RREP-2022-1001

安全研究成果報告

S/NRA/R Research Report

重大事故時の原子炉格納容器の 終局的耐力評価に関する研究

Research on Ultimate Strength Evaluation of Nuclear Containments Under Severe Accident Conditions

中村 均 荒井 健作 菊池 正明

NAKAMURA Hitoshi, ARAI Kensaku, and KIKUCHI Masaaki

システム安全研究部門

Division of Research for Reactor System Safety

小城 烈 堀田 亮年

KOJO Retsu and HOTTA Akitoshi

シビアアクシデント研究部門

Division of Research for Severe Accident

森谷 寛 堀野 知志

MORITANI Hiroshi and HORINO Satoshi

地震·津波研究部門

Division of Research for Earthquake and Tsunami

原子力規制庁 長官官房技術基盤グループ

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

令和4年5月 May 2022

本報告は、原子力規制庁長官官房技術基盤グループが行った安全研究プロジェクトの活動内容・ 成果をとりまとめたものです。 なお、本報告の内容を規制基準、評価ガイド等として審査や検査に活用する場合には、別途原子

なお、本報告の内容を規制基準、評価刀イト寺として番倉や検査に活用する場合には、別途原子 力規制委員会の判断が行われることとなります。

本レポートの内容に関するご質問は、下記にお問い合わせください。

原子力規制庁 長官官房 技術基盤グループ システム安全研究部門 〒106-8450 東京都港区六本木 1-9-9 六本木ファーストビル 電話:03-5114-2223 ファックス:03-5114-2233 重大事故時の原子炉格納容器の終局的耐力評価に関する研究

原子力規制庁 長官官房技術基盤グループ システム安全研究部門

中村 均 荒井 健作 菊池 正明

シビアアクシデント研究部門

小城 烈 堀田 亮年

地震·津波研究部門

森谷 寛 堀野 知志

要 旨

本研究は、重大事故時の原子炉格納容器(以下「格納容器」という。)の終局的耐力の評価手法及び限界条件に関する知見を蓄積することを目的に、2017年度から 2021年度までの研究期間において、原子力規制庁が実施したものである。

格納容器の機能喪失に対する終局的耐力を評価する上で考慮すべき破損形態は、格納容 器本体のような鋼製部材に対しては過圧による局部破損(延性破壊)及びシール部等に用 いられている樹脂部材に対しては過温による樹脂の分解・損傷である。局部破損は、構造 不連続部における塑性変形の進行に伴い応力三軸度が上昇し、破損する限界ひずみ等が減 少する現象であるが、格納容器鋼材について三軸応力下の破損条件に関わる材料データは、 これまでほとんど取得されていない。そこで本研究では、国内の格納容器に使用されてい る主要な鋼材に対して各種の切欠付試験片の引張試験を実施し、局部破損を評価するため の材料データを取得した。また、実機の構造不連続部を想定した要素試験として、実厚に 近い切欠付平板引張試験を実施した。取得した試験データを解析評価して、限界ひずみ線 図及び限界応力指標線図を整備した。これらの線図は、終局的耐力評価手法として、応力 三軸度に基づく局部破損の評価に適用できる。また詳細解析手法として、損傷の進行を予 測する損傷力学解析コードを整備した。樹脂材料の過温による破損に対しては、格納容器 で多数使用されている電気ペネトレーションのシール挙動試験を実施し、限界温度等を取 得した。

さらに、BWR-5型 Mark II 改良型格納容器を対象として、放射性物質の閉じ込め性評価の観点から格納容器の中で最大規模の機械接合部であるトップフランジ部について、代表的な温度及び圧力での開口量評価を行った。それを参考に、格納容器が局所的に高温にさ

i

らされるような事象の発生可能性(シナリオ)について分析し、当該事象の熱過渡解析結 果に基づく格納容器の閉じ込め性、すなわち局所環境を考慮した終局的耐力を評価した。

これらの試験・解析により、重大事故時の格納容器の構造不連続部の局部破損及び電気 ペネトレーション・機械接合部等からの漏えいに対する終局的耐力の評価手法及び限界条 件に関する知見を取得した。

Research on Ultimate Strength Evaluation of Nuclear Containments Under Severe Accident Conditions

NAKAMURA Hitoshi, ARAI Kensaku, and KIKUCHI Masaaki Division of Research for Reactor System Safety KOJO Retsu and HOTTA Akitoshi Division of Research for Severe Accident MORITANI Hiroshi and HORINO Satoshi Division of Research for Earthquake and Tsunami Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority(S/NRA/R)

Abstract

The purpose of this research project is to study the evaluation method and ultimate strength conditions of nuclear containments under severe accident conditions. The project was conducted from 2017 to 2021 by S/NRA/R.

The failure modes that should be considered when evaluating the ultimate strength of containments against functional loss are local failure (ductile fracture) due to overpressure on steel materials such as containment vessel bodies and resin damage or decomposition due to overheating of resin used as, for example, sealing materials. Local failure is a phenomenon in which the increase in stress triaxiality associated with the progress of plastic deformation causes a decrease in limit strain at structural discontinuities. To date, almost no material data has been obtained on the local failure conditions of containment steel. In order to acquire such data, we conducted comprehensive tensile tests of notched specimens of the main steel materials used for containments in Japan. We also conducted systematic element tests of notched plate specimens with a thickness close to that of actual containments with structural discontinuities. Limit strain diagrams and limit stress index diagrams were developed by analyzing and assessing the acquired test data. These diagrams can be applied to the evaluation of local failure as a practical method for the ultimate strength of steel components in containments. In addition, we developed a damage mechanics analysis code to predict the progress of damage with a detailed analysis method. For damage caused by the overheating of resin materials, seal behavior tests were conducted on electric penetrations, many of which are used in containments, and the limit temperature was obtained.

For Mark-II modified primary containment vessel of BWR-5 type reactor, the opening

distance of the top flange which is the largest mechanical junction in the containment vessel was analyzed at typical temperatures and pressures from the viewpoint of evaluating the confinement of radioactive materials. With reference to the analysis, the possibility of an event (scenario) was analyzed in which the containment is locally exposed to high temperature. Furthermore, the confinement capability of the containment was evaluated based on the thermal transient analysis of the assumed event.

Through these tests and analyses, knowledge was acquired on the evaluation method and ultimate strength conditions of local failures at structural discontinuities and leakages from seals of nuclear containments under severe accident conditions.

目 次

1.	序謠	合 而		1
	1.1	背景	<u>a</u> 	1
	1.2	目的	匀	1
	1.3	全体	\$行程	1
2.	本諸	合 而		4
	2.1	原于	~炉格納容器の終局的耐力評価に関する技術知見	4
	2.1.	.1	局部破損の想定部位及び材料	4
	2.1.	.2	NUPEC 構造挙動試験	6
	2.1.	.3	EPRI/CTL 試験	.16
	2.1.	.4	局部破損に関わる設計規格・ガイド	.25
	2.2	局音	『破損に関わる要素試験	.28
	2.2.	.1	試験計画	.28
	2.2.	.2	鋼製格納容器鋼材の切欠付試験片の引張試験	.29
	2.2.	.3	ライナ鋼材の切欠付試験片の引張試験	.47
	2.3	終扂	局的耐力評価手法の検討	.52
	2.3.	.1	限界ひずみ及び応力指標線図を用いた設計的評価手法	.52
	2.3.	.2	損傷力学解析手法	.58
	2.4	電気	ミ ペネトレーションのシール挙動試験	.62
	2.4.	.1	試験目的	.62
	2.4.	.2	電気ペネトレーション試験体	.62
	2.4.	.3	試験装置	.63
	2.4.	.4	予備試験	.65
	2.4.	.5	シール挙動試験	.66
	2.4.	.6	考察	.67
	2.5	局所	f環境を考慮した終局的耐力評価	.69
	2.5.	.1	トップフランジの開口評価	.69
	2.5.	.2	格納容器の局所温度に関する解析	.73
3.	結論	斎		.87
	3.1	成界	その要点	.87
	3.1.	.1	局部破損に関わる要素試験	.87
	3.1.	.2	終局的耐力評価手法の検討	.87
	3.1.	.3	電気ペネトレーションのシール挙動試験	.88
	3.1.	.4	局所環境を考慮した終局的耐力評価	.88
	3.2	目的	りの達成状況	.89

3.3	成果	その公表等	89
3.3	.5	原子力規制庁の職員が著者に含まれる公表	89
3.3	.6	委託先による公表	90
3.4	成界	その活用等	90
3.5	今後	その課題等	90
参考文南	 秋一月	覧	92
執筆者-	一覧		98

表 目 次

表 1.3.1	本研究の全体工程	3
表 2.1.1.1	原子炉格納容器の局部破損の想定部位	5
表 2.1.1.2	日本国内の鋼製格納容器及びコンクリート製格納容器ライナの使用鋼材	6
表 2.2.2.1	供試材の機械的性質	29
表 2.2.3.1	SGV410 鋼板(16 mm 板厚)の機械的性質	47
表 2.4.2.1	電気ペネトレーション試験体の種類及び員数	62
表 2.5.2.1	圧力容器内 CFD 解析モデルの諸元	75
表 2.5.2.2	圧力バウンダリとドライウェル区画の関係	77
表 2.5.2.3	全体系解析モデルの物理モデル	80
表 2.5.2.4	全体系解析の境界条件	81
表 2.5.2.5	全体系解析の初期条件	81

図目次

义	2.1.2.1	PCCV 試験体の構造図	8
义	2.1.2.2	PCCV 試験におけるライナの破損位置等	9
义	2.1.2.3	SCV 試験体の構造図1	1
义	2.1.2.4	SCV 試験体の機器ハッチ周辺部の破損状況(内側)1	2
义	2.1.2.5	機器ハッチ補強板接合部破損部の断面写真1	2
义	2.1.2.6	SCV 試験体の全体 FEM モデル1	4
义	2.1.2.7	機器ハッチ補強板・胴接合部の局部モデル(容器内面から見る)1	4
义	2.1.2.8	機器ハッチ近傍のひずみゲージ位置での周方向ひずみと圧力の履歴1	5
义	2.1.2.9	破損圧力(4.7 MPa)時の機器ハッチ補強板・胴接合部の外面からみた相当塑性	ŧ
		ひずみの分布1	5
义	2.1.2.10	接触壁の塞ぎ板を含む SCV 試験体のモデル1	6
义	2.1.3.1	解析対象とする試験体1	8
义	2.1.3.2	試験体のライナ構造と局部破損の位置1	9
义	2.1.3.3	コンクリート製格納容器壁部の試験体の解析モデル2	2
义	2.1.3.4	試験結果のコンクリート部のひび割れ状況(展開図)及び解析結果2	3
义	2.1.3.5	ライナプレートの応力-ひずみ関係及び応力-伸び量関係2	4
义	2.2.1.1	鋼製格納容器鋼材及び格納容器ライナ鋼材の試験計画の概要2	8
义	2.2.2.1	SGV480 鋼及び SPV490 鋼の切欠付丸棒試験片	0
义	2.2.2.2	切欠付丸棒引張試験における投影装置及び投影画像の例	1
义	2.2.2.3	切欠付丸棒試験片の代表的な FEM モデル	2
义	2.2.2.4	SGV480 鋼の切欠付丸棒引張試験結果と最適化された弾塑性 FEM の結果3	3
义	2.2.2.5	SPV490 鋼の切欠付丸棒引張試験結果と最適化された弾塑性 FEM の結果3	4
义	2.2.2.6	SGV480 鋼と SPV490 の限界ひずみ線図及び限界応力指標線図3	6
义	2.2.2.7	切欠付丸棒試験片の形状及び採取位置	7
义	2.2.2.8	SGV480 及び SPV490 の溶接継手のビッカース硬さ分布	8
义	2.2.2.9	SGV480 及び SPV490 の母材、HAZ 及び HAZ 模擬材の限界ひずみの比較3	9
义	2.2.2.10	全幅切欠付平板試験片及び部分切欠付平板試験片の形状4	0
义	2.2.2.11	SGV480 及び SPV490 の全幅切欠付平板試験片の応力ひずみ線図4	1
义	2.2.2.12	SGV480 及び SPV490 の部分切欠付平板試験の応力ひずみ線図4	1
义	2.2.2.13	SGV480 及び SPV490 の切欠付平板及び丸棒試験片の限界ひずみ線図4	2
义	2.2.2.14	全幅切欠付平板試験片の断面写真(SGV480)4	3
义	2.2.2.15	全幅切欠付平板試験片の破面 SEM 観察結果(SGV480)4	3
义	2.2.2.16	実厚相当全幅切欠付平板試験体の形状及び外観4	4
义	2.2.2.17	SGV480 及び SPV490 の実厚相当全幅切欠付平板試験体の公称応力-標点間ひす	۴

	み線図46
図 2.2.3.1	SGV410 鋼の切欠付丸棒試験片48
図 2.2.3.2	SGV410 鋼の切欠付丸棒引張試験における公称応力と真ひずみの関係
図 2.2.3.3	SGV410 鋼の切欠付丸棒引張試験における限界ひずみεL線図と限界応力指標 SL
	線図49
図 2.2.3.4	SGV410 鋼の全幅切欠付平板引張試験における公称応力onと標点間ひずみenの
	関係
図 2.2.3.5	SGV410 鋼の全幅切欠付平板及び切欠付丸棒引張試験における限界ひずみεL線
	図と限界応力指標 SL線図51
図 2.3.1.1	SGV480 鋼と SPV490 鋼の全幅切欠付平板引張試験における公称応力onと標点
	間ひずみ <i>ɛ</i> nの関係
図 2.3.1.2	SGV480 鋼、SPV490 鋼、SGV410 鋼の全幅切欠付平板及び切欠付丸棒引張試験
	における限界ひずみ ϵ_L 線図と限界応力指標 SL線図55
図 2.3.1.3	PWR の鋼製格納容器(SGV)の局部破損の限界圧力の簡易評価結果58
図 2.4.2.1	電気ペネトレーション試験体の外形及び断面図63
図 2.4.3.1	シール挙動試験装置の系統概略図64
図 2.4.3.2	シール挙動試験装置の外観65
図 2.4.5.1	シール挙動試験における温度圧力履歴67
図 2.4.6.1	BWR プラントにおける貫通部位置及び電気ペネトレーションの設置状況68
図 2.5.1.1	BWR 格納容器トップフランジ近傍70
⊠ 2.5.1.2	トップフランジ部の有限要素モデルの概要71
図 2.5.1.3	トップフランジ開口量の解析結果の概要72
図 2.5.2.1	格納容器局所環境評価の流れ73
図 2.5.2.2	MELCOR による事故進展解析の結果74
図 2.5.2.3	圧力容器内流動の解析結果
図 2.5.2.4	BWR-5 Mark-II 格納容器の CFD モデル80
図 2.5.2.5	格納容器壁面温度
図 2.5.2.6	格納容器内壁面における 1800 s 時点での温度
図 2.5.2.7	気相温度
図 2.5.2.8	気相温度分布
図 2.5.2.9	詳細解析用の CFD モデル
図 2.5.2.10	トップヘッド区画の 1,800 s におけるガス温度と流速
図 2.5.2.11	トップヘッドフランジの温度86

略語表

ABWR	Advanced Boiling Water Reactor (改良型沸騰水型原子炉)		
ASME	American Society of Mechanical Engineers (米国機械学会)		
BAF	Bottom of Active Fuel(燃料有効長下端)		
BWR	Boiling Water Reactor (沸騰水型原子炉)		
CFD	Computational Fluid Dynamics (数值流体力学)		
DCH	Direct Containment Heating(格納容器雰囲気直接加熱)		
EPRI	Electric Power Research Institute(米国電力研究所)		
FEM	Finite Element Method(有限要素法)		
NUPEC	Nuclear Power Engineering Corporation(財団法人原子力発電技術機構)		
	Steel Containment Vessel (鋼製格納容器)		
SCV	Steel Containment Vesser (max/tr/m) (Tab)		
SCV PCCV	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格		
SCV PCCV	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格 納容器)		
SCV PCCV PRA	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格 納容器) Probabilistic Risk Assessment (確率論的リスク評価)		
SCV PCCV PRA PWR	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格 納容器) Probabilistic Risk Assessment (確率論的リスク評価) Pressurized Water Reactor (加圧水型原子炉)		
SCV PCCV PRA PWR HAZ	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格 納容器) Probabilistic Risk Assessment (確率論的リスク評価) Pressurized Water Reactor (加圧水型原子炉) Heat Affected Zone (熱影響部)		
SCV PCCV PRA PWR HAZ JIS	Prestressed Concrete Containment Vessel (プレストレストコンクリート製格 納容器) Probabilistic Risk Assessment (確率論的リスク評価) Pressurized Water Reactor (加圧水型原子炉) Heat Affected Zone (熱影響部) Japanese Industrial Standards (日本産業規格)		

用語の定義

応力三軸度	応力状態の多軸性の強さを表す指標(=平均応力/相当応力、こ
	こで平均応力は主応力の平均)。
局部破損	載荷により、構造不連続部にひずみが集中して、塑性変形が進行
	した時に、応力三軸度の増加に伴って、単軸引張の場合よりも低
	いひずみで破損する現象。鋼製部材の延性破壊の終局的な破損モ
	ードを意味する。
屈曲点	引張試験による荷重・変位線図や相当応力・真ひずみ線図におい
	て、荷重や応力が急激に減少する点。局部破損の限界点(延性破
	壊の開始点)。
限界応力指標	局部破損の限界点を表す破壊基準として著者らが定義した指標
	であり、屈曲点における相当応力と平均応力の和。
限界ひずみ線図	材料が破断するひずみ(限界ひずみ)を描画した線図。
公称応力	材料試験において、荷重を変形前の試験片断面積で割った値。
構造不連続部	構造物の形状又は材質が急に変化している部分。容器と配管の接
	合部、異なる板厚の部材の接合部、溶接部一般等。
降伏	材料の弾性範囲を超えて、塑性変形が開始する状態。
降伏関数	塑性理論において塑性降伏条件を表す関数。
終局的耐力	評価対象が所定の機能を保つことができる最終的な耐力。
相当応力	多方向(多軸)からの応力を一軸の引張応力又は圧縮応力に置き
	換えたもの。多軸の応力場において、材料が降伏するか判断する
	ための指標となる。
損傷力学	ボイド、微小き裂のような材料の損傷を、適切な力学的変数(損
	傷変数)で表現して、連続体力学により記述した力学分野。通常、
	有限要素法に損傷変数を組み込んで、力学問題を解く。
ネッキング	引張試験において、試験片の平行部に局部的にくびれが生じる現
	象。
ボイド	材料中の微小空孔。
有限要素法	解析対象を小さな要素の集合体として扱い、各要素の特性を単純
	な数学モデルで近似し、連立方程式の形にして全体の挙動を解く
	数值解析手法。

1. 序論

1.1 背景

実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25 年原子力規制委員会規則第5号。)では、重大事故等の拡大の防止として、原子炉格納容器(以下「格納容器」という。)の破損を防止するために必要な措置を要求している。その解釈「の中で、格納容器の破損防止対策の有効性評価として、重大事故時の圧力・温度が、格納容器の機能を維持できる限界圧力・温度を下回ることの確認を求めている。

これまでに、重大事故時の格納容器機能喪失を想定した格納容器の終局的耐力に係る主要な試験としては、財団法人原子力発電技術機構(NUPEC: Nuclear Power Engineering Corporation、以下「NUPEC」という。)による一連の縮尺試験体の実証試験(以下「NUPEC 構造挙動試験」という。)^{2,3,4}があり、代表的な型の格納容器の終局的耐力に係る基礎データを提供している。これらの試験結果は、格納容器の終局的耐力に余裕があることを示したが、三軸応力下の限界ひずみ等の材料データは取得されなかった。鋼製部材の終局的な破損モードである局部破損を評価するためには、これらの材料データが必要であり、さらに溶接部を含む構造不連続部、金属ライナ等の破損に関する試験データを拡充することにより、局部破損を含む終局的耐力評価の信頼性をより高めることができる。

また、近年になって、海外の規制機関、国内の学会等で、格納容器の重大事故時の終局 的耐力評価のための指針⁵や標準⁶が整備されつつある。これらの指針・標準では、弾性 構造解析に基づく建設時の設計解析法とは異なり、非線形構造解析により大ひずみ域の構 造挙動を予測するとともに、局部破損を考慮した評価手法^{5,7}が導入されている。

重大事故時における格納容器破損防止対策の有効性評価の妥当性確認に資するために、 格納容器の過圧に対しては、局部破損の試験データの取得を進めるとともに、試験データ に基づいた評価手法の検討が必要である。また格納容器の過温に対しては、樹脂シールが 用いられている電気ペネトレーションやフランジ等機械接合部の閉じ込め性等に係る終局 的耐力評価手法の検討が必要である。

1.2 目的

重大事故時における格納容器の構造不連続部の局部破損及び電気ペネトレーション・機 械接合部等からの漏えい等に対する終局的耐力の評価手法及び限界条件に関する知見を蓄 積することを目的とする。得られた知見は重大事故時における格納容器破損防止対策の有 効性評価の妥当性確認に資するとともに、格納容器の終局的耐力評価手法は、確率論的リ スク評価における格納容器機能喪失モードの設定等にも資することができる。

1.3 全体行程

本研究は平成 29 年度(2017 年度)から令和 3 年度(2021 年度)にかけて、表 1.3.1 に示 す工程に従って原子力規制庁が実施したものである。 実施項目「(1)評価手法の検討・解 析」では、格納容器の局部破損の想定部位の抽出を行うとともに、使用されている鋼材を 調査した。また、NUPEC や米国電力研究所(EPRI: Electric Power Research Institute、以下

「EPRI」という。)で実施された試験の調査及び解析を行うとともに、局部破損に関わる 設計規格類の調査を実施した。さらに、実施項目「(2)要素試験」の試験前・試験後の弾塑 性解析等を実施することにより、試験片形状等の最適化を行うとともに、ひずみ・応力等 の破損条件を分析した。これらの解析結果に基づいて、応力三軸度に基づく局部破損評価 法、損傷力学に基づく詳細評価法を含む終局的耐力評価手法を検討した。

要素試験では、まず材料試験として、切欠付の丸棒・平板試験片を用いた系統的な引張 試験を実施し、溶接部を含む大ひずみ域の材料の弾塑性特性や局部破損の基礎データを取 得した。さらに、構造不連続部の破損試験として、 鋼製格納容器及び格納容器ライナの実 厚試験体の引張試験を実施した。また、過温による樹脂シールの破損の代表部位として、 格納容器に多数使用されている電気ペネトレーションの加温・加圧によるシール挙動試験 を実施し、漏えい限界を確認した。

実施項目「(3)実機相当モデルの終局的耐力評価」では、格納容器が局所的に高温にさら されて、樹脂シール等が破損するような事故事象の発生可能性について分析するため、沸 騰水型原子炉(BWR: Boiling Water Reactor、以下「BWR」という。)のうち、BWR-5型 Mark II 改良型格納容器をモデルとした局所過温事象の熱過渡解析を実施し、格納容器の閉 じ込め性を評価した。

表 1.3.1 本研究の全体工程

Table 1.3.1	Overall	research	process
-------------	---------	----------	---------

	平成 29 年度	平成 30 年度	令和元年度	令和2年度	令和3年度
	(2017 年度)	(2018年度)	(2019年度)	(2020年度)	(2021年度)
(1) 評価手法の検討・解析					
・評価手法の検討			1	1	
・西表試験の解析			1	1	
安示的(\$P/IF/II					
(2) 要素試験					
・材料試験			l I	l	
・構造不道結果の破損試験					
14,但小生形的24,10,000					
・電気ペネのシール挙動試験					
(3) 実機相当モデルの終局的耐力評価					
・局所環境を考慮した終局的耐力評価			I	 -	

2. 本論

2.1 原子炉格納容器の終局的耐力評価に関する技術知見

原子炉格納容器の局部破損の想定部位及び使用材料の調査結果、これまでに実施された 重要な格納容器の限界試験の概要、さらに局部破損に関わる設計規準に関する技術知見を まとめる。

2.1.1 局部破損の想定部位及び材料

放射性物質の閉じ込め機能の喪失を招く局部破損の想定部は、原子炉格納容器バウンダ リを構成する鋼製部において、重大事故時の過圧により顕著な塑性変形が進行する可能性 がある部分である。局部破損の想定部位の候補として、国内プラントの重大事故等対策の 有効性評価に関わる公開資料^{8,9,10,11}から、延性破壊の評価を実施している箇所を抽出、 整理したものを表 2.1.1.1 に示す。国内の原子炉格納容器は、鋼製格納容器とコンクリート 製格納容器に大別される。鋼製格納容器の延性破壊の評価部位は、同表(a)及び(b)に示すよ うに格納容器本体、ハッチ類、配管貫通部等である。コンクリート製格納容器の想定部位 は、同表(c)及び(d)に示すように、鋼製ライナ(内張)、トップヘッドフランジ、ハッチ類、 配管貫通部等である。局部破損の評価を実施する場合には、これら延性破壊の評価箇所の 中で、応力条件が厳しい部位が、想定部位になると思われる。なお、本研究では、実機相 当プラントに対する具体的な局部破損評価を計画していない^(注1)。

国内プラントにおいて、鋼製格納容器の本体及びコンクリート製格納容器のライナに使用されている材料をまとめた結果を表 2.1.1.2 に示す。鋼製格納容器本体に使用されている材料は、BWR 及び加圧水型原子炉(PWR: Pressurized Water Reactor、以下「PWR」という。) ともに共通しており、代表的なものは炭素鋼の SGV480 鋼(旧 JIS 表記では SGV49 鋼)及び SPV490 鋼(旧 JIS 表記では SPV50)である。また、改良型沸騰水型原子炉(ABWR: Advanced Boiling Water Reactor、以下「ABWR」という。)及び PWR のコンクリート製格納 容器のライナに使用されている材料の代表的なものは、SGV410 鋼(旧 JIS 表記では SGV42) 及び SGV480 鋼である。同表は、本研究における材料試験における供試材の仕様を検討す るための参考にした。

⁽注1) 令和2年度安全研究計画にて、当初計画の「(3)実機相当モデルの終局的耐力評価 a)一様温度・荷重における終局的耐力評価」を取りやめた。これは、令和元年度までの材料試験・解析により、当初想定していなかったせん断型の延性破壊の考慮が必要であることが示唆され、この破壊モードの検討に研究資源を割り当てたためである。

表 2.1.1.1 原子炉格納容器の局部破損の想定部位

Table 2.1.1.1	Candidate part	s for expected	local failure	e in nuclea	r containments
	r				

評価対象	部位等			
(a) 鋼製格納容器(BWR Mark-II) ⁸				
① 原子炉格納容器本体	トップヘッド、ドライウェル、サブレッション・チャ			
	ンバー			
② トップヘッドフランジ	フランジ部			
③ ハッチ類	機器搬入用ハッチ、サブレッション・チャンバー、ア			
	クセスハッチ、所員用エアロック			
④ 格納容器貫通部	配管貫通部、電気配線貫通部 (構造部)			
⑤ 原子炉格納容器隔離弁	—			
(b) 爺	剛製格納容器(PWR) ⁹			
① 原子炉格納容器本体	円筒部、半球部			
② ハッチ類	機器搬入口等、エアロック			
③ 格納容器貫通部	配管貫通部、電線貫通部 (構造部)			
④ 原子炉格納容器隔離弁				
(c) コンクリ	リート製格納容器(ABWR) ¹⁰			
① 原子炉格納容器(ライナ部)				
② トップヘッドフランジ	フランジ部			
③ ハッチ類	機器搬入用ハッチ等、エアロック			
④ 貫通部	配管貫通部、電気配線貫通部 (構造部)			
⑤ 原子炉格納容器隔離弁				
コンクリ	ート製格納容器 (PWR) ¹¹			
① 原子炉格納容器 (ライナ部)				
② ハッチ類	機器搬入口等、エアロック			
③ 格納容器貫通部	配管貫通部、電線貫通部 (構造部)			
④ 原子炉格納容器隔離弁				

表 2.1.1.2 日本国内の鋼製格納容器及びコンクリート製格納容器ライナの使用鋼材

 Table 2.1.1.2
 Materials used for steel containment vessels and liner plates in concrete containment structures in Japan

種別	材料規格
BWR 鋼製格納容器	JIS-SGV480(旧 JIS 表記、SGV49), SPV490(旧 JIS 表記、
	SPV50), ASTM-A201B, A212B, A516(Gr70A300)
PWR 鋼製格納容器	JIS-SGV480, ASTM-A212B(A300), A516(Gr70A300)
ABWR コンクリート製	JIS-SGV480, SUS304, SUS304L
格納容器ライナ	
PWR コンクリート製	JIS-SGV410(旧 JIS 表記、SGV42), SGV480
格納容器ライナ	

注) 有効性評価資料^{8,9,10,11}等の情報より抽出、廃炉プラントは除く。

2.1.2 NUPEC 構造挙動試験

重大事故時の格納容器機能喪失を想定した格納容器の終局的耐力に係る重要な試験とし ては、NUPEC が昭和 62 年度(1987 年度)から平成 14 年度(2002 年度)まで実施した「原 子炉格納容器信頼性実証事業」^{2,3,4} がある。当事業は、重大事故時の原子炉格納容器の 健全性を確認するために実施され、「可燃性ガス混合燃焼試験」、「構造挙動試験」、「デブリ 冷却試験」等の各種試験から構成されている。構造挙動試験(平成 2 年度(1990 年度)~ 平成 14 年度(2002 年度))では、PWR のプレストレストコンクリート製格納容器(PCCV: Prestressed Concrete Containment Vessel、以下「PCCV」という。)の縮尺モデルを用いた加圧 試験(以下「PCCV 試験」という。)、BWR の鋼製格納容器(SCV: Steel Containment Vessel、 以下「SCV」という。)の縮尺モデルを用いた加圧試験(以下「SCV 試験」という。)等を 実施している。これらの構造挙動試験の概要を述べる¹²とともに、本研究において、実機 模擬の試験体の破損状況を分析するために、SCV 試験の弾塑性解析を実施した結果を述べ る。 (1) PCCV 試験

PCCV 試験体は、1,100 MW 級 PWR のプレストレストコンクリート製格納容器の 1/4 ス ケールモデルであり、全体構造を図 2.1.2.1 に示す^{3,13}。コンクリート躯体の外径は 11.4 m、壁厚は 325 mm であった。SGV410 鋼製のライナの板厚は実機板厚 6.4 mm の 1/4 の 1.6 mm であった。試験体の加圧試験は、米国 Sandia (サンディア)国立研究所にて実施され、 窒素ガスで昇圧中に、0.94 MPa (約 2.4Pd (Pd:最高使用圧力))でライナが損傷して漏え いした。さらにライナにゴム材を溶射して、水を注入して昇圧し、1.42 MPa (約 3.6Pd) に て、円筒壁が割裂破壊した。コンクリート躯体の破壊状況に関しては、コンクリート材料 の非線形構成則を用いた有限要素法解析 (FEM: Finite Element Method、以下「FEM」とい う。)により、試験結果を良好に模擬できることが確認された⁴。

ライナの亀裂は、図 2.1.2.2 に示すように、円筒中腹部に多数発生した。亀裂の発生部位 は、鉛直方向の溶接線近傍の熱影響部でグラインダ仕上げにより減肉していた部分である と報告された^{3,13}。同図には、破断部位の写真の代表例も示しているが、破損部はネッキ ングした後、板厚貫通している。ライナの破損原因は、熱影響部等の材質上の問題ではな く、溶接継手の形状不連続部や、グラインダ仕上げによる減肉部に、ひずみが集中して破 損したものと推定された^{3,14}。

なお、PCCV 試験の 1.6 mm 板厚のライナでは、継手の溶接金属の盛上り等が板厚に比べ て大きいため、その破損状況について、筆者らは実機板厚相当のライナと同様ではないと 考えている。また切欠試験片による試験は実施されておらず、局部破損の評価に必要にな る大ひずみ域での応力・ひずみ特性、限界ひずみ等の材料データは取得されていない。

注) 図中の赤丸は、破損位置を示す。

9

(2) SCV 試験

SCV 試験体は、BWR-5 型の MARK-II 改良型鋼製格納容器を模擬したもので、図 2.1.2.3 に示すように、格納容器を模した試験体本体と、建屋生体遮蔽壁を模擬した接触壁から構 成されている。試験体は 1/10 スケールであり、本体の外径は 2900 mm である。ただし製 作上の都合で、板厚は1/4 スケールとしており、機器ハッチを設けた中間胴の板厚は9mm 又は 8.5 mm である。SCV 試験体は米国に移送され、米国 Sandia 国立研究所で常温、窒素 ガスを用いた加圧試験が実施された。加圧試験は、内圧が 4.7 MPa ^(注2)の時に、機器ハッチ 補強板接合部が破損し、急激に減圧して終了した。機器ハッチ補強板接合部の破損状況と 破損部の写真を図 2.1.2.4¹⁵に示す。破損位置は、補強板の下部円錐胴(SPV490 鋼)との 溶接部である。さらに、破損部の断面写真 ¹⁶ を図 2.1.2.5 に示す。胴板(SPV490 鋼)の溶 接熱影響部(HAZ: Heat Affected Zone、以下「HAZ」という。)が、大きく変形して絞られ たのち、板厚貫通している。近傍の最大の板厚減少率は44.6%と報告されており ¹⁶、筆者 らが、板厚減少率から真ひずみを概算すると、約 59%になった。試験後の調査 [16]では、 破損部は、SPV490 鋼の HAZ であるが、溶接欠陥等が存在したわけではなく、局部的な延 性限界を超えて破壊したものであると結論された。また試験結果の弾塑性解析では、試験 体の全体的な変形はおおよそ追跡できたが、材料の破損クライテリアに係る一般的な基準 は得られなかったと報告されている ¹⁵。

また、SCV 試験等に先行して、破損クライテリアの取得を目的として、内圧による円筒 破壊試験、二軸引張試験等が実施されている²が、これらは二軸応力状態における塑性崩 壊の破損クライテリアに係るものである。局部破損の評価のためには、切欠試験片を用い て、大ひずみ域での応力・歪特性、限界ひずみ等の材料データを得る必要がある。SCV 試 験が実施された後、補足試験として、溶接部を含む切欠試験片の引張試験が計画された² が、実施されなかった。

⁽注2) SCV 試験体の最高使用圧力 Pd は 0.78 MPa であり、破損圧力 4.7 MPa は 5.9Pd に相当する。

Fig.2.1.2.3 Structure of SCV test component

出典) NUREG/CR-6906¹⁵ 図 2.1.2.4 SCV 試験体の機器ハッチ周辺部の破損状況(内側)

出典) NUREG/CR-5679¹⁶ 図 2.1.2.5 機器ハッチ補強板接合部破損部の断面写真

Fig.2.1.2.5 Cross section photo of failure location in weld joint of equipment hatch reinforcement plate

(3) SCV 試験体の弾塑性解析による検討

筆者らは、SCV 試験体の破損状況等を分析するため、汎用構造解析コード FINAS/STAR を用いて弾塑性解析を実施した。図 2.1.2.6 に SCV 試験体の全体モデルを示す。全体モデ ルは、本体と接触壁から構成されており、本体はシェル要素、接触壁はソリッド要素を用 いて作成された。本体と接触壁の間の隙間(平均 18 mm)は、面接触要素を用いて考慮さ れた。面接触要素には、試験体製作時の測定結果(周方向 4 角度、垂直方向 18 位置)に基 づいたギャップ量を与えた。

試験において破損した機器ハッチ補強板接合部周辺の局部モデルを図 2.1.2.7 に示す。局 部モデルには、加圧された全体モデルから取得した境界条件、圧力、さらに接触壁との接 触条件が付与された。局部モデルは、シェル要素と 8 節点ソリッド要素の複合モデルがあ り、ソリッド要素の部分は板厚方向に 10 分割されている。また補強板(SPV490)と胴 (SPV490, SGV480)の溶接部がモデル化されており、HAZ には SPV490 母材の応力・ひず

み線図を85%に割り引いたもの、溶接金属には、105%に割り増したものを与えた²。同図には、破損点と破損点に近いひずみゲージの位置も示した。

このひずみゲージ位置(STG-I-EQH-16b)における周方向ひずみの計測値と、局部モデルにおける計算値の履歴を、図 2.1.2.8 に示す。破損圧力(4.7 MPa)において計測された周方向ひずみは 4%程度であるが、局部モデルの計算結果は、それに近いものになった。局部モデルにより、試験体のマクロ挙動はおおよそ表現できていると思われる。

局部モデルにおいて、4.7 MPa の時の外面からみた相当塑性ひずみの分布図を、図 2.1.2.9 に示す。溶接部の補強板寄りに、ひずみが集中しており、図 2.1.2.4 に示した試験における 損傷位置とほぼ対応している。しかしながら、この時の、外表面のひずみは、約 0.12 (12%) であり、図 2.1.2.5 に示した破損部のひずみ 59%と比べると大幅に少ない。

これらの弾塑性解析において、試験結果の再現を難しくしているのは、接触壁と本体の 間の隙間の設定である。接触壁のモデルを図 2.1.2.10 に示すが、機器ハッチの貫通口の下 部には、接触壁を取り付けるためのスリットの塞ぎ板が取り付けられている。塞ぎ板の溶 接が接触壁の変形を、より複雑にしており、収集した情報^{2,4,15,16}から、本体と接触壁 との隙間を厳密に設定することは困難であった。これらの原因により、本研究では、試験 体の破損位置を含めて、加圧時の試験体の変形挙動をおおよそ追跡することはできたが、 破損時のひずみ等を定量的に評価するには至らなかった。

13

安屈型「本体(岡面) 本体(岡面) 本体(正面)
 シェル(本体)、ソリッド(接触壁)、要素数:52,701、節点数:52193、コード:FINAS/STAR

図 2.1.2.7 機器ハッチ補強板・胴接合部の局部モデル(容器内面から見る) Fig.2.1.2.7 Local model for joint of equipment hatch reinforcement plate

図 2.1.2.8 機器ハッチ近傍のひずみゲージ位置での周方向ひずみと圧力の履歴

Fig.2.1.2.8 Histories of circumferential strain and pressure at strain gauge positions near equipment hatch

図 2.1.2.9 破損圧力(4.7 MPa)時の機器ハッチ補強板・胴接合部の外面からみた相当塑性 ひずみの分布

Fig.2.1.2.9 Distribution of equivalent plastic strain on outer surface near hatch reinforcement plate joint and lower containment shell at failure pressure (= 4.7 MPa)

a) 接触壁の形状モデル

b) 接触壁及び本体の FEM モデル

図 2.1.2.10 接触壁の塞ぎ板を含む SCV 試験体のモデル

2.1.3 EPRI/CTL 試験

EPRIは1980年代に重大事故時の格納容器機能喪失を想定したコンクリート製格納容器の終局的耐力評価に係る試験を実施している^{17,18,19}。EPRIでは、過圧下での損傷モードとして、コンクリート製格納容器ライナの局部破損による放射性物質の漏えい(機能喪失)に着目し、単純な鉄筋コンクリート(以下「RC」という。)部材や鋼板の要素試験、ライナを含めたコンクリート製格納容器部材の要素試験等を実施している。EPRIで実施されたコンクリート製格納容器部材の試験(以下「EPRI/CTL 試験」という。)では、ライナの板厚を実厚の 6.4 mm としており、本研究においてライナの破損挙動を分析するためにも有用である。筆者らは、ライナまでモデル化したコンクリート製格納容器の部材試験体の終局状態の評価技術に関する知見を蓄積するために、ライナの局部損傷が生じた EPRI/CTL 試験の試験体を対象に弾塑性 FEM 解析を実施した。ここではその解析結果について報告する。

(1) コンクリート製格納容器壁部の二軸引張試験

解析対象とした試験は、配管貫通孔を有するコンクリート製格納容器壁部の二軸引張試 験である。図 2.1.3.1 に解析対象とする試験体を、図 2.1.3.2 に試験体のライナ構造と局部 破損の位置を示す¹⁷。試験体外形寸法は 132"×132"×42"(約 3,353 mm×3,353 mm×1,067 mm)であり、中央に直径 36"(約 914 mm)の配管貫通スリーブを有している。ライナプ レートは板厚 1/4"(約 6.4 mm)、配管貫通スリーブは板厚 1"(25.4 mm)である。試験では ライナプレートに面圧を加えるとともに、ライナプレート及び鉄筋に対して円筒形格納容 器の内圧による張力を周方向及び子午線方向同時に引張荷重を載荷し、変位を制御しなが ら配管貫通スリーブに対して適宜押し抜きせん断荷重を与えている。試験体への押し抜き せん断荷重の載荷方向は、配管貫通スリーブが格納容器外側へ引抜かれる方向である。試 験体では、二軸引張により配管貫通スリーブとライナプレートとの溶接部近傍にひずみが 集中する局所条件を生じさせ、さらに配管貫通スリーブへの押し抜きせん断荷重による局 部的な面外変位を与えることで、二軸引張で生じたライナのひずみ集中部に局部破損を生 じ易くさせている。実際の試験でも、この押し抜きせん断荷重により配管貫通スリーブと ライナプレートとの接合部近傍でライナの局部破損が確認できている。

(2) コンクリート製格納容器壁部の二軸引張試験の弾塑性解析

コンクリート部のひび割れ性状及びライナプレートのひずみ集中部の再現性に着目して、EPRI/CTL 試験の試験体を対象とした弾塑性 FEM 解析を実施した。ここでは解析結果について報告する。

解析では、試験体のコンクリート部、ライナプレート、ライナアンカ、鉄筋、配管貫通 スリーブ及びスタッドを有限要素でモデル化し、文献 ¹⁷に示される荷重・拘束条件を設定 した。なお、解析では周方向及び子午線方向の鉄筋及びライナプレートの端部節点の一方 を固定し、他方に二軸引張の強制変位を直接与えた。解析でも、文献 ¹⁷のとおり周方向及 び子午線方向の強制変位の比率を変位量に応じて変化させており、初期で 2:1 程度、載荷 終了時で 7:1 程度となっている。解析結果では、コンクリート部のひび割れ性状・ひずみ 分布及びライナプレートのひずみ分布に着目した。解析コードは、鋼材の局所破損の評価 を最終目標としたことから、後述する 2.2 と同じ汎用の構造解析コード FINAS/STAR²⁰を 使用した。材料モデルは、コンクリートに分散ひび割れ鉄筋コンクリートモデルを、鋼材 にバイリニア型の弾塑性モデルを用いた。FINAS/STAR の分散ひび割れ鉄筋コンクリート モデルは、前川・福浦ら²¹による弾塑性破壊モデルであり、この材料モデルを設定した有 限要素ではひび割れの発生や進展といった現象が有限要素内の平均的なひずみとして取り 扱われる。各部材の物性値は基本的に文献 ¹⁷を参考に設定した。なお、コンクリートの物 性で文献 ¹⁷に示されていない、一軸圧縮強度時のひずみ、引張側のひび割れ発生応力、引 張側のひび割れ発生時のひずみ及び付着係数については、文献中の材料試験結果を参考に して、それぞれ 0.00247、3.72 MPa、0.000105、2.0 と独自に設定した。

図 2.1.3.3 に解析モデルを示す。解析モデルは、コンクリート部を 8 節点ソリッド要素、 鉄筋を2節点ビーム要素、ライナプレート等の鋼板を4節点シェル要素とした。そして、 鉄筋とコンクリート部の間、ライナプレート等の鋼板とコンクリート部の間、スタッドと コンクリートの間には線形のばね要素を配置して、鋼材とコンクリート間の接触条件(付 着特性)を考慮した。文献²²を参考に主筋径、かぶり厚等から付着強度及び付着強度時の すべり量を設定し、付着強度-すべり関係上で原点と最大付着強度時の2点を通る剛性を 部材間の線形ばね要素の剛性とした。具体的には、鉄筋とコンクリート間の付着特性とし て最大付着応力が 3.99 MPa、最大付着応力時のすべり量が 0.645 mm となるばね剛性を、 ライナプレートとコンクリート間の付着特性として最大せん断応力が 1.30 MPa、最大せん 断応力時の相対変位が 0.05 mm となるばね剛性を設定した。また、ライナプレートに設け られたライナアンカは形状をモデル化せず、ばね要素でモデル化した。子午線方向に平行 に配置されているライナアンカはL型断面のアングル材であることから、ライナアンカに 関する周方向のばね特性は正負非対称の特性となる。それらの特性は、アングルアンカの 形状までモデル化した部分構造モデルを作成して、その応答結果と整合する非線形のばね 特性を設定した。要素分割については、ライナプレートでのひずみ集中が模擬可能なよう に、試験において局部破損が生じた付近を比較的詳細な要素分割とした。解析モデルの節 点数はコンクリート部分及び鋼材部分(ライナプレート、配管貫通スリーブ、鉄筋及びス タッド)を合わせて 110,000 程度、要素数はコンクリート部分及び鋼材部分を合わせて 100,000 程度である。

図 2.1.3.4 に試験でのコンクリート部のひび割れ状況及び解析結果を、図 2.1.3.5 にライ ナプレートの応力--ひずみ関係及び応力-伸び量関係を示す。ライナプレートの応力は、 ライナプレートに載荷されている引張荷重を負担断面積で除して算出したものである。コ ンクリート部の最大主応力分布を見ると、配管貫通部から試験体隅角部方向への斜めひび 割れの傾向、配管貫通部の子午線方向側に周方向よりも多くのひび割れが確認できる傾向 等、本解析で試験結果の全体傾向を捉えていることが分かる。また、試験での計測結果に やや不安定な性状が見られるため参考程度の比較となるが、応力--ひずみ関係及び応力-伸び量関係を見ても、全体としては解析により試験結果がおおむね再現出来ていることが 分かる。しかしながら、詳細に見ると解析では試験において周方向断面のライナプレート 側に多く見られる壁面と並行なコンクリートのひび割れを再現出来ていないこと等、試験 結果と解析結果に乖離が見られた。また、解析ではライナプレートの局所破損が生じた配 管貫通スリーブの周方向側のライナプレートでひずみ集中が確認できなかった。配管貫通 スリーブ近傍のひずみ発生性状には、スリープの剛性、スリープとライナプレートの結合 部詳細等、スリープ近傍のモデル化が影響を与えると考えているが、文献¹⁷の情報だけで は十分な検討は出来なかった。

周方向断面のコンクリートのひび割れ性状の乖離については、試験結果の子午線方向断 面のひび割れ性状からアングルアンカを起点にしてコンクリートが著しく損傷しているこ とが分かるため、解析において、L型断面のライナアンカの先端がコンクリート部を割り 裂くこと等により生じるコンクリートの局所的な破壊が再現出来ていないことが原因と考 えられる。その他に、解析ではおおむね対称な破壊性状を示しているのに対し、試験では 非対称の破壊モードとなっており、それも原因と考えられる。非対称性については、文献 「に示されている試験条件から、ライナプレート及び鉄筋へ与える強制変位に関する境界 条件に非対称性があると考えているが、文献に十分な記述がなく解析においてその非対称 性は考慮できていない。ライナプレートの局所破損を解析的に再現するためにも、この非 対称の破壊性状等を適切に模擬することが必要と考えており、これらに関係すると思われ るライナアンカのモデル化、試験での荷重制御方法等について更に情報収集・検討が必要 と考えられる。

以上をまとめると次のようになる。ライナまでモデル化したコンクリート製格納容器の 部材試験体の終局状態の評価技術に関する知見を蓄積するために、ライナの局部損傷が生 じた EPRI/CTL 試験の試験体を対象に FEM による三次元非線形解析を実施した結果を報 告した。解析により全体的な性状はおおむね再現可能であることが分かったが、ライナプ レートの局部損傷までは再現できなかった。ライナプレートの局部損傷までを再現するた

21

めには、スリーブ近傍のモデル化、ライナアンカのモデル化、試験での荷重制御方法等に ついて更に詳細な情報収集・検討が必要であると考えられる。

b) 荷重·変位条件

出典) コンクリート製格納容器試験体の破損解析業務成果報告書²³
 図 2.1.3.3 コンクリート製格納容器壁部の試験体の解析モデル
 Fig.2.1.3.3 Analytical model of concrete containment wall specimen

c) 解析結果のライナプレートの相当塑性ひずみ分布

出典) a) EPRI NP-4867 に加筆¹⁷

b),c) コンクリート製格納容器試験体の破損解析業務成果報告書²³
 図 2.1.3.4 試験結果のコンクリート部のひび割れ状況(展開図)及び解析結果
 Fig.2.1.3.4 Cracked state (developed view) of concrete portion of test result and analysis result

出典) コンクリート製格納容器試験体の破損解析業務成果報告書²³
図 2.1.3.5 ライナプレートの応力ーひずみ関係及び応力ー伸び量関係
Fig.2.1.3.5 Test result and analysis result for stress-strain and stress-elongation of liner plate

2.1.4 局部破損に関わる設計規格・ガイド

延性破壊における限界ひずみ等の破断条件が応力三軸度に強く依存することは、塑性加 工や材料強度学の分野では古くから知られていた。原子炉機器の設計においては、機器断 面が全面降伏して、塑性崩壊することを防止するために、一次応力等を制限する設計手法 が採用されている。しかしながら、通常の設計条件を越えて、機器が局部的に大きく降伏 するような状態を想定する場合には、ひずみ等の限界条件を考慮した局部破損の評価が必 要となる。局部破損防止のための設計条件を規定した設計規格としては、米国機械学会ボ イラ及び圧力容器規格 ASME Boiler & Pressure Vessel Code Section VIII Division 2(以下 「ASME VIII-2」という。)がある。ASME VIII-2 は火力・化学機器等に対する設計規格で あるが、局部破損の評価法を規定している有力な規格である。国内では、日本機械学会に よって、重大事故時の原子炉格納容器の構造健全性評価を行うためのガイド ^{5,24,25,26}が 発行されているが、同ガイドでは、ASME VIII-2 の局部破損の評価手法を一部修正して導 入している。これらの設計規格・ガイドの概要と共に、格納容器の局部破損の評価への適 用性について考察した内容を述べる。

(1) ASME Boiler & Pressure Vessel Code Section VIII Division 2

ASME VIII-2 (2007 年版) では、5.3 項、局部破損の防護規定、"Protection Against Local Failure"において、5.3.2 項 "Elastic Analysis – Triaxial Stress Limit." により、弾性解析に基づ く三軸応力を制限している。さらに、その代替規定として、5.3.3 項 "Elastic-Plastic Analysis - Local Strain Limit." にて、弾塑性解析に基づいて、応力三軸度に依存した、ひずみ量を制 限している。古い ASME VIII-2 では、延性材料の降伏理論である最大せん断応力説に基づ いて、応力強さ(主応力差の最大値の絶対値)を制限しているが、応力の静水圧成分(平 均応力)は制限されていなかった²⁷。

延性破壊における破断ひずみが、応力の静水圧成分が増加する(引張側)と減少するこ とは、古くから知られている^{28,29}。Burgreen(バーグリーン)³⁰は、実験データに基づ いて、平均応力を材料の降伏応力以下に制限することによって、三軸応力に対する適切な 余裕が得られることを示した。

1998 年版の ASME VIII-2 の 5.3.2 項では、式(2.1.4.1)に若干の保守性を加え、許容引張応力 S = (2/3)σ_{vs} を用いて、主応力の和を制限している。

ここで、 σ_1 、 σ_2 及び σ_3 は、評価断面で線形近似された一次主応力成分である。

また格納容器の設計規格である ASME Boiler & Pressure Vessel Code Section III、NE-3227.4 では、式(2.1.4.2)と同様に、下記の式にて、三軸応力を制限している。

 $(\sigma_1 + \sigma_2 + \sigma_3) \le 4S_{\rm mc} \cdots (2.1.4.3)$

ここで、Smcはクラス MC 機器の設計応力強さである。

弾性解析に基づいた三軸応力の制限に対しては、まず、弾性的に計算された応力を用い て、加工硬化する延性材料の局部的な破壊ひずみを適切に評価できるかという観点と、応 力分類された応力成分を用いることが適切かという観点から、2007 年版の ASME VIII-2、 5.3.3 項に、弾塑性解析による局部破損の評価法が規定された。

Bridgman(ブリッジマン)²⁸は、切欠試験片の引張試験において、試験片がネッキング した後の、高応力三軸度下の応力・ひずみ分布の近似評価式を開発しており、実験解析法 として広く使用されてきた。Prager(プレガー)³¹は、Bridgmanの評価法に基づいた過去 の多数の切欠引張試験の結果を分析して、塑性変形中の金属材料の局部的損傷の蓄積を考 慮して限界ひずみの評価法を開発した。この評価法は、材料の微視的な損傷が、応力三軸 度と材料定数に指数関数的に依存し、負荷応力とひずみに比例して進行するという次式で 表されるモデルに基づいている。

$$\frac{dDamage}{dE_{\rm trans}} = S_{\rm t} \cdot \gamma \cdot exp[\alpha_{\rm sl} \cdot T_{\rm r}] \cdots (2.1.4.4)$$

ここで、d ε_{tp} は真塑性ひずみの増分、 S_t は真応力、 γ は結晶粒径、清浄度等に係る 材料定数、 α_{sl} は結晶構造等に係る材料定数、 T_r は応力三軸度(= ($\sigma_1 + \sigma_2 + \sigma_3$)/3 σ_e 、 σ_e はミーゼス相当応力)である。

材料の真応力・真ひずみ関係式は、加工硬化係数m₂ と定数S₀ を用いた次の指数式で表 される。

加工硬化係数m₂ は API^(注3) 579-1/ASME FFS-1 ³², Part 3, paragraph 3.3.13.2 に従って、材料の公称応力と公称引張強さの比から予測できる。式(2.1.4.5)を式(2.1.4.4)に代入して、破壊ひずみまで積分し変形することにより、次の限界ひずみの設計式(ASME VIII-2、5.6 式)を得た。

$$\varepsilon_{\rm Lm} = \varepsilon_{\rm Lu} \cdot exp\left[-\left(\frac{\alpha_{\rm sl}}{1+m_2}\right)\left(T_{\rm r}-\frac{1}{3}\right)\right] \cdots (2.1.4.6)$$

⁽注3) American Petroleum Institute

ここで、 ε_{Lm} は、多軸状態の限界ひずみであり、弾塑性解析では相当塑性ひずみと等しい とみなされる。 ε_{Lu} は単軸引張の場合の限界ひずみである。式の各変数は Sec. VIII-2, Table 5.7 から代表鋼種の標準値を決定できる。 ε_{Lu} は、保守的な順に(i)材料の伸びと絞り双方が 規定されていない場合、(ii)伸びが既定されている場合、(iii)絞りが規定されている場合の 3 つ決定方法がある。

筆者らは、ASME VIII-2 の局部破損の防護規定の導出過程、根拠について調査を行って きたが、格納容器の局部破損の評価への適用に関して、考察した内容を述べる。

- ① (2.1.4.6)式の右辺からは、応力三軸度が 1/3 の時に、*ε*_{Lm} = *ε*_{Lu}となり、単軸応力状態の応力三軸度を 1/3 としていることが分かる。これは、切欠付丸棒試験片の引張試験における切欠部のくびれによる応力三軸度の上昇を考慮していないことを意味している。FEM による弾塑性解析(大変形解析あり)では、構造のひずみ集中部のくびれ変形も考慮されるので、評価部位の応力三軸度は変形に伴って上昇する。両者の違いが、設計線図に保守性を与えている。限界ひずみの設計式の保守性に関しては、2.2 節にて試験結果と比較した結果を述べる。
- ② 弾塑性解析で、くびれ変形の過程を適切に追跡できるかは、ひずみ集中周辺のメッシュ分割、解析プログラムの特性等に依存する。このため実際の限界評価を行う上では、格子収束性の検討が重要になる。

(2) 日本機械学会 格納容器構造健全性評価ガイド

日本機械学会は、重大事故を含む設計基準を超える状態での格納容器の耐圧・漏えい機 能を評価するために、BWR 及び PWR の各種格納容器に対応するガイドラインを発行して いる。これまでに、BWR 鋼製格納容器編⁵、PWR プレストレストコンクリート製格納容 器編²⁵、PWR 鋼製格納容器編²⁴、BWR 鉄筋コンクリート製格納容器編²⁶が発行されて いる。これらのガイドラインの構造健全性の基本的な評価フローでは、樹脂材料であるフ ランジガスケット及び電気配線貫通部シール部は、樹脂材料の耐熱温度により漏えい温度 が決定される。格納容器内の温度が、シール材の耐熱温度以下では、温度・圧力荷重によ る鋼製部・コンクリート部の構造健全性及びシール部の密閉性能により、限界温度・圧力 の組合せが決定されるとしている。鋼製格納容器の本体、コンクリート製格納容器のライ ナ等の鋼製部の破損モードとしては、塑性崩壊及び局部破損による延性破壊を評価対象と している。局部破損の評価では、ASME VIII-2 の弾塑性解析を用いた局部破損評価法を採 用した上で、限界ひずみに補正係数を乗ずる修正を行っている。この補正係数は、NUPEC の SCV 試験体の弾塑性解析結果と試験結果を比較して決定された³³ものである。この解 析結果は1例のみであり、補正係数としての汎用性については、さらなる議論が必要と思 われる。

27

2.2 局部破損に関わる要素試験

2.2.1 試験計画

BWR と PWR の格納容器には、表 2.1.1.2 に示したとおり、共通した鋼種が使われてお り、主要な鋼種の鋼板を供試材とした。鋼製格納容器鋼材及び格納容器ライナ鋼材の試験 計画の概要を図 2.2.1.1 に示す。まず、切欠付丸棒試験片の引張試験を実施することにより、 大ひずみ域までの真応力-真ひずみ線図及び限界ひずみ等の三軸破壊特性データを取得し た。この試験は母材を中心に実施したが、溶接継手から切り出した試験片の引張試験も実 施し、HAZ 等の三軸破壊特性データを取得した。なお、均一な供試材を扱うために、熱処 理により HAZ の金属組織を模擬した材料(以下「HAZ 模擬材」という。)の試験も実施し た。試験温度は、室温とともに、重大事故を想定した高温(200 ℃)とした。

次に、実機の耐圧殻に近い形状、拘束状態における三軸破壊特性データを取得するため、 切欠付平板試験片の引張試験を実施した。切欠は板の全幅に切欠を導入した全幅切欠と、 中心部のみに切欠を導入した部分切欠の2種類とした。なお、溶接部の特性データ及び高 温時の特性データを取得するための試験についても、切欠付丸棒試験片と同様に実施した。 さらに、実機の構造不連続部を想定した要素試験として、鋼製格納容器の実機板厚相当

図 2.2.1.1 鋼製格納容器鋼材及び格納容器ライナ鋼材の試験計画の概要 Fig.2.2.1.1 Outline of test plan for steel containment vessels and liner plates

2.2.2 鋼製格納容器鋼材の切欠付試験片の引張試験

国内の鋼製格納容器に使用されている主要な鋼材に対して、切欠付丸棒及び全幅切欠付 平板試験片の引張試験を実施し、局部破損の限界特性を取得した。

(1) 供試材

国内の鋼製格納容器に使用されている代表的な鋼材である SGV480N 鋼 ³⁴ 及び SPV490 鋼 ³⁵の板厚 34 mm の鋼板を供試材とした。SGV480 鋼は中強度の熱間圧延鋼であり、供試 材の熱処理は焼ならし (Normalize) である。SPV490 鋼は、比較的高強度の調質鋼であり、 熱処理は焼入れ焼き戻し (Quench and Temper) である。供試材の機械的性質をそれぞれの 鋼種について表 2.2.2.1 に示す。供試材の金属組織は、SGV480 鋼はフェライトとパーライ トの 2 相組織であり、SPV490 鋼は焼戻しベイナイト組織である。SGV480N 鋼は ASTM-A516 Gr70 ³⁶ と同等材であり、それぞれ日本及び米国で鋼製格納容器に使用されている主 要な材料である。SPV490 鋼は、日本の格納容器で特に高強度が要求される部分に使用され ている。

表 2.2.2.1 供試材の機械的性質

(a) SGV480 steel	plate
------------------	-------

Mechanical Properties				
Yield stress	Tensile strength	Elongation	Reduction of	Absorbed Energy
(MPa)	(MPa)	(%)	Area (%)	(J) at "-19"°C
392	553	30	71	131

Thickness: 34 mm, location: 1/4 thickness, orientation: transverse

(b) SPV490 steel plate

Mechanical Properties				
0.2%Proof	Tensile strength	Elongation	Reduction of	Absorbed Energy
Stress (MPa)	(MPa)	(%)	Area (%)	(J) at "-19"°C
595	678	22	78	271

Thickness: 34 mm, location: 1/4 thickness, orientation: transverse

(2) 切欠付丸棒引張試験

原子炉格納容器鋼材の局部破損に係る限界特性の基礎データを取得することを目的と して、切欠付丸棒試験片を用いた引張試験を実施した。

試験片及び試験方法

供試材の 1/4 板厚^(注4)付近から、圧延方向に、図 2.2.2.1 に示す切欠丸棒試験片を採取した ³⁷。試験片の切欠底の半径 *a*₀ は 3 mm、切欠曲率(半径) *R*₀ は、2 mm、5mm 及び

^(注4)日本機械学会、発電用原子力設備規格設計・建設規格(2021年版) PVB-2220 試験片の採取方法に準拠

20mm の3種類である(以下、R₀の異なるこれらの試験片を、R2、R5、R20と記す)。引 張試験による荷重・変位線図や相当応力・真ひずみ線図における屈曲点、つまり延性破壊 の開始点を適切に検出するためには、試験片の軸方向のコンプライアンス(バネ定数の逆 数)を、できるだけ小さくする必要がある。このため、試験片の試験部の長さは可能な範 囲で短くして、20mmとした。

引張試験は、変位(ストローク)制御により実施され、試験中に、切欠部は、図 2.2.2.2 ³⁷に示す投影機により連続撮影され、画像解析により切欠半径 *a* 及び切欠曲率 *R* が自動的に決定された。引張試験における変位速度は、0.1 mm/min である。供試材には軽度の異方性があるため、板厚方向の変形量が、圧延方向の変形量よりも若干大きくなる。このため、2 本の試験片を用いて、板厚方向断面及び圧延方向垂直断面の投影画像を別々に撮影した。画像解析では、2 つの断面のシルエット画像から、*a* と *R* が別々に決定されるが、これの相乗平均を求め、計測値として用いた。

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷ 図 2.2.2.1 SGV480 鋼及び SPV490 鋼の切欠付丸棒試験片 Fig.2.2.2.1 Notched round-bar specimen for SGV480 and SPV490 steels

30

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷ 図 2.2.2.2 切欠付丸棒引張試験における投影装置及び投影画像の例

Fig.2.2.2.2 Silhouette imaging device and example image of notched round-bar tensile test
注) 写真中の試験片は機器調整用であり、図 2.2.2.1 の試験片とは寸法が異なる。

計測結果の整理方法

切欠付丸棒試験片は切欠の中心部から破損が進行するが、中心部の応力・ひずみ状態 は、簡易解法である Bridgman 解²⁸により一次評価した上で、弾塑性 FEM 解析を用いて より正確な値を決定した。Bridgman 解は後述する ASME VIII-2 の限界ひずみ線図の基礎 データの整理にも用いられており、同線図と比較するために、同式を用いて試験結果を整 理することは意味がある。切欠部の真ひずみ ϵ は、*a* とその初期値 a_0 (=3 mm)を用いて 次の対数式により決定した。

$$\varepsilon = 2 \cdot \ln \frac{a_0}{a} \qquad (2.2.2.1)$$

Bridgman 解では、切欠部の相当応力 σ_e は、変形中の切欠曲率 $R \ge a$ を用いて次式により算出される。

ここで、 $\sigma_{z,av}$ (= $P/\pi a^2$, P: 軸方向荷重) は、切欠断面の平均引張応力である。さらに、 切欠中心の応力三軸度 T は、同じく Bridgman 解により次式で算出した。

$$T = \sigma_{\rm m}/\sigma_{\rm e} = \frac{1}{3} + \ln(a/2R + 1)$$
 (2.2.2.3)

試験片の弾塑性 FEM 解析に用いた FEM モデルの代表例を、図 2.2.2.3 ³⁷ に示す。切欠部は、特に軸方向に大きく変形するため、変形後も要素形状が適切に保たれるように、扁

平な初期形状とした。使用した計算機プログラムは、汎用構造解析コード FINAS/STAR²⁰ であり、その大変形・弾塑性解析機能を用いた。弾塑性 FEM 解析では、切欠部の応力・ ひずみ量の決定に用いる前に、計測された切欠部の変形を適切に再現できるように、次式 に示す指数式の応力ひずみ線図の係数 *b* と加工硬化係数 *n* の組み合わせを最適化した。 最適化は、計測された真ひずみ・公称応力線図との誤差を最小化する組み合わせ(b, n)を 自動探索するプログラムにより実施した。

Fig. 2.2.2.3 Typical finite element mesh for notched round bar specimen

③ 試験結果

切欠付丸棒引張試験における荷重 P 及び、切欠曲率 R と真ひずみ E との関係を、それぞれの鋼に対して、図 2.2.2.4³⁷ 及び図 2.2.2.5³⁷ に示す。これらの図(a)の荷重・真ひずみ線図は、典型的な切欠強化の特性を示しており、初期の切欠曲率 R₀が小さいほど、最大荷重は増加した。各試験片の荷重・真ひずみ曲線は最大荷重に達した後、切欠部の断面積の低下に伴い減少し、ある位置で屈曲して急低下した。この屈曲点は、切欠の中心部が破損

して、荷重・真ひずみ曲線に影響を与えた点であり、延性破壊の開始点、つまり局部破損 における限界点と判定した^{29,38}。

上記の図(b)に示す切欠曲率は、真ひずみの増加に伴って減少しており、特に初期の切 欠曲率が大きいほど急激に減少している。初期の切欠曲率が小さい場合には、その変化は 相対的に小さくなる。上記の図の(a)及び(b)には、弾塑性 FEM の結果を重ね書きしている が、試験結果とよく一致しており、材料定数の最適化が適切に実施されたことが分かる。

(b) 切欠曲率と真ひずみの関係

- 出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷
- 図 2.2.2.4 SGV480 鋼の切欠付丸棒引張試験結果と最適化された弾塑性 FEM の結果
- Fig.2.2.2.4 Experimental results and results of optimal FEM for notched round-bar tensile tests for SGV480 steel

注) 図中の"Rxx"は"R₀ = XX"を表す。

(b) 切欠曲率と真ひずみの関係

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷

図 2.2.2.5 SPV490 鋼の切欠付丸棒引張試験結果と最適化された弾塑性 FEM の結果

Fig.2.2.2.5 Experimental results and results of optimal FEM for notched round-bar tensile tests for SPV490 steel

④ 局部破損の限界ひずみ線図

荷重・真ひずみ線図の屈曲点における応力三軸度 T (=平均応力 σ_m /相当応力 σ_e) と真 ひずみ ϵ の関係は、局部破損の限界条件を表すものであり、限界ひずみ線図と呼ばれる。 それぞれの鋼の限界ひずみ線図を、図 2.2.2.6³⁷ (a)及び(b)に示す。同図には、Bridgman 解 により得られた限界ひずみ ϵ_L と応力三軸度と、弾塑性 FEM 解析により得られたもの双方 をプロットした。弾塑性 FEM における限界ひずみと応力三軸度は、FEM モデルにおい て、式(2.2.2.1)から計算される真ひずみが、試験における限界ひずみと等しくなった時の、 切欠中心の有限要素の相当塑性ひずみと応力三軸度である。同図において、双方の鋼と も、弾塑性 FEM により得られた限界ひずみは、Bridgman 解における限界ひずみよりも、 高応力三軸度側に移動している。これは試験片の変形状態を適切に再現している弾塑性 FEM が、比較的精度のよい値を与えているのに対して、近似解である Bridgman 解が、応 力三軸度を少なく算出する傾向がある³⁷ためである。

同図には、ASME VIII-2⁷の限界ひずみ線図を併せて示している。これらの線図は、表 2.2.2.1 に示した供試材の絞り、*RA*を用いて、式(2.4.1.6)により導出した³⁷。双方の鋼共 に、ASME VIII-2 の限界ひずみ線図は、Bridgman 解による限界ひずみ線図に高応力三軸 度側において接近している。これは、ASME の線図が、もともと Bridgman 解を用いて整 理された試験データに基づいている²⁷ことによると思われる。また ASME VIII-2 の限界 ひずみ線図は、弾塑性 FEM により得られた限界ひずみ線図と比べて、さらに低応力三軸 度側にあり、比較的大きな保守性をもっていることが分かる。

⑤ 局部破損の限界応力指標線図

応力三軸度に依存する局部破損の限界条件は、限界ひずみにより表すことが普通であるが、相当応力 $\sigma_{\rm e}$ と平均応力 $\sigma_{\rm m}$ を組み合わせた応力指標 S によっても表すことができる 37, 39, 40。

$$S = \sigma_{\rm e} + \sigma_{\rm m} \cdots (2.2.2.5)$$

図 2.2.2.6(a)及び(b)には、限界ひずみ ε_L と共に、限界応力指標 S_L をプロットしている。 限界応力指標は、試験範囲において応力三軸度によらず、ほぼ一定と見なすことができ る。その場合、 S_L を定数として、次式により限界ひずみ線図を導くことができる ^{37,40}。

$$S_{\rm L} = (\sigma_{\rm e} + \sigma_{\rm m})_{\rm L} = [(1+T)\sigma_{\rm e}]_{\rm L} = [(1+T)b\varepsilon^n]_{\rm L} = \text{const.} \quad \text{if } \psi$$

$$\varepsilon_{\rm L} = [S_{\rm L}/b(1+T)]^{\frac{1}{n}}$$
 (2.2.2.6)

ここで、b及びnは、それぞれ式(2.2.2.4)の定数及び加工硬化係数である。図 2.2.2.6(a) 及び(b)には、同式により得られた限界ひずみ線図を示しているが、同式が試験データを よく表していることが分かる。限界応力指標は、局部破損の限界点を表す破壊基準として 有効であった。2.3.1 節にて、限界応力指標の格納容器の局部破損評価への適用例を示す。

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷ 図 2.2.2.6 SGV480 鋼と SPV490 の限界ひずみ線図及び限界応力指標線図

Fig. 2.2.2.6 Limit failure stress indexes and limit true strains in notched round bar tensile tests of SGV480 and SPV490 steels

(3) 溶接部の切欠付丸棒引張試験

原子炉格納容器鋼材の溶接部の局部破損特性の取得を目的に、溶接部の切欠付丸棒試験 片を用いた引張試験を実施した。

試験片及び試験方法

供試材は(2)と同様に SGV480 鋼及び SPV490 鋼を用い、溶接継手を製作した。溶接はサ ブマージアーク溶接とし、開先形状はレ形、入熱は 4.5 kJ/mm とした。試験片の形状、採 取位置及び溶接継手のビッカース硬さ試験結果を、図 2.2.2.7⁴¹ 及び図 2.2.2.8⁴¹ に示す. SGV480 鋼の溶接継手は、母材に比べ HAZ 及び溶接金属の硬さが高いのに対し、SPV490 鋼の溶接継手は HAZ の硬さが低く、いわゆる軟質溶接継手であった。試験片は図 2.2.2.7 に示すように溶接継手の 1/4 板厚付近から HAZ 部中央が切欠中心となるように採取した。 また、平行部の長さは可能な範囲で短くして 14 mm とした。

次に、全体を均質に HAZ と同等の材料特性とした試験片と、溶接継手から採取した試験 片との比較を行うため、素材への熱処理により HAZ の中央部組織を模擬した HAZ 模擬材 による試験片を製作した。素材には、溶接継手を製作した際の温度履歴計測結果に基づき、 多層溶接パスに伴う複数の加熱・冷却サイクル(最高加熱温度:1 回目 1100 ℃、2 回目 900 ℃、3 回目 600 ℃、パス間温度 200 ℃ 以下)を高周波加熱・空冷により与えた。試験 片は図 2.2.2.7 と同形状・寸法とした。HAZ 模擬材の硬さは溶接継手の HAZ の硬さに比べ て、SGV480 で 6%、SPV490 で 11%低い値であった。

引張試験は母材での試験と同様に変位(ストローク)制御(変位速度:約0.05 mm/min) で実施した。試験片の断面形状を投影機により連続観察し、画像解析により、切欠半径 a 及び曲率半径 R を計測した。供試材における軽度の異方性を考慮し、2本の試験片による 板厚方向断面、圧延方向断面の投影画像からデータを平均して計測値として用いた。

(a) 切欠付丸棒試験片の形状

(b) 試験片の採取位置.

出典) 荒井, 中村, 菊池, M&M2021⁴¹ 図 2.2.2.7 切欠付丸棒試験片の形状及び採取位置

図 2.2.2.8 SGV480 及び SPV490 の溶接継手のビッカース硬さ分布 Fig.2.2.2.8 Vickers hardness distributions of welded joints of SGV480 and SPV490

② 試験結果

本報告では、Bridgman 解を用いて試験結果を整理し、HAZ、HAZ 模擬材及び母材の限界 ひずみ特性を比較する。母材³⁷、HAZ 部及び HAZ 模擬材による丸棒試験片の引張試験に ついて、延性破壊の開始点での試験片の切欠中心における限界ひずみ ϵ_L と応力三軸度 Tの 関係を図 2.2.2.9⁴¹に示す。SGV480 鋼の HAZ 及び HAZ 模擬材の限界ひずみは母材に比べ てわずかに大きな値を示した。また、SPV490 鋼の母材、HAZ 及び HAZ 模擬材の限界ひず みは、ほぼ同等であった。これらの限界ひずみは同じく Bridgman 解に基づいている ASME VIII-2 の線図を上回ったが、 $T \approx 1$ 付近で両者は接近している。

(a) SGV480

(b) SPV490

図 2.2.2.9 SGV480 及び SPV490 の母材、HAZ 及び HAZ 模擬材の限界ひずみの比較 Fig.2.2.2.9 Comparison of limit strain among base metal, HAZ and simulated HAZ material of SGV480 and SPV490 (4) 切欠付平板引張試験

原子炉格納容器の耐圧部一般に近い拘束条件における局部破損の限界特性を取得する ことを目的に、切欠付平板試験片の引張試験を実施した。供試材は(1)切欠付丸棒引張試験 と同じ、板厚 34 mm の SGV480 鋼板及び SPV490 鋼板である。

試験片及び試験方法

供試材は、(1)切欠付丸棒引張試験と同じ、板厚 34 mm の SGV480 鋼板及び SPV490 鋼板 である。供試材の 1/4 板厚に近づけた位置から、圧延方向に、図 2.2.2.10⁴¹に示す全幅及び 部分切欠付平板試験片を採取した。切欠部の最小板厚 2*a* は 6 mm、並行部の板厚は 10 mm、 切欠の初期半径 *R*₀ は 1、2、5 及び 15 mm である。切欠の長さは、ほぼ平面ひずみ状態が 得られるようにした板幅方向の全幅切欠と、拘束条件をやや緩くした部分切欠とした。部 分切欠の長さは 24 mm である。引張試験は変位(ストローク)制御で実施し、変位速度は 約 0.3 mm/min とした。また試験片幅中央の切欠断面を、レーザプロファイラにより連続観 察し、画像解析により切欠底の最小板厚 2*a*、曲率 *R*、評点間距離等を計測した。

Fig.2.2.2.10 Full and partial width notched plate specimens.

②試験結果及び限界特性

R₀の小さい試験片では、載荷途中で切欠底に亀裂が発生し、レーザプロファイラによる 2a 及び R の測定が困難になった。そこで初期評点間距離(GL) 14 mm を基準とした標点 間ひずみ ε_nと初期幅 100 mm と板厚 10 mm から計算される公称応力 σ_nを用いて整理した。 全幅及び部分切欠の載荷曲線をそれぞれ図 2.2.2.11⁴¹ 及び図 2.2.2.12⁴¹ に示す。図中には 最適化した応力ひずみ線図を用いた弾塑性 FEM の結果を重ねており、試験結果と良好に 一致した。全幅切欠の R1 及び R2 の試験片では、両鋼種とも最大応力付近で切欠底表面か ら破損が開始(亀裂の発生)し、その後、亀裂の進展に伴い、公称応力が低下して破断し た。R5 及び R15 の試験片では、切欠底に明瞭な亀裂は発生せず、最大応力の後、徐々に公 称応力が低下し破断した。また、屈曲点が観察される場合であっても、破断点の直前であ った。部分切欠では、最大荷重及びひずみは全幅切欠よりも増加した。部分切欠の場合も、 R₀の小さい試験片では、切欠底から破損が開始した。部分切欠での屈曲点は切欠部が貫通 した時点に対応した。 限界ひずみ ϵ_L 、限界応力指標 S_L 及び応力三軸度 Tの関係(限界線図)を図 2.2.2.13 に示 す。筆者らは、丸棒試験片において限界点の相当応力と平均応力の和である S_L がほぼ一定 とみなせることを報告している ^{37,40}。SGV480 鋼では、全幅及び部分切欠における R5 及 び R15 の ϵ_L ·T線図はほぼ一致しており、丸棒の ϵ_L ·T線図よりも下方であった。同試験片の S_L ·T線図は丸棒の S_L ·T線図よりもやや下方にあるが、丸棒と同様に一定とみなせる。 SPV490 鋼においても同様の傾向であるが、部分切欠の ϵ_L 及び S_L は全幅切欠よりもやや上 方であった。双方の鋼の ϵ_L ·T線図において、切欠底の破損点は応力三軸度 0.6、限界ひず み 0.5 付近に集中していた。

図 2.2.2.11 SGV480 及び SPV490 の全幅切欠付平板試験片の応力ひずみ線図

Fig.2.2.2.11 Nominal stress σ_n vs. gauge strain ε_n in tensile test of SGV480 and SPV490 full width notched plate specimens

山央/ 元开, 千竹, 新他, M&M2021

図 2.2.2.12 SGV480 及び SPV490 の部分切欠付平板試験の応力ひずみ線図

出典) 荒井, 中村, 菊池, M&M2021 ⁴¹

図 2.2.2.13 SGV480 及び SPV490 の切欠付平板及び丸棒試験片の限界ひずみ線図 Fig.2.2.2.13 Limit strain ε_L and limit stress index S_L diagrams in tensile test of SGV480 and SPV490 notched plate and round bar specimens

③ 破壊形態の比較

SGV480 鋼において、R1の試験片の亀裂発生直後及び R15の試験片の破断直前で除荷し た後の試験片断面の写真を図 2.2.2.14⁴¹に示す。R1 ではせん断滑り型の亀裂が発生した。 R15 では切欠部にボイドが散在していたが、明瞭なボイド集中、マクロ亀裂等は見られな かった。ただし 40°方向に微かにボイド分布の偏りがあり、せん断帯が形成される過程に あると思われる。同じ試験片の破面の SEM 写真を図 2.2.2.15⁴¹に示す。R1 の試験片は、 切欠部の板厚の減少(絞り)が R15 の試験片に比べて少なく、切欠底に発生した亀裂が内 部に進行した後に破壊した。R15 の試験片では、切欠底に亀裂は発生せず、切欠部板厚が 顕著に減少した(絞られた)上で、板厚全体がせん断破壊した。

出典) 荒井, 中村, 菊池, M&M2021⁴¹ 図 2.2.2.14 全幅切欠付平板試験片の断面写真(SGV480) Fig.2.2.2.14 Photographs of cutting sections of SGV480 full width notched plate specimens

出典) 荒井, 中村, 菊池, M&M2021⁴¹

図 2.2.2.15 全幅切欠付平板試験片の破面 SEM 観察結果 (SGV480)

Fig.2.2.2.15 SEM photographs of fracture surfaces of SGV480 full width notched plate specimens

(5) 実厚相当切欠付平板引張試驗

図2.2.2.11から13に示した小型の切欠付丸棒試験片及び平板試験片で取得した格納容器 鋼材の三軸破壊の基礎特性について、実機相当条件での適用性を確認するため、鋼製格納 容器の実機板厚相当(34mm)の全幅切欠付平板試験体を用いた引張試験を実施した。鋼種 はSGV480 鋼及び SPV490 鋼とし、圧延方向から採取した。試験体の形状を図2.2.2.16 に 示す。切欠部の最小板厚2aは26mm、並行部の板厚は34mm、切欠の初期半径 R₀は1mm 及び15mmである。試験前に試験体の両端にタブ板(ピンチャック用鋼板、HT780鋼)を 溶接し、試験終了後に試験体をガス切断により切り落とし、タブ板は繰返し使用した。引 張試験は室温にてストローク制御により実施した。また、試験片の中立面の切欠断面形状 を、レーザプロファイラにより連続計測した。

(b) タブ板溶接後の形状

図 2.2.2.16 実厚相当全幅切欠付平板試験体の形状及び外観 Fig.2.2.2.16 Configuration and appearance of full width notched plate specimen with actual SCV thickness

試験体並行部の初期幅 300 mm と板厚 34 mm から計算した公称応力 σ_nと初期評点間距 離(GL) 22 mm を基準とした標点間ひずみ ε_nの関係を図 2.2.2.17 に示す。ここで、初期 標点間距離は、切欠部の損傷を感度良くとらえるために、計測装置との取り合いを考慮し た最小値とした。なお実厚相当の試験体の切欠深さは 4 mm、図 2.2.2.10 に示した小型の 試験片の切欠深さは 2 mm であり、切欠を挟んで計測される標点間ひずみは、実厚相当の 試験体が相対的に大きくなった。

全ての試験体で、最大応力付近で切欠底から亀裂が発生し、板厚貫通前に破断に至った。 図 2.2.2.11 に示した並行部板厚 10 mm の全幅切欠付平板試験片の公称応力-標点間ひずみ 線図と比べると、実厚相当の全幅切欠付平板試験体の Roが 1 mm の試験体の最大公称応力 σ_nは、SGV480 鋼及び SPV490 鋼ともに同等かやや高めであった。それに対して、実厚相当 の全幅切欠付平板試験体の R₀が 15 mm の試験体の最大公称応力は、図 2.2.2.11 の並行部 板厚 10 mm の試験片の最大公称応力に比べて大きく増加しており、同じ実厚相当の全幅切 欠付平板試験体 Roが 1 mm の試験体に近い公称応力-標点間ひずみ線図となった。その結 果、実厚相当の全幅切欠付平板試験体の公称応力-標点間ひずみ線図は、図 2.2.2.11 の並行 部板厚 10 mm の全幅切欠付平板試験片の線図と比べて、R₀が 1 mm 及び 15 mm ともに高 応力側に位置している。試験片のリガメント比(=切欠底の板厚/並行部板厚)は、実厚相 当の試験体で 0.76 (= 26 mm / 34 mm)、小型の試験片で 0.6 (= 6 mm / 10 mm) である。実 厚相当の試験体の公称応力の上昇には、このリガメント比の影響が大きいと思われるが、 実厚相当の試験体の公称応力-標点間ひずみ線図は、図 2.2.2.12 に示した小型の試験片の線 図を包含する試験結果となった。実厚相当切欠付平板引張試験において、小型の試験片と 比べて最大公称応力が低下する等の注意すべき挙動は観察されておらず、試験範囲におい て、小型の試験片の試験結果の保守性を示す結果を得た。

図 2.2.2.17 SGV480 及び SPV490 の実厚相当全幅切欠付平板試験体の公称応力-標点間ひ ずみ線図

Fig.2.2.2.17 Nominal stress σ_n vs. gauge strain ε_n in tensile tests on full width notched plate specimens with actual SCV thickness of SGV480 and SPV490

2.2.3 ライナ鋼材の切欠付試験片の引張試験

国内のコンクリート製原子炉格納容器には気密性を確保するために、鋼製のライナプレ ート(内張)が設置されている。ライナプレートの代表的な鋼材に対して、切欠付丸棒及 び全幅切欠付平板試験片の引張試験を実施し、局部破損の限界特性を取得した。

(1) 供試材

供試材は、SGV410 鋼であり、国内の PWR 及び BWR の格納容器ライナに使用されて いる代表的な炭素鋼である。供試材の化学成分及び機械的性質を表 2.2.3.1 に示す。実機 のライナプレートの板厚は 6.4 mm であるが、切欠付丸棒試験片を採取するために、板厚 16 mm の圧延鋼板を供試材とした。

表 2.2.3.1 SGV410 鋼板(16 mm 板厚)の機械的性質

Table 2.2.3.1 Mechanical properties of SGV410 steel plate of 16 mm thickness

Mechanical Properties				
Yield stress	Tensile strength	Elongation	Reduction of	Absorbed Energy
(MPa)	(MPa)	(%)	Area (%)	(J) at "-19"°C
332	462	36	77	298

Location: 1/2 Thickness, Orientation: longitudinal

(2) 切欠付丸棒引張試験

供試材の基礎的な局部破損の限界特性を取得することを目的に、切欠付丸棒試験片の引 張試験を実施した。

試験片、試験方法及び試験結果の整理方法

供試材の 1/2 板厚から圧延方向に図 2.2.3.1 に示す円周切欠丸棒試験片を採取した⁴²。 試験片の切欠底の半径 a₀ は 3 mm、切欠曲率 R₀ は、1,2,5 mm 及び 15 mm の 4 種類で ある。引張試験は、変位(ストローク)制御で実施され、変位速度は約 0.1 mm/min であ る。試験片の切欠部は、投影機により連続撮影され、画像解析により切欠半径 a 及び切 欠曲率 R が決定された。切欠中心の応力、応力三軸度 T 等は、a、R 及び荷重 P を用いて、 Bridgman 解²⁸により算出した。これらの試験方法及び試験結果の整理方法の詳細は、 2.2.2(2)節と同様である。

② 試験結果及び限界特性

試験片の引張荷重を試験片の平行部(ϕ 10)の断面積で除して求めた公称応力 σ_n と、式 (2.2.2.1)を用いて求めた切欠の最小断面の真ひずみ ϵ の関係を図 2.2.3.2 に示す。同図では 初期切欠曲率 R_0 が小さい試験片ほど最大公称応力が上昇しており、また、全試験片で屈 曲点が明瞭に表れている。また弾塑性 FEM の線図を重ねているが、試験とよく一致して おり、応力・ひずみ線図の最適化が良好であることが分かる。

屈曲点(延性破壊の開始点)における切欠中心のひずみ ϵ_L を、応力三軸度 *T*に対してプロットした限界ひずみ線図を図 2.2.3.3 ⁴²に示す。ここでひずみは、Bridgman 解では式(2.2.2.1)から得られた真ひずみ ϵ 、弾塑性 FEM では切欠中心部の要素の相当塑性ひずみである。弾塑性 FEM による限界ひずみ線図は、Bridgman 解による線図に対して、明確に高応力三軸度側にあった。これは試験片の変形状態を適切に再現している弾塑性 FEM が、比較的精度のよい値を与えているのに対して、近似解である Bridgman 解が、応力三軸度を少なく算出する傾向がある ³⁷ためである。また同図には、供試材の絞り(=77%)を用いて作成した ASME VIII-2 の限界ひずみ線図を併記した。Bridgman 解による線図は、高応力三軸度側で ASME 線図に近づいているが、明確に上回った。

図 2.2.3.3 には、屈曲点における相当応力*σ*_eと平均応力*σ*_mの和である限界応力指標 *S*_L を、併せてプロットした。限界応力指標は、試験範囲で、ほぼ一定とみなすことができる。 同図には、限界応力指標から式(2.2.2.6)を用いて求めた限界ひずみ線図も示したが、ほぼ 限界ひずみの試験値に沿っていることが分かる。

図 2.2.3.1 SGV410 鋼の切欠付丸棒試験片

Fig.2.2.3.1 Notched round bar specimen for SGV410 steel.

出典) 中村, 荒井, 菊池, M&M2021⁴²

- 図 2.2.3.2 SGV410 鋼の切欠付丸棒引張試験における公称応力と真ひずみの関係
- Fig.2.2.3.2 Nominal stress σ_n vs. true strain ε in tensile test of SGV410 notched round bar specimen

注) 公称応力 σ_nは、試験片の板厚 10 mm を用いて算出

出典) 中村, 荒井, 菊池, M&M2021⁴²

- 図 2.2.3.3 SGV410 鋼の切欠付丸棒引張試験における限界ひずみεL線図と限界応力指標 SL 線図
- Fig.2.2.3.3 Limit strain ε_L and limit stress index S_L diagrams in tensile test of SGV410 notched round bar specimen

(3) 切欠付平板引張試験

形状を標準化した全幅切欠付平板試験片を用いて引張試験を実施した。試験片及び試験 方法は、2.2.2(4)で示したものと同様である。試験片の引張荷重を、試験片の平行部(10 mm 板厚)の断面積で除して求めた公称応力 σ_n と、評点間距離 14 mm を基準とした標点間ひず み ϵ_n の関係を図 2.2.3.4 ⁴²に示す。ここで、標点間ひずみを用いるのは、切欠底表面から破 損が開始(亀裂の発生)した場合に、切欠付丸棒試験片と同様の方法により真ひずみを決 定することが、困難になるためである。R1 及び R2 の切欠付平板試験片では、載荷途中で 切欠底から亀裂が発生し、破損が開始した。図 2.2.3.4 ⁴²の $\sigma_n \cdot \epsilon_n$ 線図上には、切欠底での 破損開始点を〇印で示した。R1 及び R2 の試験片では、亀裂発生後、公称応力が低下し破 断した。それに対して R5 及び R15 の試験片は、切欠底から破損が開始することなく、突 然破断した。そのため、図 2.2.3.4 ⁴²の $\sigma_n \cdot \epsilon_n$ 線図にも屈曲点は現れていない。図 2.2.3.4 ⁴² には、試験結果と共に弾塑性 FEM による $\sigma_n \cdot \epsilon_n$ 線図を重ねている。両者は全体としてよ く一致しているが、弾塑性 FEM において亀裂の進展は考慮されていないので、R1 及び R2 では、切欠底の破損点付近から、試験結果と弾塑性 FEM は離れ始めている。

限界ひずみ ε_L 及び限界応力指標 S_L と応力三軸度 Tの関係を示す限界線図を図 2.2.3.5 ⁴² に示す。ここでは限界点として、切欠底から破損が開始した R1 と R2 の試験片に対して は、切欠底の破損点における切欠底の応力三軸度と相当塑性ひずみを、切欠底が破損しな かった R5 と R15 の試験片に対しては、破断時の切欠中心の応力三軸度と相当塑性ひずみ をプロットした。R5 と R15 の試験片では、弾塑性 FEM 解析により取得した試験値だけで なく、平板の Bridgman 解をプロットした。Bridgman 解による限界ひずみ線図が、弾塑性 FEM による線図よりも、低応力三軸度側にあるのは、切欠付丸棒試験片の場合と同様であ る。

図 2.2.3.5⁴²には、比較のため切欠付丸棒引張試験における限界ひずみ及び限界応力指標 を併せてプロットした。切欠付平板試験片の R5 と R15 の限界ひずみは、切欠付丸棒試験 片よりも 20~30%程度低下したが、右下がりの線図であることは同様である。また、切欠 付平板試験片の R5 と R15 の限界応力指標 (*S*_L = 1440 MPa)は、切欠付丸棒試験片 (*S*_L = 1550 MPa)よりも若干低下した。それに対して、切欠底から破損が開始した切欠付平板試 験片の R1 と R2 の限界点は、応力三軸度 0.6 付近の低 T 域にあり、限界ひずみは 0.6~0.8 と比較的低かった。切欠付丸棒試験片では切欠の中心部(center)から破損したのに対し、 R5 と R15 の切欠付平板試験片では切欠底に亀裂が現れず、突然破損した。SGV410 鋼の切 欠付平板引張試験における上記の特性は、2.2.2(4)で示した SGV480 鋼及び SPV490 鋼とも 類似している。

50

出典) 中村, 荒井, 菊池, M&M2021⁴²

図 2.2.3.4 SGV410 鋼の全幅切欠付平板引張試験における公称応力σ_nと標点間ひずみε_nの 関係

Fig.2.2.3.4 Nominal stress σ_n vs. gauge strain ε in tensile test of SGV410 full width notched plate specimen

注) 公称応力 σ_nは、試験片の板厚 10 mm を用いて算出

図 2.2.3.5 SGV410 鋼の全幅切欠付平板及び切欠付丸棒引張試験における限界ひずみε_L線 図と限界応力指標 S_L線図

Fig.2.2.3.5 Limit strain ε_L and limit stress index S_L diagrams in tensile test of SGV410 full width notched plate and round bar specimens

2.3 終局的耐力評価手法の検討

原子炉格納容器の鋼製部材の終局的耐力評価手法として、本研究では、局部破損に着目 して、一連の切欠付試験片の引張試験を実施し、限界特性を取得した。本節では、これら の限界特性に基づいて、整備した局部破損の評価手法についてまとめる。評価手法は、限 界ひずみ・応力指標線図に基づく設計的評価手法、及び構造不連続部の損傷の進行を含む 詳細評価を可能とする損傷力学的解析手法を検討した。

2.3.1 限界ひずみ及び応力指標線図を用いた設計的評価手法

(1) 格納容器破損防止対策の有効性評価における限界条件と局部破損条件

有効性評価における一次応力の制限

原子炉格納容器の耐圧部一般を想定した場合、設計・建設規格⁴³により、設計条件(最高使用圧力 Pd)における一次一般膜応力強さ Pm は、最高使用温度における設計応力強さ Smc以下に制限されている。

$$P_{\rm m} \le S_{\rm mc}$$
(2.3.1.1)

一方、格納容器破損防止対策の有効性評価に関する審査ガイド⁴⁴においては、原子炉格 納容器バウンダリにかかる温度・圧力が、限界温度・限界圧力を下回ることを求めており、 国内原子力発電所の有効性評価⁸においては、原子炉格納用容器の評価温度及び圧力をそ れぞれ 200 ℃、2Pd と設定している。さらに、2Pd の条件は、設計・建設規格における供用 状態 D に相当するとみなして、設計引張強さSuを用いて Pm の許容値を以下のように設定 している。

 $P_{\rm m} \le 2/3 \, S_{\rm u} \cdots (2.3.1.2)$

ここでは、切欠試験片の試験結果と比較するために、常温における 2Pd に相当する P_m の 許容値を求めると、SGV480 鋼に対して、320 MPa、SPV490 鋼に対して、406 MPa となる (注5)。これらの許容値を用いて、次節にて局部破損の裕度について論じる。

② 切欠付平板引張試験における 2Pd 相当の荷重条件

2.2.2(4)では、実機の耐圧部に近い形状である切欠付平板試験片の引張試験結果を報告した。比較的、破損条件が厳しい全幅切欠付平板試験片の公称応力・標点間ひずみ線図に、

⁽注5) 設計・建設規格(解説 PVB-3110)「ボルト以外の応力評価」にて、Sm = MIN[2/3Sy, 1/3Su]、2Pd における Pmの制限は 2/3 Su となり、供用状態 D を同じになる。SGV480 鋼及び SPV490 鋼の計算値(常温)を以 下に示す。

[【]SGV480 鋼】 S_y = 265 MPa, S_u = 480 MPa, Sm = 160 MPa (材料規格、Part 3 第1章表1)、よって2/3S_u = 320 MPa (= 2Sm)。なお、S_{mc} = MIN[1.1S, 0.9S_y] = 150.7 MPa、許容引張強さS = 137 MPa (同、表 3)

[【]SPV490 鋼】S_y=490 MPa (同、表 6)、S_u=610 MPa (同、表 7)、よって 2/3S_u=406 MPa。なお、S_{mc}=MIN[1.1S, 0.9S_y]=168.3 MPa、許容引張応力 S=153 MPa (同、表 3)

2Pd 相当の 2/3Su の限界条件を重ねて、図 2.3.1.1⁴¹ に示す。

SGV480 鋼及び SPV490 鋼は共に、試験片の切欠曲率が小さくなるにつれて最大公称応 力が増加する典型的な切欠強化の挙動を示している。最も応力・ひずみ曲線が低応力側に ある R15 の試験片において、最大公称応力は 2/3Suを上回っている。また、双方の鋼とも、 R1 及び R2 の試験片では、最大荷重付近あるいはその後で、切欠表面に亀裂が発生してい るが、2/3Suを余裕をもって上回っている。

試験片を含む構造一般において、局所的なくびれ、つまり塑性変形の不安定化が始まる のは、最大荷重点以後である^{40,45}。くびれの進行と共に、応力三軸度が上昇し、限界ひ ずみにおいて破損するのが、局部破損である。切欠付平板試験片は、ひずみ集中を起こす 原子炉格納容器の構造不連続部を模した試験体と捉えることができる。原子炉格納容器の 耐圧部一般において、2Pd の圧力では、塑性変形量は限定的であり、かつ塑性不安定を開 始する最大応力までは余裕がある、局部破損は2Pdより大きい過圧条件で生じると言える。

図 2.3.1.1 SGV480 鋼と SPV490 鋼の全幅切欠付平板引張試験における公称応力σ_nと標点 間ひずみε_nの関係

Fig.2.3.1.1 Nominal stress σ_n vs. gauge strain ε in tensile test of SGV480 and SPV490 full width notched plate specimen

注) 公称応力 σ_nは、試験片の板厚 10 mm を用いて算出

(2) 限界ひずみ線図及び応力指標線図を用いた局部破損評価方法

① 原子炉格納容器の主要鋼材の限界ひずみ線図及び応力指標線図

本研究では、鋼製格納容器を構成する主要な鋼材である SGV480 鋼及び SPV490 鋼、さ らにコンクリート製格納容器のライナプレートの主要な鋼材である SGV410 鋼の限界ひず み線図及び応力指標線図を取得した。これらの線図を改めて、図 2.3.1.2^{41,42}にまとめて 示す。これら3種類の鋼材の限界線図の特性は以下に示すとおりであり、強度が異なるに もかかわらず共通している。

- a) 切欠付丸棒試験片の限界ひずみ線図において、簡易評価である Bridgman 解による限 界ひずみ線図は、より精度が高い弾塑性 FEM により得た限界ひずみ線図よりも、低 応力三軸度側にあった。
- b) 材料のしぼり値から決定した ASME VIII-2 の限界ひずみ線図は、高応力三軸度側で、 Bridgman 解による限界ひずみ線図に漸近する。このことは、ASME 線図が、Bridgman 解による試験結果に基づいて作成されていることに対応していると思われる。
- c) 切欠付丸棒試験片の限界点における相当応力と平均応力の和、限界応力指標は、試験範囲において、ほぼ一定とみなすことができる。
- d) 切欠付平板試験片において、切欠曲率が大きい場合には、試験片はせん断破壊により板厚全体が破壊し、限界ひずみ線図は、丸棒試験の限界ひずみ線図よりも、低応力三軸度及び低限界ひずみ側に移動する。また限界応力指標は、丸棒よりも低下した。
- e) 切欠付平板試験片において、切欠曲率の大きい場合には、切欠底表面から破損(亀裂)が開始した後、亀裂が内部に進行して破断した。破損の開始点は、限界ひずみ線図上で、低応力三軸度、中限界ひずみ位置(応力三軸度≈0.6、限界ひずみ≈0.4~0.6)に集中していた。
- f) 切欠底から破損が開始したケースを除き、ASME VIII-2 の限界ひずみ線図を上回った。なお、この限界ひずみ線図は、鋼材検査証明書(ミルシート)の絞り値から算出したものである。

切欠付丸棒試験片における限界点は、荷重・変位曲線(公称応力・標点間ひずみ曲線) の屈曲点における切欠中心の応力三軸度と真ひずみ(≒相当塑性ひずみ)を抽出したもの である。よく知られているように、切欠付丸棒試験片では切欠の中心部から破壊が開始し、 屈曲点はそれが外部挙動に現れたものである。つまり、切欠付丸棒試験により得られた限 界ひずみ線図は、延性破壊の開始点を表している。切欠付平板試験片において、切欠底表 面に亀裂が発生したケースも、同じく延性破壊の開始点を表している。本研究と同様に、 切欠底表面での破損開始(亀裂の発生)を観察している他の研究者^{46,47}も、丸棒の試験 結果と合わせて、限界ひずみ線図を整理している。特に Hancock (ハンコック)⁴⁶は、 SGV480 鋼に近い強度の BS4360 Grade 50D 鋼に対して、平面ひずみ型の全幅切欠付平板引 張試験を実施し、本研究とほぼ同じ応力三軸度(≈0.6)、相当ひずみ(≈0.4~0.6) にて切欠 底表面での破損の開始を報告している。

出典) 荒井, 中村, 菊池, M&M2021⁴¹, 中村, 荒井, 菊池, M&M2021⁴² 図 2.3.1.2 SGV480 鋼、SPV490 鋼、SGV410 鋼の全幅切欠付平板及び切欠付丸棒引張試験 における限界ひずみεL線図と限界応力指標 SL線図

Fig.2.3.1.2 Limit strain ε_L and limit stress index S_L diagrams in tensile test of full width notched plate and round bar specimens of SGV480, SPV490 and SGV410

限界ひずみ線図及び限界応力指標を用いた局部破損評価

構造物の局部破損の評価を行う場合には、弾塑性 FEM 解析等を用いて、評価対象部の応 カ三軸度と相当ひずみ又は応力指標を求めて、限界ひずみ線図又は限界応力指標線図上で 判定を行うことになる。本研究で取得した格納容器鋼材の限界線図は、局部破損評価に直 接利用できる。

これらの限界ひずみ線図に示した ASME VIII-2 の限界線図は切欠底に亀裂が発生したケースを除き、試験結果に対して保守性を示した。ここで示した ASME VIII-2 の限界線図は、 格納容器に使用されている鋼材のミルシートの絞り値から式(2.1.4.3)を用いて生成できる ことから大変実用的であるとともに、評価対象部が絞られた後に内部から局部破損を起こ す場合には保守的である。

ただし、構造部の表面に比較的鋭い、形状不連続部(段違い、角等)がある場合には、 表面から亀裂が発生する場合があることを本研究の試験結果は示している。図 2.3.1.1⁴¹に 示した公称応力・標点間ひずみ線図では、亀裂が発生した後の破断までのひずみ範囲が比 較的大きい場合も小さい場合もあるが、保守的に局部破損を評価する場合には亀裂発生点 を限界点とみなすべきである。特に、ライナプレートのように比較的薄肉の構造の場合に は亀裂進展範囲は短くなるはずなので、この見解はより適切である。

実際の評価プロセスにおいては、評価対象部の弾塑性解析において、注意深く作成された FEM モデルを用いて、構造内部だけでなく表面の形状不連続部の応力三軸度、相当塑性ひずみも求めればよい。切欠底に相当する形状不連続において、これらの諸量を適切に求めるためには、通常、曲率半径の数分の1以下のメッシュ寸法とする必要がある。現実の大型構造物で、このようなメッシュ生成の管理を行うことは簡単なことではないが、図2.3.1.1⁴¹に示したように、鋭い切欠があったとしても、亀裂が発生するのは、対象部の断面応力が最大値を超えた後であるので、亀裂発生可能性の評価を行う必要がある部位は絞り込めると考えられる。

③ 実機相当格納容器モデルの局部破損の簡易評価例

本研究により、主要な格納容器用鋼材の限界線図を取得したので、実機相当の格納容器 モデルの弾塑性解析を実施することにより、局部破損を生じる限界圧力等の評価を実施す ることは可能である。しかしながら、実機相当モデルの弾塑性解析及び局部破損評価は、 本研究の計画範囲外である。ここでは、新たに解析を実施するのではなく、過去に NUPEC で実施された PWR の鋼製格納容器の弾塑性解析結果を用いて、局部破損を簡易評価した 例 ³⁷を示す。

NUPEC は、図 2.3.1.3³⁷ (a)に示す PWR の鋼製格納容器 (SCV) の三次元弾塑性 FEM モ デルを用いて、塑性崩壊に対する限界圧力を算出した。弾塑性解析により、格納容器の頭 頂部の相当応力 σ_e と内圧 Pd の関係が、同図(c)のように得られており、 σ_e が材料規格の引 張強さ (Su=422 MPa、200°C) に達した時の圧力を、限界圧力 (2.95Pd) とした。格納容 器の材料は、SGV480 鋼であり、本研究で得られた限界ひずみ線図及び限界応力指標を用いて局部破損の評価を試行した。

局部破損の評価のためには、破損想定部のネッキング後の局所相当塑性ひずみ Epocal 及び 応力三軸度 T が必要になる。しかしながら、ネッキングを再現して、これら状態量を適切 に算定することは、比較的詳細な三次元の弾塑性 FEM モデルを用いたとしても、簡単なこ とではない。現実的な対応策として、弾塑性 FEM により得られたひずみEnに、試験等によ り求められたひずみ集中係数βを乗じることにより、局所のひずみ*ε*localを見積もる方法が 採用される場合⁴⁸がある。NUPECは SCV の縮尺試験体の破損時のひずみと FEM 解析の ひずみの比率から、 β を 2.2 としている ⁴。 $\varepsilon_{\rm p}^{\rm local}$ は、同図(c)に示すように、 $\varepsilon_{\rm p}$ に β を乗じて 算出できるものと仮定した。また T は、SGV480の限界ひずみ線図の下限値に近い 0.8 を 用いることとした。同図(b)において、T = 0.8の時の限界ひずみ ε_L は、実力の線図(FEM) に対して 1.1、保守的な ASME VIII-2 の線図に対して 0.55 となる。限界ひずみに達する限 界圧力は、これら線図において、それぞれ 4.5Pd 及び 3.6Pd となり、NUPEC による塑性崩 壊時の限界圧力 2.95Pd よりも、大きな値となった(同図(b)は常温の限界ひずみ線図であ り、200 ℃の線図(試験中)を用いた場合、限界圧力は若干低下すると思われる)。次に、 図 2.3.1.2^{41,42} (a)に示した SGV480 鋼の限界応力指標 SL(=1680 MPa)を用いて限界圧力 を試算した。図 2.3.1.3 (c)には、T = 0.8を用いて算出した応力指標 $S(= \sigma_e + \sigma_m = \sigma_e + 0.8\sigma_e)$ を示している。SがSLに達した時の限界圧力は4.5Pdとなり、限界ひずみ線図を用いた場 合と同じの解を与えた。ここで、両者の値が一致していることに特別な意味はないが、応 力指標 S を用いた計算では、βを用いていないことが分かる。つまり構造物の三次元 FEM 解析において、ネッキング後のひずみが厳密に算出されていない場合であっても、限界応 力指標を用いて、適切に局部破損の評価が行える可能性があることを示している。応力基 準の破損クライテリアである限界応力指標は、ひずみ基準の限界ひずみ線図と等価な破損 クライテリアである。材料の加工硬化係数は、ひずみの増加とともに低下するため、大ひ ずみ域での相当応力、平均応力の変化は小さくなる。このため、比較的粗いメッシュの FEM モデルでも応力指標は許容できる誤差で算出できる可能性がある。限界応力指標の工学的 な有効性の確認のためには、さらなる解析事例の蓄積が必要である。

57

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷
図 2.3.1.3 PWR の鋼製格納容器 (SGV) の局部破損の限界圧力の簡易評価結果
Fig.2.3.1.3 Result of simple evaluation of limit pressure against local failure for PWR SCV
注) 限界圧力は限界ひずみ線図及び限界応力指標双方を用いて評価

2.3.2 損傷力学解析手法

局部破損に対する評価手法のひとつとして、構造不連続部における損傷の進行を含む詳 細評価を可能にすることを意図した損傷力学解析手法を整備した。

(1) 損傷力学モデル

損傷力学は、ボイド、微小き裂のような材料の損傷を、適切な損傷変数で表現して、連 続体力学により解く手法である。通常は、有限要素法に損傷変数を組み込んで、部材の応 カ・ひずみの進行に伴う損傷度を計算する。延性破壊の損傷力学モデルとして、最も一般 的なものはボイドの生成・成長を扱う Gurson- Tvergaard (ガーソン・トヴェルガード)モ デル^{49,50,51} (以下「GT モデル」という)である。通常 GT モデルでは、初期ボイド体積 率あるいはボイド生成ひずみ等のパラメータをフィッティングして破壊現象を表現してい る⁵²。しかしながら、このようなアプローチが実際のボイド生成過程⁵³を再現している かは疑問が残る。

鉄鋼材料等の延性破壊では、破損開始の直前に急激なボイド生成と成長が起きて破損に 至る ⁵³ことが知られている。式 (2.2.2.5)に示した応力指標の限界値は、切欠付丸棒試験片 により得られた切欠中心部の破損条件を表しているが、筆者ら ^{37,40,54}は、この破損条件 を GT モデルに導入することにより、破損直前の急激なボイド成長とその後の破損を再現 できることを見出した。以下、そのための GT モデルの定式について記述する。

GT モデルでは、微小ボイドを含む連続体の降伏関数 ϕ を、ボイド体積率fを用いて次のように表す 50, 51。

ここで、 σ_e は巨視的ミーゼス相当応力、 σ_m は巨視的平均応力(= $\sum \sigma_i/3$ 、 σ_i は主応力)、 σ_M は素地の相当応力(equivalent stress)である。「巨視的」とは、ボイドの影響を含む材料 の観測される応答を表し、「素地」はボイドの周りの金属を表す。 q_1, q_2, q_3 はモデルの精度 を高めるために導入されたパラメータであり、本論文では、Tvergaard ⁵¹により最適化され た $q_1 = 1.5, q_2 = 1.0, q_3 = q_1^2$ を用いる。

ボイド体積率の増加速度 \dot{f} は、ボイドの成長速度 \dot{f}_{grow} と新しいボイドの生成速度 \dot{f}_{nucl} の和である。ボイドの成長速度 \dot{f}_{grow} は巨視的体積ひずみ速度 $\dot{\epsilon}_{kk}^{p}$ を用いて次式で表される^{50,51}。

$$\dot{f}_{grow} = (1-f)\dot{\varepsilon}^p_{kk} \qquad (2.3.2.2)$$

GT モデルには、ひずみ制御及び応力制御のボイド生成項 ⁵⁰ があるが、本研究では、次 式に示す応力制御のボイド生成項のみを用いる。

上式は、相当応力と平均応力の和を駆動力として、ボイド生成応力 σ_N を中央値として、標準偏差 σ_s の正規分布に従って、ボイドが生成することを表している ⁵⁰。 f_N は、式(2.3.2.3)の全区間の積分(ガウス積分)、つまり、核生成するボイドの体積率の総量である。

式(2.3.2.3)は、ボイドの生成速度を表しており、破損条件を表すものではない。そのため、 材料試験によって得られた式(2.2.2.5)の破損条件を示す限界応力指標 SL をそのまま、 σ_N に 与えるのではなく、若干の修正を行う場合がある 37, 54。しかしながら、両者は通常、非 常に近い値である 37, 54。本研究では、弾塑性解析に用いた汎用構造解析コード
FINAS/STAR²⁰に応力制御のボイド生成項を持つい GT モデルを組み込んで、解析に供した。

(2) 破損解析への適用

応力制御のボイド生成項を持つ GT モデルの適用例として、SPV490 鋼の切欠付丸棒引張 試験の破損解析を実施した結果を以下に示す。同鋼の切欠付丸棒引張試験において、切欠 中心部の破損条件を表す限界応力指標 SL(=2000 MPa)は、図 2.2.2.6 に示されている。SL を(2.3.2.3)式のボイド生成応力σ_Nに与えて、GT モデルによる損傷力学解析を実施した。こ の時、用いた FEM モデルは、図 2.2.2.3 に示した弾塑性解析に用いたものと同じである。 切欠付丸棒引張試験における荷重Pと真ひずみcの関係を、試験結果と解析結果を併せて、 図 2.3.2.1(a)に示す。同図において、試験における屈曲点がよく再現されていることがわか る。同図(b)は、切欠中心における要素のボイド体積率fの遷移を示している。(2.3.2.3)式に 従って生成されたボイド体積率 fnuc は、屈曲点(破損点)に先行して、増加し始める。fnuc の増加が引き金となって、ボイドの成長分 fgrow を合わせたボイド体積率 f は、破損の直前 に、急激に増加し、限界ボイド体積率 f_c ($f_c = 0.15$)に達したときに、破損と判定される。 判定された要素は、FEM モデルから除去されることにより、微視的な構造の破壊が表現さ れる。図 2.3.2.1(a)において、屈曲点の後に荷重が漸減しているのは、要素が切欠中心から 順次、周辺に破損していくからであり、試験片における破損過程が再現されている。この 解析事例では、 S_L をそのまま σ_N に与えたが、式(2.3.2.3)は、ボイドの生成条件を表すもの で、破損条件を直接表すものでないので、多くの場合、若干の修正が行われる。

筆者らは、さらに、高応力三軸度域の切欠付丸棒引張試験によって得られたボイド生成 条件を組み込んだ GT モデルを用いることにより、CT 試験片の延性亀裂の進展過程を追跡 できることを報告した⁵⁴。本手法の大型の部材、実機相当モデル等への適用性の検討は、 今後の研究課題となるが、整備した損傷力学解析手法は、局部破損の詳細解析手法として、 有力なツールであることを示した。

(b) ボイド体積率 f 及び破損応力指標 S と真ひずみ ε

出典) Nakamura, Arai, Kikuchi, International journal of pressure vessels and piping ³⁷

図 2.3.2.1 SPV490 鋼の切欠付丸棒引張試験の GT モデルによる解析結果と試験結果

Fig. 2.3.2.1 Results of GT model analyses and test results for notched round bar tensile test of SPV490 steel

2.4 電気ペネトレーションのシール挙動試験

2.4.1 試験目的

重大事故時の原子炉格納容器の機能喪失を招く漏えい経路としては、過圧による金属部 の局部破損のほかに、過温による樹脂シールの損傷が考えられる。樹脂シールが使われて いる部位には、フランジ、ハッチ類、電気配線貫通部(電気ペネトレーション)等があり、 その中でも電気ペネトレーションはその数が多いことから漏えいを評価すべき重要な対象 であるが、重大事故時の気密性に関して公表されている試験データは少ない。そこで、電 気ペネトレーションの漏えいに対する限界条件の把握を目的として、電気ペネトレーショ ンのシール挙動試験を実施した。BWR の重大事故の想定環境条件は PWR に比べて厳しい ことから、試験対象は BWR とし、中でも、過去の NUPEC の試験^{4,55}を参考に限界温度 が低いと思われる低電圧用モジュールを選定した。

2.4.2 電気ペネトレーション試験体

低電圧用モジュールの試験体は、動力用モジュール、制御・計装用モジュールをともに 製作することとし、それぞれ2体ずつとした。また、本試験前の予備試験用にケーブルを 通さずにエポキシ樹脂で内部を埋めた予備試験用試験体を1体製作した。電気ペネトレー ション試験体の種類及び員数を表2.4.2.1、形状を図2.4.2.1に示す。試験体(モジュール) の長さは約270 mm、スリーブ外径は約70 mmである。重大事故環境時の放射線暴露を模 擬するため、試験実施前にそれぞれの試験体の1体ずつに対し放射線暴露を行った。照射 は室温大気中で実施し、積算放射線量は国内 BWR プラントの調査結果 ⁵⁶から 800 kGy(60 年間の通常運転期間相当の線量に重大事故等時の最大積算値を加 えた線量を包絡する値)とした。また、比較のため、残りの1体ずつは未照射のままとし た。

Table 2.4.2.1 Type and number of electric penetration specimens				
括 粘	ケーブル		放射線	吕 粉
	断面積(mm ²)	本数	照射	貝剱
動力田エジュール	100	3	あり	1
動力用モンユール			なし	1
制御・卦妆田エジュール	0.9	118	あり	1
前仰 司 衣用 こうユール			なし	1
予備試験用モジュール	樹脂充填		なし	1

表 2.4.2.1 電気ペネトレーション試験体の種類及び員数

図 2.4.2.1 電気ペネトレーション試験体の外形及び断面図

Fig.2.4.2.1 Outline and sectional view of electric penetration specimen

2.4.3 試験装置

シール挙動確認試験を実施するための試験装置を製作した。試験装置の系統概略図を図 2.4.3.1、外観写真を図 2.4.3.2 に示す。試験装置は重大事故時の温度、圧力及び蒸気を模擬 するため、試験体を格納する圧力容器,蒸気を供給し回収する蒸気・水ループ及び再加熱 用の外部ヒーター等から構成されている。

- ・水タンクからポンプにより熱交換器に水を供給して加温し、さらにシースヒーターを介して、昇温し、圧力容器に蒸気を供給する。
- ・ 圧力容器に設置した外部ヒーターにより、蒸気を再加熱する。
- ・ 圧力容器から排出した蒸気は、熱交換器及び冷却器により除熱され水に戻り、フィルター及びイオン交換樹脂により浄化されて水タンクに戻り、再び循環する。
- ・ 圧力容器内の温度制御は、シースヒーター及び外部ヒーターの電流を調整することにより行う。また、圧力容器内の圧力制御は、圧力容器の出口配管に設けた排出バルブから蒸気の一部を大気放出することにより行う。
- ・ 試験体の漏えい検知は、リークポート及び二次シール側の圧力測定により実施する。
- ・圧力容器内の蒸気の温度・圧力及び試験体の二次シール側の温度の計測を行う。

試験装置の仕様は以下のとおりである。

[圧力容器]

最高使用圧力:0.9 MPa 最高使用温度:400 °C (450 °C 短期) 内容積:0.011 m³

[高圧ポンプ] 吐出圧力:1.2 MPa 吐出量:3 L/h

[送水ポンプ]

吐出圧力:8m 吐出量:30L/h

[水タンク]

設計圧力: 0.5 MPa 容量: 30 L

図 2.4.3.1 シール挙動試験装置の系統概略図 Fig.2.4.3.1 Schematic of seal behavior test apparatus

(a) 制御盤側

図 2.4.3.2 シール挙動試験装置の外観

Fig.2.4.3.2 Appearance of seal behavior test apparatus

2.4.4 予備試験

試験装置を構成する各機器及び系統が設計どおり製作され機能することを確認するため、予備試験を実施した。予備試験の条件を以下に示す。予備試験には、電線がなく樹脂 だけが充填された予備試験用試験体を使用した。

試験体 : 予備試験用試験体(漏えい発生後は金属プラグ)
温度条件 : 350°Cで168時間(1週間)保持後、450°Cまで昇温(一次シール側)

圧力条件 : 0.9 MPa (900 kPa) (一次シール側)容器内雰囲気: 加熱蒸気+窒素ガス

予備試験の結果、一次シール部は一次側温度が 181 ℃ で漏えいが確認された^(注6)。また、 二次シール部は一次側温度が 350 ℃ に到達した 10 分後に漏えいが確認された。降温後に 試験装置を開放し、エポキシ樹脂の脱落を確認した。引き続き、試験体を金属プラグに取 り換え、試験を継続した。350 ℃ で 168 時間保持後、450 ℃ まで昇温し、試験を終了した。 これにより、試験装置が仕様どおりに動作することが確認された。

2.4.5 シール挙動試験

動力用モジュール及び制御・計装用モジュールの電気ペネトレーション試験体を用いて、 シール挙動試験を実施した。試験条件は、国内 BWR の原子炉設置変更許可申請書 ^{57,58,59}に記載された重大事故時の環境及び格納容器の限界値を基に、以下のように設定した。 試験の前後で試験体の健全性や取り付け状況等について確認するため、外観目視検査や耐 圧/ガスリーク試験等による検査を実施した。

- 試験体 : BWR 低電圧用モジュール(動力用及び制御・計装用)
- 温度条件 : 200 °C で 168 時間(1週間)保持後、350 °C まで昇温。24 時間経過後も 漏えいが発生しない場合、さらに 400 °C まで昇温(一次シール側)。
- 圧力条件 : 0.854 MPa (854 kPa) (一次シール側)

容器内雰囲気: 加熱蒸気+窒素ガス

代表的な試験結果として、制御・計装用モジュール(放射線照射あり)における試験中 の温度圧力履歴を図 2.4.5.1 に示す。200 °C で 168 時間保持したものの、一次側、二次側と もに漏えいが発生しなかった。そのため、350 °C まで昇温したところ、10 時間後に一次側、 二次側でほぼ同時に漏えいが発生した。また、その他の試験体の二次側までの漏えい温度 は、動力用モジュール(放射線照射あり)で 350 °C、制御・計装用モジュール(放射線照射 なし)で 400 °C、動力用モジュール(放射線照射なし)で 350 °C であった。これらの結果か ら、格納容器の限界値として設定されている 200 °C に対し、電気ペネトレーションの漏え い温度は十分に余裕があることが確認された。

⁽注6) 予備試験用モジュールでは、電線による樹脂の補強効果はない。シール挙動試験用のモジュールとは異なる結果となった。

2.4.6 考察

これまでに電気ペネトレーションの限界特性を評価した試験としては、NUPEC が実施 した格納容器貫通部漏えい試験(放射性物質捕集特性試験、平成7年~8年)^{4,55}がある。 当該試験では BWR の低電圧用モジュールも対象としていたが、漏えい温度は約 260~ 320 °C と今回の試験結果より低かった。当該試験での加熱方法は、試験体の一次側を直接 マントルヒータで加熱するとともに、二次側は保温するという保守的な方法を採っている。 今回の試験では、実機での取付状況を考慮して圧力容器内で試験体の一次側を雰囲気加熱 するとともに、二次側は漏えいを検出するために容器内にあるものの保温は実施していな い。そのため、より実態に近い限界条件が取得できたと考えられる。

実機の電気ペネトレーションは、図 2.4.6.1 に示すように格納容器シェル・生体遮蔽壁 (約2m)を貫通するシース管(ペネトレーションスリーブ)の外側近くに設置されてお り、格納容器側の端子盤からは距離があること、さらにシース管の中には、多数の電線が 配置されており輻射経路を遮ることから、端子盤からの加熱は顕著ではないと推定される。 今回の試験では、電気ペネトレーションからの漏えいは、一次モジュール側の雰囲気温度 が 350℃以上で生じており、実機で漏えいが生じるためには、端子盤のある格納容器側の 雰囲気温度は、さらに高温になることが必要である。

(a) BWR プラントにおける貫通部の位置

(b) 電気ペネトレーション(低電圧用モジュール)の設置状況

出典) 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 4
 図 2.4.6.1 BWR プラントにおける貫通部位置及び電気ペネトレーションの設置状況
 Fig.2.4.6.1 Location of penetrations and installation of electrical penetrations in BWR plants

2.5 局所環境を考慮した終局的耐力評価

これまでの節では、格納容器の重大事故時の過圧による局部破損を中心に試験解析によ る検討を行った。本節では、格納容器の局所的な過温による損傷(放射性物質の閉じ込め 機能の喪失)の可能性について検討する。そこで、国内プラントで採用実績が多い BWR-5型 Mark-II 改良型格納容器を対象として、放射性物質の閉じ込め性評価の観点から格納 容器の中で最大規模の機械接合部であるトップフランジ部について、代表的な温度及び圧 力での開口量評価を行った。さらに、それを参考に、格納容器が局所的に高温にさらされ るような事象の発生可能性(シナリオ)について分析し、当該事象での熱過渡解析結果に 基づく格納容器の閉じ込め性、すなわち局所環境を考慮した終局的耐力を評価した。

2.5.1 トップフランジの開口評価

フランジ部閉じ込め性能評価で留意すべきパラメータとして温度及び圧力に着目して、 BWR 格納容器の中で最大規模の機械接合部であるトップヘッド主フランジ周辺を対象に 弾塑性 FEM 解析を実施し、トップフランジ開口量を評価した¹²。

(1) 解析概要

代表的な BWR 格納容器を対象に、弾塑性 FEM 解析により内圧及び温度荷重に対するト ップフランジ開口量を評価した。なお、解析モデルは、NUPEC が実施した溶接部熱影響部 信頼性実証試験⁶⁰で用いられた解析モデルを参考に作成し、計算には汎用の有限要素解析 ソフトウェア Abaqus/Standard⁶¹を用いた。

検討の中で国内 BWR プラントを調査し、格納容器トップフランジ形状を大きく2種類 に分類した⁵。そして、1980年代以前で採用実績が多い形状を「旧型」、それ以降で採用 実績が多い形状を「新型」と分類した。図2.5.1.1に BWR 格納容器トップフランジ近傍の 概略を示す。ここでは、全体で採用実績が多い新型のトップフランジ形状を対象にフラン ジ部の限界温度・圧力の概略把握を行った結果を報告する。なお、部材形状、使用材料等 は BWR-5型 Mark-II 改良型格納容器を想定して設定した。

69

(2) 有限要素モデル

格納容器トップフランジ部のモデル化は、上鏡頂部から主フランジ部円筒胴下端までと し、上鏡、胴板、フランジ等の主要構造を8節点ソリッド要素でモデル化した。解析モデ ルはボルト1本分の範囲についての解析モデルとし、周方向の境界面に周期境界条件を設 定して、円筒胴下端の境界面で鉛直方向変位を拘束した。解析モデルの作成にあたり、評 価結果が保守的となるよう主フランジ部以外の補強板は無視してそれらをモデル化しなか った。また、ガスケットもフランジ部の変形性状に影響を与えないため、その形状をモデ ル化しなかった。圧力及び温度荷重を受けてフランジ部は基本的に鉛直方向の引張力によ る開口挙動となることから、主フランジ近傍の部材同士の結合・接触条件は、その開口挙 動が追える単純なモデル化にすることとし、ボルトとフランジとの結合部を固着接触、フ ランジ同士を摩擦無しの接触条件とした。解析では、ボルト部へ初期締付力を導入した後、 温度荷重を格納容器全体に、圧力荷重を格納容器内表面に一様に載荷した。ボルト部への 初期締付力、部材の材料諸元等の解析条件は、国内代表プラントを調査して代表的な値を 設定した。ボルト部への初期締付力は、ボルト軸部に軸方向圧縮応力を作用させることで 設定した。使用材料は、文献^{62,63}を参照し、温度依存性を考慮した弾塑性材料モデルの 応力-ひずみ関係、ヤング率等を用いた。図 2.5.1.2 に有限要素モデルの概要を示す。図の 有限解析モデル(ボルト1本分の範囲)の節点数は14,000程度、要素数は10,000程度であ る。

図 2.5.1.2 トップフランジ部の有限要素モデルの概要

Fig.2.5.1.2 Overview of top flange finite element model

(3) 解析結果

温度荷重 400 ℃ で圧力荷重が 1.2 MPa となるように、同じ比率で温度荷重と圧力荷重を 同時に漸増載荷した結果を報告する。荷重条件は、シール材の限界温度、各材料の温度依 存特性を踏まえて特徴的な開口挙動が十分に追える範囲として設定した。図 2.5.1.3 に解析 結果の概要を示す。ミーゼス応力分布・変形図は温度荷重 400 ℃、圧力荷重 1.2 MPa 時の ものである。フランジ部では、ボルト締結位置近傍及びフランジ外端を支点として格納容 器内端側ほど開口量が大きくなる性状で開口した。フランジ外端は支点となるため解析を 通じて開口量はゼロとなる。主として格納容器内面に作用させた圧力荷重により開口する ことになるが、格納容器の材料は温度変化により降伏応力、ヤング率等が変化するため、 開口量を正確に算定するためには、格納容器内部の温度分布を正確に求める必要がある。 なお、400 ℃、1.2 MPa の時点では主にボルト軸部での塑性化が確認できた。

本モデルでは、温度 50 ℃、内圧 0.15 MPa 近傍からフランジ部の内側が開口を始め、その後、温度及び内圧とおおむね線形の関係で開口量が増大して、最終的に温度 350 ℃、内 圧 1.0 MPa 近傍から開口量が急激に増大している。フランジ部の開口が載荷開始時からで はなく温度 50 ℃、内圧 0.15 MPa 近傍から始まるのは、この近傍でボルト軸部に作用する 軸力がボルトに与えた初期締結力を超え始めるからと考えられる。温度 350 ℃、内圧 1.0

71

MPa 近傍から開口量が急激に増大するのは、ボルト軸部のミーゼス応力分布を確認すると、 この近傍でボルト軸部での塑性化が進み始めることからそれが原因と考えられる。なお、 ここで示した解析モデルでは円筒胴外側に配置される子午線方向の補強板をモデル化して いないが、この補強板は開口挙動に係わるフランジ近傍の曲げ変形を拘束する部材になる ため、評価目的に応じて補強板のモデル化の有無を検討した方が良いと考えられる。また、 ここで示した荷重条件以外に温度荷重 20~400 ℃、圧力荷重 0~1.2 MPa の範囲を目安と して、温度荷重を 20 ℃ 一定で圧力荷重を漸増載荷、温度荷重を 20 ℃ から 100 ℃ ヘ増加 させながら圧力荷重を漸増載荷、温度荷重を 20 ℃ から 200 ℃ へ増加させながら圧力荷重 を漸増載荷する等のパラメータスタディを実施したところ、他のケースでも同様な開口量 の増加傾向を示すことが分かった。

以上をまとめると次のようになる。フランジ部閉じ込め性能評価で留意すべきパラメー タを把握するため、代表部位として BWR 格納容器の中で最大規模の機械接合部であるト ップフランジ部を選定し、トップヘッド主フランジ周辺を対象とした弾塑性 FEM 解析に よる検討を実施した。検討の結果、フランジ部閉じ込め性能評価には、部材内の温度勾配、 ボルト軸の塑性化、補強板のモデル化等に留意する必要があることが分かった。

出典) 安全研究成果報告(中間)¹² 図 2.5.1.3 トップフランジ開口量の解析結果の概要 Fig.2.5.1.3 Outline of top flange opening analysis result

2.5.2 格納容器の局所温度に関する解析

炉心損傷を伴う重大事故時に圧力バウンダリが破損した場合には、高温の気体が格納容器に放出され、格納容器が局所的に高温となる可能性がある。格納容器の静的な荷重に関する事故進展解析を行う集中定数系の解析コードにおいては、格納容器は1つ又は数区画の体積として解析が行われており^{64,65,66}、空間平均での温度、圧力等を評価している^{67,68}。そこで更なる詳細な評価を行うことを目的に、炉心損傷を伴う重大事故時に圧力バウンダリが破損した場合における局所温度環境下での負荷を評価する。格納容器の局所温度の評価は、格納容器全体系評価と着目部位に焦点を当て、周辺構造を含めて解析を行う格納容器局所の温度を評価する。格納容器局所環境の評価の流れを図2.5.2.1に示す。

図 2.5.2.1 格納容器局所環境評価の流れ Fig.2.5.2.1 Flow of evaluation of local environment in containment vessels

(1) 事故シナリオの解析

炉心損傷を伴う重大事故のシナリオには、原子炉圧力容器が高圧で炉心損傷に至る可能 性のある、過渡事象+高圧注入失敗+減圧失敗のシーケンスがある。このシナリオは、先 行研究における確率論的リスク評価(PRA: Probabilistic Risk Assessment、以下「PRA」と いう。)によって示されたシナリオのひとつであり⁶⁹、圧力バウンダリが高圧かつ高温の 状態に長期間さらされるシナリオであり、圧力バウンダリの破損によって格納容器の温度 が局所的に上昇する可能性のあるシナリオである。このシナリオの緩和策として、燃料露 出後に、原子炉水位が、燃料有効長下端(BAF: Bottom of Active Fuel、以下「BAF」とい う。)に至る前の所定の水位に到達したと判断された時点において、逃し安全弁による減圧 操作を行い、これによって、圧力容器破損までに 2.0 MPa を下回るレベルにまで圧力容器 圧力を低下させることにより、高温の溶融デブリの液滴化による格納容器内飛散を抑制し、 格納容器雰囲気直接加熱(DCH: Direct Containment Heating、以下「DCH」という。)によ る格納容器機能喪失を防止することができることが示されている⁵⁸。ここでは、溶融物の リロケーションによって圧力容器の底部が破損するまでの期間において、上述のシナリオ に対する事故進展解析を実施し、圧力容器のバウンダリの詳細解析に必要な境界条件を設 定するための事故シナリオの特徴を整理した。解析の対象は、1,100 MW 級の BWR-5 プラ ントである。解析にはサンディア国立研究所で開発された事故進展解析コード MELCOR を用いた。主要な事故進展解析の結果を図 2.5.2.2 に示す。解析結果から起因事象発生後、 高圧系の注入に失敗することによって原子炉水位が低下することが分かる。この際、主蒸 気ラインは逃し安全弁の作動によって高温となる。この解析から、圧力容器上部ヘッド周 辺及び主蒸気配管におけるクリープ損傷について詳細な評価を行うための境界条件を取得 した。

図 2.5.2.2 MELCOR による事故進展解析の結果 Fig.2.5.2.2 Result of accident progression analysis using MELCOR

(2) 圧力容器内の局所流動の評価

汎用の三次元数値流体力学(CFD: Computational Fluid Dynamics、以下「CFD」という。) コード FLUENT®を用いて、圧力容器内の局所温度について詳細解析を行った。解析対象 の範囲は、(1)で実施した事故進展解析から、燃料が露出している状態となる起因事象発生 から約 1.1 時間後を起点として 1,800 s の解析とした。起因事象発生から約 1.2 時間後には DCH 対策のための減圧操作が行われると仮定する。CFD に与える境界条件は MELCOR の 解析結果を用いて設定した。具体的には、炉心の昇温に伴う炉心から圧力容器内の上部区 画へ移動する流体の質量流量及び気体温度、シュラウドを通じて加熱されるダウンカマか らダウンカマ上部区画への蒸気放出による質量流量及びエネルギーを境界条件とし、逃し 安全弁による気体の放出は質量流量境界を用いることとした。圧力容器バウンダリは各所 の厚みと材料を考慮したシェルとした。また、簡単のため放射性物質の沈着による発熱は 考慮しない。使用した解析メッシュ及び解析モデルを表 2.5.2.1 に示す。

CFD の解析結果を図 2.5.2.3 に示す。解析結果から炉心から高温の流体が圧力容器上部 に流入し、主蒸気配管を経て逃し弁から放出されている。重大事故時であることから定格 運転時とは異なる特徴的な流動形態となっている。定格運転時には、ドライヤスカートよ りも水位が高いことから、セパレータ上部を通過した気体はそのほとんどがドライヤへと 流入する。しかしながら、本シーケンスのように炉心水位がドライヤスカートよりも低い 場合には、セパレータ上部を通過した気体は圧損の比較的大きなドライヤよりもダウンカ マに流入しやすくなる結果となった。また、主蒸気配管、圧力容器上部ヘッドに接続する 配管及び圧力容器における構造物温度は炉心からの高温蒸気によって高温になるものの、 クリープ破損に至る前に、代替減圧設備による減圧によってクリープ損傷に至らない結果 となった。

表	2.5.2.1	圧力容器内 C	、FD 解析·	モデルの	諸元	
Table 2.5.2.1	Specific	cations of CFD	analysis 1	model for	oressure	vessels

解析モデル			
解析コード	FLUENT 18		
メッシュ数	約 1.4M		
乱流モデル	SST k-ω		
輻射モデル	Discrete Ordinate (DO)法 ⁷⁰		
圧力速度 連成手法	Pressure-based coupled		
作動流体	H2、H2Oの混合気体		
対象範囲	炉心、セパレータ、ドライヤ、蒸気ドーム、 ダウンカマ、主蒸気配管、圧力容器上部ヘッ ドに接続する配管		

(起因事象発生から約 1.2 時間後の圧力容器内の流線) (Streamline in pressure vessel about 1.2 hours after initiating event)

図 2.5.2.3 圧力容器内流動の解析結果 Fig.2.5.2.3 Analysis result of flow in pressure vessel

(3) 格納容器の局所温度上昇に関する整理及びシナリオの分析

圧力容器バウンダリの破損を仮定した場合について、その圧力容器バウンダリと格納容 器の各区画の対応を表 2.5.2.2 にまとめる。一般的に圧力バウンダリのうち、厚い鋼材であ る圧力容器本体がクリープ破損する可能性は小さいが、接続する配管や配管のガスケット 部などが破損する可能性はある。ただし、(2)で実施した圧力容器内の詳細な CFD 解析で は、代表的なシナリオにおいて、これらの破損の可能性が高くないことが確認された。し かし、シビアアクシデント現象、代表シナリオの選定等に不確実さがあることから圧力バ ウンダリからの漏えいの可能性を完全に否定することはできない。

また、圧力バウンダリからの漏えいが発生した場合においては、格納容器への負荷が大 きくなる可能性のある漏えいが数種類ある。具体的には BWR プラントの格納容器トップ ヘッド区画であり、以下の様な特徴がある。

格納容器トップヘッド区画は、

- バルクヘッドにより下部区画との雰囲気混合が制限された空間であり、区画体積が小 さいことから、この区画で高温気体が漏えいした場合には、短期間に温度上昇するこ とが予想される。
- ・ 格納容器の大型開口部であるトップヘッドフランジが位置している。
- 雰囲気温度を下げ、圧力を低下させるための格納容器スプレイが設置されているドラ

イウェル上部区画より高い位置にある区画であり、バルクヘッドによってドライウェ ル上部区画と区分されるため、格納容器スプレイによって直接的に冷却が行われない。

・ 東京電力(株)福島第一原子力発電所事故において、格納容器破損が発生した可能性 が指摘されている部位である^{71,72}。

以上の理由から、格納容器内の局所環境の評価を行うシナリオとして、圧力容器バウン ダリのうち、圧力容器上部に接続する配管である予備ノズル閉止フランジやスプレイノズ ル配管のフランジのガスケット部が損傷し、格納容器トップヘッド空間へ漏えいが発生し た場合を仮定することとした。

なお、格納容器の大型開口部であるトップヘッドフランジは、格納容器胴部と上鏡部が 分離可能な設計となっており、通常の運転中には有機性のシール材であるガスケットの二 重シールによって機密性が保たれている。新規制基準の審査においては、上限となる温度 及び圧力を定め、この温度及び圧力の範囲内においてシールによって機密性が保たれるこ と及びプラントを運用するための対策が取られている^{4,58}。本研究では、新規制基準で想 定した温度圧力を超えて、この範囲を局所的に逸脱した場合又は不測の事態においてシー ル材の機密性が保たれなかった場合を想定する。

表 2.5.2.2 圧力バウンダリとドライウェル区画の関係

 Table 2.5.2.2
 Relationship between RPV pressure boundary and drywell volume compartments

部位	圧力バウンダリの特徴と その破損モードの例	格納容器区画側の特徴	
① 格納容器上錄			
圧力容器上部 ヘッド壁面鋼材	炉心からの高温蒸気にさらされる箇所 で、クリープ破損の可能性	格納容器トップヘッド区画: 格納容器トップヘッドフランジが	
圧力容器上部 ヘッド接続配管	上記に加えて、圧力容器上部ヘッドに接 続する配管である予備ノズル閉止フラ ンジやスプレイノズル配管のフランジ のシール部からの漏えいの可能性	存在する。 ※上部反射構造による断熱あり	
② 格納容器ドライウェル上部空間			
主蒸気配管	高温蒸気に曝されるため、クリープ破損 の可能性(LOCA を除く)	上部ドライウェル区画: 格納容器側にも配管貫通部、機器	
主蒸気 逃し安全弁	フランジシール部からの漏えいの可能 性	搬入北等の脆弱部かある。圧力谷 器胴部は、生体遮蔽の内側のため、 配管が対象。	
③ 生体遮蔽との狭隙部			
圧力容器胴部	高温の炉心部とはシュラウド及びダウ ンカマ空間で隔てられ、高温蒸気にさら されない。	生体遮蔽内側区画: 圧力容器と生体遮蔽との狭隙部	
④ ペデスタル空間			
圧力容器下部	炉心露出の時期には一般的に水位があ り、高温蒸気にさらされない。事故進展 が十分進むと溶融デブリが落下するた め高温のデブリが接触する。	ペデスタル区画: ペデスタル壁面に囲まれた区画で あり、格納容器壁面からの距離が ある	

(4) 格納容器の局所環境評価(全体系)

(1)及び(2)の結果を用いて、燃料露出時に圧力バウンダリからの漏えいが発生した場合に おける格納容器の局所温度分布を評価するため CFD を用いた格納容器解析の解析メッシ ュを作成した。BWR-5 Mark II 改良型プラントの解析体系を図 2.5.2.4(a)、解析メッシュを 図 2.5.2.4(b)に示す。解析メッシュの作成には GAMBIT^(注7)、ANSYS Meshing を用いて、 FLUENT 用の多面体メッシュを作成した。解析メッシュ数は、約 1,200,000 である

本モデルで再現した格納容器の空間は、格納容器トップヘッド、ドライウェル、ペデス タルの空間部及びベント管のドライウェル側の空間部とした。格納容器トップヘッドとド ライウェルの間はバルクヘッドで区切られている。バルクヘッドには、周方向に4カ所に マンホールが設置されており、格納容器トップヘッド部と格納容器ドライウェル上部(円 錐部)が接続されている。このバルクヘッドのマンホールは、配管等を貫通させたり、閉 止板によって閉塞させたり、圧力均衡のため開放状態とするなどプラントによって運用が 異なる。本評価では、周方向に90度ごとにマンホールが設置され、開状態で運用されると 仮定した。

圧力容器壁面からの発熱については、(2)の解析結果を参考に水位の形成される面積(圧 力容器中部から下部)と形成されない面積(圧力容器中部から上部)に異なる境界条件を 設定した。なお、圧力容器が高温である場合には、格納容器気相部への輻射による伝熱が 考えられるが、圧力容器は生体遮蔽、ミラーインシュレータ等の断熱材に囲われているこ とから、この構造物による遮熱を考慮することとした。圧力容器胴部周辺はコンクリート 製の生体遮蔽に囲まれていることから、圧力容器胴部と生体遮蔽との狭隘部を考慮し、狭 隘部での温度上昇に伴って生じる上昇流によって格納容器上部が加温されるようモデル化 した。また、圧力容器上部ヘッドは、ミラーインシュレータと呼ばれ輻射熱を反射しやす い金属の多重構造による遮熱性に優れた構造物で囲われていることから、ミラーインシュ レータの格納容器側の側面をモデル化し、この面に5層程度の反射金属材による輻射低減 を仮定した境界条件を考慮した。なお、本モデルでは、気相部に着目するためサプレッシ ョンチェンバー及びベント管の液相部は省略しているが、(1)の結果を参考に境界条件を定 めた。

解析に用いた物理モデルを、表 2.5.2.3 にまとめる。作動流体は水素、窒素及び蒸気の 3 成分とし、乱流モデルは SST k-oo 流を用いた。圧力容器から漏えいした蒸気は、格納容器 を加熱加圧するが、この際、格納容器では空間、壁面において蒸気が凝縮し、凝縮の際に は潜熱による除熱が生じる。この蒸気の凝縮挙動は格納容器内の温度分布に大きな影響を 及ぼす。CFD では、この凝縮挙動による相変化の扱いに注意する必要がある。本解析にお いて、蒸気の凝縮については VOF (Volume of Fluid) モデルの沸騰凝縮 (Evaporation-condensation)機能に含まれる Lee (リー) モデル ⁷³ を参考にし、凝縮された液相は簡単の

⁽注7) ANSYS 社のメッシュ生成ツール

ため解析領域から取り除かれるものとした。このモデルは、飽和蒸気温度 T_{sat} とセル温度Tの差から、式(2.5.2.1)のとおり凝縮量 m_{al} を求める。

$$m_{gl} = C_1 \alpha_{\nu} \rho_{\nu} \frac{T_{\text{sat}} - T}{T_{\text{sat}}} \cdots (2.5.2.1)$$

ここで α_v は蒸気割合、 ρ_v は蒸気密度、 C_1 は蒸気凝縮速度係数である。なお、凝縮に伴う 熱量 Q_{con} は凝縮の潜熱 h_{fg} を用いて、以下の式(2.5.2.2)で算出し、気体の存在するセルに加 えるようモデル化した。

$$Q_{con} = m_{gl} h_{fg} \cdots (2.5.2.2)$$

なお、凝縮した水の質量は、液相としては扱われず計算から除外されることとしている。 境界条件を表 2.5.2.4 に示す。格納容器の加温加圧の要因となるヒートソースは、圧力バ ウンダリから漏えいするガス及び圧力容器壁面からの発熱である。漏えいするガスの条件 は、(1)の MELCOR 解析から漏えい流量、温度及びガス分率を定めた。圧力容器壁面から の発熱は MELCOR 解析の結果から壁面温度を設定し、熱伝達率を 0.64 W/m²/K とした。

これに対してヒートシンクとなる境界条件は、格納容器外部への放熱、サプレッション チェンバーへのガス流入がある。格納容器外部への放熱は、格納容器壁面の外側を293K、 熱伝達率を10W/m²/Kと仮定し、格納容器壁面金属及びその外に接する建屋コンクリート について、それらの厚み及び構造内の熱伝導を考慮した。サプレッションチェンバーへの ガス流入は、ベント管の液面を仮定した境界に、(1)で評価したドライウェルとサプレッシ ョンプール差圧に応じた、圧力依存の流量境界条件を定めた。

格納容器の初期条件は表 2.5.2.5 に示すとおり、事故進展解析の結果から漏えいが生じる 直前の格納容器の平均値を用いた。

全体系解析の解析時間は、(1)の解析結果を参考に、圧力容器の圧力が格納容器圧力とお おむね均衡し、高温流体の流出量が小さくなる 1,800 s とした。格納容器空間の領域ごと の面積平均温度を図 2.5.2.5 に示す。頂部は 1,800 s で約 473 K 付近に到達しているのが分 かる。格納容器バウンダリの詳細な温度分布は図 2.5.2.6 に示すとおり、1,800 s においては 格納容器の内壁面は局部的に 600 K を上回る場合があることが分かる。これは、漏えいが 格納容器壁面近傍で発生した場合においては、急激に気相温度が上昇するためである(図 2.5.2.7)。図 2.5.2.8 の結果のように、漏えい初期は格納容器バルク、壁面への蓄熱によって 温度の上昇が限定的であるが、時間の経過に従って格納容器トップヘッド付近、さらには ドライウェル空間の温度上昇が伝播してゆく挙動が見てとれる。

結果として、

・ シビアアクシデント時に圧力容器上部ヘッドに微少な漏えいがあるシナリオにおいて、 格納容器トップヘッドのうち上鏡部は過温破損のクライテリアとされる 473 K ⁵⁸ を上 回る領域が発生することが確認された(図 2.5.2.6)。

.

•

- 格納容器トップヘッドの壁面の温度の比較の結果、格納容器上鏡部と円柱部の領域平 均であっても、70K程度の温度差が生じた(図 2.5.2.5)。
 - 格納容器トップヘッド区画は、前述のとおりバルクヘッドで区画が区切られることか ら、気相温度にドライウェルと大きな温度差がついた(図 2.5.2.7)。

(a) Containment model

(b) Analysis Mesh

図 2.5.2.4 BWR-5 Mark-II 格納容器の CFD モデル

Fig.2.5.2.4 CFD model for BWR-5 Mark-II Containment

表 2.5.2.3 全体系解析モデルの物理モデル

 Table 2.5.2.3
 Physical models for whole containment analysis

流体	
乱流モデル	SST k-ω
流体の構成要素	H ₂ O, N ₂ , H ₂
密度	理想気体として扱う
熱容量	混合気体として扱う
熱伝導率	質量荷重平均として扱う
粘性係数	質量荷重平均として扱う
輻射	
輻射モデル	Discrete Ordinate(DO)法 ⁷⁰

表 2.5.2.4 全体系解析の境界条件

格納容器壁面	
外側温度	293.0 K
熱伝達係数	10 W/m ² /K
圧力容器	
温度	600-800 K*
熱伝達係数	0.64 W/m ² /K
サプレッションプール	
サプレッションプール 圧力	260-330 kPa (abs)
サプレッションプール 水頭	3.0 kPa
圧力バウンダリからの漏;	えい
流入流量	約 3.6 kg/s
流入温度	970 K
ガス組成	H_2O, H_2

 Table 2.5.2.4
 Boundary conditions of PCV for whole containment analysis

* 事故進展解析の結果を基に温度分布を定めた。

表 2.5.2.5 全体系解析の初期条件

Table 2.5.2.5 Initial conditions of PCV for whole containment analysis

格納容器圧力	260 kPa (abs)
格納容器温度	320 K
ガス組成	N ₂ 100%

出典) Kojo, Hotta, SAMMI2020-1040⁷⁴ 図 2.5.2.6 格納容器内壁面における 1800 s 時点での温度 Fig.2.5.2.6 Inner wall temperature distribution at 1800 s

注) Probe1,2,3 は格納容器内の地点を意味する(図中の格納容器模式図参照)

(5) 格納容器の局所環境評価(局所部)

ここで格納容器のより局所の温度について考えるため、より詳細な構造を含む温度分布 についての解析を実施した。また、この局所部での解析では、2.5.1 で実施した格納容器ト ップヘッドの開口(以下、「リフトアップ」という。)評価結果を参考に、一定のリフトア ップがあった場合を想定した場合を含めた構造物の温度挙動を分析した。

解析モデルは、格納容器トップヘッドフランジ部周辺の詳細解析を実施するために、格 納容器全体系の三次元メッシュモデルを参考に着目する圧力容器バウンダリの漏えい箇所 付近から、トップヘッドフランジ周囲までを評価対象とした二次元解析メッシュを作成し た(図 2.5.2.9(a))。バルクヘッドから下側の領域は仮想領域とし、格納容器全体系の三次元 メッシュモデルと格納容器内容積が等しくなるように調整した。解析モデルの総メッシュ 数は約 185,000 である。フランジのリフトアップは、フランジ部の内側開口幅が 2.5.1 の結 果のうち 200 °C、2Pd 付近の内側開口を参考に 2.0 mm となるようモデル化した(図 2.5.2.9(b))。リフトアップによって生じるギャップ空間の解析体系は、ギャップの内側(格 納容器側)開口部の高さ 2.0 mm に対して 10 メッシュとし、ギャップの外側(格納容器外 側・建屋側)開口部に進むに従って高さが小さくなり、ギャップの外側部では、4 メッシ ュ程度となるようモデル化した。このギャップ空間には、実機においては気密性を担保す るための樹脂性のシール材であるフランジガスケットが二重に設置されているが、本解析 ではこのシール材を仮定する代わりに、ギャップの外側(格納容器外側・建屋側)の境界 条件を変化させた解析を実施した。

解析条件の物理モデル、初期条件は全体モデルと同じである。境界条件は、圧力容器上 部からの漏えいを(4)と同等となるように仮定し、格納容器外壁面は全体モデルと同様の温 度条件とした。三次元解析との主要な差異は、バルクヘッド上のマンホールには多孔質体 を模擬した境界条件を設定し、三次元形状に即した圧力損失を仮定したこと、トップヘッ ドフランジの構造物はリブの厚みを考慮していること、狭隘部での安定な解析を実現する ため、凝縮モデルに全体解析で使用したモデルに加えて汎用 CFD コードにおけるデフォ ルトの凝縮モデルを用いている点である。

上述のとおり、ギャップの外側の条件を変更して、漏えいがないケース、設計漏えいと して 0.5% day 相当⁷⁵の流量境界及び圧力境界の3ケースの解析を実施した。なお、引用 元の設計漏えいの 0.5%/day は、格納容器全体からの漏えい量であるが、本評価では保守的 に全量を解析のギャップから漏えいするように流量を定めた。また、圧力境界のケースで は、格納容器の閉止ガスケットが一部破損していた状況を仮定したような非常に保守的な 仮定である。

1,800 s 後のトップヘッド区画内の流動挙動は図 2.5.2.10 に示すとおり、上部で渦を形成 し、円柱部では壁面の冷却により、壁面側で下降流が形成される。この傾向はどのケース でも同じであった。壁面で冷却されながら、フランジ部付近の空間は 600 K 程度の混合気 にさらされる。この高温の混合気の局所構造への影響は、格納容器トップヘッド外側の境 界条件の違いによって異なった。漏えいがないケースと漏えいのあるケースを比較すると、 漏えいがある場合(0.5%/day のケース及び圧力境界のケース)には、格納容器壁面付近を 下降してきた高温蒸気が、ギャップ部分に吸い込まれる流動が見て取れる(図 2.5.2.11)が、 漏えいがない場合には、ギャップへの流体の流入はほぼ存在しない。漏えいがない場合は 熱伝導でフランジ構造の温度が上昇し、1,800 s で内側ガスケット付近の構造温度が 370 K 程度まで上昇した。また、0.5%/day のケースでは、ギャップへの高温流体の流入は見られ るものの、漏えいのないケースの解析結果と同程度の構造温度となった。一方で、漏えい 量の多い圧力境界のケースでは温度上昇は顕著であり、内側ガスケットの部分での温度が 650 K を超えた。

以上の結果から、圧力バウンダリからの高温高圧条件での漏えいを仮定した場合、格納 容器のトップヘッドが一定程度リフトアップした状態においても、設計漏えい相当の漏え い量においては、格納容器トップヘッドフランジのガスケットの温度が局所的に限界温度 に到達しない結果を得た。ただし、シール部が損傷したような状況では、局所的に限界温 度を超える可能性は否定できない。

Fig.2.5.2.9 Detailed CFD model

図 2.5.2.10 トップヘッド区画の 1,800 s におけるガス温度と流速

Fig.2.5.2.10 Gas temperature and velocity in top head at 1,800 s

Fig.2.5.2.11 Top head flange temperature

3. 結論

3.1 成果の要点

重大事故時の格納容器の終局的耐力評価に関し、以下の成果を得た。

3.1.1 局部破損に関わる要素試験

(1) 格納容器鋼材の局部破損の材料データの取得

国内の格納容器に使用されている主要な鋼材に対して、切欠付試験片を用いた系統的な 引張試験を実施し、局部破損の開始条件を示す材料データを取得した。材料データは、応 力三軸度に対する破損ひずみを現した限界ひずみ線図及び破損する応力状態を表した限界 応力指標線図の形式により整理した。限界応力指標線図により限界条件を表すことができ ることを示したのは、本研究独自の成果である。

(2) 格納容器鋼材の破損形態に関わる知見の取得

実機の耐圧殻に近い形状の切欠付平板試験片において、切欠の曲率が大きな場合、切欠 断面全体がせん断破壊を起こした。切欠の曲率が小さな、鋭い切欠きでは、切欠底の表面 から破損(亀裂)が開始した。なお、引張型延性破壊を生じる切欠付丸棒試験では、よく 知られているように切欠内部の中心から破損が開始する。本研究で示した限界ひずみ・応 力指標線図は、それぞれの試験片における破損の開始点を表している。

(3) ASME VIII-2 の限界ひずみ線図の保守性の評価

局部破損の設計手法として、参考にすべき設計規格としては、原子力プラント用ではないが、ボイラや化学プラントの設計規格である ASME VIII-2 の限界ひずみ線図がある。同線図は、引張型延性破壊の特性を代表する切欠付丸棒試験片の試験データに基づいて作成されたものである。格納容器鋼材の切欠付丸棒試験による限界ひずみ線図は、ASME VIII-2 の限界ひずみ線図を上回ることを確認した³⁷。

大きな曲率の切欠付平板試験片の限界ひずみ線図は、切欠付丸棒試験片よりも低ひずみ 側になるが、ASME VIII-2 の限界ひずみ線図を同じく上回った^{41,42}。小さな曲率の切欠 付平板試験片の限界ひずみ線図(切欠底の破損)は、低応力三軸度(≈0.6)、低ひずみ(≈ 0.4~0.6)にあり、ASME VIII-2 の限界ひずみ線図を下回った^{41,42}。切欠底が破損した後、 貫通するまでの余裕は、部材の板厚により異なると予想されるが、局部破損の開始点と見 なすことは保守的評価となる。

3.1.2 終局的耐力評価手法の検討

(1) 格納容器破損防止対策の有効性評価に対する局部破損の裕度評価

有効性評価においては、格納容器の評価温度及び圧力を、それぞれ 200 °C 及び 2Pd(最高使用圧力)と設定している、格納容器の構造不連続部を模した試験体とみなすことがで

きる切欠付平板試験片の最大公称応力は、2Pd 条件に対応する 2/3Su(設計応力強さ)を上回っていることを確認した⁴¹。鋭い切欠の場合を含めて、切欠付平板試験片が破損するのは、最大公称応力以後のひずみ域であり、局部破損は、2Pd より大きい圧力において生じると判断される。

(2) 限界ひずみ線図及び限界応力指標線図を用いた局部破損評価法の整備

格納容器鋼材の限界ひずみ線図及び応力指標線図を用いて、実機相当の格納容器モデル の引張型延性破壊の局部破損評価を実施することができる³⁷。局部破損評価では、まず実 機相当モデルの弾塑性解析により、構造不連続部のひずみ又は応力指標を求め、限界線図 に当てはめて、局部破損の判定を行う。PWRの鋼製格納容器について、簡易評価を実施し た事例³⁷を示した。なお、試験において限界ひずみ線図が取得できない低応力三軸度域(約 0.8 以下)に評価点がある場合には、ASME VIII-2 の設計限界ひずみ線図を用いることに より保守的に評価することができる^{41,42}。

(3) 損傷力学による局部破損の詳細解析法の整備

局部破損の詳細評価方法として、損傷の進行を予測する損傷力学解析コードを整備した。 損傷力学解析コードは、試験によって得られたボイドの発生条件を、GT モデル^{49,76}に組 み込んだ独自のものである。損傷力学解析コードにて、切欠試験片の破損の進行及び CT 試験片の亀裂進展を良好に再現できた^{37,40,54}。

3.1.3 電気ペネトレーションのシール挙動試験

国内 BWR 格納容器に用いられている低電圧用モジュールを対象として、電気ペネトレ ーションのシール挙動試験を実施し、漏えいに対する限界条件を取得した。電気ペネトレ ーションは350℃以上で漏えいしており、格納容器側の端子盤からは距離があることを考 慮すると、有効性評価において格納容器の限界値として設定している200℃に対し十分に 余裕があることを確認した。

3.1.4 局所環境を考慮した終局的耐力評価

(1) トップフランジの開口評価

フランジ部閉じ込め性能評価で留意すべきパラメータを把握するため、代表部位として BWR 格納容器の中で最大規模の機械接合部であるトップフランジ部を選定し、トップへ ッド主フランジ周辺を対象とした三次元非線形構造解析による検討を実施した。検討の結 果、フランジ部閉じ込め性能評価には、部材内の温度勾配、ボルト軸の塑性化、補強板の モデル化等に留意する必要があることが分かった。

(2) 局所温度上昇を考慮した熱流動解析

格納容器の局所的な温度上昇について特徴を把握するため、事故進展解析コード MELCOR 及び三次元熱流動解析コード FLUENT を用いた解析を実施した。発生する可能 性は小さいものの、圧力容器頂部における圧力バウンダリの損傷が生じたシナリオを考慮 した場合には、格納容器トップヘッド区画では 473 K(約 200 ℃)を超える領域がある結 果を得た⁷⁴。この条件下において、格納容器のトップヘッドが一定程度リフトアップした 状態においても、設計漏えい相当の一定の漏えい量においては、格納容器トップヘッドフ ランジのガスケットの温度が局所的に限界温度に到達しない結果を得た⁷⁴。ただし、シー ル部が損傷したような状況では、局所的に限界温度を超える可能性は否定できない。

3.2 目的の達成状況

成果の要点に示したように、格納容器の終局的耐力の評価手法及び限界条件に関する重 要な複数の知見を取得し、知見の蓄積という目的を高い水準で達成した。

3.3 成果の公表等

3.3.5 原子力規制庁の職員が著者に含まれる公表

- (1) 論文(査読付)
- H. Nakamura, "Consideration of a stress-based criterion for local failure and its implementation in a damage mechanics model," *ASME, Journal of pressure vessel technology*, vol. 141, p. 041405, 2019.
- ② H. Nakamura, K. Arai, M. Kikuchi, "Experimental evaluation of local failure criterion and its implementation in a damage mechanics model," *International journal of pressure vessels and piping*, 2021.
- (2) 国際会議のプロシーディング(査読付)
- R. Kojo, A. Hotta, "Analytical Approach to Measurement of Local and Bulk Temperatures under High Temperature Accident Sequences of BWRs", SAMMI-2020-1040, OECD/NEA Specialist Workshop on Advanced Measurement Method and Instrumentation for enhancing Severe Accident Management in an NPP addressing Emergency, Stabilization and Long-term Recovery Phase, December 7-10, 2020
- (3) その他
- 安全研究成果報告(中間)、"重大事故時の原子炉格納容器の終局的耐力評価に関する研究"、平成 31 年 4 月
- ② 荒井,中村,菊池, "原子炉格納容器鋼材の局部破損条件に関する検討(溶接部の切欠 付丸棒及び母材の切欠付平板試験片の引張試験)," 日本機械学会 M&M2021 材料力

学カンファレンス, オンライン, 2021.

③ 中村, 荒井, 菊池, "原子炉格納容器鋼材の局部破損に関する検討(ライナ鋼材の三軸 応力における限界特性)," 日本機械学会 M&M2021 材料力学カンファレンス, オンラ イン, 2021.

3.3.6 委託先による公表

委託先なし

3.4 成果の活用等

重大事故時における格納容器破損防止対策の有効性評価における限界圧力・温度に対す る裕度を改めて評価したことから、規制業務への当面の反映事項はないが、将来的にさら に詳細な評価が必要となった場合には、本研究成果の活用が可能である。局部破損に関す る系統的な試験データに基づく評価手法については、格納容器本体の終局的な耐力、局部 破損に対する裕度を定量的に評価する場合に適用できる。また、電気ペネトレーションに ついて取得した実機相当モジュールの限界温度の試験値により、有効性評価における評価 温度等に対する裕度を改めて把握できる。さらに、格納容器の局所構造の温度評価方法に ついては、確率論的リスク評価の高度化により有効性評価におけるシナリオの選定の高度 化に活用できる。本研究による格納容器の耐力等の終局強度に関する知見を勘案し、格納 容器の裕度を定量的に勘案した確率論的リスク評価を高度化することにより、格納容器機 能喪失頻度の具体的なリスクの定量化ができることで、リスク情報を活用した規制検査活 動における評価の精度向上に資すると考えられる。

3.5 今後の課題等

本研究では、局部破損の評価手法を整備したが、令和2年度の計画変更^(注8)にて、研究項 目を再考し、実機相当モデルに対する終局的耐力評価を実施しなかった。本研究における 材料試験により、局部破損は、有効性評価における限界圧力(2Pd)より大きい領域で生じ ると予想される。しかしながら、実機相当モデルを用いて種々の構造不連続部における局 所破損限界を評価し、最弱部の破損条件を把握しておくことは、事故時のマネジメント等 に意味がある。

切欠付平板試験において、鋭い切欠があった場合には、比較的低いひずみ域で亀裂が発 生することが示された。このことから、格納容器の溶接部において面状欠陥等が存在した 場合には、局部破損限界が相対的に低下することが予想される。この影響を定量的に把握 するためには、実機相当モデルの解析あるいは試験によって、欠陥を想定した局部破損評 価を実施する必要がある。また、亀裂発生の後に、板厚貫通までの余裕がどの程度あるの

⁽注8) 令和2 年度安全研究計画にて、当初計画した実機相当モデルの局部破損による終局的耐力評価を中止した。これは、計画時に想定していなかったせん断型の延性破壊に研究資源を割り当てるためであった。

か、亀裂進展解析又は試験により定量的に評価しておくことも、欠陥等の存在のリスクを 把握する上で重要である。

実機の耐圧部の構造不連続部を模したとみなせる切欠付平板試験片の引張試験(鋭い切 欠を除く)における破損形態上の特徴は、典型的な引張型延性破壊を起こす丸棒試験片と は異なり、せん断型延性破壊(又は脆性破壊)を起こして破損することである。これは平 板試験片では、丸棒試験片よりも変形に対する拘束効果が大きいためと思われるが、実機 耐圧部の破損形態も平板試験片と同様であろう。せん断延性破壊における限界ひずみ又は 限界応力指標が、引張型延性破壊(丸棒試験片)よりも低下することは、本研究において 示した通りである。亀裂材の破損を扱う破壊力学的手法を含め、従来、せん断型の延性破 壊に対する研究は少ない。格納容器に限らず構造物の終局的な破損を論ずる場合は、せん 断型の延性破壊は考慮すべき破損モードであり、今後、従来の引張型の延性破壊を想定し た評価の問題点等を含めた知見の蓄積を図る必要がある。

局部破損の詳細解析法として整備した損傷力学解析手法は、引張型の延性破壊及び亀裂 を含む試験片の破損過程をよく再現した。今後、亀裂材を含む大型の部材等に対する適用 性の検討が望まれる。さらに、せん断型の延性破壊に関わる有効な損傷モデルの検討が、 実機相当モデルの破損過程を評価する上で重要である。

電気ペネトレーションのシール挙動試験では、実機相当試験体の漏えい温度は350 ℃ 以上であり、有効性評価における想定環境と比べて大きな余裕があることを確認した。な お、本試験では樹脂の熱分解時の発生ガスはループ内で除去しているが、発生ガスの樹脂 の劣化に及ぼす影響については、今後の知見の蓄積が望まれる。

コンクリート製格納容器の破壊挙動については、現在の解析技術により全体的な挙動の 把握はおおむね可能と思われたが、コンクリート製格納容器におけるライナの局部損傷の 解析的評価に関しては、解析対象とする試験に関する詳細情報の入手性の問題から十分な 検討が行うことができなかった。今後、解析的評価が十分に実施可能な試験データ等に関 する情報収集を行う必要があると考えられた。

局所温度の解析については、本評価は単一の厳しいシナリオに基づき実施したが、確 率論に基づくシナリオを中心にプラント条件を設定し、さらに格納容器内気流場及び構 造・熱伝導応答に関する主要因子に関する不確かさを考慮する統計的評価を用いることに よって、原子炉ウェル注水など、実機プラントにおいて検討されている対策の有効性の評 価に成果を活用することが期待される。

91

参考文献一覧

- 1 原子力規制委員会, "実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈", 原規技発第 2106233 号, 改正 令和 3 年 6 月 23 日.
- 2 財団法人原子力発電技術機構,平成9年度溶接部熱影響部信頼性実証試験(原子炉格納容器),1997.
- 3 財団法人原子力発電技術機構,平成 14 年度重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する報告書,2003.
- 4 財団法人原子力発電技術機構,重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 平成15年3月,2003.
- 5 JSME S NX2-2014 発電用原子力設備規格 シビアアクシデント時の構造健全性評価ガ イド(BWR 鋼製格納容器編),一般社団法人 日本機械学会,2014.
- 6 Regulatory Guide1.216 "Containment Structural Integrity Evaluation for Internal Pressure Loadings above Design-Basis Pressure", USNRC, 2010.
- 7 ASME Boiler & Pressure Vessel Code, Section VIII, Division 2 Alternative Rules, Article 5.3 Protection Against Local Failure, The American Society of Mechanical Engineers, 2007.
- 8 日本原子力発電株式会社, "東海第二発電所 原子炉格納容器の限界温度・圧力".
- 9 四国電力株式会社, "伊方3号機 原子炉格納容器の温度及び圧力に関する評価".
- 10 東京電力ホールディングス株式会社, "柏崎刈羽原子力発電所 6 号機及び 7 号機 原 子炉格納容器の限界温度・圧力に関する評価結果".
- 11 関西電力株式会社, "大飯発電所 3 号機 原子炉格納容器の温度及び圧力に関する評価".
- 12 中村 均, 菊池 正明, 小澤 正義, 小城 烈, 堀田 亮年, 森谷 寛, 堀野 知志, 重大事 故時の原子炉格納容器の終局的耐力評価に関する研究、安全研究成果報告(中間), 原子力規制庁, 2019.
- 13 Sandia national laboratories, NUREG/CR-6810, Overpressurization test of a 1:4-scale prestressed concrete containment vessel model, U.S. nuclear regulatory commission, 2003.
- 14 財団法人原子力発電技術機構,平成 13 年度重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する報告書,2002.
- 15 Sandia national laboratories, NUREG/CR-6906, Containment integrity research at sandia national laboratories, U.S. Nuclear regulatory commission, 2006.
- 16 Sandia national laboratories, NUREG/CR-5679, Design, instrumentation, and testing of a steel containment vessel model, U.S. nuclear regulatory commission, 2000.

- 17 Construction Technology Laboratories, Inc., NP-4867SP, Concrete containment tests, phase 2: structural elements with liner plates, EPRI, 1987.
- 18 Construction Technology Laboratories, Inc., NP-6260-SD, Criteria and Guidelines for Predicting Concrete Containment Leakage, EPRI, 1989.
- 19 R. A. Dameron, R. S. Dunham, Y. R. Rashid and H. T. Tang, "Conclusions of the EPRI Concrete Containment Research Program," *Nuclear Engineering and Design*, vol. 125, pp. 41-55, 1991.
- 20 FINAS/STAR User Manual, Version2015r170210, Tokyo, JAPAN: ITOCHU Techno-Solutions Corporation, 2017.
- 21 福浦 尚之, "4 方向ひび割れを有する鉄筋コンクリート要素の履歴依存型構成モデ ル," 東京大学博士論文, 1999.
- 22 日本建築学会,鉄筋コンクリート造建物の靭性保証型耐震設計指針・同解説,1999.
- 23 伊藤忠テクノソリューションズ株式会社, コンクリート製格納容器試験体の破損解 析業務成果報告書, 2020.
- 24 JSME S NX4-2015 発電用原子力設備規格 シビアアクシデント時の構造健全性評価ガ イドライン(PWR 鋼製格納容器編),一般社団法人日本機械学会,2015.
- 25 JSME S NX3-2015 発電用原子力設備規格 シビアアクシデント時の構造健全性評価ガ イドライン(PWR プレストレストコンクリート製格納容器編), 一般社団法人日本機 械学会, 2015.
- 26 JSME S NX5-2018 発電用原子力設備規格 シビアアクシデント時の構造健全性評価ガ イドライン(BWR 鉄筋コンクリート製格納容器編),一般社団法人日本機械学会,2018.
- D. A. Osage, ASME Section VIII Division 2 Criteria and Commentary, ASME PTB-1-2009, The American Society of Mechanical Engineers, 2009.
- 28 P. W. Bridgman, "Studies in Large Plastic Flow and Fracture," *Mc-GRAWHill, New York*, pp. 9-37, 1952.
- 29 J. W. Hancock and S. C. Mackenzie, "On the Mechanisms of Ductile Failure in High-Strength Steel Subjected to Multi-Axial Stress-States," *Journal of the Mechanics and Physics of Solids*, vol. 24, no. 2-3, pp. 147-169, 1976.
- 30 D. Burgreen, Design Methods for Power Plant Structures, Jamaica, N.Y.: C.P. Press, 1975.
- 31 M. Prager, "Strain Limits for Pressure Vessel Materials," in *PVRC/MPC, ASME Meeting*, Tampa, Florida, 2004.
- 32 API579-1/ASME FFS-1 Fitness-for-Service, American Petroleum Institute / American Society of Mechanical Engineers, 2019.

- 33 成田 慎太郎, 永田 徹也, 大阪 雅昭, 山崎 達広, "原子炉格納容器試験体の弾塑性解 析 FEM を用いた解析評価," 日本機械学会 M&M2013(材料力学カンファレンス)講 演論文集、OS1417, 2013.
- 34 JISG 3118:2020 中·常温圧力容器用炭素鋼鋼板,日本産業標準調査会,2020.
- 35 JIS G 3115:2016 圧力容器用鋼板, 日本産業標準調査会, 2016.
- 36 ASTM A516 / A516M 17 Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower- Temperature Service, ASTM International, 2017.
- 37 H. Nakamura, K. Arai and M. Kikuchi, "Experimental evaluation of local failure criterion and its implementation in a damage mechanics model," *International journal of pressure vessels and piping*, no. 194, p. 104488, 2021.
- 38 H. Shimanuki, T. Inoue and M. Toyoda, "Effect of Stress Triaxiality and Strain Rate on Ductile Fracture Initiation in Steel," *Conference proceedings the Society of Naval Architects of Japan*, no. 186, pp. 475-483, 1999.
- 39 A. Needleman, "A continuum model for void nucleation by inclusion debonding," *Journal of Applied Machanics*, vol. 54, pp. 525-531, 1987.
- 40 H. Nakamura, "Consideration of a stress-based criterion for local failure and its implementation in a damage mechanics model," *ASME, Journal of pressure vessel technology,* vol. 141, p. 041405, 2019.
- 41 荒井 健作,中村 均,菊池 正明,"原子炉格納容器鋼材の局部破損条件に関する検討 (溶接部の切欠付丸棒及び母材の切欠付平板試験片の引張試験)," 日本機械学会 M&M2021 材料力学カンファレンス,オンライン,2021.
- 42 中村 均, 荒井 健作, 菊池 正明, "原子炉格納容器鋼材の局部破損に関する検討(ラ イナ鋼材の三軸応力における限界特性),"日本機械学会 M&M2021 材料力学カンフ ァレンス, オンライン, 2021.
- 43 JSME S NC1-2005/2007 発電用原子力設備規格 設計・建設規格(2005 年版(2007 年 版追補を含む)) 第 I 編 軽水炉規格, 一般社団法人日本機械学会.
- 44 原子力規制委員会,"実用発電用原子炉に係る炉心損傷防止対策及び格納容器破損防止対策の有効性評価に関するガイド",原規技発第1711294 号,改正 平成29年11月 29日.
- 45 W. H. Swift, "Plastic Instability under Plane Stress," *Journal of the Mechanics and Physics of Solids*, vol. 1, no. 1, pp. 1-18, 1952.
- 46 J. W. Hancock and D. K. Brown, "On the role of strain and stress state in ductile failure," *Journal of the mechanics and physics of solids,* vol. 31, no. 1, pp. 1-24, 1983.

- 47 安 圭栢, 吉田 聡司, 大畑 充, 豊田 政男, "構造用鋼の切欠き底表面からの延性亀裂 発生特性に及ぼす強度的不均一の影響," *日本造船学会誌*, 863 巻, p. 16, 2001.
- 48 R. A. Dameron, R. S. Dunham, Y. R. Rashid and H. T. Tang, "Conclusions of the EPRI Concreate Containment Research Program," *Nuclear Engineering and Design*, vol. 125, pp. 41-55, 1991.
- 49 A. L. Gurson, "Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1-Yield Criteria and Flow Rules for Porous Ductile Media," ASME, Journal of Engineering Materials and Technology, vol. 99, pp. 2-15, 1977.
- 50 C. C. Chu and A. Needleman, "Void Nucleation Effects in Biaxially Stretched Sheets," *Journal* of Engineering Materials and Technology, vol. 102, pp. 249-256, 1980.
- 51 V. Tvergaard, "Material Failure by Void Growth to Coalescence," Advances in Applied Mechanics, vol. 27, pp. 83-151, 1990.
- 52 T. L. Anderson, "Ductile Fracture," *Fracture Mechanics: Fundamentals and Application, 3rd Edtion(Japanese)*, Morikita, 2011.
- 53 T. Coppola, F. Iob and F. Campanelli, "Critical review of ductile fracture criteria for steels," *Procedia Materials Science, 20th European Conference on Fracture (ECF20),* vol. 3, pp. 1548-1553, 2014.
- 54 H. Nakamura, K. Arai and M. Kikuchi, "A local stress approach for ductile crack propagation: material tests and damage model demonstration," *Engineering fracture mechanics*, 投稿中.
- 55 渡部 厚,山田 和矢,大崎 正彦, "シビアアクシデント時の格納容器貫通部リークパ スでの FP エアロゾル捕集効果(I) 貫通部の損傷クライテリア," 日本原子力学会和文 論文誌, 2009.
- 56 日本原子力発電株式会社,東海第二発電所運転期間延長認可申請書(発電用原子炉施設の運転の期間の延長)(添付書類二:東海第二発電所劣化状況評価書).
- 57 日本原子力発電株式会社,東海第二発電所 発電用原子炉設置変更許可申請書(発電 用原子炉施設の変更)本文及び添付書類の一部変更.
- 58 東京電力ホールディングス株式会社,柏崎刈羽原子力発電所原子炉設置変更許可申 請書(6号及び7号原子炉施設の変更)本文及び添付書類の一部補正について.
- 59 北陸電力株式会社,志賀原子力発電所用原子炉設置変更許可申請書(2 号発電用原子 炉施設の変更).
- 60 財団法人原子力発電技術機構,平成9年溶接部熱影響部信頼性実証試験(原子炉格納 容器),1997.
- 61 Abaqus/Standard, https://www.3ds.com/ja/products-services/simulia/products/abaqus/
abaqusstandard/、(2019年3月6日閲覧), [オンライン].

- 62 ASME Boiler & Pressure Vessel Code, Section VIII (2012 Addenda), Division 2, Annex 3-D, The American Society of Mechanical Engineers, 2012.
- 63 JSME S NJ1-2012 発電用原子力設備規格 材料規格(2012 年度版),一般社団法人日本機械学会,2012.
- 64 IAEA Safety Reports Series, "Approaches and Tools for Severe Accident Analysis for Nuclear Power Plants", VIENNA: SAFETY REPORTS SERIES No. 56, IAEA, 2008.
- 65 IAEA TECHDOC SERIES,, "Assessment of Equipment Capability to Perform Reliably under Severe Accident Conditions", VIENNA: IAEA-TECDOC-1818, IAEA, 2017.
- 66 OECD/NEA/CSNI, Informing Severe Accident Management Guidance and Actions for Nuclear Power Plants through Analytical Simulation, NEA/CSNI/R(2017)16, OECD/NEA/CSNI, 2018.
- 67 L. L. Humphries *et al.*, MELCOR Computer code manuals, Vol. 2: Reference manual, Version 2.2.9541, SAND2017-08760, SNL, 2017.
- 68 EPRI, MAAP4 Modular Accident Analysis Program for LWR Power Plants, User's Manual, EPRI, 2005.
- 69 独立行政法人原子力安全基盤機構,予防的防護措置範囲検討のためのレベル2PSA の解析 (BWR), JNES/NSAG10-0010, JNES, 2014.
- 70 I. ANSYS, "ANSYS FLUENT 12.0/12.1 Documentation," ANSYS, Inc., 10 2009. [オン ライン]. Available: https://www.afs.portici.enea.it/project/neptunius/docs/fluent/index.htm. [アクセス日: 17 1 2022].
- 71 東京電力福島原子力発電所における事故調査・検証委員会(政府事故調),最終報告 (Ⅱ 福島第一原子力発電所及び福島第二原子力発電所における被害状況と事故対 処),2012.
- 72 原子力規制庁,東京電力福島第一原子力発電所事故の調査・分析に係る中間とりまとめ,原子力規制庁,2021.
- 73 W. H. Lee., A Pressure Iteration Scheme for Two-Phase Modeling, New Mexico: Technical Report LA-UR 79-975. Los Alamos Scientific Laboratory, 1979.
- 74 R. Kojo, A. Hotta, "Analytical Approach to Measurement of Local and Bulk Temperatures under High Temperature Accident Sequences of BWRs, SAMMI-2020-1040," OECD/NEA SAMMI 2020, December 7-10, 2020.
- 75 一般社団法人日本電気協会,原子炉格納容器の漏えい率試験規程,JEAC4203-2008, JEAC, 2008.

76 V. Tvergaard and A. Needleman, "Analysis of the Cup-Cone Fracture in a Round Tensile Bar," *Acta metal*, vol. 32, no. 1, pp. 157-169, 1984.

執筆者一覧

原子力規制庁 長官官房 技術基盤グループ

システム安全研究部門

- 中村 均 技術研究調査官(令和4年4月1日より技術参与)
- 荒井 健作 技術研究調查官
- 菊池 正明 技術参与

シビアアクシデント研究部門

- 堀田 亮年 主任技術研究調査官(令和4年4月1日より技術参与)
- 小城 烈 技術研究調查官
- 地震·津波研究部門
- 森谷 寛 技術研究調查官
- 堀野 知志 技術参与