資料3

安全研究成果報告(案)

RREP-2022-XXXX

安全研究成果報告

S/NRA/R Research Report

規制への PRA の活用のための手法開発 及び適用に関する研究

Research on PRA methods and their application to safety regulation

HAMAGUCHI Yoshikane, IDEI Yukiyoshi, KUBO Kotaro, UEDA Haruaki, JOJIMA Hiroki, KAWAGUCHI Hideo, NISHIONO Kanoko, ITOH Tomomichi, and SHIMOZAKI Hiroaki

シビアアクシデント研究部門

Division of Research for Severe Accident

原子力規制庁 長官官房技術基盤グループ

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

> 令和4年XX月 XX 2022

本報告は、原子力規制庁長官官房技術基盤グループが行った安全研究プロジェクトの活動内容・成果をとりまとめたものです。

なお、本報告の内容を規制基準、評価ガイド等として審査や検査に活用する場合には、別途原 子力規制委員会の判断が行われることとなります。

本報告の内容に関するご質問は、下記にお問い合わせください。

原子力規制庁 長官官房 技術基盤グループ シビアアクシデント研究部門 〒106-8450 東京都港区六本木 1-9-9 六本木ファーストビル 電 話:03-5114-2224 ファックス:03-5114-2234 規制への PRA の活用のための手法開発及び適用に関する研究

原子力規制庁 長官官房技術基盤グループ シビアアクシデント研究部門

濱口 義兼 出井 千善 久保 光太郎 上田 治明 城島 洋紀 川口 秀雄 西小野 華乃子

伊東 智道 下崎 敬明

要 旨

令和2年4月、原子力規制委員会は、国際原子力機関(IAEA)の総合規制評価サービス (IRRS)の勧告等を踏まえて、新たな原子力規制検査を施行した。同制度では、確率論的 リスク評価(PRA)から得られるリスク情報を活用した日常検査や検査指摘事項の重要度 評価を実施している。

また、事業者は、原子炉施設の安全性の向上のための評価の一環として、所有する原子 炉施設を対象に PRA を実施し、安全性の向上のための自らの取組の有効性を評価して、こ の結果を届出、公表している。さらに、原子力規制委員会は事業者が行った PRA について、 評価手法及びそれらの技術的根拠を確認している。

このように、PRA を規制に活用する活動が増えてきていることから、活用する PRA の 精度向上や地震、津波等の対象範囲の拡張が求められ、原子力規制庁では平成 29 年度~令 和 3 年度の 5 年間で PRA 手法及び PRA モデルの作成並びに PRA の活用方策の検討を進め た。本安全研究成果報告は、その間に得られた成果を取りまとめたものである。

本研究では、PRA 手法及び PRA モデルの整備に向けて、PRA への最新知見の反映、内 部火災 PRA、内部溢水 PRA 及び地震・津波等に係る PRA の手法並びに PRA モデルを作 成することで、原子炉施設を対象にしたリスク評価に係る不確かさを低減することができ た。また PRA の活用方策として、新たな原子力規制検査におけるリスク情報の活用方法に 係る知見が得られた。各研究項目において実施した内容は、以下のとおりである。

(1) PRA の最新知見の反映

事故進展に伴って変化する系統・機器の構成の変化を考慮できるダイナミック PRA については、国立研究開発法人日本原子力研究開発機構(JAEA)への委託研究として、熱流動解析と PRA を連携して解析するコードを開発した。運転員の操作失敗確率を算出する人間信頼性解析手法については、EPRI 手法、IDHEAS 手法及び PHOENIX 手法の3 手法の

比較検討を行い、今後、PRA に係る研究を実施する上で人間信頼性解析に適用する手法を 選定した。レベル 1PRA 及びレベル 2PRA の一貫解析手法については、一貫解析に適用す る PRA コードの選定及びモデルの基本設計を行った。

(2) 内部火災 PRA 及び内部溢水 PRA の手法整備

内部火災 PRA については、火災伝播挙動の実験結果を分析して、隣接領域への火災伝播 解析モデルの構築を進めた。溢水 PRA モデルを構築するために高エネルギー配管破損に 伴う高温蒸気による設備の機能喪失条件を検討するとともに、溢水伝播解析の計算モデル により原子炉建屋内の蒸気拡散解析を実施して、蒸気による設備の機能喪失範囲の検討を 進め、PRA モデルに反映した。

(3) 地震・津波等に係る PRA 手法の整備

地震 PRA については、ABWR に関しては重大事故対処設備を組み込んだ PRA モデルの 改良、PWR に関しては複数の蒸気発生器での複数の伝熱管の破損を想定した場合の PRA モデルの改良を進めた。津波 PRA については、遡上津波が建屋に浸水した場合の建屋内浸 水挙動を解析するプロトタイプの解析コードを作成した。多数基立地サイトの地震 PRA に ついては、これまでの2基のみの評価から国内の実情に合わせ基数の拡張を検討し、試解 析を実施した。また、隣接プラントの事故による屋外作業の作業環境悪化を考慮する方法 を検討し、隣接プラントの事故により屋外作業ができないことを想定した試解析を実施し た。強風、突風及び火山 PRA については、強風、突風及び降灰により損傷する可能性のあ る機器とその影響についての検討及び試解析を実施した。地震時津波 PRA については、評 価手法の検討及び試解析を実施した。

(4) 監視・評価制度へのリスク情報の活用方策の検討

検査指摘事項の重要度評価の方法(溢水及び火災発生時を含む。)について検討した結 果を基に、事例のスクリーニングに適用する評価フローを作成するとともに、原子力規制 検査に活用する簡易リスク評価コードを導入し、PRA モデルから得られるリスク情報を取 りまとめたハンドブックを作成した。また、事業者が作成した PRA モデルの適切性を確認 するため、確認手順のフロー、確認項目及び確認する上での観点を取りまとめた。

RREP-2022-XXXX

Research on PRA methods and their application to safety regulation

HAMAGUCHI Yoshikane, IDEI Yukiyoshi, KUBO Kotaro, UEDA Haruaki, JOJIMA Hiroki, KAWAGUCHI Hideo, NISHIONO Kanoko, ITOH Tomomichi, and SHIMOZAKI Hiroaki Division of Research for Severe Accident, Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

Abstract

The NRA has enacted the new inspection program taking into account the recommendations from the Integrated Regulatory Review Service (IRRS) mission of the International Atomic Energy Agency (IAEA) in April 2020. The risk-informed daily inspection and the significance determination process of the inspection findings have started in this program.

In addition, as part of the evaluation to improve the safety of nuclear reactor facilities, the licensees conduct PRAs for their nuclear reactor facilities, evaluate the effectiveness of their efforts to improve safety, notify the NRA of the results, and make them open to the public. Furthermore, the NRA confirms their evaluation methods and technical rationales for the PRAs conducted by the licensees. Since the activities using PRA for safety regulation has been increased as mentioned above, the improvement of accuracy for PRA utilized and the extension of its scope to include earthquake and tsunami have been indispensable. The NRA, in FY 2017-2021, developed PRA methods and models and investigated the measures toward the use of PRAs. This report presents a summary of the results obtained in the five years.

Major points of these activities are shown as follows:

(1) Introduction of the latest PRA methods and models

The analysis code for coupling the thermal hydraulic analysis and PRA has been developed for the dynamic PRA which can take into account changes in required systems and equipment to prevent a core damage in response to an accident progression. This development has been done by the Japan Atomic Energy Agency (JAEA) under the auspices of the NRA. With regard to the human reliability analysis (HRA), the NRA has reviewed and compared three methods, EPRI method, IDHEAS, and PHOENIX, to select the one to be used in further research on PRA. The NRA has also selected the suitable PRA codes and developed the basic design of the PRA model for consistent analysis of level

1 PRA and level 2 PRA.

(2) Development of internal fire PRA and internal flooding PRA methods

Experimental results of fire propagation behavior have been analyzed, and the detailed fire modeling for fire propagation analysis has been developed for the internal fire PRA. In order to construct the internal flooding PRA model, the conditions for loss of equipment function due to high temperature steam caused by high-energy piping failure were investigated, and the range of loss of functions of SSCs (Structures, systems and components) due to steam was investigated. Then, a steam diffusion analysis in the reactor building was conducted using a computational model for flooding propagation analysis, and the results were introduced into the internal flooding PRA model.

(3) Development of seismic and tsunami PRA methods

Severe accident countermeasures have been incorporated into the seismic PRA model of ABWR plant. For PWR, the seismic PRA model has been improved to take into account the multiple steam tube breaks in multiple steam generators. A prototype code to analyze the inundation behavior in the buildings of a run-up tsunami has been developed. With regard to multi-unit seismic PRA, in order to adapt to the actual situation in Japan, the evaluation was expanded from the conventional evaluation of only two units to a larger number of units, and trial and error analyses were conducted. In addition, a method to consider the deterioration of the working environment for outdoor work due to an accident at an adjacent plant was studied, and a trial analysis was conducted assuming that outdoor work is not possible due to the accident. For the high wind PRA, gusty PRA and volcanic PRA, the equipment that may be damaged by the high winds, gusts and ashfall, and its effects were examined, and also trial analysis was carried out.

(4) Examination of measures to utilize risk information for oversight and assessment system Based on the review and analysis of Significant Determination Process (SDP) of inspection findings including those during flooding and fire events, a flow for screening events, a simplified risk assessment code for use in SDP and a handbook summarizing risk information have been developed. Furthermore, in order to review the adequacy of licensees' PRA models, the flow of review process, the review items and the viewpoints of review have been clarified.

1. 序論	1
1.1 背景	1
1.2 目的	1
1.3 全体行程	2
2. 本論	5
2.1 研究の概要	5
2.1.1 PRA の最新知見の反映	5
2.1.2 内部火災 PRA 及び内部溢水 PRA の手法整備	5
2.1.3 地震・津波等に係る PRA の手法整備	6
2.1.4 監視・評価制度へのリスク情報の活用方策の検討	6
2.2 PRA の最新知見の反映	6
2.2.1 ダイナミック PRA 手法の整備	6
2.2.2 人間信頼性解析ツールの整備	20
2.2.3 レベル 1PRA 及びレベル 2PRA 一貫解析手法の整備	44
2.3 内部火災 PRA 及び内部溢水 PRA の手法整備	51
2.3.1 内部火災 PRA の手法整備	51
2.3.2 内部溢水 PRA の手法整備	75
2.4 地震・津波等に係る PRA 手法の整備	94
2.4.1 重大事故等対処設備を組み込んだ地震レベル1PRA モデルの作成	94
2.4.2 複数本 SGTR の PRA モデル作成	103
2.4.3 津波 PRA 手法の整備	112
2.4.4 多数基立地サイトを対象とした地震 PRA 手法の整備	122
2.4.5 強風及び突風に対する PRA 手法の整備	129
2.4.6 火山レベル1 PRA モデルの作成	136
2.4.7 地震時津波レベル1 PRA モデルの作成	140
2.5 監視・評価制度へのリスク情報の活用方策の検討	146
2.5.1 検査指摘事項の重要度評価手法の検討及び簡易リスク評価コード整備	146
2.5.2 PRA モデル適切性の確認方法の整備	156
2.5.3 溢水、火災発生時の重要度評価手法の整備	159
3. 結論	165
3.1 成果の要点	165
3.1.1 PRA の最新知見の反映	165
3.1.2 内部火災 PRA 及び内部溢水 PRA の整備	165
3.1.3 地震・津波等に係る PRA の整備	165
3.1.4 監視・評価制度へのリスク情報の活用方策の検討	166

3.2 目的の達成状況	166
3.3 成果の公表等	167
3.3.1 原子力規制庁の職員が著者に含まれる公表	167
3.3.2 委託先等による公表	167
3.4 成果の活用等	
3.5 今後の課題等	
参考文献一覧	170
執筆者一覧	175

表 2.2.1.1	主な確率分布の形式	9
表 2.2.1.2	機器及び操作の説明	14
表 2.2.1.3	サンプリングのためのパラメータの設定	15
表 2.2.2.1	CBDTM のディシジョンツリーの種類と認知に係る失敗確率	24
表 2.2.2.2	IDHEAS の CFM ディシジョンツリーの種類	26
表 2.2.2.3	各 CFM で使用したディシジョンツリーとそれら人的過誤確率	29
表 2.2.2.4	代替再循環切替操作に係る人的過誤確率(内部事象)	33
表 2.2.2.5	環境 PSF を考慮した場合の試解析結果	34
表 2.2.2.6	ディシジョンツリーに新しい分岐を設けた場合の試解析結果	35
表 2.2.2.7	ディシジョンツリーに新しいヘディングを設けた場合の試解析結果	35
表 2.2.2.8	地震を考慮した試解析の結果の整理	38
表 2.2.2.9	四つの手法の試解析結果	39
表 2.2.2.10	2次系の復旧とフィードアンドブリード操作における失敗確率	42
表 2.2.3.1	WinNUPRA コードと SAPHIRE コードの主な仕様の違い	47
表 2.3.1.1	Pyrolysis モデルの感度解析条件	54
表 2.3.1.2	起因事象データベースの例エラー! ブックマークが定義されていませ	ん。
表 2.3.1.3	起因事象データベースの例	63
表 2.3.1.4	火災区画で発生する起因事象の整理表	66
表 2.3.1.5	機器種別ごとの火災発生頻度の一覧表	67
表 2.3.1.6	ホットショート発生時の起因事象と評価モデルの対応表	68
表 2.3.1.7	各火災区画における簡易火災シナリオ	69
表 2.3.1.8	影響の大きな簡易火災シナリオの抽出結果	70
表 2.3.1.9	詳細シナリオの評価条件例	72
表 2.3.1.10	詳細シナリオの評価結果	73
表 2.3.1.11	火災とホットショートによる影響の評価例	74
表 2.3.2.1	各区画での溢水情報の整理	76
表 2.3.2.2	ISLOCA を引き起こす区画の選定結果	81
表 2.3.2.3	起因事象を発生させる区画の整理結果	81
表 2.3.2.4	代表的な区画における解析ケース	84
表 2.3.2.5	溢水、蒸気による機能喪失の判断基準	84
表 2.3.2.6	各機器の溢水頻度	90
表 2.3.2.7	各区画における溢水発生頻度	91
表 2.3.2.8	溢水が発生する区画ごとの CDF (試算値)	92
表 2.3.2.9	各起因事象別の CDF (試算値)	92
表 2.4.1.1	選定起因事象の比較	97

表 2.4.1.2	重大事故等対処設備の選定例	99
表 2.4.2.1	伝熱管損傷確率の評価結果	106
表 2.4.3.1	各パラメータとその計算方法	114
表 2.4.3.2	浸水口位置と緩和設備の機能喪失時間の関係	119
表 2.4.3.3	浸水口水位と緩和設備の機能喪失時間の関係	119
表 2.4.5.1	プラント影響の分類	131
表 2.4.5.2	プラント影響への影響の整理例	
表 2.4.5.3	強風(台風等)の風速区分	
表 2.4.5.4	突風(竜巻等)の風速区分	133
表 2.4.5.5	強風及び突風の風速区分ごとの屋外作業に係る人的過誤率	
表 2.4.5.6	強風 PRA の結果(風速区分ごとの炉心損傷確率)	134
表 2.4.5.7	突風 PRA の結果(風速区分ごとの炉心損傷確率)	134
表 2.4.6.1	降灰量区分	138
表 2.4.6.2	降灰量区分ごとの屋外作業に係る人的過誤率	139
表 2.4.6.3	火山 PRA の結果(降灰量区分ごとの条件付炉心損傷確率).	139
表 2.4.7.1	浸水シナリオごとの損傷の状況	143

図	目	次
---	---	---

図 1.3.1 石	开究の全体行程	3	
図 2.2.1.1	RAPID の全体構成	8	
図 2.2.1.2	RAPID での解析の流れ	.11	
図 2.2.1.3	全解析ケースの燃料被覆管温度16		
図 2.2.1.4	クラスタリングの結果(クラスター数:3)	.17	
図 2.2.1.5	THALES2 を用いた 200 ケースの解析結果	.18	
図 2.2.1.6	代替評価モデルを用いた 200 ケースの解析結果	.19	
図 2.2.2.1	代替再循環に係る概略図	.21	
図 2.2.2.2	HCR/ORE の運転員の認知失敗曲線の例	.23	
図 2.2.2.3	データの有効性に関するディシジョンツリーの例	.25	
図 2.2.2.4	運転員対応ダイヤグラム(CRD)の例	.27	
図 2.2.2.5	IDHEAS の重要な警報へ注意が向けられないディシジョンツリーの例	.27	
図 2.2.2.6	代替再循環切替操作に係る CRD	.28	
図 2.2.2.7	PHOENIX を用いた評価の全体図	.31	
図 2.2.2.8	CRT の図	.31	
図 2.2.2.9	運転員失敗モデルの図	.32	
図 2.2.2.10	新しい分岐を設けたディシジョンツリーの例	.36	
図 2.2.2.11	新しいヘディングを設けたディシジョンツリーの例	.37	
図 2.2.2.12	2次系の復旧とフィードアンドブリード操作における運転員対応ツリーとそ	2	
わ	1らの操作の依存関係	.42	
図 2.2.3.1	レベル 1PRA 及びレベル 2PRA の連結に関する従来手法と一貫解析の基本設	計	
		.45	
図 2.2.3.2	FT の階層化	.48	
図 2.2.3.3	モデル化に必要な情報整理と SAPHIRE コードでのモデル化	.49	
図 2.3.1.1	サポート試験 (Step1) の全体図	.52	
図 2.3.1.2	ケーブル部詳細配置図	.52	
図 2.3.1.3	サポート試験(Step1)の解析での境界条件図	.52	
図 2.3.1.4	サポート試験(Step1)における解析メッシュ図	.53	
図 2.3.1.5	発熱速度(HRR)の試験と解析との比較図	.55	
図 2.3.1.6	トレイ部各位置での試験と解析との温度変化の比較図	.55	
図 2.3.1.7	本試験 PRISME3 試験(CFS-2)の概略図	.56	
図 2.3.1.8	試験装置全体の換気空調条件	.56	
図 2.3.1.9	本試験 (CFS-2) の FDS の解析メッシュ図	.57	
図 2.3.1.10	CFS-2 試験における発熱速度(HRR)の試験結果と解析結果の比較結果	.58	
図 2.3.1.11	CFS-2 解析における温度分布変化	.59	

図 2.3.1.12	CFS-2 解析における酸素濃度分布変化	59
図 2.3.1.13	L1-NW 位置における温度変化の比較結果	60
図 2.3.1.14	起因事象選定コードの表示画面	64
図 2.3.1.15	火災区画ごとの火災情報の整理結果	65
図 2.3.1.16	詳細シナリオの評価フロー	71
図 2.3.2.1	溢水解析モデル	77
図 2.3.2.2	溢水解析モデルの概略図(一部)	78
図 2.3.2.3	内部溢水を生じさせる起因事象の選定	79
図 2.3.2.4	ISLOCA に関係する区画の選定図	80
図 2.3.2.5	配置情報を用いた解析区画の選定例(ISLOCAの例)	83
図 2.3.2.6	ISLOCA 発生時の解析条件図	85
図 2.3.2.7	ISLOCA 発生時の破断流量の変化図	85
図 2.3.2.8	ISLOCA 発生時の各区画での水位分布変化	86
図 2.3.2.9	ISLOCA 発生時溢水区画での温度分布変化図	86
図 2.3.2.10	2 次系破断発生時での解析条件図	87
図 2.3.2.11	2 次系破断での破断流量の変化図	87
図 2.3.2.12	2 次系破断での溢水区画での温度分布変化図	88
図 2.3.2.13	溢水 PRA の評価フロー	89
図 2.3.2.14	溢水シナリオの作成例	90
図 2.3.2.15	内部溢水 PRA のための FT の修正	91
図 2.4.1.1	格納容器バイパスの発生箇所	95
図 2.4.1.2	階層ツリー	97
図 2.4.1.3	重大事故等対処設備の ET でのモデル化の例	99
図 2.4.1.4	地震損傷モデル化の例	100
図 2.4.1.5	地震 PRA 手法の概要	101
図 2.4.1.6	全 CDF に占める起因事象ごとの寄与割合	102
図 2.4.2.1	フラジリティ評価のための伝熱管の部位の分類	106
図 2.4.2.2	階層ツリーを用いた破断本数の整理	107
図 2.4.2.3	2 次系配管破断箇所	107
図 2.4.2.4	2 次系破断がない場合の解析例(12 本/基)	108
図 2.4.2.5	2次系破断(主蒸気管破断)がある場合の解析例(12本/基)	109
図 2.4.2.6	2 次系破断のない場合の ET	110
図 2.4.2.7	2 次系破断時の ET	110
図 2.4.2.8	全 CDF に対する起因事象ごとの寄与割合の比較	111
図 2.4.3.1	取水から原子炉建屋までのイメージ図	112
図 2.4.3.2	浸水流路探索モデルの概念図	113

図 2.4.3.3	プライスマンスロットモデルの概念図	114
⊠ 2.4.3.4	試解析モデルの体系図	115
図 2.4.3.5	区画の流量変化	116
図 2.4.3.6	区画の水位変化	116
図 2.4.3.7	解析階構造図	117
図 2.4.3.8	浸水階の区画図	117
図 2.4.3.9	区画接続図	117
図 2.4.3.10	区画水位変化	118
図 2.4.3.11	区画の水位状態(700 秒時点)	118
図 2.4.3.12	浸水継続時間と条件付炉心損傷確率の関係	120
図 2.4.4.1	起因事象及び階層ツリー	123
図 2.4.4.2	マスターイベントツリー	124
図 2.4.4.3	大 FT の例	124
図 2.4.4.4	各号機数の炉心損傷の条件付発生確率及び超過発生頻度	126
図 2.4.4.5	各モデルの CDF の比較	128
図 2.4.5.1	階層ツリー	134
図 2.4.7.1	地震時津波の評価手順案	143
図 2.4.7.2	五つの浸水シナリオに対する地震動ごとに見た各起因事象の寄与割合	144
図 2.5.1.1	監視領域「発生防止」の指摘事項に対するスクリーニングフロー案	147
図 2.5.1.2	初期画面	148
図 2.5.1.3	簡易リスク評価コードの入力画面	148
図 2.5.1.4	簡易リスク評価コードの出力画面	149
図 2.5.1.5	リスク情報を整理したハンドブックの構成	150
図 2.5.1.6	プラントにおける各系統の依存性	151
図 2.5.1.7	リスク上重要な機器の重要度	152
図 2.5.1.8	リスク上重要な機器の例	153
図 2.5.1.9	停止時 PRA の範囲図(PWR)	154
図 2.5.1.10		
	プラントの運転状態と起因事象との関係	154
图 2.5.1.11	プラントの運転状態と起因事象との関係 4 ループ PWR における起因事象別の CDF	154 155
図 2.5.1.11 図 2.5.2.1	プラントの運転状態と起因事象との関係 4 ループ PWR における起因事象別の CDF 原子力規制検査における適切性確認の処理の流れ	154 155 157
 ☑ 2.5.1.11 ☑ 2.5.2.1 ☑ 2.5.2.2 	プラントの運転状態と起因事象との関係	154 155 157 157
図 2.5.1.11 図 2.5.2.1 図 2.5.2.2 図 2.5.3.1	プラントの運転状態と起因事象との関係	154 155 157 157 157
図 2.5.1.11 図 2.5.2.1 図 2.5.2.2 図 2.5.3.1 図 2.5.3.2	プラントの運転状態と起因事象との関係	154 155 157 157 159 161
図 2.5.1.11 図 2.5.2.1 図 2.5.2.2 図 2.5.3.1 図 2.5.3.2 図 2.5.3.3	プラントの運転状態と起因事象との関係	154 155 157 157 159 161 163
図 2.5.1.11 図 2.5.2.1 図 2.5.2.2 図 2.5.3.1 図 2.5.3.2 図 2.5.3.3 図 2.5.3.3	プラントの運転状態と起因事象との関係 4 ループ PWR における起因事象別の CDF 原子力規制検査における適切性確認の処理の流れ 事業者 PRA モデルの適切性の確認項目 検査指摘事項の重要度評価のための分類フロー 火災事象の評価フロー 簡易火災影響評価フローで用いる FDT ^s 評価シート FDT ^s 評価シートでの結果	154 155 157 157 159 161 163 163

略語表

ABWR	Advanced Boiling Water Reactor	改良型沸騰水型原子炉
ASME	American Society of Mechanical Engineers	米国機械学会
BWR	Boiling Water Reactor	沸騰水型原子炉
CBDTM	Cause-Based Decision Tree Method	原因ベースディシジョン
		ツリー法
CCDP	Conditional Core Damage Probability	条件付炉心損傷確率
CCWS	Component Cooling Water System	原子炉補機冷却水系
CDF	Core Damage Frequency	炉心損傷頻度
CFM	Crew Failure Mode	クルー失敗モード
CRD	Crew Response Diagram	クルー応答ダイヤグラム
CRT	Crew Response Tree	クルー応答ツリー
CV	Containment Vessel	原子炉格納容器
DTW	Dynamic Time Warping	動的時間伸縮法
ET	Event Tree	イベントツリー
ECCS	Emergency Core Cooling System	非常用炉心冷却系
EPRI	Electric Power Research Institute, Inc	電力研究所
FDS	Fire Dynamics Simulator	火災進展解析コード FDS
FDTs	Fire Dynamics Tools	火災ダイナミクスツール
FT	Fault Tree	フォールトツリー
FV	Fussell-Vesely	ファッセルベスレイ
HCR	Human Cognitive Reliability	人的認知信頼性
HEAF	High Energy Arcing Fault	高エネルギーアーク損傷
HRA	Human Reliability Analysis	人間信頼性解析
HRR	Heat Release Rate	発熱速度
IAEA	International Atomic Energy Agency	国際原子力機関
IDHEAS	An Integrated Human Event Analysis System	人間信頼性解析 IDHEAS
		手法
IMC	Inspection Manual Chapter	検査マニュアル
IRRS	Integrated Regulatory Review Service	総合規制評価サービス
ISLOCA	Interface System LOCA	インターフェイスシステ
		ム LOCA
JAEA	Japan Atomic Energy Agency	国立研究開発法人日本原
		子力研究開発機構
LHS	Latin Hypercube Sampling	ラテン超方格(ハイパー
		キューブ)サンプリング

LOCA	Loss Of Coolant Accident	冷却材喪失事故	
LPCS	Low Pressure Core Spray	低圧炉心スプレイ系	
LPFL	Low Pressure Flooder	低圧注水系	
MC	Monte Carlo	モンテカルロ	
MCS	Minimal Cutset	ミニマルカットセット	
MSGTR	Multiple Steam Generator Tube Rupture	複数本蒸気発生器伝熱管	
		破損	
MSIV	Main Steam Isolation Valve	主蒸気隔離弁	
NRC	Nuclear Regulatory Commission	原子力規制委員会	
ORE	Operator Reliability Experiments	運転員信頼性実験	
PCS	Power Conversion System	主蒸気・復水・給水系	
PDS	Plant Damage State	プラント損傷状態	
PIF	Performance Influencing Factor	パフォーマンス影響因子	
PRA	Probabilistic Risk Assessment	確率論的リスク評価	
PSF	Performance Shaping Factor	パフォーマンス・シェイ	
		ピング因子	
PWR	Pressurized Water Reactor	加圧型原子炉	
RAPID	Risk Assessment with Plant Interactive	ダイナミック PRA 解析コ	
	Dynamics	ード RAPID	
RAW	Risk Achievement Worth	リスク増加価値	
R/B, RB	Reactor Building	原子炉建屋	
RCIC	Reactor Core Isolation Cooling System	原子炉隔離時冷却系	
RHR	Residual Heat Removal system	余熱除去系、残留熱除去	
		系	
SBO	Station Blackout	全交流動力電源喪失	
SGTR	Steam Generator Tube Rupture	蒸気発生器伝熱管破損	
SVM	Support Vector Machine	サポートベクトルマシン	
SWS	Sea Water System	原子炉補機冷却海水系	
THERP	Technique for Human Error Rate Prediction	人間信頼性解析 THERP	
		手法	
QMC	Quasi Monte Carlo	準モンテカルロ	

用語の定義

- PRA モデル 炉心損傷頻度を算出するためのイベントツリー、フォール トツリー及び入力パラメータ(機器故障確率、共通原因故 障確率、人的過誤確率等)で構築された計算モデル。
- イベントツリー 事故のシナリオを樹形図に表したもので、原子炉トリップ を引き起こす事象(起因事象)を起点とし、緩和系の成功 と失敗から安定状態もしくは炉心損傷までのシナリオを表 した図。
- フォールトツリ 緩和系の失敗原因である機器の故障や運転員の操作失敗を
 構成要素として、その緩和系の失敗を AND ゲートや OR
 ゲートなどのロジック図で表したもの。緩和系の失敗確率
 を機器の故障確率や運転員の操作失敗確率などから算出する計算モデルでもある。
- ミニマルカット 炉心損傷に至る起因事象、機器故障、人的過誤等の組合せ セット のうち最小の組合せ。
- ソースターム 重大事故等で放出されるおそれのある放射性物質の種類及 び量。
- ダイナミック イベントツリーやフォールトツリーを用いて行う計算では PRA なく、熱水力解析等を用いて事故進展に伴って変化する系 統・機器の変化を考慮しながら計算する PRA の方法。
- レベル 1PRA 原子炉施設を対象としたリスク評価で、炉心損傷頻度まで を評価するもの。
- レベル 2PRA 原子炉施設を対象としたリスク評価で、格納容器機能喪失 頻度、ソースターム等までを評価するもの。
- 事故シーケンス 起因事象の発生から緩和系の失敗により炉心損傷に至る事 故のシナリオ。
- 内部事象 原子炉施設内の機器の故障等により原子炉トリップ又は手 動停止に至る事象。
- 外部事象 地震、津波等の原子炉施設外からのインパクトにより原子 炉トリップ又は手動停止に至る事象。原子炉施設内の火災 や溢水も外部事象に含む。
- 内部事象 PRA 原子炉施設内の機器の故障等により原子炉トリップ又は手動停止に至る事象を起因にして行うリスク評価。
- 内部火災 PRA 原子炉トリップ又は手動停止に至る原子炉施設内における 火災を起因にして行うリスク評価。

内部溢水 PRA 原子炉トリップ又は手動停止に至る原子炉施設内における 溢水を起因にして行うリスク評価。

地震 PRA 地震加速度高により原子炉トリップに至る地震動を対象に して行うリスク評価。

- 津波 PRA 防潮堤を越え原子炉施設の内部へ浸水するような津波を対象にして行うリスク評価。
- 強風 台風等による長期間に影響を及ぼす強い風
- 突風 竜巻等による短期間に影響を及ぼす強い風

1. 序論

1.1 背景

原子力規制委員会は、国際原子力機関(以下「IAEA」という。)の総合規制評価サービ ス(以下「IRRS」という。)の勧告¹等を踏まえて、平成25年に改正された「核原料物質、 核燃料物質及び原子炉の規制に関する法律」(昭和 32 年法律第 166 号)(における原子力 規制検査の見直しの方向性や内容について検討し ²、令和 2 年 4 月から新たな原子力規制 検査を開始した。この新たな原子力規制検査の検討では、事業者の保安活動全てを対象に その実施状況、継続的改善の取組について実効的な監視・評価制度を設けること、この監 視・評価制度においてリスク情報の活用(リスク・インフォームド)及び事業者の保安活 動の実績の反映(パフォーマンス・ベース)の考え方を取り入れたものとすること、保安 活動を監視・評価した結果を踏まえた機動的かつ柔軟に行政上の措置を適用する方法が検 討された。これまで、保安検査等にリスク情報から得た指標を活用する方法を検討してき たが、新たな検査制度における保安活動の監視・評価にこれらの指標を活用できるよう、 検査指摘事項の重要度の評価手法及び重要度の評価ツールを実用に向けて整備する必要が あった。新たな原子力規制検査では、日常検査において対象機器を選定する際に確率論的 リスク評価(以下「PRA」という。)から得られるリスク情報も用いることになっている ³。また、検査において発見された指摘事項については、リスク情報を用いて重要度を決め ることになっている 4。

また、新規制基準では重大事故対策の規制が一つの柱となっており、重大事故対策の有 効性を評価する際の事故シーケンスグループの選定のために PRA が活用されている⁵。ま た、原子炉施設の安全性の向上のための評価において、事業者は PRA を実施し、この結果 を届出、公表し、原子力規制委員会は事業者が行った PRA 手法及びそれらの技術的根拠を 確認することとしている。実用発電用原子炉の安全性向上評価に関する運用ガイド⁶では、 PRA 手法の成熟状況に応じて、PRA の評価範囲を段階的に拡張していくとしており、拡張 していく例として内部火災 PRA、内部溢水 PRA 等の実施を挙げている。

1.2 目的

原子炉施設の安全性に係る評価の高度化に資する知見、事業者が実施する安全性向上評価のレベル 1PRA を確認するために必要な知見及び原子力規制検査における検査指摘事項の重要度に必要な知見を取得することが本研究の目的である。本研究の具体的な実施項目は、以下のとおりである。

レベル 1PRA の技術基盤への最新知見として、新たな人間信頼性解析手法及びレベル1とレベル2の一貫解析手法の導入を行い、将来的に安全性向上評価等のガイドにこれらの知見を組み入れるために必要なレベル 1PRA 手法に関する技術的知見を得る。さらに、欧米諸国において進められている PRA に係る研究のうち、

事故進展に伴って変化する系統・機器の変化を考慮できるダイナミック PRA 手法の開発を進める。

- ・ 内部火災、内部溢水、地震、津波、強風、突風及び火山の外部事象 PRA 並びに多数基で同時に発生する事象を対象とした PRA 手法の技術的知見を整備し、将来的に安全性向上評価等の対象となるレベル 1PRA 手法の技術的知見を得る。
- 新たな原子力規制検査にリスク情報を活用するための技術的知見を得る。

1.3 全体行程

本研究は、平成 29 年度から令和 3 年度までにかけて、以下の項目について研究を実施した。本研究の全体行程を図 1.3.1 に示す。

PRA の最新知見の反映のうち、ダイナミック PRA⁷の手法開発及び解析コードの開発は、 国立研究開発法人日本原子力研究開発機構(以下「JAEA」という。)への委託により実施 した。

Fig. 1.3.1 Overall schedule of study research (1/2)

項目	平成 29 年度	平成 30 年度	令和元年度	令和2年度	令和3年度
(4) 監視・評価制度へ					
のリスク情報の活用					
方策の検討					
a. 検査指摘事項の重	重要度評価	€法と重要度評価い	ノールの作成及び機	縁の重要度等の情	報の整理
要度評価手法の検					
討及びリスク指標					
ツールの整備					
		PRA モデルの適切	性の確認手法の作	成	
b. PRA モデルの適切	•				
性の確認手法の整					
備	-	溢水、火災発生時	の検査指摘事項の	重要度評価手法の	作成
c. 溢水、火災発生時				土地深口明心	
の検査指摘事項の		▼		▶ ◆ 恰連用開始	
重要度評価手法の	監視・評価制度	の運用準備 ^{監社}	見・評価制度の運用		
整備	•••••	•••••			

図 1.3.1 研究の全体行程(2/2)

Fig. 1.3.1 Overall schedule of study research (2/2)

2. 本論

2.1 研究の概要

原子力規制検査等、PRA を規制に活用する活動が増えてきており、事業者が作成する PRA の精度向上や地震、津波等の対象範囲の拡張が求められ⁸、原子力規制庁においては 平成 29 年度から令和 3 年度に事業者が作成する PRA モデルの適切性確認及び活用に必要 な知見を収集するため、PRA 手法及び PRA モデルの作成並びに PRA の活用方策の検討を 進めた。原子炉施設の機器トラブル等により発生する内部事象、内部火災事象及び内部溢 水事象については、欧米諸国において進められている PRA 研究で得られた最新の知見を 反映して PRA 手法を高度化するとともに、炉心損傷頻度等の計算の精度を向上させるこ ととした。また、地震、津波等の原子炉施設の外から影響を与える事象については、重大 事故等対処設備の計算モデルを PRA モデルに組み込むことや、炉心損傷頻度に寄与する 蒸気発生器伝熱管の複数本破損の計算モデルの高度化を実施することで計算の精度を向上 させることとした。

本報告は、平成 29 年度から令和 3 年度までの成果をとりまとめたものであり、その概要と成果は以下のとおりである。

2.1.1 PRA の最新知見の反映

欧米諸国において進められている PRA に係る研究のうち、事故進展に伴って変化する 系統・機器の変化を考慮できるダイナミック PRA 手法及び運転員の操作失敗確率を算出 する人間信頼性解析手法について検討した。

ダイナミック PRA 手法については、JAEA への委託事業として、熱流動解析と PRA を 連携させる手法の検討を進め、連携解析のための解析コード(Risk Assessment with Plant Interactive Dynamics: RAPID)⁹⁻¹⁴を開発し、PWR プラント及び BWR プラントの解析を実 施した。

また、人間信頼性解析手法については、文献調査等により EPRI 手法¹⁵、IDHEAS 手法¹⁶ 及び PHOENIX 手法¹⁷の知見収集を行って3者の比較を進めるとともに、重大事故等対処 設備の操作に係る試解析を行って各手法の特徴をまとめた。この3者から PRA モデルと の親和性の高い PHOENIX 手法を選定し、原子炉プラントの PRA に適用するために手法を 改良した。

さらに、PRA の精度を向上させるため、レベル 1PRA とレベル 2PRA の一貫解析手法について検討し、これに適用する PRA コードの選定及びモデル構築のための基本設計を行った。

2.1.2 内部火災 PRA 及び内部溢水 PRA の手法整備

内部火災を対象にした PRA については、国際プロジェクトの火災伝播挙動の実験結果 を分析して、隣接領域への火災伝播解析モデルの構築を進めた。また、内部溢水を対象に した PRA については、溢水 PRA モデルを構築するために高エネルギー配管破損に伴う高 温蒸気による設備の機能喪失条件を検討するとともに、溢水伝播解析の計算モデルにより 原子炉建屋内の蒸気拡散解析を実施して、蒸気による設備の機能喪失範囲の検討を進め、 PRA モデルに反映した。

2.1.3 地震・津波等に係る PRA の手法整備

地震 PRA については、BWR プラントに関しては重大事故対処設備を組み込んだ PRA モ デルを作成するとともに、PWR プラントに関しては複数の蒸気発生器及び伝熱管の破損を 想定した場合の事故進展挙動を分析して、破損の部位・規模等の組合せを考慮した事故シ ナリオを検討して PRA モデルの高度化を進めた。また、津波 PRA については、遡上津波 が建屋に浸水して機能損傷に至る設備を特定するために、建屋内浸水挙動を解析するコー ドの基本設計を行い、プロトタイプの解析コードを作成した。さらに、多数基立地サイト を対象にした地震 PRA については、これまでの2 基のみの評価から国内の実情に合わせ 基数の拡張を検討し、試解析を実施した。また、隣接プラントの事故による屋外作業の作 業環境悪化を考慮する方法を検討し、隣接プラントの事故により屋外作業ができないこと を想定した試解析を実施した。強風、突風及び火山 PRA については、強風、突風及び降灰 により損傷する可能性のある機器とその影響についての検討及び試解析を実施した。地震 時津波 PRA については、評価手法の検討及び試解析を実施した。

2.1.4 監視・評価制度へのリスク情報の活用方策の検討

検査指摘事項の重要度評価の方法(溢水及び火災発生時を含む)を検討して、事例のス クリーニングに適用する評価フローを作成するとともに、原子力規制検査で活用する簡易 リスク評価コードの改良を進めた。また、プラントごとの検査での活用を目的に、PRA か ら得られるリスク情報を取りまとめたハンドブックを作成した。さらに、事業者 PRA モデ ルの適切性を確認するため、確認手順のフロー、確認項目及び確認する上での観点を取り まとめた。

2.2 PRA の最新知見の反映

2.2.1 ダイナミック PRA 手法の整備

(1) はじめに

従来のPRA 手法では、あらかじめ想定した事故シナリオに基づきイベントツリー(以下 「ET」という。)を作成し、ET の分岐確率をフォールトツリー(以下「FT」という。)解 析により算出することで、事故シナリオの発生頻度を定量化する。この手法では、原子炉 の挙動及び作業環境の変化が及ぼす工学的安全設備の作動及び運転員の操作の成否への影 響を考慮することができない。例えば、1979年にスリーマイル島で発生した事故では、加 圧器逃がし弁が故障して開固着となり冷却材が流出し高圧注入系が自動起動したが、加圧 器水位計の指示値が実際の水位よりも高く表示されたことにより、運転員は一次冷却系が 満水だと誤認し高圧注入系ポンプの流量を絞ってしまった¹⁸。この事例では、加圧器水位 計の表示の変化が、高圧注入系ポンプに対する人的操作に影響を与えた。

また、従来のPRAでは、ある決まったタイミングで、工学的安全設備の作動及び運転 員の操作が成功したと仮定していたが、このタイミングはある程度のばらつきを持つと考 えられる。例えば、米国電力研究所(以下「EPRI」という。)が実施したプラントシミュ レーターを用いた運転員の訓練では、運転員の操作の成功タイミングにばらつきがあるこ とが分かっている¹⁹。

このように事故が進展している間は、工学的安全設備の作動及び運転員の操作の成否並 びにそれらのタイミングは複雑に変化し、事故シナリオも時間的に変化することが考えら れる。このような事故シナリオを網羅できるような手法を開発し、PRAの高度化を実施し ていくことが重要である。

レベル 1PRA に係る最新知見の反映として、JAEA に委託して、事故シナリオの時間依 存性を考慮できるダイナミック PRA 手法を実施するための解析コードの開発及び解析コ ードとプラントシミュレーターの連携を実施した ⁹⁻¹⁴。この開発した解析コード及びプラ ントシミュレーターを用いて、BWR プラントを対象にリスクの試解析を実施し、開発した 解析コードの適用性を確認した。

本項目は、平成 29 年度から令和 2 年度にかけて実施した JAEA への委託による成果を まとめたものである ⁹⁻¹⁴。

(2) RAPID の基本設計・概要

全体構成(解析のフロー)

本研究では、プラントの状態変化と工学的安全設備の作動状況や作動順序の関係の把握 しやすさに重点をおいて、熱水力解析により得られるプラントの状態変化を直接イベント ツリーとして表現できるダイナミック・イベントツリー手法に基づきダイナミック PRA を 実施するコード RAPID (Risk Assessment with Plant Interactive Dynamics)を開発した。

図 2.2.1.1 に RAPID の全体構成を示す。RAPID は、シナリオ生成部、シミュレーション 制御部及びポスト処理部で構成されており、THALES2²⁰、Apros²¹等の外部のプラントシミ ュレーションコードと組み合わせることで、事故進展の解析から炉心損傷確率等のリスク 情報の算出まで一貫して実施することができる。以降、各構成部の詳細を説明する。

出典) 国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成

図 2.2.1.1 RAPID の全体構成

Fig. 2.2.1.1 Overall structure of RAPID

② シナリオ生成部

シナリオ生成部では、ユーザーが指定した入力データ及びその確率分布から値をサンプ リングする初期サンプラー機能を備えている。また、効率的に解析を実施できる代替評価 モデルに基づく適合サンプリング機能を備えている。それぞれの機能について、以下に詳 細を示す。

a. 初期サンプラー機能

初期サンプラー機能として、モンテカルロ(MC)サンプラー、グリッド(Grid)サンプ ラー、ラテン超方格(LHS)サンプラー及び準モンテカルロ(QMC)サンプラーを RAPID に組み込んだ。また、パラメータ間の相関を考慮することができるサンプリング機能 (Correlated MC サンプラー、Correlated LHS サンプラー及び Correlated OMC サンプラー)

を導入した。表 2.2.1.1 に RAPID が備えている主な確率分布の名称及び形式

を示す。これら以外に、ベルヌーイ分布、ベータ分布、ガンマ分布及びロジスティック 分布を備えている。

表 2.2.1.1 主な確率分布の形式

Table 2.2.1.1 Forms of main probability distributions

タイプ	確率分布名	式
離散型	幾何分布	$P[X = k] = p(1 - p)^{k-1}$ p:1 試行当たりの発生確率、k:発生回数
離散型	二項分布	$P[X = k] = \binom{n}{k} p^k (1 - p)^{n-k}$
連続型	三角分布	p:1 試行当たりの発生確率、n: 試行回数、k: 発生回数 $f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)} & (a \le x \le c) \\ \frac{2(b-x)}{(b-a)(b-c)} & (c \le x \le b) \end{cases}$ a: 最小値、b: 最大値、c: 最頻値
連続型	指数分布	$f(x) = \lambda e^{-\lambda x}$ λ : 母数
連続型	正規分布	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ μ : 平均、 σ : 標準偏差
連続型	対数正規分布	$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$ μ : 対数平均、 σ : 対数標準偏差
連続型	切断正規分布	$f(x) = \frac{\frac{1}{\sigma}\phi\left(\frac{x-\mu}{\sigma}\right)}{\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}$ $\phi(\cdot): 標準正規分布の確率密度関数$ $\Phi(\cdot): 標準正規分布の累積分布関数a: 最小値、b: 最大値、\mu: 平均、\sigma: 標準偏差$
連続型	一様分布	$f(x) = \frac{1}{\beta - \alpha} (\alpha \le x \le \beta)$ α : 最小値、 β :最大値
連続型	対数一様分布	$f(x) = \frac{1}{x \ln^{\beta} / \alpha} (\alpha \le x \le \beta)$ α : 最小値、 β :最大値

出典)国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成 b. 代替評価モデルに基づく適合サンプリング機能

ダイナミック PRA では、モンテカルロ法等により生成された多数の事故シナリオを対象に、プラントシミュレーションを実施するため、計算コストがかかる。これに対し、 RAVEN²² や DAKOTA²³ においては、統計手法等に基づきシミュレーション結果を予測で きる代替評価モデル (Surrogate model) に基づく適合サンプリング法 (Adaptive sampling) を実装することで、計算コストを削減している。RAPID においても同様に、代替評価モデ ルを構築し、これに基づく適合サンプリング法を実装した。以下に詳細を示す。

(a) 代替評価モデル

代替評価モデルの構築には Support Vector Machine (SVM) 及び Gaussian process model の 機械学習アルゴリズムを用いた。これらアルゴリズム及びプラントシミュレーションの結 果を用いることで代替評価モデルを構築した。

(b) 適合サンプリング機能

適合サンプリング機能においてはプラントシミュレーションコードによる詳細解析と 上記代替評価モデルを用いた結果の予測機能を組み合わせて、効率よくダイナミック PRA を実施することができる。以下に、その手順を示す。

- ア モンテカルロ法を用いてプラントシミュレーターの入力データをサンプリングし、 プラントシミュレーターによる詳細解析を実行する。
- イ 上記解析結果を用いて代替評価モデルを構築する。
- ウ モンテカルロ法を用いてプラントシミュレーターの入力データをサンプリングし、 代替評価モデルで結果を予測する。
- エ 代替評価モデルの予測により、用いた入力が重要な事故シーケンスを同定できる 場合(代替評価モデルの予測値が、ユーザーが指定する値の範囲内に収まる場合)、 その入力をプラントシミュレーションコードで詳細解析する。その結果を用いて 代替評価モデルを更新する。
- オ ユーザーが指定する数の解析結果が得られるまで、ウ及びエを繰り返す。

③ シミュレーション制御部

シミュレーション制御部を用いたダイナミック PRA の解析の流れを図 2.2.1.2 に示す。 上記のシナリオ生成機能を用いて生成した入力データに基づき、事故進展解析を実行する。 解析が終了したら、解析結果を出力し、入力データの数だけ繰り返す。また、プラントの 状態(圧力、温度等)に依存して機器の故障モードが変化する等の事故シナリオの分岐条 件をユーザーが指定した場合は、指定した条件にプラントの状態が達したタイミングで解 析を中断し、プラントの入力データを更新して解析を再開する。

出典)国立研究開発法人日本原子力研究開発機構、"平成29年度原子力施設等防災対策等 委託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2018年3月。を 基に作成

図 2.2.1.2 RAPID での解析の流れ

Fig. 2.2.1.2 Flow of analysis with RAPID

④ ポスト処理部

ダイナミック PRA を実施することで、膨大な数のプラントシミュレーションの解析結 果が生成されるため、RAPID ではこれら結果を自動的に処理し、事故シーケンスをグルー ピングするクラスタリング機能を備えている。燃料被覆管最高温度等の物理量の時間変化 を表す時系列データの形状に即したクラスタリングを行うために、Dynamic Time Warping (以下「DTW」という。)法を採用した。DTW 法は、時系列データ上の点と他の時系列デ ータ上の点の距離の総当たりを求め、その距離の合計が最も小さくなるような関係(DTW 距離)を見つける手法である。この DTW 法とクラスタリング手法である k-means 法を組 み合わせて、時系列データに対するクラスタリングを行う機能を RAPID に実装した。実装 にあたっては、Python のライブラリ tslearn²⁴ が、時系列分析のための機械学習コードであ り、k-means 法と DTW 法を組み合わせたクラスタリングが可能であることから、tslearn を 利用した。 (3) BWR プラントを対象とした解析

上記(2)において開発した RAPID の適用性を確認するために、RAPID を用いて BWR プ ラントを対象としたリスクの試解析を実施した。プラントシミュレーターは THALES2 を 用いた。以下に、試解析の条件及び結果を示す。

① 事故シナリオ及びパラメータ

本試解析の事故シナリオとして全交流電源喪失事故(以下「SBO」という。)を選択した。代表的な BWR5 プラントを対象として THALES2 の解析モデルを作成し、解析モデル における主要な機器の作動条件、操作等は表 2.2.1.2 のように設定した。

表 2.2.1.2 の機器及び操作に係るパラメータの確率分布を表 2.2.1.3 のように設定した。 文献 ²⁵ を参考に、電源の枯渇時間は三角分布、機器の修復、復旧及び継続運転失敗時間は 指数分布に従うとした。機器の起動失敗確率は、機器への起動要求の結果は起動失敗、起 動成功のいずれかであることから、二項分布に従うとした。主蒸気逃がし弁の閉失敗まで の回数は、開閉動作を繰り返し初めて閉失敗となる回数であることから、幾何分布に従う とした。他のパラメータについては、ばらつきがあるものと仮定し、切断正規分布、対数 正規分布、一様分布のいずれかに従うとした。ただし、操作失敗確率のばらつきは減圧操 作時のみ考慮し、低圧炉心注水系の水源切り替え時の操作失敗確率は二項分布に従うとし た。同表のパラメータは表 2.2.1.1 の式に用いられているものである。

また、プラントの状態に依存して変化するパラメータとして、主蒸気逃がし弁の熱的故 障時の開口率、再循環ポンプのシール損傷時の開口面積及び減圧操作時のストレスファク ターを選択した。それぞれのパラメータの算出方法を以下に示す。

主蒸気逃がし弁について、高温の蒸気が流れることで弁体がわずかに拡張し、内部リークが発生する故障モードを考慮した。内部リークが生じた際の漏えい面積は弁の最大面積に漏えい率 F を乗じて算出した。ここで、F は原子炉圧力及び主蒸気逃がし弁が接続されている主蒸気管の温度に依存すると仮定し、式(2.2.1.1)のように算出できると仮定した。

$$F = f \cdot \frac{T_{MSL}}{T_{TS}^{mean}} \cdot \frac{P_{RPV}}{P_{RPV}^{mean}} \cdots (2.2.1.1)$$

ここで、F は補正した弁の漏えい率(-)、f はサンプリングした漏えい率(-)、 T_{MSL} は 主蒸気逃がし弁が接続されている主蒸気管の温度(K)、 P_{RPV} は原子炉圧力(MPa)、 T_{TS}^{mean} は熱的故障(Thermal Seizure)が発生する温度の平均値(K)、 P_{RPV}^{mean} は運転時の原子炉圧 力(MPa)を示す。

再循環ポンプのシールについて、通常運転時は冷却されているが、SBO 時はその冷却が できず、ポンプシールが損傷し、損傷部から冷却水が漏えいする故障モードを考慮した。 損傷時の漏えい面積については、再循環ループの液相温度、原子炉圧力及び SBO 発生時か らポンプシールが損傷するまでの経過時間に依存すると仮定し、式(2.2.1.2)のように算出で きると仮定した。

$$S' = S \cdot \frac{T_{loop}}{T_{loop}^{mean}} \cdot \frac{P_{RPV}}{P_{RPV}^{mean}} \cdot \exp\left(\frac{\tau - \tau^{mean}}{\tau^{mean}}\right) \dots (2.2.1.2)$$

ここで、S' は補正したシール損傷面積(m²)、Sはサンプリングしたシール損傷面積(m²)、 T_{loop} は再循環ループの液相温度(MPa)、 T_{loop}^{mean} は運転時の再循環ループの液相温度(K)、 P_{RPV} は原子炉圧力(MPa)、 P_{RPV}^{mean} は運転時の原子炉圧力(MPa)、 τ はシール損傷発生時間 (h)、 τ^{mean} はシール損傷発生時間の平均値(h)を示す。ただし、シール損傷が発生する 前に非常用ディーゼル発電機が復旧していれば、シール冷却が可能となるので、シール損 傷は発生しないとする。

減圧操作時のストレスファクターについて、プラントの状態の影響を考慮した。ストレ スファクターはスクラムから高圧注水系が止まるまでの時間 t [h]及び操作を行うタイミン グの原子炉水位L_{RPV} [m]に依存すると仮定し、以下のように設定した。

(時間 t、水位 L_{RPV}) = (10 時間以上、レベル4 以上) → ストレスファクター=0.1 (時間 t、水位 L_{RPV}) = (10 時間以上、レベル4 未満) 又は (10 時間未満、レベル4 以上) → ストレスファクター=1 (時間 t、水位 L_{RPV}) = (10 時間未満、レベル4 未満) → ストレスファクター=10

表 2.2.1.2 機器及び操作の説明

Table 2.2.1.2 Ex	planation of	f equipment	and operation

機器・操作	機器・操作の説明
直流電源	2系統のうち、1系統が使用可能とする。
非常用ディーゼル発電 機	2系統のうち、1系統が使用可能とする。また、解析開始時に は機能喪失しているものとし、回復操作により復旧するものと する。復旧後の継続運転失敗は考慮しない。
高圧注入系専用の非常 用ディーゼル発電機	高圧炉心スプレイ系専用ディーゼル発電機は1台あり、容量は 外部電源が完全に喪失した場合でも、高圧炉心スプレイ系の運 転に必要な負荷を取り得る。
原子炉隔離時冷却系	駆動蒸気の喪失又はポンプの起動失敗・継続運転失敗により機 能喪失する。また、直流電源の喪失により機能喪失する。
高圧炉心注水系	ポンプの起動失敗・継続運転失敗により機能喪失する。また、 交流電源の喪失により機能喪失する。
低圧炉心注水系	低圧炉心スプレイ系及び低圧注水系と2系統が設備されている が、簡単のため1系統の低圧注水系があるとして解析を行う。 ポンプの起動失敗・継続運転失敗により機能喪失する。ただ し、ポンプ故障時には修復できるものとした。また、交流電源 の喪失により機能喪失する。
余熱除去冷却系	上記同様に1系統の余熱除去冷却系があるとして解析を行う。 ポンプの起動失敗・継続運転失敗により機能喪失する。また、 交流電源の喪失により機能喪失する。
主蒸気逃がし弁の閉失 敗故障	主蒸気逃がし弁1弁の閉失敗の可能性を考慮する。ここで、閉 失敗までの弁の開閉回数及び閉失敗時の開口割合にはばらつき があるものとする。
主蒸気逃がし弁の熱的 故障	主蒸気逃がし弁に高温の蒸気が流れることで弁体がわずかに拡張し、内部リークが起こる可能性を考慮する。
再循環ポンプのシール 損傷	SBO 時には、ポンプのシールを冷却できず、シール損傷により、漏えいする可能性を考慮する。
減圧操作	逃がし弁を作動させて原子炉圧力を減圧する操作である。本操 作に関する弁故障及び人的過誤による失敗を考慮する。また、 操作に要する時間にばらつきがあるものとする。
低圧炉心注水系の水源 切り替え	サプレッションプールの水温が上昇して利用限界温度(100 ℃ と仮定)に達した場合、水源を外部水源に切り替える。ただ、 外部水源による注水を続けた場合、原子炉内の水が増加し続け るため、サプレッションプールの上端より1 m 下の位置まで水 位が到達した場合、再度水源をサプレッションプール に切り 替える。

出典) 国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成

表 2.2.1.3 サンプリングのためのパラメータの設定

機器・操作	サンプリング対象のパラ メータ	確率分布	変数	値	単位
直流電源	枯渇時間	三角分布	a, c, b	4,5,6	h
非常用ディ ーゼル発電 機	復旧時間	指数分布	λ	1/8	1/h
高圧注入系 専用の非常 用ディーゼ ル発電機	起動失敗確率	二項分布	р	5.00E-04	-
	継続運転失敗時間	指数分布	λ	1.00E-04	1/h
	修復時間	指数分布	λ	1/8	1/h
原子炉隔離 時冷却系	起動失敗確率	二項分布	р	2.50E-02	-
	継続運転失敗時間	指数分布	λ	5.00E-03	1/h
高圧炉心注 水系	起動失敗確率	二項分布	р	3.00E-03	
	継続運転失敗時間	指数分布	λ	5.00E-05	1/h
低圧炉心注 水系	起動失敗確率	二項分布	р	3.00E-03	-
	継続運転失敗時間	指数分布	λ	2.50E-05	1/h
	修復時間	指数分布	λ	1/24	1/h
余熱除去冷 却系	起動失敗確率	二項分布	р	3.00E-03	-
	継続運転失敗時間	指数分布	λ	2.50E-05	1/h
主蒸気逃が し弁の閉失 敗故障	閉失敗までの回数	幾何分布	р	1.00E-03	旦
	閉失敗時の漏えい率	切断正規分布	μ, σ a, b	0.5,0.2 0.05, 1	-
主蒸気逃が し弁の熱的 故障	熱的故障温度	切断正規分布	μ, σ a, b	427,100 327,627	°C
	熱的故障時の漏えい率	切断正規分布	μ, σ a, b	0.5,0.2 0.05, 1	-
			T_{TS}^{mean}	427	°C
			P_{RPV}^{mean}	7.56	MPa
再循環ポン プのシール 損傷	シール損傷時間	一様分布	α, β	0,12	h
	シール損傷面積	切断正規分布 (本分布の対数 をとる。)	μ, σ a, b	-9.2,1.4 0, 1.6e-3	m ²
			T_{loop}^{mean}	290	°C
			P_{RPV}^{mean}	7	MPa
			$ au^{mean}$	6	h
減圧操作	操作失敗確率	対数正規分布	μ, σ	-7.2,1.4	-
	操作成功時の所要時間	一様分布	α, β	10,60	min
低圧炉心注水系の水源切り替え	操作失敗確率	二項分布	р	2.00E-03	-

Table 2.2.1.3 Parameter setting for sampling

出典) 国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成 2 解析結果

表 2.2.1.3 のパラメータの分布に基づき、RAPID を用いてサンプリングを実施し、100 ケースの事故シナリオを生成した。得られた事故シナリオを用いて、THALES2 によるプラントシミュレーションを実施した。図 2.2.1.3 に全解析ケースの燃料被覆管温度を示す。なお、初期に生成した 100 ケースに加えて、分岐条件に達することで新たに 87 ケースが生成されたので、全解析ケースは 187 ケースとなった。

図 2.2.1.3 で解析した燃料被覆管最高温度を対象に、2.2.1(2)④のクラスタリング機能を 用いたクラスタリングを実施し、当該機能の適用性を確認した。図 2.2.1.4 にクラスタ数を 3 とした場合の結果を示す。炉心損傷に至らなかったケース(同図内の緑色線及び橙色線) の中でも、主蒸気逃がし弁故障や減圧操作により原子炉内の圧力が低下して燃料被覆管の 温度が約 400 K まで低下するケース(同図の緑色線)と原子炉内の減圧は行われずに燃料 被覆管の温度が約 600 K を保持するケース(同図の橙色線)に分かれた。このように、対 象とした物理量の挙動に応じてクラスタリングが実施されたことを確認した。

出典)国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成

図 2.2.1.3 全解析ケースの燃料被覆管温度

出典)国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²を 基に作成

図 2.2.1.4 クラスタリングの結果 (クラスター数:3) Fig. 2.2.1.4 Result of clustering (number of clusters: 3)

(4)代替評価モデルの構築及び交差検証

代替評価モデルの精度を確認するために、THALES2の解析結果に対して、support vector machine(SVM)法を用いて、代替評価モデルを構築した。代替評価モデルの予測性の検証に は、交差検証を用いた。交差検証とは、代替評価モデルの構築に用いた解析結果(訓練データ)と訓練データ以外の解析結果(検証データ)を分離して予測機能の確認を行うこと である。

表 2.2.1.3 のパラメータ分布に基づき、RAPID を用いてパラメータのサンプリングを実施し、THALES2 の入力データ 49 個を作成した。これら入力データを用いて THALES2 の 解析を実施し、交差検証を実施した。THALES2 の 49 個の解析結果うち、39 個の解析結果 と構築した代替評価モデルの予測結果が一致した。そのため、構築した代替評価モデルの 予測の正解率は約 79.6 %となった。
(5) 適合サンプリング機能の適用性確認

代替評価モデルに基づく適合サンプリング機能の適用性を確認するために、以下の手順 により、解析を実施した。THALES2 を用いた BWR4 MARK-1 型を対象とした。事故シー ケンスは SBO、直流電源が 500 秒で枯渇した後、交流電源が復活する時間をサンプリング した。

図 2.2.1.5 に、モンテカルロ法を用いた場合の THALES2 の解析結果、図 2.2.1.6 に、適合 サンプリング法を用いた場合の THALES2 の解析結果を示す。炉心溶融が開始した後につ いては、炉心溶融開始前までの最高温度を使用している。モンテカルロ法の場合は、炉心 損傷の境界付近のサンプル数は全 200 ケース中 33 ケースであるのに対し、適合サンプリ ング法の場合は、炉心損傷の境界付近のサンプル数は全 200 ケース中 193 ケースであり、 炉心損傷の境界付近を重点的にサンプリングできていることが分かる。これにより、ユー ザーが着目する領域(今回の場合だと炉心損傷の境界付近)に対して重点的にシミュレー ションコードによる詳細解析を実施することができ、計算コストを削減することができる。

出典)国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委
託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²
図 2.2.1.5 THALES2 を用いた 200 ケースの解析結果
Fig. 2.2.1.5 Analysis results for 200 cases using THALES2

出典) 国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月¹²

図 2.2.1.6 代替評価モデルを用いた 200 ケースの解析結果

Fig. 2.2.1.6 Analysis results for 200 cases using surrogate model

(6) まとめ

ダイナミック PRA 手法を実施するためのコードである RAPID の開発及びプラントシミ ュレーションコードとの連携を実施した。また、BWR プラントを対象としたリスクの試解 析を実施することで、RAPID を用いてプラントの状態を反映した事故シナリオの生成、多 数の解析結果の処理、計算コストの削減が実施できることを確認し、開発した解析コード の適用性を確認した。

2.2.2 人間信頼性解析ツールの整備

(1) はじめに

新規制基準では重大事故対策が規制要件の一つとなっている。多くの重大事故対策においては、運転員が新たな設備等を操作して、重大事故を防止する対策になっており、運転員の操作の失敗が炉心の損傷につながる可能性がある。PRAでは、運転員が操作を失敗する確率を人間信頼性解析によって算出して、PRAモデルに組み込み炉心損傷頻度を計算している。

重大事故等対処設備に係る操作においては、設計基準事故対処設備が機能喪失になって おり、厳しい環境下で運転員及び支援要員(以下「運転員等」という。)は非常に大きな ストレスがかかる。このような状況下においては、運転員等が行う操作に失敗する可能性 が大きなストレスがかかっていない状況に比べて高くなることが考えられる。PRA におい ては運転員等の操作に影響を及ぼす要因を考慮して人的過誤を定量的に評価できる手法を 採用することが望ましい。また、地震のように外部からの要因で運転員等のストレスに影 響を及ぼす場合も考えられるため、このような環境が変化するために運転員の操作に影響 を及ぼす要因を考慮できる手法を採用することも望ましい。

本研究では、米国で開発が進む種々の人間信頼性解析手法を比較し、重大事故等対処設備の操作失敗確率や地震、津波等の外部事象が発生した際の運転員の操作失敗確率を算出するのに好ましい手法を検討した。このため、種々の状況下における人的過誤を定量的に評価できる手法のうち、HCR/ORE¹⁵、CBDTM¹⁵及び THERP²⁶を組み合わせ EPRI が開発した手法(以下「EPRI 手法」という。)、米国 NRC が開発している IDHEAS¹⁶、米国カリフォルニア大学(UCLA)が開発している PHOENIX¹⁷の三つの手法を選択し、種々の事故シーケンスを対象に試解析を実施した。この試解析では、内部事象出力運転時及び地震時出力運転時の事故シーケンスにおいて考慮する重大事故等対処設備の操作に係る人的過誤を対象にした。

以下では、大破断 LOCA における代替再循環切替操作の人的過誤確率の算出について、 (2)で代替再循環切替に係る操作の概要を示し、(3)から(6)までで EPRI 手法、IDHEAS 手法 及び PHOENIX 手法を用いた試解析の結果を示すとともに、上記三手法とこれまでの PRA に係る研究で使用してきた手法である THERP の結果 ²⁷比較及び特徴を示す。(7)では地震 による環境の変化を考慮して上記四つの手法による試解析結果を示す。(8)では(7)で得られ た結果を基に上記四つの手法を比較した結果、PHOENIX 手法が一般的な PRA モデルと親 和性が高く、炉心損傷頻度の精度向上及び原因分析に適した手法であることがわかった。 (9)では PHOENIX 手法の PRA モデルへの適用に向けた同手法の改良について述べる。最 後に(10)でまとめと将来の展望を示す。

20

(2) 代替再循環切替操作の概要

代替再循環は低圧注入系による格納容器サンプを水源にした炉心への注水に失敗した 際に、格納容器スプレイ系のポンプ及び熱交換器を用いて、炉心へ注水する重大事故等対 策である。代替再循環への切替が必要な際には、運転員は低圧注入系の再循環モード切替 に失敗したことを判断し、図 2.2.2.1 に示す格納容器スプレイ系と低圧注入系の接続ライン に設置された弁を開けることで、代替再循環への切替操作を行う。

ここでの試解析では、大破断 LOCA の発生後、高圧注入系及び低圧注入系による再循環 モードへの切替に失敗した事故シーケンスとした。大破断 LOCA 発生後、蓄圧注入系、高 圧注入系及び低圧注入系から冷却材を炉心へ注水し、約 30 分で燃料取替用水ピットの水 位レベルが低(約16%)になり、格納容器サンプに水源を切替える必要が生じる。燃料取 替用水ピットから格納容器サンプへ水源を切り替える際、低圧注入系が機能喪失すると仮 定した。このとき、格納容器スプレイ系を用いた炉心への注水には、低圧注入系の機能喪 失から25 分の余裕があると仮定した。

図 2.2.2.1 代替再循環に係る概略図

(3) EPRI 手法を用いた試解析

EPRI 手法では、運転員の認知に係る失敗確率を HCR/ORE 又は CBDTM を用いて算出 し、両者のうち大きい値を採用する。今回は比較のためそれぞれを用いた場合の人的過誤 確率を算出した。また、運転員の操作に係る失敗確率については THERP を用いて算出し、 認知の失敗確率と操作の失敗確率とを足し合わせて、運転員による人的過誤確率を算出す る。 ① HCR/ORE による認知の失敗確率

HCR/ORE による認知に係る失敗確率の算出では、図 2.2.2.2 に示す運転員の認知失敗曲線 ($Pc = 1 - \Phi[ln(Tw/T1/2)/\sigma]$ 。ただし、 Φ :標準正規分布の累積分布関数)を用いる。 規格化された時間 (Normalized Time)は、認知応答の許容時間を認知応答時間の中央値で 割った値 (Tw/T1/2) である。

出典) Electrical Power Research Institute, "An Approach to the Analysis of Operator Actions in Probabilistic Risk Assessment," EPRI TR-100259, June 1992¹⁵より抜粋し、一部加筆¹⁵

図 2.2.2.2 HCR/ORE の運転員の認知失敗曲線の例

Fig. 2.2.2.2 Cognitive failure distribution in HCR/ORE

解析に使用したパラメータを以下に示す。

σ: PWR プラントの認知に係るパラメータ 0.38

T1/2:認知応答時間の中央値 48.4分

Tw:認知応答の許容時間 55分

これらのパラメータにより、HCR/OREで求めた認知失敗確率は0.37となった。

② CBDTM による認知の失敗確率

CBDTMによる認知に係る失敗確率の算出では、表 2.2.2.1 の左端に示す八つのディシジョンツリーを用いる。図 2.2.2.3 に例としてデータの有効性に関するディシジョンツリーを示す。ツリーの右端の値が認知失敗確率を表す。赤線は、今回の解析結果であり、データの有効性に関する認知失敗は無視できる程度と評価された。これらのディシジョンツリーを用いて算出した認知に係る失敗確率を表 2.2.2.1 に示す。想定した失敗についてリカバリの有無を検討し、情報の読み間違い及び手順書の読み間違いについては別の運転員による

リカバリが可能とし、その確率は各々0.5 とした。これらの結果から CBDTM による認知 に係る失敗確率は、3.8×10⁻³となった。

		選択したツリ	失敗確率	リカバリの考慮
ツリーの記号	ツリーの種類	ーのブランチ		
		記号		
P _c a	データの有効性	а		
P _c b	データへの注目度	1	$7.5 imes 10^{-4}$	考慮しない
P _c c	データの読み間違い	а	_	_
P _c d	情報の読み間違い	b	3.0×10 ⁻³	imes0.5
P _c e	手順書の読み間違い	с	3.0×10 ⁻³	imes0.5
P _c f	指示の解釈	а	_	—
Pcg	論理的なミス	1	_	—
Pch	故意的なミス	а		
	合計		6.8×10 ⁻³	3.8×10 ⁻³

表 2.2.2.1 CBDTM のディシジョンツリーの種類と認知に係る失敗確率 Table 2.2.2.1 Decision tree type of CBDTM and failure probability of cognition

*一は失敗確率が無視できるほど小さいもの

Ind.Avail in CR	CR Ind. Accurate	Warn/Alt. in Proc.	Trainning on Ind.	P _c a
	0			Negligible
 Vee			0.1	Negligible
Yes		0.003	0.1	Negligible
			0.1	0.0015
	0.5		0.1	0.05
		1.0	0.1	0.5
No				*

図 2.2.2.3 データの有効性に関するディシジョンツリーの例

Fig. 2.2.2.3 Example of decision tree for data effectiveness

THERP を用いた運転員の操作に係る失敗確率は、5.0×10-3とした²⁷。

運転員による人的過誤確率については、認知の失敗確率と操作の失敗確率を足し合わせ て算出する。運転員の認知に係る失敗確率として HCR/ORE 又は CBDTM による解析結果 を、運転員の操作に係る失敗確率として THERP による解析結果を用いる。これらの計算 から、認知失敗に HCR/ORE を用いた場合の代替再循環切替操作の失敗確率は 0.38 であり、 認知失敗に CBDTM を用いた場合の代替再循環切替操作の失敗確率は 8.8×10⁻³となった。

(4) IDHEAS 手法を用いた試解析

IDHEAS は、PRA で得た事故シーケンス、プラントの設計情報、運転手順書等からタス ク分析を行い、図 2.2.2.4 のような運転員対応ダイヤグラム(Crew response diagram: CRD) を作成する。図の青いボックスが運転員対応(診断、指示、選択等)の成功・失敗分岐を表 しており、緑のボックスが各対応失敗からのリカバリの成功・失敗分岐を表している。次に、 運転員対応ダイヤグラムの各操作に関して運転員が失敗する失敗モード(Crew failure mode: CFM)を特定し、運転員の失敗を分析する。特定された CFM について表 2.2.2.2 に 示す 14 のディシジョンツリーを用いて人的過誤確率を算出する。図 2.2.2.5 に IDHEAS の ディシジョンツリーの例を示す。本図は診断時に重要な警報へ注意が向けられない CFM (表 2.2.2.2 No.1 AR Key Alarm Not Attended to)に関するディシジョンツリーであり、赤線 は試解析結果を示している。

表 2.2.2.2 IDHEAS の CFM ディシジョンツリーの種類

NO.	identification	Decision trees	NO.	identification	Decision trees
1	AR	Key Alarm Not Attended to	8	RP-1	Misinterpret Procedure
2	MP	Misread or Skip Critical		RP-2	Choose Inappropriate Strategy
3	SA-1	Data Misleading or Not	10	E-1	Delay Implementation
4	SA-2	Wrong Data Source Attended to	11	E-2	Critical Data Not Cheeked/Monitored with Appropriate Frequency
5	SA-3	Critical Data Misperceived	12	E-3	Fail to Initiate Execution
6	SA-4	Critical Data Dismissed/Discounted	13	E-4	Fail to Correctry Execute Response
7	SA-5	Premature Termination of Critical Data Collection	14	E−5	Fail to Correctly Execute Response (complex Task)

Table 2.2.2.2 Types of IDHEAS decision trees for CFM

Fig. 2.2.2.4 Example of crew response diagram (CRD)

FIFs(
Distraction	ΗSI	Preceived Urgency	Path NO.
			1
 High	Poor	Low	
0			2
		High	
		6	3
 	Good –	— Low ——	
		2011	4
 		– High –	
		Tingit	5
 Low	– Poor –	low —	
			6
		High	
		- Ingli	7
	Good		
	0000		

図 2.2.2.5 IDHEAS の重要な警報へ注意が向けられないディシジョンツリーの例 Fig. 2.2.2.5 Example of decision trees for "Key alarm not Attended to"

事故シーケンスと手順書から図2.2.2.6に示す代替再循環切替操作に係るCRDを作成し、 11 個の運転員行動を特定し、10 個のリカバリの可能性を特定した。表 2.2.2.3 に示すよう に、診断に関する CFM、操作に関する CFM を設定し、各 CFM について使用するディシジ ョンツリーを特定し、リカバリを考慮して各 CFM の確率を算出した。

表 2.2.2.3 に示すように、IDHEAS を用いて算出した代替再循環切替操作の失敗確率は、 7.3×10-3となった。

Fig. 2.2.2.6 CRD for switching of alternative recirculation

表 2.2.2.3 各 CFM で使用したディシジョンツリーとそれら人的過誤確率

	ディシジョン	リカバリ	ディシジョ	各ブランチ	人的過誤	
	ツリーの記号		ンツリーの	の確率	確率	
			ブランチ			
N. 1. 2	AR		4	4.4×10 ⁻³		
Node 2	MP	None	4	2.7×10 ⁻³	7.1×10 ⁻³	
ロシ 臣立	E-2		12	4.9×10 ⁻⁵		
Node 3	E-1	Node 12	7	1.7×10 ⁻⁵	1.0×10-5	
口頭指示	E-4	Node 15	6	1.6×10 ⁻⁶	1.9^10*	
Node 4	E-1	N. 1. 14	7	1.7×10 ⁻⁵	1.0×10-5	
スイッチ選択	E-4	Node 14	6	1.6×10 ⁻⁶	1.9×10°	
Node 5	E-1	NI 1 15	7	1.7×10 ⁻⁵		
スイッチ操作	E-4	Node 15	6	1.6×10 ⁻⁶	- 1.9×10 ⁻³	
Node 6 口頭指	E-1	N. 1. 1.C	7	1.7×10 ⁻⁵	- 1.9×10 ⁻⁵	
示 2	E-4	Node 16	6	1.6×10 ⁻⁶		
Node 7	E-1	N. 1. 17	7	1.7×10 ⁻⁵	1.010-5	
スイッチ選択	E-4	Node I/	6	1.6×10 ⁻⁶	1.9×10-5	
Node 8	E-1	N 1 10	7	1.7×10 ⁻⁵	1.010.5	
スイッチ操作	E-4	Node 18	6	1.6×10 ⁻⁶	- 1.9×10-3	
Node 9	E-1		7	1.7×10 ⁻⁵		
現場弁操作	E-4	Node 19	6	1.6×10 ⁻⁶	1.9×10 ⁻⁵	
Node 10	E-1	N. 1. 20	7	1.7×10 ⁻⁵	1.010.5	
口頭指示 3	E-4	Node 20	6	1.6×10 ⁻⁶	1.9×10-3	
Node 11	E-1	N. 1. 21	7	1.7×10 ⁻⁵	1.0×10-5	
スイッチ選択	E-4	INODE 21	6	1.6×10 ⁻⁶	1.9×10 ⁻⁵	
Node 12	E-1	N. 1. 22	7	1.7×10 ⁻⁵	1.0×10-5	
スイッチ操作	E-4	Node 22	6	1.6×10 ⁻⁶	1.9×10 ⁻⁵	
運転員の操作失	敗確率	•	•		7.3×10 ⁻³	

Table 2.2.2.3 Decision trees of each CFM and those human error probabilities

(5) PHOENIX を用いた試解析

PHOENIX は、EPRI 手法や IDHEAS 手法よりも人の認知及び外部要因を詳細に考慮し、 ベイジアン・ビリーフ・ネットワーク²⁸を用いて環境等の要因と人的過誤の因果関係をモ デル化している。ベイジアン・ビリーフ・ネットワークは、評価対象となる事象の前後関 係をネットワーク図で表現し、ネットワーク毎の確率をベイズの定理で計算することで評 価対象の発生確率を求める手法である。評価対象を運転員の操作の失敗とすると、運転員 の操作失敗に対する複数の原因をネットワーク図で表現でき、運転員の操作失敗の確率を ベイズの定理で算出できる。このベイジアン・ビリーフ・ネットワークでは、各失敗原因 の影響度を条件付き確率で算出するため、事象進展に伴う環境因子の変化を確率の変化と して人的過誤確率を算出することが可能である。PHOENIXの評価の概要図²⁹を図 2.2.2.7 に示す。PHOENIX では、③の IDHEAS 同様、まず PRA モデルで得た事故シーケンス、プ ラントの設計情報、運転手順書等からタスク分析を行い、図2.2.2.8のような運転員対応ツ リー(Crew response tree: CRT)を作成する。図の青いボックスは各運転員対応を表し、緑 は成功パスを、赤は失敗パスを表している。その後、警報音や指示値といった意思決定に 重要な情報の取得(Information)、意思決定(Decision)及び行動(Action)を運転員操作 の3要素とした IDA モデル³⁰に基づき、運転員操作の失敗モード(Crew failure mode: CFM) を特定し、フォールトツリー形式で運転員の操作失敗をモデル化する。運転員のパフォー マンスの向上や劣化に係る要因をパフォーマンス影響因子 (Performance influencing factor, 以下「PIF」という。)として設定し、人的過誤を定量評価する。図 2.2.2.9 に運転員失敗モ デルの例を示す。図の下端が CFM を表しており、それらが or ゲートで結ばれ、運転員操 作の失敗がモデル化されている。

出典) M. Ramos, Kanoko Nishiono, Haruaki Ueda, Yoshikane Hamaguchi, Ali Mosleh, "Phoenix Human Reliability Analysis Method: Application to a Feed and Bleed Operation," PSA 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, 2021.²⁹

図 2.2.2.7 PHOENIX を用いた評価の全体図

Fig. 2.2.2.7 Schematic diagram of PHOENIX evaluation

出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

図 2.2.2.9 運転員失敗モデルの図 Fig. 2.2.2.9 Example of crew failure model (6) 内部事象の代替再循環切替操作に係る人的過誤確率のまとめ

内部事象(大破断 LOCA)時の代替再循環切替操作について、上記(3)~(5)に示したよう に EPRI 手法、IDHEAS 及び PHOENIX で人的過誤確率を算出した。また、THERP 手法の 人的過誤確率については、過年度に算出した結果²⁷を比較の参考に示すことにした。これ らの結果を表 2.2.2.4 にまとめて示す。この試解析の結果、EPRI 手法の HCR/ORE で計算し た人的過誤確率が他の手法を用いた場合に比べて高い。ただし、感度解析等によって、多 数のケースに適用して傾向を分析することが重要である。

表 2.2.2.4 代替再循環切替操作に係る人的過誤確率(内部事象)

試解析で対象	使用した手法	環境要因の	人的過誤確率
にした事象		考慮方法	
内部事象	THERP		3.2×10 ⁻²
(大破断	EPRI 手法(HCR/ORE		3.7×10 ⁻¹
LOCA)	使用)		
	(CBDTM 使用)		8.8×10 ⁻³
	IDHEAS		7.3×10 ⁻³
	PHOENIX		9.2×10 ^{-3 *}

Table 2.2.2.4 Human error probabilities of alternative recirculation switch

*出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

(7) 地震を考慮した人的過誤確率の算出

地震のような環境の変化に対して人的過誤確率を算出するために、環境要因を考慮する 三つの方法を検討した。対象は、(1)で述べた大破断 LOCA における代替再循環切替操作で ある。PRA で算出している人的過誤を対象に過誤確率を算出した。

① PSF を用いて環境要因を考慮した試解析

一つめの方法は、THERP 手法、EPRI 手法及び IDHEAS 手法に対して、ストレス等の要 因を考慮するためにベースとなる操作失敗確率を補正するパフォーマンス・シェーピング・ ファクタ(以下「PSF」という。)に環境による PSF(以下「環境 PSF」という。)を追加 した。ここで、大きな地震により過度に運転員に影響が出ていると仮定して PSF は 10 倍 と設定した。THERP では、環境 PSF を考慮して各操作の過誤確率に対して 10 倍すること で算出し、CBDTM 及び IDHEAS では算出された結果の過誤確率に対して 10 倍すること

で環境 PSF を考慮することとした。このようにして得た環境 PSF を考慮した場合の人的過 誤確率を表 2.2.2.5 に示す。

なお、PHOENIX では、環境要因の PIF を対象に、地震発生時の作業環境は厳しくなるこ とを想定して PIF の補正値を大きくして、人的過誤確率を算出した。

表 2.2.2.5 環境 PSF を考慮した場合の試解析結果 Table 2.2.2.5 Trial calculation results considered environmental PFSs

	1.2.10.1
用いた手法	人的過誤確率

用いた手伝	入时迴誤唯平
THERP	1.2×10 ⁻¹
EPRI 手法(HCR/ORE 使	—
用)	(1.0 を超えるため対象
	外)
EPRI 手法(CBDTM 使	1.3×10 ⁻¹
用)	
IDHEAS	7.3×10 ⁻²
PHOENIX	4.2×10 ⁻² *

*出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

②ディシジョンツリーに分岐を追加した場合の試解析

二つめの方法として、ディシジョンツリーの分岐に対して、地震を考慮した新しい分岐 を設ける方法を検討した。この方法については、ディシジョンツリーを用いる EPRI 手法 の CBDTM 及び IDHEAS を対象に試解析をした。図 2.2.2.10 に新しい分岐を追加したディ シジョンツリーの例を示す。赤線は今回の試解析の結果を表す。データの注目度に係るデ ィシジョンツリーにおける Workload のヘディングを対象に、地震を考慮した新しい分岐 「Very heavy workload」を追加した。このように新しい分岐を設けて行った試解析の結果 を表 2.2.2.6 に示す。

表 2.2.2.6 ディシジョンツリーに新しい分岐を設けた場合の試解析結果

用いた手法	人的過誤確率
EPRI 手法(CBDTM 使	1.5×10 ⁻²
用)	
IDHEAS	7.1×10 ⁻²

Table 2.2.2.6 Trial calculation results considered new branches

③ ディシジョンツリーのヘディングを追加した場合の試解析

三つめの方法として、ディシジョンツリーのヘディングに対して、新しいヘディングを 追加する方法について検討した。この方法については、ディシジョンツリーを用いる EPRI 手法の CBDTM 及び IDHEAS を対象に試解析を行った。

図 2.2.2.11 に新しいヘディング(ヘディング名: earthquake)を追加したディシジョンツ リーの例を示す。赤線は今回の試解析結果を示す。データの注目度に係るディシジョンツ リーにおいて、地震のヘディングを追加し、分岐を設けた。新しい分岐を追加した場合と の差異は、地震時に負荷が小さい操作を行う場合を考慮できることである。

このように新しいヘディングを設けて行った試解析の結果を表 2.2.2.7 に示す。

表 2.2.2.7 デ	ィシ	ジョン	ンツリ	ーに新しい	ヽヘディ	ィング	を設けた	場合の	の試解析結果
-------------	----	-----	-----	-------	------	-----	------	-----	--------

用いた手法	人的過誤確率
EPRI 手法(CBDTM 使	1.5×10 ⁻²
用)	
IDHEAS	7.1×10 ⁻²

Table 2.2.2.7 Trial calculation results considered new headings

図 2.2.2.10 新しい分岐を設けたディシジョンツリーの例

Fig. 2.2.2.10 Example of decision trees that include that include new branches

Fig. 2.2.2.11 Example of decision trees that include new headings

(8) 地震を考慮した試解析の結果

地震による環境の変化の考慮について、上記①~③に示したように、環境 PSF(若しく は環境に係る PIF)、ディシジョンツリーの分岐の追加、ディシジョンツリーのヘディン グの追加の三つの方法を検討し試解析を行った。試解析の結果を表 2.2.2.8 に整理した。試 解析の結果、IDHEAS は三つの方法で人的過誤確率の大きな変化がなかったものの、他の 手法では環境 PSF を考慮した場合の人的過誤確率が大きくなった。

表 2.2.2.8 地震を考慮した試解析の結果の整理

地震	THERP	環境 PSF	1.2×10 ⁻¹
(大破断 LOCA)	EPRI 手法(CBDTM	環境 PSF	1.3×10 ⁻¹
	使用)		
		分岐の追加	1.5×10 ⁻²
		ヘディングの追	1.5×10 ⁻²
		加	
	IDHEAS	環境 PSF	7.3×10 ⁻²
		分岐の追加	7.1×10 ⁻²
		ヘディングの追	7.1×10 ⁻²
		加	
	PHOENIX	環境に係る PIF	4.2×10 ^{-2*}

*出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

(9) 四つの手法の比較

(3)~(7)で得た四つの手法による試解析結果を表 2.2.2.9 に示す。内部事象の人的過誤を 対象にした試解析においては、操作及び認知を対象とした人間信頼性評価手法のうち、 EPRI 手法(HCR/ORE 使用)で計算した人的過誤確率が他の手法を用いた場合に比べて高 いことが分かった。ただし、手法によって考慮する環境因子が異なるため、HEP の差が出 る要因については感度解析等の検討が必要である。

また、PHOENIX 手法の特徴として、PIF の補正値を細かく設定できることがわかった。 さらに、ベイジアン・ビリーフ・ネットワークを用いていることから、複数の運転員操作 の前後関係をネットワーク図によりモデル化することができ、人的過誤確率の計算に組み 込むことができることが分かった。

四つの人間信頼性解析手法のうち、PHOENIX 手法はイベントツリー及びフォールトツ リーを用いて運転員が操作を失敗するロジックを組み立て、運転員が操作を失敗する要素 の組合せ(ミニマルカットセット)を抽出することが可能である。この方法は、一般的な PRA で用いている分析及び定量化の方法と同じであり、人間信頼性解析モデルと PRA モ デルとの統合が容易であることが確認できた。 さらに、PHOENIX 手法は、複数の運転員操作の前後関係をベイジアン・ビリーフ・ネットワークによりモデル化することができる。このため、PRA で得られる事故シナリオを基 に、複数の運転員操作をモデル化することで、詳細な人的過誤確率の計算が可能となり、 炉心損傷頻度の精度を向上させる事が示唆された。さらに、人的過誤の原因が人的過誤影 響因子の組合せとして表現されるため、炉心損傷へ至る運転員操作失敗の原因分析が容易 となることが確認できた。

人間信頼解析手法と PRA モデルをより緊密に組み合わせることで人的過誤確率の持つ 不確かさを低減できることから、PRA から得られる情報を人間信頼性解析に組み込みやす く、また分析した人的過誤の原因及び算出した人的過誤確率を PRA に組み込みやすい手 法が必要となるため、今後の人間信頼性解析に係る研究においては、カリフォルニア大学 が開発を続ける PHOENIX 手法を研究対象にした。

			8
試解析で対	使用した手法	環境要因の	人的過誤確率
象にした事		考慮方法	
象			
内部事象	THERP		3.2×10 ⁻²
	EPRI 手法(HCR/ORE		0.37
	使用)		
	(CBDTM 使用)		8.8×10 ⁻³
	IDHEAS		7.3×10 ⁻³
	PHOENIX		9.2×10 ^{-3 *}
地震	THERP	PSF	1.2×10 ⁻¹
	EPRI 手法(CBDTM	PSF	1.3×10 ⁻¹
	使用)		
		分岐の追加	1.5×10 ⁻²
		ヘディングの	1.5×10 ⁻²
		追加	
	IDHEAS	PSF	7.3×10 ⁻²
		分岐の追加	7.1×10 ⁻²
		ヘディングの	7.1×10 ⁻²
		追加	
	PHOENIX	PIF	4.1×10 ⁻² *

表 2.2.2.9 四つの手法の試解析結果

Table 2.2.2.9 Tria	l calculation	results for	four me	thodologies
--------------------	---------------	-------------	---------	-------------

*出典) The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles³¹

(10) PHOENIX 手法の改良

人間信頼性解析を PRA モデルに組み込む際、PRA モデルのイベントツリーで表現され ている事故シーケンスを基に、運転員の操作の数や前後の操作の関係性を考える必要があ る。THERP 手法では、運転員の操作手順を基に HRA イベントツリーを作成し、各 HRA イ ベントツリーの分岐において前段の操作との依存性が考えられる場合は、依存レベルを独 立、低レベル、中レベル、高レベル及び完全依存の5種類から設定して人的過誤確率を補 正し、全体の人的過誤確率を算出している。また、EPRI 手法では、PRA の結果から得られ るミニマルカットセットに含まれる運転員操作を抽出し、複数の運転員操作が含まれるミ ニマルカットセットを対象に、2番目の操作に対しては1番目の操作の依存レベルを独立、 低レベル、中レベル、高レベル及び完全依存の5種類から設定して、簡易的に複数の運転 員操作の失敗確率を算出している。

このような計算方法は簡単である反面、依存レベルの設定根拠、依存レベルごとの失敗 確率の算出の根拠等、技術的な根拠が乏しい。このため、カリフォルニア大学と協力して、 複数の運転員操作の前後関係のモデル化と関係性の結びつきの強さの評価方法の検討を実 施した²⁹。

例えば、二つの運転員操作があった場合、PHOENIX 手法ではそれぞれの操作に対して 運転員対応ツリー(Crew response tree: CRT)を作成する。これまでは、運転員対応ツリー 内で考慮している PIF の関係性は、ベイジアン・ビリーフ・ネットワークで考慮していた ものの、二つの運転員対応ツリー間の関係性は考慮してこなかった。今回の検討において は、ベイジアン・ビリーフ・ネットワークで考慮する複数の依存関係の結びつきを、PRA のイベントツリーで表現している事故シーケンスへ展開し、大きなベイジアン・ビリーフ・ ネットワークの関係性の構築を検討し、PHOENIXの解析ツール³²に組み込んだ。

改良した PHOENIX の解析ツールを用いて、図 2.2.2.12 に示すように 2 次系の復旧とフィードアンドブリードの二つの運転員操作を計算したところ、この計算ケースでは表 2.2.2.10 に示すように運転員操作間の依存性を考慮することで 14%程度の増加が見られた。

今回は、ベイジアン・ビリーフ・ネットワークを用いて依存関係の結びつきの構築を行ったが、14%程度という増加は THERP 手法や EPRI 手法の依存性を考慮した計算よりもかなり小さい結果を得た。このことから、他の手法との計算結果の違いが大きいという課題が得られた。今後は、このような課題を解析し、人間信頼性解析の精度を向上することで、 PRA モデルに組み込むことのできる人間信頼性解析を開発できると思われる。

41

表 2.2.2.10 2 次系の復旧とフィードアンドブリード操作における失敗確率

Table 2.2.2.10 Results for the failure of secondary side recovery and the failure of feed and bleed operation

1	
条件	人的過誤確率
操作間の依存性を考慮しなかった場合	1.97×10 ⁻³
操作間の依存性を考慮した場合	2.25×10 ⁻³

出典) M. Ramos, Kanoko Nishiono, Haruaki Ueda, Yoshikane Hamaguchi, Ali Mosleh, "Phoenix Human Reliability Analysis Method: Application to a Feed and Bleed Operation," PSA 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, 2021²⁹

出典) M. Ramos, Kanoko Nishiono, Haruaki Ueda, Yoshikane Hamaguchi, Ali Mosleh, "Phoenix Human Reliability Analysis Method: Application to a Feed and Bleed Operation," PSA 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, 2021²⁹

Fig. 2.2.2.12 Crew response trees of secondary side recovery and feed and bleed operation and dependencies of these actions

(11) まとめ

本研究では、EPRI 手法、IDHEAS 手法及び PHOENIX 手法の3者の重大事故等対処設備の操作に係る試解析を行い、THERP 手法を用いて解析した結果との比較を行うことでそれ ぞれの特徴を把握した。

また、PRA モデルと同じイベントツリー及びフォールトツリーを用いて運転員操作の失 敗原因を分析する方法を用いた PHOENIX 手法は、PRA モデルとの親和性が高いことが分 かった。このため、PRA に係る研究を実施する上で、人間信頼性解析は PHOENIX 手法を 用いることにした。

さらに、PHOENIX 手法を用いて実施した試解析により、複数の運転員の操作における 関係性を考慮する方法を構築した。運転員操作の失敗については、炉心損傷頻度への影響 が大きな要素であるため、継続して人間信頼性解析手法を高度化し、規制活動で活用する リスク情報を得るための検討が必要である。

2.2.3 レベル 1PRA 及びレベル 2PRA 一貫解析手法の整備

(1) はじめに

原子炉施設では、格納容器内の重大事故の影響を緩和するために、代替格納容器スプレ イポンプ等の機器が設置されている。このような機器は、炉心損傷を防止する手段に用い ることもあり、炉心損傷の防止に使用する際の関連機器の動作要求及びその成否が、格納 容器内の重大事故の影響の緩和の成否に影響する。このため、レベル 1PRA とレベル 2PRA とを一貫する事故シーケンス解析が必要になる。

本研究では、レベル 1PRA からレベル 2PRA を一貫して解析できるように手法の基本設計を検討し、一貫解析に適用するモデルを作成した。

(2) レベル 1PRA 及びレベル 2PRA 一貫解析の基本設計の検討

従来は、レベル 1PRA において炉心損傷に至る事故シーケンスをプラント損傷状態(以下「PDS」という。)に分類して PDS ごとの炉心損傷頻度(以下「CDF」という。)を算 出し、この PDS ごとの CDF を格納容器イベントツリー(以下「CET」という。)の出発点 とし、レベル 2PRA を行っていた。すなわち、レベル 1PRA とレベル 2PRA のインターフ ェイスは PDS ごとの CDF であった。

また、これまでの PRA に係る安全研究において使用してきた WinNUPRA コードでは、 ET 同士の結合が容易ではなかったため、レベル 1 PRA で得られる事故シーケンスごとの ミニマルカットセット(以下「MCS」という。)の情報をレベル 2PRA に引き継ぐことは 困難であり、CDF のみレベル 2 へ引き継いでいた。このため、レベル 1PRA 及びレベル 2 PRA で共通に使用される機器の故障が 2 重に考慮されてしまう課題があった。また、レベ ル 1PRA の限られた情報をレベル 2PRA で使用するために、レベル 1PRA において炉心損 傷には影響しないが PDS 分類に必要な分岐を設ける必要があったため、事故シーケンスの 数が膨大になり、レベル 1PRA の事故シーケンスが分かり難くなっていた。

そこで、レベル 1PRA までの結果の使いやすさ、分かりやすさ及び事故シーケンス展開 のしやすさから、図 2.2.3.1 に示すようなブリッジツリーを導入し、解析コードは米国 NRC で使用実績のある SAPHIRE コード³³を導入した。SAPHIRE コードは、複数の ET の結合 及び結合時の MCS の保存が可能な解析コードである。

44

CFF: Containment Failure Frequency(格納容器機能喪失頻度)

図 2.2.3.1 レベル 1PRA 及びレベル 2PRA の連結に関する従来手法と一貫解析の基本設計 Fig. 2.2.3.1 Conventional connection method of level 1 and 2 PRAs and architecture of consistent analysis

(3) モデル移植の検討モデル構築手法の検討

SAPHIRE コードにおいて ET 及び FT を用いた機器及び系統のモデル化するため、表 2.2.3.1 に挙げるような WinNUPRA コードとの仕様の違い等を考慮し、以下に示す WinNUPRA コードの ET 及び FT を SAPHIRE コードに移植する際の留意点を整理した。

SAPHIRE コードでは、外部トランスファーが頂上事象しか割り当てられないという制限 がある。このため、ECCS 注入配管、水源等の複数の緩和系で共通部分のモデルは、個別 のFT として作成する。

SAPHIRE コードでは、FT のゲート及び基事象の配置に制限がないため、単純に系統全 てのモデルを一つのFT で構成すると、FT が大きくなりすぎ、管理が難しくなる。このた め、一つの緩和手段に対し、それぞれのFT が大きくなりすぎないように複数のFT に分け てモデル化することとし、図 2.2.3-2 に示すように機能、機器及び損傷の共通部分に着目し、 いくつかの部位(以下「セグメント」という。)に分割し、このセグメント単位までを展 開した全体構成を示すメイン FT、トレイン等の構成機器を示すサブ FT、さらには、機器 ごとに故障モードを展開した FT というような階層化行うこととした。

上記の通り、SAPHIRE コードを用いた一貫解析モデルの FT の作成方法を整備した。

表 2.2.3.1 WinNUPRA コードと SAPHIRE コードの主な仕様の違い

Table 2.2.3.1 Differences between	the main	specifications	of WinNUPRA	code and SAPHIRE
-----------------------------------	----------	----------------	-------------	------------------

項目	WinNUPRA コード	SAPHIRE コード
ET のヘディング	制限有り。	制限なし。
数		
ET Ø	手動でトランスファーの情報を作	リンク先の指定のみで良い。
トランスファー	成する必要がある。	事故シーケンスの条件によってリ
・リンキング		ンク先指定可能。
FT の大きさと	1ページ内におけるゲート、基事	大きさや配置に制限がない。
組み方	象数に制限が有り、配置や組み方	ゲート、基事象は接続関係のみで
	に制限がある。	指定される。
頂上事象	一つの FT ファイルにいくつでも	一つの FT ファイルには 1 つしか設
	設定可能。	定できない。
内部	下図のどちらの構造でも可能。	下図の構造のみ可能。
トランスファー	頂上事象のように線でつながって	頂上事象のように線でつながって
	ないゲートが複数存在できる特徴	ないゲートが複数存在できない特
	がある。	徴がある。
	一つの FT(ファイル)内で共通	共通部分をくくり出すには別の FT
	部分をくくり出す等の処理ができ	(ファイル) にするしかない。
	る。	
外部	どこのゲートでも呼び出せる。	頂上事象のみ呼び出し可能。
トランスファー		

code

図 2.2.3.2 FT の階層化 Fig. 2.2.3.2 FT hierarchization

(4) モデル情報の整理

ET のヘディングに対応する FT は、起因事象の種類及び機能喪失している系統の条件に より異なる。特に外部電源喪失や原子炉補機冷却系機能喪失の ET では、事故シーケンス 数が膨大になるだけではなく、事故シーケンスごとに条件が異なるために使用する FT も 異なる。このため、モデル管理の観点では、ET が複雑になりすぎることのないように、ET を分割することとした。

このため、FTの作成方法は、図2.2.3.3に示すようなフローに従い情報を整理し、SAPHIRE コードを用いて作成する。具体的には、同一の緩和系の複数の FT を対象に、使用される ヘディングによって、モデル化した基事象、外部トランスファー等の違いを比較し、モデ ル化している内容を整理するとともに、論理事象を用いて切り替えている条件の違いを整理し、緩和系ごとのFT グループを整理する。

機器リスト (割り当てMCS、シーケンス条件等) セグメント 動作要求等 故障モード 機器 開(通常時閉) 開失敗 電動弁1 . . . **S1** 逆止弁1 開維持 閉塞 . . . 閉塞 配管1 . . . サブFT、機器毎のFTの作成。 逆止弁1 開維持 閉塞 . . . **S**2 . . . 配管2 閉塞 S3 配管3 閉塞

図 2.2.3.3 モデル化に必要な情報整理と SAPHIRE コードでのモデル化

Fig. 2.2.3.3 Organize information required for modeling and Modeling in SAPPHIRE code

(5) まとめ

本研究では、レベル 1PRA 及びレベル 2PRA を一貫して解析する方法の基本設計として、 SAPHIRE コードを用いた一貫解析モデルの作成方法を検討した。これらの成果は、安全研 究プロジェクト「軽水炉の重大事故における格納容器機能喪失及び確率論的リスク評価に 係る解析手法の整備(平成 29 年度~令和 4 年度)」において、CDF や格納容器機能喪失 頻度等の算出に活用していく。

2.3 内部火災 PRA 及び内部溢水 PRA の手法整備

2.3.1 内部火災 PRA の手法整備

(1) はじめに

経済協力開発機構(OECD)/原子力機関(NEA)の国際火災試験プロジェクト PRISME³⁴の火災試験結果に基づいて、米国 NIST(国立標準技術研究所)が開発した火災伝播解析コード FDS(Fire Dynamics Simulator)³⁵の検証を行い、それを用いた実機の火災伝播解析から得られた知見を反映した火災 PRA のモデルを作成した。このモデルを用いた火災 PRA による炉心損傷頻度(CDF)の試解析結果から火災に対して重要な火災区画を抽出した。

これまでケーブル火災時に発生する燃焼熱のモデル化方法としては、発熱速度(以下「HRR」という。)を試験で得られたデータに基づいて設定していたが、試験結果がない 場合の HRR 設定方法に課題があった。また、火災発生による機器の損傷と制御ケーブルが 燃焼することによるホットショートの発生等の悪影響を同時に評価する手段がないことが 課題であった。

(2) 火災伝播解析コード(FDS)の検証解析

①単体試験における検証解析

a 解析対象及び解析条件

仏国 IRSN カダラッシュの火災試験施設 DIVA で実施された開放空間での基礎試験³⁴(図 2.3.1.1) (以下「サポート試験(Step1)」という。)を対象に、ケーブルトレイ火災に対 する火災伝播解析を実施した。この結果から、ケーブルトレイ火災における火災伝播解析 手法の適用性を確認した。対象とするケーブルトレイ部のトレイとケーブルの配置状況を 図 2.3.1.2 に示す。

火災伝播解析には、火災伝播解析コード FDS を用い、解析条件としては、フードカロリ メータの上部から燃焼ガスが流出し、側部から空気が流入する条件とした。また、ケーブ ルの燃焼は、ケーブルの燃焼により化学反応が生じるモデル(以下「Pyrolysis モデル」と いう。)³⁶を用いた。図 2.3.1.3 にサポート試験(Step1)における解析条件を、図 2.3.1.4 に FDS のメッシュ分割図を示す。

図 2.3.1.1 サポート試験 (Step1) の全体図 Fig. 2.3.1.1 Overall View of support

図 2.3.1.2 ケーブル部詳細配置図 Fig. 2.3.1.2 Detailed layout of the cable section

図 2.3.1.3 サポート試験 (Step1)の解析での境界条件図 Fig. 2.3.1.3 Analysis boundary conditions diagram in analysis of support test (Step1)

Fig. 2.3.1.4 Analysis mesh discretization diagram in analysis of support test (Step1)
b. 感度解析条件

ケーブル部の燃焼に使用する Pyrolysis モデルのパラメータとケーブルトレイの開口率 を変更させてサポート試験 (Step 1)の感度解析を実施した。感度解析の条件を表 2.3.1.1 に 示す。

	ケーブル材質	燃え尽き の有無	ケーブル 開口率	限界火炎温度℃ (CFT)
ケース1	PVC	F	0.1	1427
ケース2	PVC	F	0.15	1427
ケース3	PVC	F	0.05	1427
ケース4	PVC2	F	0.1	1427
ケース5	PVC2	F	0.15	1427
ケース6	PVC2	F	0.05	1427
ケース7	PVC2	F	0.1	1500
ケース8	PVC2	F	0.15	1500
ケース9	PVC2	F	0.05	1500
ケース10	PVC2	Т	0.1	1427

表 2.3.1.1 Pyrolysis モデルの感度解析条件 Table 2.3.1.1 Sensitivity analysis conditions for pyrolysis model

c. 解析結果

HRR について、Pyrolysis モデルを用いた解析結果(ケース1~ケース10)と試験結果の 比較を図 2.3.1.に示す。本結果から、解析結果(ケース8)が過渡初期(過渡後約1000秒) の HRR の変化が最も一致している。

HRR の試験と解析結果(ケース 8) との比較から、解析におけるピーク値は試験を模擬 可能である。ただし、過渡後 1000 秒以降において、試験結果は緩やかに HRR が低下して いるのに対して、解析においては、1000 秒以降はほぼ HRR の値は 0 となっている部分は 異なっている。

また、HRR の差がケーブルトレイ部の温度に与える影響を確認するため、各ケーブルト レイにおける過渡温度変化を比較した結果を図 2.3.1.6 に示す。トレイ部の試験と解析結果 (ケース 8) との温度変化の比較から、トレイ中央位置での温度が最も早く温度上昇して おり、外側に向かうにつれて遅れて温度上昇している。このトレイ位置においては、解析 の方は試験に比べ、時間遅れで温度上昇する傾向を示している。

図 2.3.1.5 発熱速度(HRR)の試験と解析との比較図

Fig. 2.3.1.5 Comparison between test and analysis of heat release rates (HRR) in test and analysis

図 2.3.1.6 トレイ部各位置での試験と解析との温度変化の比較図

Fig. 2.3.1.6 Comparison between temperatures in test and analysis at each position of tray

d. まとめ

火災伝播解析に Pyrolysis モデルを採用し、火災伝播解析コード FDS を用いてケーブル 燃焼試験を模擬する解析を実施した。試験と解析結果との比較から、HRR のピーク値につ いてのみ、試験と解析が一致した。しかし、各ケーブルトレイにおける温度変化について は、解析の方が時間遅れで温度上昇する傾向となっており、試験とは異なる結果となった。

以上から、単体試験条件においては、Pyrolysisモデルを採用したFDSの解析においては、 詳細な温度変化の傾向は模擬できておらず、解析方法を高度化する必要があることが分か った。

②本試験における検証解析

PRISME3 test (CFS-2)

a 解析対象及び解析条件

仏国 IRSN カダラッシュの火災試験施設 DIVA で実施された試験(PRISME3 試験 CFS-2:図 2.3.1.7)³⁴を対象に、ケーブルトレイ火災に対する火災伝播解析を実施し、ケーブル トレイ火災における火災伝播解析手法の適用性を確認した。ここで、対象とするケーブル トレイ部のトレイとケーブルの配置状況は開放空間での試験(Step1:図 2.3.1.8)と同じ条 件である。

解析は、火災伝播解析コードである FDS を用い、試験対象区画から外部への空気の漏え いをモデル化するため、部屋の底面に漏えい設定面をモデル化した。また、ケーブルの燃 焼は、ケーブルの燃焼による Pyrolysis モデルを用いて解析を実施した。図 2.3.1.8 に試験 装置全体の換気空調条件を示す。また、図 2.3.1.9 に試験 CFS-2 の解析メッシュ分割図を示 す。

Fig. 2.3.1.8 Ventilation and air conditioning conditions for the entire test equipment sections

56

図 2.3.1.9 本試験 (CFS-2) の FDS の解析メッシュ図 Fig. 2.3.1.9 Mesh discretization in FDS analysis mesh for this test (CFS-2)

b. 解析結果

数値流体力学コード FDS を用いて、隣接する区画を用いたケーブルトレイ火災試験 CFS-2 を解析した。HRR の試験と解析結果との比較結果を図 2.3.1.10 に示す。この結果から、 解析における HRR は、試験結果に比較して約 2 倍程度大きい結果となっている。

また、試験装置における解析結果で、温度分布及び酸素濃度分布を図 2.3.1.11 及び図 2.3.1.12 に示す。本解析結果から、ガス温度分布については、燃焼区画である L1 区画においては、ケーブルトレイ部をモデル化した領域から温度が上昇しており、燃焼区画 L1 の 上部領域は高温領域になっている。また、酸素濃度については、燃焼区画 L1 においては、 上部領域で酸素濃度が低下しており、徐々に隣接区画 L2 の酸素濃度が低下している。

燃焼区画(L1 区画)における L1-NW 断面での熱電対位置での温度変化について試験結 果と解析結果とを比較した結果を図 2.3.1.13 に示す。この結果から、試験における上端位 置(3.9m 位置)のピーク温度は過渡後約 1,000 秒程度で約 780℃に対して解析結果は、過 渡後 400 秒で約 680℃になっている。このことから、ピーク温度は、試験に比較して解析 結果の温度は低い結果となっている。また、試験においては、過渡後 1000 秒以降もゆっく りと温度低下しているのに対して、解析結果は過渡後 1800 秒以降においては、全ての高さ で 100℃以下となっている。 c. まとめ

火災進展解析に Pyrolysis モデルを採用し、火災進展解析コード FDS を用いて CFS-2 試 験の解析を実施した結果、HRR のピーク値について解析結果は試験に比較して約2倍以上 大きい結果となった。これは、燃焼区画 L1 区画のケーブルトレイ周辺の燃焼による空気 の流動状況を正確の模擬していない為、結果として酸素濃度を正確に模擬していない可能 性がある。また、ケーブルトレイ部の燃焼の広がり方は、ケーブルトレイ部を垂直方法に 通過する空気の流れと水平方法に広がる流れによって決まっていると考えられる。このた め、Pyrolysis モデルを用いる場合、今後さらに検討が必要である。

図 2.3.1.10 CFS-2 試験における発熱速度(HRR)の試験結果と解析結果の比較結果

Fig. 2.3.1.10 Comparison between HRRs in CFS-2 test and analysis

Fig. 2.3.1.11 Changes in temperature distribution in CFS-2 test analysis


```
図 2.3.1.12 CFS-2 解析における酸素濃度分布変化
```

Fig. 2.3.1.12 Changes in oxygen concentration distribution in CFS-2 analysis

試験結果

解析結果

Fig. 2.3.1.13 Comparison result of temperature change at L1-NW position

小災 PRA モデルの構築

a 概要

本研究では、代表 4 ループ PWR プラントを対象に、各火災区画において火災が発生した時に生じる起因事象とホットショート(短絡・地絡)を想定して火災シナリオを作成し 火災 PRA モデルを構築した。

この火災 PRA モデルを用いた火災 PRA による CDF の試解析結果から火災に対して重要な火災区画を抽出した。また、現在使用している PRA 手法の適用性の限界を確認した。

b. 起因事象選定コードの作成

火災が発生した際に起き得る起因事象を選定するために、機器とその機器が故障により 発生する起因事象一覧表を用いて、機器が機能喪失した際に発生する起因事象を選定する データベースを作成した。エラー!参照元が見つかりません。に起因事象データベースの 例を示す。

また、起因事象選定データベースを用いて、対象プラント、機能喪失する系統名と機器 から、機器の機能喪失時に発生する起因事象を選定できる起因事象設定コードを作成した。

c. 火災区画における火災情報の整理

火災区画における機器情報とケーブル情報を統合して、火災区画ごとの火災情報(発熱 量、火災検知の手段、火災源、防護対象設備、火災区画図)を整理した。図 2.3.1.15 に火 災区画ごとの火災情報の整理例を示す。

機器が機能喪失した際に発生する起因事象については、当該機器が故障することにより 自動トリップが生じるとしたものを選定した。表 2.3.1.3 に火災区画で火災が生じた場合に 影響を受ける機器、制御系ケーブルによる発生する起因事象の整理表を示す。

各火災区画における火災発生頻度は、区画内の機器種別とその台数により算出する。表 2.3.1.4 に算出した機器種別ごとの火災発生頻度の一覧表を示す。

d. 簡易火災シナリオの作成、定量化及び影響の大きな簡易火災シナリオの抽出

簡易火災シナリオの定量化のために、ホットショート発生を想定して検討を行った。ホ ットショート発生時の起因事象と評価モデルの対応表を表 2.3.1.5 に示す。

また、火災区画内の全ての機器/影響機器が火災により機能喪失すると仮定して、発生 する起因事象、機能喪失機器を選定して簡易火災シナリオを作成した。表 2.3.1.7 に簡易火 災シナリオの例を示す。

さらに、簡易火災シナリオに対して PRA 解析コード(WinNUPRA)を用いて CDF を算 出した。なお、CDF の算出に際しては、火災が発生したことを前提にした条件付炉心損傷 確率(以下「CCDP」という。)をまず算出し、各火災区画における火災発生頻度を CCDP にかけることで CDF を算出した。算出した CCDP 及び CDF が判断基準以上(ドミナント MCS が上位 10 位まで)となる影響の大きな簡易火災シナリオを抽出した。この抽出のス クリーニング指標と、抽出した結果を表 2.3.1.8 に示す。

e. 詳細シナリオの作成フローと評価条件

CCDP 及び CDF が大きくなる簡易火災シナリオの抽出結果から選定した火災区画(22 区画)を対象に、火災による燃焼及び制御ケーブルのホットショートによる機器へ影響を 考慮して詳細シナリオを作成する。詳細シナリオの評価フローを図 2.3.1.16 に示す。

作成した詳細シナリオについて、各機器の機能喪失の有無を設定し、PRA 解析コード (WinNUPRA) で CCDP 及び CDF の定量化を行う。定量化を行う詳細シナリオの評価条 件を表 2.3.1.9 に示す。

f. 詳細シナリオの定量化結果

算出した火災 PRA における CCDP 及び CDF の結果を、区画別、起因事象別に図表として整理した。また、定量化した結果から上位 20 位までの MCS を整理した。この結果の例 を表 2.3.1.10 に示す。この表 2.3.1.10 に示すように、PRA 解析コード(WinNUPRA)では 希有事象(レアイベント)近似を用いた計算を実施しているため、解析不適(計算結果の 確率値が、1.0 を超える)事象が発生することが判った。

このため、簡易評価結果の結果も考慮して評価した、火災とホットショートによる影響の評価例を表 2.3.1.11 に示す。

これらの結果から、機器の機能喪失により原子炉トリップとなる複数の事象を引き起こ す火災区画(表 2.3.1.10 で記号 C1、C2 及び D で示される火災区画)を火災に対して炉心 損傷のリスクが高くなる火災区画として特定した。

g. まとめ

本研究では、代表4ループPWRプラントを対象に、各火災区画において火災が発生した場合に生じる起因事象とホットショートを想定して火災シナリオを作成し、火災PRA モデルを構築した。また、この火災PRAモデルを用いた火災PRAによるCDFの試解析 を実施し、火災に対して重要な火災区画を摘出した。

但し、現在使用している PRA 解析コード(WinNUPRA)では希有事象(レアイベント)近似を用いて火災による燃焼と制御ケーブルのホットショートによる機器損傷を定量化(CCDP 及び CDF の算出)しているため、確率が 1.0 を超えるような適用性の限界が明らかになった。

表 2.3.1.2 起因事象データベースの例

Table エラー! 参照元が見つかりません。 Example

									影響					プラン	ノト挙	動	分類			
No.	系統	トレイン	機器名	機器タイプ	作動要求前の状態	作動要求後の状態	機器	故障 モード	記号	説明	原炉リプの無	原子 炉ト リップ 信号	タービ ント リップ 信号	主給水の健全性 1次系のリーク/破断 2次系のリーク/破断 SI/信号	P信号 RCS圧力挙動	LCO逸脱 タービントリップ	- 2.0mm サポート系	フロント系	該当する 起因事象グ ループ	備考
1	緊急 ほう酸注入	_	空気 作動弁	空気 作動弁	Close	Close	3A低温側充 てん弁	誤閉	1次冷却材イン ベントリ増大	抽出のバランスがくずれるこ とにより、加圧器水位は低下 する。水位低で自動抽出隔 離になり、封水注入により加 圧器水位は上昇する。	自動	加圧 器水 位高	_		0			0	過渡事象 (タービントリッ プ信号無)	
2	緊急 ほう酸注入	-	電動弁 (純水)	電動弁 (純水)	Close	Open	緊急 ほう酸注入弁	誤開	その他	酸水が注入されることはない ため、プラント影響なし。	なし	-	-					0	発生せず	
3	緊急 ほう酸注入	А	ほう酸 ポンプA	電動ポンプ (純水)	Standby	Run	ほう酸 ポンプ	誤起動	その他	誤起動してもタンク循環運転 となるため、プラント影響なし。	なし	-	-					0	発生せず	
4	緊急 ほう酸注入	в	ほう酸 ポンプB	電動ポンプ (純水)	Standby	Run	ほう酸 ポンプ	誤起動	その他	誤起動してもタンク循環運転 となるため、プラント影響なし。	なし	-	-					0	発生せず	
5	緊急 ほう酸注入	А	空気 作動弁 A	空気 作動弁	Open	Open	ほう酸ポンプ 入口連絡ライ ン弁A,B	誤閉	その他	ほう酸濃縮に必要な流路は もう片系にて確保されている ことから、プラント影響なし。	なし	-	_					0	発生せず	
6	緊急 ほう酸注入	В	空気 作動弁 B	空気 作動弁	Open	Open	ほう酸ポンプ 入口連絡ライ ン弁A,B	誤閉	その他	ほう酸濃縮に必要な流路は もう片系にて確保されている ことから、プラント影響なし。	なし	-	-					0	発生せず	
7	加圧器逃がし弁	А	加圧器逃が し弁 A	空気 作動弁	Close	Open	加圧器 逃がし弁	誤開	RCS圧力減少	原子炉トリップには至らない が、設定圧力で動作していな いことからLCO逸脱。	手動	_	_	0	0	0		0	手動停止	

	プラント 最初に選択して下さい。 伊方3号 ▼ 設定 選邦	Rしたプラントのデータを設定			
	系統名	選択した系統に該当 機器をリストアップ	する機器名	選択した機器の故障時 の起因事象を抽出	発生する起因事象
1	緊急ほう酸注入	▼ 設定	ほう酸ポンプ3A	▼ 設定 リセット	発生せず
2	緊急ほう酸注入	▼ 設定	ほう酸ポンプ3B	▼ 設定 リセット	発生せず
3	高圧注入系(注入時)	▼ 設定	高圧注入ポンプ3A	▼ 設定 リセット	手動停止
4	高圧注入系(再循環時)	▼ 設定	高圧注入ポンプ3A	▼ 設定 リセット	手動停止
5	非常用所内電源系	▼ 設定	ディーゼル発電機3A	▼ 設定 リセット	手動停止
6	原子炉補機冷却海水系(再循環時)	▼ 設定	海水ポンプ3A	▼ 設定 リセット	手動停止¶(原子炉補機冷却海水系の喪失
7		▼ 設定		▼ 設定 リセット	
8		▼ 設定		▼ 設定 リセット	
9		▼ 設定		▼ 設定 リセット	
10		▼ 設定		▼ 設定 リセット	
				抽出結果を出力シートへ	終了

図 2.3.1.14 起因事象選定コードの表示画面

Fig. 2.3.1.14 Display screen of the initiating event selection code

64

火災区画情報:			火災区画図:	
火災区画記号 C/B 火災区画記号 分析 建屋 制御 床面積(m ²) 995. 火災区画にある火災八ザード 発熱量(MJ) 736, 火災過重(MJ/m ²) 740. 等価火災時間(h) 1.0 #	1-3 室及び出入管理室 建屋(C/B) 0 : 353 1		間口部 (ドア)	開口部 (ドア)
火火区画にのる防火設備:	当小設備	淄山方注		
/ (大大大山の) (中文) / / / / / / / / / / / / / / / / / / /	アロゾル消火設備 ケーブルドレイ消火設備	自動自動		所内テレメータ
火災区面にある火災源: ポンプ 電力ケーブル 旗分離活性汚泥処理装置ブロワ 腹分離活性汚泥処理装置汚泥脱水板 呼吸用保護具性能試験装置分電盤 旗分離活性汚泥処理装置汚泥脱水板 通常時用試料採取設備自動分析計構 亜鉛注入装置盤	(*エアロゾル消火設備設置盤) 職 機制御盤 明御盤*			開口部 (ドア) - : 耐火壁 ※ 防護設備なし - : 低圧ケーブル - : 制御ケーブル(仮定) - : 計装ケーブル(仮定)
<u>火災により影響を受ける防護</u> 	対象設備:		重要ケーブル: 低圧ケーブル 制御ケーブル 計装ケーブル	火災により影響を受ける緩和系:
火災区画に隣接する火災区区 隣接区画記号 C/B1-4 原子炉 C/B1-7 原子炉 C/B2-3 通路 C/B3-7 蓄電池 C/B3-9 安全補 C/B3-10 コントロ W/B2-1 1)次率3	<u> </u>	隣接区画との関係 耐火壁で隔離 開口部あり 耐火壁で隔離 耐火壁で隔離 開口部あり 開口部あり 開口部あり	耐火蟹の耐火時間[h] 3.0 開放 開放 3.0 3.0 開放 開放 開放 開放	

図 2.3.1.15 火災区画ごとの火災情報の整理結果

Fig. 2.3.1.15 Results of organizing fire information for each fire section

表 2.3.1.3 火災区画で発生する起因事象の整理表

Table 2.3.1.3 Arrangement of initiating events that occur in the fire compartment

					影響す	「る機器の状	能				火 (災後の状況 影響分析)	त्त														
No.	火災区画名	区画名称	区画内 機器の系統名	機器名 又は 制御ケーブル名	機器名称	機器の種類	作動 要求前 の状態	作動 要求後 の状態	FMEAの 故障モード	発生する 起因事象	機器 の状態	火災 (こより 機能喪失	ホットショート (こより 機能喪失														
1	R/B1-02	海水管室	-	機器/制御 ケーブル 無し	-	-	-	-	-	-	-	-	-														
2				ディーゼル 発電機B	本体	非常用DG	Standby	Run	機能喪失	手動停止	機能喪失	0															
3				ディーゼル 発電機制御盤B	本体	制御盤	Open	Close	機能喪失	手動停止	機能喪失	0															
4			非常用 ディーゼル系統	非常用 ディーゼル系統	非常用 ディーゼル系統	非常用 ディーゼル系統	非常用 ディーゼル系統			非常用高圧母線B 予備変圧器側遮断器	遮断器	Open	Close	誤閉	手動停止	機能喪失		0									
6								#3826(制御B)	非常用高圧母線B 所内変圧器側遮断器	遮断器	Open	Close	誤閉	手動停止	機能喪失		0										
	R/B1-03-2	DG制御盤室B						非常用 ディーゼル系統	非常用 ディーゼル系統	非常用 ディーゼル系統 -	非常用 ディーゼル 系統 -	非常用 ディーゼル系統 -	非常用 ディーゼル 系統	非常用 ディーゼル 系統		ディーゼル 発電機 B側遮断器	遮断器	Open	Close	機能喪失	手動停止	誤閉		0			
																			非常用高圧母線B 予備変圧器側遮断器	遮断器	Open	Close	誤閉	手動停止	機能喪失		0
8																											
9	9				ディーゼル発電機 B側遮断器	遮断器	Open	Close	機能喪失	手動停止	誤閉		0														
10	R/B1-04-1	安全補器室B -RHRボンブB	余熱除去系	3B余熱除去ボンブ	本体	電動 ボンブ	Standby	Run	誤起動	手動停止	機能喪失	0															
11	R/B1-04-2	安全補器室B -CVスプレイボンブB	格納容器 スプレイ系	3B格納容器 スプレイボンブ	本体	電動 ボンブ	Standby	Run	誤起動	手動停止	機能喪失	0															

表 2.3.1.4 機器種別ごとの火災発生頻度の一覧表

Table 2.3.1.4 List of fire occurrence frequencies for each unit type

										火	災源カテ	ゴリ(区画)	別の火災	〔源の内訳〕							
No.	火災 区画名	区画名称	区画ごとの 火災発生頻度 (/炉年)	バッテリー	充電器	制御室	非常用 DG	発電機	ヒューマン エラー	空調器	論理キャ ビネット	モーターコ ントロール センター	モーター	電源及び制 御ケーブル (電源ケーブ ル)	制御 ケーブル	ポンブ及び 空気コンブ レッサー	開閉器	変圧器 (4kV未満)	変圧器 (4kV以上)	タービン	備考
		火災源カテゴリの火 (/炉年)	災発生頻度	1E-02	1E-02	6E-04	2E-02	2E-02	4E-04	2E-03	5E-04	6E-04	3E-03	2E-05	2E-05	2E-03	3E-04	4E-03	4E-03	2E-02	
01	C/B1-03-2	分析エリア等	2E-04				8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		8	3						
02	C/B1-04-1	原子炉補機冷却水 ポンプ室B	8E-05											3	2						
03	C/B1-04-2	原子炉補機冷却水 ポンプ室A室	4E-03											10	2	2					
04	C/B1-04-3	原子炉補機冷却水 ポンプ室C,D	4E-03											6	2	2					
05	C/B1-05	海水管室	9E-05					* * * * * *						4	2						
06	C/B2-02	空調冷却水ボンブ室	1E-02											2	8	8					
07	C/B3-06-1	安全補機開閉器室3B	4E-03								6			25	21						
08	C/B3-06-2	充電器室B	3E-02		2						19			8	16						
09	C/B3-09-1	安全補機開閉器室A	4E-03								6			25	21						
010	C/B3-09-2	充電器室A	4E-02		2		- 	- - - - - -			19			8	16						
011	C/B3-10	コントロールセンター室	3.7E-02		1						51			3	12						

表 2.3.1.5 ホットショート発生時の起因事象と評価モデルの対応表

Table 2.3.1.5 Correspondence table of initial events and evaluation models when hot shorts occur

火災情報で抽出された起因事象	対応するモデルの起因事象	適用理由
手動停止	手動停止	手動停止の事象。
1次冷却材ポンプ封水リーク	小破断LOCA	極小LOCAに相当するが、モデル化されていないた め、保守的と思われる小破断LOCAで評価する。
過渡事象(タービントリップ信号無)	その他過渡事象	初期にPCSが使用可能な過渡事象である。
主給水流量喪失	PCS機能喪失	初期に2次系での除熱機能が喪失する事象である。
制御用空気系の喪失	PCS機能喪失	各種の制御弁(主給水制御弁等)が閉止し、主給 水喪失に至ると考えられる。
ISLOCA(但し、隔離弁2弁が同時誤開)	ISLOCA	ISLOCAの事象。
過渡事象(タービントリップ信号有)	その他過渡事象	初期にPCSが使用可能な過渡事象である。
常用系交流母線の喪失	その他過渡事象	直接該当する過渡事象がなく、その他過渡事象と する。
計装用電源喪失による過渡事象	その他過渡事象	計装用電源喪失により、プラント運転が維持できな くなると想定され、初期にPCSが使用可能な過渡事 象とする。
安全系計装用母線の喪失	その他過渡事象	計装用電源喪失により、プラント運転が維持できな くなると想定され、初期にPCSが使用可能な過渡事 象とする。
主蒸気逃がし弁の誤開	その他過渡事象	初期にPCSが使用可能な過渡事象である。
計装制御設備故障による主給水流量喪失	PCS機能喪失	2次系での除熱機能が喪失する過渡事象である。
主蒸気隔離弁の誤閉止	PCS機能喪失	2次系での除熱機能が喪失する過渡事象である。

表 2.3.1.6 各火災区画における簡易火災シナリオ

Table 2.3.1.6 Simple fire scenario in each fire section

シ	ナリオ番号	S1-1	S2-1	S3-1	S4-1	S5-1	S6-1
[]	区画番号	C_B1-03-2	C_B1-04-1	C_B1-04-2	C_B1-04-3	C_B1-05	C_B2-02
火災発生	:頻度 (/炉年)	2E-04	8E-05	4E-03	4E-03	9E-05	1E-02
条件付き	手動停止	1E-11	1E-11	1E-11	1E-11	1E-11	1E-11
炉心損傷確率	小破断LOCA						
(CCDP)	ISLOCA						
	PCS機能喪失						
	その他過渡事象						
	手動停止	2E-15	1E-15	5E-14	5E-14	1E-15	2E-13
火災/ホットショート 変生時の	小破断LOCA						
第11日の 一 一 元 土 可の 「 「 小 指 復 頻 度	ISLOCA						
(/炉年)	PCS機能喪失						
	その他過渡事象						
機能喪失する PRA-ID		CCWMDPCY	CHSMDPAY	CCWMDPAY	CCWMDPCY	CHSMDPAY	CHSMDPAY
(機器名は、Excelファイル参	照)	CCWRMDPC	CHSMDPBY	CCWRMDPA	CCWRMDPC	CHSMDPBY	CHSMDPBY
		CCWMDPDY	CHSCHILA	CCWMDPBY	CCWMDPDY	CHSCHILA	CHSMDPCY
		CCWRMDPD	CHSCHILB	CCWRMDPB	CCWRMDPD	CHSCHILB	CHSMDPDY
		CCWMV01B	CCWMDPCY	3VSW570A	CCWMV01B		CHSCHILA
		CCWMV02B	CCWRMDPC	3VSR570A	CCWMV02B		CHSCHILB
		3VSW570B	CCWMDPDY	CHSMDPAY			CHSCHILC
		3VSR570B	CCWRMDPD	CHSMDPBY			CHSCHILD
		CHSMDPCY	CCWMV01B	CHSCHILA			
		CHSMDPDY	CCWMV02B	CHSCHILB			
		CHSCHILC	3VSW570B	CCWMV01A			
		CHSCHILD	3VSR570B	CCWMV02A			
			CHSMDPCY				
			CHSMDPDY				
			CHSCHILC				
			CHSCHILD				

赤字:制御ケーブルを示す。

表 2.3.1.7 影響の大きな簡易火災シナリオの抽出結果

Table 2.3.1.7 Extraction results of simple fire scenario with large impact

	スクリーニングの指標											
順位	起因事象数	火災発生頻度		条件作	持炉心損傷確率	で選定						
	で選定	(/炉年)	手動停止	小破断LOCA	IS-LOCA	PCS機能喪失	その他過渡事象					
1	C_B3-06-1	R_B5-02	C_B3-10	C_B3-09-1	C_B3-09-1	C_B_F-C	C_B3-10					
2	C_B3-09-1	R_B3-11-1	C_B_F-C	C_B_F-C	C_B_F-A	C_B_F-B	C_B_F-B					
3	C_B_F-A	C_B3-10	C_B_F-B	C_B3-06-1	C_B_F-C	C_B_F-A	C_B_F-A					
4	C_B_F-B	R_B3-07-5	C_B_F-A	C_B_F-B	C_B3-06-1	R_B5-02	R_B5-02					
5	C_B_F-C	R_B3-10	R_B5-02	C_B_F-A	C_B_F-B	C_B3-09-1	C_B_F-C					
6	R_B2-05	C_B3-06-2	C_B3-09-1	R_B2-05		C_B3-06-1	R_B3-07-5					
7	R_B3-04	C_B3-09-2	C_B3-06-1			R_B3-03-3	C_B3-09-1					
8	R_B3-10	R_B1-03-2	C_B3-09-2			R_B3-03-2	C_B3-06-1					
9	R_B5-02	R_B1-06	R_B3-03-3			R_B2-05	C_B3-09-2					
10		R_B2-05	R_B3-03-2			R_B3-06-1	R_B3-07-3					
11						R_B3-03-1						
12						R_B3-06-2						

\bigtriangledown

上記、指標から抽出(スクリーニング)した火災区画のリスト

制御建屋	原子炉建屋	(含:その他の建屋)
C_B3-06-1	R_B1-03-2	R_B3-07-5
C_B3-06-2	R_B1-06	R_B3-10
C_B3-09-1	R_B2-05	R_B3-11-1
C_B3-09-2	R_B3-03-1	R_B5-02
C_B3-10	R_B3-03-2	
C_B_F-A	R_B3-03-3	
C_B_F-B	R_B3-04	
C_B_F-C	R_B3-06-1	
	R_B3-06-2	
	R_B3-07-3	
8区面		14区画
		計22区画

図 2.3.1.16 詳細シナリオの評価フロー

Fig. 2.3.1.16 Detailed scenario evaluation flow

表 2.3.1.8 詳細シナリオの評価条件例

Table 2.3.1.8 Detailed scenario example of evaluation conditions for evaluation

建屋	制御建屋								
区画名	C_B3-06-1	C_B_F-A	C_B_F-B	C_B_F-C					
対象となる起因事象 (簡易シナリオ時)	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA_PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡					
影響機器PRA-ID数	3/90 (0)	0/84 (0)	0/89 (0)	0/143 (0)					
		詳細シナリオ1							
本体火災を想定 (機能喪失確率=1.0を適用)	0	_	_	_					
対象となる起因事象	手動停止	本体無し	本体無し	本体無し					
対象PRA-ID数	3								
備考									
		詳細シナリオ2							
制御ケーブルのホットショートを想定	0	0	0	0					
ホットショート機器機能喪失確率 (区画内のデータの最大値を全機器 に適用)	0.55	0.55	0.55	0.55					
対象となる起因事象	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡	手動停止、小破断LOCA ISLOCA、PCS機能喪失 その他過渡					
対象PRA-ID数	87	84	89	143					
備考	NUPRAでの 解析不適	NUPRAでの 解析不適	NUPRAでの 解析不適	NUPRAでの 解析不適					
		詳細シナリオ3							
制御ケーブルのホットショートを想定	0	0	0	0					
ホットショート機器機能喪失確率 (別途計算した機能喪失確率)	0.55/0.29混在	0.55	0.55	0.55					
対象となる起因事象	手動停止、PCS機能喪失	手動停止、PCS機能喪失	手動停止、PCS機能喪失	手動停止、PCS機能喪失					
対象PRA-ID数	23	31	24	51					
備考				NUPRAでの 解析不適					

表 2.3.1.9 詳細シナリオの評価結果

Table 2.3.1.9 Evaluation result of detailed scenarios

	区画番号		C_B3-06-1	C_B3-06-2	C_B3-09-1	C_B3-09-2	C_B3-10	C_B_F-A	C_B_F-B	C_B_F-C
火災発	生頻度(/炉年)		4E-03	3E-02	4E-03	3E-02	4E-02	4E-04	5E-04	4E-04
詳細シナリオ1										
(本体火災)										
	手動停止	1E-11	1E-11	6E-10	1E-11	1E-08	8E-05			
条件付き	小破断LOCA	2E-05								
炉心損傷確率	ISLOCA	4E-01								
(CCDP)	PCS機能喪失	3E-10								
	その他過渡事象	1E-11		3E-08		3E-06	3E-03			
12 33 / tai bio- b	手動停止		5E-14	2E-11	5E-14	4E-10	3E-06			
入災ががた	小破断LOCA									
光土時の 「「「「「「「「」」「」「」「」「」「」「」「」「」「」「」「」「」「」「」	ISLOCA									
	PCS機能喪失									
() // +/	その他過渡事象			8E-10		8E-08	1E-04			
詳細シナリオ2(制御ケーブ)	ルのホットショートによ	(る)								
機能喪失。影響機器全て	にその最大値を適用)	青字での	の記載は、解析コー	-ドでの解析が不过	適となったため(稀)	少事象解析できず)、簡易シナリオ結	詰果を記載したもの	1
	手動停止	1E-11	2E-03	2E-07	2E-03	5E-07	1E+00	1	1	1
条件付き	小破断LOCA	2E-05	1		1			1	1	1
炉心損傷確率	ISLOCA	4E-01	1		1			1	1	1
(CCDP)	PCS機能喪失	3E-10	2E-03		2E-03			1	1	1
	その他過渡事象	1E-11	2E-03	6E-08	2E-03	2E-07	1E+00	1E-02	1	3E-03
小 第7本ットショート	手動停止		9E-06	5E-09	9E-06	1E-08	4E-02	4E-04	5E-04	4E-04
発生時の	小破断LOCA		4E-03		4E-03			4E-04	5E-04	4E-04
炉心捐傷頻度	ISLOCA		4E-03		4E-03			4E-04	5E-04	4E-04
(/炬缶)	PCS機能喪失		9E-06		9E-06			4E-04	5E-04	4E-04
	その他過渡事家		9E-06	2E-09	9E-06	5E-09	4E-02	5E-06	5E-04	1E-06
詳細シナリオ3(制御ケーブ)	ルのホットショートによ	(る)								
機能喪失。データがある	影響機器に適用)		青字での	の記載は、解析コー	ドでの解析が不可	適となったため(稀:	少事象解析できず)、簡易シナリオ結	ま果を記載したもの)
	手動停止	1E-11	5.42E-06					2E-01	6E-02	1
条件付き	小破断LOCA	2E-05								
炉心損傷確率	ISLOCA	4E-01								
(CCDP)	PCS機能喪失	3E-10	6.45E-05					6E-01	2E-01	1
	その他過渡事象	1E-11								
11/11/11/11/11/11	手動停止		2.16E-08					8E-05	3E-05	4E-04
入火ノルッドノョート	小破断LOCA									
第二時の	ISLOCA									
	PCS機能喪失		2.56E-07					3E-04	9E-05	4E-04
(/ デモ)	その他過渡事象									

表 2.3.1.10 火災とホットショートによる影響の評価例

Table 2.3.1.10 Example of evaluation of the effects of fire and hot short

区画番号	R/B1-3-2	R/B1-04-1	R/B1-4-2	R/B13	R/B1 4-5	R/B1-5-1	R/B1-5-2	R/B1-5-3	R/B1-5-5	R/B1-6	R/B1-7	R/B-1-1	R/B2-1-2	R/B2-1-3	R/B2-1-4
評価結果	В	A1	A1	A1	A1	A1	A1	A1	A1	В	A1	A1	A1	A1	A1
課題等															

区画番号	R/B2-02-1	R_B2-02-2	R_B2-02-3	R_B2-02-4	R_B2-03	R_B2-04	R_B2-05	R_B2-06	R_B2-07	R_B2-10	R_B3-03-1	R_B3-03-2	R_B3-03-3	R_B3-04	R_B3-06-1	R_B3-06-2
評価結果	A1	A1	A1	A1	A1	A1	C2	A1	A1	A1	C1	C1	C2	В	C2	C2
課題等																

74

記号の内容

- A1 ;火災/ホットショートによる影響が小さく、簡易シナリオでスクリーニングアウトされた区画
- A2 ;火災/ホットショートによる影響は多少あるが、影響機器が少なく更なる検討の必要性は低い
- B ;火災/ホットショートによる影響は本体機器火災時のみ
- C1 ;火災/ホットショートによる影響はあるが、機能喪失確率が算出されておらず、詳細シナリオによる検討が不十分
- C2 ;火災/ホットショートによる影響はあるが、機能喪失確率の算出機器が少なく、詳細シナリオによる検討が不十分
- D ;火災/ホットショートによる影響が大きく、より具体的なシナリオでの検討が必要

2.3.2 内部溢水 PRA の手法整備

(1) はじめに

本研究では、汎用熱水力解析コードを用いた挙動解析及び被水の影響評価から、溢水、 没水及び蒸気の影響並びに被水の範囲を特定し、内部溢水における評価シナリオを構築し た。これらの成果を用いて内部溢水レベル 1PRA 手法を開発し、PRA モデルを作成した。

この内部溢水 PRA モデルを用いた CDF の試解析結果から内部溢水に対して重要な溢水 区画を摘出した。

これまで内部溢水における評価シナリオを設定する場合、溢水が発生した溢水区画か ら、他の区画への水の移行及び蒸気の伝播を精度良く推定することが出来ないことが課題 であった。

(2) 隣接した区画への溢水伝播現象の検討

① 溢水解析モデルの整備

内部溢水 PRA においては、内部溢水により発生する水及び高温水の流出に伴う蒸気の 伝播とその影響を解析で把握し、PRA モデルへ解析で得た影響(例えば機器の機能喪失) を組み込むことで、内部溢水 PRA モデルを作成する。内部溢水による機器への影響を把握 するため、PWR 型原子炉施設の原子炉建屋等の約 300 個の区画を対象に各区画における区 画情報(区画体積、隣接区画への接続情報、配管区別、隔離弁情報)を整理した。整理例 を表 2.3.2.1 に示す。

また、内部溢水による水や蒸気の伝播を解析で把握するため、汎用熱水力解析コード Apros²¹を用いて解析モデルを作成した。この解析モデルでは、図 2.3.2.1 に示すように原子 炉廻りモデルと建屋モデル及び原子炉炉心モデルを連結した。建屋モデルにおいて溢水に より機能喪失した機器は、原子炉廻りモデルにおいても、機能喪失するように設定し、溢 水の影響をプラント応答解析に反映するようにした。このようにして、原子炉施設全体に ついて各溢水区画を解析対象として選定した上で、溢水及び蒸気による機能喪失の判断条 件を組込み、原子炉施設全体の溢水解析モデルを構築した(図 2.3.2.2)。

75

表 2.3.2.1 各区画での溢水情報の整理

Table 2.3.2.1 Arrangement of flood information in each section

						系統情報							
溢水区画 (エリア番号)	火災区画 (区画記号)	区画名称	区画体積 (m ³)	APROS 区面名	接続先区 画情報	設計	設計作業		隔離弁情報				
					E III TK	系統	配管区別						
7-1	R/B1-7	タービン動補助給水ポンプ室	240.0	RB101	RB221	補助給水系統	高エネルギー	上流側:	復水ピットタービン動補助給水ポンブ側止め弁	中央			
								下流側:	A.B.C.D タービン動補助給水ライン流量調節弁				
7-14	該当なし	階段エリア(溢水区画7-8;通路の西側)	90.0	RB102	RB222	—	—		_	-			
						高圧注入系統	高エネルギー	上流側:	A高圧注入ポンプ燃料取替用水ビット側入口弁	中央			
								下流側:	A高圧注入ライン格納容器隔離弁	中央			
	R/B1-5	安全補機室/周囲の通路	804.0	RB103	RB223	格納容器スプレイ系統	高エネルギー 配管	上流側:	A格納容器スプレイポンプ燃料取替用水ピット側入口 止め弁	中央			
7-8								下流側:	A格納容器スプレイヘッダ冷却器出口格納容器隔離弁	中央			
						原子炉補機冷 却水系統	低エネルギー 配管	上流側:	A·C 原子炉補機冷却水戻り母管連絡弁 A·C 原子炉補機冷却水供給母管連絡弁	中央 中央			
								下流側:	隔離不要	_			
						高圧注入系統	高エネルギー	上流側:	A高圧注入ポンプ燃料取替用水ピット側入口弁	中央			
7-4	R/B1-5	 安全補機室Δ 高圧注入ポンプΔ室	297.0					下流側:	A高圧注入ライン格納容器隔離弁	中央			
, ,	1001-0	女主袖城王A、同圧注入小ノノA主	201.0	RB104	RB223	原子炉補機冷	・低エネルギー	上流側:	A·C原子炉補器冷却水戻り母管連絡弁 A·C原子炉補器冷却供給母管連絡弁	中央 中央			
						却水系統	配管	下流側:	隔離不要	—			

TT

図 2.3.2.2 溢水解析モデルの概略図 (一部) Fig. 2.3.2.2 Schematic diagram of flood analysis model (partial)

② 溢水区画の選定

a 内部溢水が発生する起因事象の選定

内部溢水が発生する起因事象としては、内部事象 PRA で用いている起因事象の中から、 起因事象の発生で内部溢水が発生する三つの起因事象(インターフェイスシステム LOCA (以下「ISLOCA」という。)、2次系破断、CCWS 機能喪失)を、内部溢水を生じさせる 起因事象として選定した(図 2.3.2.3)。

- ・ ISLOCA は、1 次冷却材が低圧設計である崩壊熱除去(以下「RHR」という。)系 へ漏えいし、RHR 系が過圧となり配管等が破断する事象として選定した。
- 2次系破断は、何らかの原因により主蒸気管や主給水管等の2次系の配管が破断 する事象として選定した。
- ・ 原子炉補機冷却系(以下「CCWS」という。)は、CCWSの配管及び機器接続部が 破断する事象が発生し、CCWS機能喪失が発生する事象として選定した。

b. 溢水区画の選定

起因事象が発生する溢水区画に関係する系統図から、弁、配管、ポンプ等が配置されて いる区画を整理し、各機器が配置されている区画を溢水対象区画とする。また、選定例と して、内部溢水が発生する起因事象として選定した ISLOCA の発生区画の選定例を図 2.3.2.4 及び表 2.3.2.2 に示す。図 2.3.2.4 は、ISLOCA が発生する系統である崩壊熱除去系の 系統図を示しており、系統内に含まれる弁、冷却機、ポンプ、配管がどの区画に含まれて いるかを示したものである。

各区画における系統から内部溢水が発生した場合に起因事象(手動停止、過渡事象等) が生じるかについて検討した。検討結果を表 2.3.2.3 に示す。

図 2.3.2.4 ISLOCA に関係する区画の選定図

表 2.3.2.2 ISLOCA を引き起こす区画の選定結果

建屋	区画 番号	溢水源の系統	発生する 起因事象	主要な機器		
	6-12	余熱除去系	ISLOCA	・高圧注入ポンプ1A ・燃料用水ピット入り弁		
	6-13	同上	同上	・高圧注入ポンプ1B ・燃料用水ピット入り弁		
R/B	6-15	同上	同上	・余熱除去冷却器1A		
	6-16	同上	同上	・余熱除去冷却器1B		
	7-5	同上	同上	・余熱除去ポンプ1A		
	7-6	同上	同上	・余熱除去ポンプ1B		
	7-8	同上	同上	·逆止弁、手動弁		

Table 2.3.2.2 Results of selection of sections that cause ISLOCA

表 2.3.2.3 起因事象を発生させる区画の整理結果

Table 2.3.2.3 Results of arrangement of sections that Initial events

建屋	区画 番号	溢水源の系統	発生する 起因事象	主要な機器		
	6-12	余熱除去系	ISLOCA	・高圧注入ポンプ1A ・燃料用水ピット入り弁		
	6-13	同上	同上	・高圧注入ポンプ1B ・燃料用水ピット入り弁		
R/B	6-15	同上	同上	·余熱除去冷却器1A		
,	6-16	同上	同上	·余熱除去冷却器1B		
	7-5	同上	同上	・余熱除去ポンプ1A		
	7-6	同上	同上	・余熱除去ポンプ1B		
	7-8	同上	同上	·逆止弁、手動弁		

③ 溢水解析ケースの選定と溢水伝播解析結果

a. 溢水解析ケースの選定方法

起因事象が発生する区画と各溢水区画の配置情報から、以下を考慮して溢水伝播解析を 行う代表的な溢水区画を選定した。代表的な溢水区画の選定においては、各溢水区画の位 置関係を用いた。この結果の例を図 2.3.2.5 に示す。

- ・ 溢水区画が同じエレベーション高さにあり、水平につながっている場合には、その区画から解析対象の区画を選定。
- ・ 階段、ハッチで接続されている区画は、上部区画の溢水が下部区画に直接、影響
 を及ぼすため、上部の区画を選定。
- b. 溢水解析ケースと解析結果

代表的な区画を対象に解析ケースを選定した。選定した解析ケースを表 2.3.2.4 に示す。 また、設備の機能喪失の判断条件を表 2.3.2.5 にまとめて示す。

選定した解析ケースから、代表的な溢水区画として、起因事象として ISLOCA により発生する内部溢水と2次系破断により発生する区画における解析例を以下に示す。

c. 解析ケース1の解析結果

解析ケース1の解析条件を図2.3.2.6 に示す。この解析条件(隔離弁の故障を想定し、熱 交換器と電動弁を連結する配管が破損)を用いて解析した、ISLOCA 発生の破断流量の変 化を図2.3.2.7 に示す。この結果から、内部溢水による高圧注入ポンプの機能喪失及び余熱 除去ポンプの機能喪失により原子炉圧力容器水位が急激に低下していることがわかる。

溢水区画での水位分布の変化を図 2.3.2.8 に示す。この結果から、RB2 階で発生した破断 流が、RB1-2 階間の開口部を通じて、RB1 階に溜まっていることがわかる。また、区画内 での温度分布の変化を図 2.3.2.9 に示す。この結果から、破断口から漏えいした水が蒸気と なり、各部屋へ伝播するため温度が上昇することがわかる。

d. 解析ケース2の解析結果

解析ケース2の解析条件を図2.3.2.10に示す。この解析条件(主蒸気配管の破断)を用 いて解析した、2次系破断時の破断流量の変化を図2.3.2.11に示す。この結果から、主蒸気 配管が破断したことにより破断ループの圧力が低下し、破断流量が減少している。

また、温度分布の変化を図 2.3.2.12 に示す。この結果から、高温蒸気のため拡散が速く、 短時間で広範囲の部屋に行き渡り、各部屋の温度が上昇することがわかる。

図 2.3.2.5 配置情報を用いた解析区画の選定例(ISLOCAの例) Fig. 2.3.2.5 Example of selection of analysis section using layout information

表 2.3.2.4 代表的な区画における解析ケ [、]	ース
--------------------------------------	----

建屋	建屋	区画 番号	溢水源の系統	発生する起因 事象	主要な機器
ケース1		6-15	人物於十五	101 0.04	·余熱除去冷却器
ケース2		7-5	未熟味女糸	ISLUCA	・余熱除去ポンプ
ケース3		3-3	主蒸気系	2次系破断	 ・主蒸気逃がし弁 ・主蒸気隔離弁
ケース4		5-3			・なし
ケース5	R/B	6-1	原子炉補機冷却水 - 系	CCWS喪失	・使用済燃料ピットポンプ ・冷却器 ・ポンプ現場操作盤
ケース6		6-10			・電動補助給水ポンプ ・タービン動補助給水ポンプ起動盤
ケース7		6-19			・格納容器スプレイ冷却器
ケース8		3-3	は田谷水玄	千動停止	・タービン動補助給水起動弁
ケース9		5-15	们而外术	丁 町	・電動補助給水ポンプ室給気ファン

Table 2.3.2.4 Analysis cases in typical compartments

表 2.3.2.5 溢水、蒸気による機能喪失の判断基準

Table 2.3.2.5 Criteria for determining loss of function due to flooding or steam exposure

Na	機関の公務	機能喪失する	る温度、湿度	+日 +50		
INO	(成品の)が現	温度(℃)	湿度(%)	低拠		
1	防護対処設備	120°C	100%	耐蒸気性能試験の判断値		
2	防護対処設備以外	90°C	80%	上記の結果から推定		
3	主蒸気管室に設置され ている設備	190°C	100%	設計条件		
4	安全補機開閉室に設置 されている設備	50°C	100%	空調系の許容条件		

Fig. 2.3.2.6 Analysis condition of ISLOCA

図 2.3.2.8 ISLOCA 発生時の各区画での水位分布変化 Fig. 2.3.2.8 Changes in water level distribution in each section of ISLOCA

図 2.3.2.9 ISLOCA 発生時溢水区画での温度分布変化図 Fig. 2.3.2.9 Changes in temperature in each section when ISLOCA occurs

Fig. 2.3.2.10 Analysis condition when secondary system rupture occurs

Fig. 2.3.2.11 Changes in rupture flow rate due to secondary system rupture

図 2.3.2.12 2 次系破断での溢水区画での温度分布変化図 Fig. 2.3.2.12 Temperature distribution change diagram in the flooded section due to secondary system rupture

(3) 溢水伝播現象を反映した内部溢水 PRA モデルの整備

① 内部溢水 PRA の評価フロー

内部溢水 PRA では、図 2.3.2.13 の内部溢水 PRA の評価フローに示すように、溢水対象 区画の選定を行った後に、溢水伝播解析結果を用いて内部溢水シナリオを作成する。この 内部溢水シナリオの作成では、各機器の機能喪失の時間から隔離操作の有無を考慮する。 最後に内部溢水により機能喪失する機器を FT に反映し、各シナリオのごとの CDF を算出 する。

(*1) 溢水は、蒸気の流出を含む。

図 2.3.2.13 溢水 PRA の評価フロー

Fig. 2.3.2.13 Evaluation flow of flood PRA

② 内部溢水シナリオの作成

溢水伝播解析モデルを用いた溢水、蒸気伝播解析結果から、機能喪失する機器の機能喪 失の有無と機能喪失時間から内部溢水シナリオを作成する(図 2.3.2.14)。このシナリオで は、機能喪失する時間が短時間(約1時間以内)の内部溢水シナリオでは、操作の時間余 裕を考慮した隔離操作は内部溢水シナリオに含めてないが、操作の時間余裕が長時間(1時 間以上)の場合には、隔離操作を考慮して内部溢水シナリオを設定する。

Fig. 2.3.2.14 Example of creating a flood scenario

③

内部溢水発生頻度の算出

各機器の溢水頻度は、溢水事象が発生した実績を点検周期に基づいて分類し内部溢水頻 度を設定する。

各機器の溢水頻度を算定した結果表を表 2.3.2.6 に示す。また、各区画における溢水発生 頻度は、区画内に含まれる各機器発生頻度とその機器の数を用いて、表 2.3.2.7 にように、 各区画における各シナリオの溢水発生頻度を設定した。

		Table 2.3.2.0 Flood field				
No	機器名	点検周期	溢水発生頻度 (/炉年)			
1		1回/月	4 × 10⁻7			
2	空気作動弁	空気作動弁 1回/定検				
3		定検以上 2×				
4		1回/月				
5	逆止弁	1回/定検	3 × 10⁻7			
6		定検以上	7 × 10⁻⁵			
7		1回/月	9 × 10⁻⁵			
8	電動弁	1回/定検	2 × 10 ⁻⁷			
9		定検以上	9 × 10 ⁻⁵			

表 2.3.2.6 各機器の溢水頻度

·	1		
No	機器名	点検周期	溢水発生頻度 (/炉年)
10		1回/月	3 × 10⁻⁵
11	手動弁	1回/定検	2 × 10⁻7
12		定検以上	1 × 10 ⁻⁴
13		1回/月	2 × 10⁻₃
14	ディーゼル 駆動ポンプ	ディーゼル 駆動ポンプ 1回/定検	
15		定検以上	2 × 10⁻₃
16		1回/月	6 × 10 ⁻⁴
17	電動ポンプ	1回/定検	1 × 10 ⁻³
18		定検以上	2 × 10 ⁻⁴

Table 2.3.2.6 Flood frequency of each component

表 2.3.2.7 各区画における溢水発生頻度

									機	器の数													
NO	起因事 象	溢水発生 番号	点検周 期	系統	空気作動弁	逆止弁	DG駆動ポン	熱交換器	電動弁	サービス系以	タービン カポ	非加圧タンク	加圧タンク	手動弁	溢水発生頻 度(/炉年)	割合 (%)	起因事象発生 頻度(/炉年)						
1		R/B 6-12				1			1	5					3 × 10 ⁻⁴	10	4 × 10 ⁻⁹						
2		R∕B 6−13										1			1	5					3 × 10⁻⁴	10	4 × 10 ⁻⁹
3		R/B 6-15			1					3					1 × 10 ⁻⁴	4	2 × 10 ⁻⁹						
4	IS- LOCA	R∕B 6−16	】1回/ 月	RHR 系	1					3					1 × 10 ⁻⁴	4	2 × 10 ⁻⁹						
5		R∕B 7−5				1			1	1				2	7 × 10⁻⁴	27	1 × 10 ⁻⁸						
6		R/B 7-6				1			1	2				2	8×10⁻⁴	28	1 × 10 ⁻⁸						
7		R/B 7-8				2				10				4	5 × 10 ⁻⁴	17	7 × 10 ⁻⁹						

Table 2.3.2.7 Flooding occurrence frequencies in each compartment

④ 内部溢水 PRA モデルの整備

内部事象 PRA のフォールトツリーをベースにして、各シナリオに内部溢水により機能 喪失基事象を追加した。内部溢水 PRA のフォールトツリーの修正方法を以下に示す (図 2.3.2.15)。

⑤ CDF の試算

各内部溢水シナリオの CDF を試算する。内部溢水による CDF は、溢水シナリオごとに 定量化を行い、その合計を全 CDF とする。主な内部溢水が発生する区画ごとの CDF を表 2.3.2.8 に、各起因事象別の CDF を表 2.3.2.9 に示す。この結果から、CCWS による内部溢 水の影響が大きいことがわかる。

表 2.3.2.8 溢水が発生する区画ごとの CDF(試算値)

Table. 2.3.2.8 Core damage frequencies of each flooding compartment

建屋	区画番号	溢水源の系統	発生する起因事象	炉心損傷頻度(/炉年)	割合(%)
	6-12			約4×10 ⁻⁹	約0%
	7-5	未款际工术	ISLOGA	約1×10⁻ଃ	約0%
	3-3	十英与玄	の次では美	約4×10 ⁻⁹	約0%
原子	3-12		2次杀吸断	約5×10⁻ଃ	約0%
	5-3			約8×10⁻ ⁶	約39%
炉建 屋	7-7	原子炉補機冷却 水系		約1×10 ⁻⁶	約6%
	7-11		CCWS喪失 	約7×10 ⁻⁶	約36%
	7-13			約9×10⁻ ⁷	約5%
	6-10	ᄷᅶᇝᄵᅶᅎ	エ乱信止	約2×10 ⁻¹²	約0%
	5-3	111111111111111111111111111111111111	于	約1×10 ⁻¹²	約0%
			合計	約2×10⁻⁵	100%

表 2.3.2.9 各起因事象別の CDF (試算値)

Table. 2.3.2.9 Core damage frequencies for each initiating event

建屋	溢水源の系統	発生する起因事象	炉心損傷頻度 (/炉年)	割合(%)
	余熱除去系	ISLOCA	約5×10⁻ଃ	約0%
	主蒸気系	2次系破断	約7×10⁻ଃ	約0%
原子炉建屋	原子炉補機冷却水系	CCWS喪失	約2×10⁻⁵	約96%
	原子炉補機冷却海水系	CCWS喪失(海水系)	約7×10⁻7	約3%
制御建屋	補助給水系	手動停止	約1×10⁻¹¹	約0%
	化学体積制御系	手動停止	約1×10 ⁻¹²	約0%
	高圧注入系	手動停止	約5×10 ⁻¹³	約0%
	格納容器スプレイ系	手動停止	約4×10 ⁻¹³	約0%
		合計	約2×10⁻⁵	100%

(4) まとめ

内部溢水 PRA に係る検討として、建屋の中の溢水伝播を汎用熱水力解析コード Apros に よりモデル化し、リスクの特に大きな区画にある各溢水源に対し溢水伝播解析を実施した。 さらに、内部溢水 PRA モデルを作成し、内部溢水シナリオごとに CDF を算出した。全 CDF は、2.0×10⁻⁵/炉年 になり、系統別では CCWS による内部溢水のリスクが高いという知見 が得られた。

2.4 地震・津波等に係る PRA 手法の整備

2.4.1 重大事故等対処設備を組み込んだ地震レベル1PRA モデルの作成

(1) はじめに

地震時における原子炉施設のリスク情報を取得し、このリスク情報の活用方法を検討す るため、代表的な改良型沸騰水型原子炉(以下「ABWR」という。)プラントを対象に、 重大事故等対処設備のモデルを組み込んだ地震レベル1PRA モデルを作成した。

(2) 起因事象の検討

地震 PRA における起因事象を決めるため、ABWR プラントの内部事象を対象にしたレ ベル 1PRA モデル(以下「内部事象モデル」という。)で選定されている起因事象を対象 に、地震による機器損傷でも起こりうる起因事象を選定した。加えて、地震時特有の起因 事象として、機器の同時損傷や建屋等の構造物損傷により発生する起因事象を検討した。 地震 PRA では耐震重要度の B、C クラスの機器が全て損傷すると仮定しているために、 種々の格納容器バイパスラインについて起因事象の可能性を検討することとした。その他 の地震時特有の起因事象として建屋等の構造物の損傷についても検討した。以下に、地震 時特有の起因事象の検討結果を示す。

①格納容器バイパス事象の検討

格納容器バイパス事象について、これまでの内部事象モデルでは、残留熱除去系(以下 「RHR」という。)での ISLOCA のみをリスクの高い代表事象として考慮しているが、地 震 PRA では耐震性が低い主蒸気・復水・給水系(以下「PCS」という。)配管とその配管 に接続された部分からの冷却材喪失を考慮した(図 2.4.1.1)。

PCS 配管のうち、主蒸気系については主蒸気隔離弁が損傷した場合に、格納容器バイパ ス事象が発生する。低圧炉心注水系(以下「LPFL」という。)及び原子炉隔離時冷却系(以 下「RCIC」という。)が格納容器外で接続されている給水系についても、原子炉給水ライ ン隔離弁が損傷した場合に格納容器バイパス事象が発生する。

また、原子炉冷却材浄化系(以下「CUW」という。)吸込ラインも隔離弁下流は耐震重 要度 B クラスであるため、地震時には破断していると仮定し、CUW 吸込ラインの隔離弁 が損傷した場合には格納容器バイパス事象が発生するとした。

さらに、主蒸気ラインから分岐している RCIC 蒸気ラインの隔離弁又は配管の損傷でも 格納容器バイパス事象が発生する。

なお、主蒸気隔離弁の損傷、原子炉給水ライン隔離弁の損傷、CUW 吸込ライン隔離弁の 損傷、RCIC 蒸気ライン隔離弁及び RCIC 配管の損傷を格納容器バイパス事象として一つ の起因事象にまとめて、同様の事故シーケンスとなる ISLOCA の成功基準をここでは適用 して事故シーケンス展開を行うこととした。

×:配管破断想定箇所

赤点線で囲む個所:内部事象モデルで考慮された ISLOCA の破断箇所 図 2.4.1.1 格納容器バイパスの発生箇所

Fig. 2.4.1.1 Occurrence point of containment vessel bypass

② 起因事象の選定と階層ツリー

内部事象モデルで選定された起因事象に加え、内部事象では発生の確率が低いとして起 因事象から除外していた機器損傷等の地震時特有の起因事象を検討した。

ここでは、起因事象の選定の考え方は、次のとおりとした。

- ▶ 内部事象で選定している起因事象のうち手動停止は、以下のことから地震 PRA では対象外とした。
 - ◆ 内部事象で選定している手動停止は、原子炉自動停止機能が作動しないような (原子炉スクラム信号が発信されない)状況での計画外停止を対象としてい る。
 - ◆ 地震 PRA では、地震加速度によって原子炉自動停止機能が作動する。
- ▶ 地震 PRA では耐震性が低い PCS は機能喪失すると仮定している。そのため、内部 事象で評価対象としている初期に PCS が使用可能な過渡事象は対象外とした。
- ▶ 全給水流量喪失及び主蒸気隔離弁(以下「MSIV」という。)閉/復水器真空度喪失は PCS 機能喪失時と同様の事故シーケンスになることから、地震 PRA では、まとめてその他過渡事象とした。
- ▶ 原子炉補機冷却系、計装用圧縮空気系については全系統の機能喪失を考慮し、内部 事象で選定している1系統のみの機能喪失は、以下のことから地震 PRA では対象

外とした。

- ◆ 地震 PRA では電動ポンプ等の冗長機器は完全相関(損傷確率の分布の相関係 数が1であるような場合であり、例えば、ポンプ1台が損傷する場合には同時 に別系統のポンプが損傷する。)での評価を行っている。
- ▶ 非常用交流母線、非常用直流母線については、以下のことから、起因事象ではなく サポート系のFTでモデル化した。
 - ◆ 母線そのものの喪失もあれば、遮断器等の損傷もあるため、1系統のみの機能 喪失も全系統の機能喪失も発生しうる。
- 以下のとおり、原子炉建屋破損、格納容器破損、圧力容器破損を地震時特有の事象 として選定した。
 - ◆ 地震時には、建屋等の構造物の損壊により、内部に設置される原子炉圧力容 器、原子炉冷却系配管等の大規模損壊が考えられる。
 - ◆ これらの事象は、原子炉圧力容器本体又は原子炉冷却系配管の大規模損傷により、あらゆる炉心注入が不可能であるため、炉心損傷に直結する事象とした。
- ▶ 地震時には、同時多発的な損傷が起こることから、大破断 LOCA を超えるよう な、複数の原子炉冷却系配管破断による大規模な LOCA(以下「Excessive LOCA」 という。)を炉心損傷に直結する事象として選定した。
- 制御建屋が損傷することで、プラントの監視及び制御が不能に陥るため、炉心損傷 に直結する事象として選定した。

表 2.4.1.1 に内部事象モデル及び地震 PRA モデルで選定した起因事象を示す。 選定した起因事象は事象の厳しい順に並べ、図 2.4.1.2 に示す階層ツリーを作成した。

表 2.4.1.1 選定起因事象の比較

Table 2.4.1.1 Comparison of selected initiating events

起因事象	内部事象PRA	地震PRA	地震PRAの起因事象選定に関する備考
大破断LOCA	0	0	
中破断LOCA	0	0	
小破断LOCA	0	0	
ISLOCA(RHRでの格納容器バイパス事象)	0	0	①格納容器バイパス事象の検討での検討により主蒸気隔離弁の損傷等のバイパス事象を追
ISLOCA以外の格納容器バイパス事象		0	加し、合わせて格納容器バイパス事象とした。
初期にPCSが使用可能な過渡事象	0		地震時には必ずPCS機能喪失が起きていると仮定した。
全給水流量喪失	0	0	地震時に必ず起きると仮定したPCS機能喪失と同様の事故シーケンスになるため、全給水
MSIV閉/復水器真空度喪失	0	0	流量喪失とMSIV閉/復水器真空度喪失を合わせて「その他過渡事象」とした。
手動停止	0		
外部電源喪失	0	0	
原子炉補器冷却系1系統機能喪失	0		完全相関での評価のため、1系統の五の機能喪生け対象外とした
原子炉補器冷却系全系統喪失		0	ル主伯肉での計画のため、1米瓶ののの成肥支入は対象下とした。
非常用交流母線1系統機能喪失	0		
非常用直流母線1系統機能喪失	0		
計装用圧縮空気系1系統機能喪失	0		今夕告望るう覚得られな、1%ならどの後代骨キュンセンセント
計装用圧縮空気系全系統喪失		0	元王伯寅での計画のため、1米礼のみの機能支大は対象外とした。
原子炉建屋破損		0	
格納容器破損		0	のお田市色の際空を眺屋ツリーズの検討にとり地画特方の市色をして際空し 続き得復に
圧力容器破損		0	○心凶争家の歴史と自虐ノリーでの快討により地展付付の争家として歴史し、別の損傷に 直結する重免として追加した
制御建屋破損		0	但加する事家として思加した。
Excessive LOCA		0	

○は各 PRA モデルで選定した起因事象

Fig. 2.4.1.2 Initiating event hierarchy tree

(3) 重大事故等対処設備のモデル化

内部事象 PRA でモデル化する重大事故等対処設備は、「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則」(以下「設置許可基準規則」という。) に関する対応手段(68個)から、許容時間と準備時間の観点で炉心損傷防止の有効性を検討し、有効な対策として45個を抽出している。抽出した重大事故等対処設備はFT でモデル化するとともに、フロントラインに対する代替設備についてはET のヘディングに設定し事故シーケンスを展開している。ET でのモデル化例を図2.4.1.3に示す。サポートラインについては、関連するFT と接続させて代替設備の効果を適切に考慮できるようにしている。

地震 PRA では、耐震重要度が B、C クラスである設備は利用不可としているため、内部 事象で選定された重大事故等対処設備のうち、耐震重要度が S クラスの設備及び基準地震 動(以下「Ss」という。)に対する機能維持が確認されている設備(以下「耐震 S クラス 相当」という。)を地震 PRA で評価対象とする設備として 40 個を抽出した。表 2.4.1.2 に、 重大事故等対処設備の選定例を示す。地震損傷のモデル化に当たっては、評価対象の重大 事故等対処設備に対し、地震 PRA でモデル化すべき機器及び相関を考慮する機器の組合 せを選定し、内部事象 PRA の FT に地震損傷及び相関による同時損傷の基事象を追加した。 地震損傷のモデル化例を図 2.4.1.4 に示す。

機器の損傷確率については、地震 PRA の資料 ³⁷に示されるフラジリティデータを参照 し、モデル化する全ての機器に対して地震動レベルごとに設定した。参照したフラジリテ ィデータに記載のない機器については、類似と考えられる機器のフラジリティを代用した。

ここまでに作成した ET、FT 及び階層ツリーを用いて地震動レベルごとに炉心損傷確率 を求め、そこに地震の超過発生頻度から算出した地震発生頻度を乗じることで地震動レベ ルごとの CDF を算出し、評価対象の地震動レベルにわたって合計することで地震に対す る CDF を評価した。図 2.4.1.5 に評価手法の概要を示す。

なお、原子炉施設内に数多く存在する電気盤については、入手できた設計情報が不十分 であったため FT で十分にモデル化することが困難であった。

98

表 2.4.1.2 重大事故等対処設備の選定例

Table 2.4.1.2 Example of equipment selection for severe accidents

対応手段	対応設備分類 (*は設計基準拡張設備を 含む重大事故等対処設備)	準備時間	炉心損傷防止有効性 (準備時間≦許容時間)	耐震性 (耐震クラスS相当)	評価対象
高圧代替注水系 (中央制御室操作)	重大事故等対処設備	作業開始判断後15分以内	0	0	0
高圧代替注水系 (現場操作)	重大事故等対処設備	作業開始判断後40分以内		0	
低圧代替注水系(常設) (RHR-A/B配管)	重大事故等対処設備	約12分(RHR-B系注入配管) 約12分(RHR-A系注入配管)	0	0	0
低圧代替注水系(常設) (RHR-C/HPCF-B/C配管)	自主対策設備	約40分(RHR-C系注入配管) 約25分(HPCF-B系注入配管) 約30分(HPCF-C系注入配管)	0	0	0
低圧代替注水系(可搬型) (RHR-A/B配管)	重大事故等対処設備	約95分(RHR-B系注入配管) 約95分(RHR-A系注入配管)	0	0	0
低圧代替注水系 (可搬型) (RHR-C/HPCF-B/C配管)	自主対策設備	約95分(RHR-C系注入配管) 約95分(HPCF-B系注入配管) 約95分(HPCF-C系注入配管)	0	0	0
消火系による原子炉の冷却	自主対策設備	約30分(RHR-A又はRHR-B注入配管) 約40分(RHR-C注入配管) 約30分(HPCF-B又はHPCF-C注入配管)	0		
残留熱除去系(LPFL)復旧 (常設代替交流電源設備)	重大事故等対処設備(*)	電源復旧時間+約15分 電源復旧時間+約20分 (原子炉除熱までは20分)	0	0	0

- ・ 炉心損傷防止有効性(内部事象モデル化)の欄で○にしたものは、その手段が利用可能になるまでの準備時間と内部事象 PRA モデルで設定する許容時間とを比較し、許容時間内に利用可能な手段である。
- ・ 耐震性(耐震重要度クラス S 相当)の欄で○にしたものは、地震 PRA で対象とす る地震動領域で利用可能な手段である。
- ・ 評価対象の欄で○にしたものは、地震 PRA で評価対象とする手段である。

図 2.4.1.3 重大事故等対処設備の ET でのモデル化の例

Fig. 2.4.1.4 Example of modelling of equipment for severe accidents in ET

図 2.4.1.4 地震損傷モデル化の例 Fig. 2.4.1.4 Example of seismic damage modelling

Fig. 2.4.1.5 Overview of seismic PRA methodology

(4) 解析結果

ABWR モデルプラントの全CDF に占める起因事象ごとの寄与を図 2.4.1.6 に示す。なお、 全 CDF は 6.0×10⁻⁶ / 炉年となった。

また、建屋損傷及び Excessive LOCA のように炉心損傷に直結するとした起因事象の寄 与が 70%程度と非常に大きな結果となった。これは、炉心損傷の防止が可能な対策のモデ ル化や炉心損傷に直結する起因事象の詳細な分析不足など、PRA モデルのもつ不確かな要 因が多いことが考えられる。このような不確かさを低減するためには、詳細な設計情報を 入手し、炉心損傷を防止できる対策等を地震 PRA モデルに組み込む必要がある。

図 2.4.1.6 全 CDF に占める起因事象ごとの寄与割合 Fig. 2.4.1.6 Contribution of each initiating event to the total core damage frequency

(5) まとめ

ABWR プラントの内部事象モデルに地震特有の事故シナリオを追加し、重大事故等対処 設備のモデルを追加することで、ABWR プラントに対する重大事故等対処設備のモデルを 組み込んだ地震 PRA モデルを作成した。今回作成した地震 PRA モデルを用いた計算結果 は、全 CDF が 6.0×10⁶/炉年となり、この内、建屋損傷及び Excessive LOCA のように炉心 損傷に直結するとした起因事象の寄与が 70%程度と非常に大きな結果となった。地震 PRA モデルには、プラントの情報が乏しいため、モデル化できなかった機器や事故シーケンス がある。このような不確かさを低減するためには、詳細な設計情報を入手し、今後地震 PRA モデルに組み込む必要がある。

2.4.2 複数本 SGTR の PRA モデル作成

(1) はじめに

これまで炉心損傷に直結するとしてきた複数本の蒸気発生器伝熱管破損(以下「MSGTR」 という。)を対象に、より現実的な評価について検討した。具体的には、代表的な3ルー プPWR プラントを対象に相関を考慮した破断基数及び破断本数によるシナリオの違いを 検討し、熱水力解析並びに ET について検討を行い、CDF の試解析を行った。また、本研 究では、地震時の特徴である同時多発的な損傷を考慮し、2次系破断が同時に発生した際 等の影響に注意した。

(2) 相関を考慮した破断基数及び破断本数

蒸気発生器伝熱管の損傷確率については、蒸気発生器伝熱管の集合を図 2.4.2.1 に示すと おり 11 の部位に分けて現実的耐力と応答係数による方法により算出した。応答について は、水平地震の入力方向は 2 方向を考慮して応力を算出し、応答係数を設定することで算 出した。耐力については、蒸気発生器伝熱管の材料である TT690 合金の設計温度条件 329.9 度での物性値を基に算出した。算出した応答と耐力から地震動ごとの損傷確率を評価した。 その結果を表 2.4.2.1 に示す。

ここで、蒸気発生器伝熱管の耐力は全て同じと仮定し、設置状況の対称性を考慮して応 答も同じと仮定し、伝熱管の部位ごとの損傷確率の分布は蒸気発生器(以下「SGという。) 間で完全相関をとると仮定した。また、全ての伝熱管の耐力が同じだと仮定したため、同 じ地震動を受けると、伝熱管にかかる地震荷重が大きくなる部位(以下「弱い部位」とい う。)から順に損傷すると仮定した。このことにより、地震で破断する伝熱管の本数とそ の確率は、図 2.4.2.2 に示す階層ツリーを用いて算出した。なお、表 2.4.2.1 に示すように、 中央部の部位及び外周部の部位は内側にあるものほど地震の影響は受けにくく、外側にあ る方が弱い部位となるため、階層ツリーのへディングの順番はこの関係を反映した。

(3)2次系破断の影響

地震 PRA では耐震重要度の B、C クラスの機器については損傷又は機能喪失していると 仮定しているため、MSIV よりタービン側の配管及び主給水逆止弁より主給水ポンプ側の 配管は MSGTR 時には破断していると想定した。そのため、MSGTR が起きた場合には、 図 2.4.2.3 から分かるように主給水注入ラインの逆止弁又は主給水隔離弁が閉止しないと SG からの漏えいを止めることができず、結果的に 1 次冷却材の漏えいを止められないと 想定した。

また、格納容器と MSIV の間での主蒸気管破断(図 2.4.2.3 の③での破断)が生じた場合 には、伝熱管破断のある SG(以下「破断 SG」という。)を隔離できないとした。さらに、 格納容器と主給水隔離弁の間での主給水管破断(図 2.4.2.3 の④での破断)が生じた場合に も破断 SG を隔離できないとした。一方、主給水隔離弁と主給水逆止弁の間での主給水管 破断(図 2.4.2.3 の⑤での破断)の場合には、主給水隔離弁による隔離が可能とした。

さらに、補助給水系については、補助給水隔離弁から主給水ラインにかけての配管で破断(図 2.4.2.3 の⑥での破断)すると破断蒸 SG を隔離できないとした。補助給水隔離弁よりもポンプ側の配管での破断(図 2.4.2.3 の⑦での破断)については、補助給水隔離弁と逆止弁で破断 SG の隔離が可能である。

主蒸気逃がし弁又は主蒸気安全弁において破損がある場合には、破断 SG から出た一次 冷却材の漏えいがある。

(4) 熱水力解析の実施

上記(2)及び(3)から、全破断 SG での複数本の破断を考え、2次系破断の有無による原子炉水位、1次系圧力等のプラント挙動の違いについても検討するため、熱水力解析 を実施した。

2次系破断がない場合にフィードアンドブリードを実施する場合の解析例を図2.4.2.4に 示す。2次系破断がない場合には、SG 伝熱管の破断本数によらずフィードアンドブリード にて炉心損傷を回避できることが分かった。また、フィードアンドブリードにより加圧器 逃がし弁から一次冷却材が格納容器サンプに移行するが、その流出量は高圧注入系の再循 環運転に必要な量に達していることが分かった。このことから、余熱除去系を用いた冷却 に失敗しても高圧再循環及び格納容器冷却を実施することで炉心損傷を回避できること が分かった。

2次系破断が発生する場合の解析例を図 2.4.2.5 に示す。2次系破断が発生する場合、主 蒸気管が1本以上破断すると2次系が急に減圧され温度下がるため、余熱除去系への接続 が可能な圧力及び低圧注入が可能な圧力まで減圧することが分かった。このため、余熱除 去系接続、低圧注入及び低圧再循環等により炉心損傷を回避できると考えられる。

(5) ET の検討

MSGTR の ET の作成に際して、熱水力解析の以下の結果を反映した。

- 2 次系破断がない場合においては、フィードアンドブリードが炉心損傷を回避するために有効な手段である。
- 2 次系破断が発生した場合、余熱除去系への接続、低圧注入あるいは代替低圧注 入が可能である

また、格納容器外での2次系破断時には漏えいが継続し、炉心へ注水した冷却材が格納 容器サンプに溜まることなく放出されることから、炉心損傷として扱うこととした。 本研究では、破断 SG の隔離ができない場合において、注水量を調整しながら、外部注 水を継続することで炉心損傷を回避できる可能性のあるシナリオについては、長期にわた り安定状態には至らないと考えられることから、炉心損傷として扱うこととした。

作成した 2 次系破断のない場合の ET を図 2.4.2.6 に、2 次系破断時の ET を図 2.4.2.7 に 示す。 (6) CDF の解析結果

MSGTR について、従来どおり炉心損傷に直結すると評価した場合と上記の MSGTR の 検討結果を反映した場合との全 CDF 及び全 CDF に対する起因事象の寄与割合の比較を図 2.4.2.8 に示す。検討の結果、MSGTR が発生しても炉心損傷を回避できる事故シーケンス を PRA モデルに反映したため、MSGTR の CDF は従来に比べて減少することになった。 その他の起因事象については CDF に変動がないため、全 CDF に占める寄与割合も減少す ることになった。MSGTR の検討結果を反映した場合は、MSGTR の CDF が半分程度に減 少し、全 CDF に占める寄与割合は 68%から 47%まで減少した。

表 2.4.2.1 伝熱管損傷確率の評価結果

Table 2.4.2.1 Evaluation results of steam generator tube rupture probability

	应指实法	平均曲げ	伝熱管	c h ^{#1} 地震動レベル(Gal)								
	现但即见	半径 (mm)	本数(本)	ふン	300	570	700	1000	1300	1600	2000	
	IR1	169.15	732	101	1.007E-15	3.542E-15	6.427E-15	1.991E-14	5.731E-14	1.960E-13	6.124E-13	
	IR2	396.83	530	221	2.360E-09	1.205E-06	8.847E-06	2.298E-04	1.966E-03	8.821E-03	3.535E-02	
山山部	IR3	591.48	508	237	5.273E-09	2.800E-06	2.004E-05	4.809E-04	3.782E-03	1.565E-02	5.688E-02	
ᅮᆺᆎ	IR4	848.23	762	268	2.374E-08	1.256E-05	8.397E-05	1.691E-03	1.118E-02	3.958E-02	1.202E-01	
	IR5	1222.78	746	291	6.453E-08	3.268E-05	2.067E-04	3.650E-03	2.133E-02	6.781E-02	1.828E-01	
	IR6	1520	14	304	1.091E-07	5.321E-05	3.269E-04	5.353E-03	2.929E-02	8.789E-02	2.226E-01	
	OR1	169.15	16	101	1.007E-15	3.542E-15	6.427E-15	1.991E-14	5.731E-14	1.544E-13	6.124E-13	
	OR2	396.83	12	299	8.980E-08	4.414E-05	2.748E-04	4.635E-03	2.600E-02	7.976E-02	2.067E-01	
外周部	OR3	591.48	12	440	7.056E-06	1.962E-03	8.679E-03	7.107E-02	2.191E-01	4.142E-01	6.526E-01	
	OR4	848.23	20	364	8.695E-07	3.446E-04	1.829E-03	2.169E-02	8.971E-02	2.138E-01	4.236E-01	
	OR5	1222.78	30	308	1.237E-07	6.011E-05	3.665E-04	5.888E-03	3.167E-02	9.367E-02	2.335E-01	

#1:面外振動に対する応力計算結果

図 2.4.2.1 フラジリティ評価のための伝熱管の部位の分類 Fig. 2.4.2.1 Classification of SG tube sections for fragility evaluation

図 2.4.2.2 階層ツリーを用いた破断本数の整理

Fig. 2.4.2.2 Classification of the number of ruptured tubes by hierarchy tree

図 2.4.2.3 2 次系配管破断箇所

Fig. 2.4.2.3 Occurrence point of secondary system piping break

Fig. 2.4.2.4 Analysis example without secondary system rupture (12 tubes rupture on each SG)

Fig. 2.4.2.5 Analysis example with one main steam pipe rupture (12 tubes rupture on each SG)

MSGTR	CV外2次系 破断	CV内2次系 破断	RCS減圧程 度	高圧注入	1次系減圧	RHR接続	低圧再循環	代替再循環	高圧再循環	スプレイ再 循環	CV自然対流 冷却	状態
							-			-	-	ОК
												OK
												OK
										1		ОК
												OK
												CD
												CD
												CD
												CD
												ОК
												ОК
												CD
												CD
												CD
												CD
												TR
												TR

OK: 炉心損傷を回避する成功事故シーケンス

CD: 炉心損傷に至る事故シーケンス

TR:2次系破断時のET(図 2.3.2-6)にトランスファー

図 2.4.2.6 2 次系破断のない場合の ET

OK: 炉心損傷を回避する成功事故シーケンス

CD: 炉心損傷に至る事故シーケンス

TR: 2 次系破断のない場合の ET (図 2.3.2-5) にトランスファー

図 2.4.2.7 2 次系破断時の ET

Fig. 2.4.2.7 Event Tree with Secondary System Rupture

図 2.4.2.8 全 CDF に対する起因事象ごとの寄与割合の比較

(7) まとめ

複数の SG 及び伝熱管の破損を想定した場合の事故進展挙動を分析して、破損の部位・ 規模等の組合せを考慮した事故シナリオを検討することで、炉心損傷に直結するとした場 合に比べ、CDF が半分程度に減少し、全 CDF に占める寄与割合が減少することを示した。

炉心注入が成功しているものの破断 SG の隔離が出来ない場合は、長期にわたり安定状態には至らないために炉心損傷としたが、当該事故シーケンスには、注水量を調整しながら、外部注水を継続することで炉心損傷を回避できる可能性のあるシナリオが含まれている。炉心損傷を回避するための手段の成立性や時間余裕も考慮した上で、炉心損傷を回避できる可能性のある事故シーケンスの割合を把握しておくことも、地震に対するリスクを理解する上で重要である。

2.4.3 津波 PRA 手法の整備

(1) はじめに

津波 PRA では、建屋内への津波の浸水経路、浸水水量(浸水口巾、浸水高さ、浸水継続時間に依存)により変化する事故シナリオを特定する必要がある。このため、シナリオを 特定するための建屋内の浸水挙動を解析するツールを開発するとともに、津波時の機器フ ラジリティを組み込んだ PRA モデルを作成し、津波 PRA の試算を行った。津波 PRA の試 算結果から、浸水経路、浸水水量で変化するリスクプロファイルを試算した。

(2) 津波 PRA のための浸水挙動解析モデルの検討

津波 PRA においては、建屋へ浸水した海水により機器が没水等して機能喪失する可能 性を浸水挙動解析により確認し、PRA モデルへ組み込むことで CDF を計算する。ここで の浸水挙動解析では、図 2.4.3.1 に示すようなプラントにおいて、津波が防潮堤を越流し、 遡上津波が原子炉建屋周囲に滞留している状態で浸水口(水密扉)から建屋内への浸水を 想定した。建屋内への浸水水量は、水密扉の破損状態と津波の滞留高さ及び滞留時間で決 定されるが、これらのパラメータは不確かさを伴うため多くのケースの解析を行う必要が ある。このため、本研究での浸水挙動解析では、簡便で短時間に結果を得られる解析コー ドを構築した。

解析コードは、ノード・ジャンクション法を用い、非圧縮性流体の液単相(物性値は一定)として取り扱うこととした。流動計算式は、原子力学会の内部溢水 PRA 実施基準 ³⁸⁻⁴¹ を参考とした。

解析対象は、建屋内の浸水経路は、浸水口から流入した流体(海水)が階段等を経由し て流下し低階層から蓄水される単純な経路である。一方、建屋内の区画構造は、一般的な 建物構造と異なり、床にグレーチング等が使用される等により浸水経路は多岐にわたる。 このため、浸水過程において、水面のある区画(以下「開水ノード」という。)と満水状 態の区画(以下「閉水ノード」という。)が混在する流れに適用できるようにする必要が ある。ここでは、「閉水路を含む浸水流路の探索モデル(以下「浸水流路探索モデル」と いう。)」と「閉水ノードを開水ノードとして取り扱うことを可能とするプライスマンス ロットモデル(以下「プライスマンスロットモデル」という。)」の二つのモデルの適用 性を検討した。

③ 浸水流路探索モデル

流動計算は、開水ノード間の水位の水位差を駆動力として算定する。閉水ノードが生じ た場合には高い開水ノードから水位の低い開水ノードへの流路を探索し、その流路の流量 を求めることで、常に流れ込む先が開水ノードとなるようにした。

具体的には、図 2.4.3.2 に示すように、開水ノードから開水ノードへの全ての流路(橙色) を探索し、エネルギー勾配を端部の開水ノードの水位勾配から求める。それぞれの流路に 対して流量を求めた後、実際のジャンクション接続(緑色)の流量は、全ての流路の流量 の和とする。

図 2.4.3.2 浸水流路探索モデルの概念図 Fig. 2.4.3.2 Conceptual diagram of pathfinding mode

流量計算に必要なその他変数(流水断面積、流路長さ、流路幅及び粗度係数)は、各ジャンクションの設定パラメータであることから、流路(橙色)が経由するジャンクション データに基づき、下表 2.4.3.1 のように設定する。

表 2.4.3.1 各パラメータとその計算方法

流路パラメータ	計算方法
流水断面積	端部のノードの水位差×幅
長さ	流路内の総和
幅	流路内の平均
粗度係数	流路内の平均

Table 2.4.3.1 Each calculation parameters and calculation methods

流路探索モデルでは、開水ノードから開水ノードへの接続を探すため、水位が増減する のは常に開水ノードのみであり、一度満水になったノードが開水状態になることはない。 このため、引き波等において、満水ノードの水位算定には、流路探索モデルでは対応でき ない課題がある。なお、津波浸水においては、海水の流下による低階層への浸水が対象で あり、計算過程でこの課題が発生する可能性はほとんどないと考える。

本モデルの流量計算では、区画が開水から満水に切り替わると経路が変更し、運動量保 存側の適用が困難となるため、定常流モデルを適用する。

④ プライスマンスロットモデル

土木工学において、地下街等を含む雨水浸水経路の検討等への実績があるプライスマン スロットモデル⁴²⁻⁴⁴の導入を検討した。図 2.4.3.3 に示すように、プライスマンスロットと 呼ばれる仮想的なスロットをノードの上端に設ける方法である。このモデルは、擬似的な マノメーターを設置することにより、満水ノードのピエゾ水頭を水位に置き換え、全ての 系を開水路流れとして扱うことを可能にしたモデルである。

Fig. 2.4.3.3 Conceptual diagram of Priceman slot model

スロットの幅Bsは、開水路の圧力波の伝播速度から以下の式(2.4.3.1)で求められる。

aは圧力波の伝播速度、A_fは水路の断面積である。

スロット幅が小さすぎると、スロット内部の水位上昇が早く、流体計算における時間刻 みが制限されてしまうことからスロット幅に関してはパラメータとして扱うことも一般 的に行われている^{45,46}。

また、本モデルの流量計算では、定常流モデルでは区画が開水から満水に切り替わると 流量に不連続点が生じて流動振動の原因となるため、非定常モデルを適用する。このため、 試解析において、スロット幅のパラメータ解析を実施して、スロット幅とタイムステップ の関係を把握した。さらに、非定常モデルであることを鑑み、エネルギー勾配に影響する ジャンクション長さと粗度係数をパラメータとした感度解析を実施し、水位変化への影響 を把握した。

上記の浸水流路探索モデルとプライスマンスロットモデルについて、試解析を行ってモ デルの適用性を確認した。試解析例として、水位の涌上りによる回り込み浸水を確認する ため、下図 2.4.3.4 の試解析モデル体系(浸水流量 5m3/s)で実施した試解析結果を示す。 図 2.4.3.5 に示す流量変化の比較より、浸水流路探索モデルの場合は満水時に不連続点が生 じ、プライスマンスロットモデルより流量の立ち上がりが速い。図 2.4.3.6 に示す水位変化 の比較は、流量変化では、満水時に不連続点(浸水流路探索モデルの場合)、振動(プラ イスマンスロットモデルの場合)が生じるが、水位変化への有意な影響はほとんどないこ とを確認した。

Fig. 2.4.3.4 System diagram of trial analysis model

図 2.4.3.5 区画の流量変化

Fig. 2.4.3.5 Flow rate change in the compartment

Fig. 2.4.3.6 Water level change in the compartment

津波 PRA において必要となるものは、浸水水量により機能喪失に至る機器の特定であ る。水位の過渡変化挙動は、プライスマンスロットモデルの方が実挙動に近いものの、浸 水流路探索モデルにおいても PRA で用いる機器の機能喪失時間に大きな差がないことを 確認できた。

(3) プラント体系モデルでの津波浸水解析

構築した解析コードを用いて、プラント体系モデルでの解析を実施した。解析モデルは、 実プラントの構造を参考に構築し、鉛直方向は図 2.4.3.7 に示す階層構造の建屋としてモデ ル化した。津波の浸水口は、図 2.4.3.8 に示す地上1階(原子炉建屋 2 階、EL+10 m)の位 置にあるに 3 カ所の水密扉とし、建屋周囲に対流する遡上津波が水密扉の開口部から浸水 するとした。境界条件である滞留水位は、時間による水位変化は考慮せず、設定水位は一 定とする。

Fig. 2.4.3.8 Section drawing of flooded floor

図 2.4.3.9 に 区画接続図に示す。図に示すように、3 カ所の浸水口から接続する区画の 順番が異なることで、区画にある緩和機器の機能喪失する順番(機能喪失時間)が異なる。 ここで、区画名:XXYZZは、XX:建屋名、Y:フロア、XX:区画番号である。

Fig. 2.4.3.9 Partition connection diagram

解析結果の例として、浸水口3からの浸水解析結果を示す。図2.4.3.10に、区画水位変化、図2.4.3.11に、区画の水位状態(700秒時点)を示す。解析は、プライマルスロットモデルを用い、境界条件を浸水口開口幅4m、滞留水位1.5m、滞留時間1800秒とした結果である。

Fig. 2.4.3.10 Section water level change

図 2.4.3.11 区画の水位状態(700 秒時点) Fig. 2.4.3.11 Water level condition of the Section (700sec)

図 2.4.3.10 に示すように、RB233 への浸水が始まると、RB233 から RB116、RB115 への 流下及び RB241 に浸水が始まる。RB116、RB115 が満水(浸水後約 100 秒)になると RB233、 RB241 の水位は上昇し、RB241 の水位上昇によって RB241 から RB117 への流下量が大き くなるため、RB117 の水位上昇が速くなる。浸水後約 600 秒に、RB117 の水位が RB209 への接続口高さに達すると、CB209 への流入が始まり、さらに同じフロアの隣接区画

(CB208~214)に浸水が広がる。このうち、CB212 への浸水は CB101、102 に流下し、 CB101、102 が満水(浸水後約 800 秒)になると RB209 とその隣接区画の水位上昇が速く なる。浸水後約 1500 秒に、RB117 及び RB209 等が満水となると RB236、RB218、CB307 等への浸水が始まるが、浸水後約 1800 秒に浸水口水位が低下(引き波を想定)すると、浸 水口区画の水位は低下し、これに伴って浸水口区画と同一高さ(EL+10)にある区画の水 位も低下する。さらに、図 2.4.3.11 に示す 3D ビューアーを用いて全区画の水位挙動を俯 瞰的に確認し、区画水位は区画接続構造に従った適切な挙動を示すことを確認した。

浸水口 1~3 について、境界条件(浸水口位置、滞留水位及び開口幅)をパラメータとした解析を実施した。遡上津波の滞留時間は 30 分とした。表 2.4.3.2 に浸水口位置をパラメータとした結果(滞留水位:1.5m、開口幅:4m)を、表 2.4.3.3 に滞留水位をパラメータとした結果(浸水口3、開口幅:4m)を示す。

表 2.4.3.2 浸水口位置と緩和設備の機能喪失時間の関係

緩和設備	浸水口1	浸水口 2	浸水口 3
非常用ディーゼル発電機 A	26 分	1分	26 分
非常用ディーゼル発電機 B	26 分	25 分	1分
補機冷却系	4分	13 分	14 分
空調用冷却系	10 分	—	—
電動補助給水	27 分	26 分	27 分
タービン動補助給水	29 分	28 分	29分

Table 2.4.3.2 Relationship between flood port and equipment failure time

表 2.4.3.3 浸水口水位と緩和設備の機能喪失時間の関係

Table 2.4.3.3 Relationship between flood water level and equipment loss time

緩和設備/水位	0.5m	1m	1.5m	2m
非常用ディーゼル発電機 A		_	26 分	17 分
非常用ディーゼル発電機 B	9分	1分	1分	1分
補機冷却系	_		14 分	9分
空調用冷却系	_		_	27 分
電動補助給水	_		27 分	18分
タービン動補助給水	—	_	29 分	20 分

表 2.4.3.2 に示すように、浸水口部の境界条件が同じであっても、浸水経路の違いにより、 浸水経路にある区画の蓄水源(バッファ)区画が異なることにより、機器の機能喪失時間 に差異が生じている。また、区画にある扉は、扉の開閉方向により破損条件(ラッチ破損 及び扉破損)の水位を切り替えるモデルとしており、浸水方向によって破損の有無や時間 が変わることでも差異が生じる。また、表 2.4.3.3 に示すように、浸水口水位が低い場合に 機能喪失機器が少ない理由は、扉の損傷が生じないことにより、扉からの浸水水量が制限 される効果も加味されているからである。

(4) リスク解析

図 2.4.3.8 に示す区画接続に基づいて、浸水経路にある機器を特定し、内部事象レベル 1PRA モデルの FT に機器の機能喪失を反映することで、津波 PRA モデルを作成した。表 2.4.3.2 及び表 2.4.3.3 で示す機器の機能喪失時間に基づいて、機能喪失機器の組合せを特定 して遡上津波到達時の条件付炉心損傷確率を算定した。解析結果として、図 2.4.3.12 に浸 水口と浸水水位をパラメータとした条件付炉心損傷確率を示す。

図 2.4.3.12 浸水継続時間と条件付炉心損傷確率の関係 Fig. 2.4.3.12 Relationship between flood time and conditional core damage probability

浸水口の位置及び遡上津波の滞留高さにより、機能喪失機器の組合せが時間とともに変化するため、リスクプロファイルは変化する。図 2.4.3.12 に示すように、浸水高さ 1m 以下で 30 分程度、1m を超える場合も 10 分程度の滞留時間であればリスクの有意な上昇はない。滞留時間が長くなると、機能喪失機器が増加して炉心損傷リスクは高くなるが、機

能喪失時間前に引き波になれば、それ以降の浸水が止まるためリスクは増加しない。引き 波の発生時間(滞留時間)は、地形の影響が大きいと考えられ、地形によりリスクは大き く変動すると考えられる。

また、浸水口となる水密扉に大物搬入口を兼ねた大きな扉が設置されている場合があり、 浸水口面積に大きな幅がある。ただし、建屋内の浸水経路は、人の通行を想定した経路が 多く、通路・扉で流路面積が制限されるため、浸水口面積のリスクに与える感度は小さく なると考えられる。

津波 PRA では、条件付炉心損傷確率の結果に、津波の発生頻度、防潮提、屋外設備及び 浸水口の破損確率並びに遡上津波の滞留条件を考慮して CDF を評価するが、本研究では、 津波の発生頻度、防潮堤等の破損確率及び遡上津波の滞留条件確率が得られていないため、 最終的に CDF の評価までは行っていない。しかし、津波の発生頻度を考慮した場合の傾向 は次のように考えられる。津波の発生頻度は、波高の高い津波ほど小さくなる。このため、 条件付炉心損傷確率が高くなる状態である滞留水位が高い状態及び滞留時間が長い状態 については、このような津波の発生頻度は小さくなり、CDF は小さくなる。また、滞留水 位が低い状態では、水密扉(浸水口)の波力による破損確率が小さく、建屋内への浸水が 発生しないことにより建屋内浸水による機器の機能喪失は発生しないだけ、CDF は小さく なる。

(5) まとめ

津波 PRA 手法の整備として、建屋浸水による緩和設備のフラジリティを浸水解析によ り評価する手法を検討した。浸水解析のために、開水路と閉水路が混在する浸水経路を取 り扱うことができ、多数の浸水条件の組合せをパラメータとした解析を実施する必要があ るため、簡便かつ短時間で解析を行うことができる解析コードを構築した。解析コードを 用い、浸水条件(開口部条件及び遡上津波の状態)をパラメータとした浸水解析を実施し て、機能喪失機器の組合せを特定した。

浸水解析により、浸水経路にある機器を特定し、内部事象レベル 1PRA モデルの FT に 機器の機能喪失を反映することで、津波 PRA モデルを作成した。PRA モデルを用い、浸 水解析結果より得られた機能喪失機器の組合せに基づき、条件付き炉心損傷確率を評価し た。その結果、滞留水位、滞留時間により変化するリスクの特徴を評価できることを確認 した。

121

2.4.4 多数基立地サイトを対象とした地震 PRA 手法の整備

(1) はじめに

これまでに、隣接する2基を対象とし、隣接プラントの同種機器に対し、応答及び耐力 の相関を考慮した地震時の多数基立地 PRA^{47,48}の検討を進めてきた。一方、我が国の原子 力発電所においては、最大7基の原子炉が立地していること、また、海外では基数に注目 した先行研究⁴⁹がなされていることを踏まえると、評価対象とするプラント基数を拡張す る方法を整備する必要がある。そこで、本研究では、地震時多数基立地 PRA において、プ ラント基数を拡張する手法を検討し、その手法を用いて、基数を拡張した場合の試解析を 実施した。また、隣接プラントでの事故による作業環境悪化を考慮する手法を検討すると ともに、検討した手法を用いて隣接プラントでの事故により屋外作業ができない場合を想 定した場合の試解析を実施した。

(2) プラント数拡張に係る検討

① 2 基の PWR が立地するサイトの PRA モデルの構築

これまでの検討で作成した 2 ループ PWR 及び 3 ループ PWR がそれぞれ 1 基立地して いるサイトの PRA モデルを用いて、3 ループ PWR が 2 基(A 及び B 号機)立地している サイトの PRA モデルを作成した。

② プラント基数を拡張する手法の検討

プラント基数を拡張する手法の検討は、上記①で作成した ET 及び FT を改定し、4 基 (A、B、C 及び D 号機)の PRA モデルとすることにより行った。

起因事象については、14の起因事象を選定し、地震動レベルごとの起因事象発生確率は 図 2.4.4.1 に示す階層ツリーを用いて評価した。

CDF の定量化においては、解析コード SECOM2-DQFM (Seismic Core Melt Frequency Evaluation Code Ver.2 – Direct Quantification of Fault Tree Using the Monte Carlo Simulation)⁵⁰ を使用する。この解析コードでは、モンテカルロ法に基づいて試行ごとに各機器の損傷の 有無を判定し、それを FT に代入し、全試行に対し、炉心損傷に至る試行の割合から CCDP 及び CDF を算出する DQFM 法 ⁵¹を用いている。

なお、地震による機器損傷を考慮する場合、応答の相関性及び耐力の相関性により、複数の機器が同時に損傷する確率を考慮する必要があるが、本研究では、基数拡張の手法検討に着目しているため、号機内及び号機間の相関は無いものとして、簡易的な評価を行った。

本研究では、先行研究⁵²を参考に、図 2.4.4.2 に示すような、マスターイベントツリー手 法を採用し、炉心損傷するプラントの組合せとその頻度を算出した。この手法では、イベ ントツリー上に各号機の炉心損傷の発生の有無の分岐を設定し、炉心損傷に至る号機を特 定する。 従来の検討^{48,49}では、大FT法(大FTの例は図 2.4.4.3 参照)を用いて対象とするプラントの少なくとも1基が炉心損傷する頻度を評価している。また、これらの検討では、評価対象を単基の CDF へ寄与の大きい事故シーケンスのみを評価対象としている。本研究では、全ての事故シーケンスを対象に大FT を作成するとともに、マスターイベントツリー手法を用いて炉心損傷するプラントの組み合わせとその頻度を評価することとした。

マスターイベントツリー手法を用いることによって、損傷するプラントの組合せとその 頻度を端的に示すことができるようになり、プラント間の相関の組合せが異なる、プラン トごとに劣化の程度が異なる等の多数基立地のサイトについて検討する場合に有効であ ると考えられる。

Fig. 2.4.4.1 Initiating events and hierarchy tree

図 2.4.4.2 マスターイベントツリー

Fig. 2.4.4.2 Master event tree

Fig. 2.4.4.3 Example of large FT

③ 解析結果

炉心損傷する基数ごとの条件付発生確率を、次式によって計算した。

$$P_{CD1} = (P_{CDA} \cap \overline{P_{CDB}} \cap \overline{P_{CDC}} \cap \overline{P_{CDD}}) \cup (\overline{P_{CDA}} \cap P_{CDB} \cap \overline{P_{CDC}} \cap \overline{P_{CDD}})$$
$$\cup (\overline{P_{CDA}} \cap \overline{P_{CDB}} \cap P_{CDC} \cap \overline{P_{CDD}}) \cup (\overline{P_{CDA}} \cap \overline{P_{CDB}} \cap \overline{P_{CDC}} \cap P_{CDD})$$
$$P_{CD2} = (P_{CDA} \cap P_{CDB} \cap \overline{P_{CDC}} \cap \overline{P_{CDD}}) \cup (P_{CDA} \cap \overline{P_{CDB}} \cap P_{CDC} \cap \overline{P_{CDD}})$$
$$\cup (P_{CDA} \cap \overline{P_{CDB}} \cap \overline{P_{CDC}} \cap \overline{P_{CDD}}) \cup (\overline{P_{CDA}} \cap P_{CDB} \cap P_{CDC} \cap \overline{P_{CDD}})$$

 $\cup (\overline{P_{CDA}} \cap P_{CDB} \cap \overline{P_{CDC}} \cap P_{CDD}) \cup (\overline{P_{CDA}} \cap \overline{P_{CDB}} \cap P_{CDC} \cap P_{CDD})$ $P_{CD3} = (P_{CDA} \cap P_{CDB} \cap P_{CDC} \cap \overline{P_{CDD}}) \cup (P_{CDA} \cap P_{CDB} \cap \overline{P_{CDC}} \cap P_{CDD})$ $\cup (P_{CDA} \cap \overline{P_{CDB}} \cap P_{CDC} \cap P_{CDD}) \cup (\overline{P_{CDA}} \cap P_{CDB} \cap P_{CDC} \cap P_{CDD})$ $P_{CD4} = (P_{CDA} \cap P_{CDB} \cap P_{CDC} \cap P_{CDD})$

ここで、 P_{CD1} 、 P_{CD2} 、 P_{CD3} 及び P_{CD4} は、それぞれ1基、2基、3基及び4基が炉心損傷 する確率であり、 P_{CDA} 、 P_{CDB} 、 P_{CDC} 及び P_{CDD} は、それぞれA、B、C及びD号機が炉心損 傷する条件付確率である。

図 2.4.4.4 に地震動レベルごとの条件付発生確率の計算結果を示す。

地震動に対して、*P_{cD1}、P_{cD2}*及び*P_{cD3}*は上に凸な曲線となり、一方、*P_{cD4}*は単純増加し 1200gal 付近でほぼ1となる。これは、低地震動レベルにおいては、損傷基数によらず条件 付炉心損傷確率が増加するが、ある地震動レベルを超えると、損傷基数の多い場合の条件 付炉心損傷確率が大きくなり、損傷基数の少ない場合の条件付炉心損傷確率は損傷基数の 少ない順に減少していくためである。

図 2.4.4.4 各号機数の炉心損傷の条件付発生確率及び超過発生頻度 Fig. 2.4.4.4 Conditional occurrence probability and exceedance frequency

(3) 隣接プラントの事故による作業環境悪化の検討

ここでは、代表的な 3 ループ PWR プラントが 2 基立地するサイトを対象とした多数基 PRA モデルを用いて、隣接プラントの事故による作業環境悪化した場合の CDF に及ぼす 影響について検討した。

作業環境悪化の考慮

隣接プラントで事故が発生し、高レベルの放射性物質が放出されると、線量が高い間は 屋外作業ができないことになる。ここでは、隣接プラントでの事故により屋外作業ができ ない場合のモデル化を検討した。

② 隣接プラントの事故影響を考慮した PRA モデルの作成

隣接プラントの事故影響を考慮するため、以下の組合せのモデルを作成した。ここで、 対象とするサイトにはプラントA及びプラントBの2基が立地しているとする。

- ・ プラント A 及びプラント B の両プラントにおいて格納容器機能喪失には至らず 屋外作業が可能な場合を想定した、両プラントで屋内作業を考慮したモデル
- ・ プラントAがプラントBより先に格納容器機能喪失には至り、プラントBでは 屋外作業屋外作業が不可能な場合を想定した、プラントAのモデルには屋外作業 を考慮(プラントAでは格納容器機能喪失に至るまでは屋外作業可能)し、プラ ントBでは屋外作業を考慮しないモデル

- プラントA及びプラントBの両プラントで同時期に格納容器破損が発生し、両プ ラントで屋外作業が不可能な場合を想定した、両プラントで屋外作業を考慮しな いモデル
- 隣接プラントにおいて炉心損傷の有無によらず格納容器バイパス事象が発生した
 場合に限り、屋外作業が不可能な場合を想定した、屋外作業の失敗要因に隣接プラントの格納容器バイパス事象を考慮したモデル

本研究では、隣接プラントで格納容器機能喪失に至った場合に屋外作業は不可能なもの として評価を行った。このため、格納容器機能喪失頻度が必要になるが、PDS ごとに評価 させることを想定して、プラントごとに PDS ごとの CDF が評価できるように事故シーケ ンスを展開し ET を作成した。

また、隣接プラントで格納容器が機能喪失した場合のモデルでは、屋外作業の失敗確率 を 1.0 に仮定し、隣接プラントの PDS に応じた条件付格納容器機能喪失確率を乗じること で PDS ごとに頻度を評価することとした。

また、ivの格納容器バイパスが発生したら屋外作業が不可能な場合では、隣接プラントの格納容器バイパス発生に係るモデルを屋外作業に係るモデルに追加し、隣接プラントで格納容器バイパスが発生した際に屋外作業に失敗することとした。

③ 解析結果

単基における屋外作業を可能とするモデルと不可能とするモデルの CDF はそれぞれ 2.1 ×10⁶/炉年、2.3×10⁶/炉年となった。今回使用したモデルでは屋外作業が一つしかなく、 作業環境悪化の影響はほとんどない結果となった。

4種類の多数基モデルを作成し定量化した結果、両プラントが炉心損傷する頻度は1.0× 10⁻⁶~1.2×10⁻⁶/炉年、片プラントが炉心損傷する頻度は9.9×10⁻⁷~1.2×10⁻⁶/炉年、両プラ ントとも炉心損傷しない頻度は4種類とも1.85×10⁻³/炉年となった。また、これらの結果 は単純な2基のCDFの組合せとはならず、地震損傷が支配的な事故シーケンスの場合に は、両プラントで同時に発生しやすくなるという状況が反映され、単基の場合よりもCDF が大きくなりやすくなることが示された。

各モデルにおける炉心損傷するプラントとその頻度を図 2.4.4.5 に示す。

127

Fig. 2.4.4.5 Comparison of core damage frequency for each model

(4) まとめ

マスターイベントツリー手法を用いた地震時多数基立地 PRA におけるプラント基数拡 張手法について検討し、基ごとの CDF を算出可能な PRA モデルを作成した。さらに、試 解析により、炉心損傷に至る基数と地震動レベルの関係を評価し、地震動レベルが大きく なるにつれ、損傷基数の多い場合の条件付炉心損傷確率が損傷基数の少ない場合の条件付 炉心損傷確率より大きくなること、炉心損傷確率は損傷基数の少ない順に減少していくこ とが分かった。また、隣接プラントの事故による作業環境の悪化として隣接プラントで格 納容器機能喪失又は格納容器バイパス事象が生じた場合に屋外作業が不可能としたモデ ルを作成し、試解析を実施し、隣接プラントの事故影響の考慮の仕方により損傷する基数 とその頻度に変動があることを示すことができ、本研究で行った多数基 PRA の手法で、隣 接プラントの事故影響を設定した場合における条件付きのリスクが評価できることを確 認した。

詳細な評価のためには隣接プラントの格納容器機能喪失のタイミング、放出量や放射性 雲の通過タイミングによる違い等の評価について検討する必要がある。

2.4.5 強風及び突風に対する PRA 手法の整備

(1) はじめに

本研究では、代表的な 4 ループ PWR プラントを対象に、出力運転時の強風及び突風 に係る外部事象レベル 1PRA モデルを作成し、風速区分ごとの条件付炉心損傷確率を試算 した。

ここでは、「強風」を台風等の長期間に影響を及ぼす風として、「突風」を竜巻等の短 期間に影響を及ぼす風として定義する。機器の損傷については、風力による直接的損傷と 飛来物衝突による間接的損傷が考えられ、強風、突風ともに風速ごとに機器の損傷の仕方、 規模及びその確率は同様と考えられる。ただし、継続時間の違いから、作業環境の悪化の 程度に差が生じ、屋外作業の信頼度が異なると考えられることから、強風と突風とに分け てモデルを整備することとした。

(2) 強風及び突風によるプラント影響の検討

原子炉補機冷却海水系(以下「SWS」という。)機能喪失のように原子炉自動停止に至 るような機器損傷がある。また、機器が機能喪失した場合に原子炉自動停止には至らない が保安規定違反により計画外の手動停止に至る場合がある。これら「起因事象を引き起こ す機器損傷」と「起因事象を引き起こさない機器損傷」とに分けてプラント影響を整理し た。起因事象の種類はこれまでの内部事象 PRA 及び地震 PRA を参考に設定し、プラント 影響の種類は表 2.4.5.1 のとおりとした。この分類に従い、損傷する可能性がある機器ごと にプラント影響を整理した。その例を表 2.4.5.2 に示す。ここで、外部電源喪失については、 変圧器等のサイト内の電気設備に加えて、サイト近傍の送電線の鉄塔等の風力、飛来物に よる損傷も考慮に入れた。

① 階層ツリーの作成

表 2.4.5.1 のとおり五つの起因事象に分類した。ここで、建屋損傷及び格納容器損傷は建 屋等の構造物の損壊により、内部に設置される原子炉圧力容器、原子炉冷却系配管等の大 規模損壊が考えられることから、保守的にいかなる緩和手段を用いても炉心損傷に至ると 仮定した。また、SWS については、設備設置を分散させていないことを考慮し、完全相関 を設定して部分喪失は考慮せず全喪失のみを考慮した。

これらの起因事象を事象の厳しい順に並べ、図 2.4.5.1 に示す階層ツリーを作成した。

② フラジリティの検討

建屋の風力による直接損傷に係るフラジリティについては、竜巻影響評価⁵³に示されて いる建屋のせん断ひずみ度の評価基準値を耐力と仮定し、基準竜巻での評価値を応答と仮 定して、フラジリティ曲線における中央値を算出した。フラジリティ曲線における偶然的 不確実さと認識論的不確実さは、それぞれ 0.2 と仮定した。 また、その他の機器の風力による直接損傷、建屋の飛来物による損傷及び機器ごとの飛 来物による損傷に係るフラジリティについては、HCLPF (High Confidence of Low Probability of Failure の略。ここでは、対象のフラジリティに対して、95%信頼度において損傷確率が 5%になる風速)を用いてフラジリティ曲線における中央値を算出した。このフラジリティ 曲線における偶然的不確実さと認識論的不確実さは、建屋の直接損傷に係るフラジリティ 曲線と同じく 0.2 と仮定した。

③ 風速区分の検討

a. 強風の風速区分

強風の風速区分については、気象庁が示す台風の強さの階級分け⁵⁴(以下「台風の階級」 という。)及び米国海洋大気庁の提供する Saffir-Simpson hurricane wind scale⁵⁵のカテゴリ を参考にした。台風の階級の「猛烈な台風」の風速の上限値及びハリケーンのカテゴリ 3 の風速の上限値は同等であることから、「猛烈な台風」の風速までは台風の階級ごとに区 分を設定し、それ以上の風速についてはハリケーンのカテゴリごとに区分を設定すること とした。強風の風速区分を表 2.4.5.3 に示す。また、最上位の風速区分の上限値は、観測史 上の最大風速⁵⁵を参考に 115m/s とした。

b. 突風の風速区分

突風の強さ(風速)の評定には、被害の状況から風速を評定できる「藤田スケール」⁵⁶が 世界で広く用いられている。また、気象庁では、この藤田スケールを改良した「日本版改 良藤田スケール」(以下「JEF スケール」という。)」⁵⁷を策定している。

そのため、突風の風速区分はJEFスケールの階級ごとに設定することとした。突風の風 速区分を表 2.4.5.4 に示す。また、最上位の風速区分の上限値は観測史上の最大風速 ⁵⁸を参 考に 140m/s とした。

c. PRA モデルの作成

強風及び突風の PRA モデル作成に当たっては、内部事象レベル 1PRA モデルのフォー ルトツリーに強風及び突風による損傷に係る基事象を追加し、上記②で検討したフラジリ ティを用いて風速区分ごとの機器損傷確率を算出し入力データを作成した。また、屋外作 業が必要な機器には、強風及び突風により作業環境が悪化することを考慮し、FT に新たな 基事象を追加し、工学的判断により表 2.4.5.5 に示す人的過誤確率を設定した。

起因事象発生確率については、上記①で作成した階層ツリー及び機器フラジリティを基 に強風又は突風が発生した時の起因事象発生確率を算出した。 d. 解析結果

作成した PRA モデルを用いて、風速区分ごと、起因事象ごとの炉心損傷確率を算出した。その結果を表 2.4.5.6 及び表 2.4.5.7 に示す。強風及び突風いずれも風速区分によらず SWS 機能喪失の寄与が支配的な結果となった。

全炉心損傷確率に対する MCS の上位 2 位は強風及び突風ともに全ての風速区分で同じ であり、「SWS 機能喪失(起因事象)」×「一次冷却材ポンプの封水 LOCA」及び「SWS 機能喪失(起因事象)」×「加圧器安全弁開固着」であった。これは、SWS の機能喪失時 には、炉心損傷を防止するための機器のうち使用できる機器が限られているためである。

表 2.4.5.1 プラント影響の分類

No.	プラントへの影響 (起因事象)	説明
1	建屋損傷及び格納容器損傷	有効な緩和手段はなく、炉心損傷に至る
2	SWS 機能喪失 (全喪失)	海水系が完全に機能喪失し、原子炉自動トリップ
3	外部電源喪失	外部電源喪失事象となり、原子炉自動トリップ
4	その他過渡事象	過渡事象により、原子炉自動トリップ
5	手動停止	保安規定違反により、手動停止
6	-	起因事象(原子炉停止)には至らない

Table 2.4.5.1 Classification of impacts on plant

表 2.4.5.2 プラント影響への影響の整理例

Table 2.4.5.2 Example of organizing impacts on plant

	損傷する可能性のある設備・機器等		損傷時のプラントへの影響
系統名	設備·機器名称	設備・機器タイプ	(起因事象)
建物	原子炉格納容器(PCCV)	建屋	建屋損傷及び格納容器損傷
建物	原子炉周辺建屋(E/B)	建屋	建屋損傷及び格納容器損傷
建物	制御建屋(C/B)	建屋	建屋損傷及び格納容器損傷
建物	タービン建屋	建屋	その他過渡事象
主蒸気系	主蒸気安全弁(排気管)	排気管	その他過渡事象
主蒸気系	主蒸気逃がし弁(消音器)	消音器	その他過渡事象
主蒸気系	主蒸気配管室ブローアウトパネル	ブローアウトパネル	手動停止
補助給水系	タービン動補助給水ポンプ(蒸気大気放出管	放出管	手動停止
原子炉補機冷却海水系	取水設備	取水設備	SWS機能喪失(全喪失)
原子炉補機冷却海水系	海水ストレーナ	ストレーナ	SWS機能喪失(全喪失)
電源系統	ガス絶縁開閉装置(GIS)	ガス絶縁開閉装置(GIS)	外部電源喪失
電源系統	起動変圧器	変圧器	外部電源喪失
電源系統	主変圧器	変圧器	外部電源喪失
電源系統	所内変圧器	変圧器	外部電源喪失
電源系統	特高開閉所のケーブル	ケーブル(特高開閉所内)	外部電源喪失
電源系統	特高開閉所の鉄塔	鉄塔	外部電源喪失
電源系統	予備変圧器	変圧器	外部電源喪失
送電鉄塔	大飯幹線No.1	鉄塔	外部電源喪失
送電鉄塔	大飯支線No.33	鉄塔	外部電源喪失
送電鉄塔	大飯支線No.34	鉄塔	外部電源喪失
送電鉄塔	第二大飯幹線No.1	鉄塔	外部電源喪失
重大事故等対処設備	タンクローリー	タンクローリー	—
重大事故等対処設備	仮設組立式水槽	可搬型水槽	-
重大事故等対処設備	可搬式代替低圧注水ポンプ	可搬型ポンプ	-
重大事故等対処設備	空冷非常用DG	ディーゼル発電機	-
重大事故等対処設備	消防ポンプ	可搬型ポンプ	-
重大事故等対処設備	大容量ポンプ	可搬型ポンプ	_
重大事故等対処設備	電源車	電源車	-

表 2.4.5.3 強風(台風等)の風速区分

Table 2.4.5.3 Wind speed classification for high winds (such as typhoons)

風速		最大風速(m/sec)*			
区分	階級	以上	未満		
5	カテゴリ 5	70	115		
4	カテゴリ 4	58	70		
3	猛烈な台風	54	58		
2	非常に強い台風	44	54		
1	強い台風	33	44		
0	台風	17	33		

*:風速(10分間平均)

表 2.4.5.4 突風(竜巻等)の風速区分

風速		風速(m/sec)*			
区分	階級	以上	以下		
5	JEF5	95	140		
4	JEF4	81	94		
3	JEF3	67	80		
2	JEF2	53	66		
1	JEF1	39	52		
0	JEF0	25	38		
	*:3秒平均				

Table 2.4.5.4 Wind speed classification for gusts (such as tornado)

表 2.4.5.5 強風及び突風の風速区分ごとの屋外作業に係る人的過誤率

Table 2.4.5.5 Human error probability in outdoor work for each wind speed category of high winds

and gusts						
風速区分	強風(台風等)	突風(竜巻等)				
5	1.0	1.0				
4	1.0	1.0				
3	1.0	1.0				
2	1.0	0.1				
1	0.1	0.05				
0	0.02	0.02				
内部事象	0.01	0.01				

	建屋損傷及び 格納容器損傷	SWS機能喪失 (全喪失)	外部電源喪失	その他 過渡事象	手動停止	
強風または 突風の発生						ок
<u> </u>						手動停止のETへ
						その他過渡事象のETへ
						外部電源喪失のETへ
						SWS機能喪失(全喪失)のETへ
						炉心損傷

図 2.4.5.1 階層ツリー

Fig. 2.4.5.1 Initiating event hierarchy tree

表 2.4.5.6 強風 PRA の結果(風速区分ごとの炉心損傷確率)

Table 2.4.5.6 Results of high wind PRA

(core damage probability for each wind speed classification)

お田車金	風速区分						
起囚事家	0	1	2	3	4	5	
建屋損傷及び格納容器損傷	3.91E-21	8.02E-15	5.01E-12	1.34E-10	2.39E-09	1.79E-06	
原子炉補機冷却海水系機能喪失(全喪失)	5.65E-15	1.14E-09	2.18E-07	3.01E-06	2.88E-05	4.30E-03	
外部電源喪失	0.00E+00	1.15E-15	4.10E-13	3.18E-11	6.58E-09	5.60E-05	
その他過渡事象	0.00E+00	0.00E+00	2.11E-13	3.09E-12	2.70E-10	1.80E-07	
手動停止	0.00E+00	7.31E-18	7.13E-13	1.07E-11	9.27E-10	5.22E-07	
全炉心損傷確率	5.65E-15	1.14E-09	2.18E-07	3.01E-06	2.88E-05	4.36E-03	

表 2.4.5.7 突風 PRA の結果(風速区分ごとの炉心損傷確率)

Table 2.4.5.7 Results of gust PRA (core damage probability for each wind speed classification)

却田車免	風速区分						
起囚芋豕	0	1	2	3	4	5	
建屋損傷及び格納容器損傷	1.73E-17	6.86E-13	4.69E-10	4.15E-08	1.10E-06	9.50E-05	
原子炉補機冷却海水系機能喪失(全喪失)	6.91E-12	4.37E-08	8.06E-06	2.59E-04	3.01E-03	7.19E-02	
外部電源喪失	2.33E-18	4.61E-14	8.75E-12	7.54E-10	8.13E-08	1.33E-04	
その他過渡事象	0.00E+00	2.49E-17	6.14E-15	4.42E-13	1.09E-11	8.08E-09	
手動停止	0.00E+00	3.26E-16	6.93E-14	3.32E-12	8.28E-11	6.97E-08	
全炉心損傷確率	6.91E-12	4.37E-08	8.06E-06	2.59E-04	3.01E-03	7.21E-02	

(3) まとめ

強風又は突風時に損傷する可能性のある機器とその影響について検討し、外部電源喪失 については、変圧器等のサイト内の設備の他、サイト近傍の送電線等の損傷を考慮にした PRA モデルを作成した。試解析を行った結果、SWS 機能喪失の寄与が大きくなる可能性が あることが分かった。

強風又は突風に係るフラジリティ及び強風又は突風による屋外作業への影響の程度及 び失敗確率については、先ずは、簡易的に定めたものを PRA モデルに組み込んだため、よ り詳細な評価を行うためには更なる検討が必要である。

2.4.6 火山レベル 1 PRA モデルの作成

(1) はじめに

原子炉施設及び施設周辺に火山灰が降ることにより、電気設備に絶縁低下等の影響がある。また屋外作業にも影響がある。このようなリスクを評価するため、本研究では代表的な4 ループ PWR プラントを対象とした出力運転時の火山に係る外部事象レベル 1PRA モデルを検討し、試解析を実施した。

本研究では、火山影響の試算として、降下火砕物のうち火山灰を対象とした。PRA モデ ルの作成にあたっては、機器の損傷については、荷重による損傷、火山灰の付着及び堆積 することで起こるフィルタ等の閉塞又は水循環の閉塞、モーター回転部等の摩耗、火山灰 付着による碍子、遮断器等の絶縁低下による電気機器の損傷を考慮した。また、火山灰の 浮遊、堆積による作業環境の悪化も考慮し、屋外作業の信頼度は降灰量ごとに考慮した。

(2) 火山灰によるプラント影響の検討

2.4.5(2)と同様に「起因事象を引き起こす機器損傷」と「起因事象を引き起こさない機器 損傷」とに分けてプラント影響を整理した。火山灰は屋外設備に影響を与えると考えられ ることから、起因事象は2.4.5(2)と同様の種類を設定した。ここで、外部電源喪失について は、変圧器等のサイト内の電気設備に加えて、サイト近傍の送電線等の絶縁低下等による 損傷も考慮に入れた。

① フラジリティの検討

降灰の影響の一つとしては荷重による損傷がある。建屋が荷重により損傷するような火 山灰の堆積には相当の時間を要すると考えられることから、屋外作業の作業環境の悪化を 考慮しても建屋が損傷するまでに火山灰を除去することは可能であると仮定した。また、 水分を含む等で粘度が非常に高くなっている場合を除けば、建屋が荷重で損傷するまで火 山灰が堆積できるとは考えづらく、ある一定の高さ以上には堆積しないと仮定した。これ らのことから、建屋及び格納容器は全降灰量区分で損傷しないとした。

なお、降灰量区分については、内閣府の防災担当が主導する富士山火山防災協議会で示された資料⁵⁹を参考に設定した。表 2.4.6.1 に降灰量区分を示す。

他の影響としては機器の降灰による損傷がある。経済産業省の令和2年度新エネルギー 等の保安規制高度化事業委託調査(大規模火山噴火に対する保安高度化推進事業)報告書⁶⁰ には停電発生確率が降灰量によらず約1%であることが示されている。このことから、碍 子に火山灰が付着することで損傷する電気品の損傷確率は、降灰量区分によらず一定とし、 0.01 とした。

その他の機器については、適用できるフラジリティデータが得られなかったため、内閣 府の大規模噴火時の広域降灰対策検討ワーキンググループ(第3回)の資料⁶¹等を参考に 降灰量区分 3 から損傷が起こると仮定し、工学判断により降灰量区分 5 での損傷確率を 0.01 と仮定し、区分が一つ下がるにつれて損傷確率が 1 桁小さくなると仮定した。

PRA モデルの作成

内部事象レベル 1PRA の FT に、降灰による損傷に係る基事象を追加することで、火山 PRA モデルを作成した。基事象に入力する損傷確率については、上記①で検討した機器フ ラジリティを用いて降灰量区分ごとに損傷確率を算出した。また、屋外作業における作業 悪化を考慮するために、FT に新たな基事象を追加し、人的過誤確率については降灰量区分 に応じて変化すると仮定し、表 2.4.6.2 に示すとおり設定した。

③解析結果

作成した PRA モデルを用いて、降灰量区分ごと及び起因事象ごとに火山が発生したこ とによる条件付炉心損傷確率を算出した。その結果を表 2.4.6.3 に示す。SWS 機能喪失の 寄与が支配的な結果となった。

強風及び突風の PRA と同様に、「SWS 機能喪失(起因事象)」×「一次冷却材ポンプの封水 LOCA」及び「SWS 機能喪失(起因事象)」×「加圧器安全弁開固着」が支配的な結果となっており、これは、SWS 機能喪失時には、炉心損傷を防止するための機器のうち使用できる機器が限られているためである。

表 2.4.6.1 降灰量区分

降		降灰量(債もった	
灰量	17EK VIII.	厚さ)(cm)		/ 世 - 赵
区	陷极	CZ F	未満	加方
分		<u></u> 小工		
-	極めて	22.0		30~60%の木造家屋が全壊
2	大量	32.0		
4	上目	10.0	22.0	降雨時、木造家屋が全壊
4	八里	10.0	32.0	する可能性あり
n	極めて	2.0	10.0	健康被害、道路通行不
5	多量	2.0	10.0	能、降雨時土石流
2	多量	0.1	2.0	車の運転は控える
1	やや多	0.01	0.1	車は徐行
1	量	0.01	0.1	
0	少量		0.01	フロントガラスに灰

Table 2.4.6.1 Ashfall amount classification

出典) 第2回富士山火山防災対策協議会 平成25年度事業計画 59

表 2.4.6.2 降灰量区分ごとの屋外作業に係る人的過誤率

Table 2.4.6.2 Human error probability in outdoor work for each ashfall amount classification

降灰量区分	人的過誤確率
5	1.0
4	1.0
3	1.0
2	0.05
1	0.02
0	0.01
内部事象	0.01

表 2.4.6.3 火山 PRA の結果(降灰量区分ごとの条件付炉心損傷確率)

Table 2.4.6.3 Results of volcano PRA (core damage probability for each ashfall amount

classification)	
-----------------	--

却田車魚	降灰量区分						
—————————————————————————————————————	0	1	2	3	4	5	
建屋損傷及び格納容器損傷	1.00E-11	1.00E-11	1.00E-11	1.00E-11	1.00E-11	1.00E-11	
原子炉補機冷却海水系機能喪失(全喪失)	7.33E-03	7.33E-03	7.33E-03	7.55E-03	9.53E-03	2.93E-02	
外部電源喪失	1.52E-06	1.52E-06	1.52E-06	1.60E-06	2.19E-06	1.29E-05	
その他過渡事象	3.16E-11	3.16E-11	3.16E-11	3.36E-11	5.49E-11	8.30E-10	
手動停止	2.93E-11	2.93E-11	2.93E-11	3.24E-11	6.69E-11	1.52E-09	
全炉心損傷確率	7.33E-03	7.33E-03	7.33E-03	7.55E-03	9.53E-03	2.93E-02	

(3) まとめ

火山灰により損傷する可能性のある機器を特定し、火山灰により発生する起因事象を検 討した。また、外部電源喪失事象については、変圧器等のサイト内の設備の他、サイト近 傍の送電線等の損傷も考慮に入れ PRA モデルを作成し、試解析を行った結果、SWS 機能 喪失の寄与が大きくなる可能性があることが分かった。

適切に火山による炉心損傷のリスクを計算するためには、今回の検討で考慮しなかった 軽石によるプラントへの影響等、火山の影響の範囲を拡張する必要がある。

2.4.7 地震時津波レベル1 PRA モデルの作成

(1) はじめに

本研究では、代表的な 3 ループ PWR プラントを対象とし、地震時に津波が発生した 場合の PRA 手法を検討した。検討においては、地震 PRA モデルに津波により水没する機 器の機能喪失をモデル化することで、地震時津波を対象にした PRA モデルを作成し、条件 付炉心損傷確率を試算した。

(2) 評価手法の検討

地震時津波 PRA 手法を検討するために必要な主な項目は次のとおりである。

① 地震動レベルと津波高さとの関係

津波により原子炉施設に与える影響を考える際、津波高さ(基準点での津波水位)だけ でなく、遡上高さ及び津波継続時間も必要なパラメータとなる。これらのパラメータは震 源ごと及び震源での地震規模ごとに決まる。このため、評価対象となる原子炉施設におけ る地震動が大きい場合でも、津波高さが高いとは限らない。地震 PRA においては、原子炉 施設における地震動の発生頻度を求め、その地震動ごとの機器の損傷を考慮して CDF を 算出する。しかし、地震と津波の関係は、原子炉施設における地震動だけでは決まらず、 震源及び震源における地震規模の情報が必要となる。

このことから、地震 PRA で用いる原子炉施設の地震動だけで津波高さをあらかじめ一つに決定しないこととした。

② 津波高さと浸水シナリオ

上記①で述べたように震源ごと及び震源での地震動規模ごとに津波高さ、継続時間、遡 上高さ等が決まる。このため、以下二つの方法を考え、本研究においては効率的に整理が 実施できる後者の方法を採用することとした。

- ・ 震源及び地震動規模の組合せごとに全ての津波の条件で評価を行う方法
- 同様の浸水シナリオになる震源及び地震規模の組合せを整理し、浸水シナリオご
 と及び原子炉施設における地震動ごとの組合せに整理し直して評価を行う方法

③ 地震による起因事象発生後の津波による浸水との関係

地震 PRA では、地震発生に伴い複数の機器が損傷する場合、その損傷した機器の組合せ により、機能喪失する緩和手段が決まる。さらに津波が重畳した場合には、損傷する機器 の組合せが地震だけの時とは異なることが考えられ、機能喪失する緩和手段が増える可能 性がある。なお、津波により損傷する機器は、浸水シナリオにより決まることになる。 地震及び津波により機能喪失する緩和手段の組合せは、地震損傷の可能性と浸水シナリ オとで決まる。このため、機能喪失する緩和手段の組合せを FT でモデル化する際、地震 による機器損傷の特定の後に浸水による機器損傷を加えても、浸水条件による機器損傷の 特定の後に地震による機器損傷を加えても結果は同じとなる。このため、地震 PRA モデル の FT に津波で損傷する機器の基事象を加えた。

④ ハザードに係る検討

上記①のとおり、原子炉施設における地震動のみで襲来する津波の高さ等を整理することはできない。このため、地震時津波ハザードを算出するための手順を検討した。

- a. 震源ごと及び地震規模ごとに原子炉施設へ襲来する津波を評価する。
- b. 浸水挙動解析を実施し、浸水シナリオを整理する。
- c. 浸水シナリオが同等になる震源及び地震規模の組合せを整理する。
- d. 震源ごと及び地震規模ごとの発生頻度を算出する。
- e. 上記 c.で実施した整理結果と上記 d.で算出した発生頻度を用いて浸水シナ リオごとの発生頻度を算出する。
- f. 震源及び地震規模の組合せに対応する原子炉施設における地震動を整理する。

なお、浸水挙動解析は 2.4.3 津波 PRA 手法の整備で得られた成果を用いた。浸水シナリ オごとに機能喪失する機器を表 2.4.7.1 に示す。

⑤ 評価範囲の検討

地震 PRA では、地震加速度による原子炉自動停止機能が作動する地震動以上を対象と していることから、本研究でもこの条件を用い、最大の地震動は 1450gal とし、200gal か ら 1450gal を本研究における地震動の範囲とした。

津波については、防潮堤を越え建屋に浸水(水密扉の破損等で生じる浸水)する条件と した。

⑥ PRA モデルの作成

上記の検討より、図 2.4.7.1 に示すように、地震時津波 PRA の手順を作成した。評価対象震源の選定を行い、震源ごとのプラントへの影響の評価を行い、この結果を基に浸水シ ナリオごとの発生頻度を求めるとともに地震動レベルごとの発生確率を求め、CDF を算出 する手順を想定し、地震時津波モデルの作成を行った。

起因事象については、地震が来襲した後に津波が来襲すると考えて、起因事象発生確率 は地震 PRA モデルに従った。地震 PRA モデルの FT を基に、浸水により損傷する可能性 のある機器を特定し、津波による損傷に係る基事象を追加した。このように基事象を追加 することで、浸水シナリオごとに機器フラジリティを入力することができ、浸水シナリオ ごとに損傷する機器の違いを評価できる。

本研究の目的は、地震と津波が重畳する際に留意すべき点を特定し、地震と津波が重畳 する特有のシナリオの評価の可能性を検討するものである。このため、浸水シナリオごと の各地震動の発生確率は評価せず、浸水シナリオごと及び地震動ごとにおける起因事象ご との全炉心損傷確率への寄与割合を求めることとした。

⑦解析結果

浸水シナリオごと及び地震動ごとにおける起因事象ごとの全炉心損傷確率への寄与割 合を図 2.4.7.2 に示す。浸水シナリオごとに損傷する機器が異なるため、地震動ごとの寄与 割合の変化に違いが出ており、地震と津波が重畳した場合の事故のシナリオが評価するこ とができた。

機器	浸水シ ナリオ 1	浸水シ ナリオ 2	浸水シ ナリオ 3	浸水シ ナリオ 4	浸水シ ナリオ 5
3Bディーゼル機関	-	•	-	•	•
3Bディーゼル発電機(3DGE2B)	-	•	-	•	•
3Bディーゼル発電機制御盤(3DGC-B)	-	٠	-	٠	•
3Bディーゼル発電機コントロールセンタ(3GCC-B)	-	•	-	•	•
3Aディーゼル機関	-	•	•	•	-
3Aディーゼル発電機(3DGE2A)	-	•	•	•	-
3Aディーゼル発電機制御盤(3DGC-A)	-	•	•	•	-
3Aディーゼル発電機コントロールセンタ(3GCC-A)	-	•	•	•	-
3A3B3C3D空調用冷水ポンプ	•	•	•	-	•
3A3B3C3D空調用冷凍機	•	•	0	-	0
3A3B原子炉補機冷却水ポンプ(3CCP1AB)	•	•	0	0	0
3A原子炉補機冷却水冷却器海水止め弁(3V-SW-570A)	٠	•	0	0	0
3A3B原子炉補機冷却水ポンプ現場操作箱(3LB-2021)	•	•	0	0	0
3B原子炉補機冷却水冷却器海水止め弁(3V-SW-570B)	•	•	0	0	0
3C3D原子炉補機冷却水ポンプ(3CCP1CD)	•	•	0	0	0
3A・C3B・C原子炉補機冷却水戻り母管連絡弁(3V-CC-043AB)	•	٠	0	0	0
3A・C3B・C原子炉補機冷却水供給母管連絡弁(3V-CC-056AB)	•	•	0	0	0
3C3D原子炉補機冷却水ポンプ現場操作箱(3LB-2223)	•	•	0	0	0
○機能維持 ●機能喪失 -対象外				,	

表 2.4.7.1 浸水シナリオごとの損傷の状況

Table 2.4.7.1 Status of equipment for each tsunami induced flooding scenario

図 2.4.7.1 地震時津波の評価手順案

Fig. 2.4.7.1 Proposed evaluation procedure for tsunami on seismic

図 2.4.7.2 五つの浸水シナリオに対する地震動ごとに見た各起因事象の寄与割合 Fig. 2.4.7.2 Contribution ratio of each seismic acceleration and each initiating event for each tsunami induced flooding scenario

(3) まとめ

地震と津波の重畳した事象に対する PRA の手順を検討し、その手順に基づきモデルの 試作及び試解析を実施し、浸水シナリオごとに炉心損傷確率の違いを示すことができた。 浸水シナリオごとの各地震動の発生確率及び津波シナリオごとの発生頻度が得られれば、 地震時津波に対する CDF の算出が可能になる見通しを得た。

2.5 監視・評価制度へのリスク情報の活用方策の検討

2.5.1 検査指摘事項の重要度評価手法の検討及び簡易リスク評価コード整備

(1) 重要度を決定する手法の整備

原子力規制検査において監視領域「発生防止」に関連づけて検出されたプラント出力運転時の検査指摘事項を対象に、重要度評価に係るスクリーニング方法について PRA から 得られるリスク情報を用いて検討した。

検査指摘事項の重要度評価のスクリーニングについては、米国 NRC の検査マニュアル ⁶²を参考に、内部事象 PRA モデルで考慮している起因事象 ²⁷から、図 2.5.1.1 に示すよう なスクリーニングフローを検討した。

まず、起因事象の発生に係る検査指摘事項については、機器の施工不良がなく、地震、 津波、強風等により機器が壊れることは検査指摘事項とはならないため、これらの外部事 象についてはスクリーニングアウトとした。内部火災及び内部溢水については、機器の施 工不良に起因する可能性があるため発生すると検査指摘事項になる可能性が高く、かつリ スクが上昇する可能性が高いため定量評価に進むとした。また、内部事象の発生に関する 指摘事項は、内部事象 PRA で考慮している起因事象に該当せず、かつ、対処設備のサポー ト系が機能喪失せず、かつ、原子炉トリップしなかった(又は原子炉トリップしたが、対 処設備の動作に影響する事象ではなかった)場合はリスクが小さいとして重要度評価結果 をリスク低(GREEN)とした。

Fig. 2.5.1.1 Proposed screening flow for findings of initiating event cornerstone

(2) 簡易リスク評価コード

原子力規制検査の検査指摘事項の重要度評価において簡便にΔCDF を計算できるよう に、3 ループ及び 4 ループ PWR プラントを対象に、ΔCDF を算出できるコードを検討し た。本コードでは、図 2.5.1.2 に示すような画面で計算に必要な入力、計算及び結果の表示 を示すことで、計算の流れが分かるようにした。また、図 2.5.1.3 に示すように、評価対象 となる故障した機器をプルダウンで簡便に選択することができるようにした。さらに、Δ CDF の計算は、まず、PRA から得られる MCS を用いて、故障した機器の失敗の基事象を その MCS から除くことで、故障した機器は使えない場合の CDF を計算できるようにした。 さらに、計算した CDF から、故障した機器の MCS を除く前の MCS で算出した CDF (ベ ースラインの CDF)を引くことで、ΔCDF を簡便に計算する方法を採用した。評価結果は、 図 2.5.1.4 に示すように、リスクの上昇の程度(ΔCDF等)と重要度区分で表示される。

	-	×
オブション		
計算作業フォルダ D-¥exework¥RiskToolData		
データ入力 評価実行 ステータス表示 ステータス表示 末作成 未実行	示	
<		>

図 2.5.1.2 初期画面

1758/1781	ISATA			0						
算ケース名	Cenar T									
ゆの根表										
厌事象発生 有無	ಂಹು⊛ಕು		起却事業名	হেট্রা বাই জা	事業の学生の有 時代で参加を講	無い「和同市旅 「和言」はであり	穿生釉度の増加 品。	時有利について、		
医事象発生詞度 増加の有罪	০৯৫⊛হচ		起因素於含	+	41円布設除十約	i疟	14439448	¶£(i)		
影放輝発生	೧೫೨⊛ರು		最大限的	系統化してント	CASE -	体指世习	新生業(151M9) 9	- 20		077
有點。		2								
		3	Y	· · · · · · · · · · · · · · · · · · ·						
		5		, v				-		
	0.50.0 21		NER WEIGHT	教師(下)という	機器	地球事件	Azim+ = i*	新設設会設定	astanii(Itini	1258
器の機能喪失 密境107万毎						200			128	
器の機能喪失 率増加の有無		* 1	4		-					

Fig. 2.5.1.3 Input window of simplified risk calculation code

💀 簡易評価ツール 評価 ファイル	「結果表示」	画面											-		×
入力データ プラント 計算ケース: 起因事象	名 起因 発生 継続	case 1 事象名 顏度 時間(h)				 事象の概 	腰								
機器故障の	D発生	▶ 1 i 2 i 3 4 5	緩和設備 高圧注入系 高圧注入系	系 B A	焼(トレイン)	機器	機器	番号	維続時間(h)	*					
機器の機能 確率の増加	£喪失 □	▶ 1 2 3 4 5	緩和設備	系 	統(トレイン)	機器 		播号	故障モード 		機能喪失確率	維続時間(h)	×		
対象事象(ØCCDP	_				評価で 基本ケ 対象事 △CDF	使用した。 ースのCD 家のCDF /CDF	継続時間 F	B(h)			e度区分 IV IV			
重要	度区分	の判定基	Ě準					-							
重要度区分		彩建新	IV 監視事項			Ⅲ 劣化兆候(低)			 劣化兆候(高	i)		I 劣化事	象		
CCDP		CCDP	< 1.00E-06		1.00E-0	$6 \le CODP < 1.00$	E-05	1.00	E-05 ≤ CCDP<	1.00	E-04	1.00E-04≤	COD	>	
△CDF(/炉年)	٨		< 1.00E-06		1.00E-0	06≤ △CDF< 1.00	E-05	1.0	0E-05≤ △CDF<	1.00	E-04	1.00E-04≤		F	_
	Δ	CDF/C	DF < 1.00E+00		1.00E+00S	ACDF/CDF (1.UUE+	1.00E+	UIS ACDE/CD	FΚI	1.UUE+	T.00E+025 ∆0	JDF/	JDF	

図 2.5.1.4 簡易リスク評価コードの出力画面

Fig. 2.5.1.4 Output window of simplified risk calculation code

MCS を用いた ΔCDF の計算では、FT を用いて MCS を作り直さないため、適切に ΔCDF を計算出来ないことがある。例えば、故障が起きにくい機器(配管や動作要求の無い手動 弁など)の故障を対象とした計算においては、打ち切り値によって MCS に現れていない 場合が多く、適切に ΔCDF を計算することが出来ないことが分かった。また、起因事象の 発生頻度を FT で用いて計算している場合には、機器に係る基事象だけでなく発生頻度を 計算するための補正係数等、種々のパラメータを変更する必要があり、簡易リスク評価コ ードを用いて、複雑で大きな PRA モデルを計算することは適していないことが確認され た。これらの理由から、ポンプの単独故障等のリスク評価には簡易リスク評価コードを用 い、複数の機器の故障に関係するリスク評価には、RiskSpectrum⁶³等の計算コードの導入を 継続して検討していくこととした。

(3) リスク情報を整理したハンドブックの整備

① 出力運転時におけるリスク情報を整理したハンドブックの整備

各プラントにおけるリスク情報を活用するための手段として、検査官等が日常検査や検 査指摘事項の重要度評価において使用できるように、出力運転時における PRA 結果と系 統図面等の各プラント情報等のリスク情報を整理したハンドブックを作成した。当該ハン ドブックは、日常検査における機器の選定、原子炉施設のリスクの理解等に活用されることを目的としている。

図 2.5.1.5 にリスク情報を整理したハンドブックの構成を示す。このハンドブックでは、 プラントにおける各系統の依存性を示した表を作成し、各系統間の関係がわかるようにした(図 2.5.1.6)。

リスク情報を整理したハンドブックには、PRA でモデル化した機器、人的操作、共通原 因に関する重要度を記載している。記載の例として、図 2.5.1.7 に示した機器の RAW 重要 度と FV 重要度の関係図を用いて重要な機器を選定したものを示す。選定した機器は、図 2.5.1.8 に示すように、ハンドブックの中で系統図と対応することができるようにした。

図 2.5.1.5 リスク情報を整理したハンドブックの構成

Fig. 2.5.1.5 The structure of the handbook organizing risk information

系統	トレイン	補助冷却系			制御	空調	6.6KV 母線		1257 直	充電源	信号系 (S1信号)		
		母 管A	母 管 B	母 管c	用空 気系	設備	с	D	А	В	А	в	
高圧注入 系	Α	0					0				0		
	В		0					0				0	
低圧注入 系	Α	0					0						
	В		0					0					
格納容器	Α	0					0						
スプレイ糸	В		0					0					
補助給水	Α				0	0			0	0	0		
系	В				0	0			0	0		0	
	с				0								
緊急ほう酸	Α				0								
注入系 	В				0								
代替格納	В												
容器スプレ イ系	В												

図 2.5.1.6 プラントにおける各系統の依存性

Fig. 2.5.1.6 Dependence of each train in plant

図 2.5.1.8 リスク上重要な機器の例 Fig. 2.5.1.8 Example of risk significant components

② 停止時におけるリスク情報を整理したハンドブックの整備

各プラントにおけるリスク情報を活用するための手段として、停止時における PRA 結 果と各プラント情報等のリスク情報を整理したハンドブックを作成した。ハンドブックに 記載した内容の例として、PWR の停止時 PRA の範囲を図 2.5.1.9 に示す。また、代表的な プラントの例として 4 ループ PWR における各プラント運転状態における水位、一次冷却 系統(以下「RCS」という。) 圧力と起因事象との関係を図 2.5.1.10 に示す。

停止時については、規制庁において整理した PRA モデルを用いて代表的な 6 プラント (PWR:33 プラント、BWR:3 プラント)を対象にリスク情報を整理したハンドブックを作 成した。図 2.5.1.11 に記載例として 4 ループ PWR における起因事象別の CDF の算出結果 を示す。

Fig. 2.5.1.9 Scope of shutdown PRA (PWR)

Fig. 2.5.1.10 Plant operating conditions and expected initiating events in each plant operating condition

Fig. 2.5.1.11 Result of core damage frequencies (initiating event; 4-loop PWR)

(4) まとめ

原子力規制検査で活用する簡易リスク評価コードを検討するとともに、PRA モデルから 得られるリスク情報を整理してリスク情報ハンドブックを作成した。

2.5.2 PRA モデル適切性の確認方法の整備

(1) はじめに

原子力規制検査においては、事業者が作成する PRA モデルを活用して、リスク情報を取 得することになっている⁸。事業者 PRA モデルを活用するにあたっては、PRA モデルの適 切性の確認が必要であることから、適切性を確認するフロー案を作成し、確認する際に用 いる確認項目を整理した。

(2) PRA モデルの適切性確認の処理の流れ

原子力規制検査で使用する PRA モデルの適切性確認のフローを図 2.5.2.1 に示す。

この中では、これまでに実施したレベル IPRA に係る安全研究成果を用いて、事業者の PRA モデルの整備状況や感度解析等による PRA 結果の特徴等を分析・把握し、リスク上 重要な機器が適切にモデル化されているかについて確認することとしている。

(3) PRA モデルの確認項目

本フローに沿って、PRA モデルの適切性を確認する際には、ASME/ANS の PRA 標準⁶⁴、 日本原子力学会の実施基準⁶⁵等を参考に図 2.5.2.2 のような確認項目を設定し、確認項目ご とに適切性を確認する。

PRA モデルの適切性の確認には、海外専門家の知見等も活用し、重要な確認項目に特化 する等の効率化を図る。また、本確認を効果的に実施するため、検査制度で PRA の活用が 進む米国 NRC の職員が、これまでの経験を基に事業者 PRA モデルのレビューを実施する ことを加えた。

出典)原子力規制委員会原子力規制庁原子力規制部検査監督総括課、「原子力規制検査において使用する事業者 PRA モデルの適切性確認ガイド」⁸

図 2.5.2.1 原子力規制検査における適切性確認の処理の流れ

Fig. 2.5.2.1 Flow of processing of appropriateness confirmation used in inspection system

Fig. 2.5.2.2 Confirmation items for appropriateness of operator PRA model

(4) まとめ

これまでに、事業者 PRA モデルの適切性確認のフロー及び確認項目を取り纏めた。これ らは「原子力規制検査において使用する事業者 PRA モデルの適切性確認ガイド」⁸の策定 に活用された。

2.5.3 溢水、火災発生時の重要度評価手法の整備

(1) はじめに

内部溢水又は内部火災発生時における検査指摘事項の重要度評価の定量的なリスクの 算出方法を検討し、内部溢水又は火災発生時の検査指摘事項の重要度評価フローを作成す るとともに、評価に必要な条件を整理した。

(2) 検査指摘事項の重要度評価のための分類フロー

火災又は溢水を対象にした検査指摘事項の重要度評価は、内部事象レベル1PRA モデル を用いて、簡易的に火災が発生した場合の炉心損傷確率又は CDF を評価する方法を検討 した。この評価は、米国 NRC の検査マニュアル (IMC 609 の Appendix F) ⁶⁶のフェーズ 2 に相当するものである。このフェーズ 2 評価は、簡便に定量評価を行うものである。火災 又は溢水により起因事象が発生若しくは発生する可能性が高くなった事象、並びに火災又 は溢水の拡大防止の機能が劣化した事象を対象とする。図 2.5.3.1 に外部事象の分類フロー を示す。このフローで火災事象又は溢水事象に係る検査指摘事項の重要度評価における事 象を分類する。

図 2.5.3.1 検査指摘事項の重要度評価のための分類フロー Fig. 2.5.3.1 Classification flow for significance determination process

(3) 火災発生時の重要度評価手法の整備

火災事象を評価対象とした検査指摘事項の重要度評価フローを、図 2.5.3.2 に示す。

火災発生時の検査指摘事項の重要度評価フローは、火災により機能喪失した機器が使用 できないとした状態を内部事象レベル1PRAモデルに反映して評価するものである。なお、 概算評価でΔCDFが1×10⁻⁶/炉年以上のものについては、簡易火災影響評価へ進む。

火災事象を評価対象にした簡易火災影響評価においては、図 2.5.3.3 に示すような米国で 開発された FDTs 評価シート⁶⁷を用いる。この評価シートを用いた評価例を図 2.5.3.4 に示 す。

また、火災の詳細評価が必要な場合には、図 2.5.3.5 に示すように火災伝播解析コード (FDS 等)を用いて詳細な火災伝播解析から、火災により損傷する機器を特定する。

出典) 原子力安全に係る重要度評価に関するガイド 附属書 5 火災防護に関する重要 度評価ガイド(GI007 附属書 5 r01) より抜粋⁶⁸

図 2.5.3.2 火災事象の評価フロー (1/2)

Fig. 2.5.3.2Evaluation flow of fire events (1/2)

出典)原子力安全に係る重要度評価に関するガイド 附属書 5 火災防護に関する重要 度評価ガイド(GI007 附属書 5 r01)より抜粋⁶⁸

図 2.5.3.2 火災事象の評価フロー (2/2)

Fig. 2.5.3.2 Evaluation flow of fire events (2/2)

	APTER 2. PREDICT AND SMOKE L WITH N	TING HOT GAS LAYER TEMPERA AYER HEIGHT IN A ROOM FIRE IATURAL VENTILATION	TURE Version 1805.1 (English Units)
^о _{****} * • СОМ	PARTMENT WITH T	THERMALLY THICK/THIN BOUND	ARIES
e bilowing calculations estimate the h	of gas layer temperature and	d smoke layer height in enclosure fre.	
rameters in GREEN CELLS are Auto	matically Selected from th	e DROP DOWN MENU for the Material Selecte	d
subsequent output values are calcula d secure to avoid errors due to a wron	g entry in a cell(s). The chap	pased on values spectred in the input parameter plar in the NUREG should be read before an anal	i. This spreadsneet is protected ysis is made.
Project / Inspection	NUREG-1805 Supplement 1 Example 15.11-2a		
Title:			
IPUT PARAMETERS			
JIII ARTMENT INFORMATION			
Compartment Wid	h (ec)	16.40 ⁿ	
Compartment Leng	m (l _e)	16.40	
Comparation rang	in (in)	11.40[*	
Vent Width (w,)		3.28	
Vent Height (h,)		6.90 7	
Top of Vent from Floor (Vr)		6.90 1	
interior Lining Thic	viess (o)	12.00	
BIENT CONDITIONS			
Ambiert Air Temp	rature (T _a)	70.00 *	
Specific Heat of Air (c,)		1 00 MURG-K	
Amblent Air Denst	f (P _n)	1.20 kg/m ²	
Note: Amblent A	r Density (p _e) <mark>will automati</mark>	ically correct with Amblent Air Temperature (T	a) input
	MPARTMENT ENCLOS	SING SURFACES FOR	
ERMAL PROPERTIES OF CO			
IERMAL PROPERTIES OF CO			
IERMAL PROPERTIES OF CO	mai Inertia (kpc) mai Conductivity (k)	2.9 (KW/m ² -K) ² -sec 0.0016 kW/m-K	
IERMAL PROPERTIES OF CO Interior Lining The Interior Lining The Interior Lining Spe	mai Inertia (kpc) mai Conductivity (k) affic Heat (c)	2.5 (kW/m²-K)²-sec 0.0018 kW/m-K 0.75 kJ/kg-K	

- 図 2.5.3.3 簡易火災影響評価フローで用 いる FDT^s評価シート
- Fig. 2.5.3.3 FDT^s evaluation sheet used in simplified fire impact assessment flow

図 2.5.3.5 詳細火災影響評価フローで用いる FDS を用いた火災解析の例 Fig. 2.5.3.5 Example of fire analysis using FDS used in detailed fire impact assessment flow

(4) まとめ

本研究では令和3年度までに、溢水及び火災に係る検査指摘事項の重要度評価のフロー 及び評価方法を検討した。研究の成果のうち、火災に係る検査指摘事項の重要度評価フロ ー及び評価方法については、「火災防護に関する重要度評価ガイド」⁶⁸の策定に活用され た。

3. 結論

3.1 成果の要点

3.1.1 PRA の最新知見の反映

- (1) 事故進展に伴って変化する系統・機器の構成の変化を考慮できるダイナミック PRA 手法について、JAEA への委託として、熱流動解析と PRA を連携させる手法の検討 を進め、連携解析のためのコードを開発した。
- (2) 人間信頼性解析ツールについては、文献調査等により EPRI 手法、IDHEAS 手法及び PHOENIX 手法の知見収集を行って3者を比較し、PHOENIX 手法を当該研究で用い る手法と選定した。PHOENIX 手法を用いた試解析において、運転員操作間の依存性 を考慮する方法を検討し、PHOENIX 手法を高度化できた
- (3) レベル 1PRA 及びレベル 2PRA 一貫解析手法については、一貫解析に適用する PRA コードの選定及びモデル構築のための基本設計を完了することができた。

3.1.2 内部火災 PRA 及び内部溢水 PRA の整備

- (1) 内部火災 PRA 手法については、火災による制御ケーブルのホットショートによる機器への影響を考慮した内部火災 PRA モデルを構築するため、火災伝播挙動の試験結果を分析して、隣接領域への火災伝播の解析モデルを作成し、解析により試験結果を概ね再現できることを確認した。
- (2) 内部溢水 PRA 手法については、高エネルギー配管破損に伴う高温蒸気による設備の 機能喪失条件を検討するとともに、溢水伝播解析により溢水シナリオを設定した。こ の溢水シナリオに従い、起因事象の発生頻度及び機能喪失する機器を特定して PRA モデルに反映した。

3.1.3 地震・津波等に係る PRA の整備

- (1) 地震 PRA 手法については、ABWR に関しては重大事故対処設備を組み込んだ PRA モ デルの整備、PWR に関しては複数の蒸気発生器及び伝熱管の破損を想定した場合の 事故進展挙動を分析して、破損の部位・規模等の組合せを考慮した事故シナリオを検 討して PRA モデルの整備を進めた。
- (2) 津波 PRA 手法については、遡上津波が建屋に浸水して機能損傷に至る設備を特定す るために、建屋内浸水挙動を解析するコードの基本設計を行い、解析コードのプロト タイプを作成し、津波が発生した際の炉心損傷確率を試算した。
- (3) 多数基立地サイトの地震 PRA 手法については、プラント基数を拡張するための手法の見直しを行うとともに、隣接プラントの事故による屋外作業の作業環境の悪化を考慮する方法の検討を行い、多数基立地サイトにおける地震時のリスクを評価するため技術的知見を得た。
- (4) その他の外部事象に係る PRA モデル手法については、強風、突風及び火山について

損傷する機器及びプラントへの影響を整理し、PRA モデルの試作を行い、強風、突 風及び火山に対するリスク評価に係る知見を得た。また、地震時津波 PRA について は、評価手法を検討し、検討した手法に基づいたモデルの試作を行い、検討手法によ る地震時津波に対する CDF 算出の見通しを得た。

3.1.4 監視・評価制度へのリスク情報の活用方策の検討

- (1) 原子力規制検査で活用するリスク情報の収集のため、簡易リスク評価コードを検討した。さらに、プラントごとの日常検査で活用することを目的に、リスク情報を取りまとめたハンドブックを作成した。
- (2) 事業者 PRA モデルの適切性を確認するため、確認手順のフロー及び確認項目を取り まとめた。
- (3) 原子力規制検査における個別事項の安全重要度評価プロセスにおける検査指摘事項について、検査指摘事項のスクリーニング方法を検討して、スクリーニングに適用する評価フローを作成した。

3.2 目的の達成状況

本研究における①PRA の最新知見の反映については、ダイナミック PRA の手法及び解 析コードを開発することができ、PHOENIX 手法を今後の研究において用いて人的過誤確 率を算出するための最適な手法として選定することができたこと、②内部火災 PRA 及び 内部溢水 PRA の整備については、火災進展解析や溢水伝播解析を実施し、内部火災 PRA モデル及び内部溢水 PRA モデルを作成することができたこと、③地震・津波等に係る PRA の整備については、地震 PRA モデル及び津波 PRA モデルを作成し、多数基立地 PRA につ いては国内の実情に合わせた基数の拡張ができたこと及び隣接プラントの事故影響を考 慮した評価手法を検討し隣接プラントの状態による屋外作業の可否を考慮した PRA モデ ルを作成することができたこと、強風、火山については、損傷する機器及びその影響を整 理し、PRA モデルを作成することができたこと、地震時津波 PRA については評価手順を 検討し、その手順に従った PRA モデルを作成し、地震時津波に対する CDF 算出の見通し を得ることができたこと、これらの PRA 手法高度化によりリスク評価に係る不確かさを 低減することができた。また、④監視・評価制度へのリスク情報の活用方策の検討につい ては、原子力規制検査で必要となる「原子力安全に係る重要度評価に関するガイド」及び 「原子力規制検査において使用する事業者 PRA モデルの適切性確認ガイド」の策定に必 要な知見を整理することができたことから、いずれも当初の目標を達成した。

また、これらの研究から得られた知見は、原子力規制検査で用いる事業者 PRA モデルの 適切性の確認、検査指摘事項の重要度評価等の規制活動に用いられている。

3.3成果の公表等

3.3.1 原子力規制庁の職員が著者に含まれる公表

(1) NRA 技術報告

なし

(2) 論文(査読付)

なし

- (3) 国際会議のプロシーディング(査読付)
- M. Ramos, Kanoko Nishiono, Haruaki Ueda, Yoshikane Hamaguchi, Ali Mosleh, "Phoenix Human Reliability Analysis Method: Application to a Feed and Bleed Operation," The 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis (PSA 2021), 2021 (共著)
- (4) その他
- ① 郡山、坂田、濱口、伊東、"軽水炉を対象にした内部溢水レベル1PRAモデルの整備"、日本原子力学会 2017 年秋の大会、北海道大学、2017 年 9 月
- ② 伊東、濱口、郡山、"Aprosコードを用いた内部溢水 PRA のための溢水伝播解析 (1)
 溢水伝播解析モデルの整備"、日本原子力学会 2018 年春の年会、大阪大学、2021 年
 9 月
- ③ 濱口、伊東、郡山、"Aprosコードを用いた内部溢水 PRA のための溢水伝播解析 (2)
 内部溢水 PRA ための溢水伝播解析結果"、日本原子力学会 2018 年春の年会、大阪大学、2021 年 9 月
- ④ 城島、濱口、伊東、"ISLOCA 時の原子炉の挙動と溢水伝播の連携解析及び PRA 関連 パラメータへの影響"、日本原子力学会 2021 年春の年会、オンライン開催、2021 年 3 月
- ⑤ 上田、濱口、" 人間信頼性解析手法 Phoenix を用いた試解析"、日本原子力学会 2021
 年春の年会、オンライン開催、2021年3月
- (5) 表彰·受賞

3.3.2 委託先等による公表

- (1) 国際会議のプロシーディング(査読付)
- Zheng, X. et al., "Severe Accident Scenario Uncertainty Analysis Using the Dynamic Event Tree Method", Proceedings of 14th International Conference on Probabilistic Safety

なし

Assessment and Management (PSAM-14), Los Angeles, USA., 2018, 10p.

- ② Yoichi Tanaka, et al.," Enhancement of the treatment of System Interactions in a Dynamic PRA tool", Proceedings of 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL 2020 and PSAM-15)
- (2) その他
- 玉置、鄭、田中、久保、杉山、丸山、"ダイナミック PRA 手法の開発 (1)JAEA における開発の概要"、日本原子力学会 2020 年秋の大会、オンライン開催、2020 年 9月
- ② 鄭、久保、田中、玉置、杉山、丸山、"ダイナミック PRA 手法の開発 (2)手法の構築及びツールの開発"、日本原子力学会 2020 年秋の大会、オンライン開催、2020 年 9月
- ③ 鄭、玉置、杉山、丸山、"多忠実度モデルを用いた動的 PRA 手法の開発"、日本原子 力学会 2021 年秋の大会、オンライン開催、2021 年 9 月

3.4 成果の活用等

本研究の成果は、「実用発電用原子炉の安全性向上評価の継続的な改善に係る会合」、 「検査制度の見直しに関する検討チーム」、「検査制度の見直しに関するワーキンググル ープ」及び「検査制度に関する意見交換会合」における PRA の議論に活用されるととも に、「原子力安全に係る重要度評価に関するガイド」及び「原子力規制検査において使用 する事業者 PRA モデルの適切性確認ガイド」の策定に用いられた。

また、原子力規制検査において使用する事業者 PRA モデルの適切性の確認、検査指摘事項の重要度評価及び日常検査における機器の選定等の規制活動に本研究の成果が用いられている。

3.5 今後の課題等

ダイナミック PRA 及び人間信頼性解析においては、評価の方法の基盤は整備できた。ただし、原子炉施設を対象にした全起因事象を対象にした CDF の計算や全事故シーケンスを対象に運転員の操作全ての人的過誤確率の計算ができていない。前者のダイナミック PRA においては、CDF を算出するには多くの熱水力計算が必要となり、解析者の負荷が大きい。ダイナミック PRA を規制活動に活用するためには計算数の軽減等、解析者の負荷を 軽減する必要がある。

内部火災、内部溢水、地震、津波等の外部事象については、基本となる PRA モデルを作成し、各事象のリスクを評価できる環境を整備できた。強風については、風力及び飛来物による影響を、火山については降灰による影響を考慮した PRA モデルを作成し、リスク評価環境整備における検討を行うための基盤を整備できた。ただし、不確かさが大きい項目

として、発生する頻度とその規模(ハザード)、機器が外部事象により損傷する確率(機 器フラジリティ)、損傷する機器と外部事象のインパクトの関係性(機器の損傷の相関関 係)等あり、これらの知見が不足している。PRAを用いた炉心損傷頻度や機器重要度の算 出には不確かなことが多いため、不確実さを低減させる必要がある。また、外部事象 PRA について、強風及び火山に加え、地震と津波、地震と火災、地震と溢水等、複合事象に対 する PRA については、検討に着手したところであり、知見が大きく不足している。

外部事象に対する PRA から得られるリスク情報のうち、機器の重要度についてはラン ダム故障による重要性ではなく、外部事象によるインパクトで機器が故障することの重要 性が算出されることが多い。原子力規制検査では、ランダム故障の原因(機器の補修失敗、 部品の劣化等)により動かなくなった機器や動かなくなりそうな機器は発見できるが、外 部事象によるインパクトで機器が故障することを低減させる効果は、各防護設備に限定さ れてしまう。このため、外部事象に対する PRA から得られるリスク情報と原子力規制検査 で活用すべきリスク情報には、ミスマッチが起き得る。現状、原子力規制検査において使 用すべき外部事象から得られるリスク情報に関する知見が不足している。

上記の課題等に関しては、令和4年度開始の新規安全研究プロジェクト「原子力規制検査のためのレベル 1PRA に関する研究(令和4年度~令和8年度)」において解決していく予定である。

参考文献一覧

- 1 International atomic energy agency, "Integrated regulatory review service (IRRS) mission to Japan," IAEA-NS-IRRS-2016, January 2016.
- 原子力規制委員会原子力規制庁、「総合規制評価サービス (IRRS) において明らかに なった課題への対応について」、平成28年3月https://www.nsr.go.jp/data/000143651.pdf
- 3 原子力規制委員会原子力規制庁、「原子力規制検査等実施要領」、令和3年7月、 https://www2.nsr.go.jp/data/000361161.pdf
- 4 原子力規制委員会原子力規制庁原子力規制部検査監督総括課、「原子力安全に係る重 要度評価に関するガイド」、https://www2.nsr.go.jp/data/000360584.pdf
- 5 「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解 釈」、原規技発第1306193号、平成25年6月19日原子力規制委員会決定
- 6 「実用発電用原子炉の安全性向上評価に関する運用ガイド」、 原規規発第17032914 号、平成29年3月29日原子力規制委員会決定
- 7 Tunc Aldemir, et al., "A survey of dynamic methodologies for probabilistic safety assessment of nuclear power plants", Annals of Nuclear Energy 52 (2013) 113–124
- 8 原子力規制委員会原子力規制庁原子力規制部検査監督総括課、「原子力規制検査にお いて使用する事業者 PRA モデルの適切性確認ガイド」、 https://www2.nsr.go.jp/data/000360587.pdf
- 9 国立研究開発法人日本原子力研究開発機構、"平成29年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2018年3月
- 10 国立研究開発法人日本原子力研究開発機構、"平成30年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2019年3月
- 11 国立研究開発法人日本原子力研究開発機構、"平成31年度原子力施設等防災対策等委 託費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2020年3月
- 12 国立研究開発法人日本原子力研究開発機構、"令和2年度原子力施設等防災対策等委託 費動的レベル1確率論的リスク評価手法の開発事業成果報告書"、2021年3月
- 13 Zheng, X. et al., "Severe Accident Scenario Uncertainty Analysis Using the Dynamic Event Tree Method", Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14), Los Angeles, USA., 2018, 10p.
- Yoichi Tanaka, et al.," Enhancement of the treatment of System Interactions in a Dynamic PRA tool", Proceedings of 30th European Safety and Reliability Conference and 15th
 Probabilistic Safety Assessment and Management Conference (ESREL 2020 and PSAM-15)
- 15 Electrical Power Research Institute, "An Approach to the Analysis of Operator Actions in Probabilistic Risk Assessment", EPRI TR-100259, June 1992
- Jing Xing, et al., "An Integrated Human Event Analysis System (IDHEAS) for Nuclear
 Power Plant Internal Events At-Power Application Volume 1", NUREG-2199, Vol. 1, U.S.

NRC, March 2017

- 17 Marilia A, et al., "Human Reliability Analysis of an Oil Refinery Operation Using the Phoenix HRA Methodology: A Hydrogen Generation Unit Case Study", Probabilistic Safety Assessment and Management PSAM 13, October 2016.
- 18 Electrical Power Research Institute," Analysis of Three Mile Island -Unit 2 Accident", EPRI-NSAC-80-1, March 1980.
- 19 Electrical Power Research Institute, "Operator Reliability Experiments Using Power Plant Simulators Volume 1: Executive Summary", EPRI-NP-6937 Volume 1, July 1990.
- 20 Kajimoto, M., et. al," Development of THALES-2, A Computer Code for Coupled Thermal-Hydraulics and FP Transport Analyses for Severe Accident at LWRs and Its Application to Analysis of FP Revaporization Phenomena.", Proceedings of the International Topical Meeting on Safety of Thermal Reactors, Portland, pp. 584-592 (1991)
- 21 Apros, https://www.apros.fi/ (2022年1月25日確認)
- 22 C. Rabiti, et al., "RAVEN User Manual, Revision 7", INL/EXT-15-34123, 2020
- 23 B.M. Adams, et al., "Dakota User's Manual, Version 6.13", SAND2020-12495, 2020
- 24 tslearn's documentation, https://tslearn.readthedocs.io/en/stable/(2022年1月25日確認)
- D. Mandelli, et al., "Dynamic and Classical PRA: a BWR SBO Case Comparison", INL/CON-14-33731, May 2005
- 26 A. D. Swain, et al., "Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications (THERP)", NUREG/CR-1278, August 1983
- 27 独立行政法人原子力安全基盤機構、「JNES におけるPRA 手法の標準化=出力運転時 内部事象レベル1PRA 手法=」、JNES/SAE07-040、平成19 年4 月
- 28 L. Mkrtchyan, et al., "Bayesian belief networks for human reliability analysis: A review of applications and gaps", Reliability Engineering and System Safety, 139, 1-16, February 2015
- 29 M. Ramos, Kanoko Nishiono, Haruaki Ueda, Yoshikane Hamaguchi, Ali Mosleh, "Phoenix Human Reliability Analysis Method: Application to a Feed and Bleed Operation", PSA 2021 International Topical Meeting on Probabilistic Safety Assessment and Analysis, 2021.
- 30 Chang, Y. H. J., et al., "Cognitive modelling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 1: Overview of the IDAC model", Reliability Engineering and System Safety, 92, 997-1013, May 2006
- 31 The B. John Garrick Institute for the Risk Science, "Human reliability analysis for nuclear power plants using the extended PHOENIX methodology", GIRS-2019-02, University of California, Los Angeles
- 32 Phoenix Human Reliability Assessment Tool, https://apps.risksciences.ucla.edu/phoenix/auth (2022年1月27日確認)
- 33 Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE)",

NUREG/CR-6952, U.S. Nuclear Regulatory Commission, Dec 2008

- 34 S. Suard, et al., "Overview of the OECD PRISME 3 Project," 25th International Conference on Structural Mechanics in Reactor Technology (SMiRT 25), https://hal.archives-ouvertes.fr/hal-02465442/file/HAL OK.PDF
- 35 K. McGranttan, et al., "Fire Dynamics Simulator User's Guide," NIST Special Publication 1019

https://pages.nist.gov/fds-smv/manuals.html

- 36 T. Nyazika, et al., "Pyrolysis modeling, sensitivity analysis, and optimization techniques for combustible materials: A review," Journal of Fire Sciences, 2019
- 37 柏崎刈羽原子力発電所 6号及び7号炉 確率論的リスク評価について(外部事象 地 震PRA)、東京電力、平成26年9月
- 38 日本原子力学会編「原子力発電所の内部溢水を起因とした確率論的リスク評価に関す る実施基準:2012」(2012)
- 39 日本土木学会編「水理公式集:2018年度版」丸善出版 (2018)
- 40 禰津家久, 冨永晃宏「水理学」朝倉書店 (2000)
- 41 財団法人 国土技術センター編「河道計画検討の手引き」山海堂, (2002) 107
- 42 J. A. Cunge, and M. Wegner, "Numerical integration of bane de Saint-Venant's flow equations by means of an implicit scheme of finite differences, Applications in the case of alternately free and pressurized flow in a tunnel" La Houille Blanche, No. 1, (1964) 33
- 43 佐藤隆宏「管路・開水路共存流れへの数値解析技術の適用」電力中央研究所報告: N05052
- J. G. Vasconcelos, and Steven J. Wright, "Comparison between the two-component pressure approach and current transient flow solvers", Journal of Hydraulic Research, Vol. 45, (2007) 178
- 45 友近榮治,渡辺政広,東 正史,魚谷牧夫「下水道管渠網の非定常圧力流れの基礎式と 圧力波伝播速度(スロット幅)算定式」土木学会論文集B1(水工学), Vol. 69, No. 4, (2013) 667
- 46 D. Khani, Y. H. Lim and A. Malekpour, "Hydraulic Transient Analysis of Sewer Pipe Systems Using a Non-Oscillatory Two-Component Pressure Approach", Water, No. 10, (2020) 2896
- 47 K. Kondo, et al. "Development of multi-unit seismic response correlation and level-1 seismic PRA model", SmiRT23, United. Kingdom, August 2015
- 48 K. Ebisawa, et al. "Concept and methodology for evaluating core damage frequency considering failure correlation at multi units and sites and its application ", Nuclear Engineering and Design, Vol. 288, pp.82-97, July 2015
- 49 D. S. Kim, et al., "Multi-unit Level 1 probabilistic safety assessment: Approaches and their

application to a six-unit nuclear power plant site", Nuclear Engineering and Technology, Vol.50, pp.1217-1233, December 2018

- 50 劉 他、「地震時システム信頼性コードSECOM2-DQFMのユーザーズマニュアル」 JAEA-DATA/Code 2008-04, 2008年3月
- 51 Y. Watanabe, et al., "Development of the DQFM Method to Consider the Effect of Correlation of Component Failures in Seismic PSA of Nuclear Power Plant", Reliability Engineering & System Safety, Vol. 79, Issue 3, pp.265-279, March 2003
- 52 O. Coman and S. Poghosyan, "IAEA Project: Multiunit Probabilistic Safety Assessment ", 14th International Conference on Probabilistic Safety Assessment and Management PSAM14 September 2018
- 53 「大飯3号炉及び4号炉竜巻影響評価について」、大飯発電所安全審査資料 2-4-1
 (改4)、平成25 年12 月9 日
- 54 台風の大きさと強さ、気象庁、https://www.jma.go.jp/jma/kishou/know/typhoon/1-3.html (参照 2021-12-24)
- 55 World: Maximum Surface Wind Gust (Tropical Cyclone)、アリゾナ大学、https://wmo-asuedu.translate.goog/content/world-maximum-surface-wind-gust-TC? x tr sl=en& x tr tl=ja& x tr hl=ja& x tr pto=sc (参照 2021-12-24)
- 56 藤田(F)スケールとは、気象庁、 https://www.jma.go.jp/jma/kishou/know/toppuu/tornado1-2.html(参照 2021-12-24)
- 57 日本版改良藤田(JEF)スケールとは、気象庁、 https://www.jma.go.jp/jma/kishou/know/toppuu/tornado1-2-2.html(参照 2021-12-24)
- 58 Tornado: Highest Recorded Wind Speed in Tornado (via Doppler Radar)、アリゾナ大学、 https://wmo.asu.edu/content/tornado-highest-recorded-wind-speed-tornado-doppler-radar (参照 2021-12-24)
- 59 平成25年度事業計画、第2回富士山火山防災対策協議、平成25年5月9日
- 60 令和2年度新エネルギー等の保安規制高度化事業委託調査(大規模火山噴火に対する 保安高度化推進事業)報告書、みずほ情報総研株式会社、2021年3月
- 61 降灰による影響の想定の考え方(ライフライン/建物・設備分野)(案)、大規模噴火時の広域降灰対策検討ワーキンググループ、平成31年3月22日
- 62 U.S. Nuclear Regulatory Commission, "Significance Determination Process," Inspection Manual Chapter 609, November 2020, https://www.nrc.gov/docs/ML2026/ML20267A146.pdf
- 63 Lloyd's Register Consulting, "RiskSpectrum Theory Manual. Version 3.3.0," 2013
- ASME/ANS, ASME/ANS RA-Sb-2013, "Addenda to ASME/ANS RA-S-2008, Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications", September 2013

- 65 日本原子力学会、「原子力発電所の出力運転状態を対象とした確率論的リスク評価に 関する実施基準(レベル1PRA編): 2013」、AESJ-SC-P008: 2013、 2014年8月
- 66 U.S. Nuclear Regulatory Commission, "Inspection Manual Chapter 0609 Appendix F, Fire Protection Significance Determination Process," May 2018.
- D. Stroup, et al., "Fire Dynamics Tools (FDTs) Quantitative Fire Hazard Analysis Methods for the U.S. Nuclear Regulatory Commission Fire Protection Inspection Program," NUREG-1805, U.S. NRC, July 2013.
- 68 原子力規制委員会原子力規制庁原子力規制部検査監督総括課、「原子力安全に係る重 要度評価に関するガイド 附属書5 火災防護に関する重要度評価ガイド」、 https://www2.nsr.go.jp/data/000360576.pdf

執筆者一覧

原子力規制庁 長官官房 技術基盤グループ シビアアクシデント研究部門

濱口 義兼 主任技術研究調查官

 出井
 千善技術研究調査官

 久保
 光太郎

 上田
 治明

 技術研究調査官

 城島
 洋紀

 技術研究調査官

 川口
 秀雄

 技術研究調査官

 四小野
 華乃子

 技術研究調査官

 伊東
 智道

 下崎
 敬明

 技術研究調査官