本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2	2 号機 工事計画審査資料
資料番号	02-工-B-19-0192_改 1
提出年月日	2021年9月2日

VI-2-3-3-2-3 シュラウドサポートの耐震性についての計算書

2021年 9月 東北電力株式会社

目次

1. –	一般事項	1
1. 1	記号の説明	1
1.2	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.3	解析範囲	2
1.4	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2. 言	†算条件	6
2. 1	設計条件	6
2.2	運転条件	6
2.3	材料	6
2.4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2.5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
2.6	許容応力	6
2.7	応力の記号と方向 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 点	公力計算	7
3. 1	応力評価点	7
3. 2	差圧による応力	7
3.3	外荷重による応力	7
3.	3.1 シュラウドサポート全体に作用する外荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3.	3.2 支持ロッドから作用する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3.4	応力の評価	9
4. 质	お力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
4. 1	一次一般膜応力強さの評価	9
4.2	一次一般膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
5.	特別な応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
5. 1	軸圧縮荷重による座屈に対する評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
E 0	支圧されの評価	19

図表目次

図 1-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
図 3-1	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
図 3-2	支持ロッドから作用する荷重による応力の計算モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
図 5-1	支圧荷重の支持面 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
表 1-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
表 4-1	一次一般膜応力強さの評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
表 4-2	一次一般膜+一次曲げ応力強さの評価のまとめ	18
表 5-1	座屈に対する評価	19
表 5-2	支圧応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19

1. 一般事項

本計算書は、シュラウドサポートの応力計算について示すものである。

シュラウドサポートは、炉心支持構造物であるため、添付書類「VI-2-3-3-2-1 炉心支持構造物の応力解析の方針」(以下「応力解析の方針」という。)に基づき評価する。

シュラウドサポートは,設計基準対象施設においてはSクラス施設に,重大事故等対処設備に おいては常設耐震重要重大事故防止設備,常設重大事故緩和設備及び常設重大事故防止設備(設計基準拡張)に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注:以下、シュラウドサポートレグ、シュラウドサポートシリンダ、シュラウドサポートプレート、炉心シュラウド下部胴及び炉心シュラウド支持ロッドを、それぞれ「レグ」、「シリンダ」、「プレート」、「下部胴」及び「支持ロッド」という。

1.1 記号の説明

記号の説明を「応力解析の方針」(1)耐震評価編の2.4節に示す。

さらに,本計算書において,以下の記号を用いる。

記号	記号の説明	単位
A	レグ1本当たりの断面積	mm^2
В	レグの幅	mm
С	部材両端の拘束条件に対する座屈長さの係数	_
F	設計・建設規格 SSB-3121.1(1)に定める値	MPa
F *	設計・建設規格 SSB-3121.3に定める値	MPa
f c	許容応力 設計・建設規格 SSB-3121.1(3)に定める値	MPa
I	座屈軸についての断面二次モーメント	mm^4
W	支持ロッドから作用する荷重	N
c∼e	支圧面積の計算に用いる寸法	mm
i	座屈軸についての断面二次半径	mm
Q	レグの長さ	mm
ϱ_{k}	座屈長さ	mm
Т	レグの板厚	mm
Λ	限界細長比	_
λ	有効細長比	_
ν	設計・建設規格 SSB-3121.1(3)a.に定めるv	_
A _C	支圧面積	mm^2
σс	平均支圧応力	MPa

1.2 形状・寸法・材料

本計算書で解析する箇所の形状・寸法・材料を図1-1に示す。

1.3 解析範囲

解析範囲を図1-1に示す。

1.4 計算結果の概要

計算結果の概要を表1-1に示す。

なお,応力評価点の選定に当たっては,形状不連続部,溶接部及び厳しい荷重作用点に着目 し,各部分ごとに数点の評価点を設けて評価を行い,応力が厳しくなる評価点を記載する。

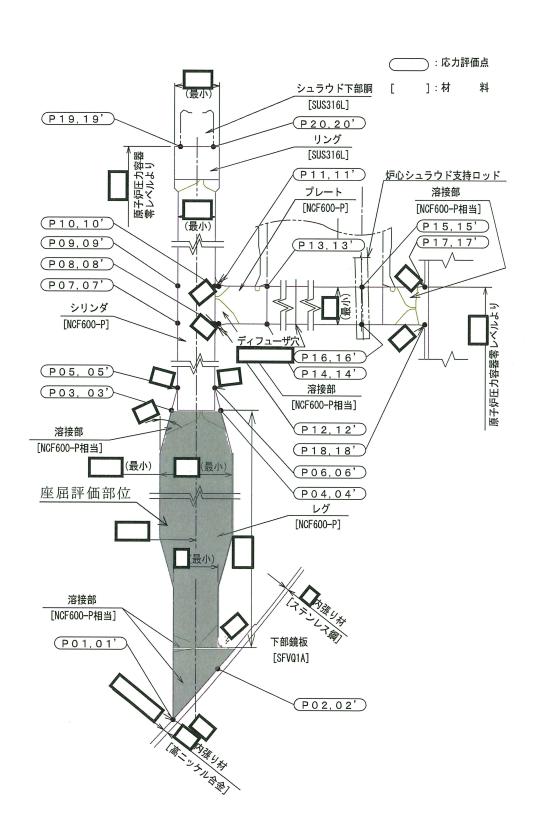


図1-1 形状・寸法・材料・応力評価点 (単位:mm)

計算結果の概要 表 1-1(1)

		1	一次一般膜応力強さ	い力強さ	一次一角	9膜+一次1	一次一般膜+一次曲げ応力強さ
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面
		を関	成力		強み	京力	
LÝ	Π_A S	167	*122	P01 - P02	291	*288	P01 - P02
NCF600-P	$\mathrm{IV}_\mathrm{A}\mathrm{S}$	251	*008	P01 - P02	122	*054	P01 - P02
シリンダ	Π_A S	75	246	80d - 20d	92	698	80d - 20d
NCF600-P	$\mathrm{IV}_\mathrm{A}\mathrm{S}$	115	334	80d - 20d	211	109	80d - 20d
プレート	Π_A S	92	246	P15' - P16'	127	*288	P17 - P18
NCF600-P	IV_AS	130	334	P15' - P16'	210	*097	P17 - P18
下部胴	Π_A S	101	*821	P19 - P20	101	*261	P19 - P20
SUS316L	$IV_{\scriptscriptstyle A}S$	160	*602	P19 - P20	091	*808	P19 - P20

を乗じた値を示す。 注記*:継手効率

表1-1(2) 計算結果の概要

(単位:MPa)

する評価	許容応力	198	209
座屈に対する評価	圧縮応力	118	189
許容応力状態 -		${ m I\hspace{1em}I}_{ m A}$ S	$\mathrm{IV}_\mathrm{A}\mathrm{S}$
1 1 1 1 1 1 1 1 1 1	ラングの対対	ガイ	NCF600-P

表1-1(3) 計算結果の概要

(単位: MPa)

シーナット 1 / 14	***************************************	支压 広 大	支圧応力の評価	
	計谷心乙状態	平均支压応力	許容応力	
プレートのトグル支持面	Π_A S	134	291	
	IV_AS	222	388	

2. 計算条件

2.1 設計条件

設計条件を「応力解析の方針」(1)耐震評価編の4.1節に示す。

2.2 運転条件

考慮した運転条件を「応力解析の方針」(1)耐震評価編の4.2節に示す。

2.3 材料

各部の材料を図1-1に示す。

2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」(1)耐震評価編の3.3節に示す。

2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」(1) 耐震評価編の4.4節に示す。

2.6 許容応力

許容応力を「応力解析の方針」(1)耐震評価編の3.4節に示す。 溶接部の継手効率を「応力解析の方針」(1)耐震評価編の3.6節に示す。

2.7 応力の記号と方向

応力の記号とその方向は、以下のとおりとする。

σ_t:周方向応力

σω:軸方向応力

σ_r : 半径方向応力

τ t.l : せん断応力

τ@r: せん断応力

3. 応力計算

3.1 応力評価点

応力評価点の位置を図1-1に示す。

3.2 差圧による応力

(1) 荷重条件(L02)

各運転状態による差圧は,既工認から変更はなく「応力解析の方針」(1)耐震評価編の参照図書(1)a. に定めるとおりである。

(2) 計算方法

差圧による応力の計算は、二次元軸対称の有限要素でモデル化し、計算機コード「STAX」により行う。なお、評価に用いる計算機コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

応力計算のモデル及び仮定した境界条件(拘束条件)を図3-1に示す。

3.3 外荷重による応力

- 3.3.1 シュラウドサポート全体に作用する外荷重
 - (1) 荷重条件(L04, L14及びL16)外荷重を「応力解析の方針」(1) 耐震評価編の表4-1(2) に示す。

(2) 計算方法

軸対称荷重(鉛直力 V_1 、 V_2 及び V_3)による応力の計算は、二次元軸対称の有限要素でモデル化し、計算機コード「STAX」により行う。非軸対称荷重(水平力H及びモーメントM)による応力の計算は、二次元軸対称の有限要素でモデル化し、計算機コード「ASHSD」により行う。

応力計算のモデル及び仮定した境界条件(拘束条件)を図3-1に示す。

また、プレートより上の部位について、水平力によるせん断応力の計算は、計算機コード「PIPE」により行う。なお、評価に用いる計算機コードの検証及び妥当性確認等の概要については、添付書類「VI-5 計算機プログラム(解析コード)の概要」に示す。

3.3.2 支持ロッドから作用する荷重

(1) 荷重条件 (L02, L14及びL16)

外荷重を「応力解析の方針」(1)耐震評価編の表4-1(2)に示す。

(2) 計算方法

支持ロッドから作用する荷重による応力の計算は、以下の式で算出する。

支持ロッドから作用する荷重は、プレートを垂直上方に引っ張る荷重であるが、荷重が作用する位置の周辺は、図 3-2 に示すように原子炉圧力容器やシリンダ等で拘束されており、支持ロッドを中心とした円板を仮定することで支持ロッド近傍に発生する応力と拘束された位置での応力を求める。

具体的には、外周固定、内周に輪形荷重が作用する円板モデルを仮定し、その内部に発生する応力を計算する。

計算式は、「応力解析の方針」(1)耐震評価編の引用文献(1)の表 5·1 の No. 10 式による。この計算式において、支持ロッドの穴の周辺部については、円板モデルの内周に発生する応力を適用し、原子炉圧力容器で拘束されている部分については、円板モデルの外周に発生する応力を適用する。

応力を求める計算式を以下に示す。なお、計算式中の記号は、図 3-2 に示すとおりである。

支持ロッドの穴の周辺部

$$\sigma_{t} = \pm \frac{3 \cdot W}{4 \cdot \pi \cdot t^{2}} \cdot \left\{ 2 \cdot (1 + \nu) \cdot \left(X + \ln \frac{a}{b} \right) - (1 - \nu) \cdot \left(1 - Y \cdot \frac{a^{2}}{b^{2}} \right) \right\}$$

$$\sigma_{\ell} = \pm \frac{3 \cdot W}{4 \cdot \pi \cdot t^{2}} \cdot \left\{ 2 \cdot (1 + \nu) \cdot \left(X + \ln \frac{a}{b} \right) + (1 - \nu) \cdot \left(1 - Y \cdot \frac{a^{2}}{b^{2}} \right) \right\}$$

原子炉圧力容器で拘束されている部分

$$\sigma_{t} = \pm \frac{3 \cdot W}{4 \cdot \pi \cdot t^{2}} \cdot \left\{ 2 \cdot (1 + \nu) \cdot X + (1 - \nu) \cdot (1 - Y) \right\}$$

$$\sigma_{\ell} = \pm \frac{3 \cdot W}{4 \cdot \pi \cdot t^{2}} \cdot \left\{ 2 \cdot (1 + \nu) \cdot X - (1 - \nu) \cdot (1 - Y) \right\}$$

応力式の複号は、上がプレート上面、下がプレート下面を表す。 ここで、

$$X = -\frac{1}{2} \cdot \frac{a^{2}}{(1-\nu) \cdot a^{2} + (1+\nu) \cdot b^{2}}$$
$$\cdot \left\{ 2 \cdot (1+\nu) \cdot \frac{b^{2}}{a^{2}} \cdot \ln \frac{a}{b} + (1-\nu) \cdot \left(1 - \frac{b^{2}}{a^{2}}\right) \right\}$$

$$Y = -\frac{2 \cdot b^{2}}{(1-\nu) \cdot a^{2} + (1+\nu) \cdot b^{2}} \cdot \left\{ (1+\nu) \cdot \ln \frac{a}{b} - 1 \right\}$$

ν:ポアソン比(=

また、せん断応力は、次式で求める。

支持ロッドの穴の周辺部

$$\tau_{rt} = \frac{W}{2 \cdot \pi \cdot b \cdot t}$$

原子炉圧力容器で拘束されている部分

$$\tau_{\ell r} = \frac{W}{2 \cdot \pi \cdot a \cdot t}$$

上記の方法で求めた応力を一次応力として用いる。

3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め, 応力強さを算 出する。

応力強さの算出方法は、「応力解析の方針」(1)耐震評価編の5.3.2項に定めるとおりである。

4. 応力強さの評価

4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4-1に示す。

表4-1より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」(1)耐震評価編の3.4節及び3.6節に示す許容応力を満足する。

4.2 一次一般膜+一次曲げ応力強さの評価

各許容応力状態における評価を表4-2に示す。

表4-2より,各許容応力状態の一次一般膜+一次曲げ応力強さは,「応力解析の方針」(1) 耐震評価編の3.4節及び3.6節に示す許容応力を満足する。

5. 特別な応力の評価

5.1 軸圧縮荷重による座屈に対する評価

レグには、シュラウドサポートに作用する鉛直力及びモーメントにより、圧縮応力が生じる。 したがって、これらの荷重の組合せにより発生する圧縮応力の評価を行う。

- (1) 計算データ
- a. 座屈長さ ℓ_k

b. 座屈軸についての断面二次半径 i

$$i = \sqrt{\frac{I}{A}} = \sqrt{\frac{I}{A}}$$

ここで、 I:座屈軸についての断面二次モーメント

$$=\frac{1}{12}\cdot T^3\cdot B=\boxed{\qquad \qquad } mm^4$$

T : レグの板厚= _____mm

B : レグの幅 = mm

A: レグ1本当たりの断面積

$$= T \cdot B = \boxed{\qquad \qquad} mm^2$$

c. 有効細長比 λ

$$\lambda = \frac{\varrho_k}{i} = \boxed{}$$

(2) 荷重

シュラウドサポートに作用する鉛直力及びモーメントを「応力解析の方針」(1) 耐震評価編の表4-1(2) に示す。

(3) 圧縮応力

各許容応力状態においてレグに発生する圧縮応力を表5-1に示す。 レグに発生する圧縮応力は、応力評価面P03'-P04'での一次一般膜応力(σ_θ)を示す。

(4) 許容応力

各許容応力状態における許容応力の計算は,設計・建設規格 SSB-3121を準用して計算する。

a. 許容応力状態ⅢAS

許容応力状態ⅢASにおける許容応力度Fは、以下の3つの値のうち小さい方を用いる。

したがって、許容応力度F = 245 MPaとする。

許容応力状態ⅢASにおける許容応力f。は、次のように得られる。

限界細長比:
$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F}} = \sqrt{\frac{\pi^2 \times E}{0.6 \times 245}} =$$

$$f_{c} = 1.5 \cdot \left\{ 1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^{2} \right\} \cdot \frac{F}{\nu}$$

$$= 1.5 \times \left\{ 1 - 0.4 \times \left(\frac{\lambda}{\Lambda}\right)^{2} \right\} \times \frac{245}{\mu} = 198 \text{ MPa}$$

ここで,

$$v = 1.5 + \frac{2}{3} \cdot \left(\frac{\lambda}{\Lambda}\right)^2 = 1.5 + \frac{2}{3} \times \boxed{}$$

b. 許容応力状態ⅣAS

許容応力状態 \mathbb{N}_A S における許容応力度 F *は、以下の 3 つの値のうち小さい方を用いる。

 $1.35 \cdot S_v = 262 \text{ MPa}$

℃における値)

 $0.7 \cdot S_u = 350 \text{ MPa}$

(℃における値)

 $1.2 \cdot S_{v} = 294 \text{ MPa}$

における値)

したがって, 許容応力度 F*= 262 MPaとする。

許容応力状態IVASにおける許容応力f。は、次のように得られる。

限界細長比:
$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F^*}} = \sqrt{\frac{\pi^2}{0.6 \times 262}} =$$

ここで、E: 縦弾性係数= MPa Cにおける値) ゆえに、 $\lambda < \Lambda$ なので f。は、

$$f_{c} = 1.5 \cdot \left\{ 1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^{2} \right\} \cdot \frac{F^{*}}{\nu}$$

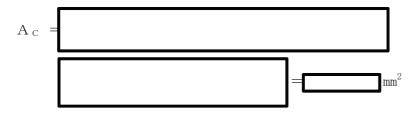
$$= 1.5 \times \left\{ 1 - 0.4 \times \left(\frac{\lambda}{\Lambda}\right)^{2} \right\} \times \frac{262}{\nu} = 209 \text{ MPa}$$

ここで,

$$v = 1.5 + \frac{2}{3} \cdot \left(\frac{\lambda}{\Lambda}\right)^2 = 1.5 + \frac{2}{3} \times \left(\frac{\lambda}{\Lambda}\right)^2 = \frac{1}{3} \times \left(\frac{\lambda}{\Lambda}\right)^2 =$$

(5) 軸圧縮荷重による座屈に対する評価

各許容応力状態における軸圧縮荷重による座屈に対する評価を表5-1に示す。


表5-1より,各許容応力状態における圧縮応力は,許容応力を満足するため,座屈は発生しない。

5.2 支圧応力の評価

プレートには、図 5-1 に示すように支持ロッドから作用する鉛直力により、プレートと支持ロッドのトグルとの接触面に支圧応力が生じる。したがって、この荷重により発生する支圧応力の評価を行う。

(1) 計算データ

a. 支圧面積 Ac

(2) 荷重

プレートに支持ロッドから作用する鉛直力を「応力解析の方針」(1)耐震評価編の表4-1(2)に示す。

(3) 平均支圧応力

平均支圧応力 σ 。は、次のようにして求める。

$$\sigma_{c} = \frac{W}{A c}$$

(4) 支圧応力の評価

各許容応力状態における評価を表5-2に示す。

表5-2より,各許容応力状態における平均支圧応力は,「応力解析の方針」(1)耐震評価編の3.4節に示す許容応力を満足する。

0

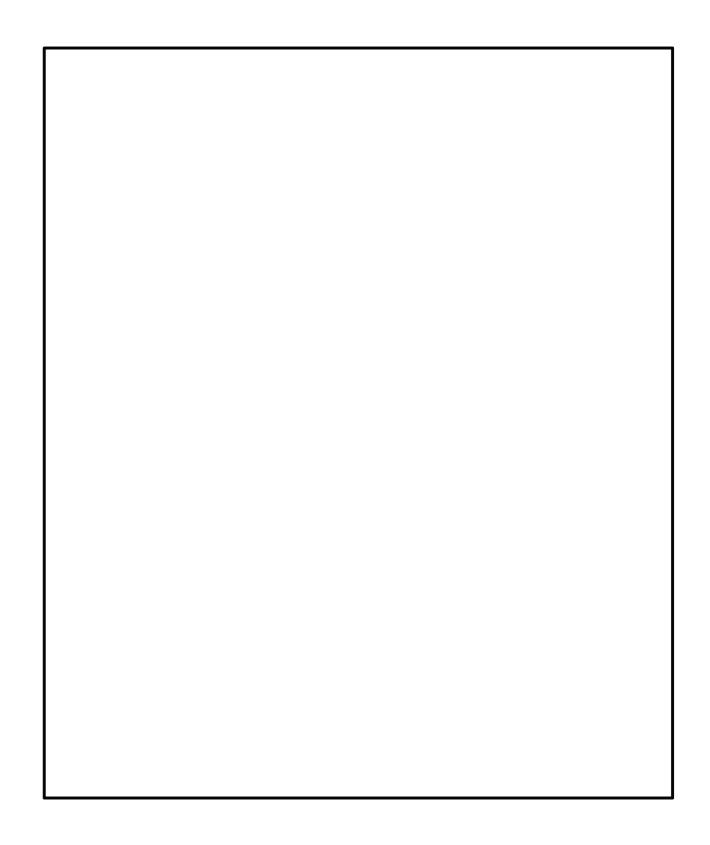


図3-1 応力計算のモデル

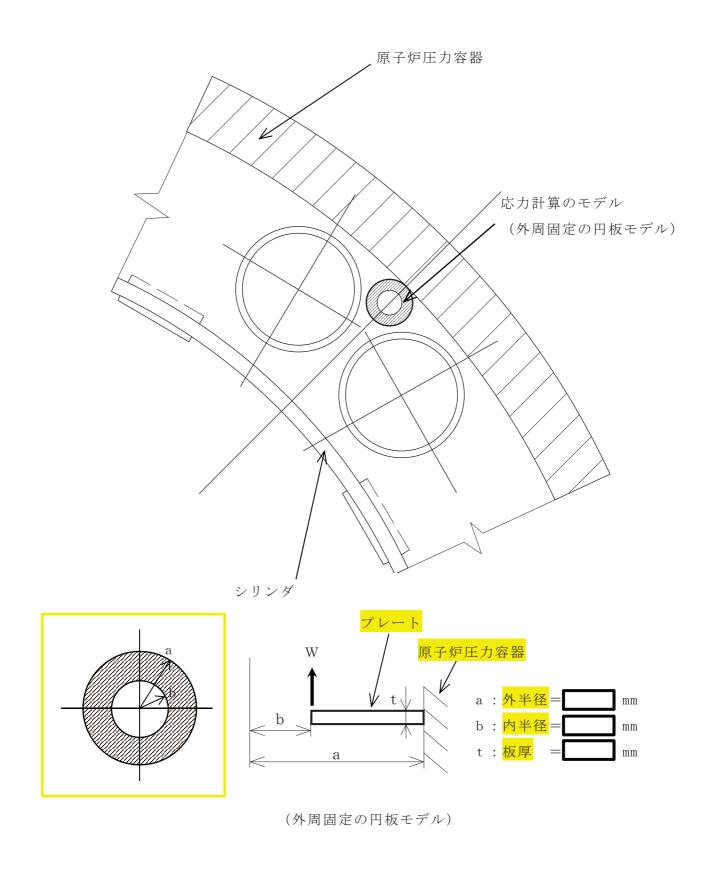


図 3-2 支持ロッドから作用する荷重による応力の計算モデル

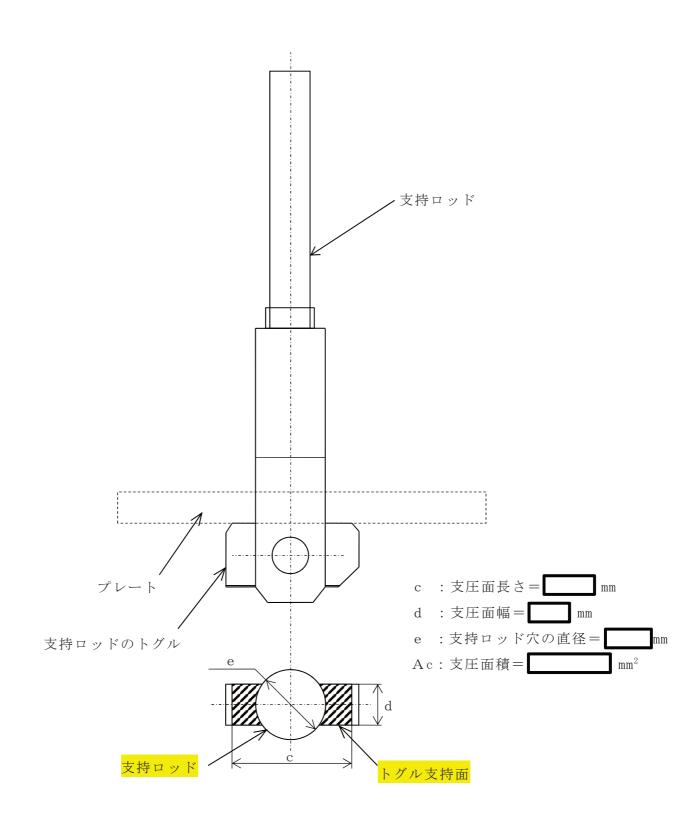


図5-1 支圧荷重の支持面

表 4-1 一次一般膜応力強さの評価のまとめ

(単位:MPa)

		L 44 π C		. MI a/
応力評価面	許容応力		許容応力	
D01	応力強さ	許容応力	応力強さ	許容応力
P01 P02	167	221*	251	300*
P02 P01'				
P01 P02'	102	221*	186	300*
P03				
P04	143	246	217	334
P03'				
P04'	88	246	161	334
P05				
P06	57	246	87	334
P05'				
P06'	41	246	71	334
P07		2.12		22.
P08	75	246	115	334
P07'		0.4.0	0.5	0.0.4
P08'	55	246	95	334
P09	60	0.4.6	0.6	0.0.4
P10	63	246	96	334
P09'	41	246	74	334
P10'	41	240	74	334
P11	55	221*	91	300*
P12	33	221	31	300
P11'	55	221*	91	300*
P12'	00	221	31	300
P13	56	246	86	334
P14	00	210	00	001
P13'	44	246	74	334
P14'	11	-10		001
P15	69	246	122	334
P16				
P15'	76	246	130	334
P16'				
P17	45	221*	83	300*
P18 P17'				
P17 P18'	60	221*	98	300*
P18				
P20	101	128*	160	205*
P19'				
P20'	81	128*	140	205*
1 40				

注記*:継手効率 を乗じた値を示す。

表 4-2 一次一般膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)

	許容応力料	上 能 Ⅲ	許容応力	(
応力評価面	応力強さ	許容応力	応力強さ	許容応力
P01			ルロフナ7日 C	
P02	167	332*	251	450*
P01'				
P02'	102	332*	186	450*
P03	1.10	0.00	0.1.5	- 0.4
P04	143	369	217	501
P03'	0.0	260	161	F.O.1
P04'	88	369	101	501
P05	57	369	87	501
P06	31	303	01	301
P05'	41	369	71	501
P06'	11	000	, ,	001
P07	75	369	115	501
P08				
P07' P08'	55	369	95	501
P08				
P10	63	369	96	501
P09'				
P10'	41	369	74	501
P11				. –
P12	55	332*	91	450*
P11'		222*	0.1	450*
P12'	55	332*	91	450*
P13	56	369	86	501
P14	30	309	80	301
P13'	44	369	74	501
P14'				
P15	69	369	122	501
P16				
P15' P16'	76	369	130	501
P16 P17				
P18	127	332*	210	450*
P17'				
P18'	106	332*	190	450*
P19	1.0.1	100*	1.00	000*
P20	101	192*	160	308*
P19'	0.1	100*	1.40	200*
P20'	81	192*	140	308*

注記*:継手効率 を乗じた値を示す。

表5-1 座屈に対する評価

(単位:MPa)

			(122
応力評価面	許容応力状態	圧縮応力	許容応力
P03' - P04'	III _A S	118	198
P03 - P04	IV A S	189	209

表5-2 支圧応力の評価

(単位:MPa)

評価部位	許容応力状態	平均支圧応力	許容応力
	III _A S	134	291
プレートのトグル支持面	IV A S	227	388