VI－2－別添 1－7 消火配管の耐震性についての計算書

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 63
3．計算条件 66
3.1 計算方法 66
3.2 荷重の組合せ及び許容応力状態 67
3.3 設計条件 68
3.4 材料及び許容応力 75
3.5 設計用地震力 75
4．解析結果及び評価 76
4．1 固有周期及び設計震度 76
4．2 評価結果81

1．概要

本計算書は，添付書類「VI－2－別添 1－1 火災防護設備の耐震計算の方針」に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有してい ることを説明するものである。

評価結果の記載方法は以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また，全143モデルのうち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表 として鳥瞰図，計算条件及び評価結果を記載する。代表モデルの選定結果及び全モデ ルの評価結果を4．2．3に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式ごとに反力が最大となる支持点 の評価結果を代表として記載する。
（3）耐震評価
消火配管のうち，ケーブルトレイ消火設備については，基準地震動 S s による耐震性を有していることを消火配管設置位置での加速度と加振台の最大加速度との比較 により評価する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号例	内容
工（太線）	工事計画記載範囲の管のうち，本計算書記載範囲の管
工（細線）	工事計画記載範囲の管のらち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管のうち，他系統の管であつて系統の概略を示すために表記する管
O－－○－○○	鳥瞰図番号
0	アンカ

O 2 (3) VI-2-別添1-7 R 0

ハロンガス消火設備概略系統図（その 7）

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

MUWC ポンプ室消火系
ハロン 1301 貯蔵容器

B1Fインナー通路消火系
＂

O 2 （3）VI－2－別添1－7 R 0

16

ハロンガス消火設備概略系統図（その 14）

O 2 （3）VI－2－別添1－7 R 0

B1Fハッチ室消火系
ハロン 1301 貯蔵容器

区分 II 非常用 MCC 室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

導電率計ラック室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

HWH 熱交換器室・ポンプ室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R O }
$$

27

区分III非常用 D／G 制御盤室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

区分IIIバッテリ室消火系
ハロン 1301 貯蔵容器

O2（3）VI－2－別添1－7 R 0

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

SOL 冷凍機室消火系
ハロン 1301 貯蔵容器

O 2 （3）VI－2－別添1－7 R 0

O2（3）VI－2－別添1－7 R 0

O2（3）VI－2－別添1－7 R 0

空調機械（A）室／（B）室消火系
ハロン 1301 貯蔵容器

O2（3）VI－2－別添1－7 R 0

O 2 （3）VI－2－別添1－7 R 0

O 2 （3）VI－2－別添1－7 R 0

44

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

T．S（更衣室西）消火系
ハロン 1301 貯蔵容器

O2（3）VI－2－別添1－7 R 0

区分IIIケーブル処理室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

DC125V 代替バッテリ室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

T．S（区分 II ケーブル处理室北）消火系
ハロン 1301 貯蔵容器

O2（3）VI－2－別添1－7 R 0

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

PCPS 区分IIIエリア消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

PCPS 区分 NONエリア消火系
ハロン 1301 貯蔵容器

ハロンガス消火設備概略系統図（その52）

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

E／B 電気品室消火系
ハロン 1301 貯蔵容器

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

O2（3）VI－2－別添1－7 R 0

SLC ポンプ（A）（B）消火系
ハロン 1301 貯蔵容器

2.2 鳥瞰図

鳥瞰図記号凡例

記号例	内容
	工事計画記載範囲の管のうち，本計算書記載範囲の管
申請範囲外	工事計画記載範囲外の管
$\Leftarrow \bigcirc \bigcirc \bigcirc \text { 系 }$	工事計画記載範囲の管のうち，他系統の管であって解析モ デルとして本系統に記載する管
－	質点
θ	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。）
	スナッバ
	ハンガ
\cdots	ガイド
	拘束点の地震による相対変位量（mm） （＊は評価点番号，矢印は拘束方向を示す。また， \square内 に変位量を記載する。） 注：鳥瞰図中の寸法の単位は mm である。

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

O2（3）VI－2－別添1－7 R 0

65

鳥瞰図	FPR1061

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「SOLVER」，「MSC NASTRAN」，「NuPIAS」，「STRUCT」及び「NAPF」を使用し，解析コードの検証及び妥当性確認等の概要については，「VI－5－27 計算機プログラム（解析コードの概要）•SOLVER」，「VI－5－40 計算機プログラム（解析コードの概要）•MSC NASTRAN」，「VI－5－54 計算機プ ログラム（解析コードの概要）•NuPIAS」，「VI－5－66 計算機プログラム（解析コードの概要）•STRUCT」及び「VI－5－67 計算機プログラム（解析コードの概要）•NAPF」に示す。

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設分類 ${ }^{* 1}$	設備分類	機器等の区分	耐震重要度分類	荷重の組合せ＊2	許容応力状態
その他の発電 用原子炉の附 属施設	火災防護設備							

注記 $* 1$ ：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重を示す。

O 2 （3）VI－2－別添1－7 R 0

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し，管番号と対応する評価点番号を示す。

鳥瞰図 FPR1041

管番号	対応する評価点	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震重要度 分類	縦弾性係数 (MPa)
1	$1 \sim 32, \quad 11 \sim 19$	5.20	40	89.1	5.5	SUS304TP	C	193667
2	$28 \sim 34, \quad 40 \sim 41$	5.20	40	76.3	5.2	SUS304TP	C	193667
3	$34 \sim 35, \quad 39 \sim 40$	5.20	40	76.3	7.0	STPG370	C	201667

配管の質量（付加質量含む）

鳥瞰図 FPR1041

評価点	質量 (kg)						
1	3	11	3	21	3	31	3
2	3	12	3	22	4	32	2
3	5	13	5	23	10	33	3
4	7	14	7	24	7	34	4
5	5	15	5	25	4	35	13
6	4	16	4	26	4	39	13
7	36	17	36	27	3	40	3
8	4	18	4	28	3	41	2
9	4	19	3	29	3	68	7
10	3	20	2	30	3	-	-

弁部の質量

鳥瞰図 FPR1041

評価点	質量 (kg)
38	7
36	4
35,39	2

弁部の寸法

鳥瞰図 FPR1041

弁 No	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
1	$35 \sim 36$	76.3	14.0	56
1	$36 \sim 39$	76.3	14.0	64
1	$36 \sim 37$	46.1	13.1	100
1	$37 \sim 38$	46.1	13.1	63

支持点及び貫通部ばね定数

鳥瞰図 FPR1041

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
＊＊2＊＊	1． 0×10^{12}	－	－	－	－	－
	0． 7071	0.0000	0． 7071	－	－	－
＊＊2＊＊	1． 0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
$* * 6 * *$	1． 0×10^{12}	－	－	－	－	－
	0． 7071	0.0000	0． 7071	－	－	－
＊＊6＊＊	1.0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
＊＊ $12 * *$	1.0×10^{12}	－	－	－	－	－
	0． 7071	0.0000	0． 7071	－	－	－
＊＊12＊＊	1.0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
＊＊16＊＊	1． 0×10^{12}	－	－	－	－	－
	0． 7071	0． 0000	0． 7071	－	－	－
＊＊ $16 * *$	1.0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
＊＊23＊＊	1． 0×10^{12}	－	－	－	－	－
	-0.7071	0.0000	－0．7071	－	－	－
＊＊23＊＊	1． 0×10^{12}	－	－	－	－	－
	-0.7071	0.0000	0． 7071	－	－	－
＊＊26＊＊	1.0×10^{12}	－	－	－	－	－
	0． 7071	0.0000	0． 7071	－	－	－
＊＊26＊＊	1． 0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
＊＊30＊＊	1． 0×10^{12}	－	－	－	－	－
	0． 7071	0.0000	0． 7071	－	－	－
＊＊30＊＊	1.0×10^{12}	－	－	－	－	－
	0.0000	1． 0000	0.0000	－	－	－
32	1． 0×10^{12}					
41	1.0×10^{12}	1． 0×10^{12}	1.0×10^{12}	1.0×10^{12}	1． 0×10^{12}	1． 0×10^{12}

注：＊＊印は斜め拘束を示す。また，下段は方向余弦を示す。

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

鳥瞰図 FPR1061

	管番号	対応する評価点	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	耐震重要度分類	縦弾性係数 （MPa）
	1	$\begin{aligned} & 38 \sim 79, \quad 68 \sim 70, \\ & 76 \sim 77 \end{aligned}$	5.20	40	114.3	6． 0	SUS304TP	C	193667
	2	70～71，75～76	5.20	40	114.3	8.6	STPG370	C	201667
	3	$37 \sim 38$	5.20	40	101.7	5.8	SUS304TP	C	193667
	4	$1 \sim 37, \quad 18 \sim 32$	5.20	40	89.1	5.5	SUS304TP	C	193667
	5	$41 \sim 43,55 \sim 57$	5.20	40	60.5	3.9	SUS304TP	C	193667
$コ$	6	$\begin{array}{ll} 43 \sim 44, & 50 \sim 51 \\ 57 \sim 58, & 64 \sim 65 \end{array}$	5.20	40	42.7	3.6	SUS304TP	C	193667
	7	$\begin{array}{ll} 44 \sim 45, & 49 \sim 50 \\ 58 \sim 59, & 63 \sim 64 \end{array}$	5.20	40	42.7	4． 9	STPG370	C	201667

配管の質量（付加質量含む）

鳥瞰図 FPR1061

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
1	3	19	3	37	3	58	2
2	3	20	5	38	4	59	4
3	5	21	8	39	5	63	4
4	7	22	7	40	4	64	1
5	5	23	36	41	4	65	1
6	4	24	4	42	1	66	8
7	36	25	5	43	2	67	8
8	4	26	7	44	2	68	5
9	5	27	7	45	4	69	8
10	7	28	5	49	4	70	10
11	7	29	4	50	1	71	32
12	5	30	36	51	1	75	32
13	4	31	4	52	4	76	8
14	36	32	3	53	5	77	4
15	4	33	2	54	4	78	5
16	3	34	3	55	4	79	3
17	2	35	4	56	1	80	2
18	3	36	4	57	2	－	－

弁部の質量

鳥瞰図 FPR1061

評価点	質量 (kg)
74	18
72	11
71,75	5
62,48	4
$59,60,63$	
$45,46,49$	

弁部の寸法

鳥瞰図 FPR1061

弁 No	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
1	$59 \sim 60$	42.7	9.8	37
1	$60 \sim 63$	42.7	9.8	44
1	$60 \sim 61$	28.5	6.3	65
1	$61 \sim 62$	28.5	6.3	52
2	$45 \sim 46$	42.7	9.8	37
2	$46 \sim 49$	42.7	9.8	44
2	$46 \sim 47$	28.5	6.3	65
2	$47 \sim 48$	28.5	6.3	52
3	$71 \sim 72$	114.3	17.2	78
3	$72 \sim 75$	114.3	17.2	82
3	$72 \sim 73$	55.2	10.8	134
3	$73 \sim 74$	55.2	10.8	90

支持点及び貫通部ばね定数

鳥瞰図 FPR1061

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$		各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$			
	X	Y	Z	X	Y	Z
2	1.0×10^{12}	1.0×10^{12}	-	-	-	-
6	1.0×10^{12}	1.0×10^{12}	-	-	-	-
8	1.0×10^{12}	1.0×10^{12}	-	-	-	-
13	1.0×10^{12}	1.0×10^{12}	-	-	-	-
17	-	1.0×10^{12}	1.0×10^{12}	-	-	-
19	1.0×10^{12}	1.0×10^{12}	-	-	-	-
22	1.0×10^{12}	1.0×10^{12}	-	-	-	-
24	1.0×10^{12}	1.0×10^{12}	-	-	-	-
29	1.0×10^{12}	1.0×10^{12}	-	-	-	-
51	1.0×10^{12}					
53	1.0×10^{12}	1.0×10^{12}	-	-	-	-
65	1.0×10^{12}					
77	1.0×10^{12}					
79	1.0×10^{12}					

3．4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S_{m}	S_{y}	S_{u}	S_{h}
SUS304TP	40	137	205	520	129
STPG370	40	-	215	370	93

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
FPR1041	原子炉建屋	0．P．-6.24	2.0
FPR1061	原子炉建屋	0. P． 9.20	2.0

4．解析結果及び評価
4．1 固有周期及び設計震度

鳥瞰図 FPR1041

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （s）	応答水平震度 $*^{1}$		応答鋁直震度＊${ }^{*}$	応答水平震度＊${ }^{*}$		応答鉛直震度 ${ }^{* 1}$
		X 方向	Z 方向	Y 方向	X 方向	Z 方向	Y 方向
1 次	0.081	－	－	－	5.71	5.71	3.18
2 次＊2	0． 024	－	－	－	－	－	－
動的震度＊3		－	－	－	1． 34	1． 34	0.88

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 未満であることを示す。
＊3：S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

各モードに対応する刺激係数
鳥瞰図 FPR1041

モード	固有周期 （s）	刺激係数＊		
		X 方向	Y 方向	Z 方向
1 次	0.081	0.680	0.016	0.596

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図
振動モード図は，2次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2 \text {-別添 1-7 } \mathrm{R} \mathrm{O}
$$

代表的振動モード図（1次）

代表的振動モード図（2次）

鳥瞰図 FPR1061

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （s）	応答水平震度＊${ }^{1}$		応答鉛直震度＊${ }^{*}$	応答水平震度＊1		応答鉛直震度＊${ }^{1}$
		X 方向	Z 方向	Y 方向	X 方向	Z 方向	Y 方向
1 次	0.025	－	－	－	2.56	2.56	1.82
2 次＊2	0.015	－	－	－	－	－	－
動的震度＊3		－	－	－	1． 97	1． 97	1． 37

注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 未満であることを示す。
＊ $3: ~ \mathrm{~S}$ s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。

各モードに対応する刺激係数
鳥瞰図 FPR1061

モード	固有周期 （s）	刺激係数＊		
		X 方向	Y 方向	Z 方向
1 次	0.025	0.613	0.080	0.059

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図
振動モード図は，1次モードを代表とし，各質点の変位の相対量•方向を破線で図示 し，次ページ以降に示す。

$$
\text { O } 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

代表的振動モード図（1次）

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

4．2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価（ MPa ）		一次＋二次応力評価（ MPa ）		疲労評価 疲労累積係数 U S s
				$\begin{aligned} & \text { 計算応力 } \\ & S_{\text {prm }}\left(S_{s}\right) \end{aligned}$	許容応力 $0.9 \mathrm{~S}_{\mathrm{u}}$	計算応力 $S_{n}\left(S_{S}\right)$	$\begin{gathered} \text { 許容応力 } \\ 2 \mathrm{~S}_{\mathrm{y}} \end{gathered}$	
FPR1041	$\begin{aligned} & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{prm}}\left(\mathrm{~S}_{\mathrm{s}}\right) \\ \mathrm{S}_{\mathrm{n}}\left(\mathrm{~S}_{\mathrm{s}}\right) \end{gathered}$	174	$\begin{gathered} 468 \\ - \end{gathered}$	$\begin{gathered} \text { — } \\ 308 \end{gathered}$	$\begin{aligned} & \text { - } \\ & 410 \end{aligned}$	－
FPR1061	$\begin{aligned} & \mathrm{IV}_{A} \mathrm{~S} \\ & \mathrm{IV}_{A} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 51 \\ & 77 \end{aligned}$	$\begin{gathered} S_{p r m}\left(S_{s}\right) \\ S_{n}\left(S_{s}\right) \end{gathered}$	43	468	$\begin{gathered} - \\ 331 \end{gathered}$	－ 410	－

$$
\mathrm{O} 2 \text { (3) VI-2-別添 1-7 R 0 }
$$

4．2．2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

| 支持構造物
 番号 | 種類 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力 分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{x}	M_{Y}	M_{Z}			
$\begin{aligned} & \text { PS103-003 } \\ & \text { (FPR1041) } \end{aligned}$	レストレイント	U プレート	SUS304	40	8	34	－	－	－	－	組合せ	82	118
PS104－001 （FPR1041）	アンカ	ラグ	STKR400	40	2	32	5	3	1	2	組合せ	97	141
$\begin{gathered} \text { PS105-002 } \\ (\text { FPR1061) } \end{gathered}$	レストレイント	U ボルト	SS400	40	4	37	－	－	－	－	組合せ	140	245
$\begin{gathered} \text { PS106-001 } \\ (\text { FPR1061) } \end{gathered}$	アンカ	ラグ	SUS304	40	18	37	9	6	1	7	組合せ	268	410

4．2．3 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類毎に裕度最小のモデルを選定して鳥瞰図，計算条件及び評価結果 を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 3 管）
$\stackrel{\oplus}{\oplus}$

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	許容応力 （MPa）	裕度	代 表	評価点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代 表	評価点	疲労 累積係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	FPR1021	11	99	468	4.72	－	30	183	410	2.24	－	－	－	－
2	FPR1022	23	41	468	11.41	－	2	69	410	5.94	－	－	－	－
3	FPR1031	28	168	468	2.78	－	28	306	410	1.33	－	－	－	－
4	FPR1101	1	59	468	7.93	－	1	109	410	3.76	－	－	－	－
5	FPR1041	23	174	468	2.68	\bigcirc	23	308	410	1.33	－	－	－	－
6	FPR1042	1	31	468	15.09	－	1	162	410	2.53	－	－	－	－
7	FPR1051	51	55	468	8.50	－	1	74	410	5.54	－	－	－	－
8	FPR1401	40	75	468	6.24	－	40	162	410	2.53	－	－	－	－
9	FPR3181	15	54	468	8.66	－	15	111	410	3.69	－	－	－	－
10	FPR1061	51	43	468	10.88	－	77	331	410	1.23	\bigcirc	－	－	－
11	FPR1062	19	64	468	7.31	－	21	106	410	3.86	－	－	－	－
12	FPR1071	62	49	468	9.55	－	1	166	410	2.46	－	－	－	－
13	FPR1072	1	49	468	9.55	－	1	29	410	14.13	－	－	－	－
14	FPR1091	19	49	468	9.55	－	39	209	410	1.96	－	－	－	－

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代 表	評価点	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代 表	評価点	疲労 累積 係数	代 表
15	FPR1092	62	51	468	9． 17	－	59	65	410	6.30	－	－	－	－
16	FPR1141	30	35	468	13.37	－	1	185	410	2.21	－	－	－	－
17	FP－111a	43	40	468	11.70	－	41	56	410	7.32	－	－	－	－
18	FP－111b	52	92	468	5． 08	－	52	128	410	3.20	－	－	－	－
19	FPR7121	17	85	468	5.50	－	64	280	410	1． 46	－	－	－	－
20	FPR7122	18	60	468	7． 80	－	18	131	410	3.12	－	－	－	－
21	FPR3091	28	44	468	10.63	－	1	190	410	2.15	－	－	－	－
22	FPR3092	8	56	468	8． 35	－	8	80	410	5.12	－	－	－	－
23	FPR3071	56	109	468	4． 29	－	56	139	410	2.94	－	－	－	－
24	FPR3072	40	105	468	4． 45	－	40	149	410	2． 75	－	－	－	－
25	FPR3051	40	63	468	7． 42	－	34	267	410	1． 53	－	－	－	－
26	FPR3052	1	55	468	8.50	－	1	103	410	3.98	－	－	－	－
27	FP－115a	44	35	468	13.37	－	46	41	410	10.00	－	－	－	－
28	FP－115b	22	74	468	6． 32	－	22	85	410	4.82	－	－	－	－
29	FP－117a	22	40	468	11．70	－	22	81	410	5.06	－	－	－	－
30	FP－117b	10	114	468	4． 10	－	10	169	410	2． 42	－	－	－	－
31	FPR9221	1	115	468	4． 06	－	1	286	410	1． 43	－	－	－	－
32	FPR5171	29	54	468	8． 66	－	30	64	410	6． 40	－	－	－	－

\propto

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	疲労 累積 係数	代 表
33	FPR3131	99	84	468	5.57	－	170	300	410	1． 36	－	－	－	－
34	FPR3132	1	41	468	11.41	－	2	63	410	6.50	－	－	－	－
35	FPR3133	1	53	468	8.83	－	14	51	410	8.03	－	－	－	－
36	FPR7211	26	51	468	9.17	－	31	87	410	4.71	－	－	－	－
37	FPR5321	1	106	468	4.41	－	1	190	410	2． 15	－	－	－	－
38	FPR3171	29	74	468	6.32	－	47	325	410	1． 26	－	－	－	－
39	FPR3172	37	92	468	5.08	－	1	132	410	3． 10	－	－	－	－
40	FPR5013	67	67	468	6.98	－	86	88	410	4.65	－	－	－	－
41	FPR5014	17	174	468	2.68	－	17	311	410	1． 31	－	－	－	－
42	FPR5015	38	89	468	5.25	－	63	153	410	2． 67	－	－	－	－
43	FPR5016	12	89	468	5.25	－	12	112	410	3.66	－	－	－	－
44	FPR5017	57	84	468	5.57	－	57	99	410	4． 14	－	－	－	－
45	FPR5018	43	73	468	6.41	－	43	103	410	3.98	－	－	－	－
46	FPR5011	63	65	468	7.20	－	63	141	410	2． 90	－	－	－	－
47	FPR5012	1	73	468	6.41	－	1	109	410	3.76	－	－	－	－
48	FP－125a	15	44	468	10.63	－	15	46	410	8.91	－	－	－	－
49	FP－125b	58	51	468	9.17	－	11	82	410	5． 00	－	－	－	－

∞

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評価点	疲労 累積 係数	代 表
50	FP－127a	40	45	468	10.40	－	40	36	410	11.38	－	－	－	－
51	FP－127b	23	123	468	3.80	－	23	188	410	2.18	－	－	－	－
52	FPR5291	32	73	468	6.41	－	1	138	410	2.97	－	－	－	－
53	FPR5331	55	43	468	10.88	－	64	246	410	1.66	－	－	－	－
54	FPR5332	23	75	468	6.24	－	23	123	410	3.33	－	－	－	－
55	FPR7411	74	75	468	6.24	－	1	166	410	2.46	－	－	－	－
56	FPR7461	76	73	468	6.41	－	1	213	410	1.92	－	－	－	－
57	FP－129a	20	36	468	13.00	－	32	104	410	3.94	－	－	－	－
58	FP－129b	12	50	468	9.36	－	3	86	410	4． 76	－	－	－	－
59	FP－130a	29	38	468	12.31	－	36	74	410	5． 54	－	－	－	－
60	FP－130b	1	61	468	7.67	－	1	89	410	4.60	－	－	－	－
61	FP－133a	24	50	468	9． 36	－	24	60	410	6.83	\square	－	－	－
62	FP－133b	36	89	468	5.25	－	99	143	410	2． 86	－	－	－	－
63	FP－134a	16	43	468	10.88	－	16	39	410	10.51	－	－	－	－
64	FP－134b	1	32	468	14.62	－	12	37	410	11.08	－	－	－	－
65	FP－164a	19	61	468	7.67	－	19	85	410	4.82	－	－	－	－
66	FP－164b	40	71	468	6.59	－	42	94	410	4． 36	－	－	－	－

$\stackrel{\infty}{\checkmark}$

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代 表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	疲労 累積 係数	代 表
67	FP－137a	22	71	468	6.59	－	22	109	410	3.76	－	－	－	－
68	FP－137b	34	90	468	5.20	－	34	119	410	3.44	－	－	－	－
69	FPR7301	25	41	468	11.41	－	33	251	410	1． 63	－	－	－	－
70	FPR7302	124	49	468	9.55	－	20	175	410	2.34	－	－	－	－
71	FPR7291	121	52	468	9.00	－	22	163	410	2.51	－	－	－	－
72	FP－140a	12	30	468	15．60	－	14	18	410	22． 77	－	－	－	－
73	FP－140b	73	115	468	4.06	－	73	193	410	2.12	－	－	－	－
74	FP－141a	21	41	468	11.41	－	23	46	410	8.91	－	－	－	－
75	FP－141b	10	46	468	10． 17	－	8	55	410	7.45	－	－	－	－
76	FPR7451	73	68	468	6.88	－	73	130	410	3.15	－	－	－	－
77	FPR7471	78	79	468	5.92	－	78	139	410	2.94	－	－	－	－
78	FP－147a	13	51	468	9.17	－	13	44	410	9.31	－	－	－	－
79	FP－147b	28	75	468	6． 24	－	13	203	410	2． 01	－	－	－	－
80	FP－150a	76	67	468	6.98	－	193	99	410	4.14	－	－	－	－
81	FP－150b	1	102	468	4.58	－	1	159	410	2.57	－	－	－	－
82	FPR9201	11	53	468	8.83	－	11	97	410	4． 22	－	－	－	－
83	FP－153a	22	52	468	9.00	－	24	72	410	5.69	－	－	－	－

∞

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	疲労 累積 係数	代表
84	FP－153b	44	107	468	4.37	－	44	177	410	2． 31	－	－	－	－
85	FP－158a	28	54	468	8.66	－	28	70	410	5． 85	－	－	－	－
86	FP－158b	1	47	468	9.95	－	1	94	410	4． 36	－	－	－	－
87	FPR9301	12	78	468	6.00	－	12	190	410	2.15	－	－	－	－
88	FPR9331	34	53	468	8.83	－	13	93	410	4． 40	－	－	－	－
89	FPC1051	52	39	468	12.00	－	103	214	410	1.91	－	－	－	－
90	FPC1052	1	86	468	5.44	－	1	211	410	1.94	－	－	－	－
91	FPC1011	1	43	468	10.88	－	1	79	410	5．18	－	－	－	－
92	FPC1031	41	38	468	12.31	－	41	183	410	2． 24	－	－	－	－
93	FPC1032	56	107	468	4.37	－	57	164	410	2.50	－	－	－	－
94	FPC1021	43	142	468	3.29	－	43	256	410	1． 60	－	－	－	－
95	FPC1041	7	30	468	15.60	－	20	51	410	8． 03	－	－	－	－
96	FPC2011	20	58	468	8.06	－	60	130	410	3.15	－	－	－	－
97	FPC2021	45	87	468	5.37	－	45	251	410	1． 63	－	－	－	－
98	FPC2022	59	78	468	6.00	－	1	145	410	2． 82	－	－	－	－
99	FPC2041	77	101	468	4.63	－	1	199	410	2． 06	－	－	－	－
100	FPC2061	9	83	468	5.63	－	1	143	410	2． 86	－	－	－	－

\oplus

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	疲労 累積 係数	代 表
101	FPC2071	111	101	468	4． 63	－	111	189	410	2.16	－	－	－	－
102	FP－007a	51	43	468	10.88	－	51	32	410	12.81	－	－	－	－
103	FP－007b	1	161	468	2.90	－	1	267	410	1.53	－	－	－	－
104	FP－009a	30	42	468	11.14	－	30	28	410	14． 64	－	－	－	－
105	FP－009b	1	142	468	3.29	－	1	222	410	1.84	－	－	－	－
106	FPC2131	83	130	468	3.60	－	83	241	410	1． 70	－	－	－	－
107	FP－013a	12	30	468	15.60	－	14	20	410	20.50	－	－	－	－
108	FP－013b	36	111	468	4.21	－	36	208	410	1.97	－	－	－	－
109	FP－014a	13	47	468	9.95	－	13	68	410	6.02	－	－	－	－
110	FP－014b	5	49	468	9.55	－	8	153	410	2． 67	－	－	－	－
111	FPC3191	19	159	468	2.94	－	19	286	410	1． 43	－	－	－	－
112	FPC3193	44	146	468	3.20	－	44	253	410	1． 62	－	－	－	－
113	FPC3201	30	60	468	7.80	－	2	139	410	2． 94	－	－	－	－
114	FPC3261	4	51	468	9.17	－	15	156	410	2． 62	－	－	－	－
115	FP－023a	14	33	468	14.18	－	16	30	410	13.66	－	－	－	－
116	FP－023b	20	55	468	8.50	－	20	106	410	3.86	－	－	－	－
117	FP－022a	12	37	468	12.64	－	14	30	410	13.66	－	－	－	－

90

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	疲労 累積 係数	代 表
118	FP－022b	90	96	468	4.87	－	90	180	410	2.27	－	－	－	－
119	FP－KU1	40	41	468	11.41	－	17	85	410	4． 82	－	－	－	－
120	FP－KU2	26	78	468	6.00	－	26	139	410	2.94	－	－	－	－
121	FP－KU3	38	57	468	8.21	－	38	92	410	4． 45	－	－	－	－
122	FP－KUNS	120	49	468	9.55	－	34	118	410	3． 47	－	－	－	－
123	FP－KUNN	36	42	468	11.14	－	3	101	410	4.05	－	－	－	－
124	HFP000	32	72	468	6.50	－	32	127	410	3.22	－	－	－	－
125	HFP321	70	55	468	8.50	－	70	82	410	5.00	－	－	－	－
126	HFP322	13	80	468	5.85	－	13	111	410	3.69	－	－	－	－
127	HFP323	19	45	468	10． 40	－	19	55	410	7.45	－	－	－	－
128	HFP324	16	44	468	10.63	－	1	65	410	6.30	－	－	－	－
129	HFP325	63	50	468	9．36	－	63	58	410	7.06	－	－	－	－
130	HFP326	23	49	468	9.55	－	23	68	410	6.02	－	－	－	－
131	HFP334	66	51	468	9.17	－	66	60	410	6.83	－	－	－	－
132	HFP335	15	57	468	8． 21	－	15	81	410	5.06	－	－	－	－
133	HFP331	8	65	468	7． 20	－	8	170	410	2． 41	－	－	－	－
134	HFP332	8	75	468	6.24	－	8	179	410	2.29	－	－	－	－

$$
\mathrm{O} 2 \text { (3) VI-2-別添1-7 R O }
$$

\bullet

No	配管モデル	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評価点	疲労 累積 係数	代 表
135	HFP333	11	75	468	6.24	－	11	137	410	2.99	－	－	－	－
136	FP301aS	30	41	468	11.41	－	30	22	410	18.63	－	－	－	－
137	FP301bS	88	53	468	8.83	－	88	51	410	8.03	－	－	－	－
138	FP301d	6	29	468	16.13	－	1	21	410	19.52	－	－	－	－
139	FP－135a	21	61	468	7.67	－	21	154	410	2.66	－	－	－	－
140	FP－135b	19	70	468	6.68	－	21	137	410	2.99	－	－	－	－
141	FPR9011	71	59	468	7.93	－	25	109	410	3． 76	－	－	－	－
142	FPR9281	139	145	468	3.22	－	139	253	410	1.62	－	－	－	－

4．2．4 ケーブルトレイ消火設備耐震評価結果
設置位置での加速度と加振台の最大加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

消火配管		設置位置での加速度＊	加振台の最大加速度
	水平方向	2.65	6.03
	鉛直方向	1.77	2.16

注記＊：消火配管は建屋壁に設置されるため，設置床上階の設備評価用床応答曲線を用いる。

VI－2－別添1－8 火災防護設備の水平2方向及び鉛直方向地震力の組合せに関する影響評価結果
1．概要 1
2．影響評価 1
2.1 基本方針 1
2.2 評価条件及び評価方法 1
3．評価結果 4
3.1 水平 2 方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出 4
3.2 水平 2 方向及び鉛直方向地震力の組合せの影響評価 4
3.3 水平 2 方向及び鉛直方向地震力の影響評価結果 4
3.4 まとめ 4

1．概要

本計算書は，添付書類「VI－2－別添 1－1 火災防護設備の耐震計算の方針」（以下，「VI －2－別添 1－1」という。）にて設定している構造強度及び機能維持の設計方針に基づき，火災防護設備について設計用地震力に対して十分な構造強度及び電気的機能，動的機能 を有することを確認するため，動的地震力の水平 2 方向及び鉛直方向の組合せに関する影響評価について説明するものである。

2．影響評価

2.1 基本方針

火災防護設備に関する，水平方向及び鉛直方向地震力の組合せによる影響評価につ いては，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2 機器•配管系」の評価方針及び評価方法を踏まえて，設備が有する耐震性に及ぼす影響を評価する。

2.2 評価条件及び評価方法

添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．各施設における水平 2 方向及び鉛直方向地震力の組合せに対する影響評価方針」を踏まえて，基準地震動 S s による地震力に対して耐震評価を実施する設備のう ち，従来の設計手法における水平1方向及び鉛直方向地震力の組み合わせた耐震計算
（以下「従来の計算」という。）に対して，設備の構造特性から水平 2 方向及び鉛直方向地震力の組合せによる影響の可能性があるものを抽出し，設備が有する耐震性に及 ぼす影響を評価する。影響評価のフローを図2－1に示す。
（1）評価対象となる設備の整理
火災防護設備のうち，基準地震動 S s による地震力に対してその機能が維持でき ることを確認する設備を評価対象とする。（図2－1 1 ）
（2）構造上の特徴による抽出
構造上の特徴から水平2方向の地震力が重複する観点，若しくは応答軸方向以外 の振動モード（ねじれ振動等）が生じる観点にて検討を行い，水平2方向の地震力に よる影響の可能性がある設備を抽出する。（図2－1（2））
（3）発生値の増分による抽出
水平2方向の地震力による影響の可能性がある設備に対して，水平2方向の地震力 が各方向1：1で入力された場合に各部にかかる荷重や応力を求め，従来の水平 1 方向及び鉛直方向地震力の組合せによる設計に対して，水平 2 方向及び鉛直方向地震力 を考慮した発生値の増分を用いて影響を検討し，耐震性への影響が懸念される設備 を抽出する。

また，建物•構築物及び屋外重要土木構造物の検討により，機器•配管系への影

響の可能性がある部位が抽出された場合は，機器•配管系への影響を評価し，耐震性への影響が懸念される設備を抽出する。（図2－1（3）
（4）水平2方向及び鉛直方向地震力の影響評価
「（3）発生値の増分による抽出」の検討において算出された荷重や応力を用い て，設備が有する耐震性への影響を検討する。（図2－1（4）

図 2－1 水平2方向及び鉛直方向地震力による影響評価フロー

3．評価結果

3.1 水平 2 方向及び鋁直方向地震力の組合せの評価設備（部位）の抽出

火災防護設備のらち，水平2方向及び鉛直方向地震力の評価対象設備を表3－1に示す。添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」 の「4．2 機器•配管系」の評価設備（部位）の抽出方法を踏まえ，評価対象設備の各評価部位，応力分類に対し構造上の特徴から，水平 2 方向の地震力による影響を以下の項目により検討し影響の可能性がある設備を抽出した。
（1）水平2方向の地震力が重複する観点
評価対象設備は，水平 1 方向の地震に加えて，さらに水平直交方向に地震力が重複 した場合，水平2方向の地震力による影響検討が必要となる可能性があるものとし て抽出した。
（2）水平方向とその直交方向が相関する振動モード（ねじれ振動等）が生じる観点水平方向とその直交方向が相関する振動モードが生じることで有意な影響が生じ る可能性がある設備を抽出した。
（3）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点
（1）及び（2）にて影響の可能性がある設備について，水平2方向の地震力が各方向 1：1 で入力された場合に各部にかかる荷重や応力を求め，従来の計算による発生値 と比較し，その増分により影響の程度を確認し，耐震性への影響が懸念される設備 を抽出した。
3.2 水平2方向及び鉛直方向地震力の組合せの影響評価

表3－2にて抽出された設備について，水平2方向及び鉛直方向地震力を想定した発生値を，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2 機器•配管系」の方法にて算出した。
3.3 水平2方向及び鉛直方向地震力の影響評価結果

「3．2水平2方向及び鉛直方向地震力の組合せの影響評価」の影響評価条件にて算出した発生値に対して，設備が有する耐震性への影響を評価した。影響評価結果を表 3－3及び表3－4に示す。
3.4 まとめ

火災防護設備について，水平2方向及び鉛直方向地震力を想定した場合でも火災防護設備が有する耐震性への影響がないことを確認したため，従来の水平1方向及び鉛直方向地震力の組合せによる設計手法に加えて更なる設計上の配慮が必要な設備はな い。

表 3－1 水平 2 方向及び鉛直方向地震力の評価対象設備

設備名称	評価対象部位
火災感知器	基礎ボルト 溶接部
火災受信機盤	基礎ボルト 取付ボルト
ガスボンベ設備	ボンベラック 基礎ボルト
弁ラック 択弁	基礎ボルト 溶接部
取付ボルト	

表 3－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（1／2）
（凡例）○：影響の可能性あり
\triangle ：影響軽微
－：該当なし
（1）構造強度評価

設備名称	水平2方向及び鉛直方向地震力の影響の可能性			
	3．1項（1） の観点	3．1項（2） の観点	3．1項（3） の観点	検討結果
火災感知器	\bigcirc	－	\bigcirc	影響評価結果は表3－3参照
火災受信機盤	\bigcirc	－	\bigcirc	影響評価結果は表3－3参照
ガスボンベ設備	\triangle	－	－	応答軸が明確でありその影響は軽微で ある。
選択弁	\bigcirc	－	\bigcirc	影響評価結果は表3－3参照
制御盤	\bigcirc	－	\bigcirc	影響評価結果は表3－3参照
消火配管	\triangle	\bigcirc	－	消火配管は，従来評価にて水平2方向及 び鉛直方向地震力を考慮済である。配管系は3次元モデルを用いた解析に より，従来評価よりねじれモードを考慮した耐震評価を実施しているため，水平方向とその直交方向が相関する振動モードにより影響は考慮済である。

表 3－2 水平2方向及び鉛直方向地震力の評価部位の抽出結果（2／2）
（凡例）○：影響の可能性あり
\triangle ：影響軽微
－：該当なし
（2）機能維持評価

設備名称	水平2方向及び鉛直方向地震力の影響の可能性			
	3．1項（1） の観点	3．1項（2） の観点	3． 1 項（3） の観点	検討結果
火災感知器	\bigcirc	－	\bigcirc	影響評価結果は表3－4参照
火災受信機盤	\bigcirc	－	\bigcirc	影響評価結果は表3－4参照
容器弁	\bigcirc	－	\bigcirc	影響評価結果は表3－4参照
選択弁	\bigcirc	－	\bigcirc	影響評価結果は表3－4参照
制御盤	\bigcirc	－	\bigcirc	影響評価結果は表3－4参照

O2（3）VI－2－別添1－8 R 0
（1）構造強度評価
表3－3 水平2方向及び鉛直方向地震力による構造強度評価結果
（単位：MPa）

設備名称		水平 2 方向及び鉛直方向地震力の影響の可能性			
		応力評価部位	1 方向入力発生応力＊1	2方向想定発生応力＊2	許容応力
火 災 感 知 器	煙感知器 熱感知器 防水型熱感知器 防爆型煙感知器（1）	基礎ボルト	29	41	193
	防爆型熱感知器 防爆型煙感知器（2）	基礎ボルト	8	12	193
	防湿型煙感知器	基礎ボルト	25	36	193
	炎感知器	基礎ボルト	6	9	193
	屋外仕様炎感知器	溶接部	12	17	141
	熱感知カメラ	溶接部	15	22	141
火災受信機盤		基礎ボルト	100	142	193
選択弁		溶接部	21	30	141
制御盤		基礎ボルト	10	15	210

発生応力はすべて許容応力以下である。
注記＊1：基準地震動 S S による地震力において発生する応力を記載している。
＊2：「1方向入力発生応力」に対して 2 を乗じた値を記載している。
（2）機能維持評価
表3－4 水平2方向及び鉛直方向地震力による機能維持評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

設備名称		水平 2 方向及び鉛直方向地震力の影響の可能性			
				水平方向加速度	
		評価部位	1 方向入力発生加速度＊1	2方向想定発生加速度＊2	機能確認済加速度
	煙感知器 熱感知器 防水型熱感知器 防爆型煙感知器（1）	加振台への取付位置	6.07	8． 59	10.00
	防爆型熱感知器 防爆型煙感知器（2）	加振台への取付位置	6.07	8.59	10.00
	防湿型煙感知器	加振台への取付位置	6.07	8.59	11.00
器	炎感知器	加振台への取付位置	6.07	8.59	9.00
	屋外仕様炎感知器	加振台への取付位置	2． 77	3.92	7． 74
	熱感知カメラ	加振台への取付位置	2． 77	3.92	10.21
火災受信機盤		加振台への取付位置	2.41	3.41	5.00
容	ガスボンベ設備容器弁	加振台への取付位置	1． 77	2.51	10.00
器	ケーブルトレイ消火設備容器弁	加振台への取付位置	2.21	3.13	5． 19
選択弁		加振台への取付位置	0.70	0.99	5.00
制御盤		加振台への取付位置	2.32	3.28	5.00

2方向想定発生加速度はすべて機能確認済加速度以下である。
注記＊1：基準地震動 S sによる地震力において発生する加速度を記載している。
＊2：「1方向入力加速度」に対して 2 2を乗じた値を記載している。

VI－2－別添2 溢水防護に係る施設の耐震性に関する説明書

VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針
VI－2－別添 2－6 逆流防止装置の耐震性についての計算書

VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針

目次

1．概要 1
2．耐震評価の基本方針 2
2.1 評価対象施設 2
2．1．1 耐震 B，Cクラス機器 2
2．1．2 溢水防護に係る施設 2
3．荷重及び荷重の組合せ並びに許容限界 8
3.1 荷重及び荷重の組合せ 8
3．1．1 荷重の種類 8
3．1．2 荷重の組合せ 8
3.2 許容限界 9
3．2．1 耐震 B，C クラス機器 9
3．2．2 溢水防護に係る施設 9
4．耐震評価方法 10
4.1 地震応答解析 10
4．1．1 入力地震動 12
4．1．2 解析方法及び解析モデル 12
4．1．3 設計用減衰定数 13
4．2 耐震評価 15
4．2．1 耐震評価方法 15
4.3 機能維持評価 16
4．3．1 動的機能の維持 16
4．3．2 電気的機能の維持 16
4.4 水平2方向及び鉛直方向地震力の考慮 17
5．適用規格 17

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年 6 月 28 日原子力規制委員会規則第 6 号）（以下「技術基準規則」という。）」第 12 条及び第 54 条並びに「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に適合する設計とするため，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」のらち添付書類「VI－1－1－8－3 溢水評価条件の設定」にて耐震性を有することから溢水源として設定しないとした耐震 B，C クラス機器（以下「耐震 B，C クラス機器」という。）及び耐震 C クラス機器で工事計画の基本設計方針に示す浸水防護施設の主要設備リストに記載のない浸水防護施設（以下「溢水防護に係る施設」とい う。）が，基準地震動 S s による地震力に対して耐震性を有することを確認するための耐震計算方針について説明するものである。耐震 B，C クラス機器及び溢水防護に係る施設への基準地震動S s による地震力に対する耐震性の要求は，技術基準規則の第 5 条及び 50 条の対象ではない。
耐震B，Cクラス機器の具体的な計算の方法及び結果は，添付書類「VI－2－別添2－2 溢水源とし ない耐震 B，C クラス機器の耐震性についての計算書」に，溢水防護に係る施設のうち循環水系隔離システム，タービン補機冷却海水系隔離システム（以下「漏えい検出器」という。），逆流防止装置，タービン補機冷却海水ポンプ吐出弁及び復水器水室出入口弁の具体的な計算の方法及び結果 は，添付書類「VI－2－別添2－4循環水系隔離システムの耐震性についての計算書」，添付書類「VI－ 2－別添 2－5 タービン補機冷却海水采隔離システムの耐震性についての計算書」，添付書類「VI－2－別添 2－6 逆流防止装置の耐震性についての計算書」，添付書類「VI－2－別添2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書」及び添付書類「VI－2－別添 2－8 復水器水室出入口弁の耐震性についての計算書」に示すとともに，動的地震力の水平 2 方向及び鈖直方向の組合せ に対する各設備の影響評価結果は，添付書類「VI－2－別添2－3 溢水防護に係る施設の水平 2 方向及 び鉛直方向地震力の組合せに関する影響評価結果」に示す。

また，基準地震動 S s による地震力に対し，止水性の維持を期待する貫通部止水処置の耐震性に ついては，評価対象が同一である添付書類「VI－2－10－2－11－2 貫通部止水処置（内郭防護）の耐震性についての計算書」に示す。

なお，主要設備リストに記載する浸水防護に係る浸水防護施設となる水密扉，蓋及び堰の基本方針書を，添付書類「VI－2－1－9 機能維持の基本方針」に示し，その耐震性についての計算書を添付書類「VI－2－10－2－7－1 水密扉（浸水防止設備）の耐震性についての計算書」，添付書類「VI－2－10－ 2－7－2 水密扉（溢水防護設備）の耐震性についての計算書」，添付書類「VI－2－9－3－2 原子炉建屋大物搬入口の耐震性についての計算書」，添付書類「VI－2－10－2－8－6 浸水防止蓋（第 2 号機軽油タン クエリア）の耐震性についての計算書」及び添付書類「VI－2－10－2－12 堰の耐震性についての計算書」に示す。

2．耐震評価の基本方針
耐震評価は，「2．1 評価対象施設」に示す評価対象施設を対象として，「3．1荷重及び荷重の組合 せ」で示す基準地震動 S s による地震力と組み合わすべき他の荷重による組合せ荷重による応力又は荷重（以下「応力等」という。）が，「3．2許容限界」で示す許容限界内にあることを，「4．耐震評価方法」に示す評価方法を使用し，「5．適用規格」で示す適用規格を用いて確認する。

耐震 B，C クラス機器及び溢水防護に係る施設は，基準地震動 S s による地震力に対して，その機能を維持又は保持できる設計とすることを踏まえ，水平 2 方向及び鉛直方向地震力を適切に組 み合わせて実施する。影響評価方法は「4．4水平2方向及び鉛直方向地震力の考慮」に示す。

2.1 評価対象施設

評価対象施設は，耐震 B，C クラス機器及び溢水防護に係る施設（添付書類「VI－2－10－2－1 浸水防護施設の耐震性についての計算結果」で評価する浸水防護施設を除く。以下同じ。）を対象 とする。

2．1．1耐震 B，Cクラス機器
添付書類「VI－1－1－8－3 溢水評価条件の設定」にて溢水源となり得る流体を内包する機器 のうち，基準地震動 S s による地震力に対して溢水源として想定しない耐震 B ，C クラス機器を評価対象施設とする。

評価対象施設のポンプ，熱交換器等，配管，弁及び支持構造物の構造は，添付資料「VI－ 2－1－13 機器•配管系の計算書作成の方法」に示す各構造を踏まえ，応答性状を適切に評価 することで適用する地震力に対して構造強度を有する構造とする。

2．1．2 溢水防護に係る施設
溢水防護に関する施設の構造計画を表 2－1，表2－2，表 2－3，表 $2-4$ 及び表 $2-5$ に示す。

表 2－1 構造計画（循環水系隔離システム漏えい検知）

表 2－2 構造計画（タービン補機冷却海水系隔離システム漏えい検知）

表 2－3 構造計画（復水器水室出入口弁）

表 2－4 構造計画（タービン補機冷却海水ポンプ吐出弁）

配置図		
：タービン補機	海水ポンプ室 O．P． 3 却海水ポンプ吐出弁	
主体構造	支持構造	概略構造図
電動バタフライ弁であり，弁体を含む弁本体，弁体を電動にて駆動する駆動部で構成する。	タービン補機冷却海水系配管に固定される。配管 については，床面に支持構造物にて固定する。	

表 2－5 構造計画（逆流防止装置）（1／2）

逆流防止装置の設置位置				
機器名称	建屋	設置階	高さ (m)	
逆流防止装置	原子炉建屋	地下 3 階	$0 . \mathrm{P} .-8.1$	
	制御建屋	地下 2 階	$0 . \mathrm{P} .1 .5$	

表 2－5 構造計画（逆流防止装置）（2／2）

計画の概要		概略構造図
主体構造	支持構造	
弁座を含む弁本体，弁体で あるフロート及びフロート を弁座に導くフロートガイ ドで構成する。	配管のねじ切り部に直接 ねじ込み固定とする。	

3．荷重及び荷重の組合せ並びに許容限界
耐震 B，C クラス機器及び溢水防護に係る施設の耐震評価に用いる荷重及び荷重の組合せを，「3．1荷重及び荷重の組合せ」に，許容限界を「3．2許容限界」に示す。
3.1 荷重及び荷重の組合せ

3．1．1荷重の種類
応力評価に用いる荷重は，溢水起因の荷重と組み合わせない＊ため，以下の荷重を用い る。
（1）常時作用する荷重（D）
常時作用する荷重は，持続的に生じる荷重であり，自重とする。
（2）内圧荷重（ P_{D} ）
内圧荷重は，当該設備に設計上定められた最高使用圧力による荷重とする。
（3）機械的荷重（ M_{D} ）
当該設備に設計上定められた機械的荷重
（4）地震荷重（S s ）
地震荷重は，基準地震動S s により定まる地震力とする。

3．1．2荷重の組合せ

荷重の組合せは，溢水起因の荷重と組み合わせない＊ため，添付書類「VI－2－1－9 機能維持の基本方針」の「3．1構造強度上の制限」に示す機器•配管系の荷重の組合せを踏まえ て設定する。

注記＊：地震起因により発生する溢水は，地震後に作用するため，地震荷重と組み合 わせない。なお，添付書類「VI－1－1－8－3 溢水評価条件の設定」にて溢水源と して設定する想定破損による溢水及び消火水の放水による溢水による荷重 は，地震起因による溢水と重畳しない。

3.2 許容限界

3．2．1 耐震 B，C クラス機器

耐震 B，C クラス機器の許容限界は，基準地震動 S s による地震力に対する耐震性を有 し，機器の破損により溢水源とならない設計とするため，添付書類「VI－2－1－9 機能維持 の基本方針」に示している各機器の許容応力状態IV A S の許容限界を準用する。

3．2．2 溢水防護に係る施設

溢水防護に係る施設の許容限界は，添付書類「VI－1－1－8－5 溢水防護施設の詳細設計」 にて設定している施設ごとの構造強度設計上の性能目標及び設計方針を踏まえて，評価対象部位ごとに，地震時及び地震後に機能維持が可能となるように設定する。

溢水防護に係る施設ごとの許容限界の詳細は，各計算書で評価対象部位の損傷モードを踏まえ評価項目を選定し定める。
（1）漏えい検出器
漏えい検出器の許容限界は，基準地震動 S s による地震力に対し，地震後の循環水系配管及びタービン補機冷却海水系配管の漏えいを検出する機能の維持を考慮して，主要な構造部材が上記機能を維持可能な構造強度を有する設計とするため，漏えい検出器を固定す る基礎ボルトは，添付書類「VI－2－1－9 機能維持の基本方針」に示している「その他の支持構造物」の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ S の許容限界を準用する。

評価対象部位ごとの許容限界を表3－1に示す。

表 3－1 評価対象部位ごとの許容限界

設備名称	荷重の 組合せ	評価対象 部位	機能損傷モード		許容限界
			応力等 の状態	限界状態	
漏えい 検出器	$\mathrm{D}+\mathrm{S} \mathrm{s}$	基礎ボルト	$\begin{gathered} \text { 引張 } \\ \text { せん断 } \end{gathered}$	部材が弾性域に とどまらず塑性域に入る状態	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とする。

（2）逆流防止設備
逆流防止装置の許容限界は，基準地震動 S s による地震力に対し，地震後の止水性の維持を考慮して逆流防止装置が上記機能を維持可能な構造強度を有する設計とするため，添付書類「VI－2－1－9 機能維持の基本方針」に示している「クラス 2 ， 3 配管」の許容応力状態III A S の許容限界を準用する。

評価対象部位ごとの許容限界を表3－2に示す。

表 3－1 評価対象部位ごとの許容限界

設備名称	荷重の組合せ	評価対象 部位	機能損傷モード		許容限界
			応力等 の状態	限界状態	
逆流防止装置	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}} \\ +\mathrm{M}_{\mathrm{D}}+ \\ \mathrm{S} \mathrm{~s} \end{gathered}$	弁本体，フロ ートガイド	曲げ 引張	部材が弾性域に とどまらず塑性域に入る状態	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とする。
		フロート	圧縮	有意な漏えいに至る変形	水圧試験で確認した水圧以下とする。
		取付部	引張		

（3）復水器水室出入口弁
復水器水室出入口弁の許容限界は，基準地震動 S s による地震動に対し，地震後の閉止 する機能の維持を考慮して弁本体及び弁を支持する管が上記機能を維持可能な構造強度を有する設計とするため，添付書類「VI－2－1－9 機能維持の基本方針」に示している各機器 の許容応力状態III A S の許容限界を準用する。
（4）タービン補機冷却海水ポンプ吐出弁
タービン補機冷却海水ポンプ吐出弁の許容限界は，基準地震動 S s による地震力に対 し，地震後の閉止する機能の維持を考慮して弁本体及び弁を支持する管，支持構造物が上記機能を維持可能な構造強度を有する設計とするため，添付書類「VI－2－1－9 機能維持の基本方針」に示している各機器の許容応力状態III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容限界を準用する。

4．耐震評価方法

耐震 B，C クラス機器及び溢水防護に係る施設の耐震評価は，「4．1地震応答解析」，「4．2耐震評価」及び「4．3機能維持評価」に従って実施する。

4． 1 地震応答解析

耐震 B，C クラス機器の地震応答解析は，「4．1．1 入力地震動」に示す入力地震動，「4．1．2解析方法及び解析モデル」に示す解析方法及び「4．1．3設計用減衰定数」に示す減衰定数を用いて実施する。

図 4－1 に耐震 B，C クラス機器の地震応答解析の手順を示す。

図 4－1 耐震 B，C クラス機器の地震応答解析の手順

4．1．1 入力地震動

耐震 B，C クラス機器及び溢水防護に係る施設の地震応答解析に用いる入力地震動は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

4．1．2解析方法及び解析モデル
動的解析による地震力の算定に当たつては，地震応答解析手法の適用性及び適用限界を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべき減衰定数，剛性等，各種物性値は，適切な規格•基準，あるいは実験等の結果に基づき設定する。

機器の解析に当たつては，形状，構造特性等を考慮して，代表的な振動モードを適切に表現できるよう 1 質点系，多質点系モデル等に置換し，定式化された評価式を用いた解析法（一般機器等）又は，設計用床応答曲線を用いたスペクトルモーダル解析法により応答 を求める。

剛性の高い機器は，その機器の設置床面の設計用最大床加速度の 1.2 倍の加速度を震度 として作用させて地震力を算出する。

配管系については，多質点系モデルに置換し，設計用床応答曲線を用いたスペクトルモ ーダル解析法により応答を求める。

なお，動的解析に用いる地震力は材料物性のばらつき等を適切に考慮する。
（1）解析方法

- 定式化された評価式を用いた解析法（一般機器等）
- スペクトルモーダル解析法
（2）解析モデル
代表的な機器•配管系の解析モデルを以下に示す。耐震評価に用いる寸法は，公称値を使用する。
a．一般機器
ポンプ，熱交換器等の一般の機器は，機器本体及び支持構造物の剛性をそれぞれ考慮 し，原則として重心位置に質量を集中させた 1 質点系にモデル化する。
b．配管
配管は 3 次元多質点はりモデルに置換する。

4．1． 3 設計用減衰定数

地震応答解析に用いる減衰係数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に設定している，「原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会）」に記載されている減衰定数又は試験等で妥当性が確認された値を用いる。具体的 には表 4－1 に示す値を用いる。

表 4－1 減衰定数
（1）機器•配管系

対象設備		減衰定数（\％）	
		鉛直方向	
溶接構造物	1.0	$1.0^{* 1}$	
ボルト及びリベット構造物	2.0	$2.0^{* 1}$	
ポンプ・ファン等の機械装置	1.0	$1.0^{* 1}$	
配管系	$0.5 \sim 3.0 * 2, * 3$	$0.5 \sim 3.0^{* 1, * 2, * 3}$	

注記 $* 1$ ：既往の研究等において，設備の地震入力方向の依存性や減衰特性について検討され妥当性が確認された値。
＊2：既往の研究等において，試験及び解析等により妥当性が確認されている値。 ＊ 3 ：具体的な適用条件を「（2）配管系の設計用減衰定数」に示す。
（参考文献）
電力共通研究「機器•配管系に対する合理的耐震評価法の研究（H12～H13）」
電力共通研究「鉛直地震動を受ける設備の耐震評価手法に関する研究（H7～H10）」
（2）配管系の減衰定数

配管区分		減衰定数＊1（\％）	
		保温材無	保温材有＊2
I	スナッバ及び架構レストレイント支持主体 の配管系で，支持具（スナッバ又は架構レ ストレイント）の数が 4 個以上 ${ }^{*} 4$ のもの	2.0	3． $0^{* 3}$
II	スナッバ，架構レストレイント，ロッドレ ストレイント，ハンガ等を有する配管系 で，その支持具（アンカ及びUボルトを除 く）数が 4 個以上＊${ }^{4}$ であり，配管区分 Iに属さないもの	1.0	2． $0^{* 3}$
III	Uボルトを有する配管系で，架構で水平配管の自重を受けるUボルトの数が 4 個以上＊ 4のもの	2． $0^{* 3}$	3． $0^{* 3}$
IV	配管区分I，II 及びIIIに属さないもの	0.5	1． $5^{* 3}$

注記 $* 1$ ：水平方向及び鉛直方向の設計用減衰定数は同じ値を使用。
＊2：金属保温材による付加減衰定数は，配管全長に対する金属保温材使用割合が 40%以下の場合 1.0% を適用するが，金属保温材使用割合が 40% を超える場合は 0.5 \％とする。
＊3：「原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会）」で規定されている配管系の設計用減衰定数に，既往の研究等において妥当性が確認された値を反映。
＊ 4 ：支持具の種類及び数は，アンカからアンカまでの独立した振動系について算定す る。
（参考文献）
電力共通研究「機器•配管系に対する合理的耐震評価法の研究（H12～H13）」
電力共通研究「鉛直地震動を受ける設備の耐震評価手法に関する研究（H7～H10）」

4． 2 耐震評価

耐震 B，C クラス機器及び溢水防護に係る施設の耐震評価は，「3．1荷重及び荷重の組合せ」 にて示す荷重の組合せに対して，「4．1 地震応答解析」で示した地震応答解析により発生応力を算出し，「3．2許容限界」にて設定している許容限界内にあることを確認する。評価手法は，定式化された評価式を用いた解析法又はスペクトルモーダル解析法により，「原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）」に基づき実施することを基本とする。

4．2．1 耐震評価方法

添付書類「VI－2－別添2－2 溢水源としない耐震B，C クラス機器の耐震性についての計算書」，添付書類「VI－2－別添2－4 循環水系隔離システムの耐震性についての計算書」，添付書類「VI－2－別添 2－5 タービン補機冷却海水系隔離システムの耐震性についての計算書」，添付書類「VI－2－別添2－6 逆流防止装置の耐震性についての計算書」，添付書類「VI－ 2－別添2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書」及び添付書類「VI－2－別添 2－8 復水器水室出入口弁の耐震性についての計算書」の評価方法について示す。
（1）耐震 B，C クラス機器
評価対象の耐震 B ，C クラス機器については，添付資料「VI－2－1－13 機器•配管系の計算書作成の方法」にて示す評価方法及び「原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）」に準拠した，評価方法により評価を行う。 なお，評価式が示されない機器については，「原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）」に準拠した評価方法及び機械工学便覧に示される一般式を用いた評価を行う。
（2）逆流防止装置
評価対象の逆流防止装置については，「原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）」に準拠した，評価方法により評価を行う。
（3）漏えい検出器
評価対象の漏えい検出器については，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」にて示す評価方法に基づき評価する。
（4）復水器水室出入口弁及びタービン補機冷却海水ポンプ吐出弁
評価対象の復水器水室出入口弁及びタービン補機冷却海水ポンプ吐出弁については，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」にて示す評価方法に基づき評価する。

4． 3 機能維持評価

耐震 B，C クラス機器の溢水防護設計上の構造強度に係る機能維持の方針は，添付書類「VI $-2-1-9$ 機能維持の基本方針」の「3．1構造強度上の制限」を準用する。

溢水防護に係る施設の溢水防護設計上の構造強度に係る機能維持の動的機能の維持，電気的機能の維持及び止水性の維持に係る耐震計算の方針は，添付書類「VI－2－1－9 機能維持の基本方針」の「3．1 構造強度上の制限」及び「4．1動的機器の機能維持」及び「4．2電気的機能維持」を準用する。

4． 3.1 動的機能の維持

地震後に動的機能が要求される機器については，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」のらち添付書類「VI－1－1－8－5 溢水防護施設の詳細設計」 にて設定している設備ごとの耐震設計上の性能目標を踏まえ，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定した機能維持評価用加速度が，機能確認済加速度以下であることにより確認する。
（1）復水器水室出入口弁
復水器水室出入口弁は，地震後においても，基準地震動 S s による地震力に対して，機能維持評価用加速度が機能確認済加速度以下であることを確認する。
機能確認済加速度には，同型式の弁の加振試験において，動的機能の健全性を確認した弁の加速度を適用する。
（2）タービン補機冷却海水ポンプ吐出弁
タービン補機冷却海水ポンプ吐出弁は，地震後においても，基準地震動S s による地震力に対して，機能維持評価用加速度が機能確認済加速度以下であることを確認する。

機能確認済加速度には，同型式の弁の加振試験において，動的機能の健全性を確認した弁の加速度を適用する。

4．3． 2 電気的機能の維持

地震後に電気的機能が要求される機器については，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」のうち添付書類「VI－1－1－8－5 溢水防護施設の詳細設計」にて設定している設備ごとの耐震設計上の性能目標を踏まえ，添付書類「VI－2－1－7設計用床応答曲線の作成方針」に基づき設定した評価用加速度が，機能確認済加速度以下 であることにより確認する。

（1）漏えい検出器

漏えい検出器は，地震後においても，基準地震動 S s による地震力に対して，設計用最大応答加速度から求めた評価用加速度が機能確認済加速度以下であることを確認する。
機能確認済加速度には，同型式の検出器の正弦波加振試験において，電気的機能の健全性を確認した検出器の加速度を適用する。

4． 4 水平 2 方向及び鉛直方向地震力の考慮
耐震 B，C クラス機器及び溢水防護に係る施設については，基準地震動 S s による地震力に対して耐震性を有することを確認している。

今回，新たに水平 2 方向及び鉛直方向の組合せによる耐震設計に係る技術基準が制定され たことから，これら設備についても水平 2 方向及び鉛直方向の組合せによる影響を評価す る。

影響評価については，添付書類「VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関す る影響評価方針」の「4．2機器•配管系」の評価方針及び評価方法に基づき行う。

5．適用規格
適用する規格，指針等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版を含む））J S ME S N C 1 －2005／2007（（社）日本機械学会）
（5）機械工学便覧（（社）日本機械学会）
（6）日本産業規格（J I S ）

VI－2－別添 2－6 逆流防止装置の耐震性についての計算書

目 次

1．概要 1
2．一般事項 2
2． 1 配置概要 2
2． 2 構造計画 3
2.3 評価方針 3
2.4 適用規格 5
2.5 記号の説明 6
3．評価部位 8
4．固有周期 9
4.1 固有周期の計算方法 9
4.2 固有周期の計算条件 11
4．3 固有周期の計算結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重及び荷重の組合せ 13
5.3 許容限界 14
5.4 設計用地震力 16
5.5 計算方法 17
5.6 計算条件 19
6．機能維持評価 20
6． 1 機能維持評価方法 20
7．評価結果 21

1．概要

本資料は，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震計算の方針」に従い，逆流防止装置が設計用地震力に対して，主要な構造部材が十分な構造健全性を有するこ とを確認するものである。評価は，逆流防止装置の固有値解析，応力評価，機能維持評価及び構造健全性評価により行う。

逆流防止装置は，浸水防護施設としてCクラス施設に分類される。

2．一般事項
2.1 配置概要

逆流防止装置の設置位置を表2－1に示す。

表 2－1 逆流防止装置の設置位置

機器名称	建屋	設置階	高さ (mm)
逆流防止装置	原子炉建屋	地下 3 階	0. P．-8100
	制御建屋	地下 2 階	0. P． 1500

2．2 構造計画

逆流防止装置は，フロート式の逆止弁であり，配管内で逆流が発生するとフロート が押上げられ，弁座に密着することで止水する。逆流防止装置の構造計画を表2－2に示す。

表 2－2 構造計画

計画の概要			概略構造図
型式	主体構造	支持構造	
外ねじ 取付型	弁 座を含 む弁本体，弁 体 であ るフロー ト及びフ ロートを弁 座に導 くフロー トガイド で構成す る。	配管のね じ切り部 に直接ね じ込み固定とする。	

2.3 評価方針

逆流防止装置の耐震評価は，添付書類「VI－2－別添2－1 浸水防護に係る施設の耐震計算の方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」に示す逆流防止装置の構造を踏まえ，「3．評価部位」にて設定する評価部位 において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，逆流防止装置の機能維持評価は，逆流防止装置の固有周期を考慮し て評価用加速度を設定し，設定した評価用加速度が機能確認済加速度以下であること を「6．機能維持評価」にて示す方法にて確認することで実施する。さらに，構造健全性評価により耐震評価を実施する評価部位については，逆流防止装置の機能維持評価結果に基づき構造健全性を確認することで実施する。応力評価，機能維持評価及び構造健全性評価の評価結果を「7．評価結果」にて確認する。

なお，機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。

耐震評価フローを図2－1に示す。

図2－1 耐震評価フロー

2．4 適用規格
適用する規格，基準等を以下に示す。
（1）「発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007」（（社）日本機械学会（以下「設計•建設規格」という。））
（2）「原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987」（（社）日本電気協会）
（3）「原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補 －1984」（（社）日本電気協会）
（4）「原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版」（（社）日本電気協会）
（5）機械工学便覧（（社）日本機械学会）
（6）日本産業規格（ J I S ）
2.5 記号の説明

逆流防止装置の固有周期の計算に用いる記号を表2－3に，応力評価に用いる記号を表 2－4にそれぞれ示す。

表 2－3 逆流防止装置の固有周期の計算に用いる記号

記 号	記号の説明	単 位
A	モデル化に用いるフロートガイドの有効断面積	mm^{2}
d_{m}	モデル化に用いる弁本体の内径	mm
D_{fm}	モデル化に用いるフロートガイドの直径	mm
D m	モデル化に用いる弁本体の外径	mm
E	モデル化に用いるフロートガイドの縦弾性係数	MPa
f	逆流防止装置の一次固有振動数	Hz
T	逆流防止装置の固有周期	S
$\mathrm{I}_{\text {a }}$	モデル化に用いるフロートガイド 1 本の断面二次モーメ ント	mm^{4}
I m	モデルの等価断面二次モーメント	mm^{4}
I m 1	モデル化に用いる弁本体の断面二次モーメント	mm^{4}
I m 2	モデル化に用いるフロートガイド 4 本の等価断面二次モ ーメント	mm^{4}
k	モデルのばね定数	N / m
ℓ_{1}	モデル化に用いる弁本体の長さ	mm
l_{2}	モデル化に用いるフロートガイドの長さ	mm
m	モデル化に用いる弁の全質量	kg
yg	フロートガイドの図心 GとX軸の距離	mm

表 2－4 逆流防止装置の応力評価に用いる記号

記 号	記号の説明	単 位
C_{H}	基準地震動 S s による水平方向の設計震度	－
$\mathrm{C}_{\text {v }}$	基準地震動 S s による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	フロートガイドの最小断面積	mm^{2}
d_{1}	弁本体の内径	mm
D 1	弁本体の外径	mm
D 2	フロートガイドの最小直径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{H} 2}$	フロートガイドの最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{V} 1}$	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{v} 2}$	フロートガイドに加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
S	設計•建設規格 付録材料図表 Part5 表 5 鉄鋼材料（ボ ルト材を除く）の各温度における許容引張応力	MPa
I_{1}	弁本体の断面二次モーメント	mm ${ }^{4}$
I 2	フロートガイドの断面二次モーメント	mm ${ }^{4}$
L_{1}	弁全体の長さ	mm
L_{2}	フロートガイドの長さ	mm
m_{1}	弁の全質量	kg
m_{2}	フロートガイド 1 本当たりの質量	kg
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{2}	フロートガイドに発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{W}_{\mathrm{d} 1}$	弁全体の常時荷重	N
$\mathrm{W}_{\mathrm{d} 2}$	フロートガイド 1 本当たりに作用する常時荷重	N
σ H 1	弁本体に加わる曲げ応力	MPa
σ H 2	フロートガイドの最小断面積に加わる曲げ応力	MPa
$\sigma \times 1$	弁本体に加わる引張応力	MPa
$\sigma \times 2$	フロートガイドの最小断面積に加わる引張応力	MPa

3．評価部位

逆流防止装置は，弁本体，フロート，フロートガイド等で構成されている。耐震評価に おいては，応力評価による評価部位として，弁本体及びフロートガイドを選定し，構造健全性評価による評価部位としてフロート及び取付部を選定する。また，機能維持評価に よる評価部位として，逆流防止装置を選定する。逆流防止装置の評価部位について図 3－1に示す。

図中の①）及び②）は応力評価による評価部位を，③）及び（4）は構造健全性評価による評価部位を，それぞれ示す。

図 3－1 逆流防止装置の評価部位

4．固有周期

4． 1 固有周期の計算方法
逆流防止装置の構造に応じて，保守的に固有周期が大きく算出されるよう，より柔 となるようにモデル化し，固有周期を算出する。また，その場合においても固有周期 が 0.05 s 以下であることを確認する。
（1）解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の1質点系モデ ルとして，自由端に弁の全質量 m が集中したモデルを組む。モデル化は，円筒状の弁本体及び円柱状の 4 本のフロートガイドの異なる 2 つの断面をもつ梁の組合せと して設定する。モデル化の概略を図 4－1 に示す。

弁の全質量 m

図 4－1 モデル化の概略
（2）固有周期の計算
固有周期の計算に用いる寸法は，公称値を使用する。
固有周期 Tを以下の式より算出する。

$$
\mathrm{T}=\frac{1}{\mathrm{f}}
$$

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\left(\ell_{1}+\ell_{2}\right)^{3}} \cdot 10^{3}
\end{aligned}
$$

モデルの等価断面二次モーメント Im の算出過程を以下に示す。
a．モデル化に用いる弁本体の断面二次モーメント
モデル化に用いる弁本体の断面二次モーメント I m 1 は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m} 1}=\left(\mathrm{D}_{\mathrm{m}}^{4}-\mathrm{d}_{\mathrm{m}}^{4}\right) \cdot \frac{\pi}{64}
$$

b．モデル化に用いるフロートガイド 4 本の等価断面二次モーメント
平行軸の定理から，フロートガイドの図心GとX軸の距離 yg を を用いて，モデル化に用いるフロートガイド 4 本の等価断面二次モーメント $\mathrm{I} \mathrm{m}_{2}$ は，以下の式より算出する。フロートガイド 4 本の断面を図4－2に示す。

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a}}=\mathrm{D}_{\mathrm{fm}}^{4} \cdot \frac{\pi}{64} \\
& \mathrm{I}_{\mathrm{m} 2}=2 \cdot \mathrm{I}_{\mathrm{a}}+2 \cdot\left(\mathrm{I}_{\mathrm{a}}+(\mathrm{y} g)^{2} \cdot \mathrm{~A}\right)
\end{aligned}
$$

フロートガイドの図心 G

X軸：断面二次モーメント
を計算するときの軸

図4－2 フロートガイド 4 本の断面
c．モデルの等価断面二次モーメント
モデルの等価断面二次モーメント I mは，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\frac{\left(\ell_{1}+\ell_{2}\right)^{3} \cdot \mathrm{I}_{\mathrm{m} 1} \cdot \mathrm{I}_{\mathrm{m} 2}}{\mathrm{I}_{\mathrm{m} 1} \cdot \ell_{2}{ }^{3}+\mathrm{I}_{\mathrm{m} 2} \cdot\left(\ell_{1}^{3}+3 \cdot \ell_{1} \cdot \ell_{2}{ }^{2}+3 \cdot \ell_{1}{ }^{2} \cdot \ell_{2}\right)}
$$

4．2 固有周期の計算条件
表 4－1 に固有周期の計算条件を示す。

表 4－1 固有周期の計算条件

フロートガイド の材質	モデル化に用い る弁の全質量 $\underset{(\mathrm{kg})}{\mathrm{m}}$	モデル化に用い る弁本体の外径 $\begin{gathered} \mathrm{D}_{\mathrm{m}} \\ (\mathrm{~mm}) \end{gathered}$	モデル化に用い る弁本体の内径 $\begin{gathered} \mathrm{d}_{\mathrm{m}} \\ (\mathrm{~mm}) \end{gathered}$	モデル化に用い るフロートガイ ドの直径 D fm_{m} （mm）
SUS304	2.90	75	38	6.6

フロートガイドの図心GとX軸の距離 $\begin{gathered} \mathrm{yg} \\ (\mathrm{~mm}) \end{gathered}$	モデル化に用いる弁本体の長さ $\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { モデル化に用いるフ } \\ \text { ロートガイドの長さ } \\ \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	モデル化に用いる フロートガイドの縦弾性係数＊ E （MPa）
30	41	102	1． 922×10^{5}

注記＊：「5．3 許容限界」における温度条件での縦断性係数 E を用いる。

4．3 固有周期の計算結果

表 4－2 に固有周期の計算結果を示す。固有周期は， 0.05 s 以下であることから，剛構造である。

表 4－2 固有周期の計算結果
固有周期
（s）
0.002

5．構造強度評価
5.1 構造強度評価方法

逆流防止装置の耐震評価は，添付書類「VI－2－別添 $2-1$ 浸水防護に係る施設の耐震計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3．評価部位」にて設定する評価部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の設定
（1）固定荷重（D）
常時作用する荷重として，弁全体の自重 $W_{d 1}$ 及びフロートガイドの自重 $W_{\mathrm{d} 2}$ を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d}_{2}}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）基準地震動 S s による地震荷重（ S s ）
基準地震動 S_{s} Sによる地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{V} 1}$ ， $\mathrm{F}_{\mathrm{H} 2}$ ， $\mathrm{F}_{\mathrm{V}_{2} \text { を考慮し，以下の式 } ~}^{\text {L }}$ より算出する。

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{H} 2}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{V}_{1}}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{V}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g}
\end{aligned}
$$

5．2．2 荷重の組合せ
逆流防止装置の耐震計算にて考慮する荷重の組合せ及び許容応力状態を表 5－1 に示す。

表 5－1 荷重の組合せ及び許容応力状態

施設区分	機器名称	耐震重要度分類	荷重の組合せ＊$*^{*}$ 2	許容応力状態
浸水防護施設	逆流防止装置	C	$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \quad \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~S} \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$

注記
＊1：Dは固定荷重， P_{D} は最高使用圧力による荷重， M_{D} は機械的荷重及び S s は基準地震動 S s による地震荷重を示す。
＊2： P_{D} 及び M_{D} は荷重がかからないため考慮しない。 D 及び S s の組合せが荷重を緩和 する方向に作用する場合，保守的にこれを組合せない評価を実施する。
5.3 許容限界

逆流防止装置の弁本体，フロートガイドの許容限界を表5－2に，弁本体，フロート ガイドの許容応力評価条件を表5－3にそれぞれに示す。また，弁本体，フロートガイ ドの許容応力算出結果を表 5－4 にそれぞれ示す。

表 5－2 弁本体，フロートガイドの許容限界

許容応力状態	許容限界＊1		
	引次応力		
	引張	曲 げ	組合せ＊2
III $^{2} *^{3}$	$1.2 \cdot \mathrm{~S}$	$1.2 \cdot \mathrm{~S}$	$1.2 \cdot \mathrm{~S}$

注記＊\quad ：引張及び曲げ応力は，「原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補－1984」（（社）日本電気協会）を準用 し，「管」の許容限界のうちクラス 2 ， 3 配管に対する許容限界に準じて設定する。
＊2：引張と曲げ応力の組合せである。
＊3：地震後，当該構造物全体の変形に対して止水性を有するよう，設備を構成する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体，フロートガイドの許容応力評価条件

評価部位	材 料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{S} * 1$ (MPa)
弁本体	SUS303	60	127
フロートガイド	SUS304		127

注記＊1：鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体，フロートガイドの許容応力算出結果

許容応力状態	評価部位	許容限界		
		一次応力		
		$\begin{gathered} \text { 引 張 } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲 げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
III ${ }_{\text {A }} \mathrm{S}$	弁本体	152	152	152
	フロートガイド	152	152	152

5.4 設計用地震力

「4．固有周期」に示したとおり逆流防止装置の固有周期が 0.05 s 以下であること を確認したため，逆流防止装置の耐震計算に用いる設計震度は，添付書類「VI－2－1－7設計用床応答曲線の作成方針」に示す逆流防止装置における設置床の最大応答加速度 の 1.2 倍を考慮して設定する。逆流防止装置の耐震計算に用いる設計震度を表 5－5 に示す。

表 5－5 設計用地震力

地震動	据付場所及び床面高さ＊1 （mm）	地震による設計震度 $* 2 * 3$	
基準地震動 S s	制御建屋地下 2 階$\text { 0. P. } 1500$	水平方向 C_{H}	1． 35
		鉛直方向 C_{V}	0.79

注記＊1：基準床レベルを示す。
＊2：「4．固有周期」より，逆流防止装置の固有周期が 0.05 s 以下であることを確認したため，設置床の最大応答加速度の 1.2 倍を考慮した設計震度を設定 した。
＊3：耐震計算に用いる設計震度は，逆流防止装置が設置されている各基準床レ ベルのうち，鉛直方向及び水平方向の最大設計震度を設定した。

5.5 計算方法

（1）弁本体
弁本体の発生応力を算出する。弁本体の応力評価に用いる断面積 A_{1} は，図 5－1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。

図5－1 逆流防止装置本体の構造図
a．鉛直応答加速度負荷時
鉛直応答加速度により，弁本体に加わる引張応力 σ v 1 を以下の式より算出する。

$$
\sigma_{\mathrm{V} 1}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{V} 1}}{\mathrm{~A}_{1}}
$$

b．水平応答加速度負荷時
弁体の最下端に集中荷重が負荷された片持ち梁として，水平応答加速度により，弁本体に加わる曲げ応力 σ_{H} 1 を以下の式より算出する。

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1} \\
& \mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64} \\
& \sigma_{\mathrm{H} 1}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
\end{aligned}
$$

（2）フロートガイド
フロートガイドの応力評価に用いるフロートガイドの最小断面積 A_{2} は，以下の図 5－2 に示すフロートガイドの最小直径 D_{2} から求める。フロートガイドの最小断面積 A_{2} はフロートガイドのらち最も小さい径の断面を適用する。

図 5－2 フロートガイドの応力評価に用いる断面積
a．鉛直応答加速度負荷時
鉛直応答加速度により，フロートガイドの最小断面積に加わる引張応力 $\sigma \mathrm{V}_{2}$ を以下の式より算出する。

$$
\sigma_{\mathrm{V} 2}=\frac{\mathrm{W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{V} 2}}{\mathrm{~A}_{2}}
$$

b．水平応答加速度負荷時

フロートガイドの最下端に集中荷重が負荷された片持ち梁として，水平応答加速度により，フロートガイドの最小断面積に加わる曲げ応力 σ_{H} を を以下の式より算出する。

$$
\begin{aligned}
& \mathrm{M}_{2}=\mathrm{F}_{\mathrm{H} 2} \cdot \mathrm{~L}_{2} \\
& \mathrm{I}_{2}=\mathrm{D}_{2}{ }^{4} \cdot \frac{\pi}{64}
\end{aligned}
$$

$$
\sigma_{\mathrm{H}_{2}}=\frac{\mathrm{M}_{2} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)}{\mathrm{I}_{2}}
$$

5.6 計算条件逆流防止装置の応力評価に用いる計算条件を表5－6に示す。

表 5－6 逆流防止装置の応力評価に用いる計算条件

弁本体の材質	弁本体の断面積\quad弁の全質量 $\left(\mathrm{mm}^{2}\right)$	弁全体の長さ m_{1}	$\mathrm{~L}_{1}$
	3284	2.90	(mg)

弁本体の外径	弁本体の内径	フロートガイドの	フロートガイドの 最小断面積 (mm)
$75 \mathrm{D}_{1}$			
$(\mathrm{~mm})$	A_{2}		
材質		$\left(\mathrm{mm}^{2}\right)$	

フロートガイドの	フロートガイドの	フロートガイドの	重力加速度
1 本当たりの質量	長さ	最小直径	g
m_{2}	$\mathrm{~L}_{2}$	D_{2}	$\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
(kg)	(mm)	(mm)	9.80665
0.05	102	6.6	

6．機能維持評価

「3．評価部位」にて評価部位として設定した逆流防止装置の地震時及び地震後の機能維持を確認するため，「6．1 機能維持評価方法」に示すとおり，逆流防止装置の加振試験後に漏えい試験を実施することにより機能維持評価を実施した。

6.1 機能維持評価方法

逆流防止装置の固有周期を考慮して，地震時における逆流防止装置の評価用加速度 を設定し，設定した評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。機能確認済加速度を表 6－1 に示す。

具体的な機能維持確認として，逆流防止装置に対して，正弦波により水平方向及び鉛直方向の加振試験を実施後，内部溢水水位を上回る圧力として 0.3 MPa の水圧にて漏えい試験を実施し，漏えい量が許容漏えい量以下であることを確認した。本漏えい試験の結果により，逆流防止装置の地震時及び地震後の機能維持を確認した。

なお，固有値解析結果より，逆流防止装置の固有周期が 0.05 s 以下であることを確認したため，評価用加速度には設置床の最大応答加速度を使用する。

表 6－1 逆流防止装置の機能確認済加速度

評価部位	機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
逆流防止装置	6.0	6.0

7．評価結果

逆流防止装置の耐震評価結果を以下に示す。（1），（2）及び（3）に示す評価結果から，逆流防止装置が耐震性を有することを確認した。
（1）基準地震動 S s に対する評価部位の応力評価
基準地震動 S S に対する評価部位の応力評価結果を表 7－1 に示す。発生応力が許容応力以下であることから構造部材が構造健全性を有することを確認した。

表 7－1 基準地震動 S S に対する評価部位の応力評価結果

評価部位	評価応力	発生応力 (MPa)	許容応力 (MPa)
弁本体	引 張	1	152
	曲 げ	1	152
	組合せ＊	2	152
フロートガイド	引 張	1	152
	曲 げ	3	152
	組合せ＊	4	152

注記＊：引張（ σ v）＋曲げ（ σ_{H} ）は，$\sigma_{\mathrm{v}}+\sigma_{\mathrm{H}} \leqq 1.2 \mathrm{~S}$ で評価
（2）基準地震動 S S に対する逆流防止装置の機能維持評価
逆流防止装置の機能維持評価結果を表 7－2 に示す。表7－2 に示すとおり評価用加速度が機能確認済加速度以下であることから逆流防止装置の機能維持を確認した。

表 7－2 逆流防止装置の機能維持評価結果

評価 部位	設置階 0．P． （mm）	据付 場所	機能確認済加速度との比較			
			水平加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		鉛直加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
			評価用 加速度 ${ }^{*}$	機能確認済加速度	評価用 加速度＊	機能確認済加速度
逆流防 止装置	1500	制御建屋 （地下 2 階）	1． 13	6． 0	0.66	6． 0

注記＊：「4．固有周期」より，逆流防止装置の固有周期が 0.05 s 以下であること を確認したため，評価用加速度には逆流防止装置が設置されている各基準床レベルのうち最大応答加速度を使用した。
（3）基準地震動 S s に対するフロート及び取付部の構造健全性評価
「（2）基準地震動 S s に対する逆流防止装置の機能維持評価」に示したとおり逆流防止装置の機能維持を確認したことにより，評価部位であるフロート及び取付部が構造健全性を有することを確認した。

VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関する説明書

目 次

VI－2－別添3－1 可搬型重大事故等対処設備の耐震計算の方針
VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動
VI－2－別添 3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書
VI－2－別添 3－4 可搬型重大事故等対処設備のうちボンベ設備の耐震計算書
VI－2－別添 3－5 可搬型重大事故等対処設備のうちその他設備の耐震計算書
VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果

VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針

目次

1．概要 1
2．耐震評価の基本方針 1
2.1 評価対象設備 2
2.2 評価方針 2
3．荷重及び荷重の組合せ並びに許容限界 22
3.1 荷重及び荷重の組合せ 22
3．2 許容限界 22
4．耐震評価方法 32
4．1 車両型設備 32
4．2 ボンベ設備 47
4.3 その他設備 53
4． 4 水平 2 方向及び鉛直方向地震力の考慮• 60
5．適用基準 60

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則（以下「技術基準規則」という。）」第 54 条及び第 76 条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（以下「解釈」という。）に適合する設計とす るため，添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下 における健全性に関する説明書」（以下「添付書類VI－1－1－6」という。）の別添 2「可搬型重大事故等対処設備の設計方針」（以下「添付書類VI－1－1－6－別添2」という。）にて設定 する耐震設計上の重大事故等対処設備の設備分類に該当しない設備である可搬型重大事故等対処設備が，基準地震動 S s による地震力に対して耐震性を有することを確認する ための耐震計算方針について説明するものである。

なお，可搬型重大事故等対処設備への基準地震動 S s による地震力に対する耐震性の要求は，技術基準規則の第 5 条及び第 50 条の対象ではない。

可搬型重大事故等対処設備の加振試験又は地震応答解析等に使用する保管場所の入力地震動は，添付書類「VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等におけ る入力地震動」に，車両型設備の具体的な計算の方法及び結果は，添付書類「VI－2－別添 3－3 可搬型重大事故等対処設備のらち車両型設備の耐震計算書」に，ボンベ設備の具体的な計算の方法及び結果は，添付書類「VI－2－別添 3－4 可搬型重大事故等対処設備のら ちボンベ設備の耐震計算書」に，その他設備の具体的な計算の方法及び結果は，添付書類「VI－2－別添3－5 可搬型重大事故等対処設備のらちその他設備の耐震計算書」に示す とともに，動的地震力の水平 2 方向及び鉛直方向の組合せに対する各設備の影響評価結果については，添付書類「VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鋁直方向地震力の組合せに関する影響評価結果」に示す。

2．耐震評価の基本方針
可搬型重大事故等対処設備の耐震評価は，「2．1 評価対象設備」に示す評価対象設備 を対象として，構造強度評価，転倒評価及び機能維持評価を設備設計を考慮したうえで実施し，地震後において重大事故等に対処するための機能を損なわないことを確認する。

また，波及的影響の評価を実施し，当該設備による波及的影響を防止する必要がある他の設備に対して，波及的影響を及ぼさないことを確認する。

可搬型重大事故等対処設備は，基準地震動 S s による地震力に対してその機能を維持 できる設計とすることを踏まえ，水平 2 方向及び鉛直方向地震力の組み合わせに関する影響評価が必要な設備は，水平 2 方向及び鉛直方向地震力を適切に組み合わせた加振試験又は地震応答解析を実施する。影響評価方法は「4．4 水平 2 方向及び鉛直方向地震力 の考慮」に示す。

2.1 評価対象設備

評価対象設備は，添付書類VI－1－1－6－別添2の「3．設備分類」に設定している車両型設備，ボンベ設備及びその他設備を対象とし，表2－1に示す。また，評価を要しな い可搬型重大事故等対処設備についてもあわせて示す。

添付書類VI－1－1－6－別添2にて設定している対象設備の構造計画を表2－2に示す。

2.2 評価方針

可搬型重大事故等対処設備の耐震評価は，添付書類VI－1－1－6－別添2 の「3．設備分類」に設定している車両型設備，ボンベ設備及びその他設備の分類ごとに定める加振試験，固有値解析，構造強度評価，転倒評価，機能維持評価，波及的影響評価及び水平2方向及び鉛直方向地震力の考慮に従って実施する。

可搬型重大事故等対処設備の耐震評価の評価部位は，添付書類VI－1－1－6－別添2 の「4．2 性能目標」で設定している設備ごとの構造強度設計上の性能目標を踏まえて，表 2－3 に示すとおり設定する。
（1）車両型設備
a．構造強度評価
車両型設備の構造強度評価については，添付書類VI－1－1－6－別添2の「6．3．1（2）a．構造強度」にて設定している評価方針に基づき，基準地震動 S s による地震力に対し，車両に積載しているポンプ，発電機，内燃機関等の支持部の取付ボルト及びコンテナ取付ボルトが，塑性ひずみが生じる場合であっても，その量が微小なレベルに留まっ て破断延性限界に十分な余裕を有することを，計算により確認する。ここで，車両型設備に求められる主たる機能を担うポンプ，発電機，内燃機関等の支持部の取付ボル トを直接支持構造物，この直接支持構造物を支持するコンテナの取付ボルトを間接支持構造物とする。

その評価方法は，「4．1（2）構造強度評価」に示すとおり，加振試験にて得られる応答加速度を用いて，車両に積載しているポンプ，発電機，内燃機関等の支持部の取付ボルト及びコンテナ取付ボルトの評価を行う。評価に当たつては，加振試験で計測 された評価対象部位頂部の加速度を用いるとともに，最大応答加速度に対し実機に おける車両型設備の応答の不確実さを考慮した余裕を見込む。
b．転倒評価
車両型設備の転倒評価については，添付書類VI－1－1－6－別添2の「6．3．1（2）b．転倒」にて設定している評価方針に基づき，ポンプ，発電機，内燃機関等の機器を積載 している車両全体が，基準地震動 S s による地震力に対し，転倒しないことを，保管場所の地表面の最大応答加速度が，加振試験により転倒しないことを確認した加振台の最大加速度以下であることにより確認する。

その評価方法は，「4．1（3）軽倒評価」に示すとおり加振試験により転倒しないこ とを確認する。
c．機能維持評価
車両型設備の動的及び電気的機能並びに支持機能及び移動機能の機能維持評価に ついては，添付書類VI－1－1－6－別添2の「6．3．1（2）c．機能維持」にて設定している評価方針に基づき，車両型に積載しているポンプ，発電機，内燃機関等は，基準地震動 S s による地震力に対し，ポンプの送水機能，発電機の発電機能及び内燃機関の駆動機能等の動的及び電気的機能を維持できることを，保管場所の地表面の最大応答加速度が，加振試験により動的及び電気的機能を維持できることを確認した加振台 の最大加速度以下であることにより確認する。

また，車両部は，基準地震動 S s による地震力に対し，積載物から受ける荷重を支持する支持機能及び車両としての自走，牽引等による移動機能を維持できることを を，保管場所の地表面の最大応答加速度が，加振試験により動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。

これらの評価方法は「4．1（4）機能維持評価」に示すとおり，加振試験により機能 が維持できることを確認する。
d．波及的影響評価
車両型設備の波及的影響の評価については，添付書類VI－1－1－6－別添2 の「6．3．1車両型設備」にて設定している評価方針に基づき，車両型設備はサスペンションのよ らなバネ構造を有するため，設備に生じる地震荷重により，車両のす心゙り及び傾きが生じることから，車両全体は，基準地震動 S s による地震力に対し，当該設備のす心゙ り及び傾きによる波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを，加振試験により確認したすべり及び傾きにより算出した変位量 が，波及的影響を防止する必要がある他の設備に対して必要な離隔距離未満である ことにより確認する。

その評価方法は，「4．1（5）波及的影響評価」に示すとおり，すべり量に，傾きに よる変位量を加算した値を最大変位量と定義し，最大変位量が波及的影響を防止す る必要がある他の設備に対して必要な離隔距離未満であることにより確認する。
（2）ボンベ設備
a．構造強度評価
ボンべ設備の構造強度評価については，添付書類VI－1－1－6－別添2の「6．3．2（2）評価方針」にて設定している評価方針に基づき，基準地震動 S s による地震力に対し， ボンベを収容するボンベラック等及びこれらを床面又は壁面に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても，その量が微小なレベルに留まっ て破断延性限界に十分な余裕を有することを，計算により確認する。

その評価方法は，「4．2（2）構造強度評価」に示すとおり，固有値解析により算出 する固有周期及び地震による荷重を用いて，ボンベを収容するボンベラック等及び これらを床面又は壁面に固定する溶接部又は取付ボルトの評価を行う。
b．波及的影響評価
ボンベ設備の波及的影響の評価については，添付書類VI－1－1－6－別添2 の「6．3．2（2）c．波及的影響」にて設定している評価方針に基づき実施する。基準地震動 S s による地震力に対し，ボンベを収容するボンベラック等及びこれらを床面又 は壁面に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても，そ の量が微小なレベルに留まって破断延性限界に十分な余裕を有することを計算によ り確認することで設備全体が，当該設備による波及的影響を防止する必要がある他 の設備に対して波及的影響を及ぼさないことを確認する。

その評価方法は，「4．2（3）波及的影響評価」に示すとおり，固有値解析により算出する固有周期及び地震による荷重を用いて，ボンベを収容するボンベラック等及 びこれらを床面又は壁面に固定する溶接部又は取付ボルトの評価を行う。
（3）その他設備
a．構造強度評価
その他設備のうち機器を保管する架台については，添付書類VI－1－1－6－別添2 の「6．3．3（2）評価方針」にて設定している評価方針に基づき，基準地震 S s による地震力に対し，架台及びこれを床に固定する基礎ボルトが，塑性ひずみが生じる場合で あつても，その量が微小なレベルに留まつて破断延性限界に十分な余裕を有するこ とを，計算により確認する。

その評価方法は，「4．3（2）構造強度評価」に示すとおり，固有値解析により算出 する固有周期及び地震による荷重を用いて，架台を床に固定する基礎ボルトの評価 を行う。
b．転倒評価
その他設備の転倒評価については，添付書類VI－1－1－6－別添2の「6．3．3（2）b．転倒」にて設定している評価方針に基づき，その他設備の機器全体は，基準地震動 S s による地震力に対し，転倒しないことを，保管場所における設置床又は地表面の最大応答加速度が，加振試験により転倒を防止するためスリング等の健全性を確認した加振台の最大加速度以下であることにより確認する。

その評価方法は，「4．3（3）転倒評価」に示すとおり，加振試験によりスリング等 が健全であることを確認する。
c．機能維持評価
その他設備の機能維持評価については，添付書類VI－1－1－6－別添2の「6．3．3（2）c．機能維持」にて設定している評価方針に基づき，その他設備の機器全体は，基準地震

動 S s による地震力に対し，保管場所における設置床又は地表面の最大応答加速度 が，加振試験により計測機能，給電機能等の動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることを確認する。

その評価方法は，「4．3（4）機能維持評価」に示すとおり，加振試験により機能が維持できることを確認する。
d．波及的影響評価
その他設備の波及的影響の評価については，添付書類VI－1－1－6－別添2の「6．3．3（2）d．波及的影響」にて設定している評価方針に基づき実施する。
その他設備は，車両型設備と異なりばねのような柔らかい構造を有しないため，大 きな変位量は発生しないことから，その他設備の設備全体は，基準地震動 S s による地震力に対し，当該設備のすべり及び傾きによる波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを，保管場所における設置床又は地表面の最大応答加速度が，加振試験によりスリング等が健全であり転倒しないこと を確認した加振台の最大加速度以下であることにより確認する。
その他設備に使用しているスリング等は，基準地震動 S s による地震力に対し，対象設備の重心高さを考慮して設置位置を設定するとともに，保管場所における設置床又は地表面の最大応答加速度によりスリング等が受ける荷重に対して十分な裕度 を持たせて選定を行う。

スリング等の支持機能については，保管状態を模擬した加振試験により確認する。

以上を踏まえ，以降では，可搬型重大事故等対処設備の耐震計算に用いる荷重及び荷重の組合せ並びに許容限界について，「3．荷重及び荷重の組合せ並びに許容限界」に示し，車両型設備，ボンべ設備及びその他設備の分類ごとの耐震評価方法を評価項目ご とに「4．耐震評価方法」に示す。

表 2－1 可搬型重大事故等対処設備（ $1 / 5$ ）

VI－1－1－6－別添2 での分類	設備名称	添付書類VI－2－別添3での記載箇所又は評価を要しない理由
車両型設備	ブルドーザ	重心が低く，地震により転倒せず，機能喪失しない。
	バックホウ	重心が低く，地震により転倒せず，機能喪失しない。
	大容量送水ポンプ（タイプI）	別添 3－3
	大容量送水ポンプ（タイプII）	別添 3－3
	電源車	別添 3－3
	電源車（緊急時対策所用）	別添 3－3
	原子炉補機代替冷却水系熱交換器ユニット	別添 3－3
	可搬型窒素がス供給装置	別添 3－3
	ホース延長回収車	別添 3－3
	タンクローリ	別添 3－3

表 2－1 可搬型重大事故等対処設備（2／5）

$\begin{gathered} \mathrm{VI}-1-1-6 \text {-別添 } 2 \\ \text { での分類 } \end{gathered}$	設備名称	添付書類VI－2－別添3での記載箇所又は評価を要しない理由
ボンベ設備	高圧窒素ガスボンベ	別添 3－4
	中央制御室侍避所加圧設備（空気ボンベ）	別添 3－4
	緊急対策所加圧設備（空気ボンベ）	別添 3－4

表 2－1 可搬型重大事故等対処設備（3／5）

$\begin{gathered} \mathrm{VI}-1-1-6 \text {-別添 } 2 \\ \text { での分類 } \end{gathered}$	設備名称	添付書類VI－2－別添3での記載箇所又は評価を要しない理由
その他設備	取水用ホース（250A：5m，10m，20m）	地震による転倒に対し，機能喪失しない。
	送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, ~ 5 \mathrm{~m}, ~ 10 \mathrm{~m}, ~ 20 \mathrm{~m}, ~ 50 \mathrm{~m}$ ）	地震による転倒に対し，機能喪失しない。
	注水用ヘッダ	地震による転倒に対し，機能喪失しない。
	送水用ホース（150A：1m， 2 m ，5m，10m，20m）	地震による転倒に対し，機能喪失しない。
	スプレイ用ホース（65A：1m）	地震による転倒に対し，機能喪失しない。
	スプレイノズル	地震による転倒に対し，機能喪失しない。
	耐熱ホース（300A：2m，5m，10m）	地震による転倒に対し，機能喪失しない。
	除熱用ヘッダ	地震による転倒に対し，機能喪失しない。
	耐熱ホース（201A：5m，10m）	地震による転倒に対し，機能喪失しない。
	連結管	地震による転倒に対し，機能喪失しない。
	P54－F1005A，B（代替高圧窒素ガス供給系窒素ガスボンベ安全弁（A），（B））	地震による転倒に対し，機能喪失しない。
	連結管～フレキシブルホース／恒設配管取合点	地震による転倒に対し，機能喪失しない。
	代替高圧窒素ガス供給用フレキシブルホース （ $\Phi 32.9: 6 \mathrm{~m}$ ，8m）	地震による転倒に対し，機能喪失しない。
	恒設配管取合点接続管	地震による転倒に対し，機能喪失しない。
	無線連絡設備（携帯型）	別添 3－5

O 2 （3）VI－2－別添 3－1 R 0

表 2－1 可搬型重大事故等対処設備（4／5）

VI－1－1－6－別添 2 での分類	設備名称	添付書類VI－2－別添3での記載箇所又は評価を要しない理由
その他設備	衛星電話設備（携帯型）	別添 3－5
	携行型通話装置	別添 3－5
	可搬型計測器	別添 3－5
	可搬型照明（SA）	別添 3－5
	酸素濃度計	別添 3－5
	二酸化炭素濃度計	別添 3－5
	緊急時対策所可搬型エリアモニタ	別添 3－5
	可搬型モニタリングポスト	別添 3－5
	γ 線サーベイメータ	別添 3－5
	β 線サーベイメータ	別添 3－5
	α 線サーベイメータ	別添 3－5
	電離箱サーベイメータ	別添 3－5
	中央制御室待避所加圧設備（空気ボンベ）～フレキシブル配管／恒設配管取合点	地震による転倒に対し，機能喪失しない。
	緊急時対策所加圧設備（空気ボンベ）～フレキシブル配管 ／恒設配管取合点	地震による転倒に対し，機能喪失しない。
	可搬型ダスト・よう素サンプラ	別添 3－5

表 2－1 可搬型重大事故等対処設備（5／5）

$\begin{gathered} \text { VI-1-1-6-別添 } 2 \\ \text { での分類 } \end{gathered}$	設備名称	添付書類VI－2－別添3での記載箇所又は評価を要しない理由
その他設備	小型船舶	別添 3－5
	代替気象観測設備	別添 3－5
	放水砲	重心が低く，地震により転倒せず，機能喪失しない。
	窒素供給用ホース（50A：5m）	地震による転倒に対し，機能喪失しない。
	窒素供給用ヘッダ	地震による転倒に対し，機能喪失しない。
	可搬型窒素ガス供給装置接続管	地震による転倒に対し，機能喪失しない。
	送水用ホース（65A ：20m）	地震による転倒に対し，機能喪失しない。
	シルトフェンス	地震による転倒に対し，機能喪失しない。
	泡消火薬剤混合装置	重心が低く，地震により転倒せず，機能喪失しない。
	給油用ホース（20A：7m）	地震による転倒に対し，機能喪失しない。
	主蒸気逃がし安全弁用可搬型蓄電池	別添 3－5
	軽油払出用ホース（外径63mm：2m）	地震による転倒に対し，機能喪失しない。
		地震による転倒に対し，機能喪失しない。

表 2－2 可搬型重大事故等対処設備の構造計画（ $1 / 2$ ）

設備分類	計画の概要		説明図
	主体構造	支持構造	
【位置】 屋内の可搬型重大事故等対処設備は，添付書類VI－1－1－6 の要求を満たす耐震性を有する保管場所と して，原子炉建屋，制御建屋及び緊急時対策建屋に保管する設計としている。 屋外の可搬型重大事故等対処設備は，添付書類VI－1－1－6 の要求を満たす地盤安定性を有する保管場所として，第 1 保管エリア，第 2 保管エリア，第 3 保管エリア及び第 4 保管エリア及び緊急時対策所北側に保管する設計としている。			
車両型設備	サスペンションを有し，地震に対 する影響を軽減できる構造である とともに，早期の重大事故等への対処を考慮し，自走牽引等にて移動できる構造とし，車両，ポンプ，内燃機関等により構成する。	ポンプ，内燃機関等は，コンテナに直接支持構造物である取付ボルト にて固定する。ポンプ，内燃機関等 を収納したコンテナは，間接支持構造物であるトラックに積載し，取付ボルトにより固定し，保管場所に固定せずに保管する。	図 2－1
ボンべ設備	ボンベ設備は，ボンベ（窒素ガスボ ンベ又は空気ボン心゙）及びボンベ ラック等により構成する。	ボンベは容器として十分な強度を有する構造とし，固定ボルトによ りボンベラック等に固定し，ボン ベラック等を溶接又は取付ボルト により床又は壁に据え付ける。	図 2－2 図 2－3 図 $2-4$

表 2－2 可搬型重大事故等対処設備の構造計画（2／2）

設備分類	計画の概要		説明図
	主体構造	支持構造	
その他設備	（収納箱固縛：可搬型計測器の例）		
	可搬型計測器及びこれを収納す る収納箱で構成する。	緩衝材を内装した収納箱に可搬型計測器を収納し，スリング等を用 いて固縛する。スリング等は床に ボルトで固定する。	図 2－5
	（収納箱架台固縛：代替気象観測設備）		
	代替気象観測設備及びこれを収納する収納箱で構成する。	緩衝材を内装した収納箱に代替気象観測設備を収納し，収納箱を架台にスリング等で固定する。 架台は床に基礎ボルトで固定す る。	図 2－6
	（本体固縛 ：主蒸気逃がし安全弁用可搬型蓄電池の例）		
	主蒸気逃がし安全弁用可搬型蓄電池の機器本体。	主蒸気逃がし安全弁用可搬型蓄電池を取付金物で固縛し床に固定す る。	図 2－7

表 2－3 可搬型重大事故等対処設備 構造強度評価対象部位（1／5）

設備名称	設備	評価部位		選定理由
		直接支持構造物	間接支持構造物	
大容量送水ポンプ（タイプ I）	車両型設備	ポンプ取付ボルト内燃機関取付ボルト	コンテナ取付ボルト	ポンプ及び内燃機関は，J E A G 4 6 0 1－1991において剛構造の ポンプ及び内燃機関は，構造強度評価対象が取付ボルト，基碮ボルト が評価対象となる旨規定されている。ポンプ及び内燃機関は，内圧に耐える肉厚構造の設計となっており，剛構造であることから，当該設備はJEAG4601－1991 に記載されているポンプ及び内燃機関 と同等の構造とみなすことができるため，評価対象はポンプ及び内燃機関取付ボルトとする。 車両部については，間接支持構造物の主たる支持構造物であり，支持機能が失われた場合に影響が大きい部位である車両フレーム，コ ンテナ台板及びコンテナ取付ボルトのうち断面積の小さなコンテナ取付ボルトを評価対象とする。
大容量送水ポンプ（タイプII）	車両型設備	ポンプ取付ボルト内燃機関取付ボルト	コンテナ取付ボルト	ポンプ及び内燃幾関は，J E A G 4 6 0 1－1991において剛構造の ポンプ及び内燃機関は，構造強度評価対象が取付ボルト，基礎ボルト が評価対象となる旨規定されている。ポンプ及び内燃機関は，内圧に耐える肉厚構造の設計となっており，剛構造であることから，当該設備はJEAG4601－1991汇記載されているポンプ及び内燃機関 と同等の構造とみなすことができるため，評価対象はポンプ及び内燃機関取付ボルトとする。 車両部については，間接支持構造物の主たる支持構造物であり，支持機能が失われた場合に影響が大きい部位である車両フレーム，コ ンテナ台板及びコンテナ取付ボルトのらち断面積の小さなコンテナ取付ボルトを評価対象とする。
電源車	車両型設備	発電機／内燃機関取付ボルト	コンテナ取付ボルト	

表 2－3 可搬型重大事故等対処設備 構造強度評価対象部位（2／5）

設備名称	設備	評価部位		選定理由
		直接支持構造物	間接支持構造物	
電源車（緊急時対策所用）	車両型設備	発電機／内燃機関取付ボルト	コンテナ取付ボルト	
原子炬補機代替冷却水系熱交換器ユニット	車両型設備	$\begin{aligned} & \text { 槷交換器取付ボルト } \\ & \text { ポンプ耿ボルト } \\ & \text { 内燃機関取付ボルト } \end{aligned}$	－	ポンプ及び内燃機関は，J E A G 4 6 0 1－1991において剛構造の ポンプ及び内燃機関は，構造強度評価対象が取付ボルト，基礎ボルト が評価対象となる旨規定されている。ポンプ及び内燃機関は，内圧に耐える肉厚構造の設計となっており，剛構造であることから，当該設備はJEAG4601－1991汇記載されているポンプ及び内燃機関 と同等の構造とみなすことができるため，評価対象はポンプ及び内燃機関取付ボルトとする。 熱交換器については，地震時，荷重が集中して作用する熱交換器取付ボルトを評価対象とする。
可搬型窒素ガス供給装置	車両型設備	窒素ガス分離装置取付ボルト空気圧縮機取付ボルト発電機取付ボルト	コンテナ取付ボルト	発電機は，J E A G 4 6 0 1－1991 において剛構造の発電機は，構造強度評価対象が取付ボルト，基礎ボルトが評価対象となる旨規定されている。発電機は，重量の大きな固定子，回転子を支持するケ ーシングからなる剛構造であることから，当該設備はJEAG46 0 1－1991 に記載されている発電機と同等の構造とみなすことがで きるため，評価対象は発電機取付ボルトとする。 窒素ガス発生装置及び空気圧縮機は，地震時，荷重が集中して作用 する窒素がス発生装置及び空気圧縮機取付ボルトを評価対象とす る。 車両部については，間接支持構造物の主たる支持構造物であり，支持機能が失われた場合に影響が大きい部位である車両フレーム，コ ンテナ台板及びコンテナ取付ボルトのらち断面積の小さなコンテナ取付ボルトを評価対象とする。

表 2－3 可搬型重大事故等対処設備 構造強度評価対象部位（3／5）

設備名称	設備	評価部位		選定理由
		直接文持構造物	間接支持構造物	
ホース延長回収車	車両型設備	$\begin{gathered} \text { マルチリフト取付ボルト } \\ \text { (上部/下部) } \end{gathered}$	－	ホース延長回収車は，マルチリフトによりホースコンテナの積み下ろしが可能な設計であり，保管状態においてホースコンテナを積載しない運用とする。地震時に考慮すべき荷重は，マルチリフトのモ ーメントであり，当該モーメントはマルチリフト取付ボルトにかか ることから，マルチリフト取付ボルトを評価対象とする。
タンクローリ	車両型設備	タンク取付ボルト ポンプ取付ボルト	－	タンクローリは，燃料を内包し輸送できる圧力容器であり，十分な強度を有した設計である。保管状態は，タンクが空の状態であり，地震時に考慮すべき荷重は，タンク自重によるモーメントであり，当該 モーメントはタンク取付ボルトにかかることからタンク取付ボルト を評価対象とする。また，JEAG4601－1991次おいて剛構造の ポンプは，構造強度評価対象が取付ボルト，基礁ボルトが評価対象と なる旨規定されている。ポンプは，内圧に耐える肉厚構造の設計とな っていることから，当該設備はJ E A G 4 6 0 1－1991に記載されて いるポンプと同等の構造とみなすことができるため，評価対象はポ ンプの取付ボルトとする。

表 2－3 可搬型重大事故等対処設備 構造強度評価対象部位（4／5）

設備名称	設備	ボンベラック支 持構造	評価部位		選定理由
			直接支持構造物	間接支持構造物	
高圧窒素ガス供給系高圧窒素ガスボンベ	ボンベ設備	溶接	フレーム フレーム取付溶接部	－	ボンベについては，高圧ガス保安法の規格に基づいた設計 がなされており，添付書類「VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針」に基づき，重大事故等クラス 3 機器としての強度評価を実施しており，十分な強度を有してい ることから，ボンベを躯体床及び壁に固定している支持構造物であるボンベラック及びボンベラックを据え付ける埋込金物の溶接部を評価対象とする。
代替高圧窒素ガス供給系高圧窒素ガスボンベラック	ボンベ設備	溶接 取付ボルト	フレーム フレーム取付溶接部 取付ボルト	－	ボンベについては，高圧ガス保安法の規格に基づいた設計 がなされており，添付書類「VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針」に基づき，重大事故等クラス 3 機器としての強度評価を実施しており，十分な強度を有してい ることから，ボンベを躯体床及び壁に固定している支持構造物であるボンベラック及びボンベラックを据え付けるアンカ ープレートの溶接部及びアンカープレートを躯体床及び壁に据え付ける取付ボルトを評価対象とする。
中央制御室待避所加圧設備 （空気ボンベ）	ボンベ設備	溶接接続ボルト取付ボルト	フレーム フレーム取付溶接部 フレーム接続ボルト 取付ボルト	－	ボンベについては，高圧ガス保安法の規格に基づいた設計 がなされており，添付書類「VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針」に基づき，重大事故等クラス 3 機器としての強度評価を実施しており，十分な強度を有してい ることから，ボンべを躯体床に固定している支持構造物であ るボンベラック及びボンベラックを据え付ける取付ボルトを評価対象とする。
緊急対策所加圧設備（空気ボンベ）	ボンベ設備	溶接取付ボルト	フレーム 固定端溶接部 取付ボルト	－	ボンベについては，高圧ガス保安法の規格に基づいた設計 がなされており，添付書類「VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針」に基づき，重大事故等クラス 3 機器としての強度評価を実施しており，十分な強度を有してい ることから，ボンベを躯体床に固定している支持構造物であ るボンベカードルフレーム及びボンベカードルフレームを据 え付ける取付ボルトを評価対象とする。

表 2－3 可搬型重大事故等対処設備 構造強度評価対象部位（5／5）

機器名称	設備	評価部位		選定理由
		直接支持構造物	間接支持構造物	
可搬型モニタリングポスト	$\begin{aligned} & \text { その他 } \\ & \text { 設備 } \\ & \hline \end{aligned}$	基碴ボルト	－	架台は床に基硙ボルトで固定するため，耐震評価上厳しくなる基礎ボルトについて評価を実施する。
代替気象観測設備	その他設備	基磑术ルト	－	架台は床に基礎ボルトで固定するため，耐震評価上厳しくなる基磫ボルトについて評価を実施する。

図 2－1 車両型設備

図 2－2 ボンベ設備（壁床固定型）

図 2－3 ボンベ設備（床固定型）

図 2－4 ボンベ設備（カードル型）

図2－5 その他設備（収納箱固縛）

図 2－6 その他設備（収納箱架台固縛）

図 2－7 その他設備（本体固縛）

3．荷重及び荷重の組合せ並びに許容限界
可搬型重大事故等対処設備の耐震計算に用いる荷重及び荷重の組合せを，以下の「3．1荷重及び荷重の組合せ」に，許容限界を「3．2 許容限界」に示す。

3.1 荷重及び荷重の組合せ

可搬型重大事故等対処設備のらち，屋外に保管している設備の自然現象の考慮につ いては，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関 する説明書」に設定する荷重及び荷重の組合せを用いる。

荷重及び荷重の組合せは，重大事故等起因の荷重は発生しないため，VI－1－1－6－別添 2 の「6．2 荷重及び荷重の組合せ」に従い，保管状態における荷重を考慮し設定する。地震と組み合わせるべき荷重としては，風荷重及び積雪荷重が挙げられる。地震と組み合わせる荷重の設定に当たつては，添付書類「VI－2－1－9 機能維持の基本方針」 の図 3－1耐震計算における風荷重及び積雪荷重の設定フローに基づき設定する。

積雪については除雪にて対応することで無視できる。風荷重について，車両型設備 は，風を一面に受ける構造と違い，風は隙間を吹き抜けやすい構造となっており，ま た，車両型設備には内燃機関や発電機等の重量物が積載され重量が大きいこと及び車両型設備以外の可搬型重大事故等対処設備についても，建物•構築物，屋外設置の機器に比べ，風による受圧面積が相対的に小さいことから，風荷重については無視でき る。
3.2 許容限界

許容限界は，添付書類VI－1－1－6－別添2の「4．2 性能目標」で設定している設備ご との構造強度上の性能目標のとおり，評価部位ごとに設定する。

「3．1荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた，設備ごとの許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－1 か ら表 3－6 のとおりとする。

各設備の許容限界の詳細は，評価対象部位の損傷モードを考慮し，各計算書にて評価項目ごとに定める。

直接支持構造物の評価については，J E A G 4 6 0 1•補－1984に規定されているそ の他の支持構造物の評価に従った評価を実施する。また，車両型設備の間接支持構造物としてのボルトの評価については，直接支持構造物の評価に準じた評価を行う。
（1）車両型設備
a．構造強度評価
車両型設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動 S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管し，炉心等 へ泠却水を送水する機能を有するポンプ，必要な設備へ燃料を移送する機能を有す るポンプ，必要な負荷へ給電するために発電する機能を有する発電機，これらの駆動源となる内燃機関等の機器を車両に取付ボルトで固定し，主要な構造部材が送水機能，燃料移送機能，発電機能，駆動機能等を維持可能な構造強度を有する設計とする。

そのため，車両型設備は，「2．2（1）a．構造強度評価」に設定している評価方針と していることを踏まえ，J E A G 4 6 0 1 •補－1984を適用し，添付書類「VI－2－1－9機能維持の基本方針」に設定している許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とすること を許容限界として設定する。
b．転倒評価
車両型設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管し，炉心等 へ冷却水を送水する機能を有するポンプ，必要な設備へ燃料を移送する機能を有す るポンプ，必要な負荷へ給電するために発電する機能を有する発電機，これらの駆動源となる内燃機関等を車両に取付ボルトで固定し，車両全体が安定性を有し，転倒し ない設計とする。

そのため，車両型設備は，「2．2（1）b．転倒評価」に設定している評価方針として いることを踏まえ，加振試験にて転倒しないことを許容限界として設定する。 c．機能維持評価

車両型設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動 S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管し，車両に積載しているポンプ等の炬心等へ冷却水を送水する機能，必要な設備へ燃料を移送 する機能，必要な負荷へ給電するための発電機能，これらの駆動源となる内燃機関等 の動的及び電気的機能を維持できる設計とする。

また，車両型設備は，地震後において，基準地震動 S s による地震力に対し，積載物から受ける荷重を支持する機能及び車両としての自走，率引等による移動機能を維持できる設計とする。

そのため，車両型設備は，「2．2（1）c．機能維持評価」に設定している評価方針と していることを踏まえ，加振試験により動的及び電気的機能並びに支持機能及び移動機能が維持できることを許容限界として設定する。
d．波及的影響評価
車両型設備は，重大事故等起因の荷重は発生しないため，基準地震動S s による地震力に対し，地盤安定性を有する屋外の保管場所に固定せずに保管し，車両型設備全

体が安定性を有し，当該設備のすべり及び傾きにより，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう離隔距離を確保 し保管する設計とする。

そのため，車両型設備は，「2．2（1）d．波及的影響評価」に設定している評価方針 としていることを踏まえ，車両型設備の加振試験にて確認したすべり及び傾きによ り算出した変位量が，他の設備との接触，衝突等の相互干渉による破損等を引き起こ し，機能喪失する等の波及的影響を及ぼさないよう，加振試験にて確認した最大変位量を踏まえ設定した離隔距離を許容限界として設定する。

また，離隔距離に関しては，実際の設備配置の運用上の管理値として必要であるた め，保安規定に離隔距離を基に必要な設備間隔を定め，管理を行う。
（2）ボンベ設備
a．構造強度評価
ボンべ設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動 S s による地震力に対し，窒素又は空気を供給する機能を有するボンベをボン ベラック等に収納し，ラック等を耐震性を有する建屋内の保管場所に溶接又は取付 ボルトで固定して保管し，主要な構造部材が窒素又は空気供給機能を維持可能な構造強度を有する設計とする。

そのため，ボンベ設備は，「2．2（2）a．構造強度評価」に設定している評価方針と していることを踏まえ，J E A G 4 6 0 1 •補－1984を適用し，添付書類「VI－2－1－9機能維持の基本方針」に設定している許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とすること を許容限界として設定する。
b．波及的影響評価
ボンベ設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，窒素又は空気を供給する機能を有するボンベをボン ベラック等に収納し，ラック等を耐震性を有する建屋内の保管場所に溶接又は取付 ボルトで固定し保管することから，主要な構造部材が，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう，構造強度を有 する設計とする。

そのため，ボンベ設備は，「2．2（2）b．波及的影響評価」に設定している評価方針 としていることを踏まえ，J E A G 4 6 0 1 •補－1984を適用し，添付書類「VI－2－1－ 9 機能維持の基本方針」に設定している許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とする ことを許容限界として設定する。
（3）その他設備
a．構造強度評価
その他設備を設置する架台は，重大事故等起因の荷重は発生しないため，地震時に おいて，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所の床に基礎ボルトで固定し，支持機能を維持可能な構造強度を有する設計とする。

そのため，その他設備を設置する架台は，「2．2．（3）a．構造強度評価」に設定して いる評価方針を踏まえ，添付書類「VI－2－1－9 機能維持の基本方針」に設定している， J E A G 4 6 0 1•補—1984を適用し，許容応力状態 IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力以下とするこ とを許容限界として設定する。
b．転倒評価
その他設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管し，スリングで固縛する等により，設備全体が安定性を有し，転倒しない設計とする。

そのため，その他設備は，「2．2（3）b．転倒評価」に設定している評価方針として いることを踏まえ，加振試験にて転倒しないことを許容限界として設定する。
c．機能維持評価
その他設備は，重大事故等起因の荷重は発生しないため，地震後において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管し，スリングで固縛する等により計測機能，給電機能等 の動的及び電気的機能並びに支持機能を維持できる設計とする。
そのため，その他設備は，「2．2（3）c．機能維持評価」に設定している評価方針と していることを踏まえ，加振試験にて動的及び電気的機能並びに支持機能が維持で きることを許容限界として設定する。
d．波及的影響評価
その他設備は，重大事故等起因の荷重は発生しないため，地震時において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所にスリングで固縛する等により保管することから，スリング等の健全性により，当該設備による波及的影響を防止する必要がある他の設備に対 して波及的影響を及ぼさない設計とする。

そのため，その他設備は，「2．2（3）d．波及的影響評価」に設定している評価方針 としていることを踏まえ，加振試験にてスリング等の支持機能が維持できることを許容限界として設定する。

なお，離隔距離に関しては，実際の設備配置の運用上の管理値として必要であるた め，保安規定に離隔距離を基に必要な設備間隔を定め，管理を行う。

表 3－1 設備ごとの荷重の組合せ及び許容限界

評価対象設備	荷重の組合せ	評価部位	機能損傷モード		許容限界
			応力等の状態	限界状態	
車両型設備	$D+S \mathrm{~s}$	支持部の取付ボルト （表3－2）	引張り，せん断	部材の降伏	J E A G 4601 •補一 1984 を適用し，許容応力状態 $I V_{\mathrm{A}} \mathrm{S}$ の許容応力以下と する。
ボンベ設備	$\mathrm{D}+\mathrm{S} \mathrm{s}$	フレーム取付溶接部固定端溶接部 （表 3－3）	せん断	部材の降伏	J E A G 4601 •補－ 1984 を適用し，許容応力状態IV S S の許容応力以下と する。
		フレーム （表3－4）	組合せ	部材の降伏	J E A G 4 6 0 1 •補－ 1984 を適用し，許容応力状態IV A S の許容応力以下と する。
		フレーム接続ボルト取付ボルト （表3－5）	引張り，せん断	部材の降伏	J E A G 4601 •補－ 1984を適用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力以下と する。
その他設備 （架台）	$\mathrm{D}+\mathrm{S}$ s	基礎ボルト （表3－6）	引張り，せん断	部材の降伏	J E A G 4 6 0 1 •補— 1984 を適用し，許容応力状態IV A S の許容応力以下と する。

表 3－2 支持部の取付ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2	
			一次応力	
			引張り＊3	せん断＊3
取付ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：f t＊ $\mathrm{f} \mathrm{s}^{*}$ は，発電用原子力設備規格 設計•建設規格（2005年版（2007年追補版含む。））J S M E S N C 1－2005／2007（日本機械学会）（以下，VI－2－別添 3 においては「設計•建設規格」という。） $\mathrm{SSB}-3121.1$（1）a 本文中 S y 及び
建設規格 $\mathrm{SSB}-3133$ ）。ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とす る。
＊2：J E A G 4 6 O 1 •補－1984 の「その他の支持構造物の許容応力」に準じて設定する。
＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 $\mathrm{f}_{\mathrm{t} s}$ は，設計•建設規格 $\mathrm{SSB}-3131$ に基づき， $\mathrm{f}_{\mathrm{t}}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6\right.$ •

表 3－3 フレーム取付溶接部及び固定端溶接部の許容限界

評価部位	荷重の組合せ	許容応力 状態	許容限界 ${ }^{\text {c }}$ ，＊ 2
			一次応力
			せん断
フレーム取付溶接部	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}$ s＊
固定端溶接部	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV $\mathrm{A}_{\text {S }}$	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：f s＊は，設計•建設規格 SSB－3121．1（1）a 本文中 S_{y} 及び S_{y}（RT）を $1.2 \cdot \mathrm{~S}$ y 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T ）と読み替えて算出した値（設計•建設規格 SSB－3133）。 ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 0 1 •補－1984 の「その他の支持構造物の許容応力」に準じて設定する。

表 3－4 フレームの許容限界

評価部位	荷重の組合せ	許容応力状態	
			一次応力
			組合せ
フレーム	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ff}^{*}$

注記＊1： f_{t}＊は，設計•建設規格 $\mathrm{SSB}-3121.1$（1）a 本文中 S_{y} 及び $\mathrm{S}_{\mathrm{y}}(\mathrm{RT}$ ）を $1.2 \cdot \mathrm{~S}$ y及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（設計•建設規格 SSB－3133）。 ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 O 1 •補－1984 の「その他の支持構造物の許容応力」に準じて設定する。

表 3－5 取付ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2	
			一次応力	
			引張り＊3	せん断＊3
フレーム接続ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}{ }_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}^{*}$＊
取付ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：f t^{*} ， $\mathrm{f} \mathrm{s}^{*}$ は，設計•建設規格 $\mathrm{SSB}-3121.1$（1）a 本文中 S_{y} 及び $\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（設計•建設規格 SSB－ 3133）。ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 O 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定する。
＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 $\mathrm{f}_{\mathrm{t} \mathrm{s}}$ は，設計•建設規格 $\mathrm{SSB}-3131$ に基づき， $\mathrm{f}_{\mathrm{t}}{ }_{\mathrm{s}}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}}{ }_{\mathrm{o}}-1.6\right.$ •

表 3－6 基礎ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2	
			一次応力	
			引張り＊3	せん断＊3
基礎ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{s}}$＊

注記＊1：f t^{*} ， f_{s}＊は，設計•建設規格 SSB －3121．1（1）a 本文中 S_{y} 及び $\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（設計•建設規格 SSB－ 3133）。ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 O 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定する。
＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 $\mathrm{f}_{\mathrm{t} \mathrm{s}}$ は，設計•建設規格 $\mathrm{SSB}-3131$ に基づき， $\mathrm{f}_{\mathrm{t}}{ }_{\mathrm{s}}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}}{ }_{\mathrm{o}}-1.6\right.$ •

4．耐震評価方法
可搬型重大事故等対処設備の耐震評価は，車両型設備，ボンベ設備及びその他設備の分類ごとに評価方法が異なることから，以下の「4．1 車両型設備」，「4．2 ボンベ設備」及び「4．3 その他設備」のそれぞれに示す「加振試験」，「固有値解析」，「構造強度評価」，「転倒評価」，「機能維持評価」及び「波及的影響評価」に従って実施する。
4.1 車両型設備

車両型設備においては，重大事故等に対処するための機能を維持するために，構造強度評価，転倒評価，機能維持評価及び波及的影響評価を実施する。

車両型設備の評価フローを図4－1 に示す。

図 4－1 車両型設備の評価フロー
（1）加振試験
a．基本方針
車両型設備においては，重大事故等に対処するための機能を維持するために，車両全体として安定性を有し，転倒しないこと，主要な構造部材が必要な構造強度を有す ること，動的機能，電気的機能，支持機能及び移動機能が維持できること並びに当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさ ないことを加振試験の結果を踏まえて評価することから，以下の「b。 入力地震動」 に示す入力地震動を用いて，「（3）転倒評価」，「（4）機能維持評価」及び「（5）波及的影響評価」に示す方法により加振試験を行う。
b．入力地震動
入力地震動は，添付書類「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリ ア等における入力地震動」に示す，各対象設備の保管場所ごとに算定した入力地震動 を用いる。
（2）構造強度評価
車両型設備の直接支持構造物及び間接支持構造物の構造強度評価は，「2．2（1）a．構造強度評価」に従って，評価部位についてJEAG4601－1987に規定されて いるポンプ等の取付ボルトの評価方法を用いて発生応力を算出し，許容応力以下で あることを確認する。

評価については，不確実さを考慮し，加振試験で測定された評価部位頂部の加速度 を設計用加速度とし，発生応力を算出し，構造強度評価を行う。

構造強度評価に使用する記号を表 4－1 に，計算モデル例を図 4－2～図 4－9 に示す。
なお，取付ボルト① については，タンクローリのポンプ及びホース延長回収車以外 の評価部位について，取付ボルト（2）については，タンクローリのポンプについて，取付ボルト（3）については，コンテナについて，取付ボルト④については，ホース延長回収車のマルチリフト（上部／下部）に適用する。

表 4－1 構造強度評価に使用する記号

記号	単位	記号の説明
A_{b}	mm^{2}	取付ボルトの軸断面積
a_{H}	$\mathrm{m} / \mathrm{s}^{2}$	設計用水平加速度
a ${ }_{\text {P }}$	$\mathrm{m} / \mathrm{s}^{2}$	回転体振動による加速度
a v	$\mathrm{m} / \mathrm{s}^{2}$	設計用鉛直加速度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
h	mm	据付面から重心位置までの高さ
L	mm	車両重心位置と取付ボルト間の水平方向距離
ℓ_{i}	mm	支点としている取付ボルトより評価に用いる取付ボルトまでの距離 （i は距離の長い順に番号取りをする。）
m	kg	機器の保管時質量
M_{p}	$\mathrm{N} \cdot \mathrm{mm}$	回転体の回転により働くモーメント
N_{i}	－	引張力又ははせん断力の作用する取付ボルトの本数 （iは転倒支点から距離の遠い順に番号取りをする。）
n	－	取付ボルトの総本数
σ b	MPa	取付ボルトの最大引張応力
τ_{b}	MPa	取付ボルトの最大せん断応力

図 4－2 直接支持構造物の計算モデル例（1／2）
（取付ボルト（1）軸直角方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right) \geqq 0$ の場合）

図 4－2 直接支持構造物の計算モデル例（2／2）
（取付ボルト（1）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{V}}-\mathrm{a}_{\mathrm{p}}\right)<0$ の場合）

図 4－3 直接支持構造物の計算モデル例（ $1 / 2$ ）
（取付ボルト（1）軸方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right) \geqq 0$ の場合）

図 4－3 直接支持構造物の計算モデル例（2／2）
（取付ボルト（1）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right)<0$ の場合）

図 4－5 直接支持構造物の計算モデル例
（取付ボルト（2）軸方向転倒）

図 4－6 間接支持構造物の計算モデル例（ $1 / 2$ ）
（取付ボルト（3）軸直角方向転倒 $-1 \quad(\mathrm{~g}-\mathrm{a} v) \geqq 0$ の場合）

図 4－6 間接支持構造物の計算モデル例（2／2）
（取付ボルト（3）軸直角方向転倒－2（ $\mathrm{g}-\mathrm{av}$ ）＜0の場合）

図 4－7 間接支持構造物の計算モデル例（1／2）
（取付ボルト（3）軸方向転倒－1（ $\mathrm{g}-\mathrm{a}_{\mathrm{v}}$ ）$\geqq 0$ の場合）
転倒方向

図 4－7 間接支持構造物の計算モデル例（2／2）
（取付ボルト（3）軸方向転倒 $-2 \quad$（ $\mathrm{g}-\mathrm{a}_{\mathrm{v}}$ ）＜0の場合）

図 4－8 直接支持構造物の計算モデル例（1／2）
（取付ボルト（4）軸直角方向転倒 $-1 \quad(\mathrm{~g}-\mathrm{a} v) \geqq 0$ の場合）

図 4－8 直接支持構造物の計算モデル例（2／2）
（取付ボルト（4）軸直角方向転倒－2（ $\mathrm{g}-\mathrm{a} v$ ）<0 の場合）

図 4－9 直接支持構造物の計算モデル例 $(1 / 2)$
（取付ボルト（4）軸方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right) \geqq 0$ の場合）

図 4－9 直接支持構造物の計算モデル例（2／2）
（取付ボルト（4）軸方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right)<0$ の場合）
a．直接支持構造物の計算式
（a）図 4－2 及び図 4－3 の場合の引張応力
なお，図 4－2 の場合のボルトについては，回転体の回転により働くモーメントは作用しない。

$$
\sigma_{b}=\frac{m \cdot\left(a_{H}+a_{P}\right) \cdot h+M_{P}-m \cdot\left(g-a_{V}-a_{P}\right) \cdot L}{A_{b}} \cdot \frac{\ell_{1}}{\sum_{i=1} N_{i} \cdot \ell_{i}^{2}}
$$

（b）図 4－1 及び図 4－2 の場合のせん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot\left(\mathrm{a}_{\mathrm{H}^{+}} \mathrm{a}_{\mathrm{P}}\right)}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（c）図 4－3 の場合のせん断応力
i ．荷重によるせん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right)^{2}+\left(\mathrm{g}+\mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right)^{2}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

ii ．モーメントによるせん断応力

$$
\tau_{b}=\frac{\mathrm{m} \cdot\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{h}^{+} \mathrm{M}_{\mathrm{P}}+\mathrm{m} \cdot\left(\mathrm{~g}^{\left.+\mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{L}}\right.}{\mathrm{A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}}
$$

（d）図 4－4の場合の引張応力

$$
\sigma_{b}=\frac{\mathrm{m} \cdot \sqrt{\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right)^{2}+\left(\mathrm{g}^{+} \mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right)^{2}}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（e）図 4－4 の場合のせん断応力

$$
\tau_{b}=\frac{m \cdot\left(a_{H}+a_{P}\right) \cdot h^{+} M_{P}+m \cdot\left(g^{+} a_{V}+a_{P}\right) \cdot L}{A_{b}} \cdot \frac{\ell_{1}}{\sum_{i=1} N_{i} \cdot \ell_{i}^{2}}
$$

（f）図 4－7 の場合の引張応力

$$
\sigma_{b}=\frac{\mathrm{m} \cdot \sqrt{\mathrm{a}_{\mathrm{H}}{ }^{2}+\left(\mathrm{g}^{\left.-\mathrm{a}_{\mathrm{V}}\right)^{2}}\right.}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（g）図 4－7 の場合のせん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}^{-\mathrm{a}_{\mathrm{V}}}\right) \cdot \mathrm{L}}{\mathrm{~A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}}
$$

（h）図 4－8 の場合のせん断応力
i ．荷重によるせん断応力
\circ
\sim

$$
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\mathrm{a}_{\mathrm{H}}{ }^{2}+\left(\mathrm{g}^{\left.-\mathrm{a}_{\mathrm{V}}\right)^{2}}\right.}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

ii ．モーメントによるせん断応力

$$
\tau_{b}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}^{\left.-\mathrm{a}_{\mathrm{V}}\right) \cdot \mathrm{L}}\right.}{\mathrm{A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}}
$$

b．間接支持構造物の計算式
（a）図 4－5 及び図4－6 の場合の引張応力

$$
\sigma_{b}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}^{\left.-\mathrm{a}_{\mathrm{V}}\right) \cdot \mathrm{L}}\right.}{\mathrm{A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}}
$$

（b）図 4－5 及び図 4－6 の場合のせん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（3）転倒評価
車両型設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．1（1）b．入力地震動」を基に作成したランダム波による加振試験を行い，試験後に転倒していな いことを確認する。

転倒評価は，当該設備保管場所の地表面での最大応答加速度が，加振試験により転倒しないことを確認した加振台の最大加速度以下であることにより確認する。
（4）機能維持評価
車両型設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．1（1）b．入力地震動」を基に作成したランダム波による加振試験を行い，試験後に動的及び電気的機能並びに支持機能及び移動機能が維持されることを確認する。

基準地震動 S s による地震力に対し，当該設備保管場所の地表面での最大応答加速度が，加振試験によりポンプの送水機能，ポンプの燃料移送機能，発電機の発電機能，内燃機関の駆動機能等の動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。

また，基準地震動 S s による地震力に対し，当該設備保管場所の地表面での最大応答加速度が，加振試験により車両部の支持機能及び車両としての自走，牽引等による移動機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。
（5）波及的影響評価
車両型設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．1（1）b．入力地震動」を基に作成したランダム波による加振試験を行い，当該設備のすべり及び傾きによる波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさ ないことを，加振試験により確認したすべり量と加振試験により確認した傾き角を基に算出した傾きによる変位量を加算した値を最大変位量と定義し，車両の最大変位量が波及的影響を防止する必要がある他の設備に対して必要な離隔距離未満であ ることにより確認する。

地震時における各設備のすべり量の算出については「a．すべり量」に，地震時に おける各設備の傾きによる変位量の算出については「b。傾きによる変位量」に，最大変位量の算出については「c．最大変位量」に示す。
a．すべり量
すべり量については，加振試験の結果を基に設定する。
加振試験によるすべり量については，各設備の加振試験により確認したすべり量 のらち，最も大きいすべり量を使用する。
b．傾きによる変位量
傾きによる変位量については，各設備の加振試験により確認した傾き角のらち，最 も大きい値を用いて算出する。

また，傾きに伴う，波及的影響として評価すべき傾きによる変位量を表した図を図 4－10に示し，使用する記号を表4－2 に示す。

傾きによる変位量については，以下の関係式により示される。
$\mathrm{X}=\mathrm{h} \cdot \sin \theta$
c．最大変位量
「a．すべり量」にて設定したすべり量とっ「b。傾きによる変位量」により算出 される浮上りによる変位量を加算した値を最大変位量と定義し，最大変位量が「3．2許容限界」にて設定した離隔距離未満であることを波及的影響評価として確認する。

表 4－2 波及的影響評価に使用する記号

記号	単位	記号の説明
X	mm	傾きによる変位量
h	mm	設備高さ
θ	\circ	傾き角

図 4－10 傾きによる変位量の算出図

4．2 ボンベ設備
ボンベ設備においては，重大事故等に対処するための機能を維持するために，構造強度評価及び波及的影響評価を実施する。

ボンベ設備の評価フローを図4－11に示す。

図 4－11 ボンベ設備の耐震評価フロー
（1）固有値解析
a．基本方針
ボンベ設備においては，重大事故等に対処するための機能を維持するために，主要 な構造部材が必要な構造強度を有すること及び当該設備による波及的影響を防止す る必要がある他の設備に対して波及的影響を及ぼさないことを，固有値解析の結果 を踏まえて評価することから，以下の「b。 解析方法及び解析モデル」に示す解析方法及び解析モデルを用いて，固有値解析を行う。
b．解析方法及び解析モデル
（a）ボンベラック各部材をはり要素及びシェル要素としてモデル化した多質点モデ ルによる地震応答解析を実施する。
（b）拘束条件として，建屋躯体との取合い点を完全拘束として設定する。
（c）ボンベラックに収納•固定される空気ボンベ及び配管•弁当の機器重量は，各々組込む位置に相当する各質点に付加する。
（d）高圧窒素ガス供給系高圧窒素ガスボンベ，代替高圧窒素ガス供給系高圧窒素ガ スボンベ及び緊急時対策所加圧設備（空気ボンベ）の評価に用いる解析コードは，「NX NASTRAN」とし，中央制御室待避所加圧設備（空気ボンベ）の評価に用いる解析コードは，「MSC NASTRAN」とする。なお，評価に用いる解析コード「NX NASTRAN」及び「MSC NASTRAN」の検証及び妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。
（e）耐震計算に用いる寸法は，公称値を使用する。
（2）構造強度評価
ボンベ設備は，「3．1荷重及び荷重の組合せ」にて設定している荷重の組合せに対 して，「4．2（1）固有値解析」で示した解析方法により求める固有周期及び地震によ る荷重を用いて算出した発生応力が，「3．2 許容限界」にて設定している許容応力内 に収まることを確認する。
a．設計用地震力
構造強度評価にて荷重を算出する際に用いる設計用地震力は，添付書類「VI－2－1－ 7 設計用床応答曲線の作成方針」に基づき設定する。
b．ボンベ設備の計算式
構造強度評価に使用する記号を表4－3に示す。計算モデル例を図4－12～図4－14に示す。

表 4－3 構造強度評価に使用する記号

記 号	単 位	定 義
σ a	MPa	フレーム（はり）の引張り応力
σ b	MPa	フレーム（はり）の曲げ応力
τ	MPa	フレーム（はり）のせん断応力
σ w a	N	溶接部のせん断力
$\sigma \mathrm{w}$ b	$\mathrm{N} \cdot \mathrm{mm}$	溶接部の曲げモーメント
$\mathrm{Z}_{\text {w }}$	mm^{3}	溶接部の断面係数
$\mathrm{A}_{\text {w }}$	mm^{2}	溶接部の断面積
${ }_{\sigma}{ }_{1}$	MPa	主応力
O 2	MPa	主応力
$\sigma 3$	MPa	主応力
$\sigma \mathrm{x}$	MPa	フレーム（シェル）の引張り応力
σ y	MPa	フレーム（シェル）の引張り応力
$\tau_{\mathrm{x} \mathrm{y}}$	MPa	フレーム（シェル）のせん断応力
$\mathrm{F}_{\mathrm{b}} \mathrm{t}$	N	フレーム接続ボルト及び取付ボルトの引張力
F b s	N	フレーム接続ボルト及び取付ボルトのせん断力
A_{b}	mm^{2}	フレーム接続ボルト及び取付ボルトの断面積
$\sigma \mathrm{b} \mathrm{t}$	MPa	フレーム接続ボルト及び取付ボルトの引張応力
τ_{b}	MPa	フレーム接続ボルト及び取付ボルトのせん断応力

R ：荷重

y

図 4－12 フレーム（はり）の計算モデル例

図 4－13 フレーム（はり）取付溶接部の計算モデル例

図 4－14 フレーム（はり）取付ボルトの計算モデル例
i－1．フレーム（はり）
フレーム（はり）の組合せ応力を以下のとおり計算する。

$$
\sigma=\sqrt{\left(\sigma_{\mathrm{a}}+\sigma_{\mathrm{b}}\right)^{2}+3 \tau^{2}}
$$

i -2 ．
フレーム（シェル）
フレーム（シェル）の組合せ応力を以下のとおり計算する。

$$
\sigma=\operatorname{MAX}\left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|, \left\lvert\, \begin{array}{l}
\sigma_{3}-\sigma_{1} \mid
\end{array}\right.\right)
$$

ここで，

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}} \\
& \sigma_{2}=0
\end{aligned}
$$

$$
\sigma_{3}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}-\sqrt{\left(\frac{\sigma_{\mathrm{x}}-\sigma \mathrm{y}}{2}\right)^{2}+\tau_{\mathrm{xy}}{ }^{2}}
$$

ii．フレーム取付溶接部及び固定端溶接部
フレーム取付溶接部及び固定端溶接部のせん断応力を以下のとおり計算する。

$$
\tau_{\mathrm{w}}=\frac{\sigma_{\mathrm{w} \mathrm{a}}}{\mathrm{~A}_{\mathrm{w}}}+\frac{\sigma_{\mathrm{w} \mathrm{~b}}}{\mathrm{Z}_{\mathrm{w}}}
$$

iii．フレーム接続ボルト及び取付ボルト
フレーム接続ボルト及び取付ボルトの引張応力を以下のとおり計算する。

$$
\sigma_{\mathrm{bt}}=\frac{\mathrm{F}_{\mathrm{b} \mathrm{t}}}{\mathrm{~A}_{\mathrm{b}}}
$$

フレーム接続ボルト及び取付ボルトのせん断応力を以下のとおり計算する。

$$
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b} \mathrm{~s}}}{\mathrm{~A}_{\mathrm{b}}}
$$

（3）波及的影響評価
基準地震動 S s による地震力に対し，当該設備による波及的影響を防止する必要 がある他の設備に対して波及的影響を及ぼさないことを，「4．2（2）構造強度評価」により確認する。
4.3 その他設備

その他設備においては，重大事故等に対処するための機能を維持するために，転倒評価，機能維持評価及び波及的影響評価を実施する。また，その他設備を設置する架台においては，重大事故等に対処するための機能を維持するために，架台単体として の構造強度評価，転倒評価及び波及的影響評価を実施する。 その他設備の評価フローを図4－15に示す。

図 4－15 その他設備の耐震評価フロー
（1）加振試験
a．基本方針
その他設備においては，重大事故等に対処するための機能を維持するために，設備全体として安定性を有し，転倒しないこと，動的機能，電気的機能及び支持機能が維持できること並びに当該設備による波及的影響を防止する必要がある他の設備に対 して波及的影響を及ぼさないことを加振試験の結果を踏まえて評価することから，以下の「b．入力地震動」に示す入力地震動を用いて，「（3）転倒評価」，「（4）機能維持評価」及び「（5）波及的影響評価」に示す方法により加振試験を行う。
b．入力地震動
入力地震動は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」に示す，各対象設備の保管場所ごとに算定した入力地震動を用いる。
（2）架台の構造強度評価
その他設備を設置する架台においては，重大事故等に対処するための機能を維持 するために，架台単体としての応力評価，転倒評価及び波及的影響評価を実施する。架台の構造強度評価フローを図 4－16に示す。

図 4－16 その他設備の架台の構造強度評価フロー
a．地震応答解析及び構造強度評価方法
（a）基本方針
その他設備の架台においては，重大事故等に対処するための機能を維持するた めに，地震応答解析により算出する固有振動数及び地震による荷重を用いて主要 な構造部材が必要な構造強度を有することを応力評価にて確認することから，以下のとおり，地震応答解析を実施する。

その他設備の架台の地震応答解析は，以下の「（b）地震応答解析」に示す解析方法に従い，「（c）設計用地震力」に示す入力地震動及び「（d）設計用減衰定数」 に示す減衰定数を用いて「（e）構造強度評価」に示す応力計算方法に従って実施 する。
（b）地震応答解析
動的解析による地震力の算定に当たっては，地震応答解析の適用性及び適用限界等を考慮のらえ，適切な解析方法を選定するとともに，解析条件として考慮す心゙ き減衰定数，剛性等の各種物性値は，適切な規格及び基準や実験等の結果に基づき設定する。

イ．解析方法及び解析モデル
「2．1 評価対象設備」に示す評価対象設備のうち，解析により固有値等の評価 をおこなら設備は，当該設備を 3 次元 FEM にてモデル化し，固有周期及び評価部位 に発生する荷重を算出する。解析の概要を以下に示す。
i．その他設備の架台を構成する鋼材をはり要素としてモデル化した 3 次元 FEM モデルによる固有値解析を行い，固有周期が 0.05 秒以下であり，剛であるこ とを確認した上で， 1.2 倍した設置床の最大応答加速度を用いた静解析を実施 する。
ii．架台上に保管される機器の質量は，その重心高さを剛体により模擬した集中質量として付加する。また，鋼板の質量は柱•梁の交点に集中質量として付加 する。
iii．架台は，基礎ボルトにより床面に固定されることから，解析モデルでは各基礎 ボルトの位置で完全拘束（XYZ 並進拘束，XYZ 軸回り拘束）とする。
iv．解析コードは「MSC NASTARAN」を使用し，固有値及び荷重を求める。 なお，評価に用いる解析コード MSC NASTARAN の検証及び妥当性確認等の概要

については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
（c）設計用地震力
構造強度評価にて荷重を算出する際に用いる設計用地震力は，添付書類「VI－2－ 1－7 設計用床応答曲線の作成方針」及び「VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」に基づき設定する。
（d）設計用減衰定数
地震応答解析に用いる減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」の「3．設計用減衰定数」に記載されている減衰定数を用いる。

その他設備の架台の減衰定数は，溶接構造物を準用し水平及び鉛直ともに 1.0% とする。
（e）構造強度評価
その他設備を設置する架台は，「3．1 荷重及び荷重の組合せ」にて設定している荷重の組合せに対して，地震応答解析により求める荷重から算出した応力が，「3．2許容限界」にて設定している許容応力内に収まることを確認する。

構造強度評価に使用する記号を表4－4に示す。

表 4－4 架台の構造強度評価に使用する記号

記号	単位	定 義
σ b	MPa	基礎ボルトの最大引張応力
T	N	ボルトに作用する引張力
n	－	1 要素あたりのボルト本数
n y	－	要素座標系 y 軸まわりに作用する曲げモーメントを受けるボルト本数
n z	－	要素座標系 z 軸まわりに作用する曲げモーメントを受けるボルト本数
A_{b}	mm ${ }^{2}$	基礎ボルトの軸断面積
M_{x}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 x 軸まわりに作用するねじりモーメント
M_{y}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 y 軸まわりに作用する曲げモーメント
M_{z}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 z 軸まわりに作用する曲げモーメント
Q y	N	ボルトに作用する要素座標系 y 軸方向のせん断力
Q ${ }_{\text {z }}$	N	ボルトに作用する要素座標系 z 軸方向のせん断力
L	mm	中立軸とボルト位置の距離
L y	mm	要素座標系 y 方向のボルトピッチ
$\mathrm{L}_{\text {z }}$	mm	要素座標系 z 方向のボルトピッチ
τ_{b}	MPa	基礎ボルトの最大せん断応力

イ．解析方法及び解析モデル
FEM 解析を実施し，得られる荷重及び応力を用いて，基礎ボルトの応力計算を行う。
i ．基礎ボルトの応力計算
ボルトの応力を以下のとおり計算する。
引張応力及び組合せ応力

$$
\sigma_{b}=\frac{T}{n_{A_{b}}}+\frac{M_{y}}{n_{y} L_{z} A_{b}}+\frac{M_{z}}{n_{y} L_{z} A_{b}}
$$

せん断応力

$$
\tau_{\mathrm{b}}=\frac{\sqrt{\mathrm{Q}_{\mathrm{y}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}}{\mathrm{nA} \mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{~nL} \mathrm{~A}}
$$

b．転倒評価
その他設備を設置する架台が，基準地震動 S s による地震力に対し，転倒しないこ とを，「a．地震応答解析及び応力評価」に基づき，評価部位が健全であることによ り確認する。
c．波及的影響評価
その他設備を設置する架台が，基準地震動 S s による地震力に対し，当該設備によ る波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないこと を，「a．地震応答解析及び応力評価」に基づき，評価部位が健全であることにより確認する。
（3）転倒評価
その他設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．3（1）b．入力地震動」を基に作成したランダム波又は正弦波若しくはサインビート波による加振試験を行い，試験後にスリング等が健全であり転倒していないことを確認する。

転倒評価は，当該設備保管場所の設置床の最大応答加速度と「4．3（1）加振試験」 における加振試験にて転倒しないことを確認した加振台の最大加速度との比較を行 い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。
（4）機能維持評価
その他設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．3（1）b．入力地震動」を基に作成したランダム波又は正弦波若しくはサインビート波による加振試験を行い，試験後に動的及び電気的機能が維持されることを確認する。

機能維持評価は，当該設備保管場所の設置床の最大応答加速度と「4．3（1）加振試験」における加振試験にて，試験後に動的及び電気的機能が維持されることを確認し た加振台の最大加速度との比較を行い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。
（5）波及的影響評価
その他設備は，実際の保管状態を模擬した状態で加振台に設置し，「4．3（1）b．入力地震動」を基に作成したランダム波又は正弦波若しくはサインビート波による加振試験を行い，当該設備がすべり及び傾きによる波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを，当該設備保管場所の設置床の最大応答加速度と「4．3（1）加振試験」における加振試験にて固縛装置の支持機能を維持できることを確認した加振台の最大加速度との比較を行い，水平方向と鉛直方向 の比較結果がそれぞれ許容限界以下であることを確認する。

4． 4 水平2方向及び鉛直方向地震力の考慮
動的地震力の水平 2 方向及び鉛直方向を組み合わせた地震力が，可搬型重大事故等対処設備の有する耐震性に及ぼす影響については，添付書類「VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2 機器•配管系」の評価方針に基づき評価を行う。

評価内容及び評価結果は，添付書類「VI－2－別添3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果」に示す。

5．適用基準
適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補 － 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む。））J SMES NC1－2005／2007（（社）日本機械学会）

VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動

目次

1．概要 1
2．可搬型重大事故等対処設備の保管エリア － 1
3．保管エリアにおける入力地震動の算定• 3
3.1 保管エリアにおける入力地震動の算定方針•• 3
3.2 解析条件の設定 4
3.3 地震応答解析モデルの作成 16
3.4 地震応答解析に用いる地震動• 23
3.5 地震応答解析における解析ケース 24
4．加速度応答スペクトルの算定 25
4.1 保管エリアの最大応答加速度 25
4． 2 第 1 保管エリア 28
4．3 第2保管エリア 71
4． 4 第 3 保管エリア 100
4.5 第 4 保管エリア 129

1．概要

本資料は，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」に示すと おり，可搬型重大事故等対処設備保管エリア等に保管する可搬型重大事故等対処設備について， その加振試験等に際して必要となる入力地震動を求めるために行う，基準地震動S s を基にした各保管エリアの地盤等の地震応答解析について説明するものである。

なお，原子炉建屋，制御建屋，緊急時対策建屋については，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す。

本資料には，可搬型重大事故等対処設備保管エリアの地表面における加速度時刻歴波形及び加速度応答スペクトルを示す。

2．可搬型重大事故等対処設備の保管エリア
可搬型重大事故等対処設備の保管エリアは，位置的分散を考慮し，以下に示す 4 地点とする。可搬型重大事故等対処設備保管エリアの位置を図 2－1 に示す。

- 第 1 保管エリア
- 第 2 保管エリア
- 第 3 保管エリア
- 第 4 保管エリア

図 2－1 可搬型重大事故等対処設備保管エリアの位置

3．保管エリアにおける入力地震動の算定
3.1 保管エリアにおける入力地震動の算定方針

保管エリアにおける入力地震動は，水平方向及び鉛直方向に対して，解放基盤表面で定義さ れる基準地震動 S s を基に，各保管エリアにおける地震応答解析により算定する。基準地震動 S s は添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」による。

第1，第3，第4保管エリアにおける地盤の地震応答解析は，一次元重複反射理論により行う。解析コードは「SHAKE Ver1．6」及び「microSHAKE／3D Ver2．3．3」を使用する。

第 2 保管エリアは淡水貯水槽上に設定されており，地盤及び構造物の地震応答解析は 2 次元 FEM 解析により行う。解析コードは「SuperFLUSH／2D Ver．6．1」を使用する。

なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

保管エリアにおける入力地震動の算定フローを図 3－1 に示す。

図 3－1 保管エリアにおける入力地震動の算定フロー図

3.2 解析条件の設定

（1）地盤の解析用物性値
保管エリアにおける地震応答解析に用いる地盤の解析用物性値は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき設定する。

地震応答解析に用いる地盤の解析用物性値を表 3－1～表 3－4に，地盤の解析用物性値の設定根拠を表3－5～表3－8に示す。

第1，第2，第4保管エリアには牧の浜部層の解析用物性値を，第 3 保管エリアには狐崎部層の解析用物性値を用いる。
表 3－1（1）地盤の解析用物性値（狐崎部層）

表 3－1（2）地盤の解析用物性値（狐崎部層）

岩種•岩級		速度層	動的変形特性		
		動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	動ポアソン比 v_{d}		
B 級 及び C_{H} 級	砂岩		第2速度層	1.5×10^{3}	0． 44
		第3速度層	5.9×10^{3}	0． 40	
		第4速度層	13． 2×10^{3}	0.36	
		第5速度層	16.5×10^{3}	0． 35	
	頁岩	第2速度層	1． 6×10^{3}	0． 44	
		第3速度層	6． 0×10^{3}	0． 40	
		第4速度層	13.5×10^{3}	0.36	
		第5速度層	16． 7×10^{3}	0.35	
	ひん岩	第3速度層	6． 4×10^{3}	0． 40	
		第4速度層	14． 2×10^{3}	0． 36	
		第5速度層	17． 6×10^{3}	0.35	
C_{M} 級	砂岩	第1速度層	0.2×10^{3}	0． 48	
		第2速度層	1.5×10^{3}	0． 44	
		第3速度層	5． 7×10^{3}	0． 40	
		第4速度層	12.7×10^{3}	0.36	
		第5速度層	15.8×10^{3}	0.35	
	頁岩	第1速度層	0.2×10^{3}	0． 48	
		第2速度層	1.5×10^{3}	0． 44	
		第3速度層	5.9×10^{3}	0.40	
		第4速度層	13． 0×10^{3}	0.36	
		第5速度層	16.2×10^{3}	0.35	
	ひん岩	第2速度層	1.5×10^{3}	0． 44	
		第3速度層	5.7×10^{3}	0.40	
		第4速度層	12.7×10^{3}	0.36	
$C_{\mathrm{L}} \text { 級 }$		第1速度層	0.2×10^{3}	0． 48	
		第2速度層	1． 4×10^{3}	0． 44	
		第3速度層	5.5×10^{3}	0.40	
$\begin{array}{\|l\|} \hline \text { D 級 } \\ \hline \end{array}$		第1速度層	表 3－1（1）参照	0.48	
		第2速度層		0． 44	

表 3－2（1）地盤の解析用物性値（牧の浜部層）

表 3－2（2）地盤の解析用物性値（牧の浜部層）

岩種•岩級		速度層	動的変形特性		
		動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	動ポアソン比 ν d		
B 級 及び C_{H} 級	砂岩		第2速度層	1． 2×10^{3}	0． 45
		第3速度層	4． 7×10^{3}	0.41	
		第4速度層	11.5×10^{3}	0.34	
		第5速度層	16． 8×10^{3}	0． 33	
	頁岩	第2速度層	1.2×10^{3}	0． 45	
		第3速度層	4． 7×10^{3}	0． 41	
		第4速度層	11.5×10^{3}	0.34	
		第5速度層	16． 8×10^{3}	0.33	
	ひん岩	第3速度層	4． 7×10^{3}	0.41	
		第4速度層	11.5×10^{3}	0.34	
		第5速度層	16． 8×10^{3}	0.33	
C_{M} 級	砂岩	第 1 速度層	0.2×10^{3}	0． 48	
		第 2 速度層	1． 2×10^{3}	0． 45	
		第3速度層	4． 7×10^{3}	0.41	
		第4速度層	11.5×10^{3}	0． 34	
		第5速度層	16.8×10^{3}	0． 33	
	頁岩	第 1 速度層	0.2×10^{3}	0.48	
		第2速度層	1.2×10^{3}	0.45	
		第3速度層	4． 7×10^{3}	0． 41	
		第4速度層	11.5×10^{3}	0． 34	
		第5速度層	16.8×10^{3}	0.33	
	ひん岩	第2速度層	1． 2×10^{3}	0． 45	
		第3速度層	4.7×10^{3}	0.41	
		第4速度層	11.5×10^{3}	0． 34	
C_{L} 級		第 1 速度層	0.2×10^{3}	0.48	
		第2速度層	1． 2×10^{3}	0.45	
		第3速度層	4.7×10^{3}	0.41	
$\begin{array}{\|l\|} \hline \mathrm{D} \text { 級 } \\ \hline \end{array}$		第 1 速度層	表3－2（1）参照	0.48	
		第2速度層		0.45	

表 3－3 地盤の解析用物性値（盛土ほか）

岩種•岩級	物理特性	強度特性				変形特性				
	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	静的－動的特性				静的特性		動的特性		
		$\begin{array}{r} \text { せん断強度 } \\ \tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{array}$	内部摩擦角 $\phi\left({ }^{\circ}\right)$	$\begin{gathered} \begin{array}{c} \text { 引張强度 } \\ \sigma_{t}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { 残留強度 } \\ \tau \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \text { 静弾性係数 } \\ & \mathrm{E}_{\mathrm{s}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { 静ポアソン比 } \\ v_{s} \end{array} \\ \hline \end{gathered}$	動せん断弾性係数 $\mathrm{G}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \hline \text { 動ポアソン比 } \\ v_{\mathrm{d}} \\ \hline \end{gathered}$	$\begin{gathered} \text { 減衰定数 } \\ \mathrm{h} \end{gathered}$
盛土	20.6	0． 06	30.0	－	$0.06+\sigma \tan 30.0^{\circ}$	$198 \sigma^{0.60}$	0． 40	$\begin{aligned} & \mathrm{G}_{0}=382 \sigma \sigma^{0.71} \\ & \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00036) * \end{aligned}$	0． 48	$\mathrm{h}=0.183 \gamma /(\gamma+0.000261)$
旧表土	19.0	0.08	26.2	－	$0.08+\sigma \tan 26.2^{\circ}$	$302 \sigma^{0.80}$	0． 40	$\begin{aligned} & \mathrm{G}_{\mathrm{O}}=2110^{0.42} \\ & \mathrm{G}_{\mathrm{G}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00087) \end{aligned}$	0． 46	$\begin{aligned} & \gamma<3 \times 10^{-4} \\ & \mathrm{~h}=0.125+0.0201 \log \gamma \\ & 3 \times 10^{-4} \leq \gamma<2 \times 10^{-2} \\ & \mathrm{~h}=0.374+0.09110^{2} \gamma \\ & 2 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
$\begin{gathered} \text { 断層 } \\ \text { 及びシーム } \end{gathered}$	18.6	0． 067	22． 2	－	$0.067+\sigma \tan 22.2^{\circ}$	圧縮方向 $124.5 \sigma^{0.90}$ せん断方向 44． $43 \sigma^{0.90}$	0． 40	$\begin{aligned} & \mathrm{G}_{\mathrm{G}}=192.3 \sigma^{0.74} \\ & \mathrm{G}_{\mathrm{G}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.0012)^{*} \end{aligned}$	0． 46	$\begin{aligned} & \gamma<1 \times 10^{-4} \\ & \mathrm{~h}=0.024 \\ & 1 \times 10^{-4} \leqq \gamma<1.6 \times 10^{-2} \\ & \mathrm{~h}=0.024+0.089(\log \gamma+4) \\ & 1.6 \times 10^{-2} \leqq \gamma \\ & \mathrm{~h}=0.22 \end{aligned}$
セメント改良土	21.6	0． 65	44.3	0． 46	$0.21+\sigma \tan 40.9^{\circ}$	690	0． 26	$\begin{aligned} & \mathrm{G}_{\mathrm{G}}=1670 \\ & \mathrm{G}_{\mathrm{O}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00085) \end{aligned}$	0． 36	$\begin{aligned} & \gamma<3.8 \times 10^{-5} \\ & \mathrm{~h}=0.014 \\ & 3.8 \times 10^{-5} \leqq \gamma \\ & \mathrm{~h}=0.151+0.031 \log \gamma \\ & \hline \end{aligned}$
改良地盤	20.6	1． 39	22.1	0． 65	$0.51+\sigma \tan 34.6^{\circ}$	4， 480	0． 19	$\begin{aligned} & \mathrm{G}_{\mathrm{G}}=1940 \\ & \mathrm{G}_{\mathrm{G}} / \mathrm{G}_{0}= \\ & 1 /(1+\gamma / 0.00136) \end{aligned}$	0． 35	$\begin{aligned} & \gamma<1.2 \times 10^{-4} \\ & \mathrm{~h}=0.031 \\ & 1.2 \times 10^{-4} \leqq \gamma<5.2 \times 10^{-3} \\ & \mathrm{~h}=0.227+0.050 \log \gamma \\ & 5.2 \times 10^{-3} \leqq \gamma \\ & \mathrm{~h}=0.113 \end{aligned}$
背面補強工	24.0					28， 000	0.2	11，667	0.2	0． 05
置換コンクリート	22.5									

[^0]$\mathrm{G}_{0}=\mathrm{E}_{\mathrm{s}} / 2\left(1+v_{\mathrm{s}}\right), \mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}=1 /\left(1+\gamma / \gamma_{\mathrm{m}}\right), \quad \gamma_{\mathrm{m}}=\tau_{\mathrm{f}} / \mathrm{G}_{0}$

表 3－4 地盤の解析用物性値（マンメイドロック）

	物理特性	強度特性				変形特性			
	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	内部摩擦角 $\phi\left({ }^{\circ}\right)$	$\begin{gathered} \text { 引張強度 } \\ \sigma_{t}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{array}{r} \text { 残留強度 } \\ \tau \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{array}$	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断㧩性 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比	減衰定数 （\％）
マンメイドロック（既設） （f＇ck＝15．6 $\mathrm{N} / \mathrm{mm}^{2}$ ）	22.6	3.12	－＊	1． 43	－＊	20590	8579	0.2	3
$\begin{gathered} \text { マンメイドロック (新設) } \\ \left(\mathrm{f}^{\prime} \mathrm{ck}=21.0 \mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	22.5	4． 20	－＊	1． 75	－＊	23500	9792	0.2	3

注記 $*$ ：内部摩擦角及び残留強度は保守的に考慮しない。
表 3－5 地盤の解析用物性値の設定根拠（狐崎部層）

岩種•岩級		物理特性	強度特性	変形特性		
		静的－動的特性	静的特性	動的特性		
B級	砂岩		密度試験	ブロックせん断試験＊摩擦抵抗試験＊	岩盤変形詞験＊	PS検層
及び	頁岩	岩盤変形試験＊				
CH_{H} 級	ひん岩	砂岩と同じ値		砂岩と同じ値		
C^{4} 級	砂岩	密度試験	ブロックせん断試験摩擦抵抗試験	岩盤変形試験		
	頁岩		砂岩と同じ値	砂岩と同じ値		
	ひん岩	砂岩と同じ値	砂岩と同じ値	砂岩と同じ値		
C_{L} 級	砂岩	密度試験	ロックせん断試験摩擦抵抗試験	換算値		
	頁岩		換算値	砂岩と同じ値		
	ひん岩	砂岩と同じ値	砂岩と同じ値	砂岩と同じ値		
D級	砂岩	密度試験	ロックせん断試験摩擦抵抗試験	換算値	繰返し三軸試験	
	頁岩	換算値	換算値	換算値	砂岩と同じ値	
	ひん岩	砂岩と同じ値	砂岩と同じ値	砂岩と同じ値	砂岩と同じ値	

[^1]表 3－6 地盤の解析用物性値の設定根拠（牧の浜部）層）

表 3－7 地盤の解析用物性値の設定根拠（盛土ほか）

岩種•岩級	物理特性	強度特性	変形特性	
		静的－動的特性	静的特性	動的特性
盛 土	現場密度試験	三軸圧縮試験	三軸圧縮試験	繰返し三軸試験
旧表土	密度試験	三軸圧縮試験	三軸压縮試験	繰返し三軸試験
断層及びシーム	密度試験	単純せん断試験	単純せん断試験	繰返し単純せん断試験
セメント改良土	現場密度試験	三軸圧縮試験 岩石の引張強さ試験	三軸圧縮試験	PS 検層繰返し三軸試験
改良地盤	密度試験	三軸圧縮試験岩石の引張強さ試験	平板載荷試験	PS 検層繰返し三軸試験
背面補強工置換コンクリート	コンクリート標準示方書 構造性能照查編			

表 3－8 地盤の解析用物性値の設定根拠（マンメイドロック）

	物理特性	強度特性		変形特性			
	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断強度 $\tau_{0}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	$\begin{array}{r} \hline \text { 引張強度 } \\ \sigma_{\mathrm{t}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \\ \hline \end{array}$	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断剛性 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	ポアソン比	減衰定数 （\％）
マンメイドロック（既設） （f＇ck＝15．6 N／mm ${ }^{2}$ ）	$\begin{gathered} \text { 文献に基づき } \\ \text { 設定*1 } \end{gathered}$	$\begin{gathered} \text { 文献に基づき設定*2 } \\ \left(\tau_{0}=1 / 5 f^{\prime} \mathrm{ck}\right) \end{gathered}$	文献に基づき設定＊1 $\left(\sigma_{\mathrm{t}}=0.23 \mathrm{f}^{\prime} \mathrm{ck}^{2 / 3}\right)$	文献に基づき設定＊${ }^{*}$	ヤング係数と ポアソン比の関係より算出	$\begin{gathered} \text { 文献に基づき } \\ \text { 設定*1 } \end{gathered}$	岩盤と同じ値
マンメイドロック（新設） （ f^{\prime} ck＝21． $0 \mathrm{~N} / \mathrm{mm}^{2}$ ）	文献に基づき設定＊${ }^{*}$	$\begin{gathered} \text { 文献に基づき設定* }{ }^{2} \\ \quad\left(\tau_{0}=1 / 5 f^{\prime} \mathrm{ck}\right) \end{gathered}$	文献に基づき設定＊1 $\left(\sigma_{t}=0.23 f^{\prime} \mathrm{ck}^{2 / 3}\right)$	$\begin{gathered} \text { 文献に基づき } \\ \text { 設定*1 } \end{gathered}$	ヤング係数と ポアソン比の関係より算出	$\begin{gathered} \text { 文献に基づき } \\ \text { 設定*1 } \end{gathered}$	岩盤と同じ値

[^2]＊2：コンクリート標準示方書 ダムコンクリート編 土木学会 2013年
（2）地下水位
保管エリアにおける地震応答解析に用いる地下水位は，添付書類「VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセスルート」に基づき設定する。各保管エリアにおける地下水位の設定を表 3－9に示す。

表 3－9 各保管エリアにおける地下水位の設定

対象	地震応答解析モデル の位置	地下水位＊ （m）
第1保管エリア	（1）	$\text { 0. P. }+61.73$ （地表面）
	（2）	$\text { 0. P. }+61.77$ （地表面）
	（3）	$\text { 0. P. }+61.69$ （地表面）
第2保管エリア	NS 方向	$\begin{gathered} \text { 0. P. + }+62.00 \\ \text { (地表面) } \end{gathered}$
	EW 方向	$\text { 0. P. }+62.00$ （地表面）
第3保管エリア	（1）	$\text { 0. P. }+14.80$ （地表面）
	（2）	$\text { 0. P. }+14.80$ （地表面）
第4保管エリア	（1）	$\begin{gathered} \text { 0. P. }+62.00 \\ \text { (地表面) } \end{gathered}$
	（2）	$\begin{gathered} \text { 0. P. }+62.00 \\ (\text { 地表面) } \end{gathered}$

注記＊：2011 年東北地方太平洋沖地震に伴う地殻変動を考慮すると，表記値より一様に約 1 m 沈下。以後の記載についても同様。
（3）使用材料及び材料の物性値
第2保管エリアである淡水貯水槽における使用材料及び地震応答解析に必要な材料の物性値を，表3－10に示す。

表 3－10 使用材料及び材料の物性値

	ヤング係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断弾性係数 G $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 ν	単位体積重量 γ $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$
普通 コンクリート $\mathrm{Fc}=24$	$2.27 \times 10^{4} * 1$	$0.945 \times 10^{4} * 1$	0.2	$23^{* 2}$
鉄 筋	2.05×10^{5}	-	-	-

注記 $* 1: \mathrm{E}=3.35 \times 10^{4} \times\left(\frac{23}{24}\right)^{2} \times\left(\frac{24}{60}\right)^{\frac{1}{3}}=22669 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\Rightarrow 2.27 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}
$$

（4）基準地震動 S s
保管エリアにおける地震応答解析に用いる基準地震動 S s は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に基づき，水平方向及び鉛直方向に対して，解放基盤表面で定義される基準地震動 S s を用いる。

3.3 地震応答解析モデルの作成

地震応答解析モデルは，各保管エリアにおいて，周辺の地質構造を考慮して作成する。なお，第2保管エリアは淡水貯水槽上に設定されており，地盤及び構造物をモデル化する。

地震応答解析モデルの作成位置を図 3－2に，地震応答解析モデルを図 3－3～図3－6及び表3－11 ～表3－12に示す。

図 3－2 地震応答解析モデルの作成位置

第1保管エリア①
第1保管エリア（2）
［地質区分］

第1保管エリア（3）
［地質区分］［標高］

図 3－4（1）第2保管エリアの地震応答解析モデル（2 次元）

〈岩級	〈速庶展》	〈凡例〉
CL級	第2速度層	
CM級	第2速度層	
	第3速度層	
	第4速度層	
	第5速度層	
OH級	第3速度層	
	第4速度層	
	第5速度層	
B級	第5速度層	
盛土	－	$\therefore \therefore \Delta s^{\circ}$

図 3－4（2）第2保管エリアの地震応答解析モデル（2 次元）

表 3－11 第2保管エリアの地震応答解析モデル（質点系）諸元（NS 方向）

- 基礎スラブ：42．0m（NS）×54．0m（EW）
- 総重量：550540（524760）kN

∇ O．P． $62.1(\mathrm{~m})$

$\boldsymbol{\nabla} 0 . \mathrm{P} .51 .8(\mathrm{~m})$

70．P． $48.8(\mathrm{~m})$

- 基礎スラブ：42．0m（NS）×54．0m（EW）
- 総重量：550540（524760）（kN）

図 3－5 第3保管エリアの地震応答解析モデル（1 次元）
第4保管エリア①
第4保管エリア（2）

図 3－6 第4保管エリアの地震応答解析モデル（1 次元）

3.4 地震応答解析に用いる地震動

地震応答解析に用いる地震動は，解放基盤表面で定義される基準地震動 S s を，一次元重複反射理論により地震応答解析モデルの底面位置で評価したものを用いる。

地震応答解析に用いる地震動算定の概念図を図 3－7に示す。地震応答解析に用いる地震動の算定には，解析コード「SHAKE Ver1．6」及び「microSHAKE／3D Ver2．3．3」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 3－7 地震応答解析に用いる地震動算定の概念図

3.5 地震応答解析における解析ケース

保管エリアにおける入力地震動の算定においては，地盤物性のばらつきの影響を考慮するた め，表 3－13 に示す解析ケースを設定する。
保管エリアは主として C_{M} 級岩盤，C_{H} 級岩盤，B級岩盤が分布し，これらの地盤が地震時に保管エリアにおける入力地震動に影響を与えると判断されることから，これらの物性のばらつき について影響を確認する。

表 3－13 解析ケース

解析ケース	材料物性 $\text { (} \mathrm{E}_{0}: \text { ヤング係数) }$	地盤物性 （ G_{d} ：動せん断弾性係数）
ケース(1) （基本ケース）	設計基準強度	平均値
ケース（2）		平均値 $+1 \sigma$
ケース（3）		平均値－1 σ

4．加速度応答スペクトルの算定
保管エリアにおける入力地震動の解析ケースより，最大応答加速度と加速度応答スペクトルを整理する。

なお，本資料では，表 3－13に示す解析ケースのうち「基本ケース」の算定結果を示す。

4.1 保管エリアの最大応答加速度

第1保管エリアの最大応答加速度（基本ケース）を表4－1～表4－3に，第2保管エリアの最大応答加速度（基本ケース）を表 4－4～表 4－5 に，第3保管エリアの最大応答加速度（基本ケ ース）を表 4－6～表 4－7に，第4保管エリアの最大応答加速度（基本ケース）を表 4－8～表 4－9 に示す。

表 4－1 最大応答加速度（絶対値）（第1保管エリア（1）

基準地震動 S s	S s－D1	S s－D2	S s－D3	S s－F 1	S s－F 2	S s－F 3	S s－N1
水平方向 （cm／s ${ }^{2}$ ）	537.65	757． 66	599.57	599.52	597.87	702.75	581.39
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	392.82	493.48	534.91	341.27	373.49	384.32	291． 84

表 4－2 最大応答加速度（絶対値）（第1保管エリア（2））

基準地震動 S s	S s－D1	S s－D2	S s－D3	S s－F 1	S s－F 2	S s－F3	S s－N1
水平方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	536.65	739.32	586.88	593.69	586.32	690． 45	580．93
鉛直方向 （cm／s ${ }^{2}$ ）	391.63	492． 15	530.57	339.76	372.58	382.96	291.24

表 4－3 最大応答加速度（絶対値）（第1保管エリア（3）

基準地震動 S s	S s－D1	S s－D2	S s－D3	S s－F 1	S s－F2	S s－F 3	S s－N1
水平方向 （ $\mathrm{cm} / \mathrm{s}^{2}$ ）	534.69	738.14	618.00	604.98	622.63	712.66	584.81
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	398.31	499． 76	554.14	347.41	378.33	390． 14	294.91

表 4－4 最大応答加速度（絶対値）（第2保管エリア）（1／2）

基準地震動 SS s	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$		$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$		$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	
	EW	NS	EW	N S	EW	N S
水平方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	1019.71	1031.23	1191.55	1149.37	979.34	1088.39
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	439.02	453.38	523.36	561.50	526.34	556.14

表 4－5 最大応答加速度（絶対値）（第2保管エリア）（2／2）

基準地震動 S s	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$		$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$		S s－F3		S s $-\mathrm{N} 1$	
	804.27	785.79	884.41	893.68	1072.56	942.03	608.94	630.61
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	369.88	376.18	387.09	397.56	425.85	436.64	299.80	294.40

表 4－6 最大応答加速度（絶対値）（第3保管エリア（1）

基準地震動 S s	S s－D1	S s－D2	S s－D 3	S s－F 1	S s－F 2	S s－F 3	S s－N1
水平方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	890.35	1182.27	1053.92	789.26	928.91	1007.17	621.93
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	467.59	660.25	673.84	402.35	426.63	437.34	313.66

表 4－7 最大応答加速度（絶対値）（第 3 保管エリア（2））

基準地震動 S s	S s－D1	S s－D2	S s－D3	S s－F 1	S s－F 2	S s－F 3	S s－N 1
水平方向 （cm／s ${ }^{2}$ ）	1076． 78	1313.84	1076.02	823.81	967.33	1111.27	612． 49
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	446． 89	630． 14	673． 33	392.23	416． 00	430． 70	311.48

表 4－8 最大応答加速度（絶対値）（第4保管エリア（1）

基準地震動 S s	S s－D1	S s－D2	S s－D3	S s－F 1	S s－F 2	S s－F 3	S s－N1
水平方向 （cm／s ${ }^{2}$ ）	550.02	694． 29	649.17	590.39	615.15	709． 42	585.72
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	405． 99	527.29	565.01	359.77	387.82	398.73	294.66

表 4－9 最大応答加速度（絶対値）（第4保管エリア（2））

基準地震動 S s	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	S s－N1
水平方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	584.13	895.01	733.47	656.08	682.53	762.76	606.15
鉛直方向 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	401.98	517.22	569.53	356.95	384.63	397.32	295.56

4.2 第 1 保管エリア

一次元重複反射理論による地震応答解析により算定した第 1 保管エリアの地表面における加速度時刻歴波形及び加速度応答スペクトル（基本ケース）を図 4－1～図 4－42 に示す。なお，加速度応答スペクトルに用いる減衰定数は，車両型設備の減衰定数（8\％）を考慮し設定する。
（1）第1保管エリア①

図 4－1 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1）
(第1保管エリア①) (1/42)

図 4－2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第1保管エリア（1））（2／42）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第1保管エリア（1）（3／42）

（b）加速度応答スペクトル

図 4－4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第1保管エリア（1）（4／42）

図 4－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第1保管エリア（1）（5／42）

（a）加速度時刻歴波形

図 4－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F1） （第1保管エリア（1）（7／42）

図 4－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F1） （第1保管エリア（1）（8／42）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 2）
（第1保管エリア（1）（9／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第1保管エリア（1）（10／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第1保管エリア（1）（11／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3） （第1保管エリア（1）（12／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第1保管エリア（1）（13／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第1保管エリア（1）（14／42）
（2）第1保管エリア（2）

（2）
（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第1保管エリア（2））（15／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第1保管エリア（2））（16／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第1保管エリア（2））（17／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第1保管エリア（2））（18／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第1保管エリア（2））（19／42）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D3） （第1保管エリア（2））（20／42）

（a）加速度時刻歴波形

図 4－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1） （第1保管エリア（2））（21／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1） （第1保管エリア（2））（22／42）

（a）加速度時刻歴波形

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第1保管エリア（2））（24／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第1保管エリア（2））（25／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3） （第1保管エリア（2））（26／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第1保管エリア（2））（27／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第1保管エリア（2））（28／42）
（3）第1保管エリア（3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第1保管エリア（3））（29／42）

図 4－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第1保管エリア（3））（30／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第1保管エリア（3））（31／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第1保管エリア（3））（32／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第1保管エリア（3））（33／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D3） （第1保管エリア（3））（34／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1） （第1保管エリア（3））（35／42）

（a）加速度時刻歴波形

図 4－36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1） （第1保管エリア（3））（36／42）

（a）加速度時刻歴波形

（a）加速度時刻歴波形

図 4－38 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第1保管エリア（3））（38／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－39 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第1保管エリア（3））（39／42）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－40 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3） （第1保管エリア（3））（40／42）

（b）加速度応答スペクトル

図 4－41 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第1保管エリア（3））（41／42）

図 4－42 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第1保管エリア（3））（42／42）

4． 3 第 2 保管エリア

2 次元 FEM 解析により算定した第2保管エリアの地表面における加速度時刻歴波形及び加速度応答スペクトル（基本ケース）を図 4－43～図 4－70に示す。なお，加速度応答スペクトルに用いる減衰定数は，車両型設備の減衰定数（8\％）を考慮し設定する。

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－43 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1EW） （第2保管エリア）（1／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－44 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1EW） （第2保管エリア）（2／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－45 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1N S） （第2保管エリア）（3／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－46 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1N S） （第2保管エリア）（4／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－47 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2EW） （第2保管エリア）（5／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－48 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2EW） （第2保管エリア）（6／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－49 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2N S） （第2保管エリア）（7／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－50 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2N S） （第2保管エリア）（8／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－51 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3EW） （第2保管エリア）（9／28）

図 4－52 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D3EW） （第2保管エリア）（10／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－54 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D 3 N S） （第2保管エリア）（12／28）

（b）加速度応答スペクトル

図 4－55 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1 E W） （第2保管エリア）（13／28）

図 4－56 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F1EW） （第2保管エリア）（14／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－57 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1N S） （第2保管エリア）（15／28）

（a）加速度時刻歴波形
$\mathrm{h}=0.08$

（b）加速度応答スペクトル

図 4－58 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1N S） （第2保管エリア）（16／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－59 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 2E W） （第2保管エリア）（17／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－60 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2EW） （第2保管エリア）（18／28）

（a）加速度時刻歴波形

図 4－61 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 2 NS ） （第2保管エリア）（19／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－62 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F2NS） （第2保管エリア）（20／28）

図 4－63 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3EW） （第2保管エリア）（21／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－64 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F3EW） （第2保管エリア）（22／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－65 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3N S ） （第2保管エリア）（23／28）

図 4－66 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3N S ） （第2保管エリア）（24／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－67 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1EW） （第2保管エリア）（25／28）

図 4－69 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1N S） （第2保管エリア）（27／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－70 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1N S） （第2保管エリア）（28／28）

4． 4 第 3 保管エリア

一次元重複反射理論による地震応答解析により算定した第 3 保管エリアの地表面における加速度時刻歴波形及び加速度応答スペクトル（基本ケース）を図 4－71～図 4－98 に示す。なお，加速度応答スペクトルに用いる減衰定数は，車両型設備の減衰定数（8\％）を考慮し設定する。
（1）第3保管エリア（1）

（a）加速度時刻歴波形
（1）第3保管エリア（1）

（b）加速度応答スペクトル

図 4－71 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第3保管エリア（1）（1／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－72 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第3保管エリア（1）（2／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－73 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第3保管エリア（1）（3／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－74 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第3保管エリア（1）（4／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－75 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第3保管エリア（1）（5／28）

（b）加速度応答スペクトル

図 4－76 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D3） （第3保管エリア（1）（6／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－77 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1）
（第3保管エリア（1）（7／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－78 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1）
（第3保管エリア（1）（8／28）

（a）加速度時刻歴波形
$\mathrm{h}=0.08$

（b）加速度応答スペクトル

図 4－79 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 2） （第3保管エリア（1））9／28）

（a）加速度時刻歴波形

図 4－80 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第3保管エリア（1）（10／28）

（a）加速度時刻歴波形
$\mathrm{h}=0.08$

（b）加速度応答スペクトル

図 4－81 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第3保管エリア（1）（11／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－82 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3） （第3保管エリア（1））（12／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－83 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第3保管エリア（1）（13／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－84 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第3保管エリア①）（14／28）
（2）第3保管エリア（2）

（a）加速度時刻歴波形
h=0.08

（b）加速度応答スペクトル

図 4－85 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第3保管エリア（2））（15／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－86 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第3保管エリア（2））（16／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－87 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第3保管エリア（2））（17／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－88 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第3保管エリア（2））（18／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－89 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第3保管エリア（2））（19／28）

図 4－90 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D 3） （第3保管エリア（2））（20／28）

（a）加速度時刻歴波形
$\mathrm{h}=0.08$

（b）加速度応答スペクトル

図 4－91 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 1） （第3保管エリア（2））（21／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－92 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1） （第3保管エリア（2））（22／28）

（a）加速度時刻歴波形

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－94 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第3保管エリア（2））（24／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－95 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第3保管エリア（2））（25／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－96 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 3） （第3保管エリア（2））（26／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－97 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第3保管エリア（2））（27／28）

（a）加速度時刻歴波形
$\mathrm{h}=0.08$

（b）加速度応答スペクトル

図 4－98 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第3保管エリア（2））（28／28）

4.5 第4保管エリア

一次元重複反射理論による地震応答解析により算定した第 4 保管エリアの地表面における加速度時刻歴波形及び加速度応答スペクトル（基本ケース）を図 4－99～図 4－126 に示す。なお，加速度応答スペクトルに用いる減衰定数は，車両型設備の減衰定数（8\％）を考慮し設定する。
（1）第4保管エリア（1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－99 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第4保管エリア（1）（1／28）

（b）加速度応答スペクトル

図 4－100 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第4保管エリア（1）（2／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－101 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D2） （第4保管エリア（1）（3／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－102 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D2） （第4保管エリア（1）（4／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－103 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D3） （第4保管エリア（1）（5／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－104 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D3） （第4保管エリア（1））（6／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－105 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F1） （第4保管エリア（1）（7／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－106 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 1） （第4保管エリア（1）（8／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－107 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F2） （第4保管エリア（1）（9／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－108 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F 2） （第4保管エリア（1）（10／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－109 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F 3） （第4保管エリア（1）（11／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－110 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F3） （第4保管エリア（1）（12／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－111 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－N1） （第4保管エリア（1）（13／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－112 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第4保管エリア（1）（14／28）
（2）第4保管エリア（2）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－113 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D1） （第4保管エリア（2））（15／28）

（b）加速度応答スペクトル

図 4－114 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D1） （第4保管エリア（2））（16／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－115 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－D 2） （第4保管エリア（2））（17／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－116 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D 2） （第4保管エリア（2））（18／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－118 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－D 3） （第4保管エリア（2））（20／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－119 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F1） （第4保管エリア（2））（21／28）

（a）加速度時刻歴波形
（b）加速度応答スペクトル

図 4－120 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F1） （第4保管エリア（2））（22／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－123 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（水平方向：S s－F3） （第4保管エリア（2））（25／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－124 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－F3） （第4保管エリア（2））（26／28）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図 4－126 入力地震動の加速度時刻歴波形及び加速度応答スペクトル（鉛直方向：S s－N1） （第4保管エリア（2））（28／28）

VI－2－別添 3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書
1．概要 1
2．基本方針 1
2.1 配置 1
2.2 構造概要 3
2.3 固縛装置 8
2.4 評価方針 10
2.5 適用基準 13
3．加振試験 14
3.1 基本方針 14
3．2 入力地震動 14
3.3 試験方法 14
3.4 試験結果 14
4．構造強度評価 17
4.1 基本方針 17
4． 2 評価部位 17
4.3 荷重及び荷重の組合せ 18
4．4 許容限界 18
4.5 評価方法 19
5．転倒評価 30
5.1 基本方針 30
5.2 評価部位 30
5.3 許容限界 30
5.4 評価方法 30
6．機能維持評価 31
6.1 基本方針 31
6．2 評価部位 31
6．3 許容限界 31
6． 4 評価方法 31
7．波及的影響評価 33
7.1 基本方針 33
7.2 評価部位 33
7．3 許容限界 33
7． 4 評価方法 35
8．評価条件 36
8． 1 構造強度評価 36
8．2 転倒評価 36
8.3 機能維持評価 36
8． 4 波及的影響評価 37
9．評価結果 51
9.1 構造強度評価結果 51
9.2 軽倒評価結果 51
9．3 機能維持評価結果 51
9．4 波及的影響評価結果 51

1．概要

本計算書は，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」（以下「別添 3－1」という。）にて設定している構造強度及び機能維持の設計方針に基づき，可搬型重大事故等対処設備のうち車両型設備が地震後において，基準地震動 S s による地震力に対し，十分な構造強度及び機能維持を有するとともに，当該設備による波及的影響を防止する必要がある他の設備に波及的影響を及ぼさないことを説明するものである。その耐震評価は，加振試験，構造強度評価，転倒評価及び機能維持評価並びに波及的影響評価により行う。

2．基本方針
別添 3－1 の「2．耐震評価の基本方針」に示す構造計画のとおり，車両型設備の「2．1 配置」及 び「2．2 構造概要」を示す。

2． 1 配置

車両型設備は，別添3－1の「2．1 評価対象設備」のうち構造計画に示すとおり，第 1 保管 エリア，第2保管エリア，第3保管エリア，第4保管エリア，緊急時対策建屋北側に分散して保管する。これらの保管場所を図2－1に示す。

図 2－1 車両型設備の保管場所位置図

2.2 構造概要

車両型設備の構造は，別添3－1の「2．1 評価対象設備」に示す構造計画としており，車両型設備の構造計画を表 2－1 に，車両型設備の構造図を図 2－2～図2－8 に示す。

表 2－1 車両型設備の構造計画（1／2）

設備名称	計画の概要		説明図
	主体構造	支持構造	
大容量送水ポンプ (タイプ I) 及び 大容量送水ポンプ (タイプII)	サスペンションを有 し，自走にて移動で きる構造＊とし，車両，ポンプ及び内燃機関により構成す る。	ポンプ及び内燃機関は，コンテナ に直接支持構造物である取付ボル トにて固定する。ポンプ及び内燃機関を収納したコンテナは，間接支持構造物であるトラックに積載 し取付ボルトにより固定し，保管場所に固定せずに保管する。	図 2－2 図 2－3
電源車 及び 電源車 （緊急時対策所用）	サスペンションを有 し，自走にて移動で きる構造＊とし，車両，発電機及び内燃機関により構成す る。	発電機及び内燃機関は，コンテナ に直接支持構造物である取付ボル トにて固定する。発電機及び内燃機関を収納したコンテナは，間接支持構造物であるトラックに積載 し取付ボルトにより固定し，保管場所に固定せずに保管する。	図 2－4

注記＊：早期の重大事故等への対処を考慮し移動機能を有するとともに，地震に対する影響を軽減できる構造として，サスペンションを有している。

表 2－1 車両型設備の構造計画（2／2）

設備名称	計画の概要		説明図
	主体構造	支持構造	
原子炉補機代替冷却水系熱交換器 ユニット	サスペンションを有 し，トラクタにて連結 したトレーラを牽引し て移動できる構造＊と し，車両，熱交換器，ポ ンプ及び内燃機関によ り構成する。	熱交換器，ポンプ及び内燃機関 は，トレーラに直接支持構造物で ある取付ボルトにて固定し，保管場所に固定せずに保管する。	図 2－5
可搬型窒素ガス供給装置	サスペンションを有 し，トラクタにて連結 したトレーラを牽引し て移動できる構造＊と し，車両，窒素ガス分離装置，空気圧縮機及び発電機により構成す る。	窒素ガス分離装置，空気圧縮機及 び発電機は，コンテナに直接支持構造物である取付ボルトにて固定する。窒素ガス分離装置，空気圧縮機及び発電機を収納したコ ンテナは，間接支持構造物である トレーラに積載し取付ボルトに より固定し，保管場所に固定せず に保管する。	図 2－6
ホース延長回収車	サスペンションを有 し，自走にて移動でき る構造＊とし，車両及び マルチリフトにより構成する。	マルチリフトは，トラックの荷台 に直接支持構造物である取付ボ ルトにて固定し，保管場所に固定 せずに保管する。	図 2－7
タンクローリ	サスペンションを有 し，自走にて移動でき る構造＊とし，車両，夕 ンク及びポンプにより構成する。	タンク及びポンプは，トラックの荷台に直接支持構造物である取付ボルトにて固定し，保管場所に固定せずに保管する。	図 2－8

注記＊：早期の重大事故等への対処を考慮し移動機能を有するとともに，地震に対する影響を軽減できる構造として，サスペンションを有している。

図 2－2 大容量送水ポンプ（タイプ I ）の構造図（外観図）

図 2－3 大容量送水ポンプ（タイプII）の構造図（外観図）

図 2－4 電源車及び電源車（緊急時対策所用）の構造図（外観図）

図 2－5 原子炉補機代替冷却水系熱交換器ユニットの構造図（外観図）

図 2－6 可搬型窒素ガス供給装置の構造図（外観図）

図 2－7 ホース延長回収車の構造図（外観図）

図 2－8 タンクローリの構造図（外観図）

2.3 固縛装置

車両型設備については，屋外の可搬型重大事故等対処設備保管場所に保管することから，竜巻襲来時に飛散し，他の重大事故等対処設備を損傷させることを防止するため，固縛装置を設置す る。固縛装置は，「連結材」と連結材を固定するための「固定材」及び「基礎」から構成される。図 2－9に固縛装置の構造概要を示す。

「連結材」は，車両型設備を胴巻きにするメインロープと固定材との取り合いとなるサイドロ ープで構成され，材質は高強度繊維ロープを使用している。サイドロープは，車両型設備の特徴 であるサスペンションの耐震性（振動抑制効果）を損なわないよう余長を持たせている。「固定材」は，アンカープレートとフレノ・リンクボルトで構成され，「基礎部」は固定材と基礎を定着するアンカーボルト及び基礎（スラブコンクリート）で構成されている。

なお，固縛装置を車両型設備に設置する場合，地震時の車両型設備の挙動により固縛装置が作用して，車両型設備の重大事故等に対処するために必要な機能に影響を与えることのないよう に，以下の設計とする。
－固縛装置の余長を十分に設けることにより地震時に作用させない設計とする。ここで，十分 な余長とは，地震に伴う車両型設備のすべり及び傾きによる変位が生じた場合でも，固縛装置が展張せず，また，固定材にタイヤが干渉しない余長のことを示す。本設計に基づく固縛装置を，以下「長い余長の固縛装置」という。
固縛装置の設計方針，構造計画等の詳細については，添付書類「VI－1－1－2－3 竜巻への配慮に関する説明書」に，竜巻対策としての固縛装置の強度に関する設計については，添付書類「VI－ $3-$ 別添 1－3 屋外重大事故等対処設備の固縛装置の強度計算の方針」及び添付書類「VI－3－別添 1－3－1 屋外重大事故等対処設備の固縛装置の強度計算書」にて評価する。また，固縛装置の耐震評価としては，加振試験後に固縛装置が健全であり，車両型設備が転倒しないことを確認する。

図 2－9 固縛装置の構造概要

2.4 評価方針

車両型設備の評価方針を以下に示し，評価方法の一覧を表 2－2 に，耐震評価フローを図 2－10 に示す。
（1）構造強度評価
車両型設備は，別添3－1 の「2．2（1）車両型設備」にて設定した構造強度評価の方針に従 い，直接支持構造物及び間接支持構造物に対する構造強度評価を実施する。

車両型設備の構造強度評価は，「3．加振試験」にて得られた評価部位頂部の加速度を用い，
「4．構造強度評価」に示す方法により，車両型設備の評価部位に作用する応力が許容限界を満足することを確認する。確認結果を「9．評価結果」に示す。

別添3－1 の「2．2 評価方針」に示す評価部位のうち直接支持構造物としての取付ボルト の構造強度評価については，J E A G 4 6 0 1 •補— 1984に規定されているその他の支持構造物の評価に従い実施する。間接支持構造物としての取付ボルトについては，直接支持構造物の構造強度評価に準じて実施する。
（2）転倒評価
車両型設備は，別添3－1の「2．2（1）車両型設備」にて設定した転倒評価の方針に従い，転倒評価を実施する。

車両型設備の転倒評価は，「5．転倒評価」に示す方法により，「3．加振試験」における加振試験を行い，車両型設備が転倒していないことを確認し，保管場所の地表面の最大応答加速度と，加振試験により転倒しないことを確認した加振台の最大加速度との比較を行い，許容限界を満足することを確認する。確認結果を「9．評価結果」に示す。
（3）機能維持評価
車両型設備は，別添 3－1 の「2．2（1）車両型設備」にて設定した機能維持評価の方針に従 い，支持機能，移動機能，動的及び電気的機能維持評価を実施する。

車両型設備の機能維持評価は，「6．機能維持評価」に示す方法により，「3．加振試験」 における加振試験にて，加振試験後に支持機能及び移動機能，並びにポンプの送水機能，発電機の発電機能，内燃機関の駆動機能等の動的及び電気的機能を維持できることを確認し，保管場所の地表面の最大応答加速度と，加振試験により支持機能，移動機能，動的及び電気的機能を維持できることを確認した加振台の最大加速度との比較を行い，許容限界を満足す ることを確認する。確認結果を「9．評価結果」に示す。
（4）波及的影響評価
車両型設備は，別添 3－1 の「2．2（1）車両型設備」にて設定した波及的影響評価の方針に従 い，波及的影響評価を実施する。

車両型設備の波及的影響評価は，「7．波及的影響評価」に示す方法により，「3．加振試験」における加振試験にて確認した，車両型設備のすべり及び傾きによる最大変位量が，許容限界を満足することを確認する。確認結果を「9．評価結果」に示す。

図 2－10 車両型設備の耐震評価フロー

表 2－2 車両型設備の評価方法

設備名称	車両種別	設備種別	構造強度評価		転倒評価	機能維持評価	波及的影響評価
			直接支持構造物	間接支持構造物			
大容量送水ポンプ (タイプ I)	トラック	ポンプ車	加振試験 +応力計算	加振試験 +応力計算	加振試験	加振試験	加振試験
大容量送水ポンプ (タイプII)	トラック	ポンプ車	加振試験 +応力計算	加振試験 +応力計算	加振試験	加振試験	加振試験
電源車	トラック	発電機車	加振試験 +応力計算	加振試験＋応力計算	加振試験	加振試験	加振試験
電源車 （緊急時対策所用）	トラック	発電機車	加振試験 +応力計算	加振試験 +応力計算	加振試験	加振試験	加振試験
原子炉補機代替冷却水系熱交換器 ユニット	$\begin{gathered} \text { トラクタ・ } \\ \text { トレーラ } \end{gathered}$	熱交換器車	加振試験 +応力計算	－	加振試験	加振試験	加振試験
可搬型窒素ガス供給装置	$\begin{gathered} \text { トラクタ・ } \\ \text { トレーラ } \end{gathered}$	窒素発生装置	加振試験 +応力計算	加振試験 +応力計算	加振試験	加振試験	加振試験
ホース延長回収車	トラック	ホース延長回収車	加振試験＋応力計算	－	加振試験	加振試験	加振試験
タンクローリ	トラック	タンクローリ	加振試験 +応力計算	－	加振試験	加振試験	加振試験

2.5 適用基準

適用する規格，基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007（日本機械学会）

3．加振試験

3.1 基本方針

別添3－1 の「4．1 車両型設備（1）加振試験」にて設定した基本方針に従い，加振試験を実施する。

加振試験は，以下の「3．2 入力地震動」に示す入力地震動を用いて，「3．3 試験方法」に示 す方法により，「4．構造強度評価」に用いる評価部位頂部の最大応答加速度，「5．転倒評価」に用いる転倒の有無，「6．機能維持評価」に用いる加振台の最大加速度及び「7．波及的影響評価」に用いる車両型設備の最大変位量を求める。

3.2 入力地震動

入力地震動は，添付書類「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等におけ る入力地震動」に示す，各保管場所のS s－D 1～S s－N 1 の地震動を用いて，添付書類「VI －2－1－7 設計用床応答曲線の作成方針」に基づき作成する設計用床応答曲線をおおむね上回る よう作成したランダム波とする。

加振試験の入力地震動は，全ての保管場所における入力地震動を各対象設備の固有周期帯に おいて上回り，かつ周期全体としておおむね上回るように設定する。

3． 3 試験方法

車両型設備を実際の保管状態を模擬した状態で加振台に設置し，「3．2 入力地震動」に示す ランダム波を入力地震動として加振試験を行い，評価部位頂部の最大応答加速度，加振試験後 に転倒していないこと，加振台の最大加速度及び車両型設備の最大変位量を確認する。

また，加振試験は水平方向と鉛直方向同時入力で行う。

- 加 振 波：「3．2 入力地震動」にて設定したランダム波
- 加振方向：「水平（走行軸方向）＋鉛直」及び「水平（走行軸直角方向）＋鉛直」（2 軸加振）又は「水平（走行軸方向）＋水平（走行軸直角方向）＋鉛直」（3 軸加振）
加振波の最大加速度と振動台の制限加速度の関係上，2軸加振及び 3 軸加振の使い分けを行うこととし，電源車及び電源車（緊急時対策所用）については2軸加振を実施し，その他の車両型設備については，3 軸加振を実施する。

3.4 試験結果

加振試験により得られた結果を表3－1 に示す。

表3－1 加振試験結果（1／2）

表 3－2 加振試験結果（2／2）

設備名称	評価部位	評価部位の最大応答加速度 （ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）		転倒の有無	加振台の最大加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		車両型設備の最大変位量 （mm）	
		水平 （走行軸方向／ 走行軸直角方向）	鉛直		水平	鉛直	走行軸 方向	走行軸直角方向
原子炉補機代替冷却水系熱交換器ユニット	熱交換器取付ボルト	0．54／1． 22	1.16	無	1． 56	0.76	390	372
	ポンプ取付ボルト	0．58／0．88	0.78					
	内燃機関取付ボルト	0．64／1．18	1.01					
可搬型窒素ガス供給装置	窒素ガス分離装置取付ボルト	0．94／1． 30	0.51	無	1． 48	0.79	340	831
	空気圧縮機取付ボルト	0．78／1．02	1.15					
	発電機取付ボルト	0．80／1．31	1.94					
	コンテナ取付ボルト	0．68／1．37	2.84					
ホース延長回収車	マルチリフト 取付ボルト （上部／下部）	5．72／6． 34	4.98	無	1． 48	0.79	460	355
タンクローリ	タンク取付ボルト	1．09／1．90	1.55	無	1.61	1． 16	587	694
	ポンプ取付ボルト	1．00／1．63	1.91					

4．構造強度評価
4． 1 基本方針
車両型設備の構造強度評価は，別添3－1 の「2．2 評価方針」で設定した評価方針に従つて，構造強度評価を実施する。

車両型設備の構造強度評価は，「4．2 評価部位」に示す評価部位が，「4．3 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せに対し，「4．4 許容限界」に示す許容応力を満足すること を，「4．5 評価方法」に示す方法を用いて評価を行う。

4． 2 評価部位
車両型設備の評価部位は，別添3－1 の「2．2 評価方針」で設定した評価部位に従って設定す る。評価部位を表4－1 に示す。

表 4－1 車両型設備の直接支持構造物及び間接支持構造物 評価部位

設備名称	評価部位		図
	直接支持構造物	間接支持構造物	
大容量送水ポンプ (タイプ I)	ポンプ取付ボルト内燃機関取付ボルト	コンテナ取付ボルト	図 2－2
大容量送水ポンプ (タイプII)	ポンプ取付ボルト内燃機関取付ボルト	コンテナ取付ボルト	図 2－3
電源車	発電機／内燃機関取付ボルト	コンテナ取付ボルト	図 2－4
電源車 （緊急時対策所用）	発電機／内燃機関取付ボルト	コンテナ取付ボルト	図 2－4
原子炉補機代替冷却水系熱交換器 ユニット	熱交換器取付ボルト ポンプ取付ボルト内燃機関取付ボルト	－	図 2－5
可搬型窒素ガス供給装置	窒素ガス分離装置取付ボルト空気圧縮機取付ボルト発電機取付ボルト	コンテナ取付ボルト	図 2－6
ホース延長回収車	マルチリフト取付ボルト （上部／下部）	－	図 2－7
タンクローリ	タンク取付ボルト ポンプ取付ボルト	－	図 2－8

4． 3 荷重及び荷重の組合せ

車両型設備の構造強度評価に用いる荷重及び荷重の組合せは，別添3－1 の「3．1荷重及び荷重の組合せ」で設定した荷重及び荷重の組合せを用いる。

車両型設備の構造強度評価に用いる荷重の組合せを表 4－2 に示す。

表 4－2 荷重の組合せ

設備名	評価部位	荷重の組合せ
車両型設備	取付ボルト	$\mathrm{D}+\mathrm{S}_{\mathrm{s}}$

4． 4 許容限界

車両型設備の直接支持構造物及び間接支持構造物の許容限界は，「4．2 評価部位」にて設定し た評価部位の破断延性限界を考慮し，別添3－1の「3．2許容限界」で設定した許容限界に従 い，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力とする。

各評価部位の許容限界を表4－3に示す。

表 4－3 取付ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2	
			一次応力	
			引張り＊3	せん断＊3
取付ボルト	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$

注記＊1 ： $\mathrm{f}_{\mathrm{t}}{ }^{*}$ ， $\mathrm{f}_{\mathrm{s}}{ }^{*}$ は，J SME S NC1－2005／2007 SSB－3121．1（1）a 本文中 S_{y} 及び S_{y}
（ R T ）を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（J S ME S NC1－2005／2007 SSB－3133）。ただし，S y及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とす る。
＊2：J E A G 4 6 0 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定する。 ＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 f_{ts} は，J SME S NC1－2005／2007 SSB－3131に基づき，$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-\right.$ $1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}$ ］とする。ここで，$f_{\mathrm{t} \text { 。は } 1.5 \cdot \mathrm{f}_{\mathrm{t}} * \text { とする。 }}$ なお，f_{ts} は引張力とせん断力を同時に受けるボルトの許容引張応力をいい，$f_{\mathrm{t} \text { oは引 }}$張力のみ受けるボルトの許容引張応力をいう。

4．5 評価方法

車両型設備の直接支持構造物及び間接支持構造物の構造強度評価は，別添3－1の「4．1（2）構造強度評価」で設定した計算式に従って，評価部位について，JEAG4601－1987に規定されているポンプ等の取付ボルトの評価方法を用いて発生応力を算出し，許容応力以下であ ることを確認する。
評価については，表 3－1 に示す加振試験で測定された評価部位頂部の加速度を設計用加速度 とし，発生応力を算出し，構造強度評価を行う。
（1）評価に使用する記号及び計算モデルの説明
構造強度評価に使用する記号を表 4－4に，計算モデル例を図 4－1～図4－8に示す。 なお，取付ボルト①しついては，タンクローリのポンプ及びホース延長回収車以外の評価部位について，取付ボルト②については，タンクローリのポンプについて，取付ボルト③に ついては，コンテナについて，取付ボルト④については，ホース延長回収車のマルチリフト （上部／下部）に適用する。

表 4－4 構造強度評価に使用する記号

記号	単位	記 号の説明
A_{b}	mm^{2}	取付ボルトの軸断面積
a H	$\mathrm{m} / \mathrm{s}^{2}$	設計用水平加速度
a ${ }_{\text {P }}$	$\mathrm{m} / \mathrm{s}^{2}$	回転体振動による加速度
a v	$\mathrm{m} / \mathrm{s}^{2}$	設計用鉛直加速度
g	$\mathrm{m} / \mathrm{s}^{2}$	重力加速度
h	mm	据付面から重心位置までの高さ
L	mm	車両重心位置と取付ボルト間の水平方向距離
ℓ_{i}	mm	支点としている取付ボルトより評価に用いる取付ボルトまでの距離 （i は距離の長い順に番号取りをする。）
m	kg	機器の保管時質量
M_{p}	$\mathrm{N} \cdot \mathrm{mm}$	回転体回転により働くモーメント
N_{i}	－	引張力又ははせん断力の作用する取付ボルトの本数 （i は転倒支点から距離の遠い順に番号取りをする。）
n	－	取付ボルトの総本数
σ b	MPa	取付ボルトの最大引張応力
τ b	MPa	取付ボルトの最大せん断応力

図 4－1 直接支持構造物の計算モデル例（ $1 / 2$ ）
（取付ボルト（1）軸直角方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right) \geqq 0$ の場合）

図 4－1 直接支持構造物の計算モデル例（2／2）
（取付ボルト（1）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{P}}\right)<0$ の場合）

図 4－2 直接支持構造物の計算モデル例（ $1 / 2$ ）
（取付ボルト（1）軸方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{p}}\right) \geqq 0$ の場合）

図 4－2 直接支持構造物の計算モデル例 $(2 / 2)$
（取付ボルト（1）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}-\mathrm{a}_{\mathrm{P}}\right)<0$ の場合）

図 4－4 直接支持構造物の計算モデル例
（取付ボルト（2）軸方向転倒）

図 4－5 間接支持構造物の計算モデル例（1／2）

図 4－5 間接支持構造物の計算モデル例（2／2）
（取付ボルト（3）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right)<0$ の場合）

図 4－6 間接支持構造物の計算モデル例（1／2）
（取付ボルト（3）軸方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right) \geqq 0$ の場合）

図 4－6 間接支持構造物の計算モデル例（2／2）
（取付ボルト（3）軸方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right)<0$ の場合）

転倒方向

図 4－7 直接支持構造物の計算モデル例（ $1 / 2$ ）
（取付ボルト（4）軸直角方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right) \geqq 0$ の場合）

図 4－7 直接支持構造物の計算モデル例（2／2）
（取付ボルト（4）軸直角方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right)<0$ の場合）

図 4－8 直接支持構造物の計算モデル例（1／2）
（取付ボルト（4）軸方向転倒 $-1 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right) \geqq 0$ の場合）

図 4－8 直接支持構造物の計算モデル例（2／2）
（取付ボルト（4）軸方向転倒 $-2 \quad\left(\mathrm{~g}-\mathrm{a}_{\mathrm{v}}\right)<0$ の場合）
a．直接支持構造物の計算式
（a）図 4－1 及び図 4－2 の場合の引張応力
なお，図 4－2 の場合のボルトについては，回転体回転により働くモーメントは作用しない。
$\sigma_{\mathrm{b}}=\frac{\mathrm{m} \cdot\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{h}+\mathrm{M}_{\mathrm{P}}-\mathrm{m} \cdot\left(\mathrm{g}-\mathrm{a}_{\mathrm{V}}-\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{L}}{\mathrm{A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}}$
（b）図 4－1 及び図 4－2 の場合のせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{p}}\right)}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.2}
\end{equation*}
$$

（c）図 4－3 の場合のせん断応力
i ．荷重によるせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right)^{2}+\left(\mathrm{g}+\mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right)^{2}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.3}
\end{equation*}
$$

ii ．モーメントによるせん断応力
$\tau_{b}=\frac{m \cdot\left(a_{H}+a_{P}\right) \cdot h+M_{P}+m \cdot\left(g+a_{V}+a_{P}\right) \cdot L}{A_{b}} \cdot \frac{\ell_{1}}{\sum_{i=1} N_{i} \cdot \ell_{i}^{2}}$
（d）図 4－4 の場合の引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right)^{2}+\left(\mathrm{g}+\mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right)^{2}}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.5}
\end{equation*}
$$

（e）図 4－4 の場合のせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot\left(\mathrm{a}_{\mathrm{H}}+\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{h}+\mathrm{m} \cdot\left(\mathrm{~g}+\mathrm{a}_{\mathrm{V}}+\mathrm{a}_{\mathrm{P}}\right) \cdot \mathrm{L}}{\mathrm{~A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}} \tag{4.6}
\end{equation*}
$$

（f）図 4－7 の場合の引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\mathrm{a}_{\mathrm{H}}^{2}+\left(\mathrm{g}-\mathrm{a}_{\mathrm{V}}\right)^{2}}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot A_{\mathrm{b}}} \tag{4.7}
\end{equation*}
$$

（g）図 4－7 の場合のせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}-\mathrm{a}_{\mathrm{V}}\right) \cdot \mathrm{L}}{\mathrm{~A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}} \tag{4.8}
\end{equation*}
$$

（h）図 4－8 の場合のせん断応力
i ．荷重によるせん断応力
$\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \sqrt{\mathrm{a}_{\mathrm{H}}^{2}+\left(\mathrm{g}-\mathrm{a}_{\mathrm{V}}\right)^{2}}}{\mathrm{n} \cdot \mathrm{A}_{\mathrm{b}}}$
ii ．モーメントによるせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}-\mathrm{a}_{\mathrm{V}}\right) \cdot \mathrm{L}}{\mathrm{~A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}} \tag{4.10}
\end{equation*}
$$

b．間接支持構造物の計算式
（a）図 4－5 及び図 4－6 の場合の引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot\left(\mathrm{~g}-\mathrm{a}_{\mathrm{V}}\right) \cdot \mathrm{L}}{\mathrm{~A}_{\mathrm{b}}} \cdot \frac{\ell_{1}}{\sum_{\mathrm{i}=1} \mathrm{~N}_{\mathrm{i}} \cdot \ell_{\mathrm{i}}^{2}} \tag{4.11}
\end{equation*}
$$

（b）図 4－5 及び図 4－6の場合のせん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{a}_{\mathrm{H}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.12}
\end{equation*}
$$

5．転倒評価

5.1 基本方針

車両型設備は，別添3－1 の「2．2 評価方針」に設定した評価方針に従い，転倒評価を実施する。
車両型設備の転倒評価は，「5．2 評価部位」に示す評価部位が「5．3 許容限界」に示す許容限界を満足することを「5．4 評価方法」に示す方法を用いて評価を行う。
5.2 評価部位

転倒評価の評価部位は，別添3－1 の「3．2許容限界」にて設定したとおり，地震後に転倒し ていないことが要求される車両型設備全体とする。

5.3 許容限界

許容限界は，「5．2 評価部位」にて設定した評価部位の保管場所の地表面の最大応答加速度 が，加振試験により転倒しないことを確認した加振台の最大加速度以下であることとする。

5． 4 評価方法

車両型設備の転倒評価は，別添3－1 の「4．1（3）転倒評価」にて設定した評価方針に従い，保管場所の地表面の最大応答加速度と，「3．加振試験」における加振試験にて転倒しないことを確認した加振台の最大加速度との比較を行い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。

6．機能維持評価
6． 1 基本方針
車両型設備は，別添3－1 の「2．2 評価方針」にて設定した評価方針に従い，機能維持評価を実施する。

車両型設備の機能維持評価は，「6．2 評価部位」に示す評価部位が「6．3 許容限界」に示す許容限界を満足することを，「6．4 評価方法」に示す方法を用いて評価を行う。

6.2 評価部位

機能維持評価の評価部位は，別添3－1 の「2．2 評価方針」に示す確認方法を踏まえて，地震後に支持機能及び移動機能の維持が必要な車両部並びに動的及び電気的機能の維持が必要な車両に積載しているポンプ，発電機及び内燃機関等とする。

6． 3 許容限界
許容限界は，「6．2 評価部位」にて設定した評価部位の保管場所の地表面の最大応答加速度 が，加振試験により支持機能，移動機能，動的及び電気的機能が維持されることを確認した加振

6． 4 評価方法

車両型設備の機能維持評価は，別添 3－1 の「4．1（4）機能維持評価」にて設定した評価方針に従い，保管場所の地表面の最大応答加速度と，「3．加振試験」における加振試験にて得られた，表 6－1 に示す機能維持確認項目を確認した加振台の最大加速度との比較を行い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。

表 6－1 車両型設備の機能維持確認項目

設備名称	機能維持確認項目
大容量送水ポンプ (タイプ I)	重大事故等時に原子炉へ注水，原子炉格納容器内部へのスプレ イ，原子炉格納容器下部への注水，使用済燃料プールへの注水又はスプレイ，代替淡水源（復水貯蔵タンク）への補給，原子炉格納容器フィルタベント系フィルタ装置への補給，最終ヒー トシンク（海洋）への熱の輸送が可能な容量及び揚程を有する こと。 また，保管場所から設置場所までの自走機能を有すること。
大容量送水ポンプ (タイプII)	重大事故等時に代替淡水源（淡水貯水槽）への補給，大気への放射性物質の拡散抑制及び航空機燃料火災への泡消火が可能な容量及び揚程を有すること。 また，保管場所から設置場所までの自走機能を有すること。
電源車	重大事故等時の全交流動力電源喪失時，又は全交流動力電源及 び直流電源喪失時に必要な負荷に給電するための容量を有する こと。 また，保管場所から設置場所までの自走機能を有すること。
電源車 （緊急時対策所用）	重大事故等時の全交流動力電源喪失時に緊急時対策所に給電す るための容量を有すること。
原子炉補機代替冷却水系熱交換器ユニット	重大事故等時に残留熱除去系，燃料プール泠却浄化系で発生し た熱を最終ヒートシンク（海洋）へ輸送が可能な容量を有する こと。 また，保管場所から設置場所まで自走機能を有すること，
可搬型窒素がス供給装置	重大事故等時に屋外から原子炉格納容器及び原子炬格納容器フ イルタベント系に窒素を供給するための容量を有すること。 また，保管場所から設置場所までの自走機能を有すること。
ホース延長回収車	重大事故等時にホース等の運搬，設置作業ができること。 また，保管場所から設置場所までの自走機能を有すること。
タンクローリ	重大事故等時に軽油タンクから対象設備（電源車（燃料タン ク），可搬型窒素ガス供給装置発電設備（燃料タンク），大容量送水ポンプ（タイプI）（燃料タンク），大容量送水ポンプ（タイプ II）（燃料タンク），原子炉補機代替冷却水系熱交換器ユニット （燃料タンク）及びガスタービン発電設備）～必要となる容量の燃料油を輸送できること。 また，保管場所から設置場所までの自走機能を有すること。

7．波及的影響評価
7.1 基本方針

車両型設備は，別添3－1の「2．2評価方針」にて設定した評価方針に従い，当該設備による波及的影響を防止する必要がある他の設備への波及的影響評価を実施する。

車両型設備の波及的影響評価は，「7．2 評価部位」に示す評価部位が，「7．3 許容限界」に示 す許容限界を満足することを「7．4 評価方法」に示す方法を用いて評価を行う。

7.2 評価部位

波及的影響評価の評価部位は，別添3－1 の「3．2 許容限界」にて設定したとおり，車両型設備全体とする。

7．3許容限界

車両型設備は，「7．2 評価部位」にて設定した評価部位と他の設備との離隔距離について，車両型設備の加振試験にて確認した最大変位量を基に，1台当たりについて表 7－1 の値を許容限界 とする。

なお，実際の車両型設備の配置に必要な車両型設備の間隔については，隣り合う設備の離隔距離の合算値以上とする。

表 7－1 加振試験にて確認した最大変位量をもとに定めた 1 台当たりの離隔距離
（単位：mm）

機器名称	保管場所	離隔距離	
		走行軸方向	走行軸直角方向
大容量送水ポンプ（タイプI）	第1保管エリア第2保管エリア第3保管エリア第4保管エリア	1000	1500
大容量送水ポンプ（タイプII）	第1保管エリア第2保管エリア第4保管エリア	1000	1500
電源車	第2保管エリア第3保管エリア第4保管エリア	1000	1500
電源車（緊急時対策所用）	緊急時対策所北側第4保管エリア	1000	1500
原子炉補機代替冷却水系熱交換器ユニット	第1保管エリア第3保管エリア第4保管エリア	1000	1500
可搬型窒素ガス供給装置	第1保管エリア第4保管エリア	1000	1500
ホース延長回収車	第2保管エリア第3保管エリア第4保管エリア	1000	1500
タンクローリ	第2保管エリア第3保管エリア第4保管エリア	1000	1500

7.4 評価方法

車両型設備の波及的影響評価は，別添3－1 の「2．2 評価方針」にて設定した評価方針に従い，「3．加振試験」における加振試験にて得られた，車両型設備の傾き及びすべりによる変位量の合算値から求めた車両型設備の最大変位量が，許容限界以下であることを確認する。

地震時における各設備のすべり量の算出については，「（1）すべり量」に，地震時における各設備の傾きによる変位量の算出については，「（2）傾きによる変位量」に，最大変位量の算出につい ては，「（3）最大変位量」に示す。
（1）すべり量
すべり量については，各設備の加振試験により確認したすべり量のうち，最も大きいすべり量を使用する。
（2）傾きによる変位量
傾きによる変位量については，各設備の加振試験で得られた傾き角のうち，最も大きい値を用いて算出する。

また，波及的影響として評価すべき傾きによる変位量を表した図を図7－1 に示し，使用す る記号を表 7－2 に示す。

なお，地震による走行軸方向への傾きはほとんど無視できるため，走行軸方向への傾きによ る変位量は評価しない。

傾きによる変位量については，以下の関係式により示される。

$$
\begin{equation*}
\mathrm{X}=\mathrm{h} \cdot \sin \theta \tag{7.1}
\end{equation*}
$$

表 7－2 波及的影響評価に使用する記号

記号	単位	記号の説明
X	mm	傾きによる変位量
h	mm	設備高さ
θ	\circ	傾き角

図 7－1 傾きによる変位量の算出図
（3）最大変位量
「（1）すべり量」にて設定したすべり量に，「（2）傾きによる変位量」により算出される傾 きによる変位量を加算した値を最大変位量と定義し，最大変位量が「7．3 許容限界」にて設定した離隔距離未満であることを波及的影響評価として確認する。

8．評価条件

8． 1 構造強度評価

「4．構造強度評価」に用いる評価条件を表 8－1～表8－16に示す。

8．2 転倒評価

車両型設備の転倒評価は，「5．転倒評価」に示す評価方法に従い，保管場所における地表面の最大応答加速度が，加振試験により転倒しないことを確認した加振台の最大加速度以下で あることにより確認するものであり，転倒しないことを確認するために個別に設定する評価条件はない。

比較対象となる保管場所の地表面の最大応答加速度は，評価結果と併せて表 9－3に示す。

8． 3 機能維持評価

車両型設備の機能維持評価は，「6．機能維持評価」に示す評価方法に従い，保管場所の地表面の最大応答加速度が，加振試験により積載物から受ける荷重を支持する支持機能及び車両としての自走，牽引等による移動機能並びにポンプの送水機能，発電機の発電機能，内燃機関の駆動機能等の動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認するものであり，機能維持を確認するために個別に設定する評価条件はない。

比較対象となる保管場所の地表面の最大応答加速度は，評価結果と併せて表 9－3に示す。

8． 4 波及的影響評価

「7．波及的影響評価」に用いる評価条件を表 $8-17$ に示す。

表 8－1 大容量送水ポンプ（タイプ I ）の評価条件（走行軸方向）

記号	単位	評価部位		
		ポンプ取付ボルト	内燃機関取付ボルト	コンテナ取付ボルト
m	kg	800	1814	12300
h	mm	959	570	1327
A_{b}	mm ${ }^{2}$	572.6	452.4	314.2
n	－	4	4	20
N_{1}	－	2	2	2
N_{2}	－	－	－	2
N_{3}	－	－	－	2
N_{4}	－	－	－	2
N_{5}	－	－	－	2
N_{6}	－	－	－	2
N_{7}	－	－	－	2
N_{8}	－	－	－	2
N_{9}	－	－	－	2
L	mm	240	706.4	2912
ℓ_{1}	mm	480	1260	5781
ℓ_{2}	mm	－	－	5202
ℓ_{3}	mm	－	－	4624
ℓ_{4}	mm	－	－	3534
ℓ_{5}	mm	－	－	3009
ℓ_{6}	mm	－	－	2444
ℓ_{7}	mm	－	－	2000
ℓ_{8}	mm	－	－	1038
ℓ_{9}	mm	－	－	519

表 8－2 大容量送水ポンプ（タイプI）の評価条件（走行軸直角方向）

記号	単位	評価部位		
		ポンプ取付ボルト	内燃機関取付ボルト	コンテナ取付ボルト
m	kg	800	1814	12300
h	mm	959	570	1327
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	572.6	452.4	314.2
n	-	4	4	20
$\mathrm{~N}_{1}$	-	2	2	10
L	mm	410	380	565.5
ℓ_{1}	mm	820	720	1130

表 8－3 大容量送水ポンプ（タイプII）の評価条件（走行軸方向）

記号	単位	評価部位		
		ポンプ取付ボルト	内燃機関取付ボルト	コンテナ取付ボルト
m	kg	900	2600	13000
h	mm	1008	703	985
A_{b}	mm^{2}	452.4	452.4	314.2
n	－	4	4	20
N_{1}	－	2	2	2
N_{2}	－	－	－	2
N_{3}	－	－	－	2
N_{4}	－	－	－	2
N_{5}	－	－	－	2
N_{6}	－	－	－	2
N_{7}	－	－	－	2
N_{8}	－	－	－	2
N_{9}	－	－	－	2
L	mm	287.5	693.8	2837
ℓ_{1}	mm	575	1554	5781
ℓ_{2}	mm	－	－	5262
ℓ_{3}	mm	－	－	4743
ℓ_{4}	mm	－	－	3781
ℓ_{5}	mm	－	－	3337
ℓ_{6}	mm	－	－	2772
ℓ_{7}	mm	－	－	2247
ℓ_{8}	mm	－	－	1157
ℓ_{9}	mm	－	－	579

表 8－4 大容量送水ポンプ（タイプII）の評価条件（走行軸直角方向）

記号	単位	評価部位		
		ポンプ取付ボルト	内燃機関取付ボルト	コンテナ取付ボルト
m	kg	900	2600	13000
h	mm	1008	703	985
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	452.4	452.4	314.2
n	-	4	4	20
$\mathrm{~N}_{1}$	-	2	2	10
L	mm	344.5	380	692.5
ℓ_{1}	mm	689	729	1130

表 8－5 電源車及び電源車（緊急時対策所用）の評価条件（走行軸方向）

記号	単位	評価部位	
		発電機／内燃機関取付ボルト	コンテナ取付ボルト
m	kg	2643	4422
h	mm	639	370
A_{b}	mm^{2}	113.1	113.1
n	－	16	28
N_{1}	－	4	2
N_{2}	－	4	2
N_{3}	－	4	2
N_{4}	－	－	2
N_{5}	－	－	2
N_{6}	－	－	2
N_{7}	－	－	2
N_{8}	－	－	2
N_{9}	－	－	2
N_{10}	－	－	2
N_{11}	－	－	2
N_{12}	－	－	2
N_{13}	－	－	2
L	mm	1045.5	2813
ℓ_{1}	mm	2044.5	4355
ℓ_{2}	mm	1884.5	3955
ℓ_{3}	mm	160	3700
ℓ_{4}	mm	－	3508
ℓ_{5}	mm	－	3281
ℓ_{6}	mm	－	3201
ℓ_{7}	mm	－	3121
ℓ_{8}	mm	－	2973
ℓ_{9}	mm	－	2331
ℓ_{10}	mm	－	1396
ℓ_{11}	mm	－	1316
ℓ_{12}	mm	－	1236
ℓ_{13}	mm	－	685

表 8－6 電源車及び電源車（緊急時対策所用）の評価条件（走行軸直角方向）

記号	単位	評価部位		
		発電機／内燃機関取付ボルト	コンテナ取付ボルト	
m	kg	2643	4422	
h	mm	639	370	
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	113.1	113.1	
n	-	16	28	
$\mathrm{~N}_{1}$	-	4	14	
$\mathrm{~N}_{2}$	-	4	-	
N_{3}	-	4	-	
L	mm	365	405	
ℓ_{1}	mm	730	810	
ℓ_{2}	mm	650	-	
ℓ_{3}	mm	80	-	

表 8－7 原子炉補機代替冷却水系熱交換器ユニットの評価条件（走行軸方向）

記号	単位	評価部位		
		熱交換器取付ボルト	ポンプ取付ボルト	内燃機関取付ボルト
m	kg	2340	895	1992
h	mm	956	100	198
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	314.2	706.9	201.1
n	-	4	4	4
$\mathrm{~N}_{1}$	-	2	2	2
L	mm	1014	275	650.5
ℓ_{1}	mm	1939	225	1045

表 8－8 原子炉補機代替冷却水系熱交換器ユニットの評価条件（走行軸直角方向）

記号	単位	評価部位		
		熱交換器取付ボルト	ポンプ取付ボルト	内燃機関取付ボルト
m	kg	2340	895	1992
h	mm	956	100	198
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	314.2	706.9	201.1
n	-	4	4	4
$\mathrm{~N}_{1}$	-	2	2	2
L	mm	200	500	319
ℓ_{1}	mm	400	935	630

表 8－9 可搬型窒素ガス供給装置の評価条件（走行軸方向）

表 8－11 ホース延長回収車の評価条件（走行軸方向）（ $1 / 2$ ）

記号	単位	評価部位	
		マルチリフト取付ボルト（上部）	マルチリフト取付ボルト（下部）
m	kg	1200	1200
h	mm	98	204
A_{b}	mm^{2}	337.2	337.2
n	－	32	32
N_{1}	－	2	2
N_{2}	－	2	2
N_{3}	－	2	2
N_{4}	－	2	2
N_{5}	－	2	2
N_{6}	－	2	2
N_{7}	－	2	2
N_{8}	－	2	2
N_{9}	－	2	2
N_{10}	－	2	2
N_{11}	－	2	2
N_{12}	－	2	2
N_{13}	－	2	2
N_{14}	－	2	2
N_{15}	－	2	2
L	mm	1950	1950
ℓ_{1}	mm	3100	3100
ℓ_{2}	mm	3050	3050
ℓ_{3}	mm	3000	3000
ℓ_{4}	mm	2950	2950
l_{5}	mm	2200	2200
ℓ_{6}	mm	2150	2150
ℓ_{7}	mm	2100	2100
ℓ_{8}	mm	2050	2050
ℓ_{9}	mm	1300	1300
ℓ_{10}	mm	1250	1250
ℓ_{11}	mm	1200	1200
ℓ_{12}	mm	1150	1150
ℓ_{13}	mm	150	150
ℓ_{14}	mm	100	100

表 8－11 ホース延長回収車の評価条件（走行軸方向）（2／2）

記号	単位	評価部位	
		マルチリフト取付ボルト（上部）	マルチリフト取付ボルト（下部）
ℓ_{15}	mm	50	50

表 8－12 ホース延長回収車の評価条件（走行軸直角方向）

記号	単位	評価部位	
		マルチリフト取付ボルト（上部）	マルチリフト取付ボルト（下部）
m	kg	1200	1200
h	mm	98	204
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	337.2	337.2
n	-	32	32
$\mathrm{~N}_{1}$	-	16	16
L	mm	447	428
ℓ_{1}	mm	894	856

表 8－13 タンクローリの評価条件（走行軸方向）

記号	単位	評価部位	
		タンク取付ボルト	ポンプ取付ボルト
m	kg	900	28
h	mm	741	125
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	314.2	113.1
n	-	6	4
$\mathrm{~N}_{1}$	-	2	2
$\mathrm{~N}_{2}$	-	2	-
L	mm	975	53
ℓ_{1}	mm	2441	105
ℓ_{2}	mm	1025	-

表 8－14 タンクローリの評価条件（走行軸直角方向）

記号	単位	評価部位	
		タンク取付ボルト	ポンプ取付ボルト
m	kg	900	28
h	mm	741	125
$\mathrm{~A}_{\mathrm{b}}$	mm^{2}	314.2	113.1
n	-	6	4
$\mathrm{~N}_{1}$	-	3	2
L	mm	441	65
ℓ_{1}	mm	882	117

O2（3）VI－2－別添3－3 R 0

表 8－15 使用材料の許容応力評価条件（ $1 / 2$ ）

設備名称	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
大容量送水$\begin{gathered} \text { ポンプ } \\ \text { (タイプ I) } \end{gathered}$	ポンプ取付ボルト	DIN931	周囲環境温度	40	640	800
	内燃機関取付ボルト	DIN933	周囲環境温度	40	640	800
	コンテナ取付ボルト	SS400	周囲環境温度	40	235	400
大容量送水 ポンプ （タイプII）	ポンプ取付ボルト	DIN931	周囲環境温度	40	640	800
	内燃機関取付ボルト	DIN933	周囲環境温度	40	640	800
	コンテナ取付ボルト	SS400	周囲環境温度	40	235	400
電源車	発電機／内燃機関取付ボルト	SNB21－1	周囲環境温度	40	1030	1140
	コンテナ取付ボルト	SCM435	周囲環境温度	40	785	930
電源車 （緊急時対策所用）	発電機／内燃機関取付ボルト	SNB21－1	周囲環境温度	40	1030	1140
	コンテナ取付ボルト	SCM435	周囲環境温度	40	785	930

O2（3）VI－2－別添 3－3 R 0

表 8－15 使用材料の許容応力評価条件（2／2）

設備名称	評価部位	ボルト材質	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
原子炉補機代替冷却水系熱交換器ユニット	熱交換器取付ボルト	SCM435	周囲環境温度	40	785	930
	ポンプ取付ボルト	SCM435	周囲環境温度	40	785	930
	内燃機関取付ボルト	SCM435	周囲環境温度	40	785	930
可搬型窒素 ガス供給装置	窒素ガス分離装置取付ボルト	SCM435	周囲環境温度	40	785	930
	空気圧縮機取付ボルト	SCM435	周囲環境温度	40	785	930
	発電機取付ボルト	SCM435	周囲環境温度	40	785	930
	コンテナ取付ボルト	SCM435	周囲環境温度	40	785	930
ホース延長回収車	マルチリフト 取付ボルト（上部）	SCM435	周囲環境温度	40	785	930
	マルチリフト 取付ボルト（下部）	SCM435	周囲環境温度	40	785	930
タンクローリ	タンク取付ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400
	ポンプ取付ボルト	$\begin{gathered} \hline \text { SS400 } \\ (\text { 径 } \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	245	400

表 8－16 直接支持構造物及び間接支持構造物の設計用加速度 $(1 / 2)$
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	評価部位	設計用加速度	
		水平 （走行軸方向／走行軸直角方向）	鉛直
大容量送水ポンプ（タイプI）	ポンプ取付ボルト	0．64／1． 00	1． 07
	内燃機関取付ボルト	0．68／1．28	1.55
	コンテナ取付ボルト	0．84／1． 80	2． 28
大容量送水ポンプ（タイプII）	ポンプ取付ボルト	0．64／0．93	0． 87
	内燃機関取付ボルト	0．71／2． 05	0.85
	コンテナ取付ボルト	$0.71 / 1.91$	2.61
電源車	発電機／内燃機関取付ボルト	0．79／1．34	2． 34
	コンテナ取付ボルト	1．57／3． 35	3． 59
電源車（緊急時対策所用）	発電機／内燃機関取付ボルト	0．79／1．34	2． 34
	コンテナ取付ボルト	1．57／3． 35	3.59
原子炬補機代替冷却水系熱交換器ユニット	熱交換器取付ボルト	0．64／1． 46	1． 39
	ポンプ取付ボルト	0．69／1．06	0.93
	内燃機関取付ボルト	0．76／1． 41	1． 22

表 8－16 直接支持構造物及び間接支持構造物の設計用加速度 $(2 / 2)$
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	評価部位	設計用加速度	
		水平 （走行軸方向／走行軸直角方向）	鉛直
可搬型窒素ガス供給装置	窒素ガス分離装置取付ボルト	1．13／1．56	0.62
	空気圧縮機取付ボルト	0．93／1．23	1． 38
	発電機取付ボルト	0．96／1．57	2.33
	コンテナ取付ボルト	0．81／1． 64	3.41
ホース延長回収車	マルチリフト取付ボルト（上部）	6．86／7． 60	5.98
	マルチリフト取付ボルト（下部）	6． $86 / 7.60$	5.98
タンクローリ	タンク取付ボルト	1． $30 / 2.28$	1． 86
	ポンプ取付ボルト	1．20／1．96	2． 29

表 8－17 傾きによる変位量

9．評価結果
車両型設備の基準地震動 S ${ }_{\mathrm{s}}$ による地震力に対する評価結果を以下に示す。
構造強度評価の結果，発生値は許容応力を満足しており，基準地震動 S_{s} による地震力に対して評価部位の健全性が維持されることを確認した。

転倒評価の結果，保管場所の地表面の最大応答加速度が，加振試験により転倒しないことを確認 した加振台の最大加速度以下であり，転倒しないことを確認した。
機能維持評価の結果，保管場所の地表面の最大応答加速度は，加振試験により支持機能，移動機能，動的及び電気的機能を維持できることを確認した最大加速度以下であり，基準地震動 S_{s} によ る地震力に対し，機能が維持されることを確認した。
波及的影響評価の結果，車両型設備の最大変位量については，設定した許容限界（離隔距離）未満であり，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼ さないことを確認した。

以上より，車両型設備は地震後において，基準地震動 S_{s} による地震力に対し，重大事故等に対処するために必要な機能を維持するとともに当該設備による波及的影響を防止する必要がある他 の設備に対して波及的影響を及ぼさないことを確認した。

9.1 構造強度評価結果

（1）直接支持構造物
車両型設備の直接支持構造物の構造強度評価結果を表 9－1 に示す。
（2）間接支持構造物
車両型設備の間接支持構造物の構造強度評価結果を表 9－2 に示す。

9．2転倒評価結果
車両型設備の転倒評価結果を表 9－3 に示す。
9.3 機能維持評価結果

車両型設備の機能維持評価結果を表 9－3 に示す。
9.4 波及的影響評価結果
（1）走行軸方向
車両型設備の波及的影響評価結果（走行軸方向）を表 9－4 に示す。
（2）走行軸直角方向
車両型設備の波及的影響評価結果（走行軸直角方向）を表 9－4に示す。

表 9－1 直接支持構造物の構造強度評価結果
（単位：MPa）

設備名称	評価部位	応力分類	発生値 （MPa）	許容応力 （MPa）	評価 結果
大容量送水ポンプ(タイプ I)	ポンプ取付ボルト	引張り	14	420＊	\bigcirc
		せん断	4	322	\bigcirc
	内燃機関取付ボルト	引張り	26	420＊	\bigcirc
		せん断	13	322	\bigcirc
大容量送水ポンプ(タイプII)	ポンプ取付ボルト	引張り	16	420＊	\bigcirc
		せん断	5	322	\bigcirc
	内燃機関取付ボルト	引張り	54	420＊	\bigcirc
		せん断	29	322	\bigcirc
電源車	発電機／内燃機関取付 ボルト	引張り	59	598＊	\bigcirc
		せん断	20	460	\bigcirc
電源車 （緊急時対策所用）	発電機／内燃機関取付 ボルト	引張り	59	598＊	\bigcirc
		せん断	20	460	\bigcirc
原子炉補機代替冷却水系熱交換器ユニット	熱交換器取付ボルト	引張り	135	487＊	\bigcirc
		せん断	27	375	\bigcirc
	ポンプ取付ボルト	引張り	3	487＊	\bigcirc
		せん断	4	375	\bigcirc
	内燃機関取付ボルト	引張り	27	487＊	\bigcirc
		せん断	35	375	\bigcirc
可搬型窒素ガス 供給装置	窒素ガス分離装置取付ボルト	引張り	32	487＊	\bigcirc
		せん断	22	375	\bigcirc
	空気圧縮機取付ボルト	引張り	22	487＊	\bigcirc
		せん断	13	375	\bigcirc
	発電機取付ボルト	引張り	47	487＊	\bigcirc
		せん断	26	375	\bigcirc
ホース延長回収車	マルチリフト取付ボルト （上部）	引張り	20	487＊	\bigcirc
		せん断	10	375	\bigcirc
	マルチリフト取付ボルト （下部）	引張り	20	487＊	\bigcirc
		せん断	10	375	\bigcirc
タンクローリ	タンク取付ボルト	引張り	22	210＊	\bigcirc
		せん断	11	160	\bigcirc
	ポンプ取付ボルト	引張り	3	210＊	\bigcirc
		せん断	5	160	\bigcirc

注記＊：$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出

表 9－2 間接支持構造物の構造強度評価結果
（単位：MPa）

設備名称	評価部位	応力分類	発生値 （MPa）	許容応力 （MPa）	評価
大容量送水ポンプ(タイプ I)	コンテナ取付ボルト	引張り	106	210＊	\bigcirc
		せん断	35	160	\bigcirc
大容量送水ポンプ(タイプII)	コンテナ取付ボルト	引張り	108	210＊	\bigcirc
		せん断	39	160	\bigcirc
電源車	コンテナ取付ボルト	引張り	78	487＊	\bigcirc
		せん断	46	375	\bigcirc
電源車 （緊急時対策所用）	コンテナ取付ボルト	引張り	78	487＊	\bigcirc
		せん断	46	375	\bigcirc
可搬型窒素ガス供給装置	コンテナ取付ボルト	引張り	85	487＊	\bigcirc
		せん断	37	375	\bigcirc

注記＊：$f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出

表 9－3 転倒評価及び機能維持評価結果（1／2）
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

注記＊1：地震応答解析により求めた地表面の最大応答加速度。
＊2：加振試験により計測された加振台の最大加速度
＊3：加振試験後の支持機能，移動機能及び表 6－1に示す機能維持確認項目の確認を含む。

表 9－3 転倒評価及び機能維持評価結果（2／2）
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

設備名称	保管場所	方向	保管場所の最大応答加速度 ${ }^{* 1}$	加振台の 最大加速度＊2	転倒評価結果	機能維持評価結果＊
可搬型窒素ガス供給装置	第1保管エリア	水平	0． 92	1． 48	\bigcirc	\bigcirc
	第4保管エリア	鉛直	0.59	0． 79	\bigcirc	\bigcirc
ホース延長回収車	第2保管エリア	水平	1． 44	1． 48	\bigcirc	\bigcirc
	第4保管エリア	鉛直	0． 71	0.79	\bigcirc	\bigcirc
タンクローリ	第2保管エリア第 3 保管エリア第4保管エリア	水平	1． 44	1． 61	\bigcirc	\bigcirc
		鉛直	0.71	1.16	\bigcirc	\bigcirc

注記＊1：地震応答解析により求めた地表面の最大応答加速度。
＊2：加振試験により計測された加振台の最大加速度
＊ 3 ：加振試験後の支持機能，移動機能及び表 6－1 に示す機能維持確認項目の確認を含む。

表 9－4 波及的影響評価結果（走行軸方向）
（単位：mm）

設備名称	保管場所	車両型設備の最大変位量 （走行軸方向）	許容限界＊ （走行軸方向）	評価
大容量送水ポンプ (タイプI)	第1保管エリア第2保管エリア第 3 保管エリア第4保管エリア	330	1000	\bigcirc
大容量送水ポンプ (タイプII)	第1保管エリア 第2保管エリア 第4保管エリア	200	1000	\bigcirc
電源車	第2保管エリア第3保管エリア第4保管エリア	190	1000	\bigcirc
電源車 （緊急時対策所用）	緊急時対策建屋北側第4保管エリア	190	1000	\bigcirc
原子炉補機代替冷却水系熱交換器ユニット	第1保管エリア第3保管エリア第4保管エリア	390	1000	\bigcirc
可搬型窒素ガス供給装置	第1保管エリア第4保管エリア	340	1000	\bigcirc
ホース延長回収車	第2保管エリア第3保管エリア第4保管エリア	460	1000	\bigcirc
タンクローリ	第2保管エリア第3保管エリア第4保管エリア	587	1000	\bigcirc

注記＊：加振試験にて確認した最大変位量を基に定めた 1 台当たりの離隔距離

表 9－5 波及的影響評価結果（走行軸直角方向）
（単位：mm）

	設備名称	保管場所	車両型設備の最大変位量 （走行軸直角方向）	許容限界＊ （走行軸直角方向）	評価
	大容量送水ポンプ (タイプ I)	第1保管エリア第2保管エリア第3保管エリア第4保管エリア	538	1500	\bigcirc
	大容量送水ポンプ (タイプII)	第1保管エリア第2保管エリア第4保管エリア	764	1500	\bigcirc
$\begin{aligned} & \text { II } \\ & 0 \\ & \propto \end{aligned}$	電源車	第2保管エリア第3保管エリア第4保管エリア	716	1500	\bigcirc
	電源車 （緊急時対策所用）	緊急時対策建屋北側第4保管エリア	716	1500	\bigcirc
	原子炉補機代替冷却水系熱交換器ユニット	第1保管エリア第3保管エリア第4保管エリア	372	1500	\bigcirc
\cdots	可搬型窒素ガス供給装置	第1保管エリア第4保管エリア	831	1500	\bigcirc
$\stackrel{N}{\circ}$	ホース延長回収車	第2保管エリア第3保管エリア第4保管エリア	355	1500	\bigcirc
	タンクローリ	第2保管エリア第3保管エリア第4保管エリア	694	1500	\bigcirc

注記＊：加振試験にて確認した最大変位量を基に定めた 1 台当たりの離隔距離

VI－2－別添 3－4 可搬型重大事故等対処設備のらちボンベ設備の耐震計算書

目次

1．概要 1
2．基本方針 1
2.1 配置 1
2.2 構造計画 1
2.3 評価方針 7
2.4 適用基準 8
3．固有値解析 9
3.1 基本方針 9
3．2 解析方法 9
3.3 解析モデル及び諸元 9
3.4 固有値解析結果 23
3.5 設計用地震力 23
4．構造強度評価 25
4.1 基本方針 25
4．2 評価部位 25
4.3 荷重及び荷重の組合せ 26
4．4 許容限界 26
4.5 評価方法 28
5．波及的影響評価 32
5.1 基本方針 32
6．評価条件 33
7．評価結果 36
7.1 構造強度評価結果 36
7.2 波及的影評価結果 36

1．概要

本計算書は，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」（以下「別添 3－1」という。）にて設定している構造強度の設計方針に基づき，可搬型重大事故等対処設備のうちボンべ設備が地震後において，基準地震動 S s による地震力に対し，十分な構造強度を有するとともに，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響 を及ぼさないことを説明するものである。その耐震評価は，固有値解析，構造強度評価及び波及的影響評価により行う。

2．基本方針
別添3－1「2．耐震評価の基本方針」に示す構造計画のとおり，ボンベ設備の「2．1 配置」及 び「2．2 構造計画」を示す。
2.1 配置

ボンベ設備は，別添3－1の「2．1 評価対象設備」のうち構造計画に示すとおり，原子炉建屋（ 0. P． 15.00 m ），制御建屋（ 0. P．1． 50 m ，O．P． 15.00 m ）及び緊急時対策建屋（ 0. P． 57.30 m ）に保管する。

2．2 構造計画
ボンベ設備の構造は，別添3－1の「2．1 評価対象設備」に示す構造計画としており，ボン ベ設備の構造計画を表 2－1に，ボンベ設備の構造図を図 2－1～図2－5に示す。

表2－1 ボンベ設備の構造計画

設備名称	計画の概要		説明図
	主体構造	支持構造	
高圧窒素ガス供給系高圧窒素ガスボンベ	高圧窒素ガスボ ンベ及びボンベ の支持構造物で あるボンベラッ クにより構成す る。	高圧窒素ガスボンベは，容器とし て十分な強度を有する構造とし，固定ボルトによりボンベラックに固定し，ボンベラックを躯体床及 び壁に施工された埋込金物に溶接 し据え付ける。	図2－1
代替高圧窒素ガス供給系高圧窒素ガスボンベ	高圧窒素ガスボ ンベ及びボンベ の支持構造物で あるボンベラッ クにより構成す る。	高圧窒素ガスボンベは，容器とし て十分な強度を有する構造とし，固定ボルトによりボンベラックに固定し，ボンベラックを躯体床及 び壁に取付ボルトで設置されたア ンカープレートに溶接し据え付け る。	図 2－2 図2－3
中央制御室待避所加圧設備 （空気ボンベ）	空気ボンベ及び ボンベの支持構造物であるボン ベラックにより構成する。	空気ボンベは，容器として十分な強度を有する構造とし，固定ボル トによりボンベラックに固定し， ボンベラックは取付ボルトにより躯体床に据え付ける。	図2－4
緊急時対策所加圧設備 （空気ボンベ）	空気ボンベ及び ボンべを収納す るボンベカード ルフレームによ り構成する。	空気ボンベは，容器として十分な強度を有する構造とし，ボンベカ ードルフレーム内に固定し，ボン ベカードルフレームは，躯体床に施工された埋込金物に溶接にて固定された支持架構に取付ボルトに より据え付ける。	図 2－5

図 2－1 高圧窒素ガス供給系高圧窒素ガスボンベラックの構造図
\square
図 2－2 代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）の構造図
\square
図 2－3 代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）の構造図

図 2－4 中央制御室待避所加圧設備（空気ボンベ）ボンベラックの構造図

図 2－5 緊急時対策所加圧設備（空気ボンベ）ボンベカードルの構造図
2.3 評価方針

ボン心゙設備の評価方針を以下に示し，耐震評価フローを図 2－6に示す。
（1）構造強度評価
ボンベ設備は，別添3－1 の「2．2（2）ボンベ設備」にて設定した構造強度評価の方針に従い構造強度評価を実施する。

ボンベ設備の構造強度評価は，「3．固有値解析」にて得られた固有周期を用い，「4．構造強度評価」に示す方法により，ボンベ設備の評価部位に作用する応力が許容限界を満足 することを確認する。確認結果を「7．評価結果」に示す。
別添3－1の「2．2 評価方針」に示す評価部位のらち直接支持構造物としてのボンベラッ ク等，溶接部及び取付ボルトの構造強度評価については，J E A G 4 6 0 1•補—1984に規定されているその他の支持構造物の評価に従い実施する。
（2）波及的影響評価
ボンベ設備は，別添3－1 の「2．2（2）ボン心設備」にて設定した波及的影響評価の方針 に従い，波及的影響評価を実施する。
ボンベ設備の波及的影響評価は，「5．波及的影響評価」に示す方法により，基準地震動 S s による地震力に対し，当該設備による波及的影響を防止する必要がある他の設備に対 して波及的影響を及ぼさないことを，「4．構造強度評価」により確認する。確認結果を「7．評価結果」に示す。

3．固有値解析

3.1 基本方針

別添3－1の「4．2（1）固有値解析」にて設定した基本方針に従い，固有値解析を実施する。固有値解析は，以下の「3．2 解析方法」に示す方法により，「3．3 解析モデル及び諸元」 に示す解析モデルを用いて，「3．4 固有値解析結果」においてボンベ設備の固有周期を求める。
3.2 解析方法
（1）ボンベラックを構成する各部材をはり要素及びシェル要素としてモデル化した多質点モ デルによる地震応答解析を実施する。
（2）拘束条件として，建屋躯体との取合い点を完全拘束として設定する。
（3）ボンベラックに収納•固定されるボンベ及び配管•弁等の機器重量は，各々組込む位置 に相当する各質点に付加する。
（4）高圧窒素ガス供給系高圧窒素ガスボンベ，代替高圧窒素ガス供給系高圧窒素ガスボンベ及び緊急時対策所加圧設備（空気ボンベ）の評価に用いる解析コードは，「NX NASTRAN」 とし，中央制御室待避所加圧設備（空気ボンベ）の評価に用いる解析コードは，「MSC NASTRAN」とする。なお，評価に用いる解析コード「NX NASTRAN」及び「MSC NASTRAN」 の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析 コード）の概要」に示す。
（5）耐震計算に用いる寸法は，公称値を使用する。
3.3 解析モデル及び諸元
（1）高圧窒素ガス供給系高圧窒素ガスボンベ
高圧窒素ガスボンベラックの解析モデルは，ボンベラックを構成する鋼材をはり要素と して，以下のとおりモデル化した多質点モデルである。解析モデルを図 3－1，図 3－2 に，解析モデルの諸元を表 3－1 に示す。

図 3－2 解析モデル（高圧窒素ガス供給系高圧窒素ガスボンベラック（接点番号記載））

表3－1 解析モデルの諸元（ $1 / 2$ ）

項 目	記 号	単 位	入力値
材 質	-	-	$\mathrm{SS} 400 / \mathrm{STKR} 400$
温度条件（雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	50
縦弾性係数	E	MPa	2.01×10^{5}
ポアソン比	v	-	0.3
質量（ボンベ）	W	kg	kg
質量（フレーム）	m	kg	
ボンベ数	-	本／基	
寸 法	-	-	8
要素数	-	個	
節点数	-	個	

表 3－1 解析モデルの諸元（2／2）

部材	番号	要素番号	材料	諸元 （数値） （mm）	縦弾性係数 （ MPa ）	断面積 （mm ${ }^{2}$ ）	断面二次モーメント		$\begin{gathered} \text { 密度 } \\ \left(\mathrm{kg} / \mathrm{mm}^{3}\right) \end{gathered}$
							$\mathrm{I}_{1}\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{2}\left(\mathrm{~mm}^{4}\right)$	
フレーム			STKR400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}

（2）代替高圧窒素ガス供給系高圧窒素ガスボンベ
代替高圧窒素ガスボンベラックの解析モデルは，ボンベラックを構成する鋼材をはり要素として，以下のとおりモデル化した多質点モデルである。
解析モデルを図 3－3～図 3－6に，解析モデルの諸元を表 3－2に示す。

図 3－3 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）（要素番号記載））

図 3－4 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）（節点番号記載））
枠囲みの内容は商業機密の観点から公開できません。

図 3－5 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）（要素番号記載））

図 3－6 解析モデル
（代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）（節点番号記載））

表3－2 解析モデルの諸元（1／2）

項 目	記 号	単 位	入力値
材 質	-	-	$\mathrm{SS} 400 / \mathrm{STRR} 400$
温度条件（周囲環境温度）	T	${ }^{\circ} \mathrm{C}$	50
縦弾性係数	E	MPa	2.01×10^{5}
ポアソン比	v	-	0.3
質量（ボンベ）	W	kg	
質量（フレーム）	m	kg	
ボンベ数	-	本／基	
寸法	-	-	3
要素数	-	図 2－2，図 2－3	
節点数	-	個	

表 3－2 解析モデルの諸元 $(2 / 2)$

（3）中央制御室待避所加圧設備（空気ボンベ）
中央制御室待避所加圧設備（空気ボンベ）ボンベラックの解析モデルは，ボンベラック を構成する鋼材をはり要素及びシェル要素として，以下のとおりモデル化した多質点モデ ルである。

解析モデルを図3－7に，解析モデルの諸元を表3－3に示す。

図 3－7 解析モデル（中央制御室待避所加圧設備（空気ボンベ）ボンベラック）

表3－3 解析モデルの諸元（ $1 / 2$ ）

項 目	記 号	単 位	入力値
材質（ボンベラック）	-	-	$\mathrm{SS} 400 / \mathrm{STKR400}$
材質（ボンベ）	-	-	クロムモリブデン鋼
温度条件（雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数（ボンベラック）	E	MPa	2.02×10^{5}
縦弾性係数（ボンベ）	E	MPa	2.04×10^{5}
ポアソン比	v	-	0.3
質量（ボンベユニット）	m	kg	
ボンベ数	-	本／基	
寸 法	-	-	10
要素数	-	個	図 2－4
節点数	-	個	

O 2 （3）VI－2－別添3－4 R 0

表3－3 解析モデルの諸元（2／2）

（4）緊急時対策所加圧設備（空気ボンベ）
緊急時対策所加圧設備（空気ボンベ）ボンベカードルの解析モデルは，ボンベカードル を構成する鋼材をはり要素として，以下のとおりモデル化した多質点モデルである。解析モデルを図 3－8 に，解析モデルの諸元を表3－4に示す。

表 3－4 解析モデルの諸元（1／2）

項 目	記 号	単 位	入力値
材質（ボンベカードル）	-	-	SS400／STKR400
材質（取付ボルト）	-	-	SNB7
質量（ボンベ）	W	kg	
質量（フレーム）	m	kg	
温度条件（雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	50
ポアソン比	v	-	2.01×10^{5}
ボンベ数	-	本／基	0.3
寸 法	-	-	20
要素数	-	個	図 2－5
節点数	-	個	

表 3－4 解析モデルの諸元（2／2）

部材	番号	要素番号	材料	諸元	縦弾性係数(MPa)	断面積 （mm ${ }^{2}$ ）	断面二次モーメント		密度 （kg／mm ${ }^{3}$ ）
							$\mathrm{I}_{1}\left(\mathrm{~mm}^{4}\right)$	$\mathrm{I}_{2}\left(\mathrm{~mm}^{4}\right)$	
$\begin{gathered} \text { ボンベカードル } \\ \text { フレーム } \end{gathered}$			STKR400		2.01×10^{5}				7． 85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			STKR400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
			SS400		2.01×10^{5}				7.85×10^{-6}
取付ボルト			SNB7		－				－

3.4 固有値解析結果

ボンベ設備の固有値解析結果を表 3－5 に示す。固有周期は，0．05秒以下であり，剛である ことを碓認した。

表 3－5 固有値解析結果

設備名称	ボンベラック 支持構造	モード	卓越方向	固有周期（s）
高圧窒素ガス供給系 高圧窒素ガスボンベラック	溶接			
代替高圧窒素ガス供給系高圧窒素ガスボンベラック（A）	溶接取付ボルト			
代替高圧窒素ガス供給系高圧窒素ガスボンベラック（B）	溶接取付ボルト			
中央制御室待避所加圧設備 （空気ボンベ）ボンベラック	溶接接続ボルト取付ボルト			
緊急時対策所加圧設備 （空気ボン心゙）ボンベカードル	溶接取付ボルト			

3.5 設計用地震力

基準地震動S s による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基 づき設定する。耐震評価に用いる設計用地震力を表 3－6～表3－9に示す。

表 3－6 設計用地震力（高圧窒素ガス供給系高圧窒素ガスボンベ）

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
原子炉建屋付属棟		2.12	1． 56
0．P．15． 00^{*}			
（0．P．22．50）			

注記＊：基準床レベルを示す。

表 3－7 設計用地震力（代替高圧窒素ガス供給系高圧窒素ガスボンベ（A系，B 系））

据付場所 及び 床面高さ (m)	固有周期 (s)	基準地震動	
原子炉建屋付属棟 0．P． $15.00^{* 1}$ （0．P．22．50）	水平方向 設計震度	鉛直方向 設計震度	

注記＊1：基準床レベルを示す。
＊2：ボンベラック（A）の固有周期。
＊3：ボンベラック（B）の固有周期。

表 3－8 設計用地震力（中央制御室待避所加圧設備（空気ボンベ））

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
制御建屋			
0．P．1．50＊		2.25	1． 39
0．P．15．00＊			

注記＊：基準床レベルを示す。

表 3－9 設計用地震力（緊急時対策所加圧設備（空気ボンベ））

据付場所 及び 床面高さ （m）	固有周期 （s）	基準地震動	
		水平方向	鉛直方向
		設計震度	設計震度
緊急時対策建屋 $\text { 0. P. 57. } 30^{*}$		1． 21	0． 87

注記＊：基準床レベルを示す。

4．構造強度評価
4.1 基本方針

ボンベ設備の構造強度評価は，別添3－1の「2．2（2）ボンベ設備」で設定した評価方針に従 って，構造強度評価を実施する。
ボンベ設備の構造強度評価は，「4．2 評価部位」に示す評価部位が，「4．3 荷重及び荷重の組合せ」に示す荷重及び荷重の組合せに対し，「4．4 許容限界」に示す許容限界を満足するこ とを，「3．5 設計用地震力」に示す設計用地震力及び「4．5 評価方法」に示す方法を用いて評価を行う。

4． 2 評価部位

ボンベ設備の評価部位は，別添3－1の「2．2 評価方針」で設定した評価部位に従って設定 する。評価部位を表 4－1 に示す。

表 4－1 ボンベ設備の評価部位

設備名称	ボンベラック支持構造	評価部位	図
高圧窒素ガス供給系高圧窒素ガスボンベ	溶接	$\begin{gathered} \text { フレーム } \\ \text { フレーム取付 } \end{gathered}$ 溶接部	図 2－1
代替高圧窒素ガス供給系高圧窒素ガスボンベ	溶接 取付ボルト	フレーム フレーム取付 溶接部 取付ボルト	図 2－2 図 2－3
中央制御室待避所加圧設備 （空気ボンベ）	溶接接続ボルト 取付ボルト	フレーム フレーム取付 溶接部 フレーム 接続ボルト 取付ボルト	図 2－4
緊急時対策所加圧設備 （空気ボンベ）	溶接 取付ボルト	フレーム 固定端溶接部 取付ボルト	図 2－5

4.3 荷重及び荷重の組合せ

ボンベ設備の構造強度評価に用いる荷重及び荷重の組合せは，別添3－1 の「3．1荷重及び荷重の組合せ」で設定した荷重及び荷重の組合せを用いる。

ボンベ設備の構造強度評価に用いる荷重の組合せを表4－2 に示す。

表 4－2 荷重の組合せ

設備名称	評価部位	荷重の組合せ
ボンベ設備	フレーム	$\mathrm{D}+\mathrm{S} \mathrm{s}$
	フレーム取付溶接部	
	フレーム接続ボルト	
	固定端溶接部	
	取付ボルト	

4． 4 許容限界

ボンベ設備の許容限界は，「4．2 評価部位」にて設定した評価部位の破断延性限界を考慮し，別添3－1の「3．2 許容限界」で設定した許容限界に従い，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力とす る。

評価部位の許容限界を表4－3～表4－5に示す。

表 4－3 ボンベラックの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界 $* 1, * 2$
			一次応力
			組合せ
フレーム	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}{ }^{*}$

注記＊1： f_{t}＊は，J SME S NC1－2005／2007 SSB－3121．1（1）a 本文中 S_{y} 及び S_{y} （ R T ）を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（J S ME S N C 1－2005／2007 SSB－3133）。ただし，$S_{\text {y 及び } 0.7 \cdot S ~}^{\text {u のいずれか小さい }}$方の値とする。
＊2：J E A G 4 6 0 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定する。

表 4－4 フレーム取付溶接部及び固定端溶接部の許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界＊1，＊2
			一次応力
フレーム取付溶接部	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	せん断
固定端溶接部	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}} *$

注記＊1：f＊＊J J SME S NC 1－2005／2007 SSB－3121．1（1）a 本文中 S_{y} 及び S_{y}（R T）を $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$ 及び $1.2 \cdot \mathrm{~S}_{\mathrm{y}}$（ R T）と読み替えて算出した値（J S ME S N C $1-2005 / 2007$ SSB－3133）。ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さい方の値とする。 ＊2：J E A G 4 6 O 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定す る。

表 4－5 フレーム接続ボルト及び取付ボルトの許容限界

評価部位	荷重の組合せ	許容応力状態	許容限界 $* 1, * 2$	
			一次応力	
			引張り＊3	せん断＊3
$\begin{gathered} \text { フレーム } \\ \text { 接続ボルト } \end{gathered}$	$\mathrm{D}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{fr}^{*}$
取付ボルト	$D+S \mathrm{~s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}{ }^{\text {\％}}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記＊1： f_{t}＊， f_{s}＊は，J SME S NC 1－2005／2007 SSB－3121．1（1）a 本文中 S_{y} 及
 E S N C 1－2005／2007 SSB－3133）。ただし， S_{y} 及び $0.7 \cdot \mathrm{~S}_{\mathrm{u}}$ のいずれか小さ い方の値とする。
＊2：J E A G 4 6 O 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定 する。
＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容応力 f_{ts} は，J SME S NC1－2005／2007 SSB－3131に基づき，$f_{\mathrm{t}}=\operatorname{Min}[1.4 \cdot f$ ${ }_{\mathrm{t} \text { o }}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}$ 〕とする。ここで，f_{to} は $1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊とする。

4.5 評価方法

ボンベ設備の構造強度評価は，別添 3－1 の「4．2（2）構造強度評価」で設定した計算式に従 って，評価部位の発生応力を算出し，許容応力以下であることを確認する。
（1）評価に使用する記号及び計算モデルの説明
構造強度評価に使用する記号を表 4－6 に，計算モデル例を図 4－1～図 4－3 に示す。

表 4－6 構造強度評価に使用する記号

記 号	単 位	定 義
σ a	MPa	フレーム（はり）の引張応力
σ b	MPa	フレーム（はり）の曲げ応力
τ	MPa	フレーム（はり）のせん断応力
σ wa	N	溶接部のせん断力
σ w b	$\mathrm{N} \cdot \mathrm{mm}$	溶接部の曲げモーメント
$\mathrm{Z}_{\text {w }}$	mm3	溶接部の断面係数
$\mathrm{A}_{\text {w }}$	mm2	溶接部の断面積
σ_{1}	MPa	主応力
O 2	MPa	主応力
$\sigma 3$	MPa	主応力
σ x	MPa	フレーム（シェル）の引張応力
σ y	MPa	フレーム（シェル）の引張応力
τ_{xy}	MPa	フレーム（シェル）のせん断応力
$\mathrm{F}_{\mathrm{b} \text { t }}$	N	フレーム接続ボルト及び取付ボルトの引張力
F_{bs}	N	フレーム接続ボルト及び取付ボルトのせん断力
A_{b}	mm2	フレーム接続ボルト及び取付ボルトの断面積
$\sigma \mathrm{b}$ t	MPa	フレーム接続ボルト及び取付ボルトの引張応力
τ_{b}	MPa	フレーム接続ボルト及び取付ボルトのせん断応力

図 4－1 フレーム（はり）の計算モデル例

図 4－2 フレーム（はり）取付溶接部の計算モデル例

図 4－3 フレーム（はり）取付ボルトの計算モデル例
（a）評価式
i－1．フレーム（はり）
フレームの組合せ応力を以下のとおり計算する。
$\sigma=\sqrt{\left(\sigma_{\mathrm{a}}+\sigma_{\mathrm{b}}\right)^{2}+3 \tau^{2}}$
i－2．フレーム（シェル）
フレーム（シェル）の組合せ応力を以下のとおり計算する。
$\sigma=\operatorname{MAX}\left(\left|\sigma_{1}-\sigma_{2}\right|,\left|\sigma_{2}-\sigma_{3}\right|,\left|\sigma_{3}-\sigma_{1}\right|\right)$
ここで，

$$
\begin{aligned}
& \sigma_{1}=\frac{\sigma_{x}+\sigma_{y}}{2}+\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}} \\
& \sigma_{2}=0 \\
& \sigma_{3}=\frac{\sigma_{x}+\sigma_{y}}{2}-\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}{ }^{2}}
\end{aligned}
$$

ii．フレーム取付溶接部及び固定端溶接部
フレーム取付溶接部及び固定端溶接部のせん断応力を以下のとおり計算する。

$$
\begin{equation*}
\tau_{w}=\frac{\sigma_{\mathrm{wa}}}{\mathrm{~A}_{\mathrm{w}}}+\frac{\sigma_{\mathrm{wb}}}{\mathrm{Z}_{\mathrm{w}}} \tag{4.3}
\end{equation*}
$$

iii．フレーム接続ボルト及び取付ボルト
フレーム接続ボルト及び取付ボルトの応力を以下のとおり計算する。
－引張応力

$$
\begin{equation*}
\sigma_{b t}=\frac{\mathrm{F}_{\mathrm{b}_{\mathrm{t}}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.4}
\end{equation*}
$$

－せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.5}
\end{equation*}
$$

5．波及的影響評価
5.1 基本方針

ボンベ設備は，別添3－1の「2．2（2）ボンベ設備」にて設定した評価方針に従い，当該設備 による波及的影響を防止する必要がある他の設備への波及的影響を実施する。

ボンベ設備の波及的影響は，「4．2 評価部位」に示す評価部位が，「4．3 荷重および荷重の組合せ」に示す荷重及び荷重の組合せに対し，「4．4 許容限界」に示す許容応力を満足するこ とを，「3．5 設計用地震力」に示す設計用地震力及び「4．5 評価方法」に示す方法を用いて評価を行う。

6．評価条件
「4．構造強度評価」及び「5．波及的影響評価」に用いる評価条件を表 6－1 に示す。

表 6－1 使用材料の許容応力評価条件（1／2）

設備名称	ボンベラック 支持構造	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \text { Sy } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Su} \\ (\mathrm{MPa}) \end{gathered}$
高圧窒素ガス供給系高圧窒素ガスボンベ	溶接	フレーム	$\begin{gathered} \text { SS400 } \\ (t \leqq 16) \end{gathered}$	周辺環境温度	50	241	394
		フレーム取付 溶接部	STKR400	周辺環境温度	50	234	394
代替高圧窒素ガス 供給系高圧窒素 ガスボンベ	溶接	フレーム	$\begin{gathered} \text { SS400 } \\ (\mathrm{t} \leqq 16) \end{gathered}$	周辺環境温度	50	241	394
		フレーム取付溶接部	STKR400	周辺環境温度	50	234	394
	取付ボルト	取付ボルト	$\begin{gathered} \text { SS400 } \\ (t \leqq 16) \end{gathered}$	周辺環境温度	50	211	394
中央制御室待避所加圧設備（空気ボンベ）	溶接接続ボルト	フレーム	$\begin{gathered} \text { SS400 } \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周辺環境温度	40	245	400
		フレーム取付 溶接部	$\begin{gathered} \text { SS400 } \\ (t \leqq 16 \mathrm{~mm}) \end{gathered}$	周辺環境温度	40	245	400
		フレーム 接続ボルト	$\begin{gathered} \text { SCM435 } \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周辺環境温度	40	785	930
	取付ボルト	取付ボルト	$\begin{gathered} \text { SS400 } \\ (\mathrm{t} \leqq 16 \mathrm{~mm}) \end{gathered}$	周辺環境温度	40	245	400

O 2 （3）VI－2－別添3－4 R 0

表 6－1 使用材料の許容応力評価条件（2／2）

設備名称	ボンベラック 支持構造	評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
緊急時対策所加圧設備 （空気ボンベ）	溶接	フレーム	$\begin{gathered} \mathrm{SS400} \\ (\mathrm{t} \leqq 16) \end{gathered}$	周辺環境温度	50	241	394
		フレーム	STKR400	周辺環境温度	50	234	394
		固定端溶接部	$\begin{gathered} \mathrm{SS400} \\ (\mathrm{t} \leqq 16) \end{gathered}$	周辺環境温度	50	241	394
	取付ボルト	取付ボルト	$\begin{gathered} \text { SNB7 } \\ (\mathrm{t} \leqq 63 \mathrm{~mm}) \end{gathered}$	周辺環境温度	50	715	838

7．評価結果
ボンべ設備の基準地震動 S s による地震力に対する評価結果を表 7－1 に示す。
構造強度評価及び波及的影響評価の結果，発生値は許容応力を満足しており，基準地震動 S s による地震動に対して評価部位の健全性が維持されるとともに，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

以上より，ボンベ設備は地震後において，基準地震動 S s による地震力に対し，重大事故等に対処するために必要な機能を維持するとともに当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

7.1 構造強度評価結果

ボンベ設備の構造強度評価結果を表 7－1に示す。
7.2 波及的影評価結果

ボンベ設備の波及的影響評価結果を表 7－1に示す。

表 7－1 構造強度評価及び波及的影響評価結果（ $1 / 2$ ）

設備名称		ボンベラック 支持構造	評価部位	応力分類	発生値 （MPa）	許容 応力 （MPa）	評価 結果	
高圧窒素ガス供給系高圧窒素ガスボンベ		溶接	フレーム	組合せ	72	276	\bigcirc	
		フレーム 取付溶接部	せん断	31	159	\bigcirc		
代替高圧窒素ガス供給系高圧窒素 ガスボンベ	（A）		溶接	フレーム	組合せ	94	276	\bigcirc
		フレーム 取付溶接部		せん断	4	159	\bigcirc	
		取付ボルト	取付ボルト	引張り	13	190＊	\bigcirc	
				せん断	6	146	\bigcirc	
	（B）	溶接	フレーム	組合せ	94	276	\bigcirc	
			フレーム 取付溶接部	せん断	4	159	\bigcirc	
		取付ボルト	取付ボルト	引張り	14	190＊	\bigcirc	
				せん断	1	146	\bigcirc	

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau{ }_{\mathrm{b}}, f_{\mathrm{to}}\right]$

表 7－1 構造強度評価及び波及的影響評価結果（2／2）

	設備名称	ボンベラック 支持構造	評価部位	応力分類	発生値 （MPa）	許容 応力 （MPa）	評価 結果
	中央制御室待避所 加圧設備（空気ボンベ）	溶接接続ボルト	フレーム	組合せ	175	280	\bigcirc
			フレーム 取付溶接部	せん断	80	161	\bigcirc
			フレーム	引張り	14	488＊	\bigcirc
			接続ボルト	せん断	79	375	\bigcirc
		取付ボルト	取付ボルト	引張り	71	210＊	\bigcirc
				せん断	36	161	\bigcirc
	緊急時対策所加圧設備 （空気ボンベ）	溶接	$\begin{gathered} \text { フレーム } \\ \text { (SS400) } \end{gathered}$	組合せ	82	276	\bigcirc
1 0 \sim			$\begin{aligned} & \text { フレーム } \\ & \text { (STKR400) } \end{aligned}$	組合せ	25	276	\bigcirc
			固定端 溶接部	せん断	1	159	\bigcirc
家		取付ボルト	取付ボルト	引張り	54	440＊	\bigcirc
5				せん断	31	338	\bigcirc

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$

VI－2－別添 3－5 可搬型重大事故等対処設備のうち その他設備の耐震計算書
1．概要 1
2．基本方針 1
2.1 配置 1
2．2 構造概要 3
2.3 評価方針 7
2.4 適用規格•基準等 11
3．加振試験 11
3.1 基本方針 11
3.2 入力地震動 11
3.3 試験方法 11
3.4 試験結果 11
4．構造強度評価 15
4． 1 評価方針 15
4．2 評価部位 15
4.3 地震応答解析及び構造強度評価方法• 15
4． 4 荷重の組合せ及び許容応力 16
4.5 解析モデル及び諸元 18
4． 6 固有周期 23
4.7 設計用地震力 24
4．8 計算方法 25
4.9 計算条件 26
5．転倒評価 28
5.1 基本方針 28
5.2 評価部位 28
5.3 許容限界 28
5.4 評価方法 28
6．機能維持評価 29
6.1 基本方針 29
6．2 評価部位 29
6．3 許容限界 29
6．4 評価方法 29
7．波及的影響評価 31
7.1 基本方針 31
7.2 評価部位 31
7.3 許容限界 31
7． 4 評価方法 31
8．評価結果 32
8． 1 構造強度評価 32
8．2 転倒評価 32
8．3 機能維持評価 32
8． 4 波及的影響評価 32

1．概要

本計算書は，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」（以下「別添 3－1」という。）にて設定している機能維持の設計方針に基づき，可搬型重大事故等対処設備の らちその他設備が地震後において，基準地震動 S s による地震力に対し，十分な機能維持を有する とともに，当該設備による波及的影響を防止する必要がある他の設備に波及的影響を及ぼさない ことを説明するものである。その耐震評価は加振試験，構造強度評価，転倒評価，機能維持評価及 び波及的影響評価により行う。なお，加振試験結果に基づき行う転倒評価，機能維持評価及び波及的影響評価により，基準地震動 S S による地震力に対し，主要な構造部材に該当するスリング等が支持機能を喪失しないことを確認する。

2．基本方針
別添3－1 の「2．耐震評価の基本方針」に示す構造計画のとおり，その他設備の「2．1配置」及 び「2．2 構造概要」を示す。

2.1 配置

その他設備は，別添3－1 の「2．1評価対象設備」のうち構造計画に示すとおり，表2－1に示す保管場所に保管する。

表2－1 機器リスト（1／2）

機器名称	機器保管場所	保管状態
緊急時対策所可搬型 エリアモニタ	緊急時対策建屋（緊急時対策所） $\text { 0. P. } 51.50 \mathrm{~m}$	収納箱固縛
可搬型モニタリングポスト	第1保管エリア 0．P．約 62 m	収納箱架台固縛
	第2保管エリア 0．P．約 62 m	
	第4保管エリア 0．P．約 62m	
	緊急時対策建屋 $\text { 0.P. } 69.40 \mathrm{~m}$	本体固縛
可搬型ダスト・ よう素サンプラ	緊急時対策建屋（地下 1 階） $\text { 0. P. } 57.30 \mathrm{~m}$	収納箱固縛
γ 線サーベイメータ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛
β 線サーベイメータ	緊急時対策建屋（地下 1 階） $\text { 0. P. } 57.30 \mathrm{~m}$	収納箱固縛
α 線サーベイメータ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛
電離箱サーベイメータ	緊急時対策建屋（地下 1 階） $0 . \text { P. } 57.30 \mathrm{~m}$	収納箱固縛
代替気象観測設備	第2保管エリア 0．P．約 62 m	収納箱架台固縛
	第4保管エリア 0．P．約 62 m	
可搬型計測器	制御建屋（中央制御室） $\text { 0. P. } 23.50 \mathrm{~m}$	収納箱固縛
	緊急時対策建屋（緊急時対策所） 0．P． 51.50 m	
酸素濃度計	制御建屋（中央制御室） $\text { 0. P. } 23.50 \mathrm{~m}$	収納箱固縛
	緊急時対策建屋（緊急時対策所） $\text { 0.P. } 51.50 \mathrm{~m}$	
二酸化炭素濃度計	制御建屋（中央制御室） 0．P． 23.50 m	収納箱固縛
	緊急時対策建屋（緊急時対策所） 0．P． 51.50 m	

表2－1 機器リスト（2／2）

機器名称	機器保管場所	保管状態
主蒸気逃がし安全弁用可搬型蓄電池	制御建屋（地上 2 階） $\text { 0. Р. } 19.50 \mathrm{~m}$	本体固縛
衛星電話設備（携帯型）	$\begin{gathered} \text { 制御建屋(中央制御室) } \\ \text { 0.P. } 23.50 \mathrm{~m} \\ \hline \text { 緊急時対策建屋(緊急時対策所) } \\ \text { O.P. } 51.50 \mathrm{~m} \end{gathered}$	収納箱固縛
無線連絡設備（携帯型）	制御建屋（中央制御室） 0．P． 23.50 m 緊急時対策建屋（緊急時対策所） O．P． 51.50 m	収納箱固縛
携行型通話装置	$\begin{gathered} \text { 制御建屋(中央制御室) } \\ \text { 0.P. } 23.50 \mathrm{~m} \\ \hline \text { 緊急時対策建屋 (緊急時対策所) } \\ \text { O.P. } 51.50 \mathrm{~m} \end{gathered}$	収納箱固縛
可搬型照明（SA）	制御建屋（中央制御室） $\text { 0. P. } 23.50 \mathrm{~m}$	本体固縛
小型船舶	第1保管エリア 0．P．約 62m 第4保管エリア 0．P．約 62m	本体固縛

2.2 構造概要

その他設備の構造は，別添3－1の「2．1 評価対象設備」に示す収納箱固縛，収納箱架台固縛及 び本体固縛の構造計画としており，その他設備の代表の構造計画を表 2－2～表2－4及び図 2－1～図 2－3に示す。

表 2－2 その他設備の構造計画（収納箱固縛）

設備名称	計画の概要 （可搬型計測器の例）		説明図
	主体構造	支持構造	
可搬型計測器＊	可搬型計測器及びこれを収納する収納箱で構成する。	緩衝材を内装した収納箱に可搬型計測器を収納し，スリン グ等を用いて固縛する。スリ ング等は床にボルトで固定す る。	図 2－1

注記 $*:$ その他の設備は，表 $2-1$ 参照。

図 2－1 可搬型計測器の保管状態図

表2－3 その他設備の構造計画（収納箱架台固縛）

設備名称	計画の概要 （代替気象観測設備の例）		説明図
	主体構造	支持構造	
代替気象観測設備＊	代替気象観測設備（雨量，日射量，放射収支，風向風速発信器）を収納する収納箱で構成する。	緩衝材を内装した収納箱に代替気象観測設備を収納し，収納箱を架台にスリング等で固定する。 架台は床に基礎ボルトで固定 する。	図 2－2

注記＊：その他の設備は，表2－1参照。

	集台1－1	宋台1－2	杪古2－1	架台2－2
たて	約 1920 mm	负 1920 mm	約 950 mm	物 950 mm
粳	約 5050 mm	約 5050 mm	的 1530 mm	約 1530 mm
高を	約 1770 mm	的 $1770 \mathrm{mm以下}$	： 1570 mm	紬 $1570 \mathrm{mm以下}$

図 2－2 代替気象観測設備の保管状態図

表2－4 その他設備の構造計画（本体固縛）

設備名称	計画の概要 （主蒸気逃がし安全弁用可搬型蓄電池の例）		説明図
	主体構造	支持構造	
主蒸気逃がし安全弁用可搬型蓄電池＊	主蒸気逃がし安全弁用可搬型蓄電池で構成する。	主蒸気逃がし安全弁用可搬型蓄電池を取付金物で固縛し床 に固定する。	図 2－3

注記＊：その他の設備は，表 2－1参照。

図2－3 主蒸気逃がし安全弁用可搬型蓄電池の保管状態図

2． 3 評価方針

その他設備の評価方針を以下に示し，評価方法の一覧を表 2－5 に，耐震評価フローを図 2－4 及 び図 2－5に示す。

2．3．1 構造強度評価

その他設備の架台は，別添3－1 の「2．2．3 その他設備」にて設定した構造強度評価の方針 に従い，基礎ボルトに対する構造強度評価を実施する。

その他設備の架台の構造強度評価は，「2．2 構造計画」のうち表2－3 及び図 2－2 にて示す架台 1－1～架台 2－2 の部位を踏まえ「4．2 評価部位」にて設定する箇所に作用する応力等 が，「4．4荷重の組合せ及び許容応力」に示す荷重の組合せ及び許容限界を満足することを，
「4．3地震応答解析及び構造強度評価方法」に示す方法を用いて評価を行う。確認結果を
「8．評価結果」に示す。
また，構造強度評価結果を基に，その他設備の架台が転倒しないこと及び波及的影響を及 ぼさないことを確認する。確認結果を「8．評価結果」に示す。

2．3．2 転倒評価

その他設備は，別添3－1の「4．3 その他設備」にて設定した転倒評価の方針に従い，転倒評価を実施する。

その他設備の転倒評価は，「5．転倒評価」に示す方法により，「3．加振試験」における加振試験にて，試験後に転倒していないことを確認し，保管場所の設置床の最大応答加速度と，加振試験により転倒しないことを確認した加振台の最大加速度との比較を行い，許容限界 を満足することを確認する。確認結果を「8．評価結果」に示す。

2．3．3 機能維持評価

その他設備は，別添3－1の「4．3 その他設備」にて設定した機能維持評価の方針に従い，動的及び電気的機能並びに支持機能維持評価を実施する。

その他設備の機能維持評価は，「6．機能維持評価」に示す方法により，「3．加振試験」に おける加振試験にて，保管場所における設置床の最大応答加速度と，試験後に計測機能，給電機能等の動的及び電気的機能並びに支持機能を維持できることを確認した加振台の最大加速度との比較を行い，許容限界を満足することを確認する。確認結果を「8．評価結果」 に示す。

2． 3.4 波及的影響評価

その他設備は，別添3－1 の「4．3 その他設備」にて設定した波及的影響評価の方針に従 い，波及的影響評価を実施する。

その他設備の波及的影響評価は，「7．波及的影響評価」に示す方法により，「3．加振試験」における加振試験にて，保管場所における設置床の最大応答加速度と，スリング等が健全であり転倒しないことを確認した加振台の最大加速度との比較を行い，許容限界を満足 することを確認する。確認結果を「8．評価結果」に示す。

図 2－4 その他設備の耐震評価フロー

図 2－5 その他設備の架台の耐震評価フロー

表 2－5 その他設備の評価方法（1／2）

機器名称	保管状態	構造強度評価	転倒評価	機能維持評価	波及的影響評価	加振方向
可搬型モニタリングポスト＊1	収納箱架台	架台の			加振試験	「水平単独 2 方向及び鉛直単独」
代替気象観測設備	回縛	応力計算	応力計算		応力計算	「水平単独 2 方向及び鉛直単独」
緊急時対策所可搬型エリアモニタ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
可搬型ダスト・よう素サンプラ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
γ 線サーベイメータ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
β 線サーベイメータ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
α 線サーベイメータ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
電離箱サーベイメータ	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
可搬型計測器	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
酸素濃度計	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」

機器名称	保管状態	構造強度 評価	転倒評価	機能維持 評価	$\begin{aligned} & \text { 波及的 } \\ & \text { 影響評価 } \end{aligned}$	加振方向
二酸化炭素濃度計	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
衛星電話設備（携帯型）	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
無線連絡設備（携帯型）	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
携行型通話装置	収納箱固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
可搬型モニタリングポスト＊2	本体固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
主蒸気逃がし安全弁用可搬型蓄電池	本体固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
可搬型照明（SA）	本体固縛	－	加振試験	加振試験	加振試験	「水平単独 2 方向及び鉛直単独」
小型船舶	本体固縛	－	加振試験	加振試験	加振試験	$\begin{aligned} & \text { 「水平 (前後方向) + 鉛直」及び } \\ & \text { 「水平 (左右方向) + 鉛直」 } \end{aligned}$

注記 $* 1$ ：第 1 保管エリア，第 2 保管エリア及び第 4 保管エリアに保管。
＊2：緊急時対策建屋（地上 2 階）に保管。

2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007（（社）日本機械学会）

3．加振試験

3.1 基本方針

別添3－1の「4．3 その他設備」にて設定した基本方針に従い，加振試験を実施する。
加振試験は，以下の「3．2 入力地震動」に示す入力地震動を用いて，「3．3試験方法」に示す方法により，「5．転倒評価」，「6．機能維持評価」，「7．波及的影響評価」に用いる加振台の最大加速度を求める。

3.2 入力地震動

入力地震動は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」に示す，各保管場所の基準地震動 S s に基づき作成する設備評価用床応答曲線を包絡するよう作成したランダム波又は各保管場所の最大応答加速度（ZPA）を上回る加速度の正弦波若しくはサインビート波とする。

3.3 試験方法

その他設備を実際の設置状態を模擬した状態で加振台に設置し，「3．2 入力地震動」に示すラ ンダム波又は正弦波若しくはサインビート波を入力地震動として加振試験を行い，スリング等 が有効に機能することで，加振試験後に転倒していないこと及び加振台の最大加速度を確認す る。

- 加振波：「3．2 入力地震動」にて設定したランダム波又は正弦波若しくはサインビート波
- 加振方向：【ランダム波】

「水平（前後方向）＋鉛直」及び「水平（左右方向）＋鉛直」
【正弦波，サインビート波】
「水平単独 2 方向及び鉛直単独」

3.4 試験結果

加振試験により得られた結果を表3－1に示す。

表 3－1 加振試験結果（1／3）

機器名称	保管場所	保管状態	転倒の有無	加振台の最大加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
				水平	鉛直
緊急時対策所可搬型エリアモニタ	緊急時対策建屋 （緊急時対策所）O．P．51．50m	収納箱固縛	無	3.73	2.72
可搬型モニタリングポスト	第1保管エリア 0．P．約 62 m	収納箱架台固縛	無	2.47	1． 24
	第2保管エリア 0．P．約 62 m	収納箱架台固縛	無	2.47	1． 24
	第4保管エリア 0．P．約 62 m	収納箱架台固縛	無	2.47	1． 24
可搬型モニタリングポスト	緊急時対策建屋 0．P． 69.40 m	本体固縛	無	3.26	2.13
可搬型ダスト・よう素サンプラ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛	無	3.76	2.73
γ 線サーベイメータ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛	無	3.73	2.72
β 線サーベイメータ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛	無	3.73	2.72
α 線サーベイメータ	緊急時対策建屋（地下 1 階） 0．P． 57.30 m	収納箱固縛	無	3.73	2.72
電離箱サーベイメータ	緊急時対策建屋（地下 1 階） $\text { 0.P. } 57.30 \mathrm{~m}$	収納箱固縛	無	3.73	2.72

表 3－1 加振試験結果（2／3）

O2（3）VI－2－別添3－5 R 0

表 3－1 加振試験結果（3／3）

4．構造強度評価

4． 1 基本方針
その他設備の架台の構造強度評価は，別添3－1 の「2．2評価方針」で設定した評価方針に従つ て，構造強度評価を実施する。

その他設備の架台の構造強度評価は，「2．2 構造計画」のうち表2－3及び図 2－2 にて示す架台 1－1～架台2－2の部位を踏まえ「4．2評価部位」にて設定する箇所に作用する応力等が，「4．4荷重の組合せ及び許容応力」に示す荷重の組合せ及び許容限界を満足することを，「4．3地震応答解析及び構造強度評価方法」に示す方法を用いて評価を行う。なお，構造強度評価は架台 $1-1$ 及 び架台 2－1に対して実施する。

4． 2 評価部位
その他設備の架台の評価部位は，別添3－1 の「2．2評価方針」で設定した評価部位に従って基礎ボルトとする。

4． 3 地震応答解析及び構造強度評価方法

（1）固有周期及び荷重を求めるため，その他設備の架台を構成する鋼材をはり要素としてモ デル化した 3 次元 FEM モデルにより固有値解析を行い，固有周期が 0.05 秒以下であり，剛であることを確認した上で，1．2 倍した設置床の最大応答加速度を用いた静解析を実施 する。
（2）架台は，各保管場所の床面に設置され，基礎ボルトにより固定されるものとする。
（3）解析モデルの質量には，保管対象物の質量と架台自身の質量を考慮する。

4． 4 荷重の組合せ及び許容応力

その他設備の架台の構造強度評価に用いる荷重の組合せ及び許容応力は，別添 3－1 の「3．荷重及び荷重の組合せ並びに許容限界」で設定した荷重の組合せ及び許容応力状態を用いる。

4．4．1荷重の組合せ及び許容応力状態
その他設備の架台の構造強度評価に用いる荷重の組合せ及び許容応力状態を表4－1 に示 す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

設備名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
その他設備（架台）	-	$-^{*}$	$\mathrm{D}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $*:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

4．4．2 許容応力

その他設備の架台の基礎ボルトの許容応力は，別添3－1 の「2．2評価方針」にて設定した評価部位の破断延性限界を考慮し，別添3－1 の「3．2許容限界」で設定した許容限界に従 い，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力とする。各評価部位の許容応力を表4－2に示す。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1, * 2}$	
	一次応力	
	引張り＊3	せん断 ${ }^{* 3}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$

注記 $* 1: f_{t}{ }^{*}, ~ f_{s}$＊は，設計•建設規格 $\operatorname{SSB}-3121.1(1)$ a 本文中 Sy 及び $S y$（RT）を $1.2 \cdot$ Sy 及び $1.2 \cdot$ Sy（RT）と読み替えて算出した値（設計•建設規格 SSB－3133）。ただし，Sy 及び $0.7 \cdot \mathrm{Su}$ のいずれか小さい方の値とする。
＊2：J E A G 4 6 O 1 •補－1984の「その他の支持構造物の許容応力」に準じて設定する。 ＊3：ボルトにせん断力が作用する場合，組合せ評価を実施する。その際の許容引張応力 f_{t} は，設計•建設規格 SSB－3131 に基づき，$f_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, \mathrm{f}_{\mathrm{t}} \mathrm{o}\right.$ ］とする。こ こで，f_{t} は $1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$ とする。

4．4．3 使用材料の許容応力評価条件
その他設備の架台の許容応力評価条件を表 4－3 に示す。

表 4－3 その他設備の架台の許容応力評価条件（重大事故等対処設備）

設備名称	評価部材	ボルト材質	温度条件（ ${ }^{\circ} \mathrm{C}$ ）		$\begin{aligned} & \mathrm{S} \text { y } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S} \mathrm{u} \\ (\mathrm{MPa}) \end{gathered}$
架台 1－1	基礎ボルト	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径§ } \\ 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400
架台 2－1	基礎ボルト	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq \\ 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400

4．5解析モデル及び諸元

解析モデルを図 4－1，図 4－2 に，解析モデルの諸元を表 4－4 に，外形図を図 4－3，図 4－4 に示 す。
（1）図 4－1，図 4－2 中の \triangle は拘束節点を示す。
（2）図 4－1，図 4－2 中の青線は角型鋼管を，赤線は山形鋼を，緑線はH形鋼を，橙線は溝形鋼 を示す。破線は荷重振分用の剛体を示す。
（3）架台上に保管される機器の質量は，その重心高さを剛体により模擬した集中質量として付加する。また，鋼板の質量は柱•梁の交点に集中質量として付加する。質量付加位置を ■で示す。
（4）架台は，基礎ボルトにより床面に固定されることから，解析モデルでは各基礎ボルトの位置で完全拘束（XYZ 並進拘束，XYZ 軸回り拘束）とする。
（5）部材の応力算出に必要な機器要目を表4－5 に示す。
（6）解析コードは「MS C N A S T A R A N」を使用し，固有値及び荷重を求める。 なお，評価に用いる解析コードMSCNASTARANの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 4－1 架台 1－1 解析モデル

図 4－2 架台 2－1 解析モデル

表 4－4 解析モデルの諸元

項目	記号	単位	入力値	
材質（架台本体）	－	－	SS400，STKR400	
材質（基礎ボルト）	－	－	SS400	
温度条件	T	${ }^{\circ} \mathrm{C}$	SS400	40
			STKR400	40
縦弾性係数	E	MPa	SS400	2． 02×10^{5}
			STKR400	2． 02×10^{5}
ポアソン比	v	－	SS400	0.3
			STKR400	0.3

表 4－5 部材の機器要目（ $1 / 3$ ）

架台			架台 1－1			
部材			角型鋼管	H 形鋼	溝形鋼	山形鋼
材質			STKR400	SS400	SS400	SS400
寸法		mm	$100 \times 100 \times 6$	$\begin{gathered} 100 \times 100 \times 6 \\ \times 8 \end{gathered}$	$\begin{gathered} 100 \times 50 \times 5 \\ \times 7.5 \end{gathered}$	$65 \times 65 \times 6$
断面積	A	mm^{2}	2.163×10^{3}	2.159×10^{3}	1． 192×10^{3}	752.7
$\begin{aligned} & \text { 断面二次 } \\ & \text { モーメント } \end{aligned}$	Iz	mm^{4}	3.110×10^{6}	3.780×10^{6}	1． 880×10^{6}	2． 940×10^{5}
	Iy	mm^{4}	3.110×10^{6}	1． 340×10^{6}	2． 600×10^{5}	2． 940×10^{5}
ねじり定数	J	mm^{4}	4.980×10^{6}	4.020×10^{4}	1． 760×10^{4}	8． 928×10^{3}
有効せん断面積	Aey	mm^{2}	912.0	504.0	425.0	354.0
	Aez	mm^{2}	912.0	1． 600×10^{3}	750.0	354.0

表 4－5 部材の機器要目（2／3）

架台			架台 2－1		
部材			角型鋼管	H形鋼	山形鋼
材質			STKR400	SS400	SS400
寸法		mm	$100 \times 100 \times 6$	$\begin{gathered} 100 \times 100 \times 6 \\ \times 8 \end{gathered}$	$65 \times 65 \times 6$
断面積	A	mm ${ }^{2}$	2． 163×10^{3}	2． 159×10^{3}	752.7
$\begin{aligned} & \text { 断面二次 } \\ & \text { モーメント } \end{aligned}$	Iz	mm^{4}	3.110×10^{6}	3． 780×10^{6}	2． 940×10^{5}
	Iy	mm^{4}	3.110×10^{6}	1． 340×10^{6}	2． 940×10^{5}
ねじり定数	J	mm^{4}	4.980×10^{6}	4.020×10^{4}	8.928×10^{3}
有効せん断面積	Aey	mm^{2}	912.0	504.0	354.0
	Aez	mm ${ }^{2}$	912.0	1． 600×10^{3}	354.0

表 4－5 部材の機器要目（3／3）

架台 部材		全架台共通
材質		基礎ボルト
呼び径	mm	M 20
呼び径 断面積	mm^{2}	314.2
備考	-	全ねじ ボルト

（単位：mm）
図 4－3 架台 1－1 外形図

正面図

側面図
（単位：mm）
図 4－4 架台 2－1 外形図

4． 6 固有周期

固有値解析の結果を表 4－6，表 4－7に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。 また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－6 架台 1－1 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.030	水平

表 4－7 架台 2－1 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.041	水平

4．7設計用地震力

構造強度評価にて荷重を算出する際に用いる設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等における入力地震動」に基づき設定する。評価に用いる設計用地震力を表4－8，表4－9に示す。

表 4－8 架台 1－1 の設計用地震力（重大事故等対処設備）

据付場所 及び	固有周期 (s)		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向 設計震度 $* 3$	鉛直方向 設計震度 $* 3$
第 2 保管エリア $\left(0 . \mathrm{P}\right.$ ．約 $\left.62^{* 1}\right)$	0.030	0.05 以下	$\mathrm{C}_{\mathrm{H}}=1.74$	$\mathrm{C}_{\mathrm{V}}=0.82$

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり，剛であることを確認した。
＊3：設計震度は添付書類「VI－2－別添3－2 可搬型重大事故等対処設備の保管エリア等にお ける入力地震動」に基づく。なお，第2保管エリアと第4保管エリアを包含する値を設計震度とする。

表 4－9 架台 2－1 の設計用地震力（重大事故等対処設備）

据付場所 及び床面高さ （m）	固有周期 （s）		基準地震動S s	
	水平 方向	鉛直 方向	水平方向設計震度 $* 3$	鉛直方向設計震度 ＊3
第2保管エリア （0．P．約 62＊1）	0.041	$\begin{aligned} & 0.05 \\ & \text { 以下* } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=1.74$	$\mathrm{C}_{\mathrm{V}}=0.82$

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり，剛であることを確認した。
＊3：設計震度は添付書類「VI－2－別添 3－2 可搬型重大事故等対処設備の保管エリア等にお ける入力地震動」に基づく。なお，第1保管エリアと第 2 保管エリアと第 4 保管エリ アを包絡する値を設計震度とする。

4． 8 計算方法

構造強度評価に使用する記号を表 4－10に示す。

表 4－10 構造強度評価に使用する記号

記号	単位	定 義
C_{H}	-	設計用水平震度
C_{V}	-	設計用鉛直震度
σ_{b}	MPa	基礎ボルトの最大引張応力
T	N	ボルトに作用する引張力
n	-	1 要素あたりのボルト本数
A_{b}	mm^{2}	基礎ボルトの軸断面積
M_{y}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 y 軸まわりに作用する曲げモーメント
n_{y}	-	要素座標系 y 軸まわりに作用する曲げモーメントを受けるボルト本数
L_{z}	mm	要素座標系 z 方向のボルトピッチ
M_{z}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 z 軸まわりに作用する曲げモーメント
n_{z}	-	要素座標系 z 軸まわりに作用する曲げモーメントを受けるボルト本数
L_{y}	mm	要素座標系 y 方向のボルトピッチ
$\tau \mathrm{b}$	MPa	基礎ボルトの最大せん断応力
Q_{y}	N	ボルトに作用する要素座標系 y 軸方向のせん断力
Q_{z}	N	ボルトに作用する要素座標系 z 軸方向のせん断力
M_{x}	$\mathrm{N} \cdot \mathrm{mm}$	要素座標系 x 軸まわりに作用するねじりモーメント
L^{2}	mm	中立軸とボルト位置の距離

FEM 解析を実施し，得られる荷重及び応力を用いて，基礎ボルトの応力計算を行う。 ボルトの応力を以下のとおり計算する。

引張応力及び組合せ応力

$$
\sigma_{b}=\frac{T}{n A_{b}}+\frac{M_{y}}{n_{y} L_{z} A_{b}}+\frac{M_{z}}{n_{z} L_{y} A_{b}}
$$

せん断応力

$$
\tau_{\mathrm{b}}=\frac{\sqrt{\mathrm{Q}_{\mathrm{y}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}}{\mathrm{nA} A_{\mathrm{b}}}+\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{nLA}_{\mathrm{b}}}
$$

4.9 計算条件

構造強度評価に用いる評価条件を表4－11に示す。
表 4－11 その他設備の架台の評価条件（ $1 / 2$ ）

設備名称	据付場所	評価 部位	ボルト 材質	C_{H}	C_{v}	$\begin{gathered} \mathrm{T} \\ (\mathrm{~N}) \end{gathered}$	n	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} M_{y} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	n_{y}	$\begin{gathered} \mathrm{L}_{z} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{z} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	n_{z}	$\begin{gathered} \mathrm{L}_{\mathrm{y}} \\ (\mathrm{~mm}) \end{gathered}$
架台 1－1	第 2 保管 エリア	基礎 ボルト	SS400	1． 74	0.82	$\begin{gathered} 2.312 \\ \times 10^{4} \end{gathered}$	4	314.2	$\begin{gathered} 5.022 \\ \times 10^{3} \end{gathered}$	2	150	$\begin{array}{r} 5.083 \\ \times 10^{5} \end{array}$	2	150
架台 2－1				1． 74	0． 82	$\begin{gathered} 8.065 \\ \times 10^{3} \end{gathered}$	4	314.2	$\begin{array}{r} 2.499 \\ \times 10^{6} \end{array}$	2	150	$\begin{gathered} 8.296 \\ \times 10^{3} \end{gathered}$	2	150

設備名称	据付場所	評価 部位	ボルト 材質	Q_{y} （N）	$Q_{\text {z }}$ （N）	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	$\begin{gathered} \mathrm{M}_{\mathrm{x}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$
架台 1－1	第 2 保管 エリア	基礎 ボルト	SS400	508.3	$\begin{array}{r} 2.038 \\ \times 10^{4} \end{array}$	314.2	4	$\begin{aligned} & 1.968 \\ & \times 10^{5} \end{aligned}$	106
架台 2－1				$\begin{gathered} 8.966 \\ \times 10^{3} \end{gathered}$	322.1	314.2	4	$\begin{aligned} & 4.872 \\ & \times 10^{4} \end{aligned}$	106

5．転倒評価

5.1 基本方針

その他設備は，別添3－1 の「4．3 その他設備」にて設定した評価方針に従い，転倒評価を実施 する。

その他設備の転倒評価は，「5．2 評価部位」に示す評価部位が，「5．3許容限界」に示す許容限界を満足することを，「5． 4 評価方法」に示す方法を用いて評価を行う。

5.2 評価部位

転倒評価の評価部位は，別添3－1 の「4．3 その他設備」にて設定したとおり，地震後に転倒し ていないことが要求されるその他設備全体とする。

5.3 許容限界

許容限界は，「5．2 評価部位」にて設定した評価部位の保管場所における設置床の最大応答加速度が，加振試験によりスリング等が健全であり転倒しないことを確認した加振台の最大加速度以下であることとする。

5.4 評価方法

その他設備の転倒評価は，別添3－1 の「4．3（3）転倒評価」にて設定した評価方法に従い，保管場所における設置床又は地表面の最大応答加速度と，「3．加振試験」における加振試験にて転倒しないことを確認した加振台の最大加速度との比較を行い，水平方向と鉛直方向の比較結果 がそれぞれ許容限界以下であることを確認する。

6．機能維持評価
6.1 基本方針

その他設備は，別添3－1 の「2．2評価方針」にて設定した評価方針に従い，機能維持評価を実施する。

その他設備の機能維持評価は，「6．2評価部位」に示す評価部位が，「6．3 許容限界」に示す許容限界を満足することを，「6．4評価方法」に示す方法を用いて評価を行う。

6.2 評価部位

機能維持評価の評価部位は，別添3－1の「2．2評価方針」に示す確認方法を踏まえて，地震後 に計測機能，給電機能等の動的及び電気的機能並びにスリング等の支持機能を維持できること が要求される機器全体とする。

6． 3 許容限界
許容限界は，「6．2 評価部位」にて設定した評価部位の保管場所における設置床又は地表面の最大応答床加速度が，加振試験により動的及び電気的機能並びに支持機能が維持されることを確認した加振台の最大加速度以下であることとする。

6.4 評価方法

その他設備の機能維持評価は，別添3－1 の「4．3（4）機能維持評価」にて設定した評価方針に従い，保管場所における設置床又は地表面の最大応答加速度と，「3．加振試験」における加振試験にて得られた，表 6－1 に示す機能維持確認項目を確認した加振台の最大加速度との比較を行 い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。

表 6－1 機能維持確認項目

機器名称	機能維持確認項目
緊急時対策所可搬型エリアモニタ 可搬型モニタリングポスト 電離箱サーベイメータ	放射線量の測定が可能なこと
γ 線サーベイメータ	
β 線サーベイメータ	
α 線サーベイメータ	
可搬型ダスト・よう素サンプラ	放射性物質の濃度の測定が可能なこと
代替気象観測設備	空気中の放射性物質を採取可能なこと
可搬型計測器	気象条件の測定が可能なこと
酸素濃度計	電力供給ができ，出力を測定可能なこと
二酸化炭素濃度計	酸素の濃度の測定が可能なこと
主蒸気逃がし安全弁用可搬型蓄電池	二酸化炭素の濃度の測定が可能なこと
衛星電話設備（携帯型）	負荷に給電可能なこと
無線連絡設備（携帯型）	
携行型通話装置	発信•着信ができ通話が可能なこと
可搬型照明（SA）	
小型船舶	照明が点くこと

7．波及的影響評価

7.1 基本方針

その他の設備は，別添3－1 の「2．2評価方針」にて設定した評価方針に従い，当該設備による波及的影響を防止する必要がある他の設備への波及的影響評価を実施する。

その他設備の波及的影響評価は，「7．2評価部位」に示す評価部位が，「7．3許容限界」に示す許容限界を満足することを，「7．4 評価方法」に示す方法を用いて評価を行う。

7.2 評価部位

波及的影響評価の対象部位は，別添3－1の「3．2許容限界」にて設定したとおり，その他の設備全体とする。

7． 3 許容限界

許容限界は，「7．2 評価部位」にて設定した評価部位の保管場所における設置床又は地表面の最大応答加速度が，加振試験によりスリング等の支持機能が維持されることを確認した加振台 の最大加速度以下であることとする。

7.4 評価方法

その他設備の波及的影響評価は，別添3－1 の「4．3（5）波及的影響評価」にて設定した評価方針に従い，保管場所における設置床又は地表面の最大応答加速度と，「3．加振試験」における加振試験にてスリング等の支持機能が維持されることを確認した加振台の最大加速度との比較を行い，水平方向と鉛直方向の比較結果がそれぞれ許容限界以下であることを確認する。

8．評価結果
その他設備の基準地震動 S s による地震力に対する評価結果を以下に示す。
構造強度評価の結果，その他設備を設置する架台の基礎ボルトの発生値は許容応力を満足して $お り, ~$ 基準地震動 S s による地震力に対して評価部位の健全性が維持されることを確認した。

その他設備を設置する架台の健全性が維持されることにより，基準地震動 S s による地震力に対し，転倒しないこと及び当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

転倒評価の結果，保管場所における設置床又は地表面の最大応答加速度が，加振試験により転倒 しないことを確認した加振台の最大加速度以下であり，転倒しないことを確認した。また，加振試験後にスリング等が健全であることを確認した。
機能維持評価の結果，保管場所における設置床又は地表面の最大応答加速度が，加振試験により動的及び電気的機能並びに支持機能を維持できることを確認した加振台の最大加速度以下であり，基準地震動 S s による地震力に対し，機能が維持されることを確認した。

波及的影響評価の結果，保管場所における設置床又は地表面の最大応答加速度が，加振試験によ りスリング等の支持機能を維持できることを確認した加振台の最大加速度以下であり，当該設備 による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認し た。

以上より，その他設備は地震後において，基準地震動 S s による地震力に対し，重大事故等に対処するために必要な機能を維持するとともに波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認した。

8.1 構造強度評価

その他設備の架台の構造強度評価結果を表 8－1 に示す。
8.2 転倒評価

その他設備の転倒評価結果を表8－2～表8－4に示す。

8.3 機能維持評価

その他設備の機能維持評価結果を表 8－2～表 8－4 に示す。

8.4 波及的影響評価

その他設備の波及的影響評価結果を表 8－2～表 8－4 に示す。

表 8－1 その他設備の架台の構造強度評価結果

機器名称 （据付場所）	評価部位	応力	算出応力 （MPa）	許容応力 （MPa）
架台 1－1	基礎ボルト	引張り	24	210＊
（第2保管エリア）		せん断	18	161
架台 2－1 （第2保管エリア）	基礎ボルト	引張り	34	210^{*}
		せん断	8	161

全て許容応力以下である。 注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$ より算出

O2（3）VI－2－別添3－5 R 0

表 8－2 基準地震動 S s による地震力に対する評価結果（ランダム波加振試験）

機器名称	機器保管場所	方向	設置床の 最大応答 加速度	加振台の 最大 加速度	転倒 評価	機能 維持 評価	波及 的 影響 評価
			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$				
小型船舶	第1保管エリア 0．P．約 62m	水平	0.81	3.38	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 57	2.08			
	第4保管エリア 0．P．約 62 m	水平	0． 92	3.38	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 59	2． 08			

（凡例）○：各項目の評価の結果，良であることを確認した。

表 8－3 基準地震動 S s による地震力に対する評価結果（正弦波加振試験）（ $1 / 2$ ）

機器名称	機器保管場所	方向	設置床の 最大応答 加速度	$\begin{gathered} \hline \text { 加振台の } \\ \text { 最大 } \\ \text { 加速度 } \\ \hline \end{gathered}$	転倒 評価	機能 維持 評価	波及 的 影響 評価
			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$				
緊急時対策所可搬型エリアモニタ	緊急時対策建屋 （緊急時対策所）	水平	0.74	3.73	\bigcirc	\bigcirc	\bigcirc
	0．P． 51.50 m	鉛直	0． 63	2.72			
可搬型ダスト・よう素サンプラ	緊急時対策建屋 （地下 1 階） 0．P． 57.30 m	水平	1． 01	3.76	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 73	2.73			
γ 線サーベイメータ	緊急時対策建屋 （地下 1 階） 0．P．57．30m	水平	1． 01	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0.73	2． 72			
β 線サーベイメータ	緊急時対策建屋 （地下 1 階） 0．P． 57.30 m	水平	1.01	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0.73	2.72			
α 線サーベイメータ	緊急時対策建屋 （地下 1 階） 0．P． 57.30 m	水平	1． 01	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0.73	2.72			
電離箱サーベイメー夕	緊急時対策建屋 （地下 1 階） 0．P． 57.30 m	水平	1.01	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 73	2.72			
酸素濃度計	制御建屋 （中央制御室） 0. P. 23. 50m	水平	2． 32	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1.67	2.72			
	緊急時対策建屋 （緊急時対策所） 0．P． 51.50 m	水平	0． 74	3.73			
		鉛直	0.63	2． 72			
二酸化炭素濃度計	制御建屋 （中央制御室） 0. P. 23. 50m	水平	2． 32	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1． 67	2． 72			
	緊急時対策建屋 （緊急時対策所） 0．P． 51.50 m	水平	0． 74	3.73			
		鉛直	0． 63	2． 72			

（凡例）○：各項目の評価の結果，良であることを確認した。

表 8－3 基準地震動 S s による地震力に対する評価結果（正弦波加振試験）（2／2）

機器名称	機器保管場所	方向	設置床の最大応答加速度	加振台の 最大 加速度	転倒 評価	機能 維持 評価	波及 的 影響 評価
			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$				
衛星電話設備（携帯 型）	制御建屋 （中央制御室） 0. P. 23. 50m	水平	2． 32	3． 73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1.67	2． 72			
	緊急時対策建屋 （緊急時対策所） 0．P． 51.50 m	水平	0． 74	3． 73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0.63	2． 72			
無線連絡設備（携帯 型）	制御建屋 （中央制御室） 0．P． 23.50 m	水平	2． 32	3． 73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1． 67	2． 72			
	緊急時対策建屋 （緊急時対策所） 0．P． 51.50 m	水平	0． 74	3． 73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 63	2． 72			
携行型通話装置	制御建屋 （中央制御室） 0．P． 23.50 m	水平	2． 32	3． 73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1． 67	2． 72			
	緊急時対策建屋 （緊急時対策所） 0．P． 51.50 m	水平	0． 74	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 63	2． 72			
可搬型照明（SA）	制御建屋 （中央制御室） 0. P. 23. 50m	水平	2． 32	3． 70	\bigcirc	\bigcirc	\bigcirc
		鉛直	1． 67	2． 73			

（凡例）\bigcirc ：各項目の評価の結果，良であることを確認した。

表 8－4 基準地震動S s による地震力に対する評価結果（サインビート波加振試験）

機器名称	機器保管場所	方向	設置床の最大応答加速度	加振台の 最大 加速度	転倒評価	機能 維持 評価	波及 的 影響 評価
			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$				
可搬型モニタリング ポスト	第1保管エリア 0．P．約 62 m	水平	0.81	2． 47	\bigcirc	\bigcirc	\bigcirc
		鉛直	0． 57	1． 24			
	第2保管エリア 0．P．約 62 m	水平	1． 33	2． 47			
		鉛直	0.68	1． 24			
	第4保管エリア 0．P．約 62 m	水平	0.92	2． 47			
		鉛直	0.59	1． 24			
	緊急時対策建屋0. P. 69. 40m	水平	2． 02	3． 26			
		鉛直	1． 24	2.13			
可搬型計測器	制御建屋 （中央制御室） 0．P．23． 50 m	水平	2． 32	3.73	\bigcirc	\bigcirc	\bigcirc
		鉛直	1． 67	2． 72			
	緊急時対策建屋 （緊急時対策所） $\text { 0. P. } 51.50 \mathrm{~m}$	水平	0． 74	3． 73			
		鉛直	0.63	2． 72			
代替気象観測設備	第2保管エリア 0．P．約 62 m	水平	1． 33	2． 59	\bigcirc	\bigcirc	\bigcirc
		鉛直	0.68	1． 37			
	第4保管エリア 0．P．約 62m	水平	0.92	2.59			
		鉛直	0.59	1． 37			
主蒸気逃がし安全弁用可搬型蓄電池	$\begin{aligned} & \text { 制御建屋 } \\ & \text { (地上 } 2 \text { 階) } \\ & \text { 0.P. 19. } 50 \mathrm{~m} \end{aligned}$	水平	1.90	3.50	\bigcirc	\bigcirc	\bigcirc
		鉛直	1.44	2． 57			

[^3]VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果

目次

1．概要 1
2．基本方針 1
3．評価方法 1
4．評価結果 3
4.1 水平 2 方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出 3
4.2 建物•構築物及び屋外重要土木構造物の検討による機器•配管系への 影響の評価結果 4
4.3 水平 2 方向及び鉛直方向地震力の組合せの影響評価 4
4． 4 まとめ 5

1．概要

本資料は，添付書類「VI－2－別添3－1 可搬型重大事故等対処設備の耐震計算の方針」に基づき，基準地震動 S s による地震力に対する機能を保持できることを確認した可搬型重大事故等対処設備に対し，水平 2 方向及び鉛直方向の組合せによる地震力が与える影響について説明するもので ある。なお，耐震設計上の重大事故等対処施設の設備の分類に該当しない設備である可搬型重大事故等対処設備は，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」別記 2 において，水平 2 方向及び鉛直方向地震力の組合せによる評価を要求されてい ないが，確認を行らものである。

2．基本方針

水平 2 方向及び鉛直方向地震力の組合せによる影響評価については，添付書類「VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．2機器•配管系」の評価方針 を踏まえて，可搬型重大事故等対処設備としての構造上及び保管方法の特徴を踏まえた抽出を行 い，設備が有する耐震性に及ぼす影響を評価する。

3．評価方法

添付書類「VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針」の「4．各施設における水平 2 方向及び鉛直方向地震力の組合せに対する影響評価方針」を踏まえて，基準地震動S s による地震力に対して，耐震評価を実施する設備のらち，従来の設計手法における水平 1 方向及び鉛直方向地震力を組み合わせた耐震計算に対して，設備の構造特性から水平 2 方向及び鉛直方向地震力の組合せによる影響の可能性があるものを評価対象設備として抽出し，設備が有する耐震性に及ぼす影響を評価する。

影響評価のフローを図 3－1 に示す。
（1）評価対象となる設備の整理
可搬型重大事故等対処設備のらち，基準地震動 S s による地震力に対して構造強度又は機能維持を碓認する設備を評価対象とする。（図 3－1（1）
（2）構造上及び保管方法の特徴による抽出
可搬型重大事故等対処設備としての構造上及び保管方法の特徴から，水平 2 方向の地震力 が重畳する観点にて検討を行い，水平 2 方向の地震力による影響の可能性がある設備を抽出 する。なお，ここでの影響が軽微な設備とは，構造上及び保管方法の観点から発生応力への影響に着目し，その増分が 1 割程度以下となる設備を分類しているが，水平 1 方向地震力に よる裕度（許容応力／発生応力）が 1.1 未満の設備については，個別に検討を行うこととす る。（図3－1（2）
（3）発生値の増分による抽出
水平 2 方向の地震力による影響の可能性がある設備に対して，水平 2 方向の地震力が各方向 1：1 で入力された場合に各部にかかる荷重や応力を求め，従来の水平 1 方向及び鉛直方向

地震力の組合せによる設計に対して，水平 2 方向及び鉛直方向地震力を考慮した発生値の増分を用いて影響を検討し，耐震性への影響が懸念される設備を抽出する。（図 3－1③）
（4）水平 2 方向及び鉛直方向地震力の影響評価
（3）の検討において算出された荷重や応力を用いて，設備が有する耐震性への影響を検討する。（図 3－14）

図 3－1 水平2方向及び鉛直方向地震力を考慮した影響評価フロー

4．評価結果

4.1 水平 2 方向及び鉛直方向地震力の組合せの評価設備（部位）の抽出評価対象設備を表 4－1 に示す。添付書類「VI－2－12－1 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果」の「3．2機器•配管系」の評価設備（部位）の抽出方法を踏ま え，評価対象設備の各評価部位及び応力分類に対し，構造上及び保管方法の特徴から，水平 2 方向の地震力による影響を以下の項目により検討し，影響の可能性がある設備を抽出した。
（1）水平2方向の地震力が重畳する観点
評価対象設備は，水平 1 方向の地震力に加えて，さらに水平直交方向に地震力が重畳した場合，水平 2 方向の地震力による影響を検討し，影響が軽微な設備以外の影響検討が必要と なる可能性があるものを抽出した。抽出結果を表4－2に示す。

なお，評価対象設備の抽出に当たつて，耐震性への影響が軽微とした設備の理由を以下に示す。
a．構造強度評価対象設備
構造強度評価対象設備において，耐震性への影響が軽微と分類した設備はなし。
b．機能維持評価対象設備
（a）収納箱
収納箱に保管している設備は，収納箱内で緩衝材によって保護されており，X，Y の 2 方向入力に対して，応答増加は生じないものと考えられることから，水平 2 方向の入力の影響は軽微である。
（b）その他
水平 2 方向及び鉛直方向地震力を同時に入力した加振試験結果に基づき機能維持評価を行い，健全性を確認していることから，水平 2 方向入力の影響は考慮済みである。
（2）水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点
（1）にて影響の可能性がある設備について，水平 2 方向の地震力が各方向 $1: 1$ で入力さ れた場合に各部にかかる荷重や応力を求め，従来の水平 1 方向及び鉛直方向地震力の設計手法による発生値と比較し，その増分により影響の程度を確認し，耐震性への影響が懸念 される設備を抽出した。抽出結果を表4－2に示す。

なお，評価対象設備の抽出に当たつて，耐震性への影響が軽微とした設備の理由を以下 に示す。
a．構造強度評価対象設備
（a）車両型設備
車両型設備に積載したポンプ，発電機，内燃機関等は，矩形構造の横型回転機器等 であり応答軸（強軸•弱軸）が明確である。水平 2 方向の地震力が発生した場合，そ の応答はそれぞれの応答軸方向に分解され，実質的には弱軸方向に 1 方向入力した応答レベルと同等となることから，耐震性への影響の懸念はないと整理した。
（b）ボンベ設備
ボンベ設備は，矩形構造の架構設備であり応答軸（強軸•弱軸）が明確である。水平 2 方向の地震力が発生した場合，その応答はそれぞれの応答軸方向に分解され，実質的には弱軸方向に 1 方向入力した応答レベルと同等となることから，耐震性への影響の懸念はないと整理した。
b．機能維持評価対象設備
（a）その他
応答軸（強軸•弱軸）が明確である設備は，水平 2 方向の地震力が発生した場合， その応答はそれぞれの応答軸方向に分解され，実質的には弱軸方向に 1 方向入力した応答レベルと同等となることから，耐震性への影響の懸念はないと整理した。
4.2 建物•構築物及び屋外重要土木構造物の検討による機器•配管系への影響の検討結果

建物•構築物及び屋外重要土木構造物の検討において，可搬型重大事故等対処設備への影響を検討した結果，耐震性への影響が懸念されるものは抽出されなかった。

4． 3 水平 2 方向及び鉛直方向地震力の組合せの影響評価

表 4－2 において，水平 2 方向の地震力による影響の可能性があるとして抽出された設備は ないため，水平 2 方向及び鉛直方向地震力の組合せの影響評価を行う設備はない。
4.4 まとめ

可搬型重大事故等対処設備について，水平 2 方向及び鉛直方向地震力の影響を受ける可能性がある設備（部位）について，従来の設計手法における保守性も考慮した上で抽出し，従来の水平 1 方向及び鉛直方向地震力の組合せによる設計に対して影響を確認した結果，設備 が有する耐震性に影響のないことを確認したため，従来の設計手法に加えて更なる設計上の配慮が必要な設備はない。

表 4－1 水平 2 方向及び鉛直方向地震力の影響検討対象設備

別添番号	設備名称	構造強度評価	機能維持評価	部位＊
別添 3－3	大容量送水ポンプ（タイプ I ）	\bigcirc	\bigcirc	各部位
	大容量送水ポンプ（タイプII）	\bigcirc	\bigcirc	各部位
	電源車	\bigcirc	\bigcirc	各部位
	電源車（緊急時対策所用）	\bigcirc	\bigcirc	各部位
	原子炉補機代替冷却水系熱交換器ユニット	\bigcirc	\bigcirc	各部位
	可搬型窒素ガス供給装置	\bigcirc	\bigcirc	各部位
	ホース延長回収車	\bigcirc	\bigcirc	各部位
	タンクローリ	\bigcirc	\bigcirc	各部位
別添 3－4	高圧窒素ガス供給系 高圧窒素ガスボンべ	\bigcirc	－	各部位
	代替高圧窒素ガス供給系 高圧窒素ガスボンベ	\bigcirc	－	各部位
	中央制御室待避所加圧設備（空気ボンベ）	\bigcirc	－	各部位
	緊急時対策所加圧設備（空気ボンベ）	\bigcirc	－	各部位
別添 3－5	緊急時対策所可搬型エリアモニタ	－	\bigcirc	各部位
	可搬型モニタリングポスト	－	\bigcirc	各部位
	可搬型ダスト・よう素サンプラ	－	\bigcirc	各部位
	γ 線サーベイメータ	－	\bigcirc	各部位
	β 線サーベイメータ	－	\bigcirc	各部位
	α 線サーベイメータ	－	\bigcirc	各部位
	電離箱サーベイメータ	－	\bigcirc	各部位
	代替気象観測設備	－	\bigcirc	各部位
	可搬型計測器	－	\bigcirc	各部位
	酸素濃度計（中央制御室用）	－	\bigcirc	各部位
	二酸化炭素濃度計（中央制御室用）	－	\bigcirc	各部位
	酸素濃度計（緊急時対策所用）	－	\bigcirc	各部位
	二酸化炭素濃度計（緊急時対策所用）	－	\bigcirc	各部位
	主蒸気逃がし安全弁用可搬型蓄電池	－	\bigcirc	各部位
	衛星電話設備（携帯型）	－	\bigcirc	各部位
	無線連絡設備（携帯型）	－	\bigcirc	各部位
	携行型通話装置	－	\bigcirc	各部位
	可搬型照明（SA）	－	\bigcirc	各部位
	小型船舶	－	\bigcirc	各部位

注記＊：部位については，別添3－3 から別添3－5 に示す耐震評価箇所のとおり。

表 4－2 水平 2 方向及び鉛直方向地震力の評価設備（部位）の抽出結果（ $1 / 5$ ）
（凡例）
\bigcirc ：影響の可能性あり \triangle ：影響軽微 - ：該当なし
（1）構造強度評価（1／2）

設備名称	水平2方向及び鉛直方向地震力の影響の可能性		
	4． 1 項（1） 水平 2 方向の地震力が重畳する観点	4． 1 項（2） 水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果 （影響軽微の理由）
大容量送水ポンプ（タイプI ）	\bigcirc	\triangle	4． 1 項（2）a．「（a）車両型設備」の理由 （車両型設備に積載したポンプ，発電機，内燃機関等は，矩形構造の横型回転機器等であり応答軸（強軸•弱軸） が明確である。水平 2 方向の地震力が発生した場合，その応答はそれぞれの応答軸方向に分解され，実質的には弱軸方向に 1 方向入力した応答レベルと同等となることから，耐震性への影響 の懸念はないと整理した。）による。
大容量送水ポンプ（タイプII）	\bigcirc	\triangle	
電源車	\bigcirc	\triangle	
電源車（緊急時対策所用）	\bigcirc	\triangle	
原子炉補機代替冷却水系熱交換器ユニット	\bigcirc	\triangle	
可搬型窒素ガス供給装置	\bigcirc	\triangle	
ホース延長回収車	\bigcirc	\triangle	
タンクローリ	\bigcirc	\triangle	

表 4－2 水平 2 方向及び鉛直方向地震力の評価設備（部位）の抽出結果（2／5）
（凡例）
\bigcirc ：影響の可能性あり \triangle ：影響軽微 - ：該当なし
（1）構造強度評価（2／2）

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性		
	4． 1 項（1） 水平 2 方向の地震力が重畳する観点	4． 1 項（2） 水平1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果 （影響軽微の理由）
高圧窒素ガス供給系 高圧窒素ガスボンべ	\bigcirc	\triangle	4． 1 項（2）a．「（b）ボンベ設備」の理由（ボ ンベ設備は，矩形構造の架構設備であ り，応答軸（強軸•弱軸）が明確である。水平 2 方向の地震力が発生した場合，そ
代替高圧窒素ガス供給系高圧窒素ガスボンベ	\bigcirc	\triangle	の応答はそれぞれの応答軸方向に分解 され，実質的には弱軸方向に 1 方向入力
中央制御室待避所加圧設備（空気ボンベ）	\bigcirc	\triangle	耐震性への影響の懸念はないと整理し た。）による。
緊急時対策所加圧設備（空気ボンベ）	\bigcirc	\triangle	

表 4－2 水平 2 方向及び鉛直方向地震力の評価設備（部位）の抽出結果（3／5）
（凡例）
\bigcirc ：影響の可能性あり \triangle ：影響軽微 - ：該当なし
（2）機能維持評価（ $1 / 3$ ）

			布方向及び鉛直方向地震力	響の可能性
	設備名称	4． 1 項（1） 水平 2 方向の地震力が重畳する観点	4． 1 項（2） 水平1方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果 （影響軽微の理由）
	大容量送水ポンプ（タイプ I ）	\triangle	－	4．1項（1）b．「（b）その他」の理由（水平
	大容量送水ポンプ（タイプII）	\triangle	－	2 方向及び鉛直方向地震力を同時に入
\bigcirc	原子炉補機代替冷却水系熱交換器ユニット	\triangle	－	力した加振試験結果に基づき機能維持
	可搬型窒素ガス供給装置	\triangle	－	評価を行い，健全性を確認しているこ
	ホース延長回収車	\triangle	－	とから，水平 2 方向入力の影響は考慮
	タンクローリ	\triangle	－	済みである。）による。
	電源車	\bigcirc	\triangle	4．1項（2）b．「（b）その他」の理由（応答軸（強軸•弱軸）が明確である設備 は，水平 2 方向の地震力が発生した場合，その応答はそれぞれの応答軸方向
	電源車（緊急時対策所用）	\bigcirc	\triangle	に分解され，実質的には弱軸方向に 1方向入力した応答レベルと同等となる ことから，耐震性への影響の懸念はな いと整理した。）による。

表 4－2 水平 2 方向及び鉛直方向地震力の評価設備（部位）の抽出結果（4／5）
（凡例）
\bigcirc ：影響の可能性あり \triangle ：影響軽微－：該当なし
（2）機能維持評価（2／3）

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性		
	4． 1 項（1） 水平 2 方向の地震力が重畳する観点	$\text { 4. } 1 \text { 項 (2) }$ 水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果 （影響軽微の理由）
緊急時対策所可搬型エリアモニタ	\triangle	－	4． 1 項（1）b．「（a）収納箱」の理由（収納箱に保管している設備は，収納箱内 で緩衝材によって保護されており，X， Y の 2 方向入力に対して，応答増加は生じないものと考えられることから，水平 2 方向の入力の影響は軽微であ る。）による。
可搬型ダスト・よう素サンプラ	\triangle	－	
γ 線サーベイメータ	\triangle	－	
β 線サーベイメータ	\triangle	－	
α 線サーベイメータ	\triangle	－	
電離箱サーベイメータ	\triangle	－	
可搬型計測器	\triangle	－	
酸素濃度計（中央制御室用）	\triangle	－	
二酸化炭素濃度計（中央制御室用）	\triangle	－	
酸素濃度計（緊急時対策所用）	\triangle	－	
二酸化炭素濃度計（緊急時対策所用）	\triangle	－	
衛星電話設備（携帯型）	\triangle	－	
無線連絡設備（携帯型）	\triangle	－	
携行型通話装置	\triangle	－	

表 4－2 水平 2 方向及び鉛直方向地震力の評価設備（部位）の抽出結果（5／5）
（凡例）
\bigcirc ：影響の可能性あり \triangle ：影響軽微 - ：該当なし
（2）機能維持評価（ $3 / 3$ ）

設備名称	水平 2 方向及び鉛直方向地震力の影響の可能性		
	4． 1 項（1） 水平 2 方向の地震力が重畳する観点	4． 1 項（2） 水平 1 方向及び鉛直方向地震力に対する水平 2 方向及び鉛直方向地震力の増分の観点	検討結果（影響軽微の理由）
可搬型モニタリングポスト	\bigcirc	\triangle	4． 1 項（2）b．「（b）その他」の理由（応答軸（強軸•弱軸）が明確である設備は，水平 2 方向の地震力が発生した場合，そ の応答はそれぞれの応答軸方向に分解 され，実質的には弱軸方向に 1 方向入力 した応答レベルと同等となることから，耐震性への影響の懸念はないと整理し た。）による。
代替気象観測設備	\bigcirc	\triangle	
主蒸気逃がし安全弁用可搬型蓄電池	\bigcirc	\triangle	
可搬型照明（SA）	\bigcirc	\triangle	
小型船舶	\bigcirc	\triangle	

VI－3 強度に関する説明書

目 次

VI－3－1 強度計算の基本方針
VI－3－2 強度計算方法
VI－3－3 強度計算書

VI－3－3 強度計算書

VI－3－3－1 原子炉本体の強度に関する説明書
VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書
VI－3－3－3 原子炉冷却系統施設の強度に関する説明書
VI－3－3－4 計測制御系統施設の強度に関する説明書
VI－3－3－5 放射線管理施設の強度に関する説明書
VI－3－3－6 原子炉格納施設の強度に関する説明書
VI－3－3－7 その他発電用原子炉の附属施設の強度に関する説明書

VI－3－3－1 原子炉本体の強度に関する説明書

目 次

VI－3－3－1－1 原子炉圧力容器の強度計算書

VI－3－3－1－1 原子炉圧力容器の強度計算書

VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書
VI－3－3－1－1－2 原子炉圧力容器付属構造物の強度計算書

VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書

目次
（概要）

目次

（胴板）
2．胴板の強度計算 2－1
2.1 一般事項 2－1
2．1．1 形状 • 寸法 •材料 2－1
2．1．2 解析範囲 2－1
2．1．3 計算結果の概要 2－1
2．2 計算条件 2－4
2．2．1 重大事故等時の条件 2－4
2．2．2 材料 2－4
2．2．3 荷重の組合せ及び運転状態 2－4
2．2．4 荷重の組合せ及び応力評価 2－4
2．2．5 許容応力 2－4
2．3 応力計算 2－4
2．3．1 応力評価点 2－4
2．3．2 内圧による応力 2－4
2．3．3 外荷重による応力 2－5
2．3．4 応力の評価 2－5
2． 4 応力強さの評価 2－5
2．4．1 一次一般膜応力強さの評価 2－5
2．4．2 一次膜＋一次曲げ応力強さの評価 2－5

図表目次

（胴板）
図2－1 形状•寸法•材料•応力評価点 2－2
表2－1 計算結果の概要 2－3
表2－2 一次一般膜応力強さの評価のまとめ・ 2－6
表2－3 一次膜＋一次曲げ応力強さの評価のまとめ 2－7

目次

（上部鏡板，鏡板フランジ及び胴板フランジ）
3．上部鏡板，鏡板フランジ及び胴板フランジの強度計算 3－1
3.1 一般事項 3－1
3．1．1 形状 • 寸法 •材料 3－1
3．1．2 解析範囲 3－1
3．1．3 計算結果の概要 3－1
3．2 計算条件 3－4
3．2．1 重大事故等時の条件 3－4
3．2．2 材料 3－4
3．2．3 荷重の組合せ及び運転状態 3－4
3．2．4 荷重の組合せ及び応力評価 3－4
3．2．5 許容応力 3－4
3．3 応力計算 3－4
3．3．1 応力評価点 3－4
3．3．2 内圧による応力 3－4
3．3．3 ボルト荷重による応力 3－5
3．3．4 応力の評価 3－5
3．4 応力強さの評価 3－5
3．4．1 一次一般膜応力強さの評価 3－5
3．4．2 一次膜＋一次曲げ応力強さの評価 3－5
3．4．3 スタッドボルトの平均引張応力の評価 3－5
3．4．4 スタッドボルトの平均引張＋曲げ応力の評価 3－5

図表目次

（上部鏡板，鏡板フランジ及び胴板フランジ）
図3－1 形状•寸法•材料•応力評価点 3－2
表3－1 計算結果の概要 3－3
表3－2 一次一般膜応力強さの評価のまとめ・ 3－6
表3－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 3－7
表3－4 スタッドボルトの平均引張応力の評価のまとめ 3－8
表3－5 スタッドボルトの平均引張＋曲げ応力の評価のまとめ・ 3－9
R 0

目次

（下部鏡板）
4．下部鏡板の強度計算 4－1
4.1 一般事項 4－1
4．1．1 形状•寸法•材料 4－1
4．1．2 解析範囲 4－1
4．1．3 計算結果の概要 4－1
4．2 計算条件 4－4
4．2．1 重大事故等時の条件 4－4
4．2．2 材料 4－4
4．2．3 荷重の組合せ及び運転状態 4－4
4．2．4 荷重の組合せ及び応力評価 4－4
4．2．5 許容応力 4－4
4．3 応力計算 4－4
4．3．1 応力評価点 4－4
4．3．2 内圧による応力 4－4
4．3．3 外荷重による応力 4－5
4．3．4 応力の評価 4－5
4． 4 応力強さの評価 4－5
4．4．1 一次一般膜応力強さの評価 4－5
4．4．2 一次膜＋一次曲げ応力強さの評価 4－5

図表目次
（下部鏡板）
図4－1 形状•寸法•材料•応力評価点 4－2
表4－1 計算結果の概要 4－3
表4－2 一次一般膜応力強さの評価のまとめ・ 4－6
表4－3 一次膜＋一次曲げ応力強さの評価のまとめ 4－7

> 目次
> (制御棒駆動機構ハウジング貫通孔)
5．制御棒駆動機構ハウジング貫通孔の強度計算 5－1
5.1 一般事項 5－1
5．1．1 記号の説明 5－1
5．1．2 形状•寸法•材料 5－1
5．1．3 解析範囲 5－1
5．1．4 計算結果の概要 5－1
5．2 計算条件 5－4
5．2．1 重大事故等時の条件 5－4
5．2．2 材料 5－4
5．2．3 荷重の組合せ及び運転状態 5－4
5．2．4 荷重の組合せ及び応力評価 5－4
5．2．5 許容応力 5－4
5.3 応力計算 5－4
5．3．1 応力評価点 5－4
5．3．2 内圧による応力 5－4
5．3．3 外荷重による応力 5－5
5．3．4 応力の評価 5－5
5．4 応力強さの評価 5－5
5．4．1 一次一般膜応力強さの評価 5－5
5．4．2 一次膜＋一次曲げ応力強さの評価 5－5
5． 5 特別な評価 5－6
5．5．1 外圧による座屈に対する評価 5－6
5．5．2 軸圧縮荷重による座屈に対する評価 5－7

図表目次

（制御棒駆動機構ハウジング貫通孔）
図 5－1 形状•寸法•材料•応力評価点 5－2
表5－1 計算結果の概要 5－3
表5－2 一次一般膜応力強さの評価のまとめ・ 5－9
表5－3 一次膜＋一次曲げ応力強さの評価のまとめ 5－10
表5－4 座屈に対する評価に用いる荷重 5－11
表5－5 外圧による座屈に対する評価 5－11
表5－6 軸圧縮荷重による座屈に対する評価 5－11

> 目次
> (中性子束計測ハウジング貫通孔)
6．中性子束計測ハウジング貫通孔の強度計算 6－1
6.1 一般事項 6－1
6．1．1 形状•寸法•材料 6－1
6．1．2 解析範囲 6－1
6．1．3 計算結果の概要 6－1
6．2 計算条件 6－4
6．2．1 重大事故等時の条件 6－4
6．2．2 材料 6－4
6．2．3 荷重の組合せ及び運転状態 6－4
6．2．4 荷重の組合せ及び応力評価 6－4
6．2．5 許容応力 6－4
6．3 応力計算 6－4
6．3．1 応力評価点 6－4
6．3．2 内圧による応力 6－4
6．3．3 応力の評価 6－5
6．4 応力強さの評価 6－5
6．4．1 一次一般膜応力強さの評価 6－5
6．4．2 一次膜 + 一次曲げ応力強さの評価 6－5

図表目次

（中性子束計測ハウジング貫通孔）
図6－1 形状•寸法•材料•応力評価点 6－2
表6－1 計算結果の概要 6－3
表6－2 一次一般膜応力強さの評価のまとめ・ 6－6
表6－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 6－7

目次

（再循環水出口ノズル（N1））
7．再循環水出口ノズル（N1）の強度計算 7－1
7.1 一般事項 7－1
7．1．1 形状•寸法•材料 7－1
7．1．2 解析範囲 7－1
7．1．3 計算結果の概要 7－1
7．2 計算条件 7－4
7．2．1 重大事故等時の条件 7－4
7．2．2 材料 7－4
7．2．3 荷重の組合せ及び運転状態 7－4
7．2．4 荷重の組合せ及び応力評価 7－4
7．2．5 許容応力 7－4
7．3 応力計算 7－4
7．3．1 応力評価点 7－4
7．3．2 内圧による応力 7－4
7．3．3 外荷重による応力 7－5
7．3．4 応力の評価 7－5
7． 4 応力強さの評価 7－5
7．4．1 一次一般膜応力強さの評価 7－5
7．4．2 一次膜 + 一次曲げ応力強さの評価 7－5

図表目次

（再循環水出口ノズル（N1））
図 7－1 形状•寸法•材料•応力評価点 7－2
表7－1 計算結果の概要 7－3
表7－2 一次一般膜応力強さの評価のまとめ・ 7－6
表7－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 7－7

目次
 （再循環水入口ノズル（N2））

8．再循環水入口ノズル（N2）の強度計算 8－1
8． 1 一般事項 8－1
8．1．1 形状 • 寸法 •材料 8－1
8．1．2 解析範囲 8－1
8．1．3 計算結果の概要 8－1
8．2 計算条件 8－4
8．2．1 重大事故等時の条件 8－4
8．2．2 材料 8－4
8．2．3 荷重の組合せ及び運転状態 8－4
8．2．4 荷重の組合せ及び応力評価 8－4
8．2．5 許容応力 8－4
8．3 応力計算 8－4
8．3．1 応力評価点 8－4
8．3．2 内圧及び差圧による応力 8－4
8．3．3 外荷重による応力 8－5
8．3．4 応力の評価 8－5
8． 4 応力強さの評価 8－5
8．4．1 一次一般膜応力強さの評価 8－5
8．4．2 一次膜 + 一次曲げ応力強さの評価 8－5

図表目次

（再循環水入口ノズル（N2））
図8－1 形状•寸法•材料•応力評価点 8－2
表8－1 計算結果の概要 8－3
表8－2 一次一般膜応力強さの評価のまとめ・ 8－6
表8－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 8－7

目次
 （主蒸気出口ノズル（N3））

9．主蒸気出ロノズル（N3）の強度計算 9－1
9.1 一般事項 9－1
9．1．1 形状 • 寸法 • 材料 9－1
9．1．2 解析範囲 9－1
9．1．3 計算結果の概要 9－1
9．2 計算条件 9－4
9．2．1 重大事故等時の条件 9－4
9．2．2 材料 9－4
9．2．3 荷重の組合せ及び運転状態 9－4
9．2．4 荷重の組合せ及び応力評価 9－4
9．2．5 許容応力 9－4
9．3 応力計算 9－4
9．3．1 応力評価点 9－4
9．3．2 内圧による応力 9－4
9．3．3 外荷重による応力 9－5
9．3．4 応力の評価 9－5
9．4 応力強さの評価 9－5
9．4．1 一次一般膜応力強さの評価 9－5
9．4．2 一次膜 + 一次曲げ応力強さの評価 9－5

図表目次

（主蒸気出ロノズル（N3））
図9－1 形状•寸法•材料•応力評価点 9－2
表9－1 計算結果の概要 9－3
表9－2 一次一般膜応力強さの評価のまとめ・ 9－6
表9－3 一次膜＋一次曲げ応力強さの評価のまとめ 9－7

目次

（給水ノズル（N4））
10．給水ノズル（N4）の強度計算 10－1
10．1 一般事項 10－1
10．1．1 形状•寸法•材料 10－1
10．1．2 解析範囲 10－1
10．1．3 計算結果の概要 10－1
10．2 計算条件 10－4
10．2．1 重大事故等時の条件 10－4
10．2．2 材料 10－4
10．2．3 荷重の組合せ及び運転状態 10－4
10．2．4 荷重の組合せ及び応力評価 10－4
10．2．5 許容応力 10－4
10．3 応力計算 10－4
10．3．1 応力評価点 10－4
10．3．2 内圧及び差圧による応力 10－4
10．3．3 外荷重による応力 10－5
10．3．4 応力の評価 10－5
10．4 応力強さの評価 10－5
10．4．1 一次一般膜応力強さの評価 10－5
10．4．2 一次膜＋一次曲げ応力強さの評価 10－5

図表目次

（給水ノズル（N4））
図10－1 形状•寸法•材料•応力評価点 10－2
表10－1 計算結果の概要 10－3
表10－2 一次一般膜応力強さの評価のまとめ 10－6
表10－3 一次膜＋一次曲げ応力強さの評価のまとめ 10－7

目次

（低圧炉心スプレイノズル（N5））
11．低圧炉心スプレイノズル（N5）の強度計算 11－1
11.1 一般事項 11－1
11．1．1 形状 • 寸法 •材料 11－1
11．1．2 解析範囲 11－1
11．1．3 計算結果の概要 11－1
11.2 計算条件 11－4
11．2．1 重大事故等時の条件 11－4
11．2．2 材料 11－4
11．2．3 荷重の組合せ及び運転状態 11－4
11．2．4 荷重の組合せ及び応力評価 11－4
11．2．5 許容応力 11－4
11.3 応力計算 11－4
11．3．1 応力評価点 11－4
11．3．2 内圧及び差圧による応力 11－4
11．3．3 外荷重による応力 11－5
11．3．4 応力の評価 $11-5$
11．4 応力強さの評価 11－5
11．4．1 一次一般膜応力強さの評価 11－5
11．4．2 一次膜 + 一次曲げ応力強さの評価 $11-5$

図表目次

（低圧炉心スプレイノズル（N5））
図11－1 形状•寸法•材料•応力評価点 11－2
表11－1 計算結果の概要 11－3
表11－2 一次一般膜応力強さの評価のまとめ 11－6
表11－3 一次膜＋一次曲げ応力強さの評価のまとめ・ 11－7

目次

（低圧注水ノズル（N6））
12．低圧注水ノズル（N6）の強度計算 12－1
12.1 一般事項 12－1
12．1．1 形状•寸法•材料 12－1
12．1．2 解析範囲 12－1
12．1．3 計算結果の概要 12－1
12．2 計算条件 12－4
12．2．1 重大事故等時の条件 12－4
12．2．2 材料 12－4
12．2．3 荷重の組合せ及び運転状態 12－4
12．2．4 荷重の組合せ及び応力評価 12－4
12．2．5 許容応力 12－4
12．3 応力計算 12－4
12．3．1 応力評価点 12－4
12．3．2 内圧及び差圧による応力 12－4
12．3．3 外荷重による応力 12－5
12．3．4 応力の評価 12－5
12．4 応力強さの評価 12－5
12．4．1 一次一般膜応力強さの評価 12－5
12．4．2 一次膜 + 一次曲げ応力強さの評価 12－5

図表目次

> (低圧注水ノズル (N6))
図12－1 形状•寸法•材料•応力評価点 12－2
表12－1 計算結果の概要 12－3
表12－2 一次一般膜応力強さの評価のまとめ 12－6
表12－3 一次膜＋一次曲げ応力強さの評価のまとめ 12－7

目次

（上蓋スプレイノズル（N7））
13．上蓋スプレイノズル（N7）の強度計算 13－1
13．1 一般事項 13－1
13．1．1 形状•寸法•材料 13－1
13．1．2 解析範囲 13－1
13．1．3 計算結果の概要 13－1
13．2 計算条件 13－4
13．2．1 重大事故等時の条件 13－4
13．2．2 材料 13－4
13．2．3 荷重の組合せ及び運転状態 13－4
13．2．4 荷重の組合せ及び応力評価 13－4
13．2．5 許容応力 13－4
13．3 応力計算 13－4
13．3．1 応力評価点 13－4
13．3．2 内圧による応力 13－4
13．3．3 外荷重による応力 13－5
13．3．4 ボルト荷重による応力 13－5
13．3．5 応力の評価 13－5
13．4 応力強さの評価 13－5
13．4．1 一次一般膜応力強さの評価 13－5
13．4．2 一次膜 + 一次曲げ応力強さの評価 13－5

図表目次

> (上蓋スプレイノズル (N7))
図 13－1 形状•寸法•材料•応力評価点 13－2
表13－1 計算結果の概要 13－3
表13－2 一次一般膜応力強さの評価のまとめ 13－6
表13－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 13－7

> 目次
> $($ ベントノズル $(\mathrm{N} 8))$
14．ベントノズル（N8）の強度計算 14－1
14．1 一般事項 14－1
14．1．1 形状•寸法•材料 14－1
14．1．2 解析範囲 14－1
14．1．3 計算結果の概要 14－1
14．2 計算条件 14－4
14．2．1 重大事故等時の条件 14－4
14．2．2 材料 14－4
14．2．3 荷重の組合せ及び運転状態 14－4
14．2．4 荷重の組合せ及び応力評価 14－4
14．2．5 許容応力 14－4
14．3 応力計算 14－4
14．3．1 応力評価点 14－4
14．3．2 内圧による応力 14－4
14．3．3 外荷重による応力 14－5
14．3．4 ボルト荷重による応力 14－5
14．3．5 応力の評価 14－5
14．4 応力強さの評価 14－5
14．4．1 一次一般膜応力強さの評価 14－5
14．4．2 一次膜 + 一次曲げ応力強さの評価 14－5

図表目次
（ベントノズル（N8））
図14－1 形状•寸法•材料•応力評価点 14－2
表14－1 計算結果の概要 14－3
表14－2 一次一般膜応力強さの評価のまとめ 14－6
表14－3 一次膜＋一次曲げ応力強さの評価のまとめ 14－7

目次

（ジェットポンプ計測管貫通部ノズル（N9））

15．ジェットポンプ計測管貫通部ノズル（N9）の強度計算 15－1
15． 1 一般事項 15－1
15．1．1 形状•寸法•材料 15－1
15．1．2 解析範囲 15－1
15．1．3 計算結果の概要 15－1
15．2 計算条件 15－4
15．2．1 重大事故等時の条件 15－4
15．2．2 材料 15－4
15．2．3 荷重の組合せ及び運転状態 15－4
15．2．4 荷重の組合せ及び応力評価 15－4
15．2．5 許容応力 15－4
15．3 応力計算 15－4
15．3．1 応力評価点 15－4
15．3．2 内圧による応力 15－4
15．3．3 外荷重による応力 15－5
15．3．4 応力の評価 15－5
15．4 応力強さの評価 15－5
15．4．1 一次一般膜応力強さの評価 15－5
15．4．2 一次膜 + 一次曲げ応力強さの評価 15－5
図表目次
（ジェットポンプ計測管貫通部ノズル（N9））
図15－1 形状•寸法•材料•応力評価点 15－2
表15－1 計算結果の概要 15－3
表15－2 一次一般膜応力強さの評価のまとめ・ 15－6
表15－3 一次膜 + 一次曲げ応力強さの評価のまとめ 15－7
R 0

目次

（差圧検出・ほら酸水注入ノズル（N11））
16．差圧検出・ほう酸水注入ノズル（N11）の強度計算 16－1
16． 1 一般事項 16－1
16．1．1 形状•寸法•材料 16－1
16．1．2 解析範囲 16－1
16．1．3 計算結果の概要 16－1
16．2 計算条件 16－4
16．2．1 重大事故等時の条件 16－4
16．2．2 材料 16－4
16．2．3 荷重の組合せ及び運転状態 16－4
16．2．4 荷重の組合せ及び応力評価 16－4
16．2．5 許容応力 16－4
16．3 応力計算 16－4
16．3．1 応力評価点 16－4
16．3．2 内圧による応力 16－4
16．3．3 外荷重による応力 16－5
16．3．4 応力の評価 16－5
16．4 応力強さの評価 16－5
16．4．1 一次一般膜応力強さの評価 16－5
16．4．2 一次膜 + 一次曲げ応力強さの評価 16－5

図表目次

（差圧検出・ほう酸水注入ノズル（N11））
図16－1 形状•寸法•材料•応力評価点 16－2
表16－1 計算結果の概要 16－3
表16－2 一次一般膜応力強さの評価のまとめ 16－6
表16－3 一次膜 + 一次曲げ応力強さの評価のまとめ 16－7
目次（計装ノズル（N12，N13，N14））
17．計装ノズル（N12，N13，N14）の強度計算 17－1
17．1 一般事項 17－1
17．1．1 形状•寸法•材料 17－1
17．1．2 解析範囲 17－1
17．1．3 計算結果の概要 17－1
17．2 計算条件 17－7
17．2．1 重大事故等時の条件 17－7
17．2．2 材料 17－7
17．2．3 荷重の組合せ及び運転状態 17－7
17．2．4 荷重の組合せ及び応力評価 17－7
17．2．5 許容応力 17－7
17．3 応力計算 17－7
17．3．1 応力評価点 17－7
17．3．2 内圧による応力 17－7
17．3．3 外荷重による応力 17－8
17．3．4 応力の評価 17－8
17．4 応力強さの評価 17－8
17．4．1 一次一般膜応力強さの評価 17－8
17．4．2 一次膜 + 一次曲げ応力強さの評価 17－8

図表目次
（計装ノズル（N12，N13，N14））
図17－1 形状•寸法•材料•応力評価点 17－2
表17－1 計装ノズルの計算結果の概要 17－4
表17－2 計装ノズルの一次一般膜応力強さの評価のまとめ 17－9
表17－3 計装ノズルの一次膜＋一次曲げ応力強さの評価のまとめ 17－12

> 目次
> $($ ドレンノズル $(\mathrm{N} 15))$
18．ドレンノズル（N15）の強度計算 18－1
18． 1 一般事項 18－1
18．1．1 形状•寸法•材料 18－1
18．1．2 解析範囲 18－1
18．1．3 計算結果の概要 18－1
18．2 計算条件 18－4
18．2．1 重大事故等時の条件 18－4
18．2．2 材料 18－4
18．2．3 荷重の組合せ及び運転状態 18－4
18．2．4 荷重の組合せ及び応力評価 18－4
18．2．5 許容応力 18－4
18．3 応力計算 18－4
18．3．1 応力評価点 18－4
18．3．2 内圧による応力 18－4
18．3．3 外荷重による応力 18－5
18．3．4 応力の評価 18－5
18．4 応力強さの評価 18－5
18．4．1 一次一般膜応力強さの評価 18－5
18．4．2 一次膜 + 一次曲げ応力強さの評価 18－5

図表目次

（ドレンノズル（N15））
図 18－1 形状•寸法•材料•応力評価点 18－2
表18－1 計算結果の概要 18－3
表18－2 一次一般膜応力強さの評価のまとめ 18－6
表18－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 18－7
R 0

> 目次
> (高圧炉心スプレイノズル $(\mathrm{N} 16)$)
19．高圧炉心スプレイノズル（N16）の強度計算 19－1
19．1 一般事項 19－1
19．1．1 形状 • 寸法 •材料 19－1
19．1．2 解析範囲 19－1
19．1．3 計算結果の概要 19－1
19．2 計算条件 19－4
19．2．1 重大事故等時の条件 19－4
19．2．2 材料 19－4
19．2．3 荷重の組合せ及び運転状態 19－4
19．2．4 荷重の組合せ及び応力評価 19－4
19．2．5 許容応力 19－4
19．3 応力計算 19－4
19．3．1 応力評価点 19－4
19．3．2 内圧及び差圧による応力 19－4
19．3．3 外荷重による応力 19－5
19．3．4 応力の評価 19－5
19．4 応力強さの評価 19－5
19．4．1 一次一般膜応力強さの評価 19－5
19．4．2 一次膜 + 一次曲げ応力強さの評価 19－5

図表目次

> (高圧炉心スプレイノズル (N16))
図 19－1 形状•寸法•材料•応力評価点 19－2
表19－1 計算結果の概要 19－3
表19－2 一次一般膜応力強さの評価のまとめ 19－6
表19－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 19－7

1．概要

本計算書は，原子炉圧力容器の強度計算結果を示すものである。本計算書の各機器は，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」 （以下「応力解析の方針」という。）に基づき評価する。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（1））は以下「既工認」という。

2．胴板の強度計算
2.1 一般事項

本章は，胴板の強度計算である。

2．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図2－1に示す。

2．1．2 解析範囲
解析範囲を図2－1に示す。

2．1．3 計算結果の概要
計算結果の概要を表2－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載し ている。

図 2－1 形状•寸法•材料•応力評価点（単位：mm）

表 2－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面
	V	216	317	P01－P02	216	476	P01－P02

2.2 計算条件

2．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2．2．2 材料
各部の材料を図2－1に示す。

2．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

2．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

2．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

2．3．2 内圧による応力

（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

2．3．3 外荷重による応力

（1）荷重条件（L21）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）c． に定めるとおりである。

2．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強 さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

2.4 応力強さの評価

2．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表2－2に示す。
表2－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

2．4．2 一次膜＋一次曲げ応力強さの評価
運転状態 Vにおける評価を表2－3に示す。
表2－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 2－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	216	317
P01＇ P02	216	317

表2－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	216	476
P01 P02	216	476

3．上部鏡板，鏡板フランジ及び胴板フランジの強度計算
3.1 一般事項

本章は，上部鏡板，鏡板フランジ及び胴板フランジの強度計算である。

3．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図3－1に示す。

3．1．2 解析範囲
解析範囲を図3－1に示す。

3．1．3 計算結果の概要
計算結果の概要を表3－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載す る。

図 3－1 形状•寸法•材料•応力評価点（単位：mm）

表 3－1 計算結果の概要

（単位：MPa）

部分及び材料	運転状態	一次一般膜応力強さ＊1			一次膜＋一次曲げ応力強さ＊2		
		応力 強さ	許容 応力	応力評価面	応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面
胴板フランジー胴板接続部 SFVQ1A	V	217	317	P01－P02	209	476	P01－P02
鏡板フランジー上部鏡板接続部 SFVQ1A	V	209	317	P03－P04	200	476	P03－P04
胴板フランジ SFVQ1A	V	122	317	P05－P06	114	476	P05－P06
鏡板フランジ SFVQ1A	V	122	317	P07－P08	114	476	P07－P08
スタッドボルト SNB24－3	V	247	569	ボルト上端 ボルト下端	401	854	ボルト下端

注記＊1 ：スタッドボルトに対しては平均引張応力の評価を示す。
＊2 ：スタッドボルトに対しては平均引張十曲げ応力の評価を示す。

3．2 計算条件

3．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の4．3節に示す。

3．2．2 材料
各部の材料を図3－1に示す。

3．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

3．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

3．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

3．3 応力計算

3．3．1 応力評価点
応力評価点の位置を図3－1に示す。

3．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）d．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

3．3．3 ボルト荷重による応力

（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」の参照図書（1）d．に定めるとお りである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）d．に定めるとおりである。

3．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

3.4 応力強さの評価

3．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表3－2に示す。
表3－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

3．4．2 一次膜十一次曲げ応力強さの評価運転状態Vにおける評価を表3－3に示す。

表3－3より，運転状態 V の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

3．4．3 スタッドボルトの平均引張応力の評価運転状態Vにおける評価を表3－4に示す。

表3－4より，運転状態Vの平均引張応力は，「応力解析の方針」の 3.5 節に示す許容応力 を満足する。

3．4．4 スタッドボルトの平均引張＋曲げ応力の評価
運転状態 Vにおける評価を表3－5に示す。
表3－5より，運転状態Vの平均引張＋曲げ応力は，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表 3－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	許容応力	
P01 P02	217	317
P03 P04	209	317
P05 P06	122	317
P07 P08	122	317

表 3－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	209	476
P03 P04	200	476
P05 P06	114	476
P07 P08	114	476

表 3－4 スタッドボルトの平均引張応力の評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	平均引張応力	許容応力
ボルト上端	247	569
ボルト下端	247	569

[^4]表 3－5 スタッドボルトの平均引張＋曲げ応力の評価のまとめ
（単位：MPa）

応力評価点	運転状態 V	
	平均引張＋曲げ心力	許容応力
ボルト上端	265	854
ボルト下端	401	854

4．下部鏡板の強度計算
4.1 一般事項

本章は，下部鏡板の強度計算である。

4．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図4－1に示す。

4．1．2 解析範囲
解析範囲を図4－1に示す。

4．1．3 計算結果の概要
計算結果の概要を表4－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 4－1 形状•寸法•材料•応力評価点（単位：mm）

表 4－1 計算結果の概要

4．2 計算条件

4．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

4．2．2 材料
各部の材料を図4－1に示す。

4．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

4．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

4．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

4． 3 応力計算

4．3．1 応力評価点
応力評価点の位置を図 $4-1$ に示す。

4．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

4．3．3 外荷重による応力

（1）荷重条件（L21）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）e． に定めるとおりである。

4．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4． 4 応力強さの評価

4．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表4－2に示す。
表4－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

4．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表4－3に示す。
表4－3より，運転状態 V の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表 4－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	122	317
P01＇ P02	122	317

表 4－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	115	476
P01＇ P02	115	476
P03 P04	47	476
P03＇ P04	47	476
P05 P06	51	476
P05 P06，	51	476

5．制御棒駆動機構ハウジング貫通孔の強度計算
5.1 一般事項

本章は，制御棒駆動機構ハウジング貫通孔の強度計算である。

注：以下，制御棒駆動機構ハウジングを「ハウジング」，制御棒駆動機構ハウジング貫通孔 スタブチューブを「スタブチューブ」という。

5．1．1 記号の説明
記号の説明を「応力解析の方針」の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
P_{a}	許容外圧	MPa
t	スタブチューブの最小厚さ	mm
D_{0}	スタブチューブの最小外径	mm
L	スタブチューブの最大長さ	mm
R_{i}	スタブチューブの内半径	mm
A	スタブチューブの断面積	mm^{2}
Z	スタブチューブの断面係数	mm^{3}
σ_{ca}	許容応力	MPa

5．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図5－1に示す。

5．1．3 解析範囲
解析範囲を図5－1に示す。

5．1．4 計算結果の概要
計算結果の概要を表5－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 5－1 形状•寸法•材料•応力評価点（単位：mm）

表 5－1（1）計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面
ハウジング SUSF316	V	59	281	P03－P04	28	422	P03－P04
$\begin{gathered} \text { スタブチューブ } \\ \text { NCF600-B } \end{gathered}$	V	6	334	P05－P06	216	501	P07－P08
下部鏡板 リガメント SFVQ1A	V	179	317	P09－P10	186	476	P09－P10

表5－1（2）計算結果の概要

部分及び材料	運転状態	外圧による座屈に対する評価		軸圧縮荷重による座屈に対する評価	
		外圧	許容外圧	圧縮応力	許容応力
$\begin{gathered} \text { スタブチューブ } \\ \text { NCF600-B } \end{gathered}$	V	10． 34	14． 29	7	123

5．2 計算条件

5．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の4．3節に示す。

5．2．2 材料
各部の材料を図5－1に示す。

5．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

5．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

5．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

5．3 応力計算

5．3．1 応力評価点
応力評価点の位置を図 $5-1$ に示す。

5．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

5．3．3 外荷重による応力

（1）荷重条件（L21）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）f． に定めるとおりである。

5．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

5.4 応力強さの評価

5．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表5－2に示す。
表5－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

5．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表5－3に示す。
表5－3より，運転状態 V の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

5.5 特別な評価

スタブチューブについて，外圧及び軸圧縮荷重による座屈に対する評価を行う。

5．5．1 外圧による座屈に対する評価
（1）荷重
運転状態 Vにおける外圧を表5－4に示す。
（2）許容外圧
運転状態 Vにおける許容外圧（ P_{a} ）は，告示第 13 条第 2 項第 1 号八を準用して計算する。

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\frac{4 \cdot \mathrm{~B} \cdot \mathrm{t}}{3 \cdot \mathrm{D}_{0}} \times 1.5=\frac{4 \times \square}{3 \times \square} \times 1.5 \\
& =14.29 \mathrm{MPa}
\end{aligned}
$$

B値は，次のようにして求める。

ここで，

これらを用いて，告示別図第9より
$\mathrm{B}=82 \mathrm{MPa} \square{ }^{\circ} \mathrm{C}$ における値）
（3）外圧による座屈に対する評価
運転状態Vにおける外圧による座屈に対する評価を表5－5に示す。
表5－5より，運転状態Vにおける外圧は，許容外圧を超えないため，座屈は発生しない。

5． 5.2 軸圧縮荷重による座屈に対する評価
スタブチューブには，制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメン トにより，圧縮応力が生じる。したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スタブチューブの内半径 $\quad \mathrm{R}_{\mathrm{i}}=\square \mathrm{mm}$
スタブチューブの最小厚さ

スタブチューブの断面積

$\mathrm{A}=\pi \cdot\left\{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right\}=\pi \times\left\{\square=\square \mathrm{mm}^{2}\right.$

スタブチューブの断面係数

$$
\mathrm{Z}=\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{4}-\mathrm{R}_{\mathrm{i}}^{4}}{\mathrm{R}_{\mathrm{i}}+\mathrm{t}}=\frac{\pi}{4} \times \square
$$

（2）荷重
スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」の4．2節に示す。
（3）圧縮応力
計算データ（断面性能）を基に，表5－4に示す運転状態Vの荷重によってスタブチューブ に発生する圧縮応力を表5－6に示す。
（4）許容応力
運転状態Vにおける許容応力の計算は，告示第13条第1項第1号ヌを準用して計算する。運転状態Vにおける許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.5 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

ここで，

$$
\mathrm{S}_{\mathrm{m}}=163 \mathrm{MPa}
$$

$\mathrm{B}=82 \mathrm{MPa}$

$$
\square{ }^{\circ} \mathrm{C} \text { における値) }
$$

このうち B 値は，告示第 13 条第1項第1号ヌより，次のようにして求める。
告示別図第9より

$$
\frac{\mathrm{R}_{\mathrm{i}}}{100 \cdot \mathrm{t}}=\frac{\square}{100 \times \square}=\square
$$

を用いて，

$$
\mathrm{B}=82 \mathrm{MPa}
$$

よって，許容応力 $\sigma \mathrm{ca}$ は， $\sigma_{\mathrm{ca}}=1.5 \cdot \mathrm{~B}=1.5 \times 82=123 \mathrm{MPa}$
（5）軸圧縮荷重による座屈に対する評価
運転状態Vにおける軸圧縮荷重による座屈に対する評価を表5－6に示す。
表5－6より，運転状態Vにおける圧縮応力は，許容応力を満足するため，座屈は発生し ない。

表 5－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	11	281
P01 P02	11	281
P03 P04	59	281
P03 P04	59	281
P05 P06	6	334
P05 P06	6	334
P07 P08	3	334
P07 P08	3	334
P09 P10	179	317

表 5－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	許容応力	
P01 P02	17	422
P01 P02	17	422
P03 P04	28	422
P03＇ P04	28	422
P05 P06	14	501
P05＇ P06＇	14	501
P07 P08	216	501
P07 P08	216	501
P09 P10	186	476

表 5－4 座屈に対する評価に用いる荷重

運転状態	外圧 (MPa)	鉛直力＊1 $\mathrm{V}(\mathrm{kN})$	モーメント＊2 $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$
V	10.34		

注記 $* 1$ ：「応力解析の方針」の 4.2 節に示す $\mathrm{V}_{1}+\mathrm{V}_{2}$ の値
＊2：「応力解析の方針」の4．2節に示す $\mathrm{M}_{1}+\mathrm{M}_{2}$ の値

表5－5 外圧による座屈に対する評価
（単位：MPa）

表5－6 軸圧縮荷重による座屈に対する評価

運転状態	外圧	許容外圧
V	10.34	14.29

（単位：MPa）		
運転状態	圧縮応力	許容応力
V	7	123

6．中性子束計測ハウジング貫通孔の強度計算
6.1 一般事項

本章は，中性子束計測ハウジング貫通孔の強度計算である。

6．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図6－1に示す。

6．1．2 解析範囲
解析範囲を図6－1に示す。

6．1．3 計算結果の概要
計算結果の概要を表6－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載す る。

図 6－1 形状•寸法•材料•応力評価点（単位：mm）

表 6－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力強さ	許容 応力	応力評価面	応力 強さ	許容応力	応力評価面
ハウジング SUSF316	V	54	281	P03－P04	137	422	P03－P04
肉盛部高ニッケル合金	V	－	－	－	239	501	P07－P08

6． 2 計算条件

6．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

6．2．2 材料
各部の材料を図6－1に示す。

6．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

6．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

6．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

6．3 応力計算
6．3．1 応力評価点
応力評価点の位置を図6－1に示す。

6．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）g．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

6．3．3 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

6． 4 応力強さの評価
6．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表6－2に示す。
表6－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

6．4．2 一次膜＋一次曲げ応力強さの評価
運転状態 Vにおける評価を表6－3に示す。
表6－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表 6－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力强さ	許容応力
P01 P02	11	281
P03 P04	54	281

表 6－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	19	422
P03 P04	137	422
P05 P06	140	501
P07 P08	239	501

7．再循環水出口ノズル（N1）の強度計算
7.1 一般事項

本章は，再循環水出口ノズル（N1）の強度計算である。
$\begin{aligned} & 7.1 .1 \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 7-1 \text { に示す。 }\end{aligned}$

7．1．2 解析範囲
解析範囲を図7－1に示す。

7．1．3 計算結果の概要
計算結果の概要を表7－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 7－1 形状•寸法•材料•応力評価点（単位：mm）

表 7－1 計算結果の概要

部分及び材料	運転状態				（単位： MPa ）		
		一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	V	76	281	P01－P02	72	422	P01－P02
溶接部 ステンレス鋼	V	62	281	P03－P04	62	422	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	77	317	P05－P06	42	476	P05－P06

7． 2 計算条件

$$
\begin{aligned}
7.2 .1 & \text { 重大事故等時の条件 } \\
& \text { 重大事故等時の条件を「応力解析の方針」の } 4.3 \text { 節に示す。 }
\end{aligned}
$$

7．2．2 材料
 各部の材料を図7－1に示す。

7．2．3 荷重の組合せ及び運転状態
 荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

7．2．4 荷重の組合せ及び応力評価
 荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

7．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）h．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

7．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）h． に定めるとおりである。

7．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

7． 4 応力強さの評価

7．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表7－2に示す。
表7－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

7．4．2 一次膜十一次曲げ応力強さの評価運転状態Vにおける評価を表7－3に示す。表7－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

表 7－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	76	281
P01＇ P02	76	281
P03 P04	62	281
P03 P04	62	281
P05 P06	77	317
P05 P06，	77	317

表 7－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	72	422
P01＇ P02＇	72	422
P03 P04	62	422
P03＇ P04	62	422
P05 P06	42	476
P05 P06	42	476

8．再循環水入口ノズル（N2）の強度計算
8.1 一般事項

本章は，再循環水入口ノズル（N2）の強度計算である。

8．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図8－1に示す。

8．1．2 解析範囲
解析範囲を図8－1に示す。

8．1．3 計算結果の概要
計算結果の概要を表8－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 8－1 形状•寸法•材料•応力評価点（単位：mm）

表 8－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	V	105	281	P01－P02	109	422	P01＇－P02＇
$\begin{gathered} \text { サーマル } \\ \text { スリーブ } \\ \text { SUSF316 } \end{gathered}$	V	28	281	P05－P06	48	422	P05－P06＇
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	78	317	P07－P08	42	476	P07－P08＇

8．2 計算条件

8．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の4．3節に示す。

8．2．2 材料
各部の材料を図8－1に示す。

8．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

8．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

8．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

8．3 応力計算

8．3．1 応力評価点
応力評価点の位置を図8－1に示す。

8．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）i．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

8．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）i． に定めるとおりである。

8．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

8．4 応力強さの評価

8．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表8－2に示す。
表8－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

8．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表8－3に示す。
表8－3より，運転状態 V の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表 8－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	105	281
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	105	281
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	57	281
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	56	281
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	281
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	28	281
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	78	317
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08' } \end{aligned}$	78	317

表 8－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	90	422
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	109	422
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	36	422
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	45	422
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	41	422
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	48	422
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	37	476
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	42	476

9．主蒸気出口ノズル（N3）の強度計算
9.1 一般事項

本章は，主蒸気出口ノズル（N3）の強度計算である。

9．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図9－1に示す。

9．1．2 解析範囲
解析範囲を図9－1に示す。

9．1．3 計算結果の概要
計算結果の概要を表9－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 9－1 形状•寸法•材料•応力評価点（単位：mm）

表 9－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容応力	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	V	120	292	P01－P02	107	438	P01－P02
溶接部炭素鋼	V	89	292	P03－P04	85	438	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	89	317	P05－P06	60	476	P05－P06

9．2 計算条件

9．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の4．3節に示す。

9．2．2 材料
各部の材料を図9－1に示す。

9．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

9．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

9．2．5 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

9．3 応力計算

9．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1） j ．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

9．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j． に定めるとおりである。

9．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

9．4 応力強さの評価

9．4．1 一次一般膜応力強さの評価
運転状態 Vにおける評価を表9－2に示す。
表9－2より，運転状態 V の一次一般膜応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

9．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表9－3に示す。
表9－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表 9－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	120	292
P01＇ P02	119	292
P03 P04	89	292
P03＇ P04	88	292
P05 P06	89	317
P05 P06，	88	317

表 9－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	107	438
P01＇ P02	106	438
P03 P04	85	438
P03＇ P04	84	438
P05 P06	60	476
P05 P06，	58	476

10．給水ノズル（N4）の強度計算
10.1 一般事項

本章は，給水ノズル（N4）の強度計算である。
$\begin{aligned} & \text { 10．1．} 1 \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 10-1 \text { に示す。 }\end{aligned}$

10．1．2 解析範囲
解析範囲を図10－1に示す。

10．1．3 計算結果の概要
計算結果の概要を表10－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 10－1 形状•寸法•材料•応力評価点（単位：mm）

表 10－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	V	101	292	P01－P02	89	438	P01－P02
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	64	317	P05－P06	47	476	P05－P06
サーマル スリーブ SFVC2B	V	13	292	P07－P08	37	438	P07＇－P08＇

10.2 計算条件

10．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

10．2．2 材料
各部の材料を図10－1に示す。

10．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

10．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

10．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

10．3 応力計算
10．3．1 応力評価点
応力評価点の位置を図10－1に示す。

10．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）k．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

10．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）k． に定めるとおりである。

10．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

10．4 応力強さの評価
10．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表10－2に示す。
表10－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

10．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表10－3に示す。
表10－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 10－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	101	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	101	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	64	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	63	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	64	317
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	63	317
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	13	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	13	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	13	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	13	292

表 10－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	438
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	87	438
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	33	438
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	33	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	47	476
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	29	476
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	34	438
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	37	438
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	18	438
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	18	438

11．低圧炉心スプレイノズル（N5）の強度計算
11.1 一般事項

本章は，低圧炉心スプレイノズル（N5）の強度計算である。
$\begin{aligned} & \text { 11．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図11－1に示す。 }\end{aligned}$

11．1．2 解析範囲
解析範囲を図11－1に示す。

11．1．3 計算結果の概要

計算結果の概要を表11－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 11－1 形状•寸法•材料•応力評価点（単位：mm）

表 11－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	V	104	292	P01－P02	87	438	P01－P02
$\begin{gathered} \text { サーマル } \\ \text { スリーブ } \\ \text { SFVC2B } \end{gathered}$	V	19	292	P09－P10	35	438	P05－P06
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	77	317	P11－P12	38	476	P11－P12

11.2 計算条件

11．2．1 重大事故等時の条件
 重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

11．2．2 材料

各部の材料を図11－1に示す。

11．2．3 荷重の組合せ及び運転状態

荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

11．2．4 荷重の組合せ及び応力評価
 荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

11．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。
11.3 応力計算

11．3．1 応力評価点
応力評価点の位置を図11－1に示す。

11．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）l．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

11．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）ℓ 。 に定めるとおりである。

11．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。
11.4 応力強さの評価

11．4．2 一次膜 + 一次曲げ応力強さの評価
運転状態Vにおける評価を表11－3に示す。
表11－3より，運転状態Vの一次膜十一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 11－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	104	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	103	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	16	292
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	16	292
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	16	292
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08' } \end{aligned}$	16	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	19	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	19	292
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	77	317
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	77	317

表 11－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	87	438
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	86	438
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	40	438
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	40	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	438
$\begin{aligned} & \text { P05 } \\ & \text { P06' } \end{aligned}$	35	438
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	30	438
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08' } \end{aligned}$	30	438
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	14	438
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	10	438
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	38	476
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	28	476

12．低圧注水ノズル（N6）の強度計算
12.1 一般事項

本章は，低圧注水ノズル（N6）の強度計算である。
$\begin{aligned} 12.1 .1 & \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図12－1に示す。 }\end{aligned}$

12．1．2 解析範囲
解析範囲を図12－1に示す。

12．1．3 計算結果の概要
計算結果の概要を表12－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 12－1 形状•寸法•材料•応力評価点（単位：mm）

表 12－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	V	101	292	P01－P02	85	438	P01－P02
$\begin{gathered} \text { サーマル } \\ \text { スリーブ } \\ \text { SFVC2B } \end{gathered}$	V	16	292	P07－P08	34	438	P05－P06＇
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	77	317	P09－P10	46	476	P09－P10

12.2 計算条件

12．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

12．2．2 材料
各部の材料を図12－1に示す。

12．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の 3.4 節に示す。

12．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

12．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）m．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

12．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）m． に定めるとおりである。

12．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

12．4 応力強さの評価
12．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表12－2に示す。
表12－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

12．4．2 一次膜 + 一次曲げ応力強さの評価
運転状態Vにおける評価を表12－3に示す。
表12－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 12－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	101	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	100	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	14	292
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	16	292
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	16	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	77	317
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	77	317

表 12－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	85	438
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	85	438
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	46	438
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04' } \end{aligned}$	41	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	33	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	34	438
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	28	438
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	28	438
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	46	476
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	29	476

13．上蓋スプレイノズル（N7）の強度計算
13.1 一般事項

本章は，上蓋スプレイノズル（N7）の強度計算である。

13．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図13－1に示す。

13．1．2 解析範囲
解析範囲を図13－1に示す。

13．1．3 計算結果の概要
計算結果の概要を表13－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 13－1 形状•寸法•材料•応力評価点（単位：mm）

表 13－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面
フランジ部 SFVQ1A	V	49	317	P01－P02	70	476	P01＇－P02＇
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	129	317	P03－P04	141	476	P05－P06

13.2 計算条件

13．2．1 重大事故等時の条件

重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

13．2．2 材料
各部の材料を図13－1に示す。

13．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の 3.4 節に示す。

13．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

13．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

13．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n． に定めるとおりである。

13．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとお りである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n． に定めるとおりである。

13．3．5 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

13．4 応力強さの評価

13．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表13－2に示す。
表13－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

13．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表13－3に示す。
表13－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 13－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	49	317
P01＇ P02	49	317
P03 P04	129	317
P03 P04	129	317
P05 P06	123	317
P05 P06，	122	317

表 13－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	68	476
P01＇ P02	70	476
P03 P04	132	476
P03＇ P04＇	132	476
P05 P06	141	476
P05 P06，	108	476

14．ベントノズル（N8）の強度計算
14.1 一般事項

本章は，ベントノズル（N8）の強度計算である。
$\begin{aligned} & \text { 14．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 14 \text {－} 1 \text { に示す。 }\end{aligned}$

14．1．2 解析範囲
解析範囲を図14－1に示す。

14．1．3 計算結果の概要
計算結果の概要を表14－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 14－1 形状•寸法•材料•応力評価点（単位：mm）

表 14－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面
フランジ部 SFVQ1A	V	46	317	P01－P02	47	476	P01＇－P02＇
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	96	317	P03－P04	100	476	P03－P04

14．2 計算条件

14．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

14．2．2 材料
各部の材料を図14－1に示す。

14．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

14．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

14．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

14．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o． に定めるとおりである。

14．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めると おりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）o．に定めるとおりである。

14．3．5 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

14．4 応力強さの評価
14．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表14－2に示す。
表14－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

14．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表14－3に示す。
表14－3より，運転状態Vの一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 14－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	46	317
P01＇ P02	46	317
P03 P04	96	317
P03 P04，	96	317
P05 P06	95	317
P05 P06，	95	317

表14－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	46	476
P01＇ P02	47	476
P03 P04	100	476
P03 P04，	85	476
P05 P06	98	476
P05 P06，	81	476

15．ジェットポンプ計測管貫通部ノズル（N9）の強度計算
15.1 一般事項

本章は，ジェットポンプ計測管貫通部ノズル（N9）の強度計算である。

15．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図15－1に示す。

15．1．2 解析範囲
解析範囲を図15－1に示す。

15．1．3 計算結果の概要
計算結果の概要を表15－1に示す。
なお，運転状態 Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 15－1 形状•寸法•材料•応力評価点（単位：mm）

表 15－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面
ジェットポンプ計測管貫通部 シール SUSF316	V	33	281	P01－P02	17	422	P01－P02
溶接部 ステンレス鋼	V	37	281	P03－P04	32	422	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	59	317	P05－P06	44	476	P05－P06

15.2 計算条件

15．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

15．2．2 材料
各部の材料を図15－1に示す。

15．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

15．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

15．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

15．3．3 外荷重による応力
（1）荷重条件（L04）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p． に定めるとおりである。

15．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

15．4 応力強さの評価

15．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表15－2に示す。
表15－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

15．4．2 一次膜 + 一次曲げ応力強さの評価
運転状態Vにおける評価を表15－3に示す。
表15－3より，運転状態Vの一次膜＋—次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 15－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	33	281
P01＇ P02	33	281
P03 P04	37	281
P03 P04	37	281
P05 P06	59	317
P05 P06，	59	317

表 15－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	17	422
P01＇ P02	15	422
P03 P04	32	422
P03 P04，	32	422
P05 P06	44	476
P05 P06，	43	476

16．差圧検出・ほう酸水注入ノズル（N11）の強度計算
16.1 一般事項

本章は，差圧検出・ほう酸水注入ノズル（N11）の強度計算である。
$\begin{aligned} & \text { 16．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図16－1に示す。 }\end{aligned}$

16．1．2 解析範囲
解析範囲を図16－1に示す。

16．1．3 計算結果の概要
計算結果の概要を表16－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 16－1 形状•寸法•材料•応力評価点（単位：mm）

表 16－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力強さ	許容 応力	応力評価面	応力 強さ	許容応力	応力評価面
肉盛部 高ニッケル合金	V	0	334	P01－P02	112	501	P03－P04
$\begin{aligned} & \text { ノズル } \\ & \text { SUSF316 } \end{aligned}$	V	36	281	P07－P08	21	422	P07－P08

16.2 計算条件

16．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

16．2．2 材料
各部の材料を図16－1に示す。

16．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

16．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

16．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

16．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q． に定めるとおりである。

16．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

16． 4 応力強さの評価
16．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表16－2に示す。
表16－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

16．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表16－3に示す。
表16－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 16－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	0	334
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	0	334
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	0	334
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	0	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	11	281
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	11	281
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	36	281
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	36	281

表 16－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

17．計装ノズル（N12，N13，N14）の強度計算
17.1 一般事項

本章は，計装ノズル（N12，N13及びN14）の強度計算である。
$\begin{aligned} & \text { 17．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図17－1に示す。 }\end{aligned}$

17．1．2 解析範囲
解析範囲を図17－1に示す。

17．1．3 計算結果の概要

計算結果の概要を表17－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 17－1（1）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N12 及びN13））

図 17－1（2）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N14））

表 17－1（1）計装ノズル（N12）の計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \\ \hline \end{gathered}$	V	26	281	P01－P02	31	422	P01－P02
溶接部近傍 ステンレス鋼側	V	24	281	P03－P04	33	422	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { NCF600-B } \end{gathered}$	V	22	334	P05－P06	175	501	P05－P06＇

表 17－1（2）計装ノズル（N13）の計算結果の概要

部分及び材料	運転状態				（単位： MPa ）		
		一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	V	26	281	P01－P02	31	422	P01－P02
溶接部近傍 ステンレス鋼側	V	24	281	P03－P04	33	422	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { NCF600-B } \end{gathered}$	V	22	334	P05－P06	175	501	P05－P06＇

表 17－1（3）計装ノズル（N14）の計算結果の概要

部分及び材料	運転状態				（単位： MPa ）		
		一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	V	49	281	P01－P02	31	422	P01－P02
溶接部近傍 ステンレス鋼側	V	29	281	P03－P04	23	422	P03－P04
$\begin{gathered} \text { ノズルエンド } \\ \text { NCF600-B } \end{gathered}$	V	29	334	P07－P08	169	501	P05－P06＇

17.2 計算条件

17．2．1 重大事故等時の条件
 重大事故等時の条件を「応力解析の方針」の4．3節に示す。

17．2．2 材料

各部の材料を図17－1に示す。

17．2．3 荷重の組合せ及び運転状態
 荷重の組合せ及び連転状態を「応力解析の方針」の3．4節に示す。

17．2．4 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

17．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

17．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

17．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r． に定めるとおりである。

17．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

17．4 応力強さの評価
17．4．1 一次一般膜応力強さの評価
運転状態Vにおける評価を表17－2に示す。
表17－2より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

17．4．2 一次膜 + 一次曲げ応力強さの評価
運転状態Vにおける評価を表17－3に示す。
表17－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 17－2（1）計装ノズル（N12）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	26	281
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	26	281
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	24	281
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	24	281
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	22	334
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	22	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	22	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	22	334

表 17－2（2）計装ノズル（N13）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	26	281
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	26	281
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	24	281
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	24	281
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	22	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	22	334
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	22	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	22	334

表 17－2（3）計装ノズル（N14）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	49	281
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	49	281
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	29	281
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	29	281
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	26	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	26	334
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	29	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	29	334

表 17－3（1）計装ノズル（N12）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	31	422
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	29	422
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	33	422
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	32	422
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	131	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	175	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	142	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	150	501

表 17－3（2）計装ノズル（N13）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	31	422
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	29	422
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	33	422
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	32	422
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	131	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	175	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	142	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	150	501

表 17－3（3）計装ノズル（N14）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	31	422
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	27	422
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	23	422
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	21	422
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	152	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	169	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	140	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	144	501

18．ドレンノズル（N15）の強度計算
18.1 一般事項

本章は，ドレンノズル（N15）の強度計算である。

18．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図18－1に示す。

18．1．2 解析範囲

解析範囲を図18－1に示す。

18．1．3 計算結果の概要

計算結果の概要を表18－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 18－1 形状•寸法•材料•応力評価点（単位：mm）

表 18－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVC2B } \end{gathered}$	V	55	292	P01－P02	39	438	P01－P02
肉盛部炭素鋼	V	31	292	P03－P04	143	438	P03－P04

18.2 計算条件

18．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

18．2．2 材料
各部の材料を図18－1に示す。

18．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

18．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

18．3．2 内圧による応力
（1）荷重条件（L01）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）s．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

18．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）S． に定めるとおりである。

18．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

18．4 応力強さの評価

18．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表18－3に示す。
表18－3より，運転状態Vの一次膜十一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 18－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	55	292
P01＇ P02	55	292
P03 P04	31	292
P03＇ P04	31	292

表 18－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	39	438
P01＇ P02	37	438
P03 P04	132	438
P03＇ P04	143	438

19．高圧炉心スプレイノズル（N16）の強度計算
19.1 一般事項

本章は，高圧炉心スプレイノズル（N16）の強度計算である。
$\begin{aligned} & \text { 19．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図19－1に示す。 }\end{aligned}$

19．1．2 解析範囲
解析範囲を図19－1に示す。

19．1．3 計算結果の概要
計算結果の概要を表19－1に示す。
なお，運転状態Vにおける評価結果は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて選定した，各部分を代表する応力評価面について記載してい る。

図 19－1 形状•寸法•材料•応力評価点（単位：mm）

表 19－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	V	104	292	P01－P02	87	438	P01－P02
$\begin{gathered} \text { サーマル } \\ \text { スリーブ } \\ \text { SFVC2B } \end{gathered}$	V	19	292	P09－P10	35	438	P05－P06
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	V	77	317	P11－P12	38	476	P11－P12

19.2 計算条件

19．2．1 重大事故等時の条件
重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

19．2．2 材料
各部の材料を図19－1に示す。

19．2．3 荷重の組合せ及び運転状態
荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

19．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

19．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

19.3 応力計算

19．3．1 応力評価点
応力評価点の位置を図19－1に示す。

19．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
重大事故等時の条件を「応力解析の方針」の4．3節に示す。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）t．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

19．3．3 外荷重による応力

（1）荷重条件（L04）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）t． に定めるとおりである。

19．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。
19.4 応力強さの評価

19．4．2 一次膜＋一次曲げ応力強さの評価
運転状態Vにおける評価を表19－3に示す。
表19－3より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節 に示す許容応力を満足する。

表 19－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	104	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	103	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	77	292
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	16	292
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	16	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	19	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	19	292
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	77	317
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	77	317

表 19－3 一次膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	運転状態V	
	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	87	438
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	86	438
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	40	438
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	40	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	438
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	438
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	30	438
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	30	438
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	14	438
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \\ & \hline \end{aligned}$	10	438
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	38	476
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	28	476

VI－3－3－1－1－2 原子炉圧力容器付属構造物の強度計算書

VI－3－3－1－1－2－1 管の強度計算書（原子炉圧力容器付属構造物）

VI－3－3－1－1－2－1 管の強度計算書（原子炉圧力容器付属構造物）
R 0 VI－3－3－1－1－2－1
©
${ }^{\circ}$

VI－3－3－1－1－2－1－1 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の基本板厚計算書

VI－3－3－1－1－2－1－2 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書

VI－3－3－1－1－2－1－1 差圧検出・ほう酸水注入系配管（ティーよりN11ノズ ルまでの外管）の基本板厚計算書

まえがき

本計算書は，添付書類「VI－3－1－2 クラス1機器の強度計算の方針」及び「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」並びに「VI－3－2－7 クラ ス3管の強度計算方法」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算 を行う。
評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

$$
\text { O } 2 \text { (3) VI-3-3-1-1-2-1-1 R } 0
$$

－評価条件整理表

管No．	既設or新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					$\begin{gathered} \text { 既工認に } \\ \text { おける } \\ \text { 評価結果 } \\ \text { の有無 } \end{gathered}$	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラ } \end{aligned}$	$\begin{aligned} & \text { DB } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 （ ${ }^{\text {C }}$ ）	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ}\right) \end{aligned}$					
1	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10．34	315	無	S55 告示	設計•建設規格又は告示	－	SA－2

－適用規格の選定

管 No．	評価項目	評価区分	判定基準	適用規格
1	管の強度計算	設計•建設規格 又は告示	同等	設計•建設規格

1．概略図 1
2．管の強度計算書 2
3．管の穴と強度計算書 3

O 2 （3）VI－3－3－1－1－2－1－1 R 0

1．概略図

2．管の強度計算書（重大事故等クラス 2 管）設計•建設規格 PPB－3411 準用

No．	最高使用圧力 P （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径 } \\ \mathrm{D}_{\mathrm{o}} \\ (\mathrm{~mm}) \end{gathered}$	公称厚さ （mm）	材 料	製法	ク ラ ス	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \mathrm{~s} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \text { 算 } \\ & \text { 式 } \end{aligned}$	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \end{gathered}$	重大事故等時の使用圧力 P_{E} （MPa）	$\begin{gathered} \text { 重大事故等時の } \\ \text { 許容圧力 } \\ \mathrm{P}_{\mathrm{a} \mathrm{E}} \\ (\mathrm{MPa}) \end{gathered}$
1	8． 62	302			SUS316LTP	S	1	94				A		10． 34	17． 24

評価：ts \geqq t r， $\mathrm{P}_{\mathrm{aE}} \geqq \mathrm{P}_{\mathrm{E}}$ よつて十分である。

3．管の穴と強度計算書（重大事故等クラス2管）
設計•建設規格 PPB－3420 準用

N O．	T1	穴の径 d（mm）	
形 式	2	$\mathrm{d}_{\mathrm{fr} \mathrm{r}}$（mm）	
最高使用圧力（MPa）	8.62		
最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	302		
主管と管台の角度（ ${ }^{\circ}$ ）			
		L_{A}（mm）	
主管材料	SUSF316L	L_{AD}（mm）	
S_{mr}（ MPa ）	94	L_{N}（mm）	
D or			
$\mathrm{D}_{\mathrm{irr}}$			
tro （mm）			
Q_{r}		$\mathrm{A}_{\mathrm{r}} \quad\left(\mathrm{mm}^{2}\right)$	
tr_{r}		$\mathrm{A}_{\mathrm{r} 23} \quad\left(\mathrm{~mm}^{2}\right)$	
$\mathrm{tr} \mathrm{r}_{\text {r }}$（mm）		$\mathrm{A}_{1} \quad\left(\mathrm{~mm}^{2}\right)$	
		$\mathrm{A}_{3} \quad\left(\mathrm{~mm}^{2}\right)$	
管台材料	SUSF316L	$\mathrm{A}_{\mathrm{D} 3} \quad\left(\mathrm{~mm}^{2}\right)$	
S mb（ ${ }_{\text {mPa）}}$	94	$\mathrm{A}_{0} \quad\left(\mathrm{~mm}^{2}\right)$	
$\mathrm{D}_{\text {ob }}$（mm）		$\mathrm{A}_{0 \mathrm{D}} \quad\left(\mathrm{mm}^{2}\right)$	
$\mathrm{D}_{\mathrm{i} \mathrm{b}}$（mm）			
t b o		詳細： $\mathrm{A}_{0}>$	
Q b			
t_{b}（mm）		$\mathrm{A}_{0 \mathrm{D}} \geqq$	$A_{\text {r }}^{23}$
$\mathrm{t}_{\mathrm{b} ~ r ~}^{\text {r }}$（mm）		であ	
r_{1}（mm）	0.00		
r_{2}			
$\mathrm{L}_{1} \quad$（mm）			
$\mathrm{L}_{2} \quad(\mathrm{~mm})$			

VI－3－3－1－1－2－1－2 差圧検出・ほう酸水注入系配管（ティーより N11ノズルまでの外管）の応力計算書

目次

1．一般事項 1
1．1 形状•寸法•材料 1
1．2 解析範囲 1
1．3 計算結果の概要 1
2．計算条件 4
2.1 重大事故等時の条件 4
2．2 材料 4
2.3 荷重の組合せ及び運転状態 4
2.4 荷重の組合せ及び応力評価 4
2.5 許容応力 4
3．応力計算 5
3.1 応力評価点 5
3.2 内圧による応力 5
3．2．1 荷重条件 5
3．2．2 計算方法 5
3.3 外荷重による応力 5
3．3．1 荷重条件 5
3．3．2 計算方法 5
3．4 応力の評価 5
4．応力強さの評価 6
4.1 一次一般膜応力強さの評価 6
4.2 一次膜 + 一次曲げ応力強さの評価 6

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 3
表 4－1 一次一般膜応力強さの評価のまとめ 7
表 4－2 一次膜 + 一次曲げ応力強さの評価のまとめ 8

1．一般事項
本計算書は，差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書である。

差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）は，原子炉圧力容器付属構造物であるため，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲

解析範囲を図1－1に示す。

1．3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

表1－1 計算結果の概要

部分及び材料	運転状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \hline \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	V	52	223	P01－P02	52	335	P01－P02

2．計算条件
2.1 重大事故等時の条件

重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 2 材料
各部の材料を図1－1に示す。
2.3 荷重の組合せ及び運転状態

荷重の組合せ及び運転状態を「応力解析の方針」の3．4節に示す。

2． 4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。
2.5 許容応力

許容応力を「応力解析の方針」の 3.5 節に示す。

3．応力計算
3.1 応力評価点

応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。
3.2 内圧による応力

3．2．1 荷重条件（L01）
運転状態 V の内圧は，「2．1 重大事故等時の条件」に示す。

3．2．2 計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

なお，運転状態Vでの内圧による応力は，内圧を受ける円筒にモデル化し計算 する。
3.3 外荷重による応力

3．3．1 荷重条件（L04）
外荷重を「応力解析の方針」の表 4－1（8）に示す。

3．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2 項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

運転状態Vにおける評価を表4－1 に示す。
表 4－1 より，運転状態Vの一次一般膜応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。
4.2 一次膜 + 一次曲げ応力強さの評価

運転状態Vにおける評価を表4－2に示す。
表 4－2 より，運転状態Vの一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

表4－1 一次一般膜応力強さの評価のまとめ

		（単位：MPa）	
応力評価面	運転状態 V		
	応力強さ	許容応力	
P01 P02	52	223	
P01， P02＇	52	223	

表4－2 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	運転状態 V	
	応力強さ	許容応力
P01 P02	52	335
P01， P02，	52	335

VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書

VI－3－3－2－1 使用済燃料貯蔵設備の強度計算書
VI－3－3－2－2 使用済燃料貯蔵槽冷却浄化設備の強度計算書

VI－3－3－2－2 使用済燃料貯蔵槽冷却浄化設備の強度計算書

VI－3－3－2－2－1 燃料プール冷却浄化系の強度計算書
VI－3－3－2－2－2 燃料プール代替注水系の強度計算書
VI－3－3－2－2－3 燃料プールスプレイ系の強度計算書

VI－3－3－2－2－1 燃料プール泠却浄化系の強度計算書

VI－3－3－2－2－1－1 燃料プール冷却浄化系熱交換器の強度計算書
VI－3－3－2－2－1－2 燃料プール冷却浄化系ポンプの強度計算書
VI－3－3－2－2－1－3 スキマサージタンクの強度計算書
VI－3－3－2－2－1－4 管の強度計算書（燃料プール冷却浄化系）

> VI-3-3-2-2-1-1 燃料プール泠却浄化系交換器の強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」，「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」及び「VI－3－ 2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

機器名	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか					条件アップするか					既工認に おける評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$	
			$\begin{gathered} \text { クラスアップ } \\ \text { の有無 } \end{gathered}$		施設時機器クラス	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	条件 アップ の有無	DB 条件		SA 条件							
					圧力 （MPa）				温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	圧力 （MPa）	温度 （ ${ }^{\circ} \mathrm{C}$ ）							
燃料プール冷却浄化系熱交換器	既設	有	管側	有		DB－3	DB－3	SA－2	無	1.37	66	1.37	66	－	S55 告示	設計•建設規格又は告示	－	SA－2
			胴側	有	DB－3	DB－3	SA－2	無	1． 18	70	1.18	70	－	S55 告示	設計•建設規格又は告示	－	SA－2	

1．計算条件 1
1.1 計算部位 1
1.2 設計条件 1
2．強度計算 2
2.1 容器の胴の厚さの計算 2
2.2 容器の鏡板の厚さの計算 4
2.3 容器の管板の厚さの計算 6
2.4 容器の管台の厚さの計算 7
2.5 容器の補強を要しない穴の最大径の計算 19
2.6 容器の穴の補強計算 21
2.7 容器のフランジの計算 29
3．支持構造物の強度計算書 31

1．計算条件
1.1 計算部位

概要図に強度計算箇所を示す。

図中の番号は次ページ以降の
計算項目番号を示す。
図 1－1 概要図
1.2 設計条件

最高使用圧力 (MPa)	胴側	1.18	管側	1.37
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	胴側	70	管側	66

2．強度計算
2.1 容器の胴の厚さの計算

設計•建設規格 PVC－3120

胴板名称			（1）胴側胴板
材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の内径	D_{i}	（mm）	600.00
許容引張応力	S	（MPa）	103
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	3.00
必要厚さ	t_{2}	（mm）	4.96
t_{1} ， t_{2} の大きい値	t	（mm）	4.96
呼び厚さ	t s o	（mm）	12.00
最小厚さ	t s	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

容器の胴の厚さの計算
設計•建設規格 PVC－3120

	胴板名称			（2）管側胴板
	材料			SUS304
	最高使用圧力	P	（MPa）	1.37
	最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
	胴の内径	D_{i}	（mm）	600.00
	許容引張応力	S	（MPa）	126
	継手効率	η		0．70
	継手の種類			突合せ両側溶接
	放射線検査の有無			無し
	必要厚さ	t_{1}	（mm）	1.50
	必要厚さ	t_{2}	（mm）	4.71
	t_{1} ， t_{2} の大きい値	t	（mm）	4.71
	呼び厚さ	t s o	（mm）	12.00
	最小厚さ	t s	（mm）	
\bigcirc	評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よっ	ある。		

2.2 容器の鏡板の厚さの計算

（1）設計•建設規格 PVC－3210
鏡板の形状

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（1）胴側鏡板
材料			SGV410
最高使用圧力	P	（ MPa ）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の内径	D_{i}	（mm）	600.00
半だ円形鏡板の形状に			1.00
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	3.47
必要厚さ	t_{2}	（mm）	3.45
t_{1} ， t_{2} の大きい値	t	（mm）	3.47
呼び厚さ	t co	（mm）	12． 00
最小厚さ	t ${ }_{\text {c }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

容器の鏡板の厚さの計算
（1）設計•建設規格 PVC－3210
鏡板の形状

鏡板名称		(2)	管側鏡板
鏡板の内面における長径	D_{iL}	(mm)	600.00
鏡板の内面における短径の $1 / 2$	h	$(\mathrm{~mm})$	150.00
長径と短径の比	$\mathrm{D}_{\mathrm{iL}} /(2 \cdot \mathrm{~h})$	2.00	
評価 $: \mathrm{D}_{\mathrm{iL}} /(2 \cdot \mathrm{~h}) \leqq 2$, よって半だ円形鏡板である。			

（2）設計•建設規格 PVC－3220
鏡板の厚さ

鏡板名称			（2）管側鏡板
材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴の内径	D_{i}	（mm）	600.00
半だ円形鏡板の形状に			1.00
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t 1	（mm）	3.29
必要厚さ	t 2	（mm）	3.27
t_{1} ， t_{2} の大きい値	t	（mm）	3.29
呼び厚さ	t co	（mm）	12.00
最小厚さ	t ${ }_{\text {c }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{c}} \geqq \mathrm{t}$ ，よって十分である。			

2.3 容器の管板の厚さの計算

（1）設計•建設規格 PVC－3510（1）
管穴の中心間距離

管板名称		（1）	管板
管の外径	d_{t}	(mm)	
必要な距離	Z	(mm)	
管穴の中心間距離	P_{t}	(mm)	
評価 $: \mathrm{P}_{\mathrm{t}} \geqq \mathrm{z}$, よって十分である。		25.00	

（2）設計•建設規格 PVC－3510（2）
管板の厚さ

管板名称			（1）管板
材料			SUSF304
最高使用圧力		（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
パッキンの中心円の径又は胴の内径	D	（mm）	642.18
胴の厚さ	t s	（mm）	－
管及び管板の支え方 による係数	F		1.25 （伝熱管の形式：U字管）
管板の支え方			管側胴と一体でない。 $\left(t_{s} / D=-\right)$
任意の管の中心が囲む面積	A	$\left(\mathrm{mm}^{2}\right)$	2． 498×10^{5}
面積 A の周のうち穴の径以外の部分の長さ	L	（mm）	403.94
許容引張応力	S	（MPa）	126
必要厚さ	t 1	（mm）	41.86
必要厚さ	t 2	（mm）	7.91
t_{1} ， t_{2} ， 10 の大きい値	t	（mm）	41.86
呼び厚さ	t bo	（mm）	65.00
最小厚さ	t_{b}	（mm）	
評価： $\mathrm{t}_{\mathrm{b}} \geqq \mathrm{t}$ ，よって十分である。			

2.4 容器の管台の厚さの計算設計•建設規格 PVC－3610

管台名称			（1）胴体入口
材料			STS410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D	（mm）	165.20
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.95
必要厚さ	t 3	（mm）	3.80
t_{1} ， t_{3} の大きい値	t	（mm）	3.80
呼び厚さ	t no	（mm）	7.10
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（2）胴体出口
材料			STS410
最高使用圧力	P	（ MPa ）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	165.20
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.95
必要厚さ	t ${ }_{3}$	（mm）	3.80
t_{1} ， t_{3} の大きい値	t	（mm）	3.80
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	7.10
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

	管台名称			（3）水室入口
	材料			SUS304TP
	最高使用圧力	P	（MPa）	1.37
	最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
	管台の外径	D 。	（mm）	165.20
	許容引張応力	S	（MPa）	126
	継手効率	η		1.00
	継手の種類			継手無し
	放射線検査の有無			－
	必要厚さ	t_{1}	（mm）	0.90
	必要厚さ	t 3	（mm）	－
	t_{1} ， t_{3} の大きい値	t	（mm）	0.90
	呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { 。 }}$	（mm）	7.10
	最小厚さ	$\mathrm{t}_{\text {n }}$	（mm）	
\bigcirc	評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よつ	ある。		

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（4）水室出口
材料			SUS304TP
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
管台の外径	D 。	（mm）	165.20
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.90
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.90
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	7.10
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（5）胴体ドレン
材料			SFVC2B
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	46.00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t_{3}	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.23
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	9.15
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（7）胴体空気抜
材料			SFVC2B
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	46.00
許容引張応力	S	（MPa）	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.23
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.23
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	9.15
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（9）水室ドレン
材料			SUS304TP
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
管台の外径	D 。	（mm）	27.20
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.15
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.15
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（10）水室空気抜
材料			SUS304TP
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
管台の外径	D 。	（mm）	27.20
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.15
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.15
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（11）胴体逃がし弁
材料			STS410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D 。	（mm）	27.20
許容引張応力	S	（MPa）	103
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.16
必要厚さ	t 3	（mm）	1． 70
t_{1} ， t_{3} の大きい値	t	（mm）	1． 70
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	$\mathrm{t}_{\text {n }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（12）伝熱管
材料			SUS304TB
最高使用圧力	P	（MPa）	1.37
外面に受ける最高の圧力	P_{e}	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
管台の外径	D	（mm）	
許容引張応力	S	（MPa）	126
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	0.11
必要厚さ	t 2	（mm）	0.45
t_{1} ， t_{2} の大きい値		（mm）	0.45
呼び厚さ	t_{t} 。	（mm）	
最小厚さ	t t	（mm）	
評価： $\mathrm{t}_{\mathrm{t}} \geqq \mathrm{t}$ ，よって十分である。			

2.5 容器の補強を要しない穴の最大径の計算

設計•建設規格 PVC－3150（2）

胴板名称		（1）胴側胴板
材料		SGV410
最高使用圧力 P	（MPa）	1.18
最高使用温度	$\left({ }^{\circ} \mathrm{C}\right)$	70
胴の外径 D	（mm）	624.00
許容引張応力 S	（MPa）	103
胴板の最小厚さ ${ }^{\text {d s }}$	（mm）	
継手効率 $\quad \eta$		1.00
継手の種類		継手無し
放射線検査の有無		－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	（mm）	
61，d r_{1} の小さい値	（mm）	
K		
D • t_{s}	$\left(\mathrm{mm}^{2}\right)$	
200，d r_{2} の小さい値	（mm）	131.67
補強を要しない穴の最大径	（mm）	131.67
評価：補強の計算を要する穴の名称		胴体入口（2．6（1））胴体出口（2．6（2））

容器の補強を要しない穴の最大径の計算
設計•建設規格 PVC－3150（2）

胴板名称		（2）管側胴板
材料		SUS304
最高使用圧力 P	（MPa）	1.37
最高使用温度	$\left({ }^{\circ} \mathrm{C}\right)$	66
胴の外径 D	（mm）	624.00
許容引張応力 S	（MPa）	126
胴板の最小厚さ $\mathrm{t}_{\text {s }}$	（mm）	
継手効率 $\quad \eta$		1.00
継手の種類		継手無し
放射線検査の有無		－
$\mathrm{d}_{\mathrm{r} 1}=\left(\mathrm{D}-2 \cdot \mathrm{t}_{\mathrm{s}}\right) / 4$	（mm）	
$61, \mathrm{~d}_{\mathrm{r} 1}$ の小さい値	（mm）	
K		
D • $\mathrm{t}_{\text {s }}$	$\left(\mathrm{mm}^{2}\right)$	
200， $\mathrm{d}_{\mathrm{r} 2}$ の小さい値	（mm）	124.03
補強を要しない穴の最大径	（mm）	124.03
評価：補強の計算を要する穴の名称		水室入口（2．6（3）） 水室出口（2．6（4））

2.6 容器の穴の補強計算

設計•建設規格 PVC－3160
参照附図 WELD－16

部材名称			（1）胴体入口
胴板材料			SGV410
管台材料			STS410
強め板材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴板の許容引張応力	S s	（MPa）	103
管台の許容引張応力	S_{n}	（MPa）	103
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	103
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	（mm）	600.00
胴板の計算上必要な厚さ	t sr	（mm）	3.47
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n} \text { r }}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B	（mm）	310.00
管台の外径	D on	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49.42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（2）胴体出口
胴板材料			SGV410
管台材料			STS410
強め板材料			SGV410
最高使用圧力	P	（MPa）	1.18
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	70
胴板の許容引張応力	S	（MPa）	103
管台の許容引張応力	S_{n}	（MPa）	103
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	103
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t s	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	t s r	（mm）	3.47
管台の計算上必要な厚さ	$\mathrm{tar}_{\mathrm{n}}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	t_{e}	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	D on	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49.42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	
補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よって十分である。			

部材名称				胴体出口
大きい穴の補強				
補強を要する穴の限界径	d_{j}	（mm）		． 00
評価： $\mathrm{d} \leqq \mathrm{d}_{\mathrm{j}}$ ，よって大きい穴の補強計算は必要ない。				
溶接部にかかる荷重	W_{1}	（N）		
溶接部にかかる荷重	W_{2}	（N）		
溶接部の負らべき荷重	W	（N）		
評価：W <0 ，よって溶接部の強度計算は必要ない。以上より十分である。				

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（3）水室入口
胴板材料			SUS304
管台材料			SUS304TP
強め板材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴板の許容引張応力	S s	（MPa）	126
管台の許容引張応力	S_{n}	（MPa）	126
強め板の許容引張応力	$\mathrm{S}_{\text {e }}$	（MPa）	126
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	$\mathrm{t}_{\text {s }}$	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	t_{sr}	（mm）	3.29
管台の計算上必要な厚さ	$\mathrm{tar}_{\mathrm{n}}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	t_{e}	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	$\mathrm{D}_{\text {on }}$	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49.42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	

容器の穴の補強計算
設計•建設規格 PVC－3160
参照附図 WE LD -16

部材名称			（4）水室出口
胴板材料			SUS304
管台材料			SUS304TP
強め板材料			SUS304
最高使用圧力	P	（MPa）	1.37
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	66
胴板の許容引張応力	S s	（MPa）	126
管台の許容引張応力	S_{n}	（MPa）	126
強め板の許容引張応力	S_{e}	（MPa）	126
穴の径	d	（mm）	
管台が取り付く穴の径	d_{w}	（mm）	169.20
胴板の最小厚さ	t_{s}	（mm）	
管台の最小厚さ	t_{n}	（mm）	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D_{i}	（mm）	600.00
胴板の計算上必要な厚さ	$\mathrm{t}_{\mathrm{s} \mathrm{r}}$	（mm）	3.29
管台の計算上必要な厚さ	$\mathrm{t}_{\mathrm{n}} \mathrm{r}$	（mm）	
穴の補強に必要な面積	A_{r}	$\left(\mathrm{mm}^{2}\right)$	
補強の有効範囲	X_{1}	（mm）	
補強の有効範囲	X_{2}	（mm）	
補強の有効範囲	X	（mm）	
補強の有効範囲	Y_{1}	（mm）	
強め板の最小厚さ	$\mathrm{t}_{\text {e }}$	（mm）	
強め板の外径	B e	（mm）	310.00
管台の外径	$\mathrm{D}_{\text {on }}$	（mm）	165.20
溶接寸法	L_{1}	（mm）	7.03
溶接寸法	L_{2}	（mm）	5.02
胴板の有効補強面積	A_{1}	$\left(\mathrm{mm}^{2}\right)$	
管台の有効補強面積	A_{2}	$\left(\mathrm{mm}^{2}\right)$	
すみ肉溶接部の有効補強面積	A_{3}	$\left(\mathrm{mm}^{2}\right)$	49.42
強め板の有効補強面積	A_{4}	$\left(\mathrm{mm}^{2}\right)$	
補強に有効な総面積	A_{0}	$\left(\mathrm{mm}^{2}\right)$	

補強： $\mathrm{A}_{0}>\mathrm{A}_{\mathrm{r}}$ ，よつて十分である。

[^5]
2.7 容器のフランジの計算

設計•建設規格 PVC－3710
（J I S B 8265 附属書 3 適用）
（内圧を受けるフランジ）
参照附図 F L A N G E－2 一体形フランジ

フランジ名称				（1）管板側水室フランジ			
フランジ材料				SUSF304			
胴又は管台材料				SUS304			
ボルト材料				SNB7（直径 63mm 以下）			
ガスケット材料				非石綿ジョイントシート（V\＃6500－AE）			
ガスケット厚さ			（mm）	3			
ガスケット座面の形状				1 a			
最高使用圧力		P	（MPa）	1.37			
許容引張応力	温度条件		$\left({ }^{\circ} \mathrm{C}\right)$	最高使用温度 （使用状態） （66）		常温$($ ガスケット締付時）(20)	
	ボルト		（MPa）	$\sigma_{\mathrm{b}}=$	173	$\sigma_{\text {a }}=$	173
	フランジ		（MPa）	$\sigma_{\mathrm{f}}=$	126	$\sigma_{\mathrm{fa}}=$	129
	胴又は管台		（MPa）	$\sigma_{\mathrm{n}}=$	126	$\sigma_{\mathrm{na}}=$	129
フランジの外径		A	（mm）	740.00			
フランジの内径		B	（mm）	600.00			
ボルト中心円の直径		C	（mm）	700.00			
ガスケット有効径		G	（mm）	642.18			
ハブ先端の厚さ			（mm）	12.00			
フランジ背面のハブの厚さ		g_{1}	（mm）	20.00			
ハブの長さ		h	（mm）	50.00			
ボルト呼び				M20			
ボルト本数		n		32			
ボルト谷径		d_{b}	（mm）	17.294			
ガスケット接触面の外径		$\mathrm{G}_{\text {s }}$	（mm）	660.00			
ガスケット接触面の幅		N	（mm）	25.00			
ガスケット係数		m		2.00			
最小設計締付圧力		y	（ $\mathrm{N} / \mathrm{mm}^{2}$ ）	11.00			
ガスケット座の基本幅		b o	（mm）	12.50			
ガスケット座の有効幅		b	（mm）	8.91			
内圧による全荷重		H	（N）	4． 437×10^{5}			
ガスケットに加える圧縮力		H_{p}	（N）	9.851×10^{4}			
使用状態での最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 1}$	（N）	5.422×10^{5}			
ガスケット締付最小ボルト荷重		$\mathrm{W}_{\mathrm{m} 2}$	（N）	1． 977×10^{5}			
ボルトの所要総有効断面積	使用状態	$\mathrm{A}_{\mathrm{m} 1}$	$\left(\mathrm{mm}^{2}\right)$	3． 134×10^{3}			
	ガスケット締付時	$\mathrm{A}_{\mathrm{m} 2}$	$\left(\mathrm{mm}^{2}\right)$	1． 143×10^{3}			
	いずれか大きい値	A_{m}	$\left(\mathrm{mm}^{2}\right)$	3.134×10^{3}			
実際のボルト総有効断面積		A_{b}	$\left(\mathrm{mm}^{2}\right)$	7.517×10^{3}			
評価： $\mathrm{A}_{\mathrm{b}}>\mathrm{A}_{\mathrm{m}}$ ，よって十分である。							

3．支持構造物の強度計算書

（1）一次圧縮応力及び一次曲げ応力による組合せ評価

種類	脚本数	材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	F 値 （MPa）	鉛直荷重 $\mathrm{F}_{\mathrm{c}}(\mathrm{~N})$	$\begin{aligned} & \text { 断面積 } \\ & \mathrm{A}\left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}(\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	断面係数 $\mathrm{Z}\left(\mathrm{~mm}^{3}\right)$
横置円筒形容器	2	SS400	70	268		2． 585×10^{4}		

$\begin{gathered} \text { 一次圧縮応力 } \\ \sigma_{\mathrm{c}}(\mathrm{MPa}) \end{gathered}$	許容圧縮応力 f_{c}（MPa）	一次曲げ応力 $\sigma_{b}(\mathrm{MPa})$	許容曲げ応力 $\mathrm{f}_{\mathrm{b}}(\mathrm{MPa})$	組合せ評価 $\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}} \leqq 1$	評価
	177		178	0． 12	算出値は，許容値以下であるので強度は十分である。

燃料プール冷却浄化系熱交換器 支持構造物の強度計算説明図

VI－3－3－2－2－1－2 燃料プール泠却浄化系ポンプの強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法」に基づ いて計算を行う。

なお，適用規格の選定結果について以下に示す。適用規格の選定に当たつて使用する記号及び略語については，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

$$
\mathrm{O} 2 \text { (3) VI-3-3-2-2-1-2 } \quad \mathrm{R} \mathrm{O}
$$

－評価条件整理表

機器名	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時			条件	DB 条件		SA 条件						
			$\begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { クB } \\ & \text { グ } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { クラ } \end{aligned}$	$\begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}$	圧力 （MPa）	温度 $\left({ }^{\circ} \mathrm{C}\right)$	圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$					
燃料プール冷却浄化系ポンプ	既設	有	有	Non	Non	SA－2	無	1． 37	66	1.37	66	－	S55 告示	設計•建設規格又は告示	－	SA－2

目次

1．計算条件 1
1.1 ポンプ形式 1
1.2 計算部位 － 1
1.3 設計条件 － 2
2．強度計算 － 2
2.1 ケーシングの厚さ 2
2.2 ケーシングの吸込み及び吐出口部分の厚さ 2
2．3 ケーシングの各部形状 3
2．4 ケーシングカバーの厚さ 4
2.5 ボルトの平均引張応力 4
2.6 耐圧部分等のうち管台に係るものの厚さ 5
2.7 設計•建設規格における材料の規定によらない場合の評価 6別紙 燃料プール冷却浄化系ポンプボリュート巻始めとケーシング壁面の交わる部分のすみの丸みの半径部分の応力評価詳細7

1．計算条件
1.1 ポンプ形式

らず巻ポンプであって，ケーシングが軸垂直割りであるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

図1－1 概要図

1.3 設計条件

設計条件	
最高使用圧力（MPa）	1.37
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	66

2．強度計算
2.1 ケーシングの厚さ

設計•建設規格 PMC－3320

計算部位	材料	P (MPa)	S (MPa)	A (mm)
（1）		1.37		

t (mm)	t so (mm)	t s (mm)
6.2		

評価： t s $\geqq \mathrm{t}$ ，よって十分である。

2． 2 ケーシングの吸込み及び吐出口部分の厚さ
設計•建設規格 PMC－3330

計算部位	r_{i}	r_{m}	ℓ	t	$\mathrm{t}_{\ell 0}$	t_{ℓ}
（2）	75.0	78.1	11.0	6.2		
（3）	50.0	53.1	9.1	6.2		

評価： $\mathrm{t}_{\ell} \geqq \mathrm{t}$ ，よって十分である。

2． 3 ケーシングの各部形状

（1）ボリュート巻始めの丸みの半径
設計•建設規格 PMC－3340（4）（単位：mm）

計算部位	r_{1}	$\mathrm{r}_{1 \mathrm{so}}$	$\mathrm{r}_{1 \mathrm{~s}}$
（4）	0.4		

評価： $\mathrm{r}_{1 \mathrm{~s}} \geqq \mathrm{r}_{1}$ ，よつて十分である。
（2）クロッチの丸みの半径
設計•建設規格 PMC－3340（5）（単位：mm）

評価： $\mathrm{r}_{2 \mathrm{~s}} \geqq \mathrm{r}_{2}$ ，よつて十分である。
（3）ボリュート巻始めとケーシング壁面の交わる部分のすみの丸みの半径告示第501号第77条第7項第6号（単位：mm）

計算部位	r_{3}	$\mathrm{r}_{3 \mathrm{so}}$	$\mathrm{r}_{3 \mathrm{~s}}$
（6）	7.0		

2． 4 ケーシングカバーの厚さ

告示第 501 号第 77 条第 5 項第 1 号

計算部位	材料	$\begin{gathered} \mathrm{P} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	平板形	
				d（mm）	K
（7）		1．37			

t (mm)	t so (mm)	t s (mm)
18.7		

評価： t s $\geqq \mathrm{t}$ ，よつて十分である。

2． 5 ボルトの平均引張応力
設計•建設規格 PMC－3510

$\left.$| 計算部位 | 材料 | P
 (MPa) | S_{b}
 (MPa) | d_{b}
 (mm) | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | A_{b} |
| :---: |
| $\left(\mathrm{mm}^{2}\right)$ | \right\rvert\, | （8） |
| :--- |

注記＊：（ ）は新 J I S 記号を示す。

ガスケット材料	ガスケット厚さ (mm)	ガスケット 座面形状	G_{s} (mm)	G (mm)	Dg (mm)
セルフシール ガスケット （ゴム）	-	-	-	-	

H (N)	H_{p} (N)	$\mathrm{W}_{\mathrm{m} 1}$ $(\mathrm{~N})$	$\mathrm{W}_{\mathrm{m} 2}$ $(\mathrm{~N})$	W （N）	σ（MPa）

評価：$\sigma \leqq \mathrm{S}_{\mathrm{b}}$ ，よつて十分である。

2． 6 耐圧部分等のらち管台に係るものの厚さ
設計•建設規格 PMC－3610

継手の種類	放射線透過試験の有無	η
継手無し	-	1.00
継手無し	-	1.00

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。
2.7 設計•建設規格における材料の規定によらない場合の評価

ボルト（使用材料規格：J I S G 3 1 0 1 SS400（径 16mm以下）の評価結果
（比較材料：J I S G 4051 S20C）
ボルトに使用しているSS400 は，クラス 2 ポンプの使用可能な材料として設計•建設規格に記載されていないことから，クラス 2 ポンプの使用可能な材料として設計•建設規格に記載さ れている材料と機械的強度及び化学的成分を比較し，同等であることを示す。
（1）機械的強度

	引張強さ	降伏点又は耐力	比較結果
使用材料	$400 \sim 510 \mathrm{~N} / \mathrm{mm}^{2}$	$245 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	引張強さ及び降伏点は同等である。
比較材料	$402 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	$245 \mathrm{~N} / \mathrm{mm}^{2}$ 以上	

（2）化学的成分

	化学成分（\％）									
	C	Si	Mn	P	S	Cu	Ni	Cr	Mo	V
使用 材料	$(0.17)^{*}$	$(0.19)^{*}$	$\begin{gathered} - \\ (0.55)^{*} \end{gathered}$	$\begin{gathered} 0.050 \text { 以下 } \\ (0.032)^{*} \end{gathered}$	$\begin{gathered} 0.050 \text { 以下 } \\ (0.021)^{*} \end{gathered}$	－	－	－	－	
比較 材料	$\begin{gathered} 0.18 \\ \sim \\ 0.23 \\ \hline \end{gathered}$	$\begin{gathered} 0.15 \\ \sim \\ 0.35 \\ \hline \end{gathered}$	$\begin{gathered} 0.30 \\ \sim \\ 0.60 \\ \hline \end{gathered}$	0．030以下	0．035以下	－	－	－	－	－
比較 結果	C，P の成分規定に差異があるが，以下により，本設備の環境下での使用は問題ない。 C ：脆性に影響を与える成分であるが，本設備において使用される材料は，小径（16 mm 以下）であるため，脆性破壊が発生しがたい寸法の材料であること，さらに は設計•建設規格クラス 2 の規定でも破壊靭性試験が要求されない範囲である こと。 P：泠間脆性に影響を与える成分であるが，本設備において使用される材料は，小径（ 16 mm 以下）であるため，脆性破壊が発生しがたい寸法の材料であること， さらには，設計•建設規格クラス 2 の規定でも破壊勒性試験が要求されない範囲であること。									

注記＊：ミルシートの値を示す。
（3）評価結果
（1）（2）の評価により，機械的強度，化学的成分，いずれにおいても比較材料と同等であ ることを確認したため，本設備において，SS400 を重大事故等クラス 2 材料として使用す ることは問題ない。

燃料プール冷却浄化系ポンプ
ボリュート巻始めとケーシング壁面の交わる部分のすみの丸みの半径部分の応力評価詳細

PMC－3340のらち，ボリュートの巻始めとケーシング壁面の交わる部分のすみの丸みの半径が，規定を満足しないことから，以下の評価を行う。

とケーシング壁面

X－X断面

PVB－3111，3112，3114に準じたボリュート巻始めとケーシング壁面の交わる部分のすみの丸みの半径部分（以下，当該部とする。）の応力評価（FEM解析）の詳細を以下に示す。

1．応力計算

解析対象部位は，当該部とし，内圧を付加した場合の発生応力を解析により求め，応力強さが第 1－1表に示す規定を満足することを確認する。

第 1－1 表 応力の分類及び許容値

応力の分類	許容値
一次膜 + 一次曲げ応力強さ $: \mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}$	1.5 Sm
疲労評価	1 以下

2．評価対象部位
評価対象部である当該部を第2－1 図に示す。断面の詳細を第2－2 図に示す。

3．解析条件及び解析モデル
評価対象部位の仕様を第 3－1 表に，応力計算を行らための当該部の解析モデル図を第3－1図に，圧力条件を第3－2 図に，荷重条件を第3－3図，拘束条件を第3－4図に示す。

解析モデルは，当該部，ポンプケーシング及びケーシングカバー全体を 3 次元のモデルとして評価を行う。
応力計算は，有限要素法を用いて解析した。使用した計算コードはABAQUS 6．12－3である。

第3－1表 評価対象部位の仕様

項 目	単位	ケーシング
材料	-	SCPH 2
最高使用温度	${ }^{\circ} \mathrm{C}$	66
最高使用圧力	MPa	1.37
設計応力強さ $: \mathrm{Sm}$	MPa	155

第3－1図 当該部の解析モデル

第3－3図 荷重条件

第3－4図 拘束条件

4．計算結果

評価対象部位のらち，最も発生応力が大きい箇所の位置を第 4－1 図に示す。当該箇所の一次応力の評価結果を第 4－1 表に示す。疲労評価に用いた推定過渡回数を第 4－2 表に疲労評価結果を第 4－3表に示す。
一次応力強さ及び疲労評価において，許容値を下回っており，ボリュート巻始めとケーシング壁面の交わる部分のすみの丸みの半径部分の強度は十分である。

第 4－1 表 燃料プール冷却浄化系ポンプ当該部の一次応力強さ

評価部位	一次膜＋一次曲げ応力強さ	
	$\begin{gathered} P_{L}+P_{b} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容値 } \\ \text { 1.5Sm (MPa) } \end{gathered}$
ボリュート巻始めと ケーシング壁面の交わる部分 のすみの丸みの半径部分	45	232

第 4－2 表 燃料プール冷却浄化系ポンプ当該部の疲労評価に用いた過渡回数

過渡項目	過渡回数
起動 $/$ 停止	1200

第4－3表 燃料プール泠却浄化系ポンプ当該部の疲労評価結果

評価部位	疲労累積係数	許容値
ボリュート巻始めと ケーシング壁面の交わる部分の すみの丸みの半径部分	0.002	1 以下

VI－3－3－2－2－1－3 スキマサージタンクの強度計算書

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」に基づい て計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語に ついては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

[^6]－評価条件整理表

機器名	既設 or新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の 適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
								DB 条件		SA 条件						
			アップ の有無	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	アップ の有無	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
スキマサージタンク	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55 告示	設計•建設規格又は告示	－	SA－2

1．計算条件 1
1．1 計算部位 1
1．2 設計条件 1
2．強度計算 2
2.1 開放タンクの胴の厚さの計算 2
2.2 開放タンクの管台の厚さの計算 4

1．計算条件
1．1 計算部位
概要図に強度計算箇所を示す。

注記＊：本管台はBタンクのみ設置
注：特記なき寸法は公称値を示す。
図中の番号は次ページ以降の計算
項目番号を示す。
図 $1-1$ 概要図

1．2 設計条件

最高使用圧力 (MPa)	静水頭
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	66

2．強度計算
2．1 開放タンクの胴の厚さの計算＊
設計•建設規格 PVC－3920

胴板名称			（1）ライニング材
材料			SUS 304
水頭	H	（m）	－
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	－
胴の内径	D_{i}	（m）	－
液体の比重	ρ		－
許容引張応力	S	（MPa）	－
継手効率	η		－
継手の種類			－
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	1． 50
必要厚さ	t_{2}	（mm）	－
必要厚さ	t_{3}	（mm）	－
$\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ の大きい値	t	（mm）	1.50
呼び厚さ	$\mathrm{t}_{\text {s }}$ 。	（mm）	6.00
最小厚さ	$\mathrm{t}_{\text {s }}$	（mm）	
評価： $\mathrm{t}_{s} \geqq \mathrm{t}$ ，よって十分である。			

注記＊：スキマサージタンクはコンクリート躯体にステンレス鋼板を内張りしたもの であり，水頭による荷重は，内張りの下のコンクリート躯体で強度を保持 しているため，内張り材の最小厚さが設計•建設規格PVC－3920（1）で規定 する値以上であることを確認する。

開放タンクの胴の厚さの計算＊
設計•建設規格 PVC－3920

胴板名称			（2）底板
材料			SUS 304
水頭	H	（m）	－
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	－
胴の内径	D_{i}	（m）	－
液体の比重	ρ		－
許容引張応力	S	（MPa）	－
継手効率	η		－
継手の種類			－
放射線検査の有無			－
必要厚さ	t_{1}	（mm）	1.50
必要厚さ	t_{2}	（mm）	－
必要厚さ	t_{3}	（mm）	－
$\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}$ の大きい値	t	（mm）	1.50
呼び厚さ	$\mathrm{t}_{\text {s o }}$	（mm）	8.00
最小厚さ	$\mathrm{t}_{\text {s }}$	（mm）	
評価： $\mathrm{t}_{s} \geqq \mathrm{t}$ ，よって十分である。			

注記＊：スキマサージタンクはコンクリート躯体にステンレス鋼板を内張りしたもの であり，水頭による荷重は，内張りの下のコンクリート躯体で強度を保持し ているため，内張り材の最小厚さが設計•建設規格PVC－3920（1）で規定する値以上であることを確認する。

2.2 開放タンクの管台の厚さの計算

設計•建設規格 PVC－3980

開放タンクの管台の厚さの計算
設計•建設規格 PVC－3980

開放タンクの管台の厚さの計算
設計•建設規格 PVC－3980

開放タンクの管台の厚さの計算
設計•建設規格 PVC－3980

VI－3－3－2－2－1－4 管の強度計算書（燃料プール冷却浄化系）

VI－3－3－2－2－1－4－1 管の基本板厚計算書（燃料プール冷却浄化系）
VI－3－3－2－2－1－4－2 管の応力計算書（燃料プール冷却浄化系）
VI-3-3-2-2-1-4-1 管の基本板厚計算書 (燃料プール冷却浄化系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算 を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

管No．	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか						施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { 評価 } \\ \text { クラ } \end{array} \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \cline { 1 - 2 } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \end{gathered}$	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \hline \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$					
1	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55告示	設計•建設規格又は告示	－	SA－2
2	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55告示	設計•建設規格又は告示	－	SA－2
3	既設	有	有	DB－3	DB－3	SA－2	無	1．37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
4	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
5	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
6	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
7	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
8	既設	有	有	DB－3	DB－3	SA－2	無	1．37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
T1	既設	有	有	DB－3	DB－3	SA－2	無	1．37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
SP1	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2

－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
2	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
3	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
4	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
5	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
6	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
7	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
8	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
T1	管の穴と補強計算	設計•建設規格又は告示	同等	設計•建設規格
SP1	管の穴と補強計算	設計•建設規格又は告示	同等	設計•建設規格

1．概略系統図 1
2．管の強度計算書 2
3．管の穴と補強計算書 3

注記＊：管継手
燃料プール冷却浄化系概略系統図
管の強度計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3411 準用

NO．	最高使用圧力 P (MPa)	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径 } \\ D_{0} \\ (\mathrm{~mm}) \end{gathered}$	公称厚さ （mm）	材 料	製	ク ラ ス	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	算 式	$\begin{array}{r} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \\ \hline \end{array}$
1	静水頭	66	267.40	9． 30	SUS304TP	S	2	－	－	－	－	－	－	－
2	静水頭	66	267.40	9． 30	STS410	S	2	－	－	－	－	－	－	－
3	1． 37	66	267.40	9． 30	STS410	S	2	103	1.00	12．5\％	8.13	1． 77	C	3.80
4	1． 37	66	165． 20	7． 10	STS410	S	2	103	1． 00	12．5\％	6． 21	1． 10	C	3． 80
5	1． 37	66	114.30	6． 00	STS410	S	2	103	1． 00	12．5\％	5． 25	0． 76	C	3． 40
6	1． 37	66	216． 30	8.20	STS410	S	2	103	1.00	12．5\％	7． 17	1． 43	C	3． 80
7	1． 37	66	216． 30	8.20	SUS304TP	S	2	126	1.00	12．5\％	7． 17	1． 17	A	1． 17
8	1． 37	66	165． 20	7． 10	SUS304TP	S	2	126	1． 00	12．5\％	6． 21	0.90	A	0． 90

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よつて十分である。

3．管の穴と補強計算書（重大事故等クラス 2 管）
補強を要しない穴の最大径
設計•建設規格 PPC－3422 準用

評価： $\mathrm{d} \leqq \mathrm{d}_{\mathrm{fr}}$

よって管の穴の補強計算は必要ない。

管の穴と補強計算書（重大事故等クラス 2 管）
NO．S P 1

補強の有効範囲 補強の有効範囲

穴部詳細

穴部断面

図 3－1 穴部詳細及び穴部断面
（1）設計•建設規格 PPC－3424（1）により，穴の補強計算を行う。
a．主管の計算上必要な厚さ：t r r

$$
\begin{aligned}
\mathrm{trr} & =\frac{\mathrm{P} \cdot \mathrm{Dor}}{2 \cdot \mathrm{Sr} \cdot \eta+0.8 \cdot \mathrm{P}} \\
& =\frac{1.37 \times 165.20}{2 \times 126 \times 1.00+0.8 \times 1.37} \\
& =0.90 \mathrm{~mm}
\end{aligned}
$$

ここで			
P	：最高使用圧力（内圧）	1.37	(MPa)
	最高使用温度	66	$\left({ }^{\circ} \mathrm{C}\right)$
D or r	：主管の外径	165.20	$(\mathrm{~mm})$
Sr	：主管の材料の許容引張応力	126	(MPa)
	主管材料	SUS304TP	
η	：継手の効率	1.00	

b．穴の補強に必要な面積：A r

$$
\begin{aligned}
\mathrm{Ar}_{\mathrm{r}} & =1.07 \cdot \mathrm{~d} \cdot \mathrm{t} \mathrm{rr} \cdot(2-\mathrm{s} \text { i } \mathrm{n} \alpha) \\
& =1.07 \times \square \times 0.894222 \times(2-\mathrm{s} \text { i n } \square) \\
& =14.54\left(\mathrm{~mm}^{2}\right)
\end{aligned}
$$

ここで
d ：断面に現われる穴の径 $\quad \square$（mm）
$\alpha \quad$ ：分岐管の中心線と主管の中心線との交角

c．穴の補強に有効な面積の総和：A o

$$
\begin{aligned}
\text { A o } \quad & =(\eta \cdot \mathrm{t} \quad \mathrm{r}-\mathrm{F} \cdot \mathrm{t} \mathrm{r} \mathrm{r}) \cdot(2 \cdot \mathrm{~L} \mathrm{~A}-\mathrm{d}) \\
& =(1.00 \times 6.2125-1.00 \times 0.894222) \times(2 \times \square-\square) \\
& =80.84\left(\mathrm{~mm}^{2}\right)
\end{aligned}
$$

ここで
t r o ：主管の公称厚さ
7． 10 （mm）
Qr ：主管の厚さの負の許容差
12.5 （\％）
t r ：主管の最小厚さ
6． 21 （mm）
$\mathrm{tr}=\mathrm{t} \underset{\mathrm{r} \circ}{\mathrm{o}} \cdot\left(1-\frac{\mathrm{Qr}}{100}\right)$
F ：設計•建設規格 PPC－3424（1）b．より求めた値 1.00
LA：補強に有効な範囲（次の 2 つの式より計算したいずれか大きい方の値）
$\mathrm{L} \mathrm{A}=\mathrm{d}=\square \mathrm{mm}$
$\mathrm{L} \mathrm{A}=\mathrm{d} / 2+\mathrm{tr}+\mathrm{tb}=\square \mathrm{mm}$

よって
LA
（mm）
d．評価
A o＞Ar，よつて穴の補強は十分である。
（2）設計•建設規格 PPC－3424（4）により，大穴の補強の要否の判定を行う。
a．大穴の補強を要しない限界径：dfro

$$
\begin{aligned}
\mathrm{d} \mathrm{frD} & =\frac{\mathrm{Dor}-2 \cdot \mathrm{tr}}{2} \\
& =\frac{165.20-2 \times 6.2125}{2} \\
& =76.39(\mathrm{~mm})
\end{aligned}
$$

b．評価
d \leqq d frid，よつて大穴の補強計算は必要ない。以上より十分である。

VI－3－3－2－2－1－4－2 管の応力計算書 （燃料プール泠却浄化系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{gathered} \hline \text { 施設時 } \\ \text { 機器 } \\ \text { クラ } \\ \hline \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
FPC－001	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1.37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
FPC－002	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
FPC－003	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KFPC－004	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KFPC－005	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KFPC－101	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KFPC－102	既設	有	有	DB－3	DB－3	SA－2	無	静水頭	66	静水頭	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	有	DB－3	DB－3	SA－2	無	1． 37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
KFPC－122	既設	有	有	DB－3	DB－3	SA－2	無	1.37	66	1． 37	66	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－3	DB－3	－	無	1． 37	66	－	－	無	S55告示	設計•建設規格又は告示	－	DB－3

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 10
3.1 設計条件 10
3.2 材料及び許容応力 14
4．評価結果 16
5．代表モデルの選定結果及び全モデルの評価結果 18

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全8モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
（太線）	工事計画記載範囲の管のうち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	うち，他系統の管であって系統の概略を示すために表記する管
OOO－000	鳥瞰図番号
\square	アンカ

O 2 (3) VI-3-3-2-2-1-4-2 (重) R 0

O 2 (3) VI-3-3-2-2-1-4-2 (重) R 0

\begin{tabular}{|c|c|}
\hline 記号 \& 内容

\hline － \& 工事計画記載範囲の管のうち，本計算書記載範囲の管

\hline \multirow[t]{2}{*}{¢ ¢請範囲外

\bullet} \& 工事計画記載範囲外の管

\hline \& 質点

\hline － \& アンカ

\hline \& | レストレイント |
| :--- |
| （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。） |

\hline
\end{tabular}

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KFPC－122

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.37	66	114.3	6.0	STS410
2	1.37	66	165.2	7.1	STS410
3	1.37	66	216.3	8.2	STS410
4	1.37	66	216.3	8.2	SUS304TP
5	1.37	66	165.2	7.1	SUS304TP

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KFPC－122

配管の質量（付加質量含む）
鳥 瞰 図
K F P C－ 122

評価点の質量を下表に示す。

評価点	質量（kg）								
1		30		98		152		310	
2		31		99		153		401	
3		32		100		154		402	
4		36		101		155		403	
5		37		102		156		404	
6		38		103		157		405	
7		43		105		158		406	
9		44		108		168		410	
13		45		121		169		411	
14		46		128		170		800	
15		47		135		180		801	
16		48		136		181		802	
17		49		137		182		803	
18		85		138		183		804	
19		90		139		210		805	
20		91		140		217		901	
21		92		141		301		903	
25		93		142		302		905	
26		94		143		303		906	
27		95		144		304		907	
28		96		145		305		908	
29		97		146		309			

弁部の質量を下表に示す。
弁1 弁2
弁 3
弁 4
弁 5

評価点	質量 (kg)									
10		22		3			41		104	
11		23		34		40		106		
12		24		33		39		107		

弁6 弁7 弁8

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
147		306		407	
148		307		408	
149		308		409	
150		311		412	
151		312		413	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	11			
弁2	23			
弁3	34			
弁4	40			
弁5	106			
弁6	148			
弁7	307			
弁8	408			

支持点及び貫通部ばね定数
鳥 瞰 図 KFPC－122
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
6						
25						
30						
49						
85						
92						
103						
105						
＊＊ 110 ＊＊						
121						
128						
＊＊151＊＊						
210						
217						
310						
312						
411						
＊＊ 413 ＊＊						
413						
901						
903						
905						
906						
907						
908						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		Sh
STS410	66	102
SUS304TP		126

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		Sh
STS410	 SUS304TP	103
		126

$$
\text { 告示第 } 501 \text { 号第 } 56 \text { 条による評価結果 }
$$

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Spr} \mathrm{~m}(2) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{Sh} \\ & 1 \cdot{ }^{2} \cdot \mathrm{Sh} \end{aligned}$
K F P C－1 22	$\begin{aligned} & 310 \\ & 310 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$\begin{aligned} & 126 \\ & 151 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，告示第501号第56条第1号（イ），（ロ）に基づき計算した

鳥瞰図	最大応力評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \mathrm{Sprm}(1) \\ & \mathrm{Sprm}(2) \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{~S}$ h
	306	Sprm（1）	36	189
	306	Sprm（2）	36	226

注記＊：S prm（1），Sprm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
O 2 （3）VI－3－3－2－2－1－4－2（重）R 0
代表モデルは各モデルの最大応力点の応力と裕
10
注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－2－2－2 燃料プール代替注水系の強度計算書

目 次

VI－3－3－2－2－2－1 大容量送水ポンプ（タイプI）の強度評価書
VI－3－3－2－2－2－2 管の強度計算書（燃料プール代替注水系）

> VI-3-3-2-2-2-1 大容量送水ポンプ (タイプ I) の強度評価書

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（大容量送水ポンプ（タイプ I ））
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
らず巻型	淡水貯水槽又は海を水源として，可搬型ホースを介して原子炉圧力容器等に送水するポンプとして使用することを目的 とする。使用環境として，屋外で淡水又は海水を送水する。	ダクタイル鋳鉄	1． 2^{*}	50^{*}

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
HS－900N	動力消防ポンプのうち，通常の給水ポンプでは取水が難しい海水域から，効率的に取水することができる可搬消防ポンプ として，送水に使用することを目的とする。使用環境として，屋外で淡水又は海水を送水することを想定している。	ダクタイル鋳鉄	1.4	50	耐圧試験（試験圧力： 2.1 MPa ，試験保持時間：3分間）を実施。

III．確認項目

（a）：規格及び基準が妥当であることの確認（I と II の使用目的及び使用環境の比較）
当該ポンプは，重大事故等時に淡水又は海水を送水するために屋外で使用する内燃機関（燃料系含む）を有するポンプである。一方，本メーカ規格及び基準は，内燃機関等を駆動源として遠距離に大量送水する可搬消防ポンプとして使用することを目的とした一般産業品に対する規格であり，当該ポンプは屋外で大量の淡水又は海水を送水することを想定している。重大事故等時における当該ポンプの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（II と公的な規格等の材料及び試験条件の比較，I とII の使用条件の比較）当該ポンプの型式については，「消防法」に基づく「動力消防ポンプの技術上の規格を定める省令」に適合するものとして承認されており，「消防法」に基づく「動力消防ポンプの技術上の規格を定める省令」に従 った適切な材料が使用されていることを型式評価の結果により確認できる。

当該ポンプの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり，「消防法」に基づく「動力消防ポンプの技術上の規格を定める省令」で規定されている耐圧試験（試験圧力：ポンプ圧力最大値×1．5，試験保持時間：3分間）に合格していることを型式評価の結果により確認でき，当該ポンプの付属機器である燃料タンクについても，鋼製であり最高使用圧力が静水頭に対して水張試験を実施している。よって，当該 ポンプは完成品として要求される強度を有している。

IV．評価結果
負荷された状態において要求される強度を有している。

VI－3－3－2－2－2－2 管の強度計算書（燃料プール代替注水系）

VI－3－3－2－2－2－2－1 管の基本板厚計算書（燃料プール代替注水系）
VI－3－3－2－2－2－2－2 管の応力計算書（燃料プール代替注水系）
VI－3－3－2－2－2－2－3 管（可搬型）の強度評価書（燃料プール代替注水系）
VI-3-3-2-2-2-2-1 管の基本板厚計算書 (燃料プール代替注水系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算 を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

		$\frac{N}{\infty}$	$\frac{N}{\infty}$
		｜	｜
		｜	｜
		｜	｜
		8	8
		$\stackrel{\sim}{\sim}$	$\stackrel{\widetilde{\infty}}{\stackrel{1}{2}}$
		｜	｜
		｜	｜
		｜	｜
	¢	$\frac{N}{\infty}$	$\frac{N}{\infty}$
	\％＜	｜	｜
		｜	｜
		｜	｜
		｜	1
		$\begin{aligned} & \text { 敦 } \\ & \text { 舜 } \end{aligned}$	
	$\stackrel{\circ}{\text { gin }}$	\checkmark	\sim

－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格	-	設計•建設規格
2	管の板厚計算	設計•建設規格	-	設計•建設規格

1．概略系統図 1
2．管の強度計算書 2

2．管の強度計算書（重大事故等クラス 2 管）

NO．	$\begin{gathered} \hline \text { 最高使用圧力 } \\ \mathrm{P} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径 } \\ \mathrm{D}_{\text {。 }} \\ (\mathrm{mm}) \end{gathered}$	公称厚さ （mm）	材 料	製	ク ラ ス	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\underset{(\mathrm{mm})}{\mathrm{t}_{\mathrm{s}}}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	算 式	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \end{gathered}$
1	1． 37	66	165． 20	7． 10	STS410	S	2	103	1.00	12．5\％	6． 21	1． 10	C	3． 80
2	1． 37	66	165． 20	7． 10	SUS304TP	S	2	126	1． 00	12．5\％	6． 21	0． 90	A	0． 90

[^7]VI－3－3－2－2－2－2－2 管の応力計算書 （燃料プール代替注水系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	$\begin{gathered} \text { 同等性 } \\ \text { 評価 } \\ \text { 区分 } \end{gathered}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\left.\begin{array}{\|c\|} \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \end{array} \right\rvert\,$	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
FPC－013	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－014	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－015	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－020	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 8
3.1 設計条件 8
3．2 材料及び許容応力 13
4．評価結果 14
5．代表モデルの選定結果及び全モデルの評価結果 15

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全4モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

0 y（重） $2-7-7-7-7-\varepsilon-\varepsilon-I \Lambda$（8）$\quad$ O

燃料プール代替注水系概略系統図

鳥瞰図記号凡例

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－013

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.37	66	165.2	7.1	STS410
2	1.37	66	165.2	7.1	SUS304TP

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図

$$
\text { FPC-0 } 13
$$

管名称	対					応	す	る		評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16
	17	18													
2	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55	56	57	58	59	60	62	63
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93
	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108
	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123
	124	125	126	127	128	129	130	131	132	133	134	135	136		

0 y（重） $2-7-Z-6-7-\varepsilon-\varepsilon-I \Lambda$（8）$\quad$ O

配管の質量（付加質量含む）
鳥 瞰 図
F P C－ 01

評価点の質量を下表に示す。

評価点	質量（kg）								
1		30		56		85		111	
2		31		57		86		112	
3		32		58		87		113	
4		33		59		88		114	
5		34		63		89		115	
6		35		64		90		116	
7		36		65		91		117	
8		37		66		92		118	
9		38		67		93		119	
10		39		68		94		120	
11		40		69		95		121	
12		41		70		96		122	
13		42		71		97		123	
17		43		72		98		124	
18		44		73		99		125	
19		45		74		100		126	
20		46		75		101		127	
21		47		76		102		128	
22		48		77		103		129	
23		49		78		104		130	
24		50		79		105		131	
25		51		80		106		132	
26		52		81		107		133	
27		53		82		108		134	
28		54		83		109		135	
29		55		84		110		136	

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
14		60	
15		61	
16		62	
137			
138			

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	15			
弁2	61			

支持点及び貫通部ばね定数

$$
\begin{array}{lll}
\text { 鳥 瞰 図 F P C - 0 } 13
\end{array}
$$

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
2						
4						
10						
12						
19						
28						
31						
34						
38						
40						
42						
49						
53						
55						
63						
65						
68						
71						
73						
76						
81						
84						
＊＊ $84 * *$						
87						
89						
92						
94						
97						
100						
104						
107						
110						
112						
114						
119						
121						
124						
126						
129						
136						

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－O13

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
$* 138 * *$						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	Sh	
STS410	66	103
SUS304TP	66	126

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （ MPa ）	
			計算応力 $\begin{aligned} & \text { S p r m (1) } \\ & \text { S p r m (2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
F P C－0 1 3	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

O 2 （3）VI－3－3－2－2－2－2－2（重）－ROE

5．代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデ ル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表
1	FPC－013	8	24	154	6.41	\bigcirc	8	24	185	7.70	\bigcirc
2	FPC－014	37	24	189	7.87	－	37	24	226	9.41	－
3	FPC－015	9	23	154	6． 69	－	9	23	185	8.04	－
4	FPC－020	26	20	189	9． 45	－	26	20	226	11.30	－

[^8]＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－2－2－2－2－3 管（可搬型）の強度評価書（燃料プール代替注水系）

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ））
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
ホース	水源より大容量送水ポンプ（タイプ I ）又は大容量送水ポン プ（タイプII）に送水するためのホースとして使用すること を目的とする。使用環境として屋外で淡水又は海水を送水す る。	ポリエステル， ポリウレタン	1． 4^{*}	50^{*}

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
$\begin{gathered} 250 \\ \text { スーパーラインA } \end{gathered}$	消防用ホースであり，火災等の災害時に被害を軽減するため の送水用ホースとして使用することを目的とする。使用環境 として，屋内外で淡水又は海水を送水することを想定してい る。	$\begin{gathered} \text { ポリエステル, } \\ \text { ポリウレタン } \end{gathered}$	1.4	60	耐圧試験（試験圧力：2．1 MPa，試験保持時間：5分間）を実施。

III．確認項目
（a）：規格及び基準が妥当であることの確認（I と II の使用目的及び使用環境の比較）
当該ホースは，重大事故等時に屋外で淡水又は海水を送水するためのホースである。一方，本メーカ規格及び基準は，消防用として使用することを目的とした一般産業品に対する規格であり，屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（II と公的な規格等の材料及び試験条件の比較，I と II の使用条件の比較）
当該ホースの型式については，「消防法」に基づくものとして承認又は届出されており，「消防法」に従った適切な材料が使用されていることを型式承認の結果又は届出番号により確認できる。
当該ホースの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり，「消防法」に基づく「消防用ホースの技術上の規格を定める省令」で規定されている耐圧試験（試験圧力：2．1MPa，試験保持時間：5 分間） と同等の試験に合格していることを検查成績書等により確認できることから，当該ホースは要求される強度を有している。

IV．評価結果
 ている。

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ））
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
ホース	大容量送水ポンプ（タイプI）又は大容量送水ポンプ（タイプ II）から注水用ヘッダ，放水砲，原子炉補機代替冷却水系熱交換器ユニット又は淡水貯水槽へ送水するためのホースと して使用することを目的とする。使用環境として屋外で淡水又は海水を送水する。	$\begin{gathered} \text { ポリエステル, } \\ \text { ポリウレタン } \end{gathered}$	1． 4^{*}	50^{*}

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
ジェットホース JET MEGA FLOW	消防用ホースであり，火災等の災害時に被害を軽減するため の送水用ホースとして使用することを目的とする。使用環境 として，屋内外で淡水又は海水を送水することを想定してい る。	ポリエステル， ポリウレタン	1.4	60	耐圧試験（試験圧力：2． 1 MPa ，試験保持時間：5分間）を実施。

III．確認項目

（a）：規格及び基準が妥当であることの確認（I と II の使用目的及び使用環境の比較）
当該ホースは，重大事故等時に屋外で淡水又は海水を送水するためのホースである。一方，本メーカ規格及び基準は，消防用として使用することを目的とした一般産業品に対する規格であり，屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（IIと公的な規格等の材料及び試験条件の比較，I と II の使用条件の比較）
当該ホースの型式については，「消防法」に基づくものとして承認又は届出されており，「消防法」に従った適切な材料が使用されていることを型式承認の結果又は届出番号により確認できる。
当該ホースの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり，「消防法」に基づく「消防用ホースの技術上の規格を定める省令」で規定されている耐圧試験（試験圧力：2．1 MPa，試験保持時間：5分間） と同等の試験に合格していることを検查成績書等により確認できることから，当該ホースは要求される強度を有している。

IV．評価結果
 ている。

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（注水用ヘッダ）
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
分岐管	大容量送水ポンプ（タイプI）又は大容量送水ポンプ（タイプ II）から各系統へ送水するための可搬型配管として使用する ことを目的とする。使用環境として屋外で淡水又は海水を送水する。	SUS304	1． 4^{*}	50＊

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
注水用ヘッダ	淡水又は海水を送水するための注水用ヘッダとして使用す ることを目的とする。使用環境として，屋外で淡水又は海水 を供給することを想定している。	SUS304	1.4	50	耐圧試験（試験圧力：2．1 MPa，試験保持時間：10分間）を実施。

III．確認項目
（a）：規格及び基準が妥当であることの確認（I とIIの使用目的及び使用環境の比較）
当該注水用ヘッダは，重大事故等時に屋外で淡水又は海水を各系統へ送水するための可搬型配管である。一方，本メーカ規格及び基準は，消防用として使用することを目的とした一般産業品に対する規格であり，屋外で淡水又は海水の送水を想定している。重大事故等時における当該注水用ヘッダの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（IIと公的な規格等の材料及び試験条件の比較，I とIIの使用条件の比較）
当該注水用ヘッダに使用されている材料は，設計•建設規格クラス 3 配管に使用可能であると規定されているステンレス鋼材と同種類の材料である。
当該注水用ヘッダの最高使用圧力及び最高使用温度はメーカ仕様の範囲内であり，設計•建設規格 PHT－2311 及び PHT－4000 で規定されている耐圧試験（試験圧力：最高使用圧力×1．5倍，試験保持時間： 10 分間）と同等の試験条件の耐圧試験に合格していることを検查成績書等により確認できる。なお，設計•建設規格のクラス 3 機器の最高許容耐圧試験圧力は機器の応力制限（降伏点）を基に定められており，耐圧試験の規定では，耐圧試験圧力は最高使用圧力の 1.5 倍の 106% を超えないこととしている。一方，設計•建設規格のクラス 3 機器の設計許容応力は降伏点に対して $5 / 8$ を基準にしており，この設計許容応力以下となる必要板厚は，最高使用圧力を条件として評価式により求めている。よって，設計•建設規格PHT－2311 で規定されている耐圧試験と同等の試験条件の耐圧試験に合格することで，メーカ規格及び基準の設計が設計•建設規格と同等 の裕度を持っているとみなせるため，当該注水用ヘッダは要求される強度を有している。

IV．評価結果
 ている。

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（送水用ホース（ $150 \mathrm{~A}: 1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ））
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
ホース	注水用ヘッダから原子炉建屋接続口等に接続し，原子炉圧力容器等へ送水するためのホースとして使用することを目的 とする。使用環境として，屋内外で淡水又は海水を送水する。	$\begin{gathered} \text { ポリエステル, } \\ \text { ポリウレタ } \end{gathered}$	1． 6^{*}	50＊

注記＊：重大事故等時における使用時の値を示す。

II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
$\begin{gathered} 150 \\ \text { スーパーラインA } \end{gathered}$	消防用ホースであり，火災等の災害時に被害を軽減するため の送水用ホースとして使用することを目的とする。使用環境 として，屋内外で淡水又は海水を送水することを想定してい る。	ポリエステル， ポリウレタン	1.6	60	耐圧試験（試験圧力：まっすぐにした状態で 3．2 MPa，折り曲げた状態で 2.2 MPa ，試験保持時間：5分間）を実施。

III．確認項目

（a）：規格及び基準が妥当であることの確認（I と II の使用目的及び使用環境の比較）
当該ホースは，重大事故等時に屋内外で淡水又は海水を送水するためのホースである。一方，本メーカ規格及び基準は，消防用として使用することを目的とした一般産業品に対する規格であり，屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（II と公的な規格等の材料及び試験条件の比較，I と II の使用条件の比較）
当該ホースの型式については，「消防法」に基づくものとして承認又は届出されており，「消防法」に従った適切な材料が使用されていることを型式承認の結果又は届出番号により確認できる。
当該ホースの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり，「消防法」に基づく「消防用ホースの技術上の規格を定める省令」で規定されている耐圧試験（試験圧力：まっすぐにした状態で 3.2 价a，
折り曲げた状態で 2.2 MPa ，試験保持時間： 5 分間）と同等の試験に合格していることを検查成績書等により確認できることから，当該ホースは要求される強度を有している。
IV．評価結果
 ている。

VI－3－3－2－2－3 燃料プールスプレイ系の強度計算書

目 次

VI－3－3－2－2－3－1 管の強度計算書（燃料プールスプレイ系）

VI－3－3－2－2－3－1 管の強度計算書（燃料プールスプレイ系）

VI－3－3－2－2－3－1－1 管の基本板厚計算書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－2 管の応力計算書（燃料プールスプレイ系）
VI－3－3－2－2－3－1－3 管（可搬型）の強度評価書（燃料プールスプレイ系）
VI-3-3-2-2-3-1-1 管の基本板厚計算書 (燃料プールスプレイ系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算 を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
O 2 (3) VI-3-3-2-2-3-1-1 R 0

－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格	-	設計•建設規格
2	管の板厚計算	設計•建設規格	-	設計•建設規格
3	管の板厚計算	設計•建設規格	-	設計•建設規格

目次
1．概略系統図 1
2．管の強度計算書 2

O 2 （3）VI－3－3－2－2－3－1－1 R 0 E
管の強度計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3411 準用

NO．	最高使用圧力 P (MPa)	最高使用温 度 （ ${ }^{\circ} \mathrm{C}$ ）	$\begin{gathered} \text { 外 径 } \\ \mathrm{D}_{0} \\ (\mathrm{~mm}) \end{gathered}$	公称厚さ （mm）	材	製 法	ク ラ ス	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\begin{array}{r} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	算 式	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \end{gathered}$
1	1． 37	66	165． 20	7． 10	STS410	S	2	103	1． 00	12．5\％	6.21	1． 10	C	3． 80
2	1． 37	66	114.30	6． 00	STS410	S	2	103	1． 00	12．5\％	5． 25	0.76	C	3． 40
3	1． 37	66	76． 30	5． 20	STS410	S	2	103	1.00	12．5\％	4． 55	0.51	C	2． 70

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よつて十分である。

VI－3－3－2－2－3－1－2 管の応力計算書 （燃料プールスプレイ系）

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び添付書類「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	既設 or 新設	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	$\begin{gathered} \text { 同等性 } \\ \text { 評価 } \\ \text { 区分 } \end{gathered}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{gathered} \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラ } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
FPC－016	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－017	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－018	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2
FPC－019	新設	－	－	－	－	SA－2	－	－	－	1.37	66	－	－	設計•建設規格	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 9
3.1 設計条件 9
3．2 材料及び許容応力 13
4．評価結果 14
5．代表モデルの選定結果及び全モデルの評価結果 15

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全4モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－018

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	1.37	66	165.2	7.1	STS410
2	1.37	66	114.3	6.0	STS410

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
FPC－018

$O Y$（重）$Z-I-\varepsilon-Z-Z-\varepsilon-\varepsilon-I \Lambda$（8）$\quad O$

配管の質量（付加質量含む）
鳥 瞰 図
F P C－ 0
18

評価点の質量を下表に示す。

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
16		34	
17		35	
18		36	
122			
123			

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	17			
弁2	35			

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－018
支持点部のばね定数を下表に示す。

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	66	Sh
STS410	66	103

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （ MPa ）	
			計算応力 $\begin{aligned} & \text { S p r m (1) } \\ & \text { S p r m (2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
F P C－0 1 8	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S prm（1），S prm（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した
代表モデルの選定結果及び全モデルの評価結果
載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
10°

（3）VI－3－3－2－2－3－1－2（重）R 0 E

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表	評価点	計算応力 （MPa）	許容応力 （ MPa ）	裕度	代表
1	FPC－016	12	21	154	7.33	－	12	21	185	8.80	－
2	FPC－017	21	20	154	7.70	－	21	20	185	9.25	－
3	FPC－018	21	23	154	6.69	\bigcirc	21	23	185	8.04	\bigcirc
4	FPC－019	5	20	154	7． 70	－	5	20	185	9.25	－

[^9]＊ 2 ：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－2－2－3－1－3 管（可搬型）の強度評価書（燃料プールスプレイ系）
$\frac{\text { 一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基蕉）（スプレイ用ホース（65A ：} 1 \mathrm{~m} \text { ））}}{\text { 重大事故等クラス } 3 \text { 機器の使用目的及び使用環境，材料及び使用条件 }}$
I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
ホース	送水用ホース（ $150 \mathrm{~A}: 1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）とスプレイノズルに接続し，使用済燃料プールヘスプレイするためのホースとし て使用することを目的とする。使用環境として，屋内で淡水又は海水を送水する。	$\begin{gathered} \text { ポリエステル, } \\ \text { ポリウレタ } \end{gathered}$	1． 6^{*}	50^{*}

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
65SP－H－A	消防用ホースであり，火災等の災害時に被害を軽減するため の送水用ホースとして使用することを目的とする。使用環境 として，屋内外で淡水又は海水を送水することを想定してい る。	ポリエステル， ポリウレタン	1.6	50	耐圧試験（試験圧力：まっすぐにした状態で 3.2 MPa ，折り曲げた状態で 2.2 MPa ，試験保持時間：5分間）を実施

III．確認項目
（a）：規格及び基準が妥当であることの確認（I と II の使用目的及び使用環境の比較）
当該ホースは，重大事故等時に屋内で淡水又は海水を送水するためのホースである。一方，本メーカ規格及び基準は，消防用として使用することを目的とした一般産業品に対する規格であり，屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（II と公的な規格等の材料及び試験条件の比較，I と II の使用条件の比較）
当該ホースの型式については，「消防法」に基づくものとして承認又は届出されており，「消防法」に従った適切な材料が使用されていることを型式承認の結果又は届出番号により確認できる。
折り曲げた状態で 2.2 MPa ，試験保持時間：5分間）と同等の試験に合格していることを検査成績書等で確認できることから，当該ホースは要求される強度を有している。

IV．評価結果
 ている。

一般産業品の規格及び基準への適合性確認結果（メーカ規格及び基準）（スプレイノズル）

I．重大事故等クラス 3 機器の使用目的及び使用環境，材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）
放水銃	スプレイ用ホース（65A：1m）と接続し，使用済燃料プールへ スプレイするための可搬型配管として使用することを目的 とする。使用環境として，屋内で淡水又は海水を送水する。	AC4CH	1． 6^{*}	50^{*}

注記＊：重大事故等時における使用時の値を示す。
II．メーカ規格及び基準に規定されている事項（メーカ仕様）

機器名	使用目的及び想定している使用環境	材料	最高使用圧力（MPa）	最高使用温度（ ${ }^{\circ} \mathrm{C}$ ）	規格及び基準に基づく試験
$\begin{gathered} \text { ブリッツファイヤー } \\ \text { 放水銃 } \\ (\mathrm{ZM} 2 \mathrm{~L} \\ \hline \end{gathered}$	消防用の放水銃であり，可搬型消火機器として使用すること を目的とする。使用環境として，屋内外で淡水又は海水を送水することを想定している。	AC4CH	1.6	100	耐圧試験（試験圧力：2．4MPa，試験保持時間： 3 分間）を実施

III．確認項目
（a）：規格及び基準が妥当であることの確認（I とIIの使用目的及び使用環境の比較）
当該放水銃は，重大事故等時に屋内で淡水又は海水をスプレイするための可搬型配管である。一方，本メーカ規格及び基準は，可搬型消火機器として使用することを目的とした一般産業品に対する規格であり，屋内外で淡水又は海水を送水することを想定している。重大事故等時における当該放水銃の使用目的及び使用環境は，本規格の使用目的及び想定している使用環境の範囲内である。
（b－2）：材料が適切であること及び使用条件に対する強度の確認（II と公的な規格等の材料及び試験条件の比較，I と II の使用条件の比較）
当該放水銃に使用されている材料は，「消防用ホースに使用する差込式又はねじ式の結合金具及び消防用吸管に使用するねじ式の結合金具の技術上の規格を定める省令」にて使用可能な材料とされているアルミニウ ム合金鋳物と同種類の材料である。
当該放水銃の最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり，設計•建設規格 PHT－2311 で規定されている耐圧試験（試験圧力：最高使用圧力 $\times 1.5$ 倍）と同様の試験条件の耐圧試験に合格している ことを検査成績書等により確認できる。耐圧試験による機器の健全性は，耐圧部全体に圧力が負荷される適切な試験保持時間（設計•建設規格 解説 PHT－4000）により確認している。なお，設計•建設規格のクラス 3機器の最高許容耐圧試験圧力は機器の応力制限（降伏点）を基に定められており，耐圧試験の規定では，耐圧試験圧力は最高使用圧力の 1.5 倍の 106% を超えないこととしている。一方，設計•建設規格のクラス 3機器の設計許容応力は降伏点に対して $5 / 8$ を基準にしており，この許容応力以下となる必要板厚は，最高使用圧力を条件として評価式により求めている。よって，設計•建設規格 PHT－2311 で規定されている耐圧試験と同等の試験条件の耐圧試験に合格することで，メーカ規格及び基準の設計が設計•建設規格と同等の裕度を持っているとみなせるため，当該放水銃は要求される強度を有している。

IV．評価結果
 ている。

VI－3－3－3 原子炉冷却系統施設の強度に関する説明書

VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書
VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書
VI－3－3－3－3 残留熱除去設備の強度計算書
VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書
VI－3－3－3－5 原子炉冷却材補給設備の強度計算書
VI－3－3－3－6 原子炉補機冷却設備の強度計算書
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書

VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書

目 次

VI－3－3－3－1－1 原子炉再循環系の強度計算書

VI－3－3－3－1－1 原子炉再循環系の強度計算書

VI－3－3－3－1－1－1 管の強度計算書（原子炉再循環系）

VI－3－3－3－1－1－1 管の強度計算書（原子炉再循環系）

VI－3－3－3－1－1－1－1 管の基本板厚計算書（原子炉再循環系）
VI－3－3－3－1－1－1－2 管の応力計算書（原子炉再循環系）
VI-3-3-3-1-1-1-1 管の基本板厚計算書 (原子炉再循環系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算 を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

管No．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	$\begin{gathered} \text { 施設時の } \\ \text { 技術基準に } \\ \text { 対象とする } \\ \text { 施設の規定 } \\ \text { があるか } \end{gathered}$	クラスアップするか				条件アップするか					$\begin{gathered} \text { 既工認に } \\ \text { おける } \\ \text { 評価結果 } \\ \text { の有無 } \end{gathered}$	施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラ } \end{aligned}$	$\stackrel{\text { DB }}{\text { クラス }}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 淐度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \hline \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$					
1	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
2	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
3	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
4	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
5	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
6	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
7	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
8	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
その他1	既設	有	無	DB－1	DB－1	SA－2	有＊	10． 40	302	10． 40	315	有＊	S55告示	既工認	－	SA－2
$\begin{array}{\|c} \text { その他 } \\ \text { T1 } \end{array}$	既設	有	無	DB－1	DB－1	SA－2	有＊	8.62	302	10． 34	315	有＊	S55告示	既工認	－	SA－2

＊：既工認において評価を実施しており，かつ評価条件に変更はないことから，評価結果については
平成3年6月19日付け 第4回 3資庁第1003号にて認可された工事計画書の添付書類「IV－2－1－1－1－1 管の基本板厚計算書」による。
－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格 又は告示	同等	設計•建設規格
2	管の板厚計算	設計•建設規格 又は告示	同等	設計•建設規格
3	管の板厚計算	設計•建設規格 又は告示	同等	設計•建設規格
4	管の板厚計算	設計•建設規格 又は告示	同等	設計•建設規格
6	管の板厚計算	設計•建設規格 又は告示	同等	設計•建設規格 7 管の板厚計算 設計•建設規格 又は告示
管の板厚計算	等 設計•建設規格 又は告示	同等 設計•建設規格 設計•建設規格 又は告示	同等	設計•建設規格
管の板厚計算	設計•建設規格			

1．概略系統図 1
2．管の強度計算書 2

＊：最高使用圧力 Pにより計算した必要厚さ。
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}, \quad \mathrm{P}_{\mathrm{E}} \leqq \mathrm{P}_{\mathrm{aE}}$ ，よって十分である。
VI-3-3-3-1-1-1-2 管の応力計算書
(原子炉再循環系)

まえがき

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

応力計算 モデルNo．	$\left\|\begin{array}{c} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{array}\right\|$	施設時の 技術基準に 対象とする 施設の規定 があるか	クラスアップするか				条件アップするか					$\begin{gathered} \text { 既工認 } \\ \text { における } \\ \text { 評価結果 } \\ \text { の有無 } \end{gathered}$	施設時の適用規格	評価区分	$\begin{array}{\|c\|l} \text { 同等性 } \\ \text { 評価 } \\ \text { 区分 } \end{array}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラスス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 条件 } \\ \text { アップ } \\ \text { の有無 } \\ \hline \end{array}$	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { 王力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$					
PL R－001	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	既設	有	無	DB－1	DB－1	SA－2	有	10． 40	302	10． 40	315	－	S55告示	設計•建設規格又は告示	－	SA－2
PLR－002	既設	有	無	DB－1	DB－1	SA－2	有	10． 40	302	10． 40	315	－	S55告示	設計•建設規格又は告示	－	SA－2

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 設計条件 11
3.2 材料及び許容応力 19
4．評価結果 21
5．代表モデルの選定結果及び全モデルの評価結果 23

1．概要

本計算書は，添付書類「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記号	内容
\longrightarrow	工事計画記載範囲の管のうち，本計算書記載範囲の管
K	工事計画記載範囲外の管
$\mid \longleftarrow \text { OOO系 }$	工事計画記載範囲の管のうち，他系統の管であって解析モデル として本系統に記載する管
－	質点
\bigcirc	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
＊	スナッバ
	ハンガ
\rightarrow	ガイド

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
$\mathrm{P} L \mathrm{R}-001$

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
PLR－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
10	10.34	315	355.6	23.8	STS410
11	10.40	315	318.5	25.4	STS410
12	10.40	315	318.5	25.4	SUSF316

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
PLR－001

配管の質量（付加質量含む）
鳥 瞰 図
PLR－001

評価点の質量を下表に示す。

O 2 （3）VI－3－3－3－1－1－1－2（重）R 0

評価点	質量（kg）								
1		49		102		141		217	
2		50		103		142		218	
3		51		104		143		222	
4		52		105		144		223	
5		53		106		145		224	
6		54		107		146		225	
29		55		108		147		226	
30		56		109		148		501	
31		57		113		149		502	
32		58		114		150		503	
33		59		115		151		504	
34		60		116		152		807	
35		61		117		153		902	
36		62		118		154		904	
37		63		119		155		905	
38		64		120		156		906	
39		65		121		164		907	
40		66		122		208		908	
41		67		123		209		909	
42		68		124		210		910	
43		69		125		211		911	
44		70		126		212		912	
45		71		127		213		913	
46		72		135		214		914	
47		73		139		215			
48		101		140		216			

$$
\begin{array}{llll}
\text { 鳥 } & \text { 瞰 } & \text { 図 } \quad \text { P R }-0001
\end{array}
$$

弁部の質量を下表に示す。

弁 6

評価点	質量 (kg)
219	
220	
221	

$$
\begin{array}{llll}
\text { 鳥 } & \text { 瞰 図 } \quad \text { P L R - } 0011
\end{array}
$$

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	111			
弁2	129			
弁3	137			
弁4	158			
弁5	206			
弁6	220			

支持点及び貫通部ばね定数
鳥 瞰 図
PLR－001

支持点部のばね定数を下表に示す。

\qquad
枠囲みの内容は商業機密の観点から公開できません。

支持点及び貫通部ばね定数
鳥 瞰 図
PLR－001

支持点部のばね定数を下表に示す。
0 U（重）$Z-I-I-I-\varepsilon-\mathcal{E}-\mathcal{-}-I \Lambda$（ © \quad O

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
＊＊ 408 ＊＊						
＊＊ 902 ＊＊						
＊＊ $904 * *$						
＊＊ 905 ＊＊						
＊＊ 906 ＊＊						
＊＊ 907 ＊＊						
＊＊ 908 ＊＊						
＊＊ 909 ＊＊						
＊＊ 910 ＊＊						
＊＊ 911 ＊＊						
＊＊ 912 ＊＊						
＊＊ 913 ＊＊						
＊＊ $914 * *$						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
		S m
STS410		120
SUS316TP	315	117
SUSF316		117

[^10]材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）	
		S m	S y
STS410	315	120	180
SUS316TP		117	129
SUSF316		117	129

O 2 （3）VI－3－3－3－1－1－1－2（重）R 0

重大事故等クラス 2 管であってクラス 1 管

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	$3 \cdot \mathrm{Sm}$
PLR－001	6	Sprm	88	351

鳥瞰図	最大応力評価点	最大底力	$\begin{gathered} \hline \text { 一次応力評価 } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot \mathrm{Sm}, 2 \cdot \mathrm{~S}$ y $)$
PLR－001	6	Sprm	87	258

代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	PLR－001	6	88	351	3.98	\bigcirc
2	PLR－002	29	68	351	5． 16	－

注記＊：告示第501号第46条第1号及び第3号に基づき計算した一次応力を示す。

No．	配管モデル	供用状態（E）＊				
		一次応力				
		$\begin{gathered} \text { 評価 } \\ \text { 点 } \end{gathered}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	PLR－001	6	87	258	2.96	\bigcirc
2	PLR－002	29	68	258	3.79	－

VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書

VI－3－3－3－2－1 主蒸気系の強度計算書
VI－3－3－3－2－2 復水給水系の強度計算書

VI－3－3－3－2－1 主蒸気系の強度計算書

VI－3－3－3－2－1－1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書 VI－3－3－3－2－1－2 主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書 VI－3－3－3－2－1－3 管の強度計算書（主蒸気系）
VI-3-3-3-2-1-1

主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」，「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」及び「VI－3－ 2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法」に基づいて計算を行ら。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

機器名	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	条件 アップ の有無	DB 条件		SA 条件						
								圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	圧力 （MPa）	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
主蒸気逃がし安全弁 逃がし弁機能用アキュムレータ	既設	有	有	DB－3	DB－3	SA－2	無	1． 77	171	1.77	171	－	S55 告示	設計•建設規格又は告示	－	SA－2

目次

1．計算条件 1
1.1 計算部位 1
1．2 設計条件 － 1
2．強度計算 2
2.1 容器の胴の厚さの計算 2
2.2 容器の平板の厚さの計算 3
2.3 容器の管台の厚さの計算 5
2.4 支持構造物の強度計算 7

1．計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

図 1－1 概要図

1．2 設計条件

最高使用圧力 (MPa)	1.77
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	171

図中の番号は次頁以降の
計算項目番号を示す。

2．強度計算
2.1 容器の胴の厚さの計算
（1）設計•建設規格 PVC－3120

胴板名称			（1）胴板
材料			SUS304TP
最高使用圧力	P	（MPa）	1.77
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	171
胴の内径	D_{i}	（mm）	199.90
許容引張応力	S	（MPa）	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	1.50
必要厚さ	t_{2}	（mm）	1.58
t_{1} ， t_{2} の大きい値	t	（mm）	1． 58
呼び厚さ	t s o	（mm）	8.20
最小厚さ	$\mathrm{t}_{\text {s }}$	（mm）	
評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}$ ，よって十分である。			

2.2 容器の平板の厚さの計算

（1）告示第 501 号第 34 条第 1 項及び第 2 項
取付け方法及び穴の有無

（2）告示第 501 号第 34 条第 2 項
平板の厚さ

平板名称		(1) 平板	
材料			SUS304
最高使用圧力	P	(MPa)	1.77
最高使用温度	S	(C)	1.71
許容引張応力	$\mathrm{MPa})$	113	
取付け方法による係数	K		0.375
平板の径	d	(mm)	204.00
必要厚さ	t	(mm)	22.11
呼び厚さ	$\mathrm{t}_{\mathrm{p} \text { o }}$	(mm)	29.00
最小厚さ	t_{p}	(mm)	
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$, よって十分である。			

（1）告示第 501 号第 34 条第 1 項及び第 2 項
取付け方法及び穴の有無

（2）告示第 5 0 1 号第 34 条第 2 項
平板の厚さ

平板名称				平板
材料				304
最高使用圧力	P	（MPa）		
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$		
許容引張応力	S	（MPa）	113	
取付け方法による係数	K			375
平板の径	d	（mm）		
必要厚さ	t	（mm）		
呼び厚さ	tpo	（mm）		
最小厚さ	t_{p}	（mm）		
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$ ，よって十分である。				

2.3 容器の管台の厚さの計算

設計•建設規格 PVC－3610

管台名称			（1）窒素出入口
材料			SUS304TP
最高使用圧力	P	（MPa）	1.77
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	171
管台の外径	D 。	（mm）	60.50
許容引張応力	S	（MPa）	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	0.47
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.47
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（2）ドレン
材料			SUS304TP
最高使用圧力	P	（MPa）	1.77
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	171
管台の外径	D	（mm）	27.20
許容引張応力	S	（MPa）	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	0.22
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.22
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

2.4 支持構造物の強度計算書

種類	ラグ本数	材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{F} \text { 値 } \\ & (\mathrm{MPa}) \end{aligned}$	せん断荷重 $\mathrm{Fs}_{\mathrm{s}}(\mathrm{~N})$	せん断断面積 $\mathrm{A}_{\mathrm{s}}\left(\mathrm{~mm}^{2}\right)$	一次せん断応力 τ（MPa）	許容せん断応力 fs（MPa）	評価
たて置 円筒形容器	4	SUS304	171	203	1． 716×10^{2}	2． 520×10^{2}	1	78	算出値は，許容値以下であるので強度は十分である。

（2）一次曲げ応力評価

種類	ラグ本数	材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{F} \text { 値 } \\ & \text { (MPa) } \end{aligned}$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}(\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	断面係数 $\mathrm{Z}\left(\mathrm{~mm}^{3}\right)$	$\begin{gathered} \text { 一次曲げ応力 } \\ \sigma \text { b (MPa) } \end{gathered}$	許容曲げ応力 fb（MPa）	評価
たて置円筒形容器	4	SUS304	171	203	8581	3． 780×10^{2}	23	135	算出値は，許容値以下であるので強度は十分である。

【主蒸気逃がし安全弁逃がし弁機能用アキュムレータ 支持構造物の強度計算説明図】
VI-3-3-3-2-1-2

主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書

本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」，「VI－3－2－8 重大事故等クラス 2 容器の強度計算方法」及び「VI－3－ 2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法」に基づいて計算を行う。評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

$$
\text { O } 2 \text { (3) VI-3-3-3-2-1-2 R } 0
$$

－評価条件整理表

機器名	既設or新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			クラス	施設時			$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件						
			$\begin{aligned} & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	クラス	クラス		圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	圧力 （MPa）	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$					
主蒸気逃がし安全弁自動減圧機能用アキュムレータ	既設	有	有	DB－3	DB－3	SA－2	無	1．77	171	1.77	171	－	S55 告示	設計•建設規格又は告示	－	SA－2

目次

1．計算条件 1
1.1 計算部位 1
1．2 設計条件 1
2．強度計算 2
2.1 容器の胴の厚さの計算 2
2.2 容器の平板の厚さの計算 3
2.3 容器の管台の厚さの計算 5
2.4 支持構造物の強度計算 7

1．計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

図 1－1 概要図

図中の番号は次頁以降の計算項目番号を示す。

1．2 設計条件

最高使用圧力 (MPa)	1.77
最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	171

2．強度計算
2.1 容器の胴の厚さの計算
（1）設計•建設規格 PVC－3120

胴板名称			（1）胴板
材料			SUS304
最高使用圧力	P	（MPa）	1． 77
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	171
胴の内径	D_{i}	（mm）	450.00
許容引張応力	S	（MPa）	113
継手効率	η		0.60
継手の種類			裏当金を使用しない突合
放射線検査の有無			無し
必要厚さ	t ${ }_{1}$	（mm）	1.50
必要厚さ	t 2	（mm）	5.97
t_{1} ， t_{2} の大きい値	t	（mm）	5.97
呼び厚さ	t s o	（mm）	12.00
最小厚さ	t s	（mm）	

2.2 容器の平板の厚さの計算

（1）告示第 501 号第 34 条第 1 項及び第 2 項
取付け方法及び穴の有無

（2）告示第 501 号第 34 条第 2 項
平板の厚さ

平板名称		(1) 平板	
材料		SUS304	
最高使用圧力	P	(MPa)	1.77
最高使用温度	S	$\left({ }^{\circ} \mathrm{C}\right)$	1.71
許容引張応力	$\mathrm{MPa})$	113	
取付け方法による係数	K		0.375
平板の径	d	(mm)	453.00
必要厚さ	t	(mm)	49.10
呼び厚さ	$\mathrm{t}_{\mathrm{p} ~}$ o	(mm)	56.00
最小厚さ	t_{p}	(mm)	
評価 $: \mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$, よって十分である。			

[^11]（1）告示第 5 0 1 号第34条第1項及び第2項
取付け方法及び穴の有無

（2）告示第 5 O 1 号第 34 条第 2 項
平板の厚さ

平板名称		(2) 平板	
材料			SUS304
最高使用圧力	P	(MPa)	1.77
最高使用温度	S	(C)	1.71
許容引張応力	$\mathrm{MPa})$	113	
取付け方法による係数	K		0.375
平板の径	d	(mm)	453.00
必要厚さ	t	(mm)	49.10
呼び厚さ	$\mathrm{t}_{\mathrm{p} \text { o }}$	(mm)	56.00
最小厚さ	t_{p}	(mm)	
評価： $\mathrm{t}_{\mathrm{p}} \geqq \mathrm{t}$, よって十分である。			

2.3 容器の管台の厚さの計算

設計•建設規格 PVC－3610

容器の管台の厚さの計算
設計•建設規格 PVC－3610

管台名称			（2）ドレン
材料			SUS304TP
最高使用圧力	P	（MPa）	1.77
最高使用温度		$\left({ }^{\circ} \mathrm{C}\right)$	171
管台の外径	D	（mm）	27.20
許容引張応力	S	（MPa）	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t_{1}	（mm）	0.22
必要厚さ	t 3	（mm）	－
t_{1} ， t_{3} の大きい値	t	（mm）	0.22
呼び厚さ	$\mathrm{t}_{\mathrm{n} \text { o }}$	（mm）	3.90
最小厚さ	t_{n}	（mm）	
評価： $\mathrm{t}_{\mathrm{n}} \geqq \mathrm{t}$ ，よって十分である。			

2.4 支持構造物の強度計算書

種類	ラグ本数	材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { F値 } \\ & (\mathrm{MPa}) \end{aligned}$	せん断荷重 $\mathrm{Fs}_{\mathrm{s}}(\mathrm{~N})$	せん断断面積 $\mathrm{As}_{\mathrm{s}}\left(\mathrm{~mm}^{2}\right)$	一次せん断応力 τ（MPa）	許容せん断応力 $\mathrm{fs}(\mathrm{MPa})$	評価
たて置円筒形容器	4	SUS304	171	203	9． 316×10^{2}	7． 787×10^{2}	2	78	算出値は，許容値以下であるので強度は十分である。

種類	ラグ本数	材料	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{F} \text { 値 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}(\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	断面係数 $\mathrm{Z}\left(\mathrm{~mm}^{3}\right)$	一次曲げ応力 σ b（MPa）	許容曲げ応力 fb（MPa）	評価
たて置円筒形容器	4	SUS304	171	203	5． 869×10^{4}	1557	38	135	算出値は，許容値以下であるので強度は十分である。

側面図及び平面図

【主蒸気逃がし安全弁自動減圧機能用アキュムレータ 支持構造物の強度計算説明図】

[^0]: 注記 $*$ ：残存剛性率（ $\mathrm{G}_{\mathrm{d}} / \mathrm{G}_{0}$ ）が小さい領域は次式で補間

[^1]: 注記＊：B 級については，C $\mathrm{H}_{\text {級と同じ値を用いる。 }}$

[^2]: 主記＊ $1:$ コンクリート標漼示方書 構造性能照査編 土木学会 2002年

[^3]: （凡例）○：各項目の評価の結果，良であることを確認した。

[^4]: $\stackrel{\square}{\circ}$
 $\mathrm{VI}-3-3-1-1-1$
 （a）
 N
 \bigcirc

[^5]: 枠囲みの内容は商業機密の観点から公開できません。

[^6]: O 2
 （3） $\mathrm{VI}-3-3-2-2-1-3$
 R 0

[^7]: 評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よって十分である。

[^8]: 注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。

[^9]: 注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。

[^10]: VI－3－3－3－1－1－1－2（重）R 0

 N

[^11]: 枠囲みの内容は商業機密の観点から公開できません。

