屋内退避による被ばく低減効果に係る委託研究の成果(概要報告)

令和3年9月9日 放射線防護グループ 放射線防護企画課

1. 背景及び目的

原子力規制委員会は、地方公共団体が地域防災計画を作成する際の基礎的なデータを提示することを目的として、平成 26 年に緊急時の被ばく線量及び防護措置の効果を試算し公表している¹。同試算において、屋内退避の効果は、IAEAや米国環境保護庁(EPA)における研究成果である欧米の建物の放射線遮へい効果や密閉効果を参考としているが(参考 1 参照)、これらの効果は、建物の特性に大きく依存するものと思われる。防護措置を考慮する上で、日本の家屋の特性を踏まえた屋内退避の効果を一定程度の確度をもって把握しておくことが重要であることから、平成 27 年度より屋内退避の効果に係る委託研究を実施した²。

2. 研究内容と得られた知見

本研究では、屋内退避による被ばく低減効果として、外部被ばくに対する遮へい効果、放射性物質の吸入(内部被ばく)に対する密閉効果を検討したが、外部被ばくの遮へい効果については、同一様式の家屋間では、海外の先行研究の知見と有為有意な差は認められなかったため(参考2参照)、本報告では、より家屋の特性に応じた低減効果への影響が大きい密閉効果に着目し、吸入被ばくに対する低減効果を取り扱った。被ばく低減効果を表す指標としては「被ばく低減係数」を用いた。被ばく低減係数は、屋外に留まった場合に受ける線量に対して、屋内に留まった場合に受ける線量の比で表す。。

文献調査などから、吸入被ばくの低減効果に寄与する主なパラメータを家屋の自然換気率⁴、浸透率⁵、沈着率⁶と特定し、自然換気率は、風洞実験に基づく先行研究の成果から、風速、建蔽率⁷、屋内外温度差、隙間相当面積⁸との関係式を導出し、適用した⁹。原子力事故時に甲状腺等価線量に最も寄与するとされるヨウ素は、放出後、粒子状、元素状、有機状などの化学形態をとり、その性状に応じて挙動が異なるとされる。一部の挙動は、自然換気率に相関性があると考えられるが、特に元素状ヨウ素に係る既存の知見が少ないことから、実家屋における実験、ラボ実験等を実施し、自然換気率との関係等を整理した。有機状ヨウ素は文献調査等から、反応性が低く、壁面等に付着しにくいことが報告されていることから、浸透率 1(すべて侵入)、沈着率 0(沈着しない)と仮定した。

^{1 「}緊急時の被ばく線量及び防護措置の効果の試算について」(平成26年5月28日 原子力規制委員会)

² 平成 27-令和 2 年度原子力施設等防災対策等委託費(防護措置の実効性向上に関する調査研究)事業 国立研究開発法人日本原子力研究開発機構

^{3 0}から1の値をとり、0に近いほど低減効果が大きい

⁴ 単位時間に家屋内の空気が入れ替わる率

⁵ 放射性物質が侵入経路で除去されず侵入する率

⁶ 侵入した放射性物質が家屋内で沈着する率

⁷ グロス建蔽率:空き地、道路、公園なども含めたある地域全体の面積に対する建物建築面積の総合計

⁸ 家屋にどの程度隙間があるかを示す尺度

⁹ 吉野他, 1984, 1987; 赤林他, 1994

これらを踏まえ、風速やプルーム通過中の屋外の放射能濃度を一定とした仮想的な条件下で、家屋の気密性能に寄与するパラメータを変動させた際の、ヨウ素の化学的性状ごとの被ばく低減効果の傾向を、屋内放射能濃度計算コードを用いて評価した。その上で、実際の気象条件のもとでの屋内退避による被ばく低減効果を試算するため、確率論的環境影響評価コードを用いて甲状腺等価線量を評価した。

①屋内放射能濃度計算コードを用いた評価

屋内外の空気交換を模擬したコンパートメントモデルを含む屋内放射能濃度計算コード(図1参照)を構築し、風速、屋外放射能濃度一定などの条件のもとで、実験等において得られた関係式を含む各種パラメータを入力することにより屋内の放射能濃度の時間変化を求め、プルーム通過から24時間後の屋内外の積算甲状腺等価線量の比較により、ヨウ素の化学的性状、建蔽率、家屋の建築年区分、風速ごとの被ばく低減係数を算出した。なお、文献調査等から、家屋の気密性能は、国内の省エネルギー基準の制定・更新10に伴い向上する傾向が見られることから、建築年区分を、1980年以前、1981~92年、1993年以降とし、これに高気密住宅を加えた4区分に設定した。

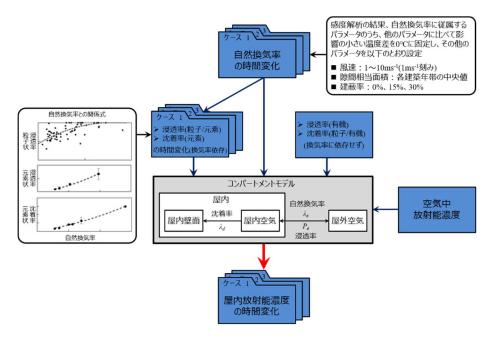


図1 屋内放射能濃度計算コード

評価の結果、気密性の高い新しい家屋、周辺に建物が多くある家屋であって、風速が遅い場所ほど家屋内への放射性物質の侵入が抑制されて家屋内の放射能濃度が低くなることから、被ばく低減効果が高い傾向が示された。化学的性状の差異では、元素状ヨウ素は、粒子状と比して反応性が高いため、家屋内への侵入経路でより多く除去されること、また、家屋内に侵入した後に沈着し、家屋内の空気中の放射能濃度が低くなることから、被ばく低減効果が高い傾向が示された(表 1 参照)。この結果は、隙間相当面積や建蔽率などの家屋の特性、風速等の環境条件、評価点におけるヨウ素の化学組成比等に応じて、被ばく低減効果が変動することを示している。

-

^{10 1980}年、旧省エネルギー基準告示、1992年、新省エネルギー基準告示。

表1 吸入被ばく低減係数の範囲 (甲状腺等価線量の比、ブルーム通過から24時間後、建蔵率15%場合の例)

			中央	直【()内は5バーセンタイル	値-95パーセンタイル値
	(2)	建蔽率15%	M	風速(m/s)	
	8	建敞伞13%	1	2	35
粒子状 3ウ素のみ		1980年以前	0.45 (0.36-0.51)	0.66 (0.58-0.70)	0.96 (0.93-0.98)
	建築年	1981~1992年	0.25 (0.16-0.31)	0.40 (0.30-0.46)	0.69 (0.62-0.73)
		1993年以降	0.19 (0.13-0.25)	0.23 (0.15-0.30)	0.46 (0.36-0.52)
		高気密住宅	0.19 (0.13-0.25)	0.19 (0.13-0.25)	0.23 (0.15-0.30)
元素状 3ウ素のみ		1980年以前	0.04 (0.04-0.05)	0.11 (0.10-0.11)	0.36 (0.35-0.38)
	7争667	1981~1992年	0.01 (0.01-0.01)	0.03 (0.03-0.04)	0.12 (0.11-0.12)
	建築年	1993年以降	0.01 (0-0.01)	0.01 (0.01-0.01)	0.05 (0.04-0.05)
		高気密住宅	0.01 (0-0.01)	0.01 (0-0.01)	0.01 (0.01-0.01)
有機状 3ウ素のみ		1980年以前	1.00	1.00	1.00
	7.争0年/m	1981~1992年	0.81	0,98	1.00
	建築年	1993年以降	0.70	0.78	1.00
		高気密住宅	0.70	0.70	0.79

②確率論的環境影響評価コードを用いた評価

上記①の評価は、風速やプルーム通過中の屋外の放射能濃度を一定とした条件下で、屋内外の甲状腺等価線量の相対値から、家屋の気密性能やヨウ素の化学的性状の差異に基づく被ばく低減効果の概略の傾向を捉えるものであったが、同評価において得られた知見を踏まえ、実際の気象条件のもとでの甲状腺等価線量や被ばく低減係数を試算するため、確率論的環境影響評価コード(OSCAAR)を用いて、大気拡散解析に基づく評価を行った(解析条件については参考3参照)。同解析では、放射性物質放出源から30kmまでの距離を12分割、32方位に分割したメッシュごとに屋外の風速及び放射能濃度を出力し、これらを①で構築した屋内放射能濃度計算コードに入力することにより、屋内外の甲状腺等価線量の7日間積算線量を算出し、被ばく低減係数を求めた。甲状腺等価線量は、同一評価点であっても、気象条件によって異なるため、気象シーケンスごとに距離別の最大値を抽出し、これを昇順に整理し、中央値(50%値)、95%値を示した(図2参照)。

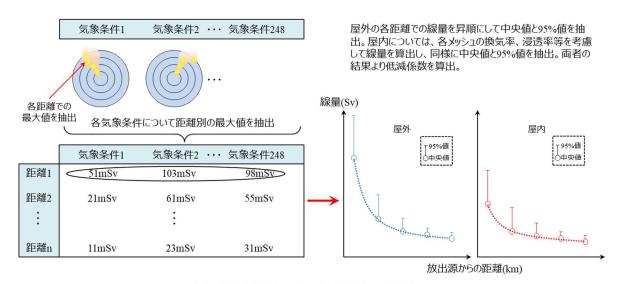


図2 確率論的環境影響評価手法のイメージ

家屋の建築年区分ごとに吸入被ばくの低減効果を評価した結果、1980 年以前の古い家屋においては、他の建築年区分と比べやや低い被ばく低減効果が認められるものの、気象条件を設定した地域において最も存在比率が高い 1993 年以降の家屋では、吸入による内部被ばくが、屋外に対し約 4分の 1 程度に低減する結果となった(表 2 参照)。これは海外の先行研究の結果と同等程度であることを示している。また、放出源から 5km 以遠の UPZ に相当する評価点における甲状腺等価線量の 7日間積算線量(95%値)は、いずれの建築年区分においても、確率的影響リスクを低減するためのIAEA の包括的判断基準(最初の 7 日間の甲状腺等価線量 50mSv)¹¹を下回る結果となった(図 3 参照)。

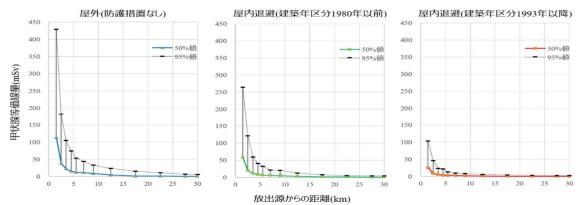


図3 OSCAARコード出力値を用いた甲状腺等価線量試算結果の比較例

表2 甲状腺等価線量の試算に基づく被ばく低減係数(7日間積算線量の比)

	建築年区分			
	1980年以前	1981~1992年	1993年以降	高気密住宅
被ばく低減係数(吸入)	0.56	0.33	0.24	0.22

各距離における低減係数を算出し平均化したもの

3. まとめ

本研究において、日本の家屋の特性を踏まえて屋内退避による被ばく低減効果を評価した結果、その効果は、放出される放射性物質の組成、気象条件、家屋の密集率等のパラメータに応じて変動し、また、これらが相互に関連することから、試算された低減係数が家屋の特性のみに基づく固有の被ばく低減能力を示すものでないことに留意する必要があるが、本研究において実施した代表的な条件下での試算の範囲では、これまで参考としてきた海外の知見と大きな差異は認められなかった。また、確率論的環境影響評価の結果、放出源から 5km 以遠の UPZ 内評価点における甲状腺等価線量の7日間積算線量(95%値)は、いずれの建築年区分においても、確率的影響リスクを低減するためのIAEA の包括的判断基準(最初の7日間の甲状腺等価線量 50mSv)を下回っており、これは、UPZにおける緊急時の初動対応として屋内退避を基本としている現行の原子力災害対策指針(参考4参照)の考え方が妥当であることを示している。このことから、本研究の成果をもって原子力災害対策指針を見直す必要性はないものと考える。

⁻

¹¹ IAEA 安全基準 原子力または放射線原による緊急事態に対する準備と対応(GSR part7) : 確率的影響のリスクを低減させるための緊急事態における防護措置や他の対応 措置に対する包括的判断基準

なお、本研究では、主に一般的な家屋を対象とした評価を実施したが、同研究において得られた知見の一部は、家屋以外の建物にも適用可能であると考えられることから、放射線防護対策施設等への屋内退避による被ばく低減効果を取りまとめている内閣府原子力防災担当に情報を共有し、同知見を活用することとしている。

【以下参考資料】

参考1 屋内退避の効果(海外研究成果)

外部被ば〈(遮へい効果)			内部被ば〈(密閉効果)		
木造家屋	放射性プルームからのガン マ線等(クラウドシャイン)の 影響	10%低減 (低減係数=0.9)	放射性ブルーム中の放射	75%低減	
への屋内退避	周辺環境中の沈着核種 からのガンマ線等(グラウン ドシャイン)の影響	60%低減 (低減係数=0.4)	- 性物質を呼吸により摂取 する影響	(低減係数=0.25	

出典:緊急時の被ばく線量及び防護措置の効果の試算について(案) (平成26年5月28日 原子力規制委員会)

参考2 外部被ばく低減係数の範囲(本委託研究の成果)

		クラウドシャイン		グラウンドシャイン	
	61	0.4MeV	0.66MeV	1.5MeV	0.66MeV
木造家屋 -	1階	0.68~0.77	0.71~0.80	0.79~0.87	0.48~0.63
	2階	0.79~0.89	0.82~0.90	0.87~0.95	0.48~0.54

参考3 OSCAARコードで出力されるパラメータを用いた吸入被ばく低減係数の計算条件

	計算した線量	7日間での積算線量		
	想定する事故	具体的な事故のシーケンスは設定せず		
_	炉心内蔵量	80万 kWe級加圧水型軽水炉(PWR)モデル		
事故シナリオ、		(事故直前まで定格熱出力(2,652 MWt)比102%の		
ソースターム関連	50 504 Weeks	熱出力で40,000時間運転を継続したもの)		
の条件	格納容器への放出割合	米国NRCのNUREG-1465から引用		
_	\$247.00% - 10.00 1	Cs-137の環境への放出量が100 TBqとなるように求		
	環境への放出割合	めた係数を、NUREG-1465から得られた各核種グ		
		ループの格納容器への放出割合に乗算して算出。		
	3ウ素比 粒子状: CH ₃ I: I ₂	95:5:0		
_	呼吸率、線量係数	呼吸率: 0.9576 m3/h、線量係数: ICRP Publ.71 原子炉停止から24時間後 5時間(一定の割合で放出されると仮定)		
OSCAAR関連 —	放出開始時間			
計算条件 —	環境中への放出継続時間			
即無本田	放出高さ	50 m		
-	被ばく経路	吸入被ばく		
<u> </u>	核種	3ウ素同位体(元素状I除く)、テルル同位体		
	気象シーケンス数	248(茨城県東海地区、年間における1時間ごとの気		
		象データ(8760通り)から248通りをサンプリング)		
	建物	1980年以前		
		1981年~1992年		
屋内退避関連計		1993年以降		
算条件		高気密住宅		
-	建蔽率	15%(東海村中央値)		
	屋内退避継続時間	放出開始から2日間		

参考 4 原子力災害対策指針(抜粋)

第3緊急事態応急対策

(5) 防護措置

② 屋内退避

屋内退避は、住民等が比較的容易に採ることができる対策であり、放射性物質の吸入抑制や中性子線及びガンマ線を遮蔽することにより被ばくの低減を図る防護措置である。屋内退避は、避難の指示等が国等から行われるまで放射線被ばくのリスクを低減しながら待機する場合や、避難又は一時移転を実施すべきであるが、その実施が困難な場合、国及び地方公共団体の指示により行うものである。特に、病院や介護施設においては避難よりも屋内退避を優先することが必要な場合があり、この場合は、一般的に遮蔽効果や建屋の気密性が比較的高いコンクリート建屋への屋内退避が有効である。

具体的な屋内退避の措置は、原子力災害対策重点区域の内容に合わせて、以下のとおり講ずるべきである。

- ・ PAZにおいては、原則として、施設敷地緊急事態に至った時点で施設敷地緊急事態要避難者に対して、また、全 面緊急事態に至った時点で全ての住民等に対して、避難を実施するが、避難よりも屋内退避が優先される場合に実 施する必要がある。
- ・ UPZにおいては、段階的な避難やOILに基づく防護措置を実施するまでは屋内退避を原則実施しなければならない。
- UPZ外においては、UPZ内と同様に、事態の進展等に応じて屋内退避を行う必要がある。このため、全面緊急事態に至った時点で、必要に応じて住民等に対して屋内退避を実施する可能性がある旨の注意喚起を行わなければならない。

前記の屋内退避の実施に当たっては、プルームが長時間又は断続的に到来することが想定される場合には、その期間が長期にわたる可能性があり、屋内退避場所への屋外大気の流入により被ばく低減効果が失われ、また、日常生活の維持にも困難を伴うこと等から、避難への切替えを行うことになる。(以下略)