原子力規制委員会 殿

| 仙台市青葉区本町一丁目 7 番 1 号 |  |  |  |
| :--- | :---: | :---: | :---: |
| 東 北 電 力 株 式 会 社 |  |  |  |
| 取締役社長 社長執行役員 |  |  |  |
| 樋口 康二郎 |  |  |  |

工事計画認可申請書の一部補正について

平成 25 年 12 月 27 日付け東北電原設第 9 号をもつて申請いたしました女川原子力発電所第 2 号機の工事計画認可申請書（令和 2 年 5 月 29 日付 け東北電原設第 1 号，令和 2 年 9 月 30 日付け東北電原設第 3 号，令和 2 年 11月30日付け東北電原設第5号及び令和3年2月19日付け東北電原設第 6 号にて一部補正）について，別紙のとおり一部補正いたします。

## 目 次

1．補正項目

2．補正を必要とする理由を記載した書類

3．補正前後比較表

4．補正内容を反映した書類

## 1．補正項目

補正項目
補正項目は下表のとおり。

| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI 添付書類 |  |
| $\mathrm{VI}-2$ 耐震性に関する説明書 | 「3．補正前後比較表」による。 |
| VI－2－2耐震設計上重要な設備を設置する施設の <br> 耐震性についての計算書 | 「3．補正前後比較表」による。 |

VI－2－2－4 制御建屋の耐震性についての計算書

VI－2－2－9 第 3 号機海水ポンプ室の地震応答計算書

VI－2－2－10 第3号機海水ポンプ室の耐震性につい ての計算書

VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書

VI－2－2－12－2 原子炉機器冷却海水配管ダクト（鉛直部）の耐震性についての計算書

VI－2－5－3 原子炉冷却材の循環設備の耐震性につ いての計算書

VI－2－5－3－1 主蒸気系の耐震性についての計算書

VI－2－5－3－1－2 管の耐震性についての計算書（主蒸気系）

「3．補正前後比較表」による。

「3．補正前後比較表」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

「3．補正前後比較表」による。追加する。「4．補正内容を反映 した書類」による。

「3．補正前後比較表」による。

「3．補正前後比較表」による。

追加する。「4．補正内容を反映 した書類」による。

| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－5－3－2 復水給水系の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－3－2－1 管の耐震性についての計算書（復水給水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－4－1 残留熱除去系の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性 についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書 （残留熱除去系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－5－1 高圧炉心スプレイ系の耐震性につい ての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－5－1－2 高圧灲心スプレイ系ストレーナの耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－1－3 管の耐震性についての計算書（高圧炉心スプレイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－1－4 ストレーナ部ティーの耐震計算書 （高圧炉心スプレイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－2 低圧炉心スプレイ系の耐震性につい ての計算書 | 「3．補正前後比較表」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－5－5－2－2 低圧炉心スプレイ系ストレーナの耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－2－3 管の耐震性についての計算書（低圧炉心スプレイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－2－4 ストレーナ部ティーの耐震計算書 （低圧炉心スプレイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－5 代替水源移送系の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－5－5－1 管の耐震性についての計算書（代替水源移送系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－6－1 原子炉隔離時冷却系の耐震性につい ての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－6－1－3 管の耐震性についての計算書（原子炉隔離時冷却系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－6－2 補給水系の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－6－2－3 管の耐震性についての計算書（補給水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－5－7－1 原子炉補機泠却水系及び原子炉補機冷却海水系の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－5－7－1－3 原子炉補機冷却海水ポンプの耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |



| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－9－2－1－4 ドライウェルベント開口部の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－3 原子炉建屋の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設） の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－3－2 原子炉建屋大物搬入口の耐震性につ いての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－3－4 原子炉建屋基礎版の耐震性について の計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－9－4－1 ダウンカマの耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－2 ベント管の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－4 放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－9－4－4－1 非常用ガス処理系の耐震性につい ての計算書 | 「3．補正前後比較表」による。 |
| VI－2－9－4－4－1－2 管の耐震性についての計算書（非常用ガス処理系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－4－2 可燃性ガス濃度制御系の耐震性に ついての計算書 | 「3．補正前後比較表」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－9－4－4－2－1 管の耐震性についての計算書（可燃性ガス濃度制御系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－4－4 可搬型窒素ガス供給系の耐震性に ついての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－4－4－1 管の耐震性についての計算書（可搬型窒素ガス供給系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－5 原子炉格納容器調気設備の耐震性に ついての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－5－1 原子炉格納容器調気系の耐震性に ついての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－1－2－1 非常用ディーゼル発電設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－1－2－1－1 非常用ディーゼル発電設備 機関•発電機の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－1－2－1－6 非常用ディーゼル発電設備 管 の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－1－2－2 高圧炉心スプレイ系ディーゼル発電設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－1－2－2－1 高圧炉心スプレイ系ディーゼル発電設備 機関•発電機の耐震性 についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－10－1－2－2－6 高圧炉心スプレイ系ディーゼル発電設備 管の耐震性について の計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2 浸水防護施設の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－2－3 防潮壁の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－2－3－4 防潮壁（第3号機海水熱交換器建屋）の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－7 水密扉の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－7－1 水密扉（浸水防止設備）の耐震性 についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－7－2 水密扉（溢水防護設備）の耐震性 についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－10 逆止弁付ファンネルの耐震性につ いての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－10－1 逆止弁付ファンネル（第2号機） の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－10－2 逆止弁付ファンネル（第3号機） の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－11 貫通部止水処置の耐震性について の計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－11－1 貫通部止水処置（外郭防護）の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－10－2－11－2 貫通部止水処置（内郭防護）の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－2－13 津波監視設備の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－2－13－2 取水ピット水位計の耐震性につ いての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－10－3 補機駆動用燃料設備の耐震性について の計算書 | 「3．補正前後比較表」による。 |
| VI－2－10－3－2 補機駆動用燃料設備 管の耐震性に ついての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－11－2 波及的影響を及ぼすおそれのある施設 の耐震性についての計算書 | 「3．補正前後比較表」による。 |
| VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性 についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－11－2－2 竜巻防護ネットの耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－11－2－9 燃料交換機の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－11－2－13 制御棒貯蔵ラックの耐震性につい ての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－11－2－21 CRD 自動交換機の耐震性について の計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－12 水平2方向及び鉛直方向地震力の組合せ に関する影響評価 | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－2－12－1 水平2方向及び鉛直方向地震力の組合 せに関する影響評価結果 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－別添2 溢水防護に係る施設の耐震性に関す る説明書 | 「3．補正前後比較表」による。 |
| VI－2－別添 2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－別添 2－3 溢水防護に関する施設の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－別添 2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－2－別添 2－8 復水器水室出入口弁の耐震性につ いての計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－2－1－3 管の強度計算書（主蒸気系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－2－1－3－2 管の応力計算書（主蒸気系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－2－2－1 管の強度計算書（復水給水系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－2－2－1－2 管の応力計算書（復水給水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系） | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計 <br> 算書（残留熱除去系） | 追加する。「4．補正内容を反映 した書類」による。 |
| $\mathrm{VI}-3-3-3-4-1-4$ 管の強度計算書（高圧炉心スプレ イ系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－4－1－4－2 管の応力計算書（高圧灲心スプ レイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| $\begin{array}{cl} \text { VI-3-3-3-4-1-4-3 ストレーナ部ティーの強度計 } \\ & \text { 算書 (高圧炉心スプレイ系) } \end{array}$ | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－4－2－3 管の強度計算書（低圧灲心スプレ イ系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－4－2－3－2 管の応力計算書（低圧炉心スプ レイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－4－2－3－3 ストレーナ部ティーの強度計算書（低圧炉心スプレイ系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－4－6－1 管の強度計算書（代替水源移送系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－4－6－1－2 管の応力計算書（代替水源移送系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－5－1－3 管の強度計算書（原子炉隔離時冷却系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－5－1－3－2 管の応力計算書（原子炉隔離時冷却系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－5－2－3 管の強度計算書（補給水系） | 「3．補正前後比較表」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－3－3－3－5－2－3－2 管の応力計算書（補給水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－6－1－6 管の強度計算書（原子炉補機冷却水系及び原子炉補機冷却海水系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－6－1－6－2 管の応力計算書（原子炉補機冷却水系及び原子炉補機冷却海水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－3－6－2－5 管の強度計算書（高圧灲心スプレ イ補機冷却水系及び高圧炉心ス プレイ補機泠却海水系） | 「3．補正前後比較表」による。 |
| VI－3－3－3－6－2－5－2 管の応力計算書（高圧炉心スプ レイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－4－3－1－2 管の強度計算書（高圧窒素ガス供給系） | 「3．補正前後比較表」による。 |
| VI－3－3－4－3－1－2－2 管の応力計算書（高圧窒素ガス供給系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－4－3－2－1 管の強度計算書（代替高圧窒素ガ不供給系） | 「3．補正前後比較表」による。 |
| VI－3－3－4－3－2－1－2 管の応力計算書（代替高圧窒素 ガス供給系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－1－1 原子炉格納容器本体の強度計算書 | 「3．補正前後比較表」による。 |
| VI－3－3－6－1－1－4 ドライウェルベント開口部の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書 | 「3．補正前後比較表」による。 |
| VI－3－3－6－2－2 ダウンカマの強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－3 ベントヘッダの強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－5 ベント管の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－6 ベント管ベローズの強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系） | 「3．補正前後比較表」による。 |
| VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－8－3－1 管の強度計算書（可搬型窒素ガ ス供給系） | 「3．補正前後比較表」による。 |
| VI－3－3－6－2－8－3－1－2 管の応力計算書（可搬型窒素 ガス供給系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系） | 「3．補正前後比較表」による。 |
| VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系） | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 1 竜巻への配慮が必要な施設の強度に関する説明書 | 「3．補正前後比較表」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－3－別添 1－1－1 竜巻より防護すべき施設を内包 する施設の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 1－1－8 換気空調設備の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 1－2－1 防護対策施設の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 1－2－1－2 竜巻防護鋼板の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2 津波への配慮が必要な施設の強度計算書 | 「3．補正前後比較表」による。 |
| VI－3－別添 3－2－2－4 防潮壁（第3号機海水熱交換器建屋）の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－6 水密扉の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－9 逆止弁付ファンネルの強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－10 貫通部止水処置の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |


| 補正項目 | 補正箇所 |
| :---: | :---: |
| VI－3－別添3－2－11 津波監視設備の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－2－11－1 取水ピット水位計の強度計算書 | 追加する。「4．補正内容を反映 した書類」による。 |
| VI－3－別添 3－4 溢水への配慮が必要な施設の強度計算書 | 「3．補正前後比較表」による。 |
| VI－3－別添 3－4－1 水密扉の強度計算書（溢水） | 追加する。「4．補正内容を反映 した書類」による。 |

## 2．補正を必要とする理由を記載した書類

補正を必要とする理由
平成 25 年 12 月 27 日付け東北電原設第 9 号にて申請した工事計画認可申請書（令和 2年5月29日付け東北電原設第 1 号，令和 2 年 9 月 30 日付け東北電原設第 3 号，令和 2 年 11月30日付け東北電原設第5号及び令和3年2月19日付け東北電原設第6号にて一部補正）において，平成 25 年 12 月 27 日付け東北電原技第 8 号にて申請した発電用原子炉設置変更許可申請書の一部補正（令和元年9月19日付け東北電原技第3号，令和元年11月6日付け東北電原技第5号，令和元年11月19日付け東北電原技第6号及び令和2年2月 7 日付け東北電原技第 7 号）に伴い，変更が必要となった事項を反映するため，「V 添付書類」を補正する。

3．補正前後比較表
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

|  | 変更 前 | 変 更 後 | 備 考 |
| :---: | :---: | :---: | :---: |
| 目 次 |  | 目 次 | 添付書類の追加 |
| VI－2－2－1 | 原子炬建屋の地震応答計算書 | VI－2－2－1 原子炉建屋の地震応答計算書 |  |
| $\mathrm{VI}-2-2-2$ | 原子炉建屋の耐震性についての計算書 | VI－2－2－2 原子炬建屋の耐震性についての計算書 |  |
| VI－2－2－3 | 制御建屋の地震応答計算書 | VI－2－2－3 制御建屋の地震応答計算書 |  |
|  |  | VI－2－2－4 制御建屋の耐震性についての計算書 |  |
| VI－2－2－5 | 復水貯蔵タンク基礎の地震応答計算書 | VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書 |  |
| $\mathrm{VI}-2-2-6$ | 復水貯蔵タンク基礎の耐震性についての計算書 | $\mathrm{VI}-2-2-6$ 復水貯蔵タンク基礎の耐震性についての計算書 |  |
| $\mathrm{VI}-2-2-7$ | 海水ポンプ室の地震応答計算書 | $\mathrm{VI}-2-2-7$ 海水ポンプ室の地震応答計算書 |  |
| VI－2－2－8 | 海水ポンプ室の耐震性についての計算書 | $\mathrm{VI}-2-2-8$ 海水ポンプ室の耐震性についての計算書 |  |
|  |  | VI－2－2－9 第 3 号機海水ポンプ室の地震応答計算書 | 添付書類の追加 |
|  |  | VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書 | 添付書類の追加 |
| VI－2－2－11 | 原子炬機器泠却海水配管ダクト（水平部）の地震応答計算書 | VI－2－2－11 原子炉機器洽却海水配管ダクト（水平部）の地震応答計算書 |  |
|  |  | VI－2－2－12 原子炬機器冷却海水配管ダクトの耐震性についての計算書 | 誤記修正䟝記修正 |
|  |  | VI－2－2－13 軽油タンク室の地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－14 軽油タンク室の耐震性についての計算書 | 誤記修正 |
|  |  | VI－2－2－15 軽油タンク室（H）の地震応答計算書 | 䛊記修正 |
|  |  | VI－2－2－16 軽油タンク室（H）の耐震性についての計算書 | 䛊記修正 |
|  |  | VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書 | 誤記修正 |
|  |  | VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－20 軽油タンク連絡ダクトの耐震性についての計算書 | 誤記修正 |
|  |  | VI－2－2－21 緊急用電気品建屋の地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－22 緊急用電気品建屋の耐震性についての計算書 | 誤記修正 |
|  |  | VI－2－2－23 緊急時対策建屋の地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－24 緊急時対策建屋の耐震性についての計算書 | 䛊記修止 |
|  |  | VI－2－2－25 排気筒基䂾の地震応答計算書 | 䛊記修正 |
|  |  | VI－2－2－26 排気筒基礎の耐震性についての計算書 | 䛊記修正 |
| $\mathrm{VI}-2-2-27$ | 排気筒連絡ダクトの地震応答計算書 | VI－2－2－27 排気筒連絡ダクトの地震応答計算書 |  |
| VI－2－2－28 | 排気筒連絡ダクトの耐震性についての計算書 | VI－2－2－28 排気筒連絡ダクトの耐震性についての計算書 |  |
|  |  | VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書 | 誤記修正 |
|  |  | VI－2－2－30 第3号機海水熱交換器建屋の耐震性についての計算書 | 誤記修正 |

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
信 変 後
目 次
VI－2－5－3－1 主蒸気系の耐震性についての計算書
VI－2－5－3－2 復水給水系の耐震性についての計算書
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
|  |
| 添付書類の追加 |
| 添付書類の追加 |
| 添付書類の追加 |

VI－2－5－4－1－1 変 更 残留熱除去系熱交換器の耐震性についての計算書 $\begin{array}{ll}\mathrm{VI}-2-5-4-1-1 & \text { 残留熱除去系熱交換器の耐震性についての計算書 } \\ \mathrm{VI}-2-5-4-1-2 & \text { 残留熱除去系ポンプの耐震性についての計算書 }\end{array}$ VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書
VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）
VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
| 添付書類の追加 |
| 添付書類の追加 |
| 添付書類の追加 |


女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
| 添付書類の追加 |
| 添付書類の追加 |
| 添付書類の追加 |


女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比僌表
【VI－2－5－7－1 原子炬補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書】
目 次

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
［VI－2－5－7－2 高圧灯心スプレイ補機冷却水采及び高圧炉心スプレイ補機泠却海水系の耐震性についての計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
|  |
|  |
| 添付書頪の追加 |


|  | 変 更 後 |
| :--- | :--- |
| 目 次 |  |
| $\mathrm{VI}-2-6-1$ | 計測制御系統施設の耐震性についての計算結果 |
| $\mathrm{VI}-2-6-2$ | 制御材の耐震性についての計算書 |
| $\mathrm{VI}-2-6-3$ | 制御材駆動装置の耐震性についての計算書 |
| $\mathrm{VI}-2-6-4$ | ほらら酸水注入設備の耐震性についての計算書 |
| $\mathrm{VI}-2-6-5$ | 計測装置の耐震性についての計算書 |
| $\mathrm{VI}-2-6-6$ | 制御用空気設備の耐震性についての計算書 |
| $\mathrm{VI}-2-6-7$ | その他の計測制御設備の耐震性についての計算書 |

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
| 添付書類の追加 |

【VI－2－9－2－1 原子炉格納容器本体の耐震性についての計算書】 変 更 後

目 次
VI－2－9－2－1－1 ドライウェルの耐震性についての計算書
VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書 VI－2－9－2－1－3 原子炉格納容器シヤラグの耐震性についての計算書 VI－2－9－2－1－4 ドライウェルベント開口部の耐震性についての計算書

VI－2－9－2－1－5 ボックスサポートの耐震性についての計算書
変 更 前
VI－2－9－2－1－5 ボックスサポートの耐震性についての計算書
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－2－9－4－4 放射性物質湄度制御設備及び可燃性ガス湄度制御設備並びに格納容器再循環設備の耐震性についての計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表 VII－2－10－1－2－2 高圧炬心スプレイ系ディーゼル発電設備の耐震性についての計算書】
N.

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
変 更 後
目 次
VI－2－10－2－13－1 津波監視カメラの耐震性についての計算書
VI－2－10－2－13－2 取水ピット水位計の耐震性についての計算書

$$
\square
$$

視設備の耐震性についての計算書】



[^0]女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
更
目 次
VI－2－10－3－1 補機駆動用燃料設備の耐震性についての計算結果
VI－2－10－3－2 補機駆動用燃料設備 管の耐震性についての計算晝
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

|  | 変更 前 | 変更 後 | 備 考 |
| :---: | :---: | :---: | :---: |
| 目 次 |  | 目 次 |  |
|  |  | VI－2－11－2－1 海水ポンプ室門型クレーンの耐震性についての計算書 | 添付書類の追加添付書類の追加 |
|  |  | VI－2－11－2－2 竜巻防護ネットの耐震性についての計算書 |  |
| VI－2－11－2－3 | タービン建屋の耐震性についての計算書 | VI－2－11－2－3 タービン建屋の耐震性についての計算書 |  |
| VI－2－11－2－4 | 補助ボイラー建屋の耐震性についての計算書 | VI－2－11－2－4 補助ボイラー建屋の耐震性についての計算書 |  |
| VI－2－11－2－5 | 第1号機制御建屋の耐震性についての計算書 | VI－2－11－2－5 第 1 号機制御建屋の耐震性についての計算書 |  |
| VI－2－11－2－6 | ほら酸水注入系テストタンクの耐震性についての計算書 | VI－2－11－2－6 ほう酸水注入系テストタンクの耐震性についての計算書 |  |
| VI－2－11－2－7 | 中央制御室天井照明の耐震性についての計算書 | VI－2－11－2－7 中央制御室天井照明の耐震性についての計算書 |  |
| VI－2－11－2－8 | 原子炉建屋クレーンの耐震性についての計算書 | VI－2－11－2－8 原子炉建屋クレーンの耐震性についての計算書 | 添付書類の追加 |
|  |  | VI－2－11－2－9 燃料交換機の耐震性についての計算書 |  |
| VI－2－11－2－10 | 原子炉しゃへい壁の耐震性についての計算書 | VI－2－11－2－10 原子炉しやへい壁の耐震性についての計算書 |  |
| VI－2－11－2－11 | 原子炉ウェルカバーの耐震性についての計算書 | VI－2－11－2－11 原子炉ウェルカバーの耐震性についての計算書 |  |
| $\mathrm{VI}-2-11-2-12$ | 耐火隔壁の耐震性についての計算書 | VI－2－11－2－12 耐火隔壁の耐震性についての計算書 |  |
|  |  | VI－2－11－2－13 制御棒貯蔵ラックの耐震性についての計算書 |  |
| VI－2－11－2－14 | 制御棒貯蔵ハンカの耐震性についての計算書 | VI－2－11－2－14 制御桋貯蔵ハンガの耐震性についての計算書 |  |
| VI－2－11－2－15 | 第 1 号機排気筒の耐震性についての計算書 | VI－2－11－2－15 第1号機排気筒の耐震性についての計算書 |  |
| VI－2－11－2－16 | 前面護岸の耐震性についての計算書 | VI－2－11－2－16 前面護岸の耐震性についての計算書 |  |
| VI－2－11－2－17 | 第 1 号機取水路の耐震性についての計算書 | VI－2－11－2－17 第 1 号機取水路の耐震性についての計算書 |  |
| VI－2－11－2－18 | 第3号機取水路の耐震性についての計算書 | VI－2－11－2－18 第3号機取水路の耐震性についての計算書 |  |
| VI－2－11－2－19 | 北側排水路の耐震性についての計算書 | VI－2－11－2－19 北側排水路の耐震性についての計算書 |  |
| VI－2－11－2－20 | アクセスルート（防潮堤（盛土堤防））の耐震性についての計算書 | VI－2－11－2－20 アクセスルート（防潮堤（盛土堤防））の耐震性についての計算書 |  |
|  |  | $\underline{\text { VI－2－11－2－21 CRD 自動交換機の耐震性についての計算書 }}$ | 添付書類の追加 |

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

|  | 変 更 後 |
| ---: | ---: |
| 目 次 |  |
| $\mathrm{VI}-3-3-3-2-2-1-1$ |  |
| 管の基本板厚計算書（復水給水系） |  |

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
変 更 後
目 次
VI－3－3－3－5－2－3－1 管の基本板厚計算書（補給水系） VI－3－3－3－5－2－3－2 管の応力計算書（補給水系）
女川原子力発電所第 2 品機 工事計画認可申請書の一部補正 補正前後比較表

目 次
VI－3－3－3－6－1－6－1 管の基本板厚計算書（原子炉補機冷却水系及び原子炉補機冷却海水系） VI－3－3－3－6－1－6－2 管の応力計算書（原子炬補機冷却水系及び原子炬補機冷却海水系）
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表 （VI－3－3－3－6－2－5 管の強度計算書（高圧炬ふスプレイ補機冷却水系及び高圧炬心スプレイ補機冷却海水系）】
目 次 $\begin{array}{ll} & \begin{array}{l}\text { 補機冷却海水系）}\end{array} \\ \text { 等 }\end{array}$冷却海水系）
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
|  |
| 添付書類の追加 |


|  | 変 更 後 |
| :---: | :---: |
| 目 次 |  |
| VI－3－3－6－1－1－1 | ドライウェルの基本板厚計算書 |
| VI－3－3－6－1－1－2 | ドライウェルの強度計算書 |
| VI－3－3－6－1－1－3 | ドライウェル主フランジの強度計算書 |
| VI－3－3－6－1－1－4 | ドライウェルベント開口部の強度計算書 |
| VI－3－3－6－1－1－5 | ジェットデフレクタの強度計算書 |
| VI－3－3－6－1－1－6 | サプレッションチェンバの基本板厚計算書 |
| VI－3－3－6－1－1－7 | サプレッションチェンバの強度計算書 |
| VI－3－3－6－1－1－8 | ボックスサポートの強度計算書 |
| VI－3－3－6－1－1－9 | ジェット力を考慮した強度計算書 |

【 $\mathrm{VI}-3$－3－6－1－1

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前捘比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

| 備 考 |
| :---: |
|  |
|  |
|  |
|  |
|  |
|  |
|  |
| 添付書類の追加 |


|  | 変 更 後 |
| :---: | :---: |
| 目 次 |  |
| VI－3－別添 3－2－1 | 防潮堤の強度計算書 |
| VI－3－別添 3－2－2 | 防潮壁の強度計算書 |
| VI－3－別添 3－2－3 | 取放水路流路縮小工の強度計算書 |
| $\mathrm{VI}-3$－別添 3－2－4 | 貯留堰の強度計算書 |
| VI－3－別添3－2－5 | 逆流防止設備の強度計算書 |
| VI－3－別添3－2－6 | 水密扉の強度計算書 |
| VI－3－別添 3－2－7 | 浸水防止蓋の強度計算書 |

VI－3－別添3－2－8 浸水防止壁の強度計算書
女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

VI－3－別添 3－4－4 貫通部止水処置の強度計算書（溢水）
VI－3－別添 3－4
（V1－3－㸮棌 3 －


4．補正内容を反映した書類

VI 添付書類
$\mathrm{VI}-1$ 説明書
VI－2 耐震性に関する説明書
VI－3 強度に関する説明書
VI－4 その他計算書
VI－5 計算機プログラム（解析コード）の概要
VI－6 図面

VI－2 耐震性に関する説明書

VI－2－1 耐震設計の基本方針
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書
VI－2－3 原子炉本体の耐震性についての計算書
VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算書
VI－2－5 原子炉冷却系統施設の耐震性についての計算書
VI－2－6 計測制御系統施設の耐震性についての計算書
VI－2－7 放射性廃棄物の廃棄施設の耐震性についての計算書
VI－2－8 放射線管理施設の耐震性についての計算書
VI－2－9 原子炉格納施設の耐震性についての計算書
VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書
VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書
VI－2－12 水平2方向及び鉛直方向地震力の組合せに関する影響評価
VI－2－13 地下水位低下設備の耐震性についての計算書

VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書

目 次

VI－2－2－1 原子炉建屋の地震応答計算書
VI－2－2－2 原子炉建屋の耐震性についての計算書
VI－2－2－3 制御建屋の地震応答計算書
VI－2－2－4 制御建屋の耐震性についての計算書
VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書
VI－2－2－6 復水貯蔵タンク基礎の耐震性についての計算書
VI－2－2－7 海水ポンプ室の地震応答計算書
VI－2－2－8 海水ポンプ室の耐震性についての計算書
VI－2－2－9 第3号機海水ポンプ室の地震応答計算書
VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書
VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書
VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書
VI－2－2－13 軽油タンク室の地震応答計算書
VI－2－2－14 軽油タンク室の耐震性についての計算書
VI－2－2－15 軽油タンク室（H）の地震応答計算書
VI－2－2－16 軽油タンク室（H）の耐震性についての計算書
VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書
VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書
VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書
VI－2－2－20 軽油タンク連絡ダクトの耐震性についての計算書
VI－2－2－21 緊急用電気品建屋の地震応答計算書
VI－2－2－22 緊急用電気品建屋の耐震性についての計算書
VI－2－2－23 緊急時対策建屋の地震応答計算書
VI－2－2－24 緊急時対策建屋の耐震性についての計算書
VI－2－2－25 排気筒基礎の地震応答計算書
VI－2－2－26 排気筒基礎の耐震性についての計算書
VI－2－2－27 排気筒連絡ダクトの地震応答計算書
VI－2－2－28 排気筒連絡ダクトの耐震性についての計算書
VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書
VI－2－2－30 第3号機海水熱交換器建屋の耐震性についての計算書

VI－2－2－4 制御建屋の耐震性についての計算書

## 目 次

$\qquad$
概要1
2．基本方針 ..... 2
2.1 位置 ..... 2
2.2 構造概要 ..... 3
2.3 評価方針 ..... 10
2.4 適用規格•基準等 ..... 13
3．地震応答解析による評価方法 ..... 14
4．応力解析による評価方法 ..... 16
4.1 評価対象部位及び評価方針 ..... 16
4．2 荷重及び荷重の組合せ ..... 17
4．2．1 荷重 ..... 17
4．2．2 荷重の組合せ ..... 20
4．3 許容限界 ..... 21
4．4解析モデル及び諸元 ..... 24
4．4．1 モデル化の基本方針 ..... 24
4．4．2 解析諸元 ..... 24
4．4．3 材料構成則 ..... 27
4．5 評価方法 ..... 29
4．5．1 応力解析方法 ..... 29
4．5．2 断面の評価方法 ..... 32
5．地震応答解析による評価結果 ..... 34
5.1 耐震壁のせん断ひずみの評価結果 ..... 34
5.2 接地圧の検討結果 ..... 38
5.3 保有水平耐力の評価結果 ..... 39
6．応力解析による評価結果 ..... 40
7．原子炉建屋への波及的影響評価 ..... 44
7.1 概要 ..... 44
7.2 基本方針 ..... 44
7．2．1 構造概要 ..... 44
7．2．2 評価方針 ..... 46
7． 3 評価方法 ..... 47
7．3．1 評価対象部位及び評価方針 ..... 47
7．3．2 許容限界 ..... 48
7．3．3 相対変位による評価方法 ..... 49
7．4 相対変位による評価結果 ..... 50
8．引用文献 ..... 51

1．概要
本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，制御建屋の地震時 の構造強度及び機能維持の確認について説明するものであり，その評価は地震応答解析 による評価及び応力解析よる評価に基づき行う。

また，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき，制御建屋が原子炉建屋に対して，波及的影響を及ぼさないことを説明するものである。

制御建屋は，建屋内部に「Sクラスの施設」が収納されている。このため，設計基準対象施設においては「Sクラスの施設の間接支持構造物」に，重大事故等対処施設にお いては「常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）の間接支持構造物」に分類される。また，制御建屋を構成する壁及びスラブの一部は，制御建屋の中央制御室しやへい壁及び中央制御室待避所遮蔽に該当し，中央制御室しやへい壁は，設計基準対象施設においては「Sクラスの施設」，重大事故等対処施設においては「常設耐震重要重大事故防止設備」及び「常設重大事故緩和設備」に分類され，中央制御室待避所遮蔽は，重大事故等対象施設において「常設重大事故緩和設備」に分類される。

以下，制御建屋の「Sクラスの施設の間接支持構造物」及び「常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類がSクラスのもの）の間接支持構造物」としての分類に応じた耐震評価を示す。また，波及的影響の評価として，原子炉建屋の有する機能が保持され ることを確認するために，原子炉建屋への衝突の有無を確認する。

なお，中央制御室しゃへい壁の「Sクラスの施設」，「常設耐震重要重大事故防止設備」及び「常設重大事故緩和設備」としての分類に応じた耐震評価は，添付書類「VI－2－8－4－ 2 中央制御室遮蔽の耐震性についての計算書」にて，中央制御室待避所遮蔽の「常設重大事故緩和設備」としての分類に応じた耐震評価は，添付書類「VI－2－8－4－3 中央制御室退避所遮蔽の耐震性についての計算書」にて実施する。

2．基本方針
2.1 位置

制御建屋の設置位置を図2－1に示す。


図 2－1 制御建屋の設置位置

## 2.2 構造概要

制御建屋は地下 2 階，地上 3 階建で，基礎底面からの高さは 30.65 m であり，平面は下部で $41.0 \mathrm{~m}(\mathrm{NS}$ 方向）$\times 40.0 \mathrm{~m}(\mathrm{EW}$ 方向）＊のほぼ正方形である。

建屋の構造は鉄筋コンクリート造（一部鉄骨造）であり，制御建屋の基礎は，厚さ 3.0 m で，はね出しを有し，平面は $45.0 \mathrm{~m} ~(\mathrm{NS}$ 方向）$\times 41.0 \mathrm{~m}$（EW 方向）であり，支持地盤である砂岩及び頁岩上に設置されており，一部は支持地盤上に打設されたマンメ イドロック上に設置されている。

制御建屋その主たる耐震要素は建屋外壁の耐震壁で，基礎版から屋上階床面まで連続しており，壁厚は $0.4 \mathrm{~m} \sim 1.0 \mathrm{~m}$ である。建屋は全体として非常に剛性が高く，地震時 の水平力はすべてこれらの耐震壁で負担する。

制御建屋の概略平面図及び概略断面図を図2－2 及び図2－3に示す。

注記＊：建屋寸法は壁外面押えとする

（単位：m）
図 $2-2(1) ~$ 制御建屋の概略平面図（0．P．＊ 1.5 m ）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0．74mである。


図2－2（2）制御建屋の概略平面図（0．P．8． 0 m ）

（単位：m）
図2－2（3）制御建屋の概略平面図（0．P．15．0m）

（単位：m）
図2－2（4）制御建屋の概略平面図（0．P．19．5m）

（単位：m）
図2－2（5）制御建屋の概略平面図（0．P．22．95m）

（単位：m）
図 2－3（1）制御建屋の概略断面図（A－A 断面 NS 方向）

（単位：m）
図2－3（2）制御建屋の概略断面図（B－B 断面 EW 方向）

## 2． 3 評価方針

制御建屋は，建屋内部の一部に基準地震動 S S 及び弾性設計用地震動 S d に対して機能維持が要求される施設が収納されている。このため，設計基準対象施設において は「Sクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）の間接支持構造物」に分類される。

制御建屋の設計基準対象施設としての評価においては，基準地震動 S s による地震力に対する評価（以下「 S s 地震時に対する評価」という。）及び保有水平耐力の評価 を行うこととし，それぞれの評価は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」の結果を踏まえたものとする。制御建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価においては耐震壁のせん断ひずみ，接地圧及び保有水平耐力の評価を，応力解析による評価においては，基礎版の断面の評価を行うことで，制御建屋の地震時の構造強度及び機能維持の確認を行う。評価に あたつては，材料物性の不確かさを考慮する。表2－1 に材料物性の不確かさを考慮す る解析ケースを示す。

また，重大事故等対処施設としての評価においては，S s 地震時に対する評価及び保有水平耐力の評価を行う。ここで，制御建屋は運転時，設計基準事故時及び重大事故等時の状態において，温度の条件は同じであるため，重大事故等対処施設としての評価は，設計基準対象施設としての評価と同一となる。

図 2－4に制御建屋の評価フローを示す。
表2－1 材料物性の不確かさを考慮する解析ケース

| 対象地震動 | ケース名 | スケルトン曲線 |  | 建屋材料減衰 | 地盤物性 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 初期岡性 | 終局耐力 |  | 入力地震動 | 底面地盤ばね |
| 基準地震動 S s （水平） | $\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$ | 2011年3月11日東北地方太平洋沖地震の観測記録を用いたシミュレーション解析により補正 | 設計基準強度を用い JEAG 式で評価 | 5\％ | 直接入力 | 標準地盤 |
|  | ケース 2 | 同上 | 同上 | 同上 | 同上 | 標準地盤 $+\sigma$ |
|  | ケース 3 |  |  |  | 同上 | 標準地盤－${ }^{\text {a }}$ |
|  | ケース 4 | 基本ケースの 0.70 倍＊ | 同上 | 同上 | 同上 | 標準地盤 |
|  | ケース 5 |  |  |  | 同上 | 標準地盤＋+ |
|  | ケース6 |  |  |  | 同上 | 標準地盤 $-\sigma$ |
| 基準地震動 S s （鉛直） | $\text { ケース } 1$ <br> （基本ケース） | 設計岡性 | － | 5\％ | 直接入力 | 標準地盤 |
|  | ケース 2 | 同上 | － | 同上 | 同上 | 標準地盤＋$+\sigma$ |
|  | ケース 3 |  |  |  |  | 標準地盤 $-\sigma$ |

注記＊：建屋剛性（初期剛性）の不確かさについて，基準地震動 S s 入力後の建屋全体の平均的な剛性低下を全ての基準地震動 S s に ついて評価し，最も剛性低下するケースの低下後の剛性を初期剛性の不確かさとして考慮する。具体的には，基準地震動S s入力前後の 1 次固有振動数の比（ $\mathrm{f}_{\mathrm{Ss}}$ 入力後 $/ \mathrm{f}_{\mathrm{Ss}}$ 入力前）を基本ケースの初期剛性に掛けることによって算定する。


注記＊：添付書類「VI－2－2－3 制御建屋の地震応答計算書」の結果を踏まえた評価を行う。

図 2－4 制御建屋の評価フロー

## 2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－（以下「R C 規準」という。）
－日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説（以下「R C－N 規準」という。）
－2015年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）（以下「技術基準解説書」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601••補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）（以下「 J EAG4601－1991追補版」という。）
－J S ME S NE1－2003 発電用原子力設備規格 コンクリート製原子炉格納容器規格（以下「C C V 規格」という。）

3．地震応答解析による評価方法
制御建屋の構造強度については，添付書類「VI－2－2－3 制御建屋の地震応答計算書」 に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみ及び最大接地圧が許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有することを確認する。

また，支持機能の維持については，添付書類「VI－2－2－3 制御建屋の地震応答計算書」 に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における制御建屋の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 3－1 及び表 3－2のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

| 要求機能 | 機能設計上の <br> 性能目標 | 地震力 | 部位 | $\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$ | 許容限界 （評価基準値） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － | 構造強度を有すること | 基準地震動 S s | 耐震壁＊1 | 最大応答せん断ひず みが構造強度を確保 するための許容限界 を超えないことを確認 | せん断ひずみ <br> $2.0 \times 10^{-3}$ |
|  |  |  | 基礎地盤 | 最大接地圧が地盤の支持力度を超えない ことを確認 | 極限支持力度 ${ }^{* 2}$ <br> $13700 \mathrm{kN} / \mathrm{m}^{2}$ |
|  |  | 保有水平耐力 | 構造物全体 | 保有水平耐力が必要保有水平耐力に対し て妥当な安全余裕を有することを確認 | 必要保有水平耐力 |
| 支持機能＊2 | 機器•配管系等の設備を支持する機能を損なわないこ と | 基準地震動 S s | 耐震壁＊1 | 最大応答せん断ひず みが支持機能を維持 するための許容限界 を超えないことを確認 | せん断ひずみ <br> $2.0 \times 10^{-3}$ |

注記 $~ 1 ~: ~$ 建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱，は り，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造 となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられ るため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足していれば，建物•構築物に要求される機能は維持される。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

表3－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

| 要求機能 | 機能設計上の性能目標 | 地震力 | 部位 | $\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$ | 許容限界 （評価基準値） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － | 構造強度を有すること | 基準地震動 S s | 耐震壁＊1 | 最大応答せん断ひず みが構造強度を確保 するための許容限界 を超えないことを確認 | せん断ひずみ $2.0 \times 10^{-3}$ |
|  |  |  | 基礎地盤 | 最大接地圧が地盤の支持力度を超えない ことを確認 | 極限支持力度＊2 $13700 \mathrm{kN} / \mathrm{m}^{2}$ |
|  |  | 保有水平耐力 | 構造物全体 | 保有水平耐力が必要保有水平耐力に対し て妥当な安全余裕を有することを確認 | 必要保有水平耐力 |
| 支持 <br> 機能＊2 | 機器•配管系等の設備を支持する機能を損なわないこ と | 基準地震動 S s | 耐震壁＊1 | 最大応答せん断ひず みが支持機能を維持 するための許容限界 を超えないことを確認 | せん断ひずみ $\text { 2. } 0 \times 10^{-3}$ |

注記＊1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑え られるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足してい れば，建物•構築物に要求される機能は維持される。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

4．応力解析による評価方法
4.1 評価対象部位及び評価方針

制御建屋の応力解析による評価対象部位は，基礎版とし，S s 地震時に対して以下 の方針に基づき評価を行う。

S s 地震時に対する評価は，3次元 FEM モデルを用いた弾塑性応力解析によること とし，地震力と地震力以外の荷重の組合せの結果，発生する応力が「C C V 規格」及 び「R C－N 規準」に基づき設定した許容限界を超えないことを確認する。

3 次元 FEM モデルを用いた弾塑性応力解析にあたつては，添付書類「VI－2－2－3 制御建屋の地震応答計算書」及び平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可さ れた工事計画の添付書類「IV－2－4 制御建屋の耐震性についての計算書」（以下「既工認」という。）による荷重を用いて，荷重の組合せを行う。また，断面の評価について は，材料物性の不確かさを考慮した断面力に対して行うこととする。応力解析による評価フローを図4－1に示す。


注記 $*: ~$ 材料物性の不確かさを考慮する。

図 4－1 応力解析による評価フロー

## 4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せを用いる。

## 4．2．1 荷重

（1）固定荷重
固定荷重は，既工認に基づき，建屋自重，機器荷重，配管荷重，常時土圧荷重及び浮力とする。常時土圧荷重は「J E A G 4 6 O 1－1991追補版」によるものと する。また，浮力は，地下水位面を $0 . P .-1.0 \mathrm{~m}$ とし，基礎版に上向きの等分布荷重 として入力する。
（2）積載荷重
積載荷重は，既工認に基づき，表4－1 のとおり設定する。

表 4－1 積載荷重

| 部位 | 積載荷重 $\left(\mathrm{N} / \mathrm{m}^{2}\right)$ |
| :---: | :---: |
| RF | 294 |
| 3 F | 588 |
| 2 F | 588 |
| 1 F | 588 |
| B1F | 588 |
| B2F | 588 |

（3）地震荷重
a．水平地震荷重
水平地震荷重は，基準地震動 S s による地震応答解析結果より設定する。なお，水平地震荷重は材料物性の不確かさを考慮した地震応答解析結果を包絡したもの とする。表 4－2に応力解析で考慮した基準地震動 S s 時の水平地震荷重を示す。

表 4－2 水平地震荷重（せん断力）
（a）NS 方向

| 部位 | せん断力 <br> $\left(\times 10^{3} \mathrm{kN}\right)$ |
| :---: | :---: |
| 耐震壁 $(\mathrm{A}$ 通り） | 128 |
| 耐震壁 $(\mathrm{F}$ 通り） | 126 |

（b）EW 方向

| 部位 | せん断力 <br> $\left(\times 10^{3} \mathrm{kN}\right)$ |
| :---: | :---: |
| 耐震壁 $(1$ 通り） | 117 |
| 耐震壁 $(7$ 通り） | 117 |

b．鉛直地震荷重
鉛直地震荷重は，基準地震動 S s による地震応答解析結果による基礎版部分の最大鉛直震度を用いる。なお，鉛直震度は材料物性の不確かさを考慮した地震応答解析結果を包絡したものとする。表 4－3 に応力解析で考慮した基準地震動S S時の鉛直地震荷重を示す。

表 4－3 鉛直地震荷重（軸力係数）

| 部位 | 鉛直震度 |
| :---: | :---: |
| 耐震壁 | 1.161 |
| 基礎版 | 0.431 |

c．地震時土圧荷重
地震時土圧荷重は，地震時土圧により地下外壁を介して作用する荷重として，
「JEAG4601－1991追補版」に基づき有限要素モデルより算出し，常時土圧に地震時増分土圧を加えて算定した地震時土圧を設定する。地震時土圧荷重を表 4－4に，地震時土圧による荷重分布を図4－2に示す。ただし，地震時土圧荷重は隣接建屋（北側は原子炉建屋，南側は補助ボイラー建屋，東側はタービン建屋，西側は第 1 号機制御建屋）のない北側及び南側の一部で考慮する。

| $\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$ | 地震時土圧荷重$\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ |  |
| :---: | :---: | :---: |
|  | 北側 | 南側 |
| 14.8 | 116 | 126 |
| 11.5 | 147 | 157 |
| 11.5 | 200 | 158 |
| 4.75 | 263 | 220 |
| 4． 75 | 455 | 308 |
| 1.5 | 485 | 338 |



図 4－2 地震時土圧による荷重分布

4．2．2 荷重の組合せ
荷重の組合せを表4－5に示す。

表 4－5 荷重の組合せ

| 外力の状態 | 荷重の組合せ |
| :---: | :--- |
| $\mathrm{S} \mathrm{s} \mathrm{地 震 時}$ | $\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$ |

$\mathrm{G} \quad:$ 固定荷重
$\mathrm{P} \quad:$ 積載荷重
$\mathrm{S} s$

## 4．3 許容限界

応力解析による評価における制御建屋の基礎版の許容限界は，添付書類「VI－ 2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき，表 4－6及び表4－7のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表4－8及び表4－9に，コンク リート及び鉄筋の許容ひずみを表4－10に示す。

表 4－6 応力解析による評価における許容限界
（設計基準対象施設としての評価）

| 要求機能 | 機能設計上 <br> の性能目標 | 地震力 | 部位 | $\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$ | 許容限界 （評価基準値） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| － | 構造強度を有すること | 基準地震動 S s | 基礎版 | 部材に生じる応力及びひずみが構造強度を確保 するための許容限界を超えない ことを確認 | $\begin{aligned} & \text { ・ひずみ*1 } \\ & \text { コンクリート } \\ & 3.0 \times 10^{-3} \quad \text { (圧縮) } \end{aligned}$ <br> 鉄筋 $5.0 \times 10^{-3}$ <br> －面外せん断力＊2短期許容せん断力＊3 |
| 支持 <br> 機能 $* 4$ | 機器•配管系等の設備 を支持する機能を損な わないこと | 基準地震動 S s | 基礎版 | 部材に生じる応力及びひずみが支持機能を維持 するための許容限界を超えない ことを確認 | $\begin{aligned} & \text { ・ひずみ*1 } \\ & \text { コンクリート } \\ & 3.0 \times 10^{-3} \text { (圧縮) } \end{aligned}$ <br> 鉄筋 $5.0 \times 10^{-3}$ <br> －面外せん断力＊2短期許容せん断力＊3 |

注記＊1：「CCV規格」に基づく。
＊2：「 $\mathrm{R} \mathrm{C}-\mathrm{N}$ 規準」に基づく。
＊3：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容せん断力とする。
＊4：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

表 $4-7$ 応力解析による評価における許容限界
（重大事故等対処施設としての評価）
＊4：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」 が含まれる。

表 4－8 コンクリートの許容応力度

| 設計基準強度 F c <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 圧縮 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | せん短期 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: |
|  | 21.6 | 1.21 |

表 4－9 鉄筋の許容応力度

| 種別 | 引張及び圧縮 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 面外せん断補強 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: |
| SD35 <br> $($ SD345 相当 $)$ | $379^{*}$ | 345 |

注記＊：「技術基準解説書」に基づき，引張及び圧縮に対する許容応力度を
1.1 倍する。

| 表 4－10 コンクリート及び鉄筋の許容ひずみ |  |  |
| :---: | :---: | :---: |
| 外力の状態 | コンクリート <br> （圧縮ひずみ） | 鉄筋 <br> （圧縮ひずみ及び引張ひずみ） |
| S s 地震時 | 0.003 | 0.005 |

## 4．4 解析モデル及び諸元

4．4．1 モデル化の基本方針
（1）基本方針
応力解析は， 3 次元 FEMモデルを用いた弾塑性応力解析とする。解析に は，解析コード「ABAQUS」を用いる。解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

基礎版については，0．P．$-1.5 \mathrm{~m} \sim 0$. P． 1.5 m をモデル化する。上部構造に ついては，0．P．1．5m～0．P．29．15mをモデル化し，剛性を考慮する。応力解析における評価対象部位は，基礎版であるが，各部の荷重伝達を考慮する ために周辺部を含むモデルを用いることとした。解析モデルを図4－3 に示す。
（2）使用要素
解析モデルに使用する FEM 要素は，基礎版については積層シェル要素と する。また，基礎版より立ち上がっている耐震壁については，0．P．1．5m～ 0．P．8．0mを積層シェル要素，0．P．8．0m～0．P． 29.15 m をはり要素として剛性を考慮する。床スラブについては，0．P．8．0mを積層シェル要素とする。積層シェル要素は，鉄筋層をモデル化した異方性材料による要素である。

各要素には，板の曲げと軸力を同時に考えるが，板の曲げには面外せん断変形の影響も考慮する。

解析モデルの節点数は1684，要素数は1662である。
（3）境界条件
3 次元 FEM モデルの基礎版底面に，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に示す地盤ばねを離散化して，水平方向及び鉛直方向のば ねを設ける。3次元FEMモデルの水平方向のばねについては，地震応答解析モデルのスウェイばねを，鉛直方向のばねについては，地震応答解析モ デルのロッキングばねを基に設定を行う。

なお，基礎版底面の地盤ばねについては，引張力が発生したときに浮上 りを考慮する。

## 4．4．2 解析諸元

使用材料の物性値を表4－11及び表4－12に示す。

（a）全体鳥瞰図

（b）全体鳥瞰断面図（ $\mathrm{A}-\mathrm{A}^{\prime}$ 断面）

図 4－3（1）解析モデル（1／2）



図4－1 解析モデル：モデル図
（c）基礎版要素分割図

図 4－3（2）解析モデル（2／2）

表 4－11 コンクリートの物性値

| 部 位 | 設計基準強度 $\mathrm{Fc}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ | ヤング係数 <br> E（ $\mathrm{N} / \mathrm{mm}^{2}$ ） | $\begin{gathered} \text { ポアソン比 } \\ v \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 基礎版•床スラブ | 32.4 | $2.51 \times 10^{4}$ | 0.2 |
| 耐震壁（NS 方向） |  | 1． $00 \times 10^{4}$ |  |
| 耐震壁（EW 方向） |  | 1． $255 \times 10^{4}$ |  |

表 4－12 鉄筋の物性値

| 部 位 | 鉄筋の種類 | 降伏強度 <br> $\sigma_{\mathrm{y}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | ヤング係数 <br> $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 基礎版•耐震壁•床スラブ | SD35 <br> （SD345 相当） | $379^{*}$ | $2.05 \times 10^{5}$ |

注記＊：「技術基準解説書」に基づき，引張及び圧縮に対する許容応力度を 1.1 倍する。

## 4．4．3 材料構成則

材料構成則を図 4－4に示す。
なお，コンクリートのヤング係数は設計基準強度に基づき算定した値とす る。なお，地震応答解析モデルと同様の初期剛性低下については，地震観測記録の分析等を踏まえて，その影響を考慮する。コンクリートの圧縮強度は設計基準強度に基づく値とする。


Fc：コンクリートの設計基準強度

| 項目 | 設 定 |
| :---: | :---: |
| 圧縮強度 | －0．85 F c（「C C V 規 格」） |
| 終局圧縮ひずみ | $-3000 \times 10^{-6}$（ 「C C V 規 格」） |
| 圧縮側のコンクリート構成則 | CEB－FIP Model codeに基づき設定 （引用文献（1）参照） |
| ひび割れ発生後の引張軟化曲線 |  |
| 引張強度 | $\sigma_{\mathrm{t}}=0.38 \sqrt{\mathrm{Fc}} \quad(「 \mathrm{RC} \text { 規準」) }$ |

注：引張方向の符号を正とする。
（a）コンクリートの応力ーひずみ関係

図 $4-4$（1）材料構成則（1／2）

- 鉄筋の構成則：バイリニア型
- 終局ひずみ：$\pm 5000 \times 10^{-6}$（「C C V 規格」）

$\sigma_{\mathrm{y}}$ ：鉄筋の降伏強度

注：引張方向の符号を正とする。
（b）鉄筋の応力ーひずみ関係

図 $4-4$（2）材料構成則（2／2）

## 4．5 評価方法

4．5．1 応力解析方法
制御建屋基礎版について，S s 地震時に対して3次元 FEMモデルを用いた弾塑性応力解析を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重を組み合わせて求める。

G ：固定荷重
P ：積載荷重
S s s N ：S $\rightarrow \mathrm{N}$ 方向 S s 地震荷重（地震時土圧を含む）
S S Ns：N $\rightarrow$ S 方向 $S ~ s ~$ 地震荷重（地震時土圧を含む）
S SEW：E $\rightarrow$ W 方向 S s 地震荷重（地震時土圧を含む）
S s we ：W $\rightarrow$ E 方向 S s 地震荷重（地震時土圧を含む）
S S UD：鉛直方向（下向き）S s 地震荷重
S S DU ：鉛直方向（上向き）S s 地震荷重

注記：計算上の座標軸を基準として，NS 方向は $S \rightarrow N$ 方向の加力，$E W$ 方向 は $\mathrm{E} \rightarrow \mathrm{W}$ 方向の加力，鉛直方向は下向きの加力を記載している。
（2）荷重の組合せケース
荷重の組合せケースを表4－13示す。
水平方向と鉛直方向の荷重の組合せは，「原子力発電所耐震設計技術規程（J E A C 4 6 0 1－2015）」を参考に，組合せ係数法（組合せ係数は1．0 と 0.4 ）を用いるものとする。

表 4－13荷重の組合せケース

| 外力の状態 | ケースNo． | 荷重の組合せ |
| :---: | :---: | :---: |
| S s 地震時 | 1 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sN}+0.4 \mathrm{~S} \mathrm{sud}$ |
|  | 2 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sN}^{\text {d }}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$ |
|  | 3 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sms}+0.4 \mathrm{~S} \mathrm{sud}$ |
|  | 4 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sms}^{\text {s }}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}^{\text {d }}$ |
|  | 5 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~S} \mathrm{Ew}^{\text {en }}+0.4 \mathrm{~S} \mathrm{~S} \mathrm{ud}^{\text {d }}$ |
|  | 6 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{SEW}^{\text {en }}+0.4 \mathrm{~S} \mathrm{~S} \mathrm{DU}^{\text {d }}$ |
|  | 7 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sme}+0.4 \mathrm{~S} \mathrm{sud}$ |
|  | 8 | $\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~S} \mathrm{we}^{\text {d }}+0.4 \mathrm{~S} \mathrm{~S}_{\text {du }}$ |
|  | 9 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~S} \mathrm{SN}^{\text {d }} 1.0 \mathrm{~S} \mathrm{~S} \mathrm{UD}$ |
|  | 10 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}^{\text {a }}+1.0 \mathrm{~S} \mathrm{sid}$ |
|  | 11 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sns}+1.0 \mathrm{~S} \mathrm{sud}$ |
|  | 12 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sns}+1.0 \mathrm{~S} \mathrm{sid}$ |
|  | 13 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{Sew}^{\text {en }}+1.0 \mathrm{~S} \mathrm{Sud}$ |
|  | 14 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$ |
|  | 15 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{swe}+1.0 \mathrm{~S} \mathrm{sud}$ |
|  | 16 | $\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{swe}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{DU}$ |

（3）荷重の入力方法
a．地震荷重
基礎版に上部構造物から作用する水平地震力については，上部構造物からの せん断力及び曲げモーメントを基礎版の当該位置の節点に離散化して節点荷重 として入力する。

基礎版上に上部構造物から作用する鉛直地震力については，上部構造物から の軸力とし，鉛直力に置換し，モデル上の各節点における支配面積に応じた節点荷重として入力する。

基礎版内に作用する荷重については，地震時の上部構造物からの入力荷重と基礎版底面に発生する荷重の差をFEM モデルの各要素の大きさに応 じて分配し，節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の荷重については，FEMモデルの各節点又は各要素に，集中荷重又は分布荷重として入力する。

## 4．5．2 断面の評価方法

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ並びに面外せん断力が，各許容値を超えないことを確認する。

3 次元 FEM モデルを用いた応力の算定において，FEM 要素に応力集中等が見られ る場合については，「R C－N 規準」に基づき，応力の再配分等を考慮してある一定の領域の応力を平均化したうえで断面の評価を行う。
（1）軸力及び曲げモーメントに対する断面の評価方法
各断面は，軸力及び曲げモーメントを受ける鉄筋コンクリート造長方形仮想柱として算定する。

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみが，「C C V規格」に基づき，表4－10に示す許容ひずみを超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C -N 規準」に基づき行う。
面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認する。

$$
\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}^{2} \cdot\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5 \cdot \mathrm{w}_{\mathrm{f}} \cdot\left(\mathrm{p}_{\mathrm{w}}-0.002\right)\right\}
$$

ここで，
$\mathrm{Q}_{\mathrm{A}}$ ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
$\alpha$ ：許容せん断力の割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。）

$$
\begin{aligned}
\alpha= & \frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{~d})+1} \\
\mathrm{M} & : \quad \text { 曲げモーメント }(\mathrm{N} \cdot \mathrm{~mm}) \\
\mathrm{Q} & : \quad \text { せん断力 (N) } \\
\mathrm{d} & : \quad \text { 断面の有効せい }(\mathrm{mm})
\end{aligned}
$$

f s ：コンクリートの短期許容せん断応力度で，表4－8に示す値（ $\mathrm{N} / \mathrm{mm}^{2}$ ） ${ }_{\mathrm{w}} \mathrm{f} \mathrm{t}_{\mathrm{t}}$ ：せん断補強筋の短期許容引張応力度で，表4－9に示す値（ $\mathrm{N} / \mathrm{mm}^{2}$ ） $\mathrm{p}_{\mathrm{w}}$ ：せん断補強筋比で，次式による。（0．002以上とする。＊）

$$
\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b} \cdot \mathrm{x}}
$$

$\mathrm{a}_{\mathrm{w}}$ ：せん断補強筋の断面積（ $\mathrm{mm}^{2}$ ）
x ：せん断補強筋の間隔（mm）
注記＊：せん断補強筋がない領域については，第2項を 0 とする。 （なお，制御建屋の基礎版には，面外せん断補強筋は入っ ていない。）

5．地震応答解析による評価結果
5.1 耐震壁のせん断ひずみの評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の各層の最大応答せん断ひずみが許容限界（2．0×10 ${ }^{-3}$ ）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは $1.41 \times 10^{-3}$（EW 方向，C7 通 り，S s－D 1，ケース 6）であり，許容限界（ $2.0 \times 10^{-3}$ ）を超えないことを確認し た。各層の耐震壁の最大応答せん断ひずみ一覧を表5－1及び表5－2に示す。各要素 の最大応答せん断ひずみのうち最も大きい値について，せん断スケルトンカーブ上に プロットした図を図5－1 及び図5－2に示す。

表 5－1 せん断スケルトンカーブ上の最大応答せん断ひずみ（NS 方向）

| 要素番号 | 最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$ | 許容限界 $\left(\times 10^{-3}\right)$ |
| :---: | :---: | :---: |
| （1） | 0.66 | 2． 0 |
| （2） | 1． 37 |  |
| （3） | 1． 24 |  |
| （4） | 1． 06 |  |
| （5） | 1． 00 |  |
| （6） | 0． 79 |  |
| （7） | 1． 30 |  |
| （8） | 1． 33 |  |
| （9） | 1． 02 |  |
| （10） | 0.98 |  |

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を表示


表 5－2 せん断スケルトンカーブ上の最大応答せん断ひずみ（EW 方向）

| 要素番号 | 最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$ | 許容限界 $\left(\times 10^{-3}\right)$ |
| :---: | :---: | :---: |
| （1） | 0.58 | 2． 0 |
| （2） | 1． 34 |  |
| （3） | 1.08 |  |
| （4） | 1． 26 |  |
| （5） | 0.73 |  |
| （6） | 0.56 |  |
| （7） | 1． 10 |  |
| （8） | 1． 41 |  |
| （9） | 1． 10 |  |
| （10） | 0.78 |  |

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を表示




図 5－2 せん断スケルトンカーブ上の最大応答せん断ひずみ
（EW 方向， $\mathrm{S} s-\mathrm{D} 1$ ，ケース 6，要素番号（8））

## 5.2 接地圧の検討結果

S s 地震時の最大接地圧が，地盤の極限支持力度（ $13700 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えないことを確認する。

材料物性の不確かさを考慮したS s 地震時の最大接地圧は $3740 \mathrm{kN} / \mathrm{m}^{2}$ であることか ら，地盤の極限支持力度を超えないことを確認した。

地震時の最大接地圧を表5－2に示す。

表 5－2 最大接地圧

|  | NS 方向 | EW 方向 |
| :---: | :---: | :---: |
| 検討ケース | $\mathrm{S} \mathrm{s}-\mathrm{D} 1$, <br> ケース 1 | $\mathrm{S} \mathrm{s}-\mathrm{D} 1$, <br> ケース 5 |
| 鉛直力 <br> $\mathrm{N}\left(\times 10^{5} \mathrm{kN}\right)$ | 2.97 | 2.98 |
| 転倒モーメント <br> $\mathrm{M}\left(\times 10^{6} \mathrm{kN}\right)$ | 5.62 | 5.35 |
| 最大接地圧 <br> $\left(\times 10^{3} \mathrm{kN} / \mathrm{m}^{2}\right)$ | 2070 | 3740 |

## 5.3 保有水平耐力の評価結果

各層において，保有水平耐力 $Q_{u}$ が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕 を有していることを確認する。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 $Q_{u}$ の比較結果を表 5－3 に示す。各層にお いて，保有水平耐力 $Q_{u}$ が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有してい ることを確認した。

なお，必要保有水平耐力 $\mathrm{Qun}_{\mathrm{n}}$ に対する保有水平耐力 $\mathrm{Q}_{\mathrm{u}}$ の比は最小で 3.62 である。

表 5－3 必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} \mathrm{n}}$ と保有水平耐力 $\mathrm{Q}_{\mathrm{u}}$ の比較結果
（a）NS 方向

| 階 | 0．P．（m） | 必要保有水平耐力 <br> $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$ | 保有水平耐力 <br> $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$ | $\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 F | $29.15 \sim 22.95$ | 22.59 | 124.20 | 5.50 |
| 2 F | $22.95 \sim 19.50$ | 45.61 | 167.66 | 3.68 |
| 1F | $19.50 \sim 15.00$ | 61.91 | 235.23 | 3.80 |
| B1F | $15.00 \sim 8.00$ | 77.09 | 345.03 | 4.48 |
| B2F | $8.00 \sim 1.5$ | 86.18 | 406.08 | 4.71 |

（b）EW 方向

| 階 | 0．P．（m） | 必要保有水平耐力 <br> $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$ | 保有水平耐力 <br> $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$ | $\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 F | $29.15 \sim 22.95$ | 22.49 | 132.88 | 5.91 |
| 2 F | $22.95 \sim 19.50$ | 45.42 | 164.21 | 3.62 |
| 1 F | $19.50 \sim 15.00$ | 61.59 | 224.49 | 3.65 |
| B1F | $15.00 \sim 8.00$ | 77.17 | 307.21 | 3.98 |
| B2F | $8.00 \sim 1.5$ | 86.18 | 392.65 | 4.56 |

## 6．応力解析による評価結果

制御建屋の基礎版の配筋一覧を表6－1に，配筋領域図を図6－1に示す。なお，制御建屋の基礎版には，面外せん断補強筋は入っていない。

断面の評価結果を記載する要素は，軸力及び曲げモーメントによる鉄筋及びコ ンクリートのひずみ並びに面外せん断力に対する評価については，発生値に対す る許容値の割合が最小となる要素とする。

選定した要素の位置を図6－2に，評価結果を表6－2に示す。
S s 地震時において，軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ並びに面外せん断力が，各許容限界を超えないことを確認した。

表 6－1 基礎版の配筋一覧

| 領域 | 上ば筋 |  | 下ば筋 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 方向 | 配筋 | 方向 | 配筋 |
| A | NS | D38＠200 | NS | D38＠200 |
|  | EW | D38＠200 | EW | D38＠200 |



（単位：m）
図6－1 基礎版の配筋領域図

（a）軸力＋曲げモーメント

（b）面外せん断力

図 6－2 選定した要素の位置（S s 地震時）

表6－2 評価結果（S s 地震時）

| 評価項目 |  | 方向 | 要素番号 | $\begin{aligned} & \text { 組合せ } \\ & \text { ケース } \end{aligned}$ | 発生値 | 許容値 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 軸力 } \\ + \\ \text { 曲げモーメント } \end{gathered}$ | $\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$ | NS | 584 | 2 | 0.661 | 3.00 |
|  | 鉄筋引張ひずみ $\left(\times 10^{-3}\right)$ | EW | 254 | 2 | 0． 980 | 5.00 |
| 面外せん断力 | 面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | NS | 587 | 2 | 1． $76{ }^{*}$ | 2． 42 |

注記＊：応力の再分配を考慮して，応力平均化を行った結果。

7．原子炉建屋への波及的影響評価

## 7.1 概要

本評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設 の耐震評価方針」に基づき，制御建屋は上位クラス施設であるものの相対変位により原子炉建屋に衝突する可能性が否定できないことから，制御建屋の相対変位による衝突の有無の確認を行い，衝突する場合には衝突時に原子炉建屋に影響がないことを説明するものである。

## 7.2 基本方針

## 7．2．1 構造概要

建屋配置図を図7－1に，制御建屋と原子炉建屋のクリアランスを図7－2に示 す。


図 7－1 建屋配置図


図 7－2 制御建屋と原子炉建屋のクリアランス

## 7．2．2 評価方針

制御建屋は，原子炉建屋と同じ運転状態を想定することから，設計基準対象施設及び重大事故等対処施設に対する波及的影響の評価を行う。

制御建屋の設計基準対象施設に対する波及的影響の評価においては，S s 地震時に対する評価を行うこととする。制御建屋の波及的影響の評価は，添付書類「VI －2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基 づき，建屋間の相対変位による影響では，制御建屋との相対変位による評価を行 うことで，原子炉建屋への衝突の有無の確認を行う。この相対変位による評価で は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に基づく最大応答変位に加えて，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に基づく最大応答変位を用いる。評価にあたつては，材料物性の不確かさを考慮する。

なお，制御建屋は，その配置上，原子炉建屋と接触する可能性が高い NS 方向に対して波及的影響の評価を行う。

また，重大事故等対処施設に対する波及的影響の評価においては，S s 地震時 に対する評価を行う。ここで制御建屋では，設計基準事故時及び重大事故等時の状態における圧力，温度等の条件に有意な差異がないことから，重大事故等対処施設に対する波及的影響の評価は，設計基準対象施設に対する波及的影響の評価 と同一となる。

## 7． 3 評価方法

7．3．1 評価対象部位及び評価方針
制御建屋の波及的影響の評価は，以下の方針に基づき行う。
原子炉建屋との相対変位による評価では，両建屋の最大応答変位の絶対値和（以下「最大相対変位」という。）と建屋間のクリアランスの大小関係により，隣接す る原子炉建屋への衝突の有無を確認する。なお，最大相対変位が許容限界を超過 する場合には，両建屋の時刻歴上の相対変位から衝突の有無を確認する。

以上の評価では，材料物性の不確かさを考慮する。
図 $7-3$ に波及的影響の評価フローを示す。


注記 $~$ ：材料物性の不確かさを考慮する

図7－3 制御建屋の波及的影響の評価フロー

## 7．3．2 許容限界

制御建屋の原子炉建屋に対する波及的影響の評価における許容限界は添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」 に記載の許容限界に基づき，表7－1及び表7－2のとおり設定する。

表 7－1 波及的影響の評価における許容限界
（設計基準対象施設に対する評価）

| 機能設計上の <br> 性能目標 | 地震力 | 部 位 | 機能維持のための考え方 | 許容限界 |
| :---: | :---: | :---: | :---: | :---: |
| 原子炉建屋に <br> 波及的影響を <br> 及ぼさない | 基準 <br> 地震動 <br> S s | 制御建屋 <br> 及び <br> 原子炉建屋 | 建屋間の最大相対変位が波及 <br> 的影響を及ぼさないための許 <br> 容限界を超えないことを確認 | 相対変位 <br> 100 mm |

表7－2 波及的影響の評価における許容限界
（重大事故等対処施設に対する評価）

| 機能設計上の <br> 性能目標 | 地震力 | 部 位 | 機能維持のための考え方 | 許容限界 |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 原子炉建屋に <br> 波及的影響を <br> 及ぼさない | 基準 <br> 地震動 <br> S s | 制御建屋 <br> 及び <br> 原子炉建屋 | 建屋間の最大相対変位が波及 <br> 的影響を及ぼさないため限を界を超えないことを確認 | 相対変位 |
| 100 mm |  |  |  |  |

## 7．3．3 相対変位による評価方法

制御建屋の波及的影響の評価は，基準地震動 S s における質点系モデルの地震応答解析結果を用い，以下のとおり評価する。

なお，以下の評価には，材料物性の不確かさを考慮する。
相対変位による評価は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に おける地震応答解析結果と添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」 における地震応答解析結果から，地震動毎に最大応答変位の和を算出し，その値 が許容限界を超えないことを確認する。最大相対変位を算出する際の基準点は原子炉建屋及び制御建屋ともに基礎底面レベルの地盤面とする。

また，衝突のおそれのある床レベルに地震応答解析モデルの質点がない場合に は，当該床レベルの上下質点の応答変位を用いた線形補間により，当該床レベル の変位を算出する。

更に，上記の最大相対変位が許容限界を超える場合には，各建屋の時刻歴応答変位による相対変位が，許容限界を超えないことを確認する。

## 7． 4 相対変位による評価結果

基準地震動S s に対する建屋間の最大相対変位（NS 方向）を表 $7-3$ に示す。
その結果，ケース 1（基本ケース）において，最大相対変位は，制御建屋質点レベル 0．P．29． 15 m （原子炉建屋質点レベル 0．P． 33.20 ～0．P． 22.50 m の中間レベル）で 52.5 mm （ S s－D 1）である。また，材料物性の不確かさを考慮した場合の最大相対変位は，
 おいても許容限界（ 100 mm ）を超えないことを確認した。

表 7－3 制御建屋と原子炉建屋の最大相対変位（NS 方向，絶対値和）
（単位：mm）

| 制御建屋 |  | 原子炉 <br> 建屋 |  | $\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ヶース) } \end{aligned}$ | ケース 2 | ケース 3 | ケース 4 | ケース 5 | ケース 6 | $\text { \|許容 }\left\|\begin{array}{l\|}  \\ \hline \end{array}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 質点番号 | $\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$ | 質点番号 | $\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$ |  |  |  |  |  |  |  |
| $\begin{gathered} 1,9 \\ 10 \end{gathered}$ | 29． 15 | ＊ | 29.15 | $\begin{gathered} 52.5 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 1 \text { ) } \end{gathered}$ | $\begin{gathered} 52.8 \\ (\mathrm{~s} \text { s - D } 1 \text { ) } \end{gathered}$ | $\begin{gathered} 52.2 \\ (\mathrm{~s} \text { s - D } 1 \text { ) } \end{gathered}$ | $\begin{gathered} 65.2 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 65.9 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 64.4 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ |  |
| 2， 11 | 22.95 | 21， 26 | 22.50 | $\begin{gathered} 43.6 \\ (\mathrm{~s} \text { s - D } 1 \text { ) } \end{gathered}$ | $\begin{gathered} 43.8 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 1) \end{gathered}$ | $\begin{gathered} 43.4 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 1) \end{gathered}$ | $\begin{gathered} 54.4 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 55.0 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 53.7 \\ (\mathrm{~S} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ |  |
| 4，13 | 15.00 | 22， 27 | 15．00 | $\begin{gathered} 27.3 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 27.3 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 27.1 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 35.2 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 35.4 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 34.8 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ |  |
| 5，14 | 8.00 | 23， 28 | 6.00 | $\begin{gathered} 15.7 \\ (\mathrm{~s} s-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 15.7 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 15.7 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 19.2 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 19.3 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ | $\begin{gathered} 19.0 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{N} 1) \end{gathered}$ |  |

注：（ ）内は各ケースにおいて応答が最大となる地震動を示す。材料物性の不確かさ を考慮した地震応答解析は，基準地震動 S s－D 1，S s－D 2，S s－D 3， S s－F 3 及び S s－N 1 に対して実施。

注記＊：制御建屋の質点番号1，9，10（0．P．29．15m）の相対変位に加算する原子炉建屋 の相対変位は，原子炉建屋の上下階の質点間（0．P．33．20m～0．P．22．50m）で線形補間して算定する。

8．引用文献
（1）Comite Euro－International du Beton：CEB－FIP MODEL CODE 1990 （DESIGN CODE）， 1993
（2）出雲淳一，島弘，岡村甫：面内力を受ける鉄筋コンクリート板要素の解析モデル， コンクリート工学，Vol．25，No．9，1987．9

VI－2－2－9 第3号機海水ポンプ室の地震応答計算書

目 次
1．概要 ..... 1
2．基本方針 ..... 2
2.1 位置 ..... 2
2.2 構造概要 ..... 3
2.3 解析方針 ..... 5
2.4 適用基準 ..... 7
3．解析方法 ..... 8
3.1 地震時荷重算出断面 ..... 8
3.2 解析方法 ..... 11
3．2．1 構造部材 ..... 11
3．2．2 地盤物性及び材料物性のばらつき ..... 12
3．2．3 減衰定数 ..... 13
3．2．4 地震応答解析の解析ケースの選定 ..... 14
3.3 荷重及び荷重の組合せ ..... 16
3．3．1 耐震評価上考慮する状態 ..... 16
3．3．2 荷重 ..... 16
3．3．3 荷重の組合せ ..... 17
3.4 入力地震動 ..... 18
3.5 解析モデル及び諸元 ..... 51
3．5．1 解析モデル ..... 51
3．5．2 使用材料及び材料の物性値 ..... 54
3．5．3 地盤の物性値 ..... 54
3．5．4 地下水位 ..... 55
4．解析結果 ..... 57
4．1 南北方向（スクリーンエリア）の解析結果 ..... 57
4.2 南北方向（循環水ポンプエリア）の解析結果 ..... 82
4.3 東西方向の解析結果 ..... 103

## 1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する第 3 号機海水ポ ンプ室の地震応答解析について説明するものである。

本地震応答解析は，第 3 号機海水ポンプ室が耐震性に関する技術基準へ適合することを確認す るために用いる応答値を抽出するものである。

第 3 号機海水ポンプ室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物であることから，二次元地震応答解析により地震時荷重を算定し，その荷重を三次元構造解析モデルに作用させて耐震評価を実施するものである。よって，地震応答解析により抽出する応答値は，三次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

第 3 号機海水ポンプ室の位置を図 $2-1$ に示す。


図 2－1 第3号機海水ポンプ室の位置図

## 2． 2 構造概要

第 3 号機海水ポンプ室の平面図を図2－2 に，断面図を図 $2-3$～図 $2-5$ に示す。
第 3 号機海水ポンプ室は，耐震重要施設である防潮壁等を間接支持する支持機能及び浸水防止のための止水機能が要求される。
第 3 号機海水ポンプ室は，地下 2 階または地下 3 階構造となっており，上部はスクリーンエ リア，循環水ポンプエリアの 2 エリアに分かれている。下部は水路となっており，スクリーン エリアの下部は四連のボックスカルバート構造，循環水ポンプエリアの下部は二連のボックス カルバート構造となっている。また，上部は各エリアが隔壁により仕切られ，各エリアによっ て開口部の存在や中床版の設置レベルが異なる等，複雑な構造となっている。

第3号機海水ポンプ室は，加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材と して考慮する箱形構造物である。


西

図2－2 第3号機海水ポンプ室平面図


図2－3 第3号機海水ポンプ室断面図（ $\mathrm{A}-\mathrm{A}$ 断面）


図2－4 第3号機海水ポンプ室断面図（B－B 断面）


図2－5 第3号機海水ポンプ室断面図（C－C 断面）

## 2．3 解析方針

第 3 号機海水ポンプ室は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s 及び弾性設計用地震動 S d に対して地震応答解析を実施する。

図 2－6に第3号機海水ポンプ室の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 地震時荷重算出断面」に示す断面に おいて，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法を用いた時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用 いて実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び基礎地盤の接地圧は，第 3 号機海水ポンプ室の耐震評価に用いる。


図 2－6 第3号機海水ポンプ室の地震応答解析フロー

## 2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）

3．解析方法
3.1 地震時荷重算出断面

第 3 号機海水ポンプ室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，南北方向では妻壁や隔壁の配置が異なることによる剛性差を考慮して，スクリーンエリア（ $\mathrm{A}-\mathrm{A}$ 断面）及び循環水ポンプエリア（ $\mathrm{B}-\mathrm{B}$ 断面）を通る断面 とし，東西方向では構造物中心を通る断面（C－C 断面）とする。地震時荷重算出用地質断面図 を図3－2～図3－4に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面及び B－B 断面）が弱軸方向となり，東西方向（ $\mathrm{C}-\mathrm{C}$ 断面）が強軸方向となる。よって，構造物の耐震評価に用いる応答値の抽出は，弱軸方向に対して実施し，機器•配管系の耐震評価 に用いる応答値の抽出は，弱軸方向及び強軸方向に対して実施する。


西


図 3－1 第 3 号機海水ポンプ室の地震時荷重算出断面位置図


図 3－2 第3号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））


図 3－3 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））


図 3－4 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図（C－C 断面，東西）

## 3．2 解析方法

第 3 号機海水ポンプ室の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 及び弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

第3号機海水ポンプ室の東側には，防潮堤が隣接しており，お互いの振動の影響を受けるこ とが考えられるため，防潮堤をモデル化する。なお，第 3 号機取水路は，耐震評価において保守的な評価になるよう盛土としてモデル化する。

構造部材については，中床版，底版及び地震時荷重算出断面に垂直な壁部材は線形はり要素，断面に平行な壁部材は平面応力要素とし，構造物の奥行方向の長さと各部材の奥行方向の長さ の比率や三次元構造解析モデルとの変位を整合させるためのヤング係数の調整を行い，三次元構造モデルと等価な剛性となるようモデル化する。また，地盤については地盤のひずみ依存性 を適切に考慮できるようモデル化する。

地震応答解析については，解析コード「Soil Plus Dynamic 2015 Build3」を使用する。なお解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

## 3．2．1 構造部材

鉄筋コンクリート部材は，線形はり要素及び平面応力要素でモデル化する。

## 3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

第 3 号機海水ポンプ室は，MMR 上に設置され，周囲が埋戻されており，主たる荷重は盛土等の土圧となることから，盛土及び旧表土等の初期せん断係数のばらつきを考慮する。

初期せん断弾性係数の標準偏差 $\sigma$ を用いて設定した解析ケース（2）及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

注記 $~: ~$ 既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表3－2に示す。

$$
[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]
$$

［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
$\alpha, \beta$ ：係数

表 3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

| 地震時荷重算出断面 | $\alpha$ | $\beta$ |
| :---: | :---: | :---: |
| A－A <br> （スグ断面，南北方向 <br> スーンエリア） | $4.838 \times 10^{-1}$ | $6.200 \times 10^{-4}$ |
| B－B 断面，南北方向 <br> （循環水ポンプエリア） | $4.913 \times 10^{-1}$ | $6.110 \times 10^{-4}$ |
| C－C 断面，東西方向 | $3.882 \times 10^{-1}$ | $7.730 \times 10^{-4}$ |

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース①（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となるすべての照査項目に対して，最も厳しい地震動を用いて，表3－1 に示す解析ケース（2）～（4）を実施する。耐震評価における解析ケースを表3－3に示す。

表 3－3 耐震評価における解析ケース


注記 $~ 1 ~: ~$ 耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」とい う。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース① に加え，表3－1 に示す解析ケース（2）～④を実施する。機器•配管系の応答加速度抽出における解析ケースを表 3－4 に示す。

表 3－4 機器•配管系の応答加速度抽出のための解析ケース

| 解析ケース |  |  | ケース① | ケース②） | ケース③ | ケース（4） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 基本ケース | 地盤物性のばら つき（＋1 o ）を考慮した解析ケ ース | 地盤物性のばら つき（－1 $\sigma$ ）を考慮した解析ケ ース | 材料物性（コン クリート）に実強度を考慮した解析ケース |
| 地盤物性 |  |  | 平均値 | 平均値 $+1 \sigma$ | 平均値－1 $\sigma$ | 平均値 |
| 材料物性 |  |  | 設計基準強度 | 設計基準強度 | 設計基準強度 | 実強度に基づく圧縮強度＊2 |
| $\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$ | $\begin{aligned} & S \mathrm{~s}-\mathrm{D} 1 \\ & \mathrm{~S} \text { d }-\mathrm{D} 1 \end{aligned}$ | $+{ }^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & \mathrm{S} s-\mathrm{D} 2 \\ & \mathrm{~S} d-\mathrm{D} 2 \end{aligned}$ | $++^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} \text { d }-\mathrm{D} 3 \end{aligned}$ | $+{ }^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & S \mathrm{~s}-\mathrm{F} 1 \\ & \mathrm{~S} \text { d }-\mathrm{F} 1 \end{aligned}$ | $+{ }^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$ | $++^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{Sd}-\mathrm{F} 3 \end{aligned}$ | $+{ }^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
|  | $\begin{aligned} & S s-N 1 \\ & S d-N 1 \end{aligned}$ | $++^{* 1}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

注記＊1：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3．3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

## 3．3．1 耐震評価上考慮する状態

第3号機海水ポンプ室の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。第3号機海水ポンプ室は，埋設構造物であるため風の影響は考慮しな い。なお，第 3 号機海水ポンプ室の隣接構造物としてモデル化される防潮堤（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，風の影響を考慮する。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

## 3．3．2 荷重

第3号機海水ポンプ室の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（ S d ）
弾性設計用地震動 S d による荷重を考慮する。

## 3．3．3 荷重の組合せ

荷重の組合せを表3－5に示す。

表3－5 荷重の組合せ

| 外力の状態 | 荷重の組合せ |
| :---: | :---: |
| 地震時 $(\mathrm{S} \mathrm{s})$ | $\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$ |
| 地震時 $(\mathrm{S} \mathrm{d})^{*}$ | $\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{d}$ |

注記 $*$ ：機器•配管系の耐震設計に用いる。

G：固定荷重
P：積載荷重（積雪荷重 $\mathrm{P}_{\mathrm{s}}$ を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）
S d ：地震荷重（弾性設計用地震動S d）

## 3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $3-5$ に入力地震動算定の概念図を，図3－6～図3－37に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver．3．10」 を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。


図 3－5 入力地震動算定の概念図

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－D3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－D 3）


図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鋁直成分：S s－F2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分： $\mathrm{S} s-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S s－F3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S s－N1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鋁直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，水平成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （南北方向，鉛直成分：S d－D2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 1）


図 $3-23$ 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－D 3）


（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－D 3）


（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F 1）


（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 1）


（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 2 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，水平成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （東西方向，鉛直成分：S d－D 2）

## 3.5 解析モデル及び諸元

## 3．5．1 解析モデル

第 3 号機海水ポンプ室の地震応答解析モデルを図 $3-38$～図 $3-40$ に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
構造物と等価な剛性を有する二次元等価剛性モデルを作成して実施することとし，構造部材については，線形はり要素及び平面応力要素によりモデル化する。
（4）地盤のモデル化
D級を除く岩盤は線形の平面ひずみ要素でモデル化する。また，盛土，旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化す る。なお，改良地盤は，保守的な評価になるよう盛土としてモデル化する。
（5）隣接構造物のモデル化
隣接構造物となる防潮堤（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性について」に基づき，鋼管杭は，線形はり要素（ビーム要素）でモデ ル化する。
（6）ジョイント要素の設定
地震時の「地盤とMMR」，「MMR と構造物」及び「構造物と盛土」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョイント要素を設定する。なお，防潮堤
（鋼管式鉛直壁）は，添付書類「VI－2－10－2－2－1 防潮堤（鋼管式鉛直壁）の耐震性につい て」に基づき，ジョイント要素を設定する。

凡 例

| － | B 級 | ■ 旧表土 | －第3号機海水ポンプ室（スクリーンエリア） |
| :---: | :---: | :---: | :---: |
|  | C11級 | 트⿵⿰丿⿺⿻⿻一㇂㇒丶𠃌⿴⿱冂一⿰丨丨丁口𧘇土 | 一第3号機海水ポンプ室（スクリーンエリア） |
| － | Cu級 | ■セメント改良土 |  |
| － | C． ．級 | －MMR |  |
|  | D 級 | －地盤改良土 |  |
|  | 速度層境界 | －背面補強工及で | 換コンクリート |

側方粘性境界 南
第3号機海水ポンブ室（スクリーンエリア）北 側方粘性境界


図 3－38 第3号機海水ポンプ室の地震応答解析モデル図
（ $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））

例


```
    \(\begin{array}{ll}\text {-旧表土 } & \text {-第 } 3 \text { 号機海水ポンプ室 }(\text { 循環水ポンプエリア) } \\ \text { 盛土 } & \text {-第 } 3 \text { 号機海水ポンプ室 }(\text { 循環水ポンプェリア) }\end{array}\)
    ■セメント改良土
    ■MMR
    - 地盤改良土
    - 背面補強工及び置換コンクリート
```



図 3－39 第3号機海水ポンプ室の地震応答解析モデル図
（ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））


図 3－40 第3号機海水ポンプ室の地震応答解析モデル図（ $\mathrm{C}-\mathrm{C}$ 断面，東西）

## 3．5．2 使用材料及び材料の物性値

構造物の使用材料を表3－6に，材料の物性値を表3－7に示す。

表 3－6 使用材料

| 材料 | 仕様 |
| :---: | :---: |
| コンクリート | 設計基準強度 $23.5 \mathrm{~N} / \mathrm{mm}^{2}$ |
| 鉄筋 | SD345 |

表 3－7 材料の物性値

| 材料 |  | 目 | 材料諸元 | 備考 |
| :---: | :---: | :---: | :---: | :---: |
| 鉄筋コンクリート | 単位体積重量 （kN／m3） |  | 24.0 |  |
| コンクリート | ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 実強度＊ | $3.46 \times 10^{4}$ | 解析ケース（4） |
|  |  | 設計基準強度 | $2.48 \times 10^{4}$ | 解析ケース（1）， <br> （2），（3） |
|  | ポアソン比 |  | 0.2 |  |

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

## 3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位の一覧を表 3－8に，設計用地下水位を図 $3-41 \sim$ 図 $3-43$ に示す。

表 3－8 設計用地下水位の一覧

| 施設名称 | 地震時荷重算出断面 | 設計用地下水位 |
| :---: | :---: | :---: |
| 第 3 号機海水ポンプ室 | A－A 断面，南北方向 （スクリーンエリア） | 0．P．$-12.00 \mathrm{~m} \sim 0$. P．-2.50 m |
|  | B－B 断面，南北方向 （循環水ポンプエリア） |  |
|  | C－C 断面，東西方向 | 0．P．$-12.00 \mathrm{~m} \sim 0$. P．+8.00 m |



図 3－41 設計用地下水位（A－A 断面，南北（スクリーンエリア））


図 3－42 設計用地下水位（B－B 断面，南北（循環水ポンプエリア））


図 3－43 設計用地下水位（C－C 断面，東西）

## 4．解析結果

4．1 南北方向（スクリーンエリア）の解析結果
耐震評価のために用いる応答加速度として，解析ケース（1）（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図 4－1～図4－14に示す。また，解析ケース（1） において，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析ケース（2）～（4）の最大加速度分布図を図4－15～図4－20に示す。

これらに加え，スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いる S d－D 2 に対する最大加速度分布図を図 4－21～図 4－24に示す。

（a） S s－D $1 \quad(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－1 最大加速度分布図（1／20）（解析ケース①）

（a） S s－D $1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－2 最大加速度分布図（2／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－3 最大加速度分布図（3／20）（解析ケース（1）


（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－4 最大加速度分布図（4／20）（解析ケース（1）


（b） S s－D $3(++)$ 鉛直

図 4－5 最大加速度分布図（5／20）（解析ケース①）


（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直

図 4－6 最大加速度分布図（6／20）（解析ケース（1）

（a） S s－F $1(++)$ 水平

（b） S s－F $1 \quad(++)$ 鉛直

図 4－7 最大加速度分布図（7／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平
構造スケール $\qquad$ （m） （m）态答値スケール $01000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(-+)$ 鉛直

図 4－8 最大加速度分布図（8／20）（解析ケース（1）



図 4－9 最大加速度分布図（9／20）（解析ケース（1）

（a） S s $-\mathrm{F} 2(-+)$ 水平

（b） S s－F $2(-+)$ 鉛直

図 4－10 最大加速度分布図（10／20）（解析ケース（1）


（b） S s－F $3(++)$ 鉛直

図 4－11 最大加速度分布図（ $11 / 20$ ）（解析ケース（1）

| 2237 |  |  |  | 2810 |
| :---: | :---: | :---: | :---: | :---: |
| 2064 |  | 16321556 |  | 2431 |
| 1891 |  | 1478 |  |  |
|  |  | 2090 |
| 1709 |  |  |  | 1396 |  | 1868 |
| 1509 |  | 1308 |  | 1646 |
| 1297 |  | 1216 |  | 1433 |
| 1219 |  | 1122 |  | 1238 |
| 1182 |  | 1050 |  | 1138 |
| 1146 | 1054 | 991 | 1034 | 1057 |
| 1121 | 1045 | 948 | 982 | 987 |
| 1103 | 1027 | 932 | 925 | 1004 |
| 1081 | 1004 | 909 | 891 | 1014 |
| 1032 | 965 | 868 | 876 | 1006 |
| 972 | 920 | － 821 | 855 | 975 |
| 919 | 872 | 782 | 828 | 923 |
| 862 | 822 | － 754 | 798 | 855 |
| 821 | 784 | 722 | 773 | 845 |
| 778 | 753 | 692 | 749 | 870 |
| 814 | 733 | 697 | 732 | 916 |
| 945 | 710 | 700 | 712 | 956 |
| 1086 | 683 | 699 | 684 | 987 |
| 1218 | 666 | － 694 | － 650 | 1004 |
| 1324 | 652 | － 690 | － 612 | 1000 |
| 1424 | －660 | 685 | － 558 | 964 |
| 1463 | 673 | 666 | － 530 | 891 |
| 1426 | 705 | 633 | 502 | 783 |
| 1308 | 732 | 660 | － 557 | 650 |
| 1120 | 753 | － 692 | － 608 | 505 |
| 958 | － 764 | － 710 | － 639 | 526 |
| 852 | 773 | － 729 | － 672 | 591 |
| 834 826 | $\begin{array}{r} 781 \\ -\quad 784 \\ \hline \end{array}$ | $\begin{array}{r} 744 \\ -\quad 749 \\ \hline \end{array}$ | 701 | $\begin{aligned} & 651 \\ & 676 \end{aligned}$ |

（a） S s－F $3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

図 4－12 最大加速度分布図（12／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－13 最大加速度分布図（13／20）（解析ケース（1））

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直

図 4－14 最大加速度分布図（14／20）（解析ケース（1））


（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－15 最大加速度分布図（15／20）
（解析ケース（2）：せん断破壊に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－16 最大加速度分布図（16／20）
（解析ケース（2）：基礎地盤の支持性能に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 鉛直

図 4－17 最大加速度分布図（17／20）
（解析ケース③：せん断破壊に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－18 最大加速度分布図（18／20）
（解析ケース（3）：基礎地盤の支持性能に対する最大照査値ケース）

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－19 最大加速度分布図（19／20）
（解析ケース（4）：せん断破壊に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－20 最大加速度分布図（20／20）
（解析ケース（4）：基礎地盤の支持性能に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

| 580 |  | 444 |  | 597 |
| :---: | :---: | :---: | :---: | :---: |
| 579 |  | － 443 |  | － 596 |
| － 577 |  | 442 |  | － 594 |
| － 575 |  | － 439 |  | － 591 |
| 572 |  | － 436 |  | 588 |
| 568 |  | － 432 |  | － 584 |
| 564 |  | － 427 |  | 580 |
| 560 |  | － 423 |  | 576 |
| 557 | 450 | 418 | 393 | 573 |
| 554 | 447 | 415 | 390 | 570 |
| 551 | 445 | － 411 | 386 | － 567 |
| 548 | 442 | 407 | 384 | 565 |
| 543 | 437 | 401 | 380 | 560 |
| 539 | 432 | － 395 | 377 | 556 |
| 534 | 427 | 388 | 373 | 551 |
| 529 | 420 | 380 | 368 | 546 |
| 525 | 414 | 373 | 364 | 542 |
| 520 | 408 | 367 | 360 | 538 |
| 516 | 405 | 363 | 358 | 534 |
| 511 | 401 | 359 | 356 | 529 |
| － 506 | 396 | － 354 | － 353 | 524 |
| － 501 | 391 | 349 | 351 | 520 |
| －497 | 387 | 344 | － 348 | 517 |
| － 490 | 380 | 338 | 344 | 514 |
| － 483 | 374 | 331 | 342 | 511 |
| －477 | 367 | 324 | 343 | 508 |
| － 470 | 359 | 317 | 343 | 505 |
| － 463 | 352 | 310 | 343 | 501 |
| － 458 | 347 | 305 | 343 | － 498 |
| － 451 | 340 | 298 | 343 | － 495 |
| 444 <br> 440 | $\begin{array}{r}332 \\ 328 \\ \hline\end{array}$ | $\begin{array}{r}291 \\ 287 \\ \hline\end{array}$ | $\begin{array}{r}343 \\ 343 \\ \hline\end{array}$ | － $\begin{array}{r}490 \\ 488\end{array}$ |
|  | ル |  | $\begin{gathered} 0 \quad 100 \\ \leftarrow \cdot-1 \end{gathered}$ |  |

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－21 最大加速度分布図（1／4）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

| 563 | 563 | 425 |  | 583 |
| :---: | :---: | :---: | :---: | :---: |
| － 562 |  | 424 |  | － 583 |
| － 561 |  | 422 |  | 581 |
| － 559 |  | 420 |  | 578 |
| 557 |  | －417 |  | － 574 |
| 554 |  | 413 |  | 571 |
| 551 |  | 408 |  | 567 |
| 548 | 433 | 404 |  | 564 |
| 545 |  | 400 | 383 | 561 |
| 543 | 430 | 397 | 381 | 558 |
| 540 | － 428 | 393 | 379 | 555 |
| 537 | － 425 | 389 | 377 | 553 |
| 533 | － 420 | 384 | 373 | － 548 |
| 529 | 415 | 377 | 370 | 544 |
| 524 | 409 | 371 | 366 | － 539 |
| 519 | 403 | 363 | 362 | 535 |
| 515 | － 397 | 357 | 358 | 531 |
| 511 | 391 | 351 | 354 | 527 |
| 506 | 387 | 347 | 352 | 522 |
| 502 | － 383 | 343 | 350 | － 517 |
| －497 | － 378 | 338 | 348 | 513 |
| － 492 | 374 | 334 | 345 | － 507 |
| － 487 | － 369 | 329 | 343 | － 504 |
| 480 | 362 | 323 | 339 | 501 |
| － 474 | 356 | 316 | 336 | － 499 |
| － 467 | 349 | 310 | 332 | 496 |
| － 460 | 341 | 303 | 330 | － 493 |
| － 452 | － 334 | 296 | 330 | 490 |
| －447 | － 329 | 291 | 331 | 487 |
| － 441 | 322 | 285 | 331 | － 484 |
| $\begin{array}{r} 433 \\ 429 \\ \hline \end{array}$ | 314 <br> 310 | $\begin{array}{r}278 \\ 274 \\ \hline\end{array}$ | 331 331 331 | 480 478 |
| 構造スケール |  | 応答値スケール ${ }^{0} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$ |  |  |

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－22 最大加速度分布図（2／4）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

| 582 |  | 454 |  | 592 |
| :---: | :---: | :---: | :---: | :---: |
| － 582 |  | 453 |  | 591 |
| － 581 |  | － 452 |  | 590 |
| 580 |  | 449 |  | 588 |
| 578 |  | 446 |  | 586 |
| 575 |  | － 442 |  | 584 |
| 571 |  | 436 |  | 582 |
| 568 | 463 | 432 |  | 580 |
| 565 |  | 427 | 400 | 578 |
| 562 | 461 | 423 | 398 | 576 |
| 560 | － 458 | － 419 | 396 | 574 |
| 557 | 455 | 415 | 393 | 572 |
| 553 | － 450 | － 408 | 390 | 569 |
| 549 | 444 | 402 | 386 | 565 |
| 545 | － 438 | － 394 | 381 | 562 |
| － 541 | 431 | － 386 | 376 | 558 |
| 537 | 425 | － 379 | 372 | 554 |
| 533 | 419 | 373 | 368 | 551 |
| 529 | 415 | 368 | 366 | 547 |
| 525 | － 411 | 364 | 363 | 543 |
| －520 | － 406 | 359 | 360 | 538 |
| － 516 | － 401 | 354 | 358 | 534 |
| － 511 | － 396 | － 349 | 355 | － 529 |
| － 505 | － 389 | 343 | 351 | 523 |
| － 499 | 382 | 336 | 349 | 517 |
| － 492 | － 375 | － 329 | 350 | 510 |
| － 486 | －368 | 321 | 350 | 504 |
| －479 | 360 | 314 | 350 | 497 |
| － 474 | － 354 | 309 | 350 | 493 |
| － 467 | 347 | 302 | 350 | 489 |
| $\begin{array}{r}460 \\ -456 \\ \hline\end{array}$ | $\begin{array}{r}3179 \\ 335 \\ \hline\end{array}$ | $\begin{array}{r}294 \\ -291 \\ \hline\end{array}$ | 350 350 350 | 485 483 |
| 構造スケール |  | $\text { 応答値スケール } \quad \begin{aligned} & 0.1000 \\ & L^{-} \end{aligned}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$ |  |  |

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－23 最大加速度分布図（3／4）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－24 最大加速度分布図（4／4）（解析ケース（4））

4．2 南北方向（循環水ポンプエリア）の解析結果
耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図4－25～図4－38に示す。また，解析ケース （1）において，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動につい て，解析ケース（2）～（4）の最大加速度分布図を図4－39～図4－44に示す。

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－25 最大加速度分布図（1／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

（b） S s $-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－26 最大加速度分布図（2／20）（解析ケース（1）


図 4－27 最大加速度分布図（3／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－28 最大加速度分布図（4／20）（解析ケース（1）

| ${ }^{3858}$（ ${ }^{2776}$ |  |  |
| :---: | :---: | :---: |
| $2811$ |  | 2019 |
| 1803 （1742 |  |  |
|  |  |  |
| 1515 （ 1326 |  |  |
|  |  |  |
| 1266 （1231 |  |  |
| 1173 （ 1355 |  |  |
| 1087 | 927 | 1358 |
| 1070 | － 891 | 1284 |
| 1107 | － 858 | 1177 |
| 1116 | $\square 823$ | － 1044 |
| 1081 | － 775 | 847 |
| 993 | － 725 | － 814 |
| 861 | － 673 | － 755 |
| 694 | －619 | 815 |
| － 655 | － 594 | 844 |
| 618 | 584 | 839 |
| 585 | － 568 | 831 |
| 579 | － 550 | － 801 |
| 626 | － 529 | － 748 |
| 721 | 504 | － 722 |
| 830 | －497 | － 720 |
| 935 | －496 | － 749 |
| 987 | －488 | － 800 |
| 983 | － 475 | － 811 |
| 929 | － 471 | － 770 |
| 837 | －519 | 697 |
| 756 | － 552 | 639 |
| － 644 | － 587 | 593 |
| － 646 | － $\begin{array}{r}617 \\ 628 \\ \hline\end{array}$ | － 630 |

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

（b） S s－D $3(++)$ 鉛直

図 4－29 最大加速度分布図（5／20）（解析ケース（1）

（a） S s－D $3(-+)$ 水平

（b） S s $-\mathrm{D} 3(-+)$ 鉛直

図 4－30 最大加速度分布図（6／20）（解析ケース（1）

（a） S s－F $1(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直

図 4－31 最大加速度分布図（7／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平

（b）S s－F $1(-+)$ 鉛直

図 4－32 最大加速度分布図（8／20）（解析ケース①）

（a） S s－F $2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－33 最大加速度分布図（9／20）（解析ケース（1）

（a） S s $-\mathrm{F} 2(-+)$ 水平

（b） S s－F $2(-+)$ 鉛直

図 4－34 最大加速度分布図（10／20）（解析ケース（1）

（a） S s－F $3(++)$ 水平

（b） S s－F $3(++)$ 鉛直

図 4－35 最大加速度分布図（11／20）（解析ケース（1）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b） S s－F $3(-+)$ 鉛直

図 4－36 最大加速度分布図（12／20）（解析ケース（1））

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－37 最大加速度分布図（13／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

（b） S s $-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－38 最大加速度分布図（14／20）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平


| 556 |
| :--- |
| 556 |
| 555 |
| 555 |
| 556 |
| 550 |
| 547 |
| 549 |
| 547 |
| 546 |
| 545 |
| 544 |
| 543 |
| 542 |
| 546 |
| 551 |
| 556 |
| 560 |
| 564 |
| 568 |
| 572 |
| 575 |
| 578 |
| 581 |
| 584 |
| 585 |
| 586 |
| 587 |
| 588 |
| 589 |
| 590 |
| 590 |

構造スケール

$$
\begin{array}{ll}
0 & 2 \\
ـ & \\
\hline
\end{array}
$$

(m)
応答値スケール
01000
$\rightarrow\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－39 最大加速度分布図（ $15 / 20$ ）
（解析ケース（2）：せん断破壊に対する最大照査値ケース）

|  |  |  |
| :---: | :---: | :---: |
| 1872 |  | 2910 |
|  |  | 2527 |
| 1752 |  | 2152 |
| 1690 |  | 1806 |
| 1619 |  | 1536 |
| 1531 |  | 1499 |
| 1445 |  | 1434 |
| 1366 |  | 1366 |
| 1310 | 1037 | 1295 |
| 1304 | － 1011 | 1230 |
| 1289 | 1011 | 1169 |
| 1273 | 1009 | 1111 |
| 1246 | 1003 | 1042 |
| 1215 | 996 | 998 |
| 1176 | 983 | 971 |
| 1130 | 966 | － 928 |
| 1087 | － 952 | － 885 |
| 1042 | 945 | 851 |
| 995 | － 943 | 828 |
| － 942 | －934 | 807 |
| － 880 | － 919 | 779 |
| －831 | － 899 | 745 |
| － 826 | － 872 | 745 |
| －816 | － 830 | 749 |
| － 797 | 842 | 744 |
| 770 | 874 | 758 |
| － 731 | －886 | 760 |
| － 688 | － 878 | 751 |
| － 681 | － 858 | 790 |
| － 704 | － 818 | $-847$ |
| $\begin{array}{r}789 \\ -834 \\ \hline\end{array}$ | － $\begin{array}{r}820 \\ 836 \\ \hline\end{array}$ | －${ }_{926}^{902}$ |



図 4－40 最大加速度分布図（16／20）
（解析ケース（2）：基礎地盤の支持性能に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平


構造スケール

$$
\begin{array}{ll}
0 & 2 \\
\hline
\end{array}
$$

(m) 応答値スケール
$\stackrel{1000}{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－41 最大加速度分布図（ $17 / 20$ ）
（解析ケース③）せん断破壊に対する最大照査値ケース）



図 4－42 最大加速度分布図（18／20）
（解析ケース（3）：基礎地盤の支持性能に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平



（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 鉛直

図 4－43 最大加速度分布図（19／20）
（解析ケース（4）：せん断破壊に対する最大照査値ケース）

| 1826 （ ${ }^{2674}$ |  |  |
| :---: | :---: | :---: |
| 1720 （ ${ }_{1726}$ |  |  |
| 1612 退 2019 |  |  |
| 1506 （1710 |  |  |
| 1400 （1586 |  |  |
| 1346 （ 1518 |  |  |
|  |  |  |
| 1296 （ 1338 |  |  |
|  |  |  |
|  |  |  |
| 1271 |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 1076 | －961 | 946 |
| 1076  <br> 1041 -961 <br> 946  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 885 － $801 \times 85$ |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
| 781 887 794 |  |  |
|  |  |  |
|  |  |  |
| － 737 | $\begin{array}{r}842 \\ -860 \\ \hline\end{array}$ | ${ }^{990}$ |

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－44 最大加速度分布図（20／20）
（解析ケース（4）：基礎地盤の支持性能に対する最大照査値ケース）

## 4．3 東西方向の解析結果

スクリーンエリアに設置される貫通部止水処置の津波重畳時の評価に用いるS d－D 2 に対 する最大加速度分布図を図 4－45～図4－48に示す。


O 2 （5） $\mathrm{VI}-2-2-9$ R 0
（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

構造スケール $0_{4}^{0} \quad 2(\mathrm{~m})$ 応答値スケール ${ }^{0} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－45 最大加速度分布図（1／4）（解析ケース（1）


O d 6－Z－Z－I（9）$\quad$ O
（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

$$
\text { 構造スケール } \quad 0^{0}{ }^{2}(\mathrm{~m}) \quad \text { 応答值スケール } \quad 0.1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$

図 4－46 最大加速度分布図（2／4）（解析ケース（2））


O 2 （5） $\mathrm{VI}-2-2-9 \quad \mathrm{R} 0$
（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

構造スケール $\int_{4}^{0} 2(\mathrm{~m})$ 応答値スケール $0^{0} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－47 最大加速度分布図（3／4）（解析ケース③）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

$$
\text { 構造スケール } \quad \int_{4}^{0} \quad 2(\mathrm{~m}) \quad \text { 応答値スケール }{ }^{0} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$

図 4－48 最大加速度分布図（4／4）（解析ケース（4）

VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書

## 目次

1．概要 ..... 1
2．基本方針 ..... 2
2.1 位置 ..... 2
2.2 構造概要 ..... 3
2.3 評価方針 ..... 7
2.4 適用基準 ..... 10
3．耐震評価 ..... 11
3.1 地震時荷重算出断面 ..... 11
3.2 使用材料及び材料の物性値 ..... 14
3.3 許容限界 ..... 15
3．3．1 構造部材の健全性に対する許容限界 ..... 15
3．3．2 基礎地盤の支持性能に対する許容限界 ..... 17
3.4 評価方法 ..... 18
3．4．1 構造部材の健全性評価． ..... 18
3．4．2 基礎地盤の支持性能評価． ..... 26
4．構造部材の地震時応答 ..... 27
5．耐震評価結果 ..... 49
5.1 構造部材の健全性に対する評価結果． ..... 49
5.2 各要求機能に対する評価結果 ..... 54
5．2．1 止水機能 ..... 54
5.3 Sクラスの施設等を支持する機能に対する評価結果 ..... 56
5．4 基礎地盤の支持性能に対する評価結果． ..... 59
5．4．1 基礎地盤（牧の浜部層） ..... 59
5．4．2 MMR（既設） ..... 60

## 1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，第3号機海水ポンプ室が基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

第3号機海水ポンプ室に要求される機能の維持を確認するにあたつては，地震応答解析により算定した荷重を三次元構造解析モデルに作用させて，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

第 3 号機海水ポンプ室の位置を図 $2-1$ に示す。


図 2－1 第 3 号機海水ポンプ室の位置図

## 2.2 構造概要

第 3 号機海水ポンプ室の平面図を図 $2-2$ に，断面図を図 $2-3 \sim$ 図 $2-5$ に，概略配筋図を図2－6～図2－8に示す。

第 3 号機海水ポンプ室は，浸水防護設備である防潮壁を間接支持する支持機能及び浸水防止 のための止水機能が要求される。

第 3 号機海水ポンプ室は，地下 2 階または地下 3 階構造となっており，上部はスクリーンエ リア，循環水ポンプエリアの 2 エリアに分かれている。下部は水路となっており，スクリーン エリアの下部は四連のボックスカルバート構造，循環水ポンプエリアの下部は二連のボックス カルバート構造となっている。また，上部は各エリアが隔壁により仕切られ，各エリアによっ て開口部の存在や中床版の設置レベルが異なる等，複雑な構造となっている。
第3号機海水ポンプ室は，加振方向に平行に配置される妻壁や隔壁等の面部材を耐震部材と して考慮する箱形構造物である。
$\qquad$


図 2－2 第 3 号機海水ポンプ室平面図


図2－3 第3号機海水ポンプ室断面図（A－A 断面）


図 2－4 第3号機海水ポンプ室断面図（B－B 断面）
東 西


図2－5 第3号機海水ポンプ室断面図（ $\mathrm{C}-\mathrm{C}$ 断面）


図 2－6 第3号機海水ポンプ室概略配筋図（A－A 断面）


図 2－7 第 3 号機海水ポンプ室概略配筋図（ $B-B$ 断面）


図 2－8 第3号機海水ポンプ室概略配筋図（C－C 断面）

## 2． 3 評価方針

第 3 号機海水ポンプ室は，設計基準対象施設においては，Sクラス施設の間接支持構造物で ある屋外重要土木構造物に分類される。

第 3 号機海水ポンプ室の耐震評価フローを図2－9に示す。
第 3 号機海水ポンプ室の耐震評価は，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた地震応答解析の結果に基づき，設計基準対象施設の評価として，表 2 －1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びS クラスの施設等を支持する機能を損なわないことを確認する。

構造部材の健全性評価については，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた，水平方向及び鉛直方向の荷重を用いた，非線形ソリッド要素による三次元静的材料非線形解析（以下「三次元構造解析」という。）により応答値を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照查用ひずみが許容限界を下回ること，せん断破壊に対しては照査用せん断力及び照査用面内せ ん断ひずみが許容限界を下回ることを確認する。
基礎地盤の支持性能評価においては，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機機能維持の基本方針」 に基づく許容限界を下回ることを確認する。


図2－9 第3号機海水ポンプ室の耐震評価フロー

表2－1 第3号機海水ポンプ室の評価項目

| 評価方針 | 評価項目 | 部位 | 評価方法 | 許容限界 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 構造強度 を有する こと | 構造部材の健全性 | $\begin{aligned} & \text { 鉄笳コン } \\ & \text { クリート } \end{aligned}$部材 | 照査用ひずみ，照査用せん断力及び照査用面内せん断ひ ずみが許容限界を下回ることを確認 | 曲げ・軸力 |  | 限界ひずみ＊ |
|  |  |  |  | せん断力 | 面外 | せん断耐力＊ |
|  |  |  |  |  | 面内 | 限界せん断ひずみ＊ |
|  | 基礎地盤の <br> 支持性能 | 基礎地盤 | 発生する接地圧が許容限界を下回る ことを確認 | 岩盤の極限支持力＊ |  |  |
|  |  | MMR |  | MMR の支圧強度＊ |  |  |
| S クラス の施設を | 構造部材の健全性 | $\begin{array}{\|l} \text { 鉄笳コン } \\ \text { クリート } \\ \text { 部材 } \end{array}$ | 照査用ひずみ，照査用せん断力及び照査用面内せん断ひ ずみが許容限界を下回ることを確認 | 曲げ・軸力 |  | 限界ひずみ＊ |
| 支持する機能を損 |  |  |  | せん断力 | 面外 | せん断耐力＊ |
| $\begin{aligned} & \text { なわない } \\ & \text { こと } \end{aligned}$ |  |  |  |  | 面内 | 限界せん断ひずみ＊ |

注記＊：妥当な安全余裕を考慮する。

## 2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2012 年 コンクリート標準示方書［設計編］
- 土木学会 2017年 コンクリート標準示方書［設計編］
- 土木学会 2016年 トンネル標準示方書［開削工法編］•同解説
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照查指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編


## 3．耐震評価

3.1 地震時荷重算出断面

第 3 号機海水ポンプ室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，南北方向では妻壁や隔壁の配置が異なることによる剛性差を考慮し，スクリーンエリア（ $\mathrm{A}-\mathrm{A}$ 断面）及び循環水ポンプエリア（ $\mathrm{B}-\mathrm{B}$ 断面）を通る断面と し，南北方向では構造物中心を通る東西断面（C－C 断面）とする。地震時荷重算出用地質断面図を図3－2～図3－4に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，東西方向（C－ C 断面）が強軸方向となり，南北方向（A－A 断面及び B－B 断面）が弱軸方向となることから，耐震評価は弱軸方向である南北方向（A－A 断面及び B－B 断面）に対して実施する。

また，第 3 号機海水ポンプ室は，加振方向に平行に配置される面部材（妻壁や隔壁）を有す る箱形構造物であり，かつ，止水機能が要求される構造物であることから，ひび割れ状態を評価できるソリッド要素を用いた三次元構造解析により耐震評価を行う。


図 3－1 第 3 号機海水ポンプ室の地震時荷重算出断面位置図


図 3－2 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北（スクリーンエリア））


図 3－3 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，南北（循環水ポンプエリア））


図 3－4 第 3 号機海水ポンプ室 地震時荷重算出用地質断面図（C－C 断面，東西）

## 3.2 使用材料及び材料の物性値

構造物の使用材料を表3－1 に，材料の物性値を表3－2 に示す。

表 3－1 使用材料

| 材料 | 仕様 |  |
| :---: | :---: | :---: |
| コンクリート | 設計基準強度 $\quad 23.5 \mathrm{~N} / \mathrm{mm}^{2}$ |  |
| 鉄筋 | SD345 |  |

表 3－2 材料の物性値（構造部材）

| 材料 |  | 項目 | 材料諸元 | 備考 |
| :---: | :---: | :---: | :---: | :---: |
| 鉄筋コンクリート | 単位体積重量 （ $\mathrm{kN} / \mathrm{m}^{3}$ ） |  | 24.0 |  |
| コンクリート | ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 実強度＊ | $3.46 \times 10^{4}$ | 解析ケース④ |
|  |  | 設計基準強度 | 2． $48 \times 10^{4}$ | 解析ケース（1）， <br> （2），（3） |
|  | ポアソン比 |  | 0.2 |  |

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3． 3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

## 3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に基づき，限界ひずみ（圧縮縁コンクリートひずみ $1.0 \%$ ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ $1.0 \%$ の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模し たラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたもの

表 3－3 第 3 号機海水ポンプ室の曲げ・軸力系の破壊に対する許容限界

| 確認項目 | 許容限界 |  |
| :---: | :---: | :---: |
| 構造強度を有すること | 限界ひずみ | 止水機能：主鉄筋（SD345）： $1725 \mu$ $\text { コンクリート : } 2000 \mu$ |
| S クラスの施設を支持する機能を損なわないこと |  | 支持機能：主鉄筋（SD345）： $1725 \mu$ コンクリート ：2000 $\mu$ |

（2）せん断破壊に対する許容限界
構造強度を有することの碓認におけるせん断破壊に対する許容限界は，土木学会マニュ アルに基づくせん断耐力とする。
各要求機能に対する確認について，止水機能及び支持機能のいずれも，せん断破壊に対 しては，終局状態に至らないことを目標性能とすることからせん断耐力を許容限界とする。
壁部材の面内せん断に対する許容限界は，限界せん断ひずみ $2000 \mu$（ $2 / 1000$ ）とする。限界せん断ひずみ $2000 \mu$（ $2 / 1000$ ）は，J E A G 4 6 0 1－1987 において，耐震壁の終局耐力に相当する面内せん断ひずみ $4000 \mu$（ $4 / 1000$ ）に余裕を見込んだ許容限界かつ耐震壁 の支持機能に対する許容限界として規定されている。

## 3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（牧の浜部層）
基礎地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（牧の浜部層）の許容限界を表 3－4 に示す。

表 3－4 基礎地盤の支持性能に対する許容限界

| 評価項目 | 基礎地盤 | 許容限界 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: |
| 極限支持力 | 牧の浜部層 | 11.4 |

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。 MMR（既設）の許容限界を表3－5に示す。

| 表 3－5 MMR（既設）の支持性能に対する許容限界 |  |  |
| :---: | :---: | :---: |
| 評価項目 | MMR（既設） | 許容限界 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| 支圧強度 | コンクリート <br> $\left(\mathrm{f}{ }^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$ | $\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$ |

## 3.4 評価方法

## 3．4．1 構造部材の健全性評価

第 3 号機海水ポンプ室の耐震評価は，非線形ソリッド要素を用いた三次元構造解析によ り実施する。三次元構造解析には，解析コード「COM3 Ver．9．15」を用いる。なお，解析コ ードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

三次元構造解析への入力荷重は，添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」に基づく地震応答解析において，第3号機海水ポンプ室の耐震評価に支配的な荷重が最大となる時刻を選定し，当該時刻における地震時応答から設定する。

添付書類「VI－2－2－9 第3号機海水ポンプ室の地震応答計算書」に基づく地震応答解析 により算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回ることを確認 する。
（1）解析モデル
材料の非線形特性を考慮した非線形ソリッド要素でモデル化する。三次元構造解析モデ ルを図 3－5 及び図 3－6に示す。

また，構造部材（鉄筋コンクリート）の非線形特性を図 3－7及び図 3－8に示す。


図3－5 三次元構造解析モデル図（鳥瞰図）


図3－6 三次元構造解析モデル図（鳥瞰図）


図3－7 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2017年制定）より引用）


図 3－8 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2012年制定）より引用）
（2）照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表 3－6 に照査時刻の選定の考え方を示す。

なお，照査値が最大となるせん断破壊に対する照査時における作用荷重分布図を図3－ 9～図3－12に示す。

表 3－6 照査時刻の考え方

| 照査時刻 | 損傷モード | 着目部位 |  | 荷重抽出時刻 |
| :---: | :---: | :---: | :---: | :---: |
| 時刻1 | 曲げ・軸力系の破壊 | $\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$ |  | 下部構造（水路）における頂底版間の層間変位が最大となる時刻 |
| 時刻 2,3 | 曲げ・軸力系の破壊 | $\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$ |  | 上部構造における <br> 各側壁の転倒曲げモーメン <br> トが最大となる時刻 |
| 時刻 4 | せん断破壊 （面外） | $\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$ |  | 総水平荷重が最大となる時刻 |
| 時刻 5， 6 | せん断破壊 （面外） | $\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$ |  | 上部構造における各側壁の水平荷重が最大となる時刻 |
| 時刻7 | せん断破壊 （面内） | $\begin{gathered} \text { 壁 } \\ \text { (面内) } \end{gathered}$ |  | 面部材の層間変位が <br> 最大となる時刻 |
| 時刻 8,9 | 曲げ・軸力系の破壊及び せん断破壊 （面外） | $\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$ |  | 上部構造における各側壁の上部荷重が最大となる時刻 |



直応力



せん断応力
図中の矢印は荷重の作用方向を示す

図 3－9 作用荷重分布図（直応力及びせん断応力）
（解析ケース（4），S s－N $1 \quad(++)$ ，A－A 断面，南北（スクリーンエリア））



図 3－10 作用荷重分布図（設計震度分布）
（解析ケース（4），S s－N $1(++)$ ，A－A 断面，南北（スクリーンエリア））


直応力


せん断応力
図中の矢印は荷重の作用方向を示す

図 3－11 作用荷重分布図（直応力及びせん断応力） （解析ケース（4），S s－N $1 \quad(++), ~ B-B$ 断面，南北（循環水ポンプエリア））


図 3－12 作用荷重分布図（設計震度分布）
（解析ケース（4），S s－N $1(++), ~ B-B$ 断面，南北（循環水ポンプエリア））
（3）入力荷重
三次元構造解析の入力荷重は，設計值及び添付書類「VI－2－2－9 第3号機海水ポンプ室 の地震応答計算書」より得られた地震応答解析に基づく「（2）照査時刻」で選定した照査時刻における応答値を用いて算定する。地震時荷重は地震応答解析から抽出した荷重を各 エリア奥行方向に一様に載荷する。入力荷重の一覧を表3－7に示す。

表 3－7 三次元構造解析における入力荷重

| 区分 | 種別 | 考慮する荷重 |
| :---: | :---: | :---: |
| 常時 <br> 荷重 | 固定荷重 | 躯体自重，機器•配管荷重 |
|  | 積載荷重 | 躯体に作用する積載荷重 |
|  | 常時土圧 | 躯体側面に作用する常時土圧 |
|  | 内水圧 | 躯体に作用する静水圧 |
|  | 外水圧 | 躯体に作用する静水圧 |
| 地震時荷重 | 慣性力 | 躯体に作用する慣性力 |
|  | 機器反力 | 機器•配管反力 |
|  | 動水圧（内水） | 躯体に作用する動水圧＊ |
|  | 地震時土圧 | 躯体側面に作用する地震時土圧 |
|  | 地震時水圧 | 躯体側面に作用する地震時水圧 |

注記＊：動水圧は，地震応答解析から抽出した側壁及び導流壁の応答加速度に基づき算定す る。

## 3．4．2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

## 4．構造部材の地震時応答

三次元構造解析に基づく，各構造部材の地震時応答結果を示す。各部材位置を図4－1 に，各部材の要素座標系を図 4－2 及び図4－3に，ソリッド要素における各要素の断面力の方向を図4— 4 に示す。

曲げ・軸力系の破壊に対する照査のうち，各部材のコンクリートの圧縮縁ひずみ，コンクリー トの圧縮ひずみ及び主筋のひずみに対して最大照査値となる評価時刻でのひずみ分布を図4－5 ～図4－10に，せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－11～図4 － 22 に示す。


注記＊：手前の側壁は非表示としている。
図 4－1 各部材位置



導流壁（2）（中央）


導流壁（3）（南側）

黒：全体座標系を示す
赤：要素座標系を示す
図 4－2 各部材の要素座標系（ $1 / 2$ ）

隔壁（1）（スクリーン）


隔壁（2）（スクリーン－循環水）


隔壁（3）（循環水）

黒：全体座標系を示す
赤：要素座標系を示す
図 4－3 各部材の要素座標系（2／2）


図 4－4 ソリッド要素における断面力の方向



底版


中床版（3）


中床版（4）


導流壁（2）（中央）


中床版（1）（スクリーン）中床版（2）（スクリーン）


導流壁（1）（北側）


導流壁（3）（南側）

図 4－5 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
(コンクリートの圧縮縁ひずみ)
（妻壁（1），解析ケース（2），S s－N 1 （＋＋））（1／2）


図 4－6 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
(コンクリートの圧縮縁ひずみ)
（妻壁（1），解析ケース（2），S s－N $1(++))(2 / 2)$


図 4－7 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
（コンクリートの圧縮ひずみ）
（隔壁（3），解析ケース（2），S s－N 1（＋＋））（1／2）


図 4－8 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図
(コンクリートの圧縮ひずみ)
（隔壁（3），解析ケース（2），S s－N 1（＋＋））（2／2）

# 1500．${ }^{(\mu)}$ 

側壁（1）（北側）


底版


中床版（3）


中床版（4）


導流壁（2）（中央）

側壁（2）（南側）


導流壁(1) (北側)


導流壁（3）（南側）

図 4－9 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（鉄筋）
（中床版（3），解析ケース（1），S s－D $2(++)) ~(1 / 2)$



隔壁（2）（スクリーン－循環水）


隔壁（3）（循環水）

図 4－10 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（鉄筋） （中床版（3），解析ケース（1），S s－D $2(++))(2 / 2)$


図 4－11 せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： $\mathrm{M}_{\mathrm{x}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++))(1 / 2)$


図 4－12 せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： $\mathrm{M}_{\mathrm{x}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （＋＋））（2／2）


図 4－13 せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： $\mathrm{M}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++))(1 / 2)$


妻壁（1）（上流側）


妻壁（2）（下流側）


隔壁（3）（循環水）

図 4－14 せん断破壊に対する照査値最大時の断面力分布図 （曲げモーメント（kN•m／m）： $\mathrm{M}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++))(2 / 2)$


底版


側壁（2）（南側）

側壁（1）（北側）


中床版（3）


中床版（4）


中床版（1）（スクリーン）

導流壁(1) (北側)


導流壁（3）（南側）

図 4－15 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{N}_{\mathrm{x}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++))(1 / 2)$


図 4－16 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{N}_{\mathrm{x}}$ ）
（導流壁（1），解析ケース（4），S s－N $1(++)) ~(2 / 2)$


図 4－17 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{N}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （ ++ ））（ $1 / 2$ ）


図 4－18 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{N}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （＋＋））（2／2）


図 4－19 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： $\mathrm{Q}_{\mathrm{x}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （＋＋））（1／2）



図 4－21 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{Q}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （＋＋））（1／2）


図 4－22 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{Q}_{\mathrm{y}}$ ）
（導流壁（1），解析ケース（4），S s－N 1 （＋＋））（2／2）

## 5．耐震評価結果

## 5.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表5－1に，せん断破壊に対する各評価位置での最大照査値を表 5－2 に，各壁部材の面内せん断に対する照査値を表5－ 3 に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮縁ひずみ），照査用せん断力及び壁部材の照査用面内せん断ひずみが，構造部材の健全性に対する許容限界を下回ることを確認 した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮縁ひずみ）

| 評価位置＊1 |  | 解析 ケース | 地震動 | 照査用 ひずみ*2 <br> $\varepsilon{ }_{\mathrm{d}}$ | $\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \text { \& R } \end{gathered}$ | 照査値 <br> $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | 2 | （3） | S s－N $1(-+)$ | $639 \mu$ | $10000 \mu$ | 0.07 |
| 中床版 | 12 | （2） | S s－N $1(++)$ | $1070 \mu$ | $10000 \mu$ | 0.11 |
| 側壁 | 43 | （1） | S s－N $1(-+)$ | $873 \mu$ | $10000 \mu$ | 0.09 |
| 隔壁 | 113 | （2） | S s－N $1(++)$ | $725 \mu$ | $10000 \mu$ | 0.08 |
| 導流壁 | 62 | （2） | S s－N $1 \quad(++)$ | 1298 m | $10000 \mu$ | 0.13 |
| 妻壁 | 77 | （2） | S s－N $1 \quad(++)$ | 1697 m | $10000 \mu$ | 0． 17 |

注記＊ 1 ：評価位置は図 5－1～図5－3に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma$ a

表 5－2 せん断破壊に対する照査

| 評価位置＊${ }^{*}$ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 せん断力＊2 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$ | せん断 <br> 耐力 $\mathrm{V}_{\mathrm{y} \mathrm{~d}}$ $(\mathrm{kN} / \mathrm{m})$ | $\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | 2 | （4） | S s－N $1(-+)$ | 7600 | 10606 | 0.72 |
| 中床版 | 17 | （1） | S s－N $1(-+)$ | 850 | 1087 | 0． 79 |
| 側壁 | 53 | （1） | S s－N $1(++)$ | 6375 | 8408 | 0． 76 |
| 隔壁 | 104 | （2） | S s－N $1(++)$ | 1300 | 1958 | 0.67 |
| 導流壁 | 62 | （4） | S s－N $1(++)$ | 10292 | 12418 | 0.83 |
| 妻壁 | 71 | （2） | S s－N $1(++)$ | 3312 | 4855 | 0.69 |

注記＊1：評価位置は図5－1～図5－3に示す。
＊ 2 ：照査用せん断力 $=$ 発生せん断力 $\times$ 構造解析係数 $\gamma$ a

【側壁•隔壁】


図 5－1 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（ $1 / 3$ ）

【底版•中床版】


図 5－2 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（2／3）

【妻壁•隔壁】



図 5－3 評価位置図（曲げ・軸力系の破壊及びせん断破壊）（3／3）

表 5－3 壁部材の面内せん断に対する照査

| 評価位置＊${ }^{*}$ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用面内せん断ひずみ＊2 $\gamma_{\mathrm{d}}$ | 限界 せん断ひずみ $\gamma_{R}$ | 照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | － | － | － | － | － | － |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 110 | （2） | S s－N $1 \quad(++)$ | $514 \mu$ | $2000 \mu$ | 0.26 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | 70 | （2） | S s－N $1(++)$ | $377 \mu$ | $2000 \mu$ | 0． 19 |

注記＊1：評価位置は図 5－4 に示す。
＊2：照査用面内せん断ひずみ＝発生する面内せん断ひずみ $\times$ 構造解析係数 $\gamma_{\mathrm{a}}$


図 5－4 評価位置図（壁部材の面内せん断）

## 5.2 各要求機能に対する評価結果

## 5．2．1 止水機能

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5 -4 及び表 5－5に，せん断破壊に対する各評価位置での最大照査値を表5－6に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主筋ひずみ）が，止水機能に対する許容限界を下回ることを確認した。

表 5－4 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

| 評価位置＊1，2 |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | $\begin{gathered} \text { 照査用 } \\ \text { ひずみ*3 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$ | $\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$ | 照査値 $\varepsilon \mathrm{d} / \varepsilon \mathrm{R}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | 20 | （1） | S s－N $1 \quad(-+)$ | $515 \mu$ | $2000 \mu$ | 0.26 |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 113 | （2） | S s－N $1 \quad(++)$ | $630 \mu$ | $2000 \mu$ | 0.32 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | － | － | － | － | － | － |

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ $\times$ 構造解析係数 $\gamma$ a

表 5－5 曲げ・軸力系の破壊に対する照査（主筋ひずみ）

| 評価位置＊1，2 | 解析 <br> ケース | 地震動 | 照查用 <br> ひずみ <br> $\varepsilon_{\mathrm{d}}$ | 限界 <br> ひずみ <br> $\varepsilon_{\mathrm{R}}$ | 照査値 <br> $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | - | - | - | - | - | - |
| 中床版 | 20 | $(1)$ | $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ | $622 \mu$ | $1725 \mu$ | 0.37 |
| 側壁 | - | - | - | - | - | - |
| 㣂壁 | 113 | $(1)$ | $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ | $470 \mu$ | $1725 \mu$ | 0.28 |
| 導流壁 | - | - | - | - | - | - |
| 妻壁 | - | - | - | - | - | - |

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ $\times$ 構造解析係数 $\gamma$ a

表 5－6 せん断破壊に対する照査

| 評価位置＊1，2 |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 せん断力＊3 $\begin{gathered} \mathrm{V}_{\mathrm{d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$ | せん断 <br> 耐力 <br> $\mathrm{V}_{\mathrm{yd}}$ <br> （kN／m） | $\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | 20 | （1） | S s－N $1(-+)$ | 2634 | 4420 | 0.60 |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 104 | （2） | S s－N $1 \quad(++)$ | 1300 | 1958 | 0.67 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | － | － | － | － | － | － |

注記＊1：評価位置は図5－1～図5－3に示す。
＊2：止水機能が要求される部材の範囲は図5－5に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 $\times$ 構造解析係数 $\gamma$ a


図5－5 止水機能が要求される部材の範囲

### 5.3 S クラスの施設等を支持する機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－7及 び表 5－8に，せん断破壊に対する各評価位置での最大照査値を表5－9に，各壁部材の面内せ ん断（面内せん断ひずみ）に対する照査値を表5－10に示す。

第 3 号機海水ポンプ室の照査用ひずみ（コンクリートの圧縮ひずみ及び主鉄筋ひずみ），照査用せん断力が，S クラスの施設等を支持する機能に対する許容限界を下回ることを確認した。

表 5－7 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

| 評価位置＊${ }^{\text {1，}} 2$ |  | 解析 ケース | 地震動 | 照査用 ひずみ*3 <br> $\varepsilon{ }_{\mathrm{d}}$ | 限界 ひずみ <br> $\varepsilon_{\mathrm{R}}$ | 照査値 $\varepsilon \mathrm{d} / \varepsilon_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | － | － | － | － | － | － |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 105 | （1） | S s－N $1(-+)$ | $576 \mu$ | $2000 \mu$ | 0.29 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | － | － | － | － | － | － |

注記 $* 1$ ：評価位置は図5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊ 3 ：照査用ひずみ＝発生ひずみ $\times$ 構造解析係数 $\gamma_{\mathrm{a}}$

表 5－8 曲げ・軸力系の破壊に対する照査（主筋ひずみ）

| 評価位置＊1，2 |  | 解析 <br> ケース | 地震動 | 照查用 <br> ひずみ ${ }^{* 3}$ <br> $\varepsilon_{\mathrm{d}}$ | 限界 <br> ひずみ <br> $\varepsilon_{\mathrm{R}}$ | 照査値 <br> $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | - | - | - | - | - | - |
| 中床版 | - | - | - | - | - | - |
| 側壁 | - | - | - | - | - | - |
| 隔壁 | 103 | （2） | $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++)$ | $449 \mu$ | $1725 \mu$ | 0.27 |
| 導流壁 | - | - | - | - | - | - |
| 妻壁 | - | - | - | - | - | - |

注記＊1：評価位置は図 5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊3：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma_{\mathrm{a}}$

表 5－9 せん断破壊に対する照査

| 評価位置＊${ }^{1,2}$ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 せん断耐力＊3 $\mathrm{V}_{\mathrm{d}}$ $(\mathrm{kN} / \mathrm{m})$ | せん断 <br> 耐力 $\begin{aligned} & \mathrm{V}_{\mathrm{yd}} \\ & (\mathrm{kN} / \mathrm{m}) \end{aligned}$ | $\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | － | － | － | － | － | － |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 104 | （2） | S s－N $1(++)$ | 1300 | 1958 | 0． 67 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | － | － | － | － | － | － |

注記＊ 1 ：評価位置は図 5－1～図5－3に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
$* 3$ ：照査用せん断力 $=$ 発生せん断力 $\times$ 構造解析係数 $\gamma$ a

表 5－10 壁部材の面内せん断に対する照査

| 評価位置＊${ }^{1,2}$ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用面内せん断ひずみ＊3 $\gamma_{d}$ | 限界 せん断ひずみ $\gamma_{\mathrm{R}}$ | 照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 底版 | － | － | － | － | － | － |
| 中床版 | － | － | － | － | － | － |
| 側壁 | － | － | － | － | － | － |
| 隔壁 | 100 | （2） | S s－N $1(++)$ | $315 \mu$ | $2000 \mu$ | 0.16 |
| 導流壁 | － | － | － | － | － | － |
| 妻壁 | － | － | － | － | － | － |

注記 $* 1$ ：評価位置は図 5－4に示す。
＊2：支持機能が要求される部材の範囲は図5－6に示す。
＊ 3 ：照査用面内せん断ひずみ＝発生する面内せん断ひずみ $\times$ 構造解析係数 $\gamma$ a


図 5－6 支持機能が要求される部材の範囲

## 5.4 基礎地盤の支持性能に対する評価結果

## 5．4．1 基礎地盤（牧の浜部層）

基礎地盤の支持性能に対する照査結果を表5－11に示す。また，最大接地圧分布図を図 5－7に，照査位置図を図5－8に示す。

第 3 号機海水ポンプ室の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－11 基礎地盤の支持性能照査結果

| 解析ケース | 地震動 | 最大接地圧 <br> $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 極限支持力 <br> $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 照査値 <br> $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$ |
| :---: | :---: | :---: | :---: | :---: |
| （4） | $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ <br> $(++)$ | 6.8 | 11.4 | 0.60 |




図 5－7 基礎地盤の最大接地圧分布図
（解析ケース（4），S s－N $1(++)$ ，循環水ポンプエリア）
西

$\square$ ：照査位置

図 5－8 照査位置図

## 5．4．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表 5－12に示す。また，最大接地圧分布図を図 5－9 に，照査位置図を図5－10に示す。

第 3 号機海水ポンプ室の MMR（既設）に発生する最大接地圧が，支圧強度を下回ること を確認した。

表5－12 MMR（既設）の支持性能照査結果

| 解析ケース | 地震動 | 最大接地圧 <br> $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 支圧強度 <br> $\mathrm{f}^{\prime} \mathrm{a}^{( }\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 照査値 <br> $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime} \mathrm{a}_{\mathrm{a}}$ |
| :---: | :---: | :---: | :---: | :---: |
| （3） | $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ <br> $(++)$ | 5.5 | 15.6 | 0.36 |



図 5－9 MMR（既設）の最大接地圧分布図
（解析ケース（3），S s－N $1(++)$ ，循環水ポンプエリア）


図 5－10 照査位置図

VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書

目 次

VI－2－2－12－1 原子炉機器冷却海水配管ダクト（水平部）の耐震性についての計算書 VI－2－2－12－2 原子炉機器冷却海水配管ダクト（鉛直部）の耐震性についての計算書

VI－2－2－12－2 原子炬機器泠却海水配管ダクト（鉛直部）の耐震性についての計算書

## 目 次

1．概要 ..... 1
2．基本方針 ..... 2
2.1 位置 ..... 2
2．2 構造概要 ..... 3
2.3 評価方針 ..... 9
2.4 適用基準 ..... 13
3．地震応答解析 ..... 14
3.1 地震時荷重算出断面 ..... 14
3.2 解析方法 ..... 16
3．2．1 構造部材 ..... 16
3．2．2 地盤物性及び材料物性のばらつき ..... 16
3．2．3 減衰定数 ..... 17
3．2．4 地震応答解析の解析ケースの選定 ..... 18
3.3 荷重及び荷重の組合せ ..... 19
3．3．1 耐震評価上考慮する状態 ..... 19
3．3．2 荷重 ..... 19
3．3．3 荷重の組合せ ..... 20
3.4 入力地震動 ..... 21
3.5 解析モデル及び諸元 ..... 50
3．5．1 解析モデル ..... 50
3．5．2 使用材料及び材料の物性値 ..... 52
3．5．3 地盤の物性値 ..... 52
3．5．4 地下水位 ..... 53
3.6 地震応答解析結果 ..... 54
4．二次元構造解析 ..... 56
4.1 評価対象部材 ..... 56
4．2 解析方法 ..... 58
4．3 解析モデルの諸元 ..... 58
4．3．1 解析モデル ..... 58
4．3．2 使用材料及び材料の物性値． ..... 59
4．4 入力荷重 ..... 60
4.5 二次元構造解析結果 ..... 61
4．5．1 断面（1）の解析結果 ..... 61
4．5．2 断面（2）の解析結果 ..... 64
4．5．3 断面（3）の解析結果 ..... 66
4．5．4 断面（4）の解析結果 ..... 68
4．5．5 断面（5）の解析結果 ..... 70
5．耐震評価 ..... 72
5.1 構造部材の健全性に対する許容限界 ..... 72
5．1．1 鉄筋コンクリート部材の健全性に対する許容限界 ..... 72
5．1．2 鋼材の健全性に対する許容限界 ..... 74
5．1．3 基礎地盤の支持性能に対する許容限界。 ..... 75
5.2 評価方法 ..... 75
6．耐震評価結果 ..... 76
6.1 構造部材の健全性に対する評価結果． ..... 76
6．1．1 断面（1）の評価結果 ..... 76
6．1．2 断面（2）～（5）の評価結果 ..... 77
6.2 止水機能に対する評価結果 ..... 81
6.3 S クラスの施設を支持する機能に対する評価結果 ..... 82
6．3．1 断面（1）の評価結果 ..... 82
6．3．2 断面（2）～⑤）の評価結果． ..... 83
6． 4 基礎地盤の支持性能に対する評価結果， ..... 85

## 1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉機器冷却海水配管ダクト（鉛直部）が基準地震動 S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

原子炉機器冷却海水配管ダクト（鉛直部）に要求される機能の維持を確認するにあたつては，地震応答解析により算定した荷重を二次元構造解析モデルに作用させて，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

原子炉機器冷却海水配管ダクト（鉛直部）の位置を図 2－1 に示す。


図 2－1 原子炉機器冷却海水配管ダクト（鉛直部）の位置図

## 2.2 構造概要

原子炉機器冷却海水配管ダクト（鉛直部）の平面図を図 2－2 に，正面図を図 $2-3$ に，縦断図を図 2－4 に，断面図を図 2－5～図2－9 に，概略配筋図を図2－10～図2－14 に示す。

原子炉機器冷却海水配管ダクト（鉛直部）は，原子炉補機冷却海水系配管，高圧炉心スプレ イ補機冷却海水系配管等を側壁及び隔壁で間接支持する支持機能，頂版に浸水防止のための止水機能が要求される。

原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポンプ室と原子炉機器冷却海水配管ダク ト（水平部）を結ぶ，鉄筋コンクリート及び鋼材から構成される地中構造物であり，幅（横断方向） 34.55 m ，延長（鉛直方向） 24.00 m ，高さ 4.70 m の九連の構造である。原子炉機器冷却海水配管ダクト（水平部）との接合部には耐震ジョイントが設置されており，原子炉機器冷却海水配管ダクト（鉛直部）と比較して規模•重量が十分に大きい海水ポンプ室に懸架され一体構造となっている。

原子炉機器冷却海水配管ダクト（鉛直部）は，鉛直方向に隔壁の配置が変化し，5 つの内空断面を有する構造物である。


図 2－2 原子炉機器冷却海水配管ダクト（鉛直部）平面図


＊注記：図中の H は 鋼材を示す。

図 2－3 原子炉機器冷却海水配管ダクト（鉛直部）正面図（ $\mathrm{A}-\mathrm{A}$ 断面）


図 2－4 原子炉機器冷却海水配管ダクト（鉛直部）縦断図（B－B 断面）


図 2－5 原子炉機器冷却海水配管ダクト（鉛直部）断面図（断面（1）


図 2－7 原子炉機器冷却海水配管ダクト（鉛直部）断面図（断面（3）


図 2－8 原子炉機器冷却海水配管ダクト（鉛直部）断面図（断面（4）


図 2－9 原子炉機器冷却海水配管ダクト（鉛直部）断面図（断面（5））


図 2－10 原子灺機器泠却海水配管ダクト（鋁直部）概略配筋図（断面（1）


図 2－11 原子炬機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（2）


図 2－12 原子炉機器冷却海水配管ダクト（鉛直部）概略配筋図（断面（3）


図 2－13 原子灯機器泠却海水配管ダクト（鋁直部）概略配筋図（断面（4）


図 2－14 原子炉機器泠却海水配管ダクト（鉛直部）概略配筋図（断面（5）

## 2.3 評価方針

原子炉機器冷却海水配管ダクト（鉛直部）は，設計基準対象施設においては，Sクラス施設の間接支持構造物である屋外重要土木構造物に分類され，重大事故等対処施設においては，常設重大事故緩和設備（設計基準拡張）及び常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設に分類される。
原子炉機器冷却海水配管ダクト（鉛直部）の耐震評価フローを図 $2-15$ に示す。
原子炬機器冷却海水配管ダクト（鉛直部）の耐震評価は，地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表 $2-1$ 及び表 $2-2$ に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びSクラスの施設を支持する機能を損なわないことを確認する。
構造部材の健全性評価については，地震応答解析により得られた水平方向及び鉛直方向の荷重を用いた，二次元構造解析により応答値を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊及びせん断破壊に対する評価を行い，照查用応答値が許容限界を下回ることを確認する。
面部材と壁部材から構成される断面（1）の応答値は，面部材を線形シェル要素，壁部材を非線形はり要素とした二次元静的解析により算定し，曲げ・軸力系の破壊及びせん断破壊に対して，構造部材の発生応力度が許容限界を下回ることを確認する。

壁部材のみから構成される断面（2）～⑤）の応答値は，鉄筋コンクリート部材を非線形はり要素，鋼材を線形はり要素とした二次元静的解析により算定する。鉄筋コンクリート部材の曲げ・軸力系の破壊については，構造部材の照査用ひずみが許容限界を下回ること，せん断破壊に対し ては照査用せん断力が許容限界を下回ることを確認する。鋼材の曲げ・軸力系の破壊について は，発生応力度が許容限界を下回ること及び座屈に対する安定の確認を行う。なお，鋼材は軸方向からの荷重に抵抗する軸力部材として設置しており，主な荷重が軸力となることから，曲 げ・軸力系の破壊に対する評価のみを行う。
基礎地盤の支持性能評価においては，原子炬機器冷却海水配管ダクト（鉛直部）は海水ポン プ室に懸架され一体構造となっていることから，添付書類「VI－2－1－9 機能維持の基本方針」 に基づく許容限界を下回ることを，添付書類「VI－2－2－8 海水ポンプ室の耐震性についての計算書」にて確認する。

ここで，原子炉機器冷却海水配管ダクト（鉛直部）の運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括され ることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。


注記＊：添付書類「VI－2－2－8 海水ポンプ室の耐震性についての計算書」にて，基礎地盤の支持性能を確認する。

図 2－15 原子炉機器冷却海水配管ダクト（鉛直部）の耐震評価フロー

表 2－1 原子炉機器冷却海水配管ダクト（鉛直部）の評価項目（断面（1））

| 評価方針 | 評価項目 | 部位 | 評価方法 |  | 容限界 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 構造強度 を有する こと | 構造部材の健全性 | $\begin{aligned} & \text { 鉄筋コン } \\ & \text { クリート } \\ & \text { 部材 } \end{aligned}$ | 発生応力度が許容限界を下回ること を確認 | 曲げ・軸力 | 短期許容応力度 |
|  |  |  |  | せん断力 | 短期許容応力度 |
|  | 基礎地盤の支持性能＊1 | 基礎地盤 | 発生する接地圧が許容限界を下回る ことを確認 | 岩盤の極限支持力＊2 |  |
|  |  | MMR |  | MMR の支圧強度＊2 |  |
| S クラス <br> の施設を支持する | 構造部材の健全性 | 鉄筋コン <br> クリート <br> 部材 | 発生する応力が許容限界を下回るこ とを確認 | 曲げ・軸力 | 短期許容応力度 |
| $\begin{aligned} & \text { なわない } \\ & \text { こと } \end{aligned}$ |  |  |  | せん断力 | 短期許容応力度 |

注記 $~ 1 ~: ~$ 原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポンプ室に懸架され一体構造とな つていることから，添付書類「VI－2－2－8 海水ポンプ室の耐震性についての計算書」 にて，基礎地盤の支持性能を確認する。
＊2：妥当な安全余裕を考慮する。

表 2－2 原子炉機器冷却海水配管ダクト（鉛直部）の評価項目（断面（2）～（5））

| 評価方針 | 評価項目 | 部位 | 評価方法 |  | 許容限界 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 構造強度 } \\ & \text { を有する } \\ & \text { こと } \end{aligned}$ | 構造部材の健全性 | $\begin{array}{\|l} \text { 鉄筋コン } \\ \text { クリート } \\ \text { 部材 } \end{array}$ | 照査用ひずみ及び照査用せん断力が許容限界を下回る ことを確認 | 曲げ・軸力 | 限界ひずみ＊2 |
|  |  |  |  | せん断力 | せん断耐力＊2 |
|  |  | 鋼材 | 発生応力度が許容限界を下回ること を確認 | 曲げ・軸力 | 短期許容応力度 |
|  |  |  | 軸力及び曲げモー メントによる圧縮応力度により座屈 が生じないことを確認 | 曲げ・軸力 | 短期許容応力度 |
|  | 基礎地盤の <br> 支持性能＊＊ | 基礎地盤 | 発生する接地圧が許容限界を下回る ことを確認 | 岩盤の極限支持力＊2 |  |
|  |  | MMR |  | MMR の支圧強度＊2 |  |
| S クラス の施設を | 構造部材の健全性 | $\begin{aligned} & \text { 鉄笳コン } \\ & \text { クリート } \\ & \text { 部材 } \end{aligned}$ | 照査用ひずみ及び照査用せん断力が許容限界を下回る ことを確認 | 曲げ・軸力 | 限界ひずみ＊2 |
| 機能を損 なわない こと |  |  |  | せん断力 | せん断耐力＊2 |

注記＊1：原子炉機器冷却海水配管ダクト（鉛直部）は，海水ポンプ室に懸架され一体構造とな っていることから，添付書類「VI－2－2－8 海水ポンプ室の耐震性についての計算書」 にて，基礎地盤の支持性能を確認する。
＊2：妥当な安全余裕を考慮する。

## 2.4 適用基準

適用する規格，基準等を以下に示す。

- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成14年3月）
- 道路橋示方書（I 共通編•IV下部構造編）•同解説（（社）日本道路協会，平成 14 年 3 月）


## 3．地震応答解析

## 3.1 地震時荷重算出断面

原子炉機器冷却海水配管ダクト（鉛直部）の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，構造物のほぼ中心を通る南北方向（A－ A 断面）及び東西方向（ $\mathrm{B}-\mathrm{B}$ 断面）の両断面とする。なお，原子炉機器冷却海水配管ダクト（鉛直部）は海水ポンプ室に懸架され一体構造となっていることから，東西方向（B－B 断面）の地震時荷重は添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」の応答とする。地震時荷重算出用地質断面図を図 3－2 及び図 3－3に示す。


B
（単位：m）

## 海水ポンプ室

図 3－1 原子炉機器冷却海水配管ダクト（鉛直部）の地震時荷重算出断面位置図


図 3－2 原子炉機器冷却海水配管ダクト（鉛直部）地震時荷重算出用地質断面図（A－A 断面）


図 3－3 原子炉機器冷却海水配管ダクト（鋁直部）地震時荷重算出用地質断面図（B－B 断面）

## 3.2 解析方法

原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏 まえて設定する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

構造部材のうち南北方向断面については，原子炉機器冷却海水配管ダクト（鉛直部）が規模及び重量共に大きい海水ポンプ室に懸架されており，海水ポンプ室と一体となって挙動するこ とから海水ポンプ室の重量及び剛性となる平面応力要素を用いることとし，東西方向断面につ いては添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」に示す補機ポンプエリアの断面 のモデルとする。また，地盤については，地盤のひずみ依存性を適切に考慮できるようモデル化する。

地震応答解析については，解析コード「Soil Plus Ver． 2015 Build3」を使用する。なお，解析コード）の概要」に示す。

## 3．2．1 構造部材

構造部材は，線形はり要素及び平面応力要素でモデル化する。

## 3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表3－1に示す解析ケースを設定する。

原子炉機器冷却海水配管ダクト（鉛直部）は，両脇が地盤改良されており，主たる荷重 は改良地盤等の土圧となることから，盛土，旧表土及び改良地盤の初期せん断弾性係数の ばらつきを考慮する。

初期せん断弾性係数の標準偏差 $\sigma$ を用いて設定した解析ケース（2）及び③）を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

| 解析ケース | $\begin{gathered} \text { 材料物性 } \\ (\text { コンクリート) } \\ \left(\mathrm{E}_{0}: \text { : ヤング係数 }\right) \end{gathered}$ | 地盤物性 |  |
| :---: | :---: | :---: | :---: |
|  |  | 盛土，旧表土 D 級岩盤，改良地盤 $\left(\mathrm{G}_{0}\right.$ ：初期せん断弾性係数） | $C_{L}$ 級岩盤，$C_{M}$ 級岩盤， <br> CH 級岩盤，B級岩盤 <br> （ $\mathrm{G}_{\mathrm{d}}$ ：動せん断弾性係数） |
| $\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \\ \hline \end{gathered}$ | 設計基準強度 | 平均値 | 平均値 |
| ケース②） | 設計基準強度 | 平均値＋1 $\sigma$ | 平均値 |
| ケース③） | 設計基準強度 | 平均値－1 $\sigma$ | 平均値 |
| ケース（4） | 実強度に基づく圧縮強度＊ | 平均値 | 平均値 |

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数
構造部材の減衰定数は，粘性減裹で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト
リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表 $3-2$ に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減裹係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
$\alpha, \beta$ ：係数

表 3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

| 地震時荷重算出断面 | $\alpha$ | $\beta$ |
| :---: | :---: | :---: |
| A－A 断面 | $5.416 \times 10^{-1}$ | $5.540 \times 10^{-4}$ |
| B－B 断面 | $5.519 \times 10^{-1}$ | $5.440 \times 10^{-4}$ |

## 3．2．4 地震応答解析の解析ケースの選定

耐震評価においては，すべての基準地震動 S s に対し，解析ケース①（基本ケース）を実施する。解析ケース①）にいて，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照查の照査項目ごとに照査値が 0.5 以上となる照査項目に対して，最も厳しい地震動を用い て，表 3－1 に示す解析ケース（2）～（4）を実施する。耐震評価における解析ケースを表3－3 に示す。

表 3－3 耐震評価における解析ケース

|  |  |  | ケース（1） | ケース② | ケース（3） | ケース（4） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 解析ケー |  | 基本ケース | 地盤物性のばら つき（＋1 $\sigma$ ）を考慮した解析ケ ース | 地盤物性のばら つき（－1 $\sigma$ ）を考慮した解析ケ ース | 材料物性（コ <br> クリート）に <br> 強度を考慮し <br> 解析ケース |  |
|  | 地盤物性 |  | 平均値 | 平均値＋1 $\sigma$ | 平均値－1 $\sigma$ | 平均値 |  |
|  | 材料物性 |  | 設計基淮強度 | 設計基準強度 | 設計基準強度 | 実強度に基 く圧縮強度 |  |
|  |  | ＋＋＊1 | $\bigcirc$ |  |  |  |  |
|  | S s D 1 | $-+* 1$ | $\bigcirc$ | 基準地震動 | s（7 波）に水 | －の位相反転 |  |
|  |  | $++^{* 1}$ | $\bigcirc$ | を考慮した | 震動（7 波）を | えた全14波 |  |
|  | 2 | $-+^{* 1}$ | $\bigcirc$ | により照査 | 行ったケース（1） | （基本ケース） |  |
|  | Ss－D 3 | $++^{* 1}$ | $\bigcirc$ | の結果から， | 曲げ・軸力系の硬 | 商，せん断破 |  |
| 地 | S ${ }^{\text {d }}$ | $-+^{* 1}$ | $\bigcirc$ | 壊及び基碍 | 艦の支持力照査の | 照査項目ご |  |
| 動 | S s－F 1 | $++^{* 1}$ | $\bigcirc$ | とに照査値が | － 0.5 以上となる | 咷查項目に対 |  |
| 位 | S ${ }^{\text {F }} 1$ | $-+^{* 1}$ | $\bigcirc$ | して，最も | しい（許容限界に | 对する裕度が |  |
|  |  | ＋＋${ }^{* 1}$ | $\bigcirc$ | 最も小さい | 地震動を用いて | －ス②）（4） |  |
|  | S ${ }^{\text {F }} 2$ | $-+^{* 1}$ | $\bigcirc$ | を実施する |  |  |  |
|  | Ss－F3 | $++^{* 1}$ | $\bigcirc$ | べての | 項目の照査値 | ずれも 0.5 |  |
|  | S | $-+^{* 1}$ | $\bigcirc$ | 未満の場合 | は，照査値が最も | 㪄しくなる地 |  |
|  |  | $+{ }^{* 1}$ | $\bigcirc$ | 震動を用し | ケース（2）～（4）を | 施する。 |  |
|  | S ${ }^{\text {N }}$ | －＋＊1 | $\bigcirc$ |  |  |  |  |

注記 $~ 1 ~ 1: ~$ 耐震評価にあたっては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

## 3．3．1 耐震評価上考慮する状態

原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析において，地震以外に考慮す る状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

## 3．3．2 荷重

原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重を考慮する。
（2）積載荷重（ P ）
積載荷重として，積雪荷重 $\mathrm{P}_{\mathrm{S}}$ を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ $\mathrm{P}_{\mathrm{s}}$ ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（ S s ）
基準地震動 S s による荷重を考慮する。

## 3．3．3 荷重の組合せ

荷重の組合せを表3－4に示す。

表 3－4 荷重の組合せ

| 外力の状態 | 荷重の組合せ |
| :---: | :---: |
| 地震時 $(\mathrm{S} \mathrm{s})$ | $\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$ |

G ：固定荷重
P：積載荷重（積雪荷重 $\mathrm{P}_{\mathrm{s}}$ を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s：地震荷重（基準地震動 S s ）

## 3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 3－4に入力地震動算定の概念図を，図 3－5～図3－18に A－A 断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを，図 3－19～図3－32にB－B 断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver3．10」を使用する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
$\nabla$ 地表面


図 3－4 入力地震動算定の概念図


（b）加速度応答スペクトル

図3－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分 ： S s -D 1 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （A－A断面，鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）


（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （A－A断面，鉛直成分：S s－D 2 ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，水平成分： $\mathrm{S} \mathrm{S}-\mathrm{N} 1$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{A}-\mathrm{A}$ 断面，鉛直成分：S s－N 1 ）


（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－D 1）


（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 1$ ）


（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 2$ ）

（a）加速度時刻歴波形


図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} s-\mathrm{D} 2$ ）


（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} s-\mathrm{D} 3$ ）



図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{D} 3$ ）


（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－F 1）



図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 1$ ）


（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形


図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} s-\mathrm{F} 2$ ）

$\mathrm{h}=0.05$

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－F 3）

（a）加速度時刻歴波形


図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）


（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （B－B断面，水平成分：S s－N1）

（a）加速度時刻歴波形


図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （ $\mathrm{B}-\mathrm{B}$ 断面，鉛直成分： $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ ）

## 3.5 解析モデル及び諸元

## 3．5．1 解析モデル

原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析モデルを図 3－33 及び図 3－ 34 に示す。なお，図 3－34 の地震応答解析モデル（B－B 断面）は，添付書類「VI－2－2－7 海水ポンプ室の地震応答計算書」を引用している。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
構造部材については，線形はり要素及び平面応力要素によりモデル化する。
（4）地盤のモデル化
D級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土•旧表土及び改良地盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化 する。
（5）ジョイント要素の設定
地震時の「MMR と構造物」，「盛土及び岩盤とMMR」，「盛土及び岩盤と改良地盤」及び「盛土と構造物」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョ イント要素を設定する。


側方粘性境界


図 3－33 原子炉機器冷却海水配管ダクト（鉛直部）の地震応答解析モデル（A－A 断面）


図 3－34 原子炉機器冷却海水配管ダクト（鉛直部）の地震応答析モデル（B－B 断面）

## 3．5．2 使用材料及び材料の物性値

構造物の使用材料を表 3－5に，材料の物性値を表 3－6に示す。

表 3－5 使用材料

| 材料 |  | 仕様 |  |
| :--- | :---: | :---: | :---: |
| コンクリート | 側壁，隔壁，頂版 | 設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$ |  |
|  | 側壁（新設部） | 設計基準強度 $50.0 \mathrm{~N} / \mathrm{mm}^{2}$ |  |
|  | 鉄筋 | SD345 |  |
|  | 鋼材 | SM490 |  |

表 3－6 材料の物性値（構造部材）

| 材料 | 項目 |  |  | 材料諸元 | 備考 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 鉄筋コンクリート | 単位体積重量（kN／m ${ }^{3}$ ） |  |  | 24.0 |  |
| コンクリート | ヤング係数 <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 実強 <br> 度 | 37． $2 \mathrm{~N} / \mathrm{mm}^{2 * 1}$ | 3． $02 \times 10^{4}$ | 解析ケース（4） |
|  |  |  | 70． $0 \mathrm{~N} / \mathrm{mm}^{2 * 2}$ | 3． $70 \times 10^{4}$ |  |
|  |  | 設計 <br> 基準 <br> 強度 | $20.5 \mathrm{~N} / \mathrm{mm}^{2}$ | 2． $33 \times 10^{4}$ | 解析ケース <br> （1），（2），（3） |
|  |  |  | $50.0 \mathrm{~N} / \mathrm{mm}^{2}$ | 3． $30 \times 10^{4}$ |  |
|  | ポアソン比 |  |  | 0.2 |  |
| 鋼材 | 単位体積重量（kN／m³） |  |  | 77.0 |  |
|  | ヤング係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ） |  |  | 2． $00 \times 10^{5}$ |  |
|  | ポアソン比 |  |  | 0.3 |  |

注記＊1 ：既設構造物のコア採取による圧縮強度試験の結果を使用する。
＊2：新設部のため推定強度を使用する。

## 3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

## 3．5．4 地下水位

設計用地下水位は，添付資料「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位の一覧を表3－7に，設計用地下水位を図3－35及び図3－36に示 す。

表 3－7 設計用地下水位の一覧

| 施設名称 | 地震時荷重算出断面 | 設計用地下水位 |
| :---: | :---: | :---: |
| 原子炉機冷却 | A－A断面 | 0．P．$-3.50 \mathrm{~m} \sim 0$. P．-10.50 m |
| （鉛直部） | B－B断面 | 0．P．$-8.50 \mathrm{~m} \sim 0$. P．$+2.43 \mathrm{~m}^{*}$ |

注記＊：朔望平均満潮位


図 3－35 設計用地下水位（A－A 断面）


図 3－36 設計用地下水位（B－B 断面）

## 3.6 地震応答解析結果

構造部材の曲げ・軸力系の破壊及びせん断破壊に対する照査のうち，照査値が最大となる曲 げ・軸力系の破壊に対する照査の地震動•解析ケースにおける作用荷重分布図を図 $3-37$ 及び図 3－38に示す。




直応力
20


$$
\text { 構造スケール } 0^{0} \underbrace{1}(\mathrm{~m}) \quad \text { 設計震度スケール } 0^{0} 1.0
$$

設計震度（NS）


$\left.+\begin{array}{l}+ \text { 側 } \\ \text { 設計震度 } \rightarrow \\ - \text { 側 } \\ \text { 設計震度 } \leftarrow\end{array}\right)$
$\left.+\begin{array}{l}+ \text { 側 } \\ \text { 設計震度 } \rightarrow \\ - \text { 側 } \\ \text { 設計震度 } \leftarrow\end{array}\right)$
$\stackrel{\text { ー設計震度 }}{\text { 側 }} \left\lvert\, \begin{aligned} & \text { 設計震度 } \rightarrow\end{aligned}\right.$ －


構造スケール ${ }^{0}{ }^{1}$（m） $\qquad$
䰻补度度スケール ${ }^{0} \underbrace{1.0}$
設計震度（EW）

$\left.\begin{array}{l}+ \text { 側 } \\ \text { 設計震度 } \uparrow \\ \text { 一側 } \\ \text { 設謁震度 }\end{array}\right)$


図 3－38 作用荷重分布図（設計震度分布）
（断面（5），解析ケース（3），S s－N $1(-+))$

## 4．二次元構造解析

4.1 評価対象部材

二次元構造解析の評価対象部材は，原子炉機器冷却海水配管ダクト（鉛直部）を構成する構造部材である頂版，側壁，隔壁及び鋼材とする。

断面（1）～⑤）の解析モデル図及び評価対象部材を図4－1～図4－5に示す。


図 4－1 二次元構造解析の解析モデル図及び評価対象部材（断面（1））


図 4－2 二次元構造解析の解析モデル図及び評価対象部材（断面（2））


図 4－3 二次元構造解析の解析モデル図及び評価対象部材（断面（3））


図 4－4 二次元構造解析の解析モデル図及び評価対象部材（断面（4））


図 4－5 二次元構造解析の解析モデル図及び評価対象部材（断面（5））

## 4．2 解析方法

原子炉機器冷却海水配管ダクト（鉛直部）の二次元構造解析は，「3．地震応答解析」より得 られた応答値に基づき，断面ごとに各基準地震動 S s の包絡荷重を作成し，東西方向及び南北方向から同時に入力し，各構造部材について，曲げ・軸力系の破壊及びせん断破壊に対する照査を実施する。なお，断面（1）は頂版を有しており鉛直方向に面外変形することから，水平方向及び鉛直方向の荷重を入力し，曲げ・軸力系の破壊及びせん断破壊に対する照査を実施する。

二次元構造解析には，解析コード「TDAPIII Ver．3．10．01」を用いる。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

## 4．3 解析モデルの諸元

4．3．1 解析モデル
（1）構造物のモデル化
面部材と壁部材から構成される断面①は，面部材を線形シェル要素，壁部材をファイバ ーモデルによる非線形はり要素でモデル化する（図 4－1 参照）。シェル要素における各要素の断面力の方向を図4－6に示す。

壁部材のみから構成される断面（2）～⑤の鉄筋コンクリート部材はファイバーモデルによ る非線形はり要素でモデル化し，鋼材は両端をピン支持とした軸力のみを負担する線形は り要素でモデル化する（図 4－2～図4－5 参照）。

なお，ファイバーモデルは，はり要素の断面を層状に分割し各層に材料の非線形性を考慮する材料非線形モデルであり（図4－7参照），図4－8 に示すコンクリートの応力ーひ ずみ関係及び図 4－9に示す鉄筋の応力ーひずみ関係を考慮する。
（2）境界条件
原子炉機器冷却海水配管ダクト（鉛直部）は海水ポンプ室に懸架され一体構造となって いることから，二次元構造解析モデルにおける海水ポンプ室との取合部は固定境界として いる。

$\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}$ ：曲げモーメント
$\mathrm{Q}_{\mathrm{x}}, ~ \mathrm{Q}_{\mathrm{y}}$ ：せん断力
$\mathrm{N}_{\mathrm{x}}$ ， $\mathrm{N}_{\mathrm{y}}$ ：軸力
$\mathrm{N}_{\mathrm{x}} \mathrm{y}$ ：面内せん断力

図4－6 シェル要素の各要素における断面力の方向


図 4－7 ファイバーモデルの概念図

$k_{1}=1-0.003 f_{c k}^{\prime} \quad \leq 0.85$
$\varepsilon_{c u}^{\prime}=\frac{155-f_{c k}^{\prime}}{30000} \quad 0.0025 \leq \varepsilon_{c u}^{\prime} \leq 0.0035$
ここで，$f_{d}^{\prime}$ の単位は $\mathrm{N} / \mathrm{mm}^{2}$
曲線部の応力ひずみ式
$\sigma_{c}^{\prime}=k_{1} f_{c d}^{\prime} \times \frac{\varepsilon_{c}^{\prime}}{0.002} \times\left(2-\frac{\varepsilon_{c}^{\prime}}{0.002}\right)$

図 4－8 構造部材の非線形特性（コンクリートの応力ーひずみ関係） （コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）


図 4－9 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）

## 4．3．2 使用材料及び材料の物性値

原子炉機器冷却海水配管ダクト（鉛直部）の使用材料及び材料の物性值は，「3．5．2 使用材料及び材料の物性値」に基づき設定する。

## 4．4 入力荷重

二次元構造解析の入力荷重は，地震応答解析に基づく応答値を用いて算定する。入力荷重 の一覧を表4－1に示す。

表4－1 二次元構造解析における入力荷重

| 区分 | 種別 | 考慮する荷重 |
| :---: | :--- | :--- |
|  | 固定荷重 | 躯体自重 |
|  | 荷重 | 積載荷重 |
|  | 機器•配管荷重 |  |
| 地震時 <br> 荷重 | 慣性力 | 躯体に作用する常時土圧 |
|  | 地震時土圧＊ | 躯体，機器•配管に作用する作用する忚貫性力 |

注記＊：各断面区間の最大値を採用する。

## 4.5 二次元構造解析結果

## 4．5．1 断面（1）の解析結果

断面（1）の構造部材の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震動における断面力分布図を図 4－10～図4－14 に，せん断破壊に対して最大照査値となる解析ケース及び地震動における断面力分布図を図4－15 及び図4－16に示す。

なお，断面（1）と断面（2）の壁部材は壁厚及び配筋が同一であり，断面（1）は頂版を有するた め断面（2）よりも構造的に有利となることから，断面（1）における壁部材の照査は断面（1）と断面（2）の荷重を包絡して照査を行う断面（2）で代表とし，断面（1）では面部材である頂版の照査 を行う。
$7^{\text {南 }}$
北
Mx（kN•m／m）


図 4－10 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{x}}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）


図 4－11 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{y}}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）


図 4－12 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力 $\left.(k N / m): N_{x}\right)$
（頂版，解析ケース（4），S s－D $2(++)$ ）


図 4－13 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力 $\left.(\mathrm{kN} / \mathrm{m}): N_{y}\right)$
（頂版，解析ケース（4），S s－D $2(++)$ ）


図 4－14 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （面内せん断力（ $\mathrm{kN} / \mathrm{m}$ ）： $\mathrm{N}_{\mathrm{xy}}$ ）
（頂版，解析ケース（4），S s－D $2(++)$ ）


図 4－15 せん断破壊に対する照査における照査値最大時の断面力分布図 （せん断力 $(\mathrm{kN} / \mathrm{m}): \mathrm{Q}_{\mathrm{x}}$ ）
（頂版，解析ケース（2），S s－D $2(++)$ ）


図 4－16 せん断破壊に対する照査における照査値最大時の断面力分布図
（せん断力（kN／m）： $\mathrm{Q}_{\mathrm{y}}$ ）
（頂版，解析ケース（2），S s－D $2(++)$ ）

4．5．2 断面（2）の解析結果
断面（2）の構造部材の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－17に，せん断破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－18に示す。



数値：評価位置における断面力軸力 $(\mathrm{kN})(+$ ：引張，- ：圧縮）


図 4－17 曲げ・軸力系の破壊に対する照査値最大時の断面力図
（隔壁（南北），解析ケース（1），S s－D $1(-+)$ ）


数値：評価位置における断面力
曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$


数値：評価位置における断面力
軸力（kN）（＋：引張，- ：圧縮）


図 4－18 せん断破壊に対する照査値最大時の断面力図 （隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

## 4．5．3 断面（3）の解析結果

断面（3）の構造部材の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－19に，せん断破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－20に示す。


数値：評価位置における断面力
曲げモーメント（kN•m）


図 4－19 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （側壁（南北），解析ケース（2），S s－D $2(++)$ ）


図 4－20 せん断破壊に対する照査値最大時の断面力図 （隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

## 4．5．4 断面（4）の解析結果

## 断面（4）の構造部材の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震

動における断面力図を図4－21 に，せん断破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－22に示す。

図 4－21 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （側壁（南北），解析ケース（3），S s－N $1(-+)$ ）



図 4－22 せん断破壊に対する照査値最大時の断面力図 （隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

## 4．5．5 断面（5）の解析結果

断面（5）の構造部材の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－23に，せん断破壊に対して最大照査値となる解析ケース及び地震動における断面力図を図4－24に示す。


図 4－23 曲げ・軸力系の破壊に対する照査値最大時の断面力図 （側壁（南北），解析ケース（3），S s－N $1(-+)$ ）


曲げモーメント（kN•m）


数値：評価位置における断面力軸力（kN）（ + ：引張，- ：圧縮）


10000 kN ＿5000


$\Gamma_{-5000}^{1000 \mathrm{k}}$

図 4－24 せん断破壊に対する照査値最大時の断面力図 （隔壁（東西），解析ケース（4），S s－D $2(++)$ ）

## 5．耐震評価

5.1 構造部材の健全性に対する許容限界許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

## 5．1．1 鉄筋コンクリート部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
a．断面（1）
鉄筋コンクリート部材を線形シェル要素によりモデル化を行う断面（1）の構造強度を有 することの確認，止水機能を損なわないこと及びS クラスの施設を支持する機能を損な わないことの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，短期許容応力度とする。コンクリート及び鉄筋の許容応力度を表5－1 及び表5－2に示す。

なお，頂版に止水機能及びSクラスの施設を支持する機能を要求されるが，短期許容応力度により照査を行うため，構造強度を有することの確認と許容限界が同一となること から，全部材に対して構造強度を有することを確認することで，止水機能及びS クラスの施設を支持する機能を損なわないことの確認も同時に行う。

表 5－1 コンクリートの許容応力度及び短期許容応力度（断面（1））

| 設計基準強度 | 許容応力度 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |  | 短期許容応力度＊ <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{f}, ~ \mathrm{ck}=20.5\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ | 許容曲げ圧縮応力度 <br> $\sigma^{\prime}{ }_{\mathrm{ca}}$ | 7.8 | 11.7 |
|  | 許容せん断応力度 $\tau_{\mathrm{a} 1}$ | 0.42 | 0.63 |

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。

表 5－2 鉄筋の許容応力度及び短期許容応力度（断面（1））

| 鉄筋の種類 | 許容応力度 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |  | 短期許容応力度＊ <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
| SD345 | 許容引張応力度 $\sigma_{\mathrm{sa}}$ | 196 | 294 |

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。
b．断面（2）～（5）
鉄筋コンクリート部材を非線形はり要素によりモデル化を行う断面（2）～⑤）の構造強度 を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対す る許容限界は，土木学会マニュアルに基づき，限界ひずみ（圧縮縁コンクリートひずみ 1． $0 \%$ と とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ $1.0 \%$ の

状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模 したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。 この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定され たものである。

また，側壁及び隔壁のアンカー定着部に要求されるS クラスの施設を支持する機能を損なわないことの確認においては，コンクリート標準示方書に基づき，主筋ひずみ及びコ ンクリートの圧縮ひずみについて，部材降伏に相当するひずみ（主筋ひずみ $1725 \mu$ ，コ ンクリート圧縮ひずみ $2000 \mu$ ）とする。鉄筋コンクリートの曲げ・軸力系の破壊に対す る許容限界を表5－3に示す。

表 5－3 曲げ・軸力系の破壊に対する許容限界（断面（2）～⑤）

| 確認項目 | 許容限界 |  |
| :---: | :---: | :---: |
| 構造強度を有すること | 限界ひずみ | 圧縮縁コンクリートひずみ：1．0\％ （10000 $\mu$ ） |
| S クラスの施設を支持する機能を損なわないこと |  | $\begin{aligned} & \text { 主鉄筋 (SD345) : } 1725 \mu \\ & \text { コンクリート }: 2000 \mu \end{aligned}$ |

（2）せん断破壊に対する許容限界
a．断面（1）
鉄筋コンクリート部材を線形シェル要素によりモデル化を行う断面（1）の構造強度を有 することの確認，止水機能を損なわないこと及びS クラスの施設を支持する機能を損な わないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界 は，表5－1に示す短期許容応力度とする。
b．断面（2）～（5）
鉄筋コンクリート部材を非線形はり要素によりモデル化を行う断面（2）～⑤）の構造強度 を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認におけ るせん断破壊に対する許容限界は，土木学会マニュアルに基づくせん断耐力とする。

## 5．1．2 鋼材の健全性に対する許容限界

鋼材を線形はり要素によりモデル化している部材の構造強度を有することの確認は，「道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成14年3月）」 に基づき，表5－4に示す短期許容応力度とする。

表 5－4 鋼材の許容限界

| 鋼材 | 許容応力度 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |  | 短期許容応力度＊ <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: |
| SM490 | 局部座屈に対する許容応力度 <br> $\sigma \mathrm{cal}$ | 185 | 277 |

注記 $*$ ：道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成14年3月）により地震時の割り増し係数として 1.5 を考慮する。

鋼材の曲げ・軸力系の破壊に対する照査は，「道路橋示方書（I 共通編•II鋼橋編）•同解説（（社）日本道路協会，平成 14 年 3 月）」に基づき，軸方向力と曲げの組合せに対し て，（5．1）及び（5．2）に示す応力の照査及び座屈に対する安定の照査を行う。応力の照査 ：$\sigma_{c}+\frac{\sigma_{\text {bcy }}}{\left(1-\frac{\sigma_{c}}{\sigma_{\text {eay }}}\right)}+\frac{\sigma_{\text {bcz }}}{\left(1-\frac{\sigma_{c}}{\sigma_{\text {eaz }}}\right)} \leqq \sigma_{\text {cal }}$

座屈に対する照査 ：$\frac{\sigma_{c}}{\sigma_{\text {caz }}}+\frac{\sigma_{\text {bcy }}}{\sigma_{\text {bagy }}\left(1-\frac{\sigma_{c}}{\sigma_{\text {eay }}}\right)}+\frac{\sigma_{\text {bcz }}}{\sigma_{\text {bao }}\left(1-\frac{\sigma_{c}}{\sigma_{\text {eaz }}}\right)} \leqq 1$

# $\sigma_{c}$ ：照査する断面に作用する軸方向力による圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> $\sigma_{b c y}, ~ \sigma_{b c z}$ ：強軸及び弱軸まわりに作用する曲げモーメントによる曲げ圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> $\sigma_{c a z}$ ：弱軸まわりの許容軸方向圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> $\sigma_{\text {bagy }}$ ：局部座屈を考慮しない強軸まわりの許容曲げ圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ <br> $\sigma_{\text {bao }}$ ：局部座屈を考慮しない許容曲げ圧縮応力度の上限値（ $\mathrm{N} / \mathrm{mm}^{2}$ ） <br> $\sigma_{\text {cal }}$ ：局部座屈に対する許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ <br> $\sigma_{\text {eay }}, \sigma_{\text {eaz }}$ ：強軸及び弱軸まわりの許容オイラー座屈応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） 

$$
\begin{aligned}
& \sigma_{\text {eay }}=1,200,000 /\left(1 / r_{y}\right)^{2} \\
& \sigma_{\text {eaz }}=1,200,000 /\left(1 / r_{z}\right)^{2}
\end{aligned}
$$

1 ：有効座屈長（mm）
$r_{y}, r_{z}$ ：強軸及び弱軸まわりの断面二次半径（mm）

5．1．3 基礎地盤の支持性能に対する許容限界
（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の接地圧に対する許容限界を表5－5に示す。

表 5－5 基礎地盤の支持性能に対する許容限界

| 評価項目 | 基礎地盤 | 許容限界 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: |
| 極限支持力 | 狐崎部層 | 13.7 |

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。

MMR（既設）の許容限界を表5－6に示す。

表 5－6 MMR（既設）の支持性能に対する許容限界

| 評価項目 | MMR（既設） | 許容限界 <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: |
| 支圧強度 | コンクリート <br> $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$ | $\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$ |

## 5．2 評価方法

構造部材の健全性評価については，地震応答解析により得られた応答値から二次元構造モデ ルへ入力する荷重を算定し，二次元構造解析により算定した発生応力度，照査用ひずみ，照査用せん断力が「5．1許容限界」に示す許容限界を下回ることを確認する。基礎地盤の支持性能については，地震応答解析から算定した最大接地圧が「5．1 許容限界」に示す許容限界を下回ることを確認する。

6．耐震評価結果
6.1 構造部材の健全性に対する評価結果

6．1．1 断面（1）の評価結果
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 －1 及び表6－2に，せん断破壊に対する各評価位置での最大照査値を表6－3に示す。

原子炉機器冷却海水配管ダクト（鉛直部）の断面①において，発生応力度及び発生せん断力が，構造部材の健全性に対する許容限界を下回ることを確認した。

表6－1 曲げ・軸力系の破壊に対する最大照査値（コンクリート）

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 曲げモー メント $(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m})$ | 軸力 $(\mathrm{kN} / \mathrm{m})$ | 発生 <br> 応力度 $\sigma$ ， （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 短期許容 <br> 応力度 <br> $\sigma{ }^{\prime}{ }^{\text {ca }}$ <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | $\begin{gathered} \text { 照査値 } \\ \sigma^{\prime} / \sigma^{\prime} \text { ca } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （1） | S s－D $1 \quad(-+)$ | 17 | －1894 | 2.5 | 11.7 | 0． 22 |

注記＊：評価位置は図 6－1 に示す。

表6－2 曲げ・軸力系の破壊に対する最大照査値（鉄筋）

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 曲げモー $\begin{gathered} \text { メント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$ | 軸力 $(\mathrm{kN} / \mathrm{m})$ | 発生 <br> 応力度 <br> $\sigma$ s $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 短期許容 <br> 応力度 <br> $\sigma_{\text {sa }}$ <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 照査値 <br> $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （4） | S s－D $2(++)$ | 2 | 664 | 100 | 294 | 0． 35 |

注記 $*: ~$ 評価位置は図 6－1に示す。

表6－3 せん断破壊に対する照査

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 発生 せん断力 $(\mathrm{kN} / \mathrm{m})$ | 発生 <br> 応力度 <br> $\tau_{\text {d }}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 短期許容 <br> 応力度 <br> $\tau_{\text {a1 }}$ <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 照査値 <br> $\tau_{\mathrm{d}} / \tau_{\text {al }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （2） | S s－D $2(++)$ | －67 | 0.14 | 0． 63 | 0． 23 |

注記＊：評価位置は図6－1に示す。

## 6．1．2 断面（2）～⑤）の評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 -4 に，鋼材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表6－5及び表6 -6 に，せん断破壊に対する各評価位置での最大照査値を表6－7に示す。
原子炉機器泠却配管ダクト（鉛直部）の断面（2）～（5）において照査用ひずみ（コンクリー トの圧縮ひずみ），発生応力度及び照査用せん断力が，構造部材の健全性に対する許容限界 を下回ることを確認した。

表6－4 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

| 評価位置＊${ }^{*}$ |  |  | 解析 ケース | 地震動 | $\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{\mathrm{d}} \end{gathered}$ | 限界 ひずみ <br> $\varepsilon \mathrm{R}$ | 照査値 <br> $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 隔壁（東西） | 233 | （1） | S s－D $2(++)$ | $683 \mu$ | $10000 \mu$ | 0.07 |
| 断面（3） | 隔壁（東西） | 336 | （2） | S s－D $2(++)$ | $712 \mu$ | $10000 \mu$ | 0.08 |
| 断面（4） | 側壁（南北） | 414 | （2） | S s－D $2(++)$ | $1022 \mu$ | $10000 \mu$ | 0.11 |
| 断面（5） | 隔壁（東西） | 536 | （3） | S s - N $1 \quad(-+)$ | $805 \mu$ | $10000 \mu$ | 0.09 |

注記＊1：評価位置は図6－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma$ a

表6－5 曲げ・軸力系の破壊に対する最大照查値（鋼材，応力の照查）

| 評価位置＊ |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 発生 <br> 応力度 <br> $\sigma$ 。 <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 短期許容 <br> 応力度 $\begin{gathered} \sigma_{\text {cal }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$ | 照査値 $\sigma_{\mathrm{c}} / \sigma_{\mathrm{cal}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 鋼材 | 251 | （1） | S s－F $3(-+)$ | 155 | 277 | 0.56 |
| 断面（3） | 鋼材 | 351 | （2） | S s－D $2(++)$ | 97 | 277 | 0． 36 |
| 断面（4） | 鋼材 | 451 | （2） | S s－D $2(++)$ | 88 | 277 | 0.32 |
| 断面（5） | － | － | － | － | － | － | － |

注記＊：評価位置は図6－1 に示す。

表6－6 曲げ・軸力系の破壊に対する最大照査値（鋼材，座屈に対する安定の照査）

| 評価位置＊ |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 応力度区分 | 発生 <br> 応力度 $\sigma_{c}, \quad \sigma_{b c}$ <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 短期許容 <br> 応力度 $\begin{gathered} \sigma_{\text {ca }} \quad \sigma_{\text {ba }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$ | 個別照查値 $\begin{aligned} & \sigma_{\mathrm{c}} / \sigma_{\mathrm{ca}}, \\ & \sigma_{\mathrm{bc}} / \sigma_{\mathrm{ba}} \end{aligned}$ | 照査値 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 鋼材 | 251 | （1） | $\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 3 \\ (-+) \end{gathered}$ | 軸力 | 150 | 252 | 0.60 | 0.63 |
|  |  |  |  |  | 強軸曲げ | 1 | 247 | 0.01 |  |
|  |  |  |  |  | 弱軸曲げ | 3 | 246 | 0.02 |  |
| 断面（3） | 鋼材 | 351 | （2） | $\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$ | 軸力 | 91 | 242 | 0.38 | 0． 41 |
|  |  |  |  |  | 強軸曲げ | 1 | 241 | 0.01 |  |
|  |  |  |  |  | 弱軸曲げ | 4 | 250 | 0． 02 |  |
| 断面（4） | 鋼材 | 451 | （2） | $\begin{gathered} \text { S s }-\mathrm{D} 2 \\ (++) \end{gathered}$ | 軸力 | 69 | 190 | 0.37 | 0． 45 |
|  |  |  |  |  | 強軸曲げ | 1 | 190 | 0.01 |  |
|  |  |  |  |  | 弱軸曲げ | 13 | 210 | 0.07 |  |
| 断面（5） | － | － | － | － | － | － | － | － | － |

注記 $*: ~$ 評価位置は図 6－1 に示す。

表6－7 せん断破壊に対する最大照查値

| 評価位置＊1 |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}$ （ $\mathrm{kN} / \mathrm{m}$ ） | せん断 <br> 耐力 <br> $V_{y d}$ <br> （kN／m） | $\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 隔壁（東西） | 238 | （4） | S s－D $2(++)$ | 829 | 1649＊3 | 0.51 |
| 断面（3） | 隔壁（東西） | 333 | （4） | S s－D $2(++)$ | 502 | $563 * 3$ | 0． 90 |
| 断面（4） | 隔壁（東西） | 437 | （4） | S s－D $2(++)$ | 1400 | 1808＊3 | 0.78 |
| 断面（5） | 隔壁（東西） | 537 | （4） | S s－D $2(++)$ | 1255 | 1965＊3 | 0． 64 |

注記 $* 1$ ：評価位置は図 6－1 に示す。
$* 2$ ：照査用せん断力二発生せん断力×構造解析係数 $\gamma_{\mathrm{a}}$
＊3：材料非線形解析によるせん断耐力

断面（1）


断面（2）


断面（3）


断面（4）


断面（5）


図 6－1 評価位置図

## 6．2 止水機能に対する評価結果

原子炉機器泠却海水配管ダクト（鉛直部）の頂版（断面①）の一部に浸水防止のための止水機能が要求されるが，短期許容応力度により照査を行う構造強度を有することの確認と許容限界が同一となることから，「6．1 構造部材の健全性に対する評価結果」の「6．1．1 断面（1）の評価結果」により，止水機能を損なわないことを確認した。

6． 3 S クラスの施設を支持する機能に対する評価結果
6．3．1 断面（1）の評価結果
鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 －8及び表6－9に，せん断破壊に対する各評価位置での最大照査値を表6－10に示す。
原子炉機器冷却海水配管ダクト（鉛直部）の断面（1）において，発生応力度及び発生せん断力が，S クラスの施設を支持する機能に対する許容限界を下回ることを確認した。

表 6－8 曲げ・軸力系の破壊に対する最大照査値（コンクリート）（再掲）

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 曲げモー $\begin{gathered} \text { メント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$ | 軸力 $(\mathrm{kN} / \mathrm{m})$ | 発生 <br> 応力度 $\begin{gathered} \sigma^{\prime} \\ \left(\mathrm{N} / \mathrm{m}_{2}^{2}\right) \end{gathered}$ | 短期許容 <br> 応力度 <br> $\sigma^{\prime}{ }_{\text {ca }}$ <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | $\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c a} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （1） | S s－D $1 \quad(-+)$ | 17 | －1894 | 2.5 | 11.7 | 0． 22 |

注記 $*:$ 評価位置は図 6－1 に示す。

表 6－9 曲げ・軸力系の破壊に対する最大照査値（鉄筋）（再掲）

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | $\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$ | 軸力 $(\mathrm{kN} / \mathrm{m})$ | 発生 <br> 応力度 <br> $\sigma$ s <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 短期許容 <br> 応力度 <br> $\sigma$ sa <br> （ $\mathrm{N} / \mathrm{mm}^{2}$ ） | 照査値 <br> $\sigma_{\mathrm{s}} / \sigma_{\text {sa }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （4） | S s－D $2(++)$ | 2 | 664 | 100 | 294 | 0.35 |

注記＊：評価位置は図6－1 に示す。

表 6－10 せん断破壊に対する照査（再掲）

| 評価位置＊ |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 発生 せん断力 <br> （kN／m） | 発生 <br> 応力度 <br> $\tau_{d}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 短期許容 <br> 応力度 <br> $\tau_{\text {al }}$ <br> $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | 照査値 <br> $\tau_{\mathrm{d}} / \tau_{\text {al }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 頂版 | 101 | （2） | S s－D $2(++)$ | －67 | 0.14 | 0.63 | 0． 23 |

注記＊：評価位置は図6－1に示す。

## 6．3．2 断面（2）～⑤）の評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 6 －11及び表6－12に，せん断破壊に対する各評価位置での最大照査値を表6－13に示す。原子炉機器冷却配管ダクト（鉛直部）の断面（2）～（5）において照査用ひずみ（コンクリー トの圧縮ひずみ及び主筋ひずみ）及び照査用せん断力が，S クラスの施設を支持する機能 に対する許容限界を下回ることを確認した。

表6－11 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

| 評価位置＊${ }^{*}$ |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | $\begin{gathered} \text { 照査用 } \\ \text { ひずみ*2 } \\ \varepsilon_{d} \end{gathered}$ | $\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{R}} \end{gathered}$ | 照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 隔壁（東西） | 233 | （1） | S s－D $2(++)$ | $683 \mu$ | $2000 \mu$ | 0.35 |
| 断面（3） | 隔壁（東西） | 336 | （2） | S s－D $2(++)$ | $712 \mu$ | $2000 \mu$ | 0.36 |
| 断面（4） | 側壁（南北） | 414 | （2） | S s－D $2(++)$ | $1022 \mu$ | $2000 \mu$ | 0． 52 |
| 断面（5） | 隔壁（東西） | 536 | （3） | S s－N $1(-+)$ | $805 \mu$ | $2000 \mu$ | 0.41 |

注記＊1：評価位置は図 6－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma_{\mathrm{a}}$

表6－12 曲げ・軸力系の破壊に対する最大照査値（主筋ひずみ）

| 評価位置＊1 |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 ひずみ*2 | 限界 ひずみ <br> $\varepsilon_{R}$ | 照査値 <br> $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 隔壁（南北） | 242 | （1） | S s－D $1(-+)$ | 1017 m | 1725 н | 0.59 |
| 断面（3） | 側壁（南北） | 311 | （2） | S s－D $2(++)$ | $873 \mu$ | 1725 ／ | 0.51 |
| 断面（4） | 側壁（南北） | 416 | （3） | S s - N $1 \quad(-+)$ | 1345 m | $1725 \mu$ | 0． 78 |
| 断面（5） | 側壁（南北） | 512 | （3） | S s - N $1 \quad(-+)$ | $1596 \mu$ | 1725 m | 0． 93 |

注記 $* 1$ ：評価位置は図6－1に示す。
＊2：照査用ひずみ＝発生ひずみ $\times$ 構造解析係数 $\gamma \mathrm{a}$

表 6－13 せん断破壊に対する最大照査値（再掲）

| 評価位置＊${ }^{*}$ |  |  | $\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$ | 地震動 | 照査用 せん断力＊2 $\mathrm{V}_{\mathrm{d}}$ （ $\mathrm{kN} / \mathrm{m}$ ） | $\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{y} \mathrm{~d}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$ | $\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 断面（2） | 隔壁（東西） | 238 | （4） | S s－D $2(++)$ | 829 | 1649＊3 | 0.51 |
| 断面（3） | 隔壁（東西） | 333 | （4） | S s－D $2(++)$ | 502 | $563 * 3$ | 0． 90 |
| 断面（4） | 隔壁（東西） | 437 | （4） | S s－D $2(++)$ | 1400 | 1808＊3 | 0.78 |
| 断面（5） | 隔壁（東西） | 537 | （4） | S s－D $2(++)$ | 1255 | 1965＊3 | 0.64 |

注記 $* 1$ ：評価位置は図6－1に示す。
＊2：照査用せん断力＝発生せん断力 $\times$ 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：材料非線形解析によるせん断耐力

## 6． 4 基礎地盤の支持性能に対する評価結果

原子炬機器冷却海水配管ダクト（鋁直部）は，海水ポンプ室に懸架され一体構造になってい ることから，添付資料「VI－2－2－8 海水ポンプ室の耐震性についての計算書」により，基礎地盤に発生する最大接地圧が極限支持力を下回ること及び MMR（既設）に発生する最大接地圧が支圧強度を下回ることを確認した。

VI－2－5 原子炉冷却系統施設の耐震性についての計算書

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
VI－2－5－2 原子炉冷却材再循環設備の耐震性についての計算書
VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書
VI－2－5－4 残留熱除去設備の耐震性についての計算書
VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書
VI－2－5－6 原子炉冷却材補給設備の耐震性についての計算書
VI－2－5－7 原子炉補機冷却設備の耐震性についての計算書
VI－2－5－8 原子炉冷却材浄化設備の耐震性についての計算書

VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書

VI－2－5－3－1 主蒸気系の耐震性についての計算書
VI－2－5－3－2 復水給水系の耐震性についての計算書

VI－2－5－3－1 主蒸気系の耐震性についての計算書

VI－2－5－3－1－1 アキュムレータの耐震性についての計算書
VI－2－5－3－1－2 管の耐震性についての計算書（主蒸気系）

$$
\begin{array}{cl}
\text { VI-2-5-3-1-2 } & \begin{array}{l}
\text { 管の耐震性についての計算書 } \\
\text { (主蒸気系) }
\end{array}
\end{array}
$$

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 18
3．計算条件 ..... 38
3.1 計算方法 ..... 38
3.2 荷重の組合せ及び許容応力状態 ..... 39
3.3 設計条件 ..... 41
3．4 材料及び許容応力 ..... 57
3.5 設計用地震力 ..... 58
4．解析結果及び評価 ..... 60
4.1 固有周期及び設計震度 ..... 60
4． 2 評価結果 ..... 72
4．2．1 管の応力評価結果 ..... 72
4．2．2 支持構造物評価結果 ..... 78
4．2．3 弁の動的機能維持評価結果 ..... 79
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 80

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，主蒸気系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 21 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥㒈図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例


0 y (





自動減圧機能用アキュムレータ
逃がし弁機能用アキュムレータ
主蒸気逃がし安全弁 $\square$ ド永


自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系概略系統図（その7）

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系摡略系統図（その9）

逃がし弁機能用アキュムレータ

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める主蒸気系摡略系統図（その12）

自動減圧機能用アキュムレータ

## 注記＊：高圧窒素ガス供給系

解析モデル上本系統に含める主蒸気系概咯系統図（その13）

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

## 注記＊：高圧窒素ガス供給系

解析モデル上本系統に含める主蒸気系概略系統図（その15）

## 鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」及び「SOLVER」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類 | 機器等 の区分 | 耐震重要度分類 | 荷重の組合せ $*^{2,} * 3$ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 原子炉冷却材の循環設備 | 主蒸気系 | D B | － | クラス 1 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
| 原子炉冷却系統施設 | 原子炉冷却材の循環設備 | 主蒸気系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{A} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ |  |
| 原子炉冷却系統施設 | 原子炉冷却材の循環設備 | 主蒸気系 | D B | － | クラス 3 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ |  |
| 原子炉冷却系統施設 | 原子炉冷却材補給設備 | 原子炉隔離時冷却系 | D B | － | クラス 1 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s |  |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |


| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類 | 機器等 の区分 | 耐震重要度分類 | 荷重の組合せ $* 2, * 3$ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 原子炉冷却材補給設備 | 原子炉隔離時冷却系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{A} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ |  |

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 MS－001（クラス1管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 8.62 | 302 | 609.6 | 31.0 | STS 480 | S | 184760 |
| 2 | 8.62 | 302 | 228.6 | 33.0 | SFVC2B | S | 184760 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS——01（クラス1管）


配管の質量（付加質量含む）
鳥 瞰 図 MS－001（クラス1管）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 13 |  | 25 |  | 62 |  | 803 |  |
| 2 |  | 14 |  | 26 |  | 73 |  | 804 |  |
| 3 |  | 15 |  | 27 |  | 74 |  | 805 |  |
| 4 |  | 16 |  | 28 |  | 75 |  | 901 |  |
| 5 |  | 17 |  | 29 |  | 76 |  | 902 |  |
| 6 |  | 18 |  | 30 |  | 77 |  | 904 |  |
| 7 |  | 19 |  | 31 |  | 81 |  | 907 |  |
| 8 |  | 20 |  | 32 |  | 82 |  | 908 |  |
| 9 |  | 21 |  | 33 |  | 83 |  |  |  |
| 10 |  | 22 |  | 44 |  | 84 |  |  |  |
| 11 |  | 23 |  | 50 |  | 801 |  |  |  |
| 12 |  | 24 |  | 56 |  | 802 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2
弁 3
弁 4
弁 5

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 |  | 40 |  | 45 |  | 51 |  | 57 |  |
| 35 |  | 41 |  | 46 |  | 52 |  | 58 |  |
| 36 |  | 42 |  | 101 |  | 201 |  | 301 |  |
| 68 |  | 70 |  | 47 |  | 53 |  | 59 |  |
| 69 |  | 71 |  | 48 |  | 54 |  | 60 |  |
|  |  |  |  | 49 |  | 55 |  | 61 |  |

弁 6

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :--- |
| 63 |  |
| 64 |  |
| 401 |  |
| 65 |  |
| 66 |  |
| 67 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径（mm） | 厚さ（mm） | 長さ（mm） |
| :---: | :---: | :---: | :---: | :---: |
| 弁1 | 35 |  |  |  |
| 弁2 | 41 |  |  |  |
| 弁3 | 46 |  |  |  |
| 弁4 | 52 |  |  |  |
| 弁5 | 58 |  |  |  |
| 弁6 | 64 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS——01（クラス1管）
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| ＊＊ 7 ＊＊ |  |  |  |  |  |  |
| ＊＊ 9 ＊＊ |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |
| ＊＊ 15 ＊＊ |  |  |  |  |  |  |
| ＊＊ 18 ＊＊ |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |
| ＊＊ 26 ＊＊ |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |
| ＊＊ 902 ＊＊ |  |  |  |  |  |  |
| ＊＊ 904 ＊＊ |  |  |  |  |  |  |
| ＊＊ 907 ＊＊ |  |  |  |  |  |  |
| ＊＊ 908 ＊＊ |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 㒈 図 MS－001（クラス2以下の管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.62 | 302 | 609.6 | 31.0 | SGV 480 | S | 184760 |
| 2 | 3.80 | 249 | 267.4 | 15.1 | STS 410 | S | 188080 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS－001（クラス2以下の管）

| 管名称 | 㸚 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  | 115116 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 42 | 43 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 101 | 102 | 103 | 104 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 |  |  |
|  | 117 | 195 | 198 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 |
|  | 313 | 314 | 315 | 316 | 317 | 806 | 807 | 808 | 920 |  |  |  |  |  |  |

## 配管の質量（付加質量含む）

鳥 瞰 図
MS—O O 1（クラス 2 以下の管）

評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 42 |  | 109 |  | 195 |  | 308 |  | 317 |  |
| 43 |  | 110 |  | 198 |  | 309 |  | 806 |  |
| 101 |  | 111 |  | 301 |  | 310 |  | 807 |  |
| 102 |  | 112 |  | 302 |  | 311 |  | 808 |  |
| 103 |  | 113 |  | 303 |  | 312 |  | 920 |  |
| 104 |  | 114 |  | 304 |  | 313 |  |  |  |
| 106 |  | 115 |  | 305 |  | 314 |  |  |  |
| 107 |  | 116 |  | 306 |  | 315 |  |  |  |
| 108 |  | 117 |  | 307 |  | 316 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－001（クラス2以下の管）
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 43 |  |  |  |  |  |  |
| ＊＊ 102 ＊＊ |  |  |  |  |  |  |
| ＊＊ 104 ＊＊ |  |  |  |  |  |  |
| ＊＊ 106 ＊＊ |  |  |  |  |  |  |
| 109 |  |  |  |  |  |  |
| 112 |  |  |  |  |  |  |
| 117 |  |  |  |  |  |  |
| ＊＊ 117 ＊＊ |  |  |  |  |  |  |
| ＊＊ 195 ＊＊ |  |  |  |  |  |  |
| 302 |  |  |  |  |  |  |
| ＊＊304＊＊ |  |  |  |  |  |  |
| 307 |  |  |  |  |  |  |
| ＊＊ 309 ＊＊ |  |  |  |  |  |  |
| 313 |  |  |  |  |  |  |
| 317 |  |  |  |  |  |  |
| ＊＊317＊＊ |  |  |  |  |  |  |
| ＊＊ 920 ＊＊ |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 MS－004（クラス1管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弹性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 609.6 | 31.0 | STS480 | S | 184760 |
| 2 | 8.62 | 302 | 114.3 | 11.1 | SFVC2B | S | 184760 |
| 3 | 8.62 | 302 | 114.3 | 11.1 | STS410 | S | 184760 |
| 4 | 8.62 | 302 | 228.6 | 33.0 | SFVC2B | S | 184760 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS－004（クラス1管）

| 管名称 |  |  |  |  | 対 | 応 |  |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|  | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 80 | 90 | 802 | 803 | 805 | 901 | 902 | 906 |
| 2 | 10 | 84 | 101 |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 |
|  | 116 | 117 | 118 | 119 | 142 | 143 | 144 | 804 | 912 |  |  |  |  |  |  |
| 4 | 13 | 15 | 17 | 20 | 47 | 48 | 49 | 50 | 55 | 56 | 61 | 62 | 81 | 82 | 83 |
|  | 85 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図
MS——04（クラス1管）

評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 17 |  | 33 |  | 101 |  | 117 |  |
| 2 |  | 18 |  | 34 |  | 102 |  | 118 |  |
| 3 |  | 19 |  | 35 |  | 103 |  | 142 |  |
| 4 |  | 20 |  | 36 |  | 104 |  | 143 |  |
| 5 |  | 21 |  | 47 |  | 105 |  | 144 |  |
| 6 |  | 22 |  | 48 |  | 106 |  | 802 |  |
| 7 |  | 23 |  | 49 |  | 107 |  | 803 |  |
| 8 |  | 24 |  | 55 |  | 108 |  | 804 |  |
| 9 |  | 25 |  | 61 |  | 109 |  | 805 |  |
| 10 |  | 26 |  | 80 |  | 110 |  | 901 |  |
| 11 |  | 27 |  | 81 |  | 111 |  | 902 |  |
| 12 |  | 28 |  | 82 |  | 112 |  | 906 |  |
| 13 |  | 29 |  | 83 |  | 113 |  | 912 |  |
| 14 |  | 30 |  | 84 |  | 114 |  |  |  |
| 15 |  | 31 |  | 85 |  | 115 |  |  |  |
| 16 |  | 32 |  | 90 |  | 116 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2
弁3
弁 4
弁 5

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37 |  | 43 |  | 50 |  | 56 |  | 62 |  |
| 38 |  | 44 |  | 51 |  | 57 |  | 63 |  |
| 39 |  | 45 |  | 201 |  | 301 |  | 401 |  |
| 67 |  | 69 |  | 52 |  | 58 |  | 64 |  |
| 68 |  | 70 |  | 53 |  | 59 |  | 65 |  |
|  |  |  |  | 54 |  | 60 |  | 66 |  |

弁 6
弁 7

| 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: |
| 119 |  | 129 |  |
| 120 |  | 130 |  |
| 121 |  | 131 |  |
| 133 |  | 136 |  |
| 135 |  | 138 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :--- | :--- | :--- |
| 弁1 | 38 |  |  |  |
| 弁2 | 44 |  |  |  |
| 弁3 | 51 |  |  |  |
| 弁4 | 57 |  |  |  |
| 弁5 | 63 |  |  |  |
| 弁6 |  |  |  |  |
| 弁7 | 120 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－004（クラス1管）
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 1 |  |  |  |  |  |  |
|  | ＊＊ 7 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 9 ＊＊ |  |  |  |  |  |  |
|  | 14 |  |  |  |  |  |  |
|  | ＊＊ 16 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 19 ＊＊ |  |  |  |  |  |  |
|  | 21 |  |  |  |  |  |  |
| $\bigcirc$ | ＊＊ 26 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 28 ＊＊ |  |  |  |  |  |  |
| $\uparrow$ | 34 |  |  |  |  |  |  |
| $\cdots$ | 36 |  |  |  |  |  |  |
| $10$ | ＊＊ 107 ＊＊ |  |  |  |  |  |  |
| 5 | 113 |  |  |  |  |  |  |
| （1） | 118 |  |  |  |  |  |  |
| N | ＊＊ $118 * *$ |  |  |  |  |  |  |
|  | ＊＊ $135 * *$ |  |  |  |  |  |  |
|  | 138 |  |  |  |  |  |  |
|  | ＊＊ $144 * *$ |  |  |  |  |  |  |
|  | ＊＊901＊＊ |  |  |  |  |  |  |
|  | ＊＊ 902 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 906 ＊＊ |  |  |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
MS - 0 0 4 (クラス 1 管)

支持点部のばね定数を下表に示す。


設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 MS－004（クラス2以下の管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 耐震 <br> 重要度分類 | 縦弾性係数 <br> （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.62 | 302 | 609.6 | 31.0 | SGV 480 | S | 184760 |
| 2 | 8.62 | 302 | 114.3 | 11.1 | STS 410 | S | 184760 |
| 3 | 3.80 | 249 | 267.4 | 15.1 | STS 410 | S | 188080 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 MS－004（クラス2以下の管）


配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 45 |  | 204 |  | 405 |  | 412 |  | 850 |  |
| 46 |  | 205 |  | 406 |  | 413 |  | 913 |  |
| 131 |  | 206 |  | 407 |  | 414 |  | 940 |  |
| 132 |  | 401 |  | 408 |  | 415 |  | 949 |  |
| 201 |  | 402 |  | 409 |  | 416 |  | 951 |  |
| 202 |  | 403 |  | 410 |  | 417 |  | 952 |  |
| 203 |  | 404 |  | 411 |  | 418 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－004（クラス2以下の管）
支持点部のばね定数を下表に示す。


## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 | 許容応力（MPa） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | （ $\left.{ }^{\circ} \mathrm{C}\right)$ | S m | S y | S u | S h |  |
| SFVC2B | 302 | 125 | 187 | - | - |  |
| STS480 | 302 | 138 | 209 | - | - |  |
| SGV480 | 302 | - | 198 | 419 | - |  |
| STS410 | 249 | - | 197 | 404 | - |  |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| MS－ 0011 | 原子炉しやへい壁 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
| $\mathrm{MS}-004$ | 原子炉しやへい壁 |  |  |

O 2 （5）VI－2－5－3－1－2（設）R 0


[^1]| モード | $\begin{gathered} \text { 固 有 周 期 } \\ (\mathrm{s}) \end{gathered}$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 28 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 (5) VI-2-5-3-1-2 (設) R 0
O 2 (5) VI-2-5-3-1-2 (設) R 0
O 2 （5）VI－2－5－3－1－2（設）R 0
解析結果及び評価
固有周期及び設計震度

$$
\text { 鳥 瞰 図 MS-0 } 04
$$

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\begin{aligned} & \text { 固有周期 } \\ & (\mathrm{s} \mathrm{)} \end{aligned}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 26 次 |  |  |  |  |  |  |  |
| 27 次＊ |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^2]


| モード | $\begin{gathered} \text { 固 } \\ \underset{(\mathrm{s})}{\text { ( })} \text { 周 } \end{gathered} \text { 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 26 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 (5) VI-2-5-3-1-2 (設) R 0
4.2 評価結果
4．2．1 管の
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力区分 | $\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  |  |  | 一次 $+\underset{\text { 二次応力評価 }}{(\mathrm{MPa})}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { 一次応力 } \\ \mathrm{Sprm}(\mathrm{Sd}) \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \mathrm{~s}) \end{gathered}$ | 許容応力 $\begin{gathered} 2 \cdot 25 \cdot \mathrm{Sm} \\ 3 \cdot \mathrm{Sm} \end{gathered}$ | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (Sd) } \\ & \text { St (S s) } \end{aligned}$ |  | $\begin{aligned} & \text { 一次 + 二次応力 } \\ & S \mathrm{Sn}(\mathrm{Sd}) \\ & \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{aligned}$ | 許容応力 $\begin{aligned} & 3 \cdot \mathrm{Sm} \\ & 3 \cdot \mathrm{Sm} \end{aligned}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~S} \end{aligned}$ |
| MS－001 | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 16 | TEE | Sprm（Sd） | 202 | 281 | － | － | － | － | － |
|  | IIII ${ }_{\text {A }}$ S | 19 | TEE | St（S d） | － | － | 105＊ | 68 | － | － | － |
|  | $\mathrm{III}_{\mathrm{A}} \mathrm{~S}$ | 19 | TEE | $S \mathrm{n}(\mathrm{Sd})$ | － | － | － | － | 391＊＊ | 375 | 0． 0773 |
|  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 19 | TEE | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 0773 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$ | 16 | TEE | Sprm（Ss） | 281 | 375 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$ | 19 | TEE | $\mathrm{St}(\mathrm{S} \mathrm{s})$ | － | － | 158＊ | 91 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 19 | TEE | $\mathrm{Sn}(\mathrm{S} \mathrm{s}$ ） | － | － | － | － | 684＊＊ | 375 | 0.6140 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 19 | TEE | U＋US s | － | － | － | － | － | － | 0.6140 |

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S のとき 0 。 $55 \cdot \mathrm{Sm}$ ，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ のとき 0 。 73 • Sm を超える評価点のらち曲げとねじりによる応力は許容値を満足している。

鳥 瞰 図 MS——001

| 評価点 | 一次応力評価 （MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ねじり応力 } \\ & S \text { t (S d) } \\ & \text { St (S s) } \end{aligned}$ | $\begin{aligned} & \text { 許容応力 } \\ & 0 . \quad 55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{Sm} \end{aligned}$ | $\begin{aligned} & \text { 曲げとねじり応力 } \\ & \text { SttS b (S d) } \end{aligned}$ $\mathrm{St}+\mathrm{Sb}(\mathrm{~S} s)$ | 許容応力 <br> 1．8•S m <br> 2． $4 \cdot \mathrm{Sm}$ |
| 16 | $\begin{array}{r} 98 * \\ 150 * \end{array}$ | $\begin{aligned} & 68 \\ & 91 \end{aligned}$ | $\begin{aligned} & 155 \\ & 234 \end{aligned}$ | $\begin{aligned} & 225 \\ & 300 \end{aligned}$ |
| 19 | $\begin{aligned} & 105 * \\ & 158 * \end{aligned}$ | $\begin{aligned} & 68 \\ & 91 \end{aligned}$ | $\begin{aligned} & 142 \\ & 220 \end{aligned}$ | $\begin{aligned} & 225 \\ & 300 \end{aligned}$ |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次＋二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & \mathrm{Sprm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S} s) \end{aligned}$ | 許容応力 $\begin{aligned} & S y^{* 1} \\ & 0.9 \cdot S u \end{aligned}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| MS－ 001 | $\begin{aligned} & \hline \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 307 \\ & 307 \\ & 307 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 168 \\ & 255 \end{aligned}$ | $\begin{aligned} & \hline 197 \\ & 363 \\ & - \end{aligned}$ |  |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
O 2 （5）VI－2－5－3－1－2（設）R 0

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力区分 | $\begin{gathered} \text { 一次応力評価 } \\ \text { (MPa) } \end{gathered}$ |  |  |  | $\begin{gathered} \text { 一次+二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { 一次応力 } \\ S \mathrm{Sprm}(S \mathrm{~d}) \\ \mathrm{Sprm}(\mathrm{~S} s) \end{gathered}$ | 許容応力 $\begin{gathered} 2.25 \cdot \mathrm{Sm} \\ 3 \cdot \mathrm{Sm} \end{gathered}$ | $\begin{aligned} & \text { Vじり応力 } \\ & \text { St (S d) } \\ & \text { S t (S s) } \end{aligned}$ | 許容応力 $\begin{aligned} & 0.55 \cdot \mathrm{Sm} \\ & 0 . \\ & 03 \cdot \mathrm{Sm} \end{aligned}$ | $\begin{aligned} & \text { 一次 + 二次応力 } \\ & S \mathrm{Sn}(\mathrm{Sd}) \\ & \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{aligned}$ | $\begin{gathered} \text { 許容応力 } \\ 3 \cdot \mathrm{~S} \mathrm{~m} \\ 3 \cdot \mathrm{~S} \mathrm{~m} \end{gathered}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~S} \end{aligned}$ |
| MS－004 | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 17 | TEE | Sprm（Sd） | 194 | 281 | － | － | － | － | － |
|  | IIII ${ }_{\text {A }} \mathrm{S}$ | 15 | TEE | St（S d） | － | － | 108＊ | 68 | － | － | － |
|  | IIIA S | 17 | TEE | Sn（S d） | － | － | － | － | 392＊＊ | 375 | 0． 0598 |
|  | IIII ${ }_{\text {A }} \mathrm{S}$ | 10 | TEE | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 0812 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 17 | TEE | Sprm（Ss） | 264 | 375 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 15 | TEE | St（S s ） | － | － | 151＊ | 91 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 17 | TEE | $\mathrm{Sn}(\mathrm{S} \mathrm{s}$ ） | － | － | － | － | 626＊＊ | 375 | 0． 4095 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 119 | BuTT WELD | $\mathrm{U}+\mathrm{US}$ s | － | － | － | － | － | － | 0.6836 |

[^3]＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S のとき 0 。 $55 \cdot \mathrm{Sm}$ ，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ のとき 0 。 73 • Sm を超える評価点のらち曲げとねじりによる応力は許容値を満足している。

鳥 瞰 図 MS－004

| 評価点 | 一次応力評価 （MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (S d) } \\ & \text { St (S s) } \end{aligned}$ | $\begin{aligned} & \text { 許容応力 } \\ & 0.55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ |  | 許容応力 <br> 1． $8 \cdot \mathrm{Sm}$ <br> 2． $4 \cdot \mathrm{Sm}$ |
| 15 | $\begin{aligned} & 108 * \\ & 151 * \end{aligned}$ | $\begin{aligned} & 68 \\ & 91 \end{aligned}$ | $\begin{aligned} & 146 \\ & 211 \end{aligned}$ | $\begin{aligned} & 225 \\ & 300 \end{aligned}$ |
| 17 | $\begin{aligned} & 103 * \\ & 150 * \end{aligned}$ | $\begin{aligned} & 68 \\ & 91 \end{aligned}$ | $\begin{aligned} & 147 \\ & 218 \end{aligned}$ | $\begin{aligned} & 225 \\ & 300 \end{aligned}$ |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大 <br> 応力 <br> 区分 | 一次応力評価（MPa） |  | 一次＋二次応力評価（ MPa ） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 許容応力 $\begin{gathered} S y * 1 \\ 0.9 \cdot S u \end{gathered}$ | 計算応力 $\begin{aligned} & S n(S d) \\ & S n(S s) \end{aligned}$ | 許容応力 $\begin{aligned} & 2 \cdot \mathrm{~S} y \\ & 2 \cdot \mathrm{~S} y \end{aligned}$ | 疲労累積係数 <br> US d <br> US s |
| MS－ 004 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV} \mathrm{~A}_{\mathrm{S}} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 131 \\ & 131 \\ & 131 \\ & 131 \end{aligned}$ |  | $\begin{gathered} 139 \\ - \\ 208 \\ - \end{gathered}$ | $\begin{gathered} 182 \\ - \\ 363 \\ - \end{gathered}$ | $\begin{aligned} & - \\ & 267 \\ & - \\ & 458 * \end{aligned}$ | $\begin{gathered} - \\ 364 \\ - \\ 364 \end{gathered}$ |  |

[^4]4．2．2 支持構造物評価結果

|  | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 支持構造物番号 |  |  |  |  | $\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & \text { (kN) } \\ & \hline \end{aligned}$ | 許容 <br> 荷重 |
| MS－001－013H | バリアブルハンガ | VS120－18 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 |  | 100 | $52 \times 2$ |
| MS－001－109S | メカニカルスナッバ | SMS－10－100 |  |  | 178 | 230 |
| MS－003－921SB | メカニカルスナッバ | SMS－10－100 |  |  | 186 | 230 |
| MS－003－216B | ロッドレストレイント | RST－3 |  |  | 27 | 129 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（kN•m） |  |  | 応力分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| MS－002－031G | レストレイント | ラグ | SGV480 | 302 | 900 | 588 | － | － | － | 265 | 支圧 | 61 | 270 |
| MS－004－036G | レストレイント | ラグ | SGV480 | 302 | 1574 | 598 | － | － | － | 118 | せん断 | 26 | 114 |
| MS－004－046A | アンカ | 架構 | SM400B | 55 | 518 | 192 | 1689 | 142 | 410 | 204 | 曲げ | 126 | 458 |

## 4．2．3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| B21－F001E | 逃し安全弁 | $\alpha$（ S s ） | 13.9 | 7.7 | 20.0 | 20.0 | － | － |
| B21－F003D | グローブ弁 | $\alpha$（ S s ） | 13.9 | 5.7 | 15.0 | 15.0 | － | － |
| E51－F007 | 仕切弁 | $\beta$（ S s ） | 2.6 | 7.4 | 10.0 | 10.0 | 115 | 280 |

＊応答加速度は，打ち切り振動数を 50 Hz として計算した結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労 <br> 累積 <br> 係数 | 代 表 |
| 1 | MS－001 | 16 | 202 | 281 | 1． 39 | $\bigcirc$ | 16 | 281 | 375 | 1． 33 | $\bigcirc$ | 19 | 684 | 375 | 0.54 | $\bigcirc$ | 19 | 0.6140 | － |
| 2 | MS－002 | 17 | 193 | 281 | 1． 45 | － | 17 | 253 | 375 | 1.48 | － | 19 | 601 | 375 | 0.62 | － | 19 | 0． 3572 | － |
| 3 | MS－003 | 19 | 192 | 281 | 1． 46 | － | 19 | 256 | 375 | 1． 46 | － | 19 | 630 | 375 | 0.59 | － | 19 | 0． 3900 | － |
| 4 | MS－004 | 17 | 194 | 281 | 1． 44 | － | 17 | 264 | 375 | 1． 42 | － | 17 | 626 | 375 | 0.59 | － | 119 | 0． 6836 | $\bigcirc$ |

注記＊：III A Sの一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 <br> 表 | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （ MPa ） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労累積係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | MS－001 | 307 | 168 | 197 | 1.17 | $\bigcirc$ | 307 | 255 | 363 | 1． 42 | $\bigcirc$ | 307 | 376 | 394 | 1． 04 | － | － | － | － |
| 2 | MS－002 | 43 | 75 | 198 | 2.64 | － | 43 | 87 | 377 | 4.33 | － | 101 | 155 | 394 | 2.54 | － | － | － | － |
| 3 | MS－003 | 215 | 110 | 197 | 1.79 | － | 215 | 152 | 363 | 2． 38 | － | 215 | 268 | 394 | 1． 47 | － | － | － | － |
| 4 | MS－004 | 131 | 139 | 182 | 1． 30 | － | 131 | 208 | 363 | 1． 74 | － | 131 | 458 | 364 | 0.79 | $\bigcirc$ | 131 | 0.8381 | $\bigcirc$ |
| 5 | MS－05 | 3 | 45 | 150 | 3.33 | － | 3 | 61 | 371 | 6.08 | － | 3 | 82 | 300 | 3.65 | － | － | － | － |
| 6 | MS－06 | 4 | 30 | 150 | 5.00 | － | 4 | 39 | 371 | 9.51 | － | 4 | 46 | 300 | 6.52 | － | － | － | － |
| 7 | MS－07 | 4 | 29 | 150 | 5． 17 | － | 4 | 37 | 371 | 10． 02 | － | 4 | 42 | 300 | 7.14 | － | － | － | － |
| 8 | MS－08 | 5 | 27 | 150 | 5.55 | － | 5 | 35 | 371 | 10.60 | － | 5 | 40 | 300 | 7.50 | － | － | － | － |
| 9 | MS－09 | 4 | 42 | 150 | 3． 57 | － | 4 | 58 | 371 | 6． 39 | － | 4 | 82 | 300 | 3.65 | － | － | － | － |
| 10 | MS－10 | 4 | 24 | 150 | 6.25 | － | 4 | 31 | 371 | 11.96 | － | 4 | 34 | 300 | 8.82 | － | － | － | － |
| 11 | MS－11 | 4 | 29 | 150 | 5.17 | － | 4 | 38 | 371 | 9． 76 | － | 4 | 44 | 300 | 6.81 | － | － | － | － |

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 表 | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労累積係数 | 代 表 |
| 12 | MS－12 | 3 | 26 | 150 | 5． 76 | － | 3 | 34 | 371 | 10.91 | － | 3 | 38 | 300 | 7.89 | － | － | － | － |
| 13 | MS－13 | 6 | 27 | 150 | 5.55 | － | 6 | 35 | 371 | 10.60 | － | 6 | 40 | 300 | 7.50 | － | － | － | － |
| 14 | MS－14 | 3 | 18 | 150 | 8.33 | － | 3 | 22 | 371 | 16． 86 | － | 3 | 22 | 300 | 13.63 | － | － | － | － |
| 15 | MS－15 | 3 | 29 | 150 | 5.17 | － | 3 | 37 | 371 | 10.02 | － | 3 | 44 | 300 | 6.81 | － | － | － | － |
| 16 | MS－16 | 4 | 40 | 150 | 3． 75 | － | 4 | 55 | 371 | 6． 74 | － | 4 | 78 | 300 | 3.84 | － | － | － | － |
| 17 | MS－17 | 4 | 19 | 150 | 7.89 | － | 4 | 24 | 371 | 15． 45 | － | 4 | 24 | 300 | 12.50 | － | － | － | － |
| 18 | MS－18 | 4 | 25 | 150 | 6.00 | － | 4 | 33 | 371 | 11.24 | － | 4 | 42 | 300 | 7.14 | － | － | － | － |
| 19 | MS－19 | 3 | 17 | 150 | 8.82 | － | 3 | 21 | 371 | 17.66 | － | 3 | 20 | 300 | 15.00 | － | － | － | － |
| 20 | MS－20 | 3 | 43 | 150 | 3.48 | － | 3 | 57 | 371 | 6.50 | － | 3 | 72 | 300 | 4． 16 | － | － | － | － |
| 21 | MS－21 | 4 | 32 | 150 | 4.68 | － | 4 | 44 | 371 | 8.43 | － | 4 | 62 | 300 | 4． 83 | － | － | － | － |

注記 $*: ~ \mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 18
3．計算条件 ..... 38
3.1 計算方法 ..... 38
3.2 荷重の組合せ及び許容応力状態 ..... 39
3.3 設計条件 ..... 40
3.4 材料及び許容応力 ..... 59
3.5 設計用地震力 ..... 60
4．解析結果及び評価 ..... 62
4． 1 固有周期及び設計震度 ..... 62
4． 2 評価結果 ..... 74
4．2．1 管の応力評価結果 ..... 74
4．2．2 支持構造物評価結果 ..... 76
4．2．3 弁の動的機能維持評価結果 ..... 77
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 78

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，主蒸気系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 21 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥㒈図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例






自動減圧機能用アキュムレータ
逃がし弁機能用アキュムレータ
主蒸気逃がし安全弁 $\square$ ド袁


自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系概略系統図（その7）

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系摡略系統図（その9）

逃がし弁機能用アキュムレータ

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める主蒸気系摡略系統図（その12）

自動減圧機能用アキュムレータ

## 注記＊：高圧窒素ガス供給系

解析モデル上本系統に含める主蒸気系概略系統図（その13）

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

## 注記＊：高圧窒素ガス供給系

解析モデル上本系統に含める主蒸気系摡略系統図（その15）

## 鳥瞰図記号凡例

記 号
O (5) $2 \mathrm{VI}-2-5-3-1-2$ (重) R 0

| 鳥瞰図 | $M S-001-2 / 10$ |
| :--- | :--- |

O 2 (5) VI-2-5-3-1-2 (重) R O
O 2 (5) VI-2-5-3-1-2 (重) R 0
O 2 (5) $\mathrm{VI}-2-5-3-1-2$ (重) R 0
O (5) $2 \mathrm{VI}-2-5-3-1-2$ (重) R 0
O2 (5) VI-2-5-3-1-2 (重) R O
O 2 (5) VI-2-5-3-1-2 (重) R 0
O2 (5) VI-2-5-3-1-2 (重) R O

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」及び「SOLVER」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | $\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$ | 設備分類＊2 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉泠却系統施設 | 原子炉冷却材の循環設備 | 主蒸気系 | S A | 常設耐震／防止常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心泠却設備 その他原子炉注水設備 | 高圧代替注水系 | S A | 常設耐震／防止常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{4} \mathrm{~S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 原子炬隔離時 <br> 冷却系 | S A | 常設／防止 （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

[^5]＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5 ：許容応力状態 $\mathrm{V}_{A} \mathrm{~S}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。

## 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 MS－0 01

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 4.71 | 262 | 267.4 | 15.1 | STS410 | - | 187520 |
| 2 | 4.71 | 262 | 267.4 | 15.1 | STS410 | - | 187520 |
| 3 | 4.71 | 262 | 267.4 | 15.1 | SCS16A | - | 177520 |
| 4 | 4.71 | 262 | 323.9 | 17.5 | SCS16A | - | 177520 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS－0011

| 管名称 |  |  |  |  | 対 | 応 |  |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 101 | 102 | 103 | 104 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 |
|  | 117 | 195 | 198 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 |
|  | 213 | 214 | 215 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 |
|  | 313 | 314 | 315 | 316 | 317 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 |
|  | 411 | 412 | 414 | 415 | 416 | 417 | 418 | 419 | 491 | 806 | 807 | 808 | 914 | 920 |  |
| 2 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 |
|  | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 |
|  | 147 | 148 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 190 | 191 | 192 | 193 | 194 |
|  | 196 | 197 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 |
|  | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 |
|  | 243 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 |
|  | 259 | 260 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 317 | 318 | 319 | 320 | 321 | 322 |
|  | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 |
|  | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 351 | 352 | 353 |
|  | 354 | 355 | 356 | 357 | 358 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 419 | 420 | 421 |
|  | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 |
|  | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 446 | 447 | 448 | 449 | 450 | 451 | 452 |
|  | 453 | 490 | 492 | 493 | 811 | 911 | 918 | 919 |  |  |  |  |  |  |  |
| 3 | 157 | 158 | 260 | 261 | 358 | 359 | 453 | 454 |  |  |  |  |  |  |  |
| 4 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 |
|  | 173 | 174 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 |
|  | 274 | 275 | 276 | 277 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 |
|  | 370 | 371 | 372 | 373 | 374 | 375 | 454 | 455 | 456 | 457 | 458 | 459 | 460 | 461 | 462 |
|  | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図
MS－ 001

評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 101 |  | 169 |  | 253 |  | 335 |  | 421 |  |
| 102 |  | 170 |  | 254 |  | 336 |  | 422 |  |
| 103 |  | 171 |  | 255 |  | 337 |  | 423 |  |
| 104 |  | 172 |  | 256 |  | 338 |  | 424 |  |
| 106 |  | 173 |  | 257 |  | 339 |  | 425 |  |
| 107 |  | 174 |  | 258 |  | 340 |  | 426 |  |
| 108 |  | 190 |  | 259 |  | 341 |  | 427 |  |
| 109 |  | 191 |  | 260 |  | 342 |  | 428 |  |
| 110 |  | 192 |  | 261 |  | 343 |  | 429 |  |
| 111 |  | 193 |  | 262 |  | 344 |  | 430 |  |
| 112 |  | 194 |  | 263 |  | 345 |  | 431 |  |
| 113 |  | 195 |  | 264 |  | 346 |  | 432 |  |
| 114 |  | 196 |  | 265 |  | 347 |  | 433 |  |
| 115 |  | 197 |  | 266 |  | 348 |  | 434 |  |
| 116 |  | 198 |  | 267 |  | 349 |  | 435 |  |
| 117 |  | 201 |  | 268 |  | 351 |  | 436 |  |
| 118 |  | 202 |  | 269 |  | 352 |  | 437 |  |
| 119 |  | 203 |  | 270 |  | 353 |  | 438 |  |
| 120 |  | 204 |  | 271 |  | 354 |  | 439 |  |
| 121 |  | 205 |  | 272 |  | 355 |  | 440 |  |
| 122 |  | 206 |  | 273 |  | 356 |  | 441 |  |
| 123 |  | 207 |  | 274 |  | 357 |  | 442 |  |
| 124 |  | 208 |  | 275 |  | 358 |  | 443 |  |
| 125 |  | 209 |  | 276 |  | 359 |  | 444 |  |
| 126 |  | 210 |  | 277 |  | 360 |  | 446 |  |
| 127 |  | 211 |  | 290 |  | 361 |  | 447 |  |
| 128 |  | 212 |  | 291 |  | 362 |  | 448 |  |
| 129 |  | 213 |  | 292 |  | 363 |  | 449 |  |
| 130 |  | 214 |  | 293 |  | 364 |  | 450 |  |
| 131 |  | 215 |  | 294 |  | 365 |  | 451 |  |
| 132 |  | 216 |  | 295 |  | 366 |  | 452 |  |
| 133 |  | 217 |  | 296 |  | 367 |  | 453 |  |
| 134 |  | 218 |  | 301 |  | 368 |  | 454 |  |
| 135 |  | 219 |  | 302 |  | 369 |  | 455 |  |
| 136 |  | 220 |  | 303 |  | 370 |  | 456 |  |
| 137 |  | 221 |  | 304 |  | 371 |  | 457 |  |
| 138 |  | 222 |  | 305 |  | 372 |  | 458 |  |
| 139 |  | 223 |  | 306 |  | 373 |  | 459 |  |
| 140 |  | 224 |  | 307 |  | 374 |  | 460 |  |
| 141 |  | 225 |  | 308 |  | 375 |  | 461 |  |
| 142 |  | 226 |  | 309 |  | 390 |  | 462 |  |
| 143 |  | 227 |  | 310 |  | 391 |  | 463 |  |
| 144 |  | 228 |  | 311 |  | 392 |  | 464 |  |
| 145 |  | 229 |  | 312 |  | 393 |  | 465 |  |
| 146 |  | 230 |  | 313 |  | 394 |  | 466 |  |
| 147 |  | 231 |  | 314 |  | 395 |  | 467 |  |
| 148 |  | 232 |  | 315 |  | 396 |  | 468 |  |
| 150 |  | 233 |  | 316 |  | 401 |  | 469 |  |
| 151 |  | 234 |  | 317 |  | 402 |  | 470 |  |
| 152 |  | 235 |  | 318 |  | 403 |  | 490 |  |

配管の質量（付加質量含む）
鳥 瞰 図 MS－0011
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 153 |  | 236 |  | 319 |  | 404 |  | 491 |  |
| 154 |  | 237 |  | 320 |  | 405 |  | 492 |  |
| 155 |  | 238 |  | 321 |  | 406 |  | 493 |  |
| 156 |  | 239 |  | 322 |  | 407 |  | 806 |  |
| 157 |  | 240 |  | 323 |  | 408 |  | 807 |  |
| 158 |  | 241 |  | 324 |  | 409 |  | 808 |  |
| 159 |  | 242 |  | 325 |  | 410 |  | 811 |  |
| 160 |  | 243 |  | 326 |  | 411 |  | 911 |  |
| 161 |  | 245 |  | 327 |  | 412 |  | 914 |  |
| 162 |  | 246 |  | 328 |  | 414 |  | 918 |  |
| 163 |  | 247 |  | 329 |  | 415 |  | 919 |  |
| 164 |  | 248 |  | 330 |  | 416 |  | 920 |  |
| 165 |  | 249 |  | 331 |  | 417 |  |  |  |
| 166 |  | 250 |  | 332 |  | 418 |  |  |  |
| 167 |  | 251 |  | 333 |  | 419 |  |  |  |
| 168 |  | 252 |  | 334 |  | 420 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－O O 1
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | ＊＊ 102 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 104 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 106 ＊＊ |  |  |  |  |  |  |
|  | 109 |  |  |  |  |  |  |
|  | 112 |  |  |  |  |  |  |
|  | 117 |  |  |  |  |  |  |
|  | ＊＊ 117 ＊＊ |  |  |  |  |  |  |
| $\bigcirc$ | ＊＊ 122 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ $128 * *$ |  |  |  |  |  |  |
| $\bigcirc$ | 132 |  |  |  |  |  |  |
| $\stackrel{1}{N}$ | 135 |  |  |  |  |  |  |
|  | ＊＊ $137 * *$ |  |  |  |  |  |  |
| （10） |  |  |  |  |  |  |  |
| $\sim$ |  |  |  |  |  |  |  |
|  | 149 |  |  |  |  |  |  |
|  | ＊＊149＊＊ |  |  |  |  |  |  |
|  | ＊＊ 152 ＊＊ |  |  |  |  |  |  |
|  | ＊＊160＊＊ |  |  |  |  |  |  |
|  | 162 |  |  |  |  |  |  |
|  | ＊＊ 162 ＊＊ |  |  |  |  |  |  |
|  | 164 |  |  |  |  |  |  |
|  | ＊＊ 164 ＊＊ |  |  |  |  |  |  |

$\square$

支持点及び貫通部ばね定数
鳥 瞰 図 MS－O 01
支持点部のばね定数を下表に示す。


支持点及び貫通部ばね定数
鳥 瞰 図 MS－O O 1
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 253 |  |  |  |  |  |  |
|  | ＊＊ 255 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 263 ＊＊ |  |  |  |  |  |  |
|  | 265 |  |  |  |  |  |  |
|  | ＊＊ 265 ＊＊ |  |  |  |  |  |  |
|  | 267 |  |  |  |  |  |  |
| － | ＊＊ 267 ＊＊ |  |  |  |  |  |  |
|  | 269 |  |  |  |  |  |  |
|  | ＊＊ 269 ＊＊ |  |  |  |  |  |  |
| $\cdots$ | 272 |  |  |  |  |  |  |
| $0$ | ＊＊ 272 ＊＊ |  |  |  |  |  |  |
| ＞ | 274 |  |  |  |  |  |  |
| （1） | ＊＊ 274 ＊＊ |  |  |  |  |  |  |
| $\begin{aligned} & \text { N } \\ & 0 \end{aligned}$ | 276 |  |  |  |  |  |  |
|  | ＊＊ 276 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 295 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 296 ＊＊ |  |  |  |  |  |  |
|  | 302 |  |  |  |  |  |  |
|  | ＊＊ 304 ＊＊ |  |  |  |  |  |  |
|  | 307 |  |  |  |  |  |  |
|  | ＊＊ 309 ＊＊ |  |  |  |  |  |  |
|  | 313 |  |  |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－O 01
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 317 |  |  |  |  |  |  |
|  | ＊＊ 317 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 326 ＊＊ |  |  |  |  |  |  |
|  | 329 |  |  |  |  |  |  |
|  | 334 |  |  |  |  |  |  |
|  | 336 |  |  |  |  |  |  |
|  | 350 |  |  |  |  |  |  |
| $\begin{aligned} & 0 \\ & \propto, \end{aligned}$ | ＊＊350＊＊ |  |  |  |  |  |  |
| $1$ | ＊＊ $353 * *$ |  |  |  |  |  |  |
| ＞ | ＊＊361＊＊ |  |  |  |  |  |  |
|  | 363 |  |  |  |  |  |  |
| $\begin{gathered} \mathrm{N} \\ 0 \end{gathered}$ | ＊＊ 363 ＊＊ |  |  |  |  |  |  |
|  | 365 |  |  |  |  |  |  |
|  | ＊＊365＊＊ |  |  |  |  |  |  |
|  | 367 |  |  |  |  |  |  |
|  | ＊＊367＊＊ |  |  |  |  |  |  |
|  | 370 |  |  |  |  |  |  |
|  | ＊＊370＊＊ |  |  |  |  |  |  |
|  | 372 |  |  |  |  |  |  |
|  | ＊＊ 372 ＊＊ |  |  |  |  |  |  |
|  | 374 |  |  |  |  |  |  |
|  | ＊＊374＊＊ |  |  |  |  |  |  |

枠囲みの内容は商業機密の観点から公開できません。

支持点及び貫通部ばね定数
鳥 瞰 図 MS－O 01
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | ＊＊ 395 ＊＊ |  |  |  |  |  |  |
|  | ＊＊396＊＊ |  |  |  |  |  |  |
|  | ＊＊ 402 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 404 ＊＊ |  |  |  |  |  |  |
|  | 407 |  |  |  |  |  |  |
|  | 409 |  |  |  |  |  |  |
|  | 414 |  |  |  |  |  |  |
| $\bigcirc$ | ＊＊ 417 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 419 ＊＊ |  |  |  |  |  |  |
| $\stackrel{N}{1}$ | ＊＊421＊＊ |  |  |  |  |  |  |
| $\llcorner$ | 423 |  |  |  |  |  |  |
| $\stackrel{1}{I}$ | ＊＊ 426 ＊＊ |  |  |  |  |  |  |
| （1） | ＊＊ 432 ＊＊ |  |  |  |  |  |  |
| $\begin{aligned} & \text { N } \\ & 0 \end{aligned}$ | ＊＊ $434 * *$ |  |  |  |  |  |  |
|  | 445 |  |  |  |  |  |  |
|  | ＊＊ 445 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ $448 * *$ |  |  |  |  |  |  |
|  | ＊＊ 456 ＊＊ |  |  |  |  |  |  |
|  | 458 |  |  |  |  |  |  |
|  | ＊＊458＊＊ |  |  |  |  |  |  |



支持点及び貫通部ばね定数
鳥 瞰 図

$$
\mathrm{MS}-001
$$

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 460 |  |  |  |  |  |  |
| ＊＊ 460 ＊＊ |  |  |  |  |  |  |
| 462 |  |  |  |  |  |  |
| ＊＊ 462 ＊＊ |  |  |  |  |  |  |
| 465 |  |  |  |  |  |  |
| ＊＊ 465 ＊＊ |  |  |  |  |  |  |
| 467 |  |  |  |  |  |  |
| ＊＊ 467 ＊＊ |  |  |  |  |  |  |
| 469 |  |  |  |  |  |  |
| ＊＊ 469 ＊＊ |  |  |  |  |  |  |
| ＊＊ 911 ＊＊ |  |  |  |  |  |  |
| ＊＊ 914 ＊＊ |  |  |  |  |  |  |
| 919 |  |  |  |  |  |  |
| ＊＊ 920 ＊＊ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 MS－004

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 10.34 | 315 | 114.3 | 11.1 | STS410 | - | 183200 |
| 2 | 4.71 | 262 | 267.4 | 15.1 | STS410 | - | 187520 |
| 3 | 4.71 | 262 | 267.4 | 15.1 | STS410 | - | 187520 |
| 4 | 4.71 | 262 | 267.4 | 15.1 | SCS16A | - | 177520 |
| 5 | 4.71 | 262 | 323.9 | 17.5 | SCS16A | - | 177520 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS－004

| 管名称 |  |  |  |  | 対 | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 131 | 132 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 |
|  | 216 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 |
|  | 315 | 316 | 317 | 318 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 | 410 | 411 |
|  | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 820 | 830 | 835 | 850 | 913 | 915 | 920 | 930 |
|  | 935 | 940 | 949 | 951 | 952 |  |  |  |  |  |  |  |  |  |  |
| 3 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
|  | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 |
|  | 246 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 279 | 318 | 319 | 320 | 321 | 322 |
|  | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 |
|  | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 353 |
|  | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 384 | 418 | 419 | 420 | 421 | 422 | 423 | 424 |
|  | 425 | 426 | 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 |
|  | 440 | 441 | 443 | 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 |
|  | 456 | 480 | 800 | 907 | 921 | 922 | 923 | 924 | 931 | 932 | 933 | 934 | 941 | 942 | 943 |
|  | 944 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 255 | 256 | 360 | 361 | 456 | 457 |  |  |  |  |  |  |  |  |  |
| 5 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 |
|  | 271 | 272 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 |
|  | 374 | 375 | 376 | 377 | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 |
|  | 468 | 469 | 470 | 471 | 472 | 473 |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図
MS－ 004

評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 131 |  | 251 |  | 329 |  | 403 |  | 455 |  |
| 132 |  | 252 |  | 330 |  | 404 |  | 456 |  |
| 201 |  | 253 |  | 331 |  | 405 |  | 457 |  |
| 202 |  | 254 |  | 332 |  | 406 |  | 458 |  |
| 203 |  | 255 |  | 333 |  | 407 |  | 459 |  |
| 204 |  | 256 |  | 334 |  | 408 |  | 460 |  |
| 205 |  | 257 |  | 335 |  | 409 |  | 461 |  |
| 206 |  | 258 |  | 336 |  | 410 |  | 462 |  |
| 207 |  | 259 |  | 337 |  | 411 |  | 463 |  |
| 208 |  | 260 |  | 338 |  | 412 |  | 464 |  |
| 209 |  | 261 |  | 339 |  | 413 |  | 465 |  |
| 210 |  | 262 |  | 340 |  | 414 |  | 466 |  |
| 211 |  | 263 |  | 341 |  | 415 |  | 467 |  |
| 212 |  | 264 |  | 342 |  | 416 |  | 468 |  |
| 213 |  | 265 |  | 343 |  | 417 |  | 469 |  |
| 214 |  | 266 |  | 344 |  | 418 |  | 470 |  |
| 215 |  | 267 |  | 345 |  | 419 |  | 471 |  |
| 216 |  | 268 |  | 346 |  | 420 |  | 472 |  |
| 217 |  | 269 |  | 347 |  | 421 |  | 473 |  |
| 218 |  | 270 |  | 348 |  | 422 |  | 480 |  |
| 219 |  | 271 |  | 349 |  | 423 |  | 800 |  |
| 220 |  | 272 |  | 350 |  | 424 |  | 820 |  |
| 221 |  | 279 |  | 351 |  | 425 |  | 830 |  |
| 222 |  | 301 |  | 353 |  | 426 |  | 835 |  |
| 223 |  | 302 |  | 354 |  | 427 |  | 850 |  |
| 224 |  | 303 |  | 355 |  | 428 |  | 907 |  |
| 225 |  | 304 |  | 356 |  | 429 |  | 913 |  |
| 226 |  | 305 |  | 357 |  | 430 |  | 915 |  |
| 227 |  | 306 |  | 358 |  | 431 |  | 920 |  |
| 228 |  | 307 |  | 359 |  | 432 |  | 921 |  |
| 229 |  | 308 |  | 360 |  | 433 |  | 922 |  |
| 230 |  | 309 |  | 361 |  | 434 |  | 923 |  |
| 231 |  | 310 |  | 362 |  | 435 |  | 924 |  |
| 232 |  | 311 |  | 363 |  | 436 |  | 930 |  |
| 233 |  | 312 |  | 364 |  | 437 |  | 931 |  |
| 234 |  | 313 |  | 365 |  | 438 |  | 932 |  |
| 235 |  | 314 |  | 366 |  | 439 |  | 933 |  |
| 236 |  | 315 |  | 367 |  | 440 |  | 934 |  |
| 237 |  | 316 |  | 368 |  | 441 |  | 935 |  |
| 238 |  | 317 |  | 369 |  | 443 |  | 940 |  |
| 239 |  | 318 |  | 370 |  | 444 |  | 941 |  |
| 240 |  | 319 |  | 371 |  | 445 |  | 942 |  |
| 241 |  | 320 |  | 372 |  | 446 |  | 943 |  |
| 242 |  | 321 |  | 373 |  | 447 |  | 944 |  |
| 243 |  | 322 |  | 374 |  | 448 |  | 949 |  |
| 244 |  | 323 |  | 375 |  | 449 |  | 951 |  |
| 245 |  | 324 |  | 376 |  | 450 |  | 952 |  |
| 246 |  | 325 |  | 377 |  | 451 |  |  |  |
| 248 |  | 326 |  | 384 |  | 452 |  |  |  |
| 249 |  | 327 |  | 401 |  | 453 |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図 MS－004
評価点の質量を下表に示す。

| 評価点 | 質量 $(\mathrm{kg})$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 250 |  | 328 |  | 402 |  |  | 454 |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－004
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 132 |  |  |  |  |  |  |
|  | 204 |  |  |  |  |  |  |
|  | 206 |  |  |  |  |  |  |
|  | 209 |  |  |  |  |  |  |
|  | ＊＊ 211 ＊＊ |  |  |  |  |  |  |
|  | 216 |  |  |  |  |  |  |
|  | ＊＊ 216 ＊＊ |  |  |  |  |  |  |
|  | 222 |  |  |  |  |  |  |
|  | ＊＊ 222 ＊＊ |  |  |  |  |  |  |
| $\simeq$ | ＊＊ 227 ＊＊ |  |  |  |  |  |  |
| $\bigcirc$ | 231 |  |  |  |  |  |  |
| ค | ＊＊ $235 * *$ |  |  |  |  |  |  |
|  | ＊＊ 237 ＊＊ |  |  |  |  |  |  |
|  | 247 |  |  |  |  |  |  |
|  | ＊＊ $247 * *$ |  |  |  |  |  |  |
|  | ＊＊ 250 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ $258 * *$ |  |  |  |  |  |  |
|  | 260 |  |  |  |  |  |  |
|  | ＊＊ 260 ＊＊ |  |  |  |  |  |  |
|  | 262 |  |  |  |  |  |  |
|  | ＊＊ 262 ＊＊ |  |  |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 MS－004
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 264 |  |  |  |  |  |  |
|  | ＊＊ 264 ＊＊ |  |  |  |  |  |  |
|  | 267 |  |  |  |  |  |  |
|  | ＊＊ 267 ＊＊ |  |  |  |  |  |  |
|  | 269 |  |  |  |  |  |  |
|  | ＊＊ 269 ＊＊ |  |  |  |  |  |  |
|  | 271 |  |  |  |  |  |  |
|  | ＊＊ 271 ＊＊ |  |  |  |  |  |  |
| $\propto$ | 304 |  |  |  |  |  |  |
|  | 306 |  |  |  |  |  |  |
|  | 309 |  |  |  |  |  |  |
|  | ＊＊ 311 ＊＊ |  |  |  |  |  |  |
|  | 318 |  |  |  |  |  |  |
|  | ＊＊ 318 ＊＊ |  |  |  |  |  |  |
| （1） | ＊＊ 320 ＊＊ |  |  |  |  |  |  |
| 0 | ＊＊327＊＊ |  |  |  |  |  |  |
|  | 331 |  |  |  |  |  |  |
|  | 336 |  |  |  |  |  |  |
|  | ＊＊ 338 ＊＊ |  |  |  |  |  |  |
|  | 352 |  |  |  |  |  |  |
|  | ＊＊ 352 ＊＊ |  |  |  |  |  |  |



支持点及び貫通部ばね定数
鳥 瞰 図 MS－004
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | ＊＊ 355 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 363 ＊＊ |  |  |  |  |  |  |
|  | 365 |  |  |  |  |  |  |
|  | ＊＊ 365 ＊＊ |  |  |  |  |  |  |
|  | 367 |  |  |  |  |  |  |
|  | ＊＊ 367 ＊＊ |  |  |  |  |  |  |
| \＆ | 369 |  |  |  |  |  |  |
|  | ＊＊ 369 ＊＊ |  |  |  |  |  |  |
| $\uparrow$ | 372 |  |  |  |  |  |  |
| $\stackrel{\rightharpoonup}{\infty}$ | ＊＊ 372 ＊＊ |  |  |  |  |  |  |
| N | 374 |  |  |  |  |  |  |
| － | ＊＊ 374 ＊＊ |  |  |  |  |  |  |
|  | 376 |  |  |  |  |  |  |
| $0$ | ＊＊376＊＊ |  |  |  |  |  |  |
|  | ＊＊ 402 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 404 ＊＊ |  |  |  |  |  |  |
|  | 407 |  |  |  |  |  |  |
|  | ＊＊ 409 ＊＊ |  |  |  |  |  |  |
|  | 412 |  |  |  |  |  |  |
|  | ＊＊ 418 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 423 ＊＊ |  |  |  |  |  |  |

$\qquad$

支持点及び貫通部ばね定数
鳥 瞰 図 MS－OO4
支持点部のばね定数を下表に示す。


支持点及び貫通部ばね定数
鳥 瞰 図
MS－004

支持点部のばね定数を下表に示す。


## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | K

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数 $(\%)$ |
| :---: | :---: | :---: | :---: |
| M S－O O 1 | 原子炉しやへい壁 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数 $(\%)$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{MSS}-0 \mathrm{O} 4$ | 原子炉しやへい壁 |  |  |

O 2 （5）VI－2－5－3－1－2（重）R 0


[^6]0 y（重）$Z-I-\varepsilon-\mathcal{G}-Z-I \Lambda \quad$（c）$\quad$ O

| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 28 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 (5) VI-2-5-3-1-2 (重) R 0
O 2 (5) VI-2-5-3-1-2 (重) R O
O 2 （5）VI－2－5－3－1－2（重）R 0
解析結果及び評価


[^7]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 26 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  |  |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm}(\mathrm{~S} \text { s ) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 US s |
| MS－ 001 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 307 \\ & 307 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 256 \\ & - \end{aligned}$ | $\begin{aligned} & 363 \\ & - \end{aligned}$ | $\overline{373}$ | $386$ | — |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  |  |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm}(\mathrm{~S} \text { s ) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 US s |
| MS－ 004 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 237 \\ & 432 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 256 \\ & - \end{aligned}$ | $\begin{aligned} & 363 \\ & - \end{aligned}$ | $\begin{aligned} & - \\ & 468 * \end{aligned}$ | $386$ | $\overline{-}$ |

＊印は一次十二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下
O 2 （5）VI－2－5－3－1－2（重）R 0
4.2.2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 $\begin{array}{c}\text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$ | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| MS－002－214H | バリアブルハンガ | VS120－16 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 | 24 | 28 |
| MS－001－109S | メカニカルスナッバ | SMS－10－100 |  | 177 | 230 |
| MS－001－432B | ロッドレストレイント | RST－3 |  | 80 | 108 |
| MS－004－449B | ロッドレストレイント | RST－4 |  | 111 | 166 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力 <br> 分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| MS－004－132A | アンカラグ | ラグ | SGV410 | 315 | 86 | 47 | 55 | 13 | 3 | 15 | せん断 | 58 | 94 |
| MS－001－137R | レストレイント | 架構 | STKR400 | 200 | 124 | 0 | 73 | － | － | － | 組合せ | 124 | 202 |
| MS－004－237R | レストレイント | 架構 | STKR400 | 200 | 96 | 0 | 112 | － | － | － | 組合せ | 166 | 202 |

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－3－1－2（重）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 Vas |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 疲労 <br> 累積 <br> 係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | MS－001 | 307 | 256 | 363 | 1． 41 | $\bigcirc$ | 307 | 373 | 386 | 1.03 | － | － | － | － |
| 2 | MS－002 | 151 | 156 | 363 | 2． 32 | － | 151 | 319 | 386 | 1.21 | － | － | － | － |
| 3 | MS－003 | 220 | 168 | 363 | 2． 16 | － | 135 | 300 | 386 | 1.28 | － | － | － | － |
| 4 | MS－004 | 237 | 256 | 363 | 1． 41 | $\bigcirc$ | 432 | 468 | 386 | 0.82 | $\bigcirc$ | 432 | 0.9004 | $\bigcirc$ |
| 5 | MS－05 | 3 | 61 | 371 | 6． 08 | － | 3 | 82 | 300 | 3.65 | － | － | － | － |
| 6 | MS－06 | 4 | 39 | 371 | 9． 51 | － | 4 | 46 | 300 | 6.52 | － | － | － | － |
| 7 | MS－07 | 4 | 37 | 371 | 10.02 | － | 4 | 42 | 300 | 7.14 | － | － | － | － |
| 8 | MS－08 | 5 | 35 | 371 | 10.60 | － | 5 | 40 | 300 | 7.50 | － | － | － | － |
| 9 | MS－09 | 4 | 58 | 371 | 6． 39 | － | 4 | 82 | 300 | 3.65 | － | － | － | － |
| 10 | MS－10 | 4 | 31 | 371 | 11.96 | － | 4 | 34 | 300 | 8.82 | － | － | － | － |
| 11 | MS－11 | 4 | 38 | 371 | 9．76 | － | 4 | 44 | 300 | 6.81 | － | － | － | － |
| 12 | MS－12 | 3 | 34 | 371 | 10.91 | － | 3 | 38 | 300 | 7.89 | － | － | － | － |

O 2 （5）VI－2－5－3－1－2（重）R O E
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

|  |  | 世稂 | 1 | ｜ | ｜ | ｜ | 1 | ｜ | 1 | ｜ | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 沢揋薮紫 播 断 | ｜ | ｜ | 1 | 1 | ｜ | ｜ | ｜ | ｜ | ｜ |
|  |  | 湍建沵 | ｜ | \｜ | ｜ | I | ｜ | ｜ | ｜ | ｜ | 1 |
|  |  | 世兵 | ｜ | \｜ | ｜ | 1 | ｜ | ｜ | 1 | 1 | 1 |
|  |  | 热 | $\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{y}{2} \end{aligned}$ | $\begin{aligned} & \ddot{0} \\ & \\ & \end{aligned}$ | $\begin{aligned} & \vec{\infty} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & + \\ & \infty \\ & \infty \\ & \infty \end{aligned}$ | $\begin{aligned} & \text { io } \\ & \text { ij } \end{aligned}$ | $\stackrel{\pi}{\underset{i}{i}}$ | $\begin{aligned} & 8 \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$ | $\underset{\sim}{\underset{\sim}{\bullet}}$ | $\begin{aligned} & \infty \\ & \infty \\ & + \end{aligned}$ |
|  |  |  | 権 | － | $\underset{\sim}{\circ}$ | ৪্টি | 侖 | $\underset{\sim}{2}$ | ৪্লে | 앙 | \％ |
|  |  |  | ¢ | ～ | H | $\stackrel{\infty}{\sim}$ | H | フิ | 오 | N | ชู |
|  |  |  | $\bigcirc$ | $\infty$ | $\infty$ | ＋ | ＋ | ＋ | $\infty$ | $\infty$ | ＋ |
|  | $\underset{\sim}{\stackrel{5}{v}}$ | 世拞 | ｜ | \｜ | ｜ | ｜ | ｜ | ｜ | 1 | 1 | 1 |
|  |  | 誌 | $\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \otimes \\ & \dot{\infty} \\ & \dot{0} \end{aligned}$ | $\begin{aligned} & \text { I } \\ & \dot{\circ} \\ & \hline 1 \end{aligned}$ |  |  | $\begin{aligned} & \underset{N}{\prime} \\ & \underset{\sim}{\prime} \end{aligned}$ | $$ | $\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \end{aligned}$ | $\underset{\infty}{\infty} \underset{\infty}{\infty}$ |
|  |  |  | $\underset{\sim}{\underset{\sim}{2}}$ | E | E | $\stackrel{\rightharpoonup}{\text { F }}$ | E | E | N | $\stackrel{\rightharpoonup}{\text { F}}$ | N |
|  |  |  | $\stackrel{1}{\circ}$ | ～ | － | $\stackrel{\circ}{\circ}$ | む | ¢ | ন | L | \％ |
|  |  |  | $\bigcirc$ | $\infty$ | $\infty$ | ＋ | ＋ | ＋ | $\infty$ | $\infty$ | － |
|  |  |  | $\begin{aligned} & \stackrel{m}{1} \\ & \stackrel{n}{2} \end{aligned}$ | $\begin{aligned} & \underset{\substack{1 \\ \stackrel{n}{2}}}{ } \end{aligned}$ | $\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{n}{2} \end{aligned}$ | $\begin{aligned} & 0 \\ & 1 \\ & \frac{n}{2} \end{aligned}$ | $\begin{aligned} & \underset{1}{7} \\ & \stackrel{n}{2} \end{aligned}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \\ & \frac{n}{2} \end{aligned}$ | $\begin{aligned} & \stackrel{9}{1} \\ & \stackrel{n}{n} \end{aligned}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{n}{2} \end{aligned}$ | $\begin{array}{\|l} \vec{N} \\ \stackrel{n}{2} \end{array}$ |
|  |  | $\dot{8}$ | $\stackrel{\sim}{\sim}$ | $\pm$ | $\stackrel{\square}{\sim}$ | $\stackrel{\square}{\bullet}$ | $\approx$ | $\stackrel{\infty}{\sim}$ | $\stackrel{\square}{2}$ | $\stackrel{\text {－}}{ }$ | $\stackrel{\rightharpoonup}{\sim}$ |

VI－2－5－3－2 復水給水系の耐震性についての計算書

VI－2－5－3－2－1 管の耐震性についての計算書（復水給水系）

$$
\begin{array}{ll}
\text { VI-2-5-3-2-1 } & \text { 管の耐震性についての計算書 } \\
& \text { (復水給水系) }
\end{array}
$$

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 11
3.1 計算方法 ..... 11
3.2 荷重の組合せ及び許容応力状態 ..... 12
3.3 設計条件 ..... 14
3．4 材料及び許容応力 ..... 27
3.5 設計用地震力 ..... 28
4．解析結果及び評価 ..... 29
4． 1 固有周期及び設計震度 ..... 29
4． 2 評価結果 ..... 35
4．2．1 管の応力評価結果 ..... 35
4．2．2 支持構造物評価結果 ..... 37
4．2．3 弁の動的機能維持評価結果 ..... 38
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 39

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，復水給水系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 1 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例


復水給水系概略系統図

## 鳥瞰図記号凡例

記 号







3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 原子炉冷却材の循環設備 | 復水給水系 | D B | － | クラス 1 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | $\mathrm{III}_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ S | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
| 原子炉冷却系統施設 | 原子炉冷却材の循環設備 | 復水給水系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{VV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{II}_{\mathrm{L}}+\mathrm{S}$ S |  |
| 原子炉冷却系統施設 | 原子炉冷却材補給設備 | 原子炉隔離時冷却系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$ |  |


| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ $*^{2}$ ，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉泠却系統施設 | 原子炉冷却材浄化設備 | 原子炉冷却材浄化系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | IIIA ${ }_{\text {S }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{S}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
| 注記 $* 1: ~ D ~ B ~ は ~ 訁 ~ 訁 殳 訁 十 ~ ⿱ ⿱ ⿴ ⿱ 卄 一 二 八 土 灬$ 準対象施設，S A は重大事故等対処設備を示す。 |  |  |  |  |  |  |  |  |
| ＊2：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態を示す。 |  |  |  |  |  |  |  |  |
| ＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。 |  |  |  |  |  |  |  |  |

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 FDW－001（クラス1管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 457.2 | 29.4 | STS410 | S | 184760 |
| 2 | 8.62 | 302 | 457.2 | 29.4 | SFVC2B | S | 184760 |
| 3 | 8.62 | 302 | 318.5 | 21.4 | SFVC2B | S | 184760 |
| 4 | 8.62 | 302 | 318.5 | 21.4 | STS410 | S | 184760 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FDW－001（クラス1管）

| 管名称 |  |  |  |  | 対 | 応 |  |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 17 | 18 | 19 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
|  | 33 | 34 | 35 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 117 |
|  | 118 | 119 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 |
|  | 134 | 135 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 803 | 804 |
|  | 840 | 850 | 941 | 951 |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 35 | 36 | 37 | 47 | 48 | 49 | 135 | 136 | 137 | 147 | 148 | 149 |  |  |  |
| 3 | 36 | 48 | 66 | 78 | 136 | 148 | 166 | 178 |  |  |  |  |  |  |  |
| 4 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
|  | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 150 |
|  | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 |
|  | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 812 | 813 |
|  | 912 | 913 | 914 | 915 |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図
FDW－001
（クラス1管）

評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 |  | 47 |  | 73 |  | 141 |  | 167 |  |
| 22 |  | 48 |  | 74 |  | 142 |  | 168 |  |
| 23 |  | 49 |  | 75 |  | 143 |  | 169 |  |
| 24 |  | 50 |  | 76 |  | 144 |  | 170 |  |
| 25 |  | 51 |  | 77 |  | 145 |  | 171 |  |
| 26 |  | 52 |  | 78 |  | 146 |  | 172 |  |
| 27 |  | 53 |  | 118 |  | 147 |  | 173 |  |
| 28 |  | 54 |  | 122 |  | 148 |  | 174 |  |
| 29 |  | 55 |  | 123 |  | 149 |  | 175 |  |
| 30 |  | 56 |  | 124 |  | 150 |  | 176 |  |
| 31 |  | 57 |  | 125 |  | 151 |  | 177 |  |
| 32 |  | 58 |  | 126 |  | 152 |  | 178 |  |
| 33 |  | 59 |  | 127 |  | 153 |  | 803 |  |
| 34 |  | 60 |  | 128 |  | 154 |  | 804 |  |
| 35 |  | 61 |  | 129 |  | 155 |  | 812 |  |
| 36 |  | 62 |  | 130 |  | 156 |  | 813 |  |
| 37 |  | 63 |  | 131 |  | 157 |  | 840 |  |
| 38 |  | 64 |  | 132 |  | 158 |  | 850 |  |
| 39 |  | 65 |  | 133 |  | 159 |  | 912 |  |
| 40 |  | 66 |  | 134 |  | 160 |  | 913 |  |
| 41 |  | 67 |  | 135 |  | 161 |  | 914 |  |
| 42 |  | 68 |  | 136 |  | 162 |  | 915 |  |
| 43 |  | 69 |  | 137 |  | 163 |  | 941 |  |
| 44 |  | 70 |  | 138 |  | 164 |  | 951 |  |
| 45 |  | 71 |  | 139 |  | 165 |  |  |  |
| 46 |  | 72 |  | 140 |  | 166 |  |  |  |

$$
\text { 鳥 瞰 図 FDW—o } 01 \text { (クラス1管) }
$$

弁部の質量を下表に示す。
弁1 弁2 弁3 弁4 弁5

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 |  | 15 |  | 19 |  | 108 |  | 115 |  |
| 9 |  | 16 |  | 20 |  | 109 |  | 116 |  |
| 10 |  | 17 |  | 21 |  | 110 |  | 117 |  |

弁 6

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :--- |
| 119 |  |
| 120 |  |
| 121 |  |

鳥 瞰 図 FDW-001 (クラス1管)

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径（mm） | 厚さ（mm） | 長さ（mm） |
| :---: | :---: | :---: | :---: | :---: |
| 弁1 | 9 |  |  |  |
| 弁2 | 16 |  |  |  |
| 弁3 | 20 |  |  |  |
| 弁4 | 109 |  |  |  |
| 弁5 | 116 |  |  |  |
| 弁6 | 120 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 FDW－001（クラス1管）
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 18 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |
| ＊＊ 27 ＊＊ |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |
| ＊＊ $34 * *$ |  |  |  |  |  |  |
| ＊＊ 40 ＊＊ |  |  |  |  |  |  |
| 43 |  |  |  |  |  |  |
| ＊＊ $44 * *$ |  |  |  |  |  |  |
| ＊＊ 46 ＊＊ |  |  |  |  |  |  |
| 50 |  |  |  |  |  |  |
| ＊＊ 59 ＊＊ |  |  |  |  |  |  |
| 67 |  |  |  |  |  |  |
| ＊＊ 75 ＊＊ |  |  |  |  |  |  |
| ＊＊ 77 ＊＊ |  |  |  |  |  |  |
| 118 |  |  |  |  |  |  |
| 122 |  |  |  |  |  |  |
| ＊＊ 127 ＊＊ |  |  |  |  |  |  |
| 131 |  |  |  |  |  |  |
| ＊＊ $134 * *$ |  |  |  |  |  |  |
| ＊＊140＊＊ |  |  |  |  |  |  |
| 143 |  |  |  |  |  |  |
| ＊＊ $144 * *$ |  |  |  |  |  |  |
| ＊＊ 146 ＊＊ |  |  |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 FDW－001（クラス1管）
支持点部のばね定数を下表に示す。


設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－001（クラス2以下の管）

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 457.2 | 29.4 | SFVC2B | S | 184760 |
| 2 | 8.62 | 302 | 457.2 | 29.4 | STS410 | S | 184760 |
| 3 | 8.62 | 302 | 216.3 | 18.2 | STS410 | S | 184760 |
| 4 | 8.62 | 302 | 165.2 | 14.3 | STS410 | S | 184760 |
| 5 | 8.62 | 302 | 165.2 | 14.3 | SFVC2B | S | 184760 |
| 6 | 11.77 | 66 | 114.3 | 13.5 | STS410 | S | 200360 |
| 7 | 8.62 | 302 | 114.3 | 11.1 | STS410 | S | 184760 |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FDW－001（クラス2以下の管）


配管の質量（付加質量含む）
鳥 瞰 図 FDW－001（クラス2以下の管）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 |  | 225 |  | 243 |  | 628 |  | 821 |  |
| 101 |  | 226 |  | 247 |  | 629 |  | 822 |  |
| 105 |  | 227 |  | 248 |  | 630 |  | 823 |  |
| 106 |  | 228 |  | 501 |  | 631 |  | 901 |  |
| 107 |  | 229 |  | 502 |  | 632 |  | 904 |  |
| 108 |  | 230 |  | 503 |  | 633 |  | 905 |  |
| 206 |  | 231 |  | 504 |  | 634 |  | 906 |  |
| 207 |  | 232 |  | 507 |  | 635 |  | 910 |  |
| 208 |  | 233 |  | 508 |  | 636 |  | 911 |  |
| 209 |  | 234 |  | 514 |  | 637 |  | 916 |  |
| 210 |  | 235 |  | 515 |  | 638 |  | 923 |  |
| 211 |  | 239 |  | 516 |  | 801 |  |  |  |
| 212 |  | 240 |  | 517 |  | 807 |  |  |  |
| 220 |  | 241 |  | 524 |  | 811 |  |  |  |
| 221 |  | 242 |  | 627 |  | 814 |  |  |  |

> 鳥 瞰 図 F DW——oll (クラス2以下の管)

弁部の質量を下表に示す。


```
鳥 瞰 図 FDW-001 (クラス2以下の管)
```

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| 弁1 |  |  |  |  |
| 弁2 |  |  |  |  |
| 弁3 |  |  |  |  |
| 弁4 |  |  |  |  |
| 弁5 |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 FDW－001（クラス2以下の管）
支持点部のばね定数を下表に示す。

$\square$

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| SFVC2B | 302 | 125 | 187 | 438 | － |
| STS410 | 302 | 122 | 182 | 404 | － |
| STS410 | 66 | － | 231 | 407 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| F D W－0 0 1 | 原子灯しやへい壁 |  |  |

O 2 （5）VI－2－5－3－2－1（設）R 0


[^8]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 } \text { 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 12 次 |  |  |  |  |

[^9]
## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力区分 | 一次応力評価$(\mathrm{MPa})$ |  |  |  | $\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ \text { (MPa) } \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 許容応力 <br> 2． $25 \cdot \mathrm{Sm}$ <br> $3 \cdot \mathrm{Sm}$ | $\begin{aligned} & \text { ねじり応力 } \\ & \text { S t (S d) } \\ & \text { S t (S s ) } \end{aligned}$ | $$ | $\begin{aligned} & \text { 一次 + 二次応力 } \\ & S \mathrm{Sn}(\mathrm{Sd}) \\ & \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{aligned}$ | 許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~s} \end{aligned}$ |
| FDW－001 | IIIA ${ }_{\text {A }}$ S | 36 | TEE | Sprm（Sd） | 104 | 281 | － | － | － | － | － |
|  | IIIA S | 51 | ELBOW | St（S d） | － | － | 42 | 67 | － | － | － |
|  | IIIA S | 50 | NozzLE | Sn（Sd） | － | － | － | － | 195 | 366 | － |
|  | IIII ${ }_{\text {A }} \mathrm{S}$ | 36 | TEE | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 4037 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 36 | TEE | Sprm（Ss） | 146 | 375 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 51 | ELBOW | St（S s ） | － | － | 62 | 89 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 148 | TEE | Sn（S s ） | － | － | － | － | 330 | 375 | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 36 | TEE | $\mathrm{U}+\mathrm{US} \mathrm{s}$ | － | － | － | － | － | － | 0． 4086 |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次＋二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & S p r m(S d) \\ & S p r m(S s) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| F DW－0 01 | $\begin{aligned} & \text { III } \mathrm{S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 235 \\ & 235 \\ & 235 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 149 \\ & 207 \end{aligned}$ | $\begin{aligned} & 231 \\ & 366 \\ & \hline \end{aligned}$ |  |  | — |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S yと1．2•Shのうち大きい方とする。
4.2.2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| FDW－001－144S | メカニカルスナッバ | SMS－10－100 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐 | 148 | 230 |
| FDW－001－131H | スプリングハンガ | V60B－19 |  | 51 | 69 |
| FDW－001－906B | ロッドレストレイント | RTS－25 | 震計算について」参照 | 225 | 375 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（kN•m） |  |  | 応力分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| FDW－001－118G | レストレイント | ラグ | SGV480 | 302 | 171 | 368 | 0 | － | － | 6 | 組合せ | 40 | 219 |
| FDW－001－101A | アンカ | 架構 | SM400B | 55 | 333 | 262 | 1147 | 474 | 452 | 352 | 曲げ | 132 | 458 |

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－3－2－1（設）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| B21－F052B | 強制閉止形逆止弁 | $\alpha$（ S s ） | 2.2 | 3.0 | 6.0 | 6． 0 | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。


[^10]代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 疲労累積係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | FDW－001 | 235 | 149 | 231 | 1.55 | $\bigcirc$ | 235 | 207 | 366 | 1． 76 | $\bigcirc$ | 235 | 366 | 462 | 1． 26 | $\bigcirc$ | － | － | － |

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 11
3.1 計算方法 ..... 11
3.2 荷重の組合せ及び許容応力状態 ..... 12
3.3 設計条件 ..... 13
3．4 材料及び許容応力 ..... 19
3.5 設計用地震力 ..... 20
4．解析結果及び評価 ..... 21
4． 1 固有周期及び設計震度 ..... 21
4． 2 評価結果 ..... 27
4．2．1 管の応力評価結果 ..... 27
4．2．2 支持構造物評価結果 ..... 28
4．2．3 弁の動的機能維持評価結果 ..... 29
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 30

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，復水給水系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 1 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号
O2 (5) $\mathrm{VI}-2-5-3-2-1$ (重) R 0
O 2 (5) VI-2-5-3-2-1 (重) R 0
O2 (5) VI-2-5-3-2-1 (重) R O
O2 (5) $\mathrm{VI}-2-5-3-2-1$ (重) R 0
O 2 (5) $\mathrm{VI}-2-5-3-2-1$ (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{* 1}$ | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 高圧代替注水系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 原子炉格納容器安全設備 | 高圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却 <br> 系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 原子炉隔離時冷却系 | S A | 常設／防止 （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

注記 $\boldsymbol{H}^{2}$ ：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（拡張）」は常設重大事故防止設備（設計基準抎張）を示す。 ＊3：運転状態の添字Lは荷重を示す。
＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

## 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－001

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 8.62 | 302 | 457.2 | 29.4 | SFVC2B | - | 184760 |
| 2 | 8.62 | 302 | 457.2 | 29.4 | SFVC2B | - | 184760 |
| 3 | 8.62 | 302 | 165.2 | 14.3 | STS410 | - | 184760 |
| 4 | 8.62 | 302 | 165.2 | 14.3 | STS410 | - | 184760 |
| 5 | 8.62 | 302 | 165.2 | 14.3 | SFVC2B | - | 184760 |
| 6 | 8.62 | 302 | 165.2 | 14.3 | SFVC2B | - | 184760 |
| 7 | 11.77 | 66 | 114.3 | 13.5 | STS410 | - | 200360 |
| 8 | 8.62 | 302 | 114.3 | 11.1 | STS410 | - | 184760 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 FDW－001

d（重）$I-Z-\varepsilon-G-Z-I \Lambda$（̧）$\quad$ O

配管の質量（付加質量含む）
鳥 瞰 図 FDW－001
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  | 240 |  | 604 |  | 625 |  | 649 |  |
| 8 |  | 241 |  | 605 |  | 626 |  | 807 |  |
| 107 |  | 242 |  | 606 |  | 627 |  | 816 |  |
| 108 |  | 243 |  | 607 |  | 636 |  | 819 |  |
| 218 |  | 247 |  | 608 |  | 637 |  | 820 |  |
| 219 |  | 248 |  | 609 |  | 638 |  | 821 |  |
| 227 |  | 501 |  | 610 |  | 639 |  | 823 |  |
| 228 |  | 502 |  | 611 |  | 640 |  | 901 |  |
| 229 |  | 507 |  | 612 |  | 641 |  | 904 |  |
| 230 |  | 508 |  | 613 |  | 642 |  | 906 |  |
| 231 |  | 515 |  | 614 |  | 643 |  | 911 |  |
| 232 |  | 516 |  | 618 |  | 644 |  | 916 |  |
| 233 |  | 517 |  | 619 |  | 645 |  | 923 |  |
| 234 |  | 601 |  | 620 |  | 646 |  |  |  |
| 235 |  | 602 |  | 623 |  | 647 |  |  |  |
| 239 |  | 603 |  | 624 |  | 648 |  |  |  |

$$
\begin{array}{lll}
\text { 鳥 瞰 図 } \quad \text { FDW - } 0001
\end{array}
$$

弁部の質量を下表に示す。

| 弁1 | 弁2 |  | 弁3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| 236 |  | 244 |  | 615 |  |
| 237 |  | 245 |  | 616 |  |
| 238 |  | 246 |  | 617 |  |
| 402 |  |  |  |  |  |
| 401 |  |  |  |  |  |

$$
\begin{array}{lll}
\text { 鳥 瞰 図 } \quad \text { FDW - } 0001
\end{array}
$$

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径（mm） | 厚さ（mm） | 長さ（mm） |
| :---: | :---: | :---: | :---: | :---: |
| 弁1 |  |  |  |  |
| 弁2 |  |  |  |  |
| 弁3 |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 FDW－001
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | ＊＊ 228 ＊＊ |  |  |  |  |  |  |
|  | 231 |  |  |  |  |  |  |
|  | 234 |  |  |  |  |  |  |
|  | 239 |  |  |  |  |  |  |
|  | ＊＊ 401 ＊＊ |  |  |  |  |  |  |
|  | 601 |  |  |  |  |  |  |
|  | 608 |  |  |  |  |  |  |
| $\bigcirc$ | 611 |  |  |  |  |  |  |
| 0 | 614 |  |  |  |  |  |  |
| （101） | 618 |  |  |  |  |  |  |
| 相 | 620 |  |  |  |  |  |  |
| $\bigcirc$ | 623 |  |  |  |  |  |  |
| $\infty$ | 638 |  |  |  |  |  |  |
| $\sim$ | 645 |  |  |  |  |  |  |
| $5$ | ＊＊ 901 ＊＊ |  |  |  |  |  |  |
| （1） | 904 |  |  |  |  |  |  |
| $\bigcirc$ | 906 |  |  |  |  |  |  |
|  | ＊＊ 911 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 916 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 923 ＊＊ |  |  |  |  |  |  |

$\qquad$

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| SFVC2B | 302 | － | 187 | 438 | － |
| STS410 | 66 | － | 231 | 407 | － |
| STS410 | 302 | － | 182 | 404 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| F D W－O O 1 | 原子炉しやへい壁 |  |  |

O 2 （5）VI－2－5－3－2－1（重）R 0
4．解析結果及び評価
4.1 固有周期及び設計震度

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\underset{(\mathrm{s})}{\text { 固有周期 }}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊${ }^{*}$ |  | 応答鉛直震度 ${ }^{* 1}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 12 次 |  |  |  |  |  |  |  |
| 13 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^11]注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | $\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \left(\begin{array}{l} \text { and } \end{array}\right. \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(Ss) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| F DW－001 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 235 \\ & 235 \end{aligned}$ | $\begin{gathered} \mathrm{S} \text { p r m (S s }) \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$ | $\begin{gathered} \hline 204 \\ - \end{gathered}$ | $366$ | $364$ | $462$ | — |

4．2．2 支持構造物評価結果
O 2 （5）VI－2－5－3－2－1（重）R 0

| 支持構造物評価結果（荷重評価） |  |  |  |
| :---: | :---: | :---: | :---: |
| 支持構造物番号 | 種類 | 型式 | 材質 |
| FDW－001－906S | メカニカルスナッバ | SMS－16－100 | 添付書類「VI配管及び支持震計算につい |
| FDW－001－906B | ロッドレストレイント | RTS－25 |  |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力分類 | $\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$ | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| FDW－001－645R | レストレイント | Uプレート | SS400 | 130 | 28 | 0 | 40 | － | － | － | せん断 | 85 | 122 |
| FDW－001－234A | アンカ | 架構 | STKR400 | 130 | 14 | 10 | 22 | 3 | 3 | 5 | 組合せ | 147 | 225 |

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－3－2－1（重）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| B21－F052B | 強制閉止形逆止弁 | $\alpha$（ S s ） | 2.2 | 3.0 | 6.0 | 6． 0 | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^12]代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 V A S |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 価 点 | 疲労 <br> 累積 <br> 係数 | 代 表 |
| 1 | FDW－001 | 235 | 204 | 366 | 1.79 | $\bigcirc$ | 235 | 364 | 462 | 1． 26 | $\bigcirc$ | － | － | － |

VI－2－5－4 残留熱除去設備の耐震性についての計算書

VI－2－5－4－1 残留熱除去系の耐震性についての計算書
VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書

VI－2－5－4－1 残留熱除去系の耐震性についての計算書

VI－2－5－4－1－1 残留熱除去系熱交換器の耐震性についての計算書
VI－2－5－4－1－2 残留熱除去系ポンプの耐震性についての計算書
VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書
VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）
VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）
（1）
$\sim$
a

VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書

## 目 次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2.2 評価方針 ..... 3
2.3 適用規格•基準等 ..... 4
2.4 記号の説明 ..... 5
2.5 計算精度と数値の丸め方 ..... 6
3．評価部位 ..... 7
4．地震応答解析及び構造強度評価 ..... 9
4．1 地震応答解析及び構造強度評価方法 ..... 9
4．2 荷重の組合せ及び許容応力 ..... 9
4．2．1 荷重の組合せ及び許容応力状態 ..... 9
4．2．2 許容応力 ..... 9
4．2．3 使用材料の許容応力評価条件 ..... 9
4．2．4 設計荷重 ..... 18
4． 3 解析モデル ..... 22
4． 4 設計用地震力 ..... 23
4.5 計算方法 ..... 24
4．5．1 応力評価点 ..... 24
4．5．2 応力計算方法 ..... 24
4．6 計算条件 ..... 34
4．7 応力の評価 ..... 37
4.8 設計•建設規格における材料の規定によらない場合 の評価 ..... 37
4．8．1 アウタージャケット及びフランジプレートの評価結果 ..... 37
5．評価結果 ..... 38
6．引用文献 ..... 42

## 1．概要

本計算書は，技術基準規則の解釈第 17 条 4 において記載される「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））及び添付書類「VI－2－1－9 機能維持 の基本方針」にて設定している構造強度の設計方針に基づき，残留熱除去系ストレーナが設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は残留熱除去系ストレーナの応力評価により行う。

残留熱除去系ストレーナは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張），常設重大事故緩和設備（設計基準拡張）及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，残留熱除去系ストレーナ，高圧炉心スプレイ系ストレーナ及び低圧炉心スプレイ系ス トレーナは同形状を有していることから，本計算書では残留熱除去系ストレーナ，高圧炉心ス プレイ系ストレーナ及び低圧炉心スプレイ系ストレーナの荷重条件で最大となる値を使用し て評価している。

また，残留熱除去系ストレーナは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の管であるため，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

残留熱除去系ストレーナ，高圧炉心スプレイ系ストレーナ及び低圧炉心スプレイ系スト レーナの構造計画を表 2－1 に示す。
O 2 (5) VI-2-5-4-1-3 R 0

## 2.2 評価方針

残留熱除去系ストレーナの応力評価は，「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2月 27 日原子力安全•保安院制定））及び添付書類「VI－2－1－9 機能維持の基本方針」に基 づき設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す残留熱除去系ストレーナの部位を踏まえ，「3．評価部位」にて設定する箇所において，設計荷重による応力が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」 にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

残留熱除去系ストレーナの応力評価のうち，解析モデルを用いる評価部位についての評価 フローを図 2－1 に示す。解析モデルを用いない評価部位については，強度計算式から応力 を算出し評価を行う。

図 2－1 残留熱除去系ストレーナの耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991追補版）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）
（5）非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規） （平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））

| 記号 | 記号の説明 | 単位 |
| :---: | :---: | :---: |
| $\mathrm{A}_{\text {A }}$ | 実効面積 | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{\mathrm{J}}$ | アウタージャケットの有効断面積 | $\mathrm{mm}^{2}$ |
| $\mathrm{C}_{\text {D }}$ | 定常ドラッグ係数 | － |
| $\mathrm{CH}_{\mathrm{A}}$ | チャギング時の加速度ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{3}$ |
| $\mathrm{CH}_{\mathrm{D}}$ | チャギング時の定常ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{2}$ |
| $\mathrm{COO}_{\mathrm{A}}$ | 蒸気凝縮時の加速度ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{3}$ |
| $\mathrm{COO}_{\mathrm{D}}$ | 蒸気凝縮時の定常ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{2}$ |
| d | 孔径 | mm |
| D P | 差圧 | kPa |
| $\mathrm{F}_{\mathrm{x}}$ | ストレーナとフランジ取合い部に加わる反力（ x 方向） | N |
| $\mathrm{F}_{\mathrm{y}}$ | ストレーナとフランジ取合い部に加わる反力（ y 方向） | N |
| $\mathrm{F}_{\mathrm{z}}$ | ストレーナとフランジ取合い部に加わる反力（ z 方向） | N |
| h | 孔の間隔 | mm |
| L | ストレーナ長さ | mm |
| $\mathrm{M}_{\text {x }}$ | ストレーナとフランジ取合い部に加わる配管系モーメント（x方向） | $\mathrm{N} \cdot \mathrm{m}$ |
| M ${ }_{\text {y }}$ | ストレーナとフランジ取合い部に加わる配管系モーメント（ y 方向） | $\mathrm{N} \cdot \mathrm{m}$ |
| $\mathrm{M}_{\text {z }}$ | ストレーナとフランジ取合い部に加わる配管系モーメント（ z 方向） | $\mathrm{N} \cdot \mathrm{m}$ |
| L A B A | 気泡形成時の加速度ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{3}$ |
| L A B ${ }_{\text {D }}$ | 気泡形成時の定常ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{2}$ |
| O D | 外径 | mm |
| P | 孔の間隔（中心間） | mm |
| S R V ${ }_{\text {D }}$ | 逃がし安全弁作動時の定常ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{2}$ |
| S R V A | 逃がし安全弁作動時の加速度ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{3}$ |
| t | アウタージャケットの厚さ | mm |
| F A B A | フォールバック時の加速度ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{3}$ |
| F A B ${ }_{\text {d }}$ | フォールバック時の定常ドラッグ荷重 | $\mathrm{N} / \mathrm{m}^{2}$ |
| Z | 断面係数 | $\mathrm{mm}^{3}$ |
| $\pi$ | 円周率 | － |
| Leg | フランジからストレーナ重心までの距離 | mm |
| $\mathrm{V}_{\text {A }}$ | 加速度ドラッグ体積 | $\mathrm{m}^{3}$ |
| w | ウェブ幅 | mm |
| n | ウェブ個数 | － |
| S | アウタージャケットの等価肉厚 | mm |

注：ここで定義されない記号については，各計算の項目において説明する。
2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-1$ に示すとおりとする。

表 2－1 表示する数値の丸め方

| 数値の種類 | 単位 | 処理桁 | 処理方法 | 表示桁 |
| :---: | :---: | :---: | :---: | :---: |
| 寸法 | mm | 小数点第 1 位 | 四捨五入 | 整数位 |
| 圧力 | MPa | 小数点第 3 位 | 四捨五入 | 小数点第 2 位 $* 1$ |
| 温度 | ${ }^{\circ} \mathrm{C}$ | 小数点第 1 位 | 四捨五入 | 整数位 |
| 質量 | kg | 小数点第 1 位 | 四捨五入 | 整数位 |
| 震度 | — | 小数点第 3 位 | 切上げ | 小数点第 2 位 |
| モーメント | $\mathrm{N} \cdot \mathrm{m}$ | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁 $* 2$ |
| 力 | N | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁 $* 2$ |
| 計算応力 | MPa | 小数点第 1 位 | 切上げ | 整数位 |
| 許容応力 $* 3$ | MPa | 小数点第 1 位 | 切捨て | 整数位 |

注記 $* 1$ ：必要に応じて小数点第 3 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

## 3．評価部位

残留熱除去系ストレーナの応力評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，主要部品であるアウタージャケット，フランジプレート，ディスクシート（多孔プレート），ポケットシート（多孔プレート），フロントシート（多孔プレート）及びスト レーナ取付部ボルトについて実施する。

残留熱除去系ストレーナの取付け状況を図3－1に，形状及び主要寸法を図3－2に示す。

（水平方向）

（水平方向）
b．側面図

図 3－1 残留熱除去系ストレーナの取付け状況
（原子炉格納容器貫通部 X－214A の場合）


図 3－2 残留熱除去系ストレーナの形状及び主要寸法

4．地震応答解析及び構造強度評価
4.1 地震応答解析及び構造強度評価方法
（1）残留熱除去系ストレーナの質量には，ストレーナに付着する異物量を考慮し，荷重の算出 において組み合わせるものとする。
（2）地震力は，残留熱除去系ストレーナに対して軸方向及び軸直角方向（水平，鉛直）に作用 するものとする。
（3）耐震計算に用いる寸法は，公称値に基づき設定する。

## 4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
残留熱除去系ストレーナの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示 す。また，荷重の組合せ整理表を表4－3に示す。

## 4．2．2 許容応力

残留熱除去系ストレーナの許容応力は，「非常用炉心冷却設備又は格納容器熱除去設備 に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20年2月27日原子力安全•保安院制定））及び添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－4及び表 4－5に示す。なお，評価対象は，構造又は形状の不連続性を有す る部分であることから，発生する一次一般膜応力は十分小さいため，一次一般膜応力の評価結果の記載については省略する。

## 4．2．3 使用材料の許容応力評価条件

残留熱除去系ストレーナの許容応力評価条件を表4－4に示す。
なお，各評価部位の使用材料については以下のとおり。

アウタージャケット
フランジプレート
多孔プレート
ストレーナ取付部ボルト

| 表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 施設名称 | 設備名称 | 系統名称 | 施設 <br> 分類＊ | 設備 <br> 分類 | 機器等の <br> 区分 | 耐震重要度分類 | 荷重の組合せ | 許容応力 <br> 状態 |
| 原子炉冷却系統施設 | 残留熱除去設備 | 残留熱除去系 | D B | － | クラス 2 | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{d}^{*}$ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}$ s | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用灲心泠却設備 その他原子炉注水設備 | 高圧炉心スプレイ系 | D B | － | クラス 2 | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用灲心泠却設備 その他原子炉注水設備 | 低圧炉心スプレイ系 | D B | － | クラス 2 | S | $D+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{d}^{*}$ | $\mathrm{III}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |

注記＊：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類＊2 | 機器等の <br> 区分 | 耐震重要度分類 | 荷重の組合せ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 残留熱除去設備 | 残留熱除去系 | S A | 常設／防止 <br> （拡張） | 重大事故等 $\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と して $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用い る。） |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | $\begin{gathered} \text { 高圧炉心 } \\ \text { スプレイ系 } \end{gathered}$ | S A | 常設／防止 <br> （拡張） | 重大事故等 $\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と して $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用い る。） |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心泠却設備 その他原子炉注水設備 | $\begin{gathered} \text { 低圧炉心 } \\ \text { スプレイ系 } \end{gathered}$ | S A | 常設／防止 （拡張） | 重大事故等 $\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と してIVAS の許容限界を用い る。） |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 代替循環冷却系 | S A | 常設／緩和 | 重大事故等 $\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ | $V_{A} S$（ $V_{A} S$ と して $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用い る。） |

（続き）

| 原子炉冷却系統施設 | 非常用炉心泠却設備 その他原子炉注水設備 | 残留熱除去系 | S A | 常設／防止 <br> （拡張） | 重大事故等$\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{S}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{~S}\left(\mathrm{~V}_{A} \mathrm{~S}\right. \text { と }$ <br> してIV ${ }_{A}$ Sの許容限界を用い る。） |
| 原子炉 <br> 格納施設 | 圧力低減設備 その他の安全設備 | 原子炉格納容器下部注水系 | S A | 常設／緩和 | 重大事故等$\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{S}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{~S}\left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { と }$ <br> してIV ${ }_{A}$ S の許容限界を用い る。） |
| 原子炉 <br> 格納施設 | 圧力低減設備 その他の安全設備 | 代替循環泠却系 | S A | 常設／緩和 | 重大事故等$\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}{ }^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{S}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と してIVAS の許容限界を用い る。） |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 残留熱除去系（格納容器スプレイ泠却モー ド） | S A | 常設／防止 <br> （拡張） | 重大事故等$\text { クラス } 2$ | S | $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ と して $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用い る。） |

（続き）


[^13]表 4－3 荷重の組合せ整理表

| 組合せNo． |  | 運転状態 | 死荷重 | 異物荷重 | 差圧 | S R V 荷重 |  | L O C A 荷重 |  |  | 地震荷重 |  | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 運転時 |  |  |  | 中小 | プール | 蒸気凝縮 | チャギング | $\mathrm{Sd}^{*}$ | S s |  |
| D B A＊${ }^{\text {d }}$ | DBA－1 |  | 運転状態 I | $\bigcirc$ |  |  |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |
|  | DBA－2 | 運転状態 I | $\bigcirc$ |  |  |  |  |  |  |  |  | $\bigcirc$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  | DBA－3 | 運転状態 II | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  | $\bigcirc$ |  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |
|  | DBA－4 | 運転状態 II | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  | DBA－5 | 運転状態IV（L） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |
| S A＊2 | SA－1 | 運転状態 V（L）＊3 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$ |
|  | SA－2 | 運転状態V（L L ） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  |  | $\bigcirc$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$ |

[^14]| 許容応力状態 | 許容限界＊1 |  |  |
| :---: | :---: | :---: | :---: |
|  | 一次一般膜応力 | 一次応力 <br> （曲げ応力を含む） | 一次＋二次応力＊2 |
| $\mathrm{III}_{4} \mathrm{~S}$ | $\mathrm{S}_{\mathrm{y}}$ と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方 ただし，オーステナイト系ステ ンレス鋼及び高ニッケル合金に ついては上記値と 1.2 •Sとの大きい方 | Sy <br> ただし，オーステナイト系ステ ンレス鋼及び高ニッケル合金に ついては上記値と 1.2 •Sとの大きい方 | 弾性設計用地震動 S d 又は基準地震動S s の みによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 <br> ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。 |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |
| $\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてI} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容 } \\ \text { 限界を用いる。) } \end{gathered}$ | $0.6 \cdot \mathrm{~S}_{\text {u }}$ | 左欄の 1.5 倍の値 | 基準地震動S s のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 <br> ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。 |

注記 $* 1$ ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊ 2 ：二次応力が発生する場合のみ考慮する。
表 4－5 許容応力（クラス 2 耐圧部テンションボルト及び重大事故等クラス 2 耐圧部テンションボルト）

| 許容応力状態 | 許容限界 |
| :---: | :---: |
| $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | $1.5 \cdot \mathrm{~S}$ |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |
| $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |  |
| （VAS として $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界 を <br> 用いる。） | $2 \cdot \mathrm{~S}$ |

表 4－6 使用材料の許容応力評価条件（設計基準対象施設）

| 評価部材 | 材料 | 温度条件 <br> （ ${ }^{\circ} \mathrm{C}$ ） | $\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { アウタージャケット, } \\ \text { フランジプレート } \end{gathered}$ |  | 最高使用温度 |  |  |  | － |
| 多孔プレート |  | 最高使用温度 |  |  |  | － |
| ストレーナ取付部ボルト |  | 最高使用温度 |  |  |  | － |

表 4－7 使用材料の許容応力評価条件（重大事故等対処設備）

| 評価部材 | 材料 | 温度条件 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$ | $\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { アウタージャケット, } \\ \text { フランジプレート } \end{gathered}$ |  | 最高使用温度 |  |  |  | － |
| 多孔プレート |  | 最高使用温度 |  |  |  | － |
| ストレーナ取付部ボルト |  | 最高使用温度 |  |  |  | － |

## 4．2．4 設計荷重

（1）死荷重
残留熱除去系ストレーナの自重による荷重及び残留熱除去系ストレーナに付着する異物の自重による異物荷重の 2 つの死荷重を考慮する。
残留熱除去系ストレーナ
異物荷重
異物荷重

（ N ），

（N），

（N）
（2）差圧
差圧による荷重は，異物付着時の残留熱除去系ストレーナを通しての最大設計差圧よ り設定し，以下の通りとする。

また，差圧による荷重の作用方向を図4－1 に示す。
差圧荷重 $=\square$（ MPa ）
$\square$
図 4－1 差圧荷重の作用方向
（3）水力学的動荷重（逃がし安全弁作動時荷重及び原子炉泠却材喪失時荷重）
逃がし安全弁作動時及び原子炉椧却材喪失時には，サプレッションチェンバ内の水中構造物に様々な荷重が水力学的動荷重として作用する。これらの荷重については，原子力安全委員会が策定した評価指針（BWR．MARKI型格納容器圧力抑制系に加わる動荷重の評価指針について（以下「MAR K－I 動荷重指針」という。））に準じて荷重の評価を実施する。

なお，残留熱除去系ストレーナは，ダウンカマから下方かつ側面方向に設置されてお り，プールスウェル荷重の内のベントクリアリング及びプール水面上昇による荷重は十分小さいため評価対象としない。

水力学的動荷重の作用方向を図4－2に示す。軸方向の荷重はフロントシート及びディ スクシートに作用する。軸直角方向の荷重はアウタージャケット及びポケットシートに作用する。
$\square$
図 4－2 水力学的動荷重の作用方向

「MARK—I動荷重指針」に基づき，残留熱除去系ストレーナに加わる逃がし安全弁作動時荷重を算出した結果を表4－8及び表4－9に示す。これらの表に示した荷重は，考慮すべき水力学的動荷重が最大となる位置を選定して算出した値である。

なお，最終的な荷重はそれぞれ下記となる。
定常ドラッグ荷重（ N$)=$ 下記荷重 $\left(\mathrm{N} / \mathrm{m}^{2}\right) \times \mathrm{A}_{\mathrm{A}} \times \mathrm{C}_{\mathrm{D}}$
加速度ドラッグ荷重 $(\mathrm{N})=$ 下記荷重 $\left(\mathrm{N} / \mathrm{m}^{3}\right) \times \mathrm{V}_{\mathrm{A}}$
$\mathrm{A}_{\mathrm{A}}$ ：実効面積は荷重方向に応じたストレーナの投影面積に相当し，荷重方向に応じて


表 4－8 逃がし安全弁作動時荷重（ストレーナ 1）

| 荷重 | 軸方向 | 鉛直方向 | 水平方向 | 備考 |
| :---: | :---: | :---: | :---: | :---: |
| 逃がし安全弁作動時荷重＊ <br> 定常ドラッグ荷重 <br> （ $\mathrm{SR} \mathrm{V}_{\mathrm{D}}$ ） |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| $\left(\mathrm{SRV} \mathrm{A}^{\text {a }}\right.$ ） |  |  |  | 加速度ドラッグ荷重 |

注記 $*:$ 逃がし安全弁作動時荷重は，定常ドラッグ荷重と加速度ドラッグ荷重との代数和と する。

> 表 4-9 逃がし安全弁作動時荷重 (ストレーナ 2)


注記 $*:$ 逃がし安全弁作動時荷重は，定常ドラッグ荷重と加速度ドラッグ荷重との代数和と する。

枠囲みの内容は商業機密の観点から公開できません。

## 4． 3 解析モデル

残留熱除去系ストレーナの応答解析及び応力評価は，はりモデル及び三次元シェルモデル による有限要素解析手法を適用する。なお，ストレーナ本体の応力計算に用いた三次元シェ ルモデル（以下「応力解析用モデル」という。）については，「4．5 計算方法」で説明する。本項においては，ストレーナから原子炉格納容器貫通部外の残留熱除去系ポンプ又はアンカ サポートまでの配管をモデル化したはりモデル（以下「応答解析用モデル」という。）につい て説明する。解析モデルは，添付書類「VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書」に示す応答解析用モデル及び応力解析用モデルと同じモデルである。

残留熱除去系ストレーナの応答解析用モデルの概要を以下に示す。
（1）応答解析用モデルでは，ストレーナから原子炉格納容器貫通部外の残留熱除去系ポン プ又はアンカサポートまでの配管を，はり要素を用いた有限要素モデルとしてモデル化して解析を行い，ストレーナとティーの取合い部に発生する荷重を算出する。
（2）原子炉格納容器貫通部は 6 軸方向拘束点とする。
（3）ストレーナの質量は，各ストレーナの重心位置に集中質量を与える。
（4）本設備はサプレッションプールに水没している機器であるため，応答解析では内包水及び排除水の影響を加味し，ストレーナ質量に含める。また，異物の質量も応答解析 において考慮する。
（5）解析コードは「I S A P 」を使用し，ストレーナとティーの取合い部に発生する荷重 を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コード）の概要」に示す。

## 4． 4 設計用地震力

評価に用いる設計用地震力を表4－10及び表4－11に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－10 設計用地震力（設計基準対象施設）

| 据付場所及び | 弾性設計用地震動 S d又は静的震度 |  | 基準地震動 S S |  |
| :---: | :---: | :---: | :---: | :---: |
| 床面高さ <br> （m） | 水平方向設計震度 | 鉛直方向設計震度 | 水平方向設計震度 | 鉛直方向設計震度 |
| $\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { 0. P. }-5.387 \end{aligned}$ | 0． 72 | 0.63 | 1． 57 | 1． 09 |

表 4－11 設計用地震力（重大事故等対処設備）

| 据付場所及び | 弾性設計用地震動 S d又は静的震度 |  | 基準地震動 S S |  |
| :---: | :---: | :---: | :---: | :---: |
| 床面高さ <br> （m） | 水平方向設計震度 | 鉛直方向設計震度 | 水平方向設計震度 | 鉛直方向設計震度 |
| $\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . \text { P. }-5.387 \end{aligned}$ | － | － | 1． 57 | 1． 09 |

## 4．5．計算方法

残留熱除去系ストレーナについて，形状，設置レベルが同一である事及び考慮すべき水力学的動荷重（逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重）として最大となる位置 の値を使用して計算することから，応力評価は代表して 1 組の残留熱除去系ストレーナにつ き実施する。

## 4．5．1 応力評価点

残留熱除去系ストレーナの構造及び形状を考慮して，アウタージャケット，フランジ プレート，多孔プレート及びストレーナ取付部ボルトを応力評価部位として選定し，評価を実施する。

なお，多孔プレートについては，軸対称で同一の構造であることから，その中の代表的な応力評価部位を選定し，各々の評価部位に対し評価を実施する。

## 4．5．2 応力計算方法

各応力評価部位の応力計算方法について，以下に示す。
（1）アウタージャケット
アウタージャケットの仕様を以下に示す。

ウェブ

配管系にストレーナが設置された状態で，ストレーナに水力学的動荷重が加えられ る。これらの荷重に対してはアウタージャケットで強度を持たせている。従ってアウ タージャケットは，ストレーナも含めた配管系の解析から得られたストレーナとティ ーの取合い部に加わる水力学的動荷重に対する配管の反力及びモーメントを用いて，強度評価を実施する。

評価に用いた配管の反力及びモーメントは，ストレーナとそれに接続するティーを含む配管を質点—梁にモデル化して，計算機コード「IS A P 」を用いて解析した結果 より得られたものである。

アウタージャケットは一次応力（曲げ応力を含む）に対して評価を行うものとする。 なお，二次応力については，ストレーナ端部の拘束がないことから考慮しない。また，一次一般膜応力はストレーナの構造上内圧を有さないことから考慮しない。

枠囲みの内容は商業機密の観点から公開できません。

アウタージャケットは円筒の片持ち梁と仮定し，ストレーナとティー取合い部に加 わるモーメント及び反力を加えることで発生応力を求める。アウタージャケットの応力算出方法を以下に示す。
－アウタージャケットの応力評価はクラス 2 管の応力評価（設計•建設規格 PPC－3520） を準用する。
－モーメントによる応力について，ストレーナに加わる配管モーメントのうち $\mathrm{M}_{\mathrm{x}}$ は無視できるほど小さいため，$M_{y}$ と $M_{z}$ の二乗和平方根 $M=\sqrt{ }\left(M_{y}{ }^{2}+M_{z}{ }^{2}\right)$ を求 める。
－膜応力については，膜応力成分となる軸力（ $\mathrm{F} \times$ ）から応力を求め，前記に示すモ ーメントより求めた応力と加えて発生応力 $\sigma=M / Z+F_{x} / A_{J}$ を求める。

なおアウタージャケットにある窓部の欠損を考慮した等価肉厚に置き換えて評価 を行う。アウタージャケットの等価肉厚 s を求めると以下となる。

$$
\mathrm{s}=\mathrm{n} \times \mathrm{w} \times \mathrm{t} / \pi / \mathrm{OD}=\square \mathrm{mm}
$$

上記等価肉厚における断面係数 Z 及びアウタージャケットの有効断面積 $\mathrm{A}_{\mathrm{J}}$ は以下のとおり算出される。


以上の評価式及び値を適用し，
「4．6計算条件」の表4－12及び表4－13に示す配管の反力及びモーメントを用いてアウタージャケットに発生する応力を算出する。
（2）フランジプレート
フランジプレートは，アウタージャケットの重心まで含むシェル要素でモデル化し （図 4－3 参照），計算機コード「ANS Y S」を使用して計算した既工認での結果を用いて，地震動の増幅を考慮の上，発生する応力を算出した。
フランジプレートはアウタージャケットに加わった水力学的動荷重を受けているの で，アウタージャケットと同様に「4．6 計算条件」の表 4－12 及び表 4－13 に示す配管の反力及びモーメントを用いて応力を算定する。

図 4－3 フランジプレートの計算モデル図
（3）多孔プレート
既工認では，多孔プレートについては，シェル要素でモデル化し，計算機コード「A N S Y S 」を使用して応力を算出している。本計算書では，地震を含まない組合せ荷重 と地震増幅を考慮した地震を含む組合せ荷重を比較し，地震を含まない組合せ荷重が最大となる場合は，既工認の算出結果を用いる。

多孔プレートの計算は，中身がつまった等価な平板として計算する。そのため，板の厚さとしては実肉厚を使用し，孔を補うものとして引用文献（1）で示される等価縦弾性係数及び等価ポアソン比を使用し，多孔プレートに対する応力増倍率を考慮する。

なお，等価縦弹性係数及び等価ポアソン比は，多孔プレートの下図の寸法を用いて求 めた。

孔径（d）
孔の間隔（中心間）（P）孔の間隔（h）


多孔プレートのらちディスクシートは，シェル要素でモデル化し，計算機コード「AN S Y S 」を使用して計算した既工認の結果を用いた。ディスクシートの計算モデルを図 4 －4に示す。計算モデルはポケットシートはめ込み部，および補強プレートにより支持さ れた部分を支持点としたモデルとする。

図 4－4 ディスクシートの多孔プレートの計算モデル図

多孔プレートのらちポケットシートは，シェル要素でモデル化し，計算機コード「A N S Y S 」を使用して計算した既工認の結果を用いた。ポケットシートの多孔プレー トの計算モデルを図4－5に示す。また，計算モデルはディスクシートにはめ込み固定 する部分を支持点としたモデルとする。

なお，ストレーナ 1 の $1 \sim 9$ 列目及びストレーナ 2 の $1 \sim 5$ 列目のカセットと，スト レーナ 1 の 10 列目及びストレーナ 2 の 6 列目のカセットでは，ポケットシートのはめ込み部の形状が異なることから，解析モデルを個別に作成し，それぞれについて評価 を行う。

図 4－5 ポケットシートの多孔プレートの計算モデル図

多孔プレートのらちフロントシートは，シェル要素でモデル化し，計算機コード「A N S Y S 」を使用して計算した既工認の結果を用いた。フロントシートの多孔プレー トの計算モデルを図 4－6に示す。計算モデルはリブ，ポケットシートはめ込み部，リ ング部を支持点としたモデルとする。

図 4－6 フロントシートの多孔プレートの計算モデル図
（4）ストレーナ取付部ボルト
ストレーナ取付部ボルトの設計荷重は，フランジプレートに作用する最大モーメント に加え，ストレーナの軸方向に発生する反力であるボルトの軸方向荷重を考慮した引張力を合算して評価を行う。フランジとボルトは摩擦接合であるため，ボルトに対するせ ん断力は作用しないものとする。また，計算で用いるボルト径は，安全側にボルトの谷径を用いるものとする。

図 4－7に示すフランジの中心を通る中立軸（Z軸）まわりのモーメントを考える。 このとき，Z 軸まわりのモーメントは，各ボルトに発生する軸力とボルトの Z 軸からの距離の積から得られるモーメントとつりあつていると考えることができる。ここで，軸方向荷重によって中立軸が移動するが，軸方向荷重のボルトへの影響が小さいため，軸方向荷重による中立軸の移動は無視する。

したがって，Z軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

$$
\mathrm{M}_{\mathrm{z}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{tk}} \cdot \mathrm{l}_{\mathrm{k}}
$$

ここで， $\mathrm{M}_{\mathrm{z}}$ ：Z 軸まわりのモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
$\mathrm{F}_{\mathrm{tk}}$ ：各ボルトに発生する軸力（N）
1 k ：任意のボルト k における Z 軸からの距離（mm）
n ：ボルトの本数＝


なお，ストレーナ重心がフランジ中心軸上に存在することから，フランジ面内方向の モーメント（ねじりモーメント）は発生しないため，ここでは評価対象としない。


図 4－7 各ボルトに発生する軸力とモーメントアームの関係

また，ボルト軸力の Z 軸まわりのモーメント寄与分は中立軸上ではゼロであり，図4－7に示すように，曲げモーメントを伝えるボルトの軸力は回転中心からの距離に比例して変化す るとして算定する。この場合，ボルトに発生する最大の軸力を $\mathrm{F}_{\mathrm{t}}$ とすると，各ボルトに発生 する軸力 $\mathrm{F}_{\mathrm{tk}}$ は下記となる。

$$
\mathrm{F}_{\mathrm{tk}}=\mathrm{F}_{\mathrm{t}} \cdot \frac{1_{\mathrm{k}}}{\mathrm{D} / 2}
$$

ここで， $\mathrm{F}_{\mathrm{t}}$ ：最大の軸力が発生するボルトの軸力（ N ）
$\mathrm{F}_{\mathrm{tk}}$ ：各ボルトに発生する軸力（ N ）
D：ボルト孔中心円直径


以上より，Z 軸まわりのモーメントは下記となる。

$$
\mathrm{M}_{\mathrm{z}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{t}}}{\mathrm{D}} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{l}_{\mathrm{k}}{ }^{2}=\frac{\mathrm{F}_{\mathrm{t}} \cdot \mathrm{D} \cdot \mathrm{n}}{4}
$$

ただし，

$$
1_{\mathrm{k}}=\frac{\mathrm{D}}{2} \cdot \sin \left\{\frac{2 \cdot \pi}{\mathrm{n}} \cdot(\mathrm{k}-1)\right\}
$$

よって，ボルトの軸力は以下のように算出できる。

$$
\mathrm{F}_{\mathrm{t}}=\frac{4 \cdot \mathrm{M}_{\mathrm{tot}}}{\mathrm{D} \cdot \mathrm{n}}
$$

$$
\mathrm{M}_{\mathrm{tot}} \text { : 曲げモーメントの最大値 ( } \mathrm{N} \cdot \mathrm{~mm} \text { ) }
$$

したがって，ボルトに発生する応力は下記となる。

$$
\mathrm{f}_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{t}}}{\mathrm{~A}_{\mathrm{s}}}+\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{s}} \cdot \mathrm{n}}
$$

ここで， $\mathrm{f}_{\mathrm{t}}$ ：ボルトの発生応力 $(\mathrm{MPa})$
$\mathrm{A}_{\mathrm{s}}$ ：ボルトの有効断面積 $=\square\left(\mathrm{mm}^{2}\right)$
$\mathrm{d}_{\mathrm{b}}$ ：ボルトのねじ部谷径 $=\square(\mathrm{mm})$
$\mathrm{F}_{\mathrm{x}}$ ：ストレーナ軸方向荷重（N）

## 4.6 計算条件

本計算書の「4．2 荷重の組合せ及び許容応力」及び「4．5 計算方法」に示したとおり，各応力評価部位に対して，荷重値が最大となる荷重の組合せを用いて応力評価を実施する。
（1）アウタージャケット及びフランジプレートに加わる荷重
表 4－12 及び表 4－13 にストレーナに加わる配管荷重が設計基準対象施設で最大とな る自重＋逃し安全弁作動時荷重 $+\mathrm{S} s$ 及び重大事故等対処設備で最大となる自重＋差圧 $+\mathrm{S} s$ の組合せの荷重を示す。当該の荷重を用いて，アウタージャケット及びフランジプ レートの応力評価を実施する。

表 4－12 ストレーナ 1 に加わる最大配管荷重

| 荷重の組合せ |  | 反力（ N ） |  |  | モーメント（ $\mathrm{N} \cdot \mathrm{m}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{y}}$ | $\mathrm{F}_{z}$ | $\mathrm{M}_{\text {x }}$ | M y | $\mathrm{M}_{z}$ |
| DBA－3 | 自重＋逃し安全弁作動時荷重 $+S d^{*}$ | $\begin{gathered} 3.075 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 5.060 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 5.333 \times \\ 10^{4} \end{gathered}$ | 13.00 | $\begin{gathered} 1.985 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 1.831 \times \\ 10^{4} \end{gathered}$ |
| DBA－4 | 自重＋逃し安全弁作動時荷重 + S s | $\begin{gathered} 4.863 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 6.349 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 7.022 \times \\ 10^{4} \end{gathered}$ | 15.00 | $\begin{array}{\|c} \hline 2.536 \times \\ 10^{4} \end{array}$ | $\begin{gathered} 2.271 \times \\ 10^{4} \end{gathered}$ |
| SA－2 | 自重＋差圧 +Ss | $\begin{gathered} \hline 4.845 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 5.938 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 6.622 \times \\ 10^{4} \end{gathered}$ | 14.00 | $\begin{array}{\|c} \hline 2.370 \times \\ 10^{4} \end{array}$ | $\begin{gathered} \text { 2. } 097 \times \\ 10^{4} \end{gathered}$ |

表 4－13 ストレーナ 2 に加わる最大配管荷重

| 荷重の組合せ |  | 反力（N） |  |  | モーメント（ $\mathrm{N} \cdot \mathrm{m}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | F ${ }_{x}$ | $\mathrm{F}_{\mathrm{y}}$ | F ${ }_{z}$ | $\mathrm{M}_{\mathrm{x}}$ | M y | $\mathrm{M}_{z}$ |
| DBA－3 | 自重＋逃し安全弁作動時荷重 $+S d^{*}$ | $\begin{gathered} 2.100 \times \\ 10^{4} \end{gathered}$ | 3．164× <br> $10^{4}$ | $\begin{gathered} 3.285 \times \\ 10^{4} \end{gathered}$ | 6． 000 | $\begin{gathered} 6.904 \times \\ 10^{3} \end{gathered}$ | $\begin{gathered} 6.377 \times \\ 10^{3} \end{gathered}$ |
| DBA－4 | 自重＋逃し安全弁作動時荷重 + S s | $\begin{gathered} 3.388 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 4.212 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 4.853 \times \\ 10^{4} \end{gathered}$ | 7． 000 | $\begin{gathered} 2.536 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 2.135 \times \\ 10^{4} \end{gathered}$ |
| SA－2 | 自重＋差圧＋Ss | $\begin{gathered} 3.398 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 3.866 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 4.604 \times \\ 10^{4} \end{gathered}$ | 6． 000 | $\begin{gathered} 2.370 \times \\ 10^{4} \end{gathered}$ | $\begin{gathered} 1.846 \times \\ 10^{4} \end{gathered}$ |

（2）多孔プレートに加わる荷重
加速度ドラッグ荷重（SRVA，LABA，C O A ，C H $\mathrm{H}_{\mathrm{A}}$ ，F A B A）は，ストレーナ各構成要素に働く水力学的重量として加わる荷重であり，多孔プレート表面に分配して加 わる。
 ーナの実効面積に比例し加わる。また，ストレーナの差圧は多孔プレートの表面を押す荷重として作用する。以上より，残留熱除去系ストレーナの多孔プレートに加わる荷重 は表面荷重として与えられる。
4．2．4 項に示す荷重を用いて算出した表面荷重（等価圧力）の組合せを表4－14に示 す。また，表 4－15 に選定した各応力評価部位の評価に用いる表面荷重（等価圧力）を示す。地震を含めた各応力評価部位に加わる荷重のらち，添付書類「VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書」にて評価している差圧＋蒸気凝縮荷重の表面荷重 が最大となる。以上より，多孔プレートに加わる地震荷重の評価結果についても，添付書類「VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書」に包絡される。

表 4－14 多孔プレートに加わる表面荷重（等価圧力）の組合せ

| 組合せNo． | 荷重の組合せ | 表面荷重（等価圧力） | （MPa） |
| :---: | :---: | :---: | :---: |
| －＊ | 差圧 |  |  |
| —＊ | 差圧＋蒸気凝縮荷重（ C O ） |  |  |
| —＊ | 差圧＋逃がし安全弁作動時荷重 （S R V）＋チャギング荷重（C H） |  |  |
| —＊ | 気泡形成荷重（L A B ） |  |  |
| —＊ | フォールバック荷重（FAB） |  |  |
| DBA－3 | 逃し安全弁作動時荷重 +S d ＊ |  |  |
| DBA－4 | 逃し安全弁作動時荷重＋S S |  |  |
| DBA－5／SA－1 | 差圧 +S d ＊ |  |  |
| SA－2 | 差圧 + S s |  |  |

注記＊：添付書類「VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書」から抜粋

表 4－15 多孔プレートの各応力評価部位に加わる表面荷重（等価圧力）

| 名称 | 各応力評価部位に加わる表面荷重（MPa） |  |
| :--- | :--- | :--- |
| ディスクシート |  |  |
| ポケットシート |  |  |
| フロントシート |  |  |
|  |  |  |

（3）ストレーナ取付部ボルトに加わる荷重
ストレーナ取付部ボルトについては，アウタージャケット及びフランジプレートと同 じ荷重が加わることから，発生荷重が最大となる表4－13 の組合せの荷重を用いて，評価 を行う。

## 4．7 応力の評価

「4．5 計算方法」で求めた応力が表 4－4～表 4－7を用いて算出される許容応力以下であ ること。

4． 8 設計•建設規格における材料の規定によらない場合の評価
4．8．1 アウタージャケット及びフランジプレートの評価結果 アウタージャケット，フランジプレートに使用している


は，クラ
ス 2 管の使用可能な材料として設計•建設規格に記載されていないことから，クラス 2 管 の使用可能な材料として設計•建設規格に記載されている材料

$\square$ と機械的強度及び化学的成分を比較し，同等であることを示す。
（1）機械的強度

（2）化学的成分

|  | 化学的成分（\％） |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | Si | Mn | P | S | Cu | Ni | Cr | Mo | V | W |
| 使用 |  |  |  |  |  |  |  |  |  |  |  |
| 材料 |  |  |  |  |  |  |  |  |  |  |  |
| 比較 <br> 材料 |  |  |  |  |  |  |  |  |  |  |  |
| 比較 |  |  |  |  |  |  |  |  |  |  |  |
| 結果 |  |  |  |  |  |  |  |  |  |  |  |

（3）評価結果
（1）（2）の評価により，機械的強度，化学的成分いずれにおいても比較材料と同等であ ることを確認したため，本機器において $\square$ を重大事故等クラス 2 材料として使用することに問題ないと考える。

5．評価結果
残留熱除去系ストレーナの設計基準対象施設及び重大事故等対処設備としての強度評価結果 を以下に示す。発生値は許容限界を満足している。
（1）設計基準対象施設に対する評価
設計基準対象施設に対する応力評価結果を表 5－1 及び表5－2に示す。
なお，各評価点における計算応力は表 4－3 に示す荷重の組合せのうち，発生値が最も高い評価を記載している。
（2）重大事故等時対処設備に対する評価
重大事故等時対処設備に対する応力評価結果を表5－3に示す。
なお，各評価点における計算応力は表 4－3に示す荷重の組合せのうち，発生値が最も高い評価を記載している。
表 5－1 設計基準対象施設に対する応力評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd} \mathrm{d}^{*}$ ）

| 評価対象設備 | 評価部位 | 応力分類 | 設計基準対象施設 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 計算応力 <br> （MPa） | 許容応力 <br> （MPa） | 荷重組合せ |
| 残留熱除去系ストレーナ | アウタージャケット | 一次応力 <br> （曲げ応力を含む） |  |  | DBA－3 |
|  | フランジプレート | 一次一般膜応力 |  |  | DBA－3 |
|  |  | 一次応力 <br> （曲げ応力を含む） |  |  |  |
|  | ストレーナ取付部ボルト | 引張応力 |  |  | DBA－3 |

O 2 （5）VI－2－5－4－1－3 R 0
表 5－2 設計基準対象施設に対する応力評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$ ）

| 評価対象設備 | 評価部位 | 応力分類 | 設計基準対象施設 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 計算応力 （MPa） | 許容応力 （MPa） | 荷重組合せ |
| 残留熱除去系ストレーナ | アウタージャケット | 一次応力 <br> （曲げ応力を含む） |  |  | DBA－4 |
|  | フランジプレート | 一次一般膜応力 |  |  | DBA－4 |
|  |  | 一次応力 |  |  |  |
|  |  | （曲げ応力を含む） |  |  |  |
|  | ストレーナ取付部ボルト | 引張応力 |  |  | DBA－4 |

表 5－3 重大事故等対処設備に対する応力評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ ）

| 評価対象設備 | 評価部位 | 応力分類 | 重大事故等対処設備 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { (MPa) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ \quad(\mathrm{MPa}) \end{gathered}$ | 荷重組合せ |
| 残留熱除去系 <br> ストレーナ | アウタージャケット | $\begin{gathered} \text { 一次応力 } \\ \text { (曲げ応力を含む) } \end{gathered}$ |  |  | SA－2 |
|  | フランジプレート | 一次一般膜応力 |  |  | SA－2 |
|  |  | 一次応力 （曲げ応力を含む） |  |  |  |
|  | ストレーナ取付部ボルト | 引張応力 |  |  | SA－2 |

6．引用文献
（1）ASME B\＆PV CODE，Section III，Division 1，Appendices，Article A－8000， ＂Stresses in Perforated Flat Plates，＂ 1989 Edition，No addenda．

> VI-2-5-4-1-4 管の耐震性についての計算書 （残留熱除去系）

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 8
3．計算条件 ..... 17
3.1 計算方法 ..... 17
3.2 荷重の組合せ及び許容応力状態 ..... 18
3.3 設計条件 ..... 19
3．4 材料及び許容応力 ..... 31
3.5 設計用地震力 ..... 32
4．解析結果及び評価 ..... 36
4.1 固有周期及び設計震度 ..... 36
4． 2 評価結果 ..... 60
4．2．1 管の応力評価結果 ..... 60
4．2．2 支持構造物評価結果 ..... 66
4．2．3 弁の動的機能維持評価結果 ..... 67
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 68

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，残留熱除去系の管，支持構造物及び弁が設計用地震力に対し て十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 18 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例




残留熱除去系概略系統図（その3）



## 鳥瞰図記号凡例

記 号
O 2 (5) VI-2-5-4-1-4 (設) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊ | 設備分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 残留熱除去設備 | 残留熱除去系 | D B | － | $\begin{aligned} & \text { クラス } 1 \text { 管 } \\ & \text { クラス } 2 \text { 管 } \end{aligned}$ | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{VV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ S | $\mathrm{IV}_{A} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ |  |
| 注記＊$*$ ：D B は設計基準対象施設，S A は重大事故等対処設備を示す。 |  |  |  |  |  |  |  |  |
| ＊2：運転状態の添字L は荷重，（L）は荷重が長期間作用している状態を示す。 |  |  |  |  |  |  |  |  |
| ＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。 |  |  |  |  |  |  |  |  |

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－003

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {㪜震 }}$ | 縦弾性係数 <br> （MPa 要度分類 |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 267.4 | 18.2 | STS410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
RHR－O 03

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|  | 20 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 33 | 34 | 35 | 36 |
|  | 37 | 38 | 39 | 40 | 801 | 901 | 902 | 905 |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | 12 |  | 19 |  | 29 |  | 39 |  |
| 6 |  | 13 |  | 23 |  | 30 |  | 40 |  |
| 7 |  | 14 |  | 24 |  | 34 |  | 801 |  |
| 8 |  | 15 |  | 25 |  | 35 |  | 901 |  |
| 9 |  | 16 |  | 26 |  | 36 |  | 902 |  |
| 10 |  | 17 |  | 27 |  | 37 |  | 905 |  |
| 11 |  | 18 |  | 28 |  | 38 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2

| 評価点 | 質量 $(\mathrm{kg})$ | 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :---: | :---: | :---: |
| 20 |  | 31 |  |
| 21 |  | 32 |  |
|  |  | 32 |  |
|  |  |  |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | :---: |
| 弁1 | 21 |  |  |  |
| 弁2 | 32 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－003
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 6 |  |  |  |  |  |  |
| ＊＊ 6 ＊＊ |  |  |  |  |  |  |
| ＊＊ 11 ＊＊ |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |
| 25 |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |
| ＊＊ 902 ＊＊ |  |  |  |  |  |  |
| 905 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－005

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 114.3 | 11.1 | STS 410 | S | 184760 |
| 2 | 8.62 | 302 | 165.2 | 14.3 | STS 410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－005

| 管名称 | 対 |  |  |  |  | 応 |  |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 16 |
|  | 17 | 18 | 19 | 20 | 21 | 22 | 24 | 28 | 29 | 101 | 102 | 103 | 104 | 105 | 106 |
|  | 107 | 108 | 109 | 110 | 111 | 112 | 901 | 903 | 904 | 905 |  |  |  |  |  |
| 2 | 30 | 112 | 113 |  |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 9 |  | 18 |  | 102 |  | 110 |  |
| 2 |  | 10 |  | 19 |  | 103 |  | 111 |  |
| 3 |  | 11 |  | 20 |  | 104 |  | 112 |  |
| 4 |  | 12 |  | 21 |  | 105 |  | 113 |  |
| 5 |  | 13 |  | 28 |  | 106 |  | 901 |  |
| 6 |  | 14 |  | 29 |  | 107 |  | 903 |  |
| 7 |  | 16 |  | 30 |  | 108 |  | 904 |  |
| 8 |  | 17 |  | 101 |  | 109 |  | 905 |  |

弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :--- |
| 22 |  |
| 23 |  |
| 24 |  |

弁部の寸法を下表に示す。

| 弁NO． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 23 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－005
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（N•mm／rad） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| ＊＊ $4 * *$ |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |
| ＊＊ 16 ＊＊ |  |  |  |  |  |  |
| ＊＊ 19 ＊＊ |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |
| ＊＊ 903 ＊＊ |  |  |  |  |  |  |
| ＊＊ 904 ＊＊ |  |  |  |  |  |  |
| ＊＊ 905 ＊＊ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－010

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPaa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 3.73 | 186 | 318.5 | 10.3 | STS 410 | S | 192120 |
| 2 | 427 kPa <br> $(0.427 \mathrm{MPa})$ | 104 | 318.5 | 10.3 | STS 410 | S | 197680 |
| 3 | 3.73 | 186 | 114.3 | 6.0 | SF490A | S | 192120 |
| 4 | 3.73 | 186 | 114.3 | 6.0 | STS410 | S | 192120 |
| 5 | 3.73 | 104 | 114.3 | 6.0 | STS410 | S | 197680 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－010

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|  | 22 | 23 | 24 | 25 | 26 | 27 | 80 | 81 | 82 | 97 | 800 | 801 | 802 | 809 | 909 |
|  | 910 | 913 | 917 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
|  | 90 | 91 | 810 | 813 | 912 | 915 |  |  |  |  |  |  |  |  |  |
| 3 | 11 | 803 | 804 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 98 | 804 | 812 | 815 | 911 | 916 |
| 5 | 48 | 49 | 50 | 51 |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | 22 |  | 40 |  | 85 |  | 809 |  |
| 4 |  | 23 |  | 41 |  | 86 |  | 810 |  |
| 5 |  | 24 |  | 42 |  | 87 |  | 812 |  |
| 6 |  | 25 |  | 43 |  | 88 |  | 813 |  |
| 7 |  | 26 |  | 44 |  | 89 |  | 815 |  |
| 8 |  | 30 |  | 45 |  | 90 |  | 909 |  |
| 9 |  | 31 |  | 49 |  | 91 |  | 910 |  |
| 10 |  | 32 |  | 50 |  | 97 |  | 911 |  |
| 11 |  | 33 |  | 51 |  | 98 |  | 912 |  |
| 12 |  | 34 |  | 80 |  | 800 |  | 913 |  |
| 13 |  | 35 |  | 81 |  | 801 |  | 915 |  |
| 14 |  | 36 |  | 82 |  | 802 |  | 916 |  |
| 15 |  | 38 |  | 83 |  | 803 |  | 917 |  |
| 16 |  | 39 |  | 84 |  | 804 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2 弁3

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 |  | 27 |  | 46 |  |
| 18 |  | 28 |  | 47 |  |
| 19 |  | 29 |  | 48 |  |
| 74 |  | 76 |  | 78 |  |
| 75 |  | 77 |  | 79 |  |

并部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 18 |  |  |  |
| 弁2 | 28 |  |  |  |
| 弁3 | 47 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－010
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 3 |  |  |  |  |  |  |
|  | 26 |  |  |  |  |  |  |
|  | 31 |  |  |  |  |  |  |
|  | ＊＊ 37 ＊＊ |  |  |  |  |  |  |
|  | 40 |  |  |  |  |  |  |
|  | 45 |  |  |  |  |  |  |
| 0 | ＊＊ 52 ＊＊ |  |  |  |  |  |  |
|  | 52 |  |  |  |  |  |  |
|  | ＊＊ 52 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 77 ＊＊ |  |  |  |  |  |  |
|  | 79 |  |  |  |  |  |  |
|  | 80 |  |  |  |  |  |  |
| （1） | 82 |  |  |  |  |  |  |
|  | ＊＊ 89 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 909 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 910 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 911 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 912 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 913 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 915 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 916 ＊＊ |  |  |  |  |  |  |
|  | 917 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－015

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 3.73 | 186 | 318.5 | 10.3 | STS 410 | S | 192120 |
| 2 | 3.73 | 186 | 114.3 | 6.0 | SF490A | S | 192120 |
| 3 | 3.73 | 186 | 114.3 | 6.0 | STS410 | S | 192120 |
| 4 | 3.73 | 104 | 114.3 | 6.0 | STS410 | S | 197680 |
| 5 | 427 kPa <br> $(0.427 \mathrm{MPa})$ | 104 | 318.5 | 10.3 | STS410 | S | 197680 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－015

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 42 | 43 | 44 | 45 | 46 | 47 | 80 | 81 | 805 | 806 | 807 | 812 | 814 | 815 | 915 |
|  | 916 | 917 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 9 | 808 | 809 |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 809 | 813 | 817 | 918 |  |  |
| 4 | 37 | 38 | 39 | 40 |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
|  | 91 | 92 | 802 | 803 | 816 | 902 | 903 |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 27 |  | 45 |  | 87 |  | 813 |  |
| 2 |  | 28 |  | 46 |  | 88 |  | 814 |  |
| 3 |  | 29 |  | 50 |  | 89 |  | 815 |  |
| 4 |  | 30 |  | 51 |  | 90 |  | 816 |  |
| 5 |  | 31 |  | 52 |  | 91 |  | 817 |  |
| 6 |  | 32 |  | 53 |  | 92 |  | 902 |  |
| 7 |  | 33 |  | 54 |  | 802 |  | 903 |  |
| 8 |  | 34 |  | 55 |  | 803 |  | 915 |  |
| 9 |  | 38 |  | 56 |  | 805 |  | 916 |  |
| 10 |  | 39 |  | 80 |  | 806 |  | 917 |  |
| 11 |  | 40 |  | 81 |  | 807 |  | 918 |  |
| 12 |  | 42 |  | 84 |  | 808 |  |  |  |
| 13 |  | 43 |  | 85 |  | 809 |  |  |  |
| 14 |  | 44 |  | 86 |  | 812 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2 弁3

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 |  | 35 |  | 47 |  |
| 16 |  | 36 |  | 48 |  |
| 17 |  | 37 |  | 49 |  |
| 74 |  | 76 |  | 78 |  |
| 900 |  | 77 |  | 79 |  |

并部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 16 |  |  |  |
| 弁2 | 36 |  |  |  |
| 弁3 | 48 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－015
支持点部のばね定数を下表に示す。


## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（ MPa ） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| SF490A | 186 | － | 214 | 438 | － |
| STS410 | 104 | － | 219 | 404 | － |
|  | 186 | － | 208 | 404 | － |
|  | 302 | 122 | 182 | － | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| R H R－ 003 | 原子炉しやへい壁 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| R H R－ 0 0 5 | 原子炉圧力容器 |  |  |
|  | 原子炉格納容器 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| R H R－ 0 1 0 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| R H R－ 015 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－4－1－4（設）R 0

> 4. 解析結果及び評価
> 4.1 固有周期及び設計震度

[^15]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－4－1－4（設）R 0

> 固有周期及び設計震度
> 注記 $* 1$ : 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。

| モード | $\begin{gathered} \text { 固 有 周 期 } \\ (\mathrm{s}) \end{gathered}$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |

注記 $*$ ：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－4－1－4（設）R 0



注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－4－1－4（設）R 0

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | 固有周期 （ s ） | 応 答 水 平 震 度＊${ }^{11}$ |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 15 次 |  |  |  |  |  |  |  |
| 16 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^16]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 15 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4.2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力区分 | 一次応力評価$(\mathrm{MPa})$ |  |  |  | $\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { 一次応力 } \\ S \text { prm }(S d) \\ S \text { prm }(S s) \end{gathered}$ | 許容応力 <br> 2． $25 \cdot \mathrm{Sm}$ $3 \cdot \mathrm{Sm}$ | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (S d) } \\ & \text { St (S s) } \end{aligned}$ | $\begin{aligned} & \text { 許容応力 } \\ & 0 . \quad 55 \cdot \mathrm{Sm} \\ & 0 . \quad 73 \cdot \mathrm{Sm} \end{aligned}$ | $\begin{array}{\|l} \text { 一次 + 二次応力 } \\ \mathrm{Sn}(\mathrm{Sd}) \\ \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{array}$ | 許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \text { d } \\ & \mathrm{U}+\mathrm{US} \mathrm{~s} \end{aligned}$ |
| RHR－003 | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 35 | ELBOW | Sprm（Sd） | 153 | 274 | － | － | － | － | － |
|  | IIIA ${ }_{\text {A }}$ S | 39 | ELBOW | St（S d） | － | － | 105＊ | 67 | － | － | － |
|  | IIIA S | 35 | ELBOW | Sn（Sd） | － | － | － | － | 377＊＊ | 366 | 0． 0194 |
|  | IIIA ${ }_{\text {A }} \mathrm{S}$ | 40 | NoZZLE | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 0693 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 35 | ELBOW | Sprm（Ss） | 243 | 366 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 39 | ELBOW | St（S s ） | － | － | 193＊ | 89 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 35 | ELBOW | Sn（S s ） | － | － | － | － | 680＊＊ | 366 | 0． 3419 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 40 | NOZZLE | U＋US s | － | － | － | － | － | － | 0． 6794 |

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S のとき 0 。 $55 \cdot \mathrm{Sm}$ ，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ のとき 0 。 73 • Sm を超える評価点のらち曲げとねじりによる応力は許容値を満足している。

鳥 瞰 図 RHR－003

| 評価点 | 一次応力評価 （MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (S d) } \\ & \text { St (S s) } \end{aligned}$ | $\begin{aligned} & \text { 許容応力 } \\ & 0.55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{Sm} \end{aligned}$ | $\begin{aligned} & \text { 曲げとねじり応力 } \\ & \mathrm{S} \text { t }+\mathrm{S} \text { b (S d) } \\ & \mathrm{S} \text { t }+\mathrm{Sb} \text { (S s }) \end{aligned}$ | 許容応力 <br> 1． $8 \cdot \mathrm{Sm}$ <br> 2． $4 \cdot \mathrm{Sm}$ |
| 35 | $\begin{aligned} & 54 \\ & 92 * \end{aligned}$ | $\begin{aligned} & 67 \\ & 89 \end{aligned}$ | $\begin{aligned} & 118 \\ & 208 \end{aligned}$ | $\begin{aligned} & 219 \\ & 292 \end{aligned}$ |
| 39 | $\begin{aligned} & 105 * \\ & 193 * \end{aligned}$ | $\begin{aligned} & 67 \\ & 89 \end{aligned}$ | $\begin{aligned} & 111 \\ & 202 \end{aligned}$ | $\begin{aligned} & 219 \\ & 292 \end{aligned}$ |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 | 最大応力 <br> 区分 | $\begin{gathered} \text { 一次応力評価 } \\ \text { (MPa) } \end{gathered}$ |  |  |  | $\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 要素名称 |  | $\begin{array}{\|c} \hline \text { 一次応力 } \\ \text { Sprm }(S \mathrm{~d}) \\ \mathrm{S} \text { prm }(\mathrm{S} \text { s }) \end{array}$ | 許容応力 $\begin{gathered} 2 \cdot 25 \cdot \mathrm{~S} \mathrm{~m} \\ 3 \cdot \mathrm{Sm} \end{gathered}$ | $\begin{aligned} & \text { 敫じり応力 } \\ & \text { S (S d) } \\ & \text { S (S s ) } \end{aligned}$ | $$ | $\begin{aligned} & \text { 一次 + 二次応力 } \\ & S \mathrm{Sn}(\mathrm{~S} \mathrm{~d}) \\ & \mathrm{Sn}(\mathrm{~S} \text { s }) \end{aligned}$ | 許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~S} \end{aligned}$ |
| RHR－005 | IIIA ${ }_{\text {A }}$ S | 104 | BuTT WELD | Sprm（Sd） | 120 | 274 | － | － | － | － | － |
|  | IIIA S | 28 | ELBOW | St（S d） | － | － | 70＊ | 67 | － | － | － |
|  | IIIA S | 29 | ELBOW | Sn（Sd） | － | － | － | － | 374＊＊ | 366 | 0． 0282 |
|  | IIIA ${ }_{\text {A }}$ S | 112 | REDUCER | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 0749 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 29 | ELBOW | Sprm（Ss） | 197 | 366 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 28 | ELBOW | St（S s ） | － | － | 129＊ | 89 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 29 | ELBOW | Sn（S s ） | － | － | － | － | 675＊＊ | 366 | 0． 5003 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 112 | REDUCER | U＋US s | － | － | － | － | － | － | 0． 7248 |

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S S のとき 0 。 5 5 • Sm m，又は許容応力状態 IV A Sのとき 0 • 73 • Sm を超える評価点のうち曲げとねじりによる応力は許容値を満足している。

鳥 瞰 図 RHR－005

| 評価点 | 一次応力評価 （MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ねじり応力 } \\ & \text { S t (S d) } \\ & \text { S t (S s ) } \end{aligned}$ | 許容応力 $\begin{aligned} & 0.55 \cdot \mathrm{Sm} \\ & 0 . \\ & 0.3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { 曲げとねじり応力 } \\ & S \mathrm{t}+\mathrm{Sb}(\mathrm{Sd}) \\ & \mathrm{S} t+\mathrm{Sb}(\mathrm{~S} \text { s }) \end{aligned}$ | 許容応力 <br> 1．8•S m <br> 2． $4 \cdot \mathrm{~S}$ m |
| 28 | $\begin{array}{r} 70 * \\ 129 * \end{array}$ | $\begin{aligned} & 67 \\ & 89 \end{aligned}$ | $\begin{array}{r} 85 \\ 160 \end{array}$ | $\begin{aligned} & 219 \\ & 292 \end{aligned}$ |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | $\text { 一次 }+ \text { 二次応力評価 }$(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & S p r m(S d) \\ & S p r m(S s) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{~S} u \end{aligned}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| RHR－010 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 29 \\ & 29 \\ & 29 \end{aligned}$ | $\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$ | $\begin{aligned} & \hline 118 \\ & 206 \\ & - \end{aligned}$ | $\begin{aligned} & \hline 219 \\ & 363 \\ & - \end{aligned}$ |  |  | $\begin{aligned} & - \\ & - \end{aligned}$ |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と1。2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次+二次応力評価(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & \text { Sprm(S d) } \\ & \text { Sprm(S s }) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 \cdot \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| RHR－015 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{array}{r} 9 \\ 9 \\ 49 \end{array}$ | $\begin{gathered} \text { S p r m (S d }) \\ \mathrm{S} \text { p r m (S s }) \\ \mathrm{S} \text { n }(\mathrm{S} \text { s }) \end{gathered}$ | $\begin{aligned} & 125 \\ & 207 \\ & - \end{aligned}$ | $\begin{aligned} & 214 \\ & 394 \\ & \hline \end{aligned}$ | $\begin{aligned} & - \\ & 349 \end{aligned}$ |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と1。2•Shのらち大きい方とする。
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 $\begin{array}{c}\text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}{ }^{\text {a }}$（ | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| RHR－006－084S | メカニカルスナッバ | SMS－10－100 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 | 173 | 230 |
| RHR－006－908B | ロッドレストレイント | RTS－25 |  | 149 | 375 |
| RHR－011－085H | バリアブルハンガ | VS30T－17 |  | 27 | 39 |
| RHR－011－956S | メカニカルスナッバ | SMS－25－100 |  | 173 | 525 |
| RHR－005－021H | コンスタントハンガ | CDS－150－09 |  | 3088N | $1650 \mathrm{~N} \times 2$ |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力 <br> 分類 | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$ | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| RHR－010－026R | レストレイント | ラグ | STS410 | 186 | 204 | 133 | 228 | － | － | － | せん断 | 75 | 120 |
| RHR－008－085A | アンカ | 架構 | STKR400 | 40 | 214 | 40 | 135 | 34 | 112 | 38 | 曲げ | 299 | 490 |

4．2．3 弁の動的機能維持評価結果

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| E11－F005B | $\begin{aligned} & \text { テスタブル } \\ & \text { チェック弁 } \end{aligned}$ | $\beta$（ S s ） | 9.2 | 10.6 | 20.0 | 20.0 | 71 | 259 |
| E11－F011B | 仕切弁 | $\beta$（ S s ） | 6.4 | 3． 3 | 20.0 | 20.0 | 211 | 367 |
| E11－F012A | グローブ弁 | $\beta$（ S s ） | 10.7 | 2． 4 | 20.0 | 20.0 | 204 | 367 |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$ | $\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$ | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 疲労 <br> 累積 <br> 係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | RHR－001 | 11 | 119 | 274 | 2． 30 | － | 11 | 188 | 366 | 1． 94 | － | 11 | 577 | 366 | 0.63 | － | 11 | 0.1572 | － |
| 2 | RHR－002 | 38 | 110 | 274 | 2． 49 | － | 38 | 134 | 366 | 2． 73 | － | 9 | 469 | 366 | 0.78 | － | 38 | 0.1052 | － |
| 3 | RHR－003 | 35 | 153 | 274 | 1． 79 | $\bigcirc$ | 35 | 243 | 366 | 1． 50 | $\bigcirc$ | 35 | 680 | 366 | 0.53 | $\bigcirc$ | 40 | 0.6794 | － |
| 4 | RHR－004 | 19 | 82 | 274 | 3． 34 | － | 19 | 141 | 366 | 2． 59 | － | 19 | 370 | 366 | 0.98 | － | 903 | 0.0887 | － |
| 5 | RHR－005 | 104 | 120 | 274 | 2.28 | － | 29 | 197 | 366 | 1． 85 | － | 29 | 675 | 366 | 0.54 | － | 112 | 0.7248 | $\bigcirc$ |

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 価 点 | 疲労 <br> 累積係数 | 代 <br> 表 |
| 1 | RHR－006 | 16 | 96 | 190 | 1.97 | － | 16 | 149 | 326 | 2.18 | － | 16 | 346 | 380 | 1． 09 | － | － | － | － |
| 2 | RHR－007 | 1 | 76 | 208 | 2． 73 | － | 1 | 93 | 363 | 3.90 | － | 28 | 248 | 416 | 1． 67 | － | － | － | － |
| 3 | RHR－008 | 22 | 90 | 208 | 2． 31 | － | 22 | 129 | 363 | 2． 81 | － | 22 | 214 | 416 | 1.94 | － | － | － | － |
| 4 | RHR－009 | 235 | 86 | 208 | 2． 41 | － | 235 | 104 | 363 | 3． 49 | － | 235 | 215 | 416 | 1.93 | － | － | － | － |
| 5 | RHR－010 | 29 | 118 | 219 | 1． 85 | － | 29 | 206 | 363 | 1． 76 | $\bigcirc$ | 29 | 403 | 438 | 1.08 | $\bigcirc$ | － | － | － |
| 6 | RHR－011 | 39 | 108 | 208 | 1.92 | － | 39 | 152 | 363 | 2.38 | － | 16 | 301 | 380 | 1． 26 | － | － | － | － |
| 7 | RHR－012 | 1 | 87 | 208 | 2． 39 | － | 29 | 120 | 363 | 3.02 | － | 29 | 289 | 416 | 1． 43 | － | － | － | － |
| 8 | RHR－013 | 12 | 113 | 208 | 1． 84 | － | 12 | 182 | 363 | 1． 99 | － | 12 | 319 | 416 | 1． 30 | － | － | － | － |
| 9 | RHR－014 | 43 | 64 | 208 | 3.25 | － | 9 | 80 | 363 | 4.53 | － | 203 | 179 | 416 | 2.32 | － | － | － | － |
| 10 | RHR－015 | 9 | 125 | 214 | 1．71 | $\bigcirc$ | 9 | 207 | 394 | 1.90 | － | 49 | 349 | 438 | 1． 25 | － | － | － | － |
| 11 | RHR－016 | 11 | 86 | 200 | 2． 32 | － | 11 | 145 | 334 | 2． 30 | － | 18 | 281 | 402 | 1． 43 | － | － | － | － |
| 12 | RHR－017 | 31 | 112 | 220 | 1.96 | － | 31 | 158 | 364 | 2． 30 | － | 35 | 310 | 440 | 1． 41 | － | － | － | － |
| 13 | RHR－018 | 19 | 91 | 220 | 2． 41 | － | 19 | 122 | 364 | 2.98 | － | 1 | 221 | 440 | 1.99 | － | － | － | － |

[^17]重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 8
3．計算条件 ..... 13
3.1 計算方法 ..... 13
3.2 荷重の組合せ及び許容応力状態 ..... 14
3.3 設計条件 ..... 15
3．4 材料及び許容応力 ..... 18
3.5 設計用地震力 ..... 19
4．解析結果及び評価 ..... 20
4． 1 固有周期及び設計震度 ..... 20
4． 2 評価結果 ..... 26
4．2．1 管の応力評価結果 ..... 26
4．2．2 支持構造物評価結果 ..... 27
4．2．3 弁の動的機能維持評価結果 ..... 28
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 29

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，残留熱除去系の管，支持構造物及び弁が設計用地震力に対し て十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 13 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例






## 鳥瞰図記号凡例

記 号
O (5) VI-2-5-4-1-4 (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | $\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$ | 設備分類＊2 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度 <br> 分類 | 荷重の組合せ＊3，＊${ }^{\text {a }}$ | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 残留熱除去設備 | 残留熱除去系 | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{V}_{4} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S}$ s |  |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 残留熱除去系 （格納容器スプ レイ冷却モー ド） | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S}$ s |  |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 残留熱除去系$\begin{gathered} \text { (サプレッショ } \\ \text { ンプール水冷却 } \\ \text { モード) } \end{gathered}$ | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S}$ s |  |

[^18]
## 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－010

| 管名称 | 最高使用圧力 （MPa） | 最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$ | 材料 | 耐震重要度分類 | 縦弾性係数 （MPa） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3． 73 | 186 | 318.5 | 10.3 | STS410 | － | 192120 |
| 2 | $\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$ | 200 | 318.5 | 10.3 | STS410 | － | 191000 |
| 3 | 3.73 | 186 | 114.3 | 6.0 | SF490A | － | 192120 |
| 4 | 3.73 | 186 | 114.3 | 6.0 | STS410 | － | 192120 |
| 5 | 3.73 | 200 | 114.3 | 6.0 | STS410 | － | 191000 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－010

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|  | 22 | 23 | 24 | 25 | 26 | 27 | 80 | 81 | 82 | 97 | 800 | 801 | 802 | 809 | 909 |
|  | 910 | 913 | 917 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
|  | 90 | 91 | 810 | 813 | 912 | 915 |  |  |  |  |  |  |  |  |  |
| 3 | 11 | 803 | 804 |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 98 | 804 | 812 | 815 | 911 | 916 |
| 5 | 48 | 49 | 50 | 51 |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | 22 |  | 40 |  | 85 |  | 809 |  |
| 4 |  | 23 |  | 41 |  | 86 |  | 810 |  |
| 5 |  | 24 |  | 42 |  | 87 |  | 812 |  |
| 6 |  | 25 |  | 43 |  | 88 |  | 813 |  |
| 7 |  | 26 |  | 44 |  | 89 |  | 815 |  |
| 8 |  | 30 |  | 45 |  | 90 |  | 909 |  |
| 9 |  | 31 |  | 49 |  | 91 |  | 910 |  |
| 10 |  | 32 |  | 50 |  | 97 |  | 911 |  |
| 11 |  | 33 |  | 51 |  | 98 |  | 912 |  |
| 12 |  | 34 |  | 80 |  | 800 |  | 913 |  |
| 13 |  | 35 |  | 81 |  | 801 |  | 915 |  |
| 14 |  | 36 |  | 82 |  | 802 |  | 916 |  |
| 15 |  | 38 |  | 83 |  | 803 |  | 917 |  |
| 16 |  | 39 |  | 84 |  | 804 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2 弁3

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 |  | 27 |  | 46 |  |
| 18 |  | 28 |  | 47 |  |
| 19 |  | 29 |  | 48 |  |
| 74 |  | 76 |  | 78 |  |
| 75 |  | 77 |  | 79 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 18 |  |  |  |
| 弁2 | 28 |  |  |  |
| 弁3 | 47 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－010
支持点部のばね定数を下表に示す。

|  | 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X | Y | Z | X | Y | Z |
|  | 3 |  |  |  |  |  |  |
|  | 26 |  |  |  |  |  |  |
|  | 31 |  |  |  |  |  |  |
|  | ＊＊ 37 ＊＊ |  |  |  |  |  |  |
|  | 40 |  |  |  |  |  |  |
|  | 45 |  |  |  |  |  |  |
| $0$ | ＊＊ 52 ＊＊ |  |  |  |  |  |  |
|  | 52 |  |  |  |  |  |  |
| H | ＊＊ 52 ＊＊ |  |  |  |  |  |  |
| $1$ | ＊＊ 77 ＊＊ |  |  |  |  |  |  |
|  | 79 |  |  |  |  |  |  |
|  | 80 |  |  |  |  |  |  |
| （10） | 82 |  |  |  |  |  |  |
| $\sim$ | ＊＊ 89 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 909 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 910 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 911 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 912 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 913 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 915 ＊＊ |  |  |  |  |  |  |
|  | ＊＊ 916 ＊＊ |  |  |  |  |  |  |
|  | 917 |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| SF490A | 186 | － | 214 | 438 | － |
| STS410 | 186 | － | 208 | 404 | － |
|  | 200 | － | 207 | 404 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
|  |  |  |  |
| R H R－0 1 0 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－4－1－4（重）R 0
4．解析結果及び評価
4.1 固有周期及び設計震度

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\underset{(\mathrm{s})}{\text { 固有周期 }}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度＊1 |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 14 次 |  |  |  |  |  |  |  |
| 15 次＊2 |  |  |  |  |  |  |  |
| 動 | 震 度＊3 |  |  |  |  |  |  |
| 静 | 度 ${ }^{* 4}$ |  |  |  |  |  |  |

[^19]

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | $\text { 一次 }+ \text { 二次応力評価 }$(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s ) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| RHR－010 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 29 \\ & 29 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$ | $\begin{gathered} 210 \\ \hline \end{gathered}$ | $363$ | $422 *$ | $\overline{414}$ | $\overline{0.7118}$ |

＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が1以下
4．2．2 支持構造物評価結果

| 支持構造物番号 | 種類 | 型式 |  | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| RHR－006－084S | メカニカルスナッバ | SMS－10－100 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 | 191 | 230 |
| RHR－006－908B | ロッドレストレイント | RTS－25 |  | 158 | 375 |
| RHR－011－956S | メカニカルスナッバ | SMS－25－100 |  | 203 | 525 |
| RHR－011－085H | バリアブルハンガ | VS30T－17 |  | 27 | 39 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ） |  |  | 応力 <br> 分類 | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| RHR－010－026R | レストレイント | 架構 | STKR400 | 130 | 105 | 79 | 108 | － | － | － | 組合せ | 165 | 225 |
| RHR－016－021A | アンカ | 架構 | STKR400 | 130 | 54 | 15 | 346 | 4 | 2 | 18 | 曲げ | 241 | 375 |

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果(MPa) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であつてクラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 Vas |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 表 |
| 1 | RHR－006 | 16 | 144 | 326 | 2.26 | － | 16 | 348 | 380 | 1． 09 | － | － | － | － |
| 2 | RHR－007 | 320 | 96 | 363 | 3． 78 | － | 28 | 248 | 416 | 1． 67 | － | － | － | － |
| 3 | RHR－008 | 111 | 132 | 363 | 2.75 | － | 145 | 264 | 462 | 1． 75 | － | － | － | － |
| 4 | RHR－009 | 233 | 102 | 363 | 3.55 | － | 233 | 243 | 416 | 1.71 | － | － | － | － |
| 5 | RHR－010 | 29 | 210 | 363 | 1． 72 | $\bigcirc$ | 29 | 422 | 414 | 0.98 | $\bigcirc$ | 29 | 0.7118 | $\bigcirc$ |
| 6 | RHR－011 | 3 | 155 | 325 | 2． 09 | － | 3 | 349 | 378 | 1.08 | － | － | － | － |
| 7 | RHR－012 | 29 | 117 | 363 | 3． 10 | － | 29 | 289 | 416 | 1． 43 | － | － | － | － |
| 8 | RHR－013 | 12 | 179 | 363 | 2． 02 | － | 12 | 319 | 416 | 1． 30 | － | － | － | － |
| 9 | RHR－014 | 9 | 77 | 363 | 4.71 | － | 101 | 324 | 468 | 1． 44 | － | － | － | － |
| 10 | RHR－015 | 9 | 205 | 394 | 1.92 | － | 50 | 371 | 414 | 1.11 | － | － | － | － |


| No． | 配管モデル | 許容応力状態 VAS |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 価 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 袋 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 袋 | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 疲労 <br> 累積 <br> 係数 | 代 |
| 11 | RHR－016 | 3 | 102 | 325 | 3.18 | － | 3 | 308 | 378 | 1.22 | － | － | － | － |
| 12 | RHR－017 | 31 | 155 | 364 | 2.34 | － | 35 | 310 | 440 | 1.41 | － | － | － | － |
| 13 | RHR－018 | 19 | 119 | 364 | 3.05 | － | 1 | 221 | 440 | 1.99 | － | － | － | － |

VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書 （残留熱除去系）

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 8
3．計算条件 ..... 14
3.1 計算方法 ..... 14
3.2 荷重の組合せ及び許容応力状態 ..... 15
3.3 設計条件 ..... 17
3．4 材料及び許容応力 ..... 23
3.5 設計用地震力 ..... 24
4．解析結果及び評価 ..... 26
4． 1 固有周期及び設計震度 ..... 26
4． 2 評価結果 ..... 38
4．2．1 管の応力評価結果 ..... 38
4．2．2 支持構造物評価結果 ..... 40
4．2．3 弁の動的機能維持評価結果 ..... 41
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 42

## 1．概要

本計算書は，技術基準規則の解釈第 17 条 4 において記載される「非常用炉心椧却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号
（平成 20 年 2 月 27 日原子力安全•保安院制定））及び添付書類「VI－2－1－13－6 管の耐震性につ いての計算書作成の基本方針」（以下「基本方針」という。）に基づき，残留熱除去系，高圧炉心 スプレイ系及び低圧灲心スプレイ系ストレーナ部ティーが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (5) VI-2-5-4-1-5 (設) R 0






## 鳥瞰図記号凡例

記 号


3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心泠却設備そ の他原子炉注水設備 | 残留熱除去系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | $\mathrm{III}_{A} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
| 原子炉冷却系統施設 | 非常用炉心冷却設備そ の他原子炉注水設備 | 低圧炬心スプレイ系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III $_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{Sd}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{s}$ |  |

[^20]| 運転状態 | 死荷重 | 異物 <br> 荷重 | 差圧 | S R V 荷重 |  | L O C A 荷重 |  |  | 地震荷重 |  | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 運転時 | 中小破断時 | $\begin{aligned} & \text { プールス } \\ & \text { ウェル } \end{aligned}$ | 蒸気凝縮 <br> （C0） | $\begin{aligned} & \text { チャギン } \\ & \text { グ (CH) } \end{aligned}$ | S d <br> 荷重 | S s <br> 荷重 |  |
| 運転状態 I | $\bigcirc$ |  |  |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{III}_{4} \mathrm{~S}$ |
| 運転状態 I | $\bigcirc$ |  |  |  |  |  |  |  |  | $\bigcirc$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 運転状態 II | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  | $\bigcirc$ |  | $\mathrm{IIH}_{4} \mathrm{~S}$ |
| 運転状態 II | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
| 運転状態IV（L） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{III}_{\text {S }} \mathrm{S}$ |

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－011

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 24.5 kPa <br> $(0.0245 \mathrm{MPa})$ | 104 | 508.0 | 9.5 | SM400C | S | 197680 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RHR－011

| 管名称 |  |  |  |  | 対 | 応 | す | る | 評 | 価 | 点 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 202 | 203 | 204 | 206 | 302 | 303 | 305 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 |  | 204 |  | 302 |  | 305 |  |
| 203 |  | 206 |  | 303 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－011
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| ＊＊ 1 ＊＊ |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
LPCS—002

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 24.5 kPa <br> $(0.0245 \mathrm{MPa})$ | 104 | 508.0 | 9.5 | SM400C | S | 197680 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
LPCS—OO2

| 管名称 |  |  |  | 対 | 応 | す | る | 評 | 価 | 点 |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 202 | 203 | 204 | 206 | 302 | 303 | 305 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 |  | 204 |  | 302 |  | 305 |  |
| 203 |  | 206 |  | 303 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS—OO2

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| ＊＊ 1 ＊＊ |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left({ }^{\circ} \mathrm{C}\right)$ |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
|  |  |  |  |
| R H R－0 1 1 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| L P C S－0 0 2 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－4－1－5（設）R 0



注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。




| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\frac{\text { 固有周期 }}{(\mathrm{s})}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度＊1 |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 13 次 |  |  |  |  |  |  |  |
| 14 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^21]

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力 <br> 区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & S p r m(S d) \\ & S p r m(S s) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $S n(S s)$ | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| RHR－011 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 203 \\ & 203 \\ & 203 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \text { s }) \end{gathered}$ | $\begin{gathered} \hline 66 \\ 80 \\ - \end{gathered}$ | $\begin{aligned} & 219 \\ & 335 \end{aligned}$ |  |  | — |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & \text { Sprm(S d) } \\ & \text { Sprm(S s }) \end{aligned}$ | $\begin{gathered} \text { 許容応力 } \\ \mathrm{S} \mathrm{y}^{* 1} \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S \mathrm{~s})$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 <br> US s |
| LPCS－ 02 | $\begin{aligned} & \hline I I I_{A} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 203 \\ & 203 \\ & 203 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 57 \\ & 84 \end{aligned}$ | $\begin{aligned} & 219 \\ & 335 \end{aligned}$ | $\begin{aligned} & - \\ & 144 \end{aligned}$ |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

|     <br> 支持構造物評価結果（荷重評価）    <br> 支持構造物 <br> 番号 種類  型式 |
| :--- |
| — 材質 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力 <br> 分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| － | － | － | － | － | － | － | － | － | － | － | － | － | － |

4．2．3 弁の動的機能維持評価結果

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果(MPa) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労累積係数 | 代 表 |
| 1 | RHR－006 | 203 | 51 | 219 | 4． 29 |  | 203 | 65 | 335 | 5． 15 |  | 203 | 104 | 438 | 4． 21 |  | － | － | － |
| 2 | RHR－011 | 203 | 66 | 219 | 3.31 | $\bigcirc$ | 203 | 80 | 335 | 4.18 |  | 203 | 134 | 438 | 3． 26 |  | － | － | － |
| 3 | RHR－016 | 203 | 58 | 219 | 3． 77 |  | 203 | 62 | 335 | 5.40 |  | 203 | 98 | 438 | 4． 46 |  | － | － | － |
| 4 | HPCS－002 | 203 | 64 | 219 | 3． 42 |  | 203 | 65 | 335 | 5． 15 |  | 203 | 110 | 438 | 3． 98 |  | － | － | － |
| 5 | LPCS－002 | 203 | 57 | 219 | 3.84 |  | 203 | 84 | 335 | 3.98 | $\bigcirc$ | 203 | 144 | 438 | 3.04 | $\bigcirc$ | － | － | － |

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 8
3．計算条件 ..... 12
3.1 計算方法 ..... 12
3.2 荷重の組合せ及び許容応力状態 ..... 13
3.3 設計条件 ..... 15
3.4 材料及び許容応力 ..... 18
3.5 設計用地震力 ..... 19
4．解析結果及び評価 ..... 20
4． 1 固有周期及び設計震度 ..... 20
4． 2 評価結果 ..... 26
4．2．1 管の応力評価結果 ..... 26
4．2．2 支持構造物評価結果 ..... 27
4．2．3 弁の動的機能維持評価結果 ..... 28
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 29

## 1．概要

本計算書は，技術基準規則の解釈第 17 条 4 において記載される「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号
（平成20年2月27日原子力安全•保安院制定））及び添付書類「VI－2－1－13－6 管の耐震性につ いての計算書作成の基本方針」（以下「基本方針」という。）に基づき，残留熱除去系，高圧炉心 スプレイ系及び低圧炉心スプレイ系ストレーナ部ティーが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (5) VI-2-5-4-1-5 (重) R 0




$\begin{aligned} & * 1 \text { 低圧代替注水系 } \\ & \\ & \text { 解析モデル上本系統に含める。 }\end{aligned}$



## 鳥瞰図記号凡例

記 号
O 2 (5) VI-2-5-4-1-5 (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類＊2 | 機器等 の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| 原子炉冷却系統施設 | 非常用炉心冷却設備そ の他原子炉注水設備 | 残留熱除去系 | S A | 常設／防止 （拡張） | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ |  |

注記 $* 1: ~ \mathrm{DB}$ は設計基準対象施設， S Aは重大事故等対処設備を示す。
＊2：「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊3：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的に荷重が作用している状態を示す。 ＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $I_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。

| 運転状態 | 死荷重 | 異物荷重 | 差圧 | S R V 荷重 |  | L O C A 荷重 |  |  | 地震荷重＊1 |  | 許容応力状態＊2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 運転時 | 中小破断時 | $\begin{aligned} & \text { プールス } \\ & \text { ウェル } \end{aligned}$ | 蒸気凝縮 <br> （C0） | $\begin{aligned} & \text { チャギン } \\ & \text { グ (CH) } \end{aligned}$ | S d <br> 荷重 | S s <br> 荷重 |  |
| 運転状態V（L） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ |  | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 運転状態V（LL） | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  |  |  |  |  | $\bigcirc$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

＊2：許容応力状態 $V_{A} S$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－011

| 管名称 | $\underset{\substack{\text {（MPa）}}}{\substack{\text { 最高使用圧力 } \\(2)}}$ | 最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$ | 材料 | 耐震重要度分類 | 縦弾性係数 （MPa） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} 24.5 \mathrm{kPa} \\ (0.0245 \mathrm{MPa}) \end{gathered}$ | 200 | 508.0 | 9.5 | SM400C | － | 191000 |

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RHR－011

| 管名称 |  |  |  | 対 | 応 | す | る | 評 | 価 | 点 |  |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 202 | 203 | 204 | 206 | 302 | 303 | 305 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 202 |  | 204 |  | 302 |  | 305 |  |
| 203 |  | 206 |  | 303 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－011
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| ＊＊ 1 ＊＊ |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 | 許容応力（ MPa ） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | （ $\left.{ }^{\circ} \mathrm{C}\right)$ | S m | S y | S u | S h |  |
| SM400C | 200 | - | 193 | 373 | - |  |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
|  |  |  |  |
| R H R－0 1 1 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－4－1－5（重）R 0


[^22]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 14 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次＋二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S \mathrm{~s})$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 US s |
| R HR－011 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 203 \\ & 203 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$ | $\begin{aligned} & 101 \\ & - \end{aligned}$ | $\begin{aligned} & 335 \\ & - \end{aligned}$ | $\overline{174}$ | $386$ | - |

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 評偠結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & \text { (kN) } \end{aligned}$ | $\begin{aligned} & \text { 許容 } \\ & \text { 荷重 } \\ & (\mathrm{kN}) \\ & \hline \end{aligned}$ |
| － | － | － | － | － | － | － |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> （ $\left.{ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（kN•m） |  |  | 応力分類 | $\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{x}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{z}}$ |  |  |  |
| － | － | － | － | － | － | － | － | － | － | － | － | － | － |

4．2．3 弁の動的機能維持評価結果
0 Y（重） $9-I-\sqcap-G-Z-I \Lambda$（G）$\quad$ O

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果

| 代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | 配管モデル | 許容応力状態 Vas |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 |
| 1 | RHR－006 | 203 | 79 | 335 | 4.24 |  | 203 | 130 | 386 | 2.96 |  | － | － | － |
| 2 | RHR－011 | 203 | 101 | 335 | 3.31 | $\bigcirc$ | 203 | 174 | 386 | 2.21 | $\bigcirc$ | － | － | － |
| 3 | RHR－016 | 203 | 82 | 335 | 4.08 |  | 203 | 162 | 386 | 2.38 |  | － | － | － |
| 4 | HPCS－002 | 203 | 92 | 335 | 3.64 |  | 203 | 156 | 386 | 2． 47 |  | － | － | － |
| 5 | LPCS－002 | 203 | 100 | 335 | 3.35 |  | 203 | 172 | 386 | 2.24 |  | － | － | － |

VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性 についての計算書

VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－3 高圧代替注水系の耐震性についての計算書
VI－2－5－5－4 低圧代替注水系の耐震性についての計算書
VI－2－5－5－5 代替水源移送系の耐震性についての計算書
$\stackrel{4}{\sim}$
$\stackrel{\sim}{\sim}$

VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書

VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書
VI－2－5－5－1－2 高圧炉心スプレイ系ストレーナの耐震性についての計算書
VI－2－5－5－1－3 管の耐震性についての計算書（高圧炉心スプレイ系）
VI－2－5－5－1－4 ストレーナ部ティーの耐震計算書（高圧炉心スプレイ系）

VI－2－5－5－1－2 高圧炉心スプレイ系ストレーナの耐震性についての計算書

1．概要
本計算書は，高圧炉心スプレイ系ストレーナの強度について説明するものである。高圧炉心スプレイ系ストレーナは残留熱除去系ストレーナ及び低圧炉心スプレイ系 ストレーナと同様の形状を有しており，解析モデルや評価条件については同等である。

また，添付書類「VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書」 において，ストレーナの解析モデルを用いた強度の評価を実施しており，その荷重条件 については上記のストレーナで最大となる値を用いる。

以上より，本計算書の評価結果については，添付書類「VI－2－5－4－1－3 残留熱除去系 ストレーナの耐震性についての計算書」による。
VI-2-5-5-1-3 管の耐震性についての計算書
(高圧炬心スプレイ系)

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 11
3.1 計算方法 ..... 11
3.2 荷重の組合せ及び許容応力状態 ..... 12
3.3 設計条件 ..... 13
3．4 材料及び許容応力 ..... 19
3.5 設計用地震力 ..... 20
4．解析結果及び評価 ..... 22
4． 1 固有周期及び設計震度 ..... 22
4． 2 評価結果 ..... 34
4．2．1 管の応力評価結果 ..... 34
4．2．2 支持構造物評価結果 ..... 37
4．2．3 弁の動的機能維持評価結果 ..... 38
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 39

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，高圧炉心スプレイ系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号
O 2 (5) VI-2-5-5-1-3 (設) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 高圧炉心スプレイ系 | D B | － | $\begin{aligned} & \text { クラス } 1 \text { 管 } \\ & \text { クラス } 2 \text { 管 } \end{aligned}$ | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
| 注記＊1：D B は設計基準対象施設，S A は重大事故等対処設備を示す。 |  |  |  |  |  |  |  |  |
| ＊2：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態を示す。 |  |  |  |  |  |  |  |  |
| ＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。 |  |  |  |  |  |  |  |  |

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 HPCS—OO1

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 267.4 | 18.2 | STS410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
H P C S－O 01

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|  | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 30 | 31 | 32 | 33 | 34 | 35 |
|  | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 839 | 901 |  |  |  |

配管の質量（付加質量含む ）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | 13 |  | 21 |  | 34 |  | 42 |  |
| 6 |  | 14 |  | 22 |  | 35 |  | 43 |  |
| 7 |  | 15 |  | 25 |  | 36 |  | 44 |  |
| 8 |  | 16 |  | 26 |  | 37 |  | 45 |  |
| 9 |  | 17 |  | 27 |  | 38 |  | 839 |  |
| 10 |  | 18 |  | 31 |  | 39 |  | 901 |  |
| 11 |  | 19 |  | 32 |  | 40 |  |  |  |
| 12 |  | 20 |  | 33 |  | 41 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2

| 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: |
| 23 |  | 28 |  |
| 50 |  | 29 |  |
|  |  | 30 |  |
|  |  |  |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | :---: |
| 弁1 | 50 |  |  |  |
| 弁2 | 29 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
HPCS -001

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 6 |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |
| ＊＊ 12 ＊＊ |  |  |  |  |  |  |
| ＊＊ 15 ＊＊ |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |
| ＊＊ 22 ＊＊ |  |  |  |  |  |  |
| ＊＊ 27 ＊＊ |  |  |  |  |  |  |
| ＊＊ $35 * *$ |  |  |  |  |  |  |
| ＊＊ 37 ＊＊ |  |  |  |  |  |  |
| 39 |  |  |  |  |  |  |
| 42 |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |

$\qquad$

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS－002

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 1.37 | 66 | 406.4 | 9.5 | SUS304 | S | 191720 |
| 2 | 1.37 | 66 | 406.4 | 9.5 | SGV410 | S | 200360 |
| 3 | 1.37 | 100 | 406.4 | 9.5 | SGV410 | S | 198000 |
| 4 | 427 kPa <br> $(0.427 \mathrm{MPa})$ | 104 | 508.0 | 9.5 | SGV410 | S | 197680 |
| 5 | 1.37 | 100 | 508.0 | 9.5 | SGV410 | S | 198000 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPCS—OO2

| 管名称 |  |  |  |  | 対 | 応 | す |  |  |  | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 32 | 33 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 33 | 34 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 36 | 37 | 38 | 39 | 40 | 42 | 43 | 431 | 901 |  |  |  |  |  |  |
| 4 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 85 | 86 | 812 | 813 | 814 | 855 | 954 |
|  | 956 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 43 | 68 | 69 | 70 | 72 | 73 | 74 | 75 | 84 | 432 | 801 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 |  | 59 |  | 65 |  | 85 |  | 813 |  |
| 33 |  | 60 |  | 69 |  | 86 |  | 814 |  |
| 37 |  | 61 |  | 73 |  | 431 |  | 855 |  |
| 38 |  | 62 |  | 74 |  | 432 |  | 901 |  |
| 39 |  | 63 |  | 75 |  | 801 |  | 954 |  |
| 43 |  | 64 |  | 84 |  | 812 |  | 956 |  |

弁部の質量を下表に示す。
弁1
弁 3
弁 4

| 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 |  | 40 |  | 66 |  | 70 |  |
| 35 |  | 41 |  | 67 |  | 71 |  |
| 36 |  | 42 |  | 68 |  | 72 |  |
| 76 |  |  |  | 78 |  |  |  |
| 77 |  |  |  | 79 |  |  |  |

并部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 35 |  |  |  |
| 弁2 | 41 |  |  |  |
| 弁3 | 67 |  |  |  |
| 弁4 | 71 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 HPCS－002
支持点部のばね定数を下表に示す。

$\square$

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| STS410 | 302 | 122 | 182 | － | － |
| SGV410 | 66 | － | 212 | 384 | － |
|  | 100 | － | 201 | 373 | － |
|  | 104 | － | 200 | 372 | － |
| SUS304 | 66 | － | 188 | 479 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| H P C S－O O 1 | 原子炉しやへい壁 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| H P C S－0 0 2 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－5－1－3（設）R 0


[^23]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－5－1－3（設）R 0

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\underset{(\mathrm{s})}{\text { 固有周期 }}$ | 応 答 水 平 震 度＊${ }^{* 1}$ |  | 応答鉛直震度＊1 | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 13 次 |  |  |  |  |  |  |  |
| 15 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^24]| モード | $\begin{gathered} \text { 固 有 周 } \\ (\mathrm{s}) \end{gathered} \text { 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 14 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力区分 | $\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  |  |  | $\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$ |  | 疲労評価 <br> 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~s} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 一次応力 | 許容応力 | ねじり応力 | 許容応力 | 一次＋二次応力 | 許容応力 |  |
|  |  |  |  |  | Sprm（Sd） | 2． $25 \cdot \mathrm{Sm}$ | St（S d） | 0． $55 \cdot \mathrm{Sm}$ | $\mathrm{Sn}(\mathrm{Sd})$ | $3 \cdot \mathrm{Sm}$ |  |
|  |  |  |  |  | Sprm（S s） | $3 \cdot \mathrm{Sm}$ | St（S s ） | 0． $73 \cdot \mathrm{sm}$ | Sn（S s ） | $3 \cdot \mathrm{Sm}$ |  |
| HPCS－001 | IIIA S | 21 | ELBOW | Sprm（Sd） | 142 | 274 | － | － | － | － | － |
|  | IIIA S | 7 | ELBOW | St（S d） | － | － | 62 | 67 | － | － | － |
|  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 21 | ELBOW | Sn（S d） | － | － | － | － | 329 | 366 | － |
|  | $\mathrm{III}_{\text {A }} \mathrm{S}$ | 42 | NOZZLE | $\mathrm{U}+\mathrm{US} \mathrm{d}$ | － | － | － | － | － | － | 0． 0177 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 21 | ELBOW | Sprm（Ss） | 223 | 366 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 7 | ELBOW | St（S s ） | － | － | 93＊ | 89 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 21 | ELBOW | Sn（S s ） | － | － | － | － | 600＊＊ | 366 | 0． 1577 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 21 | ELBOW | U＋US s | － | － | － | － | － | － | 0． 1577 |

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次十二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S S のとき 0 。 5 5 • Sm m，又は許容応力状態 IV A Sのとき 0 • 73 • Sm を超える評価点のうち曲げとねじりによる応力は許容値を満足している。

鳥 瞰 図 HPCS—O O 1

| 評価点 | 一次応力評価 （MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (S d) } \\ & \text { S t (S s ) } \end{aligned}$ | $\begin{aligned} & \text { 許容応力 } \\ & 0 . \quad 55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \text { 曲げとねじり応力 } \\ & \text { St+Sb(Sd) } \\ & \text { St+Sb(S s ) } \end{aligned}$ | 許容応力 <br> 1． 8 •S m <br> 2． $4 \cdot \mathrm{~S}$ m |
| 7 | $\begin{aligned} & 62 \\ & 93 * \end{aligned}$ | $\begin{aligned} & 67 \\ & 89 \end{aligned}$ | $\begin{array}{r} 73 \\ 109 \end{array}$ | $\begin{aligned} & 219 \\ & 292 \end{aligned}$ |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | $\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \hline \mathrm{MPa} \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & \mathrm{Sprm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S}) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \quad 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 <br> US s |
| HPCS－ 002 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$ | $\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$ | $\begin{aligned} & 106 \\ & 173 \end{aligned}$ | $\begin{aligned} & 201 \\ & 335 \end{aligned}$ |  | $\begin{aligned} & \text { - } \\ & 402 \end{aligned}$ | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。

$$
\text { 4. } 2.2 \text { 支持構造物評価結果 }
$$

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容荷重 （kN） |
| HPCS－001－019H | バリアブルハンガ | VS60－14 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 | 27 | $15 \times 2$ |
| HPCS－002－086S | メカニカルスナッバ | SMS－10－100 |  | 185 | 230 |
| HPCS－003－906B | ロッドレストレイント | RST－2 |  | 39 | 67 |


| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 計算荷重（kN） |  | 許容荷重（kN） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 引張り | せん断 | 引張り | せん断 |
| HPCS－002－062R | レストレイント | 埋込金物 | 添付書類配管及で震計算 | $2-1-12-1$ <br> 造物の耐 <br> 」参照 | 208 | 55 | 479 | 204 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力 <br> 分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| － | － | － | － | － | － | － | － | － | － | － | － | － | － |

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－5－1－3（設）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| E22－F003 | 仕切弁 | $\beta$（ S s ） | 7． 3 | 0.5 | 20.0 | 20.0 | 193 | 280 |
| E22－F004 | $\begin{aligned} & \text { テスタブル } \\ & \text { チェック弁 } \end{aligned}$ | $\beta$（ S s ） | 6． 7 | 7.1 | 20． 0 | 20.0 | 55 | 259 |

＊応答加速度は，打ち切り振動数を 50 Hz として計算した結果を示す。
4．2．4 代表モデルの選定結果及び全モデルの評価結果代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労 <br> 累積係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | HPCS－001 | 21 | 142 | 274 | 1． 92 | $\bigcirc$ | 21 | 223 | 366 | 1． 64 | $\bigcirc$ | 21 | 600 | 366 | 0.61 | $\bigcirc$ | 21 | 0． 1557 | $\bigcirc$ |

[^25]| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 (MPa) | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労 <br> 累積 <br> 係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | HPCS－002 | 75 | 106 | 201 | 1． 89 | $\bigcirc$ | 75 | 173 | 335 | 1.93 | $\bigcirc$ | 75 | 338 | 402 | 1． 18 | $\bigcirc$ | － | － | － |
| 2 | HPCS－003 | 19 | 85 | 220 | 2.58 | － | 19 | 108 | 364 | 3． 37 | － | 16 | 186 | 440 | 2． 36 | － | － | － | － |

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 13
3.1 計算方法 ..... 13
3.2 荷重の組合せ及び許容応力状態 ..... 14
3.3 設計条件 ..... 16
3.4 材料及び許容応力 ..... 26
3.5 設計用地震力 ..... 27
4．解析結果及び評価 ..... 29
4． 1 固有周期及び設計震度 ..... 29
4． 2 評価結果 ..... 41
4．2．1 管の応力評価結果 ..... 41
4．2．2 支持構造物評価結果 ..... 43
4．2．3 弁の動的機能維持評価結果 ..... 44
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 45

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，高圧炉心スプレイ系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 4 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号
O2 (5) $\mathrm{VI}-2-5-5-1-3$ (重) R 0
O (5) $2 \mathrm{VI}-2-5-5-1-3$ (重) R 0
O2 (5) VI-2-5-5-1-3 (重) R O

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | $\begin{aligned} & \text { 高圧炉心 } \\ & \text { スプレイ系 } \end{aligned}$ | S A | 常設／防止 （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{Sd}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ |  |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 高圧代替注水系 | S A | 常設耐震／防止常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 原子炉隔離時冷却系 | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 低圧代替注水系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備その他の安全設備 | 原子炉格納容器 <br> 下部注水系 | S A | 常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |


| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{*}$ | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉格納施設 | 圧力低減設備その他の安全設備 | 原子炉格納容器代替スプレイ系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス2管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備その他の安全設備 | 高圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備その他の <br> 安全設備 | 低圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

[^26]
## 3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS—002

| 管名称 | 最高使用圧力 （MPa） | 最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> （mm） | $\underset{(\mathrm{mm})}{\substack{\text { 厚さ }}}$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 （MPa） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1． 37 | 66 | 406.4 | 9.5 | SUS304 | － | 191720 |
| 2 | 1． 37 | 66 | 406． 4 | 9.5 | SGV410 | － | 200360 |
| 3 | 1． 37 | 100 | 406． 4 | 9.5 | SGV410 | － | 198000 |
| 4 | $\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$ | 200 | 508.0 | 9.5 | SGV410 | － | 191000 |
| 5 | 1． 37 | 100 | 508.0 | 9.5 | SGV410 | － | 198000 |
| 6 | 1． 37 | 66 | 165． 2 | 7.1 | SUS304 | － | 191720 |
| 7 | 1． 37 | 66 | 165.2 | 7． 1 | SUS304TP | － | 191720 |
| 8 | 1． 37 | 66 | 165.2 | 7.1 | STS410 | － | 200360 |

## 設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 HPCS—OO2

| 管名称 |  |  |  |  | 対 | 応 |  |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|  | 32 | 33 | 44 | 45 | 46 | 221 | 222 | 281 | 282 | 501 | 502 | 503 | 802 | 811 | 903 |
|  | 904 | 905 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 33 | 34 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 36 | 37 | 38 | 39 | 40 | 42 | 43 | 431 | 901 |  |  |  |  |  |  |
| 4 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 85 | 86 | 812 | 813 | 814 | 855 | 954 |
|  | 956 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | 43 | 68 | 69 | 70 | 72 | 73 | 74 | 75 | 84 | 432 | 801 |  |  |  |  |
| 6 | 502 | 504 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 | 504 | 505 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | 505 | 506 | 507 | 509 | 510 | 511 | 512 | 513 | 515 | 516 | 517 | 519 | 520 | 521 | 522 |
|  | 523 | 524 | 525 | 526 | 527 | 528 | 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 |
|  | 538 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
鳥 瞰 図 HPCS－0 02
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 22 |  | 62 |  | 505 |  | 535 |  |
| 2 |  | 23 |  | 63 |  | 506 |  | 536 |  |
| 3 |  | 24 |  | 64 |  | 510 |  | 537 |  |
| 4 |  | 25 |  | 65 |  | 511 |  | 538 |  |
| 5 |  | 26 |  | 69 |  | 512 |  | 801 |  |
| 6 |  | 27 |  | 73 |  | 516 |  | 802 |  |
| 7 |  | 28 |  | 74 |  | 520 |  | 811 |  |
| 8 |  | 29 |  | 75 |  | 521 |  | 812 |  |
| 9 |  | 30 |  | 84 |  | 522 |  | 813 |  |
| 10 |  | 32 |  | 85 |  | 523 |  | 814 |  |
| 11 |  | 33 |  | 86 |  | 524 |  | 855 |  |
| 12 |  | 37 |  | 221 |  | 525 |  | 901 |  |
| 13 |  | 38 |  | 222 |  | 526 |  | 903 |  |
| 14 |  | 39 |  | 281 |  | 527 |  | 904 |  |
| 15 |  | 43 |  | 282 |  | 528 |  | 905 |  |
| 16 |  | 44 |  | 431 |  | 529 |  | 954 |  |
| 17 |  | 45 |  | 432 |  | 530 |  | 956 |  |
| 18 |  | 46 |  | 501 |  | 531 |  |  |  |
| 19 |  | 59 |  | 502 |  | 532 |  |  |  |
| 20 |  | 60 |  | 503 |  | 533 |  |  |  |
| 21 |  | 61 |  | 504 |  | 534 |  |  |  |

鳥 瞰 図 HPCS—OO2
弁部の質量を下表に示す。
弁1 弁2
弁3
弁 4
弁 5

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 |  | 40 |  | 66 |  | 70 |  | 507 |  |
| 35 |  | 41 |  | 67 |  | 71 |  | 508 |  |
| 36 |  | 42 |  | 68 |  | 72 |  | 509 |  |
| 76 |  |  |  | 78 |  |  |  |  |  |
| 77 |  |  |  | 79 |  |  |  |  |  |

```
鳥 瞰 図 HPCS-002
```

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径（mm） | 厚さ（mm） | 長さ（mm） |
| :---: | :---: | :---: | :---: | :---: |
| 弁1 | 35 |  |  |  |
| 弁2 | 41 |  |  |  |
| 弁3 | 67 |  |  |  |
| 弁4 | 71 |  |  |  |
| 弁5 | 508 |  |  |  |
| 弁6 | 514 |  |  |  |
| 弁7 | 518 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 HPCS—002
支持点部のばね定数を下表に示す。


支持点及び貫通部ばね定数
鳥 瞰 図
HPCS－002

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 511 |  |  |  |  |  |  |
| 516 |  |  |  |  |  |  |
| 524 |  |  |  |  |  |  |
| 530 |  |  |  |  |  |  |
| 538 |  |  |  |  |  |  |
| ＊＊ 540 ＊＊ |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |
| ＊＊ 903 ＊＊ |  |  |  |  |  |  |
| 904 |  |  |  |  |  |  |
| 905 |  |  |  |  |  |  |
| ＊＊ 954 ＊＊ |  |  |  |  |  |  |
| 956 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS－004

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 静水頭 | 66 | 406.4 | 9.5 | SUS304 | - | 191720 |
| 2 | 1.37 | 66 | 406.4 | 9.5 | SUS304 | - | 191720 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPCS O O 4

| 管名称 |  |  |  |  | 対 | 応 |  | る |  | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 801 |  |  |  |  |  |
| 2 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 26 |
|  | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 60 | 61 | 62 | 802 | 803 | 804 |
|  | 902 | 903 | 904 | 905 |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 13 |  | 22 |  | 32 |  | 803 |  |
| 2 |  | 14 |  | 23 |  | 33 |  | 804 |  |
| 3 |  | 15 |  | 24 |  | 34 |  | 902 |  |
| 4 |  | 16 |  | 26 |  | 35 |  | 903 |  |
| 5 |  | 17 |  | 27 |  | 60 |  | 904 |  |
| 6 |  | 18 |  | 28 |  | 61 |  | 905 |  |
| 7 |  | 19 |  | 29 |  | 62 |  |  |  |
| 8 |  | 20 |  | 30 |  | 801 |  |  |  |
| 12 |  | 21 |  | 31 |  | 802 |  |  |  |

弁部の質量を下表に示す。
弁1

| 評価点 | 質量（kg） |
| :---: | :--- |
| 9 |  |
| 10 |  |
| 11 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 10 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
HPCS－OO4

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |
| 30 |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |
| 35 |  |  |  |  |  |  |
| 60 |  |  |  |  |  |  |
| 902 |  |  |  |  |  |  |
| 903 |  |  |  |  |  |  |
| ＊＊904＊＊ |  |  |  |  |  |  |
| 905 |  |  |  |  |  |  |

$\square$

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | S u | Sh |
| SGV410 | 66 | － | 212 | 384 | － |
|  | 100 | － | 201 | 373 | － |
|  | 200 | － | 189 | 362 | － |
| STS410 | 66 | － | 231 | 407 | － |
| SUS304 | 66 | － | 188 | 479 | － |
| SUS304TP | 66 | － | 188 | 479 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| H P C S－0 0 2 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

O 2 （5）VI－2－5－5－1－3（重）R 0
4．解析結果及び評価
4．1 固有周期及び設計震度

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。


| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 14 次 |  |  |  |  |

[^27]
## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－5－1－3（重）R 0

| 適用する地震動等 |  | Sd 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\underset{(\mathrm{s} \mathrm{)}}{\text { 固有周期 }}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度＊1 | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 9 次 |  |  |  |  |  |  |  |
| 10 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^28]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 9 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s ) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S \mathrm{~s})$ | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 US s |
| HPCS－ 02 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 538 \\ & 538 \end{aligned}$ | $\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 185 \\ & - \end{aligned}$ | $366$ | $366$ | $462$ | — |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価(MPa) |  | 一次 + 二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s ) } \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$ | 計算応力 $\operatorname{Sn}(S \mathrm{~s})$ | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 US s |
| HPCS－ 004 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $1$ | $\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & \hline 139 \\ & - \end{aligned}$ | $431$ | $\overline{305}$ | $376$ | — |

4．2．2 支持構造物評価結果

| 支持構造物番号 | 種類 | 型式 | 材質 | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| HPCS－001－019H | バリアブルハンガ | VS60－14 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照 | 27 | $15 \times 2$ |
| HPCS－002－086S | メカニカルスナッバ | SMS－10－100 |  | 211 | 230 |
| HPCS－003－906B | ロッドレストレイント | RST－2 |  | 39 | 67 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（kN•m） |  |  | 応力分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| HPCS－002－004R | レストレイント | 架構 | STKR400 | 40 | 176 | 48 | 0 | － | － | － | 組合せ | 138 | 280 |
| HPCS－002－001A | アンカ | ラグ | SUS304 | 66 | 37 | 31 | 195 | 31 | 38 | 5 | 組合せ | 172 | 205 |

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能碓認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果

| 代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | 配管モデル | 許容応力状態 Vas |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 次応力 |  |  |  |  | ＋二次 |  |  |  | 労評䛧 |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 表 | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 |
| 1 | HPCS－002 | 538 | 185 | 366 | 1.97 | $\bigcirc$ | 538 | 366 | 462 | 1.26 | － | － | － | － |
| 2 | HPCS－003 | 302 | 158 | 366 | 2.31 | － | 302 | 315 | 462 | 1． 46 | － | － | － | － |
| 3 | HPCS－004 | 1 | 139 | 431 | 3.10 | － | 1 | 305 | 376 | 1.23 | $\bigcirc$ | － | － | － |

VI－2－5－5－1－4 ストレーナ部ティーの耐震計算書 （高圧炉心スプレイ系）

本計算書では，高圧炉心スプレイ系ストレーナ部ティーの耐震性について説明するものである。高圧炉心スプレイ系ストレーナ部ティーは残留熱除去系ストレーナ部ティー及び低圧炉心スプレ イ系ストレーナ部ティーと同様の形状を有しており，評価条件については同等である。また，「VI－ 2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）」において耐震性の評価を実施して おり，各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定し，鳥瞰図，計算条件，及び評価結果を記載している。

以上より，本計算書の評価結果については，「VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書 （残留熱除去系）」による。

VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－2－1 低圧炉心スプレイ系ポンプの耐震性についての計算書
VI－2－5－5－2－2 低圧炉心スプレイ系ストレーナの耐震性についての計算書
VI－2－5－5－2－3 管の耐震性についての計算書（低圧炉心スプレイ系）
VI－2－5－5－2－4 ストレーナ部ティーの耐震計算書（低圧炉心スプレイ系）

VI－2－5－5－2－2 低圧炉心スプレイ系ストレーナの耐震性についての計算書

1．概要
本計算書は，低圧炉心スプレイ系ストレーナの強度について説明するものである。低圧炉心スプレイ系ストレーナは残留熱除去系ストレーナ及び高圧炉心スプレイ系 ストレーナと同様の形状を有しており，解析モデルや評価条件については同等である。

また，添付書類「VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書」 において，ストレーナの解析モデルを用いた強度の評価を実施しており，その荷重条件 については上記のストレーナで最大となる値を用いる。

以上より，本計算書の評価結果については，添付書類「VI－2－5－4－1－3 残留熱除去系 ストレーナの耐震性についての計算書」による。
VI-2-5-5-2-3 管の耐震性についての計算書
(低圧炬心スプレイ系)

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 8
3.1 計算方法 ..... 8
3.2 荷重の組合せ及び許容応力状態 ..... 9
3.3 設計条件 ..... 10
3.4 材料及び許容応力 ..... 16
3.5 設計用地震力 ..... 17
4．解析結果及び評価 ..... 19
4.1 固有周期及び設計震度 ..... 19
4． 2 評価結果 ..... 31
4．2．1 管の応力評価結果 ..... 31
4．2．2 支持構造物評価結果 ..... 33
4．2．3 弁の動的機能維持評価結果 ..... 34
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 35

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，低圧炉心スプレイ系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号
O (5) VI-2-5-5-2-3 (設) R O
O 2 (5) $\mathrm{VI}-2-5-5-2-3$ (設) R O


3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炬心冷却設備そ の他原子炉注水設備 | 低圧炉心スプレイ系 | D B | － | クラス 1 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{Sd}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S}$ s |  |
| 原子炉冷却系統施設 | 非常用炉心冷却設備そ の他原子炉注水設備 | 低圧炉心スプレイ系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{A} \mathrm{~S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{Sd}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s |  |

[^29]3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
LPCS -001

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{( } \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {耐震 }}$ | 縦弾性係数 <br> （要度分類 |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 267.4 | 18.2 | STS 410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
L P C S－ 001

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 18 | 19 | 20 |
|  | 21 | 22 | 23 | 24 | 25 | 26 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
|  | 37 | 38 | 39 | 40 | 50 | 801 | 802 | 901 |  |  |  |  |  |  |  |

配管の質量（付加質量含む ）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 |  | 12 |  | 22 |  | 32 |  | 39 |  |
| 6 |  | 13 |  | 23 |  | 33 |  | 40 |  |
| 7 |  | 14 |  | 24 |  | 34 |  | 50 |  |
| 8 |  | 15 |  | 25 |  | 35 |  | 801 |  |
| 9 |  | 19 |  | 29 |  | 36 |  | 802 |  |
| 10 |  | 20 |  | 30 |  | 37 |  | 901 |  |
| 11 |  | 21 |  | 31 |  | 38 |  |  |  |

弁部の質量を下表に示す。
弁1 弁2

| 評価点 | 質量（kg） | 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: |
| 16 |  | 26 |  |
| 17 |  | 27 |  |
| 18 |  | 28 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径（mm） | 厚さ（mm） | 長さ（mm） |
| :---: | :---: | :---: | :---: | :---: |
| 弁1 | 17 |  |  |  |
| 弁2 | 27 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS－ 001

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 6 |  |  |  |  |  |  |
| ＊＊ 12 ＊＊ |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |
| ＊＊ 15 ＊＊ |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |
| ＊＊ 21 ＊＊ |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |
| ＊＊ 29 ＊＊ |  |  |  |  |  |  |
| 31 |  |  |  |  |  |  |
| ＊＊34＊＊ |  |  |  |  |  |  |
| ＊＊36＊＊ |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |
| ＊＊ 901 ＊＊ |  |  |  |  |  |  |

$\square$

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
LPCS—002

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 427 kPa <br> $(0.427 \mathrm{MPa})$ | 104 | 508.0 | 9.5 | SGV410 | S | 197680 |
| 2 | 1.37 | 100 | 508.0 | 9.5 | SGV410 | S | 198000 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
LPCS—002

| 管名称 |  |  |  |  | 対 | 応 | す | る | 評 | 価 | 点 |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 55 | 56 | 57 | 58 | 806 | 811 | 812 |
|  | 954 | 956 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 12 | 13 | 14 | 15 | 16 | 17 | 59 | 152 | 801 | 802 | 803 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | 9 |  | 55 |  | 205 |  | 811 |  |
| 4 |  | 13 |  | 56 |  | 207 |  | 812 |  |
| 5 |  | 14 |  | 57 |  | 801 |  | 954 |  |
| 6 |  | 15 |  | 58 |  | 802 |  | 956 |  |
| 7 |  | 16 |  | 59 |  | 803 |  |  |  |
| 8 |  | 17 |  | 152 |  | 806 |  |  |  |

注記）：205，207はストレーナの質点
弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :--- |
| 10 |  |
| 11 |  |
| 12 |  |
| 39 |  |
| 901 |  |

弁部の寸法を下表に示す。

| 弁NO． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :--- | :--- |
| 弁1 | 11 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS—OO2

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| ＊＊ 1 ＊＊ |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |
| ＊＊ 56 ＊＊ |  |  |  |  |  |  |
| ＊＊ 57 ＊＊ |  |  |  |  |  |  |
| 59 |  |  |  |  |  |  |
| 901 |  |  |  |  |  |  |
| ＊＊ 954 ＊＊ |  |  |  |  |  |  |
| 956 |  |  |  |  |  |  |

$\square$

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| LPC S－O O 1 | 原子炉しやへい壁 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| LPC S－O O 2 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－5－2－3（設）R 0

> 4. 解析結果及び評価
> 4.1 固有周期及び設計震度

[^30]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

[^31]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 13 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果

## 4．2．1 管の

管の応力評価結果
下表に示すとおり

| 鳥瞰図 | 許容 <br> 応力 <br> 状態 | 最大 <br> 応力 <br> 評価点 | 配管 <br> 要素 <br> 名称 | 最大応力 <br> 区分 | 一次応力評価 （MPa） |  |  |  | $\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { 一次応力 } \\ \mathrm{Sprm}(\mathrm{Sd}) \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \text { s }) \end{gathered}$ | 許容応力 <br> 2． $25 \cdot \mathrm{Sm}$ 3．S m | $\begin{aligned} & \text { ねじり応力 } \\ & \text { St (Sd) } \\ & \text { St (S s) } \end{aligned}$ | $$ | $\begin{array}{\|l} \text { 一次 + 二次応力 } \\ S \mathrm{Sn}(\mathrm{Sd}) \\ \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{array}$ | 許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$ | 疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~S} \end{aligned}$ |
| LPCS－001 | IIIA ${ }_{\text {A }}$ S | 14 | ELBOW | Sprm（Sd） | 155 | 274 | － | － | － | － | － |
|  | IIII ${ }_{\text {A }} \mathrm{S}$ | 10 | ELBOW | St（S d） | － | － | 57 | 67 | － | － | － |
|  | IIII ${ }_{\text {A }} \mathrm{S}$ | 14 | ELBOW | Sn（S d） | － | － | － | － | $394 * *$ | 366 | 0． 0396 |
|  | $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 14 | ELBOW | U +US d | － | － | － | － | － | － | 0． 0396 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 14 | ELBOW | Sprm（Ss） | 211 | 366 | － | － | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 10 | ELBOW | St（S s ） | － | － | 83 | 89 | － | － | － |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 14 | ELBOW | Sn（S s ） | － | － | － | － | 599 ＊＊ | 366 | 0． 3237 |
|  | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 14 | ELBOW | U＋US s | － | － | － | － | － | － | 0． 3237 |

＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & S p r m(S d) \\ & S p r m(S s) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0.9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $\mathrm{Sn}(\mathrm{~S} \text { s })$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 <br> US s |
| LPCS－ 02 | $\begin{aligned} & \hline I I I_{A} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{array}{r} 90 \\ 137 \\ \hline \end{array}$ | $\begin{aligned} & 200 \\ & 334 \end{aligned}$ |  |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1．2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
O 2 （5）VI－2－5－5－2－3（設）R 0

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ） |  |  | 応力分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| LPCS－003－019R | レストレイント | ラグ | SGV410 | 100 | 216 | 106 | 133 | － | － | － | せん断 | 89 | 116 |

4．2．3 弁の動的機能維持評価結果

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果(MPa) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| E21－F003 | 電動ゲート弁 | $\beta(\mathrm{S} \mathrm{S})$ | 6.6 | 2.4 | 20.0 | 20.0 | 136 | 280 |
| E21－F004 | $\begin{aligned} & \text { テスタブル } \\ & \text { チェック弁 } \end{aligned}$ | $\beta$（ S s ） | 8.2 | 7.7 | 20.0 | 20.0 | 117 | 259 |

4．2．4 代表モデルの選定結果及び全モデルの評価結果代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代表 | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 表 | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 <br> 表 | 評 <br> 価 <br> 点 | 疲労 <br> 累積 <br> 係数 | 代 表 |
| 1 | LPCS－001 | 14 | 155 | 274 | 1． 76 | $\bigcirc$ | 14 | 211 | 366 | 1.73 | $\bigcirc$ | 14 | 599 | 366 | 0.61 | $\bigcirc$ | 14 | 0． 3237 | $\bigcirc$ |

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （ MPa ） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労 <br> 累積 <br> 係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | LPCS－002 | 3 | 90 | 200 | 2． 22 | $\bigcirc$ | 3 | 137 | 334 | 2.43 | $\bigcirc$ | 3 | 268 | 400 | 1． 49 | $\bigcirc$ | － | － | － |
| 2 | LPCS－003 | 39 | 73 | 220 | 3． 01 | － | 39 | 96 | 364 | 3． 79 | － | 10 | 160 | 440 | 2． 75 | － | － | － | － |

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 7
3.1 計算方法 ..... 7
3.2 荷重の組合せ及び許容応力状態 ..... 8
3.3 設計条件 ..... 9
3.4 材料及び許容応力 ..... 12
3.5 設計用地震力 ..... 13
4．解析結果及び評価 ..... 14
4.1 固有周期及び設計震度 ..... 14
4． 2 評価結果 ..... 20
4．2．1 管の応力評価結果 ..... 20
4．2．2 支持構造物評価結果 ..... 21
4．2．3 弁の動的機能維持評価結果 ..... 22
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 23

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，低圧炉心スプレイ系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号

O 2 (5) VI-2-5-5-2-3 (重) R O

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{1}$ | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備そ の他原子炉注水設備 | 低圧炉心スプレ <br> イ系 | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$ |  |
|  |  |  |  |  |  |  | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ |  |

注記＊1：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
＊2：「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊3：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的に荷重が作用している状態を示す。 ＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $I_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
LPCS—002

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: |
| 1 | 854 kPa <br> $(0.854 \mathrm{MPa})$ | 200 | 508.0 | 9.5 | SGV410 | - | 191000 |
| 2 | 1.37 | 100 | 508.0 | 9.5 | SGV410 | - | 198000 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
LPCS—OO2

| 管名称 |  |  |  | 対 | 応 | す | る | 評 | 価 | 点 |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 55 | 56 | 57 | 58 | 806 | 811 | 812 |
|  | 954 | 956 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 12 | 13 | 14 | 15 | 16 | 17 | 59 | 152 | 801 | 802 | 803 |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | 9 |  | 55 |  | 205 |  | 811 |  |
| 4 |  | 13 |  | 56 |  | 207 |  | 812 |  |
| 5 |  | 14 |  | 57 |  | 801 |  | 954 |  |
| 6 |  | 15 |  | 58 |  | 802 |  | 956 |  |
| 7 |  | 16 |  | 59 |  | 803 |  |  |  |
| 8 |  | 17 |  | 152 |  | 806 |  |  |  |

注記）：205，207はストレーナの質点
弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :---: |
| 10 |  |
| 11 |  |
| 12 |  |
| 39 |  |
| 901 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | :---: |
| 弁1 | 11 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS—OO2

支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| ＊＊ 1 ＊＊ |  |  |  |  |  |  |
| 6 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |
| ＊＊ 56 ＊＊ |  |  |  |  |  |  |
| ＊＊ 57 ＊＊ |  |  |  |  |  |  |
| 59 |  |  |  |  |  |  |
| 901 |  |  |  |  |  |  |
| ＊＊ 954 ＊＊ |  |  |  |  |  |  |
| 956 |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left({ }^{\circ} \mathrm{C}\right)$ |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| LPCS－O O 2 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－5－2－3（重）R 0
4．解析結果及び評価
4.1 固有周期及び設計震度


[^32]| モード | 固 $\underset{(\mathrm{s})}{\text {（ })}$ 周 期 |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 13 次 |  |  |  |  |

[^33]
## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s ) } \end{gathered}$ | 許容応力 <br> 0． $9 \cdot \mathrm{Su}$ | $\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn}(\mathrm{~S} s) \end{aligned}$ | 許容応力 $2 \cdot \mathrm{~S}$ y | 疲労累積係数 US s |
| LPCS－002 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 3 \\ & 3 \end{aligned}$ | $\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 141 \\ & \hline \end{aligned}$ | $325$ | $\overline{317}$ | $378$ | — |

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$  | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| LPCS－002－954S | メカニカルスナッバ | SMS－16－100 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」 参照 | 158 | 368 |
| LPCS－002－956B | ロッドレストレイント | RTS－16 |  | 167 | 240 |
| LPCS－002－059H | スプリングハンガ | VS30T－17 |  | 34 | 39 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力分類 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| LPCS－003－019R | レストレイント | ラグ | SGV410 | 100 | 222 | 105 | 125 | － | － | － | せん断 | 91 | 116 |

4．2．3 弁の動的機能維持評価結果
0 y（重）\＆－6－9－9－2－I（c）$\quad 20$

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果

| 代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | 配管モデル | 許容応力状態 V A S |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 次応力 |  |  |  |  | 二二次 |  |  |  | 労評俉 |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （ MPa ） | 裕度 | 代 | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 |
| 1 | LPCS－002 | 3 | 141 | 325 | 2.30 | $\bigcirc$ | 3 | 317 | 378 | 1.19 | $\bigcirc$ | － | － | － |
| 2 | LPCS－003 | 39 | 95 | 364 | 3.83 | － | 10 | 162 | 440 | 2． 71 | － | － | － | － |

VI－2－5－5－2－4 ストレーナ部ティーの耐震計算書 （低圧炬心スプレイ系）

本計算書では，低圧炉心スプレイ系ストレーナ部ティーの耐震性について説明するものである。低圧炉心スプレイ系ストレーナ部ティーは残留熱除去系ストレーナ部ティー及び高圧炉心スプレ イ系ストレーナ部ティーと同様の形状を有しており，評価条件については同等である。また，「VI－ 2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）」において耐震性の評価を実施して おり，各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定し，鳥瞰図，計算条件，及び評価結果を記載している。

以上より，本計算書の評価結果については，「VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書 （残留熱除去系）」による。

VI－2－5－5－5 代替水源移送系の耐震性についての計算書

目 次

VI－2－5－5－5－1 管の耐震性についての計算書（代替水源移送系）

$$
\begin{aligned}
& \text { VI-2-5-5-5-1 管の耐震性についての計算書 } \\
& \text { (代替水源移送系) }
\end{aligned}
$$

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 4
3．計算条件 ..... 6
3.1 計算方法 ..... 6
3.2 荷重の組合せ及び許容応力状態 ..... 7
3.3 設計条件 ..... 8
3.4 材料及び許容応力 ..... 11
3.5 設計用地震力 ..... 12
4．解析結果及び評価 ..... 13
4.1 固有周期及び設計震度 ..... 13
4． 2 評価結果 ..... 14
4．2．1 管の応力評価結果 ..... 14
4．2．2 支持構造物評価結果 ..... 15
4．2．3 弁の動的機能維持評価結果 ..... 16
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 17

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，代替水源移送系の管，支持構造物及び弁が設計用地震力に対 して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例



## 鳥瞰図記号凡例

記 号
O 2 (5) $\mathrm{VI}-2-5-5-5-1$ (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設 <br> 分類＊${ }^{1}$ | 設備分類＊2 | 機器等 の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 代替水源移送系 | S A | 常設／防止常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊ 3 ：運転状態の添字Lは荷重を示す。
＊ 5 ：許容応力状態 $V_{A} S$ は許容応力状態 $I V_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KMUWC－163

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{( } \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {耐震 }}$ | 縦弾性係数 <br> （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 静水頭 | 66 | 165.2 | 7.1 | SUS304TP | - | 191720 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KMUWC－163

| 管名称 |  |  |  | 対 |  | 応 | す |  |  | 評 | 価 | 点 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 4 |  | 7 |  | 10 |  | 13 |  |
| 2 |  | 5 |  | 8 |  | 11 |  | 14 |  |
| 3 |  | 6 |  | 9 |  | 12 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図 KMUWC－163
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| ＊＊ 5 ＊＊ |  |  |  |  |  |  |
| ＊＊ 9 ＊＊ |  |  |  |  |  |  |
| ＊＊ 11 ＊＊ |  |  |  |  |  |  |
| 14 |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 | 許容応力（ MPa ） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\left({ }^{\circ} \mathrm{C}\right)$ | S m | S y | S u | S h |  |
| SUS304TP | 66 | - | 188 | 479 | - |  |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
| K M U W C－ 163 | 復水貯蔵タンクバルブ室 |  |  |
|  | 復水貯蔵タンクしゃへい壁 |  |  |
|  | 復水貯蔵タンク |  |  |

O 2 （5）VI－2－5－5－5－1（重）R 0
4．解析結果及び評価
4．1 固有周期及び設計震度
鳥 瞰 図 KMUWC－163


[^34]$* 3: ~ \mathrm{Sd}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価(MPa) |  | $\frac{\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}}{\left(\begin{array}{l} \text { ( } \end{array}\right.}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ S \operatorname{srm}(S \mathrm{~s}) \end{gathered}$ | $\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot S u \end{gathered}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 US s |
| $\begin{aligned} & \text { KMUWC- } \\ & 163 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | $\begin{gathered} \hline \mathrm{S} p \mathrm{rm}(\mathrm{~S} s) \\ \mathrm{Sn}(\mathrm{~S} s) \end{gathered}$ | $\begin{gathered} 57 \\ - \end{gathered}$ | $\begin{aligned} & 431 \\ & - \end{aligned}$ | $\overline{125}$ | $376$ | － |

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| － | － | － | － | － | － | － |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | 温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力分類 | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{X}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| KMUWC－103－061A | アンカ | ラグ | SUS304 | 66 | 5 | 2 | 10 | 1 | 3 | 1 | 組合せ | 33 | 205 |
| KMUWC－103－117R | レストレイント | Uプレート | SUS304 | 40 | 8 | 7 | 20 | － | － | － | せん断 | 47 | 118 |

4．2．3 弁の動的機能維持評価結果
0 y（重）I－q－q－q－Z－I（c）$\quad 20$


4．2．4 代表モデルの選定結果及び全モデルの評価結果

| 代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | 配管モデル | 許容応力状態 V A S |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 次応力 |  |  |  |  | 二二次 |  |  |  | 労評俉 |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （ MPa ） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 |
| 1 | KMUWC－103 | 117 | 40 | 431 | 10． 77 | － | 117 | 80 | 376 | 4． 70 | － | － | － | － |
| 2 | KMUWC－163 | 14 | 57 | 431 | 7.56 | $\bigcirc$ | 14 | 125 | 376 | 3.00 | $\bigcirc$ | － | － | － |

VI－2－5－6 原子炉冷却材補給設備の耐震性についての計算書

VI－2－5－6－1 原子炉隔離時冷却系の耐震性についての計算書
VI－2－5－6－2 補給水系の耐震性についての計算書

VI－2－5－6－1 原子炉隔離時冷却系の耐震性についての計算書

VI－2－5－6－1－1 原子炉隔離時冷却系ポンプの耐震性についての計算書
VI－2－5－6－1－2 原子炉隔離時冷却系ポンプ駆動用タービンの耐震性についての計算書
VI－2－5－6－1－3 管の耐震性についての計算書（原子炉隔離時冷却系）

> VI-2-5-6-1-3 管の耐震性についての計算書(原子炉隔離時冷却系)

設計基準対象施設

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 5
3．計算条件 ..... 13
3.1 計算方法 ..... 13
3.2 荷重の組合せ及び許容応力状態 ..... 14
3.3 設計条件 ..... 15
3.4 材料及び許容応力 ..... 24
3.5 設計用地震力 ..... 25
4．解析結果及び評価 ..... 28
4．1 固有周期及び設計震度 ..... 28
4． 2 評価結果 ..... 46
4．2．1 管の応力評価結果 ..... 46
4．2．2 支持構造物評価結果 ..... 49
4．2．3 弁の動的機能維持評価結果 ..... 50
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 51

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，原子炉隔離時冷却系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

注記＊1：高圧炉心スプレイ系




## 鳥瞰図記号凡例

記 号



○ (5) VI-2-5-6-1-3 (設) R 0
O2 (5) $\mathrm{VI}-2-5-6-1-3($ 設) R 0
○ (5) $\mathrm{VI}-2-5-6-1-3$ (設) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊2，＊3 | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 原子炉冷却材補給設備 | 原子炉隔離時冷却系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$ | III ${ }_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{S}$ |  |
| 原子炉冷却系統施設 | 非常用炉心冷却設備その他原子炉注水設備 | 高圧炉心スプレ イ系 | D B | － | クラス 2 管 | S | $\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$ | III $_{\text {A }} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\Pi_{L}+\mathrm{S} \mathrm{d}$ |  |
|  |  |  |  |  |  |  | $\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$ | $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |
|  |  |  |  |  |  |  | $\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s |  |
|  |  |  |  |  |  |  | $\mathrm{II}_{\mathrm{L}}+\mathrm{S}$ S |  |

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：運転状態の添字L は荷重，（L）は荷重が長期間作用している状態を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－O 02

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{( } \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {耐震 }}$ | 縦弾性係数 <br> 重要度分類 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.77 | 66 | 114.3 | 13.5 | STS410 | S | 200360 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 02

| 管名称 |  |  |  | 対 |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 66 | 68 | 69 |
|  | 70 | 71 | 72 | 73 | 74 | 101 | 102 | 103 | 105 | 106 | 851 | 852 | 911 |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 10 |  | 19 |  | 66 |  | 102 |  |
| 2 |  | 11 |  | 20 |  | 68 |  | 103 |  |
| 3 |  | 12 |  | 21 |  | 69 |  | 105 |  |
| 4 |  | 13 |  | 22 |  | 70 |  | 106 |  |
| 5 |  | 14 |  | 23 |  | 71 |  | 851 |  |
| 6 |  | 15 |  | 24 |  | 72 |  | 852 |  |
| 7 |  | 16 |  | 25 |  | 73 |  | 911 |  |
| 8 |  | 17 |  | 26 |  | 74 |  |  |  |
| 9 |  | 18 |  | 27 |  | 101 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO2
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |
| 66 |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |
| 74 |  |  |  |  |  |  |
| 911 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 003

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 8.62 | 302 | 114.3 | 11.1 | STS 410 | S | 184760 |
| 2 | 8.62 | 302 | 114.3 | 11.1 | STS 410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－ 003

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
|  | 32 | 103 | 106 | 900 | 901 |  |  |  |  |  |  |  |  |  |  |
| 2 | 101 | 106 | 107 | 108 | 903 |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 9 |  | 17 |  | 25 |  | 107 |  |
| 2 |  | 10 |  | 18 |  | 26 |  | 108 |  |
| 3 |  | 11 |  | 19 |  | 27 |  | 900 |  |
| 4 |  | 12 |  | 20 |  | 28 |  | 901 |  |
| 5 |  | 13 |  | 21 |  | 29 |  | 903 |  |
| 6 |  | 14 |  | 22 |  | 30 |  |  |  |
| 7 |  | 15 |  | 23 |  | 32 |  |  |  |
| 8 |  | 16 |  | 24 |  | 106 |  |  |  |

弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :--- |
| 101 |  |
| 102 |  |
| 103 |  |
| 104 |  |
| 105 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: | ---: |
| 弁1 |  | 139.8 | 10.8 | 457 |

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－003
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| ＊＊ $8 * *$ |  |  |  |  |  |  |
| 12 |  |  |  |  |  |  |
| ＊＊ 12 ＊＊ |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |
| 24 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |
| 32 |  |  |  |  |  |  |
| 105 |  |  |  |  |  |  |
| ＊＊ 105 ＊＊ |  |  |  |  |  |  |
| 900 |  |  |  |  |  |  |
| 903 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 004

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{( } \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {耐震 }}$ | 縦弾性係数 <br> 重要度分類 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.62 | 302 | 114.3 | 11.1 | STS410 | S | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 04

| 管名称 | 対 |  |  |  |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 31 |
|  | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 46 | 50 | 801 | 803 | 804 |
|  | 805 | 807 | 808 | 809 | 900 | 901 | 906 | 907 | 908 |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 12 |  | 23 |  | 37 |  | 807 |  |
| 2 |  | 13 |  | 24 |  | 38 |  | 808 |  |
| 3 |  | 14 |  | 25 |  | 39 |  | 809 |  |
| 4 |  | 15 |  | 26 |  | 40 |  | 900 |  |
| 5 |  | 16 |  | 27 |  | 41 |  | 901 |  |
| 6 |  | 17 |  | 28 |  | 46 |  | 906 |  |
| 7 |  | 18 |  | 32 |  | 50 |  | 907 |  |
| 8 |  | 19 |  | 33 |  | 801 |  | 908 |  |
| 9 |  | 20 |  | 34 |  | 803 |  |  |  |
| 10 |  | 21 |  | 35 |  | 804 |  |  |  |
| 11 |  | 22 |  | 36 |  | 805 |  |  |  |

弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :---: |
| 29 |  |
| 30 |  |
| 31 |  |
| 44 |  |
| 45 |  |

弁部の寸法を下表に示す。

| 弁NO． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| 弁1 |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO4
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばねね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |
| 26 |  |  |  |  |  |  |
| 28 |  |  |  |  |  |  |
| 33 |  |  |  |  |  |  |
| 41 |  |  |  |  |  |  |
| 45 |  |  |  |  |  |  |
| ＊＊ $45 * *$ |  |  |  |  |  |  |
| 46 |  |  |  |  |  |  |
| ＊＊ 50 ＊＊ |  |  |  |  |  |  |
| 900 |  |  |  |  |  |  |
| ＊＊901＊＊ |  |  |  |  |  |  |
| 906 |  |  |  |  |  |  |
| ＊＊ 907 ＊＊ |  |  |  |  |  |  |
| 908 |  |  |  |  |  |  |

## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sm | S y | S u | S h |  |
| STS410 | 66 | - | 231 | 407 | - |  |
| STS410 | 302 | - | 182 | 404 | - |  |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
|  |  |  |  |
| R C I C -0 0 2 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :--- |
|  |  |  |  |
| R C I C－O O 3 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| R C I C -0.04 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－6－1－3（設）R 0
4．解析結果及び評価
4.1 固有周期及び設計震度

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | 固有周期 （ s ） | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度＊${ }^{*}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 19 次 |  |  |  |  |  |  |  |
| 20 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |

[^35]0 y（

| モード | $\begin{gathered} \text { 固 有 周 期 } \\ (\mathrm{s}) \end{gathered}$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 19 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （5）VI－2－5－6－1－3（設）R 0

| 適用する地震動等 |  | S d 及び静的震度 |  |  | S s |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| モード | $\underset{(\mathrm{s})}{\text { 固有期 }}$ | 応 答 水 平 震 度＊1 |  | 応答鉛直震度 ${ }^{* 1}$ | 応 答 水 平 震 度＊${ }^{1}$ |  | 応答鉛直震度＊${ }^{*}$ |
|  |  | X 方 向 | Z 方 向 | Y 方 向 | X 方 向 | Z 方 向 | Y 方 向 |
| 1 次 |  |  |  |  |  |  |  |
| 2 次 |  |  |  |  |  |  |  |
| 3 次 |  |  |  |  |  |  |  |
| 4 次 |  |  |  |  |  |  |  |
| 5 次 |  |  |  |  |  |  |  |
| 6 次 |  |  |  |  |  |  |  |
| 7 次 |  |  |  |  |  |  |  |
| 8 次 |  |  |  |  |  |  |  |
| 9 次＊2 |  |  |  |  |  |  |  |
| 動 的 震 度＊3 |  |  |  |  |  |  |  |
| 静 的 震 度＊4 |  |  |  |  |  |  |  |
| 注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 <br> ＊2：固有周期が 0.050 s 以下であることを示す。 <br> ＊3：Sd又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 <br> ＊4：3． $6 \mathrm{C}_{\mathrm{I}}$ 及び1．2 $\mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。 |  |  |  |  |  |  |  |

0 y（

| モード | $\begin{gathered} \text { 固 有 周 期 } \\ (\mathrm{s}) \end{gathered}$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

[^36]注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  |  |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & \text { Sprm(Sd) } \\ & \text { Sprm(S s }) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 \cdot \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> US s |
| R C I C－0 02 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \\ & 12 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{array}{r} 89 \\ 164 \\ - \end{array}$ | $\begin{aligned} & \hline 231 \\ & 366 \\ & - \end{aligned}$ |  |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算応力 $\begin{aligned} & S \mathrm{prm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S} \text { ) } \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $S n(S s)$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 <br> US s |
| R C I C－0 03 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 24 \\ & 24 \\ & 24 \end{aligned}$ | $\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$ | $\begin{aligned} & 105 \\ & 150 \\ & - \end{aligned}$ | $\begin{aligned} & 182 \\ & 363 \\ & - \end{aligned}$ |  |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1．2•Shのらち大きい方とする。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | 一次 + 二次応力評価(MPa) |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprrm(Sd)} \\ \text { Sprm (S s }) \end{gathered}$ | 許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$ | 計算応力 $\operatorname{Sn}(S s)$ | 許容応力 $2 \cdot \mathrm{~S} \text { y }$ | 疲労累積係数 <br> US s |
| R C I C－O 04 | $\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$ | $\begin{gathered} \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S s) \end{gathered}$ | $\begin{array}{r} 85 \\ 127 \\ - \end{array}$ | $\begin{aligned} & 182 \\ & 363 \\ & - \end{aligned}$ |  |  | － |

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1．2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

|  | 種類 | 型式 | 材質 | 温度$\left({ }^{\circ} \mathrm{C}\right)$ | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 支持構造物番号 |  |  |  |  | $\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & (\mathrm{kN}) \\ & \hline \end{aligned}$ | 許容荷重 （kN） |
| RCIC－005－916S | メカニカルスナッバ | SMS－3－100 | 添付書類「VI－2－1－12－1 <br> 配管及び支持構造物の耐震計算について」参照 |  | 13 | 75 |
| RCIC－004－045B | ロッドレストレイント | RST－1 |  |  | 18 | 24 |
| RCIC－005－070H | スプリングハンガ | VS30T－12 |  |  | 7 | 8 |

支持構造物評価結果（応力評価）

| 支持構造物番号 | 種類 | 型式 | 材質 | $\begin{aligned} & \text { 温度 } \\ & \left({ }^{\mathrm{C}}\right) \end{aligned}$ | 支持点荷重 |  |  |  |  |  | 評価結果 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 反力（kN） |  |  | モーメント $(\mathrm{kN} \cdot \mathrm{m})$ |  |  | 応力分類 | $\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$ |
|  |  |  |  |  | $\mathrm{F}_{\mathrm{x}}$ | $\mathrm{F}_{\mathrm{Y}}$ | $\mathrm{F}_{\mathrm{z}}$ | $\mathrm{M}_{\mathrm{x}}$ | $\mathrm{M}_{\mathrm{Y}}$ | $\mathrm{M}_{\mathrm{Z}}$ |  |  |  |
| RCIC－003－001A | アンカ | ラグ | SGV410 | 302 | 75 | 44 | 49 | 11 | 3 | 13 | せん断 | 51 | 96 |
| RCIC－002－911R | レストレイント | Uプレート | SS400 | 40 | 0 | 5 | 65 | － | － | － | せん断 | 114 | 141 |

4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－6－1－3（設）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

| No． | 配管モデル | 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  | 許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 一次応力 |  |  |  |  | 一次応力 |  |  |  |  | 一次＋二次応力＊ |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 <br> 価 <br> 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | $\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$ | $\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$ | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 <br> 価 <br> 点 | 疲労累積係数 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ |
| 1 | RCIC－001 | 57 | 56 | 231 | 4． 12 | － | 57 | 89 | 366 | 4.11 | － | 65 | 152 | 462 | 3.03 | － | － | － | － |
| 2 | RCIC－002 | 12 | 89 | 231 | 2． 59 | － | 12 | 164 | 366 | 2.23 | $\bigcirc$ | 12 | 279 | 462 | 1． 65 | － | － | － | － |
| 3 | RCIC－003 | 24 | 105 | 182 | 1． 73 | $\bigcirc$ | 24 | 150 | 363 | 2． 42 | － | 24 | 218 | 364 | 1． 66 | － | － | － | － |
| 4 | RCIC－004 | 1 | 85 | 182 | 2.14 | － | 1 | 127 | 363 | 2.85 | － | 1 | 270 | 364 | 1． 34 | $\bigcirc$ | － | － | － |
| 5 | RCIC－005 | 29 | 44 | 209 | 4． 75 | － | 29 | 65 | 363 | 5.58 | － | 103 | 157 | 418 | 2． 66 | － | － | － | － |

注記 $*: ~ I I I ~ A S の 一$ 次 + 二次応力の許容値は $V_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

重大事故等対処設備

## 目次

1．概要 ..... 1
2．概略系統図及び鳥瞰図 ..... 2
2.1 概略系統図 ..... 2
2.2 鳥瞰図 ..... 5
3．計算条件 ..... 11
3.1 計算方法 ..... 11
3.2 荷重の組合せ及び許容応力状態 ..... 12
3.3 設計条件 ..... 13
3．4 材料及び許容応力 ..... 19
3.5 設計用地震力 ..... 20
4．解析結果及び評価 ..... 22
4． 1 固有周期及び設計震度 ..... 22
4． 2 評価結果 ..... 34
4．2．1 管の応力評価結果 ..... 34
4．2．2 支持構造物評価結果 ..... 36
4．2．3 弁の動的機能維持評価結果 ..... 37
4．2．4 代表モデルの選定結果及び全モデルの評価結果 ..... 38

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，原子炉隔離時冷却系の管，支持構造物及び弁が設計用地震力 に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

## （1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

注記＊ 1 ：高圧炉心スプレイ系
解析モデル上本系統に含める。
＊2：解析モデル上



## 鳥瞰図記号凡例

記 号
O 2 (5) $\mathrm{VI}-2-5-6-1-3$ (重) R 0
O 2 (5) VI-2-5-6-1-3 (重) R 0
O2 (5) VI-2-5-6-1-3(重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊${ }^{* 1}$ | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 原子炉隔離時冷却系 | S A | 常設／防止 （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備 その他原子炉注水設備 | 高圧代替注水系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備その他の安全設備 | 高圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和」は常設重大事故緩和設備を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $V_{A} S$ の許容限界を使用し，許容応力状態 $I V_{A} S$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
RCIC－O 02

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{( } \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 $^{\text {耐震 }}$ | 縦弾性係数 <br> 重要度分類 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.77 | 66 | 114.3 | 13.5 | STS410 | - | 200360 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 02

| 管名称 |  |  |  | 対 |  | 応 | す |  | る | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 66 | 68 | 69 |
|  | 70 | 71 | 72 | 73 | 74 | 101 | 102 | 103 | 105 | 106 | 851 | 852 | 911 |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 10 |  | 19 |  | 66 |  | 102 |  |
| 2 |  | 11 |  | 20 |  | 68 |  | 103 |  |
| 3 |  | 12 |  | 21 |  | 69 |  | 105 |  |
| 4 |  | 13 |  | 22 |  | 70 |  | 106 |  |
| 5 |  | 14 |  | 23 |  | 71 |  | 851 |  |
| 6 |  | 15 |  | 24 |  | 72 |  | 852 |  |
| 7 |  | 16 |  | 25 |  | 73 |  | 911 |  |
| 8 |  | 17 |  | 26 |  | 74 |  |  |  |
| 9 |  | 18 |  | 27 |  | 101 |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO2
支持点部のばね定数を下表に示す。

| 支持点番号 | 各軸方向ばね定数（ $\mathrm{N} / \mathrm{mm}$ ） |  |  | 各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ） |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X | Y | Z | X | Y | Z |
| 1 |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |
| 10 |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |
| 27 |  |  |  |  |  |  |
| 66 |  |  |  |  |  |  |
| 70 |  |  |  |  |  |  |
| 74 |  |  |  |  |  |  |
| 911 |  |  |  |  |  |  |

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 004

| 管名称 | 最高使用圧力 <br> $(\mathrm{MPa})$ | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 外径 <br> $(\mathrm{mm})$ | 厚さ <br> $(\mathrm{mm})$ | 材料 | 耐震 <br> 重要度分類 | 縦弾性係数 <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: |
| 1 | 10.34 | 315 | 114.3 | 11.1 | STS 410 | - | 183200 |
| 2 | 8.62 | 302 | 114.3 | 11.1 | STS410 | - | 184760 |

## 設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－O 04

| 管名称 |  |  |  |  | 対 | 応 |  |  |  | 評 | 価 | 点 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 801 |
|  | 803 | 807 | 808 | 809 | 900 | 901 | 906 |  |  |  |  |  |  |  |  |
| 2 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 46 | 50 | 804 | 805 |
|  | 907 | 908 |  |  |  |  |  |  |  |  |  |  |  |  |  |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

| 評価点 | 質量（kg） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  | 12 |  | 23 |  | 37 |  | 807 |  |
| 2 |  | 13 |  | 24 |  | 38 |  | 808 |  |
| 3 |  | 14 |  | 25 |  | 39 |  | 809 |  |
| 4 |  | 15 |  | 26 |  | 40 |  | 900 |  |
| 5 |  | 16 |  | 27 |  | 41 |  | 901 |  |
| 6 |  | 17 |  | 28 |  | 46 |  | 906 |  |
| 7 |  | 18 |  | 32 |  | 50 |  | 907 |  |
| 8 |  | 19 |  | 33 |  | 801 |  | 908 |  |
| 9 |  | 20 |  | 34 |  | 803 |  |  |  |
| 10 |  | 21 |  | 35 |  | 804 |  |  |  |
| 11 |  | 22 |  | 36 |  | 805 |  |  |  |

弁部の質量を下表に示す。
弁1

| 評価点 | 質量 $(\mathrm{kg})$ |
| :---: | :---: |
| 29 |  |
| 30 |  |
| 31 |  |
| 44 |  |
| 45 |  |

弁部の寸法を下表に示す。

| 弁N0． | 評価点 | 外径 $(\mathrm{mm})$ | 厚さ $(\mathrm{mm})$ | 長さ $(\mathrm{mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| 弁1 |  |  |  |  |

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－OO4
支持点部のばね定数を下表に示す。


## 3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | 許容応力（MPa） |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | S m | S y | Su | Sh |
| STS410 | 66 | － | 231 | 407 | － |
| STS410 | 302 | － | 182 | 404 | － |
| STS410 | 315 | － | 180 | 404 | － |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| R C I C－ 0 0 2 | 原子炉建屋 |  |  |

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | 減衰定数（\％） |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| R C I C－O O 4 | 原子炉建屋 |  |  |

O 2 （5）VI－2－5－6－1－3（重）R 0

0 y（重）$\varepsilon-I-9-9-Z-I \Lambda \quad$（c）$\quad$ O

| モード | 固 有 周 期 |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 19 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

[^37]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ |  | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 |  |  |  |  |
| 2 次 |  |  |  |  |
| 3 次 |  |  |  |  |
| 4 次 |  |  |  |  |
| 5 次 |  |  |  |  |
| 6 次 |  |  |  |  |
| 7 次 |  |  |  |  |
| 8 次 |  |  |  |  |
| 9 次 |  |  |  |  |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

## 代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
4．2．1 管の応力評価結果

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価 （MPa） |  | $\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \left(\begin{array}{l} \text { and } \end{array}\right. \end{gathered}$ |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprrm}(\mathrm{~S} \text { s }) \end{gathered}$ | 許容応力 $0.9 \cdot \mathrm{Su}$ | 計算応力 Sn (S s ) | 許容応力 $2 \cdot \mathrm{~S} y$ | 疲労累積係数 <br> U S s |
| R C I C－ 002 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | $\begin{gathered} \mathrm{S} \text { prm(S s) } \\ \text { Sn }(\mathrm{S} s) \end{gathered}$ | $\begin{aligned} & 161 \\ & \hline \end{aligned}$ | $366$ | $279$ | $462$ | — |

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

| 鳥瞰図 | 許容応力状態 | 最大応力評価点 | 最大応力区分 | 一次応力評価(MPa) |  | 一次 + 二次応力評価 （MPa） |  | 疲労評価 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s ) } \end{gathered}$ | 許容応力 <br> 0． $9 \cdot \mathrm{Su}$ | $\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn}(\mathrm{~S} s) \end{aligned}$ | 許容応力 $2 \cdot \mathrm{~S}$ y | 疲労累積係数 US s |
| R C I C－0 04 | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$ | $1$ | $\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$ | $\begin{aligned} & 129 \\ & - \end{aligned}$ | $363$ | $\overline{270}$ | $360$ | — |

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物番号 | 種類 | 型式 | 材質 ${ }^{\text {a }}$ 温度 | 評価結果 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 計算 <br> 荷重 <br> （kN） | 許容 <br> 荷重 <br> （kN） |
| RCIC－005－107S | メカニカルスナッバ | SMS－3－100 | 添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」 参照 | 20 | 75 |
| RCIC－005－916S | メカニカルスナッバ | SMS－3－100 |  | 17 | 75 |
| RCIC－005－033B | ロッドレストレイント | RTS－6 |  | 21 | 90 |
| RCIC－005－070H | スプリングハンガ | VS30T－12 |  | 7 | 8 |

支持構造物評価結果（応力評価）
4．2．3 弁の動的機能維持評価結果
O 2 （5）VI－2－5－6－1－3（重）R 0

| 弁番号 | 形式 | 要求機能 | 機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$ |  | 構造強度評価結果 （MPa） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 水平 | 鉛直 | 水平 | 鉛直 | 計算応力 | 許容応力 |
| － | － | － | － | － | － | － | － | － |

4．2．4 代表モデルの選定結果及び全モデルの評価結果

| 代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No． | 配管モデル | 許容応力状態 Vas |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 一次応力 |  |  |  |  | 一次＋二次応力 |  |  |  |  | 疲労評価 |  |  |
|  |  | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | $\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$ | 評 偠 点 | 計算 <br> 応力 <br> （MPa） | 許容 <br> 応力 <br> （MPa） | 裕度 | 代 | 評 偠 点 | 疲労 <br> 累積 <br> 係数 | 代 |
| 1 | RCIC－001 | 1 | 139 | 431 | 3.10 | － | 1 | 238 | 376 | 1.57 | － | － | － | － |
| 2 | RCIC－002 | 12 | 161 | 366 | 2.27 | $\bigcirc$ | 12 | 279 | 462 | 1.65 | － | － | － | － |
| 3 | RCIC－003 | 24 | 152 | 363 | 2.38 | － | 24 | 218 | 360 | 1.65 | － | － | － | － |
| 4 | RCIC－004 | 1 | 129 | 363 | 2.81 | － | 1 | 270 | 360 | 1.33 | $\bigcirc$ | － | － | － |
| 5 | RCIC－005 | 29 | 64 | 363 | 5.67 | － | 35 | 227 | 414 | 1.82 | － | － | － | － |

VI－2－5－6－2 補給水系の耐震性についての計算書

VI－2－5－6－2－1 復水移送ポンプの耐震性についての計算書
VI－2－5－6－2－2 復水貯蔵タンクの耐震性についての計算書
VI－2－5－6－2－3 管の耐震性についての計算書（補給水系）

$$
\begin{array}{cl}
\text { VI-2-5-6-2-3 } & \begin{array}{c}
\text { 管の耐震性についての計算書 } \\
\text { (補給水系) }
\end{array}
\end{array}
$$

重大事故等対処設備
1．概要 ..... 1
2．概略系統図 ..... 2
3．計算条件 ..... 5
3.1 荷重の組合せ及び許容応力状態 ..... 5
4．解析結果及び評価 ..... 7

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，補給水系の管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図

概略系統図記号凡例



高圧炉心スプレイ系に含める。

0 y（重） $8-7-9-9-7-\mathrm{I} \Lambda$（c）$\quad \mathrm{O}$

補給水系概略系統図（そのこ）
3．計算条件

| 施設名称 | 設備名称 | 系統名称 | 施設分類＊1 | 設備分類＊2 | 機器等 <br> の区分 | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉冷却系統施設 | 非常用炉心冷却設備その他原子炉注水設備 | $\begin{aligned} & \text { 高圧炉心 } \\ & \text { スプレイ系 } \end{aligned}$ | S A | 常設／防止 <br> （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心泠却設備その他原子炉注水設備 | 高圧代替注水系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備その他原子炉注水設備 | 原子炉隔離時冷却系 | S A | 常設／防止 （拡張） | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉冷却系統施設 | 非常用炉心冷却設備その他原子炉注水設備 | 低圧代替注水系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |


| 施設名称 | 設備名称 | 系統名称 | $\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$ | 設備分類＊2 | $\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$ | 耐震重要度分類 | 荷重の組合せ＊3，＊4 | 許容応力 <br> 状態＊5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 原子炉格納容器 <br> 下部注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 原子炉格納容器代替スプレイ冷却系 | S A | 常設耐震／防止 <br> 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 高圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |
| 原子炉格納施設 | 圧力低減設備 その他の安全設備 | 低圧代替注水系 | S A | 常設／緩和 | 重大事故等 クラス 2 管 | － | $\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$ | $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ |

[^38]4．解析結果及び評価
以下の計算書の重大事故等対処設備に含まれる。
「VI－2－5－5－1－3 管の耐震性についての計算書（高圧炉心スプレイ系）」
「VI－2－5－5－4－2 管の耐震性についての計算書（低圧代替注水系）」


[^0]:    添付書類の追力

[^1]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^2]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^3]:    ＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。

[^4]:    ＊印は一次十二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が
    1 以下であり許容値を満足している。
    注記 $* 1$ ：オーステナイト系ステンレス鋼及び高ニッケル合金については，S y と $1.2 \cdot \mathrm{Sh}$ のうち大きい方とする。

[^5]:    注記 $* 1: ~ D B$ は設計基準対象施設，SAは重大事故等対処設備を示す。

[^6]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^7]:    記＊1 ：冬モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    
    ＊4．3．6C I 及び．2C V

[^8]:    注記＊1，各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 2:$ 古 S 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び $1.2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。
    $* 4$.

[^9]:    注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

[^10]:    注記＊：III ${ }_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

[^11]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    ＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    ＊4：3．6C I 又

[^12]:    記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^13]:    
    ＊2：「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和」は常設重大事故緩和設備を示す。
    ＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s} 」$ の評価に包絡されるため，評価結果の記載を省略する。

[^14]:    注記 $* 1$ ：設計基準対象施設
    ＊2：重大事故等対処設備
    ＊3：運転状態 V（L）は，温度条件を重大事故等時における最高使用温度 $200^{\circ} \mathrm{C}$ とした運転状態 V （ L L）の評価で代表される。 ＊4：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。

[^15]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    ＊3：S d 又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

[^16]:    注記＊1．冬モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^17]:    注記 $*: ~ \mathrm{II}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きいIV A の一次 + 二次応力裕度最小を代表とする。

[^18]:    注記 $* 1: ~ D B$ は設計基準対象施設，SAは重大事故等対処設備を示す。
    ＊2：「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
    ＊3：運転状態の添字 L は荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的に荷重が作用している状態を示す。
    ＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
    ＊5：許容応力状態 $\mathrm{V}_{A} \mathrm{~S}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。

[^19]:    注記 $*_{1}$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    ＊2：固有周期が 0.050 s 地地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    ＊4：3．6C I 及び1． $2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。

[^20]:    注記＊1：D B は設計基準対象施設，S A は重大事故等対処設備を示す。
    ＊2：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態を示す。
    ＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

[^21]:    注記＊1．各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^22]:    注記 1 各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 2:$ 古 S 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び $1.2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。
    $* 4$.

[^23]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 3: ~ \mathrm{~S} \mathrm{~d}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び1． $\mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。

[^24]:    注記＊1．各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^25]:    注記＊：III ${ }_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

[^26]:    注記＊1：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
    ＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
    ＊3：運転状態の添字 L は荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的に荷重が作用している状態を示す。 ＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
    ＊5：許容応力状態 $V_{A} S$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。

[^27]:    注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

[^28]:    注記＊1．各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^29]:    注記＊1：D B は設計基準対象施設，S A は重大事故等対処設備を示す。
    ＊2：運転状態の添字 L は荷重，（L）は荷重が長期間作用している状態を示す。
    ＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

[^30]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^31]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 3: ~ \mathrm{~S} \mathrm{~d}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び $1.2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。

[^32]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    ＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    ＊ $4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び1．2 $\mathrm{V}_{\mathrm{V}}$ より定めた震度を示す。
    

[^33]:    注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

[^34]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^35]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 3: \mathrm{S} \mathrm{d}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    $* 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び1．2 $\mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。

[^36]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^37]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 3: \mathrm{Sd}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    ＊4：3．6C $\mathrm{I}_{\mathrm{I}}$ 及び1．2C $\mathrm{V}_{\mathrm{V}}$ より定めた震度を小す。

[^38]:    注記＊1：DBは設計基準対象施設，SAは重大事故等対処設備を示す。
    ＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／防止（拡張）」は常設重大事故防止設備（設計基準拡張），
    「常設／緩和」は常設重大事故緩和設備を示す。
    ＊3：運転状態の添字Lは荷重を示す。
    ＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
    ＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

