

2020年11月27日

《参考》䅛崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		1．概要 機器•配管の耐震設計を行う場合，基本設計条件（耐震重要度，設計温度•圧力，動的•静的機器等），プラントサイト固有の環境条件 （地震，風，雪，気温等），形状，設置場所等を考慮して各々に適した支持条件（拘束方向，支持反力，相対変位等）を決め，支持構造物を選定する必要がある。また，現地施工性や機器等の運転操作•保守点検の際に支障とならないこと等についても配慮し設計する。 本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」のうち「9．機器•配管系の支持方針について」に基づき，各々の機器•配管の支持方法及び支持構造物の耐震設計方針を説明するものである。 2．機器の支持構造物 2.1 基本原則機器の耐震支持方針は下記によるものとする。 （1）重要な機器は岩盤上に設けた強固な基礎又は岩盤により支持さ れ十分耐震性を有する構築物内の基礎上に設置する。 （2）支持構造物を含め十分剛構造とすることで建屋との共振を防止 する。 （3）剛性を十分に確保できない場合は，機器系の振動特性に応じた地震応答解析により，応力評価に必要な荷重等を算定し，その荷重等に耐える設計とする。 （4）重心位置を低くおさえる。 （5）配管反力をできる限り機器に持たせない構造とする。 （6）偏心荷重を避ける。 （7）高温機器は熱膨張を拘束しない構造とする。 （8）動的機能が要求されるものについては地震時に機能を喪失しな い構造とする。 （9）内部構造物については容器との相互作用を考慮した構造とす る。 （10）支持架構上に設置される機器については架構を十分剛に設計す ると同時に，必要に応じ架構の剛性を考慮した耐震設計を行う。 2.2 支持構造物の設計 2．2．1 設計手順 機器類の配置及び構造計画に際しては，建物•構築物，配管，ダクト等機器類以外の設備との関連，設置場所の環境条件，現地施工性等の	表現の相違 表現の相違

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		関連を十分考慮して総合的な調整を行い，機器類の特性，運転操作及 び保守点検の際に支障とならないこと等についての配慮を十分加味 した耐震設計を行うよう考慮する。 設計手順を図 2－1，図 2－2 及び図 2－3 に示す。 支持構造物の設計は，建屋基本計画及び機器の基本設計条件等から配置設計を行い，支持する機器，配管の熱彭張解析，耐震解析及び機能維持の検討により強度及び支持機能を確認し，詳細設計を行ら。こ のとき，高温機器については，熱膨張解析による熱膨張変位を拘束し ない設計とするよう配慮する。 ＊：獧境条件，現地施工性及び運転操作•保守点検時の配慮含む。 図 2－1 大型機器支持構造物設計フロー	表現の相違 表現の相違

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

2020年11月27日

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		2．2．2 支持構造物及び基礎の設計 （1）支持構造物の設計（埋込金物を除く） a．設計方針 支持構造物の設計は，機器を剛に支持することを原則とし，機器の重心位置をできる限り低くするとともに，偏心荷重をおさえるよう設計する。 また，熱膨張変位の大きいものについては，その変位を拘束するこ となく，自重，地震荷重等に対し，有効な支持機能を有するよう設計 する。 b．荷重条件 支持構造物設計に当たつては機器の自重，積載荷重，運転荷重等通常時荷重の他に，地震時荷重及び事故時荷重を考慮する。 また，屋外機器については積雪荷重及び風荷重の屋外特有の荷重を考慮する。荷重の種類及び組合せについては添付書類「VI－2－1－9 機能維持の基本方針」に従う。 c．種類及び選定 支持構造物は大別して，機能材と構造材とに分け設計を行い，下記 に従い選定する。 （a）機能材 耐圧母材の機能維持に必須のもので，母材に直接接合されており構造物境界が明膫でなく，当該支持構造材の部分的損傷が直接母材の機能低下をもたらすおそれのある重要なものに使用する。 また，部材については，容器と同等の応力算定を行い，十分な強度 を有するよう設計する。 （代表例）容器の支持構造物取付用ラグ，ブラケット等 （b）構造材 当該支持構造体が単に耐圧母材を支持することのみを目的とする ものであり，当該材と母材との構造物境界が明膫で，当該材の部分的損傷は直接母材の機能低下をもたらさないようなものに使用する。 また，部材については，鋼構造設計規準等に準拠して設計する。 （代表例）支持脚，支持柱，支持架構，ボルト，スナッバ （2）埋込金物の設計 a．設計方針 機器の埋込金物は，支持構造物から加わる荷重を基礎に伝え，支持構造物と一体となって支持機能を満たすように設計する。埋込金物の	表現の相違表現の相違表現の相違
		本資料のらち枓囲みの内容は，他社の機窓事項を合む可能珄があるをため公開できません。	

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		口．屋外の基礎 屋外に設置される重要な機器は岩盤上に設けた強固な基礎上に設置する。 基礎は基礎自身の自重，地震荷重の他に基礎上に設置される機器か らの通常時荷重，地震時荷重，積雪荷重及び風荷重を考慮して十分強固であるよう設計する。 機器支持構造物は一般に基礎中に埋め込んだ基礎ボルトにより固定する。 2．2．3 機器の支持方法 （1）たて置の機器 a．スカートによる支持 スカートはベースプレートを介して基礎ボルトにより基礎に固定 する。スカート剛性，基礎ボルトサイズは，容器重量及び地震力によ る転倒モーメント等に対し十分な強度を有する設計とする。 この形式の支持構造は原子炉圧力容器及びたて型のタンク類に採用する。 （代表例）原子炉圧力容器 b．ラグによる支持 下図の様に機器本体に取り付けられたラグにより支持する形式の ものである。この形式は機器本体の半径方向の熱膨張を自由にし，円周方向及び鉛直方向のラグ剛性で支持するものとする。 この型式の支持構造物は熱膨張を拘束しない機器に採用する。 （代表例）原子炉格納容器フィルタベント系フィルタ装置	設計の差異 （女川 2 号は屋外に設置される重要な機器は岩盤上に設けた強固な基礎上に設置するた め。）

《参考》 柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		ュラウドヘッドは炉心シュラウド上にボルトによりフランジ接続さ れる。 蒸気乾燥器，スパージャ及び内部配管は，原子炉圧力容器内部に取 り付けられたブラケット等により支持される。 b．熱交換器 熱交換器には，伝熱管が U字管式のものと直管式のものとがあり， いずれもじゃま板によって伝熱管を剛に支持し，地震及び流体による振動を防止する。 c．タンク類 タンク類でその内部にスプレイノズル，スパージャ，ヒータ等が設 けられるものについては，それらを機器本体からのサポートにより取 り付ける。 気計測制御装置 3.1 基本原則 電気計測制御装置の耐震支持方針は下記によるものとする。 （1）電気計測制御装置は取付ボルト等により支持構造物に固定され る。支持構造物は，剛な床，壁面等から支持することとする。 （2）支持構造物を含め十分剛構造とすることで建屋との共振を防止 する。 （3）剛性を十分に確保できない場合は，振動特性に応じた地震応答解析により，応力評価に必要な荷重等を算定し，その荷重等に耐え る設計とする。 （4）地震時に要求される電気的機能を喪失しない構造とする。電気計測制御装置の電気的機能維持の設計方針を別紙に示す。 3.2 支持構造物の設計 3．2．1 設計手順 電気計測制御装置の配置，構造計画に際しては，設置場所の環境条件，現地施工性等の関連を十分考慮して総合的な調整を行い，電気計測制御装置類の特性，運転操作及び保守点検の際に支障とならないこ と等についての配慮を十分加味した耐震設計を行らよう考慮する。 設計手順を図 3－1 に示す。 支持構造物の設計は，建屋基本計画及び電気計測制御装置の基本設計条件等から配置設計を行い，耐震解析，機能維持の検討により強度及び支持機能を確認し，詳細設計を行う。	設備構成の差異 （女川 2 号のシュラウ ドヘッドは炬心シュラ ウド上にフランジ接続 されているため。）
		本資料のらち枓囲みの内容は，他社の機密事項を含を可能性があるため公開できません。	

2020年11月27日
《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》䄸崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		3．2．2 支持構造物及び埋込金物の設計 （1）盤の設計 a 設計方針 盤に実装される器具は取付ボルトにより盤に固定する。 盤には自立形と壁掛形があり，鋼材及び鋼板を組み合わせたフレー ム及び筐体で構成される箱型構造とする。 自立形の盤は基礎ボルトにより，あるいは床面に埋め込まれた埋込金物に溶接することにより自重及び地震荷重に対し，有効な支持機能 を有するよう設計する。 壁掛形の盤は基礎ボルトにより，あるいは埋込金物に溶接すること により自重及び地震荷重に対し，有効な支持機能を有するよう設計す る。 b．荷重条件 荷重の種類及び組合せについては，添付書類「VI－2－1－9 機能維持 の基本方針」に従う。 （自立形） （璧掛形） （2）架台の設計 a．設計方針 架台に実装される器具は取付ボルトにより架台に固定する。 架台は鋼材を組み合わせた溶接構造又はボルト締結構造とし，自重及び地震荷重に対し，機能低下を起こすような変形をおこさないよう設計する。 架台は基礎ボルトにより，あるいは埋込金物に固定することにより自重及び地震荷重に対し，有効な支持機能を有するよう設計する。	表現の相違 表現の相違

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》䅛崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（4）基礎の設計 a．設計方針 電気計測制御装置の基礎は，支持構造物から加わる自重，地震荷重 に対し，有効な支持機能を有するよう設計する。基礎の選定は，電気計測制御装置の支持方法，支持荷重及び配置を考慮して行う。 b．荷重条件 基礎の設計は，電気計測制御装置から伝わる荷重に対し，荷重成分 の組合せを考慮して行う。荷重の種類及び組合せについては，添付書類「VI－2－1－9 機能維持の基本方針」に従う。 4．配管の支持構造物 支持装置，支持架構及び埋込金物から構成される支持構造物の基本原則，設計方針及び機能による種別の選定方法を示す。また，配管系及びその支持構造物について耐震設計上十分安全であるように考慮 すべき事項は，添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」に定める。 4.1 基本原則 配管及び弁の耐震支持方針は下記によるものとする。 （1）支持構造物は，剛な床，壁面等から支持することとする。 （2）支持構造物を含め建屋との共振を防止する。 （3）支持構造物は，拘束方向の支持点荷重に対して十分な強度があ り，かつ剛性を有するものを選定する。 （4）機器管台に接続される配管については，機器管台の許容荷重を超えないように支持構造物の設計を行う。 （5）高温となる配管については，熱膨張変位を過度に拘束しない設計とする。 （6）熱膨張変位を過度に拘束しないために，配管系の剛性を十分に確保できない場合は，配管系の振動特性に応じた地震応答解析 により，応力評価に必要な荷重等を算定し，その荷重等に耐え る設計とする。 （7）地震時の建屋間相対変位を考慮する場所については，その変位 に対して十分耐える設計とする。 （8）水撃現象が生じる可能性のある場所については，その荷重に十分耐える設計とする。	表現の相違 表現の相違

2020年11月27日

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		c．種類及び選定 支持装置の機能別選定要領を，図 4－2「支持構造物の選定フロー」 に示す。 （a）アンカ アンカサポートは，配管に直接溶接されるラグ又は配管固定用クラ ンプと架構部分から構成され，周囲の構造物との関係や支持点荷重を基に選定する。 なお，アンカサポートと同様な構造及び機能であるが，一定の方向 だけ熱変位を許容する場合は，ガイドサポートを選定する。 （b）レストレイント レストレイントは，配管軸直角方向又は配管にラグを設置して配管軸方向の拘束に使用する。架構式レストレイント又はUボルトにおい て，支持点荷重がUボルトの最大使用荷重を超える場合は架構式レス トレイントを，支持点荷重がUボルトの最大使用荷重以下の場合はU ボルトを選定する。ロッドレストレイントの場合は，定格荷重が支持点荷重を下回らない範囲で，支持点荷重に近い定格荷重のロッドレス トレイントを選定する。 なお，周囲の構造物との関係にもよるが，支持点と床，壁等が接近 している場合は架構式レストレイント又はUボルトを使用し，支持点 から床，壁等までの距離が離れている場合はロッドレストレイントを使用する。 （c）スナッバ 定格荷重が支持点荷重を下回らない範囲で，支持点荷重に近い定格荷重のスナッバを選定する。 （d）ハンガ 支持点荷重及び熱膨張による変位から，必要なストロークを有し， かつ定格荷重が支持点荷重を下回らない範囲で，支持点荷重に近い定格荷重のハンガを選定する。 通常はスプリングハンガを使用するが，配管の熱膨張によって生じ る支持点の変位が大きい場合はコンスタントハンガを使用する。	設計の差異 （女川 2 号はリジット ハンガを使用しないた め。）

《参考》柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		（2）支持架構の設計 a．設計方針 配管及び弁の支持架構は，非常に物量が多いことから，図 4－3「支持架構の基本形状例」に示す基本形状ごとに，以下の要領で鋼材選定 の標準化を図って設計に適用する。 （a）配管系の支持点荷重から求まる支持構造物に生じる応力と使用材料により定まる許容応力の比較による応力評価，又は，最大使用荷重と支持点荷重の比較による荷重評価により設計する。 （b）支持点荷重を条件とした強度及び耐震評価を行い，発生応力が許容応力を超えないように使用する鋼材（山形鋼，溝形鋼，H形鋼，角形鋼，鋼管等）を決定する。 b．荷重条件 支持架構の設計は，配管から伝わる荷重に対し，その荷重成分の組合せを考慮して行う。荷重の種類及び組合せについては，添付書類「VI －2－1－9 機能維持の基本方針」に従う。 c．種類及び選定 支持架構の選定要領を，図 4－4「支持架構の設計フロー」に示す。 （a）支持条件の設定 配管の支持点と床，壁面等からの距離並びに周囲の設備配置状況か ら，図 4－3「支持架構の基本形状例」に示す支持架構の基本形状の中 から適用タイプを選定する。 支持点荷重は，地震時や各運転状態で生じる荷重を用いる。 （b）支持点荷重に基づいた応力評価による鋼村選定地震時の支持点荷重により鋼材を選定する。 （c）鋼材と諸設備間との配置調整 決定した鋼材が，他の配管及び周囲の設備との干渉がないか確認す る。干渉がある場合は，支持架構の形状寸法又は基本形状の見直しを行って，再度鋼材選定を行う。 配管の支持架構の例を，図 4－5「支持架構の例」に示す。	表現の相違 設計の差異 （女川 2 号は標準支持間隔法を使用しないた め。）

2020年11月27日

《参考》 柏崎刈羽原子力発電所第 7 号機（2020．9．25 提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第 2 号機	備考
		（3）埋込金物の設計 a．設計方針 埋込金物は，支持構造物から加わる荷重を基礎に伝え，支持構造物 と一体となって支持機能を満たすように設計する。埋込金物の選定 は，支持荷重及び配置を考慮して行う。 b．荷重条件 埋込金物の設計は，配管から伝わる荷重に対し，その荷重成分の組合せを考慮して行う。荷重の種類及び組合せについては，添付書類「VI －2－1－9 機能維持の基本方針」に従う。 c．種類及び選定 埋込金物は，コンクリート打設前に設置し，そのまま埋め込まれる ものと，コンクリート打設後に後打ちアンカにより取り付けられるも のとに分類され，施工時期に応じて適用する。 いずれの場合も支持装置又は支持架構を溶接により剛に建屋側に取り付けることができる。 コンクリート打設前に設置する埋込金物は，鋼板（以下「ベースプ レート」という。）にスタッドジベルを溶接した埋込板，基礎ボルト で，用途及び荷重により数種類の型式に分類される。コンクリート打設後に支持装置及び支持架構の取付けが必要な場合は，ケミカルアン カ又はメカニカルアンカを使用する。ただし，ケミカルアンカは，要求される支持機能が維持できる温度条件下で使用する。また，メカニ カルアンカは振動が大きい箇所には使用しない。後打ちアンカの設計 は，J E A G 4 6 0 1 •補－1984 又は「各種合成構造設計指針•同解説」（日本建築学会，2010 年改定）に基づき設計を行い，アンカメー カが定める施工要領に従い設置する。 埋込金物の形状の代表例を，図 4－6「埋込金物の例」に示す。 各種埋込金物の中から，地震時に生じる設計荷重に対して十分な耐震性を有するものを選定する。	表現の相違

《参考》 柏崎刈羽原子力発電所第 7 号機（2020．9．25提出版）

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		5．その他特に考慮すべき事項 （1）機器と配管の相対変位に対する考慮 機器と配管との相対変位に対しては，配管側のフレキシビリティで できる限り変位を吸収することとし，機器側管台部又は支持構造物に過大な反力を生じさせないよう配管側のサポート設計において考慮 する。 （2）動的機器の支持に対する考慮 ポンプ，ファン等の動的機器に対しては地震力の他に機器の振動を考慮して支持構造物の強度設計を行う。 また，振動による軸芯のずれを起こさないよう，据付台の基礎への グラウト固定，取付ボルトの回り止め等の処置を行う。 （3）建屋•構築物との共振の防止 支持に当たつては裙付場所に応じ，建屋•構築物の共振領域からで きるだけ外れた固有振動数を持つよう考慮する。また，共振領域近く で設計する場合は地震応答に対して十分な強度余裕を持つようにす る。 （4）波及的影響の防止 耐震重要度分類における下位クラスの機器の破損によって上位ク ラスの機器に波及的影響を及ぼすことがないよう配置等を考慮して設計するが，波及的影響が考えられる場合には，下位クラス機器の支持構造物は上位クラスに適用される地震動に対して設計する。 （5）隣接する設備 配管が他の配管又は諸設備と接近して設置される場合は，地震，自重，熱膨張及び機械的荷重による変位があっても干渉しないようにす る。保温材を施工する配管については，保温材の厚みを含めても干渉 しないようにする。 （6）材料の選定 材料選定に当たっては，使用条件下における強度に配慮し，十分な使用実績があり，材料特性が把握された安全上信頼性の高いものを使用する。 また，添付書類「VI－2－1－10 ダクティリティに対する設計方針」 の材料の選択方針に基づき，ダクティリティを持つよう配慮する。	表現の相違

女川原子力発電所第2号機

$\begin{aligned} & \overrightarrow{\alpha_{1}^{\prime}} \\ & \text { 整 } \end{aligned}$					
	－	$\begin{aligned} & 1 \text { 勧 } \\ & - \end{aligned}$	$\begin{aligned} & \text { 買 } \\ & \text { os } \end{aligned}$		

P1

《参考》柏崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		3．耐震設計の手順 具体的な手順は，構造上及び機能上の性質により異なるので，電気計装品を盤，装置，器具及び電路類の 4 種類に大別し，以下各々につ いてその手順を示す。 3.1 盤の耐震設計手順（図 $3-1$ 参照） 盤は，多種多様の器具を収納する集合体であるので，構造的，機能的に設計地震力に対して健全でなければならない。 解析モデル化が可能で解析が容易である場合は「振動特性解析によ る方法」を採用し，解析モデル化が不可能な場合若しくは解析モデル化が可能であっても実験によって耐震性を検定するのが容易な場合 は，「振動特性試験による方法」を採用する。 振動特性解析又は振動特性試験によって剛構造かどうかを判定し，剛構造であれば静的解析により構造的及び機能的健全性を碓認する。剛構造でない場合は，応答解析又は応答試験を実施する。 応答試験による場合は，取り付けられる器具を実装して行うことが容易な場合には，実装集合体応答試験により構造的及び機能的健全性 を確認する。 また，器具を実装して行うことが困難な場合には物理的，構造的に実物を模擬したものを取り付けた模擬集合体応答試験を行い構造的健全性を確認するとともに，模擬器具取付点の応答を測定し，器具の単体で検定された検定スペクトルと比較することにより機能的健全性を確認する。 応答解析による場合は，解析により構造的健全性を確認するととも に器具の取付点の応答と器具単体で得られた検定スペクトルとを比較することにより，機能的健全性を確認する。 3.2 装置の耐震設計手順（図3－2参照） 装置は，一般に剛な構造であり，その機能は，構造的健全性が保た れている限り失われることはない。したがって，耐震性の検討は，静的解析を行って構造的健全性を確かめる。ただし，剛構造でない場合 は，盤と同様に応答解析又は応答試験によって構造的健全性を確認す る。	表現の相違

《参考》㿟崎刈羽原子力発電所第7号機（2020．9．25 提出版）	東海第二発電所	女川原子力発電所第2号機	備考
		3.3 器具の耐震設計手順（図3－3参照） 器具の耐震性の検討は，構造，機能の両面について行う。器具は，機能的及び構造的健全性を保持し得る限界入力又は許容入力値を求 める一般検定試験（又は限界性能試験）を行い，検定スペクトルを求 め，これと取付け位置の応答とを比較することにより耐震性を判定す る。一般検定試験を行えない場合は，器具取付け位置の動的入力によ って応答試験を行うことにより耐震性を判定する。 器具の中で，計器用変成器等のように剛体と見なせるものであって構造的に健全であれば，その機能が維持されるものについては装置と同様に静的解析を行って構造的健全性を確認する。 3.4 電路類の耐震設計手順（図 $3-4$ 参照） 電路類は，構造的に健全ならば機能が維持されるので構造的検討の みを行う。この際には3次元はりモデルによる解析又は標準支持間隔法を用いる。3次元はりモデルによる解析の場合は，固有振動数に応 じて応答解析による方法又は静的解析による方法を用いて構造的健全性を確認する方針とする。また，標準支持間隔法を用いる場合は，振動数基準又は応力基準による標準支持間隔法を基本として標準支持間隔を設定し，標準支持間隔以内で支持することにより耐震性を確保する。 また，各建屋間，建屋と建屋外地盤とにまたがって設置されるもの については，それらの地震時の相対変位を吸収できる構造とする。 熱膨張等を考慮しなければならないものについては，その荷重に対 して構造的健全性を確認する方針とする。 3.5 既存資料の利用による耐震設計 電気計装品の耐震設計は，既に振動実験若しくは解析が行われてお り，かつ，その電気計装品が本原子力発電所に使用されるものと同等又は類似と判断される場合には，その実験データ若しくは解析値を利用して耐震設計を行う。	

2020年11月27日
《参考》柏崎刏羽原子力発電所第 7 号機（2020．9．25提出版）

2020年11月27日

2020年11月27日

2020年11月27日

