原規規発第 2106182 号 令和 3 年 6 月 1 8 日

東北電力株式会社

取締役社長 社長執行役員 樋口 康二郎 殿

原子力規制庁原子力規制部 東京電力福島第一原子力発電所事故対策室長 竹内 淳 (公印省略)

「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」に対する回答に係る対応について(依頼)

2021年4月5日付け原規規発第2104051号にて依頼しました「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」につきまして、回答にご協力賜り感謝申し上げます。

貴社より2021年5月10日付け東北電原運第6号にて回答のあった「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(回答)」の内容を確認した結果、別紙に示す事項について、改めて見解等を聴取することとしました。

ついては、別紙に示す事項ごとの見解等を具体的な根拠や理由とともに記述した上で、 令和3年7月2日までに回答するようお願いします。

なお、回答内容については、必要に応じ、「東京電力福島第一原子力発電所における事故 の分析に係る検討会」において確認する場合がありますので、申し添えます。

別紙:中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

# (1) - 23関係

- (ア)原子炉格納容器(以下「PCV」という。)破損防止対策の意義や役割として、提示された回答に至った根拠を示すこと。
- (イ) P C V の過圧の要因として、水蒸気だけではなく非凝縮性ガスの存在を考慮すべきではないか。
- (ウ) P C V 破損防止対策は、どのような目的で実施することが適切であると考えるか。

# (2) 及び(3) 関係

- (ア)「発電用軽水型原子炉施設におけるシビアアクシデント対策としてのアクシデントマネージメントについて」(平成4年5月、原子力安全委員会決定)を踏まえて、発電用原子炉設置者が自主的な保安措置として当時整備したアクシデントマネジメント対策(以下「AM対策」という。)について、以下の事項を回答すること。
  - i. アクシデントは、どのような考え方により想定されていたのか。
  - ii. アクシデントの想定に対して、どのような対策(設計、施工及び運用)を講じる 方針としたのか。(想定したアクシデントごとに示すこと)
  - iii. アクシデントの想定に対する対策方針を踏まえて、具体的にどのような対策を講じたのか。(対策方針ごとに示すこと)
  - iv. アクシデントの想定に対する対策は、どのような機能、効果を期待していたのか。(対策ごとに示すこと)

# (2) -13関係

(ア)耐圧強化ベントラインと非常用ガス処理系(以下「SGTS」という。)配管との関係と同様の関係にあった系統は、他にどのようなものが存在していたのか。

## (3) -13関係

(ア)ベントガスを排気筒底部から排気筒内に排出する設計とすることは、BWR各社での 共通認識であったか。

### (3) - 2①関係

(ア)福島第一原子力発電所(以下「1F」という。)のベントガスの挙動には、どのような特徴があったと考えるか。

## (3) -43関係

(ア)貴社の現在の排気系統では、ベントガスはどのように挙動すると考えるか(最も滞留する可能性がある箇所はどこか、など)。

# (4) -2②関係

(ア)具体的にどのような調査・検討が必要と考えるか。

## (4) - 23関係

(ア)真空破壊弁の故障により、ドライウェル中の気体がスクラビングを経由しないで放出 される経路が生じた場合、具体的にプラント挙動や事象進展にどのような影響がある か。

# (5) -1②関係

(ア)更なる調査・検討として、具体的にどのような調査・検討が必要と考えるか。

# (5) -13関係

- (ア)オペレーションフロア以外のフロア(下階)の水素滞留対策をとるべきではないか。
- (イ)滞留する水素の濃度が均一でない場合の対策をとるべきではないか。

## (5) -2②関係

- (ア)水素以外の可燃性ガスの発生源(可能性)に関する調査にも協力可能と理解してよいか。
- (イ) 可燃性ガスの発生源として原子炉圧力容器下部の制御棒駆動機構のケーブル等が考えられるが、ケーブルの量、塗装の種類等を踏まえて、炉内の温度上昇により、どのような可燃性ガスが生じると考えるか。

#### (6) -2②関係

(ア)シビアアクシンデント(以下「SA」という。)環境下での健全性(耐環境性)の確認では、機器の不安定動作が生じた場合の影響をどのように考えているのか。

#### (6) -2③関係

- (ア)1Fの主蒸気逃がし安全弁(以下「SRV」という。)の逃がし弁機能で不安定動作が生じたことを踏まえて、全交流動力電源喪失条件下では貴社のSRVにどのような不安定動作が生じると考えるか。
- (イ)不安定動作が生じる可能性がある機器として、SRV以外にどのような機器があるか。

- (7) -1①関係
- (ア) S R V の安全弁機能の作動開始圧力の低下要因として、他にどのような要因が考えられるか。
- (7) 2①関係
- (ア)SA時の機器の挙動に関する知見は、誰がどのように集積すべきと考えるか。
- (7) -2②関係
- (ア)SA時の機器の実力値(作動回数の限界値等)を把握すべきではないか。
- (9) -1①関係
- (ア)成功した2回以外のベント操作ではベントに成功しなかった要因として、どのようなことが考えられるか。
- (イ)成功した2回以外にベント成功と判断できるベント操作はあるか。
- (9) -2①関係
- (ア)40時間に渡り原子炉建屋内に水素が滞留した要因として、どのようなことが考えられるか。
- (9) -3③関係
- (ア)建屋内の水素滞留について様々な対策を実施していることは承知したが、対策を実施 しても、なお、建屋内に水素滞留が生じると仮定した場合、どのような対策が必要で あると考えるか。
- (イ)建屋内に滞留する水素の濃度は可燃限界を超える場合が想定されるか。

原規規発第 2106182 号 令和 3 年 6 月 1 8 日

中国電力株式会社

代表取締役社長執行役員 清水 希茂 殿

原子力規制庁原子力規制部 東京電力福島第一原子力発電所事故対策室長 竹内 淳 (公印省略)

「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」に対する回答に係る対応について(依頼)

2021年4月5日付け原規規発第2104051号にて依頼しました「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」につきまして、回答にご協力賜り感謝申し上げます。

貴社より2021年5月10日付け電原設第5号にて回答のあった「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(回答)」の内容を確認した結果、別紙に示す事項について、改めて見解等を聴取することとしました。

ついては、別紙に示す事項ごとの見解等を具体的な根拠や理由とともに記述した上で、 令和3年7月2日までに回答するようお願いします。

なお、回答内容については、必要に応じ、「東京電力福島第一原子力発電所における事故 の分析に係る検討会」において確認する場合がありますので、申し添えます。

別紙:中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

# (1) -1②関係

(ア)福島原子力事故調査報告書(平成24年6月20日、東京電力株式会社)に示されている2号機においてサプレッションチェンバからのベントが成功しなかった原因としてドライウェル圧力とサプレッションチェンバ圧力に差が生じていたことも考えられることについて、原子力規制庁は測定結果等の事実関係に疑義があると考えているが、当該原因について、さらなる仮説等はあるか。

## (1) - 23関係

- (ア)原子炉格納容器(以下「PCV」という。)破損防止対策の意義や役割として、提示された回答に至った根拠を示すこと。
- (イ) P C V の過圧の要因として、水蒸気だけではなく非凝縮性ガスの存在を考慮すべきではないか。
- (ウ) P C V 破損防止対策は、どのような目的で実施することが適切であると考えるか。

## (2) 及び(3) 関係

- (ア)「発電用軽水型原子炉施設におけるシビアアクシデント対策としてのアクシデントマネージメントについて」(平成4年5月、原子力安全委員会決定)を踏まえて、発電用原子炉設置者が自主的な保安措置として当時整備したアクシデントマネジメント対策(以下「AM対策」という。)について、以下の事項を回答すること。
  - i. アクシデントは、どのような考え方により想定されていたのか。
  - ii. アクシデントの想定に対して、どのような対策(設計、施工及び運用)を講じる 方針としたのか。(想定したアクシデントごとに示すこと)
  - iii. アクシデントの想定に対する対策方針を踏まえて、具体的にどのような対策を講じたのか。(対策方針ごとに示すこと)
  - iv. アクシデントの想定に対する対策は、どのような機能、効果を期待していたのか。(対策ごとに示すこと)

# (2) -13関係

(ア)耐圧強化ベントラインと非常用ガス処理系(以下「SGTS」という。)配管との関係と同様の関係にあった系統は、他にどのようなものが存在していたのか。

## (2) - 2 ③関係

(ア)1. の「AM対策の共通的な考慮事項」に示されている起因事象(内的事象)を踏ま えた設計(「既存設備を最大限に活用して対策を整備。」等)について、これらは設計 にどのように反映されたのか。

# (3) -13関係

- (ア)ベントガスを排気筒底部から排気筒内に排出する設計とすることは、BWR各社での 共通認識であったか。
- (イ)島根原子力発電所2号機建設時に同発電所1号機の設計から変更した際の検討経緯を示すこと。
- (ウ) 1. の「【島根2号機】 【島根3号機】 (建設中)」の1つ目のポツ「SGTS配管については、排気筒頂部高さから確実に排出するために排気筒に接続しない構成に変更。」について、どのように「確実に」排出されるようにしたのか。

### (3) -2①関係

(ア)福島第一原子力発電所(以下「1F」という。)のベントガスの挙動には、どのような特徴があったと考えるか。

## (3) -43関係

(ア)貴社の現在の排気系統では、ベントガスはどのように挙動すると考えるか(最も滞留する可能性がある箇所はどこか、など)。

# (4) -23関係

(ア)真空破壊弁の故障により、ドライウェル中の気体がスクラビングを経由しないで放出 される経路が生じた場合、具体的にプラント挙動や事象進展にどのような影響がある か。

## (5) -1①関係

(ア)爆燃が発生する水素濃度等について知見が必要との見解か。そうであれば、1 F 固有の問題ではないのではないか。

#### (5) -13関係

- (ア)オペレーションフロア以外のフロア(下階)の水素滞留対策をとるべきではないか。
- (イ)滞留する水素の濃度が均一でない場合の対策をとるべきではないか。
- (ウ)第980回原子力発電所の新規制基準適合性に係る審査会合(2021年6月3日) 資料1(島根原子力発電所2号炉 原子炉ウェル排気ラインの影響及び対策につい

- て)の3ページ(以下「水素ガスの挙動に与える影響」という。)の①に示されている内容が成立すると考えた根拠を示すこと。
- (エ)「水素ガスの挙動に与える影響」の①に示された内容の信頼性が確保されない場合、「水素ガスの挙動に与える影響」の②及び③に示された内容を見直すことはあり得ると理解してよいか。

### (5) - 2②関係

- (ア)水素以外の可燃性ガスの発生源(可能性)に関する調査にも協力可能と理解してよいか。
- (イ) 可燃性ガスの発生源として原子炉圧力容器下部の制御棒駆動機構のケーブル等が考えられるが、ケーブルの量、塗装の種類等を踏まえて、炉内の温度上昇により、どのような可燃性ガスが生じると考えるか。

### (6) -1②関係

- (ア)中間取りまとめ別添15に示す検討内容を踏まえて、以下の協力は可能か。
  - i. 主蒸気逃がし安全弁(以下「SRV」という。) に関する設計情報(設計図書、 施工図面等)の共有
  - ii. SRVに関する作動原理(作動ロジック等)の共有
  - iii. SRVの作動に関する実証実験の実施
- (イ)上記以外に協力可能な内容はあるか。ある場合は、どのような協力が可能か。

# (6) -13関係

(ア)島根原子力発電所の各号機に設置されているSRVは東芝設計と異なるか。

# (6) -2②関係

(ア)シビアアクシデント(以下「SA」という。)環境下での健全性(耐環境性)の確認では、機器の不安定動作が生じた場合の影響をどのように考えているのか。

## (6) -23関係

- (ア)1FのSRVで不安定動作が生じたことを踏まえて、全交流動力電源喪失条件下では 貴社のSRVにどのような不安定動作が生じると考えるか。
- (イ)不安定動作が生じる可能性がある機器として、SRV以外にどのような機器があるか。

## (7) -1①関係

(ア) SRVの安全弁機能の作動開始圧力の低下要因として、他にどのような要因が考えられるか。

# (7) -2①関係

(ア)SA時の機器の挙動に関する知見は、誰がどのように集積すべきと考えるか。

## (7) - 2②関係

(ア)SA時の機器の実力値(作動回数の限界値等)を把握すべきではないか。

# (9) -1①関係

- (ア)成功した2回以外のベント操作ではベントに成功しなかった要因として、どのようなことが考えられるか。
- (イ)成功した2回以外にベント成功と判断できるベント操作はあるか。

# (9) -2①関係

(ア)40時間に渡り原子炉建屋内に水素が滞留した要因として、どのようなことが考えられるか。

# (9) -33関係

(ア)建屋内の水素滞留について様々な対策を実施していることは承知したが、対策を実施 しても、なお、建屋内に水素滞留が生じると仮定した場合、どのような対策が必要で あると考えるか。

原規規発第 2106182 号 令和 3 年 6 月 1 8 日

日本原子力発電株式会社 取締役社長 村松 衛 殿

原子力規制庁原子力規制部 東京電力福島第一原子力発電所事故対策室長 竹内 淳 (公印省略)

「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」に対する回答に係る対応について(依頼)

2021年4月5日付け原規規発第2104051号にて依頼しました「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(依頼)」につきまして、回答にご協力賜り感謝申し上げます。

貴社より2021年5月10日付け発室発第13号にて回答のあった「『東京電力福島第一原子力発電所事故の調査・分析に係る中間取りまとめ』(2021年3月5日)に関する見解等について(回答)」の内容を確認した結果、別紙に示す事項について、改めて見解等を聴取することとしました。

ついては、別紙に示す事項ごとの見解等を具体的な根拠や理由とともに記述した上で、 令和3年7月2日までに回答するようお願いします。

なお、回答内容については、必要に応じ、「東京電力福島第一原子力発電所における事故 の分析に係る検討会」において確認する場合がありますので、申し添えます。

別紙:中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

中間取りまとめに関する見解等(回答)に対して、改めて見解等を聴取する事項

# (1) - 23関係

- (ア)原子炉格納容器(以下「PCV」という。)破損防止対策の意義や役割として、提示された回答に至った根拠を示すこと。
- (イ) P C V の過圧の要因として、水蒸気だけではなく非凝縮性ガスの存在を考慮すべきではないか。
- (ウ) P C V 破損防止対策は、どのような目的で実施することが適切であると考えるか。

# (2) 及び(3) 関係

- (ア)「発電用軽水型原子炉施設におけるシビアアクシデント対策としてのアクシデントマネージメントについて」(平成4年5月、原子力安全委員会決定)を踏まえて、発電用原子炉設置者が自主的な保安措置として当時整備したアクシデントマネジメント対策(以下「AM対策」という。)について、以下の事項を回答すること。
  - i. アクシデントは、どのような考え方により想定されていたのか。
  - ii. アクシデントの想定に対して、どのような対策(設計、施工及び運用)を講じる 方針としたのか。(想定したアクシデントごとに示すこと)
  - iii. アクシデントの想定に対する対策方針を踏まえて、具体的にどのような対策を講じたのか。(対策方針ごとに示すこと)
  - iv. アクシデントの想定に対する対策は、どのような機能、効果を期待していたのか。(対策ごとに示すこと)

# (2) -13関係

(ア)耐圧強化ベントラインと非常用ガス処理系(以下「SGTS」という。)配管との関係と同様の関係にあった系統は、他にどのようなものが存在していたのか。

## (3) -13関係

(ア)ベントガスを排気筒底部から排気筒内に排出する設計とすることは、BWR各社での 共通認識であったか。

### (3) - 2①関係

(ア)福島第一原子力発電所(以下「1F」という。)のベントガスの挙動には、どのような特徴があったと考えるか。

# (3) -43関係

(ア)貴社の現在の排気系統では、ベントガスはどのように挙動すると考えるか(最も滞留する可能性がある箇所はどこか、など)。

# (4) -2②関係

(ア)具体的にどのような調査・検討が必要と考えるか。

## (4) - 23関係

(ア)真空破壊弁の故障により、ドライウェル中の気体がスクラビングを経由しないで放出 される経路が生じた場合、具体的にプラント挙動や事象進展にどのような影響がある か。

### (5) -1②関係

(ア)更なる調査・検討として、具体的にどのような調査・検討が必要と考えるか。

## (5) -13関係

- (ア)オペレーションフロア以外のフロア(下階)の水素滞留対策をとるべきではないか。
- (イ)滞留する水素の濃度が均一でない場合の対策をとるべきではないか。

## (5) -2②関係

- (ア)水素以外の可燃性ガスの発生源(可能性)に関する調査にも協力可能と理解してよいか。
- (イ) 可燃性ガスの発生源として原子炉圧力容器下部の制御棒駆動機構のケーブル等が考えられるが、ケーブルの量、塗装の種類等を踏まえて、炉内の温度上昇により、どのような可燃性ガスが生じると考えるか。

## (6) -1②関係

- (ア)中間取りまとめ別添15に示す検討内容を踏まえて、以下の協力は可能か。
  - i. 主蒸気逃がし安全弁(以下「SRV」という。)に関する設計情報(設計図書、 施工図面等)の共有
  - ii. SRVに関する作動原理(作動ロジック等)の共有
  - iii. SRVの作動に関する実証実験の実施
- (イ)上記以外に協力可能な内容はあるか。ある場合は、どのような協力が可能か。

# (6) -13関係

(ア)「SRVから冷却材流出が継続する状態」とはどのようなプラント状態と分析しているのか。

## (6) -2②関係

(ア)電源喪失時の機器挙動の把握について、具体的にどのような調査・検討が必要と考えるか。

### (6) - 23関係

- (ア)1FのSRVの逃がし弁機能で不安定動作が生じたことを踏まえて、全交流動力電源 喪失条件下では貴社のSRVにどのような不安定動作が生じると考えるか。
- (イ)不安定動作が生じる可能性がある機器として、SRV以外にどのような機器があるか。

## (7) -1①関係

(ア) S R V の安全弁機能の作動開始圧力の低下要因として、他にどのような要因が考えられるか。

## (7) - 2①関係

(ア)SA時の機器の挙動に関する知見は、誰がどのように集積すべきと考えるか。

## (7) - 2②関係

(ア)SA時の機器の実力値(作動回数の限界値等)を把握すべきではないか。

# (9) -1①関係

- (ア)成功した2回以外のベント操作ではベントに成功しなかった要因として、どのようなことが考えられるか。
- (イ)成功した2回以外にベント成功と判断できるベント操作はあるか。

#### (9) -2①関係

(ア)40時間に渡り原子炉建屋内に水素が滞留した要因として、どのようなことが考えられるか。

# (9) -33関係

(ア)建屋内の水素滞留について様々な対策を実施していることは承知したが、対策を実施 しても、なお、建屋内に水素滞留が生じると仮定した場合、どのような対策が必要で あると考えるか。 (イ)想定を超える水素濃度とは具体的にどの程度を指すか。