VI－2－2－6 復水貯蔵タンク基礎の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2．2 構造概要 3
2.3 評価方針 8
2.4 適用基準 11
3．耐震評価 12
3.1 地震時荷重算出断面及び解析手法の選定 12
3.2 使用材料及び材料の物性値。 14
3.3 許容限界 15
3．3．1 構造部材の健全性に対する許容限界 15
3．3．2 基礎地盤の支持性能に対する許容限界 17
3．4 評価方法 18
3．4．1 構造部材の健全性評価． 18
3．4．2 基礎地盤の支持性能評価 27
4．構造部材の地震時応答 28
4.1 しやへい壁，バルブ室及び連絡ダクト 28
4．2 基礎版 41
5．耐震評価結果 46
5.1 構造部材の健全性に対する評価結果 46
5．1．1 しやへい壁，バルブ室及び連絡ダクト 46
5．1．2 基礎版 51
5.2 常設耐震重要重大事故防止設備等を支持する機能に対する評価結果 53
5．2．1 しやへい壁，バルブ室及び連絡ダクト 53
5．2．2 基礎版 57
5.3 基礎地盤の支持性能に対する評価結果． 58
5．3．1 支持地盤（狐崎部層） 58
5．3．2 MMR（既設） 59

1．概要

本資料は，添付書類「V－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，復水貯蔵タンク基礎が基準地震動 S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

復水貯蔵タンク基礎に要求される機能の維持を確認するにあたつては，地震応答解析により算定した荷重を三次元構造解析モデルに作用させて，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

復水貯蔵タンク基礎の位置を図2－1 に示す。

図 2－1 復水貯蔵タンク基礎の位置図

2.2 構造概要

復水貯蔵タンク基礎の平面図を図 2－2 に，断面図を図 $2-3$ 及び図 $2-4$ に，概略配筋図を図 $2-5$～図2－11に示す。

復水貯蔵タンク基礎は，復水貯蔵タンク及び復水移送系配管等をしゃへい壁，バルブ室，連絡ダクト及び基礎版の各部材で間接支持しており，支持機能が要求される。

復水貯蔵タンク基礎は，復水貯蔵タンク等を間接支持する基礎版と円筒形のしやへい壁等か ら構成される。基礎版は幅 26.75 m （東西）$\times 32.45 \mathrm{~m}$（南北），厚さ 5.00 m ，しやへい壁は内径 23.10 m ，壁厚 1.00 m （地上部は 0.50 m ），高さ 8.60 m の鉄筋コンクリート造の地中構造物で，マ ンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されてい る。

復水貯蔵タンク基礎は，面部材として加振方向に平行に配置される妻壁や隔壁及びしやへい壁を有する箱形構造物である。

（単位：m）

図 2－2 復水貯蔵タンク基礎平面図

図 2－3 復水貯蔵タンク基礎断面図（A－A 断面，南北）

（単位：m）
図 2－4 復水貯蔵タンク基礎断面図（B－B 断面，東西）

図 2－5 復水貯蔵タンク基礎 概略配筋図（平面図）

図 2－6 復水貯蔵タンク基礎 概略配筋図（1－1 断面）

図 2－7 復水貯蔵タンク基礎 概略配筋図（2－2 断面）

図 2－8 復水貯蔵タンク基礎 概略配筋図（3－3 断面）

図 2－9 復水貯蔵タンク基礎 概略配筋図（4－4 断面）

図 2－10 復水貯蔵タンク 基礎 概略配筋図（5－5 断面）

図 2－11 復水貯蔵タンク 基礎 概略配筋図（6－6 断面）

2.3 評価方針

復水貯蔵タンク基礎は，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故防止設備（設計基準拡張）
（以下「常設耐震重要重大事故防止設備等」という。）が設置される重大事故等対処施設に分類 される。

復水貯蔵タンク基礎の耐震評価フローを図2－12に示す。
復水貯蔵タンク基礎の耐震評価は，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」より得られた地震応答解析の結果に基づき，重大事故等対処施設の評価として，表2－1及び表 2－2に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及び常設耐震重要重大事故防止設備等を支持する機能を損なわないことを確認する。

構造部材の健全性評価については，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」より得られた，水平方向及び鉛直方向の荷重を用いた，三次元構造解析により応答値を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊及びせん断破壊に対する評価を行い，照査用応答値が許容限界を下回ることを確認する。

復水貯蔵タンク基礎は，「2．2 構造概要」に示すとおり，復水貯蔵タンクを間接支持する基礎版と円筒形のしゃへい壁，バルブ室及び連絡ダクトから構成されている。基礎版の厚さは 5.0 m であり，しゃへい壁，バルブ室及び連絡ダクトの部材厚と比較して厚く，剛性が異なるこ とから，それぞれ別々の解析モデルとして三次元構造解析を行う。

しゃへい壁，バルブ室及び連絡ダクトの応答値は，三次元静的材料非線形解析（非線形シェ ル要素）により算定し，構造部材の健全性評価は，表2－1に示すとおり，曲げ・軸力系の破壊 については構造部材の照査用ひずみが許容限界を下回ること，せん断破壊に対しては照査用せ ん断力及び照査用層間変形角（面内）が許容限界を下回ることを確認する。

基礎版の応答値は，三次元静的線形解析（線形シェル要素）により算定し，構造部材の健全性評価は，表2－2に示すとおり，曲げ・軸力系の破壊及びせん断破壊に対しては，構造部材の発生応力度が許容限界を下回ることを確認する。

基礎地盤の支持性能評価においては，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基 づく許容限界を下回ることを確認する。

図 2－12 復水貯蔵タンク基礎の耐震評価フロー

表 2－1 復水貯蔵タンク基礎の評価項目（しゃへい壁，バルブ室及び連絡ダクト）

評価方針	評価項目	部位	評価方法	許容限界		
	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用層間変形角（面内）が許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
構造强度 を有する				せん 断力	面外	せん断耐力＊
こと					面内	限界層間変形角＊
常設耐震重要重大	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用層間変形角（面内）が許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
設備等を支持する				せん 断力	面外	せん断耐力＊
なわない こと					面内	限界層間変形角＊

注記＊：妥当な安全余裕を考慮する。

表 2－2 復水貯蔵タンク基礎の評価項目（基礎版）

評価方針	評価項目	部位	評価方法	許容限界	
構造強度 を有する	構造部材の健全性	鉄筋コン クリート 部材	発生する応力が許容限界を下回るこ とを確認	曲げ・軸力	短期許容応力度
常設耐震重要重大				せん断力	短期許容応力度
設備等を支持する	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊	
こと		MMR		MMR の支圧強度＊	

注記＊：妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- コンクリート標準示方書［設計編］（土木学会，2012年制定）
- コンクリート標準示方書［設計編］（土木学会，2017年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）
- 道路橋示方書（I 共通編•IV下部構造編）•同解説（（社）日本道路劦会，平成14年3月）
- 道路橋示方書（V耐震設計編）•同解説（（社）日本道路協会，平成 14 年 3 月）

3．耐震評価
3.1 地震時荷重算出断面及び解析手法の選定

復水貯蔵タンク基礎の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，しやへい壁及び復水貯蔵タンクの中心を通る基礎長辺方向 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）及び基礎短辺方向（ $\mathrm{B}-\mathrm{B}$ 断面，東西）とする。地震時荷重算出用地質断面図 を図 3－2 及び図 3－3に示す。

なお，復水貯蔵タンク基礎は基礎版上に円筒形のしゃへい壁が設置された構造であり，強軸方向•弱軸方向が明確ではないことから，基礎長辺方向（A－A 断面，南北）及び基礎短辺方向 （ $\mathrm{B}-\mathrm{B}$ 断面，東西）の両断面に対して耐震評価を実施する。

また，復水貯蔵タンク基礎は，加振方向に平行に配置される面部材（妻壁，隔壁及びしやへ い壁）を有する箱形構造物であり，常設耐震重要重大事故防止設備等を支持する機能（支持機能）が要求されることから，シェル要素を用いた三次元構造解析モデルにより耐震評価を行う。

図 3－1 復水貯蔵タンク基礎の地震時荷重算出断面位置図

図 3－2 復水貯蔵タンク基礎 地震時荷重算出用地質断面図（A－A 断面，南北）
\qquad 1 ）

\square西東

図 3－3 復水貯蔵タンク基礎 地震時荷重算用地質出断面図（B－B 断面，東西）

3.2 使用材料及び材料の物性値

構造物の使用材料を表3－1，材料の物性値を表3－2に示す。

表 3－1 使用材料

材料		仕様	
コンク リート	しゃへい壁，バルブ室，バルブ室（ハッチ 部）側壁，連絡ダクト，基礎版	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$	
	バルブ室（ハッチ部）頂版	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$	
	鉄筋		SD345

表 3－2 材料の物性値（構造部材）

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 （ $\mathrm{kN} / \mathrm{m}^{3}$ ）		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3.00×10^{4}	解析ケース④
		設計基準強度	2.33×10^{4}	解析ケース（1）， （2），（3）
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
a．しやへい壁，バルブ室及び連絡ダクト
非線形シェル要素によりモデル化を行うしゃへい壁，バルブ室及び連絡ダクトの構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊 に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に基づき，限界ひずみ（圧縮縁コンクリートひずみ 1.0% ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリ ートの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ 1.0% の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物 を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されてい る。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定 されたものである。

また，しゃへい壁，バルブ室及び連絡ダクトの各部材のアンカー定着部に要求される常設耐震重要重大事故防止設備等を支持する機能を損なわないことの確認においては，主鉄筋のひずみ及びコンクリートの圧縮ひずみについて，おおむね弾性範囲に相当する ひずみ（主鉄筋： 1725μ ，コンクリート： 2000μ ）とする。

鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表3－3に示す。

表 3－3 曲げ・軸力系の破壊に対する許容限界
（しやへい壁，バルブ室及び連絡ダクト）

確認項目	許容限界	
構造強度を有すること	限界ひずみ	$\begin{aligned} & \text { 圧縮縁コンクリートひ } \\ & \text { ずみ : } 1.0 \% ~(10000 \mu) \end{aligned}$
常設耐震重要重大事故防止設備等を支持する機能 を損なわないこと		$\begin{aligned} & \text { 主鉄筋 (SD345) : } 1725 \mu \\ & \text { コンクリート }: ~ 2000 \mu \end{aligned}$

b．基礎版
線形シェル要素によりモデル化を行ら基礎版の構造強度を有することの碓認及び常設耐震重要重大事故防止設備等を支持する機能を損なわないことの確認における構造部材
（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，短期許容応力度とす る。コンクリート及び鉄筋の許容応力度を表 3－4及び表3－5に示す。

表 3－4 コンクリートの許容応力度及び短期許容応力度（基䃓版）

設計基準強度	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{f}^{\prime}{ }^{\prime}{ }_{\mathrm{ck}}=20.5\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	許容曲げ圧縮応力度 $\sigma^{\prime}{ }_{\mathrm{ca}}$	7.8	11.7
	許容せん断応力度 $\tau_{\mathrm{a} 1}$	0.42	0.63

注記＊：コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。

表 3－5 鉄筋の許容応力度及び短期許容応力度（基礎版）

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	許容引張応力度 σ_{sa}	196	294

注記＊：コンクリート標準示方書［構造性能照查編］（土木学会，2002年制定）により地震時の割り増し係数として 1.5 を考慮する。
（2）せん断破壊に対する許容限界
a．しやへい壁，バルブ室及び連絡ダクト
非線形シェル要素によりモデル化を行うしやへい壁，バルブ室及び連絡ダクトの構造強度を有することの確認及び常設耐震重要重大事故防止設備等を支持する機能を損なわ ないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界 は，土木学会マニュアルに基づくせん断耐力とする。

壁部材の面内せん断に対する許容限界は，層間変形角（面内） 2000μ（ $2 / 1000$ ）とす る。層間変形角（面内）2000 μ（ $2 / 1000$ ）は，J E A G 4 6 0 1－1987において，耐震壁の終局耐力に相当する層間変形角 4000μ（ $4 / 1000$ ）に余裕を見込んだ許容限界かつ耐震壁の支持機能に対する許容限界として規定されている。
b．基䂣版
線形シェル要素によりモデル化を行ら基礎版の構造強度を有することの確認及び常設耐震重要重大事故防止設備等を支持する機能を損なわないことの確認における構造部材 （鉄筋コンクリート）のせん断破壊に対する許容限界は，表3－4に示す短期許容応力度 とする。

3．3．2 基礎地盤の支持性能に対する許容限界

（1）支持地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表3－6に示す。

表 3－6 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。

MMR（既設）の許容限界を表3－7に示す。

表 3－7 \quad MMR \quad（既設）\quad の支持性能に対する許容限界		
評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$

3.4 評価方法

3．4．1 構造部材の健全性評価

復水貯蔵タンク基礎の耐震評価は，構造部材の剛性差を考慮して，しゃへい壁，バルブ室及び連絡ダクトは非線形シェル要素を用いた三次元静的材料非線形解析，基礎版は線形 シェル要素を用いた三次元静的線形解析により，それぞれ構造解析を実施する。三次元静的材料非線形解析及び三次元静的線形解析には，解析コード「SLAP Ver．6．64」を用いる。 なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

三次元構造解析の入力荷重は，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」に基づく地震応答解析において，復水貯蔵タンク基礎の耐震評価に支配的な荷重が最大となる時刻を選定し，当該時刻における地震時応答から設定する。

添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」に基づく地震応答解析に より算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定 した照査用応答値が，「3．2 許容限界」において設定した許容限界を下回ることを確認す る。
（1）解析モデル
a．しやへい壁，バルブ室及び連絡ダクト
しやへい壁，バルブ室及び連絡ダクトは，材料の非線形特性を考慮した非線形シェル要素でモデル化する。三次元構造解析モデルを図 3－4 及び図 3－5に示す。

また，構造部材（鉄筋コンクリート）の非線形特性を図 3－6及び図 3－7に示す。

図 3－4 三次元構造解析モデル図（鳥瞰図，東側から望む）

図 3－5 三次元構造解析モデル図（鳥瞰図，西側から望む）

図 3－6 構造部材の非線形特性（コンクリートの応力ーひずみ関係） （コンクリート標準示方書［設計編］（土木学会，2017年制定）より引用）

図 3－7 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2012年制定）より引用）
b．基礎版
基礎版は，線形シェル要素でモデル化する。三次元構造解析モデルを図 3－8に示す。

図3－8 基礎版 三次元構造解析モデル図
（2）照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表3－8 にし やへい壁，バルブ室及び連絡ダクトの照査時刻を，表3－9に基礎版の照査時刻の選定の考 え方を示す。

なお，復水貯蔵タンク基礎のうち，しゃへい壁，バルブ室及び連絡ダクトについて照査値が最大となるせん断破壊に対する照査時における作用荷重分布図を図 3－9 及び図 3－ 10 に，基礎版について照査値が最大となるせん断破壊に対する照査時における作用荷重分布図を図3－11に示す。

表3－8 照査時刻の考え方（しゃへい壁，バルブ室及び連絡ダクト）

表3－9 照査時刻の考え方（基礎版）

照査時刻	損傷モード		着目部位	加振方向	荷重抽出時刻
時刻2－1	曲げ・軸力系の破壊	基礎版 (全体)		東西 南北	基礎版に作用する総転倒モ ーメントが最大となる時刻
時刻2－2		基礎版 （局所的）		東西 南北	各上部構造（しやへい壁， バルブ室，連絡ダクト，復水貯蔵タンク）の下端位置曲げモーメントが最大とな る時刻
時刻 2－3	せん断破壊 （面外）	基礎版 （全体）		東西 南北	地盤反力の合計値が最大となる時刻
時刻2－4		基礎版 （局所的）		東西 南北	最大地盤反力発生時刻

図中の矢印は荷重の作用方向を示す

図 3－9 作用荷重分布図（しやへい壁，バルブ室及び連絡ダクトの照査：直応力及びせん断応力） （解析ケース（2），S s－D $2(++)$ ，東西）

図 3－10 作用荷重分布図（しゃへい壁，バルブ室及び連絡ダクトの照査：設計震度分布） （解析ケース（2），S s－D $2(++)$ ，東西）

図 3－11 作用荷重分布図（基礎版の照査）
（解析ケース（2），S s－D $2(++)$ ，南北）
（3）入力荷重
三次元構造解析の入力荷重は，設計値及び添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」より得られた地震応答解析に基づく「（2）照査時刻」で選定した照査時刻における応答値を用いて算定する。入力荷重の一覧を表3－10に示す。

表 3－10 三次元構造解析における入力荷重

区分	種別	
常時	固定荷重	躯体自重慮する荷重
	積載荷重	機器•配管荷重
	常時土圧	躯体側面に作用する常時土圧
地震時 荷重	慣性力	躯体に作用する慣性力
	地震時土圧	躯体側面に作用する地震時土圧

3．4．2 基礎地盤の支持性能評価
基礎地盤の支持性能評価においては，構造部材を支持する基礎岩盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答
4．1 しゃへい壁，バルブ室及び連絡ダクト
三次元静的材料非線形解析に基づく，しやへい壁，バルブ室及び連絡ダクトの地震時応答結果を示す。各部材位置を図4－1 及び図4－2 に，各部材の要素座標系を図4－3に，シェル要素 における各要素の断面力の方向を図 4－4 に示す。

曲げ・軸力系の破壊に対する照査のうち，各部材のコンクリートの圧縮ひずみ及び主鉄筋の ひずみに対して最大照査値となる評価時刻でのひずみ分布を図 $4-5$ 及び図 $4-6$ に，せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－7～図4－12に示す。

（a）バルブ室及び連絡ダクト頂版表示

（b）バルブ室及び連絡ダクト頂版非表示

図 4－1 各部材位置（東側から望む）

（a）バルブ室及び連絡ダクト頂版表示

（b）バルブ室及び連絡ダクト頂版非表示

図 4－2 各部材位置（西側から望む）

図 4－3 各部材の要素座標系

$$
\begin{aligned}
\mathrm{M}_{\mathrm{x}}, & \mathrm{M}_{\mathrm{y}} \\
\mathrm{Q}_{\mathrm{x}}, & \mathrm{Q}_{\mathrm{y}}: \text { 曲げモん断力 } \\
\mathrm{N}_{\mathrm{x}}, \quad \mathrm{~N}_{\mathrm{y}} & : \text { 軸力 } \\
\mathrm{N}_{\mathrm{x}} \mathrm{y} & : \text { 面内せん断力 }
\end{aligned}
$$

図 4－4 シェル要素における断面力の方向

しやへい壁（ $0^{\circ} \sim 180^{\circ}$ ）

バルブ室 頂版

バルブ室 南壁

バルブ室 隔壁

バルブ室 西壁

ハッチ部 頂版

連絡ダクト 頂版

ハッチ部 南壁	ハッチ部 東壁	連絡ダクト 底版
ハッチ部 北壁	ハッチ部西壁	

図 4－5 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（コンクリート） （しやへい壁（地中部），解析ケース（1）S s－D $2(-+)$ ，東西）

しやへい壁（ $0^{\circ} \sim 180^{\circ}$ ）

バルブ室 頂版

バルブ室 南壁

ハッチ部 頂版

連絡ダクト 頂版

$\square \square$

ハッチ部 北壁

$\square \square$

ハッチ部 西壁

バルブ室 隔壁

バルブ室 西壁

連絡ダクト 東壁・バルブ室 東壁

\square

ハッチ部 東壁
連絡ダクト 底版
\square
ハッチ部 南壁
－

図 4－6 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（鉄筋）
（しやへい壁（地中部），解析ケース（1），S s－D $2(-+)$ ，東西）

バルブ室 頂版

バルブ室 南壁

しやへい壁（ $180^{\circ} \sim 360^{\circ}$ ）
（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）

500
375
250
125

$$
0
$$

$$
-125
$$

-250
-375
-500

連絡ダクト 東壁・バルブ室 東壁

バルブ室 隔壁

バルブ室 西壁

ハッチ部 頂版
\＃\＃
ハッチ部 南壁

\＃

ハッチ部 北壁

$\square \square$

ハッチ部 東壁
連絡ダクト 底版

連絡ダクト 頂版

バルブ室 頂版

バルブ室 南壁

しやへい壁（ $180^{\circ} \sim 360^{\circ}$ ）
（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）
500
375
375
250
125
125
-125
-250
-375
-500

連絡ダクト 東壁・バルブ室 東壁

バルブ室 隔壁

バルブ室 西壁

連絡ダクト 頂版

$\square \square$

ハッチ部 東壁
連絡ダクト 底版

＂
ハッチ部 南壁

\＃

ハッチ部 北壁
\＃
ハッチ部 西壁

図 4－8 せん断破壊に対する照査値最大時の断面力分布図

$$
\text { (曲げモーメント }(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}): \mathrm{M}_{\mathrm{y}} \text {) }
$$

（しやへい壁（地中部），解析ケース（2），S s－D $2(++)$ ，東西）

図 4－9 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（しやへい壁（地中部），解析ケース（2），S s－D $2(++)$ ，東西）

図 4－10 せん断破壊に対する照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（しやへい壁（地中部），解析ケース（2），S s－D $2(++)$ ，東西）

しやへい壁（ $180^{\circ} \sim 360^{\circ}$ ）

バルブ室 頂版

バルブ室 南壁

范
$4 \mathrm{kN} / \mathrm{m}$

連絡ダクト 東壁・バルブ室 東壁

バルブ室 隔壁

バルブ室 西壁

ハッチ部 頂版

連絡ダクト 頂版
\＃
ハッチ部 南壁

\＃

ハッチ部 北壁

\square

ハッチ部 東壁
連絡ダクト 底版

\square

ハッチ部 西壁

図 4－11 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{x} ）
（しやへい壁（地中部），解析ケース（2），S s－D $2(++)$ ，東西）

図 4－12 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（しやへい壁（地中部），解析ケース（2），S s－D $2(++)$ ，東西）

4．2 基礎版

三次元静的線形解析に基づく，基礎版の地震時応答結果を示す。基礎版の要素座標系を図 4 －13に，シェル要素における各要素の断面力の方向を図 4－4に示す。

曲げ・軸力系の破壊に対する最大照査値の評価時刻での断面力分布を図 $4-14 \sim$ 図 $4-18$ に， せん断破壊に対する最大照査値の評価時刻での断面力分布を図4－19 及び図4－20に示す。

黒：全体座標系を示す
赤：要素座標系を示す
図 4－13 基礎版の要素座標系

図 4－14 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（解析ケース（2），S s－D $2(++)$ ，南北）

図 4－15 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{y}}$ ）
（解析ケース（2），S s－D $2(++)$ ，南北）

図 4－16 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （軸力 $\left.(k N / m): ~ N_{x}\right)$
（解析ケース（2），S s－D 2（＋＋），南北）

図 4－17 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図 （軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{y}}$ ）
（解析ケース（2），S s－D $2(++)$ ，南北）

図 4－18 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図

$$
\begin{aligned}
& \left.\quad \text { (面内せん断力 }(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{xy}}\right) \\
& (\text { 解析ケース (2), S s - D } 2(++) \text {, 南北) }
\end{aligned}
$$

図 4－19 せん断破壊に対する照査値最大時の断面力分布図 （せん断力（kN／m）： Q_{x} ）
（解析ケース（2），S s－D $2(++)$ ，南北）

$436 \mathrm{kN} / \mathrm{m}$

図 4－20 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（解析ケース（2），S s－D $2(++)$ ，南北）

5．耐震評価結果

5.1 構造部材の健全性に対する評価結果

5．1．1 しやへい壁，バルブ室及び連絡ダクト
しやへい壁，バルブ室及び連絡ダクトの鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－1 に，せん断破壊に対する各評価位置での最大照査値を表5－2 に，各壁部材の面内せん断（層間変形角）に対する照査値を表5－3に示 す。

しやへい壁，バルブ室及び連絡ダクトの照査用ひずみ（コンクリートの圧縮ひずみ），照査用せん断力及び壁部材の照査用層間変形角（面内せん断）が，構造部材の健全性に対す る許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

評価位置＊${ }^{* 1}$			$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ } \\ \varepsilon_{\mathrm{d}} \end{gathered}$		照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
地上部		13	（1）	S s－F $2(++)$	東西方向	100μ	10000μ	0.01
地中部		17	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	271μ	10000μ	0.03
頂版		22	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	156μ	10000μ	0． 02
南壁		32	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	250μ	10000μ	0.03
東西壁		50	（2）	S s $-\mathrm{D} 2(++)$	東西方向	205μ	10000μ	0.03
隔壁		60	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	146μ	10000μ	0.02
ハッチ部	頂版	110	（1）	S s $-\mathrm{F} 2(++)$	東西方向	88μ	10000μ	0.01
	南北壁	130	（1）	S s－F $2(++)$	東西方向	172μ	10000μ	0.02
	東西壁	140	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	162μ	10000μ	0.02
底版		70	（1）	S s $-\mathrm{D} 2(++)$	南北方向	44μ	10000μ	0.01
頂版		80	（3）	S s $-\mathrm{D} 2(++)$	東西方向	220μ	10000μ	0.03
東西壁		90	（1）	S s - F $3(++)$	東西方向	169μ	10000μ	0． 02

注記 $* 1$ ：評価位置は図5－1に示す。
$* 2$ ：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ_{a}

表 5－2 せん断破壊に対する照査

注記＊1：評価位置は図5－1に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

図 5－1 評価位置図（しゃへい壁，バルブ室及び連絡ダクト）

表 5－3 壁部材の面内せん断（層間変形角）に対する照査

評価位置＊${ }^{*}$				$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査用層間変形角 ${ }^{* 2}$ γ_{d}	許容限界 γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
しやへい壁			1	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	49μ	2000μ	0.03
バルブ室	南壁		30	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	81μ	2000μ	0.05
	東西壁		40	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	112μ	2000μ	0.06
	隔壁		60	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	192μ	2000μ	0． 10
	ハッチ部	南北壁	120	（1）	S s $-\mathrm{F} 1(++)$	東西方向	57μ	2000μ	0.03
		東西壁	140	（1）	S s－F $3(++)$	南北方向	42μ	2000μ	0.03
連絡ダクト	東西壁		90	（1）	S s $-\mathrm{D} 2(-+)$	南北方向	129μ	2000μ	0.07

注記 $* 1$ ：評価位置は図5－2に示す。
$* 2$ ：照査用層間変形角 $=$ 発生する層間変形角 \times 構造解析係数 γ_{a}

図 5－2 評価位置図（各壁部材）

5．1．2 基礎版

基礎版の鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査値を表5－4及び表5 －5に，せん断破壊に対する照査値を表5－6に示す。

基礎版の発生応力度が，構造部材の健全性に対する許容限界を下回ることを確認した。

表 5－4 曲げ・軸力系の破壊に対する照査（コンクリート）

評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振 方向	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\begin{gathered} \sigma^{\prime}{ }_{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma^{\prime}{ }_{\text {ca }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{\text {ca }}$
212	（1）	S s－D $2(-+)$	東西 方向	2323	－4558	1.4	11.7	0． 12

注記＊：評価位置は図5－3に示す。

表 5－5 曲げ・軸力系の破壊に対する照査（鉄筋）

評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振 方向	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度 $\begin{array}{r} \sigma_{\text {sa }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{array}$	照査値 $\sigma_{s} / \sigma_{s a}$
213	（2）	S s－D $2(++)$	南北 方向	－1067	548	123	294	0． 42

注記＊：評価位置は図 $5-3$ に示す。

表 5－6 せん断破壊に対する照査

評価位置＊	解析 ケース	地震動	加振 方向	発生 世ん断力 $(\mathrm{kN} / \mathrm{m})$	発生 応力度 τ_{d} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\tau_{\mathrm{a} 1}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値
213	(2)	$\mathrm{S} \mathrm{s}-\mathrm{D} \mathrm{2} \mathrm{(++)}$	$\tau_{\mathrm{d}} / \tau_{\mathrm{a} 1}$ 南北 方向	874	0.40	0.63	0.64

注記＊：評価位置は図5－3に示す。

図 5－3 評価位置図（基礎版）
5.2 常設耐震重要重大事故防止設備等を支持する機能に対する評価結果

5．2．1 しやへい壁，バルブ室及び連絡ダクト
しゃへい壁，バルブ室及び連絡ダクトの鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表5－7 及び表5－8に，せん断破壊に対する各評価位置での最大照査値を表5－9に，各壁部材の面内せん断（層間変形角）に対する照査値を表 5－10に示す。

しやへい壁，バルブ室及び連絡ダクトの照査用ひずみ（コンクリートの圧縮ひずみ，主筋ひずみ），照査用せん断力及び壁部材の照査用層間変形角（面内せん断）が，常設耐震重要重大事故防止設備等を支持する機能に対する許容限界を下回ることを確認した。

表 5－7 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

評価位置＊${ }^{*}$				$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	$\begin{aligned} & \text { 照査用 } \\ & \text { ひずみ } \end{aligned}$ $\varepsilon{ }_{\mathrm{d}}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \end{gathered}$ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
しやへい壁	地上部		13	（1）	S s－F $2(++$ ）	東西方向	100μ	2000μ	0.05
	地中部		17	（1）	S s－D $2(-+)$	東西方向	271μ	2000μ	0． 14
バルブ室	頂版		22	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	156μ	2000μ	0.08
	南壁		32	（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$	南北方向	250μ	2000μ	0.13
	東西壁		50	（2）	S s－D $2(++)$	東西方向	205μ	2000μ	0.11
	隔壁		60	（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$	南北方向	146μ	2000μ	0.08
	ハッチ部	頂版	110	（1）	S s－F $2(++)$	東西方向	88μ	2000μ	0.05
		南北壁	130	（1）	S s $-\mathrm{F} 2(++)$	東西方向	172μ	2000μ	0.09
		東西壁	140	（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$	南北方向	162μ	2000μ	0.09
連絡ダクト	底版		70	（1）	S s－D $2(++)$	南北方向	44μ	2000μ	0． 03
	頂版		80	（3）	S s－D $2(++)$	東西方向	220μ	2000μ	0.11
	東西壁		90	（1）	S s $-\mathrm{F} 3(++)$	東西方向	169μ	2000μ	0.09

注記＊1：評価位置は図5－1に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 $\gamma \mathrm{a}$

表5－8 曲げ・軸力系の破壊に対する照査（主鉄筋ひずみ）

注記＊1：評価位置は図5－1に示す。
＊2：照査用ひずみ＝発生ひずみ \times 構造解析係数 γ a

表 5－9 せん断破壊に対する照査（再掲）

評価位置＊${ }^{*}$				$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査用 せん断力＊2 V_{d} （kN／m）	$\begin{gathered} \text { せん断 } \\ \text { 耐力 } \\ V_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / / \mathrm{V}_{\mathrm{yd}} \end{gathered}$
しやへい壁	地上部		13	（1）	S s－F $2(++)$	東西方向	81	323	0.26
	地中部		18	（2）	S s $-\mathrm{D} 2(++)$	東西方向	776	825	0.95
バルブ室	頂版		22	（1）	S s－F $1(++)$	南北方向	140	419	0.34
	南壁		32	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	769	1086	0.71
	東西壁		50	（2）	S s－D $2(++)$	東西方向	949	1129	0.85
	隔壁		60	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	85	476	0． 18
	ハッチ部	頂版	110	（1）	S s F F $1(++)$	東西方向	20	120	0． 17
		南北壁	120	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	83	269	0.31
		東西壁	140	（1）	S s－F $2(++)$	東西方向	99	274	0． 37
連絡ダクト	底版		70	（1）	S s－D $2(++)$	南北方向	81	249	0.33
	頂版		80	（4）	S s $-\mathrm{D} 2(++)$	東西方向	225	763	0.30
	東西壁		90	（4）	S s $-\mathrm{D} 2(++)$	東西方向	443	805	0.56

注記 $* 1$ ：評価位置は図5－1に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 5－10 壁部材の面内せん断（層間変形角）に対する照査（再掲）

評価位置＊${ }^{*}$				$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振方向	照査用層間変形角 ${ }^{* 2}$ γ_{d}	許容限界 γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
しやへい壁			1	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	49μ	2000μ	0.03
バルブ室	南壁		30	（1）	S s $-\mathrm{D} 2(-+)$	東西方向	81μ	2000μ	0.05
	東西壁		40	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	112μ	2000μ	0.06
	隔壁		60	（1）	S s $-\mathrm{D} 1(-+)$	南北方向	192μ	2000μ	0.10
	ハッチ部	南北壁	120	（1）	S s－F $1(++)$	東西方向	57μ	2000μ	0.03
		東西壁	140	（1）	S s－F $3(++)$	南北方向	42μ	2000μ	0.03
連絡ダクト	東西壁		90	（1）	S s - D $2(-+)$	南北方向	129μ	2000μ	0． 07

注記 $* 1$ ：評価位置は図5－2に示す。
$* 2: ~$ 照査用層間変形角 $=$ 層間変形角 \times 構造解析係数 $\gamma \mathrm{a}$

5．2．2 基礎版

基礎版の鉄筋コンクリート部材の曲げ・軸力系の破壊に対する照査値を表 5－11 及び表 5－12に，せん断破壊に対する照査値を表5－13に示す。

基礎版の発生応力度が，常設耐震重要重大事故防止設備等を支持する機能に対する許容限界を下回ることを確認した。

表 5－11 曲げ・軸力系の破壊に対する照査（コンクリート）（再掲）

評価位置＊	$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	加振 方向	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\begin{gathered} \sigma^{\prime}{ }_{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma^{\prime}{ }_{\text {ca }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c a}$
212	（1）	S s－D $2(-+)$	東西 方向	2323	－4558	1.4	11.7	0.12

注記＊：評価位置は図5－3に示す。

表 5－12 曲げ・軸力系の破壊に対する照査（鉄筋）（再掲）

表 5－13 せん断破壊に対する照査（再掲）

評価位置＊	解析 ケース	地震動	加振 方向	発生 せん断力 $(\mathrm{kN} / \mathrm{m})$	発生度 度力短期許容 τ_{d} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\tau_{\mathrm{a} 1}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\tau_{\mathrm{d}} / \tau_{\mathrm{a} 1}$
213	(2)	$\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$	南北 方向	874	0.40	0.63	0.64

注記＊：評価位置は図5－3に示す。

5.3 基礎地盤の支持性能に対する評価結果

5．3．1 支持地盤（狐崎部層）

基礎地盤の支持性能に対する照査結果を表5－14に示す。また，最大接地圧分布図を図 5－4に示す。

復水貯蔵タンク基礎の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－14 基礎地盤の支持性能照査結果

解析 ケース	地震動	加振 方向	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} \mathrm{1}$ $(++)$	東西方向	6.6	13.7	0.49

図 5－4 基礎地盤の最大接地圧分布図
（解析ケース（1），S s－D $1 \quad(++)$ ，東西）

5．3．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表5－15に示す。また，最大接地圧分布図を図5－5に示す。

復水貯蔵タンク基礎の MMR（既設）に発生する最大接地圧が，支圧強度を下回ることを確認した。

表 5－15 MMR（既設）の支持性能照査結果

解析 ケース	地震動	加振 方向	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{D} \mathrm{1}$ $(++)$	東西方向	0.7	15.6	0.05

$q^{\text {西 }}$
東

図 5－5 MMR（既設）の最大接地圧分布図
（解析ケース（1），S s－D $1 \quad(++)$ ，東西）

VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 解析方針 5
2.4 適用基準 7
3．解析方法 8
3.1 評価対象断面 8
3．2 解析方法 9
3．2．1 構造部材 9
3．2．2 地盤物性及び材料物性のばらつき 11
3．2．3 減衰定数 12
3．2．4 地震応答解析の解析ケースの選定 13
3.3 荷重及び荷重の組合せ 15
3．3．1 耐震評価上考慮する状態 15
3．3．2 荷重 15
3．3．3 荷重の組合せ 16
3.4 入力地震動 17
3.5 解析モデル及び諸元 46
3．5．1 解析モデル 46
3．5．2 使用材料及び材料の物性値 48
3．5．3 地盤の物性値 49
3．5．4 地下水位 49
4．解析結果 50

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する原子炉機器冷却海水配管ダクト（水平部）の地震応答解析について説明するものである。

本地震応答解析は，原子炉機器冷却海水配管ダクト（水平部）が耐震性に関する技術基準へ適合することを確認するために用いる応答値を抽出するものである。その際，耐震評価に用いる応答値は，この地震応答解析により構造物に発生する変形，断面力及び基礎地盤に発生する接地圧 とする。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

原子炉機器冷却海水配管ダクトの位置を図 2－1 に示す。

図 2－1 原子炉機器冷却海水配管ダクトの位置図

2.2 構造概要

原子炉機器泠却海水配管ダクト（水平部）の平面図を図 $2-2$ に，断面図を図 $2-3$ に示 す。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉補機冷却海水系配管，高圧炉心スプレ イ補機冷却海水系配管等を間接支持しており，支持機能が要求される。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）と原子炉建屋を結ぶ，鉄筋コンクリート造の地中構造物であり，延長 6.10 m ，内空幅 $2.10 \mathrm{~m} \sim 3.35 \mathrm{~m}$ ，内空高さ 6.70 m の四連ボックスカルバート構造であり，マンメイドロック（以下「MMR」とい う。）を介して十分な支持性能を有する岩盤に設置されている。
原子炉機器泠却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）及 び原子炉建屋との接合部に耐震ジョイントが設置されており，延長方向に断面の変化がない線状構造物である。

図 2－2 原子炉機器冷却海水配管ダクト（水平部）平面図

図 2－3 原子炉機器冷却海水配管ダクト（水平部）断面図（A－A 断面）

2．3 解析方針

原子炬機器冷却海水配管ダクト（水平部）は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s 及び弾性設計用地震動 S d に対して地震応答解析を実施する。

図 2－4に原子炉機器冷却海水配管ダクト（水平部）の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 評価対象断面」に示す断面において，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法による時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用い て実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，変形，断面力及び基礎地盤の接地圧は，原子炉機器冷却海水配管ダクト（水平部）の耐震評価に用い る。

図 2－4 原子炉機器冷却海水配管ダクト（水平部）の地震応答解析フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震評価技術指針 J E A G 4 6 0 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）
－道路橋示方書•同解説（V耐震設計編）（社団法人 日本道路協会，平成 14 年 3 月）

3．解析方法

3．1 評価対象断面

原子炉機器冷却海水配管ダクト（水平部）の評価対象断面位置を図 3－1 に示す。評価対象断面は，構造的特徴や周辺地質状況を踏まえ，構造物延長方向の中心位置を通る $\mathrm{A}-\mathrm{A}$ 断面とする。評価対象地質断面図を図 3－2 に示す。

原子炬機器冷却海水配管ダクト（鉛直部）の地震応答解析に係る事項については添付書類「VI－2－2－12－2 原子炉機器冷却海水配管ダクト（鉛直部）の耐震性についての計算書」に示 す。

図 3－2 原子炉機器冷却海水配管ダクト（水平部）評価対象地質断面図（A－A 断面）

3.2 解析方法

原子炉機器冷却海水配管ダクト（水平部）の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏 まえて実施する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 及び弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

構造部材については，非線形はり要素を用いることとし，構造部材の非線形性については，鉄筋コンクリートの $\mathrm{M}-\phi$ 関係を適切にモデル化する。

また，地盤については，地盤のひずみ依存性を適切に考慮できるようモデル化する。地震応答解析については，解析コード「Soil Plus Ver． 2015 Build3」を使用する。なお，解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，非線形はり要素でモデル化することとし，図 3－3に示すM— ϕ 関係のトリリニアモデルとする。また，履歴特性は，図 3－4に示すとおり修正武田モデ ルを適用する。また，コンクリートの応力ーひずみ関係及び鉄筋の応力ーひずみ関係には， それぞれ図 3－5 及び図3－6に示す非線形特性を考慮する。

図 3－3 鉄筋コンクリート部材の $\mathrm{M}-\phi$ 関係
（原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル （土木学会 原子力土木委員会，2005年6月）より引用）

図 3－4 鉄筋コンクリート部材の履歴特性（修正武田モデル）
（道路橋示方書（V耐震設計編）•同解説（平成 14 年 3 月）より引用）

図 3－5 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）

図 3－6 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）より引用）

3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

原子炉機器冷却海水配管ダクト（水平部）は，MMR を介して岩盤上に設置され，周囲が改良地盤に囲まれており，改良地盤の外側には盛土が分布している。盛土及び改良地盤の せん断変形が地震時に原子炉機器冷却海水配管ダクト（水平部）の応答に影響を与えると判断されることから，盛土及び改良地盤の初期せん断弾性係数のばらつきを考慮する。

初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ \text { (コンクリー) } \\ \text { (E0: ヤング係数) } \end{gathered}$	地盤物性	
		盛土，改良地盤 （ G_{0} ：初期せん断弾性係数）	C C_{1} 級岩盤，C_{1} 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
ケース① (基本ケース)	設計基準強度	平均値	平均値
ケース②	設計基準強度	平均値 $+1 \sigma$	平均値
ケース（3）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく 圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰及び履歴減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した α, β を表 $3-2$ に示す。

$$
[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]
$$

［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表 3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

評価対象断面	α	β
$\mathrm{A}-\mathrm{A}$ 断面	5.43×10^{-1}	5.52×10^{-4}

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース（1）（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となる照査項目に対して，最も厳しい地震動を用い て，表 3－1 に示す解析ケース（2）～④を実施する。耐震評価における解析ケースを表3－3 に示す。

表 3－3 耐震評価における解析ケース

注記＊1：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」とい う。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース①加え，表 3－1 に示す解析ケース（2）～（4）を実施する。機器•配管系の応答加速度抽出における解析ケースを表 3－4に示す。

表 3－4 機器•配管系の応答加速度抽出のための解析ケース

解析ケース			ケース（1）	ケース（2）	ケース③	ケース（4）
			基本ケ一ス	地盤物性のば らつき（＋1 o）を考慮し た解析ケース	地盤物性のば らつき（－1 o）を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考慮した解析ケ ース
地盤物性			平坐值	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性			謱け基䳽蟅	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { s }-\mathrm{D} 1 \\ & \mathrm{~S} \mathrm{~d}-\mathrm{D} 1 \end{aligned}$	$++* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 2 \\ & \mathrm{~S} d-\mathrm{D} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} d-\mathrm{D} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \mathrm{~s}-\mathrm{F} 1 \\ & \mathrm{~S} d-\mathrm{F} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} \text { d }-\mathrm{F} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{~S} d-\mathrm{F} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \text { s }-N 1 \\ & S \text { d }-N 1 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記 $* 1$ ：地震動の位相について，++ の左側は水平動，右側は鉛直動を表す。
＊ 2 ：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

原子炉機器冷却海水配管ダクト（水平部）の地震応答解析において，地震以外に考慮す る状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

原子炉機器冷却海水配管ダクト（水平部）の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（ P ）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（ S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（ S d ）
弾性設計用地震動 S d による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表3－5に示す。

表 3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{d}$

注記＊：機器•配管系の耐震設計に用いる

G ：固定荷重
P：積載荷重（積雪荷重 P_{s} を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s ）
S d ：地震荷重（弾性設計用地震動 S d）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図3－7に入力地震動算定の概念図を，図 $3-8 \sim$ 図 $3-35$ に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「Ark Quake Ver．3．10」 を使用する。
解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

地下構造モデル 構造物位置地盤モデル 地震応答解析モデル

図 3－7 入力地震動算定の概念図

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分 ：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D2）

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 2）

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 3）

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 1）

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F2）

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S s－N 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 $3-26$ 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{D} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－F1）

（a）加速度時刻歴波形
$\mathrm{h}=0.05$

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S d－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{F} 2$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 $3-33$ 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－N1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S d－N 1）

3.5 解析モデル及び諸元

3．5．1 解析モデル
原子炉機器冷却海水配管ダクト（水平部）の地震応答解析モデルを図 3－36に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
鉄筋コンクリート部材は，非線形はり要素によりモデル化する。
（4）地盤のモデル化
岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土及び改良地盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。
（5）ジョイント要素の設定
地震時の「MMR と構造物」，「盛土及び岩盤とMMR」，「盛土及び岩盤と改良地盤」及び
「盛土と構造物」との接合面における剥離及びすべりを考慮するため，これらの接合面に ジョイント要素を設定する。

図 3－36 原子炉機器冷却海水配管ダクト（水平部）の地震応答解析モデル図

3．5．2 使用材料及び材料の物性値

構造物の使用材料を表 3－6，材料の物性値を表3－7 に示す。

表 3－6 使用材料

材料	仕様
コンクリート	設計基準強度 $\quad 20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－7 材料の物性値（構造部材）

3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位を表 3－8 及び図 3－37に示す。

表 3－8 設計用地下水位の一覧

施設名称	設計用地下水位 原子炉機器冷却海水配管ダクト $($ 水平部 $)$ $0^{0 . P . ~}-10.50 \mathrm{~m} \sim 0$. P．-3.50 m

図 3－37 設計用地下水位

4．解析結果

耐震評価のために用いる応答加速度として，解析ケース（1）（基本ケース）について，すべての基準地震動S s に対する最大加速度分布図を図 4－1～図4－14に示す。また，解析ケース（1）にお いて，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析 ケース（2）～（4）の最大加速度分布図を図 4－15～図4－20に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～（4）について，す べての基準地震動S s に対する最大加速度分布図を図 4－21～図 4－41 に示す。また，解析ケー ス（1）～④について，すべての弾性設計用地震動S dに対する最大加速度分布図を図 4－42～図4 －69に示す。

830	832	833	832	$\begin{aligned} & 828 \\ & 814 \end{aligned}$
798	$\begin{aligned} & 831 \\ & 829 \end{aligned}$	$\begin{aligned} & 829 \\ & 818 \end{aligned}$	$\begin{aligned} & 826 \\ & 822 \end{aligned}$	
759				779
724	781	759	759	710
707	763	667	702	637
675	739	656	707	624
639	659	658	690	617
651	641	655	652	613
654	$\begin{aligned} & 668 \\ & 668 \end{aligned}$	656	658	617
$\begin{aligned} & 660 \\ & 666 \\ & \hline \end{aligned}$	663	$\begin{array}{r} 661 \\ 659 \\ \hline \end{array}$	655	$\begin{aligned} & 637 \\ & 645 \end{aligned}$

（a） S s－D $1(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－1 最大加速度分布図（1／20）（解析ケース（1）

図 4－2 最大加速度分布図（2／20）（解析ケース（1）

図 4－3 最大加速度分布図（3／20）（解析ケース（1）

（a） S s－D $2(-+)$ 水平
O 2 （3） $\mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}$

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－4 最大加速度分布図（4／20）（解析ケース（1）

781	788	787	786	$\begin{gathered} 778 \\ 752 \end{gathered}$
754	781777	773	$\begin{aligned} & 777 \\ & 772 \end{aligned}$	
704		744		706
617	743	654	730	624
568	660	576	649	577
568	588	607	582	557
602	681	619	602	572
676	796	716	719	596
753	$\begin{aligned} & 832 \\ & 827 \end{aligned}$	799	$\begin{aligned} & 797 \\ & 801 \end{aligned}$	705
800	803	796	788	769

（a） S s $-\mathrm{D} 3(++)$ 水平
O 2 （3） $\mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}$

506	399	571	767	885
507	$\begin{aligned} & 397 \\ & 399 \end{aligned}$	566560	$\begin{aligned} & 752 \\ & 747 \end{aligned}$	885
508				886
510	403	549	725	885
510	407	537	702	881
509	410	525	678	874
507	412	512	652	865
504	413	498	626	852
499	413 412	483	598 590	837
493	412		569	826 819

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－5 最大加速度分布図（5／20）（解析ケース（1）

図 4－6 最大加速度分布図（6／20）（解析ケース①）

686	685	682	680	$\begin{aligned} & 669 \\ & 667 \end{aligned}$
667	$\begin{aligned} & 657 \\ & 651 \end{aligned}$	673	$\begin{aligned} & 673 \\ & 670 \end{aligned}$	
640		665		657
607	637	639	648	622
624	595	586	605	576
646	576	572	570	539
657	580	583	587	555
654	596	592	602	570
642	$\begin{aligned} & 616 \\ & 620 \end{aligned}$	611	$\begin{aligned} & 625 \\ & 625 \end{aligned}$	592
$\begin{array}{r} 635 \\ 633 \\ \hline \end{array}$	614	$\begin{array}{r} 617 \\ 620 \\ \hline \hline \end{array}$	622	$\begin{aligned} & 611 \\ & 620 \end{aligned}$

（a） S s $-\mathrm{F} 1(-+)$ 水平

340	363	323	339	369
340	$\begin{aligned} & 360 \\ & 359 \end{aligned}$	322	$\begin{aligned} & 333 \\ & 330 \end{aligned}$	
341		321		365
342	355	319	321	362
342	351	317	311	359
341	346	314	303	355
341	341	312	299	350
339	336	308	303	345
338	$\begin{aligned} & 330 \\ & 328 \end{aligned}$		$\begin{aligned} & 308 \\ & 310 \end{aligned}$	340
336	324	310	313	334

（b）S s－F $1(-+)$ 鉛直

図 4－8 最大加速度分布図（8／20）（解析ケース（1））

（a） S s－F $2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－9 最大加速度分布図（9／20）（解析ケース（1）

図 4－10 最大加速度分布図（ $10 / 20$ ）（解析ケース（1）

833	843	840	834	$\begin{aligned} & 824 \\ & 809 \end{aligned}$
	$\begin{aligned} & 852 \\ & 846 \end{aligned}$	838	$\begin{aligned} & 837 \\ & 831 \end{aligned}$	
733		813		779
673	799	733	774	716
682	736	660	715	682
704	620	614	620	645
704	652	626	639	619
679	757	676	692	637
690	777 771	699	709 707	673
738	740	715	701	681

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－11 最大加速度分布図（ $11 / 20$ ）（解析ケース（1）

（a）S s－N $1 \quad(++)$ 水平

424	440	389	369	352
424	$\begin{aligned} & 428 \\ & 423 \end{aligned}$	383	$\begin{aligned} & 357 \\ & 353 \end{aligned}$	349
422		375		346
420	406	361	337	339
417	389	347	322	333
413	371	332	317	326
409	353	317	312	318
404	337	307	307	311
398	$\begin{aligned} & 326 \\ & 323 \end{aligned}$	304	$\begin{aligned} & 302 \\ & 300 \end{aligned}$	303
392	316	301	296	295

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－13 最大加速度分布図（13／20）（解析ケース（1）

図 4－14 最大加速度分布図（14／20）（解析ケース（1）

777	775	775	776	$\begin{aligned} & 774 \\ & 775 \end{aligned}$
$\begin{aligned} & 767 \\ & 750 \end{aligned}$	$\begin{aligned} & 770 \\ & 768 \end{aligned}$	772	$\begin{aligned} & 778 \\ & 781 \end{aligned}$	
		760		772
725	781	743	789	757
700	770	727	768	736
675	736	703	724	711
675	697	674	665	681
670	681	660	657	654
664	662 659	655	653 653	642
$\begin{aligned} & 660 \\ & 658 \end{aligned}$	655		652	648 651

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－15 最大加速度分布図（ $15 / 20$ ）
（解析ケース（2）：曲げ・軸力系の破壊に対する最大照査値）

777	775	775	776	$\begin{aligned} & 774 \\ & 775 \end{aligned}$
$\begin{aligned} & 767 \\ & 750 \end{aligned}$	$\begin{aligned} & 770 \\ & 768 \end{aligned}$	772	$\begin{aligned} & 778 \\ & 781 \end{aligned}$	
		760		772
725	781	743	789	757
700	770	727	768	736
675	736	703	724	711
675	697	674	665	681
670	681	660	657	654
664	662 659	655	653 653	642
$\begin{aligned} & 660 \\ & 658 \end{aligned}$	655		652	648 651

（a）S s－N $1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－16 最大加速度分布図（ $16 / 20$ ）
（解析ケース（2）：せん断破壊に対する最大照査値）

図 4－17 最大加速度分布図（ $17 / 20$ ）
（解析ケース③）：曲げ・軸力系の破壊に対する最大照査値）

図 4－18 最大加速度分布図（ $18 / 20$ ）
（解析ケース（3）：せん断破壊に対する最大照査値）

804	803	801	801	$\begin{aligned} & 802 \\ & 801 \end{aligned}$
788	$\begin{aligned} & 808 \\ & 808 \end{aligned}$	796	$\begin{aligned} & 790 \\ & 781 \end{aligned}$	
761		779		794
743	789	766	810	772
726	750	744	820	747
704	726	714	801	719
678	707	681	751	685
657	676	648	688	646
651	$\begin{aligned} & 650 \\ & 646 \end{aligned}$	641	650 646	644
$\begin{aligned} & 646 \\ & 643 \\ & \hline \end{aligned}$	639	$\begin{array}{r} 640 \\ 638 \\ \hline \end{array}$	640	640

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－19 最大加速度分布図（19／20）
（解析ケース（4）：曲げ・軸力系の破壊に対する最大照査値）

804	803	801	801	$\begin{aligned} & 802 \\ & 801 \end{aligned}$
788	$\begin{aligned} & 808 \\ & 808 \end{aligned}$	796	$\begin{aligned} & 790 \\ & 781 \end{aligned}$	
761		779		794
743	789	766	810	772
726	750	744	820	747
704	726	714	801	719
678	707	681	751	685
657	676	648	688	646
651	$\begin{aligned} & 650 \\ & 646 \end{aligned}$	641	650 646	644
$\begin{aligned} & 646 \\ & 643 \\ & \hline \end{aligned}$	639	$\begin{array}{r} 640 \\ 638 \\ \hline \end{array}$	640	640

（a）S s－N $1 \quad(++)$ 水平

410	441	382	344	$\begin{aligned} & 373 \\ & 371 \end{aligned}$
410	$\begin{aligned} & 431 \\ & 427 \end{aligned}$	377	$\begin{aligned} & 335 \\ & 332 \end{aligned}$	
409		370		369
408	413	359	319	364
406	398	347	307	359
403	383	335	304	353
400	367	323	300	347
397	351	310	297	340
394	$\begin{aligned} & 335 \\ & 331 \end{aligned}$		$\begin{array}{r} 294 \\ 293 \end{array}$	334
389	319	292	291	329 327

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－20 最大加速度分布図（ $20 / 20$ ）
（解析ケース（4）：せん断破壊に対する最大照査値）

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}
$$

（a） S s $-\mathrm{D} 1(++)$ 水平

（b） S s $-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－21 最大加速度分布図（1／49）（解析ケース（2））

（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－22 最大加速度分布図（2／49）（解析ケース（2））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平
O 2 （3） $\mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}$

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－23 最大加速度分布図（3／49）（解析ケース（2））

744	743	734	730	$\begin{gathered} 729 \\ 712 \end{gathered}$
739	$\begin{aligned} & 742 \\ & 738 \end{aligned}$	$\begin{aligned} & 733 \\ & 731 \end{aligned}$	$\begin{aligned} & 755 \\ & 762 \end{aligned}$	
718				680
693	724	705	754	649
668	690	662	700	627
632	630	608	659	628
606	632	583	608	631
609	621	599	610	621
627	$\begin{aligned} & 629 \\ & 632 \end{aligned}$	620	633 635	610
621	628	630	630	627

（a） S s $-\mathrm{F} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 鉛直

図 4－25 最大加速度分布図（5／49）（解析ケース（2））

$$
\mathrm{O} 2 \quad \text { (3) } \mathrm{VI}-2-2-11 \quad \mathrm{R} 0
$$

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直

図 4－26 最大加速度分布図（6／49）（解析ケース（2））

777	775	775	776	$\begin{aligned} & 774 \\ & 775 \end{aligned}$
$\begin{aligned} & 767 \\ & 750 \end{aligned}$	$\begin{aligned} & 770 \\ & 768 \end{aligned}$	772	$\begin{aligned} & 778 \\ & 781 \end{aligned}$	
		760		772
725	781	743	789	757
700	770	727	768	736
675	736	703	724	711
675	697	674	665	681
670	681	660	657	654
664	662 659	655	653 653	642
$\begin{aligned} & 660 \\ & 658 \end{aligned}$	655		652	648 651

（a）S s－N $1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－27 最大加速度分布図（7／49）（解析ケース（2））

756	759	759	757	$\begin{aligned} & 750 \\ & 735 \end{aligned}$
736		757	$\begin{aligned} & 760 \\ & 757 \end{aligned}$	
699	745	745		703
658	746	701	731	669
640	706	688	721	646
613	633	667	677	618
609	604	640	627	589
633	607	612	599	589
641	640 639	615	640 641	587
641	634		634	623

（a） S s $-\mathrm{D} 1(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－28 最大加速度分布図（8／49）（解析ケース③）

（a） S s－D $2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－29 最大加速度分布図（9／49）（解析ケース③）

667	673	678	677	$\begin{gathered} 667 \\ 639 \end{gathered}$
658	$\begin{aligned} & 683 \\ & 686 \end{aligned}$	670	$\begin{aligned} & 680 \\ & 677 \end{aligned}$	
638		650		606
596	688	594	625	571
577	672	584	600	548
580	666	580	579	561
615	653	619	615	564
650	676	644	643	577
694	728 726		$\begin{aligned} & 690 \\ & 693 \end{aligned}$	622
715	707	695	686	672

（a） S s $-\mathrm{D} 3(++)$ 水平

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－30 最大加速度分布図（10／49）（解析ケース③）

図 4－31 最大加速度分布図（ $11 / 49$ ）（解析ケース（3）

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}
$$

（a） S s $-\mathrm{F} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 鉛直

図 4－32 最大加速度分布図（12／49）（解析ケース③）

797	824	835	834	$\begin{gathered} 818 \\ 778 \end{gathered}$
761	$\begin{aligned} & 841 \\ & 842 \end{aligned}$	837	$\begin{aligned} & 848 \\ & 852 \end{aligned}$	
692		826		723
617	796	760	827	698
664	708	655	765	681
692	710	644	728	660
703	761	674	680	633
709	819	689	746	667
709	795 788	745	778 774	698
764	767	765	767	765

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－33 最大加速度分布図（13／49）（解析ケース③）

図 4－34 最大加速度分布図（14／49）（解析ケース（3）

（a） S s－D $1(++)$ 水平

（b） S s $-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－35 最大加速度分布図（15／49）（解析ケース（4）

図 4－36 最大加速度分布図（16／49）（解析ケース（4）

812	818	817	815	$\begin{aligned} & 806 \\ & 779 \end{aligned}$
784	$\begin{aligned} & 804 \\ & 796 \end{aligned}$	804	$\begin{aligned} & 804 \\ & 797 \end{aligned}$	
734		774		731
646	733	682	739	644
569	629	569	640	558
557	609	590	586	561
574	652	599	599	573
660	778	701	686	596
734	820 815	782	774 781	696
788	791	783	774	757

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平
O 2 （3） $\mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}$

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－37 最大加速度分布図（ $17 / 49$ ）（解析ケース（4）

図 4－39 最大加速度分布図（19／49）（解析ケース（4）

図 4－40 最大加速度分布図（20／49）（解析ケース（4）

804	803	801	801	$\begin{aligned} & 802 \\ & 801 \end{aligned}$
788	$\begin{aligned} & 808 \\ & 808 \end{aligned}$	$\begin{gathered} 796 \\ 779 \end{gathered}$	$\begin{aligned} & 790 \\ & 781 \end{aligned}$	
761				794
743	789	766	810	772
726	750	744	820	747
704	726	714	801	719
678	707	681	751	685
657	676	648	688	646
651	$\begin{aligned} & 650 \\ & 646 \end{aligned}$	641	$\begin{aligned} & 650 \\ & 646 \end{aligned}$	644
$\begin{aligned} & 646 \\ & 643 \end{aligned}$	639	638	640	640

O 2 （3） $\mathrm{VI}-2-2-11 \quad \mathrm{R} \mathrm{O}$
（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－41 最大加速度分布図（21／49）（解析ケース（4））

477	481	483	482	478468
466	$\begin{aligned} & 481 \\ & 476 \end{aligned}$	$\begin{aligned} & 481 \\ & 473 \end{aligned}$	$\begin{aligned} & 481 \\ & 481 \end{aligned}$	
454				456
433	468	460	470	442
409	453	441	436	424
397	419	412	404	401
381	376	378	378	379
380	397	385	385	371
392	$\begin{aligned} & 405 \\ & 404 \end{aligned}$	396	395 396	373
$\begin{array}{r} 399 \\ 402 \\ \hline \end{array}$	400	397	394	389

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 水平

346	391	416	449	423421
345	$\begin{aligned} & 382 \\ & 378 \end{aligned}$	411	$\begin{aligned} & 438 \\ & 434 \end{aligned}$	
341		404		418
335	365	392	419	413
329	352	380	404	407
322	338	368	389	401
315	324	355	374	395
308	310	343	358	388
300	295 292	329	342 337	381
292	281		325	373

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 鉛直

図 4－42 最大加速度分布図（22／49）（解析ケース（1）

\begin{abstract}

526	534	533	530	521500
512	$\begin{aligned} & 546 \\ & 548 \end{aligned}$	$\begin{aligned} & 535 \\ & 529 \end{aligned}$	$\begin{aligned} & 541 \\ & 543 \end{aligned}$	
484				463
428	519	485	516	443
409	442	418	442	440
435	413	413	411	430
466	407	404	397	412
478	448	428	440	401
479	$\begin{aligned} & 467 \\ & 469 \end{aligned}$		467 468	424
478	469	465	466	463

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－43 最大加速度分布図（23／49）（解析ケース（1）

図 4－44 最大加速度分布図（24／49）（解析ケース（1）

322	329	334	336	337328
312	$\begin{aligned} & 332 \\ & 332 \end{aligned}$	331	$\begin{aligned} & 335 \\ & 334 \end{aligned}$	
295		326		314
286	315	302	316	298
279	312	296	317	304
270	322	300	324	309
274	321	302	320	310
294	322	319	321	307
312	$\begin{aligned} & 330 \\ & 330 \end{aligned}$		$\begin{aligned} & 328 \\ & 328 \end{aligned}$	309
	329	329	328	

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－45 最大加速度分布図（25／49）（解析ケース（1）

363	366	367	366	367
354		368		360
337	$\begin{aligned} & 372 \\ & 373 \end{aligned}$	367	371	347
327	363	352	361	325
310	334	325	334	314
299	304	294	306	300
295	290	282	291	285
289	323	310	324	298
302	$\begin{aligned} & 336 \\ & 336 \end{aligned}$	330	$\begin{aligned} & 337 \\ & 337 \end{aligned}$	320
$\begin{aligned} & 319 \\ & 328 \end{aligned}$	333		335	329 333

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 水平

199	233	240	246	$\begin{aligned} & 241 \\ & 241 \end{aligned}$	
198	$\begin{array}{r} 230 \\ 229 \end{array}$	239	$\begin{aligned} & 243 \\ & 242 \end{aligned}$		
198		237		240	
197	225	234	239	239	
196	221	230	235	238	
194	216	227	231	237	
193	212	223	227	235	
192	207	220	223	234	
190	$\begin{array}{r} 203 \\ 201 \end{array}$	216	$\begin{aligned} & 219 \\ & 218 \end{aligned}$	232	
$\begin{aligned} & 190 \\ & 189 \\ & \hline \end{aligned}$		213 212	214	$\begin{aligned} & 231 \\ & 231 \end{aligned}$	

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－46 最大加速度分布図（26／49）（解析ケース（1）

図 4－47 最大加速度分布図（27／49）（解析ケース（1）

389	389	387	386	384
386	$\begin{aligned} & 390 \\ & 390 \end{aligned}$	386	$\begin{aligned} & 383 \\ & 382 \end{aligned}$	
381		381		377
371	384	376	373	366
365	369	372	368	358
361	354	362	359	350
354	345	349	346	342
345	336	338	334	336
336	$\begin{array}{r} 330 \\ 329 \end{array}$		$\begin{aligned} & 331 \\ & 331 \end{aligned}$	331
330	328	328	328	$\begin{aligned} & 329 \\ & 328 \end{aligned}$

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 水平

182	193	174	185	190
181		174		190
180	$\begin{aligned} & 188 \\ & 186 \end{aligned}$	173	184	190
178	179	172	181	189
175	172	171	179	188
172	165	170	177	187
169	158	168	175	185
166	156	167	173	184
162	155	165	171 170	182
$\begin{array}{r} 160 \\ 159 \\ \hline \end{array}$	154	164 164	168	181 181

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－48 最大加速度分布図（28／49）（解析ケース（1）

512	521	527	529	529519
494	$\begin{aligned} & 521 \\ & 519 \end{aligned}$	522	$\begin{aligned} & 527 \\ & 524 \\ & \hline 2 \end{aligned}$	
469		512		500
456	495	483	491	470
441	470	455	465	444
438	430	418	425	425
432	381	382	380	402
418	393	384	384	374
398	397 396	392	391 391	371
$\begin{aligned} & 386 \\ & 392 \\ & \hline \end{aligned}$	393		389	385

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－49 最大加速度分布図（29／49）（解析ケース（2））

図 4－50 最大加速度分布図（30／49）（解析ケース（2））

424	429	433	436	436433
413	$\begin{array}{r} 426 \\ 424 \end{array}$	431	$\begin{aligned} & 435 \\ & 43 \end{aligned}$	
394		426		426
364	405	404	413	409
354	372	369	382	387
342	352	334	348	370
326	350	331	347	365
323	406	375	388	353
357	425 422	410	${ }_{416}^{416}$	384
$\begin{aligned} & 380 \\ & 400 \\ & \hline \end{aligned}$	411		411	399 405

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－51 最大加速度分布図（31／49）（解析ケース（2）

312	319	324	326	$\begin{aligned} & 326 \\ & 317 \end{aligned}$
302	$\begin{aligned} & 322 \\ & 322 \end{aligned}$	323	$\begin{aligned} & 326 \\ & 325 \end{aligned}$	
289		318		301
277	306	296	308	283
275	288	271	284	286
269	284	275	286	292
264	297	297	299	294
279	317	314	317	292
300	$\begin{aligned} & 324 \\ & 324 \end{aligned}$		$\begin{aligned} & 323 \\ & 323 \end{aligned}$	308
318	322	323	323	320

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

184	172	181	196	204
183		181		204
182	170 169	180	194	205
181	166	179	193	205
179	163	178	192	204
177	159	177	191	204
175	155	176	189	203
172	152	174	187	202
169	148		185	200
$\begin{aligned} & 167 \\ & 166 \\ & \hline \end{aligned}$	146	171 171	183	199 198

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直
－構造スケール $\stackrel{0}{\llcorner } \quad \stackrel{2}{\square}(\mathrm{~m}) \quad$ •応答値スケール $\stackrel{0}{\square} \quad 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－52 最大加速度分布図（32／49）（解析ケース（2）

386	391	392	392	388378
378	$\begin{aligned} & 396 \\ & 397 \end{aligned}$	394	$\begin{aligned} & 397 \\ & 398 \end{aligned}$	
373		393		359
368	386	378	386	341
357	357	351	355	333
340	316	315	313	339
318	310	303	311	338
292	319	309	321	330
289	$\begin{aligned} & 325 \\ & 324 \end{aligned}$		$\begin{aligned} & 327 \\ & 327 \end{aligned}$	317
313	320	323	323	322

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 水平

203	208	222	248	277
202	$\begin{aligned} & 206 \\ & 206 \end{aligned}$	221		
202		220	$\begin{array}{r} 246 \\ 245 \end{array}$	276
201	204	218	242	275
200	203	215	238	273
199	201	213	235	271
198	200	211	231	269
197	198	209	227	266
195	196 196		$\begin{aligned} & 223 \\ & 222 \end{aligned}$	262
194	194	204	219	259

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－53 最大加速度分布図（33／49）（解析ケース（2）

428	432	435	435	433
421		431		425
409	$\begin{aligned} & 430 \\ & 428 \end{aligned}$	424	434 432	410
384	410	402	410	386
363	376	370	376	360
357	332	333	332	337
374	334	326	338	333
381	380	357	380	341
383	408 409	396	409 409	365
403	406		405	$\begin{aligned} & 387 \\ & 399 \end{aligned}$

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直
－構造スケール $\stackrel{0}{4} \quad \underset{\sim}{2}(\mathrm{~m}) \quad$ •応答値スケール $\stackrel{0}{\square} 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－54 最大加速度分布図（34／49）（解析ケース（2）

398	397	396	396	397395
393	$\begin{aligned} & 395 \\ & 394 \end{aligned}$	$\begin{aligned} & 395 \\ & 393 \end{aligned}$	$\begin{aligned} & 395 \\ & 394 \end{aligned}$	
385				392
373	384	383	384	384
365	379	375	375	372
359	369	365	366	362
352	355	354	353	354
346	340	344	339	346
340	336 336	337	333 33	339
338	335		333	3335

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－55 最大加速度分布図（35／49）（解析ケース（2））

461	464	463	463	459446
451	$\begin{aligned} & 468 \\ & 464 \\ & 46 \end{aligned}$	458	$\begin{aligned} & 465 \\ & 462 \end{aligned}$	
428		450		432
413	439	445	444	409
395	411	428	419	386
374	372	393	378	364
353	347	349	356	345
350	359	341	352	331
363	$\begin{aligned} & 367 \\ & 369 \end{aligned}$		360 361	337
371	367		361	351 356

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++) \quad$ 水平

300	337	352	381	377
298		347		375
294	$\begin{aligned} & 327 \\ & 324 \end{aligned}$	340	$\begin{aligned} & 370 \\ & 366 \end{aligned}$	371
288	310	329	352	365
281	296	316	337	358
277	282	304	323	351
273	268	292	307	343
269	253	279	292	335
265	$\begin{aligned} & 245 \\ & 246 \end{aligned}$		$\begin{aligned} & 277 \\ & 272 \end{aligned}$	326
$\begin{aligned} & 261 \\ & 260 \\ & \hline \end{aligned}$	248	$\begin{aligned} & 258 \\ & 253 \\ & \hline \end{aligned}$	261	$\begin{aligned} & 320 \\ & 317 \end{aligned}$

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－56 最大加速度分布図（36／49）（解析ケース③）

図 4－57 最大加速度分布図（37／49）（解析ケース（3）

図 4－58 最大加速度分布図（38／49）（解析ケース（3）

345	351	354	355	$\begin{aligned} & 355 \\ & 348 \end{aligned}$
339	$\begin{aligned} & 349 \\ & 348 \end{aligned}$	348	$\begin{aligned} & 350 \\ & 347 \end{aligned}$	
327		339		336
301	330	313	326	317
282	315	302	318	304
288	328	310	329	311
295	331	313	330	315
313	324	314	323	316
329	$\begin{aligned} & 337 \\ & 339 \end{aligned}$		$\begin{aligned} & 333 \\ & 334 \end{aligned}$	313
341	340	337	335	330

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－59 最大加速度分布図（39／49）（解析ケース③）

403	413	419	－ 41.9	416406
393	$\begin{aligned} & 419 \\ & 420 \end{aligned}$	419	$\begin{aligned} & 424 \\ & 426 \end{aligned}$	
375		418		389
343	414	404	421	364
313	388	377	397	339
297	346	339	356	313
308	321	311	323	301
325	352	342	354	318
341	365 365	359	364 364	339
355 362	363	363	362	${ }_{357}$

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 水平

209	215	213	215	232
208		210		232
208	213	207	212	232
207	208	201	205	231
206	204	195	200	229
204	201	191	195	227
203	197	187	190	225
201	193	182	185	222
198	188 187	180	184 183	220
$\begin{array}{r} 197 \\ 196 \\ \hline \end{array}$	184		182	217 216

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－60 最大加速度分布図（40／49）（解析ケース③）

421	430	432	431	426411
407	$\begin{aligned} & 435 \\ & 435 \end{aligned}$	428	$\begin{aligned} & 431 \\ & 429 \end{aligned}$	
387		419		382
360	411	386	405	339
330	371	345	367	311
333	353	318	355	307
323	358	327	358	309
327	350	331	349	318
342	$\begin{aligned} & 3666 \\ & 368 \end{aligned}$	358	368 369	335
363	367		369	367

（a） $\mathrm{Sd}-\mathrm{F} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直

図 4－61 最大加速度分布図（41／49）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 鉛直

図 4－62 最大加速度分布図（42／49）（解析ケース③）

482	483	483	483	480472
475	$\begin{aligned} & 485 \\ & 486 \end{aligned}$	$\begin{aligned} & 480 \\ & 477 \end{aligned}$	$\begin{aligned} & 488 \\ & 489 \end{aligned}$	
463				458
440	474	461	479	434
414	434	437	450	412
391	396	408	409	386
376	375	373	387	373
372	388	382	370	361
385	397 397	391	386 388	372
$\begin{array}{r} 392 \\ 396 \\ \hline \end{array}$	395		389	381 385

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++) \quad$ 水平

330	373	395	425	411
328		392		410
326	$\begin{aligned} & 365 \\ & 362 \end{aligned}$	387	417	408
321	352	377	402	404
316	341	368	391	399
311	330	359	379	395
306	319	349	367	390
300	308	339	354	385
294	297 294	329	342 338	379
$\begin{array}{r} 290 \\ 288 \\ \hline \end{array}$	285		329	373

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－63 最大加速度分布図（43／49）（解析ケース（4））

図 4－64 最大加速度分布図（44／49）（解析ケース（4））

458	461	458	456	449433
444	$\begin{aligned} & 452 \\ & 447 \end{aligned}$	450	$\begin{array}{r} 447 \\ 443 \end{array}$	
418		436		405
370	411	390	405	392
360	374	366	377	373
363	380	367	382	354
362	375	361	375	352
374	426	400	404	365
413	452	435	436 437	404
438	441		434	425

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 鉛直
－構造スケール $\stackrel{0}{\square} \quad \stackrel{2}{\square}(\mathrm{~m}) \quad$ •応答値スケール $\stackrel{0}{\square} \quad 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－65 最大加速度分布図（45／49）（解析ケース（4））

326	332	336	338	339330
317	$\begin{aligned} & 335 \\ & 335 \end{aligned}$	334	$\begin{array}{r} 337 \\ 336 \end{array}$	
299		327		316
279	319	303	317	299
275	307	297	312	304
275	314	299	315	307
278	312	299	312	307
293	321	315	319	304
310	$\begin{aligned} & 327 \\ & 327 \end{aligned}$		$\begin{array}{r} 325 \\ 325 \end{array}$	309
324	326	326	325	322

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－66 最大加速度分布図（46／49）（解析ケース（4））

36	363	364	364	36235534
354	$\begin{aligned} & 369 \\ & 370 \end{aligned}$	364	$\begin{aligned} & 366 \\ & 367 \end{aligned}$	
341		362		342
318	358	345	354	324
301	325	314	324	312
295	301	293	300	298
292	288	281	283	283
286	319	307	316	295
301	331 331	326	331 332	316
	329		331	329

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 水平

198	228	235	241	241
198	$\begin{array}{r} 226 \\ 225 \end{array}$	234	$\begin{aligned} & 239 \\ & 238 \end{aligned}$	
198		232		240
197	222	230	235	239
196	218	227	232	238
195	215	225	229	237
195	211	222	226	236
194	208	219	222	234
193	204 203		219	233
$\begin{aligned} & 192 \\ & 192 \end{aligned}$	200	$\begin{array}{r} 214 \\ 213 \\ \hline \end{array}$	215	$\begin{aligned} & 232 \\ & 231 \end{aligned}$

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－67 最大加速度分布図（47／49）（解析ケース（4）

図 4－68 最大加速度分布図（48／49）（解析ケース（4））

図 4－69 最大加速度分布図（49／49）（解析ケース（4））

VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書

目 次

VI－2－2－12－1 原子炉機器冷却海水配管ダクト（水平部）の耐震性についての計算書

VI－2－2－12－1 原子炉機器冷却海水配管ダクト（水平部） の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 5
2.4 適用基準 8
3．耐震評価 9
3.1 評価対象断面 9
3.2 使用材料及び材料の物性値。 10
3.3 許容限界 11
3．3．1 構造部材の健全性に対する許容限界 11
3．3．2 基礎地盤の支持性能に対する許容限界 12
3．4 評価方法 13
3．4．1 構造部材の健全性評価． 13
3．4．2 基礎地盤の支持性能評価 13
4．構造部材の地震時応答 14
5．耐震評価結果 16
5.1 構造部材の健全性に対する評価結果 16
5.2 Sクラスの施設を支持する機能に対する評価結果 17
5.3 基礎地盤の支持性能に対する評価結果。 18
5．3．1 基礎地盤（狐崎部層） 18
5．3．2 MMR（既設） 19

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉機器冷却海水配管ダクト（水平部）が基準地震動 S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

原子炉機器冷却海水配管ダクト（水平部）に要求される機能の維持を確認するにあたつては，地震応答解析に基づく構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

原子炉機器冷却海水配管ダクト（水平部）の位置を図 2－1 に示す。

図 2－1 原子炉機器冷却海水配管ダクト（水平部）の位置図

2.2 構造概要

原子炉機器冷却海水配管ダクト（水平部）の平面図を図 $2-2$ に，断面図を図 $2-3$ に，概略配筋図を図2－4に示す。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉補機冷却海水系配管，高圧炉心スプレ イ補機冷却海水系配管等を側壁及び隔壁で間接支持しており，支持機能が要求される。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）と原子炉建屋を結ぶ，鉄筋コンクリート造の地中構造物であり，延長 6.10 m ，内空幅 $2.10 \mathrm{~m} \sim 3.35 \mathrm{~m}$ ，内空高さ 6.70 m の四連ボックスカルバート構造であり，マンメイドロック（以下「MMR」とい う。）を介して十分な支持性能を有する岩盤に設置されている。

原子炉機器冷却海水配管ダクト（水平部）は，原子炉機器冷却海水配管ダクト（鉛直部）及 び原子炉建屋との接合部に耐震ジョイントが設置されており，延長方向に断面変化がない線状構造物である。

（単位：m）

図 2－2 原子炉機器冷却海水配管ダクト（水平部）平面図南北

（単位：m）
図 2－3 原子炬機器冷却海水配管ダクト（水平部）断面図（ $\mathrm{A}-\mathrm{A}$ ）

図 2－4 原子炉機器冷却海水配管ダクト（水平部）概略配筋図

2.3 評価方針

原子炉機器冷却海水配管ダクト（水平部）は，設計基準対象施設においては，Sクラス施設の間接支持構造物である屋外重要土木構造物に分類され，重大事故等対処施設においては，常設重大事故緩和設備（設計基準拡張）及び常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設に分類される。

原子炉機器冷却海水配管ダクト（水平部）の耐震評価フローを図 $2-5$ に示す。
原子炉機器冷却海水配管ダクト（水平部）は，添付書類「VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書」より得られた地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びS クラスの施設を支持する機能を損なわないことを確認する。

構造部材の健全性評価については，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照査用層間変形角及び照査用曲げモーメントが許容限界を下回ることを確認する。せん断破壊に対しては照査用せん断力が許容限界を下回ること を確認する。

基礎地盤の支持性能評価においては，添付書類「VI－2－2－11 原子炉機器冷却海水配管ダクト （水平部）の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

ここで，原子炉機器冷却海水配管ダクト（水平部）の運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括され ることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

図 2－5 原子炉機器冷却海水配管ダクト（水平部）の耐震評価フロー

表 2－1 原子炉機器冷却海水配管ダクト（水平部）の評価項目

評価方針	評価項目	部位	評価方法		許容限界
構造強度 を有する こと	構造部材の健全性	鉄筋コン クリート 部材	照査用層間変形角及び照査用せん断力が許容限界を下回ることを確認	曲げ・軸力	限界層間変形角＊
				せん断力	せん断耐力＊
	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊	
		MMR		MMR の支圧強度＊	
S クラス の施設を支持する	構造部材の健全性	鉄筋コン クリート 部材	照査用曲げモーメ ント及び照査用せ ん断力が許容限界 を下回ることを確認	曲げ・軸力	降伏曲げモーメント＊
$\begin{aligned} & \text { なわない } \\ & \text { こと } \end{aligned}$				せん断力	せん断耐力＊

注記＊：妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- コンクリート標準示方書［設計編］（土木学会，2017年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（社団法人 日本電気協会 電気技術基準調查委員会）

3．耐震評価

3.1 評価対象断面

原子炉機器冷却海水配管ダクト（水平部）の評価対象断面位置を図 3－1 に示す。
評価対象断面は，構造的特徴や周辺地質状況を踏まえ，構造物延長方向の中心位置を通る A－ A断面とする。評価対象地質断面図を図3－2に示す。

（単位：m）

図 3－1 原子炉機器冷却海水配管ダクト（水平部）の評価対象断面位置図

図 3－2 原子炉機器冷却海水配管ダクト（水平部）評価対象地質断面図（A－A 断面）

3.2 使用材料及び材料の物性値

構造物の使用材料を表 3－1，材料の物性値を表3－2 に示す。

表 3－1 使用材料

材料	仕様
コンクリート	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－2 材料の物性値（構造部材）

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 （kN／m ${ }^{3}$ ）		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3． 02×10^{4}	解析ケース（4）
		設計基準強度	2． 33×10^{4}	解析ケース（1）， （2），（3）
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（2005 年 6 月 土木学会 原子力土木委員会）（以下「土木学会マニュアル」という。） に基づき，限界層間変形角（層間変形角 $1 / 100$ ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，層間変形角 $1 / 100$ の状態は，かぶり コンクリートが剥落する前の状態であることが，屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値 とすることで構造全体としての安定性等が確保できるとして設定されたものである。

また，側壁及び隔壁のアンカー定着部に要求されるSクラスの施設を支持する機能を損 なわないことの確認においては，鉄筋の降伏を許容限界として降伏曲げモーメントとする。鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表3－3に示す。

表 3－3 原子炉機器冷却海水配管ダクト（水平部）の曲げ・軸力系の破壊 に対する許容限界

確認項目	許容限界	
構造強度を有すること	限界層間変形角	$1 / 100$
S クラスの施設を支持す る機能を損なわないこと	曲げモーメント	降伏曲げモーメント

（2）せん断破壊に対する許容限界
構造強度を有することの確認及びSクラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，土木学会マ ニュアルに基づくせん断耐力とする。

3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表3－4に示す。

表 3－4 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。 MMR（既設）の許容限界を表3－5に示す。

| 表 3－5 \quad MMR | （既設）の支持性能に対する許容限界 | |
| :---: | :---: | :---: | :---: |
| 評価項目 | MMR（既設） | 許容限界
 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| 支圧強度 | コンクリート
 $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$ | $\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$ |

3.4 評価方法

原子炉機器冷却海水配管ダクト（水平部）の耐震評価は，添付書類「VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書」に基づく地震応答解析により算定した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回ることを確認する。

3．4．1 構造部材の健全性評価

構造強度を有することの確認については，鉄筋コンクリートの曲げ・軸力系の破壊及び せん断破壊に対する照査において，地震応答解析により算定した照査用層間変形角及び照査用せん断力が許容限界を下回ることを確認する。

S クラスの施設を支持する機能を損なわないことの確認については，鉄筋コンクリート の曲げ・軸力系の破壊に対する照査において，照査用曲げモーメントが許容限界を下回る ことを，せん断破壊に対する照査において，照査用せん断力が許容限界を下回ることを確認する。

3．4．2 基礎地盤の支持性能評価
基礎地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答
構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及 び地震動での層間変形角の時刻歴波形を図 4－1 に，せん断破壊に対する最大照査値の評価時刻 での断面力図を図4－2に示す。

図 4－1 曲げ・軸力系の破壊に対する照査における層間変形角の時刻歴波形 （解析ケース③）S s－N $1 \quad(++)$ ）

数値：評価位置における断面力
（a）曲げモーメント（kN•m）

数値：評価位置における断面力
（b）軸力（ kN ）（ + ：引張，- ：圧縮）

数値：評価位置における断面力
（c）せん断力（ kN ）

図 4－2 せん断破壊に対する照査値最大時＊の断面力図 （隔壁，解析ケース（3），S s－N $1(++)$ ）
注記＊：材料非線形解析による評価結果

5．耐震評価結果

5.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表5－1 に，せん断破壊に対する各評価位置での最大照査値を表5－2に示す。
原子炉機器冷却海水配管ダクト（水平部）の照査用層間変形角及び照査用せん断力が，構造部材の健全性に対する許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する最大照査値

解析 ケース	地震動	照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	1.54×10^{-3}	1.0×10^{-2}	0.16

注記 $*$ ：照査用層間変形角 $\mathrm{R}_{\mathrm{d}}=$ 最大層間変形角 $\mathrm{R} \times$ 構造解析係数 γ_{a}

表 5－2 せん断破壊に対する最大照査値

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $V_{d} / V_{y d}$
底版	11	（4）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	－533	$1188 * 3$	0． 45
頂版	21	（3）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	953	1329＊3	0． 72
側壁	50	（3）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	－1482	$2348 * 3$	0.64
隔壁	70	（3）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ (++) \end{gathered}$	－313	$522^{* 4}$	0.60

注記 $* 1$ ：評価位置は図5－1に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊ 3 ：せん断耐力式によるせん断耐力
＊ 4 ：材料非線形解析によるせん断耐力

図 5－1 評価位置図

5.2 Sクラスの施設を支持する機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照查値を表5－3に， せん断破壊に対する各評価位置での最大照査値を表 5－4 に示す。
原子炉機器冷却海水配管ダクト（水平部）の照査用曲げモーメント及び照査用せん断力が， S クラスの施設を支持する機能に対する許容限界を下回ることを確認した。

表 5－3 曲げ・軸力系の破壊に対する最大照査値

評価位置＊1		解析 ケース	地震動	照查用曲げ モーメント $\mathrm{Md} \mathrm{F}^{2}$	許容限界 My	照査値 $\mathrm{Md} / \mathrm{My}$
側壁	60	（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	$-1178 \mathrm{kN} \cdot \mathrm{m}$	$-2024 \mathrm{kN} \cdot \mathrm{m}$	0.59
隔壁	90	（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	$-435 \mathrm{kN} \cdot \mathrm{m}$	$-615 \mathrm{kN} \cdot \mathrm{m}$	0.71

注記 $* 1$ ：評価位置は図 5－1に示す。
$* 2$ ：照査用曲げモーメント $\mathrm{Md}=$ 最大曲げモーメント $\mathrm{M} \times$ 構造解析係数 γ_{a}

表 5－4 せん断破壊に対する最大照査値（再掲）

評価位置＊1		解析 ケース	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
側壁	50	（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	-1482	$2348^{* 3}$	0.64
隔壁	70	（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	-313	$522^{* 4}$	0.60

注記 $* 1$ ：評価位置は図 $5-1$ に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊3：せん断耐力式によるせん断耐力
＊ 4 ：材料非線形解析によるせん断耐力

5.3 基礎地盤の支持性能に対する評価結果

5．3．1 基礎地盤（狐崎部層）

基礎地盤の支持性能に対する照査結果を表5－5に示す。また，最大接地圧分布図を図5 － 2 に示す。

原子炉機器冷却海水配管ダクト（水平部）の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－5 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	2.0	13.7	0.15

図 5－2 基礎地盤の最大接地圧分布図
（解析ケース（3），S s－N $1(++)$ ）

5．3．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表5－6に示す。また，最大接地圧分布図を図5－3に示す。

原子炉機器冷却海水配管ダクト（水平部）の MMR（既設）に発生する最大接地圧が，支圧強度を下回ることを確認した。

表 5－6 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$ $(++)$	3.0	15.6	0.20

図 5－3 MMR（既設）の最大接地圧分布図

$$
\text { (解析ケース③) S S - N } 1 \quad(++))
$$

VI－2－2－13 軽油タンク室の地震応答計算書

目 次
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2．3 解析方針 5
2.4 適用基準 7
3．解析方法 8
3.1 地震時荷重算出断面 8
3．2 解析方法 11
3．2．1 構造部材 11
3．2．2 地盤物性及び材料物性のばらつき 11
3．2．3 減衰定数 12
3．2．4 地震応答解析の解析ケースの選定． 13
3.3 荷重及び荷重の組合せ 15
3．3．1 耐震評価上考慮する状態 15
3．3．2 荷重 15
3．3．3 荷重の組合せ 16
3.4 入力地震動 17
3.5 解析モデル及び諸元 46
3．5．1 解析モデル 46
3．5．2 使用材料及び材料の物性値 49
3．5．3 地盤の物性値 49
3．5．4 地下水位 50
4．解析結果 52
4．1 南北方向の解析結果 52
4．2 東西方向（タンク室）の解析結果． 119
4．3 東西方向（ポンプ室）の解析結果． 176

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する軽油タンク室の地震応答解析について説明するものである。

本地震応答解析は，軽油タンク室が耐震性に関する技術基準へ適合することを確認するために用いる応答値を抽出するものである。

軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物で あることから，二次元地震応答解析により地震時荷重を算定し，その荷重を三次元構造解析モデ ルに作用させて耐震評価を実施するものである。よって，地震応答解析により抽出する応答値は，三次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。 また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

軽油タンク室の位置を図2－1に示す。

図 2－1 軽油タンク室の位置図

2.2 構造概要

軽油タンク室の平面図を図 $2-2$ に，断面図を図 $2-3$ ，図 $2-4$ 及び図 $2-5$ に示す。
軽油タンク室は，軽油タンクや燃料移送ポンプ等を間接支持しており，支持機能が要求され る。

軽油タンク室は，幅 32.40 m （東西）$\times 20.70 \mathrm{~m}$（南北），高さ 6.80 m の鉄筋コンクリート造の地中構造物で，二連ボックスカルバート構造の 2 室のタンク室と，タンク室南側に位置し三連 のボックスカルバート状の断面を有する 3 室のポンプ室にて構成され，マンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されている。

軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物 である。

図2－2 軽油タンク室平面図

図2－3 軽油タンク室断面図（A－A 断面，南北）

（単位：m）
図 2－4 軽油タンク室断面図（ $\mathrm{B}-\mathrm{B}$ 断面，東西（タンク室））

図 2－5 軽油タンク室断面図（ $\mathrm{C}-\mathrm{C}$ 断面，東西（ポンプ室））

2．3 解析方針

軽油タンク室は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s 及び弾性設計用地震動 S d に対して地震応答解析を実施する。

図 2－6に軽油タンク室の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 地震時荷重算出断面」に示す断面にお いて，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法に よる時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用い て実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び基礎地盤の接地圧は，軽油タンク室の耐震評価に用いる。

図 2－6 軽油タンク室の地震応答解析フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（社団法人 日本電気協会 電気技術基準調查委員会）

3．解析方法
3.1 地震時荷重算出断面

軽油タンク室の地震時荷重算出断面位置を図 3－1に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，タンク軸方向で構造物の中心を通る南北方向（A－A 断面）及びタ ンクの軸方向に対し直交する東西方向とし，東西方向は妻壁や隔壁の配置が異なることによる剛性差を考慮して，タンク室を通る断面（B－B 断面，東西（タンク室））とポンプ室を通る断面 （C－C 断面，東西（ポンプ室））とする。地震時荷重算出用地質断面図を図 3－2～図3－4に示 す。
なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面）が弱軸方向となり，東西方向（B－B 断面及び C－C 断面）が強軸方向となる。よって，構造物の耐震評価に用いる応答値の抽出は，弱軸方向に対して実施し，機器•配管系の耐震評価 に用いる応答値の抽出は，弱軸方向及び強軸方向に対して実施する。

図 3－1 軽油タンク室の地震時荷重算出断面位置図

図 3－2 軽油タンク室 地震時荷重算出用地質断面図（A－A 断面，南北）

図 3－3 軽油タンク室 地震時荷重算出用地質断面図（B－B 断面，東西（タンク室））

図 3－4 軽油タンク室 地震時荷重算出用地質断面図（C－C 断面，東西（ポンプ室））

3.2 解析方法

軽油タンク室の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元動的有限要素法により，基準地震動 S s 及び弾性設計用地震動 Sd に基づき設定した水平地震動と鉛直地震動の同時加振に よる逐次時間積分の時刻歴応答解析（全応力解析）により行う。
南北方向において隣接構造物となる原子炉建屋は，軽油タンク室の耐震評価において保守的 な評価になるよう盛土としてモデル化する。一方，軽油タンク室は復水貯蔵タンク基礎と同一 の MMRを共有しており，お互いの振動の影響を受けることから，復水貯蔵タンク基礎及び復水貯蔵タンクをモデル化する。東西方向においては，軽油タンク室（H）のMMR と接しており，お互いの振動の影響を受けることから，軽油タンク室（H）とそのMMR及び軽油タンクをモデル化 する。
構造部材については，頂版，底版及び地震時荷重算出断面に垂直な壁部材は線形はり要素，断面に平行な壁部材は平面応力要素とし，構造物の奥行方向の長さと各部材の奥行方向の長さ の比率や三次元構造解析モデルとの変位を整合させるためのヤング係数の調整を行い，実構造物と等価な剛性となるようモデル化する。また，地盤については地盤のひずみ依存性を適切に考慮できるようモデル化する。
地震応答解析については，解析コード「SLAP Ver．6．64」を使用する。なお解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，線形はり要素及び平面応力要素でモデル化する。

3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

軽油タンク室は，MMR 上に設置され，周囲が埋戻されており，主たる荷重は盛土等の土圧となることから，盛土，旧表土及び D級岩盤の初期せん断係数のばらつきを考慮する。
初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び（3）を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表3－1 解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ (\text { コンクリート } \\ \left(\mathrm{E}_{0}:\right. \text { : ヤング係数) } \end{gathered}$	地盤物性	
		盛土，旧表土，可級岩盤 （Go：初期せん断弾性係数）	［ C_{1} 級岩盤，$C_{M} \mid$ 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \begin{array}{c} \text { ケース(1) } \\ \text { (基本ケース) } \end{array} \\ \hline \end{gathered}$	設計基準強度	平均値	平均値
ケース②	設計基準強度	平均値＋1 σ	平均値
ケース③	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト
リックス及び剛性マトリックスの線形結合で表される以下のRayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表 $3-2$ に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

地震時荷重算出断面	α	β
南北方向	2.357×10^{-1}	1.273×10^{-3}
東西方向 （タンク室）	2.315×10^{-1}	1.296×10^{-3}
東西方向 （ポンプ室）	2.311×10^{-1}	1.298×10^{-3}

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース（1）（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となるすべての照査項目に対して，最も厳しい地震動を用いて，表3－1 に示す解析ケース（2）～④を実施する。耐震評価における解析ケースを表3－3に示す。

表 3－3 耐震評価における解析ケース

解析ケース			ケース①	ケース（2）	ケース③）	ケース（4）	
			基本ケース	地盤物性のばら つき（＋1 σ ）を考慮した解析ケ ース	地盤物性のばら つき（－1 σ ）を考慮した解析ケ ース	材料物性（コ クリート）に 強度を考慮し 解析ケース	
	地盤物性		平均値	平均値＋1 σ	平均値－1 σ	平均値	
	材料物性		設計基準強度	設計基準強度	設計基準強度	実強度に基圧縮強度	
地震動位相	S s－D 1	$+{ }^{*} 1$	\bigcirc	基準地震動 S s（7 波）に水平動の位相反転 を考慮した地震動（7波）を加えた全 14 波 により照査を行ったケース①（基本ケース） の結果から，曲げ・軸力系の破壊，せん断破			
		－＋＊1	\bigcirc				
	S s－D 2	$+{ }^{* 1}$	\bigcirc				
		$-+* 1$	\bigcirc				
	$\mathrm{Ss}-\mathrm{D} 3$	$++* 1$	\bigcirc				
		$-+* 1$	\bigcirc				
	S s－F 1	$+{ }^{* 1}$	\bigcirc	とに照査値が 0.5 以上となる照査項目に対			
		$-+* 1$	\bigcirc	して，最も厳しい（許容限界に対する裕度が			
	$\mathrm{S} s-\mathrm{F} 2$	$++* 1$	\bigcirc	最も小さい）地震動を用いてケース（2）～（4）			
		$-+* 1$	\bigcirc	を実施する。			
	Ss－F 3	$+*^{*}$	\bigcirc	すべての照査項目の照査値がいずれも 0.5未満の場合は，照査値が最も厳しくなる地震動を用いてケース（2）～④を実施する。			
		$-+* 1$	\bigcirc				
	S s－N 1	$++* 1$	\bigcirc				
		$-+* 1$	\bigcirc				

注記＊1：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」とい う。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース①）に加え，表3－1 に示す解析ケース（2）～④を実施する。機器•配管系の応答加速度抽出における解析ケースを表 3－4 に示す。

表 3－4 機器•配管系の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース（2）	ケース③	ケース（4）
			基本ケース	地盤物性のばら つき（＋1 o ）を考慮した解析ケ ース	地盤物性のばら つき（－1 σ ）を考慮した解析ケ ース	材料物性（コン クリート）に実強度を考慮した解析ケース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づく圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 1 \\ & \mathrm{~S} \text { d }-\mathrm{D} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 2 \\ & \mathrm{~S} d-\mathrm{D} 2 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} \text { d }-\mathrm{D} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \mathrm{~s}-\mathrm{F} 1 \\ & \mathrm{~S} \text { d }-\mathrm{F} 1 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{Sd}-\mathrm{F} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S s-N 1 \\ & S ~ d-N 1 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記 $* 1$ ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

軽油タンク室の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

軽油タンク室の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（ S d ）
弾性設計用地震動 S d による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表3－5に示す。

表3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{P}+\mathrm{Sd}$

注記＊：機器•配管系の耐震設計に用いる。

G：固定荷重
P：積載荷重（積雪荷重 P_{s} を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）
S d ：地震荷重（弾性設計用地震動S d）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $3-5$ に入力地震動算定の概念図を，図 $3-6 \sim$ 図 $3-33$ に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「SHAKE Ver．1．6」を使用 する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラ ム（解析コード）の概要」に示す。

地下構造モデル 構造物位置地盤モデル 地震応答解析モデル

図 3－5 入力地震動算定の概念図

（b）加速度応答スペクトル

図3－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 1）

図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 2）

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 3）

（b）加速度応答スペクトル

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 1）

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 2）

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 3）

（b）加速度応答スペクトル

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－N 1）

（b）加速度応答スペクトル

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－N 1）

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 1）

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分 ：S d－D 2）

（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 3）

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} \mathrm{d}-\mathrm{F} 1$ ）

（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{S} d-\mathrm{F} 2$ ）

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分 ：S d－F 3）

（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分： $\mathrm{Sd}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－N 1）

（b）加速度応答スペクトル

図3－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－N 1）

3.5 解析モデル及び諸元

3．5．1 解析モデル

軽油タンク室の地震応答解析モデルを図 3－34～図3－36に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
構造物と等価な剛性を有する二次元等価剛性モデルを作成して実施することとし，構造部材については，線形はり要素及び平面応力要素によりモデル化する。また，軽油タンク については，線形はり要素によりモデル化し，軽油タンクの総重量を重心高さに質点とし て考慮する。
（4）地盤のモデル化
D級を除く岩盤は線形の平面ひずみ要素でモデル化する。また，盛土，旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化す る。
（5）隣接構造物のモデル化
隣接構造物となる原子炉建屋は，軽油タンク室の耐震評価において保守的な評価となる よう盛土としてモデル化する。一方，軽油タンク室とMMRを共有する復水貯蔵タンク基礎及び復水貯蔵タンクは，お互いの振動の影響を受けるためモデル化する。また，軽油タン ク室（H）のMMR と接しており，お互いの振動の影響を受けることから，軽油タンク室（H） とその MMR 及び軽油タンクをモデル化する。
（6）ジョイント要素の設定
地震時の「地盤とMMR」，「MMR と構造物」及び「構造物と地盤」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョイント要素を設定する。

図 3－34 軽油タンク室の地震応答解析モデル図（南北方向）

図 3－35 軽油タンク室の地震応答解析モデル図（東西方向（タンク室））

図 3－36 軽油タンク室の地震応答解析モデル図（東西方向（ポンプ室））

3．5．2 使用材料及び材料の物性値

構造物の使用材料を表3－6に，材料の物性値を表3－7に示す。

表 3－6 使用材料

材料		仕様
コンクリート	底版，側壁，隔壁	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$
	頂版，隔壁	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345	
軽油タンク	SM400C	

表 3－7 材料の物性値

3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位の一覧を表3－8 に，設計用地下水位を図 3－37～図3－39に示す。

表 3－8 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
軽油タンク室	南北方向	0. P．-3.00 m
	東西方向（タンク室）	0. P．$-3.00 \mathrm{~m} \sim 0$. P．+3.00 m
	東西方向（ポンプ室）	0. P．$-3.00 \mathrm{~m} \sim 0 . \mathrm{P} .+3.00 \mathrm{~m}$

図 3－37 設計用地下水位（南北方向）

図 3－38 設計用地下水位（東西方向（タンク室））

図 3－39 設計用地下水位（東西方向（ポンプ室））

4．解析結果

4． 1 南北方向の解析結果
耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図4－1～図4－14に示す。また，解析ケース（1） において，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析ケース（2）～（4）の最大加速度分布図を図4－15～図4－17に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～（4）について， すべての基準地震動S s に対する最大加速度分布図を図4－18～図4－38に示す。また，解析 ケース①～④について，すべての弾性設計用地震動 S d に対する最大加速度分布図を図 4－39 ～図4－66に示す。

（a） S s－D 1 （ ++ ）水平
（b） S s－D 1 （ ++ ）鉛直

図 4－1 最大加速度分布図（1／17）（解析ケース①）

（a） S s－D $1(-+)$ 水平

（b） S s $-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－2 最大加速度分布図（2／17）（解析ケース（1）

（a） S s－D $2(++$ ）水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－3 最大加速度分布図（3／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b） S s $-\mathrm{D} 2(-+)$ 鉛直

図 4－4 最大加速度分布図（4／17）（解析ケース（1）

（a） S s－D 3 （ ++ ）水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－5 最大加速度分布図（5／17）（解析ケース（1）

（a） S s $-\mathrm{D} 3(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直

図 4－6 最大加速度分布図（6／17）（解析ケース（1）

（a）S s－F 1 （ ++ ）水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－7 最大加速度分布図（7／17）（解析ケース（1）

（a）S s－F 1 （ -+ ）水平

構造スケール $\underbrace{0}_{\square} \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }_{\square}^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 鉛直

図 4－8 最大加速度分布図（8／17）（解析ケース（1）

（a） S s－F $2(++$ ）水平

（b）S s－F $2(++)$ 鉛直

図 4－9 最大加速度分布図（9／17）（解析ケース（1）

（a） S s－F $2(-+)$ 水平

（b） S s－F $2(-+)$ 鉛直

図 4－10 最大加速度分布図（ $10 / 17$ ）（解析ケース（1）

（a）S s－F 3 （＋＋）水平

（b） S s－F 3 （＋＋）鉛直

図 4－11 最大加速度分布図（11／17）（解析ケース（1）

（b） S s－F $3(-+)$ 鉛直

図 4－12 最大加速度分布図（12／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b） S s $-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－13 最大加速度分布図（13／17）（解析ケース（1）

（a） S s $-\mathrm{N} 1(-+)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－14 最大加速度分布図（14／17）（解析ケース（1））

（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－15 最大加速度分布図（ $15 / 17$ ）
（解析ケース（2）：せん断破壊に対する最大照査値ケース）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－16 最大加速度分布図（16／17）
（解析ケース③：せん断破壊に対する最大照査値ケース）

（a） S s－D $2(++$ ）水平

（b） S s－D $2(++)$ 鉛直

図 4－17 最大加速度分布図（17／17）
（解析ケース（4）：せん断破壊に対する最大照査値ケース）

（a） S s－D $1 \quad(++$ ）水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－18 最大加速度分布図（1／49）（解析ケース（2）

（a） S s－D $2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－19 最大加速度分布図（2／49）（解析ケース（2）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－20 最大加速度分布図（3／49）（解析ケース（2））

（a）S s－F 1 （ ++ ）水平
（b）S s－F 1 （ ++ ）鉛直

図 4－21 最大加速度分布図（4／49）（解析ケース（2）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－22 最大加速度分布図（5／49）（解析ケース（2）

（a）S s－F 3 （＋＋）水平
（b） S s－F $3(++)$ 鉛直

図 4－23 最大加速度分布図（6／49）（解析ケース（2））

（a） S s－N $1(++)$ 水平
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－24 最大加速度分布図（7／49）（解析ケース（2））

（a） S s－D 1 （ ++ ）水平

（b） S s－D 1 （＋＋）鉛直

図 4－25 最大加速度分布図（8／49）（解析ケース（3）

（a） S s－D $2(++)$ 水平
（b） S s－D $2(++)$ 鉛直

図 4－26 最大加速度分布図（9／49）（解析ケース③）

（a） S s－D $3(++)$ 水平

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－27 最大加速度分布図（10／49）（解析ケース③）

（a） S s－F $1(++)$ 水平

（b） S s－F 1 （ ++ ）鉛直

図 4－28 最大加速度分布図（11／49）（解析ケース（3））

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－29 最大加速度分布図（12／49）（解析ケース③）

（a）S s－F 3 （＋＋）水平

（b） S s－F 3 （＋＋）鉛直

図 4－30 最大加速度分布図（ $13 / 49$ ）（解析ケース（3）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

図 4－31 最大加速度分布図（14／49）（解析ケース③）

（a） S s－D $1(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－32 最大加速度分布図（15／49）（解析ケース（4））

（a） S s－D $2(++$ ）水平

構造スケール ${ }_{\square}^{0} \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }_{\square}^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s $-\mathrm{D} 2(++)$ 鉛直

図 4－33 最大加速度分布図（16／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

（b） S s－D $3(++)$ 鉛直

図 4－34 最大加速度分布図（17／49）（解析ケース（4）

（a）S s－F 1 （ ++ ）水平

（b）S s－F 1 （ ++ ）鉛直

図 4－35 最大加速度分布図（18／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平

（b） S s－F $2(++)$ 鉛直

図 4－36 最大加速度分布図（19／49）（解析ケース（4）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直

図 4－37 最大加速度分布図（20／49）（解析ケース（4）

（a） S s－N $1(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－38 最大加速度分布図（21／49）（解析ケース（4）

（a） S d－D $1 \quad(++$ ）水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鋁直

図 4－39 最大加速度分布図（22／49）（解析ケース（1）

（a） S d－D $2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鋁直

図 4－40 最大加速度分布図（23／49）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－41 最大加速度分布図（24／49）（解析ケース（1））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－42 最大加速度分布図（25／49）（解析ケース（1））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b） S d $-\mathrm{F} 3(++)$ 鉛直

図 4－44 最大加速度分布図（27／49）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－45 最大加速度分布図（28／49）（解析ケース（1）

（a） S d－D $1 \quad(++$ ）水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－46 最大加速度分布図（29／49）（解析ケース（2）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－47 最大加速度分布図（30／49）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－48 最大加速度分布図（31／49）（解析ケース（2）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－49 最大加速度分布図（32／49）（解析ケース（2））

（a） S d $-\mathrm{F} 2(++)$ 水平

（b） S d $-\mathrm{F} 2(++) \quad$ 鉛直

図 4－50 最大加速度分布図（33／49）（解析ケース（2））

（a） S d $-\mathrm{F} 3(++)$ 水平

（b）$\quad \mathrm{S}$ d $-\mathrm{F} 3(++)$ 鉛直

図 4－51 最大加速度分布図（34／49）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－52 最大加速度分布図（35／49）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 水平
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－53 最大加速度分布図（36／49）（解析ケース③）

（a） S d－D $2(++)$ 水平
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－54 最大加速度分布図（37／49）（解析ケース（3）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－55 最大加速度分布図（38／49）（解析ケース（3））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 鉛直

図 4－56 最大加速度分布図（39／49）（解析ケース（3）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b） S d $-\mathrm{F} 2(++)$ 鉛直

図 4－57 最大加速度分布図（40／49）（解析ケース③）

(a) S d $-\mathrm{F} 3(++)$ 水平

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－59 最大加速度分布図（42／49）（解析ケース（3））

（a） S d－D $1 \quad(++$ ）水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－60 最大加速度分布図（43／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－61 最大加速度分布図（44／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－62 最大加速度分布図（45／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－63 最大加速度分布図（46／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b） S d $-\mathrm{F} 2(++)$ 鉛直

図 4－64 最大加速度分布図（47／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

構造スケール $\underbrace{0} \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }_{4}^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S d $-\mathrm{F} 3(++)$ 鉛直

図 4－65 最大加速度分布図（48／49）（解析ケース（4））

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－66 最大加速度分布図（49／49）（解析ケース（4））

4.2 東西方向（タンク室）の解析結果

機器•配管系に対する応答加速度抽出として，解析ケース（1）（基本ケース）～④について， すべての基準地震動S s に対する最大加速度分布図を図 4－67～図4－94 に，弾性設計用地震動S d に対する最大加速度分布図を図 4－95～図4－122 に示す。

（a） S s－D $1 \quad(++)$ 水平

構造スケール ${ }^{0}$ ，${ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

（a） S s－D $2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－68 最大加速度分布図（2／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

構造スケール $\underbrace{0}_{L^{2}} \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $3(++)$ 鉛直

図 4－69 最大加速度分布図（3／56）（解析ケース（1）

（a） S s－F $1(++)$ 水平

構造スケール $\underbrace{0}_{4}{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－F $1 \quad(++)$ 鉛直

図 4－70 最大加速度分布図（4／56）（解析ケース（1）

(a) S s - F $2(++)$ 水平

（a） S s－F $3(++)$ 水平

（b） S s－F $3(++)$ 鉛直

図 4－72 最大加速度分布図（6／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

構造スケール $\underbrace{0}{ }^{2}(\mathrm{~m})$ 応答値スケール $\underbrace{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－N $1 \quad(++)$ 鉛直

図 4－73 最大加速度分布図（7／56）（解析ケース（1）

図 4－74 最大加速度分布図（8／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

構造スケール $\underbrace{0}{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－75 最大加速度分布図（9／56）（解析ケース（2））

図 4－76 最大加速度分布図（10／56）（解析ケース（2））

図 4－78 最大加速度分布図（12／56）（解析ケース（2））

（a） S s－F $3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－79 最大加速度分布図（13／56）（解析ケース（2））

図 4－80 最大加速度分布図（14／56）（解析ケース（2））

図 4－82 最大加速度分布図（16／56）（解析ケース③）

(a) $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

図 4－84 最大加速度分布図（18／56）（解析ケース（3））

図 4－85 最大加速度分布図（19／56）（解析ケース（3））

（a） S s－F $3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－86 最大加速度分布図（20／56）（解析ケース③）

（a） S s $-\mathrm{N} 1 \quad(++)$ 水平

構造スケール $\underbrace{0}_{4}{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－N $1 \quad(++)$ 鉛直

図 4－87 最大加速度分布図（21／56）（解析ケース（3））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－89 最大加速度分布図（23／56）（解析ケース（4））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

構造スケール $\underbrace{0} \underbrace{2}(\mathrm{~m})$ 応答值スケール $\underbrace{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s $-\mathrm{D} 3 \quad(++)$ 鉛直

図 4－90 最大加速度分布図（24／56）（解析ケース（4））

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直

図 4－91 最大加速度分布図（25／56）（解析ケース（4））

図 4－92 最大加速度分布図（26／56）（解析ケース（4））

図 4－94 最大加速度分布図（28／56）（解析ケース（4））

図 4－97 最大加速度分布図（31／56）（解析ケース（1））

図 4－99 最大加速度分布図（33／56）（解析ケース（1））

(a) $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－102 最大加速度分布図（36／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 水平

構造スケール $\quad \underbrace{0} \quad{ }^{2}(\mathrm{~m})$ 応答値スケール $\stackrel{0}{\square} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3 \quad(++) \quad$ 鉛直

図 4－104 最大加速度分布図（38／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

構造スケール $\underbrace{0}, \int_{2}^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－111 最大加速度分布図（45／56）（解析ケース（3）

（a） S d $-\mathrm{F} 3(++)$ 水平

構造スケール $\underbrace{0} 1 \int_{2}^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直

図 4－114 最大加速度分布図（48／56）（解析ケース（3）

図 4－118 最大加速度分布図（52／56）（解析ケース（4））

4.3 東西方向（ポンプ室）の解析結果

機器•配管系に対する応答加速度抽出として，解析ケース①（基本ケース）～④について， すべての基準地震動S s に対する最大加速度分布図を図 4－123～図 4－150に，弾性設計用地震動S dに対する最大加速度分布図を図 4－151～図4－178に示す。

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－123 最大加速度分布図（1／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－124 最大加速度分布図（2／56）（解析ケース（1）

（a） S s $-\mathrm{D} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－125 最大加速度分布図（3／56）（解析ケース（1））

789	723	720	742
798	718	719	736
783	712	712	726
760	706	707	721
764	699	703	719
727	693	698	716
700	689	693	713
698	687	688	708
696	$\begin{aligned} & 684 \\ & 681 \end{aligned}$	685	704
694		682678	697
93	677		91
686 683 676	676	674	684
	671	671	687

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直

図 4－126 最大加速度分布図（4／56）（解析ケース（1））

（a） S s－F $2(++)$ 水平

（b）S s－F $2(++)$ 鉛直

図 4－127 最大加速度分布図（5／56）（解析ケース（1））

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－128 最大加速度分布図（6／56）（解析ケース（1））

（b）S s－N $1 \quad(++)$ 鉛直

図 4－129 最大加速度分布図（7／56）（解析ケース（1））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－130 最大加速度分布図（8／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－131 最大加速度分布図（9／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

（b） S s－D $3(++)$ 鉛直

図 4－132 最大加速度分布図（10／56）（解析ケース（2）

（a） S s－F $1(++)$ 水平

（b） S s－F $1(++)$ 鉛直

図 4－133 最大加速度分布図（11／56）（解析ケース（2））

806	794		789
880	790	789	788
791	786	786	779
787	782	782	772
782	778	779	766
778	774	776	766
773	769	772	769
768	765	769	758
763	761	765	743
5	756	761	736
754		$\begin{aligned} & 756 \\ & 755 \end{aligned}$	735
746	$\begin{aligned} & 749 \\ & 747 \end{aligned}$	751	727
735	745		721

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平

（b）S s－F $2(++)$ 鉛直

図 4－134 最大加速度分布図（12／56）（解析ケース（2）

（a） S s－F $3(++)$ 水平

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－135 最大加速度分布図（13／56）（解析ケース（2）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－136 最大加速度分布図（14／56）（解析ケース（2）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ 水平

（b） S s－D $1 \quad(++)$ 鉛直

図 4－137 最大加速度分布図（15／56）（解析ケース③）

140			1143
1137	1118	1108	1143
1131	1107	1102	1135
1123	1100	1095	1125
1117	1093	1088	1145
1107	1085	1080	1125
1101	1075	1070	1120
1092	1067	1062	1114
1078	1057	1051	1102
1072	1047	1040	1093 1088
1067	1031	1027	1088
$\begin{aligned} & 1050 \\ & 1046 \end{aligned}$	1827		1067 1053
$\begin{aligned} & 1046 \\ & 1040 \\ & \hline \end{aligned}$	1014	1007	1053

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 水平

（b） S s－D $2(++)$ 鉛直

図 4－138 最大加速度分布図（16／56）（解析ケース③）

（a） S s $-\mathrm{D} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－139 最大加速度分布図（17／56）（解析ケース③）

（b）S s－F 1 （ ++ ）鉛直

図 4－140 最大加速度分布図（18／56）（解析ケース③）

（b）S s－F $2(++)$ 鉛直

図 4－141 最大加速度分布図（19／56）（解析ケース③）

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s－F $3(++)$ 鉛直

図 4－142 最大加速度分布図（20／56）（解析ケース③）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－143 最大加速度分布図（21／56）（解析ケース③）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－144 最大加速度分布図（22／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－145 最大加速度分布図（23／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3 \quad(++) \quad$ 鉛直

図 4－146 最大加速度分布図（24／56）（解析ケース④）

809	729		738
806 795 778 776 743 736 732 704 695 692 690 687 684 678	$\begin{aligned} & 728 \\ & 719 \\ & 719 \\ & 713 \\ & 706 \\ & 699 \\ & 693 \\ & 689 \\ & 686 \\ & 684 \\ & 680 \\ & 679 \\ & 678 \\ & 675 \\ & \hline \end{aligned}$	721 718 714 710 706 701 696 692 687 683 680 679 677 674	728
			724
			723
			720
			717
			714
			711
			705
			698
			695
			688 680

（b）S s－F 1 （ ++ ）鉛直

図 4－147 最大加速度分布図（25／56）（解析ケース（4）

（b）S s－F $2(++)$ 鉛直

図 4－148 最大加速度分布図（26／56）（解析ケース④）

（a） S s $-\mathrm{F} 3(++)$ 水平

（b） S s－F $3(++)$ 鉛直

図 4－149 最大加速度分布図（27／56）（解析ケース（4）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－150 最大加速度分布図（28／56）（解析ケース（4）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++) \quad$ 鉛直

図 4－151 最大加速度分布図（29／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－152 最大加速度分布図（30／56）（解析ケース（1）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－153 最大加速度分布図（31／56）（解析ケース（1）

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－154 最大加速度分布図（32／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－155 最大加速度分布図（33／56）（解析ケース（1）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直

図 4－156 最大加速度分布図（34／56）（解析ケース（1）

（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－157 最大加速度分布図（35／56）（解析ケース（1）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－158 最大加速度分布図（36／56）（解析ケース（2））

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－159 最大加速度分布図（37／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 鉛直

図 4－160 最大加速度分布図（38／56）（解析ケース（2）

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－161 最大加速度分布図（39／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 鉛直

図 4－162 最大加速度分布図（40／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直

図 4－163 最大加速度分布図（41／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 鉛直

図 4－164 最大加速度分布図（42／56）（解析ケース（2））

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－165 最大加速度分布図（43／56）（解析ケース③）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－166 最大加速度分布図（44／56）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 鉛直

図 4－167 最大加速度分布図（45／56）（解析ケース③）

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－168 最大加速度分布図（46／56）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 鉛直

図 4－169 最大加速度分布図（47／56）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++) \quad$ 鉛直

図 4－170 最大加速度分布図（48／56）（解析ケース③）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 鉛直

図 4－171 最大加速度分布図（49／56）（解析ケース③）

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－172 最大加速度分布図（50／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－173 最大加速度分布図（51／56）（解析ケース④）

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++) \quad$ 鉛直

図 4－174 最大加速度分布図（52／56）（解析ケース（4）

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(++)$ 鉛直

図 4－175 最大加速度分布図（53／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－176 最大加速度分布図（54／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 鉛直

図 4－177 最大加速度分布図（55／56）（解析ケース（4）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(++)$ 水平

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 鉛直

図 4－178 最大加速度分布図（56／56）（解析ケース（4）

VI－2－2－14 軽油タンク室の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 6
2.4 適用基準 9
3．耐震評価 10
3.1 地震時荷重算出断面及び解析手法の選定 10
3.2 使用材料及び材料の物性値。 13
3．3 許容限界 14
3．3．1 構造部材の健全性に対する許容限界 14
3．3．2 基礎地盤の支持性能に対する許容限界 15
3．4 評価方法 16
3．4．1 構造部材の健全性評価． 16
3．4．2 基礎地盤の支持性能評価 22
4．構造部材の地震時応答 23
5．耐震評価結果 34
5.1 構造部材の健全性に対する評価結果 34
5.2 Sクラスの施設を支持する機能に対する評価結果 37
5.3 基礎地盤の支持性能に対する評価結果。 39
5.3 .1 基礎地盤（狐崎部層） 39
5．3．2 MMR（既設） 40

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，軽油タンク室が基準地震動 S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

軽油タンク室に要求される機能の維持を確認するにあたつては，地震応答解析により算定した荷重を三次元構造解析モデルに作用させて，構造部材の健全性評価及び基礎地盤の支持性能評価 を行う。

2．基本方針
2.1 位置

軽油タンク室の位置を図2－1に示す。

図2－1 軽油タンク室の位置図

2.2 構造概要

軽油タンク室の平面図を図2－2 に，断面図を図2－3，図2－4及び図2－5に，概略配筋図 を図2－6～図2－8に示す。
軽油タンク室は，軽油タンクや燃料移送ポンプ等を頂版，底版，側壁及び隔壁で間接支持し ており，支持機能が要求される。

軽油タンク室は，幅 32.40 m （東西）$\times 20.70 \mathrm{~m}$（南北），高さ 6.80 m の鉄筋コンクリート造の地中構造物で，二連ボックスカルバート構造の 2 室のタンク室と，タンク室南側に位置し三連 のボックスカルバート状の断面を有する 3 室のポンプ室にて構成され，マンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されている。

軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物 である。

図2－2 軽油タンク室平面図

（単位：m）

図 2－3 軽油タンク室断面図（A－A 断面，南北）
西

東

図 2－4 軽油タンク室断面図（ $\mathrm{B}-\mathrm{B}$ 断面，東西（タンク室））

図 2－5 軽油タンク室断面図（C－C 断面，東西（ポンプ室））

図2－6 軽油タンク室概略配筋図（A－A 断面，南北）

図 2－7 軽油タンク室概略配筋図（ $\mathrm{B}-\mathrm{B}$ 断面，東西（タンク室））

図 2－8 軽油タンク室概略配筋図（ $\mathrm{C}-\mathrm{C}$ 断面，東西（ポンプ室））

2.3 評価方針

軽油タンク室は，設計基準対象施設においては，S クラス施設の間接支持構造物である屋外重要土木構造物に分類され，重大事故等対処施設においては，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故緩和設備（設計基準拡張）及び常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設に分類される。

軽油タンク室の耐震評価フローを図2－9に示す。
軽油タンク室の耐震評価は，添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」より得 られた地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びSクラスの施設を支持する機能を損なわないことを確認する。
構造部材の健全性評価については，添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」 より得られた，水平方向及び鉛直方向の荷重を用いた，非線形シェル要素による三次元静的材料非線形解析（以下「三次元構造解析」という。）により応答値を算定し，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照査用ひずみが許容限界を下回ること，せん断破壊に対しては照査用せん断力及び照査用層間変形角（面内） が許容限界を下回ることを確認する。

基礎地盤の支持性能評価においては，添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

ここで，軽油タンク室の運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

図2－9 軽油タンク室の耐震評価フロー

表 2－1 軽油タンク室の評価項目

評価方針	評価項目	部位	評価方法	許容限界		
構造強度 を有する こと	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用層間変形角（面内）が許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
				せん 断力	面外	せん断耐力＊
					面内	限界層間変形角＊
	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊		
		MMR		MMR の支圧強度＊		
S クラス の施設を	構造部材の健全性	鉄筋コン クリート 部材	照査用ひずみ，照査用せん断力及び照査用層間変形角（面内）が許容限界を下回ることを確認	曲げ・軸力		限界ひずみ＊
支持する機能を損				せん断力	面外	せん断耐力＊
$\begin{aligned} & \text { なわない } \\ & \text { こと } \end{aligned}$					面内	限界層間変形角＊

注記＊：妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- コンクリート標準示方書［設計編］（土木学会，2012年制定）
- コンクリート標準示方書［設計編］（土木学会，2017年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）
- 道路橋示方書（I 共通編•IV下部構造編）•同解説（（社）日本道路劦会，平成14年3月）
- 道路橋示方書（V耐震設計編）•同解説（（社）日本道路協会，平成 14 年 3 月）

3．耐震評価
3.1 地震時荷重算出断面及び解析手法の選定

軽油タンク室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，タンク軸方向で構造物の中心を通る南北方向（A－A 断面）及びタ ンクの軸方向に対し直交する東西方向とし，東西方向は妻壁や隔壁の配置が異なることによる剛性差を考慮して，タンク室を通る断面（B－B 断面，東西（タンク室））とポンプ室を通る断面 （C－C 断面，東西（ポンプ室））とする。地震時荷重算出用地質断面図を図 3－2～図3－4に示 す。
なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面）が弱軸方向となり，東西方向（B－B 断面及び C－C 断面）が強軸方向となることから，耐震評価は弱軸方向である南北方向（ $\mathrm{A}-\mathrm{A}$ 断面）に対して実施する。

また，軽油タンク室は，加振方向に平行に配置される面部材（妻壁や隔壁）を有する箱形構造物であり，S クラスの施設を支持する機能（支持機能）が要求されることから，シェル要素 を用いた三次元構造解析により耐震評価を行う。

図 3－1 軽油タンク室の地震時荷重算出断面位置図

図 3－2 軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）

図 3－3 軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，東西（タンク室））

図 3－4 軽油タンク室 地震時荷重算出用地質断面図 （C－C 断面，東西（ポンプ室））

3.2 使用材料及び材料の物性値

構造物の使用材料を表 3－1，材料の物性値を表3－2に示す。

表 3－1 使用材料

材料		仕様
コンクリート	底版，側壁，隔壁	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$
	頂版，隔壁	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋		SD345

表 3－2 材料の物性値（構造部材）

3.3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュ アル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニュアル」という。） に基づき，限界ひずみ（圧縮縁コンクリートひずみ 1.0% ）とする。

曲げ・軸力系の破壊に対する限界状態については，土木学会マニュアルではコンクリー トの圧縮縁のかぶりが剥落しないこととされており，圧縮縁コンクリートひずみ 1.0% の状態は，かぶりコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模し たラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたもの である。

また，頂版，底版，側壁及び隔壁のアンカー定着部に要求されるSクラスの施設を支持 する機能を損なわないことの確認においては，主鉄筋のひずみ及びコンクリートの圧縮ひ ずみについて，おおむね弾性範囲に相当するひずみ（主鉄筋 ： 1725μ ，コンクリート：2000 μ ）とする。

鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表 3－3に示す。

表 3－3 軽油タンク室の曲げ・軸力系の破壊に対する許容限界

確認項目	許容限界	
構造強度を有すること	限界ひずみ	$\begin{aligned} & \text { 圧縮縁コンクリートひ } \\ & \text { ずみ: } 1.0 \%(10000 \mu) \end{aligned}$
S クラスの施設を支持す る機能を損なわないこと		$\begin{aligned} & \text { 主鉄筋 (SD345) : } 1725 \mu \\ & \text { コンクリート }: ~ 2000 \mu \end{aligned}$

（2）せん断破壊に対する許容限界
構造強度を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，土木学会マ ニュアルに基づくせん断耐力とする。
壁部材の面内せん断に対する許容限界は，層間変形角（面内） 2000μ（ $2 / 1000$ ）とする。層間変形角（面内）2000 μ（2／1000）は，J E A G 4 6 0 1－1987において，耐震壁の終局耐力に相当する層間変形角 4000μ（4／1000）に余裕を見込んだ許容限界かつ耐震壁の支持機能に対する許容限界として規定されている。

3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表3－4に示す。

表 3－4 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，コンクリート標準示方書［構造性能照査編］（土木学会，2002 年制定）に基づき，コンクリートの支圧強度とする。 MMR（既設）の許容限界を表3－5に示す。

表 3－5 MMR（既設）の支持性能に対する許容限界		
評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$

3．4 評価方法

3．4．1 構造部材の健全性評価

軽油タンク室の耐震評価は，非線形シェル要素を用いた三次元構造解析により実施する。三次元構造解析には，解析コード「SLAP Ver．6．64」を用いる。なお，解析コードの検証及 び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

三次元構造解析への入力荷重は，添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」 に基づく地震応答解析において，軽油タンク室の耐震評価に支配的な荷重が最大となる時刻を選定し，当該時刻における地震時応答から設定する。

添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」に基づく地震応答解析により算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回ることを確認する。
（1）解析モデル
材料の非線形特性を考慮した非線形シェル要素でモデル化する。三次元構造解析モデル を図3－5 及び図3－6に示す。
また，構造部材（鉄筋コンクリート）の非線形特性を図 3－7及び図 3－8に示す。

図3－5 三次元構造解析モデル図（鳥瞰図）

図3-6 三次元構造解析モデル図 (鳥瞰図 (頂版非表示))

図3－7 構造部材の非線形特性（コンクリートの応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2017年制定）より引用）

図 3－8 構造部材の非線形特性（鉄筋の応力ーひずみ関係）
（コンクリート標準示方書［設計編］（土木学会，2012年制定）より引用）
（2）照查時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表 $3-6$ に照査時刻の選定の考え方を示す。

なお，照査値が最大となるせん断破壊に対する照査時における作用荷重分布図を図3－ 9 及び図3－10に示す。

表 3－6 照査時刻の考え方

照査時刻	損傷モード	着目部位		荷重抽出時刻
時刻1	曲げ・軸力系の破壊	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$	\％	頂底版間の層間変位が最大となる時刻
時刻 2	せん断破壊 （面外）	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$	＋	総水平荷重が最大となる時刻
時刻 3 （時刻1）	せん断破壊 （面内）		\square	面部材の層間変位が 最大となる時刻

直応力

せん断応力
図中の矢印は荷重の作用方向を示す

図3－9 作用荷重分布図（直応力及びせん断応力）
（解析ケース（3），S s－D $2(++)$ ，南北）

構造スケール \qquad $\stackrel{2}{4}$（m）設計震度スケール ${ }^{\circ}$ 1.0

$$
\begin{array}{r|l}
\quad-\text { 側 } & + \text { +側 } \\
\leftarrow \text { 設計震度 } & \text { 設計震度 } \rightarrow
\end{array}
$$

図 3－10 作用荷重分布図（設計震度分布）
（解析ケース（3），S s－D 2（ ++ ），南北）
（3）入力荷重
三次元構造解析の入力荷重は，設計値及び添付書類「VI－2－2－13 軽油タンク室の地震応答計算書」より得られた地震応答解析に基づく「（2）照査時刻」で選定した照査時刻に おける応答値を用いて算定する。入力荷重の一覧を表 3－7 に示す。

表 3－7 三次元構造解析における入力荷重

区分	種別	
	固定荷重	躯体自重重する荷重
荷重	積載荷重	機器•配管荷重
	常時土圧	躯体側面に作用する常時土圧
地震時 荷重	慣性力	躯体に作用する慣性力
	地震時土圧	躯体側面に作用する地震時土圧

3．4．2 基礎地盤の支持性能評価

基整地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答

三次元構造解析に基づく，各構造部材の地震時応答結果を示す。各部材位置を図4－1 に，各部材の要素座標系を図4－2に，シェル要素における各要素の断面力の方向を図 4－3 に示す。

曲げ・軸力系の破壊に対する照査のうち，各部材のコンクリートの圧縮ひずみ及び主鉄筋のひ ずみに対して最大照査値となる評価時刻でのひずみ分布を図4－4及び図4－5に，せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－6～図4－11に示す。

図 4－1 各部材位置

黒：全体座標系を示す
赤：要素座標系を示す
図 4－2 各部材の要素座標系

$\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}$ ：曲げモーメント
$\mathrm{Q}_{\mathrm{x}}, ~ \mathrm{Q}_{\mathrm{y}}$ ：せん断力
N_{x} ， N_{y} ：軸力
$\mathrm{N}_{\mathrm{x}}^{\mathrm{y}}$ ：面内せん断力

図 4－3 シェル要素における断面力の方向

北壁

西壁

隔壁（西）

隔壁（東西）

南壁

隔壁（南北）

東壁

図 4－4 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（コンクリート） （頂版，解析ケース（1），S s－D $1(++)$ ）

北壁

西壁

隔壁（西）

南壁

東壁

図 4－5 曲げ・軸力系の破壊に対する照査値最大時のひずみ分布図（鉄筋）
（頂版，解析ケース（1），S s－D $2(-+))$

限壁（西）

図 4－6 せん断破壊に対する照査値最大時の断面力分布図 （曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（隔壁（東西），解析ケース（3），S s－D $2(++)$ ）

頂版

底版

隔壁（東西）

隔壁（南北）

南壁

東壁

図 4－7 せん断破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{y} ）
（隔壁（東西），解析ケース（3），S s－D $2(++))$

北壁

南壁

東壁

図 4－8 せん断破壊に対する照査値最大時の断面力分布図
（軸力 $(\mathrm{kN} / \mathrm{m}): \mathrm{N}_{\mathrm{x}}$ ）
（隔壁（東西），解析ケース（3），S s－D $2(++)$ ）

隔壁（西）

南壁

東壁
図 4－9 せん断破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{y} ）
（隔壁（東西），解析ケース（3），S s－D $2(++))$

北壁
西壁

南壁

東壁

図 4－10 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（隔壁（東西），解析ケース（3），S s－D $2(++))$

隔壁（西）

南壁

東壁

図 4－11 せん断破壊に対する照査値最大時の断面力分布図

$$
\text { (せん断力 (kN/m) : } \mathrm{Q}_{\mathrm{y}} \text {) }
$$

（隔壁（東西），解析ケース（3），S s－D $2(++)$ ）

5．耐震評価結果

5.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表5－1 に， せん断破壊に対する各評価位置での最大照査値を表 5－2 に，各壁部材の面内せん断（層間変形角）に対する照査値を表5－3に示す。
軽油タンク室の照査用ひずみ（コンクリートの圧縮ひずみ），照査用せん断力及び壁部材の層間変形角（面内せん断）が，構造部材の健全性に対する許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリートの圧縮ひずみ）

評価位置＊${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ } \\ \varepsilon_{d} \end{gathered}$	$\begin{aligned} & \hline \text { 限界 } \\ & \text { ひずみ } \end{aligned}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	12	（1）	S s－D $2(-+$ ）	219μ	10000μ	0.03
頂版	21	（1）	S s－D $1(++$ ）	253μ	10000μ	0.03
南北壁	41	（1）	S s－F $2(++)$	137μ	10000μ	0.02
隔壁（東西）	51	（3）	S s－D $2(++)$	199μ	10000μ	0.02
東西壁	61	（1）	S s－D $2(-+)$	147μ	10000μ	0.02
隔壁（南北）	82	（3）	S s－D $2(++)$	219μ	10000μ	0.03
隔壁（西）	90	（3）	S s－D $2(++$ ）	195μ	10000μ	0.02

注記＊1：評価位置は図5－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 5－2 せん断破壊に対する照査

評価位置＊${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用 せん断力＊2 V_{d} （kN／m）	せん断 耐力 V_{yd} （kN／m）	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	11	（4）	S s－D $2(++$ ）	361	585	0.62
頂版	22	（1）	S s－D $2(-+$ ）	336	564	0.60
南北壁	42	（3）	S s－D $2(++$ ）	584	1173	0.50
隔壁（東西）	53	（3）	S s－D $2(++$ ）	478	715	0.67
東西壁	72	（3）	S s－D $2(++$ ）	285	443	0.65
隔壁（南北）	81	（2）	S s－D $2(++$ ）	22	470	0.05
隔壁（西）	90	（3）	S s－D $2(++$ ）	50	511	0． 10

注記＊1：評価位置は図5－1に示す。
$* 2$ ：照査用せん断力＝発生せん断力 \times 構造解析係数 γ_{a}

図 5－1 評価位置図（曲げ・軸力系の破壊及びせん断破壊）

表 5－3 壁部材の面内せん断（層間変形角）に対する照査

評価位置 ${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用層間変形角＊2 γ_{d}	許容限界 γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
南北壁	30	（1）	S s $-\mathrm{F} 3(-+)$	14μ	2000μ	0.01
隔壁（東西）	50	（3）	S s－D $2(++)$	31μ	2000μ	0． 02
東西壁	72	（3）	S s－D $2(++)$	79μ	2000μ	0． 04
隔壁（南北）	80	（3）	S s－D $2(++)$	168μ	2000μ	0.09
隔壁（西）	90	（3）	S s－D $2(++)$	124μ	2000μ	0． 07

注記＊1：評価位置は図5－2に示す。
＊ 2 ：照査用層間変形角＝発生する層間変形角 \times 構造解析係数 γ_{a}

図 5－2 評価位置図（壁部材の面内せん断（層間変形角））

5.2 S クラスの施設を支持する機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－4 及 び表 5－5に，せん断破壊に対する各評価位置での最大照査値を表 5－6に，各壁部材の面内せ ん断（層間変形角）に対する照査値を表5－7に示す。

軽油タンク室の照査用ひずみ（コンクリートの圧縮ひずみ及び主鉄筋ひずみ），照査用せん断力及び壁部材の層間変形角（面内せん断）が，S クラスの施設を支持する機能に対する許容限界を下回ることを確認した。

表 5－4 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

評価位置 ${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \hline \text { 照査用 } \\ \text { ひずみ }{ }^{2} \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	12	（1）	S s－D $2(-+)$	219μ	2000μ	0.11
頂版	21	（1）	S s－D $1(++$ ）	253μ	2000μ	0.13
南北壁	41	（1）	S s－F $2(++$ ）	137μ	2000μ	0.07
隔壁（東西）	51	（3）	S s－D $2(++)$	199μ	2000μ	0． 10
東西壁	61	（1）	S s－D $2(-+)$	147μ	2000μ	0.08
隔壁（南北）	82	（3）	S s－D $2(++)$	219μ	2000μ	0.11
隔壁（西）	90	（3）	S s－D $2(++$ ）	195μ	2000μ	0.10

注記＊1：評価位置は図 5－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 $\gamma \mathrm{a}$

表 5－5 曲げ・軸力系の破壊に対する最大照査値（主鉄筋ひずみ）

評価位置＊${ }^{1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 照査用 } \\ \text { ひずみ }{ }^{* 2} \\ \varepsilon_{\mathrm{d}} \end{gathered}$	$\begin{gathered} \text { 限界 } \\ \text { ひずみ } \\ \varepsilon_{R} \end{gathered}$	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
底版	11	（3）	S s－D $2(++)$	115μ	1725μ	0.07
頂版	22	（1）	S s－D $2(-+)$	193μ	1725μ	0． 12
南北壁	41	（1）	S s－F $2(++)$	107μ	1725 н	0.07
隔壁（東西）	51	（3）	S s－D $2(++)$	139μ	1725μ	0.09
東西壁	72	（3）	S s－D $2(++)$	72μ	1725 н	0.05
隔壁（南北）	82	（1）	S s－D $2(-+)$	113μ	1725μ	0.07
隔壁（西）	90	（3）	S s－D $2(++)$	164μ	1725μ	0.10

注記 $* 1$ ：評価位置は図 5－1 に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ a

表 5－6 せん断破壊に対する最大照査値（再掲）

評価位置＊${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照查用 せん断力＊2 V_{d} $(\mathrm{kN} / \mathrm{m})$	$\begin{gathered} \hline \text { せん断 } \\ \text { 耐力 } \\ \mathrm{V}_{\mathrm{yd}} \\ (\mathrm{kN} / \mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 照査値 } \\ \mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{y} \mathrm{~d}} \end{gathered}$
底版	11	（4）	S s－D $2(++)$	361	585	0.62
頂版	22	（1）	S s－D $2(-+)$	336	564	0.60
南北壁	42	（3）	S s－D $2(++)$	584	1173	0.50
隔壁（東西）	53	（3）	S s－D $2(++)$	478	715	0.67
東西壁	72	（3）	S s－D $2(++)$	285	443	0.65
隔壁（南北）	81	（2）	S s－D $2(++)$	22	470	0.05
隔壁（西）	90	（3）	S s－D $2(++)$	50	511	0． 10

注記 $* 1$ ：評価位置は図5－1 に示す。
＊2：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a

表 5－7 壁部材の面内せん断（層間変形角）に対する照査（再掲）

評価位置＊${ }^{* 1}$		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	照査用層間変形角 ${ }^{* 2}$ $\gamma \mathrm{d}$	許容限界 γ_{R}	照査値 $\gamma_{\mathrm{d}} / \gamma_{\mathrm{R}}$
南北壁	30	（1）	S s－F $3(-+)$	14μ	2000μ	0.01
隔壁（東西）	50	（3）	S s－D $2(++$ ）	31μ	2000μ	0.02
東西壁	72	（3）	S s－D $2(++)$	79μ	2000μ	0.04
隔壁（南北）	80	（3）	S s－D $2(++)$	168μ	2000μ	0.09
隔壁（西）	90	（3）	S s－D $2(++$ ）	124μ	2000μ	0.07

注記 $* 1$ ：評価位置は図 5－2 に示す。
＊2：照査用層間変形角＝発生する層間変形角 \times 構造解析係数 γ a

5.3 基礎地盤の支持性能に対する評価結果

5．3．1 基礎地盤（狐崎部層）

基礎地盤の支持性能に対する照査結果を表5－8に示す。また，最大接地圧分布図を図5 -3 に示す。

軽油タンク室の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－8 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
(2)	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(++)$	2.5	13.7	0.19

南 北 北

図 5－3 基礎地盤の最大接地圧分布図 （解析ケース（2），S s－D $2(++)$ ）

5．3．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表5－9に示す。また，最大接地圧分布図を図5－4に示す。

軽油タンク室のMMR（既設）に発生する最大接地圧が，支圧強度を下回ることを確認し た。

表 5－9 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $R_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime} \mathrm{a}^{2}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（3）	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(++)$	1.3	15.6	0.09

図 5－4 MMR（既設）の最大接地圧分布図
（解析ケース③）S s－D $2(++)$ ）

