資料④ **関西電力**power with heart

大飯発電所3号炉 高経年化技術評価 原子炉容器の中性子照射脆化

関西電力株式会社

2021年7月6日

目 次

1. 概要	2
2. 基本方針	2
3. 評価対象と評価手法	3
4. 技術評価	
4. 1 評価点の抽出	4
4. 2 監視試験結果	5
4 0 81 亩:8 亩 亩 仁	6
4.4 上部棚吸収エネルギー評価	8
4. 5 加圧熱衝撃評価	9
4. 6 現状保全	11
4 0 首级左从。《节代	- —
サ. O □] 小工 → □ ´ ` ▽ノ / ゾ / 心	12
5. まとめ	13

1. 概要 および 2. 基本方針

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規定に基づき 実施した高経年化技術評価のうち、原子炉容器の中性子照射脆化の評価結果を補足説明する ものである。

2. 基本方針

原子炉容器の中性子照射脆化に対する評価の基本方針は、原子炉容器について中性子照射による脆化予測および健全性評価を行い、運転開始後60年時点までの期間において「実用発電用原子炉施設における高経年化対策審査ガイド」および「実用発電用原子炉施設における高経年化対策実施ガイド」の要求事項を満たすことを確認することである。

3. 評価対象と評価手法

3.1 評価対象

原子炉容器を評価対象とする。

3. 2 評価手法

以下に示す規格等に基づき評価を行った。

- ・日本電気協会 原子炉構造材の監視試験方法(JEAC4201-2007[2013年追補版])(以下、「JEAC4201」という。)
- ・日本電気協会 原子力発電所用機器に対する破壊靭性の確認試験方法 (JEAC4206-2007) (以下、「JEAC4206」という。)
- 実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈 別記-1 日本電気協会「原子力発電所用機器に対する破壊靭性の確認試験方法(JEAC4206-2007)」の適用に当たって(以下、「技術基準規則解釈別記-1」という。)

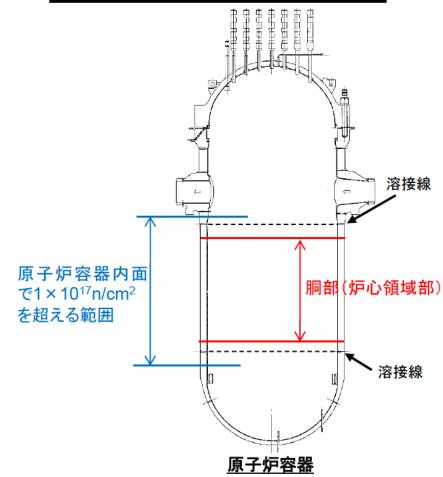
4. 技術評価-評価点の抽出

4.1 評価点の抽出

中性子照射脆化に対し健全性評価上厳しい箇所は、炉心領域の下部胴である。 運転開始後60年時点における中性子照射量が1.0×10¹⁷n/cm²(E>1MeV)を超えると予測される範囲には、下部胴以外に上部胴、トランジシンの有効高さを直接囲んでいる下部胴に対して、その他の部位では中性子照射量が小さく相当運転期間における関連温度移行量が十分に小さく炉心領域に含まれないことから、下部胴を対象

〇評価点:胴部(炉心領域部)

として評価を実施した。


〇胴内表面での中性子照射量*1 (E>1MeV)

2016年12月末時点 : 1.34×10¹⁹n/cm²程度

運転開始後60年時点*2 : 3. 79×10¹⁹n/cm²程度

主な仕様(胴部)

材料	低合金鋼 (ステンレス鋼内張り)		
	最高使用圧力	最高使用温度	
使用条件	約17.2MPa	約343°C	

中性子照射脆化に影響を与える化学成分(胴部(炉心領域部))[重量%]

区分	Cu	Ni	Р
母材	0. 029	0. 73	<0.005

^{*1:} 第3回監視試験片の中性子照射量実測値と、炉内中性子束解析により求めた監視試験片位置と胴内表面との中性子束の比率に基づき算出。

^{*2:2017}年1月以降、稼働率90%で運転すると仮定して算出。

4. 技術評価-監視試験結果

4.2 監視試験結果

これまで計3回の監視試験を実施している。 監視試験結果を以下に示す。

大飯3号炉 原子炉容器胴部(炉心領域部)の中性子照射脆化に対する監視試験結果

	取出時期 (年月)		T r 3 0*1(°C)	上部棚吸収エネルギー (J)
監視試験			母材	母 材
初期値	_	0	-42	294
第1回	1994年5月	0.863 [約18EFPY] * ²	-40	294
第2回	2001年9月	2.60 [約56EFPY] * ²	-32	291
第3回	2013年9月	5.09 [約109EFPY] * ²	-19	276

^{*1:}シャルピー衝撃試験における吸収エネルギーが41Jとなる温度。関連温度はTr30の移行量と関連温度初期値から算出する。

【関連温度初期値】大飯3号炉 母材:-30℃

*2:内表面から板厚tの1/4t深さでのEFPY。EFPYとは、定格負荷相当年数であり、定格出力で連続運転したと仮定して計算した年数を示す。

4. 技術評価-関連温度評価(1/2)

4.3 関連温度評価(1/2)

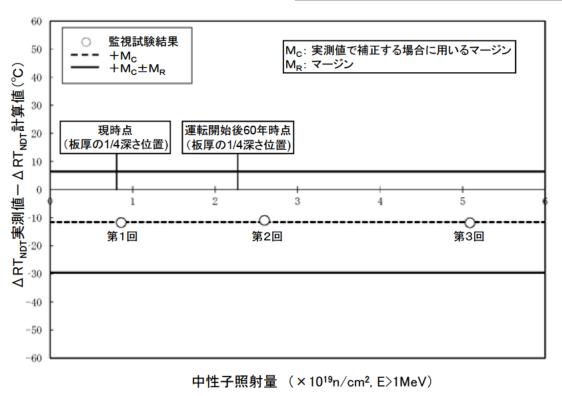
JEAC4201の国内脆化予測法による関連温度予測値を下表に示す。

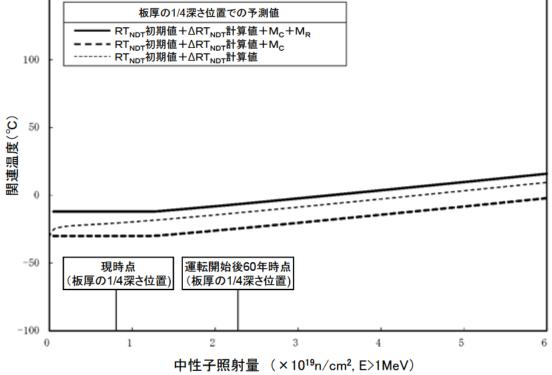
原子炉容器胴部(炉心領域部)の中性子照射脆化に対する関連温度の予測値

評価時期	中性 子 照射量* ¹	関連温度*²(℃)
百丁 Щ 4寸 5分	(×10 ¹⁹ n/cm²) [E>1 MeV]	母材
2016年12月末時点	0. 805	-11
運転開始後60年時点*3	2. 28	-6

*1: 内表面から板厚 t の 1 / 4 t 深さでの中性子照射量。内表面の中性子照射量にJEAC4201 附属書B に示される式で求めた減衰率を乗じて算出。

^{*2:} 内表面から板厚 t の 1 / 4 t 深さでの予測値。


^{*3: 2017}年1月以降、稼働率90%で運転すると仮定して算出。


4. 技術評価-関連温度評価(2/2)

4.3 関連温度評価(2/2)

JEAC4201の国内脆化予測法による予測と監視試験結果の関係を下図に示す。 関連温度予測値と監視試験結果から、当該部位の中性子照射脆化は、国内脆化予測法による 予測の範囲内であることを確認した。

原子炉容器胴部(炉心領域部)の中性子照射脆化に対する 関連温度の国内脆化予測法による予測と監視試験結果の関係

4. 技術評価-上部棚吸収エネルギー評価

4.4 上部棚吸収エネルギー(USE)評価

国内プラントを対象とした上部棚吸収エネルギーの予測式(JEAC4201附属書Bの国内USE 予測式)を用いて運転開始後60年時点での上部棚吸収エネルギー予測値を評価した。 その結果、JEAC4206で要求している68 J 以上を満足しており、十分な上部棚吸収エネルギーがあることを確認した。

原子炉容器胴部(炉心領域部)の中性子照射脆化に対する上部棚吸収エネルギーの予測値

(単位:J)

	初期値	2016年12月末 時点* ¹	運転開始後 60年時点* ^{1*2}
母材	294	287	281

*1: 内表面から板厚 t の 1 / 4 t 深さでの予測値。

*2: 2017年1月以降、稼働率90%で運転すると仮定して算出。

4. 技術評価-加圧熱衝撃評価(1/2)

4.5 加圧熱衝撃評価(1/2)

• 評価方法

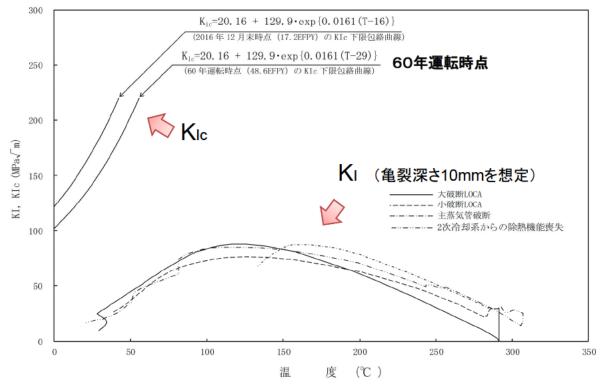
JEAC4206に定められた加圧熱衝撃(PTS: Pressurized Thermal Shock)評価手法*¹および技 術基準規則解釈別記-1に基づき大飯3号炉原子炉容器胴部(炉心領域部)材料の評価を実施 した。

なお、PTS事象は小破断LOCA、大破断LOCA、主蒸気管破断事故および2次冷却系からの除熱機能喪失を対象とした。

中性子照射脆化による材料の靱性低下の予測について、国内脆化予測法を用いて、実測 K_{IC} データを運転開始後60年時点 *2 まで温度軸に対してシフトさせ、その予測破壊靱性(K_{IC})の下限を包絡した以下の K_{IC} 曲線を設定する。(予測破壊靱性(K_{IC})の下限を包絡するよう下式の T_P を定める。)

$$K_{IC} = 20.16 + 129.9 \exp\{0.0161(T - T_p)\} (MPa\sqrt{m})$$

健全性評価はK_{IC}下限包絡曲線とPTS状態遷移曲線を比較することであり、評価結果を次頁に示す。 *1: JEAC4206附属書C「供用状態C、Dにおける加圧水型原子炉圧力容器の炉心領域部に対する非延性破壊防止のための評価方法」


*2: 2017年1月以降、稼働率90%で運転すると仮定して算出。

4. 技術評価-加圧熱衝撃評価(2/2)

4.5 加圧熱衝撃評価(2/2)

評価の結果、<u>深さ10mm*1の</u>亀裂を想定しても、脆性破壊に対する抵抗値(材料自身の持つねばり強さ)を示すK_{IC}曲線は、負荷状態を応力拡大係数K_I(脆性破壊を起こそうとする値)で示すPTS状態遷移曲線を上回っていることから、脆性破壊は起こらないことを確認した。

*1:深さ10mm位置での中性子照射量は、原子炉容器内表面の値を用いた。

深さ10mmの想定亀裂を用いたPTS評価結果

4. 技術評価-現状保全

4. 6 現状保全

- ・胴部(炉心領域部)材料の中性子照射による機械的性質の変化については、JEAC4201に基づいて、計画的に監視試験を実施し、破壊靭性の変化の傾向を把握している。 大飯3号炉は、当初監視試験カプセルを6体挿入し、現在までに3体のカプセルを取り出し、将来の運転期間に対する脆化予測を行っている。
- ・監視試験結果から、JEAC4206に基づき、運転管理上の制限として加熱・冷却運転時に許容しうる温度・圧力の範囲(加熱・冷却制限曲線)および耐圧漏えい試験温度を設けて運用している。
- ・溶接部について定期的に超音波探傷検査を実施し、有意な欠陥のないことを確認している。 至近実績:大飯3号炉第15回定期検査時(2012年度)

4. 技術評価 -総合評価及び高経年化への対応

4.7 総合評価

健全性評価結果から判断して、胴部(炉心領域部)の中性子照射脆化が機器の健全性に影響を与える可能性はないと考える。

ただし、胴部(炉心領域部)の中性子照射脆化に対しては、今後も計画的に監視試験を実施して健全性評価の妥当性を確認する必要がある。

胴部(炉心領域部)材料については、機械的性質の予測は監視試験により把握可能であり、 また、有意な欠陥のないことを超音波探傷検査により確認していることから、保全内容として 適切である。

4.8 高経年化への対応

JEAC4201に基づき計画的に監視試験を実施し、定期的に超音波探傷検査を実施していく。 また、監視試験結果から、JEAC4206に基づき、運転管理上の制限として加熱・冷却運転時に 許容しうる温度・圧力の範囲(加熱・冷却制限曲線)および耐圧漏えい試験温度を設けて運用 していく。

なお、健全性評価の結果から胴部(炉心領域部)の中性子照射脆化が原子炉の安全性に影響を及ぼす可能性はないと考えるが、今後の原子炉の運転サイクル・照射量を勘案して第4回監視試験の実施計画を策定する。

5. まとめ

5.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果、全ての要求を満足していることを確認した。

5.2 長期施設管理方針として策定する事項

胴部(炉心領域部)の中性子照射脆化に対しては、今後も計画的に監視試験を実施して健全性評価の妥当性を確認する必要があることから、長期施設管理方針を下表のとおり定め、大飯発電所原子炉施設保安規定に記載し、確実に実施していく。

大飯発電所3号炉 長期施設管理方針(抜粋)

機器名	長期施設管理方針	実施時期*1
原子炉容器	原子炉容器胴部(炉心領域部)の中性子照射 脆化については、今後の原子炉の運転サイク ル・照射量を勘案して第4回監視試験の実施 計画を策定する。	中長期

*1:短期:2021年12月18日からの5年間、中長期:2021年12月18日からの10年間