新旧対照表

(傍線部分は改正部分)

修正後	修正前	備考
平成25年度「地層処分の安全審査に向けた評価手法等の	平成25年度「地層処分の安全審査に向けた評価手法等の	
整備(安全評価に向けた評価手法の整備)」報告書	整備(安全評価に向けた評価手法の整備)」報告書	
(平成26年3月)	(平成26年3月)	
平成26年3月31日	平成26年3月31日	
1. 序論	1. 序論	
(修正無し)	(記載省略)	
1.3 成果概要	1.3 成果概要	
1.3.1 廃棄体・人工バリア材の性能評価モデルの整備	1.3.1 廃棄体・人工バリア材の性能評価モデルの整備	
(修正無し)	(記載省略)	
(2) 放射化金属の腐食モデルの作成	(2) 放射化金属の腐食モデルの作成	
ジルカロイを母材とするハルは、長半減期低発熱放射性廃棄	ジルカロイを母材とするハルは、長半減期低発熱放射性廃棄	
物(TRU 廃棄物)として地層処分される計画であるが、ハルに	物(TRU 廃棄物)として地層処分される計画であるが、ハルに	
は放射化によって生成された C-14 などの放射性核種が含まれ	は放射化によって生成された C-14 などの放射性核種が含まれ	
る。このため、地層処分後に地下水を介して生活圏に達する可	る。このため、地層処分後に地下水を介して生活圏に達する可	
能性を考え、人への影響を評価する必要がある。放射性核種の	能性を考え、人への影響を評価する必要がある。放射性核種の	
溶出がジルカロイの腐食に伴って進行することから、処分環境	溶出がジルカロイの腐食に伴って進行することから、処分環境	
におけるジルカロイの腐食速度を評価することが重要となる。	におけるジルカロイの腐食速度を評価することが重要となる。	
これまでに、300℃付近の高温域での腐食速度については、時	これまでに、300℃付近の高温域での腐食速度については、時	
間の立方根と腐食量が比例する三乗則が経験則モデルとして	間の立方根と腐食量が比例する三乗則が経験則モデルとして	

提案されており、酸化皮膜の酸素イオン伝播が腐食メカニズム	提案されており、酸化皮膜の酸素イオン伝播が腐食メカニズム	
であるとする説と、酸化皮膜中の水拡散であるとする説が報告	であるとする説と、酸化皮膜中の水拡散であるとする説が報告	
されているが、処分環境に近い 100℃以下を含む低温域での腐	されているが、処分環境に近い 100℃以下を含む低温域での腐	
食メカニズムについては不明であることが既往知見として認	食メカニズムについては不明であることが既往知見として認	
められた。	められた。	
我々は、微量な腐食量でも測定が可能な水素ガス発生量測定法	我々は、微量な腐食量でも測定が可能な水素ガス発生量測定	
を用い、80℃~120℃の低温域におけるジルカロイ <u>-4</u> の腐食速	法を用い、80℃~120℃の低温域におけるジルカロイの腐食速	追加
度が腐食時間とともに減少し、腐食量と腐食時間の立方根との	度が腐食時間とともに減少し、腐食量と腐食時間の立方根との	
間にほぼ比例関係が認められる結果を得ている (図 1.3-8)。こ	間にほぼ比例関係が認められる結果を得ている (図 1.3-8)。こ	
のことは 300℃付近の高温域において提唱されている腐食速度	のことは 300℃付近の高温域において提唱されている腐食速度	
モデルの三乗則と同じであり、三乗則に基づいた腐食速度定数	モデルの三乗則と同じであり、三乗則に基づいた腐食速度定数	
でアレニウスプロットすると、高温域のアレニウスプロットの	でアレニウスプロットすると、高温域のアレニウスプロットの	
外挿直線の付近にあることが分かった(図 1.3-9)。これにより、	外挿直線の付近にあることが分かった(図 1.3-9)。これにより、	
高温域と腐食メカニズムは同じであり高温域における既往の	高温域と腐食メカニズムは同じであり高温域における既往の	
経験則モデルを 100℃以下の処分場環境を含む低温域にも適用	経験則モデルを 100℃以下の処分場環境を含む低温域にも適用	
できる可能性が示された。	できる可能性が示された。	
低温域での腐食メカニズムは、高温域と同様に、酸素イオン	低温域での腐食メカニズムは、高温域と同様に、酸素イオン	
伝播支配と水拡散支配の二つの仮説が考えられ、安全評価の腐	伝播支配と水拡散支配の二つの仮説が考えられ、安全評価の腐	
食速度で三乗則を使うためには、二つの仮説のうちどちらなの	食速度で三乗則を使うためには、二つの仮説のうちどちらなの	
かを決めることが必要と考えられた。	かを決めることが必要と考えられた。	
(修正無し)	(記載省略)	

低温域でのジルカロイ-4 腐食メカニズムの検討	低温域でのジルカロイ腐食メカニズムの検討	追加
低温域におけるジルカロイ-4 の腐食メカニズムを明らかに	低温城におけろジルカロイの腐食メカニズムを明らかにす	
するため 水麦発生量測定注に上ろ庭食試験を行い 発生した	スため 水麦発生量測定注に上ろ腐食試験を行い 発生した水	
*妻の同位休比を公析することで水妻の発生酒を時定し 藤妻	まの同位休比を公析することで水麦の発生酒を時空1	
イオン伝播(仮記1)と水払散(仮記2)のどちらか腐食メカニ	オン伝播(仮記 I) と水払散(仮記 2) のどちらか腐食メカニス	
ズムになっているかを判定した。	ムになっているかを判定した。	
酸素イオン伝播(仮説 1)の場合は、液相と酸化皮膜の界面	酸素イオン伝播(仮説 1)の場合は、液相と酸化皮膜の界面	
で水が分解するため水分解の分離係数が水拡散(仮説2)の酸	で水が分解するため水分解の分離係数が水拡散(仮説2)の酸	
化皮膜/金属界面での水分解の分離係数に比べて高く、同位体効	化皮膜/金属界面での水分解の分離係数に比べて高く、同位体効	
果が仮説2より強く出ると想定される。これに対し水拡散(仮	果が仮説2より強く出ると想定される。これに対し水拡散(仮	
説 2)の場合は、酸化皮膜と金属の界面で水が分解されるが、	説 2)の場合は、酸化皮膜と金属の界面で水が分解されるが、	
酸化皮膜中をゆっくりと拡散してきた水が金属界面で全てが	酸化皮膜中をゆっくりと拡散してきた水が金属界面で全てが	
すぐに分解されるため分解係数がほぼ 1.0 となり、同位体効果	すぐに分解されるため分解係数がほぼ 1.0 となり、同位体効果	
は仮説1に比べて弱くでると想定された(図 1.3-10)	は仮説1に比べて弱くでると想定された(図 1.3-10)	
(修正無し)	(記載省略)	
①気相中の水素同位体比	①気相中の水素同位体比	
図 1.3-11 に <u>水素同位体比 (D/H 比) は腐食試験溶液の D/H 比</u>	図 1.3-11 に <u>気相中の D/H 比分析結果と仮説 1,2 で想定した</u>	記載の
とは明らかに異なっており、同位体効果を示している。D/H比	気相中の D/H 比を示す。水素同位体比(D/H 比)は酸化皮膜が	適正化
は酸素イオン伝播メカニズムの場合に想定される値に近くな	厚くなるに従い上昇していることから仮説1の可能性は低いと	
っているが、酸化皮膜が厚くなるに従い上昇していることから	<u>考えられた。また、酸化皮膜の厚さに対する D/H 比は仮説 2 で</u>	
水拡散メカニズムも寄与している可能性があると考えられた。	<u>想定した 0.087 に達しておらず、D/H 比が変動の途中であり、</u>	
	仮説2なのか両方のメカニズムが共存するのかは現時点で不明	

いない。本年度は低温域における腐食メカニズム解明を進め	いない。本年度は低温域における腐食メカニズム解明を進め	
た。同位体効果を用いて、水素の発生源を特定することにより	た。同位体効果を用いて、水素の発生源を特定することにより	
腐食メカニズムが酸素イオン伝播支配なのか水拡散支配なの	腐食メカニズムが酸素イオン伝播支配なのか水拡散支配なの	
かを判断するもので、試験結果では水拡散支配だけの可能性は	かを判断するもので、試験結果では <u>酸素イオン伝播支配</u> だけの	記載の
低いことが分かった。しかし、酸素イオン伝播メカニズム単独	可能性は低いことが分かった。しかし、水拡散支配単独なのか	適正化
なのかもしくは酸素イオン伝播と水拡散支配のメカニズムが	もしくは酸素イオン伝播と水拡散支配のメカニズムが共存し	
共存しているのかは判別できなかった。	ているのかは判別できなかった。	
今後、 <u>酸素イオン伝播支配</u> なのか酸素イオン伝播支配と水拡	今後、 <u>水拡散支配</u> なのか酸素イオン伝播支配と水拡散支配の	
散支配のメカニズムが共存するのかを確認するため、酸化皮膜	メカニズムが共存するのかを確認するため、酸化皮膜がより厚	
がより厚い条件で水素発生量を稼ぐ工夫が必要である。また金	い条件で水素発生量を稼ぐ工夫が必要である。また金属中の水	
属中の水素同位体の分析の誤差を低減することが有用である。	素同位体の分析の誤差を低減することが有用である。	
(修正無し)	(記載省略)	
2.3 放射化金属の腐食モデルの作成	2.3 放射化金属の腐食モデルの作成	
2.3.1 背景と目的	2.3.1 背景と目的	
(修正無し)	(記載省略)	

0.20	0.15	図の修					
0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.00 0 2 4 6 腐食時間の立方根(day ^{1/3})	(U) (U) (U) (U) (U) (U) (U) (U)	L 王					
図 23.4 水表発生量測定と庭食増量測定の庭食深さの比較	図 2.3-4 水素発生量測定と腐食増量測定の腐食深さの比較						
(180℃ 昭融書冬州)							
2.3.2 低温域でのジルカロイ <u>-4</u> 腐食メカニズムの検討 (修正無し)	2.3.2 低温域でのジルカロイ腐食メカニズムの検討 (記載省略)						
(2) 試験方法	_(1)試験方法	記 載 の					
 薄片状に成形したジルカロイ-4 試料(以下「ジルカロイ-4 試	■ 薄片状に成形したジルカロイ-4 試料(以下「ジルカロイ試	適正化					
料1)を用い、腐食試験で発生した水素の同位体比(D /H 比)の	料」)を用い、腐食試験で発生した水素の同位体比(D/H比)の						
分析を行った。試験に用いたジルカロイ-4 試料の組成と調製条	分析を行った。試験に用いたジルカロイ試料の組成と調製条件	追加					
件を表 2.3-5 と表 2.3-6 に、試験方法の概略を図 2.3-8 にそれぞ	を表 2.3-5 と表 2.3-6 に、試験方法の概略を図 2.3-8 にそれぞれ						
れ示す。	示す。						
試料間の腐食による水素発生量のばらつきと測定の際の誤	試料間の腐食による水素発生量のばらつきと測定の際の誤						
差を最低限に抑えるため、以下に示す条件で試料を調製した。	差を最低限に抑えるため、以下に示す条件で試料を調製した。						
具体的には、0.2 mm 厚さのジルカロイー4 板材を、冷間圧延と	具体的には、0.2 mm 厚さのジルカロイー4 板材を、冷間圧延と						

真空焼鍋	真空焼鈍処理を繰り返し 0.1 mm 厚さの箔材を作製し、吸収水 真空焼鈍処理を繰り返し 0.1 mm 厚さの箔材を作製し、吸収水										
素量測測	定用試料に	こついては、#	800 エメリー約	紙で研磨して厚さ	素量測定用	して厚さ					
を 0.05	mm とした	を 0.05 mm	とした。	さらし	こ、表面分析用	目試料について	は、表面				
が鏡面	犬態となる	らまで#1500 エ	メリー紙で研	磨処理を施した。	が鏡面状態	となるま	#150)0 エメリー紙	で研磨処理を施	画した。 冷	追加
冷間圧	延と真空	尭鈍処理は処理	里中に試料中に	余分な水素や酸	間圧延と真	真空焼鈍如	理は	処理中に試料	中に余分な水	素や酸素	
素が取	り込まない	いためである。	水素濃度の目植	票値を設定したの	が取り込ま	ミないため	であ	る。水素濃度	の目標値を設	定したの	
は、腐り	食により発	≜生した吸収水	素量を正確に液	則定するためであ	は、腐食に	より発生	した	及収水素量を1	E確に測定する	ためであ	
り、目材	票を達成す	「るために真空	焼鈍処理を行い	い、試料からの水	り、目標を	達成する	ため	こ真空焼鈍処理	里を行い、試料	からの水	
素の追い	い出しを行	うった。			素の追い出	しを行っ	た。				
表 2.	3-5 試験	に用いたジルフ	カロイ-4 の組成	Ż	表 2.3-5	試験に月	目いた	シルカロイ-4	の組成		表の修
											正
		JIS H 4751	分析結果	-				JIS H 4751	公析结里		
	Sn	1.20 - 1.70	1.29	=			n	1.20 - 1.70	1.24		
	Fe	0.18 - 0.24	0.20	-		F	'e	0.18-0.24	0.18		
	Cr	0.07 - 0.13	0.11	-			r	0.07 - 0.13	0.10		
	Ni	< 0.0070	< 0.005	-		N	Ji	< 0.0070	< 0.006		
	Н	< 0.0025	0.0008	-		H	ł	< 0.0025	0.0009		
	Ν	< 0.0080	0.0022	-		1	V	< 0.0080	0.002		
				-							

(修正無し)	(記載省略)	
手順	手順	
予め異なった酸化皮膜厚 <u>(5.5 nm, 19.5 nm, 25.5 nm, 57.5 nm)</u>	予め異なった酸化皮膜厚(5nm、16nm、22nm、27nm)を付け	記載の
を付けた試験片を入れたガラス製アンプルにコックを取り付	た試験片を入れたガラス製アンプルにコックを取り付け、不活	適正化
け、不活性ガス(N2)雰囲気のグローブボックス内(酸素濃度	性ガス(N2)雰囲気のグローブボックス内(酸素濃度 0.1ppm 以	
0.1ppm以下)にて脱気した水で調整した10%重水溶液を入れ、	下)にて脱気した水で調整した10%重水溶液を入れ、減圧して	
減圧してコックを閉じた後、グローブボックス外に搬出し溶封	コックを閉じた後、グローブボックス外に搬出し溶封して密閉	
して密閉容器とした。酸化皮膜厚の異なる試料ごとにアンプル	容器とした。酸化皮膜厚の異なる試料ごとにアンプルを作成	
を作成し、100℃に設定した恒温槽内に静置し、25 日間と 121	し、100℃に設定した恒温槽内に静置し、25日間と121日間保	
日間保存した。所定期間経過後、アンプル開封器内でアンプル	存した。所定期間経過後、アンプル開封器内でアンプルを開封	
を開封してガラスアンプル気相部に放出された水素ガスをガ	してガラスアンプル気相部に放出された水素ガスをガスクロ	
スクロマトグラフ(島津製作所 GC-2014)により測定後、同様	マトグラフ(島津製作所 GC-2014)により測定後、同様に水素	
に水素ガスを適量サンプリングし API-MS を用いて軽水素及び	ガスを適量サンプリングし API-MS を用いて軽水素及び重水素	
重水素を分析した。次にガラスアンプルよりジルカロイ試料を	を分析した。次にガラスアンプルよりジルカロイ試料を取り出	
取り出し、不活性ガス融解-ガスクロマトグラフ(Leco 社製 RH-	し、不活性ガス融解-ガスクロマトグラフ(Leco 社製 RH-404)	
404)によって吸収された水素測定し、不活性ガス融解-ガスク	によって吸収された水素測定し、不活性ガス融解-ガスクロマト	
ロマトグラフで抽出された水素を API-MS を用いて軽水素及び	グラフで抽出された水素を API-MS を用いて軽水素及び重水素	
重水素を分析した。	を分析した。	
さらに、腐食試験終了後のジルカロイ試料表面について透過	さらに、腐食試験終了後のジルカロイ試料表面について透過	
型電子顕微鏡(TEM)を用いた分析を行い、酸化皮膜厚さ、皮	型電子顕微鏡(TEM)を用いた分析を行い、酸化皮膜厚さ、皮	
膜組成及び結晶構造を調べた。具体的には、収束イオンビーム	膜組成及び結晶構造を調べた。具体的には、収束イオンビーム	
加工装置 (FIB) を用いてジルカロイ試料表面部分断面の薄膜試	加工装置 (FIB) を用いてジルカロイ試料表面部分断面の薄膜試	

料を作製し、酸化皮膜の厚さを観察するとともに、EDX を用い	料を作製し、酸化皮膜の厚さを観察するとともに、EDX を用い
て皮膜組成の分析を行った。また、電子線回折によって酸化皮	て皮膜組成の分析を行った。また、電子線回折によって酸化皮
膜中の酸化物の結晶化状態(t-ZrO2、 m-ZrO2、アモルファスな	膜中の酸化物の結晶化状態(t-ZrO2、 m-ZrO2、アモルファスな
ど)を分析した。	ど)を分析した。
(3)結果と考察	(3) 結果と考察
腐食試験終了後のジルカロイ試料表面についての TEM 写真	腐食試験終了後のジルカロイ試料表面についての TEM 写真
及び分析結果を図 2.3-9 に示す。図 2.3-9 から、ジルカロイ表面	及び分析結果を図 2.3-9 に示す。図 2.3-9 から、ジルカロイ表面
に酸化皮膜が形成されていること、酸化皮膜はZrO2の結晶構造	に酸化皮膜が形成されていること、酸化皮膜は ZrO2の結晶構造
を有していることが確認できた。	を有していることが確認できた。

実験結果				実験結果						
 ①気相中の水素同 	同位体比			①気相中の水素	同位体比					
表 2.3-8 及び図	<u>12.3-10</u> に気相	l(N2)中におけ	る水素同位体の濃	表 2.3-8 に気	相(N2)中におけ	る水素同位	立体の濃度及び同位体	記載の		
度及び同位体比を	を示す。測定さ	れた水素同位	体濃度に付随する	比を示す。測定	された水素同位	体濃度に作	寸随する誤差は相対誤	適正化		
 誤差は3σで±0.	$2 \text{ ppb} (\pm 2 \times$	<10-4 ppm) 程	度であった。	 差で±10%程度	(最小で±0.3pp)	b 程度) で	あった。 皮膜厚さ 5nm			
	`		* <u>~~~</u> 0	でけ水素濃度10)32mmh に対し重	水素濃度	32mmh とたり D/H 比			
				<u>は0.031となった</u>	と。皮膜厚さが厚	くなるに	<u> 従い D/H 比が上昇し、</u>			
				<u>皮膜厚さ 27nm~</u>	では D/H 比は 0.	047となっ	<u>った。</u>			
			r				、地方しっ円ケ			
表 2.3-8 皮膜厚	さと気相中 H	濃度及び D 濃	度との関係	表 2.3-8 皮膜周	₽さと気相屮 H ネ	震度及び I)濃度との関係	表の修		
皮膜厚さ(nm)*	API-MS 測定	濃度(ppm)	D/H 比	皮膜厚さ (nm)	API-MS 測定液	農度(ppb)	D/H 比	正		
皮膜厚さ(nm)*	API-MS 測知	定濃度(ppm)	D/H 比	皮膜厚さ (nm)	API-MS 測定濃度	(ppb)	D/H 比			
5.5~19.4	H 5.07×10 ²	2.30×10 ¹	4.54×10 ²	5	H 1032	32	0.031			
19.5~23.1	2.22×10 ³	9.90×101	4.59×10 ⁻²	16	86	3	0.035			
25.5~30.9	6.74×10 ¹	2.96×10 ⁰	4.39×10 ⁻²	22	105	4	0.038			
57.5~61.0	1.15×10 ¹	6.19×10 ⁻¹	5.37×10 ⁻²	27	42	2	0.047			
*腐食試験開始	時点と終了時」	気の皮膜厚さ								
水素同位体比	(D/H 比) は腐 ⁻	食試験溶液の〕	D/H 比とは明らか	図 2.3-10 に気	相中の D/H 比分	析結果と	仮説 1.2 で想定した気	記載の		
に異なっており、	同位体効果を	D/H 比は酸素イオ	相中の D/H 比を	示す。水素同位	体比(D/I	H比)は酸化皮膜が厚	滴正化			
レ伝播メカニズ	いた日本で	されろ値に近	くたっていろが	くたろに従い上	早していること	<u>から仮説</u>	1の可能性け低いと考			
	マンのロに心に									
<u> 戦化 反 候 か 厚 く が </u>	<u>よるに化い上す</u>	<u>FULVOL</u>	こから小仏取メル	$\frac{1}{2}$	、酸化及胰の厚。					
<u>ニズムも寄与して</u>	こいる可能性が	ある。		<u> 定した 0.087 に</u>	産しておらず、]	D/H 比が	<u> 変動の途中であり、仮</u>			
				説2なのか両方	のメカニズムが	共存する(りかは現時点で不明と			

<u>メカニズム</u>	の場合	に想知	主され	るD	/H 比	と、水挝	散メカニズムの	少	・していた。 表 2.	3-10 に皮膜厚	夏さと AI	PI-MS で測定した D/H 比				
場合に想定	される	D/比	この中	間的	な値を	を示した	データ点もある	及	及び試験前水素量を除いた H 濃度と D 濃度との関係を示す。							
ため、二つのメカニズムが共存している可能性も考えられる。									<u>PI-MS での水素</u>	同位体比濃度	度を分析	した値には、腐食試験前				
酸素イオン	伝播メ	カニン	ズムで	ある	のか、	、酸素イ	オン伝播メカニ	<i>0</i>)	水素が含まれて	いる (表 2.3	-9) ため	、API-MSのD/H比から				
ズムと水拡	散メカ	ニズ	ムがま	も存っ	よるの	かは現	状では決めるこ	腐	「食試験前の水素	量を含む全石	水素量中	の H と D の濃度を初め				
とができず	、さら	にデ・	ータの	蓄積	が必	要である) <u>。</u>	12	求め、これから	腐食試験前の)水素量る	を除いたHの濃度を求め				
								た	。腐食試験前の	水素量を除い	いた H と	・D の濃度から腐食によ				
								2	て発生した金属	中の D/H 比	を求めた	。水素同位体濃度に付随				
								す	る誤差は相対誤	差で±10%種	呈度であ	った <u>。</u> 皮膜厚さ 5nm では				
								水	、素濃度 7.38ppm	に対し重水素	素濃度 0.	<u>32ppm となり、D/H 比は</u>				
								0.	043 となった。)	支膜が厚くな	るに従い	、D/H 比が上昇し、皮膜				
								厚	Iさが 22nm の厚	さでは D/H b	北は 0.09	1となった。				
								しかし、皮膜厚さが 22nm と 27nm の結果では、不活性融解-								
								ガスクロマトグラフで測定した水素濃度が 1ppm であるのに対								
								 し誤差が±0.71ppm となり、信頼性が低いものだった。								
								-								
表 2 3-9	金属中	水素	分析約	吉果				表	23-9 不活性	融解-ガスクロ	コマトグ	ラフで測定した腐食試験	表の修			
2 2 10 9		/ ///	23 01/1	<u>H713</u>				~					H N			
皮膜厚さ	腐食試験前		1		腐食試	険後		刖	」と俊の金属甲全	水茶濃度			Ш.			
	金属中	金属中	D/H 比	D	Н	腐食試験中	腐食試験中に金			不活性ガス融	解_ガスクロ	マトグラフ測定水素量(nnm)				
	王爪系	王水素				に 金 禹 に 吸 収 さ れ た H	周に吸収された 水素の D/H	1	皮膜厚さ(nm)	席食試験	前	<u> </u>				
(nm)	(ppm)	(ppm)	(-)	(ppm)	(ppm)	(ppm)	(-)		5	9.3		17.1				
5.5~19.4	17±4	29	0.02250	0.64	28.4	11±4	0.0056±0.0020	1	16	9.7		13.0				
19.5~23.1	12±4	15	0.00727	0.11	14.9	3±4	0.0037±0.0049		22	10.2		11.3				
25.5~30.9	9±4	16	0.00567	0.09	15.9	7±4	$0.01\overline{3\pm0.007}$		27	9.9		10.9				
57.5~61.0	8±4	13	0.00695	0.09	12.9	5±4	$0.018 {\pm} 0.015$									

± 2 2 1	10	中時同	+ LADI	MC TOHI	今した D/田 レエィビ	ション		主 220	
表 2.3-10 皮膜厚さと API-MS で測定した D/H 比及び試験前水 オ									
素量を除いたH濃度とD濃度との関係									
	AF	PI-MS測定值	D/H比から求めた	:HとDの濃度(ppm)	腐食試験前の水素を除いた濃度(ppm)	D (III)			
皮膜厚さ	₹(nm)	D/H比	н	D	н	D/H比			
5	;	0.019	16.68	0.32	7.38	0.043			
16	6	0.011	12.86	0.14	3.16	0.044			
22	2	0.006	10.934	0.067	0.734	0.091			
27	7	0.005	10.945	0.054	1.045	0.052			
図 2.	.3-11	に金属	中の D/F	[比分析約	吉果と仮説 1,2 で想	定した	<u>:金</u>	削除	
属中の	D/H	[比を示	<す。水素	医同位体出	と(D/H 比)は酸化	皮膜が	厚		
くたろ	に従	い上昇	している	ことから	仮説1の可能性け	低いと	去		
<u> </u>		<u>, , ,</u>							
<u>えられ</u>	た。	また、	信頼性の	あるデー	-タで判断すると、	酸化皮	[[[]]		
<u>の厚さ</u>	に対	するD	/H 比は(反説 2 で想	息定した 0.107 に達	してお	3 <u>6</u>		
ず、D/	/H 比	が変動	の途中で	あり、仮	説2なのか両方の	メカニ	ズ		
) 28 H		-7 0 -			大、た回 2 2 11	/ /-			
<u> ム</u> か共	、1子 9	201	いいいちょうしょう	、(小明と	パクに図 2.3-11。				

