

柏崎刈羽原子力発電所第7号機	《参考》東海第二発電所	女川原子力発電所第 2 号機	備考
		1．概要 本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則（以下「技術基準規則」といら。）」第 54 条及び第 76条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（以下「解釈」という。）に適合する設計とするため，添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」 （以下「添付書類VI－1－1－6」という。）の別添 2 「可搬型重大事故等対処設備の設計方針」（以下「添付書類VI－1－1－6－別添2」と いう。）にて設定する耐震重要度分類及び重大事故等対処施設の設備の分類に該当しない設備である可搬型重大事故等対処設備 が，基準地震動 S s による地震力に対して耐震性を有すること を確認するための耐震計算方針について説明するものである。 なお，可搬型重大事故等対処設備への基準地震動 S s による地震力に対する耐震性の要求は，技術基準規則の第5条及び第 50 条の対象ではない。 可搬型重大事故等対処設備の加振試験又は地震応答解析等に使用する保管場所の入力地震動は，添付書類「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」 に，車両型設備の具体的な計算の方法及び結果は，添付書類「VI －2－別添 3－3 可搬型重大事故等対処設備のらち車両型設備の耐震計算書」に，ボンべ設備の具体的な計算の方法及び結果は，添付書類「VI－2－別添 3－4 可搬型重大事故等対処設備のらちボン べ設備の耐震計算書」に，その他設備の具体的な計算の方法及び結果は，添付書類「VI－2－別添 3－5 可搬型重大事故等対処設備 のらちその他設備の耐震計算書」に示すとともに，動的地震力の水平 2 方向及び鉛直方向の組合せに対する各設備の影響評価結果については，添付書類「VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果」に示す。 2．耐震評価の基本方針 可搬型重大事故等対処設備の耐震評価は，「2．1 評価対象設備」に示す評価対象設備を対象として，構造強度評価，転倒評価	- 記載表現の相違 - 添付資料構成の相違 （以下，同様の差異は差異を省略） - 記載表現の相違 - 記載表現の相違

（1）車両型設備
a．構造強度評価
車両型設備の構造強度評価については，添付書類VI－1－1－ 6－別添 2 の「6．3．1（2）a．構造強度」にて設定している評価方針に基づき，基準地震動 S s による地震力に対し，車両に積載しているポンプ，発電機，内燃機関等の支持部の取付ボ ルト及びコンテナ取付ボルトが，塑性ひずみが生じる場合で あっても，その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算により確認する。ここで，車両型設備に求められる主たる機能を担うポンプ，発電機，内燃機関等の支持部の取付ボルトを直接支持構造物，この直接支持構造物を支持するコンテナの取付ボルトを間接支持構造物とする。
その評価方法は，「4．1（2）構造強度評価」に示すとおり，加振試験にて得られる応答加速度を用いて，車両に積載して いるポンプ，発電機，内燃機関等の支持部の取付ボルト及び コンテナ取付ボルトの評価を行う。評価に当たっては，加振試験で計測された評価対象部位頂部の水平方向加速度及び鉛直方向加速度を用いるとともに，最大応答加速度に対し実機における車両型設備の応答の不確実さを考慮した余裕を見込む。
b．転倒評価
車両型設備の転倒評価については，添付書類VI－1－1－6－別添 2 の「6．3．1（2）b．転倒」にて設定している評価方針に基 づき，ポンプ，発電機，内燃機関等の機器を積載している車両型設備全体が，基準地震動 S s による地震力に対し転倒し ないことを，保管場所の地表面の最大応答加速度が，加振試験により転倒しないことを確認した加振台の最大加速度以下であることにより確認する

その評価方法は，「4．1（3）転倒評価」に示すとおり加振試験により転倒しないことを確認する。
c．機能維持評価
車両型設備の動的及び電気的機能，支持機能及び移動機能 の機能維持評価については，添付書類VI－1－1－6－別添2 の

「6．3．1（2）c．機能維持」にて設定している評価方針に基づ き，車両に積載しているポンプ，発電機，内燃機関等は，基準地震動S s による地震力に対し，ポンプの送水機能，発電機の発電機能及び内燃機関の駆動機能等の動的及び電気的機能を維持できることを，保管場所の地表面の最大応答加速度が，地震力に伴う浮上りを考慮しても，加振試験により動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。
また，車両部は，基準地震動 S s による地震力に対し，積載物から受ける荷重を支持する支持機能及び車両としての自走，牽引等による移動機能を維持できることを，保管場所 の地表面の最大応答加速度が，地震力に伴ら浮上りを考慮し ても，加振台の最大加速度以下であることにより確認する。

これらの評価方法は「4．1（4）機能維持評価」に示すとお り，加振試験により機能が維持できることを確認する。

d．波及的影響評価

車両型設備の波及的影響の評価については，添付書類VI－ 1－1－6－別添2の「6．3．1 車両型設備」にて設定している評価方針に基づき，車両型設備はサスペンションのようなバネ構造を有するため，設備に生じる地震荷重により，車両のすべ り及び傾きが生じることから，車両全体は，基準地震動 S s による地震力に対し，当該設備のすべり及び傾きによる波及的影響を防止する必要がある他の設備に対して波及的影響 を及ぼさないことを，加振試験により確認したすべり及び傾 きにより算出した変位量が，添付書類「VI－2別添3－3 可搬型重大事故等対処設備のらち車両型設備の耐震計算書」にて設定する，波及的影響を防止する必要がある他の設備に対し て必要な離隔距離未満であることにより確認する。

その評価方法は，「4．1（5）波及的影響評価」に示すとお り，すべり量に，傾きによる変位量を加算した値を最大変位量と定義し，最大変位量が波及的影響を防止する必要がある他の設備に対して必要な離隔距離未満であることにより確

備考

- 記載表現及び位置の相違
- 記載表現及び位置の相違
- 記載表現の相違
- 記載表現の相違
- 記載表現の相違
- 記載表現の相違
- 記載表現の相違

柏崎刈羽原子力発電所第 7 号機	《参考》東海第二発電所	女川原子力発電所第2号機	備考
		認する。 （2）ボンベ設備 a．構造強度評価 ボンベ設備の構造強度評価については，添付書類VI－1－1－ 6 －別添 2 の「6．3．2（2）評価方針」にて設定している評価方針に基づき，基漼地震動S s による地震力に対し，ボンバを収納するボンベラック等及びこれらを床面又は壁面に固定 する溶接部又は取付ボルトが，塑性ひずみが生じる場合であ っても，その量が微小なし心゙ルに留まって破断延性限界に十分な余裕を有することを，計算により確認する。 その評価方法は，「4．2（2）構造強度評価」に示すとおり，固有值解析により算出する固有周期及び地震による荷重を用いて，ボンベを収納するボンベラック等及びこれらを床面又は壁面に固定する溶接部又は取付ボルトの評価を行う。 b．波及的影響評価 ボンベ設備の波及的影響の評侕については，添付書類VI－ 1－1－6－別添2の「6．3．2（2）c．波及的影響」にて設定してい る評価方針に基づき実施する。基準地震動S s による地震力 に対し，ボンベを収納するボンベラック等及びこれらを床面又は壁面に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても，その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを計算により碓認す ることで設備全体が，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないこと を碓認する。 その評価方法は，「4．2（3）波及的影響評亚」に示すとお り，固有値解析により算出する固有周期及び地震による荷重 を用いて，ボンベを収納するボンバラック等及びこれらを床面又は壁面に固定する溶接部又は取付ボルトの評価を行ら。	- 記載表現の相違 - 設備の相違（女川は緊急時対策所加圧設備（空気ボンベ）に ついてカードルに保管） （以下，同様の差異は記載を省略） －記載表現の相違 記載表現の相違 - 記載表現の相違 - 記載表現の相違

柏崎刈羽原子力発電所第 7 号機	《参考》東海第二発電所

（3）その他設備
a．構造強度評価
その他設備のうち機器を保管する架台については，添付書類VI－1－1－6－別添2の「6．3．3（2）評価方針」にて設定してい る評価方針に基づき，基準地震 S s による地震力に対し，架台及びこれを床に固定する基礎ボルトが，塑性ひずみが生じ る場合であっても，その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算により確認する。

その評価方法は，「4．3（2）構造強度評価」に示すとおり，固有値解析により算出する固有周期及び地震による荷重を用いて，架台を床に固定する基礎ボルトの評価を行う。
b．転倒評価
その他設備の転倒評価については，添付書類VI－1－1－6－別添2の「6．3．3（2）b．転倒」にて設定している評価方針に基 づき，その他設備の機器全体は，基準地震動 S s による地震力に対し，転倒しないことを，保管場所における設置床又は地表面の最大応答加速度が，加振試験により転倒を防止する ためスリング等の健全性を確認した加振台の最大加速度以下であることにより確認する

その評価方法は，「4．3（3）転倒評価」に示すとおり，加振試験によりスリング等が健全であることを確認する。
c．機能維持評価
その他設備の機能維持評価については，添付書類VI－1－1－ 6－別添 2 の「6．3．3（2）c．機能維持」にて設定している評価方針に基づき，その他設備は，基準地震動 S s による地震力 に対し，保管場所における設置床又は地表面の最大応答加速度が，加振試験により計測機能，給電機能等の動的及び電気的機能並びにスリング等の健全性を確認した加振台の最大加速度以下であることを確認する。

その評価方法は，「4．3（4）機能維持評価」に示すとおり，加振試験により機能が維持できることを確認する。
－設備設計の相違（女川におい
ては，架台に保管するその他設備が存在するため，架台の構造強度評価を実施している。）
－記載表現の相違

記載表現の相違

（1）車両型設備
a．構造強度評価
車両型設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動 S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管し，炉心等へ冷却水を送水する機能を有するポンプ，必要な負荷へ給電するために発電する機能を有する発電機，これらの駆動源となる内燃機関等の機器を車両に取付ボルトで固定し，主要な構造部材が送水機能，発電機能，駆動機能等を維持可能な構造強度を有 する設計とする。

そのため，車両型設備は，「2．2（1）a．構造強度評価」に設定している評価方針を踏まえ，JEAG4601•補－1984を適用し，添付書類「VI－2－1－9 機能維持の基本方針」に設定 している許容応力状態 $V_{A} S$ の許容応力以下とすることを許容限界として設定する。
b．転倒評価
車両型設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管し，炉心等へ泠却水を送水する機能を有するポンプ，必要な負荷へ給電するために発電する機能を有する発電機，これらの駆動源となる内燃機関等を車両に取付ボルトで固定し，車両型設備全体が安定性 を有し，転倒しない設計とする。

暞峙刘羽原子力発電所第7号機	《参考》東海第二発電所

又は空気を供給する機能を有するボンベをボンベラック等 に収納し，ラック等を耐震性を有する建屋内の保管場所に溶接又は取付ボルトで固定し保管することから，主要な構造部材が，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう，構造強度を有す る設計とする。
そのため，ボンベ設備は，「2．2（2）b．波及的影響評価」に設定している評価方針としていることを踏まえ，J E A G 4 601 •補－1984を適用し，添付書類「VI－2－1－9 機能維持の基本方針」に設定している許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以

確認した最大変位量を踏まえ設定した離隔距離を許容限界 として設定する。
また，離隔距離に関しては，実際の設備配置の運用上の管理値として必要であるため，保安規定に離隔距離を基に必要 な設備間隔を定め，管理を行う。
（2）ボンベ設備
a．構造強度評価
ボンベ設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動S s による地震力に対し，窒素又は空気を供給する機能を有するボンベをボンベラック等 に収納し，ラック等を耐震性を有する建屋内の保管場所に溶接又は取付ボルトで固定して保管し，主要な構造部材が窒素又は空気供給機能を維持可能な構造強度を有する設計とす る。

そのため，ボンベ設備は，「2．2（2）a．構造強度評価」に設定している評価方針としていることを踏まえ，J E A G 4 6 O 1•補－1984を適用し，添付書類「VI－2－1－9 機能維持の基本方針」に設定している許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下 とすることを許容限界として設定する。
b．波及的影響評価
ボンべ設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，窒素

\square

安

- 記載表現の相違
- 記載表現の相違
- 記載表現の相違

（1）加振試験
a．基本方針
車両型設備においては，重大事故等に対処するための機能 を維持するために，車両全体として安定性を有し，転倒しな いこと，主要な構造部材が必要な構造強度を有すること，動的機能，電気的機能，支持機能及び移動機能が維持できるこ と並びに当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを加振試験 の結果を踏まえて評価することから，以下の「b。入力地震動」に示す入力地震動を用いて，「（3）転倒評価」，「（4）機能維持評価」及び「（5）波及的影響評価」に示す方法により加振試験を行う。
b．入力地震動
入力地震動は，添付書類「VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」に示す，各対象設備の保管場所ごとに算定した入力地震動を用いる。
（2）構造強度評価

車両型設備の直接支持構造物及び間接支持構造物の構造強度評価は，「2．2（1）a．構造強度評価」に従って，評価部位 についてJEAG4601－1987に規定されているポンプ等の取付ボルトの評価方法を用いて発生応力を算出し，許容応力以下であることを確認する。

評価については，実機における車両型設備応答の不確実さ を考慮し，加振試験で測定された評価部位頂部の水平方向加速度及び鉛直方向加速度を設計用加速度とし，発生応力を算出し，構造強度評価を行う

構造強度評価に使用する記号を表 4－1 に，計算モデル例を図 4－2～図4－9に示す。

なお，取付ボルト①（ついては，タンクローリのポンプ及 びホース延長回収車以外の評価部位について，取付ボルト（2）

相崎可羽源子力発電所第 7 号機	《参考》束海第二第管雱	女川川原子力発電所第 2 号機	借考
		図 4－3 直接支持構造物の計算モデル例 $(2 / 2)$ （取付ボルト（1）軸方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right)<0$ の場 合） 注記1：取付ボルト向きは軸方向と平行。 図 4－4 直接支持構造物の計算モデル例（車両正面（軸方向） 図） （取付ボルト（2）軸直角方向転倒）	

先行審査プラントの記載との比較表（VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針）

相崎刈羽原子力発電的第 7 号機	《参考》束海第二発花所

（3）転倒評価
車両型設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．1（1）b．入力地震動」を基に作成したランダム波 による加振試験を行い，試験後に転倒していないことを確認 する。

転倒評価は，当該設備保管場所の地表面での最大応答加速度が，加振試験により転倒しないことを確認した加振台の最大加速度以下であることにより確認する。
（4）機能維持評価
車両型設備は，実際の保管状態を模擬した状態で加振台に
設置し，「4．1（1）b．入力地震動」を基に作成したランダム波 による加振試験を行い，試験後に動的及び電気的機能並びに支持機能及び移動機能が維持されることを確認する。加振試験については，J E A G 4 6 0 1－1991に基づき実施する。

基準地震動S s による地震力に対し，当該設備保管場所の地表面での最大応答加速度が，加振試験によりポンプの送水機能，ポンプの燃料移送機能，発電機の発電機能，内燃機関 の駆動機能等の動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。

また，基準地震動 S s による地震力に対し，当該設備保管場所の地表面での最大応答加速度が，加振試験により車両部 の支持機能及び車両としての自走，牽引等による移動機能を維持できることを確認した加振台の最大加速度以下である

備考
•記載表現の相違
•記載表現の相違
•記載表現の相違
•記載表現の相違
•記載表現の相違

柏崎刈羽原子力発電所第7号機	《参考》東海第二発電所	女川原子力発電所第2号機	備考
		ことにより碓認する	－記載表現の相違
		（5）波及的影響評価	
		車両型設備は，実際の保管状態を模擬した状態で加振台に	
		設置し，「4．1（1）b．入力地震動」を基に作成したランダム波	
		による加振試験を行い，当該設備のすべり及び傾きによる波	
		及的影響を防止する必要がある他の設備に対して波及的影	
		響を及ぼさないことを，加振試験により確認したすべり量と	
		加振試験により確認した傾き角を基に算出した傾きによる	
		変位量を加算した車両の最大変位量が，当該設備の波及的影	
		響を防止する必要がある他の設備に対して必要な離隔距離	
		末満であることにより確認する。	
		地震時における各設備のすべり量の算出については「a．	
		すべり量」に，地震時における各設備の傾きによる変位量の	
		算出については「b．傾きによる変位量」に，最大変位量の	
		算出については「c．最大変位量」に示す。	
		a．すべり量	
		$\begin{array}{ll}\text { b．} & \text { 傾きによる変位量 } \\ & \text { 傾きによる変位量につい } \\ \text { 認した傾き角のうち，最 }\end{array}$	
		また，傾きに伴う，波及的影響として評価すべき傾きによ	－記載表現の相違
		る変位量を表した図を図 4－10 に示し，使用する記号を表 4－	
		2 に示す。	
		傾きによる変位量については，以下の関係式により示され	
		る。	
		$\mathrm{X}=\mathrm{h} \cdot \sin \theta$	

相崎刘羽原子力発電所第 7 号機	《参考》束海第一発電所

b．解析方法及び解析モデル
（a）ボンベラックを構成する各部材を，はり要素としてモデ ル化した多質点モデル及びシェル要素としてモデル化 した 3 次元 FEM モデルにより固有値解析を実施する。
（b）拘束条件として，建屋躯体との取合い点を完全拘束とし て設定する。
（c）ボンベラックの構造強度評価及び波及的影響評価を目的としているため，ボンベラックに収納•固定される空気ボンベ及び配管•弁等の機器重量は，各々組込む位置 に相当する各質点に付加する。
（d）耐震計算に用いる寸法は，公称値を使用する。
（e）高圧窒素ガス供給系高圧窒素ガスボンベ，代替高圧窒素 ガス供給系高圧窒素ガスボンベ及び緊急時対策所加圧設備（空気ボンベ）の評価に用いる解析コードは，「NX NASTRANJとし，中央制御室待避所加圧設備（空気ボン心゙） の評価に用いる解析コードは，「MSC NASTRAN」とする。 なお，評価に用いる解析コード「NX NASTRAN」及び「MSC NASTRAN」の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。
－記載表現の相違

- 記載表現の相違
- 記載表現の相違
- 解析モデルの設定方法の相
－評価対象設備及び評価に使用する解析コードの相違

（1）加振試験
a．基本方針
その他設備においては，重大事故等に対処するための機能 を維持するために，設備全体として安定性を有し，転倒しな いこと，動的機能，電気的機能及び支持機能が維持できるこ と並びに当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを加振試験 の結果を踏まえて評価することから，以下の「b．入力地震動」に示す入力地震動を用いて，「（3）転倒評価」「（4）機能維持評価」及び「（5）波及的影響評価」に示す方法により加振試験を行う。
b．入力地震動
入力地震動は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－別添3－2 可搬型重大事故等対処設備 の保管エリア等における入力地震動」に示す，各対象設備の保管場所ごとに算定した入力地震動を用いる。
（2）架台の構造強度評価
その他設備を設置する架台においては，重大事故等に対処 するための機能を維持するために，架台単体としての構造強度評価，転倒評価及び波及的影響評価を実施する。

架台の構造強度評価フローを図 4－16に示す。
—備考

- 記載表現の相違
- 設備設計の相違（女川におい ては，架台に保管するその他設備が存在するため，架台の構造強度評価を実施している。）

（b）地震応答解析
動的解析による地震力の算定に当たつては，地震応答解析の適用性及び適用限界等を考慮のらえ，適切な解析方法 を選定するとともに，解析条件として考慮すべき減衰定数，剛性等の各種物性値は，適切な規格及び基準や実験等 の結果に基づき設定する。

1．解析方法及び解析モデル
「2．1 評価対象設備」に示す評価対象設備のうち，解析 により固有値等の評価を行う設備は，当該設備を 3 次元 FEM にてモデル化し，固有周期及び評価部位に発生する荷重を算出する。解析の概要を以下に示す。
i．その他設備の架台を構成する鋼材をはり要素として モデル化した 3 次元 FEM モデルによる固有値解析を行

い，固有周期が 0.05 秒以下であり，剛であることを確認した上で， 1.2 倍した設置床の最大応答加速度を用 いた静解析を実施する

