	
吹	出 量	kg／h／個	10970＊3	
	呼び径	－	25A	
主	のど 部 の径	mm	$\square * 3$	
$\begin{gathered} \text { 寸 } \\ \text { 法 } \end{gathered}$	弁 座口の径	mm	$24^{* 3}$	
	リフフ	mm		変更なし
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2	
駆	動 方 法	－	－	
個	数	－	1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 㯺 } \\ & \text { 所 } \end{aligned}$		－	E22－F023 高圧炉心スプレイ系	
	設 置 床	－	原子炉建屋 0．P．-8.10 m	
	$\begin{array}{lccc} \text { 溢 } & \text { 水 } & \text { 防 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	－
	溢 水 防護上の配慮が必要な高さ	－		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）と兼用。
＊3 ：公称値を示す。
（6）主要弁（常設）

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F006」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「500」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（7）主配管（常設）

変 更 前							変 更 後							
名 称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 压 力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\circ} \text { 鲑) } \\ \hline \end{array} \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	名 称			$\begin{aligned} & \left\lvert\, \begin{array}{l} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{MPa}) \end{array}\right. \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\text { 外 }_{\text {径*1 }}{ }^{1}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 炉 } \\ & \text { 心 } \\ & \text { プ } \\ & \text { L } \\ & \text { 系 } \end{aligned}$	－							補 給 水 系	復水貯蔵タンク E22-F014	3．原子炉椧却系統施設 3．7原子炬冷却材補給設備 3．7．2 補給水系 （5）主配管 に記載する。				
	E22－F014 ～補給水よりの第一アンカ	$1.37^{* 5}$	66	$\begin{gathered} 406.4 \\ { }^{* 7} 406.4 \\ \hline \end{gathered}$	$\begin{array}{\|ll} *^{66} & (9.5) \\ \hline{ }^{* 6} & (9.5) \\ \hline \end{array}$	SUS304 SUS304 $^{* 7}$	E22－F014 補給水よりの第一アンカ			変更なし				
	補給水よりの第一アンカ 復水貯蔵タンク出口配管分岐点	$1.37{ }^{* 5}$	66			SUS304 SUS304 $^{* 7}$ SUS304	$\begin{aligned} & \text { 高 } \\ & \text { 场 } \\ & \text { 憂 } \\ & \text { プ } \\ & \text { L } \\ & \text { 系 } \end{aligned}$	補給水よりの第一アンカ 復水貯蔵タンク出口配管分岐点		変更なし				
	復水貯蔵タンク出口配管分岐点 直流駆動低圧注水系ポンプ吸	1.37	66	406.4 ${ }^{*}{ }^{* 7}$ 406.4 406.4 $/$ - 406.4		SUS304 SUS304 SUS304		復水貯蔵タンク出口配管分岐点 直流駆動低圧注水系ポンプ吸込配管分岐点		変更なし				
	込配管分岐点			－						1． 37	66	$\begin{gathered} 406.4 \\ / \\ 406.4 \\ / \\ 165.2 \end{gathered}$	$9.5)$ $9.5)$ $78.1)$	SUS304
	直流駆動低圧注水系ポンプ吸达配管分岐点 E22-F001	1.37	66	$\frac{406.4}{406.4}$	$\left.\right\|^{* 10} \quad(9.5)$	SUS304 SGV410		変更なし						

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	名 称		$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 圧 } \\ \text { (MPa) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \quad \text { 鲑) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料
	E22－F001 高圧炉心スプレイ系ポンプ	$1.37{ }^{* 5}$	100				$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 炉 } \\ & \text { 元 } \\ & \text { プ } \\ & \text { L } \\ & \text { 系 } \end{aligned}$	変更なし						
	高圧炉心スプレイ系ストレー ナ ～ 原子炉格納容器配管貫通部 $(\mathrm{X}-219)$	$\begin{gathered} -[427] \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 508.0 \\ / \\ 508.0 \\ / \\ 508.0 \end{gathered}$	${ }^{*}{ }^{14}(9.5)$	SM41C		変更なし	$\begin{gathered} \text { 変更なし } \\ -[854]^{* 16} \\ (\mathrm{kPa}) \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 16} \end{gathered}$		変更なし		
			－					原子炉格納容器配管貫通部 (X-219)	7．原子炉格 7.1 原子炈 （4）原 に記載する。	内施設 格納容器 炬格納容器配	管貫通部及び電	配線貫通部		
	原子炉格納容器配管貫通部 （X－219）	$\begin{aligned} & { }^{* 5} \\ & 427 \\ & (\mathrm{kPa}) \end{aligned}$	104	$\begin{array}{ll} \hline & { }^{* 7} \\ 508.0 \\ \hline 508.0 & \\ \hline \end{array}$	$\begin{array}{\|c} { }^{* 7} \\ { }^{10(10}(9.5) \\ \hline \end{array}$	${ }^{* 7}$ SGV42 SGV42			$\begin{gathered} \text { 変更なし } \\ 854^{* 16} \\ (\mathrm{kPa}) \end{gathered}$	変更なし 200＊16		変更なし		
	高圧炉心スプレイ系ポンプ入口配管合流点	$1.37{ }^{* 5}$	100	$\frac{508.0}{5_{508.0}^{* 7}}$	$\begin{array}{\|c\|} *{ }^{10}(9.5) \\ \hline{ }^{* 10}(9.5) \\ \hline \end{array}$			変更なし			変更な			
	高圧炉心スプレイ系ポンプ 直流駆動低圧注水系ポンプ吐出配管合流点	$10.79{ }^{* 5}$	100	318.5	（25．4）	$\text { STS410 }{ }^{* 20}$				変更なし				

変 更 前							変 更 後													
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \quad \text { 渡 } \\ & \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料							
		1.37	66	$\begin{aligned} & 406.4 \\ & / \\ & 267.4 \end{aligned}$	$\int_{* 10}^{* 10}(9.5)$	SUS304			変更なし			$\underbrace{9.5)}$	SUS304TP							
											267． 4	（9．3）	SUS304TP							
									267.4	$(9.3)^{* 23}$	SUS304TP									
							1． 37	66	$\begin{gathered} 267.4 \\ / \\ 267.4 \\ / / \\ 216.3 \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (9.3) \\ / \\ (8.2) \end{gathered}$	SUS304TP									
									変更なし											

注記＊1：外径は公称値を示す。

＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炬心泠却設備その他原子炉注水設備（高圧灲心スプレイ系）として本工事計画で兼用とする。
＊4：記載の適正化を行う。既工事計画書には「補給水系から補給水系よりの第1アンカまで」と記載。
：S I 単位に換算したものである。
：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年4月3日付け4資庁第1992号にて認可された工事計画の添付書類「IV－2－1－1－1－1 管の基本板厚計算書」による。
＊7：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
系，原子炉格納容器代替スプレイ泠却系，高圧代替注水系，低圧代替注水系）と兼用。
＊9：記載の適正化を行う。既工事計画書には「補給水系よりの第1アンカから高圧炉心スプレイ系ポンプまで（高圧炉心スプレイ系ポンプ入口配管）」と記載。
＊10：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 3 年 6 月 19 日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「IV－2－1－5－1－1 管の基本板厚計算書」による。
＊ 11 ：非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系）と兼用。
＊12：記載の適正化を行う。既工事計画書には「SGV42」と記載。
＊13：記載の適正化を行う。既工事計画書には「高圧炉心スプレイ系ストレーナからサプレッションチェンバ」と記載。
＊ 14 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊15：記載の適正化を行う。既工事計画書にはSTS410に注記「JISの旧記号STS42の新記号である」と記載。
＊ 16 ：重大事故等時の使用時の値。
＊ 17 ：本設備は，既存の原子炉格納施設のらち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（高圧炉心スプレイ系）として本工事計画で兼用とする。
＊18：記載の適正化を行う。既工事計画書には「サプレッションチェンバから高圧灲心スプレイ系ポンプ入口配管まで」と記載。
＊19：記載の適正化を行う。既工事計画書には「高圧炉心スプレイ系ポンプから原子炉圧力容器まで」と記載。
＊20：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊21：記載の適正化を行う。既工事計画書には「高圧炉心スプレイ系ポンプ入口配管から原子炉隔離時冷却系まで」と記載。
＊ 22 ：非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊23：エルボを示す。
＊24：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。

3．6．2 低圧炉心スプレイ系
（1）ポンプ（常設）

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第 3－6－2 図 低圧炉心スプ レイ系ポンプ構造図」による。

枠囲みの内容は商業機密の観点から公開できません。
（4）万過装置（常設）

			変 更 前	変 更 後
名		称	低圧炉心スプレイ系ストレーナ	
種	類	－	カセット形	変更なし
容	量	$\mathrm{m}^{3} / \mathrm{h} /$ 組＊1	以上＊2，＊3 $(1074 * 4)$	
	高 使 用 圧 力	$\mathrm{kPa} * 5$	－［427］＊6，＊7	$\begin{gathered} \text { 変更なし } \\ \text { — }[854] * 7, * 8 \end{gathered}$
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$104 * 9$	変更なし $200 * 8, * 9$
	外 径	mm		
主	長 さ	mm		
$\begin{aligned} & \text { 要 } \\ & \text { 保 } \end{aligned}$	ポケット幅	mm		
法	ポケット深さ	mm		
	ポケット数量	－		
	外 筒	－		
	多孔プレート	－		
個	数	－	1 1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$		－	低圧炉心スプレイ系ストレーナ低圧炉心スプレイ系	
	設 置 床	－	原子炉格納容器内 $\text { 0. P. }-8.10 \mathrm{~m}$	
	$\begin{aligned} & \text { 溢水防護上の区画 } \\ & \text { 番 } \end{aligned}$	－	－	－
	溢水防護上の配慮 が必要な高さ	－		

注記＊1 ：記載の適正化を行う。既工事計画書には「m³／h」と記載
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：低圧炉心スプレイ系ポンプの定格容量を示す。
＊4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「—」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「—［427kPa］」と記載。
＊ 7 ：低圧炉心スプレイ系ストレーナは，その機能及び構造上の耐圧機能を必要としないた め，最高使用圧力を設定しないが，ここでは，サプレッションチェンバの最高使用圧力 を［ ］内に示す。
＊ 8 ：重大事故等時における使用時の値。
＊9 ：サプレッションチェンバの最高使用温度を示す。
＊ $10: 1$ 列あたりのポケット数 \times 列数を示す。
（5）安全弁及び逃がし弁（常設）

			変 更 前＊1	変 更 後
名	称		E21－F017	変更なし
種	類	－	平衡型	
吹	出 圧 力	MPa	4． 41	
吹	出 量	kg／h／個	13290＊2	
	呼び径	－	25A	
主	のど部 の径	mm		
$\begin{aligned} & \text { 寸 } \\ & \text { 法 } \end{aligned}$	弁 座口の径	mm	$24^{* 2}$	
	リフフト	mm		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2	
駆	動 方 法	－	－	
個	数	－	1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$		－	E21－F017 低圧炉心スプレイ系	
	設 置 床	－	原子炉建屋 0．P．-8.10 m	
	溢 水 防 護 上の区 画 番 号	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
（6）主要弁（常設）

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「250」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「500」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子灲格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（7）主配管（常設）

変 更 前							変 更 後													
	名 称		最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{array}{\|l} \hline \text { 最高使 用 } \\ \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{array}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料						
	低圧灲心スプレイ系ストレー ナ ～ 原子炉格納容器配管貫通部 （X－217）	$\begin{gathered} -[427] \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 508.0 \\ \text { 508. } 0 \\ \text { / } \\ \text { 508. } 0 \end{gathered}$	$\int_{x^{4}}^{x_{4}(9.5)}(9.5)$	SM41C＊5		変更なし	$\begin{gathered} \text { 変更なし } \\ \text { - } 8854]^{* 6} \\ (\mathrm{kPa}) \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 6} \end{gathered}$	変更なし									
	－						$\begin{aligned} & \text { 低 } \\ & \text { 厓 } \\ & \text { 岕 } \\ & \text { ス } \\ & \text { プ } \\ & \text { T } \\ & \text { 系 } \end{aligned}$	原子炉格納容器配管貫通部 （X－217）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。											
	原子炉格納容器配管貫通部 （X－217） 低圧灲心スプレイ系ポンプ	$\begin{aligned} & 427^{* 9} \\ & (\mathrm{kPa}) \end{aligned}$	104	508.0 508.0	$\underbrace{{ }^{11}(9.5)}$	 SGV42		変更なし	変更なし 854＊ （kPa）	$\begin{gathered} \text { 変更なし } \\ 200^{*} 6 \end{gathered}$	変更なし									
		1． $37^{* 9}$	100	508.0	＊${ }^{11}$（9．5）	SGV42			変更なし		変更なし									
				$508.0^{* 10}$	＊${ }^{*}{ }^{* 11}{ }^{11}(9.5)$	$\text { SGV42 }{ }^{* 10}$														
				$\begin{gathered} 508.0 \\ / \\ 508.0 \\ / \\ - \\ \hline \end{gathered}$		SGV42														
	$\begin{aligned} & \text { 低圧炉心スプレイ系ポンプ } \\ & \text { ~ }{ }^{*} \text { 原子炉格納容器配管貫通部 } \\ & (\mathrm{X}-34) \end{aligned}$	4． $41 * 9$	100	318.5	（17．4）	STS42 STS410		変更なし												
				$318.5^{* 10}$	$(17.4)^{* 10}$	$\quad * 10, * 13$ STS42 STS410														
				$\begin{gathered} 318.5 \\ / \\ 318.5 \\ / \\ \hline \end{gathered}$	$\begin{gathered} (17.4) \\ / \\ (17.4) \\ / \\ - \end{gathered}$	STS42														
				$\begin{gathered} 318.5 \\ / / \\ 267.4 \end{gathered}$	$\begin{gathered} (17.4) \\ (15.1) \end{gathered}$	$\text { STS410 }{ }^{* 13}$														
				267.4	（15．1）	$\text { STS410 }{ }^{* 13}$														
	－							原子炉格納容器配管貫通部 （X－34）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。											

変 更 前							変 更 後							
	名 称	最高使用 圧 （MPa）	最高使用 温 （ ${ }^{\circ} \mathrm{C}$ ） 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称			$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	原子炉格納容器配管貫通部 （ $\mathrm{X}-34$ ） 原子炉圧力容器	8． $62 * 9$	302	267.4	（18．2）	$\begin{aligned} & { }^{* 13} \\ & \text { STS42 } \\ & \text { STS410 } \end{aligned}$		変更なし	$\begin{gathered} \text { 変更なし } \\ 10.34^{* 6} \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 315 * 6 \end{gathered}$		変更なし		

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「低圧灲心スプレイ系ストレーナからサプレッションチェンバ」と記載
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：記載の適正化を行う。既工事計画書にはSTS410に注記「JISの旧記号STS42の新記号である」と記載
＊6 ：重大事故等時の使用時の値。
＊7 ：本設備は，既存の原子炉格納施設のらち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（低圧炉心スプレイ系）として本工事計画で兼用とする。
＊8：記載の適正化を行う。既工事計画書には「サプレッションチェンバから低圧炉心スプレイ系ポンプまで」と記載。
＊9 ：S I 単位に換算したものである。
＊10：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行ら
＊11：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－6－1－1 管の基本板厚計算書」による。 ＊ 12 ：記載の適正化を行ら。既工事計画書には「低圧炉心スプレイ系ポンプから原子灲圧力容器まで」と記載
＊13：記載の適正化を行う。既工事計画書には「STS42」と記載。

3．6．3 高圧代替注水系
（1）ポンプ（常設）

注記＊1 ：原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊2：重大事故等時における使用時の値。
＊ 3 ：公称値を示す。
（2）容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炉心冷却設備その他原子灲注水設備（高圧代替注水系）として本工事計画で兼用とする。
（7）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
$* 3$ ：重大事故等時の使用時の値。
＊ 4 ：本設備は，既存の原子炉泠却材の循環設備（主蒸気系）であり，非常用炉心椧却設備その他原子灲注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊5 ：本設備は，既存の原子炉冷却材補給設備（原子炉隔離時冷却系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊6：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊7 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊ 8 ：エルボを示す。
＊9：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊ 10 ：本設備は，既存の非常用炉心泠却設備その他原子炉注水設備（高圧炉心スプレイ系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊ 11 ：本設備は，既存の原子炉泠却材浄化設備（原子炉泠却材浄化系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊12：本設備は，既存の原子炉冷却材の循環設備（復水給水系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。

3．6．4 原子炉隔離時冷却系
（1）ポンプ（常設）

	変更前	変更後
名 称	－	原子炉隔離時冷却系ポンプ＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．1 原子炉隔離時冷却系 （1）ポンプ に記載する。		

注記 $~$ ：本設備は，既存の原子炉冷却材補給設備（原子炉隔離時冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
（2）容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
（5）安全弁及び逃がし弁（常設）

			変 更 前＊1	変 更 後
名	称		E51－F059	変更なし
種	類	－	平衡型	
吹	出 圧 力	MPa	1.37	
吹	出 量	kg／h／個	10970＊2	
	呼び径	－	25A	
主	のど部 の径	mm	＊2	
$\begin{gathered} \text { 寸 } \\ \text { 法 } \end{gathered}$	弁 座 口 の径	mm	$24^{* 2}$	
	リフフト	mm		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2	
駆	動 方 法	－	－	
個	数	－	1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$		－	E51-F059 原子炉隔離時冷却系	
	設 置 床	－	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0. P. -8. } 10 \mathrm{~m} \end{aligned}$	
	$\begin{aligned} & \text { 溢 } \\ & \text { 区 水 防 護 } \\ & \text { 上 } \\ & \text { 画 } \\ & \text { の } \\ & \text { 番 } \end{aligned} \text { 号 }$	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
（7）主配管（常設）

＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却材の循環設備（主蒸気系）であり，非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
＊ 4 ：本設備は，既存の原子炉冷却材補給設備（原子炉隔離時冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
＊5：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
＊ 6 ：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炬心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
＊7 ：本設備は，既存の非常用炬心椧却設備その他原子炬注水設備（高圧炬心スプレイ系）であり，非常用灲心泠却設備その他原子灲注水設備（原子炬隔離時泠却系）として本工事計画で兼用とする。
$* 8$ ：本設備は，既存の原子炉泠却材浄化設備（原子炉冷却材浄化系）であり，非常用炉心浍却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。
＊9：本設備は，既存の原子炉冷却材の循環設備（復水給水系）であり，非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）として本工事計画で兼用とする。

3．6．5 低圧代替注水系
（1）ポンプ（常設）

注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：公称値を示す。

	変更前	変更後
名 称	－	復水移送ポンプ＊
3．原子炉冷却系統施設 3．7原子炉冷却材補給設備 3．7．2 補給水系 （1）ポンプ に記載する。		

注記＊：本設備は，既存の原子炉泠却材補給設備（補給水系）であり，非常用炬心冷却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
（1）ポンプ（可搬型）

	変更前	変更後
名 称	—	大容量送水ポンプ（タイプ I ）＊

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
（2）容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
（5）安全弁及び逃がし弁（常設）

注記＊：公称値を示す。

	変更前	変更後
名 称	－	E22－F023＊
3．原子炉冷却系統施設 3.6 非常用炉心冷却設備その他原子炉注水設備 3．6．1 高圧炉心スプレイ系 （5）安全弁及び逃がし弁（常設） に記載する。		

注記 $*: ~$ 本設備は，既存の非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系）であり，非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）とし て本工事計画で兼用とする。
（7）主配管（常設）

注記 $~ 1 ~ 1 ~: ~$ 外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3 ：重大事故等時の使用時の値。
＊ 4 ：本設備は，既存の原子炉泠却材補給設備（補給水系）であり，非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
$* 5$ ：本設備は，既存の非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系）であり，非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
＊ 6 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系）と兼用。
＊ 7 ：本設備は既存の設備である。
＊ 8 ：エルボを示す。
＊9 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炬格納容器代替スプレイ冷却系，代替循環冷却系，低圧代替注水系）と兼用
＊ 10 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ椧却系，低圧代替注水系）と兼用。
＊ 11 ：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
＊ 12 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（低圧代替注水系）として本工事計画で兼用とする。
＊13：原子炬格納施設のうち圧力低減設備その他の安全設備の原子炬格納容器安全設備（原子炉格納容器代替スプレイ冷却系，代替循環冷却系，低圧代替注水系）と兼用。
＊ 14 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，低圧代替注水系）と兼用。

変 更 前									変 更 後								
名	称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取付箇所		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 力 } \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径* }{ }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取付箇所
$\begin{aligned} & \text { 低 } \\ & \text { 压 } \\ & \text { 代 } \\ & \text { 準 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	（e）								$\begin{aligned} & \text { 低 } \\ & \text { 圧 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 泉 } \end{aligned}$	取水用ホース $(250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$ 送水用ホース （300A ：2m，5m，10m，20m，50m） 注水用ヘッダ 送水用ホース （150A：1m，2m，5m，10m，20m）	2．核燃料物質の取扱施設及び貯蔵施設 2.4 使用済燃料貯蔵槽冷却浄化設備 2． 4.2 燃料プール代替注水系 （8）主配管（スプレイヘッダを含む。）（可搬型） に記載する。						

注記＊1 ：外径は公称値を示す。
 る。

3．6．6 代替循環冷却系

（1）ポンプ（常設）

	変更前	変更後
名 称	－	代替循環冷却ポンプ＊
7．原子炉格納施設 7.3 圧力低減設備その他の （6）原子炉格納容器安全 d．代替循環冷却系 ハポンプ（常設） に記載する。	備	

注記 $*: ~$ 本設備は，原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。
（4）万過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （5）万過装置（常設） に記載する。		

注記＊：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備 その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。
（5）安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	E11－F048A＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （6）安全弁及び逃が に記載する。		

注記＊：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備 その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。

	変更前	変更後
名	E11－F084＊	
7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系 チ 安全弁及び逃がし弁（常設） に記載する。		

注記 $~$ ：本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	E11－F085＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系 チ安全弁及び逃がし弁（常設） に記載する。		

注記 $~$ ：本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。
（7）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）として本工事計画で兼用とする。
 る。

3．6．7 ほう酸水注入系
（1）ポンプ（常設）

	変更前	変更後
名 称	－	ほう酸水注入系ポンプ＊
4．計測制御系統施設 4． 4 ほう酸水注入設備 4．4．1 ほう酸水注入系 （1）ポンプ（常設） に記載する。		

注記＊：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。
（2）容器（常設）

	変更前	変更後
名 称	-	
4．計測制御系統施設		
4． 4 ほう酸水注入設備 4． 4 ほう酸水注入系 （2）容器（常設） に記載する。水注入系貯蔵タンク＊		

注記＊：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。
（5）安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	C41－F003A，B＊
4．計測制御系統施設 4．4 ほう酸水注入設備 4．4．1 ほう酸水注入系 （3）安全弁及び逃が に記載する。		

注記＊：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系） であり，非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	C41－F022＊
4．計測制御系統施設 4．4ほう酸水注入設備 4．4．1 ほう酸水注入系 （3）安全弁及び逃がし弁（常設） に記載する。		

注記＊：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。
（7）主配管（常設）

変 更 前									変 更 後							
名		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & { }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$		料	名 称		$\begin{aligned} & \hline \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
ほほ酸水濉信系		－							$\begin{aligned} & \text { ほ } \\ & j \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 乼 } \\ & \text { 系 } \end{aligned}$	ほう酸水注入系貯蔵タンク ～ ほう酸水注入系ポンプ ほう酸水注入系ポンプ 原子炉格納容器配管貫通部 （ $\mathrm{X}-22$ ）	4．計測制御系統施設 4.4 ほう酸水注入設備 4．4． 1 ほう酸水注入系 （5）主配管（常設） に記載する。					
									原子炉格納容器配管貫通部 （X－22）	7．原子炬格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。						
									原子炉格納容器配管貫通部 （ $\mathrm{X}-22$ ） 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまで の外管）	4．計測制御系統施設 4.4 ほう酸水注入設備 4．4．1 ほう酸水注入系 （5）主配管（常設） に記載する。						

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3 ：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系）であり，非常用炬心冷却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納施設のらち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（ほう酸水注入系）として本工事計画で兼用とする。

3．6．8 残留熱除去系
（1）ポンプ（常設）

	変更前	変更後
名 称	－	残留熱除去系ポンプ（A），（B），（C）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （3）ポンプ（常設） に記載する。		

注記 $*: ~$ 本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備 その他原子炉注水設備（残留熱除去系）として本工事計画で兼用とする。
（4）万過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A），（B），（C）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （5）万過装置（常設） に記載する。		

注記 $\boldsymbol{N}^{(1)}$ 本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備 その他原子炉注水設備（残留熱除去系）として本工事計画で兼用とする。
（5）安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	E11－F048A，B，C＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （6）安全弁及び逃が に記載する。		

注記＊：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炉心冷却設備 その他原子炉注水設備（残留熱除去系）として本工事計画で兼用とする。
（7）主配管（常設）

変 更 前									変 更 後								
名		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \end{aligned}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\operatorname{li夕}_{\text {外 径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
									原子炉格納容器配管貫通部 （ $\mathrm{X}-31 \mathrm{~A}$ ）			7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炬格納容器配管貫通部及び電気配線貫通部 に記載する。					
	（－								$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 稏 } \\ & \text { 系 } \end{aligned}$	残 凖 除 系		3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。					
									原子炉格納容器配管貫通部(X-214B)	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。							
$\begin{aligned} & \text { 留 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 采 } \end{aligned}$									$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$		3．原子炉泠却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。						

	変更前									変更後							
		名	称	$\begin{aligned} & \substack{\text { 最高使用 } \\ { }_{(1 \text { (NPa) }} \\ \hline} \end{aligned}$		$\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \text { 径*1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {き*2 }} \\ \hline \end{gathered}$	材	料		称	$\begin{array}{\|c} \left\lvert\, \begin{array}{l} \text { 压高使用 } \\ (\mathbb{N P a}) \end{array}\right. \\ \hline \end{array}$		$\begin{gathered} \text { 外 洤*" } \\ (\mathrm{mm}) \end{gathered}$			料
		簣	－									```3.原子炬洽却手統底設 3.5 残留毷徐蔎誰 3.5.1 残留鋓除去系 (8) 主配管 (常設) に記辌する。```					
										$\begin{aligned} & \text { 原子小攺和容唯配管費通部 } \\ & (x-318)^{* 4} \end{aligned}$	\square	納施設格納容器炉格納容器配	貫通部及	線費通部			

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：本設備は，既存の残留熱除去設備（残留熱除去系）であり，非常用炬心冷却設備その他原子炬注水設備（残留熱除去系）として本工事計画で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）として本工事計画で兼用とする。

3．6．9 代替水源移送系

（1）ポンプ（可搬型）

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプI）＊
2．核燃料物質の取扱施設及 2.4 使用済燃料貯蔵槽冷却 2．4．2 燃料プール代替注 （2）ポンプ（可搬型） に記載する。	施設 備	

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプII）
7．原子炉格納施設 7．3圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 d．放射性物質拡散抑制系 ハポンプ（可搬型） に記載する。		

注記＊：本設備は，原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系）であり，非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）として本工事計画で兼用とする。
（7）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
$* 3$ ：重大事故等時の使用時の値。
＊ 4 ：エルボを示す。
$* 5$ ：本設備は既存の設備である。

注記＊1 ：外径は公称値を示す。
＊2：（）内は公称值を示す。
 る。
3.7 原子炉冷却材補給設備

3．7．1 原子炉隔離時冷却系
（1）ポンプ

注記＊1 ：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第 3－4－2 図 原子炉隔離時冷却系ポンプ構造図」による。
（4）主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F007」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F008」と記載。記載内容は，設計図書による。
＊3 ：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

			変 更 前	変 更 後
名	称＊1		E51－F003＊2	—＊7
種	類	－	止め弁	
	高 使 用 圧 力	MPa	11．77＊3	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$302 * 3$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－＊4	$100 A^{* 5}$	
	弁 箱 厚 さ	mm	＊3	
	弁 ふ た 厚 さ	mm	＊3	
材	弁 箱	－	SCPH2	
料	弁 ふ た	－	SCPH2	
駆	動 方 法	－	電気作動	
個	数	－	1	
取		－	E51－F003 原子炉隔離時冷却系	
付	設 置 床	－	原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$	
所	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	－	
	溢水防護上の配慮 が必要な高さ	－		

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

			変 更 前	変 更 後
名	称＊1		E51－F005＊2	—＊7
種	類	－	止め弁	
	高 使 用 圧 力	MPa	1． $37^{* 3}$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	104＊3	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－＊4	$150 A^{* 5}$	
	弁 箱 厚 さ	mm	＊3	
	弁 ふ た 厚 さ	mm	＊3	
材	弁 箱	－	SCPH2	
料	弁 ふ た	－	SCPH2	
駆	動 方 法	－	電気作動	
個	数	－	1	
取	系 $($ ラ イ	－	$\begin{gathered} \text { E51-F005 } \\ \text { 原子炉隔離時冷却系 } \end{gathered}$	
付	設 置 床	－	原子炉建屋 $0 . \text { P. }-8.10 \mathrm{~m}$	
所	$\begin{array}{lcccc} \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	－	
	溢水防護上の配慮 が必要な高さ	－		

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F005」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「150」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

			変 更 前	変 更 後
名	称＊1		E51－F009＊2	—＊7
種	類	－	止め弁	
	高 使 用 圧 力	MPa	8． $62 * 3$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$302 * 3$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－＊4	$100 A^{* 5}$	
	弁 箱 厚 さ	mm		
	弁 ふ た 厚 さ	mm	＊3	
材	弁 箱	－	SCPH2	
料	弁 ふ た	－	SCPH2	
駆	動 方 法	－	電気作動	
個	数	－	1	
取 付 箇 所		－	E51-F009 原子炉隔離時冷却系	
	設 置 床	－	原子炉建屋 0．P．-8.10 m	
	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	\cdots	
	溢水防護上の配慮 が必要な高さ	－	－	

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F009」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

			変 更 前	変 更 後
名	称＊1		E51－F011＊2	—＊7
種	類	－	止め弁	
	高 使 用 圧 力	MPa	$0.98 * 3$	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$184 * 3$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－＊4	$200 A^{* 5}$	
	弁 箱 厚 さ	mm		
	弁 ふ た 厚 さ	mm	＊3	
材	弁 箱	－	SCPH2	
料	弁 ふ た	－	SCPH2	
駆	動 方 法	－	電気作動	
個	数	－	1	
取 付 箇 所		－	E51－F011 原子炉隔離時冷却系	
	設 置 床	－	原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$	
	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	\cdots	
	溢水防護上の配慮 が必要な高さ	－	－	

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2：記載の適正化を行う。既工事計画書には「F011」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「200」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子灲格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。
（5）主配管

変 更 前							変 更 後										
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \text { 力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径 }{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料				
$\begin{aligned} & \text { 原 } \\ & \text { 学 } \\ & \text { 隔 } \\ & \text { 離 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 采 } \end{aligned}$	原子炉隔離時冷却系蒸気配管分岐点 原子炉格納容器配管貫通部 （X－36）	8． 62 ＊${ }^{\text {d }}$	302	$\underbrace{114.3}{ }^{* 6}$	(11.1) $(11.1)^{* 6}$	STS410 ${ }^{* 5}$ ＊5，＊6 STS410	原焳塥離時洽却系	原子炉隔離時冷却系蒸気配管分岐点 原子炉格納容器配管貫通部 （X－36）	$\begin{gathered} \text { 変更なし } \\ 10.34 \text { *8 } \end{gathered}$	$\begin{array}{r} \text { 変更なし } \\ 315 * 8 \end{array}$	変更なし						
	原子炉格納容器配管貫通部 （X－36） 原子炉格納容器外側アンカ	8． 62 ＊ 4	302	114.3	（11．1）	STS410 ${ }^{* 5}$		原子炉格納容器配管貫通部 （X－36） 原子炉格納容器外側アンカ	$\begin{gathered} \text { 変更なし } \\ 10.34 \text { *8 } \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 315 \text { *8 } \end{gathered}$	変更なし						
		$8.62 * 4$	302	114.3	（11．1）	STS410 ${ }^{* 5}$		原子炉格納容器外側アンカ高圧代替注水系蒸気入口配管分岐点	$\begin{gathered} \text { 変更なし } \\ 10.34 \text { *8 } \end{gathered}$	$\begin{array}{r} \text { 変更なし } \\ 315 \text { * } \end{array}$	変更なし						
	高圧代替注水系蒸気入口配管分岐点	－							$\begin{gathered} 8.62 \\ 10.34 * 8 \end{gathered}$	$\begin{aligned} & 302 \\ & 315 * 8 \end{aligned}$	$\begin{gathered} 114.3 \\ / \\ 114.3 \\ \vdots \\ 114.3 \end{gathered}$	$\begin{aligned} & (11.1) \\ & (11.1) \\ & (11.1) \\ & (1 / 2) \end{aligned}$	STS410				
	高圧代替注水系蒸気入口配管分岐点 原子炉隔離時冷却系ポンプ駆動用タービン	8． 62 ＊${ }^{\text {d }}$	302	114.3	（11．1）	$\begin{gathered} \text { STS42 } \\ \text { STS410 } \end{gathered}$		高圧代替注水系蒸気入口配管分岐点 原子炉隔離時冷却系ポンプ駆動用タービン	$\begin{gathered} \text { 変更なし } \\ 10.34 * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 315 \text { *8 } \end{gathered}$	変更なし						
				$114.3^{* 6}$	$(11.1)^{* 6}$	$\begin{aligned} & \quad * 5, * 6 \\ & \text { STS42 } \\ & \text { STS410 } \end{aligned}$											
				$\begin{gathered} 114.3 \\ / \\ - \\ / \\ 114.3 \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ - \\ / \\ (11.1) \end{gathered}$	STS410 ${ }^{* 5}$											
				114.3	（11．1）	STS410			変更なし								
				$\begin{gathered} 114.3 \\ / 114.3 \\ / \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ (11.1) \\ / \\ - \end{gathered}$	STS410 ${ }^{* 5}$											
				$114.3{ }^{* 6}$	$(11.1)^{* 6}$	$\begin{aligned} & \quad{ }^{* 5, * 6} \\ & \text { STS410 } \\ & \hline \end{aligned}$											

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「主蒸気系から原子炉格納容器外側アンカまで」と記載。
＊4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊6：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊7 ：非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用 ＊8 ：重大事故等時の使用時の値。
＊9 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外側アンカから原子炉隔離時冷却系ポンプ駆動用タービンまで」と記載
＊ 10 ：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用
＊11：記載の適正化を行ら。既工事計画書には「原子炉隔離時冷却系ポンプ駆動用タービンからサプレッションチェンバへ」と記載。
$* 12$ ：記載の適正化を行う。既工事計画書には「SGV42」と記載。
＊13：記載の適正化を行う。既工事計画書には「高圧炉心スプレイ系から原子炉隔離時泠却系ポンプまで（原子炉隔離時冷却系ポンプ入口配管）」と記載。
＊14：記載の適正化を行う。既工事計画書には「サプレッションチェンバから原子炉隔離時冷却系ポンプ入口配管まで」と記載。
＊ 15 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による
＊ 16 ：記載の適正化を行う。既工事計画書には「原子炉隔離時冷却系ポンプから原子炉冷却材浄化系まで」と記載。

3．7．2 補給水系
（1）ポンプ

枠囲みの内容は商業機密の観点から公開できません。

注記 $*^{1}$ ：非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，低圧代替注水系） と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊3：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，設計図書 による。
＊ 4 ：公称値を示す。
＊ 5 ：重大事故等時における，非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）で使用する場合の値（ポンプ1台運転時）。
＊ 6 ：重大事故等時における，非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系）で使用する場合の値（ポンプ2台運転時）。
＊ 7 ：重大事故等時における，原子炉格納施設のうち圧力低減設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）で使用する場合の値（ポンプ 2 台運転時）。
＊ 8 ：重大事故等時における，原子炉格納施設のらち圧力低減設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の値 （事前水張り：ポンプ1台運転時）。
＊9：重大事故等時における，原子炉格納施設のらち圧力低減設備その他の安全設備 の原子炉格納容器安全設備（原子炉格納容器下部注水系）で使用する場合の値 （溶融炉心冷却：ポンプ1台運転時）。
＊10：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊11：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成4年4月3日付け4資庁第1992号にて認可された工事計画の添付書類「第2－2－3図 復水移送ポンプ構造図」による。
＊ 12 ：非常用炉心冷却設備その他原子炉注水設備及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備で使用する場合の記載事項。
（2）容器

（次頁へ続く）
（前頁からの続き）

			変更前	変更後
材	胴 板	－	SUS304	変更なし
	底 板	－	SUS304	
	側マンホール平板	－	SUS304＊4	
個 数		－	1	
取 付 箇 所		－	復水貯蔵タンク補給水系	
	設 置 床	－	$\begin{gathered} \text { 屋外 } \\ 0 . \text { P. } 9.50 \mathrm{~m} \end{gathered}$	
	溢水防護上の区画番号	－	－	－
	$\begin{array}{llll} \text { 溢 } & \text { 水 防 護 } & \text { の } & \text { 配 } \\ \text { 慮 } & \text { が } \\ \text { 必要 な 高 さ } \end{array}$	－		

注記 $⿻ 丷 木 斤$ ：非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系，高圧代替注水系，原子炉隔離時冷却系，低圧代替注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，高圧代替注水系，低圧代替注水系） と兼用。
＊2 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は設計図書に よる。
＊3：公称値を示す。
＊ 4 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成4年4月3日付4資庁第1992号にて認可された工事計画の添付書類「IV－2－1－2－1 復水貯蔵タンクの強度計算書」による。
（5）主配管

注記 $* 1$ ：外径は公称値を示す。
$* 2: ~(~) ~ 内 は, ~$ 称値を示す。
$* 3$ ：記載の適正化を行う。既工事計画書には「復水貯蔵タンクから高圧炬心スプレイ系まで1 と記載

$* 4$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年4月3日付け4資庁第1992
$* 5$ ：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
子炉格納容器下部注水系，原子炉格納容器代替スプレイ泠却系，高圧代替注水系，低圧代替注水系）と兼用。
＊7：記載の適正化を行う。既工事計画書には「復水貯蔵タンクから復水移送ポンプまで（復水移送ポンプ入口配管）」と記載。
＊8 ：S I 単位に換算したものである。
＊9 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。

[^5]系，低圧代替注水系）と兼用。
＊11：重大事故等クラス2配管に使用する場合の記載事項
＊ 12 ：エルボを示す。
＊ 13 ：本設備は既存の設備である。
＊ 14 ：記載の適正化を行う。既工事計画書には「復水移送ポンプから復水器へ」と記載。
＊15：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
＊ 16 ：記載の適正化を行う。既工事計画書には「復水移送ポンプ入口配管から制御棒駆動水圧系まで」と記載。
＊17：記載の適正化を行う。既工事計画書には「機器ドレン系から復水貯蔵タンクまで」と記載。
＊ 18 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊19：記載の適正化を行う。既工事計画書には「純水移送ポンプより復水貯蔵タンクまで」と記載。
3.8 原子炉補機冷却設備

3．8．1 原子炉補機泠却水系（原子炉補機冷却海水系を含む。）

（前頁からのつづき）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊2 ：公称値を示す
＊3：S I 単位に換算したものである。
＊4 ：記載の適正化を行う。既工事計画書には「水室内径」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「水室胴部厚さ」と記載。
＊6：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－7－1 原子炉補機冷却水系熱交換器の強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「水室鏡板厚さ」と記載。
＊8：記載の適正化を行う。既工事計画書には「水室平板厚さ」と記載。
＊9：記載の適正化を行う。既工事計画書には「胴体内径」と記載。
$* 9$ ：記載の適歨化を行う。既工事計画書には「胴体内径」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「胴体厚さ」と倳載。
（3）ポンプ（常設）

注記＊1：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 3 年 6 月 19 日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第3－7－8図 原子炉補機冷却水ポンプ構造図」による。

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
$* 5$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「第3－7－9図 原子灲補機冷却海水ポンプ構造図」による。
（5）容器（常設）

注記＊ 1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉補機冷却設備（原子炬補機代替冷却水系）と兼用
＊ 3 ：公称値を示す。
＊ 4 ：重大事故時における，原子炉補機冷却設備（原子炉補機代替冷却水系）で使用する場合の値を示す。
（6）万過装置（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3 ：S I 単位に換算したものである。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－7－2 原子炉補機冷却海水系ストレーナの強度計算書」による。
＊5 ：記載の適正化を行う。既工事計画書には「SM41C」と記載。
（9）主配管（常設）

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 原 } \\ & \text { 烰 } \\ & \text { 補 } \\ & \text { 機 } \\ & \text { 却 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	（前頁からの続き） 残留熱除去系熱交換器（A）入口配管合流点 残留熱除去系熱交換器（A）	－					（前頁からの続き） 残留熱除去系熱交換器（A）入口配管合流点 残留熱除去系熱交換器（A）		$1.18{ }^{* 6}$	$70^{* 6}$	406.4 355.6	$\begin{aligned} & \sum_{(11.5)}^{* 6, * 7} \\ & (11.1) \end{aligned}$	STS410
		$1.18{ }^{* 4}$	70	355.6	（11．1）	STS410＊14			変更なし				
		－							$1.18{ }^{* 6}$	$70{ }^{* 6}$	355.6	$\begin{aligned} & \hline * 6, * 7, * 8 \\ & (11.1) \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \\ & \hline \end{aligned}$
									$1.18^{* 6}$	$70{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 355.6 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (11.1) \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS42 } \end{aligned}$
									変更なし				
									$1.18{ }^{* 6}$	$70^{* 6}$	406． 4 355.6	（9．5） （11．1）	STS410
								＊5			変更なし		
								残留熱除去系熱交換器（A） 残留熱除去系熱交換器（A）出口配管分岐点				$\left[\begin{array}{l} { }^{* 6 . * 7} \\ (9.5) \\ (7.1) \end{array}\right.$	SM400C ${ }^{* 6, * 7}$
									6	$70^{ 6}$		＊6，＊7，＊8	＊6，＊ 7 ，＊ 8 SM400C
												（9．5）$^{* 6}$ (9.5) (8.2)	SM400C ${ }^{* 6}$
									変更なし				
								残留熱除去系熱交換器（A）出口配管分岐点			$\begin{aligned} & { }_{50}^{* 6, * 7} \\ & 406.4 \\ & \hline \end{aligned}$	(9.5) (9.5)	$\begin{aligned} & * 6, * 7 \\ & \text { STS410 } \end{aligned}$
								原子炉補機冷却水サージタン ク（A）出口配管合流点 （次頁へ続く）	$1.18{ }^{* 6}$	$70^{* 6}$	$\begin{gathered} * 6, * 7 \\ 508.0 \\ 508.0 \\ \vdots \\ 508.0 \\ \hline \end{gathered}$		SM400C

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 最高 使 用 } \\ \text { 温 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 }$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 機 } \\ & \text { 却 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	（前頁からの続き） 非常用ディーゼル発電設備 （A）清水冷却器 原子炉補機泠却水ポンプ （A），（C）入口配管合流点 2	1． $18 * 4$	70	318.5	（10．3）	STS42	（前頁からの続き）変更なし		変更なし				
		－							$1.18{ }^{* 6}$	$7{ }^{* 6}$	$/_{318.5}^{508.0}$	$\zeta_{(10.3)}^{(9.5)^{* 6, * 7}}$	$\begin{aligned} & * 6, * 7 \\ & \text { STS410 } \end{aligned}$
	原子炉補機泠却水系熱交換器（A），（C）出口配管分岐点3 燃料プール泠却浄化系熱交 換器（A）入口配管合流点	1． $18 * 4$	70	165.2	（7．1）	STS410＊14		変更なし					
	燃料プール冷却浄化系熱交換器（A）入口配管合流点 燃料プール冷却浄化系熱交換器（A）	－						燃料プール冷却浄化系熱交換器（A）入口配管合流点 燃料プール泠却浄化系熱交換器（A）	$1.18{ }^{* 6}$	$7{ }^{* 6}$	${ }_{216.3}^{\text {216．}}$	(8.2) (8.2) -	STS410 ${ }^{* 6}$
										216． 3 165.2	$\underbrace{}_{(7.1)}$	STS410 ${ }^{* 6}$	
		$1.18{ }^{* 4}$	70	165.2	（7．1）	STS410＊14			変更なし				
		－							$1.18{ }^{* 6}$	$70{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 165.2 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (7.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$
	燃料プール泠却浄化系熱交換器（A） 原子炉補機泠却水ポンプ （A），（C）入口配管合流点 1	－											
		$1.18{ }^{* 4}$	70	165.2	（7．1）	STS410＊14							
								燃料プール泠却浄化系熱交換器（A）			216． 3 165.2	$\begin{array}{cc} \hline(8.2) & { }^{* 6} \\ (7.1) & \\ \hline \end{array}$	STS410 ${ }^{* 6}$
				－				原子炬補機冷却水ポンプ （A），（C）入口配管合流点1	$\text { 1. } 18$	$70^{* 6}$	${ }_{216.3}^{216.3}{ }_{216}^{* 6}$	(8.2) ${ }^{* 6}$ (8.2) (8.2)	STS410 ${ }^{* 6}$

				変更 前							変 更 後				
		名 称	$\begin{gathered} \begin{array}{l} \text { 最高使用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$	$\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ (\text { 径*1 } \end{gathered}$	$\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {さ*2 }} \\ \hline \end{gathered}$	材 料		称	$\begin{array}{\|l\|l} \hline \text { 最高使用 } \\ \text { 压 } \\ (\mathrm{MPa}) \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { (}{ }^{\circ} \mathrm{C} \text { 度 } \end{array}$	$\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ (\text { 径*1 } \end{gathered}$	$\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {*2 }} \\ \hline \end{gathered}$	材	料
					406.4	＊10（12．7）	SM41C								
		器（A），（C）出口配管分岐点 1	1． 18 ＊4	70	406.4	＊10 9.5 ）	SM41C				変更なし				
		P42-F091A			318.5	（10．3）	STS42								
		＊19			406.4	$\square *{ }^{10}(9.5)$	SM41C								
			1． $18{ }^{* 4}$	70	267.4	（9．3）	STPT38				変更なし＊20				
		熱交換器（A）			216.3	（8．2）	STPT38								
		原子炉冷却材浄化系非再生熱交換器（A）連絡管	1． $18{ }^{* 4}$	85	216.3	（8．2）	STPT38				変更なし＊20				
				85	216.3	（8．2）	STPT38*22 STPT370								
		原子炬冷却材浄化系非再生			267.4	（9．3）	STPT38								
\bigcirc		熱交換器（A）	1． 18 ＊4		355.6	（11．1）	STPT38				変更なし＊20				
	原	$\underset{\text { P42-F092A }}{\sim}$		70	355.6	${ }^{* 10}(11.1)$	SM41C	原							
（6）	補 桃				406.4	＊10 (9.5)	SM41C	神 機							
N	$\begin{aligned} & \text { 喻 } \\ & \text { 却 } \\ & \text { 水 } \end{aligned}$	原子炉冷却材浄化系非再生			267.4	（9．3）	$\begin{aligned} & \hline \text { STPT38*22 } \\ & \text { STPT370 } \end{aligned}$								
	系	熱交換器（A）入口配管分岐点 床ドレン・化学廃液蒸発浱縮装置復水器	1． 18 ＊4	70	165.2	（7．1）	STPT38	系			変更なし＊20				
					165.2	（7．1）	STPT38								
		縮装置復水器 ～原子炬冷却材浄化系非再生熱交換器（A）出口配管合流点	1． 18 ＊4	70	267.4	（9．3）	STPT38*22 STPT370				変更なし＊20				
		P42-F092A 原子炉補機冷却水ポンプ （A），（C）入口配管合流点 3	1． 18 ＊4	70	406.4	$\square{ }^{* 10}(9.5)$	SM41C				変更なし				

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 }{ }^{* * 2} \\ (\mathrm{~mm}) \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 } \left.\quad \text { (}{ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$	材 料
	原子炉補機冷却水サージタンク～${ }^{\text {＊}}$ ）原子炉補機冷却水サージタンク（B）出口配管合流点	－					原子炉補機冷却水サージタンク～${ }^{* 5}$（原子炉補機冷却水サージタンク（B）出口配管合流点		$1.18{ }^{* 6}$	$70{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 318.5 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (10.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$
		1． 18 ＊${ }^{\text {d }}$	70	318.5	（10．3）	$\begin{gathered} \hline \text { STS42 } \\ \text { STS410 } \\ \hline \end{gathered}$			変更なし				
		－							$1.18{ }^{* 6}$	$\begin{array}{ll} & * 6 \\ 70 & \\ \hline \end{array}$	$\begin{gathered} { }^{* 6, ~ * 7} \\ 318.5 \end{gathered}$	$\begin{array}{\|} \hline * 10(10.3) \\ \hline \end{array}$	$\begin{aligned} & { }^{* 6, * 7} \\ & \text { SM41C } \\ & \hline \end{aligned}$
	原子炉補機冷却水サージタ ンク（B）出口配管合流点原子炉補機冷却水ポンプ（D）	1． 18 ＊4	70	609.6 609.6	$\square{ }_{(17.5)}^{* 10}$ ${ }^{* 10}(9.5)$	SM41C SM41C	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 水 } \end{aligned}$	変更なし	変更なし				
		－							＊6	＊6	$\begin{aligned} & * 6, * 7, * 8 \\ & 609.6 \end{aligned}$		＊6，＊7，＊8 SM41C
							1.18		70	609.6 457.2	$\begin{aligned} & (9.5) \\ & (9.5) \end{aligned}$	$* 6, * 7$ SM41C	
		1． 18 ＊4	70	457.2	＊${ }^{10}(9.5)$	SM41C			変更なし				
		－								$70{ }^{* 6}$	$\begin{aligned} & * 6, \quad * 7, \quad * 8 \\ & 457.2 \end{aligned}$	$* 6, * 7, * 8$ \square （9．5）	$* 6, * 7, * 8$ SM41C
	＊25	1．18＊4	70	457.2	＊${ }^{10}(9.5)$	SM41C		変更なし	変更なし				
	原子炉補機椧却水ポンプ（B）入口配管分岐点 原子炉補機泠却水ポンプ（B）	－							1． 18	$7{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 457.2 \end{aligned}$	＊6，＊7，＊8 \square （9．5）	$* 6, * 7, * 8$ SM41C
	原子炉補機泠却水ポンプ （B），（D） 原子炉補機冷却水系熱交換器（B），（D） （次頁へ続く）	－						変更なし	$1.18{ }^{* 6}$	$7{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 406.4 \\ & \hline \end{aligned}$	$\begin{gathered} * 6, * 7, * 8 \\ \hline(9.5) \end{gathered}$	$* 6, * 7, * 8$ SM41C
		1． $18{ }^{* 4}$	70	406.4	＊${ }^{10}$（9．5）	SM41C			変更なし				
				406.4	＊${ }^{10}$（12．7）	SM41C							
				609.6	＊${ }^{10}$（17．5）	SM41C							
				609.6	＊${ }^{10}(9.5)$	SM41C							
		－									$\begin{aligned} & * 6, * 7, * 8 \\ & 609.6 \end{aligned}$		＊6，＊7，＊8 SM41C
							1． $18{ }^{* 6}$		$7{ }^{* 6}$	$\begin{gathered} { }^{* 6, *_{7}} \\ \text { 609. } 6 \\ \text { 609. } 6 \\ / \end{gathered}$	$\underbrace{(9.5)}_{(9.5)}$$* 6, * 7$ (9)	SM41C	

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用 温。 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
	残留熱除去系熱交換器（B）入口配管合流点 残留熱除去系熱交換器（B）	－						残留熱除去系熱交換器（B）入口配管合流点 残留熱除去系熱交換器（B）	1． 18	$70{ }^{* 6}$		（11．1）$_{\substack{* 6 \\(11.1) \\(8.2)}}$	$\begin{array}{r} * 6 \\ \text { STS410 } \end{array}$
		$1.18{ }^{* 4}$	70	355.6	（11．1）	STS410＊14			変更なし				
		－								$7{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 355.6 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (11.1) \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$
	残留熱除去系熱交換器（B） 残留熱除去系熱交換器（B）出口配管分岐点	－					原子制捕機朎却系	残留熱除去系熱交換器（B） 残留熱除去系熱交換器（B）出口配管分岐点		$70{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 355.6 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (11.1) \end{aligned}$	$\quad * 6, * 7, * 8$ STS42 STS410
		1． 18 ＊${ }^{\text {d }}$	70	355.6	（11．1）	$\begin{aligned} & \hline \text { STS42 }^{* 14} \\ & \text { STS410 } \end{aligned}$			変更なし				
				－					$1.18{ }^{* 6}$	$70{ }^{* 6}$	$\begin{aligned} & { }^{* 6, * 7} \\ & 457.2 \\ & / \\ & 355.6 \end{aligned}$	$\begin{aligned} & { }^{* 6, * 7} \\ & (9.5) \\ & (11.1) \end{aligned}$	$\begin{aligned} & * 6, * 7 \\ & \text { STS410 } \end{aligned}$
		1．18＊4	70	457.2	$]^{* 10}(9.5)$	SM400C＊13			$\underset{* 6, * 7}{\text { 変更なし }}$				
		－							$\text { * } 6$	＊6	$\begin{gathered} * 6, * 7 \\ 457.2 \\ / \\ 457.2 \\ / \\ 267.4 \\ \hline \end{gathered}$		SM400C
										457.2 457． 2 216． 3	（9．5） （9．5） (8.2)	STS410 ${ }^{* 6}$	
		1．18＊4	70	457.2	$\square^{* 10}(9.5)$	SM400C＊13			変更なし				
	残留熱除去系熱交換器（B）出口配管分岐占							残留熱除去系熱交換器（B）出			$\begin{aligned} & * 6, * 7, * 8 \\ & 457.2 \end{aligned}$	＊6，＊7，＊8 （9．5）	＊6，＊7，＊ 8 SM400C
	原子炬補機冷却水サージタ ンク（B）出口配管合流点 （次頁へ続く）			－				原子炉補機泠却水サージタ ンク（B）出口配管合流点 （次頁へ続く）	$\text { 1. } 18$	70 ＊6	${ }_{457.2}^{{ }_{50}}$	$\begin{array}{cc} (9.5) & { }^{* 6} \\ (9.5) & \end{array}$	STS410 ${ }^{* 6}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後}

\hline \& \multicolumn{2}{|r|}{名 称} \& $$
\begin{aligned}
& \text { 最高使用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\
& \hline
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ \& \[
$$
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm})
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& 材 料 \& \multicolumn{2}{|r|}{名 称} \& \[

$$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { 外 } \text { 径*1 }^{1} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 料

\hline \& \multirow[t]{13}{*}{} \& \multirow{6}{*}{| 非常用ディーゼル発電設備 （B）機関付空気冷却器 |
| :--- |
| 非常用ディーゼル発電設備 （B）潤滑油泠却器 |} \& 1．18＊4 \& 70 \& 139.8 \& （6．6） \& STS410＊14 \& \multicolumn{7}{|c|}{変更なし}

\hline \& \& \& \multicolumn{5}{|c|}{\multirow{3}{*}{－}} \& \multirow[t]{12}{*}{} \& \multirow{5}{*}{変更なし} \& \& \& $$
\begin{aligned}
& * 6, * 7, * 8 \\
& 139.8
\end{aligned}
$$ \& (6. 6) \& $\quad * 6, * 7, * 8$

STS42
STS410

\hline \& \& \& \& \& \& \& \& \& \& \& ＊ 6 \& $$
\begin{gathered}
{ }^{* 6, * 7} \\
216.3 \\
\vdots \\
139.8
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& (8.2) \\
& (6.6)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& * 6, * 7 \\
& \text { STS410 }
\end{aligned}
$$
\]

\hline \& \& \& \& \& \& \& \& \& \& 1.18 \& 70 \& ＊6，＊7
216.3
216.3
216.3 \& (8.2)
(8.2)

(8.2) \& $$
\begin{array}{r}
* 6, * 7 \\
\text { STS410 }
\end{array}
$$

\hline \& \& \& 1.18 ＊4 \& 70 \& 216.3 \& （8．2） \& STS410＊14 \& \& \& \multicolumn{5}{|c|}{変更なし}

\hline $$
0
$$ \& \& \& \multicolumn{5}{|c|}{－} \& \& \& \[

1.18{ }^{* 6}

\] \& \[

$$
\begin{array}{ll}
& * 6 \\
70 & \\
\hline
\end{array}
$$

\] \& | $* 6, * 7, * 8$ |
| :--- |
| 216． 3 | \& \[

$$
\begin{aligned}
& * 6, * 7, * 8 \\
& (8.2) \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
* *, * 7, * 8 \\
\text { STS410 } \\
\hline
\end{gathered}
$$
\]

\hline ＝ \& \& \multicolumn{6}{|l|}{\multirow[t]{7}{*}{}} \& \& \multirow[b]{2}{*}{変更なし} \& \multicolumn{5}{|c|}{変更なし}

\hline $$
\begin{aligned}
& 0 \\
& \sim \\
& 0
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \& \[

1.18^{* 6}

\] \& $7{ }^{* 6}$ \& | $* 6, * 7, * 8$ |
| :--- |
| 216． 3 | \& \[

$$
\begin{aligned}
& * 6, * 7, * 8 \\
& (8.2)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& * 6, * 7, * 8 \\
& \text { STS410 }
\end{aligned}
$$
\]

\hline \& \& \& \& \& \& \& \& \& \& \& \& 変更なし \& \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{aligned}
& * 6, * 7, * 8 \\
& 216.3
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& * 6, * 7, * 8 \\
& (8.2)
\end{aligned}
$$
\] \& STS410

\hline \& \& \& \& \& \& \& \& \& 変更なし \& $1.18{ }^{* 6}$ \& $70^{* 6}$ \& ＊6，＊7
216.3
216.3

216.3 \& $$
\begin{gathered}
(8.2) \\
\prime \\
(8.2) \\
\prime \\
(8.2)
\end{gathered}
$$ \& STS410

\hline \& \& \& \& \& \& \& \& \& \multicolumn{6}{|c|}{変更なし}

\hline \& \& \& \& \& \& \& \& \& | 燃料プール泠却浄化系熱交換器（B）入口配管合流点 |
| :--- |
| 燃料プール泠却浄化系熱交換器（B） （次頁へ続く） | \& $1.18{ }^{* 6}$ \& $70^{* 6}$ \& \& | （9．3） |
| :---: |
| (9.3) |
| $=$ | \& STS410 ${ }^{* 6}$

\hline
\end{tabular}

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	\qquad	$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	
	（前頁からの続き） 燃料プール冷却浄化系熱交換器（B）入口配管合流点 燃料プール冷却浄化系熱交換器（B）	1． $18{ }^{* 4}$	70	267.4	（9．3）	STS410＊14	（前頁からの続き） 燃料プール泠却浄化系熱交換器（B）入口配管合流点 燃料プール泠却浄化系熱交換器（B）		変更なし					
		－							$1.18{ }^{* 6}$	$7{ }^{* 6}$	${ }^{* 6, ~ * 7}$ 267.4 $/$ - 165.2	${ }_{(7.1)}^{(9.3)}$	STS410	
		1． 18 ＊4	70	165.2	（7．1）	STS410＊14			変更なし					
		－							$1.18{ }^{* 6}$	70	$\begin{aligned} & * 6, * 7, * 8 \\ & 165.2 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (7,1) \\ & \hline \end{aligned}$	$\begin{aligned} & * 66, * 7, * 8 \\ & \text { STS410 } \end{aligned}$	
				－			$\begin{aligned} & \text { 原 } \\ & \text { 标 } \\ & \text { 補 } \\ & \text { 機 } \\ & \text { 却 } \\ & \text { 水 } \\ & \text { 采 } \end{aligned}$	燃料プール冷却浄化系熱交換器（B） 原子炉補機泠却水ポンプ （B），（D）入口配管合流点 1	$1.18{ }^{* 6}$	$7{ }^{*}{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 165.2 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (7.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$	
		1． 18 ＊4	70	165.2	（7．1）	STS410＊14			変更なし					
		－							1． 18	$70^{* 6}$		$\begin{aligned} & { }^{* 6, * 7} \\ & (9.3) \\ & / \\ & - \\ & (7.1) \end{aligned}$	STS410	
	燃料プール泠却浄化系熱交									$\begin{aligned} & * 6, * 7, * 8 \\ & 267.4 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (9,3) \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$		
	原子炉補機泠却水ポンプ	1． $18{ }^{* 4}$	70	267.4	（9．3）	$\begin{aligned} & \hline \text { STS42*14 } \\ & \text { STS410 } \end{aligned}$			変更なし					
		－							1．18 ${ }^{* 6}$	$70{ }^{* 6}$	＊6 267． 4 267.4 267.4	$\begin{array}{cc} & { }^{* 6} \\ (9.3) & \\ (9.3) & \\ \vdots \\ (9.3) & \end{array}$	STS410 ${ }^{* 6}$	
	原子炉補機冷却水系熱交換器（B），（D）出口配管分岐点1P42-F091B	1． $18{ }^{* 4}$	70	406.4	＊${ }^{10}$（12．7）	SM41C			変更なし					
				406.4	＊${ }^{10}$（9．5）	SM41C								
				318.5	（10．3）	STS42								

3-8-1-23

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array} \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{l} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \left.\text { (}{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	厚 $\underset{(\mathrm{mm})}{\text { さ＊2 }}$	材 料
原焳哖㭪機洽却海水系	原子炬補機冷却海水ポンプ （A）出口配管分岐点 原子炬補機冷却海水ポンプ （C）出口配管合流点	0． $78 * 4$	50	508.0	$\square(9.5)$	SM400C	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 幾 } \\ & \text { 却 } \\ & \text { 海 } \\ & \text { 水 } \\ & \text { 采 } \end{aligned}$	変更なし	変更なし				
	原子炉補機冷却海水ポンプ （B） 原子炉補機冷却海水系スト レーナ (B)	0． $78 * 4$	50	508.0	$\downarrow^{* 10}(9.5)$	$\text { SM41C } * 13$ SM400C		変更なし	変更なし				
		－							$0.78{ }^{* 6}$	$50{ }^{* 6}$	$\begin{gathered} { }^{* 6, * 7} \\ 508.0 \\ 508.0 \\ 508.0 \\ \hline \end{gathered}$		SM400C
										$\begin{aligned} & * 6, * 7, * 8 \\ & 508.0 \end{aligned}$	$\mathrm{F}^{* 6, * 7, * 8}$	$\quad * 6, * 7, * 8$ SM41C SM400C	
	原子炉補機冷却海水系スト レーナ（B） 原子炉補機冷却水系熱交換器（B）	$0.78 * 4$	50	508.0	$\square^{* 10}(9.5)$	SM41C		変更なし	変更なし				
		－							$0.78{ }^{* 6}$	$50{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 508.0 \end{aligned}$	$\underbrace{* 6, ~ 97, ~ 5)}$	$* 6, * 7, * 8$ SM41C
	原子炉補機冷却水系熱交換器（B） 放水槽	－						変更なし	$0.78{ }^{* 6}$	$50{ }^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 508.0 \end{aligned}$	（9．5）$* 6, * 7, * 8$	$\quad * 6, * 7, * 8$ SM41C SM400C
		$0.78 * 4$	50	508.0	${ }^{* 10}(9.5)$	$\begin{aligned} & \text { SM41C *13 } \\ & \text { SM400C } \end{aligned}$			変更なし				
	原子炉補機冷却海水ポンプ （D） 原子炉補機冷却海水系スト レーナ(D)	$0.78 * 4$	50	508.0	$\boldsymbol{\sim}^{* 10}(9.5)$	SM41C＊${ }^{13}$ SM400C		変更なし	変更なし				
		－							$0.78{ }^{* 6}$	$50{ }^{* 6}$	＊6，＊7 508.0 508.0 508.0		＊ $6, * 7$ SM400C
										$\begin{aligned} & * 6, * 7, * 8 \\ & 508.0 \end{aligned}$	$\underbrace{* 6, * 7, * 8}$	$\begin{aligned} & * 6, * 7, * 8 \\ & \text { SM41C } \\ & \text { SM400C } \end{aligned}$	

変更 前							変更 後							
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & (\mathrm{MPPa}) \end{aligned}$		$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|c\|} \hline \text { 厚 } \\ \\ (\mathrm{mm}) \end{array}$	材 料		名	称	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 压 } \\ \text { (MPa) } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array}$	$\text { 外 }_{\substack{\text { 径* }}}^{(\mathrm{mm})}$ (mm)	$\begin{gathered} \text { 厚 }{ }_{(\mathrm{mm})}^{\text {さ2 }} \\ \hline \end{gathered}$	材 料
	原子炬補機冾却海水系スト ${ }^{*}$	0.78 ＊4	50	508.0	$\boldsymbol{\square}^{* 10(9.5)}$	SM41C		変更なし		変更なし				
	原子炉補機冷却水系熱交換器（D）			－						$0.78{ }^{* 6}$	$50{ }^{* 6}$	$\begin{aligned} & { }^{* 6, * 7, ~ * 8} \\ & 508.0 \end{aligned}$	${ }^{* 9.5)}$	SM41C
	原子炉補機冷却水系熱交換			－						$0.78{ }^{* 6}$	$50^{* 6}$	$\begin{gathered} * 6, * 7, * 8 \\ 508.0 \end{gathered}$	$\underbrace{* 6, * 7, * 8}_{(9.5)}$	
	放水槽	$0.78 * 4$	50	508.0	＊＊（9．5）	SM41C＊13 SM400C						変更なし		
	原子炉補機冷却海水ポンプ （B）出口配管分岐点 原子炉補機冷却海水ポンプ （D）出口配管合流点	0.78 ＊4	50	508.0	$\square(9.5)$	SM400C					変更なし			

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記
5 ：S I 単位に換算した炉補機却却備（原子炉補機代替冷却水系）と兼用。
＊6：重大事故等クラス2配管に使用する場合の記載事項。
＊ 7 ：本設備は既存の設備である。
＊ 8 ：エルボを示す。
＊9：記載の適正化を行う。既工事計画書には「残留熱除去系熱交換器（A）から原子炉補機冷却水ポンプ（A）•（C）まで（原子炉補機冷却水ポンプ（A）•（C）入口配管）」と記載。
$* 10$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－7－3管の強度計算書」による。
＊11：記載の適正化を行う。既工事計画書には「原子炉補機冷却水ポンプ（A）•（C）から原子炉補機冷却水系熱交換器（A）•（C）まで」と記載。
＊12：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器（A）•（C）から残留熱除去系熱交換器（A）まで（原子炉補機冷却水系熱交換器（A）•（C）出口配管）」と記載。
＊13：記載の適正化を行う。既工事計画書には「SM41C」と記載。
＊14：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊ 15 ：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器（A）•（C）出口配管から非常用ディーゼル発電設備（A）機関付空気泠却器まで」と記載。
＊16：記載の適正化を行う。既工事計画書には「非常用ディーゼル発電設備（A）清水冷却器から原子炉補機冷却水ポンプ（A）•（C）入口配管まで」と記載。
＊17：記載の適正化を行う。既工事計画書には「原子炬補機冷却水系熱交換器（A）•（C）出口配管から燃料プール泠却浄化系熱交換器（A）まで」と記載。
＊18：記載の適正化を行う。既工事計画書には「燃料プール泠却浄化系熱交換器（A）から原子炉補機冷却水ポンプ（A）•（C）入口配管まで」と記載。
＊19：記載の適正化を行う。既工事計画書には「原子炬補機冷却水系熱交換器（A）•（C）出口配管から原子炉冷却材浄化系非再生熱交換器（A）まで（原子炉冷却材浄化系非再生熱交換器（A）入口配管）」と記載
$* 20$ ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊21：記載の適正化を行う。既工事計画書には「原子炉泠却材浄化系非再生熱交換器（A）から原子炉補機泠却水ポンプ（A）•（C）入口配管まで（原子炉泠却材浄化系非再生熱交換器（A）出口配管）」と記載。
＊22：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊23：記載の適正化を行う。既工事計画書には「原子炉冷却材浄化系非再生熱交換器（A）入口配管から床ドレン・化学廃液蒸発濃縮装置復水器まで（床ドレン・化学廃液蒸発濃縮装置復水器入口配管）」と記載。
棵囲みの内容は商業機密の観点から公開できません。
＊24：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液蒸発濃縮装置復水器から原子炉冷却材浄化系非再生熱交換器（A）出口配管まで（床ドレン・化学廃液蒸発濃縮装置復水器出口配管）」と記載。 ＊25：記載の適正化を行う。既工事計画書には「残留熱除去采熱交換器（B）から原子炉補機冷却水ポンプ（B）•（D）まで（原子炉補機冷却水ポンプ（B）•（D）入口配管）」と記載。
＊ 26 ：記載の適正化を行う。既工事計画書には「原子炉補機冷却水ポンプ（B）•（D）から原子炉補機冷却水系熱交換器（B）•（D）まで」と記載。
＊27：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器（B）•（D）から残留熱除去系熱交換器（B）まで（原子炉補機冷却水系熱交換器（B）•（D）出口配管）」と記載。
＊ 28 ：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器（B）•（D）出口配管から非常用ディーゼル発電設備（B）機関付空気冷却器まで」と記載。
＊29：記載の適正化を行う。既工事計画書には「非常用ディーゼル発電設備（B）清水泠却器から原子炉補機冷却水ポンプ（B）•（D）入口配管まで」と記載。
＊30：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器（B）•（D）出口配管から燃料プール冷却浄化系熱交換器（B）まで」と記載。
＊31：記載の適正化を行う。既工事計画書には「燃料プール泠却浄化系熱交換器（B）から原子炉補機冷却水ポンプ（B）•（D）入口配管まで」と記載。
＊32：記載の適正化を行う。既工事計画書には「原子灲補機冷却水系熱交換器（B）•（D）出口配管から原子炉冷却材浄化系非再生熱交換器（B）まで（原子灲冷却材浄化系非再生熱交換器（B）入口配管）」と記載
＊33：記載の適正化を行う。既工事計画書には「原子炬泠却材浄化系非再生熱交換器（B）から原子炬補機冷却水ポンプ（B）•（D）入口配管まで（原子灲冷却材浄化系非再生熱交換器（B）出口配管）」と記載。
＊34：記載の適正化を行う。既工事計画書には「原子炉冷却材浄化系非再生熱交換器（B）入口配管から排ガス復水器まで」と記載。
$* 35$ ：記載の適正化を行う。既工事計画書には「排ガス復水器から原子炉冷却材浄化系非再生熱交換器（B）出口配管まで」と記載。
＊36：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液蒸発濃縮装置復水器入口配管から固化系復水器まで」と記載。
＊37：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外となるものである。
＊38：記載の適正化を行う。既工事計画書には「固化系復水器から床ドレン・化学廃液蒸発濃縮装置復水器出口配管まで」と記載。
＊39：記載の適正化を行う。既工事計画書には「原子炉補機冷却海水ポンプから原子炉補機冷却海水系ストレーナまで」と記載。
＊ 40 ：記載の適正化を行う。既工事計画書には「原子炉補機冷却海水系ストレーナから原子炉補機冷却水系熱交換器まで」と記載。
＊41：記載の適正化を行う。既工事計画書には「原子炉補機冷却水系熱交換器から放水槽へ」と記載。

3．8．2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）
（2）熱交換器（常設）

（前頁からの続き）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3：S I 単位に換算したものである。
＊4 ：記載の適正化を行う。既工事計画書には「水室内径」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「水室胴部厚さ」と記載。
＊6 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年6月19日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「IV－2－3－1－1 高圧炉心ス プレイ補機冷却水系熱交換器の強度計算書」による。
＊ 7 ：記載の適正化を行う。既工事計画書には「水室鏡板厚さ」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「水室平板厚さ」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「胴体内径」と記載。
＊10：記載の適正化を行う。既工事計画書には「胴体厚さ」と記載。
（3）ポンプ（常設）

注記＊1 ：記載の適正化を行ら。既工事計画書には「定格容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 3 年 6 月 19 日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第 $5-1-3$ 図 高圧炉心スプレイ補機冷却水ポンプ構造図」による。

注記 $* 1$ ：記載の適正化を行ら。既工事計画書には「定格容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：コラム材（板材）の場合の値を示す。
＊6：コラム材（管材）の場合の値を示す。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 3 年 6 月 19 日付け 3 資庁第 1003 号にて認可された工事計画の添付書類「第 $5-1-4$ 図 高圧灲心スプレイ補機冷却海水ポンプ構造図」による。
（5）容器（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
（6）万過装置（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（9）主配管（常設）

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊4：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊6：重大事故等クラス2配管に使用する場合の記載事項。
＊ 7 ：本設備は既存の設備である。
＊ 8 ：エルボを示す。
＊9 ：差込継手の差込部内径及び最小厚さ。
＊10：記載の適正化を行う。既工事計画書には「高圧炉心スプレイ補機泠却海水ポンプから高圧灲心スプレイ補機冷却水系熱交換器まで」と記載。

3．8．3 原子炉補機代替冷却水系
（2）熱交換器（可搬型）

（次頁へ続く）
（前頁からの続き）

					変 更 前	変 更 後
取	付	箇	所	－	－	保管場所 ： - 第 1 保管エリア 屋外 0．P．約 62 m - 第3保管エリア 屋外 0．P．約 14.8 m - 第 4 保管エリア 屋外 O．P．約 62 m 予備を含めた 3 台を上記 3 箇所のらち第 1 保管エリアに 1 台，第 3 保管エリ アに1台及び第4保管エリアに1台保管する。 取付箇所： $\left[\begin{array}{lll}- \text { 屋外 } 0 . \text { P．約 } 14.8 \mathrm{~m} & \text { 原子炉建屋北側 } \\ \text { 付近 } \\ - \text { 屋外 } 0 . \text { P．約 } 14.8 \mathrm{~m} & \text { 原子炉建屋西側 } \\ \text { 付近 }\end{array}\right]$

注記 $* 1$ ：車両 1 台あたりの容量を示す。
＊2 ：公称値を示す。
＊ 3 ：重大事故等時における使用時の値。
＊4：車両1台あたりの伝熱面積を示す。
＊ 5 ：車両 1 台につき 3 個設置する。
（3）ポンプ（可搬型）

注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：公称値を示す。

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプI）＊
2．核燃料物質の取扱施設及 2.4 使用済燃料貯蔵槽冷却 2．4．2 燃料プール代替注 （2）ポンプ（可搬型） に記載する。		

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，原子炉補機冷却設備（原子炉補機代替冷却水系）として本工事計画で兼用とする。
（5）容器（常設）

	変更前	
名 称	-	変更後
3．原子炉冷却系統施設		
3.8 原子炉補機冷却水サージ冷却設備		
3． 8.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） （5）容器（常設）		
に記載する。		

注記 $\boldsymbol{*}^{2}$ ：本設備は，既存の原子炉補機冷却設備（原子炉補機冷却水系（原子炉補機冷却海水系を含む。））であり，原子炉補機冷却設備（原子炉補機代替冷却水系）として本工事計画で兼用とする。
（6）万過装置（可搬型）

			変更前	変 更 後
名		称		原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）
種	類	－		サイクロン型
容	量	$\mathrm{m}^{3} / \mathrm{h} /$ 個		】以上（ $1200{ }^{*}$ ）
最	高 使 用 圧 力＊2	MPa		1.20
最	高 使 用 温 度＊2	${ }^{\circ} \mathrm{C}$		50
主	胴 外 径	mm		＊1
	胴 板 厚 さ	mm		$\square(\square * 1)$
要	底 板 厚 さ	mm		（ \square＊1）
	ふ た 板 厚 さ	mm		$\square\left(\square{ }^{* 1}\right)$
	高 さ	mm		＊ 1
寸	管台外径（海水入口）	mm		＊1
	管台外径（海水出口）	mm		$\square * 1$
法	胴フラン シ 厚 さ	mm		$\square(\square * 1)$
材	胴 板	－		
	底 板	－		，
料	ふ た 板	－		\square
個	数	－		2 （予備 1）
取	付 箇 所	－		原子炉補機代替冷却水系熱交換器 ユニット

注記 $~$ 1 ：公称値を示す。
$* 2$ ：重大事故等時における使用時の値。
（9）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：エルボを示す
＊5 ：本設備は，既存の原子炉補機冷却設備（原子炉補機冷却水系（原子炉補機冷却海水系を含む。））であり，原子炉補機冷却設備（原子炉補機代替冷却水系）として本工事計画で兼用とする。
（9）主配管（可搬型）

変 更 前								変 更 後								
名称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	最高使用 温 度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 （mm）	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	個数	取付箇所		名 称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { (} \left.{ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	外径 （mm）	$\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$	材料	個数	取付箇所
原 子 炉 補 機 替 洽 却 永 系			－					$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 機 } \\ & \text { 替 } \\ & \text { 泠 } \\ & \text { 卦 } \\ & \text { 奚 } \end{aligned}$	$\begin{aligned} & \text { 耐熱ホース } \\ & \text { (201A: 5m, 10m) } \end{aligned}$	1． $3^{* 2}$	70＊2	201A＊3	－＊4	$\begin{aligned} & \text { ポリエス } \\ & \text { テル, ポ } \\ & \text { リウレタ } \\ & \text { ン } \end{aligned}$	$\begin{aligned} & \quad{ }^{* 9} \\ & \left({ }^{(\text {予備2) }}\right. \end{aligned}$	保管場所： - 第1保管エリア 屋外 O．P．約 62 m - 第3保管エリア 屋外 O．P．約14．8m - 第 4 保管エリア 屋外 O．P．約 62 m 予備を含めた 26 本を上記 3 箇所のらち第1保管エリアに12本，第3保管エリア に12本及び第4保管エリアに2本保管す る。 取付箇所： $\left(\begin{array}{lll}\bullet \text { 屋外 } & 0 . P \text { P．約 } 14.8 \mathrm{~m} & \text { 除熱用ヘッダ } \\ \underset{\text { 屋外 }}{\text { O．P．}} & \text { 約 } 14.8 \mathrm{~m} & \text { 原子炉補機代 }\end{array}\right)$替冷却水系熱交換器ユニット接続口（残留熱除去系供給）（北） －屋外 O．P．約 14.8 m 原子炉補機代替冷却水系熱交換器ユニット接続口（残留熱除去系戻り）（北）～屋外 0. P．約 14.8 m 除熱用ヘッダ －屋外 O．P．約 14.8 m 除熱用ヘッダ屋外 O．P．約 14.8 m 原子炬補機代替冷却水系熱交換器ユニット接続口（燃料プール泠却浄化系供給）（北） －屋外 O．P．約 14.8 m 原子炬補機代替冷却水系熱交換器ユニット接続口（燃料プール泠却浄化系戻 り）（北）～屋外 0．P．約 14.8 m 除熱用ヘッダ （8本 ${ }^{* 10}$ ）

注記 $* 1$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，原子炉補機冷却設備（原子炉補機代替冷却水系）として本工事計画で兼用とする。
＊2 ：重大事故等時における使用時の値。
 できるものを使用する。
＊5 ：必要本数 8 本（ $2 \mathrm{~m}: 2$ 本， $5 \mathrm{~m}: 2$ 本， $10 \mathrm{~m}: 4$ 本）を 2 セットに予備各 1 本の数量を示す。
＊6：最長ルートである「原子炉補機代替冷却水系熱交換器ユニット～除熱用ヘッダ及び除熱用ヘッダ～原子炉補機代替冷却水系熱交換器ユニット」（原子炉建屋西側付近に設置した場合）に敷設した場合（2m：2本， $5 \mathrm{~m}: ~ 2$ 本，10m：4本）の数量を示す。
＊ 7 ：公称値を示す。
＊8 ：必要台数 1 個を 2 セットに予備 1 個を示す。
＊9：必要本数 12 本（ $5 \mathrm{~m}: 4$ 本， $10 \mathrm{~m}: 8$ 本）を 2 セットに予備各 1 本の数量を示す。
 は除熱用ヘッダ～原子炉補機代替冷却水系熱交換器ユニット接続口（燃料プール泠却浄化系供給）（北）及び原子炉補機代替冷却水系熱交換器ユニット接続口（燃料プール椧却浄化系戻り）（北）～除熱用ヘッダ に敷設した場合（ $10 \mathrm{~m}: 8$ 本）の数量を示す。
3.9 原子炉冷却材浄化設備

3．9．1 原子炉冷却材浄化系
（5）主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F002」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「200」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「200」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
（6）主配管

	変 更 前							変 更 後						
		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
		原子炉冷却材浄化系ろ過脱塩器 原子炉冷却材浄化系再生熱交換器	10． 20 ＊4	66	139.8 216.3	（12．7） （18．2）	STS42 STS42				変更なし			
		原子炉冷却材浄化系再生熱交換器連絡管（胴側）	10.20 ＊	302	216.3	（18．2）	STS42				変更なし			
		原子炉冷却材浄化系再生熱交換器 G31-F022	10． 20 ＊4	302	216.3	（18．2）	$\begin{array}{cl} & { }^{* 5} \\ \text { STS42 } & \\ \text { STS410 } & \end{array}$				変更なし			
					216.3	（18．2）	STS42							
$\stackrel{\square}{2}$					$\begin{gathered} 216.3 \\ / \\ 216.3 \\ / \\ - \end{gathered}$	$\begin{gathered} (18.2) \\ / \\ (18.2) \\ / \\ - \end{gathered}$	STS42							
（a）		＊9			216.3	$(18.2)^{* 6}$	$\text { STS42 }{ }^{* 6}$	原						
$\stackrel{\sim}{\circ}$	$\begin{aligned} & \text { 李 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { 浄 } \end{aligned}$	G31-F022 高圧代替注水系注入配管合流点	8． 62 ＊ 4	302	$\begin{gathered} 216.3 \\ / \substack{\text { 216. } \\ / \\ 216.3} \\ \hline \end{gathered}$	$\begin{gathered} (18.2) \\ \prime \\ (18.2) \\ / \\ (18.2) \end{gathered}$	STS42	子 炉 泠 却 材 浄 化			変更なし			
	系				$\begin{gathered} 216.3 \\ / \\ 165.2 \end{gathered}$	$\begin{gathered} (18.2) \\ \prime \\ (14.3) \end{gathered}$	STS42	系						
					165.2	（14．3）	STS410＊5							
					$165.2 \text { * }$	$(14.3){ }^{* 6}$	$\text { STS410*5 }{ }^{* 6}$							
												165.2	（14．3）	SFVC2B
												165.2	（14．3）	STS410
		高圧代替注水系注入配管合流点 ～原子炬冷却材浄化系A系注入			－				高圧代替注水系注入配管合流点 ～ 原子悺冷却材浄化系A采注	8． 62	302	$\begin{gathered} 165.2 \\ / \\ 165.2 \\ / 165.2 \end{gathered}$	$\begin{gathered} (14.3) \\ (14.3) \\ \vdots \\ (14.3) \end{gathered}$	STS410
					165.2	（14．3）	STS410＊5		入配管合流点					
			8． 62 ＊ 4	302	$165.2^{* 6}$	$(14.3)^{* 6}$	STS410＊5 ${ }^{* 6}$					変更なし		

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
										変更なし				
子 炉 泠 却 材 浄 华 系									変更なし					

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「原子炉圧力容器から原子炉冷却材浄化系再生熱交換器入口配管まで」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊6：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－1－2－4－1 管の基本板厚計算書」による。
＊ 8 ：記載の適正化を行う。既工事計画書には「原子炉再循環系から原子炉冷却材浄化系再生熱交換器まで（原子炉冷却材浄化系再生熱交換器入口配管）」と記載。
＊9：記載の適正化を行う。既工事計画書には「原子炉冷却材浄化系再生熱交換器及び原子炉隔離時冷却系から復水給水系まで」と記載。
＊ 10 ：非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊11：非常用炉心冷却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
3.10 原子炉格納容器内の原子灲冷却材の漏えいを監視する装置

変 更 前							変 更 後																	
名 称	種 類	計 測 範 囲	取 付	箇 所	個	数	名	称	種	類	計	測	範	囲	取 付	箇	所	個 数						
	容量式流量検出器	$0 \sim 5 \mathrm{l} / \mathrm{min}$	$\begin{gathered} \text { 系 } \\ \text { (ライレン統 } \end{gathered} \text { 名 }$	ドライウェル泠却系	＊3		変更なし								変更なし			変更なし						
ドライウェル 送風機泠却			設 置 床	原子炉 格納容器内 0. P．-0.80 m																				
コイルドレン流量			－				$\begin{array}{llll}\text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 }\end{array}$	－																
					溢水防護上の配慮 が必要な高さ	－																		
	超音波式 水位 検出器	$0 \sim 1900 \mathrm{~mm}$	$\begin{array}{ccc} \hline \text { 系 } & \text { 統 } & \text { 名 } \\ \text { (ラ イ ン 名 }) \\ \hline \end{array}$	放射性ドレン移送系			＊4		変更なし								変更なし			変更なし				
$\text { ドライウェル }{ }^{* 1,2}$			設 置 床	原子炉 格納容器内 0. P．-8.10 m																				
床ドレンサンプ 水位			－		$\begin{array}{\|l\|ll} \hline \text { 溢 } & \text { 水防護 上 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } \end{array}$	－																		
					溢水防護上の配慮 が必要な高さ	－																		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2：本設備は記載の適正化を行うものであり，手続き対象外である。
＊3 ：対象計器は，T47－FE001。
＊4 ：対象計器は，K11－LE103。
3.11 原子炉冷却系統施設（蒸気タービンを除く。）の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 1．地盤等	第1章 共通項目 1．地盤等 1.1 地盤 設計基準対象施設のうち，地震の発生によって生じるおそれがあるそ の安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，津波防護機能を有する施設（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する設備（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）については，自重や運転時の荷重等に加え， その供用中に大きな影響を及ぼすおそれがある地震動（設置（変更）許可を受けた基準地震動 S s（以下「基準地震動 S s 」という。））による地震力が作用した場合においても，接地圧に対する十分な支持力を有す る地盤に設置する。

	変更前
2.	自然現象
2.1	地震による損傷の防止

2．自然現象
2.1 地震による損傷の防止

2．1．1 耐震設計
（1）耐震設計の基本方針
耐震設計は，以下の項目に従って行う。
a．設計基準対象施設のうち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地震（基準地震動 S s）による加速度によって作用する地震力に対して，その安全機能が損なわれるおそれがない設計とする。

重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）は，基準地震動 S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがないように設計する。
b．設計基準対象施設は，耐震重要度に応じて，S クラス，Bクラ ス又は C クラスに分類し，それぞれに応じた地震力に十分耐え られる設計とする。

重大事故等対処施設については，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。

変更前	変更後
	以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）及び可搬型重大事故等対処設備に分類する。 重大事故等対処施設のうち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力に十分に耐えることができ る設計とする。 常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基準地震動 S s による地震力を適用するものとする。 重大事故等対処施設のうち，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラ スのもの）が設置される重大事故等対処施設は，当該設備が属す る耐震重要度分類のクラスに適用される地震力に十分に耐える ことができる設計とする。 常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩

変更前

c．建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物）の総称とする。

また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水の通水機能を求めら れる土木構造物をいう。
d．S クラスの施設は，基準地震動による地震力に対してその安全機能が保持できる設計とする。

建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計とする。

機器•配管系については，その施設に要求される機能を保持す る設計とし，塑性ひずみが生じる場合であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等につ いては，基準地震動による応答に対してその設備に要求される機能を保持する設計とする。

変更後
和設備（設計基準拡張）が設置される重大事故等対処施設の両方 に属する重大事故等対処施設については，基準地震動 S s による地震力を適用するものとする。

なお，特定重大事故等対処施設に該当する施設は本申請の対象外である。
c．S クラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持できる設計とする。

建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計とする。

機器•配管系については，その施設に要求される機能を保持す る設計とし，塑性ひずみが生じる場合であっても，その量が小さ なレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等につ いては，基準地震動 S s による応答に対してその設備に要求され る機能を保持する設計とする。なお，動的機能が要求される機器 については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持の確認がなされた機能確認済加速度等

変更前	変更後
また，設置（変更）許可を受けた弾性設計用地震動（以下「弾性設計用地震動」という。）による地震力又は静的地震力のいず れか大きい方の地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。	を超えていないことを確認する。 また，弾性設計用地震動S d による地震力又は静的地震力のい ずれか大きい方の地震力に対しておおむね放弾性状態にとどまる範囲で耐えられる設計とする。 建物•構築物については，発生する応力に対して，「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度 を許容限界とする。 機器•配管系については，応答が全体的におおむねね弾性状態に とどまる設計とする。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拚張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，基準地震動S s によ る地震力に対して，重大事故等に対処するために必要な機能が損 なわれるおそれがないように設計する。 建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計とする。機器•配管系に ついては，その施設に要求される機能を保持する設計とし，塑性 ひずみが生じる場合であっても，その量が小さなレベルにとどま って破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動 S s による応答に対して，その設備に要求される機能を保持す る設計とする。なお，動的機能が要求される機器については，当

e．S クラスの施設について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。
f．屋外重要土木構造物は，基準地震動による地震力に対して，構造物全体として変形能力（終局耐力時の変形）について十分な余裕を有するとともに，それぞれの施設及び設備に要求される機能 が保持できる設計とする。

変更後

該機器の構造，動作原理等を考慮した評価を行い，既往の研究等 で機能維持の確認がなされた機能確認済加速度等を超えていな いことを確認する。
d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用す るものとする。

また，基準地震動 S s 及び弾性設計用地震動 S d による地震力 は，水平 2 方向及び鉛直方向について適切に組み合わせて算定 するものとする。

常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s 及び弾性設計用地震動 S d による地震力は水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとする。
e．屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体と して変形能力（終局耐力時の変形）について十分な余裕を有する とともに，それぞれの施設及び設備に要求される機能が保持でき る設計とする。
常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要
g．B クラスの施設は，静的地震力に対しておおむね弾性状態にと どまる範囲で耐えられる設計とする。

また，共振のおそれのある施設については，その影響について の検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動に 2 分の 1 を乗じたものとする。

C クラスの施設は，静的地震力に対しておおむ和弾性状態にと どまる範囲で耐えられる設計とする。

変更後
度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。
f．B クラスの施設は，静的地震力に対しておおむね弾性状態にと どまる範囲で耐えられる設計とする。

また，共振のおそれのある施設については，その影響について の検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動 $\mathrm{S} d$ に 2 分の 1 を乗じたものとする。なお，当該地震動によ る地震力は，水平 2 方向及び鉛直方向について適切に組み合わ せて算定するものとする。

C クラスの施設は，静的地震力に対しておおむね弾性状態にと どまる範囲で耐えられる設計とする。

常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設は，上記に示す，代替する機能 を有する設計基準事故対処設備が属する耐震重要度分類のクラ スに適用される地震力に対して，おおむね弾性状態にとどまる範囲で耐えられる設計とする。

常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設は，上記に示す，当該設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむね弾性状態に とどまる範囲で耐えられる設計とする。
g．耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事

変更前	変更後
（2）耐震重要度分類 a．耐震重要度分類 設計基準対象施設の耐震重要度を以下のとおり分類する。	故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設が， それ以外の発電所内にある施設（資機材等含む。）の波及的影響 によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計とする。 h．可搬型重大事故等対処設備については，地震による周辺斜面の崩壊等の影響を受けないように「5．1．5 環境条件等」に基づく設計とする。 i．緊急時対策所の耐震設計の基本方針については，「（6）緊急時対策所」に示す。 j．耐震重要施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれな いよう，適切な対策を講ずる設計とする。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，液状化，摇 すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがな いよう，適切な対策を講ずる設計とする。 （2）耐震重要度分類及び重大事故等対処施設の設備の分類 a．耐震重要度分類 設計基準対象施設の耐震重要度を以下のとおり分類する。

変更前		変更後
	－津波監視設備 （b）Bクラスの施設 安全機能を有する施設のらち，機能喪失した場合の影響が S クラス施設と比べ小さい施設であり，次の施設を含む。 －原子炉冷却材圧力バウンダリに直接接続されていて，一次冷却材を内蔵しているか又は内蔵し得る施設 －放射性廃棄物を内蔵している施設（ただし，内蔵量が少な い又は貯蔵方式により，その破損により公衆に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）」第 2 条第 2 項第 6号に規定する「周辺監視区域」外における年間の線量限度 に比べ十分小さいものは除く。） －放射性廃棄物以外の放射性物質に関連した施設で，その破損により，公衆及び従事者に過大な放射線被ばくを与える可能性のある施設 - 使用済燃料を泠却するための施設 - 放射性物質の放出を伴うような場合に，その外部放散を抑制するための施設で，S クラスに属さない施設 （c）C クラスの施設 Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設であ る。 上記に基づく耐震重要度分類を第2．1．1表に示す。 なお，同表には当該施設を支持する構造物の支持機能が維持	
（b）B クラスの施設		
安全機能を有する施設のうち，機能喪失した場合の影響がS		
クラス施設と比べ小さい施設であり，次の施設を含む。		
－原子炉冷却材圧力バウンダリに直接接続されていて，一次		
冷却材を内蔵しているか又は内蔵し得る施設		
－放射性廃棄物を内蔵している施設（ただし，内蔵量が少な		
い又は貯蔵方式により，その破損により公衆に与える放射		
線の影響が「実用発電用原子炉の設置，運転等に関する規		
則（昭和 53 年通商産業省令第 77 号）」 第 2 条第 2 項第 6		
号に規定する「周辺監視区域」外における年間の線量限度		
に比べ十分小さいものは除く。）		
－放射性廃棄物以外の放射性物質に関連した施設で，その破		
損により，公衆及び従事者に過大な放射線被ばくを与える		
可能性のある施設		
－使用済燃料を泠却するための施設		
－放射性物質の放出を伴うような場合に，その外部放散を抑		
制するための施設で，S クラスに属さない施設		
（c）C クラスの施設		
S クラスに属する施設及びBクラスに属する施設以外の一般		
産業施設又は公共施設と同等の安全性が要求される施設であ		
る。		
上記に基づく耐震重要度分類を第2．1．1表に示す。		
なお，同表には当該施設を支持する構造物の支持機能が維持		

	変更前	変更後
$\begin{aligned} & \underset{\sim}{\stackrel{\rightharpoonup}{\leftrightarrows}} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$	されることを確認する地震動及び波及的影響を考慮すべき施設に適用する地震動についても併記する。	されることを確認する地震動及び波及的影響を考慮すべき施設に適用する地震動についても併記する。 b．重大事故等対処施設の設備分類 重大事故等対処設備について，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，以下の設備分類に応じて設計する。 （a）常設重大事故防止設備 重大事故等対処設備のうち，重大事故に至るおそれがある事故が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの冷却機能若しくは注水機能が喪失し た場合において，その喪失した機能（重大事故に至るおそれが ある事故に対処するために必要な機能に限る。）を代替するこ とにより重大事故の発生を防止する機能を有する設備であっ て常設のもの イ．常設耐震重要重大事故防止設備 常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの 口．常設耐震重要重大事故防止設備以外の常設重大事故防止設備 常設重大事故防止設備であって，イ．以外のもの （b）常設重大事故緩和設備 重大事故等対処設備のうち，重大事故が発生した場合におい て，当該重大事故の拡大を防止し，又はその影響を緩和するた めの機能を有する設備であって常設のもの

	変更前	変更後
$\xrightarrow{\stackrel{\omega}{\stackrel{1}{\sim}}}$	（a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，更に当該層以上の重量を乗じて算定するものとする。 $\begin{array}{ll} \text { S クラス } & 3.0 \\ \text { B クラス } & 1.5 \\ \text { C クラス } & 1.0 \end{array}$ ここで，地震層せん断力係数 C i は，標準せん断力係数 C 。を 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮 して求められる値とする。 また，必要保有水平耐力の算定においては，地震層せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応じた係数は，S ク ラス，B クラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数C。は1．0以上とする。 S クラスの施設については，水平地震力と鉛直地震力が同時 に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度より算定 するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められ	止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBク ラス又はCクラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラスに適用される静的地震力を，それぞれ適用する。 （a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，更に当該層以上の重量を乗じて算定するものとする。 $\begin{array}{ll} \text { S クラス } & 3.0 \\ \text { B クラス } & 1.5 \\ \text { C クラス } & 1.0 \end{array}$ ここで，地震層せん断力係数 C i は，標準せん断力係数 C 。を 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮 して求められる値とする。 また，必要保有水平耐力の算定においては，地震層せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応じた係数は，S ク ラス，B クラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数C。は1．0以上とする。 S クラスの施設については，水平地震力と鉛直地震力が同時 に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度より算定 するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められ

る規格及び基準を参考に，Cクラスに適用される静的地震力を適用する。
（b）機器•配管系
静的地震力は，上記（a）に示す地震層せん断力係数 C i に施設の耐震重要度分類に応じた係数を乗じたものを水平震度と して，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増 しとした震度より求めるものとする。
S クラスの施設については，水平地震力と鉛直地震力は同時 に不利な方向の組合せで作用するものとする。ただし，鉛直震度は高さ方向に一定とする。
b．動的地震力
設計基準対象施設については，動的地震力は，Sクラスの施設，屋外重要土木構造物及びBクラスの施設のうち共振のおそれのあ るものに適用する。

Sクラスの施設については，基準地震動及び弾性設計用地震動 から定める入力地震動を適用する。

Bクラスの施設のうち共振のおそれのあるものについては，弾性設計用地震動から定める入力地震動の振幅を 2 分の 1 にしたも のによる地震力を適用する。

屋外重要土木構造物については，基準地震動による地震力を適

変更後

る規格及び基準を参考に，C クラスに適用される静的地震力を適用する。
（b）機器•配管系
静的地震力は，上記（a）に示す地震層せん断力係数 C i に施設の耐震重要度分類に応じた係数を乗じたものを水平震度と して，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増 しとした震度より求めるものとする。

S クラスの施設については，水平地震力と鉛直地震力は同時 に不利な方向の組合せで作用するものとする。ただし，鉛直震度は高さ方向に一定とする。

上記（a）及び（b）の標準せん断力係数C 。等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。
b．動的地震力
設計基準対象施設については，動的地震力は，Sクラスの施設，屋外重要土木構造物及びBクラスの施設のうち共振のおそれのあ るものに適用する。

Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動 S dから定める入力地震動を適用する。

Bクラスの施設のうち共振のおそれのあるものについては，弾性設計用地震動 S d から定める入力地震動の振幅を2分の1にし たものによる地震力を適用する。

屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監

	変更前	変更後
$\begin{aligned} & \stackrel{\omega}{\stackrel{1}{\rightharpoonup}} \underset{\stackrel{\rightharpoonup}{\infty}}{1} \end{aligned}$	用する。	視設備並びに浸水防止設備が設置された建物•構築物について は，基準地震動 S s による地震力を適用する。 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s による地震力を適用する。 常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設のらち，Bクラスの施設の機能 を代替する共振のおそれのある施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設のうち，当該設備 が属する耐震重要度分類がBクラスで共振のおそれのある施設に ついては，共振のおそれのあるBクラスの施設に適用する地震力 を適用する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物について は，基準地震動 S s による地震力を適用する。 重大事故等対処施設のうち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設については，適用する地震力に対 して，要求される機能及び構造健全性が維持されることを確認す るため，当該施設の構造を適切にモデル化した上で地震応答解析，加振試験等を実施する。

| 変更前 | |
| :---: | :---: | :---: |
| | 変更後 |

変更前	変更後
選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準に基づき，設備の種類，構造等により適切に選定する とともに，試験等で妥当性を確認した値も用いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンクリート の減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下による。 a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ．～ハ．の状態を考慮 する。	選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準に基づき，設備の種類，構造等により適切に選定する とともに，試験等で妥当性を確認した値も用いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンクリート の減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 また，地盤と屋外重要土木構造物の連成系地震応答解析モデル の減衰定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。 （4）荷重の組合せと許容限界 耐震設計における荷重の組合せと許容限界は以下による。 a．耐震設計上考慮する状態 地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ．～ハ。の状態，重大事故等対処施設については以下のイ．～ニ，の状態を考慮する。

変更前	変更後
似の頻度で発生すると予想される外乱によって発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じるおそれが あるものとして安全設計上想定すべき事象が発生した状態。八。設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態 であって，当該状態が発生した場合には発電用原子炉施設か ら多量の放射性物質が放出するおそれがあるものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 b．荷重の種類 （a）建物•構築物設計基準対象施設については以下のイ。～ニ．の荷重とする。 イ．発電用原子炉のおかれている状態にかかわらず常時作用 している荷重，すなわち固定荷重，積載荷重，土圧，水圧及 び通常の気象条件による荷重 ロ．運転時の状態で施設に作用する荷重	似の頻度で発生すると予想される外乱によって発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じるおそれが あるものとして安全設計上想定すべき事象が発生した状態。 八．設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態 であって，当該状態が発生した場合には発電用原子炉施設か ら多量の放射性物質が放出するおそれがあるものとして安全設計上想定すべき事象が発生した状態。 二。 設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 ホ．重大事故時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又 は重大事故時の状態で，重大事故等対処施設の機能を必要と する状態。 b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ。～ニ．の荷重，重大事故等対処施設については以下のイ。～ホ，の荷重とする。 イ．発電用原子炉のおかれている状態にかかわらず常時作用 している荷重，すなわち固定荷重，積載荷重，土圧，水圧及 び通常の気象条件による荷重 ロ．運転時の状態で施設に作用する荷重

変更前	変更後
八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ただし，運転時の状態及び設計基準事故時の状態での荷重に は，機器•配管系から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等による荷重が含まれるものとする。 （b）機器•配管系 設計基準対象施設については，以下のイ．～ニ．の荷重とす る。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 c．荷重の組合せ 地震と組み合わせる荷重については，以下のとおり設定する。 （a）建物•構築物 イ．S クラスの建物•構築物については，常時作用している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時） の状態で施設に作用する荷重と地震力とを組み合わせる。	八．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ホ。 重大事故等時の状態で施設に作用する荷重 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含 まれるものとし，地震力には，地震時土圧，機器•配管系から の反力，スロッシング等による荷重が含まれるものとする。 （b）機器•配管系 設計基準対象施設については，以下のイ．～ニ．の荷重，重大事故等対処施設については以下のイ．～ホ．の荷重とする。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ホ。 重大事故等時の状態で施設に作用する荷重 c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部からの衝撃に よる損傷の防止」で設定している風及び積雪による荷重を考慮 し，以下のとおり設定する。 （a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのも の）又は常設重大事故緩和設備（設計基準拡張）が設置され

ロ．S クラスの建物•構築物については，常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動による地震力又は静的地震力とを組み合わせる。

変更後

る重大事故等対処施設の建物•構築物については，常時作用 している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用する荷重と地震力とを組み合 わせる。
ロ．S クラスの建物•構築物については，常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のうち長時間その作用が続く荷重と弾性設計用地震動S d による地震力又は静的地震力とを組み合わせる。 ${ }^{* 1, * 2}$
八。常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重 のうち，地震によって引き起こされるおそれがある事象によ つて作用する荷重と地震力とを組み合わせる。重大事故等に よる荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされるおそれが ない事象による荷重として扱う。
二．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事

変更前	変更後
八。Bクラス及びCクラスの建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合わせる。	場合，長時間継続する事象による荷重と基準地震動S s によ る地震力とを組み合わせる。 ホ．B クラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又は C クラスのもの）が設置される重大事故等対処施設の建物•構築物については，常時作用して いる荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合わせる。 ＊1：S クラスの建物•構築物の設計基準事故の状態で施設に作用する荷重については，（b）機器•配管系の考え方 に沿った下記の 2 つの考え方に基づき検討した結果と して後者を踏まえ，施設に作用する荷重のらち長時間そ の作用が続く荷重と弾性設計用地震動S d による地震力又は静的地震力とを組み合わせることとしている。こ の考え方は，JEAG4601における建物•構築物の荷重の組合せの記載とも整合している。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのある事象 によって施設に作用する荷重は，その事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わせて考慮する。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのない事象

変更前	変更後
（b）機器•配管系 イ．S クラスの機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ て引き起こされるおそれのある事象によって施設に作用す る荷重と地震力とを組み合わせる。	であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の超過確率の関係を踏まえ，適切 な地震力と組み合わせる。 ＊2：原子炉格納容器バウンダリを構成する施設については，異常時圧力の最大値と弾性設計用地震動 S d による地震力とを組み合わせる。 （b）機器•配管系（（c）に記載のものを除く。） イ．S クラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのも の）又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ て引き起こされるおそれのある事象によって施設に作用す る荷重と地震力とを組み合わせる。 八。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で作用する

ハ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ て引き起こされるおそれのない事象であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。

変更後

荷重のらち，地震によって引き起こされるおそれがある事象 によって作用する荷重と地震力とを組み合わせる。重大事故等による荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされるおそ れがない事象による荷重として扱う。
ニ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ て引き起こされるおそれのない事象であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。＊3
ホ．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のらち地震によって引き起こされるおそれがな い事象による荷重は，その事故事象の発生確率，継続時間及 び地震動の年超過確率の関係を踏まえ，適切な地震力（基準地震動 S s 又は弾性設計用地震動S dによる地震力）と組み合わせる。この組合せについては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間については対策の

	変更前	
		成立性も考慮した上で設定する。 以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動 S s 又は弾性設計用地震動 S d による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧力バウンダリを構成する設備については， いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動 S d による地震力とを組み合わせ，そ の状態から更に長期的に継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。 原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行うその他の施設を含む。）については，いつたん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S d による地震力とを組み合わせ，その状態から更に長期的に継続する事象による荷重と基準地震動S s による地震力とを組み合わ せる。 なお，格納容器破損モードの評価シナリオのうち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炉注水は実施しない想定として評価して おり，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設） （直流駆動低圧注水系ポンプ）による原子炉注水により炉心損傷の回避が可能であることから荷重条件として考慮しな い。

	変更前	変更後
$\begin{aligned} & \mathscr{\omega} \\ & \stackrel{1}{\psi} \\ & \stackrel{1}{1} \\ & \underset{\sim}{\omega} \end{aligned}$	ニ．B クラス及びCクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。	その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。 へ。Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時 の状態で施設に作用する荷重と，動的地震力又は静的地震力 とを組み合わせる。 ト．炉心内の燃料被覆管の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のうち地震によっ て引き起こされるおそれのある事象によって燃料被覆管に作用する荷重と地震力とを組み合わせる。 ＊3：原子炉格納容器バウンダリを構成する設備については，異常時圧力最大値と弾性設計用地震動 S d による地震力とを組み合わせる。 （c）津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物 イ．津波防護施設及び浸水防止設備が設置された建物•構築物 については，常時作用している荷重及び運転時の状態で施設 に作用する荷重と基準地震動 S s による地震力とを組み合

d．許容限界
各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用いる。
（a）建物•構築物
イ．S クラスの建物•構築物

変更後
わせる。
ロ．浸水防止設備及び津波監視設備については，常時作用して いる荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s による地震力とを組み合わせる。

なお，上記（c）イ．，ロ．については，地震と津波が同時に作用する可能性について検討し，必要に応じて基準地震動S s による地震力と津波による荷重の組合せを考慮する。ま た，津波以外による荷重については，「b．荷重の種類」に準じるものとする。
（d）荷重の組合せ上の留意事項
動的地震力については，水平 2 方向と鉛直方向の地震力と を適切に組み合わせ算定するものとする。
d．許容限界
各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用いる。
（a）建物•構築物（（c）に記載のものを除く。）
イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのも の）又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設の建物•構築物（ 。に記載のものを除く。）
（イ）弾性設計用地震動 S d による地震力又は静的地震力と

変更前	変更後
合せに対する許容限界	の組合せに対する許容限界
「建築基準法」等の安全上適切と認められる規格及び基	「建筑基漼法」等の安全上適切と認められる規格及び基
準による許容応力度を許容限界とする。	準による許容応力度を許容限界と
	ただし，冷却材喪失事故時に作用する荷重との粗
	（原子炉格納容器バウンダリを構成する設備における長
	期的荷重との組合せを除く。）に対しては，下記イ，ロ）に
	示す許容限界を適用する。
（口）基準地震動による地震力との組合せに対する許容限界	（ロ）基準地震動 S s による地震力との組合せに対する許容
（ロ）基準地震動による地震力との組合せに吋する許容限界	限界
構造物全体としての変形能力（終局耐力時の変形）につ	構造物全体としての変形能力（終局耐力時の変形）につ
いて十分な余裕を有し，建物•構築物の終局耐力に対し妥	いて十分な余裕を有し，建物•構築物の終局耐力に対し妥
当な安全余裕を持たせることとする（評価項目はせん断ひ	当な安全余裕を持たせることとする（評価項目はせん断ひ
ずみ，応力等）。	ずみ，応力等）。
なお，終局耐力は，建物•構築物に対する荷重又は応力	なお，終局耐力は，建物•構築物に対する荷重又は応力
を漸次増大していくとき，その変形又はひずみが著しく増	を漸次増大していくとき，その変形又はひずみが著しく増
加するに至る限界の最大耐力とし，既往の実験式等に基づ	加するに至る限界の最大耐力とし，初期剛性の低下の要因
き適切に定めるものとする。	として考えられる平成 23 年（2011年）東北地方太平洋沖
	地震等の地震やコンクリートの乾燥収縮によるひび割れ
	等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力
	に影響を与えないことを確認していることから，既往の実
	験式等に基づき適切に定めるものとする。
ロ．B クラス及びCクラスの建物•構築物（ ，及びト．に記載	ロ．B クラス及びC クラスの建物•構築物（ ，及びト．に記載
のものを除く。）	のものを除く。）並びに常設耐震重要重大事故防止設備以外
	の常設重大事故防止設備又は常設重大事故防止設備（設計基

	変更前	変更後
ω $\stackrel{\sim}{\ominus}$ \sim \sim 0	木。 気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。 へ。 屋外重要土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （ロ）基準地震動による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，許容応力度等，構造部材のせん断についてはせん断耐力，許容応力度 を許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモーメン ト及びせん断耐力，限界せん断ひずみの許容限界に対して は妥当な安全余裕を持たせることとし，それぞれの安全余裕については，各施設の機能要求等を踏まえ設定する。	する設計基準事故対処設備が属する耐震重要度分類を S ク ラスとする。 ホ。 気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。 へ。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （ロ）基準地震動 S s による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，限界ひず み，降伏曲げモーメント又は許容応力度，構造部材のせん断についてはせん断耐力，許容応力度又は限界せん断ひず みを許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモーメン ト及びせん断耐力，限界せん断ひずみの許容限界に対して は妥当な安全余裕を持たせることとし，それぞれの安全余

	変更前	変更後
$\xrightarrow{\omega}$	な変形や破損を生ずることにより制御棒の挿入が阻害され ないものとする。 二．主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで） 主蒸気逃がし安全弁排気管は基準地震動に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動に対してイ。（ロ）に示す許容限界を適用する。	な変形や破損を生ずることにより制御棒の挿入が阻害され ないものとする。 ホ．燃料被覆管 炉心内の燃料被覆管の放射性物質の閉じ込めの機能につ いての許容限界は，以下のとおりとする。 （イ）弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまることとす る。 （ロ）基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさないこととする。 ～。主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで） 主蒸気逃がし安全弁排気管は基準地震動S s に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動S d に対してイ。（ロ）に示す許容限界を適用す る。 （c）津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物 津波防護施設及び浸水防止設備が設置された建物•構築物に ついては，当該施設及び建物•構築物が構造物全体としての変

	変更前	変更後
\oplus $\stackrel{\sim}{\bullet}$ $\stackrel{1}{+}$		ここで，下位クラス施設とは，上位クラス施設以外の発電所内 にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 耐震重要施設に対する波及的影響については，以下に示す（a） （d）の 4 つの事項から検討を行う。 なお，原子力発電所の地震被害情報等から新たに検討すべき事項が抽出された場合には，これを追加する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設に対する波及的影響につ いては，以下に示す（a）～（d）の 4 つの事項について「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に，「安全機能」 を「重大事故等に対処するために必要な機能」に読み替えて適用 する。 （a）設置地盤及び地震応答性状の相違等に起因する不等沈下又 は相対変位による影響 イ．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対して，不等沈下による耐震重要施設の安全機能への影響。

	変更前	丕更
ω		敷地側集水ピットから海への排水経路を構成する北側幹線排水路流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部）及び出口側集水ピット（北側）），南側幹線排水路流末部（敷地側集水ピット（南側），南側排水路（防潮堤横断部）及び出口側集水ピット（南側））については，基準地震動 S s に対し機能維持することにより，排水経路を確保する。また，地震時におい ては，敷地の形状又は仮設ホース等の取り付けにより，各揚水井戸配管出口から敷地側集水ピットまでの排水経路を確保する。 （6）緊急時対策所 緊急時対策所については，基準地震動 S s による地震力に対し て，重大事故等に対処するために必要な機能が損なわれるおそれが ない設計とする。 緊急時対策所を設置する緊急時対策建屋については，耐震構造と し，基準地震動 S s による地震力に対して，遮蔽性能を確保する。 また，緊急時対策所の居住性を確保するため，基準地震動 S s によ る地震力に対して，緊急時対策所の換気設備の性能とあいまって十分な気密性を確保する。 さらに，施設全体の更なる安全性を確保するため，基準地震動S s による地震力との組合せに対して，短期許容応力度以内に収める設計とする。 なお，地震力の算定方法及び荷重の組合せと許容限界について は，「2．1．1（3）地震力の算定方法」及び「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。

変更前	変更後
	2．1．2 地震による周辺斜面の崩壊に対する設計方針 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準扩張）（当該設備が属 する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s による地震力により周辺斜面の崩壊の影響がない ことが碓認された場所に設置する。

第2．1．1 表 耐震重要度分類表（ $1 / 6$ ）

而墀重要度分 類	機能別分類	主要設備＊1		補助設備＊＊${ }^{\text {a }}$		直接交持構造物＊3		閣接文持構造物＊1	
		適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	検拥 地霛動
Sクラス		－原子炉王力容器 －原子炉冷却材圧力バウ ンダリに属する容器•配管・ポンプ・弁	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	－䰝錐弃を閉とするた めに必要な電気計装設備	S	－原子炉圧力容器支持 スカート －機器•配管，電気計装設備等の支持構造物	S	- 原子炉本体の基礎 - 原子极建屋 - 制御建屋	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{So} \end{aligned}$
	（ii）使用済燃料を貯蔵 するための施設	- 使用済然料ブール - 使用済然粯賏蔵ラック	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	－	－	－機器の支持構造物	S	－原子炬建屋	S s
	（iii）原子炬の緊急停止 のために急激に負の反応度を付加するた めの施設及び原子炉 の停止状態を維持す るための施設	構及び制御棒剘動水圧系（スクラム機能に関する部分）	S	- 炉心支持情造物 - 電気計䧇設備 －チャンネルボックス	$\begin{aligned} & \hline \text { S } \\ & \text { S } \\ & \text { S } \end{aligned}$	－機器•配管，電気計装設備等の支持構造物	S	- 原子炉建屋 - 原子炉本体の基礎 - 制御建屋	$\begin{aligned} & \hline \text { Ss } \\ & \text { S s } \\ & \text { S s } \end{aligned}$
	（iv）原子所停止後，炻心加ら崩壊熱を除去す るための施設	 - 高王炉心スブレイ系 - 残留墊除去系（停止時 冷却モード運転に必 要な設備） －椧却水源としてのサプ レッションチェンバ	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	－当該施設の冷却系 （原子炬補機朎却系） - 炬心支持構造物 - 非常用電原及び計装設備（ディーゼル発電機及びその泠却系•補助施設を含む） －当該施設の機能維持 に必要な空調設備	S S S S	－機器•配䇤，電気計装設備等の支持構造物	S	- 原子炬建屋 - 海水ポンプ室 - 原子炉僟器泠却海水 醮管ダクト －制御建屋	$\begin{aligned} & \hline \mathrm{So} \\ & \mathrm{~S} \\ & \mathrm{So} \\ & \\ & \mathrm{~S} \end{aligned}$

$\begin{aligned} & \text { 胹雰踱 } \end{aligned}$	機搘刮分類	主要酶作＊1				直接支持淘造物＊＊		用新支特㛵造物＊＊		$\begin{gathered} \text { 波及的影䈌を } \\ \text { 考慮すべき飭設 } \\ \hline \end{gathered}$	
		適用角进	$\begin{aligned} & \text { 耐 震 } \\ & \text { 俍 } \end{aligned}$	適用筩进	$\begin{aligned} & \text { 耐震 } \\ & \end{aligned}$	適用艉囲	$\begin{aligned} & \substack{\text { inf } \\ \text { Mラス }} \end{aligned}$	適用角誼		適用魹围	
Sクラス			$\begin{gathered} \mathrm{s} \\ \mathrm{~s} \end{gathered}$	装設備	S		S		$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{So} \\ & \mathrm{So} \\ & \mathrm{Ss} \\ & \hline \end{aligned}$
	（ii）使用済燃料を眝蔵 するための施設		s	－	－		s	－原子小事連	Ss		$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$
	（iii）原子炬の緊急停止 のために急激に負の反応度を付加するた めの施設及び原子如 の停止状態を維持す るための施設	構及び制御棒駆動水 	s	- 炬心支持情造物 - 電気誩装設備 －チャンネルボックス	$\begin{aligned} & \hline \mathrm{s} \\ & \mathrm{~s} \end{aligned}$	－機器•配管，電気気 ${ }^{+1}$装設備等の支持構造物	s	- 原子炬建屋 - 原子炉本体の基硭 - 制御建屋	$\begin{aligned} & \hline \mathrm{So} \\ & \mathrm{~S} \\ & \mathrm{So} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{So} \end{aligned}$
	（iv）原子炉停止後，炬心 から崩壊熱を除去す るための施設	 －高原炬むスプレイ系 要な設備） －浍却水源としてのサフ レッションチェンバ	s	－当該施設の冷却系 （原子炉禣機冷却水系（原子炋補幾詥却海水系を含念），高圧炬心スプレイ補機淪却水系（高圧炬心ス プレイ襕機浍却海水系を含むか） 炬心支持構造物 －非常用電源及ひ棓装設備（デイーゼル発電機及びその泠却番•水相助施設を含含を） に必要な空調設備	S S S		s	- 原子炬建屋 - 海水ポンプ室 - 原子炉機器泠却海水配 管ダクト - 軽油タンク室 - 軽油タンク連絡ダクト - 制御建屋	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$	- 海水ポンブ室門型クレーン - 竜巻防護ネット - 原子炉建屋クレーシ －中央制縕室天井 - 耐火潩壁 - タービン建屋 - 補助ボイラー建屋 - 第1号機制御建屋 - 防護設備（防潮堤（鋼管式鈆直壁）	$\begin{aligned} & \text { So } \\ & \text { S s } \end{aligned}$

第2．1．1表 耐震重要度分類表 $(2 / 6)$

耐搌重要度分 類	機能別分類	主要設備＊1		補助設備＊2		直接支持構造物＊3		間接支持構造物＊＊	
		適用笙进	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範囲	检拥地震動
Sクラス		－非常用炻椧却系 1）高圧炉心スブレイ系 2）低圧炕ススプレイ系 3）残留熱除去系（低圧注水モート運転に必要な設備） 4）自動减王系 －椧却水源としてのサプ レッションチェンバ	S	－当該施設の椧却系 （原子炉補機会合却系） －非常用電嫄及已言装設備（ディーゼル発電機及びその椧却系•補助施設を含むを） －中央制御空の遮蔽及 ひ空朋設備 －当詨施設の機龍維持 こ必要な空調設備		－機器•配管，電気計装設備等の支持構造物	S	- 原子炉建屋 - 海水ポンフ室 - 原子炬機器椧却海水配管ダクト －制御建屋	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \\ & \mathrm{Ss} \end{aligned}$
	（vi）原子炬椧規材历力 バウンタリリ破損事故 の際に，压力障壁とな り放射性物質の放散 を直接防ぐための施設	- 原子炉格納容器 - 原子炬格納容器 ゙ウン ダリに属する配管•弁	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	－瀜㒕弁を閉とするた めに必要な電気計装設備	S	－機器•配管，電気計装設備等の支持構造物	S	- 原子炬建屋 - 制啣建屋	$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{So} \end{aligned}$
	（vii）放射性物質の放出 を伴うような事故の際に，その外部放散を抑制するための施設 で上記（vi）以外の施設		S S S S S S		S S S	－機器•配管，電気計装設備等の支持情造物	S	- 原子炉建屋 - 海水ポンプ室 - 原子炬機器椧去海水配管ダクト - 排気筒連絡ダクト - 排気筒基碄 - 制御建屋	$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{So} \\ & \\ & \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{Ss} \end{aligned}$

第2．1．1表 而震重要度分類表（2／6）

$\begin{aligned} & \text { 耐震重要度 } \end{aligned}$	機能刮分類										
		適用莗进	$\begin{aligned} & \text { 耐震 } \\ & \end{aligned}$		$\begin{aligned} & \text { 耐震 } \\ & \text { 隹 } \end{aligned}$	適用莗进	$\begin{aligned} & \text { 耐震 } \\ & \text { クラス } \end{aligned}$	適用筩㳑		適用莗进	$\begin{aligned} & \text { 檢拥拥 } \\ & \text { 地勒鱽 } \end{aligned}$
sクラス			s		s	造物	s	- 原子炬建屋 - 海水ポンブ室 - 原子炬機器泠去烸水配 管ダクト - 軽油タンク室 - 軽油タンク連絡ダクト - 制蓹建屋			$\begin{aligned} & \mathrm{S} \text { S } \\ & \mathrm{So} \\ & \text { S } \\ & \text { S s } \end{aligned}$
	（vi）原子炉洽却林圧力『ウンダリ破損事故 の際に，圧力障壁とな り放射性物質の放散 を直接防ぐための施設		s	装設備	s		s	－原子小建屋	$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$		$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{~S}_{\mathrm{s}} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{So} \end{aligned}$
	（vii）放身性物質の放出 を伴うような事故の祭に，その外部放散を非制するための施設 で上記（vi）以外の施設	－残留熱䋡去系（（格納容 - 原子炬建屋原子小䙺 - 非常用がス处理系及び 排答 原子小所格納容器王力抑 制装置（ベントヘッ ダダウンカマ等） 椧却水源としてのサブ	$\begin{aligned} & \mathrm{s} \\ & \mathrm{~S} \\ & \mathrm{~s} \end{aligned}$	－当該施設の㻅却系 －非常用電源及ひ語装設備（ディーゼル発電機及びその椧却系•補助施設を含むき）当堣旅設の機能維持 に必要な空調設備		物	s				

第2．1．1表 耐震重要度分類表（3／6）

	機能妸分類	主要設備＊1		補助設備＊＊2		直接支持構造物＊${ }^{\text {a }}$		間接支持構造物 ${ }^{* 1}$	
$\underset{\substack{\text { 而震重踱 } \\ \text { 類 }}}{ }$		適用笙囲	$\begin{gathered} \text { 耐 } \\ \text { クラ 震 } \end{gathered}$	適用筺囲	$\begin{aligned} & \text { 耐 震 } \end{aligned}$	適用管囲	$\begin{aligned} & \text { 耐 震 } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 檢拥 } \\ & \text { 地震動 } \end{aligned}$
Sクラス	（viii）その他		S S S		S		S	- 原子小建屋 - 海水ポンプ室 - 原子彷機器椧却烸水配管夕夕卜 - 制钟建屋 - 原子师本体の基硙	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$

$\begin{aligned} & \text { 耐雰重要度 } \\ & \text { 数 } \end{aligned}$	機能別分類	主要設備＊1		補助設供＊2		直接文持偁造物＊${ }^{\text {a }}$		間接支持構造物＊＊		波及的影響を考慮すべき施設 ${ }^{* 5}$	
		適用範围	$\begin{aligned} & \substack{\text { indi震 }\\ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐震 } \\ & \end{aligned}$	適用範围	$\begin{aligned} & \text { 耐震 } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 㭲討用 } \\ & \text { 地袢 } \end{aligned}$	通用範围	$\begin{aligned} & \text { 検討用 } \\ & \text { 地範 } \end{aligned}$
sクラス	（viii）津波防萲機能を有する設備及び浸水防止機能を有す る設備	- 防潮堤 - 防湖壁 - 取放水路流路絔 小工 - 貯留鳇 - 逆流防止設備 - 水密扉 - 浸水防止蓝 - 浸水防止壁 - 逆止升付ファン ネル －費通部止水処置	$\begin{aligned} & \hline s \\ & s \\ & \text { s } \end{aligned}$	－	－		S	- 第 3 号機海水熱交換器建屋 - 防潮堤（龬管式鋁直壁） - 出口側集水ピット（屋外排水路道流防止設備（防潮堤南側） －出口側集水ピット（屋外排 水路逆流防止設備（防湖堤 - 防湖壁（第 2 号機放水立 - 坊湖壁（第 3 号機放水立 坑） －揚水井戸（第 3 号機海水术 プ室防潮壁区画内） - 原子炬建屋 - 制御建屋 - 軽油タンク室 - 原子炬機器椧却海水配管 - 第 3 号機補機冾却海水系 - 放水ピット - 第 3 号機海水ポンプ室		- 海水ボンフ室門型クレー - 竜巻防䛾音ット - 前面識岸 - 第 1 号機取水路 - 第 3 号機取水路 －アグッセスルート －タービン建屋 式鉛直壁）	$\begin{aligned} & \hline \text { S s } \\ & \text { So } \end{aligned}$
	（ix）螹地における津 㳊監䄍機能を有す る施設	計	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \end{aligned}$		s	－機器，配管，震気計装設備等 の支持糆造物	s		$\begin{aligned} & \text { Ss } \\ & \text { So } \\ & \text { S } \\ & \text { So } \\ & \text { S s } \\ & \text { S s } \\ & \text { S } \end{aligned}$	- 海水ポンプ室門型クレー - 竜巻防諘ネット - 北側排水路 アクセスルート （防湖堤（盛土堤防） タービン建屋 中央制镺室天井照明 - 施助ボイラー建屋 - 第 1 号機制钟建屋 式鈆直壁）	$\begin{aligned} & \text { Ss } \\ & \text { S s } \\ & \text { Ss } \\ & \text { S s } \end{aligned}$
	（x）その他	－燃料プール水補給設備（残留熱除去系（燃料プール 水の補給に必要 な設備） - ほう酸水注入系＊ - 原子炉圧力容器内部緸造物＊	s		s		s	- 原子炬建屋 - 海水ホンブ室 - 原子炬機器椧却海水配管 ダクト - 軽油タンク室 - 軽油タンク連絡ダクト - 制御建屋 - 原子炉本体の基砹		 - 原子炬しやへい壁 - ほう酸水注入系テストトタ - 中央制御室天井照明 - 海水ホンフ室門型クレー - 竜巻防護寺ット - タービン建屋 - 補助ボイラー建屋 - 第 1 品機制御建屋 式鉿直壁）	$\begin{aligned} & \text { So } \\ & \text { S s } \\ & \text { S } \\ & \text { S s } \\ & \text { So } \end{aligned}$

第2．1．1表 耐震重要度分類表（4／6）

$\begin{aligned} & \text { 而耨喠要度 } \\ & \text { 分 類 } \end{aligned}$	機能刮分類	主要設備＊11		補助設備＊2		直接支持構造物＊3		間接支持棈生物＂4	
		適用範囲	$\begin{gathered} \text { 耐 震 } \end{gathered}$	適用範进	$\begin{gathered} \text { 耐 震 } \\ \text { クス } \end{gathered}$	適用範囲	$\begin{gathered} \text { 耐 震 } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 檢用 } \\ & \text { 地雅 } \end{aligned}$
Bクラス	（i）原子炉椧却材圧力 バウンダリに直接接続されていて，一次泠却材を内蔵している か又は内蔵し得る施	－主蒸気系（主蒸気第二陑能倠から主蒸気止 め并まで）	$\mathrm{B}^{* 8}$	－	－	－機器•配管等の支持構造物	$\mathrm{B}^{* 8}$	- 原子炬建屋 - タービン建屋（主蒸気第二隔離弁から主蒸気止め亣までつ配管•弁を支持する部分）	$\begin{aligned} & \mathrm{Sd} \\ & \mathrm{Sd} \end{aligned}$
		－主蒸気逃かし安全弁排気管	B＊9	－	－	－機器•配管等の支持構造物	$\mathrm{B}^{* 9}$	－原子炬建屋	S s
		- 主蒸気搎及し給水系 - 原子炬椧去林准化系	B	－	－	－機器•配管等の支持構造物	B	- 原子非建屋 - タービン建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（ii）放射性廃㪰物を内蔵している施設，ただ し内蔵量が少ない又 は眝蔵方式により，そ の破損によって公衆 に与える放射線の影響が周辺監視区域外 における年間の線量限度に比べ十分に小 さいまのはは除く	－放射性廃重物処理設備，ただし，Cクラス に属するものは除く	B	－	－	－機器•配管等の支持構造物	B	- 原子佢建屋 - タービン建屋 - 焼去却吅建屋 - サイトバンカ建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$

第2．1．1 表 耐震重要度分類表（4／6）

$\underset{\text { 分耐震重要度 }}{\text { 類 }}$	機能別分類	主要設備＊1		補助設備＊2		直接支持構造物＊3		間接支持構造物＊4	
		適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { ク } \end{aligned}$	適用範囲	検討用地震動 ＊ 6
B クラス	（i）原子炬冷却材圧 カバウンダリに直接接続されてい て，一次冷却材を内蔵しているか又 は内蔵し得る施設		B＊9	－	－	－機器•配管等の支持構造物	B＊9	- 原子炬建屋 - タービン建屋（主蒸気第二隔離弁から主蒸気止め弁まで の配管•弁を支持す る部分）	$\begin{aligned} & \mathrm{Sd} \\ & \mathrm{~S} d \end{aligned}$
		－主蒸気逃がし安全弁排気管	B＊10	－	－	•機器•配管等の支持構造物	B＊10	－原子炬建屋	S s
		$\begin{aligned} & \text { - 主蒸気系及び給水 } \\ & \text { •原子炉冷却材浄化 } \\ & \text { 系 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \end{aligned}$	－	－	－機器•配管等の支持構造物	B	- 原子炬建屋 - タービン建屋	$\begin{aligned} & \mathrm{S}_{B} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（ii）放射性廃棄物を内蔵している施設，ただし内蔵量 が少ない又は貯蔵方式により，その破損によって公衆 に与える放射線の影響が周辺監視区域外における年間 の線量限度に比べ十分に小さいもの は除く	$\begin{aligned} & \hline \text {-放射性噔重物処理 } \\ & \text { 設備たただし, C } \\ & \text { ラスに属するもの } \\ & \text { は除く } \end{aligned}$	B	－	－	－機器•配管等の支持構造物	B	－原子炉建屋 －タービン建屋 －焼却炉建屋 －サイトバンカ建屋	$\begin{aligned} & \hline \mathrm{S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$

第2．1．1表 耐震重要度分類表（5／6）

$\begin{gathered} \text { 胹震重要度 } \\ \text { 分 類 } \end{gathered}$	機能別妢類	主要䬦備＊1		補助設備＊2		直接支持情造物＊${ }^{* 3}$		間接支持情造物＊${ }^{* 1}$	
		適用範围	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範围	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用笄进	$\begin{gathered} \text { 耐 震 } \\ \text { 俍 } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 検拥 } \\ & \text { 地血那 } \end{aligned}$
B クラス	（iii）放射性廃乗物以外 の放射性物質に開連 した施弱で，その破損 により，公衆及び徙業員に過大な放射線被 ばくを与える可能性 のある施設	－蒸気タービン，湿分分離力程器，主復水器，給水加熱器及びその主要配管 - 復水浄化系 - 復水貯藏タンク - 燃料プール椧却浄化系 －放射線低減効果の大 きい遮蔽 －制御愫馬㷲水圧系（放射性流体を内蔵する部分，ただし，スクラ ム機能に関するもの を除く） - 原子炉建屋クレーン - 燃料取报設備 - 制御林的蔵		－	－	－機器•配管等の支持構造物	B		$\begin{aligned} & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（iv）使用済燃料を椧却 するための施設	－燃料ブール椧却浄化系	B	- 原子炬襕機浍却系 - 電気語装狡備	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	－機器•配管，電気氞 +装設備等の支持構造物	B	- 原子炬建屋 - 海水ポンプ室 - 原子炊機器哈却海水配管ダクト	$\begin{aligned} & \hline \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（v）放射性物質の放出 を伴らような場合に， その外部放散を抑制 するための施設で， S クラスに属さない施設	－	－	－	－	－	－	－	－

第2．1．1 表 耐震重要度分類表（5／6）

耐震重要度分 類	機能別分類	主要設備＊1		補助設備＊2		直接文持構造物＊3		間接支持構造物＊4	
		適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { 俗 } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { 保 } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { 俍 } \end{aligned}$	適用範囲	検討用地震動
B クラス	（iii）放射性廃铼物以外の放射性物質に関連した施設で， その破損により，公衆及び従業員に過大な放射線被ば くを与える可能性	－蒸気タービン，湿 分分離加熱器， 復水器，給水加熱 器及びその主要配 管 - 復水浄化系 - 復水貯蔵タンク - 燃料プール冷却浄化系 －放射線低減効果の大きい遮蔽 －制御棒駆動水圧系 （放射性流体を内蔵する部分，ただ し，スクラム機能 に関するものを除 - 原子炉建屋クレー - 燃料取扱設備 - 制御棒貯蔵ラック	B B B B B B B B B	－	－	－機器•配管等の支持構造物	B	- 原子炬建屋 - タービン建屋 －タービンペデスタ ル －復水貯蔵タンク基礎	$\begin{aligned} & \mathrm{S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{B} \end{aligned}$
	（iv）使用済燃料を泠却するための施設	－燃料プール泠却浄化系	B	－原子炉補機冷却水系（原子炉補機冷却海水系を含む） －電気計装設備	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	－機器•配管，電気計装設備等の支持構造物	B	- 原子炬建屋 - 海水ポンプ室 - 原子炉機器冷却海水配管ダクト	$\begin{aligned} & \mathrm{S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（ v ）放射性物質の放出を伴らような場合に，その外部放散を抑制するため の施設で， S クラス に属さない施設	－	－	－	－	－	－	－	－

第2．1．1表 耐震重要度分類表（ $6 / 6$ ）

$\begin{aligned} & \text { 耐震喓度 } \\ & \text { 分 } \end{aligned}$	機能刮䝷	主要設備＊1		補助設備＊2		直接文持構造物＊3		間接文持惲造物＊1	
		適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範进	$\begin{gathered} \text { 耐 震 } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラス } \end{aligned}$	適用簖闌	
cクラス		－原子炬再循睘流昷制御㳖置 クラス及びBクラス に属さない部分）		－	－	－機器•配管，電気計装設備等の支持情造物	C	- 原子炬建屋 - 制御建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \end{aligned}$
	（ii）放射性物質を内蔵 しているか，又はこれ に関連した旅設でS クラス及び B クラス に属さない施設	- 詁粋採取系 - 固化装置より下流の固体廃亲物取扱い設備（眝蔵庫を含 む） - 相固体系 - 新然粯貯蔵設備 - その他	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	－	－	－機器•配管等の支持構造物	C	- 原子所建屋 - タービン建屋 - 娔太限戸建屋 - サイトバンカ建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{2} \end{aligned}$
	（iii）放射線安全に関係 しない 施設等	- 循興水系 - タービン補幾泠却系 - 補助ボイラー - 消火系 - 開閉所，発電機，変圧器 －換気空調系（Sクラ スの換気空調系以外のもの） - タービン建屋クレー - 圧縮空気系 - その）他	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \end{aligned}$	－	－	－機器•配管，電気計装設備等の支持褠造物	C	- 原子水建屋 - 海水ポンプ室 - タービン建屋 - 制御建屋 - 当該施設に係る屋外 コンクリート構造物	$\begin{aligned} & \mathrm{S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \end{aligned}$

第2．1．1 表 耐震重要度分類表（6／6）

耐震重要度 分 類	機能別分類	主要設備＊1		補助設備＊2		直接支持構造物＊3		間接支持搆造物＊${ }^{*}$	
		適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラス } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラス } \end{aligned}$	適用範囲	検拥用地震動 ＊6
Cクラス	（i）原子炬の反応度を抑制するための施設 でSクラス及びBク ラスに属さない施設	－原子小呈㵌睘流量制御装置 クラス及びBクラス に属さなし部分）	C	－	－	－機器•配管，電気計装設備等の支持構造物	C	- 原子炬建屋 - 制御建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{c}} \end{aligned}$
	（ii）放射性物質を内蔵 しているか，又はこれ に関連した施設でS クラス及びB クラス に属さない施設	- 試籿採取系 - 固化装置より下流の 固体廃能物取扱い 設備（貯蔵庫を含 む） - 雑固体系 - 新然粿貯蔵設備 - その他	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \\ & \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	－	－	－機器•配管等の支持構造物	C	- 原子炬建屋 - タービン建屋 - 焼去卦戸建屋 - サイトバンカ建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \end{aligned}$
	（iii）放射楾安全に関係 しない施設等	- 循嘸水系 - タービン補幾僟令却系 - 補助ボイラー - 消火系 - 開閉所，発電機，変圧器 －換気空調系（Sクラ スの換気空調系以 外のもの） - タービン建屋クレー - 圧縮空気系 - その他	$\begin{aligned} & \hline \mathrm{C} \\ & \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	－	－	－機器•配管，電気計装設備等の支持構造物	C	- 原子炬建屋 - 海水ポンプ室 - タービン建屋 - 制御建屋 - 当該施設に係る屋外 コンクリート構造物	$\begin{aligned} & \mathrm{S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{c}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{P}^{2} \end{aligned}$
		－地下水位低下設備	$C^{* 11}$	－電気計装設備	$C^{* 11}$	－機器•配管，電気計装設備等の支持構造物	C＊11	- 原子小建屋 - 制御建屋 - 当該施設に係る屋外 コンクリート構造物	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{So} \\ & \mathrm{~S} \text { s } \end{aligned}$
		－屋外排水路（敷地側集水ピット（北側）北側排水路（防潮是横断部），出口側集水ピット（北側），敷地側集水ピット（南側），南側排水路（防潮提䅦䉼部）及び出口側集水ピット（南側）	C＊11	－	－	－	－	－	－

注記 $* 1$ ：主要設備とは，当該機能に直接的に関連する設備をいう。
＊2：補助設備とは，当該機能に間接的に関連し，主要設備の補助的役割を持つ設備をい う。
＊3：直接支持構造物とは，主要設備，補助設備に直接取り付けられる支持構造物又はこ れらの設備の荷重を直接的に受ける支持構造物をいう。
＊4：間接支持構造物とは，直接支持構造物から伝達される荷重を受ける構造物（建物•構築物，土木構造物）をいう。
＊5： S s ：基淮地震動 S s により定まる地震力
S d ：弾性設計用地震動S dにより定まる地震力
S_{B} ：Bクラス施設に適用される地震力
$\mathrm{S}_{\mathrm{C}}: ~ \mathrm{C}$ クラス施設に適用される静的地震力
＊6：ほう酸水注入系は，安全機能の重要度を考慮して，Sクラスに準じて取り扱う。
＊ 7 ：原子炉圧力容器内部構造物は，炉内にあることの重要度を考慮して， S クラスに準 じて取り扱う。
＊8：Bクラスではあるが，弾性設計用地震動 Sd d対し破損しないことを確認する。
＊9：主蒸気逃がし安全弁排気管については，基準地震動 S s に対して破損しないことを確認することで，蒸気凝縮性能の信頼性を担保する。

変更後

注記＊1：主要設備とは，当該機能に直接的に関連する設備をいう。
＊2：補助設備とは，当該機能に間接的に関連し，主要設備の補助的役割を持つ設備をい う。
＊3：直接支持構造物とは，主要設備，補助設備に直接取り付けられる支持構造物又はこ れらの設備の荷重を直接的に受ける支持構造物をいう。
＊4：間接支持構造物とは，直接支持構造物から伝達される荷重を受ける構造物（建物•構築物，土木構造物）をいう。
＊5：波及的影響を考慮すべき施設とは，下位クラス施設のうち，その破損等によって上位クラス施設に波及的影響を及ぼすおそれのある施設をいう。
＊6：S s ：基準地震動 S s により定まる地震力
S d ：弾性設計用地震動 S d により定まる地震力
S_{B} ：Bクラス施設に適用される地震力
$\mathrm{S}_{\mathrm{C}}: ~ \mathrm{C}$ クラス施設に適用される静的地震力
＊7：ほう酸水注入系は，安全機能の重要度を考慮して，Sクラスに準じて取り扱う。
＊8：原子炉圧力容器内部構造物は，炉内にあることの重要度を考慮して，Sクラスに準 じて取り扱う。
＊9：Bクラスではあるが，弾性設計用地震動 $\mathrm{S} d$ に対し破損しないことを確認する。
＊10：主蒸気逃がし安全弁排気管については，基準地震動 S s に対して破損しないことを確認することで，蒸気凝縮性能の信頼性を担保する。
＊11：Cクラスではあるが，基準地震動S s に対し機能維持することを確認する。

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（ $1 / 18$ ）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，而震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	1．核燃料物質の取扱施設及び貯蔵施設 －使用済然料プール （設計基準対象施設としてのみ第 1,2 号機共用） ［S］ －使用済然料貯蔵ラック （設計基淮対象施設としてのみ第 1,2 号機共用） ［S］ - 制御棒•破損燃料貯蔵ラック［S］ - 燃料プール冷却浄化系熱交換器 （設計基淮対象施設としてのみ第 1,2 号機共用） ［B］ －燃料プール泠却浄化系ポンプ （設計基淮対象施設としてのみ第 1,2 号機共用） ［B］ －スキマサージタンク （設計基準対象施設としてのみ第 1,2 号機共用） ［B］ - 関連配管［S，B］ - サイフォンブレーク孔
		2．原子炉冷却系統施設 －主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ［S］ －主蒸気逃がし安全弁自動减圧機能用 アキュムレータ［S］ - 主蒸気逃がし安全弁［S］ - 高圧代替注水系タービンポンプ - 復水貯蔵タンク - 直流駆動低圧注水系ポンプ - 復水移送ポンプ - ほら酸水注入系ポンプ - ほう酸水注入采貯蔵タンク - 原子炉補機泠却水サージタンク - 関連配管［S，B］ - 関連弁 - 原子炉格納容器 - フィルタ装置出口側ラプチヤディスク - フィルタ装置 - 遠隔手動弁操作設備 - 排気筒 - 炬心支持構造物

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 原子炉圧力容器 - 原子炉建屋ブローアウトパネル - 給水スパージャ - 残留熱除去系配管（原子炉圧力容器内部） - 高圧灲心スプレイ系配管（原子炉圧力容器内部） - 高圧炉心スプレイスパージャ - 差圧検出・ほら酸水注入采配管 (ティーより N11 ノズルまでの外管) －差圧検出・ほら酸水注入系配管 （原子炉圧力容器内部） －残留熱除去系熱交換器
		3．計測制御系統施設 - 制御棒［S］ - 制御棒駆動機構［S］ - 水圧制御ユニット（アキュムレータ） - 水圧制御ユニット（窒素容器）［S］ - ほう酸水注入系ポンプ［S］ - ほら酸水注入采貯蔵タンク［S］ - 起動領域モニタ［S］ - 出力領域モニタ［S］ - 高圧代替注水系ポンプ出口圧力 - 直流駆動低圧注水系ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 残留熱除去系熱交換器出口温度［C］ - 高圧代替注水系ポンプ出口流量 - 残留熱除去系洗浄ライン流量（残留熱除去系へ ッドスプレイライン洗浄流量） －残留熱除去系洗净ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量） - 直流駆動低圧注水系ポンプ出口流量 - 原子炉圧力［S］ - 原子炉圧力（SA） - 原子炉水位（広帯域）［S］ - 原子炉水位（燃料域）［S］ - 原子炉水位（SA 広帯域）

設備分類
定義
（［］］は設計基準対象施設を
兼ねる設備の耐震重要度分類）

1．常設耐震重要重
大事故防止設備
常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの

- 原子炉水位（SA 燃料域
- 圧力抑制室圧力［S］
- 圧力抑制室内空気温度［S］
- サプレッションプール水温度［S］
- 格納容器内水素濃度（D／W）
- 格納容器内水素濃度（S／C
- 復水貯蔵タンク水位
- 原子炉格納容器代替スプレイ流量
- 圧力抑制室水位［S］
- 関連配管［S］
- 関連弁［S］
- フィルタ装置出口水素濃度
- 原子炉圧力容器温度
- フィルタ装置入口圧力（広域帯）
- フィルタ装置出口圧力（広域帯）
- フィルタ装置水位（広域帯）
- フィルタ装置水温度
- 高圧窒素ガス供給系 ADS 入口圧力
- 代替高圧窒素ガス供給系窒素ガス供給止め弁

入口圧力

- 6－2F－1母線電圧
- 6－2F－2 母線電圧
- 6－2C 母線電圧［S］
- 6－2D 母線電圧［S］
- 4－2C 母線電圧［S］
- 4－2D 母線電圧［S］
- 125 V 直流主母線 2 A 電圧［S］
- 125 V 直流主母線 2 B 電圧［S］
- 125 V 直流主母線 2A－1 電圧
- 125 V 直流主母線 2B－1 電圧
- 250 V 直流主母線電圧 $[S]$
- 差庄検出・ほう酸水注入系配管
（ティーよりN11 ノズルまでの外管）
－差圧検出・ほう酸水注入系配管 （原子炉圧力容器内部）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 炉心支持構造物 - 原子炉圧力容器 - 主蒸気逃がし安全弁自動减不機能用 アキュムレータ －主蒸気逃がし安全弁
		4．放射線管理施設 - 格納容器内雰囲気放射線モニタ（D／W）［S］ - 格納容器内雰囲気放射線モニタ（S／C）［S］ - フィルタ装置出口放射線モニタ - 耐圧強化ベント系放射線モニタ - 使用済燃料プール上部空間放射線モニタ（低線量） －使用済燃料プール上部空間放射線モニタ（高線量） - 中央制御室送風機［S］ - 中央制御室再循環送風機［S］ - 中央制御室排風機［S］ - 中央制御室再循環フィルタ装置［S］ - 中央制御室しやへい壁［S］ - 関連配管［S］
		5．原子炻格納施設 - 原子炉格納容器［S］ - 機器搬出入用ハッチ［S］ - 逃がし安全弁搬出入口［S］ - 制御棒駆動機構般出入口［S］ - サプレッションチェンバ出入口［S］ - 所員用エアロック［S］ - 配管貫通部［S］ - 電気配線貫通部［S］ - 真空破壊弁［S］ －ダウンカマ［S］ - ベント管［S］ - ベント管ベローズ $[S]$ －ベントヘッダ［S］ - ドライウェルスプレイ管［S］ - サプレッションチェンバスプレイ管［S］ - 復水移送ポンプ

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（5／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，而震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 復水貯蔵タンク - フィルタ装置 - フィルタ装置出口側ラプチャディスク - 関連配管 - 関連弁 - 遠隔手動弁操作設備 - 遠隔手動弁操作設備謶蔽
		6．非常用電源設備 - 非常用ディーゼル発電設備軽油タンク［S］ - ガスタービン発電設備ガスタービン機関 - ガスタービン発電設備調速装置 - ガスタービン発電設備非常調速装置 - ガスタービン発電設備燃料移送ポンプ - ガスタービン発電設備軽油タンク - ガスタービン発電設備燃料小出槽 - 高圧炉心スプレイ系ディーゼル発電設備軽油 タンク - ガスタービン発電設備ガスタービン発電機 - ガスタービン発電設備ガスタービン発電機励磁装置 －ガスタービン発電設備ガスタービン発電機保護継電装置 - 緊急時対策所軽油タンク - 125 V 蓄電池 2 A 及び $2 \mathrm{~B}[\mathrm{~S}]$ - 125V 代替蓄電池 - 250 V 蓄電池 - 関連配管［S］ - メタルクラッドスイッチギア（非常用） - メタルクラッドスイッチギア（高圧炬心スプレ イ系用） - パワーセンタ（非常用） - モータコントロールセンタ（非常用） - モータコントロールセンタ（高圧烼心スプレイ系用） - 動力変圧器（非常用） - 動力変圧器（高圧炉心スプレイ系用） - 460V 原子炉建屋交流電源切替盤（非常用） - 中央制御室 120 V 交流分電盤（非常用） - ガスタービン発電機接続盤 - メタルクラッドスイッチギア（緊急用）

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（6／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類
1．常設而震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 動力変圧器（緊急用） - パワーセンタ（緊急用） - モータコントロールセンタ（緊急用） - ガスタービン発電設備燃料移送ポンプ接続盤 - 460V 原子炉建屋交流電源切替盤（緊急用） - 120V 原子炉建屋交流電源切替盤（緊急用） - 中央制御室 120 V 交流分電盤（緊急用） - 125V 充電器 2 A 及び $2 B$ - 125V 直流主母線盤2A 及び2B - 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ $\cdot 125 \mathrm{~V}$ 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$ 及 び2B－3 - 125 V 直流電源切替盤 2 A 及び 2 B - 125V 直流RCIC モータコントロールセンタ - 125 V 充電器 2 H - 125 V 直流主母線盤 2 H - 125V 代替充電器 - 250 V 充電器 - 250 V 直流主母線盤 - メタルクラッドスイッチギア（緊急時対策所用） - 動力変圧器（緊急時対策所用） - モータコントロールセンタ（緊急時対策所用） - 105 V 交流電源切替盤（緊急時対策所用） - 105V 交流分電盤（緊急時対策所用） - 120V 交流分電盤（緊急時対策所用） - 210 V 交流分電盤（緊急時対策所用） - 125 V 直流主母線盤（緊急時対策所用）
		7．補機駆動用燃料設備 - 非常用ディーゼル発電設備軽油タンク - 高圧灲心スプレイ系ディーゼル発電設備軽油 タンク - ガスタービン発電設備軽油タンク - 関連配管
		8．非常用取水設備 －貯留堰［C］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（7／18）

設備分類	定義	主要設備 （［ ］内は設計基漼対象施設を 兼ねるる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	1．核燃料物質の取扱及び貯蔵施設 －使用済然料プール （設計基淮対象施設としてのみ第 1,2 号機共用） ［S］ －使用済然料貯蔵ラック （設計基淮対象施設としてのみ第 1,2 号機共用） ［S］ - 制御棒•破損燃料貯蔵ラック［S］ - 使用済然料プール水位／温度 （ガイドパルス式）［C］ －使用済然料プール水位／温度 (ヒートサーモ式) －関連配管
		2．原子炉冷却系統施設 －主蒸気逃がし安全弁自動減圧機能用 アキュムレータ［S］ - 主蒸気逃がし安全弁［S］ - 高圧代替注水系タービンポンプ - 復水貯蔵タンク - 復水移送ポンプ - 代替循環泠却ポンプ - 残留熱除去系ストレーナ - 原子炉補機冷却水サージタンク［S］ - 関連配管［S，B］ - 関連弁 - 炬心支持構造物 - 原子炉圧力容器 - 給水スパージャ - 残留熱除去系配管（原子炉圧力容器内部） - 残留熱除去系熱交換器 - 原子炉格納容器

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（8／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	3．計測制御系統施設 - ほう酸水注入系ポンプ［S］ - ほう酸水注入采貯蔵タンク［S］ - 高圧代替注水系ポンプ出口圧力 - 代替循澴冷却ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 残留熱除去系熱交換器入口温度［C］ - 高圧代替注水系ポンプ出口流量 - 残留熱除去系洗浄ライン流量（残留熱除去系へ ッドスプレイライン洗浄流量） －残留熱除去系洗净ライン流量（残留熱除去系B采格納容器泠却ライン洗浄流量） - 代替循環冷却ポンプ出口流量 - 原子炉圧力［S］ - 原子炉圧力（SA） - 原子炉水位（広带域）［S］ - 原子炉水位（然料域）［S］ - 原子炉水位（SA 広帯域） - 原子炉水位（SA燃料域） - ドライウェル圧力［S］ - 圧力抑制室圧力［S］ - ドライウェル温度［S］ - 圧力抑制室内空気温度［S］ - サプレッションプール水温度［S］ - 原子炉格納容器下部温度 - 格納容器内雰囲気酸素濃度［S］ - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 格納容器内雰囲気水素濃度［S］ - 復水貯蔵タンク水位 - 原子炉格納容器代替スプレイ流量 - 原子炬格納容器下部注水流量 - 圧力抑制室水位［S］ - 原子炉格納容器下部水位

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（9／18

設備分類	定義	主要設備 （［ ］内は設計基漼対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	- ドライウェル水位 - 原子炉建屋内水素濃度 - 関連配管［S］ - 関連弁［S］ - 無線連絡設備（固定型）［C］ - 衛星電話設備（固定型）［C］ - 安全パラメータ表示システム（SPDS）［C］ - データ伝送設備［C］ - フィルタ装置出口水素濃度 - 静的触蝶式水素再結合装置動作監視装置 - 原子炬圧力容器温度 - フィルタ装置入口圧力（広帯域） - フィルタ装置出口圧力（広帯域） - フィルタ装置水位（広帯域） - フィルタ装置水温度 - 6－2F－1 母線電圧 - 6－2F－2 母線電圧 - 6－2C 母線電圧［S］ - 6－2D 母線電圧［S］ $\cdot 4-2 \mathrm{C}$ 母線電圧［S］ - 4－2D 母線電圧［S］ - 125 V 直流主母線 2 A 電圧［S］ - 125 V 直流主母線 2 B 電圧［S］ - 125 V 直流主母線 $2 \mathrm{~A}-1$ 電圧 - 125V 直流主母線 2B－1 電圧 - 差圧検出・ほう酸水注入系配管 （ティーよりN11ノズルまでの外管） －差圧検出・ほら酸水注入系配管 （原子炉圧力容器内部） - 炉心支持構造物 - 原子炉圧力容器

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（10／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	4．放射線管理施設 - 格納容器内雰囲気放射線モニタ（D／W）［S］ - 格納容器内雰囲気放射線モニタ（S／C）［S］ - フィルタ装置出口放射線モニタ - 使用済然料プール上部空間放射線モニタ （低線量） －使用済燃料プール上部空間放射線モニタ （高線量） - 中央制御室送風機［S］ - 中央制御室再循環送風機［S］ - 中央制御室排風機［S］ - 中央制御室再循環フィルタ装置［S］ - 緊急時対策所非常用送風機 - 緊急時対策所非常用フィルタ装置 -2 次しやへい壁（原子炉建屋原子炉等外壁）［B］ - 補助しやへい（原子炉建屋）［B］ - 補助しやへい（制御建屋）［B］ - 中央制御室しやへい壁［S］ - 中央制御室待避所遮蔽 - 緊急時対策所遮蔽 - 関連配管［S］
		5．原子炉格納施設 - 原子炉格納容器［S］ - 機器搬出入用ハッチ［S］ - 逃がし安全弁搬出入口［S］ - 制御棒駆動機構般出入口［S］ - サプレッションチェンバ出入口［S］ - 所員用エアロック［S］ - 配管貫通部［S］ - 電気配線貫通部［S］ - 原子炉建屋原子炉棟（二次格納施設） - 原子炉建屋大物搬入口［S］ - 原子炉建屋エアロック［S］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（11／18）

設備分類	定義	主要設備 （［］］内は設計基淮対象施設を 兼ねる設備の而耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	－真空破壊弁［S］ －ダウンカマ［S］ - ベント管［S］ - ベント管ベローズ［S］ －ベントヘッダ［S］ - ドライウェルスプレイ管［S］ - サプレッションチェンバスプレイ管［S］ - 復水移送ポンプ - 代替循環冷却ポンプ - 復水貯蔵タンク - 残留熱除去系ストレーナ - 残留熱除去系熱交換器 - 高圧代替注水系タービンポンプ - ほう酸水注入系ポンプ - ほう酸水注入系貯蔵タンク - 非常用ガス処理系排風機［S］ - 静的触媒式水素再結合装置 - フィルタ装置 - フィルタ装置出口側ラプチャディスク - 関連配管［S］ - 関連弁 - 炉心支持構造物 - 原子炉圧力容器 - 残留熱除去系配管（原子炉圧力容器内部） - 給水スパージャ - 差圧検出・ほう酸水注入系配管（ティー よりN11ノズルまでの外管） －差圧検出・ほう酸水注入系配管（原子炉圧力容器内部） - 非常用ガス処理系空気乾燥装置 - 非常用ガス処理系フィルタ装置 - 排気筒 - 原子炉建屋ブローアウトパネル閉止装置 - 遠隔手動弁操作設備 - 遠隔手動弁操作設備遮蔽

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（12／18）
主要設備
設備分類 \quad 定義 $\quad[$ ］内は設計基準対象施設を 2．常設重大事故緩 重大事故等対処設

非常用電源設 が発生した場合に ・ガスタービン発電設備ガスタービン機関 おいて，当該重大事 ・ガスタービン発電設備調速装置故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ を有する設俑であ
って常設のもの

- ガスタービン発電設備非常調速装置
－ガスタードン発電設備㔰料移送ポン
- ガスタービン発電託供权油タンク

ガスタードン発電設
ガスタービン発電設備然料小出槽
高圧烼心スプレイ系ディーゼル発電設備軽油タ ンク

- ガスタービン発電設備ガスタービン発電機
- ガスタービン発電設備ガスタービン発電機励磁

装置
－ガスタービン発電設備ガスタービン発電機保護継電装置

- 緊急時対策所軽油タンク
- 125 V 蓄電池 2 A 及び $2 \mathrm{~B}[\mathrm{~S}]$
- 125 V 代替蓄電池
- 関連配管［S］
- メタルクラッドスイッチギア（非常用）
- メタルクラッドスイッチギア（高圧炬心スプレ イ系用
パリーセンタ（非常用）
- モータコントロールセンタ（非常用）
- モータコントロールセンタ（高圧灲心スプレイ系用）
動力変圧器（非常用）
- 動力変圧器（高圧炉心スプレイ系用）
- 460V 原子炉建屋交流電源切替盤（非常用
- 中央制御室 $120 V$ 交流分電盤（非常用）
- ガスタービン発電機接続盤
- メタルクラッドスイッチギア（緊急用） －動力変圧器（緊急用）
パワーセンタ（緊急用）
－モータコントロールセンタ（緊急用）
ガスタービン発電設備燃料移送ポンプ接続䑤
- 460V 原子炉建屋交流電源切替盤（緊急用）
- 120V 原子炉建屋交流電源切替盤（緊急用）
- 中央制御室 120 V 交流分電盤（緊急用）
- 125V 充電器 2 A 及び 2 B

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（13／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	- 125 V 直流主母線盤2A及び2B - 125 V 直流主母線盤 $2 A-1$ 及び $2 B-1$ $\cdot 125 \mathrm{~V}$ 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$ 及 び2B－3 - 125 V 直流電源切替盤 2 A 及び 2 B - 125V 直流RCIC モータコントロールセンタ - 125 V 充電器 2 H - 125 V 直流主母線盤2H - 125 V 代替充電器 - メタルクラッドスイッチギア（緊急時対策所用） - 動力変圧器（緊急時対策所用） - モータコントロールセンタ（緊急時対策所用） - 105 V 交流電源切替盤（緊急時対策所用） - 105V 交流分電盤（緊急時対策所用） - 120 V 交流分電盤（緊急時対策所用） - 210V 交流分電盤（緊急時対策所用） - 125 V 直流主母線盤（緊急時対策所用）
		7．補機駆動用燃料設備 - 非常用ディーゼル発電設備軽油タンク - 高圧炉心スプレイ系ディーゼル発電設備軽油 タンク - ガスタービン発電設備軽油タンク - 関連配管
		8．非常用取水設備 - 貯留堰［C］ - 取水口［C］ - 取水路［C］ - 海水ポンプ室［C］

第2．1．2表 重大事故等奶処設備（主要設備）の設備分類（14／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
3．常設重大事故緩 和設備（設計基準拡張）	設計基準対象施設 のらち，重大事故等時に機能を期待す る設備であって，重大事故の拡大を防止し，又はその影響 を緩和するための機能を有する常設重大事故緩和設備以外の常設のもの	1．原子炉冷却系統施設 - 原子炉補機冷却水系熱交換器［S］ - 原子炉補機冷却水ポンプ［S］ - 原子炉補機泠却海水ポンプ［S］ - 原子炉補機椧却水サージタンク［S］ - 原子炉補機泠却海水系ストレーナ［S］ - 関連配管［S］ 2．非常用電源設備 －非常用ディーゼル発電設備非常用ディーゼル機関［S］ - 非常用ディーゼル発電設備調速装置［S］ - 非常用ディーゼル発電設備非常調速装置［S］ - 非常用ディーゼル発電設備機関付清水ポンプ ［S］ - 非常用ディーゼル発電設備空気だめ（自動）［S］ - 非常用ディーゼル発電設備然料デイタンク［S］ - 非常用ディーゼル発電設備然料移送ポンプ［S］ - 非常用ディーゼル発電設備非常用ディーゼル発電機［S］ - 非常用ディーゼル発電設備励磁装置［S］ - 非常用ディーゼル発電設備保護継電装置［S］ - 関連配管［S］ - 関連弁［S］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（ $15 / 18$ ）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の而震重要度分類）
4．常設耐震重要重大事故防止設備以外の常設重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの以外のもの	1．核燃料物質の取扱施設及び貯蔵施設 －使用済燃料プール水位／温度（ガイドパル ス式）［C］ －使用済燃料プール水位／温度（ヒートサー モ式） －使用済然料プール監視カメラ
		2．原子炉泠却系統施設 －関連配管
		3．計測制御系統施設 - ドライウェル圧力［S］ - ドライウェル温度［S］ - 無線連絡設備（固定型）［C］ - 衛星電話設備（固定型）［C］
		4．放射線管理施設 － 2 次しやへい壁（原子炉建屋原子炉等外壁）［B］ - 補助しやへい（原子炉建屋）［B］ - 補助しやへい（制御建屋）［B］
		5．非常用取水設備 - 取水口［C］ - 取水路［C］ - 海水ポンプ室［C］

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の而震重要度分類）
5．常設重大事故防止設備（設計基準拡張）	設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	1．原子炉冷却系統施設 - 残留熱除去系熱交換器［S］ - 残留熱除去系ポンプ［S］ - 残留熱除去系ストレーナ［S］ - ドライウェルスプレイ管 - サプレッションチェンバスプレイ管 - 高圧炬心スプレイ系ポンプ［S］ - 復水貯蔵タンク - 高圧炬心スプレイ系ストレーナ［S］ - 低圧灲心スプレイ系ポンプ［S］ - 低圧炉心スプレイ系ストレーナ［S］ - 原子炉隔離倠峙冷却系ポンプ - 原子炉補機泠却水系熱交換器［S］ - 原子炬補機泠却水ポンプ［S］ - 原子炉補機泠却海水ポンプ［S］ - 原子炉補機泠却水系サージタンク［S］ - 原子炉補機泠却海水系ストレーナ［S］ - 高圧彷心スプレイ補機冷却水系熱交換器［S］ - 高圧炉心スプレイ補機泠却水ポンプ［S］ - 高圧炬心スプレイ補機冷却海水ポンプ［S］ - 高圧炬心スプレイ補機泠却水系サージタンク ［S］ －高圧烼心スプレイ補機泠却海水系ストレーナ ［S］ - 関連配管［S，B］ - 関連弁［S］ - 炉心支持構造物 - 原子炉圧力容器 - 原子炉格納容器 －ジェットポンプ －高圧炉心スプレイ采配管（原子炉圧力容器内部） - 高圧炬心スプレイスパージャ - 低圧炉心スプレイ系配管（原子炉圧力容器内部） - 低圧炬心スプレイスパージャ - 給水スパージャ - 残留熱除去系配管（原子炉圧力容器内部）

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（17／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
5．常設重大事故防止設備（設計基準拡張）	設計基準対象施設 のらち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	3．計測制御系統施設 - 原子炬隔離侍冷却系ポンプ出口圧力［S］ - 高圧炬心スプレイ系ポンプ出口圧力［S］ - 残留熱除去系ポンプ出口圧力［C］ - 低圧炬心スプレイ系ポンプ出口圧力［C］ - 残留熱除去系熱交換器入口温度［C］ - 原子炬隔離時冷却系ポンプ出口流量［S］ - 高圧炬心スプレイ系ポンプ出口流量［S］ - 残留熱除去系ポンプ出口流量［S］ - 低王炬心スプレイ系ポンプ出口流量［S］ - 原子炬補機泠却水系系統流量 - 残留熱除去系熱交換器冷却水入口流量［C］ - 6－2H母線電圧［S］ - HPCS125V 直流主母線電圧［S］
		4．原子炉格納施設 - 残留熱除去系熱交換器 - 残留熱除去系ポンプ - 残留熱除去系ストレーナ - ドライウェルスプレイ管 - サプレッションチェンバスプレイ管 - 関連配管 - 関連弁 - 原子炬格納容器
		5．非常用電源設備 －非常用ディーゼル発電設備非常用ディーゼル機関［S］ - 非常用ディーゼル発電設備調速装置［S］ - 非常用ディーゼル発電設備非常調速装置［S］ - 非常用ディーゼル発電設備機関付清水ポンプ ［S］ - 非常用ディーゼル発電設備空気だめ（自動）［S］ - 非常用ディーゼル発電設備然料デイタンク［S］ - 非常用ディーゼル発電設備燃料移送ポンプ［S］ - 非常用ディーゼル発電設備非常用ディーゼル発電機［S］ －非常用ディーゼル発電設備励磁装置［S］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（18／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
5．常設重大事故防止設備（設計基準拡張）	設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	- 非常用ディーゼル発電設備保護継電装置［S］ - 高圧炬心スプレイ系ディーゼル発電設備高圧炉心スプレイ系ディーゼル機関［S］ －高圧炬心スプレイ系ディーゼル発電設備調速装置［S］ －高圧炬心スプレイ系ディーゼル発電設備非常調速装置［S］ －高圧炬心スプレイ系ディーゼル発電設備機関付清水ポンプ［S］ －高圧炬心スプレイ系ディーゼル発電設備空気 だめ（自動）［S］ －高圧炬心スプレイ系ディーゼル発電設備燃料 デイタンク［S］ －高圧炬心スプレイ系ディーゼル発電設備燃料移送ポンプ［S］ －高圧炬心スプレイ系ディーゼル発電設備軽油 タンク［S］ －高圧灲心スプレイ系ディーゼル発電設備高圧灲心スプレイ系ディーゼル発電機［S］ －高圧炉心スプレイ系ディーゼル発電設備励磁装置［S］ －高圧炬心スプレイ系ディーゼル発電設備保護継電装置［S］ - 125 V 蓄電池 $2 \mathrm{H}[\mathrm{S}]$ - 関連配管［S］ - 関連弁［S］ - 125V 充電器 2 H - 125 V 直流分電盤 2 H

変更前	変更後
2．2 外部からの衝撃による損傷の防止 設計基準対象施設は，外部からの衝撃のらち自然現象による損傷の防止において，発電所敷地で想定される風（台風），凍結，積雪，落雷及 び高潮の自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及びその結果とし て施設で生じ得る環境条件において，その安全性を損なうおそれがある場合は，防護措置，基礎地盤の改良その他，供用中における運転管理等 の運用上の適切な措置を講じる。	2.2 津波による損傷の防止 原子炉冷却系統施設の津波による損傷の防止の基本設計方針につい ては，浸水防護施設の基本設計方針に基づく設計とする。 2.3 外部からの衝撃による損傷の防止 設計基準対象施設は，外部からの衝撃のらち自然現象による損傷の防止において，発電所敷地で想定される風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮の自然現象 （地震及び津波を除く。）又は地震及び津波を含む自然現象の組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件において，その安全性を損なうおそ れがある場合は，防護措置，基礎地盤の改良その他，供用中における運転管理等の運用上の適切な措置を講じる。 地震及び津波を含む自然現象の組合せについて，火山については積雪 と風（台風），基準地震動 S s については積雪，基準津波については弾性設計用地震動 S d と積雪の荷重を，施設の形状及び配置に応じて考慮 する。 地震，津波と風（台風）の組合せについても，風荷重の影響が大きい と考えられるような構造や形状の施設については，組合せを考慮する。組み合わせる積雪深の大きさは，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm と し，風速の大きさは「建築基準法」を準用して基準風速 $30 \mathrm{~m} / \mathrm{s}$ とする。組み合わせる積雪深は，地震及び津波と組み合わせる場合は，「建築基準法」に定められた平均的な積雪荷重を与えるための係数 0.35 を考

想定される人為事象のらち，飛来物（航空機落下）については，防護設計の要否を判断する基準を超えないことを評価して設置（変更）許可 を受けている。工事計画認可申請時に，設置（変更）許可申請時から，防護設計の要否を判断する基準を超えるような航空路の変更がないこ とを確認していることから，設計基準対象施設に対して防護措置その他適切な措置を講じる必要はない。

設計基準対象施設は，外部からの衝撃のらち人為による損傷の防止に おいて，発電所敷地又はその周辺において想定される電磁的障害により発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象 であって人為によるもの（故意によるものを除く。）（以下「人為事象」 という。）に対してその安全性が損なわれないよう，防護措置又は対象 とする発生源から一定の距離を置くことによる適切な措置を講じる。

変更後
慮する。
設計基準対象施設は，外部からの衝撃のらち人為による損傷の防止に おいて，発電所敷地又はその周辺において想定される爆発，近隣工場等 の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害 により発電用原子炉施設の安全性を損なわせる原因となるおそれがあ る事象であって人為によるもの（故意によるものを除く。）（以下「人為事象」という。）に対してその安全性が損なわれないよう，防護措置又 は対象とする発生源から一定の距離を置くことによる適切な措置を講 じる。
想定される人為事象のうち，飛来物（航空機落下）については，防護設計の要否を判断する基準を超えないことを評価して設置（変更）許可 を受けている。工事計画認可申請時に，設置（変更）許可申請時から，防護設計の要否を判断する基準を超えるような航空路の変更がないこ とを確認していることから，設計基準対象施設に対して防護措置その他適切な措置を講じる必要はない。

なお，定期的に航空路の変更状況を確認し，防護措置の要否を判断す ることを保安規定に定めて管理する。

航空機落下及び爆発以外に起因する飛来物については，発電所周辺の社会環境からみて，発生源が設計基準対象施設から一定の距離が確保さ れており，設計基準対象施設が安全性を損なうおそれがないため，防護措置その他の適切な措置を講じる必要はない。
また，想定される自然現象（地震及び津波を除く。）及び人為事象に対する防護措置には，設計基準対象施設が安全性を損なわないために必要な設計基準対象施設以外の施設又は設備等（重大事故等対処設備を含

	変更前	変更後
		同時に必要な機能が損なわれることがないよう，外部からの衝撃よ り防護すべき施設に含める。 上記以外の設計基準対象施設については，機能を維持すること若 しくは損傷を考慮して代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより，その安全性を損なわない設計とす る。
$\begin{aligned} & \underset{\sim}{1} \\ & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	2．2．1 設計基準事故時に生じる荷重との組合せ 科学的技術的知見を踏まえ，安全機能を有する構築物，系統及び機器のらち，特に自然現象（地震及び津波を除く。）の影響を受け やすく，かつ，代替手段によってその機能の維持が困難であるか，又はその修復が著しく困難な構築物，系統及び機器は，想定される自然現象（地震及び津波を除く。）により作用する衝撃は設計基準事故時に生じる荷重と重なり合わない設計とする。	2．3．2 設計基準事故時及び重大事故等時に生じる荷重との組合せ 科学的技術的知見を踏まえ，外部事象防護対象施設及び重大事故等対処設備のうち，特に自然現象（地震及び津波を除く。）の影響 を受けやすく，かつ，代替手段によってその機能の維持が困難であ るか，又はその修復が著しく困難な構築物，系統及び機器は，建屋内に設置すること，又は可搬型重大事故等対処設備によるバックア ップが可能となるように位置的分散を考慮して可搬型重大事故等対処設備を複数保管すること等により，当該施設に大きな影響を及 ぼすおそれがあると想定される自然現象（地震及び津波を除く。） により作用する衝撃が設計基準事故時及び重大事故等時に生じる荷重と重なり合わない設計とする。 具体的には，建屋内に設置される外部事象防護対象施設及び重大事故等対処設備については，建屋によって自然現象（地震及び津波 を除く。）の影響を防止することにより，設計基準事故又は重大事故等が発生した場合でも，自然現象（地震及び津波を除く。）によ る影響を受けない設計とする。

	変更前	変更後
$\begin{aligned} & \underset{\sim}{\underset{\sim}{\infty}} \\ & \underset{\sim}{\infty} \end{aligned}$		屋外に設置されている外部事象防護対象施設については，設計基準事故が発生した場合でも，機器の運転圧力や温度等が変わらない ため，設計基準事故時荷重が発生するものではなく，自然現象（地震及び津波を除く。）による衝撃と重なることはない。 屋外に設置される重大事故等対処設備について，竜巻に対しては位置的分散を考慮した配置とするなど，重大事故等が発生した場合 でも，重大事故等時の荷重と自然現象（地震及び津波を除く。）に よる衝撃を同時に考慮する必要のない設計とする。 したがって，自然現象（地震及び津波を除く。）による衝撃と設計基準事故又は重大事故等時の荷重は重なることのない設計とす る。
	2．2．2 設計方針 自然現象（地震及び津波を除く。）及び人為事象に係る設計方針 に基づき設計する。	2．3．3 設計方針 外部事象防護対象施設及び重大事故等対処設備は，以下の自然現象（地震及び津波を除く。）及び人為事象に係る設計方針に基づき設計する。 自然現象（地震及び津波を除く。）のらち森林火災，人為事象の らち爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガス の設計方針については「c．外部火災」の設計方針に基づき設計す る。 なお，危険物を搭載した車両については，近隣工場等の火災及び有毒ガスの中で取り扱う。
	（1）自然現象	（1）自然現象 a．竜巻

	変更前	変更後
$\begin{aligned} & \underset{\sim}{c} \\ & \underset{\sim}{1} \\ & \underset{\sim}{\infty} \end{aligned}$		外部事象防護対象施設は，竜巻防護に係る設計時に，設置（変更）許可を受けた最大風速 $100 \mathrm{~m} / \mathrm{s}$ の竜巻（以下「設計竜巻」と いう。）が発生した場合について竜巻より防護すべき施設に作用 する荷重を設定し，外部事象防護対象施設が安全機能を損なわな いよう，それぞれの施設の設置状況等を考慮して影響評価を実施 し，外部事象防護対象施設が安全機能を損ならおそれがある場合 は，影響に応じた防護措置その他の適切な措置を講じる設計とす る。 また，重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等 の安全機能と同時にその機能を損なわない設計とする。 さらに，外部事象防護対象施設に波及的影響を及ぼす可能性が ある施設の影響及び竜巻の随伴事象による影響について考慮し た設計とする。 なお，定期的に新知見の確認を行い，新知見が得られた場合に評価を行うことを保安規定に定めて管理する。 （a）影響評価における荷重の設定 構造強度評価においては，風圧力による荷重，気圧差による荷重及び飛来物の衝撃荷重を組み合わせた設計竜巻荷重並び に竜巻以外の荷重を適切に組み合わせた設計荷重を設定する。風圧力による荷重及び気圧差による荷重としては，設計竜巻 の特性値に基づいて設定する。 飛来物の衝撃荷重としては，設置（変更）許可を受けた設計

	変更前	変更後
$$		L，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，浮き上がり若しくは横滑りを拘束することにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑り を拘束する車両の重大事故等対処設備のらち，地震時の移動等 を考慮して地震後の機能を維持する設備は，重大事故等に対処 するために必要な機能を損なわないよう，余長を有する固縛で拘束する。 屋内の重大事故等対処設備は，竜巻による風圧力による荷重 に対し，設計基準事故対処設備等の安全機能と同時に重大事故等に対処するために必要な機能を損なわないように，重大事故等対処設備を内包する施設により防護する設計とすることを基本とする。 防護措置として設置する防護対策施設としては，竜巻防護ネ ット（ネット（金網部）（硬鋼線材：線径 $\phi 4 \mathrm{~mm}$ ，網目寸法 50 mm及び 40 mm ），防護板（炭素鋼：板厚 8 mm 以上）及び支持部材に より構成する。）及び竜巻防護鋼板（防護鋼板（炭素鋼：板厚 8 mm 以上）及び架構により構成する。）を設置し，内包する外部事象防護対象施設の機能を損なわないよう，外部事象防護対象施設の機能喪失に至る可能性のある飛来物が外部事象防護対象施設に衝突することを防止する設計とする。防護対策施設 は，地震時において外部事象防護対象施設に波及的影響を及ぼ さない設計とする。 外部事象防護対象施設及び重大事故等対処設備を内包する施設については，設計荷重に対する構造強度評価を実施し，内

	変更前	変更後
$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{\sim}{\infty} \end{aligned}$		び重大事故等対処設備に竜巻による随伴事象の影響を及ぼさ ない設計とする。竜巻随伴による火災に対しては，火災による損傷の防止における想定に包絡される設計とする。また，竜巻随伴による溢水に対しては，溢水による損傷の防止における溢水量の想定に包絡される設計とする。さらに，竜巻随伴による外部電源喪失に対しては，非常用ディーゼル発電機による電源供給が可能な設計とする。 b．火山 外部事象防護対象施設は，発電所の運用期間中において発電所 の安全性に影響を及ぼし得る火山事象として設置（変更）許可を受けた降下火砕物の特性を設定し，その降下火砕物が発生した場合においても，外部事象防護対象施設が安全機能を損ならおそれ がない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。 なお，定期的に新知見の確認を行い，新知見が得られた場合に評価することを保安規定に定めて管理する。 （a）防護設計における降下火砕物の特性の設定 設計に用いる降下火砕物は，設置（変更）許可を受けた層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿润状態）と設定する。 （b）降下火砕物に対する防護対策

	変更前	変更後
		降下火砕物の影響を考慮する施設は，降下火哗物による「直接的影響」及び「間接的影響」に対して，以下の適切な防護措置を講じることで安全機能を損ならおそれがない設計とする。 イ．直接的影響に対する設計方針 （イ）構造物への荷重 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，屋外に設置してい る施設及び外部事象防護対象施設を内包する施設につい て，降下火砕物が堆積しやすい構造を有する場合には荷重 による影響を考慮する。 これらの施設については，降下火砕物を除去することに より，降下火砕物による荷重並びに火山と組み合わせる積雪及び風（台風）の荷重を短期的な荷重として考慮し，機能を損ならおそれがないよう構造健全性を維持する設計 とする。 なお，降下火砕物が長期的に堆積しないよう当該施設に堆積する降下火砕物を適宜除去することを保安規定に定 めて管理する。 屋内の重大事故等対処設備については，降下火砕物によ る短期的な荷重により機能を損なわないように，降下火砕物による組合せを考慮した荷重に対し安全裕度を有する建屋内に設置する設計とする。 屋外の重大事故等対処設備については，降下火砕物によ る荷重により機能を損なわないように，降下火砕物を適宜

	変更前	変更後
$\begin{aligned} & \stackrel{\omega}{\underset{~}{t}} \\ & \stackrel{\vdots}{\circ} \end{aligned}$		なお，降下火磼物による中央制御室の大気污染を防止す
		るよう事故時運転モードへの切替え等を保安規定に定め
		て管理する。
		（ ）絶縁低下
		外部事象防護対象施設等及び外部事象防護対象施設等
		に波及的影響を及ぼし得る施設のらち，空気を取り込む機
		構を有する電気系及び計測制御系の盤については，降下火
		磼物に対し，機能を損ならおそれがないよう，計測制御用
		電源設備（無停電電源装置）及び非常用所内電気設備（所
		内低圧系統）の設置場所の非常用換気空調系にバグフィル
		夕を設置することにより，降下火砕物が侵入しにくい設計
		とする。
		なお，降下火砕物による電気系及び計測制御系の盤の絶
		縁低下を防止するようバグフィルタの取替え又は清掃す
		ることを保安規定に定めて管理する。
		口．間接的影響に対する設計方針
		降下火砕物による間接的影響である長期（7日間）の外部
		電源喪失及び発電所外での交通の途絶によるアクセス制限
		事象に対し，原子炉及び使用済燃料プールの安全性を損なわ
		ないようにするために，7 日間の電源供給が継続できるよ
		ら，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼ
		ル発電機を含む。）の燃料を貯蔵するための軽油タンク及び
		燃料を移送するための燃料移送ポンプ等を降下火砕物の影
		響を受けないよら設置する設計とする。

	変更前	変更後
$$		c．外部火災 想定される外部火災において，火災源を発電所敷地内及び敷地外に設定し外部事象防護対象施設に係る温度や距離を算出し，そ れらによる影響評価を行い，最も厳しい火災が発生した場合にお いても安全機能を損なわない設計とする。 外部事象防護対象施設は，防火帯の設置，離隔距離の碓保，建屋による防護によって，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，防火帯により防護することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。 外部火災の影響については，定期的な評価の実施を保安規定に定めて管理する。 （a）防火帯幅の設定に対する設計方針 自然現象として想定される森林火災については森林火災シ ミュレーション解析コードを用いて求めた最大火線強度 （ $4,428 \mathrm{~kW} / \mathrm{m}$ ）から設定し，設置（変更）許可を受けた防火帯 （約 20m）を敷地内に設ける設計とする。 また，防火帯は延焼防止効果を損なわない設計とし，防火帯 に可燃物を含む機器等を設置する場合は必要最小限とする。 （b）発電所敷地内の火災•爆発源に対する設計方針 火㷋•爆発源として，森林火災，発電所敷地内に設置する屋外の危険物タンク，危険物貯蔵所，常時危険物を貯蔵する一般

a．風（台風）
安全機能を有する構築物，系統及び機器は，風荷重を「建築基準法」に基づき設定し，安全機能を有する構築物，系統及び機器及びそれらの施設を内包する建屋の構造健全性を確保すること で，その安全性を損なうおそれがない設計とする。

変更前

変更前
a．風（台風）
安全機能を有する構築物，系統及び機器は，風荷重を「建築基
準法」に基づき設定し，安全機能を有する構築物，系統及び機器
及びそれらの施設を内包する建屋の構造健全性を確保すること

b．凍結
安全機能を有する構築物，系統及び機器は，凍結に対して，最低気温を考慮し，建屋内への設置又は屋外機器で涷結のおそれの あるものは凍結防止対策を行う設計とする。

変更後

制を保安規定に定めて管理する。
主要道路，鉄道線路，一般航路及び石油コンビナート施設は離隔距離を確保することで事故等による火災に伴う発電所へ の有毒ガスの影響がない設計とする。
d．風（台風）
外部事象防護対象施設は，風荷重を「建築基準法」に基づき設定し，外部事象防護対象施設及び外部事象防護対象施設を内包す る建屋の構造健全性を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。

重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。
e．凍結
外部事象防護対象施設は，設計基準温度による凍結に対して，屋内施設については換気空調系により環境温度を維持し，屋外施設については保温等の涷結防止対策を必要に応じて行うことに より，安全機能を損なわない設計とする。

重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。

変更前	変更後
c．降水 安全機能を有する構造物，系統及び機器は，降水による浸水に対して，観測記録を上回る排水能力を有する構内排水路を設けて海域へ排水を行ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域へ の排水により，安全機能を有する構築物，系統及び機器は及びそ れらの施設を内包する建屋の構造健全性を確保することで，その安全性を損ならおそれがない設計とする。 d．積雪 安全機能を有する構造物，系統及び機器は，積雪荷重を発電所 の最寄りの気象官署である石巻特別地域気象観測所の観測記録 により設定し，安全機能を有する構造物，系統及び機器及びそれ らの施設を内包する建屋の構造健全性を確保することで，その安全機能を損なわない設計とする。	f．降水 外部事象防護対象施設は，降水による浸水に対して，設計基準降水量を上回る排水能力を有する構内排水路による海域への排水及び建屋止水処置を行ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域へ の排水により，外部事象防護対象施設及び外部事象防護対象施設 を内包する建屋の構造健全性を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。 g．積雪 外部事象防護対象施設は，発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録に基づき設定した設計基準積雪量による積雪荷重に対して，機械的強度を有すること，また，閉塞に対して，非常用換気空調系の給排気口を設計基準積雪量よ り高所に設置することにより，安全機能を損なわない設計とす る。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮すること，及び除雪の実施により，設計基準事故対処設備等の安全機能と同時に

変更前	変更後
e．落雷 安全機能を有する構造物，系統及び機器は，発電所の雷害防止対策として，「建築基準法」に基づき原子炉建屋等への避雷針の設置を行らとともに，雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サージ侵入の抑制を図 る回路設計を行ら設計とする。	その機能を損なわない設計とする。 なお，除雪を適宜実施することを保安規定に定めて管理する。 h．落雷 外部事象防護対象施設は，発電所の雷害防止対策として，原子炬建屋等への避雷針の設置を行うとともに，設計基準電流值によ る雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サージ侵入の抑制を図る回路設計を行らこ とにより，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必要に応じ避雷設備又は接地設備 により防護することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。
f．生物学的事象 安全機能を有する構造物，系統及び機器は，生物学的事象に対 して，海生生物であるクラゲ等の発生を考慮して除塵装置及び海水ストレーナを設置し，必要に応じて塵芥を除去する設計とす る。また，小動物の侵入に対して，屋内施設は建屋止水処置によ り，屋外施設は，端子箱貫通部の閉止処置を行ら設計とする。	i．生物学的事象 外部事象防護対象施設は，生物学的事象に対して，海生生物で あるクラゲ等の発生を考慮して除塵装置及び海水ストレーナを設置し，必要に応じて塵芥を除去する設計とする。また，小動物 の侵入に対して，屋内施設は建屋止水処置等により，屋外施設は，端子箱貫通部の閉止処置を行うことにより，安全機能を損なわな い設計とする。 重大事故等対処設備は，生物学的事象に対して，小動物の侵入 を防止し，海生生物に対して，侵入を防止する又は予備を有する ことにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。

変更前	変更後
g．高潮 安全機能を有する構築物，系統及び機器は，高潮の影響を受け ない敷地高さ（ 0. P．+3.5 m ）以上に設置することにより，高潮に より影響を受けることがない設計とする。 （2）人為事象 a．電磁的障害 安全機能を有する構造物，系統及び機器は，電磁波の侵入を防止する設計とする。	j．高潮 外部事象防護対象施設及び重大事故等対処設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（0．P．＋3．5m）以上に設置することにより，高潮により影響を受けることがない設計とする。 （2）人為事象 a．船舶の衝突 外部事象防護対象施設は，航路からの離隔距離を確保するこ と，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突 して止まること及び呑み口が広く，取水性を損なわないことか ら，船舶の衝突により安全機能を損なわない設計とする。 重大事故等対処設備は，航路からの離隔距離を確保すること，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び設計基準事故対処設備等と位置的分散を図り設置することにより，船舶の衝突により取水性を損なわない設計と する。 b．電磁的障害 外部事象防護対象施設及び重大事故等対処設備のうち電磁波 に対する考慮が必要な機器は，電磁波によりその機能を損なうこ とがないよう，ラインフィルタや絶縁回路の設置，又は鋼製筐体 や金属シールド付ケーブルの適用等により，電磁波の侵入を防止 する設計とする。 c．航空機の墜落 重大事故等対処設備は，建屋内に設置するか，又は屋外におい

変更前	変更後
	て設計基準事故対処設備等と位置的分散を図り設置する。
3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針につい ては，火災防護設備の基本設計方針に基づく設計とする。	3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針につい ては，火災防護設備の基本設計方針に基づく設計とする。
－	4．溢水等 4.1 溢水等による損傷の防止 原子炉冷却系統の溢水等による損傷の防止の基本設計方針について は，浸水防護施設の基本設計方針に基づく設計とする。
4．設備に対する要求 4.1 安全設備及び設計基準対象施設 4．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度 を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時に おいても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御 できる能力を有する設計とする。 （2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質	5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度 を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時に おいても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御 できる能力を有する設計とする。 （2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質

を含む液体があふれ出た場合においては，系統外に漏えいさせるこ となく，各建屋等に設けられた機器ドレン，床ドレン等のサンプ又 はタンクに収集し，液体廃棄物処理設備に送水する設計とする。

4．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
設置許可基準規則第 12 条第 2 項に規定される「安全機能を有す る系統のうち，安全機能の重要度が特に高い安全機能を有するも の」は，当該系統を構成する機器に「（2）単一故障」にて記載す る単一故障が発生した場合であって，外部電源が利用できない場合 においても，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及 び独立性を備える設計とする。

変更後

を含む液体があふれ出た場合においては，系統外に漏えいさせるこ となく，各建屋等に設けられた機器ドレン，床ドレン等のサンプ又 はタンクに収集し，液体廃棄物処理設備に送水する設計とする。

5．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
設置許可基準規則第 12 条第 2 項に規定される「安全機能を有す る系統のうち，安全機能の重要度が特に高い安全機能を有するも の」は，当該系統を構成する機器に「（2）単一故障」にて記載す る単一故障が発生した場合であって，外部電源が利用できない場合 においても，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及 び独立性を備える設計とする。

重大事故等対処設備は，共通要因として，環境条件，自然現象，発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為に よるもの（以下「人為事象」という。），溢水，火災及びサポート系 の故障を考慮する。

発電所敷地で想定される自然現象として，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。

自然現象の組合せについては，地震，津波，風（台風），積雪及 び火山の影響を考慮する。

人為事象として，飛来物（航空機落下），爆発，近隣工場等の火

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		災，危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及 び故意による大型航空機の衝突その他のテロリズムを選定する。 故意による大型航空機の衝突その他のテロリズムについては，可搬型重大事故等対処設備による対策を講じることとする。 原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」という。）については，地震，津波，火災及び外部か らの衝撃による損傷を防止できる設計とする。 重大事故緩和設備についても，共通要因の特性を踏まえ，可能な限り多様性を確保し，位置的分散を図ることを考慮する。 a．常設重大事故等対処設備 常設重大事故防止設備は，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と共通要因に よって同時にその機能が損なわれるおそれがないよう，共通要因 の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮 して適切な措置を講じる設計とする。ただし，常設重大事故防止設備のらち，計装設備について，重大事故等に対処するために監視することが必要なパラメータの計測が困難となった場合に当該パラメータを推定するために必要なパラメータは，異なる物理量又は測定原理とする等，重大事故等に対処するために監視する ことが必要なパラメータに対して可能な限り多様性を有する方法により計測できる設計とするとともに，可能な限り位置的分散 を図る設計とする。 環境条件に対しては，想定される重大事故等が発生した場合に

	変更前	変更後
$\begin{aligned} & 0 \\ & \underset{7}{1} \\ & \stackrel{1}{0} \end{aligned}$		する設計とする。 生物学的事象のらちネズミ等の小動物に対して屋外の常設重大事故防止設備は，侵入防止対策により重大事故等に対処するた めに必要な機能が損なわれるおそれのない設計とする。生物学的事象のらちクラゲ等の海生生物からの影響を受けるおそれのあ る常設重大事故防止設備は，侵入防止対策により重大事故等に対処するための必要な機能が損なわれるおそれのない設計とする。 高潮に対して常設重大事故防止設備（非常用取水設備を除く。） は，高潮の影響を受けない敷地高さに設置する。 飛来物（航空機落下）に対して常設重大事故防止設備は，設計基準事故対処設備等と同時にその機能が損なわれないように，設計基準事故対処設備等と位置的分散を図り設置する。 常設重大事故緩和設備についても，共通要因の特性を踏まえ，可能な限り上記を考慮して多様性，位置的分散を図る設計とす る。 サポート系の故障に対しては，系統又は機器に供給される電力，空気，油及び泠却水を考慮し，常設重大事故防止設備は設計基準事故対処設備等と異なる駆動源，泠却源を用いる設計，又は駆動源，冷却源が同じ場合は別の手段が可能な設計とする。また，常設重大事故防止設備は設計基準事故対処設備等と可能な限り異なる水源をもつ設計とする。 b．可搬型重大事故等対処設備 可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と共通要因によって同時にその機能が損なわ

	変更前	変更後
$\begin{aligned} & \stackrel{0}{\sim} \\ & \underset{\sim}{t} \end{aligned}$		型重大事故等対処設備は，予備を有する設計とする。 高潮に対して可搬型重大事故等対処設備は，高潮の影響を受け ない敷地高さに保管する設計とする。 飛来物（航空機落下）及び故意による大型航空機の衝突その他 のテロリズムに対して，屋内の可搬型重大事故等対処設備は，可能な限り設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計とする。 屋外に保管する可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備が設置されている建屋等 から 100 m 以上の離隔距離を確保するとともに，当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。 サポート系の故障に対しては，系統又は機器に供給される電力，空気，油及び冷却水を考慮し，可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と異なる駆動源，泠却源を用いる設計とするか，駆動源，冷却源が同じ場合 は別の手段が可能な設計とする。また，水源についても可能な限 り，異なる水源を用いる設計とする。 c．可搬型重大事故等対処設備と常設重大事故等対処設備の接続口 原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によって接続するこ

	変更前	変更後
$\begin{aligned} & \underset{\sim}{\underset{\omega}{t}} \\ & \underset{\sim}{t} \end{aligned}$		とができなくなることを防止するため，それぞれ互いに異なる複数の場所に設置する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合に おける温度，放射線，荷重及びその他の使用条件において，その機能を確実に発揮できる設計とするとともに，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。重大事故等時の環境条件における健全性については，「5．1．5 環境条件等」に基づく設計とする。風（台風），涷結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し，機能が損なわれない設計とする。 地震に対して接続口は，「1．地盤等」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。 地震，津波及び火災に対して接続口は，「2．1 地震による損傷 の防止」，「2．2 津波による損傷の防止」及び「3．1 火災による損傷の防止」に基づく設計とする。 溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。 地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。 風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び故意による大型航空機 の衝突その他のテロリズムに対して，接続口は，建屋の異なる面 の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置

変更前

4．1．3 悪影響防止等

（1）飛来物による損傷の防止
設計基準対象施設に属する設備は，蒸気タービン，発電機及び内部発生エネルギの高い流体を内蔵する弁の破損及び配管の破断，高速回転機器の破損に伴う飛散物により安全性を損なわない設計と する。

発電用原子炉施設の安全性を損なわないよう蒸気タービン及び発電機は，破損防止対策等を行うとともに，原子力委員会原子炉安全審査会「タービンミサイル評価について」により，タービンミサ イル発生時の対象物を破損する確率が 10^{-7} 回／炉•年以下となるこ とを確認する。

高温高圧の配管については，材料選定，強度設計に十分な考慮を払う。さらに，安全性を高めるために，原子炉格納容器内で想定さ れる配管破断が生じた場合，破断口からの原子炉冷却材流出による ジェット噴流による力に耐える設計とする。また，ジェット反力に よるホイッピングで原子炉格納容器が損傷しないよう配置上の考慮を払うとともに，レストレイント等の配管ホイッピング防止対策 を設ける設計とする。

また，その他の高速回転機器が損壊し，飛散物とならないように保護装置を設けること等によりオーバースピードとならない設計 とする。

変更後

て機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。

5．1．3 悪影響防止等
（1）飛来物による損傷の防止
設計基準対象施設に属する設備は，蒸気タービン，発電機及び内部発生エネルギの高い流体を内蔵する弁の破損及び配管の破断，高速回転機器の破損に伴う飛散物により安全性を損なわない設計と する。

発電用原子炉施設の安全性を損なわないよう蒸気タービン及び発電機は，破損防止対策等を行うとともに，原子力委員会原子炉安全審査会「タービンミサイル評価について」により，タービンミサ イル発生時の対象物を破損する確率が 10^{-7} 回／炉•年以下となるこ とを確認する。

高温高圧の配管については，材料選定，強度設計に十分な考慮を払う。さらに，安全性を高めるために，原子炉格納容器内で想定さ れる配管破断が生じた場合，破断口からの原子炉冷却材流出による ジェット噴流による力に耐える設計とする。また，ジェット反力に よるホイッピングで原子炉格納容器が損傷しないよう配置上の考慮を払らとともに，レストレイント等の配管ホイッピング防止対策 を設ける設計とする。

また，その他の高速回転機器が損壊し，飛散物とならないように保護装置を設けること等によりオーバースピードとならない設計 とする。

変更前	変更後
損傷防止措置を行ら場合，想定される飛散物の発生箇所と防護対象機器の距離を十分にとる設計とし，又は飛散物の飛散方向を考慮 し，配置上の配慮又は多重性を考慮した設計とする。 （2）共用 安全施設を発電用原子炉施設間で共用する場合には，発電用原子炉施設の安全性を損なわない設計とする。	損傷防止措置を行ら場合，想定される飛散物の発生箇所と防護対象機器の距離を十分にとる設計とし，又は飛散物の飛散方向を考慮 し，配置上の配慮又は多重性を考慮した設計とする。 （2）共用 重要安全施設は，発電用原子炉施設間で原則共用しないものとす るが，安全性が向上する場合は，共用することを考慮する。 なお，発電用原子炬施設間で共用する重要安全施設はないことか ら，共用することを考慮する必要はない。 安全施設（重要安全施設を除く。）を共用する場合には，発電用原子炉施設の安全性を損なわない設計とする。 常設重大事故等対処設備の各機器については， 2 以上の発電用原子灲施設において共用しない設計とする。 （3）相互接続 重要安全施設は，発電用原子炉施設間で原則相互に接続しないも のとするが，安全性が向上する場合は，相互に接続することを考慮 する。 なお，発電用原子炉施設間で相互に接続する重要安全施設はない ことから，相互に接続することを考慮する必要はない。 安全施設（重要安全施設を除く。）を相互に接続する場合には，発電用原子炉施設の安全性を損なわない設計とする。 （4）悪影響防止 重大事故等対処設備は，発電用原子炉施設（他号機を含む。）内 の他の設備（設計基準対象施設及び当該重大事故等対処設備以外の重大事故等対処設備）に対して悪影響を及ぼさない設計とする。

	変更前	変更後
		て，想定する事象及びその事象の進展等を考慮し，重大事故等時に必要な目的を果たすために，事故対応手段としての系統設計を行 ら。重大事故等の収束は，これらの系統の組合せにより達成する。 「容量等」とは，ポンプ流量，タンク容量，伝熱容量，并吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，作動信号の設定値等とする。 常設重大事故等対処設備のらち設計基準対象施設の系統及び機器を使用するものについては，設計基準対象施設の容量等の仕様 が，系統の目的に応じて必要となる容量等に対して十分であること を確認した上で，設計基準対象施設の容量等の仕様と同仕様の設計 とする。 常設重大事故等対処設備のうち設計基準対象施設の系統及び機器を使用するもので，重大事故等時に設計基準対象施設の容量等を補う必要があるものについては，その後の事故対応手段と合わせ て，系統の目的に応じて必要となる容量等を有する設計とする。 常設重大事故等対処設備のうち重大事故等への対処を本来の目的として設置する系統及び機器を使用するものについては，系統の目的に応じて必要な容量等を有する設計とする。 （2）可搬型重大事故等対処設備 可搬型重大事故等対処設備は，想定される重大事故等の収束にお いて，想定する事象及びその事象の進展を考慮し，事故対応手段と しての系統設計を行う。重大事故等の収束は，これらの系統の組合 せにより達成する。 「容量等」とは，ポンプ流量，タンク容量，伝熱容量，発電機容

変更前	変更後
4．1．4 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び冷却材の性状を考慮し，十分安全側の条件を与えることによ り，これらの条件下においても期待されている安全機能を発揮でき る設計とする。	5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び泠却材の性状を考慮し，十分安全側の条件を与えることによ り，これらの条件下においても期待されている安全機能を発揮でき る設計とする。 重大事故等対処設備は，想定される重大事故等が発生した場合に おける温度，放射線，荷重及びその他の使用条件において，その機能が有効に発揮できるよう，その設置場所（使用場所）又は保管場所に応じた耐環境性を有する設計とするとともに，操作が可能な設計とする。 重大事故等時の環境条件については，重大事故等時における温度 （環境温度及び使用温度），放射線及び荷重に加えて，その他の使用条件として環境圧力，湿度による影響，屋外の天候による影響（凍結及び降水），重大事故等時に海水を通水する系統への影響，自然現象による影響，人為事象の影響，周辺機器等からの悪影響及び冷却材の性状（原子炉冷却材中の破損物等の異物を含む。）の影響を考慮する。 荷重としては，重大事故等が発生した場合における機械的荷重に加えて，環境圧力，温度及び自然現象による荷重を考慮する。 自然現象について，重大事故等時に重大事故等対処設備に影響を

（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重
安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及び湿度による影響，放射線 による影響，屋外の天候による影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。

変更後
与えるおそれがある事象として，地震，風（台風），凍結，降水及 び積雪を選定する。これらの事象のうち，凍結及び降水については，屋外の天候による影響として考慮する。

自然現象による荷重の組合せについては，地震，風（台風）及び積雪の影響を考慮する。

これらの環境条件のうち，重大事故等時における環境温度，環境圧力，湿度による影響，屋外の天候による影響（凍結及び降水），重大事故等時の放射線による影響及び荷重に対しては，重大事故等対処設備を設置（使用）又は保管する場所に応じて，「（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候 による影響（凍結及び降水）並びに荷重」に示すように設備分類ご とに必要な機能を有効に発揮できる設計とする。
（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重

安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及び湿度による影響，放射線 による影響，屋外の天候による影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。

原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。 また，地震による荷重を考慮して，機能を損なわない設計とする。操作は中央制御室から可能な設計とする。

原子炉建屋原子炉棟内の重大事故等対処設備は，想定される重大事故等時における環境条件を考慮した設計とする。また，地震によ

	変更前	変更後
$\begin{aligned} & \text { u } \\ & \stackrel{1}{7} \\ & \stackrel{1}{\sim} \end{aligned}$		る荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 原子炬建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計 とする。 インターフェイスシステム LOCA 時，使用済燃料プールにおける重大事故に至るおそれのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備については，これらの環境条件を考慮し た設計とするかっこれらの環境影響を受けない区画等に設置する。 特に，使用済燃料プール監視カメラは，使用済燃料プールに係る重大事故等時に使用するため，その環境影響を考慮して，カメラと一体の冷却装置により泠却することで耐環境性向上を図る設計と する。 屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作 は，中央制御室，離れた場所又は設置場所で可能な設計とする。 また，地震，風（台風）及び積雪の影響による荷重を考慮し，機

原子炉格納容器内の安全施設は，設計基準事故等時に想定される圧力，温度等に対して，格納容器スプレイ水による影響を考慮して も，その機能を発揮できる設計とする。

安全施設において，主たる流路の機能を維持できるよう，主たる流路に影響を与える範囲について，主たる流路と同一又は同等の規格で設計する。
（2）海水を通水する系統への影響
海水を通水する系統への影響に対しては，常時海水を通水する，海に設置する又は海で使用する安全施設は，耐腐食性材料を使用す る。常時海水を通水するコンクリート構造物については，腐食を考慮した設計とする。

変更後

能を損なわない設計とするとともに，可搬型重大事故等対処設備に ついては，必要により当該設備の落下防止，転倒防止，固縛等の措置をとる。

積雪の影響については，必要により除雪の措置を講じることを保安規定に定めて管理する。

屋外の重大事故等対処設備は，重大事故等時において，万が一，使用中に機能を喪失した場合であっても，可搬型重大事故等対処設備によるバックアップが可能となるよう，位置的分散を考慮して可搬型重大事故等対処設備を複数保管する設計とする。

原子炉格納容器内の安全施設及び重大事故等対処設備は，設計基準事故等及び重大事故等時に想定される圧力，温度等に対して，格納容器スプレイ水による影響を考慮しても，その機能を発揮できる設計とする。

安全施設及び重大事故等対処設備において，主たる流路の機能を維持できるよう，主たる流路に影響を与える範囲について，主たる流路と同一又は同等の規格で設計する。
（2）海水を通水する系統への影響
海水を通水する系統への影響に対しては，常時海水を通水する，海に設置する又は海で使用する安全施設及び重大事故等対処設備 は耐腐食性材料を使用する設計とする。常時海水を通水するコンク リート構造物については，腐食を考慮した設計とする。

また，使用時に海水を通水する重大事故等対処設備は，海水の影響を考慮した設計とする。

原則，淡水を通水するが，海水も通水する可能性のある重大事故
（3）電磁的障害
電磁的障害に対しては，安全施設は，通常運転時，運転時の異常 な過渡変化時及び設計基準事故が発生した場合においても，電磁波 によりその機能が損なわれない設計とする。

変更前

変更後

等対処設備は，可能な限り淡水を優先し，海水通水を短期間とする ことで，設備への海水の影響を考慮する。また，海から直接取水す る際の異物の流入防止を考慮した設計とする。
（3）電磁的障害
電磁的障害に対しては，安全施設は，通常運転時，運転時の異常 な過渡変化時及び設計基準事故が発生した場合においても，電磁波 によりその機能が損なわれない設計とする。

人為事象のうち重大事故等対処設備に影響を与えるおそれがあ る事象として選定する電磁的障害に対しては，重大事故等対処設備 は，重大事故等時においても電磁波により機能を損なわない設計と する。
（4）周辺機器等からの悪影響
安全施設は，地震，火災，溢水及びその他の自然現象並びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよう措置を講じた設計とする。

重大事故等対処設備は，事故対応のために配置•配備している自主対策設備を含む周辺機器等からの悪影響により機能を損なわな い設計とする。周辺機器等からの悪影響としては，地震，火災及び溢水による波及的影響を考慮する。

溢水に対しては，重大事故等対処設備は，想定される溢水により機能を損なわないように，重大事故等対処設備の設置区画の止水対策等を実施する。

地震による荷重を含む耐震設計については，「2．1 地震による損傷の防止」に，火災防護については，「3．1 火災による損傷の防止」

変更前

（5）設置場所における放射線の影響
安全施設の設置場所は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合においても操作及び復旧作業に支障がないように，遮蔽の設置や線源からの離隔により放射線量が高くなるおそれの少ない場所を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。
（6）冷却材の性状
原子炉冷却材を内包する安全施設は，水質管理基準を定めて水質

変更後

に基づく設計とし，それらの事象による波及的影響により重大事故等に対処するために必要な機能を損なわない設計とする。
（5）設置場所における放射線の影響
安全施設の設置場所は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合においても操作及び復旧作業に支障がないように，遮蔽の設置や線源からの離隔により放射線量が高くなるおそれの少ない場所を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。

重大事故等対処設備は，想定される重大事故等が発生した場合に おいても操作及び復旧作業に支障がないように，放射線量の高くな るおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等により当該設備の設置場所で操作可能な設計，放射線の影響 を受けない異なる区画若しくは離れた場所から遠隔で操作可能な設計，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。

可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等により，当該設備の設置及び常設設備との接続が可能な設計とする。
（6）冷却材の性状
原子炉冷却材を内包する安全施設は，水質管理基準を定めて水質

変更前	変更後
を管理することにより異物の発生を防止する設計とする。 安全施設は，系統外部から異物が流入する可能性のある系統に対 しては，ストレーナ等を設置することにより，その機能を有効に発揮できる設計とする。 4． 1.5 操作性及び試験•検査性	を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物が流入す る可能性のある系統に対しては，ストレーナ等を設置することによ り，その機能を有効に発揮できる設計とする。 5．1．6 操作性及び試験•検査性 （1）操作性の確保 重大事故等対処設備は，手順書の整備，訓練•教育により，想定 される重大事故等が発生した場合においても，確実に操作でき，設置変更許可申請書「十 発電用原子炉の炉心の著しい損傷その他の事故が発生した場合における当該事故に対処するために必要な施設及び体制の整備に関する事項」ハ で考慮した要員数と想定時間内で，アクセスルートの確保を含め重大事故等に対処できる設計と する。これらの運用に係る体制，管理等については，保安規定に定 めて管理する。 重大事故等対処設備は，想定される重大事故等が発生した場合に おいても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 重大事故等対処設備は，操作する全ての設備に対し，十分な操作空間を確保するとともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時 に迅速に使用できる場所に配備する。 現場操作において工具を必要とする場合は，一般的に用いられる工具又は専用の工具を用いて，確実に作業ができる設計とする。工

	変更前	変更後
		可搬型重大事故等対処設備を常設設備と接続するものについて は，容易かつ確実に接続できるように，ケーブルはボルト・ネジ接続又はより簡便な接続方式等を用い，配管は配管径や内部流体の圧力によって，大口径配管又は高圧環境においてはフランジを用い，小口径配管かつ低圧環境においてはより簡便な接続方式等を用い る設計とする。高圧窒素ガスボンベ，空気ボンベ，タンクローリ等 については，各々専用の接続方式を用いる。また，同一ポンプを接続する配管は口径を統一することにより，複数の系統での接続方式 の統一も考慮する。 想定される重大事故等が発生した場合において，可搬型重大事故等対処設備を移動•運搬し，又は他の設備の被害状況を把握するた め，発電所内の道路及び通路が確保できるよう，以下の設計とする。 屋外及び屋内において，アクセスルートは，自然現象，人為事象，溢水及び火災を想定しても，運搬，移動に支障をきたすことのない よう，迂回路も考慮して複数のアクセスルートを確保する設計とす る。 屋外及び屋内アクセスルートに影響を与えるおそれがある自然事象として，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。 屋外及び屋内アクセスルートに対する人為事象については，屋外 アクセスルートに影響を与えるおそれがある事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載し た車両，有毒がス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテロリズムに対して，迂回路も考慮した複数の

	変更前	変更後
		しては，迂回路も考慮した複数のアクセスルートを確保する設計と する。落雷に対しては，道路面が直接影響を受けることはないため， さらに生物学的事象に対しては，容易に排除可能なため，アクセス ルートへの影響はない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達することを想定した上で，可搬型重大事故等対処設備の運般に必要な幅員を碓保するこ とにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定される箇所においては，段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，自然現象のうち，湅結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレス タイヤを装着することにより，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とする。 屋内アクセスルートは，自然現象として選定する津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮による影響に対して，外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。 屋内アクセスルートは，人為事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒が ス及び船舶の衝突に対して，外部からの衝撃による損傷の防止が図 られた建屋内に確保する設計とする。 屋内アクセスルートの設定に当たつては，油内包機器による地震

（1）試験•検査性
設計基準対象施設は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし，そのために必要な配置，空間等を備え た設計とする。

変更後

随伴火災の影響や，水又は蒸気内包機器による地震随伴溢水の影響 を考慮するとともに，迂回路を含む複数のルート選定が可能な配置設計とする。
（2）試験•検査性
設計基準対象施設は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし，そのために必要な配置，空間等を備え た設計とする。

重大事故等対処設備は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検，試験又は検査 を実施できるよう，機能•性能の確認，漏えいの有無の確認，分解点検等ができる構造とし，そのために必要な配置，空間等を備えた設計とする。また，接近性を考慮して必要な空間等を備え，構造上接近又は検査が困難である箇所を極力少なくする。

設計基準対象施設及び重大事故等対処設備は，使用前事業者検査及び定期事業者検査の法定検査に加え，保全プログラムに基づく点検が実施可能な設計とする。

重大事故等対処設備は，原則系統試験及び漏えいの有無の確認が可能な設計とする。系統試験については，テストラインなどの設備 を設置又は必要に応じて準備することで試験可能な設計とする。ま た，悪影響防止の観点から他と区分する必要があるもの又は単体で機能•性能を確認するものは，他の系統と独立して機能•性能確認 が可能な設計とする。

発電用原子炉の運転中に待機状態にある重大事故等対処設備は，

| 変更前 | |
| :---: | :---: | :---: |

なお，各機器等のクラス区分の適用については，別紙「主要設備リス ト」による。

変更前
変更後
また，重大事故等クラス 3 機器であって，完成品は，以下によらず，「消防法」に基づく技術上の規格等一般産業品の規格及び基準に適合し ていることを確認し，使用環境及び使用条件に対して，要求される強度 を確保できる設計とする。

重大事故等クラス 2 容器及び重大事故等クラス 2 管のうち主要な耐圧部の溶接部の耐圧試験は，母材と同等の方法，同じ試験圧力にて実施 する。

なお，各機器等のクラス区分の適用については，別紙「主要設備リス ト」による。

5．2．1 材料について
（1）機械的強度及び化学的成分
a．クラス 1 機器，クラス 1 支持構造物及び炉心支持構造物は，そ の使用される圧力，温度，水質，放射線，荷重その他の使用条件 に対して適切な機械的強度及び化学的成分（使用中の応力その他 の使用条件に対する適切な耐食性を含む。）を有する材料を使用 する。
b．クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4管，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物は，その使用される圧力，温度，荷重その他の使用条件に対し て適切な機械的強度及び化学的成分を有する材料を使用する。
c．原子炉格納容器又は原子炉格納容器支持構造物は，その使用さ れる圧力，温度，湿度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。

変更前	変更後
d．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。 （2）破壊じん性 a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 原子炉圧力容器については，原子炉圧力容器の脆性破壊を防止 するため，中性子照射脆化の影響を考慮した最低試験温度を確認 し，適切な破壊じん性を維持できるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物 （クラス 1 管及びクラス 1 弁を支持するものを除く。），クラス 2機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物 は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験 により確認する。	d．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。 e．重大事故等クラス 3 機器は，その使用される圧力，温度，荷重 その他の使用条件に対して日本産業規格等に適合した適切な機械的強度及び化学的成分を有する材料を使用する。 （2）破壊じん性 a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 原子炉圧力容器については，原子炉圧力容器の脆性破壊を防止 するため，中性子照射脆化の影響を考慮した最低試験温度を確認 し，適切な破壊じん性を維持できるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物 （クラス 1 管及びクラス 1 弁を支持するものを除く。），クラス 2機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 重大事故等クラス 2 機器のらち，原子炉圧力容器については，

変更前

c．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。
（3）非破壊試験
クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），ク ラス 2 機器（鋳造品に限る。）及び炉心支持構造物に使用する材料 は，非破壊試験により有害な欠陥がないことを確認する。

4．2．2 構造及び強度について
（1）延性破断の防止
a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子炉格納容器及び炉心支持構造物は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」という。） において，全体的な変形を弾性域に抑える設計とする。
b．クラス 1 支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態IIにおいて，全体的な変形を弾性域に抑える設計とする。
c．クラス 1 支持構造物であって，クラス 1 容器に溶接により取 り付けられ，その損壊により，クラス 1 容器の損壊を生じさせる

変更後

重大事故等時における温度，放射線，荷重その他の使用条件に対 して損傷するおそれがない設計とする。
c．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。
（3）非破壊試験
クラス 1 機器，クラス 1 支持構造物（棒及びボルトに限る。），ク ラス 2 機器（鋳造品に限る。），炉心支持構造物及び重大事故等クラ ス 2 機器（鋳造品に限る。）に使用する材料は，非破壊試験により有害な欠陥がないことを確認する。

5．2．2 構造及び強度について
（1）延性破断の防止
a．クラス 1 機器，クラス 2 機器，クラス 3 機器，原子灲格納容器，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等ク ラス 3 機器は，最高使用圧力，最高使用温度及び機械的荷重が負荷されている状態（以下「設計上定める条件」という。）におい て，全体的な変形を弾性域に抑える設計とする。
b．クラス 1 支持構造物及び原子炉格納容器支持構造物は，運転状態 I 及び運転状態IIにおいて，全体的な変形を弾性域に抑える設計とする。
c．クラス 1 支持構造物であって，クラス 1 容器に溶接により取 り付けられ，その損壊により，クラス 1 容器の損壊を生じさせる

おそれがあるものは，b．にかかわらず，設計上定める条件におい て，全体的な変形を弾性域に抑える設計とする。
d．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 弁，クラス 1 支持構造物，原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物にあっては，運転状態IIIにお いて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
e．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ず る部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。
f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。
g．クラス 1 容器（ボルトその他の固定用金具，オメガシールその他のシールを除く。），クラス 1 支持構造物（クラス 1 容器に溶接 により取り付けられ，その損壊により，クラス 1 容器の損壊を生 じさせるおそれがあるものに限る。）及び原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態において，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的 な塑性変形に止まるよう設計する。

変更後

おそれがあるものは，b．にかかわらず，設計上定める条件におい て，全体的な変形を弾性域に抑える設計とする。
d．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 弁，クラス 1 支持構造物，原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物にあっては，運転状態IIIにお いて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。
e．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ず る部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。
f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。
g．クラス 1 容器（ボルトその他の固定用金具，オメガシールその他のシールを除く。），クラス 1 支持構造物（クラス 1 容器に溶接 により取り付けられ，その損壊により，クラス 1 容器の損壊を生 じさせるおそれがあるものに限る。）及び原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態において，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的 な塑性変形に止まるよう設計する。
h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑える設計とする。
i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる おそれがあるものには，運転状態I 及び運転状態IIにおいて，延性破断が生じない設計とする。
（2）進行性変形による破壊の防止
クラス 1 容器（ボルトその他の固定用金具を除く。），クラス 1管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，進行性変形が生じない設計とする。
（3）疲労破壊の防止
a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラ ス 1 支持構造物，クラス 2 管（伸縮継手を除く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，疲労破壊が生じない設計とする。

変更後

h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，運転状態 I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑える設計とする。
i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる おそれがあるものには，運転状態 I 及び運転状態IIにおいて，延性破断が生じない設計とする。
j．重大事故等クラス 2 支持構造物であって，重大事故等クラス 2機器に溶接により取り付けられ，その損壊により重大事故等クラ ス 2 機器に損壊を生じさせるおそれがあるものは，設計上定め る条件において，延性破断が生じない設計とする。
（2）進行性変形による破壊の防止
クラス 1 容器（ボルトその他の固定用金具を除く。），クラス 1管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I 及び運転状態IIにおいて，進行性変形が生じない設計とする。
（3）疲労破壊の防止
a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラ ス 1 支持構造物，クラス 2 管（伸縮継手を除く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態 IIにおいて，疲労破壊が生じない設計とする。

変更前
b．クラス 2 機器，クラス 3 機器及び原子炉格納容器の伸縮継手
は，設計上定める条件で応力が繰り返し加わる場合において，疲
労破壊が生じない設計とする。

（4）座屈による破壊の防止
a．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I，運転状態II，運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
b．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。）及びクラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊 を生じさせるおそれがあるものに限る。）は，試験状態において，座屈が生じない設計とする。
c．クラス 1 管，クラス 2 容器，クラス 2 管及びクラス 3 機器は，設計上定める条件において，座屈が生じない設計とする。
d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
e．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる

変更後

b．クラス 2 機器，クラス 3 機器，原子炉格納容器，重大事故等ク ラス 2 機器の伸縮継手及び重大事故等クラス 2 管（伸縮継手を除く。）は，設計上定める条件で応力が繰り返し加わる場合にお いて，疲労破壊が生じない設計とする。
（4）座屈による破壊の防止
a．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I，運転状態II，運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
b．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。）及びクラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊 を生じさせるおそれがあるものに限る。）は，試験状態において，座屈が生じない設計とする。
c．クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 機器，重大事故等クラス 2 容器，重大事故等クラス 2 管及び重大事故等ク ラス 2 支持構造物（重大事故等クラス 2 機器に溶接により取り付けられ，その損壊により重大事故等クラス 2 機器に損壊を生 じさせるおそれがあるものに限る。）は，設計上定める条件にお いて，座屈が生じない設計とする。
d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
e．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる

おそれがあるものには，運転状態 I 及び運転状態IIにおいて，座屈が生じないよう設計する。

4．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）につ いて

クラス 1 容器，クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 容器，クラス 3 管，クラス 4 管及び原子灲格納容器のうち主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。

- 不連続で特異な形状でない設計とする。
- 溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験に より確認する。
- 適切な強度を有する設計とする。
- 適切な溶接施工法，溶接設備及び技能を有する溶接士であること を機械試験との他の評価方法によりあらかじめ確認する。

4． 3 使用中の亀裂等による破壊の防止
クラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物及び炉心支持構造物は，使用される環境条件を踏まえ応力腐食割れに対して残留応力が影響する場合，有意な残留応力が発生すると予想される部位の応力緩和を行う。

変更後

おそれがあるものには，運転状態I 及び運転状態IIにおいて，座屈が生じないよう設計する。

5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）につ いて

クラス 1 容器，クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 容器，クラス 3 管，クラス 4 管，原子炉格納容器，重大事故等ク ラス 2 容器及び重大事故等クラス 2 管のうち主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。

- 不連続で特異な形状でない設計とする。
- 溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験に より確認する。
- 適切な強度を有する設計とする。
- 適切な溶接施工法，溶接設備及び技能を有する溶接士であること を機械試験その他の評価方法によりあらかじめ確認する。
5.3 使用中の亀裂等による破壊の防止

クラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等ク ラス 2 支持構造物は，使用される環境条件を踏まえ応力腐食割れに対 して残留応力が影響する場合，有意な残留応力が発生すると予想される

| 変更前 |
| :---: | :---: |
| 使用中のクラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス |
| 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格 |
| 納容器支持構造物及び炉心支持構造物は，亀裂その他の欠陥により破壊 |
| が引き起こされないよう，保安規定に基づき「実用発電用原子炉及びそ |
| の附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従 |
| って検査及び維持管理を行う。 |
| 使用中のクラス 1 機器の耐圧部分は，貫通する亀裂その他の欠陥が |
| 発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施 |
| 設における破壊を引き起こす亀裂その他の欠陥の解釈」 等に従って検査 |
| 及び維持管理を行う。 |

部位の応力緩和を行う。
使用中のクラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物は，亀裂その他の欠陥により破壊が引き起 こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検査及び維持管理を行う。

使用中のクラス 1 機器の耐圧部分は，貫通する亀裂その他の欠陥が発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検査及び維持管理を行う。
5.4 耐圧試験等
（1）クラス 1 機器，クラス 2 機器，クラス 3 機器，クラス 4 管及び原子炉格納容器は，施設時に，次に定めるところによる圧力で耐圧試験を行ったとき，これに耐え，かつ，著しい漏えいがないことを確認する。ただし，気圧により試験を行う場合であって，当該圧力に耐えることが碓認された場合は，当該圧力を最高使用圧力（原子炉格納容器にあっては，最高使用圧力の 0.9 倍）までに減じて著しい漏えいがないことを確認する。

なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。
a．内圧を受ける機器に係る耐圧試験の圧力は，機器の最高使用圧
（3）原子炉格納容器は，最高使用圧力の 0.9 倍に等しい気圧で気密試験を行ったとき，著しい漏えいがないことを確認する。

なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3 ）」 等に従って行う。
ただし，原子炉格納容器隔離弁の単一故障の考慮については，判定基準に適切な余裕係数を見込むかっ内側隔離弁を開とし外側隔離弁を閉として試験を実施する。
4.5 安全弁等

蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J S M E S N C 1）及び日本機械学会「発電用原子力設備規格 設計•建設規格（J S ME S N C 1－2001）及び（J SME S NC 1－2005）【事例規格】過圧防護に関する規定（NC

変更後
ことを確認する。
なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J S ME S N A 1）」等に従って実施する。

ただし，重大事故等クラス 2 機器及び重大事故等クラス 3 機器 に属する機器は使用時における圧力で試験を行うことが困難な場合は，運転性能試験結果を用いた評価等により確認する。

重大事故等クラス 3 機器であって，「消防法」に基づく技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陥がないことの確認とすることもでき るものとする。
（4）原子炉格納容器は，最高使用圧力の 0.9 倍に等しい気圧で気密試験を行ったとき，著しい漏えいがないことを確認する。

なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3 ）」 等に従って行う。

ただし，原子炉格納容器隔離弁の単一故障の考慮については，判定基準に適切な余裕係数を見込むかっ内側隔離弁を開とし外側隔離弁を閉として試験を実施する。
5.5 安全弁等

蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設及 び重大事故等対処施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J S M E S N C 1 ）及 び日本機械学会「発電用原子力設備規格 設計•建設規格（J S ME S NC1－2001）及び（J S ME S NC1－2005）【事例規格】過圧

変更前	変更後
－C C－O O 1）」に適合するよう，以下のとおり設計する。 なお，安全弁，逃がし弁，破壊板及び真空破壊弁については，施設時 に適用した告示（通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501 号）」）の規定に適合する設計と する。 安全弁及び逃がし弁（以下「4．5 安全弁等」において「安全弁等」 という。）は，確実に作動する構造を有する設計とする。 安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とす る。 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切 な材料を使用する。 設計基準対象施設に係る安全弁又は逃がし弁（以下「4．5 安全弁等」 において「安全弁」という。）のうち，補助作動装置付きの安全弁にあ つては，当該補助作動装置が故障しても系統の圧力をその最高使用圧力 の 1.1 倍以下に保持するのに必要な吹出し容量が得られる構造とする。 設計基準対象施設のうち減圧弁を有する管にあって，その低圧側の設備が高圧側の圧力に耐えられる設計となっていないもののうちクラス 1 管以外のものについては，減圧弁の低圧側の系統の健全性を維持する ために必要な容量を持つ安全弁等を 1 個以上，減圧弁に接近して設置 し，高圧側の圧力による損傷を防止する設計とする。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量	防護に関する規定（ N C－C C — O O 1 ）」に適合するよう，以下のと おり設計する。 なお，安全弁，逃がし弁，破壊板及び真空破壊弁については，施設時 に適用した告示（通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501 号）」）の規定に適合する設計と する。 安全弁及び逃がし弁（以下「5．5 安全弁等」において「安全弁等」 という。）は，確実に作動する構造を有する設計とする。 安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とす る。 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切 な材料を使用する。 設計基準対象施設及び重大事故等対処施設に係る安全弁又は逃がし弁（以下「5．5 安全弁等」において「安全弁」という。）のうち，補助作動装置付きの安全弁にあっては，当該補助作動装置が故障しても系統 の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な吹出し容量が得られる構造とする。 設計基準対象施設及び重大事故等対処施設のらち減圧弁を有する管 にあって，その低圧側の設備が高圧側の圧力に耐えられる設計となって いないもののうちクラス 1 管以外のものについては，減圧弁の低圧側 の系統の健全性を維持するために必要な容量を持つ安全弁等を 1 個以上，減圧弁に接近して設置し，高圧側の圧力による損傷を防止する設計 とする。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組 み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下

変更前	変更後
を算定する。 また，安全弁は，吹出し圧力を下回った後に，速やかに吹き止まる構造とする。 なお，クラス 1 管には減圧弁を設置しない設計とする。 原子炉圧力容器，補助ボイラー及び原子炉格納容器を除く設計基準対象施設に属する容器又は管であって，内部に過圧が生ずるおそれがある ものにあっては，過圧防止に必要な容量を持つ安全弁等を 1 個以上設置し，内部の過圧による損傷を防止する設計とする。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量 を算定する。 また，安全弁は吹出し圧力を下回った後に，速やかに吹き止まる構造 とする。 安全弁等の入口側に破壊板を設ける場合は，当該容器の最高使用圧力以下で破壊し，破壊板の破壊により安全弁等の機能を損なわないよう設計する。 設計基準対象施設に属する容器又は管に設置する安全弁等の出口側 には，破壊板を設置しない設計とする。 設計基準対象施設に属する容器として，液体炭酸がス等の安全弁等の作動を不能にするおそれのある物質を内包する容器にあっては，容器の過圧防止に必要な容量を持つ破壊板を 1 個以上設置し，内部の過圧に よる損傷を防止する設計とする。なお，容量は吹出し圧力と設置個数を適切に組み合わせることにより，容器の圧力をその最高使用圧力の 1.1倍以下に保持するのに必要な容量を算定する。	に保持するのに必要な容量を算定する。 また，安全弁は，吹出し圧力を下回った後に，速やかに吹き止まる構造とする。 なお，クラス 1 管には減圧弁を設置しない設計とする。 原子炉圧力容器，補助ボイラー及び原子炉格納容器を除く設計基準対象施設及び重大事故等対処施設に属する容器又は管であって，内部に過圧が生ずるおそれがあるものにあっては，過圧防止に必要な容量を持つ安全弁等を 1 個以上設置し，内部の過圧による損傷を防止する設計と する。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定する。 また，安全弁は吹出し圧力を下回った後に，速やかに吹き止まる構造 とする。 安全弁等の入口側に破壊板を設ける場合は，当該容器の最高使用圧力以下で破壊し，破壊板の破壊により安全弁等の機能を損なわないよう設計する。 設計基準対象施設及び重大事故等対処施設に属する容器又は管に設置する安全弁等の出口側には，破壊板を設置しない設計とする。 設計基準対象施設及び重大事故等対処設備に属する容器として，液体炭酸ガス等の安全弁等の作動を不能にするおそれのある物質を内包す る容器にあっては，容器の過圧防止に必要な容量を持つ破壊板を 1 個以上設置し，内部の過圧による損傷を防止する設計とする。なお，容量 は吹出し圧力と設置個数を適切に組み合わせることにより，容器の圧力 をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定す

変更前	変更後
なお，容器と破壊板との間に連絡管は設置しない設計とする。 設計基準対象施設に属する容器又は管に設置する安全弁等又は破壊板の入口側又は出口側に止め弁を設置する場合は，発電用原子炉の起動時及び運転中に止め弁が全開している事が確認できる設計とする。 内部が大気圧未満となることにより外面に設計上定める圧力を超え る圧力を受けるおそれがある設計基準対象施設に属する容器又は管に ついては，適切な箇所に過圧防止に必要な容量以上となる真空破壊弁を 1 個以上設置し，負圧による容器又は管の損傷を防止する設計とする。 設計基準対象施設のらち，流体に放射性物質を含む系統に設置する安全弁等，破壊板又は真空破壊弁は，放出される流体を，放射性廃棄物を一時的に貯蔵するタンクを介して廃棄物処理施設に導き，安全に処理す ることができる設計とする。 4． 6 逆止め弁 放射性物質を含む原子炬冷却材を内包する容器若しくは管又は放射性廃棄物処理設備（排気筒並びに廃棄物貯蔵設備及び換気設備を除く。） へ放射性物質を含まない流体を導く管には，逆止め弁を設ける設計と し，放射性物質を含む流体が放射性物質を含まない流体側へ逆流するこ とによる汚染拡大を防止する。 ただし，上記において，放射性物質を含む流体と放射性物質を含まな い流体を導く管が直接接続されていない場合又は十分な圧力差を有し	る。 なお，容器と破壊板との間に連絡管は設置しない設計とする。 設計基準対象施設及び重大事故等対処施設に属する容器又は管に設置する安全弁等又は破壊板の入口側又は出口側に止め弁を設置する場合は，発電用原子炉の起動時及び運転中に止め弁が全開している事が確認できる設計とする。 内部が大気圧未満となることにより外面に設計上定める圧力を超え る圧力を受けるおそれがある設計基準対象施設及び重大事故等対処施設に属する容器又は管については，適切な箇所に過圧防止に必要な容量以上となる真空破壊弁を 1 個以上設置し，負圧による容器又は管の損傷を防止する設計とする。 設計基準対象施設及び重大事故等対処施設のうち，流体に放射性物質 を含む系統に設置する安全弁等，破壊板又は真空破壊弁は，放出される流体を，放射性廃棄物を一時的に貯蔵するタンクを介して廃棄物処理施設に導き，安全に処理することができる設計とする。 5.6 逆止め弁 放射性物質を含む原子炉冷却材を内包する容器若しくは管又は放射性廃棄物処理設備（排気筒並びに廃棄物貯蔵設備及び換気設備を除く。） へ放射性物質を含まない流体を導く管には，逆止め弁を設ける設計と し，放射性物質を含む流体が放射性物質を含まない流体側へ逆流するこ とによる汚染拡大を防止する。 ただし，上記において，放射性物質を含む流体と放射性物質を含まな い流体を導く管が直接接続されていない場合又は十分な圧力差を有し

変更前	変更後
ている場合は，逆流するおそれがないため，逆止め弁の設置を不要とす る。	ている場合は，逆流するおそれがないため，逆止め弁の設置を不要とす る。
4．7 内燃機関の設計条件	5.7 内燃機関及びガスタービンの設計条件
4．7．1 設計基準対象施設	5．7．1 設計基準対象施設及び重大事故等対処施設
設計基準対象施設に施設する内燃機関（以下「内燃機関」という。）	設計基準対象施設及び重大事故等対処施設に施設する内燃機関
は，非常調速装置が作動したときに達する回転速度に対して構造上	（以下「内燃機関」という。）及び重大事故等対処施設に施設する
十分な機械的強度を有する設計とする。	ガスタービン（以下「ガスタービン」という。）は，非常調速装置
	が作動したときに達する回転速度に対して構造上十分な機械的強
	度を有する設計とする。 ガスタービンは，ガスの温度が著しく上昇した場合に燃料の流入
	を自動的に遮断する装置が動作したときに達するガス温度に対し
内燃機関の軸受は運転中の荷重を安定に支持できるものであっ	て構造上十分な熱的強度を有する設計とする。 内燃機関及びガスタービンの軸受は運転中の荷重を安定に支持
て，かつ，異常な摩耗，変形及び過熱が生じない設計とする。	できるものであって，かつ，異常な摩耗，変形及び過熱が生じない設計とする。
	ガスタービンの危険速度は，調速装置により調整可能な最小の回
	転速度から非常調速装置が作動したときに達する回転速度までの
	間に発生しないように設計する。
内燃機関の耐圧部の構造は，最高使用圧力又は最高使用温度にお	内燃機関及びガスタービンの耐圧部の構造は，最高使用圧力又は
いて発生する耐圧部分に生じる応力は当該部分に使用する材料の	最高使用温度において発生する耐圧部分に生じる応力は当該部分
許容応力以下となる設計とする。	に使用する材料の許容応力以下となる設計とする。
内燃機関を屋内その他酸素欠乏の発生のおそれのある場所に設	内燃機関を屋内その他酸素欠乏の発生のおそれのある場所に設
置するときは，給排気部を設ける設計とする。	置するときは，給排気部を設ける設計とする。

内燃機関は，その回転速度及び出力が負荷の変動により持続的に動摇することを防止する調速装置を設けるとともに，運転中に生じ た過速度その他の異常による設備の破損を防止するためっその異常 が発生した場合に内燃機関を安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。

内燃機関及びその附属設備であって過圧が生じるおそれのある ものには，適切な過圧防止装置を設ける設計とする。
内燃機関には，設備の損傷を防止するために，回転速度，潤滑油圧力及び眭滑油温度等の運転状態を計測する装置を設ける設計と する。
内燃機関の附属設備に属する容器及び管は発電用原子炉施設と して，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及び構造，安全并等，耐圧試験等の規定を満たす設計と する。

変更後
内燃機関及びガスタービンは，その回転速度及び出力が負荷の変動により持続的に動摇することを防止する調速装置を設けるとと もに，運転中に生じた過速度その他の異常による設備の破損を防止 するため，その異常が発生した場合に内燃機関及びガスタービンを安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。

内燃機関及びその附属設備であって過圧が生じるおそれのある ものには，適切な過圧防止装置を設ける設計とする。
内燃機関及びガスタービンには，設備の損傷を防止するために，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測する装置 を設ける設計とする。

内燃機関及びガスタービンの附属設備に属する容器及び管は発電用原子炉施設として，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及び構造，安全并等，耐圧試験等の規定を満たす設計とする。

5．7．2 可搬型重大事故等対処設備
可搬型の非常用発電装置の内燃機関は，流入する燃料を自動的に調整する調速装置及び軸受が異常な摩耗，変形及び過熱が生じない よう潤滑油装置を設ける設計とする。
可搬型の非常用発電装置の内燃機関は，回転速度，潤滑油圧力及 び潤滑油温度等の運転状態を計測する装置を設ける設計とする。

可搬型の非常用発電装置の内燃機関は，回転速度が著しく上昇し た場合及び泠却水温度が著しく上昇した場合等に自動的に停止す

変更前	変更後
	る設計とする。 可搬型の非常用発電装置の強度については，完成品として一般産業品規格で規定される温度試験等を実施し，定格負荷状態において十分な強度を有する設計とする。
4.8 電気設備の設計条件	5.8 電気設備の設計条件
4．8．1 設計基準対象施設	5．8．1 設計基準対象施設及び重大事故等対処施設
設計基準対象施設に施設する電気設備（以下「電気設備」といら。）	設計基準対象施設及び重大事故等対処施設に施設する電気設備
は，感電又は火災のおうれがないように接地し，充電部分に容易に	（以下「電気設備」という。）は，感電又は火災のおそれがないよ
接触できない設計とする。	うに接地し，充電部分に容易に接触できない設計とする。
電気設備は，電路を絶縁し，電線等が接続部分において電気抵抗	電気設備は，電路を絶縁し，電線等が接続部分において電気抵抗
を増加させないように端子台等により接続するほか，期待される使	を増加させないように端子台等により接続するほか，期待される使
用状態において断線のおそれがない設計とする。	用状態において断線のおそれがない設計とする。
電気設備における電路に施設する電気機械器具は，期待される使	電気設備における電路に施設する電気機㳦器具は，期待される使
用状態において発生する熱に耐えるものとし，高圧又は特別高圧の	用状態において発生する熱に耐えるものとし，高圧又は特別高圧の
電気機械器具については，可燃性の物と隔離する設計とする。 電気設備は，電流が安全かつ確実に大地に通じることができるよ	電気機械器具については，可燃性の物と隔離する設計とする。 電気設備は，電流が安全かつ確実に大地に通じることができるよ
う，適切な箇所に接地を施す設計とする。	う，適切な箇所に接地を施す設計とする。
電気設備における高圧の電路と低圧の電路とを結合する変圧器	電気設備における高圧の電路と低圧の電路とを結合する変圧器
には，適切な箇所に接地を施し，変圧器により特別高圧の電路に結	には，適切な箇所に接地を施し，変圧器により特別高圧の電路に結
合される高圧の電路には，避雷器を施設する設計とする。	合される高圧の電路には，避雷器を施設する設計とする。
電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を	電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を
施設する設計とする。	施設する設計とする。
電気設備は，他の電気設備その他の物件の機能に電気的又は磁気	電気設備は，他の電気設備その他の物件の機能に電気的又は磁気

変更前	変更後
的な障害を与えない設計とする。	的な障害を与えない設計とする。
電気設備のうち高圧又は特別高圧の電気機械器具及び母線等は，	電気設備のうち高圧又は特別高圧の電気機械器具及び母線等は，
取扱者以外の者が容易に立ち入るおそれがないよう発電所にフェ	取扱者以外の者が容易に立ち入るおそれがないよう発電所にフェ
ンス等を設ける設計とする。	ンス等を設ける設計とする。
電気設備における架空電線は，接触又は誘導作用による感電のお	電気設備における架空電線は，接触又は誘導作用による感電のお
それがなく，かつ，交通に支障を及ぼすおそれがない高さに施設す	それがなく，かつ，交通に支障を及ぼすおそれがない高さに施設す
る設計とする。	る設計とする。
電気設備における電力保安通信線は，他の電線等を損傷するおそ	電気設備における電力保安通信線は，他の電線等を損傷するおそ
れがなく，かつ，接触又は断線によって生じる混触による感電又は	れがなく，かつ，接触又は断線によって生じる混触による感電又は
火災のおそれがない設計とする。	火災のおそれがない設計とする。
電気設備のうちガス絶縁機器は，最高使用圧力に耐え，かつ，漏	電気設備のうちガス絶縁機器は，最高使用圧力に耐え，かつ，漏
えいがなく，異常な圧力を検知するとともに，使用する絶縁ガスは	えいがなく，異常な圧力を検知するとともに，使用する絶縁ガスは
可燃性，腐食性及び有毒性のない設計とする。	可燃性，腐食性及び有毒性のない設計とする。
電気設備のらち開閉器又は断路器に使用する圧縮空気装置は，最	電気設備のうち開閉器又は断路器に使用する圧縮空気装置は，最
高使用圧力に耐え，かつ，漏えいがなく，異常な圧力を検知すると	高使用圧力に耐え，かつ，漏えいがなく，異常な圧力を検知すると
ともに，圧力が上昇した場合に最高使用圧力に到達する前に圧力を	ともに，圧力が上昇した場合に最高使用圧力に到達する前に圧力を
低下させ，空気タンクの圧力が低下した場合に圧力を自動的に回復	低下させ，空気タンクの圧力が低下した場合に圧力を自動的に回復
できる機能を有し，空気タンクは耐食性を有する設計とする。	できる機能を有し，空気タンクは耐食性を有する設計とする。
電気設備のらち水素冷却式発電機は，水素の漏えい又は空気の混	電気設備のらち水素冷却式発電機は，水素の漏えい又は空気の混
入のおそれがなく，水素が大気圧で爆発する場合に生じる圧力に耐	入のおそれがなく，水素が大気圧で爆発する場合に生じる圧力に耐
える強度を有し，異常を早期に検知し警報する機能を有する設計と	える強度を有し，異常を早期に検知し警報する機能を有する設計と
する。	する。
電気設備のうち水素冷却式発電機は，軸封部から漏えいした水素	電気設備のらち水素冷却式発電機は，軸封部から漏えいした水素
を外部に放出でき，発電機内への水素の導入及び発電機内からの水	を外部に放出でき，発電機内への水素の導入及び発電機内からの水

素の外部への放出が安全にできる設計とする。
電気設備のうち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的にこれを電路から遮断する装置を施設する設計とす る。

電気設備のうち発電機及び変圧器等は，短絡電流により生じる機械的衝撃に耐え，発電機の回転する部分については非常調速装置及 びその他の非常停止装置が動作して達する速度に対し耐える設計 とする。

また，蒸気タービンに接続する発電機は，軸受又は軸に発生しう る最大の振動に対して構造上十分な機械的強度を有した設計とす る。
電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。
電気設備において，発電所の架空電線引込口及び引出口又はこれ に近接する箇所には，避雷器を施設する設計とする。電気設備における電力保安通信線は，機械的衝撃又は火災等によ り通信の機能を損なうおそれがない設計とする。
電気設備において，電力保安通信設備に使用する無線通信用アン テナを施設する支持物の材料及び構造は，風圧荷重を考慮し，倒壊 により通信の機能を損ならおそれがない設計とする。

変更後

素の外部への放出が安全にできる設計とする。
電気設備のらち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的にこれを電路から遮断する装置を施設する設計とす る。

電気設備のうち発電機及び変圧器等は，短絡電流により生じる機械的衝撃に耐え，発電機の回転する部分については非常調速装置及 びその他の非常停止装置が動作して達する速度に対し耐える設計 とする。

また，蒸気タービンに接続する発電機は，軸受又は軸に発生しう る最大の振動に対して構造上十分な機械的強度を有した設計とす る。

電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。

電気設備において，発電所の架空電線引込口及び引出口又はこれ に近接する箇所には，避雷器を施設する設計とする。電気設備における電力保安通信線は，機械的衝撃又は火災等によ り通信の機能を損なうおそれがない設計とする。

電気設備において，電力保安通信設備に使用する無線通信用アン テナを施設する支持物の材料及び構造は，風圧荷重を考慮し，倒壊 により通信の機能を損なうおそれがない設計とする。

5．8．2 可搬型重大事故等対処設備
可搬型の非常用発電装置の発電機は，電気的•機械的に十分な性能を持つ絶縁巻線を使用し，耐熱性及び耐湿性を考慮した絶縁処理

変更前	変更後
	を施す設計とする。 可搬型の非常用発電装置の発電機は，電源電圧の著しく低下した場合及び過電流が発生した場合等に自動的に停止する設計とする。 可搬型の非常用発電装置の発電機は，定格出力のもとで 1 時間運転し，安定した運転が維持されることを確認した設備とする。
5．その他 5． 1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らないように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨 を表示する設計とする。 保全区域と管理区域以外の場所との境界には，他の場所と区別するた め，壁，柵，塀等の保全区域を明らかにするための設備を設ける設計，又は保全区域である旨を表示する設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（た だし，当該区域に人が立ち入るおそれがないことが明らかな場合は除 く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止につい ては，保安規定に基づき，その措置を実施する。	6．その他 6.1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らないように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨 を表示する設計とする。 保全区域と管理区域以外の場所との境界には，他の場所と区別するた め，壁，柵，塀等の保全区域を明らかにするための設備を設ける設計，又は保全区域である旨を表示する設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（た だし，当該区域に人が立ち入るおそれがないことが明らかな場合は除 く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止につい ては，保安規定に基づき，その措置を実施する。
5.2 発電用原子炉施設への人の不法な侵入等の防止 発電用原子炉施設への人の不法な侵入を防止するための区域を設定	6.2 発電用原子炉施設への人の不法な侵入等の防止 発電用原子炉施設への人の不法な侵入を防止するための区域を設定

変更前	変更後
明用の電源が喪失した場合においても機能を損なわない避難用照明と して，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電力を供給できる非常灯（「第 2 号機設備」，「第 1 号機設備，第 1,2 ， 3 号機共用」及び「第 1 号機設備，第 1，2号機共用」）及び誘導灯（「第 2 号機設備」，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第 1 号機設備，第 1 ， 2 号機共用」）を設置し，安全に避難できる設計とする。	明用の電源が喪失した場合においても機能を損なわない避難用照明と して，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電力を供給できる非常灯（「第 2 号機設備」，「第 1 号機設備，第 1，2， 3 号機共用」及び「第1号機設備，第1，2号機共用」）及び誘導灯（「第 2 号機設備」，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第 1 号機設備，第 1 ， 2 号機共用」）を設置し，安全に避難できる設計とする。 設計基準事故が発生した場合に用いる作業用照明として，非常用照明，直流照明兼非常用照明及び直流照明を設置する設計とする。 非常用照明は非常用高圧母線又は非常用低圧母線，直流照明兼非常用照明は非常用低圧母線及び 125 V 蓄電池，並びに直流照明は 125 V 蓄電池に接続し，非常用ディーゼル発電機からも電力を供給できる設計とす る。 直流照明兼非常用照明及び直流照明は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備 から開始されるまでの間，点灯可能な設計とする。 設計基準事故が発生した場合に用いる可搬型の作業用照明として，内蔵電池を備える可搬型照明（懐中電灯，ランタンタイプ LED ライト及び ヘッドライト（ヘルメット装着用））を配備する設計とする。 可搬型照明（ヘッドライト（ヘルメット装着用））は全交流動力電源喪失時における緊急時対策所内の可搬型照明保管場所への移動時の照度を確保するために，発電所対策本部要員及び重大事故等対応要員が持参し，作業開始前に準備可能なように事務建屋に配備する設計とする。 可搬型照明（ランタンタイプ LED ライト及びヘッドライト（ヘルメッ ト装着用））は全交流動力電源喪失時における緊急時対策所内の照度を

	変更前	変更後
$\xrightarrow{\oplus}$	5.4 放射性物質による汚染の防止 放射性物質により汚染されるおそれがあって，人が頻繁に出入りする管理区域内の床面，人が触れるおそれがある高さまでの壁面，手摺，梯子の表面は，平滑にし，放射性物質による汚染を除去し易い設計とする。人が触れるおそれがある物の放射性物質による汚染を除去する除染設備を施設し，放射性物質を除去できる設計とする。除染設備の排水は，床ドレン・化学廃液系で処理する設計とする。	確保するために，事故対応時に発電所対策本部要員及び重大事故等対応要員が滞在する緊急時対策所に配備する設計とする。 上記以外の設計基準事故に対応するための操作が必要な場所には，作業用照明を設置することにより作業が可能であるが，万一，作業用照明設置箇所以外での対応が必要になった場合には，初動操作に対応する運転員が常時滞在している中央制御室に配備する可搬型照明（懐中電灯， ランタンタイプ LED ライト及びヘッドライト（ヘルメット装着用））を使用する設計とする。 6． 4 放射性物質による汚染の防止 放射性物質により汚染されるおそれがあって，人が頻繁に出入りする管理区域内の床面，人が触れるおそれがある高さまでの壁面，手摺，梯子の表面は，平滑にし，放射性物質による汚染を除去し易い設計とする。人が触れるおそれがある物の放射性物質による汚染を除去する除染設備を施設し，放射性物質を除去できる設計とする。除染設備の排水は，床ドレン・化学廃液系で処理する設計とする。

変更前	変更後
第2章 個別項目 1．原子炉冷却材 原子炉冷却材は，通常運転時における圧力，温度及び放射線によって起 こる最も厳しい条件において，核的性質として核反応断面積が核反応維持 のために適切であり，熱水力的性質として冷却能力が適切であることを保持し，かつ，燃料体及び構造材の健全性を妨げることのない性質であり，通常運転時において放射線に対して化学的に安定であることを保持する設計とする。	第2章 個別項目 1．原子炉冷却材 変更なし
2．原子炉冷却材再循環設備 2.1 原子炉再循環系 原子炉再循環系は，原子炉再循環ポンプ及び原子炉圧力容器内に設け られたジェットポンプにより，原子炉冷却材を原子炉圧力容器内に循環 させて，炉心から熱除去を行う。 原子炉再循環ポンプの 1 台が急速停止又は電源喪失の場合でも，燃料棒が十分な熱的余裕を有し，かつ，タービン・トリップ又は負荷遮断直後の原子炉出力を抑制できるように，原子炉再循環系は適切な慣性を有する設計とする。	2．原子炉冷却材再循環設備 変更なし
3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付

変更前	変更後
ける設計とする。 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻 す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するた めに復水浄化系を設け，高純度の給水を発電用原子炬へ供給できる設計 とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成す る機器に加わる負荷に耐える設計とする。 設計における衝撃荷重として，冷却材喪失事故に伴うジェット反力等，安全弁等の開放に伴ら荷重を考慮するとともに，反応度が炉心に投入されることにより原子炉冷却系の圧力が増加することに伴ら荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴ら荷重の増加を含む。）を考慮した設計とする。	ける設計とする。 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻 す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するた めに復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計 とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3．2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成す る機器に加わる負荷に耐える設計とする。 設計における衝撃荷重として，冷却材喪失事故に伴らジェット反力等，安全弁等の開放に伴ら荷重を考慮するとともに，反応度が炉心に投入されることにより原子炉冷却系の圧力が増加することに伴う荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴ら荷重の増加を含む。）を考慮した設計とする。

変更前	変更後
原子炉冷却材圧力バウンダリは，次の範囲の機器及び配管とする。 （1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のう ち発電用原子炉側からみて第二隔離弁を含むまでの範囲） （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁を含むまでの範囲とする。 （三）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。 （四）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記（二）に該当する。 また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足 するように設計，材料選定を行う。 通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力 を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一	原子炉冷却材圧力バウンダリは，次の範囲の機器及び配管とする。 （1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のう ち発電用原子炉側からみて第二隔離弁を含むまでの範囲） （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののう ち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁 を含むまでの範囲とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心泠却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行ら弁は，開となるおそれがなく，上記（三）に該当する。 また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足 するように設計，材料選定を行う。 通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力 を一定に保持する設計とする。原子炉起動，停止時の加熱•泠却率を一

変更前	変更後
定の値以下に抑える等の配慮をする。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラ ム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（9．48MPa）を超えない設計とする。 設計基準事故時のうち原子炉冷却材圧力バウンダリの健全性が問題 となる可能性がある制御棒落下事象については，「原子炉周期（ペリオ ド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置 を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑 え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限する ために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおり とする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発	定の値以下に抑える等の配慮をする。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラ ム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（9．48MPa）を超えない設計とする。 設計基準事故時のうち原子炉冷却材圧力バウンダリの健全性が問題 となる可能性がある制御棒落下事象については，「原子炉周期（ペリオ ド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置 を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑 え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限する ために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおり とする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発

	変更前	変更後
$\begin{aligned} & \stackrel{0}{1} \\ & \stackrel{\rightharpoonup}{\square} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	レッションチェンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炉心スプレ イ系による注水を可能とし，炉心泠却を行うことができる設計とす る。	レッションチェンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炉心スプレ イ系による注水を可能とし，炉心泠却を行らことができる設計とす る。 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が進失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，原子炉泠却材圧カバウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を設ける設計とする。 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全升逃がし弁機能用アキュムレー夕又は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧 された窒素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッションチェンバのプール水面下に導 き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とする。 原子炉泠却材圧力バウンダリを減圧するための設備のらち，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合にお いて，高圧溶融物放出及び格納容器雰囲気直接加熱による原子炉格納容器の破損を防止するための重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃 がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧された窒素をアクチュエ

	変更前	変更後
$\stackrel{\sim}{1}$	度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上 を有する設計とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バ ウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要 な容量を算定する。	度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上 を有する設計とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バ ウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要 な容量を算定する。 3．4．4 代替自動減圧回路（代替自動減圧機能） 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計とする。 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，代替自動減圧回路（代替自動減圧機能）からの信号により，主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧された窒素をアクチュエータのピス トンに供給することで作動し，蒸気を排気管によりサプレッション チェンバのプール水面下に導き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とする。 3．4．5 主蒸気逃がし安全弁の機能回復 原子炉冷却材圧力バウンダリを減圧するための設備のうち，主蒸

$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \stackrel{1}{\infty} \\ & \hline \end{aligned}$	変更前	変更後
		全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，常設代替交流電源設備又 は可搬型代替交流電源設備により所内常設蓄電式直流電源設備を受電し，作動に必要な直流電源が供給されることにより機能を復旧 し，原子炉冷却材圧力バウンダリを減圧できる設計とする。 3．4．6 原子炉冷却材の漏えい量抑制 インターフェイスシステム LOCA 発生時の重大事故等対処設備と して，主蒸気逃がし安全弁は，中央制御室からの手動操作によって作動させ，原子炉泠却材圧力バウンダリを減圧させることで原子炉泠却材の漏えいを抑制できる設計とする。
	4．残留熱除去設備 4.1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の泠却材喪失事故時 には低圧炉心スプレイ系及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炉心シュラウド内に注水する設計とする。 4．1．2 原子炉停止時冷却モード （1）系統構成	4．残留熱除去設備 4.1 残留熱除去系 4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の泠却材喪失事故時 には低圧炉心スプレイ系及び高圧炉心スプレイ系と連携して，中小破断の泠却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炉心シュラウド内に注水する設計とする。 4．1．2 原子炉停止時冷却モード （1）系統構成

変更前	変更後
発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要 なパラメータが設計値を超えないようにするため，原子炉圧力容器内において発生した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。 残留熱除去系の冷却速度は，原子炉冷却材圧力バウンダリの加熱•冷却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計 とする。	発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要 なパラメータが設計値を超えないようにするため，原子炉圧力容器内において発生した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。 残留熱除去系の泠却速度は，原子炉冷却材圧力バウンダリの加熱•泠却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計 とする。 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（原子炉停止時冷却モード）が使用 できる場合は，重大事故等対処設備（設計基準拡張）として使用で きる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （原子炉停止時冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炬補機冷却海水系を含む。）機能喪失によるサポ ート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（原子炉停止時冷却モード）を復旧で きる設計とする。残留熱除去系（原子炉停止時冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，原子炉冷却材

変更前	変更後
プレイ冷却モード）を設ける設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をドライウェル内及び サプレッションチェンバ内にスプレイすることにより，環境に放出 される放射性物質の濃度を減少させる設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出さ れるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度 が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響につ いて「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置 の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とす る。 残留熱除去系（格納容器スプレイ冷却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計	プレイ冷却モード）を設ける設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，泠却材喪失事故時に，サプレッションチェンバのプール水をドライウェル内及び サプレッションチェンバ内にスプレイすることにより，環境に放出 される放射性物質の濃度を減少させる設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出さ れるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度 が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響につ いて「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置 の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とす る。 残留熱除去系（格納容器スプレイ泠却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \underset{\Delta}{\Delta} \end{aligned}$		属棟内とし，サプレッションチェンバベント用出口隔離弁（T48－ F022）の操作を行う原子炉建屋地下 1 階及びドライウェルベント用出口隔離弁（T48－F019）の操作を行う原子炉建屋地上 1 階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉格納施設のうち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のう ち「4．2 原子炉格納容器フィルタベント系」の設備として兼用） （以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のうち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベント系」の設備として兼用）により行う設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行う。 4．2．2 多重性又は多様性及び独立性，位置的分散 原子炉格納容器フィルタベント系は，残留熱除去系（格納容器ス プレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，ポ

| 変更前 | |
| :---: | :---: | :---: |

変更前	変更後
超えて上昇することを防止できる設計とするとともに，燃料の過熱によ る燃料被覆管の大破損を防ぎ，さらにこれに伴うジルコニウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とす る。 非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。 非常用炉心冷却設備又は残留熱除去設備のらち，サプレッションチェ ンバのプール水を水源として原子炉圧力容器へ注水するために運転す るポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並 びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計 とする。 非常用炉心泠却設備のらち，復水貯蔵タンクを水源として原子炉圧力	超えて上昇することを防止できる設計とするとともに，燃料の過熱によ る燃料被覆管の大破損を防ぎ，さらにこれに伴らジルコニウムと水との反応を無視しうる程度に抑え，著しく多量の水素を生じない設計とす る。 非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。 非常用炉心冷却設備又は残留熱除去設備のうち，サプレッションチェ ンバのプール水を水源として原子炉圧力容器へ注水するために運転す るポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並 びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計 とする。 非常用炉心冷却設備その他原子炉注水設備のうち，サプレッションチ ェンバのプール水を水源として原子炉圧力容器へ注水するために運転 するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備 に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 非常用炉心泠却設備のうち，復水貯蔵タンクを水源として原子炉圧力

自動減圧系を除く非常用炉心冷却設備については，作動性を確認する ため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試験ができる設計とするとともに，弁については単体で開閉試験ができる設計とする。

自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁 の駆動用窒素供給圧力の確認を行うことで，非常用炉心冷却設備の能力 の維持状況を確認できる設計とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。

5．2 高圧炉心スプレイ系

5．2．1 系統構成
高圧炉心スプレイ系は，大破断の冷却材䨤失事故時には低圧炉心 スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン

変更後

容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。

非常用炉心冷却設備その他原子炉注水設備のうち，復水貯蔵タンク， ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプ は，復水貯蔵タンク，ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。
自動減圧系を除く非常用炉心冷却設備については，作動性を確認する ため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試験ができる設計とするとともに，弁については単体で開閉試験ができる設計とする。

自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁 の駆動用窒素供給圧力の確認を行うことで，非常用炉心冷却設備の能力 の維持状況を確認できる設計とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。

5．2 高圧炉心スプレイ系

5．2．1 系統構成
高圧炉心スプレイ系は，大破断の冷却材喪失事故時には低圧炉心 スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン

	変更前	変更後
$\begin{aligned} & \stackrel{\omega}{\stackrel{1}{\rightharpoonup}} \\ & \stackrel{\rightharpoonup}{\oplus} \end{aligned}$		子炉圧力容器へ注水することで师心を椧却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の流路として，設計基準対象施設である原子炉圧力容器，炬心支持構造物及び原子灲圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水 原子炉冷却村圧カバウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合にお いても炉心の著しい損傷及び原子炬格納容器の破損を防止するた め，発電用原子炉を泠却するために必要な重大事故等対処設備とし て，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応す るための低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を設ける設計とする。 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能 が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧灲心スプレ

	変更前	変更後
		が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炬心スプレ イ系による発電用原子炉の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タ イプ I ）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水することで炉心を泠却できる設計とする。 炉心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炬心が存在する場合に，溶融炬心を椧却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水す ることで原子炉圧力容器内に存在する溶融炝心を泠却できる設計 とする。 発電用原子炉停止中において残留熱除去系（原子炉停止時冷却モ ード）の機能が喪失した場合及び発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備 として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水することで炉心を泠却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合におい て，重大事故等の収束に必要となる水の供給設備である大容量送水

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		ポンプ（タイプI）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジン により駆動できる設計とする。 低圧代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び販蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のらち「5．6 低圧代替注水系」の設備として兼用）により行 ら設計とする。 低圧代替注水系（可搬型）の流路として，設計基準対象施設であ る原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物 を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対処設備としての設計を行う。 5．6．4 多重性又は多様性及び独立性，位置的分散 低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系と共通要因によって同時に機能を損なわないよう，復水移送ポン プを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動す る残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード及び

	変更前	変更後
		原子炉停止時冷却モード）及び低圧灲心スプレイ系ポンプを用いた低圧灲心スプレイ系に対して多様性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流） は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は， ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統に おいて，独立した電路で系統構成することにより，非常用ディーゼ ル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤までの系統において，独立 した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンク を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系に対して異なる水源を有する設計とする。

	変更前	変更後
$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\rightharpoonup}{\theta} \end{aligned}$		流を直流に変換する電路に対して，独立性を有する設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェンバを水源と する残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対 して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置するこ とで，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心ス プレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によって同時に機能を損 なわないよう位置的分散を図る設計とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及 び原子炉停止時冷却モード），低圧炉心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプ I ）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系 （低圧注水モード及び原子炉停止時冷却モード），低圧炉心スプレ イ系及び低圧代替注水系（常設）に対して多様性を有する設計とす る。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備

変更前	変更後
6．原子炉冷却材補給設備 6． 1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及び原子炉冷却材圧力バウンダリに接続する小口径配管 の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 原子炉隔離時冷却系は，短時間の全交流動力電源喪失時においても，炉心を冷却する機能を有する設計とする。 6.2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンク を設置する設計とする。	6．原子炉冷却材補給設備 6． 1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及び原子炉冷却材圧力バウンダリに接続する小口径配管 の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 原子炉隔離時冷却系は，全交流動力電源喪失時から重大事故等に対処 するために必要な電力の供給が常設代替交流電源設備から開始される までの間，炉心を冷却する機能を有する設計とする。 6． 2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンク を設置する設計とする。
7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である原子	7．原子炉補機泠却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である原子

炉補機冷却水系（原子炉補機冷却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内にお いて発生した残留熱及び重要安全施設において発生した熱を，最終的な熱の逃がし場である海へ輸送が可能な設計とする。

また，津波又は発電所敷地若しくはその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計と する。

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，淡水 ループである原子炉補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計とする。

変更後

炉補機冷却水系（原子炉補機冷却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内にお いて発生した残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計とする。

また，津波，溢水又は発電所敷地若しくはその周辺において想定 される発電用原子炉施設の安全性を損なわせる原因となるおそれ がある事象であって人為によるものに対して安全性を損なわない設計とする。

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。

原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，淡水 ループである原子炉補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計とする。

原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備，最終ヒートシンクへ熱を輸送するための設備，原子炉格納容器内の泠却等のための設備，原子炉格納容器の過圧破損を防止するための設備又は原子炉格納容器下部の溶融炉心を冷却する ための設備として，想定される重大事故等時において，設計基準事

変更前	変更後
	故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）が使用できる場合は，重大事故等対処設備（設計基準拡張） として使用できる設計とする。
	7．1．2 多様性，位置的分散等 原子炬補機冷却水系（原子炬補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用す るため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多樣性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備 の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。
7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機泠却海水系を含む。）	7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）
7．2．1 系統構成	7．2．1 系統構成
最終ヒートシンクへ熱を輸送することができる設備である高圧	最終ヒートシンクへ熱を輸送することができる設備である高圧
炬心スプレイ補機冷却水系（高圧炬心スプレイ補機冷却海水系を含	炬心スプレイ補機冷却水系（高圧炬心スプレイ補機冷却海水系を含
む。）は，重要安全施設において発生した熱を，最終的な熱の逃が	む。）は，重要安全施設において発生した熱を，常設代替交流電源
し場である海へ輸送が可能な設計とする。	設備から電気の供給が開始されるまでの間の全交流動力電源霛失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計と する。
また，津波又は発電所敷地若しくはその周辺において想定される	また，津波，溢水又は発電所敷地若しくはその周辺において想定

変更前	変更後
事象であって人為によるものに対して安全性を損なわない設計と する。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系 と，海水系である高圧炉心スプレイ補機冷却海水系から構成する設計とする。	がある事象であって人為によるものに対して安全性を損なわない設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系 と，海水系である高圧炉心スプレイ補機冷却海水系から構成する設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプ レイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用 できる設計とする。 7．2．2 多様性，位置的分散等 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことか

変更前	変更後
	海は，想定される重大事故等時において，原子炉補機代替冷却水系の水源として利用できる設計とする。
8．原子炉冷却材浄化設備 8． 1 原子炉冷却材浄化系 原子炉冷却材浄化系は，原子炉冷却材の純度を高く保つために設置す るもので，原子炉再循環系配管及び原子炉圧力容器底部から原子炉冷却材を一部取り出し，原子炉冷却材浄化系ろ過脱塩器によって浄化脱塩し て復水給水系へ戻すことにより，原子炉冷却材中の不純物及び放射性物質の濃度を発電用原子炉施設の運転に支障を及ぼさない値以下に保つ ことができる設計とする。 放射性物質を含む原子炉冷却材を，原子炉起動時，停止時及び高温待機時において，原子炉冷却系統外に排出する場合は，原子炉冷却材浄化系により原子炉冷却材を浄化して，液体廃棄物処理系へ導く設計とす る。	8．原子炉冷却材浄化設備 変更なし
9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいに対して，ド ライウェル送風機冷却コイルドレン流量測定装置，ドライウェル床ドレン サンプ水位測定装置，ドライウェル機器ドレンサンプ水位測定装置及び格納容器内ダスト放射線濃度測定装置を設ける設計とする。 このうち，漏えい位置を特定できない原子炉格納容器内の漏えいに対し ては，ドライウェル床ドレンサンプ水位測定装置により，1時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出する能力を有する設計とするとともに，自動的に中央制御室に警報を発信する設計とする。	9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置変更なし

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{\tau} \\ & \stackrel{1}{\stackrel{1}{\omega}} \\ & \stackrel{\omega}{2} \end{aligned}$	また，測定値は，中央制御室に指示する設計とする。 ドライウェル床ドレンサンプ水位測定装置は，ドライウェル床ドレンサ ンプに設ける設計とする。 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいは，ドライウ エル床ドレンサンプ水位測定装置にて検出できる設計とする。 ドライウェル床ドレンサンプ水位測定装置が故障した場合は，これと同等の機能を有するドライウェル送風機冷却コイルドレン流量測定装置及 び格納容器内ダスト放射線濃度測定装置により，漏えい位置を特定できな い原子炉格納容器内の漏えいを検知可能な設計とする。	
	10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系（原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のあ る流体の混合その他の原子炉冷却材の挙動により生じる温度変動により損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するものに関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（ J SME S O 1 2）の規定に基づく手法及び評価フローに従った設計 とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高 サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J S ME S O 1 7 ）の規定に基づく手法及 び評価フローに従った設計とする。	10．流体振動等による損傷の防止 変更なし

変更前	変更後
11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備 について，「表 1 原子炬冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。	11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備 について，「表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト」に示す。

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（1／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（2／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\rightleftharpoons} \\ & \stackrel{1}{\sim} \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$	原炉泠却材の循擐設備	$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 采 } \end{aligned}$	容器	－		主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ	S	クラス 3		－	変更なし			常設耐震／防止	SAクラス 2
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
			主蒸気流量制限器	－	主蒸気流量制限器	S	－		－	変更なし			－		
			安全弁及び逃がし弁	－	B21－F001A，C，E，H，J，L	S	－		－	変更なし			常設耐震／防止常設／緩和	－	
					B21－F001B，D，F，G，K	S	－		－	変更なし			常設耐震／防止常設／緩和	－	
			主要弁	－	B21－F002A，B，C，D	S	クラス 1		－	変更なし			－		
					B21－F003A，B，C，D	S	クラス 1		－	変更なし			－		
					N37－F001A，B，C，D	B－1	クラス 3		－	－＊2					
			主配管	－	原子炉圧力容器～B21－F001D 分岐点	S	クラス 1		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001D 分岐点～原子炉格納容器配管貫通部（X－10A）	S	クラス 1		－	変更なし			－		
					原子炉格納容器配管貫通部 $(X-10 A) ~$ 主蒸気ーッダ	B－1	クラス 2		－	変更なし			－		
					B21－F001A 分岐点～B21－F001A	S	クラス 1		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001A～T－クエンチャ	B－1	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001B 分岐点～B21－F001B	S	クラス 1		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（3／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緗 } \\ & \text { } \end{aligned}$	機器区分		変更前					変更後						
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称		設計基淮対象施設＊1		重大事故等対処設備＊1		
					耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類			機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\rightleftharpoons} \\ & \stackrel{1}{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$	原炉洽却材の循渔備	$\begin{aligned} & \text { 毓 } \\ & \text { 系 } \end{aligned}$	主配管	－		－					B21－F001B～T－クエンチャ			－	常設耐震／防止常設／緩和	SA クラス 2
					B21－F001C 分岐点～B21－F001C	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001C～T－クエンチャ	B－1	クラス 3		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001D 分岐点～B21－F001D	S	クラス1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					－					B21－F001D～T－クエンチャ			－	常設耐震／防止常設／緩和	SA クラス 2	
					原子炉圧力容器～B21－F001F 分岐点	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001F 分岐点～原子炉格納容器配管貫通部（X－10B）	S	クラス 1		－		変更なし			－		
					原子炉格納容器配管貫通部（X－10B）～主蒸気ヘッダ	B－1	クラス 2		－		変更なし		－	－		
					B21－F001E 分岐点～B21－F001E	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001E～T－クエンチャ	B－1	クラス 3		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001F 分岐点～B21－F001F	S	クラス1		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					$-$					B21－F001F～T－クエンチャ			－	常設耐震／防止常設／緩和	SA クラス 2	
					原子炉圧力容器～B21－F001H 分岐点	S	クラス1		－		変更なし			常設耐震／防止常設／緩和	SA クラス 2	
					B21－F001H 分岐点～原子炉格納容器配管貫通部（X－10C）	S	クラス 1		－		変更なし			－		
					原子炉格納容器配管貫通部（X－10C）～主蒸気ヘッダ	B－1	クラス 2		－		変更なし			－		

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（4／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$$\begin{aligned} & \text { 統 } \\ & \text { 梦 } \end{aligned}$	機器区分		変更前					変更後						
					名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1		名称		設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分皟 分類			機器クラス	設備分類	重大事故等機器クラス		
	原烺椧却材の循環備	$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 系 } \end{aligned}$	主配管			B21－F001G 分岐点～B21－F001G	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2
					－					B21－F001G～T－クエンチャ			－	常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001H 分岐点～B21－F001H	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001H～T－クエンチャ	B－1	クラス 3		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	S	クラス1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					原子炉隔離時冷却系蒸気配管分岐点～B21－ F001L 分岐点	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
$\underset{\stackrel{\rightharpoonup}{\rightleftharpoons}}{\stackrel{\rightharpoonup}{*}}$					B21－F001L 分岐点～原子炉格納容器配管貫通部（X－10D）	S	クラス 1		－		変更なし			－		
					原子炉格納容器配管貫通部（X－10D）～主蒸気ヘッダ	B－1	クラス 2		－		変更なし			－		
					B21－F001J 分岐点～B21－F001J	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001J～T－クエンチャ	B－1	クラス 3		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001K 分岐点～B21－F001K	S	クラス 1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					－					B21－F001K～T－クエンチャ			－	常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001L 分岐点～B21－F001L	S	クラス1		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	
					B21－F001L～T－クエンチャ	B－1	クラス 3		－		変更なし			常設耐震／防止常設／緩和	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（5／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\bullet} \\ & \stackrel{1}{\sim} \\ & \stackrel{N}{\bullet} \end{aligned}$	原炬洽却材の循環備	$\begin{aligned} & \text { 犦 } \\ & \text { 系 } \end{aligned}$	主配管			B－1	クラス 2		－	変更なし			－		
							B－1	クラス 2		－	変更なし			－	
						B－1	クラス 2		－	変更なし			－		
						B－1	クラス 3		－	変更なし			－		
						B－1	$\begin{gathered} \text { クラス } 2, \text { クラ } \\ \text { ス } 3 \end{gathered}$		－	変更なし			－		
						B－1	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			－		
						S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
						S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
						S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
						S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（6／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（7／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基淮対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
					B21－F022J～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（J）出口配管合流点	S	クラス 3		－	変更なし			－	
				B21－F022K～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（K）出口配管合流点	S	クラス 3		－	変更なし			－		
				B21－F022L～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（L）出口配管合流点	S	クラス 3		－	変更なし			－		
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（A）～B21－F001A	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（B）～B21－F001B	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（C）～B21－F001C	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（D）～B21－F001D	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
$\begin{aligned} & \text { 原 } \\ & \text { 煸 } \\ & \text { 洽 } \end{aligned}$				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（E）～B21－F001E	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
$\begin{aligned} & \text { 却 } \\ & \text { 材 } \\ & \varrho \end{aligned}$	$\begin{aligned} & \text { 主 } \\ & \text { 㞼 } \end{aligned}$	主配管	－	主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（F）～B21－F001F	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
$\begin{aligned} & \text { 循 } \\ & \text { 樾 } \end{aligned}$	系			主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（G）～B21－F001G	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
備				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（H）～B21－F001H	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（J）～B21－F001J	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（K）～B21－F001K	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（L）～B21－F001L	S	クラス 3		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				－					B21－F001A，L～原子炉格納容器配管貫通部（X－106B）		－	常設耐震／防止常設／緩和	SA クラス 2	
					－				原子炉格納容器配管貫通部（ $\mathrm{X}-106 \mathrm{~B}$ ）		－	常設耐震／防止常設／緩和	SAクラス 2	
					－				原子炉格納容器配管貫通部 $(X-106 B) ~$ 代替高圧窒素ガス供給系 A 系窒素供給 配管分岐点	－		常設耐震／防止常設／緩和	SA クラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（8／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（9／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（10／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（11／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（12／49）

ω $\stackrel{\omega}{\ddots}$ \vdots 	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緯 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
						N36－F009A，B～低圧第 3 給水加熱器	B－1	クラス 3		－	変更なし				
	$\begin{aligned} & \text { 尔 } \\ & \text { 炣 } \end{aligned}$				低圧タービン～低圧第2給水加熱器	B－1	クラス 3		－	変更なし					
	$\begin{aligned} & \text { 却 } \\ & \text { 材 } \end{aligned}$	抽	主配管	－	低圧タービン～低圧第 1 給水加熱器	B－1	クラス 3		－	変更なし					
					N36－F022A，B～原子炉給水ポンプ駆動用蒸気タービン	B－1	クラス 3		－	変更なし					
					原子炉給水ポンプ駆動用蒸気タービン～ N36－F024A，B	B－1	クラス 3		－	変更なし					
			浾交撸哭		残留熱除去系熱交換器（A）	S	$\begin{gathered} \text { クラス } 2^{* 4} \\ \text { クラス } 3 \end{gathered}$		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
			父換器	－	残留熱除去系熱交換器（B）	S	$\begin{gathered} \text { クラス } 2^{* 4} \\ \text { クラス } 3 \end{gathered}$		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
					残留熱除去系ポンプ（A），（B）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	残	残			残留熱除去系ポンプ（C）	S	クラス 2		－	変更なし					
	$\begin{aligned} & \text { 熱 } \\ & \text { 除 } \end{aligned}$	$\begin{aligned} & \text { 熱 } \\ & \text { 荼 } \end{aligned}$			残留熱除去系ストレーナ（A）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$	稁	万過装置	－	残留熱除去系ストレーナ（B）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
					残留熱除去系ストレーナ（C）	S	クラス 2		－	変更なし					
				－	E11－F048A	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
			逃がし弁		E11－F048B	S	－		－	変更なし			常設／防止 （DB 拡張）	－	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（13／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緯 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
						E11－F048C	S	－		－	変更なし				
			安全弁及び逃がし弁	－	E11－F050A，B	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
					E11－F054A，B	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
					E11－F003A，B	S	クラス 2		－	変更なし					
					E11－F004A，B，C	S	クラス 1		－	変更なし					
ω					E11－F005A，B，C	S	クラス 1		－	変更なし					
$\stackrel{\rightharpoonup}{1}$	濯	㽭			E11－F008A，B	S	クラス 2		－	変更なし					
\checkmark	$\begin{aligned} & \text { 夌 } \\ & \text { 設 } \\ & \text { 供 } \end{aligned}$	尘			E11－F010A，B	S	クラス 2		－	変更なし					
			主要弁	－	E11－F011A，B	S	クラス 2		－	変更なし					
					E11－F012A，B	S	クラス 2		－	変更なし					
					E11－F015A，B	S	クラス1		－	変更なし					
					E11－F016A，B	S	クラス 2		－	変更なし		クラス 1			
					E11－F018A，B	S	クラス 2		－	変更なし		クラス 1			
					E11－F019A，B	S	クラス 1		－	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（14／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（15／49）

						変更前					変更後			
	設	系				設計基	対象施設＊＊	重大事故	等対処設備＊1		設計基洤	対象施設＊＊	重大事故等	処設備＊1
	齐	$\begin{aligned} & \text { 名称 } \end{aligned}$			名称	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					残留熱除去系熱交換器代替循環浍却系出口 配管分岐点～残留熱除去系熱交換器（A）バ イパス配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	S	クラス 2		－	変更なし				
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\rightleftharpoons} \end{aligned}$					残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
$\begin{aligned} & 1 \\ & \text { v } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 涂 } \\ & \text { (} \end{aligned}$	残	主配管	－	$\begin{aligned} & \text { 原子炉停止時冷却モード } \mathrm{A} \text { 系注入配管分岐 } \\ & \text { 点~ドライウエルスプレイ注入配管 A 系分 } \\ & \text { 岐点 } \end{aligned}$	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
	$\begin{aligned} & \text { 寺 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	素			ドライウェルスプレイ注入配管 A 系分岐点 ～低圧代替注水系 A 系注入配管合流点	S	クラス 2		－	変更なし				
					低圧代替注水系 A 系注入配管合流点～原子炬格納容器配管貫通部（X－31A）	S	クラス 2		－	変更なし				
					原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器	S	クラス 1		－	変更なし				
					原子炬停止時冷却モード A 系注入配管分岐 点～サプレッションプール水椧却モード A 系戻り配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					サプレッションプール水泠却モード A 系戻 り配管分岐点～サプレッションチェンバス プレイ注入配管 A 系分岐点	S	クラス2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
					サプレッションチェンバスプレイ注入配管 サ A 系分岐点～原子炉格納容器配管貫通部 $(\mathrm{X}-32 \mathrm{~A})$	S	クラス2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2
						－				原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~A}$ ）		－	常設／防止 （DB 拡張）	SAクラス 2

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（16／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \\ & \text { l} \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緗 } \\ & \text { } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\omega$$\perp$$\stackrel{1}{\ddots}$100		$\begin{aligned} & \text { 残 } \\ & \text { 寚 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	主配管			原子炉格納容器配管貫通部（X－32A）～E11－ F020A	S	クラス 1	－		変更なし			常設／防止 （DB 拡張）	SAクラス 2
					－					E11－F020A～残留熱除去系原子炬停止時冷却モード A 系注入配管合流点	－		常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系原子炉停止時冷却モード A 系注入配管合流点～原子炉圧力容器	－		常設／防止 （DB 拡張）	SAクラス 2	
					ドライウェルスプレイ注入配管 A 系分岐点 ～原子炉格納容器代替スプレイ泠却系 A 系 注入配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					原子炉格納容器代替スプレイ椧却系 A 系注 入配管合流点～原子炉格納容器配管貫通部 $(\mathrm{X}-30 \mathrm{~A})$	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ）	－		常設／防止 （DB 拡張）	SAクラス 2	
					－					ドライウェルスプレイ管	－		常設／防止 （DB 拡張）	SAクラス 2	
					ドライウェルスプレイ管入口配管 A 系分岐点～原子炬格納容器配管貫通部（X－37）	S	クラス 2		－	変更なし			－		
					原子炉格納容器配管貫通部（X－37）～E11－ F022	S	クラス 2		－	変更なし		クラス 1	－		
					E11－F022～原子炬圧力容器	S	クラス 1		－	変更なし			－		
					サプレッションプール水泠却モード A 系戻 り配管分岐点～原子炉格納容器配管貫通部 $(\mathrm{X}-215 \mathrm{~A})$	S	クラス2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炬格納容器配管貫通部（X－215A）		－	常設／防止 （DB 拡張）	SAクラス 2	
					原子炉格納容器配管貫通部（X－215A）～サプ レッションプール水泠却配管 A 系開放端	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					サプレッションチェンバスプレイ注入配管 H 系分岐点～原子炉格納容器配管貫通部 $(\mathrm{X}-213 \mathrm{~A})$	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（17／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基淮対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\omega}{\rightleftharpoons} \\ & \stackrel{1}{\bullet} \\ & \stackrel{\omega}{\oplus} \end{aligned}$		残熱除系	主配管	－		－					原子炉格納容器配管貫通部（X－213A）		－	常設／防止 （DB 拡張）	SAクラス 2
					－					サプレッションチェンバスプレイ管		－	常設／防止 （DB 拡張）	SAクラス 2	
					E11－F029A～残留熱除去系ポンプ（A）入口配管合流点	S	クラス 2		－	変更なし					
					使用済燃料プール A 系入口配管分岐点～ E11－F030A	S	クラス 2		－	変更なし					
					E11－F014B～原子炉格納容器配管貫通部（X－ 33B）	S	クラス 1		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－33B）		－	常設／防止 （DB 拡張）	SAクラス 2	
					原子炉格納容器配管貫通部（X－33B）～サプ レッションチェンバ出口配管B系合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－214B）		－	常設／防止 （DB 拡張）	SAクラス 2	
					原子炉格納容器配管貫通部（X－214B）～サプ レッションチェンバ出口配管 B 系合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					サプレッションチェンバ出口配管B系合流点～残留熱除去系ポンプ（B）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（18／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \\ & \text { l} \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 䋁 } \\ & \text { 梦 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度分類		機器クラス	設備分類	重大事故等機器クラス		
						残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）バイパス 配管合流点	S	クラス 2		－	変更なし				
					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モード B 系注入配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
					原子炉停止時冷却モード B 系注入配管分岐 点～ドライウエルスプレイ注入配管 B 系分 岐点岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
					ドライウェルスプレイ注入配管 B 系分岐点 ～低圧代替注水系 B 系注入配管合流点	S	クラス 2		－	変更なし					
					低圧代替注水系 B 系注入配管合流点～原子炬格納容器配管貫通部（X－31B）	S	クラス 2		－	変更なし					
$\begin{aligned} & \stackrel{\omega}{\stackrel{\rightharpoonup}{\rightleftarrows}} \end{aligned}$					原子炉格納容器配管貫通部（X－31B）～原子炉圧力容器	S	クラス 1		－	変更なし					
$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	残 熱 除		主配管	－	原子炬停止時冷却モード B 系注入配管分岐 点～サプレッションプール水椧却モード B 系戻り配管分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 寺 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	景			サプレッションプール水冷却モード B 系戻 り配管分岐点～サプレッションチェンバス プレイ注入配管 B 系分岐点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
					$\begin{array}{\|l\|} \hline \begin{array}{l} \text { サプレッションチェンバスプレイ注入配管 } \\ \mathrm{B} \text { 系分岐点~原子炉格納容器配管貫通部 } \\ \text { (X-32B) } \end{array} \\ \hline \end{array}$	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
						－				原子炉格納容器配管貫通部（X－32B）		－	常設／防止 （DB 拡張）	SA クラス 2	
					原子炉格納容器配管貫通部 $(X-32 B) ~$ E11－ F020B	S	クラス 1		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
						－				E11－F020B～残留熱除去系原子炉停止時冷却モードB系注入配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	
						－				残留熱除去系原子炉停止時冷却モード B 系注入配管合流点～原子炉圧力容器		－	常設／防止 （DB 拡張）	SA クラス 2	
					ドライウェルスプレイ注入配管 B 系分岐点 ～原子炬格納容器代替スプレイ椧却系 B 系 注入配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（19／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（20／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（21／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（22／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（23／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（24／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 䋁 } \\ & \text { 梦 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設債＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
						E22－F001～高圧炉心スプレイ系ポンプ	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2
					高圧炉心スプレイ系ストレーナ～原子炉格納容器配管貫通部（X－219）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
						－				原子炉格納容器配管貫通部（X－219）		－	常設／防止 （DB 拡張）	SA クラス 2	
					原子炉格納容器配管貫通部（X－219）～高圧炉心スプレイ系ポンプ入口配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	嫦	$\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 㷁 } \end{aligned}$			高圧炬心スプレイ系ポンプ～直流駆動低圧注水系ポンプ吐出配管合流点	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 炉 } \\ & \text { 泠 } \end{aligned}$	$\begin{aligned} & \text { 心 } \\ & \text { 元 } \\ & \text { 俗 } \end{aligned}$	主配管	－	直流駆動低圧注水系ポンプ吐出配管合流点 ～原子炉格納容器配管貫通部（X－35）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	却 設 備	$\begin{aligned} & \text { V } \\ & \text { 采 } \end{aligned}$				－				原子炉格納容器配管貫通部（X－35）		－	常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { の } \\ & \text { 他 } \\ & \text { 原 } \end{aligned}$				原子炬格納容器配管貫通部（X－35）～原子炉 圧力容器	S	クラス 1		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 水 } \\ & \text { 炉 } \\ & \text { 注 } \end{aligned}$				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	B－1	クラス 2		－	変更なし					
	$\begin{aligned} & \text { 水 } \\ & \text { 備 } \end{aligned}$				低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	B－1	クラス 2		－	変更なし					
					高圧代替注水系吸込配管分岐点～E51－F001	B－1	クラス 2		－	変更なし					
		低 炣 仿	ポンプ	－	低圧炉心スプレイ系ポンプ	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SA クラス 2	
		憂	万過装置	－	低圧炉心スプレイ系ストレーナ	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
		尔	安全弁及び逃がし弁	－	E21－F017	S	－		－	変更なし			常設／防止 （DB 拡張）	－	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（25／49）

$\begin{aligned} & \omega \\ & \stackrel{\omega}{\rightleftharpoons} \\ & \stackrel{1}{1} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
			主要弁	－		E21－F003	S	クラス 1		－	変更なし			－	
					E21－F004	S	クラス 1		－	変更なし			－		
					E21－F001	S	クラス 2		－	－＊2					
			主配管	－	低圧炉心スプレイ系ストレーナ～原子炉格納容器配管貫通部（X－217）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－217）	－		常設／防止 （DB 拡張）	SA クラス 2	
					原子炉格納容器配管貫通部（X－217）～低圧炬心スプレイ系ポンプ	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					低圧炉心スプレイ系ポンプ～原子炉格納容器配管貫通部（X－34）	S	クラス 2		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－34）	－		常設／防止 （DB 拡張）	SAクラス 2	
					原子炉格納容器配管貫通部（X－34）～原子炉圧力容器	S	クラス1		－	変更なし			常設／防止 （DB 拡張）	SAクラス 2	
		$\begin{aligned} & \text { 高 } \\ & \text { 㐊 } \\ & \text { 替 } \\ & \text { 饔 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	ポンプ	－	－					高圧代替注水系タービンポンプ		－	常設耐震／防止常設／緩和	SA クラス 2	
			容器	－	－					復水貯蔵タンク		－	常設耐震／防止常設／緩和	SAクラス2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（26／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊＊		重大事故等対処設備＊1 ${ }^{*}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
	韭虽炉岕椧却設備の他原炉注水設備	$\begin{aligned} & \text { 高 } \\ & \text { 垈 } \\ & \text { 替 } \\ & \text { 濉 } \\ & \text { 水 } \end{aligned}$	主配管			－					原子炉圧力容器～原子炬隔離時冷却系蒸気配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2
					－					原子炬隔離時冷却系蒸気配管分岐点～原子炬格納容器配管貫通部（X－36）		－	常設耐震／防止常設／緩和	SA クラス 2	
					－					原子炬格納容器配管貫通部（X－36）		－	常設耐震／防止常設／緩和	SA クラス 2	
					－					原子炉格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ		－	常設耐震／防止常設／緩和	SA クラス 2	
					－					原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2	
ω					－					高圧代替注水系蒸気入口配管分岐点～高圧代替注水系タービンポンプ		－	常設耐震／防止常設／緩和	SA クラス 2	
$\begin{aligned} & \stackrel{\rightharpoonup}{\rightleftarrows} \\ & \stackrel{1}{\stackrel{1}{\circ}} \end{aligned}$				－		－				高圧代替注水系タービンポンプ～原子炉隔離時冷却系タービン排気配管合流点		－	常設耐震／防止常設／緩和	SA クラス 2	
				－		－				原子炬隔離時冷却系夕ービン排気配管 合流点～原子炉格納容器配管貫通部 （X－222）		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				原子炉格納容器配管貫通部（ X－222）		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				原子炉格納容器配管貫通部（X－222）原子炬隔離時冷却系スパージャ		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				復水貯蔵タンク～E22－F014		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				E22－F014～補給水よりの第一アンカ		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点		－	常設耐震／防止常設／緩和	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（27／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基淮対象施設＊＊		重大事故等対処設備＊1 ${ }^{*}$		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
							－\quad低圧代替注水系吸込配管分岐点～高圧 代替注水系吸込配管分岐点						－	常設耐震／防止常設／緩和	SAクラス 2
						－				高圧代替注水系吸达配管分岐点～高圧代替注水系タービンポンプ		－	常設耐震／防止常設／緩和	SAクラス 2	
		高				－				高圧代替注水系タービンポンプ～高圧代替注水系注入配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2	
		$\begin{aligned} & \text { 圭 } \\ & \text { 替 } \\ & \text { 注 } \end{aligned}$	主配管	－		－				高圧代替注水系注入配管合流点～原子炬冷却材浄化系 A 系注入配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2	
		$\begin{aligned} & \text { 装 } \\ & \text { 永 } \end{aligned}$				－				原子炬冷却材浄化系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－ $12 \mathrm{~A})$		－	常設耐震／防止常設／緩和	SAクラス 2	
$\stackrel{\omega}{\stackrel{\omega}{\bullet}}$	冷 設 設					－				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）		－	常設耐震／防止常設／緩和	SAクラス 2	
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{\rightharpoonup}{ث} \end{aligned}$	$\begin{aligned} & \text { 憊 } \\ & \kappa \\ & \text { 他 } \end{aligned}$					－				原子炉格納容器配管貫通部（X－12A）～原子炬圧力容器		－	常設耐震／防止常設／緩和	SAクラス 2	
	$\begin{aligned} & \text { 㟶 } \\ & \text { 学 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 僱 } \\ & \text { 離 } \\ & \text { 泠 } \\ & \text { 帮 } \\ & \text { 系 } \end{aligned}$	ポンプ	－		－				原子炬隔離時冷却系ポンプ		－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 設 } \end{aligned}$		容器	－		－				復水貯蔵タンク		－	常設／防止 （DB 拡張）	SAクラス 2	
	備		安全弁及び逃がし弁	－		－				E51－F059		－	常設／防止 （DB 拡張）	－	
			主配管	－		－				原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	
						－				原子炬隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）		－	常設／防止 （DB 拡張）	SAクラス 2	
						－				原子炬格納容器配管貫通部（X－36）		－	常設／防止 （DB 拡張）	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（28／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（29／49）

 	番森称	機器区分		変更前				変更後				
					設計基淮対象施設＊1	重大事故等対処設備＊${ }^{\text {a }}$		名称	設計其漼対象施設＊1		重大事故等対処設㒂＊${ }^{*}$	
				名称 耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス			機器クラス	設備分類	重大事故等機器クラス
		主配管	－	－				原子炬隔離時冷却系ポンプ～原子炬隔離時泠却采注入配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2
				－				$\begin{aligned} & \text { 原子炬隔離時冷却系注入配管合流点~ } \\ & \text { 原子炉椧却才浄化系 } \mathrm{B} \text { 系注入配管合流 } \end{aligned}$点		－	常設／防止 （DB 拡張）	SAクラス 2
				－				原子炬冷却材浄化系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－ 12B）		－	常設／防止 （DB 拡張）	SAクラス 2
				－				原子炉格納容器配管貫通部（ C －12B）		－	常設／防止 （DB 拡張）	SAクラス 2
				－				原子炉格納容器配管貫通部（X－12B）～原子炉圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2
		ポンプ	－	－				直流駆動低圧注水系ポンプ		－	常設耐震／防止	SAクラス 2
				－				復水移送か゚ンプ		－	常設耐震／防止常設／緩和	SAクラス 2
				－				大容量送水ポンプ（タイプI）		－	可搬／防止可搬／緩和	SAクラス 3
		容器	－	－				復水眝蔵タンク		－	常設耐震／防止常設／緩和	SAクラス 2
		$\left\lvert\, \begin{aligned} & \text { 安全弁及び } \\ & \text { 逃がし弁 } \end{aligned}\right.$	－	－				E71－F010		－	常設耐震／仿止	－
				－				E22－F023		－	常設耐震／防止常設／緩和	－
		主配管	－	－				復水眝蔵タンク～E22－F014		－	常設耐震／防止常設／緩和	SAクラス 2
				－				E22－F014～補給水よりの第一アンカ		－	常設耐震／防止常設／緩和	SAクラス 2
				－				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点		－	常設耐震／防止 常設／緩和	SAクラス 2

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（30／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 䋁 } \\ & \text { 梦 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基淮対象施設＊＊		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \stackrel{\omega}{\perp} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \\ & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{\rightharpoonup}{\oplus} \end{aligned}$		$\begin{aligned} & \text { 低 } \\ & \text { 庄 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	主配管			－					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2
					－					低圧代替注水系吸込配管分岐点～P13－ F072		－	常設耐震／防止常設／緩和	SA クラス 2	
					－					P13－F072～補給水系配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2	
					－					補給水系配管合流点～復水移送ポンプ		－	常設耐震／防止常設／緩和	SA クラス 2	
					－					復水移送ポンプ～低圧代替注水系注入配管分岐点		－	常設耐震／防止常設／緩和	SAクラス 2	
					－					低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点		－	常設耐震／防止常設／緩和	SAクラス 2	
						－				低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2		－	常設耐震／防止常設／緩和	SA クラス 2	
				－		－				低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				原子炉格納容器下部注水系注入配管分岐点～低圧代替注水系注入配管 A 系分岐点		－	常設耐震／防止常設／緩和	SAクラス 2	
						－				低圧代替注水系注入配管 A 系分岐点～ E11－F041		－	常設耐震／防止常設／緩和	SAクラス 2	
						－				E11－F041～低圧代替注水系A系注入配管合流点		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）		－	常設耐震／防止常設／緩和	SAクラス 2	
						－				原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器		－	常設耐震／防止常設／緩和	SA クラス 2	
						－				低圧代替注水系注入配管 B 系分岐点～ E11－F026B		－	常設耐震／防止常設／緩和	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（31／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（32／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（33／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（34／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊＊		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称	設計基淮対象施設＊＊		重大事故等対処設備＊1		
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
			主配管	－		－					原子炉格納容器配管貫通部（X－22）		－	常設耐震／防止	SAクラス 2
					－					原子炉格納容器配管貫通部（X－22）～差圧検出・ほう酸水注入系配管（ティー よりN11ノズルまでの外管）		－	常設耐震／防止	SAクラス 2	
		$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 荼 } \\ & \text { 系 } \end{aligned}$	ポンプ	－	－					残留熱除去系ポンプ（A），（B）		－	常設／防止 （DB 拡張）	SAクラス 2	
					－					残留熱除去系ポンプ（C）		－	常設／防止 （DB 拡張）	SA クラス 2	
			万過装置	－	－					残留熱除去系ストレーナ（A）		－	常設／防止 （DB 拡張）	SAクラス 2	
$\stackrel{\oplus}{\stackrel{\omega}{\perp}}$	$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \end{aligned}$				－					残留熱除去系ストレーナ（B）		－	常設／防止 （DB 拡張）	SAクラス 2	
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{+}{\infty} \end{aligned}$	$\begin{aligned} & \text { 用 } \\ & \text { 忍 } \\ & \text { 泠 } \end{aligned}$				－					残留熱除去系ストレーナ（C）		－	常設／防止 （DB 拡張）	SAクラス 2	
	却 設 備		安全弁及び逃がし弁	－	－					E11－F048A		－	常設／防止 （DB 拡張）	－	
	$\begin{aligned} & \approx \\ & \text { の } \\ & \text { 他 } \end{aligned}$				－					E11－F048B		－	常設／防止 （DB 拡張）	－	
	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 注 } \end{aligned}$				－					E11－F048C		－	常設／防止 （DB 拡張）	－	
	$\begin{aligned} & \text { 焦 } \\ & \text { 水 } \\ & \text { 備 } \end{aligned}$		主配管	－	－					残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）		－	常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~A}$ ）		－	常設／防止 （DB 拡張）	SAクラス 2	
					－					原子炉格納容器配管貫通部（X－214A）～ サプレッションチェンバ出口配管A系合流点	－		常設／防止 （DB 拡張）	SA クラス 2	
					－					サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐 点	－		常設／防止 （DB 拡張）	SA クラス 2	
					－					残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	－		常設／防止 （DB 拡張）	SAクラス 2	
					－					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－		常設／防止 （DB 拡張）	SA クラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（35／49）

	$\begin{aligned} & \text { 㯒 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼対象施設＊＊		重大事故等対処設備＊${ }^{\text {¹ }}$		名称	設計其鹪対象施設＊＊		重大事故等対処設储＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器ソラス	設備分類	重大事故等機器クラス		
		主配管	－		－					残留熱除去系熱交換器（A）バイパス配管分岥点～残留熱除去系熱交換器 (A)		－	常設／防止 （DB 挔張）	SAクラス 2
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循噮冷却系出口配管分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	
				－					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	
				－					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器 (A) バイパス配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	
					－				残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冾却モードA系注入配管分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	
					－				原子炬停止時冷却モードA系注入配管分岐点～ドライウェルスプレイ注入配管 A 系分岐点		－	常設／防止 （DB 㧒張）	SAクラス 2	
					－				ドライウェルスプレイ注入配管A系分岐点～低圧代替注水系 A 系注入配管合 流点		－	常設／防止 （DB 拡張）	SAクラス 2	
					－				低圧代替注水系A系注入配管合流点～原子炉格納容器配管貫通部（X－31A）		－	常設／防止 （DB 拡張）	SAクラス 2	
					－				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）		－	常設／防止 （DB 㧒張）	SAクラス 2	
					－				原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器		－	常設／防止 （DB 㧒張）	SAクラス 2	
					－				残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）		－	常設／防止 （DB 拡張）	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（36／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（37／49）

$$	$\begin{aligned} & \text { 䌖 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼詨象施設＊1		重大事故等対処設備＊${ }^{\text {a }}$		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \hline \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
					－					原子炉格納容器配管貫通部（X－214C）		－	常設／防止 （DB 抆張）	SAクラス 2
				－					原子炬格納容器配管貫通部（X－214C）～残留熱除去系ポンプ（C）		－	常設／防止 （DB 拚張）	SAクラス 2	
	$\begin{aligned} & \text { 穓 } \\ & \text { 等 } \end{aligned}$	主配管	－	－					残留熱除去系ポンプ（C）～原子炬格納容器配管貫通部（X－31C）		－	常設／防止 （DB 拡張）	SAクラス 2	
	系			－					原子炉格納容器配管貫通部（ X －31C）		－	常設／防止 （DB 拡張）	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－31C）～原子炉圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 袋 } \\ & \text { 螈 } \\ & \text { 㯺 } \end{aligned}$	ポンプ	－	－					大容量送水ポンプ（タイプ I ）		－	可搬／防止可搬／緩和	SAクラス 3	
				－					大容量送水ポンプ（タイプII）		－	可搬／防止可搬／緩和	SAクラス 3	
				－					復水貥蔵タンク接続口～復水貯蔵タン ク純水入口配管合流点		－	常設／防止常設／緩和	SAクラス 2	
				－					復水䙹蔵タンク純水入口配管合流点～復水貯蔵タンク		－	常設／防止常設／緩和	SAクラス 2	
		戸配管	－	－					取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~mm}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）		－	可搬／防止可搬／緩和	SAクラス 3	
				－					送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）		－	可搬／防止可搬／緩和	SAクラス 3	
				－					注水用ヘッダ		－	可搬／防止可搬／緩和	SAクラス 3	
				－					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）		－	可搬／防止 可搬／緩和	SAクラス 3	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（38／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（39／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（40／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
原炉設備却材補給	$\begin{aligned} & \text { 補 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$	主配管	－		N21－F041～復水貯蔵タンク	B－1	クラス 3		－	変更なし			－	
				純水移送ポンプ～復水貯蔵タンク純水入口配管合流点	B－1	クラス 3		－	－＊${ }^{*}$					
				復水貯蔵タンク純水入口配管合流点～復水貯蔵タンク	B－1	クラス 3		－	－＊6					
		熱交換器	－	原子炉補機冷却水系熱交換器（A），（C）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炉補機冷却水系熱交換器（B），（D）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
		ポンプ	－	原子炉補機冷却水ポンプ（A），（C）	S	Non＊5		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炬補機冷却水ポンプ（B），（D）	S	Non＊5		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炉補機冷却海水ポンプ（A），（C）	S	Non＊5		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炉補機冷却海水ポンプ（B），（D）	S	Non＊5		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
		容器	－	原子炉補機冷却水サージタンク（A）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炉補機冷却水サージタンク（B）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
		万過装置	－	原子炉補機冷却海水系ストレーナ（A），（C）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炬補機冷却海水系ストレーナ（B），（D）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（41／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（42／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（43／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 梸 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 烺 } \\ & \text { 補 } \\ & \text { 蛹 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）出口配管分岐点	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2
				残留熱除去系熱交換器（B）出口配管分岐点 ～原子炬補機冷却水サージタンク（B）出口配管合流点	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
				原子炉補機冷却水系熱交換器（B），（D）出口配管分岐点 2 ～非常用ディーゼル発電設備 （B）機関付空気冷却器	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	原 炉 補 機			非常用ディーゼル発電設備（B）機関付空気冷却器～非常用ディーゼル発電設備（B）潤滑油泠却器	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 機 } \\ & \text { 泠 } \\ & \text { 郅 } \\ & \text { 永 } \end{aligned}$			非常用ディーゼル発電設備（B）垌滑油泠却器～非常用ディーゼル発電設備（ B ）清水泠 却器	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 原 } \\ & \text { 凖 } \\ & \text { 補 } \\ & \text { 機 } \end{aligned}$	主配管	－	非常用ディーゼル発電設備（B）清水泠却器 ～原子炉補機冷却水ポンプ（B），（D）入口配管合流点 2	S	クラス 3		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 機 } \\ & \text { 泠 } \\ & \text { 海 } \end{aligned}$			原子炉補機泠却水系熱交換器（B），（D）出口配管分岐点3～燃料プール泠却浄化系熱交換器（B）入口配管合流点	S	クラス 3		－	変更なし					
	$\begin{aligned} & \text { 水 } \\ & \text { 采 } \\ & \text { 类 } \end{aligned}$			燃料プール椧却浄化系熱交換器（B）入口配管合流点～燃料プール泠却浄化系熱交換器 （B）	S	クラス 3		－	変更なし					
	含			燃料プール泠却浄化系熱交換器（B）～原子炉補機冷却水ポンプ（B），（D）入口配管合流点 1	S	クラス 3		－	変更なし					
				原子炉補機冷却水系熱交換器（B），（D）出口配管分岐点 1～P42－F091B	S	クラス 3		－	変更なし					
				P42－F091B～原子炉冷却材浄化系非再生熱交換器（B）＊3	C	クラス 3		－	変更なし					
				原子炉冷却材浄化系非再生熱交換器（B）連絡管＊3	C	クラス 3		－	変更なし					
				原子炉泠却材浄化系非再生熱交換器（B）～ P42－F092B＊3	C	クラス 3		－	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（44／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（45／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後						
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$		名称		設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス			耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 原 } \\ & \text { 烺 } \\ & \text { 補 } \end{aligned}$				原子炬補機冷却水系熱交換器（B）～放水槽	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2
	機 桧 却 水			原子炉補機冷却海水ポンプ（D）～原子炬補機冷却海水系ストレーナ（D）	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
		主配管	－	原子炬補機冷却海水系ストレーナ（D）～原子炬補機冷却水系熱交換器（D）	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{array}{r}\text { 袖 } \\ \text { 機 } \\ \text { 洽 } \\ \text { 却 } \\ \text { 海 } \\ \hline\end{array}$			原子炉補機冷却水系熱交換器（D）～放水槽	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 水 } \\ & \text { 采 } \\ & \text { 含 } \end{aligned}$			原子炬補機冷却海水ポンプ（ B ）出口配管分岐点～原子炉補機浍却海水ポンプ（D）出口配管合流点	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 高 } \\ & \text { 柜 } \\ & \hline \end{aligned}$	熱交換器	－	高圧炉心スプレイ補機冷却水系熱交換器	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SA クラス 2	
却 設 備	$\begin{aligned} & \text { 憂 } \\ & \text { プ } \end{aligned}$		－	高圧炉心スプレイ補機冷却水ポンプ	S	Non＊5		－		変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { L } \\ & \text { 補 } \end{aligned}$			高圧炉心スプレイ補機冷却海水ポンプ	S	Non＊5		－		変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 海機 } \\ & \text { 水浍却 } \\ & \text { 采衸 } \end{aligned}$	容器	－	高圧炬心スプレイ補機冷却水サージタンク	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SAクラス 2	
		万過装置	－	高圧炉心スプレイ補機冷却海水系ストレー ナ	S	－		－		変更なし			常設／防止 （DB 拡張）	－	
				高圧炉心スプレイ補機冷却水サージタンク ～高圧炬心スプレイ補機冷却水サージタン ク出口配管合流点	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SA クラス 2	
		主配管	－	高圧炬心スプレイ系ディーゼル発電設備清 水椧却器～高圧灲心スプレイ補機冷却水ポ シプ	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SA クラス 2	
	$\begin{aligned} & \text { 機 } \\ & \text { 椧 } \\ & \text { 却 } \end{aligned}$			高圧炉心スプレイ補機冷却水ポンプ～高圧炬心スプレイ補機冷却水系熱交換器	S	クラス 3		－		変更なし			常設／防止 （DB 拡張）	SAクラス 2	

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（46／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（47／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（48／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（49／49）

主記 $~$ 1 ：表 1 に用いる略語の定義は「原子炉本体」の「 8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1原子炉本体の主要設備リスト 付表1」による
＊2 ：当該弁は，主要弁に該当しないため記載の適正化を行う
＊3 ：本設備は記載の適正化のみ行うものであり，手続き対象外である。
＊ 4 ：水室側がクラス 2 ，胴体側がクラス 3
＊5：「J S ME S NC1－2005／2007 発電用原子力設備規格 設計•建設規格」における「クラス 3 ポンプ」である
＊6：当該配管は，主配管に該当しないため記載の適正化を行う

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（ $1 / 10$ ）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 爻 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
					名称	設計基漼対象施設＊＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
						$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	残熱除绫備	$\begin{aligned} & \text { 截 } \\ & \text { 熱 } \\ & \text { 稥 } \\ & \text { 系 } \end{aligned}$	原子炉本体炬心支持構造物		－					炬ふシュラウド		－	常設／防止 （DB 拡張）	－
					－					シュラウドサポート		－	常設／防止 （DB 拡張）	－
					－					炉ふシュラウド支持ロッド		－	常設／防止 （DB 拡張）	－
					－					上部格子板		－	常設／防止 （DB 拡張）	－
					－					炉心支持板		－	常設／防止 （DB 拡張）	－
					－					中央燃料支持金具		－	常設／防止 （DB 拡張）	－
					－					周辺燃料支持金具		－	常設／防止 （DB 拡張）	－
					－					制御棒案内管		－	常設／防止 （DB 拡張）	－
				原子炉本体原子炉圧力容器	－					原子炉圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2
				原子炉本体原子炉圧力容器内部構造物	－					ジェットポンプ		－	常設／防止 （DB 拡張）	－
				原子炉格納施設	－					原子炉格納容器（ドライウェル）		－	常設／防止 （DB 拡張）	SAクラス 2
				原子炬格納容器	－					原子炬格納容器（サプレッションチェンバ）		－	常設／防止 （DB 拡張）	SAクラス 2
			原子炉格納施設 原子炉格納容器原子炉格納施設原子炉格納容器調気設備		－					原子炬格納容器		－	常設耐震／防止	SAクラス 2
					－					T48－F020		－	常設耐震／防止	SA クラス 2
					－					T48－F021		－	常設耐震／防止	SA クラス 2
			－	原子炉格納施設 放射性物質濃度制御設備及び可燃 性ガス源度制御設備並びに格納容 器再循環設備	－					可搬型窒素ガス供給装置		－	可搬／防止	－
				原子炉格納施設圧力逃がし装置	－					フィルタ装置出口側ラプチャディスク		－	常設耐震／防止	－
					－					フィルタ装置			常設耐震／防止	SA クラス 2

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(2 / 10)$

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（3／10）

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（4／10）

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（5／10）

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（6／10）

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（7／10）

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（8／10）

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(9 / 10)$

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（10／10）

注記 $~$ 1 ：表 2 に用いる略語の定義は「原子炉本体」の「 8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉冷却系統施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す原子炉冷却系統施設に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表1。施設共通の適用基準及 び適用規格（該当施設）」に示す。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号）	第1章 共通項目 原子炉冷却系統施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す原子炉冷却系統施設に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及 び適用規格（該当施設）」に示す。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号）建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） - 高圧ガス保安法（昭和 26 年 6 月 7 日法律第 204 号） - 消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する構造等の技術基準（平成 6 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成2年8月30日原子力安全委員会決定）

変更前	変更後
－BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －発電用原子力設備における破壊を引き起こすき裂その他の欠陥の解釈に ついて（平成 $21 \cdot 11 \cdot 18$ 原院第 1 号 平成 21 年 12 月 25 日 原子力安全•保安院制定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －実用発電用原子炬施設への航空機落下確率の評価基準について（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号平成 21 年 6 月 30 日原子力安全•保安院一部改正） －タービンミサイル評価について（昭和 52 年 7 月 20 日原子力委員会原子炉安全専門審査会）	－発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 21 年 3 月 9 日原子力安全委員会一部改訂） －BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈（平成 26 年 8 月 6 日原規技発第 1408063 号原子力規制委員会） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －実用発電用原子炉施設への航空機落下確率の評価基準について（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号平成 21 年 6 月 30 日原子力安全•保安院一部改正） －ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイル の衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合） －タービンミサイル評価について（昭和 52 年 7 月 20 日原子力委員会原子炉安全専門審査会） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第 2 号）

変更前	変更後
- J S ME S N C 1－2001 発電用原子力設備規格 設計•建設規格 - J S ME S N C 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格設計•建設規格 －【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格 - J SME S 012 －1998 配管内円柱状構造物の流力振動評価指針 - J S ME S NB1－2007 発電用原子力設備規格 溶接規格 - J S ME S N A 1－2008 発電用原子力設備規格 維持規格 - 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所用機器に対する破壊靭性の確認試験方法（J E A C 420 6 －2007）	－J I S B 1 0 5 1－2014 炭素鋼及び合金鋼製締結用部品の機械的性質一強度区分を規定したボルト，小ねじ及び植込みボルト一並目ねじ及び細目ねじ - NEGA C 3 3 1－2005 可搬形発電設備技術基準 - J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格設計•建設規格 －【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格 - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - J S ME S NB1－2007 発電用原子力設備規格 溶接規格 - J S ME S N A 1－2008 発電用原子力設備規格 維持規格 - J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格 - J SME S NE1－2003 発電用原子力設備規格 コンクリート製原子炉格納容器規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所用機器に対する破壊靭性の確認試験方法（J E A C 420 6－2007）

	変更前	変更後
	- 日本建築学会 1988 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1991 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1996 年 容器構造設計指針•同解説 - 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－	- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］ - 土木学会 2007 年 コンクリート標準示方書［設計編］ - 土木学会 2012 年 コンクリート標準示方書［設計編］ - 土木学会 2017 年 コンクリート標準示方書［設計編］ - 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル - 土木学会 2006年 トンネル標準示方書 - 土木学会 2015 年 トンネル・ライブラリー第 27 号シールド工事用立坑の設計 - 土木学会 2016年 トンネル標準示方書［開削工法編］•同解説 - 一般財団法人土木研究センター 建設技術審査証明報告書 後施工セラ ミック定着型せん断補強鉄筋「セラミックキヤップバー（CCb）」 －鉄道総合技術研究所 平成 13 年 3 月 鉄道構造物等設計標準•同解説 （開削トンネル） - 日本建築学会 1980 年 塔状鋼構造設計指針•同解説 - 日本建築学会 1988 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1991 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1996 年 容器構造設計指針•同解説 - 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－ - 日本建築学会 1990 年 建築耐震設計における保有耐力と変形性能 - 日本建築学会 2001 年 鉄骨鉄筋コンクリート構造計算規準•同解説 －許容応力度設計と保有水平耐力－

変更前	変更後
- 日本建築学会 2004 年 建築物荷重指針•同解説 - 日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - 日本建築学会 2007 年 煙突構造設計指針 - 日本建築センター 1982 年 煙突構造設計施工指針 - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	- 日本建築学会 2010 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2004 年 建築物荷重指針•同解説 - 日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2001 年 建築基礎構造設計指針 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - 日本建築学会 2019 年 鋼構造許容応力度設計規準 - 日本建築学会 2007 年 煙突構造設計指針 - 日本建築学会 2010 年 各種合成構造設計指針•同解説 - 日本建築学会 2010 年 容器構造設計指針•同解説 - 日本建築学会 2010 年 鋼構造限界状態設計指針•同解説 - 日本建築学会 2010 年 鋼構造塑性設計指針 - 日本建築学会 2012 年 鋼構造接合部設計指針 - 日本建築学会 2013 年 建築工事標準仕様書•同解説 JASS 5N 原子力発電所施設における鉄筋コンクリート工事 - 日本建築センター 1982 年 煙突構造設計施工指針 - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編

上記の他「原子力発電所の火山影響評価がイド」，「原子力発電所の竜巻影響評価ガイド」，「原子力発電所の外部火災影響評価ガイド」，「耐震設計に係る工認審査ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

		$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \end{aligned}$		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 椧 } \\ & \text { 坫 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$	蒸多1ビシ				$\begin{aligned} & \text { 原 } \\ & \text { 煽 } \\ & \text { 格 } \\ & \text { 䒨 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
											$\begin{aligned} & \hline \text { 喰 } \\ & \text { 霫 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \hline \text { 補 } \\ & \text { 柴 } \\ & 1 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 施 設	$\begin{aligned} & \begin{array}{l} \text { 袖 } \\ \text { 機 } \\ \text { 動 } \\ \text { 燃 } \\ \text { 設 } \\ \text { 備 } \\ * \end{array} \end{aligned}$		$\begin{aligned} & \hline \text { 婜 } \\ & \text { 嵵 } \\ & \text { 梨 } \\ & \text { 䇽 } \end{aligned}$
$\begin{aligned} & \stackrel{\omega}{\stackrel{1}{\tau}} \underset{\stackrel{1}{\tau}}{\stackrel{\infty}{\infty}} \end{aligned}$	発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会決定）	\bigcirc	\bigcirc		\bigcirc												
	発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2年8月30日原子力安全委員会決定）	\bigcirc	\bigcirc		\bigcirc												
	発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 21 年 3 月 9 日原子力安全委員会一部改訂）	\bigcirc	\bigcirc		\bigcirc												
	BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針 （昭和 62 年 11 月 5 日原子力安全委員会決定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
	実用発電用原子炬及びその附属施設における破壊を引き起こす亀裂その他の欠陷の解釈（平成26年8月6日原規技発第1408063号原子力規制委員会）	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
	非常用炉心泠却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
	実用発電用原子炉施設への航空機落下確率の評価基準について （平成 $21 \cdot 06 \cdot 25$ 原院第 1 号平成 21 年 6 月 30 日原子力安全•保安院一部改正）	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \\ & \text { } \end{aligned}$		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 洽 } \\ & \text { 帮 } \\ & \text { 森 } \\ & \text { 撥 } \end{aligned}$					$\begin{aligned} & \text { 原 } \\ & \text { 橅 } \\ & \text { 格 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
									倳 鮝 霫 設 備	$\begin{aligned} & \hline \text { 㘊 } \\ & \text { 霫 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \hline \text { 補 } \\ & \text { 架 } \\ & 1 \\ & \text { 今 } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 施 設			$\begin{aligned} & \hline \text { 婜 } \\ & \text { 㜦 } \\ & \text { 姇 } \\ & \text { 䇽 } \end{aligned}$
【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格 設計•建設規格	－	－		\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	－	－	－	－	－
【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格	\bigcirc	－		－	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－	－	－
J S ME S 0 1 2－1998 配管内円柱状構造物の流力振動評価指針	\bigcirc	\bigcirc		\bigcirc	－	－	\bigcirc	\bigcirc								
J S ME S NB1－2007 発電用原子力設備規格 溶接規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
J S ME S NA1－2008 発電用原子力設備規格 維持規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	－
J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格	－	\bigcirc		\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
J S ME S NE 1－2003 発電用原子力設備規格 コンク リート製原子炉格納容器規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
原子力発電所耐震設計技術指針 重要度分類•許容応力編（ J EAG4601•補－1984）	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 茠 } \end{aligned}$				詁測製㐬䋁誨設			$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 粉 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炬の附属施設							
									$\begin{aligned} & \text { 践 } \\ & \text { 當 } \\ & \text { 霫 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 震 } \\ & \text { 霫 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \text { 火 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 謢 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 施 設		$\begin{aligned} & \text { 倳 } \\ & \text { 觠 } \\ & \text { 泉 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \hline \text { 䭆 } \\ & \text { 椨 } \\ & \text { 㐎 } \\ & \text { 䇽 } \end{aligned}$
土木学会 2016 年 トンネル標準示方書［開削工法編］•同解説	－	－		－	－	－	－	－	－	－	－	－	\bigcirc	－	－	－
一般財団法人土木研究センター 建設技術審査証明報告書 後施工セラミック定着型せん断補強鉄筋「セラミックキヤップバ - （CCb）」	－	－		－	－	－	－	－	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	－
鉄道総合技術研究所 平成 13 年 3 月 鉄道構造物等設計標準•同解説（開削トンネル）	－	－		－	－	－	－	－	－	－	－	－	\bigcirc	－	－	－
日本建築学会 1980年 塔状鋼構造設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1988 年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1991年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	－	－
日本建築学会 1996年 容器構造設計指針•同解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1990 年 建築耐震設計における保有耐力と変形性能	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 条 } \\ & \text { 体 } \end{aligned}$		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 滄 } \\ & \text { 却 } \\ & \text { 䋁 } \\ & \text { 設 } \end{aligned}$				放䌖管理施設	$\begin{aligned} & \text { 原 } \\ & \text { 爟 } \\ & \text { 柄 } \\ & \text { 施 } \end{aligned}$	その他発電用原子炉の附属施設							
											$\begin{aligned} & \text { 補 } \\ & \text { 㸝 } \\ & \text { 个 } \\ & \vdots \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 譙 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 誨 設		倳 喟 敢 設 備	$\begin{aligned} & \text { 㹂 } \\ & \text { 時 } \\ & \text { 㳖 } \\ & \text { 䇽 } \end{aligned}$
日本建築学会 2010 年 鋼構造限界状態設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 鋼構造塑性設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2012 年 鋼構造接合部設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2013 年 建築工事標準仕様書•同解説 JASS 5N 原子力発電所施設における鉄筋コンクリート工事	\bigcirc	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
日本建築センター 1982年 煙突構造設計施工指針	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	－	－
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	－
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 II 鋼橋編•IV下部構造編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 20 年 8 月 小規模吊橋指針•同解説	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 涾 } \\ & \text { 体 } \end{aligned}$		原炇洽㗉奚施設	$\begin{aligned} & \text { 䕄 } \\ & \text { 俭 } \\ & \text { ビ } \end{aligned}$			放線栄理篧		その他発電用原子炉の附属施設							
										$\begin{aligned} & \text { 㘊 } \\ & \text { 霫 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \hline \text { 補 } \\ & \text { 昭 } \\ & 1 \\ & \uparrow \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 浸 } \\ & \text { 沝 } \\ & \text { 讙 } \\ & \text { 設 } \end{aligned}$		倳 畐 敢 水 設 備	$\begin{aligned} & \text { 㹂 } \\ & \text { 時 } \\ & \text { 村 } \\ & \text { 策 } \end{aligned}$
日本水道協会 1997年 水道施設耐震工法指針•解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本下水道協会 2014年 下水道施設の耐震対策指針と解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
日本溶接協会 2003 年 動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808	\bigcirc	\bigcirc		\bigcirc												
J C A S 1600－2017 クレーン用フック規格	－	\bigcirc		－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－
クレーン構造規格（平成7年12月26日労働省告示第134号）	\bigcirc	\bigcirc		\bigcirc												
2015年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）	\bigcirc	\bigcirc		\bigcirc												
Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute 2011 Rev8 （NEI07－13））	\bigcirc	\bigcirc		\bigcirc												
U．S．NUCLEAR REGULATORY COMMISSION：STANDARD REVIEW PLAN 3．6．2 DETERMINATION OF RUPTURE LOCATIONS AND DYNAMIC EFFECTS ASSOCIATED WITH THE POSTULATED RUPTURE OF PIPING （SRP 3．6．2 R3）	\bigcirc	\bigcirc		\bigcirc	－	\bigcirc	\bigcirc									

変更前	変更後
第2章 個別項目 原子炬冷却系統施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －軽水型動力炉の非常用炉心冷却系の性能評価指針（平成 4 年 6 月 11 日原子力安全委員会一部改訂） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - JSME S 0 1 7－2003 配管の高サイクル熱疲労に関する評価指針 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－	第2章 個別項目 原子炉冷却系統施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －軽水型動力炉の非常用炉心冷却系の性能評価指針（平成 4年6月11日原子力安全委員会一部改訂） －BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - JSME S 0 1 7－2003 配管の高サイクル熱疲労に関する評価指針 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 土木学会 2016 年 トンネル標準示方書［開削工法編］•同解説 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法

3.12 原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法

変更前	変更後
原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法は，「原子炉本体」	
における「1．9 原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使	変更なし
用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る工事	
上の留意事項」を除く。）に従う。	

3.13 蒸気タービン

3．13．1 蒸気タービン本体
（2）車室，円板，隔板，噴口，翼，車軸及び管

変 更 前							変 更 後							
	名 称 ${ }^{* 1}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(1 \mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{array}{\|l\|l} \hline \text { 蒸 } \\ \text { 夕 } \\ 1 \\ \text { ビ } \\ \vdots \\ \text { の } \\ \text { 管 } \end{array}$	低圧タービン第10段抽気出口N36-F006A, B	0． $63 * 5$	230	318.5	（10．3）	STPA23	$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & 1 \\ & \text { ビ } \\ & ⿱ 丷 天 \\ & \text { 管 } \end{aligned}$	変更なし						
				457.2	$\mathbf{Z}^{\mathbf{6}}{ }^{6}$	SCMV3								
	低圧タービン第11段抽気出口 N36-F009A, B	0． $38 * 5$	151	457.2 609.6		SCMV3 SCMV3		変更なし						

注記＊1 ：記載の適正化を行う。既工事計画書には「管名称」「使用場所」と記載。
＊2 ：外径は公称値を示す。
＊ 3 ：（ ）内は公称値を示す
＊4：記載の適正化を行う。既工事計画書には「リード管（蒸気加減弁から高圧タービンまで）」と記載。
＊5 ：S I 単位に換算したものである
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－6 蒸気タービンの管の強度計算書」による。
＊7：記載の適正化を行う。既工事計画書には「クロスアラウンド管（高圧タービンから湿分分離加熱器まで）」と記載
＊ 8 ：記載の適正化を行う。既工事計画書には「クロスアラウンド管（同上レジューサ）」と記載
＊9：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
＊10：記載の適正化を行う。既工事計画書には「クロスアラウンド管（湿分分離加熱器から組合せ中間弁及びクロスアラウンド管安全弁まで）」と記載。
＊11：記載の適正化を行う。既工事計画書には「クロスアラウンド管（組合せ中間弁から低圧タービンまで）」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱烝気管（高圧タービン第3段抽気出口から湿分分離加熱器へ）」と記載。
＊13：記載の適正化を行う。既工事計画書には「第1抽気管（高圧タービン第5段抽気出口から高圧第 2 給水加熱器へ）」と記載
＊ 14 ：記載の適正化を行う。既工事計画書には「第2抽気管（クロスアラウンド管から高圧第1給水加熱器へ）」と記載。
$* 15$ ：記載の適正化を行う。既工事計画書には「第3抽気管（低圧タービン第10段抽気出口から低圧第 4 給水加熱器へ）」と記載。
＊16：記載の適正化を行う。既工事計画書には「第4抽気管（低圧タービン第11段抽気出口から低圧第 3 給水加熱器へ）」と記載。
（3）調速装置及び非常用調速装置並びに調速装置で制御される主要弁

					変 更 前＊	変 更 後
名			称		主蒸気止め弁	変更なし
種			類	－	止め弁	
駆	動	方	法	－	油圧作動	
個			数	－	4	

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

					変 更 前＊	変 更 後
名			称		蒸気加減弁	変更なし
種			類	－	制御弁	
駆	動	方	法	－	油圧作動	
個			数	－	4	

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

					変 更 前＊	変 更 後
名			称		組合せ中間弁	変更なし
種			類	－	制御弁•止め弁	
駆	動	方	法	－	油圧作動	
個			数	－	4	

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（4）復水器

注：記載の適正化を行う。既工事計画書の「取放水の温度差」の記載を削除。
注記 $* 1$ ：記載の適正化を行う。既工事計画書には「冷却水入口標準温度」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「 $\mathrm{m}^{2} /$ 個」と記載。
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「SM41A 相当（SMA41AP）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「SS41」と記載。

枠囲みの内容は商業機密の観点から公開できません。

3．13．2 蒸気タービンの附属設備
（2）熱交換器（湿分分離器を含む。）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）

（次頁へ続く）

[^6]（前頁からの続き）

注：記載の適正化を行う。既工事計画書の「加熱面積（フィン表面にて）」の記載を削除。
注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2：S I 単位に換算したものである。
＊3 ：記載の適正化を行う。既工事計画書には「胴内径」と記載。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－1 湿分分離加熱器の強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「加熱管」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「外径•厚さ」と記載。
＊9：記載の適正化を行う。既工事計画書には「19． 05×1.90 」と記載。
＊ 10 ：記載の適正化を行う。既工事計画書には「フィン部谷径•厚さ」と記載。
＊11：記載の適正化を行う。既工事計画書には「 15.88×1.24 」と記載。
＊12：記載の適正化を行う。既工事計画書にはマンホールを含んだ「29460」と記載。記載内容は，設計図書による。
＊13：記載の適正化を行う。既工事計画書には「胴」と記載。
＊14：記載の適正化を行う。既工事計画書には「鏡板」と記載。

[^7]
（次頁へ続く）

枠囲みの内容は商業機密の観点から公開できません。
（前頁からの続き）

注 ：記載の適正化を行う。既工事計画書の「加熱面積」及び「材料」の「胴フランジ」の記載を削除。
注記＊1 ：S I 単位に換算したものである。
＊2 ：公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－5 スチームコンバー タ中間熱交換器の強度計算書」による。
＊5 ：記載の適正化を行う。既工事計画書には「加熱管外径」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「加熱管厚さ」と記載。
＊7 ：記載の適正化を行う。既工事計画書には管台長さ及びマンホールを含んだ「6325」と記載。記載内容は，設計図書による。
＊8 ：記載の適正化を行う。既工事計画書には「胴」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「SB46」と記載。
＊ 10 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊11：記載の適正化を行う。既工事計画書には「SF50A」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「加熱管」と記載。
＊ 13 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

枠囲みの内容は商業機密の観点から公開できません。
（4）管等
个 主配管
（イ）タービン補助蒸気系

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 最高使 用 } \\ \text { 温 } & \text { (} \left.{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 }$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { タ } \\ & 1 \\ & \text { ビ } \\ & \text { ビ } \\ & \text { 補 } \\ & \text { 蒸 } \\ & \text { 気 } \end{aligned}$	N38-F023A, B 湿分分離加熱器第2段加熱器	8． $62 * 4$	302	216.3	（12．7）	STPT49		変更なし						
				165.2	（11．0）	STPT49								
				165.2	（14．3）	STPA23								
	同上レジューサ	8． $62^{* 4}$	302	$\begin{gathered} 216.3 \\ / \\ 165.2 \\ \hline \end{gathered}$	$\begin{gathered} (12.7) \\ \prime \\ (11.0) \\ \hline \end{gathered}$	STPT49				－＊5				
	N38－F024A，B 湿分分離加熱器第2段加熱蒸 気管合流点	8． $62 * 4$	302	216.3	（12．7）	STPT49				変更なし				
	蒸気式空気抽出器入口管の安全弁 復水器	2． $35^{* 4}$	223	165.2	（7．1）	STPT38				－＊5				

（ハ）タービングランド蒸気系

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	\qquad	材	料
	グランド蒸気復水器 グランド蒸気排風機	$0.14 * 4$	94	318.5 267.4	（10．3） （9．3）	STPT38 STPT38		変更なし						
	同上レジューサ	$0.14 * 4$	94	$\begin{gathered} 318.5 \\ / \\ 267.4 \end{gathered}$	$\begin{gathered} (10.3) \\ / \\ (9.3) \end{gathered}$	STPT38				－＊5				
	グランド蒸気排風機 ～ N 14 N33－F152A，B	0． 14 ＊	94	267.4	（9．3）	STPT38				変更なし				
	加熱蒸気供給管 グランド蒸気発生器	1． 57 ＊4	204	216.3	（8．2）	STPT38				－＊5				
	同上レジューサ	1． $57 * 4$	204	$\begin{gathered} 267.4 \\ / \\ 216.3 \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (8.2) \end{gathered}$	STPT38				－＊5				
				355.6	（11．1）	STPT38								
	＊15	1． $57{ }^{* 4}$	204	318.5	（10．3）	STPT38								
	グランド蒸気発生器			406.4	（12．7）	STPT38								
	～			406.4	（12．7）	STPT38				－＊5				
	高圧タービン，低圧タービ			406.4	＊16 (9.5)	SB46								
	ングランド部	0． 14 ＊4	164	318.5	（10．3）	STPT38								
				216.3	（8．2）	STPT38								
				165.2	（7．1）	STPT38								
	同上レジューサ	1． $57 * 4$	204	$\begin{gathered} 406.4 \\ / \\ 355.6 \end{gathered}$	$\begin{gathered} (12.7) \\ (11.1) \end{gathered}$	STPT38				－＊5				
	同上レジューサ	1． $57 * 4$	204	$\begin{gathered} 355.6 \\ / \\ 267.4 \end{gathered}$	$\begin{gathered} (11.1) \\ / \\ (9.3) \\ \hline \end{gathered}$	STPT38				－＊5				
	同上レジューサ	1． $57 * 4$	204	$\begin{gathered} 406.4 \\ / \\ 267.4 \\ \hline \end{gathered}$	$\begin{gathered} (12.7) \\ \prime \\ (9.3) \end{gathered}$	STPT38				－＊5				
	同上レジューサ	0． 14 ＊${ }^{\text {d }}$	164	$\begin{gathered} 406.4 \\ / \\ 318.5 \end{gathered}$	$\begin{aligned} & (12.7) \\ & \prime \\ & (10.3) \end{aligned}$	STPT38				－＊5				
	同上レジューサ	$0.14 * 4$	164	$\begin{gathered} \text { 406. } 4 \\ \text { /i8. } \end{gathered}$	$]^{16} /(10.3)$	SB46				－＊5				
	同上レジューサ	$0.14 * 4$	164	$\begin{gathered} 318.5 \\ \hline \\ 165.2 \end{gathered}$	$\begin{gathered} (10.3) \\ / \\ (7.1) \end{gathered}$	STPT38				－＊5				

	変 更 前							変 更 後							
		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ \hline \end{array} \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
		高圧タービングランド部抽気系	0.63 ＊	180	165.2	（7．1）	STPA23				－＊5				
		同上レジューサ	0． 63 ＊4	180	165.2	$\begin{gathered} \text { (7. 1) } \\ / \end{gathered}$	STPA23				－＊5				
		主蒸気止め弁復水器	0． 35 ＊4	164	165.2	（7．1）	STPA23				－＊5				
		同上レジューサ	$0.35 * 4$	164	165.2 ノ	$\begin{gathered} \hline \text { (7.1) } \\ \text { / } \end{gathered}$	STPA23				－＊5				
					216.3	（8．2）	STPT38								
		＊20			267.4	（9．3）	STPT38								
					318.5	（10．3）	STPT38								
\bigcirc		~グランド蒸気復水器	0． 14 ＊4	164	457.2		SB46				－＊5				
＝	$\begin{aligned} & \text { タ } \\ & 1 \\ & 1 \end{aligned}$	ゾラント烝気復水器			508.0	(9.5)	SB46								
（0） \sim	$\begin{aligned} & \text { シ } \\ & \text { グ } \\ & \text { ラ } \end{aligned}$	同上レジューサ	$0.14{ }^{* 4}$	164	$\begin{gathered} 267.4 \\ \hline 216.3 \end{gathered}$	$\begin{gathered} (9.3) \\ \prime \\ (8.2) \end{gathered}$	STPT38	$\begin{aligned} & \text { 夕 } \\ & 1 \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$			－＊5				
\bigcirc		同上レジューサ	$0.14 * 4$	164	$\begin{gathered} 318.5 \\ / 165.2 \end{gathered}$	$\begin{gathered} (10.3) \\ (7.1) \end{gathered}$	STPT38	$\begin{aligned} & \text { グ } \\ & \text { ラ } \\ & \text { 年 } \end{aligned}$			－＊5				
	系	同上レジューサ	$0.14{ }^{* 4}$	164	$\begin{gathered} 457.2 \\ \hline \\ 318.5 \end{gathered}$		SB46	$\begin{aligned} & \text { 蒸 } \\ & \text { 参 } \\ & \text { 采 } \end{aligned}$			－＊5				
		同上レジューサ	0． 14 ＊4	164	$\underset{457.2}{\substack{508.0}}$	\square （9．5） \square ：16 （9．5）	SB46				－＊5				
		高圧タービングランド部 グランド蒸気復水器入口管合流点 2	0． 14 ＊4	164	165． 2	（7．1）	STPT38				－＊5				
		同上レジューサ	0． 14 ＊${ }^{\text {d }}$	164	$\begin{gathered} 165.2 \\ / \\ - \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (7. 1) } \\ \quad / \\ - \\ \hline \end{gathered}$	STPT38				－＊5				

体囲みの内容は商業機密の観点から公開できません。

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
タ 1 ビ ジ ラ シ	原子炉給水ポンプ駆動用蒸気タービン グランド蒸気復水器入口管合流点1	0． $14 * 4$	164	216.3	（8．2）	STPT38	$\begin{aligned} & \text { タ } \\ & 1 \\ & \text { ビ } \\ & \text { ジ } \\ & \text { グ } \\ & シ \end{aligned}$			－＊5				
$\begin{aligned} & \text { ド } \\ & \text { 烝 } \\ & \text { 系 } \end{aligned}$	同上レジューサ	$0.14 * 4$	164	$\begin{gathered} 216.3 \\ \nearrow \end{gathered}$	(8.2) －	STPT38	$\begin{aligned} & \text { F } \\ & \text { 卺 } \\ & \text { 采 } \end{aligned}$			－＊5				

（二）復水器空気抽出系

（木）復水給水系

（ ）給水加熱器ドレンベント系

注記 $* 1$ ：外径は公称値を示す。
$* 2: ~$
＊2：（ ）内は公称値を示す。
＊ 4 ：S I 単位に換算したものである
＊5：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。
＊6：記載の適正化を行う。既工事計画書には「湿分分離加熱器第2段加熱蒸気減圧弁バイパス弁から湿分分離加熱器第2段加熱蒸気管まで」と記載
＊7 ：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱蒸気管から湿分分離加熱器第1段加熱器まで」と記載。
＊8：記載の適正化を行う。既工事計画書には「クロスアラウンド管から原子炉給水ポンプ駆動用蒸気タービンへ」と記載。
＊9：記載の適正化を行ら。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービンより復水器まで」と記載。
＊ 10 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－7 抽気系管の強度計算書」による。
＊11：記載の適正化を行ら。既工事計画書には「第3抽気管よりグランド蒸気発生器まで（グランド蒸気発生器入口管）」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器入口管からグランド蒸気発生器加熱蒸気安全弁まで」と記載。
＊13：記載の適正化を行う。既工事計画書には「主蒸気系よりグランド蒸気発生器入口管まで」と記載。
＊ 14 ：記載の適正化を行う。既工事計画書には「グランド蒸気排風機から気体廃棄物処理系まで1と記載
＊15：記載の適正化を行う。既工事計画書には「グランド蒸気発生器から高圧タービン，低圧タービングランド部へ（グランド蒸気発生器出口管）」と記載。
＊ 16 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 3 月 5 日付け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－8 タービングランド蒸気系管の強度計算書」による。
＊ 17 ：記載の適正化を行ら。既工事計画書には「加熱蒸気供給管からグランド蒸気発生器出口管まで」と記載。
＊18：記載の適正化を行ら。既工事計画書には「グランド蒸気発生器出口管から原子炉給水ポンプ駆動用蒸気タービンへ」と記載。
＊ 19 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器出口管からグランド蒸気安全弁まで」と記載。
＊ 20 ：記載の適正化を行う。既工事計画書には「低圧タービングランド部からグランド蒸気復水器まで（グランド蒸気復水器入口管）」と記載。
＊21：記載の適正化を行う。既工事計画書には「高圧タービングランド部よりグランド蒸気復水器入口管まで」と記載。
＊ 22 ：記載の適正化を行う。既工事計画書には「原子炉給水ポンプ駆動用蒸気タービンよりグランド蒸気復水器入口管まで」と記載。
＊23：記載の適正化を行う。既工事計画書には「復水器から蒸気式空気抽出器まで（復水器出口管）」と記載。
＊ 24 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－9 復水器空気抽出系管の強度計算書」による。
＊25：記載の適正化を行う。既工事計画書には「蒸気式空気抽出器から気体廃妻物処理系まで」と記載。
＊ 26 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊ 27 ：記載の適正化を行う。既工事計画書には「復水器出口管から起動用真空ポンプまで（起動用真空ポンプ入口管）」と記載。
＊28：記載の適正化を行ら。既工事計画書には「起動用真空ポンプ入口管から起動用真空ポンプの真空破壊弁まで」と記載。
＊29：記載の適止化を行り。既工事計画書には1起動用真空ポンプウォータセバレータから気体廃妻物処理系まで」と記載。
＊30：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－10 復水給水系管の強度計算書」による。
＊31：記載の適正化を行う。既工事計画書には「補給水系から復水器まで」と記載。
＊ 32 ：記載の適正化を行う。既工事計画書には「高圧復水ポンプ入口管より復水器まで」と記載。
＊ 33 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－11 給水加熱器ドレンベント系管の強度計算書」による。
＊ 34 ：記載の適正化を行ら。既工事計画書には「湿分分離加熱器第2段加熱器ドレンタンクから復水器まで」と記載。
＊ 35 ：記載の適正化を行う。記載内容は設計図書による。
＊ 36 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲となるものである。
＊37：記載の適正化を行う。既工事計画書には「湿分分離加熱器第1段加熱器ドレンタンクから復水器まで」と記載。
＊38．記載の適正化を行う。既工事計画書には「湿分分離ドレンタンクから高圧第1給水加熱器へ（湿分分離ドレンタンク出口管）」と記載
＊39：記載の適正化を行ら。既工事計画書には「湿分分離ドレンタンク出口管から復水器まで」と記載。

＊41：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付け3資庁第14373号にて認可された工事計画の添付書類「IV－3－7－12スチームコンバータ系管の強度計算書」による。
＊42：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンクから加熱蒸気供給管まで（スチームコンバータフラッシュタンク蒸気出ロ管）」と記載。

注記＊1 ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－14 湿分分離加熱器第1段加熱器ドレンタンクの強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「胴」と記載。

[^8]

注記＊1 ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊ 4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－15 湿分分離加熱器第2段加熱器ドレンタンクの強度計算書」による。
＊7 ：記載の適正化を行う。既工事計画書には「胴」と記載。

[^9]

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「貯水容量（通常水位にて）」と記載。
＊2 ：公称値を示す。
＊3：S I 単位に換算したものである。
＊4 ：記載の適正化を行う。既工事計画書には「胴厚さ」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－7－16 スチームコンバ

ータフラッシュタンクの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「胴」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊8：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊3 ：公称値を示す。

			変 更 前	変 更 後
名		称	N33－F006A，B＊1	—＊5
種	類	－	平衡型	
吹	出 圧 力	MPa	$0.14 * 2$	
吹	出 量	kg／h／個	$16397 * 2, * 3$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	－	200A	
	のど部の径	mm		
	弁座口の径	mm	170.0 ＊3	
	リ フ ト	mm		
材 料	弁 箱	－	SCPH2	
個	数	－	2	
取 付 箇 所	$\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン名) } \end{gathered}$	－	$\begin{gathered} \text { N33-F006A, B } \\ \text { タービングランド蒸気系 } \end{gathered}$	
	設 置 床	－	＊ 4 タービン建屋 0. P. 24. 80m	
	溢 水 防護上の区 画 番 号溢水防護上の配慮が必要な高さ	－ -	－	

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「グランド蒸気安全弁」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 け 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－2 グランド蒸気安全弁吹出量計算書」による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器出口管」と記載。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「グランド蒸気発生器加熱蒸気安全弁」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－1 グランド蒸気発生器加熱蒸気安全弁吹出量計算書」による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「グランド蒸気発生器入口管」と記載。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外であ る。

			変 更 前	変 更 後
名	称		P63－F005＊1	—＊5
種	類	－	平衡型	
吹	出 圧 力	MPa	2． $06 * 2$	
吹	出 量	kg／h／個	93532＊2，＊3	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	－	150A	
	のど部の径	mm		
	弁 座 口 の径	mm	133． $0^{* 3}$	
	リフフ	mm		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2	
個	数	－	1	
取 付 箇 所		－	$\begin{gathered} \mathrm{P} 63-\mathrm{F} 005 \\ \text { スチームコンバータ系 } \end{gathered}$	
	設 置 床	－	$\begin{gathered} \text { タービン建屋 } \\ \text { 0.P.14.20m } \end{gathered}$	
	溢 水 防 護 上の 区 画 番 号	－	－	
	溢 水 防 護 上の配慮が必要な高さ	－	－	

注記＊1 ：記載の適正化を行う。既工事計画書には「スチームコンバータ加熱蒸気安全弁」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－3 スチームコンバ ータ加熱蒸気安全弁吹出量計算書」による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「スチームコンバータ加熱蒸気管」と記載。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外であ る。

注記＊1 ：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンク安全弁」 と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年3月5日付 3 資庁第 14373 号にて認可された工事計画の添付書類「IV－3－9－4 スチームコンバ ータフラッシュタンク安全弁吹出量計算書」による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「スチームコンバータフラッシュタンク蒸気出口管」と記載。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外であ る。

3．13．3 蒸気タービンの基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 蒸気タービンの共通項目である「1．地盤等，2．自然現象，3．火災， 4．設備に対する要求（4．6 逆止め弁，4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 蒸気タービンの共通項目である「1．地盤等，2．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．6 逆止め弁，5．7 内燃機関及びガ スタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」 の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。
第2章 個別項目 1．蒸気タービン 設計基準対象施設に施設する蒸気タービン及び蒸気タービンの附属設備は，想定される環境条件において，材料に及ぼす化学的及び物理的影響 を考慮した設計とする。 また，振動対策，過速度対策等各種の保護装置及び監視制御装置により，中央制御室及び現場において運転状態の監視を行い，発電用原子炉施設の安全性を損なわないよう，以下の事項を考慮して設計する。 1.1 蒸気タービン本体	第2章 個別項目 1．蒸気タービン 変更なし

変更前	変更後
蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補給水率 0% に おいて，発電端で 825000 kW となる設計とする。 定格熱出力一定運転の実施においても，蒸気タービン設備の保安が確保できるように定格熱出力一定運転を考慮した設計とする。 蒸気タービンは，非常調速装置が作動したときに達する回転速度並び に蒸気タービンの起動時及び停止過程を含む運転中に主要な軸受又は軸に発生しうる最大の振動に対して構造上十分な機械的強度を有する設計とする。 また，蒸気タービンの軸受は，主油ポンプ，ターニング油ポンプ，非常用油ポンプ等の軸受潤滑設備を設置することにより，運転中の荷重を安定に支持でき，かつ，異常な摩耗，変形及び過熱が生じない設計とす る。 蒸気タービン及び発電機その他の回転体を同一軸上に結合したもの の危険速度は，速度調定率で定まる回転速度の範囲のうち最小の回転速度から，非常調速装置が作動したときに達する回転速度までの間に発生 しない設計とする。 また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速 できる設計とする。 蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又 は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計とする。 蒸気タービンには，その回転速度及び出力が負荷の変動の際にも持続的に動揺することを防止する調速装置を設けるとともに，運転中に生じ た過回転，発電機の内部故障，復水器真空低下，スラスト軸受の摩耗に	

	変更前	変更後
$\begin{aligned} & \omega \\ & \underset{\omega}{\omega} \\ & \omega \\ & \omega \\ & \omega \\ & \omega \end{aligned}$	よる設備の破損を防止するため，その異常が発生した場合に蒸気タービ ンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置及び保安装置を設置する。 また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動する回転速度未満にする能力を有する設計とする。 なお，過回転については定格回転速度の 1.11 倍を超えない回転数で非常調速装置が作動する設計とする。 蒸気タービン及びその附属設備であって，最高使用圧力を超える過圧 が生ずるおそれのあるものにあっては，排気圧力の上昇時に過圧を防止 することができる容量を有し，かつ，最高使用圧力以下で動作する大気放出板を設置し，その圧力を逃がすことができる設計とする。 蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態を監視することができる設計とす る。 （1）蒸気タービンの回転速度 （2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気の圧力及 び温度 （3）蒸気タービンの排気圧力 （4）蒸気タービンの軸受の入口における潤滑油の圧力 （5）蒸気タービンの軸受の出口における潤滑油の温度又は軸受メタ ル温度 （6）蒸気加減弁の開度 （7）蒸気タービンの振動の振幅 蒸気タービンは，振動を起こさないように十分配慮をはらうととも	

変更前	変更後
に，万一，振動が発生した場合にも振動監視装置により，警報を発する ように設計する。また，運転中振動の振幅を自動的に記録できる設計と する。 蒸気タービン及びその附属設備の構造設計において「発電用火力設備 に関する技術基準を定める省令及びその解釈」に規定のないものについ ては，信頼性が確認され十分な実績のある設計方法，安全率等を用いる ほか，最新知見を反映し，十分な安全性を持たせることにより保安が確保できる設計とする。 復水器は，泠却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa にお いて真空度 96.3 kPa を確保できる設計とする。 1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及び管の耐圧部分に使用する材料は，想定される環境条件において，材料に及ぼす化学的及び物理的影響に対し，安全な化学的成分及び機械的強度を有するも のを使用する。 また，蒸気タービンの附属設備のうち，主要な耐圧部の溶接部につい ては，次のとおりとし，使用前事業者検査により適用基準及び適用規格 に適合していることを確認する。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験によ り確認したものであること。 （3）適切な強度を有するものであること。	

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{\omega} \\ & \omega \\ & \omega \\ & \omega \\ & \omega \end{aligned}$	（4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及 び技能を有する溶接士であることをあらかじめ確認したものによ り溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満の ものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては，490kPa）以上の圧力が加えられる部分について溶接を必要とするものをいう。また，蒸気タービンに係る外径 150 mm 以上の管のうち，耐圧部について溶接を必要とするものを いう。 蒸気タービンの附属設備の機器仕様は，運転中に想定される最大の圧力•温度，必要な容量等を考慮した設計とする。	
	2．主要対象設備 蒸気タービンの対象となる主要な設備について，「表 1 蒸気タービン の主要設備リスト」に示す。	2．主要対象設備 蒸気タービンの対象となる主要な設備について，「表 1 蒸気タービン の主要設備リスト」に示す。

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト（1／10）

	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度重要度分類		機器クラス	設備分類	重大事故等機器クラス		
					蒸気加減弁～高圧タービン	B－1	火力技術基準		－	変更なし				
				高圧タービン～湿分分離加熱器	B－1	火力技術基準		－	変更なし					
				同上レジューサ	B－1	火力技術基準		－		－＊2				
				湿分分離加熱器～組合せ中間弁及び N31－F005	B－1	火力技術基準		－	変更なし					
		車室，円		組合せ中間弁～低圧タービン	B－1	火力技術基準		－	変更なし					
		車軸及び管		高圧タービン第3段抽気出口～N36－F012A，B	B－1	火力技術基準		－	変更なし					
				高圧タービン第5段抽気出口～N36－F001A，B	B－1	火力技術基準		－	変更なし					
				クロスアラウンド管分岐点 1～N36－F003A，B	B－1	火力技術基準		－	変更なし					
				低圧タービン第 10 段抽気出口～N36－F006A，B	B－1	火力技術基準		－	変更なし					
				低圧タービン第 11 段抽気出口～N36－F009A，B	B－1	火力技術基準		－	変更なし					
		調速装置及		主蒸気止め升	B－1	火力技術基準		－	変更なし					
		速装置並び に調速装置	－	蒸気加減弁	B－1	火力技術基準		－	変更なし					
				組合せ中間弁	B－1	火力技術基準		－	変更なし					
		復水器	復水器	復水器	B－1	火力技術基準		－	変更なし					

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(2 / 10)$

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(3 / 10)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 妳 } \end{aligned}$	機器区分		変更前					変更後						
					名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称		設計基準対象施設＊＊		重大事故等対処設備＊1		
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		
	侑					同上レジューサ	B－1	火力技術基準		－			－			
		系			クロスアラウンド管安全弁～復水器	B－1	火力技術基準		－			－				
					グランド蒸気復水器～グランド蒸気排風機	B－1	火力技術基準		－		変更なし					
					同上レジューサ	B－1	火力技術基準		－			－				
					グランド蒸気排風機～N33－F152A，B	B－1	火力技術基準		－		変更なし					
					加熱蒸気供給管～グランド蒸気発生器	B－1	火力技術基準		－			－				
$\begin{gathered} \omega \\ \omega \end{gathered}$		夕			同上レジューサ	B－1	火力技術基準		－			－				
		$\begin{aligned} & \text { ビ } \\ & \text { ジ } \\ & \text { グ } \end{aligned}$			グランド蒸気発生器～高圧タービン，低圧ター ビングランド部	B－1	火力技術基準		－			－				
		ジ			同上レジューサ	B－1	火力技術基準		－			－				
		気			同上レジューサ	B－1	火力技術基準		－			－				
					同上レジューサ	B－1	火力技術基準		－			－				
					同上レジューサ	B－1	火力技術基準		－			－				
					同上レジューサ	B－1	火力技術基準		－			－				
					同上レジューサ	B－1	火力技術基準		－			－				

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(4 / 10)$

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト（ $5 / 10$ ）

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト（6／10）

	$\begin{aligned} & \text { 㲙 } \\ & \text { 維 } \\ & \text { 俍 } \end{aligned}$	機器区分		変更前					変更後						
				名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称		設計基準対象施設＊＊		重大事故等対処設備＊1		
				耐震 重要度 分分類	機器クラス	設備分類	重大事故等機器クラス			$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス		
					復水器真空破壊管	B－1	火力技術基準		－			－			
				復水器出口管分岐点～起動用真空ポンプ	B－1	火力技術基準		－			－				
	$\begin{aligned} & \text { 衤 } \\ & \text { 器 } \\ & \text { 堅 } \end{aligned}$			起動用真空ポンプ入口管分岐点～起動用真空ポ ンプの真空破壊弁	B－1	火力技術基準		－			－＊				
	$\begin{aligned} & \text { 気 } \\ & \text { 胄 } \\ & \text { 出 } \end{aligned}$		主配管	起動用真空ポンプ～起動用真空ポンプウォータ セパレータ	B－1	火力技術基準		－			－				
				$\begin{aligned} & \text { \|起動用真空ポンプウォータセパレータ~N21- } \\ & \text { F162 } \end{aligned}$	B－1	火力技術基準		－			－				
				蒸気式空気抽出器の安全弁～復水器	B－1	火力技術基準		－			－＊				
				復水器～低圧復水ポンプ	B－1	火力技術基準		－		変更なし					
				低圧復水ポンプ～蒸気式空気抽出器	B－1	火力技術基準		－		変更なし					
				同上レジューサ	B－1	火力技術基準		－			－＊				
	$\begin{aligned} & \text { 復 } \\ & \text { 水 } \end{aligned}$			蒸気式空気抽出器～グランド蒸気復水器	B－1	火力技術基準		－		変更なし					
	$\begin{aligned} & \text { 程 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$			グランド蒸気復水器～復水浄化系（復水ろ過装置）及び復水浄化系（復水脱塩装置）	B－1	火力技術基準		－		変更なし					
				同上レジューサ	B－1	火力技術基準		－			－＊				
				P13－F310～復水器	B－1	火力技術基準		－			－＊				
				N21－F029 及び N21－F030～復水器	B－1	火力技術基準		－			－＊				

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(7 / 10)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後						
					名称	設計基漼対象施設＊1		重大事故等対処設備＊1		名称		設計基準対象施設＊＊		重大事故等対処設備＊1		
					耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス			耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \\ & \omega \\ & \omega \\ & \stackrel{1}{N} \\ & \hline \end{aligned}$			管等	主配管		湿分分離加熱器第 2 段加熱器～湿分分離加熱器第2段加熱器ドレンタンク	B－1	火力技術基準		－		変更なし				
					湿分分離加熱器第 2 段加熱器ドレンタンク～ N22－F022A，B	B－1	火力技術基準		－		変更なし					
					同上レジューサ	B－1	火力技術基準		－			－＊				
					湿分分離加熱器第 1 段加熱器～湿分分離加熱器第 1 段加熱器ドレンタンク	B－1	火力技術基準		－		変更なし					
					湿分分離加熱器第1段加熱器ドレンタンク～ N22－F023A，B	B－1	火力技術基準		－		変更なし					
					同上レジューサ	B－1	火力技術基準		－			－＊				
					湿分分離加熱器～湿分分離ドレンタンク	B－1	火力技術基準		－		変更なし					
					湿分分離ドレンタンク～N22－F024A，B	B－1	火力技術基準		－		変更なし					
					同上レジューサ	B－1	火力技術基準		－			－＊				
					N22－F017A，B～復水器	B－1	火力技術基準		－			－＊				
					N22－F018A，B～復水器	B－1	火力技術基準		－			－＊				
					湿分分離ドレンタンク出口管分岐点～復水器	B－1	火力技術基準		－			－＊				
					高圧第 2 給水加熱器 $~$ 復水器	B－1	火力技術基準		－			－＊				
					高圧第 1 給水加熱器 \sim 復水器	B－1	火力技術基準		－			－＊				

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(8 / 10)$

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト $(9 / 10)$

O 2 （6）II R 2

表1蒸気タービンの主要設備リスト（10／10）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 蒸気タービンに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 蒸気タービンに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 蒸気タービンに適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第5号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －J S ME S N B 1－2007 発電用原子力設備規格 溶接規格	第2章 個別項目 蒸気タービンに適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －J SME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －J S ME S N B 1－2007 発電用原子力設備規格 溶接規格

3．13．4 蒸気タービンに係る工事の方法

変更前	変更後
蒸気タービンに係る工事の方法は，「原子炉本体」における「1．9 原子炉本体に係	
る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料	変更なし
体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

4．計測制御系統施設
4.1 制御方式及び制御方法
（1）発電用原子炉の制御方式
発電用原子炉の反応度の制御方式，ほう酸水注入の制御方式，発電用原子炉の圧力の制御方式，発電用原子炉の水位の制御方式及び安全保護系その他重大事故等発生時に発電用原子炉を安全に停止するための回路の制御方式

	変 更 前		変 更 後
$\begin{aligned} & * 1 \\ & \text { 発 } \\ & \text { 電 } \\ & \text { 用 } \\ & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { の } \\ & \text { 制 } \\ & \text { 卸 } \\ & \text { 方 } \\ & \text { 式 } \end{aligned}$	発電用原子炉の制御は以下の方式により行う。＊2 （1）発電用原子炉の反応度の制御方式＊3 a．制御棒位置制御 （a）制御棒1本ずつの挿入引抜き操作機能 （b）原子炉スクラム信号による全制御棒急速挿入機能 （c）原子炉再循環ポンプトリップ時の選択制御棒急速挿入機能 b．原子炉再循環流量制御 （a）原子炉再循環ポンプ回転数制御機能 （b）タービントリップ又は負荷しゃ断時の原子炉再循環ポンプトリップ機能 （2）ほう酸水注入の制御方式＊4 a．手動によるほう酸水注入系の起動機能 （3）発電用原子炉の圧力の制御方式＊5 a．タービン入口圧力制御機能 （4）発電用原子炉の水位の制御方式＊6 a．原子炉水位信号，主蒸気流量信号及び原子炉給水流量信号の三要素制御若しくは原子炉水位信号 の単要素制御による給水制御機能 （5）安全保護系その他重大事故等発生時に発電用原子炉を安全に停止するための回路（以下，4．1 制御方式及び制御方法において「安全保護系等」という。）の制御方式＊7 a．安全保護系の制御方式＊7 （a）原子炉保護系によるスクラム機能 （b）その他の安全保護系起動信号による工学的安全施設の起動機能	$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 用 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { の } \\ & \text { 制 } \\ & \text { 御 } \\ & \text { 方 } \\ & \text { 式 } \end{aligned}$	変更なし
	（ ${ }^{\text {c }}$		b．緊急停止失敗時に発電用原子炉を未臨界にするための設備の制御方式 （a）ATWS緩和設備（代替制御棒插入機能） （b）ATWS緩和設備（代替原子炉再循環ポンプトリップ機能） （c）手動によるほう酸水注入系の起動機能 （d）ATWS緩和設備（自動減圧采作動阻止機能） c．原子炉冷却材圧力バウンダリを減圧するための設備の制御方式 （a）代替自動減圧回路（代替自動減圧機能）

注記＊1：記載の適正化を行う。既工事計画書には「制御方式」と記載。
＊2：記載の適正化を行う。既工事計画書には「原子炉の制御は以下の方式により行われる。」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。既工事計画書には「（1）制御棒位置制御」及び「（2）原子炉再循環流量制御」と記載。
＊4：記載の適正化を行う。既工事計画書には「（3）ほう酸水注入系の制御」と記載
＊5：記載の適正化を行う。既工事計画書には「（4）圧力制御」と記載。
＊ 6 ：記載の適正化を行う。既工事計画書には「（5）原子炉給水制御」と記載。
＊7：記載の適正化を行う。既工事計画書には「（6）安全保護系」と記載。
（2）発電用原子炉の制御方法
制御棒の位置の制御方法，原子炉再循環流量の制御方法，ほう酸水注入設備の制御方法，発電用原子炉の圧力の制御方法，給水の制御方法及び安全保護系等の制御方法

	変 更 前		変 更 後
$\begin{aligned} & { }^{* 1} \\ & \text { 発 } \\ & \text { 電 } \\ & \text { 用 } \\ & \text { 原 } \\ & 子 \\ & \text { 炉 } \\ & \text { の } \\ & \text { 制 } \\ & \text { 卸 } \\ & \text { 方 } \\ & \text { 法 } \end{aligned}$	発電用原子炉の制御は以下の方法により行う。＊2 （1）制御棒の位置の制御方法＊3 制御棒位置は，水圧駆動ピストンラッチ方式の駆動機構により常時は1本ずつ挿入又は引抜き方向 に操作される。 スクラム動作及び選択制御棒插入動作時は水圧制御ユニットのアキュムレータの圧力を利用して急速に制御棒が挿入される。 なお，選択制御棒は，原子炉再循環ポンプが1台以上トリップし，原子炉が低炉心流量高出力領域 （炉心流量 45% 相当以下，原子炉出力 35% 以上）に至った場合，原子炉出力を抑制して安定性の余裕を増すために自動的に插入される。 この制御棒は，自然循環状態で原子炉出力約 35% になるよう選択される。 （2）原子炉再循環流量の制御方法＊4 再循環流量は，原子炉再循環ポンプの回転数を変えることにより制御される。 また，原子炉高出力運転時（原子炉出力 30% 以上）には，主蒸気止め弁閉又は，蒸気加減弁急速閉 の信号により原子炉再循環ポンプ2台を同時にトリップレ，タービントリップ又は発電機負荷しゃ断直後の原子炉出力の上昇を抑制する。 （3）ほう酸水注入設備の制御方法＊5 運転中制御棒挿入による原子炉停止が不能の時，ほう酸水注入系のポンプを手動で起動し，貯蔵夕 ンク内の五ほう酸ナトリウム溶液を原子炉に注入する。 （4）発電用原子炉の圧力の制御方法＊6 原子炉圧力は，タービン入口圧力制御により間接的に制御される。タービン入口圧力は蒸気加減弁及びタービンバイパス弁の開度の制御により，一定になるよう制御される。 （5）給水の制御方法＊7 原子炉への給水流量は，原子炉水位信号，主蒸気流量信号及び原子炉給水流量信号による三要素制御若しくは原子炉水位信号による単要素制御により，タービン駆動原子炉給水ポンプの速度又は給水調節弁の開度を調節し，原子炉水位を一定に保持するよう制御される。 （6）安全保護系等の制御方法＊8 a．安全保護系の制御方法＊8 原子炉保護系の作動回路は2チャンネルで構成され，原子炉スクラム信号により両チャンネルが同時にトリップすると原子炉はスクラムする。 また，その他の安全保護系起動信号により工学的安全施設が起動される。	発 電 用 原 子 炉 の 制 御 方 法	変更なし
	－		その他の安全保護系起動信号のうち自動減圧系は，原子炉冷却材喪失時に炉心を泠却するため，原子炉水位低（レベル1）及びドライウェル圧力高の同時信号により，主蒸気逃がし安全弁を作動 させる。 ただし，ATWS緩和設備（自動減圧系作動阻止機能）が作動した場合には，自動減圧系起動信号は発信されない。

（次頁へ続く）
（前頁からの続き）

注記＊1：記載の適正化を行う。既工事計画書には「制御方法」と記載。
$* 2:$ 記載の適正化を行ら。既工事計画書には記載なし。
＊2：記載の適止化を行う。既工事計画書には記載なし。
＊4：記載の適正化を行う。既工事計画書には「（2）原子炉再循環流量制御」と記載。
＊5：記載の適正化を行う。既工事計画書には「（3）ほう酸水注入系の制御」と記載
＊6：記載の適正化を行う。既工事計画書には「（4）庄力制御」と記載。
＊7：記載の適正化を行う。既工事計画書には「（5）原子炉給水制御」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「（6）安全保護系」と記載。

4． 2 制御材

（1）制御棒

注：記載の適正化を行う。既工事計画書の「質量」の記載を削除。
注記＊1 ：記載の適正化を行う。既工事計画書には「組成／制御材」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「 $\Delta \mathrm{k} 」$ と記載。
＊3 ：公称値を示す。
（2）ほう酸水

		変 更 前	変 更 後
名	称	ほう酸水	変更なし
種 類	－	ほう酸水	
組 成	wt\％	五ほう酸ナトリウム濃度 \square（ $\square \mathrm{m}^{3}$ 時）${ }^{* 1}$	
反 応 度 制 御 能力＊2	$\Delta \mathrm{k}$		
停 止 余 裕	$\Delta \mathrm{k}$		
負の反応度添加率	$\Delta \mathrm{k}$	毎分 \square 以上＊3	
貯 蔵 量＊4	m^{3}	（最小）	

$$
\mathrm{m}^{3} \text { 時) 」と記載。 }
$$

＊2 ：記載の適正化を行う。既工事計画書には「反応度抑制効果」と記載。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「貯蔵容量」と記載。

4． 3 制御材駆動装置

（1）制御棒駆動機構（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－1 制御棒駆動機構の強度計算書」による。
＊ 3 ：S I 単位に換算したものである。
＊ 4 ：重大事故等時における使用時の値。
＊5 ：公称値を示す。
＊6 ：定格値を示す。駆動速度は定格値士 20% 以内。
＊ 7 ：記載の適正化を行う。既工事計画書には「全ストロークの 75% 挿入まで 1.62 秒以下（全炉心平均）」と記載。

[^10]（2）制御棒駆動水圧設備
（2．1）制御棒駆動水圧系
口 容器（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3：S I 単位に換算したものである。
＊4 ：記載の適正化を行う。既工事計画書の主要寸法「胴外径」の記載を削除。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－1 水圧制御 ユニットの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「全高」と記載。

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊ 3 ：S I 単位に換算したものである。
＊4：記載の適正化を行う。既工事計画書の主要寸法「胴外径」の記載を削除。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日
付 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－1 水圧制御ユニ ットの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

注記＊1 ：公称値を示す。
＊2 ：S I 単位に換算したものである。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－2－2 スクラム排出容器の強度計算書」による。
＊4 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「2166」と記載。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

			変 更 前＊1	変 更 後
名		称	C12－D001－126	変更なし
種	類	－	止め弁	
	高 使 用 圧 力	MPa	15． 20	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	66	
主要法	呼 び 径	－	25A	
	弁 箱 厚 さ	mm	以上（12．0＊2）	
	弁 ふた 厚 さ	mm	〕以上 $\left(19.5{ }^{* 2}\right)$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SUS316L	
	弁 ふ た	－	SUS316L	
駆	動 方 法	－	空気作動	
個	数	－	137	
取 付 箇 所	$\begin{array}{lllll} \text { 系 } & & \text { 統 } & & \text { 名 } \\ \left(\begin{array}{ll} \text { ラ } & \text { 亿 } \end{array}\right. \text { 名 } \end{array}$	－	C12-D001-126 制御棒駆動水圧ライン	
	設 置 床	－	原子炉建屋 0．P． 6.00 m	
	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	－	－
	溢水防護上の配慮 が必要な高さ	－		

注記＊ 1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

			変 更 前＊1	変 更 後
名		称	C12－D001－127	変更なし
種	類	－	止め弁	
	高 使 用 圧 力	MPa	13． 83	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	66	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 守 } \\ & \text { 法 } \end{aligned}$	呼び径	－	20A	
	弁 箱 厚 さ	mm	以上上（12．0＊2）	
	弁 ふ た 厚 さ	mm	\square 以上（19．5＊2）	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SUS316L	
	弁 ふ た	－	SUS316L	
駆	動 方 法	－	空気作動	
個	数	－	137	
取付箇所		－	C12－D001－127 制御棒駆動水圧ライン	
	設 置 床	－	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \mathrm{~m} \\ \hline \end{gathered}$	
	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	－	－
	溢水防護上の配慮 が必要な高さ	－		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

小 主配管（常設）

変 更 前							変 更 後							
	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称		$\begin{aligned} & \hline \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
制 御 棒 駆 動 水 圧 系	$\begin{gathered} \text { N21-F045~ } \\ \text { サクションフィルタ } \end{gathered}$	0． $98 * 4$	66	114.3	（6． 0 ）	SUS304TP	制 御 棒 駆 動 水 圧 系	変更なし						
	$\begin{gathered} \text { P13-F010~~ } \\ \text { サクションフィルタ } \end{gathered}$	0．98＊	66	165.2	（7．1）	SUS304TP		変更なし						
	入口配管合流点			114.3	（6．0）	SUS304TP								
	サクションフィルタ～	$0.98{ }^{* 4}$	66	114.3	（6．0）	SUS304TP		変更なし						
	制御棒駆動水ポンプ	1． $73 * 4$	66	114.3	（6．0）	SUS304TP								
	制御棒駆動水ポンプ～制御棒駆動水フィルタ	13． $83 * 4$	66	60.5	（5．5）	SUS304TP		変更なし						
		13． $83^{* 4}$	66	60.5	（5．5）	SUS304TP		変更なし						
				34.0	（4．5）	SUS304TP								
				21.7	（3．7）	SUS304TP								
	充填水配管分岐点～水圧制御ユニット （駆動水入口）	13． $83 * 4$	66	60.5	（5．5）	SUS304TP		制 変更なし						
				48.6	（5．1）	SUS304TP								
				34.0	（4．5）	SUS304TP								
				21.7	（3．7）	SUS304TP								
	駆動水配管分岐点～水圧制御ユニット （冷却水入口）	13． $83^{* 4}$	66	48.6	（5．1）	SUS304TP		変更なし						
				34.0	（4．5）	SUS304TP								
				27.2	（3．9）	SUS304TP								
				21.7	（3．7）	SUS304TP								
	水圧制御ユニット＊ 6 （排水出口）～ 泠却水配管合流点		66	21.7	（3．7）	SUS304TP		変更なし						
		13.83		34.0	（4．5）	SUS304TP								
	水圧制御コニット＊7 （充填水入口）～ C12－D001－115	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						
	水圧制御ユニット＊7 （駆動水入口）～ マニホールド	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						
	水圧制御ユニット＊7 （冷却水入口）～ C12－D001－138	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						
	$\text { マニホールド~ } \quad \text { *7 }$水圧制御ユニット （排水出口）	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						
	$\begin{array}{ll} \hline \text { マニホールド~ } & \text { *7 } \\ \text { C12-D001-126 } \end{array}$	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 最高使 用 } \\ \text { 温 }{ }^{\text {(}{ }^{\circ} \text { 度 }} \\ \hline \end{gathered}$	$\operatorname{lil}_{\text {外 径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 } \text { 度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 }{ }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
制 御 棒 駆 動 水 圧 系	$\begin{aligned} & \text { C12-D001-138~ } \\ & \text { C12-D001-126 } \end{aligned}$	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP	制 御 棒 駆 動 水 圧 系	変更なし						
	C12－D001－115～ 制御棒駆動水圧系アキュム レータ出口配管合流点	15． 20 ＊4	66	21.7	（3．7）	SUS316LTP		変更なし						
	制御棒駆動水圧系アキュム＊7 レータ出口配管合流点～ C12－D001－126	15． 20 ＊ 4	66	52.0 34.0	（14．0） （4．5）	SUS304		変更なし						
	＊7 制御棒駆動水圧系窒素容器～ 制御棒駆動水圧系アキユム レータ	15． 20 ＊4	66	$27.7^{* 10}{ }^{* 9}$	$\frac{\square_{\left(6.2^{* 10}\right)}^{* * 9}}{}{ }_{(3.9)}$	SUS304 ${ }^{* 9}$		変更なし						
	制御棒駆動水圧系 アキュムレータ～ 制 制棒駆動水圧系アキュム レータ出ロ配管合流点	15． 20 ＊ 4	66	52.0		SUS304		変更なし						
	$\begin{gathered} \text { C12-D001-126~ } \\ \text { 水圧制御ユニット } \end{gathered}$	13． $83 * 4$	66	34.0	（4．5）	SUS316LTP		変更なし						
	水圧制御ユニット（引抜配＊7 管）～C12－D001－127	13． 83 ＊${ }^{\text {d }}$	66	27.2	（3．9）	SUS316LTP		変更なし						
	$\begin{aligned} & \text { C12-D001-127~ } \\ & \text { マニホールド } \end{aligned}$	13． $83 * 4$	66	21.7	（3．7）	SUS316LTP		変更なし						
	C12-D001-127~水圧制御 *7	13． $83 * 4$	66	27.2	（3．9）	SUS316LTP		変更なし						
	ヘッダー入口)	8． $62{ }^{* 4}$	138	27.2	（3．9）	SUS316LTP		変更なし						
	水圧制御コニット（挿入配 管）～原子炉格納容器配管貫通部（X－20）	$13.83 * 4$	66	34.0	（4．5）	SUS316LTP		変更なし						
				34． $5^{* 10}$ 43． $2^{* 10}$	$\begin{aligned} & { }_{\left(5.0^{* 10}\right)}^{/^{* 11}} \\ & \left(5.4^{* 10}\right) \end{aligned}$	\square								
				42.7	（4．9）	SUS316LTP								
				$43.2^{* 10}$ $/{ }_{4}^{* 11}$ - $43.2^{* 10}$	$\left(5.4^{* 10}\right)$ $\left(5.4^{* 11}\right)$ - $/$	SUS316L								
				$43.2^{* 10}$	$\left(5.4^{* 10}\right)^{* 9}$	$\text { SUS316L }{ }^{* 9}$								
	－							原子炉格納容器配管貫通部 $(X-20) * 13$	7．原子炉格納施設 7.1 原子炉格納容器 に記載する。					

注記 $~ 1 ~ 1 ~: ~$ 外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には，「復水給水系からサクションフィルタまで（サクションフィルタ入口配管）」と記載。
＊4：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「補給水系からサクションフィルタ入口配管まで」と記載。
＊6：記載の適正化を行う。既工事計画書には「制御棒駆動水フィルタから水圧制御ユニットまで」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「水圧制御ユニット内配管」と記載。
＊8：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号に認可された工事計画の添付書類「IV－3－3－1－2－5－1 管の基本板厚計算書」による。
＊9：フルカップリングを示す。 既工事計画書にはフルカップリングを含めた管仕様を記載しているため，記載の適正化を行う。
＊ 10 ：差込継手の差込部内径及び最小厚さ。
＊11：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊12：記載の適正化を行う。既工事計画書には「水圧制御ユニットから制御棒駆動機構ハウジングまで」と記載。
＊ 13 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，制御材駆動装置の制御棒駆動水圧設備（制御棒駆動水圧系）として本工事計画で兼用とする。
＊14：記載の適正化を行う。既工事計画書には「制御棒駆動機構ハウジングから水圧制御ユニットまで」と記載。
＊ 15 ：本設備は既存の設備である。
＊ 16 ：重大事故等クラス2配管に使用する場合の記載事項。
＊17：重大事故等時の使用時の値。
＊18：フルカップリングを示す。
＊19：記載の適正化を行う。既工事計画書には「水圧制御ユニットからスクラム排出容器まで」と記載。
4.4 ほう酸水注入設備

4．4．1 ほう酸水注入系
（1）ポンプ（常設）

				変 更 前	$\begin{gathered} \text { 変 更 後 } \\ \hline \text { ほう酸水注入 } \\ \text { 系ポンプ*1 } \end{gathered}$
名 称				ほう酸水注入系ポンプ	
ポプ	$\begin{array}{\|l\|l\|} & \text { 種 } \\ \hline \text { 容 } \end{array}$	類	－	往復形＊2	変更なし
		量＊3	$\mathrm{m}^{3} / \mathrm{h} /$ 個＊4	－以上＊5 $\left(9.78{ }^{* 6}\right)$	
		出 圧 力	MPa	以上＊5（8．43＊6，＊7）	
		高 使 用 圧 力	MPa	$\begin{aligned} & \text { (吸込側) } 1.18 * 5 \\ & (\text { 吐出側) } 10.79 * 5 \end{aligned}$	
		高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$66^{* 5}$	
		吸 込 内 径	mm	78． $1^{* 5, * 6 ~}$	
	主	吐 出内 径	mm	38． $4^{* 5, * 6}$	
	要	ケーシング厚さ	mm	］$* 5(17.75 * 5, * 6)$	
	寸	た て	mm	$1425 * 5, * 6$	
	法	横	mm	$900 * 5, * 6$	
		高 さ	mm	$887 * 6, * 8$	
プ	材 料	リキッドシリンダ	－		
		$\begin{aligned} & \text { リキッドシリンダ } \\ & \text { カ バ ー } \end{aligned}$	－		
	個 数		－	$2 * 9$	
	取付箇所	$\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン名 }) \end{gathered}$	－	ほう酸水注入系ポンプ ほう酸水注入系	
		設 置 床	－	原子炉建屋 $0 . \mathrm{P} .22 .50 \mathrm{~m}$	
		$\begin{array}{lclll} \text { 溢 } & \text { 水 防 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	$\mathrm{R}-2 \mathrm{~F}-3-1$
		溢 水 防 護 上の配慮が必要な高さ	－		$\begin{gathered} \text { 床上 } \\ 0.12 \mathrm{~m} \text { 以上 } \end{gathered}$
原 動 機	種 類		－	誘導電動機	変更なし
	出	力	kW／個	37	
	個	数	－	$2^{* 9}$	
	取	付 箇 所	－	ポンプと同じ＊5	ポンプと同じ

注記＊1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「往復式」と記載。
＊3 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「 $\ell / \mathrm{min} /$ 個」と記載。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊6 ：公称値を示す。
＊ 7 ：S I 単位に換算したものである。
＊ 8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「第 7－3－2－2図 ほう酸水注入系ポンプ構造図」による。
＊9 ：記載の適正化を行う。既工事計画書には「2（予備 1 ）」と記載。
（2）容器（常設）

注記 $* 1$ ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のらち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「18．6」と記載。記載内容は，設計図書による。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－3－1－3－1 ほう酸水注入系貯蔵タンクの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「平板厚さ」と記載。
＊7 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊8 ：記載の適正化を行う。既工事計画書には「平板」と記載。
（3）安全弁及び逃がし弁（常設）

			変 更 前＊1	変 更 後
名		称	C41－F003A，B	C41－F003A，${ }^{* 2}$
種	類	－	非平衡型	変更なし
吹	出 圧 力	MPa	10． 79	
吹	出 量	kg／h／個	15480＊3	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－	25A	
	のど部の径	mm	$\beth^{* 3}$	
	弁 座 口 の径	mm	$13^{* 3}$	
	リフフ	mm	\square 以上	
材 料	弁 箱	－	SUSF304	
駆	動 方 法	－	－	
個	数	－	2	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$		－	C41－F003A，B ほう酸水注入系	
	設 置 床	－	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .22 .50 \mathrm{~m} \end{aligned}$	
	$\begin{array}{lcll} \text { 溢 } & \text { 水 防 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		

注記＊：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備 （ほう酸水注入系）と兼用。
＊ 3 ：公称値を示す。

			変 更 前＊1	変 更 後
名		称	C41－F022	C41－F022＊2
種	類	－	非平衡型	
吹	出 圧 力	MPa	1.18	
吹	出 量	kg／h／個	2509＊3	
	呼び径	－	20A	
主	のど部の径	mm	$\square * 3$	
法	弁 座 口 の径	mm	$13^{* 3}$	
	リフフト	mm	】以上	変更なし
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SUSF304	
駆	動 方 法	－	－	
個	数	－	1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$	系 （ライン 統 名	－	C41-F022 ほう酸水注入系	
	設 置 床	－	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . P .22 .50 \mathrm{~m} \end{aligned}$	
	$\begin{aligned} & \text { 溢 } \\ & \text { 水 防 護 } \\ & \text { 区 } \\ & \text { 画 } \\ & \text { 番 } \end{aligned} \text { の号 }$	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（ほう酸水注入系），原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）と兼用。
＊ 3 ：公称値を示す。
（5）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：S I 単位に換算したものである。
＊ 4 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は設計図書による。
＊5 ：エルボを示す。 既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊6 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（ほう酸水注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注水系）と兼用。
＊7：記載の適正化を行う。既工事計画書には「ほう酸水注入系ポンプから差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）まで」と記載。
＊ 8 ：差込継手の差込部内径及び最小厚さ。
＊9：フルカップリングを示す。既工事計画書にはフルカップリングを含めた管仕様を記載しているため，記載の適正化を行う。
＊10 ：重大事故等時の使用時の値。
＊11：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，ほう酸水注入設備（洔う酸水注入系）として本工事計画で兼用とする。

4． 5 計測装置
（1）起動領域計測装置（中性子源領域計測装置，中間領域計測装置）及び出力領域計測装置（常設）

変 更 前								変 更 後							
名		検 出 器 の種 類	計 測 範 囲	警 報 動 作 範 囲	個 数	取 付 箇 所		名 称	検出器 の種 類	計測範囲	警報動作 範 囲	個 数	取 付 箇	箇 所	
$\begin{array}{\|l\|l} \hline \text { 起 } \\ \text { 動 } \\ \text { 領 } \\ \text { 域 } \\ \text { (} \\ \hline \end{array}$	中性子源領域	核分裂電離箱	$\left(\begin{array}{c} 10^{-1} \sim 10^{6} \mathrm{cps} \\ 1 \times 10^{3} \sim \\ 1 \times 10^{9} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$	警報動作範囲一覧表に示す	8＊4	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	原子炉核計装系	変更なし			$\text { 変更なし }{ }^{* 6}$	変更なし	変更なし		
						設 置 床	$* 5$ 原子炉格納容器内 $\text { 0.P. } 6.00 \mathrm{~m}$								
	中 間 領 域		$\left(\begin{array}{c} 0 \sim 40 \% \text { 又は } \\ 0 \sim 125 \% \\ 1 \times 10^{8} \sim \\ 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$			－							－		
$\begin{aligned} & \text { 出 } \\ & \text { 領 } \\ & \text { 域 } \\ & \underset{\text { 多 }}{ } \end{aligned}$		核分裂電離箱	$\left.\begin{array}{c} * * 7, * 8 \\ 0 \sim 125 \% \\ 1.2 \times 10^{12} \sim \\ 2.8 \times 10^{14} \\ \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \end{array}\right)$	警報動作範囲一覧表に示す	$124^{* 9}$ （ただし，平均出力領域モニタに ついては 93）	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	原子炉核計装系	変更なし				$\text { 変更なし }{ }^{* 6}$	変更なし	変更なし	
		設 置 床				原子炉 格納容器内 0. P． 6.00 m									
							溢 水 防 護上の 区 画 番 号								
							溢水防護上の配慮 が必要な高さ								

注記＊1：記載の適正化を行ら。既工事計画書には「 $10^{-1} \sim 10^{6} \mathrm{cps}\left(1 \times 10^{3} \sim 1 \times 10^{9} \mathrm{nv}\right)$ 」と記載。
＊2：記載の適正化を行う。既工事計画書には「0～40\％又は $0 \sim 125 \% ~\left(1 \times 10^{8} \sim 2 \times 10^{13} \mathrm{nv}\right)$ 」と記載。
＊ 3 ：各測定レンジにおける出力比を示す。
＊4：対象計器は，C51－NE001A，C51－NE001B，C51－NE001C，C51－NE001D，C51－NE001E，C51－NE001F，C51－NE001G，C51－NE001H。
$* 5$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊6：設計基準対象施設としての値であり，重大事故等対処設備としては，警報動作が要求される検出器ではない。
＊ 7 ：定格出力時の値に対する比率で示す。
＊8：記載の適正化を行う。既工事計画書には「 $0 \sim 125 \% ~\left(1.2 \times 10^{12} \sim 2.8 \times 10^{14} \mathrm{nv}\right) ~$ と記載。
＊9：対象計器は，C51－NE011A～C51－NE041A，C51－NE011B～C51－NE041B，C51－NE011C～C51－NE041C，C51－NE011D～C51－NE041D。

注記 $* 1$ ：起動領域モニタ原子炉出力ペリオド指示値。
$* 2:$ 定格出力時の値に対する比率で示す
＊3：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載
＊ 4 ：原子炉再循環流量Wdに対し，$\quad(0.62 W d+55) \%$ の式により設定する。
＊5：原子炉再循環流量Wdに対し，（ $0.62 \mathrm{Wd}+62) \%$ の式により設定する
＊6：原子炉再循環流量Wdに対し，（ $0.62 W d+52) \%$ の式により設定する。
（2）原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。）を計測する装置

変 更 前											変 更 後						
名	称	$\begin{array}{ccc}\text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 }\end{array}$	計測 範 囲		報動作 囲	個数	取	付	箇	所	名 称	検 出 の 器 の種 類	計測 範 囲	$\begin{array}{l\|l\|} \hline \text { 警報動作 } \\ \text { 範 } \quad \text { 囲 } \end{array}$	個数	取 付	箇 所
系 統 名 （ライン 名 補給水系																	
－											復水移送ポンプ出口圧力	弾性圧力検出器	$0 \sim 1.5 \mathrm{MPa}$	－	1	設 置 床	原子炉建屋 0. P．-0.80 m
											$\begin{array}{llll} \hline \text { 溢 } & \text { 水 防 櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$					R－B2F－5 ${ }^{* 14}$	
											溢水防護上の配慮 が必要な高さ					床上 0.10 m 以上	

注記＊1 ：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。記載内容は，設計図書による。
＊2：S I 単位に換算したものである。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：対象計器は，E51－PT007。
＊5 ：対象計器は，E61－PT003。
＊6 ：対象計器は，E71－PT004。
＊7 ：対象計器は，E11－PT021。
＊ 8 ：対象計器は，E51－PT003
＊9 ：対象計器は，E22－PT004。
＊ 10 ：対象計器は，E11－PT005A，E11－PT005B
＊ 11 ：対象計器は，E11－PT005C
＊ 12 ：対象計器は，E21－PT005。
＊ 13 ：本設備は，既存の設備である。
＊14：対象計器は，P13－PT011
b．温度を計測する装置（常設）

c．流量を計測する装置（常設）

変 更 前							変 更 後																
名 称	$\begin{array}{ccc}\text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 }\end{array}$	計測範 囲	警報動作 範胃	個数	取 付	箇 所	名 称	検 出 器 の 種 類	計測 範 囲	$\begin{aligned} & \text { 警報動作 } \\ & \text { 範 } \quad \text { 囲 } \end{aligned}$	個数	取 付	箇 所										
－							直流駆動低圧注水系ポンプ出口流量	差圧式流量検出器	$0 \sim 100 \mathrm{~m}^{3} / \mathrm{h}$	－	1	設 置 床	原子炉建屋 $\text { 0. Р. }-8.10 \mathrm{~m}$										
							$\begin{array}{l\|l\|l\|} \hline \text { 溢 } & \text { 水 } & \text { 防 護 } \\ \text { 区 } & \text { の } \\ \hline \end{array} \text { 画 }^{\text {番 }} \text { 号 }$					R－B3F－13 ${ }^{* 9}$											
							溢水防護上の配慮 が必要な高さ					床上 0.07 m 以上											
－								代替循環冷却ポン プ出口流量	差圧式流量検出器	$0 \sim 200 \mathrm{~m}^{3} / \mathrm{h}$	－	1		代替循環冷却系									
							設 置 床						原子炉建屋 0. P．-8.10 m										
							$\begin{array}{llll} \hline \text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { a } \\ \hline \end{array}$						RW－B3F－1 ${ }^{* 10}$										
							溢水防護上の配慮 が必要な高さ						床上 0.24 m 以上										
原子炉隔離時冷却系ポンプ出口流量	差圧式流量検出器	$0 \sim 150 \mathrm{~m}^{3} / \mathrm{h}$	－	1	$\begin{array}{\|cc\|} \hline \text { 系 } & \text { 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	原子炉隔離時冷却系 ${ }^{* 3}$		変更なし					変更なし										
					設 置 床	原子炉建屋 0. ． $\mathrm{F} .-8.10 \mathrm{~m}$																	
					－								R－B3F－2 ${ }^{* 11}$										
							溢水防護上の配慮 が必要な高さ						床上 0.43 m 以上										
高圧炉心スプレイ系ポンプ出口流量	$\begin{aligned} & \quad{ }^{* 1} \\ & \text { 差圧式 } \\ & \text { 流量 } \\ & \text { 検出器 } \end{aligned}$	$0 \sim 1500 \mathrm{~m}^{3} / \mathrm{h}$	－	1	$\begin{array}{\|ccc} \hline \text { 系 } & \text { 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	高圧炬心スプレイ系 ${ }^{* 3}$	変更なし					変更なし											
					設 置 床	原子炉建屋 0．P．-0.80 m																	
					－								R－B2F－3 ${ }^{* 12}$										
							溢水防護上の配慮 が必要な高さ	床上 0.13 m 以上															

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4 ：対象計器は，E61－FT004
＊5 ：本設備は，既存の設備である。
＊6：原子炉格納容器本体への椧却材流量を計測する装置と兼用。
＊7 ：対象計器は，E11－FT017A。
＊ 8 ：対象計器は，E11－FT017B。
＊9 ：対象計器は，E71－FT005。
＊ 10 ：対象計器は，E11－FT022。
＊11：対象計器は，E51－FT004。
＊ 12 ：対象計器は，E22－FT005B。
＊ 13 ：対象計器は，E11－FT006A，E11－FT006B。
＊ 14 ：対象計器は，E11－FT006C。
＊ 15 ：対象計器は，E21－FT006。
（3）原子灲圧力容器本体内の圧力又は水位を計測する装置
a．圧力を計測する装置（虽設）

注記＊1：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。記載内容は，設計図書による。
＊2 ：S I 単位に換算したものである。
＊3：記載の適正化を行う。既工事計画書には「圧力高スクラム： $73.6 \mathrm{~kg} / \mathrm{cm}^{2}$ 」，「圧力高 $: 72.1 \mathrm{~kg} / \mathrm{cm}^{2} 」$ ，「圧力低スクラムバイパス： $42.2 \mathrm{~kg} / \mathrm{cm}^{2} 」$ と記載。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「5」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「5個のうち，4個はスクラム信号用及びスクラムバイパス信号用の検出器を含む。」と記載。記載内容は，設計図書による。
＊6 ：対象計器は，B21－PT023A，B21－PT023B，B21－PT023C，B21－PT023D。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊ 8 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊8 ：本設作は記載の適歨化を
＊ 10 ：対象計器は，B21－PT051A，B21－PT051B
＊11：対象計器は，C31－PT059。
＊ 12 ：対象計器は，B21－PT060A，B21－PT060B。
＊ 13 ：本設備は，既存の設備である
＊14：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D。
b．水位を計測する装置（常設）

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊2 ：計測範囲及び警報動作範囲の零は，原子炉圧力容器零レベルより 1313 cm 上のところとする。（ドライヤスカート底部付近）
＊3：記載の適正化を行う。既工事計画書には「水位低インターロック：－970mm」と記載。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には，原子炉水位（広帯域）を含めた「19」と記載。
＊5：8個のうち，4個は主蒸気隔離弁閉用，4個は高圧灲心スプレイ系起動用の検出器。
＊6 ：対象計器は，B21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊ 8 ：対象計器は，B21－LT054。
＊9：記載の適正化を行う。既工事計画書には「水位低スクラム：＋310mm」と記載。記載内容は，設計図書による。
＊10：記載の適正化を行う。既工事計画書には「9」と記載。
＊11：6個のうち，4個はスクラム信号用， 2 個は自動減圧系許可用の検出器。
＊ 12 ：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D，B21－LT038A，B21－LT038B。
＊13：記載の適正化を行う。既工事計画書には「水位高：+1110 mm ，水位低：+850 mm 」と記載。記載内容は，設計図書による。
＊ 14 ：本設備は記載の適正化を行うものであり，手続き対象外である。
＊ 15 ：対象計器は，C31－LT061A，C31－LT061B，C31－LT061C
＊ 16 ：記載の適正化を行う。既工事計画書には「原子炉水位」と記載。
＊17：記載の適正化を行う。既工事計画書には，原子炉水位のうちB21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D，B21－LT054を含めた「19」と記載。 ＊ 18 ：対象計器は，B21－LT052A，B21－LT052B。
＊19：記載の適正化を行う。既工事計画書には「水位低インターロック：－970mm，-3660 mm 」と記載。記載内容は，設計図書による。
＊ $20: 8$ 個のらち，4個は残留熱除去系低圧注水モード起動用，4個は原子炉再循環ポンプトリップ用の検出器。
＊ 21 ：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D。
＊ 22 ：計測範囲の零は，原子炉圧力容器零レベルより 900 cm 上のところとする。（有効燃料棒頂部付近）
＊ 23 ：対象計器は，B21－LT044A，B21－LT044B
＊ 24 ：対象計器は，B21－LT058。
＊ 25 ：対象計器は，B21－LT059。
（4）原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置
a．圧力を計測する装置（常設）

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊2：対象計器は，B21－PT047A，B21－PT047B，B21－PT047C，B21－PT047D，B21－PT048A，B21－PT048B，B21－PT048C，B21－PT048D，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D
＊3：対象計器は，T48－PT017。
＊4：対象計器は，T48－PT014。
＊5：本設備は，既存の設備である
＊6：対象計器は，T48－PT034。
＊7 ：対象計器は，T48－PT018A，T48－PT018B。
＊8 ：対象計器は，T48－PT019。
b．温度を計測する装置（常設）

変 更 前							変 更 後												
名 称	$\begin{array}{lll} \text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 } \end{array}$	計測 範 囲	警報動作 範 囲	個 数	取 付	箇 所	名 称	$\begin{array}{lll} \hline \text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 } \end{array}$	計測 範 囲	$\begin{array}{\|l\|l\|} \hline \text { 警報動作 } \\ \text { 範 } & \text { 囲 } \\ \hline \end{array}$	個数	取 付	箇 所						
ドライウェル温度	熱電対	$0 \sim 200^{\circ} \mathrm{C}$	－	17	$\begin{array}{\|l\|l\|} \hline \text { 系 } & \text { 統 名 } \\ \hline \text { (ライン名) } \\ \hline \end{array}$	原子炉格納容器調気系	ドライウェル温度	変更なし				変更なし							
					設 置 床	原子炉 格納容器内 0．P． $22.50 \mathrm{~m}^{* 2}$ 0．P． $15.00 \mathrm{~m}^{* 3}$ 0．P． $6.00 \mathrm{~m}^{* 4}$ 0．P．$-0.80 \mathrm{~m}^{* 5}$													
					－								－						
							溢水防護上の配慮 が必要な高さ					－							
－								熱電対	$0 \sim 300^{\circ} \mathrm{C}$	－	11	(ライ 系 統 名	原子炉格納容器調気系						
							設 置 床					原子炉 格納容器内 0．P． $22.50 \mathrm{~m}^{* 7}$ 0．P． $15.00 \mathrm{~m}^{* 8}$ 0．P． $6.00 \mathrm{~m}^{* 9}$ 0．P．$-0.80 \mathrm{~m}^{* 10}$							
							$\begin{array}{llll} \hline \text { 溢 } & \text { 水防櫵 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$					－							
							溢水防護上の配慮 が必要な高さ					－							
圧力抑制室内空気温度	熱電対	$0 \sim 300^{\circ} \mathrm{C}$	－	${ }^{* 11}$	$\begin{array}{\|cc\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	原子炉格納容器調気系		変更なし					変更なし						
					設 置 床	原子炉 格納容器内 0. P．-0.80 m													
					－								$\begin{array}{l\|l\|l\|l\|} \text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－					
							溢水防護上の配慮 が必要な高さ						－						

変 更 前							変 更 後											
名 称	検 出 器 の 種類	計測 箷 囲	警報動作 範 囲	個 数	取 付	箇 所	名 称	検 出 器 の 種 類	計測 範 囲	警報動作 範 囲	個数	取 付	箇 所					
$\begin{gathered} \text { サ1 } \\ \text { サプレッション } \\ \text { プール水温度 } \end{gathered}$	測温抵抗体	$0 \sim 150^{\circ} \mathrm{C}$	－		$\begin{array}{\|l\|l} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	原子炉格納容器	変更なし					変更なし						
					設 置 床	原子炉 格納容器内 0. P．-8.10 m												
					－							$\begin{array}{llll} \hline \text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { の画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－					
							溢水防護上の配慮 が必要な高さ	－										
				$16^{* 13}$	$\begin{array}{\|cc\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	原子炉格納容器						変更なし		$\begin{gathered} \text { 変更なし } \\ 0 \sim 200^{\circ} \mathrm{C}{ }^{* 14} \end{gathered}$	変更なし		変更なし	
					設 置 床	原子炉 格納容器内 $0 . \mathrm{P} .-8.10 \mathrm{~m}$												
					－			－										
							溢水防護上の配慮 が必要な高さ	－										
－							原子炉格納容器 下部温度	熱電対	$0 \sim 700^{\circ} \mathrm{C}$	－	12		原子炉格納容器調気系					
							設 置 床					原子炉 格納容器内 O．P．$-0.80 \mathrm{~m}^{* 15}$ 0．P．$-8.10 \mathrm{~m} * 16$						
							$\begin{array}{l\|l\|l\|l\|} \text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$					－						
							溢水防護上の配慮 が必要な高さ					－						

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：対象計器は，T48－TE012N，T48－TE012P，T48－TE012R，T48－TE012S，T48－TE012T。
$* 2$ ：対象計器は，T48－TE012N，T48－TE012P，T48－TE012R，T48－TE012S，T48－TE012T。
$* 3$ ：対象計器は，T48－TE012A，T48－TE012B，T48－TE012C，T48－TE012G，T48－TE012H，T48－TE012J。

＊5 ：対象計器は，T48－TE012K，T48－TE012L，T48－TE012M。
＊6：本設備は，既存の設備である。
＊ 7 ：対象計器は，T48－TE026A，T48－TE026B。
＊ 8 ：対象計器は，T48－TE026C，T48－TE026D。
＊9 ：対象計器は，T48－TE026E，T48－TE026F
＊ 10 ：対象計器は，T48－TE026G，T48－TE026H，T48－TE026J，T48－TE026K，T48－TE026L。
＊ 11 ：対象計器は，T48－TE013A，T48－TE013B，T48－TE013C，T48－TE013D。
＊ 12 ：対象計器は，T11－TE001A，T11－TE002A，T11－TE003A，T11－TE004A，T11－TE005A，T11－TE006A，T11－TE007A，T11－TE008A，T11－TE009A，T11－TE010A，T11－TE011A，T11－TE012A，T11－TE013A，T11－TE014A， T11－TE015A，T11－TE016A。
＊13：対象計器は，T11－TE001B，T11－TE002B，T11－TE003B，T11－TE004B，T11－TE005B，T11－TE006B，T11－TE007B，T11－TE008B，T11－TE009B，T11－TE010B，T11－TE011B，T11－TE012B，T11－TE013B，T11－TE014B， T11－TE015B，T11－TE016B。
＊ 14 ：重大事故等時における使用時の値
＊ 15 ：対象計器は，T48－L／TE048A，T48－L／TE048B，T48－L／TE049A，T48－L／TE049B，T48－L／TE050A，T48－L／TE050B。
＊ 16 ：対象計器は，T48－L／TE045A，T48－L／TE045B，T48－L／TE046A，T48－L／TE046B，T48－L／TE047A，T48－L／TE047B。
c．酸素ガス濃度を計測する装置（常設）

変 更 前							変 更 後							
名 称	検 出 器 の 種 類	計測 範 囲 ${ }^{* 1}$	警報動作 範 囲	個数	取 付	箇 所	名	称	検 出 の 種	計測範 囲	警報動作 範 囲	個数	取 付	箇 所
格納容器内雰囲気酸素濃度	＊2 熱磁気風式酸素検出器	$0 \sim 30 \mathrm{vol} \%^{* 3}$	－＊4	2＊5	${ }^{\text {系 }} \text { (ラ 統 } \quad \text { 名 }$	格納容器内雰囲気モニタ系	変更なし						$\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$	変更なし
					設 置 床	原子炉建屋 0．P． 22.50 m							設 置 床	
					－								$\begin{array}{\|llll} \hline \text { 溢 } & \text { 水 } & \text { 方 護 } & \text { 上 } \\ \text { 区 } & \text { の画 } & \text { 番 } & \text { 号 } \end{array}$	$\begin{aligned} & \mathrm{R}-2 \mathrm{~F}-2-5^{* 7} \\ & \mathrm{R}-2 \mathrm{~F}-2-6 * 8 \end{aligned}$
							溢水防護上の配慮 が必要な高さ	床上 0.00 m 以上＊7床上 0.00 m 以上＊8						

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「計測範囲 $(\%)$ 」と記載。
＊2：記載の適正化を行う。既工事計画書には「熱磁気風式」と記載。
＊3：記載の適正化を行う。既工事計画書には「0～30」と記載。
＊ 4 ：警報動作が要求される検出器ではないため，記載の適正化を行う
＊5：検出器はドライウェル・サプレッションチェンバを切替えて使用する。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊7：対象計器は，D23－02T003A。
＊ 8 ：対象計器は， $\mathrm{D} 23-0_{2}$ T003B
d．水素がス濃度を計測する装置（虽設）

注記＊1 ：記載の適正化を行う。既工事計画書には「計測範囲（\％）」と記載。
＊2 ：対象計器は，D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, \mathrm{D} 23-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$ 。
＊3 ：対象計器は，D23－ $\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}, \mathrm{D} 23-\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~B}$ 。
$* 4$ ：記載の適正化を行う。既工事計画書には「熱伝導率式」と記載。
＊5：記載の適正化を行う。既工事計画書には「0～30」と記載。
＊6：警報動作が要求される検出器ではないため，記載の適正化を行う。
＊ 7 ：検出器はドライウェル・サプレッションチェンバを切替えて使用する
＊8：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊9 ：対象計器は，D23－ H_{2} T001A。
＊ 10 ：対象計器は， $\mathrm{D} 23-\mathrm{H}_{2}$ T001B。
＊11：対象計器は，D23－ H_{2} T002A。
＊ 12 ：対象計器は，D23－ H_{2} T002B。
（5）非常用炉心椧却設備その他原子炉注水設備に係る容器内又は貯蔵槽内の水位を計測する装置（常設）

変 更 前													変 更 後							
名	称	検 の	$\begin{aligned} & \text { 出 } \\ & \text { 種 } \end{aligned}$	$\begin{aligned} & \text { 器 } \\ & \text { 類 } \end{aligned}$	計測範囲		撆報動作 困	個数	取	付	箇	所	名	称	$\begin{array}{lll} \hline \text { 検 } & \text { 出 } & \text { 器 } \\ \text { の } & \text { 種 } & \text { 類 } \\ \hline \end{array}$	計測範 囲		個数	取 付	箇 所
																			$\begin{array}{\|l\|l} \text { 系 } & \text { 統 } \\ \text { (ライン名 } \\ \hline \end{array}$	補給水系
							－							复水貯蔵タンク ${ }^{* 1}$	差圧式 水位	$0 \sim 3200 \mathrm{~m}^{3}$	－	1	設 置 床	$\begin{aligned} & \text { 復水貯蔵タンク } \\ & \text { 䢟絡トンチ. } \\ & \text { O.P. } 6.95 \mathrm{~m} \end{aligned}$
														水位	検出器					CST－2 ${ }^{\text {＊2 }}$
																			溢水防護上の配慮 が必要な高さ	床上 0.65 m 以上

注記＊ $1:$ 本設備は，既存の設備である。
＊2：対象計器は，P13－LT005。
（7）原子炉冷却材再循澴流量を計測する装置（常設）

注記＊ 1 ：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。記載内容は，設計図書による。
＊2：対象計器は，B32－FT001A，B32－FT001E
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（10）原子炉格納容器本体への泠却材流量を計測する装置（常設）

注記＊1 ：対象計器は，E11－FT018A，E11－FT018B。
＊2 対象計器は，P13－FT035
以下の設備は，原子炉圧力容器本体の入口の原子炉冷却材の流量を計測する装置であり，原子炉格納容器本体への椧却材流量を計測する装置として本工事計画で兼用する。残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）
残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量）
代替循環冷却ポンプ出口流量
（11）原子炉格納容器本体の水位を計測する装置（常設）

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：対象計器は，T48－LT020，T48－LT021。
＊3：本設備は， 2 個のうち 1 個が既存の設備である。
＊ 4 ：対象計器は，T48－LT027。
＊5 ：対象計器は，T48－LT027B
＊6 ：計測範囲の零は，原子炉格納容器下部床面（0．P．－2500）のところとする。
＊ 7 ：対象計器は，T48－L／TE048A，T48－L／TE048B，T48－L／TE049A，T48－L／TE049B，T48－L／TE050A，T48－L／TE050B。 ＊ 8 ：対象計器は，T48－L／TE045A，T48－L／TE045B，T48－L／TE046A，T48－L／TE046B，T48－L／TE047A，T48－L／TE047B。 ＊9：計測範囲の零は，ドライウェル床面（0．P．1150）のところとする。
＊ 10 ：対象計器は，T48－L／TE051A，T48－L／TE051B，T48－L／TE052A，T48－L／TE052B，T48－L／TE053A，T48－L／TE053B。
（12）原子涙建屋内の水素がス浱度を計測する装置（常設）

注記 $\boldsymbol{*}^{2}$ ：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 205$ 。
＊ 2 ：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, ~ T 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$
＊3：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 203$ 。
＊ 4 ：対象計器は， $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204$ 。
＊5：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 203$
＊ 6 ：対象計器は， $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 201$ 。
＊7 ：対象計器は， $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 202$
＊8：対象計器は，T71－ $\mathrm{H}_{2} \mathrm{E} 204$ 。
4.6 原子炬非常停止信号（常設）

変 更 前								変 更 後														
原 子 炉非 常 停 止信号の種類	検 出 器 の種 類	個数	取 付	箇 所	$* 2$ 原子炬非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件	原 子 炉 非 常 停 止 信号の種類 出器 の種類	個数	取 付	箇	所	原子炬非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件							
$\begin{aligned} & \quad{ }^{* 4} \text { 原子炉 } \\ & \text { 圧力高 } \end{aligned}$	原子炉 圧力 検出器	$4^{* 6}$	系 統 名 （ライン名）	$\text { 原子炉系 }{ }^{* 7}$	＊8	$\begin{gathered} \quad{ }^{* 10} \\ \text { 7. 22MPa } \\ { }^{* 9} \text { 以下下 } \end{gathered}$	－	変更なし		変更なし			変更なし									
			設 置 床	$\quad{ }^{* 7}$原子炉建屋 0．P． 15.00 m																		
			－							溢 水 防 護 上の 区 画 番 号	－											
					溢水防護上の配慮 が必要な高さ																	
$* 4, * 11$ 原子炉水位 低（レベル 3）	＊ 12 ，＊ 13 原子炉 水位 検出器	$\begin{aligned} & { }^{114} \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	原子炉系		$2{ }^{* 8}$	原子炉圧力容器零レベル ＊15より 1344 cm以上	－	変更なし		変更なし			変更なし								
			設 置 床																			
			－		溢水防護上の区 画 番 号						－											
					溢水防護上の配慮 が必要な高さ																	
$\begin{aligned} & \quad{ }^{* 4} \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力高 } \end{aligned}$	$\begin{gathered} * 5, * 17 \\ \text { ドライ } \\ \text { ウェル } \\ \text { 圧力 } \\ \text { 検出器 } \end{gathered}$	$\begin{aligned} & * 18 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	$\text { 原子炉系 }{ }^{* 7}$	$2^{* 8}$	13． 7 kPa ${ }^{*}{ }^{9}$ 以下	－	変更なし		変更なし			変更なし									
			設 置 床	$\quad{ }^{* 7}$ 原子炉建屋 $0 . \mathrm{P} .22 .50 \mathrm{~m}$																		
			－							$\begin{aligned} & \text { 溢 } \\ & \text { 水 防 護 上 } \\ & \text { 上画 } \\ & \text { 番 号 } \end{aligned}$	－											
					溢水防護上の配慮 が必要な高さ																	

変 更 前								変 更 後								
＊1 原 子 炉非 常 停 止信号の種類	検 出 器 の種 類	個数	取 付	箇 所	＊2 原子炉非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件	原 子 炉非 常 停 止信号の種類	検出器 の種類	個 数	取 付	箇	所	原子炉非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件
中性子束高	$* 25$ ，＊26 出力領域中性子束検出器	$\begin{gathered} * 20, * 21 \\ 6 \end{gathered}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	原子炉核計装系 ${ }^{* 7}$	$\begin{aligned} & * 20, * 22 \\ & 2 \end{aligned}$	$\quad{ }^{* 24}$ 原子炉 モード スイッチ $* 23$ 「運転」 位置で 定格 出力の 120% 以下 $* 27$		変更なし			変更なし			変更なし		
			設 置 床	原子炉格納容器内 0．P． 6.00 m		$\begin{gathered} \text { 原子炉 } \\ \text { モード } \\ \text { スイッチ } \\ \text { 「運転」 } \\ \text { 位以置以外 } \\ \text { で定格 } \\ \text { 出力の } \\ 15 \% \text { 以下 } \\ \hline \end{gathered}$	－									
			－			自動可変設定					溢 水 防 護 上の区 画 番 号溢水防護上の配慮 が必要な高さ	－				
＊ 4 原子炉周期 （ペリオ ド）短	＊ 29 起動領域中性子束検出器	8＊30	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	原子炉核計装系	$2^{* 31}$	$* 32, * 33, * 34$ 10秒以上	$\begin{gathered} \text { 原子炉モード } \\ \text { スイッチ*35 } \end{gathered}$ 「運転」位置	変更なし			変更なし			変更なし		
			設 置 床													
			－								溢 水 防 護上の区 画 番 号 溢水防護上の配慮 が必要な高さ	－				

変 更 前								変 更 後										
＊1 原 子 炉非常停止信号の種類	検 出 器 の種 類	個数	取 付	箇 所	原子炉非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件	原 子 炬非 常 停 止信号の種類	検 出 器 の種 類	個数	取 付	箇	所	原子炉非常停止に要する信号の個数	設 定 値	原子炬非常停止信号を発信させない条件		
＊4 スクラム排出容器水位高	$\begin{array}{r} \quad{ }^{* 36} \\ \text { スクラム } \\ \text { ス排出容器 } \\ \text { レベル } \\ \text { スイッチ } \end{array}$	$\begin{aligned} & * 37 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	$* 7$ 制御棒駆動水圧系	$2^{* 38}$	68．5 8 ／個 に相当す るレベル （合計 137 ）	$\begin{aligned} & \text { 原子炉モード } \\ & \text { スイッチ*35 } \end{aligned}$ 「燃料取替」 又は「停止」 位置，かつス クラム排出容器水位高バイ パススイッチ 「バイパス」 位置	変更なし			変更なし			変更なし				
			設 置 床	$* 7$ 原子炉建屋 0．P． 6.00 m														
			－								$\begin{array}{lllll}\text { 溢 } & \text { 水防護上 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 }\end{array}$	－						
					溢水防護上の配慮 が必要な高さ													
	$\begin{aligned} & \quad * 12 \\ & \text { スクラム } \\ & \text { スク排出容器 } \\ & \text { 水位 } \\ & \text { 検出器 } \end{aligned}$	$\begin{aligned} & * 39 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	$\begin{gathered} \text { 制御棒駆動 } \\ \text { 水圧系 } \end{gathered}$				変更なし			変更なし			変更なし				
			設 置 床	$\begin{aligned} & \text { * } \\ & \text { 原子炉建屋 } \\ & 0 . \text { P. } 6.00 \mathrm{~m} \end{aligned}$														
			－								溢水防護上の区 画 番 号	－						
					溢水防護上の配慮 が必要な高さ													

変 更 前								変 更 後																
原 子 炉非 常 停 止信号の種類	検 出 器 の種 類	個数	取 付	箇 所	原子炉非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件	原 子 炉非常停止信号の種類	検 出 器 の種 類	個数	取 付	箇	所	原子炬非常停止に要する信号の個数	設 定 値	原子炉非常停止信号を発信させない条件								
＊ 4 主蒸気管放射能高	＊ 40 ，＊41 主蒸気管放射能検出器	$\begin{aligned} & * 42 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \end{array}$	$\begin{gathered} \text { プロセス放射線 } \\ \text { モニタ系 } \end{gathered}$	$2{ }^{* 8}$	＊ 43 通常運転時の放射能の10倍以下	－	変更なし			変更なし			変更なし										
			設 置 床	原子炉建屋 0．P． 15.00 m																				
			－								溢水防護上の 区 画 番 号	－												
					溢水防護上の配慮 が必要な高さ																			
＊4 主蒸気隔離弁閉	＊44 主蒸気隔離弁位置検出器	16	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	＊ 7 原子炉系		$4{ }^{* 45}$	開度 90%以上	原子炉圧力 4． $14 \mathrm{MPa}^{* 9}$ 以下，かつ 原子炉モード スイッチ 「運転」位置以外	変更なし			変更なし			変更なし									
			設 置 床	原子炉建屋 $0 . \mathrm{P} .6 .00 \mathrm{~m}$																				
			－		$\begin{array}{llll}\text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 }\end{array}$							－												
					溢水防護上の配慮 が必要な高さ																			
$\begin{aligned} & \quad{ }^{* 4} \\ & \text { 主蒸気止め } \\ & \text { 并閉 } \end{aligned}$	＊ 44 主蒸気止め弁位置検出器	＊ 48	$\begin{gathered} \text { 系 統 名 } \\ (\text { (ライン名) } \end{gathered}$	$\begin{aligned} & \text { タービン } \\ & \text { タ7 } \\ & \text { 制御系 } \end{aligned}$	$4{ }^{* 49}$	開度90\％以上	原子炉出力 30% 以下	変更なし			変更なし			変更なし										
			設 置 床	$\begin{aligned} & \text { *7 } \\ & \text { タービン建屋 } \\ & \text { 0.P. } 15.00 \mathrm{~m} \\ & \hline \end{aligned}$																				
			－								$\begin{aligned} & \text { 溢 } \end{aligned} \text { 水防護 上 } \text { 上 }$	－												
					溢水防護上の配慮 が必要な高さ																			

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「原子炉スクラム信号の種類」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「原子炉スクラムに要する個数」と記載。
＊3：記載の適正化を行う。既工事計画書には「原子炉スクラムをバイパスするインターロック」と記載。
＊4：本信号は記載の適正化のみを行うものであり，手続き対象外である。
＊5 ：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。
＊6 ：対象計器は，B21－PT023A，B21－PT023B，B21－PT023C，B21－PT023D。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊8：スクラム回路は，2個の検出器からなるA，B2奚統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊9 ：S I 単位に換算したものである。
$* 10$ ：記載の適正化を行う。既工事計画書には「73． $6 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載
＊11：記載の適正化を行う。既工事計画書には「原子炉水位低」と記載。
＊12：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。
＊ 13 ：本検出器は，工学的安全施設等の起動信号のらちその他の原子炉格納容器隔離弁，非常用ガス処理系の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊ 14 ：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D。
＊ 15 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下
＊16：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 1344 cm 上」と記載。
＊17：本検出器は，工学的安全施設等の起動信号のうちその他の原子炉格納容器隔離弁，非常用ガス処理系の「ドライウェル圧力高」として使用する検出器と同じである。
＊ 18 ：対象計器は，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D。
＊ 19 ：記載の適正化を行う。既工事計画書には $「 0.14 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。
＊20：個数は平均出力領域モニタのチャンネル数を示す。
51－NE023A，B，D，C51－NE024B，C，D，C51－NE025A，B，D，C51－NE026A，C，D，C51－NE027A，B，C，C51－NE028A，D，C51－NE029B，C，D，C51－NE030A，B，C，C51－NE031A，C，D，C51－NE032A，B，C，C51－N C51－NE035A，B，D，C51－NE036A，C，D，C51－NE037A，B，C，C51－NE038A，C，D，C51－NE039A，B，D，C51－NE040B，C，D，C51－NE041A，C，D
＊ 22 ：スクラム回路は，3個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。 ＊23：原子炉モードスイッチには「停止」，「燃料取替」，「起動」及び「運転」の位置がある。
＊24：記載の適正化を行う。既工事計画書には「モードスイッチ「運転」位置で定格出力の 120% 」と記載。
＊ 25 ：本検出器は，工学的安全施設等の起動信号のうちATWS緩和設備（自動減圧系作動阻止機能）の「中性子束高」として使用する検出器と同じである。
＊ 26 ：記載の適正化を行う。既工事計画書には「平均出力領域モニタ」と記載。
＊ 27 ：記載の適正化を行う。既工事計画書には「モードスイッチ「運転」位置以外で定格出力の 15% 」と記載。
＊28：原子炉非常停止信号の設定値と原子炉再循環流量との関係を第1図に示す。
＊29：記載の適正化を行う。既工事計画書には「起動領域モニタ」と記載。
＊30：対象計器は，C51－NE001A，C51－NE001B，C51－NE001C，C51－NE001D，C51－NE001E，C51－NE001F，C51－NE001G，C51－NE001H。
＊31：スクラム回路は，4個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
$* 32$ ：計測範囲が中間領域における $3 \times 10^{8} \sim 2 \times 10^{13} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$ のとき。
$* 33$ ：起動領域モニタ原子炉出力ペリオド指示値。
＊34：記載の適正化を行う。既工事計画書には「10秒」と記載。
＊35：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載
＊ 36 ：記載の適正化を行う。既工事計画書には「レベルスイッチ」と記載。
＊37：対象計器は，C12－LS016A－2，C12－LS016B－2，C12－LS016C－1，C12－LS016D－1。
＊ 38 ：スクラム回路は，各検出器2個ずつからなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊39：対象計器は，C12－LT016A－1，C12－LT016B－1，C12－LT016C－2，C12－LT016D－2。
＊ 40 ：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊41：本検出器は，工学的安全施設等の起動信号のうち主蒸気隔離弁の「主蒸気管放射能高」として使用する検出器と同じである。
＊ 42 ：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C，D11－RE001D。
＊43：記載の適正化を行う。既工事計画書には「通常運転時の放射能の 10 倍」と記載。
＊44：記載の適正化を行う。既工事計画書には「弁位置スイッチ」と記載。
＊45：スクラム回路は，8個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低2個の検出器が同時に動作すれば，原子炉はスクラムされる。
＊46：記載の適正化を行う。既工事計画書には「90\％開度」と記載。
＊47：記載の適正化を行う。既工事計画書には「原子炉圧力 $42.2 \mathrm{~kg} / \mathrm{cm}^{2}$ 以下，かつモードスイッチ「運転」位置以外」と記載。
＊ 48 ：対象計器は，N32－PoS115A，N32－PoS115B，N32－PoS115C，N32－PoS115D，N32－PoS120A，N32－PoS120B，N32－PoS120C，N32－PoS120D。
＊49：スクラム回路は，4個の検出器からなるA，B2采統のチャンネルで構成され，A，B 各々に属する最低2個の検出器が同時に動作すれば，原子炬はスクラムされる。
＊50．対象計器は，N32－PS022A，N32－PS022B，N32－PS022C，N32－PS022D
＊51：記載の適正化を行う。既工事計画書には $\Gamma 42 \mathrm{~kg} / \mathrm{cm}^{2}$ 」と記載。
$* 52:$ 記載の適正化を行う。既工事計画書には「位置スイッチ」と記載
＊ 53 ：対象計器は，N32－PoS113A，N32－PoS113B，N32－PoS113C，N32－PoS113D
＊54：記載の適正化を行う。既工事計画書には「押ボタンスイッチ」と記載
＊55：記載の適正化を行う。既工事計画書には「加速度検出器」と記載。
＊56：対象計器は，C71－VbS001A，C71－VbS001B，C71－VbS001C，C71－VbS001D
＊57：スクラム回路は，水平方向 4 個，鉛直方向 2 個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，原子炉はスクラムされる ＊58：記載の適正化を行う。既工事計画書には「水平方向 200 gal （ $0 . \mathrm{P}-8.1 \mathrm{~m}$ ）」 と記載。
＊59 ：対象計器は，C71－VbS002A，C71－VbS002B，C71－VbS002C，C71－VbS002D。
＊ 60 ：記載の適正化を行う。既工事計画書には「水平方向400gal（0．P．6． 0 m ）」と記載。
＊61：対象計器は，C71－VbS003A，C71－VbS003B，C71－VbS003C，C71－VbS003D
＊62：記載の適正化を行う。既工事計画書には「鉛直方向 100 gal （0．P．－8．1m）」と記載。
注：原子炉保護系は 2 系統のトリップシステムによって構成される。
両トリップシステムの電源が喪失したときにはフェイル・セイフの機能により原子炉は緊急停止する。

	変 更 前	変	更	後
 （\％） 50 0 第1図	 原子炉再循環流量（\％）：Wd＊1 中性子束高一自動可変設定（熱流束相当）の原子炉非常停止信号の設定值＊2		変更なし	

＊2：記載の適正化を行う。既工事計画書には「第1図 中性子束高一自動可変設定（熱流束相当）のスクラム設定値」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

4．7 工学的安全施設等の起動信号（常設）

変 更 前									変 更 後								
工学的安全施設等の起動信号の種類		検 出 器 の種 類	個数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件	工学的安全施設等の起動信号の種類	検出器 の種 類	個数	取 付	箇	所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件
$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 嚯 } \\ & \text { 卒 } \end{aligned}$	$\begin{aligned} & \quad * 4, * 5 \\ & \text { 原子炉 } \\ & \text { 水位低 } \\ & (\text { Lベル } 2 \text {) } \end{aligned}$	$\begin{gathered} * 6, * 7 \\ \text { 原子炉 } \\ \text { 水位 } \\ \text { 検出器 } \end{gathered}$	$4^{* 8}$	$\begin{gathered} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$	原子炉系 ${ }^{* 9}$	$2^{* 10}$	＊ 12 原子炉圧力容器零 レベル＊11 より 1216 cm以上	－	変更なし			変更なし			変更なし		
				設 置 床	原子灯建屋 0．P． 6.00 m												
				－								溢水防護上の 区 画 番 号溢水防護上の配慮 が必要な高さ		－			
	＊ 4 主蒸気管圧力低	$\begin{aligned} & \quad * 13 \\ & \text { 主蒸気 } \\ & \text { 管圧力 } \\ & \text { 検出器 } \end{aligned}$	$\begin{aligned} & *_{14} \\ & 4 \end{aligned}$	$\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$		$2^{* 10}$	$\begin{array}{r} * 16 \\ \text { 5. 86MPa } \\ \text { *15以上 } \end{array}$	原子炉モード スイッチ＊17「運転」位置以外	変更なし			変更なし			変更なし		
				設 置 床	$\begin{aligned} & \quad{ }^{* 9} \\ & \text { タービン建屋 } \\ & \text { 0.P. } 15.00 \mathrm{~m} \\ & \hline \end{aligned}$												
				－								溢水防護上の 区 画 番 号溢水防護上の配慮 が必要な高さ		－			
	＊ 4 主蒸気管 放射能高	＊ 18 ，＊ 19主蒸気管放射能検出器	$\text { * } 20$ 4	$\begin{gathered} \text { 系 統 名 } \\ \text { (ライン名) } \end{gathered}$	$\begin{gathered} { }^{* 9} \\ \text { プロセス放射線 } \\ \text { モニタ系 } \end{gathered}$	$2{ }^{* 10}$	＊21 通常 運転時の 放射能の 10倍以下		変更なし			変更なし			変更なし		
				設 置 床	$\quad{ }^{* 9}$ 原子炉建屋 0. P． 15.00 m			－									
				$\square-$								$\begin{array}{llll}\text { 溢 } & \text { 水防護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 }\end{array}$溢水防護上の配慮 が必要な高さ	－				

変 更 前									変 更 後								
工 施設 信	的安全等の起動 の種類	検出器 の種 類	個数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件	工学的安全施設等の起動信号の種類	検出器 の種類	個 数	取 付	箇	所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件
$\begin{gathered} \text { 高 } \\ \text { 侕 } \\ \text { 心 } \\ \text { 준 } \\ \text { L } \\ \text { 系 } \end{gathered}$	$\begin{aligned} & \quad * \\ & \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力高 } \end{aligned}$	$\begin{aligned} & \quad{ }^{* 13} \\ & \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力 } \\ & \text { 検出器 } \end{aligned}$	$\begin{aligned} & * 52 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 系 } & \text { 統 名 } \\ \hline \text { (ライン名) } \\ \hline \end{array}$	原子炉系 ${ }^{* 9}$	$2{ }^{* 53}$	$\begin{array}{r} \quad * 37 \\ 13.7 \mathrm{kPa} \\ { }_{*}{ }^{15} \text { 以下 } \end{array}$	－	変更なし			変更なし			変更なし		
				設 置 床	${ }^{* 9}{ }^{*}$原子炉建屋 $0 . P$. 0.22 .50 m												
				－								溢 水 防 護 上 区 画 区 番 号 溢水防櫵上の配慮 が必要な 高	－				
				$\begin{array}{\|l\|l\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	原子炉系 ${ }^{* 9}$	$2^{* 53}$	＊12 原子炉圧力容器零 レベル＊11 より 1216 cm 以上	－	変更なし			変更なし			変更なし		
	原子炉水位低	原子炉水位	$* 54$	設 置 床	原子炉建屋 0．${ }^{* 9}$ ． 6.00 m												
	$\begin{aligned} & \text { 水位低 } \\ & \text { (レベル2) } \end{aligned}$	検出器	4	－								溢 水 防 護 上 区 区画 番 号	－				

				変	更 前				変 更 後							
工 施妇 信	的安全等の起動 の種類	検出器 の種 類	個 数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件	工学的安全施設等の起動信号の種類	検出器 の種類	個 数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件
	$\begin{aligned} & \quad{ }^{* 4} \\ & \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力高 } \end{aligned}$	$\begin{aligned} & * 13, * 55 \\ & \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力 } \\ & \text { 検出器 } \end{aligned}$	$\begin{aligned} & * 56 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 系 } & \text { 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	$\text { 原子炉系 }{ }^{* 9}$	$2^{* 57}$	$\begin{array}{r} \quad{ }^{* 37} \\ 13.7 \mathrm{kPa} \\ * 15 \text { 以下 } \end{array}$	－	変更なし			変更なし		変更なし		
				設 置 床	$\quad{ }^{* 9}$ 原子炉建屋 0．P． 22.50 m											
				－								溢 水 防護上の 区 画 番 号 溢水防護上の配慮 が必要な高さ	－			
	$* 5$ 原子炉 水位低 （レベル1）	＊ 6 ，＊ 58 原子炉 水位 検出器	2	$\begin{array}{\|l\|l\|} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{array}$	$\text { 原子炉系 }{ }^{* 9}$		原子炉圧力容器零 レベル＊1 より 947 cm以上	－	変更なし			変更なし		変更なし		
				設 置 床	原子炉建屋 0．P．$\quad 6.00 \mathrm{~m}$											
				－								溢 水防護 上 区 画 番 号 溢水防護上の配慮 が必要な高さ	$\mathrm{R}-\mathrm{B} 1 \mathrm{~F}-1 * 60$			

変 更 前									変 更 後							
	＊ 1 的安全等の起動号の種類	検出器 の種 類	個数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工 学 的 安 全施設等の起動信号を発信 させない条件	工学的安全施設等の起動信号の種類	検出器 の種類	個 数	取 付	箇 所	工学的安全施設等の起動に要する信号の個数	設 定 値	工学的安全施設等の起動信号を発信 させない条件
$\begin{aligned} & \text { 自 } \\ & \text { 動 } \\ & \text { 減 } \\ & \text { 寀 } \end{aligned}$	原子炉 水位低 （レベル 1）＊5 と ドライ ウェル 圧力高の 同時信号	$\begin{aligned} & * 13, * 66 \\ & \text { ドライ } \\ & \text { ウェル } \\ & \text { 圧力 } \\ & \text { 検出器 } \end{aligned}$	$\begin{aligned} & * 62 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \text { 系 統 名 } \\ & \text { (ライン名) } \\ & \hline \end{aligned}$	$\text { 原子炉系 }{ }^{* 9}$	$2^{* 67}$	$\begin{array}{r} \quad{ }^{* 37} \\ \text { 13. } 7 \mathrm{kPa} \\ { }^{15} \text { 以下 } \end{array}$	－	変更なし					変更なし		ATWS緩和設備 （自動減圧系作動阻止機能）が作動し た場合
				設 置 床	${ }^{\text {原子炉建屋 }}$ 0．P． 22.50 m											
				－												
		＊ 6 ，＊68 原子炉 水位 検出器	4	$\begin{gathered} \hline \text { 系 統 名 } \\ \text { (ライン名) } \\ \hline \end{gathered}$	原子炉系 ${ }^{* 9}$	$2^{* 69}$	59		変更なし			変更なし		変更なし		
				設 置 床	$\quad{ }^{* 9}$ 原子炉建屋 0. P． 6.00 m		原子炉圧力容器零 レベル＊11 より 947 cm以上									
				－								$\begin{aligned} & \text { 溢 } \\ & \text { 区 水 防 護 上 } \\ & \text { 区 } \\ & \hline \end{aligned}$	R－B1F－1＊65			
						溢水防護上の配慮 が必要な高さ						床上 0.24 m 以上				

注記＊1：記載の適正化を行う。既工事計画書には「安全保護系起動信号の種類」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「安全保護系起動に要する個数」と記載
＊3：記載の適正化を行う。既工事計画書には「安全保護系起動バイパス条件」と記載。
＊4：本信号は記載の適正化のみを行うものであり，手続き対象外である。
＊5：記載の適正化を行う。既工事計画書には「原子炉水位低」と記載。
＊6：記載の適正化を行う。既工事計画書には「差圧検出器」と記載。
＊7 ：本検出器は，工学的安全施設の起動信号のうちその他の原子炉格納容器隔離弁の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 8 ：対象計器は，B21－LT026A，B21－LT026B，B21－LT026C，B21－LT026D。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊10：主蒸気隔離弁の作動回路は，2個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊ 11 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下
＊12：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 1216 cm 上」と記載。
＊13：記載の適正化を行う。既工事計画書には「圧力検出器」と記載。
＊ 14 ：対象計器は，N11－PT005A，N11－PT005B，N11－PT005C，N11－PT005D
＊15：S I 単位に換算したものである。
＊16：記載の適正化を行う。既工事計画書には「59．8kg／cm²」と記載。
＊17：記載の適正化を行う。既工事計画書には「モードスイッチ」と記載。
＊18：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載
＊19：本検出器は，原子炬非常停止信号の「主蒸気管放射能高」として使用する検出器と同じである
＊20：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C及びD11－RE001D。
＊21：記載の適正化を行う。既工事計画書には「通常運転時の放射能の 10 倍」と記載。
＊22：記載の適正化を行う。既工事計画書には「温度検出器」と記載。
＊ 23 ：対象計器は，E31－TE001A，E31－TE001B，E31－TE001C，E31－TE001D，E31－TE002A，E31－TE002B，E31－TE002C，E31－TE002D，E31－TE003A，E31－TE003B，E31－TE003C，E31－TE003D。
＊ 24 ：対象計器は，E31－TE004A，E31－TE004B，E31－TE004C，E31－TE004D，E31－TE005A，E31－TE005B，E31－TE005C，E31－TE005D，E31－TE006A，E31－TE006B，E31－TE006C，E31－TE006D。
 E31－TE010D，E31－TE011A，E31－TE011B，E31－TE011C，E31－TE011D，E31－TE012A，E31－TE012B，E31－TE012C，E31－TE012D。
＊26：主蒸気隔離弁の作動回路は，22個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊27：記載の適正化を行う。既工事計画書には「通常運転最高温度の1．5倍」と記載。
＊ 28 ：対象計器は，B21－dPT001A，B21－dPT001B，B21－dPT001C，B21－dPT001D，B21－dPT001E，B21－dPT001F，B21－dPT001G，B21－dPT001H，B21－dPT001J，B21－dPT001K，B21－dPT001L，B21－dPT001M，B21－dPT001N， B21－dPT001P，B21－dPT001R，B21－dPT001S。
＊29：主蒸気隔離弁の作動回路は，8個の検出器からなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，主蒸気隔離弁は閉となる。
＊30：記載の適正化を行う。既工事計画書には「定格流量の 140% 」と記載。
＊31：対象計器は，N61－PT020A，N61－PT020B，N61－PT020C，N61－PT020D。
＊32：記載の適正化を行う。既工事計画書には「真空度 216 mmHg 」と記載。
 る。
＊ 34 ：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうち非常用ガス処理系の「ドライウェル圧力高」として使用する検出器と同じである。
＊ 35 ：対象計器は，B21－PT055A，B21－PT055B，B21－PT055C，B21－PT055D
$* 36:$ 内側及び外側隔離弁の各作動回路は，各検出器1個ずつからなるA，B2采統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，隔離弁は閉となる
＊37：記載の適正化を行う。既工事計画書には「0．14kg／cm²」と記載。
＊38：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のらち非常用ガス処理系の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊ 39 ：対象計器は，B21－LT024A，B21－LT024B，B21－LT024C，B21－LT024D
＊ 40 ：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 1344 cm 上」と記載。
＊ 41 ：本信号により，残留熱除去系に属する格納容器隔離弁が作動する。
＊42：内側及び外側隔離弁の各作動回路は，検出器 1 個からなるA，B2系統のチャンネルで構成され，A，B各々に属する 1 個の検出器が同時に動作すれば，隔離弁は閉となる。
＊ 43 ：本信号により，原子炉冷却材浄化系，計装用圧縮空気采に属する格納容器隔離弁が作動する。
＊ 44 ：本検出器は，工学的安全施設の起動信号のうち主蒸気隔離弁の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 45 ：記載の適正化を行う。既工事計画書には「半導体式」と記載。
＊ 46 ：対象計器は，D11－RE002A，D11－RE002B，D11－RE002C及びD11－RE002D
＊ 47 ：対象計器は，D11－RE003A，D11－RE003B，D11－RE003C及びD11－RE003D
出器が同時に動作すれば，非常用ガス処理系起動となる。
＊ 49 ：本検出器は，原子炬非常停止信号及び工学的安全施設の起動信号のうちその他原子炉格納容器隔離弁の「ドライウェル圧力高」として使用する検出器と同じである。
＊50：非常用ガス処理系A，Bの各作動回路は，各検出器1個ずつからなるA，B2系統のチャンネルで構成され，A，B各々に属する最低1個の検出器が同時に動作すれば，非常用ガス処理系起動となる
＊51：本検出器は，原子炉非常停止信号及び工学的安全施設の起動信号のうちその他原子炉格納容器隔離升の「原子炉水位低（レベル3）」として使用する検出器と同じである。
＊52 ：対象計器は，B21－PT047A，B21－PT047B，B21－PT047C，B21－PT047D。
＊53：高圧炉心スプレイ系の作動回路は，4個の検出器からなる並列の論理和回路で構成され，最低2個の検出器が同時に動作すれば，高圧炉心スプレイ系起動となる。
＊54：対象計器は，B21－LT031A，B21－LT031B，B21－LT031C，B21－LT031D。
＊55：本検出器は，工学的安全施設の起動信号のうち残留熱除去系及び自動減圧系の「ドライウェル圧力高」として使用する検出器と同じである。
＊56：対象計器は，B21－PT048A，B21－PT048C。
＊57：低圧炉心スプレイ系の作動回路は，各検出器2個ずつの計4個の検出器からなる並列の論理和回路で構成され，最低2個の検出器が同時に動作すれば，低圧炉心スプレイ系起動となる。
動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊59：記載の適正化を行う。既工事計画書には「原子炉圧力容器零レベルより 947 cm 上」と記載。
＊60 ：対象計器は，B21－LT037A，B21－LT037C。
＊61：本検出器は，工学的安全施設の起動信号のうち低圧炬心スプレイ系及び自動減圧系の「ドライウェル圧力高」として使用する検出器と同じである。
＊62：対象計器は，B21－PT048A，B21－PT048B，B21－PT048C，B21－PT048D
起動となる。
備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 65 ：対象計器は，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D
＊ 66 ：本検出器は，工学的安全施設の起動信号のうち低圧炉心スプレイ系及び残留熱除去系の「ドライウェル圧力高」として使用する検出器と同じである
＊67：自動減圧系の作動信号は，2個の検出器からなるA，B2系統のチャンネルで構成され，同じチャンネルに属する2個の検出器及び「原子炉水位低（レベル1）」が同時に動作すれば，自動減圧系起動となる。
設備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊69：自動減圧系の作動信号は，2個の検出器からなるA，B2系統のチャンネルで構成され，同じチャンネルに属する 2 個の検出器及び「ドライウェル圧力高」が同時に動作すれば，自動減圧系起動となる。

4．7．2 ATWS緩和設備（代替制御俸插入機能）の起動信号（常設）

＊2：本検出器は，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号の「原子炉圧力高」として使用する検出器と同じである。
＊3：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D
動となる。
＊5：本検出器は，ATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号及びATWS緩和設備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである ＊6：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D。
＊7：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．7．3 ATWS緩和設備（代替原子炬再循澴ポンプトリップ機能）の起動信号（常設）

＊1：本設俑は，既存の設俑てある

＊2：本検出器は，ATWS緩和設備（代替制御棒插入機能）の起動信号の「原子炬圧力高」として使用する検出器と同じである。
＊3：対象計器は，B21－PT045A，B21－PT045B，B21－PT045C，B21－PT045D
子炉再循環ポンプトリップ機能）作動となる。
＊5：本検出器は，ATWS緩和設備（代替制御棒挿入機能）の起動信号及びATWS緩和設備（自動減圧系作動阻止機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊6：対象計器は，B21－LT036A，B21－LT036B，B21－LT036C，B21－LT036D。
＊ 7 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．7．4 ATWS緩和設備（自動減圧系作動阻止機能）の起動信号（常設）

注記 $* 1$ ：本設備は，既存の設備である。
 と同じである。
＊3：本検出器は，ATWS緩和設備（代替制御棒挿入機能）の起動信号及びATWS緩和設備（代替原子炉再循環ポンプトリップ機能）の起動信号の「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊ 4 ：対象計器は，B21－LT036C，B21－LT036D，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D。
動減圧系作動阻止機能）作動となる。
＊6 ：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。
＊7 ：本検出器は，原子炉非常停止信号の「中性子束高」として使用する検出器と同じである。
＊ 8 ：個数は平均出力領域モニタのチャンネル数を示す。
 C51－NE022A，C，D，C51－NE023A，B，D，C51－NE024B，C，D，C51－NE025A，B，D，C51－NE026A，C，D，C51－NE027A，B，C，C51－NE028A，B，D，C51－NE029B，C，D，C51－NE030A，B，C，C51－NE031A，C，D，C51－NE032A，B，C，C51－NE033A，B，D， C51－NE034B，C，D，C51－NE035A，B，D，C51－NE036A，C，D，C51－NE037A，B，C，C51－NE038A，C，D，C51－NE039A，B，D，C51－NE040B，C，D，C51－NE041A，C，D。
和設備（自動減圧系作動阻止機能）作動となる。
＊11：定格出力時の値に対する比率で示す。

4．7．5 代替自動减圧回路（代替自動減压機能）の起動信号（常設）

注記 $* 1$ ：本設備は，既存の設備である。
「原子炉水位低（レベル2）」として使用する検出器と同じである。
＊3：対象計器は，B21－LT037A，B21－LT037B，B21－LT037C，B21－LT037D
減圧機能）作動となる。
＊5：原子炉圧力容器零レベルは，セパレータスカート下端より 1278 cm 下。

4．8 制御用空気設備

4．8．1 高圧窒素ガス供給系
（2）容器（可搬型）

注記＊1 ：制御用空気設備（代替高圧窒素ガス供給系）と兼用。
＊2 ：公称値を示す。
＊3 ：重大事故等時における使用時の値。
＊ 4 ：当該取付箇所は，制御用空気設備（代替高圧窒素ガス供給系）と兼用。
（3）安全弁（常設）

			変 更	前＊1	変 更 後
名		称	P54－F	65A，B	変更なし
種	類	－	非平	衡型	
	出 圧 力	MPa			
吹	出 量	kg／h／個		$2^{* 2}$	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び径	－	25		
	のど部の径	mm			
	弁 座口 の径	mm	15.	$0^{* 2}$	
	リフフト	mm		以上	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCS	13A	
個	数	－	2		
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$	$\begin{aligned} & \text { 系 統 名 } \\ & \text { (ライン名) } \end{aligned}$	－	P54-F065A 高圧窒素ガス供給系	P54-F065B 高圧窒素ガス供給系	
	設 置 床	－	$\begin{aligned} & \text { 原子 } \\ & \text { 0.P. } 1 \end{aligned}$	建屋 5． 00 m	
	$\begin{array}{lllll} \text { 溢 } & \text { 水 } & \text { 方 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－			－
	溢 水 防 護 上の配慮が必要な高さ	－			－

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。
（5）主配管（常設）

変 更 前									変 更 後						
名		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 } \\ & \quad\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \left.\text { (}{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
		－								原子炉格納容器配管貫通部 （ $\mathrm{X}-91$ ）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。				
									原子炉格納容器配管貫通部 （X－91） ～ 開放端	2． $06 * 4$	$171^{* 4}$	$60.5 * 6$	（5．5）＊6	SUS304TP＊6	

注記 $* 1$ ：公称値を示す。
）内は公称値を示す
＊ 3 ：本設備は既存の設備である。
＊ 4 ：重大事故等時における使用時の値。
＊5：差込継手の差込部内径及び最小厚さ。
＊ 6 ：エルボを示す。
＊ 7 ：フルカップリングを示す。
＊ 8 ：キャップを示す
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊ 10 ：重大事故等クラス2配管に使用する場合の記載事項。
＊11：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，制御用空気設備（高圧窒素ガス供給系）として本工事計画で兼用とする。
＊ 12 ：本設備は，既存の原子炉冷却系統施設のらち原子炉冷却材の循環設備（主蒸気系）であり，制御用空気設備（高圧窒素がス供給系）として本工事計画で兼用とする。
＊ 13 ：原子炉冷却系統施設のうち原子炉冷却材の循環設備（主蒸気系）及び制御用空気設備（代替高圧窒素ガス供給系）と兼用。
＊14：伸縮継手部の外径及び厚さ。
＊15：原子炉冷却系統施設のらち原子炉冷却材の循環設備（主蒸気系）と兼用。
（5）主配管（可搬型）

変 更 前									変 更 後								
	名称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	個数	取付 箇所		名称	$\begin{aligned} & \text { 最高使用*11 } \\ & \text { 大 力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 最高使用*11 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text {) } \end{aligned}$	$\begin{gathered} \text { 外径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材料	個数	取付箇所
$\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 豪 } \\ & \text { 秀 } \\ & \text { 硔 } \\ & \text { 給 } \end{aligned}$									$\begin{aligned} & \text { 高 } \\ & \text { 蓉 } \\ & \text { 素 } \\ & \text { 永 } \\ & \text { 供 } \\ & \text { 給 } \end{aligned}$	連結管＊＊	19． 6	66	7.0	（1．5）	SUS304TP	8 （予備8）	保管場所： 原子炉建屋付属棟 0．P． 15.00 m 取付箇所： $\left(\begin{array}{ll} 8 \text { 台 } & \\ \text { 原子炉建屋付属棟 } & 0 . \text { P. } 15.00 \mathrm{~m} \end{array}\right)$

注記 $* 1$ ：重大事故等時における使用時の値。
＊2：外径は公称値を示す。
＊3：（ ）内は公称値を示す。
＊4：本設備は既存の設備である。

4．8．2 代替高圧窒素ガス供給系
（2）容器（可搬型）

	変更前	変更後
名 称	－	高圧窒素ガスボンベ＊1
4．計測制御系統施設 4． 8 制御用空気設備 4．8．1 高圧窒素ガス供給系 （2）容器（可搬型） に記載する。		

注記＊1：本設備は，制御用空気設備（高圧窒素ガス供給系）であり，制御用空気設備（代替高圧窒素ガス供給系）として本工事計画で兼用とする。
（3）安全弁（可搬型）

					変 更 前	変 更 後
名				称	－	P54－F1005A，B
種			類	－		非平衡形
吹	出	圧	力	MPa		2.06
吹			量	kg／h／個		1062 ＊1
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼	び	径	－		25A
	の と	部の	径	mm		$\square^{* 1}$
	弁 座	口 の	径	mm		$23^{* 1}$
	リ	7	ト	mm		】以上
材 料	弁		箱	－		CAC406
個			数	－		1 （予備 1）
保	管	場	所	－		保管場所： 原子炉建屋付属棟 O．P． 15.00 m 取付箇所： $\left(\begin{array}{ll} 1 \text { 個 } & \\ \text { 原子炉建屋付属棟 } & 0 . \text { P. } 15.00 \mathrm{~m} \end{array}\right)$

注記＊1 ：公称値を示す。
（5）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
$* 3$ ：重大事故等時の使用時の値。
＊ 4 ：差込継手の差込部内径及び最小厚さ。
＊5 ：エルボを示す。
＊6：フルカップリングを示す。
＊7：本設備は，制御用空気設備（高圧窒素ガス供給系）であり，制御用空気設備（代替高圧窒素ガス供給系）として本工事計画で兼用とする。
＊8 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，制御用空気設備（代替高圧窒素ガス供給系）として本工事計画で兼用とする。
（5）主配管（可搬型）

変 更 前								変 更 後									
名称	最高使用 圧力 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚さ （mm）	材料	個数	取付 箇所		名 称	最高使用 圧 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underbrace{\text { 外 }}_{(\mathrm{mm})}$	$\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取 付 箇	所
	岡								連結管	20.0	66	4． 0	$\begin{aligned} & 0.45 \\ & (0.5) \end{aligned}$	SUS316TP	3 （予備3）	保管場所： 原子炬建屋付属棟 取付箇所 ： $\left(\begin{array}{l} 3 \text { 台 } \\ \text { 原子炉建屋付属棟 } \end{array}\right.$	$\begin{aligned} & 0 . P .15 .00 \mathrm{~m} \\ & 0 . \text { P. } 15.00 \mathrm{~m} \end{aligned}$
								連結管 フレキシブルホース／ 恒設配管取合点	20.0	66	16.0	（3．0）	SUS304TP	1 （予備1）	保管場所： 原子炬建屋付属棟 0．P． 15.00 m取付箇所： $\left(\begin{array}{ll} 1 \text { 台 } & \\ \text { 原子炉建屋付属棟 } & 0 . \text { P. } 15.00 \mathrm{~m} \end{array}\right)$		
								2． 06	16． 0		（3．0）	SUS304TP					
								34.0	（3．4）		SUS304TP						
								代替高圧窒素ガス供給用フレキシブルホース （ $\phi 32.9$ ，6m，8m）	2． 06	66	32.9		SUS304	2	保管場所： 原子炬建屋付属棟 取付箇所： $\text { [} 2 \text { 本 }$	$\begin{aligned} & 0 . \text { P. } 15.00 \mathrm{~m} \\ & 0 . \text { P. } 15.00 \mathrm{~m} \end{aligned}$	
								恒設配管取合点接続管	2.06	66	34.0	（3．4）	SUS304TP	1 （予備1）	保管場所 ： 原子炬建屋付属棟 取付箇所： $\left(\begin{array}{l} 1 \text { 台 } \\ \text { 原子炉建屋付属棟 } \end{array}\right.$	$\text { 0. P. } 15.00 \mathrm{~m}$ $0 . \text { P. } 15.00 \mathrm{~m})$	

注記 $* 1$ ：重大事故等時における使用時の値。
＊2：外径は公称値を示す。
＊3 ：（ ）内は公称値を示す。
＊4 ：伸縮継手部の外径及び厚さ。

4． 10 計測制御系統施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 計測制御系統施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 計測制御系統施設の共通項目である「1．地盤等，2．自然現象，3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービン の設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」 に基づく設計とする。
第2章 個別項目 1．計測制御系統施設 1.1 反応度制御系統及び原子炉停止系統共通 発電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整すること によって反応度を制御する原子炉再循環流量制御系の独立した原理の異なる反応度制御系統を施設し，計画的な出力変化に伴う反応度変化を燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とする。 通常運転時の高温状態において，独立した原子炉停止系統である制御	第2章 個別項目 1．計測制御系統施設 1．1 反応度制御系統及び原子炉停止系統共通 発電用原子炉施設には，制御棒の挿入位置を調節することによって反応度を制御する制御棒及び制御棒駆動系と，再循環流量を調整すること によって反応度を制御する原子炉再循環流量制御系の独立した原理の異なる反応度制御系統を施設し，計画的な出力変化に伴う反応度変化を燃料要素の許容損傷限界を超えることなく制御できる能力を有する設計とする。 通常運転時の高温状態において，独立した原子炉停止系統である制御

変更前	変更後
棒及び制御棒駆動系による制御棒の炉心～の挿入並びにほう酸水注入系による原子炉冷却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。 運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。 設置（変更）許可を受けた冷却材喪失その他の設計基準事故時の評価 において，制御棒及び制御棒駆動系は，原子炉スクラム信号によって，水圧制御ユニット（アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に挿入され，炉心を臨界未満に でき，かつ，それを維持できる設計とする。 制御棒及びほう酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。 1．2 制御棒及び制御棒駆動系 制御棒は，最大の反応度価値を持つ制御棒 1 本が完全に炉心の外に引き抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炉心を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に挿入されている制御棒を除く，他のいずれかの制御棒が動作不能となった場合は，動作可能な制御棒のうち最大反応度価値を有する制御棒 1 本が完全に炉心の外に引き抜かれた状態でも，他 のすべての動作可能な制御棒により，高温状能及び低温状能において炉	棒及び制御棒駆動系による制御棒の炉心への挿入並びにほう酸水注入系による原子炉泠却材中へのほう酸注入は，それぞれ発電用原子炉を臨界未満にでき，かつ，維持できる設計とする。 運転時の異常な過渡変化時の高温状態においても，制御棒及び制御棒駆動系による制御棒の炉心への挿入により，燃料要素の許容損傷限界を超えることなく発電用原子炉を臨界未満にでき，かつ，維持できる設計 とする。 設置（変更）許可を受けた冷却材喪失その他の設計基準事故時の評価 において，制御棒及び制御棒駆動系は，原子炉スクラム信号によって，水圧制御ユニット（アキュムレータ）の圧力により制御棒を緊急挿入で きる設計とするとともに，制御棒が確実に挿入され，炉心を臨界未満に でき，かつ，それを維持できる設計とする。 制御棒及びほう酸水は，通常運転時における圧力，温度及び放射線に起因する最も厳しい条件において，必要な耐放射線性，寸法安定性，耐熱性，核性質，耐食性及び化学的安定性を保持する設計とする。 1.2 制御棒及び制御棒駆動系 制御棒は，最大の反応度価値を持つ制御棒 1 本が完全に炉心の外に引き抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において常に炉心を臨界未満にできる設計とする。また，発電用原子炉運転中に，完全に插入されている制御棒を除く，他のいずれかの制御棒が動作不能となった場合は，動作可能な制御棒のうち最大反応度価値を有する制御棒 1 本が完全に炉心の外に引き抜かれた状態でも，他 のすべての動作可能な制御棒により，高温状態及び低温状態において炉

変更前	変更後
心を臨界未満に保持できることを評価確認し，確認できない場合には，発電用原子炉を停止するように保安規定に定めて管理する。 反応度が大きく，かつ急激に投入される事象による影響を小さくする ため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限するこ とで，制御棒引き抜きによる反応度添加率を抑制する。また，「原子炉起動時における制御棒の異常な引き抜き」の評価で想定した制御棒引抜速度以下に制限するとともに，零出力ないし低出力においては，運転員 の制御棒引抜操作を規制する補助機能として，制御棒価値ミニマイザを設けることで，引き抜く制御棒の最大反応度価値を制限する。更に中性子束高及び原子炉周期（ペリオド）短による原子炉スクラム信号を設け る設計とする。これらにより，想定される反応度投入事象発生時に燃料 の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せず，かつ，炉心の冷却機能を損なうような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損を生じさせない設計とする。なお，制御棒引抜手順については，保安規定に定めて管理 する。 制御棒及び制御棒駆動系は，通常運転時及び運転時の異常な過渡変化時における低温状態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。 制御棒は，十字形に組み合わせたステンレス鋼製のU字形シースの中に中性子吸収材を収めたものであり，各制御棒は 4 体の燃料体の中央に，炉心全体にわたつて一様に配置する設計とする。	心を臨界未満に保持できることを評価確認し，確認できない場合には，発電用原子炉を停止するように保安規定に定めて管理する。 反応度が大きく，かつ急激に投入される事象による影響を小さくする ため，制御棒の落下速度を設置（変更）許可を受けた「制御棒落下」の評価で想定した落下速度に制御棒落下速度リミッタにより制限するこ とで，制御棒引き抜きによる反応度添加率を抑制する。また，「原子炉起動時における制御棒の異常な引き抜き」の評価で想定した制御棒引抜速度以下に制限するとともに，零出力ないし低出力においては，運転員 の制御棒引抜操作を規制する補助機能として，制御棒価値ミニマイザを設けることで，引き抜く制御棒の最大反応度価値を制限する。更に中性子束高及び原子炉周期（ペリオド）短による原子炉スクラム信号を設け る設計とする。これらにより，想定される反応度投入事象発生時に燃料 の最大エンタルピや発電用原子炉圧力の上昇を低く抑え，原子炉冷却材圧力バウンダリを破損せず，かつ，炉心の冷却機能を損ならような炉心，炉心支持構造物及び原子炉圧力容器内部構造物の破損を生じさせない設計とする。なお，制御棒引抜手順については，保安規定に定めて管理 する。 制御棒及び制御棒駆動系は，通常運転時及び運転時の異常な過渡変化時における低温状態において，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態で炉心を未臨界 に移行して維持できる設計とする。 制御棒は，十字形に組み合わせたステンレス鋼製のU字形シースの中に中性子吸収材を収めたものであり，各制御棒は 4 体の燃料体の中央に，灯心全体にわたつて一様に配置する設計とする。

変更前

制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒 の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部から行ら設計とする。

通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動 し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御 ユニット（アキュムレータ）の高圧窒素により加圧された駆動水を供給 することで制御棒を駆動する設計とする。

原子炉冷却材の漏えいが生じた場合，その漏えい量が 10 mm （ $3 / 8$ イン チ）径の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給 できる設計とする。
制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐた めに適切な値となるような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生した場合においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計とす る。

なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引き抜き」及 び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。
制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モ ードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部 にあり，荷重状態のとき，原子炉モードスイッチ「燃料取替」位置にあ

変更後

制御棒の下端には制御棒落下速度リミッタを設けるとともに，制御棒 の駆動は，ピストン上部又は下部に駆動水を供給することにより，原子炉圧力容器底部から行う設計とする。

通常駆動時は，制御棒駆動水ポンプにより加圧された駆動水で駆動 し，原子炉緊急停止時は，各々の制御棒駆動機構ごとに設ける水圧制御 ユニット（アキュムレータ）の高圧窒素により加圧された駆動水を供給 することで制御棒を駆動する設計とする。

原子炉冷却材の漏えいが生じた場合，その漏えい量が 10 mm （3／8イン チ）径の配管破断に相当する量以下の場合は制御棒駆動水ポンプで補給 できる設計とする。
制御棒駆動系は，発電用原子炉の緊急停止時に制御棒の挿入時間が，発電用原子炉の燃料及び原子炉冷却材圧力バウンダリの損傷を防ぐた めに適切な値となるような速度で炉心内に挿入できること，並びに通常運転時において制御棒の異常な引き抜きが発生した場合においても，燃料要素の許容損傷限界を超える駆動速度で引き抜きできない設計とす る。

なお，設置（変更）許可を受けた仕様並びに運転時の異常な過渡変化及び設計基準事故の評価で設定した制御棒の挿入時間，並びに設置（変更）許可を受けた「原子炉起動時における制御棒の異常な引き抜き」及 び「出力運転中の制御棒の異常な引き抜き」の評価の条件を満足する設計とする。
制御棒は，原子炉モードスイッチ「停止」位置にある場合，原子炉モ ードスイッチ「燃料取替」位置にある場合で，燃料交換機が原子炉上部 にあり，荷重状態のとき，原子炉モードスイッチ「燃料取替」位置にあ

変更前
る場合で，引き抜かれている制御棒本数が 1 本のとき，原子炉モードス
イッチ「燃料取替」位置にある場合で，スクラム排出容器水位高による
スクラム信号がバイパスされているとき，スクラム排出容器水位高によ
る制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置
にある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び
中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」
位置にある場合で，出力領域モニタの指示低又は動作不能のとき，出力
領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻
止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあ
るときは，引き抜きを阻止できる設計とする。 制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピ
トン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒
駆動水ポンプによる水圧が喪失した場合においても，ラッチ機構により
制御棒を現状位置に保持し，発電用原子炉の反応度を増加させる方向に
作動させない設計とする。
また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れ
ない構造とする。
棒駆動系にあつては，制御棒の挿入その

1．3 原子炉再循環流量制御系
再循環流量は，静止型原子炉再循環ポンプ電源装置により電源周波数 を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる

変更後

る場合で，引き抜かれている制御棒本数が 1 本のとき，原子炉モードス イッチ「燃料取替」位置にある場合で，スクラム排出容器水位高による スクラム信号がバイパスされているとき，スクラム排出容器水位高によ る制御棒引抜阻止信号のあるとき，原子炉モードスイッチ「起動」位置 にある場合で，起動領域モニタの指示高，指示低若しくは動作不能及び中間領域において原子炉周期が短のとき，原子炉モードスイッチ「運転」位置にある場合で，出力領域モニタの指示低又は動作不能のとき，出力領域モニタの指示高のとき，制御棒価値ミニマイザによる制御棒引抜阻止信号のあるとき，制御棒引抜監視装置からの制御棒引抜阻止信号のあ るときは，引き抜きを阻止できる設計とする。
制御棒駆動機構は，各制御棒に独立して設けられたラッチ付き水圧ピ ストン・シリンダ方式のものであり，インデックスチューブと駆動ピス トン，コレット集合体等で構成され，制御棒の駆動動力源である制御棒駆動水ポンプによる水圧が喪失した場合においても，ラッチ機構により制御棒を現状位置に保持し，発電用原子炉の反応度を増加させる方向に作動させない設計とする。
また，制御棒駆動機構と制御棒とはカップリングを介して容易に外れ ない構造とする。

制御棒駆動系にあっては，制御棒の挿入その他の衝撃により制御棒，燃料体，その他の炉心を構成するものを損壊しない設計とする。

1．3 原子炉再循環流量制御系
再循環流量は，静止型原子炉再循環ポンプ電源装置により電源周波数 を変化させ，原子炉再循環ポンプ速度を調整することにより制御できる

変更前 \quad 変更後

1．5 原子炉圧力制御系
圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及びタ ービンバイパス弁の開度を自動制御する設計とする。

また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開 き，原子炬圧力の過度の上昇を防止する設計とする。

圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷の変動その他の発電用原子炉の運転に伴う原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。

1． 6 原子炉給水制御系
原子炉給水制御系は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整することなどにより原子炉給水流量 を自動的に制御できる設計とする。

2．計測装置等
2.1 計測装置

2．1．1 通常運転時，運転時の異常な過渡変化時における計測

計測制御系統施設は，炉心，原子炉冷却材圧力バウンダリ及び原

備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。

変更後

1．5 原子炉圧力制御系
圧力制御装置は，原子炉圧力を一定に保つように，蒸気加減弁及び夕 ービンバイパス弁の開度を自動制御する設計とする。

また，原子炉圧力が急上昇するような場合，タービンバイパス弁を開 き，原子炉圧力の過度の上昇を防止する設計とする。

圧力制御装置は主蒸気圧力とあらかじめ設定した圧力設定値とを比較し，圧力偏差信号を発信して，蒸気加減弁及びタービンバイパス弁の開度を制御することにより，負荷の変動その他の発電用原子炉の運転に伴う原子炉圧力容器内の圧力の変動を自動的に調整する設計とする。

1． 6 原子炉給水制御系
原子炉給水制御系は，原子炉水位を一定に保つようにするため，原子炉給水流量，主蒸気流量及び原子炉水位の信号を取り入れ，タービン駆動原子炉給水ポンプの速度を調整することなどにより原子炉給水流量 を自動的に制御できる設計とする。

2．計測装置等

2.1 計測装置

2．1．1 通常運転時，運転時の異常な過渡変化時及び重大事故等時におけ る計測

計測制御系統施設は，炉心，原子炉冷却材圧力バウンダリ及び原

変更前	変更後
子炉格納容器バウンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視で きる設計とする。 また，設計基準事故が発生した場合の状況把握及び対策を講じる ために必要なパラメータは，設計基準事故時に想定される環境下に おいて十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炬心の泠却に係るものについては，設計基準事故時においても 2 種類以上監視又は推定できる設計とする。 炉心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 炉周期は起動領域モニタの計測結果を用いて演算できる設計と する。	子炉格納容器バウンダリ並びにこれらに関する系統の健全性を確保するために監視することが必要なパラメータを，通常運転時及び運転時の異常な過渡変化時においても想定される範囲内で監視で きる設計とする。 また，設計基準事故が発生した場合の状況把握及び対策を講じる ために必要なパラメータは，設計基準事故時に想定される環境下に おいて十分な測定範囲及び期間にわたり監視できるとともに，発電用原子炉の停止及び炉心の泠却に係るものについては，設計基準事故時においても 2 種類以上監視又は推定できる設計とする。 炉心における中性子束密度を計測するため，原子炉内に設置した検出器で起動領域，出力領域の 2 つの領域に分けて中性子束を計測できる設計とする。 炉周期は起動領域モニタの計測結果を用いて演算できる設計と する。 重大事故等が発生し，計測機器（非常用のものを含む。）の故障 により，当該重大事故等に対処するために監視することが必要なパ ラメータを計測することが困難となった場合において，当該パラメ ータを推定するために必要なパラメータを計測する設備を設置又 は保管する設計とする。 重大事故等が発生し，当該重大事故等に対処するために監視する ことが必要なパラメータとして，原子炉圧力容器内の温度，圧力及 び水位，原子炉圧力容器及び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炉建屋原子炉棟内の水素濃度，未臨界の維持又は監視，最終ヒートシンク

変更前

2.2 警報装置等

設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（中性子束，温度，圧力，流量，水位等のプロ セス変数が異常値になった場合，工学的安全施設が作動した場合等）に， これらを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。

発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 の開閉状態等を表示灯により監視できる設計とする。
2.3 計測結果の表示，記録及び保存

発電用原子炉の停止，炉心の泠却及び放射性物質の閉じ込めの機能の状況を監視するために必要なパラメータは，設計基準事故時においても確実に記録できる設計とする。

設計基準対象施設として，炉心における中性子束密度を計測するため の計測装置，原子炉冷却材の不純物の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測す る装置，原子炉圧力容器内の水位を計測するための原子炉水位（停止域，

変更後

電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。

2.2 警報装置等

設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（中性子束，温度，圧力，流量，水位等のプロ セス変数が異常値になった場合，工学的安全施設が作動した場合等）に， これらを確実に検出して自動的に警報（原子炉水位低又は高，原子炉圧力高，中性子束高等）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。
発電用原子炉並びに原子炉冷却系統に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 の開閉状態等を表示灯により監視できる設計とする。

2． 3 計測結果の表示，記録及び保存

発電用原子炉の停止，炉心の泠却及び放射性物質の閉じ込めの機能の状況を監視するために必要なパラメータは，設計基準事故時においても確実に記録し，保存できる設計とする。

設計基準対象施設として，炉心における中性子束密度を計測するため の計測装置，原子炉冷却材の不純物の濃度を測定するための導電率を計測する装置，原子炉圧力容器の入口及び出口における温度及び流量を計測するための給水温度，主蒸気温度，給水流量及び主蒸気流量を計測す る装置，原子炉圧力容器内の水位を計測するための原子炉水位（停止域，

変更前	変更後
燃料域，広帯域及び狭帯域）を計測する装置並びに原子炉格納容器内の圧力，温度及び可燃性ガス濃度を計測するためのドライウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雰囲気水素濃度及び格納容器内雾囲気酸素濃度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。 制御棒の位置を計測する装置並びに原子炉圧力容器の入口及び出口 における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計 とする。また，記録はプロセス計算機から帳票として出力できる設計と する。 原子炉冷却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録する。	燃料域，広帯域及び狭帯域）を計測する装置並びに原子炉格納容器内の圧力，温度及び可燃性ガス濃度を計測するためのドライウェル圧力，圧力抑制室圧力，格納容器内温度，格納容器内雰囲気水素濃度及び格納容器内雰囲気酸素濃度を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及 び保存できる設計とする。 制御棒の位置を計測する装置並びに原子炉圧力容器の入口及び出口 における圧力を計測するための給水圧力及び主蒸気圧力を計測する装置を設け，これらの計測装置は計測結果を中央制御室に表示できる設計 とする。また，記録はプロセス計算機から帳票として出力し保存できる設計とする。 原子炉冷却材の不純物の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録し，及び保存する。 炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測す る装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするとともに，重大事故等 が発生し，当該重大事故等に対処するために監視することが必要な原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等のパラメータの計測が困難となった場合又は計測範囲を超えた場合に，代替パラメータにより推定ができる設計とする。 また，重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等））を明確にするとともに，パラメータの計測が困難となった場合又

変更前	変更後
	量に係るものについて，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備 1 個を含む 1 セット 26 個（予備 26 個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設 のうち「3．計測装置等」の設備と兼用）により計測できる設計とし， これらを保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行う際 の考え方として，同一パラメータにチャンネルが複数ある場合は，いず れか 1 つの適切なチャンネルを選定し計測又は監視するものとする。 同一の物理量について，複数のパラメータがある場合は，いずれか 1 つの適切なパラメータを選定し計測又は監視するものとする。
3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において， その異常な状態を検知し及び原子炉保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超えないようにでき るものとするとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的 に作動させる設計とする。 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数 の原子炉スクラム信号及びその他の安全保護装置起動信号を設け	3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉の運転に支障を生じる場合において， その異常な状態を検知し及び原子炬保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超えないようにでき るものとするとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的 に作動させる設計とする。 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数 の原子炉スクラム信号及びその他の安全保護装置起動信号を設け

変更前	変更後
る設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計とする。 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。 安全保護装置を構成するチャンネルは，それぞれ互いに分離し， それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況 が発生した場合においても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持す ることにより，発電用原子炉施設の安全上支障がない状態を維持で きる設計とする。 計測制御系統施設の一部を安全保護装置と共用する場合には，そ の安全機能を失わないよう，計測制御系統施設から機能的に分離し た設計とする。 また，運転条件に応じて作動設定値を変更できる設計とする。 非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動	る設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時の異常な過渡変化の評価の条件を満足する設計とする。 安全保護装置を構成する機械若しくは器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。 安全保護装置を構成するチャンネルは，それぞれ互いに分離し， それぞれのチャンネル間において安全保護機能を失わないよう物理的，電気的に分離し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況 が発生した場合においても，フェイル・セイフとすることで発電用原子炉施設をより安全な状態に移行するか，又は当該状態を維持す ることにより，発電用原子炉施設の安全上支障がない状態を維持で きる設計とする。 計測制御系統施設の一部を安全保護装置と共用する場合には，そ の安全機能を失わないよう，計測制御系統施設から機能的に分離し た設計とする。 また，運転条件に応じて作動設定値を変更できる設計とする。 非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，設計基準事故時において不要な作動

変更前	変更後
3.2 試験及び検査 原子炉保護系は，原子炉運転中でも一度に 1 つずつのチャンネルを各検出器でトリップさせることによって，スクラムパイロット弁までの あらゆる機能をチェックすることができる設計とする。 工学的安全施設作動回路は，原子炉運転中でもテスト信号によって各々のチャンネル（検出器を含む）の試験を行うことができる設計とす る。	設計とする。 3.6 試験及び検查 原子炉保護系は，原子炉運転中でも一度に 1 つずつのチャンネルを各検出器でトリップさせることによって，スクラムパイロット弁までの あらゆる機能をチェックすることができる設計とする。 工学的安全施設作動回路は，原子炉運転中でもテスト信号によって各々のチャンネル（検出器を含む）の試験を行うことができる設計とす る。
4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，夕 ービン建屋等の建屋内外各所の人に操作，作業，退避の指示等の連絡を行うことができる設備として，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。	4．通信連絡設備 4． 1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タ ービン建屋等の建屋内外各所の人に操作，作業，退避の指示，事故対策 のための集合等の連絡をブザー鳴動等により行うことができる設備及 び音声等により行うことができる設備として，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング）（警報装置を含む。）及び多様性を確保した通信連絡設備（発電所内）として，十分 な数量の送受話器（ページング）（警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及び衛星電話設備（携

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{I} \\ & \stackrel{1}{t} \\ & \stackrel{N}{\omega} \end{aligned}$		帯型）を設置又は保管する設計とする。 また，緊急時対策所へ事故状態等の把握に必要なデータを伝送できる設備として，安全パラメータ表示システム（SPDS）を設置する設計とす る。 警報装置，通信連絡設備（発電所内）及び安全パラメータ表示システ ム（SPDS）については，非常用所内電源又は無停電電源（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とす る。 重大事故等が発生した場合において，発電所内の通信連絡をする必要 のある場所と通信連絡を行らために必要な通信連絡設備（発電所内）及 び計測等を行った特に重要なパラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型），衛星電話設備（携帯型），無線連絡設備（固定型），無線連絡設備（携帯型）及び携行型通話装置を設置又は保管する設計と する。なお，可搬型については必要な数量に加え，故障を考慮した数量 の予備を保管する。 衛星電話設備（携帯型）は，緊急時対策所内に保管する設計とする。 無線連絡設備（携帯型）は，中央制御室及び緊急時対策所内に保管す る設計とする。 携行型通話装置は中央制御室内に保管する設計とする。 衛星電話設備（固定型）及び無線連絡設備（固定型）は，中央制御室及び緊急時対策所内に設置する設計とする。 緊急時対策所へ重大事故等に対処するために必要なデータを伝送す るための設備として，安全パラメータ表示システム（SPDS）のうちデー

変更前	変更後
4.2 設備の共用	充電式電池を用いるものについては，ほかの端末又は予備の充電式電池と交換することにより 7 日間以上継続して通話を可能とし，使用後 の充電式電池は，中央制御室又は緊急時対策所の電源から充電すること ができる設計とする。 緊急時対策所内に設置する衛星電話設備（固定型）及び統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX）は，非常用交流電源設備に加えて，全交流動力電源が霛失した場合においても，代替電源設備である常設代替交流電源設備又は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。 データ伝送設備は，非常用交流電源設備に加えて，全交流動力電源が喪失した場合においても，代替電源設備である常設代替交流電源設備又 は緊急時対策所用代替交流電源設備からの給電が可能な設計とする。 重大事故等が発生した場合に必要な通信連絡設備（発電所外）及びデ ータ伝送設備については，基準地震動 S s による地震力に対し，地震時及び地震後においても通信連絡に係る機能を保持するため，固縛又は固定による転倒防止措置等を実施するとともに，信号ケーブル及び電源ケ ーブルは，耐震性を有する電線管等に敷設する設計とする。 中央制御室内，中央制御室待避所内及び緊急時対策所内に設置する通信連絡設備のらち無線連絡設備，衛星電話設備，携行型通話装置，安全 パラメータ表示システム（SPDS），統合原子力防災ネットワークを用い た通信連絡設備及びデータ伝送設備は，二以上の発電用原子炉施設と共用しない設計とする。 4． 3 設備の共用

変更前	変更後
通信連絡設備のらち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイトバン力建屋及び予備変圧器配電盤室）（第 1 号機設備，第 1,2 ， 3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計と する。	通信連絡設備のうち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイトバンカ建屋及び予備変圧器配電盤室）（第 1 号機設備，第 1 ，2， 3 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計と する。
5．制御用空気設備 5． 1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備と して，計装用圧縮空気系を設ける設計とする。 計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計と する。 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給でき る設計とする。	5．制御用空気設備 5． 1 計装用圧縮空気系 発電用原子炉の運転に必要な圧縮空気を供給する制御用空気設備と して，計装用圧縮空気系を設ける設計とする。 計装用圧縮空気系は，計装用圧縮空気系空気圧縮機，計装用圧縮空気系空気貯槽，除湿装置等で構成し，空気作動の弁，流量制御器等に圧縮空気を供給する設計とする。 計装用圧縮空気系空気圧縮機が故障した場合でも，所内用圧縮空気系空気圧縮機によって，計装用圧縮空気系に圧縮空気を供給できる設計と する。 所内用圧縮空気系は，所内用圧縮空気系空気圧縮機，所内用圧縮空気系空気貯槽等で構成し，空気貯槽を経て各負荷先へ圧縮空気を供給でき る設計とする。 5．2 高圧窒素ガス供給系 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合においても炉

変更前	変更後
	がし安全弁の機能回復のための重大事故等対処設備として，代替高圧窒素ガス供給系は，主蒸気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキュムレータ及び主蒸気逃がし安全弁自動減圧機能用アキュムレータの充填圧力が喪失した場合において，主蒸気逃がし安全弁のアクチュエータに高圧窒素ガスボンべにより直接窒素を供給 することで，主蒸気逃がし安全弁（4個）を一定期間にわたり連続して開状態を保持できる設計とする。 高圧窒素ガスボンべの圧力が低下した場合は，現場で高圧窒素ガスボ ンべの取替えが可能な設計とする。 代替高圧窒素ガス供給系の流路として，設計基準事故対処設備である主蒸気逃がし安全弁を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。
6．主要対象設備 計測制御系統施設の対象となる主要な設備について，「表1計測制御系統施設の主要設備リスト」に示す。	6．主要対象設備 計測制御系統施設の対象となる主要な設備について，「表1計測制御系統施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については「表2 計測制御系統施設の兼用設備リスト」に示す。

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（ $1 / 16$ ）

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（2／16）

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（3／16）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { men } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絗 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設 ${ }^{(* 1)}$		重大事故等対処設備 ${ }^{(* 1)}$		名称	設計基準対象施設（：1）		重大事故等対処設備 ${ }^{(* 1)}$		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 駆 } \\ & \text { 動 } \\ & \text { 䅼 } \end{aligned}$		$\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 馱 } \\ & \text { 動 } \\ & \text { 水 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	主配管		制御棒駆動水圧系アキュムレータ出口配管合流点～C12－D001－126	S	クラス 2	－		変更なし			常設耐震／防止	SA クラス 2
					制御棒駆動水圧系窒素容器～制御棒駆動水圧系アキュムレータ	S	クラス 2		－	変更なし			常設耐震／防止	SAクラス 2	
					制御棒駆動水圧系アキュムレータ～制御棒駆動水圧系アキュムレータ出口配管合流点	S	クラス2		－	変更なし			常設耐震／防止	SA クラス 2	
					C12－D001－126～水圧制御ユニット（挿入配管）	S	クラス 2		－	変更なし			常設耐震／防止	SA クラス 2	
					水圧制御コニット（引抜配管）～C12－D001－ 127	S	クラス 3		－	変更なし			常設耐震／防止	SA クラス 2	
ω					C12－D001－127～マニホールド ${ }^{(* 6)}$	B－1	クラス 3		－	変更なし			－		
					C12－D001－127～水圧制御ユニット（スクラ ム排出ヘッダー入口）	B－1	クラス 3		－	変更なし			－		
					水圧制御コニット（挿入配管）～原子炉格納容器配管貫通部（X－20）	S	クラス2		－	変更なし			常設耐震／防止	SAクラス 2	
					－					原子炬格納容器配管貫通部（X－20）		－	常設耐震／防止	SAクラス 2	
					原子炉格納容器配管貫通部（X－20）～制御棒駆動機構ハウジング	S	クラス 2		－	変更なし			常設耐震／防止	SAクラス 2	
					制御棒駆動機構ハウジング～原子炉格納容器配管貫通部（X－21）	S	クラス 3		－	変更なし			常設耐震／防止	SA クラス 2	
					－					原子炉格納容器配管貫通部（X－21）		－	常設耐震／防止	SA クラス 2	
					原子炉格納容器配管貫通部（X－21）～水圧制御コニット（引拔配管）	S	クラス 2		－	変更なし			常設耐震／防止	SA クラス 2	
					水圧制御ユニット（スクラム排出ヘッダー入口）～スクラム排出容器	B－1	クラス 3		－	変更なし			－		

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（4／16）

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（5／16）

$\begin{aligned} & \text { 䉍 } \\ & \text { 分 } \end{aligned}$	覾 箖	機器区分	変更前					変更後				
			名称	設計基淮対象施設 ${ }^{(* 1)}$		重大事故等対処設価 ${ }^{(*+1)}$		名称	設計基淮対象施設（ ：1）		重大事故等対処設備（＊1）	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
詁 測 䈠		原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含む。）を計測する装置	原子炉隔崔时冷却系ポンプ出口圧力	s	－		－	変更なし			常設／防止 （DB 拡張）	－
			高圧炉心スプレイ系ポンプ出口圧力	s	－		－	変更なし			常設／防止 （DB 拡張）	－
			残留熱除去系ポンプ出口圧力	c	－		－	変更なし			常設／防止 （DB 挔張）	－
			低圧炉心スプレイ系ポンプ出口圧力	c	－		－	変更なし			常設／防止 （DB 拡張）	－
			－					復水移送ポンプ出口圧力		－	常設耐震／防止常設／緩和	－
			残留熱除去系熱交換器入口温度	c	－		－	変更なし			常設／緩和常設／防止 （DB 拡張）	－
			残留熱除去系熱交換器出口温度	c	－		－	変更なし			常設耐震／防止	－
			原子炉冾却森浄化系入口流量	s	－		－	変更なし			－	
			－					高圧代替注水系ポンプ出口流量		－	常設耐震／防止常設／緩和	－
			－					残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）			常設耐震／防止常設／緩和	－
			－					残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）		－	常設耐震／防止常設／緩和	－
			－					直流䮏動低圧注水系ポンプ出口流量		－	常設耐震／防止	－
			－					代替循㷻洽却ポンプ出口流量		－	常設／緩和	－
			原子炉隔崔时冾却系ポンプ出口流量	S	－		－	変更なし			常設／防止 （DB 拡張）	－

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（6／16）

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（7／16）

表1計測制御系統施設の主要設備リスト（8／16）

	覾森称	機器区分	変更前					変更後				
			名称	設計基淮対象施設（＊1）		重大事故等対処設谖 ${ }^{(* 1)}$		名称	設計基準対象施設（ 1 ）		重大事故等対処設備 ${ }^{(*+1)}$	
				$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
			原子炉圧力高		－		－	変更なし				
			原子炉水位低（レベル 3）		－		－	変更なし				
			ドライウェル圧力高		－		－	変更なし				
			中性子束高 ${ }^{(*)}$		－		－	変更なし				
			原子炬周期（ペリオド）短（＊＊）		－		－	変更なし				
			スクラム排出容器水位高 ${ }^{(* *)}$		－		－	変更なし				
			核計測装置動作不能（＊）		－		－	変更なし				
			主蒸気管放射能高		－		－	変更なし				
			主蒸気隔能倠閉 ${ }^{(* *)}$		－		－	変更なし				
			主蒸気止め弁閉（＊＊）		－		－	変更なし				
			蒸気加堿弁急速閉（＊）		－		－	変更なし				
			原子炬モードスイッチ「停止」		－		－	変更なし				
			手動		－		－	変更なし				
			地震加速度大		－		－	変更なし				

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト $(9 / 16)$

$\begin{aligned} & \stackrel{\rightharpoonup}{t} \\ & \stackrel{1}{t} \\ & \text { 啨 } \end{aligned}$	$\begin{aligned} & \text { 悉 } \\ & \text { 格 } \\ & \text { a } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基漼対象施設（＊）		重大事故等対処設谖 ${ }^{(* 1)}$		名称	設計基淮対象施設（ 1 ）		重大事故等対処設備 ${ }^{(* 1)}$	
				$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 恶度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 器クラ } \end{aligned}$
	－		主蒸気阿離弁原子炉水位低（レベル 2）		－		－	変更なし				
			主蒸気谝離弁 主蒸気管圧力低		－		－	変更なし				
			主蒸気隔崔矣主蒸气管放射能高		－		－	変更なし				
			主蒸気隔㒀尣 主蒸気管トンネル温度高		－		－	変更なし				
			主蒸気晠離弁 主蒸気管流量大		－		－	変更なし				
					－		－	変更なし				
			その他の原子炬格納容器隔離弁（1）ドラ イウェル圧力高		－		－	変更なし				
			その他の原子炬格納容器隔離弁（1）原子炬水位低（レベル 3）		－		－	変更なし				
			その他の原子炉格納容器隔離弁（2）原子炉水位低（レベル 3）		－		－	変更なし				
			その他の原子炉格納容器隔離弁（3）原子炉水位低（レベル 2）		－		－	変更なし				
			非常用が不处理系 原子炬建屋原子炉梀放射能高		－		－	変更なし				
			非常用が处理系ドライウェル圧力高		－		－	変更なし				
			非常用が処理系 原子炬水位低（レベル 3）		－		－	変更なし				
			高圧炉心スプレイ系ドライウェル圧力高		－		－	変更なし				

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（10／16）

$\begin{array}{\|l\|l\|} \hline \text { 啋 } \\ \text { 供 } \\ \hline \text { 分 } \end{array}$	$\begin{aligned} & \begin{array}{l} \text { 爰 } \\ \text { 积 } \end{array} \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基漼対象施設 ${ }^{(* 1)}$		重大事故等対処設備 ${ }^{(*)}$		名称	設計基準対象施設（：1）		重大事故等対処設備 ${ }^{(* 1)}$	
					機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 喓度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分頑	重大事故等機器クラス
			高圧炬ふスプレイ系 原子炉水位低（レベ ル 2）		－		－	変更なし				
			低圧炬ふスプレイ系ドライウェル圧力高		－		－	変更なし				
			低圧炬ふスプレイ系 原子炉水位低（レベ ル 1）		－		－	変更なし				
			残留熱除去系 低圧注水系 ドライウェル圧力高		－		－	変更なし				
			残留熱除去系 低圧注水系 原子炉水位低 （レベル1）		－		－	変更なし				
			残留熱除去系 格納容器スプレイ泠却系手動				－	変更なし				
			自動減圧系原子炬水位低（レベル 1 ）とド ライウェル圧力高の同時信号				－	変更なし				
				－				ATWS 緩和設備（代替制御棒挿入機能）原子炉圧力高		－		
				－				ATWS 緩和設備（代替制御棒挿入機能）原子炬水位低（レベル 2）		－		
				－				ATWS 緩和設備（代替原子炉再循環ポンプト リップ機能）原子炉圧力高		－		
				－				ATWS 緩和設備（代替原子炉再循環ポンプト リップ機能）原子灲水位低（レベル 2）		－		
				－				ATWS 緩和設備（自動谐圧系作動阻止機能）原子炉水位低（レベル 2）と中性子束高の同時信号		－		

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（11／16）

$\begin{array}{\|l\|l\|} \hline \text { 箴 } \\ \text { 分 } \end{array}$	$\begin{aligned} & \text { 䋸 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前						変更後			
			名称	設計基準対象施設（＊1）		重大事故等対処設備（＊）		名称	設計基準対象施設（ ：1）		重大事故等対処設備（＊${ }^{(1)}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \hline \text { 袻震度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
	－	－		－				代替自動減圧回路（代替自動減圧機能）原子炉水位低（レベル 1）		－	－	
		容器	－					高圧窒素がスボンベ		－	可搬防止	SAクラス3
		安全弁	P54－F065A，B	s	－		－	変更なし			常設耐震／防止	－
		主配管	－					連結管～高圧窒素ガス供給系A系窒素供給配管合流点		－	常設耐震／防止	SAクラス2
			高圧窒素ガス供給系A系窒素供給配管合流点～P54－F068A	s	クラス3		－	変更なし			常設耐震／防止	SAクラス2
			P54－F068A～原子炉格納容器配管貫通部 $(\mathrm{X}-72 \mathrm{~A})$	s	クラス2		－	変更なし			常設的震／防止	SAクラス 2
			－					原子炬格納容器配管貫通部（X－72A）	－		常設耐震／防止	SAクラス 2
			原子炉格納容器配管貫通部 $(X-72 A) \sim P 54-$ F070A	s	クラス2		－	変更なし			常設耐震／防止	SAクラス 2
			P54－F070A \sim B21－F023H，J，L	S	クラス3		－	変更なし			常設耐震／防止	SAクラス2
			－					B21－F023H～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（H）出口配管合流点	－		常設耐震／防止	SAクラス 2

表1計測制御系統施設の主要設備リスト（12／16）

	$\begin{aligned} & \text { 称 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設（＊1）		重大事故等対処設備（＊＋）		名称	設計基準対象施設 ${ }^{\text {（ }}$（ 1）		重大事故等対処設備 ${ }^{(*+1)}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
		主配管	－					主蒸気逃がし安全弁自動減圧機能用アキ F001H		－	常設耐震／防止	SAクラス 2
			－					B21－F023J～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（J）出口配管合流点		－	常設耐震／防止	SAクラス 2
			－					主蒸気逃がし安全弁自動減圧機能用アキ ユムレータ（J）出口配管合流点～B21－ F001J		－	常設耐震／防止	SAクラス 2
			－					B21－F023L～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（L）出口配管合流点		－	常設耐震／防止	SAクラス 2
			－					主蒸気逃がし安全弁自動減圧機能用アキ ニムレータ（L）出口配管合流点～B21－ F001L		－	常設耐震／防止	SAクラス 2
			－					連結管～高圧窒素ガス供給系 B 系窒素供給配管合流点		－	常設耐震／防止	SAクラス 2
			高圧窒素ガス供給系 B 系窒素供給配管合流点～P54－F068B	S	クラス3		－	変更なし			常設耐震／防止	SAクラス 2
			P54－F068B～原子炉格納容器配管貫通部 （X－72B）	S	クラス 2		－	変更なし			常設耐震／防止	SAクラス 2
			－					原子炉格納容器配管貫通部（ X －72B）		－	常設耐震／防止	SAクラス 2
			原子炉格納容器配管貫通部 $(X-72 B) \sim$ P54－ FO70B	S	クラス 2		－	変更なし			常設耐震／防止	SAクラス 2
			P54－F070B \sim B21－F023A，C，E	S	クラス3		－	変更なし			常設耐震／防止	SAクラス 2
			－					B21－F023A～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（A）出口配管合流点		－	常設耐震／防止	SAクラス 2
			－					主蒸気逃がし安全弁自動減压機能用アキ ユムレータ（A）出口配管合流点～B21－ F001A		－	常設耐震／防止	SAクラス 2
			－					B21－F023C～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（C）出口配管合流点		－	常設耐震／防止	SAクラス 2

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（13／16）

表1計測制御系統施設の主要設備リスト（14／16）

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（ $15 / 16$ ）

$\begin{aligned} & \text { 笽 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基顀対象施設（＊1）		重大事故等対処設備 ${ }^{(*)}$		名称	設計基漼対象施設（：1）		重大事故等対処設備（＊${ }^{\text {（ }}$ ）	
				$\begin{aligned} & \text { 侕震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器クラス } \end{aligned}$
		主配管	－					恒設配管取合点接続管／恒設配管取合点 （B）～代替高圧窒素ガス供給系B系窒素供給配管分岐点		－	常設耐震／防止	SA クラス 2
			－					原子炬格納容器配管貫通部（X－91）～代替高圧窒素ガス供給系B系窒素供給配管分岐点		－	常設需／震／防止	SA クラス 2
			－					原子炉格納容器配管貫通部（ X －91）		－	常設耐震／防止	SAクラス 2
			－					B21－F001E，J～原子炉格納容器配管貫通部 $(\mathrm{X}-91)$		－	常設耐震／防止	SAクラス 2
			－					連結管		－	可搬防止	SA クラス 3
			－					連結管～フレキシブルホース／恒設配管取合点		－	可搬／防止	SA クラス 3
			－					代替高圧窒素かス供給用フレキシブルホ一ス（ $\phi 32.9,6 \mathrm{~m}, 8 \mathrm{~m}$ ）		－	可搬防止	SAクラス 3
			－					恒設配管取合点接続管		－	可搬防止	SAクラス 3

O 2 （6）II R 2

表1計測制御系統施設の主要設備リスト（16／16）

注記 $* 3: ~$ 設計基漼対象施設及び重大事故等対処設備（常設耐震重要重大事故防止設備及び常設重大事故緩和設備）としての機能を有する。
注記 $* 4$ ：フランジがクラス 1 ，インジケータチューブがクラス 3
注記 $* 5: 「 J$ S ME S N C 1 － $2005 / 2007$ 発電用原子力設備規格 設計•建設規格」における「クラス 3 弁」である。
注記 $* 6$ ：本設備は記載の適正化のみ行うものであり，手続き対象外である
注記 $*$ ：設計基準対象設及び重大事故対処設備としての機能を有する。

表2計測制御系統施設の兼用設備リスト（ $1 / 2$ ）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 䖻 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
					名称	設計基準対象施設 ${ }^{\text {（＊1）}}$		重大事故等対処設備 ${ }^{(* 1)}$		名称	設計基準対象施設 ${ }^{(* 1)}$		重大事故等対処設備 ${ }^{(* 1)}$	
						$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		$\begin{aligned} & \text { ほ } \\ & \text { 舀 } \\ & \text { 酸 } \\ & \text { 濉 } \\ & \text { 䒚 } \end{aligned}$	－	原子炉本体炬心支持構造物	－					炉心シュラウド			常設耐震／防止常設／緩和	－
					－					シュラウドサポート			常設耐震／防止常設／緩和	－
					－					彷心シュラウド支持ロッド			常設耐震／防止常設／緩和	－
					－					上部格子板			常設耐震／防止常設／緩和	－
					－					炬心支持板			常設耐震／防止常設／緩和	－
					－					中央燃料支持金具			常設耐震／防止常設／緩和	－
$\begin{aligned} & \stackrel{1}{0} \\ & 1 \\ & \stackrel{1}{2} \end{aligned}$					－					周辺燃料支持金具			常設耐震／防止常設／緩和	－
					－					制御棒案内管			常設耐震／防止常設／緩和	－
				原子炉本体原子炉圧力容器	－					原子炬圧力容器			常設耐震／防止常設／緩和	SA クラス 2
				原子炉本体 原子炉圧力容器付属構造物	－					差圧検出・ほうら酸水注入系配管（ティーよりN11 ノズルま での外管）			常設耐震／防止常設／緩和	SA クラス 2
				原子炉本体 原子炉圧力容器内部構造物	－					差圧検出・ほう酸水注入系配管（原子炬圧力容器内部）			常設耐震／防止常設／緩和	－

表2計測制御系統施設の兼用設備リスト（2／2）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 艈 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設 ${ }^{\text {（＊1）}}$		重大事故等対処設備 ${ }^{(* 1)}$		名称	設計基準対象施設＊${ }^{\text {（ }}$ ）		重大事故等対処設備 ${ }^{(* 1)}$	
						機器クラス	設備分類	重大事故等機器クラス			機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 製 } \\ & \text { 卸 } \\ & \text { 空 } \\ & \text { 㷶 } \\ & \text { 供 } \end{aligned}$			原子炉冷却系統施設原子炉冷却材の循環設備	－					主蒸気逃がし安全弁自動減圧機能用アキュムレータ		－	常設耐震／防止	SA クラス 2
				－					B21－F001A，C，E，H，J，L		－	常設耐震／防止	－
		－	原子炉冷却系統施設原子炉冷却材の循環設備	－					B21－F001A，E，J，L	－		常設耐震／防止	－

[^11]（2）適用基準及び適用規格

変更前					
第1章 共通項目					
計測制御系統施設に適用する共通項目の基準及び規格については，以下の					
基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の					
「（2）適用基淮及び啇用規格 第1章 共通項目」に示す。					

第1章 共通項目

計測制御系統施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の
「（2）適用基準及び適用規格 第1章 共通項目」に示す。

第2章 個別項目
計測制御系統施設に適用する個別項目の基準及び規格は以下のとおり。

- 高圧ガス保安法（昭和 26 年 6 月 7 日法律第204号）
- 不正アクセス行為の禁止等に関する法律（平成11年8月13日法律第128号）
－発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号）
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号）
－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和56年7月23日原子力安全委員会決定）
－原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 $21 \cdot 07 \cdot 27$ 原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定）
－安全保護系へのディジタル計算機の適用に関する規程（J E A C 4 6 2 0 －2008）

変更前	変更後
	－ディジタル安全保護系の検証及び妥当性確認に関する指針（J E A G 46 0 9－2008） －日本建築学会 1979 年 鉄筋コンクリート構造計算規準•同解説

4． 11 計測制御系統施設（発電用原子炉の運転を管理するための制御装置を除く。）に係る工事の方法

変更前	変更後
計測制御系統施設（発電用原子炉の運転を管理するための制御装置を除く。）に係	
る工事の方法は，「原子炉本体」における「1．9 原子炉本体に係る工事の方法」（「1．3	
燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2	
燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

4． 12 発電用原子炉の運転を管理するための制御装置
4．12．1 制御方式

変更前＊		変更後	
制 御 方 式	中央制御方式による自動及び手動制御	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \\ & \text { 方 } \\ & \text { 式 } \end{aligned}$	変更なし

注記＊：記載の適正化を行う。既工事計画書には，附帯設備のうち発電所の運転を管理するための制御装置に記載。

変更前＊		変更後	
	（1）中央制御室機能 中央制御室は以下の機能を有する。 中央制御室は耐震性を有する制御建屋内に設置し，基準地震動に よる地震力に対して機能を喪失しない設計とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するため の設備を操作できる設計とする。 発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポ ンプの起動•停止状態，発電用原子炉及び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動により行うこ とができる設計とする。 a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラントプロセ ス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるととも に，全てのプラント運転状態において，運転員に過度な負担とな	中 央 制 御 室 機 能	（1）中央制御室機能 中央制御室は以下の機能を有する。 中央制御室は耐震性を有する制御建屋内に設置し，基準地震動S s による地震力に対して機能を喪失しない設計とするとともに，発電用原子炉の反応度制御系統及び原子炉停止系統に係る設備，非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保する ための設備を操作できる設計とする。 発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポ ンプの起動•停止状態，発電用原子炉及び原子炉冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保するために必要な操作を手動により行うこ とができる設計とする。 a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラントプロセ ス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するために必要なパラメータ（炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるととも に，全てのプラント運転状態において，運転員に過度な負担とな

	変更前＊		変更後
中 央 制 御 室 機 能	らないよう，中央制御室制御盤において監視，操作する対象を定 め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応 に必要な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御される機器に ついては，バイパス状態，使用不能状態について表示すること等 により運転員が的確に認知できる設計とする。 また，運転員の監視及び操作を支援するための装置及びプラン ト状態の把握を支援する装置として CRT 等を有する設計とする。 非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。 緊急時対策所との連絡及び連携の機能に係る情報伝達の不備 や誤判断が生じないよう，緊急時対策に必要な情報について運転員を介さずとも確認できる設計とする。 設計基準対象施設は，プラントの安全上重要な機能に支障をき たすおそれがある機器•弁等に対して，色分けや銘板取り付け等 の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法によ り発電用原子炉施設の状態が正確，かつ迅速に把握できる設計と するとともに施錠管理を行い，運転員の誤操作を防止する設計と する。	中 央 制 御 室 機 能	らないよう，中央制御室制御盤において監視，操作する対象を定 め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応 に必要な操作器，指示計，記録計及び警報装置（核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御される機器に ついては，バイパス状態，使用不能状態について表示すること等 により運転員が的確に認知できる設計とする。 また，運転員の監視及び操作を支援するための装置及びプラン ト状態の把握を支援する装置として CRT 等を有する設計とする。 非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を運転中に試験する場合に使用する電動弁用電動機の熱的過負荷保護装置は，使用状態を運転員が的確に識別できるよう表示装置を設ける設計とする。 緊急時対策所との連絡及び連携の機能に係る情報伝達の不備 や誤判断が生じないよう，緊急時対策に必要な情報について運転員を介さずとも確認できる設計とする。 設計基準対象施設は，プラントの安全上重要な機能に支障をき たすおそれがある機器•弁等に対して，色分けや銘板取り付け等 の識別管理や人間工学的な操作性も考慮した監視操作エリア・設備の配置，中央監視操作の盤面配置，理解しやすい表示方法によ り発電用原子炉施設の状態が正確，かつ迅速に把握できる設計と するとともに施錠管理を行い，運転員の誤操作を防止する設計と する。

変更前＊		変更後	
中 央 制 御 室 機 能	また，保守点検において誤りが生じにくいよう留意した設計と する。 中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約 し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができる設計とす る。 中央制御室主制御盤に手摺を設置することにより，地震発生時 における運転員の安全確保及び制御盤上の操作器具への誤接触 を防止できる設計とする。 運転員が運転時の異常な過渡変化及び設計基準事故に対応す るための設備を中央制御室において容易に操作することができ る設計とするとともに，現場操作についても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定 し，適切な対応を行らことにより容易に操作することができる設計とする。	中 央 制 御 室 機 能	また，保守点検において誤りが生じにくいよう留意した設計と する。 中央制御室の制御盤は，盤面器具（指示計，記録計，操作器具，表示装置，警報表示）を系統毎にグループ化して主制御盤に集約 し，操作器具の統一化（色，形状，大きさ等の視覚的要素での識別），操作器具の操作方法に統一性を持たせること等により，通常運転，運転時の異常な過渡変化及び設計基準事故時において運転員の誤操作を防止するとともに，容易に操作ができる設計とす る。 中央制御室主制御盤に手摺を設置することにより，地震発生時 における運転員の安全確保及び制御盤上の操作器具への誤接触 を防止できる設計とする。 当該操作が必要となる理由となった事象が有意な可能性をも って同時にもたらされる環境条件及び発電用原子炉施設で有意 な可能性をもって同時にもたらされる環境条件（地震，内部火災，内部溢水，外部電源喪失並びに燃焼ガス，ばい煙，有毒ガス，降下火砕物及び凍結による操作雰囲気の悪化）を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するため の設備を中央制御室において操作に必要な照明の確保等により容易に操作することができる設計とするとともに，現場操作につ いても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定し，適切な対応を行うことにより容易 に操作することができる設計とする。

変更前＊			変更後
	炉施設の安全性を確保するための措置をとるための機能を有す るとともに連絡する通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計とする。	中 央 制 御 室 機 能	の他の発電用原子炬施設の安全性を確保するための措置をとる ための機能を有するとともに連絡する通路及び出入りするため の区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計とする。 重大事故等が発生し，中央制御室の外側が放射性物質により汚染したような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による污染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行うための区画を設ける設計とする。 炉心の著しい損傷が発生した場合においても，可搬型照明 （SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい， 2 次しやへい壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）により，中央制御室内にとどまり必要な操作ができる設計とする。 炉心の著しい損傷が発生した場合において，原子炉格納施設の非常用ガス処理系及び原子炉建屋ブローアウトパネル閉止装置 により，運転員の被ばくを低減できる設計とする。 中央制御室送風機，中央制御室排風機及び中央制御室再循環送風機は，非常用交流電源設備に加えて，常設代替交流電源設備か らの給電が可能な設計とする。

		変更後	
中 央 制 御 室 機 能		中 央 制 御 室 機 能	非常用ガス処理系は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。 可搬型照明（SA）及び原子炉建屋ブローアウトパネル閉止装置 は，全交流動力電源霛失時においても常設代替交流電源設備から の給電が可能な設計とする。 炉心の著しい損傷後の原子炉格納容器フィルタベント系を作動させる場合に放出される放射性雲通過時に，運転員の被ばくを低減するため，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設け る。中央制御室待避所は，中央制御室待避所加圧設備（空気ボン べ）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐことができる設計とする。 差圧計（中央制御室待避所用）により，中央制御室待避所と中央制御室との間が正圧化に必要な差圧が確保できていることを把握できる設計とする。 灯心の著しい損傷が発生した場合に，非常用ガス処理系は，非常用ガス処理系排風機により原子炉建屋原子炉棟内を負圧に維持するとともに，原子炉格納容器から原子炉建屋原子炉棟内に漏 えいした放射性物質を含む気体を排気筒から排気し，原子炉格納容器から漏えいした空気中の放射性物質の濃度を低減させるこ とで，中央制御室にとどまる運転員を過度の被ばくから防護する設計とする。 炉心の著しい損傷が発生し，非常用ガス処理系を起動する際 に，原子炉建屋ブローアウトパネルを閉止する必要がある場合に

注記 $*: ~$ 既工事計画書に記載がないため記載の適正化を行う。

変更前＊		変更後	
	（2）中央制御室外原子炉停止機能 中央制御室外原子炉停止機能は以下の機能を有する。 火災その他の異常な状態により中央制御室が使用できない場合 において，中央制御室以外の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメータを想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する中央制御室外原子炉停止装置を設ける設計とする。	中 央 制 御 室 外 原 子 炉 停 止 機 能	変更なし

注記＊：既工事計画書に記載がないため記載の適正化を行う。

4．12．4 発電用原子炉の運転を管理するための制御装置に係る工事の方法

| 変更前 | 変更後 |
| :--- | :--- | :--- |
| 発電用原子炉の運転を管理するための制御装置に係る工事の方法は，「原子炉本 | |
| 体」における「1．9 原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順 | |
| と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る | |
| 工事上の留意事項」を除く。）に従う。 | |

5．放射性廃棄物の廃棄施設
5.2 気体，液体又は固体廃棄物処理設備
5.2 .1 気体廃棄物処理系
5.2 .1
（10）
気体廃棄
主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最 高 使 用 } \\ \text { 温 } \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 気 } \\ & \text { 体 } \\ & \text { 発 } \\ & \text { 薚 } \\ & \text { 処 } \\ & \text { 理 } \\ & \text { 系 } \end{aligned}$	N21－F155A，B及びN21－F156 排ガス予熱器	2． $45^{* 4}$	205	216.3	（10．3）	STPT42	$\begin{aligned} & \text { 気 } \\ & \text { 体 } \\ & \text { 発 } \\ & \text { 菓 } \\ & \text { 処 } \\ & \text { 理 } \\ & \text { 系 } \end{aligned}$	変更なし						
				267.4	（12．7）	STPT42								
	排ガス予熱器排ガス再結合器	2． $45^{* 4}$	450	267.4	（9．3）	SUS316LTP		変更なし						
	排ガス再結合器排ガス復水器	2． $45^{* 4}$	450	318.5	（10．3）	SUS316LTP		変更なし						
	排ガス復水器排ガス予冷器	2． $45^{* 4}$	66	89.1	（7．6）	STPT42		変更なし						
		$0.11^{* 4}$	66	89.1	（7．6）	STPT42								
				60.5	（5．5）	STPT42								
	$\begin{aligned} & \text { 排ガス予冷器 } \\ & \text { 排ガス乾燥器 } \end{aligned}$	$0.11^{* 4}$	66	60.5	（5．5）	STPT42		変更なし						
				89.1	（7．6）	STPT42								
			100	89.1	（5．5）	SUS304TP								
		0．11＊4	100	89.1	（5．5）	SUS304TP		変更なし						
			66	89.1	（5．5）	SUS304TP								
	前置フィルタ 活性炭式希ガスホールドアッ プ塔	0．11＊4	66	89.1	（7．6）	STPT42		変更なし						
	活性炭式希ガスホールドアッ プ塔連絡管	$0.11 * 4$	66	89.1	（7．6）	STPT42		変更なし						
	活性炭式希ガスホールドアッ プ塔 排ガス粒子フィルタ	0．11＊4	66	89.1	（7．6）	STPT42		変更なし						
	排ガス粒子フィルタ 排ガス真空ポンプ	0．11＊4	66	89.1	（7．6）	STPT42		変更なし						
				60.5	（5．5）	STPT42								
				34.0	（6．4）	STPT42								
				114.3	（8．6）	STPT42								
				76.3	（5．2）	SUS304TP								

注記 $* 1$ ：外径は公称値を示す。
$* 2: ~(~) ~ 内 は, ~$
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「復水器空気抽出系から排ガス予熱器まで」と記載。
＊4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「排ガス粒子フィルタから排ガス真空ポンプまで（排ガス粒子フィルタ出口配管）」と記載。
＊6：記載の適正化を行う。既工事計画書には「排ガス循環水タンクから排気筒まで（排ガス循環水タンク出口配管）」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年1月24日付け2資宁第10151号にて認可された工事計画の添付書類「IV－3－1－2－10 管の強度計算書」による。
＊8：記載の適正化を行う。既工事計画書には「排ガス循環水タンク出口配管から排ガス粒子フィルタ出口配管まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「タービングランド蒸気系から排ガス循環水タンク出口配管まで」と記載。
（16）排気筒

注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（耐圧強化ベント系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系）と兼用。
＊2：公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「口径」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「地表高さ」と記載。

5．2．2 液体廃棄物処理系

5．2．2．1 放射性ドレン移送系
（9）主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「80」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器内」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「80」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F103」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「65」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器内」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F104」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「65」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
（10）主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(M P a)}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\text { 外 }_{\text {径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\circ} \text { 魰) } \end{array} \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	原子炉建屋原子炉棟床ドレン サンプポンプ 床ドレン・化学廃液収集タン ク入口収集管（床ドレン用）	0．98＊4	66	60.5 76.3	（3．9） （5．2）	SUS304TP SUS304TP	$\begin{aligned} & \text { 放 } \\ & \text { 射 } \\ & \text { 性 } \\ & \text { L } \\ & \text { 移 } \\ & \text { 送 } \\ & \hline \text { 系 } \end{aligned}$	変更なし						
$\begin{aligned} & \text { 放 } \\ & \text { 射 } \\ & \text { 性 } \end{aligned}$	原子炉建屋廃枀物処理区域高電導度ドレンサンプポンプ 床ドレン・化学廃液収集タン ク入口収集管（化学廃液用）	0． $98^{* 4}$	66	$\begin{gathered} 60.5 \\ \hline 76.3 \end{gathered}$	（3．9） （5．2）	SUS316LTP SUS316LTP				変更なし				
$\begin{aligned} & \text { レ } \\ & \text { 采 } \\ & \text { 送 } \\ & \text { 系 } \end{aligned}$	$\begin{aligned} & \text { タービン建屋高電導度ドレン } \\ & \text { サンプポンプ } \\ & \text { ~ } \\ & \text { 床ドレン・化学廢液収集タン } \\ & \text { ク入口収集管(化学廃液用) } \\ & \hline \end{aligned}$	0． $98 * 4$	66	60.5 76.3	（3．9） （5．2）	SUS316LTP SUS316LTP				変更なし				
	$\begin{array}{\|l\|} \hline \text { タービン建屋床ドレンサンプ } \\ \text { ポンプ } \\ \text { ~ } \\ \text { 床ドレン・化学廃液収集タン } \\ \text { ク入口収集管(床ドレン用) } \\ \hline \end{array}$	0． $98^{* 4}$	66	60.5 76.3	（3．9） （5．2）	SUS304TP SUS304TP				変更なし				

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「ドライウェル機器ドレンサンプポンプから廃液収集槽入口収集管まで（ドライウェル機器ドレンサンプポンプ出ロ配管）」と記載。
＊ 4 ：S I 単位に換算したものである
＊5：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊6：記載の適正化を行う。既工事計画書には「ドライウェル床ドレンサンプポンプからドライウェル機器ドレンサンプポンプ出口配管まで」と記載。

5．2．2．2 機器ドレン系
（10）主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\text {(}{ }^{\text {C })} \text {) }} \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \text { (} \left.{ }^{\circ} \mathrm{C}\right) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { K } \\ & \text { 緐 } \end{aligned}$	廃液サンプルポンプP13-F035	$0.98 * 3$	66	76.3	（5．2）	SUS304TP	機器トL系	変更なし						
				114.3	（6．0）	SUS304TP								
				89.1	（5．5）	SUS304TP								
	廃液ろ過器K21-F103	1． $94^{* 3}$	66	76.3	（5．2）	SUS304TP		変更なし						
		$0.98 * 3$	66	76.3	（5．2）	SUS304TP								
	廃液脱塩器 床ドレン・化学廃液脱塩器出口配管合流点	1． $94^{* 3}$	66	60.5	（3．9）	SUS304TP		変更なし						
		$0.98 * 3$	66	60.5	（3．9）	SUS304TP								

注記 $* 1$ ：外径は公称値を示す。
$* 2:(\quad)$ 内は公称値を示す。
$* 3: ~ S ~ I ~$ 単位に換算したものである
＊4 ：記載の適正化を行う。既工事計画書には「STPT38」と記載
＊5：記載の適正化を行ら。既工事計画書には「廃液サンプルポンプから補給水系まで」と記載。
＊6：記載の適正化を行ら。既工事計画書には「廃液ろ過器から廃スラッジ系まで」と記載。
＊7：記載の適正化を行う。既工事計画書には「廃液脱塩器から床ドレン・化学廃液系まで」と記載。

```
5.2.2.3 床ドレン•化学廃液系
```

（10）主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(1 \mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\operatorname{lil}_{\text {外 }}^{\text {径*1 }}{ }_{(1 \mathrm{~mm})}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(1 \mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料
$\begin{aligned} & \text { 床 } \\ & \text { ド } \\ & \text { L } \\ & \text { シ } \\ & \text { 华 } \\ & \text { 学 } \\ & \text { 焲 } \\ & \text { 系 } \end{aligned}$	床ドレン・化学廃液調整夕ンク～床ドレン・化学廃液調整ポンプ	静水頭	66	48.6	（3．7）	SUS304TP	変更なし							
		1． $37^{* 3}$	66	48.6	（3．7）	SUS304TP								
				60.5	（3．9）	SUS304TP								
	床ドレン・化学廃液調整ポ ンプ 床ドレン・化学廃液脱塩器	1． $37^{* 3}$	66	34.0	（3．4）	SUS304TP		変更なし						
				48.6	（3．7）	SUS304TP								
	$\begin{aligned} & \text { 床ドレン・化学廃液脱塩器 } \\ & \sim \\ & \text { K21-F202 } \end{aligned}$	1． $37^{* 3}$	66	60.5	（3．9）	SUS304TP	$\begin{aligned} & \text { 床 } \\ & \text { ド } \\ & \text { V } \\ & \text { シ } \\ & \text { 华 } \\ & \text { 学 } \\ & \text { 䧲 } \\ & \text { 系 } \end{aligned}$	変更なし						
		$0.98 * 3$	66	60.5	（3．9）	SUS304TP								
	床ドレン・化学廃液脱塩器 床ドレン・化学廃液サンプ ルタンク	1． $37^{* 3}$	66	48.6	（3．7）	SUS304TP		変更なし						
	床ドレン・化学廃液サンプ	静水頭	66	114.3	（6．0）	SUS304TP		変更なし						
		0． $98^{* 3}$	66	114.3	（6．0）	SUS304TP								
	ポンプ			89.1	（5．5）	SUS304TP								
	床ドレン・化学廃液サンプル ポンプ 廃液サンプルポンプ出口配管合流点	0． $98{ }^{* 3}$	66	48.6	（3．7）	SUS304TP		変更なし						
				89.1	（5．5）	SUS304TP								
	床ドレン・化学廃液サンプル ポンプ出口配管分岐点 放水路配管合流点	0． $98{ }^{* 3}$	66	89.1	（5．5）	SUS304TP		変更なし						
				89.1	（5．5）	STPT370 ${ }^{* 11}$								

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{8}{|c|}{変 更 後} \\
\hline \& 名 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 }{ }_{(1 \mathrm{MPa})}^{\text {力 }} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 料 \& \& 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 } \begin{array}{c}
\text { 力 } \\
(\mathrm{MPa})
\end{array} \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\begin{array}{l}
\text { 最高使 用 } \\
\text { 温 } \\
\text { (} \left.{ }^{\circ} \mathrm{C}\right)
\end{array} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { 外 } \text { 径*1 }^{*} \\
(\mathrm{~mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 \& 料 \\
\hline \[
\begin{aligned}
\& \text { 床 } \\
\& \text { ド } \\
\& \text { L } \\
\& \text { シ } \\
\& \text { 华 } \\
\& \text { 学 } \\
\& \text { 準 }
\end{aligned}
\] \& \begin{tabular}{l}
第1号機ランドリドレン系放水路 \\
（第1，2号機共用）
\end{tabular} \& \(1.04^{* 3}\)
\(0.98 * 3\) \& 66
66 \& 89.1
89.1 \& （5．5）

（5．5） \& STPT370
${ }^{* 11}{ }^{* 11}$
STPT38
STPT370 \& \& \& \& 変更なし \& \& \& \&

\hline
\end{tabular}

＊2：（ ）内は公称値を示す。
＊ 3 ：S I 単位に換算したものである。
＊ 4 ：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液収集ポンプから床ドレン・化学廃液蒸発濃縮装置加熱器入口配管まで（床ドレン・化学廃液収集ポンプ出口配管）」と記載
＊5：既工事計画書に記載がないため，記載の適止化を行う。記載内容は，平成3年1月24日付け2資厅第10151号にて認可された工事計画の添付書類IV－3－1－3－15－1 管の基本板厚計算書」による。
＊6：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液蒸発濃縮装置循環ポンプから床ドレン・化学廃液蒸発濃縮装置加熱器まで（床ドレン・化学廃液蒸発濃縮装置加熱器入口配管）」と記載。
＊7：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液収集ポンプ出口配管から濃縮廃液系まで」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液脱塩器から廃スラッジ系まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液サンプルポンプから機器ドレン系まで（床ドレン・化学廃液サンプルポンプ出ロ配管）」と記載。
＊10：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液サンプルポンプ出口配管から放水路配管まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊12：本設備は記載の適正化を行らものであり，手続き対象外である

5．2．2．4 サプレッションプール水貯蔵系
（2）ポンプ

				変 更 前 サプレッションプール水移送ポンプ	変 更 後
名 称					撤 去
	種	類	－	うず巻形	
		\square	$\mathrm{m}^{3} / \mathrm{h} /$ 個	\square 以上＊2 $(60 * 3)$	
		\square	m	$\square 以 上 * 2(75 * 3)$	
	最	高使 用 圧 力	MPa	0． $98 * 2, * 5$	
	最	高使 用 温 度	${ }^{\circ} \mathrm{C}$	$66^{* 2}$	
		吸 込 内 径	mm	以上＊2 $(100 * 2, * 3)$	
		吐 出内 径	mm	以以上＊2 $(65 * 2, * 3)$	
		た て	mm	$600 * 2, * 3$	
	法	横	mm	\square 以上 ${ }^{2}$ 2 $(880 * 2, * 3)$	
		高 さ	mm	$825 * 2, * 3$	
	材 料	ケーシング	－	SC46	
	個	数	－	1	
原動機	種	類	－	誘導電動機	
	出	力	kW／個	37	
	個	数	－	1	

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：公称値を示す。
＊4 ：記載の適正化を行う。既工事計画書には「定格揚程」と記載。
＊5 ：S I 単位に換算したものである。

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水移送ポンプ（第1号機設備）
（4）容器（常設）

注記＊1 ：公称値を示す。
＊2 ：S I 単位に換算したものである。
＊3 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊5 ：既工事計画書に記載がないため，記載の適正化を行う。記載内容は，平成3年1月24日付 2 資庁第 10151 号にて認可された工事計画の添付書類「IV－3－1－3－7 サプレッショ ンプール水貯蔵タンクの強度計算書」による。
＊6 ：記載の適正化を行う。既工事計画書には「制御方法」と記載。

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水貯蔵タンク（第 1 号機設備）
（9）主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：公称値を示す。
＊ 7 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
（10）主配管

注記 $* 1$ ：外径は公称値を示す。
＊2：（記載の適正化を行ら诉工事計画書には「サプレッションチェンバからサプレッションプール水移送ポンプきで（サプレッションチェンバ出ロ配管）」と記載
＊4：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「サプレッションプール水移送ポンプから第 1 号機床ドレン系まで（予備配管を含む。）（サプレッションプール水移送ポンプ出口配管）」と記載。
＊6：記載の適正化を行う。既工事計画書には「サプレッションプール水移送ポンプ出口配管からサプレッションチェンバ出口配管まで」と記載。
＊7：記載の適正化を行う。既工事計画書には「第1号機サプレッションプール水貯蔵系からサプレッションプール水貯蔵タンクまで」と記載。
＊ 8 ：第1号機設備との取合い部で切断をする。また，廃止する設備は開口部に閉止処置を行う。

以下の設備は，既存の第 1 号機設備，第1， 2 号機共用であり，本工事計画で第 1 号機設備とする。
主配管（SPT－V－1～サプレッションプール水移送ポンプ）（第1号機設備）
主配管（サプレッションプール水移送ポンプ～サプレッションプールル水貯蔵タンク）（第1号機設備）
主配管（サプレッションプール水移送ポンプ出口配管分岐点～サプレッションチェンバ出口配管合流点）（第 1 号機設備
主配管（SPT－V－11～残留熱除去系配管合流点）（第1号機設備）
主配管（RHR－V－514～SPT－V－11）（第1号機設備）
主配管（P81－F005～RHR－V－514）（第1号機設備）

5．2．3 固体廃棄物処理系
5．2．3．1 サイトバンカ設備

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array}, ~ \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 }{ }^{\text {さ*2 }} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{array} \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{gathered} \text { サ } \\ \text { イ } \\ \text { ト } \\ \text { バ } \\ \text { ン } \\ \text { 設 } \\ \text { 備 } \end{gathered}$														
									変更なし					

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：S I 単位に換算したものである

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	厚 さ＊2	材 料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 廃 } \\ & \text { त } \\ & \text { 亏 } \\ & \text { 莎 } \\ & \text { 系 } \end{aligned}$	使用済樹脂貯蔵槽 スラッジ放出ポンプ	静水頭	66	48.6	（3．7）	SUS304TP	$\begin{aligned} & \text { 廃 } \\ & \text { K } \\ & \text { 緛 } \\ & \text { 系 } \end{aligned}$	変更なし						
		1． $37^{* 4}$	66	48.6	（3．7）	SUS304TP								
				60.5	（3．9）	SUS304TP								
	スラッジ放出ポンプ＊${ }^{* 12}$	1． $37^{* 4}$	66	34.0	（3．4）	SUS304TP		変更なし						
	固化系乾燥機給液タンク			48.6	（3．7）	SUS304TP								

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「デカントポンプから機器ドレン系まで」と記載。
＊4 ：S I 単位に換算したものである。
＊5 ：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「使用済樹脂貯蔵槽からデカントポンプ入口配管まで」と記載
＊7：記載の適正化を行う。既工事計画書には「浄化系沈降分離槽からスラッジ放出ポンプ入口配管まで」と記載。
＊8：記載の適正化を行う。既工事計画書には「原子炉冷却材浄化系から浄化系沈降分離槽まで」と記載。
＊9：記載の適正化を行う。既工事計画書には「機器ドレン系から浄化系沈降分離槽まで」と記載。
＊10：記載の適正化を行う。既工事計画書には「復水浄化系から使用済樹脂貯蔵槽まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液系から使用済樹脂貯蔵槽まで」と記載。
＊ 12 ：記載の適正化を行う。既工事計画書には「スラッジ放出ポンプから固化系まで」と記載。

5．2．3．3 濃縮廃液系
（10）主配管

変 更 前							変 更 後							
	名 称	$\begin{aligned} & \hline \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	K22-F001A, B 濃縮廃液貯蔵タンク	0． $98{ }^{* 4}$	105	60.5	（3．9）	SUS316LTP	$\begin{aligned} & \text { 濃 } \\ & \text { 縮 } \\ & \text { 発 } \\ & \text { 液 } \\ & \text { 系 } \end{aligned}$	変更なし						
縮	濃縮廃液貯蔵タンク濃縮廃液ポンプ	静水頭	105	89.1	（5．5）	SUS316LTP		変更なし						
廃		1． $37^{* 4}$	95	89.1	（5．5）	SUS316LTP								
液				114.3	（6．0）	SUS316LTP								
系	濃縮廃液ポンプ 固化系乾燥機給液タンク	1． $37^{* 4}$	95	60.5	（3．9）	SUS316LTP		変更なし						
				89.1	（5．5）	SUS316LTP								
				34.0	（3．4）	SUS316LTP								
			66	34.0	（3．4）	SUS316LTP								

注記＊1 ：外径は公称値を示す
＊2（（ ）内け公称値を示す
＊3：記載の適正化を行う。既工事計画書には「床ドレン・化学廃液系から濃縮廃液貯蔵タンクまで」と記載。
＊ 4 ：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「濃縮廃液ポンプから固化系まで」と記載。

5．3 堰その他の設備

5．3．1 その他（堰）
（2）施設外への漏えいを防止するために施設する堰その他の設備

			変更前	変更後
	名 称		サプレッションプール水貯蔵タンク エリア及びサプレッションプール水貯蔵タンク連絡ダクトの施設外との境界壁面及びこれに囲まれた床面	廃止
主 要 寸 法	堰の 高 さ	mm	－	
床面及び壁面の塗装の範囲＊1		－	床面及び床面から 13 cm までの壁面	
材 料	堰	－	－	
	床面及び壁面の塗装＊2	－	エポキシ樹脂	
取 付 箇 所		－	－	
	設 置 床	－	$\begin{gathered} \text { サプレッションプール水貯蔵タンク } \\ \text { サア } \\ \text { エリア及びサプレッションプール水 } \\ \text { 貯蔵タンク連絡ダクト } \\ \text { o. P. } 11.55 \mathrm{~m} \\ \hline \end{gathered}$	
	$\begin{array}{cccccc} \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \end{array}$	－	－	－
	溢 水 防 護 上 の配慮が必要な高さ	－		

注記＊ 1 ：記載の適正化を行う。既工事計画書には「床•壁の塗装（主要寸法）」と記載。
＊2：記載の適正化を行う。既工事計画書には「床•壁の塗装（材料）」と記載。
＊ 3 ：記載の適正化を行う。既工事計画書には「サプレッションプール水貯蔵タンク エリア及びサプレッションプール水貯蔵タンク連絡ダクト」と記載。

以下の設備は，既存の第1号機設備，第1，2号機共用であり，本工事計画で第1号機設備とする。

サプレッションプール水貯蔵タンクエリア及び配管エリアと施設外との境界壁面及 び床面（1号機設備）

5． 4 原子炉格納容器本体外の廃棄物貯蔵設備又は廃棄物処理設備からの流体状の放射性廃棄物の漏えいの検出装置又は自動警報装置

以下の設備は，既存の第 1 号機設備，第 1,2 号機共用であり，本工事計画で第 1 号機設備とす る。

サプレッションプール水貯蔵タンクの漏えいの検出装置及び警報装置（第1号機設備）
5.5 放射性廃棄物の廃棄施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 放射性廃棄物の廃棄施設の共通項目である「1．地盤等，2．自然現象， 3．火災，4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 放射性廃棄物の廃棄施設の共通項目である「1．地盤等，2．自然現象， 3．火災，4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタ ービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．廃棄物貯蔵設備，廃棄物処理設備等 1.1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。 放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計と する。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。	第2章 個別項目 1．廃棄物貯蔵設備，廃棄物処理設備等 1.1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定した設計とする。 放射性廃棄物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計と する。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。

変更前	変更後
1．2 廃棄物処理設備 放射性廃棄物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 さらに，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足する設計とする。 気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアッ プ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 活性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプト ンを約 24 時間保持する設計とする。 液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第1，2号機共用）で処理する設計とする。 放射性物質を含む原子炉冷却材を通常運転時において原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサン プを介して，液体廃棄物処理系へ導く設計とする。 固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラスチック固化式固化装置（第 1,2 号	1.2 廃棄物処理設備 放射性廃棄物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，それぞれ，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 さらに，発電所周辺の一般公衆の線量を合理的に達成できる限り低く保つ設計とし，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足する設計とする。 気体廃棄物処理系は，蒸気式空気抽出器排ガス中の水素と酸素とを結合させる排ガス再結合器，排ガス復水器，活性炭式希ガスホールドアッ プ塔等で構成し，排気は，放射性物質の濃度をモニタしつつ排気筒から放出する設計とする。 活性炭式希ガスホールドアップ塔でキセノンを約 18 日間，クリプト ンを約 24 時間保持する設計とする。 液体廃棄物処理系は，液体廃棄物を分離収集し，廃液の性状に応じて，機器ドレン系，床ドレン・化学廃液系及びランドリドレン系（第 1 号機設備，第1，2号機共用）で処理する設計とする。 放射性物質を含む原子炉冷却材を通常運転時において原子炉冷却系統外に排出する場合は，床ドレン・化学廃液系及び機器ドレン系のサン プを介して，液体廃棄物処理系へ導く設計とする。 固体廃棄物処理系は，廃棄物の種類に応じて，濃縮廃液，使用済樹脂及び廃スラッジを固型化するプラスチック固化式固化装置（第 1 ， 2 号

変更前	変更後
機共用），濃縮廃液を固型化するセメント固化式固化装置（第 1 号機設備，第 1，2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置 から発生する使用済樹脂及びランドリ廃スラッジを焼却する固体廃棄物焼却設備（第 1 号機設備，第 1,2 ， 3 号機共用（以下同じ。）），並び に不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1，2， 3 号機共用」，「第1，2， 3 号機共用」及び「第 3 号機設備，第 1，2， 3号機共用」（以下同じ。））及び固型化処理用減容機（第 3 号機設備，第 1，2，3号機共用（以下同じ。））で処理する設計とする。 サプレッションチェンバの保守•点検のため，プール水の排水，貯留，返送を行うための設備として，サプレッションプール水貯蔵系（一部第 1，2号機共用（以下同じ。））を設置する。 サプレッションプール水貯蔵系を構成するサプレッションプール水貯蔵タンク（第1，2号機共用（以下同じ。））は，サプレッションチェ ンバ内のプール水を貯留するのに十分な容量を有する設計とする。 また，サプレッションプール水貯蔵タンクは，床ドレン・化学廃液系 に導かれた廃液等を貯留することができる設計とする。 放射性廃棄物を処理する設備は，放射性廃棄物以外の廃棄物を処理す る設備と区別し，放射性廃棄物以外の流体状の廃棄物を流体状の放射性廃棄物を処理する設備に導かない設計とする。 放射性廃棄物を処理する設備は，放射性廃棄物が漏えいし難い又は放射性廃棄物を処理する過程において散逸し難い構造とし，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食 しない設計とする。 気体状の放射性廃棄物はフィルタを通し放射性物質の濃度を監視可	機共用），濃縮廃液を固型化するセメント固化式固化装置（第 1 号機設備，第1，2号機共用（以下同じ。））及び可燃性雑固体廃棄物，脱塩装置 から発生する使用済樹脂及びランドリ廃スラッジを焼却する固体廃棄物焼却設備（第 1 号機設備，第 $1, ~ 2$ ， 3 号機共用（以下同じ。）），並び に不燃性雑固体廃棄物を圧縮する減容装置（「第1号機設備，第1，2， 3 号機共用」，「第1，2， 3 号機共用」及び「第 3 号機設備，第 1，2， 3号機共用」（以下同じ。））及び固型化処理用減容機（第 3 号機設備，第 1，2，3号機共用（以下同じ。））で処理する設計とする。 放射性廃棄物を処理する設備は，放射性廃棄物以外の廃棄物を処理す る設備と区別し，放射性廃棄物以外の流体状の廃棄物を流体状の放射性廃棄物を処理する設備に導かない設計とする。 放射性廃棄物を処理する設備は，放射性廃棄物が漏えいし難い又は放射性廃棄物を処理する過程において散逸し難い構造とし，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食 しない設計とする。 気体状の放射性廃棄物はフィルタを通し放射性物質の濃度を監視可

変更前
能な排気筒等から放出する設計とする。
また，フィルタは，放射性物質による汚染の除去又は交換に必要な空
間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設

流体状の放射性廃襄物は，管理区域内で処理することとし，流体状の放射性廃軍物を管理区域外において運搬するための容器は設置しない。

原子炉冷却材圧カバウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃安物（放射能量が科技庁告示第5号第3条第1号に規定する A_{1} 値又は A_{2} 値を超えるもの（除染等により線量低減がで きるものは除く））を管理区域外において運搬するための固体廃重物移送容器（第 1 号機設備，第 1 ， 2,3 号機共用（以下同じ。））は，容易か つ安全に取扱うことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等により，亀裂，破損等が生じるおそれがない設計とする。

また，固体廃棄物移送容器は，放射性廃萛物が漏えいし難い構造であ り，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。

固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。

能な排気筒等から放出する設計とする。
また，フィルタは，放射性物質による汚染の除去又は交換に必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な設計とする。
流体状の放射性廃重物は，管理区域内で处理することとし，流体状の放射性廃棄物を管理区域外において運搬するための容器は設置しない。
原子炉冷却材圧力バウンダリ内に施設されたものから発生する高放射性の固体状の放射性廃棄物（放射能量が科技庁告示第 5 号第 3 条第 1号に規定する A_{1} 値又は A_{2} 値を超えるもの（除染等により線量低減がで きるものは除く））を管理区域外において運搬するための固体廃重物移送容器（第 1 号機設備，第 1 ， 2,3 号機共用（以下同じ。））は，容易か つ安全に取扱うことができ，かつ，運搬中に予想される温度及び内圧の変化，振動等により，亀裂，破損等が生じるおそれがない設計とする。
また，固体廃棄物移送容器は，放射性廃县物が漏えいし難い構造であ り，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃棄物に含まれる化学薬品の影響及び不純物の影響により著しく腐食し ない設計とする。

固体廃棄物移送容器は，内部に放射性廃棄物を入れた場合に，放射線障害を防止するため，その表面の線量当量率及びその表面から 1 m の距離における線量当量率が「核燃料物質等の工場又は事業所の外における運搬に関する規則」に定められた線量当量率を超えない設計とする。
1.3 污染拡大防止

1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防
1.3 汚染拡大防止

1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏えいの拡大防

変更前	変更後
止 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のうち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏え いし難い構造，漏えいの拡大防止，堰については，次のとおりとす る。	止 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のうち，流体状の放射性廃棄物の漏えいが拡大するおそれがある部分の漏え いし難い構造，漏えいの拡大防止，堰については，次のとおりとす る。
（1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造 とする。また，その貫通部は堰の機能を失わない構造とする。	（1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造 とする。また，その貫通部は堰の機能を失わない構造とする。
（2）漏えいの拡大防止 床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状	（2）漏えいの拡大防止 床面は，床面の傾斜又は床面に設けられた溝の傾斜により流体状
の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状の	の放射性廃棄物が排液受け口に導かれる構造とし，かつ，気体状の
ものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。	ものを除く流体状の放射性廃棄物を処理又は貯蔵する設備の周辺部には，堰又は堰と同様の効果を有するものを施設し，流体状の放射性廃棄物の漏えいの拡大を防止する設計とする。
（3）放射性廃棄物処理施設に係る堰の施設	（3）放射性廃棄物処理施設に係る堰の施設
放射性廃重物処理施設外に通じる出入口又はその周辺部には，堰	放射性廃棄物処理施設外に通じる出入口又はその周辺部には，堰
を施設することにより，流体状の放射性廃棄物が施設外へ漏えいす	を施設することにより，流体状の放射性廃衷物が施設外へ漏えいす
	ることを防止する設計とする。
施設外へ漏えいすることを防止するための堰は，処理する設備に	施設外へ漏えいすることを防止するための堰は，処理する設備に
係わる配管について，長さが当該設備に接続される配管の内径の	係わる配管について，長さが当該設備に接続される配管の内径の
$1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃	$1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさの開口を当該設備と当該配管との接合部近傍に仮定したとき，開口からの流体状の放射性廃

変更前	変更後
1．4 排水路 液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設 を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計とする。 また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連す る施設を設ける建屋内部には発電所外に管理されずに排出される排水 が流れる排水路に通じる開口部を設けない設計とする。 1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$ 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損 なわない設計とする。 排気筒の支持構造物（第 2,3 号機設備，第 2 ， 3 号機共用）は，第 3号機と共用するが，支持機能を十分維持できる設計とすることで，共用 により安全性を損なわない設計とする。 サプレッションプール水貯蔵系は，第 1 号機及び第 2 号機で共用す るが，サプレッションプール水貯蔵タンク（第 1 号機設備，第 1 ， 2 号機共用）及びサプレッションプール水貯蔵タンク（第1，2号機共用）	1．4 排水路 液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連する施設 を設ける建屋の床面下には，発電所外に管理されずに排出される排水が流れる排水路を施設しない設計とする。 また，液体廃棄物処理設備，液体廃棄物貯蔵設備及びこれらに関連す る施設を設ける建屋内部には発電所外に管理されずに排出される排水 が流れる排水路に通じる開口部を設けない設計とする。 1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$ 号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃棄物保管室（第 1 号機設備，第 $1,2,3$ 号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損 なわない設計とする。 なお，プラスチック固化式固化装置は休止しており，今後も使用しな い。 排気筒の支持構造物（第 2,3 号機設備，第 2,3 号機共用）は，第 3号機と共用するが，支持機能を十分維持できる設計とすることで，共用 により安全性を損なわない設計とする。

変更前	変更後
を用いることで，第 1 号機又は第 2 号機のサプレッションチェンバの プール水の最大容量を貯蔵でき，安全性を損なわない設計とする。	
2．警報装置等 流体状の放射性廃棄物を処理し，又は貯蔵する設備から流体状の放射性廃棄物が著しく漏えいするおそれが発生した場合（床への漏えい又はその おそれ（数滴程度の微少漏えいを除く。））を早期に検出するよう，タンク の水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器 ドレン，床ドレンの容器又はサンプの水位）を発信する装置を設けるとと もに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計と する。 また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることにより，漏えいの発生を防止できる設計とする。 放射性廃棄物を処理し，又は貯蔵する設備に係る主要な機械又は器具の動作状態を正確，かつ迅速に把握できるようポンプの運転停止状態及び弁 の開閉状態等を表示灯により監視できる設計とする。	2．警報装置等 変更なし
3．主要対象設備 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表 1放射性廃棄物の廃棄施設の主要設備リスト」に示す。	3．主要対象設備 放射性廃棄物の廃棄施設の対象となる主要な設備については，「表 1放射性廃棄物の廃棄施設の主要設備リスト」に示す。

表1放射性廃毫物の廃萰施設の主要設備リスト（ $1 / 8$ ）

	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基準対象施設＊		重大事故等対処設備＊1		名称	設計基準対象施設＊		重大事故等対処設備 ${ }^{*}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
			N21－F155A，B 及び N21－F156～排ガス予熱器	B－1	クラス 3		－	変更なし				
			排ガス予熱器～排ガス再結合器	B－1	クラス 3		－	変更なし				
			排ガス再結合器～排ガス復水器	B－1	クラス 3		－	変更なし				
			排ガス復水器～排ガス予冷器	B－1	クラス 3		－	変更なし				
			排ガス予冷器～排ガス乾燥器	B－1	クラス 3		－	変更なし				
			排ガス乾燥器～前置フィルタ	B－1	クラス 3		－	変更なし				
	茋		前置フィルタ～活性炭式希ガスホールドアッ プ塔	B－1	クラス 3		－	変更なし				
	棄		活性炭式希ガスホールドアップ塔連絡管	B－1	クラス 3		－	変更なし				
	理		活性炭式希ガスホールドアップ塔～排ガス粒子フィルタ	B－1	クラス 3		－	変更なし				
			排ガス粒子フィルタ～排ガス真空ポンプ	B－1	クラス 3		－	変更なし				
			排ガス真空ポンプ～排ガス循環水タンク	B－1	クラス 3		－	変更なし				
			排ガス循環水タンク～排気筒	B－1	クラス 3		－	変更なし				
			排ガス循環水タンク出口配管分岐点～排ガス粒子フィルタ出口配管合流点	B－1	クラス 3		－	変更なし				
			N33－F152A，B～排ガス循環水タンク出口配管合流点	B－1	クラス 3		－	変更なし				
		排気筒	排気筒（支持構造物（鉄塔及び基礎）は第 2 ， 3 号機共用）	S	－		－	変更なし				

表1放射性廃毫物の廃㯨施設の主要設備リスト（2／8）

$\begin{aligned} & \text { 䇶 } \\ & \text { 分 } \end{aligned}$	奚先称	機器区分	変更前					変更後				
			名称	設計基淮対象施設葹		重大事故等対処設儲 ${ }^{\text {a }}$		名称			重大事故等対処設供 ${ }^{\text {／}}$	
				$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \text { 而震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 䇾 } \\ & \text { 椎 } \end{aligned}$	主要弁	K11－F003	s	クラス2		－	変更なし				
			K11－F004	s	クラス2		－	変更なし				
			K11－F103	S	クラス2		－	変更なし				
			K11－F104	S	クラス2		－	変更なし				
		主配管	$\begin{array}{\|l\|} \text { F゙ライウエル機器ドレンサンプポンプ~K11- } \\ \text { F003 } \end{array}$	B－1	クラス3		－	変更なし				
			K11－F003～原子炉格納容器配管貫通部（ X －51）	s	クラス 2		－	変更なし				
			K11－F004～廃液収集槽入口収集管	B－1	クラス3		－	変更なし				
			$\begin{aligned} & \text { ドライウェル床ドレンサンプポンプ~K11- } \\ & \text { F103 } \end{aligned}$	B－1	クラス3		－	変更なし				
			K11－F104～ドライウェル機器ドレンサンプポ ンプ出口配管合流点	B－1	クラス 3		－	変更なし				
			原子炉建屋原子炉棟機器ドレンサンプポンプ ～廃液収集槽入口収集管	B－1	クラス3		－	変更なし				
			原子炉建屋廃棄物処理区域機器ドレンサンプ ポンプ～廃液収集槽入口収集管	B－1	クラス3		－	変更なし				
			タービン建屋機器ドレンサンプポンプ～廃夜収集槽入口収集管	B－1	クラス3		－	変更なし				

表1放射性廃稁物の廃槀施設の主要設備リスト（3／8）

設	$\begin{aligned} & \text { 欋 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基淮対象施砓爯		重大事故等対处設備 ${ }^{\text {a }}$		名称	設計基漼対象施設島		重大事故等対処設備 ${ }^{*}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
		主配管	原子炬建屋原子炬棟床ドレンサンプポンプ～ 床ドレン・•化学廃液収集タンク入口収集管（床 ドレン用）	B－1	クラス3	－		変更なし			－	
				B－1	クラス3		－	変更なし			－	
				B－1	クラス3		－	変更なし			－	
			タービン建屋床ドレンサンプポンプ～床ドレ ン・化学廃液収集タンク入口収集管（床ドレン 用）	B－1	クラス3		－	変更なし			－	
			廃液収集槽入口収集管	B－1	クラス3		－	変更なし			－	
			廃液収集槽～廃液収集ポンプ	B－1	クラス3		－	変更なし			－	
			廃液収集ポンプ～廃液移送ポンプ	B－1	クラス3		－	変更なし			－	
			廃液移送ポンプ～廃液3過器	B－1	クラス3		－	変更なし			－	
			廃液ち過器～廃液脱程器	B－1	クラス3		－	変更なし			－	
			廃液脱塩器～廃腋サンプル槽	B－1	クラス3		－	変更なし			－	
			廃腋サンプル槽～廃腋サンプルポンプ	B－1	クラス3		－	変更なし			－	
			廃液サンプルポンプ～P13－F035	B－1	クラス3		－	変更なし			－	
			廃液ち過器～K21－F103	B－1	クラス3		－	変更なし			－	
			廃液脱塩器～床ドレン・化学廃液脱塩器出口配管合流点	B－1	クラス3		－	変更なし			－	

表 1 放射性廃棄物の廃棄施設の主要設備リスト（4／8）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後					
				名称	設計基準対象施設＊		重大事故等対処設備 ${ }^{11}$		名称		設計基準対象施設越		重大事故等対処設備＊1	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \sim \\ & 1 \\ & \uparrow \\ & \stackrel{1}{N} \\ & N \end{aligned}$		$\begin{aligned} & \text { 床 } \\ & \text { ト } \\ & \text { シ } \\ & シ \\ & \text { 华 } \\ & \text { 学 } \\ & \text { 潗 } \end{aligned}$	主配管	床ドレン・化学廃液収集タンク入口収集管（床 ドレン用）	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液収集タンク入口収集管（化学廃液用）	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液収集タンク～床ドレン・化学廃液収集ポンプ	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液収集ポンプ～床ドレン・化学廃液蒸発䠆縮装置加熱器入口配管合流点	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置循環ポンプ～床ドレン・化学廃液蒸発濃縮装置加熱器	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置加熱器～床ド レン・化学廃液蒸発濃縮装置蒸発缶	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置蒸発缶～床ド レン・化学廃液蒸発湄縮装置循環ポンプ	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液収集ポンプ出口配管分岐点 ～K22－F001A，B	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置蒸発缶～床ド レン・化学廃液蒸発濃縮装置デミスタ	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置デミスタ～床 ドレン・化学廃液蒸発濃縮装置復水器	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液蒸発濃縮装置復水器～床ド レン・化学廃液調整タンク	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液調整タンク～床ドレン・化学廃液調整ポンプ	B－1	クラス 3		－		変更なし				－
				床ドレン・化学廃液調整ポンプ～床ドレン・化学廃液脱塩器	B－1	クラス 3		－		変更なし				－

表1放射性廃毫物の廃萰施設の主要設備リスト（5／8）

表1放射性㾌㨀物の廃乗施設の主要設備リスト（6／8）

表1放射性廃㨀物の廃乗施設の主要設備リスト（7／8）

	$\begin{aligned} & \begin{array}{l} \text { 䍃 } \\ \text { a } \end{array} \text { (} \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基鹳対象施設㐍		重大事故等対处設備 ${ }^{\text {a }}$		名称	設計基漼対象施設気		重大事故等対処設備 ${ }^{1}$	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
		主配管	K21－F201～使用济樹脂钓蔵槽	B－1	クラス3		－	変更なし			－	
			K21－F202～使用斎䅹脂貯蔵槽	B－1	クラス3		－	変更なし			－	
			使用济樹脂貯蔵槽～スラッジ放出ポンプ	B－1	クラス3		－	変更なし			－	
			スラッジ放出ポンプ～固化系乾燥機給液タン ，	B－1	クラス3		－	変更なし				
		主配管		B－1	クラス3		－	変更なし			－	
			濃縮廃液貯蔵タンク～濃縮廃液ポンプ	B－1	クラス3		－	変更なし			－	
			濃縮廃液ポンプ～固化系乾炽機給液タンク	B－1	クラス3		－	変更なし			－	

表 1 放射性廃棄物の廃棄施設の主要設備リスト（ $8 / 8$ ）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 放射性廃棄物の廃棄施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 放射性廃棄物の廃棄施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 放射性廃棄物の廃棄施設に適用する個別項目の基準及び規格は以下のと おり。	第2章 個別項目 放射性廃棄物の廃棄施設に適用する個別項目の基準及び規格は以下のと おり。
－発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号）	－発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号）
－核燃料物質等の工場又は事業所の外における運搬に関する規則（昭和五十三年総理府令第五十七号）	－核燃料物質等の工場又は事業所の外における運搬に関する規則（昭和五十三年総理府令第五十七号）
－発電用軽水型原子炉施設周辺の線量目標値に関する指針（昭和 50 年 5 月 13日原子力委員会決定）	－発電用軽水型原子炉施設周辺の線量目標値に関する指針（昭和 50 年 5 月 13日原子力委員会決定） －日本建築学会 2001 年 建築基礎構造設計指針
－煙突，鉄筋コンクリート造の柱等，広告塔又は高架水槽等及び擁壁並び に乗用エレベーター又はエスカレーターの構造計算の基準を定める件 （平成 12 年 5 月 31 日建設省告示第 1449 号）	－煙突，鉄筋コンクリート造の柱等，広告塔又は高架水槽等及び擁壁並び に乗用エレベーター又はエスカレーターの構造計算の基準を定める件 （平成12年5月31日建設省告示第1449号）

5.6 放射性廃棄物の廃棄施設に係る工事の方法

| 変更前 | 変更後 |
| :---: | :---: | :---: |
| 放射性廃棄物の廃棄施設に係る工事の方法は，「原子炉本体」における「1．9 原子 | |
| 炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」， | |
| 「2．1．3 変更なし料体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を | |
| 除く。）に従う。 | |

6．放射線管理施設
6.1 放射線管理用計測装置
（1）プロセスモニタリング設備

変 更 前							変 更 後										
名 称	検 出 器 の 種 類	計測 範 囲	警報動作 範 囲	取 付	箇 所	個数	名	称	検 の	出 器 種 類	計測 範 囲	警報動作 範 囲	取	付	箇	所	個数
主蒸気管放射線モニタ	電離箱＊1	$10^{-13} \sim 10^{-6} \mathrm{~A}$	$\begin{aligned} & 0^{-13} \sim^{* 2} \\ & 10^{-6} \mathrm{~A} \end{aligned}$		プロセス放射線モニタ系 ${ }^{* 3}$	$4^{* 4}$	変更なし						変更なし				$\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$
				設 置 床	原子炉建屋 0．P． 15.00 m （監視•記録は中央制御室にて行う。）												
				－										$\begin{array}{rr} 6 & \text { 上 } \\ \text { 番 } & \text { 号 } \\ \hline \text { の配慮 } \\ \text { 高 } \\ \hline \end{array}$	－		

＊2：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
$* 3$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：対象計器は，D11－RE001A，D11－RE001B，D11－RE001C，D11－RE001D。

口 原子恹格納容器本体内の放射性物質濃度を計測する装置（常設）

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「格納容器内雰囲気放射線モニタ」と記載。
＊2：記載の適正化を行う。既工事計画書には「イオンチェンバ」と記載。
＊3：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：設計基準対象施設としての値であり，重大事故等対処設備としては，警報動作が要求される検出器ではない
＊ 6 ：対象計器は，D23－RE005A，D23－RE005B。
＊ 7 ：対象計器は，D23－RE006A，D23－RE006B。

八放射性物質により汚染するおそそれがある管理区域から環境に放出する排水中又は排気中の放射性物質濃度を計測する装置（常設）

注記 $* 1: ~$ 記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：対象計器は，D11－RE003A，D11－RE003B，D11－RE003C，D11－RE003D。
＊ 4 ：対象計器は，D11－RE002A，D11－RE002B，D11－RE002C，D11－RE002D。
＊5：対象計器は，D11－RE012A，D11－RE012B。
＊6：対象計器は，D11－RE012C，D11－RE012D。
＊7：対象計器は，T63－RE009A，T63－RE009B。
＊ 8 ：対象計器は，D11－RE019A，D11－RE019B。
（2）エリアモニタリング設備
八 緊急時対策所の線量当量率を計測する装置（可搬型）

変 更 前						変 更 後						
名称	検出器の種類	計測範囲	警報動作 範囲	取付箇所	個数	名称	検出器の 種類	計測範囲	警報動作 範囲		取付箇所	個数
		－				緊急時対策所可搬型エリア モニタ	半導体式	$\begin{gathered} 0.01 \mu \mathrm{~Sv} / \mathrm{h} \sim \\ 999.9 \mathrm{mSv} / \mathrm{h} \end{gathered}$	－	系統名 （ライン名） 設置床 溢水防護上の 区画番号 溢水防護上の配慮が必要な高さ	保管場所： －緊急時対策所（0．P．約 52 m ）取付箇所 ： \qquad 床上 0.00 m 以上	1 （予備 1）

二 使用済燃料貯蔵槽エリアの線量当量率を計測する装置（常設）

注記 $* 1$ ：本設備は記載の適正化のみを行うものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「原子炉建屋放射線モニタ」と記載。
＊3：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5：対象計器は，D21－RE004。
＊6 ：対象計器は，D21－RE043。
＊7：対象計器は，D21－RE044。
（3）固定式周辺モニタリング設備

注記＊1：記載の適正化を行う。既工事計画書には「モニタリングポスト」と記載。
＊2：記載の適正化を行う。既工事計画書には「計測範囲内で可変」と記載。
＊3：記載の適正化を行う。既工事計画書には「発電所周辺監視区域境界周辺に 6 個所設置（警報，計測値はモニタごとに中央制御室に表示する。）」と記載。
＊ 4 ：モニタリングポストは 6 箇所あり，モニタリングポスト 1 箇所あたりの検出器の個数は「1」である。

変 更 前							変 更 後						
名称	検出器の種類	計測範囲	警報動作範囲	取付箇所		個数	名称	検出器の種類	計測範囲	警報動作範囲	取付箇所		個数
構内ダスト モニタ*1 （第1号機設備，第 1，2， 3 号機共用）＊2	$\begin{aligned} & \text { プラスチッ } \\ & \text { クシンチレ } \\ & \text { ーション式 } \end{aligned}$			$\begin{aligned} & \hline \text { 系統名 } \\ & \text { (ライン名) } \end{aligned}$	－	$2^{* 3,4}$	変更なし				変更なし		変更なし
		測定対象 空間放射性粒子濃度 吸引量 約 $2500 / \mathrm{min}$	－	設置床	屋外 0．P．約 78 m ，0．P．約 77 m発電所敷地境界内近傍 （監視•記録は構内ダストモニタ 設置場所及び 1 号機制御建屋）＊${ }^{*}$								
		付属装置 空間放射性粒子計測装置 $10^{-1} \sim 10^{3} \mathrm{cps}$			－						溢水防護上の \qquad 溢水防護上の 配慮が必要な 高さ	－	

注記＊1：本設備は記載の適止化のみを行りものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「構内ダストモニタ」と記載
＊3：記載の適正化を行う。既工事計画書には「発電所敷地境界内近傍に 2 箇所設置」と記載。
＊ 4 ：構内ダストモニタは 2 箇所あり，構内ダストモニタ 1 箇所あたりの検出器の個数は「1」である。
（4）移動式周辺モニタリング設備

注記＊1：本設備は記載の適正化のみを行うものであり，手続き対象外である。
＊2：記載の適正化を行う。既工事計画書には「フィールドモニタ」と記載。
＊ 3 ：記載の適正化を行う。既工事計画書には「放射性ダスト測定装置」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「放射性よう素測定装置」と記載。
＊5：記載の適正化を行う。既工事計画書には「1 チャンネル」と記載。
＊6：記載の適正化を行う。既工事計画書には「放射線移動観測車」と記載。

注記＊：個数のうち，1（予備 1）は緊急時対策所の加圧判断用と兼用する。

注記＊：発電所及びその周辺（発電所の周辺海域を含む。）のうち，任意の場所でのモニタリング時に使用する。

変 更 前						変 更 後						
名称	検出器の種類	計測笙囲	警報動作 範囲	個数	取付箇所	名称	検出器の種類	計測範囲	警報動作 範囲	個数		取付䉪所
coll						$\begin{aligned} & \beta \text { 線サーベイメ } \\ & \text {-タ } \end{aligned}$	GM管	$\underset{\substack{0 \sim 100 \mathrm{k} \\ \mathrm{~min}^{-1}}}{ }$	-	$\stackrel{2}{(\text { 予備 } 1)}$	$\begin{gathered} \text { 系統名 } \\ \text { (ライン名) } \end{gathered}$	－
						設置床					保管場所： －緊急時対策建屋 O．P．約57m 取付䉪所： $\left[\begin{array}{cc} 2 \text { 個 } & -* \end{array}\right]$	
						溢水防護上の区画番号					K－B1F－8	
						溢水防護上の配慮が必要な高さ					床上0．00m以上	

注記＊：発電所及びその周辺（発電所の周辺海域を含む。）のうち，任意の場所でのモニタリング時に使用する。

注記＊：発電所及びその周辺（発電所の周辺海域を含む。）のうち，任意の場所でのモニタリング時に使用する。

変 更 前						変 更 後						
名称	$\begin{gathered} \text { 検出器の } \\ \text { 種類 } \end{gathered}$	計測䈭囲	警報動作 範囲	個数	取付箇所	名称	検出器の種類	計測笙囲	警報動作 範囲	個数		取付䉪所
coll							電離箱	$\begin{gathered} 0.001 \sim 1000 \\ \mathrm{mSv} / \mathrm{h} \end{gathered}$	－		$\begin{gathered} \hline \text { 系統名 } \\ \text { (ライン名) } \end{gathered}$	－
						設置床					保管場所： －緊急時対策建屋 0．P．約57m 取付箇所： （2個－＊	
						溢水防護上の 区画番号					K－B1F－8	
						溢水防護上の 配慮が必要な 高さ					床上0．00m以上	

注記＊：発電所及びその周辺（発電所の周辺海域を含む。）のうち，任意の場所でのモニタリング時に使用する。
時的に設置する可搬型のものを除く
6．2．1 中央制御室換気空調系
（3）主配管（常設）

＊2 ：公称値を示す。
（4）送風機（常設）

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（5）排風機（常設）

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
（6）フィルター（常設）

			変 更 前		変更後
名		称	中央制御室再循環フィルタ装置＊1		変更なし
種	類	－	高性能エアフィルタ	$\begin{gathered} \text { チャコール } \\ \text { エアフィルタ } \end{gathered}$	
＊3 効 率	単 体	\％	99．97以上 （ $0.3 \mu \mathrm{~m}$ 粒子に対 して）	\square以上 （相対湿度 70\％以下 において）	
	総 合	\％	$\begin{gathered} 99.9 \text { 以上 } \\ (0.5 \mu \mathrm{~m} \text { 粒子に対 } \\ \text { して }) \end{gathered}$	90 以上 （相対湿度 70\％以下 において）	
主要法	吸 込 口 径	mm	$650 \times 2 * 2, * 3$		
	吐 出 口 径	mm	$800 \times 400 * 2, * 3$		
	た て	mm	$2200 * 2, * 3$		
	横	mm	$6900 * 2$＊ 3		
	高 d	mm	$1700 * 2, * 3$		
個	数	－	$1^{* 2}$		
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$	$\begin{gathered} \text { 系 統 名 } \\ (\text { ラ イン名 }) \end{gathered}$	－	中央制御室再循環フィルタ装置中央制御室換気空調系		
	設 置 床	－	制御建屋0. ．． 1.50 m		
	溢 水 防 護 上 の区 画 番 号	－	－		C－B2F－1
	溢 水 防 護 上の配慮が必要な高さ	－			床上 0.00 m 以上

注記＊1 ：記載の適正化を行う。既工事計画書には「中央制御室再循環フィルタ」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3 ：公称値を示す。

6．2．2 緊急時対策所換気空調系
（3）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：エルボを示す。
＊4：伸縮継手部の外径及び厚さ。
＊5：本設備は，換気設備（緊急時対策所加圧空気供給系）であり，換気設備（緊急時対策所換気空調系）として本工事計画で兼用とする。
（4）送風機（常設）

注記＊1 ：重大事故等時における使用時の値を示す。
＊2 ：公称値を示す。
＊3：緊急時対策所内は，正圧維持できるように加圧するため，空気流入はない。
（6）フィルター（常設）

注記＊：公称値を示す。

6．2．3 中央制御室待避所加圧空気供給系
（1）容器（可搬型）

注記＊1：公称値を示す。
＊2：重大事故等時における使用時の値を示す。
（3）主配管（常設）

注記 $~$ 1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3 ：重大事故等時における使用時の値。
＊4：差込継手の差込部内径を示す。
＊5 ：差込継手の最小厚さを示す。
＊6 ：エルボを示す。
＊7 ：フルカップリングを示す。
（3）主配管（可搬型）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：重大事故等時における使用時の値。

6．2．4 緊急時対策所加圧空気供給系

（1）容器（可搬型）

注記＊1：公称値を示す。
＊2：重大事故等時における使用時の値を示す。
（3）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3 ：差込継手の差込部内径及び最小厚さ。
＊ 4 ：エルボを示す。
＊5 ：キャップを示す
＊6：フルカップリングを示す。
（3）主配管（可搬型）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値

注記 $* 1$ ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3 ：主要寸法欄は（ ）内に公称値を示す。

注記＊1 ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3 ：主要寸法欄は（ ）内に公称値を示す。

注記＊1：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3：主要寸法欄は（ ）内に公称値を示す。

注記＊1 ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
$* 3$ ：主要寸法欄は（ ）内に公称値を示す。

注記 $* 1$ ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
＊3：主要寸法欄は（ ）内に公称値を示す。

注記 $* 1$ ：記載の適正化を行う。既工事計画書の「m」を「mm」と記載する。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による
＊3 ：主要寸法欄は（ ）内に公称値を示す。
＊ 4 －鉄を含む厚さ
（6）緊急時対策所遮蔽

注記＊：主要寸法欄は（ ）内に公称値を示す。

6． 4 放射線管理施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 放射線管理施設の共通項目である「1．地盤等，2．自然現象，3．火災， 4．設備に対する要求（4．5 安全弁等，4．6 逆止め弁，4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 放射線管理施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．5 安全弁等，5．6逆止め弁，5．7内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。）， 6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方 針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 $1,2,3$ 号機共用）を設ける設計とする。 出入管理関係設備（第 1 号機設備，第 1,2 号機共用）として，放射線	第2章 個別項目 1．放射線管理施設 1.1 放射線管理用計測装置 発電用原子炉施設には，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備，エリアモニタ リング設備及び放射線サーベイ機器（第 1 号機設備，第 1，2， 3 号機共用）を設ける設計とする。 出入管理関係設備（第 1 号機設備，第 1 ， 2 号機共用）として，放射線

変更前	変更後
業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第1号機設備，第1， 2号機共用），放射能測定室（第 1 号機設備，第 1,2 号機共用（以下同 じ。））に測定機器を設ける設計とする。 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設け る設計とする。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室に表示できる設計とする。 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベ ルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報 （原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を	業務従事者及び一時立入者の出入管理，汚染管理のための測定機器等を設ける設計とする。 各系統の試料，放射性廃棄物の放出管理用試料及び環境試料の化学分析並びに放射能測定を行うため，化学分析室（第1号機設備，第1， 2号機共用），放射能測定室（第 1 号機設備，第 1 ， 2 号機共用（以下同 じ。））に測定機器を設ける設計とする。 発電所外へ放出する放射性物質の濃度，周辺監視区域境界付近の空間線量率等を監視するためにプロセスモニタリング設備，固定式周辺モニ タリング設備及び移動式周辺モニタリング設備を設ける設計とする。ま た，風向，風速その他の気象条件を測定するため，環境測定装置を設け る設計とする。 プロセスモニタリング設備，エリアモニタリング設備及び固定式周辺 モニタリング設備については，設計基準事故時における迅速な対応のた めに必要な情報を中央制御室及び緊急時対策所に表示できる設計とす る。 設計基準対象施設は，発電用原子炉施設の機械又は器具の機能の喪失，誤操作その他の異常により発電用原子炉の運転に著しい支障を及ぼ すおそれが発生した場合（原子炉建屋原子炉棟内の放射能レベルが設定値を超えた場合，主蒸気管又は蒸気式空気抽出器排ガス中の放射能レベ ルが設定値を超えた場合等）に，これらを確実に検出して自動的に警報 （原子炉建屋放射能高，主蒸気管放射能高等）を発信する装置を設ける設計とする。 排気筒の出口又はこれに近接する箇所における排気中の放射性物質 の濃度，管理区域内において人が常時立ち入る場所その他放射線管理を

変更前	変更後
特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける設計とする。 上記の警報を発信する装置は，表示ランプの点灯，ブザー鳴動等によ り運転員に通報できる設計とする。	特に必要とする場所（燃料取扱場所その他の放射線業務従事者に対する放射線障害の防止のための措置を必要とする場所をいう。）の線量当量率及び周辺監視区域に隣接する地域における空間線量率が著しく上昇 した場合に，これらを確実に検出して自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視区域放射能高） を発信する装置を設ける設計とする。 上記の警報を発信する装置は，表示ランプの点灯，ブザー鳴動等によ り運転員に通報できる設計とする。 重大事故等が発生した場合に発電所及びその周辺（発電所の周辺海域 を含む。）において，発電用原子炬施設から放出される放射性物質の濃度及び放射線量を監視し，及び測定し，並びにその結果を記録するため に，移動式周辺モニタリング設備を保管する設計とする。 重大事故等が発生した場合に発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録するために，環境測定装置を保管 する設計とする。 重大事故等が発生し，当該重大事故等に対処するために監視すること が必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒー トシンクの確保及び使用済燃料プールの監視に必要なパラメータを計測する装置を設ける設計とする。 重大事故等が発生し，計測機器（非常用のものを含む。）の故障によ り，当該重大事故等に対処するために監視することが必要なパラメータ を計測することが困難となった場合において，当該パラメータを推定す るために必要なパラメータを計測する設備を設置する設計とする。 重大事故等に対処するために監視することが必要なパラメータは，炉

1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。
原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接 する箇所における排気中の放射性物質の濃度及び排水口又はこれ に近接する箇所における排水中の放射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録する。

変更後

とする。また，記録は必要な容量を保存できる設計とする。
炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータを計測す る装置の電源は，非常用交流電源設備又は非常用直流電源設備の喪失等 により計器電源が喪失した場合において，代替電源設備として常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備を使用できる設計 とする。

1．1．1 プロセスモニタリング設備
通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，原子炉格納容器内の放射性物質の濃度及び線量当量率，主蒸気管中及び空気抽出器その他の蒸気タービン又は復水器に接続す る放射性物質を内包する設備の排ガス中の放射性物質の濃度，排気筒の出口又はこれに近接する箇所における排気中の放射性物質の濃度，排水口近傍における排水中の放射性物質の濃度及び管理区域内において人が常時立ち入る場所その他放射線管理を特に必要と する場所の線量当量率を計測するためのプロセスモニタリング設備を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録し，及び保存することができる設計とする。

原子炉冷却材の放射性物質の濃度，排気筒の出口又はこれに近接 する箇所における排気中の放射性物質の濃度及び排水口又はこれ に近接する箇所における排水中の放射性物質の濃度は，試料採取設備により断続的に試料を採取し分析を行い，測定結果を記録し，及

変更前	変更後
放射性物質により汚染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 プロセスモニタリング設備のうち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を確保 した設計とする。 1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 に必要とする場所の線量当量率を計測するためのエリアモニタリ	び保存する。 放射性物質により汚染するおそれがある管理区域内に開口部が ある排水路を施設しないことから，排水路の出口近傍における排水中の放射性物質の濃度を計測するための設備を設けない設計とす る。 プロセスモニタリング設備のうち，原子炉格納容器内の線量当量率を計測する格納容器内雰囲気放射線モニタ（D／W）及び格納容器内雰囲気放射線モニタ（S／C）は，それぞれ多重性，独立性を確保 した設計とする。 プロセスモニタリング設備のらち，原子炉建屋原子炉棟排気放射線モニタ及び燃料取替エリア放射線モニタは，外部電源が使用でき ない場合においても非常用所内電源系からの電源供給により，線量当量率を計測することができる設計とする。 原子炉格納容器フィルタベント系の排出経路における放射線量率を測定し，放射性物質濃度を推定できるよう，フィルタ装置出口配管にフィルタ装置出口放射線モニタを設ける設計とする。 フィルタ装置出口放射線モニタは，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備から給電が可能な設計とする。 1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所その他放射線管理を特 に必要とする場所の線量当量率を計測するためのエリアモニタリ

	変更前	変更後
$\begin{aligned} & p \\ & \frac{1}{1} \\ & \infty \end{aligned}$	機設備，第1，2，3号機共用（以下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。また，計測結果を記録できる設計とする。	機設備，第 1 ， 2 ， 3 号機共用（以下同じ。））を設け，計測結果を中央制御室で監視し，現場等で記録及び保存を行うことができる設計 とする。また，緊急時対策所でも監視することができる設計とする。 モニタリングポストは，外部電源が使用できない場合において も，非常用交流電源設備により，空間線量率を計測することができ る設計とする。さらに，モニタリングポストは，専用の無停電電源装置を有し，電源切替時の短時間の停電時に電源を供給できる設計 とし，重大事故等が発生した場合には，非常用交流電源設備に加え て，代替電源設備である常設代替交流電源設備から給電できる設計 とする。 モニタリングポストで計測したデータの伝送系は，モニタリング ポスト設置場所から中央制御室及び中央制御室から緊急時対策所建屋間において有線系回線及び無線系回線により多様性を有する設計とする。
	周辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ （第 1 号機設備，第 $1,2,3$ 号機共用（以下同じ。））により断続的 に試料を採取し分析を行い，測定結果を記録できる設計とする。	周辺監視区域境界付近の放射性物質の濃度は，構内ダストモニタ （第1号機設備，第1，2，3号機共用（以下同じ。））により断続的 に試料を採取し分析を行い，測定結果を記録し，及び保存すること ができる設計とする。
	1．1．4 移動式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，周辺監視区域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測	1．1．4 移動式周辺モニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時にお いて，周辺監視区域境界付近の放射性物質の濃度を測定するための移動式周辺モニタリング設備として，空気中の放射性粒子及び放射性よう素の濃度を測定するサンプラと測定器を備えた放射能観測

下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録できる設計とする。

変更後
下同じ。））を設け，計測結果を中央制御室に表示できる設計とする。 また，発電所敷地内における風向及び風速の計測結果を記録し，及 び保存することができる設計とする。

重大事故等が発生した場合に発電所において，風向，風速その他 の気象条件を測定し，及びその結果を記録するための設備として，代替気象観測設備（個数 1 （予備 1））を保管する設計とする。
気象観測設備が機能喪失した場合にその機能を代替する重大事故等対処設備として，代替気象観測設備は，重大事故等が発生した場合に，発電所において，風向，風速その他の気象条件を測定し，及びその結果を記録できる設計とする。

代替気象観測設備の指示値は，衛星系回線により伝送し，緊急時対策所で代替気象観測設備データタ処理装置にて監視できる設計と する。

代替気象観測設備で測定した風向，風速その他の気象条件は，電磁的に記録，保存し，電源震失により保存した記録が失われず，必要な容量を保存できる設計とする。

1．1．6 設備の共用
放射能測定室は，第 1 号機と共用するが，試料の分析等を行らた めに必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。
焼却炉建屋排気ロダストモニタ（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排気口放射線モニタ（第 1 号機設備，第 1，2， 3 号機共用），液体廃宩物処理系排水放射線モニタ（第1，2

1．1．6 設備の共用
放射能測定室は，第 1 号機と共用するが，試料の分析等を行らた めに必要な仕様を満足する設計とすることで，共用により安全性を損なわない設計とする。

焼却炉建屋排気口ダストモニタ（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排気口放射線モニタ（第 1 号機設備，第
1，2， 3 号機共用），液体廃枽物処理系排水放射線モニタ（第 1,2

変更前	変更後
号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1,2,3$号機共用）及びサイトバンカ建屋放射線モニタ（第 1 号機設備，第 1， $2, ~ 3$ 号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。	号機共用），焼却炉建屋放射線モニタ（第 1 号機設備，第 $1, ~ 2, ~ 3$号機共用）及びサイトバンカ建屋放射線モニタ（第1号機設備，第 1，2， 3 号機共用）は，女川原子力発電所共用エリア又は設備にお ける放射線量率等を測定するために必要な仕様を満足する設計と することで，共用により安全性を損なわない設計とする。 モニタリングポスト，構内ダストモニタ，放射能観測車及び気象観測設備は，女川原子力発電所の共通の対象である発電所周辺の放射線等を監視，測定するために必要な仕様を満足する設計とするこ とで，共用により安全性を損なわない設計とする。
2．換気設備，生体遮蔽装置等 2.1 中央制御室の居住性を確保するための防護措置 中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよ ら施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しゃへい壁，2 次しゃへい壁及び補助しゃへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまるため，気体状の	2．換気設備，生体遮蔽装置等 2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置中央制御室は，冷却材喪失等の設計基準事故時に，中央制御室内にと どまり，必要な操作及び措置を行ら運転員が過度の被ばくを受けないよ ら施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室しやへい壁を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室の気密性並びに中央制御室換気空調系，中央制御室しゃへい壁，2 次しゃへい壁及び補助しゃへいの機能とあいまっ て，「原子力発電所中央制御室の居住性に係る被ばく評価手法について （内規）」に基づく被ばく評価により，「核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に示 される 100 mSv を下回る設計とする。 また，運転員その他の従事者が中央制御室にとどまるため，気体状の

変更前	変更後
放射性物質及び中央制御室外の火災等により発生する燃焼がス及び有毒がスに対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。	放射性物質及び中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。 運転員の被ばくの観点から結果が最も厳しくなる重大事故等時にお いても中央制御室に運転員がとどまるために必要な設備を施設し，中央制御室しやへい壁を透過する放射線による線量，中央制御室に取り込ま れた外気による線量及び入退域時の線量が，全面マスク等の着用及び運転員の交替要員体制を考慮し，その実施のための体制を整備すること で，中央制御室の気密性並びに中央制御室換気空調系，中央制御室待避所加圧空気供給系，中央制御室しやへい壁，中央制御室待避所遮蔽， 2次しゃへい壁及び補助しゃへいの機能とあいまって，運転員の実効線量 が 7 日間で 100 mSv を超えない設計とする。炉心の著しい損傷が発生し た場合における居住性に係る被ばく評価では，設計基準事故時の手法を参考にするとともに，炉心の著しい損傷が発生した場合に放出される放射性物質の種類，全交流動力電源喪失時の中央制御室換気空調系の起動遅れ等，炬心の著しい損傷が発生した場合の評価条件を適切に考慮す る。 設計基準事故時及び炬心の著しい損傷が発生した場合において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよう，計測制御系統施設の酸素濃度計（中央制御室用）及び二酸化炭素濃度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を確保できる設計とする。 灲心の著しい損傷後の原子炉格納容器フィルタベント系を作動させ

	変更前	変更後
$\begin{aligned} & i \\ & \stackrel{i}{\dagger} \end{aligned}$		る場合に放出される放射性雲通過時に，運転員の被ばくを低減するた め，中央制御室内に中央制御室待避所を設け，中央制御室待避所には，遮蔽設備として，中央制御室待避所遮蔽を設ける。中央制御室待避所は，中央制御室待避所加圧設備（空気ボン心゙）で正圧化することにより，放射性物質が中央制御室待避所に流入することを一定時間完全に防ぐこ とができる設計とする。 差圧計（中央制御室待避所用）（個数 1 ，計測範囲 $0 \sim 200 \mathrm{~Pa}$ ）により，中央制御室待避所と中央制御室との間が正圧化に必要な差圧が確保で きていることを把握できる設計とする。 炉心の著しい損傷が発生した場合において，原子炉格納施設の非常用 ガス処理系及び原子炉建屋ブローアウトパネル閉止装置により，運転員 の被ばくを低減できる設計とする。 重大事故等が発生し，中央制御室の外側が放射性物質により污染した ような状況下において，運転員が中央制御室の外側から中央制御室に放射性物質による汚染を持込むことを防止するため，身体サーベイ及び作業服の着替え等を行うための区画を設ける設計とし，身体サーベイの結果，運転員の污染が碓認された場合は，運転員の除染を行うことができ る区画を，身体サーベイを行う区画に隣接して設置する設計とする。 中央制御室及び中央制御室待避所内の区画の照明は，可搬型照明（SA） を使用し，身体サーベイ及び作業服の着替え等を行らための区画の照明 は，乾電池内蔵型照明を使用する。 中央制御室送風機，中央制御室排風機及び中央制御室再循環送風機 は，非常用交流電源設備に加えて，常設代替交流電源設備からの給電が可能な設計とする。

変更前	

変更前	
これらのフィルタを内包するフィルタユニットは，フィルタの取替え	

吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。

2．2．1 中央制御室換気空調系
中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。

中央制御室外の火災等により発生する燃焼ガス及び有毒ガスに対し，中央制御室換気空調系の外気との連絡口を遮断し，事故時運転モードに切替えることが可能な設計とする。

中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時には外気との連絡口を遮断し，中央制御室再循環フィルタ装置を通る事故時運転モードとし，運転員を被ばくか ら防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。

変更後
これらのフィルタを内包するフィルタユニットは，フィルタの取替え が容易となるよう取替えに必要な空間を有するとともに，必要に応じて梯子等を設置し，取替えが容易な構造とする。

吸気口は，放射性物質に汚染された空気を吸入し難いように，排気筒， サイトバンカ建屋排気口及び焼却炉建屋排気口から十分離れた位置に設置する。

2．2．1 中央制御室換気空調系
中央制御室の換気及び冷暖房は，中央制御室送風機，中央制御室再循環フィルタ装置，中央制御室再循環送風機，中央制御室排風機等から構成する中央制御室換気空調系により行う。

中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガ ス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替えることが可能な設計とす る。

中央制御室換気空調系は，通常のラインの他，高性能エアフィル タ及びチャコールエアフィルタを内蔵した中央制御室再循環フィ ルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とすること により外気との連絡口を遮断し，中央制御室再循環フィルタ装置入 ロダンパ（A），（B）（V30－D302A，B）を開とすることにより中央制御

2．2．2 原子炉建屋原子炉棟換気空調系

原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。汚染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排風機により排気筒から放出する。

給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなつた場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

2．2．3 タービン建屋換気空調系

タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域

変更後

計にあたつては，緊急時対策所の建物の気密性に対して十分な余裕 を考慮した設計とする。また，緊急時対策所外の火災により発生す る燃焼ガス又はばい煙，有毒ガス及び降下火砕物に対する換気設備 の隔離及びその他の適切に防護するための設備を設ける設計とす る。

緊急時対策所の緊急時対策所換気空調系及び緊急時対策所加圧空気供給系は，基準地震動 S s による地震力に対し，機能を喪失し ないようにするとともに，緊急時対策所の気密性とあいまって緊急時対策所の居住性に係る判断基準を満足する設計とする。

2．2．3 原子炉建屋原子炉棟換気空調系

原子炉建屋原子炉棟換気空調系は，原子炉棟送風機，原子炉棟排風機等で構成し，原子炉建屋原子炉棟の換気を行う。污染の可能性 のある区域は，給•排気量を適切に設定することによって，清浄区域より負圧に保つ。供給された空気は，フィルタを通した後，排風機により排気筒から放出する。

給気及び排気ダクトには，それぞれ 2 個の空気作動の隔離弁を設け，排気ダクトの放射能レベルが高くなった場合等に自動閉鎖 し，本換気空調系から非常用ガス処理系に切り換わることで放射性 ガスの放出を防ぐ設計とする。

2．2．4 タービン建屋換気空調系
タービン建屋換気空調系はタービン建屋送風機，タービン建屋排風機等から構成され，建屋内の空気の流れを適正に保ち，清浄区域

変更前	変更後
2．2．7 サイトバンカ建屋換気空調系 サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第1，2，3号機共用）等で構成する。 サイトバンカ建屋内に供給された空気は，フィルタを通した後，排風機によりサイトバンカ建屋排気口から大気に放出する設計と する。	2．2．8 サイトバンカ建屋換気空調系 サイトバンカ建屋換気系は，サイトバンカ建屋送風機（第 1 号機設備，第 $1,2,3$ 号機共用），サイトバンカ建屋排風機（第 1 号機設備，第1，2，3号機共用）等で構成する。 サイトバンカ建屋内に供給された空気は，フィルタを通した後，排風機によりサイトバンカ建屋排気口から大気に放出する設計と する。
2.3 生体遮蔽装置等	2.3 生体遮蔽装置等
設計基準対象施設は，通常運転時において発電用原子炉施設からの直	設計基準対象施設は，通常運転時において発電用原子炉施設からの直
接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業	接線及びスカイシャイン線による発電所周辺の空間線量率が，放射線業
務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に	務従事者等の放射線障害を防止するために必要な生体遮蔽等を適切に
設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と	設置すること及び発電用原子炉施設と周辺監視区域境界までの距離と
あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減	あいまって，発電所周辺の空間線量率を合理的に達成できる限り低減
し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ	し，周辺監視区域外における線量限度に比べ十分に下回る，空気カーマ
で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする	で年間 $50 \mu \mathrm{~Gy}$ を超えないような遮蔽設計とする。
発電所内における外部放射線による放射線障害を防止する必要があ	発電所内における外部放射線による放射線障害を防止する必要があ
る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作	る場所には，通常運転時の放射線業務従事者等の被ばく線量が適切な作
業管理とあいまって，「核原料物質又は核燃料物質の製錬の事業に関す	業管理とあいまって，「核原料物質又は核燃料物質の製錬の事業に関す
る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設	る規則等の規定に基づく線量限度等を定める告示」を満足できる遮蔽設
計とする。	計とする。
生体遮蔽は，主に原子炉しやへい壁， 1 次しやへい壁（ドライウェル外側壁）， 2 次しゃへい壁（原子炉建屋原子炉棟外壁），補助しゃへい及	生体遮蔽は，主に原子炉しやへい壁， 1 次しやへい壁（ドライウェル外側壁）， 2 次しやへい壁（原子炬建屋原子炉棟外壁），補助しやへい，

変更前	変更後
び中央制御室しゃへい壁から構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止のために，遮蔽性を維持する設計とする。 生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。 －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）～の開口部設置 －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て几等） －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたうえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とす る。 中央制御室しゃへい壁，2次しゃへい壁及び補助しゃへいは，「2．1	中央制御室しやへい壁，中央制御室待避所遮蔽及び緊急時対策所遮蔽か ら構成し，想定する通常運転時，運転時の異常な過渡変化時，設計基準事故時及び重大事故等時に対し，地震時及び地震後においても，発電所周辺の空間線量率の低減及び放射線業務従事者等の放射線障害防止の ために，遮蔽性を維持する設計とする。 生体遮蔽に開口部又は配管その他の貫通部があるものにあっては，必要に応じて次の放射線漏えい防止措置を講じた設計とするとともに，自重，附加荷重及び熱応力に耐える設計とする。 －開口部を設ける場合，人が容易に接近できないような場所（通路の行 き止まり部，高所等）への開口部設置 －貫通部に対する遮蔽補強（スリーブと配管との間隙への遮蔽材の充て ん等） －線源機器と貫通孔との位置関係により，貫通孔から線源機器が直視で きない措置 遮蔽設計は，実効線量が $1.3 \mathrm{mSv} / 3$ 月間を超えるおそれがある区域を管理区域としたらえで，日本電気協会「原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5 ）」の通常運転時の遮蔽設計に基づく設計とす る。 原子炉格納容器フィルタベント系のフィルタ装置等は，原子炉建屋原子炉棟内に設置することにより，フィルタ装置等の周囲には遮蔽壁が設置されることから原子炉格納容器フィルタベント系の使用時に本系統内に蓄積される放射性物質から放出される放射線から作業員を防護す る設計とする。 中央制御室しやへい壁，中央制御室待避所遮蔽，緊急時対策所遮蔽，

	変更前	変更後
	中央制御室の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。	2 次しやへい壁及び補助しゃへいは，「2．1 中央制御室及び緊急時対策所の居住性を確保するための防護措置」に示す居住性に係る判断基準を満足する設計とする。 中央制御室しゃへい壁は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。
$\stackrel{\text { ® }}{ }$	3．主要対象設備 放射線管理施設の対象となる主要な設備について，「表 1 放射線管理施設の主要設備リスト」に示す。	3．主要対象設備 放射線管理施設の対象となる主要な設備について，「表 1 放射線管理施設の主要設備リスト」に示す。

O 2 （6）II R 2

表1放射線管理施設の主要設備リスト（1／4）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1		名称	設計基準対象施設＊		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		$\begin{aligned} & \text { プ } \\ & \text { ㅁ } \\ & \text { セ } \\ & \text { ス } \\ & \text { 王 } \\ & \text { 多 } \\ & \text { 分 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	主蒸気管中の放 射性物質濃度を 計測する装置		主蒸気管放射線モニタ	S	－	－		変更なし			－	
			原子炉格納容器本体内の放射性物質濃度を計測 する装置	格納容器内雰囲気放射線モニタ（D／W）	S	－	－		変更なし			常設耐震／防止常設／緩和	－	
				格納容器内雰囲気放射線モニタ（ S / C ）	S	－	－		変更なし			常設耐震／防止常設／緩和	－	
			放射性物質によ り污染するおそ れがある管理区域から環境に放出する排水中又 は排気中の放射性物質濃度を計測する装置	燃料取替エリア放射線モニタ	S	－	－		変更なし			－		
				原子炉建屋原子炉棟排気放射線モ二タ	S	－	－		変更なし			－		
				気体廃重物処理設備エリア排気放射線モニタ	C	－	－		変更なし			－		
$\begin{aligned} & \text { 楾 } \\ & \text { 究 } \end{aligned}$				－					フィルタ装置出口放射線モニタ		－	常設耐震／防止常設／緩和	－	
計				－					耐圧強化ベント系放射線モニタ		－	常設耐震／防止	－	
咱		エリ緊急時対策所の 線量当量率を計 測する装置		－					緊急時対策所可搬型エリアモニタ	－		可搬／緩和	－	
		モ	使用済燃料貯蔵槽エリアの線量当量率を計測す る装置	燃料交換フロア放射線モニタ	C	－	－		変更なし			－		
		$\begin{aligned} & \text { 少 } \\ & \text { 菏 } \end{aligned}$		－					使用済燃料プール上部空間放射線モニ夕（低線量）	－		常設耐震／防止常設／緩和	－	
		備		－					使用済燃料プール上部空間放射線モニ夕（高線量）	－		常設耐震／防止常設／緩和	－	
			－	モニタリングポスト（第1号機設備，第 $1,2,3$号機共用）	C	－	－		変更なし			－		
				構内ダストモニタ（第1号機設備，第1，2，3号機共用）	C	－	－		変更なし			－		

O 2 （6）II R 2

表1放射線管理施設の主要設備リスト（2／4）

表1放射線管理施設の主要設備リスト（3／4）

	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		管主配	－		中央制御室排風機 \sim 排気口	S	Non			変更なし			常設耐震／防止常設／緩和	SAクラス 2
	$\begin{aligned} & \text { 中 } \\ & \text { 雎 } \end{aligned}$	送		中央制御室送風機	S	－			変更なし			常設耐震／防止常設／緩和	－	
	$\begin{aligned} & \text { 御 } \\ & \text { 換 } \end{aligned}$	機		中央制御室再循環送風機	S	－			変更なし			常設耐震／防止常設／緩和	－	
	空	機排	－	中央制御室排風機	S	－			変更なし			常設耐震／防止常設／緩和	－	
		タフ タ 1 ル	－	中央制御室再循環フィルタ装置	S	－			変更なし			常設耐震／防止常設／緩和	－	
					－				給気口～緊急時対策所非常用送風機		－	常設／緩和	SA クラス 2	
					－				緊急時対策所非常用送風機～緊急時対策所非常用フィルタ装置		－	常設／緩和	SAクラス 2	
					－				緊急時対策所非常用フィルタ装置～緊急対策室及び資機材保管エリア		－	常設／緩和	SA クラス 2	
					－				緊急対策室～資機材保管エリア		－	常設／緩和	SAクラス 2	
	時 対 策	管			－				資機材保管エリア～階段室（北側）（南側）		－	常設／緩和	SAクラス 2	
	換 拭 空				－				資機材保管エリア～出入管理室及び空気ボンべ室		－	常設／緩和	SA クラス 2	
					－				出入管理室～チェンジングエリア		－	常設／緩和	SAクラス 2	
					－				チェンジングエリア $~$ 廊下（1F）		－	常設／緩和	SAクラス 2	
		機送	－		－				緊急時対策所非常用送風機		－	常設／緩和	－	
		タフ 1 1 ル	－		－				緊急時対策所非常用フィルタ装置		－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1放射線管理施設の主要設備リスト（4／4）

$* 2$ ：本設備は記載の適正化のみ義は行うものであり，手続き対象外である。
（2）適用基準及び適用規格

変更前	変更後
－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）（平成 $21 \cdot 07 \cdot 27$ 原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定） - 原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008） - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説	－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和56年7月23日原子力安全委員会決定） －発電用原子炉施設の安全解析に関する気象指針（昭和57年1月28日原子力安全委員会決定） －発電用軽水型原子炬施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全審査における一般公衆の線量評価につい て（平成元年3月27日原子力安全委員会了承） －被ばく計算に用いる放射線エネルギー等について（平成元年 3 月 27 日原子力安全委員会了承） －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規）（平成 $21 \cdot 07 \cdot 27$ 原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定） - 原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008） - 原子力発電所中央制御室運転員の事故時被ばくに関する規程（J E A C $4622-2009)$ - 土木学会 2007 年 コンクリート標準示方書［構造性能照査編］ - 日本建築学会 1979年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説

上記の他「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査がイド」を参照する。
6.5 放射線管理施設に係る工事の方法

変更前	変更後
放射線管理施設に係る工事の方法は，「原子炉本体」における「1．9原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従 ら。	変更なし

7．原子炉格納施設

7.1 原子炉格納容器
（1）原子炉格納容器本体

（前頁からの続き）

注：記載の適正化を行う。既工事計画書の主要寸法及び個数並びに材料のうち「ベント管」，「ベン ト管ベローズ」，「機器搬出入用ハッチ」，「逃がし安全弁搬出入口」，「所員用エアロック」，「制御棒駆動機構搬出入口」及び「サプレッションチェンバ出入口」の記載を削除。
注記 $~ 1 ~$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系，原子炉格納容器フィルタ ベント系，耐圧強化ベント系）及び非常用炉心冷却設備その他原子炉注水設備（高圧炉心スプレイ系，低圧炉心スプレイ系，代替循環冷却系，残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系，原子炉格納容器代替スプレイ冷却系，代替循環冷却系，残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））及び放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガ ス供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器 フィルタベント系）と兼用。
＊3：S I 単位に換算したものである。
＊ 4 ：重大事故等時の使用時の値。
＊5 ：記載の適正化を行う。既工事計画書には「 \％／day」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊7 ：公称値を示す。
＊ 8 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェ ルの基本板厚計算書」による。
＊9 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－5 ドライウェ ル主フランジの強度計算書」による。
＊10：記載の適正化を行う。既工事計画書には「全高」と記載。
＊11：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊12：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－4 ドライウェ ルの強度計算書」による。
＊13：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊ 14 ：記載の適正化を行う。既工事計画書には「断面径」と記載。
＊15：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊16：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－2 サプレッシ ョンチェンバの基本板厚計算書」による。

枠囲みの内容は商業機密の観点から公開できません。
＊17：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－15 ボックスサ ポートの強度計算書」による。
（2）機器搬出入口

								変 更 前	変 更 後
名							称	機器搬出入用ハッチ	変更なし
	高	用	圧			圧	kPa	427＊1	変更なし 854＊2
						圧	kPa	13． $7^{* 1}$	変更なし
最	高	使	用		温	度	${ }^{\circ} \mathrm{C}$	171＊3	$\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$
	内					径	mm	＊5	
＊	胴	板				さ＊6	mm	$]^{* 7}(\square * 5)$	
要	ふ	た	板	厚		さ＊8	mm	$\text {]*7(} \square * 5)$	
$\begin{gathered} \text { 寸 } \\ \text { 法 } \end{gathered}$	ふ	た	板	内	半	径	mm		変更なし
	胴		長			さ	mm	$* 5, * 9$	
材						料	－	SGV49	
個						数	－	2	

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－7 機器搬出入用 ハッチの強度計算書」による。

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8 ：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－8 逃がし安全弁搬出入口の強度計算書」による。

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。

注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8 ：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－9 制御棒駆動機構搬出入口の強度計算書」による。

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
$* 2$ ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（サプレッションチェンバ）を示す。
＊4 ：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－2－2 サプレッショ ンチェンバスリーブの基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「ふた板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（3）エアロック

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「胴板厚」と記載。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－1 ドライウェル の基本板厚計算書」による。
＊8：記載の適正化を行う。既工事計画書には「とびら板厚」と記載。
＊9：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－6 所員用エアロ ックの強度計算書」による。
（4）原子炉格納容器配管貫通部及び電気配線貫通部
a．配管貫通部

変 更 前										変 更 後																				
種 類	個 数	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 力 } \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	個数	$\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材	料	貫通部番 号										
					外径＊${ }^{\text {c }}$	厚さ＊2，＊3	長さ＊1								外径	厚さ	長さ													
1050A 貫通部	4	$427(\mathrm{kPa})$	171	スリーブ	1066.8		$3188 * 7$	SGV49	$\begin{aligned} & \mathrm{X}-10 \mathrm{~A} \\ & \mathrm{X}-10 \mathrm{D} \end{aligned}$	変更なし		変更なし $854(\mathrm{kPa}) * 8$	変更なし 200＊	変更なし																
				短管	1066.8		－	SGV49																						
				ベローズ	1195.0		－	SUS316L																						
			302	端板	1066.8		－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$																		
		$8.62(\mathrm{MPa})^{* 4}$	302	管	609.6	$\square^{* 6}$	－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 変更なし } \\ 315^{* 8} \end{gathered}$																	
		$427(\mathrm{kPa})^{* 4}$	171	スリーブ	1066.8		2669＊7	SGV49	$\begin{aligned} & X-10 B \\ & X-10 C \end{aligned}$			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$	変更なし																
				短管	1066.8		－	SGV49																						
				ベローズ	1195.0		－	SUS316L																						
			302	端板	1066.8		－	SFVC2B				$\begin{gathered} \hline \text { 変更なし } \\ 315 * 8 \end{gathered}$																		
		8． $62(\mathrm{MPa})^{* 4}$	302	管	609.6		－	SFVC2B				$\begin{gathered} \hline \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 変更なし } \\ 315^{* 8} \\ \hline \end{gathered}$																	
900A 貫通部	2	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	914.4		2850 ＊ 7	SGV49	X－12A	変更なし			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	変更なし 200＊8	変更なし						X－12A ${ }^{* 10}$									
				短管	914.4		－	SGV49																						
				ベローズ	1045.0		－	SUS316L																						
			302	端板	914.4		－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 315 * 8, * 9 \end{gathered}$																		
		8． $62(\mathrm{MPa})^{* 4}$	302	管	457.2		－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 9 \end{gathered}$	$\begin{gathered} \hline \text { 変更なし } \\ 315 * 8, ~ * 9 \end{gathered}$																	
		$427(\mathrm{kPa})^{* 4}$	171	スリーブ	914.4		2850＊7	SGV49	X－12B			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	変更なし$200 * 8$	変更なし						X－12B ${ }^{* 12}$										
				短管	914.4	$]^{* 6}$	－	SGV49																						
				ベローズ	1045.0		－	SUS316L																						
			302	端板	914.4	$\square \square^{* 6}$	－	SFVC2B				変更なし $315 * 8, * 11$																		
		8． $62(\mathrm{MPa})^{* 4}$	302	管	457.2		－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 11 \end{gathered}$	$\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 11 \end{aligned}$																	

変 更 前										変 更 後															
種 類	個 数	$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 力 } \end{aligned}$	$\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 温 }{ }^{\text {(}} \text { 度 } \\ & \hline \end{aligned}$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	個 数	$\begin{array}{llll} \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材	料	貫 通 部番 号					
					外径＊${ }^{1}$	厚さ＊2，＊3	長さ＊1								外径	厚さ	長さ								
500A 貫通部	2	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	508.0		$2825 * 7$	STS42	X－36	変更なし		変更なし $854(\mathrm{kPa}) * 8$	変更なし$200 * 8$	変更なし						$\begin{gathered} { }^{* 26} \\ \mathrm{X}-36 \end{gathered}$					
				短管	508.0		－	STS42																	
				ベローズ	604.0		－	SUS316L																	
			302	端板	508.0		－	SFVC2B				$\begin{aligned} & \hline \text { 変更なし } \\ & 315 * 8, * 25 \end{aligned}$													
		8． $62(\mathrm{MPa})^{* 4}$	302	管	114.3	$\square^{* 6}$	－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8, * 25 \end{gathered}$	$\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 25 \end{aligned}$												
		$427(\mathrm{kPa})^{* 4}$	171	スリーブ	508.0		$2815 * 7$	STS42	X－37			変更なし 変更なし $854(\mathrm{kPa}) * 8$ $200{ }^{* 8}$		変更なし											
				短管	508.0		－	STS42																	
				ベローズ	604.0		－	SUS316L																	
			302	端板	508.0	?	－	SFVC2B					変更なし $315 * 8$												
		8． $62(\mathrm{MPa})^{* 4}$	302	管	114.3	$\square^{* 6}$	－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 315 * 8 \\ \hline \end{gathered}$												
450A 貫通部	1	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	457.2		$2584 * 7$	STS42	X－11	変更なし		変更なし 変更なし $854(\mathrm{kPa}) * 8$ $200 * 8$		変更なし											
				短管	457.2		－	STS42																	
				ベローズ	554.0		－	SUS316L																	
			302	端板	457.2		－	SFVC2B					$\begin{gathered} \text { 変更なし } \\ 315 * 8 \\ \hline \end{gathered}$												
		8． $62(\mathrm{MPa})^{* 4}$	302	管	89.1		－	SFVC2B				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 変更なし } \\ 315 * 8 \\ \hline \end{gathered}$												

注記 $* 1$ ：公称値を示す。
$* 2$ ：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す
＊4：S I 単位に換算したものである。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－3 配管貫通部アッセンブリの基本板厚計算書」による。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊8 ：重大事故等時の使用時の値。
＊9 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）に使用する場合の記載事項。
＊ 10 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊11：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（原子炉隔離時冷却系）に使用する場合の記載事項。
＊ 12 ：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炬注水設備（原子炉隔離時冷却系）と兼用。
＊13：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）に使用する場合の記載事項。
＊14：原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）と兼用。
水系）に使用する場合の記載事項。
水系）と兼用。
場合の記載事項。
＊ 18 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧代替注水系，残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系，低圧代替注水系）と兼用
＊19：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）に使用する場合の記載事項。
＊ 20 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊ 21 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプレイ系）に使用する場合の記載事項。
＊22：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（低圧炉心スプレイ系）と兼用。
＊23：原子炉冷却系統施設のうち非常用炉心泠却設備その他原子炉注水設備（高圧炬心スプレイ系，低圧代替注水系）に使用する場合の記載事項。
＊ 24 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（高圧炉心スプレイ系，低圧代替注水系）と兼用。
事項。
＊ 26 ：原子炉冷却系統施設のらち非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系，原子炉隔離時冷却系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
（b）ベローズなし貫通部
［1］直結型

注記 $~ * ~ 1 ~: ~$ 公称値を示す。
：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3：（ ）内は公称値を示す
＊4 ：S I 単位に換算したものである。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
 る。
＊7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊8 ：重大事故等時の使用時の値。
供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
備（原子炉格納容器フィルタベント系），圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
納容器下部注水系，代替循環冷却系，残留熱除去系（格納容器スプレイ冷却モード），残留熱除去系（サプレッションプール水冷却モード））と兼用。
 プレイ伶却モード），残留熱除去系（サブレッションブール水冷却モード））と兼用。
＊ 13 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（残留熱除去系）と兼用。
＊ 14 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（低圧炉心スプレイ系）と兼用。
＊15：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（高圧灲心スプレイ系）と兼用。
＊ 16 ：当該貫通部については，配管貫通部の二重管型とするため配管貫通部の直結型から削除。
＊17：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（サプレッションプール水冷却モード））と兼用。
＊18：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炬注水設備（高圧代替注水系，原子炬隔離時冷却系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
却モード））と兼用。
用。
＊21：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系），圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ冷却モード））と兼用。
＊ 22 ：端板を撤去する
＊23：計測制御系統施設のうち制御材駆動装置の制御棒駆動水圧設備（制御棒駆動水圧系）と兼用。
＊24：当該貫通部については，配管貫通部の計装用であったものを配管貫通部の直結型とするものである
供給系，原子炉格納容器フィルタベント系）及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
［2］二重管型

変 更 前										変 更 後												
種 類	個 数	最高使用圧 力	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	$\begin{aligned} & \text { 個 } \\ & \text { 数 } \end{aligned}$	$\begin{array}{lll} \text { 最 高 使 用 } \\ \text { 圧 } & \text { 力 } \end{array}$	$\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）				貫 通 部番 号			
					外径＊${ }^{1}$	厚さ＊2，＊3	長さ＊1								外径＊${ }^{\text {1 }}$	厚さ＊3	長さ＊1					
450A 貫通部	2	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	457.2		$2793 * 7$	STS42	X－63	変更なし				変更なし								
				端板	457.2	$]^{* 6}$	－	SFVC2B				$854(\mathrm{kPa}) * 8$	200＊8									
		$\begin{array}{\|c\|} \hline * 4 \\ 1.27(\mathrm{MPa}) \\ \hline \end{array}$	171	管	216.3		－	STS42				変更なし	変更なし 200＊8									
		$427(\mathrm{kPa})$	171	スリーブ	457.2		2688＊7	STS42	X－64			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	変更なし $200 * 8$	変更なし								
				端板	457.2	$]^{* 6}$	－	SFVC2B														
		$\begin{array}{\|r\|} \hline * 4 \\ 1.27(\mathrm{MPa}) \\ \hline \end{array}$	171	管	216.3	$\square^{* 6}$	－	STS42				変更なし	$\begin{gathered} \text { 変更なし } \\ 200^{* 8} \\ \hline \end{gathered}$									
400A 貫通部	1	$427(\mathrm{kPa})$	171	スリーブ	406.4	$]^{* 5}$	$2882 * 7$	STS42	X－91＊9	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$	変更なし			2807＊7	変更なし	$\begin{gathered} * 10, * 15, \\ * 16 \\ x-91 \end{gathered}$			
				端板	407.0		－	SGV49				変更なし		${ }^{* 7}{ }^{* 7}$	－	SGV480＊7						
		－										$\begin{gathered} 427(\mathrm{kPa}) \\ 2.06(\mathrm{MPa}) * 8 \end{gathered}$	$\begin{gathered} 171 \\ 200 * 8 \\ \hline \end{gathered}$	管＊7	$60.5 * 7$	${ }^{* 7}$＊7	－	SUS304LTP＊7				
300A 貫通部	3	$427(\mathrm{kPa})$	171	スリーブ	318.5		$2876 * 7$	STS42	X－92＊9	変更なし			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	変更なし$200 * 8$	変更なし			2801＊7	変更なし	$\begin{gathered} * 11 \\ \mathrm{X}-92 \end{gathered}$		
				端板	319.0		－	SGV49				変更なし			318．5＊7	${ }^{* 7}{ }^{* 7}$	－	SFVC2B＊7				
		－										$\begin{gathered} 427(\mathrm{kPa}) \\ 8.54(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} 171 \\ 200^{* 8} \\ \hline \end{gathered}$	管＊7	114． $3^{* 7}$	${ }^{* 7}{ }^{* 7}$	－	STS410＊7				
		$427(\mathrm{kPa})$	171	スリーブ	318.5		$2876 * 7$	STS42	X－93＊9			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$	変更なし			$2751 * 7$	変更なし	変更なし			
				端板	319.0		－	SGV49						変更なし	318．5＊7	$)^{* 7}$	－	SUSF304L＊7				
		－										$\begin{gathered} 427(\mathrm{kPa}) \\ 2.00(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$	$\begin{gathered} 171 \\ 200^{* 8} \\ \hline \end{gathered}$	管＊7	76．3＊7	${ }^{* 7}{ }^{* 7}$	－	SUS304LTP＊7				
		$427(\mathrm{kPa})$	171	スリーブ	318．5＊5		2917＊7	STS42	$X-106 B$			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$	変更なし			2842＊7	変更なし	$\begin{array}{r} * 10, * 15, \\ * 16 \\ \mathrm{X}-106 \mathrm{~B} \end{array}$			
				端板	319．0＊7	$\square^{* 5}$	－	SGV49						変更なし		${ }^{* 7}$＊7	－	SGV480＊7				
		－										$\begin{gathered} 427(\mathrm{kPa}) \\ 2.06(\mathrm{MPa}) * 8 \\ \hline \end{gathered}$	$\begin{gathered} 171 \\ 200^{* 8} \\ \hline \end{gathered}$	管＊7	$60.5 * 7$	${ }^{* 7}{ }^{* 7}$	－	SUS304LTP＊7				
200A 貫通部	1	$427(\mathrm{kPa})$	171	スリーブ	216.3		2549＊7	STS42	X－14	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \\ \hline \end{gathered}$	変更なし								
			302	端板	216.3		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$										
		$10.40(\mathrm{MPa})$	302	管	27.2		－	SUS316LTP				変更なし	$\begin{gathered} \text { 変更なし } \\ 315 * 8 \\ \hline \end{gathered}$									

変 更 前										変 更 後											
種 類	個 数	最高使用 圧 力	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材 料	貫通部番 号	種 類		最 高 使 用 圧 力	最高使用 温 度 $\left({ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材 料	貫 通 部番 号		
					外径＊${ }^{1}$	厚さ＊2，＊3	長さ＊1				数				外径＊${ }^{\text {1 }}$	厚さ＊3	長さ＊1				
150A貫通部	8	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	165.2		$3018 * 7$	STS42	$\begin{aligned} & \mathrm{X}-13 \mathrm{~A} \\ & \mathrm{X}-13 \mathrm{~B} \end{aligned}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 8} \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$	変更なし							
			302	端板	165.2		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$									
		$\begin{array}{r} { }^{* 4} \\ 8.62(\mathrm{MPa}) \\ \hline \end{array}$	302	管	27.2	$\square^{* 6}$	－	SUS316LTP				$\begin{gathered} \text { 変更なし } \\ 10.34(\mathrm{MPa}) * 8 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 315 * 8 \end{gathered}$								
		$427(\mathrm{kPa})$	171	スリーブ	165.2		$2617 * 7$	STS42	X－22			$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 8 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 変更なし } \\ 200^{* 8} \\ \hline \end{array}$	変更なし					X－22 ${ }^{* 14}$		
			302	端板	165.2		－	SUSF316L				$\begin{array}{\|c} \hline \text { 変更なし } \\ 315^{*} 8 \\ \hline \end{array}$									
		$\begin{array}{r} { }^{* 4} \\ 8.62(\mathrm{MPa}) \\ \hline \end{array}$	302	管	48.6		－	SUS316LTP				$\begin{gathered} \text { 変更なし } \\ \text { 10. } 34(\mathrm{MPa}) * 8, * 13 \end{gathered}$	$\begin{aligned} & \text { 変更なし } \\ & 315 * 8, * 13 \end{aligned}$								
		＊ 4		スリーブ	165.2		$2955 * 7$	STS42					変更なし	変更なし							
		427 （kPa）	171	端板	165.2		－	SUSF316L	X－52			$854(\mathrm{kPa}) * 8$	$200 * 8$				なし				
		${ }^{* 4}{ }^{* 4}(\mathrm{kPa})$	171	管	76.3		－	SUS316LTP				変更なし	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$								
		＊ 4		スリーブ	165.2		$2617^{* 7}$	STS42				変更なし	変更なし								
		427 （kPa）	171	端板	165.2		－	SUSF316L	X－71			$854(\mathrm{kPa}) * 8$	200＊8				なし				
		$\begin{gathered} { }^{* 4} \\ 863(\mathrm{kPa}) \end{gathered}$	171	管	60.5	${ }^{* 6}$	－	SUS316LTP		更		変更なし	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \end{gathered}$								
		＊ 4		スリーブ	165.2		$2617 * 7$	STS42				変更なし	変更なし								
		427 （kPa）		端板	165.2		－	SUSF316L	$\begin{aligned} & \mathrm{X}-72 \mathrm{~A} \\ & \mathrm{X}-72 \mathrm{~B} \end{aligned}$			854 （kPa）	200＊8			変更な			$\mathrm{X}-72 \mathrm{~A}$		
		$\begin{array}{r} { }^{* 4} \\ 1.77(\mathrm{MPa}) \end{array}$	171	管	60.5	芷	－	SUS316LTP				変更なし	$\begin{gathered} \text { 変更なし } \\ 200^{* 8} \end{gathered}$						X－72B		
				スリーブ	165.2		$2617 * 7$	STS42				変更なし	変更なし								
		427 （kPa）	171	端板	165.2	$\square^{* 6}$	－	SUSF316L	X－73			$854(\mathrm{kPa}) * 8$	200＊8				なし				
		$\begin{array}{r} * 4 \\ 1.77(\mathrm{MPa}) \\ \hline \end{array}$	171	管	60.5		－	SUS316LTP				変更なし	$\begin{gathered} \text { 変更なし } \\ 200 * 8 \\ \hline \end{gathered}$								

注記＊1 ：公称値を示す。
＊3：（ ）内は公称値を示す。
＊4：S I 単位に換算したものである
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－3 配管貫通部アッセンブリの基本板厚計算書」による。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
$* 8$ ：重大事故等時の使用時の値。
＊9：当該貫通部については，配管貫通部の直結型であったものを配管貫通部の二重管型とするものである。
＊ 10 ：計測制御系統施設のうち制御用空気設備（代替高圧窒素がス供給系）と兼用。
＊11：圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用
＊12：当該貫通部については，電気配線貫通部であったものを配管貫通部の二重管型とするものである。
 （ほう酸水注入系）に使用する場合の記載事項。
 （ほう酸水注入系）と兼用。
＊ 15 ：計測制御系統施設のうち制御用空気設備（高圧窒素ガス供給系）と兼用
＊ 16 ：原子炉冷却系統施設のうち原子炉冷却材の循環設備（主蒸気系）と兼用。
［3］計装用

変 更 前										変 更 後																										
種 類	個数	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	$\begin{aligned} & \text { 個 } \\ & \text { 数 } \end{aligned}$	$\begin{array}{llll} \hline \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構	成	主要寸法（mm）			材 料	貫 通 部番 号																
					外径＊${ }^{1}$	厚さ＊2，＊3	長さ＊1									外径	厚さ	長さ																		
400A 貫通部	23	$427(\mathrm{kPa}) * 4$	171	スリーブ	406.4		2634＊6	STS42	$\begin{array}{\|l\|} \hline \text { X-130A } \\ \text { X-130B } \\ \text { X-130C } \\ \text { X-130D } \\ \text { X-135A } \\ \text { X-135B } \\ \text { X-135C } \\ \text { X-135D } \\ \text { X-139A } \\ \text { X-139B } \\ \text { X-140A } \\ \text { X-140B } \end{array}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 7} \end{gathered}$	変更なし 200＊7	変更なし																						
			302	端板	407.0		－	SUS316L				変更なし $315^{* 7}$																								
			171	スリーブ	406.4		2687＊6	STS42	$\begin{array}{\|l} \hline \text { X-136A } \\ \text { X-136B } \\ \text { X-137B } \\ \text { X-137D } \\ \hline \end{array}$			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$	変更なし																							
			302	端板	407.0		－	SUS316L				$\begin{gathered} \text { 変更なし } \\ 315^{* 7} \\ \hline \end{gathered}$																								
			171	スリーブ	406.4		$2597 * 6$	STS42	$\begin{gathered} \mathrm{X}-137 \mathrm{~A} \\ \mathrm{X}-137 \mathrm{C} \\ \mathrm{X}-138 \end{gathered}$			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$	変更なし																							
			302	端板	407.0		－	SUS316L				$\begin{gathered} \text { 変更なし } \\ 315^{* 7} \\ \hline \end{gathered}$																								
			171	スリーブ	406.4		2877＊6	STS42	X－190A			変更なし 200 ＊7	変更なし																							
				端板	407.0		－	SGV49																												
				スリーブ	406.4		2842＊6	STS42	X－190B			変更なし																								
				端板	407.0		－	SGV49																												
				スリーブ	406.4		2784＊6	STS42	$\begin{aligned} & \mathrm{X}-191 \mathrm{~A} \\ & \mathrm{X}-191 \mathrm{~B} \end{aligned}$			変更なし																								
				端板	407.0		－	SGV49																												
300A	$\begin{aligned} & 7 \\ & \begin{array}{l} 7 \\ \text { (次頁 } \\ \text { へ続 } \\ \text { () } \end{array} \end{aligned}$	$427(\mathrm{kPa})^{* 4}$	171	スリーブ	318.5		$3130 * 6$	STS42	$\begin{aligned} & \mathrm{X}-150 \\ & \mathrm{X}-153 \end{aligned}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$	変更なし$200^{* 7}$	変更なし																						
貫通部				端板	319.0		－	SUS316L																												
（次頁				スリーブ	318.5		$3200 * 6$	STS42	$\begin{aligned} & X-152 A \\ & X-152 C \\ & X-152 D \end{aligned}$	変更なし				変更なし																						
$\begin{aligned} & \text { へ続 } \\ & \text { () } \end{aligned}$				端板	319.0		－	SUS316L																												

変 更 前										変 更 後																						
種 類	個	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 力 } \end{aligned}$	最高使用	構 成	主要寸法（mm）			材 料	$\begin{array}{ll} \text { 貫 通 部 } \\ \text { 番 } & \text { 号 } \end{array}$	種 類		$\begin{array}{lll}\text { 最 高 使 用 } \\ \text { 圧 } & & \\ \text { 力 }\end{array}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	構 成	主要寸法（mm）			材 料	$\begin{array}{ll}\text { 貫 } & \text { 通部 } \\ \text { 番 } & \text { 号 }\end{array}$													
	数		$\left({ }^{\circ} \mathrm{C}\right)$		外径＊${ }^{*}$	厚さ＊2，＊3	長さ＊1				数				外径	厚さ	長さ															
（前頁 からの続き） 貫通部	$\begin{aligned} & \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$	$427(\mathrm{kPa}) * 4$	171	スリーブ	318.5		$3500 * 6$	STS42	X－152B	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$	変更なし $200^{* 7}$	変更なし																		
				端板	319.0		－	SUS316L																								
				スリーブ	318.5		$3686 * 6$	STS42	X－155			変更なし																				
				端板	319.0		－	SUS316L																								
250A 貫通部	2	$\begin{gathered} { }^{* 4, * 8} 427(\mathrm{kPa}) \end{gathered}$	171	スリーブ	267.4		$2542 * 6$	STS42	$\begin{aligned} & X-151 \mathrm{~A} \\ & \mathrm{X}-151 \mathrm{~B} \end{aligned}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7, * 8 \end{gathered}$		変更なし 200＊7	変更なし																	
				端板	267.4	$]^{* 5}$	－	SGV49																								
100A貫通部	14	$427(\mathrm{kPa}) * 4$	171	スリーブ	114.3		3714＊6	STS42	$\begin{gathered} X-131 \\ X-132 A \\ X-132 C \\ X-132 D \end{gathered}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 7 \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \\ \hline \end{gathered}$	変更なし																		
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \hline \text { 変更なし } \\ 315 * 7 \end{gathered}$																				
			171	スリーブ	114.3		$3729 * 6$	STS42	X－132B			$\begin{gathered} \hline \text { 変更なし } \\ 200^{* 7} \end{gathered}$	変更なし																			
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315^{* 7} \\ \hline \end{gathered}$																				
			171	スリーブ	114.3		3099＊6	STS42	$\begin{aligned} & X-133 A \\ & X-133 C \\ & X-133 D \end{aligned}$			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \\ \hline \end{gathered}$	変更なし																			
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \hline \text { 変更なし } \\ 315 * 7 \\ \hline \end{gathered}$																				
			171	スリーブ	114.3		3299＊6	STS42	X－133B			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \\ \hline \end{gathered}$	変更なし																			
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315 * 7 \\ \hline \end{gathered}$																				
			171	スリーブ	114.3	$\square^{* 5}$	2549＊6	STS42	$\begin{aligned} & X-134 A \\ & \text { X-134D } \end{aligned}$			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \\ \hline \end{gathered}$	変更なし																			
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315^{* 7} \\ \hline \end{gathered}$																				
			171	スリーブ	114.3		$2678 * 6$	STS42	$\begin{aligned} & X-134 B \\ & X-134 C \end{aligned}$			$\begin{gathered} \text { 変更なし } \\ 200^{* 7} \end{gathered}$	変更なし																			
			302	端板	115.0		－	SUSF316L				変更なし $315 * 7$																				
			171	スリーブ	114.3	$\square^{* 5}$	2578＊6	STS42	X－154			変更なし $200^{* 7}$																				
			302	端板	115.0		－	SUSF316L				$\begin{gathered} \text { 変更なし } \\ 315^{* 77} \end{gathered}$																				

変 更 前										変 更 後													
種 類		$\begin{aligned} & \text { 最 高 使 用 } \\ & \text { 圧 力 } \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	個 数	$\begin{array}{llll} \hline \text { 最 } & \text { 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & & \text { 力 } \end{array}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）			材 料	$\begin{array}{\|ll} \text { 貫 } & \text { 通 部 } \\ \text { 番 } & \text { 号 } \end{array}$				
	数				外径＊${ }^{*}$	厚さ＊2，＊3	長さ＊1								外径	厚さ	長さ						
40A貫通部	5	$427(\mathrm{kPa}) * 4$	171	スリーブ	48.6		2941＊6	STS42	$\begin{gathered} X-160 \mathrm{~A} \\ \mathrm{X}-160 \mathrm{~B} \\ \mathrm{X}-160 \mathrm{C} \\ \mathrm{X}-160 \mathrm{D} \\ \mathrm{X}-161 \end{gathered}$	変更な		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 7} \end{gathered}$	変更なし 200＊7										
25A貫通部	5	$427(\mathrm{kPa}) * 4$	104	スリーブ	34.0		319＊6	SUS316LTP	$\begin{aligned} & \mathrm{X}-272 \mathrm{~A} \\ & \mathrm{X}-272 \mathrm{C} \\ & \mathrm{X}-272 \mathrm{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$	4	$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 7} \end{gathered}$	変更なし $200 * 7$	変更なし									
		427 （kPa）	104	スリーブ	34.0		$319 * 6$	SUS316LTP	X－280														
				スリーブ	34.0		$344 * 6$	SUS316LTP	X－281			－＊10											
			104	端板	34.0		－	SUSF316L															
20A貫通部	18	$427(\mathrm{kPa}) * 4$	104	スリーブ	27.2		$319 * 6$	SUS316LTP	$\begin{aligned} & \hline X-260 \mathrm{~A} \\ & X-260 \mathrm{~B} \\ & X-261 \mathrm{~A} \\ & X-261 \mathrm{~B} \\ & X-271 \mathrm{~A} \\ & \mathrm{X}-271 \mathrm{~B} \\ & \mathrm{X}-272 \mathrm{~B} \\ & \mathrm{X}-272 \mathrm{D} \\ & \mathrm{X}-272 \mathrm{~F} \\ & \hline \end{aligned}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}){ }^{* 7} \end{gathered}$	変更なし 200＊7	変更なし									
				スリーブ	27.2		$326 * 6$	SUS316LTP	$\begin{gathered} \mathrm{X}-262 \mathrm{~A} \\ \mathrm{X}-262 \mathrm{~B} \\ \mathrm{X}-263 \end{gathered}$			変更なし											
		$863(\mathrm{kPa}) * 4$	104	スリーブ	27.2		$321 * 6$	SUS316LTP	$\begin{aligned} & \text { X-270A } \\ & \text { X-270B } \\ & \text { X-270C } \\ & \text { X-270D } \\ & \text { X-270E } \\ & \text { X-270F } \end{aligned}$			変更なし	変更なし 200＊7	変更なし									

注記 $* 1$ ：公称値を示す。
＊2：記載の適正化を行う。既工事計画書には「呼び厚さ」と記載。
＊3 ：（ ）内は公称値を示す。
＊4 ：S I 単位に換算したものである
$* 5$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による。 ＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊ 7 ：重大事故等時の使用時の値。
＊ 8 ：外圧を示す。
 る。
＊ 10 ：当該貫通部については，配管貫通部の直結型とするため配管貫通部の計装用から削除。
b．電気配線貫通部

				変 更	前								変	更	後										
		最高使用	最高使用			要寸法（mm）			貫通部			最 高 使 用	最高使用			要寸法			貫通部						
種	個 数	圧 力	$\left({ }^{\circ} \mathrm{C}\right)$	構 成	外径＊${ }^{*}$	厚さ＊2	長さ＊1		番 号		個 数	圧 力	$\left({ }^{\circ} \mathrm{C}\right)$	成	外径	厚さ	長さ	＋	番 号						
450A 貫通部	4	$427(\mathrm{kPa})$	171	スリーブ	457． $2^{* 4}$		$2834 * 5$	STS42	$\begin{aligned} & \mathrm{X}-101 \mathrm{~A} \\ & \mathrm{X}-101 \mathrm{~B} \end{aligned}$	変更なし		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa})^{* 6} \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{*} 6 \end{gathered}$	変更なし											
				アダプタ	457．2＊5	$\underbrace{* 5}$ ）	157＊5	STS42																	
				ヘッダ	457． $2^{* 5}$	$\underbrace{* 5} 5$	－	SUS304																	
				$\begin{gathered} \text { パイプ } \\ \text { (ハウジング) } \\ \hline \end{gathered}$	－	－	－	SUS304TB																	
				スリーブ	457． $2^{* 4}$	$\square^{* 4}$	$2776 * 5$	STS42	$\begin{aligned} & X-101 C \\ & \text { X-101D } \end{aligned}$			変更なし													
				アダプタ	457．2＊5	$\underbrace{* 5}$＊5	157＊5	STS42																	
				ヘッダ	457． $2^{* 5}$		－	SUS304																	
				$\begin{gathered} \text { パイプ } \\ \text { (ハウジング) } \end{gathered}$	－	－	－	SUS304TB																	
300A 貫通部	$\begin{aligned} & 24^{* 7} \\ & \text { (次頁 } \\ & \text { ~続 } \\ & \text { () } \end{aligned}$	$427(\mathrm{kPa})$	171	スリーブ	318．5＊4	$\square^{* 4}$	$2560 * 5$	STS42	X－100A	$\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$		$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 6 \end{gathered}$		$\begin{gathered} \text { 変更なし } \\ 200 * 6 \end{gathered}$	変更なし										
				アダプタ	318．5＊5		$155.6 * 5$	STS42																	
				ヘッダ	$381 * 5$		－	SUS304																	
				$\begin{gathered} \text { モジュール } \\ \text { (ボディ/プラグ) } \end{gathered}$	－	－	－	SUS304																	
				スリーブ	318．5＊4	$\boldsymbol{j}^{* 4}$	$2551 * 5$	STS42	$\begin{aligned} & \text { X-100B } \\ & \text { X-102A } \\ & \text { X-102D } \\ & \text { X-104B } \end{aligned}$				変更なし												
				アダプタ	$318.5^{* 5}$	${ }^{* 5}$	$155.6 * 5$	STS42																	
				ヘッダ	$381 * 5$	$\underbrace{* 5}$＊	－	SUS304																	
				$\begin{gathered} \text { モジュール } \\ \text { (ボディノプラグ) } \end{gathered}$	－	－	－	SUS304																	
				スリーブ	318．5＊4	$\begin{aligned} & \mathbf{j}^{* 4} \\ & \mathbf{j}^{*} \\ & \hline \end{aligned}$	$2604 * 5$	STS42	X－100C				変更なし												
				アダプタ	318．5＊5		$155.6{ }^{* 5}$	STS42																	
$\begin{aligned} & \text { (次頁 } \\ & \text { に続 } \\ & (\text {) } \\ & \hline \end{aligned}$				ヘッダ	$381 * 5$		－	SUS304																	
				$\begin{gathered} \text { モジュール } \\ \text { (ボディノプラグ) } \end{gathered}$	－	－	－	SUS304																	

変 更 前										変 更 後											
種 類	個 数	最高使用 圧 力	$\begin{aligned} & \hline \text { 最高使用 } \\ & \text { 温. }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）			材 料	貫 通 部番 号	種 類	個 数	$\begin{array}{lll} \text { 最 高 } & \text { 使 } & \text { 用 } \\ \text { 圧 } & & \text { 力 } \end{array}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	構 成	主要寸法（mm）			材 料	貫通部番 号		
					外径＊${ }^{\text {1 }}$	厚さ＊2	長さ＊1								外径	厚さ	長さ				
$\begin{aligned} & \hline \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$									X－104A	$\begin{aligned} & \text { 変更 } \\ & \text { なし } \end{aligned}$	$\begin{aligned} & \text { (前頁 } \\ & \text { からの } \\ & \text { 続き) } \end{aligned}$	$\begin{gathered} \text { 変更なし } \\ 854(\mathrm{kPa}) * 6 \end{gathered}$		変更なし							
300A 貫通部																					
									X－104C												
									X－105A												
									$\begin{aligned} & X-105 B \\ & X-105 D \end{aligned}$												
									X－105C												
$\begin{aligned} & \text { (次頁 } \\ & \text { に続 } \\ & \text { () } \end{aligned}$																					

：公称値を示す。
＊2（ ）内は公称値を示す。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－2－1 ドライウェルスリーブの基本板厚計算書」による
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊6 ：重大事故等時の使用時の値。
＊7：記載の適正化を行う。既工事計画書には「20」「2」「2」と記載。
＊8：当該貫通部については，配管貫通部の二重管型とするため電気配線貫通部から削除。
 る。

7.2 原子炉建屋

（1）原子炉建屋原子炉棟

					変 更 前	変 更 後
名				称	原子炉建屋原子炉棟 （二次格納施設）	原子炉建屋原子炉棟 （二次格納施設）＊1
種			類	－	鉄筋コンクリート造 （一部鉄骨鉄筋コンクリート造及 び鉄骨造）	
		気	度	\％／d＊2	50 以下 （6． 4 mm Aq の負圧における原子炉建屋原子炉棟容積に対する空気漏えい率）	
主	た	て	横	m	$66.0 \times 53.0^{* 3}$ （地下 3 階面，壁外面寸法）	
要	高		さ	m	地上 35.7 ，地下 28.9	変更なし
	壁	東	壁	mm	$250 \sim 1800 * 3, * 4$	
寸	厚	西	壁	mm	$250 \sim 1800 * 3, * 4$	
		南	壁	mm	$250 \sim 1800 * 3, * 4$	
	c	北	壁	mm	$250 \sim 1800 * 3, * 4$	
材			料	－	鉄筋コンクリート及び鋼材	
個			数	－	1	

注：記載の適正化を行う。既工事計画書の「主要寸法（基礎版厚さ）」の記載を削除。
注記 $* 1$ ：原子炉格納施設のらち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊2 ：記載の適正化を行う。既工事計画書には「 \％／day」と記載。
＊3 ：公称値を示す。
＊4 ：既工事計画書には記載がないため記載の適正化を行う。
（2）機器搬出入口

				変 更 前	変 更 後
名		称		原子炉建屋大物搬入口＊1	原子炉建屋大物搬入口 ${ }^{* 2, * 3}$
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	たて×横		mm	$5400 \times 5500 * 4, * 5$	変更なし
	扉 体 ＊ 6	たて	mm	－	$6230 * 5$
		横	mm	－	6920＊5
個		数	－	1	変更なし
種		類＊6	－	－	片開き扉
材	扉 板		－	－	SS400
$\underset{* 6}{\text { 料 }}$	芯 材		－	－	SM490
取			－	－	－
付	設 置 床		m	－	原子炉建屋 $\text { 0. P. 15. } 00$
箇	溢 水 防護上の区画番号		－	－	－
$\begin{gathered} \text { Р } \\ * 6 \end{gathered}$	溢 水 防 護 上の配慮が必要な高さ		－	－	－

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉格納施設のうち圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊3：浸水防護施設のうち内郭浸水防護設備と兼用する。
＊4 ：躯体開口寸法を示す。
＊5 ：公称値を示す。
＊6：浸水防護施設のうち内郭浸水防護設備に使用する場合の事項を記載。
（3）エアロック

			変 更 前	変 更 後
名	称		原子炉建屋エアロック＊1	原子炉建屋エアロック＊2
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	たて×横	mm	$\begin{gathered} 2000 \times 1000 \\ (\text { 外側 }) \\ 2000 \times 1000 \end{gathered}$ （内側）	変更なし
個	数	－	2	

注記 $~ 1 ~: ~$ 既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：原子炉格納施設のらち圧力低減設備その他の安全設備の放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（非常用ガス処理系，原子炉建屋水素濃度抑制系）と兼用。
＊3 ：躯体開口寸法を示す。
＊ 4 ：公称値を示す。
（4）原子炉建屋基礎スラブ

			変 更 前	変 更 後
名		称	原子炉建屋基礎版＊1	変更なし
種	類	－	鉄筋コンクリート造＊2	
主	た て \times 横	m	77． $0 \times 84.0 * 2, * 4$	
要	高 さ＊3	m	6． $0^{* 4}$	
法	底面の標高	m	0．P．$-14.1 * 2, * 4$	
材	料	－	鉄筋コンクリート＊2	

注記＊1 ：既工事計画書には記載がないため記載の適正化を行う。既工事計画書では原子炉建屋原子炉棟（二次格納施設）に記載。
＊2 ：既工事計画書には記載がないため記載の適正化を行う。記載内容は設計図書による。 ＊3 ：記載の適正化を行う。既工事計画書には「基礎版厚さ」と記載。
＊ 4 ：公称値を示す。

7．3 圧力低減設備その他の安全設備

（1）真空破壊装置

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「呼び径（A）」と記載。
＊3：記載の適正化を行う。既工事計画書には「 \square 」と記載。記載内容は，設計図書による。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：公称値を示す。
（3）ダウンカマ

							変 更 前	変 更 後
名						称	ダウンカマ	
種					類	－	管形	
	高 使	用	圧 力			kPa	427＊1	$\begin{gathered} \text { 変更なし } \\ 854^{* 2} \end{gathered}$
					圧	kPa	13． $7 * 1, * 3$	変更なし
最	高	使	用	温	度	${ }^{\circ} \mathrm{C}$	171	$\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$
主	外				径	mm		
法	厚				さ＊5	mm	$\square * 3 * 4$	変更なし
材					料	－	SGV49	
個					数	－	64	

注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－3－1 ベントヘッダ及びダウンカマの基本板厚計算書」による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
（4）ベント管

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（ドライウェル）を示す。
＊4：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊ 7 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－3 ベント管の基本板厚計算書」による。

							変 更 前	変 更 後
名						称	ベント管ベローズ	
種					類	－	圧力抑制形	
	高 使	用	圧 力			kPa	$427 * 1$	$\begin{gathered} \text { 変更なし } \\ 854^{* 2} \end{gathered}$
						kPa	13． $7^{* 1}$	変更なし
最	高	使	用		度	${ }^{\circ} \mathrm{C}$	104＊3	$\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$
＊ 4	内				径	mm	$\pm * 5$	
$\begin{aligned} & \text { 寸 } \\ & \text { 法 } \end{aligned}$	厚				さ＊6	mm	$]^{* 7}\left(\square{ }^{* 5}\right)$	変更なし
材					料	－	SUS316L	
個					数	－	8	

注：記載の適正化を行う。既工事計画書では原子炉格納容器として記載。
注記 $* 1$ ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3 ：原子炉格納容器の最高使用温度（サプレッションチェンバ）を示す。
＊4 ：記載の適正化を行う。既工事計画書には「主要寸法及び個数」と記載。
＊5 ：公称値を示す。
＊6 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊7：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－1－11 ベント管ベ ローズの強度計算書」による。
（5）ベントヘッダ

								変 更 前	変 更 後
名							称	ベントヘッダ	
種						類	－	円環形	
	高 使	用	圧		内		kPa	427＊1	$\begin{gathered} \text { 変更なし } \\ 854^{* 2} \end{gathered}$
					外		kPa	13． $7 * 1, * 3$	変更なし
最	高	使	用		温	度	${ }^{\circ} \mathrm{C}$	171	$\begin{gathered} \text { 変更なし } \\ 200^{* 2} \end{gathered}$
主	内					径	mm	$\square * 4$	
$\begin{aligned} & \text { 寸 } \\ & \text { 法 } \end{aligned}$	厚					さ＊5	mm	$\square * 3 \square * 4$	変更なし
材						料	－	SGV49	
個						数	－	1	

注記＊1 ：S I 単位に換算したものである。
＊2 ：重大事故等時の使用時の値。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類「IV－3－1－3－1 ベントヘッダ及びダウンカマの基本板厚計算書」による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書には「板厚」と記載。
（6）原子炉格納容器安全設備
a 原子炉格納容器スプレイ冷却系
ヌ 主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{8}{|c|}{変 更 後}

\hline \& 名 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ \& \[
$$
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& | 厚 さ＊2，＊3 |
| :--- |
| （mm） | \& 材 料 \& \& 名 称 \& \[

$$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
$$
\] \& 最高使用

温

$\left({ }^{\circ} \mathrm{C}\right)$ 度 \& \[
$$
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm})
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 \& 料

\hline \& ドライウェルスプレイ管 \& 3． 73 ＊${ }^{\text {a }}$ \& 171 \& 267.4
$267.4^{* 5}$ \& \& STS42
STS42＊5 \& 原
炉
格
蒳

容 \& ドライウェルスプレイ管 ${ }^{* 6}$ \& 変更なし \& $$
\begin{gathered}
\text { 変更なし } \\
200^{* 77}
\end{gathered}
$$ \& \& 変更なし \& \&

\hline $$
\begin{aligned}
& \text { Z } \\
& \text { フo } \\
& \text { L } \\
& \text { 冷 } \\
& \text { 却 }
\end{aligned}
$$ \& サプレッションチェンバスプ

レイ管 \& 3． $73 * 4$ \& 104 \& 114.3
$114.3 * 9$ \& \& STS42

STS42＊9 \& $$
\begin{aligned}
& \text { ス } \\
& \text { プ } \\
& \text { L } \\
& \text { イ } \\
& \text { 冷 } \\
& \text { 却 } \\
& \text { 系 }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { サプレッションチェンバスプ } \\
& \text { レイ管 }
\end{aligned}
$$

\] \& 変更なし \& \[

$$
\begin{gathered}
\text { 変更なし } \\
200^{* 7}
\end{gathered}
$$
\] \& \& 変更なし \& \&

\hline
\end{tabular}

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：記載の適正化を行う。既工事計画書には「板厚」と記載。
＊4：S I 単位に換算したものである。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類「IV－3－1－3－2 ドライウェルスプレイ管の基本板厚計算書」による。
 イ冷却モード））と兼用。
＊7 ：重大事故等時の使用時の値。

[^12]＊ 10 ：原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）及び圧力低減設備その他の安全施設の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ冷却モード））と兼用。
b．原子炉格納容器下部注水系

	変更前	変更後
名 称	－	復水移送ポンプ＊
3．原子炉冷却系統施設 3．7原子炉冷却材補給設備 3．7．2 補給水系 （1）ポンプ に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	代替循環冷却ポンプ＊
7．原子炉格納施設 7.3 圧力低減設備その他の （6）原子炉格納容器安全 d．代替循環冷却系 ハポンプ（常設） に記載する。	備	

注記 \boldsymbol{N}^{2} ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ハ ポンプ（可搬型）

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプI）
2．核燃料物質の取扱施設及 2.4 使用済燃料貯蔵槽冷去 2．4．2 燃料プール代替注 （2）ポンプ（可搬型） に記載する。	施設備	

注記 $~$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

木 容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉泠却系統施設のらち原子炉泠却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

ト 万過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （5）万過装置（常設） に記載する。		

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	E11－F048A＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （6）安全弁及び逃がし弁（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	E11－F084＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系 チ安全弁及び逃がし弁（常設） に記載する。		

注記 \boldsymbol{N}^{2} ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	E11－F085＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系 チ安全弁及び逃がし弁（常設） に記載する。		

注記 \boldsymbol{N}^{2} ：本設備は，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。

又 主配管（常設）

変 更 前									変 更 後						
	名	称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \end{aligned}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称		最高使用圧 力＊3 （MPa）	最 高 使 用温 度＊3 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料
									$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 唯 } \\ & F \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$		3．原子炉冷却系統施設 3.6 非常用灲心泠却設備その他原子炉注水設備 3．6．5 低圧代替注水系 （7）主配管（常設） に記載する。				
												114.3	（6．0）	STS410	
											66	$114.3{ }^{* 7}$	$(6.0){ }^{* 7}$	STS410 ${ }^{* 7}$	
												114.3	（6．0）	STS410	
									原子炉格納容器下部注水系注入配管分岐占		200	$114.3{ }^{* 7}$	$(6.0)^{* 7}$	STS410 ${ }^{* 7}$	
									原子炬格納容器配管貫通部			114.3	$(6.0)^{* 7}$	STS410 ${ }^{* 7}$	
												114.3	（6．0）	STS410	
										(kPa)	200	$\begin{gathered} 114.3 \\ / \\ / \\ 114.3 \end{gathered}$	$\begin{gathered} (6.0) \\ / \\ - \\ / \\ (6.0) \end{gathered}$	STS410	
									原子炉格納容器配管貫通部 (X-92)	7．原子炉格 7.1 原子炋 （4）原 に記載する。	内施設 格納容器 炉格納容器	貫通部及び電	気配線貫通部		

変 更 前									変 更 後								
名		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 力 } \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			最高使用圧 力＊3 （MPa）	最 高 使 用温 度＊3 $\left({ }^{\circ} \mathrm{C}\right)$	$\text { 外 }_{\text {径*1 }}{ }^{*}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料	
									原子炉格納容器配管貫通部 （ $\mathrm{X}-92$ ） 原子炉格納容器下部注水配管開放端			$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	114.3	（6．0）	STS410	
												114.3		(6.0)	STS410		
									原炉格警器部注水系		残留熱除去系ストレー ナ（A） ～ 原子炬格納容器配管貫 通部（X－214A）		3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。				
										原子炉格納容器配管貫通部$(X-214 \mathrm{~A})$		7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。					
				－						$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$		3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。					
										$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 䁵 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$		7．原子炉格納施設 7．3 圧力低減設備その他の安全設備 （6）原子炉格納容器安全設備 d．代替循環冷却系 ヌ 主配管（常設） に記載する。					

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
$* 3$ ：重大事故等時の使用時の値。

 して本工事計画で兼用とする。
計画で兼用とする。
＊7 ：エルボを示す
＊8 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。
$* 9$ ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）として本工事計画で兼用とする。
 とする。
＊11：圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）と兼用。

又 主配管（可搬型）

注記＊1 ：外径は公称値を示す。
＊2：（）内は公称値を示す。
 して本工事計画で兼用とする。
c．原子炉格納容器代替スプレイ冷却系
ハ ポンプ（常設）

	変更前	変更後
名 称	－	復水移送ポンプ＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （1）ポンプ に記載する。		

注記 $*$ ：本設備は，既存の原子炉冷却系統施設のらち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として本工事計画で兼用とする。

ハ ポンプ（可搬型）

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプ I）

注記 $\boldsymbol{*}$ ：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として本工事計画で兼用とする。

木 容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記 $\boldsymbol{*}^{2}$ ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ系）として本工事計画で兼用とする。

ト ろ過装置（可搬型）

	変更前	変更後
名 称	－	可搬型ストレーナ＊
2．核燃料物質の取扱施設及 2.4 使用済燃料貯蔵槽冷却 2．4．3 燃料プールスプレ （6）ろ過装置（可搬型） に記載する。		

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（燃料プールスプレイ系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ冷却系）として本工事計画で兼用とする。

又 主配管（常設）

変 更 前								変 更 後								
名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	${ }^{\text {外 }} \underset{(\mathrm{mm})}{\text { 径 }}{ }^{* 1}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料			名 称	最高使用圧 力＊3 （MPa）	最 高 使 用温 度＊3 （ ${ }^{\circ} \mathrm{C}$ ）	$\text { 外 }_{\text {径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	（INa）								補 給 水 系	復水貯蔵タンク E22-F014	3．原子炉冷却系統施設 3．7原子炬冷却材補給設備 3．7．2 補給水系 （5）主配管 に記載する。					
									E22－F014 補給水よりの第一アンカ 補給水よりの第一アンカ 復水貯蔵タンク出口配管分岐点 復水貯蔵タンク出口配管分岐点 低圧代替注水系吸込配管分岐点	3．原子炉冷却系統施設 3.6 非常用炉心冷却設備その他原子炉注水設備 3．6．1 高圧炉心スプレイ系 （7）主配管（常設） に記載する。						
								低 压 代 替 注 永 系	低圧代替注水系吸込配管分岐点 $\underset{\text { P13－F072 }}{\sim}$ P13－F072 \sim 補給水系配管合流点 $* 6$	3．原子炉冷却系統施設 3.6 非常用炉心泠却設備その他原子炉注水設備 3．6．5 低圧代替注水系 （7）主配管（常設） に記載する。						
								$\begin{aligned} & \text { 補 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$	 補給水系配管合流点 ～4 復水移送ポンプ 復水移送ポンプ ～ 低圧代替注水系注入配管分岐点	3．原子炉冷却系統施設 3．7原子炉冷却材補給設備 3．7．2 補給水系 （5）主配管 に記載する。						
								低 圧 代 替 注 永 系	低圧代替注水系注入配管分岐点 ～6 低圧代替注水系注入配管B系分岐点 ＊6 低圧代替注水系注入配管 B 系分岐点 低圧代替注水系注入配管合流点2	3．原子炉冷却系統施設 3.6 非常用炉心冷却設備その他原子炉注水設備 3．6．5 低圧代替注水系 （7）主配管（常設） に記載する。						

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
$* 3$ ：重大事故等時における使用時の値。
 とする。
却系）として本工事計画で兼用とする。
 て本工事計画で兼用とする。
 する。
＊ 8 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器代替スプレイ泠却系）として本工事計画で兼用とする。
却系）として本工事計画で兼用とする
＊ 10 ：エルボを示す。

又 主配管（可搬型）

注記 $* 1$ ：外径は公称値を示す。
$* 2: ~(~) ~ 内 は ~$
冷却系）として本工事計画で兼用とする。
d．代替循環冷却系
口 熱交換器（常設）

	変更前	変更後
名 称	－	残留熱除去系熱交換器（A）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （2）熱交換器（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。

注記＊1 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：重大事故等時における使用時の値。
＊ 3 ：公称値を示す。

卜 ろ過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （5）万過装置（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のらち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。

注記 $* 1$ ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：公称値を示す。

			変 更 前	変 更 後
名	称		－	E11－F085＊1
種	類	－		平衡型
吹	出 圧 力	MPa		1． 37
吹	出 量	kg／h／個		18410＊2
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	－		25A
	のど部の径	mm		$\square * 2$
	弁 座口 の径	mm		20^{*}
	リフフ	mm		－
材 料	弁 箱	－		SCPH2
駆	動 方 法	－		－
個	数	－		1
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 㯺 } \\ & \text { 虽 } \end{aligned}$	系 ${ }^{\text {（ ラ 統 }}$ 名 ${ }^{\text {名 }}$	－		E11-F085 代替循環冷却系
	設 置 床	－		$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . P .-8.10 \mathrm{~m} \end{aligned}$
	溢 水 防 護 上の区 画 番 号	－		－
	溢 水 防護上の配慮が必要な高さ	－		

注記 $~$ 1 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊2 ：公称値を示す。

	変更前	変更後
名 称	－	E11－F048A，B＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （6）安全弁及び逃がし弁 に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。

又 主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後}

\hline \multicolumn{2}{|r|}{名} \& 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 } \begin{array}{c}
\text { 力 } \\
(\mathrm{MPa})
\end{array}
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ 度 \& \[
$$
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& 材 \& 料 \& \multicolumn{2}{|r|}{名 称} \& \[

$$
\begin{gathered}
\text { 最高使用 } \\
\text { 圧 力*3 } \\
(\mathrm{MPa}) \\
\hline
\end{gathered}
$$

\] \& | 最高使用 |
| :--- |
| 温 度＊3 |
| $\left({ }^{\circ} \mathrm{C}\right)$ | \& \[

$$
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 料

\hline \multirow{7}{*}{} \& \multicolumn{8}{|c|}{\multirow{7}{*}{－}} \& \multirow{7}{*}{代
替
循
環
却
却

系} \& \begin{tabular}{l|l}
残 \&

留 \& 残留熱除去系ストレー

熱 \& ナ（A）

除 \& ～

去 \& 原子炬格納容器配管貫

系 \& 通部 $(\mathrm{X}-214 \mathrm{~A})$

 \& \multicolumn{5}{|l|}{

3．原子炉泠却系統施設 3.5 残留熱除去設備

3．5．1 残留熱除去系

（8）主配管（常設） に記載する。
\end{tabular}}

\hline \& \& \& \& \& \& \& \& \& \& 原子炉格納容器配管貫通部 （ $\mathrm{X}-214 \mathrm{~A}$ ） \& | 7．原子炉格 |
| :--- |
| 7.1 原子炉 |
| （4）原子 |
| に記載する。 | \& | 内施設 |
| :--- |
| 格納容器 |
| 炉格納容器 | \& 貫通部及び \& 配線貫通部 \&

\hline \& \& \& \& \& \& \& \& \& \& \& \multicolumn{5}{|l|}{| 3．原子炉冷却系統施設 3.5 残留熱除去設備 |
| :--- |
| 3．5．1 残留熱除去系 |
| （8）主配管（常設） に記載する。 |}

\hline \& \& \& \& \& \& \& \& \& \& \multirow{4}{*}{| 代替循環椧却系吸込配管分岐点 |
| :--- |
| 代替循環冷却ポンプ |} \& \& \& 267.4 \& （9．3） \& STS410

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& 267．4＊7 \& （9．3）＊7 \& STS410＊7

\hline \& \& \& \& \& \& \& \& \& \& \& 1． 37 \& 186 \& \[
$$
\begin{gathered}
267.4 \\
\text { 267. } 4 \\
/
\end{gathered}
$$

\] \& | (9.3) (9. 3) |
| :--- |
| ／ | \& STS410

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& $$
\begin{gathered}
267.4 \\
/ \\
165.2
\end{gathered}
$$ \& \[

$$
\begin{gathered}
(9.3) \\
\text { /7.1) }
\end{gathered}
$$
\] \& STS410

\hline
\end{tabular}

変 更 前									変 更 後								
名		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			$\begin{gathered} \hline \text { 最 高 使 用 } \\ \text { 圧 力*3 } \\ \text { (MPa) } \\ \hline \end{gathered}$	最高使用 温 度＊3 $\left({ }^{\circ} \mathrm{C}\right)$	$\text { 外 }_{\text {径*1 }}{ }_{(\mathrm{mm})}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
		－							$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \\ & \text { 泠 } \\ & \text { 却 } \end{aligned}$	残 留 熱 除 去 采		3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。					
										戸格納容器配管貫通部 A）	7．原子炉 7.1 原子 （4）原 に記載する	納施設 格納容器 炉格納容器	貫通部及び電	配線貫通部			
									残 留 熱 除 去 系	$* 4$ 原子炉格納容器配管貫通部（X－31A） 原子炉圧力容器	3．原子炬冷 3.5 残留 3．5．1 （8） に記載する。	却系統施設除去設備留熱除去系配管（常設）					

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3 ：重大事故等時における使用時の値。
＊ 4 ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。
＊5：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（代替循環冷却系）として本工事計画で兼用とする。
＊ 6 ：原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替循環冷却系）及び圧力低減設備その他の安全設備の原子炉格納容器安全設備（原子炉格納容器下部注水系）と兼用。
＊ 7 ：エルボを示す。
計画で兼用とする。
 とする。
 で兼用とする。
e．高圧代替注水系
ハ ポンプ（常設）

	変更前	変更後
名 称	－	高圧代替注水系タービンポンプ＊
3．原子炉冷却系統施設 3.6 非常用炉心泠却設備その他原子注水設備 3．6．3 高圧代替注水系 （1）ポンプ（常設） に記載する。		

注記 $\boldsymbol{*}$ ：本設備は，原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備
（高圧代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。

木 容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉泠却系統施設のらち原子炉泠却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。

又 主配管（常設）

変 更 前									変 更 後								
名		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\text { 外 }_{\text {径*1 }}{ }^{*}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
高垈替注水系									$\begin{aligned} & \text { 高 } \\ & \text { 圭 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 采 } \end{aligned}$	原子炉圧力容器 ＊3 原子炉隔離時冷却系 蒸気配管分岐点	3．原子炉冷却系統施設 3.4 原子炉冷却材の循環設備 3．4．1 主蒸気系 （8）主配管 に記載する。					
										$\begin{array}{\|l\|} \hline \text { 原 } \\ \text { 沵 } \\ \text { 塥 } \\ \text { 離 } \\ \text { 時 } \\ \text { 却 } \\ \text { 系 } \end{array}$	原子炉隔離時冷却系蒸気配管分岐点 原子炉格納容器配管貫通部（X－36）	3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．1 原子炉隔離時冷却系 （5）主配管 に記載する。					
										原子炉格納容器配管貫通部 （X－36）		7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。					
				－						$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 哃 } \\ & \text { 離 } \\ & \text { 泠 } \\ & \text { 却 } \end{aligned}$		3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．1 原子炉隔離時冷却系 （5）主配管 に記載する。					
										高 㕍 代 替 注 水 系	高圧代替注水系蒸気入口配管分岐点 高圧代替注水系ター ビンポンプ 高圧代替注水系ター ビンポンプ 原子炉隔離時冷却系 タービン排気配管合流点	3．原子炉冷 3.6 非常 3．6． 3 （7） に記載する	却系統施設炉心冷却設佈圧代替注水采配管（常設）	の他原子炉	設備		

変 更 前									変 更 後								
	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最 高 使 用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
高 代 代 替 注 水 系		－							$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$	＊10 原子炉格納容器配管貫通部（X－12A） 原子炉圧力容器	3．原子炬冷却系統施設 3． 4 原子炉泠却材の循環設備 3． 4.2 復水給水系 （8）主配管 に記載する。					

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材の循環設備（主蒸気系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 ＊5 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 とする。
＊7 ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
計画で兼用とする。
 ＊ 10 ：本設備は，既存の原子炉冷却系統施設のらち原子炉冷却材の循環設備（復水給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
f．低圧代替注水系

	変更前	変更後
名 称	－	復水移送ポンプ＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （1）ポンプ に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

ハポンプ（可搬型）

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプ I）

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のらち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

木 容器（常設）

	変更前	変更後
名 称	－	復水貯蔵タンク＊
3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．2 補給水系 （2）容器 に記載する。		

注記＊：本設備は，既存の原子炉泠却系統施設のらち原子炉泠却材補給設備（補給水系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

又 主配管（常設）

	変 更 前									変更 後							
		名	称		$\begin{gathered} \text { 最高使用温 } \\ { }^{\circ}{ }^{\circ} \mathrm{C} \text { 度 } \end{gathered}$	$\begin{gathered} \text { 外 } \\ \quad \begin{array}{c} \text { 径*1 } \\ (\mathrm{mm}) \end{array} \\ \hline \end{gathered}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材	料	名 称		$\begin{gathered} \hline \text { 最高使用 } \\ \text { 只 } \\ (\mathrm{MPa}) \end{gathered}$		$\text { 外 }_{\substack{\text { 径 }}}^{\text {*1 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材	料
$*$ © ® 0	$\begin{array}{\|l\|l\|} \hline \text { 低 } \\ \text { 岱 } \\ \text { 筫 } \\ \text { 永 } \\ \hline \end{array}$	（								$\begin{aligned} & \text { 低 } \\ & \text { 袋 } \\ & \text { 溻 } \\ & \text { 沝 } \\ & \text { 系 } \end{aligned}$		3．原子炉冷却系統施設 3． 6 非常用炉心冷却設備その他原子炉注水設備 3．6．5低圧代替注水系 （7）主配管（常設） に記載する。					
											3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。						
										原子炬格納容器配管貫通部 （ $\mathrm{X}-31 \mathrm{~A}$ ）	7．原子炬格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。						

＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。
計画で兼用とする。
 とする。
＊6 ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。
＊ 7 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（低圧代替注水系）として本工事計画で兼用とする。

又 主配管（可搬型）

変 更 前									変 更 後								
		$\begin{aligned} & \text { 最高使 用 } \\ & \text { 压 力 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\boldsymbol{l}_{\text {外 }}^{\text {径 }}{ }^{* 1}$	${ }_{\text {厚 }}^{\substack{* 2 \\(\mathrm{~mm})}}$	材 料	個 数	取付箇所		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取付箇所
$\begin{aligned} & \text { 低 } \\ & \text { 圧 } \\ & \text { 代 } \\ & \text { 洗 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	\cdots								$\begin{aligned} & \text { 低 } \\ & \text { 府 } \\ & \text { 代 } \\ & \text { 準 } \\ & \text { 永 } \\ & \text { 系 } \end{aligned}$	取水用ホース $(250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$ ${ }^{* 3}$ 送水用ホース $(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m})$ $*^{* 3}$ 注水用ヘッダ $* 3$ 送水用ホース $(150 \mathrm{~A}: 1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m})$	2．核燃料物質の取扱施設及び貯蔵施設 2.4 使用済燃料貯蔵槽冷却浄化設備 2．4．2 燃料プール代替注水系 （8）主配管（スプレイヘッダを含む。）（可搬型） に記載する。						

注記＊1：外径は公称値を示す。
計画で兼用とする。
g．ほう酸水注入系
ポンプ（常設）

	変更前	変更後
名 称	－	ほう酸水注入系ポンプ＊
4．計測制御系統施設 4．4ほう酸水注入設備 4．4．1 ほう酸水注入系 （1）ポンプ（常設） に記載する。		

注記＊：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

ホ 容器（常設）

	変更前	変更後
名 称	－	ほう酸水注入系貯蔵タンク＊
4．計測制御系統施設 4．4 ほう酸水注入設備 4．4．1 ほう酸水注入系 （2）容器（常設） に記載する。		

注記 $*:$ 本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

于 安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	C41－F003A，B＊
4．計測制御系統施設 4．4ほう酸水注入設備 4．4．1 ほう酸水注入系 （3）安全弁及び逃がし弁（常設） に記載する。		

注記 $*$ ：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	C41－F022＊
4．計測制御系統施設 4．4ほう酸水注入設備 4．4．1 ほう酸水注入系 （3）安全弁及び逃がし弁（常設） に記載する。		

注記 $*$ ：本設備は，既存の計測制御系統施設のらちほう酸水注入設備（ほう酸水注入系） であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。

又 主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊ 3 ：本設備は，既存の計測制御系統施設のうちほう酸水注入設備（ほう酸水注入系）であり，土力低減設作をの他の安全設備の原子炉格納容器安全設佣（ほう酸水注入系）として本工事計画で兼用とする。 ＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（ほう酸水注入系）として本工事計画で兼用とする。
h．残留熱除去系（格納容器スプレイ冷却モード）
口 熱交換器（常設）

	変更前	変更後
名 称	－	残留熱除去系熱交換器（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （2）熱交換器（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

ハ ポンプ（常設）

	変更前	変更後
名 称	－	残留熱除去系ポンプ（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （3）ポンプ（常設） に記載する。		

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

ト 万過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （5）万過装置（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	E11－F048A，B＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （6）安全弁及び逃が に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （格納容器スプレイ冷却モード））として本工事計画で兼用とする。

又 主配管（常設）

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径* }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\left.\begin{array}{\|l\|l}\text { 最高使用 } \\ \text { 圧 } \\ \text { 力 } \\ \text {（MPa）}\end{array}\right)$最高使 用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
			（c）						3．原子炉泠却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。				

	変更 前									変 更 後							
		名	称	最高使用压（MPa）	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { (}{ }^{\circ} \mathrm{C} \text {) } \end{array}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名 称				$\underset{(\mathrm{mm})}{\text { 厚 }}$	材	料
© N 0					\square							3．原子炉冷 3.5 残留熱 3．5． 1 残 （8）主 に記載する。	却系統施設除去設備留熱除去系 ：配管（常設）				
											$\begin{aligned} & \text { 原子炉格納容器配管貫通部 } \\ & \left(\mathrm{X}-304{ }^{*}\right. \end{aligned}$		施設格納容器炬格納容器配	貫通部及び	配線貫通部		

注記 $* 1$ ：外径は公称値を示す
＊2：（ ）内は公称値を示す
 で兼用とする。
＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（格納容器スプレイ椧却モード））として本工事計画で兼用とする。
 イ泠却モード））として本工事計画で兼用とする。
i．残留熱除去系（サプレッションプール水冷却モード）
口 熱交換器（常設）

	変更前	変更後
名 称	－	残留熱除去系熱交換器（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （2）熱交換器（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

ハ ポンプ（常設）

	変更前	変更後
名 称	－	残留熱除去系ポンプ（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （3）ポンプ（常設） に記載する。		

注記＊：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

卜 万過装置（常設）

	変更前	変更後
名 称	－	残留熱除去系ストレーナ（A），（B）＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （5）万過装置（常設） に記載する。		

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

チ 安全弁及び逃がし弁（常設）

	変更前	変更後
名 称	－	E11－F048A，B＊
3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1残留熱除去系 （6）安全弁及び逃が に記載する。		

注記 $~$ ：本設備は，既存の原子炉冷却系統施設のうち残留熱除去設備（残留熱除去系）で あり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系 （サプレッションプール水冷却モード））として本工事計画で兼用とする。

又 主配管（常設）

変 更 前									変 更 後								
	名	称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称				最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\operatorname{lil}_{\text {外 径*1 }}{ }^{(\mathrm{mm})}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料
	（									原子炉格納容器配管貫通部 （ $\mathrm{X}-215 \mathrm{~A}$ ）		7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。					
									$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 涂 } \\ & \text { 采 } \end{aligned}$		3．原子炉冷 3.5 残留熱 3．5．1 残 （8）主 に記載する。	却系統施設除去設備留熱除去系配管（常設）					
										炉格納容器配管貫通部 14B）	7．原子炉格 7.1 原子炉 （4）原子 に記載する。	施設 格納容器 炉格納容器酌	貫通部及び	配線貫通部			
										\square 原子炉格納容器配管貫通部（X－214B） サプレッションチェン バ出口配管B系合流点							
									$\begin{aligned} & \text { 残 } \\ & \text { 爇 } \\ & \text { 除 } \\ & \text { 奚 } \end{aligned}$	サプレッションチェン バ出口配管B系合流点残留熱除去系ポンプ （B）	3．原子炉泠 3.5 残留熱 3．5．1 残 （8）主 に記載する。	却系統施設除去設備留熱除去系配管（常設）					
										残留熱除去系ポンプ （B） 残留熱除去系熱交換器 （B）バイパス配管分岐点							

変 更 前									変 更 後							
	名	称		最 高 使 用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名	称		$\operatorname{lil}_{\text {外 }}^{\text {径*1 }}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
				－						$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 稌 } \\ & \text { 采 } \end{aligned}$	原子炉格納容器配管貫通部（X－215B） ～ サプレッションプール水泠却配管B系開放端	3．原子炉冷却系統施設 3.5 残留熱除去設備 3．5．1 残留熱除去系 （8）主配管（常設） に記載する。				

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
事計画で兼用とする。
＊4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（残留熱除去系（サプレッションプール水冷却モード））として本工事計画で兼用とする。
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環系
a 非常用ガス処理系

注記＊1 ：記載の適正化を行う。既工事計画書では主配管に記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：公称値を示す。
＊4：S I 単位に換算したものである。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－5－1－1 管の強度計算書」による。

又 主要弁（常設）

変 更 前＊1					変 更 後
名	称		T46－F001A，B		変更なし
種	類	－	止め弁		
	高 使 用 圧 力	kPa	－23．5～13．7		
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	100		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び 径	－	300A		
	弁 箱 厚 さ	mm			
	弁 ふ た 厚 さ	mm			
材	弁 箱	－			
料	弁 ふ た	－			
駆	動 方 法	－			
個	数	－			
	$\begin{array}{ccccc} \hline \text { 系 } & & \text { 統 } & & \text { 名 } \\ \left(\begin{array}{l} \text { ラ } \end{array}\right. & \text { イ } & \text { 名 } & \text {) } \\ \hline \end{array}$	－	$\begin{gathered} \text { T46-F001A } \\ \text { 非常用ガス処理系A系 } \end{gathered}$	T46－F001B 非常用ガス処理系B系	
付	設 置 床	－	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O. P. } 33.20 \mathrm{~m} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O. P. } 33.20 \mathrm{~m} \\ & \hline \end{aligned}$	
箇	$\begin{array}{\|lccc} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } \end{array} \text { 上 } \begin{gathered} \text { の } \\ \text { 区 } \end{gathered}$	－			－
所	溢水防護上の配慮 が必要な高さ	－			－

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

枠囲みの内容は商業機密の観点から公開できません。

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

枓囲みの内容は商業機密の観点から公開できません。

ル 主配管（常設）

変 更 前							変 更 後						
	名 称	最高使用 圧 （kPa）		$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	\qquad	材 料		称	最高使用 圧 力 (kPa)	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \\ & \text { 贫 } \\ & \text { ス } \\ & \text { 処 } \\ & \text { 理 } \\ & \text { 采 } \end{aligned}$	T48-F045 非常用ガス処理系空気乾燥装置入口配管合流点	$13.7 * 4$	100	318.5	（10．3）	STS410＊5	$\begin{aligned} & \text { 非 } \\ & \text { 雷 } \\ & \text { 力 } \\ & \text { ス } \\ & \text { 処 } \\ & \text { 理 } \end{aligned}$	変更なし					
	非常用ガス処理系空気乾燥装置入口配管合流点 非常用ガス処理系排風機			－					13．7＊6	100＊6	$\begin{gathered} \hline * 6, * 7 \\ 318.5 \\ \vdots \\ 318.5 \\ / \\ - \end{gathered}$	$\underbrace{* 6, * 7}_{(10.3)}$	STS410
		$13.7 * 4$	100	318.5	（10．3）	STS410＊5					変更なし		
				 -				変更なし	13．7＊6	$100^{* 6}$	3		STS410
											$\begin{aligned} & * 6, * 7, * 8 \\ & 318.5 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (10.3) \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \\ & \hline \end{aligned}$
										140＊6	$\begin{aligned} & * 6, * 7, * 9 \\ & 420.6 \end{aligned}$	$\underbrace{* 6, * 7, * 9}_{(1.2)}$	$\begin{gathered} \quad * 6, * 7 \\ \text { SUS304 } \end{gathered}$
				－					13.7 ＊6	$100^{* 6}$	$\begin{aligned} & * 6, * 7, * 8 \\ & 318.5 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{* 6, * 7, * 8} \\ & (10.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$
		$13.7 * 4$	100	318.5	（10．3）	STS410＊5					変更なし		
	原子炉建屋内 非常用ガス処理系排風機入口配管合流点			－				変更なし	13.7 ＊	100＊6	＊6，＊7 318.5 318.5 318.5		STS410
				－					23.5 ＊6	$140 * 6$	$\begin{aligned} & * 6, * 7, * 9 \\ & 420.6 \end{aligned}$	$\sum_{(1,2)}^{* 6, * 7, * 9}$	$\begin{gathered} * 6, * 7 \\ \text { SUS304 } \\ \hline \end{gathered}$
		23.5 ＊4	140	318.5	（10．3）	STS410＊5					変更なし		
	理系排風機										$\begin{aligned} & * 6, * 7, * 8 \\ & 318.5 \end{aligned}$	$\begin{aligned} & { }^{* 6, * 7, * 8} \\ & (10.3) \\ & \hline \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \\ & \hline \end{aligned}$
	非常用ガス処理系フィルタ装置			－				変更なし	$23.5 * 6$	$140 * 6$	＊6，＊7 318． 5 318.5 318.5		STS410

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & (\mathrm{kPa}) \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
韭常妿不処理系	非常用ガス処理系フィルタ装置 非常用ガス処理系フィルタ装置出口配管合流点	$23.5 * 4$	140	318.5	（10．3）	STS410＊5	$\begin{aligned} & \text { 韭 } \\ & \text { 唃 } \\ & \text { 务 } \\ & \text { 処 } \\ & \text { 理 } \\ & \text { 系 } \end{aligned}$	変更なし	変更なし				
		－							23.5 ＊6	$140^{* 6}$	$* 6, * 7$ 318.5 318.5 318.5	$$	STS410
	非常用ガス処理系フィルタ装置出口配管合流点 排気筒	－						非常用ガス処理系フィルタ装置出口配管合流点 排気筒	変更なし$854 * 6, * 13$	$\begin{aligned} & \text { 変更なし } \\ & 171 * 6, * 13 \end{aligned}$		$\stackrel{* 6, * 7}{(10.3)}$ (10.3) (10.3)	STS410
		$23.5 * 4$	140	318.5	（10．3）	STS410＊5						変更なし	
		－									$\begin{aligned} & \quad * 6, * 7, * 8 \\ & 318.5 \end{aligned}$	$\begin{aligned} & * 6, * 7, * 8 \\ & (10.3) \end{aligned}$	$\begin{aligned} & \quad * 6, * 7, * 8 \\ & \text { STS410 } \end{aligned}$
	非常用ガス処理系空気乾燥装置	$13.7 * 4$	140	$\frac{318.5}{\substack{\text { 角形 } \\ 1300 \mathrm{~W} \times 1700 \mathrm{H}}}$		SUS304 SUS304		－＊15					
	非常用ガス処理系フィルタ装置	23.5 ＊4	140	318.5角形 $1600 \mathrm{~W} \times 1800 \mathrm{H}$		SUS304 SUS304		－＊15					

注記＊1 ：外径は公称値を示す。

＊2 ：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「原子炉格納容器調気系から非常用ガス処理系空気乾燥装置まで（空気乾燥装置入口配管）」と記載。
＊4：S I 単位に換算したものである。
＊5：記載の適正化を行う。既工事計画書には「STS42」と記載。
＊6：重大事故等クラス2配管に使用する場合の記載事項。
＊7 ：本設備は既存の設備である。
＊ 8 ：エルボを示す。
＊9 ：伸縮継手部の外径及び厚さ。
＊ 10 ：記載の適正化を行う。既工事計画書には「原子炉建屋内から空気乾燥装置入口配管まで」と記載。
＊11：記載の適正化を行う。既工事計画書には「非常用ガス処理系フィルタ装置から排気筒まで」と記載。
＊ 12 ：原子炉冷却系統施設のらち残留熱除去設備（耐圧強化ベント系）と兼用。
$* 13$ ：重大事故等時の使用時の値。
＊14：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－5－1－1 管の強度計算書」による。
＊15：記載の適正化を行う。本設備は設計基準対象施設として工事計画書の記載範囲外である。

ヨ 排風機（常設）

注記＊1：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。

注：記載の適正化を行う。既工事計画書には「放射線管理設備のうち換気設備」に記載。
注記＊1 ：記載の適正化を行う。既工事計画書には「非常用ガス処理系フィルタ」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「能力」と記載。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：公称値を示す。
＊5 ：記載の適正化を行う。既工事計画書では主配管に記載。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－3－5－1－1 管の強度計算書」による。
b．可燃性ガス濃度制御系

注記 $* 1$ ：記載の適正化を行ら。既工事計画書には「能力／容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書では主配管に記載。
＊5 ：S I 単位に換算したものである。
＊6：記載の適正化を行う。既工事計画書には「能力／個数」と記載。

リ＜全开及び逃がし升（常			変 更 前＊1	変更後
名		称	T49－F007A，B	変更なし
種	類	－	平衡型	
吹	出 圧 力	kPa	196	
吹	出 量	kg／h／個	$4223 * 2$	
主要寸法	呼び径	－	25A	
	のど部の径	mm	＊2	
	弁座口の径	mm	$24^{* 2}$	
	リフフ	mm		
材 料	弁 箱	－	SCPH2	
駆	動 方 法	－	－	
個	数	－	2	
取付䈯所		－	T49－F007A，B 可燃性ガス濃度制御系	
	設 置 床	－	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0. P. -8. } 10 \mathrm{~m} \end{aligned}$	
	$\begin{array}{lcccc} \hline \text { 溢 } & \text { 水 } & \text { 防 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。 ＊2 ：公称値を示す。

注記＊ 1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載
＊2 ：記載の適正化を行う。既工事計画書には「F001A，B」と記載。記載内容は，設計図書による
＊3 ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「100」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003A，B」と記載。記載内容は，設計図書による
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「150」と記載。記載内容は，設計図書による。
＊6：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

ル 主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：記載の適正化を行う
＊ 4 ：S I 単位に換算したものである
＊5 ：記載の適正化を行う。既工事計画書には「STS42」と記載
＊6：記載の適正化を行う。既工事計画書には「再結合装置冷却器からサプレッションチェンバまで（再結合装置冷却器出口配管）」と記載。

ヲ ブロワ（常設）

注記＊1 ：記載の適正化を行う。既工事計画書には「能力／容量」と記載。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：公称値を示す。
＊ 4 ：記載の適正化を行う。既工事計画書には「能力／個数」と記載。

ワ 再結合装置（常設）

（次頁へ続く）
（前頁からの続き）

注記＊1 ：記載の適正化を行う。既工事計画書には「能力／容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊3 ：公称値を示す
＊4：記載の適正化を行ら。既工事計画書では主配管に記載。
＊5：S I 単位に換算したものである。
＊6 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「第4－1－2図 可燃性がス濃度制御系再結合装置構造図」による。
＊7：記載の適正化を行う。既工事計画書には「能力／個数」と記載。
＊8 ：（ ）内は公称値を示す。
＊9：記載の適正化を行う。既工事計画書には「ドライウェルから可燃性ガス濃度制御系再結合装置ブロワまで（再結合装置ブロワ入口配管）」と記載
＊ 10 ：記載の適正化を行う。既工事計画書には「可燃性ガス濃度制御系再結合装置ブロワから可燃性ガス濃度制御系再結合装置冷却器まで」と記載。
＊11：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－2－1－1－1 管の基本板厚計算書」による。
＊ 12 ：記載の適正化を行う。既工事計画書には「再結合装置冷却器からサプレッションチェンバまで（再結合装置冷却器出口配管）」と記載。
＊ 13 ：記載の適正化を行う。既工事計画書には「再結合装置冷却器出口配管から再結合装置ブロワ入口配管まで」と記載。
c．原子炉建屋水素濃度抑制系
ワ 再結合装置（常設）

注記＊1：重大事故等時における使用時の値。
＊2 ：水素処理容量を示す。メーカ型式 PAR－88の性能評価式の代表点での値にスケールファ クタを乗じた値。
＊3 ：公称値を示す。
d．放射性物質拡散抑制系

（次頁へ続く）
（前頁からの続き）

						変更前	変 更 後
原 動 機	種			類	－	－	ディーゼルエンジン
	出			力	kW／個		1193
	個			数	－		ポンプと同じ
	取	付	箇	所	－		

注記＊1 ：核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備（放射性物質拡散抑制系），原子炉冷却系統施設のうち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系），放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））と兼用。
＊2 ：重大事故等時における使用時の値。
＊3：本系統及び核燃料物質の取扱施設及び貯蔵施設のうち使用済燃料貯蔵槽冷却浄化設備 （放射性物質拡散抑制系）で使用する場合の値を示す。
＊ 4 ：原子炉冷却系統施設のらち非常用炉心冷却設備その他原子炉注水設備（代替水源移送系）で使用する場合の値を示す。
＊5 ：放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））で使用する場合の値を示す。

ル 主配管（可搬型）

注記 $* 1$ ：外径は公称値を示す。
 に格納容器再循環設備（放射性物質拡散抑制系）として本工事計画で兼用とする。
機燃料火災への泡消火））と兼用する。
＊5 ：放水砲寸法（公称値）：たて 4680.5 mm ，横 1920 mm ，高さ 2185 mm
＊6：重大事故等時における使用時の値。
e．放射性物質拡散抑制系（航空機燃料火災への泡消火）
ハポンプ（可搬型）

		変更前	変更後
名	称	－	大容量送水ポンプ（タイプII）
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 d．放射性物質拡散抑制系 ハポンプ（可搬型） に記載する。			

注記＊：本設備は，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。

ル 主配管（可搬型）

変 更 前									変 更 後								
		$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { (MPa) } \end{array} \text { 力 } \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取付箇所		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径* }{ }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料	個 数	取付箇所
	－								放 射 性 物 䍗 撒 抑 抑 製 航 空 㶼 料 炎 の 泡 消 炎	取水用ホース （250A ：5m，10m，20m） 送水用ホース （300A ：2m，5m，10m，20m，50m） 放水砲	2．核燃料物質の取扱施設及び貯蔵施設 2．4 使用済燃料貯蔵槽冷却浄化設備 2．4． 2 燃料プール代替注水系 （8）主配管（スプレイヘッダを含む。）（可搬型） に記載する。						

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 に格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（放射性物質拡散抑制系（航空機燃料火災への泡消火））として本工事計画で兼用とする。
f．可搬型窒素ガス供給系
二 圧縮機（可搬型）

注記 $~$ 1 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系），並びに圧力低減設備その他の安全設備のらち放射性物質濃度制御設備及 び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィ ルタベント系），及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊2：重大事故等時における使用時の値。
＊3 ：公称値を示す。

ル 主配管（常設）

変更前								変更 後						
	名	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力 } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	$\substack{\left.\text { 最高使用 } \\ \text { 温度 } \\ \text {（ }{ }^{\circ} \mathrm{C}\right)}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { (kPa) } \\ (\mathrm{kPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 最高使用 } \\ \text { 温 }{ }^{\circ}{ }^{\circ} \mathrm{C} \text { * }{ }^{\circ} \end{gathered}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚 さ*2 (mm)	
	－								可搬型空素ガス供給装置接続口（屋外） T48－F011入口側合流点	854	66	60.5	（5．5）	STS410
								60.5				(5.5)	STS410 ${ }^{* 5}$	
								$\begin{gathered} 60.5 \\ \text { / } \\ 60.5 \\ \text { 60.5 } \\ \hline \end{gathered}$				$\begin{gathered} (5.5) \\ \prime \\ (5.5) \\ \prime \\ (5.5) \\ \hline \end{gathered}$	STS410	
								$\begin{gathered} 60.5 \\ / \\ 60.5 \\ / \end{gathered}$				$\begin{gathered} (5.5) \\ \vdots \\ (5.5) \\ / \\ - \end{gathered}$	STS410	
								$\begin{gathered} 61.1^{* 6} \\ / \\ / \\ 61.1^{* 6} \end{gathered}$				${ }^{6.1)^{* 6}}$	S25c	
								854		200	60.5	（5．5）	STS410	
								可搬型窒素がス供給装置接続口（屋内） ドライウェル窒素供給配管合流点	854	66	60.5	（5．5）	STS410	
								60.5			$(5.5){ }^{* 5}$	${ }^{*}{ }^{*}{ }^{*}$		
								ドライウェル窒素供給配管分岐点2 原子炉格納容器配管貫通部（X－281） （次頁へ続く）	854	66	60.5	（5．5）	STS410	
								$60.5^{* 5}$			$(5.5){ }^{* 5}$	STS410 ${ }^{* 5}$		
								$\begin{gathered} 60.5 \\ / \\ 60.5 \\ / \end{gathered}$			$\begin{gathered} (5.5) \\ / \\ (5.5) \\ / \\ \hline \end{gathered}$	STS410		

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3：重大事故等時における使用時の値。
納容器フィルタベント系），及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用
＊5 ：エルボを示す。
＊6 ：差込継手の差込部内径及び最小厚さ
計画で兼用とする。
器再循環設備（可搬型窒素ガス供給系）として本工事計画で兼用とする。

ル 主配管（可搬型）

変 更 前								変 更 後								
名称	最高使用 圧力 （kPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	厚さ＊2 （mm）	材料	個数	取付 箇所	名 称		$\begin{gathered} \text { 最高使 用 } \\ \text { 圧 力 } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	最 高 使 用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料	個 数	取 付 箇 所
可 搬 型 窒 素 ガ ス 供 給 系	（1）							可搬型室素ガス供給系	窒素供給用ホース （50A：5m）	854	50	$61.5 * 4$	$\begin{aligned} & \hline \\ & \hline(0.3) \end{aligned}$	SUS304	$\begin{gathered} 18^{* 5} \\ (\text { (予備1) } \end{gathered}$	保管場所： - 第1保管エリア 屋外 O．P．約62m - 第 4 保管エリア 屋外 O．P．約62m 予備を含めた19本を第1保管エリアに18本及び第4保管エリアに1本保管する。 取付場所：
								窒素供給用ヘッダ ${ }^{* 3}$	854	50	60.5 114.3	（5．5） （6． 0$)$	STPG370	$\begin{gathered} 1 \\ \left(\begin{array}{c} \text { 予備1) } \end{array}\right. \end{gathered}$	保管場所： - 第1保管エリア 屋外 O．P．約 62 m - 第 4 保管エリア 屋外 O．P．約 62 m 予備を含めた 2 個を第 1 保管エリアに 1 個及び第4保管エリアに1個保管する。 取付場所： －屋外 0．P．約14．8m原子炉建屋付近	
								可搬型窒素ガス供給装置接続管	854	50	60.5	（5．5）	STPG370	$\begin{gathered} 1 \\ \left(\begin{array}{c} \text { 予備1) } \end{array}\right. \end{gathered}$	保管場所： - 第1保管エリア 屋外 O．P．約62m - 第 4 保管エリア 屋外 O．P．約 62 m 予備を含めた2個を第1保管エリアに1個及び第4保管エリアに1個保管する。 取付場所： －可搬型窒素ガス供給装置接続口 （屋外）又は可搬型窒素ガス供給装置接続口（屋内）	

注記＊1 ：外径は公称値を示す。
納容器フィルタベント系），及び圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用
＊4：伸縮継手部の外径及び厚さ。
＊5：必要本数 18 本（ $5 \mathrm{~m}: 18$ 本）を 1 セットに予備 1 本の数量を示す。
g．原子炉格納容器フィルタベント系 ハポンプ（可搬型）

	変更前	変更後
名 称	－	大容量送水ポンプ（タイプI）

注記＊：本設備は，核燃料物質の取扱施設及び貯蔵施設のらち使用済燃料貯蔵槽冷却浄化設備（燃料プール代替注水系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

二 圧縮機（可搬型）

		変更前	変更後
名	称	－	
7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 f．可搬型窒素ガス供給系二圧縮機（可搬型） に記載する。			

注記＊：本設備は，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガス供給系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
～容器（常設）

	変更前	変更後
名 称	－	フィルタ装置＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系 イ 容器（常設） に記載する。		

注記 $*: ~$ 本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

＊2 ：公称値を示す。

又 主要弁（常設）

	変更前	変更後
名 称	-	$\mathrm{T} 48-\mathrm{F} 019^{*}$
7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （8）原子炉格納容器調気設備 a．原子炉格納容器調気系 ニ主要弁		
に記載する。		

注記 $*$ ：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T48－F022＊
7．原子炉格納施設 7.3 圧力低減設備その他 （8）原子炉格納容器調気 a．原子炉格納容器調二主要弁 に記載する。	備	

注記 $~$ ：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T63－F001＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系口 主要弁（常設） に記載する。		

注記＊：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T63－F002＊
7．原子炉格納施設 7． 3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系口 主要弁（常設） に記載する。		

注記＊：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。

ル 主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
 して本工事計画で兼用とする。
器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

ル 主配管（可搬型）

注記 $* 1$ ：外径は公称値を示す。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
 に格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。

タ フィルター（常設）

	変更前	変更後
名 称	－	フィルタ装置＊
7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系 へフィルター（常設） に記載する。		

注記 $*$ ：本設備は，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フ イルタベント系）であり，圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フ イルタベント系）として本工事計画で兼用とする。
（8）原子炉格納容器調気設備
a．原子炉格納容器調気系
二 主要弁

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F001」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

－$\sim$$=$（0）00				変 更 前	変 更 後
	名		尔 ${ }^{1}$	T48－F002＊2	変更なし
	種	類	－	止め弁	
	最	高 使 用 圧 力	kPa	$427 * 3$	
	最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 3$	
	主	呼 び 径	－＊4	$600 A^{* 5}$	
	要	弁 箱 厚 さ	mm	$7_{* 3}$	
	法	弁 ふ た 厚 さ	mm	＊3	
	材	弁 箱	－	SCPH2	
	料	弁 ふ た	－	S25C＊3	
	駆	動 方 法	－	空気作動	
	個	数	－	1	
	取付箇所	系 $($ ラ イ	－	T48－F002 原子炉格納容器調気系	
		設 置 床	－	原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$	
		溢 水 防 護 上の区 画 番 号溢水防護上の配慮 が必要な高さ	－ -	－	－

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F002」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F003」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F010」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

			変 更 前	変 更 後
名		称＊${ }^{*}$	T48－F011＊2	変更なし
種	類	－	止め弁	
	高 使 用 圧 力	kPa	427＊3	
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171^{* 3}$	
主	呼 び 径	—＊4	$50 \mathrm{~A}^{* 5}$	
要	弁 箱 厚 さ	mm		
法	弁 ふ た 厚 さ	mm		
材	弁 箱	－	S25C	変更なし
料	弁 ふ た	－	S25C	亦更なし
駆	動 方 法	－	空気作動	電気作動
個	数	－	1	変更なし
取	$\begin{gathered} \text { 系 } \\ (\text { ラ イ 統 } \\ \text { ラ 名 } \end{gathered} \text { 名 }$	－	T48-F011 原子炉格納容器調気系	変更なし
付	設 置 床	－	原子炉建屋 $\text { 0. P. }-8.10 \mathrm{~m}$	
所	溢 水 防 護 上 の区 画 番 号溢水防護上の配慮 が必要な高さ	－ -	－	－

注記＊1：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F011」と記載。記載内容は，設計図書による。
＊ 3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

$\sim$$=1$（c）$\sim$0				変 更 前	変 更 後
	名		称 ${ }^{1}$	T48－F012＊2	変更なし
	種	類	－	止め弁	
	最	高 使 用 圧 力	kPa	427＊3	
	最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	171 ＊3	
	主	呼び 径	－＊4	$50 A^{* 5}$	
	要	弁 箱 厚 d	mm		
	法	弁 ふ た 厚 さ	mm		
	材	弁 箱	－	S25C	
	料	弁 ふ た	－	S25C	
	駆	動 方 法	－	空気作動	
	個	数	－	1	
	取付箇所	$\begin{array}{ccc} \text { 系 } & \text { 統 } & \text { 名 } \\ (\text { ラ イ ン 名 } \end{array}$	－	T48－F012 原子炉格納容器調気系	
		設 置 床	－	原子炉建屋 0．P．-8.10 m	
		溢 水 防 護 上 の区 画 番 号溢水防護上の配慮 が必要な高さ	－ -	－	－

注記＊ 1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F012」と記載。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「50」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F016」と記載。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5：記載の適正化を行う。既工事計画書には「450」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F019」と記載。記載内容は，設計図書による。
＊3 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及 び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系） と兼用。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 5 ：重大事故等時における使用時の値。
＊6 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「 $600 」$ と記載。記載内容は，設計図書による。
＊ 8 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F020」と記載。記載内容は，設計図書による。
＊3 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「300」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記 $~ 1 ~: ~$ 記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F021」と記載。記載内容は，設計図書による。
＊3：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊5 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊ 6 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊ 7 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

			変 更 前	変 更 後
名	称＊1		T48－F022＊2	T48－F022＊3
種	類	－	止め弁	変更なし
	高 使 用 圧 力	kPa	427＊4	$\begin{gathered} \text { 変更なし } \\ 854^{* 5} \end{gathered}$
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	$171 * 4$	$\begin{gathered} \text { 変更なし } \\ 200 * 5 \end{gathered}$
主要法	呼び径	—＊6	$600 A^{* 7}$	変更なし
	弁 箱 厚 さ	mm	＊ 4	
	弁ふた厚 さ	mm	＊ 4	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2	変更なし
	弁 ふ た	－	S25C＊4	
駆	動 方 法	－	空気作動	電気作動／遠隔手動
個	数	－	1	変更なし
取 付 箇 所	系 $($ ラ イ	－	T48-F022 原子炉格納容器調気系	
	設 置 床	－	原子炉建屋 O．P．-8.10 m	
	$\begin{array}{ccccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	R－B3F－10
	溢水防護上の配慮 が必要な高さ	－		床上 6.40 m 以上

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F022」と記載。記載内容は，設計図書による。
＊3 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及 び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系） と兼用。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 5 ：重大事故等時における使用時の値。
＊6 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊ 7 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊ 8 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F004A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊ 6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

注記＊1 ：記載の適正化を行う。既工事計画書には「名称又は弁番号」と記載。
＊2 ：記載の適正化を行う。既工事計画書には「F005A，B」と記載。記載内容は，設計図書によ る。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊ 4 ：記載の適正化を行う。既工事計画書には「（呼び径 A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「600」と記載。記載内容は，設計図書による。
＊6 ：記載の適正化を行う。既工事計画書には「原子炉格納容器外」と記載。記載内容は，設計図書による。
＊7 ：記載の適正化を行う。本設備は設計基準対象施設として工事計画の記載範囲外である。

ホ 主配管

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(k P a)}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	厚 さ＊2	材 料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \quad \text { 力 } \\ & (\mathrm{kPa}) \\ & \hline \end{aligned}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
	T48-F001 T48－F002出口側合流点	427 ＊4	171			SM41C SM41C SM41C $^{* 6}$ SM41C	変更なし						
	T48－F002出口側合流点 ～ 原子炉格納容器配管貫通部 $(X-80)$	427 ＊4	171	$61.1^{* 7}$ 609.6	$(6.1)^{* 7}$ $* 5(9.5)$	S25C SM41C		T48－F002出口側合流点 ＊8 原子炉格納容器配管貫通部 $(X-80)$	$\begin{gathered} \text { 変更なし } \\ 854^{* 9} \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{* 9} 9 \end{gathered}$	変更なし		
	ドライウェル入口配管分岐点サプレッションチェンバ		171	$\begin{array}{lc} \hline 609.6 \\ { }^{*} 66 \\ 609.6 & \\ \hline \end{array}$	${ }^{* 5}{ }^{(9.5)}{ }^{* 5}(9.5)$			ドライウェル入口配管分岐点サプレッションチェンバ	変更なし		変更なし		
				609.6	＊5（9．5）	SM41C					変更なし	（31．0）	SM400C
		427 ＊4	104	$\begin{gathered} \text { 609. } 6 \\ \text { 609. } 6 \\ \vdots \\ \text { 609. } 6 \end{gathered}$		SM41C					変更なし	(31.0) (31.0) \prime (31.0)	SM400C
				$609.6{ }^{* 6}$	${ }^{* 5}(9.5){ }^{* 6}$	SM41C					$\text { 変更なし }{ }^{* 11}$	$\begin{array}{\|c\|} \hline{ }^{* 11} \\ (31.0) \\ \hline \end{array}$	$\text { SM400C }{ }^{* 11}$
	原子炉建屋内 サプレッションチェンバ入口 配管合流点1	427 ＊4	104	609.6	＊5（9．5）	SM41C		変更なし					
	原子炉建屋内 サプレッションチェンバ入口 配管合流点2	$427 * 4$	104	609.6	＊5（9．5）	SM41C		原子炉建屋内 サプレッションチェンバ入口 配管合流点2	変更なし				
		－							427	104	609.6	（31．0）	SM400C
		427 ＊4	104	$61.1 * 7$	（6．1）＊7	S25C			変更なし				

変 更 前							変 更 後						
	名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{kPa}) \end{array} \\ & \hline \end{aligned}$		$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$	$\begin{gathered} \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \text { (} \left.{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 原 } \\ & \text { 孜 } \\ & \text { 衉 } \\ & \text { 納 } \\ & \text { 容 } \\ & \text { 調 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$	T48－F016 ドライウェル入口配管合流点	427 ＊4	171	$\begin{aligned} & 457.2 \\ & 457.2 \end{aligned}$	$\int^{* 5}(9.5)$	$\underbrace{\text { SM400C }}_{\text {SM400C }{ }^{* 14}{ }^{* 6, * 14}}$		変更なし					
	T48-F010 T48－F011入口側合流点	$427 * 4$	171	60.5	（5．5）	STS42		変更なし	変更なし		変更なし	変更なし	$\begin{gathered} \text { 変更なし } \\ \text { STS410 } \end{gathered}$
				$\begin{gathered} 61.1^{* 7} \\ \text { / } \\ 61.1^{* 7} \\ / \\ 61.1^{* 7} \\ \hline \end{gathered}$	$\begin{array}{cc} (6.1) & * 7 \\ (6.1) & * 7 \\ (6.1) & * 7 \\ \hline \end{array}$	S25C					$\begin{gathered} 60.5 \\ \text { / } \\ 60.5 \\ \text { / } \\ 60.5 \end{gathered}$	$\begin{gathered} (5.5) \\ \prime \\ (5.5) \\ \prime \\ (5.5) \end{gathered}$	STS410
				61．1＊7 $61.1^{* 7}$ －	$\begin{gathered} (6.1)^{* 7} \\ (6.1)^{* 7} \\ \left(\begin{array}{c} * 7 \\ - \\ \hline \end{array}\right. \end{gathered}$	S25C					$\begin{gathered} 60.5 \\ \vdots \\ 60.5 \\ \nearrow \\ \hline \end{gathered}$	$\begin{gathered} (5.5) \\ / \\ (5.5) \\ / \\ - \end{gathered}$	STS410
				$\begin{aligned} & { }^{* 7, * 11} \\ & 61.1 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{* 7, * 11} \\ & (6.1) \end{aligned}$	$\mathrm{S} 25 \mathrm{C} \text { *11 }$					$60.5{ }^{* 11}$	$(5.5)^{* 11}$	STS410 ${ }^{* 11}$
	T48－F011入口側合流点 T48－F002出口側合流点	－						T48－F011入口側合流点 T48－F002出口側合流点	$\begin{aligned} & 427 \\ & 854^{* 9} \end{aligned}$	$\begin{aligned} & 171 \\ & 200^{* 9} \end{aligned}$	$$	$\begin{gathered} (5.5) \\ / \\ (5.5) \\ \prime \\ (5.5) \end{gathered}$	STS410
		427 ＊4	171	60.5	（5．5）	STS42					変更なし	変更なし	STS410
				$\begin{aligned} & * 7, * 11 \\ & 61.1 \end{aligned}$	(6.1)	$\mathrm{S} 25 \mathrm{C}{ }^{* 11}$			$\begin{array}{r} \text { 要史な } \\ 854^{* 9} \end{array}$	$200 * 9$	$60.5{ }^{* 11}$	（5．5）${ }^{* 11}$	STS410 ${ }^{* 11}$
	ドライウェル補給用窒素配管分岐点 ～ 原子炉建屋内吸入配管合流点	427 ＊4	171	60.5	（5．5）	STS42		変更なし	変更なし		変更なし	変更なし	STS410
				60.5	（5．5）	STS42					変更なし	変更なし	STS410
			104	$\begin{aligned} & * 7, * 11 \\ & 61.1 \end{aligned}$	$(6.1)^{* 7, * 11}$	$\mathrm{S} 25 \mathrm{C}{ }^{* 11}$					$60.5{ }^{* 11}$	$(5.5)^{* 11}$	$\text { STS410 }{ }^{* 11}$
	原子炉格納容器配管貫通部 （X－81） ドライウェル出口配管分岐点	427 ＊4	171					原子炉格納容器配管貫通部 （ $\mathrm{X}-81$ ） ドライウェル出口配管分岐点	$\begin{gathered} \text { 変更なし } \\ 854^{* 9} \end{gathered}$	$\begin{gathered} \text { 変更なし } \\ 200^{*} 9 \end{gathered}$		変更なし	

	変更 前							変更 後						
		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 压 } \\ & (\mathrm{kPa}) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ { }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \end{array}$		${ }^{\text {厚 }} \underset{(\mathrm{mm})}{\text { さ*2 }}$	材 料		名 称	$\begin{gathered} \hline \text { 最高使用 } \\ \text { 压 } \\ (\mathrm{kPa}) \end{gathered}$	$\begin{array}{\|l\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { (} \left.{ }^{\circ} \mathrm{C}\right) \end{array}$	$\begin{gathered} \text { 外 } \\ (\mathrm{mm}) \\ \hline \text { 径*1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材 料
		ドライウエル出口配管分岐 点 $\underset{\text { T48－F046 }}{\sim}$	427 ＊4	171	609.6	＊5（9．5）	SM400C ${ }^{* 14}$				変更なし			
			427 ＊4	104						変更なし	$\begin{aligned} & \text { 変更なし } 200^{* * 9} \end{aligned}$	$\begin{aligned} & \text { 変更なし } \\ & \text { 変更なし }^{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { SM400C } \\ & \frac{\text { SM400C }}{}{ }^{211} \end{aligned}$
					－					$\begin{aligned} & 427 \\ & 854^{* 9} \end{aligned}$	$\begin{aligned} & 171 \\ & 200^{* 9} \end{aligned}$	$\begin{gathered} \underbrace{609.6} \\ { }^{* 11} \end{gathered}$	$\begin{aligned} & (31.0) \\ & \frac{* 11}{(17.5)} \\ & \hline \end{aligned}$	$\frac{\text { SM400C }}{\text { SM400C }^{* 11}}$
$$		原子炉格納容器配管貫通部 （X－230） ～ ドライウェル出口配管分岐点	427 ＊	171					$\begin{aligned} & \text { 原子炉格納容器配管貫通部 } \\ & \text { (X-230) } \\ & \text { ドライウェル出口配管分岐点 } \end{aligned}$	変更なし 854＊9	$\begin{aligned} & \text { 変更なし } 200 \text { L } \end{aligned}$		変更なし	
					－					$\begin{aligned} & 427 \\ & 854 * 9 \end{aligned}$	$\begin{aligned} & 171 \\ & 200^{* 9} \end{aligned}$	$\begin{gathered} 609.6 \\ \text { 609. } 6 \\ / \\ 406.4 \end{gathered}$	$\begin{gathered} (17.5) \\ \vdots \\ (17.5) \\ \vdots \\ (12.7) \\ \hline \end{gathered}$	STS410
		サプレッションチェンバ出 口 ${ }^{\text {口配管分岐点1 }}$ T48－F045	427 ＊4	171	318.5 318.5 318.5	$\begin{array}{\|l\|} \hline \square_{(10.3)}^{* 5} \\ \hline(10.3) \\ \hline \\ \hline{ }^{*}(10.3) \\ \hline \end{array}$	$\quad{ }^{* 14}$ SM4000 ${ }^{* 22}$ STS410 $*, *, * 22$ STS 410				変更なし			

＊ 1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊3：記載の適正化を行う。既工事計画書には「原子炉建屋原子炉棟換気空調系からドライウェルまで（ドライウェル入口配管）」と記載。
＊4 ：S I 単位に換算したものである。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成3年6月19日付け3資庁第1003号にて認可された工事計画の添付書類「IV－2－2－2－2－1 管の基本板厚計算書」による。
＊6：エルボを示す。既工事計画書にはエルボを含めた管仕様を記載しているため，記載の適正化を行う。
＊ 7 ：差込継手の差込部内径及び最小厚さ。
素ガス供給系，原子炬格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊9 ：重大事故等時の使用時の値。
＊ 10 ：記載の適正化を行う。既工事計画書には「ドライウェル入口配管からサプレッションチェンバまで（サプレッションチェンバ入口配管）」と記載。
＊11：エルボを示す。
＊ 12 ：記載の適正化を行う。既工事計画書には「原子炉建屋内からサプレッションチェンバ入口配管まで（原子炉建屋内吸入配管）」と記載。
＊13：記載の適正化を行う。既工事計画書には「パージ用液体窒素蒸発器からドライウェル入口配管まで」と記載。
＊ 14 ：記載の適正化を行う。既工事計画書には「SM41C」と記載。
＊15：記載の適正化を行う。既工事計画書には「常時補給用液体窒素蒸発器からドライウェル入口配管まで（ドライウェル補給用窒素配管）」と記載。
＊16：記載の適正化を行う。既工事計画書には「ドライウェル補給用窒素配管から原子炉建屋内吸入配管まで」と記載。
＊17：記載の適正化を行う。既工事計画書には「ドライウェルから原子炉建屋原子炉棟換気空調系まで（ドライウェル出口配管）」と記載。
循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊ 19 ：記載の適正化を行う。既工事計画書には「サプレッションチェンバからドライウェル出ロ配管まで（サプレッションチェンバ出口配管）」と記載。
＊20：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊21：記載の適正化を行う。既工事計画書には「サプレッションチェンバ出口配管から非常用ガス処理系まで」と記載。
＊22：記載の適正化を行ら。既工事計画書には「STS42」と記載。
＊ 23 ：本設備は記載の適正化を行うものであり，手続き対象外である
＊24：記載の適正化を行う。既工事計画書には「STPT38」と記載。
＊25：記載の適正化を行う。既工事計画書には「液体窒素貯槽出口配管から常時補給用液体窒素蒸発器（送ガス用）まで」と記載。
＊26：記載の適正化を行う。既工事計画書には「STPL39」と記載。
（9）圧力逃がし装置
a．原子炉格納容器フィルタベント系

注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御

設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。 ＊2 ：本設備は，フィルターとして使用するフィルタ装置と同一機器である。
＊3 ：スクラバ溶液の容量を示す。
＊4 ：重大事故等時における使用時の値。
＊5 ：公称値を示す。

注記 $~$ 1 ：原子炉泠却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並 びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊2 ：重大事故等時における使用時の値。

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並 びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊2：重大事故等時における使用時の値。

	変更前	変更後
名	称	－

注記 $*: ~$ 本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器 フィルタベント系）として本工事計画で兼用とする。

	変更前	変更後
名 称	－	T48－F022＊
7．原子炉格納施設 7.3 圧力低減設備その他の安 （8）原子炉格納容器調気設 a．原子炉格納容器調気二主要弁 に記載する。		

注記＊：本設備は，既存の圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器 フィルタベント系）として本工事計画で兼用とする。

八 圧力開放板

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＝主配管（常設）

変 更 前									変 更 後							
名		称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(k P a)}^{\text {力 }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料	名 称			$\begin{gathered} \text { 最高使用 } \\ \text { 圧 力*3 } \\ (\mathrm{kPa}) \end{gathered}$	最 高 使 用 温 度＊3 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
									原子炉格納容器配管貫通部$(X-230)$			7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。				
	－									$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 谽 } \\ & \text { 調 } \\ & \text { 蓀 } \end{aligned}$	原子炉格納容器配管貫通部（X－230） ドライウェル出口配管分岐点	7．原子炉格納施設 7．3 圧力低減設備その他の安全設備 （8）原子炉格納容器調気設備 a．原子炉格納容器調気系 ホ 主配管 に記載する。				
									$\begin{aligned} & \text { 原 } \\ & \text { 炣 } \end{aligned}$		炉格納容器配管貫通部 81）	7．原子炉格 7.1 原子炉 （4）原子 に記載する。	内施設格納容器炬格納容器	管貫通部及び電	気配線貫通部	
											原子炉格納容器配管貫通部（X－81） ドライウェル出口配管分岐点	7．原子炉格 7.3 圧力低 （8）原子 a．原 ホ に記載する。	内施設 減設備その他 师格納容器調 子炉格納容器 配管	の安全設備設備気系		
										サプレッションチェンバ出口配管分岐点3 フィルタ装置 （次頁へ続く）		854	200	406.4	（12．7）	STS410
												406．4＊7		$(12.7) * 7$	STS410＊7	
												406.4		$\square_{(21.4)}$	SF490A	
												$\begin{gathered} 406.4 \\ / \\ 406.4 \\ / \\ 406.4 \end{gathered}$		$\begin{gathered} (12.7) \\ / \\ (12.7) \\ / \\ (12.7) \\ \hline \end{gathered}$	STS410	
												61.1 ＊8		（6．1）＊8	S25C	
												$\begin{gathered} 406.4 \\ / \\ 406.4 \\ / \\ 216.3 \end{gathered}$		$\begin{gathered} (12.7) \\ / \\ (12.7) \\ / \\ (8.2) \end{gathered}$	STS410	

	変更前									変更 後						
	名		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{kPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使用 } \\ \text { 温 } \end{array}{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	$\underset{(\mathrm{mm})}{ }$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材	料		名 称	$\begin{gathered} \hline \text { 最高使用 } \\ \substack{\text { 土*3 } \\ \text { (kPa) }} \\ \hline \end{gathered}$		$\underset{(\mathrm{mm})}{\substack{\text { 外 }}} \begin{gathered} \text { 径*1 } \end{gathered}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
											原子炉格納容器配管貫通部 （X－281）	7．原子炉格 7.1 原子 （4）原 に記載する。	納施設 格納容器 炉格納容器配	管貫通部及び電	気配線貫通部	
											ドライウェル窒素供給配管分岐点1 ～ T48－F066	854	66	60.5	（5．5）	STS410
														60.5	（5．5）	STS410
													66	60.5 ＊7	（5．5）＊7	STS410＊ 7
														60.5	（5．5）	STS410
	$\begin{aligned} & \text { 原 } \end{aligned}$									原	T48－F066	854		61.1 ＊7，＊8	（6．1）＊7，＊8	S25C＊${ }^{\text {\％}}$
$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & = \\ & \text { (a) } \end{aligned}$					－						フィルタ装置入口配管合流点		200	$\begin{gathered} 61.1^{* 8} \\ \text { 61. } \\ / \\ / \end{gathered}$	$\begin{array}{cc} (6.1)^{(2)} & * 8 \\ (6.1) & * 8 \\ / & \\ \hline \end{array}$	S25C
○	少									多				60.5 ＊7	（5．5）＊7	STS410＊ 7
	$\stackrel{\rightharpoonup}{r}$									$\stackrel{z}{r}$				76.3	（5．2）	SUS316LTP
										系				$\begin{gathered} 76.3 \\ 60.5 \\ 60.5 \end{gathered}$	$\stackrel{(5.2)}{\vdots}$	SUS316LTP
											＊6			60.5	（5．5）	SUS316LTP
											フィルタ装置水補給接続口 （屋外）			61.1 ＊7，＊8	（6．1）＊7，＊8	SUS316L＊7
											フィルタ装置				（6．1）＊8 （6．1）＊8 （6．1）＊8	SUS316L
														60.5	（5．5）	SUS316LTP
												854	200	$61.1^{* 7, * 8}$	（6．1）${ }^{*} 7, * 8$	SUS316L＊7
														61.1 ＊＊8，＊9	（6．1） ＊8，＊9 $^{\text {a }}$	SUS316L＊9

注記 $* 1$ ：外径は公称値を示す。
＊3：重大事故等時における使用時の値
＊ 4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。
計画書で兼用とする。
容器フィルタベント系）と兼用。
＊7 ：エルボを示す。
＊ 8 ：差込継手の差込部内径及び最小厚さ
＊9：フルカップリングを示す。
装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。

注記＊1：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
 （原子炬格納容器フィルタベント系）として本工事計画で兼用とする。
 て本工事計画で兼用とする。
容器フィルタベント系）と兼用する。
＊6：重大事故等時の使用時の値。
＊ 7 ：メーカにて規定する呼び径を示す
 できるものを使用する。
＊9：最長ルートである「注水用ヘッダ（東側設置）～フィルタ装置水補給接続口（屋内）」に敷設した場合（ $20 \mathrm{~m}: 7$ 本）の数量を示す。

注記＊1 ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）と兼用。
＊2 ：本設備は，容器として使用するフィルタ装置と同一機器である。
＊3：重大事故等時における使用時の値。
＊ 4 ：公称値を示す。

7． 4 原子炉格納施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．設備に対する要求（4．7 内燃機関の設計条件，4．8 電気設備の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設 の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針 については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基 づく設計とする。
第2章 個別項目 1．原子炉格納容器 1． 1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル冷却系（個数 4（予備2））を設ける設計とする。 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と	第2章 個別項目 1．原子炉格納容器 1． 1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル冷却系（個数 4（予備2））を設ける設計とする。 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と

変更前	変更後
あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される原子炉冷却材のエネルギによる冷却材喪失時 の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器 に生じる動荷重に耐える設計とする。 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。 サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数1個を設置する。	あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される原子炉冷却材のエネルギによる冷却材喪失時 の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器 に生じる動荷重に耐える設計とする。 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3 ）に定める漏えい試験のらち B 種試験ができる設計とする。 サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数1個を設置する。 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度

変更前

1．2 原子炉格納容器隔離弁
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，泠却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

変更後
で閉じ込め機能を損なわない設計とする。

1．2 原子炉格納容器隔離弁

原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納容器の隔離機能の確保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，遠隔操作にて閉止可能な弁を設置することも可能とする。

変更前

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所に おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であつて近接した箇所に 2 個の隔離弁 を設ける設計とする。

設計基準事故の収束に必要な非常用炉心冷却設備及び残留熱除去系 （格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，そ の他隔離弁を設けることにより安全性を損なうおそれがあり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

変更後

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所に おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁 を設ける設計とする。

原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とす る。

設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及 び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損ならおそれが あり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われ ない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

また，重大事故等時に使用する原子炉格納容器調気系の隔離弁につい ては，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

変更前	変更後
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた め，原子炉建屋原子炉棟内に設置する設計とする。	新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた め，原子炉建屋原子炉棟内に設置する設計とする。 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系 により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネル（原子炉冷却系統施設のうち「5．2 高圧炉心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止可能な設計とする。
3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された6個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。	3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。 想定される重大事故等時において，ドライウェル圧力がサプレッショ ンチェンバ圧力より低下した場合に，ドライウェルとサプレッションチ

変更前

3．2 原子炉格納容器安全設備
3．2．1 原子炉格納容器スプレイ冷却系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。

変更後

ェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働 き，サプレッションチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。

3． 2 原子炉格納容器安全設備

3．2．1 原子炉格納容器スプレイ冷却系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。

重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の うち，単一設計とする残留熱除去系（格納容器スプレイ冷却モード） のドライウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の泠却機能を達成できる設計とする。

ここで，単一故障時には，残留熱除去系 1 系統による格納容器ス プレイ冷却モードは，スプレイ効果に期待できない状態となり，ス プレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所か ら落下してサプレッションチェンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系1系統を

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{2} \end{aligned}$		して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 原子炬格納容器安全設備のらち，復水貯蔵タンクを水源として原子炉格納容器泠却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭において も，正常に機能する能力を有する設計とする。 （2）原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）によ る原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の泠却を行らための重大事故等対処設備として，原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）は，代替循環冷却ポンプにより，サプレッショ ンチェンバのプール水を残留熱除去系等を経由して原子炉格納容器下部へ注水し，溶融炉心が落下するまでに原子炉格納容器下部に あらかじめ十分な水位を確保するとともに，落下した溶融炉心を泠却できる設計とする。 原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。 原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）の流路として，設計基準対象施設である残留熱除去系熱交換器及び原子炬格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 原子炬格納容器安全設備のらち，サプレッションチェンバのプー

	変更前	変更後
$$		下部への落下を遅延•防止するための重大事故等対処設備として，高圧代替注水系を設ける設計とする。なおっこの場合は，ほら酸水注入系による原子炬圧力容器へのほう酸水注入と並行して行う。 高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タン クの水を高圧炬心スプレイ系等を経由して，原子炉圧力容器へ注水 することで溶融炖心を泠却できる設計とする。 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計と し，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。 高圧代替注水系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水灲心の著しい損傷が発生した場合に溶融炉心の原子灲格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を設ける設計とする。 なお，この場合は，ほう酸水注入系による原子炬圧力容器へのほう酸水注入と並行して行う。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ

	変更前	変更後
$$		により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炬心を泠却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 （2）低圧代替注水系（可搬型）による原子炉注水 灲心の著しい損傷が発生した場合に溶融灲心の原子灲格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。なお，この場合は， ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行し て行う。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）に より，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融炉心を泠却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合におい て，重大事故等の収束に必要となる水の供給設備である大容量送水 ポンプ（タイプI）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代

3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備

3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。
非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。
放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した

変更後
残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針 は適用しない。
3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備

3．3．1 非常用ガス処理系
原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。

非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。

放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した

後，排気筒から放出する設計とする。
非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る放射性物質の濃度を減少させる設計とする。
非常用ガス処理系のらち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。

変更後

後，排気筒から放出する設計とする。
非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る放射性物質の濃度を減少させる設計とする。
非常用ガス処理系のうち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。

新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。
重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の うち，単一設計とする非常用ガス処理系の配管の一部及び非常用ガ ス処理系フィルタ装置については，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のうち，想定される最も過酷な条件として，配管の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴ら被ばくの影響を最小限に抑えるよう，安全上支障の ない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。

想定される単一故障の発生に伴う周辺公衆に対する放射線被ば

	変更前	変更後
$\begin{aligned} & \text { I } \\ & \text { 芯 } \end{aligned}$		電源設備からの給電が可能な設計とする。 非常用ガス処理系の流路として，設計基準対象施設である非常用 ガス処理系空気乾燥装置，非常用ガス処理系フィルタ装置，排気筒，原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エア口 ックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。
	3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol\％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。	3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炬格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol\％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。
		3．3．3 原子炉建屋水素濃度抑制系 炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させること で，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炉建屋

変更前	変更後
	子炉格納容器フィルタベント系」の設備を原子炉格納施設のらち「3．3．7 原子炉格納容器フィルタベント系」の設備として兼用） （以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のらち「3．3．7 原子炉格納容器フィルタベント系」の設備 として兼用）により行ら設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行ら。
3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため， あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。	3.4 原子炬格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため， あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。 炉心の著しい損傷が発生した場合において原子炉格納容器内に おける水素爆発による破損を防止できるように，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活

変更前	変更後
3.5 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。	給及び原子炉格納容器下部注水系（可搬型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渇した場合に，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替スプレイ冷却系（可搬型）及び原子炉格納容器下部注水系（可搬型）の水源として，さらに，放水設備（大気への拡散抑制設備）及び放水設備（泡消火設備）の水源として利用で きる設計とする。 3.7 設備の共用 液体窒素蒸発装置（第 2,3 号機共用）は，第 3 号機と共用するが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作すること により隔離できる設計とすることで，共用により安全性を損なわない設計とする。
4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表1 原子炉格納施設の主要設備リスト」に示す。	4．主要対象設備 原子炉格納施設の対象となる主要な設備について，「表 1 原子炉格納施設の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉格納施設の兼用設備リスト」に示す。

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（ $1 / 42$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 㷻 } \\ & \text { 柄 } \\ & \text { 䌋 } \\ & \text { 器 } \end{aligned}$	－	原子炬格納容器 本体	－		原子炬格納容器	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
	－	機器搬出入口	－	機器搬出入用ハッチ	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				逃がし安全弁搬出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				制御棒駆動機構搬出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				サプレッションチェンバ出入口	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
	－	エアロック	－	所員用エアロック	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
	－	原子炬格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－5）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{C}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{D}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（X－11）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2	
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（2／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 縂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 喿 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －14）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－20）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－21）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－22）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{C}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-33 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －33B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ $\mathrm{X}-34$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（3／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 煽 } \\ & \text { 格 } \\ & \text { 綌 } \\ & \text { 侶 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炬格納容器配管貫通部（X－35）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－36）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－37）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－50）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －51）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－52）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－60）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-61 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-61 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －62A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －62B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－63）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－64）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－70）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－71）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-72 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（4／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ X －72B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－73）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－80）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－81）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~A}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－90）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－91）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－92）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－93）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－106B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－130A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－130B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －130C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－130D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-131$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（5／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 縂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 喿 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炬格納容器配管貫通部（X－132A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－132B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－132C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－132D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －133A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －133B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－133C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－133D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －134A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －134B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －134C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－134D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－135A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－135B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －135C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－135D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（6／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 卛 } \\ & \text { 器 } \end{aligned}$				原子炬格納容器配管貫通部（ X －136A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －136B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －137A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －137B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ ${ }^{\text {－}}$－137C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－137D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-138$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
		原子炉格納容器		原子炬格納容器配管貫通部（ X －139A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
	－	配管費通部及び電気配線貫通部	配管費通部	原子炬格納容器配管貫通部（ ${ }^{\text {－}}$－139B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －140A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －140B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-150$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －151A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（ X －151B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －152A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －152B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（ $7 / 42$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䜌 } \\ & \text { 䓵 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線費通部	配管貫通部	原子炬格納容器配管貫通部（ X －152C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－152D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－153）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －154）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －155）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －160A ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －160B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －160C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－160D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －161）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－190A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －190B ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ －$^{\text {191A }}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ X －191B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－205A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ $\mathrm{X}-205 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（8／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 器 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－212）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－213A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－213B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－214A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－214B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－214C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－215A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（ $\mathrm{X}-215 \mathrm{~B}$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －217）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-218$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－219）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-220$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－221）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-222$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ $\mathrm{X}-223$ ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（9／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 煽 } \\ & \text { 格 } \\ & \text { 綌 } \\ & \text { 侶 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－230）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －231）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－232A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－232B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－233）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X － 240 ）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－241）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －242）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（ X －243）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－260A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－260B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－261A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－261B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－262A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炬格納容器配管貫通部（X－262B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器配管貫通部（X－263）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（10／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絽 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 総 } \\ & \text { 㗊 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炬格納容器配管貫通部（X－270A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－270B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－270C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－270D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－270E）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－270F）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－271A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－271B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－272A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－272B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（X－272C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－272D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－272E）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炬格納容器配管貫通部（X－272F）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －280）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器配管貫通部（ X －281）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（11／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 絤 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 器 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	電気配線貫通部	原子炉格納容器電気配線貫通部（X－ 100A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 100B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 100C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 100D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X— 101A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 101B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X— 101C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 101D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 102A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 102B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 102C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炻格納容器電気配線貫通部（X－ 102D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 102E）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				$\begin{aligned} & \text { 原子炉格納容器電気配線貫通部 (X- } \\ & 103 \mathrm{~A}) \end{aligned}$	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2
				原子炉格納容器電気配線貫通部（X－ 103B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SAクラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（12／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絽 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 䠢 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	電気配線貫通部	原子炉格納容器電気配線貫通部（X－ 103C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 104A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 104B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 104C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 104D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 105A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 105B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 105C）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X— 105D）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 106A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 250A）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
				原子炉格納容器電気配線貫通部（X－ 250B）	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2
原	－	原子炉建屋原子炉棟		原子炬建屋原子炉棟（二次格納施設）	S	－		－	変更なし			常設／緩和	－
$\begin{aligned} & \text { 摒 } \\ & \text { 屋 } \end{aligned}$		機器搬出入口		原子炉建屋大物搬入口	S	－		－	変更なし			常設／緩和	－

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（13／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 縂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 煸 } \\ & \text { 建 } \\ & \text { 屋 } \end{aligned}$	－	エアロック	－		原子炬建屋エアロック	S	－		－	変更なし			常設／緩和	－
		原子炉建屋基礎 スラブ		原子炬建屋基礎版＊2	－	－		－	変更なし			－		
圧低澸設備\vdotsD他安全設備	－	真空破壊装置	－	真空破壊弁	S	－		－	変更なし			常設耐震／防止常設／緩和	－	
		ダウンカマ		ダウンカマ	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		ベント管		ベント管	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				ベント管ベローズ	S	格納容器		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
		ベントヘッダ		ベントヘッダ	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
	$\begin{gathered} \text { 器原 } \\ \text { 却プ炉 } \\ \text { 采し缹 } \\ \text { 榆容 } \\ \hline \end{gathered}$	原子炉格納容器安全設備	主配管	ドライウェルスプレイ管	S	クラス 2		－	変更なし			常設耐震／防止常設／緩和	SA クラス 2	
				サプレッションチェンバスプレイ管	S	クラス 2		－				常設耐震／防止常設／緩和	SA クラス 2	
	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炇 } \\ & \text { 納 } \\ & \text { 䧾 } \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	原子炉格納容器安全設備	ポンプ	－					復水移送ポンプ	－	－	常設／緩和	SA クラス 2	
				－					代替循環冷却ポンプ	－	－	常設／緩和	SA クラス 2	
				－					大容量送水ポンプ（タイプ I ）	－	－	可搬／緩和	SA クラス 3	
			容器	－					復水貯蔵タンク	－	－	常設／緩和	SA クラス 2	
			万過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／緩和	SA クラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（14／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 橎 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設借分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	安全弁及び逃 がし弁		－					E11－F048A	－	－	常設／緩和	－
				－					E11－F084	－	－	常設 ${ }^{\text {／綵和 }}$	－	
				－					E11－F085	－	－	常設／彩和	－	
			主配管	－					復水貯蔵タンク～E22－F014	－	－	常設／綵和	SAクラス 2	
				－					E22－F014～補給水よりの第一アンカ	－	－	常設／（綵和	SAクラス 2	
				－					補給水よりの第一アンカ～復水貯蔵 タンク出口配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					復水眝蔵タンク出口配管分岐点～低圧代替注水系吸込配管分吱点	－	－	常設／綬和	SAクラス 2	
				－					低圧代替注水系吸込配管分岐点～ P13－F072	－	－	常設／緩和	SAクラス 2	
				－					P13－F072～補給水系配管合流点	－	－	常設 ${ }^{\text {綵和 }}$	SAクラス 2	
				－					補給水系配管合流点～復水移送ポン プ	－	－	常設／緩和	SAクラス 2	
				－					復水移送ポンプ～低圧代替注水系注入配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	－	－	常設 $/$ 緩和	SAクラス 2	
				－					低圧代替注水系注入配管 B 系分岐点 ～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（15／42）

$\begin{aligned} & \text { 䜃 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 薐 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					低圧代替注水系注入配管合流点 2 ～原子炉格納容器下部注水系注入配管分岐点	－	－	常設／緩和	SAクラス 2
				－					原子炉格納容器下部注水系注入配管分岐点～原子炉格納容器配管費通部（X－ 92）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ X －92）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－92）～原子炉格納容器下部注水配管開放端	－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系ストレーナ（ A ）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SAクラス 2	
				－					原子炻格納容器配管貫通部（ X － 214 A ）	－	－	常設／緩和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					サプレッションチェンバ出口配管A系 合流点～代替循環洽却系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					代替循環冷却系吸込配管分岐点～代替循環冷却ポンブ	－	－	常設／緩和	SAクラス 2	
				－					代替循環冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／緩和	SAクラス 2	
				－					代替循澴冷却系注入配管合流点～残留熱除去系熱交换器 (A) バイパス配管分岐点	－	－	常設／緩和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系㱡交換器代替循嬹椧却系出口配管分吱点～残留熱除去系熱交換器（A）バイパス配管合流点	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（ $16 / 42$ ）

$\begin{aligned} & \text { 笽 } \\ & \text { 供 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 勫 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{gathered} \text { 震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
		$\begin{aligned} & \text { 原子炬格納容器 } \\ & \text { 安全設備 } \end{aligned}$	主配管	－					残留熱除去系熱交換器（A）バイパス配管分岐点 \sim 残留熱除去系熱交換器 （A）バイパス配管合流点	－	－	常設／緩和	SAクラス 2
				－					残留熱除去系熱交換器代替循擐洽却系出口配管分岥点～E11－F088	－	－	常設縷和	SAクラス 2
				－					E11－F088～低圧代替注水系注入配管合流点 2	－	－	常設，緩和	SAクラス 2
				－					原子炬•格納容器下部注水接続口 （北）～低圧代替注水系注入配管 A 系分岐点	－	－	常設緩和	SAクラス 2
				－					原子炬格納容器下部注水系注入配管分叶点～低圧代替注水系注入配管 A系分岐点	－	－	常設／緩和	SAクラス 2
				－					原子炉•格納容器下部注水接続口 （東）～低圧代替注水系注入配管合流 点 1	－	－	常設／緩和	SAクラス 2
				－					取水用ホース（ 250 A ： $5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／緩和	SAクラス 3
				－						－	－	可搬）（緩和	SAクラス 3
				－					注水用ヘッダ	－	－		SAクラス3
				－					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬）緩和	SAクラス 3
	$\begin{aligned} & \text { 原 } \\ & \text { 僱 } \end{aligned}$	$\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 安全設備 } \end{aligned}$	ポンプ	－					復水移送ポンプ	－	－	常設耐震／防止常設／緩和	SAクラス 2
	$\begin{gathered} \text { 䈷 } \\ \text { 冾营 } \end{gathered}$			－					大容量送水ポンプ（タイプI）	－	－	可搬／防止 可搬／緩和	SAクラス 3
	潫梖		容器	－					復水眝蔵タンク	－	－	常設耐震／防止常設／緩和	SAクラス 2
	$\begin{aligned} & \hat{\sim} \\ & \underset{i}{2} \end{aligned}$		3 過装置	－					可搬型ストレーナ	－	－	可搬／防止可搬／緩和	SAクラス3

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（17／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等 機器クラス		
		原子炬格納容器安全設備	主配管		－					復水眝蔵タンク～E22－F014	－	－	常設耐震／防止常設／緩和	SAクラス 2
				－					E22－F014～補給水よりの第一アンカ	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					補給水よりの第一アンカ～復水貯蔵 タンク出口配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					低圧代替注水系吸込配管分岐点～ P13－F072	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					P13－F072～補給水系配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					補給水系配管合流点～復水移送ポン プ	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					復水移送ポンプ～低圧代替注水系注入配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管 B 系分岐点 ～低圧代替注水系注入配管合流点 2	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管合流点 $2 \sim$ 原子炉格納容器下部注水系注入配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					原子炬格納容器下部注水系注入配管 分岵点～低圧代替注水系注入配管 A 系分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管 A 系分岐点 ～E11－F041	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					E11－F041～低圧代替注水系 A 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					ドライウエルスプレイ注入配管A系分岥点～低圧代替注水采 A 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（18／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 続 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	主配管	－					$\begin{aligned} & \text { ドライウェルスプレイ注入配管 A 系 } \\ & \text { 分岐点~原子炉格納容器代替スプレ } \\ & \text { イ泠却系 A 系注入配管合流点 } \\ & \hline \end{aligned}$	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					原子炉格納容器代替スプレイ冷却系 A 系注入配管合流点～原子炉格納容 器配管貫通部（X－30A）	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ）	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					ドライウェルスプレイ管	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					低圧代替注水系注入配管 B 系分岐点 ～E11－F026B	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					ドライウェルスプレイ注入配管 B 系分岐点～低圧代替注水系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					ドライウェルスプレイ注入配管 B 系分岐点～原子炉格納容器代替スプレ イ椧却系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					原子炬格納容器代替スプレイ椧却系 	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					$\begin{aligned} & \text { 格納容器スプレイ接続口 }(\text { 北 }) ~ \text { 原子 } \\ & \text { 炉格納器代替スプレイ泠却系 A 系 } \\ & \text { 注入配管合流点 } \end{aligned}$	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					$\begin{aligned} & \text { 格納容器スプレイ接続口 (東)~原子 } \\ & \text { 炉格綌器代替スプレイ椧却系 } \mathrm{B} \text { 系 } \\ & \text { 注入配管合流点 } \end{aligned}$	－	－	常設耐震／防止常設／緩和	SA クラス 2
				－					取水用ホース（250A ：5m，10m，20m）	－	－	可搬／防止可搬／緩和	SA クラス 3
				－					送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20$ m，50m）	－	－	可搬／防止可搬／緩和	SA クラス 3

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（19／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 炭 } \\ & \text { a⿰木木⿰⿱㇒木刂} \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設供＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					注水用ヘッダ	－	－	可搬／防止可搬／緩和	SAクラス 3
				－					送水用ホース（150A： 1m，2m，5m，10m，20m）	－	－	可搬／防止可搬／緩和	SAクラス 3	
		原子炉格納容器安全設備	熱交換器	－					残留熱除去系熱交換器（A）	－	－	常設／緩和	SAクラス2	
			ポンプ	－					代替循噮洽却ポンプ	－	－	常設／緩和	SAクラス2	
			3 過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／綵和	SAクラス2	
			安全弁及び逃 がし弁	－					E11－F084	－	－	常設／緩和	－	
				－					E11－F085	－	－	常設／／緩和	－	
				－					E11－F048A	－	－	常設／緩和	－	
				－					E11－F048B	－	－	常設／（緩和	－	
			主配管	－					残留熱除去系ストレーナ (A)～原子炬格納容器配管費通部（X－214A）	－	－	常設（緩和	SAクラス 2	
				－					原子炉格納容器配管費通部（ X － 214 A ）	－	－	常設／綵和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					$\begin{array}{\|l} \text { サプレッションチェンバ出口配管A系 } \\ \text { 合流点~代替循環冷却系吸込配管分岐 } \\ \text { 点 } \end{array}$	－	－	常設／綵和	SAクラス2	
				－					代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ	－	－	常設／緩和	SAクラス 2	
				－					代替循噮冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（20／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		機器区分		変更前					変更後					
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設储＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分頒 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炬格納容器安全設備	主配管		－					代替循興洽却鯀注入配管合流点～残留熱除去系熱交换器 (A) バイパス配管分岐点	－	－	常設／緩和	SAクラス 2
				－					$\begin{aligned} & \text { 残留熱除去系熱交換器 (A) バイパス } \\ & \text { 配管分岐点~残留熱除去系熱交換器 } \end{aligned}$ (A)	－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					残留鶖除去系熱交換器代替循興冷却系出口配管分吱点～残留熱除去系熱交換器（A）バイパス配管合流点	－	－	常設／緩和	SAクラス 2	
				－					残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冾却モー ド A 系注入配管分岐点	－	－	常設／緩和	SAクラス 2	
				－						－	－	常設）緩和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					原子炬格納容器代替スプレイ椧却系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－30A）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管費通部（X－30A）	－	－	常設／緩和	SAクラス 2	
				－					ドライウェルスプレイ管	－	－	常設（緩和	SAクラス 2	
				－					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～E11－F088	－	－	常設／緩和	SAクラス 2	
				－					E11－F088～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2	
				－					低圧代替注水系注入配管B系分咹点 ～低圧代替注水系注入配管合流点 2	－	－	常設（緩和	SAクラス 2	
				－					低圧代替注水系注入配管 B 系分岐点 ～E11－F026B	－	－	常設（緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（ $21 / 42$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 䧽 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊＊		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炬格納容器安全設備	主配管		－					E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設／䌊和	SAクラス 2
				－					低圧代替注水系 B 系注入配管合流点 ～原子炉格納容器配管貫通部（X－ 31B）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－31B）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ） 原子师圧力容器 F	－	－	常設／綵和	SAクラス 2	
				－					$\begin{aligned} & \begin{array}{l} \text { ドライウェルスプレイ注入酶管 } \mathrm{A} \text { 系分 } \\ \text { 岐点~低圧代替注水系 } \mathrm{A} \text { 系注入配管合 } \\ \text { 流点 } \end{array} \\ & \hline \end{aligned}$	－	－	常設 ${ }^{\text {（綵和 }}$	SAクラス 2	
				－					低圧代替注水系 A 系注入配管合流点 ～原子炉格納容器配管貫通部（X－ 31A）	－	－	常設 $/$ 綵和	SAクラス 2	
				－					原子炉格納容器配管費通部（ X －31A ）	－	－	常設 ${ }^{\text {a（綵和 }}$	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－31A） ～原子炬圧力容器	－	－	常設 （綵和	SAクラス 2	
		原子炉格納容器安全設備	ポンプ	－					高圧代替注水系タービンポンプ	－	－	常設 $/$ 綬和	SAクラス 2	
			容器	－					復水眝蔵タンク	－	－	常設／緩和	SAクラス 2	
			主配管	－					原子炉圧力容器～原子炬隔離時冷却 系烝気配管分岐点	－	－	常設／䌊和	SAクラス 2	
				－					原子炉隔離時冷却系蒸気配管分岐点 ～原子炉格納容器配管貫通部（X－36）	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（22／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	䌖森	機器区分		変更前					変更後					
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					原子炉格納容器配管貫通部（X－36）	－	－	常設／緩和	SAクラス 2
				－					原子炬格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					高原代替注水系蒸気入口配管分岐点 ～高圧代替注水系タービンポンプ	－	－	常設／緩和	SAクラス 2	
				－					高圧代替注水系タービンポンプ～原子炬隔崔時冾却系タービン排気配管合流点	－	－	常設／緩和	SAクラス 2	
				－						－	－	常設／緩和	SAクラス 2	
				－					原子炬格納容器配管貫通部（ $\mathrm{X}-222$ ）	－	－	常設／縷和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－222） ～原子炉隔離時冷却系スパージャ	－	－	常設／緩和	SAクラス 2	
				－					復水眝蔵タンク～E22－F014	－	－	常設／縷和	SAクラス 2	
				－					E22－F014～補給水よりの第一アンカ	－	－	常設／緩和	SAクラス 2	
				－					補給水よりの第一アンカ～復水貯蔵 タンク出口配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					復水眝藏夕ンク出口配管分岐点～低圧代替注水系吸远配管分咬点	－	－	常設／緩和	SAクラス 2	
				－					低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	
				－					高圧代替注水系吸远配管分岐点～高圧代替注水系タービンポンプ	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（23／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 高 } \\ & \text { 府 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	$\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 安全設備 } \end{aligned}$	主配管	－					高圧代替注水系タービンポンプ～高圧代替注水系注入配管合流点	－	－	常設／緩和	SA クラス 2
				－					高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点	－	－	常設／緩和	SA クラス 2
				－					原子炉冷却材浄化系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－ 12A）	－	－	常設／緩和	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）	－	－	常設／緩和	SAクラス 2
				－					原子炉格納容器配管貫通部（X－12A） ～原子炉圧力容器	－	－	常設／緩和	SA クラス 2
	$\begin{aligned} & \text { 低 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 濉 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器安全設備	ポンプ	－					復水移送ポンプ	－	－	常設／緩和	SA クラス 2
				－					大容量送水ポンプ（タイプ I）	－	－	可搬／緩和	SAクラス 3
			容器	－					復水貯蔵タンク	－	－	常設／緩和	SAクラス 2
			主配管	－					復水貯蔵タンク～E22－F014	－	－	常設／緩和	SA クラス 2
				－					E22－F014～補給水よりの第一アンカ	－	－	常設／緩和	SAクラス 2
				－					補給水よりの第一アンカ～復水貯蔵 タンク出口配管分岐点	－	－	常設／緩和	SAクラス 2
				－					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設／緩和	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（24／42）

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト $(25 / 42)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	番嵫你	機器区分		変更前					変更後					
				名称	設計基準対象施設＊＊		重大事故等対処設備＊11		名称	設計基淮対象施設＊＊		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		原子炬格納容器安全設備	主配管		－					E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設／䌊和	SAクラス 2
				－					低圧代替注水系 B 系注入配管合流点 ～原子炉格納容器配管貫通部（X－ 31B）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容圌配管貫通部（ X －31B）	－	－	常設（緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－31B） ～原子炬圧力容器	－	－	常設 $/$ 綬和	SAクラス 2	
				－					$\begin{array}{\|l\|} \hline \text { 原子炉•格納容器下部注水接続口 } \\ \text { (北) ~低圧代替注水系注入配管 A 系 } \\ \text { 分岐点 } \\ \hline \end{array}$	－	－	常設／緩和	SAクラス 2	
				－					原子炉•格納容器下部注水接続口 （東）～低圧代替注水系注入配管合流 点 1	－	－	常設 $/$ 綵和	SAクラス 2	
				－					取水用ホース（ 250 A ： $5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬（綵和	SAクラス 3	
				－					$\left.\right\|_{\text {送水用ホース }(300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20} ^{\mathrm{m}, 5 \mathrm{~m})} \mathbf{2}$	－	－	可搬1綵和	SAクラス 3	
				－					注水用ヘッダ	－	－	可搬／䋏和	SAクラス3	
				－					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／皧和	SAクラス 3	
		$\begin{aligned} & \text { 原子炬格納容器 } \\ & \text { 安全設備 } \end{aligned}$	ポンプ	－					ほう酸水注入系ポンプ	－	－	常設／緩和	SAクラス 2	
			容器	－					ほう酸水注入系貯蔵タンク	－	－	常設／綵和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（26／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 覾 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設嘟＊＊		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
	装酸水隻系	原子炉格納容器安全設備	安全弁及び逃 がし弁		－					C41－F003A，B	－	－	常設／緩和	－
				－					C41－F022	－	－	常設／緩和	－	
			主配管	－					ほう酸水注入系貯蔵タンク～ほう酸水注入系ポンプ	－	－	常設／緩和	SAクラス 2	
				－					ほう酸水注入系ポンプ～原子炉格納容器配管貫通部（X－22）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-22$ ）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（X－22）～ 差圧検出・ほう •酸水注入系配管（テ イーよりN11ノノズルまでの外管）	－	－	常設／緩和	SAクラス 2	
				－					残留釻除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 賎 } \\ & \text { 貽 } \end{aligned}$			－					残留熱除去系熱交換器（B）	－	－	$\begin{aligned} & \text { 常設/防止 } \\ & \text { (DB 拡張) } \end{aligned}$	SAクラス 2	
	$\begin{aligned} & \text { 除 } \\ & \text { 采 } \end{aligned}$			－					残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
				－					残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { 蕒 } \\ & \text { ? } \end{aligned}$			－					残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	
	$\begin{aligned} & \text { र } \\ & \text { 冾 } \\ & \text { 符 } \end{aligned}$		安全弁及び逃	－					E11－F048A	－	－	$\begin{aligned} & \text { 常設/防止 } \\ & \text { (DB 昖張) } \end{aligned}$	－	
	$\begin{aligned} & \text { E } \\ & \text { I } \\ & \text { E゙ } \end{aligned}$		がし弁	－					E11－F048B	－	－	常設／防止 （DB 拡張）	－	
			主配管	－					残留熱除去系ストレーナ (A)～原子炉格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（27／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	主配管	－					原子炬格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214A） ～サプレッションチェンバ出口配管 A系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションチェンバ出口配管A系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器 （A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モー ドA系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炬停止時冷却モード A 系注入配管分岐点～ドライウェルスプレイ注入配管 A 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					ドライウェルスプレイ注入配管 A 系分岐点～原子炬格納容器代替スプレ イ泠却系 A 系注入配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炬格納容器代替スプレイ椧却系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－30A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（ X －30A ）	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（28／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	主配管	－					ドライウェルスプレイ管	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉停止時椧却モードA系注入配管分岐点～サプレッションプール水冷却モードA系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションプール水冷却モード A系戻り配管分岐点～サプレッショ ンチェンバスプレイ注入配管 A 系分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションチェンバスプレイ注入配管 A 系分岐点～原子炉格納容器配管貫通部（X－213A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－213A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションチェンバスプレイ管	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系ストレーナ（B）～原子炬格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214B） ～サフッレショシチェンバ出口配管 B 系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションチェンバ出口配管B系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器 （B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（29／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 艈 } \\ & \text { 綵 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧方澸設備\vdotsの他の安設備		原子炬格納容器安全設備	主配管						残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モー ド B 系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
									原子炉停止時冷却モードB系注入配管分岐点～ドライウェルスプレイ注入配管 B 系分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					ドライウェルスプレイ注入配管 B 系 分岐点～原子炉格納容器代替スプレ イ椧却系 B 系注入配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					原子炉格納容器代替スプレイ椧却系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－30B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					原子炉停止時冷却モード B 系注入配 管分岐点～サプレッションプール水 冷却モード B 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					サプレッションプール水冷却モード B系戻り配管分岐点～サプレッショ ンチェンバスプレイ注入配管 B 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					サプレッションチェンバスプレイ注入配管 B 系分岐点～原子炬格納容器配管貫通部（X－213B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－213B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
	$\begin{aligned} & \text { 残 } \\ & \text { 爇 } \end{aligned}$	熱交換器		－					残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
	$\begin{gathered} \text { ル笊余 } \\ \text { 水采 } \end{gathered}$			－					残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
	$\begin{aligned} & \text { 椧开 } \\ & \text { 等 } \end{aligned}$	原子炉格納容器安全設備	ポンプ	－					残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
	ビシ シ		3過装置	－					残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2
	$\begin{aligned} & \text { ンク } \\ & \text { । } \end{aligned}$			－					残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（30／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	安全弁及び逃 がし弁	－					E11－F048A	－	－	常設／防止 （DB 拡張）	－
				－					E11－F048B	－	－	常設／防止 （DB 拡張）	－
			主配管	－					残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~A}$ ）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炬格納容器配管貫通部 $(\mathrm{X}-214 \mathrm{~A})$ ～サプレッションチェンバ出口配管 A 系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{aligned} & \text { サプレッションチェンバ出口配管A系 } \\ & \text { 合流点~代替循環佮却系吸込配管分岐 } \\ & \text { 点 } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					代替循睘冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（A）バイパス 配管分岐点～残留熱除去系熱交換器 （A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器代替循環冷却 系出口口配管分岐点～残留熱除去系熱 交換 (A) バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{array}{\|l\|} \hline \text { 残留熱除去系熱交換器 (A) バイパス } \\ \text { 配管合流点~原子炬停止時冷却モー } \\ \text { ド } \mathrm{A} \text { 系注入配管分岐点 } \end{array}$	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{aligned} & \text { 原子炬停止時椧却モードA系注入配 } \\ & \text { 管分岐点~サプレッションプール水 } \\ & \text { 泠却モードA系戻り配管分岐点 } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（31／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 絤 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
圧方澸設備¿の他の安全備		原子炉格納容器安全設備	主配管	－					サプレッションプール水泠却モード A 系戻り配管分岐点～原子炉格納容器配管貫通部（X－215A）	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					原子炉格納容器配管貫通部（ X －215A）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－215A） ～サブレッションプール水椧却配管 A系開放端	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系ストレーナ（B）～原子炬格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~B}$ ）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					原子炉格納容器配管貫通部（X－214B） ～サプレッションチェンバ出口配管 B系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					\|サプレッションチェンバ出口配管 B系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{aligned} & \text { 残留熱除去系ポンプ }(B) \text { ~残留熱除 } \\ & \text { 去系熱換 (B) バイパス配管分岐 } \\ & \text { 点 } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器 （B）	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モー ド B 系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{aligned} & \text { 原子炉停止時冷却モード B 系注入配 } \\ & \text { 管分岐点~サプレッションプール水 } \end{aligned}$ 泠却モード B 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2
				－					$\begin{aligned} & \text { サプレッションプール水冷却モード } \\ & \text { B 系戻り配管分岐点~原子炉格納容 } \\ & \text { 器配管貫通部 (X-215B) } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（32／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		－					原子炉格納容器配管貫通部（X－215B）	－	－	常設／防止 （DB 拡張）	SAクラス 2
				－					原子炉格納容器配管貫通部（X－215B）～ サプレッションプール水冷却配管 B 系開放端	－	－	常設／防止 （DB 拡張）	SAクラス 2	
压方減設備¿の他の安坴備	韭唃务不処理系	放射性物質濃度制御設備及び可燃性ガス涱度制御設備並びに格納容器再循環設備	加熱器	非常用がス処理系空気乾燥装置	S	－		－	変更なし			－		
			主要弁	T46－F001A，B	S	クラス 4		－	変更なし			－		
				T46－F003A，B	S	クラス 4		－	変更なし			－		
			主配管	T48－F045～非常用ガス処理系空気乾燥装置入口配管合流点	S	クラス 4		－	変更なし			－		
				非常用ガス処理系空気乾燥装置入口配管合流点～非常用ガス処理系排風機	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				原子炉建屋内～非常用ガス処理系排風機入口配管合流点	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系排風機～非常用ガス処理系フィルタ装置	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				$\begin{aligned} & \text { 非常用ガス処理系フィルタ装置~非常 } \\ & \text { 用ガス処理系フイルタ装置出口配管合 } \\ & \text { 流点 } \end{aligned}$	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系フィルタ装置出口配管合流点～排気筒	S	クラス 4		－	変更なし			常設／緩和	SAクラス 2	
				非常用ガス処理系空気乾燥装置	－			－	－＊3					
				非常用ガス処理系フィルタ装置	－			－	－＊3					

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（33／42）

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（34／42）

$\begin{aligned} & \text { 設䜗 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊＊		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管		－					$\left.\right\|_{\substack{\text { 送水用ホース }(300 \mathrm{~A} \\ \mathrm{~m}, 50 \mathrm{~m}}} \mathrm{mm}, 5 \mathrm{~m}, 1 \mathrm{~m}, 20$	－	－	可搬／緩和	SAクラス 3
				－					放水砲	－	－	可搬／緩和	SAクラス 3	
	$\begin{aligned} & \text { 機放 } \\ & \text { 梘 } \end{aligned}$	放射性物質潠度制御設備及び可然性ガス濃度制御設備並びに格納容器再循辕設備	ポンプ	－					大容量送水ポンプ（タイプII）	－	－	可搬／緩和	SAクラス 3	
				－					取水用ホース（250A：5m，10m，20m）	－	－	可搬／緩和	SAクラス 3	
	$\begin{aligned} & \text { 今散 } \\ & \text { 㳸 } \\ & \text { 製 } \end{aligned}$		主配管	－					送水用ホース（300A：2m，5m，10m， 20 m，50m）	－	－	可搬／縷和	SAクラス 3	
	栄菛			－					放水砲	－	－	可搬／緩和	SAクラス 3	
		放射性物質濃度制御設備及び可燃性ガス浱度制御設備並びに格納容器再循環設備	压繀機	－					可搬型窒素が供給装置	－	－	可搬／緩和	－	
			主配管	－					可搬型窒素がス供給装置接続口（屋外）～T48－F011 入口側合流点	－	－	常設／緩和	SAクラス 2	
				－					可搬型室素ガス供給装置接続口（内）～ドライウェル寧素供給配管合流点	－	－	常設／緩和	SAクラス 2	
				－					ドライウエルル窒素供給配管分读点 2 ～原子炬格納容器配管鿓通部（X－ 281）	－	－	常設／緩和	SAクラス 2	
				－					原子炬格納容器配管費通部（ X －281）	－	－	常設／緩和	SAクラス 2	
				－					T48－F011 入口側合流点～T48－F002出口側合流点	－	－	常設／緩和	SAクラス 2	
				－					T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	－	－	常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ X －80）	－	－	常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（35／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 藧 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管		－					窒素供給用ホース（ $50 \mathrm{~A}: 5 \mathrm{~m}$ ）	－	－	可般／綵和	SAクラス 3
				－					空素供給用ヘッダ	－	－	可搬／緩和	SAクラス 3	
				－					可搬型空素が供給装置接続管	－	－	可搬／綵和	SAクラス 3	
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	ポンプ	－					大容量送水ポンプ（タイプ I）	－	－	可搬（签和	SAクラス 3	
			压縮機	－					可搬型空素が供給装置	－	－	可般／緩和	－	
			容器	－					フィルタ装置＊5	－	－	常設 $/$ 緩和	SAクラス 2	
			安全升及び逃 がし弁	－					T63－F006	－	－	常設／緩和	－	
			主要弁	－					T48－F019	－	－	常設 $/$ 綬和	SAクラス 2	
				－					T48－F022	－	－	常設／䌊和	SAクラス 2	
				－					T63－F001	－	－	常設／緩和	SAクラス 2	
				－					T63－F002	－	－	常設／緩和	SAクラス 2	
			主配管	－					原子炉格納容器配管貫通部（ X － 230 ）	－	－	常設 ${ }^{\text {a（綵和 }}$	SAクラス2	
				－					原子炉格納容器配管貫通部（X－230） ～ドライウェル出口配管分岐点	－	－	常設）（綵和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（36／42）

$\begin{aligned} & \text { 睯 } \\ & \text { 珙 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 覾 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設嘟＊＊		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循噮設備	主配管		－					原子炉格納容器配管貫通部（X－81）	－	－	常設／緩和	SAクラス 2
				－					原子炬格納容器配管貫通部（ X－ 81 ） ドライウェル出口配管分皮点	－	－	常設／緩和	SAクラス 2	
				－					サプレッションチェンバ出口配管分岐点3～フィルタ装置	－	－	常設／緩和	SAクラス 2	
				－					$\begin{aligned} & \text { フィルタタ装~フィ置~インタ装置出口側 } \\ & \text { ラプチャティィ } \end{aligned}$	－	－	常設／緩和	SAクラス 2	
				－					フィルタ装置出口側ラプチャディス ク～排気管	－	－	常設／緩和	SAクラス 2	
				－					フイルタ装置（A）～フィルタ装置（B）	－	－	常設／緩和	SAクラス 2	
				－					フィルタ装置（B）～フィルダ装置（C）	－	－		SAクラス 2	
					－				フィルタ装置連結管	－	－	常設／（萲和	SAクラス 2	
					－				可搬型窒素ガス供給装置接続口（屋外）～T48－F011 入口側合流点	－	－	常設／緩和	SAクラス 2	
					－				可搬型窒素がス供給装置接続口（屋内）～ドライウェル窒素供給配管合流点	－	－	常設／緩和	SAクラス 2	
					－				T48－F011 入口側合流点～T48－F002出口側合流点	－	－	常設／緩和	SAクラス 2	
					－				T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	－	－	常設／緩和	SAクラス 2	
					－				原子炉格納容器配管貫通部（ X －80）	－	－	常設／緩和	SAクラス 2	
					－					－	－	常設／緩和	SAクラス 2	
					－				原子炣格納容器配管貫通部（X－281）	－	－	常設／縷和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（37／42）

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（38／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備 ${ }^{* 1}$		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
圧方澸備備の他の安全備		原子炉格納容器調気設備	主要弁		T48－F001	S	クラス 2		－	変更なし				
				T48－F002	S	クラス 2		－	変更なし					
				T48－F003	S	クラス 2		－	変更なし					
				T48－F010	S	クラス 2		－	変更なし					
				T48－F011	S	クラス 2		－	変更なし					
				T48－F012	S	クラス 2		－	変更なし					
				T48－F016	S	クラス 2		－	変更なし					
				T48－F019	S	クラス 2		－	変更なし					
				T48－F020	S	クラス 2		－	変更なし					
				T48－F021	S	クラス 2		－	変更なし					
				T48－F022	S	クラス 2		－	変更なし					
				T48－F004A，B	S	クラス 2		－						
				T48－F005A，B	S	クラス 2		－						
				T48－F001～T48－F002 出口側合流点	S	クラス 2		－	変更なし					
			王配	T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	S	クラス 2		－	変更なし					

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（39／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低減備備の他の安設備	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䜌 } \\ & \text { 荿 } \\ & \text { 采 } \end{aligned}$	原子炉格納容器調気設備	主配管	ドライウェル入口配管分岐点～サプレ ッションチェンバ	S	クラス 2		－	変更なし				－
				原子炉建屋内～サプレッションチェン バ入口配管合流点 1	S	クラス 2		－	変更なし				－
				原子炉建屋内～サプレッションチェン バ入口配管合流点 2	S	クラス 2		－	変更なし				－
				T48－F016～ドライウェル入口配管合流点	S	クラス 2		－	変更なし				－
				T48－F010～T48－F011 入口側合流点	S	クラス 2		－	変更なし				－
				T48－F011 入口側合流点～T48－F002 出口側合流点	S	クラス 2		－	変更なし				－
				ドライウェル補給用窒素配管分岐点～原子炉建屋内吸入配管合流点	S	クラス 2		－	変更なし				－
				原子炉格納容器配管貫通部（X－81）～ド ライウェル出口配管分岐点	S	クラス 2		－	変更なし				－
				ドライウェル出口配管分岐点～T48－ F046	S	クラス 2		－	変更なし				－
				原子炉格納容器配管貫通部（X－230）～ド ライウェル出口配管分岐点	S	クラス 2		－	変更なし				－
				サプレッションチェンバ出口配管分岐点 1～T48－F045	S	クラス 2		－	変更なし				－
				液体窒素貯槽～パージ用液体窒素蒸発器＊2	C	クラス 3		－	変更なし				－
				パージ用液体窒素蒸発器＊2	C	クラス 3		－	変更なし				－
				パージ用液体窒素蒸発器～T48－F016＊2	C	クラス 3		－	変更なし				－
				液体窒素貯槽出口配管分岐点～常時補給用液体窒素蒸発器（送ガス用）＊2	C	クラス 3		－	変更なし				－

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（40／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1		
				耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炬格納容器調気設備	主配管		常時補給用液体窒素蒸発器（送ガス用）＊2	C	クラス 3		－	変更なし			－	
				常時補給用液体窒素蒸発器（送ガス用）～ T48－F010＊2	C	クラス 3		－	変更なし			－		
				常時補給用液体窒素蒸発器出口配管分岐点～T48－F030＊2	C	クラス 3		－	変更なし			－		
		圧力逃がし装置	容器	－					フィルタ装置＊5	－	－	常設耐震／防止常設／緩和	SAクラス 2	
			主要弁	－					T63－F001	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					T63－F002	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					T48－F019	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					T48－F022	－	－	常設耐震／防止常設／緩和	SAクラス 2	
			圧力開放板		－				$\underset{\text { フィルタ装置出口側ラプチャディス }}{\text { ク }}$ ，	－	－	常設耐震／防止常設／緩和	－	
			主配管		－				原子炉格納容器配管貫通部（ X－ 230 ）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
					－				原子炉格納容器配管貫通部（X－230） ～ドライウェル出口配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
					－				原子炬格納容器配管貫通部（X－81）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
					－				原子炉格納容器配管貫通部（X－81）～ ドライウェル出口配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
					－				サプレッションチェンバ出口配管分岐点3～フィルタ装置	－	－	常設耐震／防止常設／緩和	SAクラス 2	
					－				フィルタ装置～フィルタ装置出口側 ラプチャディスク	－	－	常設耐震／防止常設／緩和	SAクラス 2	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（41／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 䌖 } \\ & \text { 啝 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対处設備＊11		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 胹震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
		压力逃がし装置	主配管		－					フィルタ装置出口側ラプチャディス ク～排気管	－	－	常設耐震／防止常設／緩和	SAクラス 2
				－					フィルタ装置（A）～フィルタ装置（B）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					フィルタ装置（B）～フィルタ装置（C）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					フィルタ装置連結管	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					可搬型空素がス供給装置接続口（屋外）～T48－F011 入口側合流点	－	－	$\begin{gathered} \text { 常設耐震/防止 } \\ \text { 常設/緩和 } \end{gathered}$	SAクラス 2	
				－					可搬型窒素ガス供給装置接続口（屋内）～ドライウェル室素供給配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					T48－F011 入口側合流点～T48－F002出口側合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					原子炉格納容器配管貫通部（ X －80）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					ドライウェル窒素供給配管分岐点 2 ～原子炬格納容器配管貫通部（X－ 281）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					原子炬格納容器配管貫通部（ X －281）	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					ドライウェル窒素供給配管分岐点 1 ～T48－F066	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					$\begin{array}{\|l\|l\|} \hline \text { T48-F066~フィルタ 装置入口配管合流\| } \\ \text { 点 } \end{array}$	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					フィルタ装置水補給接続口（屋外）～ フィルタ装置	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					$\begin{aligned} & \hline \text { フィルタタ装置水補給接続口 (屋内) ~ } \\ & \text { フィルタ装直 } \end{aligned}$	－	－	常設耐震／防止常設／緩和	SAクラス 2	
				－					窒素供給用ホース（50A：5m）	－	－	可搬／防止可搬／緩和	SAクラス 3	

O 2 （6）II R 2

表1原子炉格納施設の主要設備リスト（42／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		圧力逃がし装置	主配管		－					窒素供給用ヘッダ	－	－	可搬／防止 可搬／緩和	SA クラス 3
				－					可搬型窒素ガス供給装置接続管	－	－	可搬／防止可搬／緩和	SAクラス 3	
				－					取水用ホース（250A ：5m，10m，20m）	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20$ m，50m）	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					注水用ヘッダ	－	－	可搬／防止可搬／緩和	SA クラス 3	
				－					送水用ホース（65A ： 20 m ）	－	－	可搬／防止 可搬／緩和	SA クラス 3	
			フィルタ－	－					フィルタ装置＊7	－	－	常設耐震／防止常設／緩和	SA クラス 2	

$* 2$ ：本設備は記載の適正化のみ我の行うものであり，手続き対象外である。
$* 2$ ：本設備は記載の適正化のみ行うものであり，手続き対象外であ
$* 3$ ：当該配管は，主配管に該当しないため記載の適正化を行う。
＊3：当該配管は，主配管に該当しないため記載の適正
$* 4$ ：装置内配管がクラス $3, そ れ 以$ 外はクラスなし。
$* 5$ ：本設備は，フィルターとして使用するフィルタ装置と同一
＊ 6 ：当該升は，主要并に該当しないため記載の適正衣を化を行う。
＊ 7 ：本設備は，容器として使用するフィルタ装置と同一機器である。

表2 原子炉格納施設の兼用設備リスト（ $1 / 5$ ）

表2原子炉格納施設の兼用設備リスト（2／5）

		$\begin{array}{r}\text { 覾 } \\ \text { 森 } \\ \hline\end{array}$		主たる機能の施設／設備区分	変更前					変更後									
		名称			設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設供＊1							
		$\begin{aligned} & \text { 耐震 } \\ & \text { 重畕 } \end{aligned}$			$\begin{aligned} \text { 機器クラ } \\ \\ \hline \end{aligned}$	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 胹震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス							
				$\begin{array}{\|l\|l} \text { 原子炬本体 } \\ \text { 炉心文持構造物 } \end{array}$		－${ }^{\text {a }}$					炬心シュラウド		－	常設／綵和	－				
		シュラウドサポート					－	常設／／緩和	－										
		炉心シュラウド支持ロッド					－	常設／緩和	－										
		上部格子板					－	常設／緩和	－										
		炬心支持板					－	常設／綵和	－										
		中央燃料支持金具					－	常設／緩和	－										
		周辺燃料支持金具					－	常設／（緩和	－										
		制御棒案内管					－	常設／緩和	－										
				原子炬本体原子炉圧力容器	－					原子炉压力容器		－	常設 $/$ 緩和	SAクラス 2					
				原子炉本体 原子炉圧力容器内部構造物	－					給水スパージャ		－	常設／綵和	－					
			原子炉本体炬心支持構造物		－					炬心シュラウド		－	常設 $/$ 緩和	－					
					シュラウドサポート							－	常設／綵和	－					
					炬心シュラウド支持ロッド							－	常設／（緩和	－					
					上部格子板							－	常設／綵和	－					
					炬心支持板							－	常設）（綵和	－					
					中央燃料支持金具							－	常設（緩和	－					
					周辺燃料支持金具							－	常設／綵和	－					
					制御棒案内管							－	常設（綵和	－					
				原子炉本体原子炉圧力容器						－					原子炉压力容器		－	常設（緩和	SAクラス 2
				原子炉本体 原子炉圧力容器内部構造物						－					残留熱除去系配管（ 原子炬圧力容器内部）		－	常設／緩和	－

表2原子炉格納施設の兼用設備リスト $(3 / 5)$

$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{1} \\ & \stackrel{\rightharpoonup}{\Delta} \end{aligned}$			$\begin{aligned} & \text { 采 } \\ & \text { 复 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 畄 } \\ & \hline \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後									
			名称			設計基漼対象施設＊1		重大事故等対处設備＊1		名称	設計基漼対象施設＊${ }^{\text {a }}$		重大事故等対处設備＊1							
			$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$			機器クラ	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス							
					原子炉本体炬心支持構造物		，					炬心シュラウド		－	常設／䋏和	－				
			シュラウドサポート					－	常設／緩和	－										
			炬心シュラウド支持ロッド					－	常設／緩和	－										
			上部格子板					－	常設／緩和	－										
			炬心支持板					－	常設／緩和	－										
			中央燃料支持金具					－	常設／緩和	－										
			周辺燃料支持金具					－	常設／䈠和	－										
			制御棒案内管					－	常設／緩和	－										
					原子炉本体原子炉圧力容器	－					原子炬圧力容器		－	常設（ ） 緩和 $^{\text {a }}$	SAクラス 2					
					原子炉本体 原子炉圧力容器付属構造物	－					差圧検出・ほう酸水注入系配管（ティーより N11ノズルまでの外管）		－	常設 $/$／采和	SAクラス 2					
					原子炉本体 原子炉圧力容器内部構造物	－					差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）		－	常設／綵和	－					
						－					原子炬格納容器（ドライウェル）		－	常設／防止 （DB 拡張）	SAクラス 2					
				－	原子炬格納施設原子炉格納容器											原子炬格納容器（サプレッションチェンバ）		－	常設／防止 （DB 拡張）	SAクラス 2
				－	原子炉格納施設原子炬格納容器	－					原子炬格納容器（サプレッションチェンバ）		－	常設／防止 （DB 拡張）	SAクラス 2					

表2原子炉格納施設の兼用設備リスト（4／5）

O 2 （6）II R 2

表2原子炉格納施設の兼用設備リスト（5／5）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定）	第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984）

変更前	変更後
- 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008） - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説	- 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008） - 日本建築学会 1987 年 鉄骨鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2001 年 建築基礎構造設計指針 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - J I S B 8 2 4 3－1981 圧力容器の構造

7.5 原子炉格納施設に係る工事の方法

変更前	変更後
原子炉格納施設に係る工事の方法は，「原子炉本体」における「1．9原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3燃料体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従 う。	変更なし

8．その他発電用原子炉の附属施設
8．1 非常用電源設備
8．1．1 常用電源設備との切換方法

	変 更 前	変 更 後
非常用ディーゼル発電設備	手動及び自動	変更なし
高圧炉心スプレイ系ディーゼル発電設備	手動及び自動	変更なし
ガスタービン発電設備	-	手動
可搬型代替交流電源設備	-	手動
可搬型代替直流電源設備	-	手動
緊急時対策所ディーゼル発電設備	－	手動
可搬型窒素ガス供給装置発電設備	-	-

8．1．2．1 非常用ディーゼル発電設備
（2）内燃機関

載を削除。
注記＊1 ：S I 単位に換算したものである。
＊2：記載の適正化を行う。既工事計画書には「回転数」と記載。
＊3：記載の適止化を行り。既工事計画書には 1 rpm」と記䡛
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による

			変 更 前		変 更 後
名		称	調速装置	非常調速装置	変更なし
種	類	－	油圧式	電気一空気式	

八内燃機関に附属する洽却水設備（常設）

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す

二 内燃機関に附属する空気圧縮設備 1 空気だめ（虽設）

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
$* 2$ ：公称値を示す。
＊3：S I 単位に換算したものである。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－6－1－1 空気だめの強度計算書」による。 ＊5 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊6：記載の適正化を行う。既工事計画書にはスカート高さを含んだ「3104」と記載。記載内容は，設計図書による。
＊7：記載の適正化を行う。既工事計画書には「SGV49」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には「4（ディーゼル機関 1 台につき 2 ）」と記載。

2 空気だめの安全弁（常設）

			変 更 前		変更後
名		称	R43－F318A，B＊1		変更なし
種	類	－	非平衡型		
	出 圧 力	MPa	$3.24 * 2$		
吹	出 量	kg／h／個	959＊3		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	—＊4	$20 A^{* 5}$		
	のど部の径	mm		＊6	
	弁 座口の径	mm	15． $0^{* 6}$		
	リ フ ト	mm	以上＊6		
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱＊7	－	SCPH2		
個 数		－	2 （空気だめ 1 個につき 1）＊8		
取 付 箇 所		－	R43-F318A 非常用ディーゼル発電設備A系	R43-F318B 非常用ディーゼル発電設備B系	
	設 置 床	－	原子炉建屋 0.P. 15.00m	原子炉建屋 $0 . \text { P. } 15.00 \mathrm{~m}$	
	溢水防護上の区 画 番 号溢水防護上の配慮が必要な高さ	－	－		－

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「空気だめ安全弁」と記載。記載内容は，設計図書による。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－4－8 非常用ディーゼル発電設備空気だめ安全弁の吹出量計算書」による。
＊4 ：記載の適正化を行う。既工事計画書には「（A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「20」と記載。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「材料（弁箱）」と記載。
＊8：記載の適正化を行う。既工事計画書にはR43－F318とR43－F319を合わせた「4（空気だ め 1 個につき 1）」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「空気だめ胴部」と記載。記載内容は，設計図書による。

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「空気だめ安全弁」と記載。記載内容は，設計図書による。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－4－8 非常用ディーゼル発電設備空気だめ安全弁の吹出量計算書」による。
＊4：記載の適正化を行う。既工事計画書には「（A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「20」と記載。
＊6 ：公称値を示す。
＊ 7 ：記載の適正化を行う。既工事計画書には「材料（弁箱）」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には R43－F318とR43－F319を合わせた「4（空気だ め 1 個につき 1）」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「空気だめ胴部」と記載。記載内容は，設計図書による。

ホ 燃料デイタンク又はサービスタンク（常設）

注記 $~$ 1 ：記載の適正化を行う。既工事計画書には「燃料貯蔵量（ディーゼル機関 1 台につき）燃料デイタンク： $20 \mathrm{~m}^{3}$（定格運転 8 時間分）」と記載。記載内容は，設計図書による。
＊2 ：公称値を示す。
（4）燃料設備

注記 $* 1$ ：本設備は既存の設備である。
＊2 ：公称値を示す。

注記 $~ 1 ~$ ：非常用電源設備の非常用発電装置（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備），補機駆動用燃料設備の うち燃料設備と兼用。
＊2 ：公称値を示す。

二 主配管（常設）

（5）発電機

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す
＊3 ：記載の適正化を行う。既工事計画書には「—」と記載。
＊ 4 ：記載の適正化を行う。既工事計画書には「0．8」と記載。
＊5：記載の適正化を行う。既工事計画書には「回転数」と記載
＊6：記載の適正化を行う。既工事計画書には「rpm」と記載
＊7：記載の適正化を行う。既工事計画書には「冷却法」と記載。
＊8：記載の適正化を行う。既工事計画書には「2（ディーゼル機関1台につき1）」と記載。

口 励磁装置（常設）

注：記載の適正化を行う。既工事計画書の「回転数」及び「駆動方法」の記載を削除。
注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：記載の適正化を行う。既工事計画書には「2（発電機1台につき1）」と記載。

八 保護継電装置

		変 更 前	変更後
名	称	保護継電装置＊${ }^{1}$	
		ディーゼル発電機比率差動継電器	
	自動 遮 断 用	ディーゼル発電機逆電力継電器	
理 類		ディーゼル発電機過電流継電器	変更なし
種 類		ディーゼル発電機地絡継電器	
	警 報 用	ディーゼル発電機界磁地絡継電器	
		ディーゼル発電機過電圧継電器	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

二 原動機との連結方法

					変 更 前	変更後
連	結	方	法	－	直結＊1	変更なし

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「機関直結」と記載。

8．1．2．2 高圧炉心スプレイ系ディーゼル発電設備
（2）内燃機関

載を削除。
注記 $* 1$ ：S I 単位に換算したものである
＊2：記載の適正化を行う。既工事計画書には「回転数」と記載。
＊3：記載の適正化を行う。既工事計画書には「rpm」と記載。
＊ 4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

			変 更 前		変 更 後
名		称	調速装置	非常調速装置	変更なし
種	類	－	油圧式	電気一空気式	

八内燃機関に附属する洽却水設備（常設）

			変 更 前		変 更 後
名		称	機関付清水ポンプ		
種	類	－	うず巻形		
容	量＊1	$\mathrm{m}^{3} / \mathrm{h} /$ 個	以上＊2 $(150 * 3)$		
個	数	－	1		変更な
取	${ }^{\text {系 }}$（ ラ イ ${ }^{\text {統 }}$ ，名 ${ }^{\text {a }}$ ）	－	機関付清水ポンプ高圧炉心スプレイ系ディーゼル発電設備	＊2	更な
付 箇	設 置 床	－	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 15.00 \mathrm{~m} \\ & \hline \end{aligned}$	＊2	
所溢水防護上の区画番号 溢水防護上の配慮が必要な高さ		－	－		R－1F－15
		－			床上0．14m以上

注記＊1 ：記載の適正化を行う。既工事計画書には「定格容量」と記載。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：公称値を示す

枠囲みの内容は商業機密の観点から公開できません。

二 内燃機関に附属する空気圧縮設備 1 空気だめ（常設）

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊ 3 ：S I 単位に換算したものである。
枓囲みの内容は商業機密の観点から公開できません。
＊4 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類「IV－3－6－2－1 空気だめの強度計算書」による。 ＊5 ：記載の適正化を行う。既工事計画書には「全高」と記載。
＊6：記載の適正化を行う。既工事計画書にはスカート高さを含んだ「3104」と記載。記載内容は，設計図書による。
＊7：記載の適正化を行う。既工事計画書には「SGV49」と記載
＊ 8 ：記載の適正化を行う。既工事計画書には「2」と記載。

2 空気だめの安全弁（常設）

注記＊1 ：記載の適正化を行う。既工事計画書には「空気だめ安全弁」と記載。記載内容は，設計図書による。
＊2 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－4－9 高圧炉心スプレ イ系ディーゼル発電設備空気だめ安全弁の吹出量計算書」による。
＊4 ：記載の適正化を行う。既工事計画書には「（A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「20」と記載。
＊6 ：公称値を示す。
＊ 7 ：記載の適正化を行う。既工事計画書には「材料（弁箱）」と記載。
＊ 8 ：記載の適正化を行う。既工事計画書には R44－F318とR44－F319を合わせた「2（空気だ め 1 個につき 1）」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「空気だめ胴部」と記載。記載内容は，設計図書による。

枠囲みの内容は商業機密の観点から公開できません。

			変 更 前	変更後
名		称	R44－F319＊1	変更なし
種	類	－	非平衡型	
	出 圧 力	MPa	$3.24 * 2$	
吹	出 量	kg／h／個	959＊3	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	呼び径	－＊4	$20 A^{* 5}$	
	のど部の径	mm	＊6	
	弁 座口 の径	mm	15． $0 * 6$	
	リフ ト	mm	以上＊6	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱＊7	－	SCPH2	
個	数	－	$1 * 8$	
取 付 箇 所		－	R44-F319 高圧炉心スプレイ系ディーゼル発電設備	
	設 置 床	－	原子炉建屋 0.P. 15. 00m	
	$\begin{array}{lcll} \text { 溢 } & \text { 水 } & \text { 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	－
	溢 水 防 護 上の配慮が必要な高さ	－		－

注記＊1 ：記載の適正化を行う。既工事計画書には「空気だめ安全弁」と記載。記載内容は，設計図書による。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，平成4年1月13日付け 3 資庁第 10518 号にて認可された工事計画の添付書類「IV－4－9 高圧炉心スプレイ系ディーゼル発電設備空気だめ安全弁の吹出量計算書」による。
＊4 ：記載の適正化を行う。既工事計画書には「（A）」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「20」と記載。
＊6 ：公称値を示す。
＊7 ：記載の適正化を行う。既工事計画書には「材料（弁箱）」と記載。
＊8 ：記載の適正化を行う。既工事計画書には R44－F318 とR44－F319を合わせた「2（空気だ め 1 個につき1）」と記載。
＊9 ：記載の適正化を行う。既工事計画書には「空気だめ胴部」と記載。記載内容は，設計図書による。

ホ 燃料デイタンク又はサービスタンク（常設）

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「燃料貯蔵量 燃料デイタンク： $14 \mathrm{~m}^{3}$（定格運転 8 時間分）」と記載。記載内容は，設計図書による。
＊2 ：公称値を示す。
枠囲みの内容は商業機密の観点から公開できません。
（4）燃料設備

注記 $* 1$ ：本設備は既存の設備である。
＊2 ：公称値を示す。

注記＊1 ：非常用電源設備の非常用発電装置（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備），補機駆動用燃料設備の うち燃料設備と兼用。
＊2 ：公称値を示す。

二主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊3：非常用電源設備の非常用発電装置（ガスタービン発電設備，可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備），補機駆動用燃料設備のうち燃料設備と兼用
＊3：非常用電原設俑の非常用発
（5）発電機

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：公称値を示す。
＊3 ：記載の適正化を行う。既工事計画書には「—」と記載。
＊4：記載の適正化を行う。既工事計画書には「0．8」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「回転数」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「rpm」と記載。
＊7：記載の適正化を行う。既工事計画書には「泠却法」と記載。

			変 更 前	変更後
名		称	励磁装置＊${ }^{\text {1 }}$	変更なし
種	類	－	静止形自励式	
容	量	kW／個	34.1	
個	数	－	1	
$\begin{aligned} & \text { 取 } \\ & \text { 付 } \\ & \text { 箇 } \\ & \text { 所 } \end{aligned}$	$\begin{array}{c}\text { 系 } \\ \text {（ } \\ \text { ライン } \\ \text { 統 }\end{array}$ 名 $)^{\text {名 }}$	－	$\begin{gathered} \text { 励磁装置 } \\ \text { 高圧炉心スプレイ系ディーゼル発電設備 } \end{gathered}$	
	設 置 床	－	原子炉建屋 0. P． 15.00 m	
	溢 水 防 護 上の区 画 番 号	－	－	$\mathrm{R}-1 \mathrm{~F}-15-1$
	溢 水 防 護 上の配慮が必要な高さ	－		床上 $0.00 \mathrm{m以上}$

注：記載の適正化を行う。既工事計画書の「回転数」及び「駆動方法」の記載を削除。注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

八 保護継電装置

		変 更 前	変更後
名	称	保護継電装置＊${ }^{1}$	
		ディーゼル発電機比率差動継電器	
	自動 遮 断 用	ディーゼル発電機逆電力継電器	
理 類		ディーゼル発電機過電流継電器	変更なし
種 類		ディーゼル発電機地絡継電器	
	警 報 用	ディーゼル発電機界磁地絡継電器	
		ディーゼル発電機過電圧継電器	

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

二 原動機との連結方法

			変 更 前	変更後	
連	結	方	法	-	直結＊1

注記＊1 ：記載の適正化を行う。既工事計画書には「機関直結」と記載。

8．1．2．3 ガスタービン発電設備
（1）ガスタービン
イ ガスタービン（常設）

注記＊：タービン軸における値を示す。
（4）燃料設備

注記＊1 ：重大事故等時における使用時の値。
*2 : 公称値を示す。

注記 $~$ 1 ：非常用電源設備の非常用発電装置（可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備），補機駆動用燃料設備のうち燃料設備と兼用。
＊2：重大事故等時における使用時の値。
＊3 ：公称値を示す。

注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：公称値を示す。

注記＊：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（ガスタービン発電設備）として本工事計画で兼用とする。

	変更前	
名	－	高圧炉心スプレイ系デ
8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．2 高圧炉心スプレイ系ディーゼル発電設備 （4）燃料設備 口 容器（常設） に記載する。		

注記＊：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備） であり，非常用電源設備の非常用発電装置（ガスタービン発電設備）として本工事計画で兼用とする。

口 容器（可搬型）

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （ガスタービン発電設備）として本工事計画で兼用とする。
＝主配管（常設）

変 更 前									変 更 後							
	名	称		最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名 称	$\begin{gathered} \text { 最 高 使 用 } \\ \text { 圧 } \begin{array}{c} \text { 力*3 } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{gathered}$	最高使用温 度＊3 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	（ -1								が ス ＊6 タ 高圧灲心スプレイ系ディーゼ 1 ル発電設備燃料移送ポンプ入 ビ 口配管分岐点 発 電 高圧炬心スプレイ系ディーゼ 設 ル発電設備軽油タンク払出口		8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。					

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：重大事故等時における使用時の値。
＊ 4 ：非常用電源設備の非常用発電装置（可搬型代替交流電源設備，可搬型代替直流電源設備，可搬型窒素ガス供給装置発電設備），補機駆動用燃料設備のうち燃料設備と兼用。
＊5：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（ガスタービン発電設備）として本工事計画で兼用とする。
＊6 ：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置（ガスタービン発電設備）として本工事計画で兼用とする。
＊7 ：本設備は，非常用電源設備の非常用発電装置（高圧灲心スプレイ系ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（ガスタービン発電設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	軽油払出用ホース（外径63mm： 2 m ）＊
8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置 （ガスタービン発電設備）として本工事計画で兼用とする。
（5）発電機

注記＊：公称値を示す。

二原動機との連結方法

| | | | 変 | 更 | 前 | 変 更 後 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 連 | 結 | 方 | 法 | - | - | 減速機を介して連結 |

8．1．2．4 可搬型代替交流電源設備
（2）内燃機関
イ．機関（可搬型）

注記 $* 1$ ：非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
＊2：本設備は，電源車（発電機）の付属機器である。
＊3：電源車（発電機） 1 個当たりの個数を示す。

ロ．調速装置及び非常調速装置

注記 $* 1:$ 非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
＊ 2 ：本設備は，電源車（発電機）の付属機器である。

八。内燃機関に附属する泠却水設備（可搬型）

注記 $* 1$ ：非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
$* 2$ ：本設備は，電源車（発電機）の付属機器である。
＊3：電源車（発電機） 1 個当たりの個数を示す。

ホ．燃料デイタンク又はサービスタンク（可搬型）

注記 $* 1$ ：非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
＊2：本設備は，電源車（発電機）の付属機器である。
＊ 3 ：公称値を示す。
＊4：電源車（発電機） 1 個当たりの個数を示す。
＊5：重大事故等時の使用時の値。
（4）燃料設備
口 容器（常設）

	変更前	変 更 後
名 称	－	非常用ディーゼル発電設備軽油タンク＊

8．その他発電用原子炉の附属施設
8.1 非常用電源設備

8．1．2 非常用発電装置
8．1．2．1 非常用ディーゼル発電設備
（4）燃料設備
口 容器（常設）
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用とする。

注記＊：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備） であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画 で兼用とする。

注記＊：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用とする。

口 容器（可搬型）

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替交流電源設備）として本工事計画で兼用とする。

> 二 主配管 (常設)

名 称	変 更 前	変 更 後
非常用ディーゼル発電設備軽油タンク 燃料移送ポンプ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．1 非常用ディーゼル発電設備 （4）燃料設備 二 主配管（常設） に記載する。
燃料移送ポンプ入口配管分岐点 非常用ディーゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備軽油タンク ～高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8.1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．2 高圧炉心スプレイ系ディーゼル 発電設備 （4）燃料設備 二主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点 ～高圧炉心スプレイ系ディー ゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク ～ ガスタービン発電設備軽油 タンク出口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．3 ガスタービン発電設備 （4）燃料設備 二 主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク出口配管分岐点 ガスタービン発電設備軽油 タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。

注記 $~ 1 ~: ~$ 本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用とする。
＊2 ：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用とする。
＊3 ：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設

備）であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用とする。
＊4 ：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）として本工事計画で兼用と する。

	変更前	変 更 後
名 称	－	軽油扎出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）＊
8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替交流電源設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	給油用ホース（ $\phi 25: 50 \mathrm{~m}) *$
8．その他発電用原子炉の附属施設 8． 6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記 $*$ ：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替交流電源設備）として本工事計画で兼用とする。
（5）発電機
个 発電機（可搬型）

						変 更 前	変 更 後
名					称	－	電源車（発電機）＊1，＊2
種				類	－		同期発電機
容				量	kVA／個		400
主要寸法	た			て	mm		$1352^{* 3}$
	横				mm		$750^{* 3}$
		高	侕	さ	mm		$730^{* 3}$
			両 全	長	mm		6900＊3
			両 全	幅	mm		$2200 * 3$
			両 高	さ	mm		2970＊3
力				率	\％		85 （遅れ）
電				圧	V		6900
			相		－		3
	周		波	数	Hz		50
	回	転	速	度	min^{-1}		1500
	結		線	法	－		星形
	泠	却	方	法	－		空気泠却
	個			数	－		4 （予備 1）＊2
		付	箇	所	－		保管場所 ： - 第 1 保管エリア 0．P．約 62 m - 第 2 保管エリア 0．P．約 62 m - 第 3 保管エリア 0. P．約 14.8 m - 第 4 保管エリア 0．P．約 62 m 予備を含めた 5 個を第 2 保管エリ アに 2 個，第 3 保管エリアに 2個，第4保管エリアに1個保管す る。 取付箇所： －電源車接続口（原子炉建屋西側）0．P．約 14.8 m －電源車接続口（原子炉建屋東側）0．P．約 14.8 m

注記 $* 1$ ：非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
＊2：可搬型代替交流電源設備及び可搬型代替直流電源設備として 4 個を兼用する。可搬型代替交流電源設備，可搬型代替直流電源設備及び緊急時対策所ディーゼル発電設備として予備 1 個を兼用する。
＊3：公称値を示す。

口 励磁装置（可搬型）

注記 $* 1$ ：非常用電源設備の非常用発電装置（可搬型代替直流電源設備）と兼用する。
＊2：本設備は，電源車（発電機）の付属機器である。
＊3：電源車（発電機） 1 個当たりの個数を示す。

八 保護継電装置

注記＊：本設備は，電源車（発電機）の付属機器である。

二 原動機との連結方法

			変 更 前	変 更 後		
連	結	方	法	-		-

8．1．2．5 可搬型代替直流電源設備
（2）内燃機関
イ．機関（可搬型）

	変 更 前	変 更 後
名	称	-
電源車（内燃機関）＊		

8．その他発電用原子炉の付属施設
8． 1 非常用電源設備
8．1．2 非常用発電装置
8．1．2．4 可搬型代替交流電源設備
（2）内燃機関
イ．機関（可搬型）
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

ロ．調速装置及び非常調速装置

		変 更 前	変 更 後
名	称	－	電源車（調速装置）電源車（非常調速装置）

8．その他発電用原子炉の付属施設
8．1 非常用電源設備
8．1．2 非常用発電装置
8．1．2．4 可搬型代替交流電源設備
（2）内燃機関
ロ。 調速装置及び非常調速装置
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

八．内燃機関に附属する冷却水設備（可搬型）

	変 更 前	変 更 後
名 称	－	電源車（冷却水ポンプ）
8．その他発電用原子炉の付属施設 8． 1 非常用電源設備 8．1．2 非常用発電装置 8．1． 2.4 可搬型代替交流電源設備 （2）内燃機関 八．内燃機関に附属する冷却水設備（可搬型） に記載する。		

注記＊：本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

ホ．燃料デイタンク又はサービスタンク（可搬型）

注記 $*: ~$ 本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。
（4）燃料設備
口 容器（常設）

	変更前	変 更 後
名 称	－	非常用ディーゼル発電設備軽油タンク＊

8．その他発電用原子炉の附属施設
8.1 非常用電源設備

8．1．2 非常用発電装置
8．1．2．1 非常用ディーゼル発電設備
（4）燃料設備
口 容器（常設）
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

注記＊：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備） であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画 で兼用とする。

注記＊：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

口 容器（可搬型）

	変更前	変 更 後
名 称	－	タンクローリ＊
8．その他発電用原子炉の附属施設 8． 6 補機駆動用燃料設備 8．6．1 燃料設備 （2）容器（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替交流電源設備）として本工事計画で兼用とする。

> 二 主配管 (常設)

名 称	変 更 前	変 更 後
非常用ディーゼル発電設備軽油タンク 燃料移送ポンプ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．1 非常用ディーゼル発電設備 （4）燃料設備 二 主配管（常設） に記載する。
燃料移送ポンプ入口配管分岐点 非常用ディーゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備軽油タンク ～高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8.1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．2 高圧炉心スプレイ系ディーゼル 発電設備 （4）燃料設備 二主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点 ～高圧炉心スプレイ系ディー ゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク ～ ガスタービン発電設備軽油 タンク出口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．3 ガスタービン発電設備 （4）燃料設備 二 主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク出口配管分岐点 ガスタービン発電設備軽油 タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。

注記 $~ 1 ~: ~$ 本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。
＊2 ：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。
＊3 ：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設

備）であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。
＊4 ：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用と する。

	変更前	変 更 後
名 称	－	軽油扎出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）＊
8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替直流電源設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	給油用ホース（ $\phi 25: 50 \mathrm{~m}) *$
8．その他発電用原子炉の附属施設 8． 6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型代替直流電源設備）として本工事計画で兼用とする。
（5）発電機
1．発電機（可搬型）

	変 更 前	変 更 後
名	-	電源車（発電機）

8．その他発電用原子炉の付属施設
8．1非常用電源設備
8．1．2 非常用発電装置
8．1．2．4 可搬型代替交流電源設備
（5）発電機
イ．発電機（可搬型）
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

ㅁ．励磁装置（可搬型）

	変 更 前	変 更 後	
名 称	－	電源車（励磁装置）	＊
8．その他発電用原子炉の付属施設 8． 1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．4 可搬型代替交流電源設備 （5）発電機 口．励磁装置（可搬型） に記載する。			

注記 $*: ~$ 本設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

八．保護継電装置

	変 更 前	変 更 後
名 称	－	電源車（保護継電装置）
8．その他発電用原子炉の付属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．4 可搬型代替交流電源設備 （5）発電機 八。 保護継電装置 に記載する。		

注記 $~ * ~: ~$ 設備は，非常用電源設備の非常用発電装置（可搬型代替交流電源設備）であり，非常用発電装置（可搬型代替直流電源設備）として本工事計画で兼用とする。

二．原動機との連結方法
8．その他発電用原子炉の付属施設
8．1 非常用電源設備
8．1．2 非常用発電装置
8．1．2．4 可搬型代替交流電源設備
（5）発電機
ニ．原動機との連結方法 に記載する。

8．1．2．6 緊急時対策所ディーゼル発電設備
（2）内燃機関
イ．機関（可搬型）

					変 更 前	変 更 後
機	名 称				－	電源車（緊急時対策所用） （内燃機関）＊1
	種		類	－		4 サイクル水冷直列直接噴射式 ディーゼル機関
	出		力	kW／個		430
	回	転 速	度	min^{-1}		1500
	燃	種	類	－		軽油
関	料	使 用	量	L／h／個		100
	個		数	－		1＊2
	取	付 箇	所	－		電源車（緊急時対策所用）
過	種		類	－		排気タービン式
	出	口の圧	力	kPa		
給	回	転 速	度	min^{-1}		
	個		数	－		$1^{* 2}$
機	取	付 箇	所	－		機関と同じ

注記＊1：本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。
＊2：電源車（緊急時対策所用）（発電機） 1 個当たりの個数を示す。

ロ．調速装置及び非常調速装置

名			変 更 前		
	称		－	電源車 （緊急時対策所用） （調速装置）	$\begin{gathered} \hline \text { 電源車 } \\ \text { (緊急時対策所用) } \end{gathered}$ (非常調速装置) *
種	類	－		電気式	電気式

注記 $*: ~$ 本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。

八。内燃機関に附属する泠却水設備（可搬型）

					変 更 前	変 更 後
名			称		－	電源車（緊急時対策所用） （冷却水ポンプ）＊
種			類	－		らず巻式
容			量	$\mathrm{m}^{3} / \mathrm{h} /$ 個		
個			数	－		1＊2
取	付	箇	所	－		電源車（緊急時対策所用）

注記＊1 ：本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。
＊2：電源車（緊急時対策所用）（発電機） 1 個当たりの個数を示す。

ホ．燃料デイタンク又はサービスタンク（可搬型）

注記 $* 1$ ：本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。
＊2：公称値を示す。
＊3：電源車（緊急時対策所用）（発電機） 1 個当たりの個数を示す。
＊ 4 ：重大事故等時の使用時の値。
（4）燃料設備

注記＊1 ：公称値を示す。
＊2 ：重大事故等時における使用時の値を示す。

枠囲みの内容は商業機密の観点から公開できません。

二 主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline \& 名 \& 称 \& 最高使用
圧
力
（MPa） \& \begin{tabular}{|l|l|}
\hline 最高使用 \\
温 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} 度 \& \[
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 \& 料 \& \& 名 称 \& 最高使用
圧
力
（MPa） \& \& \[
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& \begin{tabular}{c}
厚 さ＊2 \\
\((\mathrm{mm})\) \\
\hline
\end{tabular} \& 材 料 \\
\hline \& \& \& \& － \& \& \& \& \& \& 緊急時対策所軽油タンク給油口 \& 0． 05 \& 50 \& 60.5

34.0 \& （5．5）

（4．5） \& STS410

STS410

\hline
\end{tabular}

注記＊1：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す

二主配管（可搬型）

変 更 前									変 更 後								
	名称	最高使用圧 力 （MPa）	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{array}{r} \text { 外径 } \\ (\mathrm{mm}) \\ \hline \end{array}$	$\begin{array}{r} \text { 厚さ } \\ (\mathrm{mm}) \\ \hline \end{array}$	材料	個数	取付箇所		名称	最高使用 圧 力 （MPa）	最高使用 温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	材料	個数	取付箇所
				－						給油用ホース（20A：7m）	1． $0^{* 1}$	$80^{* 1}$	30．0＊2	－＊3	$\begin{aligned} & \text { 補強層 } \\ & \text { 入り多 } \\ & \text { 層ゴム } \end{aligned}$	1	保管場所： 電源車（緊急時対策所用） 取付箇所： 電源車（緊急時対策所用）

注記 $* 1$ ：重大事故等時における使用時の値。
＊2：メーカにて規定する呼び径を示す。
 できるものとする。
（5）発電機
个 発電機（可搬型）

						変 更 前	変 更 後
	名				称		
	種			類	－		同期発電機
	容			量	kVA／個		400
		た		て	mm		$1352^{* 2}$
主			横		mm		$750 * 2$
要		高		さ	mm		$730 * 2$
寸			両 全	長	mm		$6900 * 2$
法			両 全	幅	mm		$2200^{* 2}$
		車	両 高	さ	mm		2970＊2
	力			率	\％		85（遅れ）
	電			圧	V		6900
			相		－		3
	周		波	数	Hz		50
	回	転	速	度	min^{-1}		1500
	結		線	法	－		星形
	冷	却	方	法	－		空気冷却
	個			数	－		1 （予備 1）＊1
	取	付	箇	所	－		保管場所 ： - 第 1 保管エリア 0．P．約 62 m - 第 2 保管エリア 0．P．約 62 m - 第 3 保管エリア 0．P．約 14.8 m - 第 4 保管エリア 0. P．約 62 m - 緊急時対策建屋北側 0．P．約 62 m 予備を含めた 2 個を，第 4 保管エ リアに 1 個及び緊急時対策建屋北側に 1 個保管する。 取付箇所： －緊急時対策建屋北側接続口約 0．P．+62 m

注記 $* 1$ ：可搬型代替交流電源設備，可搬型代替直流電源設備及び緊急時対策所ディーゼル発電設備として予備1個を兼用する。
＊2：公称値を示す。

口 励磁装置（可搬型）

					変 更 前	変 更 後
名				称	－	電源車（緊急時対策所用） （励磁装置）${ }^{* 1}$
種			類	－		ブラシレス励磁方式
容			量	kW／個		13
個			数	－		$1^{* 2}$
取	付	箇	所	－		電源車（緊急時対策所用）

注記＊1：本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。
＊2：電源車（緊急時対策所用）（発電機） 1 個当たりの個数を示す。

八 保護継電装置

			変 更 前	変 更 後
名		称	－	電源車（緊急時対策所用） （保護継電装置）＊
種	類	－		不足電圧／過電圧継電器 過電流継電器地絡過電圧継電器逆電力継電器

注記＊：本設備は，電源車（緊急時対策所用）（発電機）の付属機器である。

二 原動機との連結方法

			変 更 前	変 更 後		
連	結	方	法	-		-

8．1．2．7 可搬型窒素ガス供給装置発電設備
（2）内燃機関

					変更前	変更後
名				称	－	可搬型窒素ガス供給装置発電設備 （内燃機関）
	種		類	－		4サイクルたて形6気筒ディーゼル機関
	出		力	kW／個		178
		転 速	度	min^{-1}		1500
	燃	種	類	－		軽油
	料	使 用	量	l／h／個		
関	個		数	－		$1^{* 2}$
		付 箇	所	－		可搬型窒素ガス供給装置
過給機	種		類	－		排気タービン式
	出	口の圧	力	kPa		100
	回	転 速	度	min^{-1}		74200
	個		数	－		$1^{* 2}$
	取	付 箇	所	－		機関と同じ

注記 $* 1$ ：本設備は可搬型窒素ガス供給装置の付属機器である。
＊2：可搬型窒素ガス供給装置 1 個当たりの個数を示す。

* 2 : 可搬型荎素ガス供給装惪 1 個当たりの個数を小す。

口 調速装置及び非常調速装置

			変更前	変 更 後	
名		称	－	可搬型窒素ガス供給装置発電設備（調速装置）＊	可搬型窒素ガス供給装置発電設備（非常調速装置）
種	類	－		機械式	機械式

注記 $*$ ：本設備は可搬型窒素ガス供給装置の付属機器である。

八 内燃機関に附属する冷却水設備（可搬型）

注記＊1 ：本設備は可搬型窒素ガス供給装置の付属機器である。
＊2 ：可搬型窒素ガス供給装置1個当たりの個数を示す。

ホ 燃料デイタンク又はサービスタンク（可搬型）

注記＊1 ：本設備は可搬型窒素ガス供給装置の付属機器である。
＊2 ：公称値を示す。
＊ 4 ：可搬型窒素ガス供給装置 1 個当たりの個数を示す。
（4）燃料設備
口 容器（常設）

	変更前	変 更 後
名 称	－	非常用ディーゼル発電設備軽油タンク＊

8．その他発電用原子炉の附属施設
8.1 非常用電源設備

8．1．2 非常用発電装置
8．1．2．1 非常用ディーゼル発電設備
（4）燃料設備
口 容器（常設）
に記載する。
注記＊：本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。

	変更前	
名 称	－	高圧炉心スプレイ系ご
8．その他発電用原子炉の附属施設 8.1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．2 高圧炉心スプレイ系ディーゼル発電設備 （4）燃料設備 口 容器（常設） に記載する。		

注記＊：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設備） であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	ガスタービン発電設備軽油タンク＊
8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．3 ガスタービン発電設備 （4）燃料設備 口 容器（常設） に記載する。		

注記＊：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用と する。

口 容器（可搬型）

	変更前	変 更 後
名 称	－	タンクローリ＊
8．その他発電用原子炉の附属施設 8． 6 補機駆動用燃料設備 8．6．1 燃料設備 （2）容器（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。

> 二 主配管 (常設)

名 称	変 更 前	変 更 後
非常用ディーゼル発電設備軽油タンク 燃料移送ポンプ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．1 非常用ディーゼル発電設備 （4）燃料設備 二 主配管（常設） に記載する。
燃料移送ポンプ入口配管分岐点 非常用ディーゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備軽油タンク ～高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．2 高圧炉心スプレイ系ディーゼル 発電設備 （4）燃料設備 二 主配管（常設） に記載する。
高圧炉心スプレイ系ディー ゼル発電設備燃料移送ポン プ入口配管分岐点 高圧炉心スプレイ系ディー ゼル発電設備軽油タンク払出口	－	8．その他発電用原子炉の附属施設 8． 6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク ～ ガスタービン発電設備軽油 タンク出口配管分岐点	－	8．その他発電用原子炉の附属施設 8．1 非常用電源設備 8．1．2 非常用発電装置 8．1．2．3 ガスタービン発電設備 （4）燃料設備 二 主配管（常設） に記載する。
ガスタービン発電設備軽油 タンク出口配管分岐点 ～ ガスタービン発電設備軽油 タンク払出口	－	8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（常設） に記載する。

注記 $~ 1 ~: ~$ 本設備は，非常用電源設備の非常用発電装置（非常用ディーゼル発電設備）であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。
＊2 ：本設備は，補機駆動用燃料設備のうち燃料設備であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。
＊3 ：本設備は，非常用電源設備の非常用発電装置（高圧炉心スプレイ系ディーゼル発電設

備）であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）と して本工事計画で兼用とする。
＊4 ：本設備は，非常用電源設備の非常用発電装置（ガスタービン発電設備）であり，非常用電源設備の非常用発電装置（可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	軽油扎出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）＊
8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記 $*$ ：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。

	変更前	変 更 後
名 称	－	給油用ホース（ $\phi 25: 50 \mathrm{~m}) *$
8．その他発電用原子炉の附属施設 8.6 補機駆動用燃料設備 8．6．1 燃料設備 （4）主配管（可搬型） に記載する。		

注記＊：本設備は，補機駆動用燃料設備のらち燃料設備であり，非常用電源設備の非常用発電装置 （可搬型窒素ガス供給装置発電設備）として本工事計画で兼用とする。
（5）発電機

					変 更 前	変 更 後
名	称				－	可搬型窒素ガス供給装置 発電設備（発電機）$*_{1}$
種			類	－		同期発電機
容			量	kVA／個		200
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	た		て	mm		$\square^{* 2}$
	横			mm		＊2
	高		さ	mm		$]^{* 2}$
力			率	\％		80 （遅れ）
電			圧	V		440
相				－		3
周	波		数	Hz		50
回		速	度	min^{-1}		1500
結	線		法	－		星形
泠	却	方	法	－		空気冷却
個			数	－		1 （予備 1）
取	付	箇	所	－		可搬型窒素ガス供給装置

注記 $* 1$ ：本設備は可搬型窒素ガス供給装置の付属機器である。
＊2 ：公称値を示す。

励磁装置（可搬型）

					変 更 前	変 更 後
名	称				－	可搬型窒素ガス供給装置発電設備（励磁装置）＊1
種			類	－		ブラシレス方式
容			量	kVA／個		
個			数	－		1＊2
取	付	箇	所	－		可搬型窒素ガス供給装置発電設備

注記＊1 ：本設備は可搬型窒素ガス供給装置発電設備（発電機）の付属機器である。
＊2 ：可搬型窒素ガス供給装置発電設備（発電機） 1 個当たりの個数を示す。

八 保護継電装置

		変 更 前	変 更 後
名	称	－	可搬型窒素ガス供給装置発電設備（保護継電装置）
種 類	－		過電流継電器
			漏電継電器

注記＊：本設備は可搬型窒素ガス供給装置発電設備（発電機）の付属機器である。

8．1．3 その他の電源装置
8．1．3．1 無停電電源装置

注：記載の適正化を行う。既工事計画書の「相」の記載を削除。
注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による
＊2 ：公称値を示す。
＊3：無停電交流電源用静止形無停電電源装置については，取替を実施する

8．1．3．2 電力貯蔵装置
（2）電力貯蔵装置（常設）

			変 更 前			変 更 後		
名 称			125 V 蓄電池＊1			変更なし		
			2A	2B	2H	2A	2B	2 H
種	類	-	密閉形クラッド式据置鉛蓄電池		密閉形クラッド式据置鉛蓄電池	制御弁式据置鉛蓄電池		変更なし
容	量	Ah／組＊2	4000 （10時間率）		400 （10時間率）	8000 （10時間率）	6000 （10時間率）	
電	圧	V	125		125	変更なし		
	た て	mm			\square ＊ $1, * 3$			
要	横	mm			$\square^{* 1, * 3}$	$\square{ }^{* 3}$	$\square{ }^{* 3}$	
法	高 さ	mm					\square	
個	数	組＊4	2 （1組当た	個）＊5	1 （1組当たり60個）${ }^{* 6}$	1 （1組当たり180個）	1 （1組当たり120個）	
		－	125 V 蓄電池 2 A＊${ }^{\text {\％}}$	125 V 蓄電池 $2 \mathrm{~B}^{* 1}$	125 V 蓄電池 $2 \mathrm{H}^{* 1}$			
取 付 䈯	設 置 床	－	制御建屋 O． O． 8.00 m O． 11.40 m	制御建屋 0．P． 8.00 m	原子炉建屋 0．P． 20.90 m	$\begin{aligned} & \text { 制御建屋 } \\ & \text { 0. } 1.1 .5 \mathrm{~m} \\ & \text { 0. P. } 8.00 \mathrm{~m} \\ & \text { O. P. } 11.40 \mathrm{~m} \end{aligned}$	変更なし	
所	溢水防護上の区画番号	－		－			C－B1F－4	R－M2F－8
	$\begin{array}{\|l\|llllll} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 配 } & \text { 慮 } & \text { が } & \text { 必 } & \text { 要 } & \text { な } & \text { 高 } \\ \text { さ } \\ \hline \end{array}$	－				床上 $0.00 \mathrm{m以上}$	床上 0.00 m 以上	床上 0.00 m 以上

注記＊1 ：既工事計画書に記載がないため記載の適正化を行ら。記載内容は，設計図書による。
＊2 ：記載の適正化を行う。既工事計画書には「Ah／個」と記載。
＊3 ：公称値を示す
＊4：記載の適正化を行う。既工事計画書には「一」と記載
＊5 ：記載の適正化を行う。既工事計画書には「2」と記載。
＊6：記載の適正化を行う。既工事計画書には「1」と記載。

注記＊1 ：公称値を示す。

			変 更 前	変 更 後
名		称	250 V 蓄電池＊1	
種	類	－	密閉形クラッド式据置鉛蓄電池	
容	量	Ah／組＊2	4500 （10 時間率）	
電	圧	V	250	
	た て	mm		
要	横	mm	$]^{* 1, * 3}$	
	高 さ	mm	$]^{* 1, * 3}$	－＊6
個	数	組＊4	$1(1$ 組当たり 120 個）＊5	
$\begin{aligned} & \text { 取 } \\ & \text { 贷 } \\ & \text { 䇽 } \end{aligned}$		－	250 V 蓄電池＊1	
	設 置 床	－	制御建屋 0．P．1．50m	
	溢水防護上の区 画 番 号	－	－	
	溢水防護上の配慮が必要な高さ	－		

注記＊1 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
＊2 ：記載の適正化を行う。既工事計画書には「Ah／個」と記載。
＊3 ：公称値を示す。
＊4：記載の適正化を行う。既工事計画書には「一」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「1」と記載。
＊6 ：記載の適正化を行ら。本設備は設計基準対象施設として工事計画の記載範囲外である。

			変 更 前	変 更 後
名		称		250V 蓄電池
種	類	－		制御弁式据置鋁蓄電池
容	量	Ah／組		6000 （10 時間率）
電	圧	V		250
	た て	mm		$\square^{* 1}$
要	横	mm		，
	高 さ	mm	－	$]^{* 1}$
個	数	組		1 （ 1 組当たり 232 個）
	$\begin{gathered} \text { 系 }{ }^{(\text {ラ イ 統 }} \text { 名 } \\ \hline \text { 名) } \end{gathered}$	－		250V 蓄電池
	設 置 床	－		制御建屋 0．P．1．50m
阶	溢水防護上の区 画 番 号	－		C－B2F－3
	溢水防護上の配慮が必要な高さ	－		床上 0.00 m 以上

注記＊1：公称値を示す。
（2）電力貯蔵装置（可搬型）

				変 更 前	変 更 後
	名 称			－	主蒸気逃がし安全弁用可搬型蓄電池
	種 類		－		小型制御弁式鉛蓄電池
	容	量	Ah／組		24 （20 時間率）
	電	圧	V		120V
	$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 寸 } \\ & \text { 法 } \end{aligned}$	た て	mm		＊1
		横	mm		\square
		高 さ	mm		${ }^{* 1}$
	個	数	組		1（予備 1）（1組当たり10個）
$\stackrel{-}{2}$	取 付 箇 所	${ }^{\text {系 }} \text { (統 }{ }^{\text {(}} \text { 名 }$	－		主蒸気逃がし安全弁用可搬型蓄電池
$=$ （0） \sim 0		設 置 床	－		保管場所： 制御建屋地上 2 階（0．P．19500） 取付箇所： 制御建屋地上 2 階（0．P．19500）
		溢水防護上の 区 画 番 号	－		$\begin{aligned} & \mathrm{C}-2 \mathrm{~F}-4 \\ & \mathrm{C}-2 \mathrm{~F}-6 \end{aligned}$
		溢水防護上の配慮が必要な高さ	－		床上 0.00 m 以上

注記＊1 ：公称値を示す。

8．1．4 非常用電源設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 非常用電源設備の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．設備に対する要求（4．6 逆止め弁を除く。），5．その他（5．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 非常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火災， 4．溢水等，5．設備に対する要求（5．6 逆止め弁を除く。），6．その他 （6． 4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とす る。
第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持た せ， 3 系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3	第2章 個別項目 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持た せ， 3 系統の母線で構成し，工学的安全施設に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3

変更前	変更後
系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。 さらに，非常用所内電源系からの受電時の母線切替操作が容易な設計 とする。 これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケーブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについて相互に物理的分離を図る設計とす るとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1．2 所内電気系統 1．2．1 系統構成 非常用所内電気設備は，3系統の非常用母線等（メタルクラッド スイッチギア（非常用）（6900V，1200A のものを 2 個），メタルク	系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響を局所化できるとともに，他の安全施設への影響を限定できる設計とする。 さらに，非常用所内電源系からの受電時の母線切替操作が容易な設計 とする。 重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与 えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）について，遮断器の遮断時間の適切な設定，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） の停止等により，高エネルギーのアーク放電によるこれらの電気盤の損壊の拡大を防止することができる設計とする。 これらの母線は，独立性を確保し，それぞれ区画分離された部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性をもつ動力回路に使用するケーブルは，負荷の容量に応じたケーブルを使用し，多重化したそれぞれのケーブルについて相互に物理的分離を図る設計とす るとともに制御回路や計装回路への電気的影響を考慮した設計とする。 1.2 代替所内電気系統 1．2．1 系統構成 非常用所内電気設備は，3系統の非常用母線等（メタルクラッド スイッチギア（非常用）（6900V，1200A のものを 2 個），メタルク

変更前	変更後
ラッドスイッチギア（高圧炉心スプレイ系用）（6900V，1200A のも のを 1 個），パワーセンタ（非常用）（600V，5000A のものを 2 個）， モータコントロールセンタ（非常用）（600V，800A のものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（3300kVA，6750／460V のも のを 2 個），動力変圧器（高圧炉心スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（非常用）（ 75 kVA ， 460／120V のものを 4 個））により構成することにより，共通要因で機能を失うことなく，少なくとも 1 系統は電力供給機能の維持及 び人の接近性の確保を図る設計とする。	ラッドスイッチギア（高圧炉心スプレイ系用）（6900V，1200A のも のを 1 個），パワーセンタ（非常用）（ $600 \mathrm{~V}, ~ 5000 \mathrm{~A}$ のものを 2 個）， モータコントロールセンタ（非常用）（600V，800A のものを 14 個）， モータコントロールセンタ（高圧炉心スプレイ系用）（600V，800A のものを 1 個），動力変圧器（非常用）（3300kVA，6750／460V のも のを 2 個），動力変圧器（高圧炉心スプレイ系用）（ $750 \mathrm{kVA}, 6900 / 460 \mathrm{~V}$ のものを 1 個）及び中央制御室 120 V 交流分電盤（非常用）（ 75 kVA ， 460／120V のものを 4 個））により構成することにより，共通要因で機能を失うことなく，少なくとも 1 系統は電力供給機能の維持及 び人の接近性の確保を図る設計とする。 これとは別に上記 3 系統の非常用母線等の機能が喪失したこと により発生する重大事故等の対応に必要な設備に電力を給電する代替所内電気設備として，ガスタービン発電機接続盤（7200V，1200A のものを 2 個），メタルクラッドスイッチギア（緊急用）（7200V， 1200A のものを 3 個），動力変圧器（緊急用）（ 500 kVA ，6900／460V のものを 2 個， $750 \mathrm{kVA}, 6750 / 460 \mathrm{~V}$ のものを 1 個），パワーセンタ （緊急用）（600V，3000A のものを 1 個），モータコントロールセン夕（緊急用）（600V，800A のものを 4 個），ガスタービン発電設備燃料移送ポンプ接続盤（600V，100Aのものを 1 個），460V 原子炉建屋交流電源切替盤（緊急用）（600V，150A のものを 1 個），460V 原子炉建屋交流電源切替盤（非常用）（600V，30A のものを 2 個），メ タルクラッドスイッチギア（非常用）（6900V，1200A のものを 2 個）， 120 V 原子炉建屋交流電源切替盤（緊急用）（120V，30A のものを 1個）及び中央制御室 120 V 交流分電盤（緊急用）（20kVA，460／120V

変更前	変更後
2．交流電源設備 2． 1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設におい て常時使用される発電機からの電力の供給が停止した場合におい て発電用原子炉施設の安全性を確保するために必要な装置の機能 を維持するため，内燃機関を原動力とする非常用交流電源設備を設 ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする非常用交流電源設備の非常用 ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） からの電源供給が可能な設計とする。 非常用交流電源設備及びその附属設備は，多重性又は多様性を確保し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処 するための設備がその機能を確保するために十分な容量を有する設計とする。	2．交流電源設備 2.1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設におい て常時使用される発電機からの電力の供給が停止した場合におい て発電用原子炉施設の安全性を確保するために必要な装置の機能 を維持するため，内燃機関を原動力とする非常用交流電源設備を設 ける設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする非常用交流電源設備の非常用 ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） からの電源供給が可能な設計とする。 非常用交流電源設備及びその附属設備は，多重性又は多様性を確保し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において，工学的安全施設及び設計基準事故に対処 するための設備がその機能を確保するために十分な容量を有する設計とする。

変更前	変更後
非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）は，非常用高圧母線低電圧信号又は非常用炉心冷却設備作動信号で起動し，設置（変更）許可を受けた冷却材喪失事故におけ る工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は 10 秒及び高圧炉心スプレイ系ディーゼル発電機は 13 秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷に給電する設計とする。 設計基準事故時において，発電用原子炉施設に属する非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。	非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機 を含む。）は，非常用高圧母線低電圧信号又は非常用炉心冷却設備作動信号で起動し，設置（変更）許可を受けた冷却材喪失事故におけ る工学的安全施設の設備の作動開始時間を満足する時間として非常用ディーゼル発電機は 10 秒及び高圧炉心スプレイ系ディーゼル発電機は 13 秒以内に電圧を確立した後は，各非常用高圧母線に接続し，負荷に給電する設計とする。 設計基準事故時において，発電用原子炉施設に属する非常用所内電源設備及びその附属設備は，発電用原子炉ごとに単独で設置し，他の発電用原子炉施設と共用しない設計とする。 非常用交流電源設備は，想定される重大事故等時において，重大事故等対処設備（設計基準拡張）として使用できる設計とする。 非常用交流電源設備のらち非常用ディーゼル発電機は重大事故等時に，ATWS 緩和設備（代替制御棒挿入機能），ATWS 緩和設備（代替原子炉再循環ポンプトリップ機能），ATWS 緩和設備（自動減圧系作動阻止機能），ほう酸水注入系，代替自動減圧回路（代替自動減圧機能），高圧窒素ガス供給系（非常用），低圧代替注水系（常設） （復水移送ポンプ），低圧代替注水系（可搬型），残留熱除去系（低圧注水モード），低圧炉心スプレイ系，残留熱除去系（原子炉停止時冷却モード），原子炉補機冷却水系（原子炉補機冷却海水系を含 む。），原子炉格納容器代替スプレイ冷却系（常設），原子炉格納容器代替スプレイ冷却系（可搬型），残留熱除去系（格納容器スプレ イ冷却モード），残留熱除去系（サプレッションプール水冷却モー ド），代替循環冷却系，原子炉格納容器下部注水系（常設）（復水移

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{\rightharpoonup}{\leftrightharpoons} \end{aligned}$		可搬型代替交流電源設備は，電源車からメタルクラッドスイッチ ギア（非常用）までの系統において，独立した電路で系統構成する ことにより，非常用ディーゼル発電機からメタルクラッドスイッチ ギア（非常用）までの系統及び高圧炉心スプレイ系ディーゼル発電機からメタルクラッドスイッチギア（高圧灲心スプレイ系用）まで の系統に対して，独立性を有する設計とする。 これらの多様性及び位置的分散並びに電路の独立性によって，可搬型代替交流電源設備は非常用交流電源設備である非常用ディー ゼル発電機及び高圧炬心スプレイ系ディーゼル発電機に対して独立性を有する設計とする。 可搬型代替交流電源設備の電源車の接続箇所は，共通要因によっ て接続できなくなることを防止するため，位置的分散を図った複数箇所に設置する設計とする。 2.4 緊急時対策所用代替交流電源設備 緊急時対策所用代替交流電源設備である電源車（緊急時対策所用）は， メタルクラッドスイッチギア（緊急時対策所用）（ 7200 V ，1200A のもの を 2 個），動力変圧器（緊急時対策所用）（500kVA，6900／460V のものを 2 個），モータコントロールセンタ（緊急時対策所用）（ $600 \mathrm{~V}, 800 \mathrm{~A}$ のも のを 3 個）， 105 V 交流電源切替盤（緊急時対策所用）（460／210－105V， 225 A のものを 1 個）， 105 V 交流分電盤（緊急時対策所用）（30kVA，210－ 105 V のものを 1 個）， 120 V 交流分電盤（ 緊急時対策所用）（ $10 \mathrm{kVA}, 460 / 120 \mathrm{~V}$ のものを 2 個）， 210 V 交流分電盤（緊急時対策所用）（ $150 \mathrm{kVA}, 460 / 210 \mathrm{~V}$ のものを 2 個）， 125 V 直流主母線盤（緊急時対策所用）（ $125 \mathrm{~V}, 1800 \mathrm{~A}$ の

変更前	変更後
	ものを 3 個）を経由して緊急時対策所非常用送風機，衛星電話設備（固定型），無線連絡設備（固定型），統合原子力防災ネットワークを用いた通信連絡設備（テレビ会議システム，IP 電話及び IP—FAX）及び安全パ ラメータ表示システム（SPDS）等へ給電できる設計とする。 2.5 可搬型窒素ガス供給装置発電設備 可搬型窒素ガス供給装置発電設備は，車両内に搭載し，可搬型窒素ガ ス供給装置に給電できる設計とする。
3．直流電源設備及び計測制御用電源設備 3．1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対 し，直流電源設備を施設する設計とする。 直流電源設備は，短時間の全交流動力電源喪失時においても，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心を冷却するための設備が動作することができるよう，これらの設備の動作に必要な容量を有する 125 V 蓄電池を設ける設計とする。 非常用の直流電源設備は，直流 $125 V 3$ 系統の蓄電池，充電器及 び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全	3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対 し，直流電源設備を施設する設計とする。 直流電源設備は，全交流動力電源喪失時から重大事故等に対処す るために必要な電力の供給が常設代替交流電源設備から開始され るまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全 に停止し，かつ，発電用原子炉の停止後に炉心を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保するための設備が動作することができるよう，これらの設備の動作に必要な容量を有する 125 V 蓄電池を設ける設計とする。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及 び 125 V 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉の安全

性は確保できる設計とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失する ことのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。

変更後
性は確保できる設計とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失する ことのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。

設計基準事故対処設備の交流電源が喪失（全交流動力電源喪失） した場合に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力を供給する所内常設蓄電式直流電源設備として， 125 V 蓄電池 2 A 及び 2 B 並びに 125 V 充電器 2 A 及び 2 B を使用できる設計と する。

所内常設蓄電式直流電源設備は， 125 V 蓄電池 2 A 及び $2 \mathrm{~B}, 125 \mathrm{~V}$充電器 2 A 及び 2 B （ 125 V ，700A のものを 2 個），電路，計測制御装置等で構成し， 125 V 蓄電池 2 A 及び 2 B は， 125 V 直流主母線盤 2 A 及 び 2 B （ 125 V ，1800A のものを 2 個）， 125 V 直流主母線盤 2A－1 及び $2 \mathrm{~B}-1$（ $125 \mathrm{~V}, 1800 \mathrm{~A}$ のものを 2 個）， 125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2$ ， $2 \mathrm{~A}-3,2 \mathrm{~B}-1, ~ 2 \mathrm{~B}-2$ 及び $2 \mathrm{~B}-3$（ $125 \mathrm{~V}, 1200 \mathrm{~A}$ のものを 6 個）， 125 V 直流電源切替盤 2 A 及び 2 B （ 125 V ，60A のものを 2 個）並びに 125 V 直流 RCIC モータコントロールセンタ（125V，800A のものを 1 個）へ電力を給電できる設計とする。

所内常設蓄電式直流電源設備の 125 V 蓄電池 2 A 及び 2 B は，全交流動力電源喪失から1時間以内に中央制御室において不要な負荷

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\perp}{\perp} \\ & \stackrel{\rightharpoonup}{\Delta} \end{aligned}$		設計基準事故対処設備の交流電源及び直流電源が喪失した場合 に，重大事故等の対応に必要な炉心の著しい損傷，原子炉格納容器 の破損，使用済燃料プール内の燃料体等の著しい損傷及び運転停止中原子炉内燃料体の著しい損傷を防止するための直流負荷へ電力 を供給する可搬型代替直流電源設備として 125 V 代替蓄電池， 250 V蓄電池，電源車， 125 V 代替充電器及び 250 V 充電器を使用できる設計とする。 可搬型代替直流電源設備は， 125 V 代替蓄電池， 250 V 蓄電池，電源車， 125 V 代替充電器（ $125 \mathrm{~V}, 700 \mathrm{~A}$ のものを 1 個）， 250 V 充電器 （ $250 \mathrm{~V}, 400 \mathrm{~A}$ のものを 1 個），非常用ディーゼル発電設備軽油タン ク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク，ガスター ビン発電設備軽油タンク，タンクローリ，電路，計測制御装置等で構成し， 125 V 代替蓄電池は 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1(125 \mathrm{~V}$ ， 1800 A のものを 2 個）並びに 125 V 直流電源切替盤 2 A 及び 2 B （ 125 V ， 60 A のものを 2 個）へ， 250 V 蓄電池は 250 V 直流主母線盤（ 250 V ， 1800A のものを 1 個）へ接続することで電力を供給できる設計とす る。 可搬型代替直流電源設備の 125 V 代替蓄電池は，電力の供給開始 から8時間後に中央制御室外において不要な負荷の切離しを行う こと，また 250 V 蓄電池は，電力の供給開始から 1 時間後に中央制御室において不要な負荷の切離しを行い， 125 V 代替蓄電池及び 250 V 蓄電池から電力を供給し，その後，電源車を代替所内電気設備， 125 V 代替充電器及び 250 V 充電器を経由し 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ 並びに 250 V 直流主母線盤へ接続することで，電力

変更前	変更後
3．2 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 非常用の計測制御用電源設備は，無停電交流 120 V 2 母線及び計測母線120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認 が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，直流電源設備である 125 V 蓄電池から直流電源が供給されることにより，無停電交流母線に対し電源供給を確保する設計とする。	3.5 計測制御用電源設備 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 非常用の計測制御用電源設備は，無停電交流 $120 V 2$ 母線及び計測母線120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認 が可能な設計とする。 無停電交流電源用静止形無停電電源装置は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの間においても，非常用直流電源設備である 125 V 蓄電池から直流電源が供給されることにより，無停電交流母線に対し電源供給を確保する設計とする。 なお，無停電交流電源用静止形無停電電源装置は約1時間，電源供給 が可能な設計とする。
4．燃料設備 4． 1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機を 7 日間運転することにより必要とする電力を供給できる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計とする。	4．燃料設備 4.1 非常用交流電源設備の燃料補給設備 7 日間の外部電源喪失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機（高圧炉心 スプレイ系ディーゼル発電機を含む。）2台を7日間運転することによ り必要とする電力を供給できる容量以上の燃料を敷地内の軽油タンク

	変更前	変更後
∞ 1 \vdots 1 1 0		わないよう，位置的分散を図る設計とする。 4． 3 可搬型代替交流電源設備及び可搬型代替直流電源設備の燃料補給設備 電源車は，非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタービン発電設備軽油タン クからタンクローリを用いて燃料を補給できる設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼ ル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタン クローリへの燃料の補給は，ホースを用いる設計とする。 燃料補給設備のタンクローリは，屋外の原子炉建屋付属棟から離れた場所に保管することで，原子炉建屋付属棟近傍の燃料移送ポンプと共通要因によって同時に機能を損なわないよう，位置的分散を図る設計とす る。また，予備のタンクローリについては，上記タンクローリと異なる場所に保管する設計とする。 ガスタービン発電設備軽油タンクは，非常用ディーゼル発電設備軽油 タンク及び高圧炉心スプレイ系ディーゼル発電設備軽油タンクと離れ た屋外に分散して設置することで，共通要因によって同時に機能を損な わないよう，位置的分散を図る設計とする。 4． 4 緊急時対策所用代替交流電源設備の燃料補給設備 重大事故等時に電源車（緊急時対策所用）の燃料を貯蔵及び補給する設備として，緊急時対策所軽油タンク及びホースを使用できる設計とす る。

変更前	変更後
	電源車（緊急時対策所用）は，緊急時対策所軽油タンクから燃料を補給できる設計とする。 4.5 可搬型窒素ガス供給装置発電設備の燃料補給設備 可搬型窒素ガス供給装置発電設備は，非常用ディーゼル発電設備軽油 タンク，高圧炉心スプレイ系ディーゼル発電設備軽油タンク又はガスタ ービン発電設備軽油タンクからタンクローリを用いて燃料を補給でき る設計とする。 非常用ディーゼル発電設備軽油タンク，高圧炉心スプレイ系ディーゼ ル発電設備軽油タンク又はガスタービン発電設備軽油タンクからタン クローリへの燃料の補給は，ホースを用いる設計とする。
5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表1非常用電源設備の主要設備リスト」に示す。	5．主要対象設備 非常用電源設備の対象となる主要な設備については，「表1非常用電源設備の主要設備リスト」に示す。

O 2 （6）II R 2

表1非常用電源設備の主要設備リスト（1／11）

表1非常用電源設備の主要設備リスト（2／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設（3 1 1）		重大事故等対処設備 ${ }^{(3 \times 1)}$		名称	設計基準対象施設（3 1 1）		重大事故等対処設備 ${ }^{(3 \text { a } 1 \text { 1）}}$		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		機器クラス	設備分類	重大事故等機器クラス		
∞1111100	韭 當 発 震 畒		$\begin{aligned} & \text { 内 } \\ & \text { 燃 } \\ & \text { 関 } \end{aligned}$	空気だめ		空気だめ（自動）	S	クラス 3		－	変更なし			常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	SA クラス 2
				内燃機関	空気だめ（手動）	S	クラス 3		－	変更なし				－	
				$\begin{aligned} & \text { (空気圧 } \\ & \begin{array}{l} \text { 縮設備 } \end{array} \\ & \\ & \\ & \\ & \\ & \text { 空気だめ } \\ & \text { の安全弁 } \end{aligned}$	R43－F318A，B	S	－		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	－	
					R43－F319A，B	S	－		－	変更なし					
				$\begin{aligned} & \text { 燃料デイタンク又 } \\ & \text { はサービスタン } \end{aligned}$	燃料デイタンク	S	火力技術基準		－	変更なし			常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	火力技術基準	
				ポンプ		－				燃料移送ポンプ	S	火力技術基準	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	火力技術基準	
				容器		－				非常用ディーゼル発電設備軽油タン ク	S	火力技術基準	常設耐震／防止常設／緩和	火力技術基準	
			$\begin{aligned} & \text { 燃 } \\ & \text { 堣 } \\ & \text { 設 } \end{aligned}$			－				非常用ディーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分岐点	S	火力技術基準	常設耐震／防止常設／緩和	火力技術基準	
			備	主配管		－				燃料移送ポンプ入口配管分岐点～燃料移送ポンプ	S	火力技術基準	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	火力技術基準	
						－				燃料移送ポンプ～燃料デイタンク	S	火力技術基準	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	火力技術基準	

表1非常用電源設備の主要設備リスト（3／11）

表1非常用電源設備の主要設備リスト（4／11）

	$\begin{aligned} & \text { 旈 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設（i）${ }^{\text {（1）}}$		重大事故等対処設備 ${ }^{(3)}$ 1）		名称	設計基準対象施設 ${ }^{(3)}{ }^{\text {（1）}}$		重大事故等対処設備 ${ }^{(3 \text { a }}$ 1）		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
		$\begin{aligned} & \text { 燃 } \\ & \text { 詸 } \\ & \text { 備 } \end{aligned}$	ポンプ		－					燃料移送ポンプ	S	火力技術基準	常設／防止 （DB 拡張）	火力技術基準
			容器	－					高圧炬心スプレイ系ディーゼル発電設備軽油タンク	S	火力技術基準	常設耐震／防止常設／緩和	火力技術基準	
				－					高圧炉心スプレイ系ディーゼル発電設備軽油タンク～高圧炝心スプレイ系ディーゼル発電設備燃料移送ポン プ入口配管分岐点	S	火力技術基準	常設耐震／防止常設／緩和	火力技術基準	
			主配管	－					高圧炬心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点 ～燃料移送ポンプ	S	火力技術基準	常設／防止 （DB 拡張）	火力技術基準	
				－					燃料移送ポンプ～燃料デイタンク	S	火力技術基準	常設／防止 （DB 拡張）	火力技術基準	
			発電機	高圧炬心スプレイ系ディーゼル発電機	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
			劯磁装置	励磁装置	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
			保護継電装置	保護継電装置	S	－		－	変更なし			常設／防止 （DB 拡張）	－	
			原動機との連結方法	原動機との連結方法（高圧炉心スプレイ系 ディーゼル発電設備）	－	－		－	変更なじ（き2）	－	－	－		
	ガス多1ビ燈䨜備	$\begin{aligned} & \text { ガ } \\ & \text { ス } \\ & \text { 夕 } \\ & \text { し } \\ & \text { ビ } \end{aligned}$	ガスタービン	－					ガスタービン機関	－	－	常設而震／防止常設／緩和	火力技術基準	
			調速装置及び非常調速装置	－					調速装置	－	－	常設而震／防止常設／緩和	－	
				－					非常調速装置	－	－	常設耐震／防止常設／緩和	－	
		$\begin{aligned} & \text { 燃 } \\ & \text { 粠 } \\ & \text { 備 } \end{aligned}$	ポンプ	－					ガスタービン発電設備燃料移送ポン プ	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－				ガスタービン発電設備軽油タンク	－	－	常設而震／防止常設／緩和	火力技術基準	
			容器		－				ガスタービン発電設備燃料小出槽	－	－	常設而震／防止常設／緩和	火力技術基準	

O 2 （6）II R 2

表1非常用電源設備の主要設備リスト（5／11）

O 2 （6）II R 2

表1非常用電源設備の主要設備リスト（6／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設（3 ${ }^{\text {（ }}$ 1）		重大事故等対処設備 ${ }^{(3 \times ⿱ 亠 䒑 ⿱ 山 ⿱ 一 土 丷}$ 1）		名称	設計基準対象施設 ${ }^{(3.1 \text { 1）}}$		重大事故等対処設備 ${ }^{(3 \text { a }}$ 1）		
					耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 韭 } \\ & \text { 雷 } \\ & \text { 発 } \\ & \text { 装 } \\ & \text { 置 } \end{aligned}$	ガス多1ビ登電備	発 雵	発電機		－					ガスタービン発電機	－	－	常設耐震／防止常設／緩和	－
				励磁装置	－					ガスタービン発電機励磁装置	－	－	常設而震／防止常設／緩和	－	
				保護継電装置	－					ガスタービン発電機保護継電装置	－	－	常設耐震／防止常設／緩和	－	
				原動機との連結方法	－					原動機との連結方法（ガスタービン発電設備）${ }^{(\text {（i）}}$ ）	－	－			
		$\begin{aligned} & \text { 可 } \\ & \text { 搬 } \\ & \text { 型 } \\ & \text { 替 } \\ & \text { 琉 } \\ & \text { 䨙 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 内 } \\ & \text { 燃 } \\ & \text { 関 } \end{aligned}$	機関	－					電源車（内燃機関）	－	－	可搬／防止可搬／緩和	－	
∞				調速装置及び非常	－					電源車（調速装置）	－	－	可搬／防止可搬／緩和	－	
$\begin{aligned} & 1 \\ & \frac{1}{1} \end{aligned}$				調速装置	－					電源車（非常調速装置）	－	－	可搬／防止可搬／緩和	－	
\bigcirc				内燃機関に附属す る泠却水設備	－					電源車（冷却水ポンプ）	－	－	可搬／防止可搬／緩和	SA クラス 3	
				$\begin{aligned} & \text { 燃料デイタンク又 } \\ & \text { はサービスタンク } \end{aligned}$	－					電源車（燃料タンク）	－	－	可搬／防止可搬／緩和	SA クラス 3	
			$\begin{aligned} & \text { 燃 } \\ & \text { 堣 } \\ & \text { 備 } \end{aligned}$	容器	－					非常用ディーゼル発電設備軽油タン ク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					高圧炉心スプレイ系ディーゼル発電設備軽油タンク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					ガスタービン発電設備軽油タンク	－	－	常設耐震／防止常設／緩和	火力技術基準	
					－					タンクローリ	－	－	可搬／防止 可搬／緩和	SA クラス 3	

表1非常用電源設備の主要設備リスト（7／11）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設 ${ }^{\text {（3）}}$ 1）		重大事故等対処設備 ${ }^{(3 \times 1}$ ）${ }^{\text {a }}$		名称	設計基準対象施設 ${ }^{(i)}$（1）				
						機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \\ & \hline \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \\ & \stackrel{1}{1} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { 韭 } \\ & \text { 㬝 } \\ & \text { 発 } \\ & \text { 䨟 } \\ & \text { 置 } \end{aligned}$	可搬型譛竞流震設備	燃 ${ }_{\text {没 }}^{\text {主配管 }}$			－					非常用ディーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準
						－				燃料移送ポンプ入口配管分岐点～非常用ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
						－				高圧炬心スプレイ系ディーゼル発電設備軽油タンク～高圧炉心スプレイ系ディーゼル発電設備燃料移送ポン プ入口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
						－				高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点 ～高圧炉心スプレイ系ディーゼル発電設備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
						－				ガスタービン発電設備軽油タンク～ ガスタービン発電設備軽油タンク出口配管分岐点	－	－	常設耐震／防止常設／緩和	火力技術基準	
						－				ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設 備軽油タンク払出口	－	－	常設耐震／防止常設／緩和	火力技術基準	
						－				軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SA クラス 3	
						－				給油用ホース（ $\dagger 25: 50 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SA クラス 3	
				発電機		－				電源車（発電機）	－	－	可搬／防止可搬／緩和	－	
			発	励磁装置		－				電源車（励磁装置）	－	－	可搬／防止可搬／緩和	－	
			$\begin{aligned} & \text { 雵 } \end{aligned}$	保護継電装置		－				電源車（保護継電装置）	－	－	可搬／防止可搬／緩和	－	
				原動機との連結方法		－				原動機との連結方法（可搬型代替交流電源設備）${ }^{(\text {（i3 }}$ ）	－	－			
		$\begin{aligned} & \text { 可 } \\ & \text { 搬 } \\ & \text { 型 } \end{aligned}$		機関		－				電源車（内燃機関）	－	－	可搬／防止可搬／緩和	－	
		$\begin{aligned} & \text { 設垈 } \\ & \text { 備 犆 } \end{aligned}$	$\begin{aligned} & \text { 肉然 } \\ & \text { 機 } \end{aligned}$	調速装置及び非常		－				電源車（調速装置）	－	－	可搬／防止可搬／緩和	－	
		$\begin{aligned} & \text { 流 } \\ & \text { 霫 } \end{aligned}$		調速装置		－				電源車（非常調速装置）	－	－	可搬／防止 可搬／緩和	－	

表1非常用電源設備の主要設備リスト（8／11）

表1非常用電源設備の主要設備リスト（9／11）

表1非常用電源設備の主要設備リスト（ $10 / 11$ ）

設 備 区分 分 $8-1-4-33$	$\begin{aligned} & \text { 稜 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計甚鹪対象施設 ${ }^{(011)}$		重大事故等対処設備 ${ }^{(2 \text {（1）}}$		名称	設計基漼対象施設进 ${ }^{(4)}$		重大事故等対処設備 ${ }^{(3 \text {（3）}}{ }^{\text {a }}$		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
			機関		－					可搬型窒素がス供給装置発電設備（内燃機関）	－	－	可搬／緩和	－
			$\left\lvert\, \begin{aligned} & \text { 調速装置及び非常 } \\ & \text { 調速装置 }\end{aligned}\right.$	－					可搬型窒素がス供給装置発電設備（調速装置）	－	－	可搬（緩和	－	
			－	可搬型空素がス供給装置発電設備（非常調速装置）	－	－	可搬／緩和	－						
			内燃機関に附属す る椧却水設備	－					可搬型窒素ガス供給装置発電設備（冷却水ポンプ）	－	－	可搬／緩和	SAクラス 3	
			$\begin{array}{\|l\|} \hline \text { 燃料デイタンク又 } \\ \text { はサービスタンク } \end{array}$	－					可搬型窒素ガス供給装置発電設備（燃料タンク）	－	－	可搬／緩和	SAクラス 3	
		（容器		－					非常用ディーゼル発電設備軽油タン ク	－	－	常設（䌊和	火力技術基淮	
					－					高圧炝心スプレイ系ディーゼル発電設備軽油タンク	－	－	常設／（緩和	火力技術基淮
				－					ガスタービン発電設䝵軽油タンク	－	－	常設（緩和	火力技訹基準	
				－					タンクローリ	－	－	可搬）綬和	SAクラス 3	
				－					非常用ディーゼル発電設備軽油タン ク～燃料移送ポンプ入口配管分岐点	－	－	常設 $/$ 緩和	火力技術基淮	
				－					燃料移送ポンプフ口配管分岐点～非常用ディーゼル発電設備軽油タンク払出口	－	－	常設（緩和	火力技術基淮	
				－						－	－	常設 ${ }^{\text {／緩和 }}$	火力技術基淮	
				－						－	－	常設（緩和	火力技術基準	
				－						－	－	常設／緩和	火力技術基淮	
				－					ガスタービン発䨋設備怪油タンク出 口配管分皮点～がスタービン発電設備軽油タンク払出口	－	－	常設／緩和	火力技術基淮	

表1非常用電源設備の主要設備リスト $(11 / 11)$

（注 1）表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1原子炉本体の主要設備リスト 付表1」による。
（注 3）重大事故等対処設備として使用する。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －J E C 1 1 4－1979 同期機	第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 - 消防法（昭和 23 年 7 月 24 日法律第 186 号） - 発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 商局第 2号） - 日本建築学会 1979年 鉄筋コンクリート構造計算規準•同解説 - J E C 1 1 4－1979 同期機 - JEM 1 3 9 8－2006 ディーゼルエンジン駆動可搬形交流発電装置 - J EM 1435－2014 非常用陸用同期発電機 - J I S B 8 201 －2005 陸用鋼製ボイラー構造 - NEGA C 3 3 1－2005 可搬形発電設備技術基準

上記の他「高エネルギーアーク損傷（HEAF）に係る電気盤の設計に関する審查ガイド」を参照する。

8．1．5 非常用電源設備に係る工事の方法

変更前	変更後
非常用電源設備に係る工事の方法は，「原子炉本体」における「1．9原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従 う。	変更なし

8． 2 常用電源設備
8．2．1 発電機
（1）発電機

					変 更 前	変更後
名	名			称	発電機＊1	変更なし
種	重		類	－	横軸円筒回転界磁形耐爆構造式 三相交流同期発電機	
容	容		量	kVA	920000 （水素圧 $412 \mathrm{kPa} * 2$ ）	
力	力		率	\％＊3	90＊4（遅れ）	
電	電		圧	kV	17	
相				－	3	
周	波		数	Hz	50	
回	転 速		度＊5	$\min ^{-1} * 6$	1500	
結	線		法	－	四重星形	
冷 却 法			定 子	－	水直接及び水素間接冷却	
			転 子	－	水素直接冷却	

注：記載の適正化を行う。既工事計画書の「個数」の記載を削除。
注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。
＊2 ：SI 単位に換算したものである。
＊3：記載の適正化を行う。既工事計画書には「—」と記載。
＊4 ：記載の適正化を行う。既工事計画書には「0．9」と記載。
＊5 ：記載の適正化を行う。既工事計画書には「回転数」と記載。
＊6 ：記載の適正化を行う。既工事計画書には「rpm」と記載。
（2）励磁装置

					変 更 前発電機励磁装置＊1	変更後
名			称			変更なし
種			類	－	サイリスタ励磁方式	
容			量	kW	2279	
回	転	速	度＊2	$\min ^{-1} * 3$	－	
駆	動	方	法	－	－	
個	数		用	－	1	
		予	備	－	なし	

注記＊ 1 ：既工事計画書に記載がないため記載の適正化を行う。
＊2：記載の適正化を行う。既工事計画書には「回転数」と記載。
＊3 ：記載の適正化を行う。既工事計画書には「rpm」と記載。
（3）保護継電装置

		，	変 更 前		変 更 後
	種 類＊1	自動遮断用＊2	発電機比率差動継電器		変更なし
			発電機•主変圧器比率差動継電器		
			距離継電器（過電流保護）		
			スラスト軸受摩耗検出装置		
			発電機逆電力継電器		
			発電機地絡継電器		
			発電機界磁喪失継電器		
			発電機•変圧器過励磁継電器		
			発電機逆相電流継電器		
			発電機脱調継電器		
			励磁電源変圧器比率差動継電器		
\bigcirc			励磁電源変圧器過電流継電器		
\simeq			発電機固定子泠却水喪失検出装置		
＝			発電機過電圧継電器＊3		
（0）			発電機不足電圧継電器＊3		
$\stackrel{\sim}{\circ}$			発電機周波数継電器＊3		
		警 報 用	発電機界磁地絡継電器		
			発電機電圧不平衡継電器		
			水素純度低検出装置		
			水素温度高検出装置		
			水素圧力高低検出装置		
			発電機固定子泠却水温度高検出装置		

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。
＊2 ：記載の適正化を行う。既工事計画書には「自動しや断用」と記載。
＊3：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。
（4）原動機との連結方法

			変 更	前
変更後				
連	結	方	法	直結＊1

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「タービン軸直結」と記載。

8． 2.2 変圧器
（1）変圧器

注記＊1：既工事計画書に記載がないため記載の適正化を行う。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
（2）保護継電装置

		変 更 前	変 更 後
種	自動遮断用＊2	発電機•主変圧器比率差動継電器	変更なし
		主変圧器比率差動継電器	
		距離継電器（過電流保護）	
		主変圧器中性点過電流継電器	
$\begin{aligned} & \text { 類 } \\ & * 1 \end{aligned}$	警報用	主変圧器温度高継電器	
		主変圧器衝撃油圧継電器	

注記＊1：記載の適正化を行う。既工事計画書には「保護継電装置の種類」と記載。
＊2：記載の適正化を行う。既工事計画書には「自動しゃ断用」と記載。

8．2．3 遮断器

（1）遮断器

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。
＊2：記載の適正化を行う。既工事計画書には「ガスしや断器」と記載。
＊3：記載の適正化を行う。既工事計画書には「しゃ断容量」と記載。
＊4：記載の適正化を行う。既工事計画書には「（16000）MVA」も記載。
＊5：記載の適正化を行う。既工事計画書には「31．5」と記載。記載内容は設計図書による。
＊6：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。

注記 $* 1$ ：既工事計画書に記載がないため記載の適正化を行う。
＊2：記載の適正化を行う。既工事計画書には「遮断容量」と記載。
＊3：記載の適正化を行う。既工事計画書には「21000MVA」も記載。
＊4：記載の適正化を行う。既工事計画書には「0．04秒」も記載。
＊5：既工事計画書に記載がないため記載の適正化を行う。記載内容は設計図書による。
（2）保護継電装置
線路用 275 kV 遮断器（牡鹿幹線用）（第1号機設備，第1，2， 3 号機共用）（保護継電装置）

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「保護継電装置の種類」と記載。
＊2：記載の適正化を行う。既工事計画書には「しゃ断器動作用」と記載。
＊3：記載の適正化を行う。既工事計画書には「マイクロ波搬送位相比較継電装置」と記載。
＊4：記載の適正化を行う。既工事計画書には「母線保護電圧差動継電器」と記載。
＊5：記載の適正化を行う。既工事計画書には「しゃ断器用」と記載。
＊6：記載の適正化を行う。既工事計画書には「ガス圧力継電器（警報）」と記載。

線路用 275 kV 遮断器（松島幹線用）（第3号機設備，第1，2， 3 号機共用）（保護継電装置）

		変 更 前	変 更 後
種	自 動 遮 断 用＊2	マイクロ波搬送電流差動継電装置＊3	変更なし
		母線保護電流差動継電装置＊4	
＊1	警 報 用＊5	ガス圧力継電器＊6	

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「保護継電装置の種類」と記載。
＊2：記載の適正化を行う。既工事計画書には「遮断器動作用」と記載。
＊3：記載の適正化を行う。既工事計画書には「母線保護電流差動継電器」と記載。
＊4：記載の適正化を行う。既工事計画書には「マイクロ波搬送電流差動継電器」と記載。
＊5：記載の適正化を行う。既工事計画書には「遮断器用」と記載。
＊6：記載の適正化を行う。既工事計画書には「ガス圧力継電器（警報）」と記載。

8．2．4 常用電源設備の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。
第1章 共通項目 常用電源設備の共通項目である「1．地盤等，2．自然現象，3．火災， 4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等， 4.5 安全弁等， 4.6 逆止め弁， 4.7 内燃機関の設計条件を除く。），5．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 常用電源設備の共通項目である「1．地盤等， 2 ．自然現象（2．2 津波 による損傷の防止を除く。），3．火災，5．設備に対する要求（5．2 材料及び構造等， 5.3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等， 5.5安全弁等，5．6 逆止め弁，5．7 内燃機関及びガスタービンの設計条件を除 く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。
第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止	第2章 個別項目 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 安全施設へ電力を供給する保安電源設備は，電線路，発電用原子炉施設において常時使用される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常を検知するとともに，異常を検知した場合は，ガ

変更前

重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。

常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時に必要な負荷を各母線に振り分け給電する。それ ぞれの母線から動力変圧器を通して降圧し，常用低圧母線（パワー センタ及びモータコントロールセンタで構成）へ給電する。

共通用高圧母線（メタルクラッド開閉装置で構成）は，2 母線で

変更後
ス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止する設計とする。

特に重要安全施設に給電する系統においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。

常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時に必要な負荷を各母線に振り分け給電する。それ ぞれの母線から動力変圧器を通して降圧し，常用低圧母線（パワー センタ及びモータコントロールセンタで構成）へ給電する。

共通用高圧母線（メタルクラッド開閉装置で構成）は，2 母線で構成し，それぞれの母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモータコントロールセンタで構成）へ給電する設計とする。

また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響を局所化できると ともに，他の安全施設への影響を限定できる設計とする。

常用の直流電源設備は，250V 蓄電池， 250 V 充電器， 250 V 直流主母線盤等で構成する。

常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とする。

常用の計測制御用電源設備は，計測母線で構成する。
常用電源設備の動力回路のケーブルは，負荷の容量に応じたケー ブルを使用する設計とし，多重化した非常用電源設備の動力回路の ケーブルの系統分離対策に影響を及ぼさない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。

変更前	変更後
1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要 となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 設計基準対象施設は，送受電可能な回線として 275 kV 送電線（東北電力ネットワーク株式会社牡鹿幹線（以下「牡鹿幹線」という。））（第1号機設備，第 1，2， 3 号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島幹線（以下「松島幹線」という。））（第 3 号機設備，第1，2， 3 号機共用（以下同じ。））の 2 ルート各 2 回線及 び受電専用の回線として 66 kV 送電線（東北電力ネットワーク株式会社塚浜支線（以下「塚浜支線」という。）（東北電力ネットワーク株式会社鮎川線（以下「鮎川線」という。）1号を一部含む。）及び東北電力ネッ トワーク株式会社万石線（以下「万石線」という。））（第 1 号機設備，第1，2， 3 号機共用（以下同じ。）） 1 ルート 1 回線の合計 3 ルート 5 回線にて，電力系統に接続する設計とする。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は東北電力ネットワーク株式会社石巻変電所（以下「石巻変電所」という。），275kV 送電線（松島幹線）1 ルート 2 回線は東北電力ネットワーク株式会社宮城中央変電所 （以下「宮城中央変電所」という。）に連系する設計とする。また，66kV送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及 び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系する設計とす る。	1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持するために必要 となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。 設計基準対象施設は，送受電可能な回線として 275 kV 送電線（東北電 カネットワーク株式会社牡鹿幹線（以下「牡鹿幹線」という。））（第1号機設備，第 1，2， 3 号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島幹線（以下「松島幹線」という。））（第 3 号機設備，第1，2，3号機共用（以下同じ。））の 2 ルート各 2 回線及 び受電専用の回線として 66 kV 送電線（東北電力ネットワーク株式会社塚浜支線（以下「塚浜支線」という。）（東北電力ネットワーク株式会社鮎川線（以下「鮎川線」という。）1号を一部含む。）及び東北電力ネッ トワーク株式会社万石線（以下「万石線」という。））（第 1 号機設備，第 1，2， 3 号機共用（以下同じ。）） 1 ルート 1 回線の合計 3 ルート 5 回線にて，電力系統に接続する設計とする。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は東北電力ネットワーク株式会社石巻変電所（以下「石巻変電所」という。），275kV 送電線（松島幹線）1 ルート 2 回線は東北電力ネットワーク株式会社宮城中央変電所 （以下「宮城中央変電所」という。）に連系する設計とする。また，66kV送電線（塚浜支線（鮎川線 1 号を一部含む。））1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所（以下「女川変電所」という。）及 び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変電所」という。）に連系する設計とす る。

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{1}{\omega} \end{aligned}$		備変圧器（第 1 号機設備，第 $1,2,3$ 号機共用）を介して接続する設計 とする。 開閉所から主発電機側の送受電設備は，十分な支持性能を持つ地盤に設置するとともに，耐震性の高い，可とら性のある懸垂碍子及び重心の低いガス絶縁開閉装置を設置する設計とする。 さらに，防潮堤等により津波の影響を受けないエリアに設置するとと もに，塩害を考慮し， 275 kV 送電線引留部の碍子に対しては，碍子洗浄 ができる設計とし， 66 kV 送電線引留部の碍子に対しては，絶縁強化を施した碍子を設置し，遮断器等に対しては，電路がタンクに内包されて いるガス絶縁開閉装置を設置する。
	1.3 設備の共用 275 kV 送電線，275kV 開閉所，66kV 送電線，66kV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計とすること，また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機へ影響を及ぼ さない設計とし，共用箇所の故障により外部電源を受電できなくなった場合は，非常用ディーゼル発電機（高圧灲心スプレイ系ディーゼル発電機を含む。）により各号機の非常用所内電源系に給電できる設計とする ことで，共用により安全性を損なわない設計とする。	1.4 設備の共用及び相互接続 275 kV 送電線， 275 kV 開閉所， 66 kV 送電線， 66 kV 開閉所及び予備電源盤は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機の必要負荷容量を満足する設計とすること，また，各号機に遮断器を設け，短絡•地絡等の故障が発生した場合，故障箇所を隔離し，他号機へ影響を及ぼ さない設計とし，共用箇所の故障により外部電源を受電できなくなった場合は，非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）により各号機の非常用所内電源系に給電できる設計とする ことで，共用により安全性を損なわない設計とする。 共通用高圧母線（第 $1 \sim 2$ 号機間及び第 $2 \sim 3$ 号機間）は，第 1 号及び第 2 号機並びに第 2 号及び第 3 号機で相互接続しているが，電源融通時に何らかの要因で電気故障が発生した場合，遮断器により故障箇所を隔離し，他の号機へ影響を及ぼさない設計とすることで，相互接続によ

変更前	変更後
	り安全性を損なわない設計とする。
2．主要対象設備 常用電源設備の対象となる主要な設備について，「表 1 常用電源設備 の主要設備リスト」に示す。	2．主要対象設備 常用電源設備の対象となる主要な設備について，「表 1 常用電源設備 の主要設備リスト」に示す。

O 2 （6）II R 1

表1常用電源設備の主要設備リスト（1／1）

＊2 ：設計基準対象施設として使用する。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。	第1章 共通項目 常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。
第2章 個別項目 常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －J E C 1 14－1979 同期機	第2章 個別項目 常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） - J E C 1 14－1979 同期機 - J E C 20 4－1978 変圧器 - JEC $2300-1985$ 交流遮断器

8．2．5 常用電源設備に係る工事の方法

変更前	変更後
常用電源設備に係る工事の方法は，「原子炉本体」における「1．9 原子炉本体に係	
る工事の方法」（「1．2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検	
査」，「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．2 主要な耐圧部の	変更なし
溶接部に係る検査」，「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る工 事上の留意事項」を除く。）に従う。	

8.3 補助ボイラー

8．3．15 補助ボイラーの基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「発電用原子力設備に関する技術基準を定める省令」，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びに これらの解釈による。	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。

第1章 共通項目
補助ボイラーの共通項目である「1．地盤等，2．自然現象，3．火災，

4．設備に対する要求（4．2 材料及び構造等，4．3 使用中の亀裂等による破壊の防止，4．4 耐圧試験等，4．6 逆止め弁， 4.7 内燃機関の設計条件， 4.8 電気設備の設計条件を除く。），5．その他（5．4 放射性物質による汚染の防止を除く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。

第2章 個別項目

1．補助ボイラー
1.1 補助ボイラーの機能

発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，液体廃棄物処理系の濃縮装置，排ガス予熱器，屋外タン クの保温及び建屋の暖房用並びに主蒸気が使用できない場合のタービ ンのグランドシール及び起動停止用蒸気式空気抽出器に，必要な蒸気を

第1章 共通項目
補助ボイラーの共通項目である「1．地盤等， 2 ．自然現象（2．2 津波 による損傷の防止を除く。），3．火災，5．設備に対する要求（5．2 材料及び構造等，5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除く。）」 の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章共通項目」に基づく設計とする。

第2章 個別項目
1．補助ボイラー
1.1 補助ボイラーの機能

発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，液体廃棄物処理系の濃縮装置，排ガス予熱器，屋外タン クの保温及び建屋の暖房用並びに主蒸気が使用できない場合のタービ ンのグランドシール及び起動停止用蒸気式空気抽出器に，必要な蒸気を

変更前	変更後
供給する能力を有する主ボイラー（第1号機設備，第1，2号機共用（以下同じ。））及び補助ボイラー（第 1，2号機共用（以下同じ。））を設置 する。 主ボイラー及び補助ボイラーは，発電用原子炉施設の安全性を損なわ ない設計とする。 1.2 補助ボイラーの設計条件 主ボイラーは，ボイラー本体，重油燃焼設備，通風設備，給水設備，制御装置等から，補助ボイラーは，ボイラー本体，給水設備，制御装置等から構成する。 蒸気は蒸気だめより加熱蒸気系を経て，蒸気を使用する各機器に供給 できる設計とする。 各機器で使用された蒸気のらち回収できるものは，復水戻り系によ り，主ボイラー及び補助ボイラーの給水として再使用し，給水使用量を低減できる設計とする。 主ボイラー及び補助ボイラーは，長期連続運転及び負荷変動に対応で きる設計とし，設計基準事故時及び当該事故に至るまでの間に想定され る全ての環境条件において，その機能を発揮できる設計とするととも に，主ボイラー及び補助ボイラーの健全性及び能力を確認するため，必要な箇所の保守点検（試験及び検査を含む。）ができるよう設計する。 設計基準対象施設に施設する主ボイラー及び補助ボイラー並びにそ の附属設備の耐圧部分に使用する材料は，安全な化学的成分及び機械的強度を有するとともに，耐圧部分の構造は，最高使用圧力及び最高使用温度において，発生する応力に対して安全な設計とする。	供給する能力を有する補助ボイラー（第 1，2号機共用（以下同じ。）） を設置する。 補助ボイラーは，発電用原子炉施設の安全性を損なわない設計とす る。 1.2 補助ボイラーの設計条件 補助ボイラーは，ボイラー本体，給水設備，制御装置等から構成し，蒸気は蒸気だめより加熱蒸気系を経て，蒸気を使用する各機器に供給で きる設計とする。 各機器で使用された蒸気のらち回収できるものは，復水戻り系によ り，補助ボイラーの給水として再使用し，給水使用量を低減できる設計 とする。 補助ボイラーは，長期連続運転及び負荷変動に対応できる設計とし，設計基準事故時及び当該事故に至るまでの間に想定される全ての環境条件において，その機能を発揮できる設計とするとともに，補助ボイラ ーの健全性及び能力を確認するため，必要な箇所の保守点検（試験及び検査を含む。）ができるよう設計する。 設計基準対象施設に施設する補助ボイラー並びにその附属設備の耐圧部分に使用する材料は，安全な化学的成分及び機械的強度を有すると ともに，耐圧部分の構造は，最高使用圧力及び最高使用温度において，発生する応力に対して安全な設計とする。

変更前	変更後
設計基準対象施設に施設する主ボイラー及び補助ボイラーに属する主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。 （1）不連続で特異な形状でない設計とする。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験によ り確認する。 （3）適切な強度を有する設計とする。 （4）適切な溶接施工法，溶接設備及び技能を有する溶接士であること を機械試験その他の評価方法によりあらかじめ確認する。 主ボイラー及び補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，最大蒸発量と同等容量以上の安全弁を設ける設計 とする。 主ボイラー及び補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止のため，ドラム内水位，ドラム内圧力等の運転状態を計測 する装置を設ける設計とする。 主ボイラー及び補助ボイラーには，ボイラーの最大連続蒸発時におい て，熱的損傷が生ずることのないよう水を供給できる適切な容量の給水設備を設け，給水の入口及び蒸気の出口については，流路を速やかに自動でかつ確実に遮断できる設計とする。 主ボイラー及び補助ボイラーは，ボイラー水の濃縮を防止し，及び水位を調整するために，ボイラー水を抜くことができる設計とする。 主ボイラーから排出されるばい煙については，良質燃料（A 重油）を使用することにより，硫黄酸化物排出量，窒素酸化物濃度及びばいじん	設計基準対象施設に施設する補助ボイラーに属する主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。 （1）不連続で特異な形状でない設計とする。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験によ り確認する。 （3）適切な強度を有する設計とする。 （4）適切な溶接施工法，溶接設備及び技能を有する溶接士であること を機械試験その他の評価方法によりあらかじめ確認する。 補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止の ため，最大蒸発量と同等容量以上の安全弁を設ける設計とする。 補助ボイラーの蒸気ドラムには，圧力の上昇による設備の損傷防止 のため，ドラム内水位，ドラム内圧力等の運転状態を計測する装置を設ける設計とする。 補助ボイラーには，補助ボイラーの最大連続蒸発時において，熱的損傷が生ずることのないよう水を供給できる適切な容量の給水設備を設け，給水の入口及び蒸気の出口については，流路を速やかに自動で かつ確実に遮断できる設計とする。 補助ボイラーは，ボイラー水の濃縮を防止し，及び水位を調整する ために，ボイラー水を抜くことができる設計とする。

変更前	変更後
濃度を低減する設計とする。 また，補助ボイラーは電気ボイラーを使用することにより，ばい煙を発生しない設計とする。 1.3 設備の共用 補助ボイラー並びに加熱蒸気及び復水戻り系は，第1号機と共用す るが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作す ることにより隔離できる設計とすることで，共用により安全性を損なわ ない設計とする。	補助ボイラーは電気ボイラーを使用することにより，ばい煙を発生 しない設計とする。 1.3 設備の共用 補助ボイラー並びに加熱蒸気及び復水戻り系は，第 1 号機と共用す るが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作す ることにより隔離できる設計とすることで，共用により安全性を損なわ ない設計とする。

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 補助ボイラーに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。	第1章 共通項目 補助ボイラーに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。
第2章 個別項目 補助ボイラーに適用する個別項目の基準及び規格は以下のとおり。 －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） - J I S B 8243－1981 圧力容器の構造 - J SME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格	第2章 個別項目 補助ボイラーに適用する個別項目の基準及び規格は以下のとおり。 －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） - J I S B 8243－1981 圧力容器の構造 - J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格

8．3．16 補助ボイラーに係る工事の方法

変更前	変更後
補助ボイラーに係る工事の方法は，「原子炉本体」における「1．9 原子炉本体に係	
る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料	変更なし
体に係る検査」及び「3．2 燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

8． 4 火災防護設備

8．4．1 火災区域構造物及び火災区画構造物
－原子炉建屋

変 更 前						変 更 後					
名称			種類	主要寸法 （mm）	材料	名称			種類	主要寸法 （mm）	材料
火災区域（区画）名称	区分	番号				火災区域（区画）名称	区分	番号			
－						RHR ポンプ（A）室他＊1	火災区画	RA－1	壁	$150 \text { 以上 }$	鉄筋コンクリート
						RCW 熱交換器・ポンプ（A）（C）室他＊1	火災区画	RA－2			
						緊急用電気品室（1）他＊1	火災区画	RA－3			
						CAMS ラック（A）室＊1	火災区画	RA－4			
						トーラス室＊1	火災区画	RA－5			
						原子炉格納容器＊1	火災区画	RA－6			
						B1F インナー通路他＊1	火災区画	RA－7			
						運転床＊1	火災区画	RA－8			
						RHR ポンプ（B）室他＊${ }^{*}$	火災区画	RB－1			
						RHR 熱交換器（B）室他＊${ }^{*}$	火災区画	RB－2			
						R－01階段室＊1	火災区画	RB－3			
						区分II非常用 MCC 室＊${ }^{*}$	火災区画	RB－4			
						ダスト放射線モニタ（B）室＊1	火災区画	RB－5			
						CAMS ラック（B）室＊1	火災区画	RB－6			
						HPCS ポンプ室他＊1	火災区画	RH－1			
						RW 制御室他＊1	火災区画	RH－2			
						バルブラッピング室＊1	火災区画	RH－3			

注記 $* 1$ ：本設備は既存の設備である。
＊2：公称値のらち最小のものを示す。

注記 $* 1:$ 本設備は既存の設備である。
$* 2$ ：公称値のらち最小のものを示す。

注記 $* 1$ ：本設備は既存の設備である。
＊2：公称値のうち最小のものを示す。

$$
\mathrm{O} 2 \text { (6) II } \quad \text { R } 1
$$

注記 $* 1$ ：本設備は既存の設備である。
＊2：公称値のうち最小のものを示す。

注記 $* 1$ ：公称値のうち最小のものを示す。

変 更 前						変 更 後					
名称			種類	主要寸法 （mm）	材料	名称			種類	主要寸法(mm)	材料
火災区域（区画）名称	区分	番号				火災区域（区画）名称	区分	番号			
－						復水貯蔵タンク／連絡トレンチ／バルブ室＊1	火災区画	YH－3	壁	$\begin{aligned} & 150 \text { 以上 } \\ & (\square * *) \end{aligned}$	鉄筋コンクリート

注記 $* 1$ ：本設備は既存の設備である。
＊2：公称値のうち最小のものを示す。

＋	変 更 前						変 更 後					
	名称			種類	主要寸法 （mm）	材料	名称			種類	主要寸法 （mm）	材料
	火災区域（区画）名称	区分	番号				火災区域（区画）名称	区分	番号			
	－						緊急時対策建屋	火災区域	KB－1	壁	＊1	鉄筋コンクリート

変 更 前						変 更 後					
名称			種類	$\underset{(\mathrm{mm})}{\substack{\text { 主要寸法 } \\ \hline}}$	材料	名称			種類	$\underset{(\mathrm{mm})}{\text { 主要寸法 }}$	材料
火災区域（区画）名称	区分	番号				火災区域（区画）名称	区分	番号			
－						緊急用電気品建屋	火災区域	EB－1	壁	$\square{ }^{* 1}$	鉄筋コンクリート
						ガスタービン発電設備軽油タンクエリア	火災区域	EG－1	壁	＊1	

注記 $* 1$ ：公称値のうち最小のものを示す。

8．4．2 消火設備
8．4．2．1水消火設備
8．4．2．1． 1 屋内水消火系
（1）ポンプ（常設）

注記 $* 1$ ：本設備は，既存の設備である。
＊2：公称値を示す。
（2）容器（常設）

			変更前	変 更 後
名		称		消火水タンク
種	類	－		たて置円筒形
容	量	m／個		110 以上（130＊）
最	高 使 用 圧 力	MPa		静水頭
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$		40
	胴 内 径	mm		6000
	胴 板 厚 さ	mm		5.4 （6．0＊）
主	底 板 厚 さ	mm		8.4 （9．0＊）
	平板（ 屋 根）厚 さ	mm		4.5 （4．5＊）
要	管台外径（出口）	mm		216．3＊
寸	管台厚さ（出口）	mm		12．7＊
	側マンホール管台外径	mm		622.0 ＊
法	側マンホール管台厚さ	mm	－	6.0 ＊
	側マンホールふた厚さ	mm		10．0＊
	高 さ	mm		5400＊
	胴 板	－		SS400
材	底 板	－		SM400C
料	平 板（ 屋 根）	－		SS400
	側マンホールふた	－		SM400C
個	数	－		1
取		－		屋内水消火系
付	設 置 床	－		$\begin{gathered} \text { 屋外 } \\ \text { 0.P. } 14.80 \mathrm{~m} \\ \hline \end{gathered}$
箇	$\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \end{array}$	－		－
所	溢 水 防 護 上 の配慮が必要な高さ	－		－

注記＊：公称値を示す。
（3）貯蔵槽（常設）

				変更前	変 更 後	
名			称	－	消火水槽（第 1，2 号機共用	
種		類	－		鉄筋コンクリート水槽	
容		量	$\mathrm{m}^{3} /$ 個		110 以上（110＊2）	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 专 } \\ & \text { 法 } \end{aligned}$	た	て	mm		$8490 * 2$	
			mm		$8590 * 2$	
	高	さ	mm		$3500 * 2$	
材		料	－		鉄筋コンクリート	
個		数	－		1	

注記＊1：本設備は既存の設備である。
＊2：公称値を示す。
（5）主配管（常設）

（c）注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の設備である。

8．4．2．1．2 屋外水消火系
（1）ポンプ（常設）

				変更前	変 更 後
名			称		屋外消火系電動機駆動消火ポンプ
	種	類	－		らず巻形
	容	量	$\mathrm{m}^{3} / \mathrm{h} /$ 個		48 以上（76＊）
	揚	程	m		33.7 以上（ 50 ＊）
		高 使 用 圧 力	MPa		1． 00
		高 使 用 温 度	${ }^{\circ} \mathrm{C}$		40
		吸 込 内 径	mm		150＊
	主	吐 出内 径	mm		100＊
	要	た て	mm		725^{*}
，	法	横	mm	－	995＊
プ		高 さ	mm		1065＊
フ	$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	ケーシング	－		SCPH21
	個	数	－		1
		$\begin{array}{ccccc} \hline \text { 系 } & & \text { 統 } & & \text { 名 } \\ \left(\begin{array}{c} \text { ラ } \end{array}\right. & \text { イ } & \text { ン 名 } \end{array}$	－		屋外水消火系
	取	設 置 床	－		$\begin{gathered} \text { 消火ポンプ建屋 } \\ \text { 0.P. } 62.40 \mathrm{~m} \\ \hline \end{gathered}$
	$\begin{aligned} & \text { 箇 } \\ & \text { 折 } \end{aligned}$	$\begin{array}{\|ccccc} \hline \text { 溢 } & \text { 水 } & \text { 防護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & & \text { 号 } \\ \hline \end{array}$	－		－
		溢 水 防 護 上の配慮が必要な高さ	－		－
	種	類	－		誘導電動機
原	出	力	kW／個		22
$\begin{aligned} & \text { 喠 } \end{aligned}$	個	数	－	－	1
	取	付 箇 所	－		ポンプと同じ

注記＊：公称値を示す。

注記＊：公称値を示す。
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

変 更 前									変 更 後						
名		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用 温 $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用 温． $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\underbrace{\text { 厚 }}_{(\mathrm{mm})}$	材 料
$\begin{aligned} & \text { 屋 } \\ & \text { 外 } \\ & \text { 水 } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$									$\begin{aligned} & \text { 屋 } \\ & \text { 外 } \\ & \text { 水 } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	No．1屋外消火系消火水タンク屋外消火系電動機駆動消火ポンプ	静水頭	40	165.2	（7．1）	STPG370
									No．2屋外消火系消火水タンク 屋外消火系電動機駆動消火ポンプ入口配管合流点	静水頭	40	165.2	（7．1）	STPG370	
									No．1屋外消火系消火水タンク ～ 屋外消火系 ディーゼル駆動消火ポンプ	静水頭	40	165.2	（7．1）	STPG370	
									No．2屋外消火系消火水タンク屋外消火系ディーゼル駆動消火ポンプ入口配管合流点	静水頭	40	165.2	（7．1）	STPG370	
									屋外消火系電動機駆動消火ポンプ			114.3	（6．0）	STPG370	
									ンク／軽油タンクエリア供給配管分岐点			165.2	（7．1）	STPG370	
									屋外消火系 ディーゼル駆動消火ポンプ			114.3	（6．0）	STPG370	
									屋外消火系電動機駆動消火ポンプ出口配管合流点			165.2	（7．1）	STPG370	

注記＊1 ：外径は公称値を示す。
＊2：（）内は公称値を示す。

8．4．2．2 ハロンガス消火設備
8．4．2．2．1 RHR（A）室／RHR（B）室／B3F 通路・サンプ室消火系
（2）容器（常設）

[^13]（5）主配管（常設）

＊2：（ ）内は公称値を示す。

8．4．2．2．2 LPCSポンプ・ラック室／HPCS ポンプ・ラック室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

＊2：（ ）内は公称値を示す。

8．4．2．2．3 RCW（B）（D）／HPCW／NSD／B2F ハッチ室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

注記 $~ 1 ~ 1 ~: ~$ 外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．4 RHR（C）室／RCICタービンポンプ室消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

8．4．2．2． 5 RCW 熱交換器・ポンプ（A）（C）室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline \& 名 \& 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 最 高 使 用 } \\
\& \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 \& 料 \& \& 名 称 \& \& \[
\begin{array}{|l|l|}
\hline \text { 最高使 用 } \\
\text { 温 } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{array} \text { 度 }
\] \& \[
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 料 \\
\hline \& \& \& \& － \& \& \& \& \& \& \begin{tabular}{l}
ハロン1301貯蔵容器 \\
RCW熱交換器・ポンプ（A）（C）室
\end{tabular} \& 5.2 \& 40 \& 89.1

114.3 \& （5．5）

（6． 0$)$ \& SUS304TP

SUS304TP

\hline
\end{tabular}

＊2 外径は公称値をふす。

8．4．2．2．6 B2F 南側通路／バルブラッピング室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

8．4．2．2． $7 \mathrm{IA} \cdot \mathrm{SA}$ 空気圧縮機室／B2F 東側通路消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

8．4．2．2．8 CRD ポンプ室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．9 MUWC ポンプ室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後}

\hline \& 名 \& 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 力 } \\
& (\mathrm{MPa}) \\
& \hline
\end{aligned}
$$ \& 最高使用
温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度 \& $$
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 \& 料 \& \& 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 } \begin{array}{c}
\text { 力 } \\
(\mathrm{MPa})
\end{array} \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 温 } \quad \text { (}{ }^{\circ} \text { 度 } \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 料

\hline \& \& \& \& － \& \& \& \& \& $$
\begin{gathered}
M \\
\text { M } \\
\text { U } \\
\text { W } \\
C \\
\text { ポ } \\
\text { シ } \\
\text { フr } \\
\text { 消 } \\
\text { 系 }
\end{gathered}
$$ \& ハロン1301貯蔵容器 MUWCポンプ室 \& 5.2 \& 40 \& 89.1

48.6 \& （5．5）

（3．7） \& SUS304TP

SUS304TP

\hline
\end{tabular}

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．10 B2F／B1F／1F 西側通路／排風機室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．11 PLR－VVVF 室／区分II非常用電気品室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

注記＊1 ：外径は公称値を示す。

8．4．2．2． 12 B1F インナー通路消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

変 更 前								変 更 後						
名	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\left\lvert\, \begin{array}{\|c\|} \text { 外 } \\ (\mathrm{mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\text { 厚 }}$		料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 径 }{ }^{\text {*1 }}}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
$\begin{aligned} & \text { B } \\ & 1 \\ & \text { F } \\ & \text { i } \\ & シ \\ & \text { F } \\ & 1 \\ & \text { 通 } \\ & \text { 路 } \\ & \text { 肖 } \\ & \text { 系 } \end{aligned}$	－							B1Fイ－－1通路消系	$\begin{gathered} \text { ハロン } 1301 \text { 貯蔵容器 } \\ \text { B1F インナー通路(1) } \\ \hline \end{gathered}$	5.2	40	89.1	（5．5）	SUS304TP
								ハロン1301貯蔵容器 B1F インナー通路（2）	5.2	40	89.1	（5．5）	SUS304TP	
								ハロン1301貯蔵容器			89.1	（5．5）	SUS304TP	
								インナー通路（3）			114.3	（6．0）	SUS304TP	
								$\begin{gathered} \text { ハロン } 1301 \text { 貯蔵容器 } \\ \text { B1F インナー通路(4) } \end{gathered}$	5.2	40	89.1	（5．5）	SUS304TP	

＊2：（ ）内は公称値を示す

8．4．2．2． 13 DC RCIC MCC 室消火系
（2）容器（常設）

			変 更 前	変 更 後
名		称	－	ハロン 1301 貯蔵容器
種	類	－		溶接容器
容	量	L／個		$\begin{gathered} 70 \text { 以上 } \\ \left(70^{*}\right) \end{gathered}$
最	高 使 用 圧 力	MPa		5.2
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$		40
> 主 要 寸 法	外 径	mm		267． 4^{*}
	高 さ	mm		1515＊
	胴 部 厚 さ	mm		
	底 部 厚 さ	mm		
材	料	－		SM520B
個	数	－		1
取 付 箇 所	系 \quad統 名 （	－		DC RCIC MCC 室消火系
	設 置 床	－		$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 6.00 \mathrm{~m} \end{aligned}$
	溢 水 防 護 上 区 画 番 号	－		－
	溢 水 防 護 上 の配慮が必要な高さ	－		－

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

＊2：（ ）内は公称値を示す。

8．4．2．2． 14 区分 I 非常用電気品室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

変 更 前									変 更 後						
	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用 温． $\left({ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		称		$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \\ \\ \left({ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \text { 径*1 }^{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 区 } \\ & \text { 分 } \\ & \text { 䧳 } \\ & \text { 常 } \\ & \text { 電 } \\ & \text { 嵒 } \\ & \text { 宵 } \\ & \text { 炎 } \\ & \hline \text { 系 } \end{aligned}$				－					$\begin{aligned} & \text { 区 } \\ & \text { 分 } \\ & \text { I } \\ & \text { 嫦 } \\ & \text { 闌 } \\ & \text { 気 } \\ & \text { 咥 } \\ & \text { 消 } \\ & \text { 爫 } \\ & \hline \end{aligned}$	ハロン1301貯蔵容器 区分 I 非常用電気品室	5.2	40	89.1	（5．5）	SUS304TP

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。

8．4．2．2． $15 \mathrm{D} / \mathrm{G}(\mathrm{A})$ 室／（B）室／D／G補機（A）室／（B）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

8．4．2．2．16 B1F ハッチ室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．17 区分IIIHPCS 電気品室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

変 更 前									変 更 後						
	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使 用 } \\ \text { 温 } \left.\text { (}{ }^{\circ} \mathrm{C}\right) \end{array} \text { 度 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 区 } \\ & \text { 分 } \\ & \text { III } \\ & \text { H } \\ & \text { P } \\ & \text { C } \\ & \text { S } \\ & \text { 電 } \\ & \text { 品 } \\ & \text { 空 } \\ & \text { 炎 } \\ & \hline \text { 系 } \end{aligned}$				－					$\begin{gathered} \text { 区 } \\ \text { 分 } \\ \text { III } \\ \text { H } \\ \text { P } \\ \text { C } \\ \text { S } \\ \text { 電 } \\ \text { 品 } \\ \text { 消 } \\ \text { 系 } \end{gathered}$	ハロン1301貯蔵容器区分IIIHPCS電気品室	5.2	40	89.1	（5．5）	SUS304TP

＊2：（ ）内は公称値を示す

8．4．2．2． 18 区分II非常用 MCC 室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊ 2 ：（）内は公称値を示す。

8．4．2．2．19 導電率計ラック室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．20 FPCポンプ（A）（B）室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline \& 名 \& 称 \& \& \begin{tabular}{l}
最高使用温 度 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\begin{gathered}
\text { 外 } \text { 径*1 }^{1} \\
(\mathrm{~mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm})
\end{gathered}
\] \& 材 \& 料 \& \& 称 \& \[
\begin{array}{|l|l|}
\hline \text { 最高使 用 } \\
\text { 圧 } \\
\text { (MPa) } \\
\hline
\end{array}
\] \& \begin{tabular}{l}
最高使用温 度 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm})
\end{gathered}
\] \& 材 料 \\
\hline \& \& \& \& － \& \& \& \& \& \& \begin{tabular}{l}
ハロン1301貯蔵容器 \\
FPCポンプ（A）（B）室
\end{tabular} \& 5.2 \& 40 \& 89.1

34.0 \& （5．5）

(3.4) \& SUS304TP

SUS304TP

\hline
\end{tabular}

注記 $~$ 1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．21 HWH 熱交換器・ポンプ室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後}

\hline \& 名 \& 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 力 } \\
& (\mathrm{MPa}) \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \begin{array}{l}
\text { 最高使 用 } \\
\text { 温 } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{array} \text { 度 } \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
\text { 外 } \text { 径*1 }^{1} \\
(\mathrm{~mm}) \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 \& 料 \& \& 称 \& $$
\begin{aligned}
& \hline \text { 最高使 用 } \\
& \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 温 } \quad \text { (}{ }^{\circ} \text { 度 } \\
& \hline
\end{aligned}
$$ \& $$
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$ \& 材 料

\hline \& \& \& \& － \& \& \& \& \& $$
\begin{gathered}
\text { H } \\
\text { W } \\
\text { W } \\
\text { H } \\
\text { 暬 } \\
\text { 換 } \\
\text { 器 } \\
\text { ポ } \\
\vdots \\
\text { フo } \\
\text { 室 } \\
\text { 消 } \\
\text { 系 }
\end{gathered}
$$ \& ハロン1301貯蔵容器 HWH熱交換器・ポンプ室 \& 5.2 \& 40 \& 89.1

60.5 \& （5．5）

（3．9） \& SUS304TP

SUS304TP

\hline
\end{tabular}

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2． 22 緊急用電気品室（1）／（2）消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

＊2 ：（ ）内は公称値を示す。

8．4．2．2．23 区分 I 非常用 D／G 制御盤室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊ 1 ：外径は公称值を示す。
＊2：（）内は公称值を示す。

8．4．2．2．24 区分III非常用 D／G 制御盤室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊1：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。

8．4．2．2．25 ディーゼル発電機（HPCS）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline 名 \& 称 \& \[
\begin{aligned}
\& \text { 最高使用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 }
\end{aligned}
\] \& \begin{tabular}{l}
最高使用温 度 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\underset{(\mathrm{mm})}{\text { 外 }}
\] \& \[
{ }_{(\mathrm{mm})}^{\text {厚 }}
\] \& \& 料 \& \& 名 称 \& \[
\begin{aligned}
\& \text { 最高使用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
\] \& \begin{tabular}{l}
最高使用温 度 \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
\underset{(\mathrm{mm})}{\text { 外 }}
\] \& \[
\underset{(\mathrm{mm})}{\text { 厚 }}
\] \& 材 料 \\
\hline \& \& \& － \& \& \& \& \& \& \begin{tabular}{l}
ハロン1301貯蔵容器 \\
ディーゼル発電機（HPCS）室
\end{tabular} \& 5.2 \& 40 \& 89.1

60.5 \& （5．5）

（3．9） \& SUS304TP

SUS304TP

\hline
\end{tabular}

$*$
$* 2$ ：外径は公称値を示す。

8．4．2．2． 26 区分 II 非常用 D／G 制御盤室／R－12 階段室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

8．4．2．2．27 区分IIIバッテリ室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

変更 前								変 更 後						
	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & { }_{(\mathrm{MPa})} \text { 力 } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 最高使用 } \\ \text { 温 } \end{array}{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 } \end{aligned}$	$\begin{gathered} \text { 外 } \begin{array}{c} \text { 径*1 } \\ (\mathrm{mm}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		称		$\begin{array}{\|l\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \text { (}{ }^{\circ} \mathrm{C} \text { 渡 } \end{array}$	$\begin{gathered} \text { 外 } \\ (\mathrm{lmm}) \\ (\text { 径*1 } \end{gathered}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
	－											89.1	（5．5）	SUS304TP
								ハロン1301貯蔵容器 区分IIIバッテリ室	5.2	40	34.0	（3．4）	SUS304TP	
											27.2	（2．9）	SUS304TP	

[^14]8．4．2．2．28 送風機•緊急用電気品室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline \& 名 \& 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 力 } \\
\& (\mathrm{MPa}) \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \begin{array}{l}
\text { 最高使 用 } \\
\text { 温 } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{array} \text { 度 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \quad \text { 径*1 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 \& 料 \& \& 名 称 \& \[
\begin{aligned}
\& \begin{array}{l}
\text { 最高使 用 } \\
\text { 圧 } \\
(\mathrm{MPa})
\end{array} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 温 } \quad \text { (}{ }^{\circ} \text { 度 } \\
\& \hline
\end{aligned}
\] \& \[
\begin{gathered}
\text { 外 } \text { 径 }^{* 1} \\
(\mathrm{~mm})
\end{gathered}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
\] \& 材 料 \\
\hline \[
\begin{aligned}
\& \text { 送 } \\
\& \text { 風 } \\
\& \text { 機 } \\
\& \text { 婜 } \\
\& \text { 急 } \\
\& \text { 電 } \\
\& \text { 吕 } \\
\& \text { 室 } \\
\& \text { 消 } \\
\& \text { 系 }
\end{aligned}
\] \& \& \& \& － \& \& \& \& \& \[
\begin{aligned}
\& \text { 送 } \\
\& \text { 風 } \\
\& \text { 機 } \\
\& \text { 堅 } \\
\& \text { 筒 } \\
\& \text { 電 } \\
\& \text { 嵒 } \\
\& \text { 空 } \\
\& \text { 消 } \\
\& \text { 系 }
\end{aligned}
\] \& \begin{tabular}{l}
ハロン1301貯蔵容器 \\
送風機•緊急用電気品室
\end{tabular} \& 5.2 \& 40 \& 89.1

114.3 \& （5．5）

（6． 0$)$ \& SUS304TP

SUS304TP

\hline
\end{tabular}

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．29 燃料デイタンク（B）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

変 更 前								変 更 後						
名	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$		料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
	－								ハロン1301貯蔵容器燃料デイタンク（B）室	5.2	40	89.1	（5．5）	SUS304TP
								60.5				（3．9）	SUS304TP	
								34.0				（3．4）	SUS304TP	

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．30 SOL 冷凍機室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記 $* 1:$ 外径は公称値を示す。
$* 2: ~(~) ~ 内 は, ~$

8．4．2．2． 31 HECW 冷凍機・ポンプ（A）（C）室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{変 更 前} \& \multicolumn{7}{|c|}{変 更 後} \\
\hline \& 名 \& 称 \& \[
\begin{aligned}
\& \text { 最高使 用 } \\
\& \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }}
\end{aligned}
\] \& \begin{tabular}{l}
最高使用温度 \\
（ \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \& \[
{ }^{\text {外 }} \underset{(\mathrm{mm})}{ } \text { 径 }^{* 1}
\] \& \[
\underset{(\mathrm{mm})}{\text { 厚 }}
\] \& 材 \& 料 \& \& 名 称 \& \[
\begin{array}{|l}
\hline \text { 最高使 用 } \\
\text { 压 } \\
\text { 力 } \\
\hline(\mathrm{MPa})
\end{array}
\] \& \begin{tabular}{|l|l|}
\hline 最高使用 \\
温 \& \\
\& \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} 度 \& \[
\text { 外 }_{\text {径*1 }}
\] \& \[
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm})
\end{gathered}
\] \& 材 料 \\
\hline \begin{tabular}{l}
H \\
E \\
C \\
w \\
泠 \\
凍 \\
ポ \\
プ \\
\(\underset{{ }_{C}^{\overparen{A}} \underset{\text { C }}{\overparen{A}}}{ }\) \\
\(\overparen{C}\)
C
室
消
竾 \\
系
\end{tabular} \& \& \& \& － \& \& \& \& \& \begin{tabular}{l}
H \\
E \\
C \\
w \\
\(\begin{array}{r}\text { 洽 } \\ \text { 涷 } \\ \hline\end{array}\) \\
機 \\
ポ \\
プ \\
© \\
C \\
室
消
炎
系
\end{tabular} \& ハロン1301貯蔵容器 HECW冷凍機・ポンプ（A）（C）室 \& 5.2 \& 40 \& 89.1

76.3 \& （5．5）

（5．2） \& SUS304TP

SUS304TP

\hline
\end{tabular}

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2．32 燃料デイタンク（A）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

変更 前								変更 後						
名	称	$\begin{aligned} & \text { 最高使 } \\ & \text { 压 } \\ & \text { (NPa) } \end{aligned}$	$\begin{aligned} & \text { 最高使 } \\ & \text { 温用 }{ }^{\circ} \mathrm{C} \text { 度 } \end{aligned}$	$\underset{(\mathrm{mm})}{\text { 㪀 }}$	$\text { 厚 } \underset{(\mathrm{mm})}{*}$	材	料		名 称		$\begin{aligned} & \text { 最高使用 } \\ & \text { 温 }{ }^{\circ} \mathrm{C} \text { 度 } \end{aligned}$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\text { 厚 } \underset{(\mathrm{mm})}{\text { さ }}{ }^{* 2}$	材 料
$\frac{\text { 燃 }}{\text { 萊 }}$	－								ハロン1301貯蔵容器燃料デイタンク(A) 室	5.2	40	89.1	（5．5）	SUS304TP
$\begin{aligned} & \text { 多 } \\ & \text { 消多 } \\ & \text { 炎乡 } \end{aligned}$								60.5				（3．9）	SUS304TP	
$\begin{aligned} & \widehat{A} \\ & \text { (室 } \end{aligned}$								34.0				（3．4）	SUS304TP	

8．4．2．2．33 燃料デイタンク（HPCS）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

変更 前								変更 後						
名	称	$\begin{gathered} \text { 最高使用 } \\ { }_{\left({ }_{(M P a)}\right)} \end{gathered}$	$\begin{aligned} & \mid \text { 最高使用 } \\ & \text { 温 } \\ & { }^{\circ} \mathrm{C} \text { C) } \end{aligned}$	$\boldsymbol{x}^{\text {外 }} \underset{(\mathrm{mm})}{\text { 径 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材	料		名 称	$\begin{gathered} \substack{\text { 最高使用 } \\ { }_{(1 \mathrm{MPa})} \\ \hline \\ \hline} \end{gathered}$	$\begin{array}{\|l\|} \hline \text { 最高使用 } \\ \text { 温 } \\ \left.{ }^{\circ} \mathrm{C} \text { (}\right) \end{array}$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\text { 厚 } \underset{(\mathrm{mm})}{\mathrm{em}^{*}}$	材 料
	－								ハロン1301貯蔵容器 燃料デイタンク（HPCS）室	5.2	40	89.1	（5．5）	SUS304TP
								60.5				（3．9）	SUS304TP	
								34.0				（3．4）	SUS304TP	

＊ 2 ：（ ）内は公称値を示す。

8．4．2．2． 34 空調機械（A）室／（B）室消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

変 更 前								変 更 後						
名	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{gathered}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$		料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
$\begin{aligned} & \begin{array}{c} \text { 空 } \\ \text { 調 } \\ \text { 機 } \\ \text { 械 } \\ \text { 消 } \\ \text { 火 } \\ \text { 系室 } \\ \widehat{\widehat{B}} \\ \text { B } \\ \text { 室 } \end{array} \end{aligned}$	－							$\begin{gathered} \begin{array}{c} \text { 空 } \\ \text { 調 } \\ \text { 機 } \\ \text { 械 } \\ \text { 消 } \\ \text { 火 } \\ \text { 采 } \\ \text { 空 } \\ \text { © } \\ \text { 室 } \end{array} \end{gathered}$	ハロン1301貯蔵容器空調機械（A）室	5.2	40	89.1	（5．5）	SUS304TP
								89.1				（7．6）	STPG370	
								空調機械（B）室分岐点空調機械（B）室	5.2		89.1	（5．5）	SUS304TP	
										89.1	（7．6）	STPG370		

＊2：（ ）内は公称値を示す。

8．4．2．2． $35 ~ 250 \mathrm{~V}$ 直流主母線盤室／ $125 \mathrm{~V}(\mathrm{~A})-1$ 室消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

8．4．2．2． 36 DC250Vバッテリ室消火系
（2）容器（常設）

注記 $~$ ：公称値を示す。
（5）主配管（常設）

変 更 前								変 更 後						
	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\left\lvert\, \begin{gathered} \text { 外 } \\ (\mathrm{mm}) \end{gathered}\right. \text { 径 }^{* 1}$	$\underset{(\mathrm{mm})}{\text { 厚 }}{ }^{\text {さ2 }}$	材	料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})} \text { 力 } \end{aligned}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
バ	－							$\begin{array}{ll} \text { M } & \text { D } \\ \text { F } & C \\ \text { Y } & 2 \\ \text { 室 } & 5 \\ \text { 肖 } & 0 \\ \text { 系 } & \end{array}$	ハロン1301貯蔵容器 DC250Vバッテリ室	5.2	40	89.1	（5．5）	SUS304TP
$\begin{aligned} & \text { 学 } \mathrm{D} \\ & \text { 曹 } \\ & \text { 室 } 5 \end{aligned}$								60.5				（3．9）	SUS304TP	
炎 V								42.7				（3．6）	SUS304TP	

＊2 ：（ ）内は公称値を示す。

8．4．2．2．37 計測制御電源（B）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

変 更 前								変 更 後						
名	称	$\begin{gathered} \text { 最高使用 } \\ \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{gathered}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\left\lvert\, \begin{gathered} \text { 外 } \\ (\mathrm{mm}) \end{gathered}\right.$	${\underset{(m m)}{\text { 厚 }} \text { さ*2 }}^{\text {2 }}$		料		名 称	$\begin{aligned} & \text { 最高使用 } \\ & \text { 圧 }{ }_{(1 \mathrm{Paa})}^{\text {力 }} \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外 }}$	$\underset{(\mathrm{mm})}{\text { 厚 }}$	材 料
$\begin{gathered} \text { 計 } \\ \text { 測 } \\ \text { 制 } \\ \text { 消御 } \\ \text { 炎 } \\ \text { 系源 } \\ \begin{array}{\|c} \widehat{B} \\ \text { 室 } \end{array} \end{gathered}$			－						ハロン1301貯蔵容器計測制御電源（B）室	5.2	40	89.1 60.5	(5.5) （3．9）	SUS304TP SUS304TP

$* 2$ ：（ \quad ）内は公称値を示す。

8．4．2．2． 38 代替充電器盤室／RSS 盤室／DC125V（A）室／（B）室消火系
（2）容器（常設）

注記＊：公称値を示す。
（5）主配管（常設）

＊2 ：（ ）内は公称値を示す

8．4．2．2．39 常用•共通 M／C•P／C 室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

変 更 前									変 更 後						
	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用 温 ${ }^{\left({ }^{\circ} \mathrm{C}\right)}$ 度	$\begin{gathered} \text { 外 } \text { 径 }^{* 1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		称	$\begin{array}{\|l\|l\|} \hline \text { 最高使 用 } \\ \text { 圧 } \\ \text { (MPa) } \end{array}$	最高使用 温 （ $\left.{ }^{\circ} \mathrm{C}\right)$ 度	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
$\begin{aligned} & \text { 常 } \\ & \text { 角 } \\ & \text { 共 } \\ & \text { M } \\ & \text { M } \\ & \text { C } \\ & \text { P } \\ & \text { / } \\ & \text { C } \\ & \text { 聜 } \\ & \text { 炎 } \\ & \text { 系 } \end{aligned}$				－					$\begin{aligned} & \text { 常 } \\ & \text { 共 } \\ & \text { 共 } \end{aligned}$	ハロン1301貯蔵容器常用•共通 M／C•P／C室	5.2	40	89.1	（5．5）	SUS304TP

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

8．4．2．2． 40 計測制御電源（A）室消火系
（2）容器（常設）

注記 $*: ~$ 公称値を示す。
（5）主配管（常設）

注記＊1 ：外径は公称値を示す。
＊2：（ ）内は公称値を示す。

[^0]: 枠囲みの内容は商業機密の観点から公開できません。

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

[^2]: 枠囲みの内容は商業機密の観点から公開できません。

[^3]: 枠囲みの内容は商業機密の観点から公開できません。

[^4]: 枓囲みの内容は商業機密の観点から公開できません。

[^5]: 体囲みの内容は商業機密の観点から公開できません。

[^6]: 枠囲みの内容は商業機密の観点から公開できません。

[^7]: 枠囲みの内容は商業機密の観点から公開できません。

[^8]: 枠囲みの内容は商業機密の観点から公開できません。

[^9]: 枠囲みの内容は商業機密の観点から公開できません。

[^10]: 枠囲みの内容は商業機密の観点から公開できません。

[^11]: 注記＊1：表 2 に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。

[^12]: る。

[^13]: 注記＊：公称値を示す。

[^14]: 注記 $* 1:$ 外径は公称値を示す。
 $* 2: ~(~) ~ 内 は, ~$

