本資料のうち、枠囲みの内容 は商業機密の観点から公開で きません。

女川原子力発電所第2号	号機 工事計画審査資料
資料番号	02-工-B-04-0035_改 1
提出年月日	2021年5月27日

VI-3-3-3-6-2-4 高圧炉心スプレイ補機冷却水サージタンクの強度計算書

2021年5月

東北電力株式会社

まえがき

本計算書は、添付書類「VI-3-1-5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「VI-3-2-8 重大事故等クラス2容器の強度計算方法」に基づいて計算を行う。

なお、適用規格の選定結果について以下に示す。適用規格の選定に当たって使用する記号及び略語については、添付書類「VI-3-2-1 強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

	ne an	施設時の 技術基準		クラスア	ップするか			条件で	マップする	るか		既工認に				
機器名	既設 or	に対象と	クラス	施設時	DB	Ç A	条件	DB ∮	条件	SA £	条件	おける	施設時の	評価区分	同等性 評価	評価 クラス
	新設	する施設 の規定が あるか	アップ の有無	機器 クラス	クラス	SA クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分	クラス
高圧炉心スプレイ補機冷却水 サージタンク	既設	有	有	DB-3	DB-3	SA-2	無	静水頭	70	静水頭	70	-	S55 告示	設計・建設規格 又は告示	_	SA-2

目次

1.	計	算条件	1
1.	. 1	計算部位	1
1.	. 2	設計条件	1
2.	強	度計算 2	2
2.	. 1	開放タンクの胴の厚さの計算 2	2
2.	. 2	開放タンクの底板の厚さの計算	3
2.	. 3	開放タンクの管台の厚さの計算	1
2.	4	開放タンクの補強を要しない穴の最大径の計算	3
2.	5	開放タンクの穴の補強計算	9

1. 計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

図1-1 概要図

1.2 設計条件

12 *1.1 * 1 * 1 1	
最高使用圧力 (MPa)	静水頭
最高使用温度(℃)	70

2. 強度計算

2.1 開放タンクの胴の厚さの計算 設計・建設規格 PVC-3920

胴板名称			(1) 胴板
材料			SM400B
水頭	Н	(m)	2. 2203
最高使用温度		(\mathcal{C})	70
胴の内径	D i	(m)	1. 20
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3. 00
必要厚さ	t 2	(mm)	0. 19
必要厚さ	t ₃	(mm)	
t ₁ , t ₂ , t ₃ の大きい値	t	(mm)	3. 00
呼び厚さ	t so	(mm)	9. 00
最小厚さ	t s	(mm)	
評価: t _s ≧ t, よって十分で	である。		

2.2 開放タンクの底板の厚さの計算

(1) 設計・建設規格 PVC-3960 底板の形状: 平板

(2) 設計・建設規格 PVC-3970

底板の厚さ

底板名称			(1) 平板
材料			SM400B
必要厚さ	t	(mm)	6. 00
呼び厚さ	t bo	(mm)	15. 00
最小厚さ	t _b	(mm)	
評価: t b ≧ t , よっ~	て十分である。		

2.3 開放タンクの管台の厚さの計算 設計・建設規格 PVC-3980

管台名称			(1) 液出口
材料			STS42 (STS410)
水頭	Н	(m)	2. 2203
最高使用温度		(℃)	70
管台の内径	D i	(m)	0. 1023
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.02
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t no	(mm)	6.00
最小厚さ	t n	(mm)	
評価: t n ≥ t , よって+z	分である。		-

開放タンクの管台の厚さの計算 設計・建設規格 PVC-3980

管台名称			(2) ドレン
材料			STS410
水頭	Н	(m)	2. 2203
最高使用温度		(\mathcal{C})	70
管台の内径	D i	(m)	0. 0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t 2	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2.40
呼び厚さ	t no	(mm)	5. 50
最小厚さ	t n	(mm)	
評価: t n ≥ t , よって十分	うである。	-	

開放タンクの管台の厚さの計算 設計・建設規格 PVC-3980

管台名称			(3) 液位計
材料			STS410
水頭	Н	(m)	2. 2203
最高使用温度		(℃)	70
管台の内径	D i	(m)	0.0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t 2	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2.40
呼び厚さ	t no	(mm)	5. 50
最小厚さ	t n	(mm)	
評価: t n ≥ t , よって十分	うである。		

開放タンクの管台の厚さの計算 設計・建設規格 PVC-3980

管台名称			(4) オーバーフロー
材料			STS410
水頭	Н	(m)	2. 2203
最高使用温度		(℃)	70
管台の内径	D i	(m)	0.0495
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.01
必要厚さ	t 2	(mm)	2.40
t ₁ , t ₂ の大きい値	t	(mm)	2. 40
呼び厚さ	t no	(mm)	5. 50
最小厚さ	t n	(mm)	
評価: t n ≥ t , よって十分	うである。		

2.4 開放タンクの補強を要しない穴の最大径の計算 設計・建設規格 PVC-3940

胴板名称	(1) 胴板
評価:補強の計算を要する 85mm を超える穴の名 称	液出口

2.5 開放タンクの穴の補強計算設計・建設規格 PVC-3950

参照附図 WELD-15

			参照附図 WELD-15
部材名称			(1) 液出口
胴板材料			SM400B
管台材料			STS42 (STS410)
強め板材料			SM400B
最高使用圧力	Р	(MPa)	0.02
最高使用温度		(\mathcal{C})	70
胴板の許容引張応力	S _s	(MPa)	100
管台の許容引張応力	S _n	(MPa)	103
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	1. 20
胴板の計算上必要な厚さ	t _{s r}	(mm)	0.14
管台の計算上必要な厚さ	t n r	(mm)	
穴の補強に必要な面積	A r	(mm^2)	
補強の有効範囲	X 1	(mm)	
補強の有効範囲	X 2	(mm)	
補強の有効範囲	X	(mm)	
補強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	t e	(mm)	
強め板の外径	Ве	(mm)	280.00
管台の外径	Don	(mm)	114. 30
溶接寸法	L 1	(mm)	6. 00
溶接寸法	L 2	(mm)	5. 00
胴板の有効補強面積	A 1	(mm^2)	
管台の有効補強面積	A 2	(mm^2)	

枠囲みの内容は商業機密の観点から公開できません。

すみ肉溶接部の有効補強面積	A_3	(mm^2)	_	61.0	
強め板の有効補強面積	A_4	(mm^2)			
補強に有効な総面積	A_0	(mm^2)	1.659×10^{3}		
評価: $A_0>A_r$, よって十分である。					

部材名称			(1) 液出口		
大きい穴の補強					
補強を要する穴の限界径	d j	(mm)	500		
評価: d \leq d $_{\rm j}$, よって大きい穴の補強計算は必要ない。					
溶接部にかかる荷重	W_{1}	(N)			
溶接部にかかる荷重	W_{2}	(N)			
溶接部の負うべき荷重	W	(N)			
評価:W<0,よって溶接部の強度計算は必要ない。					
いトトル上公でなる					

以上より十分である。