VI－2－11－2－9 燃料交換機の耐震性についての計算書

目 次

1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 9
3．評価部位 10
4．地震応答解析及び構造強度評価 10
4． 1 地震応答解析及び構造強度評価方法 10
4.2 荷重の組合せ及び許容応力 11
4．2．1 荷重の組合せ及び許容応力状態 11
4．2．2 許容応力 11
4．2．3 使用材料の許容応力評価条件及び許容荷重評価条件 11
4．3 解析モデル及び諸元 16
4． 4 固有周期 18
4.5 設計用地震力 21
4．6 計算方法 23
4．6．1 燃料交換機構造物フレームの応力 23
4．6．2 転倒防止装置，走行レール及び横行レールの応力 24
4．6．3 吊具の荷重計算方法 36
4．6．4 吊具の応力計算方法 40
4．7 計算条件 41
4.8 応力の評価 41
4．8．1 燃料交換機構造物フレーム，転倒防止装置，走行レール 及び横行レールの応力評価 41
4．8．2 転倒防止装置取付ボルトの応力評価 41
4．8．3 フックの応力評価 42
4．8．4 ワイヤロープの評価 42
5．評価結果 43
5.1 設計基準対象施設としての評価結果 43
5.2 重大事故等対処設備としての評価結果 43

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設 の耐震評価方針」の耐震評価方針に基づき，下位クラス設備である燃料交換機（Bクラ ス施設）が基準地震動 S s に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラスである使用済燃料プール，使用済燃料貯蔵ラック等に対し て，波及的影響を及ぼさないことを説明するものである。

2．一般事項

2.1 配置概要

燃料交換機は原子炉建屋 3 階に設置される。燃料交換機は，図2－1 の位置関係図に示すように，燃料交換作業時において，上位クラス施設である使用済燃料貯蔵ラック が設置された使用済燃料プール上にて作業を実施することから，転倒又は落下により使用済燃料貯蔵ラック及び使用済燃料プールに対して波及的影響を及ぼすおそれがあ る。

図2－1 燃料交換機と使用済燃料プール等の位置関係

枠囲みの内容は防護上の観点から公開できません。
2.2 構造計画
燃料交換機の構造計画を表2－1に示す。
表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉建屋 3 階に設 けた走行レール上を ブリッジが走行し， ブリッジ上部の横行 レール上をトロリが横行する。 ブリッジ及びトロリ は走行部付近に転倒防止装置を備えてお り，各々レールを抱 え込む構造である。 また吊荷はトロリに設置されたホイスト からのワイヤロープ及びフックを介して吊上げ・吊下げ・移動を行う。	$\begin{aligned} & \text { ブリッジ } \\ & \text { トロリ } \end{aligned}$	

2.3 評価方針

燃料交換機の応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定した荷重及び荷重の組合せ並びに許容限界 に基づき，「2．2 構造計画」にて示す燃料交換機の部位を踏まえ「3．評価部位」に て設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく基準地震動 S s による応力等が許容限界内に収まることを，

「4．1地震応答解析及び構造強度評価方法」にて示す方法によって確認することで実施する。確認結果を「5．評価結果」に示す。

燃料交換機の耐震評価フローを図2－2に示す。

図2－2 燃料交換機の耐震評価フロー
2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補—1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）
（4）J S M E S N C $1-2005 / 2007$ 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
$\mathrm{A}_{1 \mathrm{~B}}$	ブリッジ転倒防止装置A部の断面積	mm^{2}
$\mathrm{A}_{2} \mathrm{~B}$	ブリッジ転倒防止装置B部の断面積	mm^{2}
$\mathrm{A}_{3} \mathrm{~B}$	走行レール C 部の水平力 $\mathrm{F}_{\mathrm{H} \text { B }}$ を負担する断面積	mm^{2}
$\mathrm{A}_{4} \mathrm{~B}$	走行レール C 部の鉛直力 F v b を負担する断面積	mm^{2}
$\mathrm{A}_{4} \mathrm{~T}$		mm^{2}
A 5 T	横行レール ${ }^{\text {c }}$ 部の鉛直力 F V t $^{\text {を負担する断面積 }}$	mm^{2}
$\mathrm{A}_{\mathrm{b}} \mathrm{B}$	ブリッジ転倒防止装置取付ボルト 1 本の断面積	mm^{2}
A h	吊具フックの断面積	mm^{2}
A w	ワイヤロープ 1 本の断面積	mm^{2}
a 1 B	ブリッジ転倒防止装置A部の幅	mm
a 2 B	ブリッジ転倒防止装置B部の幅	mm
a 3 B	負担力 $\mathrm{F}_{\mathrm{H} \boldsymbol{B}}$ に対する走行レールC部の厚み	mm
a 4 B	負担力 $\mathrm{F}_{\mathrm{V} \mathrm{b}}$ に対する走行レールC部の厚み	mm
a 4 T	負担力 $\mathrm{F}_{\mathrm{H} \mathrm{T}}$ に対する横行レールC部の厚み	mm
a 5 T	負担力 $\mathrm{F}_{\mathrm{V} \mathrm{t}}$ に対する横行レールC部の厚み	mm
$\mathrm{b}_{1} \mathrm{~B}$	ブリッジ転倒防止装置A部の走行レール面接触長さ	mm
b 2 B	ブリッジ転倒防止装置B部の走行レール面接触長さ	mm
b 3 B	負担力 $\mathrm{F}_{\mathrm{H}} \mathrm{B}$ に対する走行レールウェブの負担長さ	mm
b 4 B	負担力 $\mathrm{F}_{\mathrm{V} \mathrm{b}}$ に対する走行レールウェブの負担長さ	mm
b 3 T	トロリ転倒防止装置の負担力が横行レールに作用する有効長さ	mm
b 4 T	負担力 $\mathrm{F}_{\mathrm{H} \text { т }}$ 対する横行レールウェブの負担長さ	mm
b 5 T	負担力 $\mathrm{F}_{\mathrm{V} \mathrm{t}}$ に対する横行レールウェブの負担長さ	mm
C H_{1}	水平方向設計震度	－
C H_{2}	最大静止摩擦係数より求めた水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
$\mathrm{d}_{1} \mathrm{~B}$	ブリッジ転倒防止装置取付ボルトの呼び径	mm
E	燃料交換機構造物フレームの縦弾性係数	MPa
E w	ワイヤロープの縦弾性係数	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133に定める値	MPa
$\mathrm{F}_{\mathrm{b}} \mathrm{B}$	ブリッジ転倒防止装置取付ボルト 1 本にかかる引張荷重	N
$\mathrm{F}_{\text {H }}{ }^{\text {b }}$	ブリッジ転倒防止装置1組に作用する水平力	N
F_{HT}	トロリ転倒防止装置1組に作用する水平力	N
$\mathrm{F}_{\text {V }}$ b	ブリッジ転倒防止装置1組に作用する鉛直力	N

記号	記号の説明	単位
$\mathrm{F}_{\mathrm{v} \text { T }}$	トロリ転倒防止装置1組に作用する鉛直力	N
F_{vb}	ブリッジ転倒防止装置爪1個に作用する鉛直力	N
$\mathrm{F}_{\mathrm{v}} \mathrm{t}$	トロリ転倒防止装置爪1個に作用する鉛直力	N
F	吊荷の浮上り後の落下によりワイヤロープに発生する荷重	N
F_{h}	吊荷の浮上り後の落下により吊具フックに発生する荷重	N
F_{w}	ワイヤロープ 1 本当たりに発生する支持荷重	N
$\mathrm{F}_{1 \mathrm{H}}$	地震力によりブリッジ転倒防止装置に加わる水平力	N
\sim		
F 8 H		
$\mathrm{F}_{1 \mathrm{~V}}$	地震力によりブリッジ転倒防止装置に加わる鉛直力	N
\sim		
F 8 v		
F 9 H	地震力によりトロリ転倒防止装置に加わる水平力	N
\sim		
$\mathrm{F}_{12 \mathrm{H}}$		
F9 $\mathrm{V}^{\text {g }}$	地震力によりトロリ転倒防止装置に加わる鉛直力	N
\sim		
$\mathrm{F}_{12 \mathrm{~V}}$		
$f_{\text {b }}$	許容曲げ応力（ $\mathrm{fb}_{\text {b }}$＊を1．5倍した値）	MPa
f s	許容せん断応力（ f s＊を 1.5 倍した値）	MPa
$f_{\text {t }}$	許容引張応力（ ft_{t}＊を1．5倍した値）	MPa
f s b	せん断力のみを受けるボルトの許容せん断応力	MPa
f to	引張力のみを受けるボルトの許容引張応力	MPa
$f_{\mathrm{t}} \mathrm{s}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{18}	ブリッジ転倒防止装置根元部から F HBB 作用点までの距離 $^{\text {a }}$	mm
h 2 B	ブリッジ転倒防止装置爪部から F v b 作用点までの距離	mm
h ${ }_{\text {B }}$	ブリッジ転倒防止装置作用点（ F_{HB} ）から走行レールC部までの距離（高さ）	mm
h ${ }_{4}$ B	ブリッジ転倒防止装置作用点（ F v b ）から走行レール C部までの距離（高さ）	mm
h 4 T	トロリ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{H} T}$ ）から横行レールC部 までの距離（高さ）	mm

記号	記号の説明	単位
h 5 T	トロリ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{V}_{\mathrm{t}}}$ ）から横行レールC部 までの距離（高さ）	mm
k w	ワイヤロープのばね定数	N / mm
L_{18}	ブリッジ転倒防止装置取付面からブリッジ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{H} \boldsymbol{B}}$ ）までの距離（高さ）	mm
L 2 B	ブリッジ転倒防止装置取付ボルトからブリッジ転倒防止装置端部までの距離（最短部）	mm
L ${ }_{3}$ в	ブリッジ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{HB} \text { в }}$ ）から走行レール中心までの距離	mm
L $4_{\text {B }}$	ブリッジ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{V} \text { b }}$ ）から走行レール中心までの距離	mm
L 3 T	トロリ転倒防止装置取付ボルトからトロリ転倒防止装置端部までの距離（最長部）	mm
L 4 T	トロリ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{H} \text { т }}$ ）から横行レール中心 までの距離	mm
L 5 T	トロリ転倒防止装置作用点（ $\mathrm{F}_{\mathrm{V} \text { t }}$ ）から横行レール中心 までの距離	mm
$L_{\text {h }}$	吊具フック評価断面図心からフックに発生する荷重の作用点までの距離	mm
L w	ワイヤロープ長さ	mm
M ${ }_{1}$	ブリッジ転倒防止装置A部の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{2} \mathrm{~B}$	ブリッジ転倒防止装置B部の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M ${ }_{\text {3 }}$	負担力 $\mathrm{F}_{\mathrm{H} \boldsymbol{B}}$ による走行レールC部の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{4} \mathrm{~T}$	負担力 $\mathrm{F}_{\mathrm{H} T \text { TVよる横行レールC部の曲げモーメント }}$	$\mathrm{N} \cdot \mathrm{mm}$
M_{h}	吊具フックの曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m_{m}	吊荷の質量	kg
n 1 B	ブリッジ転倒防止装置1組当たりの取付ボルトの本数	－
n w	ワイヤロープ本数	－
S u	設計•建設規格 付録材料図表 Part5 表9 亿定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8 亿定める値	MPa
T w	ワイヤロープ・吊荷の単振動モデルから計算される吊荷の固有周期	s
v 1	吊荷の最大速度	mm／s
V_{2}	トロリの最大速度	mm / s
$\mathrm{Z}_{1 \mathrm{~B}}$	ブリッジ転倒防止装置A部の断面係数	mm^{3}

記号	記号の説明	単位
$\mathrm{Z}_{2 \mathrm{~B}}$	ブリッジ転倒防止装置B部の断面係数	mm^{3}
Z 3	走行レールC部の水平力 F_{HB} を負担する断面係数	mm ${ }^{3}$
$Z_{4}{ }_{\text {T }}$	横行レールC部の水平力 $\mathrm{F}_{\mathrm{HT} \text { Tを負担する断面係数 }}$	mm^{3}
Z_{h}	吊具フックの断面係数	mm^{3}
$\sigma_{1 \mathrm{~F}}$	燃料交換機構造物フレームの引張応力	MPa
$\sigma 1$ в	ブリッジ転倒防止装置A部の曲げ応力	MPa
$\sigma 2 \mathrm{~B}$	ブリッジ転倒防止装置B部の曲げ応力	MPa
σ \％в	走行レールC部の曲げ応力	MPa
$\sigma_{4} \mathrm{~T}$	横行レールC部の曲げ応力	MPa
$\sigma \mathrm{b}$ t $\mathrm{B}^{\text {b }}$	ブリッジ転倒防止装置取付ボルトの引張応力	MPa
$\sigma \mathrm{c} 1 \mathrm{~F}$	燃料交換機構造物フレームの組合せ応力	MPa
σ c 1 B	ブリッジ転倒防止装置 A 部の組合せ応力	MPa
σ c 2 B	ブリッジ転倒防止装置B部の組合せ応力	MPa
σ с \％$^{\text {b }}$	走行レールC部の組合せ応力	MPa
$\sigma \mathrm{c} 4 \mathrm{~T}$	横行レールC部の組合せ応力	MPa
$\sigma \mathrm{tab}$	ブリッジ転倒防止装置A部の引張応力	MPa
$\sigma_{\text {t } 3 \mathrm{~B}}$	走行レールC部の引張応力	MPa
$\sigma_{\text {t }} \mathrm{T}_{\text {T }}$	横行レールC部の引張応力	MPa
$\sigma \mathrm{bh}$	吊具フックの曲げ応力	MPa
$\sigma_{t h}$	吊具フックの引張応力	MPa
$\sigma \mathrm{c} 4 \mathrm{~h}$	吊具フックの組合せ応力	MPa
$\tau_{1 \mathrm{~F}}$	燃料交換機構造物フレームのせん断応力	MPa
$\tau 1$ b	ブリッジ転倒防止装置A部のせん断応力	MPa
$\tau 2$ в	ブリッジ転倒防止装置B部のせん断応力	MPa
τ з ${ }^{\text {b }}$	走行レールC部のせん断応力	MPa
$\tau 4 \mathrm{~T}$	横行レールC部のせん断応力	MPa
τ b в	ブリッジ転倒防止装置取付ボルトのせん断応力	MPa
μ	最大静止摩擦係数	－
v	燃料交換機構造物フレームのポアソン比	－

注：記号について，ブリッジ，トロリで評価方法が異なる部材については個別に定義 しているが，同様の評価方法の場合，トロリ転倒防止装置及び横行レールについ ての評価に用いる記号は，記号右端添字に B_{B} 又は b が付くものは $\mathrm{B}_{\mathrm{B}} \mathrm{T}_{\mathrm{T}}$ 又は $\mathrm{b}_{\mathrm{t}} \mathrm{t}_{\mathrm{t}}$ に置き換えるものとする。
2.6 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりである。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位
長	下記以外の長さ	mm	－	－	整数位＊${ }^{1}$
さ	厚さ	mm	－	－	小数点以下第 1 位
	断面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	緃弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁＊2
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊3

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とす る。
また，小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

燃料交換機の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，燃料交換機及び吊荷の落下により，上位クラス設備が損傷することを防止する ために，燃料交換機構造物フレーム，ブリッジ転倒防止装置，トロリ転倒防止装置，走行レール，横行レール及び吊具（ワイヤロープ及びフック）について実施する。燃料交換機の耐震評価部位については，表2－1の概略構造図に示す。

4．地震応答解析及び構造強度評価
4．1 地震応答解析及び構造強度評価方法
（1）構造概要図を図4－1に示す。燃料交換機のブリッジ及びトロリは，各々走行レー ル及び横行レール上に載っているので地震時，走行方向に対しては，最大静止摩擦力以上の水平力が加わった場合に滑りを生じる。

ブリッジ及びトロリの車輪は各々 4 個であり，そのうち各々 2 個は摩擦を受ける駆動輪であり，他の2個は従動輪である。 ゆえに，最大静止摩擦係数を $\mu=0.3$ とすれば，水平力は以下のとおりとなる。

水平力 $=$ 鉛直方向荷重 $\times \mu \times 2 / 4=$ 鉛直方向荷重 $\times 0.15$
（2）ブリッジは，走行方向に直角な方向に対しては，ブリッジ転倒防止装置によっ て荷重を支持する。
（3）トロリは，横行方向に直角な方向に対しては，トロリ転倒防止装置によって荷重を支持する。
（4）耐震計算に用いる寸法は，公称値を使用する。

横行方向（NS 方向）走行方向（EW 方向）

（5）評価ケース
表4－1に示す評価ケースにて評価を実施する。設計基準対象施設としての条件に対する評価条件では，燃料交換機の運転状態を想定し，ケース1，2について評価 する。重大事故等対処設備としての条件に対する評価条件では，燃料交換機の待機状態を想定し，ケース3について評価する。

表4－1 評価ケース

評価対象		燃料交換機本体，吊具		燃料交換機本体
評価ケース No．		1	2	3
トロリ位置	中央	－	－	－
	端部	－	\bigcirc	\bigcirc

○：吊荷有 ○：吊荷無
（6）評価方法
燃料交換機の評価は，スペクトルモーダル解析及び静解析を用いる。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
燃料交換機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－2に，重大事故等対処設備の評価に用いるものを表4－3に示す。

4．2．2 許容応力

燃料交換機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表4－4のとおりとする。

4．2．3 使用材料の許容応力評価条件及び許容荷重評価条件
燃料交換機の使用材料の許容応力評価条件及び許容荷重評価条件のうち設計基準対象施設の評価に用いるものを表4－5に，重大事故等対処設備の評価に用いる ものを表4－6に示す。

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。

[^0]| 表4－4 許容応力（その他の支持構造物及び重大事故等その他の支持構造物） | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 許容応力状態 | 許容限界 ${ }^{* 1, ~ * 2 ~}$ （ボルト等以外） | | | 許容限界＊2
 （ボルト等） | |
| | 一次応力 | | | 一次応力 | |
| | 引張 | せん断 | 曲げ | 引張 | せん断 |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | $1.5 \cdot \mathrm{ft}^{*}$ | $1.5 \cdot \mathrm{fs} *$ | $1.5 \cdot \mathrm{fb}^{*}$ | $1.5 \cdot \mathrm{ft}_{\mathrm{t}}{ }^{*}$ | 1．5 f s^{*} |
| $\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として, } \mathrm{IV} \mathrm{~A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$ | | | | | |

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部位			材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\text {y }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
燃料交換機構造物フレーム				周囲環境温度	50	－			－
$\begin{aligned} & \text { ブ } \\ & \text { リ } \\ & \text { ジ } \end{aligned}$	転倒防止装置	本体		周囲環境温度	50	－			－
		取付 ボルト		周囲環境温度	50	－			－
$\begin{array}{\|l\|l} \text { ト } \\ \text { 号 } \end{array}$	転倒防止装置	本体		周囲環境温度	50	－			－
		取付 ボルト		周囲環境温度	50	－			－
走行レール				周囲環境温度	50	－			－
横行レール				周囲環境温度	50	－			－
フック				周囲環境温度	50	－			－

[^1]表 4－5（2）使用材料の許容荷重評価条件（設計基準対象施設）

評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		定格荷重 (N)	許容荷重 (N)
ワイヤロープ		周囲環境温度	50	4.511×10^{3}	11.13

4.3 解析モデル及び諸元

燃料交換機の解析モデルを図4－2に，解析モデルの概要を以下に示す。
また，機器諸元を本計算書の【燃料交換機の耐震性についての計算結果】の機器要目に示す。
（1）燃料交換機の耐震計算に用いる解析モデルは，はり要素を用いたFEMモデルと する。
（2）燃料交換機の質量としてブリッジ，トロリの構造物及び搭載機器を考える。
（3）燃料交換機の下部は剛な床に支持されているものとする。
（4）境界条件として，燃料交換機ブリッジ車輪／転倒防止装置のNS方向及びUD方向 を拘束し，EW方向は滑る条件とする。また，ブリッジとトロリとは，3方向を拘束 したモデルとする。
（5）解析コードは，「MSC NASTRAN」を使用し，固有値及び荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

4． 4 固有周期

固有値解析の結果を表4－7に示す。また，振動モード図を図4－3，及び図4－4に示す。 ブリッジについては走行方向（EW方向），トロリについては横行方向（NS方向）に対しては，最大静止摩擦力以上の水平力が加わった場合に滑りを生じるが，固有値解析では，走行レール（原子炉建屋3階床）と車輪，ブリッジとトロリの結合を考慮 した燃料交換機全体解析モデルで実施する。

表4－7（1）固有値解析結果（トロリ位置：中央）

次数	卓越方向	固有周期 （s）	刺激係数＊		
			水平方向		鉛直方向
			NS 方向	EW 方向	
1	水平（EW）方向				
2	鉛直方向				
3	水平（NS）方向				
4	水平（EW）方向				
5	水平（EW）方向				

注：設計基準対象施設としての評価の場合（評価ケース No．1）
＊：刺激係数は，モード質量を正規化し固有ベクトルと質量マトリックスの積から算出した値を示す。

表4－7（2）固有値解析結果（トロリ位置：端部）

次数	卓越方向	固有周期 （s）	刺激係数＊		
			水平方向		鉛直方向
			NS 方向	EW 方向	
1	水平（NS）方向				
2	水平（EW）方向				
3	鉛直方向				
4	水平（EW）方向				
5	水平（EW）方向				

注：重大事故等対処設備としての評価の場合（評価ケース No．3）
＊：刺激係数は，モード質量を正規化し固有ベクトルと質量マトリックスの積から算出した値を示す。

図 4－3 振動モード図（トロリ位置中央）

枠囲みの内容は商業機密の観点から公開できません。

図 4－4 振動モード図（トロリ位置：端部）

4.5 設計用地震力

評価に用いる設計用地震力を表4－8及び表4－9に示す。基準地震動S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用い る。

表 4－8 設計用地震力（設計基準対象施設）

据付場所及び 床面高さ（m）		原子炉建屋 0．P．33．20＊1				
固有周期（s）		水平：		鉛直：		
減衰定数（\％）		水平： 2.0 鉛直： $2.0(1.5) * 4$				
地震力		基準地震動 S s				
モード	固有 周期 （s）	応答水平震度				応答鉛直震度＊5
		ブリッジ		トロリ		
		NS 方向＊5	EW 方向	NS 方向＊5	EW 方向	
1 次			$\mathrm{C}_{\mathrm{H} 2}=0.15 *$		$\mathrm{C}_{\mathrm{H} 2}=0.15{ }^{* 7}$	
2 次						
3 次						
4 次						
5 次						
動的地震力＊6		$\mathrm{C}_{\mathrm{H} 11}=2.65$		$\mathrm{C}_{\mathrm{H} 11}=2.65$		1． 77

注記＊1：基準床レベルを示す。
＊2：評価上厳しくなるトロリ位置が中央の場合の値。
＊ 3 ：動的解析を実施するNS 方向が卓越するモードの値
＊4：（ ）外は燃料交換機のトロリ位置が中央の場合，（ ）内は燃料交換機のトロリ位置が端部の場合。
＊5：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示 す。
＊6：S s に基づく設計用最大応答加速度より求めた震度を示す。
＊7：この方向は滑りを生じ最大静止摩擦力以上の水平力は加わらないため，最大静止摩擦係数により水平方向設計震度を求めた。

枠囲みの内容は商業機密の観点から公開できません。

表 4－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ（m）			原子炉建屋 0．P．33．20＊1				
	固有周期（s）		水平：		鉛直：		
	減衰定数（\％）		水平：2．0 鉛直： 1.5				
	地震力		基準地震動 S S				
		固有		応答	平震度		応答鉛直震度＊3
	モード	周期		ッジ		リリ	
		（s）	NS 方 向＊3	EW 方向	NS 方向＊3	EW 方向	
	1 次			$\mathrm{C}_{\mathrm{H} 2}=0.15 * 5$		$\mathrm{C}_{\mathrm{H} 2}=0.15 * 5$	
	2 次						
	3 次						
\bigcirc	4 次						
i	5 次						
$\stackrel{I}{\ni}$	動的地震力＊4		$\mathrm{C}_{\mathrm{H} 1}=2.65$		$\mathrm{C}_{\mathrm{H} 1}=2.65$		1． 77

注記 $* 1$ ：基準床レベルを示す。
＊2：トロリ位置が端部にある場合の値。
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示 す。
＊4：S s に基づく設計用最大応答加速度より求めた震度を示す。
＊5：この方向は滑りを生じ最大静止摩擦力以上の水平力は加わらないため，最大静止摩擦係数により水平方向設計震度を求めた。

4．6 計算方法
4．6．1 燃料交換機構造物フレームの応力
（1）計算方法
燃料交換機構造物フレームに発生する応力は，スペクトルモーダル解析及び静解析により求める。燃料交換機の構造物フレームの応力は図4－2 の解析モデルに おいて，解析コード「MSC NASTRAN」を使用し計算する。
a．燃料交換機構造物フレームの応力
（a）組合せ応力
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c} 1 \mathrm{~F}}=\sqrt{\sigma_{1 \mathrm{~F}}{ }^{2}+3 \cdot \tau_{1 \mathrm{~F}^{2}}} \tag{4.6.1.1}
\end{equation*}
$$

4．6．2 転倒防止装置，走行レール及び横行レールの応力

（1）計算方法（ブリッジ）
ブリッジ転倒防止装置に加わる荷重（ $\mathrm{F}_{1 \mathrm{H}} \sim^{(1)} \mathrm{F}_{8 \mathrm{H}}, \mathrm{F}_{1 \mathrm{~V}} \sim \mathrm{~F}_{8 \mathrm{~V}}$ ）は，ス ペクトルモーダル解析及び静解析により求める。
a．ブリッジ転倒防止装置の応力
ブリッジ転倒防止装置の応力を図4－5を用いて計算する。転倒防止装置1組 に作用する負担力は， $\mathrm{F}_{\mathrm{H} \text { в }}\left(\mathrm{F}_{1 \mathrm{H}} \sim \mathrm{F}_{8 \mathrm{H}}\right.$ の平均値）及び $\mathrm{F}_{\mathrm{V} \text { в }}\left(\mathrm{F}_{1 \mathrm{~V}} \sim \mathrm{~F}_{8 \mathrm{~V}}\right.$ の平均値）とする。

鉛直力 $\mathrm{F}_{\mathrm{v} \text { в }}$ は 2 個の爪に分散し， 1 個当たりの負担力は次式となる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{vb}_{\mathrm{b}}}=\frac{\mathrm{F}_{\mathrm{vB}}}{2} \tag{4.6.2.1}
\end{equation*}
$$

（a）曲げ応力
－A 部
曲げモーメントは次式となる。
$M_{1 B}=F_{\text {HB }} \cdot h_{1 B}+F_{V_{b}} \cdot\left[h_{2 B}+\frac{\mathrm{a}_{1 \mathrm{~B}}}{2}\right]$
断面係数は次式となる。

$$
\begin{equation*}
Z_{1 \mathrm{~B}}=\frac{\mathrm{a}_{1 \mathrm{~B}}{ }^{2} \cdot \mathrm{~b}_{1 \mathrm{~B}}}{6} \tag{4.6.2.3}
\end{equation*}
$$

したがって，曲げ応力は次式となる。
$\sigma_{1 \mathrm{~B}}=\frac{\mathrm{M}_{1 \mathrm{~B}}}{\mathrm{Z}_{1 \mathrm{~B}}}$
－B 部
曲げモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{2 \mathrm{~B}}=\mathrm{F}_{\mathrm{Vb}} \cdot \mathrm{~h}_{2 \mathrm{~B}} \tag{4.6.2.5}
\end{equation*}
$$

断面係数は次式となる。

$$
\begin{equation*}
\mathrm{Z}_{2 \mathrm{~B}}=\frac{\mathrm{a}_{2 \mathrm{~B}}{ }^{2} \cdot \mathrm{~b}_{2 \mathrm{~B}}}{6} \tag{4.6.2.6}
\end{equation*}
$$

したがって，曲げ応力は次式となる。

$$
\begin{equation*}
\sigma_{2 \mathrm{~B}}=\frac{\mathrm{M}_{2 \mathrm{~B}}}{\mathrm{Z}_{2 \mathrm{~B}}} \tag{4.6.2.7}
\end{equation*}
$$

（b）引張応力
－A 部
断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~B}}=\mathrm{a}_{1 \mathrm{~B}} \cdot \mathrm{~b}_{1 \mathrm{~B}} \tag{4.6.2.8}
\end{equation*}
$$

したがって，引張応力は次式となる。
$\sigma_{\mathrm{t} 1 \mathrm{~B}}=\frac{\mathrm{F}_{\mathrm{Vb}}}{\mathrm{A}_{1 \mathrm{~B}}}$
（c）せん断応力
－A部
せん断力を受ける断面積は次式となる。
$\mathrm{A}_{1 \mathrm{~B}}=\mathrm{a}_{1 \mathrm{~B}} \cdot \mathrm{~b}_{1 \mathrm{~B}}$
（4．6．2．10）
負担力 $\mathrm{F}_{\text {нв }}$ によるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{1 \mathrm{~B}}=\frac{\mathrm{F}_{\mathrm{HB}}}{\mathrm{~A}_{1 \mathrm{~B}}} \tag{4.6.2.11}
\end{equation*}
$$

－B 部
せん断力を受ける断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{2 \mathrm{~B}}=\mathrm{a}_{2 \mathrm{~B}} \cdot \mathrm{~b}_{2 \mathrm{~B}} \tag{4.6.2.12}
\end{equation*}
$$

負担力 F Vbによるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{2 \mathrm{~B}}=\frac{\mathrm{F}_{\mathrm{vb}}}{\mathrm{~A}_{2 \mathrm{~B}}} \tag{4.6.2.13}
\end{equation*}
$$

（d）組合せ応力
－A部
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c} 1 \mathrm{~B}}=\sqrt{\left(\sigma_{1 \mathrm{~B}}+\sigma_{\mathrm{t} 1 \mathrm{~B}}\right)^{2}+3 \cdot \tau_{1 \mathrm{~B}}{ }^{2}} \tag{4.6.2.14}
\end{equation*}
$$

－B 部
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c} 2 \mathrm{~B}}=\sqrt{\sigma_{2 \mathrm{~B}}^{2}+3 \cdot \tau_{2 \mathrm{~B}}^{2}} \tag{4.6.2.15}
\end{equation*}
$$

（e）取付ボルトのせん断応力
せん断力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} B}=\frac{\pi}{4} \cdot \mathrm{~d}_{1 \mathrm{~B}^{2}} \tag{4.6.2.16}
\end{equation*}
$$

せん断力は，取付ボルト $\mathrm{n}_{1 \text { в }} / 2$ 本で受けるものとし，ボルト 1 本にかか るせん断応力は次式となる。

$$
\begin{equation*}
\tau_{\mathrm{bB}}=\frac{\mathrm{F}_{\mathrm{HB}}}{\mathrm{n}_{1 \mathrm{~B}} / 2 \cdot \mathrm{~A}_{\mathrm{bB}}} \tag{4.6.2.17}
\end{equation*}
$$

（f）取付ボルトの引張応力
ブリッジ転倒防止装置取付ボルトにかかるモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{\mathrm{b} \text { в }}=\mathrm{F}_{\mathrm{HB}} \cdot \mathrm{~L}_{1 \mathrm{~B}} \tag{4.6.2.18}
\end{equation*}
$$

ブリッジ軽倒防止装置取付ボルト 1 本にかかる引張荷重は次式となる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} \text { в }}=\frac{\mathrm{M}_{\mathrm{b} \text { в }}}{\mathrm{L}_{2 \text { в }} \cdot \mathrm{n}_{1 \text { в }} / 2}+\frac{\mathrm{F}_{\mathrm{VB}}}{\mathrm{n}_{1 \text { в }}} \tag{4.6.2.19}
\end{equation*}
$$

したがって，引張応力は次式となる。
$\sigma_{\mathrm{b} \mathrm{tB}=}^{\mathrm{F}_{\mathrm{bB}}} \mathrm{A}_{\mathrm{bB}}$

図 4－5 ブリッジ転倒防止装置
b．走行レールの応力
ブリッジ転倒防止装置に作用する水平力 $\mathrm{F}_{\mathrm{H} \boldsymbol{B}}$ は図 4－6（1）に示す斜線部のよ うに走行レールウェブに分散する。
ブリッジ転倒防止装置に作用する鉛直力 F_{vb} は図 4－6（2）に示す斜線部のよ うに走行レールウェブに分散する。
（a）曲げ応力
鉛直力 F vbによる曲げ応力は 0 である。
水平力 $\mathrm{F}_{\mathrm{H} \boldsymbol{B} \text { による曲げ応力について，走行レールウェブの負担長さは次式 }}$ となる。
$b_{3 \mathrm{~B}}=\mathrm{b}_{2 \mathrm{~B}}+2 \cdot\left(\mathrm{~h}_{3 \mathrm{~B}}+\mathrm{L}_{3 \mathrm{~B}}\right)$
断面係数は次式となる。
$Z_{3 B}=\frac{\mathrm{a}_{3 \mathrm{~B}}{ }^{2} \cdot \mathrm{~b}_{3 \mathrm{~B}}}{6}$
曲げモーメントは次式となる。
$\mathrm{M}_{3 \mathrm{~B}}=\mathrm{F}_{\mathrm{H}} \cdot \mathrm{h}_{3 \mathrm{~B}}$
したがって，C 部に発生する曲げ応力は次式となる。
$\sigma_{3 \mathrm{~B}}=\frac{\mathrm{M}_{3 \text { в }}}{\mathrm{Z}_{\text {з }}}$
（b）引張応力
水平力 $\mathrm{F}_{\mathrm{H} \boldsymbol{B}}$ による引張応力は 0 である。
鉛直力 $\mathrm{F}_{\mathrm{vb} \text { によよる引張応力について，走行レールウェブの負担長さは次式 }}$ となる。
$b_{4 B}=b_{2 B}+2 \cdot\left(h_{4 B}+L_{4 B}\right)$
断面積は次式となる。
$\mathrm{A}_{4 \mathrm{~B}}=\mathrm{a}_{4 \mathrm{~B}} \cdot \mathrm{~b}_{4 \mathrm{~B}}$
したがって，C 部に発生する引張応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{t} 3 \mathrm{~B}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{Vb}}}{\mathrm{~A}_{4 \mathrm{~B}}} \tag{4.6.2.27}
\end{equation*}
$$

（c）せん断応力
鉛直力 $\mathrm{F}_{\mathrm{v}} \mathrm{b}$ によるせん断応力は 0 である。
水平力 $\mathrm{F}_{\mathrm{H} \text { вによるせん断力を走行レールウェブで負担する断面積は次式 }}$ となる。

$$
\begin{equation*}
\mathrm{A}_{3 \mathrm{~B}}=\mathrm{a}_{3 \mathrm{~B}} \cdot \mathrm{~b}_{3 \mathrm{~B}} \tag{4.6.2.28}
\end{equation*}
$$

したがって，C部に発生するせん断応力は次式となる。

$$
\begin{equation*}
\tau_{3 \mathrm{~B}}=\frac{\mathrm{F}_{\mathrm{HB}}}{\mathrm{~A}_{3 \mathrm{~B}}} \tag{4.6.2.29}
\end{equation*}
$$

（d）組合せ応力
C部の組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\text {с } 3 \mathrm{~B}}=\sqrt{\left(\sigma_{3 \mathrm{~B}}+\sigma_{\mathrm{t} 3 \mathrm{~B}}\right)^{2}+3 \cdot \tau_{3 \mathrm{~B}}^{2}} \bullet \bullet \quad \bullet \quad \bullet \quad \bullet \tag{4.6.2.30}
\end{equation*}
$$

図 4－6（2）走行レールウェブ鉛直力（ F_{vb} ）負担部位
（2）計算方法（トロリ）
トロリ転倒防止装置に加わる荷重（ $\mathrm{F}_{9 \mathrm{H}} \sim \mathrm{F}_{12 \mathrm{H}}, \mathrm{F}_{9 \mathrm{~V}} \sim \mathrm{~F}_{12 \mathrm{~V}}$ ）は， スペクトルモーダル解析及び静解析により求める。
a．トロリ転倒防止装置の応力
トロリ転倒防止装置の応力を図4－7を用いて計算する。転倒防止装置1組に作用する負担力は， $\mathrm{F}_{\mathrm{HT}}\left(\mathrm{F}_{9 \mathrm{H}} \sim \mathrm{F}_{12 \mathrm{H}}\right.$ の平均値）及び F_{VT}（ $\mathrm{F}_{9 \mathrm{~V}} \sim \mathrm{~F}_{12 \mathrm{v}}$ の平均値）とする。

鉛直力 $\mathrm{FvT}_{\mathrm{v}}$ は 2 個の爪に分散し， 1 個当たりの負担力は次式となる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{v}_{\mathrm{t}}}=\frac{\mathrm{F}_{\mathrm{vT}}^{2}}{2} \tag{4.6.2.31}
\end{equation*}
$$

（a）曲げ応力
－A部
曲げモーメントは次式となる。
$\mathrm{M}_{1 \mathrm{~T}}=\mathrm{F}_{\mathrm{HT}} \cdot \mathrm{h}_{1 \mathrm{~T}}+\mathrm{F}_{\mathrm{Vt}_{\mathrm{t}}} \cdot\left[\mathrm{h}_{2 \mathrm{~T}}+\frac{\mathrm{a}_{1 \mathrm{~T}}}{2}\right]$
断面係数は次式となる。

$$
\begin{equation*}
Z_{1 \mathrm{~T}}=\frac{\mathrm{a}_{1 \mathrm{~T}^{2}} \cdot \mathrm{~b}_{1 \mathrm{~T}}}{6} \tag{4.6.2.33}
\end{equation*}
$$

したがって，曲げ応力は次式となる。
$\sigma_{1 \mathrm{~T}}=\frac{\mathrm{M}_{1 \mathrm{~T}}}{\mathrm{Z}_{1 \mathrm{~T}}}$
－B部
曲げモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{2 \mathrm{~T}}=\mathrm{F}_{\mathrm{vt}} \cdot \mathrm{~h}_{2 \mathrm{~T}} \tag{4.6.2.35}
\end{equation*}
$$

断面係数は次式となる。

$$
\begin{equation*}
\mathrm{Z}_{2 \mathrm{~T}}=\frac{\mathrm{a}_{2} \mathrm{~T}^{2} \cdot \mathrm{~b}_{2 \mathrm{~T}}}{6} \tag{4.6.2.36}
\end{equation*}
$$

したがって，曲げ応力は次式となる。

$$
\begin{equation*}
\sigma_{2 \mathrm{~T}}=\frac{\mathrm{M}_{2 \mathrm{~T}}}{\mathrm{Z}_{2 \mathrm{~T}}} \tag{4.6.2.37}
\end{equation*}
$$

（b）引張応力
－A部
断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~T}}=\mathrm{a}_{1 \mathrm{~T}} \cdot \mathrm{~b}_{1 \mathrm{~T}} \tag{4.6.2.38}
\end{equation*}
$$

したがって，引張応力は次式となる。
$\sigma_{\mathrm{t}_{1 \mathrm{~T}}}=\frac{\mathrm{F}_{\mathrm{Vt}}}{\mathrm{A}_{1 \mathrm{~T}}}$
（c）せん断応力
－A部
せん断力を受ける断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~T}}=\mathrm{a}_{1 \mathrm{~T}} \cdot \mathrm{~b}_{1 \mathrm{~T}} \tag{4.6.2.40}
\end{equation*}
$$

負担力 $\mathrm{F}_{\mathrm{H} T}$ によるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{1 \mathrm{~T}}=\frac{\mathrm{F}_{\mathrm{HT}}}{\mathrm{~A}_{1 \mathrm{~T}}} \tag{4.6.2.41}
\end{equation*}
$$

－B 部
せん断力を受ける断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{2 \mathrm{~T}}=\mathrm{a}_{2 \mathrm{~T}} \cdot \mathrm{~b}_{2 \mathrm{~T}} \tag{4.6.2.42}
\end{equation*}
$$

負担力 F Vt によるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{2 \mathrm{~T}}=\frac{\mathrm{F}_{\mathrm{Vt}}}{\mathrm{~A}_{2 \mathrm{~T}}} \tag{4.6.2.43}
\end{equation*}
$$

（d）組合せ応力
－A部
組合せ応力は次式となる。

－B部
組合せ応力は次式となる。
（e）取付ボルトのせん断応力
せん断力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{bT}}=\frac{\pi}{4} \cdot \mathrm{~d}_{1 \mathrm{~T}^{2}} \tag{4.6.2.46}
\end{equation*}
$$

せん断力は，取付ボルト $\mathrm{n}_{1 \mathrm{t}} \mathrm{t}$ 本で受けるものとし，ボルト 1 本にかかるせ乙断応力は次式となる。

$$
\begin{equation*}
\tau_{\mathrm{bT}}=\frac{\mathrm{F}_{\mathrm{HT}}}{\mathrm{n}_{1 \mathrm{~T}} \cdot \mathrm{~A}_{\mathrm{bT}}} \tag{4.6.2.47}
\end{equation*}
$$

（f）取付ボルトの引張応力
トロリ転倒防止装置取付ボルトにかかるモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{\mathrm{bT}}=\mathrm{F}_{\mathrm{HT}} \cdot \mathrm{~L}_{1 \mathrm{~T}} \tag{4.6.2.48}
\end{equation*}
$$

トロリ転倒防止装置取付ボルト1本にかかる引張荷重は次式となる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{bT}}=\frac{\mathrm{M}_{\mathrm{bT}} \cdot \mathrm{~L}_{3 \mathrm{~T}}}{\left(\mathrm{~L}_{2 \mathrm{~T}}{ }^{2}+\mathrm{L}_{3 \mathrm{~T}}{ }^{2}\right) \cdot \mathrm{n}_{1 \mathrm{~T}} / 2}+\frac{\mathrm{F}_{\mathrm{VT}}}{\mathrm{n}_{1 \mathrm{~T}}} \tag{4.6.2.49}
\end{equation*}
$$

したがって，引張応力は次式となる。
$\sigma_{\mathrm{btT}}=\frac{\mathrm{F}_{\mathrm{bT}}}{\mathrm{A}_{\mathrm{b} \mathrm{T}}}$
d ${ }_{1}$ T
（本数 $\mathrm{n}_{1 \mathrm{~T}}$ ）

図 4－7 トロリ転倒防止装置
b．横行レールの応力
トロリ転倒防止装置に作用する水平力 F_{HT} は図4－8（1）に示す斜線部のよう に横行レールウェブに分散する。

トロリ転倒防止装置に作用する鉛直力 $\mathrm{F}_{\mathrm{v} \mathrm{t}}$ は図4－8（2）に示す斜線部のよう に横行レールウェブに分散する。
（a）曲げ応力
鉛直力 F V t_{K} による曲げ応力は 0 である。
水平力 $\mathrm{F}_{\mathrm{H} \text { тによる曲げ応力について，横行レールウェブの負担長さは次式 }}$ となる。

$$
\begin{equation*}
\mathrm{b}_{4 \mathrm{~T}}=\mathrm{b}_{3 \mathrm{~T}}+2 \cdot\left(\mathrm{~h}_{4 \mathrm{~T}}+\mathrm{L}_{4 \mathrm{~T}}\right) \tag{4.6.2.51}
\end{equation*}
$$

断面係数は次式となる。

$$
\begin{equation*}
\mathrm{Z}_{4 \mathrm{~T}}=\frac{\mathrm{a}_{4 \mathrm{~T}}{ }^{2} \cdot \mathrm{~b}_{4} \mathrm{~T}}{6} \tag{4.6.2.52}
\end{equation*}
$$

曲げモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{4 \mathrm{~T}}=2 \cdot \mathrm{~F}_{\mathrm{HT}} \cdot \mathrm{~h}_{4 \mathrm{~T}} \tag{4.6.2.53}
\end{equation*}
$$

したがって，C 部に発生する曲げ応力は次式となる。

$$
\begin{equation*}
\sigma_{4 \mathrm{~T}}=\frac{\mathrm{M}_{4 \mathrm{~T}}}{\mathrm{Z}_{4 \mathrm{~T}}} \tag{4.6.2.54}
\end{equation*}
$$

（b）引張応力
水平力 $\mathrm{F}_{\mathrm{H} \text { т }}$ による引張応力は 0 である。
鉛直力 $\mathrm{F}_{\mathrm{v}} \mathrm{t}$ による引張応力について，横行レールウェブの負担長さは次式 となる。

$$
\begin{equation*}
\mathrm{b}_{5 \mathrm{~T}}=\mathrm{b}_{3 \mathrm{~T}}+2 \cdot\left(\mathrm{~h}_{5 \mathrm{~T}}+\mathrm{L}_{5 \mathrm{~T}}\right) \tag{4.6.2.55}
\end{equation*}
$$

断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{5 \mathrm{~T}}=\mathrm{a}_{5 \mathrm{~T}} \cdot \mathrm{~b}_{5 \mathrm{~T}} \tag{4.6.2.56}
\end{equation*}
$$

したがって，C 部に発生する引張応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{t} 4 \mathrm{~T}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{VT}}}{\mathrm{~A}_{5 \mathrm{~T}}} \tag{4.6.2.57}
\end{equation*}
$$

（c）せん断応力
鉛直力 F V V_{E} によるせん断応力は 0 である。
水平力 $\mathrm{F}_{\mathrm{H} T}$ によるせん断力を横行レールで負担する断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{4 \mathrm{~T}}=\mathrm{a}_{4 \mathrm{~T}} \cdot \mathrm{~b}_{4 \mathrm{~T}} \tag{4.6.2.58}
\end{equation*}
$$

したがって，C部に発生するせん断応力は次式となる。

$$
\begin{equation*}
\tau_{4 \mathrm{~T}}=\frac{2 \cdot \mathrm{~F}_{\mathrm{HT}}}{\mathrm{~A}_{4 \mathrm{~T}}} \tag{4.6.2.59}
\end{equation*}
$$

（d）組合せ応力
C 部の組合せ応力は次式となる。

$$
\sigma_{\mathrm{c} 4 \mathrm{~T}}=\sqrt{\left(\sigma_{4 \mathrm{~T}}+\sigma_{\mathrm{t} 4 \mathrm{~T}}\right)^{2}+3 \cdot \tau_{4 \mathrm{~T}}{ }^{2}}
$$

－•••（4．6．2．60）

図 4－8（1）横行レールウェブ水平力（ F_{HT} ）負担部位

図 4－8（2）横行レールウェブ鉛直力（ $\mathrm{F} \mathrm{VFt}_{\mathrm{t}}$ ）負担部位

4．6． 3 吊具の荷重計算方法

燃料交換機の吊荷荷重を受ける各部は，ブリッジ，トロリ，ワイヤロープ及び フックで，このらち吊荷を直接吊るもので，損傷•破断により落下に至る可能性 があるワイヤロープとフックを評価対象とする。

ワイヤロープ及びフックの計算に当たっては，以下の基本事項で行うものとす る。
－吊荷は水中にあり，実際の吊下げでは水の抵抗を受けるが，評価に当たって は，気中での吊下げを想定して保守的に水の抵抗はないものとして行う。
－燃料交換機及び吊荷の速度算出に当たっては，燃料交換機，吊荷質量及びワ イヤロープ長さの評価条件を，固有周期と床応答曲線の関係から評価が厳し くなるように設定する。
（1）ワイヤロープ長さは，固有周期に対する床応答特性（加速度）がより厳 しくなる長さとする。評価に当たって，ここでのワイヤロープ長さは吊上げ上端位置とする。
（2）吊荷の質量は，定格質量で評価を実施する。
－ワイヤロープ，フックの荷重は，吊荷を 1 自由度モデルにより求めた固有周期に対応する加速度，燃料交換機を 4.4 項より求めた固有周期に対応する加速度をもとに，吊荷が一度浮き上がって落下したときの衝撃荷重を算出する。
－燃料交換機と吊荷の位相差が吊荷に及ぼす影響については，吊荷とは逆位相 に生じる燃料交換機の速度を，吊荷に作用する相対速度として考慮する。

- 衝撃荷重は，吊荷が持っている運動量の保存則を考慮して算出する。
- 水平方向地震に伴い，吊荷が振り子運動を起こして吊具に遠心力が作用する が，その影響については，軽微であることから，評価においては鉛直方向地震だけを考慮するものとする。
（1）吊荷の浮上り後の落下速度の算出
吊荷は，図 4－9に示すように，鉛直方向に浮き上がり再び自然長位置に戻った瞬間から，吊具の衝撃荷重を与える。

V_{1} ：上向き速度

○下向き速度 v
（2）（3）まではエネルギー保存則より
下向き速度 v は

$$
\mathrm{v}<\mathrm{v}_{1}
$$

となるが，保守的に

$$
\mathrm{v}=\mathrm{v}_{1}
$$

として評価を行う。

図4－9 吊荷の浮上りの様子
（2）吊荷の固有周期
図 4－10に示すとおり，トロリを剛体としたときの吊荷の固有周期 T_{w} を算出 する。

> トロリ (剛体)

ワイヤロープ長さ L_{w}

固有周期 ： $\mathrm{T}_{\mathrm{w}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{\mathrm{m}}}{\mathrm{k}_{\mathrm{w}}}}$

ばね定数： $\mathrm{k}_{\mathrm{w}}=\frac{\mathrm{A}_{\mathrm{w}} \cdot \mathrm{n}_{\mathrm{w}} \cdot \mathrm{E}_{\mathrm{w}}}{\mathrm{L}_{\mathrm{w}}}$

図 4－10 吊荷の固有周期の算出
（3）吊具に作用する衝撃荷重
以下のとおり，ワイヤロープ，フックに作用する荷重 F を算出する。
図 4－11及び図 4－12に示すように，ワイヤロープの下端にある吊荷の運動量の変化は吊荷とトロリの質量や固有値が異なることから V ${ }_{1}$ と V_{2} が同値にならな いが，保守的にワイヤロープの減衰がなく完全弾性衝突を仮定して反発係数を1 とすれば以下となる。
（力積）： $\int_{0}^{\frac{\mathrm{T}_{w}}{4}} \mathrm{~F} \cdot \sin \left(2 \cdot \pi \cdot \frac{\mathrm{t}}{\mathrm{T}_{\mathrm{w}}}\right) \cdot \mathrm{dt} \cdot \boldsymbol{\mathrm { C }}$ ．••••••
（吊荷の運動量の変化）： m_{m} •（ $\mathrm{v}_{1}+\mathrm{v}_{2}$ ）•••••••••

最下点：速度 0

相対速度（ $\mathrm{v}_{1}+\mathrm{v}_{2}$ ）とする。
図 4－11 吊荷落下後の速度変化
吊荷の力積

図 4－12 吊荷の力積の概念図

吊荷の運動方向が変化する時間については，ワイヤロープが完全弾性体で，吊荷とトロリの運動が自由振動系であることを仮定すれば，吊荷の固有周期 T_{w} の 4 分の1となる。

以上から，運動量変化及び作用時間をもとに荷重は，自重分を追加して，以下 のとおり計算する。

$$
\begin{equation*}
\mathrm{F}=\frac{2 \cdot \pi \cdot \mathrm{~m}_{\mathrm{m}} \cdot\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)}{\mathrm{T}_{\mathrm{w}}}+\mathrm{m}_{\mathrm{m}} \cdot \mathrm{~g} \tag{4.6.3.5}
\end{equation*}
$$

4．6．4 吊具の応力計算方法

ワイヤロープの支持荷重及びフックの応力を，図4－13を用いて計算する。 ワイヤロープの支持荷重は次式となる。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{w}}=\frac{\mathrm{F}}{\mathrm{n}_{\mathrm{w}}} \tag{4.6.4.1}
\end{equation*}
$$

フックの曲げ応力，引張応力は次式となる。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{h}}=\mathrm{F}_{\mathrm{h}} \cdot \mathrm{~L}_{\mathrm{h}} \tag{4.6.4.2}\\
& \sigma_{\mathrm{bh}}=\frac{\mathrm{M}_{\mathrm{h}}}{\mathrm{Z}_{\mathrm{h}}} \tag{4.6.4.3}\\
& \sigma_{\mathrm{th}}=\frac{\mathrm{F}_{\mathrm{h}}}{\mathrm{~A}_{\mathrm{h}}} \tag{4.6.4.4}\\
& \sigma_{\mathrm{c} 4 \mathrm{~h}}=\sigma_{\mathrm{bh}}+\sigma \tag{4.6.4.5}
\end{align*}
$$

4．7 計算条件

応力解析に用いる自重及び荷重は，本計算書の【燃料交換機の耐震性についての計算結果】の設計条件及び機器要目に示す。

4． 8 応力の評価

4．8．1 燃料交換機構造物フレーム，転倒防止装置，走行レール及び横行レールの応力評価

4．6．1項及び4．6．2 項で求めた燃料交換機構造物フレーム，転倒防止装置，走行レール及び横行レールの各応力が次式より求めた許容応力以下であること。

ただし，許容組合せ応力は f_{t} 以下であること。

	基準地震動 S s による 荷重との組合せの場合
許容曲げ応力 f_{b}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$
許容せん断応力 f_{s}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．8．2 軽倒防止装置取付ボルトの応力評価
4．6．2項で求めた転倒防止装置取付ボルトの引張応力は，次式より求めた許容引張応力 f_{ts} 以下であること。

ただし，$f_{\mathrm{t} \text { oは下表による。 }}$

せん断応力はせん断力のみを受ける取付ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下で あること。

ただし，$f_{\text {sbは下表による。 }}$

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $f_{\mathrm{t} 0}$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．8．3 フックの応力評価
4．6．4項で求めたフックの応力が許容組合せ応力以下であること。

4．8．4 ワイヤロープの評価
4．6．4項で求めたワイヤロープの支持荷重が許容荷重以下であること。

5．評価結果

5.1 設計基準対象施設としての評価結果

燃料交換機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力（基準地震動 S s ）に対して十分な構造強度を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力（基準地震動 S s ）に対して十分な構造強度を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【燃料交換機の耐震性についての計算結果】 1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び 床面高さ（m）	固有周期（s）		基準地震動S s					周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度				鉛直方向	
燃料交換機	B	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{* 1} \end{aligned}$			ブリッジ		トロリ		設計震度	
					NS 方向	EW 方向	NS 方向	EW 方向		
					＊ 4	$\mathrm{C}_{\mathrm{H} 2}=0.15 * 5$	＊4	$\mathrm{C}_{\mathrm{H} 2}=0.15{ }^{\text {\％}}$		

[^2]O 2 （5）VI－2－11－2－9 R 0

$\left.\begin{array}{|c|c|}\hline \mu \\ (-)\end{array} \quad \begin{array}{c}v \\ (-)\end{array}\right]$

$\mathrm{A}_{5 \mathrm{~T}}$	$\mathrm{~A}_{\mathrm{b} T}$

$\left(\mathrm{mm}^{2}\right)$	$\left(\mathrm{mm}^{2}\right)$

$\mathrm{A}_{4} \mathrm{~T}$

$\begin{gathered} \mathrm{A}_{1 \mathrm{~B}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{2 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{3 B} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{4 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \mathrm{~B} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{1 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{4} \mathrm{~T} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$

A_{h} $\left(\mathrm{mm}^{2}\right)$	A_{w} $\left(\mathrm{mm}^{2}\right)$

$\begin{aligned} & \mathrm{a}_{1 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{2 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { a } 3 \text { B } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{4 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{1 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{2} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{4 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{5} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1 \text { B }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{b}_{2} \mathrm{~B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b}_{3} \mathrm{~B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{b}_{4 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{2} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{3} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{4} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{5} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{1 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{1 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$

1．2 機器要目

O 2 （5）VI－2－11－2－9 R 0

$\begin{gathered} \mathrm{L}_{1 \mathrm{~B}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2 \mathrm{~B}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} L_{3 \text { в }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{4 \mathrm{~B}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{1 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{3 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{4 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{5 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{L}_{\mathrm{h}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{L}_{\mathrm{w}} \\ (\mathrm{~mm}) \end{gathered}$

$\begin{gathered} \mathrm{h}_{1 \mathrm{~B}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{r} \mathrm{h}_{2 \text { B }} \\ (\mathrm{mm}) \end{array}$	$\begin{gathered} \mathrm{h}_{3 \text { в }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{4 \mathrm{~B}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{1 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{r} \mathrm{h}_{2 \mathrm{~T}} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{h}_{4} \mathrm{~T} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{5 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$

$Z_{1 B}$ $\left(\mathrm{~mm}^{3}\right)$	$Z_{2 \mathrm{~B}}$ $\left(\mathrm{~mm}^{3}\right)$	$Z_{3 \mathrm{~B}}$ $\left(\mathrm{~mm}^{3}\right)$	$Z_{1 \mathrm{~T}}$ $\left(\mathrm{~mm}^{3}\right)$	$Z_{2 \mathrm{~T}}$ $\left(\mathrm{~mm}^{3}\right)$	$Z_{4 \mathrm{~T}}$ $\left(\mathrm{~mm}^{3}\right)$	Z_{h} $\left(\mathrm{mm}^{3}\right)$

燃料交換機構造物フレーム		
S_{y} (MPa)	S_{u} (MPa)	F^{*} (MPa)

注記 $* 1: \square$

$\hat{\lambda}$	$\cdots{ }_{\sim}^{\sim}$

走行レール		横行レール	
S_{u}	F＊	$\mathrm{S}_{\text {u }}$	F＊
（MPa）	（MPa）	（MPa）	（MPa）

1.3 計算数値

F_{HB} （N）	$\mathrm{F}_{\text {vb }}$ （N）	F_{vb} （N）	F_{HT} （N）	$\mathrm{F}_{\text {vT }}$ （N）	$\mathrm{F}_{\mathrm{V} \text { t }}$ （N）	F （N）	F_{h} （N）	F_{w} （N）
3． 077×10^{5}	1． 807×10^{5}	9． 036×10^{4}	4． 041×10^{4}	1.544×10^{5}	7.722×10^{4}	1． 656×10^{5}	7． 311×10^{4}	8． 280×10^{4}
$\begin{gathered} \mathrm{M}_{1 \mathrm{~B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{3 \mathrm{~B}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{1 \mathrm{~T}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{2 \mathrm{~T}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{4 \mathrm{~T}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{b} \text { B }} \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{bT}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{h}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
1． 768×10^{7}	1． 717×10^{6}	1． 769×10^{7}	3.567×10^{6}	1． 120×10^{6}	4.041×10^{6}	3． 077×10^{7}	3． 374×10^{6}	1． 828×10^{6}

O d 6－6－II－ $\mathrm{Z}-\mathrm{I} \mathrm{\Lambda}$（9） ZO

許容応力以下である。

機器名称	設備分類	据付場所及び 床面高さ（m）	固有周期（s）		基準地震動 S s					周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度				鉛直方向設計震度	
燃料交換機	－	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{* 1} \end{aligned}$			ブリッジ		トロリ			
					NS 方向	EW 方向	NS 方向	EW 方向		
					＊2	$\mathrm{C}_{\mathrm{H} 2}=0.15^{* 3}$	＊2	$\mathrm{C}_{\mathrm{H} 2}=0.15^{* 3}$		

> *2 : 基準地震動S s に基づく設計用床応答曲線より得られる値。
＊ $3:$ この方向は滑りを生じ最大静止摩擦力以上の水平力は加わらないため，最大静止摩擦係数により水平方向設計震度を求めた。
2．重大事故等対処設備 2.1 設計条件

$$
\text { 注記 } * 1 \text { : 基準床レベルを示す。 }
$$

O 2 （5）VI－2－11－2－9 R 0

$\begin{aligned} & \mathrm{A}_{1 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{2 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{3 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{4 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{gathered} \mathrm{A}_{\mathrm{b}} \mathrm{~B} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$		$\begin{aligned} & \mathrm{A}_{1 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{2 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{4 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$		$\begin{aligned} & \mathrm{A}_{5 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{t} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	
$\begin{aligned} & \mathrm{a}_{1 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{2 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \text { а } 3 \text { в } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{4} \mathrm{~B} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{1 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a} 2 \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{4 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{a}_{5 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{2} \mathrm{~B} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{3 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{4} \mathrm{~B} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{1 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{2} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{3} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{4} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{b}_{5} \mathrm{~T} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{1 \mathrm{~B}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{d}_{1 \mathrm{~T}} \\ & (\mathrm{~mm}) \end{aligned}$

$\mathrm{h}_{1 \text { B }}$ (mm)	$\mathrm{h}_{2 \mathrm{~B}}$ $(\mathrm{~mm})$	$\mathrm{h}_{3 \text { B }}$ (mm)	$\mathrm{h}_{4 \mathrm{~B}}$ $(\mathrm{~mm})$	$\mathrm{h}_{1 \mathrm{~T}}$ $(\mathrm{~mm})$	$\mathrm{h}_{2 \mathrm{~T}}$ $(\mathrm{~mm})$	$\mathrm{h}_{4 \mathrm{~T}}$ $(\mathrm{~mm})$	$\mathrm{h}_{5 \mathrm{~T}}$ $(\mathrm{~mm})$

E
(MPa)

2．2 機器要目

O d 6－Z－II－Z－I（G）\quad O

$\begin{gathered} L_{1 \text { в }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2 \text { B }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{3 \text { B }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} L_{4 B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{1 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2} \mathrm{~T} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{3} \mathrm{~T} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{4 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{5 \mathrm{~T}} \\ (\mathrm{~mm}) \end{gathered}$
$\begin{aligned} & \mathrm{Z}_{1 \text { в }} \\ & \left(\mathrm{mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{2 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$		$\begin{aligned} & \mathrm{Z}_{3 \mathrm{~B}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{1 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{2 \mathrm{~T}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$			

燃料交換機構造物フレーム		
$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
注記 $*^{1}$		

ブリッジ転倒防止装置						トロリ転倒防止装置					
本体			取付ボルト			本体			取付ボルト		
$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}^{*} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}^{*} \\ & (\mathrm{MPa}) \end{aligned}$

走行レール		横行レール	
$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}^{*} \\ & (\mathrm{MPa}) \end{aligned}$

2.3 計算数値

$\mathrm{F}_{\text {нв }}$ (N)	$\mathrm{F}_{\text {vв }}$ (N)	F_{Vb} (N)	$\mathrm{F}_{\text {нT }}$ (N)	F_{VT} (N)	F_{Vt} (N)
2.495×10^{5}	1.462×10^{5}	7.312×10^{4}	3.321×10^{4}	1.531×10^{5}	7.656×10^{4}

$\begin{gathered} \mathrm{M}_{1 \mathrm{~B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~B}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{3 \text { в }} \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~T}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{2 \mathrm{~T}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \mathrm{M}_{4 \mathrm{~T}} \\ & (\mathrm{~N} \cdot \mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{b}} \text { в } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{b}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
1． 432×10^{7}	1． 389×10^{6}	1． 434×10^{7}	3.331×10^{6}	1． 110×10^{6}	3.321×10^{6}	2． 495×10^{7}	2． 773×10^{6}

結論				応力			（単位：MPa）	
部位			材料			算出応力	許容応力	
燃料交換機構造物フレーム				引張り	$\sigma_{1 \mathrm{~F}}$	319		
				せん断	$\tau_{1 \mathrm{~F}}$	17		
				組合せ	$\sigma_{\mathrm{c}} 1 \mathrm{~F}$	320		
$\begin{aligned} & \text { ブ } \\ & \text { リ } \\ & \text { ッ } \\ & \text { ジ } \end{aligned}$	転倒防止装置	B 部		曲げ	σ_{18}	58		
				せん断	τ_{18}	13		
				組合せ	σ с 1 в	62		
		取付ボルト		せん断	$\tau_{\mathrm{b} \text { t B }}$	123		
				引張り	$\sigma \mathrm{b}$ t B	173		
$\begin{aligned} & \text { ト } \\ & \text { ロ } \\ & \text { リ } \end{aligned}$	転倒防止装置	A 部		曲げ	$\sigma_{1 \text { T }}$	93		
				引張	$\sigma \mathrm{t} 1 \mathrm{~T}$	12		
				せん断	$\tau_{1 \mathrm{~T}}$	5		
				組合せ	$\sigma_{\mathrm{c} 1 \mathrm{~T}}$	105		
		取付ボルト		せん断	$\tau_{\mathrm{bt} \mathrm{T}}$	19		
				引張り	$\sigma_{\text {b t T }}$	98		
走行レール		C 部		曲げ	σ з ${ }^{\text {b }}$	194		
			引張	σ t 3 B	13			
			せん断	τ 3 в	18			
			組合せ	σ с 3 в	209			
横行レール			C 部		曲げ	$\sigma 3 \mathrm{~T}$	162	
				引張り	$\sigma_{\mathrm{t} 3 \mathrm{~T}}$	37		
				せん断	$\tau{ }_{3} \mathrm{~T}$	8		
				組合せ	σ c 3 T	181		

すべて許容応力以下である。

> VI-2-11-2-13 制御棒貯蔵ラックの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4.1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 9
4．2．1 荷重の組合せ及び許容応力状態 9
4．2．2 許容応力 9
4．2．3 使用材料の許容応力評価条件 9
4．3 解析モデル及び諸元 14
4． 4 固有周期 15
4.5 設計用地震力 16
4.6 計算方法 17
4．6．1 部材の応力 17
4．6．2 基礎ボルトの応力 18
4.7 計算条件 20
4．8 応力の評価 20
4．8．1 部材の応力評価 20
4．8．2 基礎ボルトの応力評価 20
5．評価結果 21
5.1 設計基準対象施設としての評価結果 21
5.2 重大事故等対処設備としての評価結果 21

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき，下位クラス設備である制御棒貯蔵ラック（以下「ラック」という。）が基準地震動S s に対して十分な構造強度を有していることを確認することで，近傍に設置された上位クラス施設である使用済燃料貯蔵ラックに対して，波及的影響を及ぼさないことを説明するも のである。

2．一般事項

2.1 配置概要

ラックは原子炉建屋の使用済燃料プール内に設置されるが，図2－1の位置関係図に示すように，上位クラス施設である使用済燃料貯蔵ラック近傍に設置されていることから，転倒又は落下によ り使用済燃料貯蔵ラックに対して波及的影響を及ぼすおそれがある。

図2－1 ラックの位置関係図

表2－1 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
ラックは，たて置き形 でベースは基礎ボルトを介して使用済燃料プール の床に固定される。	ステンレス鋼製たて置 きラック（コラム，上部枠，ブレース，補強板， ベースで構成される溶接構造物）			

2． 3 評価方針

ラックの応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2構造計画」にて示すラックの部位を踏まえ，「3．評価部位」にて設定する箇所において，「4． 3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

ラックの耐震評価フローを図2－2に示す。

図2－2 ラックの耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

2.5 記号の説明

記号	記号の説明	単位
A_{b}	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
E	縦弾性係数	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F_{i}	ベース底部に働くせん断力	N
f ${ }_{\mathrm{j}}^{\mathrm{i}}$	基礎ボルトに働く引張力（ 1 本当たり）	N
f_{s}	部材の許容せん断力	MPa
$\mathrm{f}_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{t}	部材の許容引張応力	MPa
f_{t} 。	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$\mathrm{f}_{\mathrm{t}} \mathrm{s}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
$\ell_{\mathrm{g} \text { i }}$	ベース端から重心までの距離	mm
$\ell_{\mathrm{j} ~}^{\text {i }}$	ベース端から基礎ボルトまでの距離	mm
M_{i}	ベース底部の転倒モーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	制御棒貯蔵時のラック全質量	kg
$\mathrm{m}_{\text {CR }}$	制御棒の質量	kg
m_{R}	ラックの質量	kg
n	基礎ボルトの全本数	－
t	部材の板厚	mm
$\mathrm{n}_{\mathrm{j}} \mathrm{i}$	基礎ボルト各部の本数	－
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表8に定める材料の	MPa
	$40^{\circ} \mathrm{C}$ における値	
σ b	基礎ボルトに生じる引張応力	MPa
$\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$	部材に生じる引張応力	MPa
$\sigma \mathrm{fa}_{\text {a }}$	部材に生じる組合せ応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
$\tau \mathrm{xy}$	部材に生じるせん断応力	MPa

$$
\begin{aligned}
& \mathrm{i}=\mathrm{N}: \mathrm{NS}(\text { 長辺) 方向 } \\
& \mathrm{i}=\mathrm{E}: \mathrm{EW} \text { (短辺) 方向 }
\end{aligned}
$$

注2：f j_{i} ，$\ell_{\mathrm{j} i \mathrm{i} \text { 及び } \mathrm{n}_{\mathrm{j} i} \text { の添字 } \mathrm{j} \text { はボルトの列番号を示すものとする。 }}$

2.6 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりである。

表2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	—	整数位
長さ	mm	-	—整数位 ${ }^{* 1}$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
縦弹性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 ${ }^{* 3}$

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び降伏点は，比例法により補間した値の小数点以下第1位を切り捨て，整数位までの値とす る。

3．評価部位
ラックの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる上部枠，コラム，補強板，ブレース，ベース及び基礎ボルトについて実施す る。ラックの耐震評価部位については，図4－1の構造概要図に示す。

4．地震応答解析及び構造強度評価

4.1 地震応答解析及び構造強度評価方法

（1）地震応答解析には，シェル要素を用いた有限要素法モデルによるスペクトルモーダル解析を用いる。
（2）ラックは，原子炉建屋の使用済燃料プールの底部（0．P．22．915m）に基礎ボルトにより固定されるものとする。
（3）ラックの質量には，制御棒 12 本の質量及びラック自身の質量のほか，ラック及び制御棒外形の付加質量＊を考慮する。
（4）地震力は，ラックに対して水平方向から作用するものとする。
ここで，水平方向地震力は，ラックの長辺方向に作用する場合と短辺方向に作用する場合を考慮する。
また，鉛直方向地震力は，水平方向地震力と同時に不利な方向に作用するものとす る。

注記＊：機器が流体中で加速度を受けた場合に質量が増加したような効果を模擬した質量

図4－1 構造概要図

4． 2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ラックの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
ラックの許容応力は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位ク ラス施設の耐震評価方針」に基づき表4－3に示す。

4．2．3 使用材料の許容応力評価条件
ラックの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。
表4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料 貯蔵設備	制御棒貯蔵 ラック	B	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料 貯蔵設備	制御棒貯蔵 ラック	－	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV酝Sの容 } \\ \text { 限界を用いる。) } \end{gathered}$

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
表4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）		許容限界＊1，＊2 （ボルト等）	
	一次応力		一次応力	
	引張り	せん断	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$＊	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fs}{ }^{*}$
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{fs}$＊	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
表4－4 使用材料の許容応力評価条件（設計基準対象施設）

	응	농	옹	옷	¢	ㄴNN
$\stackrel{\approx}{\infty} \overbrace{i}^{\infty}$	$\stackrel{\Omega}{7}$	$\stackrel{刃}{7}$	$\stackrel{\Omega}{7}$	$\underset{7}{9}$	$\stackrel{8}{7}$	$\stackrel{0}{\infty}$
$\cdots \sum_{\bar{\infty}}^{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\infty}$	\bigcirc
	θ	$¢$	\bullet	θ	8	${ }^{\circ}$
$\frac{\text { 案 }}{\frac{1}{\mid}}$						
		$\begin{aligned} & \text { f } \\ & \text { In } \\ & \Pi \end{aligned}$		$\begin{aligned} & k \\ & i \\ & i \end{aligned}$	$\begin{gathered} \kappa \\ 1 \\ \hline \end{gathered}$	

表4－5 使用材料の許容応力評価条件（重大事故等対処設備）

$\stackrel{\overparen{E}}{\stackrel{\rightharpoonup}{\leftrightarrows}} \underset{\substack{\infty \\ \multirow{2}{*}{}}}{\infty}$	농	농	닝	농	－	ㄴํN
$\omega^{z} \sum_{\infty}^{\infty}$	7	7	7	7	$\underset{7}{7}$	$\stackrel{\infty}{\infty}$
$\stackrel{A}{\infty}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	ミ	さ	ㄷ	¢
而自	8	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$\begin{aligned} & \text { I } \\ & \text { in } \\ & \pi \end{aligned}$		$\stackrel{\underset{i}{k}}{\stackrel{1}{1}}$	${ }_{1}^{k}$	

4．3 解析モデル及び諸元

ラックの解析モデルを図4－2に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【制御棒貯蔵ラックの耐震性についての計算結果】の機器要目に示す。
（1）ラックは，シェル要素を用いた有限要素モデルとする。ベースは基礎ボルトをモデル化したバネ要素を介して床に固定されているものとする。
（2）ラックの質量には，制御棒 12 本の質量，ラック自身の質量及び付加質量を考慮し，制御棒の付加質量は制御棒支持部に，ラックの付加質量は各部材に分配する。
（3）解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要 については，添付資料「VI－5 計算機プログラム（解析コード）の概要」に示す。

4． 4 固有周期

固有値解析の結果を表4－6に，振動モード図を図4－3に示す。鉛直方向は，6次モード以降で卓越し，固有周期は，0．05秒以下であり，剛であることを確認した。

表4－6 固有値解析結果

モード	卓越方向	固有周期 （s）	水平方向刺激係数＊		鉛直方向刺激係数＊
			X方向	Y方向	
1次	水平方向				
2次	水平方向				
6次	鉛直方向				

注記＊：刺激係数は，モード質量を正規化し，固有値ベクトルと質量マトリックスの積から算出した値を示す。

図4－3 振動モード 1次モード

4.5 設計用地震力

評価に用いる設計用地震力を表4－7及び表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表4－7 設計用地震力（設計基準対象施設）

据付場所及び	固有周期(s)		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20 * 1 \\ & \text { 0. P. } 22.50 * 2 \\ & \text { (0. P. } 22.915 \text {) } \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*3 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=2.65$ 又は $* 4$	$\mathrm{C}_{\mathrm{v}}=1.77$

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：基準地震動 S s に基づく設計用床応答曲線により得られる値。 （ $\mathrm{C}_{\mathrm{H}}=12.71$ ）

表4－8 設計用地震力（重大事故等対処施設）

据付け場所及び	固有周期 （s）		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{* 1} \\ & \text { 0.P. 22. } 50^{* 2} \\ & \text { (0.P. 22.915) } \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*3 } \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=2.65 \\ \text { 又は* } 4 \end{gathered}$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：基準地震動 S s に基づく設計用床応答曲線により得られる値。 （ $\mathrm{C}_{\mathrm{H}}=12.71$ ）

4.6 計算方法

4．6．1 部材の応力
部材についての応力計算は，図4－2の解析モデルにて，上部枠，コラム，補強板，ブレース， ベースから成る系全体での応力計算を解析コード「MSC NASTRAN」を使用して行い，本項に示す計算方法に従って引張応力，せん断応力及び組合せ応力を計算する。

解析コード内では，各部材の局所座標系，せん断応力 $\tau \mathrm{xy}$ 及び引張応力 $\sigma_{\mathrm{x}}, ~ \sigma_{\mathrm{y}}$ の作用する向きを，図4－4に示すように設定している。

図4－4 部材の応力計算モデル

各部材の組合せ応力 σ_{fa} は，上記で計算したせん断応力 τ_{xy} ，引張応力 $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$ を用 いて，（4．1）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}^{2}-\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}+3 \cdot \tau_{\mathrm{xy}}{ }^{2}} \tag{4.1}
\end{equation*}
$$

4．6．2 基礎ボルトの応力
ラックの系全体での荷重計算を解析コード「MSC NASTRAN」を使用して行い，求められ た地震時のラックに作用する転倒モーメント M_{i} ，及びベース底部に作用するせん断力 F i が，図4－5のように負荷されるものとして基礎ボルトの応力を求める。

なお，本計算例ではボルトの列数は，ラックのNS 方向として $l_{1 \mathrm{~N}} \sim \ell_{4 \mathrm{~N}}$ の 4 列である。

図 4－5 基礎ボルトの荷重状態（N S 方向）
（1）引張応力
図4－5において支点まわりのモーメントの平衡により基礎ボルト 1 本当りの引張力 $\mathrm{f}_{1 \mathrm{i}} \sim \mathrm{f}_{\mathrm{j} \mathrm{i}}$ を求める。 $\mathrm{f}_{1 \mathrm{i}}>\mathrm{f}_{2 \mathrm{i}}>\cdots \cdots>\mathrm{f}_{\mathrm{j} \mathrm{i}}$ の関係にあるので $\mathrm{f}_{1 \mathrm{i}}$ のみを（4．2）式より求める。

$$
\begin{equation*}
\mathrm{f}_{1 \mathrm{i}}=\frac{\ell_{1 \mathrm{i}} \cdot\left\{\sqrt{\mathrm{M}_{\mathrm{i}}^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right)^{2}}-\mathrm{m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{g} \mathrm{i}}\right\}}{\mathrm{n}_{1 \mathrm{i}} \cdot{\ell_{1 \mathrm{i}}}^{2}+\mathrm{n}_{2 \mathrm{i}} \cdot \ell_{2 \mathrm{i}}^{2}+\cdots \cdots+\mathrm{n}_{\mathrm{ji}} \cdot \ell_{\mathrm{j} \mathrm{i}}{ }^{2}} \tag{4.2}
\end{equation*}
$$

したがって，引張力 $\mathrm{f}_{1 \mathrm{i}}$ により基礎ボルトに生じる引張応力 σ_{b} は，（4．3）式に より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{f}_{1 \mathrm{i}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.3}
\end{equation*}
$$

ただし， $\mathrm{f}_{1 \mathrm{i}}$ の値が負となった場合は，引張力が生じないので以降の引張応力の計算は省略する。
（2）せん断応力
せん断力 F_{i} により基礎ボルトに生じるせん断応力 τ_{b} は，（4．4）式により求め る。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.4}
\end{equation*}
$$

4．7 計算条件

応力解析に用いる自重（ラック）及び荷重（地震荷重）は，本計算書の【制御棒貯蔵ラック の耐震性についての計算結果】の設計条件及び機器要目に示す。

4． 8 応力の評価

4．8．1 部材の応力評価
4．6．1項で求めた部材の引張応力 $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$ 及び組合せ応力 σ_{fa} が，許容引張応力 f H 以下゙ あること。

また，4．6．1項で求めた部材のせん断応力 τ_{xy} が，許容せん断応力 f_{s} 以下であること。 ただし， f_{t} 及び f_{s} は下表による。

許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$
基準地震動 S s	
許容せん断応力 f_{s}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4．8．2 基礎ボルトの応力評価

4．6．2項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式よりもとめた許容引張応力 $\mathrm{f}_{\mathrm{t}} \mathrm{s}$ 以下 であること。

また，4．6．2項で求めた基礎ボルトのせん断応力 τ ь が，せん断力のみを受ける基礎ボル トの許容せん断応力 f_{s} b 以下であること。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{t}}=1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{4.6}
\end{equation*}
$$

かつ

$$
\begin{equation*}
\mathrm{f}_{\mathrm{t} \mathrm{~s}} \leqq \mathrm{f}_{\mathrm{t}} \tag{4.7}
\end{equation*}
$$

ただし，$f_{t o \text { o }}$ 及活 b は下表による。

許容引張応力 $\mathrm{f}_{\mathrm{t} \circ}$	基準地震動 S s
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足し ており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

ラックの重大事故時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界 を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【制御棒貯蔵ラックの耐震性についての計算結果】
1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び 床面高さ （m）	固有周期(s)		基準地震動 S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向	鉛直方向	
制御棒貯蔵ラック	B	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. 33. } 20^{* 1} \\ \text { 0.P. 22. } 50 * 2 \\ \text { (0.P. 22.915) } \end{gathered}$		0．05以下	$C_{H}=2.65$ 又は＊3	$\mathrm{C}_{\mathrm{V}}=1.77$	66

注記＊1：上階の基準床レベルを示す。
＊2：下階の基準床レベルを示す。
＊3：基準地震動 S s に基づく設計用床応答曲線により得られる値。
（ $\mathrm{C}_{\mathrm{H}}=12.71$ ）

$$
1.2 \text { 機器要目 }
$$

| 項目 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 上部枠 |
| 部材料 |

枠囲みの内容は商業機密の観点から公開できません。
\square
1．2．2 基礎ボルトの応力評価に用いる項目

$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{CR}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{R}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{V}} \\ & (-) \end{aligned}$	$\begin{aligned} & \ell_{1 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$
$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{ge}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{4 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2} \mathrm{E} \\ (-) \end{gathered}$		
		8	2	2	2	2	4	4		

部材	材料	S_{y} (MPa)	S_{u} (MPa)	F^{*} (MPa)
基礎ボルト		696	867	607

1.3 計算数値

1．3．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	基準地震動 S S
上部枠		引張り σ_{x}	4
		引張り $\sigma_{\text {y }}$	19
		せん断 τ^{xy}	14
		組合せ $\sigma_{\text {fa }}$	29
コラム		引張り $\sigma_{\text {x }}$	11
		引張り $\sigma_{\text {y }}$	91
		せん断 τ_{xy}	2
		組合せ $\sigma_{\text {fa }}$	86
補強板		引張り $\sigma_{\text {x }}$	28
		引張り $\sigma_{\text {y }}$	1
		せん断 τ_{xy}	1
		組合せ σ fa	28
ブレース		引張り $\sigma_{\text {x }}$	64
		引張り $\sigma_{\text {y }}$	7
		せん断 τ_{xy}	5
		組合せ $\sigma_{\text {fa }}$	61
ベース		引張り $\sigma_{\text {x }}$	41
		引張り $\sigma_{\text {y }}$	6
		せん断 τ_{xy}	11
		組合せ $\sigma_{\text {fa }}$	43

1．3．2 基礎ボルトに生じる応力

（単位：MPa）

部材	材料	応力	基準地震動 S s
基礎ボルト			引張り σ_{b}

枠囲みの内容は商業機密の観点から公開できません。

1．4 応力

1．4．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	算出応力	許容応力
上部枠		引張り	$\sigma_{\mathrm{x}}=4$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=19$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=14$	$\mathrm{ff}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=29$	$\mathrm{f}_{\mathrm{t}}=205$
コラム		引張り	$\sigma_{x}=11$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=91$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=2$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=86$	$\mathrm{f}_{\mathrm{t}}=205$
補強板		引張り	$\sigma_{x}=28$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=1$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=28$	$\mathrm{ff}_{\mathrm{t}}=205$
ブレース		引張り	$\sigma_{x}=64$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=7$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=5$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=61$	$\mathrm{f}_{\mathrm{t}}=205$
ベース		引張り	$\sigma_{x}=41$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=6$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=11$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=43$	$\mathrm{ff}_{\mathrm{t}}=205$

すべて許容応力以下である。

1．4．2 基礎ボルトに生じる応力

（単位：MPa）

部材	材料	応力	算出応力	許容応力
基礎ボルト			引張り	$\sigma_{\mathrm{b}}=198$
		$\mathrm{f}_{\mathrm{t} \mathrm{s}}=455^{*}$		
	せん断	$\tau_{\mathrm{b}}=23$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=350$	

注記 $*: f_{t \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出
すべて許容応力以下である。
【制御棒貯蔵ラックの耐震性についての計算結果】

2．2 機器要目
2．2．1 固有周期の算出及び部材の応力評価に用いる要目

部材 項目	材料	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T})^{* 2} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
上部枠			1． 92×10^{5}	171	205	441	205
コラム			1.92×10^{5}	171	205	441	205
補強板			1.92×10^{5}	171	205	441	205
ブレース			1.92×10^{5}	171	205	441	205
ベース			1.92×10^{5}	171	205	441	205

注記 $* 1$ ：最高使用温度で算出
＊2：室温で算出
＊3～9：部材位置は図5－1に示す。
枠囲みの内容は商業機密の観点から公開できません。
0 y \＆I－ $6-\mathrm{II}-\mathrm{Z}-\mathrm{I} \Lambda$（c） ZO
2．2．2 基礎ボルトの応力評価に用いる項目

m (kg)	m_{CR} (kg)	m_{R} (kg)	A_{b} $\left(\mathrm{mm}^{2}\right)$	C_{V} $(-)$	$\ell_{1 \mathrm{~N}}$ $(\mathrm{~mm})$	$\ell_{2 \mathrm{~N}}$ $(\mathrm{~mm})$	$\ell_{3 \mathrm{~N}}$ $(\mathrm{~mm})$	$\ell_{4 \mathrm{~N}}$ $(\mathrm{~mm})$	$\ell_{1 \mathrm{E}}$ (mm)	$\ell_{2 \mathrm{E}}$ (mm)

2.3 計算数値

2．3．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	基準地震動 S s
上部枠		引張り $\sigma_{\text {x }}$	4
		引張り $\sigma_{\text {y }}$	19
		せん断 $\tau_{\text {x }}$	14
		組合せ $\sigma_{\text {fa }}$	29
コラム		引張り $\sigma_{\text {x }}$	11
		引張り $\sigma_{\text {y }}$	91
		せん断 $\tau_{\text {x }}$	2
		組合せ $\sigma_{\text {fa }}$	86
補強板		引張り $\sigma_{\text {x }}$	28
		引張り $\sigma_{\text {y }}$	1
		せん断 τ_{xy}	1
		組合せ $\sigma_{\text {fa }}$	28
ブレース		引張り $\sigma_{\text {x }}$	64
		引張り σ y	7
		せん断 $\tau_{\text {x }}$	5
		組合せ $\sigma_{\text {fa }}$	61
ベース		引張り $\sigma_{\text {x }}$	41
		引張り $0_{\text {y }}$	6
		せん断 τ_{xy}	11
		組合せ σ fa	43

2．3．2 基礎ボルトに生じる応力

（単位：MPa）

部材	材料	応力	基準地震動 S s
基礎ボルト		引張り σ_{b}	198
	せん断 τ_{b}	23	

2.4 応力

2．4．1 部材に生じる応力
（単位：MPa）

部材	材料	応力	算出応力	許容応力
上部枠		引張り	$\sigma_{x}=4$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=19$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=14$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=29$	$\mathrm{f}_{\mathrm{t}}=205$
コラム		引張り	$\sigma_{x}=11$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=91$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=2$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=86$	$\mathrm{f}_{\mathrm{t}}=205$
補強板		引張り	$\sigma_{x}=28$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=1$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{x y}=1$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=28$	$\mathrm{f}_{\mathrm{t}}=205$
ブレース		引張り	$\sigma_{x}=64$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=7$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=5$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=61$	$\mathrm{f}_{\mathrm{t}}=205$
ベース		引張り	$\sigma_{x}=41$	$\mathrm{f}_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=6$	$\mathrm{f}_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=11$	$\mathrm{f}_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=43$	$\mathrm{f}_{\mathrm{t}}=205$

すべて許容応力以下である。

2．4．2 基礎ボルトに生じる応力
（単位：MPa）

部材	材料	応力	算出応力	許容応力
基礎ボルト			引張り	$\sigma_{\mathrm{b}}=198$
		$\mathrm{f}_{\mathrm{t}}=444^{*}$		
	せん断	$\tau_{\mathrm{b}}=23$	$\mathrm{f}_{\mathrm{sb}}=341$	

注記 $*: f_{t s}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{t} o}\right]$ より算出
すべて許容応力以下である。

枠囲みの内容は商業機密の観点から公開できません。

VI－2－11－2－21 CRD 自動交換機の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 2
2.3 評価方針 3
2.4 適用規格•基準等 4
2.5 記号の説明 5
2.6 計算精度と数値の丸め方 9
3．評価部位 10
4．地震応答解析及び構造強度評価． 10
4.1 地震応答解析及び構造強度評価方法 10
4.2 荷重の組合せ及び許容応力 12
4．2．1 荷重の組合せ及び許容応力状態• 12
4．2．2 許容応力 12
4．2．3 使用材料の許容応力評価条件． 12
4.3 解析モデル及び諸元 17
4． 4 固有周期 19
4.5 設計用地震力 21
4.6 計算方法 22
4．6．1 CRD 自動交換機フレームの応力 22
4．6．2 旋回用レールの応力 23
4．6．3 固定用サポート（上部）の応力• 26
4．6．4 固定用サポート（下部）の応力• 30
4．7 計算条件 34
4．8 応力の評価 34
4．8．1 CRD 自動交換機フレーム，旋回用レール，固定用サポート（上部）及び固定用サポート （下部）の応力評価 34
4．8．2 固定用サポート（上部）及び固定用サポート（下部）取付ボルトの応力評価 35
5．評価結果 36
5.1 設計基準対象施設としての評価結果． 36
5.2 重大事故等対処設備としての評価結果• 36

1．概要

本計算書は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」の耐震評価方針に基づき，下位クラス施設である CRD 自動交換機（C クラス施設）が基準地震動 S s に対して十分な構造強度を有していることを確認することで，下部に設置された上位クラス施設である原子炉格納容器下部水位及び原子炉格納容器下部温度に対して，波及的影響 を及ぼさないことを説明するものである。

2．一般事項
2.1 配置概要

CRD 自動交換機は原子炉本体の基礎（以下「RPV ペデスタル」という。）内に設置される。CRD自動交換機は，図 2－1 の位置関係図に示すように，上位クラス施設である原子炉格納容器下部水位及び原子炉格納容器下部温度の直上に設置されていることから，落下により原子炉格納容器下部水位及び原子炉格納容器下部温度に対して波及的影響を及ぼすおそれがある。

図 2－1 CRD 自動交換機と原子炉格納容器下部水位等の位置関係
CRD自動交換機の構造計画を表2-1に示す。
表2－1 構造計画

2． 3 評価方針

CRD 自動交換機の応力評価は，添付書類「VI－2－11－1 波及的影響を及ぼすおそれのある下位 クラス施設の耐震評価方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2構造計画」にて示す CRD 自動交換機の部位を踏まえ「3．評価部位」にて設定する箇所におい て，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく基準地震動 S s による応力等が許容限界内に収まることを，「4．1地震応答解析及び構造強度評価方法」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。 CRD 自動交換機の耐震評価フローを図 2－2 に示す。

図 2－2 CRD 自動交換機の耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

記号	記号の説明	単位
$\mathrm{M}_{2 \mathrm{~S}}$	固定用サポート（下部）RPV ペデスタル壁面側 Z 軸回りモー メント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {S } \mathrm{sz}}{ }^{\text {j }}$	固定用サポート（下部）RPV ペデスタル壁面側 各サポートの Z軸回りモーメント $(\mathrm{j}=1 \sim 4)$	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{3 \mathrm{Sy}}$	固定用サポート（下部）CRD 自動交換機側 Y 軸回りモーメン ト	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{3 \mathrm{Sy}} \mathrm{j}$	固定用サポート（下部）CRD 自動交換機側 各サポートのY軸回りモーメント $(\mathrm{j}=1 \sim 4)$	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{3 \mathrm{Sz}}$	固定用サポート（下部）CRD 自動交換機側 Z 軸回りモーメン ト	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{3 \mathrm{Sz}}{ }^{\text {j }}$	固定用サポート（下部）CRD 自動交換機側 各サポートのZ軸回りモーメント $(\mathrm{j}=1 \sim 4)$	$\mathrm{N} \cdot \mathrm{mm}$
n i b^{*}	固定用サポート 取付けボルト本数	－
Sui	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
Y 1	補強型鋼下端から図心までの距離	mm
Y 2	継目板上端から図心までの距離	mm
Z_{1}	旋回用レールの断面係数	mm^{3}
$\mathrm{Z}_{\text {i }}$	固定用サポート 固定ピンの断面係数	mm^{3}
v	CRD 自動交換機フレームのポアソン比	－
v^{\prime}	安全率	－
λ	有効細長比	－
Λ	限界細長比	－
$\sigma 1$	旋回用レールの曲げ応力	MPa
σ bi＿S ${ }^{* 1}$	固定用サポート 固定ピンの曲げ応力	MPa
σ bi＿Smy ${ }^{*}$	固定用サポート 固定ピンの曲げ応力 $M_{\text {i s y }}$ による成分	MPa
$\sigma_{\text {bi＿Smz }} * 1$	固定用サポート 固定ピンの曲げ応力 $M_{i s} \mathrm{~S}_{2}$ による成分	MPa
σ c 1	旋回用レールの組合せ応力	MPa
$\sigma \mathrm{cF}$	CRD 自動交換機フレームの組合せ応力	MPa
$\sigma \mathrm{ci}_{-} \mathrm{S}^{* 1}$	固定用サポート 固定ピンの圧縮応力	MPa
σ F	CRD 自動交換機フレームの引張応力	MPa
σ fai＿s ${ }^{* 1}$	固定用サポート 固定ピンの組合せ応力	MPa
$\sigma_{\text {i＿b }}{ }^{* 1}$	固定用サポート 取付ボルトの引張応力	MPa
$\sigma_{\text {i＿bmy }} * 1$	固定用サポート 取付ボルトの引張応力 $M_{\text {i S y }}$ による成分	MPa
$\sigma_{i_{-} \mathrm{b}}{ }^{* 1}$	固定用サポート 取付ボルトの引張応力 $\mathrm{F}_{\mathrm{i} \mathrm{S}_{\mathrm{z}} \text { による成分 }}$	MPa

記号	記号の説明	単位
τ_{1}	旋回用レールのせん断応力	MPa
$\tau_{\text {F }}$	CRD 自動交換機フレームのせん断応力	MPa
$\tau_{\text {i＿}}{ }^{* 1}$	固定用サポート 取付ボルトのせん断応力	MPa
$\tau_{\text {i＿bmz }}{ }^{* 1}$	固定用サポート 取付ボルトのせん断応力 $\mathrm{M}_{\mathrm{i} \text { S z }}$ による成分	MPa
$\tau_{\text {i＿b }}{ }^{* 1}$	固定用サポート 取付ボルトのせん断応力 F i S x による成分	MPa
$\tau_{\text {i＿b y }} * 1$	固定用サポート 取付ボルトのせん断応力 F is yによる成分	MPa
τ i＿s $^{* 1}$	固定用サポート 固定ピンのせん断応力	MPa
$\tau_{\text {i＿S y }}{ }^{* 1}$	固定用サポート 固定ピンのせん断応力 $\mathrm{F}_{\text {i S y による成分 }}$	MPa
$\tau_{\text {i＿S }}{ }^{* 1}$		MPa

注記 $* 1: i=1$ は固定用サポート（上部），$i=2$ は固定用サポート（下部）を示す。
2.6 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第4位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
長	下記以外の長さ	mm	－	－	整数位＊${ }^{*}$
さ	部材断面寸法	mm	小数点以下第 2 位＊3	四捨五入	小数点以下第 1 位 ${ }^{* 2}$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{* 4}$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{*} 4$
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁 ${ }^{* 4}$
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力	MPa	小数点以下第 1 位	切捨て	整数位＊5

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊3：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊ 4 ：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
CRD自動交換機の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づ き，CRD自動交換機の落下により，上位クラス施設が損傷することを防止するために，CRD自動交換機フレーム（プラットホーム）及びCRD自動交換機フレーム（作業架台）（以下「CRD自動交換機フレーム」という。），旋回用レール，固定用サポート（上部）並びに固定用サポート（下部） について実施する。CRD自動交換機の耐震評価部位については，表2－1の概略構造図に示す。

4．地震応答解析及び構造強度評価
4.1 地震応答解析及び構造強度評価方法
（1）構造概要図を図4－1に示す。また，固定用サポート（上部）及び固定用サポート（下部） の配置図を図4－2に示す。
（2）CRD自動交換機フレームは，鉛直方向下向きに対しては，旋回用レール上の車輪，固定用 サポート（上部）及び固定用サポート（下部）によって荷重を支持する。鉛直方向上向 き及び水平方向に対しては，固定用サポート（上部）及び固定用サポート（下部）によ つて荷重を支持する。
（3）耐震計算に用いる寸法は，公称値を使用する。
（4）CRD自動交換機の評価は，スペクトルモーダル解析及び静解析を用いる。

図4－1 構造概要図
\square
図 4－2（b）固定用サポート（下部）配置図

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
CRD自動交換機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用い るものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
CRD自動交換機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－ 3に示す。

4．2．3 使用材料の許容応力評価条件
CRD自動交換機の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いる ものを表4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）					
施設区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
その他	CRD 自動交換機	C	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

施設区分	機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
その他	CRD 自動交換機	－	－＊	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(V_{A} S\right.$ として， $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
O 2 （5）VI－2－11－2－21 R 0

評価部位		材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
CRD 自動交換機フレーム			周囲環境温度	85	－	227	377	－
			周囲環境温度	85	－	218	377	－
			周囲環境温度	85	－	202	377	－
			周囲環境温度	85	－	178	456	205
旋回用レール			周囲環境温度	85	－	218	377	－
$\begin{gathered} \text { 固定用 } \\ \text { サポート } \\ \text { (上部) } \end{gathered}$	固定ピン		周囲環境温度	85	－	678	846	－
	取付 ボルト		周囲環境温度	85	－	701	847	－
$\begin{gathered} \text { 固定用 } \\ \text { サポート } \\ \text { (下部) } \end{gathered}$	固定ピン		周囲環境温度	85	－	678	846	－
	$\begin{aligned} & \text { 取付 } \\ & \text { ボルト } \end{aligned}$		周囲環境温度	85	－	701	847	－
注記＊		のらち，最小の値を記載						

O 2 （5）VI－2－11－2－21 R 0
表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部位		材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
CRD 自動交換機フレーム			周囲環境温度	178	－	199	373	－
			周囲環境温度	178	－	190	373	－
			周囲環境温度	178	－	174	373	－
			周囲環境温度	178	－	148	410	205
旋回用レール			周囲環境温度	178	－	190	373	－
$\begin{gathered} \text { 固定用 } \\ \text { サポート } \\ \text { (上部) } \end{gathered}$	固定ピン		周囲環境温度	178	－	629	834	－
	$\begin{aligned} & \text { 取付 } \\ & \text { ボルト } \end{aligned}$		周囲環境温度	178	－	639	847	－
$\begin{gathered} \text { 固定用 } \\ \text { サポート } \\ \text { (下部) } \end{gathered}$	固定ピン		周囲環境温度	178	－	629	834	－
	$\begin{aligned} & \text { 取付 } \\ & \text { ボルト } \end{aligned}$		周囲環境温度	178	－	639	847	－
注記		のらち，最小の値を記載						

4．3 解析モデル及び諸元

CRD 自動交換機の解析モデルを図 4－3に，解析モデルの概要を以下に示す。
また，機器諸元を本計算書の【CRD 自動交換機の耐震性についての計算結果】の機器要目に示す。
（1）CRD自動交換機の耐震計算に用いる解析モデルは，はり要素を用いたFEMモデルとする。
（2）CRD自動交換機の質量としてCRD自動交換機フレーム，固定用サポート（上部），固定用 サポート（下部）及びその他の搭載機器を考慮する。
（3）旋回用レール，固定用サポート（上部）及び固定用サポート（下部）は剛なRPVペデスタ ル壁に支持されているものとする。
（4）鉛直方向下向き荷重は，旋回用レール上の車輪，固定用サポート（上部）及び固定用サ ポート（下部）で，上向き荷重及び水平荷重は固定用サポート（上部）及び固定用サポ ート（下部）で支持されるため，各々を考慮したモデルとする。
（5）地震荷重をCRD自動交換機に入力する際の境界条件として，図4－2に示す固定用サポート （上部）及び固定用サポート（下部）の取付位置において鉛直方向及び水平方向を拘束 する。自重による静解析を実施する場合，固定用サポート（上部）及び固定用サポート （下部）に加え，旋回用レール上の車輪位置において鉛直方向を拘束する。
（6）解析コードは，「MSC NASTRAN」を使用し，固有値及び荷重を求める。なお，評価に用い る解析コードの検証及び妥当性確認等の概要については，添付資料「VI－5 計算機プロ グラム（解析コード）の概要」に示す。

4． 4 固有周期

固有値解析の結果を表4－7に示す。また，振動モード図を図4－4に示す。

表4－7 固有値解析結果

次数	卓越方向	固有周期 （s）	刺激係数＊			
			水平方向		鉛直方向	
			NS 方向	EW 方向		
1 次	水平（NS）方向					
2 次	水平（NS）方向					
3 次	水平（EW）方向					
4 次	水平（NS）方向					
5 次	水平（EW）方向					
6 次	鉛直方向					
7 次	鉛直方向					
8 次	鉛直方向					
9 次	鉛直方向					
10 次	水平（EW）方向					
11 次	鉛直方向					
12 次	鉛直方向					
13 次	鉛直方向					
14 次	鉛直方向					
15 次	水平（NS）方向					
16 次	水平（NS）方向					
17 次	水平（NS）方向					
18 次	水平（NS）方向					
19 次	水平（NS）方向					
20 次	鉛直方向					
21 次	鉛直方向					
22 次	鉛直方向					
23 次	水平（NS）方向					

注記＊：刺激係数は，モード質量を正規化し固有ベクトルと質量マトリックスの積から算出し た値を示す。

図 4－4（1） 8 次固有周期 振動モード図（鉛直方向卓越モード）

図 4－4（2） 16 次固有周期 振動モード図（水平（NS）方向卓越モード）

図 4－4（3） 3 次固有周期 振動モード図（水平（EW）方向卓越モード）

4.5 設計用地震力

評価に用いる設計用地震力を表4－8に示す。基準地震動 S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。減衰定数は，添付書類「VI －2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 4－8 設計用地震力

注記 $~ 1 ~ 1 ~: ~$ 基準床レベルを示す。
＊2：各モードの固有周期に対し，設計用床応答曲線（S s ）より得られる震度を示す。
4.6 計算方法

4．6．1 CRD 自動交換機フレームの応力
（1）計算方法
CRD 自動交換機フレームに発生する応力は，スペクトルモーダル解析及び静解析により求める。各フレームの応力は図 4－3 の計算モデルにおいて，解析コード「MSC NASTRAN」を使用し計算する。
a．CRD 自動交換機フレームの応力
（a）組合せ応力
組合せ応力は次式となる。

4．6．2 旋回用レールの応力

（1）計算方法
 より求める。

旋回用レールの応力を図 4－5，図 4－6 及び図 4－7 を用いて計算する。図 4－5 に示すよう に，補強型鋼の上に円周上に敷設された旋回用レールは，等間隔に配置されたレールサポ ートにより支持されている。本評価では保守的に，旋回用レールに加わる荷重（ $\mathrm{F}_{\mathrm{v} 1} \sim \mathrm{~F}$ v6）の最大値がレールサポート間の中央に負荷されることとする。図 4－6 に示すように，旋回用レールの支持間隔を L_{1} とし， $\mathrm{F}_{\mathrm{V} 1} \sim \mathrm{~F}_{\mathrm{V} 6}$ の最大値を用いて，集中荷重が作用す るものとする。

旋回用レールに作用する鉛直荷重

$$
\begin{equation*}
\mathrm{F}_{\mathrm{vL}}=\mathrm{Max}_{\mathrm{x}} \quad\left(\mathrm{~F}_{\mathrm{v} 1} \sim \mathrm{~F}_{\mathrm{v} 6}\right) \tag{4.6.2.1}
\end{equation*}
$$

なお，旋回用レールは全周に渡り剛な梁の上に乗って固定されているが，図4－7 に示す ように，一部，レール継目位置において断面が小さくなる。従って，レール継目位置での断面にて評価を行う。
a．曲げ応力
旋回用レールに作用する曲げモーメントは次式となる。

$$
\begin{equation*}
\mathrm{M}_{1}=\mathrm{F}_{\mathrm{VL}_{\mathrm{L}}} \cdot \frac{\mathrm{~L}_{1}}{4} \tag{4.6.2.2}
\end{equation*}
$$

評価断面の断面係数 Z_{1} は図 4－7に示す図心までの距離 y_{1} ， y_{2} 及び断面 2 次モーメ ント I 1_{1} を用いて以下のように算出する。

$$
\begin{align*}
& Z_{1}=\min \left(\frac{I_{1}}{y_{1}}, \frac{I_{1}}{y_{2}}\right) \cdots \cdots \cdots \cdot \tag{4.6.2.3}\\
& \sigma_{1}=\frac{\mathrm{M}_{1}}{\mathrm{Z}_{1}} \tag{4.6.2.4}
\end{align*}
$$

b．せん断応力
せん断力を受ける旋回用レールの断面積を A_{1} とすると，せん断応力は次式となる。

$$
\begin{equation*}
\tau_{1}=\frac{\mathrm{F}_{\mathrm{VL}}}{\mathrm{~A}_{1}} \tag{4.6.2.5}
\end{equation*}
$$

c．組合せ応力
組合せ応力は次式となる。

$$
\sigma_{c 1}=\sqrt{\sigma_{1}^{2}+3 \cdot \tau_{1}^{2}} \cdots \cdots \cdots \text { (4.6.2.6) }
$$

図 4－5 旋回用レール及びレールサポート配置

図 4－6 旋回用レール評価モデル

\times ：図心
図 4－7 旋回用レール評価断面詳細

4．6．3 固定用サポート（上部）の応力

（1）計算方法
固定用サポート（上部）に発生する並進力及びモーメントはスペクトルモーダル解析及 び静解析により求める。固定用サポート（上部）4 か所に発生する並進力を $\mathrm{F}_{1 \mathrm{~s} \times 1} \sim \mathrm{~F}_{1}$
 を $\mathrm{M}_{1 \mathrm{Sy} 1} \sim \mathrm{M}_{1 \mathrm{Sy} 4}$ 及び $\mathrm{M}_{1 \mathrm{~S}_{\mathrm{z}}} \sim \mathrm{M}_{1 \mathrm{~S}_{\mathrm{z}} 4}$ とする。

以下の式において，各サポートに発生する並進力及びモーメントを， $\mathrm{F}_{1 \mathrm{sx}}, \mathrm{F}_{1 \mathrm{syy}}$ ， F $1 \mathrm{~S}_{\mathrm{z}}, \mathrm{M}_{1 \mathrm{Sy}}$ 及び $\mathrm{M}_{1 \mathrm{~S}_{\mathrm{z}}}$ に代入し，それぞれのサポートに対する応力を算出する。なお，鉛直方向並進力 $\mathrm{F}_{1 \mathrm{~S}}$ は上向きと下向きで値が異なるため，計算結果が厳しくなる方を採用 する。
a．固定用サポート（上部）固定ピンの応力
固定ピンの応力を図 4－8を用いて計算する。
（a）圧縮応力
圧縮力を受ける固定ピンの断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~S}}=\frac{\pi}{4} \cdot \mathrm{~d}_{1 \mathrm{~S}}^{2} \quad \tag{4.6.3.1}
\end{equation*}
$$

並進力 $\mathrm{F}_{1 \mathrm{Sx}}$ による圧縮応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c} 1_{-} \mathrm{S}}=\frac{\mathrm{F}_{1 \mathrm{Sx}}}{\mathrm{~A}_{1 \mathrm{~S}}} \tag{4.6.3.2}
\end{equation*}
$$

（b）曲げ応力
曲げ応力が発生する固定ピンの断面係数は次式となる。

$$
\begin{equation*}
\mathrm{Z}_{1 \mathrm{~S}}=\frac{\pi}{32} \cdot \mathrm{~d}_{1 \mathrm{~s}}^{3} \tag{4.6.3.3}
\end{equation*}
$$

モーメント $\mathrm{M}_{1 \mathrm{~s} \text { y }}$ 及び $\mathrm{M}_{1 \mathrm{~s} z}$ による曲げ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{b} 1_{-} \mathrm{Smy}}=\frac{\mathrm{M}_{1 \mathrm{Sy}}}{\mathrm{Z}_{1 \mathrm{~S}}}, \sigma_{\mathrm{b} 1_{-} \mathrm{Smz}}=\frac{\mathrm{M}_{1 \mathrm{~S} z}}{\mathrm{Z}_{1 \mathrm{~S}}} \quad \cdots \tag{4.6.3.4}
\end{equation*}
$$

固定ピンに発生する曲げ応力は次式となる。
（c）せん断応力
並進力 $\mathrm{F}_{1 \mathrm{~S}}^{\mathrm{s}}$ 及び $\mathrm{F}_{1 \mathrm{~S}} \mathrm{z}$ によるせん断げ応力は次式となる。

$$
\tau_{1-S y}=\frac{F_{1 S y}}{A_{1 \mathrm{~S}}}, \quad \tau_{1_{-} \mathrm{S} z}=\frac{F_{1 \mathrm{~S} z}}{\mathrm{~A}_{1 \mathrm{~S}}} \cdots \cdots \cdots \cdots \text { (4.6.3.6) }
$$

固定ピンに発生するせん断応力は次式となる。

$$
\begin{equation*}
\tau_{1_{-} \mathrm{S}}=\sqrt{\tau_{1_{-S} \mathrm{~S}}{ }^{2+\tau_{1_{\mathrm{S}}}{ }^{2}}} \tag{4.6.3.7}
\end{equation*}
$$

（d）組合せ応力
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{fa} 1_{-} \mathrm{S}}=\sqrt{\sigma_{\mathrm{b} 1_{-} \mathrm{S}}^{2}+3 \cdot \tau_{1_{-} \mathrm{S}}^{2}} \tag{4.6.3.8}
\end{equation*}
$$

図 4－8 固定用サポート（上部）固定ピン
b．固定用サポート（上部）取付ボルトの応力
取付ボルトの応力を図 4－9を用いて計算する。
（a）取付ボルトの引張応力
引張力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~b}}=\frac{\pi}{4} \cdot \mathrm{~d}_{1 \mathrm{~b}}^{2} \tag{4.6.3.9}
\end{equation*}
$$

並進力 $\mathrm{F}_{1 \mathrm{~S}} \mathrm{~S}$ は，取付ボルト $\mathrm{n}_{1 \mathrm{~b}}$ 本で受けるものとし，ボルト 1 本にかかる引張応力は，次式となる。

$$
\begin{equation*}
\sigma_{1-\mathrm{bz}}=\frac{\mathrm{F}_{1 \mathrm{~S}_{\mathrm{z}}}}{\mathrm{n}_{1 \mathrm{~b}} \cdot \mathrm{~A}_{1 \mathrm{~b}}} \tag{4.6.3.10}
\end{equation*}
$$

また，モーメント $\mathrm{M}_{1 \mathrm{~s} \text { y }}$ によ引引張応力は，次式となる。

$$
\begin{equation*}
\sigma_{1-\mathrm{bmy}}=\frac{\mathrm{M}_{1 \mathrm{Sy}}}{\mathrm{n}_{1 \mathrm{~b}} \cdot \mathrm{~L}_{12} \cdot \mathrm{~A}_{1 \mathrm{~b}}} \tag{4.6.3.11}
\end{equation*}
$$

従って，ボルト 1 本にかかる引張応力は次式となる。

$$
\begin{equation*}
\sigma_{1_{-} \mathrm{b}}=\sigma_{1_{-} \mathrm{bz}}+\sigma_{1_{-} \mathrm{bmy}} \tag{4.6.3.12}
\end{equation*}
$$

（b）取付ボルトのせん断応力
せん断力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{1 \mathrm{~b}}=\frac{\pi}{4} \cdot \mathrm{~d}_{1 \mathrm{~b}}^{2} \tag{4.6.3.13}
\end{equation*}
$$

並進力 $\mathrm{F}_{1 \mathrm{Sx}}$ 及び $\mathrm{F}_{1 \mathrm{Sy}} \mathrm{y}$ は，取付ボルト $\mathrm{n}_{1 \mathrm{~b}}$ 本で受けるものとし，ボルト 1 本にか かるせん断応力は，次式となる。

$$
\begin{equation*}
\tau_{1_{-} \mathrm{bx}}=\frac{\mathrm{F}_{1 \mathrm{Sx}}}{\mathrm{~A}_{1 \mathrm{~b}} \cdot \mathrm{n}_{1 \mathrm{~b}}}, \quad \tau_{1_{-b} \mathrm{y}}=\frac{\mathrm{F}_{1 \mathrm{Sy}}}{\mathrm{~A}_{1 \mathrm{~b}} \cdot \mathrm{n}_{1 \mathrm{~b}}} \quad \cdots . . . \tag{4.6.3.14}
\end{equation*}
$$

また，モーメント $\mathrm{M}_{1 \mathrm{~s}}$ によるせん断応力は，次式となる。

$$
\begin{equation*}
\tau_{1 \mathrm{~b} \mathrm{bm}}=\frac{\mathrm{M}_{1 \mathrm{Sz}}}{\mathrm{~A}_{1 \mathrm{~b}} \cdot \mathrm{n}_{1 \mathrm{~b}} \cdot \mathrm{~L}_{11}} \tag{4.6.3.15}
\end{equation*}
$$

従って，ボルト 1 本にかかるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{1_{-} b}=\sqrt{\left(\tau_{1_{-} b x}+\tau_{1_{-} b m z}\right)^{2}+\tau_{1_{-} b y}{ }^{2}} \quad \tag{4.6.3.16}
\end{equation*}
$$

\square
図 4－9 固定用サポート（上部）取付ボルト

4．6．4 固定用サポート（下部）の応力
（1）計算方法
固定用サポート（下部）に発生する並進力及びモーメントはスペクトルモーダル解析及 び静解析により求める。固定用サポート（下部）4 か所のRPV ペデスタル壁面側端部に発

 3Sz4とする。
以下の式において，各サポートに発生する並進力及びモーメントを $\mathrm{F}_{2 \mathrm{sx}}, \mathrm{F}_{2 \mathrm{sy}} \mathrm{y}, \mathrm{F}_{2}$
 ポートに対する応力を算出する。なお，鉛直方向並進力は上向きと下向きで值が異なるた め，計算結果が厳しくなる方を採用する。
a．固定用サポート（下部）固定ピンの応力
固定ピンの応力を図 4－10を用いて計算する。
（a）圧縮応力
圧縮力を受ける固定ピンの断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{2 \mathrm{~S}}=\frac{\pi}{4} \cdot \mathrm{~d}_{2 \mathrm{~S}}^{2} \tag{4.6.4.1}
\end{equation*}
$$

並進力 F 2 Sx による圧縮応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{c} 2-\mathrm{S}}=\frac{\mathrm{F}_{2 \mathrm{Sx}}}{\mathrm{~A}_{2 \mathrm{~S}}} \tag{4.6.4.2}
\end{equation*}
$$

（b）曲げ応力
曲げ応力が発生する固定ピンの断面係数は次式となる。

$$
\begin{equation*}
\mathrm{Z}_{2 \mathrm{~s}}=\frac{\pi}{32} \cdot \mathrm{~d}_{2 \mathrm{~s}}{ }^{3} \tag{4.6.4.3}
\end{equation*}
$$

モーメント $\mathrm{M}_{2 \mathrm{~S}}$ 及び $\mathrm{M}_{2 \mathrm{~S}}$ による曲げ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{b} 2_{-} \mathrm{Smy}}=\frac{\mathrm{M}_{2 \mathrm{Sy}}}{\mathrm{Z}_{2 \mathrm{~S}}}, \sigma_{\mathrm{b} 2_{-} \mathrm{Smz}}=\frac{\mathrm{M}_{2 \mathrm{~S} \mathrm{z}}}{\mathrm{Z}_{2 \mathrm{~S}}} \tag{4.6.4.4}
\end{equation*}
$$

固定ピンに発生する曲げ応力は次式となる。
（c）せん断応力
並進力 $\mathrm{F}_{2 \mathrm{Sy}}$ 及び $\mathrm{F}_{2 \mathrm{Sz}}$ によるせん断げ応力は次式となる。

$$
\begin{equation*}
\tau_{2 _\mathrm{Sy}}=\frac{\mathrm{F}_{2 \mathrm{Sy}}}{\mathrm{~A}_{2 \mathrm{~S}}}, \quad \tau_{2_{-} \mathrm{S} z}=\frac{\mathrm{F}_{2 \mathrm{~S} z}}{\mathrm{~A}_{2 \mathrm{~S}}} \cdots \cdots \cdots \cdots \cdot \tag{4.6.4.6}
\end{equation*}
$$

固定ピンに発生するせん断応力は次式となる。

$$
\begin{equation*}
\tau_{2_{-} \mathrm{S}}=\sqrt{\tau_{2_{-} \mathrm{Sy}}{ }^{2+\tau_{2_{\mathrm{S}}}{ }^{2}}} \tag{4.6.4.7}
\end{equation*}
$$

（d）組合せ応力
組合せ応力は次式となる。

$$
\begin{equation*}
\sigma_{\mathrm{fa} 2_{-} \mathrm{S}}=\sqrt{\sigma_{\mathrm{b} 2_{-} \mathrm{S}}^{2}+3 \cdot \tau_{2_{-} \mathrm{S}}^{2}} \cdots \cdots \cdots \cdots \cdot \cdots \cdot \tag{4.6.4.8}
\end{equation*}
$$

図 4－10 固定用サポート（下部）固定ピン

b．固定用サポート（下部）取付ボルトの応力取付ボルトの応力を図4－11を用いて計算する。
（a）取付ボルトの引張応力
引張力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{2 \mathrm{~b}}=\frac{\pi}{4} \cdot \mathrm{~d}_{2 \mathrm{~b}}^{2} \tag{4.6.4.9}
\end{equation*}
$$

並進力 F 3 S \＆は，取付ボルト $\mathrm{n}_{2 \mathrm{~b}}$ b本で受けるものとし，ボルト 1 本にかかる引張応力は，次式となる。

$$
\begin{equation*}
\sigma_{2 _b z}=\frac{\mathrm{F}_{3 \mathrm{~S}_{\mathrm{z}}}}{\mathrm{n}_{2 \mathrm{~b}} \cdot \mathrm{~A}_{2 \mathrm{~b}}} \tag{4.6.4.10}
\end{equation*}
$$

また，モーメント $\mathrm{M}_{3 \mathrm{sy}}$ による引張応力は，次式となる。

$$
\begin{equation*}
\sigma_{2-b m y}=\frac{\mathrm{M}_{3 \mathrm{Sy}}}{\mathrm{n}_{2 \mathrm{~b}} \cdot \mathrm{~L}_{22} \cdot \mathrm{~A}_{2 \mathrm{~b}}} \tag{4.6.4.11}
\end{equation*}
$$

従って，ボルト 1 本にかかる引張応力は次式となる。

$$
\begin{equation*}
\sigma_{2 _\mathrm{b}}=\sigma_{2_{-} \mathrm{bz}}+\sigma_{2_{-} \mathrm{bmy}} \tag{4.6.4.12}
\end{equation*}
$$

（b）取付ボルトのせん断応力
せん断力を受けるボルト 1 本の断面積は次式となる。

$$
\begin{equation*}
\mathrm{A}_{2 \mathrm{~b}}=\frac{\pi}{4} \cdot \mathrm{~d}_{2 \mathrm{~b}}^{2} \tag{4.6.4.13}
\end{equation*}
$$

並進力 $\mathrm{F}_{3 \mathrm{Sx}}$ 及び $\mathrm{F}_{3 \mathrm{~S}} \mathrm{y}$ は，取付ボルト $\mathrm{n}_{2} \mathrm{~b}$ 本で受けるものとし，ボルト 1 本にか かるせん断応力は，次式となる。

$$
\begin{equation*}
\tau_{2 \mathrm{~b} \mathrm{~b}}=\frac{\mathrm{F}_{3 \mathrm{Sx}}}{\mathrm{~A}_{2 \mathrm{~b}} \cdot \mathrm{n}_{2 \mathrm{~b}}}, \quad \tau_{2-\mathrm{b} y}=\frac{\mathrm{F}_{3 \mathrm{Sy}}}{\mathrm{~A}_{2 \mathrm{~b}} \cdot \mathrm{n}_{2 \mathrm{~b}}} \quad \cdots . . . \tag{4.6.4.14}
\end{equation*}
$$

また，モーメント $\mathrm{M}_{3 \mathrm{~s}}$ によるせん断応力は，次式となる。

$$
\begin{equation*}
\tau_{2 \mathrm{bbm}}=\frac{\mathrm{M}_{3 \mathrm{~S}_{\mathrm{z}}}}{\mathrm{~A}_{2 \mathrm{~b}} \cdot \mathrm{n}_{2 \mathrm{~b}} \cdot \mathrm{~L}_{21}} \tag{4.6.4.15}
\end{equation*}
$$

従って，ボルト 1 本にかかるせん断応力は次式となる。

$$
\begin{equation*}
\tau_{2_{-} b}=\sqrt{\left(\tau_{2_{-} b x}+\tau_{2_{-} b m z}\right)^{2}+\tau_{2_{-} b y}{ }^{2}} \quad \cdot \cdot \cdot \cdot \cdot \cdot \cdot \tag{4.6.4.16}
\end{equation*}
$$

図 4－11 固定用サポート（下部）取付ボルト

枠囲みの内容は商業機密の観点から公開できません。

4．7 計算条件
応力解析に用いる自重及び荷重は，本計算書の【CRD 自動交換機の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 CRD 自動交換機フレーム，旋回用レール，固定用サポート（上部）及び固定用サポート （下部）の応力評価

4．6．1項，4．6．2 項，4．6．3 項及び4．6．4項で求めた CRD 自動交換機フレーム，旋回用 レール，固定用サポート（上部）及び固定用サポート（下部）の各応力が下表で定めた許容応力以下であること。ただし，許容組合せ応力は f_{t} 以下であること。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

ただし，

$$
\begin{align*}
\lambda & =\frac{L_{k}}{i} \cdot \cdot \cdot \cdot \tag{4.8.1.1}\\
\Lambda & =\sqrt{\frac{\pi^{2} \cdot \mathrm{E}_{2}}{0.6 \cdot \mathrm{~F}^{*}} \cdot \cdot} \tag{4.8.1.2}\\
v^{\prime} & =1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2} \tag{4.8.1.3}
\end{align*}
$$

4．8．2 固定用サポート（上部）及び固定用サポート（下部）取付ボルトの応力評価
4．6．3 項及び，4．6．4項で求めた固定用サポート（上部）及び固定用サポート（下部）取付ボルトの引張応力は，下記より求めた許容引張応力 f_{t} 以下であること。 ただし，$f_{\mathrm{t} 0}$ は下表による。

$$
\begin{equation*}
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} 0}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t} 0}\right] \tag{4.8.2.1}
\end{equation*}
$$

せん断応力 τ_{b} はせん断力のみを受ける取付ボルトの許容せん断応力 f_{s} b以下であるこ と。ただし，$f_{\mathrm{s} \text { bは下表による。 }}$

	基準地震動S s による 荷重との組合せの場合
許容引張応力 $f_{\mathrm{t} 0}$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{Sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

CRD 自動交換機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界 を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

5.2 重大事故等対処設備としての評価結果

CRD 自動交換機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認し た。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
【CRD 自動交換機の耐震性についての計算結果】
1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び 床面高さ（m）
CRD 自動交換機	C	$\begin{gathered} \mathrm{RPV} \text { ペデスタル } \\ \text { 0.P. 1. } 150^{* 1} \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：水平（NS）方向で，最も卓越するモードを代表で記載。
＊3：鉛直方向で，最も卓越するモードを代表で記載。
＊4：基準地震動 S s に基づく設計用床応答曲線より得られる値。
O2（5）VI－2－11－2－21 R 0

L_{1} $(\mathrm{~mm})$	A_{1} $\left(\mathrm{~mm}^{2}\right)$	y_{1} $(\mathrm{~mm})$	y_{2} $(\mathrm{~mm})$	I_{1} $\left(\mathrm{~mm}^{4}\right)$	Z_{1} $\left(\mathrm{~mm}^{3}\right)$

1.2 機器要目

E_{1} (MPa)	E_{2} (MPa)
1.99×10^{5}	1.91×10^{5}
$\mathrm{A}_{1 \mathrm{~s}}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{1 \mathrm{~b}}$ $\left(\mathrm{~mm}^{2}\right)$

O 2 （5） $\mathrm{VI}-2-11-2-21 \mathrm{R} 0$

旋回用レール		
S y	S_{u}	F^{*}
（MPa）	（MPa）	（MPa）
218	377	261

注記＊：最大応力発生部材

固定用サポート（上部）						固定用サポート（下部）					
固定ピン			取付ボルト			固定ピン			取付ボルト		
$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
678	846	592	701	847	592	678	846	592	701	847	592

O 2 （5）VI－2－11－2－21 R 0

$\mathrm{F}_{1 \mathrm{~s} \times 1}$ （N）	$\mathrm{F}_{1 \mathrm{~s} \times 2}$ （N）	$\mathrm{F}_{1 \mathrm{~S} \times 3}$ （N）	$\mathrm{F}_{1 \mathrm{~S} \times 4}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 1}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 2}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 3}$ （N）	$\mathrm{F}_{1 \mathrm{Sy} 4}$ （N）	$F_{1 \mathrm{~S}_{\mathrm{z} 1 \mathrm{U}}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 2 \mathrm{U}}$ （N）	$\mathrm{F}_{1 \mathrm{sz} 3 \mathrm{U}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 4 \mathrm{U}}$ （N）
$\mathrm{F}_{1 \mathrm{Sz1D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 2 \mathrm{D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 3 \mathrm{D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 4 \mathrm{D}}$ （N）	$\begin{gathered} \mathrm{F}_{2 \mathrm{~s} \times 1} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{2 \mathrm{~S} \times 2} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{2 \mathrm{~S} \times 3} \\ (\mathrm{~N}) \end{gathered}$	$\mathrm{F}_{2 \mathrm{Sx}}$ （N）	$\begin{gathered} \mathrm{F}_{2 \mathrm{Sy} 1} \\ (\mathrm{~N}) \end{gathered}$	$\mathrm{F}_{2 \mathrm{sy} 2}$ （N）	$\begin{gathered} \mathrm{F}_{2 \mathrm{sy} 3} \\ (\mathrm{~N}) \end{gathered}$	$\mathrm{F}_{2 \mathrm{Sy} 4}$ （N）

$\mathrm{F}_{2 \mathrm{Sz1U}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 2 \mathrm{U}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 3 \mathrm{U}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 4 \mathrm{U}}$ （N）	$\mathrm{F}_{2 \mathrm{sz1D}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 2 \mathrm{D}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 3 \mathrm{D}}$ （N）	$\mathrm{F}_{2 \mathrm{~s} 24 \mathrm{D}}$ （N）	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 3} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 4} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
$\begin{gathered} \mathrm{M}_{1 \mathrm{sz} 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sz} 2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{szz}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sz}} 4 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~s} \text { y } 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sy} 2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~s} \text { y } 3} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sy}} 4 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz} 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz}} 3 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz4}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$

O 2 （5）VI－2－11－2－21 R 0

1． 4 結論

機器名称	設備分類	据付場所及び 床面高さ（m）	固有周期（s）		基準地震動S s		周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向＊2	鉛直方向＊3	水平方向設計震度	鉛直方向設計震度	
CRD 自動交換機	－	$\begin{gathered} \mathrm{RPV} \text { ペデスタル } \\ \text { 0. P. 1. } 150^{* 1} \end{gathered}$			＊ 4	＊ 4	178

注記 $* 1$ ：基準床レベルを示す。
＊2：水平（NS）方向で，最も卓越するモードを代表で記載。
＊3：鉛直方向で，最も卓越するモードを代表で記載。
＊ 4 ：基準地震動 S s に基づく設計用床応答曲線より得られる値。
O 2 （5）VI－2－11－2－21 R 0

L_{1} $(\mathrm{~mm})$	A_{1} $\left(\mathrm{~mm}^{2}\right)$	y_{1} $(\mathrm{~mm})$	y_{2} $(\mathrm{~mm})$	I_{1} $\left(\mathrm{~mm}^{4}\right)$	Z_{1} $\left(\mathrm{~mm}^{3}\right)$

O2（5）VI－2－11－2－21 R O

旋回用レール		
S_{y} (MPa)	S_{u} (MPa)	F^{*} (MPa)
190	373	228

固定用サポート（上部）						固定用サポート（下部）					
固定ピン			取付ボルト			固定ピン			取付ボルト		
$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
629	834	584	639	847	592	629	834	584	639	847	592

O 2 （5）VI－2－11－2－21 R 0

$\mathrm{F}_{1 \mathrm{~s} \times 1}$ （N）	$\mathrm{F}_{1 \mathrm{~s} \times 2}$ （N）	$\mathrm{F}_{1 \mathrm{~s} \times 3}$ （N）	$\mathrm{F}_{1 \mathrm{~s} \times 4}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 1}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 2}$ （N）	$\mathrm{F}_{1 \mathrm{~s} \text { y } 3}$ （N）	$\mathrm{F}_{1 \mathrm{sy} 4}$ （N）	$F_{1 S_{z 1 U}}$ （N）	$F_{1 S z 2 U}$ （N）	$F_{1 \mathrm{Sz} 3 \mathrm{U}}$ （N）	$F_{1 S_{z 4 U}}$ （N）
$F_{1 S_{z 1 D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 2 \mathrm{D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 3 \mathrm{D}}$ （N）	$\mathrm{F}_{1 \mathrm{Sz} 4 \mathrm{D}}$ （N）	$\mathrm{F}_{2 \mathrm{~S} \times 1}$ （N）	$\mathrm{F}_{2 \mathrm{~s} \times 2}$ （N）	$\mathrm{F}_{2 \mathrm{~S} \times 3}$ （N）	$\mathrm{F}_{2 \mathrm{~S} \times 4}$ （N）	$\mathrm{F}_{2 \mathrm{Sy} 1}$ （N）	$\mathrm{F}_{2 \mathrm{sy} 2}$ （N）	F 2 sy 3 （N）	$\mathrm{F}_{2 \mathrm{Sy} 4}$ （N）

$F_{2 S_{z 1 U}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 2 \mathrm{U}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 3 \mathrm{U}}$ （N）	$F_{2 S z 4 U}$ （N）	$\mathrm{F}_{2 \mathrm{~S}_{21 \mathrm{D}}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 2 \mathrm{D}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 3 \mathrm{D}}$ （N）	$\mathrm{F}_{2 \mathrm{Sz} 4 \mathrm{D}}$ （N）	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{~s} \text { y } 3} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sy} 4} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$

$\begin{gathered} \mathrm{M}_{1 \mathrm{sz} 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sz}} 2 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sz}} 3 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1 \mathrm{sz}} 4 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~S} \text { y } 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~s} \text { y }} \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{~s} \text { y } 3} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sy} 4} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz} 1} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz} 2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz}} 3 \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2 \mathrm{sz}}{ }^{2} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$

$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \\ & i \end{aligned}\right.$
$\left\lvert\, \begin{aligned} & 0 \\ & z \\ & i \\ & i \\ & i \\ & i \end{aligned}\right.$
$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$
$\begin{gathered} \stackrel{n}{x} \\ \infty \\ \infty \\ i \\ i \end{gathered}$
$\begin{aligned} & \vec{x} \\ & \infty \\ & \infty \\ & \text { is } \\ & \hline \end{aligned}$

O 2 （5）VI－2－11－2－21 R 0

2. 4 結論

VI－2－12 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価

VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関する影響評価結果

VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関する影響評価結果
1．概要 1
2．水平 2 方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動 1
3．各施設における水平 2 方向及び鉛直方向地震力の組合せに対する影響評価結果 1
3.1 建物•構築物 1
3．1．1 水平2方向及び鉛直方向地震力の組合せの評価部位の抽出 1
3．1．2 水平2方向及び鉛直方向地震力の組合せの影響評価部位の抽出結果 16
3．1．3 水平2方向及び鉛直方向地震力の影響評価方針 18
3．1．4 水平2方向及び鉛直方向地震力の影響評価結果 19
3.2 機器•配管系 43
3．2．1 水平2方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出 43
3．2．2 建物•構築物及び屋外重要土木構造物の検討結果を踏まえた機器•配管系の 設備の抽出 45
3．2．3 水平2方向及び鉛直方向地震力の評価部位の抽出結果 45
3．2．4 水平2方向及び鉛直方向地震力の組合せの影響評価 45
3．2．5 水平2方向及び鉛直方向地震力の影響評価結果 46
3．2．6 まとめ 47
3.3 屋外重要土木構造物 66
3．3． 1 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出 66
3.3 .2 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果 83
3．3．3 水平 2 方向及び鉛直方向地震力の影響評価結果 94
3．3．4 まとめ 108
3． 4 津波防護施設，浸水防止設備及び津波監視設備 109
3．4．1 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出 109
3．4．2 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果 131
3．4．3 水平 2 方向及び鉛直方向地震力の影響評価結果 134
3．4．4 まとめ 149

1．概要
本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」のうち「4．1 地震力の算定法
（2）動的地震力」及び，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せ に関する影響評価方針」に基づき，水平2方向及び鉛直方向地震力により，施設が有する耐震性に及ぼす影響について評価した結果を説明するものである。

2．水平 2 方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動
水平2方向及び鉛直方向地震力の組合せによる影響評価には，基準地震動 S s を用い る。基準地震動 S s は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」による。

ここで，水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる基準地震動 S s は，複数の基準地震動 S s における地震動の特性及び包絡関係を，施設の特性によ る影響も考慮した上で確認し，本影響評価に用いる。

3．各施設における水平 2 方向及び鉛直方向地震力の組合せに対する影響評価結果

3.1 建物•構築物

3．1．1 水平 2 方向及び鉛直方向地震力の組合せの評価部位の抽出
（1）耐震評価上の構成部位の整理
建物•構築物における耐震評価上の構成部位を整理し，各建屋において，該当す る耐震評価上の構成部位を網羅的に確認した。確認した結果を表3－1－1に示す。
（2）水平 2 方向及び鉛直方向地震力の組合せによる影響が想定される応答特性の整理
建物•構築物における耐震評価上の構成部位について，水平2方向及び鉛直方向地震力の組合せの影響が想定される応答特性を整理した。応答特性は，荷重の組合 せによる影響が想定されるもの及び 3 次元的な建屋挙動から影響が想定されるも のに分けて整理した。整理した結果を表3－1－2及び3－1－3に示す。

なお，隣接する上位クラス建物•構築物への波及的影響防止のための建物•構築物の評価は，上位クラスの建物•構築物との相対変位による衝突の有無の判断が基本となる。そのため，せん断及び曲げ変形評価を行うこととなり，壁式構造では耐震壁（ラーメン構造では柱，はり）を主たる評価対象部位とし，その他の構成部位 については抽出対象に該当しない。
（3）荷重の組合せによる応答特性が想定される部位の抽出
表3－1－1に示す耐震評価上の構成部位のうち，表3－1－2に示す荷重の組合せによ る応答特性により，水平2方向及び鉛直方向地震力の影響が想定される部位を抽出 した。抽出した結果を表3－1－4に示す。

応答特性（1）－1「直交する水平2方向の荷重が，応力として集中」する部位として，排気筒，緊急用電気品建屋，第1号機排気筒の柱（隅部），原子炉建屋，制御建屋，第3号機海水熱交換器建屋，緊急用電気品建屋，緊急時対策建屋，第 1 号機排気筒の基礎（矩形）を抽出した。

なお，排気筒の基礎は，マスコンクリート基礎であり，剛体とみなすことから該当しない。

また，応答特性（1）－2「面内方向の荷重を負担しつつ，面外方向の荷重が作用」す る部位としては，使用済燃料プールの壁（一般部）並びに原子炉建屋，制御建屋， タービン建屋，補助ボイラー建屋，第 1 号機制御建屋，第 3 号機海水熱交換器建屋，緊急用電気品建屋，緊急時対策建屋の壁（地下部）を抽出した。
（4）3次元的な応答特性が想定される部位の抽出
表3－1－1に示す耐震評価上の構成部位のうち，荷重の組合せによる応答特性が想定される部位として抽出されなかった部位について，表3－1－3に示す 3 次元的な応答特性により，水平2方向及び鉛直方向地震力の影響が想定される部位を抽出した。抽出した結果を表3－1－5に示す。

応答特性（2）－1「面内方向の荷重に加え，面外慣性力の影響が大きい」可能性があ る部位として，原子炉建屋（燃料取替床レベル）の壁（一般部）を抽出した。

応答特性（2）－2「加振方向以外の方向に励起される振動」が発生する可能性がある部位として，抽出する部位はなかった。

O 2 （5）VI－2－12－1 R 0
表 3－1－1 各建物•構築物における耐震評価上の構成部位（1／3）

耐震性評価部位		原子炉建屋			制御建屋	排気筒
			使用済燃料 プール	上部鉄骨		
		RC 造	RC 造	S 造，SRC 造	S 造，RC 造	S 造，RC 造
柱	一般部	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
	隅部	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
	地下部	\bigcirc	－	－	\bigcirc	－
はり	一般部	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc
	地下部	\bigcirc	－	－	\bigcirc	－
	鉄骨トラス	－	－	\bigcirc	\bigcirc	－
壁	一般部	\bigcirc	\bigcirc	－	\bigcirc	－
	地下部	\bigcirc	－	－	\bigcirc	－
	鉄骨ブレース	－	－	\bigcirc	－	\bigcirc
床 • 屋根	一般部	\bigcirc	\bigcirc	－	\bigcirc	－
基礎	矩形	\bigcirc	－	－	\bigcirc	\bigcirc
	杭基礎	－	－	－	－	－

凡例 ○：対象の構造部材あり，－：対象の構造部材なし
0 y \quad－$-\mathrm{II}-\mathrm{Z}-\mathrm{IA}$（c）Z O
表 3－1－1 各建物•構築物における耐震評価上の構成部位（2／3）

耐震性評価部位		タービン建屋		補助ボイラー建屋	第 1 号機制御建屋
			上部鉄骨		
		RC 造	S 造，SRC 造	S 造，RC 造，SRC 造	S 造，RC 造
柱	一般部	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	隅部	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	地下部	\bigcirc	－	\bigcirc	\bigcirc
はり	一般部	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	地下部	\bigcirc	－	\bigcirc	\bigcirc
	鉄骨トラス	－	\bigcirc	－	－
壁	一般部	\bigcirc	－	\bigcirc	\bigcirc
	地下部	\bigcirc	－	\bigcirc	\bigcirc
	鉄骨ブレース	－	－	－	－
床•屋根	一般部	\bigcirc	－	\bigcirc	\bigcirc
基礎	矩形	\bigcirc	－	\bigcirc	\bigcirc
	杭基礎	－	－	－	－

凡例 ○：対象の構造部材あり，－：対象の構造部材なし
O 2 （5）VI－2－12－1 R 0
表3－1－1 各建物•構築物における耐震評価上の構成部位（3／3）

耐震性評価部位		第 3 号機海水熱交換器建屋	緊急用電気品建屋	緊急時対策建屋	第1号機排気筒
		RC 造	S 造，RC 造	S 造，RC 造，SRC 造	S 造，RC 造
柱	一般部	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	隅部	\bigcirc	\bigcirc	－	\bigcirc
	地下部	\bigcirc	\bigcirc	\bigcirc	－
はり	一般部	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	地下部	\bigcirc	\bigcirc	\bigcirc	－
	鉄骨トラス	－	－	－	－
壁	一般部	\bigcirc	\bigcirc	\bigcirc	－
	地下部	\bigcirc	\bigcirc	\bigcirc	－
	鉄骨ブレース	－	－	－	\bigcirc
床•屋根	一般部	\bigcirc	\bigcirc	\bigcirc	－
基礎	矩形	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	杭基礎	－	－	－	－

凡例 ○：対象の構造部材あり，－：対象の構造部材なし

表 3－1－2 水平2方向及び鉛直方向地震力の影響が想定される応答特性 （荷重の組合せによる応答特性）

	荷重の組合せによる応答特性		影響想定部位
$\begin{aligned} & 0 \\ & \sim \\ & \sim \\ & \stackrel{1}{1} \\ & \stackrel{1}{\sim} \\ & \stackrel{1}{1} \\ & \stackrel{1}{4} \end{aligned}$	（1）－1	直交する水平 2 方向の荷重 が，応力とし て集中	応力が集中する隅柱等 （例） 隅柱 円筒壁 $y^{\mathrm{z}} \overbrace{}^{x}$ 矩形の基礎版
\sim 0	（1）－2	面内方向の荷重を負担しつ つ，面外方向 の荷重が作用	土圧を負担する地下耐震壁水圧を負担するプール壁等 （例）

表 3－1－3 水平2方向及び鉛直方向地震力の影響が想定される応答特性 （3次元的な応答特性）

0$\sim$$\sim-11\sim$$\sim$$\sim$1-	3 次元的な応答特性		影響想定部位
	（2）-1	面内方向の荷重に加 え，面外慣性力の影響 が大きい	大スパン又は吹き抜け部に設置された部位 （例） 面外慣性力 耐震構造部材 鉄骨トラス
（1） \sim \sim	（2）－2	加振方向以外の方向に励起される振動	塔状構造物等含む，ねじれ挙動が想定される建物•構築物 （例） 耐震構造部材 壁 鉄骨架構 ブレース

表 3－1－4 水平2方向及び鉛直方向地震力の組合せによる影響の確認が必要な部位の抽出（1／3）

耐震性評価部位		RC 造	原子炉建屋		制御建屋	排気筒	
		使用済燃料プール	上部鉄骨				
		RC 造	S 造，SRC 造	S 造，RC 造	S 造，RC 造		
柱	一般部		該当なし	－	該当なし	該当なし	該当なし
	隅部		該当なし	－	該当なし	該当なし	要（1）－1
	地下部	該当なし	－	－	該当なし	－	
はり	一般部	該当なし	－	該当なし	該当なし	該当なし	
	地下部	該当なし	－	－	該当なし	－	
	鉄骨トラス	－	－	該当なし	該当なし	－	
壁	一般部	該当なし	要（1）－2	－	該当なし	－	
	地下部	要①－2	－	－	要（1）－2	－	
	鉄骨ブレース	－	－	該当なし	－	該当なし	
床•屋根	一般部	該当なし	該当なし	－	該当なし	－	
基礎	矩形	要（1）－1	－	－	要（1）－1	該当なし	
	杭基礎	－	－	－	－	－	

耐震性評価部位		タービン建屋		補助ボイラー建屋	第1号機制御建屋
			上部鉄骨		
		RC 造	S 造，SRC 造	RC 造，S 造，SRC 造	S 造，RC 造
柱	一般部	該当なし	該当なし	該当なし	該当なし
	隅部	該当なし	該当なし	該当なし	該当なし
	地下部	該当なし	－	該当なし	該当なし
はり	一般部	該当なし	該当なし	該当なし	該当なし
	地下部	該当なし	－	該当なし	該当なし
	鉄骨トラス	－	該当なし	－	－
壁	一般部	該当なし	－	該当なし	該当なし
	地下部	要（1）－2	－	要（1）－2	要（1）－2
	鉄骨ブレース	－	－	－	－
床•屋根	一般部	該当なし	－	該当なし	該当なし
基礎	矩形	不要＊	－	不要＊	不要＊
	杭基礎	－	－	－	－

凡例 要：評価必要

（1）－1：応答特性「直交する水平 2 方向の荷重が応力として集中」

なるため，
프
只
米
兴
$\frac{{ }^{\circ}}{x^{6}}$

表 3－1－4 水平2方向及び鉛直方向地震力の組合せによる影響の確認が必要な部位の抽出（3／3）

耐震性評価部位		第 3 号機海水熱交換器建屋	緊急用電気品建屋	緊急時対策建屋	第1号機排気筒
		RC 造	S 造，RC 造		S 造，RC 造
柱	一般部	該当なし	該当なし	該当なし	該当なし
	隅部	該当なし	要（1）－1	－	要（1）－1
	地下部	該当なし	該当なし	該当なし	－
はり	一般部	該当なし	該当なし	該当なし	該当なし
	地下部	該当なし	該当なし	該当なし	－
	鉄骨トラス	－	－	－	－
壁	一般部	該当なし	該当なし	該当なし	－
	地下部	要（1）－2	要（1）－2	要（1）－2	－
	鉄骨ブレース	－	－	－	該当なし
床•屋根	一般部	該当なし	該当なし	該当なし	－
基礎	矩形	要（1）－1	要（1）－1	要（1）－1	要（1）－1
	杭基礎	－	－	－	－
	評価必要 ：評価不要 ：応答特性「直 ：応答特性「面	する水平 2 方向	荷重が応力として		

表 3－1－5 水平2方向及び鉛直方向地震力の組合せによる影響の確認が必要な部位の抽出（ $1 / 3$ ）

耐震性評価部位		原子炉建屋			制御建屋	排気筒	
		RC 造	使用済燃料プール	上部鉄骨			
		RC 造	S 造，SRC 造	S 造，RC 造	S 造，RC 造		
柱	一般部		不要	－	不要	不要	不要
	隅部	不要	－	不要	不要	要（1）－1	
	地下部	不要	－	－	不要	－	
はり	一般部	不要	－	不要	不要	不要	
	地下部	不要	－	－	不要	－	
	鉄骨トラス	－	－	不要	不要	－	
壁	一般部	（2）-1	要（1）－2	－	不要	－	
	地下部	要（1）－2	－	－	要（1）－2	－	
	鉄骨ブレース	－	－	不要	－	不要	
床•屋根	一般部	不要	不要	－	不要	－	
基礎	矩形	要（1）－1	－	－	要（1）－1	不要	
	杭基礎	－	－	－	－	－	

凡例•要：荷重組合せによる応答特性でのスクリーニングで抽出済み

- 「（1）－1」：応答特性「直交する水平 2 方向の荷重が応力として集中」
- 「（2）－1」：応笭特性「面内方向の荷重に加え，面外慣性力の影響が大きい」
- 「（2）－2」：応答特性「加振方向以外の方向に励起される振動」
表 3－1－5 水平2方向及び鉛直方向地震力の組合せによる影響の確認が必要な部位の抽出 $(2 / 3)$

耐震性評価部位		タービン建屋		補助ボイラー建屋	第 1 号機制御建屋
			上部鉄骨		
		RC 造	S 造，SRC 造	RC 造，S 造，SRC 造	S 造，RC 造
柱	一般部	不要	不要	不要	不要
	隅部	不要	不要	不要	不要
	地下部	不要	－	不要	不要
はり	一般部	不要	不要	不要	不要
	地下部	不要	－	不要	不要
	鉄骨トラス	－	不要	－	－
壁	一般部	不要	－	不要	不要
	地下部	要（1）－2	－	要（1）－2	要（1）－2
	鉄骨ブレース	－	－	－	－
床•屋根	一般部	不要	－	不要	不要
基礎	矩形	要（1）－1	－	要（1）－1	要（1）－1
	杭基礎	－	－	－	－

例 •要：荷重組合せによる応答特性でのスクリーニングで抽出済み

- 「（1）－1」：応合特性 值交する水平 2 方问の何重が応力として集中」
- 「（2）－1」：応答特性「面内方向の荷重に加え，面外慣性力の影響が大きい」

表 3－1－5 水平2方向及び鉛直方向地震力の組合せによる影響の確認が必要な部位の抽出（3／3）

耐震性評価部位		第 3 号機海水熱交換器建屋	緊急用電気品建屋	緊急時対策建屋	第 1 号機排気筒
		RC 造	S 造，RC 造	S 造，RC 造，SRC 造	S 造，RC 造
柱	一般部	不要	不要	不要	不要
	隅部	不要	要（1）－1	－	要（1）－1
	地下部	不要	不要	不要	－
はり	一般部	不要	不要	不要	不要
	地下部	不要	不要	不要	－
	鉄骨トラス	－	－	－	－
壁	一般部	不要	不要	不要	－
	地下部	要（1）－2	要（1）－2	要（1）－2	－
	鉄骨ブレース	－	－	－	不要
床•屋根	一般部	不要	不要	不要	－
基礎	矩形	要（1）－1	要（1）－1	要①－	要（1）－1
	杭基礎	－	－	－	－

凡例•要：荷重組合せによる応答特性でのスクリーニングで抽出済み
－「（1）－1」：応答特性「直交する水平 2 方向の荷重が応力として集中」

- 「（2）－1」：応答特性「面内方向の荷重に加え，面外慣性力の影響が大きい」
- 「（2）－2」：応答特性「加振方向以外の方向に励起される振動」
（5）3次元FEMモデルによる精査方法
上記（4）で抽出した3次元的な応答特性が想定される部位として抽出した部位 について，3次元FEMモデルにより精査を行う。精査方法を表3－1－6に示す。
（2）－1「面内方向の荷重に加え，面外慣性力の影響が大きい」可能性がある部位 については，原子炉建屋の燃料取替床レベルの壁に対して3次元FEMモデルによ る精査を行う。

また，原子炉建屋の耐震評価部位全般に対し，局所的な応答について，3次元 FEMモデルによる精査を行う。精査は，地震応答解析により水平2方向及び鉛直方向入力時の影響を評価することで行う。
（6）3次元FEMモデルによる精査結果
3 次元FEMモデルによる精査の結果，建物•構築物の有している耐震性への影響 が小さいことから，水平2方向及び鉛直方向地震力の影響評価が必要な部位は抽出されなかった。精査した結果を表3－1－6に示す。
表3－1－6 3次元FEMモデルを用いた精査

耐震評価部位	対象 建物•構築物	3 次元的な応答特性	3次元モデルを用いた 精査方法	3 次元モデルを用いた精査結果
壁 一般部	原子炉建屋 （燃料取替床レベル）	（2）-1 （面内方向の荷重に加 え，面外慣性力の影響 が大きい）	水平 2 方向及び鉛直方向入力時の応答の水平 1 方向入力時 の応答に対する増分が小さ いことを確認する。	水平2方向及び鉛直方向地震力 による左記の対象の耐震性へ の影響が想定されないため抽出しない。
耐震評価部位全般	原子炉建屋	局所的な影響	同上	原子炉建屋の燃料取替床レベ ルの壁では，面外方向に応答す る傾向が確認されるものの，水平2方向及び鉛直方向地震力に よる左記の対象の耐震性への影響が想定されないため抽出 しない。

3．1．2 水平2方向及び鉛直方向地震力の組合せの影響評価部位の抽出結果
（1）建物•構築物において，水平 2 方向及び鉛直方向地震力の組合せによる影響が想定されるとして抽出した部位を表3－1－7に示す。

応答特性（1）－1「直交する水平 2 方向の荷重が，応力として集中」する部位のうち，排気筒の主柱材及び建屋規模が大きく，重要な設備を多く内包している等の留意 すべき特徴を有している原子炉建屋の基礎を代表として，水平2方向及び鉛直方向地震力の組合せによる影響評価を行う。

応答特性（1）－2「面内方向の荷重を負担しつつ，面外方向の荷重が作用」する部位として施設の重要性，建屋規模及び構造特性を考慮し，上部に床等の拘束がな く，面外荷重（水圧）が作用する原子炉建屋（使用済燃料プール）の壁（一般部） を代表として，水平2方向及び鉛直方向地震力の組合せによる影響評価を行う。
（2）機器•配管系への影響が考えられる部位の抽出結果
建物•構築物において，水平2方向及び鉛直方向地震力の組合せの影響評価対象 として抽出した耐震評価上の構成部位について，水平2方向及び鉛直方向地震力 の組合せによる応答値への影響の観点から，機器•配管系への影響の可能性があ る部位について検討した。

排気筒の主柱材については，機器•配管系を支持していないことから影響はな い。

原子炉建屋の基礎については，水平 2 方向及び鉛直方向地震力の組合せにより応力集中する部位であり，水平2方向及び鉛直方向地震力の組合せによる応答値 への影響がないため，機器•配管系への影響の可能性はない。

原子炉建屋（使用済燃料プール）の壁（一般部）については，面内方向の荷重 を負担しつつ，面外方向の荷重が作用する部位であり，水平2方向及び鉛直方向地震力の組合せによる応答値への影響がないため，機器•配管系への影響の可能性 はない。

表3－1－7 水平2方向及び鉛直方向地震力の組合せによる影響評価部位の抽出結果

応答特性	耐震評価部位		対象 建物•構築物	代表評価部位
	柱	隅部	- 排気筒 - 緊急用電気品建屋 - 第 1 号機排気筒	排気筒の主柱材を代表とし て評価する。
（1）－1	基礎	基礎版	- 原子炉建屋 - 制御建屋 - 第3号機海水熱交換器建屋 - 緊急用電気品建屋 - 緊急時対策建屋 - 第 1 号機排気筒	建屋規模が大きく，重要な設備を多く内包している等 の留意すべき特徴を有して いる原子炉建屋の基礎を代表として評価する。
（1）－2	壁	水圧作業部地下部	- 使用済燃料プール - 原子炉建屋 - 制御建屋 - タービン建屋 - 補助ボイラー建屋 - 第1号機制御建屋 - 第3号機海水熱交換器建屋 - 緊急用電気品建屋 - 緊急時対策建屋	上部に床等の拘束がなく，面外荷重（水圧）が作用す る使用済燃料プールの壁を評価する。

凡例（1）－1：応答特性「直交する水平2方向の荷重が，応力として集中」
（1）－2：応答特性「面内方向の荷重を負担しつつ，面外方向の荷重が作用」
注：下線部は代表として評価する建物•構築物。

3．1．3 水平2方向及び鉛直方向地震力の影響評価方針
水平2方向及び鉛直方向地震力の組合せによる影響評価部位として抽出された部位について，基準地震動 S s を用い，水平2方向及び鉛直方向地震力の組合せの影響を評価した。評価は従来設計手法による各部位の解析モデル及び鉛直方向地震力の組合せによる評価結果を用いた。また，影響評価は，水平2方向及び鉛直方向を同時に入力する時刻歴応答解析による評価，又は，基準地震動 S s の各方向地震成分により，個別に計算した最大応答値を用い，水平 2 方向及び鉛直方向地震力を組み合わせる方法として，米国 Regulatory Guide 1．92＊の「2．Combining Effects Caused by Three Spatial Components of an Earthquake 」を参考に，組合せ係数法（1．0：0．4：0．4）に基づいた評価により実施した。

注記＊：Regulatory Guide 1．92＂Combining modal responses and spatial components in seismic response analysis＂

3．1．4 水平2方向及び鉛直方向地震力の影響評価結果

（1）排気筒の主柱材の評価
排気筒の鉄塔のらち，水平2方向及び鉛直方向地震力の組合せの影響評価として，直交する水平2方向の荷重が応力として集中する部位である主柱材を対象に評価 を行う。

評価に当たつては，基準地震動 S s を用い，水平2方向及び鉛直方向を同時に入力（以下「3方向同時入力」という。）する時刻歴応答解析を行い，排気筒が有する耐震性に影響しないことを確認する。主柱材（鉄塔脚部含む）の耐震性への影響に ついては，基準地震動 S s を3方向同時入力した地震応答解析の結果による各断面算定結果（検定値）が，1．0を超えないことにより確認する。
解析モデルの詳細及び許容値については，添付書類「VI－2－7－2－1 排気筒の耐震性についての計算書」（以下「排気筒の耐震計算書」という。）に示すものと同一で ある。排気筒の概要図を図3－1－1に，解析モデルを図3－1－2に示す。
排気筒の地震応答解析モデルへの入力地震動は，水平鉛直同時入力において，主柱材に対して最も厳しい評価結果となったS s－N 1 を用いて評価を行う。

また，S s－N 1 は観測波に基づく地震動のため方向に偏りがあり，基準地震動 S s と直交する地震動が基準地震動 S s に比べ小さい。S s－N 1 が水平2方向評価の地震波に選定されたことから，2番目に照査値が厳しいS s－F 1 についても水平 2 方向評価を行う。

地震動の入力方法は，排気筒の耐震計算書に基づくものとする。
鋼材の許容応力度及び使用材料の物性値は，排気筒の耐震計算書に示す内容と同一である。

3 方向同時入力時及び 2 方向同時入力時における主柱材の評価結果を表 $3-1-8$ に，鉄塔脚部の評価結果を表3－1－9に示す。
評価の結果， 2 方向同時入力時の検定値と比較し， 3 方向同時入力時の検定値は減少傾向であることを確認した。排気筒の2方向同時入力の評価においては，JEA C 4 6 O 1－2015に基づき，排気筒に対して斜め方向から加振を行っており，3方向同時入力と同等の評価がなされていることを示す結果となった。

以上より，水平2方向及び鉛直方向地震力に対し，排気筒の主柱材が有する耐震性への影響が無いことを確認した。

図 3－1－1 排気筒の概要図

注記 $*: ~ M 1$ は筒身の内径 3.0 m ，M2 は筒身の内径 3.7 m の位置を示す。
図 3－1－2 排気筒の地震応答解析モデル

表3－1－8 主柱材の評価結果

高さ 0．P． （m）	区間	使用部材（mm）	$\begin{gathered} 2 \text { 方向同時 } \\ \text { 入力 } \end{gathered}$	3 方向同時入力	
				S s－N 1	S s－F 1
161．8－155．5	A－A＇	$\phi 457.2 \times 7.9$	0.31	0.29	0.24
155．5－149．1	$A^{\prime}-B$	$\phi 457.2 \times 7.9$	0.71	0.70	0.51
149．1－142． 0	$B-B^{\prime}$	$\phi 457.2 \times 7.9$	0.81	0.80	0.60
142．0－134．8	$B^{\prime}-\mathrm{C}$	$\phi 609.6 \times 9.5$	0.87	0.87	0.61
134．8－126．8	$\mathrm{C}-\mathrm{C}^{\prime}$	$\phi 609.6 \times 9.5$	$\underline{0.83}$	0.81	0.61
126．8－118．3	$C^{\prime}-$ D	$\phi 711.2 \times 12.7$	0.87	0.85	0.59
118．3－108． 8	D－D ${ }^{\prime}$	$\phi 711.2 \times 12.7$	$\underline{0.85}$	0． 84	0.56
108．8－98．8	$D^{\prime}-E$	$\phi 812.8 \times 16.0$	0.88	0.85	0.63
98．8－86．4	$E-E^{\prime}$	$\phi 812.8 \times 16.0$	0.90	0.88	0.66
86．4－74．8	$E^{\prime}-\mathrm{F}$	$\phi 1000 \times 18.0$	$\underline{0.86}$	0.84	0.70
74．8－61．2	$F-G$	$\phi 1000 \times 18.0$	$\underline{0.89}$	0.87	0.72
$61.2-41.8$	$G-H$	$\phi 1100 \times 18.0$	0.65	0.60	$\underline{0.66}$
41．8－28．6	$\mathrm{H}-\mathrm{H}^{\prime}$	$\phi 1100 \times 20.0$	0.75	0.70	0． 74
28．6－15．3	H＇－I	$\phi 1100 \times 20.0$	0.74	$\underline{0.76}$	0.75

注：下線部は検定値が最大となる値を示す。

表3－1－9 鉄塔脚部の評価結果

評価部位	応力分類	2方向同時入力	3方向同時 入力	
			S s－N 1	S s－F 1
アンカーボルト	引張	0.57	0.58	0.58
	せん断	0．28	0．28	0． 26
	組合せ	0.57	0.58	0.58
コンクリート（コーン状破壊）	引張	0.75	0.76	$\underline{0.76}$
コンクリート（圧縮）	圧縮	$\underline{0.45}$	$\underline{0.45}$	$\underline{0.45}$
ベースプレート	面外曲げ	0.63	$\underline{0.64}$	$\underline{0.64}$
フランジプレート	面外曲げ	0.52	0.52	$\underline{0.52}$
リブプレート	圧縮	0.38	0.39	0.39
	せん断	0.73	0.74	0．74

注：下線部は検定値が最大となる値を示す。
（2）使用済燃料プールの壁の評価
水平2方向及び鉛直方向地震力の組合せの影響評価として，面内方向の荷重を負担しつつ，面外方向の荷重が作用する使用済燃料プールの壁について，評価を行う。

評価に当たつては，S s 地震時に対して，3次元FEMモデルの応力解析結果を用い た断面の評価について，許容値を超えないことを確認する。

解析モデルの詳細及び許容値については，添付書類「VI－2－4－2－1 使用済燃料プ ール（キャスクピットを含む）（第1，2号機共用）の耐震性についての計算書」（以下「SFPの耐震計算書」という。）に示すものと同一である。

使用済燃料プールを含む原子炉建屋の概略平面図及び概略断面図を図3－1－4及 び図3－1－5に，使用済燃料プール周りの概略平面図及び概略断面図を図3－1－6及び図3－1－7に示す。

荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。
コンクリート及び鉄筋の許容限界は，SFPの耐震計算書の「3．3 許容限界」に示 す内容と同一である。

解析モデル概要図を図3－1－8に示す。解析モデルの詳細は，SFPの耐震計算書の「3．4解析モデル及び諸元」に示す内容と同一である。
S s 地震時の応力は，SFPの耐震計算書の「3．5．1 応力解析方法」に示す，次の荷重ケースによる応力を組み合わせて求める。

G	：固定荷重	
P	$: ~$ 積載荷重	
S SSN＊	$: ~ S \rightarrow N$ 方向	S s 地震荷重（ S s 地震時動水圧荷重を含む）
S S we＊	：W \rightarrow E方向	S s 地震荷重（ S s 地震時動水圧荷重を含む）
S SUD＊	：鉛直方向	S s 地震荷重

注記＊：計算上の座標軸を基準として，EW 方向は $W \rightarrow E$ 方向の加力，NS 方向は $\mathrm{S} \rightarrow \mathrm{N}$ 方向の加力，鉛直方向は下向きの加力を記載している。

使用済燃料プールの壁の評価は，SFPの耐震計算書の「3．5．2 断面の評価方法」 に示す方法と同一である。

断面の評価結果を記載する要素は，軸力，曲げモーメント及び面内せん断力によ る鉄筋及びコンクリートのひずみ，軸力による圧縮応力度，面内せん断応力度並び に面外せん応力度に対する評価において，発生値に対する許容値の割合が最小と なる要素とする。

選定した要素の位置を図3－1－9及び図3－1－10に，評価結果を表3－1－10及び表3－1－ 11に示す。

S s 地震時における水平 2 方向及び鉛直方向地震力の組合せにおいて，水平 1 方向及び鉛直方向地震力の組合せに対する評価結果と水平 2 方向及び鉛直方向地震力の組合せに対する評価結果を比較すると，水平2方向の地震力の影響により発生値は増加傾向にあり，一部最大となる要素が変わるものもあるが，軸力，曲げモー メント及び面内せん断力による鉄筋及びコンクリートのひずみ，軸力による圧縮応力度，面内せん断応力度並びに面外せん断応力度が，各許容値を超えないことを確認した。

（単位：m）

図 3－1－4 使用済燃料プールを含む原子炉建屋の概略平面図（0．P．33．2m）

（単位：m）
図 3－1－5 使用済燃料プールを含む原子炉建屋の概略断面図（A－A 断面）

（単位：m）
図 3－1－6 使用済燃料プール周りの概略平面図

（単位：m）
図 3－1－7 使用済燃料プール周りの概略断面図（B－B 断面）

（a）全体鳥瞰図

図 3－1－8 解析モデル概要図（1／2）

0 d I－ZI－Z－IA（c） ZO

（b）プール部要素分割図
図 $3-1-8$ 解析モデル概要図 $(2 / 2)$

WALL1
（a）北側壁

WALL3

（b）西側壁
注：数字は要素番号を示す。

図 3－1－9 選定した要素の位置 S s 地震時（水平 2 方向）

注：数字は要素番号を示す。

図 3－1－10 選定した要素の位置 S s 地震時（水平 1 方向）

表 3－1－10 使用済燃料プールの壁の評価結果 S s 地震時（水平2方向）

部位	評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
北側壁	$\begin{gathered} \text { 軸力 } \\ + \\ \text { 曲げモーメント } \\ + \\ \text { 面内せん断力 } \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \quad\left(\times 10^{-3}\right) \end{gathered}$	鉛直	7	3－17	0． 288	3.00
		鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	鉛直	6	3－17	1． 42	5.00
	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	水平	245	3－5	2.62	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	3	3－17	2.34	5.82
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	7	3－17	0． 661	1.51
	軸力 $+$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	鉛直	386	3－19	0.509	3.00
	曲げモーメント $+$ 面内せん断力	鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	鉛直	389	3－17	1． 38	5.00
西側壁	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	鉛直	390	3－18	2． 40	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	390	3－17	1． 24	4.02
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	386	3－19	0．815	1． 44

表 3－1－11 使用済燃料プールの壁の評価結果 S s 地震時（水平1方向）

部位	評価項目		方向	要素 番号	組合せ ケース	発生値	許容値
北側壁	$\begin{gathered} \text { 軸力 } \\ + \\ \text { 曲げモーメント } \\ + \\ \text { 面内せん断力 } \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \quad\left(\times 10^{-3}\right) \end{gathered}$	鉛直	7	2－9	0． 269	3.00
		鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	鉛直	6	2－9	1． 28	5.00
	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	鉛直	3	2－10	2． 40	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	3	2－11	2． 21	5.99
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	水平	241	2－1	0．892	2． 08
	軸力 $+$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	鉛直	386	2－11	0.502	3.00
	曲げモーメント $+$ 面内せん断力	鉄筋引張ひずみ $\left(\times 10^{-3}\right)$	水平	425	2－1	1． 30	5.00
西側壁	軸力	圧縮応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	鉛直	390	2－12	2． 40	21.6
	面内せん断力	面内せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	－	388	2－10	1． 14	4.02
	面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	鉛直	386	2－11	0． 808	1． 44

（2）原子炉建屋基礎版の評価
水平2方向及び鉛直方向地震力の組合せの影響評価として，直交する水平 2 方向 の荷重が応力として集中する部位である原子炉建屋基礎版について，評価を行う。

評価に当たっては，S s 地震時に対して，3次元FEMモデルの応力解析結果を用い た断面の評価について，許容値を超えないことを確認する。
解析モデルの詳細及び許容値については，添付書類「VI－2－9－3－4 原子炉建屋基礎版の耐震性についての計算書」（以下「基礎版の耐震計算書」という。）に示す ものと同一である。原子炉建屋基礎版の概略平面図及び概略断面図を図3－1－11及 び図3－1－12に示す。
荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。 コンクリート及び鉄筋の許容限界は，基礎版の耐震計算書の「4．3許容限界」 に示す内容と同一である。

解析モデル図を図3－1－13に示す。解析モデルの詳細は，基礎版の耐震計算書の「4．4 解析モデル及び諸元」に示す内容と同一である。

S s 地震時の応力は，基礎版の耐震計算書の「4．5．1 応力解析方法」に示す，次の荷重ケースによる応力を組み合わせて求める。

G	固定荷重	
P	：積載荷重	
S SSN＊	$: \mathrm{S} \rightarrow \mathrm{N}$ 方向	S s 地震荷重（ S s 地震時土圧荷重を含む）
S SEW＊	： $\mathrm{E} \rightarrow \mathrm{W}$ 方向	S s 地震荷重（ S s 地震時土圧荷重を含む）
S S UD＊	鉛直方向	S s 地震荷重

注記＊：計算上の座標軸を基準として，NS方向はS $\rightarrow \mathrm{N}$ 方向の加力， EW 方向は $\mathrm{E} \rightarrow \mathrm{W}$方向の加力，鉛直方向は下向きの加力を記載している。

断面の評価結果を以下に示す。
断面の評価結果を記載する要素は，軸力及び曲げモーメントによる鉄筋及びコ ンクリートのひずみ並びに面外せん断力に対する評価において，発生値に対する許容値の割合が最小となる要素とする。

選定した要素の位置を図3－1－14に，評価結果を表3－1－12に示す。
S s 地震時における水平 2 方向及び鉛直方向地震力の組合せにおいて，水平 1 方向及び鉛直方向地震力の組合せに対する評価結果と水平2方向及び鉛直方向地震力の組合せに対する評価結果を比較すると，水平2方向の地震力の影響により発生値は増加傾向にあり，一部最大となる要素が変わるものもあるが，軸力及び曲げモ ーメントによる鉄筋及びコンクリートのひずみ並びに面外せん断応力度が，各許

容値を超えないことを確認した。

(単位: m)

（単位：m）
図 3－1－12 原子炉建屋基礎版の概略断面図（A－A 断面 NS 方向）（1／2）

（単位：m）
図 3－1－12 原子炉建屋基礎版の概略断面図（B－B 断面 EW 方向）（2／2）

（a）全体鳥瞰図

（b）全体鳥瞰断面図（ $\mathrm{A}-\mathrm{A}$ ’ 断面）
図 3－1－13 解析モデル（1／2）

\square																					
								1					－								
								，				\bigcirc	1	，							
－								，				4	－	$>$							
						1		\checkmark	H			7		$>$							
								\bigcirc	，				4								
								\bigcirc	\cdots			1	\bigcirc	\bigcirc	\bigcirc	\bigcirc					
								\cdots	\cdots				\bigcirc	，	， 1						
						7	Y	$\$$	4			\bigcirc		$\square 2$	219	H					
								4		SH	178		4								
								\bigcirc			${ }^{-}$	－	\bigcirc	169							
									－		＋		－	－	－						
								\bigcirc	\bigcirc	L	1	－	1		）						
								－	1					－	，						
									\cdots		，	\bigcirc	－	－	N						
									＞			1				\bigcirc					
									1												
								－					，								

注：数字は要素番号を示す。
（a）水平 2 方向
図 3－1－14 選定した要素の位置 S s 地震時（1／2）

注：数字は要素番号を示す。
（b）水平 1 方向
図 3－1－14 選定した要素の位置 S s 地震時（2／2）

表 3－1－12 原子炉建屋基礎版の評価結果 S s 地震時
（a）水平 2 方向

評価項目		方向	要素番号	$\begin{aligned} & \text { 組合せ } \\ & \text { ケース } \end{aligned}$	発生値	許容値
$\begin{gathered} \text { 軸力 } \\ + \\ + \text { 曲げモーメント } \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	EW	1123	2－11	1． 16	3.00
	鉄筋圧縮ひずみ $\left(\times 10^{-3}\right)$	放射	169	2－9	0.832	5.00
面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	放射	219	2－9	2．12＊	2． 13

注記＊：応力の再分配等を考慮して，応力平均化を行った結果。

評価項目		方向	要素番号	$\begin{gathered} \text { 組合せ } \\ \text { ケース } \end{gathered}$	発生値	許容値
$\begin{gathered} \text { 軸力 } \\ + \\ + \text { 曲げモーメント } \end{gathered}$	$\begin{gathered} \text { コンクリート圧縮ひずみ } \\ \left(\times 10^{-3}\right) \end{gathered}$	EW	1123	1－6	0．766	3.00
	鉄筋圧縮ひずみ $\left(\times 10^{-3}\right)$	放射	169	1－2	0． 488	5.00
面外せん断力	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	NS	1158	1－4	2.36	2． 42

3.2 機器•配管系

3．2．1 水平2方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出
評価対象設備を機種ごとに分類した結果を表3－2－1に示す。機種ごとに分類した設備の各評価部位，応力分類に対し構造上の特徴から水平 2 方向の地震力による影響を以下の項目より検討し，影響の可能性がある設備を抽出した。
（1）水平 2 方向の地震力が重畳する観点
水平 1 方向の地震力に加えて，さらに水平直交方向に地震力が重畳した場合，水平2方向の地震力による影響を検討し，影響が軽微な設備以外の影響検討が必要となる可能性があるものを抽出する。以下の場合は，水平2方向の地震力によ り影響が軽微な設備であると整理した。

なお，ここでの影響が軽微な設備とは，構造上の観点から発生応力への影響に着目し，その増分が1割程度以下となる設備を分類しているが，水平1方向地震力 による裕度（許容応力／発生応力）が 1.1 未満の設備については，個別に検討を行うこととする。
a．水平 2 方向の地震力を受けた場合でも，その構造により水平 1 方向の地震力 しか負担しないもの

制御棒•破損燃料貯蔵ラックのサポートや横置きの容器等は，水平2方向の地震力を想定した場合，水平 1 方向を拘束する構造であることや水平各方向で振動性状及び荷重の負担断面が異なる構造であることにより，特定の方向の地震力の影響を受ける部位であるため，水平1方向の地震力しか負担しないも のとして分類した。その他の設備についても，同様の理由から水平1方向の地震力しか負担しないものを分類した。
b．水平 2 方向の地震力を受けた場合，その構造により最大応力の発生箇所が異 なるもの

一様断面を有する容器類の胴板等は，水平 2 方向の地震力を想定した場合， それぞれの水平方向地震力に応じて応力が最大となる箇所があることから，最大応力の発生箇所が異なり，水平2方向の地震力を組み合わせても影響が軽微であるものとして分類した。その他の設備についても同様の理由から最大応力の発生箇所が異なり，水平2方向の地震力を組み合わせても影響が軽微で あるものを分類した。
c．水平 2 方向の地震力を組み合わせても水平 1 方向の地震力による応力と同等 と言えるもの

原子炉圧力容器スタビライザ及び原子炉格納容器スタビライザは，周方向 8箇所を支持する構造で配置され，水平 1 方向の地震力を 6 体で支持する設計と しており，水平 2 方向の地震力を想定した場合，地震力を負担する部位が増え， また，最大反力を受けもつ部位が異なることで，水平1方向の地震力による荷

重と水平2方向の地震力を想定した場合における荷重が同等になるものであ り，水平 2 方向の地震力を組み合わせても 1 方向の地震による応力と同等のも のと分類した。その他の設備についても，同様の理由から水平 2 方向の地震を組み合わせても 1 方向の地震による応力と同様のものと分類した。
d．従来評価において，保守性（水平2方向の考慮を含む）を考慮した評価を行 っているもの
蒸気乾燥器支持ブラケット等は，従来評価において，水平 2 方向地震を考慮 した評価を行っているため，水平2方向の影響を考慮済みとして分類した。そ の他の設備についても，同様の理由から従来評価にて保守性を考慮しており，水平2方向の影響を考慮しても影響がないものを分類した。
（2）水平方向とその直交方向が相関する振動モード（ねじれ振動等）が生じる観点水平方向とその直交方向が相関する振動モードが生じることで有意な影響が生じる可能性のある設備を抽出する。

機器•配管系設備のらち，水平方向の各軸方向に対して均等な構造となってい る機器は，評価上有意なねじれ振動は発生しない。
一方，3次元的な広がりを持つ配管系等は，系全体として考えた場合，有意な ねじれ振動が発生する可能性がある。しかし，水平方向とその直交方向が相関す る振動モードが想定される設備は，従来設計より3次元のモデル化を行っており， その振動モードは適切に考慮した評価としているため，この観点から抽出され る機器はなかった。
（3）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点
（1）（2）において影響の可能性がある設備について，水平2方向の地震力が各方向 1：1 で入力された場合に各部にかかる荷重や応力を求め，従来の水平 1 方向及び鉛直方向地震力の設計手法による発生値を比較し，その増分により影響の程度を確認し，耐震性への影響が懸念される設備を抽出した。

水平 1 方向に対する水平 2 方向の地震力による発生値の増分の検討は，機種ご との分類に対して地震力の寄与度に配慮し耐震裕度が小さい設備（部位）を対象 とする。水平2方向の地震力の組合せは米国Regulatory Guide 1．92の「2．Combining Effects Caused by Three Spatial Components of an Earthquake」 を参考として最大応答の非同時性を考慮したSRSS法により組み合わせ，発生値 の増分を算出する。増分の算出は，従来の評価で考慮している保守性により増分 が低減又は包絡されることも考慮する。算出の方法を以下に示す。
－従来の評価データを用いた簡易的な算出では，地震•地震以外の応力に分離可能なものは地震による発生値のみ組み合わせた後，地震以外による応力と組み合わせて算出する。
－設備（部位）によっては解析等で求められる発生荷重より大きな設計荷重を用いているものもあるため，上記組合せによる発生値を設計荷重が上回るこ とを確認したものは，水平 2 方向の地震力による発生値の増分はないものと して扱う。
－応答軸が明確な設備で，設備の応答軸の方向あるいは厳しい応力が発生する向きへ地震力を入力している場合は，耐震性への影響が懸念されないものと して扱う。

3．2．2 建物•構築物及び屋外重要土木構造物の検討結果を踏まえた機器•配管系の設備の抽出

3．1項及び3．3項における建物•構築物及び屋外重要土木構造物の影響評価にお いて機器•配管系への影響を検討した結果，耐震性への影響が懸念される部位は抽出されなかった。

3．2．4 水平 2 方向及び鋁直方向地震力の組合せの影響評価

3．2．1項の観点から抽出される設備について，水平2方向及び鉛直方向地震力を想定した発生値を以下の方法により算出する。

発生値の算出における水平2方向及び鋁直方向地震力の組合せは，米国 Regulatory Guide 1．92の「2．Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として最大応答の非同時性を考慮したSRSS法を適用する。
（1）従来評価データを用いた算出
従来の水平1方向及び鉛直方向地震力を組み合わせた評価結果を用いて，以下 の条件により水平2方向及び鉛直方向地震力に対する発生値を算出することを基本とする。
－水平各方向及び鉛直方向地震力をそれぞれ個別に用いて従来の発生値を算出 している設備は，水平2方向及び鉛直方向地震力を組み合わせて水平 2 方向を考慮した発生値の算出を行う。
－水平1方向と鉛直方向の地震力を組み合わせた上で従来の発生値を各方向で算出している設備は，鉛直方向を含んだ水平各方向別の発生値を組み合わせ

て水平2方向を考慮した発生値の算出を行う。
－水平方向を包絡した地震力と鉛直方向地震力を組み合わせたらえで従来の発生値を算出している設備は，鉛直方向を含んだ水平各方向同一の発生値を組 み合せて水平 2 方向を考慮した発生値の算出を行ら。
また，算出にあたっては必要に応じて以下も考慮する。
－発生値が地震以外の応力成分を含む場合，地震による応力成分と地震以外の応力成分を分けて算出する。

3．2．5 水平2方向及び鉛直方向地震力の影響評価結果

3．2．1項の観点から3．2．3項で抽出した以下の設備に対して，3．2．4項の影響評価条件で算出した発生値に対して設備が有する耐震性への影響を確認した。評価 した内容を設備（部位）ごとに以下に示し，その影響評価結果については重大事故時等の状態も考慮した結果を表3－2－3に示す。

a．使用済燃料貯蔵ラック

従来設計では，地震応答解析により算定される水平各方向の地震荷重を用い た発生値を算定し，評価を実施している。水平2方向及び鉛直方向地震力の組合 せによる発生値は，上記地震荷重をSRSS法により組み合わせることで算定し，許容値を満足することを確認した。
b．制御棒•破損燃料貯蔵ラック
従来設計では，地震応答解析により算定される水平各方向の地震荷重を用い た発生値を算定し，評価を実施している。水平2方向及び鉛直方向地震力の組合 せによる発生値は，上記地震荷重をSRSS法により組み合わせることで算定し，許容値を満足することを確認した。
c．静的触媒式水素再結合装置（その 1 ），（その 2 ）
従来設計では，水平各方向の最大応答加速度を用いた発生値を算定し，評価 を実施している。水平2方向及び鉛直方向地震力の組合せによる発生値は，上記発生値をSRSS法により組み合わせることで算定し，許容値を満足することを確認した。
d．制御棒挿入性
従来設計では，地震応答解析により算定される水平 1 方向の燃料集合体の相対変位を用いて評価を実施している。水平2方向地震力による評価は，水平2方向の燃料集合体の相対変位を組み合わせて許容値を満足することを確認した。
e．CRD自動交換機
従来設計では，地震応答解析により算定される水平各方向の地震荷重を用い た発生値を算定し，評価を実施している。水平2方向及び鉛直方向地震力の組合 せによる発生値は，上記地震荷重をSRSS法により組み合わせることで算定し，

許容値を満足することを確認した。

3．2．6 まとめ

機器•配管系において，水平2方向の地震力の影響を受ける可能性がある設備 （部位）について，従来設計手法における保守性も考慮した上で抽出し，従来の水平1方向及び鉛直方向地震力の組合せによる設計に対して影響を評価した。そ の結果，従来設計の発生値を超えて耐震性への影響が懸念される設備については，水平 2 方向及び鉛直方向地震力を想定した発生値が許容値を満足し，設備が有す る耐震性に影響のないことを確認した。

本影響評価は，水平2方向及び鉛直方向地震力により設備が有する耐震性への影響を確認することを目的としている。そのため，従来設計の発生値をそのまま用いて水平 2 方向及び鉛直方向地震力の組合せを評価しており，以下に示す保守側となる要因を含んでいる。
－従来設計の発生値（水平 1 方向及び鉛直方向地震力による応力成分と圧力等の地震以外の応力成分の組合せ）に対して，係数（ 「 2 ）を乗じて水平 2 方向及 び鉛直方向地震力を想定した発生値として算出しているため，係数を乗じる必要のない鋁直方向地震力による応力成分と圧力等の地震以外の応力成分に ついても係数を乗じている。
－従来設計において水平各方向を包絡した床応答曲線を各方向に入力している設備は各方向の大きい方の地震力が水平2方向に働くことを想定した発生値 として算出している。
以上のことから，水平2方向及び鉛直方向地震力については，機器•配管系が有 する耐震性に影響がないことを確認した。

表3－2－1 水平2方向入力の影響検討対象設備（1／15）

		設備	部位
		燃料集合体	燃料被覆管
			上部胴
			中間胴
			下部胴
			上部格子板支持面
			炉心支持板支持面
			上部サポート支持面
			レグ
			シリンダ
		シュラウドサポート	プレート
	炉		下部胴
	憂		プレートのトグル支持面
	持		上部サポート
	$\begin{aligned} & \text { 構 } \\ & \hline \end{aligned}$		上部タイロッド
	物	炬心シュラウド支持ロッド	下部タイロッド
			トグルクレビス
O			トグルピン
N		上部格子板	グリッドプレート
0		炬心支持板	補強ビーム
		炉心文持板	支持板
		燃料支持全具	中央燃料支持金具
		沵科文持金具	周辺燃料支持金具
		制御捧案内管	長手中央部
		制御棒案内管	下部溶接部
			胴板
		胴板	上部ウェッジ支持面
	原		下部スタビライザ支持面
	炉	下部鏡板	下部鏡板
	方		ハウジング
	$\begin{aligned} & \text { 容 } \\ & \text { 鄙 } \end{aligned}$	制御棒駆動機構ハウジング貫通孔	スタブチューブ
			下部鏡板リガメント
		ノズル	各部位

表3－2－1 水平2方向入力の影響検討対象設備（2／15）

設備		部位
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 厓 } \\ & \text { 力 } \\ & \text { 容 } \\ & \text { 器 } \end{aligned}$	ブラケット類	原子炉圧力容器スタビライザブラケット
		蒸気乾燥器支持ブラケット
		給水スパージャブラケット
		炉心スプレイブラケット
$\begin{array}{\|l\|} \hline \text { 原 } \\ \text { 支俗 } \\ \text { 持炉 } \\ \text { 構厓 } \\ \text { 物容 } \\ \text { 器 } \end{array}$	原子炉圧力容器支持スカート	スカート
	原子炉圧力容器基礎ボルト	基礎ボルト
原子炉圧力容器付属構造物	原子炉圧力容器スタビライザ	ロッド
		ブラケット
	原子炉格納容器スタビライザ	パイプ
		ガセットプレート
		内側メイルシャラグ
	制御棒駆動機構ハウジング支持金具	レストレイントビーム
		ブラケット
		スプライスプレート
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 压 } \\ & \text { 力 } \\ & \text { 容 } \\ & \text { 器 } \\ & \text { 部 } \\ & \text { 㮒 } \\ & \text { 物 } \end{aligned}$	蒸気乾燥器	ユニットサポート
		耐震用ブロック溶接部
	気水分離器及びスタンドパイプ	スタンドパイプ
	シュラウドヘッド	シュラウドヘッド
	ジェットポンプ	ライザ
		ディフューザ
		ライザプレース
	スパージャ 原子炉内配管	各部位
	中性子束計測案内管	中性子束計測案内管下部
使用済燃料貯蔵ラック		角管
		補強板
		燃料支持板
		ベース
		基礎ボルト

表3－2－1 水平2方向入力の影響検討対象設備（3／15）

設備	部位
	ラック部材
	支持ビーム部材
	ラック基礎ボルト
	支持ビーム基礎ボルト
使用済燃料プール水位／温度（ガイドパ	検出器
ルス式）	基礎ボルト
	基礎ボルト
使用済燃料プール水位／温度（ヒートサ	検出器架台
ーモ式）	保護管
	ワーキングテーブルラグ
	胴板
燃料プール冷却浄化系熱交換器	脚
	基礎ボルト
	基礎ボルト
燃料プール冷却浄化系ポンプ	ポンプ取付ボルト
	原動機取付ボルト
	基礎ボルト
フ	取付ボルト
蒸気逃がし安全弁逃がし弁機能用アキ	ラグ
王烝気逃かし安全开逃かし并機能用厂キ	ボルト
	H 形鋼
	ラグ
主烝気逃がし安全开自動減土機能用アキ	ボルト
	H 形鋼
	胴板
残留熱除去系熱交換器	脚
	基礎ボルト
	バレルケーシング
	コラムパイプ
残卯埶除圭系ポンプ	基礎ボルト
残留熱除去ホ⿱㇒⿱幺小心㇒⿱幺小刂フフ	ポンプ取付ボルト
	原動機台取付ボルト
	原動機取付ボルト

表3－2－1 水平2方向入力の影響検討対象設備（4／15）

設備	部位
ECCS ストレーナ	アウタージャケット
	フランジプレート
	多孔プレート（ディスクシート）
	多孔プレート（ポケットシート）
	多孔プレート（フロントシート）
	フランジ
	ボルト
ストレーナ部ティー	ティー
高圧炉心スプレイ系ポンプ	バレルケーシング
	コラムパイプ
	基礎ボルト
	ポンプ取付ボルト
	原動機台取付ボルト
	原動機取付ボルト
低圧炉心スプレイ系ポンプ	バレルケーシング
	コラムパイプ
	基礎ボルト
	ポンプ取付ボルト
	原動機台取付ボルト
	原動機取付ボルト
高圧代替注水系タービンポンプ	基礎ボルト
	ポンプ取付ボルト
直流駆動低圧注水系ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト
原子炉隔離時冷却系ポンプ	基礎ボルト
	ポンプ取付ボルト
原子炉隔離時冷却系ポンプ駆動用タービ ン	基礎ボルト
	タービン取付ボルト
復水移送ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト

表 3－2－1 水平2方向入力の影響検討対象設備（5／15）

設備	部位
	胴板
	基礎ボルト
	胴板
原子炉補機冷却水系熱交換器	脚
	基礎ボルト
	基礎ボルト
原子炉補機冷却水ポンプ	ポンプ取付ボルト
	原動機取付ボルト
	コラムパイプ
	基礎ボルト
原子炉補機冷却海水ポンプ	ポンプ取付ボルト
	原動機取付ボルト
	中間支持台基礎ボルト
	胴板
原子的補機冷却水リージタンク	基礎ボルト
	胴板
原子炉補機冷却海水系ストレーナ	脚
	基礎ボルト
	胴板
高圧炉心スプレイ補機冷却水系熱交換器	脚
	基礎ボルト
	基礎ボルト
高圧炉心スプレイ補機冷却水ポンプ	ポンプ取付ボルト
	原動機取付ボルト
	コラムパイプ
	基礎ボルト
高圧炉心スプレイ補機冷却海水ポンプ	ポンプ取付ボルト
	原動機取付ボルト
	中間支持台基礎ボルト
高圧炉心スプレイ補機冷却水サージタン	胴板
ク	基礎ボルト
制御棒駆動機構	フランジ

表 3－2－1 水平2方向入力の影響検討対象設備（6／15）

設備	部位
水圧制御ユニット	フレーム
	取付ボルト
ほう酸水注入系ポンプ	基礎ボルト
	ポンプ取付ボルト
	減速機取付ボルト
	原動機取付ボルト
ほう酸水注入系貯蔵タンク	胴板
	基礎ボルト
起動領域モニタ	ドライチューブ
出力領域モニタ	カバーチューブ
	校正用導管
伝送器（矩形床置）	基礎ボルト
	取付ボルト
	溶接部
伝送器（矩形壁掛）	基礎ボルト
	取付ボルト
	溶接部
盤（矩形床置）	基礎ボルト
	取付ボルト
盤（矩形壁掛）	取付ボルト
衛星電話設備（屋外アンテナ）（中央制御室）	基礎ボルト
衛星電話設備（屋外アンテナ）（緊急時対策所）	基礎ボルト
無線連絡設備（屋外アンテナ）（中央制御室）	基礎ボルト
無線連絡設備（屋外アンテナ）（緊急時対策所）	基礎ボルト
安全パラメータ表示システム（SPDS）無線通信用アンテナ	基礎ボルト
統合原子力防災ネットワーク設備衛星ア ンテナ	基礎ボルト

表 3－2－1 水平2方向入力の影響検討対象設備（7／15）

設備	部位
ダクト本体，サポート	ダクト本体（矩形）
	ダクト本体（円形）
	サポート
中央制御室送風機	基礎ボルト
	原動機取付ボルト
中央制御室排風機	基礎ボルト
	原動機取付ボルト
中央制御室再循環送風機	基礎ボルト
	原動機取付ボルト
中央制御室再循環フィルタ装置	基礎ボルト
緊急時対策所非常用送風機	基礎ボルト
	原動機取付ボルト
緊急時対策所非常用フィルタ装置	基礎ボルト
	取付ボルト
差圧計（中央制御室待避所用）	基礎ボルト
差圧計（緊急時対策所用）	基礎ボルト
ドライウェル	上鏡球形部
	上鏡球形部と上鏡ナックル部の接合部
	円筒部と上フランジの接合部
	下フランジと円筒部の接合部
	円筒部とナックル部の接合部
	ナックル部と上部球形部の接合部
ドライウェル	ドライウェルスプレイ管取付部
	上部球形部と円筒部の接合部
	円筒部中心部
	円筒部と下鏡の接合部
	サンドクッション部
ドライウェルベント開口部	ベントノズル円すい小径端部
	ベントノズル円すい大径端部
	ドライウェルベント開口部

表 3－2－1 水平2方向入力の影響検討対象設備 $(8 / 15)$

表 3－2－1 水平2方向入力の影響検討対象設備（9／15）

設備		部位
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 容 } \\ & \text { 器 } \end{aligned}$	機器搬出入用ハッチ	機器搬出入用ハッチ取付部
	逃がし安全弁搬出入口	逃がし安全弁搬出入口取付部
	制御棒駆動機構搬出入口	制御棒駆動機構搬出入口取付部
	サプレッションチェンバ出入口	サプレッションチェンバ出入口円筒胴
		サプレッションチェンバ出入口取付部
	所員用エアロック	所員用エアロック取付部
	原子炉格納容器配管貫通部	貫通部管台取付部
		貫通部管台
	原子炉格納容器電気配線貫通部	フランジとスリーブの継手
		フランジとアダプタの継手
		アダプタとヘッダの継手
ダウンカマ		ベントヘッダ接続部
		ダウンカマ
ベント管		ベント管頂部
		ベント管底部
		ベント管T継手部
		ベントヘッダ接続部
ベン	管ベローズ	ベント管ベローズ
ベントヘッダ		ベントヘッダ
		ダウンカマ取付部
		ベントヘッダサポートリング取付部
		ベントヘッダサポート
		ピン
		エンドプレート
サプレッションチェンバスプレイ管		スプレイ管
		スプレイ管とスプレイ管案内管との接続部
代替循環冷却ポンプ		基礎ボルト
		ポンプ取付ボルト
		原動機取付ボルト
非常用ガス処理系空気乾燥装置		基礎ボルト
		スライドボルト
		固定ボルト

表 3－2－1 水平 2 方向入力の影響検討対象設備（10／15）

設備	部位
非常用ガス処理系排風機	基礎ボルト
	排風機取付ボルト
	原動機取付ボルト
非常用ガス処理系フィルタ装置	基礎ボルト
	スライドボルト
	固定ボルト
原子炉建屋ブローアウトパネル閉止装置	内梁
	間ピン
	丁番ブラケット
可燃性ガス濃度制御系再結合装置ブロワ	ブレース
	ベース取付溶接部
可燃性ガス濃度制御系再結合装置	基礎ボルト
静的触媒式水素再結合装置（その 1）	静的触媒式水素再結合装置本体
	架台
	取付ボルト
	基礎ボルト
静的触媒式水素再結合装置（その 2）	静的触媒式水素再結合装置本体
	架台
	取付ボルト
	基礎ボルト
フィルタ装置	胴板
	ラグ
	基礎ボルト
非常用ディーゼル発電設備 機関	基礎ボルト
非常用ディーゼル発電設備 発電機	基礎ボルト
	固定子取付ボルト
	軸受台取付ボルト
非常用ディーゼル発電設備空気だめ	胴板
	スカート
	基礎ボルト
非常用ディーゼル発電設備燃料デイタンク	胴板
	スカート
	基礎ボルト

表 3－2－1 水平2方向入力の影響検討対象設備（11／15）

設備	部位
非常用ディーゼル発電設備燃料移送ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト
非常用ディーゼル発電設備 制御盤	取付ボルト
高圧炉心スプレイ系 ディーゼル発電設備 機関	基礎ボルト
	機関取付ボルト
高圧炉心スプレイ系 ディーゼル発電設備 発電機	基礎ボルト
	固定子取付ボルト
	機関側軸受台取付ボルト
	反機関側軸受台取付ボルト
高圧炉心スプレイ系 ディーゼル発電設備 空気だめ	胴板
	スカート
	基礎ボルト
高圧炬心スプレイ系 ディーゼル発電設備 燃料デイタンク	胴板
	スカート
	基礎ボルト
高圧炉心スプレイ系 ディーゼル発電設備 燃料移送ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト
軽油タンク	胴板
	脚
	基礎ボルト
高圧炬心スプレイ系 ディーゼル発電設備 制御盤	取付ボルト
ガスタービン発電設備 機関•発電機	取付ボルト
	発電機車フレーム
	制御車フレーム
ガスタービン発電設備燃料移送ポンプ	基礎ボルト
	ポンプ取付ボルト
	原動機取付ボルト
ガスタービン発電設備軽油タンク	胴板
	脚
	基礎ボルト

表 3－2－1 水平 2 方向入力の影響検討対象設備（12／15）

設備	部位
ガスタービン発電設備燃料小出槽	胴板
	取付ボルト
	架台取付ボルト
ガスタービン発電設備 制御盤	取付ボルト
緊急時対策所軽油タンク	胴板
	スカート
	基礎ボルト
無停電交流電源用静止形 無停電電源装置	取付ボルト
蓄電池	基礎ボルト
	取付ボルト
配管本体，サポート	配管，サポート
逆流防止設備	扉体
	固定部
	漂流物防護工
浸水防止蓋	浸水防止蓋
	固定ボルト
浸水防止壁	浸水防止壁
	基礎ボルト
逆止弁付ファンネル	弁本体
	弁体
貫通部止水処置	モルタル
堰	止水板
	梁材
	柱材
	アンカーボルト
津波監視カメラ（原子炉建屋屋上）	基礎ボルト
津波監視カメラ（防潮堤）	基礎ボルト
津波監視設備制御盤	基礎ボルト
取水ピット水位計（バブラー管）	基礎ボルト
	取付ボルト

表 3－2－1 水平 2 方向入力の影響検討対象設備（13／15）

設備	部位
	胴板
取水ピット水位計（アキュムレータ）	スカート
	基礎ボルト
取水ピント水位計（翰出吅）	基礎ボルト
－水ピソト水位䛔（検出	取付ボルト
	フレーム
取水ピット水位計（ボンベラック）	溶接部
	取付ボルト
	内筒
	外筒
	縦リブ
	アンカボルト
	スカートフランジ
	CRD 開口まわり
	ガーダ
プ	剛脚 摇脚 下部連結材（剛脚側） 下部連結材（摇脚側）
海水ホンブ至閏策ソレーシ	脱線防止装置
	トロリストッパ
	$\begin{aligned} & \text { クレーン本体 } \\ & \text { トロリ } \end{aligned}$
	吊具
竜巻防護ネット	大梁
	フレーム
	ゴム支承
	取付ボルト
	基礎ボルト
	可動支承
	フレームの移動量

表 3－2－1 水平2方向入力の影響検討対象設備（14／15）

設備	部位
ほう酸水注入系テストタンク	胴板
	脚
	基礎ボルト
原子炉建屋クレーン	クレーン本体がーダ
	脱線防止ラグ
	トロリストッパ
	トロリ
	吊具
燃料交換機	構造物フレーム
	ブリッジ転倒防止装置
	走行レール
	トロリ転倒防止装置
	横行レール
	吊具
原子炉しやへい壁	一般胴部
	開口集中部
原子炉ウェルカバー	本体
	支持部
耐火隔壁	フレーム部材
	基礎ボルト
制御棒貯蔵ラック	上部枠
	コラム
	補強板
	ブレース
	ベース
	基礎ボルト
制御棒貯蔵ハンガ	ハンガ部
	支持ビーム
	振れ止め
	基礎ボルト

表 3－2－1 水平2方向入力の影響検討対象設備（15／15）

	設備	部位
		構造物フレーム
		旋回用レール
		固定用サポート（上部）固定ピン
	CRD 自動交換機	固定用サポート（上部）取付ボルト
		固定用サポート（下部）固定ピン
		固定用サポート（下部）取付ボルト
	地下水位低下設備揚水ポンプ	基礎ボルト
\bigcirc	地下水位低下設備水位計	溶接部
		フレーム
	地下水位低下設備制御盤	器具取付板 盤取付板 据付架台
（1）		盤取付ボルト
，		基礎ボルト
\bigcirc		フレーム
	地下水位低下設備電源盤	器具取付板筐体 据付架台
		盤取付ボルト
		基礎ボルト

表3－2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果 $(1 / 2)$

（凡例） | ：影響の可能性あり |
| :---: |
| $\triangle: ~$ 影響軽微 |

	水平2方向及び鉛直方向地震力の影響の可能性		
設備（機種）及び部位	3．2．1項（1）水平 2 方向の地震力が重畳する観点及び（2）水平方向と その直交方向が相関する振動モー ド（ねじれ振動等）が生じる観点	3．2．1項（3）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果
ノズル	\bigcirc	\triangle	従来評価における設計荷重が，水平2方向の地震力を考慮した荷重 を包絡する。
使用済燃料貯蔵ラック	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。
$\begin{aligned} & \text { 制御棒•破損燃料貯蔵ラ } \\ & ッ ク \end{aligned}$	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。
静的触媒式水素再結合装置（その1）	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。
静的触媒式水素再結合装置（その 2 ）	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。
CRD自動交換機	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。

（2）機能維持評価

設備（機種）及び部位	水平2方向及び鉛直方向地震力の影響の可能性		
	3．2．1項（1）水平 2 方向の地震力が重畳する観点及び（2）水平方向と その直交方向が相関する振動モー ド（ねじれ振動等）が生じる観点	3．2．1項（3）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果
制御棒挿入性	\bigcirc	\bigcirc	影響評価結果は表3－2－3参照。

評価対象設備	水平 2 方向及び鉛直方向地震力の影響の可能性						備考
	評価部位	応力分類	1方向入力発生値	2方向想定発生値	許容値	判定	
使用済燃料貯蔵ラック	角管	組合せ応力	164	183	205	\bigcirc	単位：MPa
制御棒•破損燃料貯蔵ラック	ラック部材	組合せ応力	82	86	108	\bigcirc	単位：MPa
静的触媒式水素再結合装置 (その1)	静的触媒式水素再結合装置本体	組合せ応力	121	127	171	\bigcirc	単位：MPa
静的触媒式水素再結合装置 (その2)	静的触媒式水素再結合装置本体	組合せ応力	141	150	171	\bigcirc	単位：MPa
CRD自動交換機	固定用サポート（上部）取付ボルト	引張応力	346	358	444	\bigcirc	単位：MPa

（2）機能維持評価

評価対象設備	水平 2 方向及び鉛直方向地震力の影響の可能性				備考
	1方向入力相対変位	2方向想定相対変位	確認済相対変位	判定	
制御棒挿入性	54.2	54.5	60	\bigcirc	単位：mm

3.3 屋外重要土木構造物

3.3 .1 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出
（1）構造形式の分類
図3－3－1に屋外重要土木構造物の配置図を示す。
屋外重要土木構造物は，その構造形式より1）軽油タンク連絡ダクト，排気筒連絡 ダクト，原子炉機器冷却海水配管ダクト（水平部），原子炉機器冷却海水配管ダク卜（鉛直部），取水路（漸拡部）及び取水路（標準部）のような「1）線状構造物」， 2）軽油タンク室，軽油タンク室（H），海水ポンプ室，取水口，貯留堰，復水貯蔵 タンク基礎，ガスタービン発電設備軽油タンク室及び第3号機海水ポンプ室のよう に加振方向に平行な妻壁や隔壁等の部材を有する「2）箱形構造物」の2つに大別さ れる。

屋外重要土木構造物の構造形式を表3－3－1に示す。

図3－3－1 屋外重要土木構造物等 位置図

表3－3－1 屋外重要土木構造物等の構造形式

	対象構造物	構造形式	
		1）線状構造物	2）箱形構造物
	軽油タンク連絡ダクト	\bigcirc	
	排気筒連絡ダクト	\bigcirc	
	原子炉機器冷却海水配管 ダクト（水平部）	\bigcirc	
	原子炉機器冷却海水配管 ダクト（鉛直部）	\bigcirc	
	取水路（漸拡部）	\bigcirc	
	取水路（標準部）	\bigcirc	
	軽油タンク室		\bigcirc
	軽油タンク室（H）		\bigcirc
	海水ポンプ室		\bigcirc
\bigcirc	取水口，貯留堰		\bigcirc
\sim	復水貯蔵タンク基礎		\bigcirc
$\begin{aligned} & \top \\ & \stackrel{\rightharpoonup}{N} \\ & \sim \end{aligned}$	ガスタービン発電設備軽油タンク室		\bigcirc
$\stackrel{1}{\stackrel{1}{1}}$	第3号機海水ポンプ室		\bigcirc

（2）従来設計手法における評価対象断面に対して直交する荷重の整理
表3－3－2に従来設計手法における評価対象断面に対して直交する荷重を示す。従来設計手法における評価対象断面に対して直交する荷重として，動土圧及び動水圧，摩擦力，慣性力が挙げられる。

表3－3－2 従来設計手法における評価対象断面に対して直交する荷重

	作用荷重	作用荷重のイメージ
（1）動土圧及 び動水圧	従来設計手法における評価対象断面に対して，平行 に配置される構造部材に作用する動土圧及び動水圧	従来設計手法の評価対象断面 動土圧•動水圧
②摩擦力	周辺の埋戻土と躯体間で生じる相対変位に伴い発生する摩擦力	
③慣性力	躯体に作用する慣性力	

注：当該図は，平面図を示す。
（3）荷重の組合せによる応答特性が想定される構造形式の抽出
表3－3－3に，3．3．1（1）で整理した構造形式ごとに，3．3．1（2）で整理した荷重作用による影響程度を示す。

「1）線状構造物」，「2）箱形構造物」の地震時の挙動は，躯体が主に地中に埋設さ れることから，周辺地盤の挙動に大きく影響される。3．3．1（2）で整理した荷重のう ち「（2）摩擦力」や「③慣性力」は，「①動土圧及び動水圧」と比較するとその影響 は小さいことから，水平2方向及び鉛直方向地震力の組合せの影響検討の対象とす る構造物の抽出では，「①動土圧及び動水圧」による影響を考慮する。

「1）線状構造物」については，その構造上の特徴として，妻壁（評価対象断面に対して平行に配置される壁部材）等を有さない若しくは妻壁（小口）の面積が小さ いことから，従来設計手法における評価対象断面に対して直交する「①動土圧及び動水圧」は作用しない。

「2）箱形構造物」は，妻壁等を有することから，従来設計手法における評価対象断面に対して直交する「①動土圧及び動水圧」が作用する。また，復水貯蔵タンク基礎の円筒形しやへい壁については，図3－3－2に示すとおり，水平 1 方向への地震時荷重作用時と，水平2方向への地震時荷重作用時では，最大応力発生位置や応力値 が異なる。

以上のことから，荷重の組合せによる応答特性が想定される構造形式として，地中埋設構造物のうち，従来評価手法における評価対象断面に対して直交する「①動土圧及び動水圧」が作用する箱形構造物を抽出する。

なお，円筒形しゃへい壁の最大応力発生位置は地震時荷重の入力方向により異 なり，耐荷性能には方向性がない。よって，表3－3－3（2／2）に示すとおり，従来設計手法における評価方向に対して平行する側面に荷重が作用する地下ピット部に着目して従来どおり直交 2 方向の評価断面を選定し，水平 2 方向同時入力の影響検討を実施することとする。

水平 1 方向への地震時荷重入力の場合

水平 2 方向同時入力の場合

図 3－3－2 遮蔽壁の応力分布概念図（底面反力の例）

表3－3－3 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出 $(1 / 2)$

表3－3－3 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出 $(2 / 2)$

（4）従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽出
（3）で抽出しなかった構造形式である線状構造物について，構造物ごとの平面図及び断面図を以下に示す。各構造物の構造，地盤条件等を考慮した上で，従来設計手法における評価対象断面以外の 3 次元的な応答特性が想定される箇所を抽出する。

a．軽油タンク連絡ダクト【線状構造物】

図3－3－3～図3－3－6に軽油タンク連絡ダクトの平面図及び断面図を示す。
軽油タンク連絡ダクトは，ほぼ等間隔に構造目地が設けられており構造物に応力集中が発生しない設計としているとともに，それぞれが十分な支持性能を有する岩盤にマンメイドロックを介して設置されているため，構造物の勾配や延長方向に影響するような強軸方向の変形については影響をほとんど受けない。 また，小規模ながら評価対象断面に直交する方向に動土圧が作用する妻壁があ るが，従来設計においては，妻壁による評価対象断面のせん断変形の抑制効果 に期待せず，評価対象断面に直交する部材のみで荷重を受け持たせる保守的な設計をしている。軽油タンク連絡ダクトの屈曲部は，復水貯蔵タンク基礎と軽油タンク室に挟まれて配置されていることから，妻壁に作用する動土圧は構造物間のわずかな盛土により発生するものであり，面外荷重に対する妻壁の設計 は，従来設計の評価対象断面における側壁の設計にて担保される。

（単位：m）

図 $3-3-3$
軽油タンク連絡ダクト平面図

図 3－3－4 軽油タンク連絡ダクト平面図（詳細）

西

（単位：m）

図 3－3－5 軽油タンク連絡ダクト断面図（標準部，A－A）

西

（単位：m）

図 3－3－6 軽油タンク連絡ダクト断面図（接続部，B－B）

b．排気筒連絡ダクト【線状構造物】

図3－3－7～図3－3－9に排気筒連絡ダクトの平面図及び断面図を示す。
排気筒連絡ダクトは，ほぼ等間隔に構造目地が設けられており構造物に応力集中が発生しない設計としているとともに，それぞれが十分な支持性能を有す る岩盤に直接あるいはマンメイドロックを介して設置されているため，構造物 の勾配や延長方向に影響するような強軸方向の変形については影響をほとんど受けない。

図 3－3－7 排気筒連絡ダクト平面図

図 3－3－8 排気筒連絡ダクト断面図（土砂部，A－A）

図 3－3－9 排気筒連絡ダクト断面図（岩盤部，B－B）
c．原子炉機器冷却海水配管ダクト（水平部，鉛直部）【線状構造物】
図3－3－10～図3－3－12に原子炉機器冷却海水配管ダクト（水平部，鉛直部）の平面図及び断面図を示す。

原子炉機器冷却海水配管ダクト（水平部）は，延長が短く，両端に耐震ジョ イントが設けられており構造物に応力集中が発生しない設計としているととも に，それぞれが十分な支持性能を有する岩盤にマンメイドロックを介して設置 されているため，構造物の延長方向に影響するような強軸方向の変形について は影響をほとんど受けない。

原子炉機器冷却海水配管ダクト（鉛直部）は，水平断面に耐震評価を行って おり，小規模ながら評価対象断面に直交する方向に地盤反力が作用する底版が あるが，底版による評価対象断面のせん断変形の抑制効果に期待せず，評価対象断面に直交する部材のみで荷重を受け持たせる保守的な設計をしており，従来設計の評価対象断面における設計にて担保される。

図 3－3－10 原子炉機器冷却海水配管ダクト平面図

0．P．+14.80 m

図 3－3－11 原子炉機器冷却海水配管ダクト（水平部）断面図（A－A）

（単位：m）
図 3－3－12 原子炉機器冷却海水配管ダクト（鉛直部）断面図（B－B）

d．取水路（漸拡部）【線状構造物】

図3－3－13及び図3－3－14に取水路（漸拡部）の平面図及び断面図を示す。
取水路（漸拡部）は，十分な支持性能を有する岩盤に直接あるいはマンメイ ドロックを介して直線状に設置されているため，強軸方向の変形については影響をほとんど受けない。また，断面変化があるものの断面が徐々に漸拡してい く形状であり，屈曲部は有さないため，強軸方向の曲げの影響はほとんど受け ない。

（単位：m）

図 3－3－13 取水路（漸拡部）平面図

図 3－3－14 取水路（漸拡部）断面図（A－A）

線状構造物として分類した軽油タンク連絡ダクト，排気筒連絡ダクト，原子炉機器冷却海水配管ダクト（水平部），原子炉機器冷却海水配管ダクト（鉛直部）及び取水路（漸拡部）について，各構造物の構造，地盤条件等を考慮した上で，従来設計手法における評価対象断面以外の 3 次元的な応答特性が想定さ れる箇所を確認した。

その結果，これらの構造物については，従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所が無いことを確認した。
（5）従来設計手法の妥当性確認
図3－3－15及び図3－3－16に取水路（標準部）の平面図及び断面図を示す。
取水路（標準部）は構造目地により直線部及び曲線部に分かれている。直線部及 び曲線部は十分な支持性能を有する岩盤にマンメイドロックを介して設置してお り強軸方向の変形の影響は無く，従来設計では評価対象断面に直交する部材のみ で荷重を受け持たせる設計としているが，図3－3－17に示すとおり，曲線部の各断面位置にて弱軸方向外側に変形した場合には，取水路の強軸方向に引張力が発生す るため，従来設計では評価していない配力鉄筋への影響を確認する必要がある。

よって，取水路（標準部）のうち曲線部については，弱軸方向への変形により発生する軸方向の引張力が配力鉄筋に与える影響を確認するため，水平2方向及び鉛直方向地震力の組合せによる影響評価を実施することとする。

なお，取水路（標準部）のうち直線部については，構造物の延長方向に影響する ような強軸方向の変形については影響をほとんど受けない。

（単位：m）
図 3－3－15 取水路（標準部）平面図

（単位：m）

図 3－3－16 取水路（標準部）断面図（A－A 断面）

構造物に直交する荷重
各断面位置における変形の方向
弱軸方向への変形により軸方向に発生する引張力

図3－3－17 取水路（標準部）における変形

3．3．2 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果
3．3．1の検討を踏まえ，水平2方向及び鉛直方向地震力の組合せによる影響評価 を検討すべき構造形式として，構造及び作用荷重の観点から，線状構造物の取水路（標準部）のうち曲線部及び箱形構造物を抽出した。上記で抽出した構造物の水平2方向及び鉛直方向地震力の組合せによる影響評価を実施する。

箱形構造物である軽油タンク室，軽油タンク室（H），海水ポンプ室，取水口，貯留堰，復水貯蔵タンク基礎，ガスタービン発電設備軽油タンク室及び第3号機海水ポンプ室の平面図，断面図及び縦断図を図3－3－18～図3－3－43に示す。

図 3－3－18 軽油タンク室平面図

図 3－3－19 軽油タンク室断面図（A－A）

図 3－3－20 軽油タンク室断面図（B－B，タンク室）

図 3－3－21 軽油タンク室断面図（C－C，ポンプ室）

図 3－3－22 軽油タンク室（H）平面図

図 3－3－23 軽油タンク室（H）断面図（A－A）

図 3－3－24 軽油タンク室（H）断面図（B－B）

図 3－3－25 海水ポンプ室平面図

（単位：m）

図 3－3－26 海水ポンプ室縦断図（A－A）

図 3－3－27 海水ポンプ室断面図（B－B）

図 3－3－28 海水ポンプ室断面図（C－C）

図 3－3－29 海水ポンプ室断面図（D－D）

図 3－3－30 取水口，貯留堰平面図

図 3－3－31 取水口，貯留堰縦断図（A－A）
南 北

（単位：m）
図 3－3－32 取水口断面図（標準部，B－B）

（単位：m）
図 3－3－33 取水口断面図（漸縮部，C－C）

（単位：m）
図 3－3－34 復水貯蔵タンク基礎平面図
\bigcirc

図 3－3－35 復水貯蔵タンク基礎断面図（A－A）

（単位：m）
図 3－3－36 復水貯蔵タンク基礎断面図（B－B）

（単位：m）

図 3－3－37 ガスタービン発電設備軽油タンク室平面図

（単位：m）
図 3－3－38 ガスタービン発電設備軽油タンク室断面図（A－A）

図 3－3－39 ガスタービン発電設備軽油タンク室断面図（B－B）

図 3－3－40 第3号機海水ポンプ室平面図

（単位：m）

図 3－3－41 第3号機海水ポンプ室縦断図（A－A）

図 3－3－42 第3号機海水ポンプ室断面図（B－B）

[^3]

図 3－3－43 第 3 号機海水ポンプ室断面図（C－C）

3．3．3 水平 2 方向及び鉛直方向地震力の影響評価結果
軽油タンク室，軽油タンク室（H），海水ポンプ室，取水口，貯留堰，復水貯蔵 タンク基礎，ガスタービン発電設備軽油タンク室，第3号機海水ポンプ室及び取水路（標準部）のうち曲線部について，水平 2 方向及び鉛直方向地震力の組合せを考慮した耐震評価を実施し，十分な構造強度を有していることを確認している。

本書においては，矩形の構造物のうち構造が単純で水平 2 方向及び鉛直方向地震力の組合せによる影響評価が明確なガスタービン発電設備軽油タンク室，及び円筒形のしゃへい壁を有する復水貯蔵タンク基礎の評価結果を表3－3－4～表3－3－ 14に示す。
表3－3－4 ガスタービン発電設備軽油タンク室の評価結果

評価 部材	水平1方向及び鉛直方向地震力の組合せ				水平2方向及び鉛直方向地震力の組合せ			
	評価位置＊	解析ケース	地震動	$\begin{aligned} & \text { 照查値 } \\ & \sigma^{\prime}{ }^{\prime} /{ }^{\prime}{ }^{\prime}{ }_{c a} \end{aligned}$	評価位置＊	解析ケース	地震動	$\begin{aligned} & \text { 照査値 } \\ & \sigma^{\prime}{ }^{\prime} / \sigma^{\prime}{ }^{\prime} \text { ca } \end{aligned}$
底版	13	（3）	S s－F $2(++)$	0． 30	13	（1）	主方向： $\text { Ss - F } 2(++)$ 従方向： $\text { Ss-F } 2$	0． 30
頂版	21	（3）	S s－F $2(++)$	0.22	21			0.21
南北壁	31	（3）	S s－F $2(++)$	0.15	41			0.15
東西壁	50	（1）	S s－D $2(++)$	0.26	60			0.23
隔壁	80	（3）	S s－F $2(++)$	0.34	80			0.34

（曲げ・軸力系の破壊に対する照査（鉄筋））

評価 部材	水平1方向及び鉛直方向地震力の組合せ				水平2方向及び鉛直方向地震力の組合せ			
	評価位置＊	解析ケース	地震動	照査値 $\sigma_{\mathrm{s}} / \sigma_{\text {sa }}$	評価位置＊	解析ケース	地震動	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
底版	12	（3）	S s－F $2(++)$	0.35	11	（1）	主方向： $\mathrm{S} s-\mathrm{F} 2(++)$ 従方向： $\mathrm{S} s-\mathrm{F} 2$	0.36
頂版	21	（3）	S s－F $2(++)$	0． 39	21			0． 44
南北壁	42	（3）	S s－F $2(++)$	0． 40	32			0． 40
東西壁	60	（1）	S s－F $2(++)$	0.55	60			0.57
隔壁	80	（3）	S s－F2 ${ }^{\text {（ }}++$ ）	0． 46	80			0.59

注記＊：評価位置は図3－3－44に示す。

評価 部材	水平1方向及び鉛直方向地震力の組合せ				水平2方向及び鉛直方向地震力の組合せ			
	評価位置＊	解析ケース	地震動	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$	評価位置＊	解析ケース	地震動	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
底版	11	（1）	S s－D $2(++)$	0.43	13	（1）	主方向： $\text { S s - F } 2(++)$ 従方向： $\text { Ss }- \text { F } 2$	0.35
頂版	22	（3）	S s－F $2(++)$	0.26	22			0.26
南北壁	33	（3）	S s－F $2(++)$	0.16	31			0． 20
東西壁	60	（1）	S s－F2 ${ }^{(++)}$	0． 49	60			0.50
隔壁	70	（3）	S s－F $2(++)$	0.35	70			0.34

図 3－3－44 ガスタービン発電設備軽油タンク室 評価位置図
表3－3－7 復水貯蔵タンク基礎（しゃへい壁，バルブ室及び連絡ダクト）における構造部材の健全性に対する評価結果

評価部材			水平1方向及び鉛直方向地震力の組合せ					水平2方向及び鉛直方向地震力の組合せ				
			評価位置＊${ }^{*}$	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\varepsilon_{\mathrm{d}}{ }^{* 2} / \varepsilon_{\mathrm{R}}$	評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\varepsilon{ }^{*}{ }^{* 2} / \varepsilon_{\mathrm{R}}$
しゃへい	地上部		13	（1）	S s－F $2(++)$	東西方向	0． 01	14	（2）	主方向： $\text { S s - D } 2(++)$ 従方向： $\mathrm{S} \text { s }-\mathrm{D} 2$	主方向： 東西従方向：南北	0． 01
壁	地中部		17	（1）	S s－D $2(-+)$	東西方向	0． 03	18				0． 03
バルブ室	頂版		22	（1）	S s－D $1(-+)$	南北方向	0． 02	22				0． 02
	南壁		32	（1）	S s - D $1(-+)$	南北方向	0.03	32				0． 02
	東西壁		50	（2）	S s－D $2(++)$	東西方向	0.03	50				0． 03
	隔壁		60	（1）	S s D D $1(-+)$	南北方向	0.02	60				0． 02
	$\begin{gathered} \text { ハッチ } \\ \text { 部 } \end{gathered}$	頂版	110	（1）	S s－F2 ${ }^{\text {（ }}+$＋	東西方向	0.01	110				0.01
		南北壁	130	（1）	Ss－F $2(++)$	東西方向	0.02	120				0.01
		東西壁	140	（1）	S s－D $1(-+)$	南北方向	0.02	150				0.01
連絡 ダクト	底版		70	（1）	S s－D $2(++)$	南北方向	0.01	70				0.01
	頂版		80	（3）	S s－D $2(++)$	東西方向	0.03	80				0． 03
	東西壁		90	（1）	S s－F3 ${ }^{\text {（ }}+$＋	東西方向	0.02	100				0.02

[^4]表3－3－8 復水貯蔵タンク基礎（しやへい壁，バルブ室及び連絡ダクト）における支持機能に対する評価結果

評価部材			水平 1 方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
			評価 位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照查値 $\varepsilon_{\mathrm{d}}{ }^{* 2} / \varepsilon_{\mathrm{R}}$	評価 位置＊${ }^{*}$	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\varepsilon \mathrm{d}^{* 2} / \varepsilon_{\mathrm{R}}$
しゃへい	地上部		13	（1）	S s－F2（＋＋）	東西方向	0． 05	14	（2）	主方向： $\text { S s - D } 2(++)$ 従方向： $\text { Ss - D } 2$	主方向： 東西従方向：南北	0． 04
壁	地中部		17	（1）	S s－D $2(-+)$	東西方向	0． 14	18				0． 12
バルブ室	頂版		22	（1）	S s - D $1(-+)$	南北方向	0． 08	22				0． 07
			32	（1）	S s－D $1(-+)$	南北方向	0． 13	32				0． 06
			50	（2）	S s－D $2(++)$	東西方向	0.11	50				0.11
			60	（1）	S s－D $1(-+)$	南北方向	0.08	60				0.06
		頂版	110	（1）	S s－F2 ${ }^{(++)}$	東西方向	0． 05	110				0． 02
		南北壁	130	（1）	S s－F2 ${ }^{(++)}$	東西方向	0． 09	120				0.04
		東西壁	140	（1）	S s－D $1(-+)$	南北方向	0． 09	150				0.03
			70	（1）	S s $-\mathrm{D} 2(++)$	南北方向	0． 03	70				0． 02
			80	（3）	S s－D $2(++)$	東西方向	0.11	80				0.11
			90	（1）	S s－F3 ${ }^{(++)}$	東西方向	0． 09	100				0． 07

[^5]表3－3－9 復水貯蔵タンク基礎（しやへい壁，バルブ室及び連絡ダクト）における支持機能に対する評価結果

評価部材			水平1方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
			評価 位置＊${ }^{*}$	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\varepsilon \mathrm{d}^{* 2} / \varepsilon_{\mathrm{R}}$	評価 位置＊${ }^{*}$	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\varepsilon d^{* 2} / \varepsilon_{R}$
しゃへい 壁	地上部		13	（1）	S s $-\mathrm{F} 2(++)$	東西方向	0.04	13	（2）	主方向： $\text { S s }-\mathrm{D} 2(++)$ 従方向： $\text { S s - D } 2$	主方向： 東西従方向：南北	0.02
	地中部		17	（1）	S s－D $2(-+)$	東西方向	0.16	18				0． 10
バルブ室	頂版		22	（1）	S s－D $1(-+)$	南北方向	0.06	22				0.05
	南壁		32	（1）	S s－D $1(-+)$	南北方向	0.10	32				0.02
	東西壁		50	（1）	S s－F $2(-+)$	東西方向	0． 10	50				0． 10
	隔壁		60	（1）	S s－D $1(-+)$	南北方向	0.06	60				0.01
	$\begin{gathered} \text { ハッチ } \\ \text { 部 } \end{gathered}$	頂版	110	（1）	S s－F2 ${ }^{\text {（ }}++$ ）	東西方向	0． 02	110				0． 01
		南北壁	130	（1）	S s－D $2(++)$	南北方向	0.02	120				0.01
		東西壁	140	（1）	S s－F2 ${ }^{\text {（ }}+$＋	東西方向	0． 03	140				0． 02
$\begin{aligned} & \text { 連絡 } \\ & \text { ダクト } \end{aligned}$	底版		70	（1）	S s－D $2(++)$	南北方向	0.01	70				0.01
	頂版		80	（1）	S s－D $1(-+)$	南北方向	0.11	80				0.04
	東西壁		90	（1）	S s－D $1(-+)$	南北方向	0.06	90				0.05

[^6]表3－3－10 復水貯蔵タンク基礎（しやへい壁，バルブ室及び連絡ダクト）における構造部材の健全性に対する評価結果

評価部材			水平1方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
			評価位置＊${ }^{1}$	解析 ケース	地震動	加振方向	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}}{ }^{* 2} / \mathrm{V}_{\mathrm{yd}} \end{gathered}$	評価位置＊${ }^{1}$	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\mathrm{V}_{\mathrm{d}}{ }^{* 2} / \mathrm{V}_{\mathrm{yd}}$
しゃへい 壁	地上部		13	（1）	S s－F2 ${ }^{\text {（ }}+$＋	東西方向	0.26	14	（2）	主方向： $\text { S s }-\mathrm{D} 2(++)$ 従方向： $\text { Ss - D } 2$	主方向： 東西従方向：南北	0.11
	地中部		18	（2）	S s－D $2(++)$	東西方向	0． 95	18				0． 93
バルブ室	頂版		22	（1）	S s－F1 $(++)$	南北方向	0． 34	22				0.27
			32	（1）	S s－D $1(-+)$	南北方向	0． 71	32				0． 17
			50	（2）	S s－D $2(++)$	東西方向	0． 85	50				0． 84
			60	（1）	S s－D $2(-+)$	東西方向	0． 18	60				0． 15
		頂版	110	（1）	S s－F1 $(++)$	東西方向	0.17	110				0． 16
		南北壁	120	（1）	S s－D $1(-+)$	南北方向	0.31	120				0.08
		東西壁	140	（1）	S s－F $2(++)$	東西方向	0.37	140				0． 10
			70	（1）	S s - D $2(++)$	南北方向	0.33	70				0． 23
連絡			80	（4）	S s－D $2(++)$	東西方向	0． 30	80				0． 25
ダクト			90	（4）	S s－D $2(++)$	東西方向	0.56	100				0.53

[^7]

図 3－3－45 復水貯蔵タンク基礎（しやへい壁，バルブ室及び連絡ダクト）評価位置図
（面内せん断ひずみに対する照査）

評価部材			水平 1 方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
			評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	$\begin{aligned} & \text { 照查値 } \\ & \gamma_{\mathrm{d}}{ }^{2} / \gamma_{\mathrm{R}} \end{aligned}$	評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査値 $\gamma_{\mathrm{d}}{ }^{* 2} / \gamma_{\mathrm{R}}$
しゃへい 壁	地上部		1	（1）	S s－D $2(-+)$	東西方向	0． 03	1	（2）	主方向： $\text { S s }-\mathrm{D} 2(++)$ 従方向： $\text { S s - D } 2$	主方向： 東西 従方向： 南北	0． 02
バルブ室			30	（1）	S s－D $2(-+)$	東西方向	0.05	30				0． 04
			40	（1）	S s－D $1(-+)$	南北方向	0.06	50				0． 02
			60	（1）	S s－D $1(-+)$	南北方向	0． 10	60				0.01
	ハッチ	南北壁	120	（1）	S s－F1 $(++)$	東西方向	0.03	120				0.02
	部	東西壁	140	（1）	S s－F $3(++)$	南北方向	0.03	150				0.01
連絡 ダクト	東西壁		90	（1）	S s－D $2(-+)$	南北方向	0． 07	90				0． 02

[^8]

図 3－3－46 復水貯蔵タンク基礎（各壁部材）評価位置図
O 2 （5） $\mathrm{VI}-2-12-1$
表3－3－13 復水貯蔵タンク基礎（基礎版）の評価結果
表3－3－12 復水貯蔵タンク基礎（基礎版）の評価結果
（曲げ・軸力系の破壊に対する照査（コンクリート）

水平1方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
評価位置＊	解析ケース	地震動	加振方向	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }^{\prime} /{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }_{c a} \end{gathered}$	評価位置＊	解析ケース	地震動	加振方向	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }^{\prime}{ }^{\prime} / \sigma^{\prime}{ }^{\prime}{ }_{c a} \end{gathered}$
212	（1）	S s－D $2(-+)$	東西方向	0． 12	211	（2）	$\begin{aligned} & \text { 主方向: } \\ & \text { S s-D } 2 \quad(++) \\ & \text { 従方向: } \\ & \text { S s - D } 2 \\ & \hline \end{aligned}$	主方向：南北従方向：東西	0． 13

[^9]注記＊：評価位置は図3－3－47に示す。
O 2 （5） $\mathrm{VI}-2-12-1 \quad \mathrm{R} 0$
表3－3－14 復水貯蔵タンク基礎（基礎版）の評価結果

水平 1 方向及び鉛直方向地震力の組合せ					水平 2 方向及び鉛直方向地震力の組合せ				
評価位置＊	解析ケース	地震動	加振方向	照査値 $\tau_{d} / \tau_{\text {a }}$	評価位置＊	解析ケース	地震動	加振方向	照査値 $\tau_{d} / \tau_{\text {al }}$
213	（2）	S s－D $2(++)$	南北方向	0． 64	213	（2）	$\begin{aligned} & \hline \text { 主方向: } \\ & \text { S s-D } 2 \quad(++) \\ & \text { 従方向: } \\ & \text { S s - D } 2 \\ & \hline \end{aligned}$	主方向：南北従方向：東西	0． 81

注記＊：評価位置は図3－3－47に示す。

図 3－3－47 復水貯蔵タンク基礎（基礎版）評価位置図

3．3．4 まとめ
屋外重要土木構造物において，水平 2 方向及び鉛直方向地震力の影響を受ける可能性がある施設（部位）について，従来設計手法における保守性も考慮した上 で抽出し，水平1方向及び鉛直方向地震力の組合せによる設計に対して影響を評価した。

その結果，水平2方向及び鉛直方向地震力を想定した発生応力が許容値を満足 し，施設が有する耐震性に影響のないことを確認した。

3.4 津波防護施設，浸水防止設備及び津波監視設備

3．4． 1 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出
（1）評価対象となる施設の整理
水平2方向及び鉛直方向地震力の組合せの影響評価を実施する対象設備は，津波防護施設である防潮堤，防潮壁，取放水路流路縮小工及び貯留堰，浸水防止設備である水密扉，逆流防止設備，浸水防止蓋，浸水防止壁，貫通部止水処置及び逆止弁付ファンネル，津波監視設備である津波監視カメラ及び取水ピット水位計 とする。各構造物の位置図を図3－4－1に示す。

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
図3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（1／18）
（第2号機海水ポンプ室平面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（2／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第2号機海水ポンプ室 A－A 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（3／18）

枠囲みの内容は防護上の観点から公開できません。

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第2号機海水ポンプ室 B－B 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（4／18）
（第1号機海水ポンプ室平面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（5／18）

[^10]

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第1号機海水ポンプ室 A－A 断面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（6／18）

（第3号機海水ポンプ室平面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（7／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第3号機海水ポンプ室 A－A 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（8／18）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（9／18）

枠囲みの内容は防護上の観点から公開できません。

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第3号機海水熱交換器建屋補機ポンプエリア 左：A－A 断面図 右：B－B 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（10／18）

（第2号機放水立坑平面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（11／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第2号機放水立坑 $\mathrm{A}-\mathrm{A}$ 断面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（12／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第2号機放水立坑 B－B 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（13／18）

（第1号機放水立坑平面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（14／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第1号機放水立坑 $\mathrm{A}-\mathrm{A}$ 断面図）

図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（15／18）

（第 3 号機放水立坑平面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（16／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第 3 号機放水立坑 $\mathrm{A}-\mathrm{A}$ 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（17／18）

注：東北地方太平洋沖地震による約 1 m の沈下を考慮した標高を記載
（第3号機放水立坑 B－B 断面図）
図 3－4－1 津波防護施設，浸水防止設備及び津波監視設備位置図（18／18）

表 3－4－1 強度評価の対象施設（1／2）

設備名称		施設分類
防潮堤	防潮堤（鋼管式鉛直壁）	津波防護施設
	防潮堤（盛土堤防）	
防潮壁	防潮壁（第 2 号機海水ポンプ室）	
	防潮壁（第 2 号機放水立坑）	
	防潮壁（第 3 号機海水ポンプ室）	
	防潮壁（第 3 号機放水立坑）	
	防潮壁（第 3 号機海水熱交換器建屋）	
取放水路流路縮小工	取放水路流路縮小工（第 1 号機取水路） （No．1），（No．2）	
	取放水路流路縮小工（第 1 号機放水路）	
貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）		
逆流防止設備	屋外排水路逆流防止設備（防潮堤南側） （No．1），（No．2），（No．3）	浸水防止設備
	屋外排水路逆流防止設備（防潮堤北側）	
	補機冷却海水系放水路逆流防止設備（No．1）， （No．2）	
水密扉	水密扉（第3号機海水熱交換器建屋海水ポン プ設置エリア）（No．1）	
	水密扉（第 3 号機海水熱交換器建屋海水ポン プ設置エリア）（No．2）	
	原子炉建屋浸水防止水密扉（No．1）	
	原子炉建屋浸水防止水密扉（No．2）	
	制御建屋浸水防止水密扉（No．1）	
	制御建屋浸水防止水密扉（No．2）	
	制御建屋浸水防止水密扉（No．3）	
	計測制御電源室（B）浸水防止水密扉（No．3）	
	制御建屋空調機械（A）室浸水防止水密扉	
	制御建屋空調機械（B）室浸水防止水密扉	
	第 2 号機 MCR 浸水防止水密扉	
	制御建屋浸水防止水密扉（No．4）	
	制御建屋浸水防止水密扉（No．5）	

表 3－4－1 強度評価の対象施設（2／2）

なお，津波防護施設のうち防潮壁（第3号機海水熱交換器建屋）については，添付書類「VI－2－10－2－3－4 防潮壁（第3号機海水熱交換器建屋）の耐震性についての計算書」において水平2方向及び鉛直方向地震力の組合せを考慮した耐震評価を実施し，十分な構造強度を有していることを確認していることから，本章での評価は省略する。

また，浸水防止設備及び津波監視設備の水平 2 方向及び鋁直方向地震力の組合せ の影響評価については，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．1建物•構築物」及び「4．2機器•配管系」に基づき，「3．1建物•構築物」及び「3．2機器•配管系」にて評価結果を示してい るため，本章では評価は省略する。浸水防止設備の間接支持構造物のらち，「3．1建物•構築物」及び「3．3屋外重要土木構造物」にて評価結果を示している施設に ついても，本章では評価は省略する。
（2）構造形式の分類
本章における評価対象構造物である津波防護施設，浸水防止設備及び津波監視設備の間接支持構造物の構造形式の分類を表3－4－2に示す。

構造形式により1）線状構造物，2）箱形構造物，3）門型構造物，4）円筒型構造物の 4 つの構造形式に大別される。

表 3－4－2 津波防護施設並びに浸水防止設備及び津波監視設備の間接支持構造物
の構造形式の分類

分	構造物		1）線状構造物	2）箱形構造物	3）門型構造物	4）円筒型構造物
津 波 防 護 施 設	防潮堤	鋼管式鉛直壁	\bigcirc （上部工）			\bigcirc （鋼管杭）
		盛土堤防	\bigcirc			
	防潮壁 （第2号機海水ポ ンプ室，第 2 号機放 水 立坑，第 3号機海水 ポンプ室，第 3号機放水立坑）	鋼製遮水壁 （鋼板）	\bigcirc （上部工）			\bigcirc （杭基礎）
		鋼製遮水壁 （鋼桁）			\bigcirc （上部工）	\bigcirc （杭基礎）
		鋼製扉			\bigcirc （上部工）	\bigcirc （杭基礎）
	取放水路流路縮小工		\bigcirc			
	貯留堰		－＊1			
$\begin{aligned} & \text { 浸 } \\ & \text { 水 } \\ & \text { 防 } \\ & \text { 止 } \\ & \text { 設 } \\ & \text { 備 } \\ & \text { N } \end{aligned}$	逆流防止 設備	屋外排水路逆流防止設備 （防潮堤南側）		\bigcirc （出口側集水ピット）		
		屋外排水路逆流防止設備 （防潮堤北側）		○出口側集水 ピット）		
		補機冷却海水系放水路逆流防止設備	$\begin{gathered} \bigcirc * 3 \\ \text { (基礎) } \end{gathered}$			
	浸水防止蓋	揚水井戸（第3号機海水ポン プ室防潮壁区画内）				$\begin{gathered} \bigcirc \\ (\text { 井戸) } \end{gathered}$
$\begin{aligned} & \text { 津 } \\ & \text { 波 } \\ & \text { 監 } \\ & \text { 視 } \\ & \text { 備 } \\ & \text { 笖 } \end{aligned}$	津波監視力	メラ	\bigcirc （防潮堤 （盛土堤防））			

注記 $* 1:$ 取水口と一体構造であり，「3．3屋外重要土木構造物」にて評価結果を示してい ることから，本章では評価は省略する。
＊2：間接支持構造物を示す。なお，本表に示している設備以外の浸水防止設備及び津波監視設備の間接支持構造物については「3．1建物•構築物」及び「3．3屋外重要土木構造物」にて評価結果を示していることから，本章では評価は省略 する。
＊ 3 ：防潮壁（第 2 号機放水立坑）
（3）従来設計手法における評価対象断面に対して直交する荷重の整理表3－4－3に，従来設計手法における評価対象断面に対して直交する荷重を示す。従来設計手法における評価対象断面に対して直交する荷重として，動土圧，動水圧，摩擦力及び慣性力が挙げられる。

表 3－4－3 従来設計手法における評価対象断面に対して直交する荷重

作用荷重		作用荷重のイメージ＊
（1）動土圧及 び動水圧	従来設計手法におけ る評価対象断面に対 して，平行に配置さ れる構造部材に作用 する動土圧及び動水圧	従来設計手法の評価対象断面 動土圧•動水圧
（2）摩擦力	周辺の埋戻土と躯体間で生じる相対変位 に伴い発生する摩擦力	
（3）慣性力	躯体に作用する慣性力	

注記＊：当該図は，平面図を示す。
（4）荷重の組合せによる応答特性が想定される箇所
表3－4－4に，3．4．1（2）で整理した構造形式ごとに，3．4．1（3）で整理した荷重作用 による影響程度を示す。

また，構造形式ごとに，各構造物の概略図と特徴について以下に示す。
表 3－4－4 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出（ $1 / 2$ ）

3．4．1（2）で整理した構造形式の分類	1）線状構造物 （防潮堤（鋼管式鉛直壁）の上部工等）		2）箱形構造物 （逆流防止設備の基礎等）	
3．4．1（3）で整理した荷重の作用状況	（注）③慣性力はすべての構造部材に作用		（注）（3）慣性力	
	（1）動土圧及び動水圧	作用しない	（1）動土圧及び動水圧	従来設計手法におけ る評価方向に対して平行する側面に作用
	（2）摩擦力	作用しない	（2）摩擦力	従来設計手法におけ る評価方向に対して平行する側面に作用
	（3）慣性力	全ての部材に作用	（3）慣性力	全ての部材に作用
従来設計手法におけ る評価対象断面に対 して直交する荷重の影響度	従来設計手法における評価対象断面に対して直角方向（強軸方向）に（1）動土圧及び動水圧に よる荷重が作用しないため影響の程度が小さ い。		従来設計手法における評価対象断面に対して平行す る側面に，（1）動土圧及び動水圧による荷重が作用する ため影響大	
抽出結果 （ \bigcirc ：影響検討実施）	\times		\bigcirc	

3．4．1（2）で整理した構造形式の分類	3 ）門型構造物（杭基礎構造防潮壁（鋼製遮水壁（鋼桁））の上部工等）		4）円筒型構造物 （防潮壁の下部工等）	
3．4．1（3）で整理した荷重の作用状況	 （注）（3）慣性力はすべての構造部材に作用		（注）（3）慣性力は	ける評価対象断面 ての構造部材に作用
	（1）動土圧及び動水圧	作用しない	（1）動土圧及び動水圧	主に胴体部に作用
	（2）摩擦力	作用しない	（2）摩擦力	主に胴体部に作用
	（3）慣性力	全ての部材に作用	（3）慣性力	全ての部材に作用
従来設計手法におけ る評価対象断面に対 して直交する荷重の影響度	従来設計手法における評価対象断面に対して直角方向（強軸方向）に（1）動土圧及び動水圧による荷重が作用しないため影響の程度が小さいが，左右の RC支柱に桁や扉を支持させた門型構造形式であり，妻側に配置された RC 支柱への強軸方向の慣性力等の荷重が作用する等，影響の程度が大きい。		胴体部において，（1）動土圧及び動水圧による荷重，上部工からの荷重が作用するため影響の程度 が大きい。	
抽出結果 （ \bigcirc ：影響検討実施）	\bigcirc		\bigcirc	

（5）従来設計手法における評価対象以外の 3 次元的な応答特性が想定される箇所の抽出

3．4．1（4）で抽出しなかった構造形式である 1 ）線状構造物について，各構造物の構造等を考慮した上で，従来設計手法における評価対象断面以外の 3 次元的な応答特性が想定される箇所を抽出し，以下に示す。
a．防潮堤（鋼管式鉛直壁の上部工，盛土堤防）
防潮堤（鋼管式鋁直壁）の上部工は，軸方向に対して同一の構造断面が連続す る線状構造物であり，構造上の特徴として，妻壁（評価対象断面に対して平行に配置される壁部材）等を有さず，明確な弱軸•強軸を示し，強軸方向の慣性力に より発生する応力の影響は小さいことから，水平2方向及び鉛直方向地震力の組合せの影響は小さい。

防潮堤（盛土堤防）はセメント改良土盛土による線状構造物であり，従来設計手法における評価対象断面に対して直交する動土圧はほとんど作用しないこと から，水平2方向及び鉛直方向地震力の組合せの影響は小さい。

防潮堤の構造概要を図3－4－2に示す。

（鋼管式鉛直壁（上部工））

（盛土堤防）

図 3－4－2 防潮堤（鋼管式鉛直壁の上部工，盛土堤防）の構造概要
b．防潮壁（鋼製遮水壁（鋼板）の上部工）
防潮壁（鋼製遮水壁（鋼板））の上部工は，壁軸方向に対して同一の構造断面が連続する線状構造物であり，妻壁（評価対象断面に対して平行に配置される壁部材）等を有さず，相対的に断面係数が大きい壁軸方向が明確な強軸を示し，強軸方向の慣性力により発生する応力の影響は小さいことから，水平2方向及び鉛直方向地震力の組合せの影響は小さい。

なお，防潮壁（鋼製遮水壁（鋼板））の隅角部については，隣接する構造との接続のために妻壁に相当する部位を有するが，その面積は小さく，鋼製支柱や全体構造に与える慣性力等の影響も小さいため，水平 2 方向及び鉛直方向地震力の組合せの影響は小さい。

防潮壁（鋼製遮水壁（鋼板）の上部工）の構造概要を図3－4－3に，隅角部の構造概要を図3－4－4に，平面配置を図3－4－5，図3－4－6に示す。

図 3－4－3 防潮壁（鋼製遮水壁（鋼板）の上部工）の構造概要

図 3－4－4 鋼製遮水壁（鋼板）の上部工（隅角部）

（第2号機海水ポンプ室防潮壁）

（第2号機放水立坑防潮壁）
図 3－4－5 防潮壁（鋼製遮水壁（鋼板））の平面配置

（第3号機海水ポンプ室防潮壁）

（第3号機放水立坑防潮壁）

図 3－4－6 防潮壁（鋼製遮水壁（鋼板））の平面配置
c．取放水路流路縮小工
取放水路流路縮小工は，岩盤内に構築された線状構造物である既設取放水路内 に設置する構造物で，縦断方向に同一断面が連続した形状となっており，また横断方向を岩盤により拘束された構造であるため，地震時の水平 2 方向及び鉛直方向地震力の組合せの影響は小さい（縦断方向に対しては津波時及び津波余震重畳時における強度評価を実施）。

構造概要を図3－4－7，図3－4－8に示す。

図 3－4－7 取放水路流路縮小工 平面図
（第1号機取水路の例）
No． 1
No． 2

$\mathrm{A}-\mathrm{A}$ 断面

$\mathrm{B}-\mathrm{B} \quad(\mathrm{C}-\mathrm{C})$ 断面

図 3－4－8 取放水路流路縮小工 断面図
（第1号機取水路の例）

枠囲みの内容は防護上の観点から公開できません。

3．4．2 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果
（1）箱形構造物
箱形構造物である屋外排水路逆流防止設備（防潮堤北側）及び屋外排水路逆流防止設備（防潮堤南側）の出口側集水ピットについて，構造形状が異なることを踏まえ，水平 2 方向及び鉛直方向地震力の組合せの影響を評価する。
（2）門型構造物
門型構造物である，防潮壁（杭基礎構造）のうち鋼製遮水壁（鋼桁）の構造概要図を図3－4－9に，鋼製扉の上部工の構造概要図を図3－4－10に示す。

主たる止水構造である鋼桁及び鋼製扉（扉体）については，従来設計手法にお ける評価対象断面に対して直角方向（強軸方向）の断面係数が相対的に大きいた め，水平 2 方向及び鉛直方向地震力の組合せの影響は小さい。

一方，鋼桁や鋼製扉を支持する左右のRC支柱に対しては，強軸方向の慣性力等 の荷重が作用することで，水平2方向及び鉛直方向地震力の組合せの影響が想定 される。

よって，鋼製遮水壁（鋼桁）及び鋼製扉の上部工のうちRC支柱を水平 2 方向及 び鉛直方向地震力の組合せの影響評価対象とする。ここで，扉体よりも鋼桁の方 が，重量があり慣性力がより大きくなることで，相対的に影響が大きいと考えら れる鋼製遮水壁（鋼桁）を代表に評価する。

図 3－4－9 鋼製遮水壁（鋼桁）構造概要図

図 3－4－10 鋼製扉 構造概要図
（3）円筒型構造物
円筒型構造物は防潮堤（鋼管式鉛直壁）の下部工及び防潮壁（杭基礎構造）の下部工の基礎杭と揚水井戸（第3号機海水ポンプ室防潮壁区画内）の鋼製シャフ トが該当する。それぞれの構造概要を図3－4－11～図3－4－13に示す。

基礎杭について，防潮堤（鋼管式鉛直壁）の下部工は，改良地盤又は岩盤内に設置されており，動土圧の影響は小さく，応答については上部工の影響が支配的 である。上部工については，先に示したように線状構造物であり明確な強軸•弱軸を示し，強軸方向の慣性力により発生する応力の影響は小さい。防潮堤（鋼管式鉛直壁）の下部工の基礎杭に対する水平 2 方向及び鉛直方向地震力の組合せの影響は小さいため，防潮壁の基礎杭を代表に水平 2 方向及び鉛直方向地震力の組合せの影響を評価する。

よって，防潮壁の基礎杭及び揚水井戸（第3号機海水ポンプ室防潮壁区画内） を円筒型構造物の影響評価の代表構造物として選定する。

図3－4－11 防潮堤（鋼管式鉛直壁）の下部工の概要

図3－4－12 防潮壁の下部工（基礎杭）の概要

図3－4－13 揚水井戸（第3号機海水ポンプ室防潮壁区画内）の概要

3．4．3 水平 2 方向及び鉛直方向地震力の影響評価結果
（1）箱形構造物
a．屋外排水路逆流防止設備（防潮堤南側）
（a）評価方法
屋外排水路逆流防止設備（防潮堤南側）の出口側集水ピットについて，地震応答解析は，添付書類「VI－2－10－2－6－1－1 屋外排水路逆流防止設備（防潮堤南側） の耐震性についての計算書」に示す方法と同様とする。

屋外排水路逆流防止設備（防潮堤南側）の出口側集水ピットの水平 2 方向及び鉛直方向地震力の組合せによる影響評価については，直交する水平2方向における それぞれの地震応答解析にて評価した同時刻の断面力を組み合わせて用いる。こ れにより算定した水平2方向及び鉛直方向地震力による応答が許容限界以下であ ることを確認する。
（b）評価結果
屋外排水路逆流防止設備（防潮堤南側）の出口側集水ピットの水平2方向及び鉛直方向地震力の組合せによる影響評価結果を表3－4－5～表3－4－7に示す。また，出口側集水ピットの評価位置を図3－4－14に示す。

表3－4－5 屋外排水路逆流防止設備（防潮堤南側）の評価結果
（曲げ・軸力系の破壊に対する照査（コンクリート））

評価		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \begin{array}{c} \text { 曲げモー } \\ \text { メント } \end{array} \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\begin{gathered} \sigma^{\prime}{ }_{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma^{\prime}{ }_{\text {ca }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
底版	1	（3）	主方向：S s－F $2(-+)$ 従方向：S s－F 2	284	－430	1.2	16.5	0.08
西壁	2			217	－291	1.5	16.5	0． 10
東壁	3			－121	153	0.6	16.5	0.04
南北壁	4			157	－468	1.0	16.5	0.07

表3－4－6 屋外排水路逆流防止設備（防潮堤南側）の評価結果 （曲げ・軸力系の破壊に対する照査（鉄筋））

評価		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{aligned} & \text { 曲げモー } \\ & \text { メント } \\ & (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{aligned}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度 $\begin{gathered} \sigma_{\text {sa }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
底版	1	（3）	主方向：S s－F $2(-+)$ 従方向：S s－F 2	284	－447	13.2	294	0.05
西壁	2			－205	34	33.4	294	0． 12
東壁	3			－121	170	30.0	294	0.11
南北壁	4			17	68	17.2	294	0． 06

表3－4－7 屋外排水路逆流防止設備（防潮堤南側）の評価結果
（せん断破壊に対する照査（鉄筋））

評価位置		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 $\begin{gathered} \mathrm{V} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	短期許容 せん断力 $\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{V} / \mathrm{V} \mathrm{a}$
底版	1	（3）	主方向：S s－F $2(-+)$ 従方向：S s－F 2	212	1227	0.18
西壁	2			369	1563	0.24
東壁	3			120	1563	0.08
南北壁	4			68	944	0． 08

図3－4－14 評価位置図
b．屋外排水路逆流防止設備（防潮堤北側）
（a）評価方法
屋外排水路逆流防止設備（防潮堤北側）の出口側集水ピットについて，地震応答解析は，添付書類「VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側） の耐震性についての計算書」に示す方法と同様とする。

屋外排水路逆流防止設備（防潮堤北側）の出口側集水ピットの水平 2 方向及び鉛直方向地震力の組合せによる影響評価については，直交する水平2方向における それぞれの地震応答解析にて評価した同時刻の断面力を組み合わせて用いる。こ れにより算定した水平2方向及び鉛直方向地震力による応答が許容限界以下であ ることを確認する。
（b）評価結果
屋外排水路逆流防止設備（防潮堤北側）出口側集水ピットの水平 2 方向及び鉛直方向地震力の組合せによる影響評価結果を表3－4－8～表3－4－10に示す。また，出口側集水ピットの評価位置を図3－4－15に示す。

表3－4－8 屋外排水路逆流防止設備（防潮堤北側）の評価結果 （曲げ・軸力系の破壊に対する照査（コンクリート））

評価位置		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{aligned} & \text { 曲げモー } \\ & \text { メント } \\ & (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{aligned}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\begin{gathered} \sigma^{\prime}{ }_{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma^{\prime} \text { са } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }} \end{gathered}$
底版	1	（3）	主方向：S s－D $2(-+)$ 従方向：S s－D 2	－1314	－1085	2.8	16.5	0.17
南壁	2			1602	－4936	4.2	16.5	0． 26
西壁	3			－1231	－92	2.5	16.5	0.16
北壁	4			463	－4002	2.4	16.5	0.15

表3－4－9 屋外排水路逆流防止設備（防潮堤北側）の評価結果
（曲げ・軸力系の破壊に対する照査（鉄筋））

評価位置		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 (kN/m)	発生応力度 $\begin{gathered} \sigma_{\mathrm{s}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma_{\text {sa }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
底版	1	（3）	主方向：S s－D $2(-+)$従方向：S s－D 2	507	886	99.3	294.0	0． 34
南壁	2			1041	－72	79.0	294.0	0.27
西壁	3			－1300	808	156.4	294.0	0.54
北壁	4			405	401	58.8	294.0	0． 20

表3－4－10 屋外排水路逆流防止設備（防潮堤北側）の評価結果
（せん断破壊に対する照査（鉄筋））

評価位置		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	加振 方向	地震動	発生 せん断力 V （ kN / m ）	短期許容 せん断力 $\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
底版	1	（3）	y 方向	主方向：S s－D $2(-+)$ 従方向：S s－D 2	2193	3495	0.63
南壁	2		y 方向		724	3495	0.21
西壁	3		x 方向		1868	3495	0.54
北壁	4		y 方向		268	3495	0.08

2－2（南北）

東

図3－4－15 評価位置図
（a）評価方法
RC支柱の水平 2 方向及び鉛直方向地震力の組合せによる影響評価については，直交する水平2方向におけるそれぞれの地震応答解析にて評価した同時刻の断面力を組み合わせて用いる。これにより算定した水平2方向及び鉛直方向地震力に よる応答が許容限界以下であることを確認する。

なお，せん断力に対しては，桁軸方向加振と桁軸直角方向加振により生じるせ ん断力に対して，図3－4－16に示すとおり帯状に配置したせん断補強筋が負担する面が異なるため，それぞれの加振方向に対して基準地震動S s により生じるせん断力が許容限界以下であることを示すことで影響評価とする。

図3－4－16 RC支柱の配筋概要
（b）評価対象
評価対象は，RC支柱の構造諸元や支持する鋼桁の構造諸元及び周辺地盤の状況 が異なるため，添付書類「VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁） の耐震性についての計算書」に示す，RC支柱の照査値（水平 1 方向及び鉛直方向地震力の組合せに基づく耐震評価結果）に基づき，照査値の厳しい構造物を選定し，影響評価を行う。

表3－4－11に評価対象の選定結果を示す。表3－4－11より，曲げ軸力照査に対して は，照査値が最も大きい鋼製遮水壁（鋼桁）のうち鋼桁3のRC支柱を代表構造物と して選定する。せん断力に対しては，桁軸方向加振と桁軸直角方向加振のそれぞ れにより生じるせん断力が許容限界以下であり，照査値に十分な裕度を有するこ とを確認した。

表3－4－11 RC支柱の代表構造物選定結果

構造物名	最大照査値		選定結果	選定理由
	曲げ軸力照査	せん断力照査＊		
鋼桁（鋼桁 1 ）	0． 747	0.41 （桁軸） 0.14 （桁軸直交）		
鋼桁（鋼桁2）	0． 727	0． 43 （桁軸） 0.15 （桁軸直交）		
鋼桁（鋼桁3）	0． 784	0． 30 （桁軸） 0．34（桁軸直交）	\bigcirc	曲げ軸力照査値最大
鋼桁（鋼桁4）	0． 420	0.25 （桁軸） 0．24（桁軸直交）		
鋼桁（鋼桁5）	0.763	0． 32 （桁軸） 0．20（桁軸直交）		
鋼桁（鋼桁6）	0． 775	0.31 （桁軸） 0.15 （桁軸直交）		

注記＊：添付書類「VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁）の耐震性についての計算書」より最大照査値を抜粋して記載。
（c）水平2方向及び鉛直方向地震力を考慮した照査値の算定方法
$R C$ 支柱の曲げ軸力照査において照査値が最大となる鋼桁 3 を検討対象とし，影響評価を行う。

RC支柱の応力度算定は，地震応答解析に基づき算定した断面力を用いて解析コ ード「RC断面計算Ver．8．00．06」により算定する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機 プログラム（解析コード）の概要」に示す。

なお，照査における評価用断面力について，曲げモーメントは，主方向解析及 び従方向解析から該当する応答値を選定し，軸力は，主方向解析から得られた応答値を選定する。
（d）評価条件
（1）地震応答解析
地震応答解析は添付書類「VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁 （鋼桁）の耐震性についての計算書」に示す方法と同様とする。
（2）模擬地震動
水平2方向及び鉛直方向地震力の組合せによる影響評価では，全く同じ地震

動が同時に水平2方向に発生することは現実的には考えにくいことから，水平1方向の照査において最大照査値となる断面に直交する方向には，位相の異なる模擬地震波を用いる。
（3）検討ケース
－鋼桁3「加振方向（主）：桁軸，S s－D $2(-+)$ ，解析ケース（1）」
（e）評価結果
$R C$ 支柱の水平 2 方向及び鉛直方向地震力を考慮した曲げ・軸力系の破壊に対す る照査値を表3－4－12に示す。

水平2方向及び鉛直方向地震力を考慮した場合でも，それぞれの照査値が許容限界以下であることを確認した。

表 3－4－12 RC 支柱の曲げ・軸力系の破壊に対する照査値（鉄筋）（鋼桁3基礎2）

加振方向	発生断面力		曲げ圧縮応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （a）	許容限界 （ $\mathrm{N} / \mathrm{mm}^{2}$ ） （b）	$\begin{aligned} & \text { 照査値 } \\ & (\mathrm{a} / \mathrm{b}) \end{aligned}$
	$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	軸力 （kN）			
1方向目＊1 （桁軸方向）	－12540	362	231	294	0． 79
$\begin{gathered} 2 \text { 方向目*1 } \\ (\text { 桁軸直交方向) } \end{gathered}$	－12421	439	96	294	0.33
2 方向及び鉛直方向地震力を考慮＊2	$\begin{gathered} \text { My : }-12540 \\ \text { Mz : } 3770 \\ \hline \end{gathered}$	843	243	294	0.83

注記＊1：曲げモーメントについては，全時刻の絶対値最大となる断面力を抽出 し，軸力については全時刻の最小値を抽出した上で，曲げモーメントは保守的となるよう正負を入れ替えた組合せでの照査を行い，照査値が最大となった組み合わせでの断面力の値を示している。
＊2：曲げモーメントについては，My：桁軸方向加振で生じる曲げモーメン ト，Mz：桁軸直角方向加振で生じる曲げモーメントが最大最小となる時刻及び My，Mzの合成モーメント（2 乗和平方根）が最大となる時刻並び に軸力（桁軸方向）が最大最小となる時刻における断面力の組合せを抽出した上で，保守的となるよう正負を入れ替えた組合せでの照査を行い，照査値が最大となった組み合わせでの断面力の値を示している。
（3）円筒型構造物
a ．基礎杭
（a）評価方法
基礎杭の水平2方向及び鉛直地震力の組合せによる影響評価については，直交 する水平 2 方向におけるそれぞれの地震応答解析にて評価した同時刻の断面力を組み合わせて用いる。これにより算定した水平 2 方向及び鉛直方向地震力による応答が許容限界以下であることを確認する。
（b）評価対象
評価対象は，材質，杭径，杭間隔，長さ，上載荷重及び周辺地盤の状況が異な るため，添付書類「VI－2－10－2－3－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の耐震性についての計算書」，「VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁） の耐震性についての計算書」及び「VI－2－10－2－3－3 杭基礎構造防潮壁 鋼製扉の耐震性についての計算書」に示す，各構造形式の耐震評価対象断面における鋼管杭の照查値（水平1方向及び鉛直方向地震力の組合せに基づく耐震評価結果）に基 づき，照査値の厳しい構造物を選定し，影響評価を行う。

表3－4－13に評価対象の選定結果を示す。表3－4－13より，鋼管杭の曲げ軸力及び せん断力照査のうち，照査値が最も大きい鋼桁 $1,4,5$ を影響評価の代表構造物と して選定する。

表3－4－13 基礎杭の代表構造物選定結果

構造 形式	構造物名	最大照査値		選定結果	選定理由
		曲げ軸力照査	せん断力照査		
基礎杭	鋼板（断面（1）	0.713	0． 434		
	鋼板（断面（2）	0.619	0.385		
	鋼板（断面（3）	0.388	0． 100		
	鋼板（断面（4））	0． 266	0． 248		
	鋼板（断面（5））	0.483	0.413		
	鋼板（断面（6））	0． 407	0.626		
	鋼板（断面（7）	0.604	0． 480		
	鋼桁（鋼桁 1）	0．739	0.627	\bigcirc	曲げ軸力照査値（S s －N 1 を除く）最大＊ せん断力照査値（S s －N 1 を除く）最大＊
	鋼桁（鋼桁2）	0.854	0． 412		
	鋼桁（鋼桁3）	0.653	0.608		
	鋼桁（鋼桁4）	0.884	0.696	\bigcirc	せん断力照査値最大
	鋼桁（鋼桁5）	0.908	0． 414	\bigcirc	曲げ軸力照査値最大
	鋼桁（鋼桁6）	0.900	0． 355		
	鋼製扉（扉2）	0． 270	0． 265		
	鋼製扉（扉3）	0.898	0.496		

注記＊：S s－N 1 は観測波に基づいており，地震動の方向に偏りがあり，基準地震動 S s と直交する地震動が基準地震動 S s に比べ小さいことか ら，S s－N 1 以外の2番目に照査値が厳しい地震動に対しても水平2方向評価を実施
（c）水平2方向及び鉛直方向地震力を考慮した照査値の算定方法
（1）曲げ軸力照査（鋼管杭）
曲げ軸力照査値の算定式を以下に示す。
$M_{y}=\left(\sigma_{y}-\frac{\left|N_{4}\right|}{\mathrm{A}_{4}}\right) \cdot \mathrm{Z}_{4}$
ここで，
M_{y} ：鋼管杭の降伏モーメント（kN•m）
σ_{y} ：鋼管杭の降伏強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
N_{4} ：鋼管杭に発生する軸力（kN）
A_{4} ：鋼管杭の断面積（ m^{2} ）
Z_{4} ：鋼管杭の断面係数（ m^{3} ）
（2）せん断力照査（鋼管杭）
せん断照査値の算定式を以下に示す。
$\tau_{1}=\kappa_{1} \frac{S_{1}}{A_{1}}$

ここで，
τ_{1} ：鋼管杭のせん断力より算定されるせん断応力（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
S_{1} ：鋼管杭に発生するせん断力（ N ）
A_{1} ：鋼管杭の断面積（ mm^{2} ）
κ_{1} ：せん断応力の分布係数（2．0）
（3）曲げ軸力照査（場所打ちコンクリート杭）
場所打ちコンクリート杭（鋼桁1）の曲げ軸力照査は，曲げモーメントが許容限界以下であることを確認する。許容限界である降伏モーメントの算定は，解析コ ード「RC断面計算Ver．8．00．06」により算定する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機 プログラム（解析コード）の概要」に示す。
（4）せん断力照査（場所打ちコンクリート杭）
場所打ちコンクリート杭（鋼桁1）のせん断照査は，せん断力が許容限界以下で あることを確認する。許容限界であるせん断耐力は，建設技術審査証明報告書 内面リブ付鋼管巻き場所打ち杭「JFETB杭」に基づく次式により算定される。
$\mathrm{P}_{\mathrm{s}}=\mathrm{S}_{\mathrm{c}}+\mathrm{S}_{\mathrm{s}}+\mathrm{S}_{\mathrm{p}}$

ここで，
Ps ：場所打ちコンクリート杭のせん断耐力（N）
S_{c}^{c} ：コンクリートの負担するせん断耐力（N）
S s ：帯鉄筋の負担するせん断耐力（N）
S_{p} ：鋼管の負担するせん断耐力（N）
（d）評価条件
（1）地震応答解析
地震応答解析は添付書類「VI－2－10－2－3－2 杭基礎構造防潮壁 鋼製遮水壁（鋼桁）の耐震性についての計算書」に示す方法と同様とする。
（2）模擬地震動
水平2方向及び鉛直方向地震力の組合せによる影響評価では，全く同じ地震動 が同時に水平2方向に発生することは現実的には考えにくいことから，水平1方向 の照査において最大照査値となる断面に直交する方向には，位相の異なる模擬地震波を用いる。
（3）検討ケース
曲げ軸力

- 鋼桁5「加振方向（主）：桁軸直交，S s－N 1 （ -+ ），解析ケース（1）」
- 鋼桁1「加振方向（主）：桁軸，S s－D 2（＋＋），解析ケース（1）」

せん断力照査

- 鋼桁 4 「加振方向（主）：桁軸直交，S s－N $1 ~(++)$ ，解析ケース（2）」
- 鋼桁1「加振方向（主）：桁軸，S s－D $2(++)$ ，解析ケース（1）」
（e）評価結果
基礎杭の水平2方向及び鉛直方向地震力を考慮した曲げ・軸力系の破壊に対す る照査値を表3－4－14，表3－4－15に，せん断破壊に対する照査値を表3－4－16，表3－ 4－17に示す。

水平2方向及び鉛直方向地震力を考慮した場合でも，それぞれの照査値が許容限界以下であることを確認した。

表 3－4－14 鋼管杭の曲げ・軸力系の破壊に対する照査値（鋼桁5）

加振方向	発生断面力		降伏曲げ モーメント （kN•m）（b）	照査値(a/b)
	曲げモーメント （kN•m） （a）	軸力 （kN）		
$\begin{gathered} 1 \text { 方向目 } \\ (\text { 桁軸直交) } \end{gathered}$	12284	8727	13522	0.91
2 方向目 （桁軸）	9206	1066	26175	0.36
2 方向及び鉛直方向地震力を考慮	12302＊	8727	13522	0.91

注記 $*: ~$ 水平 2 方向及び鉛直方向地震力を考慮する曲げモーメントについて
は， 1 方向目と 2 方向目の等時刻の曲げモーメントの合成（2乗和平
方根）が最大となる時刻の合成曲げモーメント

表 3－4－15 鋼管杭の曲げ・軸力系の破壊に対する照査値（鋼桁1）

加振方向	発生断面力		$\begin{gathered} \text { 降伏曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m})(\mathrm{b}) \end{gathered}$	照査値(a/b)
	$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \quad \text { (a) } \end{gathered}$	軸力 （kN）		
1方向目 （桁軸）	11287	1935	15264	0． 74
2 方向目 （桁軸直交）	851	3152	14821	0.06
2 方向及び鉛直方向地震力を考慮	11296＊	1935	15264	0.75

注記＊：水平2方向及び鉛直方向地震力を考慮する曲げモーメントについて は， 1 方向目と 2 方向目の等時刻の曲げモーメントの合成（2乗和平方根）が最大となる時刻の合成曲げモーメント

表 3－4－16 鋼管杭のせん断破壊に対する照査値（鋼桁4）

表 3－4－17 鋼管杭のせん断破壊に対する照査値（鋼桁 1）

加振方向	発生断面力	許容限界（kN） （b）	照査値(a/b)
	せん断力 （kN）（a）		
1 方向目 （桁軸）	10745	17125	0.63
$\begin{gathered} 2 \text { 方向目 } \\ \text { (桁軸直交) } \end{gathered}$	11171	17125	0.66
2 方向及び鉛直方向地震力を考慮	11196＊	17149	0.66

注記＊：水平2方向及び鉛直方向地震力を考慮するせん断力については，1方向目と 2 方向目の等時刻のせん断力の合成（2乗和平方根）が最大と なる時刻の合成せん断力
b．揚水井戸（第3号機海水ポンプ室防潮壁区画内）
揚水井戸（第3号機海水ポンプ室防潮壁区画内）の鋼製シャフトの基準地震動 S s における耐震評価結果を表3－4－18，表3－4－19に示す。水平2方向及び鉛直方向地震力 の組合せによる影響が想定されるが，照査値に十分な裕度があるため評価は省略す る。

表3－4－18 鋼製シャフトの評価結果 曲げ・軸力系の破壊に対する照査

地震動	発生断面力		曲げ応力度$\sigma_{s}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容応力度$\sigma_{\mathrm{sa}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値$\sigma_{\mathrm{s}} / \sigma_{\mathrm{sa}}$
	$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	軸力 （kN）			
S s－N 1	11515	－292	230	382	0.61

表3－4－19 鋼製シャフトの評価結果 せん断破壊に対する照査

地震動	発生断面力	せん断応力度 $\tau_{\mathrm{s}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度 $\tau_{\mathrm{sa}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{s}} / \tau_{\mathrm{sa}}$
$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	5120		217	0.36

3．4．4 まとめ

津波防護施設，浸水防止設備及び津波監視設備において，水平2方向及び鉛直方向地震力の影響を受ける可能性がある施設（部位）について，従来設計手法にお ける保守性も考慮した上で抽出し，水平2方向及び鉛直方向地震力の組合せによ る設計に対して影響を評価した。

その結果，水平2方向及び鉛直方向地震力を想定した発生応力が許容値を満足 し，施設が有する耐震性に影響のないことを確認した。

VI－2－別添2 溢水防護に係る施設の耐震性に関する説明書

VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針
VI－2－別添2－2 溢水源としない耐震 B，Cクラス機器の耐震性についての計算書
VI－2－別添 2－3 溢水防護に関する施設の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果

VI－2－別添 2－4 循環水系隔離システムの耐震性についての計算書
VI－2－別添 2－5 タービン補機冷却海水系隔離システムの耐震性についての計算書
VI－2－別添 2－6 逆流防止装置の耐震性についての計算書
VI－2－別添 2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書
VI－2－別添 2－8 復水器水室出入口弁の耐震性についての計算書

VI－2－別添2－2 溢水源としない耐震B，C クラス機器の耐震性につい ての計算書

目次

1．概要 1
2．一般事項 1
2.1 配置概要 1
2.2 構造計画 1
2．3 評価方針 1
2.4 適用基準 2
3．評価部位 2
4．地震応答解析及び構造強度評価 2
4．1 地震応答解析及び構造強度評価方法 2
4．1．1 地震応答解析方法 2
4．1．2 構造強度評価方法 5
4．2 荷重及び荷重の組合せ 5
4．2．1 荷重の種類 5
4．2．2 荷重の組合せ 5
4．3 許容限界 7
4．4 計算方法 15
4.5 計算条件 16
5．評価結果 22

1．概要

本資料は，添付書類「VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針」の「2．耐震評価の基本方針」に基づき，溢水源となり得る流体を内包する機器のらち溢水源と して設定しない機器（以下「耐震 B，Cクラス機器」という。）が，基準地震動S s によ る地震力に対して，十分な耐震性を有することを説明するものである。その耐震評価は，応力評価により行う。

耐震 B，C クラス機器は設計基準対象施設においてはBクラス施設又はCクラス施設 に分類される。以下，設計基準対象施設としての構造強度評価を示す。

2．一般事項

2.1 配置概要

耐震 B，Cクラス機器は，原子炉建屋，制御建屋，海水ポンプ室及び復水貯蔵タンク エリアに設置する。各機器の具体的な据付場所及び床面高さは，表 4－1 に示し，据付場所及び床面高さに応じた評価を行う。
2.3 評価方針

耐震 B，Cクラス機器の応力評価は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」の「3．1 荷重及び荷重の組合せ」及び「3．2 許容限界」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，耐震 B，C クラス機器 の評価部位に作用する応力が許容限界内にあることを，本資料の「4．地震応答解析及び構造強度評価」に示す方法により計算し，「5．評価結果」にて確認する。

耐震B，Cクラス機器の容器類，ポンプ類，配管，弁及び支持構造物については，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」にて示している構造と同様で あることから，添付書類「VI－2－1－9 機能維持の基本方針」に示している各機器，許容応力状態 IV A_{A} S の荷重の組合せを踏まえて，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」等の評価式及び解析方法を用いて評価する。
2.4 適用基準

適用する規格，指針等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（2）原子力発電所耐震設計技術指針重要度分類•許容応力編（JEAG46011補－ 1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格
（5）機械工学便覧（（社）日本機械学会）
（6）日本産業規格（ J I S ）

3．評価部位
耐震 B，Cクラス機器の評価部位は，容器類及びポンプ類については，添付書類「VI－ 2－1－13 機器•配管系の計算書作成の方法」等により，胴板，脚，及びボルト等を評価部位とする。

配管，弁及び支持構造物については，添付書類「VI－2－1－13 機器•配管系の計算書の作成の方法」により配管，弁及び支持構造物を評価部位とする。

評価結果は，算出応力と許容応力を踏まえ，評価上厳しい箇所の結果について記載す る。

4．地震応答解析及び構造強度評価
4．1 地震応答解析及び構造強度評価方法
4．1．1 地震応答解析方法
基準地震動 S s による設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

耐震 B，C クラス機器の地震応答解析は，添付書類「VI－2－別添2－1 溢水防護 に係る施設の耐震計算の方針」の「4．1 地震応答解析」にて設定している評価方針に従い実施する。

表 4－1に耐震B，Cクラス容器類及びポンプ類の設計震度を示す。

表 4－1 耐震 B，C クラス容器類及びポンプ類の設計震度（1／2）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	据付場所	床面高さ0. P. (m)	設計震度	
				水平方向	鉛直方向
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \end{aligned}$	PLR ポンプシールパージ系ろ過器	原子炉建屋	$\begin{gathered} -0.80^{* 1} \\ (0.10) \end{gathered}$	1． 37	0.91
	PLR ポンプシールパージ系ろ過器 （フィルタニニット）	原子炉建屋	－0． 80	1． 34	0． 88
	CRD サクションフィルタ（A）（B）	原子炉建屋	－0．80	1．34	0.88
	制御棒駆動水フィルタ（A）（B）	原子炉建屋	－0．80	1.34	0.88
	CRD スクラム排出容器（A）（B）	原子炉建屋	6.00	解析応答値	解析応答値
	制御棒駆動水ポンプ用オイルク ーラー（A）（B）	原子炉建屋	－0． 80	1． 34	0.88
	ほら酸水注入系テストタンク	原子炉建屋	22.50	2.12	1.56
	CUW 再生熱交換器	原子炉建屋	－0．80	1.34	0.88
	CUW 非再生熱交換器（A）（B）	原子炉建屋	－0． 80	1．34	0.88
	CUW プリコートタンク	原子炉建屋	$\begin{aligned} & 6.00^{* 1} \\ & (6.50) \\ & \hline \end{aligned}$	1． 60	1.11
	CUW 万過脱塩器（A）（B）	原子炉建屋	15.00	1.97	1.37
	FPC プリコートタンク	原子炉建屋	$\begin{aligned} & 15.00 * 1 \\ & (15.50) \\ & \hline \end{aligned}$	1.98	1． 39
	燃料プール冷却浄化系ろ過脱塩器（A）（B）	原子炉建屋	22.50	2． 12	1.56
	R／A LCW サンプ泠却器	原子炉建屋	－8．10	0.99	0.69
	HNCW サージタンク	原子炉建屋	$\begin{aligned} & 36.30^{* 1} \\ & (41.20) \\ & \hline \end{aligned}$	3.43	1． 89
	R／A 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	2.65	1． 77
	T／B 給 気 冷 却 加 熱コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	原子炉建屋	$\begin{gathered} 24.80^{* 1} \\ (33.20) \end{gathered}$	2.65	1． 77
	送風機室空調機（A）（B）	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \end{aligned}$	2.65	1． 77
	RW／A 給気冷却加熱コイル （A）（B）（C）	原子炉建屋	$\begin{gathered} 24.80^{* 1} \\ (33.20) \end{gathered}$	2.65	1． 77
	燃料交換機制御室空調機	原子炉建屋	$\begin{aligned} & 33.20^{* 1} \\ & (41.20) \end{aligned}$	3.43	1． 89
	R／A MS トンネル室空調機（A）（B）	原子炉建屋	15.00	1.97	1.37
	CRD ポンプ室空調機	原子炉建屋	－0．80	1.34	0.88
	PLR 電源装置室空調機	原子炉建屋	－0．80	1．34	0.88
	IA•SA 圧縮機室空調機	原子炉建屋	－0．80	1.34	0.88
	常用電気品室給気泠却加熱コイル （A）（B）	制御建屋	1.50	1.35	0.79
	入退域エリア（クリーン）空調機	制御建屋	15.00	2.25	1.39
	燃料交換床給気加熱コイル （A）（B）	原子炉建屋	$\begin{gathered} 27.80^{* 1} \\ (33.20) \end{gathered}$	2.65	1． 77
	燃料交換機制御室給気加熱コイル	原子炉建屋	$\begin{gathered} 27.80^{* 1} \\ (33.20) \end{gathered}$	2.65	1． 77
	原子炉補機（A）（B）室給気加熱コイル	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	2.65	1． 77
	原子炉補機（HPCS）室給気加熱コイル （A）（B）	原子炉建屋	$\begin{gathered} 24.80 * 1 \\ (33.20) \\ \hline \end{gathered}$	2.65	1． 77
	CRD 水圧制御ユニット（A）（B）エリ ア給気加熱コイル	原子炉建屋	$\begin{aligned} & 6.00^{* 1} \\ & (15.00) \end{aligned}$	1． 97	1． 37
	計測制御電源（A）（B）室給気加熱コイル	制御建屋	1.50	1.35	0.79

表 4－1 耐震 B，Cクラス容器類及びポンプ類の設計震度（2／2）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	据付場所	床面高さ0. P. (m)	設計震度	
				水平方向	鉛直方向
容	中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）	制御建屋	1.50	1． 35	0． 79
	PLR－VVVF 冷却器（A）（B）	原子炉建屋	－0． 80	1． 34	0.88
	IA 後部冷却器（A）（B）	原子炉建屋	－0． 80	解析応答値	解析応答値
	SA後部冷却器（A）（B）	原子炉建屋	－0． 80	解析応答値	解析応答値
	所内温水系温水熱交換器（A）（B）	原子炉建屋	15.00	$6.18{ }^{2}$	1． 37
	所内温水系バックアップ熱交換器	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (15.80) \\ & \hline \end{aligned}$	1.99	1． 39
	所内温水系サージタンク	原子炉建屋	33.20	2.65	1． 77
	DG 燃料油ドレンユニット	原子炉建屋	15.00	1.97	1.37
	HPCSDG 燃料油ドレンユニット	原子炉建屋	15.00	1.97	1.37
	DG 燃料油ドレンタンク（A）（B）	原子炉建屋	15.00	1.97	1.37
	HPCSDG 燃料油ドレンタンク	原子炉建屋	15.00	1.97	1.37
	HPCSDG 㵋滑油補給タンク	原子炉建屋	15.00	1.97	1.37
	RW制御室 HVAC冷水供給設備膨張 タンク	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	2.12	1.56
	RW 制御室 給気加熱コイル	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \\ & \hline \end{aligned}$	2． 12	1.56
	RW 制御室 給気冷却コイル	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \\ & \hline \end{aligned}$	2． 12	1.56
ポ ジ類	制御棒駆動水ポンプ（A）（B）	原子炉建屋	－0．80	1.34	0.88
	原子炉冷却材浄化系ポンプ （A）（B）（冷却器を含む）	原子炉建屋	$\begin{gathered} -8.10 * 1 \\ (-6.60) \end{gathered}$	1． 07	0.73
	CUW プリコートポンプ	原子炉建屋	6.00	1.57	1.09
	原子炬冷却材浄化系保持ポンプ （A）（B）	原子炉建屋	6.00	1.57	1． 09
	燃料プール泠却浄化系プリコー トポンプ	原子炉建屋	15.00	1.97	1． 37
	燃料プール冷却浄化系保持ポン $フ ゚(\mathrm{~A})(\mathrm{B})$	原子炉建屋	22． 50	2． 12	1.56
	燃料プール補給水系ポンプ（軸受冷却器を含む）	原子炉建屋	－8． 10	0.99	0.69
	タービン補機冷却海水ポンプ	海水ポンプ室	3.00	解析応答値	1.94
	IA 空気圧縮機（A）（B）（中間冷却器 を含む）	原子炉建屋	－0．80	1． 34	0． 88
	SA 空気圧縮機（A）（B）（中間冷却器 を含む）	原子炉建屋	－0． 80	1． 34	0． 88
	所内温水系ポンプ（A）（B）	原子炉建屋	15.00	1.97	1． 37
	DG 燃料油ドレンポンプ（A）（B）	原子炉建屋	15.00	1.97	1． 37
	HPCSDG 潤滑油補給ポンプ	原子炉建屋	15.00	1.97	1.37
	HPCSDG 燃料油ドレンポンプ	原子炉建屋	15.00	1.97	1.37
	循環水ポンプ（A）	海水ポンプ室	0.20	解析応答値	2.02
	循環水ポンプ（B）	海水ポンプ室	0.20	解析応答値	2.02

注記＊1：基準床レベルを示す。
＊2：本設備は水平方向が柔構造であることから，設置高さである原子炉建屋 1 F （0．P．15．00m）の応答スペクトルを使用し，設計震度を定める。

4．1．2 構造強度評価方法

耐震 B，Cクラス機器の応力評価は，添付書類「VI－2－別添2－1 溢水防護に係 る施設の耐震計算の方針」の「4．2 耐震評価」にて設定している評価方針を踏ま え，応力評価を実施する。

耐震B，C クラス機器の応力評価は，本資料の「3．評価部位」に示す評価部位 に対し，「4．2 荷重及び荷重の組合せ」及び「4．3 許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「4．4 計算方法」に示す方法を用いて評価 を行う。

4.2 荷重及び荷重の組合せ

応力評価に用いる荷重及び荷重の組合せは，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」の「3．1 荷重及び荷重の組合せ」にて示している荷重及 び荷重の組合せを用いる。

4．2．1 荷重の種類

応力評価に用いる荷重は，以下の荷重を用いる。
（1）常時作用する荷重（D）
常時作用する荷重は，持続的に生じる荷重であり，自重とする。
（2）内圧荷重（ P_{D} ）
内圧荷重は，当該設備に設計上定められた最高使用圧力による荷重とする。
（3）機械的荷重（ M_{D} ）
当該設備に設計上定められた機械的荷重
（4）地震荷重（S s ）
地震荷重は，基準地震動 S s により定まる地震力とする。

4．2．2 荷重の組合せ
応力評価に用いる荷重の組合せは，各機器の評価部位ごとに設定する。荷重の組合せを表 4－2，表 4－3 及び表 4－4に示す。なお，ポンプ類の評価部位はボルト のみのため，ポンプ類の荷重の組合せは表 4－4による。

表 4－2 容器類の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
IV A_{A}	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	胴板

表 4－3 配管の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
IV A_{A}	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	配管，弁

表 4－4 支持構造物の荷重の組合せ

許容応力状態	荷重の組合せ	評価部位
IV A_{A}	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	脚，支持構造物，ボルト等

4． 3 許容限界
耐震 B，C クラスの機器の評価の許容限界は，添付書類「VI－2－別添 2－1 溢水防護 に係る施設の耐震計算の方針」の「3．2 許容限界」にて設定している許容限界に従つ て，本資料の「3．評価部位」にて設定している評価部位ごとに，許容応力状態IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。

各機器の評価部位ごとの許容限界を表 4－5，表 4－6及び表 4－7に，使用材料及び使用材料の許容応力評価条件を表4－8に示す。

表 4－5 容器類の許容限界

区分	耐震重要度分類	荷重の組合せ	許容応力状態	許容限界＊1			
				一次一般膜応力	- 次膜応力 + - 次曲げ応力	$\begin{aligned} & \text { 一次 }+ \\ & \text { 二次応力 } \end{aligned}$	$\begin{gathered} \text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 } \end{gathered}$
容器 類	B，C	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}} \\ +\mathrm{M}_{\mathrm{D}}+ \\ \mathrm{S} \mathrm{~s} \end{gathered}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍 の値	S s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下である こと。但し，地震動のみ による一次 + 二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であ れば，疲労解析は不要。	

注記 $~$ 1：座屈に対する評価が必要な場合には，クラス MC容器の座屈に対する評価式に よる
＊ $2: 2 \cdot \mathrm{~S}_{\mathrm{y}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300 （PVB－3313を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替える。）の簡易弾塑性解析を用いる。

表 4－6 配管の許容限界

区分	耐震 重要度分類	荷重の組合せ	許容 応力 状態	許容限界			
				一次一般 膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力	$\begin{gathered} \text { 一次 + 二次 + } \\ \text { ピーク応力 } \end{gathered}$
配管	B，C	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}} \\ +\mathrm{M}_{\mathrm{D}}+ \\ \mathrm{S} \mathrm{~s} \end{gathered}$	IV ${ }_{\text {A }} \mathrm{S}$	$0.6 \cdot \mathrm{~S}^{*}{ }^{* 1}$	左欄の 1.5 倍 の値	S s 地震疲労解析積係数が こと。但 による一変動値が れば，疲労	

注記＊1：軸力による全断面平均応力については，許容応力状態 III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の一次一般膜応力 の許容値の 0.8 倍の値とする。
＊ $2: 2 \cdot \mathrm{~S}_{\mathrm{y}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格PVB－3536（1）， （2），（4）及び（5）（ただし， S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替える。）の簡易弾塑性解析 を用いる。

耐震重要度分類	荷重の組合せ	許容 応力 状態	許容限界＊1，＊2，＊ 3 （ボルト等以外）										$\begin{gathered} \begin{array}{c} \text { 許容限界*2,*4 } \\ \text { (ボルト等) } \end{array} \\ \hline \text { 一次応力 } \end{gathered}$		形式試験に よる場合 許容荷重
			一次応力					一次＋二次応力							
			引張	せん断	圧縮	曲げ	支圧	引張 圧縮	せん断	曲げ	支圧	座屈	引張	せん断	
B，C	$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~s} \end{aligned}$	IV ${ }_{\text {A }} \mathrm{S}$	$\begin{aligned} & 1.5 \\ & \mathrm{f}_{\mathrm{t}}{ }^{*} \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \text { f. * } \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{c}} \text { * } \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{b}} \text { * } \end{aligned}$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{p}} \text { * } \end{aligned}$	$3 \cdot \mathrm{f}_{\mathrm{t}}$ （ S s 地 振幅に	$3 \cdot \mathrm{f}{ }^{* 6}$ W動のみに動の評䛧	$3 \cdot \mathrm{f}$ よる応力 る。）	$\begin{aligned} & { }^{*} \\ & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{p}} * \end{aligned}$	$\left\lvert\, \begin{aligned} & * 7_{,} * 8 \\ & 1.5 \cdot \mathrm{f}_{\mathrm{b}}, \\ & 1.5 \cdot \mathrm{f}_{\mathrm{s}} \text { 又 } \\ & \text { は } 1.5 \cdot \mathrm{f}_{\mathrm{c}} \end{aligned}\right.$	$\begin{aligned} & 1.5 \cdot \\ & \mathrm{f}_{\mathrm{t}}+ \end{aligned}$	$\begin{gathered} 1.5 \cdot \\ \mathrm{f}_{\mathrm{s}} * \end{gathered}$	$\begin{aligned} & T_{L} \cdot 0.6 \\ & \cdot \frac{S_{y d}}{S_{y t}} \end{aligned}$

[^11]＊2：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊3：耐圧部に溶接等により直接取り付けられる支持構造物であつて耐圧部と一体の応力解析を行うものについては，耐圧部と同じ許容応力とする。
＊4：コンクリートに埋め込まれるアンカボルトで地震応力の占める割合が支配的なものであって，トルク管理，材料の照合等を行わないものについ ては，材料の品質，据付状態等のゆらぎ等を考慮して， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の許容応力を一次引張応力に対しては f_{t} ，一次せん断応力に対しては f 。として， またIV ${ }_{\mathrm{A}} \mathrm{S} \rightarrow \mathrm{III}_{\mathrm{A}} \mathrm{S}$ として応力評価を行う。
＊5：薄肉円筒形状のものの座屈の評価にあっては，クラス MC容器の座屈に対する評価式による。
＊6：すみ肉溶接部にあっては最大応力に対して $1.5 \cdot \mathrm{f}$ s とする。
＊7 ：設計•建設規格 SSB－3121．1（4）により求めたf b とする。
＊8：自重，熱彭張等により常時作用する荷重に，地震動による荷重を重ね合わせて得られる応力の圧縮最大値について評価する。

表 4－8 使用材料及び使用材料の許容応力評価条件（1／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	Su （MPa）
PLRポンプシールパージ系ろ過器	胴板	SUSF304	50	188	479
	ラグ	SUS304	50	188	479
	基礎ボルト	SUS304	50	198	504
PLR ポンプシールパージ系ろ過器 (フィルタユニット)	基礎ボルト	SS400	50	211	394
CRD サクションフィルタ（A）（B）	胴板	SUS304	66	188	479
	スカート	SUS304	50	198	504
	基礎ボルト	SS400	50	211	394
制御棒駆動水フィルタ（A）（B）	胴板	SUS304TP	66	188	479
	スカート	SUS304TP	50	198	504
	基礎ボルト	SS400	50	211	394
CRD スクラム排出容器（A）（B）	容器	STS410	138	215	404
	サポート	STKR400	50	234	394
制御棒駆動水ポンプ用オイルクーラー （A）（B）	取付ボルト	SS400	50	211	394
ほう酸水注入系テストタンク	胴板	SUS304	66	188	479
	脚	SUS304	50	198	504
	基礎ボルト	SS400	50	211	394
CUW 再生熱交換器	胴板	SGV480	302	198	419
	脚	SS400	302	169	373
	脚締付ボルト	SS400	50	231	394
	架台	STKR400	50	234	394
	基礎ボルト	SS400	50	231	394
CUW 非再生熱交換器（A）（B）	胴板	SGV410	85	205	374
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	231	394
CUW プリコートタンク	胴板	SM400A	50	234	385
	基礎ボルト	SS400	50	231	394
CUW 万過脱塩器（A）（B）	胴板	SB410	50	212	400
	スカート	SS400	50	231	394
	基礎ボルト	SS400	50	231	394

表 4－8 使用材料及び使用材料の許容応力評価条件（2／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
FPC プリコートタンク	胴板	SM400A	50	234	385
	基礎ボルト	SS400	50	231	394
燃料プール冷却浄化系ろ過脱塩器 （A）（B）	胴板	SUS304	50	188	479
	スカート	SUS304	50	198	504
	基礎ボルト	SS400	50	308	444
R／A LCW サンプ冷却器	胴板	STS410	50	229	407
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	241	394
HNCW サージタンク	胴板	SS400	66	234	385
	脚	SS400	66	234	385
	基礎ボルト	SS400	50	231	394
R／A給気泠却加熱コイル （A）（B）（C）（D）（E）（F）	取付ボルト	SS400	85	199	377
T / B 給気泠却加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	取付ボルト	SS400	85	199	377
送風機室空調機（A）（B）	基礎ボルト	SS400	50	231	394
RW／A 給気泠却加熱コイル（A）（B）（C）	取付ボルト	SS400	85	199	377
燃料交換機制御室空調機	基礎ボルト	SS400	50	231	394
R／A MS トンネル室空調機（A）（B）	基礎ボルト	SS400	50	231	394
CRD ポンプ室空調機	基礎ボルト	SS400	50	231	394
PLR 電源装置室空調機	基礎ボルト	SS400	50	231	394
IA • SA 圧縮機室空調機	基礎ボルト	SS400	50	231	394
常用電気品室給気泠却加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
入退域エリア（クリーン）空調機	基礎ボルト	SS400	50	231	394
燃料交換床給気加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
燃料交換機制御室給気加熱コイル	取付ボルト	SS400	85	199	377
原子炉補機（A）（B）室給気加熱コイル	取付ボルト	SS400	85	199	377
原子炉補機（HPCS）室給気加熱コイル（A）（B）	取付ボルト	SS400	85	199	377
CRD 水圧制御ユニット（A）（B）エリア給気加熱コイル	取付ボルト	SS400	85	199	377

表 4－8 使用材料及び使用材料の許容応力評価条件 $(3 / 5)$

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
計測制御電源（A）（B）室給気加熱コイル	取付ボルト	SS400	85	199	377
中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）	取付ボルト	SS400	85	199	377
PLR－VVVF 泠却器（A）（B）	基礎ボルト	SS400	50	211	394
IA 後部冷却器（A）（B）	胴板	STS410	70	229	407
SA後部泠却器（A）（B）	胴板	STS410	70	229	407
所内温水系温水熱交換器（A）（B）	フレーム	SB410	85	205	394
	基礎ボルト	SNB7	50	512	671
	ベースプレート	SS400	85	218	377
所内温水系バックアップ熱交換器	胴板	SM400B	188	196	373
	脚	SS400	50	241	394
	基礎ボルト	SS400	50	211	394
所内温水系サージタンク	胴板	SM400B	85	227	377
	基礎ボルト	SS400	50	211	394
DG 燃料油ドレンユニット	基礎ボルト	SS400	50	231	394
HPCSDG 燃料油ドレンユニット	基礎ボルト	SS400	50	231	394
DG 燃料油ドレンタンク（A）（B）	胴板	SS400	50	241	394
	取付ボルト	SNB7	50	715	838
HPCSDG 燃料油ドレンタンク	胴板	SS400	50	241	394
	取付ボルト	SNB7	50	715	838
HPCSDG 潤滑油補給タンク	胴板	SS400	50	241	394
	基礎ボルト	SS400	50	231	394
RW 制御室 HVAC 泠水供給設備膨張タンク	胴板	SS400	66	234	385
	脚	SS400	66	234	385
	基礎ボルト	SS400	50	231	394
RW 制御室 給気加熱コイル	取付ボルト	SS400	85	199	377
RW 制御室 給気冷却コイル	取付ボルト	SS400	66	206	385
制御棒駆動水ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
原子炉冷却材浄化系ポンプ（A）（B） （冷却器を含む）	基礎ボルト	SS400	66	206	385
	ポンプ取付ボルト	SS400	66	206	385

表 4－8 使用材料及び使用材料の許容応力評価条件（4／5）

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
CUW プリコートポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
	原動機取付ボルト	SS400	50	211	394
原子炉冷却材浄化系保持ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
燃料プール泠却浄化系プリコートポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
	原動機取付ボルト	SS400	50	211	394
燃料プール泠却浄化系保持ポンプ（A）（B）	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SS400	50	211	394
燃料プール補給水系ポンプ （軸受冷却器を含む）	基礎ボルト	SS400	66	225	385
	ポンプ取付ボルト	SS400	66	225	385
	原動機取付ボルト	SS400	66	225	385
タービン補機冷却海水ポンプ	基礎ボルト	SCM435	50	764	906
	ポンプ取付ボルト	SCM435	50	764	906
	原動機台取付ボルト	SCM435	50	764	906
	原動機取付ボルト	SUS304	50	198	504
IA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト	SS400	50	211	394
	基礎ボルト	S45C	50	339	556
SA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト	SS400	50	211	394
	基礎ボルト	S45C	50	339	556
所内温水系ポンプ（A）（B）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SS400	85	199	377
	原動機取付ボルト	SS400	50	211	394
DG 燃料油ドレンポンプ（A）（B）	取付ボルト	SNB7	50	715	838
	ポンプ取付ボルト	SS400	50	231	394
	原動機取付ボルト	SS400	50	231	394
HPCSDG 潤滑油補給ポンプ	基礎ボルト	SS400	50	231	394
	ポンプ取付ボルト	SNB7	85	683	774
	原動機取付ボルト	SNB7	50	715	838

表 4－8 使用材料及び使用材料の許容応力評価条件 $(5 / 5)$

評価対象設備	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	Su （MPa）
HPCSDG 燃料油ドレンポンプ	取付ボルト	SNB7	50	715	838
	ポンプ取付ボルト	SS400	50	231	394
	原動機取付ボルト	SS400	50	231	394
循環水ポンプ（A）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SCM435	50	764	906
	吐出エルボ取付ボルト	SCM435	50	764	906
	吐出配管ボルト	SS400	50	211	394
循環水ポンプ（B）	基礎ボルト	SS400	50	211	394
	ポンプ取付ボルト	SCM435	50	764	906
	吐出エルボ取付ボルト	SCM435	50	764	906
	吐出配管ボルト	SCM435	50	764	906
	ベ一ス架台取付ボルト	SCM435	50	764	906

4．4 計算方法

（1）溢水防護として要求する機能を踏まえ，添付書類「VI－2－別添2－1 溢水防護に係 る施設の耐震計算の方針」の「3．2 許容限界」より，基準地震動 S s による地震力 に対して耐震性が確保され溢水に至らないことを確認するために，許容応力状態 IV A S で，許容限界を満足することを確認する。なお，支持装置については，添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」に基づき，使用される支持装置の定格荷重以下となることを確認する。
（2）減衰定数については，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算 の方針」の「4．1．3 設計用減衰定数」に示す値を適用する。
（3）評価に用いる解析コード及びその適用機器並びに使用目的を以下に記す。耐震 B，C クラス機器の容器類及びポンプ類の固有値解析及び応力評価に用いる「SAP－IV」及び「MSC NASTRAN」の検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。配管，弁及び支持構造物の固有値解析等に用いる「ISAP」，「SAP－V」，「NX NASTRAN」，「SOLVER」，「AutoPIPE」，「NAPF」及び「MSAP（配管）」の検証及び妥当性の確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力評価は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」等の評価方法により評価を行う。
目解析モデル目（1／5）
枠囲みの内容は商業機密の観点から公開できません。

管名称	対応する評価点	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	耐震重要度分類	縦弾性係数 （MPa）
1	$1 \sim 18$	1． 27	85	165．2	7.1	STPG370	C	199200
2	$18 \sim 32$	1． 27	85	114.3	6.0	STPG370	C	199200
3	$\begin{aligned} & \hline 32 \sim 52 \\ & 30, \quad 103 \sim 115 \\ & 16, \quad 166 \sim 178 \\ & \hline \end{aligned}$	1． 27	85	89.1	5.5	STPG370	C	199200
4	$\begin{aligned} & \hline 52 \sim 58, \quad 70 \sim 72 \\ & 85 \sim 87, \quad 100 \sim 102 \\ & 115 \sim 121, \quad 133 \sim 135 \\ & 148 \sim 150, \quad 163 \sim 165 \\ & 178 \sim 184, \quad 196 \sim 198 \\ & 210 \sim 213, \quad 226 \sim 228 \\ & \hline \end{aligned}$	1． 27	85	76.3	5． 2	STPG370	C	199200
5	$\begin{aligned} & \hline 58 \sim 65, \quad 67 \sim 70 \\ & 56, \quad 73 \sim 78, \quad 80 \sim 85 \\ & 50, \quad 88 \sim 93, \quad 95 \sim 100 \\ & 121 \sim 128, \quad 130 \sim 133 \\ & 119, \quad 136 \sim 141 \\ & 143 \sim 148 \\ & 113, \quad 151 \sim 156 \\ & 158 \sim 163, \quad 184 \sim 191 \\ & 193 \sim 196 \\ & 182, \quad 199 \sim 204 \\ & 206 \sim 210 \\ & 176, \quad 214 \sim 219 \\ & 221 \sim 226 \end{aligned}$	1． 27	85	60.5	5.5	STPG370	C	199200

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（1／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
容器類	PLR ポンプシールパージ系ろ過器	B	原子炉建屋	$\begin{gathered} -0.80^{*} \\ (0.10) \end{gathered}$	胴板	一次一般膜	95	287
	PLRポンプシ—ルパージ系ろ過器（フィルタユニット）	B	原子炉建屋	－0．80	基礎ボルト	引張	39	190
	CRDサクションフィルタ（A）（B）	B	原子炉建屋	－0．80	基礎ボルト	引張	55	190
	制御棒駆動水フィルタ（A）（B）	B	原子炉建屋	－0．80	胴板	一次一般膜	94	287
	CRD スクラム排出容器（A）（B）	B	原子炉建屋	6.00	容器	一次＋二次	363	430
	制御棒駆動水ポンプ用オイル クーラー（A）（B）	C	原子炉建屋	－0．80	取付ボルト	せん断	2	146
	ほう酸水注入系テストタンク	C	原子炉建屋	22.50	脚	組合せ	90	205
	CUW 再生熱交換器	B	原子炉建屋	－0．80	胴板	一次＋二次	252	396
	CUW 非再生熱交換器（A）（B）	B	原子炉建屋	－0．80	胴板	一次＋二次	338	410
	CUW プリコートタンク	B	原子炉建屋	$\begin{aligned} & 6.00^{*} \\ & (6.50) \\ & \hline \end{aligned}$	基礎ボルト	引張	41	207
	CUW 万過脱塩器（A）（B）	B	原子炉建屋	15.00	基礎ボルト	せん断	92	159
	FPCプリコートタンク	B	原子炉建屋	$\begin{aligned} & 15.00^{*} \\ & (15.50) \\ & \hline \end{aligned}$	基礎ボルト	引張	54	207

[^12]表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（2／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0．P．（m）	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \\ & \text { 類 } \end{aligned}$	燃料プール冷却浄化系ろ過脱塩器（A）（B）	B	原子炉建屋	22.50	スカート	組合せ	66	205
	R／A LCW サンプ冷却器	B	原子炉建屋	－8．10	胴板	一次＋二次	88	459
	HNCW サージタンク	C	原子炉建屋	$\begin{aligned} & 36.30 * 1 \\ & (41.20) \end{aligned}$	基礎ボルト	引張	168	207
	R／A 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）	C	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	引張	18	179
	T／B 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	C	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \end{aligned}$	取付ボルト	せん断	11	138
	送風機室空調機（A）（B）	C	原子炉建屋	$\begin{aligned} & 24.80 * 1 \\ & (33.20) \\ & \hline \end{aligned}$	基礎ボルト	引張	73	207
	RW／A 給気冷却加熱コイル （A）（B）（C）＊2	C	原子炉建屋	$\begin{gathered} 24.80 * 1 \\ (33.20) \\ \hline \end{gathered}$	－	－	－	－
	燃料交換機制御室空調機	C	原子炉建屋	$\begin{aligned} & 33.20^{* 1} \\ & (41.20) \end{aligned}$	基礎ボルト	引張	139	207
	R／A MS トンネル室空調機（A）（B）＊3	C	原子炉建屋	15． 00	－	－	－	－
	CRD ポンプ室空調機＊4	C	原子炉建屋	－0． 80	－	－	－	－

＊ $2: T / B$ 給気冷却加熱コイルと同形状の設備であることから，機器重量が大きい T／B給気冷却加熱コイルを代表として耐震評価 を実施する
表として耐震評価を実施する。
＊ 3 ：入退域エリア（クリーン）空調機と同形状の設備であることから，設計震度の大きい入退域エリア（クリーン）空調機を代
＊4：送風機室空調機と同形状の設備であることから，設計震度の大きい送風機室空調機を代表として耐震評価を実施する。注記
表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（3／6）

$\begin{aligned} & 区 \\ & \text { 区 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0．P．（m）	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \\ & \text { 類 } \end{aligned}$	PLR 電源装置室空調機＊2	C	原子炉建屋	－0．80	－	－	－	－
	IA－SA 圧縮機室空調機＊3	C	原子炉建屋	－0．80	－	－	－	－
	常用電気品室給気泠却加熱コイ ル（A）（B）＊4	C	制御建屋	1． 50	－	－	－	－
	入退域エリア（クリーン）空調機	C	制御建屋	15.00	基礎ボルト	引張	101	202
	燃料交換床給気加熱コイル （A）（B）	C	原子炉建屋	$\begin{aligned} & 27.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	せん断	7	138
	燃料交換機制御室給気加熱コ イル	C	原子炉建屋	$\begin{aligned} & 27.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	引張	5	179
	原子炉補機（A）（B）室給気加熱 コイル	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \end{aligned}$	取付ボルト	引張	7	179
	原子炉補機（HPCS）室給気加熱 コイル（A）（B）	C	原子炉建屋	$\begin{aligned} & 24.80^{* 1} \\ & (33.20) \\ & \hline \end{aligned}$	取付ボルト	引張	11	179
	CRD 水圧制御ユニット（A）（B）エ リア給気加熱コイル	C	原子炉建屋	$\begin{aligned} & 6.00 * 1 \\ & (15.00) \\ & \hline \end{aligned}$	取付ボルト	引張	5	179
	計測制御電源（A）（B）室給気加熱コイル	C	制御建屋	1． 50	取付ボルト	引張	4	179
	中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）＊4	C	制御建屋	1． 50	－	－	－	－

＊2：入退域エリア（クリーン）空調機と同形状の設備であることから，設計震度の大きい入退域エリア（クリーン）空調機を代表として耐震評価を実施する。
＊3：送風機室空調機と同形状の設備であることから，設計震度の大きい送風機室空調機を代表として耐震評価を実施する。 ＊
＊4：計測制御電源（A）（B）室給気加熱コイルと同形状の設備であることから，機器重量が大きい計測制御電源（A）（B）室給気加熱コ イルを代表として耐震評価を実施する。
表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（4／6）

$\begin{aligned} & 区 \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { 容 } \\ & \text { 器 } \\ & \text { 類 } \end{aligned}$	PLR－VVVF 冷却器（A）（B）	C	原子炉建屋	－0．80	基礎ボルト	引張	79	164
	IA 後部冷却器（A）（B）	C	原子炉建屋	－0．80	胴板	一次＋二次	355	459
	SA 後部冷却器（A）（B）	C	原子炉建屋	－0．80	胴板	一次＋二次	385	459
	所内温水系温水熱交換器（A）（B）	C	原子炉建屋	15.00	基礎ボルト	引張	266	323
	所内温水系バックアップ熱交換器	C	原子炉建屋	$\begin{aligned} & \hline 15.00^{* 1} \\ & (15.80) \\ & \hline \end{aligned}$	胴板	一次＋二次	284	392
	所内温水系サージタンク	C	原子炉建屋	33.20	基礎ボルト	引張	65	190
	DG 燃料油ドレンユニット	C	原子炉建屋	15.00	基礎ボルト	引張	17	207
	HPCSDG 燃料油ドレンユニット	C	原子炉建屋	15.00	基礎ボルト	引張	17	207
	DG 燃料油ドレンタンク（A）（B）	C	原子炉建屋	15.00	取付ボルト	引張	26	440
	HPCSDG 燃料油ドレンタンク	C	原子炉建屋	15.00	取付ボルト	引張	26	440
	HPCSDG 潤滑油補給タンク	C	原子炉建屋	15.00	基礎ボルト	引張	37	207
	RW 制御室 HVAC 泠水供給設備膨張タンク	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \\ & \hline \end{aligned}$	基礎ボルト	引張	168	207
	RW 制御室 給気加熱コイル＊2	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \\ & \hline \end{aligned}$	－	－	－	－
	RW 制御室 給気冷却コイル	C	原子炉建屋	$\begin{aligned} & 15.00^{* 1} \\ & (22.50) \end{aligned}$	取付ボルト	引張	12	185

＊2：RW 制御室給気冷却コイルと同形状の設備であることから，機器重量の大きいRW 制御室給気冷却コイルを代表として耐震評

表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（5／6）

区	評価対象設備	耐震重要度分類	据付場所	床面高さ 0．P．（m）	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
ポ ン プ 類	制御棒駆動水ポンプ（A）（B）	B	原子炉建屋	－0．80	基礎ボルト	引張	101	207
	原子炉冷却材浄化系ポンプ （A）（B）（冷却器を含む）	B	原子炉建屋	$\begin{aligned} & -8.10^{*} \\ & (-6.60) \end{aligned}$	基礎ボルト	引張	14	185
	CUW プリコートポンプ	B	原子炉建屋	6.00	基礎ボルト	引張	14	207
	原子炉冷却材浄化系保持ポン プ（A）（B）	B	原子炉建屋	6． 00	$\begin{gathered} \text { ポンプ取付 } \\ \text { ボルト } \end{gathered}$	引張	28	190
	燃料プール冷却浄化系プリコ ートポンプ	B	原子炉建屋	15.00	基礎ボルト	引張	18	207
	燃料プール泠却浄化系保持ポ ンプ (A) (B)	B	原子炉建屋	22.50	ポンプ取付 ボルト	引張	23	190
	燃料プール補給水系ポンプ（軸受冷却器を含む）	B	原子炉建屋	－8． 10	原動機取付ボルト	引張	8	202
	タービン補機冷却海水ポンプ	C	海水ポンプ室	3.00	原動機取付ボルト	引張	98	145
	IA 空気圧縮機（A）（B）（中間冷却器含む）	C	原子炉建屋	－0．80	空気圧縮機取付ボルト	引張	58	190
	SA 空気圧縮機（A）（B）（中間冷却器含む）	C	原子炉建屋	－0．80	空気圧縮機取付ボルト	引張	63	190
	所内温水系ポンプ（A）（B）	C	原子炉建屋	15.00	$\begin{gathered} \hline \text { 原動機 } \\ \text { 取付ボルト } \\ \hline \end{gathered}$	引張	20	190
	DG 燃料油ドレンポンプ（A）（B）	C	原子炉建屋	15.00	原動機取付ボルト	引張	4	207
	HPCSDG 潤滑油補給ポンプ	C	原子炉建屋	15.00	基礎ボルト	引張	7	207

O 2 （5）VI－2－別添2－2 R 0
表 5－1 基準地震動 S s に対する容器類及びポンプ類の応力評価結果（6／6）

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象設備	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の種類	算出応力 （MPa）	許容応力 （MPa）
$\begin{aligned} & \text { ポ } \\ & \text { ン } \\ & \text { プ } \\ & \text { 類 } \end{aligned}$	HPCSDG 燃料油ドレンポンプ	C	原子炉建屋	15.00	原動機取付ボルト	引張	4	207
	循環水ポンプ（A）	C	海水ポンプ室	0． 20	吐出配管 ボルト	引張	93	186
	循環水ポンプ（B）	C	海水ポンプ室	0． 20	ベース架台取付ボルト	せん断	142	366

$\begin{aligned} & \text { 区 } \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
配管弃及び支持構造物	給水系	B，C	原子炉建屋	$6.00 \sim 22.50$	配管本体	一次＋二次	389	438
					支持構造物	一次＋二次	466	548
	原子炉再循環系	B，C	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { (疲労) } \end{gathered}$	$\begin{gathered} 422 \\ (0.8205) \\ \hline \end{gathered}$	$\begin{gathered} \hline 318 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	42	118
	制御棒駆動水圧系	C	原子炉建屋	$-0.80 \sim 6.00$	配管本体	一次＋二次	375	390
					支持構造物	一次＋二次	23	552
	残留熱除去系	B，C	原子炉建屋	$15.00 \sim 22.50$	配管本体	一次＋二次	205	416
					支持構造物	一次＋二次	35	490
	高圧炉心スプレイ系	B，C	原子炉建屋	$-8.10 \sim 6.00$	配管本体	一次＋二次	82	376
					支持構造物	一次＋二次	14	490
	原子炉隔離時冷却系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次+二次 } \\ \text { (疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 388 \\ (0.0444) \\ \hline \end{gathered}$	$\begin{gathered} \hline 326 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	荷重＊	$\begin{aligned} & 16^{*} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{aligned} & 27^{*} \\ & (\mathrm{kN}) \end{aligned}$
	原子炉冷却材浄化系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ \text { (疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 385 \\ (0.9924) \\ \hline \end{gathered}$	$\begin{gathered} \hline 364 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次＋二次	41	482
	燃料プール泠却浄化系	B	原子炉建屋	$6.00 \sim 22.50$	配管本体	一次＋二次	325	376
					支持構造物	一次	152	205

注記＊：支持構造物の評価は許容荷重き発生荷重を満たしていることを確認しているため，応力の種類は荷重とし，単位はkNとする。

$\begin{aligned} & 区 \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 弁 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 㮔 } \\ & \text { 物 } \end{aligned}$	放射性ドレン移送系	B，C	原子炉建屋	$-8.10 \sim-0.80$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} 472 \\ (0.9895) \\ \hline \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \end{gathered}$
					支持構造物	一次＋二次	61	118
	機器ドレン系	B	原子炉建屋	$-8.10 \sim 6.00$	配管本体	一次＋二次	187	376
					支持構造物	一次＋二次	86	118
	床ドレン・化学廃液系	B	原子炉建屋	$-8.10 \sim 6.00$	配管本体	一次＋二次	340	376
					支持構造物	一次	123	280
	廃スラッジ系	B	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次 + 二次 （疲労）	$\begin{gathered} 427 \\ (0.0288) \\ \hline \end{gathered}$	$\begin{gathered} 398 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	75	254
	純水補給水系	C	原子炉建屋	$15.00 \sim 22.50$	配管本体	$\text { 一次 }+ \text { 二次 }$ （疲労）	$\begin{gathered} 425 \\ (0.5883) \\ \hline \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次＋二次	150	490
	復水補給水系	B	原子炉建屋	$-0.80 \sim 6.00$	配管本体	$\begin{gathered} \text { 一次 + 二次 } \\ (\text { (疲労) } \\ \hline \end{gathered}$	$\begin{gathered} 458 \\ (0.8288) \\ \hline \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \\ \hline \end{gathered}$
					支持構造物	一次	72	280
	万過水系	C	原子炉建屋	$-8.10 \sim-0.800$	配管本体	一次＋二次	365	378
					支持構造物	一次＋二次	32	159

$\begin{aligned} & 区 \\ & \text { 区 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 弁 } \\ & \text { 及 } \\ & \text { び } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \end{aligned}$	燃料プール補給水系	B	原子炉建屋	$-0.80 \sim 22.50$	配管本体	一次＋二次	306	462
					支持構造物	一次＋二次	352	490
	消火用水系	C	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次＋二次	366	378
					支持構造物	一次＋二次	110	159
	換気空調補機常用冷却水系	C	原子炉建屋	$22.50 \sim 33.20$	配管本体	一次＋二次	344	354
					支持構造物	一次＋二次	102	142
	原子炉補機冷却水系	C	原子炉建屋	$-0.80 \sim 6.00$	配管本体	一次＋二次	393	394
					支持構造物	一次＋二次	349	454
	加熱蒸気及び復水戻り系	C	原子炉建屋	$-8.10 \sim 22.50$	配管本体	一次＋二次	348	358
					支持構造物	一次＋二次	168	552
	所内温水系	C	原子炉建屋	$22.50 \sim 33.20$	配管本体	一次＋二次	346	354
					支持構造物	一次	92	246
	非常用ディーゼル発電設備	C	原子炉建屋	$15.00 \sim 33.20$	配管本体	一次＋二次	454	484
					支持構造物	一次＋二次	54	159
	高圧炉心スプレイ系ディーゼ ル発電設備	C	原子炉建屋	$15.00 \sim 33.20$	配管本体	一次＋二次	362	484
					支持構造物	一次	73	276
	衛生設備排水系	C	原子炉建屋	$15.00 \sim 22.50$	配管本体	一次＋二次	323	398
					支持構造物	一次＋二次	37	552
	建屋内排水系	C	原子炉建屋	$6.00 \sim 15.00$	配管本体	一次＋二次	365	390
					支持構造物	一次＋二次	157	159

$\begin{aligned} & 区 \\ & \text { 分 } \end{aligned}$	評価対象系統	耐震重要度分類	据付場所	床面高さ 0. P. (m)	評価部位	応力の 種類	算出 応力 （MPa）	許容 応力 （MPa）
配 弁 及 び 支 持 構 造 物	非放射性ドレン移送系	C	原子炉建屋	$-8.10 \sim-0.80$	配管本体	一次＋二次	333	378
					支持構造物	一次	42	246
	循環水系	C	タービン建屋	0.80	配管本体	一次＋二次	200	490
	純水補給水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	301	376
					支持構造物	一次＋二次	197	552
	消火用水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	347	378
					支持構造物	一次＋二次	110	159
	換気空調補機常用冷却水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	365	378
					支持構造物	一次＋二次	97	552
	加熱蒸気及び復水戻り系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	320	376
					支持構造物	一次＋二次	34	552
	所内温水系	C	制御建屋	$1.50 \sim 8.00$	配管本体	一次＋二次	344	354
					支持構造物	一次＋二次	154	159
	衛生設備排水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	232	280
					支持構造物	一次＋二次	26	552
	建屋内排水系	C	制御建屋	$15.00 \sim 19.50$	配管本体	一次＋二次	320	390
					支持構造物	一次＋二次	548	552
	非放射性ドレン移送系	C	制御建屋	$1.50 \sim 8.00$	配管本体	一次＋二次	358	378
					支持構造物	一次	230	276

表 5－2 基準地震動 S s に対する配管，弁及び支持構造物の応力評価結果（5／5）

区	評価対象系統	耐震 重要度分類	据付場所	床面高さ 0．P．（m）	評価部位	応力の種類	算出 応力 （MPa）	許容 応力 （MPa）
$\begin{aligned} & \text { 配 } \\ & \text { 管 } \\ & \text { 弁 } \\ & \text { ひ } \\ & \text { び } \\ & \text { 导 } \\ & \text { 構 } \\ & \text { 物 } \end{aligned}$	高圧炉心スプレイ系	B	復水貯蔵	11.225	配管本体	一次＋二次	25	376
			エリア		支持構造物	一次	100	280
	機器ドレン系	B，C	復水販蔵	11． 225	配管本体	一次＋二次	337	376
			ェリア		支持構造物	一次＋二次	59	490
	純水補給水系	C	復水貯蔵	11.225	配管本体	一次＋二次	36	376
			エリア		支持構造物	一次＋二次	42	141
	復水補給水系	B	$\begin{aligned} & \text { 復水貯蔵 } \\ & \text { タンク } \\ & \text { エリア } \end{aligned}$	10． 50	配管本体	一次+ 二次 （疲労）	$\begin{gathered} 423 \\ (0.2037) \end{gathered}$	$\begin{gathered} 376 \\ (1.0) \end{gathered}$
					支持構造物	一次＋二次	89	236
	循環水系	C	海水ポンプ室	2． $25 \sim$	配管本体	一次＋二次	380	489
				7.25	支持構造物	一次＋二次	66	123
	タービン補機冷却海水系	C	海水ポンプ室	$-7.025 \sim 7.25$	配管本体	一次＋二次	416	428
					支持構造物	一次＋二次	145	228
	タービン補機冷却水系	C	海水ポンプ室	2． $25 \sim 11.65$	配管本体	一次＋二次	350	398
					支持構造物	組合せ	26	202
	万過水系	C	海水ポンプ室	$\begin{array}{r} 1.30 \sim \\ 10.40 \end{array}$	配管本体	一次＋二次	104	127
					支持構造物	荷重＊	$\begin{aligned} & 0.5^{*} \\ & (\mathrm{kN}) \\ & \hline \end{aligned}$	$\begin{gathered} 2.0^{*} \\ (\mathrm{kN}) \\ \hline \end{gathered}$

注記＊：支持構造物の評価は許容荷重 \geqq 発生荷重を満たしていることを確認しているため，応力の種類は荷重とし，単位はkNとする。

VI－2－別添2－3 溢水防護に関する施設の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果

目次

1．概要 1
2．影響評価 1
2.1 基本方針 1
2．2 評価条件及び評価方法 1
2.3 評価結果 4
2．3．1 水平 2 方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出 4
2．3．2 建物•構築物及び屋外重要土木構造物の検討による機器•配管系への影響の検 討結果4
2．3．3 水平 2 方向及び鉛直方向地震力の組合せの影響評価 5
2．3．4 水平 2 方向及び鉛直方向地震力の影響評価結果 5
2．3．5 まとめ 5

1．概要

本資料は，添付書類「VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針」の「2．耐震評価の基本方針」に基づき，溢水防護に関する施設及び耐震 B，Cクラス機器につい て，基準地震動 S s による地震力に対して，溢水伝播を防止する機能を維持するために，耐震性を有することを確認しているため，動的地震動の水平 2 方向及び鉛直方向の組合 せに関する影響評価について説明するものである。

2．影響評価

2.1 基本方針

溢水防護に関する施設及び耐震 B，C クラス機器に関する水平 2 方向及び鉛直方向地震力の組合せによる影響評価については，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2 機器•配管系」の評価方針及 び評価方法を踏まえて，設備が有する耐震性への影響を評価する。

2.2 評価条件及び評価方法

添付書類「「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．各施設における水平 2 方向及び鉛直方向地震力の組合せに対する影響評価方針」を踏まえて，基準地震動 S s による地震力に対して耐震評価を実施する設備のらち，従来の設計手法における水平 1 方向及び鋁直方向地震力を組み合わせた耐震計算（以下「従来の計算」という。）に対して，設備の構造特性から水平 2 方向及び鋁直方向地震力の組合せによる影響の可能性があるものを抽出し，設備が有する耐震性に及ぼす影響を評価する。影響評価のフローを図 2－1 に示す。
（1）評価対象となる設備の整理
溢水防護に関する設備及び耐震 B，C クラス機器のらち，基準地震動S s による地震力に対して構造強度又は機能維持及び波及的影響を確認する設備を評価対象とす る。（図2－1（1）
（2）構造上の特徴による抽出
機種ごとに構造上の特徴から水平 2 方向の地震力が重複する観点，若しくは応答軸方向以外の振動モード（ねじれ振動等）が生じる観点にて検討を行い，水平 2 方向 の地震力による影響の可能性がある設備を抽出する。（図 2－1②）
（3）発生値の増分による抽出
水平 2 方向の地震力による影響の可能性がある設備に対して，水平 2 方向の地震力が各方向 1：1 で入力された場合に各部にかかる荷重や応力を求め，従来の水平 1 方

向及び鉛直方向地震力の組合せによる設計に対して，水平 2 方向及び鉛直方向地震力を考慮した発生値の増分を用いて影響を検討し，耐震性への影響が懸念される設備を抽出する。

また，建物•構築物及び屋外重要土木構造物の検討により，機器•配管系への影響 の可能性がある部位が抽出された場合は，機器•配管系への影響を評価し，耐震性へ の影響が懸念される設備を抽出する。

影響の検討は，機種ごとの分類に対して地震力の寄与度に配慮し耐震裕度が小さ い設備（部位）を対象とする。（図 2－1 ③）
（4）水平 2 方向及び鉛直方向地震力の影響評価
（3）の検討において算出された荷重や応力を用いて，設備が有する耐震性への影響 を確認する。（図2－1④）

図 2－1 水平2方向及び鉛直方向地震力の組合せを考慮した影響評価フロー

2． 3 評価結果

2．3．1 水平 2 方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出
溢水防護に関する施設及び耐震 B，C クラス機器の評価対象設備を表 2－1 に示 す。添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2 機器•配管系」の評価設備（部位）の抽出方法を踏まえ，評価対象設備の各評価部位及び応力分類に対し構造上の特徴から，水平 2 方向の地震力に影響を以下の項目により検討し影響の可能性がある設備を抽出した。
（1）水平 2 方向の地震力が重複する観点
評価対象設備は，水平 1 方向の地震力に加えて，さらに水平直交方向に地震力が重複した場合，水平 2 方向の地震力による影響を検討し，影響が軽微な設備以外の影響検討が必要となる可能性があるものとして抽出した。抽出結果を表 2－2 に示 す。なお，ここで影響が軽微な設備とは，構造上の観点から発生応力への影響に着目し，その増分が 1 割程度以下となる設備を分類しているが，水平 1 方向地震力に よる裕度（許容応力／発生応力）が 1.1 未満の設備については，個別に検討を行う こととする。
（2）水平方向とその直交方向が相関する振動モード（ねじれ振動等）が生じる観点水平方向とその直交方向が相関する振動モードが生じることで有意な影響が生 じる可能性がある設備を抽出する。抽出結果を表2－2に示す。
（3）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点
（1）及び（2）において影響の可能性がある設備について，水平 2 方向の地震力が各方向 $1: 1$ で入力された場合に各部にかかる荷重や応力を求め，従来の水平 1 方向及び鉛直方向地震力の設計手法による発生値を比較し，その増分により影響の程度を確認し，耐震性への影響が懸念される設備を抽出した。抽出結果を表2－2 に示す。

2．3．2 建物•構築物及び屋外重要土木構造物の検討による機器•配管系への影響の検討結果

建物•構築物及び屋外重要土木構造物の検討において，溢水防護に関する施設及び耐震 B，Cクラス機器への影響を検討した結果，耐震性への影響が懸念される ものは抽出されなかった。

2．3．3 水平 2 方向及び鉛直方向地震力の組合せの影響評価
表2－2にて抽出された設備について，水平2方向及び鉛直方向地震力を想定し た発生値を，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関 する影響評価方針」の「4．2 機器•配管系」の方法にて算出した。

2．3．4 水平 2 方向及び鉛直方向地震力の影響評価結果
「2．3．3 水平 2 方向及び鉛直方向地震力の組合せの影響評価」の影響評価条件にて算出した発生値に対して，設備が有する耐震性への影響を評価した。影響評価結果を表2－3に示す。

2． 3.5 まとめ

溢水防護に関する施設及び耐震B，Cクラス機器について，水平2方向及び鉛直方向地震力を想定した場合でも耐震性への影響がないことを確認したため，従来 の水平 1 方向及び鉛直方向地震力の組合せによる設計手法に加えて更なる設計上 の配慮が必要な設備はない。

表 2－1 水平2方向入力の影響検討対象設備 $(1 / 5)$
（1）構造強度評価対象設備

設備名称	評価対象部位
PLR ポンプシールパージ系ろ過器	胴板
PLR ポンプシールパージ系ろ過器 (フィルタユニット)	基礎ボルト
CRD サクションフィルタ（A）（B）	基礎ボルト
制御棒駆動水フィルタ（A）（B）	胴板
CRD スクラム排出容器（A）（B）	容器
制御棒駆動水ポンプ用オイルクーラー（A）（B）	取付ボルト
ほう酸水注入系テストタンク	脚
CUW 再生熱交換器	胴板
CUW 非再生熱交換器（A）（B）	胴板
CUW プリコートタンク	基礎ボルト
CUW 万過脱塩器（A）（B）	基礎ボルト
FPCプリコートタンク	基礎ボルト
燃料プール泠却浄化系ろ過脱塩器（A）（B）	スカート
R／A LCW サンプ冷却器	胴板
HNCW サージタンク	基礎ボルト
R／A 給気冷却加熱コイル（A）（B）（C）（D）（E）（F）	取付ボルト
T / B 給気冷却加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）（I）	取付ボルト
送風機室空調機（A）（B）	基礎ボルト
RW／A 給気冷却加熱コイル（A）（B）（C）	取付ボルト
燃料交換機制御室空調機	基礎ボルト
R／A MS トンネル室空調機（A）（B）	基礎ボルト
CRDポンプ室空調機	基礎ボルト
PLR 電源装置室空調機	基礎ボルト
$\mathrm{IA} \cdot \mathrm{SA}$ 圧縮機室空調機	基礎ボルト
常用電気品室給気冷却加熱コイル（A）（B）	取付ボルト
入退域エリア（クリーン）空調機	基礎ボルト
燃料交換床給気加熱コイル（A）（B）	取付ボルト
燃料交換機制御室給気加熱コイル	取付ボルト
原子炉補機（A）（B）室給気加熱コイル	取付ボルト

表 2－1 水平 2 方向入力の影響検討対象設備（2／5）
（1）構造強度評価対象設備

設備名称	評価対象部位
原子炉補機（HPCS）室給気加熱コイル（A）（B）	取付ボルト
CRD 水圧制御ユニット（A）（B）エリア給気加熱コイル	取付ボルト
計測制御電源（A）（B）室給気加熱コイル	取付ボルト
中央制御室給気加熱コイル （A）（B）（C）（D）（E）（F）（G）（H）	取付ボルト
PLR－VVVF 冷却器（A）（B）	基礎ボルト
IA 後部冷却器（A）（B）	胴板
SA 後部冷却器（A）（B）	胴板
所内温水系温水熱交換器（A）（B）	基礎ボルト
所内温水系バックアップ熱交換器	胴板
所内温水系サージタンク	基礎ボルト
DG 燃料油ドレンユニット	基礎ボルト
HPCSDG 燃料油ドレンユニット	基礎ボルト
DG 燃料油ドレンタンク（A）（B）	取付ボルト
HPCSDG 燃料油ドレンタンク	取付ボルト
HPCSDG 潤滑油補給タンク	基礎ボルト
RW 制御室 HVAC 冷水供給設備膨張タンク	基礎ボルト
RW 制御室 給気加熱コイル	取付ボルト
RW 制御室 給気冷却コイル	取付ボルト
制御棒駆動水ポンプ（A）（B）	基礎ボルト
原子炉冷却材浄化系ポンプ（A）（B）（冷却器を含む）	基礎ボルト
CUWプリコートポンプ	基礎ボルト
原子炉冷却材浄化系保持ポンプ（A）（B）	ポンプ取付ボルト
燃料プール冷却浄化系プリコートポンプ	基礎ボルト
燃料プール冷却浄化系保持ポンプ（A）（B）	ポンプ取付ボルト
燃料プール補給水系ポンプ（軸受冷却器を含む）	原動機取付ボルト
タービン補機冷却海水ポンプ	原動機取付ボルト
IA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト
SA 空気圧縮機（A）（B）（中間冷却器を含む）	空気圧縮機取付ボルト
所内温水系ポンプ（A）（B）	原動機取付ボルト
DG 燃料油ドレンポンプ（A）（B）	原動機取付ボルト
HPCSDG 潤滑油補給ポンプ	基礎ボルト

表 2－1 水平 2 方向入力の影響検討対象設備 $(3 / 5)$
（1）構造強度評価対象設備

設備名称	評価対象部位
HPCSDG 燃料油ドレンポンプ	原動機取付ボルト
循環水ポンプ（A）	吐出配管ボルト
循環水ポンプ（B）	ベース架台取付ボルト
配管（給水系）	配管本体，支持構造物
配管（原子炉再循環系）	配管本体，支持構造物
配管（制御棒駆動水圧系）	配管本体，支持構造物
配管（残留熱除去系）	配管本体，支持構造物
配管（高圧炉心スプレイ系）	配管本体，支持構造物
配管（原子炉隔離時冷却系）	配管本体，支持構造物
配管（原子炉冷却材浄化系）	配管本体，支持構造物
配管（燃料プール冷却浄化系）	配管本体，支持構造物
配管（放射性ドレン移送系）	配管本体，支持構造物
配管（機器ドレン系）	配管本体，支持構造物
配管（床ドレン・化学廃液系）	配管本体，支持構造物
配管（廃スラッジ系）	配管本体，支持構造物
配管（純水補給水系）	配管本体，支持構造物
配管（復水補給水系）	配管本体，支持構造物
配管（ろ過水系）	配管本体，支持構造物
配管（燃料プール補給水系）	配管本体，支持構造物
配管（消火用水系）	配管本体，支持構造物
配管（換気空調補機常用冷却水系）	配管本体，支持構造物
配管（原子炉補機冷却水系）	配管本体，支持構造物
配管（加熱蒸気及び復水戻り系）	配管本体，支持構造物
配管（所内温水系）	配管本体，支持構造物
配管（非常用ディーゼル発電設備）	配管本体，支持構造物
配管（高圧炉心スプレイ系ディーゼル発電設備）	配管本体，支持構造物
配管（衛生設備排水系）	配管本体，支持構造物
配管（建屋内排水系）	配管本体，支持構造物
配管（非放射性ドレン移送系）	配管本体，支持構造物
配管（循環水系）	配管本体，支持構造物
配管（タービン補機冷却海水系）	配管本体，支持構造物
配管（タービン補機冷却水系）	配管本体，支持構造物

表 2－1 水平2方向入力の影響検討対象設備（4／5）
（1）構造強度評価対象設備

設備名称	評価対象部位
逆流防止装置	弁本体，フロートガイド
循環水系隔離システム	基礎ボルト
タービン補機冷却海水系隔離システム	基礎ボルト

表 2－1 水平2方向入力の影響検討対象設備（5／5）
（2）機能維持評価対象設備

設備名称	評価対象部位
循環水系隔離システム	漏えい検出器
タービン補機冷却海水系隔離システム	漏えい検出器
復水器水室入口弁	弁
復水器水室出口弁	弁
タービン補機冷却海水ポンプ吐出弁	弁

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ○ ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり 一：該当なし	抽出結果
CRD ポンプ室空調機	$\begin{gathered} \triangle \\ \text { 基礎ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	評価対象のボルトは矩形配置であり，水平 2方向入力による対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮することにより，水平 2 方向 の地震を組み合わせた場合であっても一方向 の地震による応力と同等と言えるため，影響 は軽微である。
PLR 電源装置室空調機	$\begin{gathered} \triangle \\ \text { 基礎ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	評価対象のボルトは矩形配置であり，水平 2方向入力による対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮することにより，水平 2 方向 の地震を組み合わせた場合であっても一方向 の地震による応力と同等と言えるため，影響 は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，Cクラス機器の耐震性についての計算書」の表5－1及 び表 5－2に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。
表 2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果 $(7 / 32)$
（1）構造強度評価
表2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果 $(9 / 32)$

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性			
	2．3．1（1）水平 2方向の地震力が重複する観点 ○ ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり 一：該当なし	抽出結果
燃料交換機制御室給気加熱コイル	\bigcirc 取付ボルト 一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。
原子炉補機（A）（B）室給気加熱コイル	\bigcirc 取付ボルト一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。
原子炉補機（HPCS）室給気加熱コイル（A）（B）	\bigcirc 取付ボルト一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。
CRD 水圧制御ユニット（A）（B） エリア給気加熱コイル	\bigcirc 取付ボルト 一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。
計測制御電源（A）（B）室給気加熱コイル	0 取付ボルト一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。

注記＊：ボルトについては，添付書類「VI－2－別添 2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性			
	2．3．1（1）水平 2方向の地震力が重複する観点 ○ ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり 一：該当なし	抽出結果
中央制御室給気加熱コイル （A）（B）C（）（D）（E）（F）（G）（H）	\bigcirc 取付ボルト 一次応力（引張＊）	\times	\bigcirc	評価結果は表 $2-3$ 参照。
PLR－VVVF 冷却器（A）（B）	基礎ボルト 一次応力（引張＊）	\times	－	評価対象のボルトは矩形配置であり，水平 2方向入力による対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮することにより，水平 2 方向 の地震を組み合わせた場合であっても一方向 の地震による応力と同等と言えるため，影響 は軽微である。
IA 後部冷却器（A）（B）	$\begin{gathered} \triangle \\ \text { 胴板 } \\ \text { 一次 }+ \text { 二次応力 } \end{gathered}$	\bigcirc	－	本機器は，3次元モデルを用いた解析により， ねじれモードを考慮した耐震評価を実施して いるため，水平方向とその直交方向が相関す る振動モードによる影響は考慮済みである。
SA 後部冷却器（A）（B）	$\begin{gathered} \triangle \\ \text { 胴板 } \\ \text { 一次 }+ \text { 二次応力 } \end{gathered}$	\bigcirc	－	本機器は，3次元モデルを用いた解析により， ねじれモードを考慮した耐震評価を実施して いるため，水平方向とその直交方向が相関す る振動モードによる影響は考慮済みである。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ○：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
所内温水系温水熱交換器 （A）（B）	\triangle 基礎ボルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより，影響は軽微である。
所内温水系バックアップ熱交換器	$\begin{gathered} \triangle \\ \text { 胴板 } \\ \text { 一次 }+ \text { 二次応力 } \end{gathered}$	\times	－	水平 2 方向が同時に作用した場合において も，強軸と弱軸の関係が明確であり，斜め方向に変形するのではなく，支持構造物の強軸側と弱軸側に変形するため，最大応力発生部位は変わらない。したがって，水平 2 方向入力の影響は軽微である。
所内温水系サージタンク		\times	－	ボルトは円周状に配置され，水平地震動の方向ごとに最大応力の発生点が異なる。したが って，水平 2 方向入力の影響は軽微である。
DG 燃料油ドレンユニット	$\begin{gathered} \triangle \\ \text { 基礎ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより，影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。

設備名称	水平 2 方向及び鋁直方向地震力の影響の可能性			
	2．3．1（1）水平 2方向の地震力が重複する観点 ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○ ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
HPCSDG 燃料油ドレンコ ニット	$\begin{gathered} \triangle \\ \text { 基礎ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより影響は軽微である。
DG 燃料油ドレンタンク （A）（B）	$\begin{gathered} \triangle \\ \text { 取付ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	ボルトは円周状に配置され，水平地震動の方向ごとに最大応力の発生点が異なる。したが って，水平 2 方向入力の影響は軽微である。
HPCSDG 燃料油ドレンタ ンク	\triangle 取付ボルト 一次応力（引張＊）	\times	－	ボルトは円周状に配置され，水平地震動の方向ごとに最大応力の発生点が異なる。したが って，水平 2 方向入力の影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，Cクラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。
（1）構造強度評価
表 2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（13／32）

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ○：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
HPCSDG 潤滑油補給タンク		\times	－	ボルトは円周状に配置され，水平地震動の方向ごとに最大応力の発生点が異なる。したが って，水平 2 方向入力の影響は軽微である。
RW 制御室 HVAC泠水供給設備膨張タンク	$\begin{gathered} \triangle \\ \text { 基礎ボルト } \\ \text { 一次応力 (引張*) } \end{gathered}$	\times	－	評価対象のボルトは矩形配置であり，水平2方向入力による対角方向への転倒を想定し検討した結果，水平2方向地震力の最大応答の非同時性を考慮することにより，水平 2 方向 の地震を組み合わせた場合であっても一方向 の地震による応力と同等と言えるため，影響 は軽微である。
RW 制御室 給気加熱コイル	取付ボルト一次応力（引張＊）	\times	\bigcirc	評価結果は表 $2-3$ 参照。
RW 制御室 給気冷却コイル	取付ボルト一次応力（引張＊）	\times	\bigcirc	評価結果は表 2－3 参照。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。
（1）構造強度評価
表 2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（16／32）

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 －影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ○：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり 一：該当なし	抽出結果
燃料プール補給水系ポンプ （軸受冷却器を含む）	\triangle 原動機取付ボルト 一次応力（引張＊）	\times	－	評価対象のボルトは矩形配置であり，水平 2方向入力による対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮することにより，水平 2 方向 の地震を組み合わせた場合であっても一方向 の地震による応力と同等と言えるため，影響 は軽微である。
タービン補機冷却海水ポ ンプ	\triangle 原動機取付ボルト 一次応力（引張＊）	\bigcirc	－	評価対象のボルトは円周状に配置され，水平地震動の方向ごとに最大応力の発生点が異な る。したがって，水平 2 方向入力の影響は軽微である。 水平 2 方向入力によって，ねじれ振動モード が高次にて現れる可能性はあるが，有意な応答ではない為，影響がないと考えられること から，水平方向とその直交方向が相関する振動モードによる影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及
び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ：影響あり \triangle ：影響軽微	2．3．1（2）水平方 向と直交方向が相 関する振動モード （ねじれ振動等） が生じる観点 $\times:$ 発生しない ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ○ ：影響あり －：該当なし	抽出結果
IA 空気圧縮機（A）（B） （中間冷却器を含む）	空気圧縮機取付ボ ルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより，影響は軽微である。
SA 空気圧縮機（A）（B） （中間冷却器を含む）	空気圧縮機取付ボ ルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより，影響は軽微である。
所内温水系ポンプ（A）（B）	\triangle 原動機取付ボルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を想定し検討した結果，水平 2 方向地震力の最大応答の非同時性 を考慮することにより，影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ○：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ○：発生する	2．3．1（3）水平1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ：影響あり ー：該当なし	抽出結果
DG 燃料油ドレンポンプ （A）（B）	原動機取付ボルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮す ることにより，影響は軽微である。
HPCSDG 潤滑油補給ポンプ		\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮す ることにより，影響は軽微である。
HPCSDG 燃料油ドレンポ ンプ	原動機取付ボルト 一次応力（引張＊）	\times	－	ボルトは矩形配置であり，水平 2 方向入力に よる対角方向への転倒を検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮す ることにより，影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。
表 2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（19／32）

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2方向の地震力が重複する観点 ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 ×：発生しない ○：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
循環水ポンプ（A）	吐出配管ボルト 一次応力（引張＊）	\bigcirc	－	評価対象のボルトに発生する引張応力はポン プ吐出方向の地震力のみにより発生するた め，水平 2 方向の影響はない。 水平 2 方向入力によって，ねじれ振動モード が高次にて現れる可能性はあるが，有意な応答ではないため，影響がないと考えられるこ とから，水平方向とその直交方向が相関する振動モードによる影響は軽微である。
循環水ポンプ（B）	$\begin{gathered} \triangle \\ \text { ベース架台取付ボ } \\ \text { ルト } \\ \text { 一次応力 (せん断*) } \end{gathered}$	\bigcirc	－	水平 2 方向入力時のボルトに発生するせん断応力を検討した結果，水平 2 方向地震力の最大応答の非同時性を考慮することにより，影響は軽微である。 水平2方向入力によって，ねじれ振動モード が高次にて現れる可能性はあるが，有意な応答ではないため，影響がないと考えられるこ とから，水平方向とその直交方向が相関する振動モードによる影響は軽微である。

注記＊：ボルトについては，添付書類「VI－2－別添2－2 溢水源としない耐震 B，C クラス機器の耐震性についての計算書」の表5－1及 び表 5－2 に示す算出応力と許容応力を踏まえ，評価上厳しい応力を記載する。
（1）構造強度評価
表 2－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（29／32）

	水平 2 方向及び鉛直方向地震力の影響の可能性			
設備名称	2．3．1（1）水平 2 方向の地震力が重複する観点 ：影響あり \triangle ：影響軽微	2．3．1（2）水平方向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平2方向及び鉛直方向地震力の増分 の観点 ：影響あり 一：該当なし	抽出結果
配管 （タービン補機冷却海水系）	\triangle 配管本体 一次 + 二次応力 \triangle 支持構造物 一次 + 二次応力	\bigcirc	－	配管系は，従来評価にて水平方向及び鉛直方向地震力を考慮済みである。 配管系は 3 次元モデルを用いた解析により，従来評価よりねじれモードを考慮した耐震評価を実施しているため，水平方向とその直交方向が相関する振動モードによる影響は考慮済みである。
配管 （タービン補機冷却水系）	$\begin{gathered} \triangle \\ \text { 配管本体 } \\ \text { 一次 }+ \text { 二次応力 } \\ \triangle \\ \text { 支持構造物 } \\ \text { 一次 }+ \text { 二次応力 } \end{gathered}$	\bigcirc	－	配管系は，従来評価にて水平方向及び鉛直方向地震力を考慮済みである。 配管系は3次元モデルを用いた解析により，従来評価よりねじれモードを考慮した耐震評価を実施しているため，水平方向とその直交方向が相関する振動モードによる影響は考慮済みである。

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性			
	2．3．1（1）水平 2方向の地震力が重複する観点 －影響あり \triangle ：影響軽微	2．3．1（2）水平方関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○ ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
逆流防止装置	弁本体一次応力（組合せ）	\times	\bigcirc	評価結果は表 2－3 参照
	フロートガイド一次応力（組合せ）	\times	\bigcirc	
循環水系隔離システム （壁掛け）	基礎ボルト 一次応力（引張）	\times	\bigcirc	評価結果は表 2－3参照
	基礎ボルト 一次応力（せん断）	\times	－	壁掛けのボルトは，壁と平行方向の水平地震力と鉛直地震力のみによりせん断力が発生す るため，水平 2 方向入力の影響はない。

設備名称	水平 2 方向及び鋁直方向地震力の影響の可能性			
	2．3．1（1）水平 2方向の地震力が重複する観点 ：影響あり \triangle ：影響軽微	2．3．1（2）水平方 向と直交方向が相関する振動モード （ねじれ振動等） が生じる観点 \times ：発生しない ○ ：発生する	2．3．1（3）水平 1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分 の観点 ：影響あり －：該当なし	抽出結果
循環水系隔離システム （自立）	○基礎ボルト一次応力（引張）	\times	\bigcirc	評価結果は表 2－3参照
	基礎ボルト 一次応力（せん断）	\times	\bigcirc	評価結果は表 2－3参照
タービン補機冷却海水系隔離システム	基礎ボルト一次応力（引張）	\times	\bigcirc	評価結果は表 2－3参照
	基礎ボルト 一次応力（せん断）	\times	－	壁掛けのボルトは，壁と平行方向の水平地震力と鉛直地震力のみによりせん断力が発生す るため，水平 2 方向入力の影響はない。

表 2－3 水平2方向及び鉛直方向地震力による影響評価結果（1／2）
（1）構造強度評価
（単位：MPa）

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性					
	評価部位	応力分類	1 方向入力 発生値＊${ }^{*}$	2 方向想定発生値＊${ }^{2}$	許容値	判定
ほう酸水注入系テ ストタンク	脚	組合せ	90	128	205	\bigcirc
R／A 給気冷却加熱 コイル （A）（B）（C）（D） （E）（F）	取付ボルト	引張	18	26	179	\bigcirc
常用電気品室給気冷却加熱コイル （A）$(\mathrm{B}) * 3$	取付ボルト	引張	－	－	－	－
燃料交換機制御室給気加熱コイル	取付ボルト	引張	5	7	179	\bigcirc
原子炉補機（A）（B） 室給気加熱コイル	取付ボルト	引張	7	10	179	\bigcirc
原子炉補機（HPCS）室給気加熱コイル （A）（B）	取付ボルト	引張	11	16	179	\bigcirc
CRD 水圧制御ユニ ット（A）（B）エリア給気加熱コイル	取付ボルト	引張	5	7	179	\bigcirc
計 測 制 御 電 源 （A）（B）室給気加熱 コイル	取付ボルト	引張	4	6	179	\bigcirc
中央制御室給気加熱コイル （A）（B）（C）（D） （E）（F）（G）（H）＊3	取付ボルト	引張	－	－	－	－

注記＊ 1 ：基準地震動 S s による地震力において発生する応力値を記載している。
＊2：「1方向入力発生値」に対して，•2を乗じた値を記載している。
＊ 3 ：計測制御電源（A）（B）室給気加熱コイルと同形状の設備であることから，設計震度 の大きい計測制御電源（A）（B）室給気加熱コイルを代表として影響評価を実施す る。

表 2－3 水平2方向及び鉛直方向地震力による影響評価結果（2／2）
（1）構造強度評価
（単位：MPa）

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性					
	評価部位	応力分類	$1 \text { 方向入力 }$ 発生値＊${ }^{*}$	2 方向想定発生値＊${ }^{2}$	許容値	判定
RW 制御室 給気加熱コイル＊3	取付ボルト	引張	－	－	－	－
RW 制御室 給気冷却コイル	取付ボルト	引張	12	17	197	\bigcirc
	弁本体	組合せ	2	3	152	\bigcirc
逆流防止装置	$\begin{gathered} \text { フロート } \\ \text { ガイド } \end{gathered}$	組合せ	4	6	152	\bigcirc
循環水系 隔離システム （壁掛け）	基礎ボルト	引張	7	10	190	\bigcirc
循環水系	基礎ボルト	引張	4	6	190	\bigcirc
（自立）	基礎ボルト	せん断	1	2	146	\bigcirc
タービン補機冷却海水系隔離システム	基礎ボルト	引張	6	9	193	\bigcirc

注記 $* 1$ ：基準地震動 S s による地震力において発生する応力値を記載している。
＊2：「1方向入力発生値」に対して，「2を乗じた値を記載している。
＊ $3: ~ R W$ 制御室給気冷却コイルと同形状の設備であることから，機器重量の大きい RW制御室給気冷却コイルを代表として影響評価を実施する。

VI－2－別添 2－7 タービン補機冷却海水ポンプ吐出弁の耐震性につい ての計算書

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
2.3 構造計画 8
3．計算条件 9
3.1 計算方法 9
3.2 荷重の組合せ及び許容応力状態 10
3.3 設計条件 11
3.4 材料及び許容応力 16
3.5 設計用地震力 17
4．解析結果及び評価 18
4．1 固有周期及び設計震度 18
4． 2 評価結果 24
4．2．1 管の応力評価結果 24
4．2．2 支持構造物評価結果 25
4．2．3 弁の動的機能維持評価結果 26
4．2．4 代表モデルの選定結果及び全モデルの評価結果 27

1．概要

本計算書は，添付資料「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」に従 い，溢水量低減を目的として，タービン補機冷却海水ポンプ吐出弁が基準地震動S S に対して十分に動的機能を維持していることを確認するものである。

タービン補機冷却海水ポンプ吐出弁は，設計基準対象施設においてはCクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び動的機能維持評価を示 す。

なお，タービン補機冷却海水ポンプ吐出弁は，タービン補機冷却海水系配管に設置さ れる弁であり，配管と合わせて耐震評価を実施することから，添付資料「VI－2－1－13－6管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき評価を実施する。

評価結果記載方法は，以下に示すとおりである。
（1）管
概略系統図に示す配管の評価対象部位のうち，各応力区分における最大応力評価点評価結果を記載する。また，全 3 弁をひとつの配管系として解析モデルを作成し，各応力区分における許容値／発生値（以下「裕度」という。）が最小となる部位を代表として計算条件及び評価結果を記載する。
（2）支持構造物
対象配管の支持点のらち，種類及び型式単位に反力が最大となる支持構造物の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （5）VI－2－別添2－7 R 0

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
工（太線）	概略系統図記載の管のうち，本計算書に評価結果を添付する配管
－－ーーー－－（破線）	概略系統図記載の管のうち基準地震動 S s に対し機能維持を期待
	しない範囲の管であって解析モデルの概略を示すために表記する配管
	質点
	レストレイント （本図は斜め拘束の場合の全体座標系における拘束方向成分を示 す。）
0	アンカ

鳥瞰図	TSW－001（2／3）

O 2 （5）VI－2－別添 2－7 R 0

2.3 構造計画

タービン補機冷却海水ポンプ吐出弁は，電動バタフライ弁であり，弁体を回転し弁座に密着することで止水する。電動バタフライ弁の構造計画を下表に示す。

設備名称	計画の概要			概略構造図
	型式	主体構造	支持構造	
タービン 補機冷却 海水ポン プ吐出弁	電動バ タフラ イ弁	弁体を含む弁本体，弁体を電動にて駆動 する駆動部で構成される。	タービン補機冷却海水系配管に設置され，配管にて支持 される。 配管につい ては，支持構造物にて支持され る。	A－A断面図 弁設置位置図

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「AutoPIPE」「NAPF」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態
本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設 名称	設備 名称	系統名称	施設 分類＊1	設備 分類	機器等 の区分	耐震重要度分類	荷重の組合せ＊2，3	許容応力状態
－	－	タービン補機泠却海水系	DB	－	－	C	$\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ S	III ${ }_{\text {A }} \mathrm{S}$
							$\mathrm{II}_{L}+\mathrm{S} \mathrm{s}$	

注記＊1：DB は設計基準対象施設，SA は重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件
鳥瞰図番号ごとに設計条件に対応した管番号で区分し，管番号と対応する評価点番号を示す。
鳥瞰図 TSW－001

管番号	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	耐震 料	縦弾性係数 (MPa)	
1	0.69	41	762.0	9.5	SM41B	C	201600
2	0.69	41	762.0	12.7	SM41B	C	201600
3	0.69	41	558.8	9.5	SM41B	C	201600
4	0.69	41	558.8	12.7	SM41B	C	201600
5	0.69	41	406.4	9.5	SM41B	C	201600
6	0.69	41	406.4	12.7	STPT370	C	201600

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥瞰図 TSW－001

管名称	対応する評価点
1	$\mathrm{D} 01 \sim \mathrm{D} 07, \mathrm{D} 09 \sim \mathrm{D} 17, \mathrm{D} 19 \sim \mathrm{D} 21, \mathrm{D} 16 \sim \mathrm{E} 01, \mathrm{E} 03 \sim \mathrm{E} 07, \mathrm{E} 09 \sim \mathrm{E} 47, \mathrm{E} 08 \sim \mathrm{H} 01, \mathrm{H} 03 \sim \mathrm{H} 04$
2	$\mathrm{C} 01 \sim \mathrm{D} 01, \mathrm{D} 07 \sim \mathrm{D} 09, \mathrm{E} 07 \sim \mathrm{E} 09$
3	$\mathrm{~A} 00 \sim \mathrm{~A} 01, \mathrm{~A} 08 \sim \mathrm{C} 00, \mathrm{D} 04 \sim \mathrm{~F} 05, \mathrm{~F} 07 \sim \mathrm{~F} 09, \mathrm{~F} 11 \sim \mathrm{~F} 12, \mathrm{D} 08 \sim \mathrm{G} 01, \mathrm{G} 07 \sim \mathrm{G} 08$
4	$\mathrm{~A} 03 \sim \mathrm{~A} 06, \mathrm{G} 03 \sim \mathrm{G} 05$
5	$\mathrm{~A} 05 \sim \mathrm{~B} 11, \mathrm{~B} 14 \sim \mathrm{~B} 56$
6	$\mathrm{~B} 11 \sim \mathrm{~B} 14, \mathrm{~B} 54 \sim \mathrm{i} 05, \mathrm{~B} 07 \sim \mathrm{G} 09$

フランジ部の質量

鳥瞰図 TSW－001

質量	対応する評価点
49 kg	A00，A01，A03，A06，A08，F01，F03，F05，F07，F09，F11，F12，G01，G03，G05，G07，G08
26kg	$\begin{aligned} & \text { B01, B03, B06, B08, B09, B11, B14, B16, B20, B24, B28, B30, B32, B34, B55, i01, i03, } \\ & \text { i05, i07 } \end{aligned}$
248 kg	C01
87 kg	C01，D01，D03，D05，D07，D09，D11，D13，D15，D17，D19，D21，E01，E03，E05，E07，E09， E12，E14
87 kg	E17，E19，E23，H01，H03，H04

[^13]弁部の寸法

鳥瞰図 TSW－001

評価点	外径 （mm）	厚さ （mm）	長さ (mm)	評価点	外径 （mm）	厚さ (mm)	$\begin{aligned} & \text { 長さ } \\ & (\mathrm{mm}) \end{aligned}$
$\begin{aligned} & \text { D17~D19, H01~H03 } \\ & \text { E01~E03 } \end{aligned}$	762.0	190.5	280	$\begin{aligned} & \mathrm{L} 01 \sim \mathrm{~L} 02, \mathrm{~K} 01 \sim \mathrm{~K} 02, \\ & \mathrm{~J} 01 \sim \mathrm{~J} 02 \end{aligned}$	140.0	28.5	348
$\begin{aligned} & \mathrm{G} 01 \sim \mathrm{G} 03, \mathrm{~F} 05 \sim \mathrm{~F} 07 \\ & \mathrm{~A} 06 \sim \mathrm{~A} 08 \end{aligned}$	606.0	20.0	230	$\begin{aligned} & \text { G05~G07, F09~F11, } \\ & \text { A01~A03 } \end{aligned}$	558.8	139.7	1067
$\begin{aligned} & \mathrm{G} 02 \sim \mathrm{~L} 01, \mathrm{~F} 06 \sim \mathrm{~K} 01 \\ & \mathrm{~A} 07 \sim \mathrm{~J} 01 \end{aligned}$	606.0	20.0	303	B01～B03，i05～i07	406.4	101.6	180

弁部の質量

鳥瞰図 TSW－001

質量	対応する評価点	質量	対応する評価点
1320 kg	D18，H02，E02	260 kg	L02，K02，J02
461 kg	G02，F06，A07	1500 kg	G06，F10，A02
24 kg	L01，K01，J01	325 kg	B02，i06

[^14]支持点及び貫通部ばね定数

鳥瞰図 TSW－001

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{m} / \mathrm{deg})$		
	X	Y	Z	X	Y	Z
B04	-	3.77×10^{4}	-	-	-	-
B12	5.68×10^{5}	2.96×10^{5}	-	-	-	-
B40	-	-	8.05×10^{5}	-	-	-
B18	-	2.96×10^{5}	5.68×10^{5}	-	-	-
B27	9.94×10^{5}	6.13×10^{5}	6.05×10^{5}	-	-	-
B33	7.14×10^{5}	-	8.66×10^{5}	-	-	-
D02	-	2.67×10^{5}	-	-	-	-
D06	7.94×10^{4}	4.71×10^{5}	1.91×10^{5}	-	-	-
D12	1.54×10^{5}	3.30×10^{5}	-	-	-	-
D20	-	1.79×10^{5}	1.04×10^{5}	-	-	-
E10	-	1.80×10^{5}	1.19×10^{5}	-	-	-
E21	3.40×10^{5}	-	4.69×10^{5}	-	-	-
E47	8.83×10^{5}	2.11×10^{6}	4.54×10^{6}	2.44×10^{11}	1.55×10^{12}	7.06×10^{11}
B56	9.19×10^{5}	1.03×10^{6}	1.71×10^{6}	6.83×10^{10}	2.00×10^{11}	1.38×10^{11}

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S_{m}	S y	S_{u}	S_{h}
SM41B	41	－	244	399	－
STPT370	41	－	214	369	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。

なお，設計用床応答曲線は添付資料「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付資料「VI－2－1－6 地震応答解析 の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋•構築物	標高（0．P．（m））	減衰定数（\％）
		7.250	
TSW－001	海水ポンプ室	2.250	
		-0.550	2.0
		-7.025	

[^15]4．解析結果及び評価
4.1 固有周期及び設計震度
鳥瞰図 TSW－001

適用する地震動等		Sd 及び静的震度			S s		
	固有周期	応答	＊ 1	応答鉛直震度＊1	応答	＊${ }^{\text {\％}}$	応答鉛直震度＊${ }^{1}$
	(s)	X方向	Z 方向	Y 方向	X方向	Z 方向	Y方向
1 次	0． 190	－	－	－	7.170	7.170	2.819
2 次	0． 172	－	－	－	5.790	5.790	2.880
3 次	0.100	－	－	－	6.382	6.382	11.597
4 次	0.086	－	－	－	6.191	6.191	11． 770
5 次	0.073	－	－	－	6.013	6.013	12.551
6 次	0.070	－	－	－	6.385	6.385	10． 147
7 次	0． 067	－	－	－	6.547	6.547	9.398
8 次	0． 058	－	－	－	6.385	6.385	7.894
11 次	0.050	－	－	－	5.405	5.405	6． 444
12 次＊2	0.046	－	－	－	6.530	6.530	6． 207
動的震度＊3		－	－	－	2． 760	2． 760	2． 210
静的震度＊4		－	－	－	－	－	－

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 以下であることを示す。
＊ $3: ~ \mathrm{~S} \mathrm{~d}$ 又は S s 地震動に基づく設計用最大応答加速度より定めた震度を示す。
＊4：3． $6 \mathrm{C}_{\mathrm{I}}$ 及び $1.2 \mathrm{C}_{\mathrm{v}}$ より定めた震度を示す。
各モードに対応する刺激係数
鳥瞰図 TSW－001

モード	固有周期（S）	刺激係数＊		
		X 方向	Y 方向	Z 方向
1 次	0.190	0.003	0.040	0.008
2 次	0． 172	0.005	0.011	0.037
3 次	0.100	0.028	0.001	0.020
4 次	0.086	0.034	0.013	0.056
5 次	0.073	0.045	0.007	0.005
6 次	0.070	0.061	0.017	0.004
7 次	0.067	0.004	0.048	0.015
8 次	0.058	0.122	0.007	0.011
9 次	0.056	0.003	0.001	0.016
10 次	0.054	0.037	0.001	0.017
11 次	0.050	0.000	0.011	0.001
12 次	0.046	0.000	0.052	0.011

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は， 3 次モードまでを代表とし，各質点の変位の相対量•方向を図示し，次ページ以降に示す。
\square

4．2 評価結果
4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）		疲労評価
				$\begin{aligned} & \text { 計算応力 } \\ & S_{p r m}(S \mathrm{~s}) \end{aligned}$	許容応力 $\mathrm{S}_{\mathrm{y}} * 1, * 2$	計算応力 $S_{n}(S S)$	許容応力 $2 \mathrm{~S}_{\mathrm{y}}$	疲労累積係数 US s
TSW－001	III ${ }_{\text {A }} \mathrm{S}$	$\begin{aligned} & \text { B54 } \\ & \text { B54 } \end{aligned}$	$\begin{aligned} & S_{p r m}(S s) \\ & S_{n}(S S) \end{aligned}$	$\begin{gathered} 228 \\ - \end{gathered}$	$\begin{gathered} 244 \\ - \end{gathered}$	$\begin{aligned} & - \\ & 416 \end{aligned}$	$\begin{gathered} - \\ 428 \end{gathered}$	-

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については， S y と $1.2 \mathrm{~S}_{\mathrm{h}}$ のうち大きい方の値とする。 ＊2：S s 地震動に対し許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を行う。

O 2 （5）VI－2－別添2－7 R 0
O2（5）VI－2－別添 2－7 R O

[^16]下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持点番号	種類	型式	材質 温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
				計算 荷重 （kN）	許容荷重 （kN）
B40	$\begin{gathered} \text { ロッドレス } \\ \text { トレイント } \end{gathered}$	RST－5	添付書類「VI－2－1－ 12－1 配管及び支持構造物の耐震計算について」 参照	63	273

支持構造物評価結果（応力評価）

支持点番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力 分類	計算 応力 （MPa）	許容 応力 (MPa)
					F_{x}	F_{Y}	F_{z}	M_{x}	M_{Y}	M_{z}			
D06	$\begin{aligned} & \text { レスト } \\ & \text { レイント } \end{aligned}$	－	STKR400	55	403	194	107	－	－	－	組合せ	145	228
E47	アンカ	－	STKR400	55	101	200	120	199	50	129	組合せ	286	456

弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度＊$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		駆動部 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果(MPa)	
			水平	鉛直	水平	鉛直	水平	鉛直	計算応力	許容応力
P46－F002B	電動バタフライ弁	β（S s ）	13.3	8.99	6.0	6． 0	20.0	20.0	84.7	280

何れか大きい方を示す。
4．2． 3

No．	配管モデル	許容応力状態 III A S												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	疲労累積係数	代表
1	TSW－001	B54	228	244	1． 07	\bigcirc	B54	416	428	1． 03	\bigcirc	－	－	－

VI－2－別添 2－8 復水器水室出入口弁の耐震性についての計算書

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
2.3 構造計画 6
3．計算条件 7
3.1 計算方法 7
3.2 荷重の組合せ及び許容応力状態 8
3.3 設計条件 9
3.4 材料及び許容応力 13
3.5 設計用地震力 14
4．解析結果及び評価 15
4．1 固有周期及び設計震度 15
4．2 評価結果 20
4．2．1 管の応力評価結果 20
4．2．2 弁の動的機能維持評価結果 21
4．2．3 代表モデルの選定結果及び全モデルの評価結果 22

1．概要

本計算書は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」に従 い，溢水量低減を目的として，復水器水室入口弁及び出口弁（以下「復水器水室出入口弁」という。）が基準地震動 S s に対して十分に動的機能を維持していることを確認する ものである。

復水器水室出入口弁は，設計基準対象施設においてはCクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び動的機能維持評価を示す。

なお，復水器水室出入口弁は，循環水系配管に設置される弁であり，配管と合わせて耐震評価を実施することから，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき評価を実施する。

評価結果記載方法は，以下に示すとおりである。
（1）管
概略系統図に示す配管の評価対象部位のうち，各応力区分における最大応力評価点評価結果を記載する。また，全 8 モデルのうち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表 として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデル の選定結果及び全モデルの評価結果を 4.2 .3 に記載する。
（2）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

ボール捕葉器ビット

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
——（太線）	概略系統図記載の管のらち，本計算書に評価結果を添付する配管
－－－－－－－（破線）	弁の質量分布をモデル化するために設定している梁要素
－	質点
0	アンカ

2.3 構造計画

復水器水室出入口弁は，電動バタフライ弁であり，弁体を回転し弁座に密着するこ とで止水する。電動バタフライ弁の構造計画を下表に示す。

設備名称	計画の概要			概略構造図
	型式	主体構造	支持構造	
復水器水室出入口开	電 動 バ タフラ イ弁	弁体を含む弁本体，弁体を電動にて駆動 する駆動部で構成される。	循環水配管 に設置さ れ，配管に支持され る。	弁設置位置図

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「AutoPIPE」を使用し，解析コードの検証及び妥当性確認等の概要について は，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設 名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備 分類	機器等 の区分	耐震重要度分類	荷重の組合せ＊2，＊3	許容応力 状態
－	－	循環水系	DB	－	－	C	$\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s	III $_{\text {A }} \mathrm{S}$
							$\mathrm{II}_{L}+\mathrm{S} \mathrm{S}$	

注記＊1：DB は設計基準対象施設，SA は重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	0.48	41	2526.0	13.0	SS 400	C	201600

管名称と対応する評価点

評価点の位置は鳥瞰図に示す。
鳥瞰図 CW－08

管名称	対応する評価点	
1	1	2

フランジ部の質量

鳥㒈図 CW－08

質量	対応する評価点
1770 kg	2
885 kg	3

弁部の寸法

鳥瞰図 CW－08

評価点	外径 (mm)	厚さ (mm)	長さ (mm)	評価点	外径 (mm)	厚さ (mm)	長さ (mm)	
$3 \sim 5$	2582.0	28.0	520	$4 \sim 6$	2582.0	28.0	1427.5	
$6 \sim 7$	523.0	112	391	$7 \sim 8$	675.0	25.0	430	
$8 \sim 9$	330.0	109.4	275					

弁部の質量

鳥瞰図 CW－08

質量	対応する評価点	質量	対応する評価点
885 kg	3	8018 kg	4
1992 kg	5	520 kg	6
490 kg	7	2713 kg	9

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S_{m}	S_{y}	S_{u}	S_{h}
SS 400 $($ 厚さ $\leqq 16 \mathrm{~mm})$	41	-	244	399	-
SS 400 $(40 \mathrm{~mm}<$ 厚さ）	41	-	214	399	-
FCD450	41	-	280	450	-

[^17]
3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。

なお，設計用床応答曲線は添付資料「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付資料「VI－2－1－6 地震応答解析 の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋•構築物	標高（0．P．（m））	減衰定数（\％）
$\mathrm{CW}-08$	タービン建屋	0.800	0.5

[^18]4．解析結果及び評価
4.1 固有周期及び設計震度

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （s）	応答水平震度 $*^{1}$		応答鉛直震度＊1	応答水平震度 $*^{1}$		応答鉛直震度＊1
		X 方向	Z 方 向	Y 方向	X方向	Z 方 向	Y方向
1 次	0.098	－	－	－	6.51	6.51	4.21
2 次	0.095	－	－	－	6.51	6.51	4． 21
3 次＊2	0.050	－	－	－	－	－	－
動的震度＊3		－	－	－	1． 14	1． 14	0.71
静的震度＊${ }^{4}$		－	－	－	－	－	－

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊3：S d 又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

$$
\text { *4:3.6C I 及び } 1.2 \mathrm{C}_{\mathrm{v}} \text { より定めた震度を示す。 }
$$

各モードに対応する刺激係数
注記 $~: ~$ 刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は， 2 次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{S}_{\mathrm{prm}} \text { (S s) } \end{gathered}$	許容応力 $S_{y} * 1, * 2$	計算応力 $S_{n}(S S)$	許容応力 2 S y	疲労累積係数 US s
CW－08	III ${ }_{\text {A }} \mathrm{S}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & S_{\mathrm{prm}}(S \mathrm{~s}) \\ & S_{\mathrm{n}}(\mathrm{~S} \text { s }) \end{aligned}$	$\begin{aligned} & 41 \\ & - \end{aligned}$	$\begin{gathered} 244 \\ - \end{gathered}$	$\begin{gathered} - \\ 200 \end{gathered}$	$\begin{aligned} & - \\ & 489 \end{aligned}$	$-$

注記 $* 1$ ：オーステナイト系ステンレス鋼及び高ニッケル合金については， S_{y} と $1.2 \mathrm{~S}_{\mathrm{h}}$ のうち大きい方の値とする。 ＊2：S s 地震動に対し許容応力状態III A S の評価を行う。
クラス 2 以下の管

[^19]弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度＊$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		駆動部 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	水平	鉛直	計算応力	許容応力
$\begin{gathered} \text { N71- } \\ \text { F004 (D) } \end{gathered}$	電動バタフライ弁	β（S s ）	11.1	4.9	6.0	6． 0	20.0	20.0	27． 7	429

注記＊：機能維持評価用加速度は，打ち切り振動数を 50 Hz として計算した結果と最大加速度を 1.2 倍した値（1．2ZPA）の何 れか大きい方を示す。
4．2． 2
代表モデルの選定結果及び全モデルの評価結果（クラス3管相当）

No．	配管モデル	許容応力状態 III $_{\text {A }} \mathrm{S}$												
		一次応力					一次 + 二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	疲労 累積 係数	代表
1	CW－01	2	41	244	5.95	－	2	200	489	2.44	－	－	－	－
2	CW－02	2	41	244	5.95	－	2	200	489	2． 44	－	－	－	－
3	CW－03	2	41	244	5.95	－	2	200	489	2． 44	－	－	－	－
4	CW－04	2	41	244	5.95	－	2	200	489	2.44	－	－	－	－
5	CW－05	2	41	244	5.95	－	2	200	489	2． 44	－	－	－	－
6	CW－06	2	41	244	5.95	－	2	200	489	2.44	－	－	－	－
7	CW－07	2	41	244	5.95	－	2	200	489	2． 44	－	－	－	－
8	CW－08	2	41	244	5.95	\bigcirc	2	200	489	2． 44	\bigcirc	－	－	－

VI－3 強度に関する説明書

VI－3－1 強度計算の基本方針
VI－3－2 強度計算方法
VI－3－3 強度計算書

VI－3－3 強度計算書

VI－3－3－1 原子炉本体の強度に関する説明書
VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書
VI－3－3－3 原子炉冷却系統施設の強度に関する説明書
VI－3－3－4 計測制御系統施設の強度に関する説明書
VI－3－3－5 放射線管理施設の強度に関する説明書
VI－3－3－6 原子炉格納施設の強度に関する説明書
VI－3－3－7 その他発電用原子炉の附属施設の強度に関する説明書

VI－3－3－3 原子炉冷却系統施設の強度に関する説明書

VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書
VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書
VI－3－3－3－3 残留熱除去設備の強度計算書
VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書
VI－3－3－3－5 原子炉冷却材補給設備の強度計算書
VI－3－3－3－6 原子炉補機冷却設備の強度計算書
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書

VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書

VI－3－3－3－2－1 主蒸気系の強度計算書
VI－3－3－3－2－2 復水給水系の強度計算書

VI－3－3－3－2－1 主蒸気系の強度計算書

VI－3－3－3－2－1－1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書 VI－3－3－3－2－1－2 主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書 VI－3－3－3－2－1－3 管の強度計算書（主蒸気系）

> VI-3-3-3-2-1-3 管の強度計算書 (主蒸気系)
R 0

VI－3－3－3－2－1－3－1 管の基本板厚計算書（主蒸気系）
VI－3－3－3－2－1－3－2 管の応力計算書（主蒸気系）

VI－3－3－3－2－1－3－2 管の応力計算書（主蒸気系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\left\|\begin{array}{c} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{array}\right\|$	$\begin{aligned} & \hline \text { 施設時の } \\ & \text { 技術基漼に } \\ & \text { 対象とする } \\ & \text { 施設の規定 } \\ & \text { があるか } \\ & \hline \end{aligned}$	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\stackrel{\text { DB }}{\text { クラ }}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \\ \hline \end{array}$	DB条件		SA条件						
								$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \end{array}$	$\begin{array}{\|c} \\ \hline \text { 温度 } \\ \left({ }^{\circ}\right) \\ \hline \end{array}$					
MS－001	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	有	3.80	249	4.71	262	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－002	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	有	3.80	249	4.71	262	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－003	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10.34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	有	3.80	249	4.71	262	－	S55告示	$\begin{gathered} \text { 設計•建設規格 } \\ \text { 又は告示 } \\ \hline \end{gathered}$	－	SA－2
MS－004	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	$\begin{gathered} \hline \text { 設計•建設規格 } \\ \text { 又は告示 } \\ \hline \end{gathered}$	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	有	3.80	249	4.71	262	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2

－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \mathrm{DB} \\ \text { クラス } \end{gathered}$	$\begin{gathered} \mathrm{SA} \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
MS－05	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－06	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－07	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－08	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－09	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－10	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－11	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－12	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－13	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－14	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－15	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－16	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－17	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2

－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \hline \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
MS－18	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－19	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－20	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
MS－21	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥㒈図 18
3．計算条件 35
3.1 設計条件 35
3.2 材料及び許容応力 55
4．評価結果 57
5．代表モデルの選定結果及び全モデルの評価結果 63

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 21 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系概略系統図（その5）
逃がし弁機能用アキュムレータ主蒸気逃がし安全弁 \square Hi

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系
解析モデル上本系統に含める
主蒸気系概略系統図（その7）

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ
解析モデル上本系統に含める

逃がし弁機能用アキュムレータ

自動減圧機能用アキュムレータ

注記＊：高圧窒素ガス供給系

解析モデル上本系統に含める

自動減圧機能用アキュムレータ
解析モデル上本系統に含める

逃がし弁機能用アキュムレータ

代替高圧窒素ガス供給系より

自動減圧機能用アキュムレータ
解析モデル上本系統に含める

鳥㒈図記号凡例

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
\Leftarrow 申請範囲外	工事計画記載範囲外の管
－	質点
	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
＊	スナッバ
	ハンガ
$35 x$	ガイド

O 2 (5) VI-3-3-3-2-1-3-2 (重) R 0
O 2 (5) VI-3-3-3-2-1-3-2 (重) R 0

鳥橄 叉	$M S-001-3 / 10$

O 2 （5）VI－3－3－3－2－1－3－2（重）R 0
O 2 (5) VI-3-3-3-2-1-3-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 MS—OO1（クラス1管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	609.6	31.0	STS480
2	10.34	315	228.6	33.0	SFVC2B

[^20]設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 MS－001（クラス1管）

管名称	対					応	す		る		価	点		14	15
1	1	2	3	4	5	6	7	8	9	10	11	12	13		
	16	17	18	19	73	74	801	804	805	901	902	904	907		
2	12	14	16	19	44	45	50	51	56	57	62	63	81	82	83
	84														

[^21]配管の質量（付加質量含む）
鳥 瞰 図 MS—001（クラス1管）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		9		17		74		901	
2		10		18		81		902	
3		11		19		82		904	
4		12		44		83		907	
5		13		50		84			
6		14		56		801			
7		15		62		804			
8		16		73		805			

弁部の質量を下表に示す。
弁1 弁2弁 3

弁 4

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
45		51		57		63	
46		52		58		64	
101		201		301		401	
47		53		59		65	
48		54		60		66	
49		55		61		67	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	46			
弁 2	52			
弁3	58			
弁4	64			

支持点及び貫通部ばね定数

$$
\text { 鳥 瞰 図 MS - 0 0 1 (クラス } 1 \text { 管) }
$$

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
＊＊ 7 ＊＊						
＊＊ 9 ＊＊						
13						
＊＊ 15 ＊＊						
＊＊ 18 ＊＊						
＊＊ 901 ＊＊						
＊＊ 902 ＊＊						
＊＊ 904 ＊＊						
＊＊ 907 ＊＊						

\qquad

計算条件
設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 MS－001（クラス2以下の管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	4.71	262	267.4	15.1	STS410
2	4.71	262	267.4	15.1	STS410
3	4.71	262	267.4	15.1	SCS16A
4	4.71	262	323.9	17.5	SCS16A

O 2 （5）VI－3－3－3－2－1－3－2（重）R 0

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 MS－001（クラス2以下の管）

管名称					対	応	す	す	る	評	価	点			
1	101	102	103	104	106	107	108	109	110	111	112	113	114	115	116
	117	195	198	201	202	203	204	205	206	207	208	209	210	211	212
	213	214	215	301	302	303	304	305	306	307	308	309	310	311	312
	313	314	315	316	317	401	402	403	404	405	406	407	408	409	410
	411	412	414	415	416	417	418	419	491	806	807	808	914	920	
2	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131
	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
	147	148	150	151	152	153	154	155	156	157	190	191	192	193	194
	196	197	215	216	217	218	219	220	221	222	223	224	225	226	227
	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242
	243	245	246	247	248	249	250	251	252	253	254	255	256	257	258
	259	260	290	291	292	293	294	295	296	317	318	319	320	321	322
	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337
	338	339	340	341	342	343	344	345	346	347	348	349	351	352	353
	354	355	356	357	358	390	391	392	393	394	395	396	419	420	421
	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436
	437	438	439	440	441	442	443	444	446	447	448	449	450	451	452
	453	490	492	493	811	911	918	919							
3	157	158	260	261	358	359	453	454							
4	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172
	173	174	261	262	263	264	265	266	267	268	269	270	271	272	273
	274	275	276	277	359	360	361	362	363	364	365	366	367	368	369
	370	371	372	373	374	375	454	455	456	457	458	459	460	461	462
	463	464	465	466	467	468	469	470							

配管の質量（付加質量含む）
鳥 瞰 図
MS—O 01 （クラス2以下の管）

評価点の質量を下表に示す。

0 y（重）$\zeta-\varepsilon-I-Z-\varepsilon-\varepsilon-\varepsilon-I \Lambda \quad$（c）$\quad$ O

評価点	質量（kg）								
101		169		253		335		421	
102		170		254		336		422	
103		171		255		337		423	
104		172		256		338		424	
106		173		257		339		425	
107		174		258		340		426	
108		190		259		341		427	
109		191		260		342		428	
110		192		261		343		429	
111		193		262		344		430	
112		194		263		345		431	
113		195		264		346		432	
114		196		265		347		433	
115		197		266		348		434	
116		198		267		349		435	
117		201		268		351		436	
118		202		269		352		437	
119		203		270		353		438	
120		204		271		354		439	
121		205		272		355		440	
122		206		273		356		441	
123		207		274		357		442	
124		208		275		358		443	
125		209		276		359		444	
126		210		277		360		446	
127		211		290		361		447	
128		212		291		362		448	
129		213		292		363		449	
130		214		293		364		450	
131		215		294		365		451	
132		216		295		366		452	
133		217		296		367		453	
134		218		301		368		454	
135		219		302		369		455	
136		220		303		370		456	
137		221		304		371		457	
138		222		305		372		458	
139		223		306		373		459	
140		224		307		374		460	
141		225		308		375		461	
142		226		309		390		462	
143		227		310		391		463	
144		228		311		392		464	
145		229		312		393		465	
146		230		313		394		466	
147		231		314		395		467	
148		232		315		396		468	
150		233		316		401		469	
151		234		317		402		470	
152		235		318		403		490	

配管の質量（付加質量含む）

$$
\text { 鳥 瞰 図 MS——o } 01 \text { (クラス } 2 \text { 以下の管) }
$$

評価点の質量を下表に示す。

評価点	質量（kg）								
153		236		319		404		491	
154		237		320		405		492	
155		238		321		406		493	
156		239		322		407		806	
157		240		323		408		807	
158		241		324		409		808	
159		242		325		410		811	
160		243		326		411		911	
161		245		327		412		914	
162		246		328		414		918	
163		247		329		415		919	
164		248		330		416		920	
165		249		331		417			
166		250		332		418			
167		251		333		419			
168		252		334		420			

支持点及び貫通部ばね定数
鳥 瞰 図 MS——01（クラス2以下の管）
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね教定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊ 102 ＊＊						
	＊＊ 104 ＊＊						
	＊＊ 106 ＊＊						
	109						
	112						
	117						
	＊＊ 117 ＊＊						
0	＊＊ 122 ＊＊						
剧 N N 1 1	＊＊ $128 * *$						
∞	132						
∞	135						
$\stackrel{1}{5}$	＊＊ 137 ＊＊						
（1）							
$\begin{aligned} & \text { N } \\ & 0 \end{aligned}$	149						
	＊＊149＊＊						
	＊＊ 152 ＊＊						
	＊＊ 160 ＊＊						
	162						
	＊＊ 162 ＊＊						
	164						
	＊＊ 164 ＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図 MS－001（クラス2以下の管）
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	166						
	＊＊166＊＊						
	169						
	＊＊ 169 ＊＊						
	171						
	＊＊ 171 ＊＊						
	173						
－	＊＊ 173 ＊＊						
	＊＊ 195 ＊＊						
$\begin{aligned} & \underset{\sim}{n} \\ & \infty \end{aligned}$	＊＊ 196 ＊＊						
$\stackrel{\rightharpoonup}{N}$	204						
$\stackrel{q}{1}$	207						
$\begin{aligned} & \text { p} \\ & \text { p } \end{aligned}$	＊＊ 209 ＊＊						
	212						
（10）	215						
N	＊＊ 215 ＊＊						
	＊＊ 222 ＊＊						
	225						
	230						
	＊＊ 232 ＊＊						
	＊＊ $244 * *$						

支持点及び貫通部ばね定数
鳥 瞰 図 MS——01（クラス2以下の管）
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	253						
	＊＊ 255 ＊＊						
	＊＊ 263 ＊＊						
	265						
	＊＊ 265 ＊＊						
	267						
\square	＊＊ 267 ＊＊						
䏔	269						
$\begin{gathered} N \\ 1 \end{gathered}$	＊＊ 269 ＊＊						
$\stackrel{1}{ }$	272						
op	＊＊ 272 ＊＊						
5	274						
	＊＊ 274 ＊＊						
\sim	276						
\bigcirc	＊＊ 276 ＊＊						
	＊＊ 295 ＊＊						
	＊＊ 296 ＊＊						
	302						
	＊＊ 304 ＊＊						
	307						
	＊＊ 309 ＊＊						
	313						

支持点及び貫通部ばね定数
鳥 瞰 図 MS——01（クラス2以下の管）
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
317						
＊＊317＊＊						
＊＊ 326 ＊＊						
329						
334						
336						
350						
＊＊350＊＊						
＊＊ 353 ＊＊						
＊＊361＊＊						
363						
＊＊ 363 ＊＊						
365						
＊＊ 365 ＊＊						
367						
＊＊ 367 ＊＊						
370						
＊＊ 370 ＊＊						
372						
＊＊ 372 ＊＊						
374						
＊＊ 374 ＊＊						

\square

支持点及び貫通部ばね定数
鳥 瞰 図 MS－001（クラス2以下の管）
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊ 395 ＊＊						
	＊＊ 396 ＊＊						
	＊＊ 402 ＊＊						
	＊＊ 404 ＊＊						
	407						
	409						
	414						
\propto	＊＊ 417 ＊＊						
鄷	＊＊ 419 ＊＊						
P	＊＊ 421 ＊＊						
∞	423						
$\underset{\sim}{\infty}$	＊＊ 426 ＊＊						
－	＊＊ 432 ＊＊						
N	＊＊ 434 ＊＊						
	445						
	＊＊ 445 ＊＊						
	＊＊ 448 ＊＊						
	＊＊ 456 ＊＊						
	458						
	＊＊ 458 ＊＊						

支持点及び貫通部ばね定数

$$
\text { 鳥 瞰 図 MS——o } 1 \text { (クラス } 2 \text { 以下の管) }
$$

支持点部のばね定数を下表に示す。

計算条件
設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 MS－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	4.71	262	267.4	15.1	STS410
2	4.71	262	267.4	15.1	STS410
3	4.71	262	267.4	15.1	SCS16A
4	4.71	262	323.9	17.5	SCS16A

O 2 （5）VI－3－3－3－2－1－3－2（重）R 0

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 MS－002

管名称					対	応	す		る	評	価	点			
1	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115
	116	117	118	201	202	203	204	205	206	207	208	209	210	211	212
	213	214	215	803	805	806	901	908	911	921					
2	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
	133	134	135	136	137	138	139	141	142	143	144	145	146	147	148
	149	150	151	152	153	154	155	156	157	181	215	216	217	218	219
	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
	235	236	237	238	239	240	241	242	243	244	245	246	247	249	250
	251	252	253	254	255	278	281	804	807	903	905	923			
3	157	158	255	256											
4	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172
	173	180	256	257	258	259	260	261	262	263	264	265	266	267	268
	269	270	271	280											

配管の質量（付加質量含む）
鳥 瞰 図
MS－ 002

評価点の質量を下表に示す。

O 2 （5）VI－3－3－3－2－1－3－2（重）R 0

評価点	質量（kg）								
101		133		166		223		256	
102		134		167		224		257	
103		135		168		225		258	
104		136		169		226		259	
105		137		170		227		260	
106		138		171		228		261	
107		139		172		229		262	
108		141		173		230		263	
109		142		180		231		264	
110		143		181		232		265	
111		144		201		233		266	
112		145		202		234		267	
113		146		203		235		268	
114		147		204		236		269	
115		148		205		237		270	
116		149		206		238		271	
117		150		207		239		278	
118		151		208		240		280	
119		152		209		241		281	
120		153		210		242		803	
121		154		211		243		804	
122		155		212		244		805	
123		156		213		245		806	
124		157		214		246		807	
125		158		215		247		901	
126		159		216		249		903	
127		160		217		250		905	
128		161		218		251		908	
129		162		219		252		911	
130		163		220		253		921	
131		164		221		254		923	
132		165		222		255			

支持点及び貫通部ばね定数
鳥 瞰 図 MS－002
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊ $104 * *$						
	108						
	110						
	114						
	117						
	＊＊ 118 ＊＊						
\bigcirc	＊＊ 121 ＊＊						
	＊＊ $128 * *$						
N	＊＊ $130 * *$						
$\begin{aligned} & \overrightarrow{1} \\ & N \\ & 1 \\ & p \\ & 0 \\ & p \\ & 1 \end{aligned}$	＊＊ 140 ＊＊						
（1）							
	149						
0	＊＊151＊＊						
	＊＊ 159 ＊＊						
	161						
	＊＊ 161 ＊＊						
	163						
	＊＊ 163 ＊＊						
	165						
	＊＊ 165 ＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図 MS－002
支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図

$$
\mathrm{MS}-002
$$

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばねね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	259						
	＊＊ 259 ＊＊						
	261						
	＊＊ 261 ＊＊						
	263						
	＊＊ 263 ＊＊						
	266						
\bigcirc	＊＊ 266 ＊＊						
	268						
思	＊＊ 268 ＊＊						
I	270						
$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	＊＊270＊＊						
$\begin{aligned} & \infty \\ & \infty \end{aligned}$	＊＊901＊＊						
（1）	＊＊ 903 ＊＊						
N	＊＊ 905 ＊＊						
	＊＊ $908 * *$						
	＊＊ 911 ＊＊						
	＊＊ 921 ＊＊						
	＊＊ 923 ＊＊						

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）	
		S m	S h
SFVC2B	315	120	-
STS480	262	-	105
SCS16A	262	-	102
STS410			-

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）		
		S m	S y	S h
SFVC2B	315	123	184	-
STS480	315	136	205	-
SCS16A	262	-	-	116
STS410	262	-	-	103

重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
MS－ 001	16	Sprm	94	408

鳥瞰図	最大応力評価点	最大底力	$\underset{(\mathrm{MPa})}{\text { 一次応力伻価 }}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot$ Sm， $2 \cdot \mathrm{~S}$ y $)$
MS－ 001	16	Sprm	96	408

[^22]| 鳥瞰図 | 最大応力評価点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ |
| MS－ 001 | $\begin{aligned} & 424 \\ & 361 \end{aligned}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 37 \\ & 88 \end{aligned}$ | $\begin{aligned} & 102 \\ & 126 \end{aligned}$ |

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力評 価 点	最大応力区分＊	一次応力評価 （ MPa ）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
MS－ 001	$\begin{aligned} & 424 \\ & 361 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{array}{r} 53 \\ 155 \end{array}$	$\begin{aligned} & 154 \\ & 208 \end{aligned}$

注記＊：Sprm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

重大事故等クラス2管であってクラス2以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
MS－ 002	$\begin{aligned} & 226 \\ & 257 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 39 \\ & 78 \end{aligned}$	$\begin{aligned} & 102 \\ & 126 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
MS－ 002	$\begin{aligned} & 226 \\ & 257 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{array}{r} \hline 56 \\ 135 \end{array}$	$\begin{aligned} & \hline 154 \\ & 208 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^23]代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	MS－001	16	94	408	4． 34	\bigcirc
2	MS－002	17	93	408	4． 38	－
3	MS－003	17	91	408	4． 48	－
4	MS－004	15	80	408	5． 10	－

注記＊：告示第 5 O 1 号第 46条第1号及び第3号に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊				
				－次応力		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	MS－001	16	96	408	4． 25	\bigcirc
2	MS－002	17	95	408	4． 29	－
3	MS－003	17	93	408	4.38	－
4	MS－004	15	81	408	5.03	－

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	MS－001	424	37	102	2． 75	－	361	88	126	1． 43	\bigcirc
2	MS－002	226	39	102	2． 61	\bigcirc	257	78	126	1． 61	－
3	MS－003	128	35	102	2.91	－	251	73	126	1． 72	－
4	MS－004	131	36	102	2． 83	－	237	76	122	1． 60	－
5	MS－05	3	19	113	5.94	－	3	20	135	6． 75	－
6	MS－06	4	15	113	7.53	－	4	16	135	8． 43	－
7	MS－07	4	14	113	8.07	－	4	15	135	9.00	－
8	MS－08	5	14	113	8.07	－	5	15	135	9.00	－
9	MS－09	4	16	113	7.06	－	4	17	135	7.94	－
10	MS－10	4	13	113	8.69	－	4	14	135	9． 64	－
11	MS－11	4	14	113	8.07	－	4	15	135	9.00	－

注記＊ 1 ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。 ＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
12	MS－12	3	13	113	8． 69	－	3	14	135	9.64	－
13	MS－13	6	14	113	8.07	－	6	15	135	9.00	－
14	MS－14	3	10	113	11.30	－	3	11	135	12.27	－
15	MS－15	3	14	113	8.07	－	3	15	135	9.00	－
16	MS－16	4	15	113	7.53	－	4	16	135	8.43	－
17	MS－17	4	11	113	10．27	－	4	12	135	11.25	－
18	MS－18	4	11	113	10.27	－	4	12	135	11.25	－
19	MS－19	3	10	113	11．30	－	3	11	135	12.27	－
20	MS－20	3	19	113	5.94	－	3	20	135	6． 75	－
21	MS－21	4	12	113	9.41	－	4	13	135	10.38	－

注記＊1：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1号第56条第1号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	MS－001	424	53	154	2． 90	－	361	155	208	1． 34	\bigcirc
2	MS－002	226	56	154	2． 75	\bigcirc	257	135	208	1.54	－
3	MS－003	128	50	154	3.08	－	251	126	208	1.65	－
4	MS－004	425	49	154	3.14	－	459	122	208	1.70	－
5	MS－05	3	23	169	7.34	－	3	24	203	8.45	－
6	MS－06	4	19	169	8． 89	－	4	20	203	10．15	－
7	MS－07	4	18	169	9． 38	－	4	19	203	10．68	－
8	MS－08	5	18	169	9.38	－	5	19	203	10.68	－
9	MS－09	4	20	169	8． 45	－	4	21	203	9． 66	－
10	MS－10	4	17	169	9．94	－	4	18	203	11． 27	－
11	MS－11	4	18	169	9．38	－	4	19	203	10．68	－

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
12	MS－12	3	17	169	9.94	－	3	18	203	11.27	－
13	MS－13	6	21	169	8.04	－	6	22	203	9.22	－
14	MS－14	3	14	169	12.07	－	3	15	203	13.53	－
15	MS－15	3	18	169	9.38	－	3	19	203	10．68	－
16	MS－16	4	19	169	8.89	－	4	20	203	10.15	－
17	MS－17	4	15	169	11.26	－	4	16	203	12.68	－
18	MS－18	4	15	169	11.26	－	4	16	203	12．68	－
19	MS－19	3	14	169	12.07	－	3	15	203	13.53	－
20	MS－20	3	23	169	7． 34	－	3	24	203	8.45	－
21	MS－21	4	16	169	10.56	－	4	17	203	11.94	－

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－2－2 復水給水系の強度計算書

目 次

VI－3－3－3－2－2－1 管の強度計算書（復水給水系）

VI－3－3－3－2－2－1 管の強度計算書（復水給水系）

VI－3－3－3－2－2－1－1 管の基本板厚計算書（復水給水系）
VI－3－3－3－2－2－1－2 管の応力計算書（復水給水系）
VI-3-3-3-2-2-1-2 管の応力計算書 (復水給水系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\left\|\begin{array}{c} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{array}\right\|$	$\begin{gathered} \text { 施設時の } \\ \text { 技樭蕉に } \\ \text { 対象とする } \\ \text { 施設の規定 } \\ \text { があるかか } \\ \hline \end{gathered}$	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { DB } \\ & \text { クラス } \end{aligned}$	$\stackrel{S A}{\text { クラス }}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \end{array}$	$\begin{array}{\|c} \\ \hline \text { 温度 } \\ \left({ }^{\circ}\right) \\ \hline \end{array}$					
FDW－001	既設	有	無	DB－2	DB－2	SA－2	無	8.62	302	8.62	302	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10.34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	8.62	302	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	8.62	302	8.62	302	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	既設	有	無	DB－2	DB－2	SA－2	無	11.77	66	11.77	66	有	S55告示	既工認	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 設計条件 11
3.2 材料及び許容応力 13
4．評価結果 15
5．代表モデルの選定結果及び全モデルの評価結果 17

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全1モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

2．2 鳥瞰図

鳥瞰図記号凡例

O 2 (5) VI-3-3-3-2-2-1-2 (設) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－0 01

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	165.2	14.3	SFVC2B
2	8.62	302	165.2	14.3	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 FDW－001

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
627		635		822	
634		814		823	

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	302	Sh
SFVC2B	302	119
STS410	102	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
SFVC2B	302	120
STS410	302	103

[^24]| 鳥瞰図 | 運転
 状態 | 最大応力評価点 | 最大応力区分＊ | 一次応力評価 （MPa） | | 一次+二次応力評価(MPa) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力 $\begin{aligned} & \text { S h } \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ | 計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$ | 許容応力＊2 $\begin{aligned} & \text { S a (c }) \\ & \text { S a (d) } \end{aligned}$ |
| F DW－001 | $\begin{aligned} & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & \text { II }) \\ & \text { II } \end{aligned}$ | $\begin{aligned} & \hline 627 \\ & 627 \\ & 627 \\ & 627 \end{aligned}$ | $\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$ | $\begin{gathered} \hline 29 \\ - \\ 32 \\ \hline \end{gathered}$ | 102
 －
 122 | $\begin{gathered} { }^{73} \\ - \\ 76 \end{gathered}$ | $\begin{aligned} & - \\ & 255 \\ & 275 \end{aligned}$ |

＊2：Sa（c），S a（d）は兄れぞれ，告示第501号第56条第2号（ハ），（ニ）に基づき計算した許容応力を示す。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
F DW－001	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & 627 \\ & 627 \\ & 627 \\ & 627 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} 32 \\ - \\ 35 \\ - \end{gathered}$	$\begin{aligned} & 154 \\ & - \\ & 185 \end{aligned}$	$\begin{gathered} { }^{-} \\ - \\ 79 \end{gathered}$	$\begin{aligned} & 257 \\ & - \\ & 278 \end{aligned}$

 ＊ 2 ：S a（ c ），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

5．代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（ I ，II ）＊1					供用状態（ I ，II）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	627	29	102	3.51	\bigcirc	627	32	122	3． 81	\bigcirc

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（口）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（ I ，II）＊3					供用状態（ I ，II）＊4				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表
1	FDW－001	627	73	255	3． 49	\bigcirc	627	76	275	3． 61	\bigcirc

注記＊ 3 ：告示第 501 号第 56 条第 2 号（イ）に基づき計算した一次＋二次応力を示す。
＊4：告示第 5 O 1 号第 56 条第 2 号（ロ）に基づき計算した一次＋二次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
No．		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （ MPa ）	裕度	代表
1	FDW－001	627	32	154	4.81	\bigcirc	627	35	185	5． 28	\bigcirc

[^25]＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	627	76	257	3． 38	\bigcirc	627	79	278	3.51	\bigcirc

注記 $* 3$ ：設計•建設規格 PPC－3530（1）a に基づき計算した一次＋二次応力を示す。
＊4：設計•建設規格 PPC－3530（1）b に基づき計算した一次 + 二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 設計条件 11
3.2 材料及び許容応力 21
4．評価結果 23
5．代表モデルの選定結果及び全モデルの評価結果 27

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全1モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
\square	工事計画記載範囲の管のうち，本計算書記載範囲の管
$\Vdash^{\text {申請範囲外 }}$	工事計画記載範囲外の管
$\mid \longleftarrow \bigcirc 00 \text { 系 }$	工事計画記載範囲の管のらち，他系統の管であって解析モデル として本系統に記載する管
－	質点
\bigcirc	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
	スナッバ
	ハンガ
\rightarrow	ガイド

O 2 (5) VI-3-3-3-2-2-1-2 (重) R 0
O 2 (5) VI-3-3-3-2-2-1-2(重) R 0
O 2 (5) VI-3-3-3-2-2-1-2 (重) R 0
O 2 (5) VI-3-3-3-2-2-1-2 (重) R 0
O 2 (5) VI-3-3-3-2-2-1-2(重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 FDW－001（クラス1管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	457.2	29.4	STS410
2	10.34	315	457.2	29.4	SFVC2B
3	10.34	315	318.5	21.4	SFVC2B
4	10.34	315	318.5	21.4	STS410

O 2 （5）VI－3－3－3－2－2－1－2（重）R 0

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
FDW－001（クラス1管）

管名称					対	応	す		る	評	価	点			
1	17	18	19	21	22	23	24	25	26	27	28	29	30	31	32
	33	34	35	37	38	39	40	41	42	43	44	45	46	47	117
	118	119	121	122	123	124	125	126	127	128	129	130	131	132	133
	134	135	137	138	139	140	141	142	143	144	145	146	147	803	804
	840	850	941	951											
2	35	36	37	47	48	49	135	136	137	147	148	149			
3	36	48	66	78	136	148	166	178							
4	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
	65	66	67	68	69	70	71	72	73	74	75	76	77	78	150
	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165
	166	167	168	169	170	171	172	173	174	175	176	177	178	812	813
	912	913	914	915											

配管の質量（付加質量含む）
鳥 瞰 図
F DW－001（クラス1管）

評価点の質量を下表に示す。

O 2 （5）VI－3－3－3－2－2－1－2（重）R 0

評価点	質量（kg）								
18		47		73		141		167	
22		48		74		142		168	
23		49		75		143		169	
24		50		76		144		170	
25		51		77		145		171	
26		52		78		146		172	
27		53		118		147		173	
28		54		122		148		174	
29		55		123		149		175	
30		56		124		150		176	
31		57		125		151		177	
32		58		126		152		178	
33		59		127		153		803	
34		60		128		154		804	
35		61		129		155		812	
36		62		130		156		813	
37		63		131		157		840	
38		64		132		158		850	
39		65		133		159		912	
40		66		134		160		913	
41		67		135		161		914	
42		68		136		162		915	
43		69		137		163		941	
44		70		138		164		951	
45		71		139		165			
46		72		140		166			

```
鳥 瞰 図
FDW—001（クラス1管）
```

弁部の質量を下表に示す。
弁1 弁2
弁3
弁 4
弁 5

評価点	質量（kg）								
8		15		19		108		115	
9		16		20		109		116	
10		17		21		110		117	

| 开 6 |
| :---: | :--- |
| 評価点 質量 (kg)
 119
 120
 121 |

> 鳥 瞰 図 F D W - 0 0 1 (クラス1管)

弁部の寸法を下表に示す。

弁N0．	評価点	外径（mm）	厚さ（mm）	長さ（mm）
弁1	9			
弁2	16			
弁3	20			
弁4	109			
弁5	116			
弁6	120			

支持点及び貫通部ばね定数
鳥 瞰 図
FDW—OO1（クラス1管）

支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図
FDW—OO1（クラス1管）

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
150						
＊＊ 159 ＊＊						
167						
＊＊ 175 ＊＊						
＊＊ 177 ＊＊						
＊＊912＊＊						
＊＊913＊＊						
＊＊ 914 ＊＊						
＊＊ 915 ＊＊						
＊＊941＊＊						
＊＊951＊＊						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－001（クラス2以下の管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	165.2	14.3	STS410

[^26]
設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
FDW－001（クラス2以下の管）

管名称	文					応	す		る	評	価	点		614615	
1	601	602	603	604	605	606	607	608	609	610	611	612	613		
	617	618	619	620	623	624	625	626	627	816	819	820	823		

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
601		607		613		624		820	
602		608		614		625		823	
603		609		618		626			
604		610		619		627			
605		611		620		816			
606		612		623		819			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
615	
616	
617	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	616			

支持点及び貫通部ばね定数
鳥 瞰 図 FDW－001（クラス2以下の管）
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
601						
608						
611						
614						
618						
620						
623						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）	
		S m	S h
SFVC2B	302	-	-
STS410	315	120	102
		-	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）		
		S m	S y	S h
SFVC2B	315	123	184	-
STS410	302	-	-	103
	315	120	180	-

重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	$\begin{aligned} & \text { 最大度力 } \\ & \text { 分 } \end{aligned}$	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	3．S m
F DW－0 01	63	Sprm	84	360

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot \mathrm{Sm}, 2 \cdot \mathrm{~S}$ y $)$
FDW－001	63	Sprm	83	360

[^27]| 鳥瞰図 | 最大応力評価点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ |
| F DW－001 | $\begin{aligned} & 623 \\ & 623 \end{aligned}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 37 \\ & 37 \end{aligned}$ | $\begin{aligned} & 102 \\ & 122 \end{aligned}$ |

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

[^28]| 鳥瞰図 | 最大応力
 評 価 点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力
 1． $5 \cdot \mathrm{Sh}$
 1． $8 \cdot \mathrm{Sh}$ |
| F DW－001 | $\begin{aligned} & 623 \\ & 623 \end{aligned}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 51 \\ & 51 \end{aligned}$ | $\begin{aligned} & 154 \\ & 185 \end{aligned}$ |

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^29]代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であつてクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	FDW－001	63	84	360	4． 28	\bigcirc

注記＊：告示第 501 号第 46 条第 1 号及び第 3 号に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊				
		一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	63	83	360	4.33	\bigcirc

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	623	37	102	2． 75	\bigcirc	623	37	122	3． 29	\bigcirc

注記＊1 ：告示第 5 0 1 号第56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	FDW－001	623	51	154	3.01	\bigcirc	623	51	185	3． 62	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－3 残留熱除去設備の強度計算書

VI－3－3－3－3－1 残留熱除去系の強度計算書
VI－3－3－3－3－2 耐圧強化ベント系の強度計算書

VI－3－3－3－3－1 残留熱除去系の強度計算書

VI－3－3－3－3－1－1 残留熱除去系熱交換器の強度計算書
VI－3－3－3－3－1－2 残留熱除去系ポンプの強度計算書
VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書
VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）

VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）

VI－3－3－3－3－1－5－1 管の基本板厚計算書（残留熱除去系）
VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系）
VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）
VI-3-3-3-3-1-5-2 管の応力計算書 (残留熱除去系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クB	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
RHR－001	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－002	既設	有	無	DB－1	DB－1	SA－2	有	8． 62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－003	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－004	既設	有	有	DB－2	DB－1	－	無	8.62	302	－	－	有	S55告示	設計•建設規格又は告示	－	DB－1
RHR－005	既設	有	有	DB－2	DB－1	－	無	8.62	302	－	－	有	S55告示	設計•建設規格又は告示	－	DB－1
	既設	有	無	DB－1	DB－1	－	無	8． 62	302	－	－	有	S55告示	既工認	－	－
RHR－006	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	186	1． 37	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|c} 427 \\ (\mathrm{kPa}) \end{array}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	1． 37	186	1． 37	186	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	1． 37	186	－	－	設計•建設規格	－	SA－2
RHR－007	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3.73	186	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	3． 73	186	3.73	186	－	－	設計•建設規格	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	3． 73	186	－	－	設計•建設規格	－	SA－2

－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|c\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{array}{c\|} \hline \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \\ \hline \end{array}$	クB	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \end{array}$	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
RHR－008	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3． 73	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	3.73	186	3.73	186	無	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	3.73	186	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
RHR－009	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3.73	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	66	1.37	66	無	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3.73	186	無	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	3.73	186	3.73	186	－	－	設計•建設規格	－	$\begin{aligned} & \text { DB-2 } \\ & \text { SA-2 } \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	1.37	60	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	3． 73	186	－	－	設計•建設規格	－	SA－2
RHR－010	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3.73	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	3.73	186	3.73	200	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－011	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	186	1.37	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2

－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \mathrm{SA} \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
RHR－012	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3． 73	186	有	S55告示	既工認	－	SA－2
RHR－013	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3． 73	186	有	S55告示	既工認	－	SA－2
RHR－014	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3． 73	186	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	3． 73	186	3.73	186	－	－	設計•建設規格	－	$\begin{aligned} & \text { DB-2 } \\ & \text { SA-2 } \end{aligned}$
	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3.73	186	無	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	3． 73	171	3.73	200	－	S55告示	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	1．37	60	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	3． 73	186	－	－	設計•建設規格	－	SA－2
RHR－015	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	186	3． 73	186	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	3． 73	186	3.73	200	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－016	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	100	1.37	100	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	66	1． 37	66	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	1.37	66	1．37	66	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$

0 y \quad－$-\mathrm{G}-I-\varepsilon-\varepsilon-\varepsilon-\varepsilon-\mathrm{I} \Lambda$（c）$\quad$ O

$\begin{aligned} & \text { 応力計算 } \\ & \text { モデルNo. } \end{aligned}$	$\left\|\begin{array}{c} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{array}\right\|$	$\begin{aligned} & \text { 施設時の } \\ & \text { 技術基準に } \\ & \text { 対象とする } \\ & \text { 施設の規定 } \\ & \text { があるか } \\ & \hline \end{aligned}$	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$		DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
RIR	新設	有	無	DB－2	DB－2	SA－2	無	1． 37	66	1.37	66	無	S55告示	設計•建設規格又は告示	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
RHR－017	既設	有	無	DB－2	DB－2	SA－2	無	3.73	100	3.73	100	有	S55告示	既工認	－	SA－2
RHR－018	既設	有	無	DB－2	DB－2	SA－2	無	3． 73	100	3.73	100	有	S55告示	既工認	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥㒈図 8
3．計算条件 14
3.1 設計条件 14
3.2 材料及び許容応力 19
$\%$

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 7 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （5）VI－3－3－3－3－1－5－2（設）R 0

0 y (

残留熱除去系既略系統図（その3）
$\begin{aligned} & \text { 注記 } * 1: \\ & \text { 低圧代替注水系 } \\ & \text { 解析モデル上本系統に含める。 }\end{aligned}$

クラス2以下の管

の齐 RHR－018

ートートー

原子炉建屋

 $\frac{\mathrm{MO}}{\mathrm{F} 004} \mathrm{C}$原子炉格納容器

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
$火$ 甲請範囲外	工事計画記載範囲外の管
\Leftarrow	工事計画記載範囲の管のらち，他系統の管であって解析モデル として本系統に記載する管
\bullet	質点
	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様な記載方法とする。）
$\geq \lll$	スナッバ
	ハンガ

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－005

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	114.3	11.1	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－O 05

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16
	17	18	19	20	21	22	101	102	901	903	904	905			

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		13		20		904	
2		8		14		21		905	
3		9		16		101			
4		10		17		102			
5		11		18		901			
6		12		19		903			

弁部の質量を下表に示す。
弁1

評価点	晢量 (kg)
22	
23	
24	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	23			

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－005
支持点部のばね定数を下表に示す。

設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。鳥 瞰 図 RHR－009

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	3.73	186	267.4	9.3	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RHR－009

管名称			対	応	す	る	評	価	点	
1	235	236	237							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
235		236		237	

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)	
		S m	S h
	186	-	102
	302	122	-

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力		

O 2 （5）VI－3－3－3－3－1－5－2（設）R 0
4．評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
告示第 501 号第 46 条から第 48 条による評価結果

		$\left\|\left\|\left\|\begin{array}{c}\text {－} \\ 0 \\ 0 \\ 0\end{array}\right\|\right.\right.$
		｜
		｜\｜\｜\｜\｜\｜\｜
		｜\｜\｜\｜\｜\｜\｜
		｜ご｜｜｜｜
		$\stackrel{\infty}{\infty} \mid$
	年号	ヲ｜｜｜\｜子
如血胀品臤《		
		$\underset{\sim}{\infty} \mid{ }^{\sim} \stackrel{\infty}{\sim}$

評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス1管
設計•建設規格 PPB－3500による評価結果

供用状態	$\begin{aligned} & \text { 最大 } \\ & \text { 評力価点 } \end{aligned}$		$\begin{aligned} & \text { 最大 } \\ & \text { 恳力 } \end{aligned}$区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		一次 $+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$				熱応力評価 （ ${ }^{\circ} \mathrm{C}$ ）		疲労評価
				$\begin{aligned} & \text { 一次 } \\ & \text { 応力 } \\ & \text { Sprm } \end{aligned}$	$\begin{gathered} \text { 許容 } \\ \text { 応 } \\ \\ 1 \cdot 5 \cdot \mathrm{Sm} \\ \operatorname{Min}(2 \cdot 2 \cdot 5 \cdot \mathrm{sm}, \\ 1 \cdot 8 \cdot \mathrm{~s}) \\ \operatorname{Min}(3 \cdot \mathrm{~s} \mathrm{~m}, \\ 2 \cdot \mathrm{~S}, \end{gathered}$	$\begin{aligned} & \text { 一次 } \\ & \text { + } \\ & \text { 示次 } \\ & \text { 応力 } \\ & \\ & \text { S n } \end{aligned}$	熱膨張 応力 S e	$\begin{gathered} \hline \text { 熱を } \\ \text { 除いた } \\ \text { 一次 } \\ \text { 示次 } \\ \text { 応力 } \\ \text { S n' } \end{gathered}$	$\begin{aligned} & \text { 許容 } \\ & \text { 钆 } \\ & 3 \cdot \mathrm{Sm} \end{aligned}$	温度差 変种 変動 範囲 $\Delta \mathrm{T}$	許容温度差	疲労 累積係数 U
（A，B）	24	ELBOW	Sprm（1）	39	183	－	－	－	－	－	－	－
（A，B）	17	ELBow	Sn	－	－	215	－	－	366	－	－	－
（A，B）	－	－	S e	－	－	－	－	－	－	－	－	－
（A，B）	－	－	S n	－	－	－	－	－	－	－	－	－
（A，B）	－	－	$\Delta \mathrm{T}$	－	－	－	－	－	－	－	－	－
（A，B）	2	ST．PIPE	U	－	－	－	－	－	－	－	－	0.0135
C	10	ST．PIPE	Sprm（2）	106	274	－	－	－	－	－	－	－
D	10	ST．PIPE	Sprm（3）	183	364	－	－	－	－	－	－	－

鳥瞰図	運転 状態	最大応力評価点	最大応力区分＊${ }^{* 1}$	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{~h} \\ & 1 . \\ & 2 \cdot \mathrm{~S} \mathrm{~h} \end{aligned}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
RHR－009	$\begin{aligned} & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & \text { II }) \\ & \text { I } \end{aligned}$	$\begin{aligned} & 235 \\ & 235 \\ & 235 \\ & 235 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} 60 \\ - \\ 63 \\ \hline \end{gathered}$	102 － 122 －	$\begin{aligned} & - \\ & -147 \\ & -149 \end{aligned}$	$\begin{aligned} & - \\ & 255 \\ & 275 \end{aligned}$

 ＊ 2 ：Sa（c），S a（d）はそれぞれ，告示第501号第56条第2号（ハ），（ニ）に基づき計算した許容応力を示す。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊${ }^{* 1}$	一次応力評価(MPa)		$\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$	
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(1) } \\ \text { Sprm (2) } \end{gathered}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 Sn (a) Sn (b)	許容応力＊2 S a（c） Sa（d）
RHR－0 09	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & 235 \\ & 235 \\ & 235 \\ & 235 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} \hline 101 \\ - \\ 104 \\ - \end{gathered}$	$\begin{aligned} & \hline 154 \\ & - \\ & 185 \\ & - \end{aligned}$	152 154	$\begin{aligned} & 257 \\ & - \\ & 278 \end{aligned}$

注記＊1：S prm（1），S P r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した一次応力，S n（a）， ＊ 2 ：S a（c），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

5．代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

No．	配管モデル	供用状態（ I ，II）												
		一次応力（膜＋曲げ）＊1					一次＋二次応力（Sn）＊2					疲労評価＊3		
		評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評 価 点	疲労 累積 係数	代 表
1	RHR－004	20	33	183	5.54	－	20	256	366	1． 42	－	12	0.0082	－
2	RHR－005	18	41	183	4． 46	\bigcirc	17	271	366	1． 35	\bigcirc	2	0.0167	\bigcirc
注記＊1 ：告示第501号第46条第1号に基づき計算した一次応力を示す。														
＊2：告示第501号第46条第4号に基づき計算した一次＋二次応力を示す。														
＊3：告示第501号第46条第5号に基づき計算した疲労累積係数を示す。														

代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

No．	配管モデル	供用状態III					供用状態IV				
		一次応力（膜＋曲げ）＊4					一次応力（膜＋曲げ）＊5				
		評価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－004	20	33	274	8． 30	－	20	33	366	11.09	－
2	RHR－005	18	41	274	6.68	\bigcirc	18	41	366	8.92	\bigcirc

注記＊4：告示第501号第46条第2号に基づき計算した一次応力を示す。
＊5：告示第 5 0 1 号第 46 条第 3 号に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

No．	配管モデル	供用状態（A，B）												
		一次応力（膜＋曲げ）＊1					一次 + 二次応力 $(\mathrm{Sn}) * 2$					疲労評価＊3		
		$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	計算 応力 （MPa）	許容 応力 (MPa)	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労累積係数	代 表
1	RHR－004	20	32	183	5． 71	－	20	90	366	4． 06	－	12	0.0065	－
2	RHR－005	24	39	183	4． 69	\bigcirc	17	215	366	1． 70	\bigcirc	2	0.0135	\bigcirc
注記 $* 1$ ：設計•建設規格 PPB－3520に基づき計算した一次応力を示す。 ＊ 2 ：設計•建設規格 PPB－3531に基づき計算した一次 + 二次応力を示す。 ＊ 3 ：設計•建設規格 PPB－3535に基づき計算した疲労累積係数を示す。														

0 d（
代表モデルの選定結果及び全モデルの評価結果（クラス 1 管）

No．	配管モデル	供用状態 C					供用状態 D				
		一次応力（膜＋曲げ）＊4					一次応力（膜＋曲げ）＊5				
		評価点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	RHR－004	19	82	274	3.34	－	19	141	364	2． 58	－
2	RHR－005	10	106	274	2． 58	\bigcirc	10	183	364	1． 98	\bigcirc

注記 $* 4$ ：設計•建設規格 PPB－3552に基づき計算した一次応力を示す。
＊ 5 ：設計•建設規格 PPB－3562 に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（ I ，II）＊1					供用状態（ I ，II）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	501	23	102	4． 43	－	501	26	122	4． 69	－
2	RHR－007	306	31	102	3.29	－	306	34	122	3.58	－
3	RHR－009	235	60	102	1． 70	\bigcirc	235	63	122	1.93	\bigcirc
4	RHR－014	134	43	102	2.37	－	134	46	122	2． 65	－
5	RHR－016	505	22	126	5． 72	－	603	23	151	6.56	－

注記＊1 ：告示第 5 0 1 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。 ＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（ I ，II）＊3					供用状態（ I ，II）＊4				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	503	109	255	2． 33	－	503	112	275	2． 45	－
2	RHR－007	306	89	255	2． 86	－	306	92	275	2.98	－
3	RHR－009	235	147	255	1．73	\bigcirc	235	149	275	1． 84	\bigcirc
4	RHR－014	134	131	255	1．94	－	134	133	275	2． 06	－
5	RHR－016	510	141	318	2． 25	－	510	142	343	2． 41	－

注記＊3：告示第 501 号第 56 条第 2 号（イ）に基づき計算した一次 + 二次応力を示す。 ＊4：告示第 5 0 1 号第 56 条第 2 号（ロ）に基づき計算した一次＋二次応力を示す。

No．	配管モデル	供用状態（A，B）＊ 1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	502	30	154	5.13	－	502	33	185	5． 60	－
2	RHR－007	305	34	154	4． 52	－	305	37	185	5． 00	－
3	RHR－009	235	101	154	1． 52	\bigcirc	235	104	185	1． 77	\bigcirc
4	RHR－014	134	62	154	2． 48	－	134	65	185	2． 84	－
5	RHR－016	603	38	189	4.97	－	603	42	226	5． 38	－

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。 ＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表
1	RHR－006	503	113	257	2． 27	－	503	116	278	2． 39	－
2	RHR－007	306	93	257	2． 76	－	306	96	278	2． 89	－
3	RHR－009	235	152	257	1． 69	\bigcirc	235	154	278	1． 80	\bigcirc
4	RHR－014	134	136	257	1． 88	－	134	138	278	2． 01	－
5	RHR－016	510	138	318	2． 30	－	510	139	343	2． 46	－

注記＊3 ：設計•建設規格 PPC－3530（1）a に基づき計算した一次 + 二次応力を示す。 ＊4：設計•建設規格 PPC－3530（1）b に基づき計算した一次十二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥㒈図 8
3．計算条件 15
3.1 設計条件 15
3.2 材料及び許容応力 24
4．評価結果 26
5．代表モデルの選定結果及び全モデルの評価結果 31

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 13 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

0 y (重) $Z-\mathcal{G}-I-\varepsilon-\varepsilon-\varepsilon-\varepsilon-I \Lambda$ (9) \quad O

O 2 （5）VI－3－3－3－3－1－5－2（重）R 0

2．2 鳥瞰図

鳥瞰図記号凡例

O 2 (5) VI-3-3-3-3-1-5-2 (重) R 0
O 2 (5) VI-3-3-3-3-1-5-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	267.4	18.2	STS410

[^30]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－002

管名称	対					応	す		る	評	価	点			
1	5	6	7	8	9	10	11	12	13	14	15	17	18	19	20
	21	22	23	24	25	26	27	28	30	31	32	33	34	35	36
	37	38	801	901	902	903	904	906							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		12		22		32		801	
6		13		23		33		901	
7		14		24		34		902	
8		18		25		35		903	
9		19		26		36		904	
10		20		27		37		906	
11		21		31		38			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
15		28	
16		29	

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	16			
弁2	29			

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－002
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
6						
＊＊ 6 ＊＊						
14						
20						
＊＊ 23 ＊＊						
25						
38						
901						
902						
＊＊903＊＊						
＊＊ 904 ＊＊						
＊＊906＊＊						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	267.4	18.2	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－O 03

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		12		19		29		39	
6		13		23		30		40	
7		14		24		34		801	
8		15		25		35		901	
9		16		26		36		902	
10		17		27		37		905	
11		18		28		38			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
20		31	
21		32	
		32	

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	21			
弁 2	32			

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
6						
＊＊ 6 ＊＊						
＊＊ 11 ＊＊						
14						
25						
40						
＊＊ 901 ＊＊						
＊＊ 902 ＊＊						
905						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RHR－009

O 2 （5）VI－3－3－3－3－1－5－2（重）R 0

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
RHR－O 09

管名称					対	応	す		る	評	価	点			
1	40	102	827	932											
2	11	34	35	37	38	39	100	121	813						
3	235	236	237												
4	22	225	226	227	228	230	231	232	233	234	235				
5	201	202	204	205	206	207	208	209	210	211	212	213	214	215	216
	217	218	219	220	221	222									

配管の質量（付加質量含む）
評価点の質量を下表に示す。

弁部の質量を下表に示す。

評価点	質量（kg）								
11		206		214		225		236	
34		207		215		226		237	
38		208		216		227		813	
39		209		217		231		827	
40		210		218		232		932	
121		211		219		233			
201		212		220		234			
205		213		221		235			

弁1 弁2弁 3

弁 4
弁 5

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	36			
弁2	101			
弁3	203			
弁4	223			
弁5	229			

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－009
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
40						
121						
＊＊ 121 ＊＊						
201						
207						
210						
215						
218						
225						
＊＊227＊＊						
＊＊ 900 ＊＊						
932						

\qquad

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)		
	60	S m	S h
	66	-	102
	186	-	102
	315	120	102
		-	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 許容応力 } \\ \text { (MPa) } \end{gathered}$		
		S m	S y	Sh
STS410	60	－	－	103
	66	－	－	103
	186	－	－	103
	315	120	180	－

重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
RHR－002	38	Sprm	56	360

鳥瞰図	最大応力評価点	最大応力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot$ Sm， $2 \cdot \mathrm{~S}$ y $)$
RHR－002	38	Sprm	56	360

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
RHR－003	7	Sprm	56	360

鳥瞰図	最大応力 評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{~h} \\ & 1 . \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
R HR－ 009	$\begin{aligned} & 235 \\ & 235 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 60 \\ & 60 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
R HR－0 09	$\begin{aligned} & 235 \\ & 235 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 101 \\ & 101 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^31]
10°
0 y（重）$Z-\mathcal{G}-I-\varepsilon-\varepsilon-\varepsilon-\varepsilon-I \Lambda$（9）$\quad$ O

No．	配管モデル	供用状態（E）＊				
		一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－001	7	51	360	7． 05	－
2	RHR－002	38	56	360	6． 42	\bigcirc
3	RHR－003	7	54	360	6． 66	－

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	501	23	102	4． 43	－	3	55	122	2． 21	－
2	RHR－007	306	31	102	3． 29	－	306	31	122	3.93	－
3	RHR－008	131	40	102	2.55	－	131	40	122	3． 05	－
4	RHR－009	235	60	102	1． 70	\bigcirc	235	60	122	2． 03	\bigcirc
5	RHR－010	48	33	102	3． 09	－	48	33	122	3． 69	－
6	RHR－011	7	20	102	5．10	－	3	55	122	2.21	－
7	RHR－014	134	43	102	2． 37	－	134	43	122	2． 83	－
8	RHR－015	49	31	102	3． 29	－	49	31	122	3.93	－
9	RHR－016	11	38	102	2． 68	－	3	52	122	2． 34	－

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	502	30	154	5． 13	－	3	96	185	1． 92	－
2	RHR－007	320	39	154	3.94	－	320	39	185	4． 74	－
3	RHR－008	131	50	154	3.08	－	131	50	185	3． 70	－
4	RHR－009	235	101	154	1． 52	\bigcirc	235	101	185	1． 83	\bigcirc
5	RHR－010	50	33	154	4． 66	－	50	33	185	5． 60	－
6	RHR－011	7	27	154	5． 70	－	3	97	185	1.90	－
7	RHR－014	134	62	154	2． 48	－	134	62	185	2.98	－
8	RHR－015	50	49	154	3.14	－	50	49	185	3． 77	－
9	RHR－016	11	44	154	3.50	－	3	91	185	2.03	－

注記＊1：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書 （残留熱除去系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時	DB			DB条件		SA条件						
			$\left\lvert\, \begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}\right.$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	$\begin{array}{\|l\|} \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
RHR－006	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|l\|} \hline 427^{* 1} \\ (\mathrm{kPa}) \\ \hline \end{array}$	104	$\begin{aligned} & 854^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－011	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|l\|} \hline 427^{* 1} \\ (\mathrm{kPa}) \\ \hline \end{array}$	104	$\begin{aligned} & 854^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
RHR－016	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{aligned} & 427^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	104	$\begin{aligned} & 854^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCS－002	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|l\|l\|} \hline 427^{* 1} \\ (\mathrm{kPa}) \\ \hline \end{array}$	104	$\begin{aligned} & 854^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
LPCS－002	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{aligned} & 427^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	104	$\begin{aligned} & 854^{* 1} \\ & (\mathrm{kPa}) \end{aligned}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2

＊1：サプレッションチェンバの最高使用圧力を示す。設計条件はデブリ付着時のストレーナ接続T字管部差圧を記載。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 8
3．計算条件 13
3.1 設計条件 13
3.2 材料及び許容応力 16
3.3 荷重の組合せ 18
4．評価結果 19
5．代表モデルの選定結果及び全モデルの評価結果 21

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全5モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （5）VI－3－3－3－3－1－5－3（重）R 0

0 y (重) $\varepsilon-\subseteq-I-\varepsilon-\varepsilon-\varepsilon-\varepsilon-I \Lambda \quad$ (9) \quad O

2．2 鳥瞰図

鳥瞰図記号凡例

O 2 (5) VI-3-3-3-3-1-5-3 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 RHR－006

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	24.5 kPa $(0.0245 \mathrm{MPa})$	200	508.0	9.5	SM400C

[^32]設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RHR－006

管名称				対	応	す	る	評	価	点	
1	202	203	204	206	302	303	305				

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
202		204		302		305	
203		206		303			

支持点及び貫通部ばね定数
鳥 瞰 図 RHR－006
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
＊＊1＊＊						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	200	S h
SM400C	100	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
SM400C	200	100

0 y（重）$\varepsilon-\mathcal{G}-[-\varepsilon-\mathcal{E}-\mathcal{E}-\mathcal{E}-\mathrm{I} \Lambda$（G）$\quad \mathrm{O}$
3.3 荷重の組合せ

＊1：重大事故時として運転状態 V（L）は供用状態 A，運転状態 V（S）は供用状態D の許容限界を用いる。
*3: フォールバック (FAB)

$$
\text { 重大事故等クラス } 2 \text { 管であってクラス } 2 \text { 以下の管 }
$$

告示第 5 0 1 号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 . \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
RHR－006	$\begin{aligned} & 203 \\ & 203 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm (2) } \end{aligned}$	$\begin{array}{r} \hline 8 \\ 44 \end{array}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力評 価 点	最大応力区分＊	一次応力評価 （ MPa ）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
RHR－006	$\begin{aligned} & 203 \\ & 203 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 14 \\ & 78 \end{aligned}$	$\begin{aligned} & 150 \\ & 180 \end{aligned}$

注記＊：S prm（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。全て同じ裕度であるため，RHR－006を代表モデルに選定する。

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RHR－006	203	8	100	12.50	\bigcirc	203	44	120	2． 72	\bigcirc
2	RHR－011	203	8	100	12.50		203	44	120	2． 72	
3	RHR－016	203	8	100	12.50		203	44	120	2． 72	
4	HPCS－002	203	8	100	12.50		203	44	120	2． 72	
5	LPCS－002	203	8	100	12.50		203	44	120	2． 72	

注記＊1 ：告示第 5 0 1 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第501号第56条第1号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （ MPa ）	許容 応力 （MPa）	裕度	代表
1	RHR－006	203	14	150	10．71	\bigcirc	203	78	180	2． 30	\bigcirc
2	RHR－011	203	14	150	10．71		203	78	180	2． 30	
3	RHR－016	203	14	150	10.71		203	78	180	2． 30	
4	HPCS－002	203	14	150	10.71		203	78	180	2． 30	
5	LPCS－002	203	14	150	10.71		203	78	180	2． 30	

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書

VI－3－3－3－4－1 高圧炉心スプレイ系の強度計算書
VI－3－3－3－4－2 低圧炉心スプレイ系の強度計算書
VI－3－3－3－4－3 高圧代替注水系の強度計算書
VI－3－3－3－4－4 原子炉隔離時冷却系の強度計算書
VI－3－3－3－4－5 低圧代替注水系の強度計算書
VI－3－3－3－4－6 代替水源移送系の強度計算書

VI－3－3－3－4－1 高圧炉心スプレイ系の強度計算書

VI－3－3－3－4－1－1 高圧炉心スプレイ系ポンプの強度計算書
VI－3－3－3－4－1－2 高圧炉心スプレイ系ストレーナの強度計算書
VI－3－3－3－4－1－3 弁の強度計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4 管の強度計算書（高圧炉心スプレイ系）

> VI-3-3-3-4-1-4 管の強度計算書 (高圧炉心スプレイ系)

VI－3－3－3－4－1－4－1 管の基本板厚計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4－2 管の応力計算書（高圧炉心スプレイ系）
VI－3－3－3－4－1－4－3 ストレーナ部ティーの強度計算書（高圧炉心スプレイ系）
VI-3-3-3-4-1-4-2 管の応力計算書 (高圧炉心スプレイ系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\left\|\begin{array}{c} \text { 既設 } \\ \text { 新設 } \end{array}\right\|$	$\begin{aligned} & \hline \text { 施設時の } \\ & \text { 技術基準に } \\ & \text { 対象をする } \\ & \text { 施設の規定 } \\ & \text { があるる } \\ & \hline \end{aligned}$	クラスアップするか				条件アップするか					$\begin{array}{\|c\|} \hline \text { 既工認 } \\ \text { における } \\ \text { 評価結果 } \\ \text { の有無 } \end{array}$	施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\stackrel{\text { DB }}{\text { クラ }}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \\ \hline \end{array}$	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{array}{r} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \end{array}$	$\begin{array}{\|c} \\ \hline \text { 温度 } \\ \left({ }^{\circ}\right) \\ \hline \end{array}$					
HPCS－001	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCS－002	既設	有	無	DB－2	DB－2	SA－2	無	1.37	66	1.37	66	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	1.37	66	1.37	66	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	既設	有	無	DB－2	DB－2	SA－2	無	1．37	100	1.37	100	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|c\|} \hline 427 \\ (\mathrm{kPa}) \end{array}$	104	$\begin{array}{\|c} 854 \\ (\mathrm{kPa}) \\ \hline \end{array}$	200	－	S55告示	$\begin{gathered} \text { 設計•建設規格 } \\ \text { 又は告示 } \\ \hline \end{gathered}$	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
HPCS－003	既設	有	無	DB－2	DB－2	SA－2	無	10.79	100	10.79	100	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	10．79	100	10．79	100	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	1.70	66	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	10.79	100	－	－	設計•建設規格	－	SA－2
HPCS－004	既設	有	無	DB－2	DB－2	SA－2	無	静水頭	66	静水頭	66	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	1.37	66	1.37	66	有	S55告示	既工認	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 15
3.1 設計条件 15
3.2 材料及び許容応力 19
\approx
4．評価結果 21
5．代表モデルの選定結果及び全モデルの評価結果 25

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
$1 \begin{gathered}\text { 申請範囲外 } \\ \\ \bullet\end{gathered}$	工事計画記載範囲外の管
	質点
\square	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
－	スナッバ

O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0
O 2 (5) VI-3-3-3-4-1-4-2(設) R 0

O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (設) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS—002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.37	66	406.4	9.5	SUS304

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 HPCS－002

管名称			対	応	す	る	評	価	点	
1	501	502	503							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
501		502		503	

計算条件
設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS－0 03

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.79	100	318.5	25.4	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 HPCS－003

管名称			対	応	す	る	評	価	点	
1	341	342	343							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
341		342		343	

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	66	Sh
SUS304	100	126
STS410	102	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
SUS304	66	126
STS410	100	103

鳥瞰図	運転 状態	最大応力評価点	最大応力区分＊${ }^{* 1}$	一次応力評価 （ MPa ）		一次＋二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 $\begin{aligned} & \text { S h } \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 $\begin{aligned} & \mathrm{S} \text { a (c) } \\ & \mathrm{Sa} \text { (d) } \end{aligned}$
HPCS－ 002	$\begin{array}{ll} (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \end{array}$	$\begin{aligned} & 501 \\ & 502 \\ & 501 \\ & 502 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} \hline 21 \\ - \\ 24 \\ - \end{gathered}$	$\begin{aligned} & \hline 126 \\ & - \\ & 151 \\ & - \end{aligned}$	$\begin{gathered} \text { - } \\ 89 \\ - \\ 91 \end{gathered}$	$\begin{aligned} & \overline{318} \\ & \overline{343} \end{aligned}$

＊2：Sa（c），S a（d）はそれぞれ，告示第501号第56条第2号（ハ），（ニ）に基づき計算した許容応力を示す。

下表に示すとおり最大応力はそれぞれの許容値以下である。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）		$\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
HPCS－ 002	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & \hline 502 \\ & 502 \\ & 502 \\ & 502 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} \hline 28 \\ - \\ 32 \\ - \end{gathered}$	$\begin{aligned} & \hline 189 \\ & - \\ & 226 \\ & - \end{aligned}$	$\begin{gathered} - \\ 86 \\ - \\ 88 \end{gathered}$	$\begin{aligned} & \overline{318} \\ & - \\ & 343 \end{aligned}$

 ＊2：S a（c），Sa（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

鳥瞰図	運転 状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$	計算応力 $\begin{aligned} & S n(a) \\ & S n(b) \end{aligned}$	許容応力＊2 $\begin{aligned} & \text { S a (c }) \\ & \text { S a (d) } \end{aligned}$
HPCS－ 003	$\begin{array}{ll} \hline(\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ \hline \end{array}$	$\begin{aligned} & \hline 341 \\ & 341 \\ & 341 \\ & 341 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} 38 \\ - \\ 41 \\ \hline \end{gathered}$	$\begin{aligned} & 102 \\ & - \\ & 122 \\ & - \end{aligned}$	$\begin{gathered} - \\ 62 \\ - \\ 65 \end{gathered}$	$\begin{aligned} & 255 \\ & - \\ & 275 \end{aligned}$

 ＊2：S a（c），S a（d）はそれぞれ，告示第501号第56条第2号（界），（ニ）に基づき計算した許容応力を示す。

下表に示すとおり最大応力はそれぞれの許容値以下である。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）		$\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
HPCS－ 003	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & 341 \\ & 341 \\ & 341 \\ & 341 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} \hline 42 \\ - \\ 46 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 154 \\ & - \\ & 185 \\ & - \end{aligned}$	$\begin{gathered} - \\ 62 \\ - \\ 65 \end{gathered}$	$\begin{aligned} & 257 \\ & - \\ & 278 \end{aligned}$

 ＊ 2 ：S a（c），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

5．代表モデルの選定結果及び全モデルの評価結果
0

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（ I ，II ）＊1					供用状態（ I ，II）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （ MPa ）	許容 応力 （MPa）	裕度	代表
1	HPCS－002	501	21	126	6.00	－	501	24	151	6.29	－
2	HPCS－003	341	38	102	2.68	\bigcirc	341	41	122	2． 97	\bigcirc

注記＊1 ：告示第 5 0 1 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1 号第 56 条第 1 号（口）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（ I ，II）＊3					供用状態（ I ，II）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	HPCS－002	502	89	318	3.57	\bigcirc	502	91	343	3． 76	\bigcirc
2	HPCS－003	341	62	255	4． 11	－	341	65	275	4． 23	－

注記＊3：告示第 501 号第 56 条第 2 号（イ）に基づき計算した一次 + 二次応力を示す。
＊4：告示第 5 0 1 号第 56 条第 2 号（ロ）に基づき計算した一次＋二次応力を示す。

No．	配管モデル	供用状態（A，B）＊					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	HPCS－002	502	28	189	6． 75	－	502	32	226	7.06	－
2	HPCS－003	341	42	154	3.66	\bigcirc	341	46	185	4． 02	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	HPCS－002	502	86	318	3.69	\bigcirc	502	88	343	3.89	\bigcirc
2	HPCS－003	341	62	257	4． 14	－	341	65	278	4． 27	－

注記＊3：設計•建設規格 PPC－3530（1）a に基づき計算した一次＋二次応力を示す。
＊4：設計•建設規格 PPC－3530（1）b に基づき計算した一次十二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 16
3.1 設計条件 16
3.2 材料及び許容応力 28
\approx
4．評価結果 30
5．代表モデルの選定結果及び全モデルの評価結果 36

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
—	工事計画記載範囲の管のらち，本計算書記載範囲の管
$1 \begin{gathered}\text { ¢請範囲外 } \\ \\ \bullet\end{gathered}$	工事計画記載範囲外の管
	質点
－	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
	スナッバ

O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0

O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0
O 2 (5) VI-3-3-3-4-1-4-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 HPCS－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	267.4	18.2	STS410

[^33]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
H P C S－O 01

管名称	対					応	す		る	評	価	点			
1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	20	21	22	23	24	25	26	27	28	30	31	32	33	34	35
	36	37	38	39	40	41	42	43	44	45	839	901			

配管の質量（付加質量含む ）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		13		21		34		42	
6		14		22		35		43	
7		15		25		36		44	
8		16		26		37		45	
9		17		27		38		839	
10		18		31		39		901	
11		19		32		40			
12		20		33		41			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量（kg）	評価点	質量（kg）
23		28	
50		29	
		30	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	50			
弁2	29			

支持点及び貫通部ばね定数
鳥 瞰 図 HPCS－ 001
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね施定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
6						
12						
＊＊ 12 ＊＊						
＊＊ 15 ＊＊						
17						
19						
＊＊ 22 ＊＊						
＊＊ 27 ＊＊						
＊＊ 35 ＊＊						
＊＊ 37 ＊＊						
39						
42						
＊＊ 901 ＊＊						

\square

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS—OO2

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.37	66	406.4	9.5	SUS304
2	854 kPa $(0.854 \mathrm{MPa})$	200	508.0	9.5	SGV410
3	1.37	66	165.2	7.1	SUS304
4	1.37	66	165.2	7.1	SUS304TP
5	1.37	66	165.2	7.1	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPCS—OO2

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
59		501		516		528		537	
60		502		520		529		538	
61		503		521		530		812	
62		504		522		531		813	
63		505		523		532		814	
64		506		524		533		855	
65		510		525		534		954	
85		511		526		535		956	
86		512		527		536			

弁部の質量を下表に示す。
弁1 弁2 弁3 弁4

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
507		513		517		66	
508		514		518		67	
509		515		519		68	
		539				78	
		540				79	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	508			
弁2	514			
弁3	518			
弁4	67			

支持点及び貫通部ばね定数
鳥 瞰 図 HPCS—002
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊ 57 ＊＊						
	62						
	＊＊ 62 ＊＊						
	＊＊ 79 ＊＊						
叫	＊＊ 86 ＊＊						
＋	506						
4	＊＊ 506 ＊＊						
$\stackrel{1}{\infty}$	511						
$\stackrel{1}{5}$	516						
	524						
（1）	530						
\sim	538						
\bigcirc	＊＊ 540 ＊＊						
	＊＊ 954 ＊＊						
	956						

\square

設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCS—OO3

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.79	100	318.5	25.4	STS410
2	1.70	66	165.2	7.1	STS410
3	10.79	100	165.2	14.3	STS410

[^34]設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 HPCS－003

O 2 （5）VI－3－3－3－4－1－4－2（重）R 0

配管の質量（付加質量含む）
鳥 瞰 図 HPCS－0 0 3
評価点の質量を下表に示す。

評価点	質量（kg）								
301		308		318		334		341	
302		309		322		335		342	
303		310		326		336		343	
304		311		327		337			
305		312		331		338			
306		313		332		339			
307		317		333		340			

$$
\begin{array}{lll}
\text { 鳥 瞰 図 HPCS - } 003
\end{array}
$$

弁部の質量を下表に示す。

弁 1	弁2		弁 3		弁4		
評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
314		319		323		328	
315		320		324		329	
316		321		325		330	
		344					
		345					

```
鳥 瞰 図 HPCS-003
```

弁部の寸法を下表に示す。

卉N0．	評価点	外径（mm）	厚さ（mm）	長さ（mm）
弁1	315			
弁2	320			
弁3	324			
弁4	329			

支持点及び貫通部ばね定数
鳥 瞰 図 HPCS－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
301						
307						
311						
317						
322						
326						
331						
336						
＊＊339＊＊						
＊＊ $345 * *$						

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）	
		S m	S h
STS410	66	－	102
	100	－	102
	315	120	－
SGV410	200	－	102
SUS304	66	－	126
SUS304TP	66	－	126

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （ MPa ）		
		S m	S y	S h
STS410	66	－	－	103
	100	－	－	103
	315	120	180	－
SGV410	200	－	－	103
SUS304	66	－	－	126
SUS304TP	66	－	－	126

重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	最大店力	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
HPCS－OO 1	19	Sprm	54	360

${ }_{\text {鳥瞰図 }}$	$\begin{aligned} & \text { 最大応力 } \\ & \text { 評価点 } \end{aligned}$	最大底力	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot \mathrm{Sm}, 2 \cdot \mathrm{~S}$ y $)$
HPCS－001	19	Sprm	54	360

[^35]| 鳥瞰図 | 最大応力評価点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ |
| H P C S－ 002 | $\begin{array}{r} 501 \\ 59 \end{array}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 21 \\ & 50 \end{aligned}$ | $\begin{aligned} & 126 \\ & 122 \end{aligned}$ |

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

$O Y$（重）$Z-モ-I-モ-\varepsilon-\varepsilon-\varepsilon-I \Lambda$（c）$\quad$ O

鳥瞰図	最大応力 評 価 点	最大応力区分＊	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
H P C S－ 002	$\begin{array}{r} 502 \\ 59 \end{array}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 28 \\ & 85 \end{aligned}$	$\begin{aligned} & 189 \\ & 185 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \quad \mathrm{Sh} \\ & \text { 1. } \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
HPCS－ 003	$\begin{aligned} & 322 \\ & 322 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

$O Y$（重）$Z-モ-I-モ-\varepsilon-\varepsilon-\varepsilon-I \Lambda$（c）$\quad$ O

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { S p r m (1) } \\ & \text { S p r m (2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}^{2}$
HPCS－ 003	$\begin{aligned} & 322 \\ & 322 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 62 \\ & 62 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^36]代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であつてクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	HPCS－001	19	54	360	6． 66	\bigcirc

注記＊：告示第 501 号第 46 条第 1 号及び第 3 号に基づき計算した一次応力を示す。
O 2 （5）VI－3－3－3－4－1－4－2（重）R 0

No．	配管モデル	運転状態（E）＊				
		一次応力				
		$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	HPCS－001	19	54	360	6． 66	\bigcirc

No．	配管モデル	供用状態（E）＊ 1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	HPCS－002	502	28	189	6． 75	－	59	85	185	2． 17	\bigcirc
2	HPCS－003	322	62	154	2． 48	\bigcirc	322	62	185	2． 98	－

注記＊1：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－4－1－4－3 ストレーナ部ティーの強度計算書 （高圧炬心スプレイ系）

本計算書では，高圧炉心スプレイ系ストレーナ部ティーの強度計算書について説明するもので ある。

高圧炉心スプレイ系ストレーナ部ティーは残留熱除去系ストレーナ部ティー及び低圧炉心スプ レイ系ストレーナ部ティーと同様の形状を有しており，評価条件については同等である。また，「VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）」において評価を実施 しており，各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定し，鳥瞰図，計算条件，及び評価結果を記載している。

以上より，本計算書の評価結果については，「VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）」による。

VI－3－3－3－4－2 低圧炉心スプレイ系の強度計算書

VI－3－3－3－4－2－1 低圧炉心スプレイ系ポンプの強度計算書
VI－3－3－3－4－2－2 低圧炉心スプレイ系ストレーナの強度計算書
VI－3－3－3－4－2－3 管の強度計算書（低圧炉心スプレイ系）

> VI-3-3-3-4-2-3 管の強度計算書 (低圧炉心スプレイ系)

VI－3－3－3－4－2－3－1 管の基本板厚計算書（低圧炉心スプレイ系）
VI－3－3－3－4－2－3－2 管の応力計算書（低圧炉心スプレイ系）
VI－3－3－3－4－2－3－3 ストレーナ部ティーの強度計算書（低圧炉心スプレイ系）
VI-3-3-3-4-2-3-2 管の応力計算書 (低圧炉心スプレイ系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	クラ	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
LPCS－001	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	100	1． 37	100	有	S55告示	既工認	－	SA－2
LPCS－003	既設	有	無	DB－2	DB－2	SA－2	無	4.41	100	4.41	100	有	S55告示	既工認	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 8
3.1 設計条件 8
3.2 材料及び許容応力 14
\approx

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

0 y (重) $Z-\varepsilon-Z-\downarrow-\varepsilon-\mathcal{E}-\varepsilon-I \Lambda \quad$ (9) \quad O

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
\leqslant 申請範囲外	工事計画記載範囲外の管
－	質点
	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
P<	スナッバ
	ハンガ
＋	ガイド

O 2 (5) VI-3-3-3-4-2-3-2 (重) R 0
O 2 (5) VI-3-3-3-4-2-3-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
LPCS－ 001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	267.4	18.2	STS410

[^37]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
LPCS—OO1

管名称	対					応	す		る	評	価	点			
1	5	6	7	8	9	10	11	12	13	14	15	16	18	19	20
	21	22	23	24	25	26	28	29	30	31	32	33	34	35	36
	37	38	39	40	50	801	802	901							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		12		22		32		39	
6		13		23		33		40	
7		14		24		34		50	
8		15		25		35		801	
9		19		29		36		802	
10		20		30		37		901	
11		21		31		38			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
16		26	
17		27	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	17			
弁2	27			

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS－ 001

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
6						
＊＊ 12 ＊＊						
15						
＊＊ 15 ＊＊						
19						
＊＊ 21 ＊＊						
23						
＊＊ 29 ＊＊						
31						
＊＊ 34 ＊＊						
＊＊ 36 ＊＊						
40						
＊＊ 901 ＊＊						

計算条件

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
LPCS—OO2

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	854 kPa $(0.854 \mathrm{MPa})$	200	508.0	9.5	SGV410

[^38]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
LPCS—OO2

管名称					対	応	す	る	評	価	点				
1	3	4	5	6	7	8	9	10	55	56	57	58	806	811	812
	954	956													

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
3		7		56		207		954	
4		8		57		806		956	
5		9		58		811			
6		55		205		812			

注記）：205，207はストレーナの質点
弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
10	
11	
12	
39	
901	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	11			

支持点及び貫通部ばね定数
鳥 瞰 図
LPCS—OO2

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
＊＊ 1 ＊＊						
6						
9						
＊＊ 56 ＊＊						
＊＊ 57 ＊＊						
901						
＊＊ 954 ＊＊						
956						

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)	
		S m	S h
STS410	200	-	-
SGV410	-	120	-

[^39]材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）		
		S m	S y	S h
STS410	315	120	180	-
SGV410	200	-	-	103

[^40]重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
LPCS－001	6	Sprm	47	360

${ }_{\text {鳥瞰図 }}$	$\begin{aligned} & \text { 最大応力 } \\ & \text { 評価点 } \end{aligned}$	最大底力	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot \mathrm{Sm}, 2 \cdot \mathrm{~S}$ y $)$
LPCS－001	6	Sprm	47	360

重大事故等クラス2管であってクラス2以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
LPCS－ 002	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 19 \\ & 58 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第 5 0 1 号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力評 価 点	最大応力区分＊	一次応力評価 （ MPa ）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
LPCS－ 002	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{array}{r} 26 \\ 103 \end{array}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した

> 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^41]代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であつてクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	LPCS－001	6	47	360	7． 65	\bigcirc

注記＊：告示第 501 号第 46 条第 1 号及び第 3 号に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊				
		一次応力				
		$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	LPCS－001	6	47	360	7.65	\bigcirc

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表
1	LPCS－002	7	19	102	5． 36	\bigcirc	3	58	122	2． 10	\bigcirc

注記＊1 ：告示第 5 0 1 号第 56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊ 1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	LPCS－002	7	26	154	5． 92	\bigcirc	3	103	185	1． 79	\bigcirc

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－4－2－3－3 ストレーナ部ティーの強度計算書 （低圧炬心スプレイ系）

本計算書では，低圧炉心スプレイ系ストレーナ部ティーの強度計算書について説明するもので ある。

低圧炉心スプレイ系ストレーナ部ティーは残留熱除去系ストレーナ部ティー及び高圧炉心スプ レイ系ストレーナ部ティーと同様の形状を有しており，評価条件については同等である。また，
「VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）」において評価を実施 しており，各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定し，鳥瞰図，計算条件，及び評価結果を記載している。

以上より，本計算書の評価結果については，「VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）」による。

VI－3－3－3－4－6 代替水源移送系の強度計算書

VI－3－3－3－4－6－1 管の強度計算書（代替水源移送系）

VI－3－3－3－4－6－1 管の強度計算書（代替水源移送系）

VI－3－3－3－4－6－1－1 管の基本板厚計算書（代替水源移送系）
VI－3－3－3－4－6－1－2 管の応力計算書（代替水源移送系）
VI-3-3-3-4-6-1-2 管の応力計算書 (代替水源移送系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	施設時機器 クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
	新設	－	－	－	－	SA－2	－	－	－	静水頭	66	－	－	設計•建設規格	－	SA－2
KMUWC－103	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KMUWC－163	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 6
3.1 設計条件 6
3.2 材料及び許容応力 9
4．評価結果 11
5．代表モデルの選定結果及び全モデルの評価結果 13

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

O 2 (5) VI-3-3-3-4-6-1-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KMUWC－163

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	静水頭	66	165.2	7.1	SUS304TP

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KMUWC－163

管名称				対		応	す			評	価	点		
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		4		7		10		13	
2		5		8		11		14	
3		6		9		12			

支持点及び貫通部ばね定数
鳥 瞰 図 KMUWC－163
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
5						
＊＊ 5 ＊＊						
＊＊ 9 ＊＊						
＊＊ 11 ＊＊						
14						

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	66	S h
SUS304TP	66	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
SUS304TP	66	126

$$
\text { 重大事故等クラス } 2 \text { 管であってクラス } 2 \text { 以下の管 }
$$

告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
$\begin{aligned} & \text { KMUWC- } \\ & 163 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { p rm(1) } \\ & \mathrm{Sprm}(2) \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 126 \\ & 151 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
KMUWC－	14	Sprm（1）	23	189
163	14	Sprm（2）	23	226

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^42]
10°

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	KMUWC－103	110	11	189	17.18	－	110	11	226	20.54	－
2	KMUWC－163	14	23	189	8.21	\bigcirc	14	23	226	9.82	\bigcirc

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－5 原子炉泠却材補給設備の強度計算書

[^43]VI－3－3－3－5－1 原子炉隔離時冷却系の強度計算書

VI－3－3－3－5－1－1 原子炉隔離時冷却系ポンプの強度計算書
VI－3－3－3－5－1－2 弁の強度計算書（原子炉隔離時冷却系）
VI－3－3－3－5－1－3 管の強度計算書（原子炉隔離時冷却系）

VI－3－3－3－5－1－3 管の強度計算書（原子炉隔離時冷却系）

VI－3－3－3－5－1－3－1 管の基本板厚計算書（原子炉隔離時冷却系）
VI－3－3－3－5－1－3－2 管の応力計算書（原子炉隔離時冷却系）
VI-3-3-3-5-1-3-2 管の応力計算書 (原子炉隔離時冷却系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \\ \hline \end{array}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \\ \hline \end{gathered}$	$\stackrel{\mathrm{DB}}{\text { クラス }}$	クラ	$\|c\|$ 条件 アップ の有無$\|$	DB条件		SA条件						
								$\begin{array}{l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{array}$					
RCIC－001	既設	有	無	DB－2	DB－2	SA－2	無	1． 37	66	1． 37	66	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－2	DB－2	－	無	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	104	－	－	有	S55告示	既工認	－	－
	既設	有	無	DB－2	DB－2	－	無	1． 37	66	－	－	有	S55告示	既工認	－	－
RCIC－002	既設	有	無	DB－2	DB－2	SA－2	無	11． 77	66	11．77	66	有	S55告示	既工認	－	SA－2
RCIC－003	既設	有	無	DB－2	DB－2	SA－2	有	8.62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	8.62	302	10．34	315	－	－	設計•建設規格	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \\ & \hline \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	10．34	315	－	－	設計•建設規格	－	SA－2
RCIC－004	既設	有	無	DB－2	DB－2	SA－2	有	8.62	302	10．34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	無	8． 62	302	8.62	302	有	S55告示	既工認	－	SA－2
RCIC－005	既設	有	無	DB－2	DB－2	SA－2	無	0.98	184	0.98	184	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	0.98	184	0.98	200	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	既設	有	無	DB－2	DB－2	SA－2	有	0.98	184	0.98	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	0.98	184	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	0.98	200	－	－	設計•建設規格	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 10
3.1 設計条件 10
3.2 材料及び許容応力 14

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

2．2 鳥瞰図

鳥㒈図記号凡例

O 2 (5) VI-3-3-3-5-1-3-2 (設) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 R C I C－0 0 3

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	114.3	11.1	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RCIC－003

管名称			対	応	す	る	評	価	点	
1	106	107	108							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
106		107		108	

設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
R C I C－ 005

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	0.98	184	216.3	8.2	STS410

[^44]設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 RCIC－005

管名称				対	応	す	る	評	価	点
1	102	103	104							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
102		103		104	

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	STS410	184

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
STS410	184	103

[^45]| 鳥瞰図 | 運転
 状態 | 最大応力評価点 | 最大応力区分＊1 | 一次応力評価 （ MPa ） | | 一次＋二次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | 計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$ | 許容応力 $\begin{aligned} & \text { S h } \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ | 計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$ | 許容応力＊2 $\begin{aligned} & \text { S a (c) } \\ & \text { S a (d) } \end{aligned}$ |
| R C I C－0 03 | $\begin{array}{ll} (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \end{array}$ | $\begin{aligned} & 107 \\ & 107 \\ & 107 \\ & 107 \end{aligned}$ | $\begin{gathered} \hline \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$ | $\begin{gathered} \hline 27 \\ - \\ 29 \\ - \end{gathered}$ | $\begin{aligned} & \hline 102 \\ & - \\ & 122 \\ & - \end{aligned}$ | 119 121 | 255 275 |

 ＊2：S a（c），Sa（d）はそれぞれ，告示第501号第56条第2号（其），（ニ）に基づき計算した許容応力を示す。

鳥瞰図	運転 状態	最大応力評価点	最大応力区分＊1	一次応力評価 （ MPa ）		一次＋二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 $\begin{aligned} & \text { S h } \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 $\begin{aligned} & \text { S a (c) } \\ & \text { S a (d) } \end{aligned}$
R C I C－0 05	$\begin{array}{ll} (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \end{array}$	$\begin{aligned} & \hline 103 \\ & 103 \\ & 103 \\ & 103 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} \hline 16 \\ - \\ 17 \\ - \end{gathered}$	$\begin{aligned} & \hline 102 \\ & - \\ & 122 \\ & - \end{aligned}$	135 136	255 275

 ＊2：S a（c），S a（d）はそれぞれ，告示第501号第56条第2号（其），（ニ）し基づき計算した許容応力を示す。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊${ }^{* 1}$	一次応力評価(MPa)		$\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$	
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(1) } \\ \text { Sprm (2) } \end{gathered}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 Sn (a) Sn (b)	許容応力＊2 S a（c） Sa（d）
R C I C－ 005	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & \hline 103 \\ & 103 \\ & 103 \\ & 103 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} \hline 30 \\ - \\ 31 \\ - \end{gathered}$	$\begin{aligned} & \hline 154 \\ & - \\ & 185 \\ & - \end{aligned}$	141 142	$\begin{aligned} & 257 \\ & - \\ & 278 \end{aligned}$

注記＊1：S prm（1），S P r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した一次応力，S n（a）， ＊ 2 ：S a（c），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

5．代表モデルの選定結果及び全モデルの評価結果

No．	配管モデル	供用状態（ I ，II）＊1					供用状態（ I ，II）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RCIC－003	107	27	102	3． 77	\bigcirc	107	29	122	4． 20	\bigcirc
2	RCIC－005	103	16	102	6.37	－	103	17	122	7.17	－

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第501号第56条第1号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（ I ，II）＊3					供用状態（ I ，II）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	RCIC－003	107	119	255	2． 14	－	107	121	275	2． 27	－
2	RCIC－005	103	135	255	1． 88	\bigcirc	103	136	275	2． 02	\bigcirc

注記＊ 3 ：告示第 501 号第 56 条第 2 号（イ）に基づき計算した一次＋二次応力を示す。
＊4：告示第501号第56条第2号（口）に基づき計算した一次＋二次応力を示す。

No．	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	RCIC－003	107	28	154	5． 50	－	107	30	185	6． 16	－
2	RCIC－005	103	30	154	5． 13	\bigcirc	103	31	185	5． 96	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	RCIC－003	107	124	257	2． 07	－	107	126	278	2． 20	－
2	RCIC－005	103	141	257	1． 82	\bigcirc	103	142	278	1． 95	\bigcirc

注記＊3：設計•建設規格 PPC－3520（1）a に基づき計算した一次＋二次応力を示す。
＊4：設計•建設規格 PPC－3520（1）b に基づき計算した一次＋二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 8
3.1 設計条件 8
3．2 材料及び許容応力 11
4．評価結果 13
5．代表モデルの選定結果及び全モデルの評価結果 15

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

0 y（重）$Z-\varepsilon-I-\mathcal{G}-\varepsilon-\varepsilon-\varepsilon-I \Lambda \quad$（9）$\quad$ O

鳥瞰図記号凡例

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 R C I C－0 0 3

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	10.34	315	114.3	11.1	STS410
2	10.34	315	114.3	11.1	STS410
3	10.34	315	165.2	14.3	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
R C I C－ 003

| 管名称 | | | | | | 対 | 応 | す | る | 評 | 価 | 点 | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| | 32 | 103 | 106 | 900 | 901 | | | | | | | | | | |
| 2 | 101 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 114 | 115 | 903 | | | | |
| 3 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | | | | |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		12		23		108		122	
2		13		24		109		123	
3		14		25		110		124	
4		15		26		111		125	
5		16		27		115		900	
6		17		28		116		901	
7		18		29		117		903	
8		19		30		118			
9		20		32		119			
10		21		106		120			
11		22		107		121			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
101		112	
102		113	
103		114	
104		126	
105		127	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	102			
弁2	113			

支持点及び貫通部ばね定数
鳥 瞰 図
RCIC－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
8						
＊＊ $8 * *$						
12						
＊＊ 12 ＊＊						
15						
20						
24						
27						
32						
105						
＊＊ 105 ＊＊						
117						
120						
125						
＊＊ 127 ＊＊						
900						
903						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	315	S h
STS410	3102	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
STS410	315	103

$$
\text { 重大事故等クラス } 2 \text { 管であってクラス } 2 \text { 以下の管 }
$$

告示第 5 0 1 号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(1) } \\ \text { Sprm(2) } \end{gathered}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{~h} \\ & 1 . \\ & 2 \cdot \mathrm{~S} \mathrm{~h} \end{aligned}$
R C I C－ 003	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & \hline 47 \\ & 47 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

[^46]| 鳥瞰図 | 最大応力
 評 価 点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力
 1． $5 \cdot \mathrm{Sh}$
 1． $8 \cdot \mathrm{Sh}$ |
| R C I C－ 003 | $\begin{aligned} & 24 \\ & 24 \end{aligned}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 61 \\ & 61 \end{aligned}$ | $\begin{aligned} & 154 \\ & 185 \end{aligned}$ |

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	RCIC－003	24	47	102	2． 17	\bigcirc	24	47	122	2． 59	\bigcirc
2	RCIC－004	29	39	102	2． 61	－	29	39	122	3． 12	－
3	RCIC－005	121	17	102	6． 00	－	121	17	122	7.17	－

記 $*$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊${ }^{\text {c }}$					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RCIC－003	24	61	154	2． 52	\bigcirc	24	61	185	3． 03	\bigcirc
2	RCIC－004	22	52	154	2． 96	－	22	52	185	3.55	－
3	RCIC－005	103	30	154	5.13	－	103	30	185	6.16	－

注記 $~ 1 ~: ~$ 設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－5－2 補給水系の強度計算書

VI－3－3－3－5－2－1 復水移送ポンプの強度計算書
VI－3－3－3－5－2－2 復水貯蔵タンクの強度計算書
VI－3－3－3－5－2－3 管の強度計算書（補給水系）

VI－3－3－3－5－2－3 管の強度計算書（補給水系）

VI－3－3－3－5－2－3－1 管の基本板厚計算書（補給水系）
VI－3－3－3－5－2－3－2 管の応力計算書（補給水系）

VI－3－3－3－5－2－3－2 管の応力計算書
（補給水系）

まえがき

本計算書は，添付書類「VI－3－1－4 クラス 3 機器の強度計算の基本方針」及び「VI－3－2－7 ク ラス 3 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果は「3．評価結果」に示す計算書に記載する。

設計基準対象施設
1．概要 1
2．概略系統図 2
3．評価結果 4

1．概要
本計算書は，添付書類「VI－3－1－4 クラス 3 機器の強度計算の基本方針」及び「VI－3－2－7 ク ラス 3 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。

2．概略系統図

概略系統図記号凡例

3．評価結果
以下の計算書の設計基準対象施設に含まれている。「VI－3－3－3－4－1－4－2 管の応力計算書（高圧灲心スプレイ系）」

VI－3－3－3－6 原子炉補機冷却設備の強度計算書

VI－3－3－3－6－1 原子炉補機冷却水系及び原子炉補機冷却海水系の強度計算書
VI－3－3－3－6－2 高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系強度計算書 VI－3－3－3－6－3 原子炉補機代替冷却水系の強度計算書

VI－3－3－3－6－1 原子炉補機冷却水系及び原子炉補機冷却海水系の強度計算書

VI－3－3－3－6－1－1 原子炉補機冷却水系熱交換器の強度計算書
VI－3－3－3－6－1－2 原子炉補機冷却水ポンプの強度計算書
VI－3－3－3－6－1－3 原子炉補機冷却海水ポンプの強度計算書
VI－3－3－3－6－1－4 原子炉補機冷却水サージタンクの強度計算書
VI－3－3－3－6－1－5 原子炉補機冷却海水系ストレーナの強度計算書
VI－3－3－3－6－1－6 管の強度計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）

VI－3－3－3－6－1－6 管の強度計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）

VI－3－3－3－6－1－6－1 管の基本板厚計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）
VI－3－3－3－6－1－6－2 管の応力計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）

VI－3－3－3－6－1－6－2 管の応力計算書
（原子炉補機冷却水系及び原子炉補機冷却海水系）

まえがき

本計算書は，以下により構成される。
（1）原子炉補機冷却水系
（2）原子炉補機冷却海水系
（1）原子炉補機冷却水系

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語については，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用す る。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	$\begin{array}{\|l\|l} \text { 施設時の } \\ \text { 適用規格 } \end{array}$	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時		SA		DB条件		SA条件						
			アップ\| の有無	機器 クラス	クラス	クラス	$\begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
RCW－001	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－002	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－003	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－004	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－005	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－006	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2

応力計算 モデルNo．	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
					$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
RCW－007	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－008	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－009	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－010	既設	有	有	DB－3	DB－3	SA－2	無	1．18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－011	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－012	既設	有	有	DB－3	DB－3	SA－2	無	1．18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－013	既設	有	有	DB－3	DB－3	SA－2	無	1．18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－014	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1． 18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－015	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－3	SA－2	－	1．18	70	1．18	70	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－016	既設	有	有	DB－3	DB－3	SA－2	無	1．18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2

－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
				施設時 機器 クラス	クB	クラ	$\begin{array}{\|c\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \end{array}$	DB条件		SA条件						
								$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
RCW－017	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	1.18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－018	新設	－	－	－	DB－3	SA－2	－	1.18	70	1.18	70	－	－	設計•建設規格	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	1.18	70	－	－	設計•建設規格	－	SA－2
RCW－019	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－020	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－021	既設	有	有	DB－3	DB－3	SA－2	無	1.18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
RCW－022	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
KRCW－105	既設	有	有	DB－3	DB－3	SA－2	無	1.18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
KRCW－205	既設	有	有	DB－3	DB－3	SA－2	無	1.18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 11
3．計算条件 16
3.1 設計条件 16
3.2 材料及び許容応力 224．評価結果24
5．代表モデルの選定結果及び全モデルの評価結果 26

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 24 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (5) VI-3-3-3-6-1-6-2 (1) (重) R 0

O 2 (5) VI-3-3-3-6-1-6-2 (1) (重) R 0

原子炉補機冷却水系概略系統図（その6）

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 R CW——oll

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.18	70	406.4	9.5	SM400C
2	1.18	70	609.6	9.5	SM400C
3	1.18	70	609.6	17.5	SM400C
4	1.18	70	406.4	12.7	SM400C
5	1.18	70	457.2	9.5	SM400C

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
RCW—OO1

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	6	7	8	9	10	12	13	42	43	44	45
	47	48	49	50	51	53	301	803	830	833					
2	13	14	15	16	18	19	20	21	22	23	24	25	26	27	28
	29	65	74	93	94	95	96	97	98	99	100	101	103	104	106
	107	109	110	111	112	113	114	115	116	117	118	251	302	304	801
	802	804	806	812	814	816	817	818	819	823	824	829	831	838	903
	904	907	908	909	910	912									
3	17	801	802												
4	17	803													
5	28	29	30	31	32	33	34	35	36	37	39	40	41	66	68
	69	70	75	76	77	78	79	81	82	83	84	85	86	87	88
	89	90	91	92	93	94	122	123	124	125	126	128	129	130	131
	132	133	303	501	502	503	504	505	808	825	826	827	828	832	834
	835	836	837	840	841	842									

配管の質量（付加質量含む）
鳥 瞰 図
R CW－0 01

評価点の質量を下表に示す。

評価点	質量（kg）								
1		34		90		132		826	
2		35		91		133		827	
3		36		92		251		828	
7		40		93		301		829	
8		41		94		302		830	
9		42		95		303		831	
13		43		96		304		832	
14		44		97		501		833	
15		48		98		502		834	
16		49		99		503		835	
17		50		100		504		836	
18		65		110		505		837	
19		69		111		801		838	
20		70		112		802		840	
21		74		113		803		841	
22		75		114		804		842	
23		76		115		806		903	
24		77		116		808		904	
25		78		117		812		907	
26		82		118		814		908	
27		83		122		816		909	
28		84		123		817		910	
29		85		124		818		912	
30		86		125		819			
31		87		129		823			
32		88		130		824			
33		89		131		825			

鳥 瞰 図 RCW－001
弁部の質量を下表に示す。
弁1 弁2 弁3 弁4 弁5

評価点	質量（kg）								
4		10		37		45		51	
5		11		38		46		52	
6		12		39		47		53	

弁11

評価点	質量 (kg)
126	
127	
128	
136	
902	

$$
\begin{array}{llll}
\text { 鳥 } & \text { 瞰 } & \text { 図 } \quad \text { CW }-0001
\end{array}
$$

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	5			
弁2	11			
弁3	38			
弁4	46			
弁5	52			
弁6	67			
弁7	80			
弁8				
弁9	102			
弁10	105			
弁11	127			

支持点及び貫通部ばね定数
鳥 瞰 図 RCW－001
支持点部のばね定数を下表に示す。

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	70	S h
$\mathrm{SM} 400 \mathrm{C}^{* 1}$	70	100
$\mathrm{SM} 400 \mathrm{C}^{* 2}$		100

＊1：板厚が 16 mm 以下
＊2：板厚が 16 mm を超えかつ 40 mm 以下

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 許容応力 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
		S h
SM400C＊1	70	100
SM400C＊2	70	100

＊1：板厚が 16 mm 以下
＊2：板厚が 16 mm を超えかつ 40 mm 以下
重大事故等クラス2管であってクラス2以下の管

重大事故等クラス 2 管であってクラス 2 以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
R CW－0 01	$\begin{aligned} & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した
0 y（重）（I） $7-9-\mathrm{I}-9-\varepsilon-\varepsilon-\varepsilon-\mathrm{I} \Lambda \quad$（c）$\quad \mathrm{O}$

鳥瞰図	最大応力 評 価 点	最大応力区分＊	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
R CW－0 01	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 150 \\ & 180 \end{aligned}$

注記＊：S prm（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RCW－001	31	39	100	2． 56	\bigcirc	31	39	120	3.07	\bigcirc
2	RCW－002	16	28	100	3.57	－	16	28	120	4.28	－
3	RCW－003	2	20	100	5.00	－	2	20	120	6.00	－
4	RCW－004	5	21	100	4． 76	－	5	21	120	5.71	－
5	RCW－005	29	22	100	4.54	－	29	22	120	5.45	－
6	RCW－006	13	21	100	4． 76	－	13	21	120	5.71	－
7	RCW－007	7	34	100	2． 94	－	7	34	120	3.52	－
8	RCW－008	1	17	102	6． 00	－	1	18	122	6.77	－
9	RCW－009	33	16	102	6.37	－	33	17	122	7.17	－
10	RCW－010	3	13	102	7． 84	－	3	14	122	8． 71	－

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。
O 2 （5）VI－3－3－3－6－1－6－2（1）（重）R 0

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
11	RCW－011	3	13	102	7． 84	－	3	14	122	8． 71	－
12	RCW－012	31	37	100	2． 70	－	31	37	120	3.24	－
13	RCW－013	4	36	100	2． 77	－	4	36	120	3.33	－
14	RCW－014	12	25	100	4． 00	－	12	25	120	4． 80	－
15	RCW－015	26	29	100	3． 44	－	26	29	120	4.13	－
16	RCW－016	12	28	100	3.57	－	12	28	120	4． 28	－
17	RCW－017	26	24	102	4． 25	－	26	24	122	5.08	－
18	RCW－018	59	24	102	4． 25	－	59	24	122	5． 08	－
19	RCW－019	1	18	102	5． 66	－	1	19	122	6． 42	－
20	RCW－020	33	21	102	4． 85	－	33	22	122	5.54	－
21	RCW－021	15	16	102	6． 37	－	15	17	122	7.17	－
22	RCW－022	7	12	102	8.50	－	7	13	122	9． 38	－
23	KRCW－105	30	17	102	6． 00	－	30	17	122	7.17	－
24	KRCW－205	51	27	102	3． 77	－	51	27	122	4.51	－

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
$\quad * 2$ ：告示第 501 号第 56 条第 1 号（口）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RCW－001	2	65	150	2.30	\bigcirc	2	65	180	2． 76	\bigcirc
2	RCW－002	16	40	150	3． 75	－	16	40	180	4． 50	－
3	RCW－003	1	26	150	5．76	－	1	26	180	6． 92	－
4	RCW－004	3	23	150	6.52	－	3	23	180	7.82	－
5	RCW－005	26	23	150	6． 52	－	26	23	180	7.82	－
6	RCW－006	45	25	150	6.00	－	45	25	180	7． 20	－
7	RCW－007	7	52	150	2.88	－	7	52	180	3.46	－
8	RCW－008	1	21	154	7.33	－	1	22	185	8． 40	－
9	RCW－009	33	24	154	6． 41	－	33	25	185	7.40	－
10	RCW－010	3	19	154	8.10	－	3	20	185	9． 25	－

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
11	RCW－011	18	20	154	7． 70	－	18	22	185	8.40	－
12	RCW－012	2	60	150	2． 50	－	2	60	180	3.00	－
13	RCW－013	1	47	150	3． 19	－	1	47	180	3.82	－
14	RCW－014	12	35	150	4． 28	－	12	35	180	5.14	－
15	RCW－015	26	42	150	3.57	－	26	42	180	4． 28	－
16	RCW－016	12	42	150	3.57	－	12	42	180	4． 28	－
17	RCW－017	26	27	154	5． 70	－	26	27	185	6.85	－
18	RCW－018	26	28	154	5.50	－	26	28	185	6.60	－
19	RCW－019	20	27	154	5． 70	－	20	29	185	6.37	－
20	RCW－020	33	34	154	4． 52	－	33	35	185	5.28	－
21	RCW－021	15	23	154	6． 69	－	15	24	185	7.70	－
22	RCW－022	7	16	154	9． 62	－	7	17	185	10．88	－
23	KRCW－105	3	25	154	6.16	－	3	25	185	7.40	－
24	KRCW－205	42	35	154	4． 40	－	42	35	185	5.28	－

（2）原子炉補機冷却海水系

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	クラ	$\begin{array}{\|c\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \\ \hline \end{array}$	DB条件		SA条件						
								$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
RSW－001	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－002	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－003	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－004	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－005	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－006	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－007	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－008	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－009	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－010	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－011	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－012	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－013	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
RSW－014	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 12
3.1 設計条件 12
3.2 材料及び許容応力 204．評価結果22
5．代表モデルの選定結果及び全モデルの評価結果 24

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 14 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0

O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0

O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0
O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0
O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0
O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0
O 2 (5) VI-3-3-3-6-1-6-2 (2) (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RSW－004

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	0.78	50	508.0	9.5	SM400C

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
R S W－ 004

管名称					対	応			る	評	価	点			
1	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91
	92	93	94	95	96	97	98	99	100	101	200	302	303	305	801
	802	803	804	807	808	809	810	820	821	901	902	903	904	905	906
	907	908	914	915	916	917	918	919							

[^47]配管の質量（付加質量含む）
鳥 瞰 図
R S W－0 0 4

評価点の質量を下表に示す。

0 บ（重）（（ ）$Z-9-I-9-\varepsilon-\varepsilon-\varepsilon-I \Lambda \quad$（c）$\quad$ O

評価点	質量（kg）								
1		30		56		82		803	
2		31		57		83		804	
3		32		58		84		807	
4		33		59		85		808	
8		34		60		86		809	
9		35		61		87		810	
10		36		62		88		820	
11		37		63		89		821	
12		38		64		90		901	
13		39		65		91		902	
14		40		66		92		903	
15		41		67		93		904	
16		42		68		94		905	
17		43		69		95		906	
18		44		70		96		907	
19		45		71		97		908	
20		46		72		98		914	
21		47		73		99		915	
22		48		74		100		916	
23		49		75		101		917	
24		50		76		200		918	
25		51		77		302		919	
26		52		78		303			
27		53		79		305			
28		54		80		801			
29		55		81		802			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
5	
6	
7	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	6			

支持点及び貫通部ばね定数
鳥 瞰 図 R SW——O 04
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
10						
13						
20						
27						
35						
38						
43						
50						
59						
62						
72						
75						
81						
90						
96						
100						
901						
902						
903						
904						
905						
906						
＊＊ 907 ＊＊						
＊＊ 908 ＊＊						
914						
915						
916						
917						
918						
919						

\square

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。鳥 瞰 図 R SW－0 07

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	0.78	50	508.0	9.5	SM400C

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
R S W－ 007

管名称					対	応			る	評	価	点			
1	1	2	3	4	5	7	8	9	10	11	12	13	14	15	16
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76
	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91
	92	93	94	95	201	205	206	801	802	803	810	811	901	902	903
	904	905	906	913	914										

[^48]配管の質量（付加質量含む）
鳥 瞰 図
R S W－0 07

評価点の質量を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図
R SW－0 07
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
10						
13						
20						
24						
28						
31						
36						
44						
52						
55						
64						
67						
75						
84						
90						
94						
901						
902						
903						
904						
＊＊ 905 ＊＊						
＊＊ 906 ＊＊						
913						
914						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	50	S h
SM400C	500	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	50	S h
SM400C	50	100

重大事故等クラス 2 管であってクラス 2 以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
R S W－0 07	$\begin{aligned} & 913 \\ & 913 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 100 \\ & 120 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した
0 y（重）（（ ）$Z-9-\mathrm{I}-9-\varepsilon-\varepsilon-\varepsilon-\mathrm{I} \Lambda \quad$（c）$\quad$ O

鳥瞰図	最大応力 評 価 点	最大応力区分＊	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
R S W－0 0 4	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \end{aligned}$	$\begin{aligned} & 150 \\ & 180 \end{aligned}$

注記＊：S prm（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RSW－001	803	26	100	3.84	－	803	26	120	4． 61	－
2	RSW－002	804	26	100	3.84	－	804	26	120	4.61	－
3	RSW－003	1	26	100	3.84	－	1	26	120	4.61	－
4	RSW－004	918	34	100	2.94	－	918	34	120	3.52	－
5	RSW－005	810	27	100	3.70	－	810	27	120	4． 44	－
6	RSW－006	1	26	100	3.84	－	1	26	120	4． 61	－
7	RSW－007	913	38	100	2.63	\bigcirc	913	38	120	3.15	\bigcirc
8	RSW－008	807	24	100	4． 16	－	807	24	120	5． 00	－
9	RSW－009	807	22	100	4.54	－	807	22	120	5.45	－
10	RSW－010	1	26	100	3.84	－	1	26	120	4.61	－

注記 $* 1$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。
O 2 （5）VI－3－3－3－6－1－6－2（2）（重）R 0

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
11	RSW－011	915	27	100	3.70	－	915	27	120	4． 44	－
12	RSW－012	506	20	100	5． 00	－	506	20	120	6． 00	－
13	RSW－013	1	26	100	3． 84	－	1	26	120	4.61	－
14	RSW－014	910	30	100	3.33	－	910	30	120	4． 00	－
注記＊1 ：告示第501号第 56 条第1号（イ）に基づき計算した一次応力を示す。											

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （ MPa ）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	RSW－001	25	51	150	2． 94	－	25	51	180	3． 52	－
2	RSW－002	23	58	150	2． 58	－	23	58	180	3． 10	－
3	RSW－003	9	37	150	4． 05	－	9	37	180	4． 86	－
4	RSW－004	87	61	150	2． 45	\bigcirc	87	61	180	2． 95	\bigcirc
5	RSW－005	20	39	150	3． 84	－	20	39	180	4． 61	－
6	RSW－006	9	37	150	4． 05	－	9	37	180	4． 86	－
7	RSW－007	81	60	150	2.50	－	81	60	180	3． 00	－
8	RSW－008	12	54	150	2． 77	－	12	54	180	3． 33	－
9	RSW－009	21	32	150	4． 68	－	21	32	180	5． 62	－
10	RSW－010	9	37	150	4． 05	－	9	37	180	4． 86	－
11	RSW－011	51	40	150	3． 75	－	51	40	180	4． 50	－
12	RSW－012	5	41	150	3.65	－	5	41	180	4． 39	－
13	RSW－013	9	37	150	4． 05	－	9	37	180	4． 86	－
14	RSW－014	2	50	150	3． 00	－	2	50	180	3． 60	－

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－6－2 高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系の強度計算書

VI－3－3－3－6－2－1 高圧炉心スプレイ補機冷却水系熱交換器の強度計算書
VI－3－3－3－6－2－2 高圧炉心スプレイ補機冷却水ポンプの強度計算書
VI－3－3－3－6－2－3 高圧炉心スプレイ補機冷却海水ポンプの強度計算書
VI－3－3－3－6－2－4 高圧炉心スプレイ補機冷却水サージタンクの強度計算書
VI－3－3－3－6－2－5 管の強度計算書（高圧炉心スプレイ補機泠却水系及び高圧炉心スプレイ補機冷却海水系）

VI－3－3－3－6－2－5 管の強度計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）

VI－3－3－3－6－2－5－1 管の基本板厚計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）

VI－3－3－3－6－2－5－2 管の応力計算書（高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）

> VI-3-3-3-6-2-5-2 管の応力計算書
（高圧炉心スプレイ補機冷却水系及び高圧灲心スプレイ補機冷却海水系）

まえがき

本計算書は，以下により構成される。
（1）高圧炉心スプレイ補機冷却水系
（2）高圧炬心スプレイ補機冷却海水系
（1）高圧炉心スプレイ補機冷却水系

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時	DB	SA	条件									
			$\begin{array}{\|l\|l\|} \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	の有無	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
HPCW－001	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCW－002	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCW－003	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCW－004	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1． 18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCW－005	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2
HPCW－006	既設	有	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 9
3.1 設計条件 9
3.2 材料及び許容応力 124．評価結果14
5．代表モデルの選定結果及び全モデルの評価結果 16

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全6モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （5）VI－3－3－3－6－2－5－2（1）（重）R 0

高圧炉心スプレイ補機冷却水系概略系統図（その2）

記号	内容
－	工事計画記載範囲の管のうち，本計算書記載範囲の管
\Leftarrow 申請範囲外	工事計画記載範囲外の管
	質点
	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。）

O 2 (5) VI-3-3-3-6-2-5-2 (1) (重) R 0
O 2 (5) VI-3-3-3-6-2-5-2 (1) (重) R 0
O 2 (5) VI-3-3-3-6-2-5-2 (1) (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPCW－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.18	70	216.3	8.2	STS410
2	1.18	70	165.2	7.1	STS410

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPCW－002

配管の質量（付加質量含む）
O 2 （5）VI－3－3－3－6－2－5－2（1）（重）R 0
評価点の質量を下表に示す。

評価点	質量（kg）								
1		18		32		46		74	
2		19		33		47		75	
3		20		34		48		76	
4		21		35		49		77	
8		22		36		50		78	
9		23		37		51		79	
10		24		38		66		83	
11		25		39		67		86	
12		26		40		68		800	
13		27		41		69		801	
14		28		42		70		901	
15		29		43		71			
16		30		44		72			
17		31		45		73			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
5	
6	
7	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)			
弁1	6						

支持点及び貫通部ばね定数
鳥 瞰 図 HPCW－002
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
8						
11						
15						
18						
24						
29						
35						
41						
44						
49						
73						
76						
79						
901						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		S h
STS410	70	102

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		S h
STS410	70	103

重大事故等クラス 2 管であってクラス 2 以下の管

告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
H P CW－0 02	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
H P CW－0 02	$\begin{aligned} & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 39 \\ & 39 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	HPCW－001	2	19	102	5.36	－	2	19	122	6． 42	－
2	HPCW－002	29	36	102	2． 83	\bigcirc	29	36	122	3.38	\bigcirc
3	HPCW－003	107	20	102	5． 10	－	107	21	122	5． 80	－
4	HPCW－004	57	16	102	6.37	－	57	17	122	7.17	－
5	HPCW－005	30	18	102	5.66	－	30	19	122	6． 42	－
6	HPCW－006	33	23	102	4． 43	－	33	23	122	5． 30	－

注記＊1：告示第 5 0 1 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊ 1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表
1	HPCW－001	2	23	154	6.69	－	2	23	185	8.04	－
2	HPCW－002	29	39	154	3.94	\bigcirc	29	39	185	4.74	\bigcirc
3	HPCW－003	107	33	154	4． 66	－	107	34	185	5． 44	－
4	HPCW－004	57	26	154	5.92	－	57	27	185	6． 85	－
5	HPCW－005	30	22	154	7.00	－	30	23	185	8.04	－
6	HPCW－006	33	27	154	5． 70	－	33	27	185	6.85	－

注記＊1：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。
（2）高圧炉心スプレイ補機冷却海水系

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時	DB	SA	条件									
			$\left\lvert\, \begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}\right.$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	$\begin{array}{\|l\|l\|} \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
HPSW－001	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
HPSW－002	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2
HPSW－003	既設	有	有	DB－3	DB－3	SA－2	無	0.78	50	0.78	50	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 8
3.1 設計条件 8
3.2 材料及び許容応力 114．評価結果13
5．代表モデルの選定結果及び全モデルの評価結果 15

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (5) VI-3-3-3-6-2-5-2 (2) (重) R 0

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
甲請範囲外	工事計画記載範囲外の管
－	質点
\bigcirc	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
－	スナッバ

O 2 (5) VI-3-3-3-6-2-5-2 (2) (重) R 0
O 2 (5) VI-3-3-3-6-2-5-2 (2) (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 HPSW－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	0.78	50	216.3	8.2	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
H P S W－O 03

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	15	16
	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	47	48	49	50	51	52	53	54	55	57	58	59	60	61	62
	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77
	78	94	97	98	801	802	803	804	805	806	810	811	812	901	902
	903	904	907	912											

配管の質量（付加質量含む）

評価点の質量を下表に示す。

評価点	質量（kg）								
1		23		42		62		98	
2		24		43		63		801	
3		25		44		64		802	
4		26		45		65		803	
5		27		46		66		804	
6		28		47		67		805	
7		29		48		68		806	
8		30		49		69		810	
9		31		50		70		811	
10		32		51		71		812	
11		33		52		72		901	
12		34		53		73		902	
16		35		54		74		903	
17		36		55		75		904	
18		37		57		76		907	
19		38		58		77		912	
20		39		59		78			
21		40		60		94			
22		41		61		97			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
13	
14	
15	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	14			

支持点及び貫通部ばね定数
鳥 瞰 図 HPSW－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
9						
21						
27						
30						
34						
40						
48						
52						
61						
66						
73						
77						
94						
＊＊901＊＊						
＊＊ 902 ＊＊						
903						
904						
907						
912						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	50	S h
STS410	50	102

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	50	S h
STS410	503	

重大事故等クラス 2 管であってクラス 2 以下の管

告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
H P S W－0 03	$\begin{aligned} & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
HP S W－0 03	$\begin{aligned} & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	運転状態（V）＊ 1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表
1	HPSW－001	421	23	102	4． 43	－	421	23	122	5.30	－
2	HPSW－002	801	21	102	4.85	－	801	21	122	5.80	－
3	HPSW－003	98	25	102	4.08	\bigcirc	98	25	122	4.88	\bigcirc

記 $*$ ：告示第 501 号第 56 条第 1 号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （ MPa ）	許容 応力 （MPa）	裕度	代表
1	HPSW－001	421	31	154	4． 96	－	421	31	185	5.96	－
2	HPSW－002	801	21	154	7． 33	－	801	21	185	8． 80	－
3	HPSW－003	98	37	154	4． 16	\bigcirc	98	37	185	5． 00	\bigcirc

注記 $~ 1 ~: ~$ 設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－4 計測制御系統施設の強度に関する説明書

目 次

VI－3－3－4－1 制御材駆動装置の強度計算書
VI－3－3－4－2 ほう酸水注入設備の強度計算書
VI－3－3－4－3 制御用空気設備の強度計算書

VI－3－3－4－3 制御用空気設備の強度計算書

VI－3－3－4－3－1 高圧窒素ガス供給系の強度計算書
VI－3－3－4－3－2 代替高圧窒素ガス供給系の強度計算書

VI－3－3－4－3－1 高圧窒素ガス供給系の強度計算書

VI－3－3－4－3－1－1 高圧窒素ガスボンベの強度評価書
VI－3－3－4－3－1－2 管の強度計算書（高圧窒素ガス供給系）

VI－3－3－4－3－1－2 管の強度計算書（高圧窒素ガス供給系）

VI－3－3－4－3－1－2－1 管の基本板厚計算書（高圧窒素ガス供給系）
VI－3－3－4－3－1－2－2 管の応力計算書（高圧窒素ガス供給系）
VI－3－3－4－3－1－2－3 管（可搬型）の強度評価書（高圧窒素ガス供給系）
VI-3-3-4-3-1-2-2 管の応力計算書 (高圧窒素ガス供給系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

耐震計算 モデルNo．	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	施設時 機器 クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
HPIN－003	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	2.06	200	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	2． 06	171	2.06	200	－	－	設計•建設規格	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
HPIN－006	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	2.06	200	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	2． 06	171	2.06	200	－	－	設計•建設規格	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
HPIN－007	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN－008	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN－009	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN－010	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN－01A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－02A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2

－評価条件整理表

耐震計算 モデルNo．	既設 or新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
								DB条件		SA条件						
			の有無	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	の有無	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
HPIN－03A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－04A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－04A－1	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1．77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－05A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－06A	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－07A	既設	有	－	－	－	SA－2	無	－	－	19． 61	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	66	1．77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	－	－	－	SA－2	無	－	－	1． 77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN－08A	既設	有	－	－	－	SA－2	無	－	－	19． 61	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	66	1． 77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	－	－	－	SA－2	無	－	－	1.77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
HPIN1014	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2

－評価条件整理表

耐震計算 モデルNo．	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	施設時 機器 クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
HPIN1033	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN2014	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2
HPIN2033	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
KHPIN－101	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	66	1.77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	1． 77	171	1.77	200	－	S55告示	設計•建設規格又は告示	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
KHPIN－103	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	66	1． 77	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	1． 77	171	1． 77	200	－	S55告示	設計•建設規格又は告示	－	$\begin{aligned} & \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1． 77	171	－	S55告示	設計•建設規格又は告示	－	SA－2
KHPIN－104	新設	－	－	－	DB－3	SA－2	－	2． 06	171	2.06	171	－	－	設計•建設規格	－	SA－2
KHPIN－105	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2
KHPIN－106	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2
KHPIN－107	新設	－	－	－	DB－3	SA－2	－	2.06	171	2.06	171	－	－	設計•建設規格	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥㒈図 5
3．計算条件 14
3.1 設計条件 14
3.2 材料及び許容応力 20
4．評価結果 21
5．代表モデルの選定結果及び全モデルの評価結果 23

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

高圧窒素ガス供給系概略系統図

2．2 鳥瞰図

鳥瞰図記号凡例

記号	内容
－	工事計画記載範囲の管のらち，本計算書記載範囲の管
\Leftarrow 申請範囲外	工事計画記載範囲外の管
－	質点
0	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
，	スナッバ

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPI N－0 03

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	2.06	171	60.5	3.9	SUS304TP

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
H P I N－O 03

| 管名称 | | | | | 対 | 応 | す | る | 評 | 価 | 点 | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 |
| | 59 | 60 | 61 | 62 | 63 | 64 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 |
| | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 95 | 96 | 97 | 98 | 99 | 100 | 101 |
| | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
| | 118 | 119 | 120 | 121 | 122 | 123 | | | | | | | | | |

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
44		57		73		98		114	
45		58		74		99		115	
46		59		75		100		116	
47		60		76		101		117	
48		61		77		102		118	
49		62		78		103		119	
50		63		79		104		120	
51		67		80		105		121	
52		68		81		106		122	
53		69		82		107		123	
54		70		95		108			
55		71		96		112			
56		72		97		113			

弁部の質量を下表に示す。
弁1 弁2

評価点	質量（kg）	評価点	質量（kg）
64		109	
65		110	
66		111	
134		136	
135		137	

弁部の寸法を下表に示す。

弁N0．	評価点	外径（mm）	厚さ (mm)	長さ (mm)
弁1	65			
弁2	110			

支持点及び貫通部ばね定数
鳥 瞰 図 HP I N－003
支持点部のばね定数を下表に示す。

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPIN－006

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	2.06	171	60.5	3.9	SUS304TP

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HP I N－0 06

管名称					対	応			る	評	価	点			
1	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61
	62	63	64	65	66	67	69	70	71	72	73	74	75	76	77
	78	79	80	89	90	91	92	93	94	95	96	97	98	99	100
	101	102	103	104	105	107	108	109	110	111	112	113	114	115	116
	117	118	119	120											

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
47		59		74		94		109	
48		60		75		95		110	
49		61		76		96		111	
50		62		77		97		112	
51		63		78		98		113	
52		64		79		99		114	
53		65		80		100		115	
54		66		89		101		116	
55		70		90		102		117	
56		71		91		103		118	
57		72		92		104		119	
58		73		93		108		120	

弁部の質量を下表に示す。
弁1弁2

評価点	質量（kg）	評価点	質量（kg）
67		105	
68		106	
69		107	
131		133	
132		134	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	68			
弁2	106			

支持点及び貫通部ばね定数
鳥 瞰 図 HPI N－006
支持点部のばね定数を下表に示す。

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
SUS304TP	171	113

鳥瞰図	供用 状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）			
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
HP I N－0 03	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & \hline 112 \\ & 103 \\ & 112 \\ & 103 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} 50 \\ - \\ 51 \\ - \end{gathered}$	$\begin{aligned} & \hline 169 \\ & - \\ & 203 \\ & - \end{aligned}$	$\begin{aligned} & \overline{163} \\ & - \\ & 164 \end{aligned}$	$\begin{aligned} & 302 \\ & - \\ & 325 \end{aligned}$

 ＊2：S a（c），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

鳥瞰図	供用状態	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \text { Sn (a) } \\ & \operatorname{Sn}(\mathrm{b}) \end{aligned}$	許容応力＊2 S a（c） S a（d）
HP I N－0 06	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{array}{r} \hline 101 \\ 67 \\ 101 \\ 67 \end{array}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} 28 \\ - \\ 29 \\ - \end{gathered}$	$\begin{gathered} 169 \\ - \\ 203 \end{gathered}$	$\begin{aligned} & 194 \\ & - \\ & 195 \end{aligned}$	$\begin{aligned} & \overline{302} \\ & - \\ & 325 \end{aligned}$

 ＊ 2 ：S a（c），S a（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。
5．代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表
1	HPIN－003	112	50	169	3.38	\bigcirc	112	51	203	3.98	\bigcirc
2	HPIN－006	101	28	169	6． 03	－	101	29	203	7.00	－

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	HPIN－003	103	163	302	1． 85	－	103	164	325	1． 98	－
2	HPIN－006	67	194	302	1.55	\bigcirc	67	195	325	1.66	\bigcirc

注記＊3：設計•建設規格 PPC－3530（1）a に基づき計算した一次＋二次応力を示す。
＊ 4 ：設計•建設規格 PPC－3530（2）b に基づき計算した一次＋二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 10
3．計算条件 24
3.1 設計条件 24
3.2 材料及び許容応力 33
4．評価結果 35
5．代表モデルの選定結果及び全モデルの評価結果 37

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また，全 25 モデルのらち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

高圧窒素ガスボンベ（A）

高圧窒素ガス供給系概略系統図（その7）

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
	工事計画記載範囲の管のうち，本計算書記載範囲の管
$<$ 申請範囲外	工事計画記載範囲外の管
	工事計画記載範囲の管のうち，他系統の管であって解析モデル として本系統に記載する管
－	質点
\bigcirc	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。）

O 2 (5) $\mathrm{VI}-3-3-4-3-1-2-2$ (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	19.61	66	34.0	6.4	SUS

設計条件

管名称と対応する評価点

評価点の位置は鳥瞰図に示す。

鳥 瞰 図 HPIN－08 A

管名称				対		応	す	る	－	評	価	点	
1	1	2	3	4	5	6	7	8	9	10	11	12	14
	15	16	17	18	19	20	21	23	24	25	27	28	29
	30												
2	30	31	32										
3	34	35	36	37	38	39	40	41	42	43	44	45	46
	47	48	49	50	51	52	54	55	57	58	59	60	62
	63	64	119	120	121	122	123	124	125	126	127	128	129
	130	131	132	133	134	135	136	137	138	139	140	141	142
	143	144	145	146	147	148	149	150	151	152	153	154	155
	156	157	158	159	160	161	162	163	164	165	166	167	168
	169	170	171	172	173	174	175	176	177	178	179	180	181
	182	183	184	185	186	187	188	189	190	191	192	193	194
	195	196	197	198	199	200	201	202	203	204	205	206	207
	208	209	210	211	212	213	214	215	216	217	218	219	220
	221	222	223	224	225	226	227	228	229	230	231	232	233
	234	235	236	237	238	239	240	241	242	243	244	245	246
	247	248	249	250	251	252	253	254	255	256	257	258	259
	260	261	262	263	264	265	266						
4	292	293	294	295	296	297	298	299	300	301	302	303	304
	305	306	307	308	309	310	311	312	313	315	316	317	318
	319	320	321	1	322	323	324	325	326	327	328	329	330
	331	332	333	334	335	336	337	338	339	341	342	343	344
	345	346	349	350	353	354	357	358	361	362	365	366	369
	370	373	374										

配管の質量（付加質量含む）
鳥 瞰 図 HPIN－08A
評価点の質量を下表に示す。

	評価点	質量（kg）								
	1		47		141		175		209	
	2		48		142		176		210	
	3		49		143		177		211	
	4		50		144		178		212	
	5		51		145		179		213	
	6		55		146		180		214	
	7		56		147		181		215	
	8		57		148		182		216	
	9		58		149		183		217	
\bigcirc	10		59		150		184		218	
$\xrightarrow{\sim}$	11		63		151		185		219	
	15		64		152		186		220	
$\stackrel{\text { 迷 }}{ }$	16		119		153		187		221	
¢ \sim \sim	17		120		154		188		222	
－	18		121		155		189		223	
$\stackrel{1}{+}$	19		122		156		190		224	
18	20		123		157		191		225	
5	24		124		158		192		226	
（1）	28		125		159		193		227	
N	29		126		160		194		228	
\bigcirc	30		127		161		195		229	
	31		128		162		196		230	
	35		129		163		197		231	
	36		130		164		198		232	
	37		131		165		199		233	
	38		132		166		200		234	
	39		133		167		201		235	
	40		134		168		202		236	
	41		135		169		203		237	
	42		136		170		204		238	
	43		137		171		205		239	
	44		138		172		206		240	
	45		139		173		207		241	
	46		140		174		208		242	

	評価点	質量（kg）								
	243		259		300		319		335	
	244		260		301		320		336	
	245		261		302		321		337	
	246		262		303		322		338	
	247		263		304		323		342	
	248		264		305		324		343	
	249		265		306		325		344	
	250		266		307		326		345	
	251		292		308		327		349	
	252		293		309		328		353	
	253		294		310		329		357	
0	254		295		311		330		361	
	255		296		312		331		365	
汭	256		297		316		332		369	
$\stackrel{\text { I }}{\sim}$	257		298		317		333		373	
\uparrow	258		299		318		334			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
12	
13	
14	
73	
75	

弁2 弁3 弁4 弁5 弁6

評価点	質量（kg）								
21		25		32		52		60	
22		26		33		53		61	
23		27		34		54		62	

弁 7 弁8 弁9
弁 10
弁11

評価点	質量（kg）								
313		346		350		354		358	
314		347		351		355		359	
315		348		352		356		360	

弁 12
弁 13
弁14
弁15
弁 16

評価点	質量（kg）								
339		362		366		370		374	
340		363		367		371		375	
341		364		368		372		376	

弁部の寸法を下表に示す。

弁N0．	評価点	外径（mm）	厚さ（mm）	長さ（mm）
弁1	13			
弁2	22			
弁3	26			
弁4	33			
弁5	53			
弁6	61			
弁 7	314			
弁 8	347			
弁9	351			
弁10	355			
弁11	359			
弁12	340			
弁13	363			
弁14	367			
弁15	371			
弁16	375			

支持点及び貫通部ばね定数

$$
\text { 鳥 瞰 図 HP I N - } 08 \text { A }
$$

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
2						
4						
9						
11						
15						
20						
28						
42						
46						
51						
58						
74						
121						
123						
130						
133						
137						
141						
146						
150						
155						
159						
161						
167						
169						
171						
175						
179						
182						
184						

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	189						
	191						
	194						
	198						
	201						
	205						
	209						
	211						
	213						
\bigcirc	216						
\sim	218						
	222						
进	225						
$\stackrel{N}{N}$	232						
\uparrow	238						
${ }_{1}$	242						
∞	245						
5	247						
（1）	252						
N	256						
\bigcirc	266						
	267						
	296						
	300						
	304						
	310						
	312						
	317						
	326						
	330						

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
334						
338						

3．2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		S h
SUS304TP	66	126

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		S h
SUS304TP	66	126

4．評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。
重大事故等クラス2管であってクラス2以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力 区分＊	一次応力評価（ MPa ）	
			$\begin{aligned} & \text { 計算応力 } \\ & \text { Spmrm (1) } \\ & \text { S prm (2) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 許容応力 } \\ \mathrm{S} \mathrm{~h} \\ 1 . \quad 2 \mathrm{~S} \mathrm{~h} \end{gathered}$
HP I N－0 8 A	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Sprm (1) } \\ & \text { Sprm (2) } \end{aligned}$	$\begin{aligned} & 58 \\ & 61 \end{aligned}$	$\begin{aligned} & 126 \\ & 151 \\ & \hline \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した一次応力を示す。
評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価（ MPa ）	
			計算応力 Sprm（1） Sprm（2）	許容応力 1． 5 Sh 1． 8 Sh
HP I N－0 8 A	14	Sprm（1）	75	189
	14	Sprm（2）	79	226

注記＊：S p r m（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件
及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	供用状態（V）＊1					供用状態（V）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
1	HPIN－01A	68	16	113	7.06	－	68	17	135	7． 94	－
2	HPIN－02A	130	13	113	8.69	－	130	14	135	9． 64	－
3	HPIN－03A	66	12	113	9． 41	－	66	13	135	10.38	－
4	HPIN－04A	53	13	113	8.69	－	53	14	135	9． 64	－
5	HPIN－04A－1	1	7	113	16． 14	－	1	8	135	16.87	－
6	HPIN－05A	12	20	113	5.65	－	12	21	135	6． 42	－
7	HPIN－06A	1	17	113	6.64	－	1	18	135	7.50	－
8	HPIN－07A	12	57	126	2.21	－	12	60	151	2． 51	－
注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。											

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	供用状態（V）＊1					供用状態（V）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （ MPa ）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
9	HPIN－08A	14	58	126	2． 17	\bigcirc	14	61	151	2． 47	\bigcirc
10	KHPIN－101	301	30	126	4． 20	－	301	30	151	5． 03	－
11	KHPIN－103	12	28	126	4． 50	－	12	28	151	5． 39	－
注記 $* 1$ ：告示第 5 0 1 号第56条第1号（イ）に基づき計算した一次応力を示す。\quad＊ 2 ：告示第 501 号第 56 条第1号（ロ）に基づき計算した一次応力を示す。											

代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （ MPa ）	裕度	代表	評価点	$\begin{gathered} \hline \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	裕度	代表
1	HPIN－003	112	50	166	3． 32	－	112	50	199	3.98	－
2	HPIN－006	32	31	166	5.35	－	32	31	199	6.41	－
3	HPIN－007	9	15	169	11． 26	－	9	15	203	13.53	－
4	HPIN－008	8	18	169	9． 38	－	8	18	203	11.27	－
5	HPIN－009	8	16	169	10． 56	－	8	16	203	12.68	－
6	HPIN－010	9	16	169	10． 56	－	9	16	203	12.68	－
7	HPIN－01A	68	20	169	8． 45	－	68	21	203	9． 66	－
8	HPIN－02A	130	17	169	9． 94	－	130	18	203	11.27	－
注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。 ＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。											

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （ MPa ）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
9	HPIN－03A	66	16	169	10.56	－	66	17	203	11.94	－
10	HPIN－04A	53	17	169	9.94	－	53	18	203	11.27	－
11	HPIN－04A－1	1	11	169	15． 36	－	1	12	203	16.91	－
12	HPIN－05A	12	25	169	6.76	－	12	26	203	7.80	－
13	HPIN－06A	1	21	169	8.04	－	1	22	203	9.22	－
14	HPIN－07A	12	73	189	2． 58	－	12	77	226	2.93	－
15	HPIN－08A	14	75	189	2． 52	\bigcirc	14	79	226	2.86	\bigcirc
16	HPIN1014	16	19	169	8.89	－	16	21	203	9.66	－
17	HPIN1033	93	21	169	8.04	－	93	23	203	8． 82	－
18	HPIN2014	33	21	169	8.04	－	33	23	203	8． 82	－

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
19	HPIN2033	7	19	169	8． 89	－	7	21	203	9.66	－
20	KHPIN－101	301	34	189	5． 55	－	301	34	226	6． 64	－
21	KHPIN－103	12	32	189	5． 90	－	12	32	226	7． 06	－
22	KHPIN－104	6	6	169	28．16	－	6	6	203	33.83	－
23	KHPIN－105	6	6	169	28． 16	－	6	6	203	33.83	－
24	KHPIN－106	6	6	169	28． 16	－	6	6	203	33.83	－
25	KHPIN－107	6	6	169	28． 16	－	6	6	203	33.83	－

VI－3－3－4－3－2 代替高圧窒素ガス供給系の強度計算書

VI－3－3－4－3－2－1 管の強度計算書（代替高圧窒素ガス供給系）

VI－3－3－4－3－2－1 管の強度計算書（代替高圧窒素ガス供給系）

VI－3－3－4－3－2－1－1 管の基本板厚計算書（代替高圧窒素ガス供給系）
VI－3－3－4－3－2－1－2 管の応力計算書（代替高圧窒素ガス供給系）
VI－3－3－4－3－2－1－3 管（可搬型）の強度評価書（代替高圧窒素ガス供給系）

VI－3－3－4－3－2－1－2 管の応力計算書 （代替高圧窒素ガス供給系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラ } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l} \hline \text { 圧力 } \\ \text { (MPa) } \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
HPIN－001	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2
HPIN－002	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2
HPIN－004	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2
HPIN－005	新設	－	－	－	－	SA－2	－	－	－	2.06	66	－	－	設計•建設規格	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥㒈図 4
3．計算条件 8
3.1 設計条件 8
3.2 材料及び許容応力 11
4．評価結果 12
5．代表モデルの選定結果及び全モデルの評価結果 13

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全4モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

＊1 高圧窒素ガス供給系

注記＊1 ： $\begin{aligned} \text { ：解析モデル上 } \\ \text { 高圧窒素ガス供給系に含める。 }\end{aligned}$

$\stackrel{* 1}{\rightarrow}$

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPI N－O 0 1

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	2.06	66	34.0	3.4	SUS304TP

[^49]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPIN－001

管名称				対		応	す	る		評	価	点			
1	2	3	4	5	6	7	8	9	10	11	13	14	15	16	17
	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	33	34	36	37	38	39	40	41	42	43	44	45	46	47	48
	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
	79	80	81	82	83	84	85	86	87	88	89	801	802	803	

配管の質量（付加質量含む）
評価点の質量を下表に示す。
0 y（重）$Z-$－$-Z-\varepsilon-\sqcap-\varepsilon-\varepsilon-I \Lambda$（G）$\quad$ O

評価点	質量（kg）								
2		23		42		60		78	
3		24		43		61		79	
4		25		44		62		80	
5		26		45		63		81	
6		27		46		64		82	
7		28		47		65		83	
8		29		48		66		84	
9		30		49		67		85	
10		31		50		68		86	
14		32		51		69		87	
15		33		52		70		88	
16		34		53		71		89	
17		36		54		72		801	
18		37		55		73		802	
19		38		56		74		803	
20		39		57		75			
21		40		58		76			
22		41		59		77			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
11	
12	
13	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	12			

支持点及び貫通部ばね定数
鳥 瞰 図
HPIN－001
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
3						
5						
9						
14						
17						
19						
21						
23						
29						
31						
33						
37						
39						
41						
44						
46						
48						
51						
53						
57						
59						
62						
65						
67						
70						
72						
74						
76						
80						
82						
87						
89						
98						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	66	Sh
SUS304TP	66	

重大事故等クラス 2 管であってクラス 2 以下の管
設計•建設規格 PPC－ 3500 による評価結果

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
H P I N－ 001	$\begin{aligned} & 36 \\ & 36 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$	$\begin{aligned} & 34 \\ & 34 \end{aligned}$	$\begin{aligned} & 189 \\ & 226 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果 ている下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	供用状態（E）＊ 1					評価点	
		一次応力						
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表		計算応 （MPa）
1	HPIN－001	36	34	189	5． 55	\bigcirc	36	34
2	HPIN－002	5	19	189	9． 94	－	5	19
3	HPIN－004	16	29	189	6.51	－	16	29
4	HPIN－005	26	17	189	11． 11	－	26	17

＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－6 原子炉格納施設の強度に関する説明書

VI－3－3－6－1 原子炉格納容器の強度計算書
VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書

VI－3－3－6－1 原子炉格納容器の強度計算書

VI－3－3－6－1－1 原子炉格納容器本体の強度計算書
VI－3－3－6－1－2 機器搬出入口の強度計算書
VI－3－3－6－1－3 エアロックの強度計算書
VI－3－3－6－1－4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書

VI－3－3－6－1－1 原子炉格納容器本体の強度計算書

VI－3－3－6－1－1－1 ドライウェルの基本板厚計算書
VI－3－3－6－1－1－2 ドライウェルの強度計算書
VI－3－3－6－1－1－3 ドライウェル主フランジの強度計算書
VI－3－3－6－1－1－4 ドライウェルベント開口部の強度計算書
VI－3－3－6－1－1－5 ジェットデフレクタの強度計算書
VI－3－3－6－1－1－6 サプレッションチェンバの基本板厚計算書
VI－3－3－6－1－1－7 サプレッションチェンバの強度計算書
VI－3－3－6－1－1－8 ボックスサポートの強度計算書
VI－3－3－6－1－1－9 ジェット力を考慮した強度計算書

VI－3－3－6－1－1－4 ドライウェルベント開口部の強度計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2． 2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 4
3．評価部位 5
4．強度評価 7
4.1 強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．2．1 荷重の組合せ及び許容応力状態 7
4．2．2 許容応力 7
4．2．3 使用材料の許容応力評価条件 7
4．2．4 設計荷重 10
4.3 計算方法 11
4．3．1 応力評価点 11
4．3．2 解析モデル及び諸元 12
4．3．3 応力計算方法 16
4． 4 計算条件 16
4.5 応力の評価 16
5．評価結果 17
5.1 重大事故等対処設備としての評価結果 17
6．参照図書 19

1．概要

本計算書は，ドライウェルベント開口部の強度計算書である。
ドライウェルベント開口部は，設計基準対象施設のドライウェルベント開口部を重大事故等 クラス 2 容器として兼用する機器である。

以下，重大事故等クラス 2 容器として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」に基づき，ドライウェルベント開口部の強度評価を示す。 なお，本計算書においては，重大事故等時における荷重に対して，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項
2.1 構造計画

ドライウェルベント開口部の構造計画を表 $2-1$ に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
ドライウェルベント開ロ部を構成するベントノズ ルは，ドライウェルに支持される。 ドライウェルベント開ロ部は，原子炉格納容器と一体構造となっており，鉛直方向荷重及び水平方向荷重は，ドライウェル を介して原子炉建屋に伝達される。	ドライウェルベント開口部を構成するベント ノズルは内径及び板厚 に小径側内径及び板厚 ある。 \square \square \square \square mm mm の円筒 mm mm の円す いを接続した構造物で	原子炉格納容器断面図 A部詳細（ドライウェルベント開口部）

2．2 評価方針

ドライウェルベント開口部の応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，
「3．評価部位」にて設定する箇所において重大事故等時における温度，圧力による応力等 が許容限界内に収まることを，「4．強度評価」にて示す方法で確認することで実施する。確認結果を「5．評価結果」に示す。

ドライウェルベント開口部の強度評価フローを図 2－1 に示す。

図 2－1 ドライウェルベント開口部の強度評価フロー

2.3 適用規格•基準等

適用規格•基準を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和 55 年 10 月 30 日 通商産業省告示第501号）（以下「告示第501号」という。）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
D i	直径（ $\mathrm{i}=1,2,3 \cdots)$	mm
E	縦弾性係数	MPa
ℓ_{i}	長さ（ $\mathrm{i}=1,2,3)$	mm
M ${ }_{\text {i }}$	曲げモーメント（ $\mathrm{i}=1,2)$	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {S }}$	機械的荷重（SA 短期機械的荷重）	－
P	圧力，軸力	－，N
P SA	圧力（SA 短期圧力）	kPa
R	半径	mm
S	設計許容応力	MPa
S_{u}	設計引張強さ	MPa
S y	設計降伏点	MPa
S_{y}（ R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
T	温度	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
t i	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。
表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
最高使用圧力	kPa	－	－	整数位
温度	${ }^{\circ} \mathrm{C}$	－	－	整数位＊2
許容応力＊1	MPa	小数点以下第 1 位	切捨て	整数位
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
長さ	mm	－	－	整数位 ${ }^{*}{ }^{2}$

注記＊1：告示第 5 0 1 号別表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値として算出する。得られた値を SI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
＊2：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。

3．評価部位
ドライウェルベント開口部の形状及び主要寸法を図 3－1に，使用材料及び使用部位を表3－1に示す。
\square
（1）ベントノズル部
（2）ベントノズル円すい部
（3）ベント管
（4）補強板
（5）ジェットデフレクタ
（6）リブ
（7）補強リブ

（単位：mm）
図 3－1 ドライウェルベント開口部の形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料	
ベントノズル	$\boxed{ }$	
補強板		

4．強度評価

4.1 強度評価方法
（1）ドライウェルベント開口部は，ベントノズル円すい部が原子炉格納容器に支持された構造であり，鉛直方向荷重及び水平方向荷重は，ドライウェルを介して原子炉建屋に伝達される。

ドライウェルベント開口部の強度評価として，添付書類「VI－3－3－6－2－5 ベント管の強度計算書」に示す解析モデル用いて強度評価を行う。
（2）強度評価に用いる寸法は，公称値とする。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
ドライウェルベント開口部の荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用いるものを表4－1に示す。

詳細な荷重組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重組合せは，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

4．2．2 許容応力

ドライウェルベント開口部の許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき表 4－2 に示す とおりとする。

4．2．3 使用材料の許容応力評価条件
ドライウェルベント開口部の使用材料の許容応力評価条件のうち，重大事故等対処設備の評価に用いるものを表4－3に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	機器等 の区分	荷重の組合せ＊1		許容応力状態

> ＊3：重大事故等時としてIVAの許容限界を用いる。

応力分類	一次一般膜応力	一次膜応力＋一次曲げ応力
重大事故等時＊	構造上の連続な部分は0．6•Su，不連続な部分は S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，AS S 及びHNAについて は，構造上の連続な部分は2•Sと $0.6 \cdot \mathrm{Su}$ の小さい方，不連続な部分は 1．2•Sとする。	左欄の 1．5倍の値

注記 $*$ ：重大事故時としてIVAの許容限界を用いる。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
ベントノズル		周囲環境温度	200	－		
補強板		周囲環境温度	200	－		

4．2．4 設計荷重

（1）重大事故等対処設備としての評価圧力及び評価温度
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。
内圧 PsA
温度 T SA
854 kPa （SA 短期）
$200^{\circ} \mathrm{C}$（SA 短期）
b．ベント系から加わる荷重
ベント系からドライウェルベント開口部に加わる荷重は，添付書類「VI－3－3－6－2－5
ベント管の強度計算書」の解析に基づき設定する。
ベント系からドライウェルベント開口部に加わる荷重を，表4－4に示す。

表 4－4 ベント系からドライウェルベント開口部に加わる荷重（重大事故等対処設備）

荷重	軸力 $\mathrm{P}(\mathrm{N})$	曲げモーメント $\mathrm{M}_{1}(\mathrm{~N} \cdot \mathrm{~mm})$	曲げモーメント $\mathrm{M}_{2}(\mathrm{~N} \cdot \mathrm{~mm})$
限界圧力（内圧）	1.945×10^{6}	2.137×10^{5}	-2.808×10^{8}
ベント系死荷重	3.577×10^{4}	2.361×10^{4}	4.330×10^{7}

注記＊：軸力の符号は，ドライウェル側からベント管側へ作用する荷重を正符号とし，その逆方向を負符号とする。荷重の方向を図 4－3 に示す。

4． 3 計算方法

4．3．1 応力評価点
ドライウェルベント開口部の応力評価点は，ドライウェルベント開口部を構成する各部材において，発生応力が最も大きくなる箇所とする。選定した応力評価点を表 4－5 及 び図 4－1 に示す。

表 4－5 応力評価点

応力評価点番号	応力評価点
$\mathrm{P} 1^{* 1}$	ベントノズル円すい部
$\mathrm{P} 2^{* 2}$	ドライウェルベント開口部

注記 $* 1$ ：ベントノズル円すい部全域のらち応力が最大となる応力評価点を示す。既工認 の応力評価点 P1～P6 を包絡する。
＊2：ベントノズル近傍の補強板のらち応力が最大となる応力評価点を示す。既工認 の応力評価点 P7～P9 を包絡する。
\square
図 4－1 ドライウェルベント開口部の応力評価点

4．3．2 解析モデル及び諸元

（1）ドライウェルベント開口部
ドライウェルベント開口部の解析モデルを図 4－2～図4－5に，機器の諸元を表4－6に示 す。

解析モデルの概要を以下に示す。
a．ドライウェルベント開口部は，ベント系フルシェルモデルからの反力を精緻に評価 するため， 3 次元シェル要素による有限要素解析手法を適用する。
b．モデル化の範囲は，作用する荷重を考慮し構造的に対称となる全体の $1 / 2$ とし，上端はドライウェルベント開口部より十分離れたドライウェル円筒部上端，下端はコ ンクリート埋設境界となるサンドクッション下端とする。ベント系から加わる荷重 によってドライウェルベント開口部に生じる応力への影響の観点から，ドライウェ ルベント開口部近傍のジェットデフレクタ，リブ及び補強リブもモデル化する。
c．拘束条件は，
d．荷重の作用点は，
で結合する。
e．解析コードは「MS C N A S T R A N 」及び「 A N S Y S 」を使用する。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－ 5 計算機プログラム（解析コード）の概要」に示す。
（2）ベントノズル
ベントノズルの評価は，添付書類「VI－3－3－6－2－5 ベント管の強度計算書」に示すベ ント管，ベントヘッダ及びダウンカマの解析モデルにより応力解析を行う。

図4－2 解析モデル ドライウェルベント開ロ部シェルモデル（全体）

図 4－3 解析モデル ドライウェルベント開口部シェルモデル（A部拡大）

図 4－4 解析モデル ドライウェルベント開口部シェルモデル（B部拡大）

図 4－5 解析モデル ドライウェルベント開口部シェルモデル（Cから見る）

表 4－6 機器諸元

項目		記号	単位	入力値
材質	補強板	－	－	
	$\begin{aligned} & \text { ベントノズル } \\ & \text { リブ } \end{aligned}$	－	－	
	ジェットデフレクタ	－	－	
	補強リブ	－	－	
機器質量＊		－	kg	
温度条件		T	${ }^{\circ} \mathrm{C}$	
縦弾性係数		E	MPa	
ポアソン比		v	－	
要素数		－	－	
節点数		－	－	

注記＊：ベント系全体の機器重量を示す。

4．3．3 応力計算方法

ドライウェルベント開口部の応力計算方法について以下に示す。
（1）重大事故等対処設備としての応力計算
a．応力評価点 P1
重大事故等対処設備における応力評価点P1 の応力は，添付書類「VI－3－3－6－2－5 ベ ント管の強度計算書」に示すベント管，ベントヘッダ及びダウンカマの解析モデルに より算出し評価する。
b．応力評価点 P2
重大事故等対処設備における応力評価点 P2 のベント系から加わる荷重による応力は，「4．3 解析モデル及び諸元」に示すドライウェルベント開口部シェルモデルにより算出する。応力評価点 P2 の原子炉格納容器荷重による応力は，既工認の各荷重による応力を比倍（圧力比等）し評価する。
4． 4 計算条件
応力評価に用いる荷重を，「4．2 荷重の組合せ及び許容応力」に示す。
4.5 応力の評価

「4．3 計算方法」で求めた各応力が，表 4－2 に示す許容応力以下であること。

5．評価結果
5.1 重大事故等対処設備としての評価結果

ドライウェルベント開口部の重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値は許容応力を満足している。
（1）強度評価結果
強度評価結果を表5－1に示す。

評価対象設備	評価部位		応力分類	重大事故等時		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { ドライウェルベ } \\ \text { ント開口部 } \end{gathered}$	P1	ベントノズル円すい部		一次膜応力 + 一次曲げ応力	82		\bigcirc	
	P2	ドライウェルベント開口部		一次膜応力 + 一次曲げ応力	227		\bigcirc	

6．参照図書
（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－1－10 ドライウェルベント開口部の強度計算書」

VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書

目 次

VI－3－3－6－2－1 ダウンカマ及びベントヘッダの基本板厚計算書
VI－3－3－6－2－2 ダウンカマの強度計算書
VI－3－3－6－2－3 ベントヘッダの強度計算書
VI－3－3－6－2－4 ベント管の基本板厚計算書
VI－3－3－6－2－5 ベント管の強度計算書
VI－3－3－6－2－6 ベント管ベローズの強度計算書
VI－3－3－6－2－7 原子炉格納容器安全設備の強度計算書
VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 の強度計算書

VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書
VI－3－3－6－2－10 圧力逃がし装置の強度計算書
VI-3-3-6-2-2 ダウンカマの強度計算書

まえがき

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－3－1－5重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－ 2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。
評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

機器名称	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	$\begin{aligned} & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時			条件	DB 条件		SA 条件						
			$\left\|\begin{array}{\|r\|} \hline \text { アップ } \\ \text { の有無 } \end{array}\right\|$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	$\begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{kPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{kPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
ダウンカマ	既設	有	無	DB－2	DB－2	SA－2	有	427	171	854	200	－	S55 告示	設計•建設規格又は告示	－	SA－2

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．強度評価 8
4.1 強度評価方法 8
4．2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 使用材料の許容応力評価条件 8
4．2．4 設計荷重 12
4.3 計算方法 13
4．3．1 応力評価点 13
4．3．2 解析モデル及び諸元 14
4．3．3 応力計算方法 17
4．4 計算条件 17
4.5 応力の評価 17
5．評価結果 18
5.1 重大事故等対処設備としての評価結果 18
6．参照図書 20

1．概要
本計算書は，ダウンカマの強度計算書である。
ダウンカマは，設計基準対象施設のダウンカマを重大事故等クラス 2 管として兼用する機器 である。

以下，重大事故等クラス 2 管として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，ダウン カマの強度評価を示す。

なお，本計算書においては，重大事故等時における荷重に対して，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項

2.1 構造計画

 ダウンカマの構造計画を表 2－1に示す。| 計画の概要 | | 概略構造図 | |
| :---: | :---: | :---: | :---: |
| 基礎•支持構造 | 主体構造 | | |
| ダウンカマは，サプレッ ションチェンバ内に設置 され，ベント管及びベン トノズルを介してドライ ウェルに支持される。
 鉛直方向荷重及び水平方向荷重は，ベント管，ベ ントノズル及びドライウ エルを介して原子炉建屋 に伝達される。 | 外径 \square mm，板厚 \square mm
 の鋼製管状構造物であ り，ベントヘッダに接続する。 | | （外径） |

2．2 評価方針

ダウンカマの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」にて設定した荷重及び荷重の組合せ並びに許容限界に基 づき，「3．評価部位」にて設定する箇所において重大事故等時における温度，圧力による応力等が許容限界内に収まることを，「4．強度評価」にて示す方法にて確認することで実施す る。確認結果を「5．評価結果」に示す。

ダウンカマの強度評価フローを図2－1に示す。

図 2－1 ダウンカマの強度評価フロー

2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和 55 年 10 月 30 日 通商産業省告示第 5 0 1 号）（以下「告示第 5 0 1 号」という。）
（2）J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
D 1	直径	mm
E	縦弾性係数	MPa
ℓ_{i}	長さ（ $\mathrm{i}=1,2)$	mm
$\mathrm{MsA}_{\text {A }}$	機械的荷重（SA 短期機械的荷重）	－
P SA	圧力（SA 短期圧力）	kPa
S	許容引張応力	MPa
Su	設計引張強さ	MPa
S_{y}	設計降伏点	MPa
S_{y}（RT）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t_{1}	厚さ	mm
T	温度	${ }^{\circ} \mathrm{C}$
T SA	温度（SA 短期温度）	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
最高使用圧力	kPa	-	-	整数位 *
温度	C	-	-	整数位 $^{* 2}$
許容応力 ${ }^{* 1}$	MPa	小数点以下第 1 位	切捨て	整数位
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
長さ	mm	-	-	整数位

注記＊1 ：告示第 5 0 1 号別表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値として算出する。得られた値を SI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。 ＊2：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。

3．評価部位
ダウンカマの形状及び主要寸法を図3－1に，使用材料及び使用部位を表 3－1 に示す。
\square
（1）ダウンカマ
（3）ベントヘッダリング
D 1

t_{1}

（2）ベントヘッダ
（4）ダウンカマリング
$\ell_{1}=\square$

（単位：mm）
図3－1 ダウンカマの形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料
ダウンカマ	SGV49（SGV480）

4．強度評価

4.1 強度評価方法
（1）ダウンカマは，サプレッションチェンバ内に設置され，ベント管及びベントノズルを介してドライウェルに支持された構造であり，鉛直方向荷重及び水平方向荷重はベント管，ベントノズル及びドライウェルを介して原子炉建屋に伝達される。

ダウンカマの強度評価として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」において設定された荷重を用いて，「4．3 計算方法」に示す方法に従い強度評価を行う。
（2）強度評価に用いる寸法は，公称値とする。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ダウンカマの荷重の組合せ及び許容応力状態のらち，重大事故等対処設備の評価に用 いるものを表 4－1 に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

4．2．2 許容応力

ダウンカマの許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管 の強度計算方法」に基づき表 4－2 及び表 4－3 に示すとおりとする。

4．2．3 使用材料の許容応力評価条件
ダウンカマの使用材料の許容応力評価条件のうち，重大事故等対処設備の評価に用い るものを表 4－4 及び表 4－5に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	機器等 の区分	荷重の組合せ＊1		許容応力状態＊3
原子炉格納施設	圧力低減設備 その他の安全設備	ダウンカマ	重大事故等 クラス2管	$\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$	$\begin{aligned} & (V(S)-1) \\ & (V(S)-2) * 2 \end{aligned}$	重大事故等時＊4

注記＊1：（ ）は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。
＊2：V（S）－2 は死荷重，設計圧力，逃がし安全弁作動時荷重及びチャギング荷重を考慮した評価となるが，ダウンカマは逃がし安全弁作動時荷重を考慮しないことからV（S）－1の荷重の組合せに包絡されるため，荷重の組合せとして考慮せず評価しない。
＊ $3:$ ダウンカマは重大事故等クラス2管（クラス2管）であるが，重大事故等時の原子炉格納容器の機能維持を確認する意味で，重大事故等クラス2容器（原子炉格納容器）に準じた許容応力状態及び荷重の組合せを適用する。
＊4：重大事故等時として IV_{A} の許容限界を用いる。

表4－2 許容応力（告示第501号）			

注記＊：重大事故等時としてIVAの許容限界を用いる。
表4－3 許容応力（設計•建設規格）

注記 $* 1$ ：重大事故等時としてIVAの許容限界を用いる。
＊2：純曲げによる全断面降伏荷重と初期降伏荷重の比又は1．5 のいずれか小さい方の値（ α ）を用いる。

[^50]表4－4 告示第501号に基づく強度評価に用いる使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ダウンカマ	SGV49	周囲環境温度	200	－	225	421	－

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ダウンカマ	SGV49（SGV480）	周囲環境温度	200	－	226	422

4．2．4 設計荷重

（1）重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 P SA	854 kPa （SA 短期）
温度 T SA	$200^{\circ} \mathrm{C}(\mathrm{SA}$ 短期）

（2）水力学的動荷重
重大事故等対処設備としてのチャギング荷重は
N となり，設計基準対象施設と しての荷重に包絡されるため以下のとおりとする。

横方向荷重

4.3 計算方法

4．3．1 応力評価点
ダウンカマの応力評価点を表 4－6及び図 4－1 に示す。各応力評価点の応力は，図 4－2 に示す解析モデルを用いて計算する。

表 4－6 応力評価点

応力評価点番号	応力評価点
P 1	ダウンカマ $($ 一般部 $)$
$\mathrm{P}^{*}{ }^{*}$	ダウンカマ $($ 一般部以外 $)$

注記＊：既工認（参照図書（1））の応力評価点 P1～P3 を包絡する。ベントヘッダとダウンカマ の接続部及びダウンカマとダウンカマリングの接続部を含む範囲の最大応力を評価す る。

図 4－1 ダウンカマの応力評価点

4．3．2 解析モデル及び諸元

ダウンカマの解析モデルを図 4－2 に，解析モデルの概要を以下に示す。また，機器の諸元を表4－7に示す。
（1）ベント管，ベントヘッダ及びダウンカマは，その径に対して板厚が比較的薄く，また，各機器の挙動が相互に影響し合うことを考慮し，各部位の発生応力を詳細にみるため， ベント系全体をシェル要素でモデル化した FEM モデルを用いる。また，各所の補強部材のうち，ベント管ガセット，ベントヘッダリング及びダウンカマリング等の板材は シェル要素によりモデル化し，筋交い，下部支持サポート及びベントヘッダサポート等の棒材は，はり要素によりモデル化する。
（2）拘束条件は，ベントヘッダサポートとサプレッションチェンバ強め輪の結合部の

> なお, ベントヘッダサポートとサプレッションチェン
（3）解析コードは「 A N S Y S 」を使用する。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

図 4－2 解析モデル

表 4－7 機器の諸元

項目	記号	単位	入力値
材質	-	-	
機器質量	-	kg	
温度条件	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	
ポアソン（SGV480）			
ボア比	v	-	
要素数	-	-	
節点数	-	-	

4．3．3 応力計算方法

ダウンカマの応力計算方法について以下に示す。
（1）重大事故等対処設備としての応力計算
重大事故等対処設備としての応力は，「4．3．2 解析モデル及び諸元」に示す解析モデ ルにより算出し評価する。
4.4 計算条件

応力評価に用いる荷重を，「4．2 荷重の組合せ及び許容応力」に示す。
4.5 応力の評価

「4．3 計算方法」で求めた各応力が表 4－2 及び表 4－3 に示す許容応力以下であること。

5．評価結果
5.1 重大事故等対処設備としての評価結果

ダウンカマの重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値は許容応力を満足している。
（1）強度評価結果
強度評価結果を表 5－1 及び表5－2に示す。
表 5－1 告示第501号に基づく重大事故等時に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SA}^{\prime}}+\mathrm{M}_{\mathrm{SA}}$ ）

評価対象設備	評価部位		応力分類	重大事故等時		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ダウンカマ	P1	ダウンカマ（一般部）		一次一般膜応力	51	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	51	379	\bigcirc	
	P2	ダウンカマ（一般部以外）	一次膜応力 + 一次曲げ応力	126	379	\bigcirc		

6．参照図書
（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－3－5 ダウンカマの強度計算書」
VI-3-3-6-2-3 ベントヘッダの強度計算書

まえがき

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－3－1－5重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－ 2－8 重大事故等クラス 2 容器の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

			$\frac{N}{\omega}$
			｜
			$\begin{aligned} & \hline 14 \\ & \text { 临 } \\ & 60 \\ & 00 \\ & \hline 0 \\ & \hline \end{aligned}$
			1
	$\begin{aligned} & \stackrel{H}{*} \\ & \stackrel{2}{*} \\ & \stackrel{\rightharpoonup}{s} \end{aligned}$	薪	$\stackrel{\text { ¢ }}{ }$
			せ
	$\begin{aligned} & \stackrel{+}{*} \\ & \text { *K } \\ & \end{aligned}$	薪	ミ
		出京空	$\stackrel{\text {－}}{ }$
			［
			$\frac{N}{N}$
	\％ $\begin{gathered}\text { N } \\ \end{gathered}$		กิ
			$\begin{aligned} & \text { N} \\ & \text { ٌै } \end{aligned}$
			栜
			！ 1
			六込

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．強度評価 10
4.1 強度評価方法 10
4．2 荷重の組合せ及び許容応力 10
4．2．1 荷重の組合せ及び許容応力状態 10
4．2．2 許容応力 10
4．2．3 使用材料の許容応力評価条件 10
4．2．4 設計荷重 16
4.3 計算方法 17
4．3．1 応力評価点 17
4．3．2 解析モデル及び諸元 19
4．3．3 応力計算方法 22
4． 4 計算条件 22
4.5 応力の評価 22
5．評価結果 23
5.1 重大事故等対処設備としての評価結果 23
6．参照図書 26

1．概要
本計算書は，ベントヘッダの強度計算書である。
ベントヘッダは，設計基準対象施設のベントヘッダを重大事故等クラス 2 容器として兼用す る機器である。

以下，重大事故等クラス 2 容器として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」に基づき，ベン トヘッダの強度評価を示す。
なお，本計算書においては，重大事故等時における荷重に対して，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項
2.1 構造計画

2.2 評価方針

ベントヘッダの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算 の基本方針」及び「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において重大事故等時における温度，圧力による応力等が許容限界内に収まることを，「4．強度評価」に て示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

ベントヘッダの強度評価フローを図2－1に示す。

図 2－1 ベントヘッダの強度評価フロー

2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第501号）（以下「告示第501号」という。）
（2）J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格（（以下「設計•建設規格」という。）
（3）鋼構造設計規準（日本建築学会 2005改定）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
D i	直径（ $\mathrm{i}=1,2,3 \cdots)$	mm
f_{b}	許容曲げ応力度	MPa
f c	許容圧縮応力度	MPa
f_{p}	許容支圧応力度	MPa
f s	許容せん断応力度	MPa
f ${ }_{\text {t }}$	許容引張応力度	MPa
E	縦弾性係数	MPa
F	許容応力度の基準値	MPa
ℓ_{i}	長さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
M	曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{MSA}_{\text {A }}$	機械的荷重（SA 短期機械的荷重）	－
$\mathrm{P}_{\text {SA }}$	圧力（SA 短期圧力）	kPa
P	圧力，軸力	kPa，N
S	許容引張応力	MPa
S_{u}	設計引張強さ	MPa
S_{y}	設計降伏点	MPa
S_{y}（ R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t i	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
T	温度	${ }^{\circ} \mathrm{C}$
T SA	温度（SA 短期温度）	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
最高使用圧力	kPa	-	-	整数位 2
温度	C	-	-	整数位 $^{* 2}$
許容応力 ${ }^{* 1}$	MPa	小数点以下第 1 位	切捨て	整数位
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
長さ	mm	-	-	整数位 $^{* 2}$

注記＊1 ：告示第 5 0 1 号別表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値として算出する。得られた値をSI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
設計•建設規格付録材料図表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。
＊2：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。

3．評価部位
ベントヘッダの形状及び主要寸法を図 3－1～図3－3に示す。また，使用材料及び使用部位を表 3－1に示す。
\square
D 1 \square
$\mathrm{t}_{1}=\square$

（単位：mm）

図 3－1 ベントヘッダの形状及び主要寸法

（単位：mm）
図 3－2 ベントヘッダサポートの形状及び主要寸法
\square

（単位：mm）
図 3－3 ベントヘッダサポートのピン及びエンドプレートの形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料	
ベントヘッダ	SGV49（SGV480）	
ベントヘッダサポート（下側）		
ベントヘッダサポート（上側）		
ピン（下側）		
ピン（上側）		
エンドプレート（下側）		
エンドプレート（上側）		

4．強度評価

4.1 強度評価方法
（1）ベントヘッダは，サプレッションチェンバ内に設置され，ベント管及びベントノズル を介してドライウェルに支持された構造であり，鉛直方向荷重及び水平方向荷重はベン ト管，ベントノズル及びドライウェルを介して原子炉建屋に伝達される。

ベントヘッダの強度評価として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」において設定された荷重を用いて，「4．3 計算方法」に示す方法に従い強度評価を行う。
（2）強度評価に用いる寸法は，公称値とする。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ベントヘッダの荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用いるものを表4－1に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

4．2．2 許容応力

ベントヘッダの許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」に基づき表 4－2～表4－4 に示すとおりとする。

4．2．3 使用材料の許容応力評価条件
ベントヘッダの使用材料の許容応力評価条件のうち，重大事故等対処設備の評価に用 いるものを表 4－5～表4－7に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	機器等 の区分	荷重の組合せ ${ }^{* 1}$		許容応力状態 ${ }^{*}{ }^{\text {a }}$
原子炉格納施設	圧力低減設備 その他の安全設備	ベントヘッダ	重大事故等 クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$	$\begin{aligned} & (V(S)-1) \\ & (V(S)-2) * 2 \end{aligned}$	重大事故等時 ${ }^{* 4}$
		$\begin{gathered} \text { ベントヘッダサポート, ピン } \\ \text { 及びエンドプレート } \end{gathered}$	建物• 構築物	$\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$	$\begin{aligned} & (V(S)-1) \\ & (V(S)-2) * 2 \\ & \hline \end{aligned}$	重大事故等時＊5 ＜短期＞

注記＊1：（ ）は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。
＊2：V（S）－ 2 は死荷重，設計圧力，逃がし安全弁作動時荷重及びチャギング荷重を考慮した評価となるが，ベントヘッダは逃がし安全弁作動時荷重を考慮しないことからV（S）－1の荷重の組み合わせに包絡されるため，荷重の組合せとして考慮せず評価しない。 ＊3：ベントヘッダは重大事故等クラス2容器（クラス2容器）であるが，重大事故等時の原子炉格納容器の機能維持を確認する意味 で，重大事故等クラス2容器（原子炉格納容器）に準じた許容応力状態及び荷重の組合せを適用する。 ＊4：重大事故等時として IV_{A} の許容限界を用いる。
＊5：鋼構造設計規準によるため，＜＞内の許容応力状態を適用する。

表4－2 ベントヘッダの許容応力（告示第501号）		
許容応力状態 応力分類	一次一般膜応力	一次膜応力 + 一次曲げ応力
重大事故等時＊	構造上の連続な部分は0．6•S u ，不連続な部分は S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，AS S 及びHNAについて は，構造上の連続な部分は2•Sと $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方，不連続な部分は 1．2•Sとする。	左欄の 1． 5 倍の値

注記 $*$ ：重大事故等時として IV_{A} の許容限界を用いる。

応力分類	一次一般膜応力	一次膜応力 + 一次曲げ応力
重大事故等時 ${ }^{* 1}$	構造上の連続な部分は0．6•S u ，不連続な部分は S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，AS S 及びHNAについて は，構造上の連続な部分は2•Sと $0.6 \cdot \mathrm{Su}$ の小さい方，不連続な部分は 1．2•Sとする。	$\begin{gathered} \text { 左欄の } \\ \alpha^{* 2} \text { 倍の値 } \end{gathered}$

注記 $* 1$ ：重大事故等時として IV_{A} の許容限界を用いる。
＊2：純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値

表4－4
ベントヘッダサポート，ピン及びエンドプレートの許容応力度 許応力状態 引張／ 組合せ せん断 圧縮 曲げ 支圧 短期 $1.5 \cdot \mathrm{f}_{\mathrm{t}}$ $1.5 \cdot \mathrm{f}_{\mathrm{s}}$ $1.5 \cdot \mathrm{f}_{\mathrm{c}}$ $1.5 \cdot \mathrm{f}_{\mathrm{b}}$ $1.5 \cdot \mathrm{f}_{\mathrm{p}}$

表 4－5 告示第501号に基づくベントヘッダの使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ベントヘッダ	SGV49	周囲環境温度	200	－	225	421	－

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\text {y }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
ベントヘッダ	$\begin{gathered} \text { SGV49 } \\ \text { (SGV480) } \end{gathered}$	周囲環境温度	200	－	226	422	－

表4－7 ベントヘッダサポート，ピン及びエンドプレートの使用材料の許容応力評価条件				
評価部材	材料	F (MPa)	S_{y} (MPa)	S_{u} (MPa)
ベントヘッダサポート				
ピン				
エンドプレート				

4．2．4 設計荷重

（1）重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 $P_{\text {SA }}$	854 kPa （SA 短期）
温度 T SA	$200^{\circ} \mathrm{C}(\mathrm{SA}$ 短期）

（2）水力学的動荷重
重大事故等対処設備としてのチャギング荷重は $\square \mathrm{N}$ となり，設計基準対象施設と しての荷重に包絡されるため以下のとおりとする。

横方向荷重

（3）ベントヘッダサポート反力
重大事故等対処設備としての評価における，ベントヘッダサポート反力を表 4－8 及び表 4－9 に示す。

表 4－8 ベントヘッダサポート（下側）反力（重大事故等対処設備）

荷重名称	軸力 分 $\mathrm{P}\left(\times 10^{5} \mathrm{~N}\right)$	曲げモーメント $\mathrm{M}\left(\times 10^{5} \mathrm{~N} \cdot \mathrm{~mm}\right)$
内圧（SA 短期）	2.375	0.2239
ベント系死荷重（SA 短期）	-0.2931	0.03929
チャギング荷重（SA 短期）	± 0.07218	3.025

注記＊：正符号は引張，負符号は圧縮荷重とする。

表 4－9 ベントヘッダサポート（上側）反力（重大事故等対処設備）

荷重名称	軸力＊ $\mathrm{P}\left(\times 10^{5} \mathrm{~N}\right)$	曲げモーメント $\mathrm{M}\left(\times 10^{5} \mathrm{~N} \cdot \mathrm{~mm}\right)$
内圧（SA 短期）	-2.079	1.963
ベント系死荷重（SA 短期）	0.2450	0.1518
チャギング荷重（SA 短期）	± 0.06181	15.75

注記＊：正符号は引張，負符号は圧縮荷重とする。

4． 3 計算方法

4．3．1 応力評価点
ベントヘッダの応力評価点を表 4－10 及び図 4－1 に示す。応力評価点 P1 及び P2 の応力 は，図 4－2 に示す解析モデルを用いて計算する。応力評価点 P3～P8 の応力は，ベントヘ ッダサポートを構成する部材の形状及び応力レベルを考慮し，発生応力が大きくなる部位を選定する。

表 4－10 応力評価点

応力評価点番号	応力評価点
P1	ベントヘッダ（一般部）
P2 ${ }^{*}$	ベントヘッダ（一般部以外）
P3	ベントヘッダサポート（下側）
P4	ピン（下側）
P5	エンドプレート（下側）
P6	ベントヘッダサポート（上側）
P7	ピン（上側）
P8	エンドプレート（上側）

注記＊：既工認（参照図書（1））の応力評価点 P2～P5 を包絡する。ベントヘッダとダウンカマ の接続部，ベントヘッダとベントヘッダサポートリングの接続部及びベントヘッダとベ ントヘッダリングの接続部を含む範囲の最大応力を評価する。

図 4－1 ベントヘッダ及びベントヘッダサポートの応力評価点

4．3．2 解析モデル及び諸元
ベントヘッダの解析モデルを図 4－2 に，解析モデルの概要を以下に示す。また，機器 の諸元を表 4－11に示す。
a．ベント管，ベントヘッダ及びダウンカマは，その径に対して板厚が比較的薄く，また，各機器の挙動が相互に影響し合うことを考慮し，各部位の発生応力を詳細にみるため， ベント系全体をシェル要素でモデル化した FEM モデルを用いるまた，各所の補強部材 のうち，ベント管ガセット，ベントヘッダリング及びダウンカマリング等の板材はシ エル要素によりモデル化し，筋交い，下部支持サポート及びベントヘッダサポート等 の棒材は，はり要素によりモデル化する。
b．拘束条件は，ベントヘッダサポートとサプレッションチェンバ強め輪の結合部の
なお, ベントヘッダサポートとサプレッションチェン

ライウェルの結合部の

各結合部のばね定数は，結合部の形状に応じて算出する。
c．解析コードは「 A N S Y S 」を使用する。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。
\square

図 4－2 解析モデル

表 4－11 機器諸元

項目	記号	単位	入力値
材質	-	-	
機器質量	-	kg	
温度条件	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa 49 （SGV480）	
ポアソン比	v	-	
要素数	-	-	
節点数	-	-	

4．3．3 応力計算方法

ベントヘッダの応力計算方法について以下に示す。
（1）重大事故等対処設備としての応力計算
重大事故等対処設備としての応力評価の概要を以下に示す。
a．応力評価点 P1 及び P2
応力評価点 P1 及び P2 の応力は，「4．3．2 解析モデル及び諸元」に示す解析モデル により算出し評価する。
b．応力評価点 P3～P4
応力評価点 P3～P4 の応力計算方法は，既工認から変更はなく，参照図書（1）に示す とおりである。各荷重による応力は，ベントヘッダサポート（下側），ピン（下側）及 びエンドプレート（下側）の断面性能より評価する。ただし，応力計算に用いる寸法 は，図 3－2 及び図 3－3 に示す寸法とする。
c．応力評価点 P5～P8
応力評価点 P5～P8 の応力計算方法は，応力評価点 P3～P4 と同じとする。各荷重に よる応力は，ベントヘッダサポート（上側），ピン（上側）及びエンドプレート（上側） の断面性能より評価する。ただし，応力計算に用いる寸法は，図 3－2 及び図 3－3 に示 す寸法とする。

4． 4 計算条件

応力評価に用いる荷重を，「4．2 荷重の組合せ及び許容応力」に示す。

4.5 応力の評価

「4．3 計算方法」で求めた各応力が表 4－2～表4－4に示す許容応力以下であること。

5．評価結果
5.1 重大事故等対処設備としての評価結果

ベントヘッダの重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値 は許容応力を満足している。
（1）強度評価結果
強度評価結果を表5－1～表5－3に示す。

評価対 象設備	評価部位		応力分類	重大事故等時		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{aligned} & \text { ベント } \\ & \text { ヘッダ } \end{aligned}$	P1	ベントヘッダ（一般部）		一次一般膜応力	94	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	94	379	\bigcirc	
	P2	ベントヘッダ（一般部以外）	一次膜応力 + 一次曲げ応力	167	379	\bigcirc		

評価対 象設備	評価部位		応力分類	重大事故等時		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{aligned} & \text { ベント } \\ & \text { ヘッダ } \end{aligned}$	P1	ベントヘッダ（一般部）		一次一般膜応力	94	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	94	379	\bigcirc	
	P2	ベントヘッダ（一般部以外）	一次膜応力 + 一次曲げ応力	167	379	\bigcirc		

表 5－3 ベントヘッダサポートの重大事故等時に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SA}_{\mathrm{A}}}+\mathrm{M}_{\mathrm{SA}_{\mathrm{A}}}$ ）

評価対 象設備	評価部位		応力分類	重大事故等時		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{aligned} & \text { ベント } \\ & \text { ヘッダ } \end{aligned}$	P3	ベントヘッダサポート（下側）		組合せ応力度	50		\bigcirc	
	P4	ピン（下側）		組合せ応力度	93		\bigcirc	
	P5	エンドプレート（下側）	組合せ応力度	110	\bigcirc			
	P6	ベントヘッダサポート（上側）	組合せ応力度	51	\bigcirc			
	P7	ピン（上側）	組合せ応力度	81	\bigcirc			
	P8	エンドプレート（上側）	組合せ応力度	112	\bigcirc			

6．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－3－4 ベントヘッダの強度計算書」
VI-3-3-6-2-5 ベント管の強度計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．強度評価 7
4.1 強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．2．1 荷重の組合せ及び許容応力状態 7
4．2．2 許容応力 7
4．2．3 使用材料の許容応力評価条件 7
4．2．4 設計荷重 10
4.3 計算方法 11
4．3．1 応力評価点 11
4．3．2 解析モデル及び諸元 12
4．3．3 応力計算方法 15
4． 4 計算条件 15
4.5 応力の評価 15
5．評価結果 16
5.1 重大事故等対処設備としての評価結果 16
6．参照図書 18

1．概要
本計算書は，ベント管の強度計算書である。
ベント管は，設計基準対象施設のベント管を重大事故等クラス 2 容器として兼用する機器で ある。

以下，重大事故等クラス 2 容器として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」に基づき，ベント管の強度評価を示す。

なお，本計算書においては，重大事故等時における荷重に対して，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項
2.1 構造計画

ベント管の構造計画を表 2－1に示す。

2．2 評価方針

ベント管の応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」に て設定する箇所において重大事故等時における温度，圧力による応力等が許容限界内に収ま ることを，「4．強度評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

ベント管の強度評価フローを図 2－1 に示す。

図 2－1 ベント管の強度評価フロー

2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第501号）（以下「告示第501号」という。）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
D i	直径（ $\mathrm{i}=1,2,3$ ）	mm
E	縦弾性係数	MPa
$\mathrm{M}_{\text {S }}$	機械的荷重（SA 短期機械的荷重）	－
$\mathrm{P}_{\text {SA }}$	圧力（SA 短期圧力）	kPa
S	許容引張応力	MPa
S_{u}	設計引張強さ	MPa
S_{y}	設計降伏点	MPa
S_{y}（ R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t i	厚さ（ $\mathrm{i}=1,2,3)$	mm
T	温度	${ }^{\circ} \mathrm{C}$
T SA	温度（SA 短期温度）	${ }^{\circ} \mathrm{C}$
v	ポアソン比	－
A S S	オーステナイト系ステンレス鋼	－
HNA	高ニッケル合金	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
最高使用圧力	kPa	-	-	整数位 *
温度	C	-	-	整数位 $^{* 2}$
許容応力 ${ }^{* 1}$	MPa	小数点以下第 1 位	切捨て	整数位
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
長さ	mm	-	-	整数位

注記 $1 *$ ：告示第 5 0 1 号別表に記載された温度の中間における許容引張応力，設計降伏点及び設計引張強さは，比例法により補間した値の小数点以下第 2 位を切り捨て，小数点以下第 1 位ま での値として算出する。得られた値を SI 単位に換算し，SI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
＊2：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。

3．評価部位
ベント管の形状及び主要寸法を図 3－1 に示す。また，使用材料及び使用部位を表3－1に示す。
\square
（1）ベント管
（2）ベントヘッダ
（3）真空破壊装置スリーブ

（4）補強リブ
$\mathrm{D}_{3}=\square$
$\mathrm{t}_{3}=\square$
（単位：mm）

図 3－1 ベント管の形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料
ベント管	SGV49
真空破壊装置スリーブ	

4．強度評価
4.1 強度評価方法
（1）ベント管は，ベントノズルを介してドライウェルに支持された構造であり，鉛直方向荷重及び水平方向荷重は，ドライウェルを介して原子炉建屋に伝達される。

ベント管の強度評価として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関す る説明書」において設定された荷重を用いて，「4．3 計算方法」に示す方法に従い強度評価を行う。
（2）強度評価に用いる寸法は，公称値とする。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
ベント管の荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用い るものを表 4－1に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

4．2．2 許容応力

ベント管の許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき表 4－2 に示すとおりとする。

4．2．3 使用材料の許容応力評価条件
ベント管の使用材料の許容応力評価条件のうち，重大事故等対処設備の評価に用いる ものを表 4－3に示す。
表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	機器等 の区分	荷重の組合せ＊1		許容応力状態
原子炉格納施設	圧力低減設備 その他の安全設備	ベント管	重大事故等 クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$	$\begin{aligned} & (\mathrm{V}(\mathrm{~S})-1) \\ & (\mathrm{V}(\mathrm{~S})-2)^{* 2} \end{aligned}$	重大事故等時 ${ }^{* 3}$

[^51]＊2：V（S）－2 は死荷重，設計圧力，逃がし安全弁作動時荷重及びチヤギング荷重を考慮した評価となるが，ベント管は逃がし安全弁
作動時荷重を考慮しないことからV（S）－1の荷重の組合せに包絡されるため，荷重の組合せとして考慮せず評価しない。 ＊3：重大事故等時としてIVAの許容限界を用いる。
表4－2 許容応力（告示第501号）

	一次一般膜応力	一次膜応力＋一次曲げ応力
重大事故等時＊	構造上の連続な部分は0．6•Su，不連続な部分は S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，AS S 及びHNAについて は，構造上の連続な部分は2•Sと $0.6 \cdot \mathrm{Su}$ の小さい方，不連続な部分は 1.2 •Sとする。	左欄の 1．5倍の値

注記 $*$ ：重大事故時としてIVAの許容限界を用いる。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ベント管	SGV49	周囲環境温度	200	－	225	421	－

4．2．4 設計荷重

（1）重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 P SA 854kPa（SA 短期）
温度 T SA $200^{\circ} \mathrm{C}$（SA 短期）

4． 3 計算方法

4．3．1 応力評価点
ベント管の応力評価点を表 4－4 及び図 4－1 に示す。各応力評価点の応力は，図 4－2 に示 す解析モデルを用いて計算する。

表 4－4 応力評価点

応力評価点番号	応力評価点
P1	ベント管（一般部）
P^{*}	ベント管（一般部以外）
P 3	真空破壊装置スリーブ

注記＊：既工認の応力評価点 P1～P10 を包絡する。ベント管頂部，ベント管底部，ベン ト管ティー継手部，ベント管とベントヘッダの接続部，ベント管と真空破壊装置の接続部及びベント管と補強リブの接続部を含む範囲の最大応力を評価する。

図 4－1 ベント管の応力評価点

4．3．2 解析モデル及び諸元

ベント管の解析モデルを図 4－2 に，機器の諸元を表4－5に示す。解析モデルの概要を以下に示す。
a．ベント管，ベントヘッダ及びダウンカマは，その径に対して板厚が比較的薄く，また，各機器の挙動が相互に影響し合うことを考慮し，各部位の発生応力を詳細にみるため， ベント系全体をシェル要素でモデル化した FEM モデルを用いる。また，各所の補強部材のうち，ベント管ガセット，ベントヘッダリング及びダウンカマリング等の板材は シェル要素によりモデル化し，筋交い，下部支持サポート及びベントヘッダサポート等の棒材は，はり要素によりモデル化する。
b．拘束条件は，ベントヘッダサポートとサプレッションチェンバ強め輪の結合部の
なお, ベントヘッダサポートとサプレッションチェン

バ強め輪は \square また，ベント管とド ライウェルの結合部の

各結合部のばね定数は，結合部の形状に応じて算出する。
c．解析コードは「ANS Y S 」を使用する。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。
\square

図 4－2 解析モデル

表 4－5 機器諸元

項目	記号	単位	
材質	-	-	
機器質量	-	kg	
温度条件	T	${ }^{\circ} \mathrm{C}$	
縦弹性係数	E	MPa	
ポアソン49			
ポアン比	v	-	
要素数	-	-	
節点数	-	-	

4．3．3 応力計算方法

ベント管の応力計算方法について以下に示す。
（1）重大事故等対処設備としての応力計算
重大事故等対処設備における応力は，応力評価点 P1～P3 に対し，「4．3．2 解析モデル及び諸元」に示す解析モデルにより算出し評価する。

4． 4 計算条件
応力評価に用いる荷重を，「4．2 荷重の組合せ及び許容応力」に示す。
4.5 応力の評価

「4．3 計算方法」で求めた各応力が，表4－2に示す許容応力以下であること。

5．評価結果
5.1 重大事故等対処設備としての評価結果

ベント管の重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値は許容応力を満足している。
（1）強度評価結果
強度評価結果を表5－1 に示す。
表 5－1 告示第501号に基づく重大事故等時に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SA}}+\mathrm{M}_{\mathrm{SA}}$ ）

		\bigcirc	\bigcirc	\bigcirc	\bigcirc
		冎	¢	\％	¢
		$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{+}{\infty}$	ミ
			4雨和用次一+4雨期次一		
		Σ		®	๕
			$\frac{\text { 处迫 }}{\frac{1}{4}}$		

6．参照図書
（1）女川原子力発電所第2号機 第2回工事計画認可申請書添付書類「IV－3－1－1－14 ベント管の強度計算書」
VI-3-3-6-2-6 ベント管ベローズの強度計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2． 2 評価方針 3
2.3 適用規格•基準等 3
2.4 記号の説明 4
2.5 計算精度と数値の丸め方 5
3．評価部位 6
4．設計条件 8
4.1 設計荷重 8
4.2 設計用地震力 9
4.3 各荷重の繰返し回数 9
5．強度評価 10
5.1 評価方法 10
5.2 設計荷重によるベント管ベローズの変位 10
5.3 地震荷重によるベント管ベローズの変位 10
5．3．1 ドライウェルベント開口部とサプレッションチェンバ基礎版の相対変位 10
5．3．2 ベント管の変位 10
5．3．3 サプレッションチェンバの変位 11
5．3．4 ベント管ベローズの変位 11
5.4 各荷重によるベント管ベローズの変位 12
5.5 各荷重によるベント管ベローズの全伸縮量 12
5.6 疲労評価 13
6．評価結果 13
7．参照図書 15

1．概要
本計算書は，ベント管ベローズの強度計算書である。
ベント管ベローズは，設計基準対象施設のベント管ベローズを重大事故等クラス 2 容器とし て兼用する機器である。

以下，重大事故等クラス 2 容器として，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」に基づき，ベント管ベローズの強度評価を示す。 なお，本計算書においては，重大事故等時における荷重に対して，平成2年5月24日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））（以下「既工認」という。） に示す手法に従い強度評価を行う。

2．一般事項
2.1 構造計画

ベント管ベローズの構造計画を表 2－1 に示す。

表 2－1 構造計画		
計画	の概要	概略構造図
基礎•支持構造	主体構造	
ベント管ベローズは， 一端をベント管に，他端をサプレッションチ ェンバに支持される。 ベント管ベローズは， $\begin{aligned} & \text { ドライウェルとサプレ } \\ & \text { ッションチェンバとの } \end{aligned}$ 相対変位を吸収するた めに設けられたもので ある。	ベント管ベローズは，有効径 \square nm ，板厚 mm のベローズを 2 本直列に連結した構造で あり，ベローズには補強リングが取り付けら れている。 \square	

2．2 評価方針

ベント管ベローズの評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」にて設定した荷重及び荷重の組合せに基づき，「3．評価部位」にて設定する箇所にお いて重大事故等時における温度，圧力及び地震荷重による変位の繰返し回数が許容限界内に収まることを，「5．評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

ベント管ベローズの評価フローを図 2－1 に示す。

図 2－1 ベント管ベローズの評価フロー

2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第501号）（以下「告示第501号」という。）

2． 4 記号の説明

	記号	記号の説明	単位
	b	ベント管ベローズの波のピッチの 2 分の1	mm
	C	ベント管ベローズの層数	－
	D	ベント管ベローズの有効径	mm
	E	ベント管ベローズの縦弾性係数	MPa
	h	ベント管ベローズの波の高さ	mm
	ℓ_{i}	長さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
	L	ベント管ベローズの長さ	mm
	n	ベント管ベローズの波数の 2 倍の値	－
	N ${ }_{1}$	許容繰返し回数	－
	N_{2}	設計荷重又は地震荷重の繰返し回数	－
	P	圧力	kPa
	$\mathrm{P}_{\text {SA }}$	圧力（SA 短期圧力）	kPa
\bigcirc	R_{i}	半径（ $\mathrm{i}=1,2,3 \cdots)$	mm
0	S d	弾性設計用地震動S d により定まる地震力	－
0 \cdots \cdots	S s	基準地震動S s により定まる地震力	－
¢	t_{i}	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
p	T SA	温度（SA 短期温度）	${ }^{\circ} \mathrm{C}$
5	δ	変位	mm
（1）	θ i	角度（ $\mathrm{i}=1,2,3)$	－
N	σ	応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字6桁以上を確保する。
表示する数値の丸め方は表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
最高使用圧力	kPa	－	－	整数位＊
温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
長さ	mm	－	－	整数位＊
全伸縮量	mm	有効数字 5 桁目	切上げ	有効数字 4 桁
許容繰返し回数	－	有効数字 5 桁目	切捨て	有効数字 4 桁
疲労累積係数	－	有効数字 4 桁目	切上げ	有効数字 3 桁

注記＊：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。

3．評価部位
ベント管ベローズの形状及び主要寸法を図 3－1 及び図 3－2 に，使用材料及び使用部位を表 3－1 に示す。

（1）ドライウェル
（4）サプレッションチェンバ

（2）ベント管
（3）ベント管ベローズ

図 3－1 ベント管ベローズの形状及び主要寸法（単位：mm）

図 3－2 ベント管ベローズの形状及び主要寸法（単位：mm）

表 3－1 使用材料表

使用部位	使用材料
ベント管ベローズ	SUS316L

4．設計条件

4.1 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度，試験圧力，通常運転時温度及び基準温度は，既工認（参照図書（1））からの変更はなく，次のとおり である。
a．最高使用圧力及び最高使用温度
（a）ドライウェル
内圧 427 kPa
外圧 13.7 kPa
温度 $171^{\circ} \mathrm{C}$
（b）サプレッションチェンバ
内圧 427 kPa

外圧 13.7 kPa
温度 $\quad 104^{\circ} \mathrm{C}$
b．試験圧力 481 kPa
c．通常運転時温度
（a）ドライウェル $57^{\circ} \mathrm{C}$
（b）サプレッションチェンバ $32^{\circ} \mathrm{C}$
d．基準温度 $\quad 10^{\circ} \mathrm{C}$
（2）重大事故等対処設備としての設計荷重
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。
（a）ドライウェル
内圧 P SA 854kPa
温度T sa $200^{\circ} \mathrm{C}$
（b）サプレッションチェンバ
内圧 PsA
854 kPa
温度 T SA
$200^{\circ} \mathrm{C}$

4． 2 設計用地震力

サプレッションチェンバ及びベント管の設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」の応答解析に基づき算出した地震力を用いる。

4.3 各荷重の繰返し回数

各荷重の繰返し回数は，表 4－1 に示すとおりである。

表 4－1 各荷重の繰返し回数

運転状態	荷重	回数
I，II	最高使用圧力（外圧）	240
	熱荷重（通常運転時）	
III	－	－
IV	最高使用圧力（内圧）	1
	熱荷重（事故時）	
V	重大事故等時圧力	1
	重大事故等時温度	
試験状態	試験圧力	100
－	地震荷重S d	590
－	地震荷重S s	340

5．強度評価

5.1 評価方法

（1）ベント管ベローズの強度評価は，参照図書（1）に示す既工認の手法に従い疲労評価を行 う。
（2）疲労評価に用いる寸法は，公称値を用いる。
（3）構造概略図を表2－1に示す。
5.2 設計荷重によるベント管ベローズの変位

設計荷重によるベント管ベローズの変位の計算方法は，参照図書（1）に定めるとおりである。設計荷重によるベント管ベローズの変位を表 5－1に示す。
5.3 地震荷重によるベント管ベローズの変位

5．3．1 ドライウェルベント開口部とサプレッションチェンバ基礎版の相対変位
ドライウェルベント開口部とサプレッションチェンバ基礎版の相対変位は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」より求める。
（1）地震荷重 S d に対して
鉛直方向変位 $\delta \mathrm{SdV}$

$$
\delta \mathrm{s} \mathrm{dv}=0.2 \mathrm{~mm}
$$

水平方向変位 δ_{SdH}

$$
\delta \mathrm{s} \mathrm{dH}=3.7 \mathrm{~mm}
$$

（2）地震荷重 S s に対して
鉛直方向変位 $\delta \mathrm{s} \mathrm{sv}$

$$
\delta_{\mathrm{s} \mathrm{sv}}=0.2 \mathrm{~mm}
$$

水平方向変位 $\delta \mathrm{s} \mathrm{s} \mathrm{H}$

$$
\delta \mathrm{s} \mathrm{sH}=8.0 \mathrm{~mm}
$$

5．3．2 ベント管の変位
ベント管の変位は，添付書類「VI－2－9－4－2 ベント管の耐震性についての計算書」に示す解析モデルを用いた応答解析より求める。
（1）地震荷重 S d に対して
鉛直方向変位 $\mathrm{V} \delta \mathrm{SdV}$

$$
\mathrm{v} \delta \mathrm{~s} \mathrm{dv}=0.8248 \mathrm{~mm}
$$

水平方向変位 $\mathrm{V} \delta \mathrm{SdH}$
$\mathrm{v} \delta \mathrm{SdH}=3.737 \mathrm{~mm}$
（2）地震荷重 S s に対して
鉛直方向変位 $\mathrm{V} \delta \mathrm{Ss} \mathrm{V}$
$\mathrm{v} \delta_{\mathrm{s} \mathrm{s} \mathrm{v}}=1.632 \mathrm{~mm}$
水平方向変位 $\mathrm{V} \delta \mathrm{SsH}$
$\mathrm{v} \delta_{\mathrm{s} \mathrm{s} \mathrm{H}}=8.024 \mathrm{~mm}$

5．3．3 サプレッションチェンバの変位
サプレッションチェンバの変位は，添付書類「VI－2－9－2－1－2 サプレッションチェン バの耐震性についての計算書」に示す解析モデルを用いた応答解析より求める。
（1）地震荷重 S dに対して
鉛直方向変位 $\mathrm{S} \delta \mathrm{SdV}$
$\mathrm{s} \delta \mathrm{s} \mathrm{dV}=2.794 \mathrm{~mm}$
水平方向変位 $\mathrm{s} \delta \mathrm{SdH}$
$\mathrm{s} \delta \mathrm{sdH}=4.106 \mathrm{~mm}$
（2）地震荷重 S s に対して
鉛直方向変位 $\delta_{\mathrm{S}} \mathrm{Ss}^{2}$
$\mathrm{s} \delta \mathrm{s} \mathrm{s} \mathrm{V}=5.151 \mathrm{~mm}$
水平方向変位 ${ }^{\circ} \delta_{\mathrm{S} \mathrm{s} \mathrm{H}}$
$\mathrm{s} \delta \mathrm{s} \mathrm{sH}=8.421 \mathrm{~mm}$

5．3．4 ベント管ベローズの変位
（1）地震荷重 S d に対して
a．軸方向変位
$\delta_{\mathrm{sX}}=\left(\delta_{\mathrm{sdH}}+_{\mathrm{V}} \delta_{\mathrm{SdH}}+\mathrm{s}_{\mathrm{sdH}}\right) \cdot \cos \theta_{1}+\left(\delta_{\mathrm{SdV}}+_{\mathrm{V}} \delta_{\mathrm{SdV}}+\mathrm{s}_{\mathrm{s}} \delta_{\mathrm{SdV}}\right) \cdot \sin \theta_{1}$
$=12.11 \mathrm{~mm}$
b．軸直角方向変位
$\delta_{\mathrm{SY}}=\left(\delta_{\mathrm{sdH}}+_{\mathrm{V}} \delta_{\mathrm{SdH}}+\mathrm{s} \delta_{\mathrm{sdH}}\right) \cdot \sin \theta_{1}+\left(\delta_{\mathrm{SdV}}+{ }_{\mathrm{V}} \delta_{\mathrm{sdV}}+\mathrm{s} \delta_{\mathrm{sdV}}\right) \cdot \cos \theta_{1}$ $=8.054 \mathrm{~mm}$
（2）地震荷重 S s に対して
5．3．4（1）項と同様に求める。計算結果を以下に示す。
軸方向変位
25.22 mm

軸直角方向変位
16． 04 mm
5.4 各荷重によるベント管ベローズの変位

各荷重によるベント管ベローズの変位を表 5－1 に示す。

表 5－1 ベント管ベローズの変位（単位：mm）

荷重名称	軸方向変位	軸直角方向変位 $^{* 2}$
最高使用圧力（内圧）	4.055	-0.7380
重大事故等時圧力	8.198	-1.544
試験圧力	4.476	-0.8429
熱荷重（通常運転時）	4.272	-0.3771
熱荷重（事故時）	13.20	-2.974
重大事故等時温度	2.492	-11.87
地震荷重S d ${ }^{* 1}$	12.11	8.054
地震荷重S s＊1	25.22	16.04

注記 $* 1$ ：地震荷重による変位は片振幅を示す。
＊2：軸直角方向の変位の正符号は上向き，負符号は下向きを示す。
5.5 各荷重によるベント管ベローズの全伸縮量

設計荷重及び地震荷重によるベント管ベローズの全伸縮量を表 5－2 に示す。ベント管ベロ ーズの全伸縮量の計算方法は，参照図書（1）に定めるとおりである。

表 5－2 ベント管ベローズの全伸縮量（単位：mm）

運転状態	荷重名称	全伸縮量
I，II	熱荷重（通常運転時）	6.168
IV	最高使用圧力（内圧）	7． 766
	熱荷重（事故時）	28.15
$\mathrm{V}^{* 1}$	重大事故等時圧力	15.96
	重大事故等時温度	62.17
試験状態	試験圧力	8.714
－	地震荷重S d＊2	105.2
－	地震荷重S s＊2	211.7

注記 $* 1$ ：重大事故等対処設備としての評価圧力及び評価温度を考慮する。
＊2：地震荷重による全伸縮量は両振幅を示す。

5.6 疲労評価

ベント管ベローズに対する疲労評価は，告示第501号第28条の規定に従い行う。

$$
\mathrm{N}_{1}=\left(\frac{1125}{\sigma}\right)^{3.5}
$$

ここに，σ はベント管ベローズに生じる応力であって，以下の式による算出する。

$$
\begin{aligned}
& \sigma= \frac{1.5 \cdot \mathrm{E} \cdot \mathrm{t}_{4} \cdot \delta}{\mathrm{n} \cdot \sqrt{\mathrm{~b}^{\cdot} \mathrm{h}^{3}}}+\frac{\mathrm{P} \cdot \mathrm{~h}}{\mathrm{t}_{4} \cdot \mathrm{c}} \text { (調整リングが付いている場合) } \\
& \sigma=\frac{1.5 \cdot \mathrm{E} \cdot \mathrm{t}_{4} \cdot \delta}{\mathrm{n} \cdot \sqrt{\mathrm{~b} \cdot \mathrm{~h}^{3}}}+\frac{\mathrm{P} \cdot \mathrm{~h}^{2}}{2 \cdot \mathrm{t}_{4}{ }^{2} \cdot \mathrm{c}}
\end{aligned} \text { (調整リングが付いていない場合) }
$$

ここに，
c ：ベローズの層数
$=1$

ベント管ベローズの疲労評価は各荷重による繰返し回数 N_{2} と許容繰返し回数 N_{1} との比の総和（疲労累積係数）が 1 以下であればベント管ベローズの強度は十分である。

6．評価結果
ベント管ベローズの評価結果を表 6－1 に示す。
地震荷重による応力は，地震荷重 S d より地震荷重S s による全伸縮量の方が大きいため，地震荷重S s による全伸縮量を用いて計算することとし，繰返し回数については，地震荷重S s より地震荷重S dによる繰返し回数の方が多いため，地震荷重S d の繰返し回数に対して評価する。

疲労累積係数は評価基準値である 1 を下回っており，強度は十分である。
表 6－1 ベント管ベローズの疲労評価

運転状態	繰返し回数 N_{2}	縦弾性係数 E （MPa）	応力 σ （MPa）	許容繰返し回数 N_{1}	$\mathrm{N}_{2} / \mathrm{N}_{1}$	評価 基準値	判定
I ，II	240	194000	58	9． 573×10^{7}	2． 507×10^{-6}	1	\bigcirc
IV	1	190000	290	3． 425×10^{5}	2． 920×10^{-6}	1	\bigcirc
V	1	183000	606	2． 574×10^{4}	3.885×10^{-5}	1	\bigcirc
試験状態	100	195000	87	2． 362×10^{7}	4． 233×10^{-6}	1	\bigcirc
地震荷重	$590 * 1$	194000	1650 ＊2	7． 738×10^{2}	7.624×10^{-1}	1	\bigcirc
				$\Sigma\left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)$	7.63×10^{-1}	1	\bigcirc
注記＊1：地震荷重 S s より地震荷重 S d による繰返し回数の方が多いため，地震荷重 S d の繰返し回数により評価する。 ＊2：地震荷重 S d より地震荷重 S s による全伸縮量の方が大きいため，地震荷重 S s による全伸縮量を用いて計算する。							

7．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－11 ベント管ベローズの強度計算書」

VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書

VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書
VI－3－3－6－2－8－2 放射性物質拡散抑制系の強度計算書
VI－3－3－6－2－8－3 可搬型窒素ガス供給系の強度計算書

VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書

VI－3－3－6－2－8－1－1 非常用ガス処理系空気乾燥装置の強度計算書
VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－3 非常用ガス処理系フィルタ装置の強度計算書

VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）

VI－3－3－6－2－8－1－2－1 管の基本板厚計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系）
VI-3-3-6-2-8-1-2-2 管の応力計算書 (非常用ガス処理系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分		$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時	DB	SA	条件									
			$\left\lvert\, \begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}\right.$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス	$\begin{array}{\|l\|l\|} \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
SGTS－001	既設	有	有	DB－4	DB－4	SA－2	無	$\begin{aligned} & 13.7 \\ & (\mathrm{kPa}) \end{aligned}$	100	$\begin{aligned} & 13.7 \\ & (\mathrm{kPa}) \end{aligned}$	100	－	S55告示	設計•建設規格又は告示	－	SA－2
SGTS－002	既設	有	有	DB－4	DB－4	SA－2	無	$\begin{aligned} & 23.5 \\ & (\mathrm{kPa}) \end{aligned}$	140	$\begin{aligned} & 23.5 \\ & (\mathrm{kPa}) \end{aligned}$	140	－	S55告示	設計•建設規格又は告示	－	SA－2
SGTS－004	既設	有	有	DB－4	DB－4	SA－2	有	$\begin{aligned} & 23.5 \\ & (\mathrm{kPa}) \end{aligned}$	140	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	171	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 10
3.1 設計条件 10
3.2 材料及び許容応力 184．評価結果20
5．代表モデルの選定結果及び全モデルの評価結果 23

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
（太線）	工事計画記載範囲の管のらち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	らち，他系統の管であって系統の概略を示すために表記する管
O00－000	鳥瞰図番号
0	アンカ

2．2 鳥瞰図

鳥瞰図記号凡例

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 SGTS－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	13.7 kPa $(0.0137 \mathrm{MPa})$	100	318.5	10.3	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
SGTS—OO1

管名称					対	応				評	価	点			
1	1	2	3	4	5	6	7	8	9	11	12	13	14	15	16
	17	18	19	21	22	23	24	25	26	27	28	29	30	31	32
	33	34	35	36	37	38	39	40	41	43	44	45	46	47	48
	49	50	51	52	53	54	55	57	58	110	120	130	140	150	160
	170	180	181	182	901	904									

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		16		31		46		130	
2		17		32		47		140	
3		18		33		48		150	
4		22		34		49		160	
5		23		35		50		170	
6		24		36		51		180	
7		25		37		52		181	
8		26		38		53		182	
12		27		39		54		901	
13		28		40		58		904	
14		29		44		110			
15		30		45		120			

弁部の質量を下表に示す。
弁1
弁2
弁 3
弁 4

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
9		19		41		55	
10		20		42		56	
11		21		43		57	
62		64		66		68	
101		102		103		104	
902		903		67		69	
70		72					
71		73					

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	10			
弁2	20			
弁3	42			
弁4	56			

支持点及び貫通部ばね定数
鳥 瞰 図 SGTS－001
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
＊＊ 4 ＊＊						
＊＊ 6 ＊＊						
16						
23						
25						
28						
33						
36						
44						
47						
50						
58						
901						
＊＊ 902 ＊＊						
＊＊903＊＊						
904						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。鳥 瞰 図 SGTS－004

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	854 kPa $(0.854 \mathrm{MPa})$	171	318.5	10.3	STS410

[^52]
設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
SGTS－004

0 y（重）$Z-Z-$ I－$-8-Z-9-\varepsilon-\varepsilon-I \Lambda \quad$（9）$\quad$ O
配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		28		55		82		109	
2		29		56		83		110	
3		30		57		84		111	
4		31		58		85		112	
5		32		59		86		113	
6		33		60		87		114	
7		34		61		88		115	
8		35		62		89		116	
9		36		63		90		117	
10		37		64		91		118	
11		38		65		92		119	
12		39		66		93		120	
13		40		67		94		121	
14		41		68		95		122	
15		42		69		96		123	
16		43		70		97		300	
17		44		71		98		301	
18		45		72		99		800	
19		46		73		100		901	
20		47		74		101		902	
21		48		75		102		903	
22		49		76		103		904	
23		50		77		104		905	
24		51		78		105		906	
25		52		79		106			
26		53		80		107			
27		54		81		108			

支持点及び貫通部ばね定数
鳥 瞰 図 SGTS－004
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	1						
	5						
	8						
	13						
	16						
	20						
	＊＊ 27 ＊＊						
	28						
	＊＊ 33 ＊＊						
	34						
（1）	37						
N	＊＊ 37 ＊＊						
\uparrow	41						
$\underset{\sim}{\sim}$	＊＊ 41 ＊＊						
$\stackrel{1}{5}$	＊＊ 46 ＊＊						
（1）							
N	＊＊ 53 ＊＊						
	＊＊ 57 ＊＊						
	＊＊ 61 ＊＊						
	＊＊ 65 ＊＊						
	＊＊ 69 ＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図 SGTS－004
支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図
SGTS－O 04

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
904						
＊＊ 904 ＊＊						
905						
906						

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	STS410	100

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	STS 410	100

4．評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
S G T S－ 001	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { p r m (1) } \\ & \text { Sprm (2) } \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S p r m（1），S p r m（2）はそれぞれ，告示第 5 0 1 号第56条第1号（イ），（ロ）に基づき計算した
評価結果
O 2 （5）VI－3－3－6－2－8－1－2－2（重）R 0
下表に示すとおり最大応力はそれぞれの許容値以下である。

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
SGTS－ 001	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
下表に示すとおり最大応力はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管
告示第 501 号第 56 条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$
S G T S－ 004	$\begin{aligned} & 903 \\ & 903 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { p r m (1) } \\ & \text { Sprm (2) } \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	$\begin{aligned} & 102 \\ & 122 \end{aligned}$

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

0 y（重）$Z-7-$－$-8-7-9-\varepsilon-\varepsilon-I \Lambda$

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	SGTS－001	12	32	154	4． 81	\bigcirc	12	32	185	5.78	\bigcirc
2	SGTS－002	15	8	154	19.25	－	15	8	185	23.12	－
3	SGTS－004	115	20	154	7.70	－	115	20	185	9.25	－

注記＊1：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－6－2－8－3 可搬型窒素ガス供給系の強度計算書

VI－3－3－6－2－8－3－1 管の強度計算書（可搬型窒素ガス供給系）

VI－3－3－6－2－8－3－1 管の強度計算書（可搬型窒素ガス供給系）

VI－3－3－6－2－8－3－1－1 管の基本板厚計算書（可搬型窒素ガス供給系）
VI－3－3－6－2－8－3－1－2 管の応力計算書（可搬型窒素ガス供給系）
VI－3－3－6－2－8－3－1－3 管（可搬型）の強度評価書（可搬型窒素ガス供給系）

VI－3－3－6－2－8－3－1－2 管の応力計算書（可搬型窒素ガス供給系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

$\begin{aligned} & \text { 応力計算 } \\ & \text { モデルNNo. } \end{aligned}$	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性 評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline ク ラ ス \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{array}{c\|} \hline \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \\ \hline \end{array}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \mathrm{SA} \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$					
AC－011	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	66	－	－	設計•建設規格	－	SA－2
AC－012	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	66	－	－	設計•建設規格	－	SA－2
AC－013	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	66	－	－	設計•建設規格	－	SA－2
AC－014	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	66	－	－	設計•建設規格	－	SA－2
AC 014	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	－	設計•建設規格	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 8
3.1 設計条件 8
3.2 材料及び許容応力 16
4．評価結果 17
5．代表モデルの選定結果及び全モデルの評価結果 18

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全4モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

ドライウェル 原子炉建屋
ドライウェル入ロ配管より
注記＊1：原子炉格納容器フィルタベント系
解析モデル上本系統に含める。
＊2：解析モデル上
原子炉格納容器調気系に含める。

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 AC－014

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	854 kPa $(0.854 \mathrm{MPa})$	66	60.5	5.5	STS410
2	854 kPa $(0.854 \mathrm{MPa})$	200	60.5	5.5	STS410
3	854 kPa $(0.854 \mathrm{MPa})$	200	34.0	4.5	STS410
4	854 kPa $(0.854 \mathrm{MPa})$	200	34.0	3.4	SUS316LTP

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 AC－014

管名称					対	応			る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
	143														
2	107	108	109	110	111	112	114	115	116	117	118	119	120	121	122
	123	124	125	142											
3	125	126	127	128	129										
4	129	130	131	132											

配管の質量（付加質量含む）
鳥 瞰 図 AC－014
評価点の質量を下表に示す。

0 y（重）$Z-I-\varepsilon-8-Z-9-\varepsilon-\varepsilon-I \Lambda$（c）$\quad Z O$

評価点	質量（kg）								
1		27		53		79		108	
2		28		54		80		109	
3		29		55		81		110	
4		30		56		82		111	
5		31		57		83		115	
6		32		58		84		116	
7		33		59		85		117	
8		34		60		86		118	
9		35		61		87		119	
10		36		62		88		120	
11		37		63		89		121	
12		38		64		90		122	
13		39		65		91		123	
14		40		66		92		124	
15		41		67		93		125	
16		42		68		94		126	
17		43		69		95		127	
18		44		70		96		128	
19		45		71		97		129	
20		46		72		98		130	
21		47		73		99		131	
22		48		74		100		132	
23		49		75		101		142	
24		50		76		102		143	
25		51		77		103			
26		52		78		104			

鳥 瞰 図 AC－014

弁部の質量を下表に示す。
弁1
弁 2

評価点	質量 (kg)	評価点	質量 (kg)
105		112	
106		113	
		114	
		135	
		136	

鳥 瞰 図 AC－014

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	106			
弁2	113			

支持点及び貫通部ばね定数
鳥 瞰 図
AC－0 14

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	1						
	8						
	＊＊ 8 ＊＊						
	10						
	＊＊ 10 ＊＊						
	12						
	＊＊ 12 ＊＊						
\bigcirc	17						
\square	＊＊17＊＊						
，	24						
$\frac{1}{1}$	＊＊ 24 ＊＊						
$\stackrel{\infty}{\infty}$	31						
$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	＊＊ 31 ＊＊						
I	33						
F	＊＊ 33 ＊＊						
	35						
$\begin{gathered} \mathrm{N} \\ 0 \end{gathered}$	＊＊ 35 ＊＊						
	44						
	46						
	48						
	50						
	53						
	62						
	＊＊ 62 ＊＊						
	64						
	＊＊ 64 ＊＊						
	66						
	＊＊ 66 ＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図 AC－014
支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図
AC－0 14

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
136						
142						
143						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	66	S h
STS410	200	103
STS410	200	107
SUS316LTP		

4．評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。重大事故等クラス 2 管であってクラス 2 以下の管
設計•建設規格 PPC－3500による評価結果

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { S p r m (1) } \\ & \text { S p r m (2) } \end{aligned}$	$\begin{aligned} & \text { 許容応力 } \\ & \text { 1. } 5 \cdot 5 \cdot \mathrm{Sh} \\ & 1.8 \cdot \mathrm{Sh} \end{aligned}$
A C－0 14	$\begin{aligned} & 114 \\ & 114 \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { p r m (1) } \\ & \text { Sprm (2) } \end{aligned}$	$\begin{aligned} & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S p r m（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を

[^53]| No． | 配管モデル | 供用状態（E）＊1 | | | | | 供用状態（E）＊2 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 一次応力 | | | | | 一次応力 | | | | |
| | | 評価点 | 計算
 応力
 （ MPa ） | 許容
 応力
 （MPa） | 裕度 | 代表 | 評価
 点 | 計算
 応力
 （MPa） | 許容
 応力
 （MPa） | 裕度 | 代表 |
| 1 | AC－011 | 134 | 22 | 154 | 7.00 | － | 134 | 22 | 185 | 8.40 | － |
| 2 | AC－012 | 71 | 11 | 154 | 14.00 | － | 71 | 11 | 185 | 16.81 | － |
| 3 | AC－013 | 44 | 12 | 154 | 12．83 | － | 44 | 12 | 185 | 15． 41 | － |
| 4 | AC－014 | 114 | 27 | 154 | 5.70 | \bigcirc | 114 | 27 | 185 | 6． 85 | \bigcirc |

注記＊1：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書

VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書

VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書

VI－3－3－6－2－9－1－1 弁の強度計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）

VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）

目 次

VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）

VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の 適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \\ & \hline \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	クラ	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
AC－001	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	171	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	－	－	$\begin{gathered} 427 \\ (\mathrm{kPa}) \end{gathered}$	171	－	－	－	－	設計•建設規格	－	DB－2
	新設	－	－	－	DB－2	SA－2	－	$\begin{gathered} 427 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	171	$\begin{array}{\|c} 854 \\ (\mathrm{kPa}) \\ \hline \end{array}$	200	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	66	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	$\begin{array}{\|c} 854 \\ (\mathrm{kPa}) \end{array}$	200	－	－	設計•建設規格	－	SA－2
AC－002	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{gathered} \hline 427 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	171	$\begin{array}{\|c} 854 \\ (\mathrm{kPa}) \\ \hline \end{array}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	$\begin{gathered} 427 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	104	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	200	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	新設	－	－	－	－	SA－2	－	－	－	$\begin{gathered} 854 \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	200	－	－	設計•建設規格	－	SA－2
	既設	有	無	DB－2	DB－2	SA－2	有	$\begin{array}{\|c\|} \hline 427 \\ (\mathrm{kPa}) \\ \hline \end{array}$	171	$\begin{array}{\|c} 854 \\ (\mathrm{kPa}) \\ \hline \end{array}$	200	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－4	DB－4	SA－2	有	$\begin{array}{\|l\|} \hline 23.5 \\ (\mathrm{kPa}) \\ \hline \end{array}$	140	$\begin{aligned} & 23.5 \\ & (\mathrm{kPa}) \end{aligned}$	140	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－4	DB－4	SA－2	有	$\begin{array}{\|l\|} \hline 23.5 \\ (\mathrm{kPa}) \\ \hline \end{array}$	140	$\begin{gathered} 854 \\ (\mathrm{kPa}) \end{gathered}$	171	－	S55告示	設計•建設規格又は告示	－	SA－2

設計基準対象施設
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 15
3.1 設計条件 15
3．2 材料及び許容応力 18
5．代表モデルの選定結果及び全モデルの評価結果 22
$\stackrel{\circ}{\circ}$

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
（太線）	工事計画記載範囲の管のらち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	らち，他系統の管であって系統の概略を示すために表記する管
O00－000	鳥瞰図番号
0	アンカ

原子炉格納容器調気系概略系統図（そのて）

O 2 (5) VI-3-3-6-2-9-1-2-2 (設) R 0
O 2 (5) VI-3-3-6-2-9-1-2-2 (設) R 0
O 2 (5) VI-3-3-6-2-9-1-2-2 (設) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 AC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	427 kPa $(0.427 \mathrm{MPa})$	104	609.6	31.0	SM400C
2	427 kPa $(0.427 \mathrm{MPa})$	171	609.6	31.0	SM400C
3	427 kPa $(0.427 \mathrm{MPa})$	171	609.6	17.5	SM400C
4	427 kPa $(0.427 \mathrm{MPa})$	171	609.6	17.5	STS410

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
AC－OO2

管名称	対					応	す	る	評	価	点
1	20	21	22	808	902						
2	24	25	804	805	903	924					
3	25	26	27	28	826						
4	48	438	439								

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
20		27		439		826	
21		28		804		902	
25		48		805		903	
26		438		808		924	

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
22	
23	
24	
60	
61	
77	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	23			

支持点及び貫通部ばね定数
鳥 瞰 図
AC－0 02

支持点部のばね定数を下表に示す。

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		Sh
STS410	171	102
SM400C	104	100
	171	100

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	S h	
STS410	171	103
SM400C	104	100
	171	100

O 2 （5）VI－3－3－6－2－9－1－2－2（設）R 0

鳥瞰図	運転 状態	最大応力評価点	最大応力区分＊1	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \hline \mathrm{MPa} \end{gathered}$	
				計算応力 $\begin{aligned} & \mathrm{S} p \mathrm{rm}(1) \\ & \mathrm{S} \text { p rm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$	計算応力 $\begin{aligned} & \text { Sn (a) } \\ & \operatorname{Sn}(\mathrm{b}) \end{aligned}$	許容応力＊2 S a（c） Sa（d）
A C－O 02	$\begin{array}{ll} (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \\ (\mathrm{I}, & \text { II }) \end{array}$	$\begin{aligned} & 28 \\ & 26 \\ & 28 \\ & 26 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn }(b) \end{gathered}$	$\begin{gathered} \hline 16 \\ - \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 100 \\ & - \\ & 120 \end{aligned}$	$\begin{aligned} & \text { - } \\ & 109 \\ & - \end{aligned}$	250 270

 ＊2：S a（c），Sa（d）はそれぞれ，告示第501号第56条第2号（ハ），（ニ）に基づき計算した許容応力を示す。
O 2 （5）VI－3－3－6－2－9－1－2－2（設）R 0

下表に示すとおり最大応力はそれぞれの許容値以下である。

鳥瞰図	供用状態	最大応力 評価点	最大応力区分＊${ }^{* 1}$	一次応力評価 （MPa）			
				$\begin{aligned} & \text { 計算応力 } \\ & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	$\begin{gathered} \text { 許容応力*2 } \\ \text { S a (c) } \\ \text { S a (d) } \end{gathered}$
A C－0 02	$\left.\begin{array}{l} (\mathrm{A}, \mathrm{~B}) \\ (\mathrm{A}, \end{array} \mathrm{B}\right)$	$\begin{aligned} & 28 \\ & 26 \\ & 28 \\ & 26 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(1) } \\ \text { Sn }(a) \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} 18 \\ - \\ 19 \\ - \end{gathered}$	$\begin{aligned} & \hline 150 \\ & - \\ & 180 \\ & - \end{aligned}$	116 － 116	$\begin{aligned} & \overline{250} \\ & - \\ & 270 \end{aligned}$

 ＊ 2 ：S a（c），Sa（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。
5. 代表モデルの選定結果及び全モデルの評価結果
記載している。下表に, 代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	供用状態（ I ，II）＊3					供用状態（ I ，II）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	561	42	250	5.95	－	561	42	270	6． 42	－
2	AC－002	26	109	250	2． 29	\bigcirc	26	109	270	2． 47	\bigcirc

注記＊3：告示第 5 0 1 号第56条第2号（イ）に基づき計算した一次＋二次応力を示す。
＊4：告示第 501 号第 56 条第 2 号（口）に基づき計算した一次 $+二$ 二次応力を示す。

No．	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	415	12	154	12． 83	－	415	12	185	15． 41	－
2	AC－002	28	18	150	8.33	\bigcirc	28	19	180	9． 47	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表
1	AC－001	561	44	250	5.68	－	561	44	270	6.13	－
2	AC－002	26	116	250	2.15	\bigcirc	26	116	270	2． 32	\bigcirc

注記＊3：設計•建設規格 PPC－3530（1）a に基づき計算した一次十二次応力を示す。
＊4：設計•建設規格 PPC－3530（1）b に基づき計算した一次＋二次応力を示す。

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 15
3.1 設計条件 15
3.2 材料及び許容応力 23
4．評価結果 25
5．代表モデルの選定結果及び全モデルの評価結果 27

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
（太線）	工事計画記載範囲の管のらち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	らち，他系統の管であって系統の概略を示すために表記する管
O00－000	鳥瞰図番号
0	アンカ

O 2 (5) VI-3-3-6-2-9-1-2-2 (重) R 0
O 2 (5) VI-3-3-6-2-9-1-2-2 (重) R 0
O 2 (5) VI-3-3-6-2-9-1-2-2 (重) R 0

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 AC－0 02
0 d（重） $2-Z-$－$-6-7-9-\varepsilon-\varepsilon-I \Lambda \quad$ © \quad O

管名称	最高使用圧力 （ MPa ）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\mathrm{mm})}{\text { 外径 }}$	$\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$	材料
1	$\begin{gathered} 23.5 \mathrm{kPa} \\ (0.0235 \mathrm{MPa}) \end{gathered}$	140	318.5	10.3	STS410
2	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	171	318.5	10.3	STS410
3	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	31.0	SM400C
4	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	17.5	SM400C
5	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	609.6	9.5	SM400C
6	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	457． 2	9.5	SM400C
7	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	457． 2	14.3	STS410
8	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	318.5	10.3	STS410
9	$\begin{gathered} 854 \mathrm{kPa} \\ (0.854 \mathrm{MPa}) \end{gathered}$	200	318.5	10.3	STS410

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 AC－0 02

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
10	854 kPa $(0.854 \mathrm{MPa})$	171	318.5	10.3	STS410
11	854 kPa $(0.854 \mathrm{MPa})$	200	609.6	17.5	STS410
12	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	12.7	STS410
13	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	12.7	STS410
14	854 kPa $(0.854 \mathrm{MPa})$	200	406.4	21.4	SF490A

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 AC－002

管名称					対	応	す		る	評	価	点			
1	201	202	203	204	205	261	312	313	314						
2	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152
	153	154	207	208	209	210	211	212	213	214	215	216	217	218	219
	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234
	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249
	250	252	253	254	255	256	257	258	259	306	307	308	309	310	311
	350	351	352	801	802	810	823	824	825	900	904	920			
3	20	21	22	24	25	804	805	808	902	903	924				
4	25	26	27	28	39	323	324	826							
5	2	3	5	6	7	8	9	10	11	12	13	14	15	29	30
	31	32	33	34	35	36	37	38	40	41	42	43	44	45	46
	47	48	100	315	318	319	320	322	323	324	439	803	806	807	809
	811	812	815	826	901	905	908	916	918						
6	100	316													
7	101	316													
8	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115
	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130
	317	354	355	356	357										
9	132	133	414												
10	136	137	353	416	900										
11	48	438	439												
12	438	440													
13	440	441	442	443	444	445	446	447	448	449	450	451	452	453	454
	455	456	457	458	459	460	814	817							
14	460	461													

配管の質量（付加質量含む）
鳥 瞰 図
AC－0 02

評価点の質量を下表に示す。

	評価点	質量（kg）								
	2		108		204		253		451	
	6		109		208		254		452	
	7		110		209		255		453	
	8		111		210		256		454	
	9		112		211		257		455	
	10		113		212		258		456	
	11		114		213		306		457	
	12		115		214		307		458	
	13		116		215		308		459	
	14		117		216		309		460	
	15		118		217		310		461	
	20		119		218		311		801	
	21		120		219		312		802	
	25		121		220		313		803	
	26		122		221		314		804	
	27		123		222		315		805	
	28		124		223		316		806	
	29		125		224		317		807	
	30		126		225		318		808	
	31		127		226		319		809	
	32		128		227		320		810	
	33		129		228		322		811	
	34		133		229		323		812	
	35		136		230		324		814	
	36		137		231		350		815	
	37		138		232		351		817	
（15）	38		139		233		352		823	
	39		140		234		353		824	
	40		141		235		354		825	
	41		142		236		355		826	
	42		143		237		356		900	
	43		144		238		357		901	
	44		145		239		438		902	
	45		146		240		439		903	
	46		147		241		440		904	
	47		148		242		441		905	
	48		149		243		442		908	
	100		150		244		443		916	
	101		151		245		444		918	
	102		152		246		445		920	
	103		153		247		446		924	
	104		154		248		447			
	105		201		249		448			
	106		202		250		449			
	107		203		252		450			

鳥 瞰 図 AC－002
弁部の質量を下表に示す。
弁1 弁2
弁 3
弁 4
弁 5

評価点	質量（kg）								
130		414		205		261		3	
131		415		206		260		4	
132		416		207		259		5	
303		417		262		264		56	
304		418		301		302		57	
305		419		263		265		71	

弁 6

評価点	質量 (kg)
22	
23	
24	
60	
61	
$7 n$	

鳥 瞰 図 AC-002

弁部の寸法を下表に示す。

弁N0．	評価点	外径（mm）	厚さ（mm）	長さ（mm）
弁1	131			
弁2	415			
弁3	206			
弁4	260			
弁5	4			
弁6	23			

支持点及び貫通部ばね定数
鳥 瞰 図 AC－002
支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図 AC－002
支持点部のばね定数を下表に示す。

\square

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	200	S h
SF490A	200	122
SM400C	140	100
STS410	171	102
	200	102

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	200	S h
SF490A	200	123
SM400C	140	103
	171	103
	200	103

[^54]| 鳥瞰図 | 最大応力評価点 | 最大応力区分＊ | 一次応力評価 （MPa） | |
| :---: | :---: | :---: | :---: | :---: |
| | | | 計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$ | 許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot \\ & 2 \cdot \mathrm{Sh} \end{aligned}$ |
| A C－0 02 | $\begin{aligned} & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & \mathrm{S} \text { prm(1) } \\ & \mathrm{S} \text { prm(2) } \end{aligned}$ | $\begin{aligned} & 38 \\ & 38 \end{aligned}$ | $\begin{aligned} & 100 \\ & 120 \end{aligned}$ |

注記＊：S prm（1），Sprm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した
O 2 （5）VI－3－3－6－2－9－1－2－2（重）R 0
注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	AC－001	167	22	100	4． 54	－	167	22	120	5． 45	－
2	AC－002	15	38	100	2． 63	\bigcirc	15	38	120	3． 15	\bigcirc

注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第 5 0 1 号第 56 条第 1 号（ロ）に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊ 1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （ MPa ）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	AC－001	167	23	165	7.17	－	167	23	198	8.60	－
2	AC－002	12	57	150	2． 63	\bigcirc	12	57	180	3.15	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書

VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針
VI－3－別添 1－1－1 竜巻より防護すべき施設を内包する施設の強度計算書
VI－3－別添 1－1－2 原子炉補機冷却海水ポンプの強度計算書
VI－3－別添 1－1－3 高圧炉心スプレイ補機冷却海水ポンプの強度計算書
VI－3－別添 1－1－4 高圧炉心スプレイ補機冷却海水系ストレーナの強度計算書
VI－3－別添 1－1－5 復水貯蔵タンクの強度計算書
VI－3－別添1－1－6 配管及び弁の強度計算書
VI－3－別添 1－1－7 排気筒の強度計算書
VI－3－別添1－1－8 換気空調設備の強度計算書
VI－3－別添 1－1－9 軽油タンクの強度計算書
VI－3－別添1－1－10 波及的影響を及ぼす可能性がある施設の強度計算書
VI－3－別添 1－2 防護対策施設の強度計算の方針
VI－3－別添1－2－1 防護対策施設の強度計算書
VI－3－別添 1－3 屋外重大事故等対処設備の固縛装置の強度計算の方針
VI－3－別添 1－3－1 屋外重大事故等対処設備の固縛装置の強度計算書

VI－3－別添 1－1－1 竜巻より防護すべき施設を内包する施設の強度計算書

目 次

1．鉄筋コンクリート造構造物の強度計算 1
1.1 概要 1
1．2 基本方針 2
1．2．1 位置 2
1．2．2 構造概要 3
1．2．3 評価方針 10
1．2．4 適用規格 13
1．3 強度評価方法 14
1．3．1 記号の定義 14
1．3．2 評価対象部位 17
1．3．3 荷重及び荷重の組合せ 18
1．3．4 許容限界 22
1．3．5 評価方法 24
1．4 評価条件 54
1．4．1 貫通評価 54
1．4．2 裏面剥離評価 55
1．4．3 変形評価 57
1.5 強度評価結果 62
1．5．1 貫通評価 62
1．5．2 裏面剥離評価 63
1．5．3 変形評価 66
2．鋼製構造物の強度計算 67
2.1 概要 67
2.2 基本方針 68
2．2．1 位置 68
2．2．2 構造概要 71
2．2．3 評価方針 74
2．2．4 適用規格 77
2.3 強度評価方法 78
2．3．1 記号の定義 78
2．3．2 評価対象部位 80
2．3．3 荷重及び荷重の組合せ 87
2．3．4 許容限界 89
2．3．5 評価方法 92
2．4 評価条件 104
2．4．1 貫通評価 104
2．4．2 変形評価 104
2．4．3 応力評価 105
2.5 強度評価結果 106
2．5．1 貫通評価 106
2．5．2 変形評価 107
2．5．3 応力評価 110

1．鉄筋コンクリート造構造物の強度計算
1．1 概要
本章では，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」 に示すとおり，竜巻より防護すべき施設を内包する施設のうち，鉄筋コンクリート造構造物である原子炉建屋，タービン建屋，制御建屋，軽油タンク室及び軽油タンク室 （H）が，設計竜巻による設計飛来物の衝突に加え，風圧力による荷重及び気圧差に よる荷重に対し，竜巻時及び竜巻通過後においても，竜巻より防護すべき施設の安全機能を損なわないよう，内包する竜巻より防護すべき施設に設計飛来物が衝突するこ とを防止する機能を有すること及び竜巻より防護すべき施設に必要な機能を損なわな いことを確認するものである。

1.2 基本方針

添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」を踏まえ，各施設の位置を「1．2．1 位置」に，構造概要を「1．2．2 構造概要」に，評価方針を「1．2．3 評価方針」に，適用規格を「1．2．4 適用規格」に示す。

1．2．1 位置

原子炉建屋，タービン建屋，制御建屋，軽油タンク室及び軽油タンク室（H） の位置を図 $1-1$ に示す。

図 $1-1$ 鉄筋コンクリート造構造物の位置図

1．2．2 構造概要

各施設の構造は，添付書類「IV－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示す構造計画とする。

各施設は，主体構造が鉄筋コンクリート造であり，一部鉄骨鉄筋コンクリート造，または一部鉄骨造を有する構造である。

各施設の概略平面図を図 $1-2 \sim$ 図 $1-10$ に示す。

（単位：m）
図 1－2 原子炉建屋の概略平面図（0．P．50．50m）

図 $1-3$ タービン建屋の概略平面図（0．P．15．00m）

（単位：m）

図 1－4 タービン建屋の概略平面図（0．P． 24.80 m ）

注記＊：隣接建屋と近接する外壁は，設計飛来物衝突の可能性が極めて低いことから評価対象外とする。
原子炉建屋との外壁面離隔距離：2100mm
タービン建屋との外壁面離隔距離：2100mm
1 号機制御建屋との外壁面離隔距離： 100 mm
I－－－：評価対象部位（壁）
（単位：m）
図 $1-5$ 制御建屋の概略平面図（0．P．22．95m）

：評価対象部位（スラブ）
（単位：m）
図 1－6 制御建屋の概略平面図（0．P．29． 15 m 及び 0. P． 33.35 m ）

注記＊
$: 800 \times 800$ 開口部には 2 種類の形状の上蓋の鋼製ハッチを適用
図 $1-7$ 軽油タンク室の概略平面図（0．P．14．80m）

PN

図 $1-8$ 軽油タンク室の概略断面図（ $\mathrm{A}-\mathrm{A}$ ，断面）

鋼製ハッチ

図 1－9 軽油タンク室（H）の概略平面図（0．P．14．80m）

図 $1-10$ 軽油タンク室（ H ）の概略断面図（ $\mathrm{B}-\mathrm{B}$＇断面）

1．2．3 評価方針

各施設の強度評価は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」及び「4．2 許容限界」を踏 まえ，竜巻より防護すべき施設が安全機能を損なわないことを，「1．3 強度評価方法」に示す方法により，「1．4 評価条件」に示す評価条件を用いて計算し，「1．5強度評価結果」にて確認する。

各施設の強度評価においては，その構造を踏まえ，設計竜巻荷重とこれに組み合わせる荷重（以下「設計荷重」という。）の作用方向及び伝達過程を考慮し，評価対象部位を設定する。

具体的には，設計飛来物が竜巻より防護すべき施設に衝突する直接的な影響の評価として，施設の外殻を構成する部材に対する衝突評価を行う。また設計飛来物が竜巻より防護すべき施設に衝突もしくは接触する波及的な影響の構造強度評価として，施設の外殻を構成する部材の裏面剥離による飛散の影響評価及び施設 の外殻を構成する部材の転倒及び脱落並びに施設の変形の影響評価を行う。

各施設の強度評価フローを図1－11に示す。
（1）衝突評価
設計荷重に対し，設計飛来物が施設の外殻を構成する部材を貫通しない設計と するために，竜巻より防護すべき施設を内包する施設の外殻を構成する部材であ る建屋の壁及びスラブ，並びにタンク室の頂版が，設計飛来物の貫通を生じない最小厚さ以上であることを計算により確認する。

評価には，「Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute 2011 Rev8）」（以下「NEI07－13」 という。）及び「タービンミサイル評価について（昭和 52 年 7 月 20 日 原子炉安全専門審査会）」で用いられている式を準用し，添付書類「VI－3－別添 1－1 竜巻 への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価式 を用いる。
（2）構造強度評価
設計荷重に対し，施設の外殼を構成する部材自体の転倒及び脱落を生じない設計とするために，竜巻より防護すべき施設を内包する施設の外殻を構成する部材 である建屋の壁及びスラブ，並びにタンク室の頂版が，裏面剥離によるコンクリ ート片の飛散が生じない最小厚さ以上であることを計算により確認する。
評価には，NEI07－13 にて示されている式を準用し，添付書類「VI－3－別添 1－1竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価式を用いる。

なお，施設の外殻を構成する部材のらち，裏面剥離によるコンクリート片の飛散を生じない最小厚さ以上であることの確認が出来ない壁及びスラブにおいては，当該部材が裏面剥離に至るようなひずみを生じないことを解析により確認する。 （以下「裏面剥離評価」という。）
また，建屋の外殻を構成する部材自体の転倒及び脱落を生じない設計とするた めに，設計竜巻荷重及びその他考慮すべき荷重に対し，屋根スラブのスタッド（以下「スタッド」という。），耐震壁，鉄骨鉄筋コンクリート架構及び鉄骨架構に終局状態に至るようなひずみ，変形または応力が生じないことを計算により確認す る。（以下「変形評価」という。）

注記＊1 ：衝突解析については，解析コード「A B A Q U S 」により，評価対象部位を3次元 FEMモデルによりモデル化し評価を実施する。 ＊2：地震応答解析モデルを用いた静的評価を実施する。

図 1－11 強度評価フロー

1．2．4 適用規格

適用する規格，規準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第201号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 原子力発電所耐震設計技術指針重要度分類•許容応力編（JEAG4601•補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合）
－タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）
－U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007
－Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute $2011 \operatorname{Rev} 8$（NEI07－13））
- 日本建築学会2004年 建築物荷重指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 日本建築学会2010年 各種合成構造設計指針•同解説
- 日本建築学会1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
－2015 年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）
- 日本機械学会 1987 年 新版機械工学便覧
- 日本溶接協会 2003 年「動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808」

1．3 強度評価方法

1．3．1 記号の定義
Degen 式による貫通限界厚さの算定に用いる記号を表1－1に，Chang 式による裏面剥離限界厚さの算定に用いる記号を表 $1-2$ に，力学における標準式による荷重及び応力の算定に用いる記号を表1－3に示す。

表 1－1 Degen 式による貫通限界厚さの算定に用いる記号

記号	単位	定義
W	kgf	設計飛来物重量
d	cm	設計飛来物直径
D	$\mathrm{kgf} / \mathrm{cm}^{3}$	設計飛来物直径密度 $\left(\mathrm{D}=\mathrm{W} / \mathrm{d}^{3}\right)$
e	cm	貫通限界厚さ
F_{c}	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度
N	－	設計飛来物の形状係数
V		スラブ，頂版 設計飛来物の衝突速度（鉛直）
X	cm	貫入深さ
α e	－	低減係数

表 1－2 Chang 式による裏面剥離限界厚さの算定に用いる記号

記号	単位	定義
d	cm	設計飛来物直径
$\mathrm{ff}^{\text {c }}$	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度
S	cm	裏面剥離限界厚さ
V	m／s	壁面 ${ }^{\text {a }}$ 設計飛来物の衝突速度（水平）
		スラブ，頂版 設計飛来物の衝突速度（鉛直）
V_{0}	m／s	設計飛来物基準速度
W	kgf	設計飛来物重量
α s	－	低減係数

表 1－3 力学における標準式による荷重及び応力の算定に用いる記号（1／2） （荷重算定用）

記号	単位	定義
A	m^{2}	受圧面積
C	-	風力係数
G	-	ガスト影響係数
q	$\mathrm{N} / \mathrm{m}^{2}$	設計用速度圧
V_{D}	m / s	設計竜巻の風速
W_{M}	kN	設計飛来物による衝撃荷重
W_{P}	kN	気圧差による荷重
W_{w}	kN	風圧力による荷重
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	空気密度
$\Delta \mathrm{P}$	$\mathrm{N} / \mathrm{m}^{2}$	最大気圧低下量
m	kg	設計飛来物質量
V^{2}	$\mathrm{~m} / \mathrm{s}$	設計飛来物の衝突速度（水平）
$\Delta \mathrm{t}$	s	設計飛来物と被衝突体の接触時間
L_{1}	m	設計飛来物の最も短い辺の全長

表 1－3 力学における標準式による荷重及び応力の算定に用いる記号（2／2） （スタッド評価用）

記号	単位	定義
A_{C}	mm^{2}	コーン状破壊面の有効投影面積
A_{0}	$\mathrm{~mm}^{2}$	スタッド頭部の支圧面積
a c a	mm^{2}	スタッドの断面積で，軸部断面積とねじ部有効断面積 の小なる方の値
D	mm	スタッドの頭部直径

1．3．2 評価対象部位

各施設の評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」に示す評価対象部位を踏まえて設定す る。

評価対象部位は図 $1-2$ 及び図 $1-4 \sim$ 図 $1-10$ に示す通りとする。
（1）貫通評価
設計荷重に対し，設計飛来物が施設の外殼を構成する部材を貫通しない設計と するために，外部事象防護対象施設を内包する区画のうち外殼を構成する部材及 び，施設屋外からの設計飛来物の侵入を考慮した各施設の屋内の床スラブ，内壁 の中から最も厚みが薄い箇所を評価対象部位として設定することとし，原子炉建屋については CR 階外壁及び屋根スラブを，タービン建屋については 2 階床スラ ブを，制御建屋については3階外壁及び屋根スラブを，軽油タンク室及び軽油タ ンク室（H）については頂版を評価対象部位として設定する。なお，タービン建屋外壁については，評価対象エリアの外壁に隣接建屋が近接していることにより，設計飛来物の衝突の可能性が極めて低いことから評価対象外とする。
評価においては，各施設施設の評価対象部位の最小厚さが，設計飛来物の貫通 を生じない貫通限界厚さを上回ることを計算により確認する。
（2）裏面剥離評価
設計荷重に対し，施設の外殼を構成する部材自体が，脱落により竜巻より防護 すべき施設に波及的影響を与えない設計とするために，外殻を構成する部材及び，施設屋外からの設計飛来物の侵入を考慮した各施設の屋内の床スラブ，内壁の中 から最も厚みが薄い箇所を評価対象部位として設定することとし，原子炉建屋に ついては CR 階外壁及び屋根スラブを，タービン建屋については 2 階床スラブを，制御建屋については3階外壁及び屋根スラブを，軽油タンク室及び軽油タンク室 （H）については頂版を評価対象部位として設定する。なお，タービン建屋外壁 については，評価対象エリアの外壁に隣接建屋が近接していることにより，飛来物衝突の可能性が低いことから評価対象外とする。
評価においては，各施設の評価対象部位の最小厚さが，裏面剥離によるコンク リート片の飛散が生じない裏面剥離限界厚さを上回ることを計算により確認する。 なお，評価対象部位のうち，裏面剥離によるコンクリート片の飛散が生じない裏面剥離限界厚さを上回る旨を計算で確認出来ない原子炉建屋 CR 階外壁及び屋根スラブについては，衝突解析により評価を行う。
（3）変形評価
設計荷重に対して，外殻を構成する部材自体が外部事象防護対象施設へ衝突等 の影響を与える変形に至らないことの確認において，設計荷重が直接作用し，防護すべき施設の外殻となる壁及び屋根スラブを評価する。

壁については，原子炉建屋，タービン建屋及び制御建屋の耐震壁を評価対象部位として設定し，タービン建屋ついては鉄骨架構及び鉄骨鉄筋コンクリート架構 も評価対象部位とする。

スラブについては，気圧差による荷重がスラブに作用しスタッドに伝達される ことを踏まえて，屋根スラブにスタッドを用いる構造である原子炉建屋，タービ ン建屋及び制御建屋の屋根スラブのスタッドを評価対象部位とする。

なお，軽油タンク室及び軽油タンク室（H）については，地中に埋設され竜巻 の風荷重を受け難い構造であることから評価は不要とする。

1．3．3 荷重及び荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添1－1 竜巻へ の配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」を踏ま えて設定する。
（1）荷重の設定
強度評価に用いる荷重は以下の荷重を用いる。荷重の算定に用いる竜巻の特性値を表1－4に示す。

表 $1-4$ 荷重の算定に用いる竜巻の特性値

最大風速 V_{D} $(\mathrm{~m} / \mathrm{s})$	移動速度 V_{T} $(\mathrm{~m} / \mathrm{s})$	最大接線風速 $V_{R m}$ $(\mathrm{~m} / \mathrm{s})$	最大気圧低下量 ΔP $\left(N / \mathrm{m}^{2}\right)$
100	15	85	7600

a．常時作用する荷重（ F_{d} ）
常時作用する荷重（ F_{d} ）には，部材の自重とする。
b．風圧力による荷重（ W_{w} ）
風圧力による荷重は，「建築基準法（昭和 25 年 5 月 24 日法律第201号），建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）」及び「日本建築学会 2004年 建築物荷重指針•同解説」に準拠して，次式のとおり算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{W}}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C} \cdot \mathrm{~A} / 1000 \\
& \text { 乙乙で, } \\
& \mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{D}}^{2}
\end{aligned}
$$

c．気圧差による荷重（ W_{P} ）
気圧差による荷重は，次式のとおり算出する。

$$
\mathrm{W}_{\mathrm{P}}=\Delta \mathrm{P} \cdot \mathrm{~A} / 1000
$$

d．設計飛来物による衝撃荷重（ W_{M} ）
設計飛来物による衝撃荷重（ W_{M} ）は，表 $1-5$ に諸元を示す設計飛来物の衝突に伴う荷重とする。設計飛来物の材料定数を表1－6に示す。

なお，評価対象部位に設計飛来物が衝突した際に跳ね返らず，貫入する物と して評価する。

表 $1-5$ 設計飛来物の諸元

	寸法 設計飛来物	長さ×幅 \times 奥行き (m)	質量 (kg)	水平方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$
鋼製材	$4.2 \times 0.3 \times 0.2$	135	鉛直方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$	

注記＊1 ：原子炉建屋，制御建屋，軽油タンク室及び軽油タンク室（H）における速度 ＊2：タービン建屋における速度

表 1－6 設計飛来物の材料定数

設計飛来物	降伏応力 $\sigma \mathrm{y}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	塑性硬化係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比

（2）荷重の組合せ
強度評価に用いる荷重の組合せについては，添付書類「VI－3－別添1－1 竜巻へ の配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」のとお り，設計飛来物による衝撃荷重，風圧力による荷重，気圧差による荷重及び常時作用する荷重を組み合わせる。荷重の組合せを表1－7に示す。

表 $1-7$ 荷重の組合せ

1．3．4 許容限界

竜巻より防護すべき施設を内包する施設の許容限界は，「1．3．2 評価対象部位」 にて設定した評価対象部位ごとに，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界及び機能損傷モードを踏まえて設定する。
（1）貫通評価
貫通評価のうち，式による評価の許容限界は評価対象部位の最小厚さとする。表1－8に設定した許容限界を示す。

表 $1-8$ 貫通評価の許容限界（式による評価）

評価対象部位	許容限界 (cm)	
	CR 階外壁	25
	屋根スラブ	17
タービン建屋	2 階床スラブ	60
制御建屋	3 階外壁	40
軽油タンク室	屋根スラブ	30
軽油タンク室 (H)	頂版	40

（2）裏面剥離評価
裏面剥離評価の許容限界のうち，式による評価の許容限界は，貫通評価の許容限界である表 $1-8$ と同じとする。

裏面剥離評価のらち，式により算定する裏面剥離限界厚さが最小部材厚さを上回る場合における，解析による裏面剥離評価の許容限界を表 $1-9$ に示す。

設計飛来物が CR 階外壁及び屋根スラブへ直接衝突する場合の裏面剥離評価に おける許容限界は，デッキプレートの破断ひずみを基本として設定する。破断ひ ずみについては，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2．1（1）許容限界の設定」に示すとおり，J I S に規定されて いる伸びの下限値を基に設定するが，NEI07－13 においてTF（多軸性係数） することが推奨されていることを踏まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定 する。

表 1－9 裏面剥離評価の許容限界（解析による評価）

評価対象部位		材質	許容限界	
		鋼材の破断ひずみ		
原子炉建屋	CR階外壁 デッキプレート		SS400	
	屋根スラブ デッキプレート	SS400		

（3）変形評価
変形評価の許容限界を表 $1-10$ に示す。

表 1－10 変形評価の許容限界

評価対象部位		許容限界	
		項目	数値
原子炉建屋	屋根スラブ スタッド	「日本建築学会 2010 年各種合成構造設計指針•同解説」に基づく許容耐力	40．3（kN／本）
タービン建屋	屋根スラブ スタッド	「日本建築学会 2010 年各種合成構造設計指針•同解説」に基づく許容耐力	39．9（kN／本）
制御建屋	屋根スラブ スタッド	「日本建築学会 2010 年各種合成構造設計指針•同解説」に基づく許容耐力	41．0（kN／本）
原子炉建屋	耐震壁	最大せん断ひずみ	2.0×10^{-3}
タービン建屋	耐震壁	最大せん断ひずみ	2.0×10^{-3}
	鉄骨鉄筋 コンクリート架構	最大層間変形角＊	1／200
	鉄骨架構	最大層間変形角＊	$1 / 120$
制御建屋	耐震壁	最大せん断ひずみ	2.0×10^{-3}

注記＊：2015 年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）（以下「技術基準解説書」という。） により設定。

1．3．5 評価方法

竜巻より防護すべき施設を内包する施設の強度評価は，添付書類「VI－3－別添1－ 1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」を踏ま えて，衝突評価として貫通評価を実施し，構造強度評価として裏面剥離評価及び変形評価を実施する。
（1）貫通評価
a．式による評価
設計飛来物が各施設に衝突する場合の貫通限界厚さを，NEI07－13に示されて いる Degen 式を用いて算定する。Degen 式における貫入深さは，「タービンミサ イル評価について（昭和 52 年 7 月 20 日 原子炉安全専門審査会）」で用いら れている修正 NDRC 式を用いて算定する。

Degen 式を以下に示す。
$1.52 \leqq \mathrm{X} / \mathrm{d} \leqq 13.42$ の場合
$\mathrm{e}=\alpha_{\mathrm{e}} \cdot\{0.69+1.29(\mathrm{X} / \mathrm{d})\} \cdot \mathrm{d}$
$\mathrm{X} / \mathrm{d} \leqq 1.52$ の場合
$\mathrm{e}=\alpha \mathrm{e} \cdot\left\{2.2(\mathrm{X} / \mathrm{d})-0.3(\mathrm{X} / \mathrm{d})^{2}\right\} \cdot \mathrm{d}$

修正 NDRC 式を以下に示す。
$\mathrm{X} / \mathrm{d} \leqq 2.0$ の場合

$$
\mathrm{X} / \mathrm{d}=2 \cdot\left\{\left(12145 / \sqrt{\mathrm{F}_{\mathrm{c}}}\right) \cdot \mathrm{N} \cdot \mathrm{~d}^{0.2} \cdot \mathrm{D} \cdot(\mathrm{~V} / 1000)^{1.8}\right\}^{0.5}
$$

$\mathrm{X} / \mathrm{d} \geqq 2.0$ の場合

$$
\mathrm{X} / \mathrm{d}=\left(12145 / \sqrt{\mathrm{F}_{\mathrm{c}}}\right) \cdot \mathrm{N} \cdot \mathrm{~d}^{0.2} \cdot \mathrm{D} \cdot(\mathrm{~V} / 1000)^{1.8}+1
$$

（2）裏面剥離評価
a．式による評価
設計飛来物が各施設に衝突する場合の裏面剥離限界厚さを，NEI07－13に示さ れているChang 式を用いて算定する。

Chang 式を以下に示す。

$$
\mathrm{S}=1.84 \cdot \alpha_{\mathrm{s}} \cdot\left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}}\right)^{0.13} \cdot \frac{\left(\frac{\mathrm{~W} \cdot \mathrm{~V}^{2}}{0.0980}\right)^{0.4}}{\mathrm{~d}^{0.2} \cdot \mathrm{f}_{\mathrm{c}}, 0.4}
$$

b．外壁及び屋根スラブに対する衝突解析
設計飛来物に対して，Chang 式による裏面剥離限界厚さを満足しない原子炉建屋 CR 階外壁及び屋根スラブについては，設計飛来物による衝撃荷重 W_{M} を考慮し， 3 次元 FEMモデルを用いた衝突解析により外壁及び屋根スラブのデッキ プレートに生じるひずみを算出し，許容限界を超えないことを確認する。

衝突位置については，部材曲げによる変形量が最大になると考えられる中央部を選定した。衝突方向は，部材面に対して垂直とし，局所的な変形によって部材に生じるひずみが最も大きくなるように，飛来物の面積が最小の面（ 0.3 m $\times 0.2 \mathrm{~m}) ~$ が衝突するケースを選定した。

なお，気圧差による荷重 W_{P} については，衝撃荷重と逆方向に作用するため，保守的に考慮しない。

衝突解析には，解析コード「ABARUS」を用いる。解析コードの検証及 び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。
（a）解析モデル及び諸元
イ。 原子炉建屋 CR 階外壁
原子炉建屋 CR 階外壁のモデル化範囲は，想定する荷重の伝達を考慮し，外壁を構成する鉄筋コンクリート及びデッキプレートとする。解析モデル は対称性を考慮して $1 / 2$ モデルとする。コンクリートはソリッド要素，鉄筋は棒要素，デッキプレートはシェル要素でモデル化する。なお，デッキ プレートはコンクリートと固着とする。原子炉建屋 CR 階外壁の解析モデ ルの境界条件を表1－11及び図1－12に，解析モデル図を図 $1-13$ に示す。

表 1－11 原子炉建屋 CR 階外壁の解析モデルの境界条件

項目		境界条件
		対称境界部：対称境界
原子炉建屋	外壁端部	長辺：X軸回転方向のみ自由
CR 階外壁		短辺：Y軸回転方向のみ自由
	隅角部：完全拘束	

図 1－13 原子炉建屋 CR 階外壁の解析モデル図（1／3）

図 1－13 原子炉建屋 CR 階外壁の解析モデル図（2／3）

図 1－13 原子炉建屋 CR 階外壁の解析モデル図（3／3）

ロ．原子炉建屋屋根スラブ
原子炉建屋屋根スラブのモデル化範囲は，想定する荷重の伝達を考慮し， スラブを構成する鉄筋コンクリート及びデッキプレートとする。解析モデ ルは対称性を考慮して $1 / 4$ モデルとする。コンクリートはソリッド要素，鉄筋は棒要素，デッキプレートはシェル要素でモデル化する。なお，デッ キプレートはコンクリートと固着とする。原子炉建屋屋根スラブの解析モ デルの境界条件を表1－12及び図1－14に，解析モデル図を図1－15に示 す。

表 1－12 原子炉建屋屋根スラブの解析モデルの境界条件

項目		境界条件
原子炉建屋 屋根スラブ	屋根スラブ端部	対称境界部：対称境界 短辺：X X 軸回転方向のみ自由 長辺：Y 軸回転方向のみ自由 隅角部：完全拘束

図 1－14 原子炉建屋屋根スラブの解析モデルの境界条件
\square

図 1－15 原子炉建屋屋根スラブの解析モデル図（1／3）

図 1－15 原子炉建屋屋根スラブの解析モデル図（2／3）

（単位：mm）
図 1－15 原子炉建屋屋根スラブの解析モデル図（3／3）

八．設計飛来物
設計飛来物である鋼製材はシェル要素でモデル化する。衝突面側 1.4 m の部分は要素サイズ 10 mm を基本とし，以降の 2.8 m は 20 mm を基本としてモ デル化する。

原子炉建屋 CR 階外壁用 $1 / 2$ モデルの設計飛来物モデルを図 $1-16$ に示 す。

図 1－16 設計飛来物の解析モデル図（ $1 / 2$ モデル）
（b）材料定数
コンクリート，鉄筋及びデッキプレートの材料定数を表 1 － 13 ～表 $1-15$ に示す。設計飛来物の材料定数については，「1．3．3 荷重及び荷重の組合せ」 の表1—に示すとおり設定する。

表 1－13 コンクリートの材料定数

評価対象部位	設計基準強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
原子炉建屋 CR 階外壁	32.4	25100	0.2	23
原子炉建屋 屋根スラブ				

表 1－14 鉄筋の材料定数

評価対象部位	種類	降伏応力 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
原子炉建屋 CR 階外壁	SD345	345	205000	0.3	77.0
原子炉建屋 屋根スラブ					

表1－15 デッキプレートの材料定数

評価対象部位	種類	降伏応力 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
原子炉建屋 CR 階外壁	SS400	245	205000	0.3	77.0
原子炉建屋 屋根スラブ					

（c）材料の非線形特性
コンクリートの応力ーひずみ関係は，コンクリートの特性を踏まえて圧縮側を 3 折れ線，引張側を 2 折れ線で近似する。コンクリートの圧縮強度には， NEI07－13 に基づき，動的増加率 1.25 を考慮する。コンクリートの圧縮強度及び引張強度を表1－16に示す。

鉄筋の応力ーひずみ関係は，第1折れ点を「降伏応力ー降伏ひずみ」，第 2折れ点を「引張強度—破断ひずみ」とするトリリニア型とする。鉄筋の破断 ひずみは，J I S に規定されている伸びの下限値を基に設定する。降伏応力及び引張強度には，NEI07－13に基づき，動的増加率（降伏応力：1．10，引張強度：1．05）を考慮する。TF（多軸性係数）については，鉄筋が一軸の部材 であることを踏まえて \square とする。
デッキプレートの応力ーひずみ関係は，第 1 折れ点を「降伏応力 - 降伏ひ ずみ」，第2折れ点を「引張強度一破断ひずみ」とするトリリニア型とする。降伏応力及び引張強度には，NEI07－13 に基づき，動的増加率（降伏応力：1．29，引張強度：1．10）を考慮する。デッキプレートの破断ひずみは，J I S に規定されている伸びの下限値を基に設定する。TF（多軸性係数）については， デッキプレートが薄板で構成される部材であることを踏まえて，NEI07－13に基づき \square とする。

飛来物である鋼製材の応力ーひずみ関係は，第 1 折れ点を「降伏応力 - 降伏ひずみ」，第2折れ点を「引張強度一破断ひずみ」とするトリリニア型とす る。鋼製材の破断ひずみは，J I S に規定されている伸びの下限値を基に設定する。鋼製材については変形速度が大きいため，時々刻々と変化するひず み速度の効果を考慮し，次に示す Cowper－Symonds の式を適用する。

$$
\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{P}}}\right\}
$$

ここで，σ_{D} は動的応力，σ_{s} は静的応力，ε はひずみ速度，C及びPはひ ずみ速度依存性パラメータを表す。

鉄筋，デッキプレート及び鋼製材の降伏強度及び引張強度を表1－17に示 す。コンクリートの圧縮応力ー圧縮ひずみ関係及び引張応力ーひび割れ幅関係並びに，鉄筋，デッキプレート及び鋼製材の応力ーひずみ関係をそれぞれ図 $1-17$～図 $1-20$ に示す。

また，鋼製材のひずみ速度依存性パラメータを表1－18に示す。

表 1－16 コンクリートの圧縮強度及び引張強度

	設計基準強度 （ $\left.\mathrm{N} / \mathrm{mm}^{2}\right)$	枰価対象部位	圧縮強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
原子炉建屋 CR 階外壁			引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
原子炉建屋 屋根スラブ	32.4	40.5	3.24

表 1－17 鉄筋，デッキプレート及び鋼製材の降伏強度及び引張強度

種別	材質	規格値（公称応力）		材料モデル（真応力，真ひずみ）		
		降伏応力 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	引張強度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	降伏応力 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	引張強度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	破断塑性ひずみ （－）
鉄筋	SD345	345	490	380	606	
$\begin{aligned} & \text { デッキ } \\ & \text { プレート } \end{aligned}$	SS400	245	400	316	485	
鋼製材	SS400	245	400	245	483	

[^55]\square

図 1－17 圧縮応力一圧縮ひずみ及び引張応力ーひび割れ幅関係（コンクリート）

図 1－18 応力ーひずみ関係（鉄筋）
\square
図 1－19 応力ーひずみ関係（デッキプレート）

図 1－20 応力ーひずみ関係（鋼製材）

表 1－18 ひずみ速度依存性パラメータ

	鋼製材
材料	SS400
$\mathrm{C}\left(\mathrm{s}^{-1}\right)$	
P	

（3）変形評価
a．耐震壁，鉄骨鉄筋コンクリート架構及び鉄骨架構
原子炉建屋，タービン建屋及び制御建屋の耐震壁に生じるひずみ並びにター ビン建屋の鉄骨鉄筋コンクリート架構及び鉄骨架構に生じる変形は，設計荷重 による建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）を用いて算定する。

原子炉建屋，タービン建屋及び制御建屋の地震応答解析モデル図を図 $1-21$ ～図1－23に，せん断スケルトン曲線（ $\tau-\gamma$ 関係）を表1—19～表1－24に示す。原子炉建屋，タービン建屋及び制御建屋のせん断スケルトン曲線（ $\tau-$ γ 関係）は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」，添付書類「VI －2－11－2－3 タービン建屋の耐震性についての計算書」及び添付書類「VI－2－2－ 3 制御建屋の地震応答計算書」に示すものを用いる。

ただし，設計荷重による変形量の算定では，地盤と建屋の相互作用の影響は小さいと考えられることから，地盤ばねは考慮せず，1階床位置で固定と仮定 とする。

0．P．

図 $1-22$ タービン建屋の地震応答解析モデル図（NS 方向）（1／2）

図 1－22 タービン建屋の地震応答解析モデル図（EW 方向）（2／2）

0．P． 29.150 m

O．P． 22.950 m

O．P． 19.500 m

図 1－23 制御建屋の地震応答解析モデル図（NS 方向）（1／2）

O．P． 29.150 m

図 1－23 制御建屋の地震応答解析モデル図（EW 方向）（2／2）

表 1－19 原子炉建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（NS 方向）（1／2）

0W－K

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.14	2.68	6.44	0.250	0.523	4.00
$22.5 \sim 15.0$	2.22	2.79	6.44	0.260	0.544	4.00

IW－J

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$50.5 \sim 41.2$	3.08	-	6.54	0.902	-	4.00
$41.2 \sim 33.2$ （追設）	1.83	2.47	4.43	0.174	0.523	4.00
$41.2 \sim 33.2$	3.05	-	6.37	0.894	-	4.00
$33.2 \sim 22.5$	2.26	2.83	6.46	0.265	0.553	4.00
$22.5 \sim 15.0$	2.37	2.97	6.53	0.278	0.581	4.00

SW

0. P． (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.10	2.63	5.52	0.246	0.513	4.00
$22.5 \sim 15.0$	2.46	3.08	5.84	0.288	0.602	4.00

表 1－19 原子炉建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（NS 方向）（2／2）

IW－C

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$50.5 \sim 41.2$	3.08	-	6.54	0.902	-	4.00
$41.2 \sim 33.2$ （追設）	1.83	2.47	4.43	0.174	0.523	4.00
$41.2 \sim 33.2$	3.06	-	6.38	0.897	-	4.00
$33.2 \sim 22.5$	2.30	2.88	6.48	0.269	0.563	4.00
$22.5 \sim 15.0$	2.48	3.11	6.58	0.291	0.607	4.00

0W－A

0. P． (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.19	2.75	6.44	0.257	0.537	4.00
$22.5 \sim 15.0$	2.31	2.90	6.47	0.271	0.567	4.00

表 1－20 原子炉建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（EW 方向）（1／2）

0W－1

0．P． (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.15	2.75	6.21	0.237	0.537	4.00
$22.5 \sim 15.0$	2.33	2.97	6.47	0.256	0.581	4.00

IW－2

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$22.5 \sim 15.0$	2.20	2.81	6.65	0.242	0.550	4.00

IW－4

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$50.5 \sim 41.2$	2.49	2.65	6.28	0.438	0.517	4.00
$41.2 \sim 33.2$ $($ 追設）	1.83	2.47	4.09	0.175	0.524	4.00
$41.2 \sim 33.2$	2.51	2.67	6.29	0.442	0.521	4.00
$33.2 \sim 22.5$	2.27	2.90	6.07	0.249	0.566	4.00
$22.5 \sim 15.0$	2.56	3.27	5.96	0.281	0.639	4.00

表 1－20 原子炉建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（EW 方向）（2／2）

SW

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.06	2.63	5.94	0.226	0.513	4.00
$22.5 \sim 15.0$	2.41	3.08	6.33	0.265	0.602	4.00

IW－10

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$50.5 \sim 41.2$	2.49	2.65	6.28	0.438	0.517	4.00
$41.2 \sim 33.2$	2.48	2.64	6.32	0.436	0.515	4.00
$33.2 \sim 22.5$	2.23	2.85	6.11	0.245	0.557	4.00
$22.5 \sim 15.0$	2.37	3.04	6.50	0.261	0.593	4.00

OW－11

0. P． (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$33.2 \sim 22.5$	2.09	2.67	6.47	0.229	0.521	4.00
$22.5 \sim 15.0$	2.20	2.81	6.45	0.242	0.550	4.00

表 1－21 タービン建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（NS 方向）

TE－TH

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$47.3 \sim 37.8$	2.80	-	5.77	0.822	-	4.00
$37.8 \sim 32.8$	3.47	-	6.49	1.02	-	4.00
$32.8 \sim 24.8$	2.76	-	5.86	0.810	-	4.00
$24.8 \sim 15.0$	2.95	-	5.07	0.740	-	4.00

TA－TD

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$47.3 \sim 37.8$	2.80	-	5.77	0.822	-	4.00
$37.8 \sim 32.8$	3.47	-	6.49	1.02	-	4.00
$32.8 \sim 24.8$	2.73	-	5.81	0.799	-	4.00
$24.8 \sim 15.0$	2.88	-	4.60	0.723	-	4.00

表 1－22 タービン建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（EW 方向）

T1－T2

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$47.3 \sim 37.8$	2.63	-	5.95	0.662	-	4.00
$37.8 \sim 32.8$	2.96	-	6.44	0.744	-	4.00
$32.8 \sim 24.8$	2.83	-	6.44	0.710	-	4.00
$24.8 \sim 15.0$	2.82	-	5.88	0.621	-	4.00

T3－T6（TG）

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$24.8 \sim 15.0$	2.79	-	3.85	0.613	-	4.00

T3－T6（TA）

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$24.8 \sim 15.0$	2.81	-	3.52	0.617	-	4.00

T9－T10

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$47.3 \sim 37.8$	2.63	-	5.95	0.662	-	4.00
$37.8 \sim 32.8$	2.96	-	6.43	0.743	-	4.00
$32.8 \sim 24.8$	2.76	-	6.01	0.694	-	4.00
$24.8 \sim 15.0$	2.87	-	5.49	0.631	-	4.00

表 1－23 制御建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（NS 方向）

CA

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$29.15 \sim 22.95$	2.65	-	5.71	0.583	-	4.00
$22.95 \sim 19.50$	2.84	-	6.56	0.623	-	4.00
$19.50 \sim 15.00$	2.83	-	6.62	0.621	-	4.00

表 $1-24$ 制御建屋のせん断スケルトン曲線（ $\tau-\gamma$ 関係）（EW 方向）

C1

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$29.15 \sim 22.95$	2.41	2.56	5.70	0.423	0.500	4.00
$22.95 \sim 19.50$	2.55	2.71	6.56	0.448	0.529	4.00
$19.50 \sim 15.00$	2.54	2.70	6.60	0.446	0.527	4.00

$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \tau_{1} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \tau_{2} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \tau_{3} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{gathered} \gamma_{3} \\ \left(\times 10^{-3}\right) \end{gathered}$
$29.15 \sim 22.95$	2.41	2.56	5.68	0.423	0.500	4.00
$22.95 \sim 19.50$	2.55	2． 71	6.56	0.448	0.529	4.00
$19.50 \sim 15.00$	2.54	2． 70	6.61	0.446	0.527	4.00

設計荷重のらち，風圧力による荷重 W_{w} は，建屋の形状を考慮して算出した風力係数及び受圧面積に基づき算出する。

気圧差による荷重 W_{P} は，建屋の内部から外部に作用し，建屋の層全体の評価 においては相殺される荷重であるが，保守的に風圧力による荷重 W_{w} と同じ方向に作用すると見なす。

設計飛来物による衝撃荷重 W_{M} は，各建屋の最上部に作用させる。地震応答解析モデルが多軸の場合には，各軸最上部の質点に W_{M} を分配して評価する。衝撃荷重は，次式によって算出した運動エネルギーが最大となる鋼製材の衝撃荷重 $\mathrm{W}_{\mathrm{M}}=1466 \mathrm{kN}$ を用いて評価する。

$$
\mathrm{W}_{\mathrm{M}}=\mathrm{m} \cdot \mathrm{~V} / \Delta \mathrm{t} / 1000=\mathrm{m} \cdot \mathrm{~V}^{2} / \mathrm{L}_{1} / 1000
$$

b．スタッド
原子炉建屋，タービン建屋及び制御建屋の屋根スラブについて，風圧力によ る荷重 W w ，気圧差による荷重 W_{P} 及び常時作用する荷重 F_{d} によってスタッド に生じる引張力を算定し，許容限界を超えないことを確認する。スタッドに作用する引張力は，単位幅の屋根スラブに生じるせん断力を当該範囲のスタッド が均等に負担するものとして評価する。

スタッドに発生する引張力 T の算定式を以下に示す。また，スタッドに作用 する荷重の概要を図 1－24に示す。

スタッド 1 本あたりの発生引張力

$$
\begin{aligned}
\mathrm{T} & =\mathrm{Q} \cdot \frac{\mathrm{p}}{1000} \\
& \text { ここで, } \mathrm{Q}=\omega_{\mathrm{T}} \cdot \mathrm{~L}
\end{aligned}
$$

図 $1-24$ スタッドに作用する荷重の概要

スタッドの許容引張力は「日本建築学会 2010年 各種合成構造設計指針•同解説」に準拠し，スタッドの降伏により定まる場合の許容引張力 pa a 1 ，定着 したコンクリート躯体のコーン状破壊により定まる場合の許容引張力 $\mathrm{p}_{\mathrm{a} 2}$ ，コ ンクリートの支圧破壊により定まる場合の許容引張力 $\mathrm{p}_{\mathrm{a} 3}$ のうち，最も小さ い値とする。スタッドの許容引張力 p a の算定式を以下に示す。

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{a}}=\operatorname{Min}\left\{\mathrm{p}_{\mathrm{a} 1}, \quad \mathrm{p}_{\mathrm{a} 2}, \quad \mathrm{p}_{\mathrm{a} 3}\right\} \\
& \text { ここで, } \quad \mathrm{p}_{\mathrm{a} 1}=\Phi_{1} \cdot \mathrm{~s}_{\mathrm{s}} \sigma_{\mathrm{pa}} \cdot \mathrm{a} \mathrm{c} \mathrm{a} / 1000 \\
& \mathrm{p}_{\mathrm{a} 2}=\Phi_{2} \cdot{ }_{\mathrm{c}} \sigma_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{c}} / 1000 \\
& \mathrm{p}_{\mathrm{a} 3}=\mathrm{f}_{\mathrm{n}} \cdot \mathrm{~A}_{0} / 1000
\end{aligned}
$$

1．4 評価条件

1．4．1 貫通評価
（1）式による評価
貫通評価において，各施設の壁，スラブ及び頂版の貫通評価に用いる入力値を表 1 － 25 に示す。

表 $1-25$ 貫通評価に用いる入力値（ $1 / 2$ ）
（原子炉建屋，制御建屋，軽油タンク室及び軽油タンク室（H））

記号	単位	定義			数値
D	$\mathrm{kgf} / \mathrm{cm}^{3}$	設計飛来物直径密度 $\left(\mathrm{D}=\mathrm{W} / \mathrm{d}^{3}\right)$			6.39×10^{-3}
d	cm	設計飛来物直径			27.6
F_{c}	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度		壁面，スラブ	330
				頂版	240
N	－	設計飛来物の形状係数			1． 14
V	m／s	壁面	設計飛来物の衝突速度（水平）		46.6
		スラブ，頂版	設計飛来物の衝突速度（鉛直）		16． 7
W	kgf	設計飛来物重量			135
$\alpha_{\text {e }}$	－	低減係数			1． 0

表 $1-25$ 貫通評価に用いる入力値（2／2）
（タービン建屋）

記号	単位	定義			数値
D	$\mathrm{kgf} / \mathrm{cm}^{3}$	設計飛来物直径密度 $\left(\mathrm{D}=\mathrm{W} / \mathrm{d}^{3}\right)$			6.39×10^{-3}
d	cm	設計飛来物直径			27.6
F_{c}	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度		壁面，スラブ	330
N	－	設計飛来物の形状係数			1． 14
V	m／s	壁面	設計飛来物の衝	速度（水平）	46.6
		スラブ	設計飛来物の衝	速度（鉛直）	32.9
W	kgf	設計飛来物重量			135
$\alpha_{\text {e }}$	－	低減係数			1.0

1．4．2 裏面剥離評価

（1）式による評価
裏面剥離評価において，各施設の壁，スラブ及び頂版の裏面剥離評価に用いる入力値を表1－26に示す。

表 $1-26$ 裏面剥離評価に用いる入力値 $(1 / 2)$
（原子炉建屋，制御建屋，軽油タンク室及び軽油タンク室（H））

記号	単位	定義			数値
d	cm	設計飛来物直径			27.6
$\mathrm{f}_{\mathrm{c}}{ }^{\prime}$	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度		壁面，スラブ	330
				頂版	240
V	m／s	壁面	設計飛来物の衝突速度（水平）		46.6
		スラブ，頂版	設計飛来物の衝突速度（鉛直）		16.7
V_{0}	m／s	飛来物基準速度			60.96
W	kg f	設計飛来物重量			135
α s	－	低減係数			1.0

表 1－26 裏面剥離評価に用いる入力値（2／2）
(タービン建屋)

記号	単位	定義			数値
d	cm	設計飛来物直径			27.6
f_{c} ，	$\mathrm{kgf} / \mathrm{cm}^{2}$	コンクリートの設計基準強度		壁面，スラブ	330
V	m／s	壁面	設計飛来物の衝突速度（水平）		46.6
		スラブ	設計飛来物の衝突速度（鉛直）		32.9
V_{0}	m／s	飛来物基準速度			60.96
W	kgf	設計飛来物重量			135
$\alpha{ }_{\text {s }}$	－	低減係数			1． 0

（2）原子炉建屋のCR階外壁及び屋根スラブに対する衝突解析原子炉建屋のCR階外壁及び屋根スラブの裏面剥離評価における衝突解析は，屋根スラブの最大変形が生じると想定される評価対象の中央部に衝突するケース を設定する。

解析ケースを図1－25及び図1－26に示す。

（単位：mm）
図 1－25 解析ケース（原子炉建屋 CR 階外壁）

（単位：mm）
図 1－26 解析ケース（原子炉建屋屋根スラブ）

1．4．3 変形評価

（1）耐震壁，鉄骨鉄筋コンクリート架構及び鉄骨架構
原子炉建屋，タービン建屋及び制御建屋の耐震壁並びにタービン建屋の鉄骨鉄筋コンクリート架構及び鉄骨架構の変形評価に用いる条件を表1－27～表1－30 に示す。

表 1－27 設計飛来物による衝撃荷重の評価条件

記号	定義	数値	単位
L_{1}	設計飛来物の最も短い辺の全長	0.2	m
m	設計飛来物質量	135	kg
V	設計飛来物の衝突速度（水平）	46.6	$\mathrm{~m} / \mathrm{s}$

表 1－28 原子炉建屋の変形評価の評価条件

$\begin{gathered} \text { 0. P. } \\ \text { (m) } \end{gathered}$	位置	風力係数 C ＊	受圧面積 A （ m^{2} ）	
			NS 方向	EW 方向
$50.5 \sim 41.2$	風上	1． 0	559	429
	風下	1.0		
41．2～33．2	風上	1.0	511	361
	風下	1． 0		
$33.2 \sim 22.5$	風上	1． 0	872	920
	風下	1． 0		
$22.5 \sim 15.0$	風上	1． 0	665	725
	風下	1.0		

注記＊：風下側の係数は，風上側と同じ向きを正とする。

表1－29 タービン建屋の変形評価の評価条件

$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	位置	風力係数 C^{*}	受圧面積 A$\left(\mathrm{m}^{2}\right)$	
			NS 方向	EW 方向
$47.3 \sim 37.8$	風上	1． 0	484	1041
	風下	1.0		
$37.8 \sim 32.8$	風上	1． 0	225	483
	風下	1.0		
$32.8 \sim 24.8$	風上	1． 0	475	773
	風下	1． 0		
$24.8 \sim 15.0$	風上	1． 0	578	964
	風下	1． 0		

注記＊：風下側の係数は，風上側と同じ向きを正とする。

表 1－30 制御建屋の変形評価の評価条件

$\begin{gathered} \text { 0. P. } \\ \text { (m) } \end{gathered}$	位置	風力係数 C＊	受圧面積 A （ m^{2} ）	
			NS 方向	EW 方向
29．15～22．95	風上	1.0	370	411
	風下	1.0		
$22.95 \sim 19.50$	風上	1.0	145	155
	風下	1.0		
$19.50 \sim 15.00$	風上	1.0	189	202
	風下	1.0		

注記＊：風下側の係数は，風上側と同じ向きを正とする。
（2）スタッド
原子炉建屋，タービン建屋及び制御建屋の屋根スラブのスタッドの変形評価に用いる条件を表1－31に示す。

表 1－31 スタッドの変形評価の評価条件（1／3）
（原子炉建屋）

記号	定義	数値	単位
A c	コーン状破壊面の有効投影面積	34333	mm^{2}
A 0	スタッド頭部の支圧面積	459	mm^{2}
a c a	スタッドの断面積で，軸部断面積と ねじ部有効断面積の小なる方の値	201	mm^{2}
D	スタッドの頭部直径	29	mm
d	スタッドの軸部直径	16	mm
F_{c}	コンクリートの設計基準強度	32.4	$\mathrm{N} / \mathrm{mm}^{2}$
f_{n}	コンクリートの支圧強度	194	$\mathrm{N} / \mathrm{mm}^{2}$
ℓ e	スタッドのコンクリート内への 有効埋込み長さ	92	mm
p a	スタッド 1 本あたりの許容引張力	40.3	kN
p a 1	スタッド鋼材の降伏により定まる場合の スタッド 1 本あたりの許容引張力	47.2	kN
p a 2	定着したコンクリート躯体の コーン状破壊により定まる場合の スタッド 1 本あたりの許容引張力	40.3	kN
p a 3	コンクリートの支圧破壊により定まる スタッド 1 本あたりの許容引張力	89.3	kN
c σ t	コーン状破壊に対するコンクリート引張強度	1． 76	$\mathrm{N} / \mathrm{mm}^{2}$
s σ p a	スタッドの引張強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
s σ y	スタッドの規格降伏点強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
Φ_{1}	低減係数	1.0	－
Φ_{2}	低減係数	0.667	－
p	スタッドの間隔	200	mm
T	スタッドに生じる引張力	2.6	kN

表 1－31 スタッドの変形評価の評価条件（2／3）
(タービン建屋)

記号	定義	数値	単位
A_{c}	コーン状破壊面の有効投影面積	34014	mm^{2}
A 0	スタッド頭部の支圧面積	459	mm^{2}
a c a	スタッドの断面積で，軸部断面積と ねじ部有効断面積の小なる方の値	201	mm^{2}
D	スタッドの頭部直径	29	mm
d	スタッドの軸部直径	16	mm
F_{c}	コンクリートの設計基準強度	32.4	$\mathrm{N} / \mathrm{mm}^{2}$
f_{n}	コンクリートの支圧強度	194	$\mathrm{N} / \mathrm{mm}^{2}$
$\ell_{\text {e }}$	スタッドのコンクリート内への 有効埋込み長さ	92	mm
p a	スタッド 1 本あたりの許容引張力	39.9	kN
p a 1	スタッド鋼材の降伏により定まる場合の スタッド 1 本あたりの許容引張力	47． 2	kN
p a 2	定着したコンクリート躯体の コーン状破壊により定まる場合の スタッド 1 本あたりの許容引張力	39.9	kN
p a 3	コンクリートの支圧破壊により定まる スタッド 1 本あたりの許容引張力	89.3	kN
c σ t	コーン状破壊に対するコンクリート引張強度	1． 76	$\mathrm{N} / \mathrm{mm}^{2}$
s σ p a	スタッドの引張強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
s σ_{y}	スタッドの規格降伏点強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
Φ_{1}	低減係数	1.0	－
Φ_{2}	低減係数	0.667	－
p	スタッドの間隔	200	mm
T	スタッドに生じる引張力	1． 5	kN

表 1－31 スタッドの変形評価の評価条件（3／3）
（制御建屋）

記号	定義	数値	単位
A c	コーン状破壊面の有効投影面積	34972	mm^{2}
A 0	スタッド頭部の支圧面積	459	mm^{2}
a c a	スタッドの断面積で，軸部断面積と ねじ部有効断面積の小なる方の値	201	mm^{2}
D	スタッドの頭部直径	29	mm
d	スタッドの軸部直径	16	mm
F ${ }_{\text {c }}$	コンクリートの設計基準強度	32.4	$\mathrm{N} / \mathrm{mm}^{2}$
f_{n}	コンクリートの支圧強度	194	$\mathrm{N} / \mathrm{mm}^{2}$
ℓ e	スタッドのコンクリート内への 有効埋込み長さ	92	mm
p a	スタッド 1 本あたりの許容引張力	41.0	kN
p a 1	スタッド鋼材の降伏により定まる場合の スタッド1本あたりの許容引張力	47． 2	kN
p a 2	定着したコンクリート躯体の コーン状破壊により定まる場合の スタッド 1 本あたりの許容引張力	41.0	kN
p a 3	コンクリートの支圧破壊により定まる スタッド 1 本あたりの許容引張力	89.3	kN
c σ t	コーン状破壊に対するコンクリート引張強度	1． 76	$\mathrm{N} / \mathrm{mm}^{2}$
s σ p a	スタッドの引張強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
s σ y	スタッドの規格降伏点強度	235	$\mathrm{N} / \mathrm{mm}^{2}$
Φ_{1}	低減係数	1． 0	－
Φ_{2}	低減係数	0.667	－
p	スタッドの間隔	570	mm
T	スタッドに生じる引張力	0.5	kN

1.5 強度評価結果

1．5．1 貫通評価
式による評価にて算定した貫通評価結果を表1－32に示す。評価結果より，各施設の評価対象部位の許容限界が，設計飛来物による貫通を生じない貫通限界厚 さを上回ることを確認した。

表 1－32 貫通評価結果（式による評価）

評価対象部位		設計飛来物	評価結果	許容限界	
		（cm）	（cm）		
原子炉建屋	CR階外壁		鋼製材	22.5	25
	屋根スラブ	9． 3		17	
タービン建屋	2 階床スラブ	16． 7		60	
制御建屋建屋	3 階外壁	22.5		40	
	屋根スラブ	9． 3		30	
軽油タンク室	頂版	10.0		40	
軽油タンク室（H）	頂版	10.0		120	

1．5．2 裏面剥離評価

式による評価にて算定した裏面剥離評価結果を表 $1-33$ に示す。
評価結果より，各施設の評価対象部位の許容限界が，設計飛来物による裏面剥離を生じない裏面剥離限界厚さを上回ることを確認した。

式による評価にて許容限界を満足しなかった原子炉建屋 CR 階外壁及び原子炉建屋屋根スラブについて，解析による評価の結果を表1－34及び図1－27に示す。

上記結果より，評価対象部位に設計飛来物による裏面剥離が生じないことを確認した。

表 1－33 裏面剥離評価結果（式による評価）

評価対象部位		設計飛来物	評価結果	許容限界	
		（ cm）	（cm）		
タービン建屋	2 階床スラブ		鋼製材	29.8	60
制御建屋建屋	3 階外壁	37.6		40	
	屋上スラブ	18.9		30	
軽油タンク室	頂版	21.5		40	
軽油タンク室（H）	頂版	21.5		120	

表 1－34 裏面剥離評価結果（解析による評価）

評価対象部位		評価結果	許容限界	
		鋼材の破断ひずみ		
原子炉建屋	デッキプレート			
CR 階外壁				
原子炉建屋				
屋根スラブ				

図 1－27 デッキプレートのひずみ分布図（原子炉建屋屋根スラブ）（2／2）

[^56]
1．5．3 変形評価

（1）耐震壁，鉄骨鉄筋コンクリート架構及び鉄骨架構
原子炉建屋，タービン建屋及び制御建屋の耐震壁に生じるせん断ひずみ並びに タービン建屋の鉄骨鉄筋コンクリート架構及び鉄骨架構に生じる層間変形角につ いて評価した変形評価結果を表1－35に示す。

原子炉建屋，タービン建屋及び制御建屋の耐震壁に生じるひずみ並びにタービ ン建屋の鉄骨鉄筋コンクリート架構及び鉄骨架構に生じる層間変形角が許容限界 を超えないことを確認した。

表 $1-35$ 変形評価結果（耐震壁，鉄骨鉄筋コンクリート架構及び鉄骨架構）

評価対象部位		評価結果	許容限界
原子炉建屋	耐震壁	0.07×10^{-3}	2.0×10^{-3}
タービン建屋		0.11×10^{-3}	2.0×10^{-3}
制御建屋		0.04×10^{-3}	2.0×10^{-3}
タービン建屋	鉄骨鉄筋コンクリート架構	1／8772	1／200
	鉄骨架構	1／11494	1／120

注：NS 方向，EW 方向の評価結果のうち，最も厳しい部材の結果を記載する。
（2）スタッド
原子炉建屋，タービン建屋及び制御建屋の屋根スラブのスタッドについて評価 した変形評価結果を表1－36に示す。

評価結果より，スタッドに生じる引張力が許容限界を超えないことを確認し た。

表 1－36 変形評価結果（スタッド）

評価対象部位		評価結果		許容限界 （kN）
		項目	数値	
原子炉建屋	$\begin{gathered} \text { 屋根スラブ } \\ \text { スタッド } \end{gathered}$	引張力	2.6	40.3
タービン建屋	$\begin{gathered} \text { 屋根スラブ } \\ \text { スタッド } \end{gathered}$	引張力	1.5	39.9
制御建屋	$\begin{gathered} \text { 屋根スラブ } \\ \text { スタッド } \end{gathered}$	引張力	0.5	41.0

2．鋼製構造物の強度計算

2.1 概要

本章では，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」 に示すとおり，竜巻より防護すべき施設を内包する施設のうち，鋼製構造物である原子炉建屋の竜巻の影響に対する防護を期待する扉（以下「扉」という。）並びに軽油タ ンク室及び軽油タンク室（H）の鋼製ハッチ（以下「鋼製ハッチ」という。）が，設計竜巻による設計飛来物の衝突に加え，風圧力による荷重及び気圧差による荷重に対し，竜巻時及び竜巻通過後においても，竜巻より防護すべき施設の安全機能を損なわない よう，内包する竜巻より防護すべき施設に設計飛来物が衝突することを防止する機能 を有すること及び竜巻より防護すべき施設に必要な機能を損なわないことを確認する ものである。

2.2 基本方針

添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」を踏まえ，各施設の位置を「2．2．1 位置」に，構造概要を「2．2．2 構造概要」に，評価方針を「2．2．3 評価方針」に，適用規格を「2．2．4 適用規格」に示す。

2．2．1 位置

扉は原子炉建屋に設置する。鋼製ハッチは屋外の軽油タンク室及び軽油タンク室（H）の頂版に設置する。原子炉建屋，軽油タンク室及び軽油タンク室（H） の位置を図2－1に，扉及び鋼製ハッチの設置位置を図 $2-2$ ，図 $2-3$ にそれぞれ示す。

図 2－1 原子炉建屋，軽油タンク室及び軽油タンク室（H）の位置図

原子炉建屋 1 階（0．P．15．00m）

図2－2 扉の位置図

軽油タンク室及び軽油タンク室（H）（0．P．14．80m）

図 2－3 鋼製ハッチの位置図

2．2．2 構造概要

扉及び鋼製ハッチの構造は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．1 構造強度の設計方針」に示す構造設計を踏まえ，設定する。

扉は，表面鋼板，芯材等の鋼材を主構造とし，アンカーボルトによって建屋躯体に固定された扉枠に対し，カンヌキによって扉本体を扉枠と固定することで支持する設計とする。

鋼製ハッチは，地下に埋設された軽油タンク室及び軽油タンク室（H）のうち地上部に露出した開口部に設置する。鋼製ハッチの上蓋は，取付枠を介して頂版上に設置する。

扉の構造図を図 $2-4$ ，鋼製ハッチの構造図を図2－5にそれぞれ示す。

図 2－4 扉の構造図（1／2）
（例：原子炉建屋大物搬入口の扉）

図 2－4 扉の構造図（2／2）
（例：原子炉建屋大物搬入口の扉）

図 2－5 鋼製ハッチの構造図

2．2．3 評価方針

扉及び鋼製ハッチの強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」及び「4．2 許容限界」を踏まえ，竜巻より防護すべき施設が安全機能を損なわないことを，「2．3強度評価方法」に示す方法により，「2．4 評価条件」に示す評価条件を用いて計算し，「2．5 強度評価結果」にて確認する。

扉及び鋼製ハッチの強度評価においては，その構造を踏まえ，設計竜巻荷重と これに組み合わせる荷重（以下「設計荷重」という。）の作用方向及び伝達過程を考慮し，評価対象部位を設定する。

具体的には，設計飛来物が外部事象防護対象施設に衝突する直接的な影響の評価として，扉及び鋼製ハッチに対する衝突評価及び扉自体が外部事象防護対象施設に衝突する波及的な影響の評価として扉の転倒及び脱落に対する構造強度評価 を行う。扉の評価フローを図 $2-6$ ，鋼製ハッチの評価フローを図 $2-7$ に示す。
（1）衝突評価
設計荷重に対し，設計飛来物が施設を構成する部材を貫通しない設計とするた めに，扉の表面鋼板及び鋼製ハッチの上蓋の最小厚さが，設計飛来物の貫通を生 じない貫通限界厚さを上回ることを計算により確認する。衝突評価には，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．1建屋構造物に関する評価式」に示す評価式を用いる。（以下「貫通評価」という。）
（2）構造強度評価
設計荷重に対し，施設を構成する部材自体の軽倒及び脱落を生じない設計とす るために，扉の表面鋼板と芯材に終局状態に至るようなひずみが生じないことを解析により確認する。（以下「変形評価」という。）

また，カンヌキ，カンヌキ受けピン及びカンヌキ受けボルト（以下「カンヌキ部」という。）及び締付ボルトに生じる応力度が「鋼構造設計規準•同解説 — 許容応力度設計法－」及び J I S に基づき設定する短期許容応力度を超えないことを，力学における標準式による荷重の算定により確認する。（以下「応力評価」という。）

注記＊：衝突解析においては，解析コード「LS－D Y N A」を用いて3次元 FEM モデ ルによりモデル化し，表面鋼板及び芯材について評価を実施する。

図 2－6 扉の評価フロー

図2－7 鋼製ハッチの評価フロー

2．2．4 適用規格
適用する規格，規準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第201号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合）
－タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）
－U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007
－Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute $2011 \operatorname{Rev} 8$（NEIO7－13））
- 日本建築学会 2004 年 建築物荷重指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法－
- 日本建築学会 2019 年 鋼構造許容応力度設計規準
- 日本溶接協会 2003年「動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808」

2.3 強度評価方法

2．3．1 記号の定義
BRL 式による貫通限界厚さの算定に用いる記号を表 $2-1$ に，力学における標準式による荷重及び応力の算定に用いる記号を表2－2に示す。

表 2－1 BRL 式による貫通限界厚さの算定に用いる記号

記号	単位	定義
d	m	設計飛来物が衝突する衝突断面の等価直径
K	－	鋼板の材質に関する係数
M	kg	設計飛来物の質量
T	m	鋼板の貫通限界厚さ
		扉 設計飛来物の衝突速度（水平）
V	m／s	鋼製 設計飛来物の衝突速度（鉛直） ハッチ
π	－	円周率
A	m	設計飛来物の接触面積

表 2－2 力学における標準式による荷重及び応力の算定に用いる記号

記号	単位	定義
A_{1}	m^{2}	表面表側鋼板（小扉）の受圧面積
A_{2}	m^{2}	表面表側鋼板（小扉及びパネル）の受圧面積
A_{3}	mm^{2}	カンヌキの断面積
A_{4}	mm^{2}	カンヌキ受けピンの断面積
A_{5}	mm^{2}	カンヌキ受けボルトの断面積
A_{6}	mm^{2}	締付ボルトの断面積
C	－	風力係数
F_{d}	N	常時作用する荷重
G	－	ガスト影響係数
L	mm	カンヌキと扉枠の距離
$L_{\text {P }}$	mm	カンヌキ受けピンの軸支持間距離
n	本	カンヌキの本数
n b	本	カンヌキ受けボルトの本数
n k	本	締付ボルトの本数
q	Pa	設計用速度圧
R	N	カンヌキ 1 本あたりに生じる荷重
$\mathrm{R}_{\text {b }}$	N	締付ボルト1本あたりに生じる荷重
$\mathrm{V}_{\text {D }}$	m／s	設計竜巻の最大風速
W_{M}	N	設計飛来物による衝撃荷重
$\Delta \mathrm{P}$	$\mathrm{N} / \mathrm{m}^{2}$	最大気圧低下量
$\mathrm{W}_{\mathrm{P} 1}$	N	小扉の気圧差による荷重
$W_{\text {P } 2}$	N	小扉及びパネルの気圧差による荷重
$\mathrm{W}_{\mathrm{W} 1}$	N	小扉の設計竜巻風圧力による荷重
$\mathrm{W}_{\mathrm{W} 2}$	N	小扉及びパネルの設計竜巻風圧力による荷重
Z	mm^{3}	断面係数
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	空気密度
$\sigma{ }^{\text {b }}$	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
$\sigma_{\text {T }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度

2．3．2 評価対象部位

扉及び鋼製ハッチの評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮 が必要な施設の強度計算の方針」の「4．2 許容限界」に示す評価対象部位を踏ま えて設定する。扉の評価対象部位を図 $2-8 \sim$ 図 $2-9$ ，鋼製ハッチの評価対象部位 を図2－10に示す。
\square
図 2－8 原子炉建屋大物搬入口の評価対象部位（1／2）

図 2－8 原子炉建屋大物搬入口の評価対象部位（2／2）
\square
図2－9 D／G（A）室防護扉の評価対象部位（1／2）

図 2－9 D／G（A）室防護扉の評価対象部位（2／2）

図 2－10 鋼製ハッチの評価対象部位
（1）貫通評価
設計荷重に対し，設計飛来物が施設を構成する部材を貫通しない設計とするた めに，扉の表面鋼板及び鋼製ハッチの上蓋の最小厚さが，設計飛来物の貫通を生 じない貫通限界厚さを上回ることを計算により確認するものとし，扉の表面鋼板及び鋼製ハッチの上蓋を評価対象部位として設定する。
（2）変形評価
設計荷重に対し，施設を構成する部材自体が，転倒及び脱落により外部事象防護対象施設へ接触等の影響を与えない設計とするために，扉の表面鋼板と芯材に終局状態に至るようなひずみが生じないことを解析により確認する。施設を構成 する表面鋼板に作用する設計荷重は，芯材，ヒンジ，カンヌキ部及び締付ボルト に伝わりアンカーボルトにより固定された扉枠を介して建屋躯体に伝達されるこ とから，これらの部材が評価対象部位として抽出される。
このうち，ヒンジ，カンヌキ部，締付ボルト及びアンカーボルトについては，外部から作用する設計荷重に対して直接的な伝達経路とならないこと，扉枠につ いてはアンカーボルトの大半が損傷しない限り転倒•脱落は生じないことから，表面鋼板，芯材を評価対象部位として設定する。

ここで，評価対象とする扉は，表面鋼板の厚みが最も薄いもののうち，表面鋼板の面積が最大となる扉を代表として評価するものとし，原子炉建屋大物搬入口 とする。
評価の対象とする扉の選定結果として，扉の表面鋼板の最小厚さと面積の一覧 を表2－3に示す。

また，設計飛来物の衝突を考慮する場合，被衝突物の寸法が大きいほどたわみ量が大きくなる傾向にある。したがって，変形評価としては，評価対象となる表面鋼板の部材長さ（支持スパン）が最長となる扉中央部を選定する。
（3）応力評価
設計荷重に対し，施設を構成する部材自体が，転倒及び脱落により外部事象防護対象施設へ接触等の影響を与えない設計とするために，カンヌキ部に生じる応力度が「鋼構造設計規準•同解説—許容応力度設計法一」及びJISに基づき設定する短期許容応力度を超えないことを，力学における標準式による荷重の算定 により確認する。

室内側から作用する荷重が芯材，表面鋼板に作用し，ヒンジ，カンヌキ部及び アンカーボルトにより固定された扉枠を介して建屋躯体に伝達されることから， これらの部材が評価対象部位として抽出される。

このうち，表面鋼板は対貫通性を考慮した厚板であり，またヒンジ，芯材につ いては評価上期待しないこと，アンカーボルトにより固定された扉枠は建屋躯体 に埋め込まれて一体化していることから，扉の閉止状態を維持するための支持部材であるカンヌキ部（カンヌキ及びカンヌキに作用する荷重を負担するカンヌキ受けピン，カンヌキ受けボルト）を評価対象部位として設定する。

また，パネル付きの扉については，パネル（表面鋼板）の閉止状態を維持する ための支持部材である締付ボルトも評価対象部位として設定する。

ここで，評価対象とする扉は，結果が厳しい評価対象部位を有する扉を代表と して評価するものとし， D / G（ A ）室防護扉とする。

評価の対象とする扉の選定結果を表2－3に示す。

表 2－3 評価の対象とする扉の選定結果

評価対象の扉		表面鋼板の仕様			カンヌキ の 本数 （本）	表面鋼板 の最小厚 さ（mm）	評価対象	
		$\begin{gathered} \text { 幅 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { 高さ } \\ & (\mathrm{mm}) \end{aligned}$	面積 $\left(\mathrm{m}^{2}\right)$			変形 評価	応力 評価
D／G（A）室防護扉	パネル	3190	5130	16． 36	48＊	32		\bigcirc
	小扉	1135	1960	2.22	4	32		\bigcirc
東側共通通路 防護扉（No．1）		4950	4600	22.77	8	36		
東側共通通路 防護扉（No．2）		1129	1880	2.12	4	36		
D／G（H P C S ）室防護扉		5230	5470	28.60	12	32		
D／G（B）室防護扉		5230	5470	28.60	12	32		
原子炉建屋大物搬入口		6920	6230	43.11	14	32	\bigcirc	

注記＊：締付ボルトの本数を示す

2．3．3 荷重及び荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添1－1 竜巻へ の配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」を踏ま えて設定する。
（1）荷重の設定
強度評価に用いる荷重は以下の荷重を用いる。荷重の算定に用いる竜巻の特性値を表2－4に示す。

表 2－4 荷重の算定に用いる竜巻の特性値

最大風速	移動速度	最大接線風速	最大気圧低下量
V_{D}	V_{T}	$V_{R m}$	$\Delta \mathrm{P}$
$(\mathrm{m} / \mathrm{s})$	$(\mathrm{m} / \mathrm{s})$	$(\mathrm{m} / \mathrm{s})$	$\left(\mathrm{N} / \mathrm{m}^{2}\right)$
100	15	85	7600

a．風圧力による荷重（ W_{w} ）
風圧力による荷重は，下式により算出する。

$$
\mathrm{W}_{\mathrm{W} 1}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C} \cdot \mathrm{~A}_{1} \text { または } \mathrm{W}_{\mathrm{W} 2}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C} \cdot \mathrm{~A}_{2}
$$

設計用速度圧 q は，下式により算定する。

$$
\mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{D}}^{2}
$$

b．気圧差による荷重（ W_{P} ）
気圧差による荷重は，次式のとおり算出する。

$$
\mathrm{W}_{\mathrm{P} 1}=\Delta \mathrm{P} \cdot \mathrm{~A}_{1} \quad \text { または } \quad \mathrm{W}_{\mathrm{P} 2}=\Delta \mathrm{P} \cdot \mathrm{~A}_{2}
$$

c．設計飛来物による衝撃荷重（ W_{M} ）
設計飛来物による衝撃荷重（ W_{M} ）は，表 $2-5$ に諸元を示す設計飛来物の衝突に伴う荷重とする。ここで設計飛来物の衝突方向は，設備構造を踏まえて設定する。また，設計飛来物の材料定数を表 $2-6$ に示す。

表 2－5 設計飛来物の諸元

	寸法 設計飛来物	質量 $(\mathrm{K}$ さ \times 幅 \times 奥行き (m)	水平方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$	鉛直方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$
鋼製材	$4.2 \times 0.3 \times 0.2$	135	46.6	16.7

表 2－6 設計飛来物の材料定数

設計飛来物	降伏応力 $\sigma_{\mathrm{y}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	塑性硬化係数 $\mathrm{E}^{\prime}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比

d．常時作用する荷重（ F_{d} ）
常時作用する荷重（ F_{d} ）は，部材の自重とする。
（2）荷重の組合せ
強度評価に用いる荷重の組合せについては，添付書類「VI－3－別添1－1 竜巻へ の配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」のとお り，風圧力による荷重，気圧差による荷重，設計飛来物による衝撃荷重及び常時作用する荷重を組み合わせる。荷重の組合せを表2－7に示す。

表 $2-7$ 荷重の組合せ

評価内容	に風圧力 にる荷重 $\left(W_{W}\right)$	気圧差 による荷重 $\left(W_{P}\right)$	設計飛来物 による衝撃 荷重 $\left(W_{M}\right)$	常時作用 する荷重 $\left(\mathrm{F}_{\mathrm{d}}\right)$	荷重の組合せ

2．3．4 許容限界

扉及び鋼製ハッチの許容限界は，「2．3．2 評価対象部位」にて設定した評価対象部位ごとに，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算 の方針」の「4．2 許容限界」にて設定している許容限界及び機能損傷モードを踏 まえて設定する。
（1）評価対象部位の材料仕様
扉の材料仕様を表2－8に，鋼製ハッチの上蓋の材料仕様を表 $2-9$ にそれぞれ示す。

表 2－8 扉の材料仕様

評価対象部位	材質	仕様
表面鋼板	SS400	$\mathrm{PL}-32$
芯材	SM490	$[-600 \times 300 \times 25 \times 36$ $\mathrm{H}-600 \times 300 \times 25 \times 36$
カンヌキ	SUS304	$\phi 50$
カンヌキ受けピン	S45C	M16
カンヌキ受けボルト	SCM435	M 20
締付ボルト	SCM435	

表2－9 鋼製ハッチの上蓋の材料仕様

開口部大きさ		材質	長辺 (mm)	短辺 (mm)	厚さ (mm)
1300×1300		SUS304	1806	1530	16
800×800	(1)	SUS304	1336	1030	16
	(2)	SUS304	1336	1070	16
450×588		SUS304	768	630	12

（2）評価対象部位の材料定数
扉の材料定数を表2－10に示す。

表 2－10 材料定数

材質	降伏応力 $\sigma \mathrm{y}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	塑性硬化係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
SS 400	235	206000	2094	0.3
SM490	315	206000	2298	0.3

（3）許容限界
a．貫通評価
扉の表面鋼板及び鋼製ハッチの上蓋の最小厚さを貫通評価の許容限界とする。表2－11に設定した許容限界を示す。

表 2－11 貫通評価の許容限界

評価対象部位		許容限界（mm）	材質
扉	表面鋼板	32	SS400
鋼製ハッチ	上蓋	12	SUS304

b．変形評価
設計飛来物が扉の表面鋼板へ直接衝突する場合の変形評価における許容限界 は，鋼材の破断ひずみを基本として設定する。破断ひずみについては，添付書類「VI－3－別添 1 －1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1．2 （1）許容限界の設定」に示すとおり，J I S に規定されている伸びの下限値を基に設定するが，NEI07－13においてTF（多軸性係数）を \square とすることが推奨さ れていることを踏まえ，安全余裕としてTF＝\square を考慮して設定する。設定した許容限界を表2－12に示す。

表 2－12 変形評価の許容限界

評価対象部位	材質	破断ひずみ＊
表面鋼板	SS400	
芯材	SM490	

注記＊：真ひずみ換算値
c．応力評価
応力評価の許容限界を表2－13に示す。評価対象部位の材料仕様は表2－8に示すとおりとする。

応力評価におけるカンヌキ部の評価は，J I S 及び「鋼構造設計規準一許容応力度設計法－」に準じた短期許容応力度を許容限界として設定する。

表 2－13 応力評価の許容限界

評価対象部位	材質	短期許容応力度	
		曲げ・引張 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
カンヌキ	SUS304	205	118
カンヌキ受けピン	S45C	345	199
カンヌキ受けボルト	SCM435	854	－
締付ボルト	SCM435	728	－

2．3．5 評価方法

扉の強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．1 構造強度の設計方針」を踏まえて，衝突評価として貫通評価を実施し，構造強度評価として変形評価及び応力評価を実施する。

また，鋼製ハッチの強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．1構造強度の設計方針」を踏まえて，衝突評価として貫通評価を実施する。
（1）貫通評価
設計飛来物が扉の表面鋼板及び鋼製ハッチの上蓋へ直接衝突する場合の貫通限界厚さを，「タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）」で用いられる BRL 式を用いて算出する。

BRL式を以下に示す。

$$
\mathrm{T}^{\frac{3}{2}}=\frac{0.5 \cdot \mathrm{M} \cdot \mathrm{~V}^{2}}{1.4396 \cdot 10^{9} \cdot \mathrm{~K}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}}
$$

ここで等価直径 d は下式の通りとする。

$$
\mathrm{d}=\sqrt{\frac{4 \cdot \mathrm{~A}}{\pi}}
$$

（2）変形評価
変形評価に用いる評価対象部位に生じるひずみは，解析モデル及び材料の非線形特性を用いた衝突解析により評価する。
a．解析モデル及び諸元
（a）扉
扉の解析モデル化の範囲は，想定する荷重の伝達を考慮し，扉を構成する表面鋼板及び芯材とする。各部位はシェル要素でモデル化する。扉の解析モ デルの境界条件を表2－14に，解析モデル図を図2－11に示す。

表2－14 解析モデルの境界条件

項目		境界条件
扉	扉部材と建屋躯体	X 方向並進拘束
	扉部材とヒンジ	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 方向並進拘束

図 2－11 扉の解析モデル図（屋外側）（1／3）

図 2－11 扉の解析モデル図（屋内側）（2／3）
（b）設計飛来物
設計飛来物である鋼製材は，シェル要素でモデル化する。
設計飛来物の解析モデル図を図 $2-12$ に示す。

（単位：mm）
図 2－12 設計飛来物の解析モデル図
b．解析コード
衝突解析には，解析コード「LS－D Y N A」を用いる。解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
c．使用材料
扉に使用する鋼材の仕様については，「2．3．4（1）評価対象部位の材料仕様」 に示すとおり設定する。
d．材料定数
扉に使用する鋼材の材料定数については，「2．3．4（2）評価対象部位の材料定数」に示すとおり設定する。
e．材料の非線形特性
（a）材料の応力ーひずみ関係
扉の材料モデルでは，鋼材の破断ひずみを設定し，破断ひずみを超えた要素が荷重を負担しないことを考慮する。

材料の応力ーひずみ関係はバイリニア型とし，降伏後の塑性硬化係数（2 次勾配 E^{\prime} ）は，表2－10に示す値とする。材料に適用する応力ーひずみ関係の概念図を図2－13に示す。

図 2－13 応力ーひずみ関係の概念図
（b）ひずみ速度効果
竜巻による設計飛来物に対する解析は，衝撃問題で変形速度が大きいため， ひずみ速度効果を考慮することとし，以下に示す Cowper－Symonds の式を適用する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{P}}\right\}$
ここで，σ_{D} は動的応力，σ_{s} は静的応力，غはひずみ速度，C及びPはひ ずみ速度依存性パラメータを表す。

ひずみ速度依存性パラメータを表2－15に示す。

表 2－15 ひずみ速度依存性パラメータ

	設計飛来物 鋼製材	扉		
	SS40	表面鋼板	芯材	
材料	SS400	SM 490		
$\mathrm{C}\left(\mathrm{s}^{-1}\right)$				
P				

（c）破断ひずみ
破断ひずみは，J I S に規定されている伸びの下限値を基に設定する。ま た，NEI07－13においてTF（多軸性係数）を \square とすることが推奨されているこ とを踏まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。設計飛来物の鋼製材は保守的に破断ひずみを超えても荷重を負担するものとする。

材料モデルにおける破断ひずみを表2－16に示す。

表2－16 材料モデルにおける破断ひずみ

種別	材質	J I S 規格値（下限値）	TF	破断ひずみ＊
表面鋼板	SS400	0.21		
芯材	SM490	0.21		

注記＊：真ひずみの換算値

[^57]（3）応力評価
気圧差による荷重（ W_{P} ）によりカンヌキ部及び締付ボルトに発生する応力度を算出し，許容限界を超えないことを確認する。
a．カンヌキ部に生じる荷重
カンヌキ部に生じる荷重は気圧差による荷重（ W_{P} ）をカンヌキ部で負担した場合に生じる荷重Rから算定する。

カンヌキ部に生じる荷重を図2－14に示す。
$\mathrm{W}_{\mathrm{P} 1}=\Delta \mathrm{P} \cdot \mathrm{A}_{1}$
$\mathrm{R}=\frac{\mathrm{W}_{\mathrm{P} 1}}{\mathrm{n}}$
\square
図 2－14 カンヌキ部に生じる荷重
（a）カンヌキ
カンヌキ部の詳細図及びカンヌキの評価に用いるモデルの概念図を図2－ 15 に示す。カンヌキに生じる曲げモーメント M_{k} 及びせん断力 Q_{k} は次式に より算定する。

$$
\begin{aligned}
\mathrm{M}_{\mathrm{k}} & =\mathrm{R} \cdot \mathrm{~L} \\
\mathrm{Q}_{\mathrm{k}} & =\mathrm{R}
\end{aligned}
$$

図 2－15 カンヌキ部の詳細図及びモデルの概念図（A部）
（b）カンヌキ受けピン
カンヌキ受けピン，カンヌキ受けボルトの詳細図及びカンヌキ受けピンの評価に用いるモデルの概念図を図2－16に示す。カンヌキ受けピンに生じる曲げモーメント M_{p} 及びせん断力 Q_{p} は次式により算定する。

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{P}}=\frac{\mathrm{R} \cdot \mathrm{~L}_{\mathrm{P}}}{4} \\
& \mathrm{Q}_{\mathrm{P}}=\frac{\mathrm{R}}{2}
\end{aligned}
$$

図 2－16 カンヌキ受けピン，カンヌキ受けボルトの詳細図及びモデルの概念図
（c）カンヌキ受けボルト
カンヌキ受けボルト 1 本当たりに生じる引張力 T は次式により算定する。

$$
\mathrm{T}=\frac{\mathrm{R}}{\mathrm{n}_{\mathrm{b}}}
$$

b．締付ボルトに生じる荷重
締付ボルト 1 本当たりに生じる荷重は気圧差による荷重（ W_{P} ）を締付ボル トに作用する反力 R_{b} から算定する。
締付ボルトに生じる荷重を図2－17に示す。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{P} 2}=\Delta \mathrm{P} \cdot \mathrm{~A}_{2} \\
& \mathrm{R}_{\mathrm{b}}=\frac{\mathrm{W}_{\mathrm{P} 2}}{\mathrm{n}_{\mathrm{k}}}
\end{aligned}
$$

\square
図 2－17 締付ボルトに生じる荷重

締付ボルトの詳細図を図2－18に示す。
締付ボルトに生じる引張力 T は次式により算定する。
$\mathrm{T}=\mathrm{R}_{\mathrm{b}}$

図2－18 締付ボルトの詳細図
c．断面検定
カンヌキ部及び締付ボルトに生じる応力度が許容限界以下であることを確認 する。カンヌキ部及び締付ボルトの許容限界を表2－13に示す。
（a）カンヌキ1本あたりに生じる曲げ応力度

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{k}}}{\mathrm{Z}}
$$

カンヌキ 1 本あたりに生じるせん断応力度

$$
\tau=\frac{\mathrm{Q}_{\mathrm{k}}}{\mathrm{~A}_{3}}
$$

（b）カンヌキ受けピン 1 本あたりに生じる曲げ応力度

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{p}}}{\mathrm{Z}}
$$

カンヌキ受けピン1本あたりに生じるせん断応力度

$$
\tau=\frac{\mathrm{Q}_{\mathrm{p}}}{\mathrm{~A}_{4}}
$$

（c）カンヌキ受けボルト1本あたりに生じる引張応力度

$$
\sigma_{\mathrm{T}}=\frac{\mathrm{T}}{\mathrm{~A}_{5}}
$$

（d）締付ボルト1本あたりに生じる引張応力度

$$
\sigma_{\mathrm{T}}=\frac{\mathrm{T}}{\mathrm{~A}_{6}}
$$

2． 4 評価条件

2．4．1 貫通評価
貫通評価において，扉の表面鋼板及び鋼製ハッチの上蓋の貫通評価式に用いる評価条件を表2－17に示す。

表2－17 扉の表面鋼板及び鋼製ハッチの上蓋の貫通評価に用いる評価条件

評価条件		数値
d（m）		0.07367
K		1.0
M（kg）		135
$\mathrm{V}(\mathrm{m} / \mathrm{s})$	水平方向	46.6
	鉛直方向	16． 7

2．4．2 変形評価
扉の変形評価では，図 $2-8$ に示す扉に対して，最大変形が生じると想定される表面鋼板中央部に設計飛来物が衝突するケースを評価する。

解析ケースを表2－18に，設計飛来物の衝突イメージを図2－19に示す。

表 2－18 解析ケース（変形評価）

評価箇所	衝突箇所	設計飛来物の衝突方向	評価対象部材
扉	表面鋼板		PL -32
		水平	

図 2－19 設計飛来物の衝突イメージ
枠囲みの内容は商業機密の観点から公開できません。

扉の応力評価に用いる条件を表2－19に示す。

表 2－19 応力評価に用いる評価条件（D／G（A）防護扉）

記号	定義		数値	単位
A_{1}	表面鋼板（小扉）の受圧面積		2． 22	m^{2}
A_{2}	表面鋼板（小扉及びパネル）の受圧面積		16.36	mm^{2}
A_{3}	カンヌキの断面積		1963	mm^{2}
A_{4}	カンヌキ受けピンの断面積		490.9	mm^{2}
A_{5}	カンヌキ受けボルトの断面積		157	mm^{2}
A_{6}	締付ボルトの断面積		245	mm^{2}
L	カンヌキと扉枠の距離		91	mm
L P	カンヌキ受けピンの軸支持間距離		72	mm
n	カンヌキの本数		4	本
n b	カンヌキ受けボルトの本数		2	本
n k	締付ボルトの本数		48	本
R	カンヌキ1本あたりに作用する荷重		4227	N
R_{b}	締付ボルト1本あたりに作用する荷重		2591	N
$\Delta \mathrm{P}$	最大気圧低下量		7600	$\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{W}_{\mathrm{P} 1}$	小扉に作用する気圧差荷重 $\left(\Delta \mathrm{P} \cdot \mathrm{A}_{1}\right)$		16907	N
$\mathrm{W}_{\mathrm{P} 2}$	小扉及びパネルに作用する気圧差荷重 $\left(\Delta \mathrm{P} \cdot \mathrm{A}_{2}\right)$		124372	N
Z	断面係数	カンヌキ	12270	mm^{3}
		カンヌキ受けピン	1534	mm^{3}

2.5 強度評価結果

2．5．1 貫通評価
竜巻発生時の扉の表面鋼板及び鋼製ハッチの上蓋の貫通限界厚さを表2－20に示す。

表 2－20 貫通限界厚さ

評価対象部位		貫通限界厚さ (mm)	備考
扉	表面鋼板	29.6	水平方向の飛来速度
$46.6 \mathrm{~m} / \mathrm{s}$ の場合			

扉及び鋼製ハッチの貫通評価結果として，貫通限界厚さと許容限界の比較を表 2－21に示す。扉及び鋼製ハッチの評価対象部位の許容限界が，設計飛来物によ る貫通を生じない貫通限界厚さを上回ることを確認した。

表 2－21 貫通評価結果

評価対象部位			評価結果（mm）	許容限界（mm）
D／G（A）室防護扉	パネル	表面鋼板	29.6	32
	小扉		29． 6	32
$\begin{array}{r} \text { 東側共通通路 } \\ \text { 防護扉 (No. 1) } \end{array}$		表面鋼板	29.6	36
東側共通通路 防護扉（No．2）		表面鋼板	29.6	36
D/G (H P C S) 室 防護扉		表面鋼板	29.6	32
D / G (B) 室 防護扉		表面鋼板	29.6	32
原子炉建屋大物搬入口		表面鋼板	29． 6	32
軽油タンク室及び軽油タンク室（H）鋼製ハッチ		上蓋	7.54	12

2．5．2 変形評価
評価結果を表2－22並びに図2－20及び図2－21に示す。扉に生じるひずみが許容限界を超えないことを確認した。

表 2－22 評価結果

評価対象部位		評価結果	許容限界
扉	表面鋼板		
	芯材		

図 2－20 表面鋼板のひずみ分布図（1／2）

図2－20 表面鋼板のひずみ分布図（2／2）

[^58]図 2－21 芯材のひずみ分布図（1／2）

図 2－21 芯材のひずみ分布図（ $2 / 2$ ）

枠囲みの内容は商業機密の観点から公開できません。

2．5．3 応力評価

評価結果を表2－23に示す。扉のカンヌキ部及び締付ボルトに生じる応力度は，許容限界を超えないことを確認した。

表 2－23 評価結果
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

評価対象の扉 （D／G（A）室防護扉）	評価結果		許容限界
	項目	数値	
カンヌキ	曲げ応力度	32	205
	せん断応力度	3	118
カンヌキ受けピン	曲げ応力度	50	345
	せん断応力度	5	199
カンヌキ受けボルト	引張応力度	14	854
締付ボルト	引張応力度	11	728

> VI-3-別添 1-1-8 換気空調設備の強度計算書
1．概要 1
2．基本方針 1
2.1 位置 1
2.2 構造概要 2
2． 3 評価方針 4
2．4 適用規格 8
3．構造強度評価方法 8
3.1 記号の定義 8
3.2 評価対象部位 13
3.3 荷重及び荷重の組合せ 16
3.4 許容限界 17
3.5 評価方法 23
4．評価条件 34
5．強度評価結果 38

1．概要

本資料は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」 に示すとおり角ダクト，丸ダクト，ダンパ，隔離弁及びファンが竜巻時及び竜巻通過後 においても，その施設の維持を考慮して，主要な構造部材が構造健全性を有することを確認するものである。

2．基本方針

角ダクト，丸ダクト，ダンパ，隔離弁及びファンについて，添付書類「VI－3－別添1－1竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示す構造計画を踏まえ，角ダクト，丸ダクト，ダンパ，隔離弁及びファンの「2．1 位置」，「2．2 構造概要」，「2．3 評価方針」及び「2．4 適用規格」を示す。

2.1 位置

角ダクト，丸ダクト，ダンパ，隔離弁及びファンは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示すとおり，十分な強度を有する原子炉建屋内，制御建屋内に設置する。

角ダクト，丸ダクト，ダンパ，隔離弁及びファンの位置図を図 $2-1$ に示す。

図 2－1 角ダクト，丸ダクト，ダンパ，隔離弁及びファンの位置図

2.2 構造概要

換気空調設備について，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「3．2 機能維持の方針」に示す構造計画を踏まえて，構造を設定す る。
（1）角ダクト及び丸ダクトの構造概要
角ダクトは，鋼板により構成される四角形断面のダクトであり，支持構造物によ り建屋壁，床及び梁等に支持する。

丸ダクトは，鋼板により構成される円筒形のダクトであり，支持構造物により建屋壁，床及び梁等に支持する。

角ダクトの概要図を図2－2に，丸ダクトの概要図を図2－3に示す。

ダクト鋼板

建屋壁，床，梁等

図2－2 角ダクトの概要図

図 2－3 丸ダクトの概要図
（2）隔離弁の構造概要
隔離弁は，鋼製の弁箱，弁体及び弁棒で構成し，接続ダクトにより支持する。隔離弁の概要図を図2－4に示す。

（側面図）

（正面図）

図 2－4 隔離弁の概要図
（3）ファンの構造概要
ファンは，流路を形成するケーシング，冷却するための空気を送り込む羽根車及 び電動機から回転力を伝達する主軸で構成する。

ファンの概要図を図2－5に示す。

羽根車
図 2－5 ファンの概要図
（4）ダンパ
ダンパは，鋼製のケーシング，ベーン及びシャフトで構成し，接続ダクトにより支持する。

ダンパの概要図を図 2－6に示す。

2.3 評価方針

換気空調設備の強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「4．荷重及び荷重の組合せ並びに許容限界」にて設定してい る，荷重及び荷重の組合せ並びに許容限界を踏まえ，角ダクト，丸ダクト，隔離弁， ファン及びダンパの各評価対象部位に作用する応力等が，許容限界に収まることを「3．強度評価方法」に示す方法により，「4．評価条件」に示す評価条件を用いて計算し，
「5．強度評価結果」にて確認する。
（1）角ダクト及び丸ダクトの評価方針
角ダクト及び丸ダクトの構造強度評価フローを図 2－7 に示す。
竜巻より防護すべき施設を内包する施設内に設置されている，外気と繋がってい る換気空調設備のうち，角ダクト及び丸ダクトの構造強度評価においては，その構造を踏まえ，設計竜巻による荷重とこれに組み合わせる荷重（以下「設計荷重」と いう。）の作用方向及び伝達過程を考慮し，評価対象部位を選定する。

角ダクトの構造強度評価においては，設計竜巻の気圧差による荷重を短期荷重と みなし，自重との組合せを考慮して，長期荷重（自重）＋短期荷重（設計竜巻によ る内外差圧）による応力が許容応力以下であることを確認する。構造強度評価では，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価式を用いる。

角ダクトの許容限界は，妥当な安全裕度を考慮して，添付書類「VI－3－別添1－1 竜

巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」に示す許容限界で ある，「原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）」，「原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）」及び「原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）」（以下「J E AG4601」という。）の許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ と とする。ただし，座屈に対しては評価式を満足することを確認する。

丸ダクトの構造強度評価においては，設計竜巻の気圧差による荷重を短期荷重と みなし，自重との組合せを考慮して，外圧により生じる周方向応力が許容応力以下 であること及び長期荷重（自重）＋短期荷重（設計竜巻による内外差圧）により生 じる応力が評価式を満足していることを確認する。構造強度評価では，添付書類「VI －3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」 に示す評価式を用いる。

丸ダクトの許容限界は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」に示す許容限界である，クリップリング座屈 の算出式に応じた値とする。

図 2－7 角ダクト及び丸ダクトの構造強度評価フロー
（2）隔離弁の評価方針
隔離弁の構造強度評価フローを図2－8に示す。
竜巻より防護すべき施設を内包する施設内に設置されている，外気と繋がってい る換気空調設備のうち，隔離弁の構造強度評価においては，その構造を踏まえ，設計荷重の作用方向及び伝達過程を考慮し，評価対象部位を選定する。

構造強度評価においては，隔離弁に対して，設計竜巻の気圧差による荷重及び常時作用する荷重（自重）により生じる応力が許容応力以下であることを確認する。構造強度評価では，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価方法を用いる。

隔離弁の許容限界は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」に示す許容限界である部材の降伏応力とする。

図 2－8 隔離弁の構造強度評価フロー
（3）ファンの評価方針
ファンの構造強度評価フローを図2－9に示す。
竜巻より防護すべき施設を内包する施設内に設置されている，外気と繋がってい る換気空調設備のらち，ファンの構造強度評価においては，その構造を踏まえ，設計荷重の作用方向及び伝達過程を考慮し，評価対象部位を選定する。

構造強度評価においては，ファンに対して，設計竜巻の気圧差による荷重により生じる応力が許容応力以下であることを確認する。構造強度評価では，添付書類「VI －3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」 に示す評価方法を用いる。

ファンの許容限界は，添付書類「VI－3－別添 1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」に示す許容限界である，J E A G 4 6 0 1 の許容応力状態III ${ }_{A}$ Sとする。

図 2－9 ファンの構造強度評価フロー
（4）ダンパの評価方針
ダンパの構造強度評価フローを図2－10に示す。
竜巻より防護すべき施設を内包する施設内に設置されている，外気と繋がってい る換気空調設備のうち，ダンパの構造強度評価においては，その構造を踏まえ，設計荷重の作用方向及び伝達過程を考慮し，評価対象部位を選定する。

構造強度評価においては，ダンパに対して，設計竜巻の気圧差による荷重及び常時作用する荷重（自重）により生じる応力が許容応力以下であることを確認する。

構造強度評価では，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」に示す評価方法を用いる。

ダンパの許容限界は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」に示す許容限界であるJEAG4601の許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ とする。

図 2－10 ダンパの構造強度評価フロー

2．4 適用規格

適用する規格，基準等を以下に示す。
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601•
補－1984）

- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
－日本機械学会 1987 年 新版機械工学便覧

3．構造強度評価方法
3.1 記号の定義
（1）ダクト
a．角ダクト
角ダクトの構造強度評価に用いる記号を表3－1に示す。

表 3－1 角ダクトの構造強度評価に用いる記号

記号	単位	定義
a	mm	ダクト幅
b	mm	ダクト高さ
c	mm	補強ピッチ
D p	$\mathrm{kg} / \mathrm{m}^{2}$	単位面積当たりのダクト鋼板の質量
E	MPa	縦弾性係数
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
I	mm ${ }^{4}$	断面二次モーメント
L	mm	ダクトサポートの支持間隔
M	$\mathrm{N} \cdot \mathrm{mm}$	ダクトに作用する曲げモーメント
M ${ }_{\text {p }}$	$\mathrm{N} \cdot \mathrm{mm}$	自重により作用する曲げモーメント
P	MPa	ダクトにかかる外圧
S y	MPa	設計•建設規格 付録材料図表Part5の表にて規定される設計降伏点
t	mm	ダクト板厚
$\delta_{\text {max }}$	mm	面外荷重によるダクト鋼板の最大変位量
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
π	－	円周率
μ	kg／m	ダクトの単位長さ当たりの重量
v	－	ポアソン比
$\sigma_{\text {max }}$	MPa	中心に生じる面外荷重による最大応力
$\sigma_{\text {p } 1} 1$	MPa	面内荷重（外圧）による発生応力
$\sigma_{\mathrm{p} 2}$	MPa	面内荷重（自重）による発生応力
σ w	MPa	短期荷重（設計竜巻による内外差圧）による発生応力と長期荷重（自重）による発生応力の和
σ y	MPa	許容応力

b．丸ダクト
丸ダクトの構造強度評価に用いる記号を表3－2に示す。

表3－2 丸ダクトの構造強度評価に用いる記号

記号	単位	定義
c	mm	補強ピッチ
E	MPa	縁弾性係数
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
k_{p}	－	座屈係数
L	mm	ダクトサポートの支持間隔
M $\mathrm{crin}^{\text {i }}$	$\mathrm{N} \cdot \mathrm{mm}$	クリップリング座屈が発生する際に作用する曲げモーメント
M_{p}	$\mathrm{N} \cdot \mathrm{mm}$	自重により作用する曲げモーメント
n	－	座屈モードの次数
r	mm	丸ダクトのダクト半径
t	mm	ダクト板厚
Z ${ }_{\text {c }}$	－	円筒かくの座屈応力の式における係数
β	－	円筒かくの座屈応力の式における係数
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
μ	kg／m	ダクトの単位長さ当たりの質量
v	－	ポアソン比
π	－	円周率
$\sigma_{\text {crip }}$	MPa	クリップリング座屈が発生する際に生じる周方向応力
Ocrip 1	MPa	外圧により生じる周方向応力

（2）隔離弁
隔離弁の構造強度評価に用いる記号を表3－3に示す。

表3－3 隔離弁の構造強度評価に用いる記号

記号	単位	定義
A s	mm ${ }^{2}$	弁棒の断面積
A v	mm^{2}	弁体の受圧面積
a	mm	弁体の半径
d	mm	弁棒の直径
F_{1}	N	設計竜巻の気圧低下により弁棒に受ける荷重
F_{2}	N	弁体自重により弁棒に受ける荷重
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
h	mm	弁体の板厚
m v	kg	弁体自重
m s	kg	弁棒自重
P_{1}	MPa	設計竜巻の気圧低下により弁体に受ける応力
P_{2}	MPa	自重により弁体に受ける応力
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
p v	MPa	弁体に受ける応力
p s	N	弁棒に受ける荷重
r	mm	内半径
S y	MPa	設計•建設規格 付録材料図表Part5の表にて規定される設計降伏点
t	mm	板厚
π	－	円周率
τ	MPa	弁棒に対するせん断応力
$\sigma_{\text {max }}$	MPa	弁体に対する曲げ応力
σ_{θ}	MPa	周方向応力

（3）ファン
ファンの構造強度評価に用いる記号を表3－4に示す。

表3－4 ファンの構造強度評価に用いる記号

記号	単位	定義
r	mm	ケーシング内半径
t	mm	ケーシング板厚
$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
S_{y}	MPa	設計•建設規格 付録材料図表Part5の表にて規定される設計 降伏点
S_{u}	MPa	設計•建設規格 引張強さ
σ_{θ}	MPa	録材料図表Part5の表にて向応力

（4）ダンパ
ダンパの構造強度評価に用いる記号を表3－5に示す。

表 3－5 ダンパの構造強度評価に用いる記号（ $1 / 2$ ）

記号	単位	定義
A_{s}	mm^{2}	シャフト断面積
E	MPa	縦弾性係数

表 3－5 ダンパの構造強度評価に用いる記号（2／2）

	記号	単位	定義
	L	mm	面間寸法
	Ls	mm	シャフト直径
	ℓ_{b}	mm	ベーン長さ
	ℓ c	mm	ケーシング長さ
	M_{c}	$\mathrm{N} \cdot \mathrm{mm}$	ケーシングに作用する最大曲げモーメント
	m_{b}	kg	ベーン質量
	m c	kg	ケーシング質量
	P	MPa	内部圧力
	t_{b}	mm	ベーン板厚
	Z ${ }_{\text {c }}$	mm ${ }^{3}$	ケーシングの断面係数
\bigcirc	$\delta_{\text {bmax }}$	mm	面外荷重によるべーンの最大変位量
\ldots	$\Delta \mathrm{P}$	MPa	設計竜巻の気圧低下量
$\stackrel{\infty}{1}$	v	－	ポアソン比
$\stackrel{1}{4}$	π	－	円周率
熄	$\sigma \mathrm{bmax}$	MPa	ベーンの中心に生じる面外荷重による最大応力
¢	$\sigma \mathrm{cmax}$	MPa	ケーシングに生じる最大曲げ応力
5	$\sigma \mathrm{smax}$	MPa	シャフトに生じる最大せん断応力

3.2 評価対象部位

（1）ダクトの評価対象部位
角ダクト及び丸ダクトの評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位に従って，「2．2 構造概要」にて設定している構造に基づき，設計荷重の作用方向及び伝達過程を考慮し選定する。
a．角ダクト
設計竜巻の気圧差による荷重は，角ダクト本体のダクト鋼板に作用する。この ことから，ダクト鋼板を評価対象部位として選定する。
角ダクトの構造強度評価における評価対象部位を図3－1に示す。

図3－1 角ダクトの評価対象部位
b．丸ダクト
設計竜巻の気圧差による荷重は，丸ダクト本体のダクト鋼板に作用する。この ことから，ダクト鋼板を評価対象部位として選定する。

丸ダクトの構造強度評価における評価対象部位を図3－2に示す。

図3－2 丸ダクトの評価対象部位
（2）隔離弁の評価対象部位
隔離弁の評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位に従って，「2．2構造概要」にて設定している構造に基づき，設計荷重の作用方向及び伝達過程を考慮し選定する。

設計竜巻の気圧差による荷重は，隔離弁本体の耐圧部に作用する。このことから，耐圧部である弁箱，弁体，弁棒を評価対象部位として選定する。

隔離弁の構造強度評価における評価対象部位を図3－3に示す

図 3－3 隔離弁の評価対象部位
（3）ファンの評価対象部位
ファンの評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「4．2許容限界」にて示している評価対象部位に従って，「2．2構造概要」にて設定している構造に基づき，設計荷重の作用方向及び伝達過程を考慮し設定する。

設計竜巻の気圧差による荷重は，ファンのケーシングに作用する。このことから， ケーシングを評価対象部位として設定する。

ファンの構造強度評価における評価対象部位を図3－4に示す。

図3－4 ファンの評価対象部位
（4）ダンパの評価対象部位
ダンパの評価対象部位は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「4．2許容限界」にて示している評価対象部位に従って，「2．2構造概要」にて設定している構造に基づき，設計荷重の作用方向及び伝達過程を考慮し設定する。

設計竜巻の気圧差による荷重は，ケーシング及びベーンに作用し，ベーンを介し てシャフトに作用する。このことからケーシング，ベーン及びシャフトを評価対象部位として選定する。

ダンパの構造強度評価における評価対象部位を図3－5に示す。

図3－5 ダンパの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえ，換気空調設備の評価対象施設ごとに設定する。
（1）構造強度評価の荷重及び荷重の組合せ
a．荷重の設定
構造強度評価に用いる荷重は，以下の荷重を用いる。
（a）常時作用する荷重
常時作用する荷重として，持続的に生じる荷重である自重を考慮する。
自重による荷重は以下のとおり計算する。
自重による荷重＝m•g
（b）設計竜巻による荷重
外気と繋がっている屋内の施設であるため，気圧差による荷重を考慮する。
b．荷重の組合せ
構造強度評価に用いる荷重の組合せは，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて設定 している荷重の組合せを踏まえ，換気空調設備の評価対象部位ごとに設定する。 なお，ファンの自重は内圧荷重に比べ十分小さいことから，自重を考慮しな い。

構造強度評価の荷重の組合せを表3－6に示す。

表3－6 荷重の組合せ

施設分類	施設名称	評価対象部位	荷重
外気と繋がってい る屋内の外部事象防護対象施設	角ダクト	ダクト鋼板	（1）自重 （2）気圧差による荷重
	丸ダクト	ダクト鋼板	（1）自重 （2）気圧差による荷重
		弁箱	（1）気圧差による荷重
	1隔離开	弁体 弁棒	（1）自重 （2）気圧差による荷重
	ファン	ケーシング	（1）気圧差による荷重
	ダンパ	$\begin{aligned} & \text { ケーシング } \\ & \text { シャフト } \\ & \text { ベーン } \end{aligned}$	（1）自重 （2）気圧差による荷重

3．4 許容限界

（1）ダクトの許容限界
a．角ダクト
角ダクトの許容限界は，「3．2 評価対象部位」にて設定している評価対象部位 ごとに，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」 の「4．2 許容限界」にて設定している許容限界及び機能損傷モードを踏まえ，許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ とする。

角ダクトの許容限界は，J E A G 4 6 O 1 を準用し，「クラス2，3配管」の許容限界を適用する。設計荷重に対して，当該施設に要求される安全機能を維持でき るように弾性設計とするため，許容応力状態 III ${ }_{\mathrm{A}} \mathrm{S}$ から算出した以下の許容応力 を許容限界とする。ただし，妥当な安全裕度を考慮し，座屈を生じないように設定する許容限界は，座屈の算出式に応じた値を許容限界として設定する。J E A

G4601に従い，設計•建設規格 付録材料図表Part5，6の表にて許容応力を計算する際は，角ダクトの最高使用温度に応じた値をとるものとするが，温度が設計•建設規格 付録材料図表記載の中間の値の場合は，比例法を用いて計算する。 ただし，設計•建設規格 付録材料図表Part5，6で比例法を用いる場合の端数処理 は，小数点第1位以下を切り捨てた値を用いるものとする。
（a）面外荷重及び外圧による面内荷重に対する許容限界
角ダクトの面外荷重及び外圧による面内荷重に対する許容限界を表3－7，許容応力を表3－8に示す。

表3－7 角ダクトの許容限界

状態	許容限界
	一次応力
	曲げ
許容応力状態	
III $_{\mathrm{A}} \mathrm{S}$	

表3－8 角ダクトの許容限界

材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)
SGCC	40	205

（b）長期荷重（自重）＋短期荷重（設計竜巻による内外差圧）に対する許容限界

自重により発生する曲げモーメント M と発生応力 $\sigma_{\mathrm{p} 2}$ の関係は以下の式で表される。

ここで，
$I=\frac{(a+2 \cdot t) \cdot(b+2 \cdot t)^{3}-a \cdot b^{3}}{12}$

短期荷重（設計竜巻による内外差圧）による発生応力 $\sigma_{\mathrm{p}} 1$ と長期荷重（自重） による発生応力 $\sigma_{\mathrm{p} 2}$ の和 σ_{w} が許容応力 σ_{y} に達した時に座屈が生じることか

ら，長期荷重により発生する曲げモーメント M_{p} が，許容応力 σ_{y} と短期荷重に よる発生応力 $\sigma_{\mathrm{p} 1}$ の差（ $\sigma_{\mathrm{y}}-\sigma_{\mathrm{p} 1}$ ）から求まる長期荷重に対する許容曲げモ ーメント以下であることを確認する。

ここで，
$\sigma_{\mathrm{y}}=\mathrm{S}_{\mathrm{y}}$
b．丸ダクトの許容限界
丸ダクトの許容限界は，「3．2 評価対象部位」にて設定している評価対象部位 ごとに，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」 の「4．2 許容限界」にて設定している許容限界及び機能損傷モードを踏まえ，ク リップリング座屈の算出式に応じた値とする。
丸ダクトの許容限界は，設計荷重に対して，塑性ひずみが生じる場合であって も，その量が微小なレベルに留まつて破断延性限界に十分な余裕を有し，座屈を生じないこととするため，クリップリング座屈の算出式に応じた値を許容限界と する。J E A G 4 6 0 1 に従い，設計•建設規格 付録材料図表Part5，6の表にて許容応力を計算する際は，丸ダクトの最高使用温度に応じた値をとるものとする が，温度が設計•建設規格 付録材料図表記載の中間の値の場合は，比例法を用 いて計算する。ただし，設計•建設規格 付録材料図表Part5，6で比例法を用いる場合の端数処理は，小数点第1位以下を切り捨てた値を用いるものとする。
（a）外圧に対する許容限界
外圧により生じる周方向応力は，クリップリング座屈が発生する際に生じる周方向応力（座屈応力）σ crip を超えないこととする。
円筒かくの座屈応力の式より算出する。

枠囲みの内容は商業機密の観点から公開できません。

$$
\begin{aligned}
& \sigma_{\mathrm{crip}}=\frac{\mathrm{k}_{\mathrm{p}} \cdot \pi^{2} \cdot \mathrm{E}}{12 \cdot\left(1-v^{2}\right)}\left(\frac{\mathrm{t}}{\mathrm{c}}\right)^{2} \\
& \mathrm{k}_{\mathrm{p}}=\frac{\left(1+\beta^{2}\right)^{2}}{0.5+\beta^{2}}+\frac{12 \cdot \mathrm{Z}_{\mathrm{c}}^{2}}{\pi^{4} \cdot\left(1+\beta^{2}\right)^{2} \cdot\left(0.5+\beta^{2}\right)} \\
& \beta=\frac{\mathrm{c} \cdot \mathrm{n}}{\pi \cdot \mathrm{r}} \\
& \mathrm{Z}_{\mathrm{c}}=\frac{\mathrm{c}^{2}}{\mathrm{r} \cdot \mathrm{t}} \sqrt{1-v^{2}}
\end{aligned}
$$

ここで，座屈モードの次数 n は， k_{p} が最小となる時の次数とする。
（b）長期荷重（自重）＋短期荷重（設計竜巻による内外差圧）に対する許容限界

自重により作用する曲げモーメント M_{P} と外圧 $\Delta \mathrm{P}$（設計竜巻による気圧低下量）の組合せが，下式を満足させるものとする。

ここで，自重による曲げによってクリップリング座屈が発生する際に作用す る曲げモーメント $\mathrm{M}_{\mathrm{c}}^{\mathrm{r}} \mathrm{r} \mathrm{i} \mathrm{p}$ は，下式より算出する。

（2）隔離弁の許容限界
隔離弁の許容限界は，「3．2 評価対象部位」にて設定している評価対象部位ごと に，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」にて設定している許容限界及び機能損傷モードを踏まえ，設定する。

隔離弁の許容限界は，設計荷重に対して，当該施設に要求される安全機能を維持 できるように弾性設計とするため，隔離弁の耐圧部に発生する応力に対して，部材 の降伏応力 S y を許容限界とする。許容限界は，J E A G 4 6 0 1 に従い，設計•建設規格 付録材料図表Part5，6の表にて許容応力を計算する際は，隔離弁の最高使用温度に応じた値をとるものとするが，温度が設計•建設規格 付録材料図表記載

の中間の値の場合は，比例法を用いて計算する。ただし，設計•建設規格 付録材料図表Part5，6で比例法を用いる場合の端数処理は，小数点第 1 位以下を切り捨てた値を用いるものとする。

隔離弁の許容応力を表3－9に示す。

表3－9 隔離弁の許容応力

評価対象施設	評価対象 部位	材質	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)
原子炉建屋原子炉棟 換気空調系隔離弁	弁箱	SM400B $(16 \mathrm{~mm}$ を超え $40 \mathrm{mm以下)}$	100	212
	弁体	SM400B $(16 m m 以 下)$	100	221
	弁棒	SUS304	100	171

（3）ファンの許容限界
ファンの許容限界は，「3．2 評価対象部位」にて設定している評価対象部位ごと に，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」にて設定している許容限界及び機能損傷モードを踏まえ，許容応力状態 III A S とする。

ファンの許容限界は，J E A G 4 6 0 1 を準用し，「クラス2ポンプ」の許容限界 を適用する。設計荷重に対して，当該施設に要求される安全機能を維持できるよう に弾性設計とするため，許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ から算出した以下の許容応力を許容限界とする。J E A G 4 6 0 1 に従い，設計•建設規格 付録材料図表Part5，6の表に て許容応力を計算する際は，ファンの最高使用温度に応じた値をとるものとするが，温度が設計•建設規格 付録材料図表記載の中間の値の場合は，比例法を用いて計算する。ただし，設計•建設規格 付録材料図表Part5，6で比例法を用いる場合の端数処理は，小数点第 1 位以下を切り捨てた値を用いるものとする。ファンの許容限界 を表3－10，許容応力を表3－11に示す。

表3－10 ファンの許容限界（ケーシング）

状態	許容限界
	一次一般膜応力
許容応力状態 III ${ }_{A}$ S	$\operatorname{Min}\left[\mathrm{S}_{\mathrm{y}}, \quad 0.6 \mathrm{~S}_{\mathrm{u}}\right]$

表 3－11 ファンの許容応力（ケーシング）

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)
ケーシング	SS 400	40	245	400
	SS 400	45	243	397

（4）ダンパの許容限界
ダンパの許容限界は，「3．2 評価対象部位」にて設定している評価対象部位ごと に，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「4．2許容限界」にて設定している許容限界及び機能損傷モードを踏まえ，許容応力状態 III ${ }_{\text {A }}$ S とする。

ダンパの許容限界は，J E A G 4 6 0 1 を準用し，「クラス1・クラス2，3・その他の支持構造物」の許容限界を適用する。設計荷重に対して，当該施設に要求され る安全機能を維持できるように弾性設計とするため，許容応力状態 III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ から算出 した以下の許容応力を許容限界とする。J E A G 4 6 0 1 に従い，設計•建設規格付録材料図表Part5，6の表にて許容応力を計算する際は，ダンパの最高使用温度に応じた値をとるものとするが，温度が設計•建設規格 付録材料図表記載の中間の値の場合は，比例法を用いて計算する。ただし，設計•建設規格 付録材料図表 Part5，6で比例法を用いる場合の端数処理は，小数点第 1 位以下を切り捨てた値を用 いるものとする。ダンパの許容限界を表3－12，許容応力を表3－13～表3－15に示す。

表 3－12 ダンパの許容限界

状態	許容限界	
	一次応力	
	曲げ	せん断
許容応力状態 III A S	1.5 f b	1.5 fs

表 3－13 ダンパの許容応力（ケーシング）

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	1.5 f b （MPa）
ケーシング	SEHC	45	218
	SS400	40	282

表 3－14 ダンパの許容応力（ベーン）

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	1.5 f b （MPa）
ベーン	SEHC	45	218
	SS400	40	282

表 3－13 ダンパの許容応力（シャフト）

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$1.5 \mathrm{f} \mathrm{s}(\mathrm{MPa})$
シャフト	SGD	45	135
	SGD	40	135

3.5 評価方法

（1）ダクトの評価方法
a．角ダクト
角ダクトの構造強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」にて設定している角ダクトの評価式を用いる。
（a）計算モデル
任意のダクト面に着目すると，ダクト面は両サイドをほかの 2 つの側面のダ クト面で，軸方向（流れ方向）を補強部材（及び接続部材）で支持された長方形の板とみなすことができる。そのため，鋼板を補強部材と両サイドのウェブ で支持された4辺単純支持長方形板とし評価を行う。自重等によりダクトに生 じる曲げモーメントに関し，ウェブでの応力分布が線形で，中立面がフランジ の両側から等距離の中央線上にあるとする。

角ダクトモデル図を図3－6に示す。

（b）計算方法
ダクトにかかる外圧は，設計竜巻により発生する気圧差が影響するので，

$$
P=\Delta P
$$

イ．面外荷重による発生応力
4辺単純支持（周辺で水平，垂直方向の変位拘束，たわみ角は自由）の長方形板が等分布荷重を受ける場合において，中心に生じる外圧及び自重に よる面外荷重により作用する最大応力 $\sigma_{\mathrm{ma}} \mathrm{x}$ とその面外荷重によるダクト鋼板の最大変位量 $\delta \mathrm{max}$ との関係は，以下の式で表される。
機械工学便覧に記載されている4辺単純支持の長方形板が等分布荷重を受ける場合の長方形板の大たわみ式を引用する。

$$
\begin{equation*}
\sigma_{\max }=\frac{\pi^{2} \cdot \mathrm{E} \cdot \delta_{\mathrm{max}}}{8\left(1-v^{2}\right)}\left\{\frac{\left(2-v^{2}\right) \cdot \delta_{\mathrm{max}}+4 \cdot \mathrm{t}}{\mathrm{a}^{2}}+\frac{v \cdot\left(\delta_{\mathrm{max}}+4 \cdot \mathrm{t}\right)}{\mathrm{c}^{2}}\right\} \tag{3.1}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{256 \cdot\left(1-v^{2}\right) \cdot\left(\mathrm{P}+\mathrm{g} \cdot \mathrm{D}_{\mathrm{p}}\right)}{\pi^{6} \cdot \mathrm{E} \cdot \mathrm{t}^{4}}=\frac{4}{3} \cdot\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{c}^{2}}\right)^{2} \cdot \frac{\delta_{\mathrm{max}}}{\mathrm{t}} \\
& \quad+\left\{\frac{4 \cdot v}{\mathrm{a}^{2} \cdot \mathrm{c}^{2}}+\left(3-v^{2}\right) \cdot\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{c}^{4}}\right)\right\} \cdot\left(\frac{\delta_{\mathrm{max}}}{\mathrm{t}}\right)^{3} \cdot \cdot \cdot(3.2)
\end{aligned}
$$

式（3．2）より得られる $\delta \mathrm{max}$ の値を式（3．1）へ代入し，$\sigma \mathrm{max}$ を算出 する。

ロ．面内荷重による発生応力
機械工学便覧の「クリップリングの考え方」と日本機械学会ジャーナルの
「薄肉長方形及び箱形はりの座屈と強度」に記載されている鵜戸口の式を準用する。
（イ）外圧による発生応力
薄肉構造物のらち，長方形板の弾性座屈の式より算出する。
（ロ）自重による曲げモーメント
自重によりダクト鋼板に作用する曲げモーメントは，以下の式により算出する。

$$
\mathrm{M}_{\mathrm{p}}=\frac{\mathrm{g} \cdot \mu \cdot \mathrm{~L}^{2}}{8}
$$

b．丸ダクト
丸ダクトの構造強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設の強度計算の方針」の「5．強度評価方法」にて設定している丸ダクトの評価式を用いる。
（a）計算モデル
丸ダクトは両端を補強部材で支持された円筒の梁とみなし，計算を行う。丸 ダクトのモデル図を図3－7に示す。

図3－7 丸ダクトモデル図
（b）計算方法
計算式においては機械工学便覧及び「軽構造の理論とその応用（日本科学技術連盟（1966））」に記載されている式を準用する。
イ．外圧により生じる周方向応力 $\sigma \mathrm{crip} 1$

$$
\sigma_{\text {crip } 1}=\frac{\Delta \mathrm{P} \cdot \mathrm{r}}{\mathrm{t}}
$$

ロ．自重により作用する曲げモーメント M_{P}

$$
\mathrm{M}_{\mathrm{p}}=\frac{\mathrm{g} \cdot \mu \cdot \mathrm{~L}^{2}}{8}
$$

（2）隔離弁の評価方法
隔離弁の構造強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「5．強度評価方法」にて設定している隔離弁の評価方法を用いる。
a．弁箱
（a）計算モデル
弁箱は両端を補強部材で支持された円筒の梁とみなし，計算を行う。弁箱の モデル図を図3－8に示す。

図3－8 弁箱のモデル図
（b）計算方法
計算式においては機械工学便覧及び「軽構造の理論とその応用（日本科学技術連盟（1966））」に記載されている式を準用する。

$$
\sigma_{\theta}=\frac{\Delta \mathrm{P} \cdot \mathrm{r}}{\mathrm{t}}
$$

b．弁体
（a）計算モデル
弁体は円板であるため，等分布荷重が作用する周辺支持円板とみなし，計算 を行う。評価モデル図を図3－9に示す。

図3－9 弁体のモデル図
（b）計算方法
弁体に作用する曲げ応力の計算方法を以下に示す。
設計竜巻の気圧低下により弁体に受ける応力 P_{1} 及び自重により弁体に受け る応力 P_{2} は次による。

$$
\begin{aligned}
& P_{1}=\Delta P \\
& P_{2}=\frac{m_{v} \cdot g}{A_{v}}
\end{aligned}
$$

ここで

$$
\mathrm{A}_{\mathrm{v}}=\frac{\pi}{4} \cdot(2 \mathrm{a})^{2}
$$

弁体に受ける応力 p vは次による。

$$
\mathrm{p}_{\mathrm{v}}=\mathrm{P}_{1}+\mathrm{P}_{2}
$$

弁体に対する曲げ応力は次による。

$$
\sigma_{\mathrm{max}}=1.24 \cdot \frac{\mathrm{p}_{\mathrm{v}} \cdot \mathrm{a}^{2}}{\mathrm{~h}^{2}}
$$

c．弁棒
（a）計算モデル
弁体に受ける等分布荷重を支持する弁棒断面について，計算を行う。評価モ デル図を図3－10に示す。

図3－10 弁体のモデル図
（b）計算方法
弁棒に作用するせん断応力の計算方法を以下に示す。
設計竜巻の気圧低下により弁棒に受ける荷重 F_{1} 及び弁体及び弁棒の自重に より弁棒に受ける荷重 F 2 は次による。

$$
\begin{aligned}
& \mathrm{F}_{1}=\Delta \mathrm{P} \cdot \frac{\pi}{4} \cdot(2 \mathrm{a})^{2} \\
& \mathrm{~F}_{2}=\left(\mathrm{m}_{\mathrm{v}}+\mathrm{m}_{\mathrm{s}}\right) \cdot \mathrm{g}
\end{aligned}
$$

弁棒に受ける荷重psは次による。

$$
\mathrm{p}_{\mathrm{s}}=\mathrm{F}_{1}+\mathrm{F}_{2}
$$

弁棒に対するせん断応力は次による。

$$
\tau=\frac{\mathrm{p}_{\mathrm{s}}}{2 \cdot \mathrm{~A}_{\mathrm{s}}}
$$

ここで

$$
\mathrm{A}_{\mathrm{s}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
$$

（3）ファンの評価方法
ファンの構造強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「5．強度評価方法」にて設定している評価式を用いる。
a．ケーシング
（a）計算モデル
ケーシングは両端を補強部材で支持された円筒の梁とみなし，計算を行う。 ファンケーシングのモデル図を図3－11に示す。

図3－11 ファンケーシングのモデル図
（b）計算方法
計算式においては機械工学便覧及び「軽構造の理論とその応用（日本科学技術連盟（1966））」に記載されている式を準用する。

$$
\sigma_{\theta}=\frac{\Delta \mathrm{P} \cdot \mathrm{r}}{\mathrm{t}}
$$

（4）ダンパの評価方法
ダンパの構造強度評価は，添付書類「VI－3－別添1－1 竜巻への配慮が必要な施設 の強度計算の方針」の「5．強度評価方法」にて設定しているダンパの評価式を用 いる。
a．ケーシング
（a）計算モデル
ケーシングは，ケーシング板材を 4 辺に分割し，その 1 辺を同等の断面性能 を持つ単純支持梁として計算を行う。ケーシングの計算モデル図を図3－12に示 す。

図3－12 ケーシングの計算モデル図
（b）計算方法
内部圧力は，設計竜巻により発生する気圧差によって発生するので，

$$
\mathrm{P}=\Delta \mathrm{P}
$$

イ．ケーシング
ケーシングに作用する最大曲げモーメント
$\mathrm{M}_{\mathrm{c}}=\frac{\ell_{\mathrm{c}}{ }^{2} \cdot\left(\mathrm{~F}_{1 \mathrm{c}}+\mathrm{F}_{2 \mathrm{c}}\right)}{8}$
ここで，
$\mathrm{F}_{1 \mathrm{c}}=\mathrm{P} \cdot \mathrm{L}_{\mathrm{c}}$
$\mathrm{F}_{2 \mathrm{c}}=\frac{\mathrm{m}_{\mathrm{c}} \cdot \mathrm{g}}{\ell_{\mathrm{c}}}$
ケーシングに生じる最大曲げ応力
$\sigma_{\mathrm{cmax}}=\frac{\mathrm{M}_{\mathrm{c}}}{\mathrm{Z}_{\mathrm{c}}}$

$$
Z_{c}=\frac{I_{c}}{e_{c}}
$$

b．ベーン
（a）計算モデル
ベーンは，4辺支持長方形板に等分布荷重がかかるものとし，曲げ応力によ る計算を行う。ベーンの計算モデル図を図3－13に示す。

断面 $\mathrm{A}-\mathrm{A}$
（b）計算方法
ベーンに生じる発生応力は， 4 辺単純支持の長方形板が等分布荷重を受ける場合において，中心に生じる外圧及び自重による面外荷重により作用する最大応力 $\sigma \mathrm{bmax}$ とその面外荷重によるベーン最大変位量 $\delta \mathrm{bmax}$ との関係は，以下 の式で表される。

機械工学便覧に記載されている 4 辺単純支持の長方形板が等分布荷重を受 ける場合の長方形板の大たわみ式を引用する。

$$
\begin{aligned}
& \sigma_{\mathrm{bmax}}=\frac{\pi^{2} \cdot \mathrm{E} \cdot \delta_{\mathrm{bmax}}}{8 \cdot\left(1-v^{2}\right)} \cdot\left\{\frac{\left(2-v^{2}\right) \cdot \delta_{\mathrm{bmax}}+4 \cdot \mathrm{t}_{\mathrm{b}}}{\ell_{\mathrm{b}}{ }^{2}}+\frac{v \cdot\left(\delta_{\mathrm{bmax}}+4 \cdot \mathrm{t}_{\mathrm{b}}\right)}{\mathrm{H}_{\mathrm{b}}{ }^{2}}\right\} \\
& \text { •• (3.3) }
\end{aligned}
$$

$$
\begin{aligned}
& +\left\{\frac{4 \cdot v}{\ell_{\mathrm{b}}{ }^{2} \cdot \mathrm{H}_{\mathrm{b}}{ }^{2}}+\left(3-v^{2}\right) \cdot\left(\frac{1}{\ell_{\mathrm{b}}^{4}}+\frac{1}{\mathrm{H}_{\mathrm{b}}{ }^{4}}\right)\right\} \cdot\left(\frac{\delta_{\mathrm{bmax}}}{\mathrm{t}_{\mathrm{b}}}\right)^{3} \cdot \cdot(3.4) \\
& \text { ここで, } \\
& \mathrm{F}_{1 \mathrm{~b}}=\mathrm{P}
\end{aligned}
$$

$$
\mathrm{F}_{2 \mathrm{~b}}=\frac{\mathrm{m}_{\mathrm{b}} \cdot \mathrm{~g}}{\ell_{\mathrm{b}} \cdot \mathrm{H}_{\mathrm{b}}}
$$

式（3．4）より得られる $\delta \mathrm{bmax}$ の値を式（3．3）へ代入し，$\sigma \mathrm{bmax}$ を算出する。
c．シャフト
（a）計算モデル
シャフトは，内部圧力及び自重により発生する荷重がシャフトに均等に作用 するものとし，シャフト断面についてせん断力による評価を行う。シャフトの計算モデル図を図3－14に示す。

せん断荷重： $\mathrm{F}_{1 \mathrm{~s}}+\mathrm{F}_{2} \mathrm{~s}$

断面 $\mathrm{A}-\mathrm{A}$
（b）計算方法
シャフトに生じる最大せん断応力
$\sigma_{\mathrm{smax}}=\frac{\mathrm{F}_{1 \mathrm{~s}}+\mathrm{F}_{2 \mathrm{~s}}}{2 \cdot \mathrm{~A}_{\mathrm{s}}}$

ここで，
$\mathrm{F}_{1 \mathrm{~s}}=\mathrm{P} \cdot \mathrm{H}_{\mathrm{b}} \cdot \ell_{\mathrm{b}}$
$\mathrm{F}_{2 \mathrm{~s}}=\mathrm{m}_{\mathrm{b}} \cdot \mathrm{g}$
$A_{s}=\left(\frac{L_{s}}{2}\right)^{2} \cdot \pi$

4．評価条件
（1）角ダクト
「3．強度評価方法」に用いる評価条件を表4－1に示す。
角ダクトにおいて，気圧差による発生応力が最も大きくなるものは面外荷重であ り，その発生応力比が最も厳しくなる系統の角ダクトについて記載する。

表 4－1 評価条件

系統
計測制御電源室換気空調系

$\Delta \mathrm{P}$ (MPa)	g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	v $(-)$
7.6×10^{-3}	9.80665	0.3

a (mm)	b (mm)	t (mm)	c (mm)	L (mm)
450	400	0.5	1800	2500

μ $(\mathrm{kg} / \mathrm{m})$	$\mathrm{D} \mathrm{p}^{2}$ $\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	E (MPa)
14.3	3.925	SGCC	40	201700

（2）丸ダクト
「3．強度評価方法」に用いる評価条件を表4－2に示す。
丸ダクトにおいて，気圧差による発生応力が最も厳しくなるのは周方向応力であ るため，その発生応力比が最も厳しくなる系統の丸ダクトについて記載する。

表 4－2 評価条件

系統
中央制御室換気空調系

$\Delta \mathrm{P}$ (MPa)	g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	v $(-)$	ダクトサイズ (mm)	c (mm)
7.6×10^{-3}	9.80665	0.3	$\phi 550 \times 2.3$	900

L (mm)	μ $(\mathrm{kg} / \mathrm{m})$	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	E (MPa)
1000	41.3	SS 400	40	201700

（3）隔離弁の評価条件
「3．強度評価方法」に用いる評価条件を表4－3に示す。
隔離弁において，気圧差による荷重は弁箱，弁体及び弁棒にそれぞれ作用するこ とから，発生応力比が最も厳しくなる系統の隔離弁について記載する。

表 4－3 評価条件

系統				
原子炉建屋原子炉棟換気空調系				
$\begin{gathered} \Delta \mathrm{P} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{r} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{v}} \\ & (\mathrm{~kg}) \end{aligned}$
7.6×10^{-3}	875	23	875	840
$\begin{aligned} & \mathrm{m} \mathrm{~s} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{g} \\ \left(\mathrm{~m} / \mathrm{s}^{2}\right) \end{gathered}$		h （mm）	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$
230	9．80665		15	105

材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
SM400B	100
SUS304	

（4）ファンの評価条件
「3．強度評価方法」に用いる評価条件を表4－4に示す。
ファンにおいては，気圧差による荷重は，ファンケーシングに作用することから発生応力が最も厳しくなる系統のファンについて記載する。

表 4－4 評価条件

系統
原子炉補機室換気空調系

$\Delta \mathrm{P}$ (MPa)	r (mm)	t (mm)	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
7.6×10^{-3}	942	4.5	SS 400	$40^{\circ} \mathrm{C}$

（4）ダンパの評価条件
「3．強度評価方法」に用いる評価条件を表4－5～表4－7に示す。
ダンパにおいては，外殻を構成するケーシングの発生応力が最も厳しくなる系統 のダンパについて記載する。

表4－5 評価条件（ケーシング）

$\Delta \mathrm{P}$ (MPa)	ℓ_{c} (mm)	L_{c} (mm)	m_{c} (kg)	g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
7.6×10^{-3}	1500	350	13.19	9.80665

I c $\left(\mathrm{mm}^{4}\right)$	e c (mm)	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
412800	43.22	SEHC	$45^{\circ} \mathrm{C}$

表4－6 評価条件（ベーン）

$\Delta \mathrm{P}$ (MPa)	t_{b} (mm)	ℓ_{b} (mm)	v $(-)$	H_{b} (mm)
7.6×10^{-3}	2.3	638	0.3	234

m, (kg)	g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	E (MPa)
2.868	9.80665	SEHC	$45^{\circ} \mathrm{C}$	201300

表4－7 評価条件（シャフト）

$\Delta \mathrm{P}$ (MPa)	ℓ_{b} (mm)	m_{b} (kg)	L_{s} (mm)	H_{b} (mm)
7.6×10^{-3}	638	2.868	20	234

g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	材質	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$
9.80665	SGD	$45^{\circ} \mathrm{C}$

5．強度評価結果
（1）構造強度評価結果
a．角ダクト
角ダクトの構造強度評価結果を表5－1に示す。
ダクト鋼板に発生する応力は許容応力以下であり，また，自重（長期）＋設計竜巻による内外差圧（短期）による面内荷重による発生モーメントは許容応力以下である。

表 5－1 評価結果（角ダクト）

系統	ダクトサイズ (mm)
計測制御電源室換気空調系	$450 \times 400 \times 0.5$

面外荷重		長期荷重（自重）＋短期荷重（設 外圧による面内荷重		計竜巻による内外差圧による面内 荷重による発生モーメント）	
発生応力 (MPa)	許容応力 (MPa)	発生応力 (MPa)	許容応力 (MPa)	発生値 $(\mathrm{kN} \cdot \mathrm{mm})$	許容値 $(\mathrm{kN} \cdot \mathrm{mm})$
121	205	23	205	110	1412

b．丸ダクト
丸ダクトの構造強度評価結果を表5－2に示す。
ダクト鋼板に発生する周方向応力は許容応力以下であり，また，長期荷重（自重）＋短期荷重（設計竜巻による内外差圧）により発生する応力は許容応力以下 である。

表 5－2 評価結果（丸ダクト）

系統	ダクトサイズ (mm)
中央制御室換気空調系	$\phi 550 \times 2.3$

気圧差により生じる周方向応力		長期荷重（自重）＋短期荷重（設計竜巻 による内外差圧）による制限値	
発生応力 (MPa)	許容応力 (MPa)	発生値容値 $(一)$	
1	44	0.03	0.9

（2）隔離弁
隔離弁の強度評価結果を表5－3～表5－5に示す。
弁箱，弁体，弁棒に発生する応力は許容応力以下である。

表 5－3 評価結果（弁箱）

評価対象施設	弁箱に発生する周方向応力 (MPa)	許容応力 (MPa)
原子炉建屋原子炉棟換気 空調系隔離弁	1	212

表 5－4 評価結果（弁体）

評価対象施設	弁体に発生する曲げ応力 (MPa)	許容応力 (MPa)
原子炉建屋原子炉棟換気 空調系隔離弁	47	221

表 5－5 評価結果（弁棒）

評価対象施設	弁棒に発生するせん断応力 (MPa)	許容応力 (MPa)
原子炉建屋原子炉棟換気 空調系隔離弁	2	171

（3）ファン
ファンの構造強度評価結果を表5－6に示す。
ケーシングに発生する周方向応力は，許容応力以下である。

表 5－6 評価結果（ケーシング）

評価対象施設	ケーシングに発生する 周方向応力 (MPa)	許容応力 (MPa)
原子炉補機室換気空調系 ファン	2	240

（4）ダンパ
ダンパの強度評価結果を表5－7～表5－9に示す。
ケーシング，ベーン及びシャフトに発生する応力は，許容応力以下である。

表5－7 評価結果（ケーシング）

評価対象施設	ケーシングに発生する曲げ応力 (MPa)	許容応力 (MPa)
原子炉補機室換気空調系ダンパ	81	218

表5－8 評価結果（ベーン）

評価対象施設	ベーンに発生する曲げ応力 (MPa)	許容応力 (MPa)
原子炉補機室換気空調系ダンパ	58	218

表5－9 評価結果（シャフト）

評価対象施設	シャフトに発生するせん断応力 (MPa)	許容応力 (MPa)
原子炬補機室換気空調系ダンパ	2	135

VI－3－別添 1－2－1 防護対策施設の強度計算書

VI－3－別添1－2－1－1 竜巻防護ネットの強度計算書
VI－3－別添 1－2－1－2 竜巻防護鋼板の強度計算書

VI－3－別添 1－2－1－1 竜巻防護ネットの強度計算書
1．概要 1
2．基本方針 1
2.1 位置 1
2.2 構造概要 3
2.3 評価方針 8
2.4 適用規格 11
3．強度評価方法 12
3.1 ネットの強度評価方法 12
3．1．1 記号の定義 12
3．1．2 評価対象部位 17
3．1．3 荷重及び荷重の組合せ． 19
3．1．4 許容限界 22
3．1．5 評価方法 29
3．2 防護板の強度評価方法 43
3．2．1 記号の定義 43
3．2．2 評価対象部位 43
3．2．3 荷重及び荷重の組合せ・ 43
3．2．4 許容限界 44
3．2．5 評価方法 44
3.3 支持部材の強度評価方法 46
3．3．1 記号の定義 46
3．3．2 評価対象部位 48
3．3．3 荷重及び荷重の組合せ． 50
3．3．4 許容限界 50
3．3．5 評価方法 55
4．評価条件 65
4.1 ネットの評価条件 65
4.2 防護板の評価条件 68
4.3 支持部材の評価条件 68
5．強度評価結果 74
5.1 ネットの吸収エネルギ評価． 74
5.2 ネットの破断評価 74
5.3 ネットのたわみ評価 76
5.4 防護板の貫通評価 76
5.5 支持部材の貫通評価 77
5.6 支持部材の支持機能評価 78

1．概要

本資料は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」に示すとお り，防護対策施設である竜巻防護ネットが，外部事象防護対象施設の機能喪失に至る可能性のある飛来物（以下「飛来物」という。）が外部事象防護対象施設へ衝突すること を防止するために，主要な部材が破断せず，たわみを生じても飛来物が外部事象防護対象施設と衝突しないよう，竜巻防護ネットを構成する主要な構造部材が構造健全性を有 することを確認するものである。

2．基本方針
添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」を踏まえ，竜巻防護ネ ットの「2．1 位置」，「2．2 構造概要」，「2．3 評価方針」及び「2．4 適用規格」 を示す。

2.1 位置

竜巻防護ネットは，海水ポンプ室補機ポンプエリアの上面に設置する。竜巻防護ネ ットの設置位置図を図 $2-1$ に，外部事象防護対象施設と竜巻防護ネットの配置イメー ジ図を図2－2に示す。

図 2－1 竜巻防護ネットの設置位置図
\square
図 2－2 外部事象防護対象施設と竜巻防護ネットの配置イメージ図

2.2 構造概要

竜巻防護ネットの構造は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「3．1竜巻防護ネットの構造設計」に示す構造設計を踏まえ，設定する。竜巻防護ネットは，ネット，防護板及び支持部材で構成し，海水ポンプ室補機ポン プエリア上面に設置する。

ネットは，金網，ワイヤロープ及び接続冶具により構成され，金網の4辺をワイヤ ロープにより支持し，ワイヤロープはフレームに設置した接続治具にて支持する構造 とする。ワイヤロープの端部はターンバックル又はシャックルを設置し，ターンバッ クル又はシャックルをフレームに設置した取付プレートに接続する構造とする。ネッ トに作用する荷重は，ワイヤロープ及び接続冶具を介して支持部材に伝達し，支持部材から海水ポンプ室躯体に伝達する構造とする。

金網は，飛来物が衝突した際に局部的に生じる衝撃荷重に耐え，変形することによ り飛来物の持つ運動エネルギを吸収し，外部事象防護対象施設への衝突を防止するも のである。金網は，らせん状の硬鋼線を 3 次元的に編み込み，編み込みの方向によっ て主に荷重を受け持つ展開方向と展開直角方向の異方性を持っており，ネットに対し てL 字に張った 2 本のワイヤロープで支持される。金網展開方向及び展開直角方向と もに支持していることから，ワイヤロープの張力が均一に発生する構造である。

ワイヤロープは，接続治具（支持部）であるターンバックル及びシャックル並びに接続冶具（固定部）である取付プレート及び隅角部固定ボルトで支持される。また， ワイヤロープは，ネットの自重による平常時のたわみが大きくならないように，初期張力をかけ，トルク管理を行う。

防護板は，鋼板により構成する鋼製構造物である。防護板に作用する荷重は，支持部材に伝達し，支持部材から海水ポンプ室躯体に伝達する構造とする。

ネット及び防護板の支持部材は，フレーム（主桁，横補強材，ブレース等により構成する），大梁，可動支承，ゴム支承等により構成され，上載するネット及び防護板 を支持する構造とする。支持部材に作用する荷重は，基礎ボルトを介して，海水ポン プ室躯体に伝達する構造とする。

竜巻防護ネットの構造概要図を図2－3から図2－6に示す。

（平面図）

図 2－3 竜巻防護ネットの構造概要図

図 2－4 竜巻防護ネットの構造概要図（鳥瞰図）

（平面図 ${ }^{*}$ ）
注記＊：平面図は金網1枚当たりの構造を示す。

（ $\mathrm{E}-\mathrm{E}$ 矢視）

図 2－5 竜巻防護ネットの構造概要図（ネット）

（D 部平面図）

（ $\mathrm{F}-\mathrm{F}$ 矢視）

（G－G 矢視）

図 2－6 竜巻防護ネットの構造概要図（防護板）

2． 3 評価方針

竜巻防護ネットの強度評価は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」及び「5．1 竜巻防護ネットの許容限界」 にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ，竜巻防護ネットの評価対象部位に作用する応力等が，許容限界に収まることを「3．強度評価方法」に示す方法により，「4．評価条件」に示す評価条件を用いて計算し，「5．強度評価結果」にて確認する。

竜巻防護ネットの評価フローを図2－7に示す。
竜巻防護ネットの強度評価においては，その構造を踏まえ，設計竜巻荷重とこれに組み合わせる荷重（以下「設計荷重」という。）の作用方向及び伝達過程を考慮し，評価対象部位を設定する。

具体的には，以下のとおりとする。
（1）ネット
設計荷重に対して，竜巻防護ネットは，内側に設置した外部事象防護対象施設 の機能喪失に至る可能性のある飛来物を補足し外部事象防護対象施設へ衝突させ ないために，破断が生じないよう十分な余裕を持った強度を有すること及びたわ みが生じても，飛来物が外部事象防護対象施設と衝突しないよう外部事象防護対象施設との離隔が確保できることを確認する。

金網は破断が生じないことの確認として，金網が飛来物のエネルギを吸収する ことができること及び飛来物の衝突箇所において金網目合いの破断が生じないよ ら十分な余裕を持った強度を有することを評価する。また，ネットが飛来物を補足可能であることを確認するために，設計荷重に対して，金網を支持するワイヤ ロープ及び接続冶具（支持部及び固定部）に破断が生じないよう十分な余裕を持 った強度を有することを評価する。
（2）防護板
飛来物が外部事象防護対象施設に衝突する直接的な影響の評価として，防護対策施設を構成する部材に対する衝突評価を行う。衝突評価は，設計荷重に対し，飛来物が施設を構成する部材を貫通しない設計とするために，防護板が飛来物の貫通を生じない最小厚さ以上であることを計算により確認する。（以下「貫通評価」という。）
（3）支持部材
設計荷重に対し，外部事象防護対象施設の機能喪失に至る可能性のある飛来物 が支持部材を構成するフレーム（横補強材）及び大梁を貫通し外部事象防護対象施設へ衝突しないことを確認するための，フレーム（横補強材）及び大梁に対す る貫通評価を実施する。また，支持部材に上載するネット及び防護板を支持する機能を維持可能な構造強度を有すること及び設計竜巻の風圧力による荷重及び飛

来物による衝撃荷重並びにその他の荷重に対し，支持部材が倒壊し外部事象防護対象施設に機械的な波及的影響を与えないことを確認する。（以下「支持機能評価」という。）

図 2－7 竜巻防護ネットの評価フロー（ $1 / 3$ ）（ネット）

図 2－7 竜巻防護ネットの評価フロー（2／3）（防護板）

注記＊：衝突解析においては，解析コード「LS－DYNA」を用いて3次元 FEM モデルに よりモデル化し，支持部材について評価を実施する。

図 2－7 竜巻防護ネットの評価フロー（3／3）（支持部材）

2．4 適用規格

適用する規格，基準等を以下に示す。

- J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG46011補 －1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- 日本建築学会 2004 年 建築物荷重指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
－Methodology for Performing Aircraft Impact Assessments for New Plant Design（Nuclear Energy Institute $2011 \operatorname{Rev} 8$（NEI 07－13））
- 建築基準法（昭和25年5月24日法律第201号）
- 建築基準法施行令（昭和25年11月16日政令第338号）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V 耐震設計編
- 日本道路協会 平成 16 年 4 月 道路橋支承便覧
- 日本道路協会 平成 20 年 8 月 小規模吊橋指針•同解説
- ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突によ る構造壁の損傷に関する評価式の比較検討（昭和 51 年 10 月高温構造安全技術研究組合）
－タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）
－U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007
－日本産業規格（J I S ）

3．強度評価方法
3.1 ネットの強度評価方法

3．1．1 記号の定義
（1）荷重の算定
荷重の算定に用いる記号を表3－1に示す。

表3－1 荷重の算定に用いる記号

記号	単位	定義
$\mathrm{A}_{\text {a }}$	m^{2}	金網の面積
C_{n}	－	ネットの風力係数
d	m	飛来物衝突後の飛来物の移動距離
E f	kJ	飛来物衝突時に金網に作用するエネルギ
F_{a}	kN	飛来物衝突時に金網が受ける最大衝撃荷重
$\mathrm{F}_{\text {a }}$＂	kN	飛来物衝突時に金網が受ける衝撃荷重
G	－	ガスト影響係数
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度（ $\mathrm{g}=9.80665$ ）
L ${ }_{\text {x }}$	m	金網展開方向寸法
L y	m	金網展開直角方向寸法
m	kg	飛来物の質量
m_{1}	$\mathrm{kg} / \mathrm{m}^{2}$	主金網の単位面積当たりの質量
m 2	$\mathrm{kg} / \mathrm{m}^{2}$	補助金網の単位面積当たりの質量
n	－	主金網の設置枚数
n 1	－	補助金網の設置枚数
P_{w}	kN	金網の自重により作用する荷重
Q	kN／s	衝撃荷重が時間とともに比例する際の比例係数
q	$\mathrm{N} / \mathrm{mm}^{2}$	設計用速度圧
t	S	時間
t 1	s	飛来物が衝突し金網のたわみ量が最大になる時間
V	m／s	金網に衝突後の飛来物の移動速度
V_{1}	m / s	金網への飛来物の衝突速度
$\mathrm{V}_{\text {D }}$	m / s	設計竜巻の最大風速
W w	kN	風圧力による荷重
δ	m	飛来物衝突時の金網の最大たわみ量
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	空気密度
ϕ	－	金網の充実率

（2）吸収エネルギ評価
吸収エネルギ評価に用いる記号を表3－2に示す。

表 3－2 吸収エネルギ評価に用いる記号（1／2）

記号	単位	定義
a	mm	金網1目合いの対角寸法
a s	mm	金網1目合いの破断変位
b	mm	飛来物の端面の長辺方向寸法
c	mm	飛来物の端面の短辺方向寸法
E f	kJ	飛来物衝突時に金網に作用するエネルギ
E i	kJ	i 番目の列における金網の吸収可能なエネルギ
Emax	kJ	金網設置枚数を考慮した限界吸収エネルギ
Emax^{\prime}	kJ	等価剛性の導出過程を踏まえた係数及び金網設置枚数を考慮 した限界吸収エネルギ
E ${ }_{\text {t }}$	kJ	金網設置枚数を考慮した金網に作用する全外力エネルギ
$\mathrm{E}_{\text {w }}$	kJ	風圧力による荷重及び常時作用する荷重により金網に作用す る外力エネルギ
F_{i}	kN	飛来物衝突時のi 番目の列における作用力
$\mathrm{F}_{\text {w }}$	kN	風圧力による荷重及び常時作用する荷重により金網に作用す る荷重
K	kN／m	金網の 1 目合いの等価剛性
$\mathrm{K}_{\mathrm{x}}{ }^{\text {，}}$	kN／m	1 列当たりの金網展開方向等価剛性
K_{x}	kN／m	金網設置枚数を考慮した金網の1目合いの展開方向の1列の等価剛性
L x	m	金網展開方向寸法
L y	m	金網展開直角方向寸法
n	－	主金網の設置枚数
N_{x}	－	金網展開方向目合い数
N_{y}	－	金網展開直角方向目合い数
P_{i}	kN	飛来物衝突時に金網に発生するi 番目の列における張力
X i	m	i 列目の金網の伸び
δ a	m	風圧力による荷重及び常時作用する荷重による金網のたわみ量
$\delta{ }_{\mathrm{i}}$	m	i 番目の列における金網のたわみ量
δ max	m	金網の最大たわみ量

表 3－2 吸収エネルギ評価に用いる記号（2／2）

記号	単位	定義
θ_{i}	\circ	i番目の列における金網たわみ角
θ_{max}	\circ	金網の最大たわみ角

（3）破断評価
破断評価に用いる記号を表3－3に示す。

表 3－3 破断評価に用いる記号（1／2）

記号	単位	定義
a_{w}	mm	取付プレート溶接部ののど厚
A_{b}	mm^{2}	隅角部固定ボルトの呼び径断面積
C_{c}	-	ワイヤグリップ効率
E_{t}	kJ	金網設置枚数を考慮した金網に作用する全外力エネルギ
F^{*}	MPa	設計•建設規格 SSB－3121．3及びSSB－3133に定める値
F_{3}	kN	ワイヤロープの規格値

表3－3 破断評価に用いる記号（2／2）

記号	単位	定義
L	mm	取付プレートの面取り長さ
$L_{\text {p w }}$	mm	取付プレート溶接部の有効脚長
Lp 1	mm	取付プレート長さ（縦方向）
Lp ${ }_{\text {p }}$	mm	取付プレート長さ（横方向）
L ${ }_{x}$	m	金網展開方向寸法
L y	m	金網展開直角方向寸法
n	－	主金網の設置枚数
n 2	－	隅角部固定ボルト本数
n 40	－	40 mm 目合い金網における飛来物衝突時の周辺の交点数
n 50	－	50 mm 目合い金網における飛来物衝突時の周辺の交点数
S_{u}	MPa	設計•建設規格 付録材料図表 Part5 表9に定める値
S_{w}	mm	取付プレート溶接部の溶接脚長
S_{y}	MPa	設計•建設規格 付録材料図表 Part5 表8に定める値
T ${ }^{\text {，}}$	kN	金網に発生する張力の合計の最大値
T_{1} ，	kN	ワイヤロープ 1 本に発生する張力
T ${ }_{1}$＂	kN	補助金網を支持しているワイヤロープ1本に発生する張力
T \times	kN	金網展開方向のワイヤロープから発生するX方向の荷重
T_{x} ，	kN	金網展開直角方向のワイヤロープから発生する X 方向の荷重
T y	kN	金網展開方向のワイヤロープから発生するY方向の荷重
T y ${ }^{\text {，}}$	kN	金網展開直角方向のワイヤロープから発生するY方向の荷重
δ	m	金網の最大たわみ量
$\delta_{\text {w x }}$	m	金網展開方向に平行なワイヤロープの変形後のたわみ量
δ w y	m	金網展開直角方向に平行なワイヤロープの変形後のたわみ量
θ	－	金網のたわみ角
$\theta 1$	－	金網展開方向に平行なワイヤロープの水平投影たわみ角
$\theta 2$	－	金網展開直角方向に平行なワイヤロープの水平投影たわみ角
θ w 1	－	金網展開方向に平行なワイヤロープのたわみ角
θ w2	－	金網展開直角方向に平行なワイヤロープのたわみ角
$\theta \times$	－	金網展開方向に平行な金網のたわみ角
θ y	－	金網展開直角方向に平行な金網のたわみ角
τ s	MPa	隅角部固定ボルトに発生するせん断応力
τ w	MPa	取付プレート溶接部に発生するせん断応力

（4）たわみ評価
たわみ評価に用いる記号を表3－4に示す。

表3－4 たわみ評価に用いる記号

記号	単位	定義
E i	kJ	i 番目の列における金網の吸収可能なエネルギ
E_{t}	kJ	金網設置枚数を考慮した金網に作用する全外力エネルギ
K_{x}	kN／m	金網設置枚数を考慮した金網の 1 目合いの展開方向の 1 列の等価剛性
L b	m	変形前のワイヤロープ長さ
$\mathrm{L}_{\mathrm{min}}$	m	ネットと外部事象防護対象施設の最小離隔距離
L ${ }_{\text {x }}$	m	金網展開方向寸法
L y	m	金網展開直角方向寸法
$\mathrm{L}_{\text {z }}$	m	ワイヤロープの全長
N_{y}	－	金網展開直角方向目合い数
S	m	変形後のワイヤロープの長さ
$S_{x}{ }^{\prime}$	m	金網展開方向と平行に配置したワイヤロープの変形後の長さ
$S_{\text {y }}{ }^{\text {，}}$	m	金網展開方向と直交するワイヤロープの変形後の長さ
ε	－	ワイヤロープのひずみ量
δ	m	飛来物衝突時の金網の最大たわみ量
$\delta{ }^{\prime}$	m	ワイヤロープの変形による伸び量
$\delta{ }_{\mathrm{i}}$	m	i 番目の列における金網のたわみ量
$\delta{ }_{\mathrm{t}}$	m	金網とワイヤロープの合計たわみ量
δ w	m	ワイヤロープのたわみ量
$\delta \mathrm{wx}$	m	金網展開方向に平行なワイヤロープの変形後のたわみ量
δ w y	m	金網展開直角方向に平行なワイヤロープの変形後のたわみ量
θ x	－	金網展開方向に平行な金網のたわみ角
$\theta \mathrm{y}$	－	金網展開直角方向に平行な金網のたわみ角

3．1．2 評価対象部位

ネットの評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算 の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，設定する。
（1）金網
金網の評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算 の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，
「2．2 構造概要」に示す構造に基づき，設計荷重の作用方向及び伝達過程を考慮し設定する。

設計荷重は，金網に直接作用する。このため，設計荷重に対する評価対象部位 は，金網とする。評価対象部位を図 3－1 に示す。
（2）ワイヤロープ
ワイヤロープの評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，「2．2 構造概要」に示す構造に基づき，設計荷重の作用方向及び伝達過程を考慮し設定する。

設計荷重は，金網に作用した荷重がワイヤロープに作用するため，設計荷重に対する評価対象部位は，ワイヤロープとする。
（3）接続治具（支持部）
接続治具（支持部）の評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，「2．2 構造概要」に示す構造に基づき，設計荷重の作用方向及 び伝達過程を考慮し設定する。
設計荷重は，金網に作用し，ワイヤロープを介して接続冶具（支持部）のター ンバックル及びシャックルに作用するため，設計荷重に対する評価対象部位は， ターンバックル及びシャックルとする。
（4）接続冶具（固定部）
接続治具（固定部）の評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，「2．2 構造概要」に示す構造に基づき，設計荷重の作用方向及 び伝達過程を考慮し設定する。
設計荷重は，金網に作用し，ワイヤロープ及び接続冶具（支持部）を介して接続冶具（固定部）の隅角部固定ボルト及び取付プレートに作用するため，設計荷重に対する評価対象部位は，隅角部固定ボルト及び取付プレートとする。このう ち，取付プレートについては，プレート本体，プレートと支持板の溶接部及び支持板とフレームの溶接部があるが，評価上裕度が最も小さいプレートと支持板の

溶接部を評価対象部位とする。
隅角部固定ボルトの評価対象部位を図3－2に，取付プレートの評価対象部位を図3－3に示す。

図 3－1 金網の評価対象部位

図 3－2 隅角部固定ボルトの評価対象部位

図 3－3 取付プレートの評価対象部位

3．1．3 荷重及び荷重の組合せ

強度評価に用いる荷重は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算 の方針」の「2．3 荷重及び荷重の組合せ」を踏まえて設定する。
（1）荷重の設定
強度評価には以下の荷重を用いる。荷重の算定に用いる竜巻の特性値を表3－5に示す。

表 3－5 荷重の算定に用いる竜巻の特性値

最大風速	移動速度	最大接線風速 V_{D} $(\mathrm{m} / \mathrm{s})$	V_{Rm} 最大気圧低下量 $(\mathrm{m} / \mathrm{s})$
100	15	$\Delta \mathrm{P}_{\mathrm{max}}$ $\left(\mathrm{N} / \mathrm{m}^{2}\right)$	

a．風圧力による荷重（ W_{W} ）
風圧力による荷重（ W_{W} ）は，次式により算定する。
$\mathrm{W}_{\mathrm{W}}=\frac{\mathrm{q} \cdot \mathrm{G}^{\cdot} \mathrm{C}_{\mathrm{n}} \cdot \mathrm{A}_{\mathrm{a}} \cdot \phi}{1000}$
設計用速度圧 q は，次式により算定する。
$\mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{D}}{ }^{2}$
b．飛来物による衝撃荷重（ W_{M} ）
ネットの破断評価に用いる飛来物による衝撃荷重（ W_{M} ）は以下のとおり算出す る。

ネットにおいて，金網が最大たわみに達するまでの衝撃荷重 F a＂を図3－4 に示すような二等辺三角形荷重（Fa＂は時間とともに比例して増加する）と仮定 する。

図 3－4 金網に作用する衝撃荷重の時間変化の模式図

ここで，飛来物が金網に接触し $(\mathrm{t}=0)$ ，金網が最大変形し $\left(\mathrm{t}=\mathrm{t}_{1}\right)$ ，飛来物がリバウンドする $\left(\mathrm{t}=\mathrm{t}_{1} \sim 2 \mathrm{t}_{1}\right)$ 過程において，飛来物は金網に接触しているものと考え，最大衝撃荷重の発生時間は，金網が最も変形し，エネル ギを蓄えているときに生じているものとして $\mathrm{t}=\mathrm{t}_{1}$ とする。これより， F a＂ は以下のとおり算出される。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{a}}^{"}=\mathrm{Q} \cdot \mathrm{t} \tag{3.1}
\end{equation*}
$$

したがって，金網への衝突後の飛来物の移動速度Vは，飛来物の運動量の変化 から，式（3．1）の衝撃荷重Fa＂を基に，以下のとおり算出される。

$$
\begin{align*}
\mathrm{V} & =-\frac{1}{\mathrm{~m}} \int_{0}^{\mathrm{t}} \mathrm{~F}_{\mathrm{a}}^{\prime " \mathrm{dt}} \\
& =-\frac{\mathrm{Q} \cdot \mathrm{t}^{2}}{2 \cdot \mathrm{~m}}+\mathrm{V}_{1} \tag{3.2}
\end{align*}
$$

さらに，金網への衝突後の飛来物の移動距離dは，式（3．2）の速度Vから以下 のとおり算出される。

$$
\begin{align*}
\mathrm{d} & =\int_{0}^{\mathrm{t}} \mathrm{~V} \mathrm{dt} \\
& =-\frac{\mathrm{Q} \cdot \mathrm{t}^{3}}{6 \cdot \mathrm{~m}}+\mathrm{V}_{1} \cdot \mathrm{t} \tag{3.3}
\end{align*}
$$

飛来物が衝突し金網のたわみが最大になる時間 $\mathrm{t}{ }_{1}$ における金網の最大変位 δ は，飛来物の速度は $\mathrm{V}=0$ であるから，式（3．2）及び式（3．3）より，

$$
\begin{align*}
& \mathrm{Q} \cdot \mathrm{t}_{1}{ }^{2}=2 \cdot \mathrm{~m}^{2} \cdot \mathrm{~V}_{1} \tag{3.4}\\
& \delta=-\frac{\mathrm{Q} \cdot \mathrm{t}_{1}{ }^{3}}{6 \cdot \mathrm{~m}^{3}}+\mathrm{V}_{1} \cdot \mathrm{t}_{1}
\end{align*}
$$

上記 2 式を連立し，

$$
\delta=\frac{2}{3} \cdot \mathrm{~V}_{1} \cdot \mathrm{t}_{1}
$$

よって，
$\mathrm{t}_{1}=\frac{3 \cdot \delta}{2 \cdot \mathrm{~V}_{1}}$
以上より，時間 t 1 における飛来物による衝撃荷重 F a は式（3．1）及び式 （3．4）より，
$\mathrm{F}_{\mathrm{a}}=\frac{2 \cdot \mathrm{~m} \cdot \mathrm{~V}_{1}}{\mathrm{t}_{1}}$
さらに，式（3．5）と連立し，
$\mathrm{F}_{\mathrm{a}}=\frac{4 \cdot \mathrm{~m} \cdot \mathrm{~V}_{1}^{2}}{3 \cdot \delta}$
また，時間 I_{1} における飛来物の衝突により金網に作用するエネルギ E_{f} は，衝突時の飛来物の運動エネルギとして，以下より求められる。
$\mathrm{E}_{\mathrm{f}}=\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{~V}_{1}{ }^{2}$
したがって，式（3．6）及び式（3．7）より，
$\mathrm{F}_{\mathrm{a}}=\frac{8 \cdot \mathrm{E}_{\mathrm{f}}}{3 \cdot \delta}$
c．常時作用する荷重（ F_{d} ）
常時作用する荷重（ F_{d} ）は，部材の自重とする。
ネットにおいては，自重による荷重 P_{w} は，
$\mathrm{P}_{\mathrm{w}}=\frac{\mathrm{A}_{\mathrm{a}} \cdot \mathrm{g} \cdot\left(\mathrm{m}_{1} \cdot \mathrm{n}+\mathrm{m}_{2} \cdot \mathrm{n}_{1}\right)}{1000}$
と算出される。
A_{a} は金網の実寸法 L_{x} ， L_{y} を用いて，以下の式で求められる。
$\mathrm{A}_{\mathrm{a}}=\mathrm{L}_{\mathrm{x}} \cdot \mathrm{L}_{\mathrm{y}}$
なお，ネットのらちワイヤロープ及び接続治具（支持部及び固定部）の評価時 においては，ワイヤロープ及び接続治具（支持部及び固定部）の自重については，金網から作用する荷重に比べ十分に小さいことから考慮しない。
（2）荷重の組合せ
a．金網
金網に作用する荷重として，金網の自重，風圧力による荷重及び飛来物が金網 に衝突する場合の衝撃荷重を組み合わせる。
b．ワイヤロープ
飛来物が金網に衝突する場合にワイヤロープに作用する荷重は，金網からワイ ヤロープに伝達することから，金網に作用する荷重を評価対象部位であるワイヤ ロープに作用する荷重として設定する。

ワイヤロープに作用する風圧力による荷重については，金網に作用する荷重に比べて十分小さいことから考慮しない。
c．接続治具（支持部）
飛来物が金網に衝突する場合に接続治具（支持部）に作用する荷重は，金網か らワイヤロープを介して接続冶具（支持部）であるターンバックル及びシャック ルに作用することから，金網に作用する荷重を評価対象部位であるターンバック

ル及びシャックルに作用する荷重として設定する。
接続冶具（支持部）に作用する風圧力による荷重については，金網に作用する荷重に比べて十分小さいことから考慮しない。
d．接続治具（固定部）
飛来物が金網に衝突する場合に接続冶具（固定部）に作用する荷重は，金網か らワイヤロープ及び接続冶具（支持部）を介して接続治具（固定部）である隅角部固定ボルト及び取付プレートに作用することから，金網に作用する荷重を評価対象部位である隅角部固定ボルト及び取付プレートに作用する荷重として設定す る。

接続冶具（固定部）に作用する風圧力による荷重については，金網に作用する荷重に比べて十分小さいことから考慮しない。

吸収エネルギ評価，破断評価及びたわみ評価における，金網，ワイヤロープ及 び接続冶具（支持部及び固定部）に作用する荷重及びその組合せを表3－6に示す。

表 3－6 荷重の組合せ

評価内容	風圧力による 荷重 $\left(\mathrm{W}_{\mathrm{W}}\right)$	飛来物による 衝撃荷重 $\left(\mathrm{W}_{\mathrm{M}}\right)$	常時作用する 荷重 $\left(\mathrm{F}_{\mathrm{d}}\right)$	荷重の組合せ
吸収エネルギ 評価	\bigcirc	\bigcirc	\bigcirc	$\mathrm{W}_{\mathrm{W}}+\mathrm{W}_{\mathrm{M}}+\mathrm{F}_{\mathrm{d}}$
破断評価	\bigcirc	\bigcirc	\bigcirc	$\mathrm{W}_{\mathrm{W}}+\mathrm{W}_{\mathrm{M}}+\mathrm{F}_{\mathrm{d}}$
たわみ評価	\bigcirc	\bigcirc	\bigcirc	$\mathrm{W}_{\mathrm{W}}+\mathrm{W}_{\mathrm{M}}+\mathrm{F}_{\mathrm{d}}$

3．1．4 許容限界

ネットの許容限界は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」にて設定している許容限界を踏まえて，
「3．1．2 評価対象部位」にて設定した評価対象部位の損傷による機能への影響を考慮して設定する。
吸収エネルギ評価，破断評価及びたわみ評価の許容限界を以下に示す。
（1）吸収エネルギ評価
吸収エネルギ評価においては，計算により算出する金網の限界吸収エネルギが金網に作用する外力エネルギ以上であることにより，金網が破断しないことを確認する。電力中央研究所報告書「竜巻飛来物に対する防護ネットの評価手法と対策工法の提案」（研究報告：N13014）及び電力中央研究所報告書「高強度金網を用いた竜巻飛来物対策工の合理的な衝撃応答評価手法」（総合報告：O 01）（以

下「電中研報告書」という。）の金網引張試験結果から得られる目合い展開方向 の限界伸び量により金網の最大変形角が定まり，金網最大変形角における吸収エ ネルギが金網の有する限界吸収エネルギEmaxとなる。

限界吸収エネルギは，複数枚を重ね合わせた金網を一体として扱ったモデルに て算出する。また，電中研報告書を参照して，金網の変形及び吸収エネルギの分布を考慮したオフセット衝突位置での吸収エネルギ評価の結果，金網最大たわみ時の金網の全長は，飛来物の金網への衝突位置によらず金網最大たわみ時展開方向の長さで一定であり，金網に発生する張力も一定となることから，飛来物の金網への衝突位置によらず金網から飛来物への反力も同等となり，オフセット位置 への飛来物の衝突時の吸収エネルギは中央衝突時と同等となる。したがって，吸収エネルギ評価では中央衝突の場合にて評価を行う。

限界吸収エネルギは，金網1目合いの展開方向の1列の等価剛性，展開方向寸法及びたわみ量から，以下のとおり算出される。吸収エネルギ評価における金網 の限界吸収エネルギ算出モデルを図 3－5 に示す。

図 3－5 限界吸収エネルギ算出における金網のモデル図

図 3－5に示すとおり金網の展開方向に1目合いごとに！－－ー－！で囲った形に帯状 に分割し， N_{1} から N_{y} までの各列が分担するエネルギを各列のたわみ量から算

定し，それらを積算することにより金網の吸収エネルギを算出し，金網が吸収可能な限界吸収エネルギを算出する。

ただし，中央部の最大たわみ量が発生する列数は，飛来物の寸法及び金網目合 いの対角寸法から算出される金網展開直角方向目合い列数を考慮して設定する。飛来物の端部寸法（ $\mathrm{b} \times \mathrm{c}$ ）及び金網目合いの対角寸法 a を考慮し，最大たわみ が発生する場合の金網展開直角方向目合い列数を以下のとおり算出する。金網の吸収エネルギが小さくなるよう，目合い列数の算出に用いる飛来物の寸法として値の小さい寸法 c を適用し，最大たわみが生じる目合い列数を少なくすることに より，限界吸収エネルギが小さくなるように評価する。

金網展開直角方向目合い列数 $=\frac{\mathrm{c}}{\mathrm{a}}$
評価モデルとしては，展開方向に1目合いごとに帯状に分割するモデルとして おり，限界吸収エネルギが小さく算出されるよう，三角形モデルとして評価を実施する。

吸収エネルギ評価の許容限界の算定フローを図 3－6に示す。

図 3－6 吸収エネルギ評価の許容限界の算定フロー

電中研報告書の金網引張試験から，1目合いの展開方向の破断変位を設定する。金網1目合いの破断変位から算出する最大たわみ角から，飛来物が衝突した際の最大たわみ量 $\delta_{\mathrm{ma} \times \mathrm{x}}$ は次式により算定される。

$$
\begin{aligned}
& \delta_{\mathrm{max}}=\frac{\mathrm{L}_{\mathrm{x}}}{2} \cdot \tan \theta_{\mathrm{max}} \\
& \theta_{\mathrm{max}}=\cos ^{-1}\left(\frac{\mathrm{a}}{\mathrm{a}+\mathrm{a}_{\mathrm{s}}}\right)
\end{aligned}
$$

金網を構成する金網展開方向の目合い数 N_{x} は，金網展開方向寸法 L_{x} 及び金網1目合いの対角寸法aから，また，金網展開直角方向の目合い数 N_{y} は，金網

展開直角方向寸法 L_{y} 及び金網1目合いの対角寸法aからそれぞれ求める。金網 を構成する 1 目合いは，それぞれKの等価剛性を持っているため， 1 列当たりば ね定数 K を持つばねを N x 個直列に接続したものと考えることができる。そのた め， 1 列当たりの剛性 K は，

$$
\begin{aligned}
& N_{x}=\frac{1000 \cdot L_{x}}{a} \\
& N_{y}=\frac{1000 \cdot L_{y}}{a}
\end{aligned}
$$

1 列当たりの金網展開方向等価剛性 $\mathrm{K}_{\mathrm{x}},=\frac{\mathrm{K}}{\mathrm{N}_{\mathrm{x}}}$

となる。ただし， N_{x} ， N_{y} の算出において限界吸収エネルギの値が小さくなる ように， N_{x} は保守的に切り上げ， N_{y} は保守的に切り捨てた値を用いる。また，電中研報告書によると補助金網は主金網 0.5 枚相当の吸収エネルギ能力を有して いることが確認されていることから，補助金網を主金網 0.5 枚として考慮し，金網設置枚数を考慮した金網展開方向剛性 K_{x} は，次式により算出される。
$\mathrm{K}_{\mathrm{x}}=\mathrm{K}_{\mathrm{x}}{ }^{\prime} \cdot(\mathrm{n}+0.5)$
飛来物が衝突しなかった列のたわみ量 δ_{i} は，最大たわみ量 $\delta_{\mathrm{max}} \mathrm{x}$ から金網端部のたわみ量 0 までの間を，非接触の列の数の分だけ段階的に減少していくと考 える。金網の最大たわみ量と最大たわみ角を図3－7 に示す。

図 3－7 最大たわみ量と最大たわみ角

金網に飛来物が衝突した際の金網にかかる張力を，金網の剛性及び金網の伸び量から算出する。金網に作用する力のつり合いを図 3－8 に示す。

図 3－8 金網に作用する力のつり合い
i番目の列における金網の張力 P_{i} は，飛来物の衝突位置の左右を分割して考 えると，伸び量は $\mathrm{X}_{\mathrm{i}} / 2$ ，剛性は $2 \cdot \mathrm{~K}_{\mathrm{x}}$ となることから，次式で示される。

$$
\mathrm{P}_{\mathrm{i}}=2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot\left(\frac{\mathrm{X}_{\mathrm{i}}}{2}\right)
$$

$$
=\mathrm{K}_{\mathrm{x}} \cdot \mathrm{X}_{\mathrm{i}}
$$

また，i 番目の列における金網の作用力 F_{i} は変位量とたわみ量の関係から，次式で示される。

$$
\begin{align*}
\mathrm{F}_{\mathrm{i}} & =2 \cdot \mathrm{P}_{\mathrm{i}} \cdot \sin \theta_{\mathrm{i}} \\
& =2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \mathrm{X}_{\mathrm{i}} \cdot \sin \theta_{\mathrm{i}} \\
& =2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}} \cdot\left(\tan \theta_{\mathrm{i}}-\sin \theta_{\mathrm{i}}\right) \\
& =4 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}} \cdot\left(1-\frac{\mathrm{L}_{\mathrm{x}}}{\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}}\right) \tag{3.9}
\end{align*}
$$

金網に飛来物が衝突した際の金網にかかる作用力 F i を積分することにより， i番目の列における吸収エネルギE i は次式で示される。
$\mathrm{E}_{\mathrm{i}}=\int_{0}^{\delta}{ }_{\mathrm{i}} \mathrm{F}_{\mathrm{i}} \mathrm{d} \delta$

$$
\begin{align*}
& =\int_{0}^{\delta}{ }_{\mathrm{i}} 4 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}} \cdot\left(1-\frac{\mathrm{L}_{\mathrm{x}}}{\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}}\right) \mathrm{d} \delta \\
& =2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}}^{2}-\mathrm{K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}} \cdot\left(\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}-\mathrm{L}_{\mathrm{x}}\right) \tag{3.10}
\end{align*}
$$

以上から，金網設置枚数 n を考慮した限界吸収エネルギ $\mathrm{E}_{\mathrm{max}} \mathrm{x}$ は，各列の吸収 エネルギ E_{i} を第 1 列から第 N_{y} 列まで積算することにより求められる。

$$
\begin{align*}
\mathrm{E}_{\text {max }} & =\sum_{\mathrm{i}=1}^{\mathrm{N}_{y}} \mathrm{E}_{\mathrm{i}} \\
& =\sum_{\mathrm{i}=1}^{\mathrm{N}_{y}}\left\{2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}}^{2}-\mathrm{K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}} \cdot\left(\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}-\mathrm{L}_{\mathrm{x}}\right)\right\} \tag{3.11}
\end{align*}
$$

また，等価剛性の導出過程を踏まえた係数及び金網設置枚数を考慮した限界吸収エネルギを $\mathrm{Emax}_{\mathrm{max}}$ ，とする。係数としては，電中研報告書の金網引張試験結果 より $1 / 1.056$ と定める。

$$
\begin{equation*}
\mathrm{E}_{\mathrm{max}} \quad,=\frac{1}{1.056} \cdot \mathrm{E}_{\mathrm{max}} \tag{3.12}
\end{equation*}
$$

（2）破断評価

a．金網
破断評価においては，計算により算出する金網に作用する荷重が金網の素材 の持つ破断強度以下であることにより，金網に破断が生じないよう十分な余裕 を持った強度を有することを確認する。金網は，飛来物の衝突に対し，塑性変形することでエネルギを吸収し，飛来物を補足することから，電中研報告書を参照して主金網（ 50 mm 目合い）及び補助金網（ 40 mm 目合い）それぞれの金網引張試験に基づいた 1 交点当たりの破断荷重 F_{50} 及び F_{40} ，飛来物衝突時の周辺の金網 1 枚当たりの交点数 n_{50} 及び n_{40} 並びに金網の設置枚数 n 及び n_{1} か ら，金網設置枚数を考慮した許容引張荷重を算出する。
金網の破断評価の許容限界を表3－7に示す。

表 3－7 金網の破断評価の許容限界

評価対象部位	許容限界
金網	$\mathrm{F}_{\mathrm{max}}=\mathrm{F}_{50} \cdot \mathrm{n}_{50} \cdot \mathrm{n}+\mathrm{F}_{40} \cdot \mathrm{n}_{40} \cdot \mathrm{n}_{1}$

b．ワイヤロープ
ワイヤロープは，金網と一体となって飛来物を補足するため，金網と同様に塑性変形を許容することから，破断荷重を許容限界とする。具体的な破断荷重 は，ネットメーカが実施した引張試験にて確認した破断荷重よりも保守的な値 である，J I S に規定されている破断荷重F ${ }_{3}$ に，端部のワイヤグリップの効

率 C cを乗じて設定する。
ワイヤロープの破断評価の許容限界を表3－8に示す。

表 3－8 ワイヤロープの破断評価の許容限界

評価対象部位	許容限界	備考
ワイヤロープ	$\mathrm{C}_{\mathrm{c}} \cdot \mathrm{F}_{3}$	ワイヤグリップの効率を考慮

c．接続冶具（支持部）
接続冶具（支持部）であるターンバックル及びシャックルは，破断しなけれ ば金網を設置位置に保持することができ，飛来物を補足可能である。したがっ て，ターンバックルについては，破断荷重よりも保守的な値である，規格値 F4を 1.5 倍した値を許容限界として設定する。シャックルについては，試験結果を踏まえたメーカ保証値として，規格値 F 5 を 2 倍した値を許容限界とし て設定する。

接続治具（支持部）の破断評価の許容限界を表 3－9 に示す。

表 3－9 接続治具（支持部）の破断評価の許容限界

評価対象部位	許容限界
ターンバックル	$1.5 \cdot \mathrm{~F}_{4}$
シャックル	$2.0 \cdot \mathrm{~F}_{5}$

d．接続冶具（固定部）
接続冶具（固定部）である隅角部固定ボルト及び取付プレートの破断評価に おいては，計算により算出する応力により破断が生じないよう，十分な余裕を持った強度を許容限界とする。具体的には，隅角部固定ボルト及び取付プレー トの許容限界は，J E A G 4 6 O 1 を準用し，「その他の支持構造物」の許容限界を適用し，以下のとおり許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ から算出した許容応力とする。
$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}=1.5 \cdot \frac{\mathrm{~F}}{}{ }^{*}$
ここで，
$\mathrm{F}^{*}=\mathrm{min}\left(1.2 \cdot \mathrm{~S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right)$
接続冶具（固定部）の破断評価の許容限界を表3－10に示す。

表 3－10 接続冶具（固定部）の破断評価の許容限界

評価対象部位	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	考慮すべき 損傷モード	許容応力 (MPa)
隅角部固定ボルト	SCM435	$40 * 2$	せん断	$1.5 \cdot \mathrm{fs} *$
取付プレート溶接部	SM490A＊1			

注記＊1：母材である取付プレートの材質
＊2：周辺環境温度
（3）たわみ評価
竜巻防護ネットは，風圧力による荷重，飛来物による及び常時作用する荷重に対し，計算により算出する竜巻防護ネットの最大たわみ量がネットと外部事象防護対象施設の離隔距離未満であることを確認するため，ネットと外部事象防護対象施設の最小離隔距離を許容限界 $\mathrm{L}_{\mathrm{m}} \mathrm{i} \mathrm{n}$ として設定する。

ネットのたわみ評価の許容限界を表3－11に示す。

表 3－11 ネットのたわみ評価の許容限界

評価対象部位	許容限界
ネットの最大たわみ量	ネットと外部事象防護対象施設の最小 離隔距離 $\left(\mathrm{L}_{\mathrm{min}}\right.$ ）$)$

3．1．5 評価方法

ネットの強度評価は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「4．1竜巻防護ネットの評価方針」を踏まえて実施する。ネットの吸収エ ネルギ評価，破断評価及びたわみ評価の方法を以下に示す。評価に際しては，等価剛性に対する係数，アスペクト比及び飛来物の衝突位置の影響に対して以下を考慮 した評価を実施する。
－等価剛性に対する係数の考慮
電中研報告書における金網引張試験結果のばらつきを考慮し，吸収エネルギ評価においては，等価剛性の算出方法の影響から定められる係数を考慮する。
－アスペクト比の取扱い
金網は展開方向，展開直角方向の 2 方向で剛性が異なり，それぞれの方向に対 して伸び量の制限があるため，展開方向：展開直角方向のアスペクト比が $1: 1 \sim$ $2: 1$ の範囲を有効な面積として評価する。
－飛来物の衝突位置の影響
評価においては，飛来物の衝突位置として中央位置に衝突することを想定した

評価を実施しており，中央位置からずれたオフセット位置に衝突する場合の影響 を考慮する。
吸収エネルギ評価においては，電中研報告書を参照して，金網最大たわみ時の金網の全長は飛来物の金網への衝突位置によらず金網最大たわみ時展開方向の長 さで一定であり，金網に発生する張力も一定となることから，飛来物の金網への衝突位置によらず金網から飛来物への反力も同等となり，オフセット位置への飛来物の衝突時の吸収エネルギは中央衝突時と同等となる。したがって，吸収エネ ルギ評価では中央衝突の場合にて評価を行う。

破断評価においては，中央位置への衝突に対してオフセット位置への衝突では， その移動距離が短くなることから，式（3．8）から中央位置衝突時よりもオフセ ット位置衝突時の方が作用する荷重が大きくなることを踏まえ，作用する荷重が大きくなるように，中央位置衝突時とオフセット位置衝突時の移動距離を踏まえ た係数を作用する荷重に乗じる。ただし，金網端部近傍に衝突する場合には，飛来物は傾き，飛来物の側面が金網や支持部材に接触すると考えられ，衝撃荷重は小さくなる。

たわみ評価においては，金網の全長が飛来物の衝突位置によらず，金網最大た わみ時展開方向の長さで一定となるため，たわみの軌跡が楕円状となることを考慮して評価する。さらに，金網に対して飛来物がオフセット位置へ衝突した場合 においても，各ワイヤロープに対して均等に張力が発生するため，算出結果は飛来物の衝突位置によらず適用可能である。また，ワイヤロープの初期張力は小さ くワイヤロープの評価において有意ではないため計算上考慮しない。
（1）吸収エネルギ評価
吸収エネルギ評価においては，電中研評価式を参照して，金網が異方性材料で あることを考慮した吸収エネルギ算定のモデル化を行い，風圧力による荷重，飛来物による衝撃荷重及び常時作用する荷重による外力エネルギが金網の有する限界吸収エネルギを下回ることを確認する。

評価においては，複数枚の重ね合わせた金網を一体として考えたモデルにて評価を実施する。

式（3．11）及び式（3．12）より， $\mathrm{E}_{\mathrm{max}}$ 及び $\mathrm{Emax}_{\mathrm{ma}}$ は以下のとおりである。
$\mathrm{E}_{\text {max }}=\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{y}}}\left\{2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}}^{2}-\mathrm{K}_{\mathrm{x}} \cdot \mathrm{L}_{\mathrm{x}} \cdot\left(\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}-\mathrm{L}_{\mathrm{x}}\right)\right\}$
$\mathrm{E}_{\text {max }}, \quad=\frac{1}{1.056} \cdot \mathrm{E}_{\text {max }}$
風圧力による荷重 W_{w} 及び常時作用する荷重 F_{d} により金網に作用する荷重 F_{w}

は，金網全体に等分布荷重として作用するものであるため，実現象に合わせ金網展開直角方向に対しては，荷重が等分布となるよう作用させる。一方，金網展開方向に対しては，評価モデル上の制約により均一に荷重を作用させることが困難 であるため，金網に作用する外力エネルギが保守的に大きくなるよう， F_{w} が全 て金網展開方向寸法L×の中央に作用するものとして，金網にかかる作用力の式 を用いて 1 列当たりの風圧力による荷重及び常時作用する荷重により金網が受け る外力エネルギを算出し，列数倍することで金網全体が風圧力による荷重及び常時作用する荷重により受ける外力エネルギを算出する。

評価条件である K_{x} ， L_{x} 並びに風圧力による荷重及び常時作用する荷重から算出する F_{w} を式（3．9）の F_{i} に代入して数値計算することにより，風圧力によ る荷重及び常時作用する荷重によるたわみ量 δ a が算出される。

$$
\mathrm{F}_{\mathrm{w}}=\mathrm{N}_{\mathrm{y}} \cdot 4 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{a}} \cdot\left(1-\frac{\mathrm{L}_{\mathrm{x}}}{\sqrt{4 \cdot \delta_{\mathrm{a}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}}\right)
$$

ただし，
$\mathrm{F}_{\mathrm{w}}=\mathrm{P}_{\mathrm{w}}+\mathrm{W}_{\mathrm{w}}$
上式にて算出した $\delta \mathrm{a}$ を式（3．11）において，展開方向の 1 列当たりの風圧力 による荷重及び常時作用する荷重により金網が受ける外力エネルギを列数倍する以下の式に代入することにより，風圧力による荷重及び常時作用する荷重により金網に作用する外カエネルギ E_{w} が算出される。

$$
\mathrm{E}_{\mathrm{w}}=\mathrm{N}_{\mathrm{y}} \cdot\left\{2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{a}}^{2}-\mathrm{K}_{\mathrm{x}} \cdot \mathrm{~L}_{\mathrm{x}} \cdot\left(\sqrt{4 \cdot \delta_{\mathrm{a}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}-\mathrm{L}_{\mathrm{x}}\right)\right\}
$$

飛来物の衝突により金網に作用する外力エネルギ E f としては，衝突時の飛来物の運動エネルギとして，以下より求められる。

$$
\mathrm{E}_{\mathrm{f}}=\frac{1}{2} \cdot \mathrm{~m} \cdot \mathrm{~V}^{2}
$$

飛来物の飛来速度は，金網の設置方向により鉛直の飛来速度にて算出する。ま た，飛来物が金網に対して斜め方向から衝突した場合は，飛来物が衝突後に回転 し，金網と飛来物の衝突面積が大きくなるため，金網に局部的に作用する荷重は小さくなる。したがって，飛来物の衝突方向は，金網に局部的に作用する荷重が大きくなるように金網に対して垂直に入射するものとし，その飛来速度は鉛直最大飛来速度を用いる。

以上から，金網設置枚数を考慮した金網に作用する全外カエネルギ E_{t} が以下 のとおり算出される。

$$
\begin{equation*}
\mathrm{E}_{\mathrm{t}}=\mathrm{E}_{\mathrm{f}}+\mathrm{E}_{\mathrm{w}} \tag{3.13}
\end{equation*}
$$

（2）破断評価
破断評価においては，電中研評価式を参照して，風圧力による荷重，飛来物に よる衝撃荷重及び常時作用する荷重がネットを構成する部材の破断荷重未満であ ることを確認する。

評価に際しては，「2．3 評価の方針」のとおり，飛来物の衝突位置の影響と して，オフセット衝突する場合の影響を考慮する。以下に，オフセット衝突する場合の影響を係数として考慮した発生値の割増係数の設定方法を示す。
－オフセット衝突を考慮する係数
飛来物の移動距離が最も小さくなる場合のオフセット衝突を考えると，中央衝突と比較して δ が 0.83 倍となることから，中央衝突に比べ衝撃荷重が 1.21倍となる。
a．金網
金網に飛来物が衝突した後，金網のたわみが増加し，飛来物の運動エネルギ を吸収する。金網に発生する風圧力による荷重，飛来物による衝撃荷重及び常時作用する荷重は金網変位の増加に伴い大きくなり，最大たわみ発生時に最大値を示すため，破断評価では最大たわみ発生時の衝撃荷重を用いる。

最大たわみ発生時において，飛来物の衝突により金網の目合いは金網展開方向に引張荷重を受けることから，破断評価として金網目合いの引張荷重評価を実施する。

金網の破断評価の評価フローを図3－9に示す。

図 3－9 金網の破断評価フロー
（a）評価モデル
金網に飛来物が衝突した際の衝撃によりに生じる引張荷重について評価を実施する。金網構造及び飛来物の大きさを考慮し，金網の目合い交点数が最小となるモデル化を行う。衝突位置周辺の目合い交点数は，主金網及び補助金網でそれぞれ金網 1 枚当たり n_{50} 及び n_{40} となる。評価モデルを図 $3-10$

に示す。

（ 50 mm 目合い金網）

（ 40 mm 目合い金網）

図 3－10 破断評価モデル図
（b）評価方法
金網に飛来物が衝突した際に生じる衝撃荷重が，金網の破断荷重以下であ り，金網目合いに破断が生じないよう十分な余裕を持った強度を有すること を確認する。

ここで，金網に飛来物が衝突した際に生じる衝撃荷重の最大値 F a は，
「3．1．3 荷重及び荷重の組合せ」にて算出した式（3．8）のたわみ量と飛来物による衝撃荷重の関係式を用いて算出する。

飛来物の衝突による荷重に加え，風圧力による荷重及び常時作用する荷重 を考慮するため，E f を E t と置き換え，式（3．8）より，

$$
\mathrm{F}_{\mathrm{a}}=\frac{8 \cdot \mathrm{E}_{\mathrm{t}}}{3 \cdot \delta}
$$

となる。

ここで，オフセット衝突による衝撃荷重の増加分による係数 1.21 を考慮 し，衝撃荷重の最大値 F a ${ }^{(1) は ~}$

$$
\mathrm{F}_{\mathrm{a}}^{\prime}=1.21 \cdot \mathrm{~F}_{\mathrm{a}}
$$

にて算出される。
b．ワイヤロープ
風圧力による荷重，飛来物による衝撃荷重及び常時作用する荷重については，「3．1．3 荷重及び荷重の組合せ」において算出した飛来物が衝突する場合の金網に作用する衝撃荷重の最大値 F_{a} ，を考慮する。

ネットは，電中研報告書と同様に 2 本のワイヤロープを L 字に設置し，さら にワイヤロープが接続治具により拘束されない構造としており，電中研報告書 において実施されている衝撃試験における実測値が包絡されていることを確認 している評価式を用いて評価を実施する。金網に発生する荷重のつり合いのイ メージ図を図3－11に示す。

図 3－11 金網及びワイヤロープに発生する力のつり合い（金網平面図及び断面図）

風圧力による荷重，飛来物による衝撃荷重及び常時作用する荷重により金網 に作用する衝撃荷重の最大値 F_{a} ’ が集中荷重として作用するとしてモデル化 すると，飛来物が衝突する場合の金網に発生する張力の合計の最大値T’は，図 3－11 に示す金網及びワイヤロープに発生する力のつり合いより以下のとお

り算出される。

$$
\begin{aligned}
& \mathrm{T}^{\prime}=\frac{\mathrm{F}_{\mathrm{a}}^{\prime}}{2 \cdot \sin \theta} \\
& \text { ここで, } \theta \text { は以下の式で求められる。 } \\
& \theta=\tan ^{-1} \frac{2 \cdot \delta}{\mathrm{~L}_{\mathrm{x}}}
\end{aligned}
$$

主金網設置枚数を考慮すると，1枚の金網のワイヤロープ 1 本に発生する張力の最大値 T_{1} ’ は，

$$
\mathrm{T}_{1}^{\prime}=\frac{\mathrm{T}^{\prime}}{2} \cdot \frac{1}{\mathrm{n}}=\frac{\mathrm{F}_{\mathrm{a}}^{\prime}}{4 \cdot \mathrm{n} \cdot \sin \theta}
$$

と算出される。
さらに，ワイヤロープが支持する金網の枚数を考慮する。上段のワイヤロー プには補助金網が設置され， 2 枚の金網を支持しており，下段のワイヤロープ より大きな荷重が作用することとなるため，補助金網設置に伴ら荷重の分担を考慮する。

電中研報告書によると，補助金網を設置している上段のワイヤロープには，補助金網を設置していないワイヤロープに比べ， 1.5 倍の張力が発生している ことが確認されている。このことから，上段のワイヤロープは，下段のワイヤ ロープに比べ，補助金網の影響により 1.5 倍の張力が発生しているものとし， その影響を考慮する。

補助金網を支持しているワイヤロープに発生する張力の最大値 T_{1}＂は，

$$
\begin{equation*}
\mathrm{T}_{1} "=\frac{\mathrm{T}^{\prime}}{2} \cdot\left(\frac{1.5}{1.5+1}\right)=\frac{\mathrm{F}_{\mathrm{a}}^{\prime}}{4 \cdot \sin \theta} \cdot\left(\frac{1.5}{1.5+1}\right) \tag{3.14}
\end{equation*}
$$

と算出される。
c．接続冶具（支持部）
（a）ターンバックル
ターンバックルは，ワイヤロープの引張荷重が作用する場合においても破断しないことを確認することから，引張荷重の最大値としてワイヤロープに発生する張力 T_{1}＂により評価を実施する。
（b）シャックル
シャックルは，ワイヤロープの引張荷重が作用する場合においても破断し ないことを確認することから，引張荷重の最大値としてワイヤロープに発生 する張力 T_{1}＂により評価を実施する。
d．接続治具（固定部）
（a）隅角部固定ボルト
フレームの四隅に設置した隅角部固定ボルトは，ワイヤロープの荷重を，鋼管を介して受けることとなる。

ここで，ワイヤロープはたわみにより鋼管に対して $\theta_{\text {w } 1, ~} \theta_{\text {w } 2}$ のたわみ角を有することから，隅角部固定ボルトに作用する荷重にはこのたわみ角を考慮する。

鉛直方向成分は，水平方向成分のように隅角部固定ボルトに対する優位な荷重ではないことから，面内荷重で評価する。

金網のたわみとワイヤロープのたわみ角の関係を図 3－12 に示す。

図 3－12 金網のたわみとワイヤロープのたわみ角の関係

隅角部固定ボルトの荷重状態を図3－13に示す。

図 3－13 隅角部固定ボルトの荷重状態

隅角部固定ボルトに発生するせん断応力を力のつり合いの関係から以下の評価式を用いて算出する。

金網展開方向ワイヤロープから発生する各方向の荷重， T_{x} 及び T_{y} は，以下のとおりとなる。
$\mathrm{T}_{\mathrm{x}}=\mathrm{T}_{1}{ }^{\prime} \cdot \cos \theta_{\mathrm{w} 1}$
$\mathrm{T}_{\mathrm{y}}=\mathrm{T}_{1}{ }^{\prime} \cdot \sin \theta_{\mathrm{w} 1} \cdot \cos \theta_{\mathrm{y}}$
ただし，$\theta_{\mathrm{y}}, \theta_{\mathrm{w} 1}$ は以下の式で求められる。
$\theta_{\mathrm{y}}=\tan ^{-1}\left(\frac{2 \cdot \delta}{\mathrm{~L}_{\mathrm{y}}}\right)$
$\theta_{\mathrm{w} 1}=\cos ^{-1} \frac{1}{\sqrt{1+16 \cdot\left(\frac{\delta_{\mathrm{wx}}}{\mathrm{L}_{\mathrm{x}}}\right)^{2}}}$
また，金網展開直角方向ワイヤロープから発生する各方向の荷重，Tx及びTy，は以下の関係となる。
$\mathrm{T}_{\mathrm{x}}{ }^{\prime}=\mathrm{T}_{1}{ }^{\prime} \cdot \sin \theta_{\mathrm{w} 2} \cdot \cos \theta_{\mathrm{x}}$
$\mathrm{T}_{\mathrm{y}}{ }^{\prime}=\mathrm{T}_{1}{ }^{\prime \prime} \cdot \cos \theta_{\mathrm{w} 2}$
ただし，$\theta_{\mathrm{x}}, \theta_{\mathrm{w} 2}$ は以下の式で求められる。
$\theta_{\mathrm{x}}=\tan ^{-1}\left(\frac{2 \cdot \delta}{L_{\mathrm{x}}}\right)$

$$
\theta_{\mathrm{w} 2}=\cos ^{-1} \frac{1}{\sqrt{1+16 \cdot\left(\frac{\delta_{\mathrm{w} y}}{\mathrm{~L}_{\mathrm{y}}}\right)^{2}}}
$$

隅角部へ作用するX方向及びY方向への合成荷重は，

$$
\begin{aligned}
& F_{x}=T_{x}+T_{x}^{\prime}, \\
& F_{y}=T_{y}+T_{y},
\end{aligned}
$$

より求まる。
1 本目のワイヤロープから隅角部へ作用する合成荷重は，

$$
F_{p 1}=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

より求まる。
2 本目のワイヤロープから隅角部へ作用する合成荷重は，

$$
\mathrm{F}_{\mathrm{p} 2}=\mathrm{F}_{\mathrm{p} 1} / 1.5
$$

より求まる。
ワイヤロープから隅角部へ作用する合成荷重 F_{p} は，
$\mathrm{F}_{\mathrm{p}}=\mathrm{F}_{\mathrm{p} 1}+\mathrm{F}_{\mathrm{p} 2}$
以上より，隅角部固定ボルトに発生するせん断応力 $\tau \mathrm{s}$ は，

$$
\tau_{\mathrm{s}}=\frac{\mathrm{F}_{\mathrm{p}}}{2 \cdot \mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（b）取付プレート
飛来物がネットに衝突する場合に生じる金網取付部への衝撃荷重T T_{1}＂は， ワイヤロープの引張荷重として作用し，隅肉溶接部にはせん断応力が発生す るため，せん断応力評価を実施する。取付プレートの溶接部を図 3－14 に示 す。

図 3－14 取付プレート溶接部

溶接部の有効脚長 $\mathrm{L}_{\mathrm{p} w}$ は，
$\mathrm{L}_{\mathrm{p} w}=\mathrm{L}_{\mathrm{p} 1}-\mathrm{L}-2 \cdot \mathrm{~S}_{\mathrm{w}}+\mathrm{L}_{\mathrm{p} 2}-\mathrm{L}-2 \cdot \mathrm{~S}_{\mathrm{w}}$溶接部に発生するせん断応力 τ_{w} は，
$\tau_{\mathrm{w}}=\frac{\mathrm{T}_{1}^{\prime \prime}}{2 \cdot \mathrm{a}_{\mathrm{w}} \cdot \mathrm{L}_{\mathrm{pw}}}$
ここで，溶接部ののど厚 a w は以下の式で求められる。
$\mathrm{a}_{\mathrm{w}}=\frac{\mathrm{S}_{\mathrm{w}}}{\sqrt{2}}$
（3）たわみ評価
たわみ評価においては，金網の最大たわみ量及びワイヤロープ張力に応じたワ イヤロープのたわみ量を算出し，離隔距離未満であることを確認する。

たわみ評価の評価フローを図3－15に示す。

図 3－15 たわみ評価の評価フロー

a．金網

金網のたわみ量と吸収エネルギとの関係は式（3．10）のとおり，以下の式に て導出される。
$\mathrm{E}_{\mathrm{i}}=2 \cdot \mathrm{~K}_{\mathrm{x}} \cdot \delta_{\mathrm{i}}^{2}-\mathrm{K}_{\mathrm{x}} \cdot \mathrm{L}_{\mathrm{x}} \cdot\left(\sqrt{4 \cdot \delta_{\mathrm{i}}^{2}+\mathrm{L}_{\mathrm{x}}^{2}}-\mathrm{L}_{\mathrm{x}}\right)$
ここで， K_{x} 及び L_{x} は定数であるため，
$\sum_{i=1}^{N_{y}} E_{i}=E_{t}$
とすることで，金網への付加エネルギに応じたたわみ量を算出することができ る。
b．ワイヤロープのたわみ量を含めたネット全体のたわみ量の算出
ワイヤロープのたわみ量は，金網張力によりワイヤロープが放物線上に変形 するとし，算出したワイヤロープに発生する張力及びワイヤロープの引張試験結果（荷重一伸び曲線）から変形後のワイヤロープ長さを求めることで導出す る。

また，ワイヤロープの初期張力は小さくワイヤロープのたわみ量の算出にお いて有意ではないため計算上考慮しない。

式（3．14）に示す計算方法を用いて算出されるワイヤロープに発生する張力 からワイヤロープのひずみ量 ε が算出される。したがって，ワイヤロープの変形による伸び量 δ ’ は，以下のとおり算出される。

$$
\delta^{\prime}=L_{z} \cdot \varepsilon
$$

また，飛来物の衝突によりワイヤロープが図 3－16 のとおり放物線上に変形 すると，変形後のワイヤロープ長さS は放物線の弦長の式を用いて以下のとお り表される。

$$
\mathrm{S}=\frac{1}{2} \cdot \sqrt{\mathrm{~L}_{\mathrm{b}}^{2}+16 \cdot \delta_{\mathrm{w}}^{2}}+\frac{\mathrm{L}_{\mathrm{b}}^{2}}{8 \cdot \delta_{\mathrm{w}}} \cdot \ln \left(\frac{4 \cdot \delta_{\mathrm{w}}+\sqrt{\mathrm{L}_{\mathrm{b}}^{2}+16 \cdot \delta_{\mathrm{w}}^{2}}}{\mathrm{~L}_{\mathrm{b}}}\right)
$$

変形後ワイヤロープ長さS
図 3－16 ワイヤロープ変形図

ワイヤロープのたわみ量を含めたネット全体のたわみ量 δ t の算出を行う。金網及びワイヤロープ変形図を図3－17に示す。

金網展開方向と平行に配置されているワイヤロープの変形後の長さを S_{x} ，，金網展開直角方向に配置されているワイヤロープの変形後の長さを S_{y} ，とす ると， S_{x} ’及び S_{y} ’はそれぞれ $\delta \mathrm{wx}$ ，$\delta \mathrm{w} \mathrm{y}$ の関数であり，ワイヤロープの伸び量 δ ’は，

$$
\delta^{\prime}=\left\{\mathrm{S}_{\mathrm{x}}^{\prime}\left(\delta_{\mathrm{wx}}\right)-\mathrm{L}_{\mathrm{x}}\right\}+\left\{\mathrm{S}_{\mathrm{y}}^{\prime} \quad\left(\delta_{\mathrm{wy}}\right)-\mathrm{L}_{\mathrm{y}}\right\}
$$

と表される。

また，金網展開方向と平行な断面から見たたわみ量と，金網展開方向と直交 する断面からみたたわみ量は等しいことから，ワイヤロープのたわみ量を含め たネット全体のたわみ量 δ t は，

$$
\delta_{\mathrm{t}}=\sqrt{\left(\delta_{\mathrm{wy}}+\frac{\mathrm{L}_{\mathrm{x}}}{2 \cdot \cos \theta_{\mathrm{x}}}\right)^{2}-\left(\frac{\mathrm{L}_{\mathrm{x}}}{2}\right)^{2}}=\sqrt{\left(\delta_{\mathrm{wx}}+\frac{L_{\mathrm{y}}}{2 \cdot \cos \theta_{\mathrm{y}}}\right)^{2}-\left(\frac{L_{\mathrm{y}}}{2}\right)^{2}}
$$

と表される。
ここで，θ x 及び $\theta_{\text {y は，「3．1．5（3）a．金網」で算出した金網に作用する }}$全外力エネルギ E_{t} に応じたたわみ量 δ より，以下の式で求められる。

$$
\begin{aligned}
& \theta_{\mathrm{x}}=\tan ^{-1}\left(\frac{2 \cdot \delta}{\mathrm{~L}_{\mathrm{x}}}\right) \\
& \theta_{\mathrm{y}}=\tan ^{-1}\left(\frac{2 \cdot \delta}{\mathrm{~L}_{\mathrm{y}}}\right)
\end{aligned}
$$

したがって，ワイヤロープのたわみ量 $\delta_{\mathrm{w}} \mathrm{x}$ 及び $\delta_{\mathrm{w}} \mathrm{y}$ を導出することができ，同時にワイヤロープのたわみ量を含めたネット全体のたわみ量 $\delta \mathrm{t}$ が算出され る。

図 3－17 金網及びワイヤロープ変形図

3.2 防護板の強度評価方法

3．2．1 記号の定義
防護板の強度評価に用いる記号を表3－12に示す。

表3－12 防護板の強度評価に用いる記号

記号	単位	定義
d	m	飛来物が衝突する衝突断面の等価直径
k	-	鋼板の材質に関する係数
m	kg	飛来物の質量
T	m	鋼板の貫通限界厚さ
v	m / s	飛来物の飛来速度

3．2．2 評価対象部位

防護板の評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算 の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，設定する。

設計荷重に対し，飛来物が施設を構成する部材を貫通しない設計とするために，防護板が飛来物の貫通を生じない最小厚さ以上であることを計算により確認する。施設を構成する部材が飛来物を貫通させないことの確認においては，外殻を構成 する防護板を評価対象部位として設定する。

3．2．3 荷重及び荷重の組合せ

（1）飛来物による衝撃荷重（ W_{M} ）
飛来物による衝撃荷重（ W_{M} ）は，表 3－13に示す飛来物の衝突に伴う荷重とす る。また，飛来物の材料定数を表 3－14 に示す。

表 3－13 飛来物の諸元

飛来物	寸法 長さ×幅 \times 奥行き (m)	質量 (kg)	水平方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$	鉛直方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$
鋼製材	$4.2 \times 0.3 \times 0.2$	135	46.6	16.7

表 3－14 飛来物の材料定数

飛来物	降伏応力 $\sigma_{\mathrm{y}}(\mathrm{MPa})$	縦弾性係数 $\mathrm{E}(\mathrm{MPa})$	ポアソン比
鋼製材	245	202000	0.3

（2）荷重の組合せ
強度評価に用いる荷重の組合せについては，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」のとおり，飛来物に よる衝撃荷重を考慮する。

荷重の組合せを表3－15に示す。

表 3－15 荷重の組合せ

評価内容	風圧力による 荷重 $\left(\mathrm{W}_{\mathrm{W}}\right)$	飛来物による 衝撃荷重 $\left(\mathrm{W}_{\mathrm{M}}\right)$	常時作用する 荷重 $\left(\mathrm{F}_{\mathrm{d}}\right)$	荷重の組合せ
貫通評価	-	O	-	W_{M}

3．2．4 許容限界

防護板の許容限界は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」 の「5．1 竜巻防護ネットの許容限界」にて設定している許容限界を踏まえて，「3．2．2 評価対象部位」にて設定した評価対象部位の損傷による機能への影響を考慮して設定する。

防護板の貫通評価における許容限界は，防護板の最小厚さを設定する。防護板の貫通評価の許容限界を表3－16に示す。

表 3－16 防護板の貫通評価の許容限界

評価対象部位	許容限界 (mm)
防護板（水平設置 ${ }^{* 1}$ ）	12
防護板（鋁直設置 ${ }^{* 2}$ ）	32

注記＊1：飛来物の鉛直衝突を考慮した防護板の設置方向 ＊2：飛来物の水平衝突を考慮した防護板の設置方向

3．2．5 評価方法

防護板の強度評価は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方

針」の「4．1竜巻防護ネットの評価方針」を踏まえて，衝突評価として貫通評価 を実施する。貫通評価は，飛来物が防護板に衝突する場合の貫通限界厚さを， ービンミサイル評価について（昭和52年7月20日原子炉安全専門審査会）」で用 いられるBRL式を用いて算出する。

$$
\mathrm{T}^{\frac{3}{2}}=\frac{0.5 \cdot \mathrm{~m}^{2} \cdot \mathrm{v}^{2}}{1.4396 \times 10^{9} \cdot \mathrm{k}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}}
$$

3.3 支持部材の強度評価方法

3．3．1 記号の定義
支持部材の強度評価に用いる記号を表3－17に示す。

表3－17 支持部材の強度評価に用いる記号（ $1 / 3$ ）

記号	単位	定義
a s	mm	ゴム支承本体有効平面寸法（軸方向）
A	mm^{2}	支持部材の受圧面積
A_{b} e i	mm^{2}	ボルトの有効断面積（ $\mathrm{i}=1,2)$
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	mm ${ }^{2}$	ボルトの呼び径断面積（ $\mathrm{i}=1,2)$
$\mathrm{A}_{\mathrm{c}} \mathrm{e}$	mm^{2}	移動量を控除した圧縮に有効な面積
$\mathrm{A}_{\text {e }}$	mm^{2}	ゴム支承本体の側面被覆ゴムを除く面積
A ${ }_{\text {t }}$ e	mm^{2}	移動量を控除した引張に有効な面積
B	mm	ゴム支承の上沓の寸法（直角方向）
b s	mm	ゴム支承本体有効平面寸法（直角方向）
C ${ }_{f}$	－	支持部材の風力係数
d	mm	ゴム支承の上沓の端部から取付ボルトまでの距離のうち，長 い方の値
e	mm	ゴム支承本体の偏心量
f c	－	圧縮応力の分布を考慮した引張応力の係数（＝2．0）
f c r	－	荷重の大きさ及び発生頻度を考慮した係数（＝1．5）
f s＊	MPa	許容せん断応力
f_{t}＊	MPa	許容引張応力
$\mathrm{ff} \mathrm{s}^{*}$	MPa	引張力とせん断力を同時に受けるボルトの許容引張応力
F＊	MPa	設計•建設規格 SSB－3121．3及びSSB－3133に定める値
F ${ }_{\text {x }}$	N	x軸方向のせん断力
F_{y}	N	y 軸方向のせん断力
F_{z}	N	z 軸方向の軸力
G	－	ガスト影響係数
G_{e}	$\mathrm{N} / \mathrm{mm}^{2}$	ゴムのせん断弾性係数
h	mm	ゴム支承本体の高さ
$\ell_{\text {j }}$	mm	上沓中心から各位置のボルトまでの距離（ $\mathrm{j}=1,2)$
$M_{\text {b }}$	$\mathrm{N} \cdot \mathrm{mm}$	ゴム支承本体の回転モーメント
M_{h}	$\mathrm{N} \cdot \mathrm{mm}$	ゴム支承本体の水平反力による回転モーメント

表3－17 支持部材の強度評価に用いる記号 $(2 / 3)$

記号	単位	定義
M v	$\mathrm{N} \cdot \mathrm{mm}$	ゴム支承本体の鉛直反力による回転モーメント
M_{x}	$\mathrm{N} \cdot \mathrm{mm}$	x 軸周りの曲げモーメント
M_{y}	$\mathrm{N} \cdot \mathrm{mm}$	y 軸周りの曲げモーメント
n ，	－	縦弾性係数比（＝1）
$\mathrm{n}_{\mathrm{b}}{ }^{\text {，}}$	－	引張力を受けるゴム支承端部の取付ボルト本数
n b i	－	ボルト総数（ $\mathrm{i}=1,2)$
n j	－	各位置でのボルト数（ $\mathrm{j}=1,2)$
Q_{b}	N	基礎ボルト1本当たりのせん断力
q	$\mathrm{N} / \mathrm{m}^{2}$	設計用速度圧
R_{U}	N	ゴム本体の上向きの反力
R L	N	ゴム本体の下向きの反力
R e	N	ゴム支承本体の鉛直反力
R_{h}	N	ゴム支承本体の水平反力
R_{hk}	kN	可動支承の許容水平荷重
$\mathrm{R}_{\mathrm{v}} \mathrm{c}$	kN	可動支承の許容鉛直荷重（圧縮）
$\mathrm{R}_{\mathrm{v}}{ }_{\text {t }}$	kN	可動支承の許容鉛直荷重（引張）
S_{1}	－	ゴム支承本体の一次形状係数
S_{2}	－	ゴム支承本体の二次形状係数
S_{u}	MPa	設計•建設規格 付録材料図表 Part5 表9又はJ I S B 1051 に定める値
$\mathrm{S}_{\text {y }}$	MPa	設計•建設規格 付録材料図表 Part5 表8又はJ I S B 1 0 5 1 に定める値
t e	mm	ゴム一層の厚さ
t p	mm	内部鋼板の厚さ
T b i	N	ボルト1本当たりの引抜力（ $\mathrm{i}=1,2)$
V_{D}	m／s	設計竜巻の最大風速
W_{W}	MN	風圧力による荷重
x	mm	上沓端部から中立軸までの距離
$\mathrm{Z}_{\mathrm{b} \times}$	mm	x 軸に関するボルト群の断面係数
$Z_{\text {b y }}$	mm	y 軸に関するボルト群の断面係数
γ s e	－	ゴム支承本体のせん断ひずみ
γ e a	－	ゴム支承本体の許容せん断ひずみ
$\Delta \mathrm{L}$	mm	ゴム支承本体の移動量

表3－17 支持部材の強度評価に用いる記号（3／3）

記号	単位	定義
$\Sigma \mathrm{t}$ e	mm	総ゴム厚
ρ	$\mathrm{kg} / \mathrm{m}^{3}$	空気密度
$\sigma \mathrm{cra}$	MPa	ゴム支承本体の許容圧縮応力
$\sigma \mathrm{ce}$	MPa	ゴム本体の圧縮応力
$\sigma \mathrm{pmax}$	MPa	上沓端部の最大圧縮応力
$\sigma \mathrm{ta}$	MPa	ゴム支承本体の許容引張応力
$\sigma \mathrm{t} \mathrm{b} \mathrm{i}$	MPa	ボルトの引張応力（ $\mathrm{i}=1,2)$
$\sigma \mathrm{te}$	MPa	ゴム本体の引張応力
$\sigma \mathrm{tp}$	MPa	内部鋼板の引張応力
τ b i	MPa	ボルトのせん断応力（ $\mathrm{i}=1,2)$

3．3．2 評価対象部位

支持部材の評価対象部位は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」に示す評価対象部位を踏まえ，設定する。
（1）貫通評価
設計荷重に対し，飛来物が施設を構成する部材を貫通しない設計とするために，支持部材が飛来物の貫通を生じない最小厚さ以上であることを計算により確認す る。施設を構成する部材が飛来物を貫通させないことの確認においては，外殻を構成するフレーム（横補強材）及び大梁を評価対象部位として設定する。
（2）支持機能評価
設計荷重に対し，上載するネット及び防護板を支持する構造強度を有すること の確認並びに外部事象防護対象施設に波及的影響を与えないよう，施設を構成す る部材自体の転倒及び脱落を生じないことの確認として，支持部材に終局状態に至るようなひずみを生じないこと及び支持部材に破断が生じないよう十分な余裕 を持った強度が確保されていることを解析により確認する。

飛来物の衝突を考慮する場合，飛来物が衝突しうる部材並びに構造及び荷重伝達経路を考慮して衝突位置及び評価対象部位を設定する。本評価においては，フ レーム（主桁，横補強材），大梁，ゴム支承及び可動支承を評価対象部位として設定する。

支持部材の支持機能評価における評価対象部位を図3－18に示す。

（ゴム支承断面図）

図 3－18 支持部材の支持機能評価における評価対象部位

枠囲みの内容は商業機密の観点から公開できません。

3．3．3 荷重及び荷重の組合せ

（1）荷重の設定
強度評価には以下の荷重を用いる。
なお，荷重の算定に用いる竜巻の特性値は表3－5 と同様である。
a．風圧力による荷重（ W_{W} ）
風圧力による荷重（ W_{W} ）は，次式により算定する。
$\mathrm{W}_{\mathrm{W}}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C}_{\mathrm{f}} \cdot \mathrm{A}$
設計用速度圧 q は，次式により算定する。
$\mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{D}}{ }^{2}$
b．飛来物による衝撃荷重（ W_{M} ）
飛来物による衝撃荷重（ W_{M} ）は，表 3－13 に示す飛来物の衝突に伴う荷重とす る。また，飛来物の材料定数は表 3－14と同様である。
c．常時作用する荷重（ F_{d} ）
常時作用する荷重（ F_{d} ）は，部材の自重とする。
（2）荷重の組合せ
強度評価に用いる荷重の組合せについては，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」のとおり，風圧力に よる荷重，飛来物による衝撃荷重及び常時作用する荷重を組み合わせる。荷重の組合せを表3－18に示す。

表3－18 荷重の組合せ

評価内容	風圧力による 荷重 $\left(\mathrm{W}_{\mathrm{W}}\right)$	飛来物による 衝撃荷重 $\left(\mathrm{W}_{\mathrm{M}}\right)$	常時作用する 荷重 $\left(\mathrm{F}_{\mathrm{d}}\right)$	荷重の組合せ
貫通評価	-	\bigcirc	-	W_{M}
支持機能評価	\bigcirc	\bigcirc	\bigcirc	$W_{W}+W_{M}+F_{d}$

3．3．4 許容限界

支持部材の許容限界は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の方針」の「5．1 竜巻防護ネットの許容限界」にて設定している許容限界を踏まえて，

「3．3．2 評価対象部位」にて設定した評価対象部位の損傷による機能への影響を考慮して設定する。
（1）貫通評価
支持部材の貫通評価における許容限界は，支持部材を構成するフレーム（横補強材）及び大梁の最小厚さを設定する。フレーム（横補強材）及び大梁の貫通評価の許容限界を表3－19に示す。

表 3－19 フレーム（横補強材）及び大梁の貫通評価の許容限界

評価対象部位	許容限界（mm）
フレーム $($ 横補強材 $)$	22
大梁	36

（2）支持機能評価
a．評価対象部位の材料仕様
支持部材の材料仕様を表3－20に示す。

表 3－20 評価対象部位の材料仕様（1／3）（フレーム及び大梁）

分類	仕様	材質	
	主桁	$\mathrm{BH} 1000 \times 560 \times 19 \times 28$	SM490A
	横補強材	$\mathrm{BH} 400 \times 400 \times 19 \times 22$	
大梁	大梁	$\mathrm{BB} 400 \times 450 \times 19 \times 25$	SM490A

表 3－20 評価対象部位の材料仕様（2／3）（ゴム支承）

分類	項目	仕様
ゴム支承 （フレーム ゴム支承及 び大梁ゴム 支承）	支承種類	地震時水平力分散型ゴム支承
	ゴム種類	天然ゴム（NR）
	ゴム支承本体有効平面寸法（mm）	800×800
	$\begin{gathered} \text { 総ゴム厚 }(\mathrm{mm}) \\ (\text { ゴム厚 }(\mathrm{mm}) \times \text { 層数 }) \end{gathered}$	$\begin{gathered} 192 \\ (24 \times 8 \text { 層 }) \end{gathered}$
	せん断弾性係数（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	1.0 （呼び：G10）
	一次形状係数	8． 33
	二次形状係数	4.17
	水平剛性（kN／mm）	3.33
	鉛直剛性（kN／mm）	972

表 3－20 評価対象部位の材料仕様（3／3）（可動支承）

分類	項目	材質
可動支承	すべり材	ポリアミド MC703HL
		SUS304，SUS316
	圧縮ゴム	クロロプレン系合成ゴム C08
	鋼材（ピストン，ベー スポット，レール等）	SS400，SM490，SM570

b．評価対象部位の材料定数
支持部材の評価に用いる材料定数を表3－21に示す。

表 3－21 材料定数

材質	降伏応力 $\sigma_{\mathrm{y}}(\mathrm{MPa})$	縦弾性係数 $\mathrm{E}(\mathrm{MPa})$	塑性硬化係数 $\mathrm{E}^{\prime} \quad(\mathrm{MPa})$	ポアソン比
SM490A	315	202000	2830	0.3

c．許容限界の算出
（a）ゴム支承の許容圧縮応力
道路橋支承便覧を基に，以下の式により算出する。
$\sigma_{\mathrm{cra}}=\frac{\mathrm{G}_{\mathrm{e}} \cdot \mathrm{S}_{1} \cdot \mathrm{~S}_{2}}{\mathrm{f}_{\mathrm{cr}}}$
ここで，

$$
\begin{aligned}
& \mathrm{S}_{1}=\frac{\mathrm{A}_{\mathrm{e}}}{2 \cdot\left(\mathrm{a}_{\mathrm{s}}+\mathrm{b}_{\mathrm{s}}\right) \cdot \mathrm{t}_{\mathrm{e}}} \quad\left(0.5 \leqq \frac{\mathrm{~b}_{\mathrm{s}}}{\mathrm{a}_{\mathrm{s}}} \leqq 2.0\right. \text { のとき) } \\
& \mathrm{S}_{2}=\frac{\mathrm{min}\left(\mathrm{a}_{\mathrm{s}}, \mathrm{~b}_{\mathrm{s}}\right)}{\sum \mathrm{t}_{\mathrm{e}}}
\end{aligned}
$$

（b）内部鋼板の許容引張応力
J E A G 4 6 0 1 に基づく許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容引張応力を，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}=1.5 \cdot \frac{\mathrm{~F}}{}{ }^{*}$
ここで，
$\mathrm{F}^{*}=\mathrm{min}\left(1.2 \cdot \mathrm{~S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right)$
（c）取付ボルト及び基礎ボルトの許容引張応力
J E A G 4 6 0 1 に基づく許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}^{\mathrm{S}}$ の許容引張応力を，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}=1.5 \cdot \frac{\mathrm{~F}^{*}}{2}$
ここで，
$\mathrm{F}^{*}=\mathrm{min}\left(1.2 \cdot \mathrm{~S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right)$
（d）取付ボルト及び基礎ボルトの許容せん断応力
J EAG4601に基づく許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}^{\mathrm{S}}$ の許容引張応力を，以下の式により算出する。
$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}=1.5 \cdot \frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}}$
ここで，

$$
\mathrm{F}^{*}=\mathrm{m} \mathrm{in}\left(1.2 \cdot \mathrm{~S}_{\mathrm{y}}, 0.7 \cdot \mathrm{~S}_{\mathrm{u}}\right)
$$

（e）取付ボルト及び基礎ボルトの組合せ応力
J E A G 4 6 0 1 に基づく許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}^{\text {S }}$ の許容引張応力を，以下の式により算出する。

$$
1.5 \cdot \mathrm{f}_{\mathrm{ts}} *=\mathrm{m} \operatorname{in}\left(1.4 \cdot 1.5 \cdot \mathrm{f}_{\mathrm{t}} *-1.6 \cdot \tau_{\mathrm{b} \mathrm{i}}, 1.5 \cdot \mathrm{f}_{\mathrm{t}} *\right)
$$

d．支持機能評価における許容限界
上載するネット及び防護板の自重並びにネット，防護板及び支持部材への飛来物の衝突時の荷重に対し，これらを支持する構造強度を有することの確認並 びに外部事象防護対象施設に波及的影響を与えないよう，施設を構成する部材自体の転倒及び脱落を生じないことの確認として，設計竜巻の風圧力による荷重，飛来物による衝撃荷重及び常時作用する荷重に対し，支持部材に終局状態 に至るようなひずみを生じないこと及び支持部材に破断が生じないよう十分な余裕を持った強度が確保されていることを解析により確認する評価方針として いることを踏まえ，以下のとおり許容限界を設定する。

フレーム及び大梁については，破断ひずみを許容限界として設定する。破断 ひずみは，「3．3．5（2）e．（c）破断ひずみ」に示すとおり，J I S に規定され ている伸びの下限値を基に設定するが，「Methodology for Performing Aircraft Impact Assessments for New Plant Design（Nuclear Energy Institute 2011 Rev8）」（以下「NEI07－13」という。）において，TF（多軸性係数）を \square とすることが推奨されていることを踏まえ，安全余裕として TF $=\square$ を考慮して設定する。破断ひずみを超えるようなひずみが確認される場合においては，破断箇所を確認し全断面に発生しないことを確認する。ひずみ の許容限界を表3－22に示す。

ゴム支承（構成部材のらち鋼製部品）については，J E A G 4 6 0 1 等に準 じて許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ S の許容応力を許容限界として設定する。ゴム支承（構成部材のらち鋼製部品）の許容限界を表 3－23 に示す。ゴム支承のゴム本体に ついては，道路橋示方書•同解説V耐震設計編（H14．3）に基づく道路橋支承便覧の評価基準値を許容限界として設定する。ゴム支承（ゴム本体）の許容限界を表 3－24に示す。また，可動支承については，メーカの強度試験より算出 した許容応力及びJEAG4601等に準じた許容応力状態IV A_{A} S の許容応力 より，可動支承全体の許容荷重を許容限界として設定する。可動支承の許容限界を表3－25に示す。

[^59]表 3－22 ひずみの許容限界

評価対象部位		材質	破断ひずみ＊1，＊2
フレーム	主桁	SM490A	
	横補強材		
大梁	大梁		

注記＊1：真ひずみ換算値
＊2：破断ひずみを超えるようなひずみが確認される場合は，破断個所を確認し，全断面の破断に至らないことを確認する。

表 3－23 ゴム支承（構成部材のらち鋼製部品）の許容限界

評価対象部位	許容応力状態	許容限界＊ （内部鋼板）	許容限界＊ （ボルト）	
		引張	引張	せん断
ゴム支承 （構成部材のう ち鋼製部品）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{f}$＊

注記＊：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

表 3－24 ゴム支承（ゴム本体）の許容限界

評価対象部位	許容限界＊		
	せん断ひずみ	引張応力	圧縮応力
ゴム支承 （ゴム本体）	$\gamma \mathrm{ea}$	σ_{ta}	$\sigma \mathrm{cra}$

注記＊：道路橋示方書•同解説 V 耐震設計編（H14．3）に基づく道路
橋支承便覧の評価基準値

表 3－25 可動支承の許容限界

評価対象部位	許容限界＊		
	水平荷重	鉛直荷重（圧縮）	鉛直荷重（引張）
可動支承	R_{hk}	$\mathrm{R}_{\mathrm{v} \mathrm{c}}$	$\mathrm{R}_{\mathrm{v} \mathrm{t}}$

注記＊：支承を構成する各部品の許容値より算出した許容荷重

3．3．5 評価方法

支持部材の強度評価は，添付書類「VI－3－別添 1－2 防護対策施設の強度計算の

方針」の「4．1竜巻防護ネットの評価方針」を踏まえて，衝突評価として貫通評価を実施する。また，構造強度評価として支持機能評価を実施する。
（1）貫通評価
貫通評価は，「3．2．5 評価方法」と同様に，飛来物が支持部材のフレーム （横補強材）及び大梁に衝突する場合の貫通限界厚さを，「タービンミサイル評価について（昭和52年7月20日原子炉安全専門審査会）」で用いられる BRL 式 を用いて算出する。
（2）支持機能評価
支持機能評価に用いる評価対象部位に生じるひずみや応力等は，解析モデル及 び材料の非線形特性を用いた衝突解析により評価する。
a．解析モデル及び諸元
（a）竜巻防護ネット
竜巻防護ネットの解析モデル化の範囲は，想定する荷重の伝達を考慮し，竜巻防護ネットを構成する支持部材（フレーム，大梁，ゴム支承及び可動支承）とする。フレーム，大梁はシェル要素でモデル化し，ゴム支承は線形ば ね要素でモデル化する。また，可動支承は，可動方向は拘束せず，非可動方向は固定条件とする。なお，支持部材に取り付けられるネット及び防護板の質量は，解析モデルの中で考慮している。竜巻防護ネットの解析モデル図を図 3－19に示す。また，解析モデルの境界条件を表 3－26に，支承部の結合条件を表3－27に示す。

図 3－19 解析モデル図

表 3－26 解析モデルの境界条件

項目	境界条件
竜巻防護ネットと	
海水ポンプ室躯体	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 方向並進拘束

表 3－27 支承部の結合条件

方向	ゴム支承		可動支承
	フレーム ゴム支承	大梁 ゴム支承	
	弾性	弾性	自由
Y	弾性	弾性	剛
Z	弾性	弾性	剛

（b）飛来物
飛来物である鋼製材は，シェル要素でモデル化する。
飛来物の解析モデル図を図3－20に示す。

図 3－20 飛来物の解析モデル図

b．解析コード

衝突解析には，解析コード「LS－DYNA」を用いる。評価に用いた解析コード「LS－DYNA」の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
c．使用材料
構成する材料仕様については，「3．3．4（2）a．評価対象部位の材料仕様」に示すとおり設定する。
d．材料定数
竜巻防護ネットに使用する部材の材料定数については，「3．3．4（2）b．評価対象部位の材料定数」に示すとおり設定する。
e．材料の非線形特性
（a）材料の応力ーひずみ関係
竜巻防護ネットの材料モデルでは，鋼材の破断ひずみを設定し，破断ひず みを超えた要素が荷重を負担しないことを考慮する。

材料の応力ーひずみ関係はバイリニア型とし，降伏後の塑性硬化係数（2次勾配 E^{\prime} ）は，表3－21に示す値とする。

材料に適用する応力ーひずみ関係の概念図を図3－21に示す。

図 3－21 応力ーひずみ関係の概念図
（b）ひずみ速度効果
竜巻による飛来物に対する解析は，衝撃問題で変形速度が大きいため，ひ ずみ速度効果を考慮することとし，以下に示す Cowper－Symonds の式を適用 する。
$\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left\{1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{p}}\right\}$
ここで，σ_{D} はひずみ速度 $\dot{\varepsilon}$ 時の降伏応力，$\sigma \mathrm{s}$ は初期降伏応力，$\dot{\varepsilon}$ はひ ずみ速度，C及びpはひずみ速度依存性のパラメータである。

ひずみ速度依存性パラメータを表3－28に示す。

表 3－28 ひずみ速度依存性パラメータ

	飛来物 （鋼製材）	竜巻防護ネット （フレーム及び大梁）
材質	SS400	SM490
C（1／s）		
p		

（c）破断ひずみ
破断ひずみは，J I S に規定されている伸びの下限値を基に設定する。ま た，「NEI07－13」において TF（多軸性係数）を \square とすることが推奨されて いることを踏まえ，安全余裕として $\mathrm{TF}=\square$ を考慮する。TFについては，竜巻防護ネットのみ \square とする。鋼製材は保守的に破断ひずみを超えても荷重 を負担するものとする。

材料モデルにおける破断ひずみを表3－29に示す。

表3－29 材料モデルにおける破断ひずみ

種別	材質	J I S 規格値 （下限値）	TF	破断ひずみ＊
フレーム	SM490A	0.21		
大梁				

注記＊：真ひずみ換算値
f．計算方法
解析による計算で得られる各要素端での反力等を用いて，各評価対象部位に生じる応力等を以下により求める。
（a）ゴム本体のせん断ひずみ
ゴム支承のゴム本体に生じるせん断ひずみは，せん断力とゴム支承の水平剛性から算出される水平変位量を，総ゴム厚で除して以下のとおり算出する。 ゴム本体の変形概要図を図3－22に示す。

$$
\gamma_{\mathrm{se}}=\frac{\Delta \mathrm{L}}{\sum \mathrm{t}_{\mathrm{e}}}
$$

図 3－22 ゴム本体の変形概要図
（b）ゴム本体の引張応力
ゴム支承のゴム本体に生じる引張応力は，解析より得られる引張力（上向 き反力）を有効断面積で除して以下のとおり算出する。ゴム支承の引張応力評価の概要図を図3－23に示す。
$\sigma_{\mathrm{te}}=\frac{\left|\mathrm{R}_{\mathrm{U}}\right|}{\mathrm{A}_{\mathrm{te}}}$
ここで，
$\mathrm{A}_{\mathrm{t}} \mathrm{e}=\mathrm{A}_{\mathrm{e}}-\Delta \mathrm{L} \cdot \mathrm{b}_{\mathrm{s}}$

図 3－23 ゴム支承の引張応力評価の概要図
（c）ゴム本体の圧縮応力
ゴム支承のゴム本体に生じる圧縮応力は，解析より得られる圧縮力（下向 き反力）を有効断面積で除して以下のとおり算出する。ゴム支承の圧縮応力評価の概要図を図3－24に示す。
$\sigma_{c e}=\frac{\left|R_{L}\right|}{A_{c e}}$

ここで，
$\mathrm{A}_{\mathrm{ce}}=\mathrm{A}_{\mathrm{e}}-\Delta \mathrm{L} \cdot \mathrm{b}_{\mathrm{s}}$

図 3－24 ゴム支承の圧縮応力評価の概要図
（d）内部鋼板の引張応力
ゴム支承の内部鋼板には，圧縮力によって水平方向への引張力 N_{p} が発生 する。ゴム支承の内部鋼板に生じる引張応力は，圧縮応力より以下のとおり求める。内部鋼板に作用する荷重及び応力の概要図を図3－25に示す。
$\sigma_{\mathrm{tp}}=\frac{\mathrm{f}_{\mathrm{c}} \cdot{ }^{\sigma_{\mathrm{ce}} \cdot{ }^{\mathrm{t}} \mathrm{e}}}{\mathrm{t}_{\mathrm{p}}}$
ここで，ゴム支承本体に生じる圧縮応力 $\sigma \mathrm{ce}$ は式（4．1）による。

図 3－25 内部鋼板に作用する荷重及び応力の概要図
（e）取付ボルトの引張応力
イ。 中立軸が断面内にあり，一部の取付ボルトが引張状態となる場合
一部の取付ボルトが引張状態となる場合の荷重の発生イメージ図を図 3－26に示す。取付ボルトには，主桁面に作用する圧縮応力と中立軸の移

動量に対応した引張応力が作用する。取付ボルトの引張応力は，以下のと おり求める。

図 3－26 荷重の発生イメージ図（一部の取付ボルトが引張応力状態となる場合）

$$
\begin{aligned}
& \sigma_{\mathrm{tb} 1}=\left(\frac{\sigma_{\mathrm{pmax}} \cdot \mathrm{n}^{\prime} \cdot(\mathrm{d}-\mathrm{x})}{\mathrm{x}}\right) \cdot \frac{\mathrm{A}_{\mathrm{be} 1}}{\mathrm{~A}_{\mathrm{b} 1}} \\
& \text { ここで, } \\
& \sigma_{\mathrm{pmax}}=\frac{2 \cdot \mathrm{R}_{\mathrm{e}}}{\mathrm{~B} \cdot \mathrm{x}-\frac{2 \cdot \mathrm{n}^{\prime} \cdot \mathrm{A}_{\mathrm{be} 1} \cdot \mathrm{n}_{\mathrm{b}}}{\mathrm{x}} \cdot(\mathrm{~d}-\mathrm{x})}
\end{aligned}
$$

ロ．全ての取付ボルトが引張状態となる場合
取付ボルトが引張状態となる場合の荷重の発生イメージ図を図 3－27に示す。中心から最も離れた位置にある取付ボルト 1 本当たりに作用する引張応力は，せん断力及び引張力により求まる引抜力とボルトの呼び径断面積から以下のとおり求める。

図 3－27 荷重の発生イメージ図（全ての取付ボルトが引張応力状態となる場合）

$$
\begin{aligned}
& \sigma_{\mathrm{tb} 1}=\frac{\mathrm{T}_{\mathrm{b} 1}}{\mathrm{~A}_{\mathrm{b} 1}} \\
& \text { ここで, } \\
& \mathrm{T}_{\mathrm{b} 1}=\frac{\mathrm{M}_{\mathrm{b}} \cdot \ell_{2}}{2 \cdot \Sigma\left(\mathrm{n}_{\mathrm{j}} \cdot \ell_{\mathrm{j}}^{2}\right)}-\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{n}_{\mathrm{b} 1}} \\
& \mathrm{M}_{\mathrm{b}}=\left|\mathrm{M}_{\mathrm{h}}+\mathrm{M}_{\mathrm{v}}\right| \\
& \mathrm{M}_{\mathrm{h}}=\mathrm{R}_{\mathrm{h}} \cdot \mathrm{~h}_{\mathrm{h}} \\
& \mathrm{M}_{\mathrm{v}}=\mathrm{R}_{\mathrm{e}} \cdot \mathrm{e}
\end{aligned}
$$

（f）取付ボルトのせん断応力
せん断力とボルトの呼び径断面積から以下のとおり求める。

$$
\tau_{\mathrm{b} 1}=\frac{\mathrm{R}_{\mathrm{h}}}{\mathrm{~A}_{\mathrm{b} 1} \cdot \mathrm{n}_{\mathrm{b} 1}}
$$

（g）基礎ボルトの引張応力
基礎ボルトの引張応力は，せん断力及び鉛直力による回転モーメントから求まる引抜力並びにボルトの呼び径断面積から以下のとおり求める。
$\sigma_{\mathrm{tb} 2}=\frac{\mathrm{T}_{\mathrm{b} 2}}{\mathrm{~A}_{\mathrm{b} 2}}$
ここで，
$T_{b 2}=\frac{F_{z}}{n_{b 2}}+\frac{M_{x}}{Z_{b x}}+\frac{M_{y}}{Z_{b y}}$
（h）基礎ボルトのせん断応力
せん断力及びボルトの呼び径断面積から以下のとおり求める。
$\tau_{\mathrm{b} 2}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b} 2}}$
O 2 （5）VI－3－別添 1－2－1－1 R 0
ここで，
$Q_{b}=\sqrt{\left(\frac{F_{x}}{n_{b 2}}\right)^{2}+\left(\frac{F_{y}}{n_{b 2}}\right)^{2}}$

4．評価条件
4． 1 ネットの評価条件
（1）荷重条件
風圧力による荷重の算定条件を表 4－1 に，飛来物による衝撃荷重の算定条件を表 4－2に示す。

表 4－1 風圧力による荷重の算定条件

C_{n} $(-)$	G $(-)$	ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	V_{D} $(\mathrm{m} / \mathrm{s})$
2.3	1.0	1.226	100

表 4－2 飛来物による衝撃荷重の算定条件
（2）ネット仕様
a．金網仕様
金網仕様を表4－3に示す。

表 4－3 金網仕様

	項目	記号	仕様		備考
			主金網	補助金網	
	金網材料	－	硬鋼線材		－
			（ J I S	$3548)$	
	金網目合い寸法 (mm)	－	50	40	電中研報告書
	金網1目合いの対角寸法 （mm）	a	70.7	56.6	
	金網1目合いの破断変位 （mm）	a s	17.6	13.9	
	金網素線の直径 （mm）	d＇	4	4	
	金網1目合いの破断荷重 （kN）	$\mathrm{F}_{50}, \mathrm{~F}_{40}$	15.1	17.2	
\bigcirc	金網1目合いの等価剛性 $(\mathrm{kN} / \mathrm{m})$	K	858	1239	
I	衝突箇所周辺の金網 1 枚当たりの目合い数（一）	$\mathrm{n} 50, \mathrm{n} 40$	16	20	
$\stackrel{\underset{N}{N}}{\substack{N}}$	金網の素線の引張荷重 （MPa）	$\sigma{ }^{\prime}$	1400	1400	
	破断時たわみ角 （ ${ }^{\circ}$ ）	θ max	36.8	36.6	
$\stackrel{\square}{8}$	金網の単位面積当たりの質量 $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$	$\mathrm{m}_{1}, \mathrm{~m}_{2}$	4.6	5.7	メーカの 標準的な値
$\begin{gathered} \text { N } \\ 0 \end{gathered}$	$\begin{gathered} \text { 金網の充実率 } \\ (一) \end{gathered}$	ϕ			計算値＊2

注記＊1：主金網及び補助金網の設置枚数を考慮した充実率
＊2： $1 \mathrm{~m}^{2}$ 当たりの平均充実率
$\phi=1-\left((\text { 金網目合い寸法 })^{2} /(\text { 金網目合い寸法 }+ \text { 素線直径 })^{2}\right)$ 金網の故数
b．ネットの構成
ネットの構成を表 4－4に示す。

表 4－4 ネットの構成

No．	金網サイズ (m)			主金網 設置枚数	補助金網 設置枚数
	L_{x}	\times	L_{y}	n	n_{1}
1	3.708	\times	3.473	2	1
2	4.808	\times	3.473	2	1

c．ワイヤロープ
ワイヤロープの仕様を表4－5に示す。

評価対象部位	仕様 $(一)$	$\begin{gathered} \text { 径 } \\ \text { (mm) } \end{gathered}$	規格値 F 3 （kN）	ワイヤグリッ プ効率 C 。 $(一)$	許容限界 （kN）
ワイヤロープ	7×7	$\phi 16$	$165 * 1$	$0.8 * 2$	132

注記＊1 ：J I S G 3549 の破断荷重
＊2：J I S B 2809 及び「日本道路協会 平成 20 年 8 月 小規模吊橋指針•同解説」
d．接続治具（支持部）
（a）ターンバックル ターンバックルの仕様を表4－6に示す。

表 4－6 ターンバックルの仕様

評価対象部位	規格値 F_{4} (kN)	許容限界 (kN)
ターンバックル	86.8^{*}	130

注記＊：J I S A 5540の保証荷重
（b）シャックル
シャックルの仕様を表4－7に示す。

表 4－7 シャックルの仕様

評価対象部位	規格値 F_{5} (kN)	許容限界 (kN)
シャックル	78.4	156^{*}

注記＊：試験結果に基づくメーカ保証値
e．接続治具（固定部）
（a）隅角部固定ボルト
隅角部固定ボルトの評価条件を表4－8に示す。

表 4－8 隅角部固定ボルトの評価条件

評価対象部位	ボルト径	材質	ボルト本数 n_{2}
隅角部固定ボルト	M27	SCM435	3

（b）取付プレート
取付プレートの評価条件を表4－9に示す。

表 4－9 取付プレートの評価条件

評価対象部位	材質 （母材）	プレート長さ		面取り長さ L （mm）	溶接脚長 S w （mm）
		$\begin{aligned} & L_{p 1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{L}_{\mathrm{p} 2} \\ (\mathrm{~mm}) \end{gathered}$		
取付プレート	SM490A	100	119	30	7

4．2 防護板の評価条件

貫通評価において，防護板の貫通評価式に用いる評価条件を表 4－10に示す。

表 4－10 防護板の貫通評価に用いる評価条件

評価条件	
$\mathrm{d}(\mathrm{m})$	
$\mathrm{k}(-)$	
$\mathrm{m}(\mathrm{kg})$	
値	
	水平方向
	鈖直方向

4.3 支持部材の評価条件
（1）貫通評価
貫通評価において，フレーム（横補強材）及び大梁の貫通評価式に用いる評価条件は表 4－10と同様とする。
（2）支持機能評価
a．荷重条件
風圧力による荷重の算定条件を表4－11に示す。

表 4－11 風圧力による荷重の算定条件

C_{f} $(-)$	G $(-)$	ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	V_{D} $(\mathrm{m} / \mathrm{s})$
2.1	1.0	1.226	100

b．解析ケース
支持部材の支持機能評価において，飛来物の衝突を考慮する部材の検討，構造及び荷重伝達経路の検討を踏まえて，飛来物の衝突位置を設定する。

支持部材のらち飛来物が衝突しうる部材としては，フレームのうち主桁，横補強材及びブレース並びに大梁が考えられるが，ブレースはネットの上部に設置し ており，ネットの吸収エネルギ評価及び破断評価に包含されるため，主桁，横補強材及び大梁を対象とする。

解析ケースを表4－12 及び図4－1に示す。

表 4－12 解析ケース（支持機能評価）（1／3）

飛来物衝突部材	構造及び荷重伝達経路	評価対象部位	ケース	衝突位置	衝突方向
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】主桁は，北側はフレーム ゴム支承により支持さ れ，フレームゴム支承は基礎ボルトにて海水ポン プ室躯体に固定されてい る。南側は可動支承及び大梁により支持されてお り，大梁は大梁ゴム支承 により支持され，大梁ゴ ム支承は基礎ボルトにて海水ポンプ室躯体に固定 されている。また， 2 つ の主桁は横補強材により連結している。 【荷重伝達経路】北側：主桁 \Rightarrow フレームゴ ム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 南側：主桁 \Rightarrow 可動支承 \Rightarrow大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体 また，水平方向衝突によ る西側主桁から東側主桁 への荷重伝達は，横補強材を経由する。	主桁	G1－EW－3	$\begin{gathered} \text { 端部 } \\ \text { (北側) } \end{gathered}$	水平 EW
			G1－EW－1	端部 （南側）	水平 EW
		横補強材	G1－EW－2	中央	水平 EW
			G1－EW－3	端部 （北側）	水平 EW
		大梁	G1－V－1	端部 （南側）	鉛直
		フレーム	G1－EW－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	水平 EW
			G1－V－3	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直
		$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G1－V－1	端部 （南側）	鉛直
		可動支承	G1－EW－1	端部 （南側）	水平 EW

表 4－12 解析ケース（支持機能評価）（2／3）

飛来物衝突部材	構造及び荷重伝達経路	評価対象部位	ケース	衝突位置	衝突方向
$\begin{gathered} \text { 横補強材 } \\ (フ レ ー ム G 1) \end{gathered}$	【構造】 横補強材は主桁に取り付 いている。 主桁は，北側はフレーム ゴム支承により支持さ れ，フレームゴム支承は基礎ボルトにて海水ポン プ室躯体に固定されてい る。南側は可動支承及び大梁により支持されてお り，大梁は大梁ゴム支承 により支持され，大梁ゴ ム支承は基礎ボルトにて海水ポンプ室躯体に固定 されている。 また， 2 つの主桁は横補強材により連結してい る。 【荷重伝達経路】 北側：横補強材 \Rightarrow 主桁 \Rightarrow フレームゴム支承 \Rightarrow 基礎 ボルト \Rightarrow 海水ポンプ室躯体 南側：横補強材 \Rightarrow 主桁 \Rightarrow可動支承 \Rightarrow 大梁 \Rightarrow 大梁ゴ ム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体	大梁	G1－V－4	中央	鉛直
			G1－V－5	端部	鉛直
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G1－V－6	中央	鉛直
			G1－V－7	端部	鉛直
		$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G1－V－4	中央	鉛直
			G1－V－5	端部	鉛直
		可動支承	G1－V－4	中央	鉛直
			G1－V－5	端部	鉛直
$\begin{gathered} \text { 主桁 } \\ (フ レ ー ム \mathrm{G} 2) \end{gathered}$	主桁（フレームG1）と同様	大梁	G2－NS－1	端部	水平 NS
			G2－V－1	端部 （南側）	鉛直
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G2－V－2	$\begin{aligned} & \text { 端部 } \\ & \text { (北側) } \end{aligned}$	鉛直
		$\begin{gathered} \text { 大梁ゴム } \\ \text { 支承 } \end{gathered}$	G2－NS－1	端部	水平 NS
			G2－V－1	端部 （南側）	鉛直
		可動支承	G2－NS－1	端部	水平 NS
			G2－V－1	端部 （南側）	鉛直

表 4－12 解析ケース（支持機能評価）（3／3）

飛来物衝突部材	構造及び荷重伝達経路	評価対象部位	ケース	衝突位置	衝突方向
$\begin{gathered} \text { 横補強材 } \\ \text { (フレーム G2) } \end{gathered}$	横補強材（フレーム G 1 ） と同様	大梁	G2－V－3	中央	鉛直
			G2－V－4	端部	鉛直
		$\begin{aligned} & \text { フレーム } \\ & \text { ゴム支承 } \end{aligned}$	G2－V－5	中央	鉛直
			G2－V－6	端部	鉛直
		大梁ゴム支承	G2－V－3	中央	鉛直
			G2－V－4	端部	鉛直
		可動支承	G2－V－3	中央	鉛直
			G2－V－4	端部	鉛直
大梁	【構造】 大梁は大梁ゴム支承を介 して基礎ボルトにて海水 ポンプ室躯体に固定され ている。	大梁ゴム支承	$B-V-1$	中央	鉛直
	【荷重伝達経路】大梁 \Rightarrow 大梁ゴム支承 \Rightarrow 基礎ボルト \Rightarrow 海水ポンプ室躯体		$B-V-2$	端部	鉛直

$\longrightarrow:$ 評価ケース

図 4－1 解析ケース
c．支持部材の仕様
支持部材の仕様を表4－13に示す。

表 4－13 支持部材の仕様

評価条件		数値
B（mm）		870
a s（mm）		800
b_{s}（mm）		800
d（mm）		810
t e（mm）		24
t p（mm）		4.5
h（mm）		354
$\Sigma \mathrm{t}$ e (mm)		192
$\mathrm{A}_{\mathrm{e}}\left(\mathrm{mm}^{2}\right)$		6． 400×10^{5}
S_{1}		8.33
S_{2}		4.17
取付ボルト$(\mathrm{i}=1)$	$\mathrm{A}_{\mathrm{bi}} \mathrm{l}\left(\mathrm{mm}{ }^{2}\right)$	706.9
	$\mathrm{A}_{\mathrm{beci}}\left(\mathrm{mm}^{2}\right)$	561
	n b i ${ }^{\text {（ }}$－）	16
基礎ボルト$(\mathrm{i}=2)$	$\mathrm{Abin}_{\mathrm{b}}\left(\mathrm{mm}{ }^{2}\right)$	855.3
	n b i $(-)$	16

5．強度評価結果
5.1 ネットの吸収エネルギ評価

ネットの金網に作用する全外力エネルギを表 5－1 に示す。
全てのネットにおいて，金網に作用する全外力エネルギ（ E_{t} ）は，金網の限界吸収エネルギ（ $\mathrm{E}_{\mathrm{max}} \mathrm{x}$ ））を下回っている。

表 5－1 ネットの吸収エネルギ評価結果

No．	E_{t} (kJ)	許容限界 (kJ)
1	27	173
2	33	222

5.2 ネットの破断評価
（1）金網
金網の破断評価結果を表5－2に示す。
飛来物による衝撃荷重（ F_{a} ’） ）は，金網の許容限界（ $\mathrm{F}_{\mathrm{max}}$ ）を下回っている。

表 5－2 金網の破断評価結果

No．	F_{a}, (kN)	許容限界 (kN)
1	102	827
2	99	827

（2）ワイヤロープ
ワイヤロープの破断評価結果を表 5－3に示す。
ワイヤロープが負担する荷重（ $\mathrm{T}_{1} "$ ）は，ワイヤロープの許容限界（ C c ${ }^{(1)} \mathrm{F}_{3}$ ） を下回っている。

表 5－3 ワイヤロープの破断評価結果

No．	$\mathrm{T}_{1} "$ (kN)	許容限界 (kN)
1	38	132
2	36	132

（3）接続治具（支持部）
a．ターンバックル
ターンバックルの破断評価結果を表 5－4 に示す。
ターンバックルに作用する荷重は，ターンバックルの許容限界（1．5•F ${ }_{4}$ ） を下回っている。

表 5－4 ターンバックルの破断評価結果

No．	発生荷重＊ (kN)	許容限界 (kN)
1	38	130
2	36	130

注記＊：ワイヤロープ張力である T 1 ＂の値を示す。
b．シャックル
シャックルの破断評価結果を表5－5に示す。
シャックルに作用する荷重は，シャックルの許容限界（2．0•F 5）を下回っ ている。

表 5－5 シャックルの破断評価結果

No．	発生荷重＊ (kN)	許容限界 (kN)
1	38	156
2	36	156

注記 $~$ ：ワイヤロープ張力である T_{1}＂の値を示す。
（4）接続冶具（固定部）
a．隅角部固定ボルト
隅角部固定ボルトの破断評価結果を表5－6に示す。
ワイヤロープが負担する荷重による発生応力は，隅角部固定ボルトの許容限界 （1．5•f s＊）を下回っている。

表 5－6 隅角部固定ボルトの破断評価結果

No．	発生応力 （せん断） (MPa)	許容限界 (MPa)
1	29	375
2	28	375

b．取付プレート
取付プレート溶接部の破断評価結果を表 5－7 に示す。
ワイヤロープが負担する荷重による発生応力は，取付プレート溶接部の許容限界（1．5• f s＊）を下回っている。

表 5－7 取付プレート溶接部の破断評価結果

No．	発生応力 （せん断） (MPa)	許容限界 (MPa)
1	29	198
2	28	198

5．3ネットのたわみ評価
ネットのたわみ評価結果を表5－8に示す。
ネット全体のたわみ量（ δ_{t} ）は，ネットと外部事象防護対象施設の最小離隔距離 （ $L_{\text {min }}$ ）を下回っている。

表 5－8 ネットのたわみ評価結果

No．	最大たわみ量 δ_{t} (m)	最小離隔距離 $\mathrm{L}_{\mathrm{m} \text { in }}$ (m)
1	1.06	5.30
2	1.31	5.30

5.4 防護板の貫通評価

防護板の貫通評価結果として，貫通限界厚さと許容限界の比較を表5－9に示す。
防護板の評価対象部位の許容限界が，飛来物による貫通を生じない貫通限界厚さを

上回ることを確認した。

表 5－9 防護板の貫通評価結果（貫通限界厚さと許容限界の比較）

評価対象部位	貫通限界厚さ (mm)	許容限界 (mm)
防護板（水平設置）	7.54	12
防護板（鋁直設置）	29.60	32

5.5 支持部材の貫通評価

フレーム（横補強材）及び大梁の貫通評価結果として，貫通限界厚さと許容限界の比較を表 5－10に示す。

フレーム（横補強材）及び大梁の評価対象部位の許容限界が，飛来物による貫通を生じない貫通限界厚さを上回ることを確認した。

表 5－10 フレーム（横補強材）及び大梁の貫通評価結果
（貫通限界厚さと許容限界の比較）

評価対象部位	貫通限界厚さ (mm)	許容限界 (mm)
フレーム（横補強材）	7.54	22
大梁	7.54	36

5.6 支持部材の支持機能評価

評価結果を表5－11及び図5－1 から図5－3に示す。
支持部材に生じるひずみ，応力等の発生値は，許容限界を超えない。

表 5－11 支持部材の評価結果（衝突解析結果）

評価対象部位		評価項目	発生値＊	許容限界	備考
フレーム	主桁	ひずみ			G1－EW－3
	横補強材				G1－EW－3
大梁	大梁				G1－V－1
$\begin{gathered} \text { ゴム支承 } \\ \text { (フレームゴ } \\ \text { ム支承) } \end{gathered}$	ゴム本体	引張応力	1.1	2.0 MPa	G1－V－6
		せん断ひずみ	70	250 \％	G1－EW－3
		圧縮応力	2	23 MPa	G2－V－6
	内部鋼板	引張応力	22	280 MPa	G2－V－6
	取付ボルト	組合せ応力	95	420 MPa	G1－V－7
	基礎ボルト	組合せ応力	71	257 MPa	G1－V－6
ゴム支承 （大梁ゴム支承）	ゴム本体	引張応力	0.2	2.0 MPa	G1－V－4
		せん断ひずみ	65	250 \％	G2－NS－1
		圧縮応力	1	23 MPa	G1－V－4
	内部鋼板	引張応力	11	280 MPa	G1－V－4
	取付ボルト	組合せ応力	76	420 MPa	G1－V－4
	基礎ボルト	組合せ応力	37	257 MPa	G1－V－4
可動支承		水平荷重	1275	2900 kN	G1－EW－1
		鉛直荷重 （圧縮）	641	5600 kN	G2－V－1
		鉛直荷重 （引張）	564	1800 kN	G2－V－3

注記＊：表 4－12における各評価対象部位に対応する解析ケースのうち，裕度が小さい結果を代表して示す。
\square
ひずみ
分布図

図 5－1 衝突解析結果（主桁）（解析ケース G1－EW－3）
枠囲みの内容は商業機密の観点から公開できません。
\square
ひずみ
分布図

図 5－2 衝突解析結果（横補強材）（解析ケース G1－EW－3）
\square
図 5－3 衝突解析結果（大梁）（解析ケース G1－V－1）
枠囲みの内容は商業機密の観点から公開できません。

VI－3－別添 1－2－1－2 竜巻防護鋼板の強度計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 4
2．3．1 衝突評価 4
2．3．2 構造強度評価 4
2．4 適用規格 6
3．強度評価方法 7
3.1 記号の定義 7
3.2 評価対象部位 8
3．2．1 貫通評価 8
3．2．2 変形評価 8
3.3 荷重及び荷重の組合せ 11
3．3．1 荷重の設定 11
3．3．2 荷重の組合せ 12
3．4 許容限界 13
3．4．1 評価対象部位の材料仕様 13
3．4．2 評価対象部位の材料定数 13
3．4．3 許容限界 14
3.5 評価方法 15
3．5．1 貫通評価 15
3．5．2 変形評価 15
4．評価条件 23
4．1 貫通評価 23
4．2 変形評価 24
5．強度評価結果 25
5． 1 貫通評価 25
5.2 変形評価 26

1．概要
 －概

本資料は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」に示すとおり，防護対策施設のうち，竜巻防護鋼板が，設計竜巻による設計飛来物の衝突に対し，竜巻時及び竜巻通過後においても，外部事象防護対象施設に設計飛来物を衝突させず，また，外部事象防護対象施設に波及的影響を与えないために，竜巻防護鋼板を構成する防護鋼板及び架構が構造健全性を有することを確認するものである。

2．基本方針
添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」を踏まえ，竜巻防護鋼板 の位置を「2．1 位置」に，構造概要を「2．2 構造概要」に，評価方針を「2．3 評価方針」に，適用規格を「2．4 適用規格」に示す。

2.1 位置

竜巻防護鋼板は，原子炉建屋の開口部に設置する。
竜巻防護鋼板の設置位置を図2－1に示す。

原子炉建屋 地上 2 階（0．P．22．50m）

図 2－1 竜巻防護鋼板の設置位置図

2.2 構造概要

竜巻防護鋼板の構造は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」 の「3．2 竜巻防護鋼板の構造設計」を踏まえ，設計する。

竜巻防護鋼板は，鋼板等で構成する鋼製構造物である。
竜巻防護鋼板の概略構造図を図2－2に示す。

図 2－2 竜巻防護鋼板（TFD－1， $2,3,4$ ）の概略構造図

2.3 評価方針

竜巻防護鋼板の強度評価は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」及び「5．2 竜巻防護鋼板の許容限界」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ，竜巻防護鋼板の評価対象部位に作用する変形等が，許容限界に収まることを「3．強度評価方法」に示す方法により，「4．評価条件」に示す評価条件を用いて計算し，「5．強度評価結果」に て確認する。

竜巻防護鋼板の評価フローを図2－3に示す。
竜巻防護鋼板の強度評価においては，その構造を踏まえ，設計竜巻荷重とこれに組 み合わせる荷重（以下「設計荷重」という。）の作用方向及び伝達過程を考慮し，評価対象部位を設定する。

具体的には，設計飛来物が外部事象防護対象施設に衝突する直接的な影響の評価と して，防護対策施設を構成する部材に対する衝突評価及び防護対策施設自体が外部事象防護対象施設に衝突•接触する波及的な影響の評価として，防護対策施設を構成す る部位の転倒及び脱落に対する構造強度評価を行う。

2．3．1 衝突評価

設計荷重に対し，設計飛来物が施設を構成する部材を貫通しない設計とするた めに，防護鋼板が設計飛来物の貫通を生じない最小厚さ以上であることを計算に より確認する。衝突評価には，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「6．2 竜巻防護鋼板の強度評価」に示す評価式を用いる。（以下「貫通評価」という。）

2．3．2 構造強度評価

設計荷重に対し，施設を構成する部材自体の軽倒及び脱落を生じない設計とす るために，防護鋼板及び架構に終局状態に至るようなひずみが生じないことを確認する。（以下「変形評価」という。）

図 2－3 竜巻防護鋼板の評価フロー

2． 4 適用規格

適用する規格を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- ISE7607－3 軽水炉構造機器の衝撃荷重に関する調査その3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合）
－タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）
－U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007
－Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute $2011 \operatorname{Rev} 8$（NEI 07－13））
- 日本建築学会 2004 年 建築物荷重指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 日本溶接協会 2003 年「動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808」

3．強度評価方法
3.1 記号の定義

強度評価に用いる記号を表3－1に示す。

表 3－1 強度評価に用いる記号

記 号	単 位	定 義
A	m^{2}	竜巻防護鋼板の受圧面積
C	-	風力係数
d	m	設計飛来物が衝突する衝突断面の等価直径
F_{d}	N	常時作用する荷重
G	-	ガスト影響係数
K	-	鋼板の材質に関する係数
M	kg	設計飛来物の質量
q	ma	設計用速度圧
T	m / s	貫通限界厚さ
$\mathrm{V}^{\text {設計飛来物の飛来速度 }}$		
V_{D}	m / s	設計竜巻の最大風速
W_{M}	N	設計飛来物による衝撃荷重
W_{w}	N	設計竜巻の風圧力による荷重
ρ^{2}	$\mathrm{~kg} / \mathrm{m}^{3}$	空気密度

3.2 評価対象部位

竜巻防護鋼板の評価対象部位は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「5．2 竜巻防護鋼板の許容限界」に示す評価対象部位を踏まえ，設定す る。

3．2．1 貫通評価

設計荷重に対し，設計飛来物が施設を構成する部材を貫通しない設計とするた めに，防護鋼板が設計飛来物の貫通を生じない最小厚さ以上であることを計算に より確認する。

施設を構成する部材が設計飛来物を貫通させないことの確認においては，外殻 を構成する防護鋼板を評価対象部位として設定する。

3．2．2 変形評価

設計荷重に対し，施設を構成する部材自体が，転倒及び脱落により外部事象防護対象施設へ接触等の影響を与えない設計とするために，防護鋼板及び架構に終局状態に至るようなひずみが生じないことを解析により確認する。

設計飛来物の衝突を考慮する場合，被衝突物の支持間隔が長く，厚さが薄いほ どたわみ量が大きくなる傾向にある。したがって，変形評価としては，評価対象 となる防護鋼板の支持間隔が長く，厚さが薄い箇所を選定する。なお，防護鋼板 の設計においては，厚さを一律 32 mm とすることから，支持間隔が最長となる箇所 が代表となる。衝突位置については，たわみ量が大きくなるよう部材の中央とす る。

評価対象部位を図3－1～図3－4に示す。

（単位：mm）
図 3－1 TFD－1 竜巻防護鋼板の評価位置図

図 3－2 TFD－2 竜巻防護鋼板の評価位置図

（単位：mm）
図 3－3 TFD－3 竜巻防護鋼板の評価位置図

図 3－4 TFD－4 竜巻防護鋼板の評価位置図

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」を踏まえ，設定する。

3．3．1 荷重の設定

強度評価に用いる荷重は以下の荷重を用いる。荷重の算定に用いる竜巻の特性値を表3－2に示す。

表 3－2 荷重の算定に用いる竜巻の特性値

最大風速	移動速度	最大接線風速	最大気圧低下量
V_{D}	V_{T}	V_{Rm}	$\Delta \mathrm{P}_{\mathrm{max}}$
$(\mathrm{m} / \mathrm{s})$	$(\mathrm{m} / \mathrm{s})$	$(\mathrm{m} / \mathrm{s})$	$\left(\mathrm{N} / \mathrm{m}^{2}\right)$
100	15	85	7600

（1）風圧力による荷重（ W_{W} ）
風圧力による荷重（ W_{W} ）は，下式により算定する。

$$
\mathrm{W}_{\mathrm{W}}=\mathrm{q} \cdot \mathrm{G} \cdot \mathrm{C} \cdot \mathrm{~A}
$$

設計用速度圧 q は，下式により算定する。

$$
\mathrm{q}=\frac{1}{2} \cdot \rho \cdot \mathrm{~V}_{\mathrm{D}}{ }^{2}
$$

（2）設計飛来物による衝撃荷重（ W_{M} ）
設計飛来物による衝撃荷重（ W_{M} ）については，表 $3-3$ に諸元を示す設計飛来物の衝突に伴う荷重とする。また，設計飛来物の材料定数を表 $3-4$ に示す。飛来速度については，評価の代表性を考慮し，水平方向，鉛直方向の飛来速度 のうち大きい水平方向速度を設定する。

貫通評価においては，設計飛来物の衝撃荷重を考慮する。また，評価対象部位に設計飛来物が衝突した際に跳ね返らず，貫入するものとして評価する。

変形評価においては，設計飛来物の衝撃荷重を考慮する。

表 3－3 設計飛来物の諸元

設計飛来物	寸法 長さ×幅 \times 奥行き (m)	質量 (kg)	水平方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$	鉛直方向の 飛来速度 $(\mathrm{m} / \mathrm{s})$
鋼製材	$4.2 \times 0.3 \times 0.2$	135	46.6	16.7

表 3－4 設計飛来物の材料定数

設計飛来物	降伏応力 $\sigma \mathrm{y}$ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	縦弾性係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
鋼製材	245	206000	0.3

（3）常時作用する荷重（ F_{d} ）
常時作用する荷重（ F_{d} ）は，部材の自重とする。

3．3．2 荷重の組合せ

強度評価に用いる荷重の組合せについては，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「2．3 荷重及び荷重の組合せ」のとおり，風圧力に よる荷重，設計飛来物による衝撃荷重及び常時作用する荷重を組み合わせる。荷重の組合せを表3－5に示す。

表 3－5 荷重の組合せ

評価内容	風圧力による荷重 $\left(\mathrm{W}_{\mathrm{W}}\right)$	設計飛来物に よる衝撃荷重 $\left(\mathrm{W}_{\mathrm{M}}\right)$	常時作用する荷重 $\left(\mathrm{F}_{\mathrm{d}}\right)$	荷重の組合せ
貫通評価	-	\bigcirc	-	W_{M}
変形評価	\bigcirc	\bigcirc	\bigcirc	$\mathrm{W}_{\mathrm{W}}+\mathrm{W}_{\mathrm{M}}+\mathrm{F}_{\mathrm{d}}$

3.4 許容限界

竜巻防護鋼板の許容限界は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「5．2 竜巻防護鋼板の許容限界」にて設定している許容限界を踏まえて，「3．2評価対象部位」にて設定した評価対象部位の機能損傷モードを考慮して設定する。

3．4．1 評価対象部位の材料仕様

評価対象部位の材料仕様を表3－6に示す。| 分類 | 仕様 | 材質 |
| :---: | :---: | :---: |
| 防護鋼板 | $\mathrm{PL}-32$ | SS 400 |
| 架構 | $\mathrm{H}-400 \times 400 \times 13 \times 21$ | |
| | $\mathrm{H}-400 \times 200 \times 8 \times 13$ | SN490B |
| | $\mathrm{BH}-400 \sim 700 \times 400,600 \times 16 \times 22$ | |
| | $\mathrm{BH}-400 \times 400,600 \times 16 \times 22$ | |

3．4．2 評価対象部位の材料定数

評価対象部位の材料定数を表3－7に示す。

表 3－7 評価対象部位の材料定数

材質	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	降伏応力 σ y （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	縦弹性係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	塑性硬化係 E， $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
SS400	$6 \leqq t \leqq 16$		206000		0.3
	$16<\mathrm{t} \leqq 40$		206000		0.3
SN490B	$6 \leqq t \leqq 16$		206000		0.3
	$16<\mathrm{t} \leqq 40$		206000		0.3

3．4．3 許容限界

（1）貫通評価
防護鋼板の貫通評価の許容限界を表 $3-8$ に示す。

表 3－8 貫通評価の許容限界

評価対象部位		設置方向	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材質
竜巻防護鋼板	防護鋼板	側面	32	SS400
		上面	32	SS400

（2）変形評価
設計飛来物が防護鋼板へ直接衝突する場合の変形評価における許容限界は，鋼材の破断ひずみとする。破断ひずみについては，「3．5．2（5）c．破断ひずみ」 に示すとおり，J I S に規定されている伸びの下限値を基に設定するが，「NEI07－13 ：Methodology for Performing Aircraft Impact Assessments for New Plant Designs」（以下「NEI07－13」という。）において TF（多軸性係数）を】とすることが推奨されていることを踏まえ，安全余裕として $\mathrm{TF}=\square$ を考慮して設定する。

設定した許容限界を表3－9に示す。

表 3－9 変形評価の許容限界

評価対象部位	材質	厚さ (mm)	破断ひずみ＊	
竜巻防護鋼板	防護鋼板	SS400	$16<\mathrm{t} \leqq 40$	
	架構	SN490B	$6 \leqq \mathrm{t} \leqq 16$	
		SS400		
		SN490B	$16<\mathrm{t} \leqq 40$	

注記 $*$ ：真ひずみ換算値

3．5 評価方法

竜巻防護鋼板の強度評価は，添付書類「VI－3－別添1－2 防護対策施設の強度計算の方針」の「4．2 竜巻防護鋼板の評価方針」を踏まえて，衝突評価として貫通評価を実施する。また，構造強度評価として変形評価を実施する。

3．5．1 貫通評価

設計飛来物が竜巻防護鋼板の防護鋼板へ直接衝突する場合の貫通限界厚さを，「タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会）」 で用いられる BRL式を用いて算出する。

$$
\mathrm{T}^{\frac{3}{2}}=\frac{0.5 \cdot \mathrm{M} \cdot \mathrm{~V}^{2}}{1.4396 \times 10^{9} \cdot \mathrm{~K}^{2} \cdot \mathrm{~d}^{\frac{3}{2}}}
$$

3．5．2 変形評価

変形評価に用いる評価対象部位に生じるひずみは，解析モデル及び材料の非線形特性を用いた衝突解析により評価する。
（1）解析モデル及び諸元
a．竜巻防護鋼板
竜巻防護鋼板の解析モデル化の範囲は，想定する荷重の伝達を考慮し，竜巻防護鋼板を構成する防護鋼板及び架構とする。防護鋼板及び架構は，シェ ル要素でモデル化する。竜巻防護鋼板の解析モデルの境界条件を表 $3-10$ に，解析モデル図を図 $3-5$～図 $3-8$ に示す。

表 3－10 解析モデルの境界条件

項目	境界条件
竜巻防護鋼板と原子炉建屋壁	$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 方向並進拘束

図 3－5 TFD－1 竜巻防護鋼板の解析モデル図（1／2）

架構（シェル要素）

図 3－5 TFD－1 竜巻防護鋼板の解析モデル図（2／2）

図 3－6 TFD－2 竜巻防護鋼板の解析モデル図（1／2）

図 3－6 TFD－2 竜巻防護鋼板の解析モデル図（2／2）

図 3－7 TFD－3 竜巻防護鋼板の解析モデル図（2／2）

図 3－8 TFD－4 竜巻防護鋼板の解析モデル図（1／2）

図 3－8 TFD－4 竜巻防護鋼板の解析モデル図（2／2）
b．設計飛来物
設計飛来物である鋼製材は，シェル要素でモデル化する。
設計飛来物の解析モデル図を図3－9に示す。

鋼製材
（単位：mm）
図 3－9 設計飛来物の解析モデル図
（2）解析コード
衝突解析には，解析コード「LS—D Y N A」を用いる。解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5－69 計算機プログラム（解析コード）の概要•LS－DYNA」に示す。
（3）使用材料
竜巻防護鋼板を構成する材料仕様については，「3．4．1 評価対象部位の材料仕様」に示すとおり設定する。
（4）材料定数
竜巻防護鋼板に使用する鋼材の材料定数については，「3．4．2 評価対象部位 の材料定数」に示すとおり設定する。
（5）材料の非線形特性
a．材料の応力ーひずみ関係
竜巻防護鋼板の材料モデルでは，鋼材の破断ひずみを設定し，破断ひずみ を超えた要素が荷重を負担しないことを考慮する。

材料の応力ーひずみ関係はバイリニア型とし，降伏後の塑性硬化係数（2 次勾配 E^{\prime} ）は，表 3－7に示す値とする。

材料に適用する応力ーひずみ関係の概念図を図3－10に示す。

図 3－10 応力ーひずみ関係の概念図
b．ひずみ速度効果
竜巻による設計飛来物に対する解析は，衝撃問題で変形速度が大きいため， ひずみ速度効果を考慮することとし，以下に示す Cowper－Symonds の式を適用 する。

$$
\sigma_{\mathrm{D}}=\sigma_{\mathrm{S}} \cdot\left(1+\left(\frac{\dot{\varepsilon}}{\mathrm{C}}\right)^{\frac{1}{\mathrm{P}}}\right)
$$

ここで，σ_{D} は動的応力，σ_{s} は静的応力，ε はひずみ速度，C及びPはひず み速度依存性パラメータを表す。

ひずみ速度依存性パラメータを表3－11に示す。

表 3－11 ひずみ速度依存性パラメータ

	鋼製材	竜巻防護鋼板		
		防護鋼板	架構	
材料	SS400	SS400	SN490B	SS400
$\mathrm{C}\left(\mathrm{s}^{-1}\right)$				
P				

c．破断ひずみ
破断ひずみは，J I S に規定されている伸びの下限値を基に設定する。また，「NEI07－13」においてTF（多軸性係数）を \square とすることが推奨されていること を踏まえ，安全余裕としてTF＝\square を考慮する。TFについては，竜巻防護鋼板及 び架構のみ \square とする。鋼製材は保守的に破断ひずみを超えても荷重を負担する ものとする。

材料モデルにおける破断ひずみを表3－12に示す。

表3－12材料モデルにおける破断ひずみ

種別	材質	厚さ（mm）	J I S 規格値 （下限値）	TF	破断ひずみ＊
防護鋼板	SS400	$16<\mathrm{t} \leqq 40$	0.21		
架構	SN490B SS400	$6 \leqq \mathrm{t} \leqq 16$	0.17		
	SN 490 B	$16<\mathrm{t} \leqq 40$	0.21		

注記＊：真ひずみ換算値

4．評価条件
4． 1 貫通評価
貫通評価において，防護鋼板の貫通評価式に用いる評価条件を表4－1に示す。

表 4－1 防護鋼板の貫通評価式に用いる評価条件

評価条件		数値
d（m）		0． 07367
K		1.0
M（kg）		135
V	水平方向	46.6
（m／s）	鉛直方向	16． 7

4． 2 変形評価

竜巻防護鋼板の変形評価は，図 3－1～図3－4に示す竜巻防護鋼板の最大変形が生 じると想定される鋼板中央部に衝突するケースを設定する。

解析ケースを表4－2に，設計飛来物の衝突イメージを図4－1に示す。

表 4－2 解析ケース（変形評価）

評価箇所	衝突箇所	飛来物の衝突方向	対象部材
竜巻防護鋼板	防護鋼板	水平	$\begin{aligned} & \mathrm{PL}-32 \\ & \mathrm{H}-400 \times 400 \times 13 \times 21 \\ & \mathrm{H}-400 \times 200 \times 8 \times 13 \\ & \mathrm{BH}-400 \sim 700 \times 400,600 \times 16 \times 22 \\ & \mathrm{BH}-400 \times 400,600 \times 16 \times 22 \\ & \mathrm{~L}-100 \times 100 \times 13 \end{aligned}$

図 4－1 設計飛来物の衝突イメージ

5．強度評価結果
5.1 貫通評価

鋼製材の貫通限界厚さを表 5－1 に示す。

表 5－1 鋼製材の貫通限界厚さ

		貫通限界厚さT (mm)
貫通限界厚さ	水平方向	29.60
	鉛直方向	7.54

竜巻防護鋼板の貫通評価結果として，貫通限界厚さと許容限界の比較を表5－2に示 す。

許容限界は，設計飛来物による貫通を生じない貫通限界厚さを上回っており，貫通 しない。

表 5－2 防護鋼板の板厚と貫通限界厚さの比較

評価対象部位		設置 方向	評価結果	許容限界
竜巻防護鋼板	防護鋼板	側面	29． 60	32
		上面	7． 54	32

5.2 変形評価

評価結果を表5－3及び図5－1～図5－12に示す。
竜巻防護鋼板に生じるひずみは許容限界を超えない。

表 5－3 評価結果

評価項目	評価対象部位		材質	厚さ（mm）	評価結果	許容限界＊
ひずみ	TFD－1	防護鋼板	SS400	$16<\mathrm{t} \leqq 40$		
		架構	SN490B			
			SS400	$6 \leqq \mathrm{l}$		
			SN490B	$16<\mathrm{t} \leqq 40$		
	TFD－2	防護鋼板	SS400	$16<\mathrm{t} \leqq 40$		
		架構	SN490B	$6 \leq t \leq 16$		
			SS400	$6 \leqq t \leqq 1$		
			SN490B	$16<\mathrm{t} \leqq 40$		
	TFD－3	防護鋼板	SS400	$16<\mathrm{t} \leqq 40$		
		架構	SN490B			
			SS400	$6 \leqq t \leqq 1$		
			SN490B	$16<\mathrm{t} \leqq 40$		
	TFD－4	防護鋼板	SS400	$16<\mathrm{t} \leqq 40$		
		架構	SN490B	$6 \leq t \leq 16$		
			SS400	$6 \leqq t \leqq 16$		
			SN490B	$16<\mathrm{t} \leqq 40$		

注記＊：真ひずみ換算値

図 5－1 防護鋼板のひずみ分布図（TFD－1 竜巻防護鋼板［SS400：16＜t＠40］）

図 5－4 防護鋼板のひずみ分布図（TFD－2 竜巻防護鋼板［SS400：16＜t§40］）
\square
図 5－6 架構のひずみ分布図（TFD－2 竜巻防護鋼板［SN490B： $16<\mathrm{t} \leqq 40$ ］）

図 5－7 防護鋼板のひずみ分布図（TFD－3 竜巻防護鋼板［SS400：16＜t＠40］）

図 5－8 架構のひずみ分布図（TFD－3 竜巻防護鋼板［SN490B／SS400：6§ $\mathrm{t} \leqq 16$ ］）

図 5－9 架構のひずみ分布図（TFD－3 竜巻防護鋼板［SN490B： $16<\mathrm{t} \leqq 40$ ］）

図 5－10 防護鋼板のひずみ分布図（TFD－4 竜巻防護鋼板［SS400：16＜t 540$]$ ）

図 5－11 架構のひずみ分布図（TFD－4 竜巻防護鋼板［SN490B／SS400：6 $\mathrm{t} \leqq 16$ ］）

図 5－12 架構のひずみ分布図（TFD－4 竜巻防護鋼板［SN490B：16＜t§40］）

VI－3－別添 3 津波又は溢水への配慮が必要な施設の強度に関する説明書

VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針
VI－3－別添3－2 津波への配慮が必要な施設の強度計算書
VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針
VI－3－別添 3－4 溢水への配慮が必要な施設の強度計算書

VI－3－別添 3－2 津波への配慮が必要な施設の強度計算書

VI－3－別添3－2－1 防潮堤の強度計算書
VI－3－別添3－2－2 防潮壁の強度計算書
VI－3－別添 3－2－3 取放水路流路縮小工の強度計算書
VI－3－別添3－2－4 貯留堰の強度計算書
VI－3－別添3－2－5 逆流防止設備の強度計算書
VI－3－別添 3－2－6 水密扉の強度計算書
VI－3－別添3－2－7 浸水防止蓋の強度計算書
VI－3－別添 3－2－8 浸水防止壁の強度計算書
VI－3－別添 3－2－9 逆止弁付ファンネルの強度計算書
VI－3－別添 3－2－10 貫通部止水処置の強度計算書
VI－3－別添3－2－11 津波監視設備の強度計算書

VI－3－別添3－2－2 防潮壁の強度計算書

VI－3－別添 3－2－2－1 杭基礎構造防瀚壁 鋼製遮水壁（鋼板）の強度計算書 VI－3－別添 3－2－2－2 杭基礎構造防瀚壁 鋼製遮水壁（鋼析）の強度計算書 VI－3－別添3－2－2－3 杭基礎構造防潮壁 鋼製扉の強度計算書

VI－3－別添3－2－2－4 防潮壁（第3号機海水熱交換器建屋）の強度計算書

VI－3－別添3－2－2－4 防潮壁（第3号機海水熱交換器建屋）の強度計算書
1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
3．評価対象部位 8
4．構造強度評価 9
4.1 構造強度評価方法 9
4.2 荷重及び荷重の組合せ 9
4． 3 許容限界 11
4．4 設計用地震力 12
4．5 解析モデル及び諸元 13
4． 6 評価方法 16
5．評価結果 20

1．概要

本資料は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示すと おり，浸水防止設備のうち防潮壁（第3号機海水熱交換器建屋）（以下，「防潮壁」という。）が地震後の繰り返しの襲来を想定した津波荷重並びに余震，風及び積雪を考慮した荷重に対して，十分な構造健全性を有していることを説明するものである。

なお，防潮壁の強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震に よる地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮し，地盤沈下量を考慮した敷地高さや施設高さ等を記載する。

2．一般事項

2.1 配置概要

防潮壁は，第3号機海水熱交換器建屋取水立坑上に設置する。
防潮壁の設置位置図を図2－1 に示す。

第3号機海水熱交換器建屋 0．P．14． 00

図 2－1 防潮壁の設置位置図（単位：m）

2.2 構造計画

防潮壁は，第 3 号機海水熱交換器建屋取水立坑上に上部工をアンカーボルトにより設置する。
上部工は，鋼製遮水壁（鋼板），鋼製柱，鋼製梁及び鋼製ブレースで構成する。防潮壁の構造計画を表2－1に示す。

また，設計津波水位及び防潮壁の天端高さを表2－2 に示す。

表 2－1 防潮壁の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第 3 号機海水熱交換器建屋取水立坑上に上部工 をアンカーボル トにより設置す る。	上部工は，鋼製遮水壁（鋼板），鋼製柱，鋼製梁及び鋼製ブレースで構成する。	平面図

表 2－2 設計津波水位及び防潮壁の天端高さ

設置場所 (m)	設計津波水位 （入力津波水位） (m)	防潮壁の天端高さ (m)
0. P． 14.00	0．P． 19.50 （0．P． 19.00$)$	0. P． 20.00

2.3 評価方針

防潮壁の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す防潮壁の構造を踏まえ，「3．評価対象部位」にて設定する評価対象部位において，「4．構造強度評価」に示す方法にて確認する。強度評価の確認結果を「5．評価結果」にて確認する。強度評価フローを図 2－2 に示す。
\bigcirc

図 2－2 強度評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 日本機械学会 2005 年 機械工学便覧
- 日本港湾協会1988年 港湾施設の技術上の基準•同解説

2.5 記号の説明

防潮壁の強度評価に用いる記号を表2－3に示す。

表 2－3 強度評価に用いる記号（1／2）

記号	単位	定義
K S d	kN	余震荷重
G	kN	固定荷重
P h	kN	津波荷重
$\mathrm{P}_{\text {s w }}$	$\mathrm{kN} / \mathrm{m}^{2}$	津波による静水圧
$\mathrm{P}_{\mathrm{dwh}}$	$\mathrm{kN} / \mathrm{m}^{2}$	津波による動水圧
P s	kN	積雪荷重
P k	kN	風荷重
P_{W}	N / mm	鋼製遮水壁（鋼板）の評価高さ当りに作用する水平荷重
a	m^{2}	水圧の受圧面積
A	mm^{2}	全断面積
A_{N}	mm^{2}	有効断面積
$\mathrm{A}_{\text {s }}$	mm^{2}	せん断断面積
$\mathrm{A}_{\text {s y }}$	mm^{2}	y 軸方向のせん断断面積
A_{sz}	mm^{2}	z 軸方向のせん断断面積
E	$\mathrm{N} / \mathrm{mm}^{2}$	縦弾性係数
v	－	ポアソン比
K_{NS}	－	弾性設計用地震動S d－D 2 の NS 方向設計震度
$\mathrm{K}_{\text {EW }}$	－	弾性設計用地震動S d－D 2 の EW 方向設計震度
K_{H}	－	弾性設計用地震動 S d－D 2 の水平方向設計震度
K_{V}	－	弾性設計用地震動S d－D 2 の UD 方向設計震度
f_{c}	$\mathrm{N} / \mathrm{mm}^{2}$	許容圧縮応力度
f_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	許容引張応力度
f b	$\mathrm{N} / \mathrm{mm}^{2}$	許容曲げ応力度
ρ	$\mathrm{t} / \mathrm{m}^{3}$	海水の密度
$\rho_{\text {w }}$	$\mathrm{kg} / \mathrm{mm}^{3}$	鋼製遮水壁（鋼板）の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度（ $=9.80665$ ）
t	mm	鋼製遮水壁（鋼板）の板厚
L	mm	鋼製遮水壁（鋼板）の支点間長さ
b	mm	鋼製遮水壁（鋼板）の評価高さ
h	m	評価高さ
c	－	補正係数
B	m	鋼製遮水壁（鋼板）の振動方向の長さ

表 2－3 強度評価に用いる記号（2／2）

記号	単位	定義
H	m	取水立坑天端からの防潮壁の高さ
M	$\mathrm{N} \cdot \mathrm{mm}$	曲げモーメント
Q	N	せん断応力
T	N	引張応力
I y	mm ${ }^{4}$	y 軸まわりの断面二次モーメント
I_{z}	mm ${ }^{4}$	z 軸まわりの断面二次モーメント
Z	mm^{3}	断面係数
Z y	mm^{3}	y 軸まわりの断面係数
Z_{z}	mm^{3}	z 軸まわりの断面係数
σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
σ c	$\mathrm{N} / \mathrm{mm}^{2}$	圧縮応力度
σ b	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
σ bx	$\mathrm{N} / \mathrm{mm}^{2}$	X 軸まわりの曲げ応力度
σ by	$\mathrm{N} / \mathrm{mm}^{2}$	Y軸まわりの曲げ応力度
c σ b	$\mathrm{N} / \mathrm{mm}^{2}$	圧縮側曲げ応力度
$\mathrm{t} \sigma^{\text {b }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張側曲げ応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
f_{bx}	$\mathrm{N} / \mathrm{mm}^{2}$	X 軸まわりの許容曲げ応力度
$\mathrm{f}_{\text {bY }}$	$\mathrm{N} / \mathrm{mm}^{2}$	Y軸まわりの許容曲げ応力度
N	N	圧縮応力
T ${ }_{\text {d }}$	kN	アンカーボルト 1 本当りに作用する引張力
q	kN	アンカーボルト 1 本当りに作用するせん断力
T ${ }_{\text {a }}$	kN	アンカーボルトの短期許容引張荷重
q a	kN	アンカーボルトの短期許容せん断荷重

3．評価対象部位

評価対象部位は，「2．2 構造計画」にて設定している構造を踏まえて，津波荷重及び余震荷重 の伝達過程を考慮し設定する。

評価対象部位は，津波荷重が防潮壁の鋼製遮水壁（鋼板），鋼製梁，鋼製柱及び鋼製ブレースに伝わり，上部工を固定するアンカーボルトを介して躯体に伝達されることから，防潮壁の評価対象部位は，鋼製遮水壁（鋼板），鋼製梁，鋼製柱，鋼製ブレース及びアンカーボルトとする。評価対象部位を図3－1に示す。

平面図

$\mathrm{A}-\mathrm{A}$ 正面図

図 3－1 評価対象部位

4．構造強度評価

4.1 構造強度評価方法

強度評価は，「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定してい る荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価対象部位」にて設定する評価対象部位に生じる応力等が「4．3 許容限界」にて示す許容限界以下であることを確認する。
4.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算 の方針」に基づき設定する。

4．2．1 荷重
防潮壁の強度評価において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，自重を考慮する。
（2）余震荷重（ K S d ）
余震荷重として，弾性設計用地震動 S d－D 2 による地震力及び動水圧（ $\mathrm{P}_{\mathrm{d} w \mathrm{w}}$ ）を考慮する。

動水圧は以下の式により算出する。
$\mathrm{P}_{\mathrm{dwh}}= \pm \mathrm{c} \cdot \frac{7}{8} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{~K}_{\mathrm{H}} \cdot \sqrt{\mathrm{H} \cdot \mathrm{h}}$

ここで，
$\mathrm{P}_{\mathrm{dwh}}$ ：津波による動水圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\rho \quad$ ：海水の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
$\mathrm{g}:$ 重力加速度 $\left(=9.80665 \mathrm{~m} / \mathrm{s}^{2}\right)$
h ：評価高さ（m）
c ：補正係数
$\mathrm{B} / \mathrm{H}<1.5$ のとき $\mathrm{c}=\mathrm{B} /(1.5 \cdot \mathrm{H})$
$\mathrm{B} / \mathrm{H} \geqq 1.5$ のとき $\mathrm{c}=1.0$
$\mathrm{K}_{\mathrm{H}} \quad$ ：弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ の水平方向設計震度（ K_{NS} または K_{EW} ）
B ：鋼製遮水壁（鋼板）の振動方向の長さ（m）
H：取水立坑天端からの防潮壁の高さ（m）
（3）津波荷重（P h ）
津波による荷重を考慮する。
津波荷重は以下の式により算出する。
$\mathrm{Ph}=\mathrm{P}_{\mathrm{sw}} \cdot \mathrm{a}$
$\mathrm{P}_{\mathrm{sw}}=\rho \cdot \mathrm{g} \cdot \mathrm{h}$

ここで，
a ：水圧の受圧面積（ m^{2} ）
P_{sw} ：津波による静水圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
（4）積雪荷重（Ps）
積雪荷重については，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測 された月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮し， $0.301 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（5）風荷重（ Pk ）
風荷重については，設計基準風速を $30 \mathrm{~m} / \mathrm{s}$ とし，建築基準法に基づき算定する。

4．2．2 荷重の組合せ

荷重の組合せを表 4－1 に示す。

表 4－1 荷重の組合せ

外力の状態	荷重の組合せ
重畳時	$\mathrm{G}+\mathrm{Ph}+\mathrm{Ps}+\mathrm{Pr}+\mathrm{K} \mathrm{S} \mathrm{d}$

G ：固定荷重
Ph：津波荷重
Ps：積雪荷重
Pk ：風荷重
K S d：余震荷重

4．3 許容限界

許容限界は，「3．評価対象部位」にて設定している評価対象部位ごとに機能損傷モードを考慮し，短期許容応力度又は短期許容荷重とする。

4．3．1 鋼板及び鉄骨材

「日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－」に基づき算定した鋼板及び鉄骨材の短期許容応力度を表4－2に示す。

表 4－2 鋼板及び鉄骨材の短期許容応力度

材料	短期許容応力度		
	$\begin{gathered} \text { 曲げ } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	組合せ＊ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\begin{gathered} \text { SS400 } \\ \text { SM400A } \end{gathered}$	235	135	235
SM490A	325	187	325

注記 $~$ ：短期許容引張応力度の値を示す。

4．3．2 アンカーボルト

「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づき算出したアンカー ボルトの短期許容荷重を表4－3に示す。

なお，引張力を受ける場合においては，アンカーボルトの降伏により決まる許容荷重及 び定着したコンクリート躯体の付着力により決まる許容荷重を比較して，いずれか小さい値を採用する。また，せん断力を受ける場合においては，アンカーボルト母材のせん断強度により決まる許容荷重，定着したコンクリート躯体の支圧強度及びコーン状破壊により決まる許容荷重を比較して，いずれか小さい値を採用する。

表 4－3 アンカーボルトの短期許容荷重

材料	短期許容荷重 $(\mathrm{kN} /$ 本）	
	引張	せん断
	57.8	44.8

4． 4 設計用地震力

強度評価に用いる設計震度は材料物性の不確かさを考慮したものとして添付書類「VI－2－2－ 29 第3号機海水熱交換器建屋の地震地応答計算書」の地震応答解析結果を用いる。評価で用 いる設計震度を表 4－4 に示す。

表 4－4 設計震度

設置場所 (m)	弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$NS 方向 設計震度		
	UD 方向 設計震度		
0．P．14．00	$\mathrm{K}_{\mathrm{NS}}=1.58$	$\mathrm{~K}_{\mathrm{EW}}=1.39$	$\mathrm{~K}_{\mathrm{V}}=0.74$

4.5 解析モデル及び諸元

4．5．1 鋼製柱，鋼製梁及び鋼製ブレースの解析モデルおよび諸元鋼製柱，鋼製梁及び鋼製ブレースの解析モデルを図4－1に示す。
（1）解析モデルの諸元及び部材の断面性能を表4－5及び表4－6に示す。
（2）解析モデルは，各部材を表4－7に示す要素を用いてモデル化する。なお，アンカーボ ルトで固定する脚部はピン支持とし，モデル化は基本部材の軸心で行うものとする。
（3）解析コードは「KANSAS2」を使用し，解析コードの検証及び妥当性確認等の概要につい ては，添付書類「VI－5－64 計算機プログラム（解析コード）の概要•KANSAS2」に示す。

図 4－1 鋼製柱，鋼製梁及び鋼製ブレースの解析モデル

表 4－5 解析モデルの諸元

項目	記号	単位	入力値
材質	-		SS 400 SM 400 A $\mathrm{SM490A}$
縦弾性係数	E	-	$\mathrm{N} / \mathrm{mm}^{2}$

表 4－6 断面性能

部材	$\begin{aligned} & \text { 断面積 } \\ & \mathrm{A}\left[\mathrm{~mm}^{2}\right] \end{aligned}$	せん断断面積		断面二次モーメント		断面係数	
		$\begin{gathered} \mathrm{A}_{\mathrm{sy}} \\ {\left[\mathrm{~mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{sz}} \\ {\left[\mathrm{~mm}^{2}\right]} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{y}} \\ {\left[\mathrm{~mm}^{4}\right]} \end{gathered}$	$\begin{gathered} \mathrm{I}_{z} \\ {\left[\mathrm{~mm}^{4}\right]} \end{gathered}$	$\begin{gathered} Z_{y} \\ {\left[\mathrm{~mm}^{3}\right]} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{z}} \\ {\left[\mathrm{~mm}^{3}\right]} \end{gathered}$
鋼製柱	14620	9600	5016	52500×10^{4}	7210×10^{4}	2010×10^{3}	480×10^{3}
鋼製梁 （1）	21150	6000	15000	11300×10^{4}	117000×10^{4}	750×10^{3}	3760×10^{3}
鋼製梁 （2）	15390	4444	10800	8110×10^{4}	54700×10^{4}	540×10^{3}	2190×10^{3}
鋼製梁 （3）	11850	2700	9000	6750×10^{4}	20200×10^{4}	450×10^{3}	1220×10^{3}
鋼製梁 （4）	9143	1998	7000	3650×10^{4}	10700×10^{4}	292×10^{3}	781×10^{3}
鋼製ブレース （1）	6118	－	－	－	－	－	－
鋼製ブレース （2）	4742	－	－	－	－	－	－
鋼製ブレース （3）	3422	－	－	－	－	－	－

表 4－7 使用要素

部材	使用要素	使用材料		使用断面
鋼製柱	梁要素	SM400A		BH－450
			SM490A	（1）

4．5． 2 鋼製遮水壁（鋼板）の諸元
鋼製遮水壁（鋼板）の諸元を表4－8に示す。

表 4－8 鋼製遮水壁（鋼板）の諸元

部材	使用材料	使用断面
鋼製遮水壁 （鋼板）	SM490A	P L－16

4． 6 評価方法

「日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－」に基づき，鉄骨及び鋼板の断面に生じる軸力及び曲げモーメント並びにせん断応力が短期許容応力度に基づく許容値を超 えないことを確認する。

また，アンカーボルトに生じる引張力及びせん断力が短期許容荷重を超えないことを確認す る。

4．6．1 鋼製柱，鋼製梁及び鋼製ブレースの評価方法
（1）圧縮応力に対する断面の評価方法
圧縮応力が生じる部材は，座屈を考慮し，部材に生じる圧縮応力度が許容圧縮応力度 を超えないことを確認する。

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}} \leqq 1 \\
& \text { 乙こで, } \\
& \sigma_{\mathrm{c}} \quad: \text { 圧縮応力度 }(=\mathrm{N} / \mathrm{A})\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{N} \quad: \text { 圧縮応力 }(\mathrm{N}) \\
& \mathrm{A} \quad: \text { 全断面積 }\left(\mathrm{mm}^{2}\right) \\
& \mathrm{f}_{\mathrm{c}} \\
& : \text { 許容圧縮応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

（2）引張応力に対する断面の評価方法
引張応力が生じる部材は，部材に生じる引張応力度が許容引張応力度を超えないこと を確認する。
$\frac{\sigma_{t}}{f_{t}} \leqq 1$
ここで，
$\sigma_{\mathrm{t}}:$ 引張応力度 $\left(=\mathrm{T} / \mathrm{A}_{\mathrm{N}}\right)\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：引張応力（ N ）
A_{N} ：有効断面積 $\left(\mathrm{mm}^{2}\right)$
f_{t} ：許容引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
（3）曲げモーメントに対する断面の評価方法
曲げモーメントが生じる部材は，座屈長を考慮し，部材に生じる最大曲げ応力度が許容曲げ応力度を超えないことを確認する。曲げ応力は，面内方向及び面外方向ともに考慮する。
$\frac{\sigma_{b X}}{f_{b X}}+\frac{\sigma_{b Y}}{f_{b Y}} \leqq 1$
ここで，

$\sigma_{b x}, \quad \sigma_{b y}$	$: X$ 軸まわり及び Y 軸まわりの曲げ応力度 $(=\mathrm{M} / \mathrm{Z})\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	
M		$:$ 曲げモーメント $\mathrm{N} \cdot \mathrm{mm})$
Z		$:$ 断面係数 $\left(\mathrm{mm}^{3}\right)$
$\mathrm{f}_{\mathrm{bx}}, \quad \mathrm{f}_{\mathrm{by}}$	$: \mathrm{X}$ 軸まわり及び Y 軸まわりの許容曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	

（4）曲げモーメント及びせん断応力の組合せ評価方法
曲げモーメント及びせん断応力が生じる部材は，部材に生じる組合せ応力度が許容引張応力度を超えないことを確認する。
$\frac{\sqrt{\sigma_{b}{ }^{2}+3 \cdot \tau^{2}}}{f_{t}} \leqq 1$
ここで，
σ_{b} ：曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\tau:$ せん断応力度 $\left(=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}\right)\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：せん断応力（ N ）
A_{s} ：せん断断面積 $\left(\mathrm{mm}^{2}\right)$
（5）引張応力，曲げモーメント及びせん断応力の組合せ評価方法
引張応力，曲げモーメント及びせん断応力が生じる部材は，座屈長を考慮し，部材に生じる組合せ応力度が許容引張応力度を超えないことを確認する。曲げ応力は，面内方向及び面外方向ともに考慮する。
$\frac{\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{b x}+\sigma_{b y}\right)^{2}+3 \cdot \tau^{2}}}{\mathrm{f}_{\mathrm{t}}} \leqq 1$
（6）圧縮応力及び曲げモーメントの組合せ評価方法
圧縮応力及び曲げモーメントが生じる部材は，座屈長を考慮し，部材に生じる組合せ応力度を下式により考慮する。

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{{ }_{\mathrm{c}} \sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}} \leqq 1 \text { かつ } \frac{\mathrm{t}^{\sigma_{\mathrm{b}}-\sigma_{\mathrm{c}}}}{\mathrm{f}_{\mathrm{c}}} \leqq 1 \\
& \text { ここで, } \\
& { }_{\mathrm{c}} \sigma_{b},{ }_{\mathrm{t}} \sigma_{\mathrm{b}} \quad \\
& \mathrm{f}_{\mathrm{b}}
\end{aligned} \quad \begin{aligned}
& \text { : 圧縮側及び引張側の曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& : \text { 許容曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{aligned}
$$

4．6．2 アンカーボルトの評価方法
（1）引張力に対する評価方法
アンカーボルトに作用する引張力を算出し，アンカーボルトの短期許容引張荷重を下回ることを確認する。

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}} \leqq 1 \\
& \text { ここで, } \\
& \mathrm{T}_{\mathrm{d}}: \text { アンカーボルト } 1 \text { 本当りに作用する引張力 }(\mathrm{kN}) \\
& \quad \mathrm{T}_{\mathrm{a}} \text { : アンカーボルトの短期許容引張荷重 }(\mathrm{kN})
\end{aligned}
$$

（2）せん断力に対する評価方法
アンカーボルトに作用するせん断力を算出し，アンカーボルトの短期許容せん断荷重 を下回ることを確認する。
$\mathrm{q} / \mathrm{q}_{\mathrm{a}} \leqq 1$
ここで，
q ：アンカーボルト 1 本当りに作用するせん断力（kN）
q a ：アンカーボルトの短期許容せん断荷重（kN）
（3）組合せ評価方法
組合せによる評価を「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づ く次式により算出し，1 以下であることを確認する。

$$
\left(\mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}}\right)^{2}+\left(\mathrm{q} / \mathrm{q}_{\mathrm{a}}\right)^{2} \leqq 1
$$

4．6．3 遮水壁（鋼板）の評価モデルおよび諸元

（1）遮水壁（鋼板）の評価モデル
鋼製遮水壁（鋼板）の評価モデルを図 4－2 に示す。

図 4－2 鋼製遮水壁（鋼板）の評価モデル図

鋼製遮水壁（鋼板）に作用する荷重は，次式より算出する。

```
P
ここで,
    P
    K
    \rho W : 鋼製遮水壁(鋼板) の密度 ( kg/mm}\mp@subsup{}{}{3}
    t : 鋼製遮水壁 (鋼板) の板厚 (mm)
    g : 重力加速度 (m/ s
    P sw :鋼製遮水壁(鋼板) の単位面積当りに作用する静水圧 (kN/m
    P dwh : 鋼製遮水壁(鋼板) の単位面積当りに作用する動水圧(kN/m
    b : 鋼製遮水壁(鋼板) の評価高さ (mm)
```

鋼製遮水壁（鋼板）に発生する応力は，次式より算出する。

$$
\begin{array}{lll}
\mathrm{M} & =\mathrm{P}_{\mathrm{w}} \cdot \mathrm{~L}^{2} / 8 \\
\mathrm{Q} & =\mathrm{P}_{\mathrm{w}} \cdot \mathrm{~L} / 2 \\
\text { ここで, } \\
\mathrm{M} & \\
\mathrm{Q} & : \text { 曲げモーメント }(\mathrm{N} \cdot \mathrm{~mm}) \\
\mathrm{L} & \text { 世ん断力 (} \mathrm{N}) \\
\text { : 鋼製遮水壁 (鋼板) }) \text { の支点間長さ }(\mathrm{mm})
\end{array}
$$

5．評価結果

防潮壁の強度評価結果を表5－1に示す。各部材の断面検定を行った結果，全ての部材において発生応力度又は荷重が許容限界以下であることを確認した。

表 5－1 防潮壁の強度評価結果

評価対象部位		発生値 （発生応力度又は荷重）		許容限界		検定値
鋼製遮水壁 （鋼板）	曲げ	290	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.90<1$
	せん断	4	$\mathrm{N} / \mathrm{mm}^{2}$	187	$\mathrm{N} / \mathrm{mm}^{2}$	$0.03<1$
	組合せ	291	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.90<1$
鋼製柱	曲げ	21	$\mathrm{N} / \mathrm{mm}^{2}$	235	$\mathrm{N} / \mathrm{mm}^{2}$	$0.09<1$
	せん断	7	$\mathrm{N} / \mathrm{mm}^{2}$	135	$\mathrm{N} / \mathrm{mm}^{2}$	$0.06<1$
	組合せ	48	$\mathrm{N} / \mathrm{mm}^{2}$	235	$\mathrm{N} / \mathrm{mm}^{2}$	$0.21<1$
鋼製梁	曲げ	213	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.66<1$
	せん断	83	$\mathrm{N} / \mathrm{mm}^{2}$	187	$\mathrm{N} / \mathrm{mm}^{2}$	$0.45<1$
	組合せ	249	$\mathrm{N} / \mathrm{mm}^{2}$	325	$\mathrm{N} / \mathrm{mm}^{2}$	$0.77<1$
$\begin{gathered} \text { 鋼製 } \\ \text { ブレース } \end{gathered}$	圧縮	58	$\mathrm{N} / \mathrm{mm}^{2}$	103	$\mathrm{N} / \mathrm{mm}^{2}$	$0.57<1$
	引張	114	$\mathrm{N} / \mathrm{mm}^{2}$	235	$\mathrm{N} / \mathrm{mm}^{2}$	$0.49<1$
アンカー ボルト	引張	29.3	kN	57.8	kN	$0.51<1$
	せん断	27.0	kN	44.8	kN	$0.61<1$
	組合せ	－		－		$0.38<1$

VI－3－別添 3－2－6 水密扉の強度計算書
1．概要 1
2．一般事項 2
2.1 検討対象水密扉一覧 2
2.2 配置概要 3
2.3 構造計画 10
2.4 評価方針 11
2.5 適用規格•基準等 13
2.6 記号の説明 14
3．強度評価 16
3.1 評価対象部位 16
3.2 荷重及び荷重の組合せ 19
3．2．1 荷重の設定 19
3．2．2 荷重の組合せ 22
3.3 許容限界 23
3．3．1 使用材料 23
3．3．2 許容限界 24
3.4 評価方法 26
3．4．1 応力算定 26
3．4．2 断面検定 40
3.5 評価条件 44
3.6 評価結果 50

1．概要

本資料は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に基づき，浸水防止設備である第 3 号機海水熱交換器建屋の水密扉，原子炉建屋の水密扉及び制御建屋の水密扉（以下「水密扉」という。）が，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴 ら津波荷重及び余震荷重又は津波による溢水を考慮した浸水に伴う津波荷重及び余震荷重を考慮 した荷重に対して，浸水することを防止するために十分な構造健全性及び止水性を有しているこ とを説明するものである。

なお，水密扉の耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震に よる地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したことを考慮する。

2．一般事項
2.1 検討対象水密扉一覧

検討対象の水密扉を表2－1に示す。

表 2－1 検討対象水密扉一覧
\bigcirc

水密扉 No．	扉名称	設置高さ＊ 0. P.
1	水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）	2． 00 m
2	水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）	2.00 m
3	原子炉建屋浸水防止水密扉（No．1）	14． 00 m
4	原子炉建屋浸水防止水密扉（No．2）	14． 00 m
5	制御建屋空調機械（A）室浸水防止水密扉	0.50 m
6	制御建屋空調機械（B）室浸水防止水密扉	0.50 m
7	計測制御電源室（B）浸水防止水密扉（No．3）	7．00m
8	制御建屋浸水防止水密扉（No．1）	18．50m
9	制御建屋浸水防止水密扉（No．2）	14． 00 m
10	制御建屋浸水防止水密扉（No．3）	14．00m
11	制御建屋浸水防止水密扉（No．4）	14．00m
12	制御建屋浸水防止水密扉（No．5）	14.00 m
13	第 2 号機 MCR 浸水防止水密扉	22.50 m

注記＊：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

2.2 配置概要

第3号機海水熱交換器建屋の水密扉の設置位置図を図2－1 に，原子炉建屋の水密扉の設置位置図を図2－2 に，制御建屋の水密扉の設置位置図を図 $2-3$ に示す。

| 1 | 水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1） |
| :--- | :--- | :--- | :--- |
| 2 | 水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2） |

図 2－1 第3号機海水熱交換器建屋の水密扉の設置位置図 O．P． 2.00 m

3	原子炉建屋浸水防止水密扉（No．1）
4	原子炉建屋浸水防止水密扉（No．2）

図 2－2 原子炉建屋の水密扉の設置位置図 0．P．14．00m

5	制御建屋空調機械（A）室浸水防止水密扉
6	制御建屋空調機械（B）室浸水防止水密扉

図 2－3 制御建屋の水密扉の設置位置図（1／5）0．P．0．50m

7	計測制御電源室（B）浸水防止水密扉（No．3）

図 2－3 制御建屋の水密扉の設置位置図 $(2 / 5) \quad$ 0．P． 7.00 m

9	制御建屋浸水防止水密扉（No．2）
10	制御建屋浸水防止水密扉（No．3）
11	制御建屋浸水防止水密扉（No．4）
12	制御建屋浸水防止水密扉（No．5）

図 2－3 制御建屋の水密扉の設置位置図（3／5）0．P．14．00m

制御建屋浸水防止水密扉（No．1）

図 2－3 制御建屋の水密扉の設置位置図（4／5）0．P．18．50m
\square

図 2－3 制御建屋の水密扉の設置位置図（5／5）0．P．22．50m

2.3 構造計画

水密扉は，片開型の鋼製扉とし扉板の背面に芯材を配した構造である。また，閉止状態にお いて，カンヌキ及びカンヌキ受けにより固定され止水性を確保しており，アンカーボルトによ って建屋躯体に固定された扉枠にて支持する構造とする。水密扉の構造計画を表2－2に示す。

表 2－2 水密扉の構造計画

計画の概要		説明図
基礎•支持構造	主体構造	
扉開放時においては， ヒンジにより扉が扉枠に固定され，扉閉止時においては，カンヌ キにより，扉と扉枠を一体化する構造とす る。 扉枠はアンカーボル トにより建屋躯体へ固定する構造とする。	片開型の鋼製扉とし，鋼製の扉板に芯材を取付け，扉に設置され たカンヌキを鋼製の扉枠に差込み，扉体と扉朹を一体化させる構造とする。 また，扉と建屋躯体の接続はヒンジを介す る構造とする。	

2.4 評価方針

水密扉の強度評価は，以下にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ て，水密扉の評価対象部位に作用する応力等が許容限界内に収まることを，各設備の「3．評価方法」に示す方法により，「3．5 評価条件」に示す評価条件を用いて評価し，応力評価の確認事項を「3．6 評価結果」にて確認する。

水密扉の強度評価フローを図 $2-4$ に示す。水密扉の強度評価においては，その構造を踏ま え，静水圧荷重及び余震に伴ら荷重の作用方向及び伝達経路を考慮し，評価対象部位を設定す る。
強度評価においては，荷重を静的に作用させることにより，扉板，芯材，カンヌキ部（カン ヌキ，カンヌキ受けピン，カンヌキ受けボルト）及び扉固定部（扉付固定ボルト，枠付固定ボ ルト）の発生応力並びにアンカーボルトの発生荷重を算定し，許容限界との比較を行う。 なお，扉付固定ボルト及び枠付固定ボルトはカンヌキ受けボルトと同じ評価方法とする。 アンカーボルトは壁に埋め込まれた方向によって下記のとおりに呼ぶこととする。

- 0° 方向配置：アンカーボルトが壁の厚さの直交方向に配置されている場合
- 90° 方向配置：アンカーボルトが壁の厚さの方向に配置されている場合

図2－4 水密扉の強度評価フロー

2.5 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本機械学会 機械工学便覧
- 日本水道協会 2009 年 水道施設耐震工法指針•解説

2.6 記号の説明

水密扉の強度評価に用いる記号を表2－3に示す。

表 2－3 強度評価に用いる記号（1／2）

記号	単位	定義
h	mm	扉の水圧作用高さ
ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
$L_{\text {P L }}$	mm	扉板の短辺長さ
β	－	浸水エリアの幅と水深の比による補正係数
t	mm	扉板の厚さ
W_{D}	kN	扉重量
$L_{\text {D }}$	mm	扉の幅
H_{D}	mm	扉の高さ
w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重及び余震を考慮した荷重
β_{1}	－	四辺支持長方形板の応力係数
R_{1}	N	静水圧荷重及び余震荷重に対する反力
w ${ }^{\prime}$	N / mm	芯材に作用する等分布荷重
b	mm	芯材に作用する荷重の負担幅
L	mm	芯材の支持間距離
Z	mm^{3}	断面係数
A_{s}	mm^{2}	せん断断面積
n 2	本	カンヌキの本数
n b	本	ボルトの本数
L 5	mm	カンヌキの突出長さ
$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離
L c 1	mm	躯体開口部の高さ
L c 2	mm	躯体開口部の幅
M	$\mathrm{N} \cdot \mathrm{mm}$	曲げモーメント
T	N	引張力
Q	N	せん断力
L_{1}	N	カンヌキ部に作用する静水圧荷重及び余震荷重に対する反力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
$\sigma{ }_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
P	$\mathrm{N} / \mathrm{mm}^{2}$	動水圧荷重
S_{d}	$\mathrm{N} / \mathrm{mm}^{2}$	余震による地震荷重

表2－3 強度評価に用いる記号（2／2）

記号	単位	定義
R_{a}	N	左右もしくは上下のアンカーボルトに作用する荷重
T_{d}	N	アンカーボルト 1 本当たりに生じる引張力
Q_{d}	N	アンカーボルト1本当たりに生じるせん断力
T_{a}	N	アンカーボルト 1 本当たりの短期許容引張力
Q_{a}	N	アンカーボルト1本当たりの短期許容せん断力
$\mathrm{n}_{\mathrm{a} 1}$	本	0° 方向 左右もしくは上下のアンカーボルト本数
$\mathrm{n}_{\mathrm{a} 2}$	本	90° 方向 左右もしくは上下のアンカーボルト本数

[^60]
3．強度評価

3.1 評価対象部位

水密扉の評価対象部位は，「2．3 構造計画」に示す構造上の特徴を踏まえ選定する。
水密扉を閉める方向から作用する静水圧荷重及び余震に伴ら荷重は，扉板から芯材を介し扉枠に伝わり，扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されること から，評価対象部位は扉板，芯材及びアンカーボルトとする。

水密扉を開く方向から作用する静水圧荷重及び余震に伴ら荷重は，扉板から芯材に伝わり， カンヌキ部（カンヌキ，カンヌキ受けピン，カンヌキ受けボルト）及び扉固定部（扉付固定ボ ルト，枠付固定ボルト）に伝達され，扉枠及び扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されることから，評価対象部位は扉板，芯材，カンヌキ部及び扉固定部並びにアンカーボルトとする。
アンカーボルトについては，荷重を伝達する芯材の取付け方向または扉板の辺長比を踏まえ，水平方向に芯材を配置する構造若しくは扉板の短辺方向へ支配的に荷重を伝達する構造である場合はヒンジ側及び扉開閉側のアンカーボルトを，鉛直方向に芯材を配置する場合は扉上部側及び扉下部側のアンカーボルトを評価対象部位として選定する。

なお，ヒンジは静水圧荷重及び余震に伴う荷重の伝達経路とならないため，評価対象外とす る。

また，結果が厳しい評価対象部位を有する水密扉を代表として評価するものとし，水密扉 No．2， 8 及び 13 を抽出した。

水密扉に作用する荷重の作用図を図 3－1 に示す。

4－－－－－：評価対象部位に作用する荷重
 こー－』－：評価対象部位

図 3－1 水密扉に作用する荷重の作用図（ $1 / 2$ ）
枠囲みの内容は商業機密の観点から公開できません。

4－－－－－：評価対象部位に作用する荷重
 こー－』ー ：評価対象部位

図 3－1 水密扉に作用する荷重の作用図 $(2 / 2)$

3.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

3．2．1 荷重の設定

強度評価に用いる荷重を以下に示す。
（1）静水圧荷重（ P_{h} ）
浸水に伴ら静水圧としての静水圧荷重を考慮する。静水圧荷重は，評価対象部位周辺の水 の密度に当該部分の浸水深さを考慮した水圧作用高さを乗じた次式により算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{\mathrm{o}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-6}
$$

ここで，
P_{h} ：静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
（2）余震荷重（K S d）
余震荷重として，弹性設計用地震動 S d－D 2 による地震力及び動水圧を考慮する。余震荷重は，水密扉の設置位置における水平方向の最大応答加速度から設定する震度を用い て評価する。最大応答加速度を保守的に評価するために，最大応答加速度の抽出位置は水密扉設置階の上階の値とする。

強度評価に用いる震度は，材料物性の不確かさを考慮したものとして添付書類「VI－2－ 2－1 原子炉建屋の地震応答計算書」，添付書類「VI－2－2－3 制御建屋の地震応答計算書」及び添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」によることと し，建屋の階ごとの設計震度を表 $3-1$ に示す。

また，動水圧荷重は「日本水道協会 2009 年 水道施設耐震工法指針•解説」に基づ き，次式により算出する。動水圧荷重の算出結果は表 3－2 に示す。

$$
\mathrm{P}=\beta \cdot 7 / 8 \cdot \alpha_{\mathrm{H}} \cdot \rho_{\mathrm{o}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-6}
$$

ここで，
P ：余震に伴う動水圧荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
β ：浸水エリアの幅と水深の比による補正係数（1．0）
α_{H} ：水平方向の設計震度

表 3－1 設計震度

注記＊：各建屋の地震応答計算書における $0 . P$ ．を示す。
（1）

表 3－2 動水圧荷重の算出結果

水密扉 No．	扉名称	動水圧荷重 P （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
1	水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．．1）	0． 18
2	水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．．2）	0.18
3	原子炉建屋浸水防止水密扉（No．1）	0． 003
4	原子炬建屋浸水防止水密扉（No．2）	0． 003
5	制御建屋空調機械（A）室浸水防止水密扉	0． 11
6	制御建屋空調機械（B）室浸水防止水密扉	0.07
7	計測制御電源室（B）浸水防止水密扉（No．3）	0.004
8	制御建屋浸水防止水密扉（No．1）	0.05
9	制御建屋浸水防止水密扉（No．2）	0.04
10	制御建屋浸水防止水密扉（No．3）	0.04
11	制御建屋浸水防止水密扉（No．4）	0． 004
12	制御建屋浸水防止水密扉（No．5）	0． 004
13	第 2 号機 MCR 浸水防止水密扉	0.05

3．2．2 荷重の組合せ

水密扉の強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。

$$
P_{h}+K S d
$$

ここで，
P_{h} ：静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
K S d ：余震荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

3．3 許容限界

許容限界は，「3．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．3．1 使用材料

水密扉を構成する扉板，芯材，カンヌキ部，扉固定部及びアンカーボルトの使用材料を表3－3に示す。

表 3－3 使用材料

部位		材質強度区分	仕様 （mm）
扉板		$\begin{gathered} \text { SS400 } \\ \text { SUS304 } \end{gathered}$	PL－12，16，19，25， 115
芯材		$\begin{gathered} \text { SS400 } \\ \text { SUS304 } \end{gathered}$	$\begin{aligned} & \text { FB }-38 \times 200 \\ & {[-250 \times 90 \times 9 \times 13} \\ & {[-180 \times 75 \times 7 \times 10.5} \\ & {[-200 \times 100 \times 10} \\ & {[-300 \times 90 \times 9 \times 13} \end{aligned}$
カンヌキ部	カンヌキ	$\begin{gathered} \text { SUS304N2 } \\ \text { SCM440 } \\ \text { SUS304 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 50,60,65,90 \end{aligned}$
	カンヌキ受けピン	$\begin{gathered} \text { SUS304N2 } \\ \text { SCM435 } \\ \text { SUS304 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 30,40,60 \end{aligned}$
	カンヌキ受けボルト	$\begin{gathered} 10.9 \\ (\mathrm{SCM} 435, \mathrm{SCM} 440) \\ 12.9 \\ (\mathrm{SCM} 435) \end{gathered}$	M16，M20
扉固定部	扉付固定ボルト	10.9 （SCM435）	M20
	枠付固定ボルト	10.9 （SCM435）	M20
アンカーボルト		$\begin{gathered} \text { SS400 } \\ \text { SUS304 } \end{gathered}$	M16，M20，M24

3．3．2 許容限界

（1）鋼材の許容応力度
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準 —許容応力度設計法一」を踏まえて表3－4の値とする。

表 3－4 鋼材の許容限界
－

材質•強度区分＊1	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	
	曲げ・引張	せん断
SS400（ $\mathrm{t} \leqq 40$ ）＊2	235	135
SS400（ $100<\mathrm{t}$ ）＊2	205	118
SUS304	205	118
SUS304N2	345	199
S45C	345	199
SCM435	651	375
SCM440	686	396
10.9 （SCM435，SCM440）	728	420
12．9（SCM435）	854	493

注記＊1：許容応力度を決定する基準値Fは，J I S に基づき算定する。 ＊2：t は板厚（mm）を示す。
（2）アンカーボルトの許容限界の算定値
アンカーボルトの許容限界は，「3．1 評価対象部位」に記載したアンカーボルトに作用 する荷重の向きを踏まえて，「日本建築学会 2010年 各種合成構造設計指針•同解説」 に基づき算定した，表3－5の値とする。

なお，評価対象部位のアンカーボルトが引張力を受ける場合においては，アンカーボル トの降伏により決まる許容応力，及び付着力により決まる許容応力を比較して，いずれか小さい値を採用する。また，評価対象部位のアンカーボルトがせん断力を受ける場合にお いては，アンカーボルトのせん断強度により決まる許容耐力，定着したコンクリート躯体 の支圧強度により決まる許容耐力及びコーン状破壊により決まる許容応力を比較して，い ずれか小さい値を採用する。

表3－5 アンカーボルトの許容限界の算定値

水密 扉 No．	扉名称	許容耐力（ $\mathrm{N} /$ 本）	
		引張	せん断
2	水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）	$\begin{gathered} 25950\left(0^{\circ}\right) \\ 34348\left(90^{\circ}\right) \end{gathered}$	$\begin{aligned} & \hline 22529\left(0^{\circ}\right) \\ & 13317\left(90^{\circ}\right) \end{aligned}$
8	制御建屋浸水防止水密扉（No．1）	$\begin{aligned} & 66229\left(0^{\circ}\right) \\ & 67315\left(90^{\circ}\right) \end{aligned}$	$\begin{aligned} & 41465\left(0^{\circ}\right) \\ & 58068\left(90^{\circ}\right) \end{aligned}$
13	第2号機 MCR 浸水防止水密扉	$\begin{gathered} -\left(0^{\circ}\right) \\ 57575\left(90^{\circ}\right) \end{gathered}$	$\begin{gathered} 6635\left(0^{\circ}\right) \\ 40302\left(90^{\circ}\right) \end{gathered}$

[^61]
3.4 評価方法

水密扉の強度評価は，以下に設定する評価式を用いる。

3．4．1 応力算定

（1）扉板
扉板に生じる応力は，等分布荷重が作用する四辺支持の矩形板として，「日本機械学会機械工学便覧」に基づき，「3．4．2 断面検定」にて算定する。なお，この時，実際に作用 する静水圧荷重及び動水圧荷重は，台形分布もしくは，三角形分布であるが，扉最下部の最大静水圧が等分布に作用するものとして安全側に評価する。また，余震による地震荷重 は扉板の重量のみならず，芯材及びカンヌキを含めた扉重量が面積当たりに等分布に作用 するものとして安全側に評価する。扉板に作用する荷重の例を図 3－2 に示す。

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{D}}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}+\mathrm{S}_{\mathrm{d}} \\
& \mathrm{P}=\beta \cdot \frac{7}{8} \cdot \alpha_{\mathrm{H}} \cdot \rho_{o} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-6} \\
& \mathrm{~S}_{\mathrm{d}}=\frac{\mathrm{W}_{\mathrm{D}} \cdot \alpha_{\mathrm{H}} \cdot 10^{3}}{\mathrm{~L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}}} \\
& \text { ここで, }
\end{aligned}
$$

w_{D} ：扉下端に作用する静水圧荷重及び余震を考慮した荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P_{h} ：静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P ：動水圧荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
S_{d} ：余震による地震荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W_{D} ：扉重量（kN）
α_{H} ：水平方向の設計震度
L_{D} ：扉の幅（mm）
H_{D} ：扉の高さ (mm)
\square
図 3－2 扉板に作用する荷重の例
（2）芯材
芯材に生じる応力は，等分布荷重を受ける両端単純支持の梁として算定する。なお，芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の静水圧荷重と動水圧荷重を加えた水圧に，芯材に作用する荷重の負担幅（＝間隔）を乗じた荷重が等分布に作用 するものとし，芯材の支持間距離は保守的に扉幅として安全側に評価する。芯材に作用す る荷重の例を図3－3に示す。

$$
\begin{aligned}
& \mathrm{M}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}^{2}}{8} \\
& \mathrm{Q}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}}{2}
\end{aligned}
$$

ここで，
W ，：芯材に作用する等分布荷重 $(\mathrm{N} / \mathrm{mm}) 〔 \mathrm{w},=\mathrm{w}_{\mathrm{D}} \cdot \mathrm{b} 〕$
w_{D} ：扉下端に作用する静水圧荷重及び余震を考慮した荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
b ：芯材に作用する荷重の負担幅（mm）
M ：芯材に生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
L ：芯材の支持間距離（mm）
Q ：芯材に生じる最大せん断力（ N ）

4－－－－－：評価対象部位に作用する荷重
こーーー－：評価対象部位

図3－3 芯材に作用する荷重の例
（3）カンヌキ部
カンヌキ部は，カンヌキ，カンヌキ受けピン及びカンヌキ受けボルトで構成されており， カンヌキ部に生じる応力は次式により算定する。ここで，静水圧荷重及び余震荷重に対す る反力は，扉最下部の最大静水圧に，動水圧荷重及び扉重量による余震荷重を加えた荷重 をカンヌキ部が等分布に負担するものとして算定する。カンヌキ部に作用する荷重の例を図 3－4に示す。

$$
\mathrm{R}_{1}=\frac{\mathrm{L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}} \cdot \mathrm{w}_{\mathrm{D}}}{\mathrm{n}_{2}}
$$

ここで，
R_{1} ：カンヌキ部静水圧荷重及び余震荷重に対する反力（ N ）
L_{D} ：扉の幅 (mm)
H_{D} ：扉の高さ (mm)
w_{D} ：扉下端に作用する静水圧荷重及び余震を考慮した荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
n_{2} ：カンヌキの本数
－－－－－：評価対象部位に作用する荷重
に－－－1：評価対象部位

図 3－4 カンヌキ部に作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
a．カンヌキ
カンヌキに生じる応力は，次式により算定する。なお，算定にあたつては，カンヌキ受けピン中心位置を固定端とした片持ち梁として評価し，カンヌキの取付部位に応じ て生じる応力を考慮する。カンヌキに作用する荷重の例を図 3－5に示す。

$$
\mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{5}
$$

$$
\mathrm{Q}=\mathrm{R}_{1}
$$

ここで，
M ：カンヌキに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
R_{1} ：カンヌキ部に作用する静水圧荷重及び余震荷重に対する反力（N）
L_{5} ：カンヌキの突出長さ（mm）
Q ：カンヌキに生じる最大せん断力（N）
\square
図 3－5 カンヌキに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
b．カンヌキ受けピン
カンヌキ受けピンに生じる応力は，カンヌキ受けピンを集中荷重が作用する単純梁と みなし，次式により算定する。カンヌキ受けピンに作用する荷重の例を図 3－6に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{\mathrm{p}} \cdot \frac{1}{4} \\
& \mathrm{Q}=\mathrm{R}_{1} \cdot \frac{1}{2}
\end{aligned}
$$

ここで,

M ：カンヌキ受けピンに生じる最大曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
R_{1} ：カンヌキ部に作用する静水圧荷重及び余震荷重に対する反力（N）
L_{p} ：カンヌキ受けピンの軸支持間距離（mm）
Q ：カンヌキ受けピンに生じる最大せん断力（N）

図 3－6 カンヌキ受けピンに作用する荷重の例
c．カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルト
カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルトに生じる応力は，次式によ り算定する。カンヌキ受けボルトに作用する荷重の例を図 3－7に，扉付固定ボルト及び枠付固定ボルトに作用する荷重の例を図 3－8に示す。

$$
\begin{gathered}
T=\frac{R_{1}}{n_{b}} \\
Q=\frac{L_{D} \cdot H_{D} \cdot w_{D}}{n_{b}}
\end{gathered}
$$

ここで，
T ：ボルトに生じる最大引張力（ N ）
R_{1} ：ボルトに作用する静水圧荷重及び余震荷重に対する反力（N）
n_{b} ：ボルトの本数
Q ：ボルトに生じる最大せん断力（N）
L_{D} ：扉の幅 $(m m)$
H_{D} ：扉の高さ (mm)
W_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 3－7 カンヌキ受けボルトに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
－－－－－：評価対象部位に作用する荷重
こーー－：評価対象部位

図 3－8 扉付固定ボルト及び枠付固定ボルトに作用する荷重の例

枠囲みの内容は商業機密の観点から公開できません
（4）アンカーボルト
アンカーボルトに生じる応力は，静水圧荷重に余震荷重を加えた荷重を左右もしくは上下に配置されたアンカーボルトに分配する。アンカーボルトに作用する荷重の例を図 3－9に示す。

$$
\mathrm{R}_{\mathrm{a}}=\mathrm{L}_{\mathrm{c} 1} \cdot \mathrm{~L}_{\mathrm{c} 2} \cdot \mathrm{w}_{\mathrm{D}}
$$

ここで，
Ra：左右もしくは上下のアンカーボルトに作用する荷重（N）
$L_{c 1}$ ：躯体開口部の高さ（mm）
$L_{\mathrm{c} 2}$ ：躯体開口部の幅（mm）
W_{D} ：扉下端に作用する静水圧荷重及び余震を考慮した荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

> アンカーボルトの方向
（ 0° 方向配置の場合）

$$
\mathrm{Q}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a} 1}}
$$

（ 90° 方向配置の場合）

$$
\mathrm{T}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a} 2}}
$$

（ 0° 方向配置及び 90° 方向配置の複合配置の場合）

$$
\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 1}+\mathrm{T}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 2}}
$$

ここで，
T_{d} ：アンカーボルト 1 本当たりに生じる引張力（ N ）
T_{a} ：アンカーボルト 1 本当たりの短期許容引張力（ N ）
Q_{d} ：アンカーボルト 1 本当たりに生じるせん断力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（N）
na1 ： 0° 方向 左右もしくは上下のアンカーボルトの本数
na2： 90° 方向左右もしくは上下のアンカーボルトの本数

```
4－－－－－：評価対象部位に作用する荷重
こー－ー・：評価対象部位
```

図 3－9 アンカーボルトに作用する荷重の例（1／2）
枠囲みの内容は商業機密の観点から公開できません。

```
4----- : 評価対象部位に作用する荷重
ー----\:評価対象部位
```


3．4． 2 断面検定

評価対象部位に生じる応力より算定する応力度及び荷重が，許容限界値以下であること を確認する。
（1）扉板
扉板に生じる曲げ応力度を「日本機械学会 機械工学便覧」により算定し，扉板の短期許容応力度を下回ることを確認する。

$$
\sigma=\beta_{1} \cdot \frac{\mathrm{w}_{\mathrm{D}} \cdot \mathrm{~L}_{\mathrm{P} \mathrm{~L}}{ }^{2}}{\mathrm{t}^{2}}
$$

ここで，
σ ：扉板に生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
W_{D} ：扉下端に作用する静水圧荷重及び余震を考慮した荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
β_{1} ：四辺支持長方形板の応力係数
L_{PL} ：扉板の短辺長さ（mm）
t ：扉板の板厚（mm）
（2）芯材
芯材に生じる曲げ応力度及びせん断応力度を算定し，芯材の短期許容応力度を下回るこ とを確認する。

$$
\begin{aligned}
\sigma & =\mathrm{M} / \mathrm{Z} \\
\tau & =\mathrm{Q} / \mathrm{A}_{\mathrm{s}}
\end{aligned}
$$

ここで，
σ ：芯材に生じる曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：芯材に生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Z ：芯材の断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：芯材に生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材に生じる最大せん断力（ N ）
A_{s} ：芯材のせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）カンヌキ部
a．カンヌキ
カンヌキに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法—」に基づく次式により算定し，カンヌ キの短期許容応力度を下回ることを確認する。

$$
\tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}
$$

$$
\tau \quad: \text { カンヌキに生じる最大せん断応力度 (N/m²) }
$$

Q : カンヌキに生じる最大せん断力 (N)

$$
\mathrm{A}_{\mathrm{s}} \text { : カンヌキのせん断断面積 (mm²) }
$$

b．カンヌキ受けピン
カンヌキ受けピンに生じる曲げ応力度及びせん断応力度を算定し，カンヌキ受けピン の短期許容応力度を下回ることを確認する。なお，カンヌキ受けピンは単純梁による評価であることから，曲げとせん断は同時に作用しない為，組合せ応力度については考慮 しない。

$$
\begin{aligned}
& \sigma=\mathrm{M} / \mathrm{Z} \\
& \tau=\mathrm{Q} / \mathrm{A}
\end{aligned}
$$

ここで，
σ ：カンヌキ受けピンに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキ受けピンに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Z ：カンヌキ受けピンの断面係数（ mm^{3} ）
τ ：カンヌキ受けピンに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキ受けピンに生じる最大せん断力（ N ）
As ：カンヌキ受けピンのせん断断面積（ mm^{2} ）

$$
\begin{aligned}
& \mathbf{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}} \\
& \text { ここで, } \\
& \sigma=\mathrm{M} / \mathrm{Z} \\
& \mathrm{x} \text { : 組合せ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \sigma \text { : カンヌキに生じる最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \mathrm{M} \text { : カンヌキに生じる最大曲げモーメント }(\mathrm{N} \cdot \mathrm{~mm}) \\
& \text { Z : カンヌキの断面係数 (} \mathrm{mm}^{3} \text {) }
\end{aligned}
$$

c．カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルト
カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボルトに生じる引張応力度又はせ ん断応力度を次式により算定し，カンヌキ受けボルト，扉付固定ボルト及び枠付固定ボ ルトの短期許容応力度を下回ることを確認する。
$\sigma_{\mathrm{t}}=\mathrm{T} / \mathrm{A}$
$\tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}$

ここで，
$\sigma \mathrm{t}$ ：ボルトに生じる最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：ボルトに生じる最大引張力（N）
A ：ボルトの断面積 $\left(\mathrm{mm}^{2}\right)$
τ ：ボルトに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ボルトに生じる最大せん断力（ N ）
A_{s} ：ボルトのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（4）アンカーボルト
アンカーボルト 1 本当たりに生じる引張力またはせん断力を算定し，アンカーボルトの許容荷重を下回ることを確認する。
$\left(0^{\circ}\right.$ 方向配置の場合）

$$
\frac{\mathrm{Q}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{a}}} \leqq 1.0
$$

（ 90° 方向配置の場合）

$$
\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{~T}_{\mathrm{a}}} \leqq 1.0
$$

（ 0° 方向配置及び 90° 方向配置の複合配置の場合）
$\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 1}+\mathrm{T}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 2}}$

ここで，
Ra：左右もしくは上下のアンカーボルトに作用する荷重（N）
T_{d} ：アンカーボルト 1 本当たりに生じる引張力（ N ）
T_{a} ：アンカーボルト 1 本当たりの短期許容引張力（ N ）
Q_{d} ：アンカーボルト 1 本当たりに生じるせん断力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（ N ）
$\mathrm{n}_{\mathrm{a} 1}: 0^{\circ}$ 方向左右もしくは上下のアンカーボルトの本数
na2： 90° 方向左右もしくは上下のアンカーボルトの本数

3.5 評価条件

「3．4 評価方法」に用いる評価条件を表 3－6に示す。

表 3－6 強度評価に用いる評価条件（1／6）

対象部位		記号	単位	定義	水密扉 No．	
		2				
共通			h	mm	扉の水圧作用高さ	17500
		ρ 。	t／m ${ }^{3}$	液体の密度	1.03	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9．80665	
扉板		β	－	浸水エリアの幅と水深の比による補正係数	1． 0	
		$\alpha_{\text {H }}$	－	水平方向の設計震度	1． 17	
		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重及び余震荷重	0． 37	
		$L_{\text {D }}$	mm	扉の幅	900	
		H_{D}	mm	扉の高さ	2055	
		L_{PL}	mm	扉板の短辺長さ	505	
		t	mm	扉板の板厚	19	
		β_{1}	－	応力係数	0.6	
		W_{D}	kN	扉重量	7.85	
芯材		W ${ }^{\text {，}}$	N／mm	芯材に作用する等分布荷重	161.88	
		b	mm	芯材に作用する荷重の負担幅	437.5	
		L	mm	芯材の支持間距離	900	
		Z	mm^{3}	芯材の断面係数	231000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1800	
カ ン ヌ キ 部	共通	n 2	本	カンヌキの本数	8	
	カンヌキ	L 5	mm	カンヌキの突出長さ	68.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	277	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	31	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	72	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	246	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	35	
	カンヌキ受けボルト	n b	本	カンヌキ受けボルトの本数	2	
		$\sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	175	

表 3－6 強度評価に用いる計算条件（2／6）

対象部位	記号	単 位	定義	水密扉 No．
				2
アンカーボルト	L c 1	mm	躯体開口部の高さ	2000
	L c 2	mm	躯体開口部の幅	1000
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	18
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	24
	$\mathrm{Q}_{\text {a }}$	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	22529
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	13317
	T_{a}	N／ 本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	25950
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	34348

表 3－6 強度評価に用いる評価条件（3／6）

対象部位		記号	単位	定義	水密扉 No．	
		8				
共通			h	mm	扉の水圧作用高さ	4000
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1． 00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		β	－	浸水エリアの幅と水深の比による補正係数	1.0	
		$\alpha_{\text {H }}$	－	水平方向の設計震度	1． 34	
		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重及び余震荷重	0.10	
		$L_{\text {D }}$	mm	扉の幅	1406	
		H_{D}	mm	扉の高さ	2037	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	650	
		t	mm	扉板の板厚	19	
		β_{1}	－	応力係数	0． 7	
		W_{D}	kN	扉重量	13.93	
芯材		w	N / mm	芯材に作用する等分布荷重	64.50	
		b	mm	芯材に作用する荷重の負担幅	645	
		L	mm	芯材の支持間距離	1279	
		Z	mm^{3}	芯材の断面係数	153000	
		A s	mm^{2}	芯材のせん断断面積	1260	
$\begin{aligned} & \text { カ } \\ & \text { シ } \\ & \text { 又 } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	n 2	本	カンヌキの本数	6	
	カンヌキ	L_{5}	mm	カンヌキの突出長さ	61.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	139	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	17	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	72	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	137	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	19	
	カンヌキ 受けボルト	n b	本	カンヌキ受けボルトの本数	2	
		$\sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	153	

表 3－6 強度評価に用いる計算条件（4／6）

対象部位	記号	単位	定義	水密扉 No．
				8
アンカーボルト	$L_{\text {c } 1}$	mm	躯体開口部の高さ	2100
	L c_{2}	mm	躯体開口部の幅	1400
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	5
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	7
	Qa	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	41465
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	58068
	T ${ }_{\text {a }}$	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	66229
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	67315

表 3－6 強度評価に用いる評価条件（5／6）

対象部位		記号	単位	定義	水密扉 No．	
		13				
共通			h	mm	扉の水圧作用高さ	4000
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1． 00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9．80665	
扉板		β	－	浸水エリアの幅と水深の比による補正係数	1.0	
		$\alpha_{\text {H }}$	－	水平方向の設計震度	1． 58	
		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重及び余震荷重	0.11	
		$L_{\text {D }}$	mm	扉の幅	2030	
		H_{D}	mm	扉の高さ	2600	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	2030	
		t	mm	扉板の板厚	115	
		β_{1}	－	応力係数	0.5	
		W_{D}	kN	扉重量	79． 43	
芯材		w ${ }^{\text {，}}$	N / mm	芯材に作用する等分布荷重	－	
		b	mm	芯材に作用する荷重の負担幅	－	
		L	mm	芯材の支持間距離	－	
		Z	mm^{3}	芯材の断面係数	－	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	－	
$\begin{aligned} & \text { カ } \\ & \text { ン } \\ & \text { 又 } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	n 2	本	カンヌキの本数	－	
	カンヌキ	L_{5}	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	L_{p}	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	$\sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
扉固定部	扉付固定 ボルト	n b	本	扉付固定ボルトの本数	11	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	216	
	枠付固定 ボルト	A	mm^{2}	枠付固定ボルトの断面積	245	
		σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	216	

表 3－7 強度評価に用いる計算条件（6／6）

対象部位	記号	単位	定義	水密扉 No．
				13
アンカーボルト	$L_{\text {c } 1}$	mm	躯体開口部の高さ	2630
	L c 2	mm	躯体開口部の幅	1900
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	25
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	40
	Q a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	6635
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	40302
	T a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	57575

3.6 評価結果

水密扉の強度評価結果を表 3－7 に示す。水密扉の各部材の断面検定を行った結果，発生応力度又は荷重は許容限界値を下回ることから，水密扉が構造健全性を有することを確認した。

表 3－7 水密扉の強度評価結果

水密 扉 No	評価対象部位		発生値 （応力度，荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	許容限界値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ， N ）	発生値／許容限界値	備考
2		扉板	157	205	0． 77	曲げ
		芯材＊1	41	118	0.35	せん断
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊2	283	651	0． 44	組合せ
		カンヌキ受けピン＊1	246	345	0.72	曲げ
		カンヌキ受けボルト	175	728	0.25	引張
	アンカーボルト＊3		－	－	0.61	組合せ
8		扉板	82	235	0.35	曲げ
		芯材＊1	87	235	0.38	曲げ
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊2	143	205	0.70	組合せ
		カンヌキ受けピン＊1	137	345	0． 40	曲げ
		カンヌキ受けボルト	153	728	0． 22	引張
	アンカーボルト＊3		－	－	0.44	組合せ
13		扉板	18	205	0.09	曲げ
		芯材＊1	－	－	－	－
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊2	－	－	－	－
		カンヌキ受けピン＊1	－	－	－	－
		カンヌキ受けボルト	－	－	－	－
	扉固定 部	扉付固定ボルト	216	420	0.52	せん断
		枠付固定ボルト	216	728	0． 30	引張
	アンカーボルト＊3		－	－	0． 23	組合せ

注記＊1：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張，せん断及び組合せのらち，評価結果が最も厳しい値を記載する。

VI－3－別添3－2－9 逆止弁付ファンネルの強度計算書

VI－3－別添 3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書 VI－3－別添 3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書

VI－3－別添3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書

目次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 9
4．固有値解析 10
4．1 固有振動数の計算方法 10
4．1．1 解析モデル 10
4．1．2 記号の説明 10
4．1．3 固有振動数の計算 11
4．2 固有振動数の計算条件 12
4．3 固有振動数の計算結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重及び荷重の組合せ 13
5．2．1 荷重の設定 13
5．2．2 荷重の組合せ 14
5．3 許容限界 14
5.4 設計用地震力 16
5.5 計算方法 17
5．5．1 荷重条件 17
5．5．2 応力計算 18
5.6 計算条件 20
6．評価結果 21
6．1 応力評価 21
6．2 構造健全性評価 21

1．概要

本資料は，VI－3－別添 3－1「津波への配慮が必要な施設の強度計算の方針」に基づき，浸水防護施設のらち逆止弁付ファンネル（第 2 号機）（以下，逆止弁付ファンネルとい う。）が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有す ることを確認するものである。

なお，逆止弁ファンネルの強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生した ことを考慮する。

2．一般事項
2． 1 配置概要
逆止弁付ファンネルは，第2号機海水ポンプ室の床面に設置する。逆止弁付ファン
ネルの設置位置図を図 $2-1$ に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2． 2 構造計画

逆止弁付ファンネルの構造計画は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「3．構造強度設計」に示す構造計画を踏まえて，詳細な構造を設定 する。

逆止弁付ファンネルは，ばね圧により常時弁体が弁座に密着している。津波の流入 により弁体がさらに押上げられ，弁座により密着することで止水する。逆止弁付ファ ンネルの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第2号機海水ポ ンプ室床面の配管にねじ込み継手で固定する。	弁座を含む弁本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

[^62]
2.3 評価方針

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価及び構造健全性評価により実施する。応力評価では，逆止弁付フ アンネルの評価対象部位に作用する応力等が許容限界以下であることを「5．1構造強度評価方法」に示す方法により，「5．6 計算条件」に示す計算条件を用いて評価し，構造健全性評価により強度評価を実施する評価対象部位については，評価対象部位に作用する圧力が許容限界以下であることを「5．1構造強度評価方法」に示す方法によ り，「5．6 計算条件」に示す計算条件を用いて評価する。応力評価及び構造健全性評価の確認結果を「6．評価結果」にて確認する。

逆止弁付ファンネルの強度評価フローを図 $2-1$ に示す。逆止弁付ファンネルの強度評価においては，その構造を踏まえ，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S d－D 2 に よる地震力とする。余震荷重の設定に当たつては，弾性設計用地震動 S d－D 2 を入力して得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用い る。

図 2－1 強度評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下，設計•建設規格という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補 －1984）
（4）原子力発電所耐震設計技術指針（ J E A G 4 6 0 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説
（6）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2に示す。

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（1／2）

記 号	記号の説明	単 位
S d	弾性設計用地震動S d－D 2 による余震荷重	N
$\mathrm{C}_{\mathrm{HSSd}}$	弾性設計用地震動 S d－D 2 による水平方向の設計震度	－
$\mathrm{C}_{\mathrm{Vs} \mathrm{d}}$	弾性設計用地震動 S d－D 2 による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積	mm^{2}
A_{3}	突き上げ津波荷重が弁体に作用する評価に用いる受圧面積	mm^{2}
C_{d}	抗力係数	－
D 1	弁本体の外径	mm
D 2	弁体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{V} 1}$	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{V} 2}$	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
h	津波荷重水位	m
I_{1}	弁本体の断面二次モーメント	mm ${ }^{4}$
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m 2	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
P_{t}	突き上げ津波荷重	MPa
S	設計•建設規格の付録材料図表Part5表5鉄鋼材料の各温度における許容引張応力	MPa
U	海水ポンプ室における津波の最大流速（鉛直方向）	m／s
W d 1	逆止弁付ファンネルの自重	N
$\mathrm{W}_{\mathrm{d} 2}$	弁体の自重	N

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（2／2）

記 号	記号の説明	単 位
ρ_{\circ}	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{\mathrm{H} 1}$	弁本体に加わる曲げ応力	MPa
$\sigma_{\mathrm{V} 1}$	弁本体に加わる圧縮応力（重畳時）	MPa
$\sigma_{\mathrm{V} 2}$	弁体に加わる曲げ応力（重畳時）	MPa
P_{V}	弁体に発生する圧力	MPa
P_{w}	逆止弁付ファンネルに発生する圧力	MPa

3．評価対象部位

逆止弁付ファンネルの評価対象部位は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位を踏まえ て，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

津波時は逆止弁付ファンネル上流からの津波荷重により，弁本体に圧縮力が作用する。 また，逆止弁付ファンネル上流からの津波荷重により弁体が弁座に密着し閉弁状態とな る際に弁体に曲げ力が作用する。

重畳時に逆止弁付ファンネル上流からの津波荷重及び鉛直方向の余震荷重が負荷され る場合は，津波時と同様の力が作用する。一方，水平方向の余震荷重が負荷される場合 は，弁本体には曲げモーメントが作用する。

このことから，強度評価においては，応力評価による評価対象部位として，弁本体及 び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド， サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

枠囲みの内容は商業機密の観点から公開できません。
図中の（1）～②）は応力評価による評価対象部位を，（3）～⑧は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつ梁として設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

4．1．2 記号の説明

朹囲みの内容は商業機密の観点から公開できません。
逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	モデルの縦弾性係数	mm
f	モデルの一次固有振動数	Hz
I_{m}	モデルの断面二次モーメント	mm^{4}
k	モデルのばね定数	N / m
l_{1}	モデル全体の長さ	mm
m	モデルの全質量	kg

4．1． 3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。固有振動数 f を以下の式より算出する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\ell_{1}^{3}} \times 10^{3}
\end{aligned}
$$

モデルの断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント Im は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2 に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件

モデルの材質	モデルの全質量 $\mathrm{m}(\mathrm{kg})$	モデル化に用いる 弁本体の外径 $\mathrm{D}_{\mathrm{m}}(\mathrm{mm})$	モデル化に用いる 弁本体の内径
	1.2	73	$\mathrm{~d}_{\mathrm{m}} \quad(\mathrm{mm})$

| モデル全体の長さ |
| :---: | :---: |
| $\ell_{1} \quad(\mathrm{~mm})$ | | モデル化の |
| :---: |
| 縦弾性係数＊ |
| $\mathrm{E} \quad(\mathrm{MPa})$ |

注記 $~: ~ 「 5.3 ~$ 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果

表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	982

5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」の「5．強度評価方法」にて設定している方法を用いて，強度評価を実施する。

逆止弁付ファンネルの強度評価は，「3．評価対象部位」に示す評価対象部位に対し，
「5．2 荷重及び荷重の組合せ」及び「5．3許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「5．5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを用いる。

5．2．1 荷重の設定
（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，基準津波による津波荷重水位を考慮し，以下の式より算出する。

$$
\mathrm{P}_{\mathrm{t}}=\left(\rho_{\circ} \cdot \mathrm{g} \cdot \mathrm{~h}+\frac{1}{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \rho_{\circ} \cdot \mathrm{U}^{2}\right) / 10^{6}
$$

（3）余震荷重（ S d ）
余震荷重は，添付書類「V－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び慣性力 を考慮するものとし，水平方向については，弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う地震力とする。

余震による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{v}_{1}}$ ， $\mathrm{F}_{\mathrm{v}_{2} \text { を以下の式より算出する。 }}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{HSd}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{v}_{1}}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g}+\rho_{\circ} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{2} / 10^{6} \\
& \mathrm{~F}_{\mathrm{v}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{~g}+\rho_{\circ} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{3} / 10^{6}
\end{aligned}
$$

5．2．2 荷重の組合せ

逆止弁付ファンネルの強度評価にて考慮する荷重の組合せを表5－1 に示す。

表 5－1 逆止弁付ファンネルの強度評価にて考慮する荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	$\mathrm{D}+\mathrm{P}_{\mathrm{t}}+\mathrm{Sd} * 1 * 2$

注記＊1：Dは固定荷重， P_{t} は突き上げ津波荷重， Sd は弾性設計用地震動 $\mathrm{Sd}-$ D 2 による余震荷重を示す。
＊2：固定荷重（D）及び弾性設計用地震動 S d－D 2 による余震荷重（S d） の組合せが，強度評価上，突き上げ津波荷重（ P_{t} ）を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

5.3 許容限界

逆止弁付ファンネルの許容限界は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界を踏まえ，「3．評価対象部位」にて設定している評価対象部位毎に，機能損傷モードを考慮し，弁本体及 び弁体については，設計•建設規格に準じた供用状態Cの許容応力を用いる。

圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及び ねじ切り部については，水圧試験により確認した圧力を許容値として用いる。水圧試験では，逆止弁付ファンネルの閉状態に対して，突き上げ津波荷重を模擬した静水圧 1． 2 MPa を圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピ ン及びねじ切り部に負荷し，有意な変形及び著しい漏えいがないことを確認した。

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3に，弁本体及び弁体の許容応力算出結果を表5－4にそれぞれ示す。また，圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部の許容限界を表5－5に示す。

表 5－2 弁本体及び弁体の許容限界

供用状態 （許容応力状態）	許容限界＊${ }^{\text {a }}$		
	一次応力		
C	圧縮	曲げ	組合せ＊2
$\left(\right.$ III $\left._{\text {A }} \mathrm{S}\right) * 3$	1．2 S	1.2 － S	$1.2 \cdot \mathrm{~S}$

注記＊1 ：圧縮及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス2，3配管に対する許容限界に準じて設定する。
＊2：圧縮応力と曲げ応力の組合せ応力である。
＊ 3 ：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S (MPa)
弁本体	SUS316L	40	111
弁体			

注記＊：鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

供用状態 （許容応力状態）	評価対象部位	許容限界		
		一次応力		
		圧縮 $\begin{gathered} 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
$\begin{gathered} \mathrm{C} \\ \left(\mathrm{III}_{\mathrm{A}} \mathrm{~S}\right) \end{gathered}$	弁本体	133	133	133
	弁体	－	133	－

表 5－5 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の許容限界

評価対象部位	水圧試験の圧力 (MPa)
圧縮スプリング，ガイド，サポータ，取付金具 （取付ねじ含む），取付金具ピン及びねじ切り部	1.2

5．4 設計用地震力
「4．固有値解析」に示したとおり，逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の 1.2 倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－6に示す。

表 5－6 逆止弁付ファンネルの設計震度

| | 床面高さ＊1
 地震動
 （mm） | 場所 |
| :---: | :---: | :---: | :---: | :---: |

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため，海水ポンプ室（補機ポンプエリア）の最大応答加速度の 1.2 倍を考慮した設計震度を設定した。
5.5 計算方法

逆止弁付ファンネルの強度評価は，構造部材に作用する応力が，「5．3 許容限界」 で設定した許容限界以下であることを確認する。

5．5．1 荷重条件

以下の荷重条件にて応力計算を実施する。
（1）固定荷重（D）
逆止弁付ファンネルの自重は突き上げ津波荷重を緩和する方向に作用すること から，考慮しない。ただし，余震による水平地震力を求めるに当たつて，固定荷重として逆止弁付ファンネルの自重を考慮する。
（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重 P_{t} は，逆止弁付ファンネル上流から作用するものとする。
（3）余震荷重（ S d ）
余震荷重S dは，逆止弁付ファンネルの設置位置における水平方向及び鉛直方向の地震荷重を考慮する。

5．5．2 応力計算

（1）弁本体
a．圧縮
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁本体に加わ る圧縮応力 σ V1を以下の式より算出する。また，突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積 A_{2} は，弁本体のらち突き上げ津波荷重を受け る面積が最も広い箇所を適用する。突き上げ津波荷重が弁本体に作用する評価 に用いる受圧面積は弁本体の外径 D 1 の円の面積を適用する。弁本体の断面積 A_{1} は，図 5－1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。 ただし，逆止弁付ファンネルの自重 $W_{\mathrm{d} 1}$ は圧縮応力 $\sigma \mathrm{V}_{1}$ を緩和する方向に作用するため考慮しない。
$\sigma_{\mathrm{V}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{V}_{1}}+\mathrm{P}_{\mathrm{t}} \cdot \mathrm{A}_{2}}{\mathrm{~A}_{1}}$

図 5－1 弁本体の構造図

朹囲みの内容は商業機密の観点から公開できません。
b．曲げ
弁全体の最下端に集中荷重が負荷された片持ち梁として，水平応答加速度に より，弁本体に加わる曲げ応力 $\sigma_{\mathrm{H} 1}$ を以下の式より算出する。弁全体の長さL 1 ，弁本体の外径 D_{1} 及び内径 d_{1} について図5－1 に示す。

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1} \\
& \mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
\end{aligned}
$$

$$
\sigma_{\mathrm{H} 1}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

（2）弁体
a．曲げ
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁体に加わる曲げ応力 σ V 2 を以下の式より算出する。また，突き上げ津波荷重が弁体に作用 する評価に用いる受圧面積 A_{3} は，図5－2 に示すとおり，突き上げ津波荷重が弁体に作用する評価に用いる弁体の外径 D_{2} の円の面積を適用する。ただし，弁体の自重による荷重 $W_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮 しない。

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{V}}=\frac{\mathrm{W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v}_{2}}}{\mathrm{~A}_{3}}+\mathrm{P}_{\mathrm{t}} \\
& \sigma_{\mathrm{V} 2}=1.24 \cdot \frac{\mathrm{P}_{\mathrm{v}_{2}}}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
\end{aligned}
$$

\square
図 5－2 弁体の寸法図
（3）弁体，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部
突き上げ津波荷重により弁体，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部に発生する圧力 P_{w} は以下の式より算出する。

$$
\mathrm{P}_{\mathrm{w}}=\mathrm{P}_{\mathrm{t}}
$$

5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表5－7に示す。

表 5－7 逆止弁付ファンネルの応力評価に用いる計算条件

弁本体の材質	逆止弁付ファン ネルの全質量	弁全体の長さ	弁本体の外径
	m_{1}	$\mathrm{~L}_{1}$	D_{1}
	$(\mathrm{~kg})$	(mm)	(mm)
SUS316L	1.2	140	73

		突き上げ津波荷重が
弁本体の内径	弁本体の断面積	弁本体に作用する評 価に用いる受圧面積 (mm)
A_{1}		
$\left(\mathrm{~mm}^{2}\right)$		

弁体の材質	弁体の質量	弁体の外径	弁体の厚さ
	(mg)	D_{2}	t
	(mm)	(mm)	
SUS316L	0.10	61	2

突き上げ津波荷重が弁体に作用する評価 に用いる受圧面積 A_{3} （mm ${ }^{2}$ ）	重力加速度 g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	海水の密度 ρ 。 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	抗力係数 C d
2.922×10^{3}	9． 80665	1030	1． 2

津波荷重水位	海水ポンプ室におけ る津波の最大流速 （鉛直方向）	慣性力（鉛直方向） 評価高さ $\mathrm{U}(\mathrm{m} / \mathrm{s})$
18.6	1.0	H
(m)		

注記＊：海水ポンプ室における最大鉛直流速に対し，保守的に設定した値。

6．評価結果

6． 1 応力評価
逆止弁付ファンネルの強度評価結果を表6－1 に示す。発生応力が許容応力以下で あることから構造部材が構造健全性を有することを確認した。

表 6－1 逆止弁付ファンネルの応力評価結果

評価対象部位	発生応力 （MPa）		許容応力 (MPa)
弁本体	圧 縮	5	133
	曲 げ	1	133
	組合せ＊	6	133
弁体	曲 げ	104	133

注記＊：圧縮 $\sigma_{\mathrm{V} 1}+$ 曲げ $\sigma_{\mathrm{H} 1}$ は，$\sigma_{\mathrm{V} 1}+\sigma_{\mathrm{V} 1} \leqq 1.2 \mathrm{~S}$ で評価

6．2 構造健全性評価

逆止弁付ファンネルの構造健全性評価結果を表6－2に示す。発生圧力が，有意 な変形及び著しい漏えいがないことを確認した水圧試験圧力以下であることから，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含 む），取付金具ピン及びねじ切り部が構造健全性を有することを確認した。

表 6－2 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の構造健全性評価結果

| 評価対象部位 |
| :---: | :---: | :---: | :---: | | 発生圧力
 (MPa) | | 水圧試験の圧力
 (MPa) |
| :---: | :---: | :---: |
| 圧縮スプリング，ガイド，サポータ，
 取付金具（取付ねじ含む），
 取付金具ピン及びねじ切り部 | | |
| 圧縮 | | |

VI－3－別添3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書

目次

1．概 要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 9
4．固有値解析 10
4．1 固有振動数の計算方法 10
4．1．1 解析モデル 10
4．1．2 記号の説明 10
4．1．3 固有振動数の計算 11
4．2 固有振動数の計算条件 12
4．3 固有振動数の計算結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重及び荷重の組合せ 13
5．2．1 荷重の設定 13
5．2．2 荷重の組合せ 14
5.3 許容限界 14
5.4 設計用地震力 16
5.5 計算方法 17
5．5．1 荷重条件 17
5．5．2 応力計算 18
5.6 計算条件 20
6．評価結果 21
6． 1 応力評価 21
6．2 構造健全性評価 21

1．概要

本資料は，VI－3－別添 3－1「津波への配慮が必要な施設の強度計算の方針」に基づき，浸水防護施設のらち逆止弁付ファンネル（第3号機）（以下，逆止弁付ファンネルとい う。）が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有す ることを確認するものである。

なお，逆止弁ファンネルの強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生した ことを考慮する。

2．一般事項
2.1 配置概要

逆止弁付ファンネルは，第3号機海水熱交換器建屋の床面に設置する。逆止弁付フ アンネルの設置位置図を図 $2-1$ に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2． 2 構造計画

逆止弁付ファンネルの構造計画は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「3．構造強度設計」に示す構造計画を踏まえて，詳細な構造を設定 する。

逆止弁付ファンネルは，ばね圧により常時弁体が弁座に密着している。津波の流入 により弁体がさらに押上げられ，弁座により密着することで止水する。逆止弁付ファ ンネルの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第3号機海水熱交換器建屋床面 の配管にねじ込 み継手で固定す る。	弁座を含む弁本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

枠囲みの内容は商業機密の観点から公開できません。

2.3 評価方針

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価及び構造健全性評価により実施する。応力評価では，逆止弁付フ アンネルの評価対象部位に作用する応力等が許容限界以下であることを「5．1構造強度評価方法」に示す方法により，「5．6 計算条件」に示す計算条件を用いて評価し，構造健全性評価により強度評価を実施する評価対象部位については，評価対象部位に作用する圧力が許容限界以下であることを「5．1構造強度評価方法」に示す方法によ り，「5．6 計算条件」に示す計算条件を用いて評価する。応力評価及び構造健全性評価の確認結果を「6．評価結果」にて確認する。

逆止弁付ファンネルの強度評価フローを図 $2-1$ に示す。逆止弁付ファンネルの強度評価においては，その構造を踏まえ，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S d－D 2 に よる地震力とする。余震荷重の設定に当たつては，弾性設計用地震動 S d－D 2 を入力して得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用い る。

図 2－1 強度評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下，設計•建設規格という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補 －1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説
（6）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2に示す。

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（1／2）

記 号	記号の説明	単 位
S d	弾性設計用地震動S d－D 2 による余震荷重	N
C $\mathrm{HSSd}^{\text {d }}$	弾性設計用地震動 S d－D 2 による水平方向の設計震度	－
$\mathrm{C}_{\mathrm{Vs} \mathrm{d}}$	弾性設計用地震動S d－D 2 による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積	mm^{2}
A_{3}	突き上げ津波荷重が弁体に作用する評価に用いる受圧面積	mm^{2}
C_{d}	抗力係数	－
D 1	弁本体の外径	mm
D 2	升体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
F v 1	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{v}} 2$	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
h	津波荷重水位	m
I_{1}	弁本体の断面二次モーメント	mm^{4}
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m 2	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
P_{t}	突き上げ津波荷重	MPa
S	設計•建設規格の付録材料図表Part5表5鉄鋼材料の各温度における許容引張応力	MPa
U	海水ポンプ室における津波の最大流速（鉛直方向）	m／s
W d 1	逆止弁付ファンネルの自重	N
$\mathrm{W}_{\mathrm{d} 2}$	弁体の自重	N

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（2／2）

記 号	記号の説明	単 位
ρ_{\circ}	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{\mathrm{H} 1}$	弁本体に加わる曲げ応力	MPa
$\sigma_{\mathrm{V} 1}$	弁本体に加わる圧縮応力（重畳時）	MPa
$\sigma_{\mathrm{V} 2}$	弁体に加わる曲げ応力（重畳時）	MPa
P_{V}	弁体に発生する圧力	MPa
P_{w}	逆止弁付ファンネルに発生する圧力	MPa

3．評価対象部位
逆止弁付ファンネルの評価対象部位は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位を踏まえ て，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

津波時は逆止弁付ファンネル上流からの津波荷重により，弁本体に圧縮力が作用する。 また，逆止弁付ファンネル上流からの津波荷重により弁体が弁座に密着し閉弁状態とな る際に弁体に曲げ力が作用する。

重畳時に逆止弁付ファンネル上流からの津波荷重及び鉛直方向の余震荷重が負荷され る場合は，津波時と同様の力が作用する。一方，水平方向の余震荷重が負荷される場合 は，弁本体には曲げモーメントが作用する。

このことから，強度評価においては，応力評価による評価対象部位として，弁本体及 び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド， サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

図中の（1）～②）は応力評価による評価対象部位を，（3）～⑧は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつ梁として設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

枠囲みの内容は商業機密の観点から公開できません。
4．1．2 記号の説明
逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	モデルの縦弾性係数	mm
f	モデルの一次固有振動数	Hz
I_{m}	モデルの断面二次モーメント	mm^{4}
k	モデルのばね定数	N / m
ℓ_{1}	モデル全体の長さ	mm
m	モデルの全質量	kg

4．1．3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。固有振動数 f を以下の式より算出する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\ell_{1}^{3}} \times 10^{3}
\end{aligned}
$$

モデルの断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント Im は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2 に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件

モデルの材質	モデルの全質量 $\mathrm{m}(\mathrm{kg})$	モデル化に用いる 弁本体の外径 $\mathrm{D}_{\mathrm{m}}(\mathrm{mm})$	モデル化に用いる 弁本体の内径
	1.2	73	$\mathrm{~d}_{\mathrm{m}} \quad(\mathrm{mm})$

| モデル全体の長さ |
| :---: | :---: |
| $\ell_{1} \quad(\mathrm{~mm})$ | | モデル化の |
| :---: |
| 縦弾性係数＊ |
| $\mathrm{E} \quad(\mathrm{MPa})$ |

注記 $~: ~ 「 5.3 ~$ 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果

表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	982

5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」の「5．強度評価方法」にて設定している方法を用いて，強度評価を実施する。

逆止弁付ファンネルの強度評価は，「3．評価対象部位」に示す評価対象部位に対し，
「5．2 荷重及び荷重の組合せ」及び「5．3許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「5．5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを用いる。
5．2．1 荷重の設定
（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，基準津波による津波荷重水位を考慮し，以下の式より算出する。

$$
\mathrm{P}_{\mathrm{t}}=\left(\rho_{\circ} \cdot \mathrm{g} \cdot \mathrm{~h}+\frac{1}{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \rho_{\circ} \cdot \mathrm{U}^{2}\right) / 10^{6}
$$

（3）余震荷重（ S d ）
余震荷重は，添付書類「V－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び慣性力 を考慮するものとし，水平方向については，弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う地震力とする。

余震による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{v}_{1}}$ ， $\mathrm{F}_{\mathrm{v}_{2} \text { を以下の式より算出する。 }}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{HSd}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{v}_{1}}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g}+\rho_{\circ} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{2} / 10^{6} \\
& \mathrm{~F}_{\mathrm{v}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{~g}+\rho_{\circ} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{3} / 10^{6}
\end{aligned}
$$

5．2．2 荷重の組合せ

逆止弁付ファンネルの強度評価にて考慮する荷重の組合せを表5－1 に示す。

表 5－1 逆止弁付ファンネルの強度評価にて考慮する荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	$\mathrm{D}+\mathrm{P}_{\mathrm{t}}+\mathrm{Sd} * 1 * 2$

注記＊1：Dは固定荷重， P_{t} は突き上げ津波荷重， Sd は弾性設計用地震動 $\mathrm{Sd}-$ D 2 による余震荷重を示す。
＊2：固定荷重（D）及び弾性設計用地震動 S d－D 2 による余震荷重（S d） の組合せが，強度評価上，突き上げ津波荷重（ P_{t} ）を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

5.3 許容限界

逆止弁付ファンネルの許容限界は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界を踏まえ，「3．評価対象部位」にて設定している評価対象部位毎に，機能損傷モードを考慮し，弁本体及 び弁体については，設計•建設規格に準じた供用状態Cの許容応力を用いる。

圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及び ねじ切り部については，水圧試験により確認した圧力を許容値として用いる。水圧試験では，逆止弁付ファンネルの閉状態に対して，突き上げ津波荷重を模擬した静水圧 1． 2 MPa を圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピ ン及びねじ切り部に負荷し，有意な変形及び著しい漏えいがないことを確認した。

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3に，弁本体及び弁体の許容応力算出結果を表5－4にそれぞれ示す。また，圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部の許容限界を表5－5に示す。

表 5－2 弁本体及び弁体の許容限界

供用状態 （許容応力状態）	許容限界＊${ }^{\text {a }}$		
	一次応力		
C	圧縮	曲げ	組合せ＊2
$\left(\right.$ III $\left._{\text {A }} \mathrm{S}\right) * 3$	1．2 S	1.2 － S	$1.2 \cdot \mathrm{~S}$

注記＊1 ：圧縮及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス2，3配管に対する許容限界に準じて設定する。
＊2：圧縮応力と曲げ応力の組合せ応力である。
＊3：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S ＊ (MPa)
弁本体	SUS316L	40	111
弁体			

注記＊：鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

供用状態 （許容応力状態）	評価対象部位	許容限界		
		一次応力		
		圧縮 $\begin{gathered} 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
$\begin{gathered} \mathrm{C} \\ \left(\mathrm{III}_{\mathrm{A}} \mathrm{~S}\right) \end{gathered}$	弁本体	133	133	133
	弁体	－	133	－

表 5－5 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の許容限界

評価対象部位	水圧試験の圧力 (MPa)
圧縮スプリング，ガイド，サポータ，取付金具 （取付ねじ含む），取付金具ピン及びねじ切り部	1.2

5.4 設計用地震力

「4．固有値解析」に示したとおり，逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の1．2倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－6に示す。

表 5－6 逆止弁付ファンネルの設計震度

地震動	床面高さ＊1 0．P．（mm）	場所	余震による設計震度＊1	
弾性設計用地震動 S d－D 2	3000	3 号機海水熱交換器建屋	水平方向 $\mathrm{C}_{\mathrm{HS} \mathrm{d}}$	1． 40
			鉛直方向 Cvs d	0.77

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため，設置床の最大応答加速度の 1.2 倍を考慮した設計震度を設定した。
5.5 計算方法

逆止弁付ファンネルの強度評価は，構造部材に作用する応力が，「5．3 許容限界」 で設定した許容限界以下であることを確認する。

5．5．1 荷重条件

以下の荷重条件にて応力計算を実施する。
（1）固定荷重（D）
逆止弁付ファンネルの自重は突き上げ津波荷重を緩和する方向に作用すること から，考慮しない。ただし，余震による水平地震力を求めるに当たつて，固定荷重として逆止弁付ファンネルの自重を考慮する。
（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重 P_{t} は，逆止弁付ファンネル上流から作用するものとする。
（3）余震荷重（ S d ）
余震荷重S dは，逆止弁付ファンネルの設置位置における水平方向及び鉛直方向の地震荷重を考慮する。

5．5．2 応力計算

（1）弁本体
a．圧縮
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁本体に加わ る圧縮応力 σV_{1} を以下の式より算出する。また，突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積 A_{2} は，弁本体のらち突き上げ津波荷重を受け る面積が最も広い箇所を適用する。突き上げ津波荷重が弁本体に作用する評価 に用いる受圧面積は弁本体の外径 D_{1} の円の面積を適用する。弁本体の断面積 A_{1} は，図 5－1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。 ただし，逆止弁付ファンネルの自重 $W_{\mathrm{d} 1}$ は圧縮応力 $\sigma \mathrm{V}_{1}$ を緩和する方向に作用するため考慮しない。

$$
\sigma_{\mathrm{V}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{v}_{1}}+\mathrm{P}_{\mathrm{t}} \cdot \mathrm{~A}_{2}}{\mathrm{~A}_{1}}
$$

図 5－1 弁本体の構造図

> 枠囲みの内容は商業機密の観点から公開できません。
b．曲げ
弁全体の最下端に集中荷重が負荷された片持ち梁として，水平応答加速度に より，弁本体に加わる曲げ応力 $\sigma_{\mathrm{H} 1}$ を以下の式より算出する。卉全体の長さ L 1 ，弁本体の外径 D_{1} 及び内径 d_{1} について図5－1 に示す。

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1} \\
& \mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
\end{aligned}
$$

$$
\sigma_{\mathrm{H}_{1}}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

（2）弁体
a．曲げ
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁体に加わる曲げ応力 σ V 2 を以下の式より算出する。また，突き上げ津波荷重が弁体に作用 する評価に用いる受圧面積 A_{3} は，図5－2 に示すとおり，突き上げ津波荷重が弁体に作用する評価に用いる弁体の外径 D_{2} の円の面積を適用する。ただし，弁体の自重による荷重 $W_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮 しない。

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{v}}=\frac{\mathrm{W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v}_{2}}}{\mathrm{~A}_{3}}+\mathrm{P}_{\mathrm{t}} \\
& \sigma_{\mathrm{v}_{2}}=1.24 \cdot \frac{\mathrm{P}_{\mathrm{v}_{2}}}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
\end{aligned}
$$

\square
図 5－2 弁体の寸法図
枠囲みの内容は商業機密の観点から公開できません。
（3）弁体，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部
突き上げ津波荷重により弁体，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部に発生する圧力 P_{w} は以下の式より算出する。

$$
\mathrm{P}_{\mathrm{w}}=\mathrm{P}_{\mathrm{t}}
$$

5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表5－7に示す。

表 5－7 逆止弁付ファンネルの応力評価に用いる計算条件

弁本体の材質	逆止弁付ファン ネルの全質量	弁全体の長さ	弁本体の外径
	m_{1}	$\mathrm{~L}_{1}$	D_{1}
	$(\mathrm{~kg})$	(mm)	(mm)
SUS316L	1.2	140	73

		突き上げ津波荷重が
弁本体の内径	弁本体の断面積	弁本体に作用する評 価に用いる受圧面積 (mm)
A_{1}	$\left.\mathrm{Am}_{2}\right)$	
$\left(\mathrm{mm}^{2}\right)$		

弁体の材質	弁体の質量 $\begin{gathered} \mathrm{m}_{2} \\ (\mathrm{~kg}) \end{gathered}$	弁体の外径 D_{2} （mm）	弁体の厚さ t （mm）
SUS316L	0.10	61	2

突き上げ津波荷重が弁体に作用する評価 に用いる受圧面積 A_{3} （mm ${ }^{2}$ ）	重力加速度 g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	海水の密度 ρ 。 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	抗力係数 C d
2.922×10^{3}	9． 80665	1030	1． 2

津波荷重水位 h （m）	海水ポンプ室におけ る津波の最大流速 （鉛直方向）＊ U（m／s）	慣性力（鉛直方向）評価高さ H （m）
19.5	1.0	16.5

注記＊：海水ポンプ室における最大鉛直流速に対し，保守的に設定した値。

6．評価結果

6． 1 応力評価
逆止弁付ファンネルの強度評価結果を表6－1 に示す。発生応力が許容応力以下で あることから構造部材が構造健全性を有することを確認した。

表 6－1 逆止弁付ファンネルの応力評価結果

評価対象部位	発生応力 (MPa)		
弁本体	圧	許容応力 (MPa)	
	曲	5	133
	組合せ＊	1	133
弁体	曲 げ	9	133

注記＊：圧縮 $\sigma \mathrm{V}_{1}+$ 曲げ $\sigma_{\mathrm{H} 1}$ は，$\quad \sigma \mathrm{V}_{1}+\sigma \mathrm{V}_{1} \leqq 1.2 \mathrm{~S}$ で評価
6.2 構造健全性評価

逆止弁付ファンネルの構造健全性評価結果を表6－2に示す。発生圧力が，有意 な変形及び著しい漏えいがないことを確認した水圧試験圧力以下であることから，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含 む），取付金具ピン及びねじ切り部が構造健全性を有することを確認した。

表 6－2 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の構造健全性評価結果

| 評価対象部位 |
| :---: | :---: | :---: | :---: | | 発生圧力
 (MPa) | | 水圧試験の圧力
 (MPa) |
| :---: | :---: | :---: |
| 圧縮スプリング，ガイド，サポータ，
 取付金具（取付ねじ含む），
 取付金具ピン及びねじ切り部 | | |
| 圧縮 | | |

VI－3－別添 3－2－10 貫通部止水処置の強度計算書

目次

1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造概要 2
2.3 評価方針 － 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
3．評価対象部位 6
4．構造強度評価 7
4．1 構造強度評価方法 7
4.2 荷重及び荷重の組合せ 7
4．2．1 荷重の設定 7
4．2．2 荷重の組合せ 8
4.3 許容限界 ． 9
4． 4 設計用地震力 10
4.5 計算方法 10
4．5．1 シール材の強度評価（発生圧力計算） 10
4． 6 計算条件 11
5．評価結果 13

1．概要

本計算書は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」 に基づき，浸水防護施設のうち貫通部止水処置が，地震後の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重，津波による溢水又は内部溢水の浸水によって生じ る浸水深が大きい方の静水圧荷重及び余震を考慮した荷重に対して，主要な構造部材が構造健全性を有することを確認するものである。

なお，貫通部止水処置の強度評価においては，平成23年3月11日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生したこと を考慮する。

2.1 配置概要

貫通部止水処置は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「3．構造強度設計」の構造計画に示すとおり，第2号機海水ポンプ室防潮壁横断部，第2号機放水立坑防潮壁横断部，第3号機海水ポンプ室防潮壁横断部，第 3 号機放水立坑防潮壁横断部，第 3 号機補機冷却海水系放水ピット浸水防止蓋貫通部，第2号機原子炉建屋，第2号機制御建屋及び第2号機軽油タンクエリアの貫通口 と貫通物とのすき間又は貫通物の周囲に施工する。

2.2 構造概要

貫通部止水処置の構造は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設 の強度計算の方針」の「3．構造強度設計」に示す構造計画を踏まえて，詳細な構造 を設定する。

貫通部止水処置は，貫通部の位置条件及び貫通物の強度条件に応じて，シール材を使用し，各貫通部止水処置の適用条件を考慮し施工する。シール材は壁又は床面等の貫通口と貫通物のすき間に施工し，壁又は床面等と貫通物を接合する構造とする。貫通部止水処置の構造計画を表2－1に示す。

表 2－1 貫通部止水処置の構造計画

計画の概要		説明図
基礎•支持構造	主体構造	
貫通部の開口部 にシリコンシー ルを充填する。施工時は液状で あり，反応硬化に よって所定の強度を有する構造物が形成され，貫通部内面及び貫通物外面と一定 の付着力によっ て接合する。	充填タイプのシ リコンシールに て構成する。	シリコンシールの構造例（押さえ板有り） シリコンシールの構造例（押さえ板無し） シリコンシールの構造例（電線管） シリコンシールの構造例（ケーブルトレイ）

2． 3 評価方針

貫通部止水処置の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，貫通部止水処置の評価対象部位に作用する応力等が許容限界以下であることを確認する。

シール材の強度評価フローを図 2－1 に示す。
シール材については，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定しているとおり，計算により求めた圧力が，水圧試験で確認 した水圧以下であることを確認する。

図 2－1 シール材の強度評価フロー

2.4 適用規格•基準等

適用する規格，基準等を以下に示す
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下，設計•建設規格という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 O 1 •補－1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）日本水道協会 2009 年 水道施設耐震工法指針•解説

2.5 記号の説明

貫通部止水処置の強度評価に用いる記号を表2－2に示す。

表 2－2 貫通部止水処置の強度評価に用いる記号

記 号	記号の説明	単 位
C_{H}	弾性設計用地震動 S d－D 2 による水平方向の設計震度	－
C_{v}	弾性設計用地震動 S d－D 2 による鉛直方向の設計震度	－
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
h	貫通部にかかる水頭	m
H	貫通部敷設エリアの床面からの浸水深さ	m
β	浸水エリアの幅と水深の比による補正係数	－
ρ	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
C_{D}	抗力係数	－
U	貫通部に加わる流体の速度	m／s
P_{d}	余震による動水圧	MPa
P_{h}	浸水津波荷重	MPa
P_{t}	突き上げ津波荷重	MPa
$\mathrm{P}_{\text {s d }}$	余震による慣性力	MPa
$\mathrm{P}_{\mathrm{H} \text { total }}$	貫通物の貫通軸が水平方向であるシール材に加わる荷重	MPa
$\mathrm{P}_{\mathrm{v} \text { total }}$	貫通物の貫通軸が鉛直方向であるシール材に加わる荷重	MPa

3．評価対象部位
貫通部止水処置の評価部位は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示している評価対象部位を踏まえて，「2．2 構造概要」に示す構造計画にて設定し ている構造に基づき，荷重の方向及び伝達過程を考慮し設定する。

地震後の繰返しの襲来を想定した経路からの津波の浸水に伴う津波荷重，津波による溢水又は内部溢水の浸水によって生じる浸水深が大きい方の静水圧荷重及び余震を考慮した荷重は，止水処置全体へ伝達される。このことから，シール材を用いた止水処置の全体を評価部位として設定 する。

シール材については，作用する圧力による荷重が最も大きい貫通部を代表として評価を行う。

4．構造強度評価
4． 1 構造強度評価方法
貫通部止水処置の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している方法を用いて実施する。

貫通部止水処置の強度評価は，「3．評価対象部位」に示す評価対象部位に対し，「4．2 荷重及び荷重の組合せ」及び「4．3 許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏ま え，「4．5 計算方法」に示す方法を用いて評価を行う。

4．2 荷重及び荷重の組合せ
強度評価に用いる荷重の種類及び荷重の組合せに関して以下に示す。
4．2．1 荷重の設定
強度評価に用いる荷重は，以下の荷重を用いる。
（1）固定荷重（D）
固定荷重は，貫通軸上の貫通物（配管等を示す。以下同じ。）の質量及び内容物の質量に よる荷重である。
（2）浸水津波荷重（ P_{h} ）
浸水津波荷重として，津波による水位を用いた静水圧を考慮する。

$$
\mathrm{P}_{\mathrm{h}}=\rho \cdot \mathrm{g} \cdot \mathrm{~h}
$$

（3）突き上げ津波荷重（ P t ）
貫通部止水処置に加わる津波速度を考慮する。

$$
\mathrm{P}_{\mathrm{t}}=1 / 2 \cdot \mathrm{C}_{\mathrm{D}} \cdot \rho \cdot \mathrm{U}^{2}+\rho \cdot \mathrm{g} \cdot \mathrm{~h}
$$

（4）余震荷重
余震荷重は，添付書類「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」 に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力（動水圧含む。）とする。
a．余震による動水圧（K S d）
余震による動水圧がシール材に作用することを考慮する。

$$
\mathrm{P}_{\mathrm{d}}=\beta \cdot \frac{7}{8} \cdot \rho \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \sqrt{\mathrm{H} \cdot \mathrm{~h}}
$$

b．余震による慣性力（S d）
津波による静水頭が余震を受けた場合の慣性力を考慮する。

$$
\mathrm{P}_{\mathrm{sd}}=\mathrm{h} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{Cv}
$$

4．2．2 荷重の組合せ

貫通部止水処置の強度評価にて考慮する荷重の組合せを表 4－1 に示す。

表 4－1 荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設 （浸水防止設備）	貫通部止水処置 （第2号機海水ポンプ室防潮壁横断部，第 2 号機放水立坑防潮壁横断部，第 3 号機海水ポンプ室防潮壁横断部，第 3 号機放水立坑防潮壁横断部，第 2号機原子炉建屋，第2号機制御建屋及 び第 2 号機軽油タンクエリアの貫通口）	$\mathrm{D}+\mathrm{P}_{\mathrm{h}}+\mathrm{KS} \mathrm{d} * 1 * 3$
	貫通部止水処置 （第3号機補機冷却海水系放水ピット浸水防止蓋貫通部）	$\mathrm{D}+\mathrm{P}{ }_{\mathrm{t}}+\mathrm{Sd}{ }^{* 2 * 3}$

注記＊1：Dは固定荷重， P_{h} は浸水津波荷重，K S d は弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ による余震荷重（余震による動水圧 P_{d} ）を示す。
＊2：Dは固定荷重， P_{t} は突き上げ津波荷重， Sd は弾性設計用地震動 $\mathrm{S} \mathrm{d}-\mathrm{D} 2$ によ る余震荷重（余震による慣性力 $\mathrm{P}_{\mathrm{s} \text { d }}$ ）を示す。
＊3：固定荷重（D）について，シール材を施工する配管貫通部は，耐震性を満足させる ため，貫通部近傍の配管に支持構造物を設置する設計としており，シール材に加わ る固定荷重の影響は軽微であるため考慮しない。

4．3 許容限界

シール材の許容限界値は，実機で使用している形状，寸法の試験体にて静水圧を付加した水圧試験に基づく結果を用いる。シール材の水圧試験の概要を図 $4-1$ に示す。実機施工時に おいては，試験検証済みの許容限界寸法以上となるように施工する。これにより試験で得ら れた許容限界値以上の耐圧性を有し，かつ，想定するシール材に加わる圧力が，許容限界値以内であることを確認し確実に耐圧性を確保する。

図 4－1 シール材の水圧試験の概要

4． 4 設計用地震力
強度評価における弾性設計用地震動 S d－D 2 に伴う地震力については，添付書類「V－2－1－
7 設計用床応答曲線の作成方針」に示す最大床応答加速度を考慮して設定する。貫通部止水処置の強度評価に用いる設計用震度を表4－2 に示す。

表 4－2 貫通部止水処置の強度計算に用いる設計用震度

地震動	床面高さ＊1 0 ．P． （m）	貫通部止水処置の設置場所	余震による	震度＊2
弾性設計用地震動$\mathrm{Sd}-\mathrm{D} 2$	14.8	第 3 号機放水立坑防潮壁横断部 （第3号機放水立坑）	水平方向 C_{H}	0． 40
	15.0	第 3 号機補機冷却海水系放水 ピット浸水防止蓋貫通部 （第3号機海水熱交換器建屋）	鉛直方向 C_{v}	0． 89

注記＊1：貫通部止水処置の設置場所より高い基準床レベルを設定している。
＊2：最大床応答加速度の 1.2 倍を設計震度とした。

4.5 計算方法

4．5．1 シール材の強度評価（発生圧力計算）
貫通物の貫通軸が水平方向であるシール材は，浸水津波荷重 P_{h} と余震による動水圧 P_{d} を考慮する。

$$
\mathrm{P}_{\mathrm{H} \text { total }}=\mathrm{P}_{\mathrm{h}}+\mathrm{P}_{\mathrm{d}}
$$

貫通物の貫通軸が鉛直方向であるシール材は，津波による突き上げ津波荷重 P_{t} と余震 による慣性力 P s d を考慮する。

$$
\mathrm{P}_{\mathrm{v} \text { total }}=\mathrm{P}_{\mathrm{t}}+\mathrm{P}_{\mathrm{sd}}
$$

4． 6 計算条件

貫通部止水処置の強度評価に用いる計算条件を表 4－3 及び表 4－4に示す。また，貫通部止水処置に加わる津波概要を図 4－3 及び図4－4に示す。

表 4－3 貫通部止水処置（貫通軸：水平）の強度評価に用いる計算条件

貫通部箇所 （貫通部仕様）	浸水エリアの幅と水深の比による補正係数 β	海水の密度 ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	貫通部施設エリアの床面からの浸水深さ＊1 H （m）
第3号機放水立坑防潮壁横断部 (シール材)		1030	21． 2

\(\left.$$
\begin{array}{|c|c|c|}\hline \text { 貫通部位置における浸水深さ＊2 } \\
\mathrm{h} \\
(\mathrm{m})\end{array}
$$ $$
\begin{array}{c}\text { 弾性設計用地震動 } \mathrm{S} \mathrm{d}-\mathrm{D} 2 \text { による } \\
\text { 水平方向の設計震度 } \\
\mathrm{C}_{\mathrm{H}}\end{array}
$$ \quad \begin{array}{c}重力加速度

\mathrm{g}\end{array}\right]\)| $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ |
| :---: |

注記＊ 1 ：貫通部施設エリアの床面からの浸水深さ（H）は，貫通部施設エリアの床面（0．P．-2.2 m ） から入力津波水位に 0.5 m の余裕を考慮した津波水位（0．P．18．0m）までの寸法。
＊ 2 ：貫通部位置における浸水深さ h は開口下端高さ（0．P．8．836m）から入力津波水位に 0.5 m の余裕を考慮した津波水位（0．P．18．0m）までの寸法。

図 4－3 貫通部止水処置（貫通軸：水平）に加わる津波の概要

表 4－4 貫通部止水処置（貫通軸：鉛直）の強度評価に用いる計算条件

貫通部箇所 （貫通部仕様）	海水の密度 $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	抗力係数 C_{D} $(-)$	貫通部に加わる流体 の流速 U
第3号機補機冷却海 水系放水ピット浸水 防止蓋貫通部 （シール材）	1030	2.01	

| 貫通部位置における浸水深さ |
| :---: | :---: |
| h |
| (m) |\quad| 重力加速度 |
| :---: |
| g |
| $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ |

入力津波水位に 0.5 m の余裕を考慮した津波水位

図 4－4 貫通部止水処置（貫通軸：鉛直）に加わる津波の概要

5．評価結果
シール材の強度評価結果を表 5－1 に示す。シール材の発生圧力は許容圧力以下であることを確認した。

表 5－1 シール材の浸水に対する強度評価結果

評価部位	発生圧力 (MPa)	許容圧力 (MPa)
シール材 （貫通軸 $:$ 水平 $)$	0.15	0.40
シール材 （貫通軸 ：鉛直）	0.08	0.40

VI－3－別添 3－2－11 津波監視設備の強度計算書

VI－3－別添3－2－11－1 取水ピット水位計の強度計算書

VI－3－別添3－2－11－1 取水ピット水位計の強度計算書
1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2.3 評価方針 4
2.4 適用規格•基準等 5
2.5 記号の説明 6
2.6 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 8
4． 1 固有値解析方法 8
4．2 解析モデル及び諸元 8
4． 3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5.3 設計用地震力 13
5.4 計算方法 14
5.5 計算条件 18
5.6 応力の評価 18
6．評価結果 19
6． 1 設計基準対象施設としての評価結果 19

1．概要

本計算書は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に基づ き，津波監視設備のらち取水ピット水位計が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有することを確認するものである。

2．一般事項
2.1 配置概要

津波監視設備の配置図を図2－1 に示す。

図 2－1 津波監視設借配置図
2.2 構造計画

		表 2－1 構造計画
計画の概要		概略構造図
基礎•支持構造	主体構造	
取水ピット水位計はフ ランジに固定されフラン ジは取付床に固定された スリーブに取付ボルトで固定される。	バブラー管	【取水ピット水位計】

2． 3 評価方針

取水ピット水位計の強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価 により実施する。応力評価では，取水ピット水位計の評価部位に作用する応力等が許容限界以下であることを「5．1 構造強度評価方法」に示す方法により，「5． 5 計算条件」に示す評価条件を用いて評価し，「6．評価結果」にて確認する。

取水ピット水位計の強度評価フローを図 2－2 に示す。取水ピット水位計の強度評価において は，その構造を踏まえ，津波及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位 を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下，「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下，「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添 3－1津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S_{d} による地震力とする。余震荷重の設定に当たつては，弾性設計用地震動 S_{d} を入力し て得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用いる。

図 2－2 取水ピット水位計の耐震評価フロー

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J EAG4601•補—1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）
（5）港湾の施設の技術上の基準•同解説（（社）日本港湾協会 平成19年2月）

記 号	記 号 の 説 明	単 位
A_{b}	取付ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
d	取付ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F_{b}	取付ボルトに作用する引張力（1本当たり）	N
F_{x}	取付ボルトに作用する力（ X 方向）	N
F_{Y}	取付ボルトに作用する力（ Y 方向）	N
F_{z}	取付ボルトに作用する力（ Z 方向）	N
$f \mathrm{sb}$	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
f to	引張力のみを受ける取付ボルトの許容引張応力	MPa
f t s	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
ℓ_{1}	M_{x} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
ℓ_{2}	M_{z} によって取付ボルトにせん断力が発生する場合の取付ボルトとフラ ンジ中心との距離	mm
M_{X}	取付ボルトに作用するモーメント（ X 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	取付ボルトに作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	取付ボルトに作用するモーメント（ Z 軸周り ）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{ma}_{\text {a }}$	バブラー管の質量	kg
Pa_{a}	バブラー管拘束点からの反力	－
n	取付ボルトの本数	－
n x	M_{X} の引張力に耐えうる取付ボルトの本数	－
n z	M_{Z} の引張力に耐えうる取付ボルトの本数	－
Q_{b}	取付ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(R T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ におけ る値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

記 号	記 号 の 説 明	単 位
Pt	バブラー管据付フランジに作用する突き上げ津波荷重	N
A1	突き上げ津波荷重及び静水頭圧を受けるフランジの面積	m^{2}
ρ	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
Th	入力津波高さ	m
h	津波最大到達レベル	m
z	評価対象部位のレベル	m
Cd	抗力係数	－
U	フランジに作用する流速（上昇方向）	m／s

2.6 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
本資料で表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 ${ }^{* 3}$

注記 $* 1$ ：設計上定める値が小数点第 1 位以下の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。

3．評価部位

取水ピット水位計の構造強度評価は，「2．2 構造計画」にて設定している構造を踏まえて，津波に伴ら荷重の作用方向及び伝達過程を考慮し設定する。
津波時は，取水ピットからの突き上げ津波荷重が取水ピット水位計検出器取付座及び取付ボル トに作用する。重畳時は，取水ピットからの突き上げ津波荷重及び余震による慣性力が取水ピッ ト水位計検出器取付座及び取付ボルトに作用する。
以上より，構造強度評価においては，応力評価による評価部位として，強度評価上厳しくなる取付ボルトを選定する。評価部位については，表 2－1 の構造計画に示す。

4．固有周期

4． 1 固有値解析方法
取水ピット水位計の固有値解析方法を以下に示す。
（1）取水ピット水位計は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考え る。

4.2 解析モデル及び諸元

取水ピット水位計の解析モデルを図 4－1 に，解析モデルの概要を以下に示す。
（1）バブラー管の質量は支持点に集中するものとする。
（2）図 4－1 中の \triangle は質点を示し，バブラー管の質量mは 65 kg である。
（3）拘束条件として，支持点（バブラー管支持部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コ ードの検証及び妥当性碓認等の概要については，添付書類「VI－5－25 計算機コード概要 NX NASTRAN」に示す。

また，解析に必要な機器要目を表 2－3 に示す。

表 2－3 解析に必要な機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
緱弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

図 4－1 取水ピット水位計解析モデル
4.3 固有値解析結果

固有値解析結果を表4－1 に示す。
固有周期は 0.05 秒以下であり剛であることを確認した。

表 4－1 固有値解析結果
（単位：s）

モード	卓越方向	固有周期	水平方向刺激係数		鉛直方向 刺激係数
			Z 方向	-	
1 次	水平方向		-	-	-

5．構造強度評価

5.1 構造強度評価方法

（1）地震力は，取水ピット水位計に対して，水平方向及び鉛直方向から同時に作用するもの とする。
（2）取水ピット水位計は，フランジ部にて取付ボルトでスリーブに固定されるものとする。
（3）強度計算に用いる寸法は，公称値を使用する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せを用いる。取水ピット水位計の荷重の組合せを表 5－1 に示す。

5．2．2 許容応力
取水ピット水位計の許容応力は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設 の強度計算の方針」の「4．2 許容限界」にて設定している許容応力に基づき表 5－2 のとお りとする。

5．2．3 使用材料の許容応力評価条件
取水ピット水位計の使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用 いるものを表 5－3 に示す。

表 5－1 荷重の組合せ

施設区分	機器名称	荷重の組合せ＊1，＊2
浸水防護施設 （津波監視設備）	取水ピット水位計	$\mathrm{D}+\mathrm{Sd}+\mathrm{P}_{\mathrm{t}}$

注記＊1：Dは固定荷重， $\mathrm{S} d$ は余震荷重， P_{t} は突き上げ津波荷重を示す。
＊2：固定荷重（D）及び余震荷重（S d）の組合せが，強度評価上，突き上げ津波荷重 $\left(\mathrm{P}_{\mathrm{t}}\right)$ を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

表 5－2 許容応力（その他の支持構造物）

	許容応力状態		許容応力 $* 1, * 2$ （ボルト等）				
			一次応力				
¢			引張り		せん断		
$\begin{aligned} & 1 \\ & \stackrel{1}{1} \\ & c \end{aligned}$	IIIIS		$1.5 \cdot \mathrm{ff}_{\mathrm{t}}$		$1.5 \cdot \mathrm{f}$ s		
	注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。 ＊ 2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。						
N	表 5－3 使用材料の許容応力評価条件						
O	評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
	取付ボルト	SUS304	周囲環境温度	40	205	520	－

5.3 設計用地震力

「4．固有周期」に示したとおり取水ピット水位計の固有周期は 0.05 秒以下であることを確認したため，取水ピット水位計の強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。耐震評価に用いる設計用地震力を表 5－4 に示 す。

表 5－4 設計用地震力

地震動	据付場所 及び 床面高さ （m）	余震による設計震度	
弾性設計用地震動$S d-D 2$	$\begin{gathered} \text { 海水ポンプ室 } \\ \text { O.P. } 2.25 \\ \left(0 . \mathrm{P} .2 .00^{*}\right) \end{gathered}$	水平方向 C_{H}	1． 05
		鉛直方向 C_{V}	1． 03

注記 $*$ ：基準床レベルを示す。

5.4 計算方法

取水ピット水位計に作用する応力及び算出式を示す。
5．4．1 突き上げ津波荷重の計算方法
取水ピット水位計に作用する突き上げ津波荷重 P_{t} は次式にて求める。

$$
\begin{equation*}
\mathrm{P}_{\mathrm{t}}=\rho \cdot \mathrm{g} \cdot \mathrm{~T}_{\mathrm{h}} \cdot \mathrm{~A}_{1}+\frac{1}{2} \cdot \mathrm{Cd} \cdot \rho \cdot \mathrm{~A}_{1} \cdot \mathrm{U}^{2} \tag{5.4.1.1}
\end{equation*}
$$

ここで，突き上げ津波荷重及び静水頭圧を受けるフランジの面積 A_{1} は次式にて求め る。
$\mathrm{A}_{1}=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
（5．4．1．2）
ここで，入力津波高さThは次式にて求める。
$\mathrm{Th}=\mathrm{h}-\mathrm{z}$

5．4．2 応力の計算方法

5．4．2．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

地震応答解析によって得られたフランジ部の評価点の最大反力とモーメントを表 5－5に示す。

表 5－5 フランジ部発生反力，モーメント

対象計器	反力（ N$)$			モーメント $(\mathrm{N} \cdot \mathrm{mm})$		
	F_{x}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}
-						

（1）引張応力
取付ボルト（1本当たり）に対する引張応力は，下式により計算する。

引張力
$\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{X}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{X}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{Z}}}+\mathrm{P}_{\mathrm{t}}$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.2.1.2}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.2.1.3}
\end{equation*}
$$

（2）せん断応力
取付ボルト（1 本当たり）に対するせん断応力は，下式により計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{x}}^{2}+\mathrm{F}_{\mathrm{Z}}^{2}}}{\mathrm{n}} \tag{5.4.2.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{b}=\frac{Q_{b}}{A_{b}} \tag{5.4.2.1.5}
\end{equation*}
$$

5.5 計算条件

5．5．1 取付ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【取水ピット水位計の強度についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 取付ボルトの応力評価
ボルトの引張応力 σ_{b} は次式より求めた許容引張応力 f t s 以下であること。
ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 τ bはせん断力のみを受ける取付ボルトの許容せん断応力 f s b 以下であるこ と。ただし，f sbは下表による。

弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { o }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果

6.1 設計基準対象施設としての評価結果

取水ピット水位計の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【取水ピット水位計の強度についての計算結果】 1．設計基準対象施設 1.1 設計条件
機器名称

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

機器名称	耐震重要度分類	据付場所及び床面高さ	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s		
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
取水ピット水位計	S	$\begin{array}{r} \text { 海水ポンプ室 } \\ \text { 0.P. } 25 \\ \text { (0.P. 2. } 00^{* 1} \text {) } \end{array}$			$\mathrm{C}_{\mathrm{H}}=1.05$	$\mathrm{C}_{\mathrm{V}}=1.03$	－	－	40

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \text { 弾性設計用 } \\ & \text { 地震動 S d } \end{aligned}$ は静的震度	基準地震動
取付ボルト	205	520	246	－	水平方向	－

1.2 機器要目

部 材	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{x}	n_{z}
取付ボルト							

1．3．2 取付ボルトに作用するモーメント					（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）	
	M_{X}		M_{Y}		M_{Z}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S S	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト		－		－		－

1.4 結論1.4 .1 取付ボルトの応力					（単位： MPa ）	
部 材	材 料	応 力	弾性設計用地震動S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト	SUS304	引張り	$\sigma_{\mathrm{b}}=38$	$\mathrm{f}_{\mathrm{ts}}=184 *$	－	－
		せん断	$\tau_{\mathrm{b}}=0$	$\mathrm{f}_{\mathrm{s} \text { b }}=142$	－	－

すべて許容応力以下である。

VI－3－別添 3－4 溢水への配慮が必要な施設の強度計算書

VI－3－別添 3－4－1 水密扉の強度計算書（溢水）
VI－3－別添 3－4－2 堰の強度計算書
VI－3－別添 3－4－3 逆流防止装置の強度計算書
VI－3－別添 3－4－4 貫通部止水処置の強度計算書（溢水）

VI－3－別添 3－4－1 水密扉の強度計算書（溢水）

目 次

1．概要 1
2．一般事項 2
2.1 検討対象水密扉一覧 2
2.2 配置概要 4
2.3 構造計画 16
2.4 評価方針 19
2.5 適用規格•基準等 21
2.6 記号の説明 22
3．強度評価 27
3.1 タイプ I 27
3．1．1 評価対象部位 27
3．1．2 荷重及び荷重の組合せ 30
3．1．2．1 荷重の設定 30
3．1．2．2 荷重の組合せ 31
3．1．3 許容限界 32
3．1．3．1 使用材料 32
3．1．3．2 許容限界 34
3．1．4 評価方法 36
3．1．4．1 応力算定 36
3．1．4．2 断面検定 54
3．1．5 評価条件 58
3．1．6 評価結果 67
3．2 タイプ II 69
3．2．1 評価対象部位 69
3．2．2 荷重及び荷重の組合せ 71
3．2．2．1 荷重の設定 71
3．2．2．2 荷重の組合せ 72
3．2．3 許容限界 73
3．2．3．1 使用材料 73
3．2．3．2 許容限界 74
3．2．4 評価方法 75
3．2．4．1 応力算定 75
3．2．4．2 断面検定 92
3．2．5 評価条件 99
3．2．6 評価結果 101
3.3 タイプIII 102
3．3．1 評価対象部位 102
3．3．2 荷重及び荷重の組合せ 103
3．3．2．1 荷重の設定 103
3．3．2．2 荷重の組合せ 103
3．3．3 許容限界 104
3．3．3．1 使用材料 104
3．3．3．2 許容限界 105
3．3．4 評価方法 106
3．3．4．1 応力算定 106
3．3．4．2 断面検定 109
3．3．5 評価条件 110
3．3．6 評価結果 111

1．概要

本資料は，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」に基づき，溢水防護設備である原子炉建屋の水密扉，制御建屋の水密扉，タービン建屋の水密扉，軽油タン クエリアの水密扉及び海水ポンプ室の水密扉（以下「水密扉」という。）が，発生を想定する溢水 による静水圧荷重に対して，止水性の維持を考慮して，主要な構造部材が構造健全性を維持する ことを説明するものである。

2．一般事項
2.1 検討対象水密扉一覧

検討対象の水密扉を表2－1 に示す。

表 2－1 検討対象水密扉一覧 $(1 / 2)$

水密扉 No．	扉名称	設置高さ 0. P.
1	RCIC タービンポンプ室－共通通路浸水防止水密扉	－8．10m
2	FPMUW ポンプ室浸水防止水密扉	－8．10m
3	RHR ポンプ（C）室－共通通路浸水防止水密扉	－8．10m
4	RHR ポンプ（B）室浸水防止水密扉	－8．10m
5	HPCS ポンプ室浸水防止水密扉	－8．10m
6	LPCS ポンプ室浸水防止水密扉	－8．10m
7	RCW Hx（A）（C）室－共通通路浸水防止水密扉	－8．10m
8	HPCW Hx 室浸水防止水密扉	－8．10m
9	RHR ポンプ（A）室浸水防止水密扉	－8．10m
10	HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉	－8．10m
11	原子炉建屋浸水防止水密扉（No．3）	－8．10m
12	原子炉建屋浸水防止水密扉（No．4）	－0．80m
13	区分IIIHPCS 電気品室－区分 II 非常用電気品室浸水防止水密扉	6． 00 m
14	RHR Hx（A）室－RHR Hx（B）室浸水防止水密扉	15.00 m
15	原子炉建屋管理区域外伝播防止水密扉（No．3）	15.00 m
16	D／G（B）室－D／G（HPCS）室浸水防止水密扉	15.00 m
17	主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉	15.00 m
18	原子炉建屋管理区域外伝播防止水密扉（No．1）	15.00 m
19	原子炉建屋管理区域外伝播防止水密扉（No．2）	15.00 m
20	北西階段室管理区域外伝播防止水密扉	15.00 m
21	Rw 制御室管理区域外伝播防止水密扉	15.00 m
22	Rw 電気品室（B）浸水防止水密扉	15.00 m
23	原子炉建屋大物搬入口	15.00 m
24	SGTS ヒータユニット（A）室浸水防止水密扉	22.50 m
25	HECW 冷凍機（B）（D）室－HECW 冷凍機（A）（C）室浸水防止水密扉	22.50 m
26	制御建屋共通エリア浸水防止水密扉	22.50 m

表 2－1 検討対象水密扉一覧 $(2 / 2)$

水密扉 No．	扉名称	設置高さ $0 . \mathrm{P}$ ．
27	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．2）	1． 50 m
28	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．1）	1． 50 m
29	250V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	1． 50 m
30	ISI 室浸水防止水密扉	1． 50 m
31	RSS 盤室浸水防止水密扉	8． 00 m
32	計測制御電源室（B）浸水防止水密扉（No．2）	8.00 m
33	計測制御電源室（B）浸水防止水密扉（No．1）	8.00 m
34	計測制御電源室（A）－常用および共通 M／C•P／C 室浸水防止水密扉	8.00 m
35	制御建屋管理区域外伝播防止水密扉（No．1）	15.00 m
36	補助ボイラー建屋連絡階段管理区域外伝播防止水密扉	15．00m
37	タービン建屋管理区域外伝播防止水密扉	0． 80 m
38	燃料移送ポンプ（H）室一燃料移送ポンプ（A）室浸水防止水密扉	9． 50 m
39	燃料移送ポンプ（A）室一燃料移送ポンプ（ $)^{\text {）室浸水防止水密扉 }}$	9． 50 m
40	燃料移送ポンプ（A）室浸水防止水密扉	9． 50 m
41	燃料移送ポンプ（B）室浸水防止水密扉	9． 50 m
42	RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	3.00 m
43	HPSW ポンプ室浸水防止水密扉	3.00 m
44	TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉	3.00 m

2.2 配置概要

原子炉建屋の水密扉の設置位置図を図 2－1 に，制御建屋の水密扉の設置位置図を図 2－2 に，タービン建屋の水密扉の設置位置図を図 $2-3$ に，軽油タンクエリアの水密扉の設置位置図を図 2－4に，海水ポンプ室の水密扉の設置位置図を図 $2-5$ に示す。

1	RCIC タービンポンプ室－共通通路浸水防止水密扉
2	FPMUW ポンプ室浸水防止水密扉
3	RHR ポンプ（C）室－共通通路浸水防止水密扉
4	RHR ポンプ（B）室浸水防止水密扉
5	HPCS ポンプ室浸水防止水密扉
6	LPCS ポンプ室浸水防止水密扉
7	RCW Hx（A）（C）室－共通通路浸水防止水密扉
8	HPCW Hx 室浸水防止水密扉
9	RHR ポンプ（A）室浸水防止水密扉
10	HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉
11	原子炉建屋浸水防止水密扉（No．3）

図 2－1 原子炉建屋の水密扉の設置位置図（1／5）0．P．－8．10m

原子炉建屋浸水防止水密扉（No．4）

図 2－1 原子炉建屋の水密扉の設置位置図（2／5）$\quad 0$. P．-0.80 m

図 2－1 原子炉建屋の水密扉の設置位置図（3／5）0．P．6．00m

14	RHR Hx（A）室－RHR Hx（B）室浸水防止水密扉
15	原子炉建屋管理区域外伝播防止水密扉（No．3）
16	D／G（B）室－D／G（HPCS）室浸水防止水密扉
17	主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉
18	原子炉建屋管理区域外伝播防止水密扉（No．1）
19	原子炉建屋管理区域外伝播防止水密扉（No．2）
20	北西階段室管理区域外伝播防止水密扉
21	Rw 制御室管理区域外伝播防止水密扉
22	Rw 電気品室（B）浸水防止水密扉
23	原子炉建屋大物搬入口

図 2－1 原子炉建屋の水密扉の設置位置図（4／5）0．P．15．00m

24	SGTS ヒータユニット（A）室浸水防止水密扉
25	HECW 冷凍機（B）（D）室－HECW 冷凍機（A）（C）室浸水防止水密扉
26	制御建屋共通エリア浸水防止水密扉

図 2－1 原子炉建屋の水密扉の設置位置図（5／5）0．P．22．50m

27	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．2）
28	制御建屋空調機械（A）室－（B）室浸水防止水密扉（No．1）
29	250 V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉
30	ISI 室浸水防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（1／3）0．P．1．50m

31	RSS 盤室浸水防止水密扉
32	計測制御電源室（B）浸水防止水密扉（No．2）
33	計測制御電源室（B）浸水防止水密扉（No．1）
34	計測制御電源室（A）－常用および共通 M／C•P／C 室浸水防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（2／3）0．P．8．00m

枠囲みの内容は防護上の観点から公開できません。

35	制御建屋管理区域外伝播防止水密扉（No．1）
36	補助ボイラー建屋連絡階段管理区域外伝播防止水密扉

図 2－2 制御建屋の水密扉の設置位置図（3／3）0．P．15．00m
VI－3－別添 3－4－1 R 0
（1）

37 タービン建屋管理区域外伝播防止水密扉

図2－3 タービン建屋の水密扉の設置位置図 0．P． 0.80 m

38	燃料移送ポンプ (H) 室－燃料移送ポンプ (A) 室浸水防止水密扉
39	燃料移送ポンプ (A) 室－燃料移送ポンプ (B) 室浸水防止水密扉
40	燃料移送ポンプ (A) 室浸水防止水密扉
41	燃料移送ポンプ (B) 室浸水防止水密扉

図 2－4 軽油タンクエリアの水密扉の設置位置図 0．P．9．50m

42	RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉
43	HPSW ポンプ室浸水防止水密扉
44	TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉

図2－5 海水ポンプ室の水密扉の設置位置図 0．P．3．00m

2.3 構造計画

水密扉の構造は，タイプI ，タイプII及びタイプIIIに区分しており，各扉の構造計画を表2 －2に示す。

表 2－2 水密扉の構造計画（タイプ I ）

枠囲みの内容は商業機密の観点から公開できません。

表2－2 水密扉の構造計画（タイプII）

計画の概要		説明図
主体構造	支持構造	
片開型の鋼製扉と し，鋼製の扉板に芯材を取り付け，扉に設置されたカ ンヌキを鋼製の取付金具に差し込 み，扉と取付金具 を一体化させる構造とする。 また，扉と取付金具の接続はヒンジ を介する構造とす る。	扉開放時において は，ヒンジにより扉が取付金具に固定され，扉閉止時 においては，カン ヌキにより扉が取付金具に固定され る構造とする。 また，取付金具を躯体に定着するこ とで荷重を躯体に伝達する構造とす る。	正面図 水圧作用方向（扉側） 平面図

表2－2 水密扉の構造計画（タイプIII）

2． 4 評価方針

水密扉の強度評価は，以下にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえ て，水密扉の評価対象部位に作用する応力等が許容限界内に収まることを，各設備の「3．強度評価」に示す方法により，水密扉のタイプごとに「3．1．5 評価条件」，「3．2．5 評価条件」及び「3．3．5 評価条件」に示す評価条件を用いて評価し，応力評価の確認事項を水密扉のタイ プごとに「3．1．6 評価結果」，「3．2．6 評価結果」及び「3．3．6 評価結果」にて確認する。

水密扉の強度評価フローを図2－6に示す。
水密扉の強度評価においては，その構造を踏まえ，発生を想定する溢水による静水圧荷重の作用方向及び伝達過程を考慮し，評価対象部位を設定する。
（1）タイプ I
水密扉タイプ I の強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材，カンヌキ部（カンヌキ，カンヌキ受けピン，カンヌキ受けボルト），パネル板，方立，マグ サ，扉固定部（扉付固定ボルト，枠付固定ボルト）及びパネル取付ボルトの発生応力並びにア ンカーボルトの発生荷重を算定し，許容限界との比較を行う。
なお，パネル板は扉板と同じ評価方法，方立及びマグサは芯材と同じ評価方法，扉付固定ボ ルト，枠付固定ボルト及びパネル取付ボルトはカンヌキ受けボルトと同じ評価方法とする。

アンカーボルトは壁に埋め込まれた方向によって下記のとおりに呼ぶこととする。

- 0° 方向配置：アンカーボルトが壁の厚さの直交方向に配置されている場合
- 45° 方向配置：アンカーボルトが壁の厚さの方向から 45° 傾斜して配置されている場合
- 90° 方向配置：アンカーボルトが壁の厚さの方向に配置されている場合
（2）タイプII
水密扉タイプ II の強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングに生じる応力または応力度を算定し，許容限界との比較を行う。
（3）タイプIII
水密扉タイプIIIの強度評価においては，荷重を静的に作用させる静的解析により，扉板，芯材に生じる応力または応力度を算定し，許容限界との比較を行う。

（1）

2.5 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 2005 年 鋼構造設計規準 —許容応力度設計法一
- 日本建築学会 2010 年 各種合成構造設計指針•同解説
- 日本機械学会 機械工学便覧
- 原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補一1984（日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会））（以下「J E A G 4 6 O 1 」と記載しているものは上記 3 指針を指す。）
－発電用原子力設備規格 設計•建設規格（2005年版（2007年追補版を含む。）） J S M E S N C 1－2005／2007（日本機械学会）（以下，設計•建設規格という。）

2.6 記号の説明

水密扉の強度評価に用いる記号を表2－3に示す。

表 2－3 強度評価に用いる記号（タイプ I ）（1／2）

記号	単位	定義
h	mm	扉の水圧作用高さ
ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
$L_{\text {P L }}$	mm	扉板の短辺長さ
t	mm	扉板の厚さ
w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重
R_{1}	N	静水圧荷重に対する反力
β_{1}	－	四辺支持長方形板の応力係数
w＇	N / mm	芯材に作用する等分布荷重
b	mm	芯材，方立又はマグサに作用する荷重の負担幅
L	mm	芯材，方立又はマグサの支持間距離
Z	mm^{3}	断面係数
$\mathrm{A}_{\text {s }}$	mm^{2}	せん断断面積
n 2	本	カンヌキの本数
L 5	mm	カンヌキの突出長さ
L_{p}	mm	カンヌキ受けピンの軸支持間距離
n b	本	ボルトの本数
L_{D}	mm	扉の幅又はパネルの幅
H_{D}	mm	扉の高さ又はパネルの高さ
$\mathrm{L}_{\mathrm{c} 1}$	mm	躯体開口部の高さ
L c 2	mm	躯体開口部の幅
M	$\mathrm{N} \cdot \mathrm{mm}$	曲げモーメント
T	N	引張力
Q	N	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
T ${ }_{\text {d }}$	N	アンカーボルト 1 本当たりに生じる引張力

表 2－3 強度評価に用いる記号（タイプ I ）（2／2）

記号	単位	定義
Q_{d}	N	アンカーボルト 1 本当たりに生じるせん断力
T_{a}	N	アンカーボルト 1 本当たりの短期許容引張力
Q_{a}	N	アンカーボルト 1 本当たりの短期許容せん断力
$\mathrm{n}_{\mathrm{a} 1}$	本	0° 方向 左右もしくは上下のアンカーボルト本数
$\mathrm{n}_{\mathrm{a} 2}$	本	90° 方向 左右もしくは上下のアンカーボルト本数
$\mathrm{n}_{\mathrm{a} 3}$	本	45° 方向 左右もしくは上下のアンカーボルト本数

[^63]表 2－3 強度評価に用いる記号（タイプ II）（1／2）

記号	単位	定義
P_{h}	$\mathrm{kN} / \mathrm{m}^{2}$	溢水による静水圧荷重
h	mm	扉の水圧作用高さ
$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
L PL	mm	扉板の短辺長さ
β_{1}	－	四辺支持長方形板の応力係数
t	mm	扉板の厚さ
w	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重
W ${ }^{\prime}$	kN／m	芯材に生じる等分布荷重
R_{p}	kN	カンヌキ部，ヒンジに作用する荷重
P_{0}	kN	設計水圧荷重
L_{1}	mm	扉高さ
L_{2}	mm	扉幅
$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）
$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横リブ）
$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）
$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）
$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）
L L ${ }_{2}$	mm	芯材の支持長さ（縦リブ）
Z L^{2}	mm^{3}	芯材の断面係数（縦リブ）
$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）
n 2	個	カンヌキとヒンジの個数
L K 1	mm	カンヌキの突出長さ
$\mathrm{Z}_{\mathrm{K} 1}$	mm^{3}	カンヌキの断面係数
$\mathrm{A}_{\mathrm{K} 1}$	mm^{2}	カンヌキの断面積
L K 2	mm	カンヌキ受けの支持長さ
Z K_{2}	mm^{3}	カンヌキ受けの断面係数
$\mathrm{A}_{\mathrm{K} 2}$	mm^{2}	カンヌキ受けの断面積
n b	本	カンヌキ受けボルトの本数
A_{b}	mm^{2}	カンヌキ受けボルト断面積

表2－3 強度評価に用いる記号（タイプ II）（2／2）

記号	単位	定義
$\mathrm{A}_{\mathrm{K} 3}$	mm^{2}	カンヌキ受け溶接部の断面積
$\mathrm{L}_{\mathrm{H} 1}$	mm	ヒンジピンの支持長さ
$\mathrm{A}_{\mathrm{H} 1}$	mm^{2}	ヒンジピンの断面積
$\mathrm{Z}_{\mathrm{H} 1}$	mm^{3}	ヒンジピンの断面係数
L H 2	mm	ヒンジ受けピン穴（扉側）の支持長さ
$\mathrm{A}_{\mathrm{H} 2}$	mm^{2}	ヒンジ受けピン穴（扉側）の断面積
$\mathrm{Z}_{\mathrm{H} 2}$	mm^{3}	ヒンジ受けピン穴（扉側）の断面係数
$\mathrm{L}_{\mathrm{H} 3}$	mm	ヒンジ受けピン穴（躯体側）の支持長さ
$\mathrm{A}_{\mathrm{H} 3}$	mm^{2}	ヒンジ受けピン穴（躯体側）の断面積
$\mathrm{Z}_{\text {H } 3}$	mm^{3}	ヒンジ受けピン穴（躯体側）の断面係数
L H_{4}	mm	ヒンジ受け（扉側）の突出長さ
$\mathrm{A}_{\mathrm{H} 4}$	mm^{2}	ヒンジ受け溶接部（扉側）の断面積
$\mathrm{Z}_{\mathrm{H} 4}$	mm^{3}	ヒンジ受け溶接部（扉側）の断面係数
$\mathrm{A}_{\mathrm{H} 5}$	mm^{2}	ヒンジ受け溶接部（躯体側）の断面積
n b H_{6}	本	ヒンジ受けボルト（扉側）の本数
$\mathrm{A}_{\mathrm{bH} 6}$	mm^{2}	ヒンジ受けボルト（扉側）の断面積
$\mathrm{n}_{\mathrm{bH} 7}$	本	ヒンジ受けボルト（躯体側）の本数
$\mathrm{A}_{\mathrm{bH} 7}$	mm^{2}	ヒンジ受けボルト（躯体側）の断面積
n 3	本	取付金具リブの本数
$\mathrm{A}_{\mathrm{H} 8}$	mm^{2}	取付金具リブ溶接部の引張方向の断面積
$\mathrm{A}^{\prime} \mathrm{H}_{8}$	mm^{2}	取付金具リブ溶接部のせん断方向の断面積
$\mathrm{A}_{\mathrm{H} 9}$	mm^{2}	固定リング溶接部の断面積
T	kN	引張力
M	kN•m	曲げモーメント
Q	kN	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度
$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度
$\sigma \times$	$\mathrm{N} / \mathrm{mm}^{2}$	組合せ応力度

表2－3 強度評価に用いる記号（タイプIII）

記号	単位	定義
P_{h}	$\mathrm{kN} / \mathrm{m}^{2}$	溢水による静水圧荷重
h	mm	扉の水圧作用高さ
$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
L P L	mm	扉板の短辺長さ
β_{1}	－	四辺支持長方形板の応力係数
t	mm	扉板の厚さ
w	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重
W＇	kN／m	芯材に作用する等分布荷重
$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）
$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横リブ）
$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）
$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）
$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）
$L_{\text {L } 2}$	mm	芯材の支持長さ（縦リブ）
$\mathrm{Z}_{\mathrm{L} 2}$	mm^{3}	芯材の断面係数（縦リブ）
$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）
M	kN • m	曲げモーメント
Q	kN	せん断力
σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度
τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度

3．強度評価

3.1 タイプ I

3．1．1 評価対象部位

水密扉の評価対象部位は，「2．3 構造計画」に示す構造上の特徴を踏まえ選定する。
水密扉を閉める方向から作用する静水圧荷重は，扉板から芯材を介し扉枠に伝わり，扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されることから，評価対象部位は扉板，芯材及びアンカーボルトとする。

水密扉を開く方向から作用する静水圧荷重は，扉板から芯材に伝わり，カンヌキ部（カ ンヌキ，カンヌキ受けピン，カンヌキ受けボルト）及び扉固定部（扉付固定ボルト，枠付固定ボルト）に伝達され，扉枠及び扉枠を固定するアンカーボルトを介し，開口部周囲の建屋躯体に伝達されることから，評価対象部位は扉板，芯材，カンヌキ部及び扉固定部並 びにアンカーボルトとする。

アンカーボルトについては，荷重を伝達する芯材の取付け方向または扉板の辺長比を踏 まえ，水平方向に芯材を配置する構造若しくは扉板の短辺方向へ支配的に荷重を伝達する構造である場合はヒンジ側及び扉開閉側のアンカーボルトを，鉛直方向に芯材を配置する場合は扉上部側及び扉下部側のアンカーボルトを評価対象部位として選定する。

パネル付きの水密扉については，パネル板，パネル板を支える方立及びマグサ並びにパ ネル取付ボルトを評価対象部位として選定する。

なお，ヒンジは静水圧荷重の伝達経路とならないため，評価対象外とする。
また，結果が厳しい評価対象部位を有する水密扉を代表として評価するものとし，水密扉 No．3，7，10，24 及び 29 を抽出した。

水密扉に作用する荷重の作用図を図 3－1 に示す。

4－－－－：評価対象部位に作用する荷重
こー－ー－1：評価対象部位
\square

図 3－1 水密扉に作用する荷重の作用図（ $1 / 2$ ）

こーー－』：評価対象部位

図 3－1 水密扉に作用する荷重の作用図 $(2 / 2)$
枠囲みの内容は商業機密の観点から公開できません。

3．1．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏 まえて設定する。

3．1．2．1 荷重の設定
強度評価に用いる荷重を以下に示す。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式によ り算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{o} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-6}
$$

P_{h} ：静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

3．1．2．2 荷重の組合せ

水密扉の強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。 P_{h}

ここで，
P_{h} ：溢水による静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

3．1．3 許容限界

許容限界は，「3．1．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添3－ 3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．1．3．1 使用材料

水密扉を構成する扉板，芯材，カンヌキ部，扉固定部，パネル，パネル取付ボルト，方立，マグサ及びアンカーボルトの使用材料を表3－2に示す。

表 3－2 使用材料

部位		材質強度区分	仕様 （mm）
扉板		SS400	$\begin{aligned} & \text { PL-9, 12, } 16 \\ & \text { PL-19, } 32,36,60 \end{aligned}$
芯材		$\begin{aligned} & \text { SS400 } \\ & \text { SM490 } \end{aligned}$	$\begin{aligned} & \text { FB }-19 \times 75 \\ & \text { FB }-25 \times 75 \\ & \text { FB- } 38 \times 125 \\ & {[-100 \times 50 \times 5 \times 7.5} \\ & {[-180 \times 75 \times 7 \times 10.5} \\ & {[-125 \times 65 \times 6 \times 8} \\ & {[-200 \times 80 \times 7.5 \times 11} \\ & {[-200 \times 90 \times 8 \times 13.5} \\ & H-200 \times 200 \times 8 \times 12 \\ & H-248 \times 407 \times 20 \times 35 \\ & H-600 \times 300 \times 25 \times 36 \end{aligned}$
カンヌキ部	カンヌキ	$\begin{gathered} \text { SUS304 } \\ \text { SUS304N2 } \\ \text { SCM440 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 50,60, ~ 75, ~ 80, ~ \\ & 50 \end{aligned}$
	カンヌキ受けピン	$\begin{gathered} \text { SUS304N2 } \\ \text { S45C } \\ \text { SCM435 } \\ \text { SUS304 } \end{gathered}$	$\begin{aligned} & \text { 径 } \\ & 20,25,30,45,70 \end{aligned}$
	カンヌキ受けボルト	$\begin{gathered} 10.9 \\ (\text { SCM } 435, \text { SCM440) } \\ 12.9(\text { SCM } 435) \end{gathered}$	M10，M16，M20
扉固定部	扉付固定ボルト	10.9 （SCM435）	M16
	枠付固定ボルト	10.9 （SCM435）	M16
パネル		SS400	PL－6，9，25， 32
パネル取付ボルト		SCM435	M10，M12
方立		SS400	$\begin{aligned} & \text { PL- } 9 \times 276 \\ & {[-250 \times 90 \times 11 \times 14.5} \\ & H-200 \times 200 \times 8 \times 12 \end{aligned}$
マグサ		SS400	$\begin{aligned} & \text { PL }-9 \times 276 \\ & {[-250 \times 90 \times 11 \times 14.5} \end{aligned}$
アンカーボルト		$\begin{aligned} & \text { SS400 } \\ & \text { SM490 } \end{aligned}$	$\begin{aligned} & \text { M16, M20, M24, M30 } \\ & \phi 16, \quad \phi 25 \end{aligned}$

3．1．3．2 許容限界

（1）鋼材の許容応力度
鋼材の許容応力度は，「日本建築学会 2005 年 鋼構造設計規準 —許容応力度設計法一」を踏まえて表3－3の値とする。

表 3－3 鋼材の許容限界

材質•強度区分＊1	短期許容応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	
	曲げ・引張	せん断
SS400（ $\mathrm{t} \leqq 40$ ）${ }^{2}$	235	135
SS400（40＜t $\leqq 100) * 2$	215	124
SS400（ $100<\mathrm{t}$ ）＊2	205	118
SM490（ $\mathrm{t} \leqq 16$ ）${ }^{2}$	325	187
SM490 $(16<\mathrm{t} \leqq 40) * 2$	315	181
SM490（ $40<\mathrm{t} \leqq 100$ ）${ }^{2}$	295	170
SUS304	205	118
SUS304N2	345	199
S45C	345	199
SCM435	651	375
SCM440	686	396
10.9 （SCM435，SCM440）	728	420
12．9（SCM435）	854	493

注記＊1 ：許容応力度を決定する基準値 F は，J I S に基づき算定する。
＊2：t は板厚（mm）を示す。
（2）アンカーボルトの許容限界の算定値
アンカーボルトの許容限界は，「3．1．1 評価対象部位」に記載したアンカーボルト に作用する荷重の向きを踏まえて，「日本建築学会 2010 年 各種合成構造設計指針•同解説」に基づき算定した，表 3－4の値とする。

なお，評価対象部位のアンカーボルトが引張力を受ける場合においては，アンカー ボルトの降伏により決まる許容応力，及び付着力により決まる許容応力を比較して， いずれか小さい値を採用する。また，評価対象部位のアンカーボルトがせん断力を受 ける場合においては，アンカーボルトのせん断強度により決まる許容耐力，定着した コンクリート躯体の支圧強度により決まる許容耐力及びコーン状破壊により決まる許容応力を比較して，いずれか小さい値を採用する。

表 3－4 アンカーボルトの許容限界の算定値

水密扉 No．		扉名称	
		引容耐力（ $\mathrm{N} /$ 本）	
3	RHR ポンプ（C）室－共通通路浸水防止水密扉	せん断	
7	RCW Hx（A）（C）室－共通通路浸水防止水密扉	28617	25826
10	HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉	37194	19172
24	SGTS ヒータユニット（A）室浸水防止水密扉	37194	19172
29	250V 直流主母線盤室－制御建屋空調機械（B）室浸水防止 水密扉	26104	18433

[^64]
3．1．4 評価方法

水密扉の強度評価は，以下に設定する評価式を用いる。

3．1．4．1 応力算定

（1）扉板及びパネル板
扉板及びパネル板に生じる応力は，等分布荷重が作用する四辺支持の矩形板として，
「日本機械学会 機械工学便覧」に基づき，「3．1．4．2 断面検定」にて算定する。な お，この時，実際に作用する溢水による静水圧荷重は，台形分布もしくは，三角形分布であるが，扉最下部の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に作用する荷重の例を図3－2に，パネル板に作用する荷重の例を図3－3に示す。

$$
\mathrm{w}_{\mathrm{D}}=\mathrm{P}_{\mathrm{h}}
$$

w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
P_{h} ：溢水による静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

4－－－－－：評価対象部位に作用する荷重
こー－－ー ：評価対象部位
\square

図3－2 扉板に作用する荷重の例

枠囲みの内容は商業機密の観点から公開できません。

4－－－－：評価対象部位に作用する荷重
こーーー・：評価対象部位
\square

図 3－3 パネル板に作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
（2）芯材，方立及びマグサ
芯材，方立及びマグサに生じる応力は，等分布荷重を受ける両端単純支持の梁とし て算定する。

芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉下端に作用 する最大静水圧荷重に，芯材に作用する荷重の負担幅（＝間隔）を乗じた荷重が等分布に作用するものとし芯材の支持間距離は保守的に扉幅として安全側に評価する。

方立及びマグサに作用する荷重の負担幅（＝間隔）を乗じた荷重が等分布に作用す るものとし，方立及びマグサの支持間距離は保守的に扉及びパネルの上端から下幅ま での高さ並びに扉及びパネルの幅として安全側に評価する。芯材に作用する荷重の例 を図 3－4に，方立及びマグサに作用する荷重の例を図3－5に示す。
$\mathrm{M}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}^{2}}{8}$
$\mathrm{Q}=\frac{\mathrm{w}^{\prime} \cdot \mathrm{L}}{2}$

ここで，
W，：芯材，方立又はマグサに作用する等分布荷重（ N / mm ）〔 $\mathrm{w}^{\prime}=\mathrm{w}_{\mathrm{D}} \cdot \mathrm{b} 〕$
w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
b ：芯材，方立又はマグサに作用する荷重の負担幅（mm）
M ：芯材，方立又はマグサに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
L ：芯材，方立又はマグサの支持間距離（mm）
Q ：芯材，方立又はマグサに生じる最大せん断力（N）

4－－－－－：評価対象部位に作用する荷重
こーーー・：評価対象部位

図 3－4 芯材に作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

4－－－－－：評価対象部位に作用する荷重
こーーー・：評価対象部位

図 3－5 方立及びマグサに作用する荷重の例

枠囲みの内容は商業機密の観点から公開できません。
（3）カンヌキ部
カンヌキ部は，カンヌキ，カンヌキ受けピン及びカンヌキ受けボルトで構成されて おり，カンヌキ部に生じる応力は次式により算定する。ここで，溢水による静水圧荷重に対する反力は，扉最下部の最大静水圧をカンヌキ部が等分布に負担するものと して算定する。カンヌキ部に作用する荷重の例を図 3－6に示す。

$$
\mathrm{R}_{1}=\frac{\mathrm{L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}} \cdot \mathrm{w}_{\mathrm{D}}}{\mathrm{n}_{2}}
$$

ここで，
R_{1} ：カンヌキ部に作用する静水圧荷重に対する反力（N）
L_{D} ：扉の幅又はパネル幅（mm）
H_{D} ：扉の高さ又はパネル高さ (mm)
W_{D} ：下端に作用する静水圧荷重（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
n 2 ：カンヌキの本数

4－－－－－：評価対象部位に作用する荷重
ここ－こー：評価対象部位
\square

図 3－6 カンヌキ部に作用する荷重の例
a．カンヌキ
カンヌキに生じる応力は，次式により算定する。なお，算定にあたつては，カンヌ キ受けピン中心位置を固定端とした片持ち梁として評価し，カンヌキの取付部位に応じて生じる応力を考慮する。カンヌキに作用する荷重の例を図 3－7 に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{5} \\
& \mathrm{Q}=\mathrm{R}_{1} \\
& \text { ここで, } \\
& \mathrm{M} \quad \text { : カンヌキに生じる最大曲げモーメント }(\mathrm{N} \cdot \mathrm{~mm}) \\
& \mathrm{R}_{1} \quad \text { : カンヌキ部に作用する静水圧荷重に対する反力 (N) } \\
& \mathrm{L}_{5} \quad \text { : カンヌキの突出長さ (mm) } \\
& \mathrm{Q} \quad \text { : カンヌキに生じる最大せん断力 }(\mathrm{N})
\end{aligned}
$$

\square
図 3－7 カンヌキに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。
b．カンヌキ受けピン
カンヌキ受けピンに生じる応力は，カンヌキ受けピンを集中荷重が作用する単純梁とみなし，次式により算定する。カンヌキ受けピンに作用する荷重の例を図 3－8 に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{1} \cdot \mathrm{~L}_{\mathrm{p}} \cdot \frac{1}{4} \\
& \mathrm{Q}=\mathrm{R}_{1} \cdot \frac{1}{2}
\end{aligned}
$$

ここで,

M ：カンヌキ受けピンに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
R_{1} ：カンヌキ部に作用する静水圧荷重に対する反力（N）
L_{p} ：カンヌキ受けピンの軸支持間距離（mm）
Q ：カンヌキ受けピンに生じる最大せん断力（ N ）
\square
図 3－8 カンヌキ受けピンに作用する荷重の例
c．カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルト カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトに生 じる応力は，次式により算定する。カンヌキ受けボルトに作用する荷重の例を図 3－ 9 に，扉付固定ボルト及び枠付固定ボルトに作用する荷重の例を図 3－10に，パネル取付ボルトに作用する荷重の例を図3－11に示す。

$$
\mathrm{T}=\frac{\mathrm{R}_{1}}{\mathrm{n}_{\mathrm{b}}}
$$

$$
\mathrm{Q}=\frac{\mathrm{L}_{\mathrm{D}} \cdot \mathrm{H}_{\mathrm{D}} \cdot \mathrm{w}_{\mathrm{D}}}{\mathrm{n}_{\mathrm{b}}}
$$

ここで，
T ：ボルトに生じる最大引張力（ N ）
R_{1} ：ボルトに作用する静水圧荷重に対する反力（N）
n b ：ボルトの本数
Q ：ボルトに生じる最大せん断力（ N ）
L_{D} ：扉の幅（mm）
H_{D} ：扉の高さ (mm)
w_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

図 3－9 カンヌキ受けボルトに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

図 3－10 扉付固定ボルト及び枠付固定ボルトに作用する荷重の例
枠囲みの内容は商業機密の観点から公開できません。

4－－－－：評価対象部位に作用する荷重
こー－－

図 3－11 パネル取付ボルトに作用する荷重の例
（4）アンカーボルト
アンカーボルトに生じる応力は，溢水による静水圧荷重を左右もしくは上下に配置されたアンカーボルトに分配する。アンカーボルトに作用する荷重の例を図 3－ 12 に示す。
$\mathrm{R}_{\mathrm{a}}=\mathrm{L}_{\mathrm{c} 1} \cdot \mathrm{~L}_{\mathrm{c} 2} \cdot \mathrm{w}_{\mathrm{D}}$
ここで，
R_{a} ：左右もしくは上下のアンカーボルトに作用する荷重（N）
$L_{c 1}$ ：躯体開口部の高さ（mm）
$L_{c 2}$ ：躯体開口部の幅（mm）
W_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$

アンカーボルトの方向
（ 0° 方向配置の場合）
$\mathrm{Q}_{\mathrm{d}}=\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{a} 1}}$
（ 90° 方向配置の場合）
$T_{d}=\frac{R_{a}}{n_{a} 2}$
（ 0° 方向配置及び 90° 方向配置の複合配置の場合）
$\frac{\mathrm{R}_{\mathrm{a}}}{\mathrm{Q}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 1}+\mathrm{T}_{\mathrm{a}} \cdot \mathrm{n}_{\mathrm{a} 2}}$
（ 45° 方向配置の場合）
$Q_{d}=\frac{R_{a}}{\sqrt{2} \cdot \mathrm{n}_{\mathrm{a} 3}}$
$T_{d}=\frac{R_{a}}{\sqrt{2} \cdot \mathrm{n}_{\mathrm{a} 3}}$
ここで，
T_{a} ：アンカーボルト 1 本当たりに生じる短期許容引張力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（ N ）
n a1 ： 0° 方向 左右もしくは上下のアンカーボルトの本数
na $2: 90^{\circ}$ 方向左右もしくは上下のアンカーボルトの本数
na3： 45° 方向左右もしくは上下のアンカーボルトの本数

4－－－－：評価対象部位に作用する荷重
こー－』：評価対象部位

図 3－12 アンカーボルトに作用する荷重の例（ $1 / 3$ ）

枠囲みの内容は商業機密の観点から公開できません。

```
4－－－－－：評価対象部位に作用する荷重
こー－ー・：評価対象部位
```

図 3－12 アンカーボルトに作用する荷重の例（2／3）

枠囲みの内容は商業機密の観点から公開できません。

4－－－－：評価対象部位に作用する荷重
こー－』：評価対象部位

図 3－12 アンカーボルトに作用する荷重の例（3／3）

枠囲みの内容は商業機密の観点から公開できません。

3．1．4．2 断面検定

評価対象部位に生じる応力より算定する応力度及び荷重が，許容限界値以下である ことを確認する。
（1）扉板及びパネル板
扉板及びパネル板に生じる曲げ応力度を「日本機械学会 機械工学便覧」に基づき，算定し，扉板及びパネル板の短期許容応力度を下回ることを確認する。

$$
\sigma=\beta_{1} \cdot \frac{\mathrm{w}_{\mathrm{D}} \cdot \mathrm{~L}_{\mathrm{P} \mathrm{~L}}{ }^{2}}{\mathrm{t}^{2}}
$$

ここで，
σ ：扉板又はパネル板に生じる最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
W_{D} ：扉下端に作用する静水圧荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
β_{1} ：四辺支持長方形板の応力係数
$L_{\text {PL }}$ ：扉板又はパネル板の短辺長さ（mm）
t ：扉板又はパネル板の板厚（mm）
（2）芯材，方立及びマグサ
芯材，方立及びマグサに生じる曲げ応力度及びせん断応力度を算定し，芯材，方立及びマグサの短期許容応力度を下回ることを確認する。

$$
\begin{aligned}
& \sigma=\mathrm{M} / \mathrm{Z} \\
& \tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}
\end{aligned}
$$

ここで，
σ ：芯材，方立又はマグサに生じる曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：芯材，方立又はマグサに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Z ：芯材，方立又はマグサの断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：芯材，方立又はマグサに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材，方立又はマグサに生じる最大せん断力（ N ）
A_{s} ：芯材，方立又はマグサのせん断断面積 $\left(\mathrm{mm}^{2}\right)$
（3）カンヌキ部
a．カンヌキ
カンヌキに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「日本建築学会 2005 年 鋼構造設計規準 一許容応力度設計法一」に基づく次式により算定し，カンヌキの短期許容応力度を下回ることを確認する。
$\mathrm{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$

ここで，
$\sigma=\mathrm{M} / \mathrm{Z}$
$\mathrm{x} \quad$ ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
σ ：カンヌキに生じる最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキに生じる最大曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Z ：カンヌキの断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：カンヌキに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキに生じる最大せん断力（ N ）
As ：カンヌキのせん断断面積（ mm^{2} ）
b．カンヌキ受けピン
カンヌキ受けピンに生じる曲げ応力度及びせん断応力度を算定し，カンヌキ受 けピンの短期許容応力度を下回ることを確認する。

$$
\begin{aligned}
& \sigma=\mathrm{M} / \mathrm{Z} \\
& \tau=\mathrm{Q} / \mathrm{A}
\end{aligned}
$$

ここで，
σ ：カンヌキ受けピンに生じる最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：カンヌキ受けピンに生じる最大曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z ：カンヌキ受けピンの断面係数 $\left(\mathrm{mm}^{3}\right)$
τ ：カンヌキ受けピンに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキ受けピンに生じる最大せん断力（ N ）
As ：カンヌキ受けピンのせん断断面積（ mm^{2} ）
c．カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルト カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトに生じる引張応力度又はせん断応力度を次式により算定し，カンヌキ受けボルト，扉付固定ボルト，枠付固定ボルト及びパネル取付ボルトの短期許容応力度を下回る ことを確認する。
$\sigma_{\mathrm{t}}=\mathrm{T} / \mathrm{A}$
$\tau=\mathrm{Q} / \mathrm{A}_{\mathrm{s}}$

ここで，
σ_{t} ：ボルトに生じる最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：ボルトに生じる最大引張力（ N ）
A ：ボルトの断面積 $\left(\mathrm{mm}^{2}\right)$
$\tau \quad:$ ボルトに生じる最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：ボルトに生じる最大せん断力（ N ）
A_{s} ：ボルトのせん断断面積（ mm^{2} ）
（4）アンカーボルト
アンカーボルト 1 本当たりに生じる引張力又はせん断力を「日本建築学会 各種合成構造設計指針•同解説」に基づき算定し，アンカーボルトの許容荷重を下回ること を確認する。
（ 0° 方向配置の場合）
$\frac{\mathrm{Q}_{\mathrm{d}}}{\mathrm{Q}_{\mathrm{a}}} \leqq 1.0$
（ 90° 方向配置の場合）
$\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{T}_{\mathrm{a}}} \leqq 1.0$
（ 0° 方向配置及び 90° 方向配置の複合配置の場合）
$\frac{R_{a}}{Q_{a} \cdot n_{a 1}+T_{a} \cdot n_{a 2}}$
（ 45° 方向配置の場合）
$\left(\mathrm{T}_{\mathrm{d}} / \mathrm{T}_{\mathrm{a}}\right)^{2}+\left(\mathrm{Q}_{\mathrm{d}} / \mathrm{Q}_{\mathrm{a}}\right)^{2} \leqq 1.0$
ここで，
Ra ：左右もしくは上下のアンカーボルトに作用する荷重（N）
T_{d} ：アンカーボルト 1 本当たりに生じる引張力（ N ）
T_{a} ：アンカーボルト 1 本当たりの短期許容引張力（ N ）
Q_{d} ：アンカーボルト 1 本当たりに生じるせん断力（ N ）
Q_{a} ：アンカーボルト 1 本当たりの短期許容せん断力（ N ）
$\mathrm{n}_{\mathrm{a} 1}: 0^{\circ}$ 方向 左右もしくは上下のアンカーボルトの本数
$\mathrm{n}_{\mathrm{a} 2}: 90^{\circ}$ 方向 左右もしくは上下のアンカーボルトの本数

3．1．5 評価条件

「3．4 評価方法」に用いる評価条件を表3－5に示す。

表 3－5 強度評価に用いる評価条件（1／9）

対象部位		記号	単位	定義	水密扉 No．	
		3				
共通			h	mm	扉の水圧作用高さ	5700
		ρ 。	t／m ${ }^{3}$	液体の密度	1． 00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.06	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	695	
		t	mm	扉板の板厚	16	
		β_{1}	－	応力係数	0.5	
芯材		W＇	N／mm	芯材に作用する等分布荷重	38.55	
		b	mm	芯材に作用する荷重の負担幅	642.5	
		L	mm	芯材の支持間距離	1059	
		Z	mm^{3}	芯材の断面係数	153000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1272	
$\begin{aligned} & \text { カ } \\ & ン \\ & \text { 又 } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	$L_{\text {D }}$	mm	扉の幅	1186	
		H_{D}	mm	扉の高さ	2076	
		n 2	本	カンヌキの本数	4	
	カンヌキ	L 5	mm	カンヌキの突出長さ	61.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	108	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	14	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	72	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	251	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	27	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	2	
	受けボルト	σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	118	

表 3－5 強度評価に用いる計算条件（2／9）

対象部位	記号	単位	定義	水密扉 No．
				3
アンカーボルト	$L_{\text {c } 1}$	mm	躯体開口部の高さ	2000
	L c 2	mm	躯体開口部の幅	1000
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	12
	n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	－
	Q a	N／本	$0^{\circ} \text { 方向 アンカーボルト } 1 \text { 本当たりの }$短期許容せん断力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	25826
			45° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
	T a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	28617
			45° 方向 アンカーボルト 1 本当たりの短期許容引張力	－

表 3－5 強度評価に用いる評価条件（3／9）

表 3－5 強度評価に用いる計算条件（4／9）

対象部位	記号	単位	定義	水密扉 No．
				7
アンカーボルト	$L_{\text {c } 1}$	mm	躯体開口部の高さ	1300
	L c 2	mm	躯体開口部の幅	3000
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	42
	Q_{a}	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容せん断力	19172
	T a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容引張力	37194

表 3－5 強度評価に用いる評価条件（5／9）

対象部位		記号	単位	定義	水密扉 No．	
		10				
共通			h	mm	扉の水圧作用高さ	1900
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.02	
		$L_{\text {P L }}$	mm	扉板の短辺長さ	673	
		t	mm	扉板の板厚	9	
		β_{1}	－	応力係数	0.8	
芯材		w ${ }^{\text {，}}$	N / mm	芯材に作用する等分布荷重	30.6	
		b	mm	芯材に作用する荷重の負担幅	1530	
		L	mm	芯材の支持間距離	3530	
		Z	mm^{3}	芯材の断面係数	326200	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	2670	
$\begin{aligned} & \text { カ } \\ & ン \\ & \text { ヌ } \\ & \neq \\ & \text { 部 } \end{aligned}$	共通	$L_{\text {D }}$	mm	扉の幅	－	
		H_{D}	mm	扉の高さ	－	
		n 2	本	カンヌキの本数	－	
	カンヌキ	L_{5}	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	$\sigma{ }_{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
扉固定部	扉付固定 ボルト	n b	本	扉付固定ボルトの本数	14	
		σ t	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	20	
	枠付固定 ボルト	$\mathrm{A}_{\text {s }}$	mm^{2}	枠付固定ボルトのせん断断面積	157	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	20	

表3－5 強度評価に用いる計算条件（6／9）

対象部位	記号	単位	定義	水密扉 No．
				10
アンカーボルト	$L_{\text {c } 1}$	mm	躯体開口部の高さ	1400
	$L_{\mathrm{c} 2}$	mm	躯体開口部の幅	3000
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	42
	Q a	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容せん断力	19172
	T_{a}	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容引張力	37194

表 3－5 強度評価に用いる評価条件（7／9）

対象部位		記号	単位	定義	水密扉 No．	
		24				
共通			h	mm	扉の水圧作用高さ	5600
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1． 00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.05	
		$\mathrm{L}_{\text {P L }}$	mm	扉板の短辺長さ	1235	
		t	mm	扉板の板厚	32	
		β_{1}	－	応力係数	0.6	
$\begin{aligned} & \text { カ } \\ & \text { ン } \\ & \text { 又 } \\ & \text { キ } \\ & \text { 部 } \end{aligned}$	共通	L D	mm	扉の幅	－	
		H_{D}	mm	扉の高さ	－	
		n 2	本	カンヌキの本数	－	
	カンヌキ	L 5	mm	カンヌキの突出長さ	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	－	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	－	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	－	
	カンヌキ	n b	本	カンヌキ受けボルトの本数	－	
	受けボルト	σ_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	－	
アンカーボルト		$\mathrm{L}_{\mathrm{c} 1}$	mm	躯体開口部の高さ	2380	
		$\mathrm{L}_{\mathrm{c} 2}$	mm	躯体開口部の幅	1490	
		n a 1	本	0° 方向左右もしくは上下のアンカーボルト本数	20	
		n a 2	本	90° 方向左右もしくは上下のアンカーボルト本数	－	
		R a	N	アンカーボルトに作用する荷重	177300	
		T a	N／本	アンカーボルト 1 本当たりの短期許容引張力	26104	
		Q a	N／本	アンカーボルト 1 本当たりの短期許容せん断力	18433	

表 3－5 強度評価に用いる評価条件（8／9）

対象部位		記号	単位	定義	水密扉 No．	
		29				
共通			h	mm	扉の水圧作用高さ	3000
		ρ 。	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1.00	
		g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
扉板		w_{D}	$\mathrm{N} / \mathrm{mm}^{2}$	扉下端に作用する静水圧荷重	0.03	
		$\mathrm{L}_{\text {PL }}$	mm	扉板の短辺長さ	885	
		t	mm	扉板の板厚	12	
		β_{1}	－	応力係数	0.5	
芯材		w＇	N / mm	芯材に作用する等分布荷重	25． 28	
		b	mm	芯材に作用する荷重の負担幅	842.5	
		L	mm	芯材の支持間距離	1360	
		Z	mm^{3}	芯材の断面係数	153000	
		$\mathrm{A}_{\text {s }}$	mm^{2}	芯材のせん断断面積	1113	
$\begin{aligned} & \text { カ } \\ & \text { シ } \\ & \text { 又 } \\ & \text { キ } \\ & \text { 部 } \end{aligned}$	共通	L_{D}	mm	扉の幅	1360	
		H_{D}	mm	扉の高さ	2460	
		n 2	本	カンヌキの本数	4	
	カンヌキ	L_{5}	mm	カンヌキの突出長さ	68.5	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	141	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	13	
	カンヌキ 受けピン	$L_{\text {p }}$	mm	カンヌキ受けピンの軸支持間距離	62	
		σ	$\mathrm{N} / \mathrm{mm}^{2}$	曲げ応力度	147	
		τ	$\mathrm{N} / \mathrm{mm}^{2}$	せん断応力度	18	
	カンヌキ 受けボルト	n b	本	カンヌキ受けボルトの本数	2	
		$\sigma_{\text {t }}$	$\mathrm{N} / \mathrm{mm}^{2}$	引張応力度	52	

表3－5 強度評価に用いる計算条件（9／9）

対象部位	記号	単位	定義	水密扉 No．
				29
アンカーボルト	L c 1	mm	躯体開口部の高さ	2400
	L c_{2}	mm	躯体開口部の幅	1300
	n a 1	本	0° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 2	本	90° 方向 左右もしくは上下の アンカーボルト本数	－
	n a 3	本	45° 方向 左右もしくは上下の アンカーボルト本数	16
	Qa	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容せん断力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容せん断力	12824
	Ta	N／本	0° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			90° 方向 アンカーボルト 1 本当たりの短期許容引張力	－
			45° 方向 アンカーボルト 1 本当たりの短期許容引張力	38098

3．1．6 評価結果
水密扉の強度評価結果を表 3－6に示す。水密扉の各部材の断面検定を行った結果，発生値は許容限界値を下回ることから，水密扉が構造健全性を有することを確認した。

表 3－6 水密扉の強度評価結果 $(1 / 2)$

水密 扉 No．	評価対象部位		発生値 （応力度，荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	許容限界値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ，N）	発生値／許容限界値	備考
3		扉板	57	235	0． 25	曲げ
		芯材＊1	36	235	0.16	曲げ
	$\begin{gathered} \text { カン } \\ \text { ヌキ部 } \end{gathered}$	カンヌキ＊2	111	205	0.55	組合せ
		カンヌキ受けピン＊1	251	345	0． 73	曲げ
		カンヌキ受けボルト	118	728	0． 17	引張
	アンカーボルト＊3		10000	28617	0.35	引張
7		扉板	179	235	0.77	曲げ
		芯材＊1	176	315	0.56	曲げ
	$\begin{aligned} & \text { カン } \\ & \text { ヌキ部 } \end{aligned}$	カンヌキ＊2	－	－	－	－
		カンヌキ受けピン＊1	－	－	－	－
		カンヌキ受けボルト	－	－	－	－
	扉固定 部	扉付固定ボルト	19	728	0.03	引張
		枠付固定ボルト	19	420	0.05	せん断
	アンカーボルト＊3		－	－	0.01	組合せ
10		扉板	90	235	0.39	曲げ
		芯材＊1	147	235	0.63	曲げ
	カン ヌキ部	カンヌキ＊2	－	－	－	－
		カンヌキ受けピン＊1	－	－	－	－
		カンヌキ受けボルト	－	－	－	－
	扉固定 部	扉付固定ボルト	20	728	0.03	引張
		枠付固定ボルト	20	420	0.05	せん断
	アンカーボルト＊3		－	－	0． 01	組合せ

注記 $* 1$ ：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張，せん断及び組合せのらち，評価結果が最も厳しい値を記載する。

表 3－6 水密扉の強度評価結果 $(2 / 2)$

	水密扉 No．	評価対象部位		発生値 （応力度，荷重） $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}, \mathrm{~N}\right)$	発生値／許容限界値	備考
			扉板	45	235	0.20	曲げ
			カンヌキ＊2	－	－	－	－
	24		カンヌキ受けピン＊1	－	－	－	－
			カンヌキ受けボルト	－	－	－	－
			ンカーボルト＊3	8865	18433	0.49	せん断
			扉板	82	235	0.35	曲げ
			芯材＊1	39	235	0.17	曲げ
	29		カンヌキ＊2	143	205	0.70	組合せ
\bigcirc	29		カンヌキ受けピン＊1	147	345	0． 43	曲げ
a			カンヌキ受けボルト	52	728	0.08	引張
$\stackrel{\square}{+}$			ンカーボルト＊3	－	－	0.12	組合せ

注記＊1：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張，せん断及び組合せのらち，評価結果が最も厳しい値を記載する。
（1）

3.2 タイプII

3．2．1 評価対象部位
水密扉の評価対象部位は，「2．3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定 する。

取付金具を躯体に定着することで荷重を躯体に伝達する構造の水密扉であるため，水密扉を閉める方向に外部から生じる静水圧荷重は，扉板から芯材に伝わり，壁と一体化した取付金具を介して開口部周辺の躯体に伝達されることから，評価対象部位は扉板，芯材と なる。

水密扉を開く方向に内部から生じる静水圧荷重は，扉板から芯材に伝わり，カンヌキ部及びヒンジに伝達され，取付金具及び固定リングを介し，開口部周囲の躯体に伝達される ことから，評価対象部位は，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リング とする。

また，タイプII の水密扉はNo．38，No．39であり，同様の構造であることを踏まえ，代表 として水密扉No．38にて評価を行う。水密扉に作用する荷重の作用図を図 $3-13$ に示す。

図 3－13 水密扉に作用する荷重の作用図（水密扉 No．38，No．39）

3．2．2 荷重及び荷重の組合せ
強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

3．2．2．1 荷重の設定

強度評価に用いる荷重は，以下の荷重を用いる。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式によ り算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
$$

3．2．2．2 荷重の組合せ

強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。
P_{h}

ここで，
P_{h} ：溢水による静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

3．2．3 許容限界

許容限界は，「3．2．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．2．3．1 使用材料

水密扉を構成する，扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの使用材料を表3－7に示す。

表 3－7 使用材料

部位		材質	仕様（mm）
扉板		SS400	PL－6
芯材	横リブ	SS400	C -100×50
	縦リブ	SS400	C -100×50
		SS400	FB－100×9
カンヌキ部	カンヌキ	S45C	40×36
	カンヌキ受け	SS400	95×15
	カンヌキ受けボルト	SCM435	M16
ヒンジ	ヒンジピン	SUS304	¢ 30
	ヒンジ受け	SS400	100×40
	ヒンジ受けボルト（扉側）	SCM435	M12
	ヒンジ受けボルト（躯体側）	SCM435	M16
取付金具		SS400	PL－9
固定リング		SS400	PL－19

3．2．3．2 許容限界

（1）扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リング
扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの鋼材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ）を踏まえて表3— 8の値とする。

表 3－8 扉板，芯材，カンヌキ部，ヒンジ，取付金具及び固定リングの許容限界

材料	「設計•建設規格」に準じた供用状態C（許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ）の許容応力）＊1＊2		
	引張，曲げ	せん断	組合せ
SS400（ $\mathrm{t} \leqq 40$ ）	234	135	234
SS400（溶接部）	105	60	105
S45C	483	277	483
SUS304	204	117	204

注記＊ 1 ：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。
＊2：SS400（溶接部）の許容応力は，非破壊試験（放射線透過試験，超音波探傷試験，磁粉探傷試験又は浸透探傷試験）を行っていない箇所を対象とする。
（2）ボルト
ボルト材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態III A_{A} S ）を踏まえて表3－9の値とする。

表3－9 ボルトの許容限界

注記＊：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。

3．2．4 評価方法

水密扉の強度評価は，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している評価式を用いる。

3．2．4．1 応力算定

（1）扉板
扉板に生じる応力は，等分布荷重を受ける四辺支持板として算定する。
この時，実際に作用する静水圧は台形分布もしくは，三角形分布であるが，扉最下部 の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に生じる荷重の例 を図 3－14に示す。

$$
\begin{aligned}
\mathrm{w}= & \rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3} \\
\mathrm{w} & : \text { 扉下端に作用する静水圧荷重 }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\rho_{0} & : \text { 液体の密度 }\left(\mathrm{t} / \mathrm{m}^{3}\right) \\
\mathrm{g} & : \text { 重力加速度 }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\
\mathrm{h} & : \text { 扉の水圧作用高さ }(\mathrm{mm})
\end{aligned}
$$

図 3－14 扉板に生じる荷重の例
（2）芯材
芯材に生じる応力は，等分布荷重を受ける両端単純支持の梁として算定する。なお，芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉最下部の最大静水圧に，芯材の支配幅（＝間隔）を乗じた荷重が等分布に作用するものとして安全側に評価する。芯材に作用する荷重の例を図 3－15 及び図 3－16に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}^{\prime} \cdot\left(\mathrm{L}_{\mathrm{L}} \cdot 10^{-3}\right)^{2} / 8 \\
& \mathrm{Q}=\mathrm{w}^{\prime} \cdot \mathrm{L}_{\mathrm{L}} \cdot 10^{-3} / 2 \\
& \text { ここで, } \mathrm{w}^{\prime}=\mathrm{w} \cdot \mathrm{~b}_{\mathrm{L}} \cdot 10^{-3} \\
& \text { w’: 芯材に作用する等分布荷重 }(\mathrm{kN} / \mathrm{m}) \\
& \text { M : 芯材に生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \text { Q : 芯材に生じる最大せん断力 (kN) } \\
& L_{\text {L } 1} \text { : 芯材の支持長さ (横リブ) (mm) } \\
& \mathrm{L}_{\mathrm{L} 2} \text { : 芯材の支持長さ (縦リブ) (mm) } \\
& \text { w : 扉下端に作用する静水圧荷重 }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
& \text { b L } 1 \text { : 芯材に作用する荷重の負担幅 (横リブ) (mm) } \\
& \text { b L 2 : 芯材に作用する荷重の負担幅 (縦リブ) (mm) }
\end{aligned}
$$

図 3－15 芯材（横リブ）に生じる荷重の例

図 3－16 芯材（縦リブ）に生じる荷重の例
（3）カンヌキ部及びヒンジ
カンヌキ部は，カンヌキ，カンヌキ受け及びカンヌキ受けボルトで構成しており，ま た，ヒンジはヒンジ受け，ヒンジピン及びヒンジ受けボルトで構成している。カンヌキ部及びヒンジに生じる荷重 R p は，次式により算定する扉に作用する全静水圧を集中荷重に置換した設計水圧荷重 P o により算定し，各構成部材に発生する応力を算定する。 カンヌキ部及びヒンジに生じる荷重の例を図 3－17に示す。

$$
\begin{aligned}
& \quad \mathrm{R}_{\mathrm{p}}=\mathrm{P}_{0} / \mathrm{n}_{2} \\
& \mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6} \\
& \text { ここで, } \mathrm{w}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
\end{aligned}
$$

R_{p} ：カンヌキ部及びヒンジに作用する荷重（kN）
Po：設計水圧荷重（kN）
n_{2} ：カンヌキ部及びヒンジの個数（個）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\rho 0$ ：液体の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
h ：扉の水圧作用高さ（mm）
L_{1} ：扉高さ（mm）
L_{2} ：扉幅（mm）

正面図

断面図

図 3－17 カンヌキ部及びヒンジに生じる荷重の例
a．カンヌキ部
（a）カンヌキ
カンヌキに生じる応力は，次式により算定する。なお，算定にあたつては，カンヌ キの接触面中心位置を固定端とした片持ち梁として評価し，カンヌキの取付部位に応 じて作用する応力を考慮する。カンヌキに生じる荷重の例を図 3－18に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{K} 1} \cdot 10^{-3} \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} \\
& \mathrm{M} \quad: \text { カンヌキに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \mathrm{Q} \quad: \text { カンヌキに生じる最大せん断力 }(\mathrm{kN}) \\
& \mathrm{R}_{\mathrm{p}}: \text { カンヌキに作用する荷重 }(\mathrm{kN}) \\
& \mathrm{L}_{\mathrm{K} 1}: \text { カンヌキの突出長さ }(\mathrm{mm})
\end{aligned}
$$

図 3－18 カンヌキに生じる荷重の例
（b）カンヌキ受け
カンヌキ受けに生じる応力は，カンヌキ受けに集中荷重が作用する両端支持梁と みなし，次式により算定する。なお，算定にあたっては，カンヌキの形状に応じてカ ンヌキ受けに作用する応力を考慮する。カンヌキ受けに生じる荷重の例を図 3－19に示す。

$$
\begin{aligned}
\mathrm{M} & =\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{K} 2} \cdot 10^{-3} / 4 \\
\mathrm{Q} & =\mathrm{R}_{\mathrm{p}} / 2
\end{aligned}
$$

$$
\text { M : カンヌキ受けに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m})
$$

Q : カンヌキ受けに生じる最大せん断力 (kN)

$$
R_{p} \quad \text { : カンヌキ受けに作用する荷重 (kN) }
$$

$$
\mathrm{L}_{\mathrm{K} 2} \text { : カンヌキ受けの支持長さ (mm) }
$$

$\mathrm{A}-\mathrm{A}$ 矢視（図 3－17参照）

図 3－19 カンヌキ受けに生じる荷重の例
（c）カンヌキ受けボルト
カンヌキ受けボルトに生じる応力は，次式により算定する。カンヌキ⿳⿱㇒⿲丶丶㇒冖又心壮ルトに生じる応力の例を図 3－20 に示す。

$$
\mathrm{T}=\mathrm{R}_{\mathrm{p}} / \mathrm{n}_{\mathrm{b}}
$$

T ：カンヌキ受けボルトに作用する引張力（kN）
R_{p} ：カンヌキ受けボルトに作用する荷重（kN）
n_{b} ：カンヌキ受けボルトの本数（本）

図3－20 カンヌキ受けボルトに生じる荷重の例
（d）カンヌキ受け溶接部
カンヌキ受け溶接部に生じる応力は，次式により算定する。カンヌキ受け溶接部 に作用する荷重の例を図3－21に示す。

$$
\begin{aligned}
\mathrm{T}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{~T} & : \text { カンヌキ受け溶接部に作用する引張力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { カンヌキ受け溶接部に作用する荷重 }(\mathrm{kN})
\end{aligned}
$$

$A-A$ 矢視（図 3－17参照）

図 3－21 カンヌキ受け溶接部に生じる荷重の例
b．ヒンジ
（a）ヒンジピン
ヒンジピンに生じる応力は，ヒンジピンに集中荷重が作用する両端支持梁とみな し，次式により算定する。なお，算定にあたっては，ヒンジ受けの形状に応じてヒン ジピンに作用する応力を考慮する。ヒンジピンに生じる荷重の例を図3－22に示す。

$$
\begin{aligned}
\mathrm{M} & =\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 1} \cdot 10^{-3} / 4 \\
\mathrm{Q}= & \mathrm{R}_{\mathrm{p}} / 2 \\
\mathrm{M} & : \text { ヒンジピンに生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Q} & : \text { ヒンジピンに生じる最大せん断力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジピンに作用する荷重 }(\mathrm{kN}) \\
\mathrm{L}_{\mathrm{H} 1} & : \text { ヒンジピンの支持長さ }(\mathrm{mm})
\end{aligned}
$$

図3－22 ヒンジピンに生じる荷重の例
（b）ヒンジ受けピン穴部（扉側）
ヒンジ受けピン穴部（扉側）に生じる応力は，ヒンジ受けピン穴部（扉側）に集中荷重が作用する両端支持梁とみなし，次式により算定する。なお，算定にあたっては， ヒンジピンの形状に応じてヒンジ受けピン穴部（扉側）に作用する応力を考慮する。 ヒンジ受けピン穴部（扉側）に生じる荷重の例を図 3－23に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 2} \cdot 10^{-3} / 4 \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} \\
& \mathrm{M}: \text { ヒンジ受けピン穴部 } \\
& \mathrm{Q}: \text { 扉側) にン生じる最大曲けピン穴部 } \\
& \text { (扉側) に生じる最大せん断力 }(\mathrm{kN}) \\
& \mathrm{R}_{\mathrm{p}}: \text { ヒンジ受けピン穴部 } \\
& \mathrm{L}_{\mathrm{H} 2} \text { 扉側) に作用する荷重 }(\mathrm{kN}) \\
& \text { ヒンジ受けピン穴部 (扉側) 支持長さ }(\mathrm{mm})
\end{aligned}
$$

$A-A$ 矢視

図3－23 ヒンジ受けピン穴部（扉側）に生じる荷重の例
（c）ヒンジ受けピン穴部（躯体側）
ヒンジ受けピン穴部（躯体側）に生じる応力は，ヒンジ受けピン穴部（躯体側）に集中荷重が作用する両端支持梁とみなし，次式により算定する。なお，算定にあたつ ては，ヒンジピンの形状に応じてヒンジ受けピン穴部（躯体側）に作用する応力を考慮する。ヒンジ受けピン穴部（躯体側）に生じる荷重の例を図 3－24に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{R}_{\mathrm{p}} / 2 \cdot \mathrm{~L}_{\mathrm{H} 3} \cdot 10^{-3} / 4 \\
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} / 2 \\
& \text { M : ヒンジ受けピン穴部 (躯体側) に生じる最大曲げモーメント } \\
& \text { (kN•m) } \\
& \text { Q : ヒンジ受けピン穴部 (躯体側) に生じる最大せん断力 (kN) } \\
& R_{p} \text { : ヒンジ受けピン穴部 (躯体側) に作用する荷重 (kN) } \\
& \mathrm{L}_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) 支持長さ (mm) }
\end{aligned}
$$

図 3－24 ヒンジ受けピン穴部（躯体側）に生じる荷重の例
（d）ヒンジ受け溶接部（扉側）
ヒンジ受け溶接部（扉側）に生じる応力は，次式により算定する。なお，算定にあ たっては，ヒンジ受け中心位置を固定端とした片持ち梁として評価し，ヒンジ受けの取付部位に応じて作用する応力を考慮する。ヒンジ受け溶接部（扉側）に生じる荷重 の例を図3－25に示す。

$$
\begin{aligned}
\mathrm{M}= & \mathrm{R}_{\mathrm{p}} \cdot \mathrm{~L}_{\mathrm{H} 4} \cdot 10^{-3} \\
\mathrm{Q}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{M} & : \text { ヒンジ受け溶接部 (扉側) に生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Q} & : \text { ヒンジ受け溶接部 (扉側) に生じる最大せん断力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジ受けに作用する荷重 }(\mathrm{kN}) \\
\mathrm{L}_{\mathrm{H} 4} & \text { : ヒンジ受けの突出長さ }(\mathrm{mm})
\end{aligned}
$$

図 3－25 ヒンジ受け溶接部（扉側）に生じる荷重の例
（e）ヒンジ受け溶接部（躯体側）
ヒンジ受け溶接部（躯体側）に生じる応力は，次式により算定する。ヒンジ受け溶接部（躯体側）に生じる荷重の例を図 3－26に示す。

$$
\begin{array}{lll}
\mathrm{T}= & \mathrm{R}_{\mathrm{p}} \\
\mathrm{~T} & : \text { ヒンジ受け溶接部 (躯体側) に作用する引張力 }(\mathrm{kN}) \\
\mathrm{R}_{\mathrm{p}} & : \text { ヒンジ受け溶接部 (躯体側) } & \text { に作用する荷重 }(\mathrm{kN})
\end{array}
$$

A - A 矢視

図 3－26 ヒンジ受け溶接部（扉側）に生じる荷重の例
（f）ヒンジ受けボルト（扉側）
ヒンジ受けボルト（扉側）に生じる応力は，次式により算定する。ヒンジ受けボル ト（扉側）に生じる荷重の例を図 3－27に示す。

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{R}_{\mathrm{p}} / \mathrm{n}_{\mathrm{bH} 6} \\
& \mathrm{Q} \quad: \text { ヒンジ受けボルト (扉側) }
\end{aligned} \text { に作用するせん断力 }(\mathrm{kN}) ~ 子 ~(\text { 扉側 }) \text { に作用する荷重 }(\mathrm{kN})
$$

図 3－27 ヒンジ受けボルト（扉側）に生じる荷重の例
（g）ヒンジ受けボルト（躯体側）
ヒンジ受けボルト（躯体側）に生じる応力は，次式により算定する。ヒンジ受けボ ルト（躯体側）に生じる荷重の例を図 3－28に示す。

図 3－28 ヒンジ受けボルト（躯体側）に生じる荷重の例
（4）取付金具リブ溶接部
取付金具リブ溶接部に生じる応力は，次式により算定する。取付金具リブ溶接部に作用する荷重の例を図 3－29に示す。

$$
\begin{aligned}
& \quad \mathrm{T}_{1}=\mathrm{P}_{0} / \mathrm{n}_{3} \\
& \text { ここで, } \quad \mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6}
\end{aligned}
$$

T_{1} ：取付金具リブ溶接部に作用する引張力（kN）
P_{0} ：取付金具リブ溶接部に作用する設計水圧荷重（kN）
n_{3} ：取付金具リブの本数（本）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{1} ：扉高さ（mm）
L_{2} ：扉幅（mm）

正面図

取付金具リブ溶接部（引張応力）

図 3－29 取付金具リブ溶接部に生じる荷重の例
（5）固定リング溶接部
固定リング溶接部に生じる荷重は，次式により算定する。なお，算定にあたつては，固定リングの形状に応じて固定リング溶接部に作用する応力を考慮し，発生する応力 を算定する。固定リング溶接部に生じる荷重の例を図 3－30に示す。

$$
\mathrm{P}_{0}=\mathrm{w} \cdot \mathrm{~L}_{1} \cdot \mathrm{~L}_{2} \cdot 10^{-6}
$$

P_{0} ：固定リング溶接部に作用する設計水圧荷重（kN）
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{1} ：扉高さ (mm)
L_{2} ：扉幅（mm）

正面図

図 3－30 固定リング溶接部に生じる荷重の例

3．2．4．2 断面検定
評価対象部位に発生する応力より算定する応力度が，許容限界値以下であることを確認する。
（1）扉板
扉板に生じる曲げ応力度を算定し，扉板の許容限界値以下であることを確認する。
$\sigma=\beta_{1} \cdot \mathrm{w} \cdot 10^{3} \cdot \mathrm{~L}_{\mathrm{PL}}{ }^{2} \cdot 10^{-6} / \mathrm{t}^{2}$
σ ：扉板の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
β_{1} ：四辺支持長方形板の応力係数
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
L_{PL} ：扉板の短辺長さ (mm)
t ：扉板の厚さ（mm）
（2）芯材
芯材に生じる曲げ応力度及びせん断応力度を算定し，芯材の許容限界値以下である ことを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{L}}$
$\sigma \quad$ ：芯材の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：芯材の最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$Z_{\text {L } 1}$ ：芯材の断面係数（横リブ）（mm $\left.{ }^{3}\right)$
$Z_{\mathrm{L} 2}$ ：芯材の断面係数（縦リブ）（mm $\left.{ }^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{L}}$
$\tau \quad$ ：芯材の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材の最大せん断力（kN）
$\mathrm{A}_{\mathrm{L} 1}$ ：芯材の断面積（横リブ）（ mm^{2} ）
$\mathrm{A}_{\mathrm{L} 2}$ ：芯材の断面積（縦リブ）（m²）
（3）カンヌキ部，ヒンジ
a．カンヌキ部
（a）カンヌキ
カンヌキに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「設計•建設規格」に基づく次式により算定し，カンヌキの許容限界値以下であることを確認する。
$\sigma_{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}$
σ_{x} ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ここで，$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{K} 1}$
σ ：カンヌキの最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキの最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$Z_{\mathrm{K} 1}$ ：カンヌキの断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{K} 1}$

ここで，σ ：カンヌキ受けの最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：カンヌキ受けの最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$\mathrm{Z}_{\mathrm{K} 2}$ ：カンヌキ受けの断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{K} 2}$
ここで，τ ：カンヌキ受けの最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：カンヌキ受けの最大せん断力（kN）
$\mathrm{A}_{\mathrm{K} 2}$ ：カンヌキ受けの断面積（ $\left(\mathrm{mm}^{2}\right)$
（c）カンヌキ受けボルト
カンヌキ受けボルトに生じる引張応力度を次式により算定し，カンヌキ受けボル トの許容限界値以下であることを確認する。

$$
\begin{array}{cl}
\sigma_{\mathrm{t}}= & \left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{b}} \\
\sigma_{\mathrm{t}} & : \text { カンヌキ受けボルトの最大引張応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{T} & : \text { カンヌキ受けボルトの最大引張力 }(\mathrm{kN}) \\
\mathrm{A}_{\mathrm{b}} & : \text { カンヌキ受けボルトの断面積 }\left(\mathrm{mm}^{2}\right)
\end{array}
$$

（d）カンヌキ受け溶接部
カンヌキ受け溶接部に生じる引張応力度を次式により算定し，カンヌキ受け溶接部 の許容限界値以下であることを確認する。

T ：カンヌキ受け溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{K} 3}$ ：カンヌキ受け溶接部の断面積（ mm^{2} ）
b．ヒンジ
（a）ヒンジピン
ヒンジピンに生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジピ ンの許容限界値以下であることを確認する。

$$
\begin{array}{cl}
\sigma= & \left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 1} \\
\sigma & : \text { ヒンジピンの最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{M} & : \text { ヒンジピンの最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
\mathrm{Z}_{\mathrm{H} 1} & : \text { ヒンジピンの断面係数 }\left(\mathrm{mm}^{3}\right) \\
\tau & \\
\tau \quad\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 1} \\
\tau & : \text { ヒンジピンの最大せん断応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{Q} & : \text { ヒンジピンの最大せん断力 }(\mathrm{kN}) \\
\mathrm{A}_{\mathrm{H} 1} & : \text { ヒンジピンの断面積 }\left(\mathrm{mm}^{2}\right)
\end{array}
$$

（b）ヒンジ受けピン穴部（扉側）
ヒンジ受けピン穴部（扉側）に生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジ受けピン穴部（扉側）の許容限界値以下であることを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 2}$
σ ：ヒンジ受けピン穴部（扉側）の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：ヒンジ受けピン穴部（扉側）の最大曲げモーメント（kN•m）
$\mathrm{Z}_{\mathrm{H} 2}$ ：ヒンジ受けピン穴部（扉側）の断面係数 $\left(\mathrm{mm}^{3}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 2}$
τ ：ヒンジ受けピン穴部（扉側）の最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：ヒンジ受けピン穴部（扉側）の最大せん断力（kN）
$\mathrm{A}_{\mathrm{H} 2}$ ：ヒンジ受けピン穴部（扉側）の断面積 $\left(\mathrm{mm}^{2}\right)$
（c）ヒンジ受けピン穴部（躯体側）
ヒンジ受けピン穴部（躯体側）に生じる曲げ応力度及びせん断応力度を次式により算定し，ヒンジ受けピン穴部（躯体側）の許容限界値以下であることを確認する。

$$
\begin{aligned}
& \sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 3} \\
& \sigma \text { : ヒンジ受けピン穴部 (躯体側) の最大曲げ応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { M : ヒンジ受けピン穴部 (躯体側) の最大曲げモーメント (kN•m) } \\
& Z_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) の断面係数 }\left(\mathrm{mm}^{3}\right) \\
& \tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 3} \\
& \tau \text { : ヒンジ受けピン穴部 (躯体側) の最大せん断応力度 (} \mathrm{N} / \mathrm{mm}^{2} \text {) } \\
& \text { Q : ヒンジ受けピン穴部 (躯体側) の最大せん断力 (kN) } \\
& \mathrm{A}_{\mathrm{H} 3} \text { : ヒンジ受けピン穴部 (躯体側) の断面積 (} \mathrm{mm}^{2} \text {) }
\end{aligned}
$$

（d）ヒンジ受け溶接部（扉側）
ヒンジ受けに生じる曲げ応力度及びせん断応力度から，組合せ応力度を「設計•建設規格」に基づく次式により算定し，ヒンジ受け溶接部（扉側）の許容限界値以下で あることを確認する。

$$
\sigma_{x}=\sqrt{\sigma^{2}+3 \cdot \tau^{2}}
$$

σ_{x} ：組合せ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
ここで，$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{H} 4}$
$\sigma \quad$ ：ヒンジ受け溶接部（扉側）の最大曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
M ：ヒンジ受け溶接部（扉側）の最大曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$
$\mathrm{Z}_{\mathrm{H} 4}$ ：ヒンジ受け溶接部（扉側）の断面係数（ mm^{3} ）
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 4}$
τ ：ヒンジ受け溶接部（扉側）の最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：ヒンジ受け溶接部（扉側）の最大せん断力（kN）
$\mathrm{A}_{\mathrm{H} 4}$ ：ヒンジ受け溶接部（扉側）の断面積（ mm^{2} ）
（e）ヒンジ受け溶接部（躯体側）
ヒンジ受け溶接部（躯体側）に生じる引張応力度を次式により算定し，ヒンジ受け溶接部（躯体側）の許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 5}$
σ t ：ヒンジ受け溶接部（躯体側）の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T：ヒンジ受け溶接部（躯体側）の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 5}$ ：ヒンジ受け溶接部（躯体側）の断面積（ mm^{2} ）
（f）ヒンジ受けボルト（扉側）
ヒンジ受けボルト（扉側）に生じるせん断応力度を次式により算定し，ヒンジ受け ボルト（扉側）の許容限界値以下であることを確認する。

$$
\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{bH} 6}
$$

τ ：ヒンジ受けボルト（扉側）の最大せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
Q ：ヒンジ受けボルト（扉側）の最大せん断力（ kN ）
$\mathrm{A}_{\mathrm{bH} 6}$ ：ヒンジ受けボルト（扉側）の断面積（mm²）
（g）ヒンジ受けボルト（躯体側）
ヒンジ受けボルト（躯体側）に生じる引張応力度を次式により算定し，ヒンジ受け ボルト（躯体側）の許容限界値以下であることを確認する。
$\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{bH} 7}$ σ_{t} ：ヒンジ受けボルト（躯体側）の最大引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ） T ：ヒンジ受けボルト（躯体側）の最大引張力（kN） $\mathrm{A}_{\mathrm{bH} 7}$ ：ヒンジ受けボルト（躯体側）の断面積（ mm^{2} ）
（4）取付金具リブ溶接部
取付金具リブ溶接部に生じる引張応力度及びせん断応力度を次式により算定し，取付金具リブ溶接部の許容限界値以下であることを確認する。

$$
\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 8}
$$

σ_{t} ：取付金具リブ溶接部の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：取付金具リブ溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 8}$ ：取付金具リブ溶接部の引張方向の断面積 $\left(\mathrm{mm}^{2}\right)$
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}^{\prime} \mathrm{H}_{8}$
τ ：取付金具リブ溶接部の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：取付金具リブ溶接部の最大せん断力（kN）
A＇H8：取付金具リブ溶接部のせん断方向の断面積（ mm^{2} ）
（5）固定リング溶接部
固定リング溶接部に生じる引張応力度を次式により算定し，固定リング溶接部の許容限界値以下であることを確認する。

$$
\sigma_{\mathrm{t}}=\left(\mathrm{T} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{H} 9}
$$

σ_{t} ：固定リング溶接部の最大引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
T ：固定リング溶接部の最大引張力（kN）
$\mathrm{A}_{\mathrm{H} 9}$ ：固定リング溶接部の断面積 $\left(\mathrm{mm}^{2}\right)$

3．2．5 評価条件

「3．2．4 評価方法」に用いる評価条件を表3－10に示す。

表3－10 強度評価に用いる評価条件（1／2）

評価対象部位		記号	単位	定義	水密扉No．	
		38				
共通			h	mm	扉の水圧作用高さ	2300
		$\rho 0$	t／m ${ }^{3}$	液体の密度	1． 00	
		9	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665	
		w	kN／ m^{2}	扉下端に作用する静水圧荷重	22． 5553	
		L_{1}	mm	扉高さ	1990	
		L_{2}	mm	扉幅	990	
扉板		$L_{\text {PL }}$	mm	扉板の短辺長さ	495	
		β_{1}	－	四辺支持長方形板の応力係数	0.5	
		t	mm	扉板の厚さ	6	
芯材（横リブ）		$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）	632.5	
		$\mathrm{L}_{\mathrm{L}, 1}$	mm	芯材の支持長さ（横リブ）	990	
		$\mathrm{Z}_{\mathrm{L} 1}$	mm ${ }^{3}$	芯材の断面係数（横りブ）	37.6×10^{3}	
		$\mathrm{A}_{\mathrm{L} 1}$	mm ${ }^{2}$	芯材の断面積（横リブ）	1192	
芯材（縦リブ）		$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）	495	
		$\mathrm{L}_{\mathrm{L} 2}$	mm	芯材の支持長さ（縦リブ）	745	
		$\mathrm{Z}_{\mathrm{L} 2}$	mm ${ }^{3}$	芯材の断面係数（縦リブ）	15.0×10^{3}	
		$\mathrm{A}_{\mathrm{L} 2}$	mm ${ }^{2}$	芯材の断面積（綎リブ）	900	
$\begin{aligned} & \text { カン } \\ & \text { ヌキ } \end{aligned}$ 部	共通	n_{2}	個	カンヌキとヒンジの個数	6	
	カンヌキ	$\mathrm{L}_{\mathrm{K} 1}$	mm	カンヌキの突出長さ	30	
		$\mathrm{Z}_{\mathrm{K} 1}$	mm^{3}	カンヌキの断面係数	9600	
		$\mathrm{A}_{\mathrm{K} 1}$	mm ${ }^{2}$	カンヌキの断面積	1440	
	カンヌキ受 け	$\mathrm{L}_{\mathrm{K} 2}$	mm	カンヌキ受けの支持長さ	55	
		$\mathrm{Z}_{\mathrm{K} 2}$	mm^{3}	カンヌキ受けの断面係数	3562.5	
		$\mathrm{A}_{\mathrm{K} 2}$	mm^{2}	カンヌキ⿳⿱㇒⿲丶丶㇒冖又心断面積	1425	
	カンヌキ受 けボルト	n b	本	カンヌキ受けボルトの本数	4	
		A_{b}	mm ${ }^{2}$	カンヌキ受けボルトの断面積	157	
	カンヌキ受 け溶接部	$\mathrm{A}_{\mathrm{K} 3}$	mm ${ }^{2}$	カンヌキ受け溶接部の断面積	1343.50	

表3－10 強度評価に用いる評価条件（2／2）

評価対象部位		記号	単位	定義	水密扉No．	
		38				
$\begin{aligned} & \text { ヒ ン } \\ & \text { ジ } \end{aligned}$	ヒンジピン		$\mathrm{L}_{\mathrm{H} 1}$	mm	ヒンジピンの支持長さ	50
		$\mathrm{A}_{\mathrm{H} 1}$	mm^{2}	ヒンジピンの断面積	706． 858	
		$\mathrm{Z}_{\mathrm{H} 1}$	mm^{3}	ヒンジピンの断面係数	2650.72	
	ヒンジ受け ピン穴部（扉側）	$\mathrm{L}_{\mathrm{H} 2}$	mm	ヒンジ受けピン穴（扉側）の支持長さ	38	
		$\mathrm{A}_{\mathrm{H} 2}$	mm^{2}	ヒンジ受けピン穴（扉側）の断面積	640	
		$\mathrm{Z}_{\mathrm{H} 2}$	mm^{3}	ヒンジ受けピン穴（扉側）の断面係数	1706． 67	
	ヒンジ受け ピン穴部（躯体側）	$\mathrm{L}_{\mathrm{H} 3}$	mm	ヒンジ受けピン穴（躯体側）の支持長さ	30	
		$\mathrm{A}_{\mathrm{H} 3}$	mm^{2}	ヒンジ受けピン穴（躯体側）の断面積	400	
		$\mathrm{Z}_{\mathrm{H} 3}$	mm^{3}	ヒンジ受けピン穴（躯体側）の断面係数	1333.33	
	ヒンジ受け溶接部（扉側）	L ${ }_{H}$	mm	ヒンジ受け（扉側）の突出長さ	51	
		$\mathrm{A}_{\mathrm{H} 4}$	mm^{2}	ヒンジ受け溶接部（扉側）の断面積	1414． 21	
		$\mathrm{Z}_{\mathrm{H} 4}$	mm^{3}	ヒンジ受け溶接部（扉側）の断面係数	23570． 2	
	ヒンジ受け溶接部（躯体側）	$\mathrm{A}_{\mathrm{H} 5}$	mm^{2}	ヒンジ受け溶接部（躯体側）の断面積	2545.58	
	ヒンジ受け	n b H 6	本	ヒンジ受けボルト（扉側）の本数	4	
	ボルト（扉側）	$\mathrm{A}_{\mathrm{bH} 6}$	mm^{2}	ヒンジ受けボルト（扉側）の断面積	84． 3	
	ヒンジ受け	n b H_{7}	本	ヒンジ受けボルト（躯体側）の本数	4	
	ボルト（躯体側）	$\mathrm{A}_{\mathrm{bH} 7}$	mm^{2}	ヒンジ受けボルト（躯体側）の断面積	157	
取付金具リブ溶接部		n 3	本	取付金具リブの本数	32	
		$\mathrm{A}_{\mathrm{H} 8}$	mm^{2}	取付金具リブ溶接部の引張方向の断面積	692.965	
		$\mathrm{A}^{\prime} \mathrm{H}_{8}$	mm^{2}	取付金具リブ溶接部のせん断方向の断面積	1682.91	
固定リング溶接部		$\mathrm{A}_{\mathrm{H} 9}$	mm^{2}	固定リング溶接部の断面積	22367.2	

3．2．6 評価結果

水密扉の強度評価結果を表3－11に示す。水密扉の各部材の断面検定を行った結果，発生値は，許容限界値以下であることを確認した。

表3－11 水密扉の強度評価結果

水密扉 No．	評価対象部位		発生値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	許容限界値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	発生値 ／許容限界値	備考
38	扉板		77	234	0.329	曲げ
	$\begin{aligned} & \text { 芯 } \\ & \text { 材 } \end{aligned}$	横リブ＊1	47	234	0． 201	曲げ
		縦リブ＊1	52	234	0． 222	曲げ
	力 ヌ キ部	カンヌキ＊2	25	483	0． 052	組合せ
		カンヌキ受け＊1	29	234	0． 124	曲げ
		$\begin{aligned} & \text { カンヌキ受けボル } \\ & \text { ト } \end{aligned}$	12	487	0． 025	引張
		カンヌキ受け溶接部	6	105	0.057	引張
	ヒ ジ	ヒンジピン＊1	35	204	0． 172	曲げ
		ヒンジ受けピン穴部（扉側）＊1	42	234	0． 179	曲げ
		$\begin{aligned} & \text { ヒンジ受けピン穴 } \\ & \text { 部 (躯体側) } \end{aligned}$	21	234	0． 089	曲げ
		ヒンジ受け溶接部 （扉側）＊2	19	105	0.181	組合せ
		ヒンジ受け溶接部 （躯体側）	3	105	0.029	曲げ
		ヒンジ受けボルト （扉側）	22	375	0.059	せん断
		ヒンジ受けボルト （躯体側）	12	487	0.025	引張
	取付金具リブ溶接部＊3		3	105	0.029	引張
	固定リング溶接部		2	60	0． 033	せん断

注記＊1：曲げ及びせん断のらち，評価結果が厳しい方の値を記載する。
＊2：曲げ，せん断及び組合せのうち，評価結果が最も厳しい値を記載する。
＊3：引張及びせん断のうち，評価結果が厳しい方の値を記載する。

3.3 タイプIII

3．3．1 評価対象部位

水密扉の評価対象部位は，「2．3 構造計画」に示す水密扉の構造上の特徴を踏まえ選定 する。

水密扉を閉める方向に外部から生じる静水圧荷重は，扉板から芯材を介し，扉枠に伝わ り，開口部周辺の躯体に伝達されることから，評価対象部位は扉板，芯材とする。

なお，荷重は扉朹から躯体に伝達されることから，アンカーボルトは静水圧荷重の伝達経路とならないため，評価対象外とする。

また，タイプIIIの水密扉はNo．40，No．41であり，同様の構造であることを踏まえ，代表 として水密扉No． 40 にて評価を行う。水密扉に作用する荷重の作用図を図 $3-31$ に示す。

図 3－31 水密扉に作用する荷重の作用図（水密扉 No．40，No．41）

3．3．2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏まえて設定する。

3．3．2．1 荷重の設定

強度評価に用いる荷重は，以下の荷重を用いる。
（1）溢水による静水圧荷重（ P_{h} ）
溢水による静水圧荷重として，水圧作用高さまでの静水圧を考慮する。溢水による静水圧荷重は，対象とする液体の密度に当該部分の水圧作用高さを乗じた次式により算出する。

$$
\mathrm{P}_{\mathrm{h}}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}
$$

3．3．2．2 荷重の組合せ
強度評価に用いる荷重の組合せは，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」を踏まえて下記のとおりに設定する。

```
Ph
ここで,
    P
```


3．3．3 許容限界

許容限界は，「3．3．1 評価対象部位」にて設定した部位に対し，添付書類「VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3．3．3．1 使用材料

水密扉を構成する，扉板及び芯材の使用材料を表3－12に示す。

表 3－12 使用材料

部位		材質	仕様 (mm)
菲板	SS 400	$\mathrm{PL}-9$	
	横リブ	SS 400	$\mathrm{C}-100 \times 50$
	縦リブ	SS 400	$\mathrm{C}-100 \times 50$
		SS 400	$\mathrm{FB}-100 \times 9$

3．3．3．2 許容限界

（1）扉板，芯材
扉板及び芯材の鋼材の許容限界は，「設計•建設規格」に準じた供用状態Cの許容応力（許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ）を踏まえて表3－13の値とする。

表 3－13 扉板及び芯材の許容限界

注記 $*$ ：温度条件は，周囲環境温度である $40^{\circ} \mathrm{C}$ とする。

3．3．4 評価方法

水密扉の強度評価は，添付書類「VI－3－別添3－3 溢水への配慮が必要な施設の強度計算の方針」にて設定している評価式を用いる。

3．3．4．1 応力算定

（1）扉板
扉板に生じる応力は，等分布荷重を受ける四辺支持板として算定する。
この時，実際に作用する静水圧は台形分布もしくは，三角形分布であるが，扉最下部の最大静水圧が等分布に作用するものとして安全側に評価する。扉板に生じる荷重 の例を図 3－32に示す。
$\mathrm{w}=\rho_{0} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot 10^{-3}$
w ：扉下端に作用する静水圧荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
$\rho 0 \quad$ ：液体の密度 $\left(\mathrm{t} / \mathrm{m}^{3}\right)$
g ：重力加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
$\mathrm{h}:$ 扉の水圧作用高さ (mm)

図 3－32 扉板に生じる荷重の例
（2）芯材
芯材に生じる応力は，等分布荷重を受ける両端単純支持の梁として算定する。なお，芯材の取付け方向は，水平•鉛直の 2 方向があるが，両者とも上述の扉最下部の最大静水圧に，芯材の支配幅（＝間隔）を乗じた荷重が等分布に作用するものとして安全側に評価する。芯材に作用する荷重の例を図 3－33 及び図 3－34に示す。

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}^{\prime} \cdot\left(\mathrm{L}_{\mathrm{L}} \cdot 10^{-3}\right)^{2} / 8 \\
& \mathrm{Q}=\mathrm{w}^{\prime} \cdot \mathrm{L}_{\mathrm{L}} \cdot 10^{-3} / 2 \\
& \text { ここで, } \mathrm{w}^{\prime}=\mathrm{w} \cdot \mathrm{~b}_{\mathrm{L}} \cdot 10^{-3} \\
& \text { w' : 芯材に作用する等分布荷重 }(\mathrm{kN} / \mathrm{m}) \\
& \text { M : 芯材に生じる最大曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m}) \\
& \text { Q : 芯材に生じる最大せん断力 (kN) } \\
& L_{\text {L } 1} \text { : 芯材の支持長さ (横リブ) (mm) } \\
& L_{L} 2 \text { : 芯材の支持長さ (縦リブ) (mm) } \\
& \text { w : 扉下端に作用する静水圧荷重 }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
& \mathrm{b}_{\mathrm{L} 1} \text { : 芯材に作用する荷重の負担幅 (横リブ) (mm) } \\
& \text { b L 2 : 芯材に作用する荷重の負担幅 (縦リブ) (mm) }
\end{aligned}
$$

正面図

図 3－33 芯材（横リブ）に生じる荷重の例

正面図

図 3－34 芯材（縦リブ）に生じる荷重の例

3．3．4．2 断面検定

評価対象部位に発生する応力より算定する応力度が，許容限界値以下であることを確認する。
（1）扉板
扉板に生じる曲げ応力度を算定し，扉板の許容限界値以下であることを確認する。

$$
\begin{aligned}
\sigma= & \beta_{1} \cdot \mathrm{w} \\
& \cdot 10^{3} \cdot \mathrm{~L}_{\mathrm{PL}^{2}}{ }^{2} \cdot 10^{-6} / \mathrm{t}^{2} \\
& \text { : 扉板の最大曲げ応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
& \\
& \text { : 四辺支持長方形板の応力係数 } \\
& \text { : 扉下端に作用する静水圧荷重 }\left(\mathrm{kN} / \mathrm{m}^{2}\right) \\
\mathrm{L}_{\mathrm{PL}} & : \text { 扉板の短辺長さ }(\mathrm{mm}) \\
\mathrm{t} & : \text { 扉板の厚さ }(\mathrm{mm})
\end{aligned}
$$

（2）芯材
芯材に生じる曲げ応力度及びせん断応力度を算定し，芯材の許容限界値以下である ことを確認する。
$\sigma=\left(\mathrm{M} \cdot 10^{6}\right) / \mathrm{Z}_{\mathrm{L}}$
$\sigma \quad$ ：芯材の最大曲げ応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：芯材の最大曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ）
$Z_{\text {L } 1}$ ：芯材の断面係数（横リブ）（ mm^{3} ）
$Z_{\text {L } 2}$ ：芯材の断面係数（縦リブ）（ mm^{3} ）
$\tau=\left(\mathrm{Q} \cdot 10^{3}\right) / \mathrm{A}_{\mathrm{L}}$
$\tau \quad$ ：芯材の最大せん断応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
Q ：芯材の最大せん断力（kN）
$\mathrm{A}_{\mathrm{L} 1}$ ：芯材のせん断断面積（横リブ）（ mm^{2} ）
$\mathrm{A}_{\mathrm{L} 2}$ ：芯材のせん断断面積（縦リブ）（ mm^{2} ）

3．3．5 評価条件

「3．3．4 評価方法」に用いる評価条件を表3－14に示す。

表3－14 強度評価に用いる評価条件

評価対象部位	記号	単位	定義	水密扉No．
				40
共通	h	mm	扉の水圧作用高さ	570
	$\rho 0$	$\mathrm{t} / \mathrm{m}^{3}$	液体の密度	1． 00
	g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度	9． 80665
	W	$\mathrm{kN} / \mathrm{m}^{2}$	扉下端に作用する静水圧荷重	5． 58979
扉板	$L_{\text {P L }}$	mm	扉板の短辺長さ	467
	β_{1}	－	四辺支持長方形板の応力係数	0.38
	t	mm	扉板の厚さ	9
芯材（横リブ）	$\mathrm{b}_{\mathrm{L} 1}$	mm	芯材に作用する荷重の負担幅（横リブ）	474.5
	$\mathrm{L}_{\mathrm{L} 1}$	mm	芯材の支持長さ（横リブ）	934
	$\mathrm{Z}_{\mathrm{L} 1}$	mm^{3}	芯材の断面係数（横リブ）	37.6×10^{3}
	$\mathrm{A}_{\mathrm{L} 1}$	mm^{2}	芯材の断面積（横リブ）	1192
芯材（縦リブ）	$\mathrm{b}_{\mathrm{L} 2}$	mm	芯材に作用する荷重の負担幅（縦リブ）	467
	$\mathrm{L}_{\mathrm{L} 2}$	mm	芯材の支持長さ（縦リブ）	514
	$\mathrm{Z}_{\mathrm{L} 2}$	mm^{3}	芯材の断面係数（縦リブ）	15.0×10^{3}
	$\mathrm{A}_{\mathrm{L} 2}$	mm^{2}	芯材の断面積（縦リブ）	900

3．3．6 評価結果

水密扉の強度評価結果を表3－15に示す。水密扉の各部材の断面検定を行った結果，発生値は，許容限界値以下であることを確認した。

表3－15 水密扉の強度評価結果

水密扉 No．	評価対象部位		発生値 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	許容限界値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	発生値 ／許容限界値	備考
40	扉板		6	234	0.026	曲げ
	芯材	横リブ＊	8	234	0． 034	曲げ
		縦リブ＊	6	234	0． 026	曲げ

注記＊：曲げ及びせん断のうち，評価結果が厳しい方の値を記載する。

[^0]: 注記 $*: そ の$ 他の支持構造物の荷重の組合せ及び許容応力を適用する。

[^1]: 注記＊：\square の値のうち，裕度最小部位の材料 \square の値を記載

[^2]: 注記 $* 1$ ：基準床レベルを示す。
 ＊2：評価上厳しくなるトロリ位置が中央にある場合の値。
 ＊ 3 ：動的解析を実施する NS 方向が卓越するモードの値
 ＊4：基準地震動 S s に基づく設計用床応答曲線より得られる値。
 ＊5：この方向は滑りを生じ最大静止摩擦力以上の水平力は加わらないため，最大静止摩擦係数により水平方向設計震度を求めた。

[^3]: 枠囲みの内容は防謢上の観点から公開できません。

[^4]: $* 2$ ：照査用ひずみ $\varepsilon_{\mathrm{d}}=$ 発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

[^5]: $* 2$ ：照査用ひずみ $\varepsilon{ }_{\mathrm{d}}=$ 発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

[^6]: ＊2：照査用ひずみ $\varepsilon{ }_{\mathrm{d}}=$ 発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

[^7]: $* 2$ ：照査用せん断力 $\mathrm{V}_{\mathrm{d}}=$ 発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$

[^8]: ＊2：照査用面内せん断ひずみ $\gamma_{\mathrm{d}}=$ 発生する面内せん断ひずみ×構造解析係数 γ_{a}

[^9]: 注記＊：評価位置は図3－3－47に示す。

[^10]: 枠囲みの内容は防護上の観点から公開できません。

[^11]: 注記＊1：鋼構造設計規準（日本建築学会 2005 改定）等の幅厚比の制限を満足させる。

[^12]: 注記＊：基準床レベルを示す。

[^13]: R 0

[^14]: VI－2－別添2－7 R 0
 （a）
 N
 0

[^15]: 0
 \sim

[^16]: 4．2．2 支持構造物評価結果

[^17]: R 0
 VI－2－別添 2－8
 （1）
 \sim

[^18]: 0

[^19]: 4． 2 評価結果
 4．2．1 管の応力評価結果
 下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

[^20]: VI－3－3－3－2－1－3－2（重）R 0
 （a）
 ～

[^21]: VI－3－3－3－2－1－3－2（重）R 0
 （a）
 ${ }^{\sim}$

[^22]: 重大事故等クラス 2 管であってクラス 2 以下の管
 告示第

[^23]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^24]: O 2 （5）VI－3－3－3－2－2－1－2（設）R 0

[^25]: 注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。

[^26]: VI－3－3－3－2－2－1－2（重）R 0
 （a）
 ${ }^{\sim}$

[^27]: 重大事故等クラス 2 管であってクラス 2 以下の管
 告示第

[^28]: 重大事故等クラス 2 管であってクラス 2 以下の管
 設計•建設規格 PPC－3500による評価結果

[^29]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^30]: VI－3－3－3－3－1－5－2（重）R 0
 （a）
 ～

[^31]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^32]: VI－3－3－3－3－1－5－3（重）R 0
 （a）
 N

[^33]: VI－3－3－3－4－1－4－2（重）R 0
 （a）
 ${ }^{\sim}$

[^34]: VI－3－3－3－4－1－4－2（重）R 0
 （a）
 ～

[^35]: 重大事故等クラス 2 管であってクラス 2 以下の管
 告示第

[^36]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^37]: VI－3－3－3－4－2－3－2（重）R 0
 （a）
 ～

[^38]: VI－3－3－3－4－2－3－2（重）R 0
 （a）
 ～

[^39]: VI－3－3－3－4－2－3－2（重）R 0
 （a）
 N

[^40]: VI－3－3－3－4－2－3－2（重）R 0
 （a）
 ～

[^41]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^42]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^43]: VI－3－3－3－5－1 原子炉隔離時冷却系の強度計算書
 VI－3－3－3－5－2 補給水系の強度計算書

[^44]: VI－3－3－3－5－1－3－2（設）R 0
 （a）
 ${ }^{\sim}$

[^45]: VI－3－3－3－5－1－3－2（設）R 0
 （a）
 ～

[^46]: 重大事故等クラス 2 管であってクラス 2 以下の管
 設計•建設規格 PPC－3500による評価結果

[^47]: $0 \geq$（重）（ 6 ）$\zeta-9-I-9-\varepsilon-\varepsilon-\varepsilon-I \Lambda$
 （1）
 \sim

[^48]: VI－3－3－3－6－1－6－2（2）（重）R 0
 （1）
 \sim

[^49]: VI－3－3－4－3－2－1－2（重）R 0
 （1）
 N

[^50]:

[^51]: 注記＊1：（ ）は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。

[^52]: 0 \sim

[^53]: 記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

[^54]: 重大事故等クラス 2 管であってクラス 2 以下の管
 告示第501号第56条による評価結果

[^55]: 枠囲みの内容は商業機密の観点から公開できません。

[^56]: 枠囲みの内容は商業機密の観点から公開できません。

[^57]: 枠囲みの内容は商業機密の観点から公開できません。

[^58]: 枠囲みの内容は商業機密の観点から公開できません

[^59]: 枠囲みの内容は商業機密の観点から公開できません。

[^60]: $\stackrel{\circ}{\sim}$

 （a）

[^61]: VI－3－別添 3－2－6 R 0
 （1）
 N
 0

[^62]: 枠囲みの内容は商業機密の観点から公開できません。

[^63]: VI－3－別添 3－4－1 R 0
 （1）
 N
 0

[^64]: 0 y

 （1）
 N
 \bigcirc

