特定原子力施設監視・評価検討会 (第89回) 資料4-2-2

高性能容器(HIC)の放射線劣化に 関する追加調査等の実施について

2021年3月22日

東京電力ホールディングス株式会社

高性能容器(HIC)の放射線劣化に関する追加調査等の実施について TEPCO

■ 2/22の特定原子力施設監視・評価検討会でのご指摘を踏まえ、HIC内でのスラリーの経時的な沈降(濃縮)の知見拡充のため、以下の調査(対応①)を実施したことから結果について報告

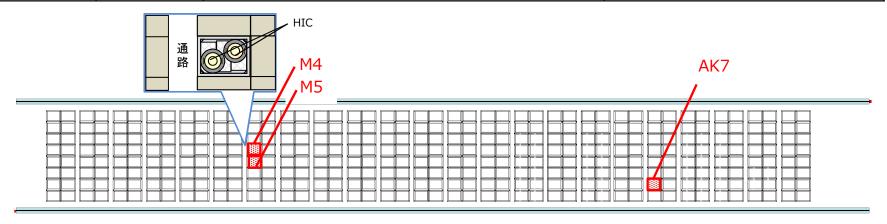
対応①:ボックスカルバート外面からの線量測定【2021年3月16日実施済】

- 2017/2018年に原子力規制庁殿が実施したボックスカルバート外面からの線量測定の追跡 調査を実施し、スラリー沈降に伴う底部の線量上昇の有無を確認
- 今後、年1回の頻度で測定を実施 (測定結果により頻度を増やすことも検討)
- また、更なる追加調査(対応②)や、調査の結果から積算吸収5,000kGyの到達期間が短くなる 状況に備え、HIC内スラリーの移替えを試験的に実施(対応③)することを計画

対応②:HIC内スラリーの密度測定【4月中旬より実施】

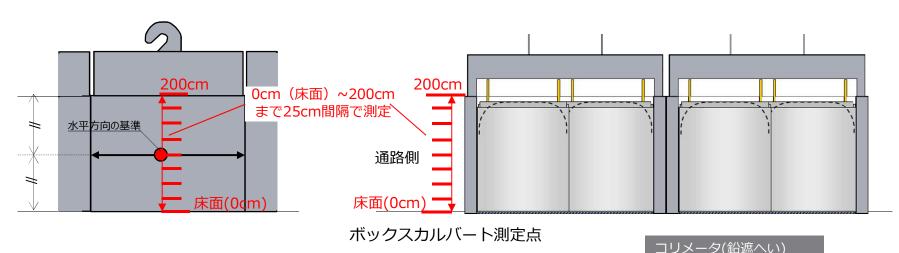
- 2018年に当社が実施したHIC内スラリーの密度測定(スラリーを収容してから1000日以上経過したHICの上層・中層・低層からスラリーを採取し密度を測定)の追跡調査を実施し、スラリー沈降に伴う密度上昇の有無を確認
- 今後、年1回の頻度で測定を実施 (測定結果により頻度を増やすことも検討)

対応③:HIC内スラリーの移替え(試験的に2基を対象として実施)【4月下旬より実施】


- 移替えは、ALPSのスラリー払出し装置(既存の装置)を活用
- HIC底部(数cm)にスラリーが残る可能性あり、残ったスラリーの処理およびHIC内面調査は、スラリーの抜取り状況を踏まえ検討

■ ボックスカルバート外面からの線量測定

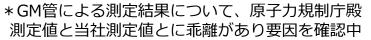
2017/2018年に原子力規制庁殿が行ったボックスカルバート外面からの線量測定にて対象となっている5箇所のうち、2018年以降に測定点に近い通路側に収容するHICの移動実績がない3箇所について測定を実施

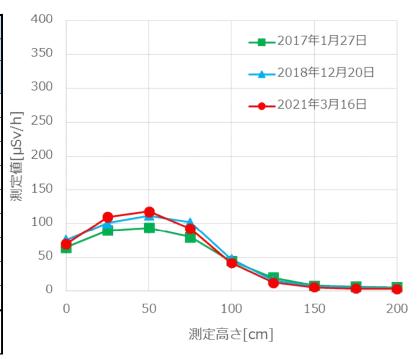

保管場所	対象ボックス カルバート	保管しているHICのシリアルナンバー (保管期期間)	内容物(発生した設備)
M4		・PO641180-207(2016/12/25〜)通路側 ・PO625899-324(2013/11/20〜)	炭酸塩スラリー(既設ALPS) 吸着材(既設ALPS)
使用済みセシウム吸着塔一時保管施設	M5	・PO641180-111(2014/9/20〜)通路側 ・PO625899-060(2013/10/3〜)	炭酸塩スラリー(既設ALPS) 炭酸塩スラリー(既設ALPS)
(第二施設)	AK7	・PO646393-183(2014/11/3〜)通路側 ・PO625899-044(2013/12/25〜2019/2/8) ・PO625899-280(2019/2/8〜)	炭酸塩スラリー(増設ALPS) 炭酸塩スラリー(既設ALPS) 炭酸塩スラリー(既設ALPS)

■ 測定方法

- ・電離箱と鉛コリメータ(厚3mm)付※1のGM管を用いて測定
- ・測定は、通路側からボックスカルバート壁面に対し以下の手順で実施
- ①ボックスカルバート高さ方向の中心位置で水平方向に線量測定を行い,最も 値が高い点を水平方向の基準として設定
- ②水平方向の基準に沿って、床面(0cm)~200cmの高さまで25cm間隔で測定を実施

※1 コリメータ付GM管イメージ図

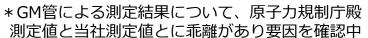

GM管

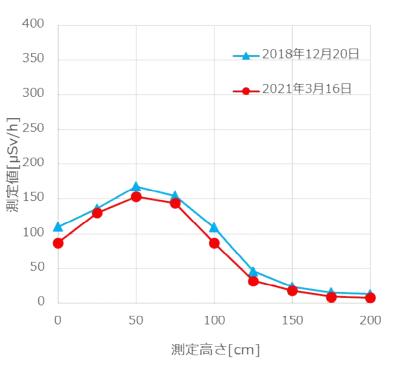

ボックスカルバート外面からの線量測定結果(1/3)

■ 測定結果(M4)

		原子力規制	当社測定				
測定高さ	2017/1/27		2018/	2018/12/20		2021/3/16	
(cm)	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※2} (cpm)	
200	6	78	4.9	90	3.5	647	
175	7	84	5.3	126	4.2	603	
150	8.5	162	7.2	204	5.9	855	
125	20	402	16.6	426	12.9	2630	
100	45	1446	47.5	1320	42	13400	
75	80	2200	102	2442	93	31600	
50	94	2604	112	2904	118	40500	
25	90	2340	101	2928	110	39300	
0	65	1302	76	2766	70.1	22500	
バック グラウンド *3	-	-	-	-	19.1	5750	

電離箱測定結果 (M4)


- ※1 円筒型鉛コリメータ(鉛厚2mm)付GM管
- ※2 円筒型鉛コリメータ(鉛厚3mm)付GM管 ※3 バックグラウンドは床面から高さ100cm、ボックスカルバート間通路中央にて測定


ボックスカルバート外面からの線量測定結果 (2/3)

■ 測定結果(M5)

		原子力規制	当社測定			
測定高さ (cm)	2017,	/1/27	2018/	2018/12/20		/3/16
(CIII)	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※2} (cpm)
200	-	330	12.9	300	7.6	1270
175	-	420	15.2	354	9.3	1390
150	-	666	23.2	498	17.9	2530
125	-	1338	45.9	990	32.2	8370
100	-	3730	109	2958	87	28800
75	-	3750	154	4080	144	45300
50	-	3586	168	4350	153	48700
25	-	2976	136	3898	130	42600
0	-	2112	110	3163	87.5	25300
バック グラウンド *3	-	-	-	-	56	1870

電離箱測定結果 (M5)

- ※1 円筒型鉛コリメータ(鉛厚2mm)付GM管
- ※2 円筒型鉛コリメータ(鉛厚3mm)付GM管 ※3 バックグラウンドは床面から高さ100cm、ボックスカルバート間通路中央にて測定

ボックスカルバート外面からの線量測定結果(3/3)

____2017年1月27日

→ 2018年12月20日

■ 測定結果(AK7)

		原子力規制	当社測定			
測定高さ (cm)	2017/1/27		2018/12/20		2021/3/16	
, ,	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※1} (cpm)	電離箱 (µSv/h)	GM管 ^{※2} (cpm)
200	8.2	102	6.6	96	8.1	1150
175	12	156	8.3	168	12	1330
150	21	318	20.8	450	17.5	2570
125	43	1248	50.5	1230	36.5	6760
100	133	3654	127	3372	110	34200
75	296	7884	256	5250	270	83400
50	380	10008	284	5790	362	>100000
25	350	9036	255	5628	324	98100
0	230	5676	202	4080	214	67900
バック グラウンド *3	-	-	-	-	90.5	34300

300 ---2021年3月16日 測定値[µSv/h] 250 200 150 100 50 0 50 100 150 測定高さ[cm]

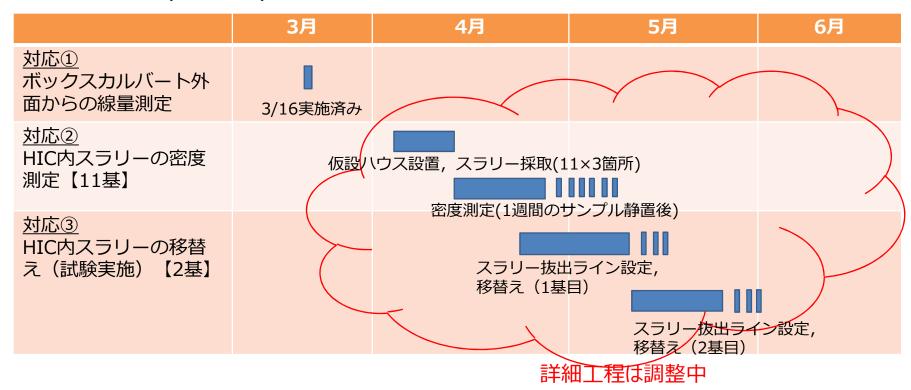
400

350

*GM管による測定結果について、原子力規制庁殿 測定値と当社測定値とに乖離があり要因を確認中

電離箱測定結果(AK7)

- ※1 円筒型鉛コリメータ(鉛厚2mm)付GM管
- ※2 円筒型鉛コリメータ(鉛厚3mm)付GM管
- ※3 バックグラウンドは床面から高さ100cm、ボックスカルバート間通路中央にて測定


200

ボックスカルバート外面からの線量測定結果まとめ/今後の予定

- ▶ 電離箱での測定では、床面から50 c mの高さが最も線量率が高く、底部でスラリーが沈降していることが確認できる。
- 経時的な変化については、今回の線量測定結果や今後行う密度測定結果を踏まえ検討・ 評価を行っていく。

> 今後の予定(概略工程)

【参考】今回測定対象外としたボックスカルバート

▶ 2017/2018年に原子力規制庁殿が行ったボックスカルバート外面からの線量測定にて対象となっている5箇所のうち、今回、測定対象から除外した2箇所は以下のとおり


ボックス カルバート	除外理由
AJ7	2017年の測定時は、HIC2基が保管されていたが、2018年の測定前に2基ともに他のボックスカルバートへ移動⇒対象から除外
AK8	2017年,2018年の測定時は、HIC2基が格納されていたがその後、2基とも に他のボックスカルバートへ移動済み⇒対象から除外

【参考】5,000kGy到達時間の評価方法

特定原子力施設監視・評価検討会 (第88回)資料

- 5,000kGy到達時間の評価方法
 - ▶HIC内に収容したスラリーは,時間の経過により底部に沈降することからHIC収容後の沈降による濃縮を考慮し,HICの表面吸収線量率(Gy/h)を算出。
- 2018年3月にHIC内部スラリーの高さ方向の密度を採取することで,沈降による濃縮を考慮
 - ▶さらに、90Srの減衰による線源強度の低減を考慮したうえで5,000kGy到達期間を評価。

HIC収容後のスラリー沈降イメージ

○沈降を考慮したスラリーの線源強度の評価方法

HIC表面吸収線量率解析結果※1に用いた90Sr濃度とスラリー沈降後の90Sr濃度の濃度比から沈降後のスラリーによるHICの表面吸収線量率を算出。

※1 HICの表面吸収線量率解析結果

 $A = B \times C \times D/E$

A:沈降後のスラリーによるHICの表面吸収線量率(Gy/h)

B: HICの表面吸収線量率解析結果(Gy/h)

解析に用いた 90Sr濃度(Bq/m³) HIC表面吸収線量率 解析結果*2(Gy/h) 1.34E+13 3.9

※2 解析結果には90Yの寄与も含む

C:評価対象とするHIC内のSr濃度(Bq/m³)←処理対象水の全β濃度・HIC交換までの処理量から算出

D:沈殿による濃縮率(HIC11基から採取したスラリーの密度の最大値から算出)

E: HICの表面吸収線量率解析に用いたスラリーのSr濃度(Bq/m³)

【参考】 5,000kGy到達時間の評価結果①

特定原子力施設監視・評価検討会 (第88回) 資料

● 5,000kGy到達時間の評価結果(到達時間の短い17基)

			5,000kGy到達	時間の評価	
HIC シリアルNo.	保管施設への 格納日時	スラリー沈降後の Sr濃度(Bq/m³)	沈降後のスラリーに よるHICの表面吸収 線量率(Gy/h)	積算吸収線量 5,000kGy到達 期間	積算吸収線量 5,000kGy到達年月
PO646393-190	2014/11/2	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-183	2014/11/3	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-185	2014/10/29	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-194	2014/11/3	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-172	2014/10/31	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-182	2014/11/1	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-197	2014/10/30	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-213	2014/11/4	2.1E+14	60	10年9ヶ月	2025年7月
PO641180-237	2014/11/6	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-177	2014/11/4	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-186	2014/10/26	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-176	2014/10/26	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-184	2014/11/1	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-187	2014/10/28	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-180	2014/11/3	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-192	2014/11/4	2.1E+14	60	10年9ヶ月	2025年7月
PO646393-174	2014/10/31	2.1E+14	60	10年9ヶ月	2025年7月

【参考】 5,000kGy到達時間の評価結果②

特定原子力施設監視・評価検討会 (第88回) 資料

● 5,000kGy到達時間の評価結果(次に到達時間の短い20基)

		5,000kGy到達時間の評価					
HIC シリアルNo.	保管施設への 格納日時	スラリー沈降後の Sr濃度(Bq/m³)	沈降後のスラリーに よるHICの表面吸収 線量率(Gy/h)	積算吸収線量 5,000kGy到達 期間	積算吸収線量 5,000kGy到達年月		
PO646393-195	2014/11/13	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-173	2014/11/13	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-209	2014/11/6	1.3E+14	39	17年11ヶ月	2032年9月		
PO641180-229	2014/11/9	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-181	2014/11/5	1.3E+14	39	17年11ヶ月	2032年9月		
PO641180-230	2014/11/7	1.3E+14	39	17年11ヶ月	2032年9月		
PO641180-242	2014/11/8	1.3E+14	39	17年11ヶ月	2032年9月		
PO646393-211	2014/11/10	1.3E+14	39	17年11ヶ月	2032年10月		
PO641180-240	2014/11/6	1.3E+14	39	17年11ヶ月	2032年9月		
PO641180-227	2014/11/9	1.3E+14	39	17年11ヶ月	2032年10月		
PO641180-239	2014/11/8	1.3E+14	39	17年11ヶ月	2032年10月		
PO641180-248	2014/11/5	1.3E+14	39	17年11ヶ月	2032年9月		
PO646393-212	2014/11/9	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-228	2014/11/10	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-230	2014/11/10	1.3E+14	39	17年11ヶ月	2032年10月		
PO641180-228	2014/11/7	1.3E+14	39	17年11ヶ月	2032年9月		
PO646393-229	2014/11/10	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-233	2014/11/11	1.3E+14	39	17年11ヶ月	2032年10月		
PO641180-243	2014/11/11	1.3E+14	39	17年11ヶ月	2032年10月		
PO646393-188	2014/11/12	1.3E+14	39	17年11ヶ月	2032年10月		

【参考】5,000kGy到達時間の評価条件①

特定原子力施設監視・評価検討会 (第88回) 資料

5,000kGy到達時間の評価に用いた物性値

到達時間の短い17基

_到達時間の短い	¼/基			
HIC シリアルNo.	ALPS処理対象水	処理量	Ca	Mg
TIC 2777/VINO.	の全β濃度[Bq/cm ³]	【m³】	【ppm】	[ppm]
PO646393-190	8.5E+05	3.3E+02	222	266
PO646393-183	8.5E+05	2.5E+02	222	266
PO646393-185	8.5E+05	3.6E+02	222	266
PO646393-194	8.5E+05	5.9E+02	222	266
PO646393-172	8.5E+05	3.3E+02	222	266
PO646393-182	8.5E+05	3.9E+02	222	266
PO646393-197	8.5E+05	3.2E+02	222	266
PO646393-213	8.5E+05	2.5E+02	222	266
PO641180-237	8.5E+05	2.5E+02	222	266
PO646393-177	8.5E+05	2.3E+02	222	266
PO646393-186	8.5E+05	5.4E+02	222	266
PO646393-176	8.5E+05	5.5E+02	222	266
PO646393-184	8.5E+05	2.8E+02	222	266
PO646393-187	8.5E+05	2.8E+02	222	266
PO646393-180	8.5E+05	2.4E+02	222	266
PO646393-192	8.5E+05	2.1E+02	222	266
PO646393-174	8.5E+05	8.8E+01	222	266

17基の次に到達時間の短い20基

	ALPS処理対象水	処理量	Ca	Mg
HIC シリアルNo.	の全β濃度	(m ³)	[ppm	[ppm
	[Bq/cm³]]]
PO646393-195	5.3E+05	5.5E+02	210	256
PO646393-173	5.3E+05	4.9E+02	210	256
PO646393-209	5.3E+05	4.3E+02	210	256
PO641180-229	5.3E+05	3.5E+02	210	256
PO646393-181	5.3E+05	3.2E+02	210	256
PO641180-230	5.3E+05	3.1E+02	210	256
PO641180-242	5.3E+05	3.1E+02	210	256
PO646393-211	5.3E+05	3.0E+02	210	256
PO641180-240	5.3E+05	2.8E+02	210	256
PO641180-227	5.3E+05	2.8E+02	210	256
PO641180-239	5.3E+05	2.6E+02	210	256
PO641180-248	5.3E+05	2.6E+02	210	256
PO646393-212	5.3E+05	2.6E+02	210	256
PO646393-228	5.3E+05	2.5E+02	210	256
PO646393-230	5.3E+05	2.2E+02	210	256
PO641180-228	5.3E+05	2.1E+02	210	256
PO646393-229	5.3E+05	2.0E+02	210	256
PO646393-233	5.3E+05	2.0E+02	210	256
PO641180-243	5.3E+05	1.5E+02	210	256
PO646393-188	5.3E+05	5.7E+01	210	256

【参考】2018年に実施したスラリー密度測定

■ スラリー密度の採取方法、取得データ(2018年3月) HIC内にスラリーを収容してから1,000日以上経過した11基を対象にHIC内にチューブを 挿入し、底部のスラリを吸引によりスラリーを採取。採取したスラリーの重量を測定し、 密度を算出。

No.	HIC No.		密度 (g/mL)		発生設備	
INO.	THE NO.	上部	中部	下部	元上以闸	
1	PO625899-211		1.06	1.13	既設	スラリ採取方法
2	PO641180-152	1.11	1.26	1.30	既設	
3	PO625899-210		1.12	1.31	既設	真空
4	PO637802-027	1.07	1.11	1.31	既設	
5	PO625899-249	1.09	1.21	1.30	既設	上澄み水
6	PO625899-048	1.14	1.27	1.27	既設	スラリ沈殿層 ○ :上部 600~800mm ※ : 中部 1000~1240mm
7	PO637802-071		1.09	1.29	既設	▲ : 下部 1500mm
8	PO641180-144	_		1.23	既設	沈降部 → 200 mm
9	PO625899-236	_		1.36	既設	
10	PO646393-172	1.14	1.12		増設	現在の5,000kGy到達期間評価 では、2018年に実施した密度測
11	PO625899-137			1.27	既設	定結果の最大値[1.36g/ml]を用
						いて評価を実施