添付 添一3

添付5-5

5. 地震

5.1 概要

施設の供用中に耐震重要施設に大きな影響を及ぼすおそれがある地震による地震動(以下 「基準地震動Ss」という。)は、以下の方針により策定する。

- ① 「3. 地盤」に記載されている敷地周辺における活断層の性質や、敷地周辺における地震発 生状況等を考慮して、その発生様式による地震の分類を行った上で、敷地に大きな影響を与 えると予想される地震(以下「検討用地震」という。)を選定した後、敷地での地震動評価 を実施し、「敷地ごとに震源を特定して策定する地震動」を評価する。
- ② 敷地周辺の状況等を十分考慮した詳細な調査を実施しても、なお敷地近傍において発生する 可能性のある内陸地殻内地震の全てを事前に評価し得るとは言い切れないとの観点から、 「震源を特定せず策定する地震動」を評価する。
- ③ 「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」の評価結果に基づき、基準地震動 Ss を策定する。
- 5.2 敷地周辺の地震発生状況

敷地が位置する茨城県周辺は、陸のプレート、太平洋プレート及びフィリピン海プレートの 3つのプレートが接触する場所である。敷地周辺で発生する地震は、陸のプレートで発生する 内陸地殻内地震、各プレートの境界で発生するプレート間地震及び太平洋プレートやフィリピ ン海プレートで発生する海洋プレート内地震に分類される。

5.2.1 過去の被害地震

第5.2.1図は、宇佐美ほかの「日本被害地震総覧」(2013)⁽¹⁾及び気象庁の「気象庁地 震カタログ」(2017)⁽²⁾に記載されている被害地震のうち、敷地からの震央距離が約 200km以内の被害地震の震央分布を示したものである。なお、第5.2.1図に示した被害地震 の諸元を第5.2.1表(1)から第5.2.1表(9)に示す。

ここで、地震の規模及び震央位置は、1922年以前の地震については宇佐美ほか(2013) を、1923年以降の地震については気象庁(2017)を用いている。

5.2.2 敷地周辺の地震活動

気象庁で観測された1923年から2015年までの敷地から約200km以内の範囲に発生したマ グニチュード(以下「M」という。)4.0以上の地震の震央分布を深度別に第5.2.2図(1)か ら第5.2.2図(4)に示す。また、敷地付近を横切る幅50kmの範囲に分布する震源の鉛直分布 を第5.2.3図(1)から第5.2.3図(4)に示す。

さらに、気象庁で観測された1998年から2015年までの敷地から約100km以内の範囲に発 生したM4.0以下の地震の震央分布を深度別に第5.2.4図(1)から第5.2.4図(4)に示す。ま た、敷地付近を横切る幅50kmの範囲に分布する震源の鉛直分布を第5.2.5図(1)から第 5.2.5図(4)に示す。

5.3 活断層の分布状況

敷地周辺で実施した地質調査の結果は「3. 地盤」に記載されている。

「3. 地盤」の検討結果に基づき、敷地周辺の活断層等の分布を第5.3.1図に示す。

5.4 地震の分類

第5.4.1表に示す気象庁(2009)⁽³⁾による震度階級関連解説表によれば、地震によって建物 等に被害が発生する目安となるのは震度5弱(1996年以前は震度V)程度以上であることから、

「5.2 敷地周辺の地震発生状況」による地震の規模、位置等に関する最新の知見をもとに、 敷地に大きな影響を与える地震として、震度5弱(震度V)程度以上のものを地震発生様式別に 選定する。

宇佐美ほか(2013)に記載されている震度分布図及び気象庁が公表している震度分布図によ れば、第5.2.1図の地震のうち、敷地周辺で震度5弱(震度V)程度以上であったと推定される 地震は、1703年元禄地震、1895年霞ヶ浦付近の地震、1923年関東大地震、1930年那珂川下流域 の地震、1938年塩屋崎沖の地震、1938年鹿島灘の地震、1938年福島県東方沖地震、2011年東北 地方太平洋沖地震の本震及び同日15時15分に発生した2011年東北地方太平洋沖地震の余震であ る。

また、第5.2.1図の地震のうち、敷地及びその周辺での震度等が明らかでない地震について は、第5.4.1図に示すように、村松(1969)⁽⁴⁾及び勝又・徳永(1971)⁽⁵⁾による地震の規模及 び震央距離と震度との関係から敷地での震度を推定した。これによれば、敷地周辺で震度5弱 (震度V)程度以上であったと推定される地震は、818年関東諸国の地震、1677年磐城・常陸・ 安房・上総・下総の地震、1896年鹿島灘の地震及び1921年茨城県龍ヶ崎付近の地震である。

5.4.1 内陸地殼内地震

第5.2.1図に示す過去の被害地震のうち、敷地周辺で震度5弱(震度V)程度以上であったと推定される内陸地殻内地震は、818年関東諸国の地震である。

次に、「5.3 活断層の分布状況」の活断層等について、想定される地震の規模及び震 央距離と震度との関係から敷地での震度を推定した結果を第5.4.2図に示す。ここで、活 断層等から想定される地震の規模は、松田(1975)⁽⁶⁾により算定する。第5.4.2図に示す ように、関谷断層による地震、深谷断層帯・綾瀬川断層による地震、関ロ-米平リニアメ ントによる地震、竪破山南西付近リニアメント(以下「竪破山リニアメント」という。) による地震、日立市宮田町付近リニアメント(以下「宮田町リニアメント」という。)に よる地震、石-1背斜による地震、F8断層による地震、F11断層による地震、F16断層によ る地震、A-1背斜による地震、棚倉破砕帯西縁断層(の一部)と棚倉破砕帯東縁付近の推 定活断層の同時活動(以下「棚倉破砕帯西縁断層~同東縁付近の推定活断層」という。) による地震、F1断層、北方陸域の断層及び塩ノ平地震断層の同時活動(以下「F1断層~北 方陸域の断層~塩ノ平地震断層」という。)による地震及びF3断層とF4断層の同時活動 (以下「F3断層~F4断層」という。)による地震が、敷地周辺で震度5弱(震度V)程度以上になると推定される。

なお、断層長さの短い、関ロ-米平リニアメントによる地震、竪破山リニアメントによる地震、宮田町リニアメントによる地震、吾国山断層による地震及びF11断層による地震の地震動評価においては、それぞれの地震の規模をM6.8として評価する。

5.4.2 プレート間地震

第5.2.1図に示す過去の被害地震のうち、敷地周辺で震度5弱(震度V)程度以上であっ たと推定されるプレート間地震は、1677年磐城・常陸・安房・上総・下総の地震、1703年 元禄地震、1896年鹿島灘の地震、1923年関東大地震、1930年那珂川下流域の地震、1938年 塩屋崎沖の地震、1938年鹿島灘の地震、1938年福島県東方沖地震、2011年東北地方太平洋 沖地震の本震及び2011年東北地方太平洋沖地震の余震である。これらのうち、1703年元禄 地震及び1923年関東大地震はフィリピン海プレートと陸のプレートの境界で発生したプレ ート間地震(以下「フィリピン海プレート間地震」という。)であり、それ以外の地震は 太平洋プレートと陸のプレートの境界で発生したプレート間地震(以下「太平洋プレート 間地震」という。)である。

また、中央防災会議(2013)⁽⁷⁾では、フィリピン海プレート間地震として茨城県南部を 震源とするM7.3の地震を想定している。さらに、地震調査研究推進本部地震調査委員会

(以下「地震調査研究推進本部」という。)(2012a)⁽⁸⁾では、太平洋プレート間地震と して茨城県沖を震源とするM6.9~M7.6の地震を想定している。地震調査研究推進本部 (2019)⁽⁹⁾では、太平洋プレート間地震として茨城県沖を震源とするM7.0~M7.5程度の地 震を想定している。

5.4.3 海洋プレート内地震

第5.2.1図に示す過去の被害地震のうち、敷地周辺で震度5弱(震度V)程度以上であったと推定される海洋プレート内地震は、1895年霞ヶ浦付近の地震及び1921年茨城県龍ヶ崎付近の地震である。首都直下地震防災・減災特別プロジェクト(2012)⁽¹⁰⁾では、1895年 霞ヶ浦付近の地震は太平洋プレート内で発生した地震であること、1921年茨城県龍ヶ崎付近の地震はフィリピン海プレート内で発生した地震であることが指摘されている。

また、中央防災会議(2004)⁽¹¹⁾では、茨城県南部のフィリピン海プレート内を震源と するM7.3の地震が想定されている。さらに、中央防災会議(2013)に基づけば、茨城県南 部においてM7.3の地震を想定できる。また、地震調査研究推進本部(2009a)⁽¹²⁾では、

「震源断層を予め特定しにくい地震」として、北関東から東北地方の陸域にかけての太平 洋プレート内を震源とするM7.1の地震(以下「震源断層を予め特定しにくい地震(陸 域)」という。)及び茨城県沖の太平洋プレート内を震源とするM7.3の地震(以下「震源 断層を予め特定しにくい地震(海域)」という。)が想定されている。地震調査研究推進 本部(2019)では、沈み込んだプレート内地震として青森県東方沖及び岩手県沖北部~茨 城県沖でM7.0~M7.5程度の海洋プレート内地震が想定されているが、茨城県沖では過去に M7.0を超える沈み込んだプレート内地震は発生していない。さらに、地震調査研究推進本 部(2009a)では、茨城県沖の海溝寄りの太平洋プレート内を震源とするM8.2の地震(以下「海溝寄りのプレート内地震」という。)が想定されている。

5.4.4 その他の地震

敷地周辺において、上記3種類の地震のいずれにも分類されない特徴的な地震は発生していない。

- 5.5 敷地及び敷地近傍の地盤振動特性
 - 5.5.1 解放基盤表面の設定

「3. 地盤」によると、新第三系鮮新統~第四系下部更新統の久米層及び新第三系中新 統の多賀層群は敷地及び敷地近傍でほぼ水平で相当な拡がりを持って分布しており、敷地 内において久米層はG.L.約-90m以深からG.L.約-170mまで、多賀層群はG.L.約-170m以深か らボーリング調査下端のG.L.約-250mまで分布している。また、PS検層によるとG.L.-172.5m以深でS波速度が概ね0.7km/s以上となり、著しい風化も見られない。以上を踏ま え、G.L.-172.5mの位置に解放基盤表面を設定する。なお、地震動評価のうち応答スペク トルに基づく手法における解放基盤表面での地盤の弾性波速度値を、P波速度については 2.17km/s、S波速度については1.01km/sと設定する。

5.5.2 地震観測

敷地地盤における地震観測は、第5.5.1図に示す位置で実施している。観測された主な 地震の諸元を第5.5.1表に、震央分布を第5.5.2図に示す。これらの地震について、地中最 深部(G.L.-250m)で得られた観測記録の応答スペクトルを第5.5.3図に、各深度で得られ た観測記録の応答スペクトルを第5.5.4図(1)から第5.5.4図(3)に示す。これらの図による と、岩盤内での著しい増幅は認められない。

5.5.3 敷地周辺の地盤構造

第5.5.5図に示す地質調査総合センター編(2013)⁽¹³⁾による重力異常分布によると、敷 地の北側には重力の高まりが見られるが、敷地においてはほぼ平坦な構造となっている。 これらの不整形地盤等が、敷地の地震動に与える影響について、単点微動観測記録及び地 震観測記録の分析並びに地盤モデルを用いた解析により検討した。

単点微動観測記録の分析では、第5.5.6図に示す位置で実施した微振動観測で得られた 記録からH/Vスペクトルを評価した結果、いずれの観測点においてもおおむね同様の傾向 を示すことから、敷地地盤には特異な速度構造等がないことを確認した。

地震観測記録の分析では、第5.5.7図(1)及び第5.5.7図(2)に震央位置を示す地震波の到 来方向ごとの応答スペクトル比を比較した結果、第5.5.8図(1)及び第5.5.8図(2)に示すよ うに到来方向によって大きな違いは見られず、ばらつきも小さいことを確認した。

また、敷地及び敷地周辺で実施した屈折法地震探査及び微動アレイ探査結果等に基づき 作成した第5.5.9図に示す二次元地盤モデルと、敷地直下の地盤構造に基づく成層地盤モ デルを用いて、敷地の解放基盤表面における地震動について検討した結果、第5.5.10図 (1)及び第5.5.10図(2)に示すように両地盤モデルの地震波はおおむね対応するものの、一 部、入射角が大きい長周期成分の地震波において乖離が見られる。この乖離は不整形地盤 に起因すると考えられるが、前述した地震波の到来方向ごとの応答スペクトル比において は到来方向の違いによって長周期成分が特異に増幅する様子は見られず、また、長い固有 周期を有する耐震重要施設はないことから、敷地における地震動評価において大きな問題 はないと判断した。

これらの結果より、敷地地盤は水平な成層構造と見なすことができることを確認した。

5.5.4 地盤構造モデル

地震動評価に用いる地盤構造モデルについては、解放基盤表面付近以浅をモデル化した 浅部の地盤構造モデルと、解放基盤表面付近以深をモデル化した深部の地盤構造モデルを 設定する。

浅部の地盤構造モデルは、地震観測記録から表層地盤の影響を取り除くはぎとり解析に 用いることとし、敷地内で実施したPS検層等の地質構造調査結果を踏まえ、敷地に設置 した地中地震計から得られた地震観測記録を用いて最適化したものを採用する。

一方、深部の地盤構造モデルは、敷地ごとに震源を特定して策定する地震動の評価及び 震源を特定せず策定する地震動の評価に用いることとし、敷地及び敷地周辺で実施した微 動アレイ探査や地震波速度トモグラフィ解析等の地質構造調査結果を踏まえて最適化して 得られたものを採用する。

浅部の地盤構造モデルを第5.5.2表に、深部の地盤構造モデルを第5.5.3表に示す。

5.6 基準地震動 Ss

基準地震動 Ss は、「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策 定する地震動」について、敷地の解放基盤表面における水平成分及び鉛直成分の地震動として それぞれ策定する。

- 5.6.1 敷地ごとに震源を特定して策定する地震動
 - 5.6.1.1 検討用地震の選定

「5.4 地震の分類」を踏まえ、地震発生様式ごとに敷地に特に大きな影響を及ぼ すと考えられる地震をNoda et al. (2002)⁽¹⁴⁾の方法により検討用地震として選定す る。Noda et al. (2002)の方法による応答スペクトルの算定に当たっては、震源位 置や地震の発生様式ごとに分類した地震観測記録を用いた補正係数を必要に応じて用 いる。

(1) 地震観測記録を用いた補正係数

敷地で観測した地震のうち、M5.5以上、震源深さ60km以浅かつ等価震源距離200km 以内の観測記録について、表層地盤の影響を取り除いた解放基盤表面における地震波 (以下「解放基盤波」という。)を評価し、Noda et al. (2002)の方法による応答 スペクトルとの比(以下「残差」という。)を算出する。そして、地震発生様式や震 源領域に応じた残差の平均的な特性を検討し、必要に応じて補正係数として用いる。 内陸地殻内地震のうち、福島県と茨城県の県境付近で発生した内陸地殻内地震の残 差には全周期帯で大きくなる傾向が見られるため、この領域で発生する地震につい て、全周期帯で2.5倍の補正係数を考慮する。

プレート間地震のうち、敷地から40km程度東方沖合の鹿島灘付近で発生した太平洋 プレート間地震の残差には全周期帯で大きくなる傾向が見られるため、この領域で発 生する地震について、短周期帯で2.5倍及び長周期帯で1.5倍の補正係数を考慮する。 また、鹿島灘付近で発生した地震を除く太平洋プレート間地震の残差には全周期帯で 大きくなる傾向が見られるため、この領域で発生する地震について、全周期帯で1.2 倍の補正係数を考慮する。

海洋プレート内地震のうち、陸域寄りで発生した海洋プレート内地震の残差には全 周期帯で大きくなる傾向が見られるため、この領域で発生する地震について、短周期 帯で2.5倍及び長周期帯で1.5倍の補正係数を考慮する。

設定した補正係数を第5.6.1図(1)から第5.6.1図(4)に示す。

- (2) 内陸地殻内地震
 - a. 地震発生層の設定

a) 福島県と茨城県の県境付近以外の断層に対する地震発生層の設定

「気象庁地震カタログ」をもとに「震源として考慮する活断層の分布」とおお むね対応する福島県南部から茨城県南部までの領域における地震発生状況につい て、地震の震源鉛直分布から求められるD10及びD90(その値より震源深さが浅い 地震数がそれぞれ全体の10%、90%となる震源深さ)を検討した結果、それぞれ 5.2km、12.3kmとなった。

しかしながら、上記の検討は、2011年東北地方太平洋沖地震以降、福島県と茨 城県の県境付近で地震活動が活発化した影響を受けていると考えられる。その影 響を受けていない原子力安全基盤機構(2004)⁽¹⁵⁾によるD10及びD90は、敷地周辺 の「福島・茨城」ではそれぞれ6.1km、18.1kmとしている。

また、地震発生層と速度構造の関係については、廣瀬・伊藤(2006)⁽¹⁶⁾による と、浅い地殻内で発生する微小地震はP波速度5.8km/s~6.4km/sの層に集中してい るとされており、三浦ほか(2000)⁽¹⁷⁾による日本海溝・福島沖前弧域における海 底地震計及びエアガンを用いた深部構造探査結果からすると、福島県の海岸線に おいてP波速度5.5km/s、6.0km/s及び6.5km/sとなる深さは、それぞれ約6km、約 9km及び約15kmとなっている。

以上を踏まえ、福島県と茨城県の県境付近以外の断層の地震発生層について は、福島県南部から茨城県南部における地震発生状況や原子力安全基盤機構 (2004)等を参考に、上端深さを5km、下端深さを18kmに設定する。

b) 福島県と茨城県の県境付近の断層に対する地震発生層の設定

2011年東北地方太平洋沖地震後に地震活動が活発になった地域に着目し、地震 発生層を設定する。

青柳・上田(2012)⁽¹⁸⁾では、阿武隈南部を対象に2011年東北地方太平洋沖地震 後の臨時稠密余震観測により震源再決定が行われている。それらのデータを用い たD10及びD90がそれぞれ深さ3.0km、7.9kmであることから、上端深さは3kmに設定 する。また、2011年福島県浜通りの地震の震源インバージョン解析モデル ⁽¹⁹⁾⁽²⁰⁾⁽²¹⁾や震源域周辺の微小地震分布⁽²²⁾から、下端深さは13km~16km程度と推定 されるが、保守的に18kmと設定する。

b. 検討用地震の選定

「5.4.1 内陸地殻内地震」で選定した地震について、Noda et al. (2002)の方 法により応答スペクトルを求める。なお、活断層等については、「5.6.1.1 検討用 地震の選定 (2)a. 地震発生層の設定」で設定した地震発生層の上端深さと下端深さ より一様断層モデルを設定し、等価震源距離 (Xeq)を算出する。

ここで、福島県と茨城県の県境付近に位置する関ロ-米平リニアメントによる地 震、堅破山リニアメントによる地震、宮田町リニアメントによる地震、F11断層によ る地震、棚倉破砕帯西縁断層~同東縁付近の推定活断層による地震及びF1断層~北 方陸域の断層~塩ノ平地震断層による地震については、「5.6.1.1 検討用地震の選 定(1) 地震観測記録を用いた補正係数」に基づき、福島県と茨城県の県境付近で発 生した内陸地殻内地震による補正係数を考慮する。その他の断層による地震につい ては、補正係数の設定に必要な断層近傍の地震が敷地で観測されていないことか

ら、補正係数を考慮しない。

応答スペクトルの算定に用いた諸元を第5.6.1表に、算定結果の比較を第5.6.2図 に示す。

第5.6.2図より、敷地への影響が大きいF1断層〜北方陸域の断層〜塩ノ平地震断層 による地震及びF3断層〜F4断層による地震を検討用地震として選定する。

(3) プレート間地震

「5.4.2 プレート間地震」で選定した地震のうち、2011年東北地方太平洋沖地震の本震及び2011年東北地方太平洋沖地震の余震(2011年3月11日15時15分 M7.6) については、敷地での地震観測記録より求めた解放基盤波より応答スペクトルを求め、その他の地震についてはNoda et al. (2002)の方法により応答スペクトルを求める。

ここで、鹿島灘を震源とする1896年鹿島灘の地震、1938年鹿島灘の地震及び地震調 査研究推進本部(2012a)による茨城県沖の地震については、「5.6.1.1 検討用地震 の選定(1)地震観測記録を用いた補正係数」に基づき、鹿島灘付近で発生した太平 洋プレート間地震による補正係数を考慮する。一方、1677年磐城・常陸・安房・上 総・下総の地震、1930年那珂川下流域の地震、1938年塩屋崎沖の地震及び1938年福島 県東方沖地震については、鹿島灘付近で発生した地震を除く太平洋プレート間地震に よる補正係数を考慮する。その他の断層による地震については、補正係数の設定に必 要な断層近傍の地震が敷地で観測されていないことから、補正係数を考慮しない。

応答スペクトルの算定に用いた諸元を第5.6.2表に、算定結果の比較を第5.6.3図に 示す。

第5.6.3図より、敷地への影響が大きい2011年東北地方太平洋沖地震の本震を検討 用地震として選定する。なお、以降の地震動の評価に当たっては、2011年東北地方太 平洋沖型地震として扱う。 (4) 海洋プレート内地震

「5.4.3 海洋プレート内地震」で選定した地震について、Noda et al. (2002)の 方法により応答スペクトルを求める。

ここで、地震調査研究推進本部(2009a)による海溝寄りのプレート内地震以外の 地震については、「5.6.1.1 検討用地震の選定(1)地震観測記録を用いた補正係 数」に基づき、陸域寄りで発生した海洋プレート内地震による補正係数を考慮する。 一方、地震調査研究推進本部(2009a)による海溝寄りのプレート内地震について は、補正係数の設定に必要な断層近傍の地震が敷地で観測されていないことから、補 正係数を考慮しない。

応答スペクトルの算定に用いた諸元を第5.6.3表に、算定結果の比較を第5.6.4図に 示す。

第5.6.4図より、敷地への影響が大きい地震は中央防災会議(2004)の茨城県南部の地震及び中央防災会議(2013)に基づく茨城県南部の地震である。これを踏まえ、茨城県南部の地震を検討用地震として選定し、中央防災会議(2004)、(2013)の知見を踏まえて地震動評価を行う。

- 5.6.1.2 検討用地震の地震動評価
 - (1) 内陸地殼内地震
 - a. F1 断層~北方陸域の断層~塩ノ平地震断層による地震
 - a) 基本震源モデルの設定

F1断層~北方陸域の断層~塩ノ平地震断層による地震の基本震源モデルは、原 則として地震調査研究推進本部(2017)⁽²³⁾による震源断層を特定した地震の強震 動予測手法(「レシピ」)(以下「強震動予測レシピ」という。)及び地質調査 結果に基づき設定する。

F1断層~北方陸域の断層~塩ノ平地震断層による地震の断層面については、地 質調査結果を参考に北部と南部に区分する。北部については北方陸域の断層及び 塩ノ平地震断層の区間とし、南部についてはF1断層にリニアメントが判読されな い区間を含めることで、敷地に近い南部区間の断層面積を保守的に大きく設定す る。

地震のタイプについては、2011年福島県浜通りの地震が正断層であること、F1 断層における音波探査結果から正断層センスのずれが認められること、さらに青 柳・上田(2012)において福島県から茨城県にかけての領域は正断層応力場とさ れていることを踏まえ、正断層とする。

断層上端及び下端深さについては、「5.6.1.1 検討用地震の選定(2)a. 地震発 生層の設定」に示す福島県と茨城県の県境付近の断層に対する地震発生層に基づ き、断層全長にわたり断層上端深さについては3km、断層下端深さについては18km とする。

断層傾斜角については、F1断層の海上音波探査結果では西傾斜の高角な断層で あることや、2011年福島県浜通りの地震の震源インバージョン解析モデルで設定 されている断層傾斜角を参考に、全長にわたり西傾斜60度とする。

アスペリティ位置については、北部区間と南部区間に一つずつ設定し、それぞ れの区間において敷地に近い位置の断層上端に配置する。具体的には、断層長さ 方向の配置については、Manighetti et al. (2005)⁽²⁴⁾の知見等を踏まえるとア スペリティのような大きなすべりが生じる領域とすべりが生じない領域が隣接す ることは考えにくいことから、断層端部との間に断層モデル上最小の幅を有する 背景領域を設定する。また、断層幅方向の配置については、すべりに追随する表 層領域(地表から断層上端まで)は強震動を生成しにくいと考えられることか ら、その境界位置となる断層上端にアスペリティを配置する。

破壊開始点については、アスペリティ下端及び断層下端のうち、敷地への影響 の大きい位置に複数設定する。

断層パラメータの設定フローを第5.6.5図に、設定した基本震源モデルの断層パ ラメータを第5.6.4表に、断層モデルを第5.6.6図に示す。

b) 不確かさを考慮するパラメータの選定

地震動評価における不確かさとして、短周期レベル、断層傾斜角及びアスペリ ティ位置について考慮する。

短周期レベルについては、佐藤・堤(2012)⁽²⁵⁾により正断層の地震である2011 年福島県浜通りの地震の短周期レベルが、壇ほか(2001)⁽²⁶⁾の関係式とほぼ同等 であることを確認した上で、2007年新潟県中越沖地震の知見を踏まえ、強震動予 測レシピによる値の1.5倍を考慮する。

断層傾斜角については、震源モデルの北部において2011年福島県浜通りの地震 の震源再決定による余震分布形状が明瞭なトレンドを示していないため、不確か さとして震源モデル全長にわたり45度を考慮する。

アスペリティ位置については、震源モデルの北部及び南部のアスペリティを敷 地により近くなるように断層端部に設定するケースを考慮する。

破壊開始点については、基本震源モデルと同様の位置に設定する。

地震動評価において考慮する各検討ケースを第5.6.5表に、設定した各検討ケースの断層パラメータを第5.6.6表(1)から第5.6.6表(3)に、断層モデルを第5.6.7図 (1)から第5.6.7図(3)に示す。

c) 応答スペクトルに基づく手法による地震動評価

応答スペクトルに基づく手法による地震動評価は、Noda et al. (2002) に基づ き行うものとし、「5.6.1.1 検討用地震の選定(1) 地震観測記録を用いた補正係 数」に基づき、福島県と茨城県の県境付近で発生した内陸地殻内地震による補正 係数を考慮し、Noda et al. (2002) による内陸地殻内地震に対する補正について は考慮しない。

第5.6.5表に示す検討ケースを対象として、上記の手法に基づき算定した応答スペクトルを第5.6.8図(1)及び第5.6.8図(2)に示す。

d) 断層モデルを用いた手法による地震動評価 断層モデルを用いた手法による地震動評価は、経験的グリーン関数法により行 う。

要素地震の諸元を第5.6.7表に、震央位置を第5.6.9図に示す。この要素地震 は、想定する地震の震源域で発生した同じ発生様式の地震であり、震源特性、伝 播経路特性及び敷地地盤の振動特性を反映したものと考えられる。

第5.6.5表に示す各検討ケースを対象として、上記の手法に基づき算定した応答 スペクトルを第5.6.10図(1)から第5.6.10図(12)に示す。

b. F3 断層~F4 断層による地震

a) 基本震源モデルの設定

F3断層~F4断層による地震の基本震源モデルは、原則として強震動予測レシピ 及び地質調査結果に基づき設定する。

F3断層~F4断層による地震の断層面については、敷地により近いF3断層の地表 面トレース形状を踏まえて設定する。この際、入倉・三宅(2001)⁽²⁷⁾による内陸 地殻内地震のスケーリング則の適用範囲を参考に、地震モーメントM₀が

7.5×10¹⁸Nmとなるように保守的に地震の規模を嵩上げし、この地震の規模に相当 する断層面積となるように設定する。

地震のタイプについては、地質調査結果による海上音波探査からは正断層セン スのずれが認められる一方、敷地周辺は従前、圧縮応力場であり、また、第5.2.4 図(1)に示す2011年東北地方太平洋沖地震の本震前後における地震発生状況につい て、断層近傍では変化がないことを踏まえ、逆断層とする。

断層上端及び下端深さについては、「5.6.1.1 検討用地震の選定(2)a. 地震発 生層の設定」に示す福島県と茨城県の県境付近以外の断層に対する地震発生層に 基づき、断層全長にわたり断層上端深さについては5km、断層下端深さについては 18kmとする。

断層傾斜角については、F3断層及びF4断層の海上音波探査結果では西傾斜の高 角な断層であることを踏まえ、全長にわたり西傾斜60度とする。

アスペリティ位置については、地質調査結果よりF4断層部に比べてF3断層部の 方が評価区間が長く、その変位量が大きいことが確認されるため、F3断層部に設 定することとし、その中で敷地に近い位置に設定する。

破壊開始点については、アスペリティ下端及び断層下端のうち、敷地への影響 の大きい位置に複数設定する。

断層パラメータの設定フローを第5.6.11図に、設定した基本震源モデルの断層 パラメータを第5.6.8表に、断層モデルを第5.6.12図に示す。

b) 不確かさを考慮するパラメータの選定

地震動評価における不確かさとして、短周期レベル、断層傾斜角及びアスペリ ティ位置について考慮する。

短周期レベルについて、2007年新潟県中越沖地震の知見を踏まえ、強震動予測 レシピによる値の1.5倍を考慮する。

断層傾斜角については、海上音波探査結果はその範囲が浅部にとどまること や、強震動予測レシピにおける断層傾斜角の設定の流れを踏まえ、不確かさとし て震源モデル全長にわたり45度を考慮する。

アスペリティ位置については、震源として考慮する活断層としてF4断層部が認められるため、F4断層部にアスペリティが配置されるように移動させることを不確かさとして考慮する。

破壊開始点については、敷地に対して震源が近く、破壊開始点の違いによる敷 地の地震動への影響が大きいことから、各検討ケースに応じて敷地への影響の大 きい位置に複数設定する。

地震動評価において考慮する各検討ケースを第5.6.9表に、設定した各検討ケー スの断層パラメータを第5.6.10表(1)から第5.6.10表(3)に、断層モデルを第 5.6.13図(1)から第5.6.13図(3)に示す。

c) 応答スペクトルに基づく手法による地震動評価

応答スペクトルに基づく手法による地震動評価は、Noda et al. (2002) に基づ き行う。なお、補正係数の設定に必要な断層近傍の地震が敷地で観測されていな いことから補正係数を1倍と設定し、Noda et al. (2002) による内陸地殻内地震 に対する補正については考慮しない。また、敷地に対して震源が近いことから、 日本電気協会 (2016)⁽²⁸⁾を参考に震源近傍における破壊伝播効果 (NFRD効果)を 考慮する。加えて、Noda et al. (2002) の適用範囲を踏まえ、第5.6.11表に示す Noda et a*l*. (2002) 以外の距離減衰式も用いて評価する。

第5.6.9表に示す検討ケースを対象として、上記の手法に基づき算定した応答スペクトルを第5.6.14図(1)及び第5.6.14図(2)に示す。

d) 断層モデルを用いた手法による地震動評価

断層モデルを用いた手法による地震動評価は、統計的グリーン関数法により行う。

統計的グリーン関数法による地震動評価に当たっては、第5.5.3表に示す敷地の 深部地盤構造モデルを用いる。

第5.6.9表に示す各検討ケースを対象として、上記の手法に基づき算定した応答 スペクトルを第5.6.15図(1)から第5.6.15図(12)に示す。

- (2) プレート間地震
 - a. 2011年東北地方太平洋沖型地震
 - a) 基本震源モデルの設定

2011年東北地方太平洋沖地震の本震については、諸井ほか(2013)⁽²⁹⁾により強 震動予測レシピの適用性が確認されている。よって、2011年東北地方太平洋沖型 地震の基本震源モデルは、強震動予測レシピに基づき設定する。

震源位置については、長谷川ほか(2013)⁽³⁰⁾に基づけば、陸のプレートと太平 洋プレートの境界で発生する地震の破壊が、Uchida et al. (2010)⁽³¹⁾のフィリ ピン海プレートの北東端以南へ伝播する可能性は低いと考えられることから、三 陸沖中部から茨城県沖にかけての長さ500kmの断層を設定する。

SMGA位置については、入倉(2012)⁽³²⁾によると過去のM8以下の地震の震源域に 対応し、地震調査研究推進本部の領域区分に関連付けられるとされていることを 踏まえ、地震調査研究推進本部の領域区分に対応するよう5個のSMGAを設定する。 なお、茨城県沖のSMGA位置については、1896年鹿島灘の地震等、過去に規模が大 きい地震が発生している領域であり、2011年東北地方太平洋沖地震の本震の敷地 での観測記録を再現できる位置に設定する。

短周期レベルについては、茨城県沖では他の地域で発生した地震に比べて小さい傾向が見られるものの、諸井ほか(2013)で検討されている宮城県沖、福島県 沖及び茨城県沖で発生した地震の平均的な短周期レベルとする。

破壊開始点については、破壊が敷地に向かう位置となる2011年東北地方太平洋 沖地震の本震の破壊開始点とする。なお、破壊開始点の設定に当たり、茨城県沖 のSMGA位置等に複数設定して、当該破壊開始点の影響が大きいことを確認した。

断層パラメータの設定フローを第5.6.16図に、設定した基本震源モデルの断層 パラメータを第5.6.12表に、断層モデルを第5.6.17図に示す。

b) 不確かさを考慮するパラメータの選定

地震動評価における不確かさとして、SMGA位置及び短周期レベルについて考慮 する。

茨城県沖のSMGA位置については、入倉(2012)では過去のM8以下の地震の震源 域に対応するとされており、位置はある程度特定できると考えられるものの、茨 城県沖では宮城県沖等に比べ近年における規模が大きい地震の発生が少なく、 SMGA位置を確定的に設定することが難しいことから、SMGA位置を敷地に最も近づ けたケースを不確かさとして考慮する。

短周期レベルの不確かさについては、基本震源モデルにおいて茨城県沖で発生 する地震に対しては保守的な設定になっているものの、宮城県沖で発生する短周 期レベルが大きい地震と同程度になるように考慮することとし、佐藤(2010)⁽³³⁾ や片岡ほか(2006)⁽³⁴⁾等におけるプレート間地震の短周期レベルと地震モーメン トの関係を参考に、不確かさとして基本震源モデルで設定した値の1.5倍を考慮す る。

さらに、SMGA位置については、前述のとおり確定的に設定することが難しいこ とから、短周期レベルの不確かさとの重畳を考慮する。

地震動評価において考慮する各検討ケースを第5.6.13表に、設定した各検討ケ ースの断層パラメータを第5.6.14表(1)から第5.6.14表(3)に、断層モデルを第 5.6.18図(1)から第5.6.18図(3)に示す。

c) 応答スペクトルに基づく手法による地震動評価

2011年東北地方太平洋沖地震の本震では、複数のSMGAが時間的、空間的に離れ て連動したが、敷地での揺れは、特に短周期域においては敷地近傍のSMGAの影響 が支配的であった。このような複雑な震源過程から生成される強震動を、短周期 から長周期にわたり精度良く評価できる距離減衰式はないと考えられるため、応 答スペクトルに基づく手法による地震動として、「5.6.1.1 検討用地震の選定 (3) プレート間地震」に示す解放基盤波をもとに、それを包絡した応答スペクトル を用いる。 上記の手法に基づき算定した応答スペクトルを第5.6.19図(1)及び第5.6.19図 (2)に示す。

d) 断層モデルを用いた手法による地震動評価

断層モデルを用いた手法による地震動評価は、経験的グリーン関数法により行う。

要素地震の諸元を第5.6.15表に、震央位置を第5.6.20図に示す。この要素地震 は、想定する地震の震源域で発生した同じ発生様式の地震であり、震源特性、伝 播経路特性及び敷地地盤の振動特性を反映したものであると考えられる。

第5.6.13表に示す各検討ケースを対象として、上記の手法に基づき算定した応 答スペクトルを第5.6.21図(1)から第5.6.21図(12)に示す。また、基本震源モデル による地震動評価結果と、2011年東北地方太平洋沖地震の本震の解放基盤波との 比較を第5.6.22図(1)から第5.6.22図(3)に示す。

- (3) 海洋プレート内地震
 - a. 茨城県南部の地震
 - a) 基本震源モデルの設定

茨城県南部の地震の基本震源モデルは、中央防災会議(2004)以降、フィリピ ン海プレートの形状の見直しや、過去の地震を再現する断層モデルのパラメータ の推定等の知見が取り入れられている中央防災会議(2013)を最新の知見として 重視し、また、茨城県南部から房総沖にかけてのフィリピン海プレートの地震発 生メカニズムについて検討されている長谷川ほか(2013)等も参考として設定す る。

地震規模については、中央防災会議(2013)では1855年安政江戸地震を海洋プレート内地震として想定した場合の過去の震度を再現できる震源モデルの地震規模Mw7.2(応力降下量52MPa)に保守性を考慮したMw7.3(応力降下量62MPa)が提案されている。基本震源モデルの地震規模としては、上記に基づきMw7.3と設定する。

断層面の位置については、中央防災会議(2013)による「フィリピン海プレー ト内地震を想定する領域」のうち、敷地に近い位置に配置する。

断層傾斜角やずれについては、長谷川ほか(2013)による知見を踏まえ、傾斜 角90度の右横ずれ断層として設定する。

アスペリティ位置については、海洋性マントル内ではどこでも想定される可能 性があるため、敷地に近くなるように海洋性マントルの最上部に設定する。

破壊開始点については、アスペリティ下端に複数設定する。

断層パラメータの設定フローを第5.6.23図に、設定した基本震源モデルの断層 パラメータを第5.6.16表に、断層モデルを第5.6.24図に示す。

b) 不確かさを考慮するパラメータの選定

地震動評価における不確かさとして、断層傾斜角、アスペリティ位置、応力降 下量及び地震規模について考慮する。

断層傾斜角については、断層面から放出される地震波が密に重なるよう、断層

傾斜角を敷地に向けたケースを考慮する。この際、基本震源モデルと同様に右横 ずれを設定することに加え、縦ずれを想定した場合についても考慮する。

アスペリティ位置については、海洋性地殻内に想定される可能性は低いもの の、敷地に近くなるように海洋性地殻内の上端に配置したケースを考慮する。

アスペリティの応力降下量については、笹谷ほか(2006)⁽³⁵⁾のスケーリング則 に基づきパラメータ設定したケースを考慮する。

地震規模については、南海トラフで発生したフィリピン海プレート内地震である2004年紀伊半島南東沖地震の規模を参考にMw7.4を考慮する。

地震動評価において考慮する検討ケースを第5.6.17表に、設定した各検討ケースの断層パラメータを第5.6.18表(1)から第5.6.18表(4)に、断層モデルを第5.6.25図(1)から第5.6.25図(4)に示す。

c) 応答スペクトルに基づく手法による地震動評価

応答スペクトルに基づく手法による地震動評価は、Noda et al. (2002) に基づ き行うものとし、「5.6.1.1 検討用地震の選定(1) 地震観測記録を用いた補正 係数」に基づき、陸域寄りで発生した海洋プレート内地震による補正係数を考慮 する。

第5.6.17表に示す各検討ケースを対象として、上記の手法に基づき算定した応 答スペクトルを第5.6.26図(1)及び第5.6.26図(2)に示す。

d) 断層モデルを用いた手法による地震動評価

断層モデルを用いた手法による地震動評価は、統計的グリーン関数法により行う。

統計的グリーン関数法による地震動評価に当たっては、第5.5.3表に示す敷地の 深部地盤構造モデルを用いる。

第5.6.17表に示す各検討ケースを対象として、上記の手法に基づき算定した応 答スペクトルを第5.6.27図(1)から第5.6.27図(15)に示す。

5.6.2 震源を特定せず策定する地震動

敷地周辺の状況等を十分考慮した詳細な調査を実施しても、なお敷地近傍において発生 する可能性のある内陸地殻内地震の全てを事前に評価し得るとは言い切れないとの観点か ら、震源を特定せず策定する地震動を考慮する。

5.6.2.1 評価方針

震源を特定せず策定する地震動の策定に当たっては、震源と活断層とを関連付ける ことが困難な過去の内陸地殻内地震で得られた震源近傍における観測記録を収集し、 それらを基に敷地の地盤物性を加味した応答スペクトルを設定する。震源を特定せず 策定する地震動として、「全国共通に考慮すべき地震動」及び「地域性を考慮する地 震動」の2種類を検討する。 加藤ほか(2004)⁽³⁶⁾は、内陸地殻内地震を対象として、詳細な地質学的調査によっても震源位置と地震規模を予め特定できない地震(以下「震源を事前に特定できない地震」という。)による震源近傍の硬質地盤上における強震記録を用いて、震源を 事前に特定できない地震による水平成分の地震動の上限スペクトルを提案している。 この加藤ほか(2004)による「震源を事前に特定できない地震」は、「震源を特定せ ず策定する地震動」と同等の考え方に基づく知見と考えられる。

以上を踏まえ、加藤ほか(2004)による水平成分の応答スペクトルに対し、Noda et al. (2002)の方法を用いて敷地の地盤物性を考慮した水平成分及び鉛直成分の応 答スペクトルを「震源を特定せず策定する地震動」として考慮する。

加藤ほか(2004)に基づき設定した応答スペクトルを第5.6.28図(1)及び第5.6.28 図(2)に示す。

5.6.2.3 検討対象地震の選定と震源近傍の観測記録の収集

「全国共通に考慮すべき地震動」の検討対象地震の選定においては、地震規模のス ケーリング(スケーリング則が不連続となる地震規模)の観点から、「地表地震断層 が出現しない可能性がある地震」を適切に選定する。また、「地域性を考慮する地震 動」の検討対象地震の選定においては、「事前に活断層の存在が指摘されていなかっ た地域において発生し、地表付近に一部の痕跡が確認された地震」についても検討 し、必要に応じて選定する。

5.6.2.3.1 全国共通に考慮すべき地震動

震源近傍における観測記録を基に得られた「2004 年北海道留萌支庁南部の地震 において、防災科学技術研究所が運用する全国強震観測網の港町観測点における観 測記録」及び「試験研究の用に供する原子炉等の位置、構造及び設備の基準に関す る規則の解釈における標準応答スペクトル」を対象とする。標準応答スペクトルを 第5.6.29 図、そのコントロールポイントを第5.6.19 表に示す。

2004 年北海道留萌支庁南部地震の記録については、佐藤ほか(2013)⁽³⁷⁾により K-NET 港町観測点において詳細な地盤調査及び基盤地震動の推定が行われ、信頼性 の高い基盤地震動が得られていることから、これらを参考に K-NET 港町観測点の地 盤構造モデルの不確かさを考慮した基盤地震動を評価する。

5.6.2.3.2 地域性を考慮する地震動

地域性を考慮する地震動は、「事前に活断層の存在が指摘されていなかった地域 において発生し、地表付近に一部の痕跡が確認された地震」として、震源断層がほ ぼ地震発生層の厚さ全体に広がっているものの、地表地震断層としてその全容を表 すまでに至っていない地震(震源の規模が推定できない地震(Mw6.5以上))であ り、孤立した長さの短い活断層による地震に相当する。Mw6.5以上の地震である 2008 年岩手・宮城内陸地震及び 2000 年鳥取県西部地震は、事前に活断層の存在が 指摘されていなかった地域において発生し、地表付近に一部痕跡が確認された地震 である。これらの地震の震源域と敷地近傍には、地質・地質構造、変動地形、火山 フロント、地震地体構造及び応力場等について地域差があると考えられる。

2008 年岩手・宮城内陸地震の震源域と敷地近傍の比較を第5.6.20 表に示す。第 5.6.20 表に示すように、地質に類似性がやや認められるものの、震源域近傍は変 動地形等の認識が難しい地域で、東西圧縮の逆断層型が卓越する応力場であるのに 対し、敷地近傍は変動地形等が認識しやすい地域で、敷地周辺の茨城県北部では南 西-北東引張の正断層型が卓越する応力場である。また、褶曲構造の有無やカルデ ラの分布、火山フロントとの位置関係及び地震地体構造の区分について、震源域と 敷地近傍には地域差が認められる。以上のように、震源域と敷地近傍の特徴にはお おむね類似性がないことから、敷地近傍において 2008 年岩手・宮城内陸地震と同 様の地震が発生する可能性は低いと考えられるため、観測記録の収集対象外とする。

また、2000 年鳥取県西部地震の震源域と敷地近傍の比較を第 5.6.21 表に示す。 第 5.6.21 表に示すように、震源域近傍は活断層の発達過程としては未成熟な段階 であるとともに、花崗岩が分布する地域であり弾性波探査等の調査では断層の存否 を確認することは難しく活構造の認識が困難な地域で、東西圧縮の横ずれ断層型が 卓越する応力場であるのに対し、敷地近傍については前述のとおりである。また、 火山フロントとの位置関係及び地震地体構造の区分について、震源域と敷地近傍に は地域差が認められる。

以上のように、震源域と敷地近傍の特徴には類似性がないことから、敷地近傍に おいて 2000 年鳥取県西部地震と同様の地震が発生する可能性は低いと考えられる ため、観測記録の収集対象外とする。

5.6.2.4 震源を特定せず策定する地震動の設定

震源を特定せず策定する地震動として、「5.6.2.2 既往の知見」で示した加藤ほか(2004)に基づき設定した応答スペクトル、「5.6.2.3.1 全国共通に考慮すべき 地震動」で評価した2004年北海道留萌支庁南部地震の基盤地震動及び標準応答スペクトルを考慮する。

2004年北海道留萌支庁南部地震については、K-NET港町観測点と敷地の解放基盤表 面相当位置の地盤物性の相違(S波速度でK-NET港町観測点938m/sに対し、敷地は第 5.5.3表に示す地盤構造モデル(深部)において1,010m/s)による影響等を考慮して 評価した地震動の応答スペクトルを考慮する。ここで、解放基盤表面相当位置の地盤 物性の相違による影響等を考慮する際には、K-NET港町観測点と敷地の解放基盤表面 の地盤物性値を比較し、おおむね同等の地盤であることから、K-NET港町観測点の地 盤構造モデルの不確かさを考慮した基盤地震動に、保守性を考慮する。

標準応答スペクトルについては、S波速度2,200m/s以上の地震基盤相当面で設定されており、敷地においてS波速度2,200m/s以上の層が確認されるG.L.-1.293kmに設定する。

標準応答スペクトルに適合する模擬地震波は、乱数の位相を持つ正弦波の重ね合わせによって作成するものとし、振幅包絡線の経時的変化については、Noda et al.

(2002)⁽¹⁴⁾の方法に基づき、第5.6.22表に示す形状とする。標準応答スペクトルに適 合する模擬地震波の作成結果を第5.6.23表、時刻歴波形を第5.6.30図、標準応答スペ クトルに対する模擬地震波の応答スペクトル比を第5.6.31図に示す。作成した模擬地 震波を用いて一次元波動論による地盤応答解析を行い、解放基盤表面における応答ス ペクトルを算定する。

以上を踏まえた、「震源を特定せず策定する地震動」の応答スペクトルを第5.6.32 図(1)及び第5.6.32図(2)に示す。

5.6.3 基準地震動 Ss の策定

基準地震動Ssは、「5.6.1 敷地ごとに震源を特定して策定する地震動」及び「5.6.2 震源を特定せず策定する地震動」の評価に基づき、敷地の解放基盤表面における水平成分 及び鉛直成分の地震動として策定する。

- 5.6.3.1 敷地ごとに震源を特定して策定する地震動に基づく基準地震動 Ss
 - (1) 応答スペクトルに基づく手法による基準地震動 Ss

応答スペクトルに基づく手法による基準地震動Ssは、「5.6.1.2 検討用地震動の 地震動評価」における各検討用地震の応答スペクトルに基づく手法による地震動評価 結果を全て包絡するように設定した基準地震動Ss-Dとする(水平成分をSs-DH、鉛直 成分をSs-Dvとする)。

各検討用地震の応答スペクトルに基づく手法による地震動評価結果と基準地震動 Ss-Dの設計用応答スペクトルを比較したものを第5.6.33図(1)及び第5.6.33図(2)に示 す。また、基準地震動Ss-Dの設計用応答スペクトルのコントロールポイントの値を第 5.6.24表に示す。

(2) 断層モデルを用いた手法による基準地震動 Ss

断層モデルを用いた手法による基準地震動Ssは、「5.6.1.2 検討用地震動の地震 動評価」における各検討用地震の断層モデルを用いた手法による地震動評価結果と、 前節で示した基準地震動Ss-Dの設計用応答スペクトルを比較し、包絡関係を考慮して 選定する。

各検討用地震の断層モデルを用いた手法による地震動評価結果と基準地震動Ss-Dの 設計用応答スペクトルを比較したものを第5.6.34図(1)から第5.6.34図(3)に示す。第 5.6.34図(1)から第5.6.34図(3)より、包絡関係を考慮して選定した基準地震動Ss-1~ 基準地震動Ss-5の応答スペクトルを第5.6.35図(1)から第5.6.35図(3)に示す。

5.6.3.2 震源を特定せず策定する地震動に基づく基準地震動 Ss

震源を特定せず策定する地震動による基準地震動Ssは、「5.6.2.4 震源を特定せ ず策定する地震動の設定」における震源を特定せず策定する地震動の評価結果と、 「5.6.3.1 敷地ごとに震源を特定して策定する地震動に基づく基準地震動Ss」に示 す基準地震動Ssを比較し、包絡関係を考慮して選定する。

震源を特定せず策定する地震動の評価結果と基準地震動Ss-Dの設計用応答スペクト

ルを比較したものを第5.6.36図(1)及び第5.6.36図(2)に示す。第5.6.36図(1)及び第 5.6.36図(2)より、震源を特定せず策定する地震動の評価結果と前節で示した基準地 震動Ss-Dの設計用応答スペクトルを比較し、包絡関係を考慮して基準地震動Ss-6とし て選定する。

5.6.3.3 基準地震動 Ss の応答スペクトル

「5.6.3.1 敷地ごとに震源を特定して策定する地震動に基づく基準地震動Ss」及び「5.6.3.2 震源を特定せず策定する地震動に基づく基準地震動Ss」を踏まえて策定した基準地震動Ssの応答スペクトルを第5.6.37図(1)から第5.6.37図(3)に示す。

5.6.3.4 基準地震動 Ss の時刻歴波形

基準地震動Ssの時刻歴波形は、応答スペクトルに基づく手法による基準地震動Ss-D の設計用応答スペクトルに適合する模擬地震波、断層モデルを用いた手法による基準 地震動Ss-1~基準地震動Ss-5及び震源を特定せず策定する地震動による基準地震動 Ss-6の地震波とする。

基準地震動Ss-Dの設計用応答スペクトルに適合する模擬地震波は、乱数の位相を持つ正弦波の重ね合わせによって作成するものとし、振幅包絡線の経時的変化については、Noda et al. (2002)の方法に基づき、第5.6.25表に示す形状とする。

基準地震動Ss-Dの模擬地震波の作成結果を第5.6.26表に、基準地震動Ss-Dの設計用 応答スペクトルに対する模擬地震波の応答スペクトルの比を第5.6.38図に示す。

以上より、策定した基準地震動Ss-Dの時刻歴波形を第5.6.39図に、断層モデルを用 いた手法による基準地震動Ss-1~基準地震動Ss-5の時刻歴波形を第5.6.40図(1)から 第5.6.40図(5)に、震源を特定せず策定する地震動による基準地震動Ss-6の時刻歴波 形を第5.6.40図(6)に示す。また、基準地震動Ssの最大加速度値を第5.6.27表に示 す。

5.7 基準地震動 Ss の超過確率の参照

日本原子力学会(2015)⁽³⁸⁾を参考に、敷地における地震動の一様ハザードスペクトルを評価する。

震源モデルについては、特定震源モデル及び領域震源モデルを設定し、それぞれ調査結果等 に基づき設定した震源モデル(以下「調査モデル」という。)及び地震調査研究推進本部 (2012b)⁽³⁹⁾の知見を参考に設定した震源モデル(以下「推本参考モデル」という。)を考慮 する。また、地震動伝播モデルについては、2011年東北地方太平洋沖型地震については断層 モデルを用いた手法による地震動評価を、それ以外の震源については Noda et al. (2002)の 方法を用いた地震動評価を行う。作成したロジックツリーを第5.7.1 図に、これらの設定に基 づき評価した敷地における地震動の一様ハザードスペクトルと基準地震動 Ss との比較を第 5.7.2 図(1)及び第5.7.2 図(2)に示す。

第5.7.2 図(1)及び第5.7.2 図(2)によると、基準地震動 Ss-Dの年超過確率は 10⁻⁴~10⁻⁶ 程度である。また、基準地震動 Ss-1~基準地震動 Ss-6の年超過確率は基準地震動 Ss-Dを超過する

周期帯で10-5~10-6程度である。

- 5.8 参考文献
 - (1) 宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律子.日本被害地震総覧 599-2012.東 京大学出版会.2013,724p.
 - (2) 気象庁. 地震月報(カタログ編). 2017-05-31 時点. ほか
 - (3) 気象庁,消防庁. 震度に関する検討会報告書. 震度に関する検討会, 2009-03-23.
 - (4) 村松郁栄. 震度分布と地震のマグニチュードとの関係. 岐阜大学教育学部研究報告. 自 然科学. vol. 4, no. 3, 1969, pp. 168-176.
 - (5) 勝又護, 徳永規一. 震度IVの範囲と地震の規模および震度と加速度の対応. 験震時報. vol.36, no.3,4, 1971, pp.89-96.
 - (6) 松田時彦. 活断層から発生する地震の規模と周期について. 地震第2輯. vol.28, 1975, pp. 269-283.
 - (7) 中央防災会議. 首都直下地震モデル検討会「首都直下のM7クラスの地震及び相模トラフ沿いのM8クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書」.
 2013-12.
 - (8) 地震調査研究推進本部. 三陸沖から房総沖にかけての地震活動の長期評価(第二版)に ついて. 地震調査研究推進本部地震調査委員会. 2012-2-9 変更.
 - (9) 地震調査研究推進本部. 日本海溝沿いの地震活動の長期評価. 地震調査研究推進本部地 震調査委員会. 2019, 2019-2-26.
 - (10) 東京大学地震研究所・防災科学技術研究所・京都大学防災研究所. 文部科学省委託研究 首都直下地震防災・減災特別プロジェクト 総括成果報告書. 2012-3.
 - (11) 中央防災会議. 中央防災会議「首都直下地震対策専門調査会」(第12回)地震ワーキン ググループ報告書. 2004-11-17.
 - (12) 地震調査研究推進本部. 全国地震動予測地図. 地震調査研究推進本部地震調査委員会.2009-07-21.
 - (13) 地質調査総合センター編. 日本重力データベース DVD 版. 産業技術総合研究所地質調査 総合センター. 2013.
 - (14) Shizuo Noda, Kazuhiko Yashiro, Katsuya Takahashi, Masayuki Takemura, Susumu Ohno, Masanobu Tohdo, Takahide Watanabe. RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES. OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analysis, Istanbul, 16-18 October, 2002.
 - (15) 原子力安全基盤機構. 平成 15 年度 地震記録データベース SANDEL のデータ整備と地震
 発生上下限層深さの評価に関する報告書(JNES/SAE04-017). 2004-8.
 - (16) 廣瀬一聖,伊藤潔.広角反射法および屈折法解析による近畿地方の地殻構造の推定.京
 都大学防災研究所年報. No. 49B, 2006, pp. 307-321.
 - (17) 三浦誠一,小平秀一,仲西理子,鶴哲郎,高橋成実,金田義行.エアガンー海底地震計 データによる日本海溝・福島沖前弧域の地震波速度構造. JAMSTEC 深海研究. no. 16,

2000, pp. 87-100.

- (18) 青柳恭平,上田圭一.2011年東北地方太平洋沖地震による阿武隈南部の正断層型誘発地 震の特徴-臨時余震観測に基づく震源分布と速度構造-.電力中央研究所報告 N11048. 2012.
- (19) 芝良昭, 野口科子. 広帯域地震動を規定する震源パラメータの統計的特性-震源インバ ージョン解析に基づく検討-. 電力中央研究所報告 N11054. 2012.
- (20) 引間和人. 2011 年 4 月 11 日福島県浜通りの地震(Mj7.0)の震源過程-強震波形と再決 定震源による 2 枚の断層面の推定-. 地震第 2 輯. vol. 64, 2012, pp. 243-256.
- (21) Miho Tanaka, Kimiyuki Asano, Tomotaka Iwata, Hisahiko Kubo. Source rupture process of the 2011 Fukushima-ken Hamadori earthquake: how did the two subparallel faults rupture?, Earth, Planets and Space 2014, 66:101, 2014.
- (22) Aitaro Kato, Toshihiro Igarashi, Kazushige Obara, Shinichi Sakai, Tetsuya Takeda, Atsushi Saiga, Takashi Iidaka, Takaya Iwasaki, Naoshi Hirata, Kazuhiko Goto, Hiroki Miyamachi, Takeshi Matsushima, Atsuki Kubo, Hiroshi Katao, Yoshiko Yamanaka, Toshiko Terakawa, Haruhisa Nakamichi, Takashi Okuda, Shinichiro Horikawa, Noriko Tsumura, Norihito Umino, Tomomi Okada, Masahiro Kosuga, Hiroaki Takahashi, Takuji Yamada. Imaging the source regions of normal faulting sequences induced by the 2011 M9.0 Tohoku-Oki earthquake, GEOPHYSICAL RESEARCH LETTERS, Vol. 40, 1-6. 2013.
- (23) 地震調査研究推進本部. 震源断層を特定した地震の強震動予測手法(「レシピ」). 地 震調査研究推進本部地震調査委員会.2017.
- (24) Isabelle Manighetti, Charles Sammis, Geoffrey Charles Plume King, Michel Campillo. Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 110, B05302. 2005.
- (25) 佐藤智美, 堤英明. 2011 年福島県浜通り付近の正断層の地震の短周期レベルと伝播経路・地盤増幅特性. 日本地震工学会論文集. vol. 12, no. 7, 2012.
- (26) 壇一男,渡辺基史,佐藤俊明,石井透.断層の非一様すべり破壊モデルから算定される 短周期レベルと半経験的波形合成法による強震動予測のための震源断層のモデル化.日本建築学会構造系論文集.vol.66, no.545, 2001, pp.51-62.
- (27) 入倉孝次郎, 三宅弘恵. シナリオ地震の強震動予測. 地学雑誌. vol.110(6), 2001, pp. 849-875.
- (28) 日本電気協会. 原子力発電所耐震設計技術指針 JEAG4601-2015. 原子力規格委員会.2016, 285p.
- (29) 諸井孝文,広谷浄,石川和也,水谷浩之,引間和人,川里健,生玉真也,釜田正毅.標準的な強震動レシピに基づく東北地方太平洋沖巨大地震の強震動の再現.日本地震工学会第10回年次大会梗概集.2013, pp.381-382.
- (30) 長谷川昭,中島淳一,内田直希,海野徳仁.東京直下に沈み込む2枚のプレートと首都
 圏下の特異な地震活動.地学雑誌.vol.122, no.3, 2013, pp. 398-417.

- (31) Naoki Uchida, Toru Matsuzawa, Junichi Nakajima, Akira Hasegawa. Subduction of a wedge - shaped Philippine Sea plate beneath Kanto, central Japan, estimated from converted waves and small repeating earthquakes. JOURNAL OF GEOPHYSICAL RESEARCH. vol.115, 2010, B07309.
- (32) 入倉孝次郎. 海溝型巨大地震の強震動予測のための震源モデルの構築. 第40回地盤震動 シンポジウム. 2012.
- (33) 佐藤智美. 逆断層と横ずれ断層の違いを考慮した日本の地殻内地震の短周期レベルのス ケーリング則. 日本建築学会構造系論文集. vol. 75, no. 651, 2010, pp. 923-932.
- (34) 片岡正次郎,佐藤智美,松本俊輔,日下部毅明.短周期レベルをパラメータとした地震 動強さの距離減衰式.土木工学会論文集A. vol. 62, No. 4, 2006, pp. 740-757.
- (35) 笹谷努, 森川信之, 前田宜浩. スラブ内地震の震源特性. 北海道大学地球物理学研究報告. no. 69, 2006-3, pp. 123-134.
- (36) 加藤研一,宮腰勝義,武村雅之,井上大榮,上田圭一,壇一男.震源を事前に特定できない内陸地殻内地震による地震動レベルー地質学的調査による地震の分類と強震観測記録に基づく上限レベルの検討-.日本地震工学会論文集.vol.4, no.4, 2004, pp.46-86.
- (37) 佐藤浩章,芝良昭,東貞成,功刀卓,前田宜浩,藤原広行.物理探査・室内試験に基づく2004年留萌支庁南部の地震による K-NET 港町観測点(HKD020)の基盤地震動とサイト 特性評価.電力中央研究所報告.2013.
- (38) 日本原子力学会. 原子力発電所に対する地震を起因とした確率論的リスク評価に関する 実施基準:2015,日本原子力学会標準,2015.
- (39) 地震調査研究推進本部. 今後の地震動ハザード評価に関する検討~2011年・2012年にお ける検討結果~. 地震調査研究推進本部地震調査委員会. 2012.
- (40) Ludwig, W. J., Nafe, J.E., Drake, C.L. Seismic Refraction in the Sea. Wiley-Interscience. vol. 4, part. 1, 1970, pp. 53-84.
- (41) Kennett, B.L.N., Engdahl, E.R. Traveltimes for global earthquake location and phase identification. Geophysical Journal International. vol. 105, 1991, pp. 429-465.
- (42) 佐藤智美,川瀬博,佐藤俊明. 表層地盤の影響を取り除いた工学的基盤波の統計的スペ クトル特性-仙台地域のボアホールで観測された多数の中小地震記録を用いた解析-. 日本建築学会構造系論文集. vol. 59, No. 462, 1994, pp. 79-89.
- (43) Masayoshi Yoshimura, Seishi Fujii, Kenji Tanaka, Ken Morita. On the relationship between P and S-wave velocities in soft rock. SEG Expanded Abstracts 1, 1982, p. 143.
- (44) Yoshihiro Fujii, Mitsuhiro Matsu'ura. Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication. Pure and Applied Geophysics. vol.157, 2000, pp.2283-2302.
- (45) Robert J. Geller. Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America. vol.66, 1976,

pp. 1501-1523.

- (46) Kanno T., A. Narita, N. Morikawa, H. Fujiwara, Y. Fukushima. A New Attenuation Relation for Strong Ground Motion in Japan Based on Recorded Data. Bulletin of the Seismological Society of America. vol. 96, no. 3, 2006, pp. 879-897.
- (47) Zhao, J. X., J. Zhang, A. Asano, Y. Ohno, T. Oouchi, T. Takahashi, H. Ogawa, K. Irikura, H. K. Thio, P. G. Somerville, Y. Fukushima. Attenuation Relations of Strong Ground Motion in Japan Using Site Classification Based on Predominant Period. Bulletin of the Seismological Society of America. vol.96, no.3, 2006, pp. 898-913.
- (48) 内山泰生, 翠川三郎. 震源深さの影響を考慮した工学的基盤における応答スペクトルの 距離減衰式. 日本建築学会構造系論文集. vo. 71, no. 606, 2006, pp. 81-88.
- (49) Norman A. Abrahamson, Walter J. Silva, Ronnie Kamai. Summary of the ASK14 Ground Motion Relation for Active Crustal Regions. Earthquake Sectra. vol. 30, no. 3, 2014, pp. 1025-1055.
- (50) David M. Boore, Jonathan P. Stewart, Emel Seyhan, Gail M. Atkinson. NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes. Earthquake Spectra. vol. 30, no. 3, 2014, pp. 1057-1085.
- (51) Kenneth W. Campbell, Yousef Bozorgnia. NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra. vol. 30, no. 3, 2014, pp. 1087-1115.
- (52) Brian S.-J. Chiou, Robert R. Youngs. Update of the Chiou and Youngs NGA Model for the Average Horizontal Component of Peak Ground Motion and Response Spectra. Earthquake Spectra. vol. 30, no. 3, 2014, pp. 1117-1153.
- (53) I. M. Idriss. An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra. vol. 30, no. 3, 2014, pp. 1155-1177.
- (54) 壇一男,畑奈緒未,武藤尊彦,宮腰淳一,神田順.シナリオ地震の生起確率を考慮した 基準地震動策定に関する研究(その3)宮城県沖で発生するプレート境界大地震の断層破 壊シナリオとそれに基づく強震動の計算.日本建築学会大会(近畿)学術講演梗概集.B-1,構造 I, 2005, pp. 97-98.
- (55) 佐藤良輔編. 日本の地震断層パラメータ ハンドブック. 鹿島出版会, 1989.
- (56) Thomas C. Hanks, Hiroo Kanamori. A moment magnitude scale. JOURNAL OF GEOPHYSICAL RESEARCH. vol. 84, B5, 1979, pp. 2348-2350.
- (57) 地震調査研究推進本部. 宮城県沖地震を想定した強震動評価手法について(中間報告) (説明文の訂正). 地震調査研究推進本部地震調査委員会.2002.
- (58) 地震調査研究推進本部. 宮城県沖地震を想定した強震動評価(一部修正版)について (平成17年12月14日公表). 地震調査研究推進本部地震調査委員会.2005.
- (59) 佐藤智美. 中小地震の応力降下量の断層タイプ・震源深さ依存性及び地域性に関する研究. 土木学会地震工学論文集. vol.27, no.75, 2003.

- (60) 田力正好,池田安隆,野原壯.河成段丘の高度分布から推定された,岩手・宮城内陸地 震の震源断層.地震第2輯.vol.62, no.1, 2009, pp.1-11.
- (61) 防災科学技術研究所. ひずみ集中帯の重点的調査観測・研究 総括成果報告書. 2013-5.
- (62) 岡田篤正.山陰地方の活断層の諸特徴.活断層研究.vol.22(松田時彦先生古稀記念号), 2002, pp.17-32.
- (63) 西村卓也. 山陰地方の GNSS データに認められるひずみ集中帯. 日本地球惑星科学連合
 2014 年大会. SSS31-06. 2014.
- (64) Paul Somerville, Kojiro Irikura, Robert Graves, Sumio Sawada, David Wald, Norman Abrahamson, Yoshinori Iwasaki, Takao Kagawa, Nancy Smith, Akira Kowada. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters. vol. 70, 1999, pp. 59-80.
- (65) 岩田知孝,浅野公之.強震動予測のためのスラブ内地震の特性化震源モデルの構築.北
 海道大学地球物理学研究報告.vol.73,2010, pp.129-135.

年	н	н	震央	位置	深さ	マグニ	震央距離	地名	
+	Л	Ч	北緯	東経	(km)	チュード	(km)	(地震名)	
818	_	—	$36.0{\sim}37.0^\circ$	$139.0 \sim 140.0^{\circ}$	_	≧7.5	98	関東諸国	
841	_	_	35.1°	138.9°	_	≒7.0	197	伊豆	
878	11	1	35.5°	139.3°	_	7.4	141	関東諸国	
1257	10	9	35.2°	139.5°	_	7.0~7.5	151	関東南部	
1360	-	_	35.2°	140.0°	-	_	128	上総	
1433	11	6	34.9°	139.5°	_	≧7.0	178	相模	
1433	11	6	37.7°	139.8°	_	6.7	173	会津	
1611	9	27	37.6°	139.8°	_	≒6.9	163	会津	
1615	6	26	35.7°	139.7°	_	$6 \frac{1}{4} \sim 6 \frac{3}{4}$	99	江戸	
1630	8	2	$35~3/4^{\circ}$	139 3/4°	-	6 1/4	92	江戸	
1633	3	1	35.2°	139.2°	_	7.0±1/4	170	相模·駿河·伊豆	
1635	3	12	$35~3/4^\circ$	139 3/4°	_	≒6.0	92	江戸	
1636	12	3	37.0°	138.7°	_	≒5.0~5.5	185	越後中魚沼郡	
1646	6	9	38.1°	140.65°	_	6.5~6.7	204	陸前	
1648	6	13	35.2°	139.2°	_	≒7.0	170	相模	
1649	7	30	35.8°	139.5°	-	$7.0\pm 1/4$	108	武蔵・下野	
1649	9	1	35.5°	139.7°	Ι	6.4	114	江戸・川崎	
1659	4	21	37.1°	139.8°	_	6 3/4~7.0	115	岩代·下野	
1670	6	22	37.75°	139.15°	_	≒6 3/4	207	越後中・南蒲原郡	
1677	11	4	35.5°	142.0°	-	≒8.0	156	磐城・常陸・安房・上総・下総	
1683	6	17	36.7°	139.6°	_	6.0~6.5	98	日光	
1683	6	18	36.75°	139.65°	-	6.5~7.0	97	日光	
1683	10	20	36.9°	139.7°	_	$7.0\pm 1/4$	104	日光	
1697	11	25	35.4°	139.6°	_	≑6.5	128	相模・武蔵	
1703	12	31	34.7°	139.8°	- 7.9~8.2 186 江戸・		江戸・関東諸国(元禄地震)		
1706	10	21	35.6°	139.8°	_	5 3/4	100	江戸	

第5.2.1表(1) 敷地周辺の主な被害地震

6	-	_	震央	位置	深さ	マグニ	震央距離	地名	
年	月	Ħ	北緯	東経	(km)	チュード	(km)	(地震名)	
1710	9	15	37.0°	141.5°	- 6.5±1/2 118 磐城		磐城		
1725	5	29	36.25°	139.7°	Ι	≒6.0	76	日光	
1731	10	7	38.0°	140.6°	Ι	≒6.5	193	岩代	
1738	1	3	37.0°	138.7°	Ι	≒5 1/2	185	中魚沼郡	
1755	4	21	36.75°	139.6°	Ι		101	日光	
1756	2	20	35.7°	140.9°	Ι	5.5~6.0	70	銚子	
1767	10	22	35.7°	139.8°	Ι	≒6.0	92	江戸	
1768	7	19	35.3°	139.05°	I	≒5.0	172	箱根	
1782	8	23	35.4°	139.1°	I	≒7.0	162	相模・武蔵・甲斐	
1786	3	23	35.2°	139.1°	_	5~5 1/2	176	箱根	
1791	1	1	35.8°	139.6°	I	6.0~6.5	100	川越・蕨	
1801	5	27	35.3°	140.1°	Ι	6.5	114	上総	
1812	12	7	35.45°	139.65°	39.65° — 6 1/4±1/4 121 武膚		武蔵・相模東部		
1817	12	12	35.20°	139.05°	139.05° — ≒6.0 180 ¥		箱根		
1821	12	13	37.45°	139.6°	Ι	5.5~6.0	157	岩代	
1828	12	18	37.6°	138.9°	_	6.9	209	越後	
1831	3	26	35.65°	139 $3/4^{\circ}$	_	≒5.5	99	江戸	
1843	3	9	35.35°	139.1°	_	$6.5 \pm 1/4$	165	御殿場·足柄	
1853	3	11	35.3°	139.15°	_	6.7 ± 0.1	165	小田原付近	
1855	11	11	35.65°	139.8°	_	7.0~7.1	96	江戸および付近(江戸地震)	
1856	11	4	35.7°	139.5°	- 6.0~6.5 113 江戸		江戸・立川・所沢		
1859	1	11	35.9°	139.7°	- ≒6.0 86 岩枝		岩槻		
1870	5	13	35.25°	139.1°	_	6.0~6.5	172	小田原	
1880	2	22	35.4°	139.75°	-	5.5~6.0	120	横浜	
1882	9	29	35° 07′	139°05′	184 熱海休		熱海付近		
1884	10	15	35.7°	139.75°	_	_	95	東京付近	

第5.2.1表(2) 敷地周辺の主な被害地震

		<u> </u>	電山	 占 署	্যা ১		一一一 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	Life 27
年	月	日		東経	(km)	マクニ チュード	展兴距離 (km)	地名 (地震名)
1886	7	23	37.05°	138.5°	- 5.3 203 信越国境		信越国境	
1887	1	15	35.5°	139.25°		6.2	145	相模·武蔵南東部
1887	7	22	37.5°	138.9°	—	5.7	201	新潟県古志郡
1888	4	29	36.6°	140.0°	_	6.0	62	栃木県
1889	2	18	35.5°	139.7°	_	6.0	114	東京湾周辺
1891	12	24	35.4°	138.9°	_	6.5	177	山中湖付近
1892	6	3	35.7°	139.9°	_	6.2	85	東京湾北部
1894	6	20	35.7°	139.8°	—	7.0	92	東京湾北部
1894	10	7	35.6°	139.8°	—	6.7	100	東京湾北部
1895	1	18	36.1°	140.4°	—	7.2	22	霞ヶ浦付近
1896	1	9	36 1/2°	141°	—	7.3	48	鹿島灘
1896	8	1	37 1/2°	141 1/2°	—	6.5	162	福島県沖
1897	1	17	36.2°	139.9°	—	5.6	59	利根川中流域
1897	10	2	38.0°	141.7°	—	6.6	218	仙台沖
1898	2	13	36.2°	139.8°	—	5.6	68	茨城県南西部
1898	5	26	37.0°	138.9°	_	6.1	169	新潟県六日町付近
1899	4	15	36.3°	141.0°	_	5.8	41	茨城県沖
1902	3	25	35.9°	140.5°	—	5.6	40	千葉県佐原町付近
1902	5	25	35.6°	139.0°	_	5.4	158	甲斐東部
1904	5	8	37.1°	138.9°	_	6.1	174	新潟県六日町付近
1905	6	7	34.8°	139.3°		5.8	198	大島近海
1906	2	23	34.8°	139.8°	—	6.3	176	安房沖
1906	2	24	35.45°	139.75°	_	6.4	115	東京湾
1908	12	28	35.6°	138.65°	_	5.8	186	山梨県中部
1909	7	3	35.6°	139.8°	- 6.1 100 東京湾西		東京湾西部	
1910	9	26	36.8°	141.5°	- 5.9 104 常陸洋		常陸沖	

第5.2.1表(3) 敷地周辺の主な被害地震

在	日	Н	震央	位置	深さ	マグニ	震央距離	地名
	71	ц	北緯	東経	(km)	チュード	(km)	(地震名)
1912	7	16	36.4°	138.55°	-	5.7	180	浅間山
1913	12	15	35.5°	140.0°	_	6.0	98	東京湾
1915	6	20	35.5°	139.0°	_	5.9	163	山梨県南東部
1915	11	16	35.4°	140.3°	Ι	6.0	98	房総南部
1916	2	22	36.5°	138.5°	-	6.2	186	浅間山麓
1917	1	31	35.2°	139.0°	-	4 1/2	183	箱根地方
1918	6	26	35.4°	139.1°	Ι	6.3	162	山梨県上野原付近
1920	12	27	35.23°	139.05°	_	5.7	177	箱根山
1921	12	8	36.0°	140.2°	Ι	7.0	43	茨城県龍ヶ崎付近
1922	1	23	37.5°	141.5°	-	6.5	162	磐城沖
1922	4	26	35.2°	139.75°	_	6.8	138	浦賀水道
1922	5	9	36.0°	140.0°	- 6.1 57 茨城県名		茨城県谷田部付近	
1923	1	14	36° 04.78′	140° 03.21′	40° 03.21′ 87 6.0 49		49	水海道付近
1923	9	1	35° 19.87′	139° 08.14′	14′ 23 7.9 164 関東西		関東南部(関東大地震)	
1923	9	1	35° 14.01′	138° 46.13′	0	6.6	197	山梨県東部
1923	9	2	34° 41.31′	140° 02.69'	14	7.3	180	千葉県勝浦沖
1924	1	15	35° 20.44′	139° 03.30′	0	7.3	169	丹沢山塊
1926	8	3	35° 35.41′	139° 43.89′	57	6.3	105	東京市南東部
1927	10	27	37° 30.00′	138° 50.97′	0	5.2	205	新潟県中部(関原地震)
1928	5	21	35° 40.16′	140° 03.98′	75	6.2	79	千葉付近
1929	7	27	35° 30.87′	139° 05.01′	37	6.3	156	丹沢山付近
1930	3	22	35° 02.39′	139° 05.81′	10 5.9 1		189	伊東沖(伊東群発地震)
1930	6	1	36° 25.57′	140° 32.22′	54.21	6.5	18	那珂川下流域
1930	11	26	35° 02.58'	138° 58.42′	0.59	7.3	196	伊豆北部(北伊豆地震)
1931	9	21	36° 09.50'	139° 14.85′	3.03 6.9 118 均		埼玉県中部(西埼玉地震)	
1933	10	4	37° 14.35′	138° 57.55′	0	6.1	179	新潟県小千谷

第5.2.1表(4) 敷地周辺の主な被害地震

F	п		震央	位置	深さ	マグニ	震央距離	地名
年	月	H	北緯	東経	(km)	チュード	(km)	(地震名)
1936	11	2	37°22.35′	$140^\circ \hspace{0.1 cm} 00.92'$	1	4.1	132	会津若松市付近
1938	5	23	36° 34.43′	141° 19.44′	0	7.0	78	塩屋崎沖
1938	9	22	36° 26.61′	141° 03.49′	48	6.5	50	鹿島灘
1938	11	5	36° 55.54′	141° 55.12′	43	7.5	143	福島県東方沖(福島県東方沖 地震)
1942	2	21	37° 42.63′	141° 50.75′	42	6.5	198	福島県沖
1943	8	12	37° 20.16′	139° 52.48′	26	6.2	134	福島県田島付近(田島地震)
1949	12	26	36° 42.31′	139° 41.76′	1.35	6.2	91	今市地方(今市地震)
1949	12	26	36° 43.11′	139° 46.99′	8	6.4	85	今市地方(今市地震)
1950	9	10	35° 17.71′	140° 32.98′	56	6.3	107	九十九里浜
1951	1	9	35° 27.04′	$140^\circ \hspace{0.1cm} 04.24'$	64	6.1	100	千葉県中部
1956	2	14	35° 42.24′	139° 56.68′	54.41	5.9	82	東京湾北岸
1956	9	30	37° 58.74′	$140^{\circ} \ 36.62'$	11.02	6.0	191	宮城県南部
1956	9	30	35° 37.80′	140° 11.40′	81	6.3	77	千葉県中部
1961	2	2	37° 26.9′	138° 50.1′	0	5.2	202	長岡付近
1961	7	22	34° 51.8′	139° 19.3′	0	4.6	191	伊豆大島近海
1968	7	1	36°02.75′	139° 23.88′	65	6.1	106	埼玉県中部
1972	1	14	34° 46.09′	139° $19.12'$	0	3.3	200	大島近海
1974	8	4	36° 04.35'	139° 53.63'	53	5.8	63	茨城県南西部
1975	8	15	37° 02.75′	141° 10.04'	54	5.5	103	福島県沿岸
1976	6	16	35° 30.91′	138° 59.35′	26.02	5.5	163	山梨県東部
1977	10	5	36° 08′	139°52′	60	5.5	63	茨城県南西部
1978	12	3	34° $53'$	139°11′	20	5.5	197	大島近海
1979	4	25	37° 22′	139° 29′	0	4.4	155	福島県西部
1979	5	5	35° 48′	139° 11′	20	4.7	133	秩父市付近
1980	6	29	34° 55′	139° 14′	10	6.7	191	伊豆半島中部沿岸
1980	9	24	35° 58′	139° 48′	80	5.4	75	埼玉県東部

第5.2.1表(5) 敷地周辺の主な被害地震

-		_	震央	震央位置		マグニ	震央距離	地名
牛	月	Ħ	北緯	東経	(km)	チュード	(km)	(地震名)
1980	9	25	35° 31′	140° 13′	80	6.0	88	千葉県中部
1982	8	12	34° 53′	139° 34′	30	5.7	177	伊豆大島近海
1983	2	27	35° 56.4′	140° 09.1′	72	6.0	50	茨城県南部
1983	8	8	35° 31.3′	139° 01.3′	22	6.0	160	神奈川・山梨県境
1984	2	14	35° 35.3′	139°06.2′	25	5.4	150	神奈川・山梨県境
1984	12	17	35° 36.0′	140° 03.3′	78	4.9	86	東京湾
1986	8	24	36° 19.4 $^\prime$	138° $19.4'$	3.7	4.9	200	長野県東部
1987	2	6	36° 57.9′	141° 53.6′	35	6.7	143	福島県沖
1987	4	7	37° 18.2′	141° 51.8′	44	6.6	165	福島県沖
1987	4	23	37° 05.5′	$141^\circ~37.4'$	46.8	6.5	133	福島県沖
1987	6	16	37° 30.5′	140° $03.4'$	7.1	4.5	145	会津若松付近
1987	9	14	36° 59.5′	138° 29.0′	7.1	4.8	202	長野県北部
1987	12	17	35° 22.5′	140° 29.6′	57.9	6.7	98	千葉県東方沖
1988	3	18	35° 39.9′	139° 38.6′	96.1	5.8	105	東京都東部
1988	8	12	35° 05.9′	139° $51.8'$	69.4	5.3	143	千葉県南部
1988	9	5	35° 30.0′	138° 59.0′	29.6	5.6	165	山梨県東部
1989	2	19	36° $01.3'$	139° 54.3′	55.3	5.6	64	茨城県南西部
1989	3	6	35° $41.8'$	140° $42.6'$	55.7	6.0	64	千葉県北部
1989	7	9	34° 59.7′	139°06.5′	3.4	5.5	192	伊豆半島東方沖
1989	10	14	34° $49.6'$	139° 30.0′	21.2	5.7	185	伊豆大島近海
1990	5	3	36° 26.2′	140° 36.6′	58.0	5.4	20	鹿島灘
1992	2	2	35° 13.8′	139° $47.3'$	92.3	5.7	133	東京湾南部
1992	5	11	36° 32.0′	140° 32.2′	56.2	5.6	30	茨城県中部
1992	12	27	36° 58.6′	138° 34.8′	10	4.5	193	新潟県南部
1993	5	21	36° 02.7′	139° 53.8′	60.8	5.4	63	茨城県南西部
1994	10	25	35° 10.9′	138° 59.0′	3.9	4.9	185	箱根山

第5.2.1表(6) 敷地周辺の主な被害地震

<i>F</i>	п		震央	位置	深さ	マグニ	震央距離	地名
牛	月	Ħ	北緯	東経	(km)	チュード	(km)	(地震名)
1994	12	18	37° 17.7'	139° 53.5′	6.3	5.5	129	福島県西部
1995	1	7	36° 18.10′	$139^{\circ}\ 58.63'$	71.49	5.4	52	茨城県南西部
1995	4	1	37° 53.47′	139° 14.88′	16.16	5.6	215	新潟県北東部
1995	12	22	38° 12.21′	140° 23.05′	11.05	4.6	216	蔵王付近
1996	2	17	37° 18.57′	142° 32.86'	58	6.8	213	福島県沖
1996	3	6	35°28.55′	138° 56.86′	19.59	5.5	169	山梨県東部
1996	9	11	35° 38.33′	141° 13.01′	51.99	6.4	91	銚子沖
1996	12	21	36°05.77′	139°51.65′	53.11	5.6	65	茨城県南部
1997	3	4	34° 57.34′	139° 10.18′	2.64	5.9	191	伊豆半島東方沖
1998	2	21	37° 16.22′	138° $47.74'$	19.12	5.2	193	中越地方
1999	3	26	36° 27.04′	140° 36.93′	59.04	5.0	22	水戸付近
1999	9	13	35° 35.86′	140° $09.59'$	75.81	5.1	81	千葉市付近
2000	4	26	37° 34.80′	$140^{\circ} \ 00.73'$	12.57	4.5	154	会津若松·喜多方付近
2000	6	3	35° 41.39′	140° $44.79'$	48.06	6.1	66	千葉県北東部
2000	7	21	36° 31.76′	141° 07.12′	49.37	6.4	59	茨城県沖
2001	1	4	36° 57.39′	$138^{\circ} \ 46.12'$	11.23	5.3	177	中越地方
2002	2	12	36° 35.38′	141° 04.96′	47.79	5.7	60	茨城県沖
2002	6	14	36° 12.98'	$139^{\circ}\ 58.63'$	56.99	5.1	52	茨城県南部
2003	5	12	35° 52.13′	140° $05.14'$	46.87	5.3	60	茨城県南部
2003	9	20	35° 13.13′	140° 18.02′	69.96	5.8	118	千葉県南部
2003	10	15	35° 36.82′	140° 02.99'	73.90	5.1	85	千葉県北西部
2003	11	15	36°25.95′	141° 09.91′	48.40	5.8	58	茨城県沖
2004	4	4	36° 23.41′	141° 09.24′	48.99	5.8	56	茨城沖
2004	7	17	34° 50.29′	140° 21.36′	68.68	5.5	159	房総半島南東沖
2004	10	6	35° 59.33′	140° 05.39'	65.97	5.7	51	茨城県南部
2004	10	23	37° 17.55′	138° 52.03′	13.08	6.8	189	中越地方(平成16年(2004年) 新潟県中越地震)

第5.2.1表(7) 敷地周辺の主な被害地震

F			震央	位置	深さ	マグニ	震央距離	地名
平	月	Ħ	北緯	東経	(km)	チュード	(km)	(地震名)
2005	1	18	37° 22.24′	138° 59.81'	7.62	4.7	185	中越地方
2005	2	16	36° $02.31'$	139° $53.33'$	46.15	5.3	64	茨城県南部
2005	4	11	35° 43.61′	140° 37.27′	51.51	6.1	60	千葉県北東部
2005	6	20	35° 44.03′	140° 41.68′	50.65	5.6	60	千葉県北東部
2005	6	20	37° 13.76′	138° $35.44'$	14.51	5.0	205	中越地方
2005	7	23	35° 34.90′	140° 08.31′	73.08	6.0	84	千葉県北西部
2005	7	28	36° 07.57′	139° 50.78′	51.12	5.0	65	茨城県南部
2005	8	7	35° 33.57′	140° 06.89'	73.28	4.7	87	千葉県北西部
2005	8	21	37° 17.90′	138° 42.71′	16.73	5.0	201	中越地方
2005	10	16	36° 02.36′	139° 56.25′	47.12	5.1	60	茨城県南部
2005	10	19	36° 22.90′	141° 02.59'	48.32	6.3	46	茨城県沖
2006	4	21	34° 56.49′	139° 11.75′	7.11	5.8	191	伊豆半島東方沖
2007	8	16	35° 26.62′	140° 31.83′	30.77	5.3	91	九十九里浜付近
2007	10	1	35° 13.77′	139° 06.60′	12.94	4.9	173	神奈川県西部
2008	3	8	36° 27.15′	140° 36.70'	57.04	5.2	22	茨城県北部
2008	5	8	36° 13.69′	141° 36.46'	50.57	7.0	95	茨城県沖
2008	7	5	36° 38.56′	140° 57.12'	49.69	5.2	56	茨城県沖
2009	5	12	37° 04.32′	138° 31.99′	12.12	4.8	202	上越地方
2009	10	12	37° 25.93′	139° 41.80′	3.89	4.9	151	会津地方
2009	12	17	34° 57.53′	139° 08.19′	4.00	5.0	193	伊豆半島東方沖
2010	3	13	37° 36.85′	141° 28.30′	77.70	5.5	171	福島県東方沖
2010	3	14	37° 43.45′	141° 49.08′	39.75	6.7	198	福島県沖
2010	5	1	37° 33.55′	139° 11.47'	9.26	4.9	188	中越地方
2010	6	13	37° 23.76′	141° 47.74′	40.30	6.2	168	福島県沖
2010	9	29	37° 17.10′	140° 01.53′	7.62	5.7	123	福島県中通り
2011	3	11	38° 06.21′	142° 51.66′	23.74	9.0	290	東北沖 平成23年(2011年)東北 地方太平洋沖地震 東日本大震災

第5.2.1表(8) 敷地周辺の主な被害地震

左			震央位置		深さ	マグニ	震央距離	地名
平	月	Ħ	北緯	東経	(km)	チュード	(km)	(地震名)
2011	3	11	36° 07.25′	141° 15.15′	42.70	7.6	65	茨城県沖
2011	3	12	36° 59.16′	138° 35.87′	8.38	6.7	192	長野県北部
2011	3	15	35° 18.57′	138° $42.87'$	14.31	6.4	197	静岡県東部
2011	4	11	$36^{\circ}~56.74'$	$140^{\circ} \ 40.36'$	6.42	7.0	77	福島県浜通り
2011	4	12	37° 03.15′	140° 38.61′	15.08	6.4	88	福島県東部
2011	4	16	36° 20.45′	$139^{\circ}\ 56.73'$	78.80	5.9	55	茨城県南部
2011	4	17	37° 01.37′	138° $41.32'$	7.97	4.9	187	中越地方
2011	6	2	37° 01.05′	$138^\circ \hspace{0.1cm} 42.30^\prime$	5.68	4.7	185	中越地方
2011	7	31	36° 54.19′	141° 13.28′	57.31	6.5	93	福島県沖
2011	8	19	37° $38.94'$	$141^\circ \hspace{0.1cm} 47.80^{\prime}$	51.15	6.5	190	福島県沖
2011	11	20	36° $42.64'$	140° 35.29′	8.99	5.3	50	茨城県北部
2012	1	28	35° 29.35′	138° 58.62'	18.16	5.4	166	富士五湖地方
2012	3	14	35° 44.86′	$140^\circ \hspace{0.1in} 55.92'$	15.08	6.1	66	千葉県東方沖
2013	9	20	37° 03.08′	140° $41.72'$	16.69	5.9	89	福島県浜通り
2014	9	16	36° 05.62′	139° 51.84′	46.51	5.6	64	茨城県南部
2015	5	25	36° 03.26′	139° 38.32′	55.71	5.5	85	埼玉県北部
2015	9	12	35° 33.27′	139° 49.75′	56.64	5.2	102	東京湾

第5.2.1表(9) 敷地周辺の主な被害地震

第5.4.1表 気象庁震度階級関連解説表(2009)(抜粋)

▶ 木造建物(住宅)の状況

震度	木造建物(住宅)						
階級	耐震性が高い	耐震性が低い					
5弱	_	壁などに軽微なひび割れ・亀裂がみられることがある。					
5強	—	壁などにひび割れ・亀裂がみられることがある。					
6弱	壁などに軽微なひび割れ・亀裂がみられることがある。	壁などのひび割れ・亀裂が多くなる。 壁などに大きなひび割れ・亀裂が入ることがある。 瓦が落下したり、建物が傾いたりすることがある。倒れるもの もある。					
6強	壁などにひび割れ・亀裂がみられることがある。	壁などに大きなひび割れ・亀裂が入るものが多くなる。 傾くものや、倒れるものが多くなる。					
7	壁などのひび割れ・亀裂が多くなる。 まれに傾くことがある。	傾くものや、倒れるものがさらに多くなる。					

(注1) 木造建物(住宅)の耐震性により2つに区分けした。耐震性は、建築年代の新しいものほど高い傾向があり、概ね昭和56年 (1981年)以前は耐震性が低く、昭和57年(1982年)以降には耐震性が高い傾向がある。しかし、構法の違いや壁の配置など により耐震性に幅があるため、必ずしも建築年代が古いというだけで耐震性の高低が決まるものではない。既存建築物の耐震 性は、耐震診断により把握することができる。

(注 2) この表における木造の壁のひび割れ、亀裂、損壊は、土壁(割り竹下地)、モルタル仕上壁(ラス、金網下地を含む)を想定 している。下地の弱い壁は、建物の変形が少ない状況でも、モルタル等が剥離し、落下しやすくなる。

(注 3) 木造建物の被害は、地震の際の地震動の周期や継続時間によって異なる。平成 20 年(2008 年)岩手・宮城内陸地震のように、震度に比べ建物被害が少ない事例もある。

震度	鉄筋コンクリート造建物						
階級	耐震性が高い	耐震性が低い					
5強	_	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が入ることが ある。					
6弱	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が入ることが ある。	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が多くなる。					
6強	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂が多くなる。	壁、梁(はり)、柱などの部材に、斜めや X 状のひび割れ・亀 裂がみられることがある。 1階あるいは中間階の柱が崩れ、倒れるものがある。					
7	壁、梁(はり)、柱などの部材に、ひび割れ・亀裂がさらに多く なる。 1 階あるいは中間階が変形し、まれに傾くものがある。	壁、梁(はり)、柱などの部材に、斜めや X 状のひび割れ・亀 裂が多くなる。 1階あるいは中間階の柱が崩れ、倒れるものが多くなる。					

鉄筋コンクリート造建物の状況

(注 1) 鉄筋コンクリート造建物では、建築年代の新しいものほど耐震性が高い傾向があり、概ね昭和 56 年(1981 年)以前は耐 震性が低く、昭和 57 年(1982 年)以降は耐震性が高い傾向がある。しかし、構造形式や平面的、立面的な耐震壁の配置に より耐震性に幅があるため、必ずしも建築年代が古いというだけで耐震性の高低が決まるものではない。既存建築物の耐 震性は、耐震診断により把握することができる。

(注 2) 鉄筋コンクリート造建物は、建物の主体構造に影響を受けていない場合でも、軽微なひび割れがみられることがある。

第5.5.1表 敷地地盤で観測された主な地震

No.	発震日時 地名又は地震名	震央位置 北緯 東経	マク゛ニ チュート゛ M	震源 深さ (km)	震央 距離 (km)	気象庁震度階級 (茨城県、抜粋)
1	2011年3月11日14:46 東北地方太平洋沖地震 の本震	38° 06.21' 142° 51.66'	9.0 ^{**}	23. 74	290	 6強:日立市助川小学校、日立市十王町友部、高萩市本町、笠間市中央、常陸大宮市北町、那珂市瓜連、小美玉市上玉里、筑西市舟生、鉾田市当間 6弱:水戸市金町、水戸市千波町、水戸市中央、水戸市内原町(旧)、日立市役所、常陸太田市高柿町(旧)、宮萩市安良川、北茨城市磯原町、笠間市石井(旧)、笠間市下郷、ひたちなか市南神敷台、ひたちなか市東石川、茨城町小堤、東海村東海(旧)、常陸大宮市中富町、常陸大宮市町へ、常陸大宮市山方、那珂市福田、城里町阿波山(旧)、小美玉市小川、小美玉市小川、小美玉市小町、常陸大宮市井部名、土浦市常名、土浦市高津、石岡市柿岡、石岡市石岡、取手市井野、つくば市天王台、つくば市が漬間、茨城鹿嶋市宮中、御来市辻、美浦村受領、坂東市山、稲敷市役所、稲敷市結佐、筑西市門井、かすみがうら市上土田、行方市麻生(旧)、行方市山田、行方市玉造、桜川市岩瀨、桜川市貴壁、鉾田市靖田、毎日市造谷、鉾田市町山市、常陸大宮市市部、常陸大宮市上、瀬、城里町徳蔵、土浦市藤沢、茨城古河市午大野、茨城古河市仁連、石岡市八郷、結城市結城、龍ケ崎市寺後、下妻市本城町、下妻市鬼怒、取手市寺田、東子市藤代、牛久市中央、つくば市小茎、阪見町中央、河内町源清田、八千代町菅谷、五霞町小福田、境町旭町、常谷市大和、坂東市岩井、坂東市馬立、坂東市役所、福敷市江戸崎甲、稲敷市柴崎、筑西市下中山、筑西市海 5週:茨城古河市長谷町、利根町布川 5週:茨城古河市長谷町、利根町布川
2	2011年3月11日15:15 東北地方太平洋沖地震 余震 震	36° 07.25′ 141° 15.15′	7.6	42.70	65	 6強: 鉾田市当間 6强: 神栖市溝口、鉾田市鉾田 5强: 水戸市金町、水戸市千波町、水戸市中央、日立市助川小学校、笠間市中央、東海村東海(旧)、那珂市瓜連、城里町石塚(旧)、城里町阿波山(旧)、小美玉市小川、 土浦市常名、土浦市下高津、茨城鹿嶋市鉢形、茨城鹿嶋市宮中、潮来市辻、稲敷市須賀津、稲敷市結佐、筑西市 舟生、神栖市波崎、行方市麻生(旧)、行方市玉造、鉾 田市造谷、つくばみらい市福田 5弱: 水戸市内原町(旧)、日立市役所、高萩市安良川、笠間 市石井(旧)、笠間市下郷、ひたちなか市東石川、大洗町磯浜町、常陸大宮市北町、常陸大宮市野口、小美玉市 堅倉、土浦市藤沢、茨城古河市下大野、石岡市柿岡、石 岡市八郷、結城市結城、下妻市本城町、取手市寺田、取 手市井野、牛久市中央、つくば市天王台、つくば市ガ 間、つくば市小茎、阿見町中央、河内町源清田、八千代町菅谷、利根町布川、坂東市山、稲敷市江戸崎甲、稲敷 市柴崎、筑西市下中山、筑西市海老ヶ島、筑西市門井、 かすみがうら市上土田、かすみがうら市大和田、桜川市 岩瀨、桜川市真壁、桜川市羽田
3	2011年4月11日17:16 福島県浜通りの地震	$36^{\circ} 56.74'$ $140^{\circ} 40.36'$	7.0	6.42	77	 6弱: 鉾田市当間 5强: 日立市助川小学校、高萩市安良川、北茨城市磯原町、小美玉市上玉里、筑西市舟生、かすみがうら市上土田、鉾田市鉾田、鉾田市 み上 5弱: 水戸市千波町、水戸市中央、日立市役所、日立市十王町友部、高萩市本町、笠間市中央、ひたちなか市南神敷台、ひたちなか市東石川、茨城町小堤、大子町池田、常陸大宮市北町、常陸大宮市北町、常陸大宮市野口、那珂市福田、那珂市瓜連、城里町石塚(旧)、城里町阿波山(旧)、小美玉市小川、小美玉市常名、土浦市下富津、土浦市藤沢、石岡市柿岡、石岡市石岡、石岡市八郷、つくば市天王台、つくば市方町中央、坂東市馬立、坂東市山、稲敷市役所、行方市山田、常総市新石下、つくばみらい市加藤

【地震諸元及び震度は気象庁による。 ※はモーメントマグニチュードMw

第5.5.2表 敷地の地盤構造モデル(浅部)

上面 G.L. (m)	層厚 (m)	密度 (g/cm ³)	水平成分			鉛直成分		
			S波速度 ^{※1}	減衰定数h ^{※1、2}		P波速度 ^{*1}	減衰定数h ^{※1、2}	
			(m/s)	h ₀	α	(m/s)	h ₀	α
0.0	1.0	1.33	153 (151, 148)	0.565 (0.641、0.547)	0.734 (0.266、0.344)	819 (740)	0.250 (0.484)	1.194 (0.188)
-1.0	2.3	1.33	149 (147, 137)			787 (712)		
-3.3	5.4	1.92	334 (282、302)	0.726 (0.188、0.266)	1.125 (0.297、0.438)	761 (744)	0.918 (0.531)	0.744 (0.344)
-8.7	1.5	1.74	300 (240、240)			940 (1105)		
-10.2	6.2	1.84	439 (434、404)			880 (938)		
-16.4	1.9	1.79	447 (451、513)			1239 (1227)		
-18.3	2.6	1.78	415 (391, 480)			1020 (1127)		
-20.9	5.7	2.02	527 (500、538)			1118 (1522)		
-26.6	3.4	1.86	411 (363、344)		1.347 (0.922、0.844)	1354 (1284)	0.922 (0.563)	1.094 (0.922)
-30.0	2.0	1.86	411 (450、382)	0.156 (0.078、0.125)		1354 (1645)		
-32.0	7.3	1.86	448 (450、382)			$1435 \\ (1645)$		
-39.3	1.1	1.89	387 (364、352)			1696 (1444)		
-40.4	25.5	1.84	372 (298、355)			1633 (1856)		
-65.9	6.3	1.81	383 (411、354)			$1595 \\ (1495)$		
-72.2	12.4	1.92	398 (450、514)			1768 (1884)		
-84.6	1.4	2.05	514 (414、586)			1664 (1490)		
-86.0	5.1	1.97	482 (549、438)			1735 (1589)		
-91.1	2.9	1.79	452 (442、509)	0.064 (0.063, 0.063)	0.859 (0.797、0.703)	1668 (1708)	0.667 (0.297)	1.719 (0.953)
-94.0	1.0	1.79	452 (558、485)			1668 (1656)		
-95.0	42.1	1.79	501 (558、485)			1670 (1656)		
-137.1	23.6	1.82	609 (583、593)			1928 (1771)		
-160.7	11.8	1.81	663 (669、535)			1978 (2090)		
-172.5	1.5	1.98	1010 (1010, 1010)			2170 (2170)		
-174.0	10.9	1.98	1010 (1010, 1010)			2170 (2170)		
-184.9	40.2	2.00	1000 (1000, 1000)			2250 (2250)		
-225.1	24.9	1.85	1080 (1080, 1080)			2260 (2260)		
-250.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.85	1080 (1080、1080)			2260 (2260)		

※1 括弧内の数値は2011年東北地方太平洋沖地震の本震の解析に使用。なお、水平成分の左側はNS成分を、右側はEW成分を示す。

※2 h=h₀×f^{-a} ここでfは周波数(Hz)

第5.5.3表 敷地の地盤構造モデル(深部)

上面 G.L. (km)	層厚 (km)	密度 ^{※1} (g/cm ³)	水平成分			鉛直成分		
			S波速度 (km/s)	減衰定数**2		P波速度 ^{※3}	減衰定数*2	
				Qs	hs	(km/s)	Qp	hp
0.000	0.173	-	-	-	—	-	-	—
-0.173	0.100	1.98	1.010	100	0.005	2.170	100	0.005
-0.273	0.350	2.11	1.186			2.590		
-0.623	0.670	2.44	2.086			4.100		
-1.293	2.708	2.68	3.052	$110 \times f^{0.69}$	0.0045× f ^{-0.69}	5.750	110× f ^{0.69}	0.0045 \times f ^{-0.69}
-4.000	11.900	2.70	3.600			5.960		
-15.900	14.600	2.80	4.170			6.810		
-30.500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3.20	4.320			7.640		

 -30.500
 0
 -3.20
 -4.625
 1.012

 ※1 G.L.-0.273km~G.L.-4.000kmはLudwig et al.(1970)⁽⁴⁰⁾、G.L.-4.000km以深はiasp91(Kennett et al.(1991)⁽⁴¹⁾)を踏まえて設定
 ※2 fは周波数(Hz)、G.L.-1.293km以深は佐藤ほか(1994)⁽⁴²⁾を踏まえて設定

 ※3 G.L.-0.273km~G.L.-4.000kmはYoshimura et al.(1982)⁽⁴³⁾を踏まえて設定
地震名	長さ (km)	地震 規模 M	断層上 端深さ (km)	等価 震源距離 (km)	補正 係数 ^{※2}
818年関東諸国の地震	_	7.5	-	101	-
関谷断層	40	7.5	5	103	_
深谷断層帯·綾瀬川断層	103	8.2	5	115	_
関ロー米平リニアメント	6	6.8 ^{%1}	3	49	考慮
竪破山リニアメント	4	6.8 ^{%1}	3	45	考慮
宮田町リニアメント	1	6.8 ^{%1}	3	42	考慮
吾国山断層	6	6.8 ^{%1}	5	35	_
F8断層	26	7.2	5	36	_
F11断層	5	6.8 ^{%1}	3	60	考慮
F16断層	26	7.2	5	39	_
A-1背斜	19	7.0	5	31	_
棚倉破砕帯西縁断層~ 同東縁付近の推定活断層	42	7.5	3	55	考慮
F1断層~北方陸域の断層~ 塩ノ平地震断層	58	7.8	3	56	考慮
F3断層~F4断層	17	6.9	5	12	_

第5.6.1表 検討用地震の選定に用いる内陸地殻内地震の諸元

※1 長さの短い断層については、地震規模をM6.8として評価

※2 福島県と茨城県の県境付近で発生した内陸地殻内地震による補正係数

年月日	地名 (地震名)	地震 規模 M	等価 震源距離 (km)	補正 係数
1677.11.4	磐城・常陸・安房・上総・下総 の地震	8.0	161	考慮 ^{※3}
1703.12.31	元禄地震	8.05	192	_
1896.1.9	鹿島灘の地震	7.3	68	考慮 ^{※2}
1923.9.1	関東大地震	7.9	169	_
1930.6.1	那珂川下流域の地震	6.5	57	考慮 ^{※3}
1938.5.23	塩屋崎沖の地震	7.0	78	考慮 ^{※3}
1938.9.22	鹿島灘の地震	6.5	70	考慮 ^{※2}
1938.11.5	福島県東方沖の地震	7.5	151	考慮 ^{※3}
2011.3.11	2011年東北地方太平洋沖地震 の本震 ^{※1}	9.0(Mw)	Ι	—
2011.3.11	2011年東北地方太平洋沖地震 の余震 ^{※1}	7.6	1	—
_	茨城県南部の地震 (中央防災会議(2013))	7.3	62	_
_	茨城県沖の地震 (地震調査研究推進本部(2012a))	7.6	81	考慮 ^{※2}

第5.6.2表 検討用地震の選定に用いるプレート間地震の諸元

※1 観測記録より求めた解放基盤波を用いる

※2 鹿島灘付近で発生した太平洋プレート間地震による補正係数

※3 鹿島灘付近で発生した地震を除く太平洋プレート間地震による補正係数

年月日	地名 (地震名)	地震 規模 M	等価 震源距離 (km)	補正 係数 ^{※1}
1895. 1.18	霞ヶ浦付近の地震	7.2	52	考慮
1921.12. 8	茨城県龍ヶ崎付近の地震	7.0	63	考慮
—	茨城県南部の地震 (中央防災会議(2004))	7.3	52	考慮
_	茨城県南部の地震 (中央防災会議(2013))	7.3	57	考慮
	震源断層を予め特定しにくい地震(陸域) (地震調査研究推進本部(2009a))	7.1	89	考慮
_	震源断層を予め特定しにくい地震(海域) (地震調査研究推進本部(2009a))	7.3	81	考慮
_	海溝寄りのプレート内地震 (地震調査研究推進本部(2009a))	8.2	164	_

第5.6.3 表 検討用地震の選定に用いる海洋プレート内地震の諸元

※1 陸域寄りで発生した海洋プレート内地震による補正係数

第5.6.4表 F1 断層~北方陸域の断層~塩ノ平地震断層による地震の

断層パラメータ(基本震波	ミモデル)
--------------	-------

			設定値		
	項日	全体	北部	南部	設定方法
断層上端長さ(km) 断層下端長さ(km)		57.7 54.2	21.8 20.1	35.9 34.1	活断層調査結果による位置を基に設定
断層	傾斜角(゜)	60(西傾斜)	60(西傾斜)	60(西傾斜)	活断層調査結果に基づき設定
断層	上端深さ(km) 下端深さ(km)	3 18	3 18	3 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	17.3	17.3	17.3	地震発生層と断層傾斜角から設定
断層	面積S(km²)	967.9	362.4	605.5	断層面より算定
破壊	伝播様式	同心円状	同心円状	同心円状	-
地震	モーメントMo(N・m)	5.21E+19	1.65E+19	3.56E+19	Mo={S/(4.24×10 ⁻¹¹)}²/107 全体の地震モーメントを断層面積の1.5乗 比で分配
剛性	率(N/m²)	3.50E+10	3.50E+10	3.50E+10	μ=ρβ ² , ρ=2.7g/cm ³ , β=3.6km/s (βは敷地周辺を対象にした地震波速度 トモグラフィ,ρは地震調査研究推進本 部(2009a)の「全国1次地下構造モデル (暫定版)」を参考に設定)
平均	すべり量D(cm)	153.9	130.1	168.1	D=M_0/(µS)
平均	応力降下量Δσ(MPa)	3.1	3.1	3.1	Fujii and Matsu'ura(2000) ⁽⁴⁴⁾ による
破壊	伝播速度Vr(km/s)	2.59	2.59	2.59	Vr=0.72β(Geller(1976) ⁽⁴⁵⁾ による)
短周	期レベルA(N•m/s²)(参考)	1.98E+19	-	-	$A{=}2.46\!\times\!10^{10}\!\times\!(M_0\!\times\!10^7)^{1/3}$
	面積S _a (km²)	212.9	79.7	133.2	S _a =0.22S
7	平均すべり量D _a (cm)	307.7	260.1	336.2	D _a =2D
Â	地震モーメントM _{0a} (N•m)	2.29E+19	7.26E+18	1.57E+19	Moa= µ SaDa
	応力降下量∆♂₄(MPa)	14.09	14.09	14.09	
	短周期レベルA(N•m/s²)(参考)	1.89E+19	1.16E+19	1.49E+19	A=4πr₃∆σ₃β²
	面積S _b (km²)	755.0	282.7	472.3	$S_b = S - S_a$
背景	平均すべり量D _b (cm)	110.5	93.4	120.7	$D_b=M_{0b}/(\mu S_b)$
領域	地震モーメントM _{Ob} (N・m)	2.92E+19	9.24E+18	1.99E+19	M _{0b} =M ₀ -M _{0a}
	実効応力∆ σ₀(MPa)	2.82	2.82	2.82	$\Delta \sigma_{b}=0.2 \Delta \sigma_{a}$

第5.6.5表 F1 断層~北方陸域の断層~塩ノ平地震断層による地震の

ケース名	断層 長さ (km)	断層 上端 深さ (km)	断層 下端 深さ (km)	断層 幅 (km)	断層 傾斜角 ([°])	アスペリティ位置	破壊 開始点	短周期 レベル
基本震源モデル	58	3	18	17.3	60 (西傾斜)	断層端部から 1マス空けて配置	複数設定し影響の大きい 破壊開始点を選定	平均
短周期レベルの 不確かさを考慮	58	3	18	17.3	60 (西傾斜)	断層端部から 1マス空けて配置	基本震源モデルと 同様の位置に設定	基本震源 モデルの 1.5倍
断層傾斜角の 不確かさを考慮	58	3	18	21.2	45 (西傾斜)	断層端部から 1マス空けて配置	基本震源モデルと 同様の位置に設定	平均
アスペリティ位置の 不確かさを考慮	58	3	18	17.3	60 (西傾斜)	敷地により近くなるよう に断層端部に配置	基本震源モデルと 同様の位置に設定	平均

検討ケース

第5.6.6表(1) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の

			設定値		
	項日	全体	北部	南部	設定方法
断層上端長さ(km) 断層下端長さ(km)		57.7 54.2	21.8 20.1	35.9 34.1	活断層調査結果による位置を基に設定
断層	傾斜角(°)	60(西傾斜)	60(西傾斜)	60(西傾斜)	活断層調査結果に基づき設定
断層 断層	上端深さ(km) 下端深さ(km)	3 18	3 18	3 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	17.3	17.3	17.3	地震発生層と断層傾斜角から設定
断層	面積S(km²)	967.9	362.4	605.5	断層面より算定
破壊	伝播様式	同心円状	同心円状	同心円状	_
地震	モーメントM ₀ (N・m)	5.21E+19	1.65E+19	3.56E+19	M ₀ =[S/(4.24×10 ⁻¹¹)] ² /10 ⁷ 全体の地震モーメントを断層面積の1.5乗 比で分配
剛性	率(N/m²)	3.50E+10	3.50E+10	3.50E+10	μ=ρβ ² , ρ=2.7g/cm ³ , β=3.6km/s (βは敷地周辺を対象にした地震波速度 トモグラフィ, ρは地震調査研究推進本 部(2009a)の「全国1次地下構造モデル (暫定版)」を参考に設定)
平均	すべり量D(cm)	153.9	130.1	168.1	D=M ₀ /(μS)
平均	応力降下量Δ σ (MPa)	3.1	3.1	3.1	Fujii and Matsu' ura(2000)による
破壊	伝播速度Vr(km/s)	2.59	2.59	2.59	Vr=0.72β(Geller(1976)による)
短周	期レベルA(N・m/s ²)(参考)	1.98E+19	-	-	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
	面積S _a (km²)	212.9	79.7	133.2	S _a =0.22S
アス	平均すべり量D _a (cm)	307.7	260.1	336.2	D _a =2D
ペリ	地震モーメントM _{0a} (N・m)	2.29E+19	7.26E+18	1.57E+19	$M_{0a} = \mu S_a D_a$
ティ	応力降下量 $\Delta \sigma_{a}$ (MPa)	21.14	21.14	21.14	$\Delta \sigma_{a} = \Delta \sigma \times S/S_{a} \times 1.5$
	短周期レベルA(N·m/s ²)(参考)	2.83E+19	1.73E+19	2.24E+19	A=4 π r _a Δ σ _a β ²
	面積S _b (km²)	755.0	282.7	472.3	S _b =S-S _a
背景	平均すべり量D _b (cm)	110.5	93.4	120.7	$D_{b}=M_{0b}/(\mu S_{b})$
領域	地震モーメントM _{0b} (N・m)	2.92E+19	9.24E+18	1.99E+19	$M_{0b} = M_0 - M_{0a}$
	実効応力Δσ _b (MPa)	4.23	4.23	4.23	$\Delta \sigma_{\rm b} = 0.2 \Delta \sigma_{\rm a}$

第5.6.6表(2) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の

断層パラメータ(不確かさを考慮したケース:断層傾斜角)

-7.0			設定値		
	項日	全体	北部	南部	設定方法
断層上端長さ(km) 断層下端長さ(km)		57.1 51.1	21.5 18.5	35.6 32.6	活断層調査結果による位置を基に設定
断層	傾斜角(゜)	45(西傾斜)	45(西傾斜)	45(西傾斜)	活断層調査結果の不確かさなどを踏まえ 設定
断層	上端深さ(km) 下端深さ(km)	3 18	3 18	3 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	21.2	21.2	21.2	地震発生層と断層傾斜角から設定
断層	面積S(km²)	1146.9	424.0	722.9	断層面より算定
破壊	伝播様式	同心円状	同心円状	同心円状	—
地震·	モーメントM ₀ (N・m)	7.32E+19	2.27E+19	5.05E+19	M ₀ =[S/(4.24×10 ⁻¹¹)] ² /10 ⁷ 全体の地震モーメントを断層面積の1.5乗 比で分配
剛性	率(N/m²)	3.50E+10	3.50E+10	3.50E+10	μ=ρβ ² , ρ=2.7g/cm ³ , β=3.6km/s (βは敷地周辺を対象にした地震波速度 トモグラフィ,ρは地震調査研究推進本 部(2009a)の「全国1次地下構造モデル (暫定版)」を参考に設定)
平均	すべり量D(cm)	182.3	152.9	199.6	D=M ₀ /(μS)
平均	応力降下量Δ σ (MPa)	3.1	3.1	3.1	Fujii and Matsu' ura(2000)による
破壊	伝播速度Vr(km/s)	2.59	2.59	2.59	Vr=0.72β (Geller(1976)による)
短周	期レベルA(N・m/s²)(参考)	2.22E+19	-	-	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
	面積S _a (km²)	252.3	93.3	159.0	S _a =0.22S
アス	平均すべり量D _a (cm)	364.6	305.7	399.2	D _a =2D
ペリ	地震モーメントM _{0a} (N・m)	3.22E+19	9.98E+18	2.22E+19	$M_{0a} = \mu S_a D_a$
テイ	応力降下量 $\Delta \sigma_{a}$ (MPa)	14.09	14.09	14.09	$\Delta \sigma_{a} = \Delta \sigma \times S/S_{a}$
	短周期レベルA(N·m/s ²)(参考)	2.06E+19	1.25E+19	1.63E+19	A=4 π r _a Δ σ _a β ²
	面積S _b (km²)	894.6	330.7	563.9	S _b =S-S _a
背景	平均すべり量D _b (cm)	130.9	109.7	143.3	$D_b = M_{0b} / (\mu S_b)$
〔 〔 〔 〔 〔	地震モーメントM _{0b} (N・m)	4.10E+19	1.27E+19	2.83E+19	$M_{0b} = M_0 - M_{0a}$
	実効応力 $\Delta \sigma_{b}$ (MPa)	2.82	2.82	2.82	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$

第5.6.6表(3) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の

断層パラメータ	(不確かさを考慮したケース	:アスペリティ位置)
---------	---------------	------------

			設定値		
	坦日	全体	北部	南部	設定方法
断層上端長さ(km) 断層下端長さ(km)		57.7 54.2	21.8 20.1	35.9 34.1	活断層調査結果による位置を基に設定
断層	傾斜角(°)	60(西傾斜)	60(西傾斜)	60(西傾斜)	活断層調査結果に基づき設定
断層 断層	上端深さ(km) 下端深さ(km)	3 18	3 18	3 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	17.3	17.3	17.3	地震発生層と断層傾斜角から設定
断層	面積S(km²)	967.9	362.4	605.5	断層面より算定
破壊	伝播様式	同心円状	同心円状	同心円状	-
地震	モーメントM ₀ (N・m)	5.21E+19	1.65E+19	3.56E+19	M ₀ =[S/(4.24×10 ⁻¹¹)] ² /10 ⁷ 全体の地震モーメントを断層面積の1.5乗 比で分配
剛性	率(N/m²)	3.50E+10	3.50E+10	3.50E+10	μ=ρβ ² ,ρ=2.7g/cm ³ ,β=3.6km/s (βは敷地周辺を対象にした地震波速度 トモグラフィ,ρは地震調査研究推進本 部(2009a)の「全国1次地下構造モデル (暫定版)」を参考に設定)
平均	すべり量D(cm)	153.9	130.1	168.1	$D=M_0/(\mu S)$
平均	応力降下量Δ σ (MPa)	3.1	3.1	3.1	Fujii and Matsu' ura(2000)による
破壊	伝播速度Vr(km/s)	2.59	2.59	2.59	Vr=0.72β(Geller(1976)による)
短周	期レベルA(N・m/s²)(参考)	1.98E+19	-	-	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
	面積S _a (km²)	212.9	79.7	133.2	S _a =0.22S
アス	平均すべり量D _a (cm)	307.7	260.1	336.2	D _a =2D
ペリ	地震モーメントM _{0a} (N・m)	2.29E+19	7.26E+18	1.57E+19	$M_{0a} = \mu S_a D_a$
ティ	応力降下量 $\Delta \sigma_{a}$ (MPa)	14.09	14.09	14.09	$\Delta \sigma_{a} = \Delta \sigma \times S/S_{a}$
	短周期レベルA(N·m/s ²)(参考)	1.89E+19	1.16E+19	1.49E+19	A=4 π r _a Δ σ _a β ²
	面積S _b (km²)	755.0	282.7	472.3	S _b =S-S _a
背景	平均すべり量D _b (cm)	110.5	93.4	120.7	$D_b = M_{0b} / (\mu S_b)$
領域	地震モーメントM _{0b} (N・m)	2.92E+19	9.24E+18	1.99E+19	$M_{0b} = M_0 - M_{0a}$
	実効応力Δ σ _ь (MPa)	2.82	2.82	2.82	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$

設定値 項目 発生日時 2011 年 4 月 14 日 7 時 35 分 気象庁マグニチュード 5.1 東経(°) 140.57 震央位置 北緯(゜) 36.78 震源深さ(km) 8.8 走向 (°) [※] 155;314 傾斜(°)[※] 63 ; 29 すべり角 (°)[※] -80 ; -109 地震モーメント (N・m) ** 2.41×10^{16} コーナー 周波数 (Hz) 1.2 7.54 応力降下量(MPa)

第5.6.7表 F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 地震動評価に用いる要素地震の諸元

※ F-netによる

第5.6.8表 F3 断層~F4 断層による地震の断層パラメータ

(基本震源モデル)

	項目	設定値	設定方法	
断層上端長さ(km) 断層下端長さ(km)		21.4 27.5	活断層調査結果による位置を基に, 断層面積を踏まえて設定	
断層	傾斜角(°)	60(西傾斜)	活断層調査結果に基づき設定	
断層 断層	上端深さ(km) 下端深さ(km)	5 18	微小地震の発生及び地下構造から設定	
断層	幅W(km)	15.0	地震発生層と断層傾斜角から設定	
断層	面積S(km²)	367.3	$M_0 = [S/(4.24 \times 10^{-11})]^2/10^7$	
破壊	伝播様式	同心円状	-	
地震	モーメントM ₀ (N・m)	7.50E+18	与条件として設定	
剛性率(N/m²)		3.50E+10	μ = ρ β ² , ρ = 2.7g/cm ³ , β = 3.6km/s (βは敷地周辺を対象にした地震波速度トモグラフィ,ρは地震調査研究 推進本部(2009a)の「全国1次地下構造モデル(暫定版)」を参考に設定)	
平均すべり量D(cm)		58.4	$D=M_0/(\mu S)$	
平均	応力降下量 $\Delta \sigma$ (MPa)	2.6	$\Delta \sigma = (7/16)(M_0/R^3)$	
破壊	伝播速度Vr(km/s)	2.59	Vr=0.72β (Geller(1976)による)	
短周	期レベルA(N・m/s²)	1.04E+19	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	
高周	波遮断振動数f _{max(} (Hz)	6	活断層による地震に関する強震動予測レシピ	
	面積S _a (km²)	71.4	$S_a = \pi r_a^2$, $r_a = (7 \pi M_0 \beta^2) / (4AR)$	
アス	平均すべり量D _a (cm)	116.8	D _a =2D	
ペリ	地震モーメントM _{0a} (N・m)	2.92E+18	$M_{0a} = \mu S_a D_a$	
ティ	応力降下量 $\Delta \sigma_{a}$ (MPa)	13.4	$\Delta \sigma_{a}$ =(7/16)M ₀ /(r _a ² R)	
短周期レベルA(N·m/s ²)(参考)		1.04E+19	$A=4\pi r_{a}\Delta \sigma_{a}\beta^{2}$	
面積S _b (km²)		295.9	S _b =S-S _a	
背景	平均すべり量D _b (cm)	44.3	$D_b=M_{0b}/(\mu S_b)$	
領域	地震モーメントM _{0b} (N・m)	4.59E+18	$M_{0b}=M_0-M_{0a}$	
	実効応力Δ σ _ь (MPa)	2.67	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$	

ケース名	断層 面積 (km ²)	断層 上端 深さ (km)	断層 下端 深さ (km)	断層 幅 (km)	断層 傾斜角 (°)	アスペリティ位置	破壊 開始点	短周期 レベル
基本震源モデル	367.3	5	18	15	60 (西傾斜)	F3断層部の 敷地近傍に配置	複数設定し影響の大きい 破壊開始点を選定	平均
短周期レベルの 不確かさを考慮	367.3	5	18	15	60 (西傾斜)	F3断層部の 敷地近傍に配置	複数設定し影響の大きい 破壊開始点を選定	基本震源 モデルの 1.5倍
断層傾斜角の 不確かさを考慮	522.1	5	18	18.4	45 (西傾斜)	F3断層部の 敷地近傍に配置	複数設定し影響の大きい 破壊開始点を選定	平均
アスペリティ位置の 不確かさを考慮	367.3	5	18	15	60 (西傾斜)	F4断層部を 含む位置に配置	複数設定し影響の大きい 破壊開始点を選定	平均

第5.6.9表 F3 断層~F4 断層による地震の検討ケース

※ 応答スペクトルに基づく手法における基本震源モデルと短周期レベルの不確かさを考慮したケースは共通

第5.6.10表(1) F3 断層~F4 断層による地震の断層パラメータ

(不確かさを考慮したケース:短周期レベル)

	項目	設定値	設定方法	
断層上端長さ(km) 断層下端長さ(km)		21.4 27.5	活断層調査結果による位置を基に、断層面積を踏まえて設定	
断層	傾斜角(°)	60(西傾斜)	活断層調査結果に基づき設定	
断層 断層	上端深さ(km) 下端深さ(km)	5 18	微小地震の発生及び地下構造から設定	
断層	幅W(km)	15.0	地震発生層と断層傾斜角から設定	
断層	面積S(km²)	367.3	$M_0 = [S/(4.24 \times 10^{-11})]^2/10^7$	
破壊	伝播様式	同心円状	_	
地震	モーメントM ₀ (N・m)	7.50E+18	与条件として設定	
剛性率(N/m²)		3.50E+10	μ = ρ β ² , ρ = 2.7g/cm ³ , β = 3.6km/s (β は敷地周辺を対象にした地震波速度トモグラフィ,ρは地震調査研究 推進本部(2009a)の「全国1次地下構造モデル(暫定版)」を参考に設定)	
平均すべり量D(cm)		58.4	$D=M_0/(\mu S)$	
平均応力降下量 $\Delta \sigma$ (MPa)		2.6	$\Delta \sigma = (7/16)(M_0/R^3)$	
破壊伝播速度Vr(km/s)		2.59	Vr=0.72β (Geller(1976)による)	
短周	期レベルA(N・m/s ²)	1.04E+19	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	
高周	波遮断振動数f _{max(} (Hz)	6	活断層による地震に関する強震動予測レシピ	
	面積S _a (km²)	71.4	$S_a = \pi r_a^2$, $r_a = (7 \pi M_0 \beta^2) / (4AR)$	
アス	平均すべり量D _a (cm)	116.8	D _a =2D	
ペリ	地震モーメントM _{0a} (N・m)	2.92E+18	$M_{0a} = \mu S_a D_a$	
テ ィ 応力降下量Δσ _a (MPa)		20.1	$\Delta \sigma_{a} = (7/16) M_{0} / (r_{a}^{2} R) \times 1.5$	
短周期レベルA(N·m/s ²)(参考)		1.56E+19	$A=4\pi r_{a}\Delta \sigma_{a}\beta^{2}$	
面積S _b (km²)		295.9	S _b =S-S _a	
背景	平均すべり量D _b (cm)	44.3	$D_{b}=M_{0b}/(\mu S_{b})$	
領域	地震モーメントM _{0b} (N・m)	4.59E+18	$M_{ob}=M_{o}-M_{oa}$	
	実効応力Δ σ _ь (MPa)	4.01	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$	

第5.6.10表(2) F3 断層~F4 断層による地震の断層パラメータ

(不確かさを考慮したケース:断層傾斜角)

	項目	設定値	設定方法
断層上端長さ(km) 断層下端長さ(km)		23.1 33.6	基本震源モデルを基に, 断層傾斜角等を踏まえて設定
断層	傾斜角(゜)	45(西傾斜)	活断層調査結果に基づき設定
断層 断層	上端深さ(km) 下端深さ(km)	5 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	18.4	地震発生層と断層傾斜角から設定
断層	面積S(km²)	522.1	断層面より算定
破壊	伝播様式	同心円状	_
地震	モーメントM ₀ (N・m)	1.52E+19	$M_0 = [S/(4.24 \times 10^{-11})]^2/10^7$
剛性率(N/m²)		3.50E+10	μ = ρ β ² , ρ = 2.7g/cm ³ , β = 3.6km/s (βは敷地周辺を対象にした地震波速度トモグラフィ,ρは地震調査研究 推進本部(2009a)の「全国1次地下構造モデル(暫定版)」を参考に設定)
平均	すべり量D(cm)	83.0	$D=M_0/(\mu S)$
平均	応力降下量 $\Delta \sigma$ (MPa)	3.1	$\Delta \sigma = (7/16)(M_0/R^3)$
破壊	伝播速度Vr(km/s)	2.59	Vr=0.72β (Geller(1976)による)
短周	期レベルA(N・m/s ²)	1.31E+19	$A=2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$
高周	波遮断振動数f _{max(} (Hz)	6	活断層による地震に関する強震動予測レシピ
	面積S _a (km²)	128.2	$S_a = \pi r_a^2$, $r_a = (7 \pi M_0 \beta^2) / (4AR)$
アス	平均すべり量D _a (cm)	166.0	D _a =2D
ペリ	地震モーメントM _{0a} (N・m)	7.45E+18	$M_{0a} = \mu S_a D_a$
テ ィ 応力降下量Δσ _a (MPa)		12.6	$\Delta \sigma_{a}$ =(7/16)M ₀ /(r _a ² R)
短周期レベルA(N·m/s ²)(参考)		1.31E+19	$A=4\pi r_{a}\Delta \sigma_{a}\beta^{2}$
面積S _b (km²)		393.9	S _b =S-S _a
背 暑 平均すべり量D _b (cm)		56.0	$D_{b}=M_{0b}/\langle \ \mu \ S_{b} \rangle$
領域	地震モーメントM _{0b} (N・m)	7.71E+18	$M_{0b} = M_0 - M_{0a}$
	実効応力Δ σ _b (MPa)	2.52	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$

第5.6.10表(3) F3 断層~F4 断層による地震の断層パラメータ

(不確かさを考慮したケース:アスペリティ位置)

	項目	設定値	設定方法
断層上端長さ(km) 断層下端長さ(km)		21.4 27.5	活断層調査結果による位置を基に, 断層面積を踏まえて設定
断層	傾斜角(°)	60(西傾斜)	活断層調査結果に基づき設定
断層	上端深さ(km) 下端深さ(km)	5 18	微小地震の発生及び地下構造から設定
断層	幅W(km)	15.0	地震発生層と断層傾斜角から設定
断層	面積S(km²)	367.3	$M_0 = [S/(4.24 \times 10^{-11})]^2/10^7$
破壊	伝播様式	同心円状	_
地震	モーメントM ₀ (N・m)	7.50E+18	与条件として設定
剛性率(N/m²)		3.50E+10	μ = ρ β ² , ρ = 2.7g/cm ³ , β = 3.6km/s (βは敷地周辺を対象にした地震波速度トモグラフィ,ρは地震調査研究 推進本部(2009a)の「全国1次地下構造モデル(暫定版)」を参考に設定)
平均	すべり量D(cm)	58.4	$D=M_0/(\mu S)$
平均	応力降下量 $\Delta \sigma$ (MPa)	2.6	$\Delta \sigma = (7/16)(M_0/R^3)$
破壊	伝播速度Vr(km/s)	2.59	Vr=0.72β (Geller(1976)による)
短周	期レベルA(N·m/s ²)	1.04E+19	A=2.46 × 10 ¹⁰ × $(M_0 \times 10^7)^{1/3}$
高周	波遮断振動数f _{max(} (Hz)	6	活断層による地震に関する強震動予測レシピ
	面積S _a (km²)	71.4	$S_a = \pi r_a^2$, $r_a = (7 \pi M_0 \beta^2) / (4AR)$
アス	平均すべり量D _a (cm)	116.8	D _a =2D
ペリ	地震モーメントM _{0a} (N・m)	2.92E+18	$M_{0a} = \mu S_a D_a$
テ ィ 応力降下量Δσ _a (MPa)		13.4	$\Delta \sigma_{a}$ =(7/16)M ₀ /(r _a ² R)
短周期レベルA(N·m/s ²)(参考)		1.04E+19	A=4 $\pi r_a \Delta \sigma_a \beta^2$
面積S _b (km²)		295.9	S _b =S-S _a
背景	平均すべり量D _b (cm)	44.3	$D_b=M_{0b}/(\mu S_b)$
領 域	地震モーメントM _{0b} (N・m)	4.59E+18	$M_{0b} = M_0 - M_{0a}$
	実効応力Δ σ _b (MPa)	2.67	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$

距離減衰式	データベース 対象地域	地震タイプ	主なパラメータ	Mwの範囲	距離の範囲	地盤条件・種別	
Kanno <i>et al.</i> (2006) ⁽⁴⁶⁾	ナに国内			Mw、断層最短距離、 震源深さ、Vs30 ^{※1}	5.5~8.2	1~500km	100 <vs30<1400m s<="" td=""></vs30<1400m>
Zhao <i>et al.</i> (2006) ⁽⁴⁷⁾		内陸 プレート間 プレート内	Mw、断層最短距離、 震源深さ	5.0~8.3	0.3~300km	Soft Soil ~ Hard Rock(Hard Rock Vs=2000m/s)	
内山・翠川ほか (2006) ⁽⁴⁸⁾	日本周辺		Mw、断層最短距離、 震源深さ	5.5~8.3	300km以内	150≦Vs30 ^{%1} ≦750m∕s	
片岡ほか (2006)	国内	内陸 海溝性	Mw、断層最短距離、 短周期レベル	陸 : 4.9~6.9 海 : 5.2~8.2	250km以内	I 種、Ⅱ種、Ⅲ種地盤 及び工学的基盤	
Abrahamson <i>et al.</i> (2014) ⁽⁴⁹⁾	国内外	内陸	Mw、断層最短距離、 Vs30 ^{※1} 、断層上端深さ	3.0~8.5	0~300km	180≦Vs30 ^{%1} ≦1000m/s	
Boore <i>et al.</i> (2014) ⁽⁵⁰⁾	国内外	内陸	Mw、断層面の地表投影面 への最短距離、Vs30 ^{※1}	3.0~8.5(横ずれ、逆断層) 3.0~7.0(正断層)	0~400km	150≦Vs30 ^{%1} ≦1500m/s	
Campbell <i>et al.</i> (2014) ⁽⁵¹⁾	国内外	内陸	Mw、断層最短距離、 Vs30 ^{※1} 、断層上端深さ	3.3~8.5(横ずれ断層) 3.3~8.0(逆断層) 3.3~7.5(正断層)	0~300km	150≦Vs30 ^{%1} ≦1500m/s	
Chiou <i>et al.</i> (2014) ⁽⁵²⁾	国内外	内陸	Mw、断層最短距離、 Vs30 ^{※1} 、断層上端深さ	3.5~8.5(横ずれ断層) 3.5~8.0(逆、正断層)	0~300km	180≦Vs30 ^{%1} ≦1500m/s	
Idriss (2014) ⁽⁵³⁾	国内外	内陸	Mw、断層最短距離、 Vs30 ^{※1}	5≦Mw	≦150km	450≦Vs30 ^{%1}	

第5.6.11表 各距離減衰式の概要

 I
 I

 ※1 Vs30:表層地盤(地表からおよそ30mの深さまで)の平均S波速度

第5.6.12表 2011年東北地方太平洋沖型地震の断層パラメータ

(基本震源モデル)

	項目		設定値	設定方法
;	走向	θ(°)	200	F-net
傾斜角1 (東側)		δ ₁ (°)	12	壇ほか(2005) ⁽⁵⁴⁾
傾斜角	角2(西側)	δ ₂ (°)	21	壇(まか(2005)
्र क	べり角	λ(°)	88	F-net
	長さ	L(km)	500	断層面積に基づき算定
	幅	W(km)	200	断層面積に基づき算定
基準	「点北緯	N(°)	38.1035	本震の震源位置(気象庁)
基準	¹ 点東経	E(°)	142.8610	本震の震源位置(気象庁)
基準	「「「「」」	H(km)	23.7	本震の震源位置(気象庁)
Ŀ	端深さ	h _u (km)	12.3	h _u =H-w1sinδ1, w1=55km
<u>ت</u>	端深さ	h _l (km)	68.9	h _I =H+(100-w ₁)sinδ ₁ +100sinδ ₂
断	層面積	S(km²)	100000	logS=M-4.0,佐藤(1989) ⁽⁵⁵⁾
平均成	动降下量	∆σ(MPa)	3.08	$M_0=16/7 \times (S/\pi)^{3/2} \Delta \sigma$
地震	モーメント	M₀(N•m)	4.00E+22	logM ₀ =1.5M _w +9.1, Hanks and Kanamori(1979) ⁽⁵⁶⁾
モーメント	マグニチュート゛	Mw	9.0	2011年東北地方太平洋沖地震
平均すべり量		D(cm)	854.3	D=M ₀ /(µS)
剛性率		μ(N/m²)	4.68E+10	μ=ρV _s ² , ρ=3.08g/cm ³ 地震調査研究推進本部 (2002) ⁽⁵⁷⁾ , (2005) ⁽⁵⁸⁾
せん断波速度		V _s (km/s)	3.9	地震調査研究推進本部 (2002),(2005)
破壊伝播速度		V _r (km/s)	3.0	地震調査研究推進本部 (2002),(2005)
	面積	S _a (km²)	12500	S _a =cS, c=0.125
	地震モーメント	M _{0a} (N•m)	1.00E+22	M _{0a} = μ D _a S _a
SMGA全体	すべり量	D _a (cm)	1708.6	$D_a=2 \times D$
	応力降下量	$\Delta \sigma_{a}$ (MPa)	24.6	$\triangle \sigma_{a}$ =S/S _a × $\Delta \sigma$
	短周期レベル	A _a (N•m∕s²)	2.97E+20	$A_{a} = (\sum A_{ai}^{2})^{1/2} = 5^{1/2} A_{a1}$
	面積	S _{a1} (km²)	2500	Sa1=Sa/5
	地震モーメント	M _{0a1} (N•m)	2.00E+21	$M_{0a1}=M_{0a}S_{a1}^{1.5}/\Sigma S_{ai}^{1.5}=M_{0a}/5$
80400	すべり量	D _{a1} (cm)	1708.6	$D_{a1}=M_{0a1}/(\mu S_{a1})$
ASMGA	応力降下量	Δσ _{a1} (MPa)	24.6	$\triangle \sigma_{a1} = \Delta \sigma_{a}$
	短周期レベル	A _{a1} (N•m/s²)	1.33E+20	$A_{a1}=4\pi r_1 \Delta \sigma_{a1} V_s^2, r_1=(S_{a1}/\pi)^{1/2}$
	ライズタイム	$\tau_{a1}(s)$	8.33	て _{a1} =0.5W _{ai} /V _r , W _{ai} :SMGA幅
	面積	S _b (km²)	87500	S _b =S-S _a
	地震モーメント	M _{0b} (N•m)	3.00E+22	M _{ob} =M _o -M _{oa}
背景領域	すべり量	D _b (cm)	732.2	$D_b=M_{Ob}/\mu S_b$
	応力降下量	$\Delta \sigma_{\rm b}$ (MPa)	4.9	$\Delta \sigma_{b}$ =0.2 $\Delta \sigma_{a}$
	ライズタイム	τ _b (s)	33.33	τ b=0.5W/Vr, W:断層幅
	, Q値	Q	110f ^{0.69}	佐藤(まか(1994)

ケース名	断層設定位置	地震 規模	断層 傾斜角 (°)	SMGA位置	短周期 レベル
基本震源モデル	フィリピン海プレート の北東限を考慮し、 三陸沖中部~ 茨城県沖に設定	Mw9.0	12(東半分) 21(西半分)	過去の地震 発生状況を 踏まえ配置	当該地域で発生 した過去の地震 の短周期レベル に基づき設定
SMGA位置の 不確かさを考慮	フィリピン海プレート の北東限を考慮し、 三陸沖中部~ 茨城県沖に設定	Mw9.0	12(東半分) 21(西半分)	茨城県沖の SMGA位置 を敷地近傍 に配置	当該地域で発生 した過去の地震 の短周期レベル に基づき設定
短周期レベルの 不確かさを考慮	フィリピン海プレート の北東限を考慮し、 三陸沖中部~ 茨城県沖に設定	Mw9.0	12(東半分) 21(西半分)	過去の地震 発生状況を 踏まえ配置	基本震源モデル の1.5倍
SMGA位置と 短周期レベルの 不確かさの重畳 を考慮	フィリピン海プレート の北東限を考慮し、 三陸沖中部~ 茨城県沖に設定	Mw9.0	12(東半分) 21(西半分)	茨城県沖の SMGA位置 を敷地近傍 に配置	基本震源モデル の1.5倍

第5.6.13表 2011年東北地方太平洋沖型地震の検討ケース

設定値 設定方法 項目 $\theta(^{\circ})$ 200 走向 F-net δ_1 (°) 傾斜角1(東側) 12 壇ほか(2005) 傾斜角2(西側) $\delta_2(^\circ)$ 壇ほか(2005) 21 すべり角 λ(°) 88 F-net 長さ L(km) 500 断層面積に基づき算定 W(km) 200 断層面積に基づき算定 幅 基準点北緯 N(°) 38.1035 本震の震源位置(気象庁) E(°) 基準点東経 142.8610 本震の震源位置(気象庁) 本震の震源位置(気象庁) 基準点深さ 23.7 H(km) 上端深さ $h_u = H - w_1 \sin \delta_1, w_1 = 55 km$ h_u(km) 12.3 下端深さ h_l(km) 68.9 $h_1=H+(100-w_1)\sin\delta_1+100\sin\delta_2$ S(km²) 断層面積 100000 logS=M-4.0, 佐藤(1989) 平均応力降下量 $\Delta \sigma$ (MPa) 3.08 $M_0=16/7\times(S/\pi)^{3/2}\Delta\sigma$ 地震モーメント $M_0(N \cdot m)$ 4.00E+22 logM₀=1.5M_w+9.1, Hanks and Kanamori (1979) モーメントマク゛ニチュート゛ 9.0 2011年東北地方太平洋沖地震 M_W 平均すべり量 D(cm) 854.3 $D=M_0/(\mu S)$ $\mu = \rho V_s^2$, $\rho = 3.08 g/cm^3$ 剛性率 μ (N/m²) 4.68E+10 地震調査研究推進本部 (2002), (2005) 地震調査研究推進本部 せん断波速度 V_s(km/s) 3.9 (2002), (2005) 地震調査研究推進本部 破壊伝播速度 V_r(km/s) 3.0 (2002), (2005) $S_a(km^2)$ 12500 S_a=cS, c=0.125 面積 地震モーメント $M_{0a}(N \cdot m)$ 1.00E+22 $M_{0a} = \mu D_a S_a$ すべり量 SMGA全体 D_a(cm) 1708 6 $D_a=2 \times D$ 応力降下量 $\Delta \sigma_{a}$ (MPa) 24.6 $\Delta \sigma_{a} = S/S_{a} \times \Delta \sigma$ $A_a = (\Sigma A_{ai}^2)^{1/2} = 5^{1/2} A_{a1}$ 短周期レベル $A_a(N \cdot m/s^2)$ 2.97E+20 面積 $S_{a1}(km^2)$ 2500 $S_{a1}=S_a/5$ 地震モーメント 2.00E+21 $M_{0a1} = M_{0a}S_{a1}^{1.5} / \Sigma S_{ai}^{1.5} = M_{0a} / 5$ M_{0a1}(N⋅m) すべり量 1708.6 D_{a1}(cm) $D_{a1}=M_{0a1}/(\mu S_{a1})$ 各SMGA 応力降下量 $\Delta \sigma_{a1}$ (MPa) 24.6 $\Delta \sigma_{a1} = \Delta \sigma_{a}$ 短周期レベル 1.33E+20 ${\sf A}_{a1}\!\!=\!\!4\,\pi\,{\sf r}_1\,\Delta\,\,\sigma_{a1}{\sf V}_{s}^{\ 2}\!,\,{\sf r}_1\!\!=\!\!({\sf S}_{a1}/\,\pi\,)^{1/2}$ $A_{a1}(N \cdot m/s^2)$ ライズタイム 8.33 τ_{a1} =0.5 W_{ai}/V_r , W_{ai} :SMGA幅 $\tau_{a1}(s)$ 面積 S_b(km²) 87500 S_b=S-S_a 地震モーメント $M_{0b}(N \cdot m)$ 3.00E+22 $M_{0b} = M_0 - M_{0a}$ 背景領域 732.2 すべり量 D_b(cm) $D_{b}=M_{0b}/\mu S_{b}$ 応力降下量 $\Delta \sigma_{\rm b}$ (MPa) 4.9 $\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$ ライズタイム τ₀=0.5W/V_r, W:断層幅 τ_b(s) 33.33 110f 0.69 Q値 Q 佐藤ほか(1994)

第5.6.14表(1) 2011 年東北地方太平洋沖型地震の断層パラメータ (不確かさを考慮したケース:SMGA 位置)

	項目		設定値	設定方法
	走向	θ(°)	200	F-net
	角1(東側)	δ ₁ (°)	12	壇ほか(2005)
	角2(西側)	δ,(°)	21	壇ほか(2005)
	べり角	λ(°)	88	F-net
	長さ	L(km)	500	断層面積に基づき算定
	幅	W(km)	200	断層面積に基づき算定
基準	点北緯	N(°)	38.1035	本震の震源位置(気象庁)
基準	■ 点東経	E(°)	142.8610	本震の震源位置(気象庁)
基準	「「「」「」	H(km)	23.7	本震の震源位置(気象庁)
Ŀ	端深さ	h _u (km)	12.3	$h_u=H-w_1\sin\delta_1, w_1=55km$
آ	端深さ	h _l (km)	68.9	h ₁ =H+(100-w ₁)sin δ 1+100sin δ 2
断	層面積	S(km²)	100000	logS=M−4.0, 佐藤(1989)
平均応	力降下量	$\Delta \sigma$ (MPa)	3.08	$M_0=16/7 \times (S/\pi)^{3/2} \Delta \sigma$
地震 [:]	モーメント	M₀(N·m)	4.00E+22	logM ₀ =1.5M _w +9.1, Hanks and Kanamori (1979)
モーメント	マク゛ニチュート゛	M _w	9.0	2011年東北地方太平洋沖地震
平均すべり量		D(cm)	854.3	$D=M_0/(\mu S)$
剛性率		μ (N/m ²)	4.68E+10	μ=ρV _s ², ρ=3.08g/cm³ 地震調査研究推進本部 (2002), (2005)
せん断波速度		V _s (km∕s)	3.9	地震調査研究推進本部 (2002),(2005)
破壊伝播速度		V _r (km∕s)	3.0	地震調査研究推進本部 (2002), (2005)
	面積	S _a (km²)	12500	S _a =cS, c=0.125
	地震モーメント	M _{0a} (N⋅m)	1.00E+22	$M_{0a} = \mu D_a S_a$
SMGA全体	すべり量	D _a (cm)	1708.6	D _a =2 × D
	応力降下量	$\Delta \sigma_{a}$ (MPa)	37.0	$\Delta \sigma_{a} = S/S_{a} \times \Delta \sigma \times 1.5$
	短周期レベル	$A_a(N \cdot m/s^2)$	4.46E+20	$A_a = (\Sigma A_{ai}^2)^{1/2} = 5^{1/2} A_{a1}$
		S _{a1} (km²)	2500	S _{a1} =S _a /5
	地震モーメント	M _{0a1} (N⋅m)	2.00E+21	${\sf M}_{0a1}{=}{\sf M}_{0a}{\sf S}_{a1}^{1.5}\!/\Sigma{\sf S}_{ai}^{1.5}{=}{\sf M}_{0a}\!/5$
各SMGA	すべり量	D _{a1} (cm)	1708.6	$D_{a1}=M_{0a1}/(\mu S_{a1})$
	応力降下量	$\Delta \sigma_{a1}$ (MPa)	37.0	$\Delta \sigma_{a1} = \Delta \sigma_{a}$
	短周期レベル	$A_{a1}(N \cdot m/s^2)$	1.99E+20	$A_{a1}=4 \pi r_1 \Delta \sigma_{a1} V_s^2$, $r_1=(S_{a1}/\pi)^{1/2}$
	ライズタイム	τ _{a1} (s)	8.33	て _{a1} =0.5W _{ai} /V _r , W _{ai} :SMGA幅
		S _b (km²)	87500	S _b =S-S _a
	地震モーメント	M _{0b} (N⋅m)	3.00E+22	M _{0b} =M ₀ -M _{0a}
背景領域	すべり量	D _b (cm)	732.2	$D_b = M_{0b} / \mu S_b$
	応力降下量	$\Delta \sigma_{\rm b}$ (MPa)	7.4	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$
	ライズタイム	τ _b (s)	33.33	τ _b =0.5W/V _r , W:断層幅
	Q値	Q	110f ^{0.69}	佐藤ほか(1994)

第5.6.14表(2) 2011 年東北地方太平洋沖型地震の断層パラメータ (不確かさを考慮したケース:短周期レベル)

	項目		設定値	設定方法
;	走向	θ(°)	200	F-net
傾斜角1(東側)		δ ₁ (°)	12	壇ほか(2005)
傾斜角	角2(西側)	δ ₂ (°)	21	壇ほか(2005)
च	べり角	λ(°)	88	F-net
	長さ	L(km)	500	断層面積に基づき算定
	幅	W(km)	200	断層面積に基づき算定
基準	点北緯	N(°)	38.1035	本震の震源位置(気象庁)
基準	点東経	E(°)	142.8610	本震の震源位置(気象庁)
基準	■点深さ	H(km)	23.7	本震の震源位置(気象庁)
上	端深さ	h _u (km)	12.3	$h_u=H-w_1\sin\delta_1, w_1=55km$
۲	端深さ	h _l (km)	68.9	h _l =H+(100-w ₁)sin δ ₁ +100sin δ ₂
断	層面積	S(km²)	100000	logS=M−4.0, 佐藤(1989)
平均応	力降下量	$\Delta \sigma$ (MPa)	3.08	$M_0=16/7\times(S/\pi)^{3/2}\Delta\sigma$
地震	モーメント	M₀(N·m)	4.00E+22	$\rm logM_0=1.5M_w+9.1,~Hanks$ and Kanamori (1979)
モーメント	マク゛ニチュート゛	M _w	9.0	2011年東北地方太平洋沖地震
平均	すべり量	D(cm)	854.3	D=M ₀ /(µS)
剛性率		μ (N/m ²)	4.68E+10	μ=ρV _s ², ρ=3.08g/cm³ 地震調査研究推進本部 (2002), (2005)
せん断波速度		V₅(km∕s)	3.9	地震調査研究推進本部 (2002),(2005)
破壊伝播速度		V _r (km∕s)	3.0	地震調査研究推進本部 (2002),(2005)
	面積	S _a (km²)	12500	S _a =cS, c=0.125
	地震モーメント	M _{0a} (N⋅m)	1.00E+22	$M_{0a} = \mu D_a S_a$
SMGA全体	すべり量	D _a (cm)	1708.6	$D_a=2 \times D$
	応力降下量	$\Delta \sigma_{a}$ (MPa)	37.0	$\Delta \sigma_a = S/S_a \times \Delta \sigma \times 1.5$
	短周期レベル	$A_a(N \cdot m/s^2)$	4.46E+20	$A_a = (\Sigma A_{ai}^2)^{1/2} = 5^{1/2} A_{a1}$
	面積	S _{a1} (km²)	2500	S _{a1} =S _a /5
	地震モーメント	M _{0a1} (N⋅m)	2.00E+21	$M_{0a1} = M_{0a} S_{a1}^{1.5} / \Sigma S_{ai}^{1.5} = M_{0a} / 5$
冬SMCA	すべり量	D _{a1} (cm)	1708.6	$D_{a1}=M_{0a1}/(\mu S_{a1})$
ASMOA	応力降下量	$\Delta \sigma_{a1}$ (MPa)	37.0	$\Delta \sigma_{a1} = \Delta \sigma_{a}$
短周期レベル ライズタイム		$A_{a1}(N \cdot m/s^2)$	1.99E+20	$A_{a1}=4\pi r_1 \Delta \sigma_{a1} V_s^2$, $r_1=(S_{a1}/\pi)^{1/2}$
		$\tau_{a1}(s)$	8.33	τ_{a1} =0.5 W_{ai}/V_r , W_{ai} :SMGA幅
	面積	S _b (km ²)	87500	S _b =S-S _a
	地震モーメント	M _{0b} (N⋅m)	3.00E+22	M _{ob} =M ₀ -M _{oa}
背景領域	すべり量	D _b (cm)	732.2	$D_{b} = M_{0b} / \mu S_{b}$
	応力降下量	$\Delta \sigma_{\rm b}$ (MPa)	7.4	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$
	ライズタイム	τ _b (s)	33.33	τ _b =0.5W/V _r , W:断層幅
	 Q値	Q	110f ^{0.69}	佐藤ほか(1994)

第5.6.14表(3) 2011 年東北地方太平洋沖型地震の断層パラメータ (不確かさを考慮したケース: SMGA 位置と短周期レベルの不確かさの重畳)

第5.6.15表 2011年東北地方太平洋沖型地震の地震動評価に用いる要素地震の諸元

項	Ī	設定値		
発生	日時	2011 年 3 月28 日 7 時 23 分		
気象庁マグ	ブニチュード	6.5		
雪山位罢	東経(゜)	142.35		
辰天位直	北緯(゜)	38.38		
震源深	さ(km)	31.7		
走向	(°)*	281 ; 127		
傾斜	(°)*	67 ; 26		
すべり食	角(°) [※]	-101;-67		
地震モーメ	ント (N•m) [※]	1.66×10^{18}		
コーナー周	司波数 (Hz)	0.58		
応力降下	量 (MPa)	47.5		

(要素地震(北部))

※ F-netによる

(要素地震(南部))

項	E	設定値		
発生	日時	2005 年 10 月 19 日 20 時 44 分		
気象庁マグ	ブニチュード	6.3		
雪山位罢	東経(゜)	141.04		
辰天位直	北緯(゜)	36.38		
震源深	さ(km)	48.3		
走向	(°)*	25 ; 209		
傾斜	(°)*	68 ; 22		
すべり食	角(°) [※]	88 ; 94		
地震モーメ	ント (N・m) [※]	3.18×10^{18}		
コーナー周	司波数 (Hz)	0.31		
応力降下	量 (MPa)	12.5		

※ F-netによる

第5.6.16表 茨城県南部の地震の断層パラメータ

(基本震源モデル)

	項目		設定値	設定方法	
畫	基準点	N(°)	36.242	中央防災会議(2013)のフィリピン海プレート内の	
(断層	፤北西端)	E(°)	1 40.1 1	地震を想定する領域の北端	
Ŀ	端深さ	h(km)	36~52	フィリピン海プレートの上面位置	
気象庁	マグニチュート	Мј	7.3	Mj=Mw	
モーメント	マグニチュート゛	Mw	7.3	中央防災会議(2013)	
地震	モーメント	M ₀ (N•m)	1.12E+20	logM ₀ =1.5M _w +9.1, Hanks and Kanamori (1979)	
:	走向	θ(°)	1 40.7	中央防災会議(2013)のフィリピン海プレート内の 地震を想定する領域	
伯	顏斜角	δ(°)	90	中央防災会議(2013)	
ずオ	の種類	-	右横ずれ	長谷川ほか(2013)	
す	べり角	λ(°)	180	長谷川ほか(2013)	
平均点	动降下量	$\Delta \sigma$ (MPa)	」 σ(MPa) 10.3 中央防災会議(2013)		
断層面積		S(km²)	900	中央防災会議(2013)	
ちみ		L(km)	45	L=S/W	
巾逼		W(km)	20	中央防災会議(2013)のフィリピン海プレートの厚さ	
密度		ρ(g/cm ³)	2.875	$\mu = \rho {\sf V_s}^2$	
せん断波速度		V _s (km/s)	4.0	佐藤(2003) ⁽⁵⁹⁾	
岡	则性率	μ (N/m ²)	4.6E+10	中央防災会議(2013)	
平均すべり量		D(m)	2.55	D=M ₀ /(µS)	
破壊伝播速度		V _r (km/s)	2.9	中央防災会議(2013)	
高周波	b遮断係数	f _{max} (Hz)	13.5	地震調査研究推進本部の海溝型地震	
	面積	S _a (km²)	150	中央防災会議(2013)	
	すべり量	D _a (m)	5.1	D _a =2D	
ビスペリティ	地震モーメント	M _{0a} (N•m)	3.52E+19	$M_{Oa} = \mu D_a S_a$	
	応力降下量	Δσ _a (MPa)	62	中央防災会議(2013)	
	短周期レベル (参考)	A(N•m/s²)	8.61E+19	$A_a=4\pi r_a \Delta \sigma_a V_s^2$	
	面積	S _b (km²)	750	Sb=S-Sa	
방물역법	すべり量	D _b (m)	2.23	$D_b = M_{0b} / (\mu S_b)$	
^{破壊} 高周) アスペリティ 背景領域	地震モーメント	M _{ob} (N•m)	7.7E+19	M _{ob} =M _o -M _{oa}	
	実効応力	Δσ _b (MPa)	30 ⁻⁰³² フィッピング レンビードの上面 位置 7.3 Mj=Mw 7.3 中央防災会議(2013) 1.12E+20 logMo=1.5Mw+9.1, Hanks and Kanamori (1979) 140.7 中央防災会議(2013)のフィリピン海ブレート内の 地震を想定する領域 90 中央防災会議(2013) 右横ずれ 長谷川ほか(2013) 10.3 中央防災会議(2013) 900 中央防災会議(2013) 900 中央防災会議(2013) 900 中央防災会議(2013) 900 中央防災会議(2013) 10.3 中央防災会議(2013) 900 中央防災会議(2013) 45 L=S/W 20 中央防災会議(2013)のフィリビン海ブレートのJ 2.875 $\mu = \rho V_s^2$ 4.0 佐藤(2003) ⁽⁶⁹⁾ 4.6E+10 中央防災会議(2013) 2.55 D=Mo/(μ S) 2.9 中央防災会議(2013) 13.5 地震調査研究推進本部の海溝型地震 150 中央防災会議(2013) 5.1 D _a =2D 352E+19 Mo _o = μ D _o S _o) 62 中央防災会議(2013) 861E+19 A _a =4 π r _a Δ σ_a V _a ² <td< td=""><td>$\Delta \sigma_{\rm b}$=0.2 $\Delta \sigma_{\rm a}$</td></td<>	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$	
	 Q値	Q	110f ^{0.69}	佐藤ほか(1994)	

ケース名	地震 規模 M	断層 傾斜角 ([°])	応力 降下量 (MPa)	アスペリティ位置	震源位置	等価 震源距離 ^(km)
基本震源モデル	7.3	90	62	海洋性マントルの 最上部に配置	フィリピン海プレート内の 地震を想定する 領域のうち 敷地に近い位置	63.1
断層傾斜角の 不確かさを考慮	7.3	48	62	海洋性マントルの 最上部に配置	フィリピン海プレート内の 地震を想定する 領域のうち 敷地に近い位置	66.7
アスペリティ位置の 不確かさを考慮	7.3	90	62	敷地に近くなるように 海洋性地殻内の 上端に配置	フィリピン海プレート内の 地震を想定する 領域のうち 敷地に近い位置	61.5
応力降下量の 不確かさを考慮	7.3	90	77.59	海洋性マントルの 最上部に配置	フィリピン海プレート内の 地震を想定する 領域のうち 敷地に近い位置	62.4
地震規模の 不確かさを考慮	7.4	90	62	海洋性マントルの 最上部に配置	フィリピン海プレート内の 地震を想定する 領域のうち 敷地に近い位置	63.2

第5.6.17表 茨城県南部の地震の検討ケース

第5.6.18表(1) 茨城県南部の地震の断層パラメータ

(不確かさを考慮したケース:断層傾斜角)

	項目		設定値	設定方法	
基		N(°)	36.242	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
(断層	引北西 端)	E(°)	140.11	地震を想定する領域の北端	
上	端深さ	h(km)	36~49	フィリピン海プレートの上面位置 Mj=Mw	
気象庁	マク゛ニチュート゛	Mj	7.3	Mj=Mw	
モーメント	マク゛ニチュート゛	M _w	7.3	中央防災会議(2013)	
地震:	モーメント	M ₀ (N·m)	1.12E+20	logM ₀ =1.5M _w +9.1, Hanks and Kanamori (1979)	
:	走向	θ(°)	140.7	中央防災会議(2013)のフィリピン海プレート内の 地震を想定する領域	
伯	〔斜角	δ(°)	48	敷地へ向く傾斜角	
-#* da	の毛粉	-	右横ずれ	長谷川ほか(2013)	
ずれの種類		-	縦ずれ	破壊の進行方向が敷地に向かう設定	
オズル色		λ(°)	180	長谷川ほか(2013):右横ずれの場合	
9	ヘッ円	λ(°)	90	逆断層:縦ずれの場合	
平均応	与降下量	$\Delta \sigma$ (MPa)	10.3	中央防災会議(2013)	
断	所層面積 S(km ²) 900 中央防災会議(2013)		中央防災会議(2013)		
長さ		L(km)	45	L=S/W	
幅		W(km)	20	中央防災会議(2013)のフィリピン海プレートの厚さ	
密度 p(g/cm ²		ρ (g/cm ³)	2.875	$\mu = \rho V_s^2$	
せん	断波速度	V _s (km/s)	4.0	佐藤(2003)	
岡	则性率	μ (N/m ²)	4.6E+10	中央防災会議(2013)	
平均	すべり量	D(m)	2.55	$D=M_0/(\mu S)$	
破壊伝播速度		V _r (km/s)	2.9	中央防災会議(2013)	
高周波	返断係数	f _{max} (Hz)	13.5	地震調査研究推進本部の海溝型地震	
	面積	S _a (km²)	150	中央防災会議(2013)	
	すべり量	D _a (m)	5.1	D _a =2D	
アスペリティ	地震モーメント	M _{0a} (N·m)	3.52E+19	$M_{0a} = \mu D_a S_a$	
	応力降下量	$\Delta \sigma_{a}$ (MPa)	62	中央防災会議(2013)	
	短周期レベル (参考)	A(N·m/s²)	8.61E+19	$A_a = 4\pi r_a \Delta \sigma_a V_s^2$	
	面積	S _b (km²)	750	S _b =S-S _a	
背星臼城	すべり量	D _b (m)	2.23	$D_b = M_{0b} / (\mu S_b)$	
日只限以	地震モーメント	M _{0b} (N·m)	7.7E+19	M _{ob} =M _o -M _{oa}	
	実効応力	$\Delta \sigma_{\rm b}$ (MPa)	12.4	$\Delta \sigma_{\rm b} = 0.2 \Delta \sigma_{\rm a}$	
	Q值	Q	110f ^{0.69}	佐藤ほか(1994)	

第5.6.18表(2) 茨城県南部の地震の断層パラメータ

(不確かさを考慮したケース:アスペリティ位置)

	項目		設定値	設定方法	
	<u></u> 集準点	N(°)	36.242	中央防災会議(2013)のフィリピン海プレート内の	
(断層	፤ 北西端)	E(°)	140.11	地震を想定する領域の北端	
Ŀ	端深さ	h(km)	36~52	フィリピン海プレートの上面位置	
気象庁	マグニチュート	Mj	7.3	Mj=Mw	
モーメント	マグニチュート゛	Mw	7.3	中央防災会議(2013)	
地震	モーメント	M ₀ (N•m)	1.12E+20	logMo=1.5Mw+9.1, Hanks and Kanamori(1979)	
:	走向	θ(°)	140.7	中央防災会議(2013)のフィリピン海プレート内の 地震を想定する領域	
14	顏斜角	δ(°)	90	中央防災会議(2013)	
ずオ	の種類	-	右横ずれ	長谷川ほか(2013)	
ਰ	べり角	λ(°)	180	長谷川ほか(2013)	
平均点	动降下量	$\Delta \sigma$ (MPa)	10.3	中央防災会議(2013)	
断層面積		S(km²)	900	中央防災会議(2013)	
ちみ		L(km)	45	L=S/W	
巾偪		W(km)	20	中央防災会議(2013)のフィリピン海プレートの厚さ	
密度		ρ(g/cm ³)	2.875	$\mu = \rho \vee_s^2$	
せん断波速度		V _s (km/s)	4.0	佐藤(2003)	
岡	刂性率	μ (N/m ²)	4.6E+10	中央防災会議(2013)	
平均	すべり量	D(m)	2.55	D=M ₀ /(µ S)	
破壊	伝播速度	Vr(km/s) 2.9 中央防災会議(2013)		中央防災会議(2013)	
高周波	b遮断係数	f _{max} (Hz)	13.5	地震調査研究推進本部の海溝型地震	
	面積	S _a (km²)	150	中央防災会議(2013)	
	すべり量	D _a (m)	5.1	D _a =2D	
平均応力 断層面 長さ での成 での成 でなりすへ でなし、新波 ので、 でスペリティ す り う	地震モーメント	M _{0a} (N•m)	3.52E+19	$M_{0a} = \mu D_a S_a$	
	応力降下量	$\Delta \sigma_{a}$ (MPa)	62	中央防災会議(2013)	
	短周期レベル (参考)	A(N•m/s²)	8.61E+19	$A_{a}\!\!=\!\!4\pi \ r_{a}\!\! \bigtriangleup \sigma_{a}\! \lor_{s}^2$	
	面積	S _b (km²)	750	S _b =S-S _a	
お客領は	すべり量	D _b (m)	2.23	$D_b=M_{0b}/(\mu S_b)$	
モーメンド 地震 デ 何 ずれ すっ 平均応 低 「 で で た ん 聞 で で た の で つ つ で で つ で つ で つ で つ で つ て つ て つ で つ つ て つ つ で つ て つ つ で つ つ つ つ つ つ で つ つ つ つ つ つ つ つ つ つ つ つ つ	地震モーメント	M _{0b} (N•m)	7.7E+19	M _{0b} =M ₀ -M _{0a}	
	実効応力	$\Delta \sigma_{b}$ (MPa)	12.4	7.3 Mj=Mw 7.3 中央防災会議(2013) 2E+20 logMo=1.5Mw+9.1, Hanks and Kanamori (1979) 40.7 中央防災会議(2013)のフィリビン海ブレート内の 地震を想定する領域 90 90 中央防災会議(2013) 夏 中央防災会議(2013) 萬 長谷川ほか(2013) 180 長谷川ほか(2013) 103 中央防災会議(2013) 900 中央防災会議(2013) 180 長谷川ほか(2013) 180 長谷川ほか(2013) 180 長谷川ほか(2013) 180 中央防災会議(2013) 180 中央防災会議(2013)のフィリピン海ブレートの厚さ 875 $\mu = \rho V_s^2$ 4.0 佐藤(2003) 181 中央防災会議(2013)のフィリピン海ブレートの厚さ 875 $\mu = \rho V_s^2$ 4.0 佐藤(2003) 181 中央防災会議(2013) 182 D=Mo/(μ S) 2.9 中央防災会議(2013) 13.5 地震調査研究推進本部の海溝型地震 15.0 中央防災会議(2013) 5.1 D_a=2D 2E+19 Moa= μ DaSa 62	
	Q値	Q	110f ^{0.69}	佐藤ほか(1994)	

第5.6.18表(3) 茨城県南部の地震の断層パラメータ

			32 <i>x</i>		
	項目		設定値	設定方法	
基準点		N(°)	36.200	中央防災会議(2013)のフィリピン海プレート内の	
(断層	督北西 端)	中央防災装置 E(°) 140.15 h(km) 38~50		地震を想定する領域の北端	
۲	端深さ	h(km)	38~50	フィリピン海プレートの上面位置 Mi=Mw	
気象庁	マク゛ニチュート゛	Mj	7.3	Mj=Mw	
モーメント	マク゛ニチュート゛	M _w	7.3	中央防災会議(2013)	
地震	モーメント	M₀(N·m)	1.12E+20	${\rm logM_0=1.5M_w+9.1}$, Hanks and Kanamori (1979)	
	走向	θ(°)	140.7	中央防災会議(2013)のフィリピン海プレート内の 地震を想定する領域	
化	頁斜角	δ(°)	90	中央防災会議(2013)	
ずれ	ぃの種類	-	右横ずれ	長谷川ほか(2013)	
す	べり角	λ(°)	180	長谷川ほか(2013)	
平均点	忘力降下量	$\Delta \sigma$ (MPa)	15.37	$\Delta \sigma = (7 \pi^{1.5}/16) (M_0/S^{1.5})$	
断層面積		S(km²)	681	$S=(49 \pi^4 \beta^4 M_0^2)/(16 A^2 S_a)$	
長さ		L(km)	34.07	L=S/W	
幅		W(km)	20	中央防災会議(2013)のフィリピン海プレートの厚さ	
密度		ho (g/cm ³)	2.875	$\mu = \rho V_s^2$	
せん断波速度		V _s (km/s)	4.0	佐藤(2003)	
置	削性率	μ (N/m ²)	4.6E+10	中央防災会議(2013)	
平均	すべり量	D(m)	3.58	D=M ₀ /(μS)	
破壊	伝播速度	V _r (km∕s)	2.9	中央防災会議(2013)	
短周	期レベル	A(N·m/s²)	1.02E+20	A=9.84×10 ¹⁷ ×M₀ ^{1/3} [dyne−cm] (笹谷ほか(2006)のM₀−A関係)	
高周波	坡遮断係数	f _{max} (Hz)	13.5	地震調査研究推進本部の海溝型地震	
	面積	S _a (km²)	135	S _a =1.25×10 ⁻¹⁶ M₀ ^{2/3} [dyne−cm] (笹谷ほか(2006)のM₀−S₂関係)	
アスペリティ	すべり量	D _a (m)	7.16	D _a =2D	
	地震モーメント	$M_{0a}(N \cdot m)$	4.45E+19	$M_{0a} = \mu D_a S_a$	
	応力降下量	$\Delta \sigma_{a}$ (MPa)	77.59	$\Delta \sigma_{a}$ =A/(4 $\pi \beta^{2}$)/(S _a / π) ^{0.5}	
	面積	S _b (km²)	546	S _b =S-S _a	
감목여낪	すべり量	D _b (m)	2.70	$D_{b}=M_{0b}/(\mu S_{b})$	
日只限以	地震モーメント	M _{0b} (N⋅m)	6.77E+19	M _{0b} =M ₀ -M _{0a}	
	実効応力	$\Delta \sigma_{\rm b}$ (MPa)	15.52	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$	
	 Q值	Q	110f ^{0.69}		

(不確かさを考慮したケース:応力降下量)

第5.6.18表(4) 茨城県南部の地震の断層パラメータ

	樟)	地震規	·	r ース	たろ	盧∖	を考	かさ	(不確)	(
--	----	-----	---	-------------	----	----	----	----	------	---

	項目		設定値	設定方法
基	达 準点	N(°)	36.277	中央防災会議(2013)のフィリピン海プレート内の
(断層	聲北西端)	E(°)	140.07	地震を想定する領域の北端
上	端深さ	h(km)	33~53	フィリピン海プレートの上面位置
気象庁	マク゛ニチュート゛	Mj	7.4	Mj=Mw
モーメント	モーメントマグニチュート [*] M ₁		7.4	与条件
地震·	モーメント	M₀(N·m)	1.58E+20	${\rm logM_0=1.5M_w+9.1}$, Hanks and Kanamori (1979)
:	走向	θ(°)	140.7	中央防災会議(2013)のフィリピン海プレート内の 地震を想定する領域
伯	〔斜角	δ(°)	90	中央防災会議(2013)
ずれ	ぃの種類	-	右横ずれ	長谷川ほか(2013)
ਰ	べり角	λ(°)	180	長谷川ほか(2013)
平均応	5力降下量	$\Delta \sigma$ (MPa)	10.3	中央防災会議(2013)
断	層面積	S(km²)	1120	与条件より算定
	長さ	L(km)	56	L=S/W
	幅	W(km)	20	中央防災会議(2013)のフィリピン海プレートの厚さ
密度		ho (g/cm ³)	2.875	$\mu = \rho V_s^2$
せん断波速度		V _s (km/s)	4.0	佐藤(2003)
剛性率		μ (N/m ²)	4.6E+10	中央防災会議(2013)
平均すべり量		D(m)	3.08	D=M ₀ /(µS)
破壊伝播速度		V _r (km∕s)	2.9	中央防災会議(2013)
高周波遮断係数		f _{max} (Hz)	13.5	地震調査研究推進本部の海溝型地震
	面積	S _a (km²)	187	S _a =0.167S
	すべり量	D _a (m)	6.15	D _a =2D
アスペリティ	地震モーメント	M _{0a} (N⋅m)	5.28E+19	$M_{0a} = \mu D_a S_a$
主1平	応力降下量	$\Delta \sigma_{a}$ (MPa)	62	中央防災会議(2013)
	短周期レベル(参考)	$A_a(N \cdot m/s^2)$	9.61E+19	$A_a = 4 \pi r_a \Delta \sigma_a V_s^2$
	面積	S _{a1} (km²)	93	S _{a1} =S _a /2
	すべり量	D _{a1} (m)	6.15	D _{a1} =D _a
各	地震モーメント	$M_{0a1}(N \cdot m)$	2.64E+19	$M_{0a1} = \mu D_{a1} S_{a1}$
7	応力降下量	$\Delta \sigma_{a1}$ (MPa)	62	中央防災会議(2013)
	短周期レベル (参考)	A_{a1} (N·m/s ²)	6.79E+19	$A_{a1}=4\pi r_{a1}\Delta\sigma_{a1}V_s^2$
	面積	S _b (km²)	933	S _b =S-S _a
背星结械	すべり量	D _b (m)	2.46	$D_{b}=M_{0b}/(\mu S_{b})$
日只限以	地震モーメント	M _{0b} (N⋅m)	1.06E+20	M _{0b} =M ₀ -M _{0a}
	実効応力	$\Delta \sigma_{\rm b}$ (MPa)	12.4	$\Delta \sigma_{\rm b}$ =0.2 $\Delta \sigma_{\rm a}$
	Q値	Q	110f ^{0.69}	佐藤ほか(1994)

周期	水平成分	鉛直成分
	擬似速度	擬似速度
(s)	(cm/s)	(cm/s)
0.02	1.910	1.273
0.03	3.500	2.500
0.04	6.300	4.400
0.06	12.000	7.800
0.09	20.000	13.000
0.15	31.000	19.000
0.30	43.000	26.000
0.60	60.000	35.000
5.00	60.000	35.000

第5.6.19表 標準応答スペクトルのコントロールポイント

項日	比較	2008年岩手・宮城内陸地震	敷地近傍
	結果		
地質	Δ	・ 晨源域近傍には、主に中新統から鮮新 統の堆積岩・火山岩等、第四系の火山 岩類が分布する。	 ・ 敷地近傍には、中新紙の堆積岩、鮮 新統の堆積岩、更新統の段丘堆積物 等、完新統の沖積層及び砂丘砂層が 分布する。
地質 構造	×	 震源域近傍には、中新世以降に形成された褶曲構造が認められる。 カルデラが密集することから、地質構造が複雑である。 	 敷地近傍に広く分布する鮮新統~下 部更新統(久米層)及びこれを不整合 に覆う上部更新統はほぼ水平に分布 している。 敷地近傍にカルデラは分布しない。
変動 地形等	×	 下記の観点より、震源域近傍は変動地 形等の認識が難しい地域である。 - 震源域は山間部に位置し、近傍に河 成段丘が一部分布するのみであり、 指標となる地形が少ない。 - 大規模地すべりを含めた地すべりが 密集している。 田力ほか(2009)⁽⁶⁰⁾によると、枛木立 付近には短いながら明瞭な断層変位地 形があり、低位段丘礫層堆積期以降に 複数回、比較的活発な活動を繰り返し ていることが明らかとなった。 	 下記の観点より、敷地近傍は変動地 形等が認識しやすい地域である。 陸域には後期更新世以降に形成された段丘面が広く分布している。 地すべりが認められない。 海域には堆積層からなる鮮新統及び下部更新統が水平に広く分布している。 変動地形学的調査の結果、敷地近傍陸域に変動地形は認められない。
火山	×	・ 火山フロントに近接する。	・ 火山フロントの遠方に位置する。
地震地 体構造	×	・東北日本弧内帯 (8C) (垣見ほか(2003))	・東北日本弧外帯(8B) (垣見ほか(2003))
応力場	×	 防災科学技術研究所(2013)⁽⁶¹⁾において、ひずみ集中帯と指摘されている。 東西圧縮の逆断層型が卓越 	 ひずみ集中帯と指摘している文献はない。 敷地周辺の茨城県北部では南西-北東引張の正断層型が卓越

第5.6.20表 2008年岩手・宮城内陸地震の震源域と敷地近傍の比較

【凡例】 〇:類似性あり、ム:類似性低い~一部あり、×:類似性なし

項目	比較 結果	2000年鳥取県西部地震 の震源域	敷地近傍
地質	×	 ・ 震源域近傍には、主に白亜系~古第三系の花崗岩及び中新統の安山岩~玄武岩の岩脈が分布する。 	 敷地近傍には、中新統の堆積岩、鮮 新統の堆積岩、更新統の段丘堆積物 等、完新統の沖積層及び砂丘砂層が 分布する。
地質 構造	×	 第四紀中期以降に新たに断層面を形成して、断層が発達しつつあり、活断層の発達過程としては初期ないし未成熟な段階にある。 	 敷地近傍に広く分布する鮮新統~下 部更新統(久米層)及びこれを不整合 に覆う上部更新統はほぼ水平に分布 している。
変動 地形等	×	 下記の観点より、震源域近傍は変動地 形等の認識が難しい地域である。 岡田(2002)⁽⁶²⁾によると、震源域近 傍の活断層の特徴として、第四紀中 期以降に新たな断層面を形成して断 層が発達しつつあり、活断層の発達 過程としては初期ないし未成熟な段 階にある。 震源域に震源断層の方向とほぼ一致す る短く断続するリニアメント群が判読 されるとともにリニアメント沿いで水 平に近い条線をもつ断層露頭が多く確 認され、これらの断層は横ずれ断層に 伴うフラワー構造を呈して地下では1本 の断層に収斂すると推測されている。 	 下記の観点より、敷地近傍は変動地 形等が認識しやすい地域である。 陸域には後期更新世以降に形成された段丘面が広く分布している。 地すべりが認められない。 海域には堆積層からなる鮮新統及び下部更新統が水平に広く分布している。 変動地形学的調査の結果、敷地近傍陸域に変動地形は認められない。
火山	×	・ 火山フロントに近接する。	・ 火山フロントの遠方に位置する。
地震地 体構造	×	 ・中国山地・瀬戸内海(1005) (垣見ほか(2003)) 	・東北日本弧外帯 (8B) (垣見ほか(2003))
応力場	×	 西村(2014)⁽⁶³⁾において、ひずみ集中帯と指摘されている。 東西圧縮の横ずれ断層型が卓越 	 ひずみ集中帯と指摘している文献はない。 敷地周辺の茨城県北部では南西-北東引張の正断層型が卓越

第5.6.21 表 2000 年鳥取県西部地震の震源域と敷地近傍の比較

【凡例】 〇:類似性あり、ム:類似性低い~一部あり、×:類似性なし

第5.6.22 表 標準応答スペクトルに適合する模擬地震波の 振幅包絡線の経時的変化

括则	継続時間	振幅包絡線の経時的変化(s)				
个里力リ	(s)	t _B	t _C	t _D		
水平成分	28.0	3.3	15.0	28.0		
鉛直成分	28.0	3.3	15.0	28.0		

$$\begin{split} \mathsf{M} &= 6.9, \ \mathsf{Xeq} = 10 \ \mathsf{km} \succeq \mathsf{U} \subset 評価 \\ \mathsf{t}_{\mathsf{B}} &= 10^{\ 0.5\mathsf{M} - 2.93} \\ \mathsf{t}_{\mathsf{C}} &- \mathsf{t}_{\mathsf{B}} &= 10^{\ 0.3\mathsf{M} - 1.0} \\ \mathsf{t}_{\mathsf{D}} &- \mathsf{t}_{\mathsf{C}} &= 10^{\ 0.17\mathsf{M} + 0.54 \ \mathsf{log} \mathsf{Xeq} - 0.6} \\ \mathsf{E}(\mathsf{t}) &= \begin{cases} (\mathsf{t} \swarrow \mathsf{t}_{\mathsf{B}})^2 & 0 \leq \mathsf{t} \leq \mathsf{t}_{\mathsf{B}} \\ 1 & \mathsf{t}_{\mathsf{B}} \leq \mathsf{t} \leq \mathsf{t}_{\mathsf{C}} \\ 1 & \mathsf{exp}[(\mathsf{In} 0.1)(\mathsf{t} - \mathsf{t}_{\mathsf{C}}) \diagup (\mathsf{t}_{\mathsf{D}} - \mathsf{t}_{\mathsf{C}})] & \mathsf{t}_{\mathsf{C}} \leq \mathsf{t} \leq \mathsf{t}_{\mathsf{D}} \end{cases} \end{split}$$

	作成条件	作成結果			
標準応答 スペクトル	応答 スペクトル	最大 加速度 (cm/s²)	継続 時間等	応答スペクト ル比 R(T)	SI 比
水平成分	第5.6.29 図	600	第 5.6.30 図	第 5.6.31 図	1.0以上
鉛直成分	第5.6.29 図	400	第 5.6.30 図	第 5.6.31 図	1.0以上

第5.6.23 表 標準応答スペクトルに適合する模擬地震波の作成結果

第5.6.24表 設計用応答スペクトルのコントロールポイント

応答スペクトル		コントロールポイント							
		T _A	Т _В	Tc	Τ _D	Τ _Ε	T _F		
Ss⁻D _H	周期(s)	0.02	0.09	0.13	0.45	2.00	5.00		
	速度 (cm/s)	2.228	25.783	37.242	125.335	220.000	220.000		

(水平成分)

TA~T_Fは周期(s)

(鉛直成分)

応答スペクトル		コントロールポイント							
		TA	Тв	Тc	Τ _D	Τ _Ε	T _F	T _G	Τ _Η
Ss−D _V	周期(s)	0.02	0.09	0.13	0.20	0.60	1.00	2.00	5.00
	速度 (cm/s)	1.592	16.473	24.828	38.197	85.000	100.000	110.000	110.000

TA~THは周期(s)

種別	継続時間	振幅包絡線の経時的変化(s)				
	(s)	t _B	t _c	t _D		
Ss−D _H	142.55	16.60	47.50	142.55		
Ss-Dv	142.55	16.60	47.50	142.55		

第5.6.25 表 設計用応答スペクトルに適合する模擬地震波の振幅包絡線の経時的変化

M=8.3、Xeq=144.9kmとして評価

$$t_B = 10^{0.5M-2.93}$$

 $t_C - t_B = 10^{0.3M-1.0}$
 $t_D - t_C = 10^{0.17M+0.54 \log Xeq - 0.6}$
 $E(t) = \begin{cases} (t \swarrow t_B)^2 & 0 \le t \le t_B \\ 1 & t_B \le t \le t_C \\ exp[(ln0.1)(t-t_C) \swarrow (t_D - t_C)] & t_C \le t \le t_D \end{cases}$

	作成条件	作成結果					
種別	応答スペクトル	最大加速度 (cm/s ²) 継続時間等		応答スペクトル比	SI比		
Ss-D _H	第5.6.33図 (1)	700	第5.6.39図	第5.6.38図	1.0以上		
Ss-D _v	第5.6.33図 (2)	500	第5.6.39図	第5.6.38図	1.0以上		

第5.6.26表 設計用応答スペクトルに適合する模擬地震波の作成結果

		最大加速度 (cm/s ²)			
	基準地震動	NS成分	EW成分	UD成分	
Ss−D	応答スペクトル手法による基準地震動	7(500		
Ss−1	F3断層~F4断層による地震 (短周期レベルの不確かさ、破壊開始点1)	973	711	474	
Ss−2	F3断層~F4断層による地震 (短周期レベルの不確かさ、破壊開始点2)	835	761	436	
Ss−3	F3断層~F4断層による地震 (短周期レベルの不確かさ、破壊開始点3)	948	850	543	
Ss−4	F3断層~F4断層による地震 (断層傾斜角の不確かさ、破壊開始点3)	740	630	405	
Ss-5	2011年東北地方太平洋沖型地震 (SMGA位置と短周期レベルの不確かさの重畳)	670	513	402	
Ss−6	標準応答スペクトルを考慮した地震動	7!	54	572	

第 5.6.27 表 基準地震動 Ss の最大加速度

第5.2.1図 敷地周辺における過去の被害地震の震央分布

(1923年~2011年2月)

(2011年3月~2015年12月)

第5.2.3 図(1) 敷地周辺における M4.0 以上の地震の震源鉛直分布 ((1)~(1')断面)

第5.2.3 図(2) 敷地周辺における M4.0 以上の地震の震源鉛直分布 ((2)~(2')断面)

(1998年1月~2011年2月)

(2011年3月~2015年12月)

第5.2.3 図(3) 敷地周辺における M4.0 以上の地震の震源鉛直分布 ((3)~(3')断面)

(1998年1月~2011年2月)

(2011年3月~2015年12月)

第5.2.3 図(4) 敷地周辺における M4.0 以上の地震の震源鉛直分布 ((4)~(4')断面)

第5.2.4図(3) 敷地周辺における M4.0以下の地震の震央分布(深さ 60km~90km)

第5.2.5 図(1) 敷地周辺における M4.0 以下の地震の震源鉛直分布 ((1)~(1')断面)

第5.2.5 図(2) 敷地周辺における M4.0 以下の地震の震源鉛直分布 ((2)~(2')断面)

第5.2.5 図(3) 敷地周辺における M4.0 以下の地震の震源鉛直分布 ((3)~(3')断面)

(1998年1月~2011年2月)

(2011年3月~2015年12月)

第5.2.5 図(4) 敷地周辺における M4.0 以下の地震の震源鉛直分布 ((4)~(4')断面)

第5.4.1図 敷地周辺の被害地震のマグニチュードー震央距離

第5.4.2図 地質調査結果に基づく敷地周辺の 活断層等から想定されるマグニチュード-震央距離

地震観測位置 (西側)

地震観測位置(北側)

G. L.	地震観測位置		
	西側	北側	
Om			地表面
-1m	0		
-30m		0	
-32m	0		
-95m	0		
-172.5m			解放基盤表面
-174m	0		
-250m		0	

第5.5.1図敷地における地震観測位置

第5.5.2図 敷地地盤で観測された主な地震の震央分布

第5.5.3 図 観測記録の応答スペクトル (地中最深部(G.L.-250m))

第5.5.4図(2) 観測記録の応答スペクトル (各深度、2011年3月11日東北地方太平洋沖地震の余震)

第5.5.4図(3) 観測記録の応答スペクトル (各深度、2011年4月11日福島県浜通りの地震)

地質調査総合センター編(2013)に加筆

第5.5.5図 敷地周辺の重力異常分布

第5.5.6図 敷地における単点微動観測記録による検討結果

第5.5.7図(1) 敷地における地震動の到来方向の検討に用いた地震の震央位置 (4領域)

第5.5.7 図(2) 敷地における地震動の到来方向の検討に用いた地震の震央位置 (9 領域)

$$RI_{A_B'} = \frac{S_A \times X_A}{S_B \times X_B}$$

 $RI_{A_B'}$: 応答スペクトル比
 S_A : 敷地観測記録の加速度応答スペクトル
 S_B : KiK-netひたちなか観測記録の加速度応答スペクトル
 X_A : 敷地までの震源距離
 X_B : KiK-netひたちなかまでの震源距離

第5.5.8図(1) 敷地における地震動の到来方向による検討結果(4領域)

$$RI_{A_B'} = \frac{S_A \times X_A}{S_B \times X_B}$$

 $RI_{A_B'}$: 応答スペクトル比
 S_A : 敷地観測記録の加速度応答スペクトル
 S_B : KiK-netひたちなか観測記録の加速度応答スペクトル
 X_A : 敷地までの震源距離
 X_B : KiK-netひたちなかまでの震源距離

第5.5.8図(2) 敷地における地震動の到来方向による検討結果(9領域)

第5.6.1図(1) 解放基盤波と Noda et al. (2002)の方法による応答スペクトルの比(福島県と茨城県の県境付近で発生した内陸地殻内地震)

第5.6.1 図(2) 解放基盤波と Noda et al. (2002)の方法による応答スペクトルの比 (鹿島灘付近で発生した太平洋プレート間地震)

第5.6.1 図(3) 解放基盤波と Noda et al. (2002)の方法による応答スペクトルの比 (鹿島灘付近で発生した地震を除く太平洋プレート間地震)

第5.6.1 図(4) 解放基盤波と Noda et al. (2002)の方法による応答スペクトルの比 (陸域寄りで発生した海洋プレート内地震)

----- 818年関東諸国の地震

(内陸地殼内地震、水平成分)

- 1677年磐城・常陸・安房・上総・下総の地震

(プレート間地震、水平成分)

1895年霞ヶ浦付近の地震
1921年茨城県龍ヶ崎付近の地震

第5.6.4 図 検討用地震の選定のための応答スペクトルの比較 (海洋プレート内地震、水平成分)

第5.6.5図 断層パラメータの設定フロー (F1 断層〜北方陸域の断層〜塩ノ平地震断層による地震、基本震源モデル)

第5.6.6 図 F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデル(基本震源モデル)

第5.6.7 図(1) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデル(不確かさを考慮したケース:短周期レベル)

第5.6.7 図(2) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデル(不確かさを考慮したケース:断層傾斜角)

第5.6.7 図(3) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデル(不確かさを考慮したケース:アスペリティ位置)

第5.6.8 図(1) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 応答スペクトルに基づく手法による地震動評価結果

(水平成分)

第5.6.8 図(2) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 応答スペクトルに基づく手法による地震動評価結果

(鉛直成分)

第5.6.9 図 F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 地震動評価に用いる要素地震の震央位置

第5.6.10 図(1) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (基本震源モデル、NS 成分)

第5.6.10 図(2) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (基本震源モデル、EW 成分)

第5.6.10 図(3) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (基本震源モデル、UD 成分)

第5.6.10 図(4) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、NS 成分)

第5.6.10 図(5) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、EW 成分)

第5.6.10 図(6) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、UD 成分)

第5.6.10 図(7) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:断層傾斜角、NS 成分)

第5.6.10 図(8) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:断層傾斜角、EW 成分)

第5.6.10 図(9) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:断層傾斜角、UD 成分)

第 5.6.10 図(10) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、NS 成分)

第5.6.10図(11) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、EW 成分)

第5.6.10図(12) F1 断層~北方陸域の断層~塩ノ平地震断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、UD 成分)

第 2.6.11 図 断層パラメータの設定フロー (F3 断層~F4 断層による地震、基本震源モデル)

第5.6.12図 F3 断層~F4 断層による地震の断層モデル (基本震源モデル)

第5.6.13 図(1) F3 断層~F4 断層による地震の断層モデル (不確かさを考慮したケース:短周期レベル)

第5.6.13 図(2) F3 断層~F4 断層による地震の断層モデル (不確かさを考慮したケース:断層傾斜角)

第5.6.13 図(3) F3 断層~F4 断層による地震の断層モデル (不確かさを考慮したケース:アスペリティ位置)

※1 実線は基本震源モデル及び短周期レベルの不確かさ、 破線は断層傾斜角の不確かさ、1 点鎖線はアスペリティ位置の不確かさ

断層モデルを用いた手法による地震動評価結果 (基本震源モデル、NS成分)

短周期レベルの不確かさを考慮、破壊開始点1、NS成分

短周期レベルの不確かさを考慮、破壊開始点1、EW成分

第5.6.15 図(5) F3 断層~F4 断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、EW 成分)

短周期レベルの不確かさを考慮、破壊開始点1、UD成分

第5.6.15 図(6) F3 断層~F4 断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、UD 成分)

第5.6.15 図(7) F3 断層~F4 断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:断層傾斜角、NS 成分)

第5.6.15 図(8) F3 断層~F4 断層による地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:断層傾斜角、EW 成分)

第 5. 6. 16 図 断層パラメータの設定フロー (2011 年東北地方太平洋沖型地震、基本震源モデル)

第5.6.17 図 2011 年東北地方太平洋沖型地震の断層モデル (基本震源モデル)

第5.6.18 図(1) 2011 年東北地方太平洋沖型地震の断層モデル (不確かさを考慮したケース: SMGA 位置)

第 5.6.18 図(2) 2011 年東北地方太平洋沖型地震の断層モデル (不確かさを考慮したケース:短周期レベル)

第5.6.18 図(3) 2011 年東北地方太平洋沖型地震の断層モデル (不確かさを考慮したケース: SMGA 位置と短周期レベルの不確かさの重畳)

第5.6.19図(1) 2011年東北地方太平洋沖型地震の 応答スペクトルに基づく手法による地震動評価結果と 2011年東北地方太平洋沖地震の本震の解放基盤波の比較 (水平成分)

- 応答スペクトルに基づく手法による地震動評価

第5.6.19図(2) 2011年東北地方太平洋沖型地震の 応答スペクトルに基づく手法による地震動評価結果と 2011年東北地方太平洋沖地震の本震の解放基盤波の比較 (鉛直成分)

第5.6.20図 2011年東北地方太平洋沖型地震の 地震動評価に用いる要素地震の震央位置

断層モデルを用いた手法による地震動評価結果

(基本震源モデル、NS成分)

— 基本震源モデル、EW成分

- 基本震源モデル、UD成分

断層モデルを用いた手法による地震動評価結果

(基本震源モデル、UD 成分)

- SMGA位置の不確かさを考慮、EW成分

第5.6.21 図(5) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース: SMGA 位置、EW 成分)

- SMGA位置の不確かさを考慮、UD成分

第5.6.21図(6) 2011年東北地方太平洋沖型地震の
断層モデルを用いた手法による地震動評価結果
(不確かさを考慮したケース:SMGA 位置、UD 成分)

- 短周期レベルの不確かさを考慮、NS成分

- 短周期レベルの不確かさを考慮、EW成分

第5.6.21 図(9) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:短周期レベル、UD 成分)

----- SMGA位置と短周期レベルの不確かさの重畳を考慮、NS成分

第5.6.21 図(11) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:SMGA 位置と短周期レベル の不確かさの重畳、EW 成分)

----- SMGA位置と短周期レベルの不確かさの重畳を考慮、UD成分

第5.6.21 図(12) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース: SMGA 位置と短周期レベル の不確かさの重畳、UD 成分)

第5.6.22 図(1) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果(基本震源モデル) と2011 年東北地方太平洋沖地震の本震の解放基盤波の比較 (NS 成分)

第5.6.22 図(2) 2011 年東北地方太平洋沖型地震の 断層モデルを用いた手法による地震動評価結果(基本震源モデル) と2011 年東北地方太平洋沖地震の本震の解放基盤波の比較 (EW 成分)

断層モデルを用いた手法による地震動評価(基本震源モデル)、UD成分

(茨城県南部の地震、基本震源モデル)

第 5.6.25 図(2) 次城県市部の地展の断層イブル (不確かさを考慮したケース:アスペリティ位置)

(不確かさを考慮したケース:応力降下量)

第5.6.25 図(4) 茨城県南部の地震の断層モデル (不確かさを考慮したケース:地震規模)

応答スペクトルに基づく手法による地震動評価結果

(水平成分)

基本震源モデル、破壊開始点1、NS成分基本震源モデル、破壊開始点2、NS成分

基本震源モデル、破壊開始点1、EW成分基本震源モデル、破壊開始点2、EW成分

断層傾斜角の不確かさを考慮、破壊開始点1、NS成分(右横ずれ)
----- 断層傾斜角の不確かさを考慮、破壊開始点2、NS成分(右横ずれ)

断層傾斜角の不確かさを考慮、破壊開始点1、UD成分(右横ずれ)

-----アスペリティ位置の不確かさを考慮、破壊開始点1、NS成分 -----アスペリティ位置の不確かさを考慮、破壊開始点2、NS成分

断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、NS成分)

-----アスペリティ位置の不確かさを考慮、破壊開始点1、EW成分 ----- アスペリティ位置の不確かさを考慮、破壊開始点2、EW成分

断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、EW 成分)

-----アスペリティ位置の不確かさを考慮、破壊開始点1、UD成分 ----- アスペリティ位置の不確かさを考慮、破壊開始点2、UD成分

断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:アスペリティ位置、UD 成分)

ーーーー 応力降下量の不確かさを考慮、破壊開始点1、NS成分 ----- 応力降下量の不確かさを考慮、破壊開始点2、NS成分

第5.6.27 図(10) 茨城県南部の地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:応力降下量、NS成分)

応力降下量の不確かさを考慮、破壊開始点1、UD成分 ----- 応力降下量の不確かさを考慮、破壊開始点2、UD成分

第5.6.27 図(14) 茨城県南部の地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:地震規模、EW成分)

地震規模の不確かさを考慮、破壊開始点1、UD成分
 地震規模の不確かさを考慮、破壊開始点2、UD成分

第5.6.27 図(15) 茨城県南部の地震の 断層モデルを用いた手法による地震動評価結果 (不確かさを考慮したケース:地震規模、UD成分)

--- 加藤ほか(2004)に基づき設定した応答スペクトル

第5.6.28 図(1) 加藤ほか(2004)に基づき設定した応答スペクトル (水平成分)

- 加藤ほか(2004)に基づき設定した応答スペクトル

第5.6.28 図(2) 加藤ほか(2004)に基づき設定した応答スペクトル (鉛直成分)

第5.6.29 図 標準応答スペクトル

鉛直成分

第5.6.30 図 地震基盤相当面における標準応答スペクトルに適合する模擬地震波の時刻歴波形

鉛直成分

第5.6.31 図 地震基盤相当面における標準応答スペクトルに対する模擬地震波の応答スペクトル比

第5.6.32図(1) 震源を特定せず策定する地震動の応答スペクトル (水平成分)

第5.6.32図(2) 震源を特定せず策定する地震動の応答スペクトル (鉛直成分)

(水平成分、Ss-D_H)

(鉛直成分、Ss-Dv)

 基準地震動Ss-D
 基準地震動Ss-1
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点1)
 基準地震動 S s - 2
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点2)
 基準地震動 S s - 3
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点3)
 基準地震動 S s - 4
F3断層~F4断層による地震(断層傾斜角の不確かさを考慮、破壊開始点3)
 基準地震動 S s - 5
2011 年東北地方太平洋沖型地震(SMGA位置と短周期レベルの不確かさの重畳を考慮)
 断層モデルを用いた手法による各評価

第5.6.35図(1) 基準地震動 Ss-D と 断層モデルを用いた手法による基準地震動 Ss の比較 (NS 成分)

 基準地震動Ss-D
 基準地震動Ss-1
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点1)
 基準地震動 S s - 2
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点2)
 基準地震動 S s - 3
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点3)
 基準地震動 S s - 4
F3断層~F4断層による地震(断層傾斜角の不確かさを考慮、破壊開始点3)
 基準地震動 S s - 5
2011 年東北地方太平洋沖型地震(SMGA位置と短周期レベルの不確かさの重畳を考慮)
 断層モデルを用いた手法による各評価

 基準地震動Ss-D
 基準地震動Ss-1
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点1)
 基準地震動 S s - 2
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点2)
 基準地震動 S s - 3
F3断層~F4断層による地震(短周期レベルの不確かさを考慮、破壊開始点3)
 基準地震動 S s - 4
F3断層~F4断層による地震(断層傾斜角の不確かさを考慮、破壊開始点3)
 基準地震動 S s - 5
2011 年東北地方太平洋沖型地震(SMGA位置と短周期レベルの不確かさの重畳を考慮)
 断層モデルを用いた手法による各評価

 ■基準地震動Ss−D
 ■2004年北海道留萌支庁南部地震の検討結果に保守性を考慮した地震動 - 加藤ほか(2004)に基づき設定した応答スペクトル - 標準応答スペクトルを考慮した地震動

第5.6.36図(1) 基準地震動 Ss-D と震源を特定せず策定する地震動の比較 (水平成分)

2004年北海道留萌支庁南部地震の検討結果に保守性を考慮した地震動

標準応答スペクトルを考慮した地震動

第 5.6.36 図(2) 基準地震動 Ss-D と震源を特定せず策定する地震動の比較 (鉛直成分)

(NS 成分)

(基準地震動Ss-Dv)

第5.6.38 図 設計用応答スペクトルに対する模擬地震波の応答スペクトル比

第5.6.39図 基準地震動 Ss-Dの時刻歴波形

第5.6.40図(1) 基準地震動 Ss-1の時刻歴波形

第5.6.40図(2) 基準地震動 Ss-2の時刻歴波形

第5.6.40図(3) 基準地震動 Ss-3の時刻歴波形

第5.6.40図(4) 基準地震動 Ss-4の時刻歴波形

第5.6.40図(5) 基準地震動 Ss-5の時刻歴波形

第5.6.40図(6) 基準地震動 Ss-6の時刻歴波形

第5.7.1図 ロジックツリー

(水平成分)

