令和3年度の放射線審議会の開催状況

令和4年4月6日原子力規制庁

1. 趣旨

本議題は、令和 3 年度の放射線審議会の開催状況について報告するものである¹。

2. 報告内容

放射線審議会総会は、令和3年度に3回開催された(別紙1参照)。その中で、 諮問案件に係る審議、その他調査・審議が行われた。その概要は以下のとおり。 なお、意見具申は行われなかった。

(1) 諮問及び答申について

- ① IEC (国際電気標準会議) 規格改正に伴う国内関連法令の改正について IEC の口内法撮影用 X 線撮影装置に係る規格の改正に伴い、以下の国内 法令の改正について、厚生労働省及び農林水産省から諮問がなされ、第 155 回総会(令和 4 年 2 月)における審議の結果、意見を付帯した上で妥当で ある旨が答申された² (諮問及び答申の詳細は、別添 1 及び 2 参照)。
 - 医療用エックス線装置基準(厚生労働省)
 - 医療法施行規則(厚生労働省)
 - 獣医療法施行規則(農林水産省)

(2)調査審議事項3について

① 「放射線防護の基本的考え方の整理」の更新について

令和2年度に開催された第149回総会及び第152回総会における審議において、①クリアランスの考え方、②令和2年12月に出版されたICRP勧

¹ 令和元年度第63回原子力規制委員会(令和2年2月)において、放射線審議会に係る諮問・答申及び 意見具申をとりまとめ、審議状況と合わせて、年に一回程度報告するとする方針を原子力規制庁から提 案し、了承された。

² 答申においては、「対象となる手持ち撮影を意図する口内法撮影用エックス線装置の装置表面の放射線量の評価において、「0.05 ミリグレイ毎時以下」という表現は、IEC60601-2-65.2021 の要求に従えば、1時間の累積線量が 0.05 ミリグレイを超えないことという趣旨であるため、その旨の理解が得られるよう、関係機関に周知すること。」を求める意見が付帯された。

³ 平成 29 年 4 月の放射線障害防止の技術的基準に関する法律の改正により、放射線審議会の所掌事務に、主体的な調査審議・意見具申を行う機能が追加され、国際的な知見の取り入れについて自ら調査し、関係行政機関に提言を行うことで最新知見の取り入れを促進できるようになった。

告「大規模原子力事故における人と環境の放射線防護 (Pub. 146)」の内容及び③ICRP において 1990 年勧告以降に考え方が示されるようになった、個人関連の評価と線源関連の評価の考え方について、「放射線防護の基本的考え方の整理-放射線審議会における対応-」(平成 30 年 1 月。以下「基本的考え方」という。)の中に反映すべきである旨、委員から意見があった。

これらを踏まえ、第 153 回総会(令和 3 年 6 月)において、「基本的考え 方」の更新ポイントについて事務局から提案するとともに、委員からの御 意見を踏まえ、第 154 回総会(令和 3 年 10 月)及び第 155 回総会(令和 4 年 2 月)において、更新文案について事務局から報告し、同文案が了承さ れた。(別添 3 参照)。令和 4 年 3 月 16 日に開催した関係省庁連絡会を通じ て、更新された「基本的考え方」を事務局から関係省庁に周知した。

② 自然起源放射性物質に関する現況について

前年度に引き続き、自然起源放射性物質(以下「NORM」という。)への対応については、第153回総会(令和3年6月)において、国内におけるNORM からの被ばく実態及びNORMに関する防護上の論点について専門家(東京大学の飯本教授及び量子科学技術研究開発機構の岩岡主幹研究員)から報告があった。

第155回総会(令和4年2月)では、平成15年の放射線審議会基本部会報告書「自然放射性物質の規制免除について」において「今後の検討」とされていたチタン残渣、石炭灰、屋内ラドン等に係る国内のフォローアップ状況について事務局から報告した。今後、NORMに係るICRP、IAEAの刊行物等や放射線安全規制研究戦略的推進事業費「自然起源放射性物質(NORM)による被ばくの包括的調査」事業の結果等を踏まえ、NORMに関する放射線審議会の対応について、引き続き検討を行うこととされた。

③ 放射線障害防止の技術基準に関する国際動向について

第 153 回総会(令和 3 年 6 月)において、(ア)については、事務局から報告し、(イ)については、研究受託者の神田委員から報告があった。

- (ア) UNSCEAR (原子放射線の影響に関する国連科学委員会)、ICRP (国際放射線防護委員会)、ICRU (国際放射線単位測定委員会)及び IAEA (国際原子力機関)等の刊行物及び国際会議の内容。
- (イ)放射線安全規制研究戦略的推進事業(放射線防護研究分野における 課題解決型ネットワークとアンブレラ型統合プラットフォームの 形成)において、令和3年1月に開催された国際動向に関する情報 共有のための報告会の内容。

そのなかで、標準動植物の被ばく線量評価に必要な情報が ICRP から勧告された旨、報告された。放射線審議会基本部会が平成 23 年 1 月に出した「国際放射線防護委員会 (ICRP) 2007 年勧告 (Pub. 103) の国内制度等への取り入れについて-第二次中間報告-」において、環境の放射線防護については、ICRP の今後の検討を踏まえた上で、放射線審議会にて検討を開始することと整理されている。ICRP では、引き続き放射線防護体系を適用する際の環境の考慮について検討がなされていることから、その動向を注視し、放射線審議会における環境の放射線防護についての取扱いを検討することとなった。

④ 眼の水晶体の等価線量限度の見直しに係るフォローアップについて

令和元年度の眼の水晶体の等価線量限度の見直しのための国内関連法令の改正に係る諮問の審議において、医療法施行規則、電離放射線障害防止規則等に係る諮問に対して、答申の際に以下の二点について意見を付帯している。

- (ア) 医療機関の放射線業務従事者の線量管理を徹底させるため、必要な 措置を講じること。
- (イ)眼の水晶体の等価線量限度に係る経過措置期間中(令和8年3月31日まで)の被ばくの状況等を把握し、当審議会に報告すること。

第 154 回総会(令和 3 年 10 月)において、厚生労働省が実施した令和 2 年度の電離健診対象事業場に対する自主点検を中心とした当該付帯事項の 実施状況について、厚生労働省の担当者から報告された。

今後も引き続き、当該付帯事項の実施状況について、厚生労働省から報告を受けることとなった。

令和3年度の放射線審議会の開催実績

●放射線審議会第 153 回総会 (令和 3 年 6 月 23 日)

- (1) 会長の選任及び会長代理の指名
- (2) 自然起源放射性物質に関する現況について
- (3) 放射線障害防止の技術的基準に関する国際動向について
- (4) 放射線防護の基本的考え方について
- (5) その他

●放射線審議会第 154 回総会(令和 3 年 10 月 29 日)

- (1) 眼の水晶体の等価線量限度の見直しに係るフォローアップについて
- (2) 放射線防護の基本的考え方について
- (3) その他

●放射線審議会第 155 回総会(令和 4 年 2 月 18 日)

- (1) IEC (国際電気標準会議) 規格改正に伴う国内関連法令の改正について (諮問)
- (2) 放射線防護の基本的考え方について
- (3) 自然起源放射性物質に関する現況について
- (4) その他

別添資料一式

別 添	1	医療用エックス線装置基準及び医療法施行規則の改正について・・・・	2
別 添	2	獣医療法施行規則の改正について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
別 添	3	放射線防護の基本的考え方の整理-放射線審議会における対応-(見え	
		消し版)	15

原規放発第 2202223 号 令和 4 年 2 月 22 日

厚生労働大臣 後藤 茂之 殿

放射線審議会会長 甲斐 倫明 (公印省略)

医療用エックス線装置基準及び医療法施行規則の改正について (答申)


令和4年2月9日付け厚生労働省発医政0209第2号及び厚生労働省発薬生0209第80号をもって諮問のあった事項については、妥当である。

なお、当審議会は医療用エックス線装置基準及び医療法施行規則の改正後の 対応において留意すべき事項を以下のとおり申し添える。

1.対象となる手持ち撮影を意図する口内法撮影用エックス線装置の装置表面の放射線量の評価において、「0.05 ミリグレイ毎時以下」という表現は、IEC60601-2-65.2021 の要求に従えば、1時間の累積線量が 0.05 ミリグレイを超えないことという趣旨であるため、その旨の理解が得られるよう、関係機関に周知すること。

厚生労働省発医政 0209 第 2 号 厚生労働省発薬生 0209 第 80 号 令 和 4 年 2 月 9 日

放射線審議会 会長 甲斐 倫明 殿

医療用エックス線装置基準及び医療法施行規則の改正について(諮問)

医療用エックス線装置基準(平成 13 年厚生労働省告示第 75 号)及び医療法施行規則(昭和 23 年厚生省令第 50 号)を別紙1及び2のとおり改正することについて、放射線障害防止の技術的基準に関する法律(昭和 33 年法律第 162 号)第6条の規定に基づき、貴会の意見を求める。

 \bigcirc 厚 生 労働省告示 第

五.

号)

第 四

十 二

条

第二

項

 \mathcal{O} 規

定に

基づ

き、

医

療

用

工

ツ

ク

ス 線

装

置

基

準

平

. 成

十三

年厚

生 労

働

省

告

示 第 兀

+

号

医 薬 品 医 療 機 器 等 \mathcal{O} 밆 質、 有 効 性 及 $\mathcal{C}_{\mathcal{C}}$ 安 全 性 \mathcal{O} 確 保 等 に 関 する 法 律 昭 和三十 五. 年 法 律 第 百

七十五号) \mathcal{O} 部 を 次 \mathcal{O} 表 \mathcal{O} ように改正 Ļ 令 和 七 年 九 月 日 カュ 5 適 用する。

年 月 日

令 和

厚生労働大臣 後藤 茂之

(傍線部分は改正部分)

改 正 後

2 医療用エックス線装置は、次に掲げる障害防止の方法を講じたものでなければならない。

0

1

エックス線管の容器及び照射筒は、利用線錐以外のエックス線量が次に掲げる自由空気中の空気カーマ率(以下「空気カーマ率」という。)になるようにしゃへいすること。

•口 (器)

- へ 定格管電圧が125キロボルト以下の<u>手持ち撮影を意図しない</u>口内法撮影用エックス線装置にあっては、エックス線管焦点から1メートルの距離において、0.25ミリグレイ毎時以下

、0.05ミリグレイ毎時以下

立 イから三までに掲げるエックス線装置以外のエックス線装置にあっては、エックス線管焦点から1メートルの距離において、1.0ミリグレイ毎時以下

(器)

(2) (器)

- 4 撮影用エックス線装置(胸部集検用間接撮影エックス線装置を除く。)は、第2項に規定するもののほか、次に掲げる障害防止の方法(CTエックス線装置にあっては(1)に掲げるものを、骨塩定量分析エックス線装置にあっては(2)に掲げるものを除く。)を講じたものでなければならない。
- (1)~(3) (路)
- (4) 携帯型エックス線装置のうち、手持ち撮影を意図する口内法 撮影用エックス線装置にあっては、公称管電圧70キロボルトで 0.25ミリメートル鉛当量以上の取り外しのできない後方散乱エ ックス線シールド構造を備えること。

7 ス線帯間は、水に掛げる暗害防止

- 医療用エックス線装置は、次に掲げる障害防止の方法を講じたものでなければならない。
-) エックス線管の容器及び照射筒は、利用線鑵以外のエックス線量が次に掲げる自由空気中の空気カーマ率(以下「空気カーマ率」という。)になるようにしゃへいすること。

イ・ロ (器)

一定格管電圧が125キロボルト以下の口内法撮影用エックス線装置にあっては、エックス線管焦点から1メートルの距離において、0.5ミリグレイ毎時以下

(新設)

三 イから<u>へ</u>までに掲げるエックス線装置以外のエックス線装置にあっては、エックス線管焦点から1メートルの距離において、1.0ミリグレイ毎時以下

(器)

(2) (路)

- 4 撮影用エックス線装置(胸部集検用間接撮影エックス線装置を除く。)は、第2項に規定するもののほか、次に掲げる障害防止の方法(CTエックス線装置にあっては(1)に掲げるものを、骨塩定量分析エックス線装置にあっては(2)に掲げるものを除く。)を講じたものでなければならない。
- (1) \sim (3) (器

(新設)

○厚生労働省令第

号

医 療法 昭昭 和二十三年 法律第二百五号) 第二十三条第一 項の規定に基づき、 医療法施行規則 の —

部

令和四年 月 日を改正する省令を次のように定める

厚生労働大臣 後藤 茂之

医 療法施行規則 (昭和二十三年厚生省令第五十号)の一 部を次の表のように改正する。

矢

療法

施行規則の一

部を改正する省令

(傍
1/3
線
部
分
は
改
正
部
分
\circ

三 移動型及び携帯型エックス線装置及び手術中に使用するエッ 一・二 (略) く。) を講じたものでなければならない。	三 移動型及び携帯型エックス線装置並びに手術中に使用するエー・ニ (略) く。)を講じたものでなければならない。
塩定量分析エックス線装置にあつては第二方法(CTエックス線装置にあつては第一	塩定量分析エックス線装置にあつては第二号に掲げるもの万法(CTエックス線装置にあつては第一号に掲げるもの
は、第一項に規定するもののほか、次に掲げる障害	く。)は、第一項に規定するもののほか、次に掲げる障害
影用エックス線装置(胸部集検用間接撮影エックス線装置	影用エックス線装置(胸部集検用間接撮影エックス線装置
2 (略)	2 (略)
二(略)	二(略)
示 (略)	(略)
いて、一・〇ミリグレ	レイ毎時
にあつては、エックス線管焦点から一メートルの	めつては、エックス線管焦点から一メートルの距離
でに掲げるエックス線装置以外のエックス線	げるエックス線装置以外のエックス線
	○五ミリグレイ毎時以下
	口内法撮影用エックス線装置にあつては、装置表面に
(新設)	二 定格管電圧が百二十五キロボルト以下の手持ち撮影を意図
	毎時以下
距離において、○・二五ミリグレイ毎時以	焦点から一メートルの距離において、○・二五ミリグレ
クス線装置にあつては、エック	口内法撮影用エックス線装置にあつて
ハ 定格管電圧が百二十五キロボルト以下の口内法撮影用エッ	定格管電圧
$\overline{}$	イ・ロ (略)
) になるようにしや	しゃ
	線量が次に掲げる自由空気中の空気カーマ率(以下「空気カー
	一 エックス線管の容器及び照射筒は、利用線錐以外のエックス
ならない。	ものでなければならない。
へ線装	第三十条 エックス線装置は、次に掲げる障害防止の方法を講じた
(エックス線装置の防護)	(エックス線装置の防護)
改正前	改 正 後
· · · · · · · · · · · · · · · · · · ·	

4				四		
5 (略)	散乱エックス線シールド構造を備えること。	で〇・二五ミリメートル鉛当量以上の取り外しのできない後方	撮影用エックス線装置にあつては、公称管電圧七十キロボルト	携帯型エックス線装置のうち、手持ち撮影を意図する口内法	ートル以上離れた位置において操作できる構造とすること。	ックス線装置にあつては、エックス線管焦点及び患者から二メ
4 • 5 (略)				(新設)	トル以上離れた位置において操作できる構造とすること。	クス線装置にあつては、エックス線管焦点及び患者から二メー

附則

(施行期日)

第一条 この省令は、令和七年四月一日から施行する。

(経過措置)

第二条 この省令の 施行 \mathcal{O} 際 現に 病院又は診 療 所に備えられてい る 工 ックス線 装置に対するこの省令

る。

による改正

後

 \mathcal{O}

医

療法

施

行

規則第三十

条

 \mathcal{O}

規定

 \mathcal{O}

適用

12

9

, v

ては、

な

お

従

前

 \mathcal{O}

例

によることができ

2 前 項 \mathcal{O} 規 定 は、 介護 矢 療 院 \mathcal{O} 人 員、 施設 及び 設備 並 びに 運営に 関 す Ś 基 準 伞 成三十年 厚 生 一労働

省令第一 五. 号) 第六条第 項 第四 号 及 び 第 四 十五 条 第四 項 第 四 号に お 1 て 医 療 法 施 行 規 則 第 三十 条 \mathcal{O}

規定を準用する場合について準用する。

原規放発第 2202224 号 令和 4 年 2 月 22 日

農林水産大臣 金子 原二郎 殿

放射線審議会会長 甲斐 倫明 (公印省略)

獣医療法施行規則の改正について (答申)

令和 4 年 1 月 24 日付け 3 消安第 5539 号をもって諮問のあった事項については、妥当である。

なお、当審議会は獣医療法施行規則の改正後の対応において留意すべき事項 を以下のとおり申し添える。

1.対象となる手持ち撮影を意図する口内法撮影用エックス線装置の装置表面の放射線量の評価において、「0.05 ミリグレイ毎時以下」という表現は、IEC60601-2-65.2021 の要求に従えば、1時間の累積線量が 0.05 ミリグレイを超えないことという趣旨であるため、その旨の理解が得られるよう、関係機関に周知すること。

3消安第5539号 令和4年1月24日

放射線審議会 会長 甲斐 倫明 殿

農林水産大臣 金子 原二郎

獣医療法施行規則の改正について (諮問)

獣医療法施行規則(平成4年農林水産省令第44号)を別添のとおり改正することについて、放射線障害防止の技術的基準に関する法律(昭和33年法律第162号)第6条の規定に基づき、貴会の意見を求める。

○農林水産省令第

号

獣医療法 (平成四年法律第四十六号) 第五条第二項の規定に基づき、 獣医療法施行規則の一 部を改正する

省令を次のように定める。

令和 年 月 日

農林水産大臣 金子原二郎

獣医療法施行規則の一部を改正する省令

獣医療法施行規則 (平成四年農林水産省令第四十四号) の一部を次のように改正する。

次の表により、 改正 前欄に掲げる規定 の傍線を付した部分 (以下「傍線部分」という。) でこれに対応す

定の傍線部分でこれに対応する改正前欄に掲げる規定の傍線部分がないものは、 る改正後欄に掲げる規定の傍線部 分があるものは、 これを当該傍線部分のように改め、 改正後欄 に掲げる規

これを加える。

4 (略)	,
	ックス線シールド構造を備えること。 ・二五ミリメートル鉛当量以上の取り外しのできない後方散乱エ 影用エックス線装置にあっては、公称管電圧七十キロボルトで○
設 :	三の携帯型エックス線装置のうち、手持ち撮影を意図する口内法撮
ては、第一号に掲げるものを除く。)を講じなければならない。規定するもののほか、次に掲げる措置(CTエックス線装置にあっ	ては、第一号に掲げるものを除く。)を講じなければならない。# 規定するもののほか、次に掲げる措置(CTエックス線装置にあっ
者は、撮影用エックス線装置	は、撮影用エックス線装置について、第一項
2 (略)	2 (略) #
(略)	二(略)
	────────────────────────────────────
、・・)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・) こうごう 発育しては、エックス線管
まで	掲げるエックス線装置以外のエッ
	○・○五ミリグレイ毎時以下 ②「内治掮景用エックス紛装置にあっては 装置表面において
(新設)	定格管電圧が百二十五キロボルト以下の手持ち撮影を意
	下
グレイ毎時以下	から一メートルの距離において、○・二五ミリ
ス線装置にあっては、エックス線管焦点から一メートルの距離	ない口内法撮影用エックス線装置にあっては、エックス線
格管電圧が百二十五キロボルト以下の口内	格
Ĺ	イ・コー(格)になるようにしゃくいすること。
『ハー。~ になっこ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	、 。) に、 かにっこしゃ へい次に掲げる自由空気中の空気カ
クス線管の容器及び照射筒は、利用線すい以外	線管の容器及び照射筒は、利用線すい以外
措置を講じなければならない。	措置を講じなければならない。# 第八条 診療施設の管理者は、エックス紡装置について、次に掲ける
ックス線装置の防護)	ックス線装置の防護)
改正前	改正後

附 則

(施行期日)

1 この省令は、 令和七年四月一日から施行する。

(経過措置)

2 この省令の施行の際現に診療施設に備えられているエックス線装置に対するこの省令による改正後の獣

医療法施行規則第八条の規定の適用については、なお従前の例によることができる。

<14/34>

放射線防護の基本的考え方の整理 -放射線審議会における対応-

平成30年1月 <u>令和4年2月改訂</u> 放射線審議会

1. はじめに

放射線防護に関する体系的な考え方は、放射線の有害な影響から人の健康を防護することを主たる目的とし、放射線の利用の望ましい活動を過度に制限することなく人と環境の適切なレベルでの防護に貢献するという認識の下で国際的に構築されてきた。我が国は、本分野の基礎となる科学的知見を創出し、体系の構築・見直しのための議論に参加するとともに、国際放射線防護委員会(ICRP)や国際原子力機関(IAEA)等で国際的に合意された放射線防護の考え方を尊重し、放射線障害防止の技術的基準として規制に取り入れてきた。取り入れに当たっては、関係行政機関が法令等による制度化のための作業を行い、放射線審議会が技術的観点から妥当性・整合性を確認する、いわゆる「斉一を図る」形を取っている。これは、「放射線障害防止の技術的基準に関する法律」(以下、「法」という)によって、放射線審議会が技術的基準の斉一を図る役割を与えられていることによる。

昭和33年の「法」制定当時、国内において、放射線障害の防止に関する技術的基準は十分に整備されていなかったため、高度な専門性を持った放射線審議会がICRP 勧告等を自ら調査審議し、関係行政機関に提言を行うことにより、国内法令の整備が進められた。その後、国内法令の整備が進み、関係行政機関に一定の専門的知識が定着したことを踏まえて、平成11年に行われた審議会等の整理合理化を機に、平成13年の「法」改正時に、放射線審議会の自主的な調査審議・提言機能を不要として削除し、関係行政機関が放射線障害の防止に関する技術的基準を定めようとする際に、諮問を受け答申を行う機能のみを放射線審議会の役割とした。

しかしながら、ICRP2007年勧告等の国際機関からの放射線防護に関する最新知見について、国内制度への取り入れが滞る状況となった。そのような中、平成23年3月11日に発生した東京電力福島第一原子力発電所事故後、放射線防護が社会から切実に必要とされ、様々な基準等が制定されてきた。より適切な放射線防護対策を講じる上では、国際的知見を遅滞なく国内制度に採り入れることが改めて重要であることが認識された。

こうした状況下において、平成 28 年の IAEA による総合規制評価サービス (IRRS) において、最新の国際知見の取り入れを含む放射線防護に関する取組の強 化の必要性を指摘されたことから、解決策の一環として「法」改正が行われ(平成 29 年 4 月 14 日改正・施行)、放射線審議会は諮問に対する答申のみならず自ら調査 し提言する機能を有することになった。

今後、放射線審議会は積極的に国内外の動向を調査し提言することによって、放射線障害防止の技術的基準の策定に主導的な役割を果たすとともに、関係行政機関と能動的に連携することが求められる。

ついては、放射線障害防止に係る技術的基準に関し、斉一化を図る観点から、その前提となる関係行政機関との共通理解を形成するために、放射線障害防止に係る技術的基準の立案の際に当該行政機関が留意することを求める主な事項について、放射線審議会の基本的な考えを以下にまとめる。

2. 基本的事項

- ① 国民生活と放射線
- ▶ 自然界に放射線・放射性物質は広く存在している。我が国では、自然放射線 *1 からの被ばくとして、一人当たり実効線量 *2 で年間平均 2.1 mSv *3 を受けると評価されている。大地放射線の地域差や食習慣の違い等によって、一人ひとりが受ける線量には幅がある。
- ➤ また、国民生活や社会的活動に貢献する放射線利用として医療放射線を代表とする人工放射線 *4がある。医療では様々な形で放射線・放射性物質が利用されているが、その中には放射線療法のように、かなり高い線量を照射する行為もある。これは、放射線によって多少の有害反応が生じたとしても、疾患の治癒あるいは症状の緩和というメリット *5の方が大きいと考えられているからである。
- ▶ 放射線防護に係る規制においては、放射線利用の目的と被ばくの実態を念頭に、合理的かつ実効性のある施策を展開しなければならない。つまり、放射線被ばくを完全にゼロにすることはできないし、放射線の影響がわずかの可能性であっても生じてはならないというという視点で放射線利用に制限を加えることは合理的でない。放射線の利用と便益との関係を考慮に入れた放射線防護に係る規制を行うことが現実的である。また、被ばくを生じる状況や対象に応じて、対処の仕方が異なることを認識しておく必要がある。

② 放射線の人体への影響

▶ 放射線被ばくによる健康影響は、放射線防護の観点から確定的影響(組織反応) *6と確率的影響 *7 に大別される。確定的影響には、しきい線量 *8と呼ばれる 閾値があり、特異的に感受性が高い個人を除いて、それを超える被ばくがない限 り発症することはない。他方、確率的影響は、低線量域の影響が明確でないため、線量がゼロでない限りリスク *9 (がんや遺伝性影響の発生確率の程度) はゼロではないと放射線防護体系では見なしている (LNT モデルについては後述)。具体的には、がんと遺伝性影響 *10 が確率的影響と考えられており、それ以外はす

べて確定的影響に分類される。なお、確率的影響は、実験科学上の根拠をもとに した生物反応ではなく、放射線防護体系を構築する上で創出された考え方であ ることに注意すべきである。

- ➤ 確定的影響のうち、最も低い線量で生じる可能性があるのは、男性の精子数低下に伴う一時的不妊と、妊娠初期の被ばくによる胚死亡・奇形発生であり、いずれも、しきい線量は100 mGy *11 程度と推定されている。全身症状につながる最初に現れる影響としては白血球減少等の造血系の機能低下であり、全身被ばくによるしきい線量は短時間の被ばくで500 mGy 程度である。
- ▶ 確率的影響の一つであるがんについては、広島・長崎の原爆被爆生存者をはじめとして、様々な集団に対する疫学調査が行われている。多くの調査において、線量とともに罹患率・死亡率が増加することが確認されているが、およそ 100 mSv以下の、いわゆる低線量における影響の有無について*12 は、現在の科学的知見からは明確になっていない。この線量域では放射線によるがんの増加があったとしても、その程度は被ばくしない者と比べて疫学研究でも有意な増加として認められないほどであり、生活習慣等の放射線以外の要因によるがんの変動に紛れてしまうために、低線量の影響の有無が明確でないからである。
- ▶ 遺伝性影響についても、原爆被爆者の子どもや小児期に放射線治療を受けた患者の子ども等に対して疫学調査が行われているが、これまでに遺伝性の疾患が増えたというヒトでの証拠は得られていない。
- ▶ 放射線防護では、確定的影響の発生を防止し、確率的影響のリスクを合理的に減少させ容認できるレベルに抑えることを目的とする。
- ③ 放射線防護の前提としての LNT モデル
- ➤ がん及び遺伝性影響については、しきい線量の存在が判明していない。そこで、 放射線防護を考える上で、低線量域の線量反応関係として、LNT(Linear Non-Threshold)モデル*¹³を仮定として採用している。これは、線量に比例して過剰 リスクが増加することを仮定した統計モデルである。
- ➤ 低線量域における LNT モデルは科学的に証明された真実として受け入れられているものではなく、線量とリスクの関係を直線近似で表すものであるが、放射線防護の施策はこのモデルに基づいて展開される。ICRP は、低線量域での放射線防護に係る「慎重な基礎(prudent basis)」として LNT モデルを採用している。このアプローチは、ICRP のみならず IAEA、世界保健機関(WHO)等の国際機関においても基本となっている。

- ➤ LNT モデルに従えば、線量当たりのリスクが常に一定であるため、個々の被ば くを独立に管理することができ、しかも線量を相対的なリスクの指標とするこ とができる。
- ➤ LNT モデルは精緻な予測モデルではなく、とくに低線量における不確かさが大きいため、わずかな線量を多数の人々が受けた状況において、LNT モデルを用いて被ばくにより増加が見込まれるがんや遺伝的疾患の症例数を計算することは避けるべきである。
- ➤ LNT モデルを採用する限り、いわゆる安全と危険の境界を定めることはできない。健康影響の有無ではなく、影響発生の可能性を定量的に評価し管理するリスクベースの考え方が必要になる。
- ④ リスクベースの考え方と防護の最適化
- ➤ LNT モデルを前提とするならば、理論上はどんなに少ない被ばくでもリスクは ゼロにならないが、一方で、あらゆる被ばくをゼロにするという施策も現実的で はない。そこで放射線防護においては、「防護の最適化」によって、全体のバラ ンスを考えながら、被ばくをできるだけ少なくするというアプローチをとる。
- ➤ 防護の最適化の原則は、「被ばくの生じる可能性、被ばくする人の数及び彼らの個人線量の大きさは、すべての経済的及び社会的要因を考慮に入れながら、合理的に達成できる限り低く保つべきである」と ICRP 2007 年勧告において定義されており、原文"As Low As Reasonably Achievable"の頭文字をとって、ALARAの原則とも呼ばれる。
- ▶ 被ばくする可能性、被ばくする人の数、個人線量の大きさを低減しようとすれば、作業の効率性が損なわれたり、放射線以外の労働衛生・公衆衛生上の問題が発生したりする可能性がある。ALARAとは、それらのデメリット *5 と放射線リスク低減によるメリットとのバランスをとるプロセスであり、単に厳しい基準を設定することで最小線量を追求するものではないことに注意する必要がある。
- ➤ 管理の対象とするかどうかの判断の事前あるいは事後のいずれかに応じて、除外、免除及びクリアランスの3つが定義されている。ただし、免除及びクリアランスについては、計画被ばく状況(線源を意図的に導入し運用する状況。3.①で後述。)の規制について適用される。
- ▶ 自然界に存在し、食物摂取を通じて常に体内で一定量が維持されるカリウム 40 **14のように、管理することが現実的でないため規制になじまないものもあり、 このようなものは量の多寡によらず、規制から除外される概念を「除外」と呼ぶ。

- ➤ ごくわずかな被ばくを避けるために多大な社会的リソースを投入することは、作業の効率性が損なわれるなどの問題が発生するため、ALARA の原則に馴染まない。そのため、一定レベル以下の放射線・放射能(ベクレル)しか有さず、実質的に被ばくに寄与しない放射線源(以下、線源と呼ぶ)は、事前において規制の対象としないのが合理的である。これを規制からの免除※15と呼ぶ。
- ▶ すでに規制対象となっている線源について、実質的に被ばくに寄与しないことが確認された場合、当該線源を規制の管理から外すプロセスをクリアランス^{※15}と呼ぶ。クリアランスの考え方は、個人のリスクが十分に小さいが規制することの社会的負担が大きい場合、正当な理由(3.②~④で後述)のない規制措置の適用を避けることによって、規制管理を最適化するために用いられる。一方、自然界に存在し、食物摂取を通じて常に体内で一定量が維持されるカリウム 40 ** サールように、管理することが現実的でないため規制になじまないものもあり、このようなものは量の多寡によらず、規制から除外される。

⑤ 倫理的基盤

▶ 放射線防護は、科学的知見だけでなく、倫理的考察、現実の場での経験に基づいている。倫理的考察は、放射線防護の意思決定に携わる者が責務を果たす上での方向性を示し得る。国際的に合意された現在の放射線防護体系の考え方は、4つの中核となる倫理的価値、すなわち善行/無危害*16、慎重さ*17、正義*18及び尊厳*19に基づいており、これらは、放射線防護体系の目的と、正当化、最適化、個人線量の制限の3つの基本原則を支えている。また、放射線防護の現実の場での実践を補助するために、説明責任、透明性、包括性(ステークホルダー*20の参加)という3つの手続き上の価値が強調されている。

3. 立案のプロセスと考慮すべき事柄

上記の2. を踏まえ、関係行政機関の政策立案者は、放射線障害防止に係る技術 的基準を立案する際には、以下の事項に留意する。

① 対象の明確化

▶ 放射線障害防止に係る技術的基準を立案する場合、最初に、着目する線源を明確にする必要がある。ここで線源とは、必ずしも放射性物質そのものだけではなく、放射線を発生する施設、装置や特定の場所(汚染地域等)等、被ばくをもたらす原因となるものを指す。そして、政策立案者はその線源が免除ないし除外除外、免除ないしクリアランスの対象であるか否かを確認した上で、どのような施策が可能であるかを検討する。

- ▶ 施策検討の第一歩は、当該線源がどこに存在し(どのような場所で利用され)、 どのような経路で、誰にどの程度の被ばくをもたらすかを洗い出すことである。 さらに、政策立案者は線源、被ばく経路、人 **+31のいずれに対して施策が必要 なのかをそれぞれ考察する。
- ▶ 放射線防護では、被ばくを生じさせる状況や対象に応じて、対処の仕方が変わってくる。そこで政策立案者は次のステップで、着目する線源及びそれに伴う被ばくに関して、被ばく状況 **+622*と被ばくのカテゴリーを整理する。なお、ICRPでは、大規模原子力事故の管理の時間進展については、初期と中期を緊急時被ばく状況、長期を現存被ばく状況とみなし区別する考え方が提示されている**23。

表 1 被ばく状況

分類	説明
計画被ばく状況	線源を意図的に導入し運用する状況
緊急時被ばく状況	事故時等、緊急の対策を必要とする状況
現存被ばく状況	管理について決定をする時点で既に被ばくが存在している状況

表 2 被ばくのカテゴリー

分類	説明	
職業被ばく 放射線作業者が仕事の結果として受ける被ばく		
	患者および介助者が診断・治療のために受ける被ばく	
医療被ばく	医学研究に被験者として参加する研究ボランティア **+24_が受ける	
	被ばく	
公衆被ばく 職業被ばく、医療被ばく以外のすべての被ばく		

- ▶ こうした整理の際に留意すべき事項の一つとして、ある一つの被ばく状況に対して、複数のカテゴリーの被ばくが含まれる場合がある。例えば、新しいタイプの放射性医薬品を導入する場合、その製造・調製・投与・検査に携わる者の被ばくは職業被ばくであり、投与を受ける患者の被ばくは医療被ばくである。さらに持合室等で他の患者が受ける被ばくは、公衆被ばくである。
- ▶ その他にも、一つの線源が複数の被ばく状況及び被ばくのカテゴリーに関係することもある。例えば、汚染地域に居住する人々の被ばくは現存被ばく状況における公衆被ばくである。他方、その地域の除染を事業として実施する場合、除染作業者の被ばくは現存被ばく状況にあるが、規制上、計画被ばく状況の職業被ば

くとして扱うことがある。実際の被ばく状況と規制上の対応とを明確に区別して、対応の合理性を明示することが必要である。

② 放射線防護の原則

- ▶ 政策立案者は、該当する被ばくの状況及び被ばくのカテゴリーが明確になったら、放射線防護の原則に照らし合わせて、それぞれの被ばくがどのように管理されるべきかを考える。放射線防護の原則は、次にのべるように正当化、防護の最適化、線量限度 *+*25の適用、の三つから成り、政策立案者はそれぞれの原則に沿って検討する。
- ▶ 正当化の原則は、新たな線源を導入したり、除染により線源を除去したりする場合に、それらの活動に伴うメリット(経済的価値の創出、救命率の向上等)がデメリット(被ばくのリスク、社会的費用等)を上回ることを求める。
- ▶ 防護の最適化の原則は、上記のメリットとデメリットの差を合理的な範囲内で最大化することを求める。その際、線量拘束値 **+926_あるいは参考レベル **2027 (⑥で後述)を利用することがある。
- ▶ 線量限度の適用の原則 **2+28は、計画被ばく状況における職業被ばく及び公衆被ばくに対し、線量限度を超えないことを求める。

③ 放射線防護原則の適用—正当化

- ▶ 正当化の判断には、一般的なものと個別的なものがある。例えば、新しい放射線 診断技術の導入を考える場合、一般論としてそれが有益であるかどうかの判断 は、専門家団体の意見を踏まえて行政機関が行うのが通例であるが、個々の患者 に対する適用の妥当性については、医師が個別に判断することになる。
- ▶ 政策立案者は、着目する線源や活動について、正当化の原則を満たしていることを確認する。正当化は、放射線障害の防止に係る技術的基準の斉一化のみで判断できるものではない。政策立案者は、まず自らの行政機関において正当化の判断を行い、放射線審議会はその判断について確認する。その際、例えば、放射線の利用について、法律等により規制制度の枠組みが構築され、規制に従って利用される場合においては、既に正当化の判断が行われていると言える。
- ▶ 正当化の原則は、あくまで着目する線源やそれに関連する活動に関して、正味のメリットがプラスであることを確認するものであり、放射線防護上は代替手段との比較は求めていない。しかし現実には、より優れた代替手段がある場合に、そちらへの移行を意図的に促す施策をとることはあり得る。これは放射線防護を超えた判断が必要となる。

④ 放射線防護原則の適用—防護の最適化

- ▶ 防護の最適化は、本質的には、現在の事情の下で最善が尽くされているかどうかを常に問い続けることであり、結果ではなくプロセスに対する要求である。
- ▶ あらゆるメリットとデメリットを同一の尺度で定量化できれば、最適化プロセスは単純な数学の問題に帰着するが、現実には定量化が困難な多数の要因が存在する。定量化できる項目は付随する不確実性を記述したうえで定量化に努めるとともに、定量化が困難な場合又はそもそも定量化になじまない項目は定性的な手法をとる。
- ▶ 防護の最適化においては、取り得るオプションをいくつか設定した上で、過去の経験や現在の技術水準等を踏まえつつ、オプション間の比較を行う。社会的に重大な問題を対象とする場合には、社会的な合意形成のプロセスを踏む観点から、状況に応じて可能な限り、ステークホルダー※22の参加の下で、意思決定プロセスを透明化・文書化する必要がある。
- ▶ 防護の最適化の主体は、政策立案者及び事業者である。政策立案者は、事業者が 防護の最適化を図れるように制度を設計する。事業者はその制度の下で自らの 防護方策により最適化に取り組む。政策立案者は、リスクの程度や事業者の規模 を踏まえ、事業者のこのような取組を奨励し、必要に応じて適切な指針を提供す る。
- ▶ また、政策立案者は、着目する線源の利用や活動の形態が画一的で事業者の裁量の余地が少ない場合や明確な事業主体が存在しない場合、政策立案者による最適化の結果として、防護方策を具体的な仕様や基準として定めることが考えられる。
- ▶ 防護の最適化を行う場合、規制上の一律の限度とは異なり、計画被ばく状況では 線量拘束値、緊急時被ばく状況及び現存被ばく状況では参考レベルと呼ばれる 指標(⑥で後述)を活用することも考慮する。

⑤ 放射線防護原則の適用—線量限度の適用

- ▶ 計画被ばく状況における線量限度の適用の原則は、職業被ばくと公衆被ばくについて、あらゆる線源からの個人の被ばくの合計が一定の限度値を超えないことを求める。
- ▶ 計画被ばく状況において、個々の線源に対して防護の最適化が行われていたとしても、複数の線源からの被ばくが重畳した場合に、個人の受ける線量が著しく高くなる可能性がある。そのような事態を防止するために、計画被ばく状況の職

業被ばくと公衆被ばくに対して線量限度が定められている。個々の線源からの被ばくについての線量限度上限値(線量拘束値)を、被ばくの重複を考慮して十分低く設定することにより複数被ばくによる過剰な被ばくを回避できる。該当するあらゆる線源からの被ばくの合計が、限度値を超えないようにしなければならない。

項目	職業被ばく	公衆被ばく		
字為領具	50 mSv/年	1 mSv/年 ※ 23 29		
実効線量	定められた 5 年間に 100 mSv	1 msv/+- —		
	150 mSv/年			
眼の水晶体	<u>50 mSv/年</u>	(15 mSv/年)		
	定められた 5 年間に 100mSv ^{※30}			
皮膚	500 mSv/年	(50 mSv/年)		
手足	500 mSv/年			

表 3 線量限度(計画被ばく状況)

- ()は、ICRP の 2007 年勧告に示された線量限度
- ▶ 職業被ばくについては、個々の作業者に対して線量評価が行われる。実際の管理 に当たっては、単一の雇用の下で勤務している場合には、その記録が線量限度を 超えないことを確認するだけでなく、被ばくの状況に応じた線量管理が行われ ているかに注視し、複数の雇用関係がある者については、すべての線量を合算評 価して対応をとる必要がある。
- ▶ 計画被ばく状況の公衆被ばくについては、個々人について直接的に被ばくを測定・評価することは行われない。この場合、政策立案者は、例えば、重畳を考慮しても線量限度を超えることがないように、個別の線源からの放出に制限を設ける等の対応をとることが考えられる。
- ▶ 医療被ばくに対して、線量限度は適用されない。適切な医療行為の範囲は患者ごとに異なり、一律の限度を課すと、患者の利益を不当に制限することになるからである ※2431。
- ⑥ 数値基準の意味と役割
- ▶ 放射線防護ではLNT モデルを採用しており、一定の数値基準を下回ることを以て 安全である、つまり放射線による障害が全く生じないという考え方をとっていない。また、基準を満足することで十分とするアプローチは、リスクベースに基づ

き考える防護の最適化、すなわち継続的な安全向上のための取り組みを阻むことになりかねない。政策立案者は、線量限度を含む数値基準を遵守することのみを安全確保の根拠とするのは適切でなく、他方で単に厳しい基準を設定し最小線量を追求することも適切ではない。

- ▶ 政策立案者は、線量基準を策定する際は、その基準が、放射線に対する施設の性能を評価するためのもの(施設関連の基準)か、個人の被ばくに対するもの(個人関連の基準)かを明確にするべきである。放射線に対する施設の性能を評価するための線量基準は、対象となる施設に由来する放射線の線量のみを対象とするべきであり、計画被ばく状況における個人の被ばくに対する線量基準は、全ての線源に由来する放射線により個人が受ける被ばくの線量を対象とするべきである。
- ▶ 放射線防護において用いられる数値基準は、線量限度と線量拘束値(または参考レベル)に大別される。線量限度は規制上の一律の限度であり、それを超過することは違反と見なされる。この限度の遵守にとどまらず継続的な安全向上を促すために、線量拘束値(または参考レベル)は防護の最適化のPDCAサイクルのためのベンチマークとして用いるが、それを超過することは計画・運用に改善が必要であることを意味する。
- ▶ 線量拘束値は政策立案者が設定する場合と事業者が設定する場合がある。通常、 公衆被ばくに対しては、必要に応じて政策立案者が線量拘束値を設定するが、職 業被ばくに対しては事業の種類や規模が異なるため線量拘束値は事業者が設定す る。
- ▶ 事業者が線量拘束値を設定する場合、不確かさを含めて個別の事情を考慮すべきであり、一律の固定的な数値を設定することは適切ではない。政策立案者は、必要に応じ適切な指針(必ずしも数値基準だけに限らない)を提供し、事業者による防護の最適化の取組を奨励することがある。その際、政策立案者は、事業者の設定する線量拘束値の意味を理解し、数値設定に関与するとしても上限を定めるにとどめ、事業者の運用状況を注視すべきである。上限の設定が意味を持つのは、制限を加えなければ一部の者に被ばくが集中するおそれがある場合、及び政策として線量低減を主導する場合である。
- ▶ 線量拘束値が線量限度より低く設定されることは明らかであるが、緊急時被ばく 状況及び現存被ばく状況の参考レベルについては、線量限度よりも高い値を用い ることがある。これは、年あたりの線量率で示す線量限度がいわゆる安全と危険 の境界を定めるものではないため、事故等における短期間の被ばくにその遵守を 求めると、放射線以外の要因に起因するデメリットが明らかに大きくなる場合が あるからである。

- ▶ 確定的影響を防止し、がんリスクの有意な上昇を避ける観点から、緊急時被ばく 状況における職業被ばくの参考レベルの最大値は、短期間に 100 mSv、あるいは 1 年に 100 mSv であることを、ICRP は勧告している **2532。 なお、大規模な原子 力事故が継続している段階の復旧作業にあたる者等の参考レベルの範囲について は、サイト内外別に、ICRP により勧告されている **33。
- ➤ ICRP は、現存被ばく状況の参考レベルを、201 mSv/年~120 mSv/年の範囲で設定すべきとしている。ただし、原子力事故後の汚染地域に居住する公衆の被ばくについては、時間の経過とともに線量が漸減していくことから、大規模原子力事故の長期における参考レベルを 1~20 mSv/年のバンドの下方部分*26 下半分から選択すべきとし、長期的には 1 mSv/年を目指すこと被ばくを徐々にバンドの下端に向かって、あるいは可能であればそれ以下に低減することを目標とすべきことを勧告している。
- 現場で実務を効率的に行うため、Sv 単位の線量ではなく、放射能濃度(Bq/m³等)や空間線量率(μSv/h等)等、直接計測可能な量で政策立案者は数値基準を定めることがある。そのような場合、政策立案者は当該基準値の位置づけ及び導出過程(シナリオや仮定)を明確にし、根拠を示す必要がある。

⑦ 潜在被ばく

- ▶ 事故等の事象については、その発生を未然に防止し、仮に起きた場合でも最小限の被害ですむよう、計画段階から備えておくことが重要である。計画段階では、このような被ばくは発生そのものが不確かであるため、潜在被ばく **2734~と呼ばれる。
- ▶ 潜在被ばくに対する考慮が必要となるのは、原子力事故のように、事象発生時に 影響の大きな結果がもたらされる可能性がある場合、及び放射性廃棄物の処分の ように、極めて長い期間にわたって線源が残存する場合である。
- ▶ 潜在被ばくは、計画段階において、事故等を視野に入れた防護を展開するための概念である。潜在被ばくを考慮する必要がある場合には、政策立案者は計画段階において潜在被ばくを含む被ばく状況の評価とともに発生の未然防止策等について検討しておくべきである。なお、実際に事象が起きて、緊急の対応が必要となった場合には、緊急時被ばく状況として扱われる。

4. 放射線審議会における審議

▶ 諮問答申

関係省庁が今後、放射線防護の技術的基準を作成し、放射線審議会に諮問する 場合、放射線審議会は、単なる基準の斉一化のみならず上述した考え方に即して 審議し、答申する。このため関係省庁は、この審議に必要な検討の実施や資料の 準備が求められる。

▶ 調査提言

放射線審議会は、今後、主体的に我が国の放射線防護に係る技術的な基準について提言を行う。そのために国内外の動向について情報収集に努めていくこととするが、こうした動向については、技術的な新知見による基準のあり方のみならず、社会情勢の変化に伴う放射線源の新たな利活用法等も情報収集の対象とし、放射線審議会が時代の要請に遅滞なく対応できるよう調査機能を強化していく必要がある。また、放射線審議会は調査した事項を積極的に関係省庁と共有していく。

放射線審議会事務局を務める原子力規制庁においては、こうした機能強化に合わせて人材等のリソースの充実が求められる。

脚注/解説

※1 自然放射線

自然界の放射線。自然放射線の源は、宇宙線、大地からの放射線、体内の放射能及びラドンガスである。自然放射線は地域や場所により変動し、高度の高い地域や高緯度地域では宇宙線の寄与は大きく、その地域の大地に含まれる放射性物質の量により大地からの放射線の寄与は変わる。世界には、中国の陽江、インドのケララ、イランのラムサールなど、日本より2倍から10倍ほど自然放射線が高い地域がある。中国やインドにおける疫学調査などから、これまでのところ、がんの死亡率や発症率の顕著な増加は報告されていない。

※2 実効線量

ICRPにより定義されている防護量の一つで、人に対する放射線防護の目的のみに用いられる線量。防護量には実効線量と等価線量がある。ある臓器の等価線量(Sv)は、臓器平均吸収線量に臓器あるいは組織が受けた影響の放射線の種類による違いを考慮するための放射線加重係数を乗じて得られる。実効線量(Sv)は、さらに、臓器あるいは組織の組織加重係数を乗じて全身被ばく相当に換算した線量である。実効線量では、外部被ばくによる影響と内部被ばくによる影響を同等に扱うことができる。これらの量は標準人ファントムと計算モデルを用いて算出するもので、実際に計測することができない。

※3 年間平均 2.1 mSv

公益財団法人 原子力安全研究協会、「新版 生活環境放射線(国民線量の算定)(平成 23 年 12 月)」、157 頁より

※4 人工放射線

人間の活動により造り出された放射線。医療分野における放射線診断や放射線療法、農業分野における放射線照射によるジャガイモの発芽防止、工業分野における非破壊検査等の様々な産業利用において人工放射線が利用されており、これらの人工放射線源による被ばくがある。

※5 メリットとデメリット

従来、放射線防護の考え方は、リスクや便益、コストといった用語を用いて説明されてきた。しかし、こうした用語は、分野間で使い方が異なるため、関係行政機関による本文書の理解を妨げる原因にもなりうる。そこで、本文書内では、可能な限り、メリット(特定の個人あるいは集団にとって有益なこと)あるいはデメリット(メリットの逆)といった一般的用語を用いることとした。

※6 確定的影響

放射線防護上の放射線影響の分類。確定的影響は、しきい線量があり、しきい線量を超える大きな線量を被ばくした場合には影響の重篤度が増大するような影響をいう。臓器・組織を構成する細胞の細胞死に基づく影響である。

※7 確率的影響

放射線防護上の放射線影響の分類。確率的影響は、しきい線量は無く、線量の増加に伴って影響の発生確率が増大するような影響をいう。

※8 しきい線量

しきい線量は影響が現れる最低の線量をいう。ICRPは、2007年勧告において、全身ガンマ線被ばく後の成人の臓器及び組織に関わる影響の1%発生率(放射線感受性には個人差があるため、個人ではなく集団における発生率)と死亡に対する急性吸収線量のしきい値の推定値を更新し、取りまとめている。

確定的影響のしきい線量の単位については、物理的な線量単位である Gy(吸収線量)で表すのが慣例である。一方、放射性同位元素等による放射線障害の防止に関する法律では、確定的影響を防止するために、眼の水晶体、皮膚、妊娠中である女子の腹部表面について等価線量限度(単位は Sv)を定めている。等価線量は実際に測定できる量である線量当量(単位は Sv)で測定されているが、この測定値は吸収線量より過大にならないよう保守的に評価している。

※9 リスク

一般的には、「危害の発生確率及びその危害の程度の組合せ」と解釈されている(ISO/IEC Guide 51)。一方、放射線防護分野では、国際放射線防護委員会(ICRP)が 1950 年代にリスク概念を導入して以来、「ある特定の有害な結果の確率」、より端的には「がん・遺伝性影響の発生や死亡の可能性」の意味に用いてきた。これは、ICRP が目指す放射線防護とは、「組織反応が防止され、かつ確率的影響のリスクが容認できるレベルに制限されるように、電離放射線への被ばくを制御する」ことを意味するからである(ICRP 103, para B4)。

※10 遺伝性影響

放射線の影響が被ばく者本人ではなく子孫に及ぶ影響。遺伝性影響は生殖細胞の遺伝子に 生じた変化が子孫に伝えられることにより生じる。したがって、将来子供を産む可能性の ある人が生殖細胞に被ばくを受けた場合にのみ発生する可能性が生じる。ショウジョウバ エやマウスの実験では放射線による遺伝性影響が証明されているが、これまでの広島・長 崎の原爆被爆生存者をはじめとする疫学調査では人では遺伝性影響は確認されていない。 なお、ICRPでは、遺伝性影響をより慎重に取り扱う観点から、マウスの実験データを基に 遺伝性影響のリスクを推定し、それらの値は生殖腺の組織加重係数に反映されている。

※11 しきい線量を記載する上での留意事項について

男性の一時的不妊および妊娠初期の被ばくによる胚死亡・奇形発生のしきい線量は、それぞれ睾丸および胚・胎児の吸収線量である。しきい線量を示す場合、死亡と罹病の別、罹病にあっては対象となる臓器及び組織を明確にする必要がある。

※12 100 mSv 以下の、いわゆる低線量における影響の有無について

ICRP は 2007 年勧告において、「がんリスク推定に用いる疫学的方法は、およそ 100 mSv までの線量範囲でのがんのリスクを直接明らかにする力を持たないという一般的な合意が ある。」との見解を示している。

※13 LNT モデル

ある一定の線量の増加はそれに正比例して放射線起因の発がん又は遺伝性影響の確率の増加を生じるとする線量反応モデル。直線しきい値なし仮説ともいう。

※14 カリウム 40

自然界に存在するカリウムには、重さの異なる 3 種類のカリウム同位体があり、そのうち 約 0.01%の割合で放射性同位体であるカリウム 40 が存在する。カリウムは、栄養素として 生物に取り込まれるため、生物の体内にもカリウム 40 が含まれる。

※15 免除とクリアランス

IAEA では、合理的に予測可能な状況において、免除された線源又はクリアランスされた物質により個人が受けると予想される実効線量が年間 10 μSv のオーダーかそれ以下であるならば、追加の検討なしに、その線源は免除又はクリアランスできるとしている。確率の低いシナリオを考慮するために、異なる判断基準、すなわちそのような低い確率により個人が受けると予想される実効線量が年間1 mSv を超えないという判断基準を採用することができるとしている。

自然界に存在するカリウムには、重さの異なる 3 種類のカリウム同位体があり、そのうち 約 0.01%の割合で放射性同位体であるカリウム 40 が存在する。カリウムは、栄養素として 生物に取り込まれるため、生物の体内にもカリウム 40 が含まれる。

※16 善行・無危害

放射線の有害な影響から人々を防護する試み全般及び個人、地域社会及び環境に対するメ リットを増し、デメリットを減らすことを指す。潜在的なデメリットとメリットの評価に おいて対象者あるいは対象物として将来の世代や環境についても含まれる。

※17 慎重さ

行動の範囲と影響について十分な知見がなくとも、得られた説明(情報)に基づき注意深く考えた上で選択を行うことを指す。特に低レベルの被ばくにおける意思決定の中で要求される。一例として、どの程度のリスクを伴うか不確かな低線量の被ばくに対し、LNTモデルによるアプローチが放射線リスク管理のための慎重な判断であることが挙げられる(2. ③参照)。しかし、決して、リスクを避けるという意味や、ゼロリスクを要求するという意味に解釈されるべきではない。

※18 正義

放射線防護体系の防護の判断基準として、個人被ばく線量に不公平が生じぬよう配慮する とともに、個別の被ばくがリスクの許容値を超えないように留意されるべきであり、この判 断基準には、①社会のメンバーの間で利益と不利益を配分する上での公正さ ②環境のリス クと便益の公平な配分 ③将来の世代にも配慮したあらゆる者への公正さ ④意思決定プロ セスにおける規則と手続の公正さ ⑤被害者、社会、環境に与えられた害の修復を優先させ ること及び ⑥公平な扱いを受けるという人の権利を認め、確実に均等な機会を提供して公 正な社会を実現すること、といった内容が含まれるべきである。

※19 尊厳

個人的な属性や事情に関わらず無条件に受けるに足る尊敬を指す。政策決定者及び政策決定を支援する立場にある者は、防護対象者が必要な情報に基づいて自律的に意思決定ができるように、説明責任、説明における透明性及びステークホルダーの意思を尊重することが重要である。なお、ICRP Publ.146では、大規模な原子力事故の中長期においては、地域の状況のより良い評価、適切で実践的な放射線防護文化の発展、および影響を受ける人々の間での情報に基づいた意思決定を達成するために、専門家との協力的なプロセス(「共同専門知プロセス」)に地域社会が関与することを促進するべきことが提示されている。

※20 ス<u>テークホルダー</u>

規制機関、事業者等異なる立場の関係者をはじめ関心や興味のある人々すべてを含むと広くとらえるのが適切と考えられるため無理に翻訳せずに「ステークホルダー」とした。

※1521 施策の対象とする「人」について

施策の対象とする「人」が、作業者、公衆、患者(介護者と介助者等を含む)等のいずれであるのかを明確化する。なお、線源が長期にわたり存在する場合には、現在の世代であるのか将来の世代であるのか等、防護の対象となる個人を明確化する。

※1622 被ばく状況

計画被ばく状況は、放射線管理区域等の管理が適用される場所において、線源を意図的に 導入し運用する状況であり、廃止措置、放射性廃棄物の処分、土地の復旧を含む。

緊急時被ばく状況は、線源の制御と計画的管理が出来なくなった非常事態であり、事故や 悪意の行為から生じた予期せぬ状況があげられる。

現存被ばく状況は、自然界の放射性物質や過去の行為の残留物を含む管理の開始時に既に 存在する被ばく状況や、事故の回復・復興期で当面被ばく線量の平常時への低減が困難な 状況があげられる。

※23 大規模原子力事故の管理の時間進展

ICRP Publ. 146では、大規模原子力事故の管理の時間進展を初期・中期・長期に区別している。初期・中期については、緊急時被ばく状況、長期については、現存被ばく状況と考えることができる。ある段階から次の段階への移行は、多くの要因に依存する決定の問題である。ここでいう初期では、環境中へ大量の放射性物質の放出が数時間から数週間持続する状況を包括する。中期は、放出の線源が安定化し、更なる重大な放出の可能性が低くなったときに始まる。長期(現存被ばく状況)は、サイト内では、事故の管理に責任を持つ当局が、損傷した施設の安全が確保されていると判断したときに、サイト外では、当局が、被災地の将来について決定し、また希望する住民がこれらの地域に恒久的に留まることを認める決定をしたときに始まる。

なお、大規模原子力事故時においては、動物相および植物相への影響、社会的影響、経済 的影響、心理的影響、防護措置に関連する生活様式の変化による健康への影響など広範囲 の影響を及ぼすことが報告されている。

※1724 研究ボランティア

生物医学研究における志願者。研究ボランティアが受ける放射線被ばくは、その研究によるボランティア本人への直接的な便益は生じないことが想定されるものの、研究の成果が社会的な便益となり得るものであり、ICRP は 1990 年勧告において、これを医療被ばくに位置づけている。欧州諸国では、研究ボランティアの許容されうる被ばく線量が設定されている。我が国では現在、法的な規制や明確な基準は示されていないものの、日本核医学会が「生物医学研究志願者の放射線防護に関する提言」において、「健常志願者を対象とする研究においては、予測される医学への貢献の度合いも含めて、防護の最適化に充分配慮すること」等がまとめられている。

※1825 線量限度

線量限度は、確定的影響に対する線量に対してはしきい値以下で、確率的影響に対しては 容認可能な上限値として設定されている。 線量限度には、自然放射線と医療による被ばく は含まない。現行法令では、ICRP 1990 年勧告を踏まえ、表 3 に示す実効線量と等価線量の 限度が、職業人と一般公衆の個人に対してそれぞれ定められている。

※1926 線量拘束値

ある線源(又は事業所)からの個人線量の予測的な制限値。公衆被ばくについては、ある 事業所で管理されている線源からの公衆が受ける線量の制限の目安。線量拘束値は線源に 対して用いる。

※2027 参考レベル

緊急時又は現存の制御可能な被ばく状況において、それを上回る被ばくの発生を許す計画の策定は不適切であると判断され、またそれより下では放射線防護の最適化を履行すべき、線量又はリスクのレベルを表す。公衆については、緊急時被ばく状況に対して主に $20\sim100$ mSv/年、現存被ばくに対して主に $1\sim20$ mSv/年から設定される。

※2128 線量限度の適用の原則

ICRP 2007 年勧告は、計画被ばく状況のみに対する線量限度を原則の1つとしているが、同勧告で新しく導入された他の被ばく状況(緊急時被ばく状況及び現存被ばく状況)では、線量限度では無く参考レベルの使用が有用な個人線量の制御の目安として強調されている(「防護の最適化」の項を参照)。

※22 フテークホルダー

利害関係者。規制機関、事業者等異なる立場の関係者をはじめ関心や興味のある人々すべてを含むと広くとらえるのが適切と考えられるため無理に翻訳せずに「ステークホルダー」 とした。

※2329 公衆被ばくの実効線量限度(1 mSv/年)

計画被ばく状況の公衆の線量限度は、自然放射線被ばく線量(ラドンを除く)の変動に注目したときに地域間の差に相当する線量レベルであり、さらに、低線量・低線量率において高線量率の疫学データからの知見が適用できると仮定して過小評価にならないように計算された結果から、この線量率で生涯にわたる被ばくが続いたとしても、十分に小さいリスクであることから設定された。公衆の制限値として国際的に利用されている。LNTモデ

ルを前提としていることから、しきい線量の意味合いで勧告されてはいない。

※30 計画被ばく状況における眼の水晶体の線量限度について

計画被ばく状況における眼の水晶体の線量限度は ICRP.Publ.60 において 150 mSv/年を超えないこととされていたが、組織反応に関する ICRP 声明(ソウル声明、2011)において、被ばくから非常に遅く発症する白内障についてのしきい線量が、これまでの知見よりも低いことを示唆する疾学調査の知見を踏まえ、線量限度の見直し(50 mSv/年 かつ定められた5年間に 100 mSv)が行われた。

※2431 患者の介助者や介護者ならびに研究ボランティアの防護について

患者に加えて介助者や介護者ならびに被験者として参加する研究ボランティアについても 防護の最適化に配慮が必要である。ICRP は 2007 年勧告において、直接的に介助と介護に かかわる近親者に対する線量拘束値として、1 事例あたり 5 mSv が妥当であると勧告して いる。ただし、この線量拘束値は厳格な年線量限度として解釈されるものではなく、患者 の病状や患者と介護者の関係等を踏まえ、柔軟に用いる必要があるとしている。なお、医 療関係者が行う介助と介護は職業被ばくとなる。

※2532 緊急被ばく状況における参考レベル

ICRP は、100 mSv よりも高い線量では、確定的影響と、がんの有意なリスクの可能性が高くなるため、参考レベルの最大値は急性若しくは1年間のいずれかで受ける100 mSv であると勧告している。100 mSv を超える被ばくが正当化されるのは被ばくが避けられないか、若しくは人命救助や最悪の事態の防止のような例外的状況における被ばくのいずれかによる究極の事情としている。

なお我が国では、緊急作業時の被ばく線量限度は、ICRP 2007 年勧告や IAEA 国際基本安全 基準 (BSS) で示されている主な考え方を踏まえ、関連する法令において一般的な緊急時は 実効線量 100 mSv、公衆の大量被ばくを防ぐ緊急時は実効線量 250 mSv としている。

※33 大規模な原子力事故が継続している段階の復旧作業にあたる者等の参考レベルについて ICRP Publ. 146 では、原子力事故が継続している段階におけるサイト内外の対応者及び公衆 の初期、中期及び長期における参考レベルが、下表のとおり勧告されている。

下表において、「対応者」とは、原子力事故の影響を直接管理する関係者を指す。対応者には、職業的に被ばくする作業者、ふだん職業的に被ばくしていない者などが含まれる。職業的に被ばくする作業者が対応者として関与する場合、対応中に受けた被ばくは、計画被ばく状況で受けた被ばくとは別と見なされて記録されるべきであり、職業被ばくの線量限度の遵守に対してはその被ばくは考慮されるべきではない。緊急時の累積被ばくが100 mSvを超える対応者に対しては、適切かつ持続可能な医療サーベランスを提供するべきである。

表 原子力事故が継続している段階における対応者と公衆の 防護の最適化の手引きとなる参考レベル

	<u>17 (b)</u>	<u> </u>	<u> </u>
	<u>初期</u>	<u>中期</u>	<u>長期</u>
<u>対応者</u> サイト内	100 mSv あるいはそれ 以下(注 1) 例外的な状況では超過 できる(注 2)	100 mSv あるいはそれ以下 (注 1) 状況と共に変わっていく (低減) 可能性がある (注 1) (注 2) (注 3)	<u>年間 20 mSv あるいはそれ以下</u>
<u>対応者</u> <u>サイト外</u>	100 mSv あるいはそれ 以下(注 1) 例外的な状況では超過 できる(注 2)	年間 20 mSv あるいはそれ 以下 (注 3) 状況と共に変わっていく (低減) 可能性がある	公衆に開放されていない制限地域では、年間 20 mSv あるいはそれ以下 その他のすべての地域において、年間 1~20 mSv のバンドの下半分(注5)
<u>公衆</u>	<u>初期及び中期の全期間に</u> それ以下(注 4)	こついて、100 mSv あるいは	年間 1~20 mSv のバンドの下半分で、被ばくを徐々にバンドの下端に向かって、あるいは可能であればそれ以下に低減することを目標とする(注 5)

(注1) これまで ICRP Publ.109 において、委員会は、緊急時被ばく状況に対して、20~100 mSv のバンドから参 考レベルを選択することを勧告していた。ICRP Publ.146 では、状況によっては、最も適切な参考レベルがこのバ ンドよりも低くなる可能性があることを認識している。

(注 2) 委員会は、人命を救うため、あるいは壊滅的な状況につながる施設の更なる劣化を防ぐために、数百 mSv**の範囲内でより高いレベルが対応者に許される可能性があることを認めている。

(注3)対応者の中には初期と中期の両方に関与している者もいるため、これらの段階での総被ばく量を 100 mSv 以下に抑えることを目標に、被ばくの管理を行うべきである。

(注 4) これまで ICRP Publ.109 では、委員会は、緊急時被ばく状況に対して、20~100 mSv のバンドから参考レベルを選択することを勧告していた。ICRP Publ.146 では、状況によっては、最も適切な参考レベルが 20 mSv 以下である可能性があることを認めている。

(注 5) これは、ICRP Publ.111 で使用されている「下方部分 (lower part)」という表現を明確にするものである。

** ICRP Publ.146 の原著は、a few hundred of millisieverts

※26 1~20 mSv/年のバンドの下方部分

ICRP Publ. 111 において「汚染地域内に居住する人々の防護の最適化のための参考レベルは、現存被ばく状況の管理のための参考レベル(1~20 mSv)のバンドの下方部分から選択すべきである」ことを勧告している。

※2734 潜在被ばく

実際に起こるかどうかは確実ではないが、事故、故障、ミス等の発生が確率的な性質を有する一連の事象の結果として生じる可能性のある被ばく。