目 次

그 마슈 그 그 수 사리	
1. 既在 准 波 の 検 討	
1 – 1 既往津波の文献調査	
1 − 3. 既 彺 津 波 の 計 算 条 件	
1-4 既往津波の再現計算	
- 2. − − − − − − − − − − − − − − − − −	
2 - 1. 地震による津波の計算条件	
2-2 日本海車縁部に想定される地震に伴う津波	
····································	· 油 · 山
2 - 3 - 1 . ニ 陸 沖 か ら 根 至 沖 の フ レー ト 間 地 震 に	伴 つ 冿 波
1 2 − 3 − 2 . 三 陸 沖 の 海 洋 プ レ − ト 内 地 震 に 伴 う 津	: 波 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2 – 4 チリ油に相定される地震に伴う速波	
2 - 5.) 一週間に認定される地長に行う洋波	
2 - 6. 行 政 機 関 が 想 定 す る 波 源 モ テ ル に よ る 津 波	
2-7. 地震による津波のまとめ	
2-8 防波担笙の影響栓計	
	;
3 - 1.地 震 以 外 の 要 因 に よ る 津 波 の 計 算 条 件	
3-2 陸上の斜面崩壊に起因する津波	
3-4.火山現家に起囚りる津波	
3 - 5.地 震 以 外 の 要 因 に よ る 津 波 の ま と め	
3-6 防波堤等の影響検討	
5. 基 準 洋 波 の 束 正	
5-1.基 準 津 波 の 選 定	
5-2 基準津波 遅 定結 里の 検 証	
5 - 2 - 2 . 行	
6. 基準津波	

:本資料でのご説明範囲

基準波源モデル

三陸沖の海洋プレート内について

 三陸沖の海洋プレート内では、太平洋プレートの沈み込みに伴って、海溝軸よりも沖合の太平洋 プレートの内部が破壊することによってM8クラスの1933年昭和三陸津波のような正断層型の地 震に伴う津波が発生している。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(3/32)

基準波源モデルの設定(基本方針)

第868回審査会合 資料2-1 P.211一部修正

- 三陸沖の海洋プレート内地震に伴う津波の検討に当たっては、既往地震及び関連する断層パ ラメータに係る知見を検討の上、既往最大の地震規模を考慮した基準波源モデルを設定する。
- 想定波源域については、土木学会(2016)⁽³⁹⁾の領海区分を基本とし、大間原子力発電所への影響を考慮して敷地に最も近づくように設定する。
- 基準波源モデルのパラメータに関しては、1933年昭和三陸地震津波の波源モデルを基本とし、 1933年昭和三陸地震の地震規模を保守的に考慮したスケーリング則を適用すること等を考慮 し設定する。なお、海洋プレート内地震に対する不均質モデルの特性化に関する知見がない ため、均質モデルとして検討する。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(5/32)

① 想定波源域の設定(1/2):既往地震の発生様式

海洋プレート内地震の発生様式

- 上図に示すとおり、日本海溝・千島海溝沿いではプレート間地震の発生後(歪み解放後)に、海溝軸沖合で正断層型の 海洋プレート内地震が発生している。
- ・ 文献調査によれば、敷地に影響を及ぼす可能性がある海洋プレート内地震は、三陸沖の日本海溝沿いで1933年に発生した
 『正断層型の海洋プレート内地震』と同様のタイプの地震であると考えられる。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(6/32)

① 想定波源域の設定(2/2):安全評価上の想定波源域の考え方

想定波源域は、1933年昭和三陸地震の発生域を含めることとし、その北端は津軽海峡内に位置する大間原子力発電所への影響を考慮して、日本海溝・千島海溝の島弧会合部に接するよう『領域4』※の北端とした。

※:土木学会(2016)⁽³⁹⁾において1933年昭和三陸地震の発生位置に基づき設定された三陸沖の海洋プレート内地震の海域の領域区分

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(7/32)

② 地震規模の設定(1/4):既往地震の発生履歴

次の海溝軸外側の地震の発生確率等

項目	将来の地震発生 確率等	備考
今後10年以内の発生確率 今後20年以内の発生確率 今後30年以内の発生確率 今後40年以内の発生確率 今後50年以内の発生確率	2% 5% 7% 9% 10%程度	1600年から2011年3月11日14時46分までの約411年間 に顕著な津波を伴った地震が海溝軸外側で1回発生 したと判断し、発生頻度を411.2年に1回とし、ポア ソン過程を用いて海溝軸外側のどこかで発生する確 率を算出した。 1896年の明治三陸地震後の1933年の昭和三陸地震の ようにプレート間地震の数十年後に発生することが あるため、東北地方太平洋沖地震後、長期間に渡っ て注意する必要がある。
次の地震の規模	<u>M8.2前後</u>	<u>過去に発生した地震のM、Mtを参考にして判断した。</u>

地震調査研究推進本部(2019) (78) に一部加筆

• 地震調査研究推進本部(2019)⁽⁷⁸⁾では、「青森県東方沖及び岩手県沖北部から房総沖の海溝軸外側で発生した正断層 型の海洋プレート内地震は1933年の1例しかなく、次の地震の規模を1933年の昭和三陸地震の規模」とされている。

以上から、本検討において対象とする地震規模は、1933年昭和三陸地震の規模を基本として検討する。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(8/32)

② 地震規模の設定(2/4):既往地震の規模(1/2)

世界の海洋プレート内地震(正断層型)

主な海溝寄りのプレート内地震(正断層型)の緒元

Id.	Date	Place	M_W	Length	Width	Bottom	Dip	Slip	Rigidity	Reference
	dd/mm/yyyy			km	km	km	o	m	Nm^{-2}	
a	03/02/1933	Sanriku	8.4	185	100	70	45	3.3	÷	Kanamori (1971)
b	03/02/1933	Sanriku	8.4	220	35	25	45	8	7.0×10^{10}	Kirby et al. (2008)
с	30/03/1965	Rat Island	7.2	50	80	60	50	1.2	7.0×10^{10}	Abe (1972)
d	30/03/1965	Rat Island	7.2	50	40	30	50	6	5.0×10^{10}	Beck and Christensen (1991)
е	19/08/1977	Sunda	8.2	200	70	40	45	3	6.4×10^{10}	Gusman et al. (2009)
f	19/08/1977	Sunda	8.2	200	25	29	45	9	4.0×10^{10}	Spence (1986), Lynnes and Lay (1988)
g	04/05/1990	Mariana	7.3	40	25	29	48	3.4	4.0×10^{10}	Satake et al. (1992)
h	04/05/1990	Mariana	7.3	70	40	40	48	1.5	4.0×10^{10}	Satake et al. (1992)
i	04/05/1990	Mariana	7.3	70	40	_	48	-	-	Yoshida et al. (1992)
i	04/09/2001	Juan Fernandez Ridge	6.7	70	26	30	51	1	4.0×10^{10}	Fromm et al. (2006)
k	13/01/2007	Kuril	7.9	120	40	35	45	1.9	5.0×10^{10}	Fujii and Satake (2008)
1	13/01/2007	Kuril	8.0	130	30	-	37	6.4	$4.0\!\times 10^{10}$	Tanioka et al. (2008)

Álvarez-Gómez et al. (2012) ⁽¹²⁶⁾ に一部加筆

• 1933年昭和三陸地震の規模(Mw=8.4)は、海溝軸沖合のプレート内地震(正断層型)としては国内外においても最大級である。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(9/32)

② 地震規模の設定(3/4):既往地震の規模(2/2)

世界の海洋プレート内地震(正断層型)

- 世界の海洋プレート内正断層地震について、Álvarez-Gómez et al. (2012) ⁽¹²⁶⁾ (P. 2. 3. 2-9参照) に記載された2007年 千島 (Kuril) 地震以降の地震を確認した。
- Romano et al. (2020) ⁽¹²⁷⁾ では, 「2008年~2019年までに以下に示すMw 8 を超える 2 つのプレート内正断層地震が発生 した」とされている。
- 上記を加えても、1933年昭和三陸地震の規模(Mw=8.4)は、海溝軸沖合のプレート内地震(正断層型)としては国内外において最大級であることを確認した。

2008年~2019年に発生した津波を伴う大規模な正断層地震

日付	位置	Mw
2009. 9. 29	サモア (アウターライズ)	8. 1
2017. 9. 8	メキシコ (スラブ内)	8. 2

Romano et al. (2020) ⁽¹²⁷⁾ より作成

- 青森県東方沖及び岩手県沖北部から房総沖の海溝軸沖合で発生した正断層型の海洋プレート内地震は1933年の1例しかなく, 当該海域における次の地震規模としても同程度が想定されている。(P.2.3.2-8)
- 1933年昭和三陸地震の規模(Mw=8.4)は、海溝軸沖合のプレート内地震(正断層型)としては国内外においても最大級である。(P.2.3.2-9, P.2.3.2-10)
- しかし,相田(1977)⁽¹²⁾では,1611年慶長地震(Mw=8.6)※を海溝軸沖合で発生した正断層型地震と評価されていること を考慮し,土木学会(2016)⁽³⁹⁾では『領域4』における既往最大モーメントMwを8.6とされている。

以上から、本検討における安全評価上の地震規模をMw=8.6とする。

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(11/32)

<u>③ 剛性率の設定(1/2)</u>

第868回審査会合 資料2-1 P.218一部修正

• 土木学会(2016)⁽³⁹⁾では、「地震波速度や密度に関する既往研究に基づき、海域毎に標準値が設定されており、 海洋プレート内の剛性率は7.0×10¹⁰N/m²」とされている。

海 域	根拠	剛性率
 ・西南日本陸側プレート内 ・日本海東縁部 ・プレート境界浅部(断層面全体が深 さ 20km 以浅に存在する場合) 	Vp=6.0km/s Vp/Vs=1.6~1.7 ρ =2.7~2.8g/cm ³ とすれば、 μ =3.36×10 ¹⁰ ~3.94×10 ¹⁰ N/m ² となる。この中間的値とする。	3.5×10 ¹⁰ N/m² (3.5×10 ¹⁴ dyne/cm²)
 ・海洋プレート内 ・プレート境界深部(断層面全体が深 さ 20km 以深に存在する場合) 	V_{P} =8.0~8.1km/s V_{P}/V_{S} =1.75~1.80 ρ =3.2~3.5g/cm ³ とすれば、 μ =6.31×10 ¹⁰ ~7.50×10 ¹⁰ N/m ² となる。この中間的値とする。	7.0×10 ¹⁰ N/m² (7.0×10 ¹¹ dyne/cm²)
 ・プレート境界中央部(断層面が深さ 20km 以浅と以深にまたがって存在 する場合) 	浅部と深部の中間的値とする。	5.0×10 ¹⁰ N/m ² (5.0×10 ¹¹ dyne/cm ²)

震源付近の媒質の剛性率の標準値

土木学会(2016) ⁽³⁹⁾ に一部加筆

<u>③ 剛性率の設定(2/2)</u>

- 1933年昭和三陸地震の断層モデルを検討した文献において採用された剛性率を調査した。
- その結果、いずれの文献[※]においても剛性率7×10¹¹dyne/cm²(=7×10¹⁰N/m²)が採用されており、この値は当該海域で発生するプレート内地震の剛性率として妥当であると考えられる。

前ページ及び以上から、剛性率は7×10¹⁰N/m²とした。

※:佐藤編(1989)(128)「日本の地震断層パラメーター・ハンドブック」に記載された1933年昭和三陸地震のモデルのうち、文献中に剛性率が明記されているものを対象とした。

	Earthquake	M	Model	L (km)	w (km)	δ	0 _d	θs	$egin{array}{c} M_0 \ (\mathrm{dyn}\text{-}\mathrm{cm} \ imes 10^{28}) \end{array}$	$\overset{\mu}{\overset{(\mathrm{dyn})}{\overset{\mathrm{cm}^2}{\times 10^{11}}}}$	<i>us</i> (m)	<i>u_d</i> (m)	d _{max} (m)	d _{avg} (m)	$S_d \ (\mathrm{km}^2 \times 10^4)$	$E_t \ (\mathrm{erg} \ imes 10^{21})$
	1611 Dec. 2 (KEICHO 16)	8.1	K C -3	245	50	45°	N90Ŵ	N90Ê	6.9	7.0	0	8.0	-4.79	-1.99	1.63	4.75
	1793 Feb. 17 (KANSEI 5)	7.1	K N-7	120	30	20	N65W	N65W	0.63	4.5	0	- 3.9	2.27	1.05	0.39	0.29
	1856 Aug. 23 (ANSEI 3)	7.7	D-7	120	70	40	N65W	N65W	3.1	4.5	0	- 8.1	4.05	1.43	1.19	1.66
	1896 Jun. 15 (MEIJI 29)	7.6	M J -6	210	50	20	S 66W	N80W	5.9	4.5	-6.7	-10.6	5.51	1.87	1.61	3.77
	1897 Aug. 5 (MEIJI 30)	7.7	K N - 5	120	30	20	N65W	N65W	0.56	4.5	0	- 3.5	1.68	0.60	0.56	0.14
_	1931 Mar. 9 (SYOWA 6)	7.6	HC-2	100	30	20	N78W	N78W	0.1	4.5	0	- 0.74	0.097	0.03	0.69	0.002
	1933 Mar. 3 (SYOWA 8)	8.3	S Y -3	185	50	45	N90W	N90E	4.3	7.0	0	6.6	-3.98	-1.66	1.16	2.36

波源モデルのパラメータ

M, earthquake magnitude: L, w, fault length and width: \hat{o} , dip angle of faulting; θ_d , dip direction; θ_s , slip direction; M_0 , seismic moment; μ , rigidity; u_s , u_d , strike slip and dip slip components of average dislocation; d_{max} , the maximum vertical displacement in the source area; d_{avp} , average vertical displacement; S_d , displaced area; E_t , tsunami energy.

相田(1977)⁽¹²⁾

width of the fault plane. Assuming that the size of the aftershock area one day after the occurrence of the main shock represents the size of the fault plane, L = 185 km and w = 100 km can be obtained from fig. 6. With these values and $\mu = 0.7 \times 10^{12}$ dyne/cm²,

comparable to that of the seismic model. The seismic moment of the present model is obtained to be $(3-7) \times 10^{28}$ dyne-cm assuming a rigidity of 7×10^{11} dyne/cm² and it includes that for the seismic model $(4.3 \times 10^{28} \text{ dyne-cm})$. It is possible to understand the initial motion of the tsunami consistently by using a larger ratio of the length to the width and using a lower dip angle than that of the seismic model.

※土木学会(2016)⁽³⁹⁾を参考に1933年昭和三陸地震モデルの長さ及びすべり量にスケーリング則を適用して設定。

諸元の():スケーリング則適用前の1933年昭和三陸地震モデルのパラメータ。

津波痕跡高との比較を実施している断層モデル

L:断層長さ,W:断層幅,D:すべり量,d:上縁深さ,θ:走向,δ:傾斜角,λ:すべり角,μ:剛性率,K:幾何平均値,κ:幾何標準偏差 土木学会(2002) ⁽⁷⁷⁾ に一部加筆

この数値実験では、まず仮定された断層パラメータを与えて、MANSINHA and SMYLIE (1971)の方法によって海底面の垂直変位を計算する。それを津波の波源として与えるが、 変位は便宜上1分間で終了するように与えてある。しかし津波発生の効果は瞬間的変位を 与えた場合と異ならない。 相田(1977)⁽¹²⁾に一部加筆

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(15/32)

⑦ ライズタイムの設定(2/2)

- 近年発生したMw8クラスのプレート内正断層地震による津波の再現モデルの断層パラメータを確認した。
- Fujii and Satake(2008)⁽¹³¹⁾では、「2007年千島地震を対象として50秒のライズタイムを設定し津波波形を再現した。」とされており、郷右近ほか(2011)⁽¹³²⁾では、「2009年サモア地震を対象として60秒のライズタイムを設定し津波波形を再現した。」とされている。

前ページ及び以上から、本検討におけるライズタイムは60秒に設定した。

2007年千島地震(Mw7.9):ライズタイム50秒

steep bathymetric slopes (Tanioka and Satake, 1996). Tsunami waveforms were calculated assuming a <u>constant rise</u> time (or slip duration) on each subfault; 60 sec for the 2006 event and <u>50 sec for the 2007 event</u>. Because the subfault size is 50×50 km for the 2006 event and 40×40 km for the 2007 event, the previously mentioned assumed rise times include the effect of rupture propagation within each subfault.

Figure 8. Slip distribution estimated by inversion of tsunami waveforms for the 2007 event with northwest-dipping fault model. Fault width (W) for each subfault is 40 km. Gray star shows the mainshock epicenter. Circles in gray indicate aftershocks within one day after the mainshock. Subfault numbers are also shown. The mainshock and aftershocks of the 2006 event are also shown in black symbols.

2009年サモア地震※(正断層のMw7.9):ライズタイム60秒

断層パラメータ	正断層1	正断層2	逆断層
Strike (°)	330	330	175
Dip (°)	48	48	16
Rake (°)	-150	-90	85
Length (km)	52.5	17.5	109
Width (km)	45	45	90
$Area(km^2)$	2362.5	743.75	9810
Depth (km)	13	13	18
Slip(m)	8.6	8.6	4.1
Time delay (sec)	0	0	-180
Rise time (sec)	60	60	480
Rigidity (Nm ⁻²)	3.00E+10	3.00E+10	3.00E+10
Moment (Nm)	0.61E+21	0.19E+21	1.19E+21
Mw(total = 8.13)	7.79	7.45	7.98

表-2 本研究で決定した断層パラメータ

郷右近ほか(2011)⁽¹³²⁾に一部加筆

※:アウターライズの正断層型地震とプレート境界の逆断層型地震が 時間差をもって発生した双子地震であったとされる。

Fujii and Satake (2008)⁽¹³¹⁾に一部加筆

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(16/32)

<u>基準波源モデルの設定(まとめ)</u>

想定波源域は、大間原子力発電所への影響を考慮し、日本海溝・千島海溝の島弧会合部に接するように日本海溝北端部とした(P.2.3.2-7参照)。

地震規模は、1611年慶長地震の地震規模を参照し、Mw8.6とした。

基準波源モデルのパラメータ

項目	諸元	主な設定根拠
モーメントマク゛ニチュート゛ Mw	8.6	土木学会(2016) ⁽³⁹⁾
長さ L [※] (km)	283 (185)	1933年昭和三陸地震津波の痕
幅 W (km)	50	」跡高の再現性か高い波源ハフ メータを基本に、土木学会 (2016) ⁽³⁹⁾ のスケーリング
すべり量 D* (m)	10.1 (6.6)	則に基づき設定
剛性率 μ (N/m ²)	7. 0 × 10 ¹⁰	土木学会(2016) ⁽³⁹⁾ 等
地震モーメントMo(N・m)	1.00×10 ²²	$Mo=\mu \ L \ W \ D$
走向 θ (°)	190	海溝軸の向き
上縁深さ d (km)	1	/₩ /₩ ₩ V I ~ J C
上縁深さ d (km) 傾斜角 δ (°)	1 45	1933年昭和三陸地震津波の痕
上縁深さ d (km) 傾斜角 δ (°) すべり角 λ (°)	1 45 270	1933年昭和三陸地震津波の痕 跡高の再現性が高い波源モデ ル

2.3.2 - 17

POWER

第868回審査会合 資料2-1 P.221再掲

※:土木学会(2016)⁽³⁹⁾を参考に1933年昭和三陸地震モデルの長さ及びすべり量にスケーリング則を適用して設定。

():スケーリング則適用前の1933年昭和三陸地震モデルのパラメータ。

基準波源モデル

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(17/32)

2.3.2-18

POWER

<u>パラメータスタディ</u>

第868回審査会合 資料2-1 P.222一部修正

- Oパラメータスタディは、概略と詳細の2段階で実施するものとし、概略パラスタは津波水位に対して支配的因子、詳細パ ラスタは津波水位に対して従属的因子の位置づけである。パラスタ詳細は以下のとおり。
- 概略パラスタとして、断層の位置、走向及び傾斜方向を組合せた検討を実施した。
- 詳細パラスタとして、概略パラスタにおける最大水位上昇ケース及び最大水位下降ケースとなる2つの波源モデルを対象に、傾斜角及び上縁深さを組合せた検討を実施した。

概略パラメータスタディ

項目	変動範囲	ケ-	-ス数
断層の位置	【南北方向】 基準, 南方へ20km, 40km	3	
	【東西方向】 基準, 東へ100kmまで50km単位で移動, 西へ50kmまで50km単位で移動	4	計 7 2
走向	基準(190°),±10°	3	
傾斜方向	西傾斜(基準), 東傾斜	2	

詳細パラメータスタディ

項目	項目 変動範囲			
傾斜角	基準(45°:概略パラスタケース), 基準±5°	3	計	
上縁深さ	Okm, 1km (基準:概略パラスタケー ス), 2km	3	9	

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(18/32)

基準波源モデルの諸元及びパラメータスタディ整理表

• 基準波源モデルの各パラメータに対し、パラスタ実施の考え方について以下のとおり整理した。

- T - P		基準波源モデル	パラメータスタディ			
項目	諸元	主な設定根拠	概略/ 詳細パラスタ	概略/ 変動幅 詳細パラスタ 変動幅		
モーメントマク゛ニチュート゛ Mw	8.6	土木学会(2016) ⁽³⁹⁾	_	—	既往津波に比べて保守的 である安全評価上の設定	
長さ L (km)	283	1023年四和二防地震決波の痕跡高	—	—		
幅 W (km)	50	の再現性が高い波源パラメータを 基本に、土木学会(2016) ⁽³⁹⁾ の	_	—	安全評価上設定した ₩=8.6に基づき,スケー リング則で設定	
すべり量 D(m)	10. 1	スケーリング則に基づき設定	—	-		
剛性率 µ (N/m ²)	7. 0 × 10 ¹⁰	土木学会(2016) ⁽³⁹⁾ 等	_	—	既往の地下構造情報及び 既往モデルを基に設定	
地震モーメントMo(N・m)	1.00×10 ²²	$Mo=\mu LWD$	_	-	他諸元からの算定値	
走向 θ (°)	190	海溝軸の向き	概略パラスタ	±10°	既存断層パラメータの走 向の標準偏差相当,海底 地形調査結果	
上縁深さ d (km)	上縁深さd (km) 1		詳細パラスタ	Okm, 1km, 2km	土木学会(2002) ⁽⁷⁷⁾ の 不確かさ検討例	
傾斜角 δ (°)	45	1933年昭和三陸地震津波の痕跡高 の再現性が高い波源モデル	詳細パラスタ	±5°	土木学会(2002) ⁽⁷⁷⁾ の傾 斜角の標準偏差相当	
すべり角 λ (°)	270	270		—	鉛直変位量が最大となる 設定	
ライズタイム τ(s)	60		_	—	既往津波を再現する設定	
				南方へ20km, 40km	断層長の1/10程度	
断層の位置 	日本海溝・千島海ネ 	冓の島弧会合部に接するように設定	概略パラスタ	東方へ100kmまで50km単位 西方へ50kmまで50km単位	地震の発生メカニズムと海底 地形	
傾斜方向	西傾斜	を基準とし東傾斜を設定	概略パラスタ	東傾斜	共役断層の考慮	

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(19/32)

パラスタ因子の妥当性について

 ・ 三陸沖の海洋プレート内地震に伴う津波に関するパラメータスタディ検討因子は、土木学会(2016)⁽³⁹⁾におけるパラメータ スタディを原則実施する因子ともおおむね整合する。

	0.00			静的パラメー	9			J	動的パラメータ	
海域または地震のタイプ	位置	大すべり 領域位置	走向	傾斜角	傾斜方向	すべり角	上縁深さ	破壞開始点	破壊伝播 速度	ライズ タイム
プレート間逆断層地震と 津波地震の連動 プレート間逆断層地震 (不均質モデルの場合)	O _{%i}	0	-	-	-	O ³⁸²	-	0	0	0
プレート間逆断層地震 (均質モデルの場合)	O ^{**1}	=	0	0		0**2	0	÷	-	÷
日本海溝沿い (プレート内正断層)	0		0	0	-	(270 度固定)	0	-	1	-
日本海溝沿い(津波地震) (均質モデルの場合)	0	-	0	0	-	O ^{**2}	0	-	-	-
日本海東縁部 (地殻内地震)	0	0	0	0	0**	(90 度固定)	0	-	-	-
海域活断層 (上部地殼内地震)	2	0**5	-	O**5	0**6	O**3	0	÷		-

表3.1-1 パラメータスタディの因子(O:パラメータスタディを原則実施する因子)

※1 基本断層モデルを地震活動域全体に設定する場合を除く

※2 すべり方向のばらつきを考慮して走向に連動

※3 応力場のばらつきを考慮して傾斜角に連動

※4 西傾斜, 東傾斜

※5 調査により明確な場合は固定

※6 不明な断層は両方向

土木学会(2016) ⁽³⁹⁾ に一部加筆

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(20/32)

概略パラメータスタディ(1/8):断層の位置(南北方向)・走向変化ケース

・断層の南北方向位置と走向を変化させる検討を実施した。

概略パラメータスタディ(断層の位置:南北方向・走向)

項目	変動範囲	備考
位置	基準, 南方へ20km, 40km	南北方向の位置については断層長 さの1/10程度を目安とした
走向	基準(190°),基準±10°	・土木学会(2002) ⁽⁷⁷⁾ の走向の 標準偏差相当 ・次ページ参照

既存断層パラメータのばらつきの評価結果

海域	Star 4	*11275	萩原マップ	解析対象	データ	,走	向(°)	すべり)方向(°)	すべ	い角(゜)	傾翁	斗角()
大区分	{#\$3	败小区,77	海域区分	データ	数	平均	標準最	平均	標準刷結	平均	標準嚴	平均	標準局
口 +-3付3株。	千島海 溝南部	41 [*] N以北	G1	プレート間	43	222.3	14.1	304.3	10.8			21.7	6.4
千島海溝	日本海 溝北部	38~41 ° N	G2	逆断層地震のハーバー	29	185.4	12.1	295.0	7.7			16.0	5.7
((11百0)	日本海 溝南部	35.3∼38°N	G3	ド解	14	204.2	13.5	292.3	12.2			21.1	5.1
日本海	北部	40°N以北		MC EX	6(3)	-2.7	9.6			91.7	11.3	43.3	14.0
東縁部	南部	40 [°] N以南 138 [°] E以東	F	町層モデル	5(3)	25.2	6.3			96.0	13,4	57.0	6.7

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した M₈6.0以上,深さ 60km 以下の地震)を解析対象とした。

日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モデルのパラメータを用いてばらつきを評価した。

「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。

・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。

・日本海東緑部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1833)は沖合・沿岸近くの両モデルを採用している。

・ 萩原マップは萩原尊禮編(1991)による。 土木学会(2002) (77) に一部加筆

2.3.2-21

POWER

第868回審査会合 資料2-1 P.223一部修正

概略パラメータスタディ

(南北方向位置・走向)

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(21/32)

<u> 概略パラメータスタディ(2/8):走向変化ケース</u>

- 中西(2017)⁽¹³³⁾では、「1933年昭和三陸地震の震源域を含む海域を対象とした海底地形調査結果が示されており、 北緯38度より北側ではNS(NO[®])からN20[®] Eの断層地形が多く存在しており、これらの断層地形は海溝軸と平行あ るいはほぼ平行である。」とされている。
- この範囲は、パラメータスタディにおける走向の変動範囲(190°±10°)と一致する(P.2.3.2-21参照)。

Nakanishi (2011)の研究対象海域の海底地形図(A)と断層地形の記載結果(B). 等深線の間隔は100mである.赤色の実線,青色の実線,黒色の実線は、それぞれ陸側傾斜の断層地形、海側傾斜の断層地形、直線的に伸びる高まりを示す.薄い灰色の部分は海山などの高まりを示す.濃い灰色の部分は5600mより浅いところを示す. HR:北海道海影,ER:襟裳海山,K1:第一鹿鳥海山,MG:茂木海山,JSM:常磐海山列,NFZ:納沙布断裂帯,KFZ:鹿鳥断裂帯.

断層地形の走向に関するローズダイヤグラム

向,M2:北緯38度付近の中生代磁気異常の走向,PR:北緯34度30分付近に存在する中央海嶺伝播の複跡の

方向, T-海溝軸の走向, Tn-北緯 38 度より北側の日本海溝の走向, Ts:北緯 38 度より南側の日本海溝の走向。

ダイアグラムは最頻値が1になるように正規化されている。

マルチビーム音響測深に基づく断層等地形分布

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(22/32)

<u>概略パラメータスタディ(3/8):断層の位置(東西方向)変化ケース</u>

• 断層の東西方向位置を変化させる検討を実施した。

概略パラメータスタディ(断層の位置:東西方向)

項目	変動範囲	備考
位置 (東西方向)	基準, 東へ100kmまで50km 単位で移動, 西へ50kmまで 50km単位で移動	 ・検討対象としている海洋プレー ト内地震の発生メカニズムと 海底地形を考慮し設定した[※]。 ・P. 2. 3. 2-25参照

※検討対象としている海洋プレート内地震は、海側のプレートが陸側プレートに沈み込みを開始する海溝軸沖合でプレートが下向きに曲げられることにより、伸張応力が作用して発生する正断層型の地震である。よって、基準位置から西に50km、東に100kmの変動範囲は、同様の地震の発生領域を十分に包絡していると考えられる。

2.3.2 - 23

POWER

第868回審査会合 資料2-1 P.224一部修正

海底地形と断層配置の関係

概略パラメータスタディ (傾斜角・傾斜方向)

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(24/32)

概略パラメータスタディ(5/8):断層の位置(東西方向)及び傾斜方向変化ケース

- Tsuru and Park (2000) ⁽¹³⁴⁾ では、「1933年昭和三陸地震の震源域を含む海域を対象としたマルチチャンネル音波 探査に基づく海底地質調査によれば、以下のとおり、海洋プレート上面の正断層構造は、日本海溝から陸側に約 30km、沖合側に約110kmの範囲に存在する」ことが示されている。
 ✓ (海底面に達していない断層を含めた正断層構造は)日本海溝から沖合側に約110kmの位置から確認できる。
 ✓ 沈み込んだプレート内では、日本海溝から陸側に約30kmの範囲で正断層構造が確認できる。
- したがって、おおむね海溝軸付近の基準位置から西へ50km、東へ100kmとしたパラメータスタディの範囲(P.2.3.2-23)は1933年昭和三陸地震の震源域を含む海域を対象としたプレート内正断層の分布範囲とほぼ整合的である。
- また, Tsuru and Park (2000) ⁽¹³⁴⁾ では, 「1933年昭和三陸地震の震源域を含む海域に分布する断層の傾斜方向 は, 東傾斜及び西傾斜の両方向」が示されており, 東傾斜を考慮することとも整合的である。

Figure 1. Study area. The thick shaded line shows the MCS survey line of KR97-07 cruise and dots represent OBS locations. Huge interplate earthquakes (e.g., 1994 far-off-Sanriku earthquake) often occur in the study area, and the 1896 Sanriku earthquake generated a large tsunami. Stars indicate epicenters of these earthquakes. A triangle shows locations of sites 441 and 434 by the DSDP legs 56-57.

Figure 5. Horst and graben structures with normal faults. Subducting oceanic crust is cut by normal faults and horst-graben structures develop. Vertical exaggeration is 4 times. Data were muted around SP 2550 at data processing.

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(25/32)

概略パラメータスタディ(6/8):検討結果

・概略パラメータスタディの結果は以下のとおりである。

概略パラメータスタディ結果一覧

傾斜方向:西傾斜

傾斜方向:東傾斜

南北 位置	東西 位置	走向	最大水位 上昇量	最大水位 下降量	南北 位置	東西 位置	走向	最大水位 上昇量	最大水位 下降量	南北 位置	東西 位置	走向	最大水位 上昇量	最大水位 下降量	南北 位置	東西 位置	走向	最大水位 上昇量	最大水位 下降量
	+.	-10°	1.30m	— 1. O9m		+.	-10°	1.12m	— 1. O2m		+	-10°	1.36m	— 1.55m		+	-10°	1.27m	— 1. 20m
	東へ 100km	基準	1.85m	— 1.47m		果へ 100km	基準	1.23m	— 1.15m		果へ 100km	基準	1.50m	— 2. 05m		果へ 100km	基準	1.22m	— 1.62m
	TOOR	+10°	2.71m	—1.61m			+10°	2. 04m	— 1.48m		TOORIN	+10°	2.28m	— 2. 48m		TOORIN	+10°	1.96m	— 2.16m
	+ .	-10°	1.41m	— 1. 23m		+ .	-10°	1.17m	— 1. 04m		+	-10°	1.54m	— 1.76m		± .	-10°	1.28m	— 1.27m
	東へ 50km	基準	2.01m	— 1.49m	南方	果へ 50km	基準	1.24m	—1.18m		泉へ 50km	基準	1.65m	— 2.15m	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	果へ 50km	基準	1.29m	— 1.64m
± ;#	ooran	+10°	2.63m	— 1.70m			+10°	1.83m	— 1. 52m	++ :#	ooniii	+10°	2.02m	— 2. 47m		ooran	+10°	1.90m	— 2. 05m
		-10°	1.63m	— 1. 27m	40km		-10°	1.25m	— 1. 05m	基準		-10°	1.46m	— 1.79m	40km		-10°	1.38m	— 1.17m
	基準	基準	2. 24m	— 1.53m		基準	準 基準 1.24m	— 1. 31m		基準	基準	1.79m	— 2.17m		基準	基準	1.32m	— 1.54m	
		+10°	2.57m	— 1.74m			+10°	-10° 1.59m — 1.47m		+10°	1.95m	—2.41m			+10°	1.76m	— 1.88m		
		-10°	1.40m	— 1.53m			-10°	1.57m	— O. 91m		_	-10°	1.51m	— 1. 45m			-10°	1.68m	— 1.24m
	西へ 50km	基準	1.71m	— 1.85m		西へ	基準	1.35m	— 1.35m		西へ 50km	基準	1.64m	— 1.92m	ļ	西へ 50km	基準	1.66m	— 1.62m
	JUKIII	+10°	1.99m	— 1.65m		JUKIII	50km +10° 1.2	1. 21m	— 1.33m		JUKIII	+10°	1.97m	— 2. 25m		JUKIII	+10°	1. 41m	— 1.54m
		-10°	1.25m	— 1. O2m								-10°	1.37m	— 1.38m					
	東へ 100km	基準	1.54m	— 1.33m							東へ 100km	基準	1.32m	— 1.84m	1				
	TOOKIII	+10°	2.42m	— 1.50m								+10°	2.05m	— 2. 35m	1				
		-10°	1.25m	— 1. 08m								-10°	1.47m	— 1.52m	1				
黄方	東へ	基準	1.63m	— 1. 31m						南方	東へ 50km	基準	1.37m	— 1.91m	1				
~	JUKIII	+10°	2.29m	— 1.55m						~	UUI	+10°	1.99m	— 2. 29m					
20km		-10°	1.13m	— 1. 07m						20km		-10°	1.35m	— 1. 42m					
	基準	基準	1.69m	— 1.37m							基準	基準	1.40m	— 1. 85m					
		+10°	2.14m	— 1.57m								+10°	1.93m	— 2.18m					
		-10°	1.32m	— 1. 09m	1						.	-10°	1.47m	— 1. 41m			:概略パラ	ラスタ 最大水	位上昇ケース
	西へ 50km	基準	1.46m	— 1.64m	1						四へ 50km	基準	1.70m	— 1.75m					
	JUNII	+10°	1.48m	— 1.46m								+10°	1.78m	— 1. 91m			:概略パラ	スタ 最大水	位下降ケース

2.3.2-26 POWER 第868回審査会合 資料2-1 P.226再揭

水位時刻歷波形

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(28/32)

詳細パラメータスタディ(1/4):傾斜角・上縁深さ変化ケース

・傾斜角及び上縁深さを変化させる検討を実施した。

・各パラメータの変動は、土木学会(2002)⁽⁷⁷⁾の既存断層パラメータの傾斜角のばらつき評価結果(約5°)及び断層上 縁深さの不確かさ検討状況(0, 1, 2km)を参考に設定した。

	HT:		
	項目	変動範囲	ケース数
傾斜角		基準(45°),基準±5°	土木学会(2002) ⁽⁷⁷⁾ の傾斜角 の標準偏差相当
し纪派士	海溝より東側の場合	Okm, 1km(基準), 2km	土木学会(2002) ⁽⁷⁷⁾ の不確か
「工稼沫さ	海溝より西側の場合	各波源位置のプレート境界面からの深さ Okm, 1km (基準), 2km	さ検討例を参考に設定

詳細パラメータスタディ

既存断層パラメータのばらつきの評価結果

海域	海柱正式人		萩原マップ	解析対象	データ	走向(°)		すべり方向(^)		すべり角(°)		傾斜角()	
大区分	{#\$3,	败小区,分	海域区分	データ	数	平均	標準嚴	平均	標準職	平均	標準嚴	平均	標準最
0.425.38	千島海 溝南部	41 °N 以北	G1	プレート間	43	222.3	14.1	304.3	10.8			21.7	6.4
日本海涌· 千島海溝 (南郊)	日本海 溝北部	38~41 ° N	G2	逆断層地震のハーバー	29	185.4	12.1	295.0	7.7			16.0	5.7
((育 (行))	日本海 溝南部	35.3∼38°N	G3	ド解	14	204.2	13.5	292.3	12.2			21.1	5.1
日本海	北部	40°N以北		NO FER Y ST 4	6(3)	-2.7	9.6			91.7	11.3	43.3	14.0
東縁部	南部	40 N以南 138 E以東	F	町間モナル	5(3)	25.2	6.3			96.0	13,4	57.0	6.7

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月~2000年1月に発生した Mn6.0以上,深さ 60km 以下の地震)を解析対象とした。

・日本海東縁部では、発震機構解の節面の特定が困難であるため、津波の痕跡高を説明できる断層モデルのパラメータを用いてばらつきを評価した。

- ・「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。
- ・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。
- ・日本海東緑部(南部)の新潟地震モデルには Noguera and Abe (1992) を採用している。天保山形 沖地震(1833) は沖合・沿岸近くの両モデルを採用している。
- ・ 萩原マップは萩原尊禮編(1991)による。
 土木学会(2002) (77) に一部加筆

3.2.3 詳細パラメータスタディの結果

3 領域で基準断層モデルを位置移動した概略バラメータスタディでの計算ケースのうち、 以下の3波源を詳細パラメータスタディの基準断層モデルとした(図3.2.1・4参照)。

(i)領域4の断層を最も南に配置したケース(岩手県南部〜宮城県北部で最大水位上昇量)
 (ii)領域3の断層を最も北に配置したケース(北海道南部〜岩手県北部で最大水位上昇量)
 (iii)領域3の断層を南から2番目に配置したケース(宮城県北部で最大水位上昇量)

上記基準断層モデルについて、同位置で以下のように断層パラメータを変化させた計算 を実施した。

(1)領域4 (ブレート内正断層)

	・断層上縁面深さ	:0, 1,	2km
	・傾斜角 δ	:基準,	基準土5"
	 ・走向 θ 	: 基準,	基準±10°
(2)貨	頁域3(逆断層)		
	・傾斜角 δ	:基準,	基準±5
	 ・走向 θ 	:基準,	基準±10"
	・すべり方向	:基準,	基準±10°
	(すべり角は・	すべり方	向を満足するよう変動する。)
	迷	所層上編	縁深さの不確かさ考慮

禄深さの不確かさ考慮方法

土木学会(2002) (77) に一部加筆

2-3-2. 三陸沖の海洋プレート内地震に伴う津波(29/32)

<u>詳細パラメータスタディ(2/4):検討結果</u>

・詳細パラメータスタディの結果は以下のとおりである。

詳細パラメータスタディ結果

概略 パラスタ	傾斜 方向	南北 位置	東西 位置	走向	傾斜角	上縁深さ	最大水位 上昇量	最大水位 下降量
						O km	2.55m	—1.68m
					-5°	基準	2. 54m	— 1.65m
						2 km	2.52m	—1.63m
F	西	+	± .		。 基準 +5°	O km	2.71m	—1.61m
昇	傾	基進	果へ 100km	+10°		基準	2.71m	—1.61m
側	斜		1001			2 km	2.70m	—1.63m
						O km	2.89m	—1.61m
						基準	2.90m	—1.62m
						2 km	2.88m	—1.63m
						0 km	2. 22m	—2.35m
					-5°	基準	2. 25m	—2.37m
						2 km	2. 27m	—2.37m
т	東	<u>н</u>	± .			O km	2.26m	—2.47m
降	傾	基進	東へ 100km	+10°	基準	基準	2.28m	—2.48m
側	斜		1001			2 km	2. 29m	—2.48m
						O km	2.28m	—2.56m
					+5°	基準	2. 29m	−2. 57m [*]
						2 km	2. 30m	—2.57m

※:小数第3位まで考慮すると、上縁深さ基準(1km)で最大。

↓ :詳細パラスタ 最大水位上昇ケース

∷詳細パラスタ 最大水位下降ケース

最大ケースの波源モデル

波源モデル

波源モデル

三陸沖の海洋プレート内地震に伴う津波検討結果

• 三陸沖の海洋プレート内地震に伴う津波の検討結果は下表のとおりである。

各パラメータスタディの最大ケース一覧表

2.3.2-33

第868回審査会合

資料2-1 P.233再揭

POWER

	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量
概略パラメータスタディ	2.71m	—2.48m
詳細パラメータスタディ	2. 90m	—2.57m

(余白)

目 次

1. 既往津波の検討
1 – 1 既往津波の文献調杏
1-5_ 既
2. 地震による津波
2 - 1. 地震による津波の計算条件
2-2.日本海東縁部に想定される地震に伴う津波
2-3 三陸沖から根室沖に想定される地震に伴う津波
2 - 3 - 1 = 陸沖から根室沖のプレート間地震に伴う津波
2 3 - 2 三陸方がら低空方のグレート内地震に伴う戸派
- 2 3 2. 二 陸 穴 の 海 汗 フ レ 「 内 地 辰 に 干 ノ 岸
- 2 4 ノノアにぶたてれる地辰に什ノキ族
- ~ ~ 本 捗 明 杉 相 ウ ナ 7 冲 液 エ ニ ル に ト 7 冲 次
 2 - 0 . 行
<u>2 - 8 防波堤等の影響検討</u>
3. 地震以外の要因による津波
3 - 1.地 震 以 外 の 要 因 に よ る 津 波 の 計 算 条 件
3 - 2.陸上の斜面崩壊に起因する津波
3-3. 海底地すべりに起因する津波
3-4.火山現象に起因する津波
3-5 地震以外の要因による津波のまとめ
1
5-2. 基準 準波 選 正 結 果 の 検 証
5-2-1. 既往津波との比較
5 - 2 - 2 . 行 政 機 関 に よ る 既 往 評 価 と の 比 較
6. 基準津波

:本資料でのご説明範囲

2-4. チリ沖に想定される地震に伴う津波(1/27)

第868回審查会合 資料2-1 P.236再揭 POWER

<u>チリ沖に想定される地震に伴う津波の検討フロー</u>

チリ沖に想定される地震に伴う津波については、1960年チリ地震津波が当該海域における最大規模の津波であることを踏まえ、既往津波高を再現する波源モデルを基本として、以下のフローで検討を実施した。

2-4. チリ沖に想定される地震に伴う津波(2/27)

<u>チリ沖について</u>

- ペルー・チリ海溝は、南アメリカプレートの下方に、西方からナスカプレートが沈み込んでいるプレート境 界である。
- プレート境界が固着していることにより、沈み込みに伴って、両プレートの境界にはひずみが蓄積されており、過去にはM9クラスの1960年チリ地震等、このひずみを解放する巨大地震及び津波が発生している。

2-4. チリ沖に想定される地震に伴う津波(3/27)

基準波源モデルの設定(基本方針)

第868回審査会合 資料2-1 P.237一部修正

- チリ沖に想定される地震に伴う津波の検討に当たっては、1960年チリ地震津波が当該海域に おける最大規模の津波であること、及び当該海域で発生する津波の敷地への影響が大きいと 考えられること[※]を踏まえ、1960年チリ地震津波の波源モデルを基準波源モデルとして設定 する。
- 想定波源域については、既往の知見を基に太平洋を取り巻くプレート間のうち大間原子力発 電所への影響が最も大きくなる位置及びチリ沖の破壊伝播の検討を考慮して設定する。
- 基準波源モデルのパラメータに関しては、歴史上最大規模の1960年チリ地震津波の波源モデルを基本とし設定する。なお、遠地からの津波は日本に到達するまでに短周期成分が逸散するため、長周期成分が卓越するように均質モデルとして検討する。

※:補足説明資料「5.チリ沖に想定される地震に伴う津波の 影響検討」参照。 2.4-4

2-4. チリ沖に想定される地震に伴う津波(4/27)

POWER 第868回審査会合 基準波源モデルの設定(設定方法) 資料2-1 P.238再揭 0 100 200 km 以下のフロー及び設定根拠に基づき、基準波源モデルを設定した。 -30° 基準波源モデル設定フロー 設定根拠 既往地震の発生履歴、破壊伝播に関 ①想定波源域の設定 -> する検討に基づき設定 →後述P. 2. 4-6~P. 2. 4-11 -35° 地震波速度や密度に関する既往研究 ②剛性率: µの設定 に基づき5.0×10¹⁰N/m²に設定(土木 学会 (2016) (39)等) →後述P.2.4-12. P.2.4-13 1960年の地震のKanamori and Cipar (1974) ⁽⁴⁸⁾ のパラメータのうち. ③長さ:L,幅:W, すべり量:D (F) 北海道、青森県及び岩手県の痕跡津 走向: θ ,上縁深さ:d -40 波高を再現できるように幅Wとすべ 0 2 mg 傾斜角:δ, すべり角:λの設定 り量Dを修正 →後述P.2.4-14 すべり量28.8m モーメントマグニチュード:Mwの算定 $Mw = (\log Mo - 9.1)/1.5$ ここで、Mo=µLWD -45° 1960年チリ地震津波の再現性が高い モデル(後藤・佐藤 (1993)⁽¹³⁵⁾) ④ライズタイム: ての設定 ➢ に基づき0sに設定 →後述P. 2. 4-15 -50°

24 - 5

-75 基準波源モデル(修正K&CモデルMw=9.4)

-70°

-80°

2-4. チリ沖に想定される地震に伴う津波(5/27)

第868回審査会合 資料2-1 P.239再揭

70°

65°

75°W

2.4-6

OWER

① 想定波源域の設定(1/6):既往地震の発生履歴

チリ沿岸の津波波源域分布(1900-2010)

2-4. チリ沖に想定される地震に伴う津波(6/27)

① 想定波源域の設定(2/6):破壊伝播の検討(1/4)

チリ沖(北端)

• チリ沖の地震発生範囲に係る破壊の境界に関する知見について確認した。(P. 2. 4-7~P. 2. 4-10)

• チリ沖で約300年間隔で繰り返し発生させるM9クラスの巨大地震領域の北端は、Arauco半島の地下構造が不連続な位置と一致していることが示されている。 Melnick et al. (2009) (137) による

2-4. チリ沖に想定される地震に伴う津波(7/27)

2.4 - 8

① 想定波源域の設定(3/6):破壊伝播の検討(2/4)

チリ沖(南端)

1960年チリ地震の南端は、主要な断裂帯及びプレート境界が破壊伝播のバリアとなっている可能性があると考えられる。

2-4. チリ沖に想定される地震に伴う津波(8/27)

① 想定波源域の設定(4/6):破壊伝播の検討(3/4)

チリ沖(北端及び南端)

- 1960年チリ地震の破壊領域北端に関する知見

 ✓ Philibosian and Meltzner (2020) ⁽¹⁴⁰⁾ では,
 「Arauco半島沖は, 地震の履歴からみて南北
 両方向からの破壊が及ぶ (2010年チリ地震
 (Mw8.8) 等は北方から破壊が到達している)
 が, それより先に破壊が進行しない「恒常的
 なバリア」※である」と示されている。
 - ✓ Dura et al. (2017) ⁽¹⁴¹⁾ では,「地質及び生物化石調査によれば,過去600年間で7回の巨大地震がArauco半島沖で破壊を停止している」とされている。
- 1960年チリ地震の破壊領域南端に関する知見

 ✓ Philibosian and Meltzner (2020) ⁽¹⁴⁰⁾ では,
 「チリ海嶺が沈み込む南側(三重会合点付
 近)は、プレートの収束速度が小さく、M7.5
 以上の地震も発生していないことから、「恒
 常的なバリア」**であろう」とされている。

※:恒常的なバリア (persistent barrier)
 Philibosian and Meltzner (2020) ⁽¹⁴⁰⁾ では、「その場所を通過した破壊がひとつも知られていないもの」を指す。

巨大地震の破壊記録(空間的&時間的)

① 想定波源域の設定(5/6):破壊伝播の検討(4/4)

破壊伝播の検討のまとめ

・1960年チリ地震の北端及び南端にはそれぞれ構造境界が存在すると考えられる。
 ・1960年チリ地震では、この構造境界のほぼ全域が破壊したと考えられる。

2.4 - 11

POWER

修正K&CモデルMw=9.4

1960年チリ地震では構造境界のほぼ全域が破壊したと考えられることから、安全評価上の想定波源域として、1960年チリ地 震津波を再現するモデルの範囲とした。

② 剛性率の設定(1/2)

• 土木学会(2016)⁽³⁹⁾では、「地震波速度や密度に関する既往研究に基づき、海域毎に標準値が設定されており、断 層全体が深さ20km以浅と以深にまたがって存在する場合の剛性率は5.0×10¹⁰N/m²」とされている。

海 域	根拠	剛性率
 ・西南日本陸側プレート内 ・日本海東縁部 ・プレート境界浅部(断層面全体が深 さ 20km 以浅に存在する場合) 	Vp=6.0km/s Vp/Vs=1.6~1.7 ρ =2.7~2.8g/cm ³ とすれば、 μ =3.36×10 ¹⁰ ~3.94×10 ¹⁰ N/m ² となる。この中間的値とする。	3.5×10 ¹⁴ N/m ² (3.5×10 ¹¹ dyne/cm ²)
 ・海洋プレート内 ・プレート境界深部(断層面全体が深 さ 20km 以深に存在する場合) 	Vp=8.0~8.1km/s Vp/Vs=1.75~1.80 ρ =3.2~3.5g/cm ⁴ とすれば、 μ =6.31×10 ¹⁰ ~7.50×10 ¹⁰ N/m ² となる。この中間的値とする。	7.0×10 ¹⁰ N/m ² (7.0×10 ¹¹ dyne/cm ²)
 ・プレート境界中央部(断層面が深さ 20km 以浅と以深にまたがって存在 する場合) 	浅部と深部の中間的値とする。	5.0×10 ¹⁰ N/m ² (5.0×10 ¹¹ dyne/cm ²)

震源付近の媒質の剛性率の標準値

土木学会(2016)⁽³⁹⁾に一部加筆

2-4. チリ沖に想定される地震に伴う津波(12/27)

② 剛性率の設定(2/2)

• 1960年チリ地震の断層モデルを検討した文献において採用された剛性率を調査した※。

前ページ及び以上から、剛性率は5.0×10¹⁰N/m²とした。

※:Fujii and Satake(2013)⁽¹⁴²⁾に記載された津波または地殻変動を再現する1960年チリ地震のモデルのうち、剛性率が記載されているものを対象とした。

The total seismic moments from the tsunami and joint inversion results are 7.3 and 7.2×10^{22} Nm (Mw = 9.2), respectively, assuming rigidity of 5.0×10^{10} N/m² for all subfaults. The fault length

Fujii and Satake(2013) (142)

The best USP fault (Fig. 4) dips 20°E and extends 850 km south from the Arauco Peninsula. The best southern endpoint is near the Taito Peninsula. This point is not well constrained due to the lack of information south of 45.3°S; however, reports of uplift in the northern edge of the Peninsula (CERESIS 1986) suggest that faulting reached at least that far south. Seventeen metres of displacement on the 130 km wide fault contributed to a USP moment of 9.4×10^{22} N m ($\lambda = \mu = 5 \times 10^{10}$ Pa). Our best USP fault does not differ notably from Plafker's (1972) model. Fig. 5

Barrientos and Ward (1990) (138)

[•] その結果,いずれのモデルにおいても剛性率5.0×10¹⁰N/m²が採用されており,この値は当該海域で発生するプレート間 巨大地震の剛性率として妥当であると考えられる。

2-4. チリ沖に想定される地震に伴う津波(13/27)^{第868回審査会合} ^{第868回審査会合}

③ 長さ・幅・すべり量・走向・上縁深さ・傾斜角・すべり角の設定

 波源のパラメータの長さL,幅W,すべり量D,走向θ,上縁深さd, 傾斜角δ及びすべり角λは、歴史記録上最大の地震である1960年チリ地 震津波の既往津波高の再現性が高いモデル[※]のパラメータを採用した。

設定/	ペラメ	ータ
		-

項目	諸元	設定根拠
長さ L (km)	800	
幅 W ※ (km)	150 (200)	
すべり量 D※ (m)	28.8 (24.0)	1060年エリ地震津波の旺
走向 θ (°)	10	1300年)う地震洋派の成 往津波高の再現性が高い モデルのパラメータを採
上縁深さd (km)	1	用
傾斜角 δ (°)	10	
すべり角 λ (°)	90	

※Kanamori and Cipar(1974)⁽⁴⁸⁾の幅及びすべり量を修正して設定。

諸元の():修正前の値。

2.4 - 14

POWER

修正K&Cモデル (Mw=9.4)

④ ライズタイムの設定

• 後藤・佐藤(1993)⁽¹³⁵⁾の1960年チリ地震津波の津波痕跡高さ再現モデルでは、「海底の変位を海面上に与える際には、変動全体が瞬時に完了するもの」とされている。

以上より、ライズタイムは0秒(瞬時に変位完了)とした。

	明冶29年	昭和8年	昭和43年	チリ津波	備考
モデル	相田(1977) MJ-6	相田(1977) SY-3	相田(1978) 02	Kanamori	
長さ : (ka) 幅 (ka) 上述の疎さ(ka) 煩料角 (*) 傾斜方向 :	210 50 1 20 S 66* W	185 50 1 45 N90° W	150 100 1 20 S 66* W	800 200 53 10 S 80° E	
すべり重 経ずれ (m) 提ずれ (m)	-10.6 - 6.7	6. 6 0. 0	- 2.5 - 3.2	-24. 0 0. 0	+: 正断層 +: 左ずれ
断層の	40° 57' 143° 18'	40° 10' 144° 30'	41° 35′ 143° 35′	Ξ	
断層の 左下 経度	39° 14' 144° 15'	38° 30' 144° 30'	40° 19' 144° 13'	-	

上記の断層パラメータが与えられると、断層近傍の海 底面(地表面)での鉛直変位分布は弾性論を基礎とした Mansinha and Smylie[®]の方法により計算で求める ことができる。この鉛直変位を海面の水位として与えて、 津波数値計算の初期条件とする。

海底の変位を海面上に与える際には、変動全体が瞬時 に完了するものとしている。実際の地震断層運動におい ては、変動は瞬間的に生じるのではなく、数秒から100 秒程度の継続時間を持つことが知られているが、津波の 発生時の水位変動としては、瞬間的に海面上に変化が生 じた場合と、1から2分の立ち上がり時間で完了させた 場合とでは、ほとんど差がないことが確認されてい る¹¹。

後藤・佐藤(1993)⁽¹³⁵⁾に一部加筆

2-4. チリ沖に想定される地震に伴う津波(15/27)

• 想定波源域及び地震規模は、1960年チリ地震津波の既往津波高 を再現するモデル[※]を参照し設定した。

基準波源モデルのパラメータ

項目	諸元	主な設定根拠
モーメントマク゛ニチュート゛ Mw	9.4	Mw=(logMo-9.1)/1.5
長さ L (km)	800	1960年チリ地震津波の痕跡高 の再現性が高いモデル
幅 W [※] (km)	150 (200)	1960年チリ地震津波の痕跡高 の再現性が高いモデルを基本
すべり量 D※(m)	28.8 (24.0)	とし、再現性が確認できる量 に修正
剛性率 μ (N/m ²)	5. 0 × 10 ¹⁰	土木学会(2016) ⁽³⁹⁾ 等
地震モーメントMo(N・m)	1. 73 × 10 ²³	Mo= μ LWD
走向 θ (°)	10	
上縁深さ d (km)	1	
傾斜角 δ (°)	10	1960年ナリ地震津波の狼跡 高の再現性が高いモデル
すべり角 λ (°)	90	
ライズタイムτ(s)	0	

※:Kanamori and Cipar(1974)⁽⁴⁸⁾の幅及びすべり量を修正して設定。

第868回審査会合

資料2-1 P.247再掲

2.4-16

POWER

基準波源モデル

():修正前の値。

2-4. チリ沖に想定される地震に伴う津波(16/27) $g_{\#2-1}$ P.248- $m_{\#2-1}$

<u>パラメータスタディ</u>

- Oパラメータスタディは、概略と詳細の2段階で実施するものとし、概略パラスタは津波水位に対して支配的因子、詳細パラスタは津波水位に対して従属的因子の位置づけである。パラスタ詳細は以下のとおり。
- 概略パラスタとして、断層の位置、及び走向を組合せた検討を実施した。
- 詳細パラスタとして、概略パラスタにおける最大水位上昇ケース及び最大水位下降ケースとなる2つの波源モデル を対象に、傾斜角及び上縁深さを組合せた検討を実施した。

項目	変動範囲	ケ-	-ス数
断層の位置	基準, 北方へ100km, 200km	3	計
走向	基準(10°),基準±5°	3	9

概略パラメータスタディ

第868回審杳会合

24 - 17

POWER

詳細パラメータスタディ

項目	変動範囲	ケース数		
傾斜角	基準(10°:概略パラスタケース), 基準±5°	3	±	
上縁深さ	Okm, 1 km(基準:概略パラスタケース), 2 km	3	9 9	

基準波源モデル

2-4. チリ沖に想定される地震に伴う津波(17/27)

基準波源モデルの諸元及びパラメータスタディ整理表

• 基準波源モデルの各パラメータに対し、パラスタ実施の考え方について以下のとおり整理した。

		基準波源モデル	パラメータスタディ				
·····································	諸元	主な設定根拠	概略/ 詳細パラスタ	変 動 幅	根拠又は パラスタ未実施の理由		
モーメントマク゛ニチュート゛ Mw	9. 4	Mw=(logMo-9.1)/1.5	—	—	他諸元からの算定値		
長さ L (km)	800	1960年チリ地震津波の痕跡高の再現性 が高いモデル	—	—			
幅 W(km)	150 (200)	1960年チリ地震津波の痕跡高の再現性	_	_	既往最大規模の地震津波の再現 モデルを適用		
すべり量 D (m)	28.8 (24.0)	」か高いモナルを基本とし、再現性か確 認できる量に修正	—	—			
剛性率 μ (N/m ²)	5. 0 × 10 ¹⁰	土木学会(2016) ⁽³⁹⁾	_	—	既往の地下構造情報及び既往モ デルを基に設定		
地震モーメントMo(N・m)	1.73×10 ²³	Mo= μ LWD	—	_	他諸元からの算定値		
走向 θ (°)	10		概略パラスタ	± 5°	海溝軸から大きくはみ出さない 範囲		
上縁深さ d (km)	1		詳細パラスタ	± 1 km	再現モデルを参照し前後1kmと した		
傾斜角 δ (°)	10	1960年チリ地震津波の狼跡高の再現性 が高いモデル	詳細パラスタ	± 5°	土木学会(2002) ⁽⁷⁷⁾ の日本海 溝・千島海溝の標準偏差を参照		
すべり角 λ (°)	90		—	—	鉛直変位量が最大となる設定		
ライズタイムτ(s)	0		_	_	既往津波を再現する設定かつ津 波高さが大きくなる設定		
断層の位置	1960年チリ±	也震津波を再現するモデルの範囲	概略パラスタ	北方へ100km, 200km	プレート境界や構造境界を考慮 して波源長さの1/10程度		

2-4. チリ沖に想定される地震に伴う津波(18/27)

パラスタ因子の妥当性について

チリ沖に想定される地震に伴う津波に関するパラメータスタディ検討因子は、土木学会(2016)⁽³⁹⁾におけるパラメータスタディを原則実施する因子ともおおむね整合する。

				静的パラメー	9			J	動的パラメータ	
海域または地震のタイプ	位置	大すべり 領域位置	走向	傾斜角	傾斜方向	すべり角	上縁深さ	破壞開始点	破壊伝播 速度	ライズ タイム
プレート間逆断層地震と 津波地震の連動 プレート間逆断層地震 (不均質モデルの場合)	O _{\$\$1}	0	- 1	-	~	0.882	-	0	0	Ö
プレート間逆断層地震 (均質モデルの場合)	0*1	. 8	0	0	\sim	0*2	0	14	~	->
日本海溝沿い (プレート内正断層)	0	-	0	0	3	(270 度固定)	0	-	1	×.,
日本海溝沿い(津波地震) (均質モデルの場合)	0	1.5	0	0	-	0*2	0	14.1		
日本海東縁部 (地殼内地震)	0	0	0	0	O ^{\$\$1}	(90度固定)	0	1.2001	-	-
海域活断層 (上部地殼内地震)		O * 5	17	0**	0**	O**3	0		~	÷

表3.1−1 パラメータスタディの因子(○:パラメータスタディを原則実施する因子)

※1 基本断層モデルを地震活動域全体に設定する場合を除く

※2 すべり方向のばらつきを考慮して走向に連動

※3 応力場のばらつきを考慮して傾斜角に連動

※4 西傾斜, 東傾斜

※5 調査により明確な場合は固定

※6 不明な断層は両方向

土木学会(2016) ⁽³⁹⁾ に一部加筆

(余白)

2-4. チリ沖に想定される地震に伴う津波(19/27)

<u> 概略パラメータスタディ(1/4):断層の位置・走向変化ケース</u>

断層の位置と走向を変化させる検討を実施した。

概略パラメータスタディ

項目	値の範囲	備考
断層の位置	基準 北方へ100km 北方へ200km	プレート境界(S46°付近)や構造境界 (S37°付近)を考慮して波源長さ(800km) の1/10程度を移動。
走向	基準(10°) 基準± 5°	海溝軸から大きくはみ出さない範囲で設定。

概略パラメータスタディ

2-4. チリ沖に想定される地震に伴う津波(20/27)

概略パラメータスタディ(2/4):検討結果

概略パラメータスタディの結果は以下のとおりである。

最大水位上昇及び最大水位下降ケース ・位置:基準

走向:基準

概略パラメータスタディ結果一覧

南北位置	走向	最大水位上昇量	最大水位下降量
北方へ+200km	-5°	2.07m	—2.48m
	基準	1.99m	— 2.39m
	+5°	1.87m	— 2. 00m
北方へ+100km	-5°	2.18m	—2.71m
	基準	2.14m	—2.69m
	+5°	2. 00m	—2.11m
	-5°	2.34m	—2.68m
基準	基準	2. 34m [*]	—2.79m
	+5°	1.95m	—2.34m

※:小数第3位まで考慮すると基準走向で最大。

↓:概略パラスタ 最大水位下降ケース

※:地震発生20時間後を0時間としている。

2-4. チリ沖に想定される地震に伴う津波(22/27)

第868回審査会合 資料2-1 P. 252再掲 POWER

<u>概略パラメータスタディ(4/4):最大水位下降ケース検討結果</u>

取水ロスクリーン室前面における概略パラメータスタディの最大水位下降ケース検討 結果は以下のとおりである。

水位時刻歴波形

※地震発生20時間後を0時間としている。

2-4. チリ沖に想定される地震に伴う津波(23/27)

<u>詳細パラメータスタディ(1/4):傾斜角・上縁深さ変化ケース</u>

傾斜角と上縁深さを変化させる検討を実施した。

詳細ノ	ヽ゚ラ	X	ータ	ス	タ	デ	1	•

項目	値の範囲	備考
傾斜角	基準(10°) 基準±5°	土木学会(2002) ⁽⁷⁷⁾ の日本海溝・千島海溝の 標準偏差を参照した。
上縁深さ	基準(1 km) 基準±1 km	再現モデルが1kmであることから, ごく浅いと 想定し, ±1kmとした。

既存断層パラメータのばらつきの評価結果

海域	1	まして八	萩原マップ	解析対象	データ	走	走向(°)		すべり方向(゜)		すべり角(゜)		傾斜角(°)	
大区分	(世人	败小区分	に対応する海域区分	データ	数	平均	標準偏差	平均	標準備差	平均	標準偏差	平均	標準嚴	
口子治迷	千島海 溝南部	41°N以北	G1	プレート間 逆断層地震 のハーバー ド解	43	222.3	14.1	304.3	10.8			21.7	6.4	
千島海溝	日本海 溝北部	38~41 ° N	G2		29	185.4	12.1	295.0	7.7			16.0	5.7	
(111 11)	日本海 溝南部	35.3∼38 ° N	G3		14	204.2	13.5	292.3	12.2			21.1	5.1	
日本海東縁部	北部	40°N以北	E	断層モデル	6(3)	-2.7	9.6			91.7	11.3	43.3	14.0	
	南部	40°N以南 138°E以東	F		5(3)	25.2	6.3			96.0	13.4	57.0	6.7	

(注)・日本海溝および千島海溝(南部)沿い海域では、ハーバード CMT による発震機構解(1976年1月 ~2000年1月に発生した *M*n6.0以上,深さ 60km 以下の地震)を解析対象とした。

・日本海東縁部では,発震機構解の節面の特定が困難であるため,津波の痕跡高を説明できる断層モ デルのパラメータを用いてばらつきを評価した。

・「すべり方向」は、スリップベクトルの水平投影が真北から時計回りになす角度である。

・日本海東縁部のデータ数のうち括弧内の値は、走向に対して適用した1枚断層換算のモデル数である。

・日本海東緑部(南部)の新潟地震モデルには Noguera and Abe (1992)を採用している。天保山形 沖地震(1833)は沖合・沿岸近くの両モデルを採用している。

・ 萩原マップは萩原尊禮編(1991)による。 土木学会(2002) (77) に一部加筆

2-4. チリ沖に想定される地震に伴う津波(24/27)

詳細パラメータスタディ(2/4):検討結果

詳細パラメータスタディの結果は以下のとおりである。

詳細パラメータスタディ結果一覧

第868回審査会合

資料2-1 P.254再掲

2.4-26

POWER

南北位置	走向	傾斜角	上縁深さ	最大水位上昇量	最大水位下降量
			O km	1.39m	— 1. 73m
		— 5 °	1 km	1.38m	— 1.74m
			2 km	1.43m	— 1.83m
			O km	2.35m	— 2.79m
基準	基準	基準	1 km	2.34m	—2.79m
			2 km	2.37m	—2.86m
			O km	3. 04m	—3.43m
		+ 5°	1 km	3. 02m	— 3. 43m
			2 km	3. 06m	—3.48m

∶詳細パラスタ 最大水位上昇ケース

∶詳細パラスタ 最大水位下降ケース

2-4. チリ沖に想定される地震に伴う津波(26/27)

詳細パラメータスタディ(4/4):最大水位下降ケース検討結果

取水ロスクリーン室前面における詳細パラメータスタディの最大水位下降ケース検討 結果は以下のとおりである。

第868回審査会合

資料2-1 P.256再掲

2.4-28

POWER

<u>チリ沖に想定される地震に伴う津波検討結果</u>

チリ沖に想定される地震に伴う津波の検討結果は下表のとおりである。

チリ沖に想定される地震に伴う津波検討結果

第868回審査会合

資料2-1 P.257再揭

2.4-29

POWER

	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量
概略パラメータスタディ	2.34m	—2.79m
詳細パラメータスタディ	3. O6m	— 3. 48m

(余白)

目 次

1.既往津波の検討	
1 - 1. 既往津波の文献調査	
1 - 2 , 津 波 堆 積 物 調 杳	
1-3.既往津波の計算条件	
1-4. 既往津波の再現計算	
1-5. 既往津波の検討のまとめ	
2. 地震による津波	
2-1. 地震による津波の計算条件	
2-2.日本海東縁部に想定される地震に伴う津波	
2-3. 三陸沖から根室沖に想定される地震に伴う津波	
2-3-1. 三陸沖から根室沖のプレート間地震に伴う津波	
2 - 3 - 2 . 三陸沖の海洋プレート内地震に伴う津波	
2 - 4 . チリ沖に想定される地震に伴う津波	
2 - 5. 海域活断層に想定される地震に伴う津波	
2 - 6. 行政機関か想定する波源セテルによる津波	
2 2 8、	?
○. 地辰以クトの安凶による洋派 ○_1 地雲以めの西田による津波の計質条件	
3 - 1. 地辰以かの女囚による 牟 灰の 前 昇木 什 3 - 2	
3 - 3 海底地すべりに起因する津波	
3-5 地震以外の要因による津波のまとめ	
3 - 6、防波堤等の影響検討	
4. 津波発生要因の組合わせに関する検討	
5. 基準津波の策定	
5-1.基準津波の選定	
5-2.基 準 津 波 選 定 結 果 の 検 証	
5-2-1.既往津波との比較	
5 - 2 - 2. 行政機関による既往評価との比較	
6. 基準津波	

2-5. 海域活断層に想定される地震に伴う津波(1/5)

対象活断層及び評価方針

- ・ 地震規模及び敷地との距離・位置関係を考慮し、津軽海峡周辺において活動 が後期更新世以降に及んでいることを否定できない断層のうち主要なものを 対象とした。
- さらに、大間付近の仮想的な隆起域を説明する仮想的な活断層(隆起再現断層)についてもその影響を確認する。(P.2.5-3参照)
- 阿部(1989)⁽¹⁴³⁾の簡易予測式を用いた推定津波高を基に以下のとおりスク リーニングを実施する。
 - ✓推定津波高さが2.90m^{※1}未満の場合は推定津波高さを採用する。
 - ✓推定津波高さが2.90m^{※1}以上の場合は、数値シミュレーションにより敷地への影響を確認する。
- ※1:各検討対象海域の津波による敷地における最大水位上昇量のうち最低値(三陸沖の海洋プレート内地震 に伴う津波の敷地における最大水位上昇量)。また、下表のとおり津波波高2m~4m程度では鉄筋コ ンクリートビルに被害は生じないという知見も参照した。

津波波高(m)	1	2	4	8	16	.32
木造家屋	部分的破壞	全面破壞				
石造家屋	持ちこ	たえる		全面破壊		
鉄筋コンクリートビル	持ちこ	たえる			4	全面破壞

対象断層

【気象庁HPより:津波の高さによってどのような被害が発生するのですか?】

場 所		名 称	断層長さ L(km)	津波の伝播距離 ⊿(km)
	F-14断	層	3.4	12
	敷地西:	方沖断層	7.2	20
津軽海峡内	函館平野	海域南西延長部を含む	33	36
		海域南東延長部を含む	31	33
	根岸西方断層		38	49
太平洋側	恵山岬]	東方沖断層	47	74
日本海側	奥尻海盆北東縁断層~ 奥尻海盆東縁断層~ 西津軽海盆東縁断層の連動 ^{※2}		137	90

第868回審査会合

資料2-1 P.259一部修正

2.5 - 2

POWER

活断層分布

※2:国交省ほか(2014)⁽²³⁾のF18断層の位置で評価

2-5. 海域活断層に想定される地震に伴う津波(2/5)

2.5-3

<u>隆起再現断層の設定</u>

- 第922回審査会合において、以下に示すF-14断層を起点とする仮想的な活断層を想定する領域を示した。
- ここでは、隆起再現断層を対象に阿部(1989)⁽¹⁴³⁾の簡易予測式を用いた推定津波高を保守的に評価できるよう隆起再現断層の長さ及び津波の伝播距離を以下のとおり設定する。
 - ✓ 隆起再現断層の長さ:F-14断層及び隆起再現断層の想定領域を考慮し最も長くなるようにF-14断層西端から隆起再現断層の想定領域の北東端を結ぶ直線の長さとする(19.3km≒20km)
 - ✓ 津波の伝播距離:大間原子力発電所から隆起再現断層中心までの最短距離とする(9.0km)

2-5. 海域活断層に想定される地震に伴う津波(3/5)

検討結果

- 海域活断層に想定される地震に伴う津波の推定津波高は、最大で奥尻海盆北東縁断層〜奥尻海盆東縁断層〜西津軽海盆東縁断層の連 動^{※1}(以下「奥尻海盆東縁断層等の連動」という。)の3.9mである。
- 奥尻海盆東縁断層等の連動による推定津波高さが2.90mを上回ったため、奥尻海盆東縁断層等の連動による影響評価について数値シミ ュレーションによる詳細検討を実施する。(P.2.5-5. P.2.5-6参照)

簡易予測式による推定津波高の算定手順 簡易予測式による推定津波高の算定結果 活断層調査結果より. 対象断層の位置と長さしを設定 海域部 海域部 津波の 海域部の 推定 $1 < 22 5 \text{ km}^{\times 2}$ $L \ge 22.5 \text{ km}^{\times 2}$ 断層 地震 の断層 の地震 伝播 断層 すべ モーメント 津波高 活断層の長さし 場所 名称 長さ り量 モーメント 長さ モーメント 距離 マグニ 幅 断層幅が上限に 断層幅が上限に D 1' Mo' チュード Mo Λ Ht 達していない時 達している時 (km) (km) $(N \cdot m)$ (km) $(N \cdot m)$ (km) Mw (m) (m) 武村(1998)⁽¹⁴⁴⁾の関係により断層幅Wを算 定 L/W= 1.5 F-14断層 3.4 2.3 0.28 7.66 $\times 10^{16}$ 3.4 7 66×10^{16} 12 5.2 0.1 武村(1998) (144)の関係により地震 断層幅の上限値に対応する断層長さし、及び モーメントM。を算定 7. 26 × 10¹⁷ 7. 26 × 10¹⁷ 7.2 4.8 0.60 7.2 20 5.8 0.1 すべり量D.よりすべり量Dを算定※3 $\log M = 2.0 \log L + 16.64$ 敷地西方沖断層 $D=D_+ \times (L/L_+)$ L∝D, W=const. 津軽海峡内 海域南西延長部 函 西 33 2.74 4.75×10¹⁹ 2. 16×10^{19} 36 0.8 15 15 6.8 I 館 岡 平 岡 を含む 活断層の剛性率µにより地震モーメントM。を 算定 平層野帯 海域南東延長部 $\mu = 3.5 \times 10^{10} \text{ N/m}^2$ 31 2.58 4. 19 × 10¹⁹ 1.89 $\times 10^{19}$ 33 0.9 15 14 6.8 $M_0 = \mu D L W$ を含む 根岸西方断層 38 15 3.16 6. 30×10^{19} 32 5. 31 × 10¹⁹ 49 7.1 1.1 地震モーメントM。^{※4}からモーメントマグニチュードM...を算定[Kanamori (1977) ⁽¹⁴⁵⁾] $M_{w} = (\log M_{0} - 9.1)/1.5$ 太平洋側 恵山岬東方沖断層 47 15 3.91 9.65 \times 10¹⁹ 47 9.65 \times 10¹⁹ 74 73 08 日本海側及び 津軽海峡内 太平洋側 奥尻海盆北東縁断層~ 活断層の長さし 奥尻海盆東縁断層~ 日本海側 3.9 8. 19 × 10²⁰ 8. 19×10^{20} 137 15 11.4 137 90 7.9 西津軽海盆東縁断層の 阿部(1989)⁽¹⁴³⁾の予測式により推定 阿部(1989) ⁽¹⁴³⁾の予測式により推定 連動※1 津波高H₊を算出 津波高H₊を算出 $\log H_{+} = M_{\odot} - \log \Delta - 5.35$ $\log H_{+} = M_{w} - \log \Delta - 5.55$ ※2: 断層幅の上限W,は. 地震発生層の厚さH。を15kmとし, 傾斜角 8 を90°(45°~90°のうちM, が最大となる値)とし 津軽海峡内 隆起再現断層 1.55×10^{19} 2.5*2 20 13.3 1.66 20 1.55 $\times 10^{19}$ 9 6.7 た際には、Wt=He/sin δ = 15kmとなる。また、断層幅の上限に対応する断層長さL₊は、 L₊= 1.5W₊ = 22.5kmとなる。 ※3: 断層幅の上限に対応するすべり量Dtは、モーメントマグニチュードをM_{wt}=(logL++3.77)/0.75 = 6.83. ※1:国交省ほか(2014)⁽²³⁾のF18断層の位置で評価

地震モーメントをM_{ot}= 10^{(1.5M}*+9.1) = 2.21×10¹⁹ N·m, 剛性率をµ= 3.50×10¹⁰ N/m²とした際には, $D_{t}=M_{nt}/(\mu L_{t}W_{t}) = 1.87 \text{m} \text{c} \text{s} \text{c} \text{s}$

※4:対象となる活断層が海域と陸域に連続して分布する場合には、M。を海域部の断層長さし。と全体の断層長さしとの 比で按分した値を用いている。

※2:隆起再現断層による地震に係る地震動審査は今後行われるが、地震動審査の動向如何によらず、この地震 に伴う津波による影響は、奥尻海盆東縁断層等の連動による津波の影響を上回るものにはならない。

第868回審査会合

資料2-1 P.260一部修正

25 - 4

POWER

[土木学会 (2016)⁽³⁹⁾を参考に作成]

2-5. 海域活断層に想定される地震に伴う津波(4/5)

奥尻海盆北東縁断層~奥尻海盆東縁断層~西津軽海盆東縁断層の連動による津波の敷地への影響について(1/2)

・奥尻海盆東縁断層等の連動は、国交省ほか(2014)⁽²³⁾(日本海における大規模地震に関する調査検討会)において検討されたF18断層の位置で評価した。

・したがって、F18断層の断層パラメータを用いて奥尻海盆東縁断層等の連動による津波の敷地への影響について検討する。

検討会公表パラメータ

津波断層 モデル	Mw	上縁深さ (T.Pkm)	下縁深さ (T.Pkm)	走向 (°)	傾斜 (°)	すべり角 (゜)	断層長さ (km)	断層幅 (km)	平均すべり量 (m)
F10 7 71	7 71	7. 71 2. 2	15.0	348	45	87	37.4	18. 1	F F 2
FIO	7. 71		15.0	7	45	95	100. 0	18. 1	5. 52

2-5. 海域活断層に想定される地震に伴う津波(5/5)

奥尻海盆北東縁断層〜奥尻海盆東縁断層〜西津軽海盆東縁断層の連動による津波の敷地への影響について(2/2)

・奥尻海盆東縁断層等の連動による津波の検討結果は以下のとおりである。

奥尻海盆東縁断層等の連動による津波検討結果

	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量
奥尻海盆東縁断層等の 連動 [※] による津波	2. 25m	—2.46m

※:国交省ほか(2014)⁽²³⁾のF18断層の位置で評価

第868回審査会合

資料2-1 P.262再掲

2.5-6

OWER

水位時刻歴波形出力点

水位時刻歴波形

最大水位上昇量分布

目 次

1	既往津波の検討
	1 - 1,既往津波の文献調査
1	1 - 2. 津波堆積物調査
	1-3. 既往津波の計算条件
	1-4.既往津波の再現計算
	1-5_既往津波の検討のまとめ
2	 地震による津波
	2-1.地震による津波の計算条件
	2 - 2. 日本海泉稼部に想定される地震に伴う津波
	2 - 3.二
	- 2 - 3 - 1.二
	- 2 - 3 - 2 . 二 座 冲 の <i></i>
	2 4 ア ア 7 に 芯 足 C 1 C る 地 展 に F ア F 放 2 - 5 海 ば 活 断 層 に 相 定 さ れ る 地 震 に 伴 う 津 波
	2 - 6 行 政 機 関 が 想 定 す る 波 源 モ デ ル に よ る 津 波
	2-7. 地震による津波のまとめ
	2-8.防波堤等の影響検討
3	地震以外の要因による津波
	3-1. 地震以外の要因による津波の計算条件
	3 - 2. 陸上の斜面崩壊に起因する津波
	3 - 3 . 海 底 地 す べ り に 起 因 す る 津 波
	3 - 4.火山 現家に起囚 9 る 洋 波
	3 - 5. 地 辰 以 クト の 安 凶 に よ る ឝ 波 の ま と の
Δ	3 0.
5	
	5 - 1 基準達波の選定
	5-2. 基準津波選定結果の検証
	5-2-1.既往津波との比較
	5 - 2 - 2. 行政機関による既往評価との比較
6	. 基準津波

:本資料でのご説明範囲

2-6. 行政機関が想定する波源モデルによる津波(1/23)

<u>検討方針</u>

第868回審査会合 資料2-1 P.382一部修正

行政機関における津波評価については,必要な科学的・技術的知見を基準津波策定に反映するため,発電所周辺で評価を 実施している行政機関の津波評価に関する検討を行う。 対象とする行政機関は,青森県及び敷地周辺で検討された国交省ほか,北海道及び内閣府とした。

〇青森県(2015)⁽¹⁴⁶⁾による検討

・H24青森県太平洋側想定地震津波, H24青森県平舘断層想定地震津波, F18(隣接LRR) 想定地震津波 (P.2.6-3, P.2.6-4:公表値による)

〇国交省ほか(2014)⁽²³⁾及び北海道(2017)⁽⁷¹⁾による検討

・日本海東縁部のうち,津軽海峡西方のF17及びF18断層(P.2.6-5~P.2.6-12)

O内閣府(2020a)⁽¹²⁴⁾による検討

・最大クラスの津波断層モデルのうち、日本海溝(三陸・日高沖)モデル(P.2.6-13~P.2.6-23)

<u>・青森県(2015)による検討(1/2)</u>

第868回審査会合 資料2-1 P.383一部修正

2.6 - 3

POWER

• 青森県(2015)⁽¹⁴⁶⁾では、H24青森県太平洋側想定地震津波、H24青森県平舘断層想定地震津波及び国交省ほか(2014)⁽²³⁾のF18(隣接LRR)想定地震津波を想定津波として大間周辺の津波浸水評価を実施している。

注:青森県(2021)⁽¹⁴⁷⁾では、上記想定地震津波に加え、内閣府(2020a)⁽¹²⁴⁾による日本海溝(三陸・日高沖)モデル、千島海溝(十勝・根室沖) モデルを用いて津波浸水想定の見直しを実施しているが、内閣府(2020a)⁽¹²⁴⁾による津波評価との比較は、P.2.6-13~P.2.6-23で実施して いることから、ここでは、上記の3つの想定地震津波の評価と比較する。

F18(隣接LRR)想定地震津波

(Mw = 7.7)

青森県(2015) (146)

2-6. 行政機関が想定する波源モデルによる津波(4/23)

POWER 第868回審査会合

資料2-1 P.385再掲

F17断層

2.6 - 5

国交省ほか(2014)による検討

- 国交省ほか(2014)⁽²³⁾(日本海におけ) る大規模地震に関する調査検討会)にお いて、日本海における最大クラスの津波 断層モデルの設定に関する検討結果が示 された。
- 検討会モデルの中から、大間原子力発電 所への影響が比較的大きい津波断層モデ ルを抽出して、数値シミュレーションを 実施し、敷地における水位変動量を算定 する。

波源モデル位置図

国交省ほか(2014)⁽²³⁾に一部加筆

検討会公表パラメータ

津波断層 モデル	Mw	上縁深さ (T.Pkm)	下縁深さ (T.Pkm)	走向 (°)	傾斜 (°)	すべり角 (゜)	断層長さ (km)	断層幅 (km)	平均すべり量 (m)
E17	7 70	2.0	10 0	350	45	96	81.0	21.5	6.00
	1.10	Ζ. Ο	10.0	10	45	106	53.9	21.5	0.00
F10	7 71	0.0	15.0	348	45	87	37.4	18. 1	E E0
гіо	1.71	Ζ. Ζ	15.0	7	45	95	100. 0	18.1	0. 52

2-6. 行政機関が想定する波源モデルによる津波(5/23)

国交省ほか(2014)の波源モデルによる検討

2.6-6

100 4m

POWER

50

すべり量

🔟 : 12. Om

大間原子ガ

発電所

420 480 480

□ : 4. 4~4. 8m

国交省ほか(2014)⁽²³⁾を基に設定した波源モデルパラメータは以下のとおりである。

波源モデルのパラメータ

та п	F	17 諸元			F18 諸元	;
· · · · · · · · · · · · · · · · · · ·	北側	中央	南側	北側	中央	南側
モーメントマク゛ニチュート゛ M w		7. 78			7. 71	
長さ L (km)	24. 3	56.7	53.9	37.4	49.0	51.0
幅 W(km)	21.5	21.5	21.5	18.1	18.1	18.1
すべり量 D(m)	<u> </u>	均:6.00)	<u>भ</u>	[∡] 均:5.5	52
上段:背景領域, 下段:大すべり域 ^{※1}	4. 80 12. 00	4. 36 12. 00	4. 57 12. 00	4. 16 11. 04	4. 27 11. 04	4. 18 11. 04
岡性率 μ (N/m ²)	3.	43 × 10 ¹⁰		3	. 43 × 10	10
地震モーメント Mo(N・m)	5.	97 × 10 ²⁰		4	. 70 × 10 ²	20
走向 θ (°)	350	350	10	348	7	7
上縁深さ d (km)	1.0	1.0	1.0	1.0	1.0	1.0
傾斜角 る([°])	45	45	45	45	45	45
すべり角 λ(°)	96	96	106	87	95	95
ライズタイム τ (s)		0			0	

60

すべり量

zec N

100 Km

波源モデル(F17) 大すべり域配置^{※2}(R)

波源モデル(F18) 大すべり域配置^{*2} (LRR)

※1:大すべり域の面積は、断層全体の約20%

(L) (R) : 全セグメントの配置を示す

(LRR):南,中央,北セグメントそれぞれの配置を示す

^{※2:}大すべり域配置

2-6. 行政機関が想定する波源モデルによる津波(6/23)

第868回審査会合 資料2-1 P.387再掲

国交省ほか(2014)の波源モデルによる検討結果(上昇側)

国交省ほか(2014)⁽²³⁾の波源モデルによる検討結果(上昇側)は以下のとおりである。

国交省ほか	(2014) ⁽²³⁾ の上昇側最大な	アース
波源モデル	敷地における 最大水位上昇量	大すべり域
F17	2.21m	R
F18	2.25m	LRR

国交省ほか(2014)⁽²³⁾の上昇側最大ケース(F18)

2-6. 行政機関が想定する波源モデルによる津波(7/23)

国交省ほか(2014)⁽²³⁾の波源モデルによる検討結果(下降側)は以下のとおりである。

国交省ほか(2014)⁽²³⁾の下降側最大ケース

波源モデル	取水ロスクリーン室 前面における 最大水位下降量	大すべり域
F17	— 1. 77m	L
F18	—2.46m	LRR

波源モデル(F18)

2.6 - 8

水

位

(m) -4 0

0.

-2.0

2-6. 行政機関が想定する波源モデルによる津波(8/23)

・北海道(2017)による検討

 北海道(2017)⁽⁷¹⁾では、国交省ほか(2014)⁽²³⁾の内容を検討したうえ、北海道南西沖地震 津波の経験等を踏まえ、津波断層モデルを設定している。
 それらの中から、大間原子力発電所への影響が比較的大きい津波断層モデルを抽出して、数

値シミュレーションを実施し、敷地における水位変動量を算定する。

北海道(2017)⁽⁷¹⁾に一部加筆

波源モデルの位置と抽出した波源モデル 北海道 (2017) ⁽⁷¹⁾に一部加筆

第868回審査会合 資料2-1 P.389再掲

F02F03連動

北海道(2017)(71)パラメータ

津波断層 モデル	Mw*	上縁深さ (T.Pkm)	下縁深さ (T.Pkm)	走向 θ (°)	傾斜角 <i>δ</i> (°)	すべり角 λ (°)	断層長さL (km)	断層幅W (km)	平均すべり量D [※] (m)
E17	7 00	2.0	10 0	350	45	96	81.0	21.5	0.00
FI/	7.00	Ζ. Ο	10.0	10	45	106	53. 9	21.5	0. 20
F10	7 70	0.0	15 0	348	45	87	37.4	18. 1	7 00
FIO	1. 19	Ζ. Ζ	15.0	7	45	95	100. 0	18. 1	1.23

※:国交省ほか(2014)⁽²³⁾の剛性率μ=3.43×10¹⁰(N/m²)を用いてMo=μLWD, logMo=1.5Mw+9.1の関係から算出

2.6-9

POWER

2-6. 行政機関が想定する波源モデルによる津波(9/23)

<u>北海道(2017)の波源モデルによる検討</u>

北海道(2017)⁽⁷¹⁾を基に設定した波源モデルパラメータは以下のとおりである。

波源モデルのパラメータ

	F1	7新屋 諸	· 一	F1	8新屋 慧	ن ج
項目						
	北側	中央	南側	北側	中央	南側
τ -メントマク゛ニチュート゛ M w		7.88			7.79	
長さ L (km)	24. 3	56.7	53.9	37.4	49.0	51.0
幅 W(km)	21.5	21.5	21.5	18.1	18.1	18.1
すべり量 D(m)	7	平均:8.2	8	2	平均:7.2	23
上段:背景領域,	4.80	4.36	4. 57	4.16	4. 27	4. 18
下段 : 大すべり域※1	12.0	12.0	12.0	11.04	11.04	11.04
剛性率 μ (N/m ²)	3	3. 43 × 10 ¹	0	3	8. 43 × 10	10
地震モーメント Mo(N・m)	8	3. 24 × 10 ²	0	6	6. 16 × 10	20
走向 θ (°)	350	350	10	348	7	7
上縁深さ d (km)	1.0	1.0	1.0	1.0	1.0	1.0
傾斜角 δ(°)	45	45	45	45	45	45
すべり角 λ(°)	96	96	106	87	95	95
ライズタイム τ (s)		0			0	-

※1:大すべり域は浅部の全域に配置。

第868回審査会合 資料2-1 P.390再掲 2.6 - 10

POWER

波源モデル(F17)

2-6. 行政機関が想定する波源モデルによる津波(10/23)

2.6 - 11POWER

北海道(2017)⁽⁷¹⁾の波源モデルによる検討結果(上昇側)は以下のとおりである。

北海道(2017)⁽⁷¹⁾の上昇側最大ケース

波源モデル	敷地における 最大水位上昇量
F17	2. 82m
F18	2. 44m

北海道(2017)⁽⁷¹⁾の上昇側最大ケース(F17)

水位時刻歴波形

2-6. 行政機関が想定する波源モデルによる津波(11/23)

0 200 400 m

G領域 ⊿s=5m

-2.24m

240

N

北海道(2017)の波源モデルによる検討結果(下降側)

北海道(2017)⁽⁷¹⁾の波源モデルによる検討結果(下降側)は以下のとおりである。

北海道(2017)⁽⁷¹⁾の下降側最大ケース

波源モデル	取水ロスクリーン室 前面における 最大水位下降量
F17	— 1.93m
F18	—2.24m

2-6. 行政機関が想定する波源モデルによる津波(12/23)

内閣府(2020)による検討概要(1/3)

第949回審査会合 資料2-1 P.2.6-3再掲

2.6 - 13

POWER

- 内閣府(2020a) ⁽¹²⁴⁾ (日本海溝・千島海溝沿いの巨大地震モデル検討会)において,東日本大震災の教訓を踏まえ,津波堆積 物調査などの科学的な知見をベースに,あらゆる可能性を考慮した最大クラスの巨大な地震・津波に関する検討が実施された。
- 内閣府(2020a)⁽¹²⁴⁾で示された最大クラスの津波断層モデルは以下の2つである。
- これらの中から、大間原子力発電所への影響が比較的大きい津波断層モデルを抽出して、数値シミュレーションを実施し、 敷地における水位変動量を算定する。

内閣府(2020a)⁽¹²⁴⁾に一部加筆

内閣府(2020a)⁽¹²⁴⁾による最大クラスの津波断層モデル

2-6. 行政機関が想定する波源モデルによる津波(13/23)

内閣府(2020)による検討概要(2/3)

内閣府(2020a)⁽¹²⁴⁾で示された最大クラスの津波断層モデルの主な設定根拠は以下のとおりである。

- ✓ おおむね過去6,000年間の津波堆積物等の調査資料を活用
- ✓ 内陸部での津波堆積物分布位置における浸水深は津波堆積物分布標高+2~3mとして取り扱い(第9回議事要旨より)
- ✓ 防災上の観点から高い津波高のデータのみを使用(第13回議事要旨より)
- ✓ 津波堆積物について堆積年代を区別することなく再現する(津波堆積物の地点まで津波を浸水させる)津波断層モデルを逆解析により設定

内閣府(2020a) (124)

2.6 - 14

POWER

第949回審杳会合

資料2-1 P.2.6-4再掲

津波堆積物の調査資料

2-6. 行政機関が想定する波源モデルによる津波(14/23)

POWER

<u>内閣府(2020)による検討概要(3/3)</u>

第949回審査会合 資料2-1 P.2.6-5再掲

- 内閣府(2020a)⁽¹²⁴⁾で示された想定される沿岸での津波の高さは以下のとおりであり、大間町における津波の高さは、 日本海溝(三陸・日高沖)モデルの影響が大きい。
- また、内閣府(2020a)⁽¹²⁴⁾では、「今回の検討対象領域で地震が発生した場合、海域で発生した津波は、震源域に面した海岸に大きな津波として伝播する特性を持つことから、東北地方の沖合で発生した地震による津波は、東北地方の海岸では大きいのに比して、北海道東部の太平洋の海岸では大きいのに比して、東北地方の海岸、北海道の日高支庁以西の海岸への影響は小さい。」とされている。

以上より、内閣府(2020a)⁽¹²⁴⁾の2つのモデルのうち、ここでの検討対象は日本海溝(三陸・日高沖)モデルとする。

内閣府(2020a)⁽¹²⁴⁾に一部加筆

内閣府(2020a)⁽¹²⁴⁾に一部加筆

※: 内閣府(2020b)⁽¹⁴⁸⁾では、日本海溝(三陸・日高沖)モデルに 対し破壊開始点A, Bの2点設定している。

日本海溝(三陸・日高沖)の波源モデル

2-6. 行政機関が想定する波源モデルによる津波(16/23)

<u>内閣府(2020)の位置づけ(1/4):既往の大規模地震との比較(1/3)</u>

- Murotani et al. (2013) ⁽¹¹⁹⁾は、プレート境界地震のスケーリング関係について、日本付近で発生したM7~8クラスのプレート境界地震(Murotani et al. (2008) ⁽¹⁴⁹⁾
)に、7つの巨大地震(2011年東北地方太平洋沖地震,2010年チリ地震,2004年スマトラ地震,1964年アラスカ地震,1960年チリ地震,1957年アリューシャン地震,1952年カムチャッカ地震)を追加し、M7~9クラスまでに適用可能なスケーリング則を提案している。
- Murotani et al. (2013) ⁽¹¹⁹⁾ で整理されているM9クラスの巨大地震の断層モデルと内閣府(2020a) ⁽¹²⁴⁾の日本海溝(三陸・日高沖)モデルの地震規模(Mw), 断層面積 (S), 地震モーメント(Mo), 平均すべり量(D)及び平均応力降下量(△σ)の比較を以下に示す。
- 日本海溝(三陸・日高沖)モデルの平均すべり量(D)は14.76(m),平均応力降下量(⊿σ)は約6(MPa)であり,M9クラスの巨大地震の平均すべり量及び平均応力降 下量を大きく上回ることを確認した。

地震	地震規模 Mw	断層面積 S(10 ³ km ²)	地震モーメント Mo(10 ²² Nm)	平均すべり量 D(m)	平均応力降下量 ⊿σ(MPa)	備考
2011年東北地方太平洋沖地震	9.0	110	3.9	10.6	2.60	Satake et al.(2013) ⁽¹⁰²⁾
2010年チリ地震	8.8	90	1.7	5.4	1.53	Fujii and Satake(2013) ⁽¹⁴²⁾
2004年スマトラ地震	9.1	220	6.0	7.5	1.42	Fujii and Satake(2007) ⁽¹²²⁾
1964年アラスカ地震	9.1	184.16	6.5	9.9	2.00	Johnson et al.(1996) ⁽¹⁵⁰⁾
1960年チリ地震	9.2	135	7.2	10.6	3.54	Fujii and Satake(2013) ⁽¹⁴²⁾
1957年アリューシャン地震	8.6	172.5	1.2	3.1	0.41	Johnson et al.(1994) ⁽¹⁵¹⁾
1952年カムチャッカ地震	8.7	120	1.5	5.5	0.88	Johnson and Satake(1999) ⁽¹⁵²⁾
日本海溝(三陸・日高沖)モデル	9.1	76.3	5.2	14.76	6.02	内閣府(2020a) ⁽¹²⁴⁾

12 16 20 24 28

1960年チリ地震

■ Murotani et al. (2013)⁽¹¹⁹⁾で用いた巨大地震(代表例)

(三陸・日高沖)のモデル

Murotani et al. (2013) ⁽¹¹⁹⁾ に示されるスケーリング則のうち破壊領域(S)とMoの関係及び平均すべり量(D)とMoの関係 に、内閣府(2020a) ⁽¹²⁴⁾ モデル(日本海溝(三陸・日高沖)モデル)を追加し、その関係を比較した。
 その結果、内閣府(2020a) ⁽¹²⁴⁾ モデルは既往の大規模地震に比べると、地震規模に対して、1 σ以上破壊領域の面積が小さく、かつ1 σ以上平均すべり量が大きい設定となっていることが確認できた。

2-6. 行政機関が想定する波源モデルによる津波(18/23)

<u>内閣府(2020)の位置づけ(3/4):既往の大規模地震との比較(3/3)</u>

- Murotani et al. (2013) ⁽¹¹⁹⁾ で整理されているM9クラスの巨大地震の断層モデルと内閣府(2020a) ⁽¹²⁴⁾の日本海 溝(三陸・日高沖)モデルを対象に、すべり量と累加面積比率の関係を比較した。
- その結果,内閣府(2020a)⁽¹²⁴⁾モデルは,2011年東北地方太平洋沖地震の海溝軸付近に設定された大きなすべり量を除いて,波源全体にわたり過去の超巨大地震に比べすべり量が大きく設定されていることが確認できた。

2-6. 行政機関が想定する波源モデルによる津波(19/23)

コメントNo.S5-48

<u>内閣府(2020)の位置づけ(4/4):まとめ</u>

第949回審査会合 資料2-1 P.2.6-11一部修正

- 内閣府(2020a) ⁽¹²⁴⁾ モデルの特徴をまとめると、以下のとおりである。
 - ✓ 2011年東北地方太平洋沖地震・津波の教訓を踏まえ、今後の地震・津波対策の想定は、「あらゆる可能性を考慮した 最大クラスの巨大な地震・津波を検討していくべきである」とし、「最大クラスの津波に対しては、避難を軸に総合 的な津波対策をする必要がある」と提言している中央防災会議「東北地方太平洋沖地震を教訓とした地震・津波対策 に関する専門調査会」報告(平成23年9月)を踏まえた検討であるとされており、これは住民等の生命を守ることを 最優先とした検討であると考えられる。
 - ✓ 高い津波高(津波堆積物の分布高さ+浸水深)のデータを対象とし堆積年代を区別することなく、一つのモデルで、 それら全てを包絡するように設定されていることから、当該モデルの水位分布はいわば、津波の発生メカニズムに因らず、パラメータスタディを含めたあらゆるモデルの想定津波群に相当すると考えられる。(P.2.6-15参照)
 - ✓ 既往の大規模地震に比べ、その破壊領域の面積の割に大きなすべり量、応力降下量が設定されており、地震規模に係るスケーリング則に合わない。(P.2.6-17, P.2.6-18, P.2.6-19参照)

地震	地震規模※	平均すべり量*	平均応力降下量※	断層面積※	平均すべり量/断層面積	平均応力降下量/断層面積
「「「」」「「」」」「」」」」」」」」」」」」」」」」」」」」」」」」」」」	Mw	D(m)	$\Delta \sigma$ (Mpa)	S(10 ³ km ²)	D(m)/S(10 ³ km ²)	$\Delta \sigma$ (Mpa) \angle S(10 ³ km ²)
2011年東北地方太平洋沖地震	9.0	10.6	2.60	110	0.096	0.024
2010年チリ地震	8.8	5.4	1.53	90	0.060	0.017
2004年スマトラ地震	9.1	7.5	1.42	220	0.034	0.006
1964年アラスカ地震	9.1	9.9	2.00	184.16	0.054	0.011
1960年チリ地震	9.2	10.6	3.54	135	0.079	0.026
1957年アリューシャン地震	8.6	3.1	0.41	172.5	0.018	0.002
1952年カムチャッカ地震	8.7	5.5	0.88	120	0.046	0.007

 $\widehat{\mathbf{1}}$

地震	地震規模※	平均すべり量※	平均応力降下量*	断層面積※	平均すべり量/断層面積	平均応力降下量/断層面積
地版	Mw	D(m)	$\Delta \sigma$ (Mpa)	S(10 ³ km ²)	D(m) / S(10 ³ km ²)	$\Delta \sigma$ (Mpa) \angle S(10 ³ km ²)
日本海溝(三陸・日高沖)モデル	9.1	14.76	6.02	76.3	0.193	0.079

※: P.2.6-17参照

î

2-6. 行政機関が想定する波源モデルによる津波(20/23)

<u>内閣府(2020) モデルの反映方針</u>

- 審査ガイドでは、基準津波策定に際しては、「最新の科学的・技術的知見を踏まえ、波源海域から敷地周辺までの 海底地形、地質構造及び地震活動等の地震学的見地から想定することが適切なものとして策定する」とされ、「基 準津波の策定に当たっては、最新の知見に基づき、科学的想像力を発揮し、十分な不確かさを考慮」することが求 められている。
- これらの審査ガイド要求に基づき、3.11地震及び世界のM9クラスの超巨大地震に伴い発生した津波を対象として 検討し、スケーリング則に基づく基準波源モデル①~⑥(P.2.3.1-6参照)を設定し、これらの妥当性確認として 超大すべり域及び大すべり域の配置等を変化させた津波高さが敷地周辺で確認された津波堆積物を含めた既往津波 高を上回ることを確認した「2-3-1. 三陸沖から根室沖のプレート間地震に伴う津波」に示す検討・評価は適切と判 断する。
- 一方、内閣府(2020a)⁽¹²⁴⁾による検討について、審査ガイドに基づき「波源設定の考え方、解析条件等の相違点に 基づき着目して内容を精査」したところ、破壊領域の面積の割りに大きなすべり量、応力降下量が設定されたスケ ーリング則に合わないモデルであることが確認された。また、審査ガイドでは「地震や津波の発生域と規模は、過 去の事例によるだけではそれを超えるものが発生する可能性を否定したことにはならない」とされており、内閣府 (2020a)⁽¹²⁴⁾の津波堆積物による最大クラスの津波断層モデルによる評価は、審査ガイドが要求する基準津波を想 定する方法として、これだけでは十分ではないと考えられる。このため、内閣府(2020a)⁽¹²⁴⁾による津波断層モデ ル及びその評価は、「行政機関による既往評価」と位置付けて取り扱い、上述の最新の科学的・技術的知見を踏ま えスケーリング則に基づき策定された基準波源モデル①~⑥により評価することが妥当と考えられる。
- しかしながら、内閣府(2020a)⁽¹²⁴⁾の最大クラスの津波断層モデルによる評価は、防災基本計画の作成及びその実施の推進等を担う中央防災会議の考え方に沿って「日本海溝・千島海溝沿いの巨大地震モデル検討会」により設定されたモデルであり、これらを基に地方自治体が防災計画を策定するとの社会的観点を考慮すべきであること、更には、大間原子力発電所においては内閣府(2020a)⁽¹²⁴⁾の最大クラスの津波断層モデルによる津波水位の下降量が、他の地震による津波水位の下降量を上回る(P.2.7-2参照)ことを踏まえ、大間原子力発電所の津波に対する安全性評価の観点から、内閣府(2020a)⁽¹²⁴⁾の津波断層モデルを基準津波波源として考慮することとする。

2-6. 行政機関が想定する波源モデルによる津波(21/23)

内閣府(2020)の波源モデルによる検討結果(上昇側)

• 内閣府(2020a)⁽¹²⁴⁾の波源モデルによる検討結果(上昇側)は以下のとおりである。

|--|

モデル	破壊開始点	敷地における 最大水位上昇量
日本海溝(三陸・日高沖)	A	3.96m
モデル	В	4. 01m

(m)

(m)

(m)

内閣府(2020a)⁽¹²⁴⁾の上昇側最大ケース

2.6 - 232-6. 行政機関が想定する波源モデルによる津波(22/23) POWER 第949回審査会合 内閣府(2020)の波源モデルによる検討結果(下降側) 資料2-1 P.2.6-8再揭 内閣府(2020a)⁽¹²⁴⁾の波源モデルによる検討結果(下降側)は以下のとおりである。 0 2. 3 200 内閣府(2020a) ⁽¹²⁴⁾の下降側最大ケース 水位時刻歴波形 取水ロスクリーン室前面における 出力点 モデル 破壞開始点 最大水位下降量 -4.58m A 日本海溝(三陸・日高沖) 3.29m(201 ①防波堤開口部 3 29) モデル В -4.89m (m) -3.98 0 200 400 m 200 km 240 180 240 300 すべり量 120 360 420 44m(201.55 ② 港内中央 3.44) G領域 ⊿s=5m 27 -0.5m -4.89m 120 -1.0 4 4 3 ト間原子力 120 180 180 240 300 360 60 420 -1.5 3.59m(202.1分) ③取水口CW前面 -2.0 3.59 18 -2.5 15 240 -3.0 12 (m) -3.5 71m(157.3分) -4.71) 240 300 120 180 420 360 -4.0 3.69m(201.9分) ④取水口SC前面 -4.5 3.69) -5.0m 360 破壞開始点B 0 (m) -4 891 -6.0L 60 120 240 300 360 420 波源モデル (すべり量分布) 最大水位下降量分布 (分) 内閣府(2020b)⁽¹⁴⁸⁾に基づき作成 水位時刻歴波形 (124) の下降側最大ケース 内閣府(2020a)

行政機関の津波評価による浸水深

行政機関	敷地付近における浸水深	—
青森県(2015) (146)	2m以上5m未満	_

行政機関の津波評価による最大水位変動量

行政機関	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量		
国交省ほか(2014) ⁽²³⁾	2. 25m	—2.46m		
北海道(2017) (71)	2.82m	—2. 24m		
内閣府(2020a) ⁽¹²⁴⁾	4. 01m	—4.89m		

目 次

1 既往津波の検討	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	į.
	1
	ł
	1
	ł
2-1. 地震による津波の計算条件	ł
2-2.日本海東縁部に想定される地震に伴う津波	ł
2 − 3 . 三陸沖から根室沖に想定される地震に伴う津波	
2 − 3 − 1 . 三陸沖から根室沖のプレート間地震に伴う津波	ł
2 - 3 - 2 . 三陸沖の海洋プレート内地震に伴う津波	ł
2-4. チリ沖に想定される地震に伴う津波	
2-5. 海域活断層に想定される地震に伴う津波	
2-6. 行政機関が想定する波源モデルによる津波	ł
2-7.地震による津波のまとめ	1
2 - 8 防波堤等の影響検討	1
3 地震以外の要因による津波	
3 - 3 海底地さべりにお因さる津波	
0 4. 入口坑豕に起凶 9 0 序及 2 _ 5 地雪ごめの西田にトス油油の古トめ	
ううし、地 辰 以 クト ហ 女 凶 に よ る 序 似 ហ よ C め っ 。	
- 3 - 0.	
4. 洋波 光 生 安 凶 の 祖 合 わ せ に	
5-2. 基準 準波 選 正 結果の 検 証	
5-2-1. 既在津波との比較	
5 - 2 - 2. 行政機関による既往評価との比較	

地震による津波の検討結果によると、敷地において上昇側は日本海東縁部に想定される地震に伴う津波の影響が最も大きく、 下降側は内閣府(2020a)⁽¹²⁴⁾の波源モデルによる津波の影響が最も大きい。

第868回審査会合

資料2-1 P.264一部修正

2.7-2

POWER

	敷地における 最大水位上昇量	取水ロスクリーン室前面における 最大水位下降量
日本海東縁部に想定される地震に伴う津波	5.85m	—3.78m
三陸沖から根室沖のプレート間地震に伴う津波	3.69m	—3.53m
三陸沖の海洋プレート内地震に伴う津波	2.90m	—2.57m
チリ沖に想定される地震に伴う津波	3.06m	—3.48m
海域活断層に想定される地震に伴う津波 (奥尻海盆北東縁断層〜奥尻海盆東縁断層〜 西津軽海盆東縁断層の連動※による地震)	2.25m	-2.46m
行政機関が想定する波源モデルによる津波 (内閣府(2020a) ⁽¹²⁴⁾)	4. 01m	—4.89m

地震による津波の検討結果一覧

目 次

第868回審査会合

2.8-3

港湾の防波堤等なしの地形モデル

概略パラメータスタディ(1/2)

日本海東縁部に想定される地震に伴う津波に対し、防波堤等がないケースの概略パラメータスタディを実施した結果は以下のとおり。

概略パラメータスタディ(ステップ1)結果一覧

ティ 位置	傾斜 パターン 1 2 3 4 5 6 7 8 1 2 3	傾斜角 60° 30° 60° 30° 60° 60°	最大水位上昇量 <u>2.18m</u> <u>3.72m</u> <u>3.74m</u> <u>3.48m</u> <u>2.30m</u> <u>3.79m</u> <u>3.93m</u> <u>3.45m</u> <u>2.4</u>
de	1 2 3 4 5 6 7 8 1 2 3	60° 30° 60° 30° 60° 60°	2. 18m 3. 72m 3. 74m 3. 48m 2. 30m 3. 79m 3. 93m 3. 45m 2. 45m
de	2 3 4 5 6 7 8 1 2 3	30° 60° 30° 60° 60°	3. 72m 3. 74m 3. 48m 2. 30m 3. 79m 3. 93m 3. 45m
de	3 4 5 6 7 8 1 2 3	50° 60° 60° 60°	3. 74m 3. 48m 2. 30m 3. 79m 3. 93m 3. 45m
de	4 5 6 7 8 1 2 3	60° 30° 60° 60°	3. 48m 2. 30m 3. 79m 3. 93m 3. 45m
cd	5 6 7 8 1 2 3	30° 60° 60°	2. 30m 3. 79m 3. 93m 3. 45m
cd	6 7 8 1 2 3	30° 60° 60°	3. 79m 3. 93m 3. 45m
cd	7 8 1 2 3	60° 60°	3. 93m 3. 45m
cd	8 1 2 3	60° 60°	3. 45m
cd	1 2 3	60°	<u> </u>
cd	2 3		2.34m
cd	3	20°	4.18m
cd		30	4.19m
	4	60°	3.53m
	5	00	3.14m
	6	20°	4.85m
	7	30	5.05m
	8	60°	4.38m
	1	60°	1.97m
	2	20°	3.41m
3	30	3.17m	
ha	4	60°	1.80m
DC	5	00	2.04m
	6	200	3.32m
	7	30	3.36m
	8	60°	1.96m
	1	60°	1.43m
	2	20°	1.91m
	3	30	1.69m
	4	60°	1.32m
as	5	00	1.25m
	6	200	1.60m
	7	30	1.53m
		60°	

# 取 パ ラ っ 々	東西位置,		アスペリティ	防波堤等なし
(ステップ1)	傾斜 傾斜角 がへい パターン 位		位置	最大水位 上昇量
			北方へ30km	3.83m
上昇側 7		30°	北方へ20km	4. 43m
			北方へ10km	4.84m
	7		cd	5.05m
			南方へ10km	4.86m
			南方へ20km	4. 48m
			南方へ30km	4.26m

概略パラメータスタディ (ステップ2) 結果一覧

第868回審査会合

資料2-1 P.367一部修正

2.8 - 4

POWER

コメントNo.S5-38

:概略パラスタ(ステップ1) 最大水位上昇ケース

:概略パラスタ(ステップ2) 最大水位上昇ケース

日本海東縁部に想定される地震に伴う津波に対し、防波堤等がないケースの概略パラメータスタディで最大ケースとなった波源モデルは以下のとおり。

最大ケースの波源モデル

2-8.防波堤等の影響検討(5/11)

コメントNo.S5-38

<u>数値シミュレーション(4/8): (上昇側)パラメータスタディ(3/7)</u>

詳細パラメータスタディ(1/4)

例示ケース(防波堤等なし)

日本海東縁部に想定される地震に伴う津波に対し,防波堤等がないケースの詳細パラメータスタディ(走向変化ケース) を実施した結果は以下のとおり。

詳細パラメータスタディ結果一覧 (走向変化ケース)

押 略	概略 アスペリティ				防波堤等なし
パラスタ	位置	パターン	傾斜角	走向	最大水位 上昇量
				北+10° 南-10°	4. 07m
上昇側	cd	7	30°	北±0° 南±0°	5. O5m
				北-10° 南+10°	4. 38m

2-8.防波堤等の影響検討(6/11)

詳細パラメータスタディ(2/4)

日本海東縁部に想定される地震に伴う津波に対し、防波堤等がないケースの詳細パラメータスタディ(アスペリティ数及び 位置の変化ケース)を実施した結果は以下のとおり。

第868回審査会合

資料2-1 P.370一部修正

2.8-7

POWER

コメントNo.S5-38

例示ケースの波源モデル

2-8.防波堤等の影響検討(7/11)

詳細パラメータスタディ(3/4)

日本海東縁部に想定される地震に伴う津波に対し、防波堤等がないケースの詳細パラメータスタディ(上縁深さ変化ケース)を実施した結果は以下のとおり。

第868回審査会合

資料2-1 P.371一部修正

2.8 - 8

POWER

コメントNo.S5-38

最大水位上昇ケースの波源モデル

日本海東縁部に想定される地震に伴う津波に対し、防波堤等がないケースの詳細パラメータスタディで最大ケースとなった波源モデルは以下のとおり。

(余白)

数値シミュレーション: (下降側)

下降側検討結果

内閣府(2020a)⁽¹²⁴⁾の波源モデルによる津波に対し、防波堤等がないケースの検討を実施した結果、最大水位下降ケースは以下のとおり。

内閣府(2020a)⁽¹²⁴⁾の波源モデルによる津波

項目	防波堤等なし		
取水ロスクリーン室前面における 最大水位下降量	—4.38m		
波源条件	日本海溝(三陸・日高沖) モデル 破壊開始点 B		

0.

200 400

2.8-12

2-8.防波堤等の影響検討(11/11)

<u>検討結果</u>

計算結果

地震による津波【防波堤等なし】の検討結果は以下のとおり。

波源		敷地における 最大水位上昇量 【防波堤等なし】	取水ロスクリーン室前面における 最大水位下降量 【防波堤等なし】
日本海東縁部に想定され る地震に伴う津波 【防波堤等なし】	上昇側	5.12m (P.2.8-11参照)	_
内閣府(2020a) ⁽¹²⁴⁾ の 波源モデルによる津波 【防波堤等なし】	下降側		一4.38m (P.2.8-12参照)

地震による津波【防波堤等なし】

【参考】

地震による津波【防波堤等あり】

波源		敷地における 最大水位上昇量 【防波堤等あり】	取水ロスクリーン室前面における 最大水位下降量 【防波堤等あり】
日本海東縁部に想定され る地震に伴う津波 【防波堤等あり】	上昇側	5.85m (P.2.2-65参照)	— 3. 78m (P. 2. 2-66参照)
内閣府(2020a) ⁽¹²⁴⁾ の 波源モデルによる津波 【防波堤等あり】	下降側	4. 01m (P. 2. 6−22参照)	— 4. 89m (P. 2. 6−23参照)

(余白)

参考文献

- (1) 宇佐美龍夫・石井寿・今村隆正・武村雅之・松浦律子(2013):日本被害地震総覧599-2012,東京大学出版会, 694p.
- (2) 羽鳥徳太郎(1984):日本海の歴史津波,月刊海洋科学, Vol. 16, pp. 538-545.
- (3) 国立天文台編(2013):理科年表 平成26年, 丸善, 1018p.
- (4) 渡辺偉夫(1998):日本被害津波総覧【第2版】,東京大学出版会,238p.
- (5)羽鳥徳太郎(1994):1993年北海道南西沖地震津波の規模および波源域,地震第2輯,第47巻,pp.1-9.
- (6) 東北地方太平洋沖地震津波合同調査グループ(2012):東北地方太平洋沖地震津波合同調査グループ現地調査結果, 2012/12/29.
- (7) 羽鳥徳太郎(1975):三陸沖歴史津波の規模と推定波源域,東京大学地震研究所彙報, Vol. 50, pp. 397-414.
- (8) 地震調査研究推進本部地震調査委員会(2012):三陸沖から房総沖にかけての地震活動の長期評価(第二版)について, 173p.
- (9) 地震調査研究推進本部地震調査委員会(2004):千島海溝沿いの地震活動の長期評価(第二版), 81p.
- (10) 中央防災会議 日本海溝・千島海溝周辺海溝型地震に関する専門調査会(2006):日本海溝・千島海溝周辺海溝型地震に関する専門調査会報.
- (11) 平川一臣・中村有吾・西村裕一(2005):北海道太平洋沿岸の完新世巨大津波 -2003十勝沖地震津波との比較を含めて-,月刊地球号外,No.49, pp.173-180. (12) 相田勇(1977):三陸沖の古い津波のシミュレーション,東京大学地震研究所彙報,Vol.52,pp.71-101.
- (13) Abe, K. (1979) : Size of great earthquakes of 1837-1974 inferred from tsunami data, J. Geophys. Res., Vol. 84, No. B4, pp. 1561-1568.
- (14) 羽鳥徳太郎(2011): 2010年チリ中部地震津波の規模と伝搬の様相, 津波工学研究報告, 第28号 5~10.
- (15) 今村文彦・高橋重雄・藤間功司・富田孝史・有川太郎(2010):2010年チリ地震津波の被害調査報告, 土木学会震災報告デジタルアーカイブ.
- (16)都司嘉宣・大年邦雄・中野晋・西村裕一・藤間功司・今村文彦・柿沼太郎・中村有吾・今井健太郎・後藤和久・行谷佑一・鈴木進吾・城下英行・松崎義孝 (2010):2010年チリ中部地震による日本での津波被害に関する広域現地調査,土木学会論文集B2(海岸工学), Vol.66, No.1, pp.1346-1350.
- (17)谷川晃一朗·澤井祐紀·宍倉正展·藤原治·行谷佑一(2014):青森県三沢市で検出されたイベント堆積物,第四紀研究,53(1), pp.55-62.
- (18) 東北電力株式会社(2014):原子炉設置変更許可申請書,平成26年6月.
- (19)北海道(2012):太平洋沿岸に係る津波浸水予測図作成業務 報告書,北海道総務部危機対策局危機対策課,57p.
- (20) 西村裕一・宮地直道(1998):北海道駒ヶ岳噴火津波(1640)の波高分布について、火山、第43巻, pp. 239-242.
- (21)高清水康博・嵯峨山積・仁科健二・岡孝雄・中村有吾・西村裕一(2007):北海道胆振海岸東部から確認された17世紀の津波堆積物,第四紀研究,46(2), pp.119-130.
- (22)北海道(2013):日本海沿岸の津波浸水想定の点検・見直し報告書,北海道に津波被害をもたらす想定地震の再検討ワーキンググループ,13p.
- (23)国土交通省・内閣府・文部科学省(2014):日本海における大規模地震に関する調査検討会報告書,日本海における大規模地震に関する調査検討会.
- (24)佐藤裕・箕浦幸治(1987):津軽地方の歴史地震津波ー湖沼底堆積物による歴史地震の研究ー,月刊地球, Vol.9, pp. 225-228.
- (25)箕浦幸治・中谷周(1990):津軽十三湖及び周辺湖沼の成り立ち,地質学論集,第36号, pp.71-87.
- (26) 箕浦幸治(1990): 東北日本における巨大津波の発生と周期, 歴史地震, 第6号, pp. 61-76.
- (27)小岩直人・菊地恒佑・葛西未央(2013):青森県鰺ヶ沢町鳴沢川下流部に認められる歴史時代の津波堆積物,日本第四紀学会講演要旨集,43, pp.14-15.
- (28) 熊谷秀平・梅田浩司・鎌滝孝信・小岩直人・藤田奈津子(2017):青森県鰺ヶ沢町にみられるイベント堆積物,東北地域災害科学研究,第53巻, pp. 7-13.
- (29)リサイクル燃料貯蔵株式会社(2014):リサイクル燃料備蓄センター使用済み燃料貯蔵事業変更許可申請書,平成26年1月.
- (30) Tanigawa, K., Y. Sawai, M. Shishikura, Y. Namegawa (2014): Geological evidence for an unusually large tsunami on the Pacific coast of Aomori, Northern Japan, Journal of Quaternary Science, Vol. 29(2), pp. 200-208.
- (31) Kawakami, G., K. Nishina, Y. Kase, J. Tajika, K. Hayashi, W. Hirose, T. Sagayama, T. Watanabe, S. Ishimaru, K. Koshimizu, R. Takahashi, K. Hirakawa(2017) : Stratigraphic records of tsunamis along the Japan Sea, southwest Hokkaido, northern Japan, Island Arc 2017;26:e12197.
- (32)加瀬善洋, 仁科健二, 川上源太郎, 林圭一, 高清水康博, 廣瀬亘, 嵯峨山積, 高橋良, 渡邊達也, 輿水健一, 田近淳, 大津直, 卜部厚志, 岡崎紀俊, 深見浩司, 石丸聡(2016):北海道南西部奥尻島で発見された津波堆積物, 地質学雑誌, 122, pp. 587-602.

参考文献

- (33)加瀬善洋, ト部厚志, 川上源, 仁科健二, 小安 浩理(2018):北海道檜山沿岸域における津波波源の活動履歴予察, 第125回 日本地質学会学術大会講演要旨 (34)文部科学省研究開発局・国立大学法人東京大学地震研究所(2019):日本海地震・津波調査プロジェクト 平成30年度 成果報告書, pp.95-112.
- (35) 北海道地質研究所(2015) : 北海道立総合研究機構 地質研究所(2015) : 北海道の日本海・オホーツク海沿岸における津波履歴, 重点研究「北海道の津波災害 履歴の研究ー未解明地域を中心に一」成果報告書, 218p.
- (36)高橋潤,平田一穂,斉藤和秀(2018):東通原子力発電所敷地周辺における津波堆積物の成因に関する考察,No.394,電力土木,2018.3, pp.62-66.
 (37)小谷美佐・今村文彦・首藤伸夫(1998):GISを利用した津波遡上計算と被害推定法,海岸工学論文集,第45巻,土木学会,pp.356-360.
- (38)Mansinha, L. and Smylie, D.E. (1971) : The displacement fields of inclined faults, Bull. Seism. Soc. Am., Vol.61, No.5, pp.1433-1440. (39)社団法人土木学会 原子力土木委員会 津波小委員会(2016):原子力発電所の津波評価技術 2016.
- (40)日本水路協会(2005):海底地形デジタルデータ(M7000シリーズ), M7004(鹿島灘), M7011(佐渡).
- (41)日本水路協会(2008):海底地形デジタルデータ(M7000シリーズ), M7007(釧路沖), M7009(北海道西部), M7010(秋田沖), M7012(若狭湾), M7013(隠岐).
- (42)日本水路協会(2009):海底地形デジタルデータ(M7000シリーズ), M7005(三陸沖), M7006(津軽海峡東部).
- (43)日本水路協会(2003):日本近海30秒グリッド水深データ(JTOP030), M1406, M1407, M1408.
- (44) National Oceanic and Atmospheric Administration (2010) : Global Relief Model (ETOPO1).
- (45)国土地理院(2001):数値地図50mメッシュ(標高)日本-I.
- (46)高橋武之・高橋智幸・今村文彦・首藤伸夫(1995):北海道南西沖地震津波の波源の再検討,土木学会東北支部技術研究発表会講演概要(平成6年度),pp.180-181.
- (47) Satake, K. (2007) : Volcanic origin of the 1741 Oshima-Oshima tsunami in the Japan Sea, Earth Planets Space, Vol59, pp. 381-390.
- (48)Kanamori, H. and Cipar, J.J.(1974): Focal process of the great Chilean earthquake May 22, 1960, Phys. Earth Planet.Interiors, Vol.9, pp.128-136. (49)大竹政和・平朝彦・太田洋子編(2002):日本海東縁部の活断層と地震テクトニクス,東京大学出版会, 201p.
- (50) 地震調査研究推進本部地震調査委員会(2003):日本海東縁部の地震活動の長期評価について, 62p.
- (51) 岡村行信(2019):日本海における活断層の分布と今後の課題,地震第2輯,第71巻, pp. 185-199.
- (52) 岡村行信・宮下由香里・内出崇彦(2019): 令和元年(2019年)6月18日山形県沖の地震と日本海東縁ひずみ集中帯,GSJ地質ニュース,Vol.8,No.8(2019年8月), pp. 199-203.
- (53)小平秀一(2013): 2-2 マルチチャンネル等による海域地殻構造調査,ひずみ集中帯の重点的調査観測・研究統括成果報告書,独立行政法人防災科学技術研究所 , pp. 65-72.
- (54) 根本信, 高瀬嗣郎, 長谷部大輔, 横田崇(2009):日本海におけるアスペリティを考慮した津波波源モデルの検討, 土木学会論文集B2(海岸工学), Vol. B2-65, No1, 2009, 346-350.
- (55) 社団法人土木学会原子力土木委員会津波評価部会(2011):確率論的津波ハザード解析の方法.
- (56)海野徳仁,長谷川昭,小原一成,松沢暢,清水洋,高木章雄,田中和夫,小菅正裕(1985):1983年日本海中部地震の前震と余震の震源分布,地震第2輯,第38巻399-410項.
- (57) 日野亮太, 金沢敏彦, 末広潔, 佐藤利典, 島村英紀(1994):海底地震計郡列による1993年北海道南西沖地震の余震分布, 月刊 海洋, 号外No. 7.
- (58) 岡村行信, 倉本真一, 佐藤幹夫(1998): 目本海東縁海域の活構造およびその地震との関係, 地質調査所月報, 第49巻 第1号, pp. 1-18.
- (59) 岡村行信, 倉本真一(1999):日本海東縁~北海道西方海域のネオテクトニクス, 地質ニュース, 541号, 32-39項.
- (60) Tamao Sato, Masahiro Kosuga, Kazuo Tanaka, and Hiroshi Sato (1986) : AFTERSHOCK DISTRIBUTION OF THE 1983 NIHONKAICHUBU(JAPAN SEA) EARTHQUAKE DETERMINED FROM RELOCATED HYPOCENTERS, J. Phys. Earth, 34, pp203-223.
- (61)海上保安庁水路部(2001):日本海東縁部の海底地形と活構造,地震予知連絡会会報,66,pp.100-104.
- (62) Tetsuo No, Takeshi Sato, Shuichi Kodaira, Tatsuya Ishiyama, Hiroshi Sato, Narumi Takahashi, Yoshiyuki Kaneda (2014) : The source fault of the 1983 Nihonkai-Cubu earthquake revealed by seismic imaging, Earth and Planetary Science Letters, 400(2014), PP. 14-25.
- (63)内田淳一・岩渕洋子・杉野英治(2019):日本海東縁部における広域的地殻構造境界の津波波源の設定-認識論的不確実さ要因の一つとして-,日本地震工学会論文集,第19巻,第4号,2019,pp.122-155.

参考文献

(64) Murotani, S., Matsushima, S., Azuma, T., Irikura, K. and Kitagawa, S. (2015) : Scaling Relations of Source Parameters of Earthquakes Occurring on Inland Crustal Mega-Fault Systems, Pure and Applied Geophysics, Vol. 172, pp. 1371-1381.

(65) 地震調査研究推進本部地震調査委員会(2016):震源断層を特定した地震の強震動予測手法(「レシピ」).

- (66) Paul Somerville, Kojiro Irikura, Robert Graves, Sumio Sawada, David Wald, Norman Abrahamson, Yoshinori Iwasaki, Takao Kagawa, Nancy Smith , Akira Kowada (1999) : Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion, Seismological Research Letters, Volume70, Number1, January/February 1999, pp. 59-80.
- (67)入倉孝次郎・三宅弘恵(2001):シナリオ地震の強震動予測,,地学雑誌, 110, pp. 849-875.
- (68)高橋智幸・首藤伸夫・今村文彦・Modesto Ortiz (1994) :津波を説明するための北海道南西沖地震断層モデル,海岸工学講演会論文集,第41巻,pp.251-255.
 (69)大角恒雄・藤原広行・Hemanta HAZARIKA (2018) : 1983年日本海中部地震の波源断層モデルの検証,土木学会論文集A1 (構造・地震工学), Vol.74, No.4 (地震工学論文集第37巻),pp.I_964-I_974.
- (70) Ioki, K., Tanioka, Y., Kawakami, G., Kase, Y., Nisina, K., Hirose, W., Hayashi, K. and Takahashi, R. (2019) : Fault model of the 12th century southwestern Hokkaido earthquake estimated from tsunami deposit distributions, Earth, Planets and Space, 71, 54.
- (71) 北海道(2017):北海道日本海沿岸の津波浸水想定について,北海道防災会議地震火山対策部会地震専門委員会北海道に津波被害をもたらす想定地震の再検討 ワーキンググループ.
- (72) Anne Van Horne, Hiroshi Sato, Tatsuya Ishiyama (2017) : Evolution of the Sea of Japan back-arc and some unsolved issues, Tectonophysics 710-711 (2017), pp.6-20.
- (73) Takeshi Sato, Narumi Takahashi, Seiichi Miura, and Gou Fujie, Dong-Hyo Kang, Shuichi Kodaira and Yoshiyuki Kaneda (2006) : Last stage of the Japan Sea back-arc opening deduced from the seismic velocity structure using wide-angle data, Geochemistry Geophysics Geosystems, Volume 7, Number 6, 15p.
- (74) Thomas M. Brocher (2005) : Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust, Bulletin of the Seismological Society of America, Vol. 95, No. 6, pp. 2081-2092.
- (75)相田勇(1984):1983年日本海中部地震津波の波源数値モデル,東京大学地震研究所彙報,第59冊第1号,pp.93-104.
- (76) 首藤伸夫(1996):北海道南西沖地震による津波とその防災手法に関する研究,平成6,7年度科学研究費補助金(総合研究A)研究成果報告書.
- (77)社団法人土木学会原子力土木委員会津波評価部会(2002):原子力発電所の津波評価技術, 321p.
- (78) 地震調査研究推進本部地震調査委員会(2019):日本海溝沿いの地震活動の長期評価, 144p.
- (79) 地震調査研究推進本部地震調査委員会(2017a):千島海溝沿いの地震活動の長期評価(第三版), 130p.
- (80) 杉野英治, 岩渕洋子, 橋本紀彦, 松末和之, 蛯澤勝三, 亀田弘行, 今村文彦(2014): プレート間地震による津波の特性化波源モデルの提案, 日本地震工学会論文集, 第14巻, 第5号.
- (81)内閣府(2012):南海トラフの巨大地震モデル検討会(第二次報告) 津波断層モデル編ー津波断層モデルと津波高・浸水域等について-,南海トラフの巨大地震 モデル検討会,100p.
- (82)Yoshiko Yamanaka and Masayuki Kikuchi(2004): Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B07307, doi:10.1029/2003JB002683.
- (83) 永井理子, 菊地正幸, 山中佳子 (2001):三陸沖における再来大地震の震源過程の比較研究—1968年十勝沖地震と1994年三陸はるか沖地震の比較—, 地震第2輯, 第 54巻, 267-280項.
- (84) R. McCaffrey (2008) : Global Frequency of Magnitude 9 Earthquakes, The Geological Society of America.
- (85) Jeremy E. Kozdon and Eric M. Dunham (2013) : Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake, Bulletin of the Seismological Society of America, Vol. 103, No. 2B, pp. 1275–1289, doi: 10.1785/0120120136.
- (86) Tetsuro Tsuru, Jin-Oh Park, Seiichi Miura, Shuichi Kodaira, Yukari Kido, Tsutomu Hayashi (2002) : Along-arc structural variation of the plate boundary at the Japan Trench margin: Implication of interplate coupling, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2357, doi:10.1029/2001JB001664.

参考文献

- (87) 東北大学理学研究科(2012):千島海溝沿い小繰り返し地震の解析結果について、地震予知連絡会会報、第88巻、12-3.
- (88) 国土地理院(2012):千島海溝沿いの滑り欠損速度分布について,国土地理院2012地震予知.
- (89) 中央防災会議(2005): 強震動及び津波高さの推計について, 中央防災会議「日本海溝・千島海溝周辺海溝型地震に関する専門調査会」第10回.
- (90) 文部科学省(2013):北海道周辺の超巨大地震の発生サイクル及び震源過程の解明・プレート運動の解明による衝突帯モデルの構築,文部科学省2013_h25年度成果 報告.
- (91) Christopher H. Scholz and Jaime Campos(2012) : The seismic coupling of subduction zones revisited, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B05310, doi:10.1029/2011JB009003, 2012.
- (92) Tetsuzo Seno(2014) : Stress drop as a criterion to differentiate subduction zones where Mw 9 earthquakes can occur, Tectonophysics, 621 (2014) 198-210.
- (93)伊藤谷生(2000):日高衝突帯—前縁褶曲・衝上断層帯の地殻構造,石油技術協会誌,第65巻,第1号,pp.103-109.
- (94) 木村学(2002): プレート収束帯のテクトニクス学, 東京大学出版会.
- (95)Xin Liu, Dapeng Zhao and Sanzhong Li(2013) : Seismic heterogeneity and anisotropy of the southern Kuril arc: insight into megathrust earthquakes, Geophysical Journal International, doi:10.1093/gii/ggt150.
- (96) 日野亮太, 松澤暢, 中島淳一, 伊藤喜宏(2008): プレート境界及びその周辺域の3次元地殻不均質構造の推定, h19年度成果報告_地殻不均質構造.
- (97) Junzo Kasahara, Toshinori Sato, Kimihiro Mochizuki and Kazuo Kobayashi(1997) : Paleotectonic structures and their influence on recent seismotectonics in the south Kuril subduction zone, The Island Arc, (1997) 6,267-280.
- (98) Dan Bassett and Anthony B. Watts (2015) : Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior, Geochemistry, Geophysics, Geosystems, 16, 1541-1576, doi:10.1002/2014GC005685.
- (99) Charles Demets (1992) : Oblique Convergence and Deformation Along the Kuril and Japan Trenches, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 97, No. B12, Pages 17, 615-17, 625.
- (100)地学団体研究会編(2000):新版地学事典, 701p.
- (101) 杉野英治, 呉長江, 是永眞理子, 根本信, 岩渕洋子, 蛯沢勝三(2013): 原子カサイトにおける2011 東北地震津波の検証, 日本地震工学会論文集, 第13巻, 第2号(特 集号).
- (102) Kenji Satake, Yushiro Fujii, Tomoya Harada, and Yuichi Namegaya (2013) : Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bulletin of the Seismological Society of America, Vol. 103, No. 2B, pp. 1473-1492, May 2013, doi: 10.1785/0120120122.
- (103) 地震調査研究推進本部地震調査委員会(2017b):千島海溝沿いの地震活動の長期評価(第三版).
- (104) 佐竹健治(2017):17 世紀に千島・日本海溝で発生した巨大地震, 地震研究所彙報, Vol. 92, pp. 31-47.
- (105) Ioki, K. and Y. Tanioka, Y (2016) : Re-estimated fault model of the 17th century great earthquake off Hokkaido using tsunami deposit data, Earth and Planetary Science Letters, 433, 133-138.
- (106) 高清水康博(2013):北海道の津波堆積物研究の現状と課題:17 世紀巨大津波による堆積物の研究を中心に,地質学雑誌,119(9), pp. 599-612.
- (107) Ryosuke Azuma, Yoshio Murai, Kei Katsumata, Yuichi Nishimura, Takuji Yamada, Kimihiro Mochizuki, Masanao Shinohara (2012) : Was the 1952 Tokachi-oki earthquake (Mw = 8.1) a typical underthrust earthquake?: Plate interface reflectivity measurement by an air gun-ocean bottom seismometer experiment in the Kuril Trench, Geochemistry, Geophysics, Geosystems, 13(8), Q08015, doi.org/10.1029/2012GC004135.
- (108) 東龍介(2012):北海道太平洋沖海底構造調査結果及び海底地震観測レビュー,地震予知連絡会会報,第88巻,12-7.
- (109) Satoshi Ide, Annemarie Baltay, Gregory C. Beroza (2011) : Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw9.0 Tohoku-Oki Earthquake, Science, vol. 332, 1426, DOI:10.1126/science.1207020.
- (110) Xin Liu and Dapeng Zhao (2018) : Upper and lower plate controls on the great 2011 Tohoku-oki earthquake, SCIENCE ADVANCES, Vol. 4, No. 6, pp. 1-7.

参考文献

- (111)Kelin Wang and Susan L. Bilek (2014) : Invited review paper: Fault creep caused by subduction of rough seafloor relief, Tectonophysics, 610,1-24.
- (112) T. Nishikawa, T. Matsuzawa, K. Ohta, N. Uchida, T. Nishimura, S. Ide(2019) : The slow earthquake spectrum in the Japan Trench illuminated by the S-net seafloor observatories, Science 23 Aug 2019:, Vol. 365, Issue 6455, pp.808-813.
- (113) Thorne Lay, Hiroo Kanamori, Charles J. Ammon, Keith D. Koper, Alexander R. Hutko, Lingling Ye, Han Yue, Teresa M. Rushing (2012) : Depthvarying rupture properties of subduction zone megathrust faults, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, B04311, doi:10.1029/2011JB009133.
- (114) TOSHITSUGU YAMAZAKI and YUKINOBU OKAMURA (1989) : Subducting seamounts and deformation of overriding forearc wedges around Japan, Tectonophysics, 160, 207-229.
- (115) 木戸ゆかり・小角幸代・仲西理子・鶴哲郎・金田義行(2002):日本海溝と千島海溝の接合点付近に沈み込む海山の地球物理学的特徴ー地磁気およびアドミッタンス関数を用いた重力解析ー,情報地質,第13巻,第3号,pp.141-151.
- (116) S. Dominguez, S.E. Lallemand, J. Malavieille and R. vonHueneb (1998) : Upper plate deformation associated with seamount subduction, Tectonophysics, 293, 207-224.
- (117) Azusa Nishizawa, Kentaro Kaneda, Naoko Watanabe, and Mitsuhiro Oikawa (2009) : Seismic structure of the subducting seamounts on the trench axis: Erimo Seamount and Daiichi-Kashima Seamount, northern and southern ends of the Japan Trench, Earth Planets Space, 61, e5-e8.
- (118) Sachiko Tanaka , Takanori Matsuzawa , and Youichi Asano(2019) : Shallow Low Frequency Tremor in the Northern Japan Trench Subduction Zone, Geophysical Research Letters, Vol. 46, Issure. 10, pp. 5217-5224.
- (119) Satoko Murotani, Kenji Satake, and Yushiro Fujii(2013) : Scaling relations of seismic moment, rupture area, average slip, and asperity size for M~9 subduction-zone earthquakes, GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1-5, doi:10.1002/grl.50976.
- (120) A. A. Skarlatoudis, P. G. Somerville, and H. K. Thio (2016) : Source-Scaling Relations of Interface Subduction Earthquakes for Strong Ground Motion and Tsunami Simulation, Bulletin of the Seismological Society of America, Vol. 106, No. 4, pp. 1652-1662, August 2016, doi: 10.1785/0120150320.
- (121) 地震調査研究推進本部地震調査委員会(2014):全国地震動予測地図2014年版~全国の地震動ハザードを概観して~付録-1.
- (122)Yushiro Fujii and Kenji Satake(2007) : Tsunami Source of the 2004 Sumatra-Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bulletin of the Seismological Society of America, Vol.97, No.1A, pp.S192-S207.
- (123)港湾空港技術研究所(2011):平成23年(2011年)東北地方太平洋沖地震による津波のGPS波浪計による観測結果について、プレスリリース、 https://www.pari.go.jp/info/tohoku-eq/20110328pari.html.
- (124)内閣府(2020a):日本海溝・千島海溝沿いの巨大地震モデル検討会日本海溝・千島海溝沿いの巨大地震モデルの検討について(概要報告).
- (125) Thorne Lay, Charles J. Ammon, Hiroo Kanamori, Marina J. Kim, and Lian Xue(2011) : Outer trench-slope faulting and the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 713-718.
- (126) José A. Álvarez-Gómez, Omar Q. Gutiérrez Gutiérrez, Íñigo Aniel-Quiroga, M. González(2012) : Tsunamigenic potential of outer-rise normal faults at the Middle America trench in Central America, Tectonophysics, 574-575 (2012) 133-143.
- (127) F Romano, S Lorito, and A Piatanesi (2020) : Fifteen Years of (Major to Great) Tsunamigenic Earthquakes, Earth Systems and Environmental Sciences, https://doi.org/10.1016/B978-0-12-409548-9.11767-1, pp.1-13.
- (128)佐藤編(1989):日本の地震断層パラメータ—・ハンドブック, 鹿島出版会, 390P.
- (129) Hiroo Kanamori (1971) : Seismological evidence for a lithospheric normal faulting the sanriku earthquake of 1933, Earth planet, interiors 4, pp. 289-300.
- (130) Kuniaki ABE (1978) : A dislocation model of the 1933 Sanriku earthquake consistent with the tsunami waves, J. Phys. Earth, 26, pp. 381-396.
- (131)Yushiro Fujii and Kenji Satake (2008) : Tsunami Sources of the November 2006 and January 2007 Great Kuril Earthquakes, Bulletin of the Seismological Society of America, Vol. 98, No. 3, pp. 1559–1571, June 2008, doi: 10.1785/0120070221.

参考文献

- (132)郷右近英臣, 越村俊一, 今井健太郎(2011): 2009年米領サモア地震・津波の発生メカニズムの検討, 土木学会論文集B2(海岸工学), Vol. 67, No. 2, 2011 , pp.1_211-1_215.
- (133)中西正男(2017):北西太平洋の海溝付近における海洋プレートの屈曲によって生じる断層地形,地学雑誌,126(2), pp. 125-146, doi:10.5026/jgeography. 126. 125.
- (134) Tetsuro Tsuru and Jin-Oh Park (2000) : Tectonic features of the Japan Trench convergent margin off Sanriku, northeastern Japan, revealed by multichannel seismic reflection data, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B7, PAGES 16, pp. 403-16, 413, JULY 10.
- (135)後藤智明,佐藤一央(1993):三陸沿岸を対象とした津波数値計算システムの開発,港湾技術研究所報告第32巻第2号, pp. 3-44.
- (136) 佐竹健治(2013):第197回地震予知連絡会重点検討課題「世界の巨大地震・津波」概要, pp. 414-416.
- (137) Daniel Melnick, Bodo Bookhagen, Manfred R. Strecker, Helmut P. Echtler (2009): Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B01407.
- (138) Sergio E. Barrientos and Steven N. Ward(1990): The 1960 Chile earthquake: inversion for slip distribution from surface deformation, Geophys. J. Int, 103, pp. 589-598.
- (139)松本剛・土井明日加・喜瀬慎一郎・阿部なつ江(2010):海洋地球物理観測データに基づくチリ三重点のテクトニクス,極域科学・宙空圏・気水圏・生物・地学 シンポジウム講演予稿集。
- (140)Belle Philibosian, Aron J. Meltzner (2020) : Segmentation and supercycles: A catalog of earthquake rupture patterns from the Sumatran Sunda Megathrust and other well-studied faults worldwide, Quaternary Science Reviews 241 (2020) 106390, pp. 1-43.
- (141) Tina Dura, Benjamin P. Horton, Marco Cisternas, Lisa L. Ely, Isabel Hong, Alan R. Nelson, Robert L. Wesson, Jessica E. Pilarczyk, Andrew C. Parnell, Daria Nikitina (2017) : Subduction zone slip variability during the last millennium, south-central Chile, Quaternary Science Reviews 175 (2017), pp. 112-137.
- (142)Yushiro Fujii and Kenji Satake (2013) : Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data, Pure Appl. Geophys. 170, pp. 1493-1509.
- (143) 阿部勝征(1989): 地震と津波のマグニチュードに基づく津波高の予測, 東京大学地震研究所彙報, Vol. 64, pp. 51-69.
- (144)武村雅之(1998):日本列島における地殻内地震のスケーリング則-地震断層の影響および地震被害との関連-,地震第2輯,第51巻, pp.221-228.
- (145) Kanamori, H. (1977) : The energy release in great earthquakes, JOURNAL OF GEOPHYSICAL RESEARCH, Vol. 82, No. 20, pp. 2981-2987.
- (146) 青森県(2015): 第7回青森県海岸津波対策検討会資料.
- (147)青森県(2021):第9回青森県海岸津波対策検討会資料.
- (148)内閣府(2020b): G空間情報センターHP,内閣府日本海溝・千島海溝沿いの巨大地震モデル検討会/津波断層モデル(3)津波断層パラメータ(最終更新 2020年12月16日),<u>https://www.geospatial.jp/ckan/dataset/2-003</u>.
- (149) Satoko Murotani, Hiroe Miyake, and Kazuki Koketsu (2008) : Scaling of characterized slip models for plate-boundary earthquakes, Earth Planets Space, 60, 987-991.
- (150) Jean M. Johnson, Kenji Satake, Sanford R Holdahl, Jeanne Sauber (1996): The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data, JOURNAL OF GEOPHYSICAL RESERCH, VOL. 101, NO. B1, pp. 523-532.
- (151) JEAN M. JOHNSON, YUICHIRO TANIOKA, LARRY J. RUFF, KENJI SATAKE, HIROO KANAMORI and LYNN R. SYKES, The 1957 Great Aleutian Earthquake, PAGEOPH, Vol. 142, No. 1 (1994), pp. 1-28.
- (152) Jean M. Johnson and Kenji Satake(1999): Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka, Pure and applied Geophysics, pp. 541-553.