資料2-4

Doc No. L5-95JY212 R9 2022 年 3 月 29 日 三菱重工業株式会社

補足説明資料 16-3

16条 燃料体等の取扱施設及び貯蔵施設

遮蔽機能に関する説明資料

目 次

1. 要3	找事項······	1
2. 要	求事項への適合性	4
3. 使力	用する解析コード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
4. 遮	嵌機能データ	72
5. 参	考文献	81
別紙1	遮蔽解析条件	
別紙2	中性子実効増倍率の設定について	
別紙3	中性子源スペクトルを ²⁵⁹ Puの核分裂スペクトルで代表させる設定の妥当性	
別紙4	遮蔽解析結果の詳細 (DOT3.5 コード)	
別紙5	遮蔽解析結果の詳細 (MCNP5 コード)	
別紙6	MCNP5 コードによる評価値と DOT3.5 コードによる既認可結果の比較	
別紙7	遮蔽機能データの適用確認方法	

1. 要求事項

特定機器の設計の型式証明申請において、特定兼用キャスクの遮蔽機能に関する要求事項は、以 下のとおりである。

(1) 設置許可基準規則要求事項

- a. 設置許可基準規則第16条第4項一号
- 使用済燃料からの放射線に対して適切な遮蔽能力を有するものとすること。

b. 設置許可基準規則解釈別記4第16条2項

第16条第4項第1号に規定する「適切な遮蔽能力を有する」とは、第5項に規定するも ののほか、以下をいう。

- ・貯蔵事業許可基準規則解釈第4条第1項第3号に規定する金属キャスクの設計に関する基準を満たすこと。
- > 貯蔵事業許可基準規則解釈第4条第1項第3号
 - 一使用済燃料を金属キャスクに収納するに当たっては、遮蔽機能に関する評価で考慮した使用済燃料の燃焼度に応じた当該使用済燃料の配置の条件又は範囲を逸脱しないよう必要な措置が講じられること。
 - ・兼用キャスク表面の線量当量率が1時間当たり2ミリシーベルト以下であり、かつ、兼用 キャスク表面から1メートル離れた位置における線量当量率が1時間当たり100マイク ロシーベルト以下であること。
 - ・貯蔵建屋(工場等内において兼用キャスクを収納する建物をいう。以下この条において同 じ。)を設置する場合には、当該貯蔵建屋の損傷によりその遮蔽機能が著しく低下したと きにおいても、工場等周辺の実効線量は周辺監視区域外における線量限度を超えないこ と

なお、当該貯蔵建屋が損傷したときからその遮蔽機能の応急の復旧が完了するまでの間 は、第29条に規定する「通常運転時」には当たらない。

c. 設置許可基準規則解釈別記4第16条5項

第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」とは、以下を満たす設計をいう。

・設計貯蔵期間を明確にしていること。

- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及び構造であること。
- (2) 原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関する審査ガ イド確認事項
 - 「2. 安全機能の確保 2.2 遮蔽機能」には、以下のように記載されている。

【審査における確認事項】

r

- 1) 設計上想定される状態において、使用済燃料からの放射線に対して適切な遮蔽機能を有 すること。
 - 2) 通常貯蔵時の兼用キャスク表面の線量当量率を 2mSv/h 以下とし、かつ、兼用キャスク表面から 1m 離れた位置における線量当量率を 100 μ Sv/h 以下とすること。
- 3) 通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、ALARA の考え方の下、敷地境界において実効線量で50μSv/y 以下となることを目標に、線量限度 (1mSv/y) を十分下回る水準とすること。
- 4) 貯蔵建屋等の損傷によりその遮蔽機能が著しく低下した場合においても、工場等周辺の 実効線量が線量限度 (1mSv/y) を超えないこと。

J

【確認内容】

r

以下を踏まえ遮蔽設計が妥当であること。

1) 使用済燃料の放射線源強度評価

使用済燃料の放射線源強度は、検証され適用性が確認された燃焼計算コードを使用して 求めること。また、燃料型式、燃焼度、濃縮度、冷却年数等を条件とし、核種の生成及び 崩壊を計算して求めること。

- 2) 兼用キャスクの遮蔽機能評価
 - a. 兼用キャスクからの線量当量率は、兼用キャスクの実形状を適切にモデル化し、及び 1) で求めた放射線源強度に基づき、検証され適用性が確認された遮蔽解析コード及び断 面積ライブラリ(以下「遮蔽解析コード等」と総称する。) を使用して求めること。その 際、設計貯蔵期間中の兼用キャスクのガンマ線遮蔽材及び中性子遮蔽材の熱劣化による 遮蔽機能の低下を考慮すること。

b. 兼用キャスク表面の線量当量率を 2mSv/h 以下とし、かつ、兼用キャスク表面から 1m 離れた位置における線量当量率を 100 μ Sv/h 以下とすること。

3) 敷地境界における実効線量評価

① 直接線及びスカイシャイン線の評価

兼用キャスクが敷地境界に近い場所に設置される場合等に、使用済燃料から放出される中性子の敷地境界線量への寄与が大きくなる可能性があることを適切に考慮した上で、通常貯蔵時の直接線及びスカイシャイン線(ガンマ線及び中性子)による実効線量について評価すること。

(2) ソースターム

兼用キャスクの遮蔽機能データ又は兼用キャスク表面から 1m 離れた位置における線 量当量率が 100 μ Sv/h となるよう放射線源強度を規格化したものを用いること。ここ で、放射線源強度を規格化して用いる場合は、中性子 100%又はガンマ線 100%のいずれ か保守的な線量評価とすること。また、中性子及びガンマ線の表面エネルギースペクト ルは、保守的な線量評価となるものを使用すること。

③ 遮蔽解析コード等

検証され適用性が確認された遮蔽解析コード等を使用すること。なお、モンテカルロ コードを用いる場合は、相互遮蔽効果、ストリーミング及びコンクリート深層透過の観 点から検証され適用性が確認されたものであること。

① 通常貯蔵時の線量

通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、ALARA の考え方の下、敷地境界において実効線量で 50μSv/y 以下となることを目標に、線量限度 (1mSv/y) を十分下回る水準とすること。

なお、兼用キャスク以外の施設の線量は、既評価の空気カーマ (Gy/y) を実効線量 (Sv/y) 〜換算し、又は新たに実効線量 (Sv/y) を評価するものとする。換算に当たっては、係数を1とすること。

4) 応急復旧

貯蔵建屋等を設置する場合は、貯蔵建屋等の損傷によりその遮蔽機能が著しく低下した場合においても、必要に応じて土嚢による遮蔽の追加等の適切な手段による応急復旧を行うことにより、工場等周辺の実効線量が敷地全体で線量限度(ImSv/y)を超えないこと。この場合において、応急復旧による遮蔽機能の回復を期待する場合には、その実施に係る体制を適切に整備すること。

J

- 2. 要求事項への適合性
 - (1) 設置許可基準規則への適合性

MSF-24P(S)型の遮蔽機能については、以下のとおり設置許可基準規則に適合している。

- a. 設置許可基準規則第16条第4項一号
 - 使用済燃料からの放射線に対して適切な遮蔽能力を有するものとすること。
- b. 設置許可基準規則解釈別記4第16条2項

第16条第4項第1号に規定する「適切な遮蔽能力を有する」とは、第5項に規定するも ののほか、以下をいう。

- ・貯蔵事業許可基準規則解釈第4条第1項第3号に規定する金属キャスクの設計に関する 基準を満たすこと。
 - ➤ 貯蔵事業許可基準規則解釈第4条第1項第3号
 - 一 使用済燃料を金属キャスクに収納するに当たっては、遮蔽機能に関する評価で考慮した使用済燃料の燃焼度に応じた当該使用済燃料の配置の条件又は範囲を逸脱しないよう必要な措置が誰じられること。
- ・兼用キャスク表面の線量当量率が1時間当たり2ミリシーベルト以下であり、かつ、兼 用キャスク表面から1メートル離れた位置における線量当量率が1時間当たり 100 マイ クロシーベルト以下であること。
- ・貯蔵建屋(工場等内において兼用キャスクを収納する建物をいう。以下この条において 同じ。)を設置する場合には、当該貯蔵建屋の損傷によりその遮蔽機能が著しく低下した ときにおいても、工場等周辺の実効線量は周辺監視区域外における線量限度を超えない こと。

なお、当該貯蔵建屋が損傷したときからその遮蔽機能の応急の復旧が完了するまでの間 は、第29条に規定する「通常運転時」には当たらない。

MSF-24P(S)型は、使用済燃料集合体からの放射線を特定兼用キャスクの本体及び蓋部のガンマ線 遮蔽材及び中性子遮蔽材により遮蔽する設計とし、設計貯蔵期間中における MSF-24P(S)型の中性子 遮蔽材の熱による遮蔽機能の低下を考慮しても特定兼用キャスク表面の線量当量率を 2 mSv/h 以下、 かつ、特定兼用キャスク表面から 1 メートル離れた位置における線量当量率を 100 μ Sv/h 以下とな る設計とする。ガンマ線遮蔽材には、鋼製の材料を用い、中性子遮蔽材には、水素を多く含有するレ ジンを用いる。

2. (2)審査ガイドへの適合性 [確認内容]1)から2)への説明に示すとおり、特定兼用キャスク表面 及び特定兼用キャスク型表面から1メートル離れた位置における線量当量率は、特定兼用キャスク の実形状を適切にモデル化し、使用済燃料の放射線源強度を条件として二次元輸送計算コード DOT3.5 (断面積ライブラリ: MATXSLIB-J33) 又は三次元モンテカルロコード MCNP5 (断面積ライブラリ: MCPLIB84/FSXLIB-J33) を使用して求める。線量当量率評価に用いる放射線源強度は、使用済燃料の型式、燃焼度、濃縮度、冷却期間等を条件に燃焼計算コード ORIGEN2 を使用して求める。

放射線源強度計算に当たっては、中性子について実効増倍率を考慮するとともに、使用済燃料の軸方向の燃焼度分布を考慮する。また、線量当量率の評価に当たっては、使用済燃料集合体の燃焼度に応じた収納位置を考慮するとともに、設計貯蔵期間中における中性子遮蔽材の熱による遮蔽性能の低下を考慮する。上記条件に基づく解析の結果、特定兼用キャスク表面及び特定兼用キャスク表面がら1メートル離れた位置における最大線量当量率は、それぞれ2mSv/h以下及び100μSv/h以下を満足することを確認した。

また、設置許可基準規則解釈別記4第16条2項に示される貯蔵建屋を設置する場合において、当該貯蔵建屋の損傷による工場等周辺の実効線量への影響、及び貯蔵事業許可基準規則解釈第4条第1項第3号に示される使用済燃料の配置の条件又は範囲を逸脱しないよう必要な措置を講じることについては、型式証明申請の範囲外(設置(変更)許可時の別途確認事項)である。

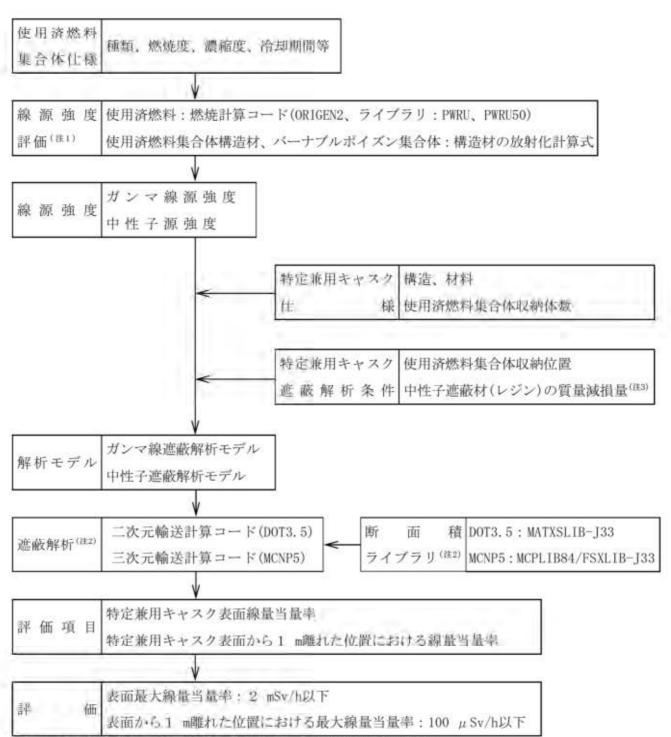
c, 設置許可基準規則解釈別記4第16条5項

- ・第 16 条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」とは、以下を満たす設計をいう。
 - ・設計貯蔵期間を明確にしていること。
 - ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及び構造 であること

MSF-24P(S)型の設計貯蔵期間は60年である。また、補足説明資料16-6「材料・構造健全性(長期健全性)に関する説明資料(L5-95JV215)」に示すとおり、MSF-24P(S)型は、安全機能を維持するうえで重要な構成部材について、設計貯蔵期間中の温度、放射線等の環境及びその環境下での腐食、カリーブ、応力腐食割れ等の経年変化に対して信頼性を有する材料を選定し、その必要とされる強度及び性能を維持することで使用済燃料の健全性を確保する設計である。

(2) 審査ガイドへの適合性

審査ガイドでは、兼用キャスクの有する安全機能(臨界防止機能、遮蔽機能、除熱機能及び閉じ込め機能)に係る設計の基本方針の妥当性を確認することが定められており、MSF-24P(S)型の遮蔽機能については、以下のとおり審査ガイドの確認内容に適合している。


(確認内容)

1) 使用済燃料の放射線源強度評価

使用済燃料の放射線源強度は、検証され適用性が確認された燃焼計算コードを使用して求めること。また、燃料型式、燃焼度、濃縮度、冷却年数等を条件とし、核種の生成及び崩壊を計算して求めること。

- 2) 兼用キャスクの遮蔽機能評価
 - a. 兼用キャスクからの線量当量率は、兼用キャスクの実形状を適切にモデル化し、及び1)で 求めた放射線源強度に基づき、検証され適用性が確認された遮蔽解析コード及び断面積ラ イブラリ(以下「遮蔽解析コード等」と総称する。)を使用して求めること。その際、設計 貯蔵期間中の兼用キャスクのガンマ線遮蔽材及び中性子遮蔽材の熱劣化による遮蔽機能の 低下を考慮すること。
 - b. 兼用キャスク表面の線量当量率を 2mSv/h 以下とし、かつ、兼用キャスク表面から 1m離 れた位置における線量当量率を 100 μ Sv/h 以下とすること。

MSF-24P(S)型の遮蔽解析フローを第1図に示す。遮蔽解析に用いる解析コードは、3. に示すと おり検証され、適用性が確認されている。

- (注1)線原強度評価は型式証明及び型式指定において ORIGEN2 コードを用いる。
- (注2) 連載解析は型式証明においてはDOT3.5コード (断面積ライブラリ: MATXSLIB-J33)及びMCNP5コード (断面積ライブラリ: MCPLIB84/FSXLIB-J33)を用い、型式指定においては型式証明で用いたコードのうちどちらかのコードを選択する。
- (注3) 特定兼用キャスクの主要な構成部材のうち。中性子遮蔽材は、補足説明資料 16-6「材料・構造健全性に関する 説明資料 (L5-95JY215)」に示すとおり、熱による質量減損が生じる。遮蔽解析では、設計貯蔵期間 (60 年) 経 過後の中性子遮蔽材の質量減損を考慮する。

第1図 遮蔽解析フロー図

(3) 使用済燃料の線源強度評価方法

使用済燃料の型式、燃焼度(集合体平均)、濃縮度及び冷却期間等を条件に燃焼計算コード ORIGEN2を使用して核種の生成、崩壊及びそれに基づく放射線源強度(以下「線源強度」という。) を計算する。線源評価の具体的な条件は別紙1に示す。使用済燃料の軸方向燃焼度分布を考慮して、軸方向燃焼度分布を第2図のとおりとし、線源強度を計算している。

(4) 特定兼用キャスクの線量当量率評価方法

特定兼用キャスクの線量当量率は、特定兼用キャスクの実形状を適切にモデル化し、使用済 燃料の線源強度を条件として、遮蔽解析コードを使用して求める。線量当量率の算定に当たっ ては、設計貯蔵期間 (60 年) 中における熱による中性子遮蔽材の遮蔽性能の低下を考慮する。 線量当量率評価の具体的な条件は別紙1に示す。

型式証明において、線量当量率評価は、二次元輸送計算コード DOT3.5 及び三次元モンテカル ロコード MCNP5 を用いる。遮蔽解析における収納物条件の概要を第1表に示す。遮蔽解析に用 いる燃料タイプについては第1表に示す、17×17燃料 48,000MWd/t 型 (A型、B型) 及び15× 15燃料 48,000MWd/t 型 (A型、B型) とする。なお、蓋部が金属部へ衝突しない設置方法にお いて MCNP5 コードに比べて DOT3.5 コード評価での線量当量率最大値が高いことが確認できるた め、基礎等に固定する設置方法は線量当量率最大値が基準を満足することを確認するため DOT3.5 コード評価結果のみ記載する。

(5) 遮蔽解析モデル

遮蔽解析モデル化の概要を第3図、解析モデル図を第4図に示す。遮蔽解析モデルの入力条件 への不確かさの考慮は、二次元遮蔽解析モデル及び三次元遮蔽解析モデル共通で以下のとおり である。

① 構成部材密度

最低保証密度を使用して原子個数密度を設定。

② 寸法公差

解析モデルの各種寸法は公称寸法でモデル化するが、各構成部材の寸法公差については 最小厚さを密度係数 (=最小寸法/公称寸法) で考慮。

1) 二次元遮蔽解析モデル

特定兼用キャスクを R-Z 体系の有限円筒モデル (以下「二次元モデル」という。) でモデル化している。ただし、有限円筒モデルで直接モデル化できない使用済燃料集合体、バスケット、トラニオン等は、構造上の特徴を考慮して、均質化あるいは線束接続によって評価し

ている。なお、二次元モデルは、キャスク中央付近で二分割しており、頭部評価モデルは、 使用済燃料集合体が一次蓋に接した状態とし、底部評価モデルは、使用済燃料集合体が胴(底 板)に接した状態として、線源である使用済燃料集合体から評価点までの距離が短い保守的 なモデルとしている。二次元モデルの均質化は以下のとおりである。

a. 燃料領域

第5図に示すとおり、使用済燃料集合体とバスケットを均質化してモデル化している。 中央部及び外周部燃料領域について、それぞれの燃料領域の実形状の断面積と等価な面 積となる円(円筒)にモデル化している。

b. バスケット外周部

第5図に示すとおり、燃料領域より外側から胴内面までの領域を均質化した円筒としてモデル化している。実形状は円周方向に不均一な厚さとなっている構造であることから、バスケット外周部の密度を密度係数で調整している。密度係数は、キャスク水平断面 X-Y 体系のモデルにて円周方向のキャスク表面から1m離れた位置の最大線量当量率を算出し、この値と同等となるようなバスケット外周部の密度係数を無限円筒モデルより求め、本体モデルに反映している。したがって、本体モデルにおける線量当量率は、実形状における最大線量当量率を包絡する設定となる。設定方法の詳細は別紙1に示す。

e. 胴. 側部中性子遮蔽材及び外筒

第5図に示すとおり、円筒としてモデル化している。なお、側部中性子遮蔽材に伝熱フィンがある領域では、伝熱フィンは均質化している。

d. トラニオン部

トラニオン部については、実形状を模擬して別途モデル化し、評価している。

トラニオンを無視した本体モデルにて得られたトラニオン底面付近の線束を、別途モデル化した R-2 体系のトラニオンモデルに接続している。トラニオン部は、トラニオン中心を通る断面でトラニオン底面及びキャスク本体の一部を含めモデル化している。

トラニオン部の線量当量率は、トラニオン有りモデルとトラニオン無しモデルの線量 当量率結果より、線種ごとの線量当量率結果の比を補正値として求め、本体モデルの線 量当量率にその補正値を乗じて評価している。設定方法の詳細は別紙1に示す。

2) 三次元遮蔽解析モデル

特定兼用キャスクの実形状を基に、ガンマ線遮蔽材である鋼材の欠損となるトラニオン。

バルブ及びモニタリングボート、並びに中性子遮蔽材であるレジンの欠損となる伝熱フィン、 トラニオン、バルブ及び支柱を考慮したモデルにより評価している。使用済燃料集合体は燃料各領域の高さ寸法は固定して一次蓋及び胴(底板)に接した状態となるようキャスク全長を短縮し、径方向についてはバスケットセル内部に均質化している。

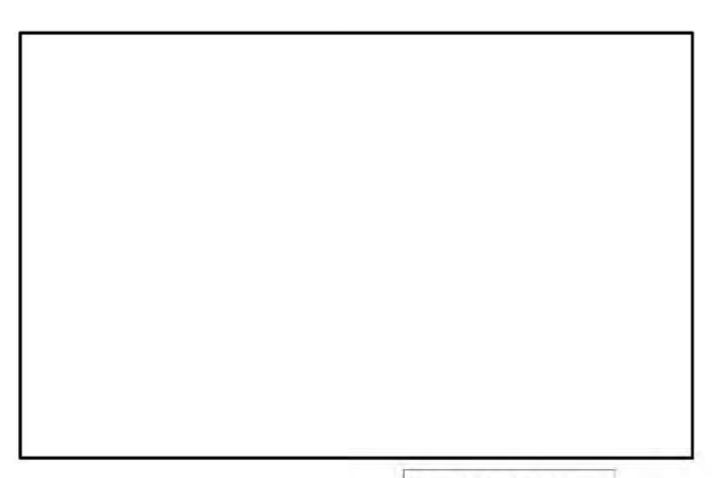
(6) 遮蔽解析の保守性

本評価においては、以下の点について保守性を有している。

- ・収納制限に対する解析条件の保守性
 - -ウラン濃縮度 4. t± wt%及び 4. 0± wt%を保守的に wt%及び wt%と する。
 - 一遮蔽評価においては、局所的な表面線量を評価する必要があるため、使用済燃料の燃焼度(集合体平均)は中央部、外周部共に当該配置の収納制限の最高燃焼度を設定している。
- ・モデル化の保守性
 - 一中性子遮蔽材は、評価期間中の熱的影響により質量減損(2.0 %程度)が発生するため、 遮蔽評価上、保守的に 2.5 %の質量減損を考慮 (原子個数密度で考慮) する。
 - 一使用済燃料について胴内での軸方向の移動を考慮し、安全側に蓋方向、底部方向に移動 したモデルとしており、線源である使用済燃料が評価点により近くなる設定としている。
 - 蓋部が金属部へ衝突しない設置方法で設置する緩衝体は、安全側に空気に置き換え、距離のみ考慮する。
 - バーナブルポイズン集合体は、放射化による線源強度については考慮するが、構造材としての遮蔽効果は無視する。

単規館だったよんじ登替後に再販 (6/1) 常1 選

			17×17 燃料	然於	
<i>y</i>	項目	キャスク収	キャスク収納位置制限	解析条件	条件
		中央部	外周郎	中央部	外周部
	種類	48,000MWd/1型 (A型·B型) 39,000MWd/1型 (A型·B型)	48,000MMd/t型 (A型·B型) 39,000MMd/t型 (A型·B型)	48,000MWd/t型 (A型、B型)	Wd/t型 B型)
秦凯语今休	初凱濃縮度 (wt%)		≤4.2		П
1 体の仕様	ウラン重量 (kg)				
	最高燃焼度 (GWd/t) (燃料集合体平均)	≥ 48	≥ (M	48	44
	冷却期間 (年)	A型B型	A型:≥15 B型;≥17	A型:15 B型:17	: 15
パーナブル	最高燃焼度 (GWd/t)				
かるくと来りかの仕様	冷却期間 (年)				
MSF-24P(S)型 1基当たりの仕様	平均燃焼度 (GWd/t)	VII	100	46	60
是 第二章	配置 (年1) (作2)		今周部 中央部	44 48 48 44 44 48 48 44 44 48 48 48 44 48 48	本 2

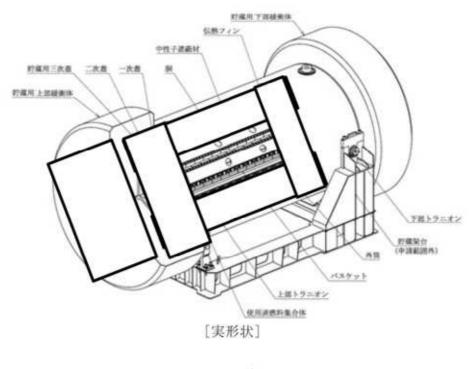

(注1)

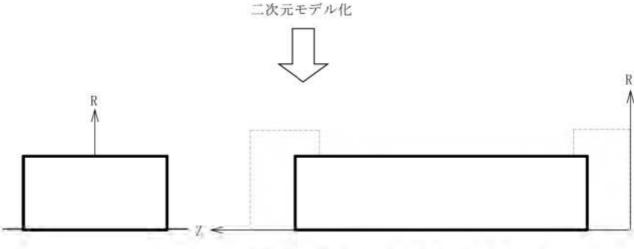
数値は燃焼度 (GWd/t) を示す。 中央部の最高燃焼度は48GWd/t、外周部の最高燃焼度は44GWd/tであり、遮蔽解析においては、最高燃焼度の燃料集合体が 収納されている条件とした。なお、17×17 燃料と 15×15 燃料は MSF-24P(S)型に混載しないが、48,000MWd/t と 39,000MWd/t、 及びA型とB型は区別なく同一キャスクへ混載可能である。

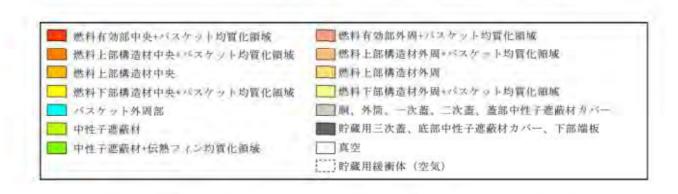
第1表(2/2) 遮蔽解析における収納物条件の概要


				15×15 繁華	李紫	
	通	項目	キャスク収	キャスク収納位置制限	解析条件	条件
			中央部	外周部	中央部	外周部
		腫類	48,000MWd/t型 (A型·B型) 39,000MWd/t型 (A型·B型)	48,000MMd/L型 (A型·B型) 39,000MMd/L型 (A型·B型)	18, BODAWA/L 型 (A型, B型)	Md/t 型 B型)
	蔡弘集今休	初期震縮度 (wt%)	≥4.			
_	1 体の仕様	ウラン 重量 (kg)				
長徳を		最高燃焼度 (GWd/t) (燃料集合体平均)	≥48	≥44	48	44
1 Cabe		冷却期間 (年)	A型B型	A型:≥15 B型:≥17	A型 B型	A型:15 B型:17
	バーナブル	最高燃焼度 (GWd/t)				
	*** ペン***ロ******************************	冷却期間 (年)				
	MSF-24P(S)型 1 基当たりの仕様	平均燃焼度 (GWd/t)	VII	≥44	4	46
	配置 (注1) (注2)	() (性2)		外周衛中央劉	44 48 48 44 44 48 48 48 44 44 48 48 48 4	44 48 48 44 44 44 44 44 44 44 44 44 44 4

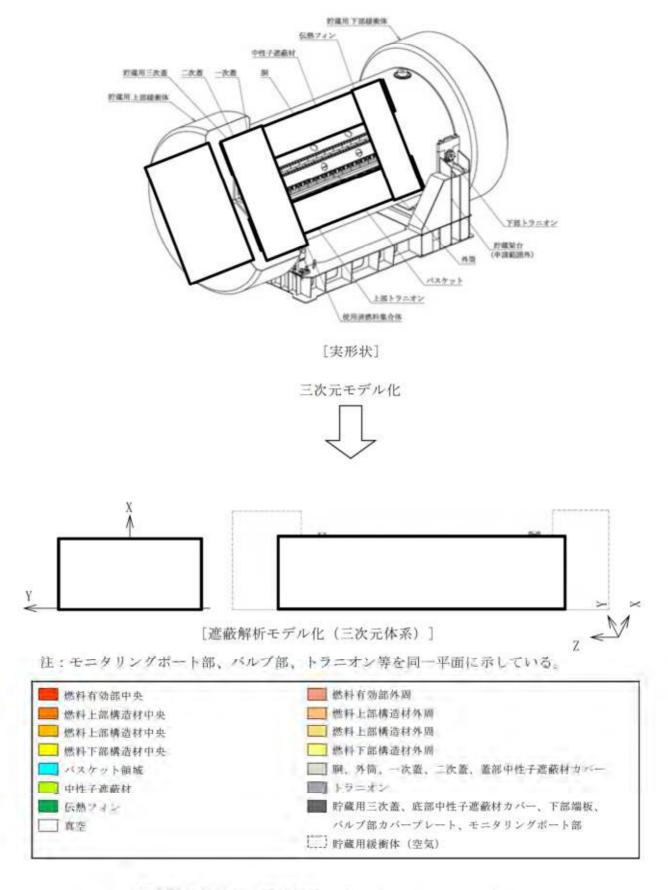
数値は燃焼度 (GWd/t) を示す。 中央部の最高燃焼度は 48GWd/t、外周部の最高燃焼度は 44GWd/t であり、遮蔽解析においては、最高燃焼度の燃料集合体が 収納されている条件とした。なお、17×17燃料と 15×15燃料は MSF-24P(S)型に匿職しないが、48,000MWd/t と 39,000MWd/t、 及びA型とB型は区別なく同一キャスクへ混載可能である。 (注1)


---- 相対燃焼度分布設定値


第2図(1/2) 軸方向燃焼度分布の設定(17×17燃料)


----- 相対燃烧度分布設定值

第2図(2/2) 軸方向燃焼度分布の設定(15×15燃料)

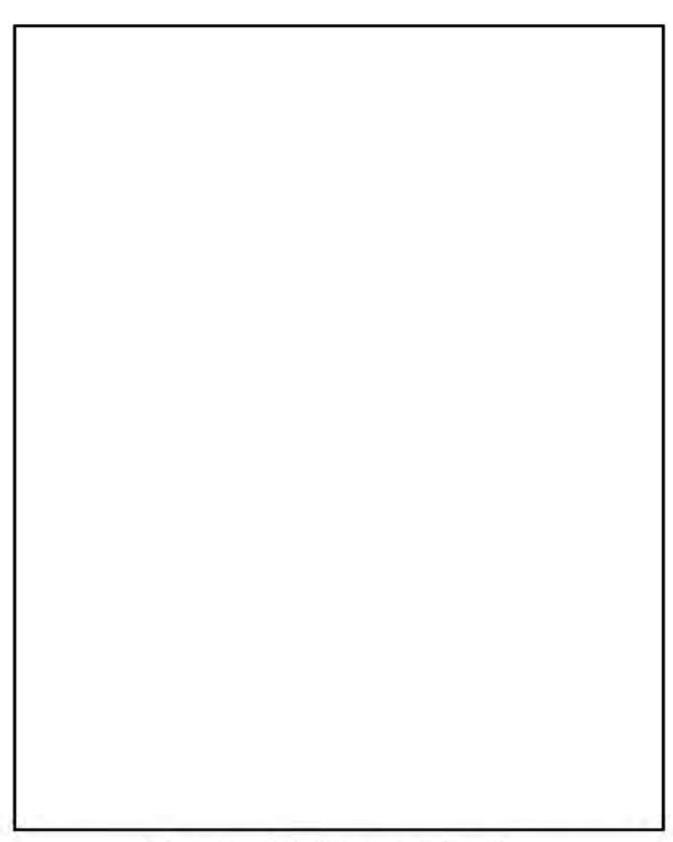

|遮蔽解析モデル化 (二次元体系 (R-Z体系))]

第3回 (1/2) 遮蔽解析モデル化概要 (二次元モデル) (蓋部が金属部へ衝突しない設置方法の例)

無断複製·転載禁止 三菱重工業株式会社

15

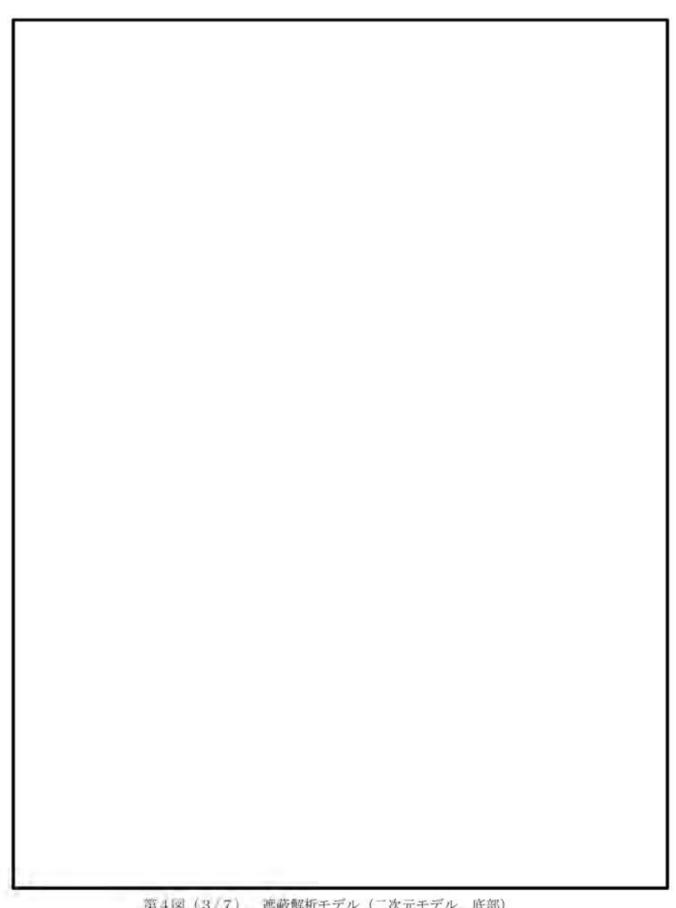
第3図(2/2) 遮蔽解析モデル化概要(三次元モデル) (蓋部が金属部へ衝突しない設置方法の例)


16

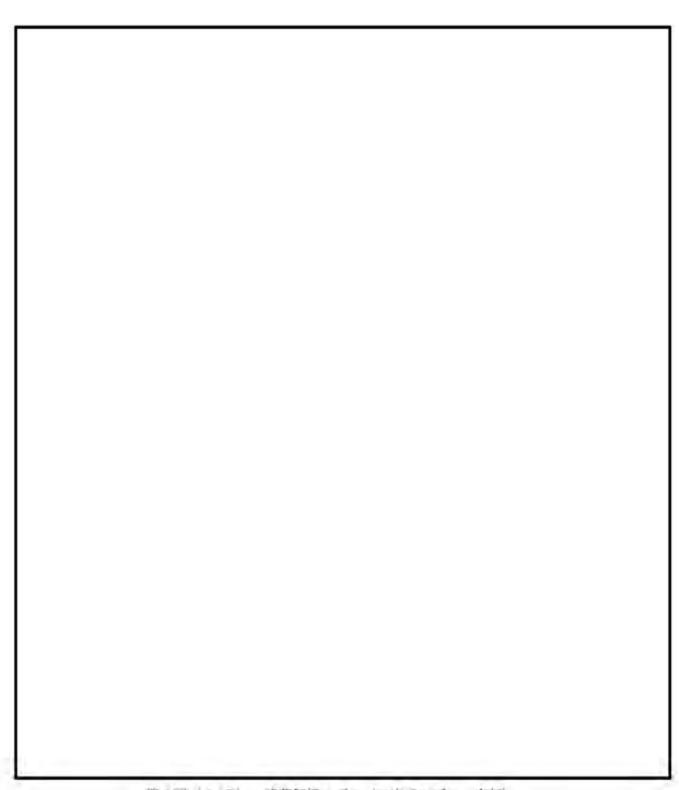
無断複製·転載禁止 三菱重工業株式会社

410年(1.77) 3年前6年4	2 2 22	

(蓋部が金属部へ衝突しない設置方法)

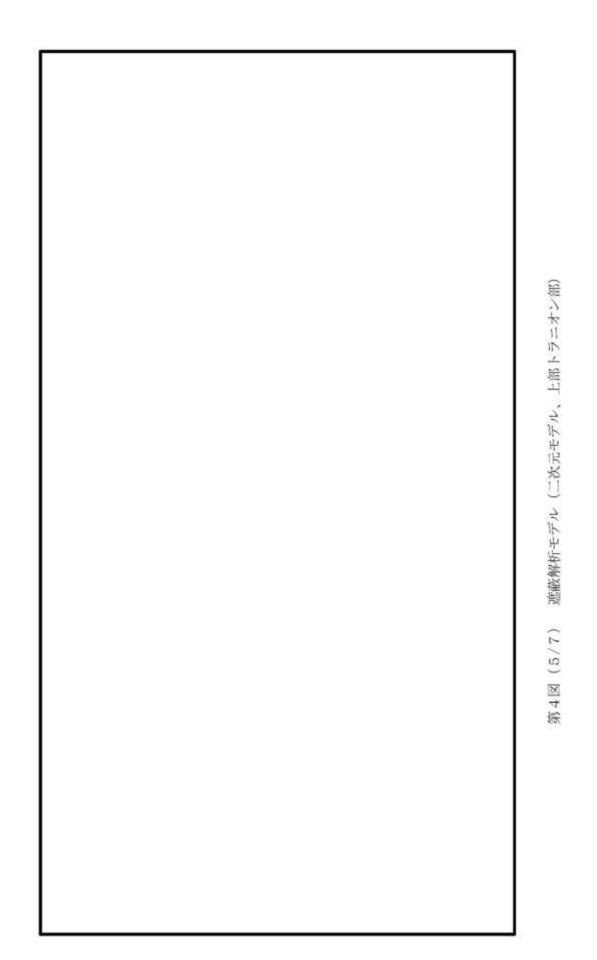

無断複製·転載禁止 三菱重工業株式会社

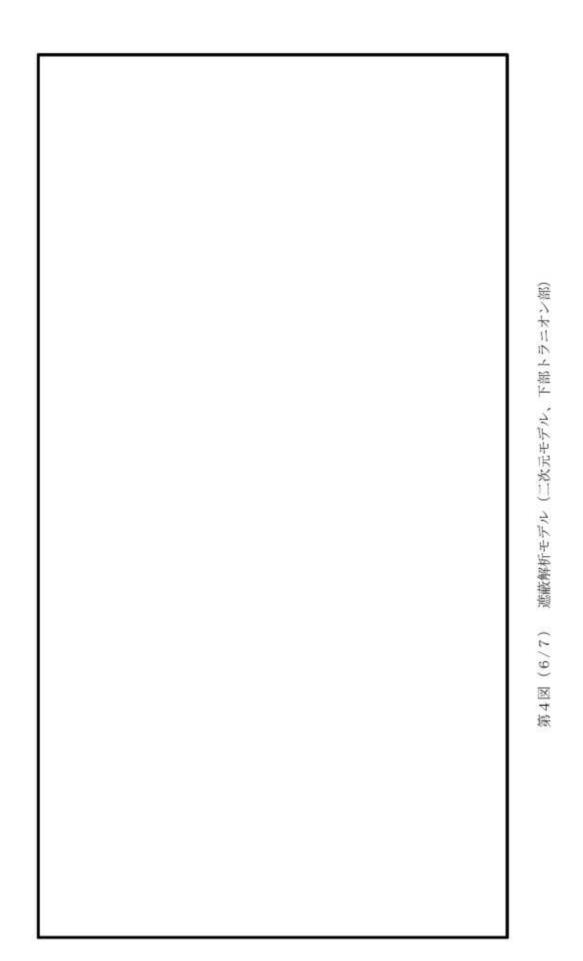
第4回(2 7) 遮蔽解析モデル(二次元モデル、頭部) (基礎等に固定する設置方法)

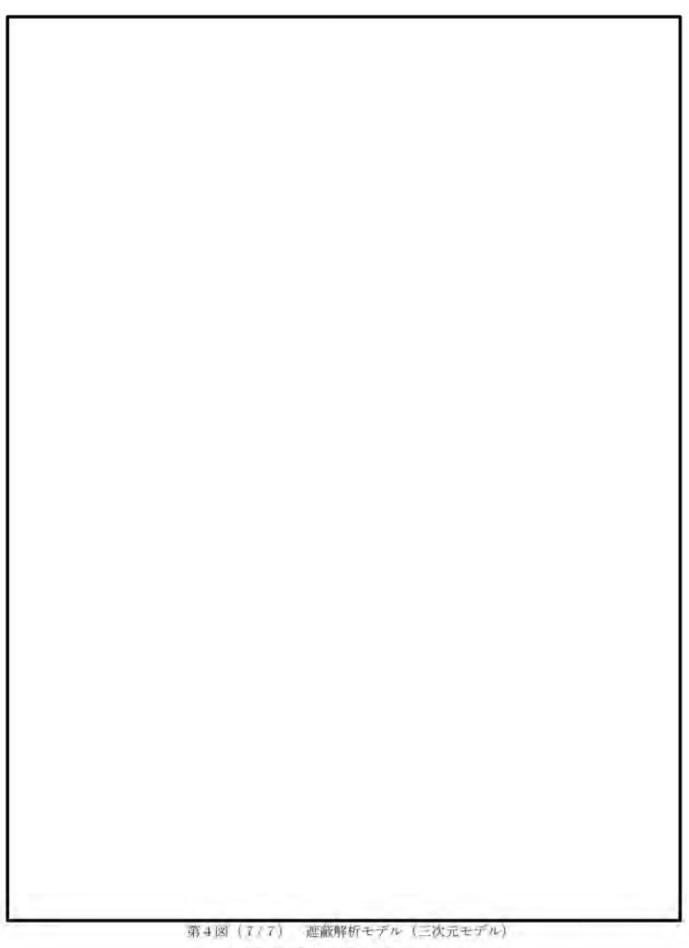

18

無断複製·転載禁止 三菱重工業株式会社

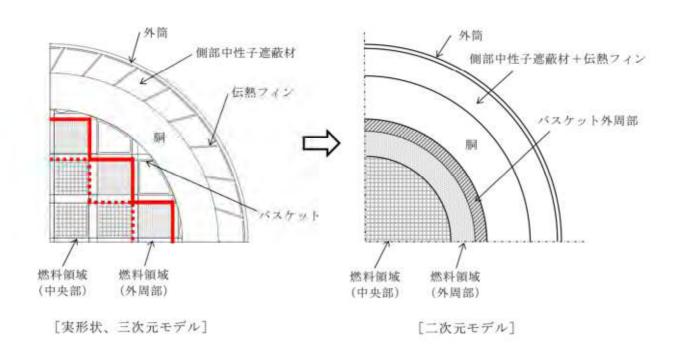
第4図 (3/7) 遮蔽解析モデル (二次元モデル、底部) (蓋部が金属部へ衝突しない設置方法)


無断複製·転載禁止 三菱重工業株式会社




第4図(4/7) 遮蔽解析モデル(二次元モデル、底部) (基礎等に固定する設置方法)

無断複製·転載禁止 三菱重工業株式会社


20

(蓋部が金属部へ衝突しない設置方法)

遮蔽解析モデルへの入力

二次元モデルの解析では、円筒形状での入力となるため、燃料領域の断面積と等価な面積となる円 (円筒) にモデル化している。その際、燃料領域は使用済燃料集合体とパスケットを均質化した物性値を設定した。 三次元モデルでの解析では、実形状に基づきモデル化している。

第5図 キャスク中央断面の実形状と解析モデル

(7) 評価結果

MSF-24P(S)型の遮蔽評価結果を第2表に示す。

特定兼用キャスクの表面及び表面から1 m離れた位置における線量当量率は、評価基準を満たしている。

第2表 (1/2) 線量当量率評価結果 (蓋部が金属部へ衝突しない設置方法)

		TV.	価	結	果		
コード	項目		7 燃料 内時	15×1 収約	5 燃料 内時	評 価 港	備考
		A型	B型	A型	B型		Ğ.
	表面 線量当量率	1.14 mSv/h	1.06 mSv/h	1.18 mSv/h	1.12 mSv/h	2 mSv/h 以下	線量当量率の詳細は、 第3表(1/12)から 第3表(4/12)に示す。
00T3. 5	表面から 1 m離れた 位置における 線量当量率	87 μ Sv/h	87 μ Sv/h	84 μ Sv/h	83 μ Sv/h	100 μSv/h 以下	線量当量率の出力位置は、
uaune.	表面線量当量率	0.789 mSv/h	0.580 mSv/h	0.805 mSv/h	0.560 mSv/h	2 mSv/h 以下	線量当量率の詳細は、 第3表 (5/12) から 第3表 (8/12) に示す。
MCNP5	表面から 1 m離れた 位置における 線量当量率	85 μ Sv/h	83 μ Sv/h	83 μ Sv/h	79 μ Sv/h	100 μSv/h 以下	線量当量率の出力位置は、

第2表 (2/2) 線量当量率評価結果 (基礎等に固定する設置方法)

1		74	fiffi	結	果			
⊐ - ¢	項目		7燃料	15×1	5 燃料 内時	評 価基 準	備	考
		A型	B型	A型	B型			
5240 4004	表面 線量当量率	1.83 mSv/h	1.72 mSv/h	1.92 mSv/h	1.83 mSv/h	2 mSv/h 以下	第3表(9	詳細は、 /12)から 2/12)に示す。
DOT3. 5	表面から 1 m離れた 位置における 線量当量率	86 μ Sv/h	86 μ Sv/h	85 μ Sv/h	82 μ Sv/h	100 μSv/ 以下	線量当量率の h 第6図(9	

⁽注)蓋部が金属部へ衝突しない設置方法結果より DOT3.5 コードによる評価を実施。

線量当量率評価結果 (17×17 燃料 (A型) 収納時 DOT3,5コード、蓋部が金属部へ衝突しない設置方法) 第3数 (1/12)

	評価点			構造な		中性子	名	評価点		構造材		中性子	
			燃料有効部	構造材放射化	二次ガンマ線	7			燃料有効部	構造材放射化	二次ガンマ線	7	
	軸方向	0	< 0.1	0.2	0.2	41.7	42.2 (注2)	3	< 0.1	< 0.1	<0.1	20.9	
頭部	径方向	(3)a	< 0.1	9.0	1.1	389, 3	391, 1 (38.2)	Фа	22. 5	20.1	5.4	24.5	
	径方向 (トラニオン部)	(3)p	8.0	103.0	5.7	753, 8	870.5	(J)	22.6	20.9	5.4	34.0	
	(01/32)	(Ē)	100.7	25.9	25.7	45.1	197.4	9	44.8	12.5	10.4	18.4	86.1
	径方向	(Da	5.9	15.0	4.4	258.6	283.9	(8)a	25.8	14.6	5.8	15.2	
底部	径方向 (トラニオン部)	900	5.1	13.4	4.8	1108.3	1131.9 [1, 14] (# i)	(8)p	25.1	12.8	5.7	26.3	
	軸方向	6	6.0	35.9	4.6	25.2	71.7	9	2.6	14.8	1.7	15.8	

]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

線量当量率評価結果 (17×17 燃料 (B型) 収納時 DOT3,5コード、蓋部が金属部へ衝突しない設置方法) 第3炎 (2/12)

			*	(A) [4]	表面		l .		-	57 V.	面から		
	評価点		燃料有効部	構造材放射化	以がガンマ線	444	수미	評価点	燃料有効部	構造材放射化	東二次ガンマ線	中性子	#4
	軸方向	Φ	<0.1	0.3	0.2	38.0	38.6 (≇೨)	8	< 0.1	0.2	< 0.1	19.1	10 c (#2)
頭部	径方向	(3)a	<0.1	1.1	1.0	354.1	356.3 (#2)	Фа	19.0	30.6	5.1	22. 2	20 0
	径方向 (トラニオン部)	(3)P	6.3	183.8	5.2	666.5	861.8	4D	19.2	32.0	5.0	30, 7	86.9
	(9) (32)	(E)	84.8	(7.2	23.8	41.9	167.7	9	20.4	29.6	5.3	21.5	76 0
	径方向	(Da	5.0	25. 2	4.1	243. I	277. 4	®a	21.8	17.3	5.4	14.3	0
底部	径方向 (トラニオン部)	9@	4,7	22, 1	4.5	1021.8	1053. I	(8)6	13.8	11.9	3.9	36.5	22
	軸方向	6	5.2	59.9	4.3	23.7	93.1	9	2.3	24.8	1.6	14.9	40 6

]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

線量当量率評価結果 (15×15 燃料 (A型) 収納時 DOT3,5コード、蓋部が金属部へ衝突しない設置方法) 第3数 (3/12)

			Ŧ	(A) P8	表面類				Ŧ	1 K.S	国ぐで薬		
	評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	44	評価点	燃料有効部	構造材放射化	二次ガンマ線	中性子	4:
	軸方向	Œ	<0.1	.6, 2	0.2	44.3	44.8 (#2)	8	< 0.1	< 0.1	<0.1	22. 2	22.5(注2)
頭部	径方向	(3)a	< 0.1	0.5	1.2	421.0	422.8 (注2)	Фа	22. 4	14.7	5.7	25.9	68.7
	径方向 (トラニオン部)	(3)p	8.0	75.3	6.0	773.1	862. 4	(Dp	22.5	15.2	5.6	35, 8	79.1
	側海	(Ē)	100.2	18.8	26.9	47.4	193.3	9	44,5	9.1	10.9	19.4	83.9
	径方向	(Qa	5.8	8.8	4.6	271.8	291.0	(8)a	25.7	9.7	6.1	16.0	57.5
底部	径方向 (トラニオン部)	9@	5.3	6.7	5.1	1154.6	1172.9 [1. 18] (# 0	(8)p	16.0	6.4	4.4	40.9	7.79
	軸方向	6	0.9	1.8	1.3	66.3	70.3	8	2.7	9.5	1.8	16.6	30.6

]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

線量当量率評価結果 (15×15 燃料 (B型) 収納時 DOT3,5コード、蓋部が金属部へ衝突しない設置方法) 第3数 (4/12)

	評価点			がなる		中性子	如	評価点		ないとは		中性子	i
			燃料有効部	構造材放射化	二次ガンマ線	4	4-		燃料有効部	構造材放射化	二次ガンマ線	+	
	向大榊	(I)	< 0.1	0.2	0.2	39.9	40.4 (注2)	3	< 0.1	< 0.1	<0.1	20.0	(6-4) 0 00
頭部	径方向	(3)a	<0.1	6.0	1.1	377.7	379.8 (38.2)	Фа	19.1	24.8	5.3	23. 3	i t
1.7	径方向 (トラニオン部)	(3)P	F. 1	142, 9	5, 5	700.8	855.3	(£)P	19,2	26.0	5.3	32, 5	83.0
	側部	(E)	85.2	16.2	25.1	44.2	170.7	9	37.8	8, 5	10.2	18.0	i
	径方向	©a	5.1	15.0	4.4	259.3	283.8	(8)a	21.8	11.6	5,7	15.2	4 7 1
底部	径方向 (トラニオン部)	90	4,7	13.0	4.8	1096.3	1118.8 [1, 12] (# 0	9(8)	13.8	7.9	4.2	39.5	4 1
	軸方向	6	0.8	2.6	1.2	63.4	68.0	(3)	2.3	13.7	1.7	15.9	000

]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

線量当量率評価結果 (17×17 燃料 (A型) 収納時 MCNP5 コード, 蓋部が金属部へ衝突しない設置方法) 第3表 (5/12)

		頭部	部	(Fin Ort	底部	382
	評価点	軸方向	径方向	Min	径方向	軸方向
		Θ	(3)	(0)	Œ.	6
	然均有効部	<0.1	60.6	113.6	91.3	6.5
R		(0.0)	(0,0)	(0.3)	(3, 2)	(1.0)
7 1/2	構造材放射化	0.2	161.7 (2.9)	26.8 (0.9)	(3.8)	37.9
菱	親れな子及し	0.3	9.6	25,4	12.1	4.8
	100 mm	(3.4)	(1, 9)	(1, 2)	(2, 7)	(1.7)
	中性子	41.3	433.6	40.7	616.2	21.8
	44日	41.9 (#2)	665. 5	206, 5	788.7	71.0
	評価点	@	(P)	9	8	(9)
3	燃料有効部	<0.1	23.4	45.0	27.1	2.9
376	構造材放射化	0.2	22.7	11.5	13.0	16.8
蘂	二次ガンマ線	0.2	5.1	10.0	(0.5)	1.8
	中性子	20.3	32. 3 (0. 9)	17.7 (0.2)	29.1	12.9
	合計	20.8 (#2)	83, 5	84.3	74.7	34. 4

※ ()内は統計誤差(単位:%)を示す。

下線で示す値は、表面及び表面から1 m離れた位置における線駐当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値(表面の単位: mSv/h, 表面から1 mでの単位: μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。

線量当量率評価結果 (17×17 燃料 (B型) 収納時 MCNP5コード、蓋部が金属部へ衝突しない設置方法) 第3表 (6/12)

(単位: μ Sv/h) 軸方向 5.5 63.3 20.6 94.0 2.5 12.5 44.8 4.6 28.2 (0.4) 1.6 (0.5)6 底部 径方向 483, 3 405.4 (1.7) 13.3 65.2 37.3 31.1 22.3 24.5 9.5 5.1 6 00 166.8 2.62 85.9 10.7 20.3 28.6 (0.5) 5.0 無部 (0.6) 46.1 6 579.2 580] OE U 83] (#1) 径方向 342.6 197.1 8,4 28,2 (1.6)(0, 4) 31, 7 4,6 31.1 0 頭加 植方向 19.6 0.2 (2, 5) 38.2 38.7 0.1 (2, 5) (2, 5) 0.2 3, 3 (0, 7) 0 (3) 構造材放射化 構造材放射化 二次ガント線 二次ガント鎌 燃料有効部 燃料有効部 中性子 中性子 北京 合計 評価点 評価点 ガント族 ガント薬 表面から - = 表面

※ () 内は統計誤差(単位:%)を示す

下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。

線量当量率評価結果 (15×15 燃料 (A型) 収納時 MCNP5 コード, 蓋部が金属部へ衝突しない設置方法) 第3表 (7/12)

)	頭部	Amichin	底部	銀
	評価点	軸方向	径方向	(周祖	径方向	軸方向
		0	8	0	0	0
	株均有効能	0.1	9.19	1.801	93.1	0.9
#	жаттт 50 нр	(4.5)	(2.0)	(0.6)	(4.2)	(1.2)
(7)	建洗妆材料	0.1	114.3	19.3	43.3	1.7
1.1	119,4E,173 //A,311 LL	(2, 1)	(1.2)	(0, 6)	(1.6)	(1.1)
粉	サインドを一	0.3	10.3	25.5	12.8	1.3
	-CA-1 WK	(3, 5)	(1.8)	(1.0)	(2.0)	(3.0)
	中林 7	45.3	464, 4	43.4	655.2	56.3
	T#1	(1.7)	(0.7)	(0, 5)	(0.9)	(1.8)
	合計	45,8	650.6	196.3	[0, 805] of 0	60.2
	評価点	3	Ŧ	9	8	00)
	操作を持御	0.1	22.4	44.9	25.4	3, 1
#	邓朴相刈即	(0, 5)	(0.3)	(0, 2)	(0, 3)	(0, 3)
7.5	44.44.44.44.44.44.44.44.44.44.44.44.44.	0.1	16.2	8.5	8.3	10.6
1000	1件。但约 000约115	(0, 3)	(0, 5)	(0.2)	(0, 5)	(0.2)
を	場かべたまし	0.2	5,3	10,5	5.5	1.9
	-CA - 1 MA	(1.2)	(0.4)	(0.3)	(0, 4)	(0.6)
	T-1/4-7	22. 2	35.9	19.0	32.0	14.0
	THE	(0, 2)	(0.5)	(0, 1)	(0, 6)	(0, 2)
	如	22.6	79.8	82, 9	71.2	29.6

※ () 内は統計誤差(単位:%)を示す。

下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h, 表面から1 mでの単位: μSv/h)。

線量当量率評価結果 (15×15 燃料 (B型) 収納時 MCNP5 コード、蓋部が金属部へ衝突しない設置方法) 第3表(8/12)

(車位: a Sv/h)

		(H)	頭部	API VIII	辺	底部
	評価点	軸方向	径方向	ON DD	径方向	軸方向
		Θ	@	9	(L)	6
	然料有効部	0.1	30.6	85.7	37.6	5.5
F	ANTO LI LIVOR	(2.9)	(1, 5)	(0.5)	(3, 6)	(0.4)
	無法がかけん	0.2	164.5	14.9	21.8	34.4
1	14/10/1/ // // 11/1	(0.9)	(0.7)	(0.5)	(3, 6)	(0, 2)
_	即~~ハナ・ツー	0.2	8.5	23.1	6.6	4.8
厘	一次ソント禁	(1.6)	(0.7)	(0.5)	(2, 9)	(0.7)
	14年7	40.5	355.7	40.6	435.6	21.9
	1.11.1	(0, 7)	(0.6)	(0.4)	(1.9)	(0, 3)
	合計	41.0	559.3	164.3	504. 9	99.99
	評価点	3	(f)	9	8	(8)
	操作去给你	0.1	18.1	20.4	21.3	2.5
#	RAPT TH MURP	(1.6)	(0.4)	(0.3)	(0.6)	(0.6)
	44.14.14.14.14.14.14.14.14.14.14.14.14.1	0.2	25.5	23, 3	9.2	15.4
国で	1件、但 17 从 11 几	(0.9)	(0.7)	(0.6)	(0.9)	(0.4)
	10 - X-1-10 -	0.2	4.8	5.3	5.2	1.8
0 -	一ペント・歌	(2.1)	(0.3)	(0.3)	(0, 4)	(1.1)
	と対す	20.1	29.8	27.0	27.2	13, 3
FI	TIET	(0, 5)	(0.6)	(0, 5)	(0.8)	(0, 5)
	合計	20.6	78.2	76.0	62, 9	33.0

※ () 内は統計誤差(単位:%)を示す。

下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。

線量当量率評価結果 (17×17 燃料 (A型) 収納時 10073.5 コード, 基礎等に固定する設置方法) 第3表 (9/12)

(単位: μ Sv/h)

(注1)[]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。

DVT3.5 コード、基礎等に固定する設置方法) 線量当量率評価結果(17×17 燃料(B型)収納時 第3表 (10/12)

(胜2) (単位: μ Sv/h) 軸方向 < 0.1 LO. 77.5 21.7 0.5 0.8 01 4.3 3 208 6 (8) 209.9 8 3 (トラニオン部) 1021.8 1053.1 径方向 底部 3 9 4.7 (D) LO. 8b 9 00 9 63 80. 22. 4 1 6 ci. [L.72] IBH 1698, 9 1719.9 径方向 10,7 54. 1 7,6 2.7 3.4 6.9 (D) 8)B 9.7 74 167.7 84, 8 17.2 75.6 20.4 無部 30 D 9 52 3 (in) 9 20. 23. 41. 29. ió (トラニオン部) (1 to 1) [98] 径方向 183.8 850.8 LO 29.5 19, 2 0 5,0 85, 7 6.3 0 36 01 655. 32. ιó 735.4 (注2) 径方向 731.3 < 0.1 19.0 21.0 75.7 頭部 S 3a 1.9 (4) 5, 1 30. 5 5 (#2) 軸方向 303, 6 < 0.1 59.1 65.4 1.0 0.4 00 0 1-0 (0) 0 0 5 305. 構造材放射化 構造材放射化 一次
ガント
鎌 二次ガント線 燃料有効部 燃料有効部 中性子 中性子 中半 古事 評価点 評価点 おソト海 おソト雄 表面から1m 表面

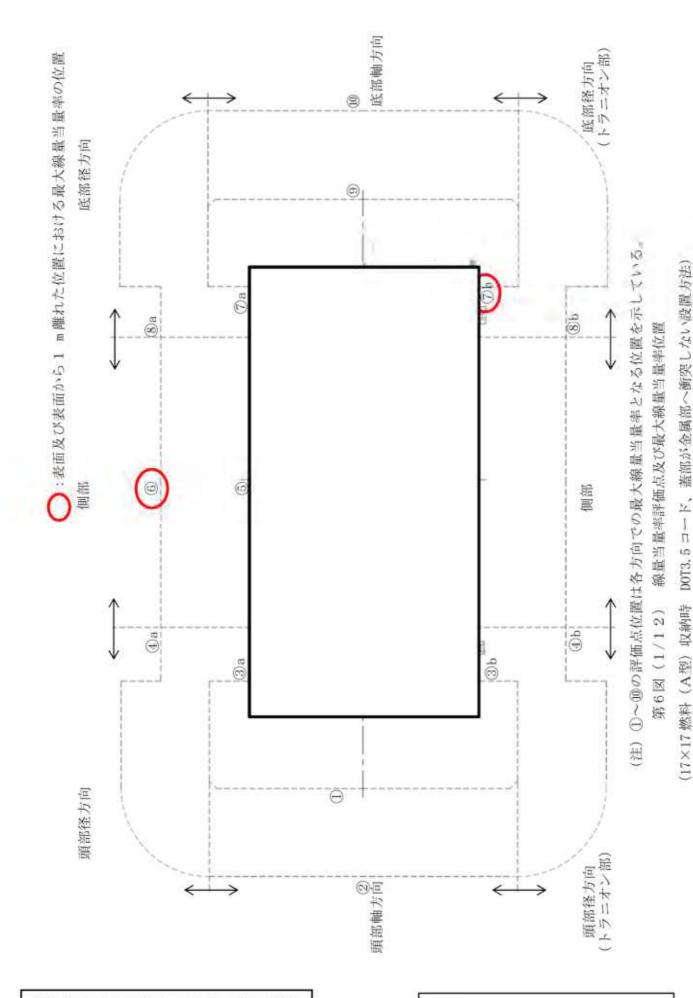
]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

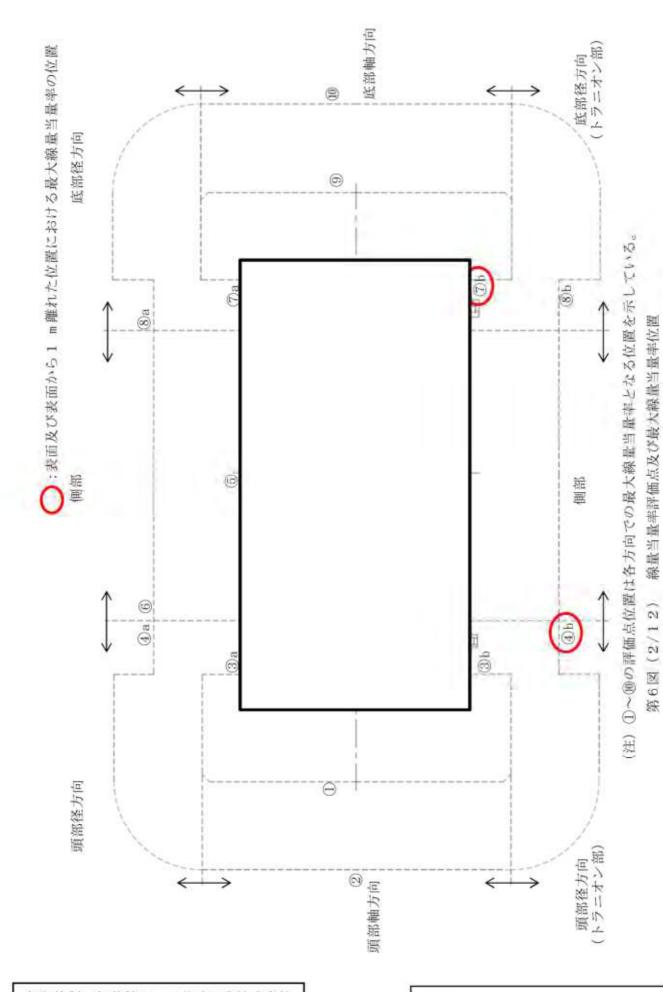
下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。

線量当量率評価結果 (15×15 燃料 (A型) 収納時 D073.5 コード、基礎等に固定する設置方法) 第8表 (11/12)

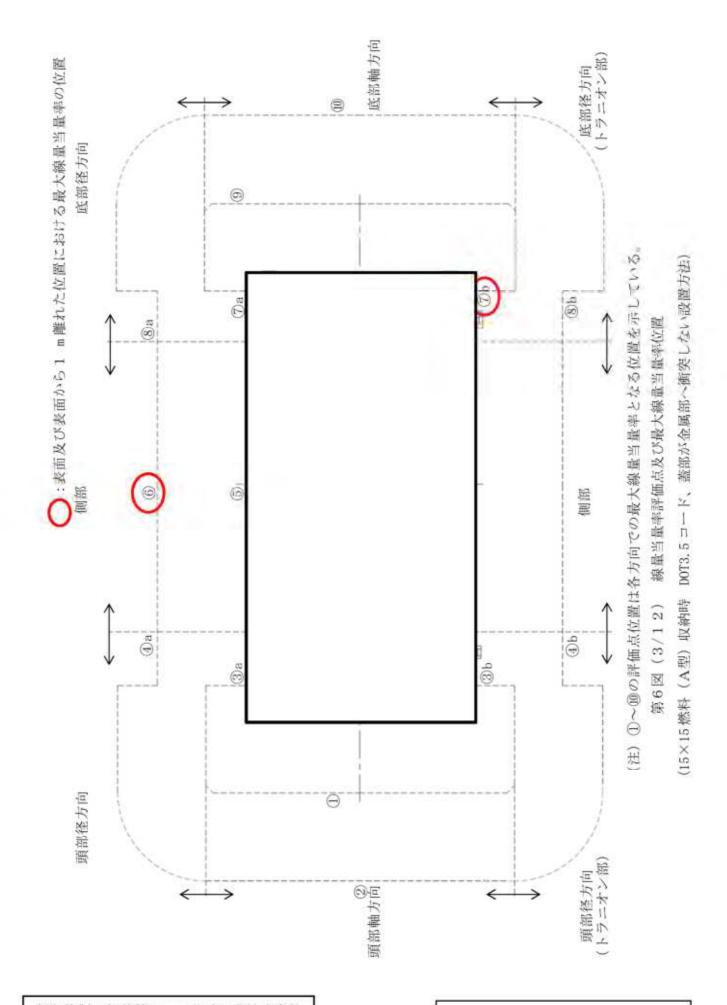
(単位: μ Sv/h)

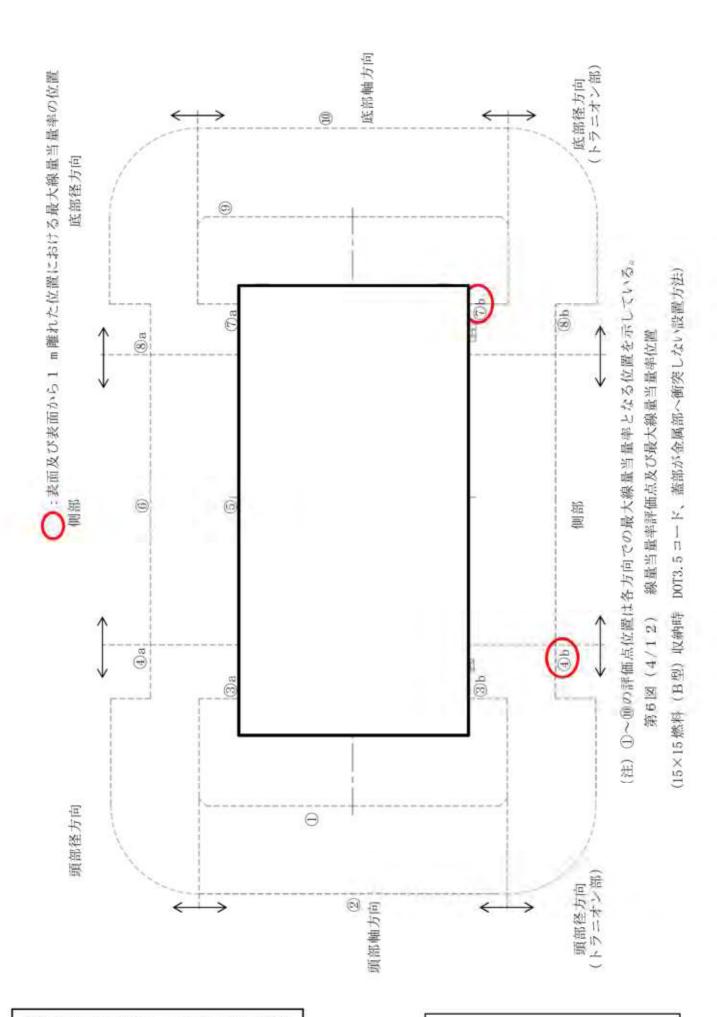
			頭部					底部
	評価点	軸方向	径方向	径方向 (トラニオン部)	側部	径方向		径方向 (トラニオン部)
		Θ	3a	@p	9	©a		Q)p
Ŧ	燃料有効部	< 0.1	<0.1	8.0	100.9	3.9		5.3
(7) V	構造材放射化	0.2	6.0	75.3	18.8	3,8		6.7
来 漢	二次ガンマ線	8.0	2.4	6.0	26.9	7.7		5, 1
	中性子	356.5	858.0	760.5	47.4	1895.8	1	1154.6
	春	357.6 (#2)	861.4 (第2)	849.8	193.3	1911.2	-	1172.9
	評価点	3	Фа	⊕ ⊕	9	®a	,0,	(8)p
7	燃料有効部	0.3	22.4	22.5	44. 5	8.0	15	7.0
支いてい	構造材放射化	2.8	14.7	15.2	9.1	4.4	57	3.6
面から藤	二次ガンマ線	0, 4	5, 7	5,6	10.9	2.9		2.8
- E	中性子	6.89	24.5	34. 4	19.2	62.0	7	71.6
	中	72.4	67.3	77.7	83.7	77.3	8 55	85.0

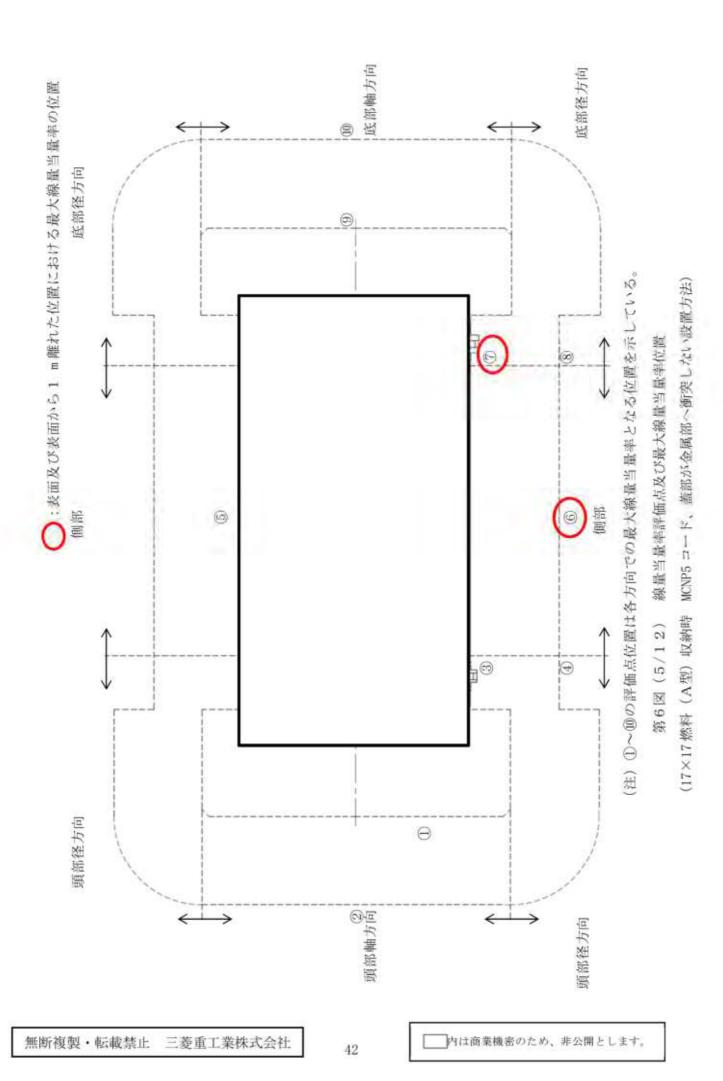

]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

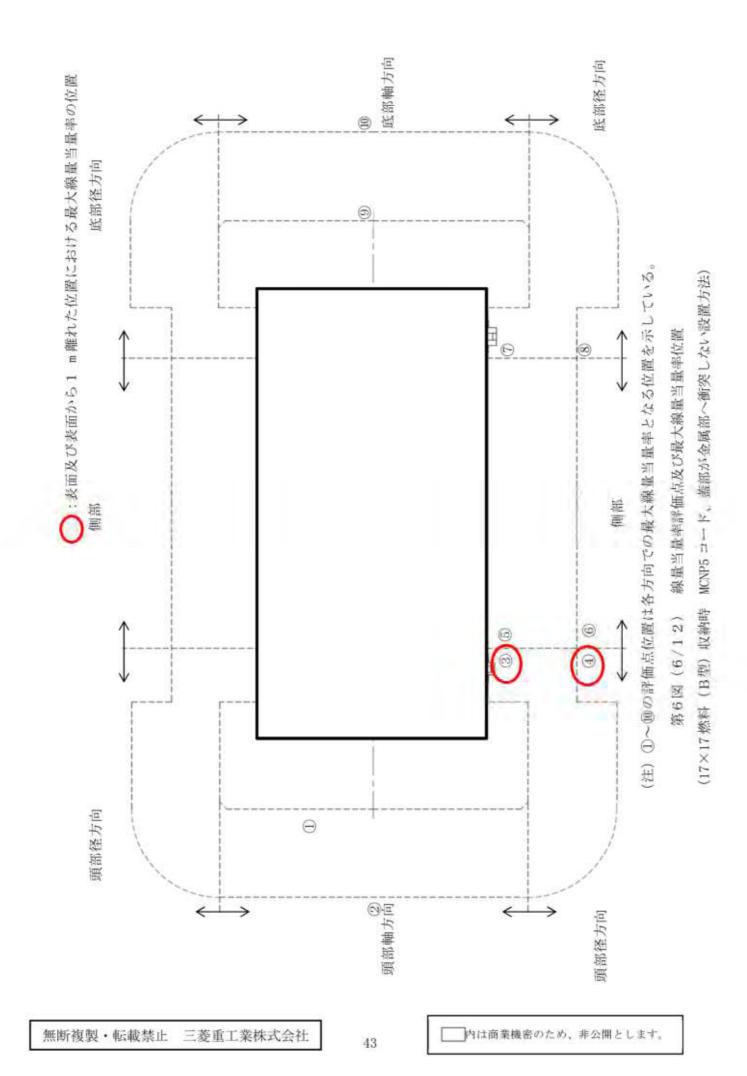

線量当量率評価結果 (15×15 燃料 (B型) 収納時 DOT3.5コード、基礎等に固定する設置方法) 第3数 (12/12)

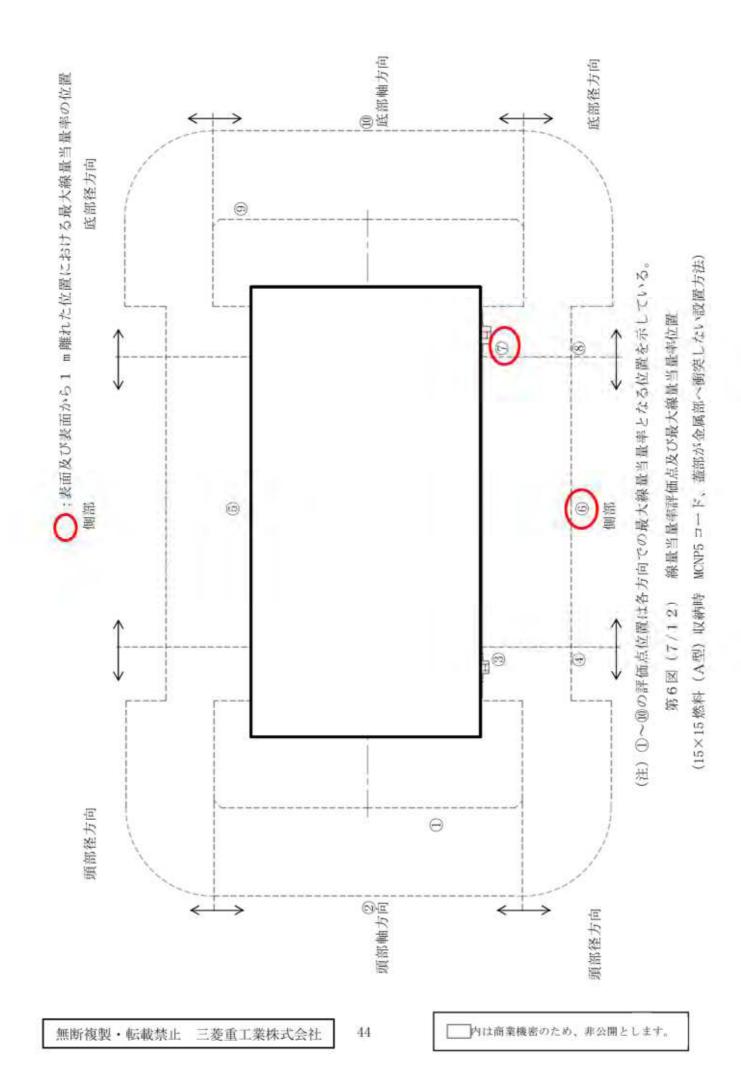
			頭部	1		П	П
	評価点	軸方向	径方向	径方向 (トラニオン部)	1 (銀)	(側部	
		Θ	(3)a	989		9	(L) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D
Ŧ	燃料有効部	<0.1	<0.1	6.1		85.2	85.2 3.5
() P8	構造材放射化	0.4	1.4	6.241		16.2	16.2 6.6
東	二次ガンマ線	0.8	2.2	5,5		25.1	25.1 7.3
	中性子	322.0	770.8	689, 2	I	44.2	44.2 1810.9
	4 4	323, 3 (#2)	774.5 (胜2)	843, 7		7.071	170.7 1828.3
	評価点	3	Фа	(D)P		9	(B) (B) (B)
Ŧ	燃料有効部	0.2	19.1	19, 2		37.8	37.8 7.6
:16:	構造材放射化	4.4	24.8	26.0		8, 5	
藥	二次ガンマ線	0.4	5.3	5,3		10.2	10.2 2,9
	中性子	62.0	22. 1	31.2		17.9	17.9 57.6
	和	67.0	71.3	81.7		74.4	74.4 74.3

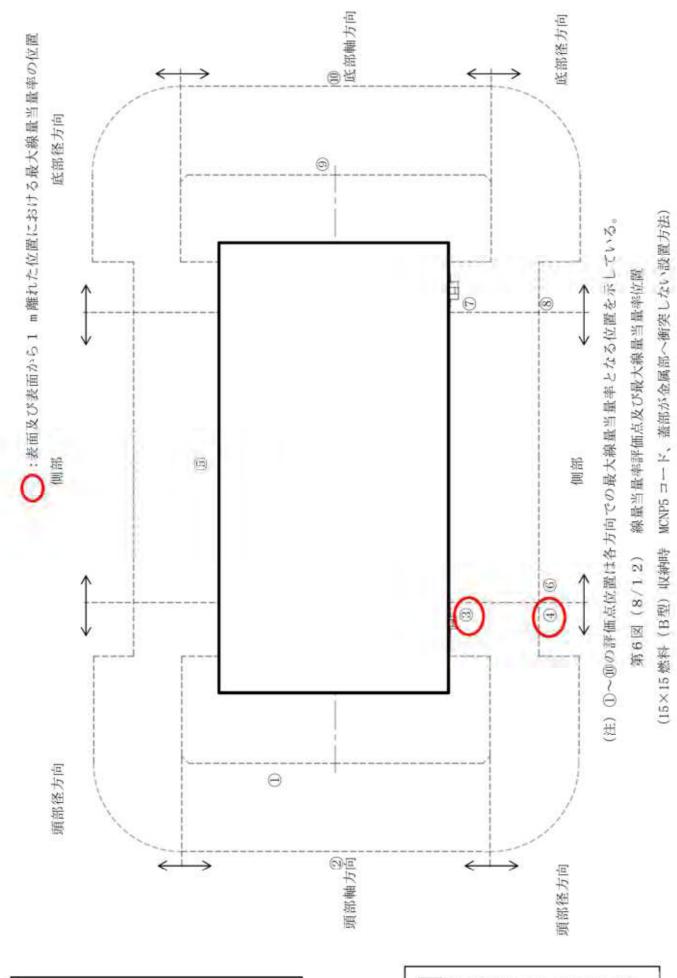

]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。 (注1)[

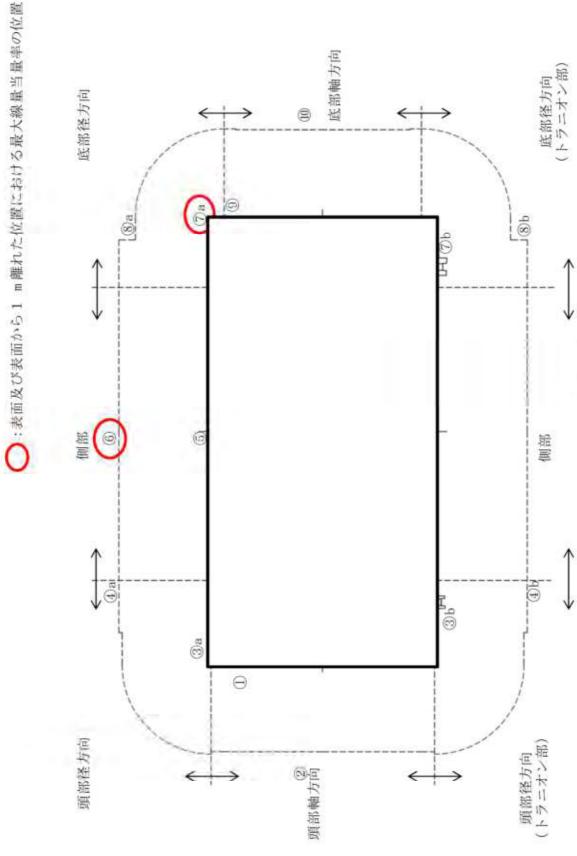

下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。

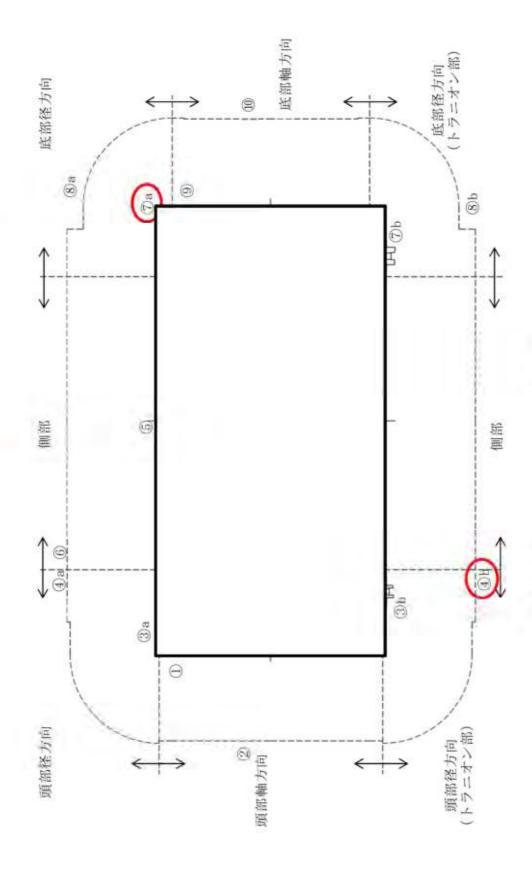


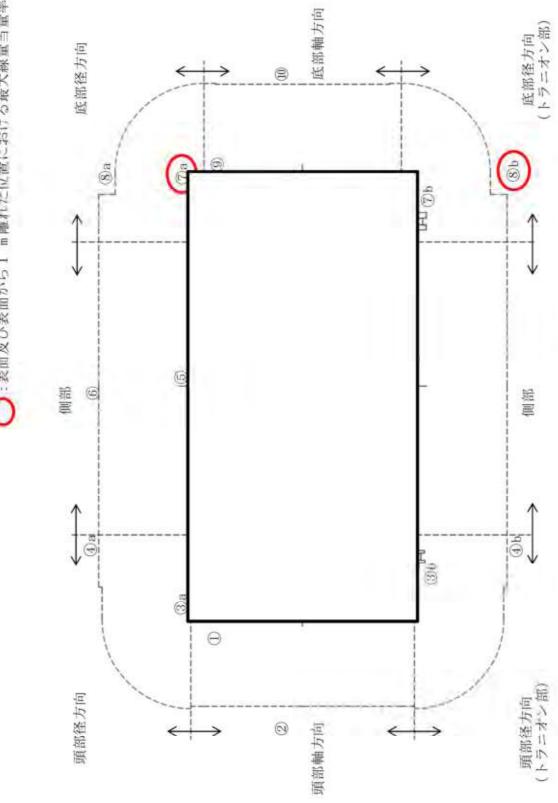



(11×17 燃料 (B型) 収納時 DoT3.5コード、蓋部が金属部へ衝突しない設置方法)

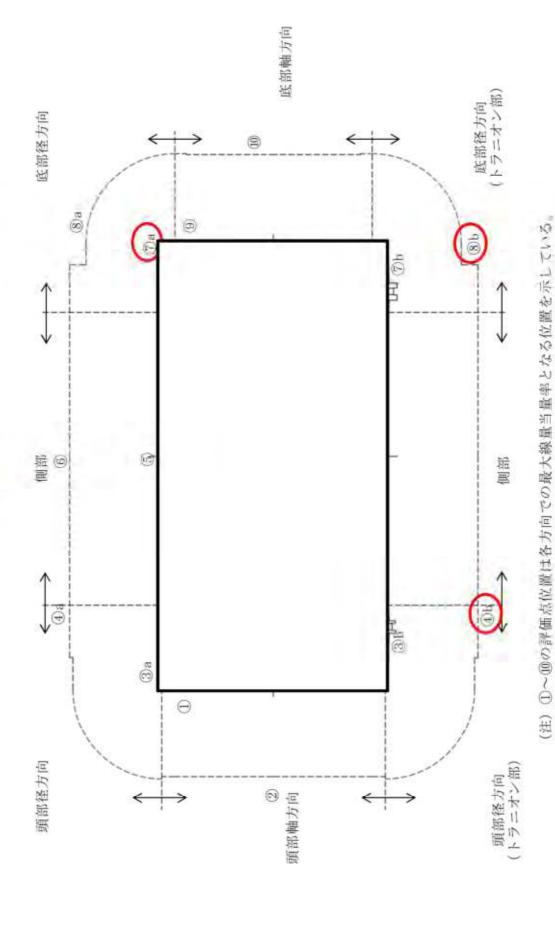








(注) ①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 (17×17 燃料 (A型) 収納時 DOT3.5コード、基礎等に固定する設置方法) 線量当量率評価点及び最大線量当量率位置 第6図 (9/12)



(注)①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 第6図(10/12) 線量当量率評価点及び最大線量当量率位置 (17×17 燃料(B型)収納時 DOT3.5コード、基礎等に固定する設置方法)

(注) ①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 線量当量率評価点及び最大線量当量率位置 第6回 (11/12)

(15×15 燃料 (A型) 収納時 DOT3.5コード、基礎等に固定する設置方法)

第6図 (12/12) 線量当量率評価点及び最大線量当量率位置 (15×15 燃料 (B型) 収納時 DOT3.5コード、基礎等に固定する設置方法)

[確認内容]

3) 敷地境界における実効線量評価

① 直接線及びスカイシャイン線の評価

兼用キャスクが敷地境界に近い場所に設置される場合等に、使用済燃料から放出される中性子の敷地境界線量への寄与が大きくなる可能性があることを適切に考慮した上で、通常貯蔵時の直接線及びスカイシャイン線(ガンマ線及び中性子)による実効線量について評価すること。

② ソースターム

兼用キャスクの遮蔽機能データ又は兼用キャスク表面から 1m 離れた位置における 線量当量率が 100 μ Sv/h となるよう放射線源強度を規格化したものを用いること。こ こで、放射線源強度を規格化して用いる場合は、中性子 100%又はガンマ線 100%のい ずれか保守的な線量評価とすること。また、中性子及びガンマ線の表面エネルギース ベクトルは、保守的な線量評価となるものを使用すること。

③ 遮蔽解析コード等

検証され適用性が確認された遮蔽解析コード等を使用すること。なお、モンテカル ロコードを用いる場合は、相互遮蔽効果、ストリーミング及びコンクリート深層透過 の観点から検証され適用性が確認されたものであること。

④ 通常貯蔵時の線量

通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、ALARA の考え方の下、敷地境界において実効線量で $50\,\mu\,\mathrm{Sv/y}$ 以下となることを目標に、線量限度 $(1\mathrm{mSv/y})$ を十分下回る水準とすること。

なお、兼用キャスク以外の施設の線量は、既評価の空気カーマ(Gy/y)を実効線量(Sv/y)へ換算し、又は新たに実効線量(Sv/y)を評価するものとする。換算に当たっては、係数を1とすること。

4) 応急復旧

貯蔵建屋等を設置する場合は、貯蔵建屋等の損傷によりその遮蔽機能が著しく低下 した場合においても、必要に応じて土嚢による遮蔽の追加等の適切な手段による応急 復旧を行うことにより、工場等周辺の実効線量が敷地全体で線量限度(1mSv/y)を超え ないこと。この場合において、応急復旧による遮蔽機能の回復を期待する場合には、そ の実施に係る体制を適切に整備すること。

敷地境界における実効線量評価及び応急復旧は型式証明申請の範囲外(設置(変更)許可 時の別途確認事項)である。

3. 使用する解析コード

MSF-24P(S)型の遮蔽設計に用いられる解析コードについて、その機能、計算方法、使用 実績及び検証結果について説明する。

(1) ORIGEN2 = - F

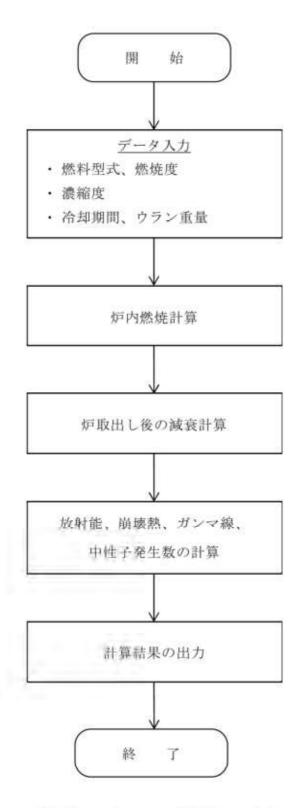
1) 概要

ORIGEN2 コード ¹¹¹ は、米国のオークリッジ国立研究所 (ORNL) で開発された燃焼計算コードである。ORIGEN2 コードは公開コードであり、輸送容器の崩壊熱計算等に広く用いられている。

2) 機能

ORIGEN2 コードは、燃焼計算に際して以下の機能を有している。

- ① 燃料の炉内での燃焼計算、炉取出後の減衰計算により、冷却期間に対応した 崩壊熱、放射線の強度、各核種の放射能量等が求められる。
- ② 原子炉の炉型と燃料の組合せに対し、中性子エネルギースペクトルの違いに より重みをつけた断面積ライブラリデータが内蔵されており、任意に選択で きる。
- ③ 計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
 - ④ 燃焼計算に必要な放射性核種のデータ(崩壊熱、ガンマ線のエネルギー分布。 自発核分裂と(a、n)反応により発生する中性子源強度等)は、ライブラ リデータとしてコードに内蔵されている。


3) 計算フロー

ORIGEN2 コードの計算フローを第7図に示す。

4) 使用実績及び検証

ORIGEN2 コードは、輸送キャスク、原子燃料施設の崩壊熱計算に広く使用されている。また、ORNL では ORIGEN2 コードの崩壊熱計算結果を ANS 標準崩壊熱の値と比較し、ORIGEN2 コードの妥当性を検証している (4)。

ORIGEN2 コードの検証例を第8図に示す。

第7図 ORIGEN2 コード計算フロー図

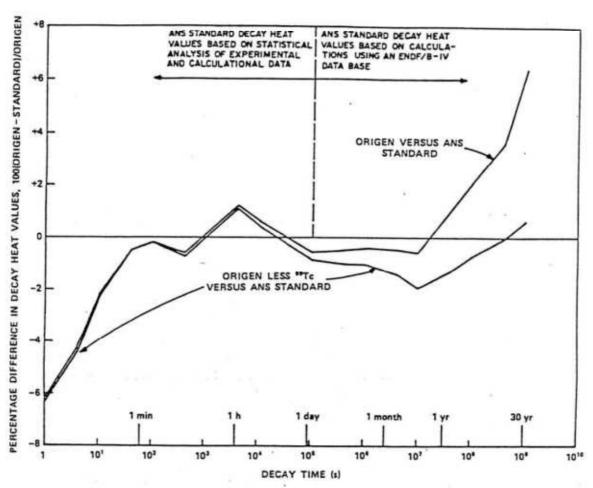


Fig. 3. Differences between ORIGEN2 and ANS Standard 5.1 decay heat values for 1012-s irradiation of 225 U.

(注)ORIGEN2 コードの崩壊熱は、ANS 標準崩壊熱と比較して、15年以上 (MSF-24P(S)型に収納される燃料の冷却期間)の年数に対して高めの値となっている。この理由は、ANS 標準崩壊熱は Te を考慮していないためである。ORIGEN2 コードの解析結果より 90Tc を除いた崩壊熱を比較するとよい一致を示している。

第8図 ORIGEN2 コード検証例 (2)

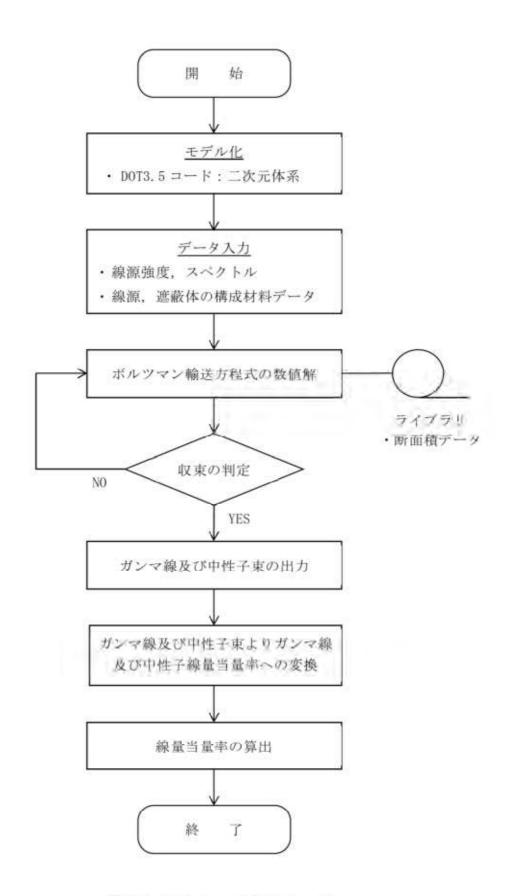
(2) DOT3. 5 = - F

1) 概要

二次元輸送計算コード DOT3.5 コード (3) (以下「DOT3.5 コード」という。) は、米国のオークリッジ国立研究所 (ORNL) で開発された二次元輸送コードである。

2) 機能

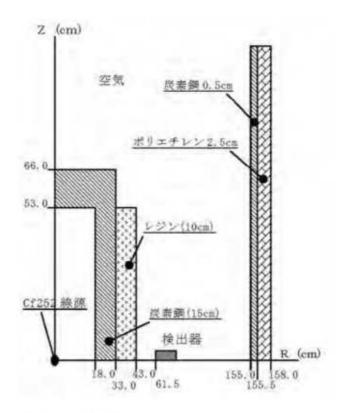
DOT3.5コードは、遮蔽解析に関して以下の機能を有する。


- ① ガンマ線や中性子に対するボルツマン輸送方程式を Sn 法により解く解析コードであり、放射線の挙動を追跡するのに重要な非等方性が表現できる。
- ② DOT3.5 コードは、二次元の体系を扱うことができる。

3) 解析フロー

DOT3.5 コードの解析フローを第9図に示す。

1) 使用実績及び検証


DOT3.5 コードは、原子力施設の遮蔽計算に広く用いられており、輸送キャスクの遮 厳解析の豊富な実績がある。使用済燃料輸送容器の解析事例と測定値(**)を第10 図に 示す。使用済燃料輸送容器体系での放射線透過試験での測定値に対して、DOT3.5 コードによる JENDL-3.3 に基づく断面積ライブラリ MATXSLIB-J33 を用いた計算値は中性 子、ガンマ線共によく一致しており、輸送容器体系での線量当量率評価に使用することの妥当性を確認した。

第9図 DOT3,5コード解析フロー図

輸送容器体系ベンチマーク計算結果

		線量当量率	(μ Sv/h)	
項目	1		ガンマ線	
	中性子	2 次 ガンマ	²⁵² Cf ガンマ	合計
測定值	28, 4	-	-	2.52
計算値 (DOT3.5+MATXSLIB- J33)	29, 0	2. 04	0. 200	2. 24

(注)使用済燃料輸送容器において、²⁵²Cf 線源を設置した放射線透過試験での線量当量率測 定値と、DOT3.5コードによる JENDL-3.3 に基づく断面積ライブラリ MATXSLIB-J33 を用 いたベンチマーク計算値を比較すると、良い一致を示している。

第 10 図 DOT3.5 コード解析例 (計算モデル (*) 及びペンチマーク計算結果)

5) 断面積ライブラリ MATXSLIB-J33

MATXSLIB-J33 (5) は、DOT3.5 等の輸送計算コード用に、JENDL-3.3 に基づく断面積 ライブラリとして、日本原子力研究所にて整備されたものである。MATXSLIB-J33 を用いた断面積ライブラリの作成条件は第4表に示すとおりであり、多群ライブラリ処理 コード TRANSX-2.15 (6) を用いて、輸送計算コード用に中性子 175 群、ガンマ線 42 群のエネルギー群構造に変換し作成した。

なお、TRANSX-2.15 については公開されている修正パッチ (7) を適用したものを用いている。

JENDL-3.3 の信頼性は 4)に示すベンチマーク解析 (第 10 図参照) で確認されている。

第4表 MATXSLIB-J33 を用いた断面積ライブラリの作成条件

多群ライブラリ 処理コード	TRANSX-2, 15
エネルキー群数	中性子 175 群、ガンマ線 42 群
自己遮蔽因子	考慮 heterogeneity option: constant escape cross section mean chord length: 1000000cm (体系からの漏れなしを想定)
輸送近似	diagonal (コードマニュアルで推奨されている近似オプション)
ルジャンドル 展開次数	P-5 (P-6 まで整備済みの MATXSLIB-J33 を用いて、P-5 断面積を作成)

(3) MCNP5 ⇒ - F

1) 概要

三次元モンテカルロコード MCNP5 (8) (以下「MCNP5 コード」という。) は、米国のロスアラモス国立研究所(LANL)で開発された、中性子、光子及び電子輸送問題を解くための汎用モンテカルロコードである。

2) 機能

MCNP5 コードは、遮蔽解析に関して以下の機能を有する。

- ① 放射線の衝突、散乱などの物理現象の忠実な模擬ができる。
- ② 二次曲面の論理演算によって表現された任意の三次元領域を取扱うことができ、形状モデルや断面積データを正確に取り扱うことができる。
 - ③ 幾何形状の設定の自由度が大きいことや、断面積の取り扱いに連続エネルギーを採用していること等の利点がある。

3) 解析フロー

MCNP5 コードの解析フローを第 11 図に示す。

4) 使用実績及び検証

MCNP5 コードは、国内では「原子力発電所放射線遮蔽設計規程」JEAC4615 (9) において原子力発電所附属施設遮蔽のための輸送計算コードとしてモンテカルロ法を用いた計算手法の適用が可能とされ、放射性物質輸送・貯蔵容器などの遮蔽計算に用いられている。米国では乾式キャスク貯蔵システムの審査指針 NUREG-1536 (10) 及び乾式キャスク貯蔵施設の審査指針 NUREG-1567 (11) において遮蔽計算ツールとしてMCNP コードが記載され、また安全評価で使用 (12) されている。使用済燃料乾式貯蔵容器での国内の許認可実績がないため、以下のとおり適用性を検証した。

① 既認可値との比較 (DOT3.5 コードとの比較)

許認可実績の豊富な二次元輸送計算コード DOT3.5 との比較を実施し、使用 済燃料乾式貯蔵容器体系において妥当な解が得られることを確認した。比較対 象は同じ MSF-24P(S)型での既認可の設計承認申請 (13) とした。また、比較対象 ケースは、設計承認申請ケースと同様の17×17 燃料 48,000MWd/t型 (A型) 収納時とした。MCNP5 コードによる遮蔽評価値と DOT3.5 コードによる評価値の 比較を別紙6に示す。

別紙6に示すとおり DOT3.5 コードの特性上の要因により一部部位では線量 当量率評価値に差異が生じるものの、大部分は同様の傾向である。

② MCNP5 コードの許認可実績

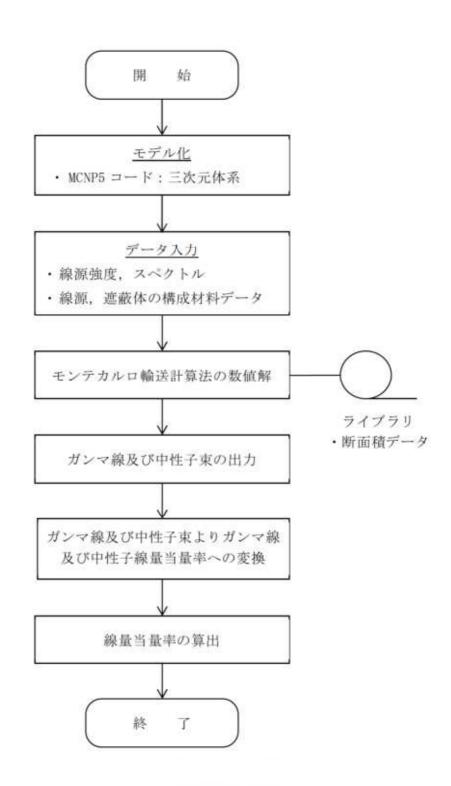
(注) 主な変更点はプログラム言語の変更であり、物理・数学モデルは同じ

③ MCNP5 コードの妥当性検証

MCNP5 コードは、放射性物質輸送・貯蔵容器体系において、実験値と MCNP5 コードによる解析値との比較が行われており、以下に説明するとおり MCNP5 コードの妥当性を検証している。

原子力学会標準 シミュレーションの信頼性確保に関するガイドライン:2015 (16) を参考に、MCNP5 コードを MSF-24P(S)型の遮蔽解析に適用することの妥当性確認を以下により実施した。

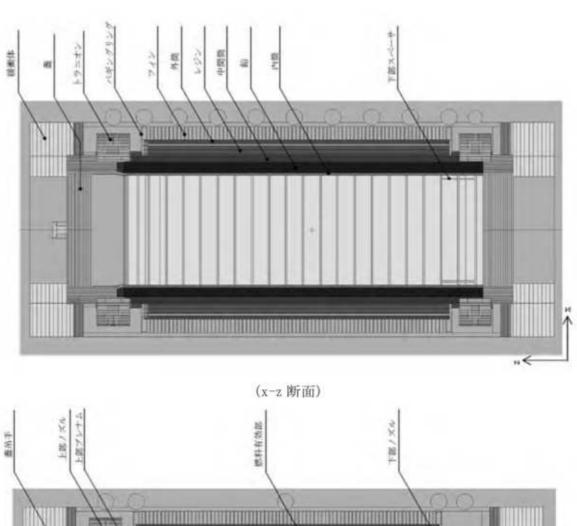
モデル検証及び妥当性確認として(1)概念モデルの開発、(2)数学的モデル化、(3)物理的モデル化及び(4)シミュレーションモデルの予測性能判断の4要素の確認を行う必要があるが、(1)及び(2)については LANL にて実施済み (17) であるため対象外とする。(3)物理的モデル化については検証が必要となる。(4)シミュレーションモデルの予測性能の判断については、(3)物理的モデル化において実験結果を用いた検証を実施するため対象外とする。

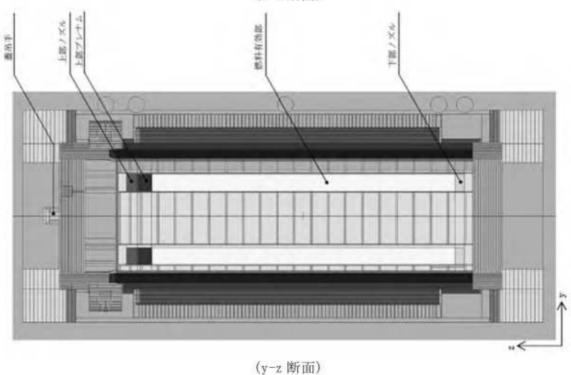

MSF-24P(S)型において(3)物理的モデル化の検証は、第 12 図及び第 13 図に 示すベンチマーク文献 (3)(19) の確認により実施する。

第12図(1/3)から第12図(3/3)に示すとおり、使用済燃料輸送容器体系での放射線透過試験での測定値に対して、JENDL-3.3に基づく断面積ライブラリ FSXLIB-J33 並びに ENDF/B-IV及び EPDL89 に基づく断面積ライブラリ MCPL1B02を用いてペンチマーク解析を実施しており、妥当性が検証されている ベンチマーク解析結果は、測定値と同様の傾向を示している。なお、第12 図に示す内容及び結果は、文部科学省原子力試験研究費で実施された研究成果であり、その内容や適用範囲等については研究機関、規制当局及びメーカー等により構成された委員会を日本原子力学会に設立し、議論され取り纏められたものである。

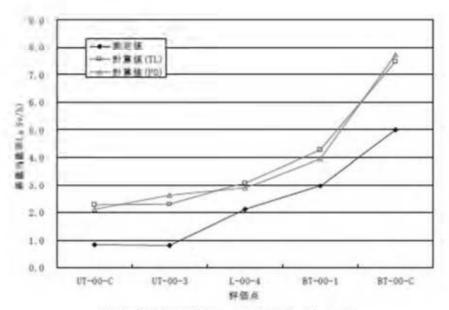
また、第13 図 (1/2) 及び第13 図 (2/2) に示すとおり、乾式貯蔵容器体系での放射線透過試験での測定値に対して、JENDL-3.3 に基づく断面積ライブラリ FSXLIB-J33 並びに ENDF/B-VI及び EPDL97 に基づく断面積ライブラリ MCPLIB84 を用いてベンチマーク解析を実施しており、妥当性が検証されている (19) 。ベンチマーク解析結果は、表面において測定値と計算値を比較するとよい一致を示している。

妥当性を検証した文献での解析条件と MSF-24P(S)型遮蔽評価での条件の比較を第6表に示す。妥当性を検証した文献の評価体系は、本型式証明申請と同じ乾式貯蔵容器体系であり、線量当量率評価手法についても、線源設定(ORIGEN2コードでの解析)、線量当量率評価方法 (MCNP5コードでのモデル化、使用する断面積ライブラリ(中性子:FSXLIB-J33、ガンマ線:MCPLIB84))が文献と MSF-24P(S)型で同様の設定である。ここで、検証文献の C/E は良い一致を示していることから、ORIGEN2コードにより設定した線源強度及び MCNP5コードを用いた線量当量率評価(断面積ライブラリ(中性子:FSXLIB-J33、ガンマ線:MCPLIB84))を組み合わせた手法について、MSF-24P(S)型評価の遮蔽解析手法として適用することは問題ない。

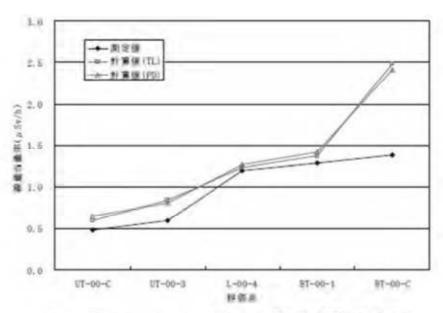

第6表に示す測定値と評価値の比 C/E に対して、別紙1-8表に示す解析条件の保守性が線量当量率に与える影響が包絡されることから、遮蔽解析の不確 実さを考慮しても MSF-24P(S)型運用時の線量当量率測定値は基準値を上回る ことが無い。



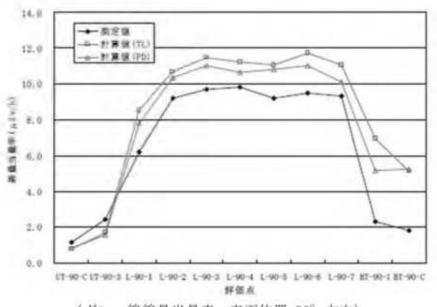
第 11 図 MCNP5 コード解析フロー

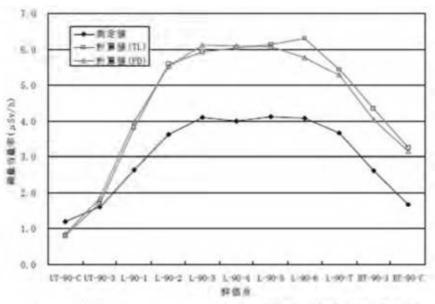

第5表 先行輸送容器許認可実績とMSF-24P(S)型型式証明の解析条件の比較

			4 104	
備	解析コードは同一	線頒条件は同等	遮蔽厚や材質は異なるものの、ガンマ線遮蔽材+中性子遮蔽材の複合遮蔽構造は同等	基準は同一
MSF-24P(S)型型式証明 (使用済燃料キャスク)	MCNP5	使用済燃料からの ガンマ線、中性子	輸送容器体系 カンマ線遮蔽材: 炭素鋼、ステンレス鋼 中性子遮蔽材:レジン	同在
核燃料物質輸送容器 (4)	MCNP5	収納物からのガンマ線、中性子	輸送容器体系 ガンマ線連般材: 炭素鋼、ステンレス鋼 中性子遮蔽材:ホリユチレン	表面: 2mSv/h 表面から1 m離れた位置: 100 μ Sv/h
目・近	解析コード	線源条件	遮蔽構造	東賽州陆



第 12 図 (1/3) NFT-14P 型輸送容器による MCNP5 コードの検証 (18) (解析モデル)


(中性子線量当量率、表面位置 0° 方向)


(中性子線量当量率、表面から1 m離れた位置 0 方向)

(注) NFT-14P 型について、バスケットやトラニオン部を実寸形状に合わせて三次元モデル化 し、JENDL-3.3 に基づく断面積ライブラリ FSXLIB-J33 並びに ENDF/B-IV 及び EPDL89 に 基づく断面積ライブラリ MCPLIB02 を用いたベンチマーク解析が実施された。中性子線 量当量率について、表面では計算値が測定値を大きく上回っているが軸方向の傾向は 一致しており、表面から1 m離れた位置においては計算値が測定値をやや上回っている。

第12図 (2/3) NFT-14P型輸送容器によるMCNP5 コードの検証(16) (評価結果)

(ガンマ線線量当量率、表面位置 90° 方向)

(ガンマ線線量当量率、表面から1 m離れた位置 90°方向)

(注) NFT-14P 型について、バスケットやトラニオン部を実寸形状に合わせて三次元モデル化し、JENDL-3.3 に基づく断面積ライブラリ FSXLIB-J33 並びに ENDF/B-IV及び EPDL89 に基づく断面積ライブラリ MCPLIB02 を用いたベンチマーク解析が実施された。ガンマ線線量当量率について、表面においては、中央部では計算値が測定値を2割程度上回っている。軸方向上部では計算値が測定値を下回っているが、計算値には端部構造材の放射化ガンマ線による影響が含まれていないためである。表面から1 m離れた位置においては、中央部では計算値が測定値を5割程度上回っているが傾向は一致している。

第12図 (3/3) NFT-14P 型輸送容器による MCNP5 コードの検証 (18) (評価結果)

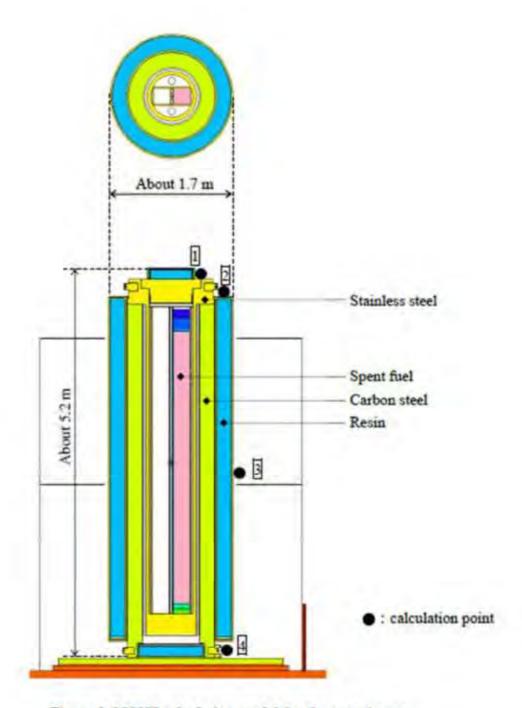


Figure 2. MCNP calculation model for the experiment

第13図 (1/2) 乾式貯蔵容器によるMCNP5 コードの検証 (19) (解析モデル)

	Condition
Code version	MCNP5 ver.1.60
Calculation model	Based on Figure 2
Cross section library	FSXLIB-J33 [5] MCPLIB84

Table 3. Experimental and calculated results (neutron dose equivalent rate)

Measurement point	Experimental value (µSv/h)	Calculated value (µSv/h)	Calculated / Experimental
1	9.93±0.17	10.20±1.8E-02	1.03±0.02
2	9,71±0,13	9.01±3.2E-02	0.93±0.01
3	0.47±0.02	0.52±9.8E-03	1.11±0.04
4	9.66±0.18	11.33±3.7E-02	1.17±0.02

Table 4. Experimental and calculated results (gamma-ray dose equivalent rate)

Measurement point	Experimental value (µSv/h)	Calculated value (µSv/h)	Calculated / Experimental
1	N/D*		(A)
2	N/D*		100
3	2.5±0	2.25±0.04	0.90±0.02
4	N/D*		

^{*}below the detection limit 0.5 µSv/h

(注) 乾式貯蔵容器について、バスケットやトラニオン部を実寸形状に合わせて三次元モデル 化し、JENDL-3.3 に基づく断面積ライブラリ FSXLIB-J33 並びに ENDF/B-VI及び EPDL97 に基づく断面積ライブラリ MCPLIB84 を用いたベンチマーク解析が実施された。表面に おいて、測定値と計算値を比較するとよい一致を示している。なお、C/E<1の評価点 については、モデル化していない周囲構造物による中性子及びガンマ線の散乱が考慮 できていないため評価値が低くなっていると考えられる。

第 13 図 (2/2) 乾式貯蔵容器による MCNP5 コードの検証 (19) (評価結果)

67

MCNP5 コードの検証で用いた評価と MSF-24P(S)型遮蔽評価の条件比較 第6表(1/3)

			評価ケース		
The state of the s	項目	ベンチマーク (18)	ベンチマーカ 川郎	今回の型式証明の	備考
		(第12図)	(第13图)	遮蔽解析	
ή	П 74	MCNP5	MCNP5 ver. 1. 60	MCNP5 ver. 1.60	
	中性子	FSXLIB-J33	FSXLIB-J33	FSXLIB-J33	FSXLIB-J33: JENDL-3.3 を基にしたライブラリ
11421		MCPLIB02	MCPLIB84	MCPLIB84	MCPLIB02: EPDL89 を基にしたライプラリ
() / []	ガント鎌				MCPLIB84; EPDL97 を基にした断面積 MCPLIB04
					O Doppler broadening data 修正版
	中性子	ORIGEN2 HLD	ORIGEN2 HL71	ORI GEN2 出力	
	燃料有効部	ORIGEN2 Hitz	ORIGEN2 出力	ORIGEN2 HH 73	
線源強度	ガンマ線				
	放射化	評価していない	59Co 含有量からの	Paco 含有量からの	
	ガンケ線		計算値	計算値	
	11.14.7	Watt 型 zmpu	Watt 型 244Cm	Watt 型 239Pu	
	H H	核分裂スペクトル	核分裂スペクトル	核分裂スペクトル	
緞旗	燃料有効部	ORIGEN2 HH 73	ORIGEN2 出力	ORI GEN2 出力	
スペクトル	ガンマ線				
	放射化	評価していない	1.17MeV:50%	1.17MeV:50%	
	ガンマ線		1.33MeV:50%	1.33MeV:50%	

MCND5 コードの格評や用いた評価と MSE-94P(S) 規連機関権の条件と動 (8/6) 維男服

		評価ケース		
項目	ベンチマーク (18)	ベンチマーク (19)	今回の型式証明の	備考
	(第12図)	(第13図)	遮蔽解析	
Me late rite	·軸方向分布考慮	· 軸方向分布考慮	· 軸方向分布考慮	
燃 短	・実績燃焼度	·実績燃焼度	·燃焼度最大値	
	· 使用済 PWR 燃料	· 使用済 PWR 燃料	· 使用済 PWR 燃料	
	・1体ごとに均質化	・1 体ごとに均質化	・1体ごとに均質化	
	・上部ノズル部、上部プレ	・上部ノズル部、上部プレ	・上部ノズル部、上部プレ	
燃料集合体	ナム部、燃料有効部、下	ナム部、燃料有効部、下	ナム部、燃料有効部、下	
	部ノズル部に分割	部ノズル部、下部プレ	部ノメル部、下部プレ	
	・下側/中央側に寄付き	ナム部に分割	ナム部に分割	
		・パスケット内均質化	・バスケット内均質化	
\$ 1 4	・温式キャスク	・乾式キャスク	・乾式キャスク	
モデル	・実形状	· 実形状	·実形状	
緩衝体	木材としてモデル化	なし	キャスクからの距離のみ 老庸	
	・最小密度	·最小密度	·最小密度	
A my	・レシ。ン組成カタロケ。値	・レジン組成カクログ値	・レジン組成が如り値	
組成・密度	・水組成:発熱量より概算		・設計貯蔵期間のレジン質	
			量減損考慮	
寸法公差	考慮しない	考慮しない	密度に考慮	

NCNP5 コードの検証で用いた評価と MSF-2/P(S)型遮蔽評価の条件比較 第6表(3/3)

			評価ケース		
項目	314	ベンチマーク (18) (第12図)	ベンチマーク (19) (第13図)	今回の型式証明の遮蔽解析	備考
		トラックレンケース エスティメータ	トラックレンケース エスティメータ	17-1942-19 2 227-11-9	ベンチマーク(第12図)はオクストイペントエスティメーク(F5
1 11 12		(F4 Tally)	(F4 Tally)	(F4 Tally)	Tally) についても評価。
N.	4			サーフェイスルロッシング エスティルーカ	型式証明の表面については F2Tally にて評価して
				(F2 Tally)	いるが、評価手法は四と同じである。
		ウェイト ウィンドウ	ウェイト ウィンドウ	線源カットオフ	・線源カットオフの設定値
				エネルギー・カットオフ	然声有効部ガント様:
分散低減法	洪			ウェイト ウィンドウ	・エネルギー・カットオフの設定値
					ガンマ線: (注1)
					中性子線: (註2)
	-	0	1 - 000 0		・C/E<1のものについては、モデル化していない
	型	0.9~2.89	0.90~1.17	Ę	周囲構造物による中性子反射が考慮できていな
評価結果	۴	(形) 17 区参照)	(米10区参照)		いため評価値が低くなっている影響。
(計算值/	#				・C/E<1のものについては、端部構造材の放射化
測定値)	2	$0.71 \sim 3.10$	0, 90		ガンを様について評価していないこと、ガンを
) 1	(第12図参照)	(第13図参照)		線の散乱が一部考慮できていないことで評価値
	· .				な年~なんトン化形態

(注1):線量当量率への寄与割合が極めて小さい範囲で設定。

(注2)

線量当量率評価結果に対して影響ない。

5) 断面積ライブラリ MCPLIB84 及び FSXLIB-J33

ガンマ線量当量率評価で用いている MCPLIB84 (30) は、MCNP5 等の三次元モンテカルロコード用に、核データ ENDF/B-VI及び EPDL97 に基づく光子断面積ライブラリとして、米国ロスアラモス国立研究所 (LANL) にて整備されたものである。

中性子線量当量率評価で用いている FSXLIB-J33 ⁽⁶⁾ は、MCNP5 等の三次元モンテカルロコード用に、JENDL-3.3 に基づく中性子断面積ライブラリとして、日本原子力研究所にて整備されたものである。

MCPLIB84 及び PSXLIB-J33 の信頼性は 4) に示すベンチマーク解析で確認されている。

4. 遮蔽機能データ

MSF-24P(S)型を貯蔵あるいは保管する施設(以下「貯蔵等施設」という。)の設置に当たっては、設置許可基準規則第29条及び第30条に適合する必要があり、適合性評価として実施する線量評価におけるソースターム条件として、遮蔽機能データ(E)を使用できることが「原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関する審査ガイド」に規定されている。

(注) MSF-24P(S)型に収納する燃料について、型式証明で示す収納物仕様と実際の燃料仕様の差に応じた適度な保守性を有することとなり、型式証明の遮蔽機能データを用いて第29条及び第30条の適合性を説明することは合理的である。

MSF-24P(S)型の遮蔽機能データを用いる場合は、型式証明申請における設置許可基準規則第 16 条の適合性評価と同じ手法で求めた線束を用いるものとする (※MSF-24P(S)型の遮蔽機能データの作成方法については、本型式証明申請第16条で妥当性確認済)。

「原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関する審査ガイド」より抜粋

2.2 遮蔽機能

[確認内容]

- 3) 敷地境界における実効線量評価
 - ②ソースターム

兼用キャスクの遮蔽機能データ又は兼用キャスク表面から 1 m離れた位置における線量 当量率が $100 \,\mu$ Sv/h となるよう放射線源強度を規格化したものを用いること。ここで、放 射線源強度を規格化して用いる場合は、中性子 100%又はガンマ線 100%のいずれか保守的 な線量評価とすること。また、中性子及びガンマ線の表面エネルギースペクトルは、保守 的な線量評価となるものを使用すること。

(参考)

貯蔵等施設の設置(変更)許可申請においては、MSF-24P(S)型の遮蔽機能データの適用が適切であることを次の方法で確認することができる。ここでは、蓋部が金属部へ衝突しない設置方法について代表例として記載する。

- ・ MSF-24P(S)型をソースターム条件とする設置許可基準規則第29条及び第30条の遮蔽評価 において、MSF-24P(S)型の遮蔽機能データを用いて評価した特定兼用キャスク型表面から 1 m離れた位置の第14 図に示す代表評価点5点における線量当量率を評価する。
 - その評価結果が、MSF-24P(S)型の進蔵適合性として評価した第7表に示す結果と同等*になることの確認をもって、遮蔽機能データが適切に使用されていることを確認する。

遮蔽機能データの適用確認方法の概要を別紙7に示す。

*: MCNP5 コードを用いた評価につき同一の値にならない場合がある。この場合、進敷機能データとの差異(線量当量率比)を設置(変更)許可申請における線量解析値に加味する(解析値に線量当量率比を考慮する)等で妥当な引き継ぎとする。

第7表(1/4) 特定兼用キャスクの表面から1 m離れた位置における代表評価点の線量当量率 (17×17 燃料 (A型) 収納時、蓋部が金属部へ衝突しない設置方法)

(単位: µ Sv/h)

		項部	報	Ani Se	河	底部
	評価点	軸方向	径方向	盘	径方向	軸方向
		©	9	9	8	8
	修制有外侧	<0.1	23. 4	45.0	27.1	2.9
4	Katyr 13 Alim	(1.1)	(0.5)	(0, 3)	(0.6)	(0.4)
	4年7年4十七年177	0.2	22.7	11.5	13.0	16.8
1	1197里均 00条1115	(0, 5)	(0.9)	(0.2)	(1.0)	(0.3)
	2	0.2	5, 1	10.0	5, 5	1.8
<i>۵</i> -	一のカントが除	(1.2)	(0.5)	(0.4)	(0, 5)	(0.7)
	17 # 14	20.3	32. 3	17.7	29.1	12.9
		(0.3)	(0.9)	(0, 2)	(1.0)	(0.3)
	合計	20.8	83, 5	84.2	74.7	34.4

第3表(5/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

※ ()内は統計誤差(単位:%)を示す。

第7表(2/4) 特定兼用キャスク型の表面から1 m離れた位置における代表評価点の線量当量率 (17×17 燃料 (B型) 収納時, 蓋部が金属部へ衝突しない設置方法)

(単位: µSv/h)

		頭部	FF.	The Ser	政	底部
	評価点	軸方向	径方向	祖祖	径方向	軸方向
		8	0	9	8	8
#	燃料有効部	0.1 (1.6)	18.1 (0.4)	20.3	22.3 (0.5)	2.5 (0.6)
1465	構造材放射化	0.2 (0.9)	31.7 (0.7)	28.6 (0.5)	13.3 (0.6)	28.2 (0.4)
から・ 豪	二次ガント標	0.2	4.6 (0.7)	5.0 (0.6)	5.1 (0.7)	1.6
a same	中性子	19.1 (0.7)	28.2 (0.6)	25.6	24.5 (0.8)	12.5 (0.5)
	合計	19.6	82.6	79.5	65.2	44.8

第3表(6/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

)内は統計誤差(単位:%)を示す。

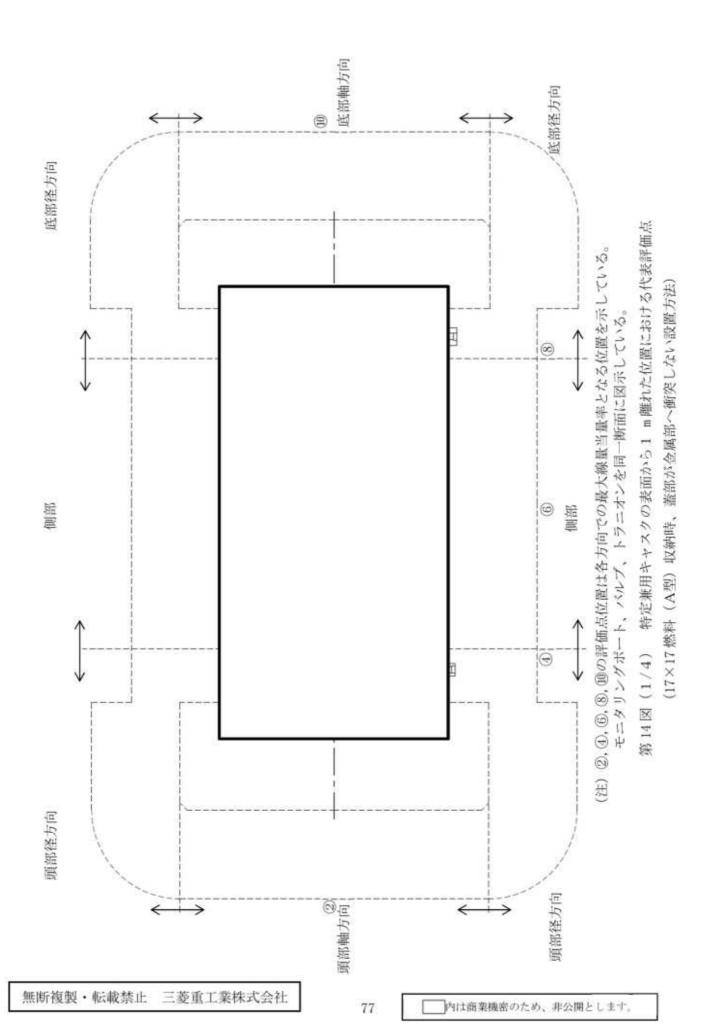
○ ※

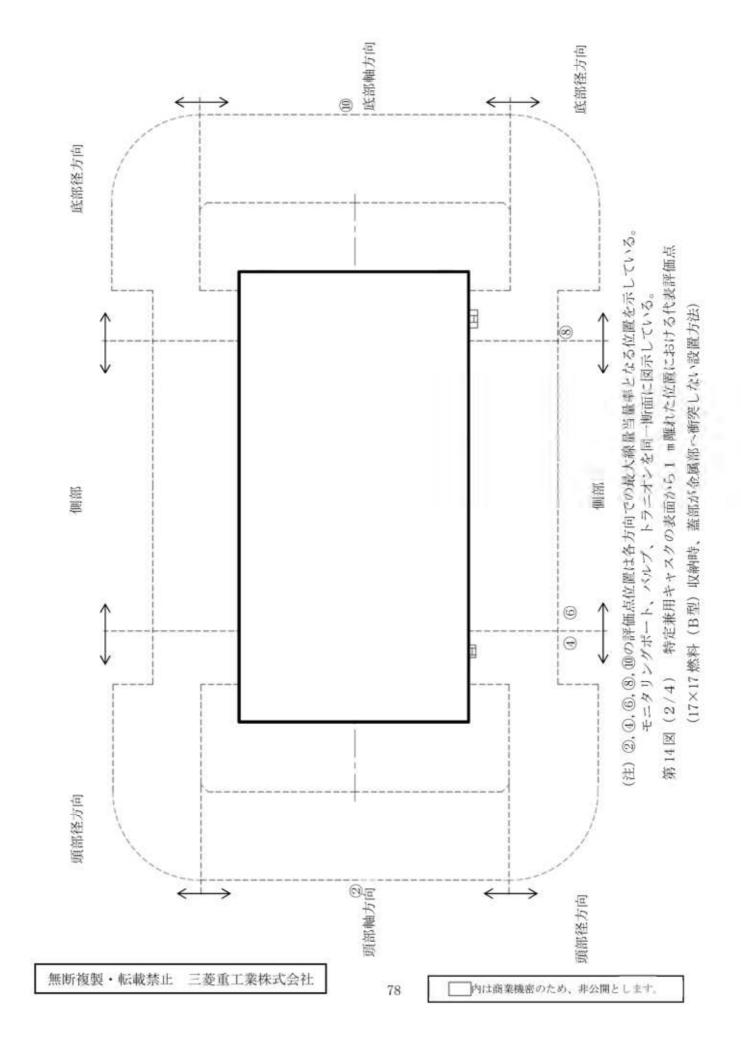
第7表(3/4) 特定兼用キャスクの表面から1 m離れた位置における代表評価点の線量当量率 (15×15 燃料 (A型) 収納時, 蓋部が金属部へ衝突しない設置方法)

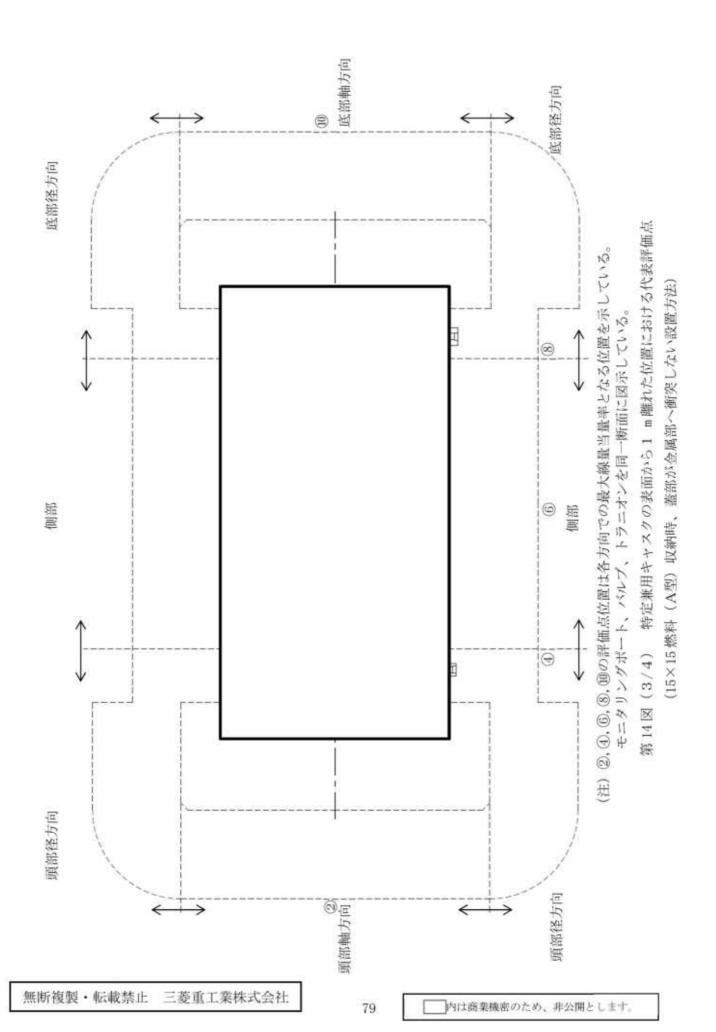
(単位: μSv/h)

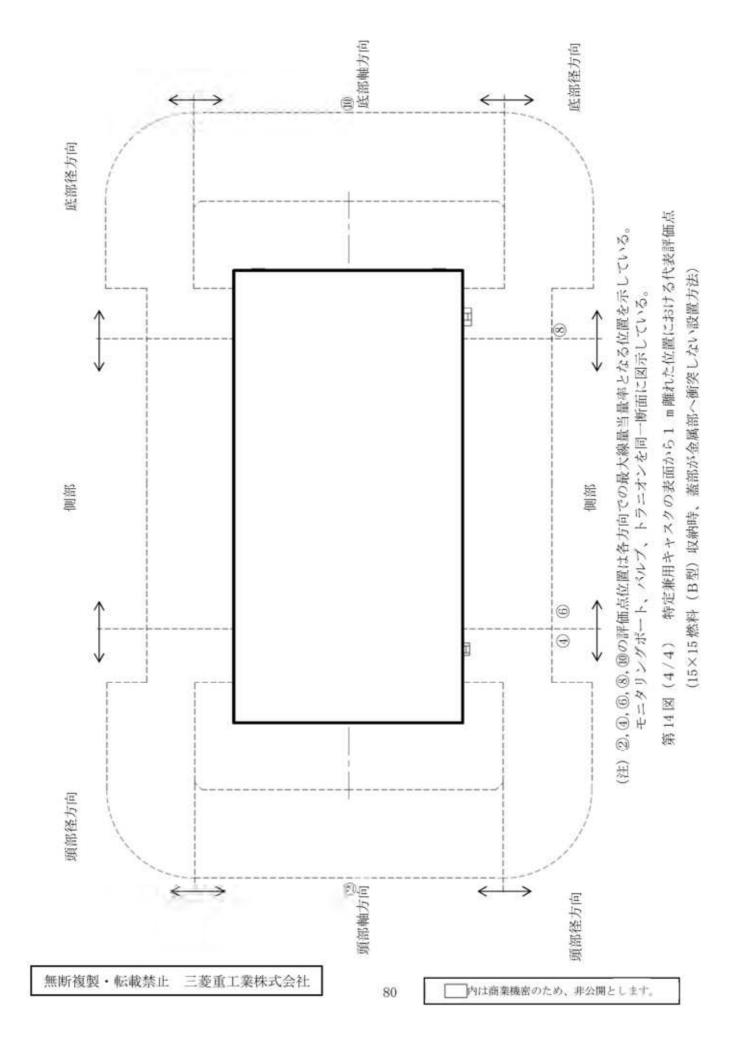
		頭網	級	Znijelen	湖	民族
	評価点	軸方向	径方向	世祖	径方向	軸方向
		(3)	•	9	8	9
	縁れた外包	0.1	22. 4	44.9	25.4	3.1
H	水流作作列即	(0.5)	(0, 3)	(0, 2)	(0, 3)	(0, 3)
3	4世:北十十分64-77	0, 1	16.2	8, 5	8,3	10.6
12	11年12月12年11日	(0, 3)	(0.5)	(0, 2)	(0.5)	(0.2)
業	10000000000000000000000000000000000000	0.2	5.3	10.5	5.5	1.9
	一のスとくを	(1.2)	(0.4)	(0, 3)	(0.4)	(0, 6)
	14年7	22.2	35.9	19.0	32.0	14.0
		(0.2)	(0.5)	(0, 1)	(0.6)	(0.2)
	合計	22. 6	79.8	82.9	71.2	29.6

第3表(7/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ


第7表(4/4) 特定兼用キャスクの表面から1 m離れた位置における代表評価点の線量当量率 (15×15 燃料 (B型) 収納時、蓋部が金属部へ衝突しない設置方法)


(単位: µSv/h)


底部	関部 径方向 軸方向	(9)	(0.3) (0.6) (0.6)	9.2 (0.9)	5.3 5.2 1.8 (0.3) (0.4) (1.1)	(0.5) 27.2 13.3 (0.5) (0.8) (0.5)	76.0 69.0
\$	径方向	0	18.1 (0.4)	25. 5 (0. 7)	4.8 (0.3)	29.8	78 9
项	頭部 軸方向 ②		0.1 (1.6)	0.2 (0.9)	0.2 (2.1)	20.1	9 06
			燃料有効温	構造材放射化	二次ガンマ線	中性子	大 計
	-2017		Ŧ	 	から・ 薬	- ■	


第3表(8/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

※ ()内は統計誤差(単位:%)を示す。

5. 参考文献

- (1) M. Ishikawa, T. Jin, J. Katakura, M. Kataoka, H. Matsumoto, Y. Ohkawachi, S. Ohki, Λ. Onoue, Λ. Sasahara, K. Suyama, H. Yanagisawa, "ZZ-ORIGEN2.2-UPJ, A Complete Package of ORIGEN2 Libraries Based on JENDL-3.2 and JENDL-3.3", Computer Programs NEA-1642, OECD/NEA Databank, (2006).
- (2) A. G. Croff, "ORIGEN2: A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials", Nuclear Technology, Vol. 62, (1983).
- (3) Oak Ridge National Laboratory, "DOT3.5-Two Dimensional Discrete Ordinates Radiation Transport Code", CCC-276, (1977).
- (4) 大西世紀 ほか、「²⁵²Cf 核分裂中性子源を用いた遮へい透過実験及び二次元離散座標計算 コードによる輸送容器評価用断面積セット SFCX-J33 の適用性に関する研究」、海上技術 安全研究所報告 第7巻 第3号 研究報告、(2007).
- (5) K. Kosako, et al., "The Libraries FSXLIB and MATXSLIB Based on JENDL-3.3", JAERI-Data/Code 2003-011, (2003).
- (6) R. E. MacFarlane, "TRANSX2:A Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes", LA-12312-MS, (1992).
- (7) International Atomic Energy Agency Nuclear Data Services, "TRANSX patches", https://www-nds.iaea.org/fendl20/transx-patches.htm.
- (8) X-5 Monte Carlo Team, "MCNP A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1: Overview and Theory", LA-UR-03-1987, (2003).
- (9) 一般社团法人 日本電気協会 原子力規格委員会,「原子力発電所放射線遮蔽設計規程」,JEAC 4615-2020, (2020).
- (10) U.S. Nuclear Regulatory Commission, "Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility", NUREG-1536 Revision 1, (2010).
- (11) U. S. Nuclear Regulatory Commission, "Standard Review Plan for Spent Fuel Dry Storage Facilities", NUREG-1567, (2000).
- (12) U. S. Nuclear Regulatory Commission, "Final Safety Evaluation Report", https://www.nrc.gov/docs/ML2030/ML20307A119.pdf, (2020).
- (13) 四国電力株式会社,「核燃料輸送物設計承認申請」,原燃発 18-78 号。(2018)。
- (14) 国立大学法人東京工業大学,「核燃料輸送物設計承認申請」,東工大研 第4-3号。 (2016).
- (15) リサイクル燃料貯蔵株式会社,「リサイクル燃料備蓄センターの使用済燃料貯蔵事業変 更許可申請」, RFS発官25第11号。(2014)、
- (16) 一般社団法人 日本原子力学会,「日本原子力学会標準 シミュレーションの信頼性確

保に関するガイドライン: 2015」, AES,J-SC-A008:2015, (2016).

- (17) Forrest Brown, Brian Kiedrowski, Jeffrey Bull, Matthew Gonzales, Nathan Gibson, "Verification of MCNP5-1.60", LA-UR-10-05611, (2010).
 - (18) 一般社団法人日本原子力学会,「モンテカルロ法による放射性物質輸送容器の遮蔽安全 評価手法の高度化 平成23年度報告書」, (2012).
 - (19) Masahiko Ueyama, Masashi Osaki, "Dose Equivalent Rate Benchmark Calculations of a Dry Storage Cask for Spent Fuel by 3D Monte Carlo Code", PATRAM 2019, (2019).
 - (20) Brian C. Kiedrowski, Forrest B. Brown, Morgan C. White, D. Kent Parsons, "Testing for the Photon Doppler Broadening Data Sampling Bug in MCNP5/X", LA-UR-12-00121, (2012).

遮蔽解析条件

1. 使用済燃料集合体の線源強度について

使用済燃料集合体の放射線源強度(以下「線源強度」という。)は、「燃料有効部からのガンマ線 及び中性子」、「使用済燃料集合体構造材及びバーナブルポイズン集合体からの放射化ガンマ線」 に分けて計算する。

使用済燃料集合体の線源強度計算方法及び条件を別紙1-1表及び別紙1-2表に示す。また、 別紙1-3表に燃料集合体の種類と型式ごとの線源強度、別紙1-4表に燃料集合体構造材及びパーナブルポイズン集合体からの放射化によるガンマ線源強度、別紙1-5表に中性子源強度、別紙1-6表に燃料有効部のエネルギーごとのガンマ線源強度並びに別紙1-7表に中性子のエネルギーごとの中性子スペクトルを示す。

別紙 1-3 表に示すとおり、17×17 燃料及び 15×15 燃料の 48,000MWd/t 型はそれぞれ 39,000MWd/t 型に比べて線源強度が高いため、遮蔽解析に用いる燃料タイプは 17×17 燃料 48,000MWd/t 型 (A型、B型)及び 15×15 燃料 48,000MWd/t 型 (A型、B型)とする。

燃料有効部のエネルギーごとの中性子線強度は、MCNP5 内で Watt 型 ²³⁹Pu 核分裂スペクトルに 処理される。また、使用済燃料集合体構造材及びバーナブルポイズン集合体からの放射化ガンマ 線のエネルギーごとの粒子放出割合は 1.17 MeV 及び 1.33 MeV がそれぞれ 50 %である。

別紙1-1表 使用済燃料集合体及びバーナブルポイズン集合体の線源強度計算方法及び条件

項目	計算方法	計算条件
燃料有効部	燃焼計算コード	燃料条件 : 別紙1-2表参照
からのガン	ORIGEN2 を用い、	解析コード: ORIGEN2. 2UPJ
マ線及び中	ガンマ線及び中	ライプラリ: PWRU50 ライブラリ (48,000MWd/t 型)
性子	性子源強度を計	PWRU ライブラリ (39,000MWd/t 型)
	算。使用済燃料集	軸方向燃燒度分布:別紙1-1図参照
	合体の軸方向燃	実効増倍率:0.30 (別紙2参照)
	焼度分布を考慮。	
	また、中性子につ	
	いては実効増倍	
	率を考慮。	
使用済燃料	使用济燃料集合	放射化計算式
集合体構造	体構造材及びバ	$\Lambda = N_0 \sigma \phi \{1 - \exp(-\lambda T_1)\} \times \exp(-\lambda T_2)$
材及びバー	ーナブルボイズ	A :放射化核種 (⁶⁰ Co) の放射能 (Bq)
ナブルポイ	ン集合体の ²⁰ Co含	No : ターゲット核種 (⁵⁹ Co) の個数 (atoms)
ズン集合体	有量に従い、放射	a :2200m/s の中性子による ⁵⁹ Co の (n, γ) 反応断面
からの放射	化計算式に基づ	積 (cm ²)
化ガンマ線	き ⁵⁹ Coから ⁶⁰ Coへ	φ :炉内照射熱中性子束 (n/(cm²·s))
	の放射化量を計	λ:60Co の崩壊定数(3.6001×10 ⁻⁴ /日)
	算。	T ₁ :照射日数(日)(別紙1-2表参照)
		T ₂ : 冷却日数(日)(別紙1-2表参照)
中性子源ス	_	DOT3.5; ²³⁹ Pu の核分裂スペクトル (別紙1-7表参照 ^(注))
52 ha	4 7 1	MCNP5:コード内で以下の条件を基に処理する。
		Watt 型 ²³⁹ Pu 核分裂スペクトル ⁽¹⁾
		Watt 型連続分布スペクトル
		: P(E)=C exp(-E/a) × sinh(bE) ^{1/2}
		²³⁹ Pu 中性子スペクトル定数
		: a=0.966 (MeV), b=2.842 (MeV-1)

⁽注)中性子スペクトルを ²³⁹Pu の核分裂スペクトルで代表させる設定の妥当性については、別紙 3 に示す。

別紙1-2表(1/2) 使用済燃料集合体及びパーナブルポイズン集合体の 線源強度計算条件(17×17 燃料)

	項目		17×17 燃料 48,000MWd/t 型		17×17 39,000M	
			A型	B型	A型	B型
MO ARE O	度(MWd/t)	中央部	48,	000	20	000
NO ME	及(MWC/t)	外周部	44,	000	39,	000
平	均比出力(MW/t) (注 1)				
	使用済燃料	中央部				
照射 日数	集合体	外周部				
(日)	バーナブル 集合					
初	期濃縮度(wt%) (在 2)				
	冷却期間 (年)	15	17	15	17
ţ.	カラン重量(kg/	体)				
		(上部)				
軸	a方向燃焼度分布	(下部)				

(注1)比出力は定格出力に相当する炉平均値を用いた。

(注2)初期濃縮度は最低濃縮度とした。

(注3)ノードは燃料有効部を軸方向に したものである。

別紙1-2表(2/2) 使用済燃料集合体及びパーナブルポイズン集合体の 線源強度計算条件(15×15 燃料)

	項目		15×15 燃料 48,000MWd/t 型		5000000000	5 燃料 Wd/t 型
			A型	B型	A型	B型
1/6: 4.8: 0	Ver 1 Xma A 1 - X	中央部	48,	000		000
郑欣·郑モ·E	度(MWd/t)	外周部	44,	000	39,	000
平	均比出力(MW/t) (注 1)				
WIT & L	使用済燃料	中央部				
照射 日数	集合体	外周部				
(日)	バーナブル 集合	AVX5				
初	期濃縮度(wt%) (往 2)				
	冷却期間(年)	15	17	15	17
ţ	カラン重量(kg/	体)		•		
		(上部)				
輔	方向燃焼度分布	(下部)				

(注1)比出力は定格出力に	相当する炉平均値を用いた。
---------------	---------------

(注2)初期濃縮度は最低濃縮度とした。

(注3)ノー	ドは燃料有効部を軸方向に	したものである。
--------	--------------	----------

別紙 1-4

別紙1-3表(1/2) 燃料集合体の種類と型式ごとの線源強度(17×17燃料)

項目		7 燃料 I/t 型 ^(注 1)		7 燃料 l/t 型 ^(注2)
71	A型	B型	A型	B型
燃料有効部ガンマ線 (photons/s)	1. 073×10 ¹⁷	1. 007×10 ¹⁷	9. 067×10 ¹⁶	8. 518×10 ¹⁶
構造材放射化ガンマ線 ^(注 3) (⁶⁰ Co TBq)	5. 922×10 ²	6. 024×10 ²	5.801×10 ²	5. 736×10 ²
燃料有効部中性子 (性 4) (n/s)	1. 205×10 ¹⁰	1.120×10 ¹⁰	8. 408×10 ⁹	7. 811×10 ⁹

- (注 1)中央部 12 体の燃焼度を 48,000MWd/t、外周部 12 体の燃焼度を 44,000MWd/t とした MSF-24P(S)型 1 基当たりの線源強度である。
- (注 2)中央部 12 体及び外周部 12 体の燃焼度を全て 39,000MWd/t とした MSF-24P(S)型 1 基当た りの線源強度である。
- (注3)バーナブルボイズン集合体の放射化線源を考慮した値である。
- (注 1)記載値は実効増倍率 keff を考慮した全中性子源強度である。

別紙1-3表(2/2) 燃料集合体の種類と型式ごとの線源強度(15×15燃料)

項目		5 燃料 l/t 型 ^(注 1)		5 燃料 l/t 型 ^(注 2)
	A型	B型	A型	B型
燃料有効部ガンマ線 (photons/s)	1. 062×10 ¹⁷	9. 967×10 ¹⁶	9. 018×10 ¹⁶	8. 474×10 ¹⁶
構造材放射化ガンマ線 ^(注 3) (⁶⁰ Co TBq)	4. 438×10 ²	4. 984×10 ²	4. 919×10 ²	4. 880×10 ²
燃料有効部中性子 (注 4) (n/s)	1. 266×10 ¹⁰	1. 175×10 ¹⁰	8. 380×10 ⁹	7. 787×10 ⁹

- (注 1)中央部 12 体の燃焼度を 48,000MWd/t、外周部 12 体の燃焼度を 44,000MWd/t とした MSF-24P(S)型 1 基当たりの線源強度である。
- (注 2)中央部 12 体及び外周部 12 体の燃焼度を全て 39,000MWd/t とした MSF-24P(S)型 1 基当た りの線源強度である。
- (注3)バーナブルボイズン集合体の放射化線源を考慮した値である。
- (注 1)記載値は実効増倍率 keff を考慮した全中性子源強度である。

別紙 1-4表 (1/4) 燃料集合体構造材の放射化によるガンマ線源強度 (17×17燃料 (A型))

e et al liverate	燃料集合体材	構造材の線源強度	(60Co TBq)
モチル化領域	中央部 (四)	外周部	合計
上部ノズル部	9, 676×10 ⁰ (5, 339×10 ⁰)	4. 046×10 ⁶	1, 372×10 ¹ (5, 339×10 ⁰)
上部プレナム部	4. 126×10 ¹ (6. 583×10 ⁰)	3.235×10^{1}	7. 361×10 ¹ (6. 583×10 ⁰)
燃料有効部	3.356×10^{2} (1.939×10^{2})	1. 322×10 ³	4.678×10^{2} (1.939×10^{2})
下部プレナム部	6, 278×10°	5.857×10°	1. 214×10 ¹
下部ノズル部	1. 288 × 10 ¹	1. 201×10 ¹	2.489×10 ¹

別紙 1-4表 (2/4) 燃料集合体構造材の放射化によるガンマ線源強度 (17×17燃料 (B型))

(MSF-24P(S)型1基当たり)

= in the hort last	燃料集合体材	構造材の線源強度	(60Co TBq)
モデル化領域	中央部 (注)	外周部	合計
上部ノズル部	1, 672×10 ¹ (5, 339×10 ⁰)	1, 062×10^{1}	2. 734×10 ¹ (5. 339×10 ⁰)
上部プレナム部	7. 269×10 ¹ (6. 583×10 ⁰)	6. 167×10 ¹	1. 344×10 ² (6. 583×10 ⁰)
燃料有効部	2. 866×10^{2} (1. 939×10^{2})	8, 649 × 10 ¹	$3,731 \times 10^{2}$ (1.939×10^{3})
下部プレナム部	1, 570 × 10 ^t	1.465×10 ¹	3, 035×10 ¹
下部ノズル部	1.928×10 ¹	1.799×10^{1}	3. 727×10 ¹

別紙 1-7

別紙 1-4表 (3/4) 燃料集合体構造材の放射化によるガンマ線源強度 (15×15燃料 (A型))

e et a nahelse	燃料集合体材	構造材の線源強度	(60Co TBq)
モテル化領域	中央部(西)	外周部	合計
上部ノズル部	7, 199×10 ⁰ (4, 265×10 ⁰)	2, 742×10 ⁶	9, 941×10° (4, 265×10°)
上部プレナム部	2. 995×10 ¹ (5. 398×10 ⁰)	2. 295×10 ¹	5. 290×10 ¹ (5. 398×10 ⁰)
燃料有効部	2.639×10^{2} (1.617×10^{2})	9, 552×10 ¹	3, 594×10 ² (1, 617×10 ²)
下部プレナム部	2, 842×10°	2.657×10^{0}	5. 499×10°
下部ノズル部	8. 272×10°	7. 732×10°	1.600×10 ¹

別紙1-4表 (4/4) 燃料集合体構造材の放射化によるガンマ線源強度 (15×15燃料 (B型))

(MSF-24P(S)型1基当たり)

is the borker	燃料集合体構造材の線源強度 (60Co TBq)			
モデル化領域	中央部 (性)	外周部	合計	
上部ノズル部	8, 770×10° (4, 265×10°)	4. 211×10°	1. 298×10 ¹ (4. 265×10 ⁰)	
上部プレナム部	6. 378×10 ¹ (5. 398×10 ⁰)	5. 457×10 ¹	1, 183×10 ² (5, 398×10 ⁰)	
燃料有効部	2. 484×10^{2} (1. 617×10^{2})	8, 105×10 ¹	3, 295 × 10 ² (1, 617 × 10 ³)	
下部プレナム部	1.009×10 ^t	9, 428×10^{0}	1, 952×10 ¹	
下部ノズル部	9.368×10°	8.757×10°	1.813×10 ¹	

別紙 1-8

別紙 1-5表 (1/4) 中性子源強度 (17×17 燃料 (A型))

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(a,n) 反応	9.369×10^{7}	7. 472×10 ⁷	1. 684×10 ⁸
No	自発核分裂	4. 909×10 ⁹	3. 360×10 ⁹	8. 269×10 ⁹
(n/s)	合計	5.003×10 ⁹	3. 435×10 ⁹	8. 437×10 ⁹
輸送物の実 keff			0, 30	1
全 中 性 子 Ns (n/		7. 147×10 ⁹	4. 907×10 ⁹	1, 205×10 ¹

(注)ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及びポイズンとなる核分裂生成物の生成量を求め、これらを考慮した核種組成を用いて臨界解析に示す手法と同一手法 (KENO-VIコード)により評価して得られた値である。

別紙 1-5表 (2/4) 中性子源強度 (17×17 燃料 (B型))

(MSF-24P(S)型1基当たり)

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(α,n) 反応	9. 170×10 ⁷	7. 367×10 ⁷	1. 654×10 ⁸
No	自発核分裂	4. 555×10 ⁹	3. 117×10 ⁹	7. 672×10 ⁹
(n/s)	合計	4.647×109	3, 191×10 ⁹	7. 837×10^9
輸送物の実 keff			0.30	
全 中 性 子 Ns (n/	源 強 度 s)	6, 638×10 ⁹	4.558×10 ⁹	1, 120×10 ¹⁰

(注)ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及びポイズンとなる核分裂生成物の生成量を求め、これらを考慮した核種組成を用いて臨界解析に示す手法と同一手法 (KENO-VIコード)により評価して得られた値である。

別紙1-5表(3/4) 中性子源強度(15×15燃料(A型))

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(a,n) 反応	9.669×10^7	7, 716×10 ⁷	1. 739×10 ⁸
No	自発核分裂	5. 148×10 ⁹	3. 537×10 ⁹	8. 685×10 ⁹
(n/s)	合計	5.245×10 ⁹	3.614×10 ⁹	8. 859×10 ⁹
輸送物の実 keff			0.30	·
全 中 性 子 Ns (n/		7. 492×10 ⁹	5, 163×10 ⁹	1, 266×10 ¹⁶

(注)ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及びポイズンとなる核分裂生成物の生成量を求め、これらを考慮した核種組成を用いて臨界解析に示す手法と同一手法 (KENO-VIコード)により評価して得られた値である。

別紙 1-5表 (4/4) 中性子源強度 (15×15 燃料 (B型))

(MSF-24P(S)型1基当たり)

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(α,n) 反応	9. 454×10 ⁷	7. 600×10^7	1. 705×10 ⁸
No	自発核分裂	4. 776×10 ⁹	3. 281×10 ⁹	8. 057×10 ⁹
(n/s)	合計	4.871×10 ⁹	3, 357×10 ⁹	8. 228×10 ⁹
輸送物の実 keff			0.30	
全 中 性 子 Ns (n/	源 強 度 s)	6, 958×10 ⁹	4.796×10 ⁹	1.175×10 ¹⁰

(注)ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及びポイズンとなる核分裂生成物の生成量を求め、これらを考慮した核種組成を用いて臨界解析に示す手法と同一手法 (KENO-VIコード)により評価して得られた値である。

別紙1-6表(1/4) 燃料有効部のエネルギーごとのガンマ線源強度 (17×17燃料 (A型))

エネルギー	平均エネルギー	燃料有	可効部 (photons/	s) (注)
群数	(MeV)	中央部	外周部	合計
Ī	0.01	1, 433×10 ¹⁶	1.337×10^{16}	2. 770×10 ¹⁶
2	0. 925	$2,888 \times 10^{15}$	2.710×10^{15}	5, 599×10 ¹⁵
3	0. 0375	3.729×10^{15}	3.445×10^{15}	7. 174×10 ¹¹
1	0.0575	$2.903\!\times\!10^{15}$	2.725×10^{15}	5, 628×10 ¹¹
ñ	0.085	1.636×10^{15}	1. 528×10^{15}	3. 165×10 ¹¹
6	0.125	1. 581×10^{15}	1.445×10 ¹⁵	3. 027×10 ¹¹
7	0. 225	1. 363×10^{15}	1.275×10^{15}	2. 637×10 ¹¹
8	0, 375	5. 802×10^{14}	5. 452×10 ¹⁴	1. 125×10 ¹¹
9	0.575	2. 481×10^{16}	2. 278×10 ¹⁶	4. 759×10 ¹⁰
10	0, 85	$1,142 \times 10^{15}$	1.003×10 ¹⁵	2. 145×10 ¹¹
11	1. 25	7. 743×10^{14}	6.784×10 ¹⁴	1. 453×10 ¹¹
12	1.75	$2.373\!\times\!10^{13}$	2. 089×10 ¹³	4. 463×10 ¹¹
13	2, 25	1.395×10 ¹⁰	1.289×10^{10}	2. 684×10 ¹⁰
11	2.75	6. 962×10^9	5.818×10 ⁹	1. 278×10 ¹⁰
15	3. 5	6,777 \times 108	5. 046×10 ⁸	1. 182×10 ⁹
16	5. 0	2. 157×10^{8}	1. 477×10 ⁸	3.634×10^{8}
17	7. 0	2. 487×10^7	1. 703×10 ⁷	4. 190×10 ⁷
18	9. 5	2.857×10^6	1, 957×10 ⁸	4, 814×10 ⁶
	습計	5.576×10 ¹⁶	5. 152×10 ¹⁶	1. 073×10 ¹³

(注) MCNP5 コードによる評価の については、線量当量率評価への寄与が無視できることを確認の上線源カットオフの対象とした。(17×17 燃料(A型)、側部方向表面評価点で代表して、 のカットオフ有無による線量当量率を評価し、カットオフ有無で差異が であることを確認)

別紙1-6表(2/4) 燃料有効部のエネルギーごとのガンマ線源強度 (17×17燃料 (B型))

エネルギー	平均エネルギー	燃料有	可効部 (photons/	s) (E)
群数	(MeV)	中央部	外周部	合計
1	0.01	1, 361×10^{16}	1.270×10^{16}	2. 632×10 ¹⁶
2	0.025	$2,719\!\times\!10^{15}$	2. 553×10 ¹⁵	5. 272×10 ¹⁸
3	0. 0375	3. 495×10 ¹⁵	3.232×10^{15}	6. 728×10 ¹¹
1	0.0575	2.781×10^{15}	2. 612×10 ¹⁵	5, 393×10 ¹¹
ភ	0.085	1. 533×10^{15}	1.433×10^{15}	2. 966×10 ¹¹
6	0.125	1. 437×10^{15}	1.316×10^{15}	2. 753×10 ¹⁵
7	0. 225	1. 284×10^{15}	1. 202×10 ¹⁵	2. 485×10 ¹⁵
8	0. 375	5. 372×10^{14}	5. 051×10 ¹⁴	1. 042×10 ¹¹
9	0, 575	$2.339\!\times\!10^{16}$	2. 149×10 ¹⁶	4. 489×10 ¹⁶
10	0, 85	8. 416×10^{14}	7. 403×10^{14}	1. 582×10 ¹¹
1.1	1, 25	6. 525×10^{14}	5, 720×10 ¹⁴	1. 225×10 ¹
12	1,75	2.040×10^{13}	1.797×10 ¹³	3. 837×10 ¹³
13	2. 25	4.034×10^{9}	3,551×10 ⁹	7. 584×10 ⁹
14	2. 75	5. 961×10^9	4.907×109	1. 087×10 ¹⁰
15	3. 5	5. 116×10^8	3.607×10^{8}	8, 723×10 ⁸
16	5. 0	2.001×10^{8}	1.371×10^{8}	3.371×10^{8}
17	7. 0	2.307×10^7	1.580×10 ⁷	3.888×10 ⁷
18	9. 5	2.650×10^{6}	1,815×10 ⁶	4,466×10 ⁶
	습취	5. 231×10 ¹⁶	4.838×10 ¹⁶	1. 007×10 ¹³

(注)MCNP5 コードによる評価の については、線量当量率評価への寄与が無視できることを確認の上線源カットオフの対象とした。(17×17 燃料 (A型)、側部方向表面評価点で代表して、 のカットオフ有無による線量当量率を評価し、カットオフ有無で差異が であることを確認)

別紙1-6表(3/4) 燃料有効部のエネルギーごとのガンマ線源強度 (15×15 燃料 (A型))

エネルギー	平均エネルギー	燃料有	可効部 (photons/	s) (注)
群数	(MeV)	中央部	外周部	合計
1	0.01	1.414×10 ¹⁶	1. 320×10^{16}	2. 734×10 ¹⁶
2	0.025	$2,843\!\times\!10^{15}$	2.670×10^{15}	5. 512×10 ¹⁵
3	0.0375	3.689×10^{15}	3. 411×10 ¹⁵	7, 100×10 ¹⁵
1	0.0575	$2,866 \times 10^{15}$	2.692×10^{15}	5, 558×10 ¹⁵
ñ	0.085	1.612×10^{15}	1. 507×10^{15}	3. 119×10 ¹⁵
6	0.125	1. 566×10^{15}	1. 432×10 ¹⁵	2. 998×10 ¹⁸
7	0. 225	1. 342×10^{15}	1. 256×10 ¹⁵	2. 598×10 ¹⁸
8	0, 375	5.700×10^{14}	5. 360×10 ¹⁴	1. 106×10 ¹⁶
9	0.575	$2.462\!\times\!10^{16}$	2. 262×10 ¹⁶	4. 724×10 ¹⁶
10	0.85	$1,128 \times 10^{15}$	9. 922×10 ¹⁴	2. 120×10 ¹¹
11	1, 25	7. 723×10^{14}	6.781×10 ¹⁴	1. 450×10 ¹⁸
12	1, 75	$2.368\!\times\!10^{13}$	2. 088×10 ¹³	4. 456×10 ¹⁵
13	2, 25	$1.295\!\times\!10^{10}$	1. 198×10 ¹⁰	2. 493×10 ¹¹
11	2.75	6.936×10^{9}	5.801×10 ⁹	1.274×1010
15	3. 5	6. 904×10^8	5. 128×10 ⁸	1. 203×10 ⁹
16	5. 0	2.261×10^{8}	1.555×10 ⁸	3.816×10 ⁸
17	7. 0	2.607×10^7	1. 793×10 ⁷	4. 400×10 ⁷
18	9. 5	2.995×10^{6}	2.059×10^{6}	5, 054×10°
	合計	5. 517×10 ¹⁶	5. 101×10 ¹⁶	1.062×10 ¹⁷

(注) MCNP5 コードによる評価の については、線量当量率評価への寄与が無視できることを確認の上線源カットオフの対象とした。(17×17 燃料 (A型)、側部方向表面評価点で代表して、 のカットオフ有無による線量当量率を評価し、カットオフ有無で差異が であることを確認)

別紙1-6表(4/4) 燃料有効部のエネルギーごとのガンマ線源強度 (15×15燃料 (B型))

エネルギー	平均エネルギー	燃料有	可効部 (photons/	s) ^(注)
群数	(MeV)	中央部	外周部	合計
1	0.01	1.343×10^{16}	1. 254×10^{16}	2. 597×10 ¹⁶
2	0.025	$2,677\!\times\!10^{15}$	2. 515×10 ¹⁵	5. 192×10 ¹⁵
3	0.0375	3.458×10^{15}	3.200×10^{15}	6. 658×10 ¹⁵
4	0. 0575	$2.746\!\times\!10^{15}$	2. 581×10 ¹⁵	5, 327×10 ¹⁵
ñ	0.085	1.511×10^{15}	1. 413×10 ¹⁵	2. 924×10 ¹⁵
6	0.125	1. 422×10^{15}	1.304×10^{15}	2, 726×10 ¹⁵
7.	0. 225	1. 264×10^{15}	1. 184×10 ¹⁵	2.448×10 ¹⁵
8	0, 375	5, 279×10^{14}	4. 968×10 ¹⁴	1.025×10 ¹³
9	0.575	2. 322×10^{16}	2. 134×10 ¹⁶	4. 457×10 ¹⁶
10	0.85	$8.333\!\times\!10^{14}$	7. 345×10^{14}	1.568×10 ¹⁵
1.1	1. 25	6. 511×10^{14}	5, 719×10 ¹⁴	1. 223×10 ¹⁵
12	1.75	2.035×10^{13}	1.796×10 ¹³	3. 831×10 ¹³
13	2, 25	3. 847×10^9	3. 378×10 ⁹	7. 224×10 ⁹
11	2.75	5. 998×10^9	4. 944×10 ⁹	1. 094×10 ¹⁰
15	3, 5	5.313×10^{8}	3.750×10^{8}	9. 063×10 ⁸
16	5, 0	2.098×10^{8}	1.442×10 ⁸	3.540×10^{8}
17	7.0	2.419×10^7	1. 663×10 ⁷	4.082×10^{7}
18	9. ñ	2.779×10^{6}	1.911×10^{6}	4,689×10°
	合計	S. 177×10 ¹⁶	4. 790×10 ¹⁶	9. 967×10 ¹⁶

(注)MCNP5 コードによる評価の については、線量当量率評価への寄与が無視できることを確認の上線源カットオフの対象とした。(17×17 燃料 (A型)、側部方向表面評価点で代表して、 のカットオフ有無による線量当量率を評価し、カットオフ有無で差異が であることを確認)

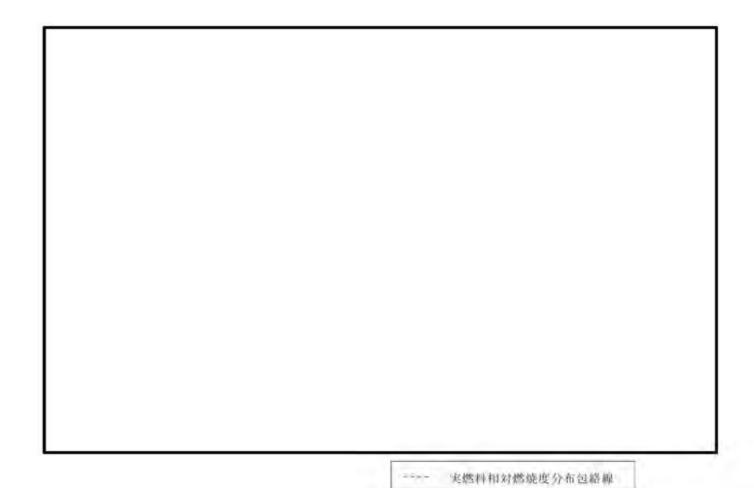
別紙1-7表 (1/5) 中性子源スペクトル

エネルギー群数	上限エネルギー (eV)	スペクトル (#1)
1	1.964×10^{7}	0.0
2	1.733×10^{7}	7. 107 × 10 ⁻⁶
3	1.691×10^{7}	7. 117×10 ⁻⁴
4	1. 649×10^7	2. 368×10 ⁻⁶
5	1. 568×10^7	3.835×10 ⁻⁵
-6	1. 492×10^7	2. 686×10 ⁻⁵
-6 7	1. 455×10^7	3. 351×10 ⁻⁵
-8	1.419×10^{7}	4. 165×10 ⁻⁵
- 9	1. 384×10^7	5. 111 × 10 ⁻⁵
10	$1,350 \times 10^7$	1.392×10 ⁻¹
11	1.284×10^{7}	1. 018×10 ⁻⁴
12	1.252×10^7	1. 017×10 ⁻⁴
13	1.221×10^{7}	2. 917×10 ⁻⁴
14	1. 162×10^7	4.082×10^{-4}
15	1. 105×10^7	5. 613×10 ⁻⁴
16	1.051×10^{7}	7.571×10^{-4}
17	1.000×10^{7}	1.002×10^{-3}
18	9.512×10^6	1.303×10^{-3}
19	9.048×10^{6}	1.668×10 ⁻³
20	8.607×10^{6}	2.101×10^{-3}
21	8, 187×10^6	2.608×10^{-3}
22	7.788×10^{6}	3. 191×10 ⁻³
23	7. 408×10^6	3.853×10^{-3}
24	7.047×10^{6}	4.592×10^{-3}
25	6.703×10^{6}	1.708×10^{-3}
26	6.592×10^{6}	3.698×10^{-1}
27	6. 376×10^{6}	6.293×10^{-9}
28	6.065×10^{6}	7. 243×10^{-3}
29	5.770×10^{6}	8. 251 × 10 ⁻³
30	5, 488×10^6	9. 302×10 ⁻³
31	5, 221×10 ⁶	$1,039 \times 10^{-2}$
32	4.966×10^{6}	1.151×10^{-2}
33	4.724×10^{6}	1, 263×10 ⁻²
34	4.493×10^{6}	2.859×10^{-2}
35	4, 066×10°	3.286×10^{-2}

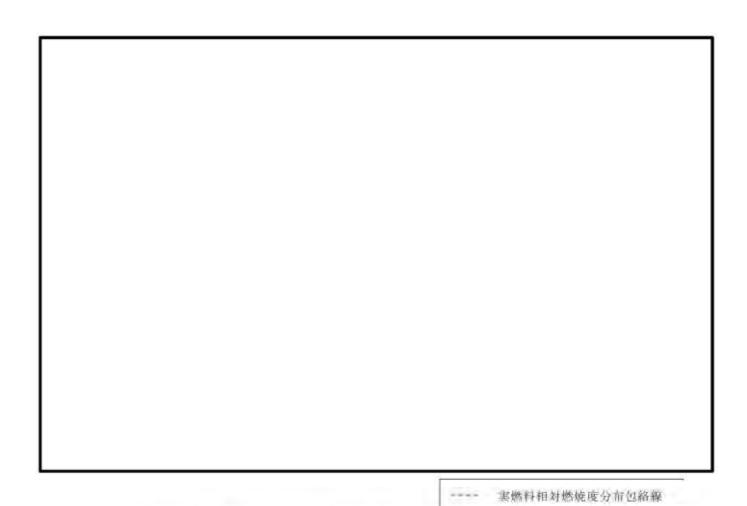
別紙1-7表 (2/5) 中性子源スペクトル

エネルギー觧数	上限エネルギー (eV)	スペクトル (#1)
36	3.679×10^{6}	3.674×10^{-2}
37	$3,329 \times 10^{6}$	1. 965×10^{-2}
38	3.166×10^6	2.042×10^{-2}
39	3.012×10^{6}	2. 108×10 ⁻²
40	2.865×10^{6}	2.165×10^{-2}
41	$2,725 \times 10^{6}$	2. 214×10 ⁻²
42	2.592×10^{6}	2.252×10^{-2}
43:	2.466×10^6	1.517×10 ⁻²
44	-2.385×10^{6}	3.833×10^{-3}
16	$2,365 \times 10^{6}$	3.812×10^{-3}
46	2.346×10^{6}	7.657×10^{-3}
47	$2,307 \times 10^{6}$	1.535×10 ⁻²
48	2.231×10^{6}	2. 310×10 ⁻²
49	2.123×10^6	2.312×10^{-2}
50	2.019×10^6	2. 305×10 ⁻²
51	1. 921×10^6	2. 290×10 ⁻²
52	1.827×10^{6}	2.267×10^{-2}
53	1.738×10^{6}	2.236×10^{-2}
54	1.653×10^{6}	2.200×10^{-2}
55	1.572×10^{6}	2.160×10^{-2}
56	1. 496×10^6	2.115×10^{-2}
57	1. 423×10^6	2.059×10^{-2}
58	1. 353×10^6	2.010×10^{-2}
59	1. 287×10^{6}	1.947×10^{-2}
60	1.225×10^6	1.892×10^{-2}
61	1.165×10^6	1.827×10^{-2}
62	1. 108×10^6	3. 460 × 10 ⁻²
63	1. 003×10^{6}	$1,367 \times 10^{-2}$
64	9.616×10^{5}	1.834×10 ⁻²
65	9.072×10^{5}	$1,502 \times 10^{-2}$
66	8.629×10^{5}	$1,437 \times 10^{-2}$
67	8. 209×10^5	1.372×10^{-2}
68	7, 808×10^5	$1,309 \times 10^{-2}$
69	7. 427×10^{5}	1.247×10^{-2}
70	7. 065×10^{5}	1. 186×10 ⁻²

別紙1-7表 (3/5) 中性子源スペクトル


エネルギー群数	上限エネルギー (eV)	スペクトル (#1)
71	6.721×10^5	1. 127×10 ⁻²
72	6. 393×10 ⁵	1. 070×10^{-2}
73	$6,081 \times 10^{5}$	1.014×10^{-2}
7.4	5.784×10^{5}	9. 605×10^{-3}
76	5, 502×10^5	9.086×10^{-3}
76	5.234×10^{5}	8.591×10^{-3}
77	4.979×10^{5}	1, 576×10 ⁻²
78	4.505×10^{5}	1.401×10^{-2}
79	4.076×10^{5}	6. 397×10^{-9}
80	3.877×10^{5}	6. 017×10^{-3}
81	3.688×10^{5}	1.097×10^{-2}
82	$3,337 \times 10^{5}$	9. 670×10 ⁻³
83	3.020×10^{5}	1.040×10 ⁻³
84	2.985×10^{5}	3.887×10^{-4}
85	2.972×10^{5}	7. 998×10^{-4}
86	2.945×10^{5}	2.159×10^{-3}
87	2.873×10^{5}	4. 115×10 ⁻³
88	2.732×10^{5}	7. 463×10^{-3}
89	2.472×10^{5}	3.378×10^{-3}
90	2.352×10^{5}	3. 160×10^{-3}
91	2.237×10^{5}	2.955×10^{-3}
92	2.128×10^{5}	2.763×10^{-3}
93	2.024×10^{5}	2.581×10^{-3}
94	1. 926×10^{5}	2.411×10^{-3}
95	1.832×10^{5}	2.254×10^{-3}
96	$1,742 \times 10^{5}$	2, 100×10°3
97	1.657×10^{5}	1. 964×10^{-3}
98	1.576×10^{5}	1.828×10^{-3}
99	1.500×10^{5}	1.709×10^{-3}
100	1. 426×10^{5}	1.590×10^{-3}
101	$1,357 \times 10^{5}$	1, 485×10 ⁻³
102	1. 291×10^5	1.384×10^{-3}
103	$1,228 \times 10^{5}$	$1,287 \times 10^{-3}$
104	1. 168×10^{5}	1.202×10^{-3}
105	1. 111×10 [†]	2, 653×10 ⁻³

別紙1-7表(4/5) 中性子源スペクトル


エネルギー觧数	上限エネルギー (eV)	スペクトル ^(注1)
106	9.804×10^4	2.219×10^{-3}
107	8. 652×10 ⁴	7. 446×10^{-4}
108	8, 250×10 ⁴	5, 458×10 ⁻⁴
109	7. 950×10^4	1. 324×10^{-3}
110	7. 200×10^4	7.861×10 ⁻⁴
111	$6,738 \times 10^{4}$	1,744×10 ⁻³
112	5.656×10^4	6.216×10^{-i}
113	5. 248×10^4	8. 958×10 ⁻⁴
114	4.631×10^4	7.457×10^{-4}
115	4.087×10^4	8. 384×10 ⁻⁴
116	$3,431 \times 10^4$	2.982×10 ⁻⁴
117	3, 183×10^4	3.831×10 ⁻⁴
118	2.850×10^4	1.659×10 ⁻⁴
119	2.700×10^4	1.020×10 ⁻⁴
120	2.606×10^4	1. 347×10 ⁻⁴
(2)	$2,479 \times 10^4$	6. 373×10 ⁻⁵
122	2.418×10^4	6. 142×10 ⁻⁵
123	2.358×10^4	1.712×10 ⁻⁴
124	2.188×10^4	2. 461×10 ⁻⁴
125	1.931×10^4	3.741×10^{-4}
126	1.503×10^4	2.577×10^{-4}
127	1.171×10^4	7. 100×10^{-5}
128	1. 060×10^4	1.066×10^{-4}
129	9. 119×10^3	1. 222×10 ⁻⁴
130	7.102×10^{3}	8. 411×10 ⁻⁵
131	$5,531 \times 10^{3}$	5.787×10^{-5}
132	4.307×10^{3}	2.564×10^{-5}
133	3. 707×10^3	$1,416 \times 10^{-5}$
134	3.355×10^{3}	1. 219×10^{-5}
135	3.035×10^3	1.050×10^{-5}
136	$2,747 \times 10^{3}$	4. 685×10^{-6}
137	2.613×10^3	4.348×10^{-6}
138	2. 485×10^3	7, 778×10 ⁻⁶
139	2.249×10^{3}	6. 696×10 ⁻⁶
140	2.035×10^{3}	1. 294×10 ⁻⁵

別紙1-7表 (5/5) 中性子源スペクトル

エネルギー群数	上限エネルギー (eV)	スペクトル ^(注1)
141	1. 585×10^3	8.896×10 ⁻⁶
142	1. 234×10^{3}	6, 116×10 ⁻⁶
143	$9,611 \times 10^{2}$	4. 204 × 10 ⁻⁶
144	7. 485×10^{2}	2.890×10^{-6}
145	5.830×10^{2}	1.986×10 ⁻⁶
1.16	4.540×10^{2}	1, 365×10 ⁻⁶
147	3.536×10^{2}	9, 385×10^{-7}
148	2.754×10^{2}	6.450×10 ⁻⁷
1/19	2.145×10^{2}	4. 433 × 10 ⁻⁷
150	1. 670×10^{2}	3. 047×10 ⁻⁷
151	1.301×10^{2}	2. 094×10 ⁻⁷
152	1.013×10^{2}	1. 439×10 ⁻⁷
153	7.889 $\times 10^{1}$	9.893×10 ⁻⁸
154	6. 144×10^{1}	6, 799×10 ⁻⁸
155	4.785×10^{1}	4. 673 × 10⁻8
156	3.727×10^{1}	3, 201×10 ⁻⁸
157	2.902×10^{1}	2.218×10^{-8}
158	2.260×10^{1}	1. 517×10^{-8}
159	1. 760×10^{1}	1.043×10^{-8}
160	1.371×10^{1}	7. 168×10^{-9}
161	1. 068×10^{1}	4. 925×10 ⁻⁹
162	8, 315×10^{0}	3.385×10^{-9}
163	6. 476×10^{0}	2.327×10^{-9}
164	5.044×10^{0}	1.599×10^{-9}
165	3.928×10^{0}	1.099×10^{-9}
166	$3,059 \times 10^{0}$	7. 657×10^{-10}
167	2.382×10^{0}	5. 087×10 ⁻¹⁰
168	1.855 \times 100	3.568×10^{-10}
169	1. 445×10^{0}	2.452×10^{-10}
170	1.125×10^{0}	1.686×10 ⁻¹⁰
171	$8,764 \times 10^{-1}$	1. 158×10^{-10}
172	6. 826×10^{-1}	7. 961×10 ⁻¹¹
173	5, 316×10^{-1}	5, 472 × 10 ⁻¹¹
174	4. 140×10 ⁻⁴	$1,060 \times 10^{-10}$
175	1.000×10 ⁻¹	1.427×10^{-11}

別紙1-1図(1/2) 軸方向燃焼度分布の設定(17×17燃料)

別紙 1-1図 (2/2) 軸方向燃焼度分布の設定 (15×15燃料)

2. 遮蔽解析のモデル化について

遮蔽解析モデル化の概要を別紙1-2図、解析モデル図を別紙1-3図及び別紙1-4図に示す。 遮蔽解析のモデル化方針は以下のとおりである。

二次元輸送計算コード DOT3.5 では、特定兼用キャスクを R-7 体系の有限円筒モデル (以下「二次元モデル」という。)でモデル化している。ただし、有限円筒モデルで直接モデル化できない使用済燃料集合体、バスケット、トラニオン等は、構造上の特徴を考慮して、均質化あるいは線束接続によって評価している。なお、二次元モデルは、キャスク中央付近で二分割しており、頭部評価モデルは、使用済燃料集合体が一次蓋に接した状態とし、底部評価モデルは、使用済燃料集合体が胴(底板)に接した状態として、線源である使用済燃料集合体から評価点までの距離が短い保守的なモデルとしている。

三次元モンテカルロコード MCNP5 では、特定兼用キャスクをその実形状に基づき三次元体系の モデル (以下「三次元モデル」という。) でモデル化している。なお、三次元モデルについても二 次元モデルと同様に使用済燃料集合体が一次蓋及び胴 (底板) に接した状態として、線源である 使用済燃料から評価点までの距離が短い保守的なモデルとしている。

二次元モデル設定の妥当性は、別紙6に示すとおり、DOT3.5コード評価結果とMCNP5コード評価結果がおおむね一致していることにより確認している。

(1) 燃料領域

二次元モデルの燃料領域については、別紙1-5図に示すとおり、使用済燃料集合体とバス ケットを均質化してモデル化している。中央部及び外周部燃料領域について、それぞれの燃料 領域の実形状の断面積と等価な面積となる円(円筒)にモデル化している。

三次元モデルの燃料領域については、別紙1-5回に示すとおり、使用済燃料集合体とバスケットをそれぞれモデル化している。

バスケットの留め具 (ワッシャ、ボルト、ナット) は無視しており、バスケット領域に空孔 が存在する場合は空孔の体積も考慮して均質化している。また、バーナブルポイズン集合体は、 放射化線源強度のみ考慮し、構造材としての遮蔽効果は無視している。

使用済燃料集合体の移動を考慮するため、軸方向については燃料各領域の高さ寸法は固定して一次蓋及び胴(底板)に接した状態となるようキャスク全長を短縮し、径方向についてはバスケットセル内に均質化している。

(2) バスケット外周部

二次元モデルの燃料領域より外側のバスケット部は、円周方向に不均一な厚さとなっている 構造であることから、バスケット外周部 (燃料領域より外側から胴内面までの領域) の密度を 密度係数で調整している。別紙1-6 図に示すとおり、キャスク水平断面 X-Y 体系のモデルに て、円周方向のキャスク表面から1 m 離れた位置の最大線量当量率を算出し、この値と同等と なるようなバスケット外周部の密度係数を無限円筒モデルより求め、本体モデルに反映してい る。したがって、本体モデルにおける線量当量率は、実形状における最大線量当量率を包絡す る設定となる。

三次元モデルについては、別紙1-5図に示すとおり、実形状に基づきモデル化している。

(3) 胴、側部中性子遮蔽材及び外筒

二次元モデルの胴、側部中性子遮蔽材及び外筒については、別紙 1-5 図に示すとおり、円 筒としてモデル化している。

なお、側部中性子遮蔽材に伝熱フィンがある領域では、伝熱フィンは均質化している。

三次元モデルについては、別紙1-5図に示すとおり、実形状に基づきモデル化している。

(4) トラニオン部

二次元モデルのトラニオン部については、実形状を模擬して別途モデル化し、評価している。 別紙1-7回に示すとおり、トラニオンを無視した本体モデルにて得られたトラニオン底面 付近の線束を、別途モデル化した R-Z 体系のトラニオンモデルに接続している。トラニオン部 は、トラニオン中心を通る断面でトラニオン底面及びキャスク本体の一部を含めモデル化して いる。

トラニオン部の線量当量率は、トラニオン有りモデルとトラニオン無しモデルの線量当量率 結果より、線種ごとの線量当量率結果の比を補正値として求め、本体モデルの線量当量率にそ の補正値を乗じて評価している。

三次元モデルについては、実形状に基づきモデル化している。

(5) 解析モデルの入力条件への不確かさの考慮について

解析モデルの入力条件への不確かさとして以下を考慮している。

①構成部材密度

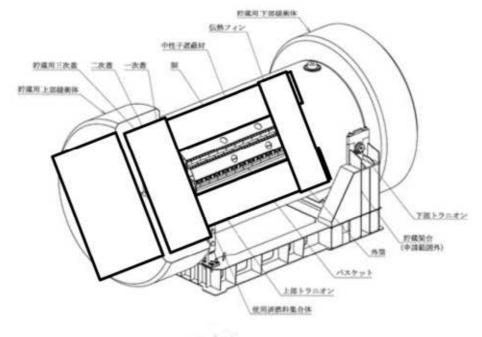
最低保証密度を使用して原子個数密度を設定。

②寸法公差

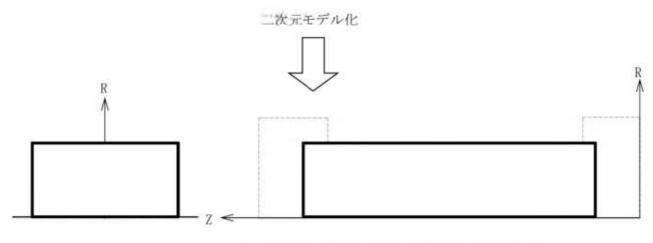
解析モデルの各種寸法は公称寸法でモデル化するが、各構成部材の寸法公差については 最小厚さを密度係数 (=最小寸法/公称寸法) で考慮。

(6) 遮蔽解析の保守性

本評価においては、以下の点について保守性を有している。解析条件の保守性が線量当量率


に与える影響を別紙1-8表に示す。
・収納制限に対する解析条件の保守性
ーウラン濃縮度 4.1±wt%及び 4.0±wt%を保守的にwt%及びwt%とす
Z.

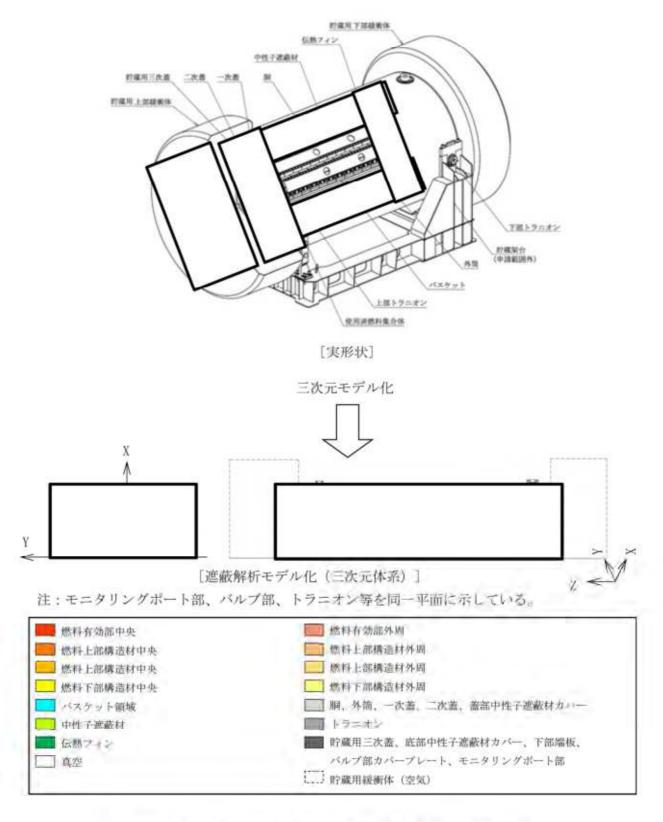
- 一遮蔽評価においては、局所的な表面線量を評価する必要があるため、使用済燃料の燃焼度 (集合体平均)は中央部、外周部共に当該配置の収納制限の最高燃焼度を設定している。
- ・モデル化の保守性
- 中性子遮蔽材は、評価期間中の熱的影響により質量減損 (2.0 %程度) が発生するため、 遮蔽評価上、保守的に 2.5 %の質量減損を考慮 (原子個数密度で考慮) する。
- 一使用済燃料について胴内での軸方向の移動を考慮し、安全側に蓋方向、底部方向に移動し たモデルとしており、線源である使用済燃料が評価点により近くなる設定としている。
- 一憲部が金属部へ衝突しない設置方法で設置する緩衝体は、安全側に空気に置き換え、距離のみ考慮する。
- バーナブルポイズン集合体は、放射化による線源強度については考慮するが、構造材としての遮蔽効果は無視する。


別紙1-8表 解析条件の保守性による線量当量率への影響

項目	詳細条件	遮蔽解析条件	線量当量率 (E) への影響 (保守性)
ウラン初期 濃縮度	4.1± wt% (ノミナル値、公差)	wt%	約 0.5%程度
燃料集合体 燃焼度	キャスク平均 44GWd/t	中央部全て 48GWd/t 外周部全て 44GWd/t (キャスク平均 46GWd/t)	約10%程度
中性子遮蔽材質量減損	質量減損 2.0%	質量減損 2.5%	約 10%程度
燃料集合体の 軸方向移動	燃料集合体と一次蓋間に 約8cmの隙間	胴(底板)及び 一次蓋に接した状態	約7%程度 (頭部軸方向のみ)
バーナブルボ イズン集合体	中央部領域全ての燃料集合体 と共に収納可能	構造材としての遮蔽効果は無視	約1%程度

(注) 基準に対して裕度の少ない特定兼用キャスク表面から1 m離れた位置における線量当量率

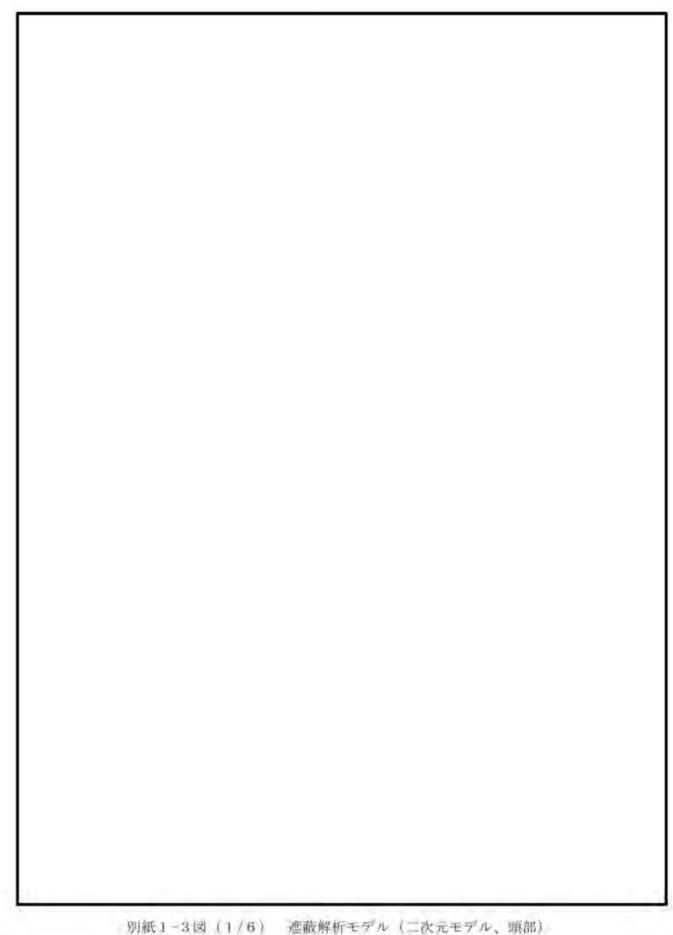
[実形状]


[遮蔽解析モデル化 (二次元体系 (R-Z 体系))]

別紙1-2図(1/2) 遮蔽解析モデル化概要(二次元モデル) (蓋部が金属部へ衝突しない設置方法の例)

別紙 1-26

無断複製·転載禁止 三菱重工業株式会社

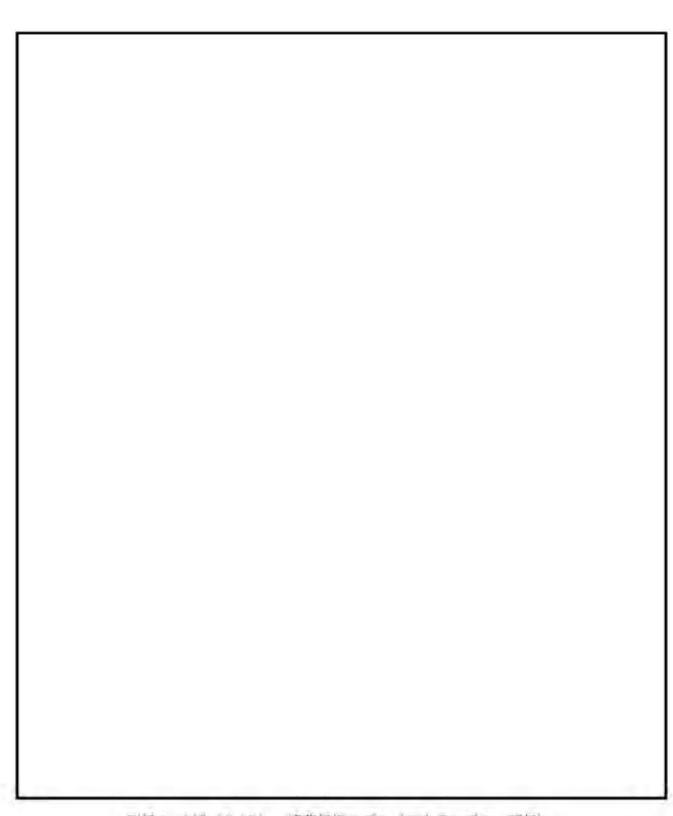


別紙1-2図(2/2) 遮蔽解析モデル化概要(三次元モデル) (蓋部が金属部へ衝突しない設置方法の例)

別紙 1-27

無断複製·転載禁止 三菱重工業株式会社

内は商業機密のため、	非公開とします。
------------	----------

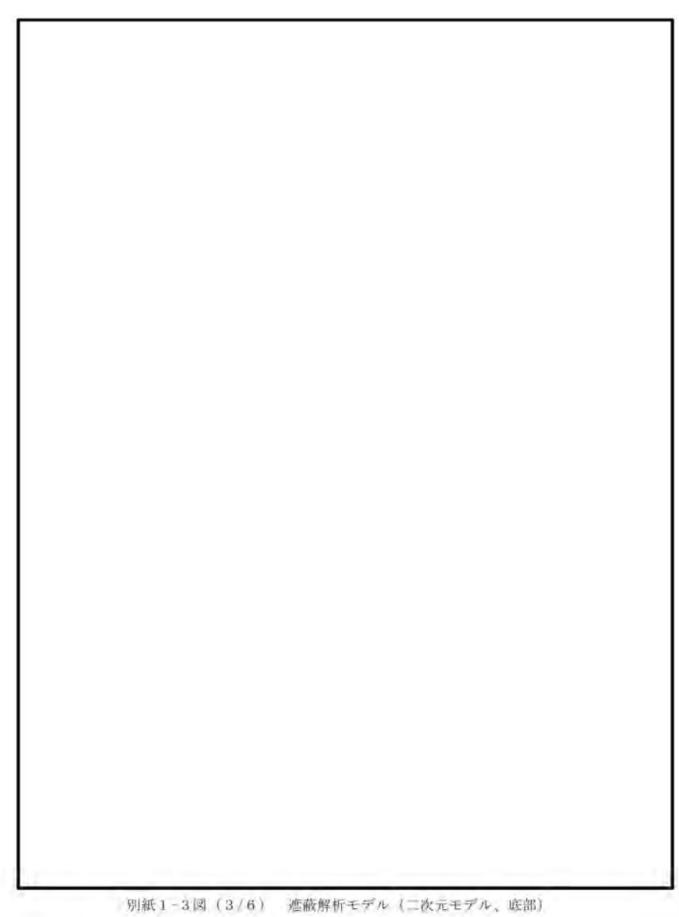

別紙1-3図(1/6) 遮蔽解析モデル(二次元モデル、頭部)

(蓋部が金属部へ衝突しない設置方法)

別紙 1-28

無断複製·転載禁止 三菱重工業株式会社

]内は商業機密のため、非公開とします。

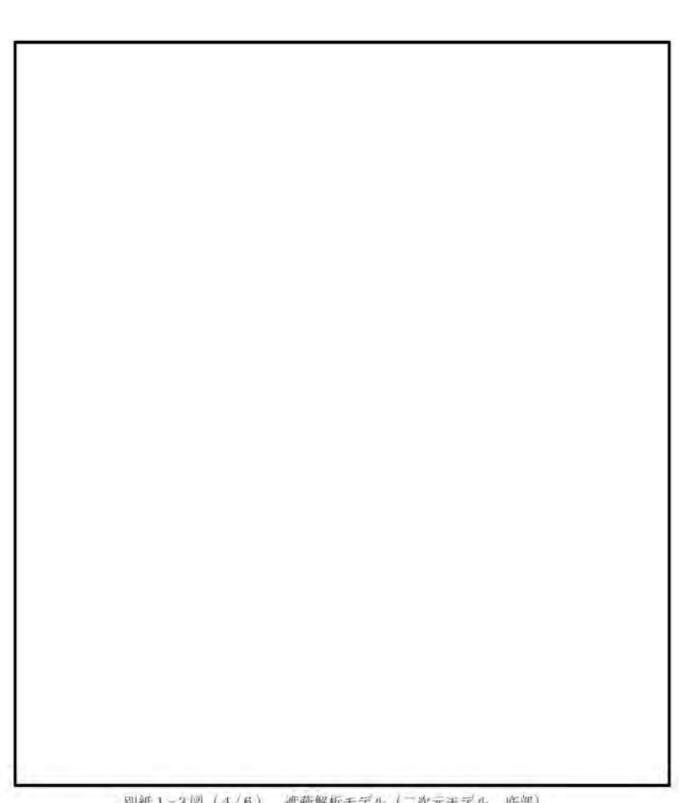

別紙1-3図(2/6) 遮蔽解析モデル(二次元モデル、頭部)

(基礎等に固定する設置方法)

別紙 1-29

無断複製·転載禁止 三菱重工業株式会社

内は商業機密のため、非公開とします。

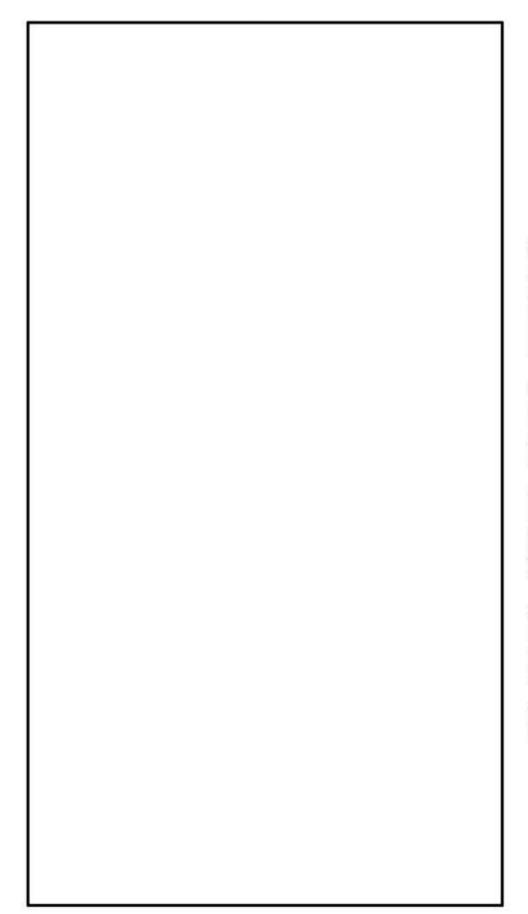


(蓋部が金属部へ衝突しない設置方法)

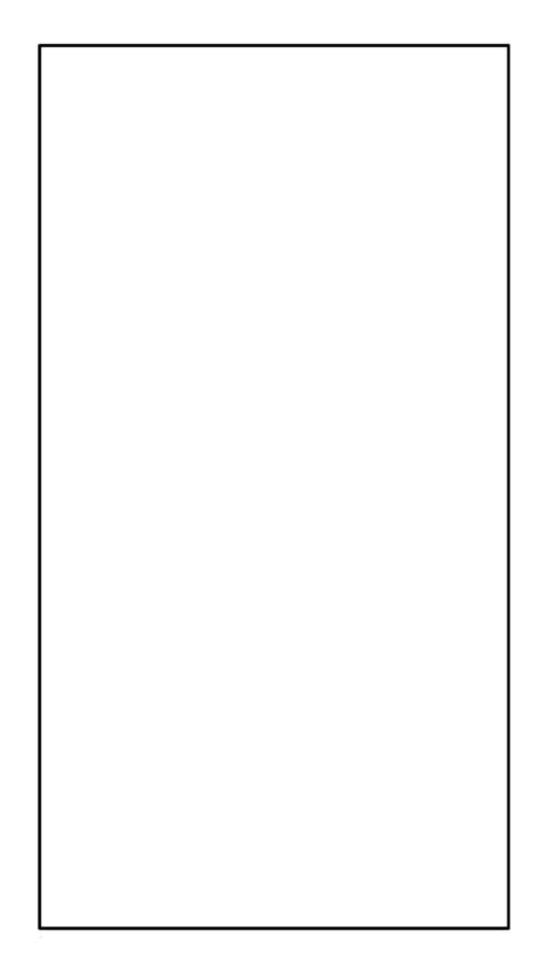
別紙 1-30

無断複製·転載禁止 三菱重工業株式会社

内は商業機密のため、	非公開とします。
------------	----------


別紙1-3図(4/6) 遮蔽解析モデル(二次元モデル、底部)

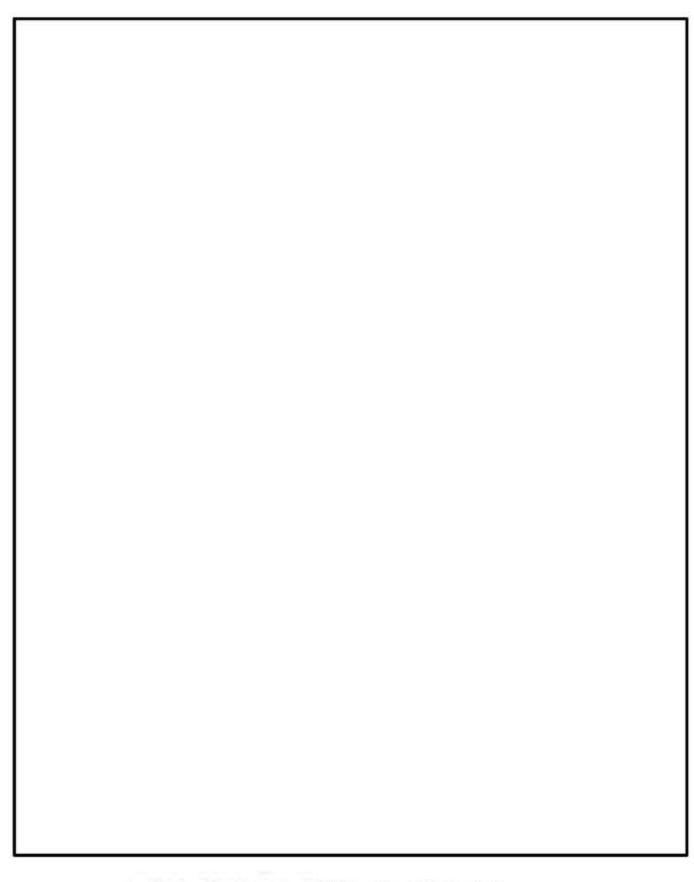
(基礎等に固定する設置方法)


別紙 1-31

無断複製·転載禁止 三菱重工業株式会社

]内は商業機密のため、非公開とします。

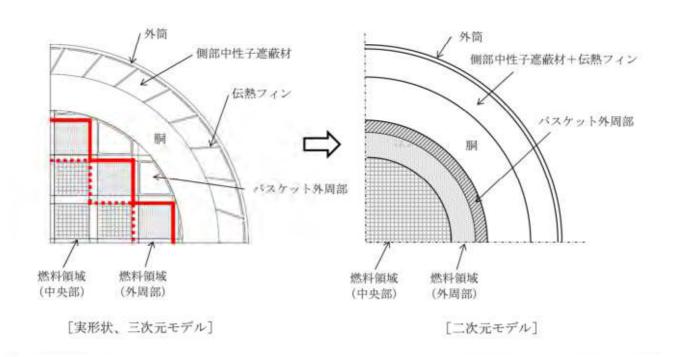
別紙1-3図 (5/6) 遮蔽解析モデル (二次元モデル、上部トラニオン部)


別紙1-3図(6/6) 遮蔽解析モデル (二次元モデル、下部トラニオン部)

8		2) 遊飯解析モデノ)	
	(蓋部が全	金属部へ衝突しない記	2置方法)		

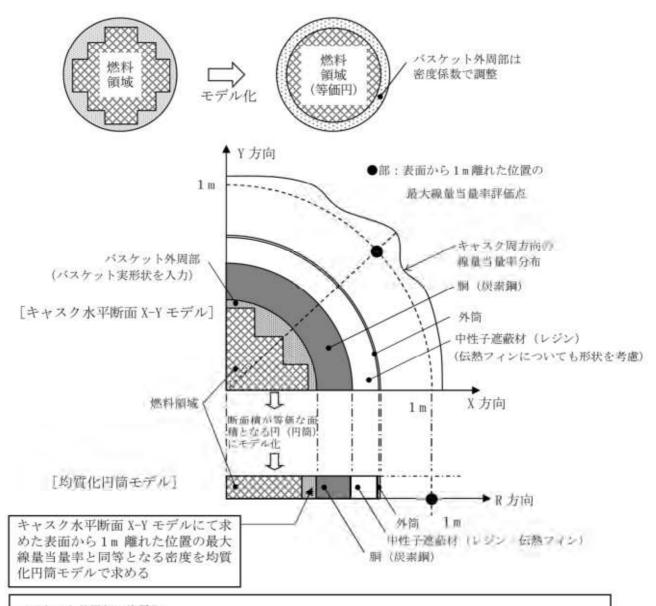
別紙 1-34

無斯複製·転載禁止 三菱重工業株式会社


内は商業機密のため、非公開とします。

別紙1-4図(2/2) 遮蔽解析モデル(三次元モデル) (基礎等に固定する設置方法)

別紙 1-35


_								
	内は商	業機	密の	ため、	非公開	占	L	ます

遮蔽解析モデルへの入力

二次元モデルの解析では、円筒形状での入力となるため、燃料領域の断面積と等価な面積となる円(円筒)にモデル化している。その際、燃料領域は使用済燃料集合体とバスケットを均質化した物性値を設定した。 三次元モデルでの解析では、実形状に基づきモデル化している。

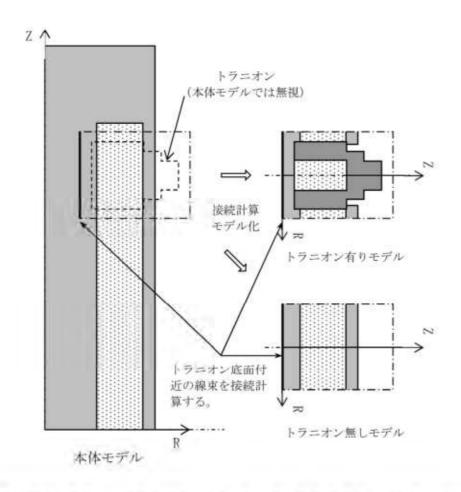
別紙1-5図 キャスク中央断面の実形状と解析モデル

バスケット外周部の均質化

バスケット外周部は円周方向に不均一な厚さとなっている構造であることから、二次元モデルでは以下に示 す手法により、バスケット外周部の密度を設定している。

(i)キャスク水平断面 X-Y モデル遮蔽解析

キャスク水平断面 X-Y モデルによる表面から1m 離れた位置での最大線量当量率を算出する。


※算出位置を表面から1m離れた位置としているのは、表面位置に比べ、要求事項である基準線量当量率に 対する裕度が少ないためである。

(ii)キャスク均質化円筒モデル遮蔽解析

別紙1-5図により設定した均質化モデルにて、表面から1m離れた位置での線量当量率が(i)で算出した最大線量当量率と同等となるバスケット外周部の密度係数を算出する。

(ii)にて算出したバスケット外周部の密度係数を用いることで、実形状の最大線量当量率を包絡する結果を 得ることができる。

別紙1-6図 二次元モデルのバスケット外周部のモデル化について

トラニオン部の線量当量率=(本体モデル)×(トラニオン有りモデル)/(トラニオン無しモデル)

別紙1-7図 二次元モデルのトラニオン部の線束接続計算の概略図

3. 中性子遮蔽材の質量減損について

中性子遮蔽材(レジン)は、補足説明資料 16-6 「材料・構造健全性に関する設明資料(L5-95JV215)」 に示すとおり、熱による質量減損が生じる。遮蔽解析では、設計貯蔵期間(60年)経過後の中性 子遮蔽材の質量減損を考慮した原子個数密度を用いている。

中性子遮蔽材の質量減損は、劣化パラメータにより次式で表される。

 \triangle w=5. 69×10⁻⁴×Ep-19. 2 (2)

ここで、

✓w:中性子遮蔽材の質量減損率(%)

E_n : 劣化パラメータ=T×(77.6+In(t))

T:中性子進敵材温度(K)

t : 中性子遮蔽材加熱時間(h)

貯蔵中は、使用済燃料の崩壊熱量の低下に伴い、中性子遮蔽材の温度も低下するが、設計貯蔵期間中の温度を保守的に貯蔵開始直後の中性子遮蔽材の最高温度が設計貯蔵期間にわたり一定として考慮すると、設計貯蔵期間経過時までの中性子遮蔽材の質量減損率はMSF-24P(S)型は約2.0%となる。これを保守的に2.5%の質量減損があるとして評価した。

4. 三次元モンテカルロコード MCNP5 による詳細評価条件

三次元モンテカルロコード MCNP5 による解析(以下「MCNP5 解析」という。)の主要な評価条件は別紙1-9表に示すとおりである。解析コード、断面積ライブラリ及び線源強度設定については前述のとおりであり、ここでは分散低減、タリーの設定及び統計指標に係る事項について説明する。

なお、17×17燃料と 15×15燃料は MSF-24P(S)型に混載しないが、48,000MWd/t と 39,000MWd/t、及びA型とB型は区別なく同一キャスクへ混載可能である。遮蔽解析条件は収納燃料を全てA型の 48,000MWd/t 型燃料又は全てB型の 48,000MWd/t 型燃料としている。

別紙1-9表 MCNP5 解析の主要な評価条件

項目		解析条件					
解析コ	ード	MCNP5 ver. 1.60					
断面積ライ	ブラリ	FSXL1B-J33(中性子) MCPLIB84(ガンマ線)					
燃料有効部	群構造	ORIGEN2 群構造 (18 群)					
ガンマ線源強度	スペクトル	ORIGEN2 評価値					
	#V-1#:7/:	1. 17MeV					
構造材放射化 ガンマ線源強度	群構造	1. 33MeV					
		1.17MeV:50%					
	スペクトル	1. 33MeV : 50%					
A DE CONTRACTO	群構造	連続エネルギー					
中性子源強度	スペクトル	Watt 型 ²³⁹ Pu 核分裂スペクトル					
	3	線源カットオフ					
分散低	威法	エネルギー・カットオフ					
		ウェイト・ウィンドウ					
A 11		表面: F2 タリー(半径 2.5cm の面 若しくは5cm×5cm の曲面)					
タリ・	7 0	表面から1m位置:F4タリー(半径10cmの球形状)					
統計指		統計誤差 10%以下 (マニュアル推奨値)					

(1)分散低減法

三次元モンテカルロコード MCNP5 では線源で発生する放射線粒子1つ1つについて計算を実施 している。評価点に到達する粒子が多いほど結果の統計誤差が小さくなり、計算精度が良くな る。評価点により多くの粒子を到達させ、効率的に統計誤差を小さくする方法を分散低減法と言 う。

本評価は、線源形状が比較的大きく、かつ遮蔽体が厚く複雑な評価体系であるため、粒子が評価点に到達しづらく、統計誤差が小さくなりづらい評価体系である。よって、本評価では、統計 誤差を低下させるための分散低減法として、燃料有効部ガンマ線の線源放出粒子を入力からあらかじめ外しておく線源カットオフ法、打ち切り法のうちエネルギースペクトル計算において指定したエネルギー以下の計算を打ち切るエネルギー・カットオフ、及び非アナログモンテカルロ法のうち、空間及びエネルギーごとに分散低減のパラメータを設定するウェイト・ウィンドウ法を使用した。

線源カットオフ設定値は、	
とした。エネルギー・カットオフ設定値は、	
	フレーナ

ウェイト・ウィンドウ法では粒子を分割・結合させ、計算結果への影響が大きい領域でより多くの粒子の計算を行い、計算精度の向上を図る手法である。ウェイト・ウィンドウ法では粒子のウェイト (計算結果への影響度を示す値) が過大な状態で評価点に到達した際に発生する大きな変動や、粒子のウェイトが過小になり寄与の小さい粒子について計算時間を費やすことによる計算効率の低下を防止するため、領域ごとにウェイト・ウィンドウという呼ばれるウェイト制限範囲を設定し粒子のウェイトをこの範囲に収めてばらつきを小さくし、計算精度の向上を図っている。

本評価でのウェイト・ウィンドウパラメータは、Superimposed Importance Mesh を用いて基本的に空気、鉄、レジンなどの物質ごとに分割し、隣り合う分割領域での粒子ウェイトが大きく変わらない分割厚さを設定、補助ツールである ADVANTG ver. 3.0.3 の により算出した。ウェイト・ウィンドウパラメータの設定が妥当であることは、評価結果の連続性により確認した。

(2) タリーの設定

容器表面評価では、線源から方位性を持つ表面直近の中性子及びガンマ線の線量当量率を評価することを目的に、サーフェイスクロッシングエスティメータ(面タリー)を設定した。また、トラニオン近傍等は中性子ストリーミングの発生により比較的線量当量率の変化が大きいことを考慮し、遮蔽欠損部の大きさや線量当量率分布を基にストリーミングの最大線量当量率を適切に計算できる位置及び遮蔽欠損部程度の大きさとした。

容器表面から1 m離れた位置評価では、評価位置に対して全方位からの中性子及びガンマ線の 線量当量率を評価することを目的に、球形状のトラックレングスエスティメータ(体積タリー)

	内は商業機密のため、	attack many a second
1 1	四は商業機能のため、	非公開とします

を用いた。表面から1 m 離れた位置の線量当量率分布より十分に計算精度が得られる大きさとした。

(3)統計指標

三次元モンテカルロコード MCNP5 では、解析値に統計誤差を持つことから、解析値が解析精度 として十分に信頼できるものとなっているか確認するため、統計誤差が MCNP コードマニュアル推 奨値である 10 %以下となることを目標として計算を実施する。

5. 参考文献

- X-5 Monte Carlo Team, "MCNP A General Monte Carlo N-Particle Transport Code, Version 5", LA-UR-03-1987, (2003).
- (2) (財) 原子力発電技術機構,「平成 14 年度 リサイクル燃料資源貯蔵技術調査等(金属キャスク 貯蔵技術確証試験) 報告書」, (2003),

中性子実効増倍率の設定について

中性子源強度は、体系の増倍効果を考慮して次式により、乾燥状態において使用済燃料集合体を収納した場合のキャスクの実効増倍率を求め、中性子源強度に考慮した。

 $N_S = N_0 / (1 - \text{keff})$ $\sum \mathcal{T}$

No : MSF-24P(S)型1基当たりの一次中性子源強度

keff : 使用済燃料集合体を収納した場合の MSF-24P(S)型の実効増倍率

実効増倍率の評価に用いた使用済燃料集合体の条件、評価結果及び線源強度設定に用いた実効増倍率を別紙2-1表に示す。実効増倍率評価は、冷却期間の短い条件による評価結果が保守的となるため、 B型燃料に比べて冷却日数が短いA型燃料を評価対象とした。

なお、実効増倍率は、ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及び中性子の吸収に対して寄与が大きな核分裂生成物の生成量を求め、これらを考慮した核種組成を用いて、臨界解析で用いる KENO-VI コードにより求めた。なお、考慮している核種(1) は以下のとおりである。

アクチニド: 285以, 286以, 286以, 286以, 286中u, 280中u, 241中u, 242中u 核分裂生成物: 397c, 165Rh, 65Xe, 165Cs, 165Nd, 145Nd, 147Pm, 147Sm, 149Sm, 151Sm, 152Sm, 153Eu, 155Gd

17×17 燃料 15×15 燃料 項目 (A型) 収納時 (A型) 収納時 ウラン重量 (kg/体) 初期濃縮度 (wt%) 燃焼度 (MWd/t) 44,000 44,000 比出力 (MW/t) 冷却日数(日) 5, 479 5, 479 実効増倍率 (注) 遮蔽解析用実効増倍率 0.300.30

別紙2-1表 実効増倍率評価条件及び評価結果

(1) (一社)日本原子力学会、「使用済燃料・混合酸化物新燃料・高レベル放射性廃棄物輸送容器の安全設計及び検査基準(AESJ-SC-F006:2013)」、(2014)。

1 内は商業機密のため、非公開とし	ます
-------------------	----

⁽注) 実効増倍率評価結果に統計誤差の3倍を加えた値。

中性子源スペクトルを 239Pu の核分裂スペクトルで代表させる設定の妥当性

中性子源スペクトルを ²³⁹Pu の核分裂スペクトルで代表させる設定の妥当性について下記 に示す。

使用済燃料からの主要な中性子類としては、以下の3つが挙げられる。

- 1. 一次中性子源である Cm の自発核分裂による中性子
- 2. 一次中性子源である (α, n) 反応による中性子
 - 3. 二次中性子源である核分裂反応により増倍される中性子

このうち、一次中性子源においては、別紙3-1図に示すとおり使用済燃料の場合、冷却期間が数十年までの間は自発核分裂による中性子が支配的である。MSF-24P(S)型に収納する使用済燃料集合体の中性子源強度は、別紙3-1表及び別紙3-2表に示すとおり自発核分裂による中性子が支配的である。なお、それぞれ中性子源強度の高いA型燃料について記載している。

別紙3-1表 中性子源強度(17×17燃料(A型)収納時)

(MSF-24P(S)型1基当たり)

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(a,n) 反応	9. 369×10^7	7.472×10^7	1. 684×10 ⁸
No	自発核分裂	4. 909×10 ⁹	3. 360×10 ⁹	8. 269×10 ⁹
(n/s)	合計	5. 003×10 ⁹	3. 435×10 ⁹	8, 437×10 ⁹

別紙3-2表 中性子源強度(15×15燃料(A型)収納時)

(MSF-24P(S)型1基当たり)

			燃料有効部	
		中央部	外周部	合計
一次中性子源強度	(a,n) 反応	9. 669×10 ⁷	7.716×10^7	1.739×10 ⁸
No	自発核分裂	5, 148×10°	3.537×10^9	8. 685 × 10"
(n/s)	合計	5. 245×10 ⁰	3. 614×10 ⁹	8.859×10°

上記より、中性子源スペクトルの候補(主要な核分裂核種)は以下の3つとなる。

- ① Cm の自発核分裂反応
- (2) ²³⁹Pu の核分裂反応
- ③ 当りの核分裂反応

別紙3-2図に示すとおり、³⁴²Cm、³⁴⁴Cm の自発核分裂による中性子源スペクトルに対して ²³⁹Pu の核分裂による中性子源スペクトルの方がより高エネルギー成分が多い。

また、別紙3-3図に示すとおり、²³⁵Uの核分裂による中性子源スペクトルに対しても ²³⁹Pu の核分裂による中性子源スペクトルの高エネルギー成分が多い。

したがって、中性子源スペクトルを ²³⁹Pu の核分裂スペクトルで代表させる設定は保守側 の設定であり妥当である。

(出典)

- L. B. Shappert, et al., "The Radioactive Materials Packaging Handbook", ORNL/M-5003, Oak Ridge National Laboratory, 9-9, (1998).
- (2) H. S. Bailey, R. N. Evatt, G. L. Gyorey, et al., "Neutron Shielding Problems in the Shielding of High Burnup Thermal Reactor Fuel", Nuclear Technology, ANS, 17, 222, (1973).
- (3) E. D. Arnold, R. G. Jaeger, et. al., "Engineering Compendium on Radiation Shielding", Volume I Shielding Fundamentals and Methods, Springer-Verlag, Germany, 69 (1968).

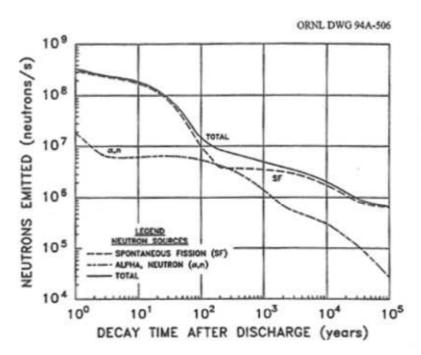


Fig. 9.2. Neutrons emitted by 1 metric ton of initial heavy metal (MTIHM): PWR/33,000 MWd/MTU. Source: ref. 24.

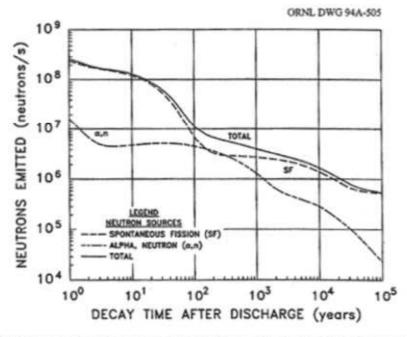
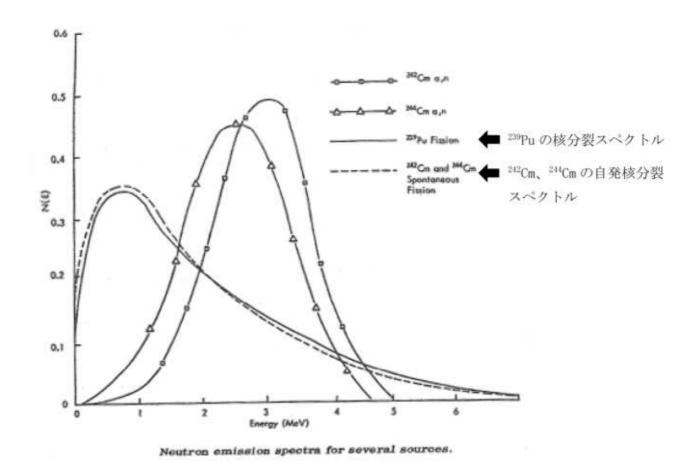



Fig. 9.3. Neutrons emitted by 1 metric ton of initial heavy metal (MTIHM): BWR/27,500 MWd/MTU. Source: ref. 24.

別紙 3-1 図 自発核分裂及び (a, n) 反応に伴う中性子源強度と冷却期間との関係(1)

別紙3-2図 ²³⁹Pu の核分裂、Cm の自発核分裂中性子源スペクトルの比較⁽²⁾

Fig. 2.3.-2. Typical measured fission neutron spectra of $^{235}\rm{U} + n_{th}$ and $^{239}\rm{Pu} + n_{th}$.

別紙 3-3 図 ²³⁹Pu 及び ²³⁵U の核分裂中性子源スペクトルの比較 ⁽³⁾

遮蔽解析結果の詳細 (DOT3.5 コード)

1. 線量当量率評価結果

次元輸送計算コード DOT3.5 による遮蔽解析(以下「DOT3.5 解析」という。) における 解析結果詳細を示す。

DOT3.5 解析の線量当量率結果を別紙4-1表から別紙4-8表に、最大線量当量率となる 評価点位置を別紙4-1図から別紙4-8図に示す。また、別紙5に示す MCNP5 解析と同様 に蓋部が金属部へ衝突しない設置方法の17×17燃料 48,000MWd/t型(A型)収納時につい て、別紙4-1表に示す各評価点方向における線量当量率の分布図を別紙4-9図に示す。

なお、二次元モデル設定の妥当性は、別紙6に示すとおり DOT3.5 コード評価結果と MCNP5 コード評価結果がおおむね一致していることにより確認している。

線量当量率評価結果 (17×17 燃料 (A型) 収納時 D0T3.5コード、蓋部が金属部へ衝突しない設置方法) 別紙4-1表

印			6		2				8		8	_
軸方	6	6.0	35.9	4.6	25.	71	(9)	2.6	14.8	1.7	15.	34.9
径方向 (トラニオン部)	(Dp	5.4	13,4	4.8	1108.3	1131.9 [1,14] (#?)	(S)b	25.1	12.8	5.7	26.3	63.9
径方向	Фа	5.9	15.0	4.4	258.6	283.9	(8)a	25.8	14.6	5.8	15.2	61.4
側部	(2)	100.7	25.9	25.7	45.1	197.4	9	44.8	12.5	10.4	18.4	86.1
径方向 (トラニオン部)	(3)p	8.0	103.0	5.7	753.8	870.5	(4)p	22.6	20.9	5.4	34.0	82.9
径方向	За	<0.1	9.0	1.1	389, 3	391.1 (#2)	Фа	22.5	20.1	5.4	24.5	72. 5
軸方向	Θ	< 0.1	0.2	0.2	41.7	42.2 (#2)	8	< 0.1	<0.1	<0.1	20.9	21.2 (8.2)
評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	合計	評価点	燃料有効部	構造材放射化	二次ガント線	中性子	40
		Ŧ	57 65					*	5.7 V i	촱		
	径方向 側部 径方向 (トラニオン部) (トラニオン部)	軸方向 径方向 側部 径方向 径方向 (トラニオン部) (トラニオン部) (トラニオン部) (トラニオン部) ① a ③b ⑤ Da ①bb	評価点 軸方向 径方向 径方向 径方向 径方向 径方向 径方向 径方向 (トラニオン部) ① ① ③a ③b ⑤ ⑦a ⑦b ⑤ ⑥b 燃料有効部 <0.1	評価点 軸方向 径方向 径方向 径方向 径方向 径方向 径方向 径方向 径方向 (トラニオン部) 燃料有効部 <0.1	軸方向 径方向 径方向 (トラニオン部) 便当向 径方向 径方向 径方向 径方向 行为部 (トラニオン部) (トラニオン部) (トラニオン部) (トラニオン部) (カウ (評価点 軸方向 径方向 径方向 径方向 径方向 径方向 径方向 径方向 径方向 位方っす之間 燃料有効部 <0.1	評価点 軸方向 径方向 径方向 (トラニオン部) 径方向 径方向 径方向 径方向 径方向 径方向 径方向 (トラニオン部) 燃料有効部 <0.1	評価点 軸方向 径方向 径方向 種方向 径方向 径方向 径方向 径方向 径方向 (トラニオン部) 径方向 (トラニオン部) 径方向 (トラニオン部) (日の・3) (日の・4) (日の	評価点 権力向 径方向 種方向 径方向 他方向 径方向 作う二才ン部分 電か 作う二才之部分 (トラニオン部分 機料有効部 <0.1	評価点 権力向 径力向 径方向 程方向 径均向 (トラニオン部) 電か (市方ニオン部) 電か のの のの のか のか	評価点 権力向 径力向 位力 行力 行力 行力 行力 行力	評価点 軸方向 径方向 (トラニオン部) (日の.7) (5.9 5.4 (日の.7) (日の.7)

(注1) []内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。表面から1 m での単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

(注2)0.1未満の値は0.1として合計に考慮した。

別紙 4-2

線量当量率評価結果 (17×17 燃料 (B型) 収納時 DOT3.5コード、蓋部が金属部へ衝突したい設置方法) 別紙4-2表

	軸方向	6	5.2	59.9	4.3	23.7	-	(I)	2.3	24.8	1.6	14.9	43.6
	中	0)	5.	59	4.	23	93.1	Ð	23	24	1.	14	43
既即	径方向 (トラニオン部)	(Z)P	4.7	22.1	4.5	1021.8	1053.1 [1, 06] 18.0	(8)h	13.8	11.9	3.9	36.5	66.1
	径方向	(T)a	5.0	25.2	4.1	243.1	277.4	(8)a	21.8	17.3	5.4	14.3	58.8
/Bit thr	金融	9	84.8	17.2	23.8	41.9	167.7	9	20.4	29.6	5.3	21.5	76.8
44-4-45	径万问 (トラニオン部)	3h	6,3	183.8	5.2	666.5	861.8	9(0)	19.2	32, 0	5.0	30,7	86.9
祖師	径方向	Эа	<0.1	1.1	1.0	354.1	356, 3 48.50	Фа	19.0	30.6	5. 1	22. 2	76.9
	軸方向	Θ	<0.1	0.3	0.2	38.0	38.6 (#2)	8	< 0.1	0.2	< 0.1	19.1	19.5 (8.2)
.,	評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	수計	評価点	燃料有効部	構造材放射化	二次ガンシ線	中性子	\$1 \$1
			7-	5.7 bi	薬				Ŧ	3.7 Pi	松		
	評価点		3			ガント様		おソレ薬	ガント篠	ガント嬢 ギ	ガント後 ポント:	ガント薬 ポント薬	ガント藻

(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたで (注2)0.1未満の値は0.1として合計に考慮した。

線量当量率評価結果 (15×15 燃料 (A型) 収納時 DOT3.5コード、蓋部が金属部へ衝突したい設置方法) 別紙4-3表

	軸方向	6	6.0	1.8	1.3	66.3	70.3	9	2.7	9.5	1.8	16.6	30.6
底部	径方向 (トラニオン部)	(T)6	5,3	7.9	5.1	1154.6	1172.9 [1, 18] (# 0)	(8)b	16.0	6.4	4.4	40.9	7.79
	径方向	Фа	5.8	8.8	4.6	271.8	291.0	(8)a	25.7	9.7	6.1	16.0	57.5
	御部	9	100.2	18.8	26.9	47.4	193.3	9	44.5	9,1	10.9	19.4	83.9
	径方向 (トラニオン部)	ЭЪ	8.0	75.3	6.0	773.1	862.4	(£)p	22.5	15.2	5.6	35.8	79.1
頭部	径方向	За	<0.1	0.5	1.2	421.0	422.8 個型	Фа	22.4	14.7	5.7	25.9	68.7
	軸方向	Θ	< 0.1	0.2	0.2	44.3	44,8 (#2)	(3)	< 0.1	<0.1	< 0.1	22. 2	22.5 (8.2)
	評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	선 H	評価点	燃料有効部	構造材放射化	二次ガンマ線	中性子	中
	ाम		7	3.7 P.i	薬			nna:	7	5.7 b i	拳		

]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位:μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。 (注1)[

(注2)0.1未満の値は0.1として合計に考慮した。

別紙 4-4

線量当量率評価結果 (15×15 燃料 (B型) 収納時 D0T3.5コード、蓋部が金属部へ衝突したい設置方法) 別紙4-4表

(Biff . .. Cv/h)

軸方向	-	0.00			-	_ c			-2		6	10
+80-	6	0.8	2.6	1.2	63.4	68.0	(9)	2.3	13.7	1.7	15.9	33.6
径方向 (トラニオン部)	300	4.7	13.0	4.8	1096.3	1118.8 [1,12] (e.)	(8)b	13.8	7.9	4.2	39.5	65.4
径方向	(T)a	5.1	15.0	4.4	259.3	283.8	(8)a	21.8	11.6	5.7	15.2	54.3
通影	9	85.2	16.2	25.1	44.2	170.7	9	37.8	8.5	10.2	18.0	74.5
径方向 (トラニオン部)	3b	6, 1	142.9	5.5	700.8	855, 3	9(4)	19, 2	26.0	5,3	32, 5	83.0
径方向	Эа	<0.1	6.0	1.1	377.7	379,8 ₫€₩	Фа	19.1	24.8	5.3	23.3	72.5
軸方向	Θ	<0.1	0.2	0.2	39, 9	40.4 (#2)	8	< 0.1	<0.1	<0.1	20.0	20.3 (8.2)
評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	₩ <u>₽</u>	評価点	燃料有効部	構造材放射化	二次ガンマ線	中性子	中
		7-	: A 1. 5	藥				Ŧ	5.7 V 5	牽		
Albi Alb	権方向 径方向 径方向 径方向 径方向	軸方向 径方向 型部 径方向 (トラニオン部) ①a ①b ①a	評価点 軸方向 径方向 (トラニオン部) 径方向 ① ③a ③b ⑤ ⑦a 燃料有効部 <0.1	評価点 軸方向 径方向 (トラニオン部) 便前的 径方向 (本村方分部) ①a ③b ⑤a ⑦a 標均有效部 <0.1	評価点 軸方向 径方向 径方向 地向 径方向 径方向 径方向 径方向 である である <td>評価点 軸方向 径方向 他前向 径方向 他前向 径方向 他方向 径方向 個前 径方向 燃料有効部 <0.1</td> <0.1	評価点 軸方向 径方向 他前向 径方向 他前向 径方向 他方向 径方向 個前 径方向 燃料有効部 <0.1	評価点 軸方向 径方向 側部 径方向 が燃料有効部 <0.1	新価点 軸方向 径方向 (トラニオン部) 側部 径方向 グライ 株造材放射化 0.2 0.9 142.9 16.2 5.1 特 二次ガンマ線 0.2 1.1 5.5 25.1 4.4 中性子 39.9 377.7 700.8 44.2 259.3 評価点 ② ④a ④b ⑤ ⑤ ⑤	新価点 軸方向 径方向 (下ラニオン部) 個時 径方向 個時 径方向 次 機料有効部 <0.1	計価点 軸方向 径方向 限方向 限方向 限方向 限方向 化方二寸之部 電力 企力 グラインマ線 株造材放射化 0.2 0.9 142.9 16.2 5.1 森 二次ガンマ線 0.2 1.1 5.5 25.1 4.4 中性子 39.9 377.7 700.8 44.2 259.3 青価点 ② ①a ①b ⑥ ⑤a 財産が有効部 <0.1	対 操動有効器 離方向 径方向 径方向 電か 色方向 電か 色方向 グラインマ線 <0.1	計価点 軸方向 径方向 径方向 径方向 個前 径方向 カ 機料有効部 <0.1

]内は型式証明申請書に記載する有効けたでの値(表面の単位: mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線盤当量率の最大値である。 (注1)[

(注2)0.1未満の値は0.1として合計に考慮した。

別紙 4-5

線量当量率評価結果 (17×17 燃料 (A型) 収納時 D0T3.5コード、基礎等に固定する設置方法) 別紙4-5表

			頭部				底部	
	評価点	軸方向	径方向	径方向 (トラニオン部)	側部	径方向	径方向 (トラニオン部)	軸方向
		Θ	(3)B	@p	9	(Da	(Dp	6
ች	燃料有効部	< 0.1	< 0.1	8.0	100.7	4.0	5.4	<0.1
37 63	構造材放射化	0.4	1.1	103.0	25.9	6.6	13. 4	0.3
松 恒 文	二次ガンマ線	0.8	2.3	5.7	25.7	7.4	4.8	0.9
	中性子	333.7	804.2	741. 4	45.1	1807.3	1108.3	222.6
	-	335,0 (注2)	807.7 (#2)	858, 1	197.4	1825.3	1131.9	223.9 (18.2)
	評価点	8	Фа	(D)	9	88	98P	8
Ŧ	燃料有効部	0.3	22.5	22.6	44.8	9.0	7.9	4.9
57 V i	構造材放射化	3.5	20.1	20.9	12.5	F'2	6.1	28.8
牽	二次ガンマ線	0.4	5.4	5.4	10.4	3, 0	2.8	3,6
	中性子	64.8	23.2	32.7	18.3	56.6	66, 3	23.1
	4	69.0	71. 2	81.6	86.0	76.0	83.1	60.4

]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位:μSv/h)。 F線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。 (注1)[

(注2)0.1未満の値は0.1として合計に考慮した。

線量当量率評価結果 (17×17 燃料 (B型) 収納時 D0T3.5コード、基礎等に固定する設置方法) 別紙4-6表

			頭部	-			底部	
	評価点	軸方向	径方向	径方向 (トラニオン部)	側部	径方向	径方向 (トラニオン部)	軸方向
		Θ	(3)a	(3)P	9	(Da	@p	6
7	燃料有効部	< 0.1	<0.1	6,3	84.8	3,4	4.7	< 0.1
: A C :	構造材放射化	1. 0	1.9	183.8	17.2	10, 7	22.1	0.5
水 恒 ()	二次ガンマ線	0.8	2.1	5.2	23.8	6.9	4.5	0.8
	中性子	303.6	731.3	655, 5	41.9	9.8691	1021.8	208.5
	合計	305, 5 (注 2)	735, 4 (18.4)	850,8	167.7	[1,72] WED	1053.1	209.9 (#2)
	評価点	8	Фа	(D)P	9	(8)a	(8)p	(8)
7	燃料有効部	0.2	19.0	19.2	20.4	9.7	6.6	4.3
1 / S	構造材放射化	5.7	30.6	32, 0	29.6	2.6	7.8	48.2
国から薬	二次ガンマ線	0.4	5.1	5.0	5.3	2.7	2.6	3, 3
-	中性子	59, 1	21.0	29, 5	20.3	54. ſ	63, 3	21.7
	中	65.4	75.7	85,7	75.6	74.1	80.3	77.5

]内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。表面から1 m での単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。 (注1)[

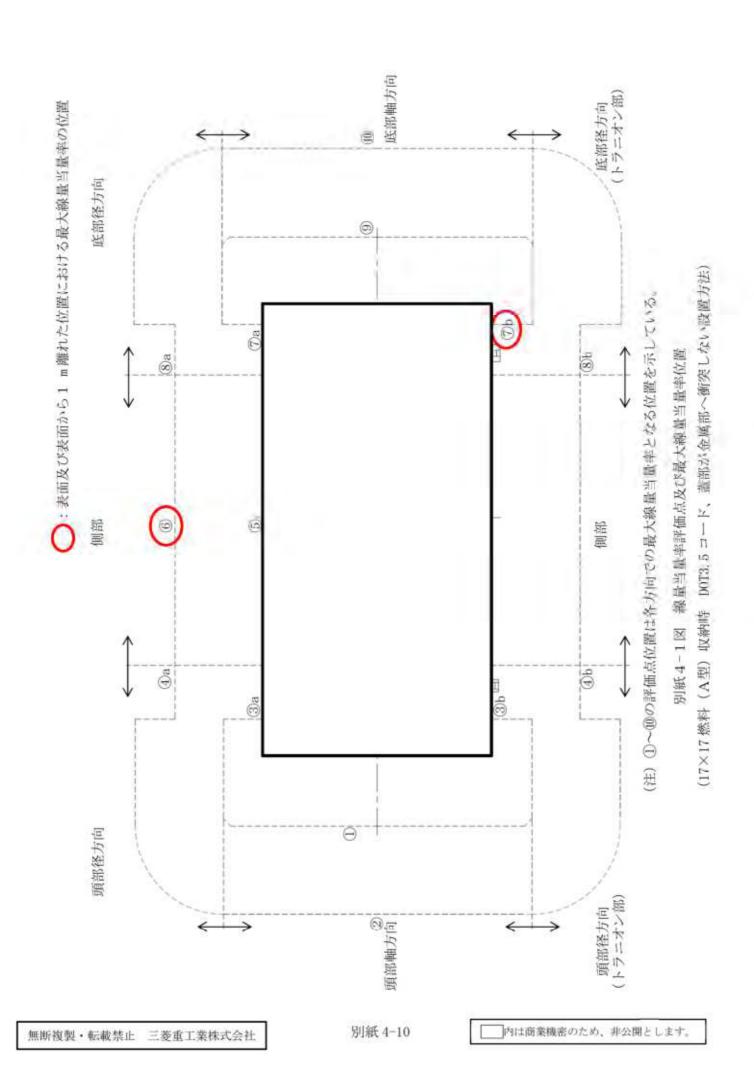
(注2)0.1未満の値は0.1として合計に考慮した。

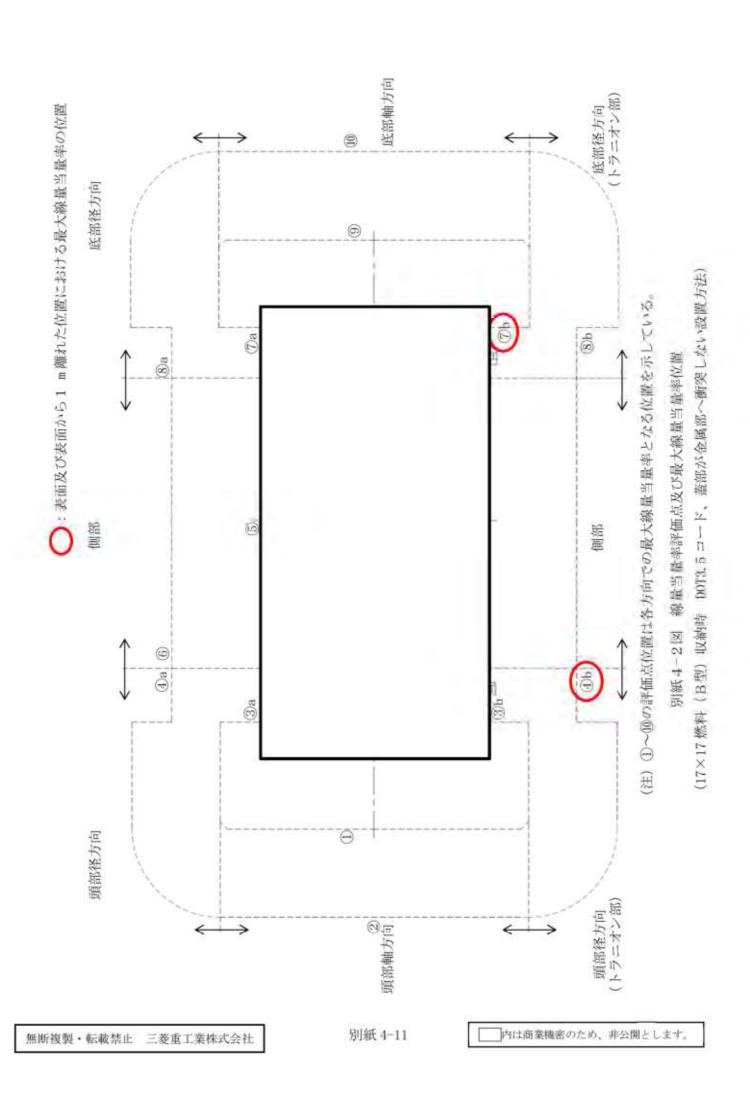
線量当量率評価結果 (15×15 燃料 (A型) 収納時 D0T3.5コード、基礎等に固定する設置方法) 別紙4-7表

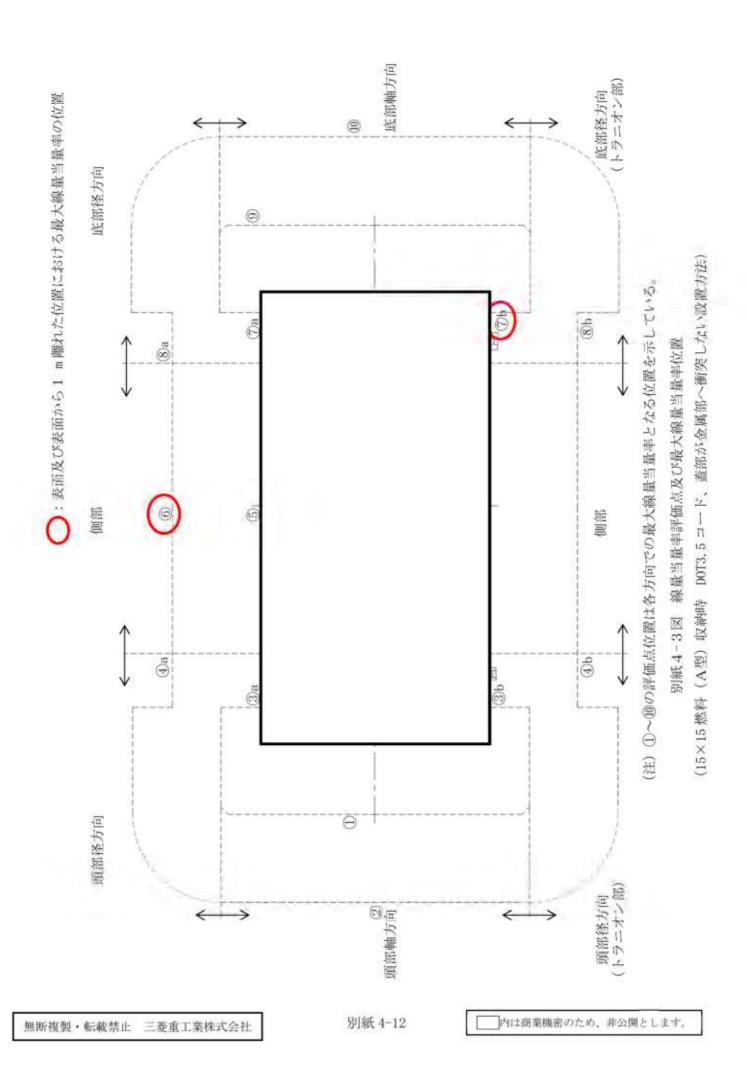
			頭部				底部	
	評価点	軸方向	径方向	径方向 (トラニオン部)	御部	怪方向	径方向 (トラニオン部)	軸方向
		Θ	(3)a	(3)p	9	(Q)a	Ø6	6
100	燃料有効部	< 0.1	<0.1	8.0	100.2	3.9	5, 3	< 0.1
id Cs	構造材放射化	0.2	6.0	75.3	18.8	8.5	7.9	0.2
104	二次ガンマ線	0.8	2.4	6.0	26.9	2.7	5.1	0.9
	中性子	356.5	858.0	760.5	47.4	1895. 8	1154, 6	231.6
	合計	357.6 (≇೨)	861.4 (#2)	849.8	193.3	1811.2 [1.92] (19.1)	1172.9	232.8 (323)
	評価点	8	Фа	(£)p	9	88	989	9
-	燃料有効部	0.3	22.4	22.5	44.5	8,0	7.0	5.1
: A C. S	構造材放射化	2.8	14.7	15.2	9.1	4,4	3.6	18.5
	二次ガンマ線	0.4	5.7	5.6	10.9	6.3	2.8	3.8
	中性子	6.89	24.5	34,4	19.2	62.0	9.17	24.3
l	44 14 14 14 14 14 14 14 14 14 14 14 14 1	72.4	67.3	77.7	83.7	77.3	85.0	51.7

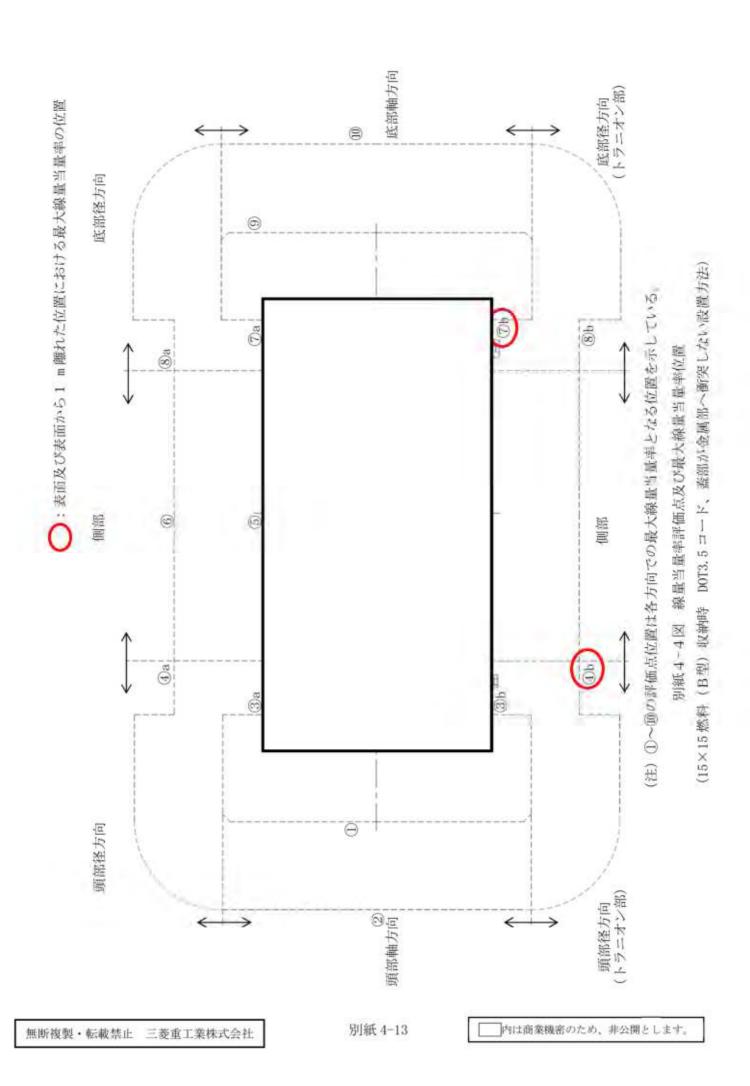
(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

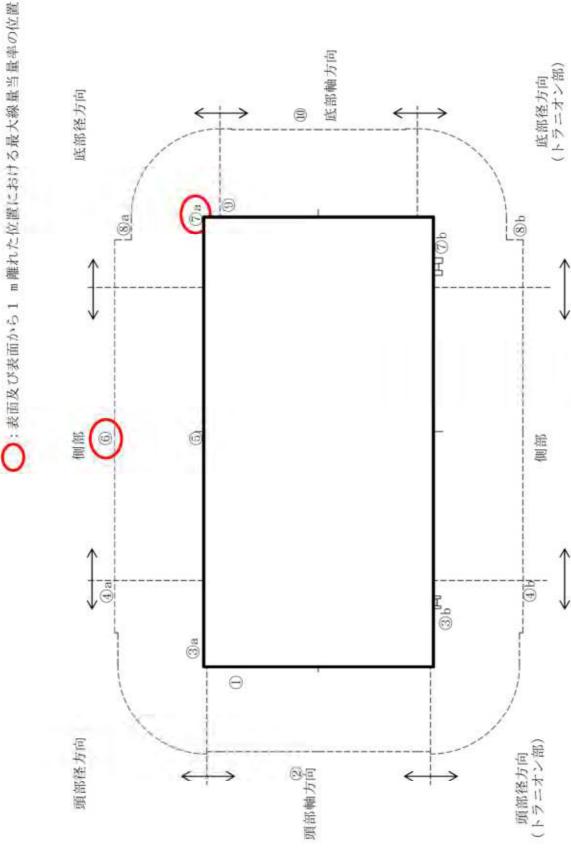
(注1)し 」内は望れ証明申請書に記載する有効けた (注2)0.1未満の値は0.1として合計に考慮した。

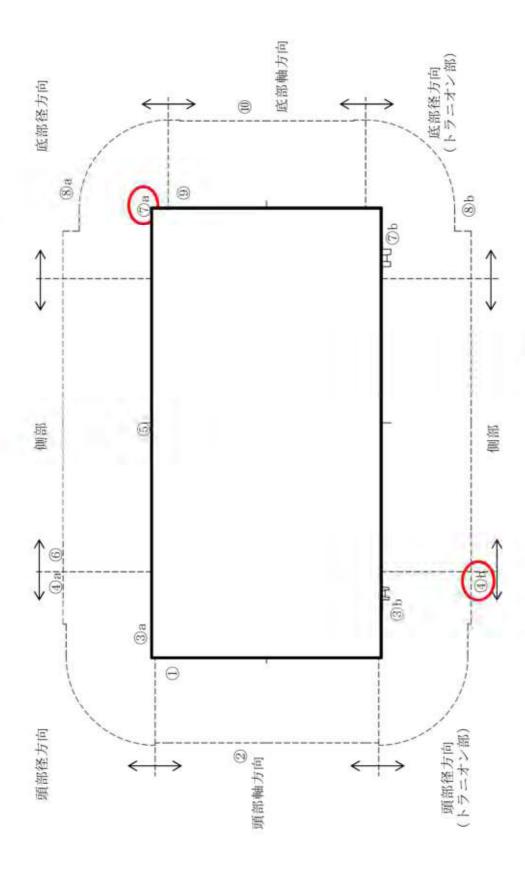

線量当量率評価結果 (15×15 燃料 (B型) 収納時 D0T3.5コード、基礎等に固定する設置方法) 別紙4-8表

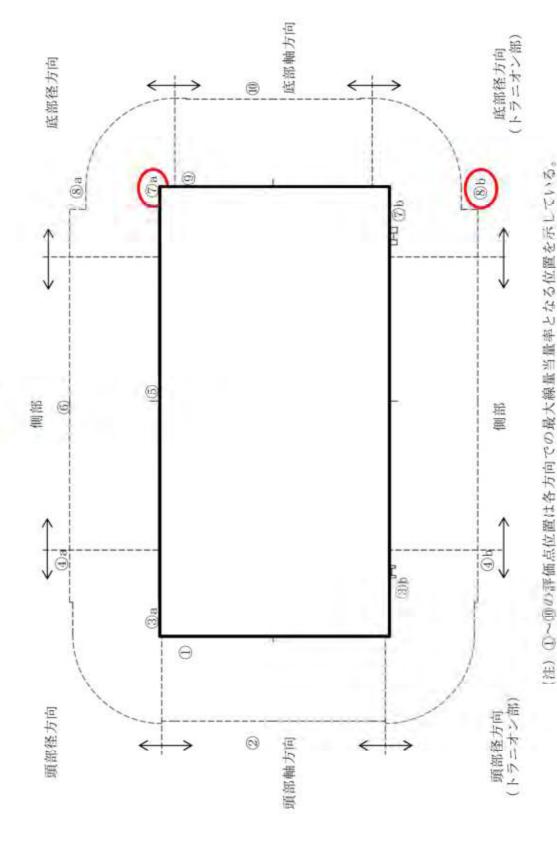

			頭部	13			底部	
	評価点	帕方向	径方向	径方向 (トラニオン部)	側部	径方向	径方向 (トラニオン部)	軸方向
		Θ	@a	@p	<u>@</u>	(D)a	929	6
7	燃料有効部	< 0,1	<0.1	6.1	85.2	3.5	4.7	< 0.1
: A 1. 5	構造材放射化	0.4	1.4	142.9	16.2	9.9	13.0	0.3
薬	二次ガンマ線	8.0	2.2	5.5	25.1	7.3	4.8	0.9
	中性子	322.0	770.8	689.2	44.2	1819, 9	1096.3	222.2
	무무	323, 3 (#2)	774.5 (BE2)	843, 7	170.7	1828.3	1118.8	223.5 (#2)
	評価点	8	Фа	(D)P	9	88	989	8
Ŧ	燃料有効部	0,2	19.1	19.2	37.8	7, 6	6.5	4.3
3.7 Vi	構造材放射化	4.4	24.8	26.0	8.5	6,2	5.0	26.5
牽	二次ガンマ線	6.4	5.3	5,3	10.2	2,9	2.7	3.6
	中性子	62.0	22. 1	31.2	6.71	57.6	67,5	23.1
	40	67.0	71.3	821 48 ()	74.4	74.3	821 000	57.5


(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。表面から1 mでの単位: μSv/h)。 下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

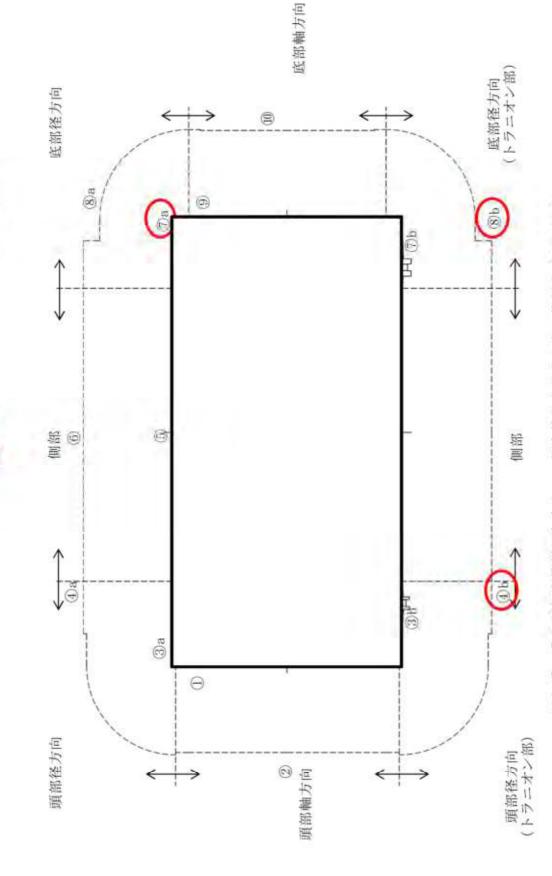

(注2)0.1未満の値は0.1として合計に考慮した。

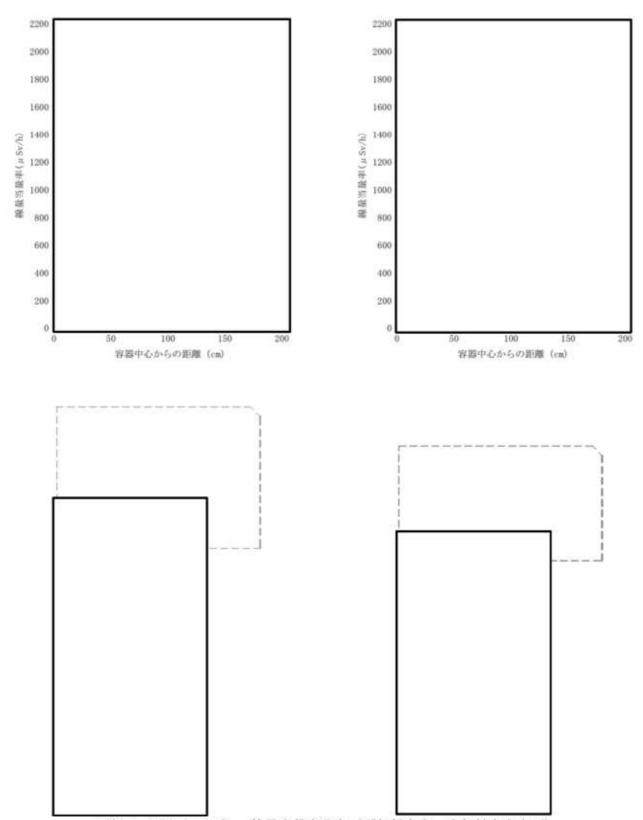

別紙 4-9

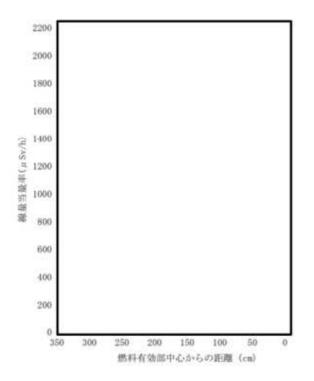


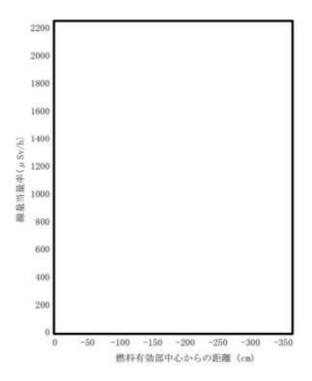


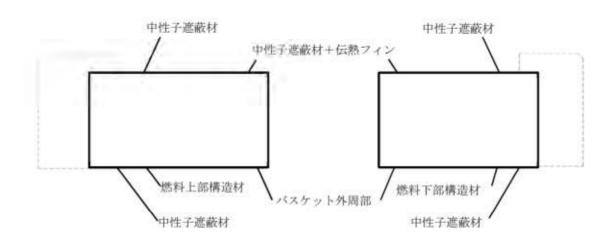
(17×17 燃料 (A型) 収納時 D0T3.5 コード、基礎等に固定する設置方法) 別紙4-5図 線量当量率評価点及び最大線量当量率位置

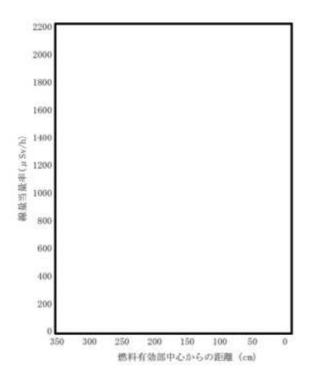

(注) ①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。

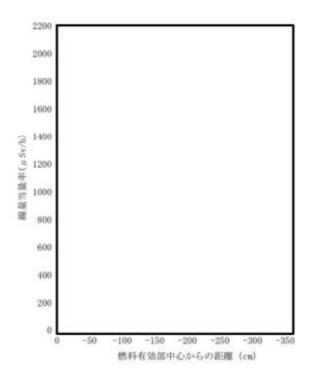

(注)①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 別紙4-6図 線量当量率評価点及び最大線量当量率位置 (17×17 燃料(B型)収納時 D0T3.5 コード、基礎等に固定する設置方法)

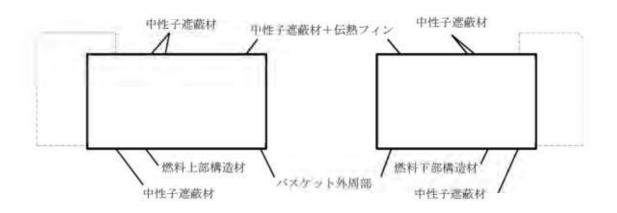

別戦4-7図 線量当量率評価点及び最大線量当量率位置 (15×15 燃料 (A型) 収納時 DOT3.5コード、基礎等に固定する設置方法)

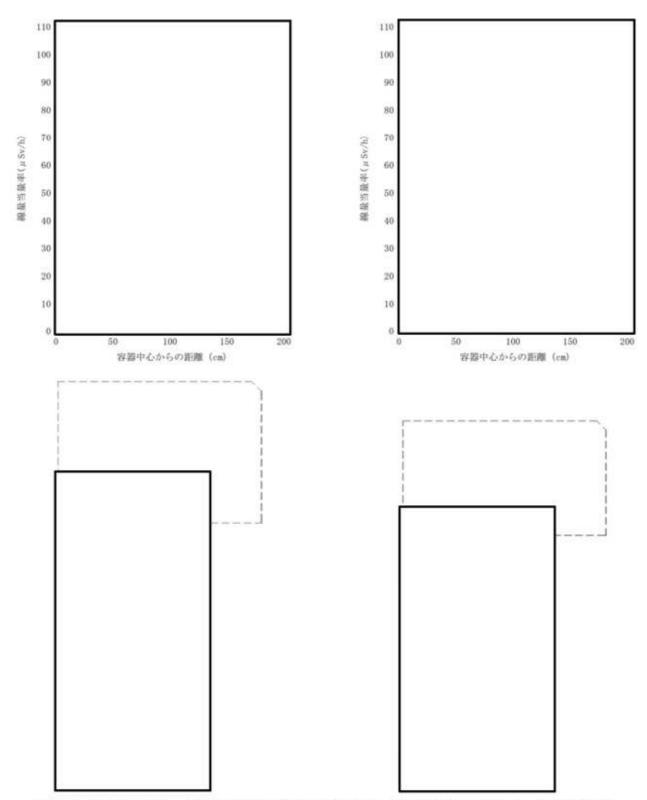


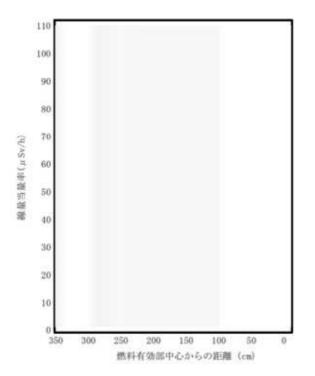

(注)①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 別紙4-8図 線量当量率評価点及び最大線量当量率位置 (15×15燃料(B型)収納時 DOT3.5 コード、基礎等に固定する設置方法)

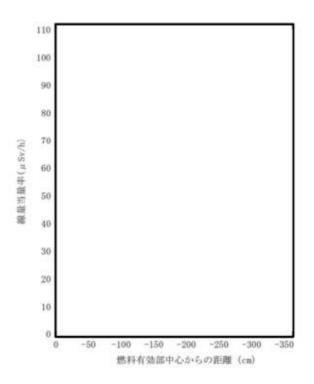

別紙 4-9 図 (1/6) 線量当量率分布 (頭部軸方向・底部軸方向表面) (17×17 燃料 (A型) 収納時 DOT3.5 コード、蓋部が金属部へ衝突しない設置方法)

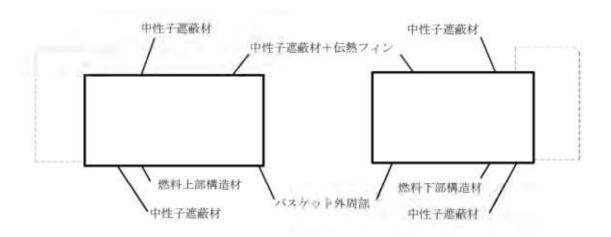


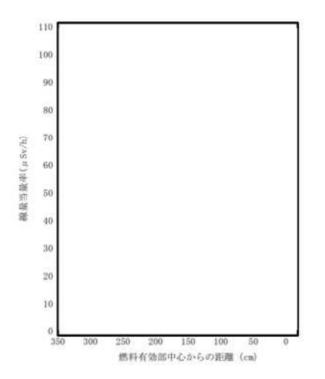


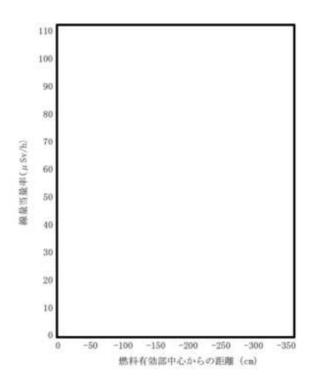

別紙4-9図(2/6) 線量当量率分布(頭部径方向・側部・底部径方向表面) (17×17燃料(A型)収納時 DOT3.5コード、蓋部が金属部へ衝突しない設置方法)

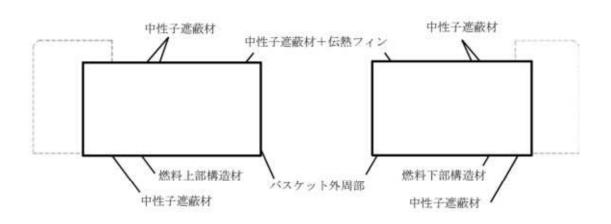





別紙4-9図 (3/6) 線量当量率分布 (トラニオン方向表面) (17×17 燃料 (A型) 収納時 DOT3.5 コード、蓋部が金属部へ衝突しない設置方法)


別紙4-9図(4/6) 線量当量率分布(頭部軸方向・底部軸方向表面から1m離れた位置) (17×17燃料(A型)収納時 DOT3.5コード、蓋部が金属部へ衝突しない設置方法)





別紙4-9図(5/6) 線量当量率分布(頭部径方向・側部・底部径方向表面から1m離れた位置) (17×17燃料(A型)収納時 DOT3.5コード、蓋部が金属部へ衝突しない設置方法)

別紙4-9図(6/6) 線量当量率分布(トラニオン方向表面から1m離れた位置) (17×17燃料(A型)収納時 DOF3.5コード、蓋部が金属部へ衝突しない設置方法)

遮蔽解析結果の詳細 (MCNP5 コード)

1,線量当量率評価結果

三次元モンテカルロコード MCNP5 による遮蔽解析(以下「MCNP5 解析」という。) における結果詳細を示す。

MCNP5 解析の線量当量率結果を別紙5-1 表から別紙5-5表に、最大線量当量率となる評価点位置を別紙5-1 図から別紙5-5 図に示す。なお、蓋部が金属部へ衝突しない設置方法において MCNP5 コードに比べて DOT3.5 コード評価での線量当量率最大値が高いことが確認できるため、基礎等に固定する設置方法の最大線量当量について DOT3.5 コード評価に比べて MCNP5 コード評価が低い傾向を確認するため 17×17 燃料 48,000MWd/t型 (A型) 収納時の線量当量率結果を示す。

また、MCNP5 コードによる計算結果の信頼性を確認するため、最も線量当量率基準値に対して裕度の小さい 17×17 燃料 48,000MWd/t型 (A型) 収納時について、表面及び表面から 1 m離れた位置において線量当量率が最大となる評価点の MCNP5 コードでアウトブットされる解析結果の信頼性を示す 10 個の統計指標結果を別紙 5-6 表に、統計指標項目の内容 について別紙 5-7 表に示す。別紙 5-6 図から別紙 5-11 図に示す線量当量率分布図の連続性と合わせて MCNP5 コードによる計算が適切に行われていることが確認できる。なお、線量当量率分布図は線量当量率の連続性を確認するものであり、参考結果である。

線量当量率評価結果 (17×17 燃料 (A型) 収納時 MCNP5 コード, 蓋部が金属部へ衝突しない設置方法) 別紙5-1表

(M位: μSv/h)

		頭部	站	(Bilsin	通	匠部
	評価点	軸方向	径方向	ung Ern	径方向	軸方向
		Θ	@	(0)	D	6
	操宅 右角原	<0.1	9'09	113,6	91.3	6.5
H	が3个で行 メリロPD	(6.6)	(3.5)	(0.9)	(3, 2)	(1.0)
3	4年7年十十十十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八十八	0.2	161.7	.26.8	1 '69	37.9
1	件垣勺 欧乳10	(1.8)	(2.9)	(0, 9)	(3,8)	(0.6)
	母~~~、汗~%	0.3	9.6	25.4	12, 1	4.8
匣	一ペント、禁	(3.4)	(1.9)	(1.2)	(2, 7)	(1.7)
	1年7	41.3	433.6	40.7	616.2	21.8
	+#+	(1.0)	(1.6)	(0,9)	(1,2)	(0.9)
	合計	41.9 (注2)	665, 5	206.5	788.7 [0, 789] ** P	71.0
	評価点	8	(9	(8)	(0)
	MAN 1 七元40	< 0.1	23.4	45.0	27.1	2.9
1	Aの4十十十 メリロリ	(1.1)	(0.5)	(0.3)	(0.6)	(0.4)
3	地、北土46年7万	0.2	22.7	11.5	13.0	16.8
	(中)旦行(X約1L	(0.5)	(0.9)	(0.2)	(1.0)	(0.3)
かが	場とく、井外一	0.2	5, 1	10.0	5, 5	1.8
20-1	CA - 1 MK	(1.2)	(0.5)	(0.4)	(0, 5)	(0.7)
	144.2	20.3	32.3	17.71	29, 1	12.9
	TIET	(0, 3)	(0.9)	(0.2)	(1.0)	(0, 3)
	中	20.8 (#2)	83, 5	10FT (#1)	74.7	34.4

※ () 内は統計誤差(単位:%)を示す。

下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値(表面の単位:mSv/h。表面から1 mでの単位:μSv/h)。 (注2)0.1未満の値は0.1として合計に考慮した。

MCNP5 コード、蓋部が金属部へ衝突しない設置方法) 収納時 線量当量率評価結果 (17×17 燃料 (B型) 別紙5-2表

(単位: µ Sv/h)

軸方向 5,5 20.6 94.0 28.2 (0.4) 12.5 44.8 63.3 4.6 2.5 1.6 6 底部 径方向 483, 3 405.4 13.3 (0.6) 37.3 (3.8) 9.5 22.3 5.1 (0.7) 9 31.1 0 00 65. 8.991 (0.3) 10.7 20.3 28.6 (0.5) (0, 6) 24.1 5.0 10 (三部 0 79. 579.2 580] (E1) 82.6 83] IR 径方向 342,6 (9.0) 8, 4 (2, 8) (0.4) 28.2 31, 1 197.1 31,7 4.6 18.1 8 0 9 頭部 軸方向 19.6 0.2 38.2 38.7 0.2 0, 1 0.2 (1.6)0,2 19.1 0.1 0 (0) 構造材放射化 構造材放射化 二次ガンマ線 二次ガント線 燃料有効部 燃料有効部 中在子 中性子 合計 合計 評価点 評価点 おソレ礁 ガソト湾 表面 表面から1 m

※ () 内は統計觀差 (単位:%) を示す

下線で示す値は、表面及び表面から1 n離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位:mSv/h。表面から1 mでの単位: μSv/h)。

線量当量率評価結果(15×15 燃料(A型)収納時 MCNP5 コード,蓋部が金属部へ衝突しない設置方法) 別紙 5-3表

(||| (位: n Sv/h)

軸方向 (3.0) 10.6 14.0 (1.2)1.7 56.3 1.9 9 O (0.3) 1.3 6 .09 29. 庇部 805 (0.1) 隆方向 655.2 (1.6) (2, 0) (6,0) 32.0 (4.2) (3, 3 25.4 (0.5) 5.5 6 (00) 82.9 196.3 25.5 (0.1) (9.0) 19.3 (0.2) 8.5 10.5 側部 108.1 43.1 6 径方向 650.6 (1.2) 61.6 (0.7) 8.62 10.3 464, 4 22.4 16.2 5.3 (0.4) 35.9 頭部 軸方向 22.6 0.1 45.8 0.2 22.2 0.1 0,3 0.1 0, 1 0 (構造材放射化 構造材放射化 二次ガンマ線 二次ガント線 燃料有効部 燃料有効部 中性子 中性子 合計 合計 評価点 評価点 ガソト薬 ガソト篠 表面 表面から! m

※ () 内は統計裁差(単位:%)を示す。

下線で示す値は、表面及び表面から1 n離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。 表面から1 mでの単位: μSv/h)。

線量当量率評価結果 (15×15 燃料 (B型) 収納時 MCNP5 コード、蓋部が金属部へ衝突しない設置方法) 別紙5-4表

		超	頭類		也	斯世
			21712	個部		aleria.
	評価点	軸方向	径方向	DATE OF	径方向	軸方向
		Θ	(6)	©	(D	6
_	極いた地切	0.1	30.6	85.7	37.6	5,5
#	版件 有 刈印	(2.9)	(1, 5)	(0.5)	(3, 6)	(0.4)
3.7		0.2	164.5	14.9	21.8	34.4
P 5	(時) (1) (1) (1) (1) (1)	(0.9)	(0.7)	(0.5)	(3, 6)	(0.2)
SE-5		0,2	8.5	23, 1	6.6	4.8
厘	一ペントを	(1.6)	(0.7)	(0.5)	(5.9)	(0.7)
	- MH	40.5	355, 7	40.6	435, 6	21.9
	11111	(0, 7)	(0.6)	(0, 4)	(1.9)	(0.3)
_	수計	41.0	559.3 10.5601 (# P)	164.3	504.9	9.99
	評価点	3	0	9	8	(9)
	Marit 大地如	0.1	18.1	20.4	21.3	2.5
H		(1, 6)	(0.4)	(0, 3)	(0.6)	(0.6)
(A.5	神はたかわり	0.2	25.5	23.3	9.2	15.4
Virtue		(0, 9)	(0.7)	(0, 6)	(0, 9)	(0.4)
0=3	明ケベチボー	0.2	4.8	5.3	5, 2	1.8
· 2	ーでハントが	(2, 1)	(0.3)	(0.3)	(0.4)	(1.1)
-	2-柳中	20.1	29.8	27.0	27.2	13, 3
E	TIL	(0.5)	(0.6)	(0.5)	(0,8)	(0, 5)
	合計	20.6	78.2	76.0	62.9	33.0

※ () 内は統計誤差(単位:%)を示す

下線で示す値は、表面及び表面から1 n離れた位置における線量当量率の最大値である。

(注1)[]内は型式証明申請書に記載する有効けたでの惟(表面の単位:mSv/h。表面から1 mでの単位:μSv/h)。

MCNP5 コード、基礎等に固定する設置方法) 線量当量率評価結果(17×17燃料(A型)収納時 別紙5-5表

(単位: 4.8v/h) 軸方向 215, 6 213, 7 (0,7) 19.3 (1.8) 0.5 31.3 (0.2) (2.4)0,5 (0.5) 6 3.9 6 59. 庇部 1613.9 1602.0 径方向 (1,2) (0, 4) 12.8 75.3 2,2 (2, 4) 26.0 5,3 (8) 6 84.6 201.4 17.8 26.2 25.2 40.3 11.7 (1.1) 109.7 45.1 间部 0 径方向 684.8 82.89 22.6 (0.4) 0.7 (0, 4)83.6 0.1 2.2 (2.6) 23.1 (0.6) (1.3)32.9 5.0 (E) 頭部 軸方向 347.2 (0.6) 349.9 64.2 1.1 1, 2 (3, 2) 6.9 56.2 (0,9) 0.4 (1.1) 0,4 0.7 0 (0) 構造材放射化 構造材放射化 二次ガンマ線 二次ガント線 燃料有効部 燃料有効部 中在子 中性子 合計 合計 評価点 評価点 おソレ礁 ガソト湾

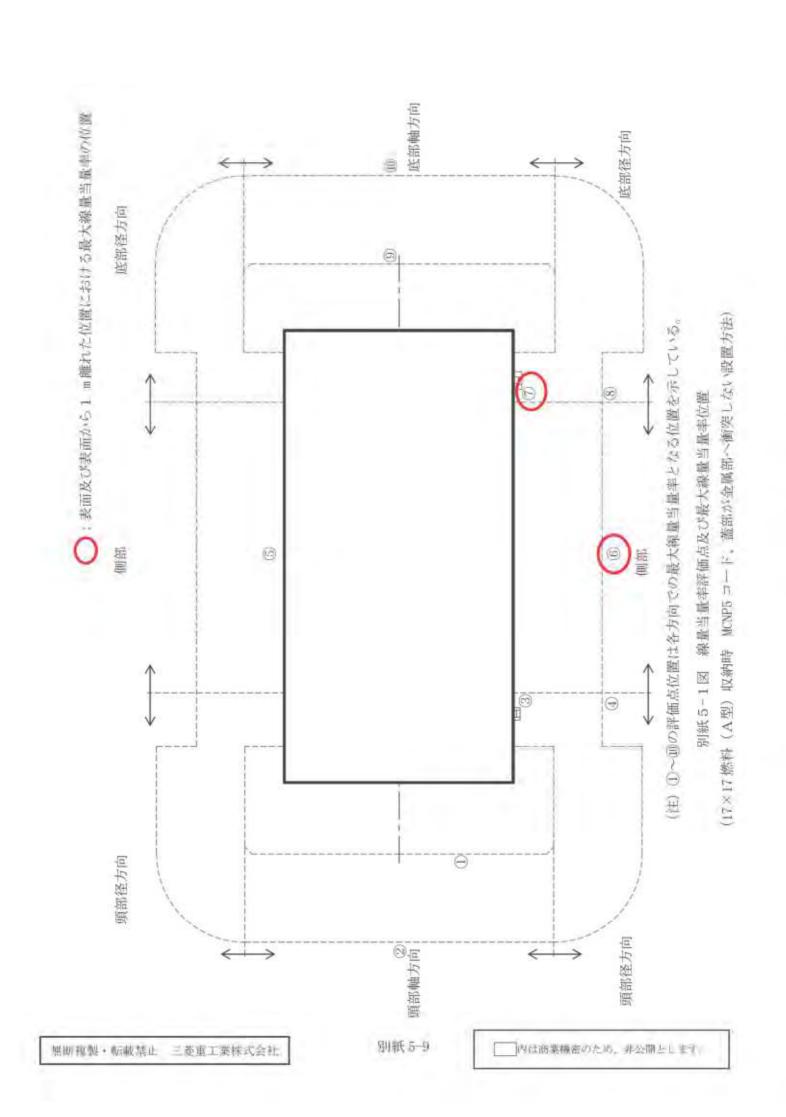
※ () 内は統計裁差(単位:%)を示す。

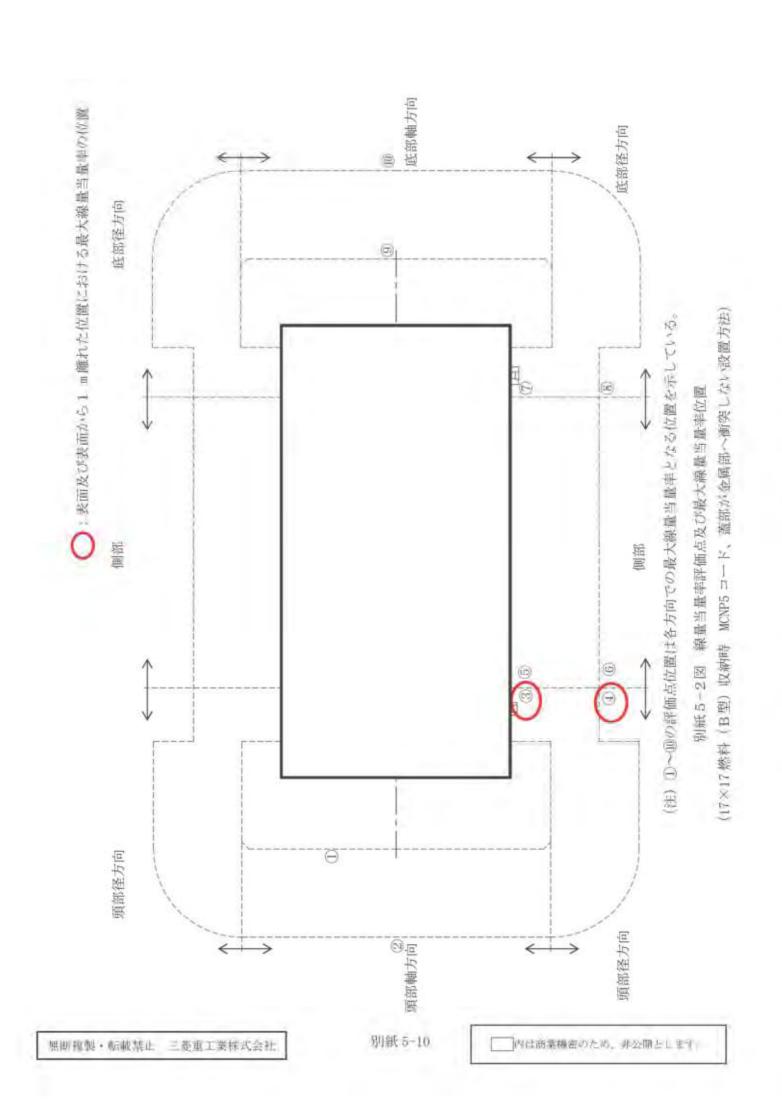
表面から1 m

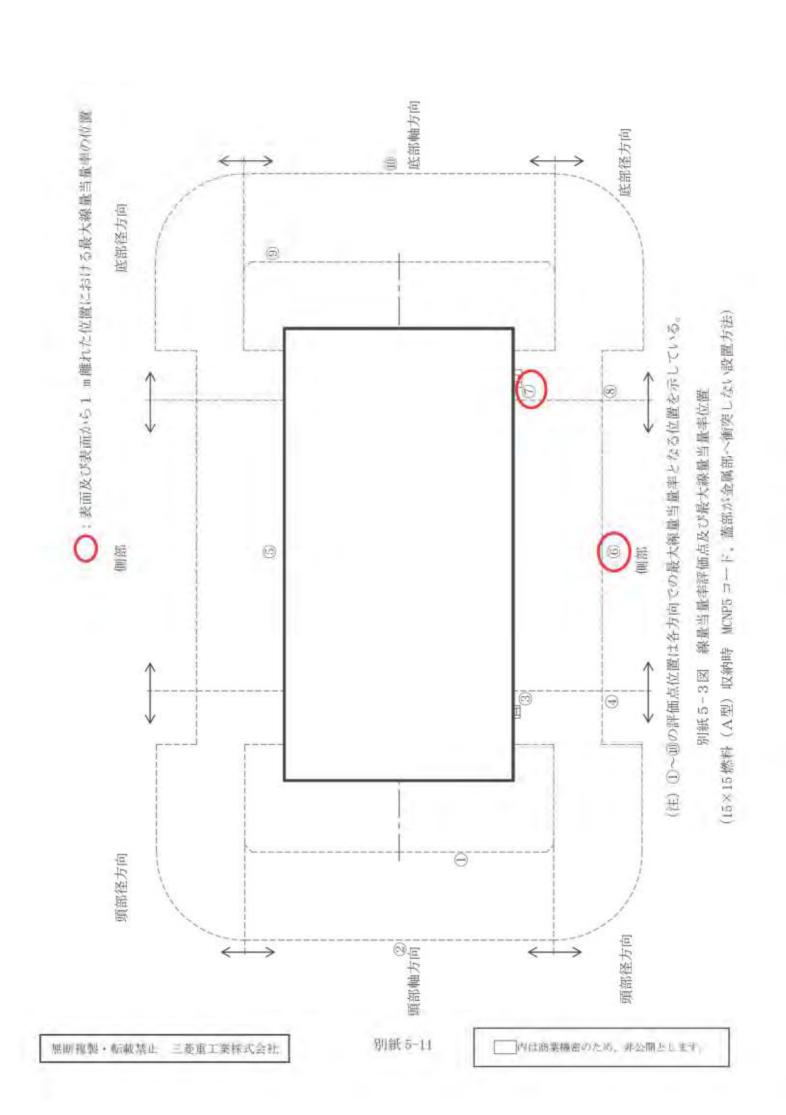
下線で示す値は、表面及び表面から1 m離れた位置における線量当量率の最大値である。

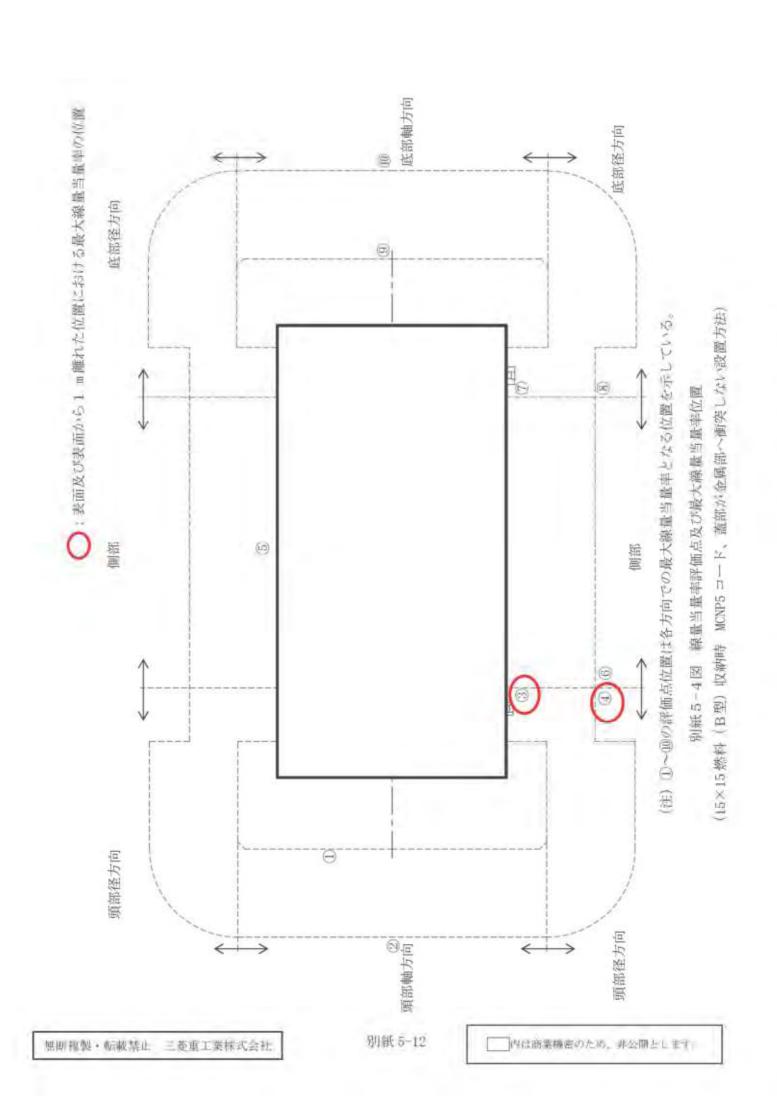
(注1)[]内は型式証明申請書に記載する有効けたでの値 (表面の単位: mSv/h。 表面から1 mでの単位: μSv/h)。

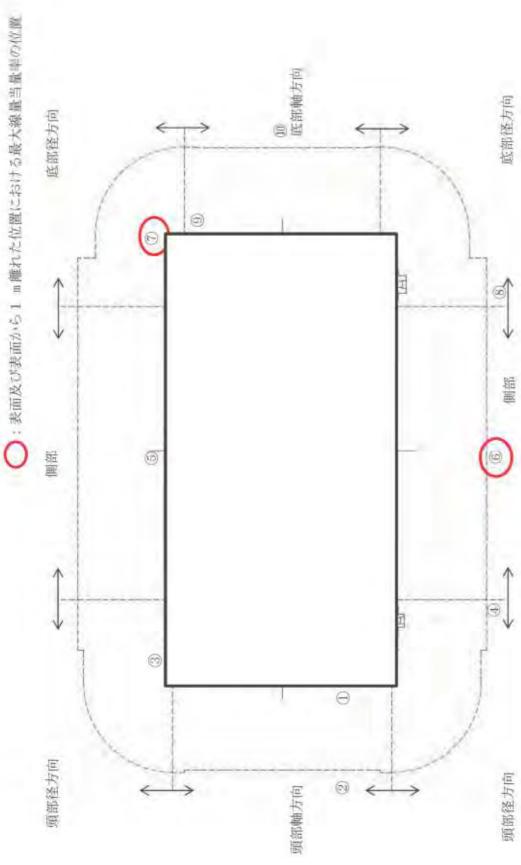
表面

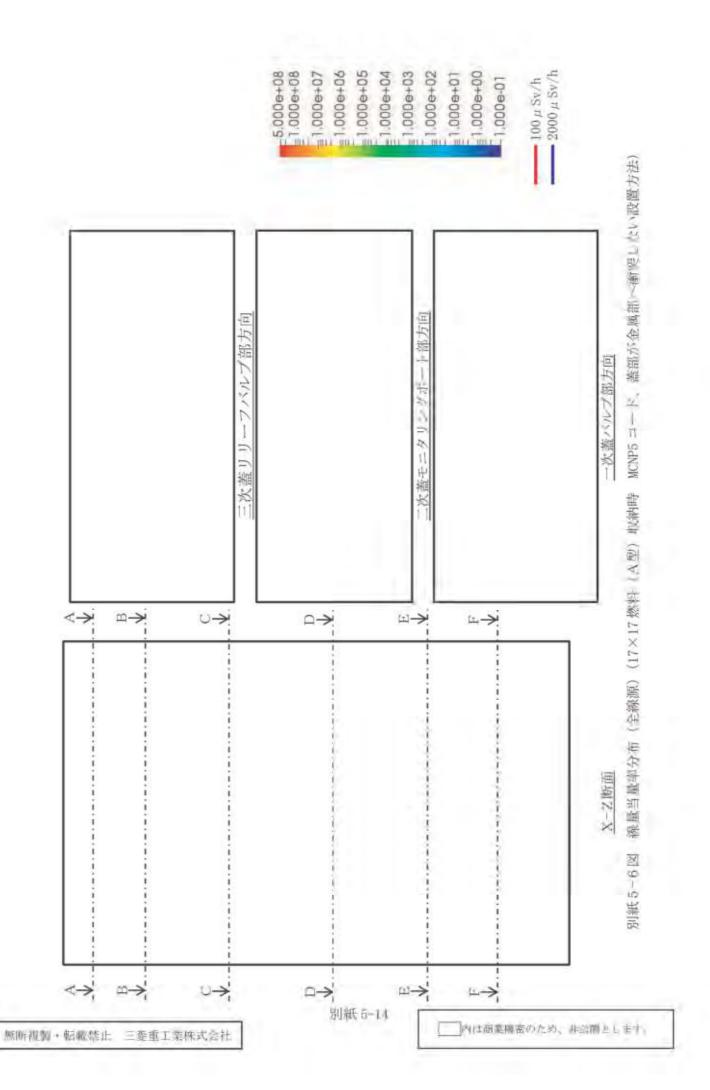

解析結果の情順性を示す 10 個の統計指標結果 (17×17 燃料 (A型) 収納時 - 蓋部が金属部へ衝突しない設置方法) 別紙5-6表

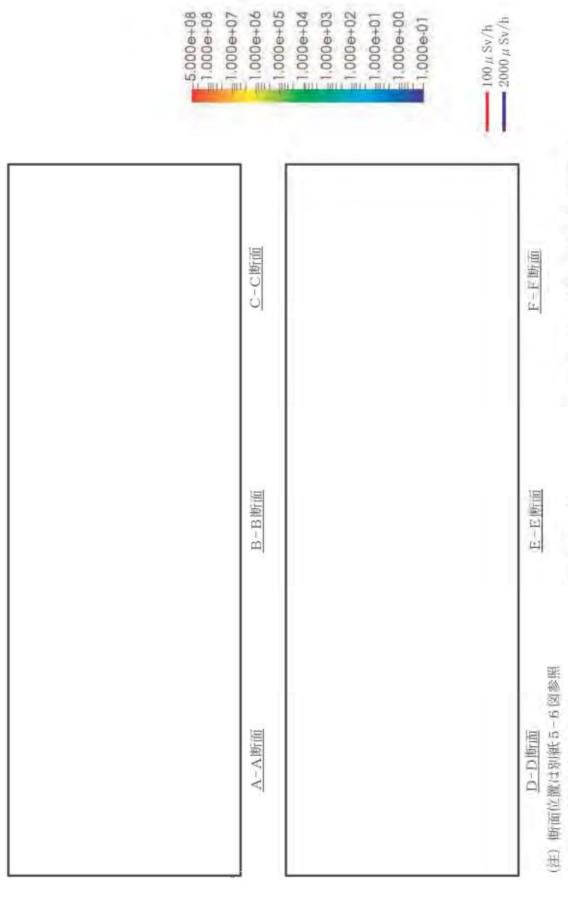

1166	表面で最大となる評価点で 機治材	なる評価点色		表面から1機料	表面から 1m離れた位置で最大となる評価点® 検料 構造材	で最大となる	静価点⑥	
大様が	放射化ガンマ線	二次ガンマ線	中性子	有効部カンマ線	放射化ガンマ線	カント線	中性子	desired
							1=	random
								< 0.10
								yes
								1/sqrt(nps)
								< 0.10
								yes
								1/nps
								constant
								random
								> 3.00

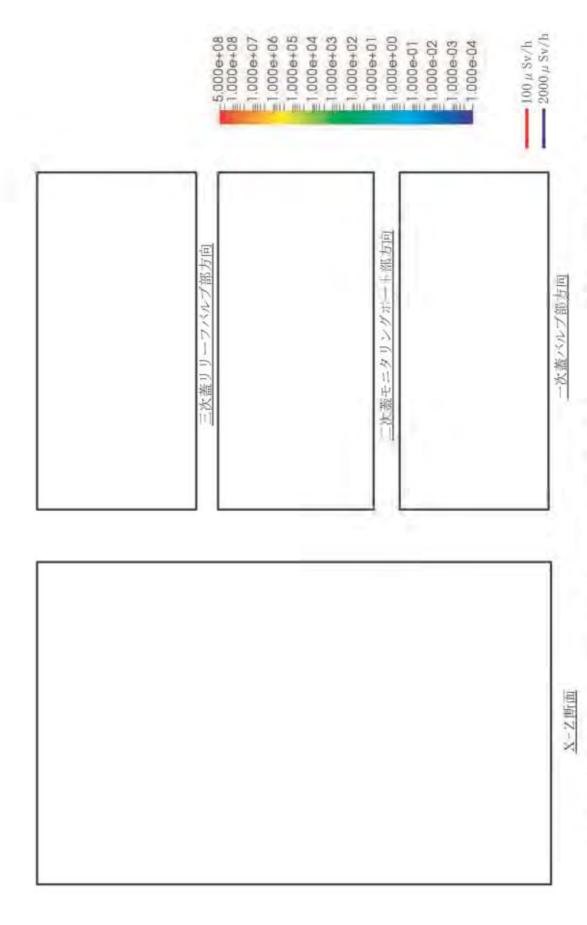

別紙5-7表 統計指標項目


指標	指標の項目	· 作計指標 (1)
Ĭ	mean	計算収束判定段階において、発生粒子数Nの増加に伴い、平均値が単調増加したり減少したりしないこと。(random)
	value	0.1 より小さいこと。(< 0.10)
relative	decrease	計算収契判定段階において、発生粒子数Nの増加に伴い、value が単調に減少すること。(yes)
	decrease	計算収度判定段階において、value が1/√Nで減少すること。(1/sqrt(nps))
variance	value	0.1 より小さいこと。(< 0.10)
of the	decrease	計算収支判定段階において、value が単調に減少すること。(yes)
variance	decrease	計算収束判定段階において、valueが1/Nで減少すること。(1/nps)
figure	value	計算収束判定段階において、発生粒子数Nに関係なく value が一定であること。(constant)
or merit	behavior	計算収束判定段階において、発生粒子数Nの関数として value が単調増加あるいは単調減少しないこと。(random)
	Jpd	タリーに記録された量の確率分布関数 f (x) の最終的スローブが3より大きいこと。(> 3.00)
100000000		

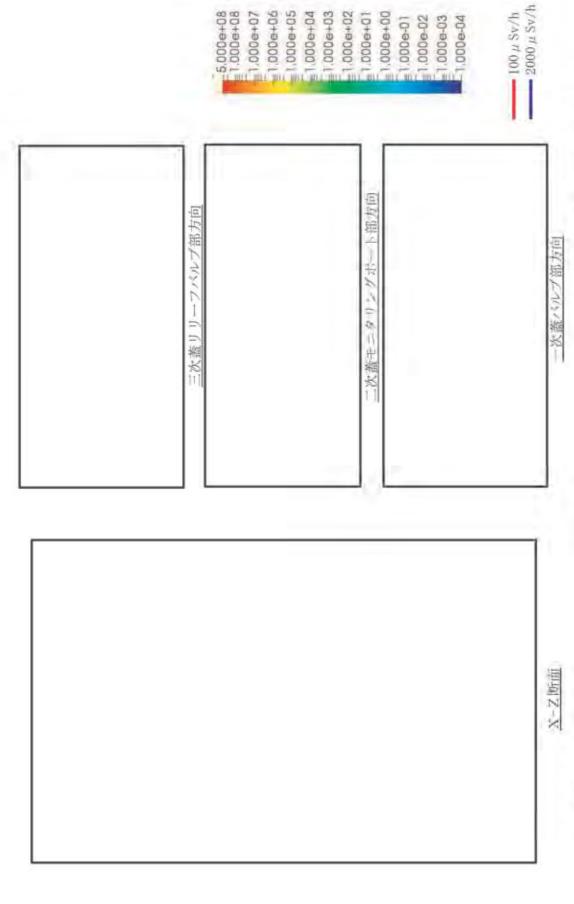

(1) 浅見光史 ほか、「放射性物質輸送容器のモンテカルロ法による遮蔽安全評価手法ガイドライン原案の策定」, 海上技術安全研究所報告 第13巻 第1号 (平成25年度) 研究調查資料, (2013).



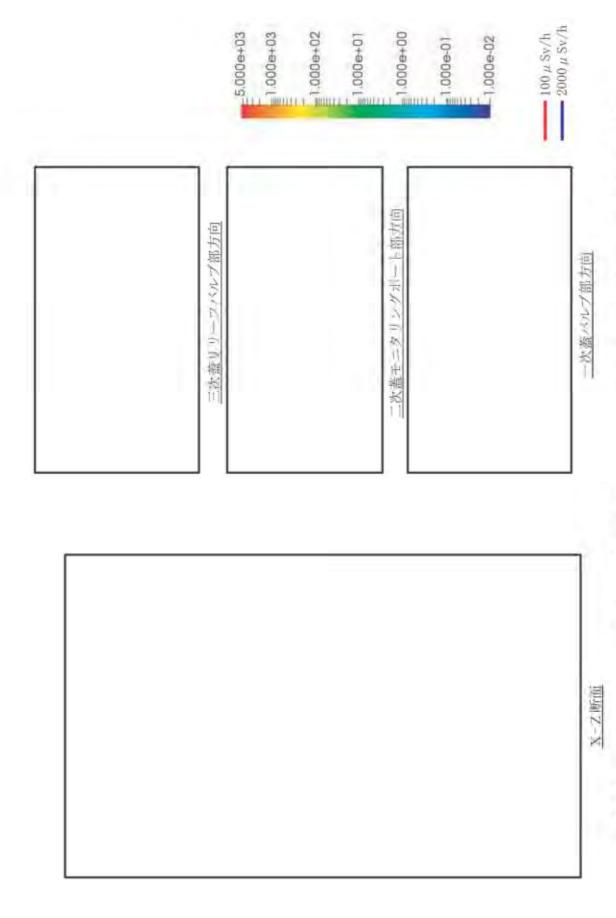




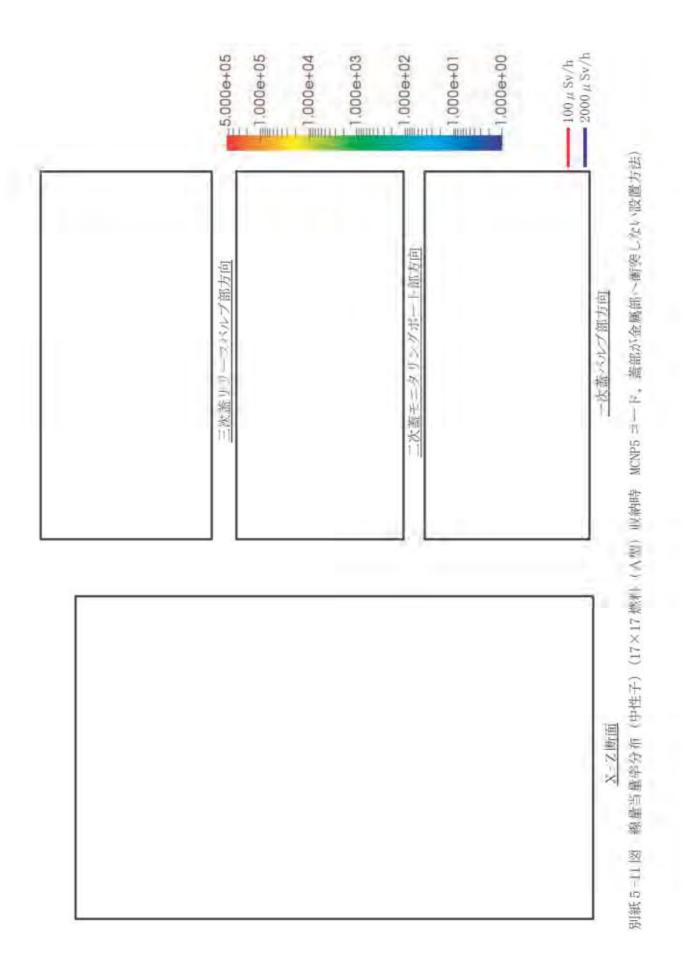
(注) ①~⑩の評価点位置は各方向での最大線量当量率となる位置を示している。 (11×17 縣料(A型)収納時 MCNP5 コード、基礎等に固定する設置方法) 線量当量率評価点及び最大線量当量率位置 別紙5-5図



線量当量率分布 (全線膜) (17×17燃料 (A型) 収納時 MCNP5 コード、滞部が金属部へ衝突しない設置方法) 別紙5-7四



MCNP5 コード、端部が金属都~衝突しない設置方法) 線量当量率分布(燃料有効部カンマ網)(17×17燃料(A型)収料時 別紙5-8図



MCNP5 コード、業部が金属部へ衝突しない設置方法) 別紙5-9図 線量当量率分布(構造材放射化ガンマ線)(ロミロ 燃料(A型)収納時

別紙5-17

別紙5-10図 線量当量率分布 (二次ガンマ線) (17×17 燃料 (A型) 収納時 MCNP5コード、護部が金属部へ衝突しない設置方法)

MCNP5 コードによる評価値と DOT3.5 コードによる既認可結果の比較

本型式証明における蓋部が金属部へ衝突しない設置方法のMCNP5 コードによる評価値と、 許認可実績が豊富な二次元輸送計算コード DOT3.5 による既認可評価値の比較を実施した。 比較対象となる DOT3.5 コードによる評価値は、本型式証明申請と同じ MSF-24P 型での DOT3.5 コードによる許認可:設計承認申請(四国電力株式会社、核燃料輸送物設計承認申 請)とした。

また、比較対象ケースは、許認可;設計承認申請ケースと同様の17×17燃料 48,000MWd/t型(A型)収納時とした。

MCNP5 コード及び DOT3.5 コードの特徴を別紙 6-1 表に示す。別紙 6-1 表に示すとおり評価条件の差異は、評価に用いた解析コードの特性による評価モデル設定によるものであり、線源強度や物性値等の評価条件は同じである。

MCNP5 コード及び DOT3.5 コードによる各評価点の最大線量当量率を別紙 6-2表に、最大 線量当量率となる評価点位置を別紙 6-1 図に示す。

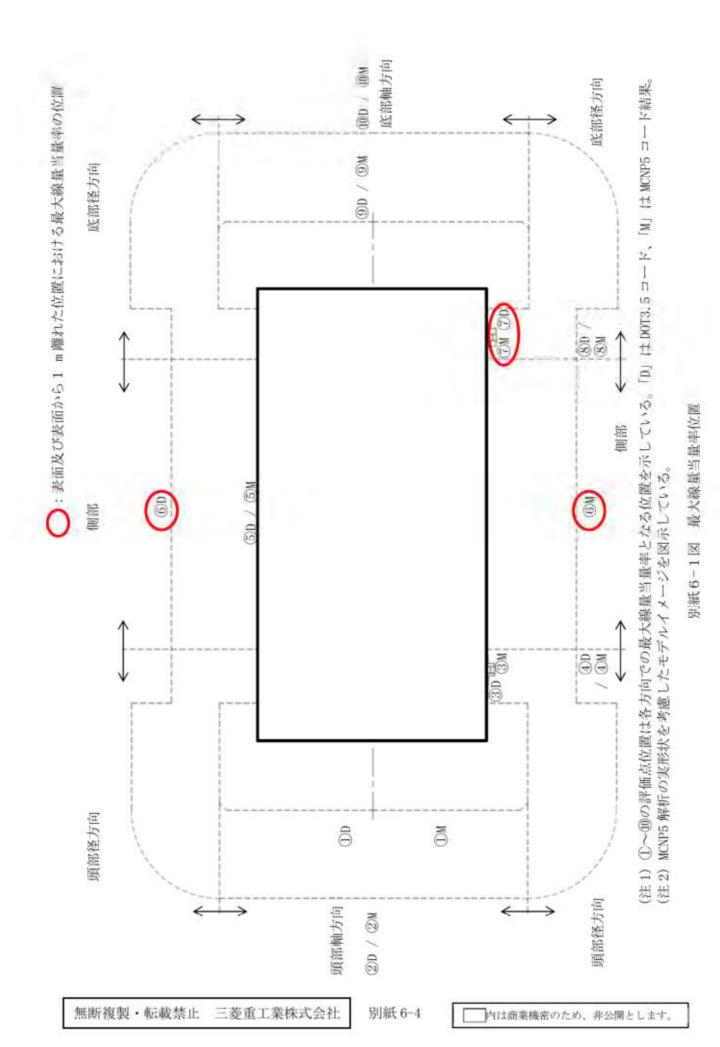
また、MCNP5 コード及び DOT3.5 コードによる各部位の線量当量率分布の比較を別紙 6-2 図から別紙 6-5 図に示す。併せて、各部位で MCNP5 コードと DOT3.5 コードによる評価結果の差異が生じた要因を別紙 6-3 表に示す。

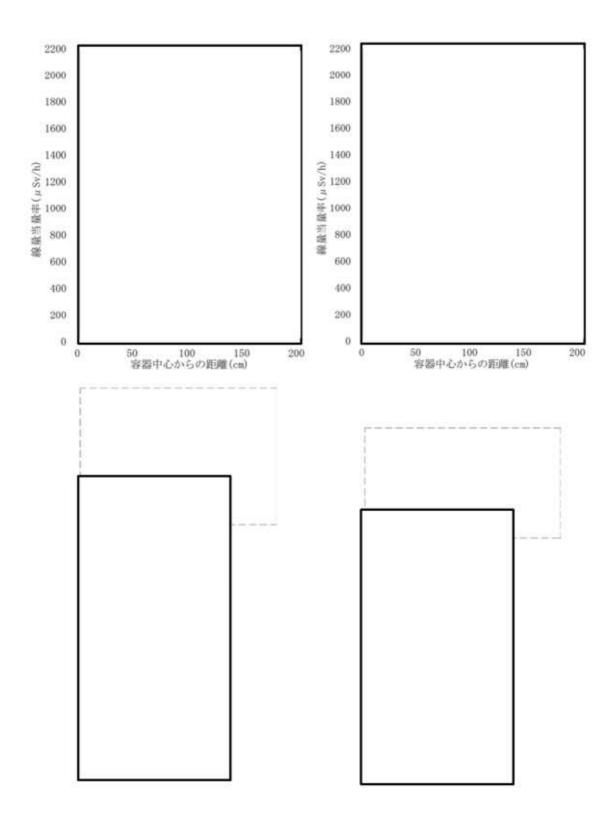
以上より、MCNP5 コードと DOT3.5 コードの評価値は、一部の評価点位置によっては差異が生じる(注)ものの要因は解析コードの特性による評価モデル設定であり、その他の評価点位置はほぼ同様の線量当量率結果傾向である。なお、蓋部が金属部へ衝突しない設置方法と基礎等に固定する設置方法については、三次蓋及び緩衝体の有無が異なるが、評価結果の傾向は同様となる。

(注)頭部径方向、底部径方向について、表面評価点はDOT3.5 コード結果がMCNP5 コード 結果より30 %~40 %程度高いが、表面から1 m離れた位置においては概ね同等と なっている。要因は別紙6-3表に示すとおり、DOT3.5 コードによる線量当量率評価 値がコード制約上保守的(高い)な結果となっているためである。

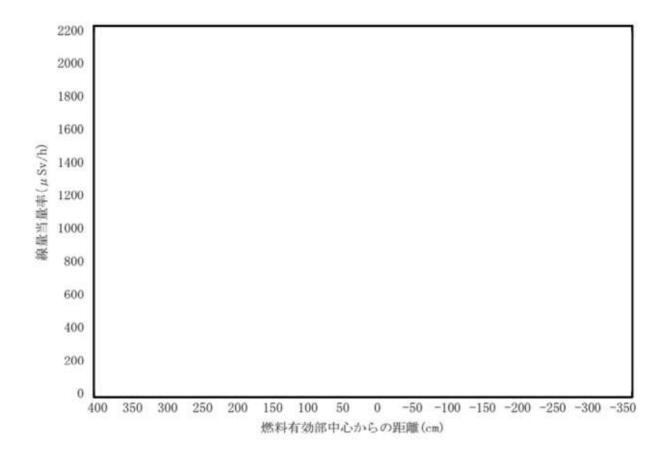
別紙6-1 表 MCNP5 コード及びDOT3.5 コードの特徴

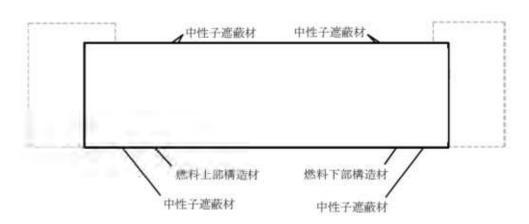
項目	MCNP5 ⊐ − ド	D0T3.5 ⊐ ─ ド	備考
黄·坦	放射線の衝突や散乱等を再現。 評価位置に対する放射線情報を統計 的に処理するため、計算値に対して 統計誤差を持つ。	放射線の衝突や散乱等を再現。 ガンマ線や中性子に対するボルツマン輸 評価位置に対する放射線情報を統計 送方程式を Sn 法により解く。放射線の挙 的に処理するため、計算値に対して 動を追跡するのに重要な非等方性を表 統計誤差を持つ。 現。	
綠源強度	ORIGEN2 コードにより評価した線源 強度。	1	両者で基本的には整異は無い。
コルニュ	MSF-24P 型全体を三次元でモデル化。	二次元円筒体系でモデル化。 本体部は有限円筒形状 (燃料部等は均賃 化) でモデル化。 トラニオン部は本体モデルと別にモデル 化。	両者で解析コードの特性上モデル化方法 が異なる。 DOT3.5 コードでの均質化方法については 流付1参照。 DOT3.5 コードでのトラニオン部評価は線 東引継ぎ計算を実施。(添付2参照)

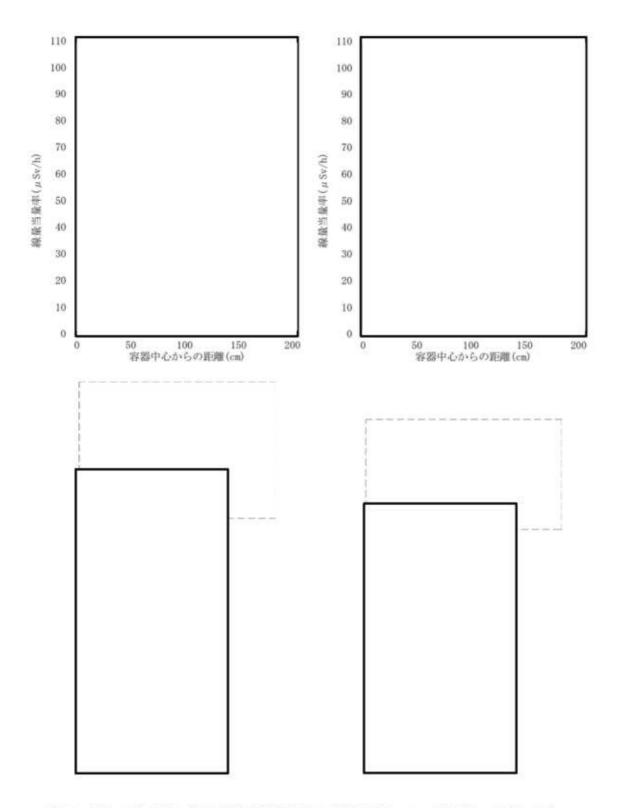

別紙6-2表 MCNP5 コード及び DOT3.5 コードによる線量当量率評価結果

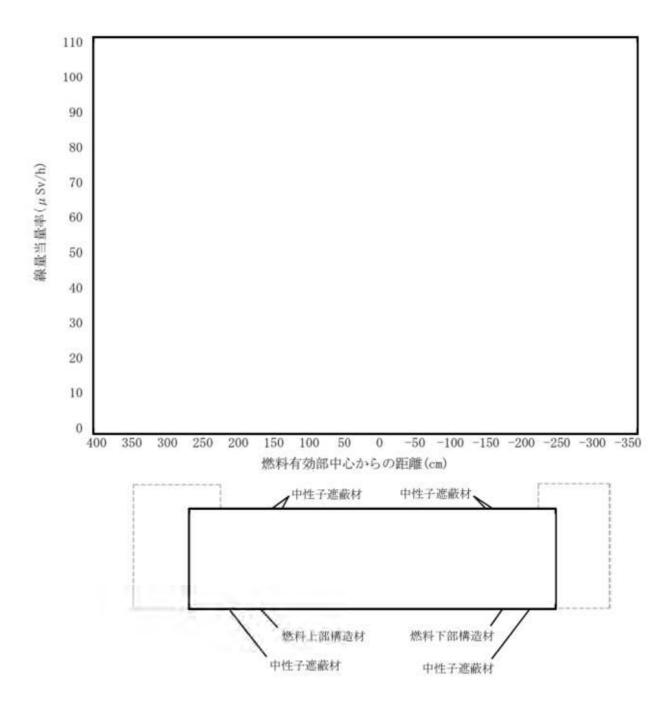

(单位: u Sv/h)

				頭部	歸		#	100		庇	底部	
		班加	輔	軸方向	餐	径方向	THE STATE OF THE S	DALIED.	径	径方向	御	軸方向
		肝間点		0		3	0	9		(L)	0	6
			MCNP5	DOT3. 5	MCNP5	DOT3.5	MCNP5	DOT3. 5	MCNP5	DOT3.5	MCNP5	DOT3.5
	R	燃料有物部	< 0.1	<0.1	9.09	8.0	113.6	100.7	91.3	5.4	6.5	6.0
	7.1	構造材放射化	0.2	0.2	161.7	103.0	26.8	25.9	69. 1	13.4	37.9	35.9
表而	礟	二次ガンマ線	0.3	0, 2	9.6	5.7	25.4	25.7	12.1	4.8	7.8	4.6
		中性子	41.3	41.7	433.6	753.8	40.7	45.1	616.2	1108:3	21.8	25.2
		合計	41.9	42.2	665.5	870.5	206.5	197.4	788.7	1131.9	71.0	71.7
İ		4 五年	9	8		(0	9	8		D	(D)
		肝加品	MCNP5	DOT3, 5	MCNP5	DOT3. 5	MCNP5	DOT3. 5	MCNP5	DOT3, 5	MCNP5	DOT3.5
	R	燃料有効部	< 0, 1	<0,1	23.4	22.6	45.0	44.8	27.1	25. 1	2.9	2.6
	10	構造材放射化	0.2	< 0.1	22.7	20.9	11.5	12.5	13.0	12.8	16.8	14.8
_	쨇	二次ガンマ線	0.2	< 0, 1	5, 1	5.4	10.0	10.4	5,5	5.7	1.8	1.7
		中性子	20.3	20.9	32.3	34.0	17.7	18.4	29.1	26.3	12.9	15.8
= :		合計	20,8	21.2	83.5	82.9	84. 2	86.1	74.7	6.69	34, 4	34.9


(注1)0.1未満の値は0.1として合計に考慮した。


(注2)DOT3.5 コードによる評価の頭部径方向及び底部径方向はそれぞれトラニオン方向を含めた結果である。 ※下線で示す値は、表面及び表面から1 n離れた位置における線量当量率の最大値である。


別紙 6-2 図 表面の線量当量率分布の比較 (頭部軸方向・底部軸方向)


- (注1) MCNP5 解析の線量当量率は、周方向の最大となる方向の MCNP5 解析値である (トラニオン方 向も含まれる)。
- (注 2) DOT3.5 解析の線量当量率は、頭部径方向・側部・底部径方向の線量当量率分布にトラニオン方向の分布を重ねて示した。
- (注3) 図中の数字部の線量当量率評価結果の差異要因について別紙6-3表に示す。

別紙 6-3 図 表面の線量当量率分布の比較 (項部径方向・側部・底部径方向(トラニオン方向含む))

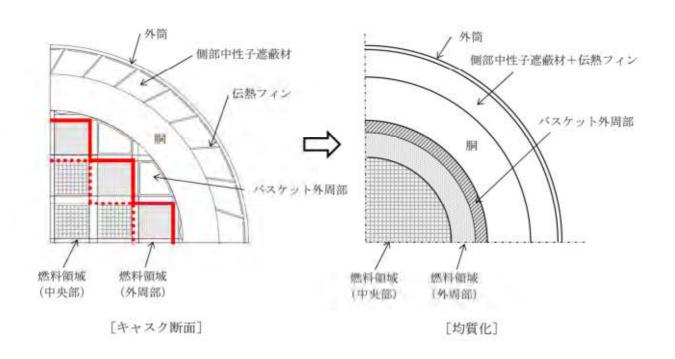
(注1) 図中の数字部の線量当量率評価結果の差異要因について別紙6-3表に示す。

別紙 6-4 図 表面から 1 m 離れた位置の線量当量率分布の比較 (頭部軸方向・底部軸方向)

- (注1) MCNP5 解析の線量当量率は、周方向の最大となる方向の MCNP5 解析値である (トラニオン方 向も含まれる)。
- (注 2) DOT3.5 解析の線量当量率は、頭部径方向・側部・底部径方向の線量当量率分布にトラニオン方向の分布を重ねて示した。
- (注3) 図中の数字部の線量当量率評価結果の差異要因について別紙6-3表に示す。

別紙6-5図 表面から1 m離れた位置の線量当量率分布の比較 (頭部径方向・側部・底部径方向(トラニオン方向含む))

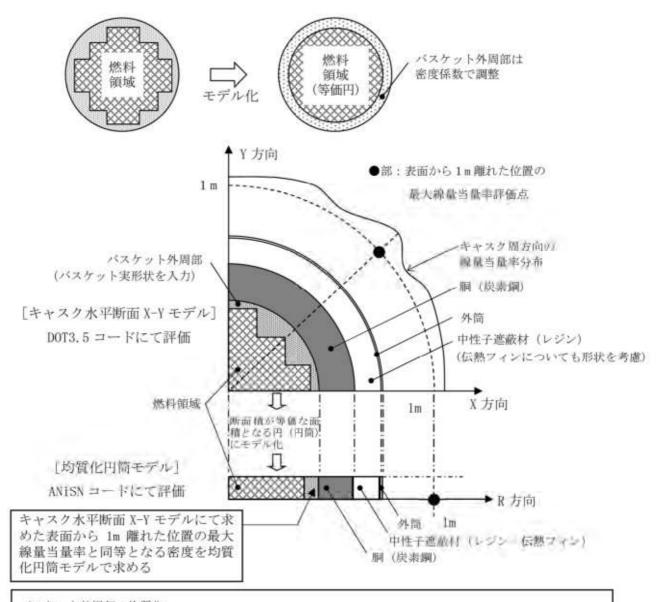
別紙6-3表 評価結果の傾向まとめ	差分要因					
Bi	場所傾向の差分要因					
3	項目	H	2	3	4	ເດ


無所複製·転載禁止 三菱重工業株式会社

内は商業機密のため、非公開とします。

(添付1) DOT3.5コード解析におけるキャビティ内均質化について

00T3.5コードを用いた遮蔽解析において、キャビティ内の燃料、バスケット、伝熱フィンは、コードの制約上、均質化した円筒形状としてモデル化している。均質化方法を別紙 6-6 図及び別紙 6-7 図に示す


DOT3.5 コードは、実形状 (評価点に対して線源となる燃料領域の位置が非均等な形状) のキャスク 断面の燃料領域と解析モデル断面の燃料領域が同じ面積となるように均質円筒モデル化し、均質化モ デルのキャスク表面から1 m 離れた位置における線量当量率が実形状でのキャスク表面から1 m 離れた位置における局所的に最大となる線量当量率と同等となるよう、バスケット外周部の密度補正係 数を設定する。全周囲に対して局所的な線量当量率と同等となるよう設定しているため、保守的な評価となる。

DOT3.5 コードによる遮蔽解析モデルへの入力

本体モデルの解析では、円筒形状での入力となるため、燃料領域の断面積と等価な面積となる円(円 筒)にモデル化している。その際、燃料領域は使用済燃料集合体とパスケットを均質化した物性値 を設定した。

別紙6-6図 キャスク中央断面の実形状と解析モデル

バスケット外周部の均質化

バスケット外間部は円間方向に不均一な厚さとなっている構造であることから、本体モデルでは下記に示 す手法により、バスケット外間部の密度を設定している。

(i)キャスク水平断面 X-Y モデル遮蔽解析

キャスク水平断面 X-Y モデルによる表面から1m離れた位置での最大線量当量率を算出する。

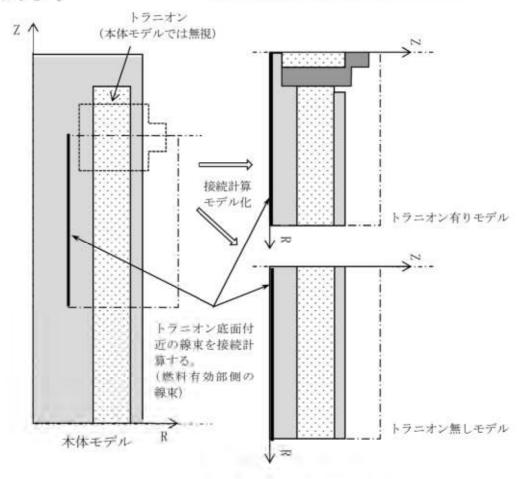
※算出位置を表面から1m 離れた位置としているのは、表面位置に比べ、基準線量当量率に対する裕度が少ないためである。

(ii)キャスク均質化円筒モデル遮蔽解析

別紙6-6図により設定した均質化モデルにて、表面から1m離れた位置での線量当量率が(i)で算出した最 大線量当量率と同等となるバスケット外周部の密度係数を算出する。

(ii)にて算出したパスケット外周部の密度係数を用いることで、実形状の最大線量当量率を包絡する結果 を得ることができる。

別紙6-7図 燃料領域及び側部中性子遮蔽材と伝熱フィン領域のモデル化の詳細


DOT3.5 コードを用いた遮蔽解析において、トラニオン部は DOT3.5 コードを用いて実形 状を模擬して別途モデル化し、評価している。

別紙6-8図に示すとおり、トラニオンを無視した本体モデルにて得られたトラニオン 底面付近の線束を、別途モデル化した R-Z 体系のトラニオンモデルに接続している。

トラニオン部の線量当量率は、トラニオン有りモデルとトラニオン無しモデルの線量当 量率結果より、線種ごとの線量当量率結果の比を補正値として求め、本体モデルの線量当 量率にその補正値を乗じて評価している。次頁以降に詳細方法を示す。

本手法では、接続計算で引き継ぐ線束は円筒モデルの制約上トラニオン中心を対称とし て線量当量率の高い燃料有効部側(キャスク中央側)の値を線量当量率の低いキャスク端 部側に対しても適用することとなるため、トラニオン部はキャスク端部側において保守的 な評価となる。

なお、本保守的評価傾向は、キャスク表面評価点においては特に顕著であるが、表面から1 m離れた位置における線量当量率算出は、キャスク全体からの線量当量率の寄与が支配的でありトラニオン部からの局所的な線量当量率寄与の影響は表面に比べて小さいことから当該影響は小さい。

別紙6-8図 トラニオン部の線束接続計算の概略図

トラニオン部の接続計算の詳細

トラニオン部の線量当量率は、本体モデルにおけるトラニオン部の線量当量率に、別途 トラニオン有りモデル/無しモデルで算出した線量当量率補正値を乗じて評価している。 補正値は以下の手順で算出している。

ステップー1

トラニオン有りモデルとトラニオン無しモデルを用いた線束接続計算より、表面及び表面から 1 m離れた位置の線量当量率を算出する。

各モデル及び位置の線量当量率を別紙6-9図に示すとおり定義する。

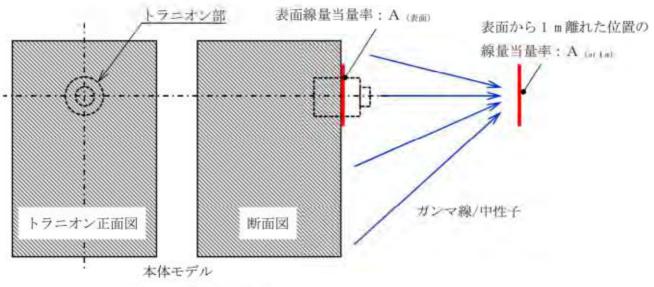
トラニオン有りモデル:表面の線量当量率をT (表面)

表面から1 m離れた位置の線量当量率をT (at 1m)

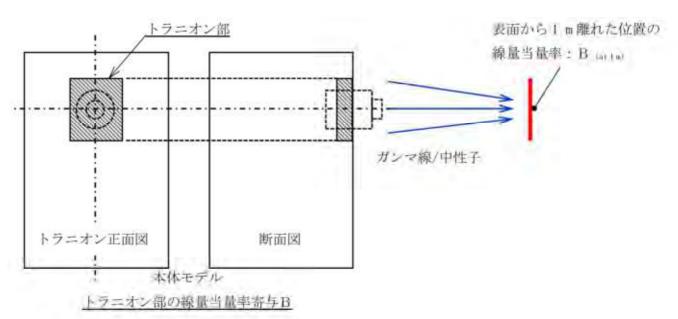
トラニオン無しモデル:表面の線量当量率をN (表面)

表面から1 m離れた位置の線量当量率をN (at 1m)

別紙6-9図 トラニオン部の線量当量率の定義


ステップ-2

本体モデルからトラニオン部の線量当量率に寄与する範囲を別紙 6-10 図に示すとおり 定義する。


本体モデルの表面の線量当量率: A (カモ)

本体モデルの表面から1 m離れた位置の線量当量率: A (at 1m)

本体モデルのトラニオン範囲より寄与する表面から1 m離れた位置の線量当量率: B (at lm)

キャスク全体からの線量当量率寄与A

別紙 6-10 図 トラニオン部の線量当量率に寄与する範囲の定義

ステップ-3

ステップ-1,2の結果から下式により頭部径方向(トラニオン部)及び底部径方向(トラニオン部)の線量当量率を貸出する。

表面線量当量率は評価点近傍からの寄与で決まるため、以下のとおり線量当量率補正 値を考慮する。

トラニオン部表面の線量当量率: A (表面) × (T (表面) / N (表面))

表面から 1 m離れた位置の線量当量率はキャスク全体からの寄与で決まるため、以下のとおり線量当量率補正値を考慮する。

トラニオン部表面から1 m離れた位置の線量当量率:

 $A_{(at1m)} - B_{(at1m)} + (B_{(at1m)} \times (T_{(at1m)} / N_{(at1m)}))$

なお、ステップ-Lの計算に用いる線束接続面の線束については、保守的に燃料有効部に 近い側の線束を、トラニオン底面に接続する。

遮蔽機能データの適用確認方法

設置許可基準規則第29条及び第30条の遮蔽評価に用いるソースターム条件として、MSF-24P(S)型の遮蔽機能データを用いる場合は、型式証明申請第16条の適合性評価と同じ手法で求めた線束を用いるものとする(※ MSF-24P(S)型の遮蔽機能データの作成方法については、本型式証明申請第16条で妥当性確認済)。

設置(変更)許可申請時に実施する第29条及び第30条の遮蔽評価では、別紙7-1図に示す特定兼用キャスク表面から1 m離れた位置の代表評価点(5点)における遮蔽機能データを用いて計算した線量当量率が、第16条の遮蔽評価結果(別紙7-1表)と同等*となることをもって、遮蔽機能データが適切に使用されていることを確認することができる。別紙7-2図に遮蔽機能データの確認のイメージを示す。ここでは、蓋部が金属部へ衝突しない設置方法について代表例として記載する。

*: MCNP5 コードを用いた評価につき同一の値にならない場合がある。この場合、遮蔽機能データと の差異(線量当量率比)を設置(変更)許可申請における線量解析値に加味する(解析値に線量 当量率比を考慮する)等で妥当な引き継ぎとする。

別紙7-1表(1/4) 特定兼用キャスクの表面から1 m離れた位置における代表評価点の線量当量率 (17×17 燃料 (A型) 収納時、蓋部が金属部へ衝突しない設置方法)

(単位: µ Sv/h)

軸方向	軸方向
3	0
< 0.1	<0.1
(1.1)	(1.1)
0.2	0.2
(0.5)	(0.5)
0.2	0.2
(1.2)	(1.2)
20.3	20.3
(0.3)	(0.3)
20.8	20.8

第3表(5/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

※ ()内は統計裁差(単位:%)を示す。

別紙7-1表(2/4) 特定兼用キャスクの表面から1 m離れた位置における代表評価点の線量当量率 (17×17 燃料 (B型) 収納時、蓋部が金属部へ衝突しない設置方法)

(単位: µ Sv/h)

成部	径方向 軸方向	00	.3 2.5 5) (0.6)	13.3 28.2 (0.6) (0.4)	5.1 1.6 (0.7) (1.6)	(0.8) (0.5)	65.2 44.8
加加	(怪力	9	20.3 22.3 (0.3) (0.5)	28.6 13 (0.5)	5.0 5.0 (0.6)	25.6 24 (0.5) (0.	79.5
挺	径方向	®	18.1 (0.4)	31.7 (0.7)	4.6 (0.7)	28.2 (0.6)	82.6
頭部	軸方向	8	0.1 (1.6)	0.2 (0.9)	0.2	19.1 (0.7)	19.6
	評価点		燃料有効部	構造材放射化	二次ガンマ線	中性子	李
			Ŧ	 	かの・薬	- E	

第3表(6/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

※ () 内は統計觀差 (単位:%)を示す。

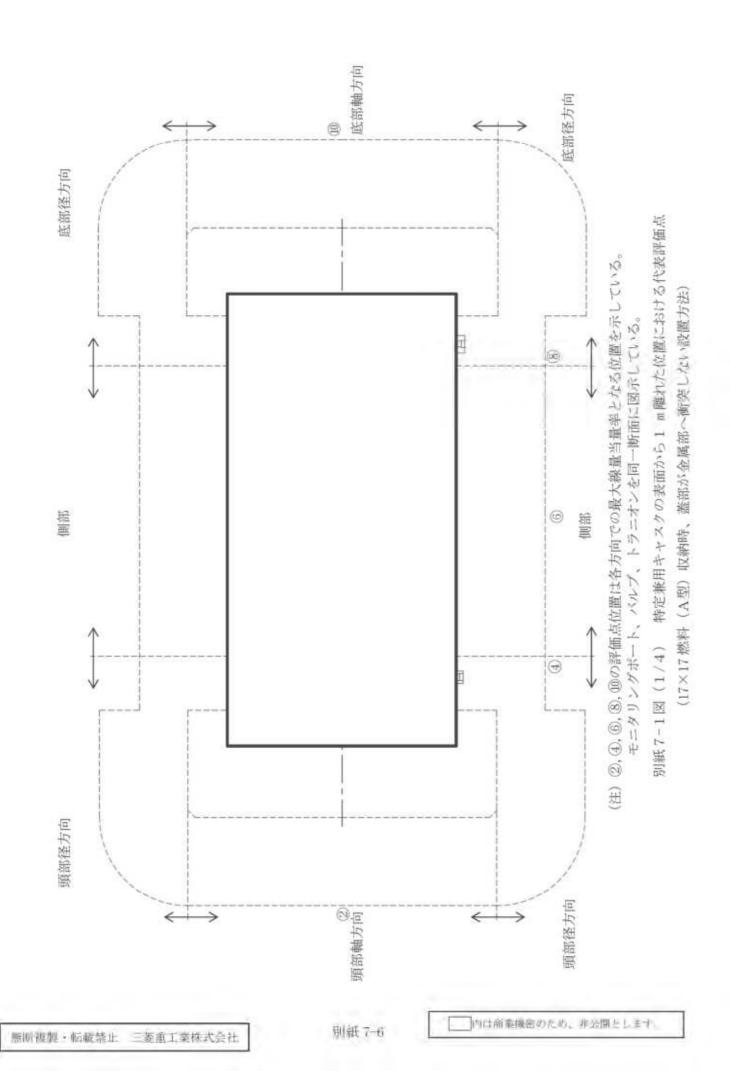
特定兼用キャスタの表面から1 n離れた位置における代表評価点の線量当量率 (15×15 燃料 (A型) 収納時, 蓋部が金属部へ衝突しない設置方法) 別紙7-1表(3/4)

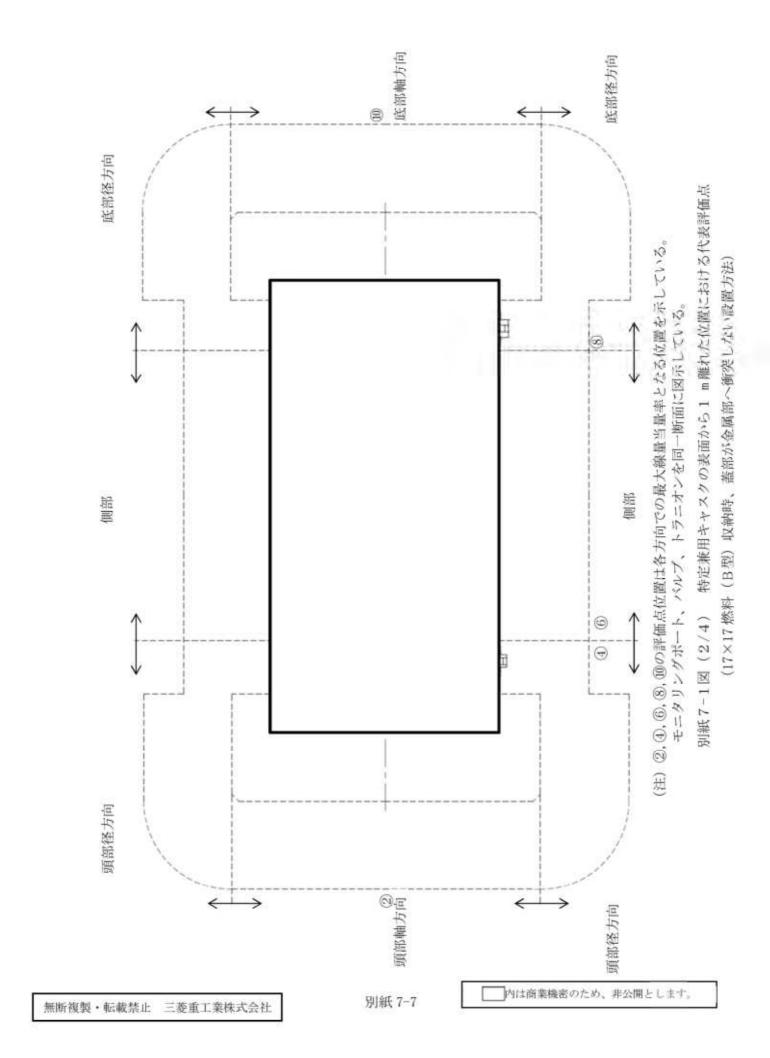
(明位: µSv/h)

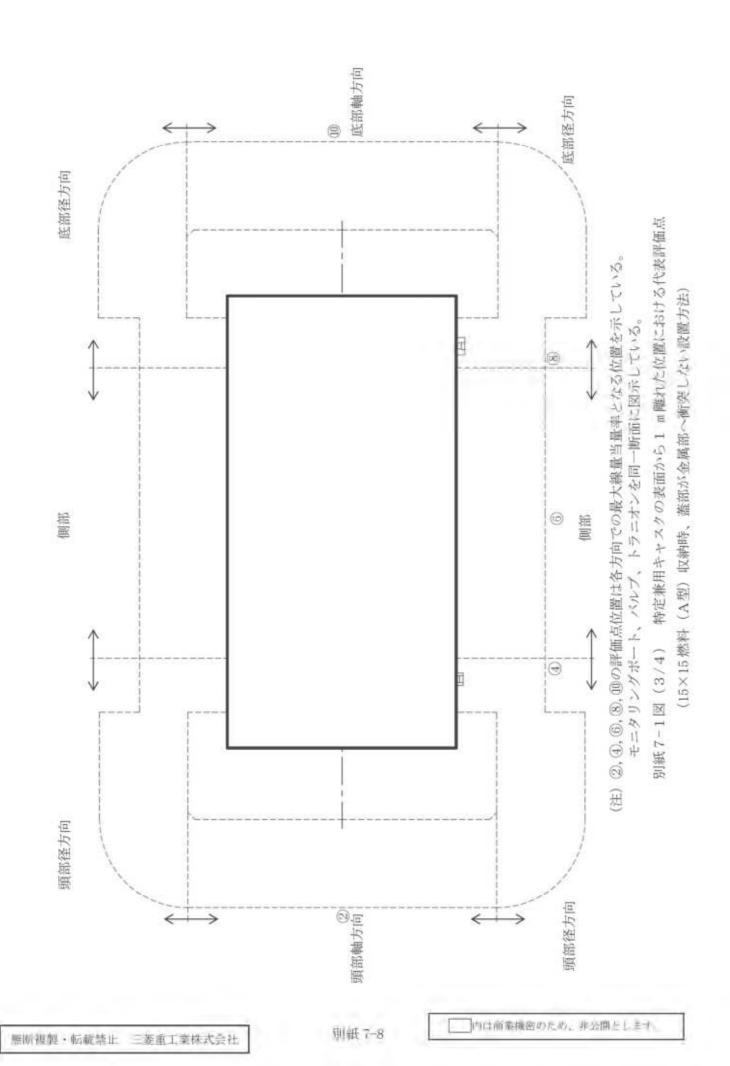
軸方向 29.6 3.1 10.6 1.9 14.0 京新 径方向 32.0 71.2 25.4 8.3 (0.5) 5.5 8 44.9 (0.2) 8.5 10.5 19.0 側部 9 径方向 22.4 16.2 5.3 35.9 79.8 明常 軸方向 0.1 22.6 (1.2) 22.2 0.1 0 構造材放射化 二次ガンレ線 燃料有効部 中位子 合計 評価点 ガント戦 表面から - m

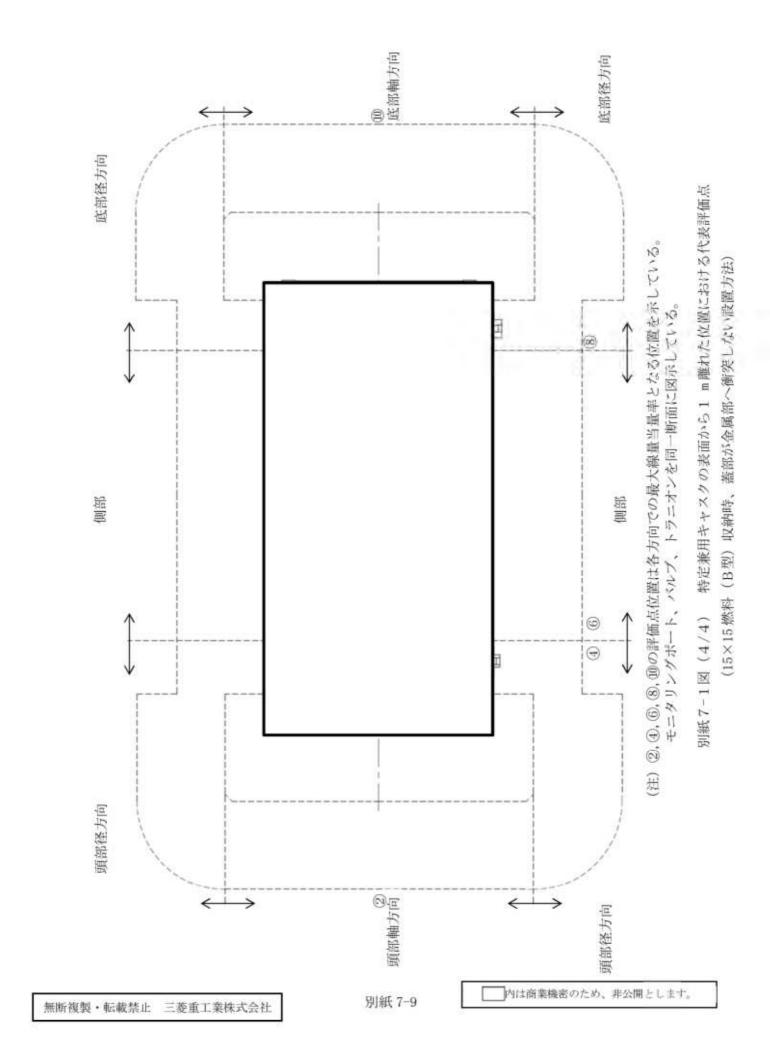
第3表(7/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

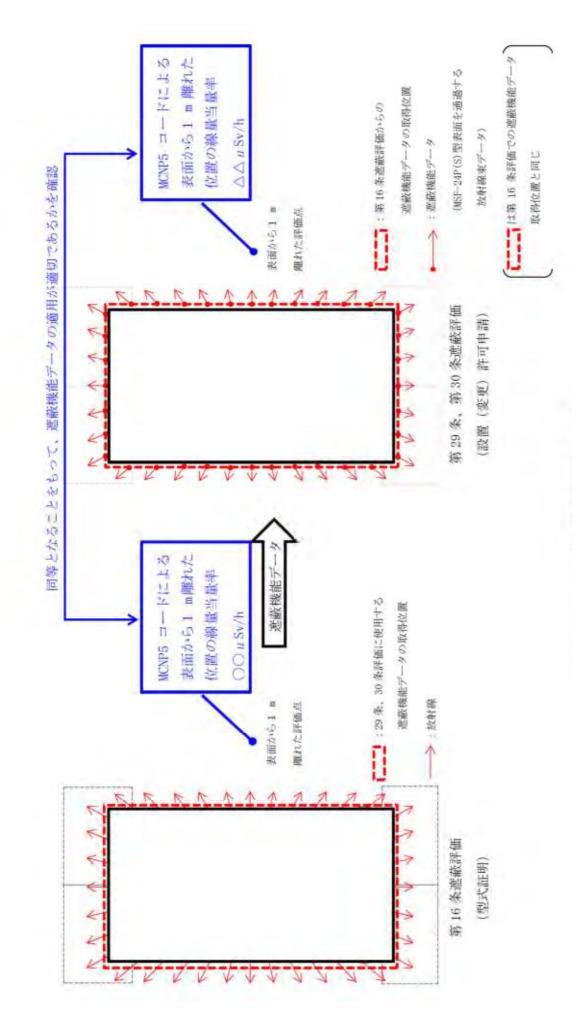
内は統計觀差(単位:%)を示す。


*


別紙7-1表(4/4) 特定兼用キャスクの表面から1 n離れた位置における代表評価点の線量当量率 (15×15 燃料 (B型) 収納時、蓋部が金属部へ衝突しない設置方法)


(単位: µSv/h)


		明宗	MP	Anil Are	Yn	UN FILE
	評価点	軸方向	径方向	di ini	径方向	軸方向
		8	•	9	8	(3)
	海町石林畑	0.1	18.1	20.4	21.3	2.5
#	於件有刻即	(1.6)	(0.4)	(0, 3)	(0.6)	(0.6)
	71/10/71/17	0.2	25, 5	23.3	9.2	15.4
国かり	附坦 的	(0.9)	(0.7)	(0.6)	(0.9)	(0.4)
	歩ーン・オ・ペー	0.2	4.8	5,3	5.2	1.8
	一ペンスと縁	(2.1)	(0, 3)	(0, 3)	(0.4)	(1.1)
	7 # #	20.1	29.8	27.0	27.2	13.3
		(0.5)	(0.6)	(0, 5)	(0.8)	(0.5)
	合計	20.6	78.2	76.0	62.9	33.0


第3表(8/12)に示す表面から1 m離れた位置における線量当量率の評価結果と同じ

別紙7-2図 遊艇機能データ確認イメージ