原子力規制委員会 殿

> | 仙台市青葉区本町一丁目 7 番 1 号 | | | | |
| :--- | :---: | :---: | :---: | :---: |
| 東 北 電 力 株 式 会 社 | | | | |
| 取締役社長 社長執行役員 | | | | |
| 樋口 康二郎 | | | | |

工事計画認可申請書の一部補正について

平成 25 年 12 月 27 日付け東北電原設第 9 号をもつて申請いたしました女川原子力発電所第 2 号機の工事計画認可申請書（令和 2 年 5 月 29 日付 け東北電原設第 1 号及び令和 2 年 9 月 30 日付け東北電原設第 3 号にて一部補正）について，別紙のとおり一部補正いたします。

目 次

1．補正項目

2．補正を必要とする理由を記載した書類

3．補正前後比較表

4．補正内容を反映した書類

1．補正項目

補正項目
補正項目は下表のとおり。

補正項目	
II	工事計画
1.	原子炉本体
1.8	原子炉本体の基本設計方針，適用基準及び適
	用規格
	（2）適用基準及び適用規格

2．核燃料物質の取扱施設及び貯蔵施設
2.5 核燃料物質の取扱施設及び貯蔵施設の基本設計方針，適用基準及び適用規格
（2）適用基準及び適用規格

3．原子炉冷却系統施設
3.11 原子炉冷却系統施設（蒸気タービンを除く。） の基本設計方針，適用基準及び適用規格
（2）適用基準及び適用規格
3.13 蒸気タービン
3.13 .3 蒸気タービンの基本設計方針，適用基準及 び適用規格
（2）適用基準及び適用規格

4．計測制御系統施設
4.10 計測制御系統施設の基本設計方針，適用基準及び適用規格
（2）適用基準及び適用規格

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

補正項目		
5.	放射性廃棄物の廃棄施設	
5.5	放射性廃棄物の廃棄施設の基本設計方針，適	

（2）適用基準及び適用規格

6．放射線管理施設
6.4 放射線管理施設の基本設計方針，適用基準及 び適用規格
（2）適用基準及び適用規格

7．原子炉格納施設
7.4 原子炉格納施設の基本設計方針，適用基準及 び適用規格
（2）適用基準及び適用規格

8．その他発電用原子炉の附属施設
8.1 非常用電源設備

8．1．4 非常用電源設備の基本設計方針，適用基準及び適用規格
（2）適用基準及び適用規格

8．2 常用電源設備
8．2．4 常用電源設備の基本設計方針，適用基準及 び適用規格
（2）適用基準及び適用規格

8．3 補助ボイラー
8．3．15 補助ボイラーの基本設計方針，適用基準及 び適用規格
（2）適用基準及び適用規格

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
8．4 火災防護設備 8．4．3 火災防護設備の基本設計方針，適用基準及 び適用規格 （2）適用基準及び適用規格	追加する。「4．補正内容を反映 した書類」による。
8.5 浸水防護施設 8．5．3 浸水防護施設の基本設計方針，適用基準及 び適用規格 （2）適用基準及び適用規格	追加する。「4．補正内容を反映 した書類」による。
8． 6 補機駆動用燃料設備 8．6．2 補機駆動用燃料設備の基本設計方針，適用基準及び適用規格 （2）適用基準及び適用規格	追加する。「4．補正内容を反映 した書類」による。
8.7 非常用取水設備 8．7．2 非常用取水設備の基本設計方針，適用基準及び適用規格 （2）適用基準及び適用規格	追加する。「4．補正内容を反映 した書類」による。
8．9 緊急時対策所 8．9．2 緊急時対策所の基本設計方針，適用基準及 び適用規格 （2）適用基準及び適用規格	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI 添付書類	「3．補正前後比較表」による。
VI－1 説明書	「3．補正前後比較表」による。
VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセスルート	追加する。「4．補正内容を反映 した書類」による。
VI－1－1－6－別添2 可搬型重大事故等対処設備の設計方針	追加する。「4．補正内容を反映 した書類」による。
VI－1－1－6－別添4 ブローアウトパネル関連設備の設計方針	追加する。「4．補正内容を反映 した書類」による。
VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書	「3．補正前後比較表」による。
$\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-1-1-8-5$ 溢水防護施設の詳細設計	追加する。「4．補正内容を反映 した書類」による。
VI－1－2 原子炉本体の説明書	「3．補正前後比較表」による。
VI－1－2－1 原子炉本体の基礎に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－1－6 放射性廃棄物の廃棄施設の説明書	追加する。「4．補正内容を反映 した書類」による。
VI－1－6－1 排気筒の基礎に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－1－8 原子炉格納施設の説明書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－1－8－3 原子炉格納施設の基礎に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－1－10 設計及び工事に係る品質マネジメントシ ステムに関する説明書	「3．補正前後比較表」による。
VI－1－10－2 本設工認に係る設計の実績，工事及び検査の計画 原子炉本体	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－3 本設工認に係る設計の実績，工事及び検査の計画 核燃料物質の取扱施設及 び貯蔵施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画 計測制御系統施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－6 本設工認に係る設計の実績，工事及び 検査の計画 放射性廃棄物の廃棄施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－7 本設工認に係る設計の実績，工事及び検査の計画 放射線管理施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画 原子炉格納施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－9 本設工認に係る設計の実績，工事及び 検査の計画 非常用電源設備	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－10 本設工認に係る設計の実績，工事及び検査の計画 常用電源設備	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－11 本設工認に係る設計の実績，工事及び検査の計画 補助ボイラー	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画 火災防護設備	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画 浸水防護施設	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－14 本設工認に係る設計の実績，工事及び検査の計画 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係 るものを除く。）	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－15 本設工認に係る設計の実績，工事及び検査の計画 非常用取水設備	追加する。「4．補正内容を反映 した書類」による。
VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画 緊急時対策所	追加する。「4．補正内容を反映 した書類」による。
VI－2 耐震性に関する説明書	「3．補正前後比較表」による。
VI－2－1 耐震設計上の基本方針	「3．補正前後比較表」による。
VI－2－1－7 設計用床応答曲線の作成方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－2－2 原子炉建屋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－6 復水貯蔵タンク基礎の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－12－1 原子炉機器冷却海水配管ダクト（水平部）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－13 軽油タンク室の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－14 軽油タンク室の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－15 軽油タンク室（H）の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－16 軽油タンク室（H）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－20 軽油タンク連絡ダクトの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－21 䑐急用電気品建屋の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－2－22 緊急用電気品建屋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－23 緊急時対策建屋の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－24 緊急時対策建屋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－25 排気筒基礎の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－26 排気筒基礎の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－2－30 第3号機海水熱交換器建屋の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3 原子炉本体の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－1 原子炉本体の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3 炉心の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－1 燃料集合体の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－3－3－2 炉心支持構造物の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-3-3-2-1$ 炉心支持構造物の応力解析の方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－2 炉心シュラウドの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－3 シュラウドサポートの耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－5 上部格子板の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－6 炉心支持板の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4 原子炉圧力容器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－1 原子炉圧力容器本体の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－3－4－1－2 原子炉圧力容器の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（テ ィーよりN11ノズルまでの外管）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3 原子炉圧力容器内部構造物の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－2 蒸気乾燥器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－3 気水分離器及びスタンドパイプの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－4 シュラウドヘッドの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－5 ジェットポンプの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI-2-3-4-3-6	給水スパージャの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-3-4-3-7$	高圧及び低圧炉心スプレイスパー ジャの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－3－4－3－8	残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\text { VI }-2-3-4-3-9$	高圧及び低圧炬心スプレイ系配管 （原子炉圧力容器内部）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI-2-3-4-3-10	差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI-2-3-4-3-11	中性子束計測案内管の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4 核燃料震性に	斗物質の取扱施設及び貯蔵施設の耐 つついての計算書	「3．補正前後比較表」による。
VI－2－4－1 核燃耐震	然料物質の取扱施設及び貯蔵施設の震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－2 使用 の計	用済燃料貯蔵設備の耐震性について算書	追加する。「4．補正内容を反映 した書類」による。
	用済燃料貯蔵ラック（第 1，2 号機共用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
	御棒•破損燃料貯蔵ラックの耐震性 こついての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
$\mathrm{VI}-2-4-2-4$ 使用済燃料プール水位／温度（ガイド パルス式）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－2－5 使用済燃料プール水位／温度（ヒート サーモ式）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－3 使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－4－3－1 燃料プール泠却浄化系の耐震性につ いての計算書	「3．補正前後比較表」による。
VI－2－4－3－1－2 燃料プール冷却浄化系ポンプの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－3－1－3 管の耐震性についての計算書（燃料 プール泠却浄化系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－3－2 燃料プール代替注水系の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{cl}\text { VI－2－4－3－2－1 } & \text { 管の耐震性についての計算書（燃料 } \\ & \text { プール代替注水系）}\end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－3－3 燃料プールスプレイ系の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－3－3－1 管の耐震性についての計算書（燃料 プールスプレイ系)	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－4 核燃料物質の取扱施設及び貯蔵施設の基本設計方針の耐震性についての説明書	追加する。「4．補正内容を反映 した書類」による。
VI－2－4－4－1 使用済燃料プール監視カメラの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－5 原子炉冷却系統施設の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－1 原子炉冷却系統施設の耐震性について の計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－2 原子炉冷却材再循環設備の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－2－1 原子炉再循環系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－2－1－1 管の耐震性についての計算書（原子炉再循環系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－3 原子炉冷却材の循環設備の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－3－1 主蒸気系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－3－1－1 アキュムレータの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－4 残留熱除去設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－4－1 残留熱除去系の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－4－1－2 残留熱除去系ポンプの耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－4－2 耐圧強化ベント系の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－5－4－2－1 管の耐震性についての計算書（耐圧強化ベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－5－1 高圧炉心スプレイ系の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5－2 低圧炉心スプレイ系の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5－2－1 低圧炉心スプレイ系ポンプの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5－3 高圧代替注水系の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－5－4 低圧代替注水系の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－5－4－2 管の耐震性についての計算書（低圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－6 原子炉冷却材補給設備の耐震性につい ての計算書	「3．補正前後比較表」による。
VI－2－5－6－1 原子炉隔離時冷却系の耐震性につい ての計算書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－2－5－6－1－2 原子炉隔離時冷却系ポンプ駆動用 タービンの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－6－2 補給水系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－6－2－1 復水移送ポンプの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－6－2－2 復水貯蔵タンクの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－7 原子炉補機冷却設備の耐震性について の計算書	「3．補正前後比較表」による。
VI－2－5－7－1 原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－5－7－1－5 原子炉補機冷却海水系ストレーナ の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－7－3 原子炉補機代替冷却水系の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－5－7－3－1 管の耐震性についての計算書（原子炉補機代替冷却水系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－6 計測制御系統施設の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－6－1 計測制御系統施設の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－2 制御材の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－2－1 制御棒の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－3 制御材駆動装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－3－1 制御棒駆動機構の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－3－2 制御棒駆動水圧設備の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－3－2－1 水圧制御ユニットの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－4－1 ほう酸水注入系の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－6－4－1－1 ほう酸水注入系ポンプの耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－4－1－3 管の耐震性についての計算書（ほう酸水注入系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5 計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－1 起動領域計測装置及び出力領域計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－1－1 起動領域モニタの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－5－1－2 出力領域モニタの耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2 原子炉圧力容器本体の入口又は出口 の原子炉冷却材の圧力，温度又は流量 を計測する装置（常設）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1 一次冷却材圧力計測装置の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－1 原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－2 高圧代替注水系ポンプ出口圧力 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－3 直流駆動低圧注水系ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－4 代替循環冷却ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－5 原子炉隔離時冷却系ポンプ出口 圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－6 高圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－7 残留熱除去系ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－1－8 低圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
$\mathrm{VI}-2-6-5-2-1-9$	復水移送ポンプ出口圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-2-2$	一次冷却材温度計測装置の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-2-2-1$	残留熱除去系熱交換器入口温度 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－2－2	残留熱除去系熱交換器出口温度 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI-2-6-5-2-3	一次冷却材流量計測装置の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-2-3-1$	原子炉冷却材浄化系入口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-2-3-2$	高圧代替注水系ポンプ出口流量 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－3	残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライ ン洗浄流量）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－4	残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ラ イン洗浄流量）の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-2-3-5$	直流駆動低圧注水系ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－6	代替循環冷却ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－5－2－3－7 原子炉隔離時冷却系ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－8 高圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－9 残留熱除去系ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－2－3－10 低圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3 原子炉圧力容器本体内の圧力又は水位を計測する装置（常設）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－1 原子炉圧力容器本体内圧力計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－1－1 原子炉圧力の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－1－2 原子炉圧力（SA）の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－2 原子炉圧力容器本体内水位計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－2－1 原子炉水位の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－2－2 原子炉水位（広帯域）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－2－3 原子炉水位（燃料域）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－5－3－2－4 原子炉水位（SA 広帯域）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－3－2－5 原子炉水位（SA 燃料域）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置（常設）の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－1 原子炉格納容器内圧力計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－1－1 ドライウェル圧力の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－1－2 圧力抑制室圧力の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－2 原子炉格納容器内温度計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-6-5-4-2-1$ ドライウェル温度の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－2－2 圧力抑制室内空気温度の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－2－3 サプレッションプール水温度の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－2－4 原子炉格納容器下部温度の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－5－4－3 原子炉格納容器内酸素ガス濃度計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－3－1 格納容器内雾囲気酸素濃度の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－4 原子炉格納容器内水素ガス濃度計測装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－4－1 格納容器内水素濃度（D／W）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－4－2 格納容器内水素濃度（S／C）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－4－4－3 格納容器内雰囲気水素濃度の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－6 原子炉冷却材再循環流量を計測する装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－6－1 原子炉再循環ポンプ入口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－7 原子炉格納容器本体への冷却材流量 を計測する装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－7－1 原子炉格納容器代替スプレイ流量 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－7－2 原子炉格納容器下部注水流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－8 原子炉格納容器本体の水位を計測す る装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－5－8－1 圧力抑制室水位の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－8－2 原子炉格納容器下部水位の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－8－3 ドライウェル水位の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－9 原子炉建屋内の水素ガス濃度を計測 する装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－5－9－1 原子炉建屋内水素濃度の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7 その他の計測制御設備の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－1 計測制御設備の盤の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－2 衛星電話設備（固定型）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－2－1 衛星電話設備（固定型）（中央制御室）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－2－2 衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－2－3 衛星電話設備（固定型）（緊急時対策所）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－2－4 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
$\mathrm{VI}-2-6-7-3$ 無線連絡設備（固定型）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－3－1 無線連絡設備（固定型）（中央制御室）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－3－2 無線連絡設備（屋外アンテナ）（中央制御室）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{ll}\mathrm{VI}-2-6-7-3-3 & \text { 無線連絡設備（固定型）（緊急時対 } \\ & \text { 策所）の耐震性についての計算書 }\end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－3－4 無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－4 安全パラメータ表示システム（SPDS） SPDS 表示装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－5 安全パラメータ表示システム（SPDS）無線通信用アンテナの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－6 統合原子力防災ネットワークを用い た通信連絡設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－7 統合原子力防災ネットワーク設備衛星アンテナの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－8 統合原子力防災ネットワーク用通信機器収容架の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－6－7－9 代替原子炉再循環ポンプトリップ遮断器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－10 原子炉圧力容器温度の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－11 フィルタ装置水位（広帯域）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－12 フィルタ装置入口圧力（広帯域）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－13 フィルタ装置出口圧力（広帯域）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－14 フィルタ装置水温度の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－15 フィルタ装置出口水素濃度の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－16 原子炉補機冷却水系系統流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－17 残留熱除去系熱交換器冷却水入口流量の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－6－7－18 静的触媒式水素再結合装置動作監視装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－7 放射性廃棄物の廃棄施設の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－7－1 放射性廃棄物の廃棄施設の耐震性につ いての計算結果	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－7－2 気体廃棄物処理系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-7-2-1$ 排気筒の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－7－3 液体廃棄物処理系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－7－3－2 サプレッションプール水貯蔵系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－7－3－2－1 管の耐震性についての計算書（サプ レッションプール水貯蔵系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－8 放射線管理施設の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－1 放射線管理施設の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2 放射線管理用計測装置についての耐震計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-8-2-1 \quad$ プロセスモニタリング設備の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－1 主蒸気管中の放射性物質濃度を計測する装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－1－1 主蒸気管放射線モニタの耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－8－2－1－2 原子炉格納容器本体内の放射性物質濃度を計測する装置の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－2－1 格納容器内雾囲気放射線モニタ （D／W）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－2－2 格納容器内雾囲気放射線モニタ （S／C）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－3 放射性物質により汚染するおそれ がある管理区域から環境に放出す る排水中又は排気中の放射性物質濃度を計測する装置の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－3－1 原子炉建屋原子炉棟排気放射線 モニタの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－3－2 フィルタ装置出口放射線モニタ の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－3－3 燃料取替エリア放射線モニタの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－1－3－4 耐圧強化ベント系放射線モニタ の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－2 エリアモニタリング設備の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－8－2－2－1 使用済燃料貯蔵槽エリアの線量当量率を計測する装置の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－2－1－1 使用済燃料プール上部空間放射線モニタ（低線量）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－2－2－1－2 使用済燃料プール上部空間放射線モニタ（高線量）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3 換気設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1 中央制御室換気空調系の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1－1 中央制御室換気空調系ダクトの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1－2 中央制御室送風機の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1－3 中央制御室再循環送風機の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1－4 中央制御室排風機の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－1－5 中央制御室再循環フィルタ装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－2 緊急時対策所換気空調系の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－8－3－2－1 緊急時対策所換気空調系ダクトの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－2－2 管の耐震性についての計算書（緊急時対策所換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－2－3 緊急時対策所非常用送風機の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－2－4 緊急時対策所非常用フィルタ装置 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－3 中央制御室待避所加圧空気供給系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－3－1 管の耐震性についての計算書（中央制御室待避所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－3－2 差圧計（中央制御室待避所用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－4 緊急時対策所加圧空気供給系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－4－1 管の耐震性についての計算書（緊急時対策所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－3－4－2 差圧計（緊急時対策所用）の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－4 生体遮蔽装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－4－1 2 次しゃへい壁の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－8－4－2 補助しゃへいの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－4－3 中央制御室しやへい壁の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－4－4 中央制御室待避所遮蔽の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－8－4－5 緊急時対策所遮蔽の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9 原子炉格納施設の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－9－1 原子炉格納施設の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2 原子炉格納容器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－1 原子炉格納容器本体の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－1－1 ドライウェルの耐震性についての 計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{cl} \text { VI }-2-9-2-1-2 \quad \text { サプレッションチェンバの耐震性 } \\ & \text { についての計算書 } \end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－1－3 原子炉格納容器シヤラグの耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－1－5 ボックスサポートの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－9－2－2 機器搬出入口の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－2－1 機器搬出入用ハッチの耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－2－2 逃がし安全弁搬出入口の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－2－3 制御棒駆動機構搬出入口の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{cl} \mathrm{VI}-2-9-2-2-4 & \text { サプレッションチェンバ出入口の } \\ & \text { 耐震性についての計算書 } \end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－3 エアロックの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－3－1 所員用エアロックの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－4 原子炉格納容器配管貫通部及び電気配線貫通部の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－4－1 原子炉格納容器配管貫通部の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－2－4－2 原子炉格納容器電気配線貫通部の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－3 原子炉建屋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－9－3－3 原子炉建屋エアロックの耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－9－4－1 ダウンカマの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－2 ベント管の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3 原子炉格納容器安全設備の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－1 原子炉格納容器スプレイ泠却系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－1－1 管の耐震性についての計算書（原子炉格納容器スプレイ冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－2 原子炉格納容器下部注水系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－2－1 管の耐震性についての計算書（原子炉格納容器下部注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－3 原子炉格納容器代替スプレイ冷却系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－3－1 管の耐震性についての計算書（原子炉格納容器代替スプレイ冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－4 代替循環冷却系の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－9－4－3－4－1 代替循環冷却ポンプの耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－3－4－2 管の耐震性についての計算書（代替循環冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4 放射性物質濃度制御設備及び可燃性 ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－1 非常用ガス処理系の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－1－1 非常用ガス処理系空気乾燥装置 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－1－3 非常用ガス処理系排風機の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－1－4 非常用ガス処理系フィルタ装置 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－1－5 原子炉建屋ブローアウトパネル閉止装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－2 可燃性ガス濃度制御系の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－2－2 可燃性ガス濃度制御系再結合装置ブロワの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－2－3 可燃性ガス濃度制御系再結合装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－9－4－4－3 原子炉建屋水素濃度制御系の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－4－3－1 静的触媒式水素再結合装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－9－4－6－1 原子炉格納容器フィルタベント系 の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－9－4－6－1－1 管の耐震性についての計算書（原 子炉格納容器フィルタベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－2－10 その他発電用原子炉の附属施設の耐震性 についての計算書	「3．補正前後比較表」による。
VI－2－10－1 非常用電源設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－10－1－1 非常用電源設備の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2 非常用電源装置の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－10－1－2－3 ガスタービン発電設備の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－3－1 ガスタービン発電設備 機関•発電機の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－3－2 ガスタービン発電設備 燃料移送ポンプの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－10－1－2－3－3 ガスタービン発電設備 軽油タ ンクの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－3－4 ガスタービン発電設備 燃料小出槽の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－3－5 ガスタービン発電設備 管の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－3－6 ガスタービン発電設備 制御盤 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－2－4 緊急時対策所ディーゼル発電設備 の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－10－1－2－4－2 緊急時対策所ディーゼル発電設 備 管の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－3 その他の電源装置の耐震性について の計算書	「3．補正前後比較表」による。
VI－2－10－1－3－2 電力貯蔵装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－3－2－1 125 V 蓄電池の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－3－2－2 125 V 代替蓄電池の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－3－2－3 250V 蓄電池の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4 その他の非常用電源設備の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
$\mathrm{VI}-2-10-1-4-1$	メタルクラッドスイッチギア (非常用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-10-1-4-2$	メタルクラッドスイッチギア（高圧炉心スプレイ系用）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－3	パワーセンタ（非常用）の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-10-1-4-4$	モータコントロールセンタ（非常 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－5	モータコントロールセンタ（高圧炉心スプレイ系用）の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－6	動力変圧器（非常用）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－7	動力変圧器（高圧炉心スプレイ系 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-10-1-4-8$	460V 原子炉建屋交流電源切替盤 （非常用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－9	中央制御室 $120 V$ 交流分電盤（非常用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－10	ガスタービン発電機接続盤の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-10-1-4-11$	メタルクラッドスイッチギア(緊急用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI－2－10－1－4－12	動力変圧器（緊急用）の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－13	パワーセンタ（緊急用）の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－14	モータコントロールセンタ（緊急 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－15	ガスタービン発電設備燃料移送 ポンプ接続盤の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－16	460V 原子炉建屋交流電源切替盤 （緊急用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－17	120V 原子炉建屋交流電源切替盤 （緊急用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－18	中央制御室 120 V 交流分電盤（緊急用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－19	メタルクラッドスイッチギア（緊急時対策所用）の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－20	動力変圧器（緊急時対策所用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－21	モータコントロールセンタ（緊急時対策所用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI－2－10－1－4－22	105 V 交流電源切替盤（緊急時対策所用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－23	105 V 交流分電盤（緊急時対策所 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－24	120 V 交流分電盤（緊急時対策所 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－25	210V 交流分電盤（緊急時対策所 用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－26	125 V 直流主母線盤（緊急時対策所用）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－27	125V 充電器 2 A 及び 2 B の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－28	125V 直流主母線盤 2A 及び 2B の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－29	125 V 直流主母線盤 2A－1 及び $2 \mathrm{~B}-$ 1 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－30	125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-$ $3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$ 及び $2 \mathrm{~B}-3$ の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－31	125 V 直流電源切替盤 2 A 及び 2 B の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－32	$125 V$ 直流 RCICモータコントロー ルセンタの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI－2－10－1－4－33	125 V 充電器 2 H の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－34	125 V 直流主母線盤2H の耐震性に ついての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－35	125 V 直流分電盤 2 H の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－36	$125 V$ 代替充電器の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI-2-10-1-4-37	250V 充電器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－1－4－38	250V 直流主母線盤の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{cc} \mathrm{VI}-2-10-2 & \text { 浸力 } \\ & \text { 書 } \end{array}$	防護施設の耐震性についての計算	「3．補正前後比較表」による。
$\text { VI }-2-10-2-1$	水防護施設の耐震性についての計結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－3 防	朝壁の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI-2-10-2-3-1	杭基礎構造防潮壁 鋼製遮水壁 （鋼板）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-2-10-2-3-2$	杭基礎構造防潮壁 鋼製遮水壁 （鋼桁）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－10－2－3－3 杭基礎構造防潮壁 鋼製扉の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－6 逆流防止設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－6－1 屋外排水路逆流防止設備の耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－6－1－1 屋外排水路逆流防止設備（防潮堤南側）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－6－1－2 屋外排水路逆流防止設備（防潮堤北側）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－6－2 補機冷却海水系放水路逆流防止設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8 浸水防止蓋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8－1 浸水防止蓋（原子炉機器冷却海水配管ダクト）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8－2 浸水防止蓋（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内））の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8－3 浸水防止蓋（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内））の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－10－2－8－4 浸水防止蓋（第3号機補機冷却海水系放水ピット）の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8－5 浸水防止蓋（第3号機海水熱交換器建屋）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－8－6 浸水防止蓋（第2号機軽油タンク エリア）の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－12 堰の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－13 津波監視設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－2－13－1 津波監視カメラの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－3 補機駆動用燃料設備の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－3－1 補機駆動用燃料設備の耐震性につい ての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－5 緊急時対策所の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－10－5－1 緊急時対策所の耐震性についての計算結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－11－1 波及的影響を及ぼすおそれのある下位 クラス施設の耐震評価方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2 波及的影響を及ぼすおそれのある施設 の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－3 タービン建屋の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－4 補助ボイラー建屋の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－5 第1号機制御建屋の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－6 ほら酸水注入系テストタンクの耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－7 中央制御室天井照明の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－8 原子炉建屋クレーンの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－10 原子炉しゃへい壁の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－11 原子炉ウェルカバーの耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－12 耐火隔壁の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－14 制御棒貯蔵ハンガの耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－11－2－16 前面護岸の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－17 第1号機取水路の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－18 第3号機取水路の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－19 北側排水路の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－11－2－20 アクセスルート（防潮堤（盛土堤 防））の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13 地下水位低下設備の耐震性についての計算書	「3．補正前後比較表」による。
VI－2－13－4 地下水位低下設備揚水井戸の地震応答計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13－5 地下水位低下設備揚水ポンプの耐震性 についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13－6 地下水位低下設備配管の耐震性につい ての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13－7 地下水位低下設備水位計の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13－8 地下水位低下設備制御盤の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－13－9 地下水位低下設備電源盤の耐震性につ いての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－別添1 火災防護設備の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－1 火災防護設備の耐震計算の方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－2 火災感知器の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－3 火災受信機盤の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－4 ガスボンベ設備の耐震性について の計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－5 選択弁の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－6 制御盤の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－7 消火配管の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 1－8 火災防護設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 2 溢水防護に係る施設の耐震性に関す る説明書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 2－1 溢水防護に係る施設の耐震計算の方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 2－6 逆流防止装置の耐震性についての計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－2－別添 3 可搬型重大事故等対処設備等の耐震性に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－2 可搬型重大事故等対処設備の保管 エリア等における入力地震動	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－4 可搬型重大事故等対処設備のうち ボンベ設備の耐震計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－5 可搬型重大事故等対処設備のらち その他設備の耐震計算書	追加する。「4．補正内容を反映 した書類」による。
VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合 せに関する影響評価結果	追加する。「4．補正内容を反映 した書類」による。
VI－3－3 強度計算書	「3．補正前後比較表」による。
VI－3－3－1 原子炉本体の強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－1－1 原子炉圧力容器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－1－1－2 原子炉圧力容器付属構造物の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－1－1－2－1 管の強度計算書（原子炉圧力容器付属構造物）	追加する。「4．補正内容を反映 した書類」による。
VI $-3-3-1-1-2-1-1$ 差圧検出・ほう酸水注入系配管 $\begin{aligned} & \text { (ティーよりN11 ノズルまで } \\ & \text { の外管) の基本板厚計算書 } \end{aligned}$	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－1－1－2－1－2 差圧検出・ほう酸水注入系配管 （ティーよりN11 ノズルまで の外管）の応力計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書	「3．補正前後比較表」による。
VI－3－3－2－2 使用済燃料貯蔵槽冷却浄化設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1 燃料プール冷却浄化系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1－1 燃料プール冷却浄化系熱交換器 の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1－2 燃料プール冷却浄化系ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-3-3-2-2-1-3$ スキマサージタンクの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1－4 管の強度計算書（燃料プール冷却浄化系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1－4－1 管の基本板厚計算書（燃料プー ル冷却浄化系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－1－4－2 管の応力計算書（燃料プール冷却浄化系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－2－2－2 燃料プール代替注水系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-3-3-2-2-2-1$ 大容量送水ポンプ（タイプ I ）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－2－2 管の強度計算書（燃料プール代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－2－2－1 管の基本板厚計算書（燃料プー ル代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－2－2－2 管の応力計算書（燃料プール代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－2－2－3 管（可搬型）の強度評価書（燃料プール代替注水系）	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-3-3-2-2-3$ 燃料プールスプレイ系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－3－1 管の強度計算書（燃料プールスプ レイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－3－1－1 管の基本板厚計算書（燃料プー ルスプレイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－3－1－2 管の応力計算書（燃料プールス プレイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－2－2－3－1－3 管（可搬型）の強度評価書（燃料プールスプレイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3 原子炉冷却系統施設の強度に関する説明書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－1－1 原子炉再循環系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－1－1－1 管の強度計算書（原子炉再循環系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－1－1－1－1 管の基本板厚計算書（原子炉再循環系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－1－1－1－2 管の応力計算書（原子炉再循環系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－1 主蒸気系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－1－1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－1－2 主蒸気逃がし安全弁自動減圧機能用アキュムレータの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－1－3 管の強度計算書（主蒸気系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－1－3－1 管の基本板厚計算書（主蒸気系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－2－2 復水給水系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－2－2－1 管の強度計算書（復水給水系）	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-3-3-3-2-2-1-1$ 管の基本板厚計算書（復水給水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3 残留熱除去設備の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－3－1 残留熱除去系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－3－1－1 残留熱除去系熱交換器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－1－5－1 管の基本板厚計算書（残留熱除去系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－2 耐圧強化ベント系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－2－1 管の強度計算書（耐圧強化ベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－3－2－1－1 管の基本板厚計算書（耐圧強化 ベント系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－3－2－1－2 管の応力計算書（耐圧強化ベン卜系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－4－1 高圧炉心スプレイ系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－4－1－2 高圧炉心スプレイ系ストレーナ の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－1－3 弁の強度計算書（高圧炉心スプレ イ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－1－4 管の強度計算書（高圧炉心スプレ イ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－1－4－1 管の基本板厚計算書（高圧炉心 スプレイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－2 低圧炉心スプレイ系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－4－2－2 低圧炉心スプレイ系ストレーナ の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－2－3 管の強度計算書（低圧炉心スプレ イ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－2－3－1 管の基本板厚計算書（低圧灲心 スプレイ系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－3 高圧代替注水系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－4－3－2 弁の強度計算書（高圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－4－3－3 管の強度計算書（高圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－3－3－1 管の基本板厚計算書（高圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－3－3－2 管の応力計算書（高圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－4 原子炉隔離時冷却系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－4－1 弁の強度計算書（原子炉隔離時冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－5 低圧代替注水系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－4－5－2 管の強度計算書（低圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－5－2－1 管の基本板厚計算書（低圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－5－2－2 管の応力計算書（低圧代替注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－6 代替水源移送系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－6－1 管の強度計算書（代替水源移送系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－4－6－1－1 管の基本板厚計算書（代替水源移送系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－5－1 原子炉隔離時冷却系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－5－1－2 弁の強度計算書（原子炉隔離時冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－5－1－3 管の強度計算書（原子炉隔離時冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－5－1－3－1 管の基本板厚計算書（原子炉隔離時冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－5－2 補給水系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－5－2－1 復水移送ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－5－2－3 管の強度計算書（補給水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－5－2－3－1 管の基本板厚計算書（補給水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6 原子炉補機冷却設備の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－6－1 原子炉補機冷却水系及び原子炉補機冷却海水系の強度計算書	「3．補正前後比較表」による。
VI－3－3－3－6－1－1 原子炉補機冷却水系熱交換器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－1－2 原子炉補機冷却水ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－1－4 原子炉補機冷却水サージタンク の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－6－1－5 原子炉補機冷却海水系ストレー ナの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－1－6 管の強度計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－1－6－1 管の基本板厚計算書（原子炉補機冷却水系及び原子炉補機冷却海水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2 高圧炉心スプレイ補機冷却水系及 び高圧炉心スプレイ補機冷却海水系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－1 高圧炉心スプレイ補機冷却水系熱交換器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－2 高圧炉心スプレイ補機冷却水ポ ンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－3 高圧炉心スプレイ補機冷却海水 ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－4 高圧炉心スプレイ補機冷却水サ ージタンクの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－5 管の強度計算書（高圧炉心スプレ イ補機冷却水系及び高圧炉心ス プレイ補機冷却海水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－2－5－1 管の基本板厚計算書（高圧炉心 スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－6－3 原子炉補機代替冷却水系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－1 原子炉補機代替冷却水系熱交換器ユニット（熱交換器）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－2 原子炉補機代替冷却水系熱交換器ユニット（ポンプ）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－3 原子炉補機代替冷却水系熱交換器ユニット（ストレーナ）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－4 管の強度計算書（原子炉補機代替冷却水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－4－1 管の基本板厚計算書（原子炉補機代替冷却水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－4－2 管の応力計算書（原子炉補機代替冷却水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－6－3－4－3 管（可搬型）の強度評価書（原子炉補機代替冷却水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－7－1 原子炉冷却材浄化系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－3－7－1－1 管の強度計算書（原子炉冷却材浄化系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－3－7－1－1－1 管の基本板厚計算書（原子炉冷却材浄化系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－2－1 ほう酸水注入系の強度計算書	「3．補正前後比較表」による。
VI－3－3－4－2－1－1 ほう酸水注入系ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－2－1－3 管の強度計算書（ほう酸水注入系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－2－1－3－1 管の基本板厚計算書（ほう酸水注入系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－2－1－3－2 管の応力計算書（ほう酸水注入系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－3－1 高圧窒素ガス供給系の強度計算書	「3．補正前後比較表」による。
VI－3－3－4－3－1－1 高圧窒素ガスボンベの強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－3－1－2 管の強度計算書（高圧窒素ガス供給系）	「3．補正前後比較表」による。
VI－3－3－4－3－1－2－1 管の基本板厚計算書（高圧窒素 ガス供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－4－3－2－1 管の強度計算書（代替高圧窒素ガ大供給系）	「3．補正前後比較表」による。
VI－3－3－4－3－2－1－1 管の基本板厚計算書（代替高圧窒素ガス供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1 換気設備の強度計算書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－3－3－5－1－1 中央制御室換気空調系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－1－1 ダクトの強度計算書（中央制御室換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－2 緊急時対策所換気空調系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－2－1 管の強度計算書（緊急時対策所換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－2－1－1 管の基本板厚計算書（緊急時対策所換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－2－1－2 管の応力計算書（緊急時対策所換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－2－1－3 ダクトの強度計算書（緊急時対策所換気空調系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－3 中央制御室待避所加圧空気供給系 の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－3－1 中央制御室待避所加圧設備（空気 ボンベ）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－3－2 管の強度計算書（中央制御室待避所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－3－2－1 管の基本板厚計算書（中央制御室待避所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－3－2－2 管の応力計算書（中央制御室待避所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－5－1－3－2－3 管（可搬型）の強度評価書（中央制御室待避所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－4 緊急時対策所加圧空気供給系の強度計算書	「3．補正前後比較表」による。
VI－3－3－5－1－4－2 管の強度計算書（緊急時対策所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－4－2－1 管の基本板厚計算書（緊急時対策所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－4－2－2 管の応力計算書（緊急時対策所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－5－1－4－2－3 管（可搬型）の強度評価書（緊急時対策所加圧空気供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6 原子炉格納施設の強度に関する説明書	「3．補正前後比較表」による。
VI－3－3－6－1 原子炉格納容器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1 原子炉格納容器本体の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－1 ドライウェルの基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－2 ドライウェルの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－3 ドライウェル主フランジの強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－6－1－1－5 ジェットデフレクタの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI-3-3-6-1-1-6 サプレッションチェンバの基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－7 サプレッションチェンバの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－8 ボックスサポートの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－1－9 ジェット力を考慮した強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2 機器搬出入口の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－1 機器搬出入用ハッチの基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－2 機器搬出入用ハッチの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－3 逃がし安全弁搬出入口の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－4 逃がし安全弁搬出入口の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－5 制御棒駆動機構搬出入口の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－2－6 制御棒駆動機構搬出入口の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI-3-3-6-1-2-7 サプレッションチェンバ出入口 の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{cl} \mathrm{VI}-3-3-6-1-2-8 & \text { サプレッションチェンバ出入口 } \\ & \text { の強度計算書 } \end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－3 エアロックの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－3－1 所員用エアロックの基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－3－2 所員用エアロックの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4 原子炉格納容器配管貫通部及び電気配線貫通部の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4－1 原子炉格納容器配管貫通部の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4－2 原子炉格納容器配管貫通部の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4－3 原子炉格納容器配管貫通部べロ ーズの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4－4 原子炉格納容器電気配線貫通部 の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－1－4－5 原子炉格納容器電気配線貫通部 の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－3－3－6－2－1 ダウンカマ及びベントヘッダの基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－4 ベント管の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7 原子炉格納容器安全設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－1 原子炉格納容器スプレイ冷却系 の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－1－1 管の強度計算書（原子炉格納容器スプレイ冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI-3-3-6-2-7-1-1-1 ドライウェルスプレイ管の 強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI-3-3-6-2-7-1-1-1-1 ドライウェルスプレイ管 の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{ll} \text { VI-3-3-6-2-7-1-1-1-2 } & \text { ドライウェルスプレイ管 } \\ & \text { の応力計算書 } \end{array}$	追加する。「4．補正内容を反映 した書類」による。
$\begin{aligned} \mathrm{VI}-3-3-6-2-7-1-1-2 & \text { サプレッションチェンバス } \\ & \text { プレイ管の強度計算書 } \end{aligned}$	追加する。「4．補正内容を反映 した書類」による。
VI-3-3-6-2-7-1-1-2-1 サプレッションチェンバ スプレイ管の基本板厚計算書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{ll} \mathrm{VI}-3-3-6-2-7-1-1-2-2 & \text { サプレッションチェンバ } \\ & \text { スプレイ管の応力計算書 } \end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－2 原子炉格納容器下部注水系の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－6－2－7－2－1 管の強度計算書（原子炉格納容器下部注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－2－1－1 管の基本板厚計算書（原子炉格納容器下部注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－2－1－2 管の応力計算書（原子炉格納容器下部注水系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－3 原子炉格納容器代替スプレイ冷却系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－3－1 管の強度計算書（原子炉格納容器代替スプレイ泠却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－3－1－1 管の基本板厚計算書（原子炉格納容器代替スプレイ冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－3－1－2 管の応力計算書（原子炉格納容器代替スプレイン冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－4 代替循環冷却系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－4－1 代替循環冷却ポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－4－2 管の強度計算書（代替循環冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－4－2－1 管の基本板厚計算書（代替循環冷却系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－7－4－2－2 管の応力計算書（代替循環冷却系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－1－1 非常用ガス処理系空気乾燥装置の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－1－2－1 管の基本板厚計算書（非常用 ガス処理系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－1－3 非常用ガス処理系フィルタ装置の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－2 放射性物質拡散抑制系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－2－1 大容量送水ポンプ（タイプII） の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－2－2 管（可搬型）の強度評価書（放射性物質拡散抑制系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－3 可搬型窒素ガス供給系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－3－1 管の強度計算書（可搬型窒素ガ ス供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－8－3－1－1 管の基本板厚計算書（可搬型窒素ガス供給系）	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－6－2－8－3－1－3 管（可搬型）の強度評価書（可搬型窒素ガス供給系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－9－1－1 弁の強度計算書（原子炉格納容器調気系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書	「3．補正前後比較表」による。
VI－3－3－6－2－10－1－2 弁の強度計算書（原子炉格納容器フィルタベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－10－1－3 管の強度計算書（原子炉格納容器フィルタベント系）	「3．補正前後比較表」による。
VI－3－3－6－2－10－1－3－1 管の基本板厚計算書（原子炉格納容器フィルタベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－6－2－10－1－3－2 管の応力計算書（原子炉格納容器フィルタベント系）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7 その他発電用原子炉の附属施設の強度 に関する説明書	「3．補正前後比較表」による。

補正項目	補正箇所
VI－3－3－7－1－1 非常用発電装置の強度計算書	「3．補正前後比較表」による。
VI－3－3－7－1－1－5 可搬型窒素ガス供給装置発電設備の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－1－1－5－2 可搬型窒素ガス供給装置発電設備（燃料タンク）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－2 火災防護設備の強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－2－1 消火水タンクの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－2－2 屋外消火系消火水タンクの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－2－3 管の基本板厚計算書（火災防護設備）	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－3 補機駆動用燃料設備の強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－3－1 燃料設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－3－1－1 大容量送水ポンプ（タイプ I ）（燃料タンク）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－3－1－2 大容量送水ポンプ（タイプII）（燃料タンク）の強度評価書	追加する。「4．補正内容を反映 した書類」による。
VI－3－3－7－3－1－3 原子炉補機代替冷却水系熱交換器ユニット（燃料タンク）の強度評価書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－3－7－3－1－4 タンクローリの強度評価書	追加する。「4．補正内容を反映 した書類」による。
$\begin{array}{ll}\mathrm{VI}-3-3-7-3-1-5 & \text { 管（可搬型）の強度評価書（燃料 } \\ \text { 設備）}\end{array}$	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1 竜巻への配慮が必要な施設の強度に関する説明書	「3．補正前後比較表」による。
VI－3－別添 1－1－5 復水貯蔵タンクの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－7 排気筒の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－10 波及的影響を及ぼす可能性が ある施設の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－10－1 建屋の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－10－2 海水ポンプ室門型クレーン の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－10－3 消音器の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－1－10－4 ミスト配管及びベント配管 の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－2 防護対策施設の強度計算の方針	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 1－3 屋外重大事故等対処設備の固縛装置の強度計算の方針	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－別添 1－3－1 屋外重大事故等対処設備の固縛装置の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3 津波又は溢水への配慮が必要な施設 の強度に関する説明書	「3．補正前後比較表」による。
VI－3－別添 3－2 津波への配慮が必要な施設の強度計算書	「3．補正前後比較表」による。
VI－3－別添3－2－2 防潮壁の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－2－1 杭基礎構造防潮壁 鋼製遮水壁（鋼板）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－2－2 杭基礎構造防潮壁 鋼製遮水 壁（鋼桁）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－2－3 杭基礎構造防潮壁 鋼製扉の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添3－2－5 逆流防止設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－5－1 屋外排水路逆流防止設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－5－1－1 屋外排水路逆流防止設備 （防潮堤南側）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－5－1－2 屋外排水路逆流防止設備 （防潮堤北側）の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－別添 3－2－5－2 補機冷却海水系放水路逆流防止設備の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7 浸水防止蓋の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－1 浸水防止蓋（原子炉機器冷却海水配管ダクト）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－2 浸水防止蓋（第3号機補機冷却海水系放水ピット）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－3 浸水防止蓋（第3号機海水熱交換器建屋）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－4 浸水防止蓋（揚水井戸（第2号機海水ポンプ室防潮壁区画内））の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－5 浸水防止蓋（揚水井戸（第3号機海水ポンプ室防潮壁区画内））の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－2－7－6 浸水防止蓋（第2号機軽油夕 ンクエリア）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－4 溢水への配慮が必要な施設の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－4－2 堰の強度計算書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－別添3－4－3 逆流防止装置の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 3－4－4 貫通部止水処置の強度計算書 （溢水）	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添4 発電用火力設備の技術基準による強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6 炉心支持構造物の強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－1 炉心シュラウドの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－2 シュラウドサポートの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－3 炉心シュラウド支持ロッドの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－4 上部格子板の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－5 炉心支持板の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－6 燃料支持金具の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 6－7 制御棒案内管の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7 原子炉圧力容器内部構造物の強度に関する説明書	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－3－別添 7－1 ジェットポンプの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7－2 給水スパージャの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7－3 高圧及び低圧炉心スプレイスパー ジャの強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7－4 残留熱除去系配管（原子炉圧力容器内部）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7－5 高圧及び低圧炉心スプレイ系配管 （原子炉圧力容器内部）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－3－別添 7－6 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の強度計算書	追加する。「4．補正内容を反映 した書類」による。
VI－5 計算機プログラム（解析コード）の概要	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-5-1$ 計算機プログラム（解析コード）の概要• TONBOS	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-5-2$ 計算機プログラム（解析コード）の概要• BG0195HDW1	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-5-3$ 計算機プログラム（解析コード）の概要• costana	追加する。「4．補正内容を反映 した書類」による。
VI－5－4 計算機プログラム（解析コード）の概要• FLIP	追加する。「4．補正内容を反映 した書類」による。
VI－5－5 計算機プログラム（解析コード）の概要• LIQUEUR	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI-5-6	計算機プログラム（解析コード）の概要• SAC2D	追加する。「4．補正内容を反映 した書類」による。
VI－5－7	計算機プログラム（解析コード）の概要• SLIP02HDW1	追加する。「4．補正内容を反映 した書類」による。
VI－5－8	計算機プログラム（解析コード）の概要• stress－NLAP	追加する。「4．補正内容を反映 した書類」による。
VI－5－9	計算機プログラム（解析コード）の概要• suberi＿sf	追加する。「4．補正内容を反映 した書類」による。
VI－5－10	計算機プログラム（解析コード）の概要• suberi＿Type6789＿SAC2D－HD1	追加する。「4．補正内容を反映 した書類」による。
VI－5－11	計算機プログラム（解析コード）の概要• SuperFLUSH／2D	追加する。「4．補正内容を反映 した書類」による。
VI－5－12	計算機プログラム（解析コード）の概要• VESL－DYN	追加する。「4．補正内容を反映 した書類」による。
VI－5－13	計算機プログラム（解析コード）の概要• ABAQUS	追加する。「4．補正内容を反映 した書類」による。
VI－5－14	計算機プログラム（解析コード）の概要• FDT^{s}	追加する。「4．補正内容を反映 した書類」による。
VI－5－15	計算機プログラム（解析コード）の概要• DORT	追加する。「4．補正内容を反映 した書類」による。
VI－5－16	計算機プログラム（解析コード）の概要• SCALE	追加する。「4．補正内容を反映 した書類」による。
VI－5－17	計算機プログラム（解析コード）の概要• ORIGEN2	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI－5－18	計算機プログラム（解析コード）の概要• QAD－CGGP2R	追加する。「4．補正内容を反映 した書類」による。
VI－5－19	計算機プログラム（解析コード）の概要• ANISN	追加する。「4．補正内容を反映 した書類」による。
VI－5－20	計算機プログラム（解析コード）の概要• G33-GP2R	追加する。「4．補正内容を反映 した書類」による。
VI－5－21	計算機プログラム（解析コード）の概要• MAAP	追加する。「4．補正内容を反映 した書類」による。
VI－5－22	計算機プログラム（解析コード）の概要• ANSYS	追加する。「4．補正内容を反映 した書類」による。
VI－5－23	計算機プログラム（解析コード）の概要• GOTHIC	追加する。「4．補正内容を反映 した書類」による。
VI－5－24	計算機プログラム（解析コード）の概要• ISAP	追加する。「4．補正内容を反映 した書類」による。
VI－5－25	計算機プログラム（解析コード）の概要• NX NASTRAN	追加する。「4．補正内容を反映 した書類」による。
VI－5－26	計算機プログラム（解析コード）の概要• SAP－V	追加する。「4．補正内容を反映 した書類」による。
VI－5－27	計算機プログラム（解析コード）の概要• SOLVER	追加する。「4．補正内容を反映 した書類」による。
VI－5－28	計算機プログラム（解析コード）の概要• ADMITHF	追加する。「4．補正内容を反映 した書類」による。
VI－5－29	計算機プログラム（解析コード）の概要• mflow	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
VI-5-42	計算機プログラム（解析コード）の概要• SCC	追加する。「4．補正内容を反映 した書類」による。
VI－5－43	計算機プログラム（解析コード）の概要• BSPAN2	追加する。「4．補正内容を反映 した書類」による。
VI－5－44	計算機プログラム（解析コード）の概要• CARO	追加する。「4．補正内容を反映 した書類」による。
VI－5－45	計算機プログラム（解析コード）の概要• FURST	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-5-46$	計算機プログラム（解析コード）の概要• PRIME	追加する。「4．補正内容を反映 した書類」による。
VI－5－47	計算機プログラム（解析コード）の概要• ASHSD	追加する。「4．補正内容を反映 した書類」による。
VI－5－48	計算機プログラム（解析コード）の概要• PIPE	追加する。「4．補正内容を反映 した書類」による。
VI－5－49	計算機プログラム（解析コード）の概要• STAX	追加する。「4．補正内容を反映 した書類」による。
VI－5－50	計算機プログラム（解析コード）の概要• A－SAFIA	追加する。「4．補正内容を反映 した書類」による。
VI－5－51	計算機プログラム（解析コード）の概要• DYNA2E	追加する。「4．補正内容を反映 した書類」による。
VI－5－52	計算機プログラム（解析コード）の概要• SAP－IV	追加する。「4．補正内容を反映 した書類」による。
$\mathrm{VI}-5-53$	計算機プログラム（解析コード）の概要• KSAP	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
$\mathrm{VI}-5-54$	計算機プログラム（解析コード）の概要• NuPIAS	追加する。「4．補正内容を反映 した書類」による。
VI－5－55	計算機プログラム（解析コード）の概要• microSHAKE	追加する。「4．補正内容を反映 した書類」による。
VI－5－56	計算機プログラム（解析コード）の概要• UC－win／Section	追加する。「4．補正内容を反映 した書類」による。
VI－5－57	計算機プログラム（解析コード）の概要• RC 断面計算	追加する。「4．補正内容を反映 した書類」による。
VI－5－58	計算機プログラム（解析コード）の概要• APOLLO Analyzer	追加する。「4．補正内容を反映 した書類」による。
VI－5－59	計算機プログラム（解析コード）の概要• APOLLO SuperDesigner Section	追加する。「4．補正内容を反映 した書類」による。
VI－5－60	計算機プログラム（解析コード）の概要• FRAME マネージャ	追加する。「4．補正内容を反映 した書類」による。
VI－5－61	計算機プログラム（解析コード）の概要• FRAME（面内）	追加する。「4．補正内容を反映 した書類」による。
VI－5－62	計算機プログラム（解析コード）の概要• Engineer＇s Studio	追加する。「4．補正内容を反映 した書類」による。
VI－5－63	計算機プログラム（解析コード）の概要• fappase	追加する。「4．補正内容を反映 した書類」による。
VI－5－64	計算機プログラム（解析コード）の概要• KANSAS2	追加する。「4．補正内容を反映 した書類」による。
VI－5－65	計算機プログラム（解析コード）の概要• MSAP（配管）	追加する。「4．補正内容を反映 した書類」による。

	補正項目	補正箇所
$\mathrm{VI}-5-6 \mathrm{l}$	計算機プログラム（解析コード）の概要• STRUCT	追加する。「4．補正内容を反映 した書類」による。
VI-5-67	計算機プログラム（解析コード）の概要• NAPF	追加する。「4．補正内容を反映 した書類」による。
VI－5－68	計算機プログラム（解析コード）の概要• FRS Calculation System	追加する。「4．補正内容を反映 した書類」による。
VI－5－69	計算機プログラム（解析コード）の概要• LS－DYNA	追加する。「4．補正内容を反映 した書類」による。
VI－5－70	計算機プログラム（解析コード）の概要• ADMIT	追加する。「4．補正内容を反映 した書類」による。
VI－5－7	計算機プログラム（解析コード）の概要• VIANA	追加する。「4．補正内容を反映 した書類」による。
VI－5－72	計算機プログラム（解析コード）の概要• Fluent	追加する。「4．補正内容を反映 した書類」による。
VI－5－73	計算機プログラム（解析コード）の概要• CHERRY	追加する。「4．補正内容を反映 した書類」による。
VI－5－7	計算機プログラム（解析コード）の概要• FACS	追加する。「4．補正内容を反映 した書類」による。
VI－5－75	計算機プログラム（解析コード）の概要• FRS Enveloping for BWR	追加する。「4．補正内容を反映 した書類」による。

補正項目	補正箇所
VI－6 図面 9 その他発電用原子炉の附属施設 9.4 浸水防護施設 9．4．1 外郭浸水防護設備 第 9－4－1－1－57 図 第2号機海水ポンプ室浸水防止壁構造図 9．4．2 内郭浸水防護設備 第 9－4－2－1－42 図 燃料移送ポンプ（A）室浸水防止水密扉構造図 第 9－4－2－1－43 図 燃料移送ポンプ（B）室浸水防止水密扉構造図	追加する。「4．補正内容を反映 した書類」による。 追加する。「4．補正内容を反映 した書類」による。 追加する。「4．補正内容を反映 した書類」による。

2．補正を必要とする理由を記載した書類

補正を必要とする理由
平成 25 年 12 月 27 日付け東北電原設第 9 号にて申請した工事計画認可申請書（令和 2年5月29日付け東北電原設第 1 号及び令和 2 年 9 月 30 日付け東北電原設第 3 号にて一部補正）において，平成 25 年 12 月 27 日付け東北電原技第 8 号にて申請した発電用原子炉設置変更許可申請書の一部補正（令和元年 9 月 19 日付け東北電原技第 3 号，令和元年
11月6日付け東北電原技第5号，令和元年11月19日付け東北電原技第6号及び令和2年2月7日付け東北電原技第7号）に伴い，変更が必要となった事項を反映するため，
「II 工事計画」及び「V 添付書類」を補正する。

3．補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－2－5－5 非常用炉心泠却設備その他原子炉注水設備の耐震性についての計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

変更 前	変 更 後	備 考
目 次 VI－2－5－7－1 原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書 VI－2－5－7－2 高圧炬心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系の耐震性 についての計算書	目 次 VI－2－5－7－1 原子炬補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書 VI－2－5－7－2 高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機泠却海水系の耐震性 についての計算書 VI－2－5－7－3 原子炉補機代替冷却水系の耐震性についての計算書	添付書類の追加

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

変更前		
	$\mathrm{VI}-2-10-1-3-1$ 無停電電源装置の耐震性についての計算書 VI－2－10－1－3－2 電力貯蔵装置の耐震性についての計算書	

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－2－13 地下水位低下設備の耐震性についての計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第2号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表
【VI－3－3－7 その他発電用原子炉の附属施設の強度に関する説明書】

女川原子力発電所第 2 号機 工事計画認可申請書の一部補正 補正前後比較表

4．補正内容を反映した書類

II 工事計画
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉本体に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 原子炉本体に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 原子炉本体に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - 原子炉構造材の監視試験方法（J E A C 4 2 0 1－2007） - 原子炉構造材の監視試験方法（J E A C 4 2 O 1－2007（2010 年追補版））	第2章 個別項目 原子炉本体に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 - 鋼板コンクリート構造耐震設計技術規程（J E A C 4 6 1 8－2009） - 原子炉構造材の監視試験方法（J E A C 4201 －2007） - 原子炉構造材の監視試験方法（J E A C 4 2 O 1－2007（2010 年追補版）） - 原子炉構造材の監視試験方法（J E A C 4 2 O 1－2007（2013 年追補版）） - 原子力発電所用機器に対する破壊靭性の監視試験方法（J E A C 4 2 0 6 －2007）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設に適用する共通項目の基準及び規格 については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 核燃料物質の取扱施設及び貯蔵施設に適用する共通項目の基準及び規格 については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 核燃料物質の取扱施設及び貯蔵施設に適用する個別項目の基準及び規格 は以下のとおり。	第2章 個別項目 核燃料物質の取扱施設及び貯蔵施設に適用する個別項目の基準及び規格 は以下のとおり。
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉の設置，運転等に関する規則の規定に基づく線量限度等 を定める告示（平成 13 年 3 月 21 日経済産業省告示第 187 号） - クレーン等安全規則（昭和 47 年 9 月 30 日労働省令第 34 号） - クレーン構造規格（平成 7 年 12 月 26 日労働省告示第 134 号）	－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示（平成 27 年原子力規制委員会告示第 8 号） －発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） - クレーン等安全規則（昭和 47 年 9 月 30 日労働省令第 34 号） - クレーン構造規格（平成 7 年 12 月 26 日労働省告示第 134 号） - JIS E 1 1 0 1－2012 普通レール及び分岐器類用特殊レール - J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格

変更前		変更後
	•J SME S N J 1－2012 発電用原子力設備規格 材料規格	

上記の他「実用発電用原子炉に係る使用済燃料貯蔵槽における燃料損傷防止対策の有効性評価に関する審査ガイド」を参照する。
（2）適用基準及び適用規格

- 建築基準法（昭和 25 年 5 月 24 日法律第201号）
- 発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号）
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）

第1章 共通項目
原子炉冷却系統施設に適用する共通項目の基準及び規格については，以下 の基準及び規格並びに，火災防護設備，浸水防護施設の「（2）適用基準及
び適用規格 第1章 共通項目」に示す。
なお，以下に示す原子炉冷却系統施設に適用する共通項目の基準及び規格 を適用する個別の施設区分については，「表1．施設共通の適用基準及び適用規格（該当施設）」に示す。
－建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
－消防法（昭和 23 年 7 月 24 日法律第 186 号）消防法施行令（昭和 36 年 3 月 25 日政令第 37 号）
－発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501 号）
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号）
－原子力発電工作物に係る電気設備の技術基準の解釈（平成 25 年 6 月 19 日原規技発第1306199号）
－発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会決定）

変更前	変更後
－BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －発電用原子力設備における破壊を引き起こすき裂その他の欠陥の解釈に ついて（平成 $21 \cdot 11 \cdot 18$ 原院第 1 号 平成 21 年 12 月 25 日 原子力安全•保安院制定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －実用発電用原子炉施設への航空機落下確率の評価基準について（平成 21年6月25日原院第1号） －タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会） - J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J SME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格 設計•建設規格	－発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 21年3月9日原子力安全委員会一部改訂） －BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈（平成 26 年 8 月 6 日原規技発第 1408063 号原子力規制委員会） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －実用発電用原子炉施設への航空機落下確率の評価基準について（平成 21年6月25日原院第1号） －ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合） －タービンミサイル評価について（昭和 52 年 7 月 20 日原子炉安全専門審査会） - J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格 設計•建設規格

変更前	変更後
－【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格 - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - J S ME S N B 1－2007 発電用原子力設備規格 溶接規格 - J S ME S NA 1－2008 発電用原子力設備規格 維持規格 - 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 46 O 1 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版） - 原子力発電所用機器に対する破壊靭性の確認試験方法（JEAC4206 －2007）	－【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格 - J SME S 0 1 2－1998 配管内円柱状構造物の流力振動評価指針 - J S ME S NB 1－2007 発電用原子力設備規格 溶接規格 - J S ME S NA 1－2008 発電用原子力設備規格 維持規格 - J SME S NC 1－2012 発電用原子力設備規格 設計•建設規格 - J S ME S NE 1－2003 発電用原子力設備規格 コンクリート製原子炉格納容器規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1•補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所用機器に対する破壊靭性の確認試験方法（J E A C 4 2 0 6 －2007） - 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］ - 土木学会 2007年 コンクリート標準示方書［設計編］ - 土木学会 2012年 コンクリート標準示方書［設計編］ - 土木学会 2017年 コンクリート標準示方書［設計編］ - 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照查指針・マニュアル －土木学会 2015 年 トンネル・ライブラリー第 27 号シールド工事用立坑 の設計 －日本建築学会 1980 年 塔状鋼構造設計指針•同解説

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{ث} \\ & \stackrel{1}{ث} \\ & \stackrel{\rightharpoonup}{\circlearrowleft} \end{aligned}$	- 日本建築学会 1996 年 容器構造設計指針•同解説 - 日本建築学会 2004 年 建築物荷重指針•同解説 - 日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説	- 日本建築学会 - 日本建築学会 - 日本建築学会 - 日本建築学会 - 日本建築学会応力度設計法 - - 日本建築学会 - 日本建築学会 1987年 1988年 1991年 1996年 造詎計指針一司解説 1999年許容応力度設計と保有水平耐力－ - 日本建築学会 - 日本建築学会 - 日本建築学会 - 日本建築学会解説 - 日本建築学会 2005年 2010年 2004年 2005年 2015年 2001年 建築基礎構造設計指針 2005年 鋼構造設計規準－許容応力度設計法－ 2019年 鋼構造設計規準－許容応力度設計法－ 2007年 煙突構造設計指針 2007年 各種合成構造設計指針•同解説 2010年 各種合成構造設計指針•同解説 2010年 容器構造設計指針•同解説 2010 年 鋼構造限界状態設計指針•同解説

変更前	変更後
	－U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－ BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007

上記の他「原子力発電所の火山影響評価ガイド」，「原子力発電所の竜巻影響評価ガイド」，「原子力発電所の外部火災影響評価ガイド」，「耐震設計に係る工認審査ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \\ & \text { } \end{aligned}$							$\begin{aligned} & \hline \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 敬 } \\ & \text { 䛌 } \end{aligned}$	その他発電用原子炬の附属施設							
									$\begin{aligned} & \text { 幚 } \\ & \text { 常 } \\ & \text { 震 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 震 } \\ & \text { 霫 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 補 } \\ & \text { 贸 } \\ & 1 \\ & ラ \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 水 防 誰 施 設 （注）		$\begin{aligned} & \text { 幚 } \\ & \text { 畐 } \\ & \text { 敢 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 緊 } \\ & \text { 時 } \\ & \text { 柇 } \\ & \text { 䇽 } \end{aligned}$
BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針 （昭和62年11月5日原子力安全委員会決定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈（平成26年8月6日原規技発第1408063号原子力規制委員会）	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
非常用炬心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年2月27日原子力安全•保安院制定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
実用発電用原子炉施設への航空機落下確率の評価基準について （平成 21 年 6 月 25 日原院第 1 号）	\bigcirc	\bigcirc		\bigcirc												
ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討 （昭和 51 年 10 月高温構造安全技術研究組合）	\bigcirc	\bigcirc		\bigcirc												
タービンミサイル評価について（昭和52年7月20日原子炉安全専門審査会）	\bigcirc	\bigcirc		\bigcirc												
J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格	－	\bigcirc		\bigcirc	－	－	－	－								

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \\ & \text { } \end{aligned}$	貯核蔵燃施料設物質敢扱施設び	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 帢 } \\ & \text { 奚 } \\ & \text { 堃 } \end{aligned}$	$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 製 } \\ & \text { 統 } \\ & \text { 䛌 } \end{aligned}$			$\begin{aligned} & \text { 原 } \\ & \text { 妳 } \\ & \text { 敋 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										雷 䨖 源 備	$\begin{aligned} & \text { 補 } \\ & \text { 架 } \\ & 1 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 火炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 施 設 （注）	補 機 駆 憅 燃 料 設 備 （注）	倳 喣 取 水 設 備	$\begin{aligned} & \text { 㹂 } \\ & \text { 時 } \\ & \text { 㐎 } \\ & \text { 梨 } \end{aligned}$
J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－
J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格	\bigcirc	\bigcirc		\bigcirc												
【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格 設計•建設規格	－	－		\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－
【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格	\bigcirc	－		－	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－	－	－
J S ME S 0 1 2－1998 配管内円柱状構造物の流力振動評価指針	\bigcirc	\bigcirc		\bigcirc												
J S ME S NB1－2007 発電用原子力設備規格 溶接規格	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－
J S ME S NA 1－2008 発電用原子力設備規格 維持規格	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	－
J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格	－	\bigcirc		\bigcirc	\bigcirc	－	\bigcirc	－	\bigcirc	－						

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 条 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 貯核 } \\ & \text { 䙔燃 } \\ & \text { 設物 } \\ & \text { 質 } \\ & \text { 聂 } \\ & \text { 扱 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { び } \end{aligned}$		$\begin{aligned} & \text { 筬 } \\ & \text { 1 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 制 } \\ & \text { 御 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$			$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 敋 } \\ & \text { 訪 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										雷 震 源 備	$\begin{aligned} & \text { 補 } \\ & \text { 贸 } \\ & 1 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 犕 } \end{aligned}$	浸 水 防 護 施 設 （注）			$\begin{aligned} & \text { 隠 } \\ & \text { 時 } \\ & \text { 策 } \\ & \text { a } \end{aligned}$
日本建築学会 2001年 鉄骨鉄筋コンクリート構造計算規準•同解説－許容応力度設計と保有水平耐力一	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本建築学会 2005 年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2004年 建築物荷重指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本建築学会 2015年 建築物荷重指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2001年 建築基砂構造設計指針	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2019 年 鋼構造設計規準－許容応力度設計法	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \\ & \text { } \end{aligned}$			$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 製 } \\ & \text { 系 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$		放期築理施設	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 敋 } \\ & \text { 訪 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										賞 震 湶 備	$\begin{aligned} & \text { 補 } \\ & \text { 架 } \\ & \text { 1 } \\ & \text { 广 } \end{aligned}$	$\begin{aligned} & \text { 火炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 永 良 施 設 （注）		$\begin{aligned} & \text { 幟 } \\ & \text { 筩 } \\ & \text { 㳫 } \\ & \text { 備 } \end{aligned}$	
日本建築学会 2007 年 煙突構造設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2007 年 各種合成構造設計指針•同解説	－	－		－	－	\bigcirc	－	\bigcirc	－	－	－	－	－	－	－	－
日本建築学会 2010 年 各種合成構造設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 容器構造設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 鋼構造限界状態設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 鋼構造塑性設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2012 年 鋼構造接合部設計指	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2013 年 建築工事標準仕様書•同解説 JASS 5 N 原子力発電所施設における鉄筋コンクリート工事	\bigcirc	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
日本建築センター 1982年 煙突構造設計施工指針	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	－	－
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	－

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 体 } \end{aligned}$			蒸多1ビシ				$\begin{aligned} & \text { 原 } \\ & \text { 復 } \\ & \text { 敋 } \\ & \text { 誨 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
									倳 番 震 源 備	常 需 源 設 備	$\begin{aligned} & \text { 補 } \\ & \text { 易 } \\ & 1 \\ & ラ \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	浸 水 防 護 誨 設 （注）		辈 畐 敢 水 設 備	$\begin{aligned} & \text { 隠 } \\ & \text { 勍 } \\ & \text { 策 } \end{aligned}$
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 II鋼橋編•IV下部構造編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 20 年 8 月 小規模吊橋指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本水道協会 1987年 水道施設耐震工法指針•解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本下水道協会 2014年 下水道施設の耐震対策指針と解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
J C A S 16000－1968 クレーン用フック規格	－	\bigcirc		－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－
クレーン構造規格（平成7年12月26日労働省告示第134号）	\bigcirc	\bigcirc		\bigcirc												
2015 年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）	\bigcirc	\bigcirc		\bigcirc												
Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute 2011 Rev8 （NEI07－13））	\bigcirc	\bigcirc		\bigcirc												

		$\begin{aligned} & \text { 原 } \\ & \text { 燈 } \\ & \text { 体 } \end{aligned}$		原煸洽枎䍃施設	$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & \text { ビ } \\ & \text { シ } \end{aligned}$				$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 新 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										倳 雷 霫 隹 備	雷 震 㹸 備	$\begin{aligned} & \text { 補 } \\ & \text { 䁖 } \\ & 1 \\ & \vdots \\ & \vdots \end{aligned}$	炎 災 訪 謢 備	浸 永 良 放 設 部 （注）		韭 唃 取 永 設 備	$\begin{aligned} & \text { 緊 } \\ & \text { 時 } \\ & \text { 相 } \\ & \text { 梊 } \end{aligned}$
	U．S．NUCLEAR REGULATORY COMMISSION：STANDARD REVIEW PLAN 3．6．2 DETERMINATION OF RUPTURE LOCATIONS AND DYNAMIC EFFECTS ASSOCIATED WITH THE POSTULATED RUPTURE OF PIPING （SRP 3．6．2 R3）	\bigcirc	\bigcirc		\bigcirc												
$\begin{aligned} & \text { F } \\ & \stackrel{1}{0} \end{aligned}$	U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR nuCLEAR POWER PLANTS，Revision1，March 2007	\bigcirc			\bigcirc												

変更前	変更後
第2章 個別項目 原子炉冷却系統施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －軽水型動力炉の非常用炉心冷却系の性能評価指針（平成 4年6月11日原子力安全委員会一部改訂） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） - J SME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - JSME S O 1 7－2003 配管の高サイクル熱疲労に関する評価指針 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格	第2章 個別項目 原子炉冷却系統施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －軽水型動力炉の非常用炉心冷却系の性能評価指針（平成 4 年 6 月 11 日原子力安全委員会一部改訂） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） - J SME S 012 －1998 配管内円柱状構造物の流力振動評価指針 - J S ME S O 1 7－2003 配管の高サイクル熱疲労に関する評価指針 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 蒸気タービンに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 蒸気タービンに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 蒸気タービンに適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －J S ME S NB1－2007 発電用原子力設備規格 溶接規格	第2章 個別項目 蒸気タービンに適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －J S ME S NB1－2007 発電用原子力設備規格 溶接規格

（2）適用基準及び適用規格

| 変更前 |
| :---: | :---: |
| 第1章 共通項目 |
| 計測制御系統施設に適用する共通項目の基準及び規格については，以下の |
| 基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の |
| 「（2）適用基準及び適用規格 第1章 共通項目」に示す。 |

第1章 共通項目
計測制御系統施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の
「（2）適用基準及び適用規格 第1章 共通項目」に示す。

第2章 個別項目
計測制御系統施設に適用する個別項目の基準及び規格は以下のとおり。
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）
－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定）
－原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 21 年 7 月 27 日原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定）
－安全保護系へのディジタル計算機の適用に関する規程（J E A C 4 6 20 －2008）

第2章 個別項目
計測制御系統施設に適用する個別項目の基準及び規格は以下のとおり。
－高圧ガス保安法（昭和 26 年 6 月 7 日法律第204号）容器保安規則（昭和 41 年 5 月 25 日通商産業省令第 50 号）
－不正アクセス行為の禁止等に関する法律（平成11年8月13日法律第128号）
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）
－実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号）
－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和56年7月23日原子力安全委員会決定）
－原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 21 年 7 月 27 日原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定）
－安全保護系へのディジタル計算機の適用に関する規程（J E A C 4 6 20 －2008）

変更前	変更後
・ディジタル安全保護系の検証及び妥当性確認に関する指針（J E A G 4 6 0 9－2008）	・ディジタル安全保護系の検証及び妥当性確認に関する指針（J E A G 4 6 $0-2008)$

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 放射性廃棄物の廃棄施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 放射性廃棄物の廃棄施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 放射性廃棄物の廃棄施設に適用する個別項目の基準及び規格は以下のと おり。	第2章 個別項目 放射性廃棄物の廃棄施設に適用する個別項目の基準及び規格は以下のと おり。
－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）	－発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号）
－核燃料物質等の工場又は事業所の外における運搬に関する規則（昭和五十三年総理府令第五十七号）	－核燃料物質等の工場又は事業所の外における運搬に関する規則（昭和五十三年総理府令第五十七号）
－発電用軽水型原子炉施設周辺の線量目標値に関する指針（昭和 50 年 5 月 13日原子力委員会決定）	－発電用軽水型原子炉施設周辺の線量目標値に関する指針（昭和 50 年 5 月 13日原子力委員会決定） －日本建築学会 2001 年 建築基礎構造設計指針
－煙突，鉄筋コンクリート造の柱等，広告塔又は高架水槽等及び擁壁並びに乗用エレベーター又はエスカレーターの構造計算の基準を定める件（平成 12年5月31日建設省告示第1449号）	－煙突，鉄筋コンクリート造の柱等，広告塔又は高架水槽等及び擁壁並びに乗用エレベーター又はエスカレーターの構造計算の基準を定める件（平成 12年5月31日建設省告示第1449号）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 放射線管理施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 放射線管理施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 放射線管理施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉の設置，運転等に関する規則の規定に基づく線量限度等 を定める告示（平成 13 年 3 月 21 日経済産業省告示第 187 号）	第2章 個別項目 放射線管理施設に適用する個別項目の基準及び規格は以下のとおり。 －高圧ガス保安法（昭和 26 年 6 月 7 日法律第204号） 容器保安規則（昭和 41 年 5 月 25 日通商産業省令第 50 号） －労働安全衛生法（昭和 47 年法律第 57 号） 酸素欠乏症等防止規則（昭和 47 年 9 月 30 日労働省令 42 号） －労働安全衛生法（昭和 47 年法律第 57 号） 労働安全衛生規則（昭和 47 年 9 月 30 日労働省令第 32 号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示（平成 27 年原子力規制委員会告示第 8 号） －発電用軽水型原子炉施設周辺の線量目標値に対する評価指針（昭和 51 年 9月28日原子力委員会決定）

変更前	変更後
－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 21 年 7 月 27 日原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院） －原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008）	－発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針 （昭和 56 年 7 月 23 日原子力安全委員会決定） －発電用原子炉施設の安全解析に関する気象指針（昭和57年1月28日原子力安全委員会決定） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全審査における一般公衆の線量評価につい て（平成元年 3 月 27 日原子力安全委員会了承） －被ばく計算に用いる放射線エネルギー等について（平成元年 3 月 27 日原子力安全委員会了承） －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 21 年 7 月 27 日原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院） - 原子力発電所放射線遮へい設計規程（J E A C 4 6 1 5－2008） - 原子力発電所中央制御室運転員の事故時被ばくに関する規程（J E A C 4 $622-2009)$

上記の他「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」を参照する。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定）	第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））

－J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格
－J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格

変更前	変更後
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 46 O 1 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008）	－原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 46 O 1 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3－2008） - 日本建築学会 2001 年 建築基礎構造設計指針

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 非常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）	第2章 個別項目 非常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 商局第 2号） - JEM 1 3 9 8－2006 ディーゼルエンジン駆動可搬形交流発電装置 - J EM 1435－2014 非常用陸用同期発電機 - J I S B 8 201 －2005 陸用鋼製ボイラー構造 - NEGA C 3 3 1－2005 可搬形発電設備技術基準

上記の他「高エネルギーアーク損傷（HEAF）に係る電気盤の設計に関する審査ガイド」を参照する。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。	第1章 共通項目 常用電源設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。
第2章 個別項目 常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）	第2章 個別項目 常用電源設備に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） - J E C 114－1979 同期機 - J E C 204－1978 変圧器 - JEC $2300-1985$ 交流遮断器

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 補助ボイラーに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。	第1章 共通項目 補助ボイラーに適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及 び適用規格 第1章 共通項目」に示す。
第2章 個別項目 補助ボイラーに適用する個別項目の基準及び規格は以下のとおり。 －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） - J I S B 8 2 4 3－1981 圧力容器の構造 - JSME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格	第2章 個別項目 補助ボイラーに適用する個別項目の基準及び規格は以下のとおり。 －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） - J I S B 8243－1981 圧力容器の構造 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 火災防護設備に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す火災防護設備に適用する共通項目の基準及び規格を適用す る個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成17年12月15日原院第5号）	第1章 共通項目 火災防護設備に適用する共通項目の基準及び規格については，以下の基準及 び規格並びに，原子炉冷却系統施設，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す火災防護設備に適用する共通項目の基準及び規格を適用す る個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成17年12月15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －実用発電用原子炬及びその附属施設の火災防護に係る審査基準（平成 25 年 6月 19 日原規技発第1306195号） －発電用軽水型原子炉施設の火災防護に関する審査指針（平成 19 年 12 月 27 日原子力安全委員会一部改訂） - J I S A 4 2 0 1－1992 建築物等の避雷設備（避雷針） - J I S A $4201-2003$ 建築物等の雷保護 - 原子力発電所の火災防護規程（J E A C 4 6 2 6－2010） - 原子力発電所の火災防護指針（J E A G 4 6 0 7－2010）

上記の他「原子力発電所の内部火災影響評価ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

変更前	変更後
第2章 個別項目 火災防護設備に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） 消防法施行規則（昭和 36 年 4 月 1 日自治省令第 6 号）	第2章 個別項目 火災防護設備に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第201号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －高圧ガス保安法（昭和 26 年 6 月 7 日法律第 204 号） 高圧ガス保安法施行令（平成 9 年 2 月 19 日政令第 20 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） 消防法施行規則（昭和 36 年 4 月 1 日自治省令第 6 号） 危険物の規制に関する政令（昭和 34 年 9 月 26 日政令第 306 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －平成 12 年建設省告示第 1400 号（平成 16 年 9 月 29 日国土交通省告示第 1178 号による改定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 21 年 3 月 9 日原子力安全委員会一部改訂） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成13年3月29日原子力安全委員会一部改訂） - J I S L 1 0 9 1－1999 繊維製品の燃焼性試験方法 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1•補－1984）

	変更前	変更後
$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{1}{\varphi} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	－I E E E S d d 3 8 3－1974 垂直トレイ燃焼試験	- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版） - 公益社団法人日本空気清浄協会 空気清浄装置用ろ材燃焼性試験方法指針（J A C A No． 11 A－2003） －独立行政法人産業安全研究所技術指針 工場電気設備防爆指針（ガス蒸気防爆2006） - I E E E S t d 383－1974 垂直トレイ燃焼試験 - I EEE S t d $1202-1991$ 垂直トレイ燃焼試験 - UL1581（Fourth Edition） 1080 ．VW－1 垂直燃焼試験 －社団法人電池工業会 蓄電池室に関する設計指針（SBA G 0603－ 2001） －＂Fire Dynamics Tools（FDTs）：Quantitative Fire Hazard Analysis Methods for the U．S．Nuclear Regulatory Commission Fire Protection Inspection Program，＂NUREG－1805，December 2004

（2）適用基準及び適用規格

上記の他「原子力発電所の内部溢水影響評価ガイド」，「耐津波設計に係る工認審査ガイド」，「基礎地盤及び周辺斜面の安定性評価に係る審査ガイド」を参照する。

表 1．施設共通の適用基準及び適用規格（該当施設）

∞01100∞				$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 椧 } \\ & \text { 変 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$		$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 製 } \\ & \text { 奚 } \\ & \text { 施 } \\ & \text { ? } \end{aligned}$		放眎管理施設	$\begin{aligned} & \text { 原 } \\ & \text { 炻 } \\ & \text { 格 } \\ & \text { 㩲 } \\ & \text { 䛌 } \end{aligned}$	その他発電用原子炉の附属施設							
												$\begin{aligned} & \text { 補 } \\ & \text { 架 } \\ & \text { 今 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 犕 } \end{aligned}$	浸 水 防 護 施 設 （注）	補 機 駆 動 燃 䊀 設 備 （注）	$\begin{aligned} & \text { 幚 } \\ & \text { 佣 } \\ & \text { 䎓 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 隠 } \\ & \text { 紂 } \\ & \text { 策 } \end{aligned}$
	実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号）	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc		\bigcirc	\bigcirc	\bigcirc
	土木学会 2002年 コンクリート標準示方書［構造性能照査編］	－	－	－	－	－	－	－	－	－	－	－	－		－	\bigcirc	－
	日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説	－	－	－	－	－	－	－	－	－	－	－	－		－	\bigcirc	－
	日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	－	－	－	－	－	－	－	－	－	－	－	－		－	\bigcirc	－
		－	－	－	－	－	－	－	－	－	－	－	－		－	\bigcirc	－
	Minimum Design Loads and Associated Criteria for Buildings and Other Structures（7－16），American Society of Civil Engineers， 2016	－	－	－	－	－	－	－	－	－	－	－	－	1	－	\bigcirc	－
														注）	更後の	適用	る施設

	変更前	変更後
$\begin{aligned} & \infty \\ & \omega \\ & \omega \\ & \omega \\ & \omega \\ & 0 \end{aligned}$	－	第2章 個別項目 浸水防護施設に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会決定） －J I S C 0 9 2 0－2003 電気機械器具の外郭による保護等級（I P コード） －J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1•補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所の火災防護指針（J E A G 4 6 0 7－2010） - 乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関す る技術規程（J E A C 4 6 1 6－2009） - 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］ - 土木学会 2013 年 コンクリート標準示方書 ダムコンクリート編

	変更前	変更後
$\begin{aligned} & \infty \\ & \omega \\ & \omega \\ & \omega \\ & 0 \\ & 0 \end{aligned}$	－	－土木学会 2016 年 トンネル標準示方書［共通編］•同解説／［山岳工法編］•同解説 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 - 日本港湾協会 1989 年 港湾の施設の技術上の基準•同解説 - 日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説 - 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法 ${ }^{-}$ - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - 日本建築学会 2010 年 各種合成構造設計指針•同解説 - 日本建築学会 2015 年 原子力施設における建築物の維持管理指針•同解説 - 水門鉄管協会 平成 29 年 水門鉄管技術基準 水圧鉄管•鉄鋼構造物編 - 水門鉄管協会 平成 31 年 水門鉄管技術基準 水門扉編 - 日本水道協会 1997 年 水道施設耐震工法指針•解説 - 日本水道協会 2009 年 水道施設耐震工法指針•解説 - 農業農村工学会 平成 15 年 土地改良事業計画設計基準設計「ダム」技術書〔コンクリートダム編〕 －Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition，FEMA P646，Federal Emergency Management Agency， 2012

（2）適用基準及び適用規格

	変更前	変更後
	－	第1章 共通項目 補機駆動用燃料設備に適用する共通項目の基準及び規格については，以下 の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設 の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & i \\ & 0 \\ & 0 \end{aligned}$	－	第2章 個別項目 補機駆動用燃料設備に適用する個別項目の基準及び規格は以下のとおり。 －消防法（昭和 23 年 7 月 24 日法律第 186 号） 危険物の規制に関する政令（昭和 34 年 9 月 26 日政令第 306 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号）

R 0
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 非常用取水設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 非常用取水設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 非常用取水設備に適用する個別項目の基準及び規格は以下のとおり。	第2章 個別項目 非常用取水設備に適用する個別項目の基準及び規格は以下のとおり。 －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －土木学会 2013年 コンクリート標準示方書 ダムコンクリート編

上記の他「基礎地盤及び周辺斜面の安定性評価に係る審査ガイド」を参照する。
（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 緊急時対策所に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 緊急時対策所に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。
第2章 個別項目 緊急時対策所に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号）	第2章 個別項目 緊急時対策所に適用する個別項目の基準及び規格は以下のとおり。 －労働安全衛生法（昭和 47 年法律第 57 号） 酸素欠乏症等防止規則（昭和 47 年 9 月 30 日労働省令 42 号） －労働安全衛生法（昭和 47 年法律第 57 号） 労働安全衛生規則（昭和 47 年 9 月 30 日労働省令第 32 号） －発電用原子力設備に関する技術基準を定める省令の解釈（平成 17 年 12 月 15日原院第5号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25年6月19日原規技発第1306194号） －発電用軽水型原子炉施設周辺の線量目標値に対する評価指針（昭和 51 年 9月28日原子力委員会決定） －発電用原子炉施設の安全解析に関する気象指針（昭和 57 年 1 月 28 日原子力安全委員会決定） －原子力発電所中央制御室の居住性に係る被ばく評価手法について（内規） （平成 21 年 7 月 27 日原院第 1 号平成 21 年 8 月 12 日原子力安全•保安院制定）

上記の他「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」を参照する。

VI 添付書類
$\mathrm{VI}-1$ 説明書
VI－2 耐震性に関する説明書
VI－3 強度に関する説明書
VI－4 その他計算書
VI－5 計算機プログラム（解析コード）の概要
VI－6 図面

> VI-1 説明書

VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－2 原子炉本体の説明書
VI－1－3 核燃料物質の取扱施設及び貯蔵施設の説明書
VI－1－4 原子炉冷却系統施設の説明書
VI－1－5 計測制御系統施設の説明書
VI－1－6 放射性廃棄物の廃棄施設の説明書
VI－1－7 放射線管理施設の説明書
VI－1－8 原子炉格納施設の説明書
VI－1－9 その他発電用原子炉の附属施設の説明書
VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書

VI－1－1 各発電用原子炉施設に共通の説明書

VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書
VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書
VI－1－1－3 取水口及び放水口に関する説明書
VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書
VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書

VI－1－1－7 発電用原子炉施設の火災防護に関する説明書
VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書
VI－1－1－10 通信連絡設備に関する説明書
VI－1－1－11 安全避難通路に関する説明書
VI－1－1－12 非常用照明に関する説明書

VI－1－1－6－別添 1 可搬型重大事故等対処設備の保管場所及びアクセス
ルート

目次

1．はじめに 1
2．保管場所 2
2.1 保管場所の基本方針 2
2．2 保管場所の影響評価 4
2.3 保管場所の評価方法及び結果• 7
2．3．1 周辺構造物の倒壊及び周辺タンク等の損壊• 7
2．3．2 周辺斜面の崩壊及び敷地下斜面のすべり 10
2．3．3 液状化及び摇すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り 17
2．3．4 地盤支持力の不足 22
2．3．5 地中埋設構造物の損壊 25
3．屋外アクセスルート 26
3.1 屋外アクセスルートの基本方針． 26
3.2 屋外アクセスルートの影響評価． 28
3.3 屋外アクセスルートの評価方法及び結果 31
3．3．1 周辺構造物の倒壊及び周辺タンク等の損壊• 31
3．3．2 周辺斜面の崩壊及び敷地下斜面のすべり 51
3．3．3 液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り 60
3．3．4 地中埋設構造物の損壊 92
3．3．5 仮復旧時間の評価 96
4．屋内アクセスルート 100
4． 1 屋内アクセスルートの基本方針 100
4．2 屋内アクセスルートの影響評価． 101
4． 3 屋内アクセスルートの評価方法及び結果• 103
4．3．1 地震随伴火災 111
4．3．2 地震随伴溢水 115

1．はじめに
可搬型重大事故等対処設備の保管場所及び保管場所から設置場所，接続場所まで運搬するため の経路並びに他の設備の被害状況を把握するための経路（以下「アクセスルート」という。）につ いて，設計上考慮する事項（被害要因の影響評価）を本資料にて説明する。

2．保管場所

2.1 保管場所の基本方針

自然現象に対して，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を考慮し，人為事象に対して，飛来物（航空機落下），爆発，近隣工場等の火災（石油コンビナート施設の火災，発電所敷地内に存在する危険物タンクの火災及び航空機墜落による火災），危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及 び故意による大型航空機の衝突その他のテロリズムを考慮した上で，原子炉建屋，制御建屋，常設重大事故等対処設備及び設計基準事故対処設備から十分な離隔を確保した保管場所（第1保管エリア，第2保管エリア，第3保管エリア及び第4保管エリア）を設定する。

なお，屋外に保管する可搬型重大事故等対処設備のらち，原子炉建屋外から水•電力を供給 する電源車，大容量送水ポンプ（タイプ I ）及び原子炉補機代替冷却水系熱交換器ユニットは，必要となる容量を有する設備を 1 基当たり 2 セット及び予備を，また，屋外に保管する可搬型重大事故等対処設備のうち，原子炉建屋外から水•電力を供給する電源車，大容量送水ポンプ （タイプ I ）及び原子炉補機代替冷却水系熱交換器ユニット以外の設備は，必要となる容量を有する設備を1基当たり1セットを以下の事項を考慮した位置に保管する。

上記を受けた保管場所設定の考え方を以下に示す。
－自然現象に対して，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を考慮し，人為事象に対して，飛来物（航空機落下），爆発，近隣工場等の火災（石油コンビナート施設の火災，発電所敷地内に存在する危険物 タンクの火災及び航空機墜落による火災），危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害を考慮し，設計基準事故対処設備及び常設重大事故等対処設備と位置的分散を図り，複数個所に分散して保管する。
－故意による大型航空機の衝突その他のテロリズムに対して，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するとともに，可搬型重大事故等対処設備がその機能を代替す る屋外の設計基準事故対処設備及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上で複数個所に分散して保管する。
－基準地震動 S s による被害（周辺構造物の倒壊，周辺タンク等の損壊，周辺斜面の崩壊，敷地下斜面のすべり，液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り，地盤支持力の不足，地中埋設構造物の損壊）の影響を受けない場所とする。
－可搬型重大事故等対処設備のうち，故障時のバックアップ及び保守点検による待機除外時 のバックアップとする予備は，上記の考え方に基づいて設定された複数の保管場所に分散 して保管する。
保管場所の配置，標高及び離隔距離等を図 2．1－1 に示す。

注記 $* 1: 2011$ 年東北地方太平洋沖地震に伴う地殻変動を考慮すると，表記値より一様に約 1 m 沈下。以後の記載についても同様。
＊2：各保管場所に保管する可搬型重大事故等対処設備とその機能を代替する屋外の常設重大事故等対処設備との離隔距離
＊3：可搬型重大事故等対処設備を設置する各保管場所と常設重大事故等対処設備を設置する各建屋（原子炉建屋又は制御建屋）との最短離隔距離

図 2．1－1 保管場所の配置，標高，離隔距離等

2.2 保管場所の影響評価

可搬型重大事故等対処設備の保管場所の設計においては，保管場所について想定される自然現象及び人為事象を抽出し，その自然現象及び人為事象に起因する被害要因に対して影響評価 を行い，その影響を受けない位置に保管場所を設定する。なお，石油コンビナート施設の火災 は，敷地周辺に発生要因がない又は立地的要因により影響を受けることはなく，船舶の衝突に ついては取水口外側にカーテンウォールが設置されており，保管場所に直接衝突されるおそれ がないこと，電磁的障害については，可搬型重大事故等対処設備は鋼製筐体や金属シールド付 ケーブルの適用等により影響はない。また，飛来物（航空機落下），爆発，発電所敷地内に存在 する危険物タンクの火災，航空機墜落による火災及び危険物を搭載した車両については，可搬型重大事故等対処設備の位置的分散により影響はなく，有毒がスについても防護具装着により影響はない。
保管場所について想定される自然現象の抽出結果を表 $2.2-1$ に示す。
また，保管場所に対する被害要因及び被害事象を表2．2－2に示す。

表 2．2－1 保管場所に想定される自然現象（1／3）

自然現象	概略評価結果	被害要因 抽出
地震	－地盤や周辺斜面の崩壊による影響，周辺構造物の倒壊•損壊•火災•溢水等（薬品漏えいを含む。）による影響が考えられる。	\bigcirc
津波	－基準津波に対しては，防潮堤や防潮壁を設置することから，原子炉建屋等や保管場所へ遡上する浸水はない。したがって，設計基準事故対処設備と重大事故等対処設備は同時に機能喪失しない。	\times
風（台風）	－設計基準事故対処設備は建屋内に設置されているため，風による影響はない。また，可搬型重大事故等対処設備は荷重が大きく，設計基準の風により転倒することはないことから，設計基準事故対処設備と可搬型設備が同時に機能喪失しない。	\times
竜巻	－設計基準事故対処設備は竜巻に対して建屋内等の防護した場所 に設置していることから，屋外に配備している可搬型重大事故等対処設備と同時に機能喪失しない。 重大事故等時に期待する可搬型重大事故等対処設備は，保管場所 にそれぞれ離隔して分散配置していることから，原子炉建屋及び制御建屋と同時に機能喪失しない。 －常設重大事故等対処設備の弓ち常設代替交流電源設備を屋外に設置しているが，ディーゼル発電機及び電源車保管場所と離隔し ていることから，同時に機能喪失しない。 －保管場所に配備する可搬型重大事故等対処設備は，飛来物となら ないよう固縛等の飛散防止対策を実施する。	\times

表 2．2－1 保管場所に想定される自然現象（ $2 / 3$ ）

自然現象	概略評価結果	被害要因 抽出
谏結	－設計基準事故対処設備は建屋内等に設置されているため影響を受けず，保管場所に設置されている重大事故等対処設備と同時に機能喪失しない。 凍結は，気象予報により事前の予測が十分可能であり，始動に影響が出ないよう，各設備の温度に関する仕様を下回るおそれがあ る場合には，必要に応じて，あらかじめ可搬型重大事故等対処設備の暖気運転を行うこととしているため，影響を受けない。 －保管場所は良好な排水ができる設計とすることから，降雨後に気温が低下し氷点下になったとしても，路面の摩擦係数に影響を与 えるような涷結のおそれはない。	\times
降水	－適切な降雨強度に基づき設計した排水路により，海域へ排水され ることから，保管場所に滞留水が発生する可能性は小さい。	\times
積雪	－気象予報により事前の予測が十分可能であり，原子炬建屋等及び保管場所の除雪は積雪状況を見計らいながら行らことで対処が可能であることから，設計基準事故対処設備と重大事故等対処設備は同時に機能喪失しない。	\times
落雷	－設計基準事故対処設備は避雷対策を施した建屋内等に配備され ており，かつ保管場所とは位置的分散が図られていることから，同時に機能喪失しない。 － 1 回の落雷により影響を受ける範囲は限定され，保管場所は離隔 して位置的分散を図っているため，影響を受けない。	\times
火山の影響	－噴火発生の情報を受けた際は，要員を確保し，原子炉建屋等，保管場所及び可搬型重大事故等対処設備の除灰を行らことにより対処が可能であることから，設計基準事故対処設備と可搬型重大事故等対処設備が同時に機能喪失しない。	\times
生物学的事象	－設計基準事故対処設備は，浸水防止対策により水密化された建屋内に設置されているため，ネズミ等の小動物の侵入による影響を受けない。また，海生生物により，保管場所及び可搬型重大事故等対処設備は影響を受けない。したがって，設計基準事故対処設備と可搬型重大事故等対処設備が同時に機能喪失しない。 －保管場所は位置的に分散されていることから，複数の設備が同時 に機能喪失する可能性は小さい。 －可搬型重大事故等対処設備は，ネズミ等の小動物の侵入により設備の機能に影響がないよう，侵入できるような開口部は侵入防止対策を実施する。	\times

表 2．2－1 保管場所に想定される自然現象（3／3）

| 自然
 現象 | 概略評価結果 | 被害要因
 抽出 |
| :---: | :---: | :---: | :---: |
| 森林火災 | •原子炉建屋等と保管場所は防火帯の内側であるため，森林火災に
 よる熱影響により設計基準事故対処設備と可搬型重大事故等対
 処設備は同時に機能喪失しない。 | \times |
| 高潮 | 保管場所は，高潮の影響を受けない敷地高さ（0．P．（女川原子力
 発電所工事用基準面）
 ない。5m）以上に設置することから影響を受け
 ない。 | \times |

表 2．2－2 保管場所に対する被害要因及び被害事象

保管場所に影響を与える おそれのある被害要因	保管場所で懸念される被害事象
（1）周辺構造物の倒壊 （建屋，鉄塔，倒壊物）	倒壊物による可搬型重大事故等対処設備の損壊及び通行不能
（2）周辺タンク等の損壊	火災，溢水，漏えい薬品による可搬型重大事故等対処設備の損壊，通行不能
（3）周辺斜面の崩壊	土砂流入による可搬型重大事故等対処設備の損壊，通行不能
（4）敷地下斜面のすべり	敷地下斜面のすべりによる可搬型重大事故等対処設備の損壊，通行不能
（5）液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴亏浮上り	不等沈下•傾斜及び浮上りによる可搬型重大事故等対処設備の損壊，通行不能
（6）地盤支持力の不足	可搬型重大事故等対処設備の転倒，通行不能
（7）地中埋設構造物の損壊	陥没による可搬型重大事故等対処設備の損壊，通行不能

2.3 保管場所の評価方法及び結果

保管場所への影響について，表 $2.2-2$ の被害要因ごとに評価する。
2．3．1 周辺構造物の倒壊及び周辺タンク等の損壊
（1）評価方法
周辺構造物の倒壊及び周辺タンク等の損壊に対する影響評価については，保管場所周辺 の構造物及びタンク等を対象とし，これらが基準地震動 S s により倒壊又は損壊すること による保管場所への影響を評価する。
周辺構造物の倒壊及び周辺タンク等の評価位置を図2．3．1－1 に示す。ただし，Sクラス の構造物及びタンク等，もしくはSクラス以外で基準地震動 S s により倒壊に至らないこ とを確認している構造物及びタンク等については，評価対象外とする。
周辺構造物の倒壊による影響範囲については，保守的に構造物及びタンク等が根元から倒壊又は損壊するものとして，構造物及びタンク等の高さに相当する範囲とし，保管場所 が設定した周辺構造物の倒壊影響範囲に含まれるか否かで評価する。

なお，周辺構造物については外装材の影響についても評価し，外装材の落下による影響範囲は建物の高さの半分として設定する。

また，周辺タンクの損壊による地震随伴火災及び薬品漏えいによる影響が及ぶ範囲に保管場所が含まれるか否かでも評価する。
\square
（周辺構造物）

（周辺タンク等）
図 2．3．1－1 周辺構造物及び周辺タンク等の配置図
（2）評価結果
周辺構造物の倒壊及び周辺タンク等の損壊に対する影響評価結果を表 2．3．1－1 に示す。保管場所周辺には，倒壊及び損壊により影響を及ぼすおそれのある構造物及びタンク等 は存在しないことを確認し，「該当なし」と評価した。また，保管場所が設定した周辺構造物の倒壊影響範囲に含まれないことを確認し，「問題なし」と評価した。

表2．3．1－1 周辺構造物の倒壊及び周辺タンク等の損壊に対する影響評価結果

被害要因	評価結果			
	第 1 保管 エリア	第 2 保管 エリア	第3保管 エリア	第4保管 エリア
（1）周辺構造物の倒壊 （建屋，鉄塔，構築物）	問題なし	問題なし	問題なし	該当なし
（2）周辺タンク等の損壊	該当なし	該当なし	問題なし	該当なし

2．3．2 周辺斜面の崩壊及び敷地下斜面のすべり

周辺斜面の崩壊及び敷地下斜面のすべりによる影響評価については，周辺斜面の崩壊及 び敷地下斜面のすべりによる保管場所への影響を評価する。
（1）周辺斜面の崩壊
a．評価対象
保管場所及び評価対象とする周辺斜面の位置を図 2．3．2－1 に示す。
評価対象とする斜面については，各保管エリアにおいて斜面法尻から所定の離隔を確保できない斜面とする。所定の離隔は岩盤斜面では斜面高さの 1.4 倍，盛土斜面では斜面高さの 2 倍とする。

第 1 及び第 2 保管エリアの周辺斜面として斜面 A を，第 3 保管エリアの周辺斜面とし て斜面 F を選定した。なお，第4保管エリアには斜面法尻から所定の離隔を確保できな い斜面は存在しない。

評価対象とする斜面A，Fについて，すべり方向を考慮するとともに，斜面高さ，勾配 ともに最大となる断面を斜面ごとに 1 断面選定した。

図 2．3．2－1 評価対象とする保管場所の周辺斜面

b．評価方法

斜面A，F の安定性は，基準地震動 S s に基づく 2 次元有限要素法解析を行い，算定さ れるすべり安全率（Fs）が評価基準値を上回っていることを確認する。評価基準値は1．0 とする。

安定性評価を行う斜面A，F の地質断面図を図2．3．2－2，図2．3．2－3 に示す。安定性評価に用いる地質断面図は，発電所建設時及び以降の地質調查の結果に基づき作成して いる。

斜面Aについては，静的解析には解析コード「stress－NLAP Ver．2．91」，地震応答解析 には解析コード「SuperFLUSH／2D Ver．6．0」，すべり計算には解析コード「suberi＿sf Ver．2」 を使用する。
斜面Fについては，静的解析には解析コード「BG0195HDW1 Ver．5．0．6」を，地震応答解析には解析コード「VESL－DYN Ver．2．03」，すべり計算には解析コード「SLIP02HDW1 Ver．4． 07 」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 2．3．2－2 斜面Aの地質断面図

図2．3．2－3 斜面Fの地質断面図
c．評価結果
周辺斜面の崩壊に対する影響評価結果を表 2．3．2－1，図 2．3．2－4，図 2．3．2－5に示 す。

保管場所における周辺斜面の最小すべり安全率はすべて評価基準値を上回っているこ とから「問題なし」と評価し，周辺斜面の崩壊が保管場所に影響を及ぼさないことを確認した。

また，第4保管エリアについては，評価対象となる周辺斜面が存在しないことから「該当なし」と評価した。

表 2．3．2－1 周辺斜面の崩壊に対する影響評価結果

被害要因	評価結果			
	第 1 保管 エリア	第2保管 エリア	第 3 保管 エリア	第4保管 エリア
（3）周辺斜面の崩壊	問題なし $[\mathrm{Fs}>1.0]$	問題なし $[\mathrm{Fs}>1.0]$	問題なし $[\mathrm{Fs}>1.0]$	該当なし

図 2．3．2－4 斜面Aのすべり安定性評価結果

図2．3．2－5 斜面Fのすべり安定性評価結果
（2）敷地下斜面のすべり
a．評価対象
保管場所及び評価対象とする敷地下斜面の位置を図 2．3．2－6 に示す。
0．P． 62 m 盤にある第1，第2，第4保管エリアは，いずれも岩盤上に設置されており，法肩から斜面高さ以上の離隔を確保していることから，敷地下斜面のすべりによる影響 は想定されない。また，第 3 保管エリアには敷地下斜面は存在しない。

0．P． 62 m 盤の敷地下斜面の影響として，岩盤と比べ比較的強度の小さい盛土で構成さ れ，斜面高さが最大となる斜面 B の安定性を確認することで，保管場所における敷地下斜面の評価を補完する。

評価対象とする斜面Bについて，すべり方向を考慮するとともに，斜面高さ，勾配と もに最大となる断面を1断面選定した。

図 2．3．2－6 評価対象とする保管場所の敷地下斜面
b．評価方法
斜面 B の安定性は基準地震動 S s に基づく 2 次元有限要素法解析を行い，算定される すべり安全率が評価基準値を上回っていることを確認する。評価基準値は 1.0 とする。

安定性評価を行う斜面 B の地質断面図を図 2．3．2－7に示す。安定性評価に用いる地質断面図は，発電所建設時及び以降の地質調査の結果に基づき作成している。

静的解析には解析コード「SAC2D Ver． 2.10 」，地震応答解析には解析コード「SuperFLUSH／2D Ver．6．0」，すべり計算には解析コード「suberi＿Type6789＿SAC2D－HD1 Ver．0」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 2．3．2－7 斜面Bの地質断面図
c．評価結果
敷地下斜面のすべりに対する影響評価結果を表2．3．2－2，図2．3．2－8に示す。
保管場所における敷地下斜面の最小すべり安全率はすべて評価基準値を上回っている ことから「問題なし」と評価し，敷地下斜面のすべりが保管場所に影響を及ぼさないこ とを確認した。

また，第 3 保管エリアについては，評価対象となる敷地下斜面が存在しないことから「該当なし」と評価した。

表 2．3．2－2 敷地下斜面のすべりに対する影響評価結果

被害要因	評価結果			
	第1保管 エリア	第 2 保管 エリア	第3保管 エリア	第4保管 エリア
（4）敷地下斜面のすべり	問題なし $[\mathrm{Fs}>1.0]$	問題なし ［Fs＞1．0］	該当なし	問題なし ［Fs＞1．0］

図2．3．2－8 斜面Bのすべり安定性評価結果

2．3．3 液状化及び摇すり込みによる不等沈下•傾斜，側方流動，液状化に伴う浮上り
（1）液状化及び揺すり込みによる不等沈下•傾斜，側方流動
a．評価方法
保管場所における液状化及び摇すり込みによる不等沈下•傾斜，側方流動による影響評価については，各保管エリアの支持地盤に液状化及び摇すり込みによる不等沈下を考慮する必要がある地盤（盛土，旧表土）が存在するか確認する。

盛土，旧表土については液状化強度試験により「非液状化」又は「繰返し軟化」に分類されるが，各保管エリアの支持地盤に盛土又は旧表土が存在する場合には地下水位以深の盛土及び旧表土が液状化するものとして評価する。
b．評価結果
第 1 保管エリアにおける可搬型重大事故等対処設備は，岩盤又はマンメイドロック（以下「MMR」という。）の上に保管されること，また地中埋設構造物が存在しないことから「問題なし」と評価し，液状化及び揺すり込みによる不等沈下•傾斜，側方流動の影響 はないことを確認した。
第2保管エリアにおける可搬型重大事故等対処設備は，岩盤に直接支持され基準地震動 S s に対して機能維持する淡水貯水槽，岩盤及び淡水貯水槽周囲のセメント改良土の上に保管されることから，液状化及び揺すり込みによる不等沈下•傾斜，側方流動の影響はない。

第3保管エリアにおける可搬型重大事故等対処設備は岩盤の上に保管され，保管エリ ア下部には 2 号機排気筒連絡ダクトがあるが，岩盤内に設置されていることから「問題 なし」と評価し，液状化及び摇すり込みによる不等沈下•傾斜，側方流動の影響はない ことを碓認した。
第4保管エリアにおける可搬型重大事故等対処設備は岩盤の上に保管されること，ま た地中埋設構造物が存在しないことから「問題なし」と評価し，液状化及び揺すり込み による不等沈下•傾斜，側方流動の影響はないことを確認した。
液状化及び摇すり込みによる不等沈下•傾斜，側方流動に対する影響評価結果を表 2．3．3－1 及び図2．3．3－1～図2．3．3－4に示す。

表 2．3．3－1 液状化及び揺すり込みによる不等沈下•傾斜，側方流動に対する影響評価結果

被害要因	評価結果			
	第1保管 エリア	第2保管 エリア	第3保管 エリア	第4保管 エリア
（5） 液状化及び摇すり込み による不等沈下•傾斜， 側方流動 問題なし	問題なし	問題なし	問題なし	

図 2．3．3－1 第1保管エリアの平面図及び地質断面図

図 2．3．3－2 第 2 保管エリアの平面図及び地質断面図

図2．3．3－3 第3保管エリアの平面図及び地質断面図

図2．3．3－4 第4保管エリアの平面図及び地質断面図
（2）液状化に伴う浮上り
a．評価方法
保管場所における液状化に伴う浮上りによる影響評価については，各保管エリアに地中埋設構造物が存在するか確認する。
地中埋設構造物が存在する場合には，沈下に対する影響評価と同様に地下水位以深の盛土及び旧表土は液状化するものとして地中埋設構造物の浮上りについて評価する。
b．評価結果
第1及び第4保管エリアについては，地中埋設構造物が存在しないことから「該当な し」と評価した。

第2保管エリアについては，第2保管エリア下部に埋設されている淡水貯水槽は岩盤 に直接支持され，周囲はセメント改良土により埋め戻されていることから，浮上りは発生せず影響はない。

第 3 保管エリア下部には，図2．3．3－3に示すとおり 2 号機排気筒連絡ダクトがある が，岩盤内に設置されており浮上りは発生しないため「問題なし」と評価し，液状化に伴う浮上りによる影響はないことを確認した。

液状化に伴う浮上りに対する影響評価結果を表2．3．3－2 に示す。

表2．3．3－2 液状化に伴う浮上りに対する影響評価結果

被害要因	評価結果			
	第1保管 エリア	第2保管 エリア	第3保管 エリア	第4保管 エリア
（5）液状化に伴ら浮上り	該当なし	問題なし	問題なし	該当なし

2．3．4 地盤支持力の不足

（1）評価方法
保管場所における地盤支持力の不足による影響評価については，地盤支持力の不足によ る保管場所への影響を評価する。

保管される可搬型重大事故等対処設備の地震時接地圧を算定し，算定した地震時接地圧 に対する安全率が評価基準値を上回ることを確認する。評価基準値は1．0とする。

地震時接地圧については，添付書類「VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関する説明書」に基づく基準地震動 S s による各保管エリアの地表面での鉛直最大応答加速度から鉛直震度係数を算定し，常時接地圧に鉛直震度係数を乗じて算出する。

常時接地圧については，可搬型重大事故等対処設備のうち 1 輪当たりの重量が最も大き い原子炉補機代替冷却水系熱交換器ユニット（約 43t）を対象車両とし，最も荷重の大き い前輪重量から算出する。

地震時接地圧に対する安全率は，各保管エリアの地盤支持力を，地震時接地圧で除すこ とにより算定する。

基準地震動 S s による各保管エリアにおける地表面での鉛直最大応答加速度及び鉛直震度係数を表 2．3．4－1 に，原子炉補機代替冷却水系熱交換器ユニットの常時接地圧を図 2．3．4－1 に示す。

なお，第 2 保管エリアは，岩盤に直接支持され基準地震動 S s に対して機能維持する地中埋設構造物である淡水貯水槽上に可搬型重大事故等対処設備（車両型）を設置すること から評価対象から除外する。

表 2．3．4－1 地表面での鉛直最大応答加速度及び鉛直震度係数

保管場所	支持地盤	地表面での鉛直最大応答加速度 （gal）	鉛直震度係数
第1保管エリア	C_{M} 級以上の岩盤	535	1． 55
	MMR 部	555	1.57
第3保管エリア	C_{M} 級以上の岩盤	674	1． 69
第4保管エリア	C_{M} 級以上の岩盤	570	1.59

図は車輪重量であり，車両総重量＊は 43130 kg である。
注記 $*:$ 車両総重量 $=$ 車両重量 + 最大積載量（車両重量は燃料等の規定量を含む。）
【タイヤ接地面積】

【荷重条件】
常時接地圧

$$
650 \mathrm{kN} / \mathrm{m}^{2}
$$

\qquad
\qquad
図 2．3．4－1 原子炉補機代替冷却水系熱交換器ユニットの常時接地圧
（2）評価結果
各保管エリアにおける，地震時接地圧に対する安全率の算定結果を表 2．3．4－2に示す。基準地震動 S s に基づき算定した地震時接地圧に対する安全率は評価基準値を上回って いることから「問題なし」と評価し，地盤支持力に対する影響はないことを確認した。地盤支持力の不足に対する影響評価結果を表2．3．4－3に示す。

表2．3．4－2 地震時接地圧に対する安全率の算定結果

保管場所	評価箇所	地震時接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	地盤支持力 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	地震時接地圧に対する安全率	評価 基準値
第1保管エリア	$\mathrm{C}_{\text {M }}$ 級以上の岩盤部	1008	11400	11.3	1.0
	MMR 部	1021	11400	11.1	
第3保管エリア	$\mathrm{C}_{\text {M }}$ 級以上の岩盤部	1099	13700	12． 4	
第4保管エリア	C_{M} 級以上の岩盤部	1034	11400	11.0	

表2．3．4－3 地盤支持力の不足に対する影響評価結果

被害要因	評価結果			
	第 1 保管 エリア	第2保管 エリア	第3保管 エリア	第4保管 エリア
（6）地盤支持力の不足	問題なし	問題なし	問題なし	問題なし

2．3．5 地中埋設構造物の損壊

（1）評価方法
地中埋設構造物の損壊による影響評価については，各保管エリアに地中埋設構造物が存在するか確認する。

地中埋設構造物が存在する場合は，地震による地中埋設構造物の損壊に対する影響を評価する。
（2）評価結果
第 1 及び第 4 保管エリアについては，地中埋設構造物が存在しないことから「該当なし」 と評価した。
第 2 保管エリアについては，保管エリア下部に淡水貯水槽があるが，基準地震動 S s に対して機能維持する設計としていることから，損壊に対する影響はない。

第 3 保管エリアについては，保管エリア下部に 2 号機排気筒連絡ダクトがあるが，岩盤内に設置されており，基準地震動 S s に対して機能維持する設計としていることから「問題なし」と評価し，損壊に対する影響はないことを確認した。

地中埋設構造物の損壊に対する影響評価結果を表2．3．5－1 に示す。

表 2．3．5－1 地中埋設構造物の損壊に対する影響評価結果

被害要因	評価結果			
	第 1 保管 エリア	第 2 保管 エリア	第3保管 エリア	第 4 保管 エリア
（7）地中埋設構造物の損懐	該当なし	問題なし ［S s機能維持］	問題なし ［S s 機能維持］	該当なし

3．屋外アクセスルート
3.1 屋外アクセスルートの基本方針

自然現象に対して，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を考慮し，人為事象に対して，飛来物（航空機落下），爆発，近隣工場等の火災（石油コンビナート施設の火災，発電所敷地内に存在する危険物タンクの火災及び航空機墜落による火災），危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及 び故意による大型航空機の衝突その他のテロリズムを考慮した上で，可搬型重大事故等対処設備の保管場所から設置場所及び接続場所までのアクセスルートを複数設定する。

上記を受けた屋外アクセスルート設定の考え方を以下に示す。また，屋外アクセスルート図 を図3．1－1 に示す。
（1）地震及び津波の影響の考慮
a．複数設定するアクセスルートは以下の（a），（b）2 つの条件を満足するルートとする。
（a）基準津波の影響を受けないルート
（b）基準地震動 S s による被害（周辺構造物の損壊，周辺タンク等の損壊，周辺斜面の崩壊，敷地下斜面のすべり，液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴ら浮上り，地中埋設構造物の損壊）の影響を受けないルート又は重機によ る復旧が可能なルート
（2）地震及び津波以外の自然現象又は人為事象の影響の考慮
地震及び津波以外の自然現象又は人為事象に対し，同時に影響を受けない又は重機によ る復旧が可能なアクセスルートを複数設定する。

図 3．1－1 屋外アクセスルート図

3.2 屋外アクセスルートの影響評価

屋外アクセスルートの設計においては，屋外アクセスルートについて想定される自然現象及 び人為事象の抽出を行い，その自然現象及び外部事象が起因する被害要因に対して影響評価を行い，その影響を受けないルートを確保する，又はその影響を排除できるルートを確保する。
なお，石油コンビナート施設の火災は，敷地周辺に発生要因がない又は立地的要因により影響を受けることはなく，船舶の衝突については取水口外側にカーテンウォールが設置されてお り，屋外アクセスルートに直接衝突されるおそれがないこと，電磁的障害については，屋外ア クセスルートに対して影響はない。また，飛来物（航空機落下），爆発，発電所敷地内に存在す る危険物タンクの火災，航空機墜落による火災及び危険物を搭載した車両については，複数の アクセスルートの確保により影響はなく，有毒ガスについても防護具装着により影響はない。屋外アクセスルートについて想定される自然現象の抽出結果を表3．2－1 に示す。

表 3．2－1 屋外アクセスルートに想定される自然現象（1／2）

自然現象	概略評価結果	被害要因 抽出
地震	－地盤や周辺斜面の崩壊による影響，周辺構造物の倒壊•損壊•火災•溢水等（薬品漏えいを含む。）による影響が考えられる。	\bigcirc
津波	－基準津波に対しては，防潮堤や防潮壁を設置することから，アク セスルートへ遡上する浸水はない。	\times
風（台風）	－風（台風）によりがれきが発生した場合でも，ブルドーザにより撤去することが可能である。	\times
竜巻	－竜巻によりがれきが発生した場合でも，ブルドーザにより撤去す ることが可能である。 －万一，送電鉄塔が転倒した場合であっても，複数のルートが確保 されていることから，影響がないルートを選択することで目的地 までのアクセスが可能である。	\times
谏結	－凍結を伴うような低温となる場合は，気象予報により事前の予測 が十分可能であり，適宜融雪剤を散布し対応するため涷結の影響 はない。その上で車両に常時スタッドレスタイヤを装着し，徐行 で運転することから急勾配の下りでもスリップする可能性は低 い。なお，急勾配箇所にはすべり止め材を配備して必要に応じて使用できるようにするとともに，すべり止め舗装を施す。	\times
降水	－適切な降雨強度に基づき設計した排水路により，海域へ排水され ることから，影響は受けない。	\times

表 3．2－1 屋外アクセスルートに想定される自然現象（2／2）

自然 現象	概略評価結果	被害要因 抽出
積雪	－気象予報により事前の予測が十分可能であり，除雪及び融雪剤を散布し対応するため積雪の影響はない。その上で車両に常時スタ ッドレスタイヤを装着し，徐行で運転することから急勾配の下り でもスリップする可能性は低い。なお，急勾配箇所にはすべり止 め材を配備して必要に応じて使用できるようにするとともに，す べり止め舗装を施す。	\times
落雷	- 落雷によりアクセスルートが影響を受けることはない。 - 落雷発生中は，屋内に退避し，状況を見て屋外作業を実施する。	\times
火山の影響	－噴火発生の情報を受けた際は要員を確保し，アクセスルートの除灰を行うことにより対処が可能である。	\times
生物学的事象	－影響なし。	\times
森林火災	－アクセスルートは防火帯の内側であり，アクセス性に支障はな い。また，輻射強度を考慮しても作業が可能であることを確認し ている。 －万一，小規模な火災が発生したとしても，自衛消防隊がアクセス ルート周辺の消火活動を行うことにより対処が可能である。	\times
高潮	－アクセスルートは，高潮の影響を受けない敷地高さ（0．P．（女川原子力発電所工事用基準面）+3.5 m ）以上に設置することから影響を受けない。	\times

また，屋外アクセスルートに対する被害要因及び被害事象を表3．2－2に示す。

表3．2－2 屋外アクセスルートに対する被害要因及び被害事象

屋外アクセスルートに影響を与える おそれのある被害要因	屋外アクセスルートで懸念される被害事象
（1）周辺構造物の倒壊 （建屋，鉄塔，構築物）	倒壊物によるアクセスルートの閉塞
（2）周辺タンク等の損壊	タンク損壊等に伴う火災，溢水による通行不能
（3）周辺斜面の崩壊	土砂流入による通行不能
（4）敷地下斜面のすべり	道路のすべりによる通行不能
（5）液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴ら浮上り	アクセスルートの不等沈下，側方流動，浮上り による通行不能
（6）地盤支持力の不足	懸念される被害事象なし＊
（7）地中埋設構造物の損壊	陥没による通行不能

注記＊：地震時においては，アクセスルート上に可搬型重大事故等対処設備が保管されていないた め，懸念される被害事象がない。

3.3 屋外アクセスルートの評価方法及び結果

屋外アクセスルートへの影響について，表 $3.2-2$ の被害要因ごとに評価する。
3．3．1 周辺構造物の倒壊及び周辺タンク等の損壊
（1）評価方法
周辺構造物の倒壊及び周辺タンクなどの損壊に対する影響評価においては，保管場所に おける影響評価と同様にアクセスルート周辺の構造物及びタンク等を対象とし，これらが基準地震動S s により倒壊又は損壊することによるアクセスルートへの影響を評価する。
周辺構造物の倒壊及び周辺タンク等の評価位置を図 3．3．1－1～図3．3．1－3 に示す。た だし，Sクラスの構造物及びタンク等，もしくはSクラス以外で基準地震動S s により倒壊に至らないことを確認している構造物及びタンク等については，評価対象外とする。
周辺構造物の倒壊による影響範囲については保守的に構造物及びタンク等が根元から倒壊又は損壊するものとして，構造物及びタンク等の高さに相当する範囲とし，必要な幅員 を確保できない区間を通行に影響を及ぼす区間として抽出する。なお，周辺構造物につい ては外装材の影響についても評価し，外装材の落下による影響範囲は建物の高さの半分と して設定する。

車両通行に必要な幅員は，対象車両のうち最大車幅（ 2.5 m ）となる熱交換器ユニットを考慮し， 3.7 m とする。

また，周辺タンク等のらち可燃物施設の損壊については，図3．3．1－4 に示すフローに基 づいて評価し，薬品関係設備の損壊については漏えい，ガス発生及び人体への影響の観点 から，溢水タンクの損壊については，溢水範囲の観点から，それぞれ通行性への影響につ いて評価する。

図 3．3．1－1 倒壊時にアクセスルートに影響を及ぼす周辺構造物配置図

図3．3．1－2 可燃物施設及び薬品関係設備配置図

図 3．3．1－3 溢水評価対象タンク配置図

注記＊1：輻射強度が $1.6 \mathrm{~kW} / \mathrm{m}^{2}$ 以下となる距離により判断。
＊2：保管場所はドラム缶等の容器に収納し，固縛による転倒防止措置を行う。
＊3：地形（遮蔽物等），可燃物の量や性質を考慮し，アクセスルートに影響しない離隔距離力゙確保できるかを個別に判断する。
＊4：火災の発生は考えにくいが，万一火災が発生した場合は自衛消防隊による消火活動を実施する。

図 3．3．1－4 可燃物施設の損壊による屋外アクセスルートへの影響評価フロー

（2）評価結果

a．周辺構造物の倒壊
屋外アクセスルートの周辺構造物の倒壊による通行性への影響評価を行った結果を表 3．3．1－1 に示す。

周辺構造物の倒壊によって通行せずに迂回することが可能であること，倒壊により発生したがれきが発生した場合でも，ブルドーザ及びバックホウにて撤去可能であること から，周辺構造物の倒壊及び周辺タンク等の損壊による通行性に対して影響を及ぼさな いことを確認した。

表 3．3．1－1 倒壊時にアクセスルートの閉塞が懸念される構造物の
被害想定及び対応内容（1／2）

| 名称 | 被害想定 | |
| :--- | :--- | :--- | 対応内容

表 3．3．1－1 倒壊時にアクセスルートの閉塞が懸念される構造物の
被害想定及び対応内容（2／2）

b．周辺タンク等の損壊
屋外アクセスルートの周辺タンク等の損壊による通行性への影響については，可燃物施設，薬品関係設備及び溢水タンクに分けて評価結果を以下に示す。
（a）可燃物施設
屋外アクセスルートの周辺タンク等のうち，可燃物施設の損壊による通行性への影響評価結果を表3．3．1－2に示す。

また，可燃物施設のうち，火災を想定する施設の火災時の影響範囲について図 3．3．1 -5 に示す。

可燃物施設で火災の発生を想定した場合においても，屋外アクセスルートからの十分な離隔距離が確保でき，自衛消防隊による早期の消火活動が可能であることから，可燃物施設の損壊によって通行性に対して影響を及ぼさないことを確認した。

なお，主要な変圧器（主変圧器，所内変圧器，起動変圧器）については，変圧器火災対策，事故拡大防止対策が図られており，防油堤内に漏えいした絶縁油は防油堤地下の排油貯槽に流下するため火災発生の可能性は極めて低いと考えられるが，火災が発生するものと保守的に想定して評価を実施している。

表 3．3．1－2 屋外アクセスルート周辺の可燃物施設の被害想定及び対応内容（1／3）

表 3．3．1－2 屋外アクセスルート周辺の可燃物施設の被害想定及び対応内容（2／3）

名称	被害想定	対応内容
アセチレンガスボンベ（1 号機化学分析用） アセチレンガスボンベ（環境放射能測定センター化学分析用）	なし	－ 1 号機化学分析用アセチレンガスボ ンベ及び環境放射能測定センター化学分析用アセチレンガスボンベ は，ボンベ室壁に固縛して設置して おり，転倒による損傷は考えにく く，また周囲に着火源がないことか ら，火災は発生しないと考えられ る。 －ガスボンべ室は前面が開放されて おり，漏えいした場合でも外気中に拡散する。 －周辺に輻射強度が大きくなる危険物施設はない。
1 号機軽油貯蔵タンク	基準地震動S s によ りタンク又は付属配管が破損し，漏えい した軽油による火災発生のおそれ	－基準地震動 S s によりタンクが破損し，漏えいした軽油による火災発生の可能性があるが，アクセスルー トから離隔距離を確保できること からアクセスルートへの影響はな い。 -1 号機軽油貯蔵タンクの防油堤は軽油タンク全量を貯留可能である。基準地震動S s により防油堤の損壊 も考えられるが，排水路に流下する構造となっていること及び十分な離隔距離があることから影響はな い。
軽油タンク（大容量電源装置）	基準地震動 S s によ りタンク又は付属配管が破損し，漏えい した軽油による火災発生のおそれ	－基準地震動 S s によりタンクが破損し，漏えいした軽油による火災発生の可能性があるが，アクセスルー トから離隔距離を碓保できること からアクセスルートへの影響はな い。 －地下式タンクのため，軽油は拡散し ないと考えられる。

表 3．3．1－2 屋外アクセスルート周辺の可燃物施設の被害想定及び対応内容（3／3）

名称	被害想定	対応内容
1号機主変圧器／起動変圧器	基準地震動S s によ り変圧器が損壊し，漏えいした絶縁油に よる火災発生のおそ れ	－基準地震動 S s により変圧器が破損し，漏えいした絶縁油による火災発生の可能性があるが，アクセスル ートから離隔距離を確保できるこ とからアクセスルートへの影響は ない。 －主変圧器／起動変圧器エリアの防油堤は変圧器の絶縁油の全量を貯留可能である。基準地震動S s によ り防油堤の損壊も考えられるが，変圧器周辺は砂利が敷かれており絶縁油が漏れた場合には土中へ浸透 することから，絶縁油流出によるア クセスルートへの影響は限定的と考える。 －所内／励磁電源／補助ボイラー用変圧器及び PLR－VVVF 入力変圧器周辺は砂利が敷かれており絶縁油が漏れた場合には土中へ浸透するこ とから，絶縁油流出によるアクセス ルートへの影響は限定的と考える。
1 号機所内変圧器（A／B）		
2 号機主／起動変圧器		
2 号機所内（A／B）／励磁電源変圧器		
2 号機補助ボイラー（A／B）用変圧器		
3 号機主／起動変圧器（ A / B ）		
3 号機所内（A／B）／励磁電源変圧器		
3 号機補助ボイラー（A／B）用変圧器		
2 号機 PLR－VVVF（A／B）入力変圧器		
3 号機 PLR－VVVF（A／B）入力変圧器		

図3．3．1－5 可燃物施設火災時の影響範囲＊
注記 $*: ~$ 輻射強度 $1.6 \mathrm{~kW} / \mathrm{m}^{2}$ については，石油コンビナートの防災アセスメント指針より引用
（b）薬品関係設備
屋外アクセスルートの周辺タンク等のらち薬品関係設備損壊による通行性への影響評価結果を表3．3．1－3に示す。

薬品関係設備は，堰内又は建屋内に設置されているため，漏えいによる影響は限定的と考えられる。また，屋外に設置されている液体窒素貯槽は，漏えいした場合でも大気中に拡散することから，薬品関係設備の損壊によって通行性に対して影響を及ぼ さないことを確認した。

表3．3．1－3 屋外アクセスルート周辺の薬品関係設備の被害想定及び対応内容（1／5）

名称	被害想定	対応内容
MB－P 塔再生用硫酸貯留槽（1，2 号機給排水処理建屋）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －接触により皮膚の薬傷，眼の損傷のおそれがあ る。 吸入により生命の危険，呼吸器系の障害のおそれ がある。 （漏えい） －地震時に貯槽が損壊し，漏 えいする。 （ガス発生） －金属を腐食し，ガス発生の おそれがある。 （人体への影響） －接触により皮膚表面の組織を侵すおそれがある。 （漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －皮膚，眼に付着した場合，刺激が現れることがある。	－タンク周辺に堰又は排水溝を設置し ており，薬品が漏えいした場合にお いても薬品全量を純水装置排水受槽 へ移送可能である。 －また，基準地震動 S s により，建屋，薬品タンク，配管及びタンクの堰の一部は損壊，破損すると考えられる が，給排水処理建屋外に漏えいして も，給排水処理建屋周辺には土，砂利又は排水溝が敷かれており，薬品 は土中，砂利への浸透又は排水溝に流入し排水されることから，薬品流出によるアクセスルートへの影響は
H 塔用硫酸希䣋槽（1， 2号給排水処理建屋）		
MB－P 塔用硫酸希釈槽 （1，2 号機給排水処理建屋）		
硫酸貯槽（3号機給排水処理建屋）		
硫酸計量槽（3号機給排水処理建屋）		
硫酸希釈槽（3号機給排水処理建屋）		
OH 塔用苛性ソーダ計量槽（1，2号機給排水処理建屋）		
MB－P 塔用苛性ソーダ計量槽（1，2 号機給排水処理建屋）		
苛性ソーダ貯槽（3号機給排水処理建屋）		
苛性ソーダ計量槽（3号機給排水処理建屋）		
PAC 貯槽（3 号機給排水処理建屋）		

表 3．3．1－3 屋外アクセスルート周辺の薬品関係設備の被害想定及び対応内容（2／5）

名称	被害想定	対応内容
硫酸貯槽（1，2 号機給排水処理薬品タンク）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。	－タンク周辺に堰を設置しており，堰内に薬品が漏えいした場合におい ても薬品全量を純水装置排水受槽
H 塔再生用硫酸貯留槽 （1，2 号機給排水処理薬品タンク）	（人体への影響） －接触により皮膚の薬傷，眼 の損傷のおそれがある。 吸入により生命の危険，呼吸器系の障害のおそれがあ る。	へ移送可能である。 －また，基準地震動 S s により，薬品 タンク，配管及びタンクの堰の一部 は破損すると考えられるが，薬品夕 ンク周辺には土及び排水溝が敷か れており，薬品は土中への浸透及び
苛性ソーダ貯槽（1，2 号機給排水処理薬品タン ク）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （ガス発生） －金属を腐食し，ガス発生の おそれがある。 （人体への影響） －接触により皮膚表面の組織 を侵すおそれがある。	排水溝に流入し排水されることか ら，薬品流出によるアクセスルート への影響はない。
PAC 貯槽（1，2号機給排水処理薬品タンク）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －皮膚，眼に付着した場合，刺激が現れることがある。	

表 3．3．1－3 屋外アクセスルート周辺の薬品関係設備の被害想定及び対応内容（3／5）

	名称	被害想定	対応内容
	1 号機硫酸貯槽	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －接触により皮膚の薬傷，眼 の損傷のおそれがある。 －吸入により生命の危険，呼吸器系の障害のおそれがあ る。	- 薬品タンク周辺に堰を設置 - 基準地震動 S s により，薬品タン ク，配管及び堰の一部は破損し薬品 が流出すると考えられるが，薬品は タンク周辺には土及び砂利並びに排水溝が設置されており，土中及び砂利への浸透並びに排水溝に流入 し排水されることから，薬品流出に よるアクセスルート～の影響はな
$\begin{aligned} & 0 \\ & a \\ & 0 \\ & 0 \\ & \frac{1}{1} \\ & \frac{1}{5} \end{aligned}$	1 号機苛性ソーダ貯槽	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （ガス発生） －金属を腐食し，ガス発生の おそれがある。 （人体への影響） －接触により皮膚表面の組織 を侵すおそれがある。	い。

表3．3．1－3 屋外アクセスルート周辺の薬品関係設備の被害想定及び対応内容（4／5）

名称	被害想定	対応内容
2 号機硫酸貯槽	なし	－今後の運用により硫酸及び苛性ソー ダは保管しない＊ことから，漏えいの おそれはない。
2 号機硫酸計量槽		
2 号機苛性ソーダ貯槽		
3 号機硫酸貯槽		
3 号機苛性ソーダ貯槽		
硫酸タンク（環境放射能測定センター）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －接触により皮膚の薬傷，眼 の損傷のおそれがある。 －吸入により生命の危険，呼吸器系の障害のおそれが ある。	－タンクは環境放射能を分析する建物 の屋上に設置されており，タンク下部には容量約 $0.2 \mathrm{~m}^{3}$ のドレンパン（硫酸，苛性ソーダ共用）が設置されてい る。 －基準地震動 S s によりタンク及び配管の一部は破損すると考えられる が，タンク容量が小さいことから，ほ とんどの薬品はドレンパンに留まる と考えられる。 －屋上にひび等が見られても，タンク容量が小さいことから，漏えいした薬品は建物周辺に留まると考えられ
苛性ソーダタンク（環境放射能測定センター）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （ガス発生） －金属を腐食し，ガス発生の おそれがある。 （人体への影響） －接触により皮膚表面の組織を侵すおそれがある。	る。 －屋上の排水ドレンに薬品が流入した場合，アクセスルート道路の側溝に流れ込むが，タンク容量が小さいこ とから薬品は側溝から溢れ出さない と考えられる。 －タンクの設置位置が屋上端まで約 7 m あること及び屋上端に約 $30 \sim 50 \mathrm{~cm}$ の立ち上りがあることから，タンク は地上に落下しないと考えられる。 －以上のことから，アクセスルートへ の影響は限定的である。

注記＊：発電所の所則類に反映し，運用について管理する。

表 3．3．1－3 屋外アクセスルート周辺の薬品関係設備の被害想定及び対応内容（5／5）

名称	被害想定	対応内容
硫酸タンク（排水処理装置上屋）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響） －接触により皮膚の薬傷，眼 の損傷のおそれがある。 －吸入により生命の危険，呼吸器系の障害のおそれが ある。	－タンクは排水処理装置上屋の屋内に設置されており，基準地震動 S s に よりタンク及び配管の一部は破損す ると考えられるが，タンク容量が小 さいことから，ほとんどの薬品は屋内に留まると考えられる。 －床にひび等が見られても，タンク容量が小さいことから，漏えいした薬品は建物周辺に留まると考えられ
苛性ソーダタンク（排水処理装置上屋）	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （ガス発生） －金属を腐食し，ガス発生の おそれがある。 （人体への影響） －接触により皮膚表面の組織を侵すおそれがある。	る。 －以上のことから，アクセスルート～ の影響は限定的である。
1 号機液体窒素貯槽	（漏えい） －地震時に貯槽が損壊し，漏 えいする。 （人体への影響）	－液体窒素貯槽は屋外に設置されてお り，万一漏えい等が発生した場合で も大気中に拡散するため，アクセス性への影響はない。
$2 / 3$ 号機液体窒素貯槽	－吸引により窒息のおそれ がある。 －接触により凍傷のおそれ がある。	

（c）溢水タンク
屋外アクセスルートの周辺タンク等のらち溢水タンクの損壊による通行性への影響評価の結果を表3．3．1－4に示す。

タンクからの溢水は，周辺の道路上及び排水設備を自然流下して比較的短時間で拡散することから，溢水タンクの損壊によって通行性に対して影響を及ぼさないことを確認した。

なお，屋外アクセスルートにおける歩行可能な水深については，建屋の浸水時にお ける歩行可能な水深が，「地下空間における浸水対策ガイドライン（平成 14 年 3 月 28 日 国土交通省）」において，歩行困難水深及び水圧でドアが開かなくなる水深か ら 30 cm 以下と設定されていることにより，屋外においても同値とする。

表 3．3．1－4 屋外アクセスルート周辺の溢水評価対象タンクの被害想定及び対応内容

設備名称	被害想定	対応内容
再生純水タンク	なし	－今後の運用によりタンク内を空とすることか ら，溢水によるアクセスルートへの影響はない。
No． 1 サプレッション プール水貯蔵タンク		
No． 1 純水タンク	基準地震動 S s によ るタンク及び付属配管の破損による溢水	－地震によりタンク又は付属配管が破損した場合 でも，周辺の空地が平坦かつ広大であり，溢水 は拡散することから，アクセス性に影響はない と考えられる。 －原水タンクについては地震によりタンクが破損 した場合でも，アクセスルートが下り勾配であ ること，かつカーブがあり海側に流れ，アクセ スルート上には滞留しないことから，アクセス性に影響はない。 －万一，溢水した場合であっても，純水，ろ過水等であり人体への影響はない。
No． 2 純水タンク		
1，2 号ろ過水タンク		
3 号機純水タンク		
3 号機ろ過水タンク		
No． 1 原水タンク		
No． 2 原水タンク		
1 号機復水貯蔵タンク	基準地震動S s によ るタンク及び付属配管の破損による溢水	－地震によりタンク又は付属配管が破損した場合 でも，周辺の空地が平坦かつ広大であり，溢水 は拡散することから，アクセス性に影響はない と考えられる。 －万一，地震によりタンク，付属配管及び堰が破損した場合でも，周辺の空地が平坦かつ広大で あり，溢水は拡散することから，アクセス性に影響はないと考えられる。 －万一，溢水した場合であっても，内包する放射線量は微量であり人体への影響はない。

3．3．2 周辺斜面の崩壊及び敷地下斜面のすべり

周辺斜面の崩壊及び敷地下斜面のすべりによる影響評価については，保管場所における影響評価と同様に，周辺斜面の崩壊及び敷地下斜面のすべりによる車両の通行性への影響 を評価する。
（1）周辺斜面の崩壊
a．評価対象
アクセスルート及び評価対象とする周辺斜面の位置を図 3．3．2－1 に示す。
評価対象とする斜面については，アクセスルートにおいて斜面法尻から所定の離隔を確保できない斜面とする。所定の離隔は岩盤斜面では斜面高さの 1.4 倍，盛土斜面では斜面高さの 2 倍とする。

評価対象とする斜面 A，B，C，F，Gについて，すべり方向を考慮するとともに，斜面高さ，勾配ともに最大となる断面を斜面ごとに 1 断面選定した。斜面 D 及び斜面 E につ いては，斜面崩壊による影響範囲を考慮する。

なお，防潮堤盛土堤防部と鋼管式鉛直壁部の海側については，防潮堤の一部として基準地震動 S s に対する安全性を確保することから，評価対象斜面としては抽出しない。

図 3．3．2－1 評価対象とするアクセスルートの周辺斜面

b．評価方法

アクセスルートの周辺斜面における安定性は，当該斜面がアクセスルートと保管場所 の周辺斜面を兼ねる場合（斜面 A，B，F）は，基準地震動 S s に基づく 2 次元有限要素法解析を，アクセスルートのみの周辺斜面である場合（斜面 C，G）は基準地震動 S s に基づく静的震度を用いた分割法による安定性評価を行い，算定されるす心゙り安全率が評価基準値を上回っていることを確認する。評価基準値は1．0とする。

安定性評価を行う斜面 A，B，C，F，G の地質断面図を図3．3．2－2～図3．3．2－6に示 す。安定性評価に用いる地質断面図は，発電所建設時及び以降の地質調査の結果に基づ き作成している。

各斜面の解析に用いる解析コードは表 3．3．2－1 のとおり。なお，解析コードの検証及 び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

図3．3．2－2 斜面Aの地質断面図

図3．3．2－3 斜面Bの地質断面図

図 3．3．2－4 斜面Cの地質断面図

図3．3．2－5 斜面Fの地質断面図

図 3．3．2－6 斜面Gの地質断面図

表3．3．2－1 各斜面の解析に用いる解析コード

	静的解析	地震応答解析	すべり計算
斜面 A	stress－NLAP Ver．2．91	SuperFLUSH／2D Ver．6． 0	suberi＿sf Ver．2
斜面 B	SAC2D Ver．2．10	SuperFLUSH／2D Ver．6．0	suberi＿Type6789＿SAC2D－HD1 Ver．0
斜面 C	-	LIQUEUR Ver．16．1B	C0STANA Ver．18．1F
斜面 F	BG0195HDW1 Ver．5．0．6	VESL－DYN Ver．2．03	SLIP02HDW1 Ver．4．07
斜面 G	-	LIQUEUR Ver．15．1H	C0STANA Ver．18．1F

c．評価結果
周辺斜面の崩壊に対する影響評価結果を図3．3．2－7～図3．3．2－11に示す。 アクセスルート周辺斜面の最小すべり安全率はすべて評価基準値を上回っていること から「問題なし」と評価し，周辺斜面の崩壊がアクセスルートに影響を及ぼさないこと を確認した。
周辺斜面の崩壊による影響範囲を考慮した場合に，可搬型重大事故等対処設備の通行 に必要な道路幅員（3．7m）を確保できない可能性がある区間として抽出した箇所は図 3．3．2－12のとおり。

図 3．3．2－7 斜面Aのすべり安定性評価結果

図 3．3．2－8 斜面Bのすべり安定性評価結果

O．P．（m）	すべり安全率一覧	
	基準地震動 S s	すべり安全率
60	Ss－D1	1.2
50	Ss－D2	1.3
4	Ss－D3	1． 3
	Ss－F1	1． 3
30	Ss－F2	1.3
－ 20	Ss－F3	1． 4
	Ss－N1	1.09

図3．3．2－9 斜面Cのすべり安定性評価結果
すべり安全率一覧

基準地震動 S s	すべり安全率
$\mathrm{Ss}-\mathrm{D} 1$	2.0
$\mathrm{Ss}-\mathrm{D} 2$	2.0
$\mathrm{Ss}-\mathrm{D} 3$	2.2
$\mathrm{Ss}-\mathrm{F} 1$	2.7
$\mathrm{Ss}-\mathrm{F} 2$	1.7
$\mathrm{Ss}-\mathrm{F} 3$	2.2
$\mathrm{Ss}-\mathrm{N} 1$	1.8

図 3．3．2－10 斜面Fのすべり安定性評価結果

凡例
\square

すべり安全率一覧

O．P．（m）	基準地震動 S s	すべり安全率
60	Ss－D1	1.6
50	Ss－D2	1.5
－ 40	Ss－D3	1.8
－ 30	Ss－F1	1.9
－ 20	Ss－F2	1.9
10	Ss－F3	1． 8
0	Ss－N1	1． 7

図 3．3．2－11 斜面Gのすべり安定性評価結果

図3．3．2－12 必要な幅員を確保できない可能性のあるルートの抽出結果
（2）敷地下斜面のすべり
a．評価対象
アクセスルート及び評価対象とする斜面の位置を図 3．3．2－13に示す。
0．P． 62 m 盤を通るアクセスルートの敷地下斜面については，岩盤より比較的強度の小 さい盛土で構成され，斜面高さが最大となる斜面 B を代表として評価する。

評価対象とする斜面Bについて，すべり方向を考慮するとともに，斜面高さ，勾配と もに最大となる断面を 1 断面選定した。

図 3．3．2－13 評価対象とするアクセスルートの敷地下斜面
b．評価方法
アクセスルートの敷地下斜面として評価する斜面 B の安定性は基準地震動S s に基づ く 2 次元有限要素法解析を行い，算定されるすべり安全率が評価基準値を上回っている ことを確認する。評価基準値は1．0とする。

安定性評価を行う斜面 B の地質断面図を図 3．3．2－14に示す。安定性評価に用いる地質断面図は，発電所建設時及び以降の地質調査の結果に基づき作成している。

静的解析には解析コード「SAC2D Ver．2．10」，地震応答解析には解析コード
「SuperFLUSH／2D Ver．6．0」，すべり計算には解析コード「suberi＿Type6789＿SAC2D－HD1 Ver．0」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 3．3．2－14 斜面Bの地質断面図
c．評価結果
敷地下斜面の崩壊に対する影響評価結果を図3．3．2－15に示す。
アクセスルートの敷地下斜面における最小すべり安全率はすべて評価基準値を上回っ ていることから「問題なし」と評価し，敷地下斜面の崩壊がアクセスルートに影響を及 ぼさないことを確認した。

なお，アクセスルートはすべり安全率が最小となる下記のすべり線から十分に離隔を確保するように配置しており，敷地下斜面のすべりは車両の通行に影響しない。

図 3．3．2－15 斜面Bのすべり安定性評価結果

3．3．3 液状化及び摇すり込みによる不等沈下•傾斜，側方流動，液状化に伴ら浮上り

2011 年東北地方太平洋沖地震時の敷地内道路には，不等沈下に伴う段差等が下記に挙げ る箇所に発生している。同様の箇所に不等沈下に伴ら段差等が発生することを想定し，不等沈下に伴ら段差等による車両の通行性への影響を評価する。
＜不等沈下による段差等の発生箇所＞

- 地中埋設構造物と埋戻部との境界部
- 地山と埋戻部との境界部

また，海岸付近のアクセスルートは有効応力解析により過剰間隙水圧の上昇に伴う地盤 の剛性低下を考慮した変状について評価する。

さらに，液状化に伴ら地中埋設構造物の浮上りによる車両の通行性への影響を評価する。
（1）地中埋設構造物と埋戻部との境界部
a．評価方法
地中埋設構造物と埋戻部との境界部における不等沈下による影響評価については，液状化及び摇すり込みによる不等沈下に伴う段差による車両の通行性への影響を評価する。
地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差の評価位置を図 3．3．3－1に示す。評価の対象とする位置については，アクセスルート下の地中埋設構造物と埋戻部との境界位置を網羅的に選定する。

地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差評価のフローを図

3．3．3－2に示す。

地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差評価については，基準地震動S s に対する液状化による沈下量及び揺すり込みによる沈下量の合計値を算定 し，地中埋設構造物と埋戻部との境界部に生じる相対沈下量が評価基準値以下となるこ とを確認する。評価基準値については，車両が通行可能な許容段差量 $15 \mathrm{~cm}{ }^{* 1}$ とする。
評価位置の地下水位を設定し，地下水位以浅の不飽和地盤と地下水位以深の飽和地盤 を区別して沈下量を算定する。地下水位の設定は「b．地下水位の設定」に示す。また，沈下を想定する地盤は盛土と旧表土の 2 種類とする。
飽和地盤の液状化を考慮した沈下率は，体積ひずみと液状化抵抗率の関係から算出す る。飽和地盤の沈下率は，液状化判定によらず完全に液状化した状態を想定し，盛土は 1.4% ，旧表土は 2.8% とする。
不飽和地盤の摇すり込みを考慮した沈下率は海野ら＊2の知見を援用し，安全側に飽和土が完全に液状化した後の再圧密による体積収縮量に等しいと仮定して盛土は 1.4% ，旧表土は 2.8% とする。

注記 $\operatorname{*} 1$ ：地震時の段差被害に対する補修と交通開放の管理•運用方法について （依藤ら，2007年）
＊2：同一繰返しせん断履歴における乾燥砂と飽和砂の体積収縮量の関係
（海野ら，2006 年）

図3．3．3－1 地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差の評価位置

注記＊：地震時の段差被害に対する補修と交通開放の管理•運用方法について （依藤ら，2007年）

図 3．3．3－2 地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差評価のフロー
b．地下水位の設定
評価に用いる地下水位を図3．3．3－3に示す。
添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，地下水位低下設備 の機能を考慮した浸透流解析により算出した地下水位分布を用いて評価に用いる地下水位を設定するエリア（0．P．14．8m 盤）については，地下水位分布を包絡するように保守的に設定することとし，地下水位を 0．P．5．0m，0．P．10．0m，0．P．14．8mの 3 エリアに分け て設定する。

防潮堤より海側（0．P． 3.5 m 盤）については，朔望平均満潮位である 0．P． 2.43 m とする。上記以外の箇所については，保守的に地下水位を地表面に設定する。

図 3．3．3－3 評価に用いる地下水位

c．評価結果

地中埋設構造物と埋戻部との境界部における不等沈下に伴う段差の評価結果を表 3．3．3－1 に，段差緩和対策を実施する箇所を図3．3．3－4に示す。

岩盤内の構造物については構造物周辺が岩盤で覆われていることから，地中埋設構造物と埋戻部との境界部における液状化及び揺すり込みによる不等沈下に伴う段差が生じ ない箇所として評価した。また，MMR 又はセメント改良土にて埋め戻す構造物について も，地中埋設構造物と埋戻部との境界部における液状化及び揺すり込みによる不等沈下 に伴ら段差が生じない箇所として評価した。

算定した相対沈下量が評価基準値以下となる箇所については，地中埋設構造物と埋戻部との境界部における液状化及び揺すり込みによる不等沈下に伴う段差が，車両の通行性に対して影響を及ぼさないと評価した。

算定した相対沈下量が評価基準値を上回る箇所については，車両の通行性に対して影響があると評価し，補強材敷設による事前の段差緩和対策，若しくは段差発生後の重機 による段差解消作業により車両の通行性を確保する。重機による段差解消作業箇所は，段差の形状（影響範囲）や対策工法の特徴等を考慮して決定した。なお，補強材は十分 な耐久性を有するものとし，路盤掘削工事等に伴い一時的に撤去が必要となった場合は，工事完了後に速やかに復旧を行う。また，想定箇所以外における万一の段差発生等に備 えて，復旧に要する資材を配備する。

表 3．3．3－1 地中埋設構造物と埋戻部との境界部における評価結果（1／3）

No．	名称	路面高	基礎下端	構造物高 ＋基礎高	地下水位	相対沈下量	車両通行可否
		0．P．（m）	0．P．（m）	（m）	0．P．（m）	（cm）	15cm以下：○
1	北側排水路（A部）	14.800	10.629	1． 500	14．800	2.1	\bigcirc
2	3T－9	14． 800	-14.000	14． 850	5． 000	20.8	
3	3 号機取水管路（1号）	14．800	－20．150	11． 550	5． 000	16.2	
4	3 号機放水管路（2号）	14.800	-20.150	5． 400	5． 000	7.6	\bigcirc
5	3T－6	14.800	-22.150	35． 203	5． 000	49.3	
6	3T－5	14． 800	－22． 150	35． 736	5． 000	50.1	
7	3 号機取水管路（A部）	14.800	－14．000	5． 400	5.000	7.6	\bigcirc
8	3T－7	14.800	－12．000	25． 187	5． 000	35.3	
9	3 号機補機冷却水系放水路	14．800	－12．000	25． 193	5． 000	35.3	
10	防潮壁（3号機放水立坑）地盤改良	14.800	－10．789	4． 289	5.000	11.4	\bigcirc
11	3 号機放水路トンネル	14． 800	－41．436	7． 050	5． 000		\bigcirc
12	マンホール	14．800	9． 000	4． 700	5.000	6.6	\bigcirc
13	防潮壁（2号機海水ポンプ室）地盤改良	14．800	－8．000	5． 426	5.000	7.6	\bigcirc
14	2 号機取水路（B部）	14.800	－8．080	6． 491	5． 000	9.1	\bigcirc
15	2 号機取水路（A部）	14．800	－14．000	15． 500	5． 000	21.7	
16	2号機原子炉機器冷却海水配管ダクト地盤改良（1）	14.800	1.500	9． 800	5.000	13.8	\bigcirc
17	2T－11	14.800	9． 566	3． 250	5． 000	4.6	\bigcirc
18	2号機原子炉機器冷却海水配管ダクト地盤改良（2）	14．800	-14.000	24． 100	5． 000	33.8	
19	2 号機軽油タンク連絡ダクト	14． 800	－7． 899	21.049	5． 000	29.5	
20	マンホール	14．800	9.000	4． 700	5.000	6.6	\bigcirc
21	3T－2	14.800	9． 065	4． 000	14.800	5.6	\bigcirc

[^0]表 3．3．3－1 地中埋設構造物と埋戻部との境界部における評価結果（2／3）

No．	名称	路面高	基礎下端	構造物高 ＋基礎高	地下水位	相対沈下量	車両通行可否
		0．P．（m）	0．P．（m）	（m）	0．P．（m）	（cm）	15cm以下：○
22	3 号機排気筒連絡ダクト（A部）	14．800	－6． 038	13． 200	14．800	18.5	
23	北側排水路（B部）	16． 669	12． 140	2． 660	16． 669		\bigcirc
24	3 号機排気筒連絡ダクト（B部）	14.800	－6． 013	13．200	14．800	18.5	
25	電源ケーブルダクト	14.800	－0．940	12．711	14．800	14.3	\bigcirc
26	CVケーブル洞道	14.800	0.019	12． 332	14．800	13.1	\bigcirc
27	3 号機排気筒連絡ダクト（C部）	14.800	－10．543	18． 200	14．800	25.5	
28	2号機排気筒連絡ダクト（A部）	14.800	－0．022	7.600	14．800	10.7	\bigcirc
29	2号機排気筒連絡ダクト（B部）	14.800	－1．240	6． 600	14．800		\bigcirc
30	2号機排気筒連絡ダクト（C部）	14.800	－6． 589	6.600	14．800		\bigcirc
31	2号機排気筒連絡ダクト（D部）	14．800	－7． 541	6.600	10.000		\bigcirc
32	2 号機排気筒連絡ダクト（E部）	14．800	－8．946	7． 600	5.000	14.3	\bigcirc
33	2T－6（A部）	14.800	9.045	2.650	5.000	3.8	\bigcirc
34	2T－7（A部）	14． 800	8． 474	3.450	5.000	4.9	\bigcirc
35	3T－1（A部）	14．800	7． 175	4． 120	5.000	5.8	\bigcirc
36	3T－1（B部）	14．800	7． 363	4． 120	5.000	5.8	\bigcirc
37	2T－6（B部）	14.800	-10.000	21．340	5.000	29.9	
38	2T－7（B部）	14.800	－10．000	21.535	5． 000	30.2	
39	2 号機排気筒連絡ダクト（F部）	14．800	－9．098	7． 600	5.000	10.7	\bigcirc
40	3T－1（C部）	14．800	10．069	4． 120	5.000	5.8	\bigcirc
41	275 kV 開閉所連絡洞道	14.800	10． 009	3.020	14．800	4.3	\bigcirc
42	2T－6（C部）	14.800	9． 469	2． 650	14．800	3.8	\bigcirc

[^1]表 3．3．3－1 地中埋設構造物と埋戻部との境界部における評価結果（3／3）

No．	名称	路面高	基礎下端	構造物高 ＋基礎高	地下水位	相対沈下量	車両通行可否
		0．P．（m）	0．P．（m）	（m）	0．P．（m）	（cm）	15cm以下：○
43	1 号機排気筒連絡ダクト	14．800	－0．067	6． 600	14．800	9.3	\bigcirc
44	T－10（A部）	14.800	9． 401	3.350	14．800	4.7	\bigcirc
45	T－10（B部）	14.800	9． 707	2． 650	14.800	3.8	\bigcirc
46	1号機放水路トンネル	14.800	－5． 389	5． 200	14.800		\bigcirc
47	T－8	14．800	5.000	5.900	14.800	8.3	\bigcirc
48	1号機取水管路	14.800	5.000	5.900	14．800	8.3	\bigcirc
49	南側排水路	14.800	10．763	3.937	14.800		\bigcirc
50	1号機取水路トンネル	14.800	－5． 009	3． 900	14．800		\bigcirc
51	2 号機放水路トンネル	14.800	-20.879	6． 800	10.000		\bigcirc
52	防潮壁（2号機放水立坑）地盤改良（1）	14.800	－2． 687	13.687	5． 000	19.2	
53	防潮壁（2号機放水立坑）地盤改良（2）	14.800	－2．124	13． 124	5． 000	18.4	
54	2号機放水管路	14．800	－10．000	5． 200	5.000	7.3	\bigcirc
55	2号機取水管路	14．800	－10．000	5． 200	5.000	7.3	\bigcirc
56	地下水位低下設備No．1揚水井戸	14.800	－15． 200	30.000	5． 000	42.0	
57	北側排水路（C部）	20．361	7． 171	4． 100	2． 430		\bigcirc
58	3 号機取水路	10． 473	－15．548	11． 505	2． 430	＊	
59	2号機取水路	3.500	－20．500	17． 981	2． 430	＊	
$60 \sim 68$	マンホール	$\begin{array}{r} 31.031 \sim \\ 62.000 \end{array}$	$\begin{array}{r} 25.531 \sim \\ 56.000 \end{array}$	$\begin{gathered} \text { 4. } 300 \sim \\ 5.500 \end{gathered}$	$\begin{array}{r} 31.031 \sim \\ 62.000 \end{array}$		\bigcirc

注記＊No．58及びNo．59については，側方流動の影響も考慮した車両の通行性を確認するため，「（3）液状化による側方流動の評価」にて評価している。
—：岩盤内構造物のため相対沈下量が生じない箇所
：MMR又はセメント改良土により構造物を埋め戻すため
相対沈下量が生じない箇所
：相対沈下量が評価基準値を上回る箇所

図 3．3．3－4 地中埋設構造物と埋戻部との境界部における段差緩和対策を実施する箇所
（2）地山と埋戻部との境界部
建設時の掘削や敷地の造成等により，地山と埋戻部との境界が生じる。地震時にこの境界部に生じる不等沈下に伴う段差•傾斜による車両の通行性への影響を評価する。

a．評価方針

評価対象とする地山と埋戻部との境界部については地山を垂直に掘削した箇所や地山 に勾配を設けて掘削した箇所が考えられる。

液状化及び揺すり込みによる不等沈下に伴う段差•傾斜のイメージを図 3．3．3－5に示す。

地山を垂直に掘削した箇所は盛土層厚が急変するため不等沈下に伴う段差が生じる。 よって，基準地震動 S s に対する液状化及び揺すり込みによる沈下量を算出し，車両の通行に影響がないか評価する。

地山に勾配を設けて掘削した箇所は盛土層厚が急変しないため，地震時に車両の通行 に支障となる不等沈下に伴う段差は発生しない。しかし，液状化及び揺すり込みによる沈下により傾斜が生じるため，基準地震動 S s に対する液状化及び揺すり込みによる傾斜を算出し，車両の通行に影響がないか評価する。

地表面

地山を垂直に掘削した箇所

地表面

地山に勾配を設けて掘削した箇所

図 3．3．3－5 液状化及び揺すり込みによる不等沈下に伴う段差•傾斜のイメージ図
b．評価方法
（a）地山を垂直に掘削した箇所の評価方法
地山を垂直に掘削した箇所を評価対象箇所として抽出し，液状化及び揺すり込みに よる沈下量を算出し，相対沈下量が評価基準値以下となることを確認する。評価基準値は，車両通行の許容段差量 15 cm ＊とする。

図 3．3．3－6に示すとおり，掘削部と未掘削部の沈下量を算出し，その差を不等沈下 に伴う段差とする。

地下水位は「（1）地中埋設構造物と埋戻部との境界部」と同じ設定とする。
沈下量は「（1）地中埋設構造物と埋戻部との境界部」と同様に算出し，不飽和地盤，飽和地盤の沈下率はいずれも盛土 1.4% ，旧表土 2.8% とする。

なお，セメント改良土で埋め戻されている箇所については不等沈下に伴う段差が生 じないものとして評価する。

注記＊：地震時の段差被害に対する補修と交通開放の管理•運用方法について （依藤ら，2007年）

掘削部の沈下量
D1（cm）$=\mathrm{h} 1 \times \mathrm{A} \%+\mathrm{h} 2 \times \mathrm{B} \%$
D2（cm）$=\mathrm{h} 3 \times \mathrm{A} \%$段差（相対沈下量）
$\delta(\mathrm{cm})=\mathrm{D} 1-\mathrm{D} 2$
$=(h 1-h 3) \times A \%+h 2 \times B \%$

図 3．3．3－6 地山を垂直に掘削した箇所の評価方法
（b）地山に勾配を設けて掘削した箇所の評価方法
地山に勾配を設けて掘削した箇所を抽出し，最大傾斜が発生すると考えられる，最 も急勾配を設けて地山を掘削した箇所の液状化及び揺すり込みによる沈下を考慮した傾斜の評価を行い，傾斜が評価基準値以下となることを確認する。評価基準値は車両 が登坂可能な勾配である 16%＊とする。

液状化及び摇すり込みによる不等沈下を考慮した傾斜は図 3．3．3－7 に示すように評価箇所での最大沈下が発生した場合の傾斜（最大沈下量／地山傾斜部の幅）を算出 する。
地下水位は「（1）地中埋設構造物と埋戻部との境界部」と同じ設定とする。
沈下量は「（1）地中埋設構造物と埋戻部との境界部」と同様に評価し，不飽和地盤，飽和地盤の沈下率はいずれも盛土 1.4% ，旧表土 2.8% とする。

注記＊：走行時において車両重量が最も大きい原子炬補機代替冷却系熱交換器ユニッ トについて，勾配 16% の登坂能力を有していることから，可搬型重大事故等対処設備の走行は可能である。

図 3．3．3－7 地山に勾配を設けて掘削した箇所の評価方法

c．評価結果

（a）地山を垂直に掘削した箇所の評価結果
地山を垂直に掘削した箇所の抽出結果を図3．3．3－8に，評価結果を表3．3．3－2 に示す。

セメント改良土にて埋め戻す箇所については，不等沈下に伴う段差が生じない箇所 として評価した。

算定した相対沈下量が評価基準値以下となる箇所については，不等沈下に伴う段差 が，車両の通行性に対して影響を及ぼさないと評価した。
算定した相対沈下量が評価基準値を上回る箇所については，車両の通行性に対して影響があると評価し，補強材敷設による事前の段差緩和対策により車両の通行性を確保する。補強材敷設による事前の段差緩和対策を実施する箇所を図 3．3．3－9 に示す。

図 3．3．3－8 地山を垂直に掘削した箇所の抽出結果

表 3．3．3－2 地山を垂直に掘削した箇所の評価結果

No．	名称	路面高	未掘削部岩盤線	掘削部岩盤線	地下水位	末掘削部沈下量	掘削部沈下量	相対沈下量	車両通行可否
		0．P．（m）	0．P．（m）	0．P．（m）	0．P．（m）	（cm）	（cm）	（cm）	15cm以下：○
1	緊急時対策建屋	62． 100	56． 131	45． 400	62.100	セメント改良土で埋め戻すため沈下は生じない			\bigcirc
2	淡水貯水槽（第2保管エリア）	62． 100	53． 100	48.500	62.100	セメント改良土で埋め戻すため沈下は生じない			\bigcirc
3	緊急用電気品建屋東部	60.970	60.159	58.000	60.970	1.1	4． 2	3.1	\bigcirc
4	CVケーブル洞道北部	14.800	-2.000	0.000	14.800	36.1	20.7	15.4	
5	CVケーブル洞道南部1	14． 800	6.000	0.000	14.800	12.3	20.7	8.4	\bigcirc
6	CVケーブル洞道南部2	14． 800	12． 000	8.000	14． 800	3.9	9.5	5.6	\bigcirc
7	3 号機掘削時土留め北部1	14． 800	10.000	0.000	14．800	6.7	20.7	14.0	\bigcirc
8	3 号機掘削時土留め北部2	14． 800	14.000	2． 400	5． 000	1． 1	17.4	16.3	
9	3 号機掘削時土留め南部1	14． 800	0.000	－14．000	5． 000	29.1	40.3	11.2	\bigcirc
10	3 号機掘削時土留め南部2	14． 800	0.000	－8． 500	5． 000	20.7	32.6	11.9	\bigcirc
11	2号機掘削時土留め部	14． 800	4.000	－2．000	5． 000	17.9	29.1	11.2	\bigcirc

[^2]

図 3．3．3－9 補強材敷設による事前の段差緩和対策を実施する箇所
（b）地山に勾配を設けて掘削した箇所の評価結果
地山に勾配を設けて掘削した箇所の抽出結果を図 3．3．3－10に示す。また，最も急勾配を設けて地山を掘削した箇所（No．14）の評価結果を図 3．3．3－11に示す。評価の結果，液状化及び揺すり込みによる傾斜は最大で 4.7% であり，評価基準値以下のた め，車両の通行に影響はないと評価した。

No．	掘削勾配 *
1	$1: 1.5$
2	$1: 1.5$
3	$1: 1.5$
4	$1: 1.5$
5	$1: 0.8$
6	$1: 0.8$
7	$1: 1.0$
8	$1: 0.8$
9	$1: 0.5$
10	$1: 0.8$
11	$1: 0.8$
12	$1: 0.8$
13	$1: 0.3$
14	

注記＊：複数の勾配を設けて掘削してい る箇所は最も急な勾配を記載

図 3．3．3－10 地山に勾配を設けて掘削した箇所の抽出結果

図 3．3．3－11 地山に勾配を設けて掘削した箇所（No．14）の評価結果
（3）液状化による側方流動の評価
地盤の液状化を考慮する際，河川や海等の水際背後地盤又は地表面が傾斜している場合 には，側方流動による影響があると考えられる。
防潮堤より海側のアクセスルートは海水取水ポイントへ向からためのルートであり，水際背後地盤部に位置している。図3．3．3－12 に海水取水ポイントを示す。
海水取水ポイントとして， 2 号機取水口及び 2 号機海水ポンプ室スクリーンエリアを選定しており， 2 号機海水ポンプ室スクリーンエリアが使用できない場合に 2 号機取水口か ら取水することとしている。
2 号機取水口へは，図 3．3．3－12 に示す可搬型重大事故等対処設備の海水取水ルートを走行して向からこととしている。

水際背後地盤部に位置している防潮堤より海側のアクセスルートについて，側方流動が発生した場合の影響を評価する。

図 3．3．3－12 海水取水ポイント位置図
a．評価方法
側方流動による水平及び鉛直変位は，液状化検討対象層である盛土及び旧表土の層厚 が大きいほど影響が大きいと考えられることから，盛土及び旧表土の層厚を考慮し評価断面を選定し，防潮堤より海側のアクセスルートの段差量の代表とする。

側方流動による地形変化の評価位置を図 3．3．3－13 に，評価位置の地質断面図を図 3．3．3－14に示す。

側方流動による地形変化は， 2 次元有効応力解析にて評価を行う。解析には，解析コ ード「FLIP Ver7．3．0＿2」を使用する。なお，解析コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図3．3．3－13 評価位置図

図 3．3．3－14 地質断面図

アクセスルートの段差量については，評価断面における基準地震動 S s による 2 次元有効応力解析から算出される鉛直変位と，沈下対象層の摇すり込み沈下及び過剰間隙水圧の消散に伴う沈下との総和とし，図 3．3．3－13に示す，可搬型重大事故等対処設備の海水取水ルート下の地中埋設構造物と埋戻部との境界部に段差が発生すると想定し，段差量が評価基準値以下となることを確認する。評価基準値については，車両が通行可能 な許容段差量 15 cm ＊とする。なお，アクセスルートの段差量は，評価断面における基準地震動S s による 2 次元有効応力解析から算出される鉛直変位が最大となる位置にて算出する。

可搬型重大事故等対処設備の海水取水ルート下の地中埋設構造物の位置及び断面図を図 3．3．3－15 に示す。北側排水路は防潮堤（盛土堤防）を横断しており，周囲が改良地盤及びセメント改良土となっていることから，北側排水路との境界部には段差は発生し ない。一方，2号機取水路及び 3 号機取水路は周囲に盛土及び旧表土が存在しているた め， 2 号機取水路及び 3 号機取水路との境界部に段差が発生すると想定する。

注記＊：地震時の段差被害に対する補修と交通開放の管理•運用方法について （依藤ら，2007年）

断面図（1）
断面図（2）

断面図（3）

図 3．3．3－15 海水取水ルート下の地中埋設構造物の位置及び断面図
b．評価結果
2 次元有効応力解析により最大鉛直変位が発生した Ss －N1 の残留変形図を図 3．3．3－ 16 に示す。また，有効応力解析で算出した鉛直変位と，沈下対象層の揺すり込み沈下及 び過剰間隙水圧の消散に伴う沈下との総和により設定したアクセスルートの段差量を表 3．3．3－3 に示す。

アクセスルートの段差量は評価基準値を上回ることから，地盤改良による段差緩和対策により，車両の通行性を確保する。図3．3．3－17に段差発生想定図を，図 3．3．3－18 に地盤改良による段差緩和対策の概念図を示す。

図 3．3．3－16 残留変形図（Ss－N1）

表 3．3．3－3 アクセスルートの段差量
（単位：cm）

	基準地震動 S s							
	$\mathrm{Ss}-\mathrm{D} 1$	Ss －D2	Ss －D3	$\mathrm{Ss}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	Ss －N1	
2 次元有効応力解析 による鉛直変位量	98.3	73.1	72.4	98.0	105.3	63.8	111.0	
沈下対象層の沈下量	47.1	52.2	52.2	52.5	52.2	51.8	51.8	
段差量	145.4	125.3	124.6	150.5	157.5	115.6	162.8	

図 3．3．3－17 段差発生想定図

図 3．3．3－18 段差緩和対策の概念図
（4）液状化に伴う浮上り
a．評価方針
液状化に伴う浮上りによる影響評価については，液状化に伴う浮上りによる車両の通行性への影響を評価する。

液状化に伴う浮上りによる影響評価箇所として抽出した位置を図3．3．3－19に，評価 フローを図3．3．3－20に示す。
地下水位は「（1）地中埋設構造物と埋戻部との境界部」と同じ設定とする。

図 3．3．3－19 液状化に伴う浮上りによる影響評価位置

図 3．3．3－20 液状化に伴う地中埋設構造物の浮上り評価フロー
b．トンネル標準示方書に基づく評価
（a）評価方法
液状化に伴う浮上りについては，トンネル標準示方書（土木学会，2006）（以下「ト ンネル標準示方書」という。）に基づき，評価対象とする地中埋設構造物に作用する揚圧力と抵抗力から浮上りに対する安全率を算定し，算定した浮上り安全率が評価基準値以下となることを確認する。評価基準値は1．0とする。
評価対象とする地中埋設構造物は以下の条件に該当する構造物とする。
条件（1）構造物下端面よりも地下水位が高い地中埋設構造物
条件（2）岩盤内部に構築されていない地中埋設構造物
浮上りに対する安全率については，トンネル標準示方書に示される式（3．1）に基づ き算定する。算定方法の概念図を図3．3．3－21 に示す。
地下水位以深の盛土及び旧表土は，保守的に上載土のせん断抵抗 Q_{S} 及び構造物側面 の摩擦抵抗 Q_{B} を 0 とする。また，地中埋設構造物が岩盤又は MMR に直接支持されてい る場合は，過剰間隙水圧による揚圧力 U_{D} が構造物底面に作用しないとして評価を行う。

ここで，
Fs：浮上りに対する安全率
γ_{i} ：構造物係数で，$\gamma_{\mathrm{i}}=1.0$ とする
U_{S} ：構造物底面に作用する静水圧による揚圧力（ kN / m ）
U_{D} ：構造物底面に作用する過剰間隙水圧による揚圧力 $(\mathrm{kN} / \mathrm{m})$
W_{S} ：上載土の荷重（水の重量を含む）（kN／m）
W_{B} ：構造物の自重（ kN / m ）
Q_{S} ：上載土のせん断抵抗 $(\mathrm{kN} / \mathrm{m})$
Q_{B} ：構造物側面の摩擦抵抗 $(\mathrm{kN} / \mathrm{m})$
地表面

図 3．3．3－21 算定方法の概念図
（b）評価結果
液状化に伴う浮上りの評価対象構造物の抽出結果を表 3．3．3－4，トンネル標準示方書に基づく浮上りの評価結果を表3．3．3－5 に示す。

浮上りに対する安全率が 1.0 以下となっている構造物については，アクセスルート の通行に支障が出る地中埋設構造物の浮上りは生じないため，車両の通行性に対して影響を及ぼさないと評価した。

浮上りに対する安全率が 1.0 を上回る構造物については， 1 次元有効応力解析によ り，構造物底面周辺の過剰間隙水圧比を確認する。

表 3．3．3－4 評価対象構造物の抽出結果（1／3）

3．3．3ー

No．	名称	構造物下端面	地下水位	条件（1）	条件（2）
		0．P．（m）	0．P．（m）		
1	北側排水路（A部）	10.629	14．800	\bigcirc	\bigcirc
2	3T－9	－6． 750	5． 000	\bigcirc	\bigcirc
3	3 号機取水管路（1号）	－20． 150	5． 000	\bigcirc	\bigcirc
4	3 号機放水管路（2号）	－20． 150	5． 000	\bigcirc	\bigcirc
5	3T－6	9． 403	5． 000		\bigcirc
6	3T－5	10． 824	5． 000		\bigcirc
7	3 号機取水管路（A部）	－14． 000	5． 000	\bigcirc	\bigcirc
8	3T－7	10． 217	5． 000		\bigcirc
9	3 号機補機冷却水系放水路	7． 380	5． 000		\bigcirc
10	防潮壁（3号機放水立坑）地盤改良	－10．789	5． 000	－	－
11	3 号機放水路トンネル	－41． 436	5． 000	\bigcirc	
12	マンホール	9． 000	5． 000		\bigcirc
13	防潮壁（2号機海水ポンプ室）地盤改良	－8． 000	5． 000	－	－
14	2号機取水路（B部）	－8． 080	5． 000	\bigcirc	\bigcirc
15	2号機取水路（A部）	－8． 100	5． 000	\bigcirc	\bigcirc
16	2号機原子炉機器冷却海水配管ダクト地盤改良（1）	1． 500	5.000	－	－
17	2T－11	9.566	5． 000		\bigcirc

\square ：浮上り評価対象
○：条件に該当する場合
－：地盤改良部のため，評価対象から除く

表 3．3．3－4 評価対象構造物の抽出結果（2／3）

No．	名称	構造物下端面	地下水位	条件（1）	条件（2）
		0．P．（m）	0．P．（m）		
18	2号機原子炉機器冷却海水配管ダクト地盤改良（2）	－14．000	5.000	－	－
19	2 号機軽油タンク連絡ダクト	8． 500	5． 000		\bigcirc
20	マンホール	9． 000	5． 000		\bigcirc
21	3T－2	9． 065	14．800	\bigcirc	\bigcirc
22	3 号機排気筒連絡ダクト（A部）	－1．038	14．800	\bigcirc	\bigcirc
23	北側排水路（B部）	12.140	16． 669	－	－
24	3 号機排気筒連絡ダクト（B部）	－1．013	14．800	\bigcirc	\bigcirc
25	電源ケーブルダクト	－0．940	14．800	\bigcirc	\bigcirc
26	CVケーブル洞道	0.019	14．800	\bigcirc	\bigcirc
27	3 号機排気筒連絡ダクト（C部）	－0． 543	14． 800	\bigcirc	\bigcirc
28	2号機排気筒連絡ダクト（A部）	－0．022	14.800	\bigcirc	\bigcirc
29	2号機排気筒連絡ダクト（B部）	－1．240	14． 800	\bigcirc	
30	2号機排気筒連絡ダクト（C部）	－6． 589	14． 800	\bigcirc	
31	2号機排気筒連絡ダクト（D部）	－7． 541	10． 000	\bigcirc	
32	2号機排気筒連絡ダクト（E部）	－8．946	5． 000	\bigcirc	\bigcirc
33	2T－6（A部）	9.045	5． 000		\bigcirc
34	2T－7（A部）	8． 474	5． 000		\bigcirc
35	3T－1（A部）	7． 175	5． 000		\bigcirc
36	3T－1（B部）	7． 363	5． 000		\bigcirc
37	2T－6（B部）	8． 490	5． 000		\bigcirc
38	2T－7（B部）	7． 985	5.000		\bigcirc
39	2号機排気筒連絡ダクト（F部）	－9．098	5.000	\bigcirc	\bigcirc
40	3T－1（C部）	10． 069	5． 000		\bigcirc
41	275 kV 開閉所連絡洞道	10． 009	14． 800	\bigcirc	\bigcirc
42	2T－6（C部）	9． 469	14． 800	\bigcirc	\bigcirc

\square ：浮上り評価対象
○ ：条件に該当する場合
－：地盤改良部のため，評価対象から除く

表 3．3．3－4 評価対象構造物の抽出結果（3／3）

No．	名称	構造物下端面	地下水位	条件（1）	条件（2）
		0．P．（m）	0．P．（m）		
43	1 号機排気筒連絡ダクト	－0． 067	14.800	\bigcirc	\bigcirc
44	T－10（A部）	9． 401	14． 800	\bigcirc	\bigcirc
45	T－10（B部）	9． 707	14.800	\bigcirc	\bigcirc
46	1 号機放水路トンネル	-5.389	14． 800	\bigcirc	
47	T－8	5． 000	14.800	\bigcirc	\bigcirc
48	1号機取水管路	5． 000	14．800	\bigcirc	\bigcirc
49	南側排水路	10.763	14． 800	－	－
50	1 号機取水路トンネル	－5． 009	14.800	\bigcirc	
51	2号機放水路トンネル	－20．879	10.000	\bigcirc	
52	防潮壁（2号機放水立坑）地盤改良（1）	－2．687	5.000	－	－
53	防潮壁（2号機放水立坑）地盤改良（2）	－2． 124	5． 000	－	－
54	2号機放水管路	－10．000	5.000	\bigcirc	\bigcirc
55	2号機取水管路	－10．000	5.000	\bigcirc	\bigcirc
56	地下水位低下設備№．1揚水井戸	－15． 200	5.000	\bigcirc	
57	北側排水路（C部）	7． 171	2． 430	－	－
58	3 号機取水路	－9． 743	2． 430	\bigcirc	\bigcirc
59	2 号機取水路	－8． 019	2． 430	\bigcirc	\bigcirc
$60 \sim 68$	マンホール	$25.531 \sim 56.000$	$31.031 \sim 62.000$	－	－

[^3]表3．3．3－5 浮上り評価結果

No．	名称	揚圧力 （kN／m）	浮上り抵抗力 （kN／m）	$\begin{aligned} & \text { 浮上り } \\ & \text { 安全率 } \end{aligned}$
1	北側排水路（A 部）＊	90	151	0.60
2	3T－9＊	1705	8273	0.21
3	3 号機取水管路（1号）＊	13718	51053	0． 27
4	3 号機放水管路（2 号）＊	2580	9642	0． 27
7	3 号機取水管路（A 部）＊	1919	8222	0.24
14	2 号機取水路（B 部）＊	1719	8323	0.21
15	2 号機取水路（A 部）＊	3750	14066	0． 27
21	3T－2＊	264	372	0.71
22	3 号機排気筒連絡ダクト（A 部）＊	1336	2332	0.58
24	3 号機排気筒連絡ダクト（B 部）＊	1334	2327	0． 58
25	電源ケーブルダクト＊	1327	2239	0.60
26	CV ケーブル洞道＊	5618	6726	0.84
27	3 号機排気筒連絡ダクト（C 部）＊	1294	2244	0.58
28	2 号機排気筒連絡ダクト（A部）＊	1105	1905	0.59
32	2 号機排気筒連絡ダクト（E部）＊	1039	5526	0． 19
39	2 号機排気筒連絡ダクト（F 部）＊	1051	5741	0． 19
41	275 kV 開閉所連絡洞道＊	175	258	0.68
42	2T－6（C 部）	209	167	1． 26
43	1 号機排気筒連絡ダクト＊	962	1621	0.60
44	T－10（A 部）	371	291	1． 28
45	T－10（B 部）	160	131	1． 23
47	T－8＊	615	876	0.71
48	1 号機取水管路＊	1134	2280	0.50
54	2号機放水管路＊	1530	7418	0.21
55	2 号機取水管路＊	1530	7418	0.21
58	3 号機取水路＊	1600	7096	0． 23
59	2 号機取水路＊	1373	3070	0． 45

注記＊：構造物が岩盤又は MMR に直接支持されていることから，過剰間隙水圧による揚圧力 U_{D} が構造物底面に作用しないとして評価
：評価基準値を上回る評価対象構造物
c． 1 次元有効応力解析による過剰間隙水圧比の確認
（a）評価方針
トンネル標準示方書に基づく評価により，浮上りに対する安全率が評価基準値を上回る構造物について， 1 次元有効応力解析により構造物底面周辺の過剰間隙水圧比を確認する。

構造物周辺の地盤においては，構造物の影響により地盤の変位が抑制され，せん断 ひずみが小さくなることから，過剰間隙水圧比も小さくなると考えられるが，保守的 に構造物を考慮しない 1 次元有効応力解析により過剰間隙水圧比を確認する。

過剰間隙水圧比は過剰間隙水圧と有効上載圧との比であり，過剰間隙水圧比が 1.0未満の場合は，過剰間隙水圧を有効上載圧が上回っており，浮上りに対する抵抗力を有していると考えられるが，地盤材料試験の方法と解説（地盤工学会，2009）では，液状化予測に用いる土の液状化強度特性を求めるための繰返し非排水三軸試験におい て，「過剰間隙水圧の最大値が有効拘束圧の 95% となったときの繰返し載荷回数を求め る。」と記載されていることから，過剰間隙水圧比が 0.95 以上となった場合は，保守的に浮上りに対する抵抗力を有していない状態と想定する。

構造物底面周辺の過剰間隙水圧比が 0.95 以上となる場合は，保守的に浮上りに対 する抵抗力を有していない状態と想定し，事前の浮上り対策を実施することにより車両の通行性を確保する。

構造物底面周辺の過剰間隙水圧比が 0.95 未満となる場合は，トンネル標準示方書 に示される式（3．2）に基づき，構造物底面に作用する過剰間隙水圧による揚圧力 U_{D} の算定に過剰間隙水圧比を考慮してトンネル標準示方書に基づく浮上り評価を実施し，浮上りに対する安全率が評価基準値以下となることを確認する。
$\mathrm{U}_{\mathrm{D}}=\mathrm{L}_{\mathrm{u}} \cdot \sigma_{\mathrm{v}}{ }^{\prime} \quad$ • B

ここで，
$\mathrm{U}_{\mathrm{D}} \quad$ ：構造物底面に作用する過剰間隙水圧による揚圧力 $(\mathrm{kN} / \mathrm{m})$
L_{u} ：過剰間隙水圧比
$\sigma_{\mathrm{v}}{ }^{\prime}$ ：構造物底面位置における初期有効上載圧（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
B ：構造物の幅（m）
（b）評価方法
1 次元有効応力解析により基準地震動 S s における構造物底面周辺の過剰間隙水圧比を確認する地中埋設構造物を表 3．3．3－6に，解析モデル図を図3．3．3－22に示す。 アクセスルート下における地中埋設構造物の液状化検討対象層（盛土及び旧表土）の分布状況から 1 次元有効応力解析を行う位置を選定した。なお，No． 42 2T－6（C 部）及びNo． 44 T－10（A 部）は位置が近接しており，地質条件も同様であることから，No． 44 $\mathrm{T}-10$（ A 部）の解析モデルを代表とした。

1 次元有効応力解析は，解析コード「FLIP Ver7．4．1」を使用する。なお，解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

表 3．3．3－6 構造物底面周辺の過剰間隙水圧比を確認する地中埋設構造物

No．	名称	解析モデル
42	$2 \mathrm{~T}-6 \quad$（C 部）	（1）
44	$\mathrm{~T}-10 \quad$（A 部）	（1）
45	$\mathrm{~T}-10 \quad(\mathrm{~B}$ 部）	（2）

図 3．3．3－22 解析モデル図
（c）評価結果
1 次元有効応力解析による構造物底面周辺の過剰間隙水圧比の確認結果を表 3．3．3 -7 に，構造物底面周辺における過剰間隙水圧比の分布を図3．3．3－23に示す。

No． 42 2T－6（C 部）及びNo． 44 T－10（A 部）については，構造物底面周辺における過剰間隙水圧比が 0.95 未満となっていることから，トンネル標準示方書に示される式（3．2）に基づき，構造物底面に作用する過剰間隙水圧による揚圧力 U_{D} の算定に過剰間隙水圧比を考慮し，トンネル標準示方書に基づく浮上り評価を実施する。

No． 45 T－10（B 部）については，構造物底面周辺の過剰間隙水圧比が 0.95 以上と なることから，浮上り対策を実施することにより車両の通行性を確保する。液状化に伴ら浮上り対策を実施する箇所を図3．3．3－24に示す。

表 3．3．3－7 構造物底面周辺の過剰間隙水圧比確認結果（基準地震動 S s における最大値）

No．	名称	構造物底面周辺の 過剰間隙水圧比
42	$2 \mathrm{~T}-6$（C 部）	0.95 未満
44	$\mathrm{~T}-10 \quad$（A 部）	0.95 未満
45	$\mathrm{~T}-10 \quad$（B 部）	0.95 以上

No． 42 2T－6（C 部）

No． 44 T－10（A 部）

図 3．3．3－23 過剰間隙水圧比分布図（基準地震動 S s における最大値）

図 3．3．3－24 液状化に伴ら浮上り対策を実施する箇所
d．過剰間隙水圧比の確認を踏まえた浮上り評価
（a）評価方法
1 次元有効応力解析により，構造物底面周辺の過剰間隙水圧比が 0.95 未満となって いる構造物について，トンネル標準示方書に示される式（3．2）に基づき，構造物底面 に作用する過剰間隙水圧による揚圧力 U_{D} の算定に過剰間隙水圧比を考慮し，トンネル標準示方書に基づく浮上り評価を実施する。

なお，過剰間隙水圧比が 0.95 未満となる場合においても，地下水位以深の盛土及び旧表土は，保守的にせん断抵抗 Q_{S} 及び構造物の摩擦抵抗 Q_{B} を 0 とする。
（b）評価結果
1 次元有効応力解析による構造物底面周辺の過剰間隙水圧比の確認を踏まえ，構造物底面に作用する過剰間隙水圧による揚圧力 U_{D} の算定に過剰間隙水圧比を考慮した トンネル標準示方書に基づく浮上り評価結果を表3．3．3－8に示す。

評価の結果，すべての評価箇所において安全率が 1.0 以下であることから，アクセ スルートの通行に支障がある地中埋設構造物の浮上りは発生せず，通行性への影響は ない。

表 3．3．3－8 構造物底面周辺の過剰間隙水圧比の確認を踏まえた浮上り評価結果

No．	名称	揚圧力 $(\mathrm{kN} / \mathrm{m})$	浮上り抵抗力 $(\mathrm{kN} / \mathrm{m})$	浮上り 安全率
42	$2 \mathrm{~T}-6$（C 部）	111	167	0.67
44	$\mathrm{~T}-10$（A 部）	196	291	0.68

3．3．4 地中埋設構造物の損壊

（1）評価方法
地中埋設構造物の損壊による影響評価については，地中埋設構造物の損壊による車両の通行性への影響を評価する。

地中埋設構造物の損壊による影響評価箇所として抽出した位置を図3．3．4－1 に示す。
抽出した地中埋設構造物のうち，以下の条件に該当する地中埋設構造物又は地盤改良体 については，損壊の可能性が小さいと考えられるため評価対象外とした。
条件（1）基準地震動 S s に対して機能維持する設計がされた構造物
条件（2）コンクリートで巻き立てられ補強された管路
条件（3）岩盤内の構造物

図 3．3．4－1 地中埋設構造物の損壊による影響評価位置
（2）評価結果
地中埋設構造物の損壊による影響評価結果を表3．3．4－1に示す。
地中埋設構造物の損壊による影響評価箇所として抽出した箇所のうち，条件（1）～（3）に該当しない箇所について地中埋設構造物の損壊を仮定し，図3．3．4－2 に示すとおり H 形鋼敷設による事前の対策，若しくは段差発生後の重機による段差解消作業により車両通行性 を確保する。重機による段差解消作業箇所は，段差の形状（影響範囲）や対策工法の特徴等を考慮して決定した。

また，想定箇所以外における万一の段差発生等に備えて，復旧に要する資材を配備して おく。

表 3．3．4－1 地中埋設構造物の損壊による影響評価結果（ $1 / 2$ ）

No．	名称	条件（1）	条件（2）	条件（3）
1	北側排水路（A部）			
2	3T－9	\bigcirc		
3	3 号機取水管路（1号）		\bigcirc	
4	3 号機放水管路（2号）		\bigcirc	
5	3T－6			
6	3T－5			
7	3 号機取水管路（A部）		\bigcirc	
8	3T－7			
9	3 号機補機冷却水系放水路			
10	防潮壁（3号機放水立坑）地盤改良	－	－	－
11	3 号機放水路トンネル			\bigcirc
12	マンホール	\bigcirc		
13	防㳯壁（2号機海水ポンプ室）地盤改良	－	－	－
14	2 号機取水路（B部）	\bigcirc		
15	2 号機取水路（A部）	\bigcirc		
16	2号機原子炉機器冷却海水配管ダクト地盤改良（1）	－	－	－
17	2T－11			
18	2号機原子炉機器冷却海水配管ダクト地盤改良（2）	－	－	－
19	2 号機軽油タンク連絡ダクト	\bigcirc		
20	マンホール	\bigcirc		
21	3T－2			
22	3 号機排気筒連絡ダクト（A部）	\bigcirc		
23	北側排水路（B部）			
24	3 号機排気筒連絡ダクト（B部）	\bigcirc		
25	電源ケーブルダクト			
26	CVケーブル洞道			
27	3 号機排気筒連絡ダクト（C部）	\bigcirc		
：損壊の評価対象 ：条件に該当する場合 －：地盤改良部のため，評価対象から除く				

表 3．3．4－1 地中埋設構造物の損壊による影響評価結果（2／2）

No．	名称	条件（1）	条件（2）	条件（3）
28	2号機排気筒連絡ダクト（A部）	\bigcirc		
29	2 号機排気筒連絡ダクト（B部）	\bigcirc		\bigcirc
30	2号機排気筒連絡ダクト（C部）	\bigcirc		\bigcirc
31	2号機排気筒連絡ダクト（D部）	\bigcirc		\bigcirc
32	2 号機排気筒連絡ダクト（E部）	\bigcirc		
33	2T－6（A部）			
34	2T－7（A部）			
35	$3 \mathrm{~T}-1$（A部）			
36	$3 \mathrm{~T}-1$（B部）			
37	2T－6（B部）			
38	2T－7（B部）			
39	2号機排気筒連絡ダクト（F部）	\bigcirc		
40	$3 \mathrm{~T}-1$（C部）			
41	275kV開閉所連絡洞道			
42	2T－6（C部）			
43	1号機排気筒連絡ダクト	\bigcirc		
44	T－10（A部）			
45	$\mathrm{T}-10$（ B 部）			
46	1号機放水路トンネル			\bigcirc
47	T－8	\bigcirc		
48	1号機取水管路		\bigcirc	
49	南側排水路			
50	1号機取水路トンネル			\bigcirc
51	2号機放水路トンネル			\bigcirc
52	防潮壁（2号機放水立坑）地盤改良（1）	－	－	－
53	防潮壁（2号機放水立坑）地盤改良（2）	－	－	－
54	2号機放水管路		\bigcirc	
55	2号機取水管路		\bigcirc	
56	地下水位低下設備No．1揚水井戸	\bigcirc		\bigcirc
57	北側排水路（C部）	\bigcirc		
58	3 号機取水路	\bigcirc		
59	2 号機取水路	\bigcirc		
60～68	マンホール	\bigcirc		

○ ：条件に該当する場合
－：地盤改良部のため，評価対象から除く

図 3．3．4－2 地中埋設構造物の損壊対策を実施する箇所

3．3．5 仮復旧時間の評価

（1）評価方法
「3．3．1 周辺構造物の倒壊及び周辺タンク等の損壊」～「3．3．4 地中埋設構造物の損壊」までの影響評価結果を踏まえ，アクセスルートにおける通行性に影響を及ぼす区間の仮復旧に要する作業時間を算定する。
a．復旧方法
「3．3．1 周辺構造物の倒壊及び周辺タンク等の損壊」にて評価した可搬型重大事故等対処設備が通行可能な幅員が確保できない区間については，バックホウ及びブルドー ザにより仮復旧し，通行性を確保する。

また，「3．3．3 液状化及び揺すり込みによる不等沈下•傾斜，側方流動，液状化に伴 う浮上り」，「3．3．4 地中埋設構造物の損壊」にて評価した可搬型重大事故等対処設備 の通行性を確保できない区間については，ブルドーザにより仮復旧し，通行性を確保す る。

その他の作業条件は以下のとおりとする。
（a）がれき撤去
－復旧により確保する屋外アクセスルートは通行車両として最大車幅（2．5m）となる原子炉補機代替冷却系熱交換器ユニットに余裕を考慮し，幅員 3.7 m 以上とする。
－復旧作業は，ブルドーザ及びバックホウを使用することとし，作業要員は 2 名以上 （屋外アクセスルート確保要員2名）とする。
－屋外アクセスルート上のがれきについては，カッターを装着したバックホウにより がれきを分解し，ブルドーザによりがれきをルート外へ押し出すことによりルート を確保する。
（b）段差復旧
－復旧により確保する屋外アクセスルートは通行車両として最大車幅（ 2.5 m ）となる原子炉補機代替冷却系熱交換器ユニットに余裕を考慮し，幅員 3.7 m 以上とする。
－復旧作業は，ブルドーザを使用することとし，作業員は 2 名以上（屋外アクセスル ート確保要員2名）とする。
－屋外アクセスルート上の段差については，ブルドーザにより砕石を運搬，段差発生箇所に投入，埋戻し，転圧することにより解消する。
b．復旧時間の算出条件
アクセスルート復旧時間の算定条件は以下のとおりとする。
（a）がれき撤去
－作業員は，要員待機場所である事務本館からブルドーザ及びバックホウの保管場所 へ向かい，ブルドーザ及びバックホウを操作しアクセスルート上のがれき撤去を実施する。
－重大事故等の状況確認，対応準備，屋外アクセスルートや設備被害状況確認，復旧 ルート判断，要員待機場所から保管場所までの移動を含めて 70 分とする。
－バックホウの作業能力は移動速度 $6.0 \mathrm{~km} / \mathrm{h}$ ，電線及び鋼材切断時間 1 箇所当たり
1.5 分，屋根切断時間 1 m 当たり 1 分，建屋構造材切断時間 1 箇所当たり 9 分，が れき撤去時間 1 回当たり 5 分とする。
－ブルドーザの作業能力は移動速度 $10.0 \mathrm{~km} / \mathrm{h}$ ，がれき撤去速度 $0.5 \mathrm{~km} / \mathrm{h}$ とする。
（b）段差復旧
－作業員は，要員待機場所である事務本館からブルドーザの保管場所へ向かい，ブル ドーザを操作しアクセスルート上の段差解消作業を実施する。
－重大事故等の状況確認，対応準備，屋外アクセスルートや設備被害状況確認，復旧 ルート判断，要員待機場所から保管場所までの移動を含めて 70 分とする。
－ブルドーザの作業能力は $53 \mathrm{~m}^{3} / \mathrm{h}$ とする。

（2）評価結果

設定した屋外アクセスルートの仮復旧時間について，ルート 1 の評価結果を図 3．3．5— 1，ルート 2 の評価結果を図3．3．5－2 に示す。

ルート 1 について，ブルドーザによる仮復旧時間を考慮した結果，約 148 分で通行性を確保できることを確認した。

ルート 2 について，バックホウ及びブルドーザによる仮復旧時間を考慮した結果，約 230 分で通行性を確保できることを確認した。

区間	距離 ［ 約 m ］	評価項目	所要時間 ［ 分 ］	累積時間 ［ 分 ］
-	-	状況確認•準備	15	15
-	-	ルート確認•判断	40	55
$(1) \rightarrow(2)$	-	徒歩移動	15	70
$(2) \rightarrow(3)$	1200	重機移動	8	78
-	-	段差解消	70	148

図3．3．5－1 ルート1の仮復旧時間評価結果

区間	$\begin{gathered} \text { 距離 } \\ {[\text { 約 m }]} \end{gathered}$	評価項目	所要時間 ［ 分］	累積時間 ［分］
－	－	状況確認•準備	15	15
－	－	ルート確認•判断	40	55
（1）\rightarrow（2）	－	徒歩移動	15	70
（2）\rightarrow（3）	450	重機移動	5	75
（3）\rightarrow（4）	30	引留鉄構電線切断作業	21	96
		引留鉄構分解作業	6	102
		引留鉄構がれき撤去作業	10	112
		給排水処理建屋分解作業	108	220
		給排水処理建屋がれき撤去作業	10	230

図3．3．5－2 ルート2の仮復旧時間評価結果

4．屋内アクセスルート
4． 1 屋内アクセスルートの基本方針
地震，津波その他の自然現象又は人為事象による影響を考慮し，外部からの衝撃による損傷 の防止が図られた建屋に，各設備の操作場所までのアクセスルートを複数設定する。

上記を受けた屋内アクセスルート設定の考え方を以下に示す。
（1）地震及び津波の影響の考慮
a．屋外から直接原子炉建屋内に入域するための原子炉建屋の入口は，以下の条件を考慮 し設定する。
（a）基準地震動 S s 及び基準津波の影響を受けない原子炉建屋入口を 5 箇所設定。
b．屋内アクセスルートは以下の条件を満足するルートとする。
（a）基準地震動 S s の影響を受けず，基準津波に対して影響を受けない高さ，又は水密化を図った建屋にアクセスルートを設定。 また，ルート設定に当たつては以下を考慮。
－アクセスルート近傍の油内包機器及び水素内包機器について，地震時に火災源とな らないこと。

- 地震に伴ら溢水が発生した場合においても歩行可能な水深であること。
- アクセスルート近傍の資機材について，地震による転倒等により通行を阻害しない ように固縛等の転倒防止対策を実施すること。
（2）地震及び津波以外の自然現象及び人為事象の考慮
地震及び津波以外の自然現象及び人為事象に対し，外部からの衝撃による損傷防止が図 られたアクセスルートを設定する。
（3）その他の考慮事項
屋内アクセスルートは，津波，その他の自然現象による影響（風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮）及び人為事象（飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス及び船舶の衝突）に対して，外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とす る。

また，アクセスルートに加え迂回ルートを設定し，迂回ルートは，通行可能な場合に限 り，使用するルートとする。

重大事故等時に設定したアクセスルートが線量上昇によりアクセスできなくなった場合 には，空間放射線量等の現場状況に応じて人身安全を最優先に適切な放射線防護具を選定 した上で，適切なアクセスルートを選択する。

4．2 屋内アクセスルートの影響評価

屋内アクセスルートの設計においては，屋内アクセスルートについて想定される自然現象及 び人為事象の抽出を行い，その自然現象及び人為事象が起因する被害要因に対して影響評価を行い，その影響を受けないルートを確保する。

なお，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，船舶の衝突及び電磁的障害については，屋内アクセスルートは建屋内であることから影響はなく，有毒ガ スについても外気取入ダンパを閉止，又は空調停止や事故時運転モードにより建屋内への侵入 を阻止することが可能であり影響はない。

屋内アクセスルートについて想定される自然現象の抽出結果を表4．2－1 に示す。

表 4．2－1 屋内アクセスルートに想定される自然現象（1／2）

自然現象	概略評価結果	被害要因 抽出 ：対象 \times ：対象外
地震	－資機材の倒壊•損壊，アクセスルート周辺機器等の地震随伴火災•地震随伴溢水による影響が考えられる。	\bigcirc
津波	－基準津波に対して，防潮堤や防潮壁を設置することから，建屋近傍まで遡上する浸水はない。	\times
風（台風）	－建屋内であり影響を受けない。	\times
竜巻	－原子炉建屋等は竜巻に対して頑健性を有することから影響を受 けない。	\times
積雪	－建屋内であり影響を受けない。	\times
凍結	－建屋内であり影響を受けない。	\times
降水	－浸水防止対策が施された建屋内であり，影響を受けない。	\times
落雷	－建屋には避雷設備を設置しており，影響を受けない。	\times
火山の影響	－建屋内であり影響を受けない。	\times
生物学的事象	－屋内アクセスルートは浸水防止対策により水密化された建屋内 に設置されるため，ネズミ等の小動物の侵入による影響を受け ない。	\times

表 4．2－1 屋外アクセスルートに想定される自然現象（ $2 / 2$ ）

自然現象	概略評価結果	被害要因 抽出 ：対象 $x:$ 対象外
森林火災	- 関連する建屋は防火帯の内側であり，熱影響は受けない。 - ばい煙については，外気取入口に設置されたバッグフィルタに より一定以上の粒径のばい煙を捕集するとともに，外気取入ダ ンパを閉止，又は空調停止や事故時運転モードにより建屋内へ の侵入を阻止することが可能であり影響はない。	\times
高潮	－アクセスルートは，高潮の影響を受けない敷地高さ（0．P．（女川原子力発電所工事用基準面）3．5m）以上に設置することから影響を受けない。	\times

以上の抽出結果を踏まえ，屋内アクセスルートの設計に当たり，地震，地震随伴火災及び地震随伴溢水による屋内アクセスルートへの影響評価を行い，その影響を受けないルートを設定 する。
地震に伴ら屋内アクセスルートの影響評価項目を以下に示す。

- 地震随伴火災
- 地震随伴溢水

地震による影響を考慮し，屋内アクセスルートの選定に際し，周辺施設の転倒等による影響 がないことを確認するため，現場の整備状況を確認し，アクセスルート周辺に影響を及ぼす施設がないことを確認する。

4.3 屋内アクセスルートの評価方法及び結果

アクセスルートの影響について，被害要因ごとに評価する。
屋内アクセスルートを図4．3－1 に示す。

\square
Preser
Pr

4．3．1 地震随伴火災

（1）評価方法
屋内アクセスルート近傍の地震随伴火災の発生の可能性がある機器について，以下のと おり抽出•評価を実施する。
a．重要事故シーケンスごとに必要な対応処置のためのアクセスルートをルート図上に描画し，ルート近傍の回転機器＊を抽出する。
b．S クラス機器又は基準地震動 S s にて耐震性が確認された機器は損壊しないものとし，内包油による地震随伴火災は発生しないものと考える。
c．S クラス機器でない，かつ基準地震動 S s にて耐震性がない機器のうち，油を内包す る機器又は水素を内包する機器については地震により支持構造物が損壊し，漏えいした油又は水素（4vol\％以上）に着火する可能性があるため，火災源として耐震評価を実施す る。
d．耐震評価は S クラス機器と同様に基準地震動 S s で評価し，J E A G 4 6 0 1－1987及びJ E A G 4 6 0 1 •補－1984に従った評価を実施する。
e．耐震裕度を有するものについては地震により損壊しないものと考え，火災源としての想定は不要とする。

地震随伴火災の発生の可能性にある機器の抽出フローを図4．3．1－1 に示す。

注記＊：盤火災は鋼製の盤内で発生し，外部への影響が少ないため除外する。また，ケーブル火災 は，ケーブルトレイが天井付近に設置されており，下部通路への影響は少ないこと，又は難燃性ケーブルを使用していることから，大規模な延焼が考えにくいため除外する。

なお，火災時の煙充満による影響については，煙が滞留するような箇所は自動消火によ る固定式消火設備により速やかに消火することからアクセス性に影響はないと考えられる が，通行が困難な場合には迂回ルートを使用する。

図 4．3．1－1 地震随伴火災評価対象機器抽出フロー
（2）評価結果
アクセスルート近傍にある地震随伴火災が発生する可能性がある機器について，表 4．3．1－1に示す。

アクセスルート近傍より抽出された回転機器について評価した結果，耐震 B，Cクラス機器のらち油内包回転機器又は水素内包機器については耐震評価を実施し，耐震裕度がない機器については耐震補強を実施することで，地震随伴火災の想定は不要となり，アクセス ルートのアクセス性に与える影響がないことを確認した。

表 4．3．1－1 地震随伴火災を考慮する機器リスト（1／2）

番号	設備名称	設備区分	耐震評価対象機器
1	換気空調補機非常用冷却水系冷涷機（B）	S クラス	－
2	換気空調補機非常用冷却水系冷凍機（D）	S クラス	－
3	換気空調補機非常用泠却水系冷水ポンプ（B）	S クラス	－
4	換気空調補機非常用冷却水系冷水ポンプ（D）	S クラス	－
5	換気空調補機非常用冷却水系冷凍機（A）	S クラス	－
6	換気空調補機非常用冷却水系冷凍機（C）	S クラス	－
7	換気空調補機非常用冷却水系冷水ポンプ（A）	S クラス	－
8	換気空調補機非常用冷却水系冷水ポンプ（ C ）	S クラス	－
9	原子炉補機（B）室送風機（A）	S クラス	－
10	原子炉補機（B）室送風機（B）	S クラス	－
11	タービン建屋送風機（A）	BC クラス （油，水素なし）	－
12	タービン建屋送風機（B）	BC クラス （油，水素なし）	－
13	タービン建屋送風機（C）	$\begin{gathered} \mathrm{BC} \text { クラス } \\ \text { (油, 水素なし) } \end{gathered}$	－
14	送風機室空調機（A）	$\begin{gathered} \text { BC クラス } \\ \text { (油, 水素なし) } \\ \hline \end{gathered}$	－
15	送風機室空調機（B）	BC クラス （油，水素なし）	－
16	廃棄物処理区域送風機（A）	BC クラス （油，水素なし）	－
17	廃棄物処理区域送風機（B）	$\begin{gathered} \text { BC クラス } \\ \text { (油, 水素なし) } \end{gathered}$	－
18	原子炉棟送風機（A）	$\begin{gathered} \mathrm{BC} \text { クラス } \\ \text { (油, 水素なし) } \end{gathered}$	－
19	原子炉棟送風機（B）	$\begin{gathered} \mathrm{BC} \text { クラス } \\ \text { (油, 水素なし) } \end{gathered}$	－
20	原子炉棟送風機（C）	$\begin{gathered} \mathrm{BC} \text { クラス } \\ \text { (油, } \text { 水素なし) } \\ \hline \end{gathered}$	－
21	非常用ディーゼル発電機（A）	S クラス	－

表 4．3．1－1 地震随伴火災を考慮する機器リスト（ $2 / 2$ ）

番号	設備名称	設備区分	耐震評価対象機器
22	燃料油ドレンポンプ（A）	BC クラス	\bigcirc
23	ターニング装置（A）	$\begin{gathered} \text { BC クラス } \\ \text { (油, 水素なし) } \end{gathered}$	－
24	非常用ディーゼル発電機（B）	S クラス	－
25	燃料油ドレンポンプ（B）	BC クラス	\bigcirc
26	ターニング装置（B）	$\begin{gathered} \text { BC クラス } \\ (\text { 油, 水素なし) } \end{gathered}$	－
27	高圧炉心スプレイ系ディーゼル発電機	S クラス	－
28	潤滑油プライミングポンプ（HPCS）	S クラス	－
29	清水加熱器ポンプ（HPCS）	S クラス	－
30	空気圧縮機（ $\mathrm{H}-1$ ）	BC クラス	\bigcirc
31	空気圧縮機（ $\mathrm{H}-2)$	BC クラス	\bigcirc
32	潤滑油補給ポンプ	BC クラス	\bigcirc
33	燃料油ドレンポンプ（HPCS）	BC クラス	\bigcirc
34	ターニング装置（HPCS）	$\begin{gathered} \text { BC クラス } \\ \text { (油, 水素なし) } \\ \hline \end{gathered}$	－
35	潤滑油プライミングポンプ（B）	S クラス	－
36	清水加熱器ポンプ（B）	S クラス	－
37	非常用ディーゼル発電設備空気圧縮機（ $\mathrm{B}^{\text {－}}$－ ）	BC クラス	\bigcirc
38	非常用ディーゼル発電設備空気圧縮機（B－2）	BC クラス	\bigcirc
39	高圧代替注水系ポンプ	BC クラス （油，水素なし）	－
40	中央制御室再循環送風機（A）	S クラス	－
41	中央制御室排風機（A）	S クラス	－
42	中央制御室送風機（A）	S クラス	－
43	計測制御電源（A）室排風機（A）	S クラス	－
44	計測制御電源（A）室排風機（B）	S クラス	－
45	計測制御電源（A）室送風機（A）	S クラス	－
46	計測制御電源（A）室送風機（B）	S クラス	－
47	燃料プール補給水ポンプ	BC クラス	\bigcirc
48	原子炉隔離時冷却系ポンプ	S クラス	－

4．3．2 地震随伴溢水

（1）評価方法
地震発生時の屋内アクセスルートのアクセス性の評価を以下のとおり実施する。
a．重要事故シーケンスごとに必要な対応処置のためのアクセスルートとして使用するエ リアを抽出し，エリアごとの溢水源を抽出する。
b．S クラス機器又は基準地震動 S s にて耐震性が碓認された機器は地震により損壊しな いものとし，保有水が外部に流出することはないものと考える。
c．S クラス機器でない，かつ基準地震動 S s にて耐震性がない機器は，溢水源とする。
d．耐震評価は S クラス機器と同様に基準地震動 S s で評価し，J E A G 4 6 0 1－1987及びJ E A G 4 6 0 1 •補－1984に従った評価を実施する。
e．耐震裕度を有するものについては地震により損壊しないものと考え，溢水源としての想定は不要とする。

地震随伴溢水によるアクセス判断フローを図4．3．2－1 に，水位評価概要図を図4．3．2－ 2 に示す。

注記 $* 1$ ：建屋の浸水時における歩行可能な水深は，歩行困難水深及び水圧でドアが開かなくなる水深から 30 cm 以下と設定している。本評価では水深 20 cm 以下であれば通行可能と判断する。「地下空間における浸水対策ガイドライン」（平成 14 年 3 月 28 日 国土交通省） ＊ 2 ：溢水水位により通行可能と判断しても，放射性物質による被ばく防護及び感電防止のため，適切な防護具を着用する。

図 4．3．2－1 地震随伴溢水によるアクセス判断フロー

図 4．3．2－2 溢水水位評価概要図

（2）評価結果

評価結果として，各エリアの溢水水位を表4．3．2－1 に示す。
原子炉建屋原子炉棟の最終貯留区画を除くアクセスルートにおける溢水水位の最大は床開口部のカーブ高さ（約 13 cm ）であることから，長靴（靴丈約 28 cm ）を装備することで地震により溢水が発生した場合においてもアクセスルートの通行は可能である。

また，実際には床ファンネルによる排水が期待できるため通行は容易である。
原子炉建屋原子炉棟の最終貯留区画において使用済燃料プール，原子炉ウェル及び DS ピットからのスロッシングを考慮した場合，溢水量は $212 \mathrm{~m}^{3}$ となり，アクセスルートにお ける溢水水位は約 83 cm となる。アクセスルート上の溢水水位が水深 20 cm 以上となること から，通行できないと考えられる。

しかしながら，原子炉建屋原子炉棟の最終貯留区画への通行が必要となる作業は高圧代替注水系及び原子炉隔離時冷却系の系統構成であり，本作業が必要となる場合には，原子炉ウェル及び DS ピットには水が張られていないことから，溢水源は使用済燃料プールのみ のスロッシングによる溢水量 $80 \mathrm{~m}^{3}$ となり，アクセスルートにおける溢水水位は約 13 cm と なる。アクセスルート上の溢水水位が水深 20 cm 以下となるため，長靴（靴丈約 28 cm ）を装備することで十分に通行可能な水位である。

表 4．3．2－1 各エリアの溢水水位

0．P．	原子炉建屋原子炉棟	原子炉建屋 付属棟 （非管理区域）	原子炉建屋 付属棟 （廃棄物処 理エリア） （管理区域）	原子炉建屋 付属棟 （廃棄物処理 エリア） （非管理区域）	制御建屋 （管理区域）	制御建屋 （非管理区域）	タービン建屋 （管理区域）	タービン建屋 （非管理区域）
33200	カーブ高さ							
27800	溢水なし							
24800							－	
23500						溢水なし		
22500	溢水なし	溢水なし	－	－				
19500						溢水なし		
15000	カーブ高さ	溢水なし	カーブ高さ	溢水なし	溢水なし	溢水なし	カーブ高さ	
10700	溢水なし							
8000						溢水なし		
7600							－	－
6000	カーブ高さ	溢水なし	－					
1500						溢水なし		
800							－	－
－800	カーブ高さ	－	－					
－8100	\diamond	－	－					

【凡例】
「カーブ高さ」：床開口部のカーブ高さ（約 13 cm ）
「溢水なし」：当該エリアでの排水又は他エリアからの溢水流入なし －：通行しないフロア
$\diamond \quad:$ 水深 20 cm 以上となる場合があるエリア
：建屋ごとの対象外フロア

VI－1－1－6－別添2 可搬型重大事故等対処設備の設計方針

O2（3）VI－1－1－6－別添2 R 0

目次

1．概要 $\cdot 1$
2．設計の基本方針 $\cdot 1$
3．設備分類 $\cdot 6$
4．要求機能及び性能目標 $\cdot 7$
4． 1 要求機能 ． 8
4． 2 性能目標 $\cdot 8$
5．機能設計 $\cdot 11$
5.1 車両型設備 $\cdot 11$
5．1．1 車両型設備の設計方針 $\cdot 11$
5．2 ボンベ設備 $\cdot 11$
5．2．1 ボンベ設備の設計方針 $\cdot 11$
5.3 その他設備 $\cdot 12$
5.3 .1 その他設備の設計方針 $\cdot 12$
6．構造強度設計 $\cdot 13$
6.1 構造強度の設計方針 $\cdot 13$
6.1 .1 車両型設備 $\cdot 13$
6．1．2 ボンベ設備 $\cdot 13$
6.1 .3 その他設備 14
6.2 荷重及び荷重の組合せ $\cdot 14$
6.2 .1 荷重の種類 14
6．2．2 荷重の組合せ $\cdot 15$
6.3 機能維持の方針 $\cdot 15$
6．3．1 車両型設備 $\cdot 15$
6．3．2 ボンベ設備 $\cdot 18$
6.3 .3 その他設備 $\cdot 21$

1．概要

本添付書類は，添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下 における健全性に関する説明書」（以下「添付書類VI－1－1－6」という。）にて設定している可搬型重大事故等対処設備の機能維持に係る設計方針を整理した上で，各設計方針に対して，可搬型重大事故等対処設備の設備分類，要求機能及び性能目標を明確にし，各設備の機能設計等について説明するものである。

なお，添付書類VI－1－1－6 では，可搬型重大事故等対処設備が使用される条件の下における健全性について，「多重性又は多様性及び独立性並びに位置的分散」，「悪影響防止等」，「環境条件等」及び「操作性及び試験•検査性」に分け，設計方針を示している。

2．設計の基本方針
可搬型重大事故等対処設備は，荷重及び波及的影響を含め想定される環境条件において，重大事故等及び設計基準事故に対処するための必要な機能を損なわない設計とするとともに，他の設備に悪影響を及ぼさない設計とする。

また，可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と共通要因によって同時に機能が損なわれるおそれがない設計とする。

これらの設計に考慮すべき要因である自然現象，人為事象，溢水及び火災に対する可搬型重大事故等対処設備の設計方針について以下に示す。

（1）自然現象及び人為事象

a．地震
可搬型重大事故等対処設備は，自然現象のらち地震に関して，耐震設計として横滑りを含めて地震による荷重を考慮して機能を損なわない設計とするとともに，地震後において も機能及び性能を維持する設計とする。
屋内の可搬型重大事故等対処設備は，地震随伴火災及び地震随伴溢水の影響を考慮して保管する。
屋外の可搬型重大事故等対処設備は，地震による影響（敷地下斜面のすべり，液状化又 は揺すり込みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物 の損壊等）により必要な機能を喪失しない位置に保管する。

可搬型重大事故等対処設備は，設計基準対象施設とは異なり，床や地盤等に強固に固定 されず，地震により他の設備へ波及的影響を与えるおそれがあることから，使用時の移動又は運搬において他の設備へ波及的影響を考慮する必要がある。また，構造上，地震によ り，すべり又は傾きが生じることが考えられることから，波及的影響の評価により，当該設備による他の設備に対して波及的影響を及ぼさない設計とする。

可搬型重大事故等対処設備の保管場所は，設計基準事故対処設備及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含め て常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する設計とする。可搬型重大事故等対処設備の耐震設計については，本添付書類に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1多重性又 は多様性及び独立性並びに位置的分散」に示す。

可搬型重大事故等対処設備の保管場所において周辺斜面が崩壊しないことの考慮等につ いては，添付書類VI－1－1－6 別添1「可搬型重大事故等対処設備の保管場所及びアクセス ルート」に示す。
b．津波
可搬型重大事故等対処設備は，自然現象として津波に対する耐津波設計を実施する。
屋外の可搬型重大事故等対処設備は，津波防護施設及び浸水防止設備の設置により津波 の流入を防止する区画又は基準津波による遡上波が到達しない十分高い場所に保管する。屋内の可搬型重大事故等対処設備に対しても，基準津波による影響を考慮し，必要な津波防護対策を講じる設計とする。

可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する。

可搬型重大事故等対処設備の耐津波設計については，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のちち添付書類「VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書」に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1多重性又は多様性及び独立性並びに位置的分散」に示す。
c．風（台風）及び竜巻
屋内の可搬型重大事故等対処設備は，自然現象のうち風（台風）及び竜巻に対し，建屋内に保管する設計とする。

屋外の可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，防火帯の内側の複数箇所に分散して保管する。また，屋外の可搬型重大事故等対処設備は，浮き上がり又は横滑りによって設計基準事故対処設備等や同じ機能を有する他の重大事故等対処設備に衝突する可能性があ る設備に対し，飛散させないよう固縛の措置をとることにより，設計基準事故対処設備等 や同じ機能を有する他の重大事故等対処設備が同時に損傷しない設計とする。
風（台風）及び竜巻に対する可搬型重大事故等対処設備の設計については，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のらち添付書類「VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書」に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性又は多様性及び独立性並びに位置的分散」に示す。

d．積雪及び火山の影響

屋内の可搬型重大事故等対処設備は，自然現象のうち積雪及び火山の影響に対して建屋内に保管する設計とする。
屋外の可搬型重大事故等対処設備は，積雪及び火山の影響を考慮して，必要により除雪及び除灰の措置を講じる。

屋外の可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，防火帯の内側の複数箇所に分散して保管する。

可搬型重大事故等対処設備は，積雪及び火山の影響に対する設計について，添付書類
「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のらち添付書類「VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書」に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性
e．飛来物（航空機落下）及び故意による大型航空機の衝突その他のテロリズム
屋内の可搬型重大事故等対処設備は，人為事象のうち飛来物（航空機落下）及び故意に よる大型航空機の衝突その他のテロリズムに関して，可能な限り設計基準事故対処設備等 の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管す る設計とする。

屋外の可搬型重大事故等対処設備は，原子炉建屋及び制御建屋から 100 m 以上の離隔距離を確保するとともに，当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上 で，複数箇所に分散して保管する設計とする。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性又は多様性及び独立性並びに位置的分散」に示す。

f．その他自然現象及び人為事象

屋内の可搬型重大事故等対処設備は，自然現象のうち凍結，降水，落雷，生物学的事象，森林火災及び高潮並びに人為事象のらち爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害（以下「その他自然現象及び人為事象」という。）に対して，建屋内に保管する設計とする。

屋外の可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，防火帯の内側の複数箇所に分散して保管する。

その他自然現象及び人為事象に対する可搬型重大事故等対処設備の設計については，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」の

うち添付書類「VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関 する説明書」に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性又は多様性及び独立性並びに位置的分散」に示す。
（2）溢水
可搬型重大事故等対処設備は，屋外の耐震クラス下位のタンクの破損等による溢水に対し て，溢水による浸水深を考慮した設計とするか又は溢水の影響のない高所に保管する設計と する。

可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損なうおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する。

可搬型重大事故等対処設備の溢水に対する防護設計については，添付書類「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」のうち添付書類「VI－1－1－8－1 溢水等による損傷防止の基本方針」に基づき実施する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性又 は多様性及び独立性並びに位置的分散」に示す。
（3）火災
可搬型重大事故等対処設備は，火災に対して火災防護対策を火災防護計画に策定する。
可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損なうおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する。

可搬型重大事故等対処設備の火災防護計画については，添付書類「VI－1－1－7 発電用原子炉施設の火災防護に関する説明書」の内容を踏まえ策定する。

可搬型重大事故等対処設備の位置的分散については，添付書類VI－1－1－6 の「2．1 多重性又 は多様性及び独立性並びに位置的分散」に示す。

以上を踏まえ，可搬型重大事故等対処設備については，設備の構造及び機能別に分類し，機能設計上の性能目標と地震による荷重を考慮した構造強度設計上の性能目標を定める。

可搬型重大事故等対処設備は，機能設計上の性能目標を達成するため，設備ごとに機能の設計方針を定める。

可搬型重大事故等対処設備は，構造強度設計上の性能目標を達成するため，設備ごとに構造強度の設計方針を示した上で，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等によ る損傷の防止に関する説明書」のうち添付書類「VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書」及び添付書類「VI－2 耐震性に関する説明書」 のうち添付書類「VI－2－1－9 機能維持の基本方針」の「3．1構造強度上の制限」にて設定し ている荷重条件及び荷重の組合せに従い，構造強度設計上考慮すべき荷重条件を設定し，そ の荷重の組合せの考え方を定める。

可搬型重大事故等対処設備の設計フローを図 2－1 に示す。
耐震設計上の重大事故等対処施設の設備の分類に該当しない設備である可搬型重大事故等対処設備の耐震計算については，主要設備リスト記載機器であるため，添付書類「VI－2 耐震性に関する説明書」のらち添付書類「V－2－1－9 機能維持の基本方針」に基づき実施し，耐震計算の方針並びに耐震計算の方法及び結果については，添付書類「VI－2－別添3可搬型重大事故等対処設備等の耐震性に関する説明書」に示す。

添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」 のうち添付書類「VI－1－1－2－3 竜巻への配慮に関する説明書」に基づき竜巻対策として実施 する固縛措置については，可搬型重大事故等対処設備の耐震計算の波及的影響評価の結果を考慮した設計とする。

注記＊：フロー中の番号は本添付書類での記載箇所。

図 2－1 設備の設計フロー

3．設備分類
可搬型重大事故等対処設備は，構造強度設計を行うに当たり，当該設備を支持する構造を含む各設備の構造により以下のとおり分類する。
（1）車両型設備
移動機能を有する車両等にポンプ，発電機，内燃機関等を積載し，取付ボルト等で固定し，地盤安定性を有する屋外の保管場所の地面に固定せずに保管する設備を車両型設備として分類する。
a．大容量送水ポンプ（タイプ I ）
b．大容量送水ポンプ（タイプII）
c．電源車
d．電源車（緊急時対策所）
e．原子炬補機代替冷却水系熱交換器ユニット
f．可搬型窒素ガス供給装置
g．ホース延長回収車
h．タンクローリ
i．ブルドーザ
j．バックホウ
（2）ボンベ設備
ボンベラック等に収納し，ラック等を耐震性を有する建屋内に溶接又は取付ボルトで固定 して保管する設備をボンベ設備として分類する。
a．高圧窒素ガスボンベ
b．中央制御室待避所加圧設備（空気ボンベ）
c．緊急時対策所加圧設備（空気ボンベ）
（3）その他設備
耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所において，スリ ング等で固縛する設備をその他設備として分類する。
a．取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）
b．送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）
c．注水用ヘッダ
d．送水用ホース（ $150 \mathrm{~A}: 1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）
e．スプレイ用ホース（65A：1m）
f．スプレイノズル
g．耐熱ホース（300A：2m，5m，10m）
h．除熱用ヘッダ
i．耐熱ホース（201A：5m，10m）
j．連結管
k．P54－F1005A，B（代替高圧窒素ガス供給系窒素ガスボンベ安全弁（A），（B））
1．連結管～フレキシブルホース／恒設配管取合点
m．代替高圧窒素ガス供給用フレキシブルホース $(\phi 32.9,6 \mathrm{~m}, ~ 8 \mathrm{~m})$
n．恒設配管取合点接続管
o．無線連絡設備（携帯型）
p．衛星電話設備（携帯型）
q．携行型通話装置
r．可搬型計測器
s．可搬型照明（SA）
t．酸素濃度計
u．二酸化炭素濃度計
v．緊急時対策所可搬型エリアモニタ
w．可搬型モニタリングポスト
x．\quad 線サーベイメータ
y．β 線サーベイメータ
z．α 線サーベイメータ
aa．電離箱サーベイメータ
ab．中央制御室待避所加圧設備（空気ボンベ）～フレキシブル配管／恒設配管取合点
ac．緊急時対策所加圧設備（空気ボンベ）～フレキシブル配管／恒設配管取合点
ad．可搬型ダスト・よう素サンプラ
ae．小型船舶
af．代替気象観測設備
ag．放水砲
ah．窒素供給用ホース（50A：5m）
ai．窒素供給用ヘッダ
aj．可搬型窒素ガス供給装置接続管
ak．送水用ホース（65A：20m）
al．シルトフェンス
am．泡消火薬剤混合装置
an．給油用ホース（20A：7m）
ao．主蒸気逃がし安全弁用可搬型蓄電池
ap．軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）
aq．給油用ホース（ $\phi 25: 50 \mathrm{~m})$

4．要求機能及び性能目標
重大事故等に対処することを目的として，添付書類VI－1－1－6において，可搬型重大事故等対処

設備は，地震後においても重大事故等に対処するために必要な機能を損なわないこととしている。 また，構造強度設計を行うに当たり，「3．設備分類」において，車両型設備，ボンベ設備及びそ の他設備に分類している。これらを踏まえ，設備分類ごとに要求機能を整理するとともに，機能設計上の性能目標と構造強度設計上の性能目標を設定する。

4． 1 要求機能

可搬型重大事故等対処設備は，重大事故等に対し，地震後においても重大事故等に対処する ために必要な機能を損なわないことが要求される。

可搬型重大事故等対処設備は，地震時において，他の設備に悪影響を及ぼさないことが要求 される。

4． 2 性能目標

（1）車両型設備
車両型設備は，重大事故等に対し，地震後においても車両全体としての安定性及び重大事故等に対処するために必要な送水等の機能を維持し，容易に移動できることを機能設計上の性能目標とする。

車両型設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備からの機械的な波及的影響により，重大事故等に対処するために必要な送水等の機能を維持し，容易に移動できることを損なわないこと及び地震時において，他の可搬型重大事故等対処設備 に悪影響を及ぼさないようにすることを機能設計上の性能目標とする。

車両型設備は，重大事故等起因の荷重は発生しないため，基準地震動S s による地震力に対し，地盤安定性を有する屋外の保管場所に保管するとともに，以下の内容を構造強度設計上の性能目標とする。

a．構造強度

車両型設備は，地震後において，基準地震動 S s による地震力に対し，炬心等へ泠却水 を送水する機能を有するポンプ及び必要な負荷へ給電するために発電する機能を有する発電機並びにこれらの駆動源となる内燃機関の機器を車両に取付ボルトで固定し，主要な構造部材が送水機能，発電機能及び支持機能等を維持可能な構造強度を有すること。
b．転倒
車両型設備は，地震時において，基準地震動 S s による地震力に対し，炬心等へ泠却水 を送水するポンプ及び必要な負荷へ給電する発電機並びにこれらの駆動源となる内燃機関 を車両に取付ボルトで固定し，車両型設備全体が安定性を有し，転倒しないこと。
c．機能維持
（a）動的及び電気的機能
車両型設備は，地震後において，基準地震動 S s による地震力に対し，車両に積載 しているポンプ等の灯心等へ泠却水を送水する機能及び必要な負荷へ給電するための

発電機並びにこれらの駆動源となる内燃機関の動的及び電気的機能を維持できること。
（b）支持機能及び移動機能
車両型設備は，地震後において，基準地震動 S s による地震力に対し，車両積載設備から受ける荷重を支持する機能及びに車両型設備としての自走又は牽引等による移動機能を維持できること。
d．波及的影響
車両型設備は，地震時において，基準地震動 S s による地震力に対し，地盤安定性を有 する屋外の保管場所の地面等に固定せずに保管し，車両型設備全体が安定性を有し，主要 な構造部材が送水機能，発電機能及び支持機能等を維持可能な構造強度を有し，当該設備 のすべり及び傾きにより，他の設備のらち，当該設備以外の可搬型重大事故等対処設備に波及的影響を及ぼさないよう保管すること。
（2）ボン心゙設備
ボンベ設備は，重大事故等に対し，地震後においても，機器全体としての安定性及び重大事故等に対処するために必要な窒素又は空気の供給機能を維持することを機能設計上の性能目標とする。

また，ボンべ設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備 からの機械的な波及的影響により，重大事故等に対処するために必要な窒素又は空気の供給機能を損なわないこと及び地震時において，他の設備に悪影響を及ぼさないようにすること を機能設計上の性能目標とする。
ボン心設備は，重大事故等起因の荷重は発生しないため，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所に保管するとともに，以下の内容を構造強度設計上 の性能目標とする。
a．構造強度
ボンべ設備は，地震後において，基準地震動 S s による地震力に対し，ボンベラック等 に収納し，ラック等を耐震性を有する建屋内の保管場所の床又は壁に溶接又は取付ボルト で固定して保管し，主要な構造部村が窒素又は空気供給機能を維持可能な構造強度を有す ること。
b．転倒
ボンべ設備は，地震時において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所に保管し，床又は壁に溶接又は取付ボルトで固定することで機器全体が安定性を有し，転倒しないこと。
c．波及的影響
ボンベ設備は，地震時において，基準地震動 S s による地震力に対し，ボンベラック等

に収納し，ラック等を耐震性を有する建屋内の保管場所の床又は壁に溶接又は取付ボルト で固定して保管し，主要な構造部材が窒素又は空気供給機能を維持可能な構造強度を有す ることで，当該設備以外の設備に波及的影響を及ぼさないよう保管すること。
（3）その他設備
その他設備は，重大事故等に対し，地震後においても，機器全体としての安定性及び重大事故等に対処するために必要な計測，給電等の機能を維持することを機能設計上の性能目標 とする。

その他設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備からの機械的な波及的影響により，重大事故等に対処するために必要な計測，給電等の機能を維持 できることを損なわないこと及び地震時において，他の可搬型重大事故等対処設備等に波及的影響を及ぼさないようにすることを機能設計上の性能目標とする。

その他設備は，重大事故等起因の荷重は発生しないため，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管する とともに，以下の内容を構造強度設計上の性能目標とする。

a．構造強度

その他設備を設置する架台は，地震後において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所の床に基礎ボル トで固定し，主要な構造部材が計測する機能，必要な負荷へ給電するための給電機能等の支持機能，動的及び電気的機能を維持可能な構造強度を有すること。
b．転倒
その他設備は，地震時において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管し，スリングで固縛する等により，設備全体が安定性を有し，転倒しないこと。

c．機能維持

その他設備は，地震後において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管し，スリングで固縛する等により，計測する機能，必要な負荷へ給電する機能等の動的及び電気的機能並びに支持機能を維持できること。
d．波及的影響
その他設備は，地震後において，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所にスリングで固縛する等により保管することから，スリング等の健全性により，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないこと。

5．機能設計
「4．要求機能及び性能目標」で設定している，可搬型重大事故等対処設備の機能設計上の性能目標を達成するために，各設備の機能設計の方針を定める。

5.1 車両型設備

5．1．1 車両型設備の設計方針

車両型設備は，「4．要求機能及び性能目標」の「4．2 性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

車両型設備は，重大事故等に対し，地震後においても車両型設備全体としての安定性及 び重大事故等に対処するために必要な送水等の機能を維持し，容易に移動できるものとす るため，炉心等へ冷却水を送水するポンプ及び必要な負荷へ給電する発電機並びにこれら の駆動源となる内燃機関の機器を車両に積載し，自走又は率引等による移動が可能な設計 とする。

車両型設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備から

5.2 ボンベ設備

5．2．1 ボンベ設備の設計方針

ボンベ設備は，「4．要求機能及び性能目標」の「4．2性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

ボンベ設備は，重大事故等に対し，地震後においても，機器全体としての安定性及び重大事故等に対処するために必要な窒素又は空気の供給機能を維持するため，高圧窒素ガス供給系等へ窒素を供給する機能及び緊急時対策所等へ空気を供給する機能を有するボンべを ボンベラック等に収納する設計とする。

ボン心゙設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備からの機械的な波及的影響により重大事故等に対処するために必要な窒素又は空気供給機能を損 なわないよう，また，地震時において，他の設備に悪影響を及ぼさないように，ボンベラッ ク等に収納する設計とする。

ボンベ設備は，地震時のラック等の構造健全性及び転倒による周辺設備への波及的影響 がないことを確認することで，耐震性が確保された接続先の常設配管との間で大きな相対的変位が生じない設計とするとともに，常設設備と接続する連絡管については，可とう性を もつ形状とし，地震後にも機能維持が可能な設計とする。

5.3 その他設備

5．3．1 その他設備の設計方針

その他設備は，「4．要求機能及び性能目標」の「4．2性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

その他設備は，重大事故等に対し，地震後においても，機器全体としての安定性及び重大事故等に対処するために必要な計測，給電等の機能を維持するために，必要な負荷へ給電する機能等を有する設備を収納箱等に保管する等の設計とする。

その他設備は，地震後においても，他の可搬型重大事故等対処設備を含む他の設備から の機械的な波及的影響により重大事故等に対処するために必要な計測，給電等の機能を損 なわないよう，また，地震時において，他の設備に悪影響を及ぼさないように，適切に固縛する設計とする。

6．構造強度設計

「4．要求機能及び性能目標」で設定している，可搬型重大事故等対処設備の構造強度設計上 の性能目標を達成するために，「5．機能設計」で設定している各設備が有する機能を踏まえて，構造強度の設計方針を設定する。

各設備の構造強度の設計方針を設定し，想定する荷重及び荷重の組合せを設定し，それらの荷重に対し，各設備の構造強度を維持するよう構造強度設計と評価方針を設定する。可搬型重大事故等対処設備の波及的影響評価については，「6．4波及的影響評価」に示す。
可搬型重大事故等対処設備の耐震計算の基本方針を，添付書類「VI－2－別添3－1 可搬型重大事故等対処設備の耐震計算の方針」に示す。可搬型重大事故等対処設備の耐震計算の方法及び結果 を，添付書類「VI－2－別添 3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書」，添付書類「VI－2－別添3－4 可搬型重大事故等対処設備のらちボンベ設備の耐震計算書」及び添付書類「VI－2－別添3－5 可搬型重大事故等対処設備のらちその他設備の耐震計算書」に，動的地震力 の水平 2 方向及び鉛直方向の組合せに対する各設備の影響評価結果については，添付書類「VI－2－別添 3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評

6.1 構造強度の設計方針

「4．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するための設計方針を車両型設備，ボンべ設備及びその他設備ごとに示す。

6．1．1 車両型設備

車両型設備は，「5．機能設計」の「5．1 車両型設備」で設定している機能設計を踏まえ，炉心等へ泠却水を送水するポンプ及び必要な負荷へ給電する発電機並びにこれらの駆動源 となる内燃機関の機器を車両に積載し，自走又は率引等による移動が可能な設計とする。

また，「4．要求機能及び性能目標」の「4．2 性能目標」で設定している構造強度設計上の性能目標を踏まえ，基準地震動 S s による地震力に対し，車両型設備全体が安定性を有し，主要な構造部材が送水機能，発電機能及び支持機能等を維持可能な構造強度を有し，動的及び電気的機能を維持し，車両型設備の積載設備から受ける荷重を支持する機能並び に車両型設備としての自走又は牽引等による移動機能を維持できる設計とする。

6．1．2 ボンベ設備

ボンベ設備は，「5．機能設計」の「5．2 ボンベ設備」で設定している機能設計を踏ま え，高圧窒素ガス供給系等へ窒素を供給する機能及び緊急時対策所等へ空気を供給する機能を有するボンベをラック等に収納する設計とする。

また，「4．要求機能及び性能目標」の「4．2性能目標」で設定している構造強度設計上 の性能目標を踏まえ，基準地震動S s による地震力に対し，耐震性を有するラック等に収納し，高圧窒素ガス供給系等へ窒素を供給するボンべについては，建屋内の保管場所の壁又は床面のアンカープレート等に溶接又は取付ボルトで固定して保管し，緊急時対策所等 へ空気を供給するボンベについては，建屋床面又は床面の埋込金物に溶接又は取付ボルト

で固定することで，主要な構造部材が窒素又は空気供給機能を維持可能な構造強度を有す る設計とする。

6．1．3 その他設備
その他設備は，「5．機能設計」の「5．3 その他設備」で設定している機能設計を踏ま え，必要な負荷へ給電する機能等を有する設備を収納箱等に保管する等の設計とする。

また，「4．要求機能及び性能目標」の「4．2性能目標」で設定している構造強度設計上の性能目標を踏まえ，基準地震動 S s による地震力に対し，耐震性を有する建屋内の保管場所又は地盤安定性を有する屋外の保管場所に保管し，床に基礎ボルトで固定した架台 に保管する等により，機器本体が安定性を有し，主要な構造部材が必要な負荷へ給電する機能等の機能を維持可能な構造強度を有し，動的及び電気的機能を維持できる設計とす る。

6.2 荷重及び荷重の組合せ

「4．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために，考慮すべき荷重条件を設定し荷重の組合せの考え方を示す。

6．2．1 荷重の種類

（1）常時作用する荷重
常時作用する荷重は持続的に生じる荷重であり，自重及び積載荷重とする。
（2）風荷重
風荷重は，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関 する説明書」に従い，平成 12 年 5 月 31 日建築基準法施行令（建設省告示第 1454 号）に基 づく発電所立地地域（石巻市及び女川町）の基準風速 $30 \mathrm{~m} / \mathrm{s}$ を用いて設定する。

風荷重の最大荷重の継続時聞は短いため，ガスト影響係数を1として風荷重を算定する。
（3）積雪荷重
積雪荷重は，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」に従い，石巻特別地域気象観測所での観測記録（1887 年～2017年）のうち月最深積雪 43 cm を考慮して設定した設計基準積雪量を用いて設定する。
（4）地震荷重
地震荷重は，基準地震動S s に伴う地震力による荷重とする。
耐震計算における動的地震力の水平方向及び鋁直方向の組合せについては，水平 1 方向及び鉛直方向地震力の組合せ又は水平 2 方向及び鉛直方向地震力の組合せで実施する。耐震計算を水平 1 方向及び鉛直方向地震力の組合せで実施した場合は，その計算結果に基づ き水平 2 方向及び鉛直方向地震力の組合せが耐震性に及ぼす影響を評価する。

可搬型重大事故等対処設備の耐震計算における動的地震力の水平 1 方向及び鋁直方向地

震力を組合せた結果は，添付書類「VI－2 耐震性に関する説明書」の「VI－2－別添3可搬型重大事故等対処設備の耐震性に関する説明書」のうち「VI－2－別添3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書」，「VI－2－別添 3－4 可搬型重大事故等対処設備 のらちボンベ設備の耐震計算書」及び「VI－2－別添3－5 可搬型重大事故等対処設備のうち その他設備の耐震性計算書」に，水平 2 方向及び鉛直方向地震力の組合せの評価結果は，添付書類「VI－2 耐震性に関する説明書」の「VI－2－別添3 可搬型重大事故等対処設備の耐震性に関する説明書」のうち「VI－2－別添3－6 可搬型重大事故等対処設備の水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果」に示す。

6．2．2 荷重の組合せ

可搬型重大事故等対処設備の耐震計算の荷重の組合せの考え方について，保管状態であ ることから重大事故等起因の荷重は考慮しない。荷重の組合せの考え方については，添付書類「VI－2 耐震性に関する説明書」のうち添付書類「VI－2－1－9 機能維持の基本方針」に示 す。

6． 3 機能維持の方針

「4．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するため
に，「6．1構造強度の設計方針」に示す構造を踏まえ，「6．2荷重及び荷重の組合せ」で設定し ている荷重条件を考慮して，各設備の構造設計及びそれを踏まえた評価方針を設定する。

6．3．1 車両型設備

（1）構造設計
車両型設備は，「6．1 構造強度の設計方針」で設定している設計方針及び「6．2 荷重及 び荷重の組合せ」で設定している荷重を踏まえ，以下の構造とする。

車両型設備は，サスペンションを有し，地震に対する影響を軽減できる構造とし，間接支持構造物としての車両にポンプ，発電機等を取付ボルトにより据え付ける構造であるとと もに，早期の重大事故等への対処を考慮し，自走，牽引等にて移動できる構造とし，車両， ポンプ，発電機等で構成する構造とする。また，地盤安定性を有する屋外の保管場所の地面 に固定せずに保管する。

車両型設備の構造計画を表 6－1 に示す。車両型設備の概略図を図 6－1 に示す。
（2）評価方針
車両型設備は，「（1）構造設計」を踏まえ，以下の耐震評価方針とする。

a．構造強度

基準地震動 S s による地震力に対し，車両に積載しているポンプ，発電機，内燃機関等 の支持部の取付ボルト及びコンテナ取付ボルトが，塑性ひずみが生じる場合であっても， その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算により確認する。

b．転倒

ポンプ，発電機，内燃機関等の機器を積載している車両全体の転倒評価は，基準地震動 S s による地震力に対し，保管場所の地表面の最大応答加速度が，加振試験により転倒し ないことを確認した加振台の最大加速度以下であることにより確認する。
c．機能維持
（a）動的及び電気的機能
車両に積載しているポンプ，発電機，内燃機関等の動的及び電気的機能評価は，基準地震動 S s による地震力に対し，保管場所の地表面の最大応答加速度が，地震力に伴う浮き上がりを考慮しても，加振試験により，ポンプの送水機能，発電機の発電機能及び内燃機関の駆動機能等の動的及び電気的機能を維持できることを確認した加振台の最大加速度以下であることにより確認する。
（b）支持機能及び移動機能
車両部の支持機能及び移動機能は，基準地震動S s による地震力に対し，保管場所 の地表面の最大応答加速度が，地震力に伴ら浮き上がりを考慮しても，加振試験によ り積載物の支持機能及び車両型設備としての自走又は牽引等による移動機能を維持で きることを確認した加振台の最大加速度以下であることにより確認する。

d．波及的影響

基準地震動 S s による地震力に対し，設備のすべり及び傾きにより，波及的影響を防止 する必要がある他の設備に対して波及的影響を及ぼさないことを，加振試験により確認し た設備のすべり及び傾きによる設備頂部の変位量が，設定した離隔距離未満であることに より確認する。

基準地震動 S s による地震力に対する耐震計算の方針については，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」に示し，耐震計算の方法及び結果に ついては，添付書類「VI－2－別添3－3 可搬型重大事故等対処設備のうち車両型設備の耐震計算書」に示す。

表 6－1 車両型設備の構造計画

設備分類	計画の概要		説明図
	主体構造	支持構造	

【位置】

車両型設備は，添付書類VI－1－1－6 の要求を満たす地盤安定性を有する保管場所として，以下のエリアに保管する設計とする。

- 第1保管エリア
- 第 2 保管エリア
- 第 3 保管エリア
- 第 4 保管エリア
- 緊急時対策建屋北側

| 車両型設備 | サスペンションを有 ポンプ，内燃機関等
 し，地震に対する影 は，コンテナに直接
 響を軽減できる構造 支持構造物である取
 であるとともに，早 付ボルトにて固定す
 期の重大事故等への る。ポンプ，内燃機
 対処を考慮し，自走， 関等を収納したコン
 牽引等にて移動でき テナは，間接支持構
 る構造とし，車両， 造物であるトラック
 ポンプ，内燃機関等 に積載し取付ボルト
 により構成する。 により固定し，保管 |
| :---: | :---: | :--- | :--- | :--- |

図 6－1 車両型設備

6．3．2 ボンベ設備

（1）構造設計
ボンベ設備は，「6．1 構造強度の設計方針」で設定している設計方針及び「6．2荷重及び荷重の組合せ」で設定している荷重を踏まえ，以下の構造とする。

ボンベ設備は，ボンベ（窒素ボンベ又は空気ボンベ）及びボンベラック等により構成する。 ボンベは，容器として十分な強度を有する構造とし，転倒を防止するため，取付ボルト等 によりボンベラック等に固定し，ボンベラック等を溶接又は取付ボルトにより床又は壁へ固定し支持する構造とする。

ボンベ設備の構造計画を表6－2に示す。ボンベ設備の概略図を図6－2 から図6－4に示す。
（2）評価方針
ボンベ設備は，「（1）構造設計」を踏まえ，以下の耐震評価方針とする。
a．構造強度
基準地震動 S s による地震力に対し，ボンベを収容するボンベラック等及びこれを床又は壁に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても，その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算により確認する。
b．転倒
基準地震動 S s による地震力に対し，ボンベを収容するボンベラック等及びこれを床面又は壁面に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても， その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算によ り確認することで，転倒しないことを確認する。
c．波及的影響
基準地震動 S s による地震力に対し，ボンベを収容するボンベラック等及びこれを床又は壁に固定する溶接部又は取付ボルトが，塑性ひずみが生じる場合であっても，その量が微小なレベルに留まって破断延性限界に十分な余裕を有することを，計算により確認することで，当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを確認する。

基準地震動 S s による地震力に対する耐震計算の方針については，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」に示し，耐震計算の方法及び結果については，添付書類「VI－2－別添3－4 可搬型重大事故等対処設備のうちボンベ設備 の耐震計算書」に示す。

表6－2 ボンベ設備の構造計画

設備分類	計画の概要		説明図
	主体構造	支持構造	

【位置】

ボンベ設備は，添付書類VI－1－1－6 の要求を満たす耐震性を有する建屋内の保管場所と して，以下のエリアに保管する設計とする。

- 原子炉建屋
- 制御建屋
- 緊急時対策建屋

ボンベ設備	ボンベ設備は，ボンベ（窒素 ボンベ又は空気ボンベ）及 びボンベラック等により構成する。	ボンベは容器として十分な強度 を有する構造とし，固定ボルトに よりボンベラック等に固定し，ボ ンベラック等を溶接又は取付ボ ルトにより床又は壁に据え付け る。	図 6－2 図 6－3 図 6－4

図 6－2 ボンベ設備（壁床固定型）

図 6－3 ボンベ設備（床固定型）

図 6－4 ボンベ設備（カードル型）

6．3．3 その他設備

（1）構造設計
その他設備は，「6．1 構造強度の設計方針」で設定している設計方針及び「6．2荷重及び荷重の組合せ」で設定している荷重を踏まえ，以下の構造とする。
a．収納箱固縛（可搬型計測器等）
緩衝材を内装した収納箱に可搬型計測器等を収納し，スリング等を用いて固縛する。ス リング等は床にボルトで固定する。
b．収納箱架台固縛（代替気象観測設備等）
緩衝材を内装した収納箱に代替気象観測設備等を収納し，収納箱を架台にスリング等で固定する。

架台は床に基礎ボルトで固定する。
c．本体固縛（主蒸気逃がし安全弁用可搬型蓄電池等）
主蒸気逃がし安全弁用可搬型蓄電池等を取付金物で固縛し床に固定する。

その他設備に使用しているスリング等は，基準地震動 S s による地震力に対し，対象設備 の重心高さを考慮してスリング等の設置位置を設定するとともに，保管場所の床面の最大応答加速度によりスリング等が受ける荷重に対して十分な裕度を持たせて選定を行う。スリン グ等の支持機能については保管状態を模擬した加振試験により確認する。

その他設備の構造計画を表 6－3 に示す。その他設備の概略図を図 6－5 から図 6－7 に示す。
（2）評価方針
その他設備は，「（1）構造設計」を踏まえ，以下の耐震評価方針とする。
a．構造強度
その他設備は，基準地震動 S s による地震力に対し，主要な構造部材に該当するスリン グ等が，支持機能を喪失しないことを，「b。転倒」，「c．機能維持」及び「d．波及的影響」 により確認する。
b．転倒
その他設備の転倒評価は，基準地震動 S s による地震力に対し，保管場所における設置床の最大応答加速度が，加振試験により転倒を防止するために設置しているスリング等の健全性を確認した加振台の最大加速度以下であることにより確認する。

c．機能維持

その他設備の機能維持評価は，基準地震動 S s による地震力に対し，保管場所における

設置床又は地表面の最大応答加速度が，加振試験により計測，給電等の機能及びスリング等の固縛機能を維持できることを確認した加振台の最大加速度以下であることにより確認 する。
d．波及的影響
基準地震動 S s による地震力に対し，波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを，保管場所における設置床又は地表面の最大応答加速度が，加振試験により転倒を防止するためのスリング等の健全性を確認した加振台の最大加速度以下であることにより確認する。

基準地震動 S s による地震力による荷重に対する耐震計算の方針については，添付書類「VI－2－別添 3－1 可搬型重大事故等対処設備の耐震計算の方針」に示し，耐震計算の方法及び結果については，添付書類「VI－2－別添3－5 可搬型重大事故等対処設備のうちその他設備の耐震計算書」に示す。

表6－3 その他設備の構造計画

設備分類	計画の概要		説明図
	主体構造	支持構造	
【位置】 その他設備は，定性を有する - 制御建屋 - 緊急時対 - 第 1 保管 - 第 2 保管 - 第 4 保管	，添付書類VI－1－1－6 の要求を満た管場所として，以下のエリアに保 建屋 リア エア リア	す耐震性を有する建屋内の保管場管する設計とする。	は地盤安
その他設備	（収納箱固縛：可搬型計測器の 可搬型計測器及びこれを収納 する収納箱で構成する。	例） 緩衝材を内装した収納箱に可搬型計測器を収納し，スリング等を用いて固縛する。スリング等は床にボルトで固定する。	図 6－5
	（収納箱架台固縛：代替気象観 代替気象観測設備（雨量，日射量，放射収支，風向風速発信器） を収納する収納箱で構成する。	則設備の例） 緩衝材を内装した収納箱に代替気象観測設備を収納し，収納箱を架台にスリング等で固定す る。 架台は床に基礎ボルトで固定 する。	図 6－6
	（本体固縛保管：主蒸気逃がし 主蒸気逃がし安全弁用可搬型蓄電池で構成する。	安全弁用可搬型蓄電池の例） 主蒸気逃がし安全弁用可搬型蓄電池を取付金物で固縛し床に固定する。	図6－7

図6－5 収納箱固縛

図 6－6 収納箱架台固縛

図 6－7 本体固縛

VI－1－1－6－別添4 ブローアウトパネル関連設備の設計方針

目次

1．概要 別添 4－1
2．設備分類 別添 4－1
3．ブローアウトパネル関連設備の要求機能． 別添 4－1
4．設計の基本方針 別添 4－2
5．要求機能及び性能目標 別添 4－6
5.1 要求機能 別添 4－6
5.2 性能目標 別添 4－6
6．機能設計 別添 4－7
7．構造強度設計 別添 4－12
7.1 構造強度の設計方針 別添 4－13
7.2 荷重及び荷重の組合せ 別添 4－13
7．2．1 荷重の種類 別添 4－13
7．2．2 荷重の組合せ 別添 4－14
7.3 機能維持の方針 別添 4－14
7．3．1 原子炬建屋 BOP 別添 4－14
7．3．2 BOP 閉止装置 別添 4－18

1．概要

添付書類「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性 に関する説明書」（以下「VI－1－1－6」という。）にて，ブローアウトパネル関連設備が使用される条件の下における健全性について，必要な機能に対しての設計方針を示している。

本資料は，VI－1－1－6にて設定しているブローアウトパネル関連設備に係る設計方針を整理した上で，各設計方針に対して，ブローアウトパネル関連設備の設備分類，要求機能及び性能目標を明確にし，各設備の機能設計等について説明するものである。

2．設備分類
ブローアウトパネル関連設備は，以下のとおり，原子炉建屋ブローアウトパネル（以下「原子炉建屋BOP」という。）及び原子炉建屋ブローアウトパネル閉止装置（以下「BOP 閉止装置」とい う。）に分類する。
（1）原子炬建屋 BOP
原子炉建屋 BOP は，原子炉建屋原子炉棟外壁（地上 3 階部分）に配置され，差圧により開放 するパネル本体部，パネルを建屋外壁内に設置する枠部，差圧により変形する止め板及び地震 による止め板の変形を防止するテンションリングにより構成される設備である。
（2）BOP 閉止装置
BOP 閉止装置は，扉，扉枠，扉を駆動する電動機，扉を開状態又は閉状態で固定する間等か ら構成されており，通常運転中は，扉は開放した状態であり，原子炉建屋 BOP が開放された状態で炉心損傷した場合において，間及び扉を電動機又は手動により動作させ，原子炉建屋BOP開口部を閉止する設備である。

扉は，地震による扉閉方向の移動を制限するために，常時閂により固定している。このため，開放状態にある扉の閉止操作は，閂による扉固定の解除，扉の移動，閂による扉閉状態での扉固定の一連の動作を，中央制御室からの遠隔操作により実施する。

3．ブローアウトパネル関連設備の要求機能
ブローアウトパネル及びその関連設備（BOP 閉止装置）について，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（以下「技術基準規則」という。）上の主な要求事項を以下に整理した。
（1）原子炉建屋 BOP の要求事項
設計基準対象施設及び重大事故等対処設備である原子炉建屋 BOP は，主蒸気管破断及びイ ンターフェイスシステム LOCAを想定した場合に，放出蒸気による圧力等から原子炉建屋等を防護することを目的に設置されている。

このため，原子炉建屋の内外差圧（設計差圧 4．4kPa 以下）により自動的に開放する機能が必要となる。なお，この機能は，基準地震動S s により損なわないようにする必要がある。

また，原子炉建屋 BOP は，原子炉建屋原子炉棟の壁の一部となることから，二次格納施設の

バウンダリとしての機能維持が必要であり，このため，原子炉建屋 BOP は，原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）に基づき，弾性設計用地震動S d で開放しない設計とする必要がある。

なお，設計竜巻や弾性設計用地震動 S d を超える地震により開放し，安全上支障のない期間内に復旧できない場合には，安全な状態に移行（運転中は冷温停止へ移行，停止中は使用済燃料に関連する作業の停止）することを保安規定に定め対応する。
（2）BOP 閉止装置の要求事項
重大事故等対処設備であるBOP 閉止装置は，重大事故等時に，中央制御室の居住性を確保す るために原子炉建屋原子炉棟に設置された原子炉建屋 BOP 部を閉止する必要がある場合，こ の開口部を容易かつ確実に閉止操作することを目的に設置されている。

このため，容易かつ確実に閉止操作する機能が必要であり，閉止後は，原子炉建屋原子炉棟 の壁の一部となることから，非常用ガス処理系により原子炉建屋原子炉棟を負圧に維持でき る気密性を保持できることが必要である。なお，扉開状態（待機状態）では基準地震動 S s 後 においても，作動性及び扉閉止後の原子炉建屋原子炉棟を負圧に維持できる気密性を保持で きるようにする必要がある。

また，BOP 閉止装置は扉閉止後，原子炉建屋原子炉棟の壁の一部となることから，必要な気密性を確保し閉止状態を維持する機能が必要である。この機能は，基準地震動S s により損な わないようにする必要がある。

なお，BOP 閉止装置は現場において人力による操作が可能なものとする必要がある。

4．設計の基本方針

ブローアウトパネル関連設備の要求事項及び考慮すべき要因である自然現象，人為事象，溢水及び火災に対する設計方針について以下に示す。
（1）原子炬建屋 BOP
原子炉建屋BOPは，主蒸気管破断及びインターフェイスシステム LOCAを想定した場合の放出蒸気により，原子炉建屋原子炉棟の圧力が上昇した場合において，外気との差圧（設計差圧 4．4kPa 以下）により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下させるこ とができる設計とするとともに，この機能は，基準地震動S s により損なわれない設計とする。原子炉建屋 BOP は，原子炉建屋原子炉棟の壁の一部となることから，二次格納施設のバウン ダリとしての機能維持が必要であるため，弾性設計用地震動S dで開放しない設計とする。
また，原子炉建屋 BOP は，考慮すべき自然現象等を考慮した設計とするとともに，開放時に他の設備に波及的影響を及ぼさない設計とする。
a．自然現象及び人為事象
（a）地震
自然現象のうち地震に関して，原子炉建屋 BOP は，基準地震動S s にて開放機能を喪失 しない設計とする。また，二次格納施設である原子炉建屋原子炉棟のバウンダリを構成す る設備であるため，弾性設計用地震動S d では開放しない設計とする。

原子炉建屋 BOP の耐震設計については，本資料に基づき実施する。
（b）津波
自然現象のうち津波に関して，原子炉建屋 BOP は津波の影響を受けない位置に設置さ れることから，設計上考慮しない。
（c）風（台風）及び竜巻
自然現象のうち風（台風）及び竜巻に関して，原子炉建屋 BOP は，風（台風）及び竜巻 による風荷重を考慮して設置し，設計飛来物により原子炉建屋 BOP が破損した場合に，他 の設備に波及的影響を及ぼさない設計とする。風（台風）の風荷重については，竜巻の風荷重に包絡される。

なお，設計竜巻の差圧は，原子炉建屋 BOP 開放差圧より大きく，設計竜巻の差圧で開放 しない設計とした場合，開放機能を阻害するため，設計竜巻により開放し，安全上支障の ない期間内に復旧できず，二次格納施設としてのバウンダリ機能が維持できない場合に は，安全な状態に移行（運転中は冷温停止へ移行，停止中は使用済燃料に関連する作業の停止）することを保安規定に定める。
（d）積雪及び火山の影響
自然現象のうち積雪及び火山の影響に関して，原子炉建屋 BOP は，建屋壁面内に設置さ れ，積雪及び降下火砕物の影響を受けないことから，設計上考慮しない。なお，原子炉建屋原子炉棟としては積雪及び降下火砕物を考慮した設計としている。
（e）その他自然現象及び人為事象
自然現象のうち凍結，降水，落雷，生物学的事象，森林火災及び高潮並びに人為事象の うち爆発，近隣工場等の火災（石油コンビナート施設等の火災，発電所敷地内に設置する危険物貯蔵施設等の火災，航空機墜落による火災，発電所敷地内に設置する危険物貯蔵施設等の火災と航空機墜落による火災の重畳火災，二次的影響（ばい煙等）），有毒ガス，船舶の衝突，電磁的障害及び航空機の衝突（以下「その他自然現象及び人為事象」という。） に関して，原子炉建屋 BOP は，これら事象による影響を受けない設計とする。

その他自然現象及び人為事象に対する設計については，添付書類「VI－1－1－2－1 発電用原子灲施設に対する自然現象等による損傷の防止に関する説明書」のうち「VI－1－1－2－1－ 1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。
b．溢水
溢水に関して，原子炉建屋 BOP は溢水の影響を受けない位置に設置されることから，設計上考慮しない。
c．火災
火災に関しては，原子炉建屋 BOP は火災により重大事故等に対処するために必要な機能 を損ならおそれがないよう，火災発生防止，火災の感知及び消火のそれぞれを考慮した火災防護対策を講じる設計とする。
d．その他
原子炬建屋 BOP は，パネルが開放した場合でも落下して他の設備に影響を与えない位置 に設置されていることから波及的影響は考慮しない。

なお，開放時の落下を防止するため，落下防止チェーンを設置する。
（2）BOP 閉止装置
BOP 閉止装置は，重大事故等時，原子炉建屋 BOP 部を閉止する必要がある場合，容易かつ確実に閉止操作でき，閉止後に原子炉建屋原子炉棟を負圧に維持できる気密性を保持できる設計とするとともに，この機能は，基準地震動 S s により損なわれない設計とする。

扉閉止状態でも原子炉建屋原子炉棟の壁の一部となり，建屋気密の維持機能を維持する必要があるため，基準地震動 S s で気密性を保持できる設計とする。

BOP 閉止装置は，現場にて人力により間及び扉の操作が可能な設計とする。
また，BOP 閉止装置は，考慮すべき自然現象等を考慮した設計とする。
a．自然現象及び人為事象
（a）地震
自然現象のうち地震に関して，BOP 閉止装置は，基準地震動S s 後も容易かつ確実に閉止でき，閉止後の気密機能を維持できる設計とする。閉止状態においても，基準地震動 S s にて気密機能を維持できる設計とする。
また，BOP 閉止装置は，現場にて人力により問及び扉の操作が可能な設計とする。 BOP 閉止装置の耐震設計については，本資料に基づき実施する。
（b）津波
自然現象のうち津波に関して，BOP 閉止装置は津波の影響を受けない位置に設置される ことから，設計上考慮しない。
（c）風（台風）及び竜巻
自然現象のらち風（台風）に関してBOP 閉止装置は，風（台風）による風荷重を考慮し て設計する。また，自然現象のうち竜巻に関しては，竜巻による風荷重を考慮して他の設備に波及的影響を及ぼさない設計とする。
（d）積雪及び火山の影響
自然現象のうち積雪及び火山の影響に関して，BOP 閉止装置は，積雪及び火山の影響を受けない位置に設置されることから，設計上考慮しない。
（e）その他自然現象及び人為事象
その他自然現象及び人為事象に関して，BOP 閉止装置は，これら事象による影響を受け ない設計とする。その他自然現象及び人為事象に対する設計については，添付書類「VI－

1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のらち「VI－1－ 1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。
b．溢水
溢水に関して，BOP 閉止装置は溢水の影響を受けない位置に設置されることから，設計上考慮しない。

c．火災

火災に関しては，BOP 閉止装置は火災により重大事故等に対処するために必要な機能を損 なうおそれがないよう，火災発生防止，火災の感知及び消火のそれぞれを考慮した火災防護対策を講じる設計とする。

火災に対する BOP 閉止装置の設計については，添付書類「VI－1－1－7 発電用原子炉施設の火災防護に関する説明書」に基づき実施する。

以上を踏まえ，ブローアウトパネル関連設備については，本資料にて要求機能を整理するとと もに，機能設計上の性能目標と地震等による荷重を考慮した構造強度設計上の性能目標を定める。 また，ブローアウトパネル関連設備の構造強度設計上の性能目標を達成するため，構造強度設計上の方針を示した上で，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のらち「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」及び添付書類「VI－2 耐震性に関する説明書」のうち「VI－2－1－9 機能維持の基本方針」にて設定している荷重条件及び荷重の組合せに従い，構造強度設計上に必要な考慮すべき荷重条件を設定し，その荷重の組合せの考え方を定める。

以上のブローアウトパネル関連設備の設計フローを図4－1 に示す。
ブローアウトパネル関連設備の耐震計算については，添付書類「VI－2 耐震性に関する説明書」 のうち「VI－2－1－9 機能維持の基本方針」に基づき実施し，耐震計算の方法及び結果については，添付書類「VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書」及び添付書類「VI－2－9－4－4－1－5 ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

注：フロー中の番号は，本資料での記載箇所の章を示す。
図 4－1 設備の設計フロー

5．要求機能及び性能目標

5.1 要求機能

ブローアウトパネル関連設備のうち原子炉建屋 BOP 及び BOP 閉止装置は，地震後においても必要な機能を損なわないことが要求される。

原子炉建屋 BOP は，建屋の内外差圧（設計差圧 4.4 kPa 以下）により自動的に開放する機能が要求される。なお，この機能は，基準地震動 S s により損なわれないことが要求される。また，原子炉建屋 BOP は，原子炉建屋原子炉棟の壁の一部となることから，弾性設計用地震動 S d で開放しない機能が要求される。

BOP 閉止装置は，原子炉建屋 BOP を閉止する必要がある場合，容易かつ確実に閉止操作する機能が要求され，閉止後は，原子炉建屋原子炉棟の壁の一部となることから，建屋気密の維持機能として原子炉建屋原子炉棟を負圧に維持できる気密性を保持できることが要求される。な お，この機能は，基準地震動 S s により損なわれないことが要求される。また，BOP 閉止装置 は扉閉止後，原子炉建屋原子炉棟の壁の一部となることから，扉閉止状態においても，基準地震動 S s に対して，原子炉建屋原子炉棟を負圧に維持できる気密性を保持できることが要求さ れる。

なお，BOP 閉止装置は現場において人力による操作が可能なものとする必要がある。

5.2 性能目標

（1）原子炉建屋 BOP
原子炉建屋 BOP は，設計基準事故時及び重大事故時（インターフェイスシステム LOCA 時） において，原子炉建屋の内外差圧（設計差圧 4.4 kPa 以下）により自動的に開放できることを機能設計上の性能目標とする。なお，この機能は，基準地震動 S s により損なわれないこと が要求される。また，原子炉建屋 BOP は，設計基準事故時及び重大事故時において，原子炉建屋原子炉棟の壁の一部となることから，弾性設計用地震動 $\mathrm{S} d$ で開放しないことも機能設計上の性能目標とする。

原子炉建屋 BOP は，地震力に対し，以下の内容を構造強度設計上の性能目標とする。
a．機能維持
原子炉建屋 BOP は，基準地震動S s が作用した後にも規定の圧力（設計差圧 4.4 kPa 以下）にて自動的に開放できること，及び弾性設計用地震動S dでは開放しないこと。
b．構造強度
原子炉建屋 BOP は，基準地震動 S s による地震力に対し，本体，枠等の主要な構造部材 が開放機能を保持可能な構造強度を有すること。
c．波及的影響
原子炉建屋 BOP は，当該設備の損傷等による波及的影響を防止する必要がある他の設備 に対して波及的影響を及ぼさないこと。
（2）BOP 閉止装置
BOP 閉止装置は，重大事故等に対し，容易かつ確実に閉止操作できること，閉止後におい ては，原子炉建屋原子炉棟を負圧に維持できる気密性を保持することを機能設計上の性能目標とする。なお，この機能は，基準地震動S s により損なわれないことが要求される。また，閉止後においても，基準地震動 S s による地震力に対し，原子炉建屋原子炉棟を負圧に維持 できる気密性を保持することを機能設計上の性能目標とする。
また，現場にて人力により操作できることを機能設計上の性能目標とする。 BOP 閉止装置は，地震力に対し，以下の内容を構造強度設計上の性能目標とする。

a．機能維持

BOP 閉止装置は，重大事故等に対し，基準地震動 S s が作用した後においても，作動性及び原子炉建屋原子炉棟を負圧に維持できる気密性を保持し，閉止後においても，基準地震動 S s において原子炉建屋原子炉棟を負圧に維持できる気密性を保持すること。

また，現場にて人力により操作ができること。
b．構造強度
BOP 閉止装置は，基準地震動S s が作用した後においても，主要な構造部材が閉止装置 の作動性，気密性を保持可能な構造強度を有すること。閉止後においても，基準地震動 S s において原子炬建屋原子炉棟を負圧に維持できる気密性を保持可能な構造強度を有す ること。

6．機能設計

「5．要求機能及び性能目標」で設定している，ブローアウトパネル関連設備の機能設計上の性能目標を達成するために，各設備の機能設計の方針を定める。
（1）原子炉建屋BOP の設計方針
a．設計方針
原子炉建屋 BOP は，「5．要求機能及び性能目標」の「5．2 性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針とする。

原子炉建屋 BOP は，設計基準事故時及び重大事故時（インターフェイスシステム LOCA 時） において，原子炉建屋の内外差圧（設計差圧 4．4kPa 以下）により自動的に開放できるよう に設計する。

また，原子炉建屋 BOP は，原子炉建屋原子炉棟の壁の一部となることから，弾性設計用地震動 S d で開放しないように設計する。

原子炉建屋 BOP の基準地震動 S s による地震力に対する機能保持の設計方針は「7．1（1）原子炉建屋 BOP」に示す。
b．原子炉建屋 BOP 詳細設計
原子炉建屋BOPを開放させるため満足すべき条件は以下のとおりであり，抵抗力（2）止め板の抗力，（3）テンションリングの抗力，（4）パネル移動時の摩擦力）が，⑤差圧による荷重以

下となる条件を満足する必要がある。また，二次格納施設としての原子炉建屋原子炉棟のバ ウンダリ機能確保の観点から，①弾性設計用地震動 S d で開放しないように設計する。

原子炉建屋 BOP は，テンションリングに張力を導入することにより常時パネルを内側に引張っておき，地震時には設定した地震力まではパネルの離れを生じさせず，設定を超える地震力が生じた場合も面外の抑えが大きくなることにより止め板の変形を生じにくくさせ ている。また，設計差圧がかかった場合は，その直前にテンションリングの切欠き部が破断 することによりブローアウトパネル本来の機能を阻害しない設計とする。
（1）弾性設計用地震動 S d による開放荷重

抵抗力（2）止め板の抗力，（3）テンション リングの抗力，（4）パネル移動時の摩擦力）
（5）設計差圧 4.4 kPa による開放荷重

このため，止め板試験にて実際に用いる止め板の抗力を確認し，設計時に確認したテンシ ョンリングによる抗力，摩擦係数から算出した摩擦による抗力を評価し，上記条件を十分に満足する止め板数として，止め板数を 48 個に設定する。

設計を基に 3 次元 FEM 解析を実施した結果，実機の開放圧力は $\square \mathrm{kN}$ であり，設計差圧 4． 4 kPa 時の開放荷重約 92.1 kN に対し，十分に小さい開放圧力で開放すること，また，弾性設計用地震動 S d による地震荷重（約 51.9 kN ）では開放しないことを確認した。なお，テ ンションリング破断時荷重は $\square \mathrm{kN}$ であり，弾性設計用地震動 S d による地震荷重で開放 しないことを確認している。

止め板試験と 3 次元 FEM 解析の概要を以下に示す。

（a）止め板試験

原子炉建屋 BOP が，設計差圧（4．4kPa 以下）により自動的に開放できる設計に対して，原子炉建屋 BOP を躯体に固定している止め板の耐力を確認し，止め板数を確定させるた め，予備品として保管している止め板単体の曲げ試験を実施する。

試験体は，ばらつきを考慮し15個とし，曲げ試験を実施した。試験結果を表6－1に示 す。試験は変位制御（1 分間に 5 mm の変位速度）で実施した。

止め板の耐力は，平均 $\square \mathrm{N} /$ 個であり，標準偏差は $\square \mathrm{N}$ であった。
この試験結果と，テンションリングによる耐力，摩擦による抗力も考慮し，止め板数を 48 個に設定した。

表 6－1 止め板試験結果の概要

耐力（試験体数は 15 個）		荷重（N）	
最大耐力	平均値	\square	
	最大値		
	最小値	\square	
標準偏差 σ	\square		
最大耐力（平均）$+3 \sigma$	\square		
最小耐力（平均）-3σ	\square		

（b） 3 次元 FEM 解析
原子炉建屋 BOP が，設計差圧（4．4kPa 以下）により自動的に開放することを， 3 次元 FEM モデルを用いた静的漸増解析により確認する。解析モデルを図6－1に示す。躯体は境界条件で模擬し，パネル，外枠，リブ及び治具は弾性体で，止め板はばね要素で，テンション リングの切欠き部は弾塑性体でモデル化した。自重及びテンションリングへの張力を導入 した後，内圧荷重を 0 kPa から 4.4 kPa まで漸増させることで，開放にいたるまでの挙動を評価した。

図 6－1（1／2）解析モデル図（室内側全体図，レンダー表示）

図 6－1（2／2）解析モデル図（室内側立面図）
［赤丸：止め板を模擬したばね要素，単位：mm］

3 次元 FEM 解析結果を表6－2 に示す。3 次元 FEM 解析にて確認した開放荷重は， \square kN
$\square \mathrm{kPa}$ 相当）であり，設計方針とした規定の圧力以下（4．4kPa 以下）にて開放するこ とを確認した。また，弾性設計用地震動 S d 時にパネル部に作用する慣性力は約 51.9 kN であり開放荷重未満であるため，弾性設計用地震動 S d 時ではパネルは開放しないこと を確認した。なお，テンションリング破断時荷重は $\square \mathrm{kN}$ であり，弾性設計用地震動 S d 時ではパネルは開放しないことを確認している。

枠囲みの内容は商業機密の観点から公開できません。

表 6－2 原子炉建屋BOP 3 次元 FEM 解析結果

項目	解析値 （kN）	許容値（kN） （設計差圧 4.4 kPa相当値）	$\begin{gathered} \text { 判定値 (kN) } \\ (\mathrm{S} \text { 何重相当値) } \end{gathered}$	判定	備考 解析値に相当する 差圧値（ kPa ）
開放時		92.1	51.9	\bigcirc	
テンションリング 破断時		－	51.9	\bigcirc	

（2）BOP 閉止装置の設計方針
a．設計方針
BOP 閉止装置は，「5．要求機能及び性能目標」の「5．2 性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針とする。
BOP 閉止装置は，重大事故等に対し，容易かつ確実に閉止操作できるように設計する。ま た，閉止後においては，原子炉建屋原子炉棟を負圧に維持できる気密性を保持するように設計する。また，現場にて人力により操作できるように設計する。

BOP 閉止装置の基準地震動 S s による地震力に対する機能保持の設計方針は「7．1（2） BOP 閉止装置」に示す。

b．詳細設計

BOP 閉止装置は，容易かつ確実に閉止操作できるよう以下の設計とする。なお，開閉機能 は基準地震動S s で維持できる設計とする。
－BOP 閉止装置は，中央制御室から電動にて開閉（閂含む。）できる設計とする。この際，扉本体は丁番を軸として，チェーンを介して電動機により開閉する構造であることか ら，地震時の扉本体に作用する慣性力によるチェーンの損傷を防止するため，扉は開状態又は閉状態では閂により動きを拘束し，過大な地震荷重がチェーン等の駆動系に作用しない設計とする。

- 電源は常設代替交流電源設備から給電可能な設計とする。
- 扉の開閉状態（閂含む。）は中央制御室にて把握できる設計とする。

BOP 閉止装置は，扉閉止後において，原子炉建屋原子炉棟内を負圧に維持できる気密性を保持できるように，扉閉状態では扉は機械的にパッキンが設置されている枠板側に押し付 けられる設計とする。なお，扉開状態（待機状態）では基準地震動S s が作用した後におい ても，作動性及び原子炉建屋原子炉棟内を負圧に維持できる気密性を保持し，扉閉状態（閉止状態）においても，基準地震動 S s において原子炉建屋原子炉棟内を負圧に維持できる気密性を保持する設計とする。

また，BOP 閉止装置は，現場にて人力により操作できるように，BOP 閉止装置の閂に設置 される駆動機構にレンチを設置可能な設計とし，扉を人力により開閉することで，手動操作

枠囲みの内容は商業機密の観点から公開できません。

できる設計とする。具体的には間の場合，間に接続されている駆動機構にレンチを装着し， レンチを反時計回りに回転させることにより閂ピンが引抜かれる設計とする。なお，挿入は レンチを時計回りに回転させることにより閂ピンが挿入される設計とする。扉の場合，扉の電動機とチェーンの間にトルクリミッターを設置する構成とすることで，人力により扉が開閉できる設計とする。

これら詳細設計の成立性を確認するため，実機大モックアップを製作し機能確認を実施 した。
（a）BOP 閉止装置の問及び扉の動作試験結果
閂及び扉の動作試験結果を表 6－3 及び表 6－4に示す。実機大モックアップを製作し，動作確認した結果，各動作に問題はなく，動作時間は機能目標を満足していることを確認し た。また，間及び扉の電動機は，温度耐性の向上を目的として，実機では電動機の仕様を変更している。仕様変更後の扉及び閂についても，動作確認をした結果，各動作に問題は なく，動作時間は機能目標を満足していることを確認した。仕様変更後の閂及び扉の動作試験結果を表 6－5 及び表 6－6に示す。
なお，扉の動作時間は，操作盤の自動開閉スイッチを押してから，問が引抜かれ，扉が開閉動作を行い，問が挿入され，操作盤の動作完了を示すランプが点灯するまでの時間と する。

表 6－3 BOP 閉止装置の閂の動作試験結果（加振前）

閂位置	電動（動作時間）				手動
	引抜き時		挿入時		
	性能目標	結果	性能目標	結果	
扉開側	約 \square 秒	\square 秒	約 \square 秒	口秒	－＊
扉閉側		\square 秒		\square 秒	

注記＊：加振後にのみ手動の動作試験を実施。加振後の動作試験結果は，7．3．2項の表7－5 に示す。

表 6－4 BOP 閉止装置の扉の動作試験結果（加振前）

扉動作	電動（動作時間）		手動
	性能目標	結果	
開放 \rightarrow 閉止	\square 秒以内	秒	－＊
閉止 \rightarrow 開放		\square 秒	

注記 $*:$ 加振後にのみ手動の動作試験を実施。加振後の動作試験結果は，7．3．2項の表 7－6に示す。また，手動操作は開放 \rightarrow 閉止について実施した。

表 6－5 BOP 閉止装置の閂の動作試験結果（電動機仕様変更後）

閂位置	電動（動作時間）				手動
	引抜き時		插入時		
	性能目標	結果	性能目標	結果	
扉開側	$\text { 約 } \square \text { 秒 }$	\square秒	$\text { 約 } \square \text { 秒 }$	\square秒	—＊
扉閉側					

注記 $~: ~: ~$ 電動機の単品加振後にのみ手動の動作試験を実施。単品加振後の動作試験結果は， 7．3．2 項の表 7－7 に示す。

表 6－6 BOP 閉止装置の扉の動作試験結果（電動機仕様変更後）

扉動作	電動（動作時間）		手動
	性能目標	結果	
開放 \rightarrow 閉止	秒以内		—＊
閉止 \rightarrow 開放			

注記＊：電動機の単品加振後にのみ手動の動作試験を実施。単品加振後の動作試験結果は，7．3．2 項の表 7－8に示す。また，手動操作は開放 \rightarrow 閉止に ついて実施した。
（b）BOP 閉止装置の気密性能試験結果
BOP 閉止装置の気密性能試験結果を表 6－7に示す。この試験結果を基に，BOP 閉止装置 を原子炉建屋原子炉棟に設置した場合には，既設原子炉建屋原子炉棟のインリーク量を考慮しても，原子炉建屋原子炉棟の気密性能は確保できることを確認した。

表 6－7 BOP 閉止装置の気密性能試験結果（加振前）

> (単位: m³/(h• m²))

扉 （初期状態）	63 Pa 時の通気量	備考
開	\square	扉を電動にて閉止して試験実施

7．構造強度設計

「5．要求機能及び性能目標」で設定している，ブローアウトパネル関連設備の構造強度上の性能目標を達成するために，「6．機能設計」で設定している各設備が有する機能を踏まえて，構造強度設計の設計方針を設定する。

各設備の構造強度の設計方針を設定し，想定する荷重及び荷重の組合せを設定し，それらの荷

重に対し，各設備の構造強度を保持するよう構造強度設計と評価方針を設定する。
ブローアウトパネル関連設備の耐震計算については，添付書類「VI－2 耐震性に関する説明書」 のうち「VI－2－1－9 機能維持の基本方針」に基づき実施し，耐震計算の方法及び結果については，添付書類「VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書」及び添付書類「VI－2－9－4－4－1－5 ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

7.1 構造強度の設計方針

「5．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するための設計方針を原子炉建屋BOP 及びBOP 閉止装置ごとに示す。
（1）原子炉建屋 BOP
原子炉建屋 BOP は，「5．要求機能及び性能目標」の「5．2 性能目標」で設定している構造強度設計上の性能目標を踏まえ，基準地震動 S s が作用した後にも規定の圧力（設計差圧 4．4kPa 以下）にて自動的に開放できる設計とするため，基準地震動 S s による地震力に対し，建屋躯体の変形が原子炉建屋 BOP の開放機能に影響しない構造強度を有する設計とする。
（2）BOP 閉止装置
BOP 閉止装置は，「5．要求機能及び性能目標」の「5．2性能目標」で設定している構造強度設計上の性能目標を踏まえ，開状態では，基準地震動S s による地震後においても，作動性及び閉止後の原子炉建屋原子炉棟を負圧に維持できる気密性を保持する設計とするため，基準地震動S s による地震力に対し，主要な構造部材が閉止装置の作動性，気密性を保持可能な構造強度を有する設計とする。また，閉状態においても，基準地震動 S s において原子炉建屋原子炉棟を負圧に維持できる気密性を保持する設計とするため，基準地震動 S s によ る地震力に対し，主要な構造部材が気密性を保持可能な構造強度を有する設計とする。

7.2 荷重及び荷重の組合せ

「5．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために，考慮すべき荷重条件を設定し荷重の組合せの考え方を示す。

7．2．1 荷重の種類

（1）常時作用する荷重
常時作用する荷重は持続的に生じる荷重であり，自重とする。

（2）風荷重

風荷重に対する考慮については，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等に よる損傷の防止に関する説明書」のらち「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。
（3）積雪荷重
積雪荷重に対する考慮については，添付書類「VI－1－1－2 発電用原子炉施設の自然現象等

による損傷の防止に関する説明書」のらち「VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。
（4）圧力荷重
圧力荷重は，原子炉建屋内外差圧を考慮する。
（5）地震荷重
地震荷重は，基準地震動 S s 又は弾性設計用地震動 S d に伴う地震力による荷重とする。

7．2．2 荷重の組合せ

ブローアウトパネル関連設備の耐震計算の荷重の組合せの考え方については，添付書類
「VI－2 耐震性に関する説明書」のうち「VI－2－1－9 機能維持の基本方針」に示す。

7.3 機能維持の方針

「5．要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために，
「7．1 構造強度の設計方針」に示す構造を踏まえ，「7．2 荷重及び荷重の組合せ」で設定して いる荷重条件を考慮して，各設備の構造設計及びそれを踏まえた評価方針を設定する。

7．3．1 原子炉建屋 BOP

（1）構造設計
原子炉建屋 BOP は，「7．1 構造強度の設計方針」で設定している設計方針及び「7．2 荷重及び荷重の組合せ」で設定している荷重を踏まえ，以下の構造とする。

原子炉建屋 BOP は，原子炉建屋外壁の開口部に設置し，パネル本体，枠，止め板，テンシ ョンリング等で構成する構造とする。

原子炉建屋 BOP の構造計画を表 7－1 に示す。また，テンションリングの詳細図を図 7－1，原子炉建屋 BOP の設置位置を図 7－2 に示す。
（2）評価方針
原子炉建屋 BOP は，「（1）構造設計」を踏まえ，以下の評価方針とする。
a．機能維持
基準地震動 S s による地震力に対し，設置場所における原子炉建屋原子炉棟躯体の層間変形角が止め板とアングル材が接触する層間変形角より小さいことを確認する。具体的には，原子炉建屋 BOP が設置されている原子炉建屋原子炉棟の耐震壁について，基準地震動 S s による地震力に対し，最大せん断ひずみが構造強度を確保するための許容限界 （2．0×10－3）を超えないことを確認する。

また，3 次元 FEMにより，弾性設計用地震動 S d による地震力に相当する荷重で原子炉建屋 BOP が開放しないことを確認する。

原子炉建屋 BOP の耐震強度評価の方法及び結果を，添付書類「VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書」に示す。
b．構造強度
基準地震動 S s による地震力に対しても開放機能が維持できる構造強度が確保されて いることを確認するため，基準地震動 S s による地震力に対し，原子炉建屋躯体の変形が原子炉建屋 BOP の開放機能に影響しない構造強度を有する設計とする。

原子炉建屋 BOP の耐震強度評価の方法及び結果を，添付書類「VI－2－9－3－1－1 原子炉建屋ブローアウトパネルの耐震性についての計算書」に示す。
c．波及的影響
原子炉建屋 BOP は，パネルが開放した場合でも落下して他の設備に影響を与えない位置に設置されていることから波及的影響は考慮しない。

表 7－1 原子炉建屋 BOP の構造計画

図 7－1 テンションリング詳細図

原子炉建屋原子炉棟地上 3 階概略平面図

原子炉建屋原子炉棟断面図
(——ブローアウトパネル (1 枚))

図 7－2 原子炉建屋 BOP の設置位置

7．3．2 BOP 閉止装置

（1）構造設計
BOP 閉止装置は，「7．1 構造強度の設計方針」で設定している設計方針及び「7．2 荷重及び荷重の組合せ」で設定している荷重を踏まえ，原子炉建屋原子炉棟に据え付けし，扉は問及び丁番により枠板に支持される構造とする。 BOP 閉止装置の構造計画を表 7－2 に示す。また，設置位置を図 7－3 に示す。
（2）評価方針
BOP 閉止装置は，「（1）構造設計」を踏まえ，以下の評価方針とする。

a．機能維持

（a）設計方針
BOP 閉止装置は，扉開状態（待機状態）では基準地震動 S s による地震力に対し，設置場所における最大加速度が，加振試験により BOP 閉止装置の作動性，気密性を保持で きることを確認した加振台の最大加速度以下であることにより確認する。

なお，扉閉状態（閉止状態）においても，基準地震動 S s による地震力に対し，設置場所における最大加速度が，加振試験により BOP 閉止装置の気密性を保持できること を確認した加振台の最大加速度以下であることにより確認する。

BOP 閉止装置の耐震強度評価の方法及び結果を，添付書類「VI－2－9－4－4－1－5 原子炉建屋ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

表 7－2 BOP 閉止装置の構造計画

枠囲みの内容は商業機密の観点から公開できません。

図 7－3 BOP 閉止装置の設置位置
（b）詳細設計
扉開状態（待機状態）では基準地震動 S s が作用した後においても，作動性及び扉閉止後の原子炬建屋原子炉棟内を負圧に維持できる気密性を保持可能なことを確認する ため，実機大モックアップを用いて，BOP 閉止装置の設置位置での基準地震動S s によ る地震応答加速度を包絡した加振波による 3 次元加振試験を実施し，加振後の電動及 び手動による問及び扉の開閉動作試験，扉閉止後の気密性能試験を実施した。

また，扉閉状態（閉止状態）でも基準地震動 S s が作用した後において，原子炉建屋原子炉棟内を負圧に維持できる気密性を保持可能なこと及び作動性を確認するため，実機大モックアップを用いて，BOP 閉止装置の設置位置での基準地震動S s による地震応答加速度を包絡した加振波による 3 次元加振試験を実施し，加振後の気密性能試験，電動及び手動による間及び扉の開閉動作試験を実施した。

イ．BOP 閉止装置加振試験の妥当性
試験時の加振加速度の測定位置を図 7－4 に，測定結果を表 7－3 に示す。扉開状態及 び扉閉状態での扉上部及び扉下部の 3 方向（ $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ）の加振加速度は，設計上必要な加速度を超えており，適切な加振がされていることを確認した。

図 7－4 BOP 閉止装置加振試験時の加振加速度の測定位置

表 7－3 BOP 閉止装置加振試験時の加振加速度の測定結果

扉開状態 扉上部（A3）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A3 部）	判定結果 $(1)<\text { (2) })$
X	2． 71		\bigcirc
Y			\bigcirc
Z	1． 56		\bigcirc

扉開状態 扉上部（A4）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A4 部）	判定結果 $(1)<(2)$
X	2． 71		\bigcirc
Y			\bigcirc
Z	1． 56		\bigcirc

扉開状態 扉下部（A1）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A1 部）	判定結果 (1) < (2)
X	2.55		\bigcirc
Y			\bigcirc
Z	1.53		\bigcirc

扉開状態 扉下部（A2）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A2 部）	判定結果 $(1)<\text { (2) })$
X	2． 55		\bigcirc
Y			\bigcirc
Z	1.53		\bigcirc

扉閉状態 扉上部（A3）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A3 部）	判定結果 （1）＜（2）
X	2.71		\bigcirc
Y			\bigcirc
Z	1． 56		\bigcirc

扉閉状態 扉上部（A4）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A4 部）	判定結果 （1）＜（2）
X	2.71		\bigcirc
Y			\bigcirc
Z	1.56		\bigcirc

扉閉状態 扉下部（A1）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A1 部）	判定結果 （1）$<$（2）
X	2． 55		\bigcirc
Y			\bigcirc
Z	1． 53		\bigcirc

扉閉状態 扉下部（A2）の加振加速度
（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

方向	（1）S s 包絡条件	（2）計測結果（A2 部）	$\begin{aligned} & \text { 判定結果 } \\ & \text { (1) < (2) } \end{aligned}$
X	2.55		\bigcirc
Y			\bigcirc
Z	1.53		\bigcirc

口．BOP 閉止装置加振試験結果（外観目視点検結果）
実施した加振試験後の点検結果を表 7－4 に示す。基準地震動S s 相当による加振 でも設備に損傷はなく健全であることを確認した。

表 7－4 BOP 閉止装置加振試験時の外観点検結果

試験条件		外観目視点検結果			
加振条件	扉状態	チェーン	扉開閉状態	そ 問	その他
	開	破損なし	異常なし	異常なし	異常なし
	閉	破損なし	異常なし	異常なし	異常なし

八．BOP 閉止装置加振試験結果（問及び扉の動作試験結果）
BOP 閉止装置の加振試験後の閂及び扉の動作試験結果を表 7－5 及び表 7－6に示す。扉開状態及び扉閉状態にて基準地震動 S s 相当の加振力で加振し，扉及び閂の動作 を確認した結果，動作に問題はなく，動作時間は機能目標を満足していることを確認 した。また，仕様変更後の閂及び扉の電動機も単品で加振試験を実施し，加振試験後 に動作試験体に組込み，動作を確認した結果，動作に問題はなく，動作時間は機能目標を満足していることを確認した。動作試験結果を表 7－7 及び表 7－8 に示す。

なお，扉の動作時間は，操作盤の自動開閉スイッチを押してから，問が引抜かれ，扉が開閉動作を行い，閂が挿入され，操作盤の動作完了を示すランプが点灯するまで の時間とする。

表 7－5 BOP 閉止装置加振後の閂の動作試験結果

加振条件	扉の 初期 状態	閂位置	電動（動作時間）				手動		
			引抜き時		插入時		引抜き時	挿入時	
			性能目標	結果	性能 目標	結果			
S s	開	扉開側	$\text { 約 } \square \text { 秒 }$	\square 秒	$\text { 約 } \square \text { 秒 }$	\square 秒	異常なし		
		扉閉側		\square 秒		\square 秒			
	閉	扉開側		口秒		］秒	－		
		扉閉側		\square 秒		秒			

表 7－6 BOP 閉止装置加振後の扉の動作試験結果

加振条件	扉の 初期 状態	電動（動作時間）				手動
		開放 \rightarrow 閉止		閉止 \rightarrow 開放		
		性能目標	結果	性能目標	結果	
S s	開 閉	秒以内	\square	秒以内	$\square_{\text {秒 }}$	異常なし＊

注記＊：手動操作は開放 \rightarrow 閉止について実施した。

表 7－7 加振後の閂の動作試験結果（電動機仕様変更後）

加振条件	扉の初期状態	閂位置	電動（動作時間）				手動		
			引抜き時		插入時		引抜き時	挿入時	
			性能 目標	結果	$\begin{aligned} & \text { 性能 } \\ & \text { 目標 } \end{aligned}$	結果			
S s	開	扉開側	約	\square秒	$\text { 約 } \square \text { 秒 }$	秒	異常なし		
		扉閉側							
	閉	扉開側					－		
		扉閉側							

表 7－8 加振後の扉の動作試験結果（電動機仕様変更後）

加振条件	扉の初期状態	電動（動作時間）				手動
		開放 \rightarrow 閉止		閉止 \rightarrow 開放		
		性能目標	結果	性能目標	結果	
S s	開 閉	秒以内	〕秒	秒以内	\square秒	異常なし＊

注記＊：手動操作は開放 \rightarrow 閉止について実施した。

二．BOP 閉止装置加振試験結果（気密性能試験結果）

 BOP 閉止装置の加振試験後の気密性能試験結果を表 7－9に示す。表 7－9 BOP 閉止装置加振試験時の気密性能試験結果
（単位：$m^{3} /\left(h \cdot m^{2}\right)$ ）

扉 （初期状態）	63 Pa 時の通気量	備考 閉$\quad \square$

＜原子炉建屋原子炉棟としての負圧達成について＞
今回のBOP 閉止装置の気密性能試験結果から，装置をブローアウトパネル部に設置し た場合の原子炉建屋原子炉棟の負圧達成可否について評価した結果，非常用ガス処理系定格容量（ $2500 \mathrm{~m}^{3} / \mathrm{h}$ ）は，推定インリーク量 \square を十分に上回るため，非常用ガス処理系にて 63 Pa 以上の負圧達成可能である。

- 既設原子炉建屋原子炉棟の推定インリーク量 ：約 $2130 \mathrm{~m}^{3} / \mathrm{h} ~(63 \mathrm{~Pa}$ 時の漏えい量）
- BOP 閉止装置の合計台数：1 式（24 台）
- BOP 閉止装置 1 式（24 台）設置時の推定インリーク量：$\square \times 24$ 台 \times $\square=\square$（63Pa 時の漏えい量）
- 非常用ガス処理系定格容量 ： $2500 \mathrm{~m}^{3} / \mathrm{h}$（ 63 Pa 時の通気量）
- BOP 閉止装置設置を含めた原子炉建屋原子炉棟の推定漏えい量 ：
$2130 \mathrm{~m}^{3} / \mathrm{h}$

（ 63 Pa 時の漏えい量）$<2500 \mathrm{~m}^{3} / \mathrm{h}$（ 63 Pa 時の通気量）
（非常用ガス処理系定格容量）

ホ．BOP 閉止装置機能確認済加速度
BOP 閉止装置の機能確認済加速度を表 7－10 に示す。BOP 閉止装置の機能維持性能 に関わる扉及び駆動部は，BOP 閉止装置の重心位置に集約していることから，機能確認済加速度は，BOP 閉止装置の重心位置で定義する。

表 7－10 BOP 閉止装置の機能確認済加速度

	（単位：$\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）
方向	機能確認済加速度
X	
Y	
Z	

b．構造強度
扉開状態（待機状態）では基準地震動 S s による地震後においても，作動性及び原子炉建屋原子炉棟内を負圧に維持できる気密性を保持し，扉閉状態（閉止状態）についても，基準地震動 S s において原子炉建屋原子炉棟内を負圧に維持できる気密性を保持可能な構造強度を有することを確認するため，構造強度評価を実施する。また，「a．機能維持」で記載 した 3 次元加振台を用いた加振試験により，設備に損傷等はなく機能を維持するための構造強度が確保できることを確認する。

BOP 閉止装置の耐震強度評価の方法及び結果を，添付書類「VI－2－9－4－4－1－5 原子炉建屋 ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書

VI－1－1－8－1 溢水等による損傷防止の基本方針
VI－1－1－8－2 防護すべき設備の設定
$\mathrm{VI}-1-1-8-3$ 溢水評価条件の設定
$\mathrm{VI}-1-1-8-5$ 溢水防護施設の詳細設計
VI-1-1-8-3 溢水評価条件の設定

目次

1．概要 1
2．溢水源及び溢水量の設定 1
2.1 想定破損による溢水 1
2.2 消火水の放水による溢水 17
2.3 地震起因による溢水 17
2.4 その他の溢水 24
3．溢水防護区画及び溢水経路の設定 27
3.1 溢水防護区画の設定 28
3.2 溢水防護区画内漏えいでの溢水経路 28
3.3 溢水防護区画外漏えいでの溢水経路 33

1．概要

本資料は，溢水から防護すべき設備の溢水評価に用いる溢水源及び溢水量並びに溢水防護区画及び溢水経路の設定について説明するものである。

2．溢水源及び溢水量の設定
溢水影響を評価するために，評価ガイドを踏まえて発生要因別に分類した以下の溢水 を設定し，溢水源及び溢水量を設定する。
－溢水の影響を評価するために想定する機器の破損等により生じる溢水（以下「想定破損による溢水」という。）
－発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置される系統か らの放水による溢水（以下「消火水の放水による溢水」という。）
－地震に起因する機器の破損等により生じる溢水（使用済燃料プール等のスロッシン グにより発生する溢水を含む。）（以下「地震起因による溢水」という。）
－その他の要因（地下水の流入，地震以外の自然現象，機器の誤作動等）により生じ
る溢水（以下「その他の溢水」という。）
想定破損による溢水では，溢水源となり得る機器は流体を内包する配管とし，地震起因による溢水（使用済燃料プール等のスロッシングにより発生する溢水を含む。）では溢水源となり得る機器は流体を内包する容器（タンク，熱交換器及びろ過脱塩器等）及 び配管として，それぞれにおいて対象となる機器を系統図より抽出し，抽出された機器 が想定破損における応力評価又は耐震評価において破損すると評価された場合，それぞ れの評価での溢水源とする。

想定破損による溢水又は消火水の放水による溢水の想定に当たつては，一系統におけ る単一の機器の破損又は単一箇所での異常状態の発生とし，他の系統及び機器は健全な ものと仮定する。また，一系統にて多重性又は多様性を有する機器がある場合において も，そのうち単一の機器が破損すると仮定する。号炉間で共用する建屋及び一体構造の建屋に設置される機器にあっては，共用，非共用機器に係らず，その建屋内で単一の溢水源を想定し，建屋全体の溢水経路を考慮する。

2.1 想定破損による溢水

想定破損による溢水については，単一の配管の破損による溢水を想定して，配管の破損箇所を溢水源として設定する。

また，破損を想定する配管は，内包する流体のエネルギに応じて，以下で定義する高エネルギ配管又は低エネルギ配管に分類する。
－「高エネルギ配管」とは，呼び径25A（1B）を超える配管であって，プラントの通常運転時に運転温度が $95^{\circ} \mathrm{C}$ を超えるか又は運転圧力が 1.9 MPa ［gage］を超える配管。 ただし，被水及び蒸気の影響については配管径に関係なく評価する。
－「低エネルギ配管」とは，呼び径25A（1B）を超える配管であって，プラントの通常運転時に運転温度が $95^{\circ} \mathrm{C}$ 以下で，かつ運転圧力が $1.9 \mathrm{MPa}[\mathrm{gage}]$ 以下の配管。た だし，被水の影響については配管径に関係なく評価する。なお，運転圧力が静水頭の配管は除く。
－高エネルギ配管として運転している割合が当該系統の運転している時間の 2% 又 はプラント運転期間の 1% より小さければ，低エネルギ配管として扱う。

配管の破損形状の想定に当たっては，高エネルギ配管は，「完全全周破断」，低エ ネルギ配管は，「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック （以下「貫通クラック」という。）」を想定する。ただし，応力評価を実施する配管 については，発生応力 S_{n} と許容応力 S_{a} の比により，以下で示した応力評価の結果に基づく破損形状を想定する。

【高エネルギ配管（ターミナルエンド部を除く。）】
－原子炉泠却材圧力バウンダリ及び原子炉格納容器バウンダリの配管
（a）クラス 1 配管
$\mathrm{S}_{\mathrm{n}} \leqq 0.8 \times$ 許容応力 ${ }^{*}$ ，疲れ累積係数 $\leqq 0.1 \Rightarrow$ 破損想定不要
（b）クラス 2 配管
$\mathrm{S}_{\mathrm{n}} \leqq 0.8 \times$ 許容応力 ${ }^{* 1} \Rightarrow$ 破損想定不要
注記 $* 1: ク$ ラス 1 配管は 2.4 Sm 以下，クラス 2 配管は 0.8 S a以下
－原子炉椧却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管
（a）クラス1配管
$\mathrm{S}_{\mathrm{n}} \leqq 0.4 \times$ 許容応力 ${ }^{2}$ ，疲れ累積係数 $\leqq 0.1 \Rightarrow$ 破損想定不要
$0.4 \times$ 許容応力 ${ }^{* 2}<\mathrm{S}_{\mathrm{n}} \leqq 0.8 \times \mathrm{S}_{\mathrm{a}}{ }^{* 3}$ ，疲れ累積係数 $\leqq 0.1 \Rightarrow$ 貫通クラック
（b）クラス2，3又は非安全系配管
$\mathrm{S}_{\mathrm{n}} \leqq 0.4 \times$ 許容応力 ${ }^{2} \Rightarrow$ 破損想定不要
$0.4 \times$ 許容応力 ${ }^{2}<\mathrm{S}_{\mathrm{n}} \leqq 0.8 \times$ 許容応力 ${ }^{* 3} \Rightarrow$ 貫通クラック
注記 $* 2$ ：クラス 1 配管は $1.2 \mathrm{~S}_{\mathrm{m}}$ 以下，クラス 2 ， 3 又は非安全系配管は $0.4 \mathrm{~S}_{\mathrm{a}}$以下

注記＊3：クラス1配管は 2.4 Sm 以下，クラス 2 ，3又は非安全系配管は 0.8 S a以下

【低エネルギ配管】
－原子炉泠却材圧カバウンダリ及び原子炉格納容器バウンダリの配管
$\mathrm{S}_{\mathrm{n}} \leqq 0.4 \mathrm{~S}_{\mathrm{a}} \Rightarrow$ 破損想定不要
－原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管
$S_{n} \leqq 0.4 \times$ 許容応力 ${ }^{44} \Rightarrow$ 破損想定不要

注記＊ $4:$ クラス1配管は1．2Sm以下，クラス 2,3 又は非安全系配管は 0.4 S a以下
発生応力と許容応力の比較により破損形状の想定を行ら以下の配管は，評価結果に影響するような減肉がないことを確認するために，継続的な肉厚管理を実施すること とし，保安規定に定めて管理する。

- 加熱蒸気及び復水戻り系
- 換気空調補機常用冷却水系
- 残留熱除去系
- 低圧炉心スプレイ系
- 高圧炉心スプレイ系
- 原子炉隔離時冷却系

また，高エネルギ配管として運転している割合が，当該系統の運転している時間の 2% 又はプラント運転期間の 1% より小さいことから低エネルギ配管とする系統（ほう酸水注入系，残留熱除去系，低圧炉心スプレイ系，高圧炉心スプレイ系，原子炉隔離時冷却系及び加熱蒸気及び復水戻り系（原子炉隔離時冷却系タービンテストライン）） については，運転時間実績管理を実施することとし，保安規定に定めて管理する。
（1）溢水源の設定
高エネルギ配管及び低エネルギ配管に対して，想定される破損形状に基づいた溢水源及び溢水量を設定する。

想定破損評価対象配管を応力評価する際には，3次元はりモデルによる評価を実施する。

評価で用いる解析コードSOLVER及びI S A P は耐震評価と同じ使用方法で用いる。
a．配管破損を考慮する高エネルギ配管の抽出及び破損想定
液体又は蒸気を内包し，防護すべき設備へ影響を与える高エネルギ配管を有す るすべての系統を抽出する。被水及び蒸気の影響を評価する場合は25A（1B）以下 の配管も考慮する。

抽出した高エネルギ配管を有する系統について，想定する破損形状を表2－1に示す。また，破損を想定しない系統の強度評価結果を表2－2に示す。

表2－1 高エネルギ配管を有する系統の想定する破損形状

系統名	運転温度 $95^{\circ} \mathrm{C}$ 超	運転圧力 1．9MPa 超	想定する破損形状
給水系	\bigcirc	\bigcirc	完全全周破断
制御棒駆動水圧系	－	\bigcirc	完全全周破断
原子炉冷却材浄化系	\bigcirc	\bigcirc	完全全周破断
機器ドレン系	－	\bigcirc	完全全周破断
床ドレン・化学廃液系	\bigcirc	－	完全全周破断
復水系	－	\bigcirc	完全全周破断
給水加熱器ドレン系	\bigcirc	\bigcirc	完全全周破断
復水浄化系復水ろ過装置	－	\bigcirc	完全全周破断
復水浄化系復水脱塩装置	－	\bigcirc	完全全周破断
補助ボイラー給水系統	\bigcirc	\bigcirc	完全全周破断
補助ボイラー循環系統	\bigcirc	\bigcirc	完全全周破断
加熱蒸気及び復水戻り系＊1	\bigcirc	\bigcirc	完全全周破断
タービン潤滑油系	\bigcirc	\bigcirc	完全全周破断
高圧油圧系	\bigcirc	\bigcirc	完全全周破断

注記＊ 1 ：応力評価を実施し，発生応力が許容応力の 0.4 倍を下回ることを確認した配管においては，破損想定不要とする。

表2－2 高エネルギ配管の強度評価結果（1／3）

$\begin{aligned} & \text { 区画 } \\ & \text { 番号 } \end{aligned}$	$\begin{gathered} \text { 解析モデル } \\ \text { (対象ライン) } \end{gathered}$	$\begin{gathered} \text { 一次 }+ \text { 二次応力 } \\ (\mathrm{MPa}) \end{gathered}$					許容値 0．4Sa （MPa）
		内圧 応力	自重 応力	地震 応力	$\begin{aligned} & \text { 二次 } \\ & \text { 応力 } \end{aligned}$	合計	
$\mathrm{R}-1 \mathrm{~F}-5$	$\begin{aligned} & \text { HS }-002 \\ & \quad(200 \mathrm{~A}-\mathrm{HS}-100-1) \end{aligned}$	7	1	10	48	66	100
	$\begin{aligned} & \mathrm{HS}-001 \\ & \quad(50 \mathrm{~A}-\mathrm{HS}-4) \end{aligned}$	5	1	16	27	49	100
$\mathrm{R}-1 \mathrm{~F}-12$	$\begin{aligned} & \mathrm{HS}-001 \\ & \quad(50 \mathrm{~A}-\mathrm{HS}-4) \end{aligned}$	5	1	7	79	92	100
R－B1F－1	$\begin{aligned} & \text { HS }-001-1 \\ & \quad(100 \mathrm{~A}-\mathrm{HS}-121) \end{aligned}$	5	4	6	70	85	100
	$\begin{aligned} & \text { HS }-004 \\ & \quad(40 \mathrm{~A}-\mathrm{HS}-110) \end{aligned}$	3	4	23	63	93	100
	$\begin{aligned} & \text { HSCR-003 } \\ & \quad(200 \mathrm{~A}-\mathrm{HSCR}-152-2) \end{aligned}$	7	2	14	77	100	111
	$\begin{aligned} & \text { HSCR-003 } \\ & \quad(25 \mathrm{~A}-\mathrm{HSCR}-220) \end{aligned}$	評価除外（25A以下）					
R－B2F－1	$\begin{aligned} & \text { HS }-001-1 \\ & \quad(100 \mathrm{~A}-\mathrm{HS}-121) \end{aligned}$	5	3	15	68	91	100
	$\begin{aligned} & \text { HS-001-1 } \\ & \quad(100 \mathrm{~A}-\mathrm{HS}-123) \end{aligned}$	5	1	18	64	88	100
	$\begin{aligned} & \text { HS-001-1 } \\ & \quad(100 \mathrm{~A}-\mathrm{HS}-127) \end{aligned}$	5	11	9	59	84	100
	$\begin{aligned} & \mathrm{HS}-004 \\ & \quad(40 \mathrm{~A}-\mathrm{HS}-110) \end{aligned}$	3	4	14	72	93	100
	$\begin{aligned} & \text { HSCR-003 } \\ & (200 \mathrm{~A}-\mathrm{HSCR}-152-2) \end{aligned}$	7	1	19	78	105	111
	$\begin{aligned} & \text { HSCR-003 } \\ & \quad(200 \mathrm{~A}-\mathrm{HSCR}-153) \end{aligned}$	7	4	17	17	45	111
	$\begin{aligned} & \text { HS-004 } \\ & \quad(40 \mathrm{~A}-\mathrm{HSCR}-208) \end{aligned}$	2	11	30	52	95	100

表2－2 高エネルギ配管の強度評価結果（2／3）

表2－2 高エネルギ配管の強度評価結果（3／3）

$\begin{aligned} & \text { 区画 } \\ & \text { 番号 } \end{aligned}$	$\begin{gathered} \text { 解析モデル } \\ \text { (対象ライン) } \end{gathered}$	$\begin{gathered} \text { 一次 }+ \text { 二次応力 } \\ (\mathrm{MPa}) \end{gathered}$					許容値 0． 4 Sa （MPa）
		内圧 応力	自重 応力	地震 応力	$\begin{aligned} & \text { 二次 } \\ & \text { 応力 } \end{aligned}$	合計	
非管理 区域 （T／B）	$\begin{aligned} & \text { HSCR-003 } \\ & (150 \mathrm{~A}-\mathrm{HSCR}-79) \end{aligned}$	5	4	11	40	60	111
	$\begin{aligned} & \text { HSCR-003 } \\ & (80 \mathrm{~A}-\mathrm{HSCR}-54-3) \end{aligned}$	5	18	32	47	102	111
	$\begin{aligned} & \text { HSCR-003 } \\ & (50 \mathrm{~A}-\mathrm{HSCR}-75) \end{aligned}$	3	4	18	85	110	111

b．配管破損を考慮する低エネルギ配管の抽出及び破損想定液体を内包し，防護すべき設備に影響を与える低エネルギ配管を有するすべて の系統を抽出する。評価ガイドを踏まえて，静水頭の配管は対象外とし，口径が 25A（1B）以下の配管は被水影響のみ考慮する。

低エネルギ配管は，任意の箇所での貫通クラックを想定するが，応力評価を実施し，発生応力が許容応力の 0.4 倍を下回ることを確認した配管においては，破損想定不要とする。

抽出した低エネルギ配管を有する系統について，想定する破損形状を表2－3に示す。また，破損を想定しない系統の強度評価結果を表2－4に示す。

表2－3 低エネルギ配管を有する系統の想定する破損形状（1／2）

系統名	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用 圧力 （MPa）	想定する破損形状
制御棒駆動水圧系	66	1． 73	貫通クラック
ほう酸水注入系	＊ 1		貫通クラック
残留熱除去系＊2	＊1		貫通クラック
低圧炉心スプレイ系＊2	＊1		貫通クラック
高圧炉心スプレイ系＊2	＊ 1		貫通クラック
原子炉隔離時冷却系＊ 2	＊1		貫通クラック
原子炉冷却材浄化系	66	1． 37	貫通クラック
燃料プール冷却浄化系	66	1． 37	貫通クラック
放射性ドレン移送系	66	0.98	貫通クラック
機器ドレン系	66	0.98	貫通クラック
床ドレン・化学廃液系	66	0.98	貫通クラック
ストームドレン系	66	0.98	貫通クラック
廃スラッジ系	66	1． 37	貫通クラック
濃縮廃液系	66	1． 37	貫通クラック
固化系	95	1． 37	貫通クラック
復水系	66	0.35	貫通クラック
復水浄化系 復水ろ過装置	66	0． 98	貫通クラック
復水浄化系 復水脱塩装置	66	0.59	貫通クラック
固定子巻線冷却水系	74	0． 98	貫通クラック
循環水系	41	0． 48	貫通クラック
純水補給水系	66	1． 18	貫通クラック
復水補給水系	66	1． 37	貫通クラック
万過水系	66	1． 18	貫通クラック
燃料プール補給水系	66	1． 37	貫通クラック
消火用水系	40	1． 07	貫通クラック
換気空調補機常用冷却水系＊2	66	1． 27	貫通クラック
換気空調補機非常用冷却水系	66	0． 88	貫通クラック
原子炉補機冷却水系	85	1． 18	貫通クラック
タービン補機冷却水系	66	0． 96	貫通クラック
原子炉補機冷却海水系	50	0． 78	貫通クラック

表2－3 低エネルギ配管を有する系統の想定する破損形状（2／2）

系統名	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用 圧力 （MPa）	想定する破損形状
タービン補機冷却海水系	41	0.69	貫通クラック
高圧炉心スプレイ補機冷却水系	70	1.18	貫通クラック
高圧炉心スプレイ補機冷却海水系	50	0.78	貫通クラック
補助ボイラー冷却系統	66	0.96	貫通クラック
加熱蒸気及び復水戻り系＊2	＊1		貫通クラック
所内温水系	85	1． 18	貫通クラック
非常用ディーゼル発電設備冷却水系	85	0.64	貫通クラック
高圧炉心スプレイ系ディーゼル発電設備冷却水系	$\begin{aligned} & 95 \\ & \text { (通常運転温度 } \\ & \text { は } 80 \sim 85^{\circ} \mathrm{C} \text {) } \end{aligned}$	0． 64	貫通クラック
非常用ディーゼル発電設備潤滑油系	85	0.98	貫通クラック
高圧炉心スプレイ系ディーゼル発電設備潤滑油系	85	0.98	貫通クラック
非常用ディーゼル発電設備燃料油系	45	0． 59	貫通クラック
高圧炉心スプレイ系ディーゼル発電設備燃料油系	45	0.59	貫通クラック
非常用ディーゼル発電設備燃料移送系	66	0.98	貫通クラック
高圧炉心スプレイ系ディーゼル発電設備燃料移送系	66	0.98	貫通クラック
タービン潤滑油系	79	0． 38	貫通クラック
	79	0.62	貫通クラック
	79	0． 50	貫通クラック
	79	0.45	貫通クラック
高圧油圧系	70	0.34	貫通クラック
非放射性ドレン移送系	66	0.98	貫通クラック
所内用水系	70	0． 29	貫通クラック

注記＊1：高エネルギ配管として運転している時間の割合が，プラント運転期間の 1% より小さいため，低エネルギ配管として扱う。
＊2 ：応力評価を実施し，発生応力が許容応力の 0.4 倍を下回ることを確認した配管においては，破損想定不要とする。

表2－4 低エネルギ配管の強度評価結果（1／2）

区画番号	$\begin{aligned} & \text { 解析モデル } \\ & \text { (対象ライン) } \end{aligned}$	$\begin{gathered} \text { 一次 }+ \text { 二次応力 } \\ (\mathrm{MPa}) \end{gathered}$					許容値 0．4Sa （MPa）
		内圧 応力	自重 応力	地震 応力	$\begin{aligned} & \text { 二次 } \\ & \text { 応力 } \end{aligned}$	合計	
$\mathrm{R}-2 \mathrm{~F}-1-1$	$\begin{aligned} & \text { HNCW-41 } \\ & \quad(50 \mathrm{~A}-\mathrm{HNCW}-41) \end{aligned}$	4	1	74	1	80	100
R－B3F－3	$\begin{aligned} & \text { RHR-007 } \\ & (350 \mathrm{~A}-\mathrm{RHR}-2-1) \\ & (100 \mathrm{~A}-\mathrm{RHR}-24-1) \\ & (100 \mathrm{~A}-\mathrm{RHR}-33) \end{aligned}$	30	12	11	28	81	102
	$\begin{aligned} & \text { KRHR-116 } \\ & \quad(100 \mathrm{~A}-\text { RHR-24-1) } \end{aligned}$	18	4	19	32	73	102
R－B3F－6	$\begin{aligned} & \text { RHR-012 } \\ & (350 \mathrm{~A}-\mathrm{RHR}-4-1) \\ & (100 \mathrm{~A}-\mathrm{RHR}-25-1) \\ & (100 \mathrm{~A}-\mathrm{RHR}-41) \end{aligned}$	30	11	9	27	77	102
	$\begin{aligned} & \text { KRHR-146 } \\ & \quad(100 \mathrm{~A}-\text { RHR }-25-1) \end{aligned}$	18	2	27	38	85	102
R－B3F－7	$\begin{aligned} & \text { RHR-017 } \\ & \begin{array}{l} (350 \mathrm{~A}-\mathrm{RHR}-6-1) \\ (300 \mathrm{~A}-\mathrm{RHR}-6-2) \\ (100 \mathrm{~A}-\mathrm{RHR}-52) \\ (100 \mathrm{~A}-\text { RHR }-26-1) \end{array} \end{aligned}$	30	11	6	7	54	102
	$\begin{aligned} & \text { KRHR-146 } \\ & \quad(100 \mathrm{~A}-\text { RHR-26-1) } \end{aligned}$	18	2	27	38	85	102
R－B3F－4	$\begin{aligned} & \text { LPCS-003 } \\ & (300 \mathrm{~A}-\mathrm{LPCS}-2-1) \\ & (50 \mathrm{~A}-\mathrm{LPCS}-7) \\ & (100 \mathrm{~A}-\mathrm{LPCS}-4-1) \end{aligned}$	21	10	9	11	51	102
	$\begin{aligned} & \text { KLPCS-117 } \\ & \quad(100 \mathrm{~A}-\mathrm{LPCS}-4-1) \end{aligned}$	15	1	16	7	39	102

表2－4 低エネルギ配管の強度評価結果（2／2）

区画番号	$\begin{aligned} & \text { 解析モデル } \\ & \text { (対象ライン) } \end{aligned}$	$\begin{gathered} \text { 一次 }+ \text { 二次応力 } \\ (\mathrm{MPa}) \end{gathered}$					許容値 0． 4 Sa （MPa）
		$\begin{aligned} & \text { 内圧 } \\ & \text { 応力 } \end{aligned}$	$\begin{aligned} & \text { 自重 } \\ & \text { 応力 } \end{aligned}$	地震 応力	$\begin{aligned} & \text { 二次 } \\ & \text { 応力 } \end{aligned}$	合計	
R－B3F－5	$\begin{aligned} & \text { HPCS-003 } \\ & \quad(300 \mathrm{~A}-\mathrm{HPCS}-2-1) \\ & (100 \mathrm{~A}-\mathrm{HPCS}-6-1) \end{aligned}$	34	5	4	10	53	102
	$\begin{aligned} & \text { KHPCS-001 } \\ & \quad(100 \mathrm{~A}-\mathrm{HPCS}-6-1) \end{aligned}$	28	1	16	3	48	102
R－B3F－2	$\begin{aligned} & \text { RCIC-002 } \\ & (100 \mathrm{~A}-\mathrm{RCIC}-2-1) \\ & (100 \mathrm{~A}-\mathrm{RCIC}-3-1) \\ & (50 \mathrm{~A}-\mathrm{RCIC}-5) \end{aligned}$	25	21	21	3	70	102
	$\begin{aligned} & \text { KRCIC-121 } \\ & \quad(50 \mathrm{~A}-\mathrm{RCIC}-5) \end{aligned}$	15	47	16	12	90	102

（2）溢水量の設定

溢水評価では，「（1）溢水源の設定」において設定した破損形状による溢水を想定し，異常の検知，事象の判断及び漏えい箇所の特定並びに漏えい箇所の隔離等に よる漏えい停止するまでの時間を考慮し，想定する破損箇所から流出した溢水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して溢水量を算出する。想定する破損箇所は防護すべき設備への溢水影響が最も大きくなる位置とする。

破損を想定する配管については，以下の手法を用いて溢水量の算定を行う。
－完全全周破断を想定する場合の溢水流量は，系統の定格流量を用いる。ただし系統上の破断位置，口径，流体圧力等を考慮することにより，より適切な溢水流量を算定できる場合はその値を用いる。
－貫通クラックを想定する場合の流出流量は，破断面積，損失係数及び水頭を用 いて以下の計算式より求める。

$$
\mathrm{Q}=\mathrm{A} \times \mathrm{C} \times \sqrt{ }(2 \times \mathrm{g} \times \mathrm{H}) \times 3600
$$

Q ：流出流量 $\left(\mathrm{m}^{3} / \mathrm{h}\right)$
A：破断面積（ m^{2} ）
C：損失係数（0．82）
g ：重力加速度（ $\mathrm{m} / \mathrm{s}^{2}$ ）
H：水頭（m）
破断面積（A）及び水頭（H）は，原則として系統の最大値（最大口径，最大肉厚，配管の最高使用圧力）を使用する。
－溢水の発生後，溢水を検知し隔離するまでの隔離時間を，手動隔離及び自動隔離を想定し設定する。評価した隔離までの時間に流出流量を乗じて系統保有水量を加えた溢水量を算定する。
－系統保有水量は，系統内のすべての配管内及びポンプ等の機器内の保有水量の合算値を，保守的に $10 \mathrm{~m}^{3}$ 単位で切り上げ処理した値を用いる。なお，配管の保有水量の算出にあたっては，配管施工図を用いた場合には 10% を加味し，平面図を用いた場合には 50% を加味する。機器保有水量の算出に当たっては 10% 加味した値を評価上の保有水量と設定するが，屋外タンク等の公称容量が定めら れ，想定する保有水量が大きく変動することがない機器については， 10% を加味 する対象から除外する。

- 隔離までの流出量に関しては，補給水や他系統からの回り込みを考慮する。
- 溢水量を比較して最大となる溢水量を，当該系統の没水評価に用いる溢水量と して設定する。設定した溢水量を表 $2-5$ に示す。
なお，配管の想定破損による溢水評価において，溢水量を制限するために漏えい停止操作に期待する場合は，的確に操作を行うために手順を整備することとし，保

安規定に定めて管理する。

表 2－5 想定破損による溢水量の選定（想定破損）（1／2）

建屋・エリア	系統名称	分類＊1	$\begin{aligned} & \text { 破断 } \\ & \text { 形状*2 } \end{aligned}$	溢水量 （m ${ }^{3}$ ）
原子炉建屋 原子炉棟及び付属棟	給水系＊3	高	全	476
	制御棒駆動水圧系	高／低	全／貫	53
	ほう酸水注入系	低	貫	65
	残留熱除去系	低	貫	237
	低圧炉心スプレイ系	低	貫	266
	高圧炉心スプレイ系	低	貫	395
	原子炉隔離時冷却系	低	貫	190
	原子炉冷却材浄化系＊3	高／低	全／貫	139
	燃料プール冷却浄化系	低	貫	160
	放射性ドレン移送系	低	貫	55
	機器ドレン系	低	貫	33
	床ドレン・化学廃液系	高／低	全／貫	33
	純水補給水系	低	貫	41
	復水補給水系	低	貫	148
	万過水系	低	貫	65
	燃料プール補給水系	低	貫	35
	換気空調補機常用冷却水系	低	貫	63
	換気空調補機非常用冷却水系	低	貫	41
	原子炉補機冷却水系	低	貫	265
	原子炉補機冷却海水系	低	貫	358
	高圧炉心スプレイ補機冷却水系	低	貫	54
	高圧炉心スプレイ補機冷却海水系	低	貫	86
	所内温水系	低	貫	54
	消火用水系	低	貫	207
	非放射性ドレン移送系	低	貫	33
	非常用ディーゼル発電設備冷却水系	低	貫	31
	非常用ディーゼル発電設備潤滑油系	低	貫	22
	非常用ディーゼル発電設備燃料移送系	低	貫	23
制御建屋	純水補給水系	低	貫	41
	換気空調補機常用冷却水系	低	貫	30
	換気空調補機非常用冷却水系	低	貫	41
	加熱蒸気及び復水戻り系	高／低	全／貫	11
	所内温水系	低	貫	54
	消火用水系	低	貫	207
	非放射性ドレン移送系	低	貫	22
	所内用水	低	貫	68
海水ポンプ室及び復水貯蔵タンクエ リア	循環水系	低	貫	2054
	万過水系	低	貫	88
	タービン補機冷却水系	低	貫	30
	原子炉補機冷却海水系	低	貫	201
	タービン補機冷却海水系	低	貫	255
	高圧炉心スプレイ補機冷却海水系	低	貫	51
	復水補給水系	低	貫	153
軽油タンクエリア	非常用ディーゼル発電設備燃料移送系	低	貫	23

表 2－5 想定破損による溢水量の選定（想定破損）（2／2）

建屋・エリア	系統名称	分類＊1	破断 形状＊2	溢水量 $\left(\mathrm{m}^{3}\right)$
原子炉建屋付属棟 廃棄物処理エリア （非管理区域）	㬇空調補機冷却水系	所内温水系	貫	41

注記＊1：「高」は高エネルギ配管，「低」は低エネルギ配管を示す。
＊2：「全」は完全全周破断，「貫」は貫通クラックを示す。
＊ 3 ：自動隔離を想定する。

2.2 消火水の放水による溢水

溢水源として消火栓からの溢水と消火栓以外からの溢水について考慮する。（1）消火栓からの放水による溢水
消火水の放水による溢水については，発電用原子炉施設内に設置される消火設備等からの放水を溢水源として設定し，消火設備等からの単位時間当たりの放水量と放水時間から溢水量を設定する。

火災発生時には，1箇所の火災源を消火することを想定するため溢水源となる区画は1箇所となる。また，放水量は評価ガイドに従い放水時間を設定して算定する。

なお，消火活動により区画の扉を開放する場合は，開放した扉からの消火水の伝播を考慮する。
a．放水時間の設定
消火栓からの消火活動における放水時間は，3時間に設定する。
b．溢水量の設定
消火活動における消火栓からの放水量は，消防法施行令により消火栓に要求さ れる放水量（屋内消火栓：130l／分以上，屋外消火栓：350l／分以上）であるこ とを考慮し，保守的に以下のとおり設定する。
－屋内消火检からの溢水量 150l／分／個 $\times 2$ 箇所 $\times 3$ 時間 $=54 \mathrm{~m}^{3}$
－屋外消火检からの溢水量 $390 l /$ 分／個 $\times 2$ 箇所 $\times 3$ 時間 $=141 \mathrm{~m}^{3}$
（2）消火栓以外からの放水による溢水
消火栓以外の設備としては，スプリンクラや格納容器スプレイ泠却系があるが，防護すべき設備が設置されている建屋には，自動作動するスプリンクラは設置しな い設計とし，防護すべき設備が要求される機能を損ならおそれがない設計とするこ とから溢水源として想定しない。

また，格納容器スプレイ冷却系は，単一故障による誤作動が発生しないように設計上考慮されていることから誤作動による溢水は想定しない。

なお，原子炉格納容器内の防護すべき設備については，格納容器スプレイ冷却系 の作動により発生する溢水により安全機能を損なわない設計とする。

2.3 地震起因による溢水

（1）溢水源の設定
地震起因による溢水については，溢水源となり得る機器（流体を内包する機器） のうち，基準地震動 S s による地震力に対して耐震性を確認していない機器及び使用済燃料プール等のスロッシングによる漏えい水を溢水源として設定する。

耐震 S クラス機器については，基準地震動 S s による地震力によって破損は生じ ないことから溢水源として想定しない。また，耐震B，Cクラス機器のうち耐震対策工事の実施あるいは設計上の裕度の考慮により，基準地震動 S s による地震力に対して耐震性が確保されているものについては溢水源として想定しない。

なお，放射性物質を含む液体の管理区域外漏えいに関する評価を行う場合につい ては，溢水源となり得る機器（流体を内包する機器）のうち，要求される地震力に より破損が生じる機器による漏水を溢水源として設定する。

溢水源としない機器の具体的な耐震計算を添付書類「VI－2 耐震性に関する説明書」のらち添付書類「VI－2－別添2 溢水防護に係る施設の耐震性に関する説明書」 に示す。
（2）溢水量の設定
溢水量の算出に当たつては，溢水が生じるとした機器のらち防護すべき設備への溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。溢水源とな る配管については破損形状を完全全周破断とし，溢水源となる容器については全保有水量を考慮した上で，溢水量を算出する。

また，漏えい検知による漏えい停止に期待する場合は，漏えい停止までの隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。ここで，漏水量は，配管の破損箇所から の流出流量に隔離時間を乗じて設定する。なお，地震による機器の破損が複数箇所 で同時に発生する可能性を考慮し，漏えい検知による自動隔離機能を有する場合を除き，隔離による漏えい停止は期待しない。

タービン建屋（管理区域）においては，耐震性が確認されていない耐震 B ，C ク ラス設備の複数同時破損及び循環水系配管の伸縮継手部の全円周状破損を考慮する他，保守的に循環水ポンプの運転継続を想定し溢水量を設定する。この際，循環水系の自動隔離に期待する。

タービン建屋（非管理区域）においては，耐震性が確認されていない耐震 B ，C クラス設備の複数同時破損を考慮する他，保守的にタービン補機冷却海水ポンプの運転継続を想定し溢水量を設定する。この際，タービン補機冷却海水系の自動隔離 に期待する。

使用済燃料プール等のスロッシングによる溢水量及びタービン建屋（管理区域）及びタービン建屋（非管理区域）における溢水量の算出については，以下に示す。 また，以上の条件により設定した各建屋の溢水量を表2－6に示す。

表2－6 設定した溢水量（地震起因）

建屋名称	溢水量 $\left(\mathrm{m}^{3}\right)$
原子炉建屋原子炉棟	$\begin{gathered} 41 * 1 \\ 107 * 2 \end{gathered}$
原子炉建屋付属棟（非管理区域）	4
制御建屋	0
タービン建屋（管理区域）	$\begin{aligned} & 2873^{* 3} \\ & 3970 * 4 \end{aligned}$
タービン建屋（非管理区域）	$\begin{aligned} & 650 * 3 \\ & 174 * 5 \end{aligned}$
屋外タンク	19660
原子炉建屋付属棟（廃棄物処理エリア） （管理区域）	3557
原子炉建屋付属棟（廃棄物処理エリア） （非管理区域）	2
補助ボイラー建屋	319

注記＊ 1 ：使用済燃料プールスロッシングによる溢水量
＊2：使用済燃料プール，原子炉ウェル及び蒸気乾燥器／気水分離器ピットの スロッシングによる溢水量
＊ 3 ：耐震 B，Cクラス設備の破損による溢水量
＊ 4 ：循環水系配管の破損に伴う溢水量
＊5：タービン補機冷却海水系配管の破損に伴う溢水量
a．使用済燃料プール等のスロッシングについて
使用済燃料プール等のスロッシングによる溢水量の算出に当たっては，基準地震動 S s による地震力により生じるスロッシング現象を3次元流動解析により評価し，使用済燃料プール等の外へ漏えいする水量を考慮する。また，使用済燃料 プールの初期水位はオーバーフロー水位で設定する。

モデル化範囲は，地震時のスロッシング挙動に影響を与える範囲をモデル化す ることとし，原子炉建屋原子炉棟の使用済燃料プールが設置されるエリア全域と し，スロッシングによる溢水量を保守的に評価するために，使用済燃料プールが水張りされた状態で 3 次元流動解析により溢水量を算定する。

なお，原子炉建屋原子炉棟 3 階床面への溢水は無限遠へ流れるものとし，壁か らの反射等によりプールに戻る水は考慮しない。

また，プール内構造物は，スロッシング抑制効果があるため保守的にモデル化 せずに溢水量を算定する。

原子炉建屋原子炉棟の使用済燃料プール周辺の概要を図2－1に示す。
使用済燃料プール等スロッシングの 3 次元流動解析条件を表2－7 に，使用済燃料プール等のスロッシングによる溢水量を表2－8に示す。評価に用いる 3 次元流動解析コード F luentの検証，妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

図2－1 使用済燃料プール周辺の概略図

表2－7 使用済燃料プール等スロッシングの3次元流動解析条件

モデル化範囲	－使用済燃料プール，原子炉ウェル，蒸気乾燥器／気水分離器ピット
境界条件	－使用済燃料プール等の周辺に設置されているカーブ上端高さ（燃料取替床の床面高さ +0.1 m ）以上に上昇し，プール外側に溢れた水を溢水量として計算
初期水位	－通常水位（オーバーフロー水位）
評価用地震動	－基準地震動 Ss（Ss－D1：応答スペクトルに基づく地震動）に対し，NS方向とUD方向，EW方向とUD方向の時刻歴を用いる。
解析コード	- F1uent Ver．14．5．7（汎用熱流体解析コード） - 自由表面（及び2流体界面）の大変形を伴う複雑な 3 次元流動現象を精度良く計算することができる。 －一般産業施設の主要な解析実績としては，液体燃料や LNGタンクのス ロッシング解析，インクジェット解析，鋳造湯流れ凝固解析などが挙 げられる。
その他	－使用済燃料プール等の内部の構造物はキャスクピットと底面段差を考慮するが，使用済燃料貯蔵ラック，蒸気乾燥器及び気水分離器は考慮しない。 - キャスクピット内プールは中実構造とする。 - プール周囲に設置されているフェンス等による溢水の抑制効果は期待しない。 －使用済燃料プール内部の水は通常水位で一定で管理されているもの とする。

表 2－8 使用済燃料プール等スロッシングによる溢水量

評価ケース		解析結果［m $\left.{ }^{3}\right]$		評価に用いる溢水量 （m）
		使用済燃料プール	原子炉ウェル 及び蒸気乾燥器／気水分離器ピット	
Ss－D1	Case1：EW＋UD 方向	37	60	41 （107＊）
	Case2：NS＋UD 方向	34	61	

注記＊：原子炉ウェル及び蒸気乾燥器／気水分離器ピットも含めた溢水量
b．タービン建屋（管理区域）の溢水量について
タービン建屋における循環水系配管の伸縮継手部の全円周状破損箇所からの溢水量は，破損箇所からの溢水流量に溢水発生から検知までに要する時間及び検知後から隔離に要する時間（以下「評価時間」という。）を乗じた溢水量に隔離後の系統保有水量を加え算出する。

この際，循環水系隔離システムによる溢水の自動検知•自動隔離に期待し，循環水系隔離システムの隔離条件より評価時間を保守的に設定する。

循環水系隔離システムの隔離条件及び評価時間を以下のとおり設定し，タービ ン建屋（管理区域）の溢水量を表2－9に示す。
－循環水系隔離システムは，水位高高警報（タービン建屋復水器エリアの床上 80 mm ）及び基準地震動 S s によるスクラム信号により，復水器水室出入口弁及び循環水ポンプを自動隔離し，溢水量の低減を図る。
－溢水量の算出に当たつての溢水発生から検知までに要する時間は，漏えい検出器の計測誤差
 を踏まえ床上にて水位異常高警報が発信される ことを想定する。ただし，地震時には，タービン建屋の復水器エリア内のすべ ての循環水系配管の伸縮継手部の破損を想定しており，極めて大きな流量が発生するため，溢水発生後すぐに検知されることが想定されるが，保守的に として設定する。
－また，漏えい検知から隔離に要する時間は，漏えい検知から循環水ポンプ停止 まで \downarrow として設定する。

表2－9 タービン建屋（管理区域）の溢水量

伸縮継手部の全円周状破損箇所からの溢水流量			（a）	$199440 \mathrm{~m}^{3} / \mathrm{h}$
評価 時間	溢水発生から漏えい検知までの時間（b）			
	漏えい検知から循環水ポンプ停止（吐き出し停 止）に要する時間 （c）			
系統保有水量（d）				$1200 \mathrm{~m}^{3}$
耐震B，C クラス機器（e）				$2873 \mathrm{~m}^{3}$
合計 $(\mathrm{a} \times(\mathrm{b}+\mathrm{c})+\mathrm{d}+\mathrm{e})$				$6843 \mathrm{~m}^{3}$

[^4]c．タービン建屋（非管理区域）溢水量について
タービン建屋のタービン補機冷却水系熱交換器を設置するエリアにおける溢水量については，タービン補機冷却海水配管の破損箇所からの溢水流量に溢水発生 から検知までに要する時間及び漏えい検知後から隔離に要する時間を乗じた溢水量に隔離後の系統保有水量を加え算出する。この際，タービン補機冷却海水系隔離システムによる溢水の自動検知•自動隔離に期待し，タービン補機泠却海水系隔離システムの隔離条件より評価時間を保守的に設定する。

タービン補機冷却海水系隔離システムの隔離条件及び評価時間を以下のとおり設定し，タービン建屋（非管理区域）の溢水量を表2－10に示す。
－タービン補機冷却海水系隔離システムは，水位異常高警報（タービン補機冷却水系熱交換器・ポンプ室の床上 80 mm ）及び基準地震動 S s によるスクラム信号 により，タービン補機冷却海水ポンプ吐出弁及びタービン補機冷却海水ポンプ を自動隔離し，溢水量の低減を図る。
－溢水量の算出に当たつての溢水発生から検知までに要する時間は，漏えい検出器の計測誤差 \square を踏まえ床上 \square にて水位異常高警報が発信される ことを想定し として設定する。
－また，漏えい検知から隔離に要する時間は，漏えい検知からタービン補機冷却海水ポンプ停止まで として設定する。

表2－10 タービン建屋（非管理区域）の溢水量

タービン補機泠却海水ポンプ流量（a）				$4500 \mathrm{~m}^{3} / \mathrm{h}$
評価 時間	溢水発生から漏えい検知までの時間（b）			
	漏えい検知からタービン補機泠却海水ポンプ停止までの時間（c）			
系統保有水量（d）				$99 \mathrm{~m}^{3}$
耐震B，Cクラス機器（e）				$650 \mathrm{~m}^{3}$
合 計 $(\mathrm{a} \times(\mathrm{b}+\mathrm{c})+\mathrm{d}+\mathrm{e})$				$824 \mathrm{~m}^{3}$

2.4 その他の溢水

その他の溢水として，地下水の流入，地震以外の自然現象に伴う溢水，機器の誤作動，弁グランド部及び配管フランジ部からの漏えい事象を想定する。
（1）地下水による影響
溢水防護すべき設備を内包する原子炉建屋，制御建屋等の周辺地下部に地下水位低下設備を設置しており，同設備により各建屋周辺に流入する地下水の排出を行っ ている。地下水位低下設備は，集水管（ドレーン），揚水井戸及び揚水ポンプなどよ り構成され，技術基準規則第 14 条で要求される多重性及び独立性を考慮した設計と することから，一箇所の揚水ポンプが故障した場合でも，他の揚水井戸及び揚水ポ ンプにより排水することができるため，地下水の影響はない。

ただし，地下水による影響を評価する際には，保守的に揚水ポンプが故障等によ り機能喪失し，建屋周囲の地下水位が地表面まで上昇することを想定する。この地下水位に対し，溢水防護区画を内包する建屋内への流入を防止する設計とする。
（2）地震以外の自然現象に伴ら溢水
各自然現象による溢水影響としては，降水のようなプラント～の直接的な影響と，飛来物による屋外タンク等の破壊のような間接的な影響が考えられる。間接的な影響に関しては，設置位置や保有水量等を鑑み，屋外タンク等を自然現象による影響 を確認する対象とする。

想定される自然現象による直接的，間接的影響をそれぞれ整理し，表2－11に示す。結果として，いずれの影響に対しても現状の設計にて問題がないこと，又は現状の評価で包含されることを確認した。

表2－11 地震以外の自然現象による溢水影響の検討要否（1／2）

現象	検討要否	検討結果
津波	不要	基準津波は屋外タンクへは到達しないため，津波によ る溢水は考慮しない。
洪水	不要	敷地周辺の河川は，いずれも発電所とは丘陵地により隔てられており，敷地が洪水による被害を受けること はないことから，洪水による溢水は考慮しない。
風（台風）	不要	最大瞬間風速は設計竜巻の最大風速未満であり竜巻評価に包含される。
竜巻	要	内部溢水影響評価においては，発電所内に設置される屋外タンクの破損に伴ら溢水影響を評価しており，基準地震動による地震力に対して耐震性が碓保されない耐震B，Cクラスの屋外タンク全数が破損した場合の影響について評価を実施している（耐震補強工事を実施する屋外タンクはない）ことから，設計竜巻による飛来物により，屋外タンクが破損した場合に発生する溢水量は，地震時に発生を想定する溢水量と同様であ り，地震時評価に包含される。
凍結	不要	屋外機器で涷結のおそれがあるものに対しては凍結防止対策を施しているため，凍結により屋外機器が破損 することはない。なお，仮に屋外タンクが凍結により破損したとしても，地震時の評価に包含される。
降水	要	最大 1 時間降水量は，地震による屋外溢水水位以下で あり，地震時評価に包含される。
積雪	不要	積雪量の設計基準値は 43 cm であり，積雪による屋外夕 ンクの破損は考えられない。なお，仮に屋外タンクが積雪荷重により破損したとしても，地震時の評価に包含される。
落雷	不要	落雷防止対策として，建築基準法に基づき高さ 20 m を超 える原子炉建屋等へ日本産業規格（JIS）に準拠した避雷設備等を設置しており，落雷による溢水は発生しな い。なお，仮に屋外タンクが落雷により破損したとし ても，地震時の評価に包含される。

表2－11 地震以外の自然現象による溢水影響の検討要否（2／2）

現象	検討要否	検討結果
地滑り	不要	女川原子力発電所には，地滑り，土石流及びがけ崩れ を起こすような地形は存在しないことから，安全施設 の安全機能を損なうような地滑りが生じることはな い。なお，仮に屋外タンクが地滑りにより破損したと しても，地震時の評価に包含される。
火山の影響	不要	降下火砕物の層厚は敷地内の地質調査等の結果から 15 cm 程度であり，屋外タンクの破損のおそれはない。 なお，仮に屋外タンクが降下火砕物により破損したと しても，地震時の評価に包含される。
生物学的事象	不要	想定される海生生物の襲来により溢水は発生しない。 また，小動物の侵入により屋外タンクの破損が考えら れるが，地震時の評価に包含される。
森林火災	不要	森林火災については，消火活動による溢水が想定され るが，土壌への浸透及び発電所に設置している排水管 により排水可能であることから降水評価に包含され る。
高潮	不要	安全施設（非常用取水設備を除く。）は，高潮の影響 を受けない敷地高さ（0．P．+3.5 m ）以上に設置されてい るため，高潮による溢水は考慮しない。

（3）機器の誤作動や弁グランド部，配管フランジ部からの漏えい事象
機器の誤作動等からの漏えい事象については，区画ごとに漏えいを想定する系統 の配管口径と圧力，保有水量等によって設定した最大の漏えい量である想定破損の溢水流量や溢水量を上回ることはない。

また，基本的に床ドレンによる排水や漏えい検知が可能な設計となっており，防護すべき設備が要求される機能を損なうおそれがある溢水事象となることはない。

3．溢水防護区画及び溢水経路の設定

溢水防護区画の設定は，溢水防護に対する評価対象区画を溢水防護区画とし，溢水防護対象設備が設置されているすべての区画並びに中央制御室及び現場操作が必要な設備 へのアクセス通路について設定する。溢水防護区画は壁，扉，堰，床段差等，又はそれ らの組み合わせによって他の区画と分離される区画として設定し，溢水防護区画を構成 する壁，扉，堰，床段差等については，現場の設備等の設置状況を踏まえ，溢水の伝播 に対する評価条件を設定する。設定した溢水防護区画は，添付資料「VI－1－1－8－2 防護す べき設備の設定」に示す。

溢水影響評価において考慮する溢水経路は，溢水防護区画とその他の区画との間にお ける伝播経路となる扉，壁貫通部，天井貫通部，床面貫通部，床ドレン等の連接状況及 びこれらに対する溢水防護措置を踏まえ，溢水防護区画内の水位が最も高くなるよう保守的に設定する。

上層階から下層階への伝播に関しては，全量が伝播するものとし，溢水経路を構成す る壁，扉，堰，床段差等は，基準地震動 S s による地震力等の溢水の要因となる事象に伴い生じる荷重や環境に対し，必要な健全性を維持できるとともに，保守管理及び水密扉閉止等の運用を適切に実施することにより溢水の伝播を防止できるものとする。なお，溢水が長期間滞留する区画境界の壁にひび割れが生じる場合は，ひび割れからの浸水量 を算出し，溢水評価に影響を与えないことを確認する。

また，貫通部に実施した流出及び流入防止対策も同様に，基準地震動 S s による地震力等の溢水の要因となる事象に伴い生じる荷重や環境に対し，必要な健全性を維持でき るとともに，保守管理を適切に実施することにより溢水の伝播を防止できるものとする。

なお，火災により貫通部の止水機能が損なわれる場合には，当該貫通部からの消火水 の流入を考慮する。消火活動により区画の扉を開放する場合は，開放した扉からの消火水の伝播を考慮する。

また，施設定期検査作業に伴ら溢水防護対象設備の待機除外や扉の開放等，プラント の保守管理上やむを得ぬ措置の実施により，影響評価上設定したプラント状態と一時的 に異なる状態となった場合も想定する。

3.1 溢水防護区画の設定

溢水防護に対する評価対象区画を溢水防護区画とし，溢水防護対象設備が設置され ているすべての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路に ついて設定する。

溢水防護区画は壁，扉，堰，床段差等，又はそれらの組み合わせによって他の区画 と分離される区画として設定し，溢水防護区画を構成する壁，扉，堰，床段差等につ いては，現場の設備等の設置状況を踏まえ，溢水の伝播に対する評価条件を設定する。

3.2 溢水防護区画内漏えいでの溢水経路

溢水防護区画内漏えいでの溢水経路の評価を行う場合，防護区画内の水位が最も高 くなるよう，当該溢水区画から他区画への流出がないように溢水経路を設定する。溢水評価を行う場合の各構成要素の溢水に対する考え方を以下に示す。
（1）床ドレン
床ドレン配管が設置され，他の区画とつながっている場合であっても，他の区画 への流出は想定しない。ただし，同一区画に目皿が複数ある場合は，床ドレン一箇所の閉塞を考慮した上で，他の床ドレン配管からの単位時間あたりの流出を考慮し，溢水水位を評価する。
（2）床面開口部及び床貫通部
評価対象区画床面に床開口部又は床貫通部が設置されている場合であっても，床面開口部又は床貫通部から他の区画への流出は考慮しない。ただし，明らかに流出 が期待できることを定量的に確認できる場合は，評価対象区画から他の区画への流出を考慮する。
（3）壁貫通部
評価対象区画の境界壁の貫通部が溢水による水位より低い位置にある場合であっ ても，その貫通部からの流出は考慮しない。
（4）扉
評価対象区画に扉が設置されている場合であっても，当該扉から隣室への流出は考慮しない。ただし，開運用とする扉は他の区画への流出を期待する。
（5）堰，壁及び床
他の区画への流出は期待しない。
（6）排水設備
評価対象区画に排水設備が設置されている場合であっても，当該区画の排水は考慮しない。
3.3 溢水防護区画外漏えいでの溢水経路

溢水防護区画外漏えいでの溢水経路の設定を行う場合，溢水防護区画の水位が最も高くなるように溢水経路を設定する。

溢水評価を行う場合の各構成要素の溢水に対する考え方を以下に示す。
（1）床ドレン
評価対象区画の床ドレン配管が他の区画とつながっている場合は，水位差による流入量を考慮する。

ただし，評価対象区画内に設置されているドレン配管に逆流防止措置が施されて いる場合は，その効果を考慮する。
（2）天井面開口部及び貫通部
評価対象区画の天井面に開口部又は貫通部がある場合は，上部の区画で発生した溢水量の全量が流入するものとする。

ただし，開口部又は貫通部に流出防止のための止水処置を施している場合は，評価対象区画への流入は考慮しない。
（3）壁貫通部
評価対象区画の境界壁の貫通部が溢水による水位より低い位置にある場合は，そ の貫通部からの流入を考慮する。

ただし，境界壁の貫通部に流出防止のための止水処置を施している場合は，評価対象区画への流入は考慮しない。
（4）扉
評価対象区画に扉が設置されている場合は，水位差による流入量を考慮する。
ただし，水密扉については，水圧に対し水密性が確保でき，その水圧に耐えられ る強度を有している場合には，流入を考慮しない。
（5）堰
溢水が発生している区画に堰が設置されており，他に流出経路が存在しない場合 は，当該区画で発生した溢水は堰の高さまで蓄積されるものとする。
（6）壁及び床
発生が想定される荷重に対し，健全性を確認できる場合は溢水の流入防止を期待 する。
（7）排水設備
評価対象区画に排水設備が設置されている場合であっても，当該区画の排水は考慮しない。
VI-1-1-8-5 溢水防護施設の詳細設計

目次
1．概要 1
2．設計の基本方針 1
3．要求機能及び性能目標 4
3.1 溢水伝播を防止する設備 4
3．1．1 設備 4
3．1．2 要求機能 4
3．1．3 性能目標 4
3.2 蒸気影響を緩和する設備 7
3．2．1 設備 7
3．2．2 要求機能 7
3．2．3 性能目標 7
4．機能設計 9
4.1 溢水伝播を防止する設備 9
4．1．1 水密扉の設計方針 9
4．1．2 浸水防止蓋の設計方針 11
4．1．3 浸水防止堰の設計方針 13
4．1．4 管理区域外伝播防止水密扉及び管理区域外伝播防止堰の設計方針 15
4．1．5 逆流防止装置の設計方針 16
4．1．6 貫通部止水処置の設計方針 18
4．1．7 循環水系隔離システムの設計方針 20
4．1．8 タービン補機冷却海水系隔離システムの設計方針 26
4.2 蒸気影響を緩和する設備 32
4．2．1 蒸気防護カバーの設計方針 32

1．概要

本資料は，添付書類「VI－1－1－8－1 溢水等による損傷防止の基本方針」に基づき，溢水防護に関する施設（処置含む。）の設備分類，要求機能及び性能目標を明確にし，各設備の機能設計に関する設計方針について説明するものである。

2．設計の基本方針

発電用原子炉施設内における溢水の発生により，添付書類「VI－1－1－8－2 防護すべき設備の設定」にて設定している防護すべき設備が要求される機能を損ならおそれのない ようにするため，あるいは，放射性物質を含む液体が管理区域外へ伝播するおそれがな いようにするため，溢水防護に関する施設を設置する。

溢水防護に関する施設は，添付書類「VI－1－1－8－2 防護すべき設備の設定」で設定し ている溢水防護区画，添付書類「VI－1－1－8－3 溢水評価条件の設定」で設定している溢水源，溢水量及び溢水経路，添付書類「VI－1－1－8－4 溢水影響に関する評価」にて評価 している溢水水位による静水圧，蒸気噴出荷重及び基準地震動 S s による地震力に対し て，その機能を維持又は保持できる設計とする。

溢水防護に関する施設の設計に当たつては，添付書類「VI－1－1－8－1 溢水等による損傷防止の基本方針」にて設定している，溢水防護対策を実施する目的や設備の分類を踏 まえて設備ごとの要求機能を整理するとともに，機能設計上の性能目標及び構造強度設計上の性能目標を設定する。

溢水防護に関する施設の機能設計上の性能目標を達成するため，設備ごとの各機能の設計方針を示す。

溢水防護に関する施設の設計フローを図2－1に示す。
溢水水位による荷重に対し，強度が要求される溢水防護に関する施設の強度計算の基本方針，強度計算の方法及び結果を添付書類「VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書」に示す。

基準地震動 S S による地震力に対し，止水性の維持を期待する溢水防護に関する施設 のうち，工事計画の基本設計方針に示す浸水防護施設の主要設備リストに記載される耐震設計上の重要度分類が C -2 クラスの機器及び津波防護に係る耐震設計上の重要度分類がSクラスの施設と共通設計である水密扉，浸水防止蓋及び貫通部止水処置の耐震計算については，添付書類「VI－2 耐震性に関する説明書」のうち添付書類「VI－2－1－9 機能維持の基本方針」に基づき実施し，耐震計算の方法及び結果については，添付書類「VI －2 耐震性に関する説明書」のうち添付書類「VI－2－10－2 浸水防護施設の耐震性につい ての計算書」及び「VI－2－9－3 原子炉建屋の耐震性についての計算書」に示す。

基準地震動 S S による地震力に対し，溢水伝播防止機能を維持するために必要な耐震 Cクラスの循環水系隔離システム，タービン補機冷却海水系隔離システム及び逆流防止装置の耐震計算については，添付書類「VI－2－別添2－1 溢水防護に係る施設の耐震性に

ついての計算書の方針」に基づき実施し，耐震計算の方法及び結果については，それぞ れ添付書類「VI－2－別添2－4 循環水系隔離システムの耐震性についての計算書」，「VI －2－別添2－5 タービン補機冷却海水系隔離システムの耐震性についての計算書」，「VI －2－別添2－6 逆流防止装置の耐震性についての計算書 」，「VI－2－別添2－7 タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書」及び「VI－2－別添2－8 復水器水室出入口弁の耐震性についての計算書」に示す。

注：フロー中の番号は本資料での記載箇所の章を示す。
図2－1 溢水防護に関する施設の設計フロー

3．要求機能及び性能目標
発生を想定する溢水の影響により，防護すべき設備が要求される機能を損ならおそれ がないこと，放射性物質を含む液体が管理区域外へ伝播しないために設置する溢水防護 に関する施設を，添付書類「VI－1－1－8－1 溢水等による損傷防止の基本方針」にて，設置目的別に溢水の伝播を防止する設備及び蒸気影響を緩和する設備として分類している。 これらを踏まえ，設備ごとに要求機能を整理するとともに，機能設計上の性能目標と構造強度設計上の性能目標を設定する。

各設備が要求機能を達成するために必要となる機能設計，強度設計及び耐震設計の区分を表3－1に示す。

強度及び耐震以外の機能である溢水伝播防止及び蒸気影響緩和の機能設計については，
「4．機能設計」に示し，耐震設計及び強度設計については，添付書類「VI－2 耐震性 に関する説明書」及び添付書類「VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書」に示す。

3.1 溢水伝播を防止する設備

3．1．1 設備
（1）水密扉
（2）浸水防止蓋
（3）浸水防止堰
（4）管理区域外伝播防止水密扉，管理区域外伝播防止堰
（5）逆流防止装置
（6）貫通部止水処置
（7）循環水系隔離システム
（8）タービン補機冷却海水系隔離システム

3．1．2 要求機能

溢水防護に関する施設は，発生を想定する溢水に対し，防護すべき設備が要求さ れる機能を損ならおそれがないよう溢水の伝播を防止すること及び放射性物質を含む液体を内包する容器，配管その他設備からあふれ出ることを想定する溢水が管理区域外へ伝播することを防止することが要求される。

溢水伝播を防止する設備のうち，地震起因による溢水伝播を防止する設備は，地震時及び地震後においても上記機能を維持又は保持することが要求される。

3．1．3 性能目標
溢水伝播を防止する機能は，水密扉，浸水防止蓋，浸水防止堰，逆流防止装置，貫通部止水処置，循環水系隔離システム及びタービン補機冷却海水系隔離システ

ムに対して期待する。
放射性物質を含む液体を内包する容器，配管その他設備からあふれ出ることを想定する溢水が管理区域外へ伝播することを防止する機能は，管理区域外伝播防止水密扉及び管理区域外伝播防止堰に対して期待する。

上記要求を踏まえ，溢水防護に関する施設として期待する各設備の性能目標を以下に示す。
（1）水密扉
水密扉は，原子炉建屋，制御建屋，海水ポンプ室，復水貯蔵タンクエリア，軽油 タンクエリア，タービン建屋，補助ボイラー建屋及び屋外で発生を想定する溢水に対し，要求される地震時及び地震後においても，溢水防護区画への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とす る。

水密扉は，発生を想定する溢水による静水圧荷重に対し，止水性の維持を考慮し て，主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。また，地震時及び地震後において期待する水密扉については，基準地震動 S s による地震力に対し，主要な構造部材が構造健全性を維持する設計とす ることを構造強度設計上の性能目標とする。
（2）浸水防止蓋
浸水防止蓋は，屋外で発生を想定する溢水に対し，要求される地震時及び地震後 においても，溢水防護区画内への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

浸水防止蓋は，発生を想定する溢水の静水圧荷重及び基準地震動 S s による地震力に対し，止水性の維持を考慮して，主要な構造部材が構造健全性を維持する設計 とすることを構造強度設計上の性能目標とする。
（3）浸水防止堰
浸水防止堰は，原子炉建屋及び制御建屋で発生を想定する溢水に対し，要求され る地震時及び地震後においても，区画間の溢水伝播防止及び防護すべき設備の没水影響防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

浸水防止堰は，発生を想定する溢水の静水圧荷重に対し，止水性の維持を考慮し て，主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。また，地震時及び地震後において期待する浸水防止堰は基準地震動 S s による地震力に対し，主要な構造部材が構造健全性を維持する設計とすること を構造強度設計上の性能目標とする。
（4）管理区域外伝播防止水密扉，管理区域外伝播防止堰
管理区域外伝播防止水密扉及び管理区域外伝播防止堰は，管理区域内で発生を想

定する溢水に対し，要求される地震時及び地震後においても，管理区域外への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

管理区域外伝播防止水密扉及び管理区域外伝播防止堰は，管理区域内で発生を想定する溢水の静水圧荷重に対し，止水性の維持を考慮して，主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。また，地震時及び地震後において期待する管理区域外伝播防止水密扉及び管理区域外伝播防止堰については，要求される地震力に対し，主要な構造部材が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。
（5）逆流防止装置
逆流防止装置は，原子炉建屋及び制御建屋で発生を想定する溢水に対し，要求さ れる地震時及び地震後においても，床ドレンラインを介した溢水防護区画内への溢水伝播を防止する止水性を維持することを機能設計上の性能目標とする。

逆流防止装置は，発生を想定する溢水による静水圧荷重及び基準地震動 S s によ る地震力に対し，止水性の維持を考慮して，主要な構造部材が構造健全性を維持す る設計とすることを構造強度上の性能目標とする。
（6）貫通部止水処置
貫通部止水処置は，原子炉建屋，制御建屋，海水ポンプ室，復水貯蔵タンクエリ ア，軽油タンクエリア，タービン建屋，補助ボイラー建屋及び屋外にて発生を想定 する溢水に対し，要求される地震時及び地震後においても，溢水防護区画内への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持することを機能設計上の性能目標とする。

貫通部止水処置は，発生を想定する溢水による静水圧に対し，止水性の維持を考慮して，有意な漏えいを生じない設計とすることを構造強度上の性能目標とする。

また，要求される地震時及び地震後において期待する貫通部止水処置については，基準地震動 S s による地震力に対し，有意な漏えいを生じない設計とすることを構造強度上の性能目標とし，モルタルによる施工箇所については，止水性を考慮して，主要な構造部材が構造健全性を維持する設計とすることを構造強度上の性能目標と する。
（7）循環水系隔離システム
循環水系隔離システムは，タービン建屋復水器エリア内で発生を想定する循環水系配管破断箇所からの溢水に対し，要求される地震時及び地震後においても，配管破断時の溢水量を低減する機能を維持することを機能設計上の性能目標とする。ま た，循環水系隔離システムは，基準地震動 S s による地震力に対し，主要な構成設備が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。
（8）タービン補機冷却海水系隔離システム
タービン補機冷却海水系隔離システムは，タービン建屋内のタービン補機泠却水系熱交換器を設置するエリアで発生を想定するタービン補機冷却海水系配管破断箇所からの溢水に対し，要求される地震時及び地震後においても，配管破断時の溢水量 を低減する機能を維持することを機能設計上の性能目標とする。また，タービン補機冷却海水系隔離システムは，基準地震動 S s による地震力に対し，主要な構成設備 が構造健全性を維持する設計とすることを構造強度設計上の性能目標とする。

3.2 蒸気影響を緩和する設備

3．2．1 設備

（1）蒸気防護カバー

3．2．2 要求機能

溢水防護に関する施設のらち蒸気影響を緩和する設備は，発生を想定する漏え い蒸気に対し，防護すべき設備が要求される機能を損なうおそれのないよう，蒸気影響を緩和することが要求される。

3．2．3 性能目標
（1）蒸気防護カバー
蒸気防護カバーは，溢水防護区画内で発生を想定する漏えい蒸気に対し，防護す べき設備の健全性が確認されている環境条件以下に制限する機能を維持することを機能性能上の性能目標とする。

表3－1 溢水防護に関する施設の評価区分

要求機能	溢水防護に関する施設（処置）	評価		
		機能	強度	耐震
溢水伝播を防止する設備 （処置を含む）	水密扉	\bigcirc	\bigcirc	\bigcirc＊
	浸水防止蓋	\bigcirc	\bigcirc	\bigcirc
	浸水防止堰	\bigcirc	\bigcirc	$\bigcirc *$
	管理区域外伝播防止水密扉管理区域外伝播防止堰	\bigcirc	\bigcirc	\bigcirc＊
	逆流防止装置	\bigcirc	\bigcirc	\bigcirc
	貫通部止水処置	\bigcirc	\bigcirc	$\bigcirc *$
	循環水系隔離システム	\bigcirc	－	\bigcirc
	タービン補機冷却海水系隔離シ ステム	\bigcirc	－	\bigcirc
蒸気影響を緩和する設備	蒸気防護カバー	\bigcirc	－	－

注記＊：地震時及び地震後において期待する設備を対象とする。

4．機能設計

添付書類「VI－1－1－8－4 溢水影響に関する評価」にて評価される溢水影響に対し，「3．要求機能及び性能目標」で設定している溢水伝播を防止する設備及び蒸気影響を緩和す る設備の機能設計上の性能目標を達成するために，各設備の機能設計の方針を定める。

4.1 溢水伝播を防止する設備

4．1．1 水密扉の設計方針
水密扉は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定してい る機能設計上の性能目標を達成するために，以下の設計方針としている。

原子炉建屋，制御建屋，海水ポンプ室，復水貯蔵タンクエリア，軽油タンクエリ ア，タービン建屋，補助ボイラー建屋及び屋外で発生を想定する溢水に対し，要求 される地震時及び地震後においても溢水防護区画への溢水伝播防止に必要な高さ を上回る高さまでの止水性を維持するために，溢水経路となる開口部に設置する。

水密扉は，発生を想定する溢水に対し，パッキンの密着性により止水性を維持す ることとし，「（1）水密扉の漏えい試験」により止水性を確認した水密扉を設置 し，扉と周囲の部材が密着する設計とする。
（1）水密扉の漏えい試験
a．試験条件
漏えい試験は，実機を模擬した水密扉に試験用装置を設置し，評価水位以上の水位を想定した水頭圧により止水性を確認する。

漏えい試験の対象とする水密扉は，扉面積及び水頭圧等の設備仕様を踏まえ，試験条件が包絡される場合は代表の水密扉により実施する。

図4－1に水密扉の漏えい試験概要図を示す。
b．試験結果
有意な漏えいは認められないことから，溢水への影響はない。
\square

図4－1 漏えい試験概要図（水密扉）

4．1．2 浸水防止蓋の設計方針

浸水防止蓋は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定し ている機能設計上の性能目標を達成するために，以下の設計方針としている。

浸水防止蓋は，屋外で発生を想定する溢水に対し，要求される地震時及び地震後 においても，溢水防護区画を内包する建屋等への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持するために，溢水防護区画を内包する建屋等への溢水経路となる開口部に設置する。

浸水防止蓋は，発生を想定する溢水に対し，パッキンの密着性により止水性を維持することとし，「（1）浸水防止蓋の漏えい試験」により止水性を確認した浸水防止蓋を設置し，蓋と周囲の部材が密着する設計とする。浸水防止蓋の概略図を図4－2に示す。

図4－2 浸水防止蓋概要図
（1）浸水防止蓋の漏えい試験
a．試験条件
漏えい試験は，実機で使用する浸水防止蓋を試験用装置に設置し，評価水位以上 の水位を想定した水頭圧により止水性を確認する。

図4－3に浸水防止蓋の漏えい試験概要図を示す。
b．試験結果
有意な漏えいは認められないことから，溢水への影響はない。

図4－3 漏えい試験概要図（浸水防止蓋）

4．1．3 浸水防止堰の設計方針

浸水防止堰は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定し ている機能設計上の性能目標を達成するために，以下の設計方針としている。

浸水防止堰は，原子炉建屋及び制御建屋で発生を想定する溢水に対し，要求され る地震時及び地震後においても，溢水伝播防止及び防護すべき設備の没水影響防止に必要な高さまでの止水性を維持するために，溢水経路上又は防護すべき設備廻りに設置し，想定される溢水水位を上回る高さを有する設計とする。

浸水防止堰を構成する部材と建屋躯体の境界部を止水ゴム及びコーキング材に より止水処置を実施する設計とし，「（1）浸水防止堰の漏えい試験」により止水性を確認した施工方法により止水処置を実施する設計とする。

浸水防止堰の概略図を図4－4に示す。

図4－4 浸水防止堰の概要図
（1）浸水防止堰の漏えい試験
a．試験条件
漏えい試験は，実機で使用する形状，寸法の試験体を試験用装置に設置し，評価水位以上を想定した水頭圧により止水性を確認する。

図4－5に浸水防止堰の漏えい試験概要図を示す。
b．試験結果
有意な漏えいは認められないことから，溢水への影響はない。

詎験函体イメージ図（注水前）

䛠験两体イメージ図（注水後）

図4－5 漏えい試験概要図（浸水防止堰）

4．1．4 管理区域外伝播防止水密扉及び管理区域外伝播防止堰の設計方針
管理区域外伝播防止水密扉及び管理区域外伝播防止堰は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

管理区域外伝播防止水密扉は，管理区域内で発生を想定する溢水に対し，管理区域外への溢水伝播防止に必要な高さを上回る高さまでの止水性を維持するために，管理区域内の溢水経路となる開口部に設置する。

管理区域外伝播防止水密扉は，「4．1．1（1）水密扉の漏えい試験」にて止水性を確認 した水密扉を設置し，扉と周囲の部材が密着する設計とする。

管理区域外伝播防止堰は，管理区域内で発生を想定する溢水に対し，管理区域外へ の溢水伝播防止に必要な高さを上回る高さまでの止水性を維持するために，管理区域内の溢水経路上に設置し，想定される溢水水位を上回る高さとする。

管理区域外伝播防止堰は，「4．1．3（1）浸水防止堰の漏えい試験」により止水性を確認した施工方法により止水処置を実施する設計とする。

4．1．5 逆流防止装置の設計方針

逆流防止装置は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定して いる機能設計上の性能目標を達成するために，以下の設計方針としている。

逆流防止装置は原子炉建屋及び制御建屋で発生を想定する溢水に対し，要求される地震時及び地震後においても，床ドレンラインを介した溢水防護区画内への溢水伝播 を防止する止水性を維持するため，溢水防護区画床面の目皿及び機器ドレンラインに「（1）逆流防止装置の漏えい試験」により止水性を確認した逆流防止装置を設置す る設計とする。

逆流防止装置の概略図を図4－6に示す。

図4－6 逆流防止装置の概略図
（1）逆流防止装置の漏えい試験
a．試験条件
漏えい試験は，実機で使用する形状，寸法の試験体を用いて実施し，評価水位以上の水位を想定した水圧により止水性を確認する。
図4－7に逆流防止装置の漏えい試験概要図を示す。
b．試験結果
有意な漏えいは認められないことから，溢水への影響はない。

図4－7 漏えい試験概要図（逆流防止装置）

4．1．6 貫通部止水処置の設計方針

貫通部止水処置は，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定し ている機能設計上の性能目標を達成するために，以下の設計方針としている。

貫通部止水処置は，溢水防護区画を内包する建屋外で発生を想定する溢水及び溢水防護区画を内包する建屋内で発生を想定する溢水に対し，要求される地震時及び地震後においても，溢水防護区画を内包する建屋及び溢水防護区画への溢水伝播防止に必要な高さまでの止水性を維持するために，発生を想定する溢水高さまでの壁及び床面 の貫通部に貫通部止水処置を実施する。

また，管理区域内で発生を想定する溢水に対し，要求される地震時及び地震後にお いても，管理区域外への溢水伝播防止に必要な高さまでの止水性を維持するために，発生を想定する溢水高さまでの壁及び床面の貫通部に貫通部止水処置を実施する。貫通部止水処置については「（1）貫通部止水処置の漏えい試験」により止水性を確認し た施工方法による止水処置を実施する。
（1）貫通部止水処置の漏えい試験
a．試験条件
漏えい試験は，実機で使用する形状，寸法及び施工方法を模擬した試験体を用い て実施し，評価水位以上の水位を想定した水圧を作用させた場合にシール材と貫通部及び貫通物との境界部又はブーツ取付部の止水性を確認する。

図 4－8 及び図 4－9に貫通部止水処置の漏えい試験概要図を示す。
b．試験結果
有意な漏えいは認められないことから，溢水への影響はない。

図4－8 漏えい試験概要図（シール材）

図4－9 漏えい試験概要図（ブーツ）

4．1．7 循環水系隔離システムの設計方針

循環水系隔離システムは，「3．要求機能及び性能目標」の「3．1．3 性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針としている。

循環水系隔離システムは，タービン建屋復水器エリアで発生を想定する循環水系配管破断時の溢水に対し，要求される地震時及び地震後においても，循環水系配管破断時の溢水量を低減する機能を維持するため，循環水系配管破断箇所からの溢水を自動検知し，遠隔隔離（自動）する設計とする。

循環水系隔離システムの機能設計を以下に示す。
循環水系配管破断箇所からの溢水の自動検知及び遠隔隔離（自動）を行うため，循環水系隔離システムを構築する。システムを構成するものとして，漏えい検出器，復水器水室出入口弁及び検知制御盤を設置する。

配管破断箇所からの溢水を検知するため，漏えい検出器を設置し，配管破断の発生 が想定される区間における水位上昇を検知し，制御盤へ漏えい検知信号を送信する。

地震を起因とする循環水系配管破断箇所からの溢水に対しては，漏えい検知信号及 び地震加速度大（原子炉スクラム信号）を受け，循環水ポンプの停止及び復水器水室出入口弁を自動閉止させ，タービン建屋復水器エリアにおける溢水を停止させる。漏 えい検知から循環水ポンプ停止までの時間は，溢水影響評価で設定している約 30 秒と なる設計とする。
（1）自動検知•遠隔隔離に対する設備の概要
a．漏えい検出器
タービン建屋復水器エリアにおける漏えいの自動検知のため，漏えい検出器を配管破断想定箇所近傍の床面に設置する。
b．復水器水室出入口弁
タービン建屋復水器エリアにおける漏えい検知により，自動閉止する。
c．検知制御盤
漏えい検出器からの漏えい検知信号による警報発信（水位高高）及び隔離（自動） を行うため，検知制御盤を設置する。
（2）循環水系隔離システムについて
a．漏えい検知及び隔離について
（a）警報設定値について
水位高高信号は基準床面から水位 80 mm とする。水位高高信号と地震加速度大 に起因する原子炉スクラム信号のAND 回路にて自動隔離が行われる設計とする。
（b）漏えい検出器及び循環水系弁の設置の考え方
漏えい検出器について，溢水を想定するエリアの溢水量を低減することを目的

とし，配管破断箇所近傍の床面の東側に 3 台，西側に 3 台設置し，それぞれの漏 えい検出器が 2 out of 3 の信号にて水位高高信号を発するものとする。

復水器水室出入口弁は，実作動時間を考慮し，水位高高信号発信後閉止する。

水位高高信号の隔離時間を表 4－1，漏えい検出器及び復水器水室出入口弁の配置を図 4－10，循環水系隔離システムの概要を図 4－11 に示す。
b．設備の仕様及び精度について
（a）漏えい検出器の仕様

- 検出方式
- 要求精度

（b）計測設備の精度
漏えい検出器から検知制御盤までの精度を \square の誤差範囲に収める設計と する。
（3）設備の特徴及び機能維持について
各設備は以下のとおり信頼性を確保可能であり，加えて適切な保全計画を策定•実施することにより，長期の機能維持を図る。
a．漏えい検出器及び検出回路
漏えい検出器 \square は単純構造の静的機器であり，故障は起こりにくい。電源回路は配線接続部の経年劣化により断線が想定されるが，検知制御盤に断線検知機能＊を設け，早期の保守対応が可能な設計とする。

漏えい検出器の構造概要を図 4－12に示す。
注記＊：電源回路が断線した場合，これを検知し，中央制御室に警報を発信させ る。
b．監視制御回路
監視制御機能の主要回路はアナログリレー回路で構成されており，回路の信頼性 は高いものとなっている。また，出力リレー回路は，状態監視機能は設けていない が，配線設備を含め広く一般的に用いられる機器で構成されており，通常使用にお いての故障頻度は少なく，基本的に設備固有の信頼性は高いものである。
c．復水器水室出入口弁
復水器水室出入口弁は，摩耗等の劣化要因を考慮した設計であり，故障頻度は少 ないと考えられるため，定期的な作動試験により設備の健全性を確認することとす る。なお，作動試験の実施については，系統外乱を回避する観点から施設定期検査期間中に実施する。

枠囲みの内容は商業機密の観点から公開できません。

表 4－1 水位高高発信後の隔離時間の設定

起因事象	隔離	漏えい箇所特定	漏えい箇所隔離操作	合計
地震	自動	「水位高高」警報にて循環水 系からの漏えいを判断	循環水ポンプ自動停止	\square

注記＊1：循環水ポンプトリップ信号発信から循環水ポンプ停止（ポンプ吐出し停止）ま で を を設定している。
＊2：VI－1－1－8－3「溢水評価条件の設定」においては，水位高高検知時間を 20 秒と して溢水量を算出

図 4－10 漏えい検出器及び復水器水室出入口弁の配置図
——：循環水系配管
（L）：漏えい検出器
$\Theta \quad$ ：循環水ポンプ

図 4－11 循環水系隔離システム概要

図4－12 漏えい検出器の概要図

4．1．8 タービン補機冷却海水系隔離システムの設計方針

タービン補機冷却海水系隔離システムは，「3．要求機能及び性能目標」の「3．1．3性能目標」で設定している機能設計上の性能目標を達成するために，以下の設計方針と している。

タービン補機冷却海水系隔離システムは，タービン建屋内のタービン補機冷却水系熱交換器を設置するエリア内で発生を想定するタービン補機冷却海水系配管破断時の溢水に対し，要求される地震時及び地震後においても，タービン補機泠却海水系配管破断時の溢水量を低減する機能を維持するため，タービン補機冷却海水系配管破断箇所からの溢水を自動検知し，遠隔隔離（自動）する設計とする。

タービン補機冷却海水系隔離システムの機能設計を以下に示す。
タービン補機冷却海水系配管破断箇所からの溢水の自動検知及び遠隔隔離（自動） を行うため，タービン補機冷却海水系隔離システムを構築する。システムを構成する ものとして，漏えい検出器，タービン補機冷却海水ポンプ吐出弁及び検知制御盤を設置する。

配管破断箇所からの溢水を検知するため，漏えい検出器を設置し，配管破断の発生 が想定される区画における水位上昇を検知し，制御盤へ漏えい検知信号を送信する。

地震を起因とするタービン補機冷却海水系配管破断箇所からの溢水に対しては，漏 えい検知信号及び地震加速度大（原子炉スクラム信号）を受け，タービン補機冷却海水 ポンプの停止及びタービン補機冷却海水ポンプ吐出弁を自動閉止させ，タービン建屋内のタービン補機冷却水系熱交換器を設置するエリアにおける溢水を停止させる。漏 えい検知からタービン補機冷却海水ポンプ停止までの時間は，溢水影響評価で設定し ている約 30 秒となる設計とする。
（1）自動検知•遠隔隔離に対する設備の概要
a．漏えい検出器
タービン建屋内のタービン補機冷却水系熱交換器を設置するエリアにおける漏え いの自動検知のため，漏えい検出器を配管破断想定箇所近傍の床面に設置する。
b．タービン補機冷却海水ポンプ吐出弁
タービン建屋内のタービン補機冷却水系熱交換器を設置するエリアにおける漏え いを検知し，自動閉止する。
c．検知制御盤
漏えい検出器から漏えい検知信号による警報発信（水位高高）及び隔離（自動）を行うため，検知制御盤を設置する。
（2）タービン補機冷却海水系隔離システムについて
a．漏えい検知及び隔離について
（a）警報設定値について
水位高高信号は基準床面から水位 80 mm とする。水位高高信号と地震加速度大 に起因する原子炉スクラム信号のAND 回路にて自動隔離が行われる設計とする。
（b）漏えい検出器及びタービン補機冷却海水系弁の設置の考え方
漏えい検出器について，タービン建屋内のタービン補機冷却水系熱交換器を設置するエリアの溢水量を低減することを目的として，配管破断想定箇所近傍の床面に 3 台設置し， 2 out of 3 の信号にて水位高高信号を発するものとする。

タービン補機冷却海水ポンプ吐出弁は，実作動時間を考慮し，水位高高信号発信後 \longrightarrow で閉止する。

水位高高信号発信後の隔離時間を表 4－2，漏えい検出器及びタービン補機冷却海水ポンプ吐出弁の配置を図 4－13，タービン補機冷却海水系系隔離システムの概要を図 4－14に示す。
b．設備の仕様及び精度について
（a）漏えい検出器の仕様

- 検出方法：
- 要求精度
（b）計測設備の精度
漏えい検出器から検知制御盤までの精度を \square の誤差範囲に収める設計と する。
（3）設備の特徴及び機能維持について
各設備は以下のとおり信頼性を確保可能であり，加えて適切な保全計画を策定•実施することにより，長期の機能維持を図る。
a．漏えい検出器及び検出回路
漏えい検出器 $~$ は単純構造の静的機器であり，故障は起こりにくい。電源回路は配線接続部の経年劣化により断線が想定されるが，検知制御盤に断線検知機能＊を設け，早期の保守対応が可能な設計とする。

漏えい検出器の構造概要を図4－15 に示す。
注記＊：電源回路が断線した場合っこれを検知し，中央制御室に警報を発信させる。
b．監視制御回路
監視制御機能の主要回路はアナログリレー回路で構成されており，回路の信頼性 は高いものとなっている。また，出力リレー回路は，状態監視機能は設けていない が，配線設備を含め広く一般的に用いられる機器で構成されており，通常使用にお いての故障頻度は少なく，基本的に設備固有の信頼性は高いものである。
c．タービン補機冷却海水ポンプ吐出弁
タービン補機冷却海水ポンプ吐出弁は，屋外仕様で設計することで，雨水•塵埃等の設備の信頼性を低下させる要因は少ないと考えられる。

以上より，故障頻度は少ないと考えられるため，定期的な作動試験により設備の健全性を確認することとする。なお，作動試験の実施については，系統外乱を回避 する観点から施設定期検査期間中（タービン補機冷却海水系停止中）に実施する。

表 4－2 水位高高信号発信後の隔離時間の設定

起因事象	隔離	漏えい箇所特定	漏えい箇所隔離操作	合計
地震	自動	「水位高高」警報にてター ビン補機泠却海水系からの漏えいを判断	タービン補機冷却海水ポンプ自動停止 タービン補機冷却海水ポンプ吐出弁閉止 \square	水位異常検知時間

注記 $* 1: ~ V I-1-1-8-3 「$ 溢水評価条件の設定」においては，水位高高検知時間を 30 秒として溢水量を算出

－：漏えい検出器：タービン補機冷却海水ポンプ吐出弁

図4－13 漏えい検出器及びタービン補機冷却海水系ポンプ吐出弁の配置図

図4－14 タービン補機冷却海水系隔離システムの概要

（側面）

図 4－15 漏えい検出器の概要図

4.2 蒸気影響を緩和する設備

4．2．1 蒸気防護カバーの設計方針

蒸気防護カバーは「3．要求機能及び性能目標」の「3．2．3 性能目標」で設定してい る機能設計上の性能目標を達成するために，以下の設計方針としている。

蒸気防護カバーは，タービン建屋で発生を想定する配管破断時の漏えい蒸気に対し，蒸気による環境条件を緩和するため，「（1）蒸気防護カバーの加熱試験」により気体廃棄物処理設備エリア排気放射線モニタが要求される機能を損ならおそれのない環境温度以下となることを確認した設備を設置する。

蒸気防護カバーの設計方針としては溢水防護対象設備を覆うように防護カバーを設置することで，蒸気に対する影響を緩和する設計とする。

蒸気防護カバーの概要図を図4－16に示す。

図4－16 蒸気防護カバーの概要図
（1）蒸気防護カバーの加熱試験
a．試験条件
加熱試験は，実機で使用する形状，寸法及び施工方法を模擬した蒸気防護カバー と検出器を用いた試験体にて実施する。試験体を試験炉内（乾燥炉）に設置して加熱し，断熱材外部及び断熱材内部の温度推移を測定し，試験炉内が，蒸気が建屋内 （大気圧下）に流出する際に考えられる温度 \square以上となった時点を \square 時間 として，試験体を \square 時間 \longrightarrow 以上の温度で加熱する。 \square 封間経過後は試験炉の温度

をに設定し，断熱材の内部温度がピークに達した後 ■時間で試験終了とする。図 4－17に試験条件を示す。

なお，本試験では水蒸気雰囲気は模擬せず乾燥炉による加熱を行うが，本試験に て蒸気防護カバー内部の温度が上昇しなければ，周辺の高温空気は蒸気防護カバー内に流入していないこととなり，従って水蒸気も蒸気防護カバー内部へ流入するこ とはないと考えられる。
\square
図 4－17 試験条件
b．試験結果
内部温度ピークは気体廃棄物処理設備エリア排気放射線モニタの使用温度 \square以下となることから，蒸気防護カバーで囲われる気体廃棄物処理系設備エリア排気放射線モニタに対する蒸気への影響はない。

VI－1－2 原子炉本体の説明書

VI－1－2－1 原子炉本体の基礎に関する説明書
VI－1－2－2 原子炉圧力容器の脆性破壊防止に関する説明書

VI－1－2－1 原子炉本体の基礎に関する説明書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2． 2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
3．評価部位 6
4．構造強度評価 8
4． 1 構造強度評価方法 8
4．2 荷重の組合せ及び許容値 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容値 8
4．2．3 使用材料の許容応力度評価条件 8
4．2．4 設計荷重 12
4.3 設計用地震力 13
4．4 計算方法 16
4．4．1 応力評価点 16
4．4．2 荷重及び応力度計算方法 19
4.5 計算条件 22
4.6 荷重及び応力度の評価 22
5．評価結果 23
5.1 設計基準対象施設としての評価結果 23
5.2 重大事故等対処設備としての評価結果 33
6．参照図書 40

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に準じて，原子炉本体基礎が設計用地震力に対して十分な構造強度を有していることを説明するものである。

原子炉本体基礎は設計基準対象施設においてはS クラス相当施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備及び常設重大事故緩和設備相当に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力及び重大事故等時に対 する評価について記載するものとし，前述の荷重を除く荷重による原子炉本体基礎の評価は，平成元年 6 月 8 日付け元資庁第 2015 号にて認可された工事計画の添付書類（6．参照図書（1）） による（以下「既工認」という。）。

2．一般事項

2.1 構造計画

原子炉本体基礎の構造計画を表2－1に示す。

2.2 評価方針

原子炉本体基礎の応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並 びに「2．3 適用規格•基準等」にて設定される許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力度等が許容限界内に収まることを，「4．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示 す。

原子炉本体基礎の耐震評価フローを図 2－1 に示す。

図 2－1 原子炉本体基礎の耐震評価フロー

2.3 適用規格•基準等

適用規格•基準等を以下に示す。

- 鋼構造設計規準（日本建築学会 2005 改定）
- 鉄筋コンクリート構造計算規準•同解説（日本建築学会 1999 改定）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
f_{a}	許容付着応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f_{b}	許容曲げ応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f c	許容圧縮応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f s	許容せん断応力度	$\mathrm{N} / \mathrm{mm}^{2}$
f_{t}	許容引張応力度	$\mathrm{N} / \mathrm{mm}^{2}$
F	許容応力度の基準値	$\mathrm{N} / \mathrm{mm}^{2}$
F_{V}	軸力	kN
L	異常時熱荷重	－
$L_{\text {SAL }}$	熱荷重（S A 後長期（L）熱荷重）	－
L sall	熱荷重（ S A 後長期（LL）熱荷重）	－
ℓ_{i}	長さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
M	機械的荷重	－
M_{L}	地震と組み合わせる機械的荷重	－
$\mathrm{M}_{\text {SAL }}$	機械的荷重（ S A 後長期（L）機械的荷重）	－
M ${ }_{\text {SaLL }}$	機械的荷重（ S A 後長期（LL）機械的荷重）	－
O	通常運転時荷重	kN
S d＊	弾性設計用地震動 S d により定まる地震力又は静的地震力	－
S s	基準地震動S s により定まる地震力	－
S_{u}	設計引張強さ	$\mathrm{N} / \mathrm{mm}^{2}$
S y	設計降伏点	$\mathrm{N} / \mathrm{mm}^{2}$
T SAL	温度（S A 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
T SALL	温度（ S A 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
t i	厚さ（ $\mathrm{i}=1,2)$	mm

3．評価部位
原子炉本体基礎の形状及び主要寸法を図 3－1 に，使用材料及び使用部位を表3－1に示す。

巴ZA：原子炉本体の基礎

図 3－1 原子炉本体基礎の形状及び主要寸法（その 1）（単位：mm）

表 3－1 使用材料表

使用部位	使用材料	備考
構造用鋼材 （円筒部，縦リブ， スカートフランジ）		
原子炉本体基礎 アンカボルト	SPV50	SPV490 相当

4．構造強度評価

4． 1 構造強度評価方法

（1）原子炉本体基礎の地震荷重は，アンカボルトを介して原子炉建屋に伝達される。原子炉本体基礎の耐震評価として，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」におい て計算された荷重を用いて，6．参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

4.2 荷重の組合せ及び許容値

4．2．1 荷重の組合せ及び許容応力状態
原子炉本体基礎の荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表4－2 に示す。

許容応力状態及び詳細な荷重の組合せは，既工認及び添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。

なお，考慮する荷重の組合せは，組み合わせる荷重の大きさを踏まえ，評価上厳しく なる組合せを選定する。

4．2．2 許容値

原子炉本体基礎の許容応力度及び許容荷重は「2．3 適用規格•基準等」に基づき算出 する。構造用鋼材及び原子炉本体基礎アンカボルトに対する許容応力度を表 4－3 に示す。

4．2．3 使用材料の許容応力度評価条件
原子炉本体基礎の使用材料の許容応力度評価条件を表4－4に示す。

表4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等 の区分	荷重ケース 番号	荷重の組合せ	許容応力状態
原子炉本体	原子炉 圧力容器 支持構造物	原子炉本体基礎	－＊1	建物• 構築物	1＊2	$\mathrm{D}+\mathrm{M}+\mathrm{Sd}$＊	短期
					3	$\mathrm{D}+\mathrm{L}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$	機能維持の検討
					2	$\mathrm{D}+\mathrm{L}+\mathrm{M}+\mathrm{S}$ s	機能維持の検討

注記 $* 1: ~ S ク ラ ス$ 相当として評価する。
＊2：既工認と同様に熱荷重を考慮する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類	機器等 の区分	荷重ケース 番号	荷重の組合せ＊2		許容応力状態
原子炉本体	原子炉 圧力容器 支持構造物	原子炉本体基礎	－＊1	建物•構築物	a	$\mathrm{D}+\mathrm{L}_{\text {SAL }}+\mathrm{M}_{\text {SAL }}+\mathrm{Sd} \mathrm{d}^{* * 3}$	（V（L）－1）	機能維持の検討
					b	$\mathrm{D}+\mathrm{L}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S}_{\text {s }}$	（V（LL）－1）	機能維持の検討

注記 $* 1$ ：常設耐震重要重大事故防止設備及び常設重大事故緩和設備相当として評価する。
＊2：保守的に重大事故等時の熱荷重を考慮する。
＊3：重大事故等後の最高温度との組合せを考慮する。

表 4－3 許容応力度

許容応力状態	ボルト等以外				アンカボルト	
	引張／組合せ	せん断	圧縮	曲げ	引張	付着
短期	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$	$1.5 \cdot \mathrm{f}$	$1.5 \cdot \mathrm{ff}_{\text {b }}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$\mathrm{f}_{\text {a }}$
機能維持の検討	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{f}$ c	$1.5 \cdot \mathrm{f}$ b	$1.5 \cdot \mathrm{ft}$	f a

表4－4 使用材料の許容応力度評価条件
（設計基準対象施設及び重大事故等対処設備）

| 評価部材 | F
 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Sy
 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | Su
 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 構造用鋼材
 （円料
 スカー筒部，縦リブ，
 スカートフランジ） | SPV50＊ | | |
| 原子炉本体基礎
 アンカボルト | SNCM439 | | |

注記 $*: ~ S P V 490$ 相当

4．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である最高使用温度及び死荷重は，既工認からの変更はなく，6．参照図書（1）に定めるとおりである。
（2）重大事故等対処設備としての設計荷重
重大事故等対処設備としての評価温度は，以下のとおりとする。重大事故等対処設備 としての設計荷重を表 4－5 及び表 4－6に示す。

温度 T SAL
温度 T SALL

$178^{\circ} \mathrm{C}$（S A 後長期（L））
$111^{\circ} \mathrm{C}$（ S A後長期（LL））

表 4－5 原子炉本体基礎上部円筒部設計用荷重（重大事故等対処設備）

荷重		荷重細目	原子炉圧力容器より	原子灲しやへい壁 より	原子炉本体基礎に直接作用する荷重
D		死荷重			
O	OU	通常運転時荷重 （上向き荷重）		－	－
	OD	通常運転時荷重 （下向き荷重）			
L	$L_{\text {SAL }}$	S A 後長期（L）熱荷重	ドライウェル内 $178{ }^{\circ} \mathrm{C}$		
	$L_{\text {SALL }}$	S A 後長期（LL）熱荷重	ドライウェル内 $111^{\circ} \mathrm{C}$		

表 4－6 原子炉本体基礎下部円筒部設計用荷重（重大事故等対処設備）

荷重		荷重細目	レベル		
		0．P．-2.500 m ＊	0．P．$-6.200 \mathrm{~m}^{*}$		
	D		死荷重		
O	OU	通常運転時荷重 （上向き荷重）			
	OD	通常運車云時荷重 （下向き荷重）			
L	$L_{\text {SAL }}$	S A後長期（L）熱荷重	ドライウェル内 $178{ }^{\circ} \mathrm{C}$		
	$L_{\text {SALL }}$	S A 後長期（LL）熱荷重	ドライウェル内 $111^{\circ} \mathrm{C}$		

注記＊：0．P．1．150m 以下は原子炉格納容器底部コンクリートに完全埋没されており，原子炉建屋と一体挙動するため，O．P．1．150m で発生する荷重を用いて評価する。

4.3 設計用地震力

原子炉本体基礎の設計用地震力を，表 4－7～表 4－10に示す。「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき設定する。
注記 $* 1$ ：重大事故等対処設備に対しては，弾性設計用地震動 Sd に加え静的地震力 を考慮する。
表 4－8 原子炉本体基礎上部円筒部に作用する設計用地震力

$\begin{gathered} \text { 高さ } \\ \text { 0.P. } \quad(\mathrm{m}) \end{gathered}$	水平荷重S s	
	せん断力 （ kN ）	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
	－	
6． 240		
4.950		
3． 050		
1． 150	－	

表 4－9 原子炉本体基礎上部円筒部に作用する設計用地震力

$\begin{gathered} \text { 高さ } \\ \text { 0.P. } \quad(\mathrm{m}) \end{gathered}$	弾性設計用地震動 ${ }^{\text {d }}$ d	基淮地震動S s
	軸力 Fv （ kN ）	軸力Fv（kN）
7.040	－	－
6． 240		
4． 950		
3． 050		
1． 150	－	－

表 4－10 原子炉本体基礎下部円筒部設計用地震力

高さ 0．P．（m）	弾性設計用地震動S d＊＊1		基準地震動S s	
	せん断力 （kN ）	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	せん断力 （kN ）	$\begin{gathered} \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m}) \\ \hline \end{gathered}$
$-2.500^{* 2}$				
－6． 200 ＊2				

注記 $* 1$ ：重大事故等対処設備に対しては，弾性設計用地震動 Sd に加え静的地震力を考慮する。 ＊2：0．P．1．150m以下は原子炉格納容器底部コンクリートに完全埋没されており，原子炉建屋と一体挙動するため，0．P．1．150mで発生する荷重を用いて評価する。

4． 4 計算方法

4．4．1 応力評価点
原子炉本体基礎の応力評価点は，原子炉本体基礎を構成する部材の形状及び荷重伝達経路を考慮し，発生応力度が大きくなる部位を選定する。

選定した応力評価点を表4－11 及び図 4－1 に示す。
応力評価点 P1 及び P2 は既工認の各荷重による応力を比倍（圧力比，震度比等）し評価する。

表 4－11 応力評価点

応力評価点番号	応力評価点
P1＊	円筒部（内筒，外筒）
P2＊	縦リブ
P3	アンカボルト
P4	スカートフランジ
P5	CRD 開口まわり

注記＊：円筒部及び縦リブの評価点は，最大組合せ応力度発生箇所を含むよ ら選定するとともに，地震方向に対して応力度の大きくなる 90° 及 び 180° 位置の代表的な高さから選定する。

図 4－1 原子炉本体基礎の応力評価位置（その 1）

P3：アンカボルト
P4：スカートフランジ

P5：CRD 開口まわり

図 4－1 原子炉本体基礎の応力評価位置（その 2）（単位：mm）

4．4．2 荷重及び応力度計算方法

（1）設計基準対象施設としての荷重及び応力度計算 a．円筒部及び縦リブ

円筒部及び縦リブに生じる死荷重，通常運転時荷重及び温度荷重による応力度計算方法は，既工認から変更はなく，6．参照図書（1）に示すとおりである。
原子炉本体基䂣上部円筒部（0．P．7．040m～0．P．1．150m）に生じる水平地震荷重に よる応力度は，表 4－12 及び表 4－13に示す既工認における基準地震動 S_{1} と弾性設計用地震動 S d 又は基準地震動 S_{2} と基準地震動 S s の せん断力及びモーメントの最大の荷重比を用いて，既工認における地震動 S_{1} 又は S_{2} に対して FEM 解析により算出した応力度を荷重比倍することにより求める。弾性設計用地震動S d による地震荷重は，基準地震動 S_{1} と比べ小さいため，建設時基準地震動 S_{1} による応力度を用いる。鉛直地震荷重による応力度は，表 4－14 に示す 0．P．1．150m における弾性設計用地震動 S d に よる軸力又は，基準地震動 S s による軸力と死荷重による鉛直力の荷重比より算出し た鉛直震度を用いて，既工認における死荷重による応力度を基に震度法により算出す る。

原子炉本体基礎下部円筒部（0．P． $1.150 \mathrm{~m} \sim 0$. P．-6.200 m ）に生じる地震荷重は，原子炉格納容器底部コンクリートに完全埋没されており，原子炉建屋と一体挙動する ため，O．P．1．150m で発生する荷重を用いて評価する。
鉛直地震により下部円筒部に生じる荷重は，上部円筒部と同様に表 4－14 に示す鉛直震度を考慮する。

表 4－12 建設時基準地震動 S_{1}（水平動）と弾性設計用地震動 S d（水平動）による荷重の比率

高さ 0．P．（m）	せん断力（kN）		$\mathrm{Sd} / \mathrm{S}_{1}$	モーメント（ $\mathrm{kN} \cdot \mathrm{m}$ ）		$\mathrm{Sd} / \mathrm{S}_{1}{ }^{*}$		
	S_{1}	S d		S_{1}	S d			
7.040								
6.240								
5． 650								
4． 950								
4． 150								
3.050								
2． 650								
1． 150								

注記＊：基準地震動 S_{1} に対しては，高さ方向で線形補間したモーメントの値を用いて荷重の比率 を算出する。

表 4－13 建設時基準地震動 S_{2}（水平動）と基準地震動 S s（水平動）による荷重の比率

注記 $~$ ：基準地震動 S_{2} に対しては，高さ方向で線形補間したモーメントの値を用いて荷重の比率 を算出する。

表 4－14 死荷重と弾性設計用地震動 S d（上下動）及び
基準地震動 S s（上下動）による荷重の比率

$\begin{gathered} \text { 高さ } \\ \text { 0. P. (m) } \end{gathered}$	軸力（kN）		S d／死荷重	軸力（kN）		S s／死荷重
	死荷重	S d		死荷重	S s	
1． 150						

b．原子炉本体基礎アンカボルト及びスカートフランジ
原子炉本体基礎に生じた荷重は，スカートフランジを介してアンカボルトにより基礎版に伝達する。

アンカボルト及びスカートフランジの応力計算方法は，既工認から変更はなく， 6.参照図書（1）に示すとおりである。

表 4－15 設計荷重

荷重ケー ス番号	鉛直力 (kN)	曲げモーメント $(\mathrm{kN} \cdot \mathrm{m})$	せん断力 (kN)		
$1,3, \mathrm{a}$				\quad	
:---					
$2, \mathrm{~b}$					

c．CRD 開口まわり
原子炉圧力容器及び原子炉しやへい壁より作用する荷重を考慮して CRD 開口まわり の評価を行う。評価に用いる，CRD 開口まわりの各部荷重を表に示す。評価に用いる応力度計算方法は，既工認から変更はなく，6．参照図書（1）に示すとおりである。

表 4－16 各部荷重表

（2）重大事故等対処設備としての荷重及び応力度計算
原子炉本体基礎に作用する荷重及び応力度計算方法は「4．4．2（1）設計基準対象施設としての荷重及び応力度計算」と同様である。

なお，重大事故等時の熱荷重による応力度に関しては，既工認計算書における事故時熱荷重温度における応力度を基に，温度，縦弾性係数及び線膨張係数の違いを考慮 して係数倍により求めた。
4.5 計算条件

応力解析に用いる荷重を，「4．2 荷重の組合せ及び許容値」及び「4．3 設計用地震力」 に示す。
4.6 荷重及び応力度の評価

「4．4 計算方法」で求めた荷重及び応力度が許容値以下であること。

5．評価結果
5.1 設計基準対象施設としての評価結果

原子炉本体基礎の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表5－1～表5－3に示す。

表 5－1（2）許容応力状態短期に対する評価結果（ $\mathrm{D}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）

評価対象 設備	評価部位		応力分類	短期		判定	荷重ケース番号	
			算出応力度	許容応力度				
			$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$				
原子炉本体基礎	P3	アンカボルト		引張応力度	151		\bigcirc	1
				引抜き力＊	4． 487×10^{5}		\bigcirc	1
	P4	スカートフランジ	曲げ応力度	138		\bigcirc	1	
	P5	CRD 開口まわり	曲げ応力度	39		\bigcirc	1	
			せん断応力度	106		\bigcirc	1	
			ねじれによるせん断応力度	50		\bigcirc	1	
注記＊：単位はN								

表 5－2（1）許容応力状態機能維持の検討に対する評価結果（ $\mathrm{D}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}^{*}$ ）（その 2）

評価対象 設備	評価部位			応力分類	短期		判定	
				算出応力度	許容応力度			
				$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$			
原子炉本体基礎	P2	縦リブ	A		組合せ応力度	127		\bigcirc
			B		組合せ応力度	149		\bigcirc
			C	組合せ応力度	192		\bigcirc	

表 5－2（2）許容応力状態機能維持の検討に対する評価結果（ $\mathrm{D}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$＊）

評価対象設備	評価部位		応力分類	短期		判定	荷重ケース番号	
			算出応力度	許容応力度				
			$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$				
原子炉本体基礎	P3	アンカボルト		引張応力度	151		\bigcirc	3
				引抜き力＊	4.487×10^{5}		\bigcirc	3
	P4	スカートフランジ	曲げ応力度	138		\bigcirc	3	
	P5	CRD 開口まわり	曲げ応力度	39		\bigcirc	3	
			せん断応力度	106		\bigcirc	3	
			ねじれによるせん断応力度	50		\bigcirc	3	

©
注記＊：単位はN

表 5－3（2）許容応力状態機能維持の検討に対する評価結果（D $+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）

評価対象 設備	評価部位		応力分類	短期		判定	荷重ケース番号	
			算出応力度	許容応力度				
			$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$				
原子炉本体基礎	P3	アンカボルト		引張応力度	228		\bigcirc	2
				引抜き力＊	6． 774×10^{5}		\bigcirc	2
	P4	スカートフランジ	曲げ応力度	184		\bigcirc	2	
	P5	CRD 開口まわり	曲げ応力度	56		\bigcirc	2	
			せん断応力度	151		\bigcirc	2	
			ねじれによるせん断応力度	76		\bigcirc	2	

注記 $*: ~$ 単位はN
5.2 重大事故等対処設備としての評価結果

原子炉本体基礎の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表5－4及び表5－5に示す。

		表 5－4（1）	許容応力状態	持の		平価結果（D＋	$+\mathrm{M}_{\text {SAL }}+$	d）（その	
	-1	評価対象 設備				応力分類	算出応力度	許容応力度	判定
	-1						$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$	
					A	組合せ応力度	71		\bigcirc
	$0 . P .-2.50 \mathrm{~m}$				B	組合せ応力度	80		\bigcirc
				内筒	C	組合せ応力度	106		\bigcirc
					D	組合せ応力度	328		\bigcirc
		原子炉本体	P1：円筒部		E	組合せ応力度	68		\bigcirc
		基礎	（a）部		A	組合せ応力度	60		\bigcirc
	180°				B	組合せ応力度	69		\bigcirc
$\stackrel{\oplus}{\oplus}$	©()\|			外筒	C	組合せ応力度	70		\bigcirc
					D	組合せ応力度	68		\bigcirc
产	$3-270^{\circ}$				E	組合せ応力度	68		\bigcirc
$\begin{aligned} & \text { 单 } \\ & 8 \\ & \hline \end{aligned}$					A	組合せ応力度	71		\bigcirc
$\begin{aligned} & \frac{8}{7} \\ & \frac{7}{7} \\ & 0 \end{aligned}$	心力表示箇所				B	組合せ応力度	83		\bigcirc
$\frac{\overline{4}}{\substack{4 \\ 4 \\ 4}}$				内筒	C	組合せ応力度	98		\bigcirc
溇					D	組合せ応力度	362		\bigcirc
		原子炉本体	P1：円筒部		E	組合せ応力度	110		\bigcirc
良			（b）部		A	組合せ応力度	127		\bigcirc
令					B	組合せ応力度	147		\bigcirc
－				外筒	C	組合せ応力度	138		\bigcirc
然					D	組合せ応力度	152		\bigcirc
？					E	組合せ応力度	152		\bigcirc

表 5－4（2）許容応力状態機能維持の検討に対する評価結果（ $\mathrm{D}+\mathrm{L}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）

評価対象 設備	評価部位		応力分類	短期		判定	荷重ケース番号	
			算出応力度	許容応力度				
			$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$				
原子炉本体基礎	P3	アンカボルト		引張応力度	151		\bigcirc	a
				引抜き力＊	4． 487×10^{5}		\bigcirc	a
	P4	スカートフランジ	曲げ応力度	138		\bigcirc	a	
	P5	CRD 開口まわり	曲げ応力度	39		\bigcirc	a	
			せん断応力度	106		\bigcirc	a	
			ねじれによるせん断応力度	50		\bigcirc	a	

注記＊：単位はN

評価対象 設備	評価部位		応力分類	短期		判定	荷重ケース番号	
			算出応力度	許容応力度				
			$\mathrm{N} / \mathrm{mm}^{2}$	$\mathrm{N} / \mathrm{mm}^{2}$				
原子炉本体基礎	P3	アンカボルト		引張応力度	228		\bigcirc	b
				引抜き力＊	6． 774×10^{5}		\bigcirc	b
	P4	スカートフランジ	曲げ応力度	184		\bigcirc	b	
	P5	CRD 開口まわり	曲げ応力度	56		\bigcirc	b	
			せん断応力度	151		\bigcirc	b	
			ねじれによるせん断応力度	76		\bigcirc	b	

${ }_{\bullet}^{\circ}$
注記＊：単位はN

6．参照図書
（1）女川原子力発電所第2号機 第1回工事計画認可申請書添付書類「IV－1－2 原子炉本体の基礎に関する説明書」

VI－1－6 放射性廃葉物の廃棄施設の説明書

VI－1－6－1 排気筒の基礎に関する説明書

VI－1－6－1 排気筒の基礎に関する説明書

排気筒の基礎に関しては，添付書類「VI－2－2－26 排気筒基礎の耐震性についての計算書」で説明 する。

VI－1－8 原子炉格納施設の説明書

VI－1－8－1 原子炉格納施設の設計条件に関する説明書
VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書
VI－1－8－3 原子炉格納施設の基礎に関する説明書
VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書

VI－1－8－3 原子炬格納施設の基礎に関する説明書
1．概要 1
2．基本方針 2
2.1 構造計画 4
2.2 構造概要 4
3．評価 7
3.1 基礎の健全性評価 7
3．1．1 基礎の耐震評価 7
3.2 地盤の健全性評価 9
3．2．1 荷重 9
3．2．2 許容支持力度 9
3．2．3 健全性評価 9

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（以下「技術基準規則」という。）第5条，第17条，第50条及び55条並びにそれらの「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（以下「技術基準規則の解釈」 という。）に基づき，原子炉格納施設の基礎が十分な強度を有することに加えて，技術基準規則第 4 条及び第 49 条並びにそれらの技術基準規則の解釈に基づき，それを支持す る地盤が十分な支持力を有することを説明するものである。

なお，技術基準規則第 17 条について，設計基準対象施設に関しては，技術基準規則の要求に変更がないため，今回の申請において変更は行わない。

2．基本方針

今回，基準地震動 S s の策定及び原子炉格納容器が重大事故等対処施設として申請範囲となったことに伴い，原子炉格納施設の基礎が，基準地震動 S s による地震力に対し て，また，重大事故等時の状態において，十分な強度を有すること（以下「基礎の健全性評価」という。）並びにそれを支持する地盤が十分な支持力を有すること（以下「地盤 の健全性評価」という。）ができる設計とする。

なお，基準地震動 S s の策定及び原子炉格納容器が重大事故等対処施設として申請範囲となったことに伴い必要となる基礎の健全性評価及び地盤の健全性評価は，表2－1に示すとおりであり，その詳細は，同表に示すとおり，添付書類「VI－2－9－3－4 原子炉建屋基礎版の耐震性についての計算書」において説明する。また，それ以外の評価は，平成元年 6 月 8 日付け元資庁第 2015 号にて認可された既工事計画認可申請書 第 1 回申請添付書類「IV－1－4 原子炉格納施設の基礎に関する説明書」（以下「既工認」という。） にて評価を実施している。

表 2－1 原子炉格納施設の基礎の評価についての整理

項目	部位	荷重時	記載資料＊
基礎の	原子炉建屋基礎版	通常運転時	（1）
健全性評価		S s 地震時	（2）
地盤の	地盤	通常運転時	（1）
健全性評価		S s 地震時	（2）

注記 $*$ ：凡例は以下のとおり。
（1）既工認
（2）添付書類「VI－2－9－3－4 原子炉建屋基礎版の耐震性についての計算書」

2.1 構造計画

原子炉格納施設の基礎は，その上部構造である原子炉本体基礎，原子炉格納容器， その周囲の壁（以下「シェル壁：SW」という。），原子炉棟の外壁（以下「内部ボックス壁： IW」という。）及び付属棟の外壁（以下「外部ボックス壁：OW」という。）を支持する原子炉建屋基礎版である。

原子炉建屋基礎版は，上部構造からの鉛直荷重及び地震荷重等に対して十分な強度 を有することができる設計とする。

原子炉建屋基礎版の応力解析は 3 次元 FEM モデルを用いた弾塑性応力解析により実施する。

2． 2 構造概要

原子炉建屋基礎版は，平面 77.0 m （ NS 方向）$\times 84.0 \mathrm{~m}$（EW 方向），厚さ 6.0 m の鉄筋コンクリート造の基礎版であり，支持地盤である砂岩及び頁岩上に人工岩盤を介し て設置されている。

コンクリートの設計基準強度は $\mathrm{Fc}=32.4 \mathrm{~N} / \mathrm{mm}^{2}$ ，鉄筋の種類は SD35（SD345 相当）を用いる。

原子炉建屋基礎版の概略平面図及び概略断面図を図2－1 及び図2－2 に示す。

（単位：m）
図 2－1 原子炉建屋基礎版の概略平面図（0．P．－8．1 m）

（単位：m）
図 2－2（1）原子炉建屋基礎版の概略断面図（A－A 断面 NS 方向）

（単位：m）
図2－2（2）原子炉建屋基礎版の概略断面図（B－B 断面 EW 方向）

3．評価

3.1 基礎の健全性評価

原子炉格納施設の基礎の健全性は，原子炉建屋基礎版の基準地震動 S s による地震力に対する評価（以下「 S s 地震時に対する評価」という。）を行うこととし，原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005）（以下「R $\mathrm{C}-\mathrm{N}$ 規準」という。）及び発電用原子力設備規格 コンクリート製原子炉格納容器規格（（社）日本機械学会，2003）（以下「 C C V 規格」という。）に基づき評価する。

3．1．1 基礎の耐震評価

原子炉建屋基礎版の耐震評価において，3 次元 FEM モデルを用いた弾塑性応力解析によることとし，安全上適切と認められる規格及び基準等に基づき断面の評価を行う。断面の評価は，既設であることを踏まえ，設計配筋に対して発生する応力又はひずみが許容限界以下であることを確認する。原子炉建屋基礎版の耐震性については，添付書類「VI－2－9－3－4 原子炉建屋基礎版の耐震性についての計算書」に示すとおり，S s 地震時において基礎は十分な強度を有する。

基礎の応力解析による評価フローを図3－1に示す。

$<$ S s 地震時に対する評価＞

注記＊：材料物性の不確かさについては，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に基づ き設定する。

図 3－1 応力解析による評価フロー

3.2 地盤の健全性評価

地盤の健全性において，地震応答解析は質点系モデルによることとし，安全上適切 と認められる規格及び基準等に基づき評価を行う。健全性評価は，添付書類「VI－2－9－ 3－4 原子炉建屋基礎版の耐震性についての計算書」に示すとおりであり，地盤は十分 な支持力を有する。以下に概要を示す。

3．2．1 荷重

S s 地震時の地盤の接地圧は，基準地震動 S s に対する地震応答解析より算定 される地盤の接地圧とし，材料物性の不確かさを考慮する。

3．2．2 許容支持力度
原子炉建屋基礎版は，砂岩及び頁岩上に人工岩盤を介して設置されており，そ の許容支持力度は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基 づき設定する。本検討で用いる地盤の許容支持力度は，S s 地震時の地盤の接地圧に対しては $13700 \mathrm{kN} / \mathrm{m}^{2}$（極限支持力度）を用いる。

3．2．3 健全性評価

材料物性の不確かさを考慮したS s 地震時の地盤の最大接地圧は，表 3－1 の とおりであり，許容支持力度を超えないため，地盤は十分な支持力を有する。

表 3－1 最大接地圧と許容支持力度の比較
（単位： $\mathrm{kN} / \mathrm{m}^{2}$ ）

	最大接地圧	許容支持力度
S s 地震時	3500	13700

VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書

目 次

VI－1－10－1 設計及び工事に係る品質マネジメントシステムに関する説明書 VI－1－10－2 本設工認に係る設計の実績，工事及び検査の計画 原子炉本体 VI－1－10－3 本設工認に係る設計の実績，工事及び検査の計画 核燃料物質の取扱施設及び貯蔵施設

VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設
VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画 計測制御系統施設
VI－1－10－6 本設工認に係る設計の実績，工事及び検査の計画 放射性廃棄物の廃棄施設
VI－1－10－7 本設工認に係る設計の実績，工事及び検査の計画 放射線管理施設
VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画 原子炉格納施設
VI－1－10－9 本設工認に係る設計の実績，工事及び検査の計画 非常用電源設備
VI－1－10－10 本設工認に係る設計の実績，工事及び検査の計画 常用電源設備
VI－1－10－11 本設工認に係る設計の実績，工事及び検査の計画 補助ボイラー
VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画 火災防護設備
VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画 浸水防護施設
VI－1－10－14 本設工認に係る設計の実績，工事及び検查の計画 補機駆動用燃料設備（非常用電源
設備及び補助ボイラーに係るものを除く。）
VI－1－10－15 本設工認に係る設計の実績，工事及び検査の計画 非常用取水設備
VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画 緊急時対策所

VI－1－10－2 本設工認に係る設計の実績，工事及び検査の計画原子炉本体

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。
本設工認に係る設計の実績，工事及び検査の計画

各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3 (5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 ○：主担当 O ：関運			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
							－業務報告書		
		3．原子炉本体の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及 び兼用する機能の確認	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針 - 設置変更許可申請書	- 機能単位の系統図 - 設定根拠の「（概要）」部分	－	
		3.2 機能を兼用する機器を含む設備に係る設計 （1）炉心支持構造物 （2）原子炉圧力容器	©	－	\bigcirc	- 業務報告書 - 機能単位の系統図 - 設定根拠の「（概要）」部分	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －系統図	－仕様書	
	3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式－2～様式 -8	－	－基本設計アウトプット	
	3．3．3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認于 ェックシート」	
	$\text { 3.3. } 3$ （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8 の「設備の具体的設計結果」欄	－仕様書	
	3． 4.2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
	3．5．3	検査計画の管理	－	（0）	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
	3． 5.5	使用前事業者検査の実施	－	©	\bigcirc	- 様式 -8 の「確認方法」欄 - 工事の方法	－検査要領書	－	
			－	（0）	\bigcirc	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	©	\bigcirc	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	番	機器		機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 饰 } \\ & \text { 体 } \end{aligned}$	－＊	－＊	炉型式，定格熱出力，過剰反応度及び反応度係数（減速材温度係数，燃料棒温度係数，減速材ボイ ド係数及び出力反応度係数）並びに減速材	－＊	炬型式，定格熱出力，過剰反応度及び反応度係数 （減速材温度係数，燃料棒温度倸数，減速材ボイド係数及び出力反応度係数）並びに減速材	既設設侑 づき実旅	り，当時の いる。	達管理に基		
			炉心形状，格子形状，燃料集合体数，炉心有効高さ及び炬心等価直径		炬心形状，格子形状，燃料集合体数，炬心有効高さ及び炝心等価直径	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
	悠	－＊	燃料体最高燃焼度及び核燃料物質の最大装荷量	－＊	燃料体最高燃焼度及び核燃料物質の最大装荷量	既設設宿 づき実施	$\begin{aligned} & \text { り, 当時の誩 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			燃料材の最高温度		燃料材の最高温度	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時 } \\ & \text { いる。 } \end{aligned}$	釡管理に基		
			熱的制限值（最小限界出力比及び最大線出力密度）		熱的制限値（最小限界出力比及び最大線出力密度）	既設設侑 づき実雄	り，当時の いる。	達管理に基		
	＊	－＊	$\begin{aligned} & \text { チャンネルボック } \\ & \text { ス } \end{aligned}$	－＊	チャンネルボックス	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
					炉心シュラウド	既設設備 づき実施	$\begin{aligned} & \text { り, 当時の棓 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			びシュラウドサポ		シュラウドサポート	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
					炉心シュラウド支持ロッド	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
	熄		上部格子板		上部格子板	$\begin{aligned} & \hline \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { b, 当時の } \\ & \text { いる。 } \end{aligned}$	達管理に基		
	$\begin{aligned} & \text { 持 } \\ & \text { 槚 } \end{aligned}$		炬心支持板	－＊	炬心支持板	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			炏料支持全县		中央燃料支持金具	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の誩 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			燃枓文持金具		周辺燃料支持金具	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
			制御棒案内管		制御棒案内管	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
	$\begin{aligned} & \text { 原 } \\ & \text { 煸 } \\ & \text { 厓 } \\ & \text { 䆶 } \end{aligned}$	－＊	原子炬圧力容器本体並びに監視試験片	－＊	原子炉圧力容器	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時 } 0 \\ & \text { いる。 } \end{aligned}$	達管理に基		
			原子炬圧力容器支	支持構造物	原子炉圧力容器支持スカート	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			持構造物	基磫ボルト	原子炉圧力容器基硞ボルト	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
			原子炉圧力容器付属構造物	原子炉圧力容器ス タビライザ	原子炉圧力容器スタビライザ	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の } \\ & \text { いる。 } \end{aligned}$	達管理に基		
				原子炉格納容器ス タビライザ	原子炉格納容器スタビライザ	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
				中性子束計測ハウ ジング	中性子束計測ハウジング	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の誖 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
				制御棒駆動機構八 ウジング	制御棒駆動機構ハウジング	$\begin{aligned} & \text { 既設設備 } \\ & \text { づきき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
				制御棒駆動機構八 ウジング支持金具	制御棒駆動機構八ウジング支持金具	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
				ジェットポンプ計 装管貫通部シール	ジェットポンプ計測管貫通部シール	$\begin{aligned} & \hline \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
				差圧検出・ほう酸水注入配管	差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
			原子炉圧力容器内部構造物	蒸気乾燥器の蒸気乾燥器ユニット及 び蒸気乾燥器へウ ジング	蒸気乾燥器ユニット	既設設備であり，当時の調達管理に基 づき実施している。				
					蒸気乾燥器ハウジング	既設設備であり，当時の調達管理に基 づき実施している。				

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	番	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { I } \\ & \text { F゙ } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 䛈 } \\ & \text { 茠 } \end{aligned}$		－＊	原子炉圧力容器内部構造物	気水分離器及びス タンドパイプ	気水分離器	既設設備であり，当時の調達管理に基 づき実施している。				
					スタンドパイプ	既設設詴 づき実施	り，当時の いる。	達管理に基		
				シュラウドへッド	シュラウドヘッド	既設設恠 づき実施	り，当時の いる。	達管理に基		
				ジェットポンプ	ジェットポンプ		り，当時の調 いる。	達管理に基		
					給水スパージャ	既設設侑 づき実施	り，当時の いる。	達管理に基		
					高圧炬心スプレイスパージャ	$\begin{aligned} & \text { 既設設借施 } \\ & \text { づき䒠 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
					低圧炬心スプレイスパージャ	$\begin{aligned} & \text { 既設設借施 } \\ & \text { つきき郞 } \end{aligned}$	り，当時の いる。	達管理に基		
				スパージャ及び内部配管	残留熱除去系配管（ 原子炉圧力容器内部）		り, 当時の言 いる。	達管理に基		
					高圧炬ふスプレイ系配管（原子炉圧力容器内部）	$\begin{aligned} & \text { 既設設借垉 } \\ & \text { づき隼 } \end{aligned}$	り，当時の いる。	達管理に基		
					低圧炬心スプレイ系配管（原子炉圧力容器内部）		り，当時の いる。	達管理に基		
					差圧検出・ほら酸水注入系配管（原子炉圧力容器内部）	$\begin{aligned} & \text { 既設設借施 } \\ & \text { づき䒠 } \end{aligned}$	り，当時の いる。	達管理に基		
				中性子束計測案内管	中性子束計測案内管	既設設備 づき実施	り，当時の いる。	達管理に基		

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－3 本設工認に係る設計の実績，工事及び検査の計画核燃料物質の取扱施設及び貯蔵施設
\circ
0
$\stackrel{0}{5}$
$\frac{1}{5}$
©
N

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組糡内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
$\begin{aligned} & \text { 設 } \\ & \text { 計 } \end{aligned}$	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ ュー要領「品証様式のチェックシ ート」	
		基本設計方針の作成（設計 1）				- 様式 -2 - 技術基準規則	- 様式 -3 - 様式 -4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ	
	3．3．3 （1）		©	－	－	- 様式 -2 - 様式 -4 - 実用炉規則別表第二 - 技術基準規則	－様式 -5	ュー要領「品証様式のチェックシ ート」	
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式 -6 - 様式 -7		
						－基本設計方針	－様式 -5		
	3．3． 3 （2）	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2） 1．共通的に適用される設計	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄	－	
			「原子炉冷却系統施設」参照			「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	
		2．核燃料物質の取扱施設及び貯蔵施設の兼用に関する設計							
		2.1 設備に係る設計のための系統の明確化及 び兼用する機能の確認	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針 - 設置変更許可申請書	- 機能単位の系統図 - 設定根拠の「（概要）」部分	－	
		2.2 機能を兼用する機器を含む設備に係る設計 （1）使用済燃料貯蔵設備 （2）使用済燃料貯蔵槽冷却浄化設備 －燃料プール代替注水系	©	－	\bigcirc	- 機能単位の系統図 - 設備図書 - 設定根拠の「（概要）」部分 - 基本設計方針 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 機器の配置を明示した図面 - 構造図	－仕様書	

各段階	実績：3．3．1～3．3．3（5）計画：3．4．1～3．7．2	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	2.3 機能を兼用する機器を含む核燃料物質の取扱施設及び貯蔵施設の系統図に関する取 りまとめ	©	－	－	- 機能単位の系統図 - 様式－2 - 様式 -5	－核燃料物質の取扱施設及び貯蔵施設に係る系統図	－
	3．重量物の落下防止設計	©	－	－	- 基本設計方針 - 設備図書 - 「模擬燃料集合体の気中落下試験」	－燃料体等又は重量物の落下による使用済燃料貯蔵槽内の燃料体等の破損の防止及び使用済燃料貯蔵槽の機能喪失の防止に関する説明書	－
	4．使用済燃料プール監視の設計	©	－	－	- 基本設計方針 - 設置変更許可時の設計資料 - ウォークダウンの実施報告書 - 設備図書 - V－1－10－9 の「2． 1 非常用発電装置」に おいて設計した結果	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書 －使用済燃料貯蔵槽の温度，水位及び漏えいを監視する装置の検出器の取付箇所を明示した図面	－
	5．使用済燃料貯蔵槽冷却浄化系設備の設計 5.1 燃料プール冷却浄化系の設計						
	5．1．1 設備仕様に係る設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 －核燃料物質の取扱施設及び貯蔵施設に係る系統図 - 構造図 - 単線結線図 - 使用済燃料貯蔵槽の泠却能力に関する説明書	－仕様書
	5.1 .2 各機器固有の設計	©	－	－	- 設備図書 - 設置変更許可申請書	－使用済燃料貯蔵槽の泠却能力に関する説明書	－
	5.2 燃料プール代替注水系の設計	（ ）	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の解析結果 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 燃料取扱設備，新燃料貯蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達しないこと に関する説明書 - 構造図 - 使用済燃料貯蔵槽の泠却能力に関する説明書 - 使用済燃料貯蔵槽の水深の遮蔽能力に関する	- 仕様書 - 解析業務チェックシート

各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係$\text { © : 主担当 } O \text { : 関連 }$			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
								説明書 －核燃料物質の取扱施設及び貯蔵施設に係る機器の配置を明示した図面 －核燃料物質の取扱施設及び貯蔵施設に係る系統図 －単線結線図	
		5.3 燃料プールスプレイ系の設計	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可申請書	- 要目表 - 燃料取扱設備，新燃料貯蔵設備及び使用済燃料貯蔵設備の核燃料物質が臨界に達しないこと に関する説明書 - 使用済燃料貯蔵槽の泠却能力に関する説明書 - 使用済燃料貯蔵槽の水深の遮蔽能力に関する説明書 －設備別記載事項の設定根拠に関する説明書	－	
		6．制御棒貯蔵ハンガの容量変更に関する設計	©	－	－	－基本設計方針	- 要目表 - 設備別記載事項の設定根拠に関する説明書	－	
	3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3．3．3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3 （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
工	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
事	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式－8の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
査	3．5．3	検査計画の管理	－	©	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（0）	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－	

各段階	プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 ○：主担当 O ：関蓮			インプット	アウトプット	他の記録類
	計画：3．4．1～3．7．2	本店	発電所	供給者			
		－	（	\bigcirc	－検査要領書	－検査記録	－
3．7．2	識別管理及びトレーサビリティ	－	（）	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

発 雷 原 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \hline \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
	抜	－＊	新燃料又は使用済燃料を取扱 ら機器	燃料交換機（第 1，2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				原子炬建屋クレーン（第 1，2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				燃料チャンネル着脱機（第 1， 2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
		－＊	使用斎燃料貯蔵槽	使用済燃料プール（設計基準対象施設としての み第 1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			使用汶燃料戞般用容器ピット	キャスクピット（第1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			使用済燃料貯蔵ラック	使用済燃料貯蔵ラック（設計基準対象施設とし てのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			破損燃料賏蔵ラック	制御棒•破損燃料貯蔵ラック	既設設備であり，当時の調達管理に基づき実施している。				
			制御棒貯蔵ラック	制御棒貯蔵ラック	既設設備であり，当時の調達管理に基づき実施している。				
			制御棒貯蔵ハンガ	制御棒賏蔵ハンガ	既設設備であり，当時の調達管理に基づき実施している。				
			使用斎燃料貯蔵槽の温度，水位及び漏えいを監視する装置	燃料プール浍却浄化系ポンプ入口温度	既設設備であり，当時の調達管理に基づき実施している。				
				燃料貯蔵プール水温度	既設設備であり，当時の調達管理に基づき実施している。				
				燃料貯蔵プール水位	既設設備であり，当時の調達管理に基づき実施している。				
				燃料プールライナドレン漏えい	既設設備であり，当時の調達管理に基づき実施している。				
				使用済燃料プール水位／温度（ガイドパルス式）	I	\bigcirc	\bigcirc		
				使用済燃料プール水位／温度（ヒートサーモ式）	I	\bigcirc	\bigcirc		
			熱交換器	燃料プール泠却浄化系熱交換器 （設計基準対象施設としてのぬ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			ポンプ	燃料プール椧却浄化系ポンプ （設計基準対象施設としてのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			スキマサージ槽	スキマサージタンク （設計基準対象施設としてのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				スキマサージタンク～燃料プール椧却浄化系 ポンプ （設計基準対象施設としてのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				燃料プール泠却浄化系ポンプ～燃料プール泠却浄化系ろ過脱塩器バイパス配管分岐点 （設計基準対象施設としてのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
			主配管（スプレイヘッダを含 む。）	燃料プール椧却浄化系ろ過脱塩器バイパス配管分岐点～燃料プール泠却浄化系ろ過脱塩器 （第1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				燃料プール椧却浄化系ろ過脱塩器～燃料プー ル冷却浄化系ろ過脱塩器バイパス配管合流点 （第1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				燃料プール椧却浄化系ろ過脱塩器バイパス配管合流点～燃料プール椧却浄化系熱交換器 （設計基準対象施設としてのぬ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				

	$\begin{aligned} & \text { 設 } \\ & \text { 仯 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 級 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備考
			主配管（スプレイヘッダを含 む。）	燃料プール泠却净化系熱交換器～G41－F017 （設計基準対象施設としてのみ第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。			
				G41－F017～使用済燃料プール （設計基準対象施設としての庣第 1,2 号機共用）	既設設備であり，当時の調達管理に基づき実施している。			
				燃料プール椧却浄化系ポンプ入口配管分岐点 ～E11－F029A，B （第1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。			
				E11－F030A，B～燃料プール泠却浄化系熱交換器出口配管合流点 （第1，2号機共用）	既設設備であり，当時の調達管理に基づき実施している。			
				燃料プール椧却浄化系ろ過脱塩器バイパス配管分岐点～燃料プール泠却浄化系ろ過脱塩器 バイパス配管合流点	既設設備であり，当時の調達管理に基づき実施している。			
				燃料プール泠却浄化系ポンプ出口配管分岐点 ～燃料プール椧却浄化系ろ過脱塩器出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。			
			ポンプ	大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc	
			主配管（スプレイヘッダを含 む。）	燃料プール注水接続口（北），（東）～使用済籶料 プール	I	\bigcirc	\bigcirc	
				取水用ホース（250A：5m，10m，20m）	I	\bigcirc	\bigcirc	
				送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				注水用ヘッダ	I	\bigcirc	\bigcirc	
				送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
			ポンプ	大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc	
			主配管（スプレイヘッダを含 む。）	燃料プールスプレイ接続口（北），（東）～スプレ イノズル	I	\bigcirc	\bigcirc	
				取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				注水用ヘッダ	I	\bigcirc	\bigcirc	
				送水用ホース（150A： $1 \mathrm{~mm}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				スプレイ用ホース（65A：1m）	I	\bigcirc	\bigcirc	
				スプレイノズル	－	\bigcirc	－	原子力部門外の部署が調達し ているため，グレードは対象外 である。
			ポンプ	大容量送水ポンプ（タイプII）	I	\bigcirc	\bigcirc	複数回に分けて調達しており，調達内容により，グレードが異 なるため，最も上位のグレード を記載。
			主配管（スプレイヘッダを含 む。）	取水用ホース（250A：5m，10m，20m）	I	\bigcirc	\bigcirc	
				送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				放水砲	－	\bigcirc	－	原子力部門外の部署が調達し ているため，グレードは対象外 である。

注記＊：1ー」は，該当する系統が存在しない場合を示す。

VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画原子炉冷却系統施設

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレ—ド及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレ—ド及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

各段階	実績：3．3．1～3．3．3（5）計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
					－適用規格		
	4.2 基準地震動 S s，弾性設計用地震動 S d の概要	©	－	－	- 基本設計方針 - 設置変更許可申請書 - 設置変更許可時の設計資料	－耐震性に関する説明書	－
	4．3 地盤の支持性能に係る基本方針	©	－	－	- 基本設計方針 - 設置変更許可申請書 - 設置変更許可時の設計資料	－耐震性に関する説明書	－
	4.4 耐震設計を行ら設備の抽出	©	－	－	- 様式一 5 - 設備図書	－耐震性に関する説明書	－
	4.5 耐震設計方針の明確化	©	－	－	- 基本設計方針 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 適用規格	－耐震性に関する説明書	－
	4． 6 耐震設計上重要な設備を設置する施設の耐震設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 適用規格 - 業務報告書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート
	4.7 設計用床応答曲線の作成	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 業務報告書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート
	4.8 申請設備の耐震設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 適用規格 - 業務報告書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート
	4.9 波及的影響を及ぼすおそれのある施設の耐震評価	©	－	\bigcirc	- 基本設計方針 - 設備図書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート

各段階	$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3 }{ }^{2} \text { (5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
					- 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 適用規格 - 業務報告書		
	4． 10 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 適用規格 - 業務報告書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート
	4． 11 耐震設計の基本方針を準用して行う耐震評価	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計資料 - 既工認 - 適用規格 - 業務報告書	－耐震性に関する説明書	- 仕様書 - 解析業務チェックシート
	5．津波による損傷防止設計		防護施参照		「浸水防護施設」参照	「浸水防護施設」参照	「浸水防護施設」参照
	6．自然現象等への配慮に関する設計 6.1 自然現象等への配慮に関する基本方針	©	－	－	- 基本設計方針 - 設置変更許可申請書 - 設置変更許可時の設計資料	－発電用原子炉施設の自然現象等による損傷の防止に関する説明書	－
	6.2 外部事象防護対象施設の範囲	©	－	－	- 基本設計方針 - 設置変更許可申請書 - 技術基準規則 - 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」	－発電用原子炉施設の自然現象等による損傷の防止に関する説明書	－
	6．3 竜巻	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 適用規格	- 基本設計方針機器 - 発電用原子炬施設の自然現象等による損傷の防止に関する説明書 －強度に関する説明書	－
	6．4 火山の影響	©	－	－	－基本設計方針	－発電用原子炉施設の自然現象等による	－

各段階	実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組淘内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
					- 設備図書 - 業務報告書 - 適用規格	－設備別記載事項の設定根拠に関する説明書 －原子炉冷却系統施設に係る機器の配置 を明示した図面 - 原子炉冷却系統施設に係る系統図 - 構造図 - クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書 －流体振動又は温度変動による損傷の防止に関する説明書	
	21．低圧灲心スプレイ系に関する設計	©	\bigcirc	\bigcirc	- 基本設計方針 - 設備図書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －原子炉泠却系統施設に係る機器の配置 を明示した図面 - 原子炉冷却系統施設に係る系統図 - 構造図	－仕様書
	22．代替水源移送系に関する設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －原子炉冷却系統施設に係る機器の配置 を明示した図面 - 原子炉冷却系統施設に係る系統図 - 構造図	－仕様書
	23．高圧炉心スプレイ補機冷却水系（高圧炉心スプ レイ補機冷却海水系を含む。）に関する設計	©	－	－	- 基本設計方針 - 設備図書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －原子炉冷却系統施設に係る機器の配置 を明示した図面 - 原子炬冷却系統施設に係る系統図 - 構造図	－
	24．原子炉補機代替冷却水系に関する設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －原子炉冷却系統施設に係る機器の配置	－仕様書

各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 © ：主担当 O ：開連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
								を明示した図面 - 原子炉冷却系統施設に係る系統図 - 構造図	
	3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3.3.3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	$\text { 3.3. } 3$ （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	（	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
工 事 及	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式－8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
び	3．5．3	検査計画の管理	－	©	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
本	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	©	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
旦	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式 -8 の「確認方法」欄 - 工事の方法	－検査要領書	－	
			－	（	\bigcirc	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレ—サビリティ	－	（ ）	\bigcirc	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	䍃	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$				考
				ポンプ	原子炬再循噮ポンプ	既設設備であ実施している	当時の調	理に基づき		
					原子炉圧力容器～残留熱除去系原子炉停止時冷却モ ード吸込配管分岐点	既設設備であ実施している。	当時の調	理に基づき		
					残留熱除去系原子炉停止時泠却モード吸込配管分岐点～原子炉再循環ポンプ（A）	既設設備であ実施している。	当時の調	理に基づき		
					原子炉再循環ポンプ（A）～残留熱除去系原子炉停止時冷却モード A 系注入配管合流点	既設設備であ実施している	当時の調	理に基づき		
		原			残留熱除去系原子炉停止時冷却モード A 系注入配管合流点～原子炉圧力容器	既設設備であ実施している	当時の調	理に基づき		
		$\begin{aligned} & \text { 烚 } \\ & \text { 却 } \\ & \text { 材 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 帥 } \end{aligned}$		原子炉圧力容器～原子炉再循環ポンプ（ ）	既設設備であり実施している	, 当時の調	理に基づき		
		$\begin{aligned} & \text { 楳 } \\ & \text { 矒 } \end{aligned}$	$\begin{aligned} & \text { 復 } \\ & \text { 噮 } \end{aligned}$	主配管	原子炉再循環ポンプ（B）～残留熱除去系原子炉停止時冷却モードB系注入配管合流点	既設設備であり実施している。	，当時の調	理に基づき		
		$\begin{aligned} & \text { 筬 } \end{aligned}$			残留熱除去系原子炉停止時冷却モード B 系注入配管合流点～原子炉圧力容器	既設設備であ実施している	，当時の調	理に基づき		
					残留熱除去系原子师停止時冷却モード吸込配管分岐点～E11－F014A，B	$\begin{aligned} & \text { 既設設備であ } \\ & \text { 㬰施している。 } \end{aligned}$, 当時の調	理に基づき		
					E11－F020A～残留熱除去系原子炉停止時冷却モード A系注入配管合流点	既設設備であ実施している	，当時の調	理に基づき		
					E11－F020B～残留熱除去系原子炉停止時冷却モード B系注入配管合流点	既設設備であり実施している	, 当時の調	理に基づき		
					原子炉再循澴ポンプ（B）入口配管分岐点～G31－F001	既設設備であ実施している。	当時の調	理に基づき		
		$\begin{aligned} & \text { 原 } \\ & \text { 炩 } \\ & \text { 郎 } \\ & \text { 木才 } \\ & \text { 穓 } \\ & \text { 犕 } \end{aligned}$			主蒸気逃がし安全升逃がし升機能用アキュムレータ	既設設備であ実施している	, 当時の調	理に基づき		
				容器	主蒸気逃がし安全弁自動减圧機能用アキュムレータ	既設設備であ実施している。	当時の調	理に基づき		
				主蒸気流量制限器	主蒸気流量制限器	既設設備であ実施している。	, 当時の調	理に基づき		
					B21－F001A，C，E，H，J，L（ 主 蒸気逃が し安全弁 （A，C，E，H，J，L））	既設設備であ実施している	当時の調	理に基づき		
				安全弁及び逃がし弁	B21－F001B，D，F，G，K（主 蒸気逃が し安全弁 （B，D，F，G，K））	既設設備であ実施している	当時の調	理に基づき		
				主要弁	$\begin{aligned} & \text { B21-F002A, B, C, D(主 蒸 気 第 一 隔 離 弁 } \\ & (A),(B),(C),(D)) \end{aligned}$	既設設備であり実施している	，当時の調	理に基づき		
				主要升	$\begin{aligned} & \hline \text { B21-F003A, B, C, D(主 蒸 気 第 二隔離弁 } \\ & \text { (A). (B). (C). (D)) } \end{aligned}$	既設設備であ実施している	，当時の調	理に基づき		
				主配管	原子炉圧力容器 \sim B21－F001D 分岐点	既設設備であり実施している。	当時の調	理に基づき		
					B21－F001D 分岐点～原子炬格納容器配管貫通部（X－ 10A）	既設設備である実施している。	, 当時の調	理に基づき		
					原子炬格納容器配管貫通部 $(X-10 A) \sim$ 主蒸気ヘッダ	既設設備であり実施している。	当時の調	理に基づき		
					B21－F001A 分岐点 \sim B21－F001A	既設設備であ実施している。	当時の調	理に基づき		
					B21－F001A～T－クエンチャ	既設設備であ実施している	, 当時の調	理に基づき		
					B21－F001B 分岐点 \sim B21－F001B	既設設備であ実施している	当時の調	理に基づき		
					B21－F001B～T－クエンチャ	既設設備であり実施している。	, 当時の調	理に基づき		
					B21－F001C 分岐点 \sim B21－F001C	既設設備であり実施している。	, 当時の調	理に基づき		
こ					B21－F001C～T－クエンチャ	既設設備であ実施している。	当時の調	理に基づき		
					B21－F001D 分岐点 \sim B21－F001D	既設設備であ実施している。	, 当時の調	理に基づき		
					B21－F001D～T－クエンチャ	既設設備であ実施している	当時の調	理に基づき		
					原子炉圧力容器 \sim B21－F001F 分岐点	既設設備であ実施している。	当時の調	理に基づき		

$\begin{aligned} & \text { 発 } \\ & \text { 雷 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 種 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { 亡 } \\ & \text { ド } \end{aligned}$				
$\begin{aligned} & \text { 原 } \\ & \text { 㶦 } \\ & \text { 淰 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 鴋 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { 循 } \\ & \text { 譞 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 主 } \\ & \text { 巹 } \\ & \text { 采 } \end{aligned}$	主配管	B21－F001F 分岐点～原子炬格納容器配管貫通部（X－10B）	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~B}$ ）～主蒸気ヘッダ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001E 分岐点～B21－F001E	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001E～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001F 分岐点～B21－F001F	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001F～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉圧力容器 \sim B21－F001H 分岐点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001H 分岐点～原子炬格納容器配管貫通部（X－10C）	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉格納容器配管貫通部（X－10C）～主蒸気へッダ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001G 分岐点～B21－F001G	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001G～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001H 分岐点～B21－F001H	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001H～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉隔離時冷却系蒸気配管分岐点～B21－F001L 分岐点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001L 分岐点～原子炬格納容器配管貫通部（X－10D）	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉格納容器配管貫通部（X－10D）～主蒸気ヘッダ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001J 分岐点～B21－F001J	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001J～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001K 分岐点 \sim B21－F001K	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001K～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001L 分岐点～B21－F001L	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F001L～T－クエンチャ	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気ヘッダ	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気ヘッダ～主蒸気止め弁	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気ヘッダ～タービンバイパス弁	既設設備であり，当時の調達管理に基 づき実施している。				
				タービンバイパス弁～タービンバイパス弁減圧管	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気へッダ～原子炉給水ポンプ駆動用蒸気タービン	既設設備であり，当時の調達管理に基 づき実施している。				
				原子炉給水ポンプ駆動用蒸気タービン入口配管分岐点 ～N38－F023A，B 及び N38－F024A，B	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F023A～主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（A）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F023C～主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（C）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F023E～主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（E）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 種 } \\ & \text { 類 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & 亡 \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 僱 } \\ & \text { 泠 } \\ & \text { 刦 } \\ & \text { 分 } \\ & \text { 循 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 主 } \\ & \text { 卺 } \\ & \text { 藥 } \end{aligned}$	主配管	B21－F023H～主蒸気逃がし安全弁自動減圧機能用アキ ュムレータ（H）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F023J～主蒸気逃がし安全弁自動減圧機能用アキ ユムレータ（J）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F023L～主蒸気逃がし安全弁自動減圧機能用アキ ユムレータ（L）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （A）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（A）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （C）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（C）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （E）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（E）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （H）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（H）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （J）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（J）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （L）～主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（L）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （A）出口配管合流点～B21－F001A	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （C）出口配管合流点～B21－F001C	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （E）出口配管合流点～B21－F001E	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （H）出口配管合流点～B21－F001H	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （J）出口配管合流点～B21－F001J	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁自動減圧機能用アキュムレータ （L）出口配管合流点～B21－F001L	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022A～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（A）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022B～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（B）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022C～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（C）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022D～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（D）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022E～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（E）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022F～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（F）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022G～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（G）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022H～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（H）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022J～主蒸気逃がし安全弁逃がし弁機能用アキ ュムレータ（J）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022K～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（K）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				B21－F022L～主蒸気逃がし安全弁逃がし弁機能用アキ ユムレータ（L）出口配管合流点	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （A）～B21－F001A	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （B）～B21－F001B	既設設備であり，当時の調達管理に基 づき実施している。				
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （C）～B21－F001C	既設設備であり，当時の調達管理に基 づき実施している。				

発 電 原 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$	7 䁚保 －考 嫢 3 ネ定 設 メ 計 ン 開 ト 発シ の $\bar{\tau}$ 適 ム 用 計 有 画 無			考
$\begin{aligned} & \text { 原 } \\ & \text { 烸 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 付 } \\ & \text { 循 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （D）～B21－F001D	$\begin{aligned} & \text { 既設設 } \\ & \text { き実施 } \end{aligned}$	り, 当時の訳 る。	管理に基づ		
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （E）～B21－F001E	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （F）～B21－F001F	$\begin{aligned} & \hline \text { 既設設价 } \\ & \text { き実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
		素	主配管	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （G）～B21－F001G	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
		気	王配官	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （H）～B21－F001H	既設設 き実施し	$\begin{aligned} & \text { り, 当時の該 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （J）～B21－F001J	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （K）～B21－F001K	既設設侵 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				主蒸気逃がし安全弁逃がし弁機能用アキュムレータ （L）～B21－F001L	既設設備 き実施し	当時の調 る。	管理に基づ		
		$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$		B21－F052A，B（給水系第二隔離弁（A），（B））	既設設 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
			主要升	B21－F053A，B（給水系第一隔離弁（A），（B））	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
			主配管	復水浄化系（復水ろ過装置）～復水浄化系（復水脱塩装置）	既設設便 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				復水浄化系 $($ 復水脱塩装置）$~$ 高圧復水ポンプ	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				高圧復水ポンプ入口配管分岐点～N21－F045	既設設便 き実施	り，当時の調 る。	管理に基づ		
				制御棒駆動水圧系復水積算流量計用配管分岐点～N21－ F041	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				高圧復水ポンプ～低圧第 1 給水加熱器ドレン冷却器	既設設価 き実施	$\begin{aligned} & \text { り, 当時の該 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				低圧第 1 給水加熱器ドレン泠却器～低圧第 1 給水加熱器	既設設備 き実施し	り, 当時の調 る。	管理に基づ		
				低圧第 1 給水加熱器～低圧第 2 給水加熱器	既設設 き実施し	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				低圧第 2 給水加熱器 \sim 低圧第 3 給水加熱器	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の語 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				低圧第3給水加熱器～低圧第 4 給水加熱器	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				低圧第 4 給水加熱器～電動機駆動原子炬給水ポンプ	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				給水ポンプ入口配管分岐点～タービン駆動原子炉給水 ポンプ	既設設 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				タービン駆動原子炉給水ポンプ～給水ポンプ出口配管合流点	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				電動機駆動原子炉給水ポンプ～高圧第 1 給水加熱器	既設設 き実施	$\begin{aligned} & \text { り, 当時の詭 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				高圧第 1 給水加熱器～高圧第 2 給水加熱器	既設設 き実施	り，当時の認 る。	管理に基づ		
				高圧第 2 給水加熱器 \sim B21－F050A，B	既設設借 き実施	$\begin{aligned} & \text { り, 当時の詭 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				B21－F050A～原子炉冷却材浄化系A系注入配管合流点	既設設儲 き実施	$\begin{aligned} & \text { り, 当時の㳓 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉冷却材浄化系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－12A）	既設設 き実施	り，当時の訳 る。	管理に基づ		
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）～原子炉圧力容器	既設設備 き実施	$\begin{aligned} & \text { り, 当時の詭 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				B21－F050B～原子炉冷却材浄化系 B 系注入配管合流点	既設設借 き実施し	$\begin{aligned} & \text { り, 当時の詭 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉冷却材浄化系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－12B）	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（ X －12B）～原子炉圧力容器	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の詭 } \\ & \text { る。 } \end{aligned}$	管理に基づ		

発 雷 原 子 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	グ l ド				考
$\begin{aligned} & \text { 原 } \\ & \text { 沵 } \\ & \text { 令 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	原炉椧却材の循噮設備		容器	低圧第 1 給水加熱器ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				
			安全弁及び逃がし弁	N23－F020A，B（高圧第 2 給水加熱器（A），（B）胴体逃し卉）	既設設備であり，当時の調達管理に基づ き実施している。				
				N23－F021A，B（高圧第 1 給水加熱器（A），（B）胴体逃し弁）	既設設備であり，当時の調達管理に基づ き実施している。				
				N23－F055A，B（低圧第 4 給水加熱器（A），（B）胴体逃し弁）	既設設備であり，当時の調達管理に基づ き実施している。				
				N23－F057A，B（低圧第 3 給水加熱器（A），（B）胴体逃し弁）	既設設備であり，当時の調達管理に基づ き実施している。				
			主配管	N22－F022A，B～高圧第 2 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N22－F023A，B～高圧第2給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				高圧第 2 給水加熱器 \sim 高圧第 1 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N22－F024A，B～高圧第 1 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				高圧第1給水加熱器～低圧第4給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第 4 給水加熱器 \sim 低圧第 3 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第3給水加熱器～低圧第 2 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第 2 給水加熱器～低圧第 1 給水加熱器ドレンタン ク	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第1給水加熱器～低圧第1給水加熱器ドレンタン ク	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第1給水加熱器ドレンタンク～低圧第1給水加熱器ドレン冷却器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧第 1 給水加熱器ドレン冷却器～復水器	既設設備であり，当時の調達管理に基づ き実施している。				
		$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 争 } \\ & \text { 华 } \end{aligned}$	主配管	復水給水系～復水ろ過装置復水ろ過器	既設設備であり，当時の調達管理に基づ き実施している。				
				復水万過装置復水万過器～復水給水系	既設設備であり，当時の調達管理に基づ き実施している。				
				復水給水系～復水脱塩装置復水脱塩塔	既設設備であり，当時の調達管理に基づ き実施している。				
				復水脱塩装置復水脱塩塔～復水給水系	既設設備であり，当時の調達管理に基づ き実施している。				
		$\begin{aligned} & \text { 抽 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$	主配管	N36－F001A，B～高圧第 2 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N36－F003A，B～高圧第 1 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N36－F006A，B～低圧第 4 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N36－F009A，B～低圧第3給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧タービン～低圧第 2 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧タービン～低圧第 1 給水加熱器	既設設備であり，当時の調達管理に基づ き実施している。				
				N36－F022A，B～原子炉給水ポンプ駆動用蒸気タービン	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬給水ポンプ駆動用蒸気タービン～N36－F024A，B	既設設備であり，当時の調達管理に基づ き実施している。				
	残留涂素設備	残留涂係	熱交換器	残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づ き実施している。				
			ポンプ	残留熱除去系ポンプ（A），（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系ポンプ（C）	既設設備であり，当時の調達管理に基づ き実施している。				

発 雷 原 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { レ } \\ & \text { ド } \end{aligned}$				
$\begin{aligned} & \text { 原 } \\ & \text { 炩 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 䛌 } \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 蒢 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	残留涂係		残留熱除去系ストレーナ（A）	既設設 き実施	り, 当時の訃 る。	管理に基づ		
			万過装置	残留熱除去系ストレーナ（B）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				残留熱除去系ストレーナ（C）	既設設 き実施		管理に基つ		
				E11－F048A（残留熱除去系A系注入ライン逃がし弁）	既設設律 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F048B（残留熱除去系 B 系注入ライン逃がし弁）	既設設佰 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基つ		
			安全弁及び逃がし弁	E11－F048C（残留熱除去系 C 系注入ライン逃がし弁）	既設設 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基つ		
				E11－F050A，B（残留熱除去系 A，B 系停止時冷却吸込隔離弁間逃がし弁）	既設設信 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F054A，B（残留熱除去系 A，B 系停止時冷却吸込ライ ン逃がし弁）	既設設揀 き実施	り, 当時の諾 る。	管理に基つ		
				E11－F003A，B（残留熱除去系熱交換器（A），（B）バイパス弁）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F004A，B，C（残留熱除去系 A，B，C 系低圧注水系注入隔離弁）	既設設揀 き実施	り, 当時の詪 る。	管理に基づ		
				E11－F005A，B，C（残留熱除去系 A，B，C 系低圧注水系注入試験可能逆止弁）	既設設使 き実施		管理に基づ		
				E11－F008A，B（残留熱除去系熱交換器（A），（B）出口弁）	I	\bigcirc	\bigcirc		
				E11－F010A，B（残留熱除去系 A，B 系格納容器スプレイ隔離弁）	既設設 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F011A，B（残留熱除去系 A，B 系サプレッションチェ ンバスプレイ隔離弁）	既設設 き実施		管理に基づ		
			主要弁	E11－F012A，B（残留熱除去系A，B 系試験用調整弁）	$\begin{aligned} & \text { 既設設 } \\ & \text { き実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F015A，B（残留熱除去系 A，B 系停止時冷却吸込第一隔離弁）	既設設侕 き実施		管理に基づ		
				E11－F016A，B（残留熱除去系 A，B 系停止時冷却吸込第二隔離弁）	既設設信 き実施	$\begin{aligned} & \text { り, 当時の該 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F018A，B（残留熱除去系 A，B 系停止時冷却注入隔離弁）	既設設揀 き実施	当時の訯 る。	管理に基づ		
				E11－F019A，B（残留熱除去系 A，B 系停止時冷却試験可能逆止弁）	既設設信 き実施		管理に基づ		
				E11－F021（残留熱除去系ヘッドスプレイ注入隔離弁）	既設設 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基つ		
				E11－F022（残留熱除去系ヘッドスプレイ注入逆止弁）	既設設佰 き実施	り，当時の訣 る。	管理に基づ		
			主配管	原子炉圧力容器～残留熱除去系原子炉停止時冷却モー ド吸込配管分岐点	既設設 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				残留熱除去系原子炉停止時冷却モード吸込配管分岐点 ～E11－F014A，B	既設設僻 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基つ		
				E11－F014A～原子炬格納容器配管貫通部（X－33A）	既設設信 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（ X －33A）	既設設律 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基つ		
				原子炬格納容器配管貫通部（X－33A）～サプレッション チェンバ出口配管 A 系合流点	既設設律 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	既設設揀 き実施	り, 当時の渞 る。	管理に基つ		
				原子炉格納容器配管貫通部（X－214A）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－214A）～サプレッション チェンバ出口配管 A 系合流点	既設設揀 き実施	り，当時の詭 る。	管理に基づ		
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸达配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		

$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 原 } \\ & \text { 煸 } \\ & \text { 施 } \\ & \text { の } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$	7 賀保 －专 規 3 ネ定 設メ 計ン 開 ト 発シ のデ 適 ム 用 計 有 画 無	7 品保 7 質 安 4 ネ定 調メ 達 ン のシ 適 ㅈㅡㅡ 用テ 有 ム 無 計		考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 稌 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 奚 } \end{aligned}$	主配管	残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	既設設 き実施	当時の	管理に基づ		
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設倍 き実施) , 当時の調	管理に基づ		
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点 ～残留熱除去系熱交換器（A）バイパス配管合流点	既設設佑 き実施	当時の調	管理に基づ		
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	既設設 き実施	当時の調	管理に基づ		
				残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点	既設設倸 き実施	$0 \text {, 当時の訳 }$	理に基づ		
				原子炉停止時冷却モード A 系注入配管分岐点～ドライ ウェルスプレイ注入配管 A 系分岐点	既設設倍 き実施	の, 当時の調	管理に基づ		
				ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系A系注入配管合流点	既設設侑 き実施	$\begin{aligned} & \text {, 当時の謆 } \\ & \text { 。。 } \end{aligned}$	理に基づ		
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）	既設設倸 き実施	当時の調	管理に基づ		
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）～原子炉圧力容器	既設設㑑 き実施	$0 \text {, 当時の調 }$	管理に基づ		
				原子炉停止時冷却モード A 系注入配管分岐点～サプレ ッションプール水泠却モード A 系戻り配管分岐点	既設設借 き実施	当時の調	管理に基づ		
				サプレッションプール水冷却モード A 采戻り配管分岐点～サプレッションチェンバスプレイ注入配管 A 系分岐点	既設設借 き実施	，当時の調	管理に基づ		
				サプレッションチェンバスプレイ注入配管 A 系分岐点 ～原子炉格納容器配管貫通部（X－32A）	既設設侑 き実施	$\begin{aligned} & \text { 2, 当時の調 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				原子炬格納容器配管貫通部（ X －32A ）	既設設侑 き実施	当時の調	管理に基づ		
				原子炬格納容器配管貫通部（X－32A）～E11－F020A	既設設使 き実施	当時の調	管理に基づ		
				E11－F020A～残留熱除去系原子炉停止時冷却モード A系注入配管合流点	既設設侑 き実施	，当時の調	管理に基づ		
				残留熱除去系原子炉停止時冷却モード A 系注入配管合流点～原子炉圧力容器	既設設使 き実施) , 当時の調	管理に基づ		
				ドライウェルスプレイ注入配管 A 系分岐点～原子炉格納容器代替スプレイ泠却系 A 系注入配管合流点	I	\bigcirc	\bigcirc		
				原子炉格納容器代替スプレイ冷却系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－30A）	I	\bigcirc	\bigcirc		
				原子炬格納容器配管貫通部（ X －30A ）	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ管	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ管入口配管 A 系分岐点～原子炉格納容器配管貫通部（X－37）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－37）～E11－F022	既設設備であり，当時の調達管理に基づ き実施している。				
				E11－F022～原子炉圧力容器	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションプール水冷却モード A 奚戻り配管分岐点～原子炉格納容器配管貫通部（X－215A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－215A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－215A）～サプレッション プール水冷却配管 A 系開放端	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションチェンバスプレイ注入配管 A 系分岐点 ～原子炉格納容器配管貫通部（X－213A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－213A）	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションチェンバスプレイ管	既設設備であり，当時の調達管理に基づ き実施している。				
				E11－F029A～残留熱除去系ポンプ（A）入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				

発 電 原 㚖 炉 施 設 の種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	グ l ド				
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	残留涂集備	$\begin{aligned} & \text { 残 } \\ & \text { 蔔 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	主配管	使用済燃料プール A 系入口配管分岐点～E11－F030A	既設設備であり，当時の調達管理に基づ き実施している。				
				E11－F014B～原子炉格納容器配管貫通部（X－33B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－33B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬格納容器配管貫通部（X－33B）～サプレッション チェンバ出口配管 B 系合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－214B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－214B）～サプレッション チェンバ出口配管 B 系合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バ イパス配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B） バイパス配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）バイパス配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モード B 系注入配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬停止時冷却モード B 系注入配管分岐点～ドライ ウェルスプレイ注入配管 B 系分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ注入配管 B 系分岐点～低圧代替注水系 B 系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（ X －31B）～原子炉圧力容器	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉停止時冷却モード B 系注入配管分岐点～サプレ ッションプール水冷却モード B 系戻り配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションプール水冷却モード B 系戻り配管分岐点～サプレッションチェンバスプレイ注入配管 B 系分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションチェンバスプレイ注入配管 B 系分岐点 ～原子炉格納容器配管貫通部（X－32B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－32B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－32B）～E11－F020B	既設設備であり，当時の調達管理に基づ き実施している。				
				E11－F020B～残留熱除去系原子炉停止時冷却モード B系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系原子炉停止時冷却モード B 系注入配管合流点～原子炉圧力容器	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ注入配管 B 系分岐点～原子炉格納容器代替スプレイ椧却系 B 系注入配管合流点	I	\bigcirc	\bigcirc		
				原子炉格納容器代替スプレイ泠却系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－30B）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（X－30B）	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションチェンバスプレイ注入配管 B 系分岐点 ～原子炉格納容器配管貫通部（X－213B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－213B）	既設設備であり，当時の調達管理に基づ き実施している。				
				サプレッションプール水冷却モード B 系戻り配管分岐点～原子炉格納容器配管貫通部（X－215B）	既設設備であり，当時の調達管理に基づ き実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 雷 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
原炩泠却統施設	$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 涂 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			原子炉格納容器配管貫通部（X－215B）	既設設幟 き実施	当時の調	管理に基づ		
				原子炉格納容器配管貫通部（X－215B）～サプレッション プール泠却配管 B 系開放端	既設設借 き実施	当時の詪	管理に基づ		
				E11－F029B～残留熱除去系ポンプ（B）入口配管合流点	既設設恠 き実施	当時の調	管理に基づ		
		$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \end{aligned}$		使用斎燃料プール B 系入口配管分岐点～E11－F030B	既設設借 き実施	当時の調	管理に基づ		
		$\begin{aligned} & \text { 除 } \\ & \text { 係 } \end{aligned}$	王配官	残留熱除去系ストレーナ（C）～原子炉格納容器配管貫通部（X－214C）	既設設備 き実施	当時の詪	管理に基づ		
				原子炉格納容器配管貫通部（X－214C）～残留熱除去系ポ ンプ (C)	既設設佑 き実施	当時の調	管理に基づ		
				残留熱除去系ポンプ（C）～原子炉格納容器配管貫通部 $(\mathrm{X}-31 \mathrm{C})$	既設設備 き実施	当時の䛯	管理に基づ		
				原子炬格納容器配管貫通部（ X －31C）～原子炉圧力容器	既設設侑 き実施	当時の調	管理に基づ		
		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䋉 } \\ & \text { 器 } \\ & \text { ィ } \\ & \text { ル } \\ & \text { ミ゙ } \\ & \text { シ } \\ & \text { 系 } \end{aligned}$	ポンプ	大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc		
			安全弁及び逃がし弁	T63－F006（原子炉格納容器フィルタベント系排気ライ ン安全弁）	I	\bigcirc	\bigcirc		
				T48－F019（ドライウェルベント用出口隔離弁）	I	\bigcirc	\bigcirc		
				T48－F022（サプレッションチェンバベント用出口隔離弁）	I	\bigcirc	\bigcirc		
			要升	T63－F001（原子炉格納容器フィルタベント系ベントラ イン隔離弁（A））	I	\bigcirc	\bigcirc		
				T63－F002（原子炉格納容器フィルタベント系ベントラ イン隔離弁（B））	I	\bigcirc	\bigcirc		
			主配管	原子炉格納容器配管貫通部（X－230）	既設設借 き実施	当時の調	管理に基づ		
				原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点	I	\bigcirc	\bigcirc		
				原子炬格納容器配管貫通部（ X －81）	既設設胍 き実施	当時の調	管理に基づ		
				原子炉格納容器配管貫通部（X－81）～ドライウェル出口配管分岐点	既設設借 き実施	当時の調	管理に基づ		
				サプレッションチェンバ出口配管分岐点 3～フィルタ装置	I	\bigcirc	\bigcirc		
				フィルタ装置～フィルタ装置出口側ラプチャディスク	I	\bigcirc	\bigcirc		
				フィルタ装置出口側ラプチャディスク～排気管	I	\bigcirc	\bigcirc		
				フィルタ装置（A）～フィルタ装置（B）	I	\bigcirc	\bigcirc		
				フィルタ装置（B）～フィルタ装置（C）	1	\bigcirc	\bigcirc		
				フィルタ装置連結管	I	\bigcirc	\bigcirc		
				可搬型窒素ガス供給装置接続口（屋外）～T48－F011 入口側合流点	I	\bigcirc	\bigcirc		
				可搬型窒素ガス供給装置接続口（屋内）～ドライウェル窒素供給配管合流点	I	\bigcirc	\bigcirc		
				T48－F011 入口側合流点～T48－F002 出口側合流点	I	\bigcirc	\bigcirc		
				T48－F002 出口側合流点～原子炉格納容器配管貫通部 （ $\mathrm{X}-80$ ）	既設設備であり，当時の調達管理に基づ き実施している。 既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬格納容器配管貫通部（ X －80）					
				ドライウェル窒素供給配管分岐点 2～原子炉格納容器配管貫通部（X－281）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（ $\mathrm{X}-281$ ）	1	\bigcirc	\bigcirc		
				ドライウェル窒素供給配管分岐点 1～T48－F066	I	\bigcirc	\bigcirc		

$\begin{aligned} & \text { 発 } \\ & \text { 雷 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \stackrel{1}{2} \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 炧 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$				T48－F066～フィルタ装置入口配管合流点	I	\bigcirc	\bigcirc		
				フィルタ装置水補給接続口（屋外）～フィルタ装置	I	\bigcirc	\bigcirc		
				フィルタ装置水補給接続口（屋内）～フィルタ装置	I	\bigcirc	\bigcirc		
		炉		窒素供給用ホース（50A： 5 m ）	I	\bigcirc	\bigcirc		
		容		室素供給用ヘッダ	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { ィ } \end{aligned}$		可搬型窒素がス供給装置接続管	I	\bigcirc	\bigcirc		
		※゙		取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
	残			送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
	除			注水用ヘッダ	I	\bigcirc	\bigcirc		
	備			送水用ホース（65A ： 20 m ）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（ X －230）	既設設備 き実施	当時の佩	管理に基づ		
				原子炬格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 耐 } \\ & \text { 保 } \end{aligned}$		原子炉格納容器配管貫通部（ X － 81 ）	既設設備 き実施	当時の調	管理に基づ		
		$\begin{aligned} & \text { 化 } \\ & \text { 柋 } \end{aligned}$	主配管	原子炉格納容器配管貫通部（X－81）～ドライウェル出口配管分吱点	既設設備 き実施	当時の調	管理に基づ		
		系		サプレッションチェンバ出口配管分岐点 2～T48－F044	既設設備 き実施	当時の詭	管理に基づ		
				T48－F044～非常用ガス処理系フィルタ装置出口配管合流点	既設設備 き実施し	当時の調	管理に基づ		
				非常用ガス処理系フィルタ装置出口配管合流点～排気筒	既設設借 き実施	当時の調	管理に基づ		
	韭常炉忩浍却設備の他原炉注水備	$\begin{aligned} & \text { 高 } \\ & \text { 獁 } \\ & \text { 心 } \\ & \text { ス } \\ & \text { と } \\ & \text { T } \\ & \text { 系 } \end{aligned}$	ポンプ	高圧炉心スプレイ系ポンプ	既設設侑 き実施	当時の調	管理に基づ		
			容器	復水貯蔵タンク	既設設備 き実施	当時の調	管理に基づ		
			万過装置	高圧炉心スプレイ系ストレーナ	既設設使 き実施	当時の調	管理に基づ		
			安全弁及び逃がし升	E22－F023（高圧炉心スプレイ系ポンプ吸込ライン逃が し弁）	既設設揀 き実施	当時の調	管理に基づ		
				E22－F001（高圧炉心スプレイ系ポンプ復水貯蔵タンク吸込弁）	既設設備 き実施	当時の詪	管理に基づ		
			主要弁	E22－F003（高圧炬心スプレイ系注入隔離弁）	既設設揀 き実施し	当時の調	管理に基づ		
				E22－F004（高圧炉心スプレイ系注入ライン試験可能逆止弁）	既設設侑 き実施	当時の䛯	管理に基づ		
			主配管	復水貯蔵タンク～E22－F014	既設設借 き実施	当時の調	管理に基づ		
				E22－F014～補給水よりの第一アンカ	既設設使 き実施	当時の調	管理に基づ		
				補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点	既設設㙌 き実施	当時の調	管理に基づ		
				復水貯蔵タンク出口配管分岐点～直流駆動低圧注水系 ポンプ吸込配管分岐点	I	\bigcirc	\bigcirc		
				直流駆動低圧注水系ポンプ吸达配管分岐点～E22－F001	既設設備であり，当時の調達管理に基づ き実施している。				
				E22－F001～高圧炬心スプレイ系ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
				高圧炉心スプレイ系ストレーナ～原子炉格納容器配管貫通部（X－219）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－219）	既設設備であり，当時の調達管理に基づ き実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 䨓 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & 1 \\ & \text { ド } \end{aligned}$	ᄀ 品 保 －責 规 3 ネ定 設 メ 計 ン 開 ト 発 シ のデ 適 ム 用 計 有 画 無			考
$\begin{aligned} & \text { 原 } \\ & \text { 学 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	韭常炉忩椧却備言他原炉注水設備			原子灲格納容器配管貫通部（X－219）～高圧灲心スプレ イ系ポンプ入口配管合流点	既設設 き実施	，当時の る。	管理に基づ		
				高圧炉心スプレイ系ポンプ～直流駆動低圧注水系ポン プ吐出配管合流点	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				直流駆動低圧注水系ポンプ吐出配管合流点～原子炉格納容器配管貫通部（X－35）	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 埇 } \\ & \text { 省 } \end{aligned}$	主配管	原子炬格納容器配管貫通部（ X －35）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { Z } \\ & \text { プ } \\ & \text { in } \end{aligned}$	主配管	原子炬格納容器配管貫通部（ X－ 35 ）～原子炉圧力容器	既設設揀 き実施		管理に基づ		
		系		復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
				低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
				高圧代替注水系吸込配管分岐点～E51－F001	既設設揀 き実施	，当時の調 る。	管理に基づ		
			ポンプ	低圧炉心スプレイ系ポンプ	I	\bigcirc	\bigcirc		
			万過装置	低圧炉心スプレイ系ストレーナ	既設設仡 き実施	，当時の調	管理に基づ		
			安全弁及び逃がし弁	E21－F017（低圧炬心スプレイ系注入ライン逃がし弁）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { b。 } \\ & \hline \end{aligned}$	管理に基づ		
				E21－F003（低圧炉心スプレイ系注入隔離弁）	既設設揀 き実施	$\begin{aligned} & \text {, 当時の訳 } \\ & \text {, } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { 低 } \\ & \text { 压 } \end{aligned}$	主要升	E21－F004（低圧炉心スプレイ系注入ライン試験可能逆止弁）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { 念 } \\ & \text { ス } \end{aligned}$		低圧炉心スプレイ系ストレーナ～原子炉格納容器配管貫通部（X－217）	既設設倍 き実施	$\begin{aligned} & 0 \text {, 当時の訳 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
		系		原子炉格納容器配管貫通部（X－217）	既設設㷌 き実施	$\begin{aligned} & \text { 0, 当時の訳 } \\ & \text { 3。 } \end{aligned}$	管理に基づ		
			主配管	原子炉格納容器配管貫通部（X－217）～低圧炉心スプレ イ系ポンプ	既設設仡 き実施		管理に基づ		
			主配管	低圧炉心スプレイ系ポンプ～原子炉格納容器配管貫通部（X－34）	既設設偗 き実施		管理に基づ		
				原子炬格納容器配管貫通部（ X －34）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \\ & \hline \end{aligned}$	管理に基づ		
				原子炬格納容器配管貫通部（ X－34）～原子炬圧力容器	既設設㷌 き実施	$\begin{aligned} & \text { 9, 当時の訳 } \\ & \text { 3。 } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 贷 } \\ & \text { 替 } \\ & \text { 永 } \\ & \text { 系 } \end{aligned}$	ポンプ	高圧代替注水系タービンポンプ	I	\bigcirc	\bigcirc		
			容器	復水貯蔵タンク	既設設仡 き実施	，当時の鿉 る。	管理に基づ		
			主配管	原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	既設設揀 き実施	$\begin{aligned} & \text { 9, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炬格納容器配管貫通部（ X －36）	既設設揀 き実施	$\begin{aligned} & \text { p, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	既設設揀 き実施	り, 当時の調 b。	管理に基づ		
				原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	I	\bigcirc	\bigcirc		
				高圧代替注水系蒸気入口配管分岐点～高圧代替注水系 タービンポンプ	I	\bigcirc	\bigcirc		
				高圧代替注水系タービンポンプ～原子炉隔離時冷却系 タービン排気配管合流点	I	\bigcirc	\bigcirc		
				原子炉隔離時冷却系タービン排気配管合流点～原子炉格納容器配管貫通部（X－222）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（X－222）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－222）～原子炉隔離時冷却系スパージャ	既設設備であり，当時の調達管理に基づ き実施している。				
				復水貯蔵タンク～E22－F014	既設設備であり，当時の調達管理に基づ き実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 䨓 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { レ } \\ & \text { ド } \end{aligned}$	7 品保 －专 规 3 ネ定 設 メ 計 ン 開 発 シ のデ 適 ム 用 計 有 画 無			考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 奚 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	韭常炉忩椧却備言他原炉注水設備			E22－F014～補給水よりの第一アンカ	既設設 き実施	），当時の諟 る。	管理に基づ		
				補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点	既設設㹸 き実施	$\begin{aligned} & \text { 0, 当時の䛯 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
				低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 高 } \\ & \text { 䒫 } \\ & \text { 住 } \end{aligned}$		高圧代替注水系吸込配管分岐点～高圧代替注水系ター ビンポンプ	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 乼 } \\ & \text { 水 } \end{aligned}$		高圧代替注水系タービンポンプ～高圧代替注水系注入配管合流点	I	\bigcirc	\bigcirc		
				高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点	I	\bigcirc	\bigcirc		
				原子炉冷却材浄化系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－12A）	既設設佑 き実施	，当時の椖	管理に基づ		
				原子炉格納容器配管貫通部（X－12A）	既設設侑 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（ X －12A $) ~$ 原子炉圧力容器	既設設侑 き実施	，当時の調 る。	管理に基づ		
		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 䧻 } \\ & \text { 奪 } \\ & \text { 令 } \\ & \text { 却 } \end{aligned}$	ポンプ	原子炬隔離時冷却系ポンプ	既設設㹸 き実施し	$\begin{aligned} & \text { b, 当時の詪 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
			容器	復水貯蔵タンク	既設設侑 き実施	，当時の調	管理に基づ		
			安全弁及び逃がし弁	E51－F059（原子炉隔離時冷却系ポンプ吸込ライン逃が し弁）	既設設倸 き実施) , 当時の䛯	管理に基づ		
			主配管	原子炉圧力容器～原子炉隔離侍冷却系蒸気配管分岐点	既設設佐 き実施	当時の調 る。	管理に基づ		
				原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）	既設設佑 き実施	$\begin{aligned} & \text { n, 当時の詪 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				原子炬格納容器配管貫通部（ X －36）	既設設倍 き実施	$\begin{aligned} & \text { 0, 当時の㤑 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	既設設侑 き実施	$\begin{aligned} & 0 \text {, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	I	\bigcirc	\bigcirc		
				高圧代替注水系蒸気入口配管分岐点～原子炬隔離時冷却系ポンプ駆動用タービン	既設設倸 き実施	$\begin{aligned} & \text { り, 当時の詪 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉隔離時冷却系ポンプ駆動用タービン～原子炉隔離時冷却系タービン排気配管合流点	I	\bigcirc	\bigcirc		
				原子炉隔離時冷却系タービン排気配管合流点～原子炉格納容器配管貫通部（X－222）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（ $\mathrm{X}-222)$	既設設借 き実施	$\begin{aligned} & \text { 0, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－222）～原子炉隔離時冷却系スパージャ	既設設借 き実施	$0 \text {, 当時の詪 }$	管理に基づ		
				復水貯蔵タンク～E22－F014	既設設㹸 き実施	，当時の調 る。	管理に基づ		
				E22－F014～補給水よりの第一アンカ	既設設㹸 き実施) , 当時の䛯 $\underline{3}$	管理に基づ		
				補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点	既設設侑 き実施) , 当時の㳓 。	管理に基づ		
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
				低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
				高圧代替注水系吸込配管分吱点 \sim E51－F001	既設設備であり，当時の調達管理に基づ き実施している。				
				E51－F001～原子炬隔離時冷却系ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉隔離時冷却系ポンプ～原子炉隔離時冷却系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉隔離時冷却系注入配管合流点～原子炉冷却材浄化系 B 系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 䨍 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 種 } \\ & \text { 類 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { レ } \\ & \text { ド } \end{aligned}$				考
原子炩却系統施	非 常 炬 心 冷 却 設 そ 他 怹 子 注 水 設			原子炉•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1	I	\bigcirc	\bigcirc		
				復水貯蔵タンク出口配管分岐点～直流駆動低圧注水系 ポンプ吸込配管分岐点	I	\bigcirc	\bigcirc		
				直流駆動低圧注水系ポンプ吸込配管分岐点～直流駆動低圧注水系ポンプ	I	\bigcirc	\bigcirc		
				直流駆動低圧注水系ポンプ～直流駆動低圧注水系ポン プ吐出配管合流点	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 低 } \\ & \text { 圧 } \end{aligned}$		直流駆動低圧注水系ポンプ吐出配管合流点～原子炉格納容器配管貫通部（X－35）	I	\bigcirc	\bigcirc		
		僣	主配管	原子炬格納容器配管貫通部（X－35）	既設設 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { 永 } \\ & \text { 采 } \end{aligned}$		原子炉格納容器配管貫通部（ $\mathrm{X}-35$ ）～原子炉圧力容器	既設設借 き実施し	り, 当時の䛯 る。	管理に基づ		
				取水用ホース（250A ：5m，10m，20m）	I	\bigcirc	\bigcirc		
				送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
				注水用ヘッダ	I	\bigcirc	\bigcirc		
				送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \\ & \text { 椧 } \\ & \text { 絫 } \end{aligned}$	ポンプ	代替循環泠却ポンプ	I	\bigcirc	\bigcirc		
			万過装置	残留熱除去系ストレーナ（A）	既設設借 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F048A（残留熱除去系A系注入ライン逃がし弁）	既設設備 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
			安全弁及び逃がし弁	E11－F084（代替循澴泠却ポンプ吐出ライン逃がし弁）	I	\bigcirc	\bigcirc		
				E11－F085（代替循澴泠却ポンプ吸込ライン逃がし弁）	I	\bigcirc	\bigcirc		
			主配管	残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	既設設備 き実施し	り, 当時の調 る。	管理に基づ		
				原子炬格納容器配管貫通部（ X － 214 A ）	既設設 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－214A）～サプレッション チェンバ出口配管 A 系合流点	既設設侑 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐点	I	\bigcirc	\bigcirc		
				代替循環泠却系吸込配管分岐点～代替循環冷却ポンプ	I	\bigcirc	\bigcirc		
				代替循澴冷却ポンプ～代替循環冷却系注入配管合流点	I	\bigcirc	\bigcirc		
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点 ～残留熱除去系熱交換器（A）バイパス配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉停止時冷却モード A 系注入配管分岐点～ドライ ウェルスプレイ注入配管 A 系分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系A系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（ X －31A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器	既設設備であり，当時の調達管理に基づ き実施している。				

$\begin{aligned} & \text { 発 } \\ & \text { 䨓 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { の } \\ & \text { 種 } \\ & \text { 類 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	グ				考
原炉泠却系統設	韭唃炉念洽却設備の他原炉注水設備		ポンプ	ほう酸水注入系ポンプ	既設設 き実施	り, 当時の諸 る。	管理に基づ		
			容器	ほら酸水注入系貯蔵タンク	既設設 き実施し	，当時の調 る。	管理に基づ		
			安全弁及び逃がし圱	C41－F003A，B（ほう酸水注入系ポンプ（A），（B）吐出ライ ン逃がし弁）	既設設 き実施し	り, 当時の調 る。	管理に基づ		
		$\begin{aligned} & \text { ほ } \\ & \text { 酸 } \end{aligned}$	安全升及し逃がし升	C41－F022（ほら酸水注入系ポンプ吸込ライン逃がし弁）	既設設 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
		$\begin{aligned} & \text { 水 } \\ & \text { 乼 } \\ & \text { 系 } \end{aligned}$		ほら酸水注入系貯蔵タンク～ほう酸水注入系ポンプ	既設設 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				ほう酸水注入系ポンプ～原子炉格納容器配管貫通部 （ X －22）	既設設 き実施し	り, 当時の調 る。	管理に基づ		
			王配管	原子炉格納容器配管貫通部（ X －22）	既設設 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（ $\mathrm{X}-22$ ）～差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）	既設設 き実施し	り，当時の詵	管理に基づ		
		$\begin{aligned} & \text { 残 } \\ & \text { 貿 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	ポンプ	残留熱除去系ポンプ（A），（B）	既設設 き実施し		管理に基づ		
			ホンフ	残留熱除去系ポンプ（C）	既設設 き実施	，当時の調 る。	管理に基づ		
				残留熱除去系ストレーナ（A）	既設設 き実施し	，当時の調 る。	管理に基づ		
			万過装置	残留熱除去系ストレーナ（B）	既設設 き実施し		管理に基づ		
				残留熱除去系ストレーナ（C）	既設設 き実施し	り, 当時の調 る。	管理に基づ		
				E11－F048A（残留熱除去系A系注入ライン逃がし弁）	既設設 き実施し	$\begin{aligned} & \text { り, 当時の凬 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
			安全弁及び逃がし弁	E11－F048B（ 残留熱除去系 B 系注入ライン逃がし弁）	既設設 き実施し	$\begin{aligned} & \text { り, 当時の䛸 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				E11－F048C（残留熱除去系C 系注入ライン逃がし弁）	既設設 き実施し	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
			主配管	残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~A}$ ）	既設設 き実施し	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－214A）	既設設 き実施	$\begin{aligned} & \text { り, 当時の䛯 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				原子炉格納容器配管貫通部（X－214A）～サプレッション チェンバ出口配管 A 系合流点	既設設 き実施	$\begin{aligned} & \text { り, 当時の調 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐点	I	\bigcirc	\bigcirc		
				代替循環冷却系吸込配管分岐点～残留熱除去系ポンプ （A）	既設設 き実施	り，当時の調 る。	管理に基づ		
				残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	既設設 き実施	$\begin{aligned} & \text { り, 当時の諷 } \\ & \text { る。 } \end{aligned}$	管理に基づ		
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点 ～残留熱除去系熱交換器（A）バイパス配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉停止時冷却モード A 系注入配管分岐点～ドライ ウェルスプレイ注入配管 A 系分岐点	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系 A 系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）	既設設備であり，当時の調達管理に基づ き実施している。				

発 雷 原 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	グ ド			備 考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 奚 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$				原子炉格納容器配管貫通部（X－31A）	既設設 き実施	り, 当時の訃 る。	理に基づ	
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）～原子炉圧力容器	既設設 き実施		管理に基づ	
				残留熱除去系ストレーナ $(\mathrm{B}) ~$～原子炉格納容器配管貫通部（X－214B）	既設設使 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				原子炬格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~B}$ ）	既設設使 き実施	当時の帞 る。	管理に基づ	
				原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~B}$ ）～サプレッション チェンバ出口配管 B 系合流点	$\begin{aligned} & \text { 既設設 } \\ & \text { き実施 } \end{aligned}$	，当時の	管理に基づ	
				サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ（B）	既設設侑 き実施	り, 当時の訃 る。	管理に基づ	
				残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バ イパス配管分岐点	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	既設設使 き実施	$\begin{aligned} & \text { り, 当時の } \\ & \text { る。 } \end{aligned}$	管理に基づ	
	韭			残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B） バイパス配管合流点	既設設 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { b。 } \end{aligned}$	管理に基づ	
	炉念			残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）バイパス配管合流点	既設設佑 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
	$\begin{aligned} & \text { 却 } \\ & \text { 備 } \end{aligned}$	残		残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モード B 系注入配管分岐点	既設設使 き実施	$\begin{aligned} & \text { り, 当時の訳 } \\ & \text { る。 } \end{aligned}$	理に基づ	
	$\begin{aligned} & \text { の } \\ & \text { 他 } \\ & \text { 愿 } \end{aligned}$	幸		原子炉停止時冷却モード B 系注入配管分岐点～ドライ ウェルスプレイ注入配管 B 系分岐点	既設設揀 き実施	り，当時の晹 る。	管理に基づ	
	$\begin{aligned} & \text { 尔 } \\ & \text { 烘 } \\ & \text { 注 } \end{aligned}$			ドライウェルスプレイ注入配管 B 系分岐点～低圧代替注水系 B 系注入配管合流点	既設設 き実施		管理に基づ	
	$\begin{aligned} & \text { 永 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	既設設揀 き実施	$\begin{aligned} & \text { り, 当時の渞 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				原子炉格納容器配管貫通部（X－31B）	既設設 き実施	り, 当時の訃 る。	管理に基づ	
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ）～原子炉圧力容器	既設設 き実施	$\begin{aligned} & \text { y, 当時の訃 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				残留熱除去系ストレーナ（C）～原子炉格納容器配管貫通部（X－214C）	既設設使 き実施し	$\begin{aligned} & \text { り, 当時の渞 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{C}$ ）	既設設使 き実施	$\begin{aligned} & \text { n, 当時の } \\ & \text { b。 } \end{aligned}$	管理に基づ	
				原子炉格納容器配管貫通部（X－214C）～残留熱除去系ポ ンプ (C)	$\begin{aligned} & \text { 既設設 } \\ & \text { き実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の訓 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
				残留熱除去系ポンプ（C）～原子炉格納容器配管貫通部 （X－31C）	既設設㲻 き実施		管理に基づ	
				原子炉格納容器配管貫通部（X－31C）	既設設使 き実施	当時の認 る。	管理に基づ	
				原子炉格納容器配管貫通部（ X －31C）～原子炉圧力容器	$\begin{aligned} & \text { 既設設 } \\ & \text { き実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の渞 } \\ & \text { る。 } \end{aligned}$	管理に基づ	
	韭常炉念洽却備艺の他原炇注水備	代替水源移送		大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc	
			ポンプ	大容量送水ポンプ（タイプII）	I	\bigcirc	\bigcirc	複数回に分けて調達し ており，調達内容によ り，グレードが異なる ため，最も上位のグレ ードを記載。
			主配管	復水貯蔵タンク接続口～復水貯蔵タンク純水入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。 既設設備であり，当時の調達管理に基づ き実施している。			
				復水貯蔵タンク純水入口配管合流点～復水貯蔵タンク				
				取水用ホース（250A：5m，10m，20m）	I	\bigcirc	\bigcirc	
				送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	
				注水用ヘッダ	I	\bigcirc	\bigcirc	
				送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc	

発 雷 原 炉 施 設 の 顐	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \\ & \hline \end{aligned}$	系	機器区分	機器名	グ l				
$\begin{aligned} & \text { 原 } \\ & \text { 尒 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { 褕 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 䧻 } \\ & \text { 奪 } \\ & \text { 令 } \\ & \text { 却 } \\ & \text { 采 } \end{aligned}$	ポンプ	原子炬隔離時冷却系ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
			主要弁	E51－F007（原子炉隔離時冷却系タービン入口蒸気ライ ン第一隔離弁）	既設設備であり，当時の調達管理に基づ き実施している。				
				E51－F008（原子炉隔離時冷却系タービン入口蒸気ライ ン第二隔離弁）	既設設備であり，当時の調達管理に基づ き実施している。				
			主配管	原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	I	\bigcirc	\bigcirc		
				高圧代替注水系蒸気人口配管分岐点～原子炉隔離時冷却系ポンプ駆動用タービン	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉隔離時冷却系ポンプ駆動用タービン～原子炉隔離時冷却系タービン排気配管合流点	I	\bigcirc	\bigcirc		
				原子炉隔離時冷却系タービン排気配管合流点～原子炉格納容器配管貫通部（X－222）	I	\bigcirc	\bigcirc		
				原子炉格納容器配管貫通部（X－222）～原子炉隔離時冷却系スパージャ	既設設備であり，当時の調達管理に基づ き実施している。				
				E51－F001～原子炉隔離時冷却系ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉隔離時冷却系サプレッションチェンバ内ストレ一ナ～原子炉格納容器配管貫通部（X－221）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－221）～原子炉隔離時冷却系ポンプ入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬隔離時冷却系ポンプ～原子炬隔離時冷却系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
		$\begin{aligned} & \text { 補 } \\ & \text { 給 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	ポンプ	復水移送ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
			容器	復水貯蔵タンク	既設設備であり，当時の調達管理に基づ き実施している。				
			主配管	復水貯蔵タンク～E22－F014	既設設備であり，当時の調達管理に基づ き実施している。				
				復水貯蔵タンク～補給水系配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				補給水系配管合流点～復水移送ポンプ	I	\bigcirc	\bigcirc		
				復水移送ポンプ～低圧代替注水系注入配管分岐点	既設設借 き実施し		管理に基づ		
				低圧代替注水系注入配管分岐点 \sim N21－F100	既設設備 き実施し	当時の詭	管理に基づ		
				復水移送ポンプ入口配管分岐点～P13－F010	既設設備 き実施し	$\begin{aligned} & 0, \text { 当時の䛯 } \\ & \text { b。 } \end{aligned}$	管理に基づ		
				P13－F035～復水貯蔵タンク	既設設藉 き実施し		管理に基づ		
				N21－F041～復水貯蔵タンク	既設設備 き実施し	り, 当時の調 る。	管理に基づ		
	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 補 } \\ & \text { 幾 } \\ & \text { 却 } \\ & \text { 設 } \end{aligned}$		熱交換器	原子炬補機冷却水系熱交換器（A），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬補機冷却水系熱交換器（B），（D）	既設設備であり，当時の調達管理に基づ き実施している。				
			ポンプ	原子炬補機泠却水ポンプ（A），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬補機洽却水ポンプ（B），（D）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水ポンプ（ A ），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機泠却海水ポンプ（B），（D）	既設設備であり，当時の調達管理に基づ き実施している。				
			容器	原子炉補機冷却水サージタンク（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水サージタンク（B）	既設設備であり，当時の調達管理に基づ き実施している。				

発 電 原 子 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	グ				
原城泠却乿施設	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 渝 } \\ & \text { 却 } \\ & \text { 備 } \end{aligned}$		万過装置	原子炉補機冷却海水系ストレーナ（A），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水系ストレーナ（B），（D）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水サージタンク（A）～原子炉補機冷却水サージタンク（ A ）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水サージタンク（A）出口配管合流点～原子炬補機冷却水ポンプ（A），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水ポンプ（A），（C）～原子炉補機冷却水系熱交換器（A），（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（A），（C）～残留熱除去系熱交換器（A）入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				残留熱除去系熱交換器（A）入口配管合流点～残留熱除去系熱交換器（A）	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器（A）出口配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）出口配管分岐点～原子炬補機冷却水サージタンク（A）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機泠却水系熱交換器（A），（C）出口配管分岐点 2～非常用ディーゼル発電設備（A）機関付空気冷却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（A）機関付空気冷却器～非常用ディーゼル発電設備（A）潤滑油泠却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（A）潤滑油泠却器～非常用 ディーゼル発電設備（A）清水泠却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（A）清水冷却器～原子炉補機冷却水ポンプ（A），（C）入口配管合流点 2	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬補機冷却水系熱交換器（A），（C）出口配管分岐点 3 ～燃料プール泠却浄化系熱交換器（A）入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				燃料プール泠却浄化系熱交換器（A）入口配管合流点～燃料プール冷却浄化系熱交換器（A）	I	\bigcirc	\bigcirc		
				燃料プール冷却浄化系熱交換器（A）～原子炉補機冷却水ポンプ（A），（C）入口配管合流点 1	I	\bigcirc	\bigcirc		
			主配管	原子炬補機冷却水系熱交換器（A），（C）出口配管分岐点 1～P42－F091A	既設設備であり，当時の調達管理に基づ き実施している。				
				P42－F091A～原子炬冷却材浄化系非再生熱交換器（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器（A）連絡管	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器（A）～P42－F092A	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬冷却材浄化系非再生熱交換器（A）入口配管分岐点～床ドレン・化学廃液蒸発濃縮装置復水器	既設設備であり，当時の調達管理に基づ き実施している。				
				床ドレン・化学廃液蒸発濃縮装置復水器～原子炉冷却材浄化系非再生熱交換器（A）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				P42－F092A～原子炉補機冷却水ポンプ（A），（C）入口配管合流点 3	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水サージタンク（B）～原子炉補機冷却水サージタンク（B）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水サージタンク（B）出口配管合流点～原子炉補機冷却水ポンプ（D）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水ポンプ (B) 入口配管分岐点～原子炉補機泠却水ポンプ（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水ポンプ（B），（D）～原子炉補機冷却水系熱交換器（B），（D）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（B），（D）～残留熱除去系熱交換器（B）入口配管合流点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（B）入口配管合流点～残留熱除去系熱交換器（B）	I	\bigcirc	\bigcirc		

発 電 原 尔 炉 施 設 の 種	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { ト } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 烸 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 饰 } \\ & \text { 補 } \\ & \text { 浍 } \\ & \text { 却 } \\ & \text { 備 } \end{aligned}$		主配管	残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）出口配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（B）出口配管分岐点～原子炉補機冷却水サージタンク（B）出口配管合流点	I	\bigcirc	\bigcirc		
				原子炉補機泠却水系熱交換器（B），（D）出口配管分岐点 2～非常用ディーゼル発電設備（B）機関付空気冷却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（B）機関付空気泠却器～非常用ディーゼル発電設備（B）潤滑油泠却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（B）潤滑油泠却器～非常用 ディーゼル発電設備（B）清水冷却器	既設設備であり，当時の調達管理に基づ き実施している。				
				非常用ディーゼル発電設備（B）清水冷却器～原子炉補機冷却水ポンプ（B），（D）入口配管合流点 2	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（B），（D）出口配管分岐点 $3 ~$ 燃料プール泠却浄化系熱交換器（B）入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				燃料プール泠却浄化系熱交換器（B）入口配管合流点～燃料プール冷却浄化系熱交換器（B）	I	\bigcirc	\bigcirc		
				燃料プール冷却浄化系熱交換器（B）～原子炉補機冷却水ポンプ（B），（D）入口配管合流点 1	I	\bigcirc	\bigcirc		
				原子炉補機冷却水系熱交換器（B），（D）出口配管分岐点 1～P42－F091B	既設設備であり，当時の調達管理に基づ き実施している。				
				P42－F091B～原子炉冷却材浄化系非再生熱交換器（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉泠却材浄化系非再生熱交換器（B）連絡管	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器（B）～P42－F092B	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器（B）入口配管分岐点～排ガス復水器	既設設備であり，当時の調達管理に基づ き実施している。				
				排ガス復水器～原子炉冷却材浄化系非再生熱交換器 （B）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				P42－F092B～原子炉補機冷却水ポンプ（B），（D）入口配管合流点 3	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水ポンプ（A）～原子炉補機冷却海水系ストレーナ（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水系ストレーナ（A）～原子炉補機冷却水系熱交換器（A）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（A）～放水槽	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機泠却海水ポンプ（C）～原子炉補機冷却海水系ストレーナ（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水系ストレーナ（C）～原子炉補機冷却水系熱交換器（C）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（C）～放水槽	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬補機冷却海水ポンプ（A）出口配管分岐点～原子炉補機冷却海水ポンプ（C）出口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機泠却海水ポンプ（B）～原子炉補機泠却海水系ストレーナ（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水系ストレーナ（B）～原子炉補機冷却水系熱交換器（B）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却水系熱交換器（B）～放水槽	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機冷却海水ポンプ（D）～原子炉補機冷却海水系ストレーナ（D）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉補機泠却海水系ストレーナ（D）～原子炉補機泠却水系熱交換器（D）	既設設備であり，当時の調達管理に基づ き実施している。				

発 雷 原 子炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$	7 䁚 保 －マ 規 3 ネ定 設 メ 諷 シ 発シ の 適ム 有画 無			考
$\begin{aligned} & \text { 原 } \\ & \text { 沵 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 针 } \end{aligned}$				原子炬補機冷却水系熱交換器（D）～放水槽	既設設 き実施	当時の	管理に基づ		
				原子炉補機冷却海水ポンプ（B）出口配管分岐点～原子炉補機冷却海水ポンプ（D）出口配管合流点	既設設 き実施	当時の	管理に基づ		
			熱交換器	高圧炉心スプレイ補機冷却水系熱交換器	既設設備 き実施し	, 当時の	管理に基づ		
			ポンプ	高圧炬心スプレイ補機冷却水ポンプ	既設設備 き実施し	当時の	管理に基づ		
		$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \end{aligned}$		高圧炬心スプレイ補機冷却海水ポンプ	既設設備 き実施し	当時の	管理に基づ		
		$\begin{aligned} & \text { 心 } \\ & \text { ス } \\ & \text { プ } \end{aligned}$	容器	高圧炬心スプレイ補機冷却水サージタンク	既設設備 き実施し		管理に基づ		
		$\begin{aligned} & \text { L } \\ & \text { 个 } \\ & \text { 補 } \end{aligned}$	万過装置	高圧炉心スプレイ補機冷却海水系ストレーナ	既設設備 き実施し	当時の	管理に基づ		
		$\begin{aligned} & \text { 機 } \\ & \text { 却 } \\ & \text { 水 } \end{aligned}$		高圧炉心スプレイ補機冷却水サージタンク～高圧炉心 スプレイ補機冷却水サージタンク出口配管合流点	既設設備 き実施し		管理に基づ		
		$\begin{aligned} & \text { 柰 } \\ & \text { 高 } \\ & \hline \end{aligned}$		高圧炬心スプレイ系ディーゼル発電設備清水冷却器～高圧炬心スプレイ補機冷却水ポンプ	既設設備 き実施し	, 当時の	管理に基づ		
		$\begin{aligned} & \text { 煽 } \\ & \text { ス } \\ & \hline \text { 子 } \end{aligned}$		高圧炉心スプレイ補機冷却水ポンプ～高圧炉心スプレ イ補機冷却水系熱交換器	既設設備 き実施し		管理に基づ		
		レ 个 補 機 泠	主配管	高圧炬心スプレイ補機冷却水系熱交換器～高圧炬心ス プレイ系ディーゼル発電設備発電機軸受潤滑油泠却器，潤滑油冷却器，機関付空気冷却器	既設設 き実施	当時の	管理に基つ		
		$\begin{aligned} & \text { 却 } \\ & \text { 海 } \\ & \text { 水 } \\ & \text { 采 } \end{aligned}$		高圧炉心スプレイ系ディーゼル発電設備機関付空気泠却器，潤滑油泠却器，発電機軸受潤滑油泠却器～高圧炉心スプレイ系ディーゼル発電設備清水冷却器	既設設 き実施	当時の	管理に基づ		
		㤩		高圧炉心スプレイ補機冷却海水ポンプ～高圧炉心スプ レイ補機冷却海水系ストレーナ	既設設備 き実施	当時の	管理に基づ		
				高圧炉心スプレイ補機冷却海水系ストレーナ～高圧炉心スプレイ補機泠却水系熱交換器	既設設備 き実施し	, 当時の	管理に基づ		
				高圧炬心スプレイ補機冷却水系熱交換器～放水槽	既設設備 き実施し	当時の	管理に基づ		
			熱交換器	原子炬補機代替冷却水系熱交換器ユニット（熱交換器）	I	\bigcirc	\bigcirc		
				原子炬補機代替冷却水系熱交换器ユニット（ポンプ）	I	\bigcirc	\bigcirc		
				大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc		
				原子炬補機冷却水サージタンク（A）	既設設備 き実施し		管理に基づ		
				原子炬補機冷却水サージタンク（B）	既設設備 き実施し	当時の調 。	管理に基づ		
			万過装置	原子炉補機代替冷却水系熱交換器ユニット（ストレー ナ）	I	\bigcirc	\bigcirc		
			主配管	原子炉補機代替冷却水系熱交換器ユニット接続口（残留熱除去系供給）（北）～残留熱除去系熱交換器（A）入口配管合流点	I	\bigcirc	\bigcirc		
				原子炬補機代替冷却水系熱交換器ユニット接続口（屋内）（残留熱除去系供給）～原子炉補機代替冷却水系熱交換器ユニット接続口（屋内）（残留熱除去系供給）合流点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）入口配管合流点～残留熱除去系熱交換器（A）	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器（A）出口配管分岐点	I	\bigcirc	\bigcirc		
				残留熱除去系熱交換器（A）出口配管分岐点～原子炉補機代替冷却水系熱交換器ユニット接続口（残留熱除去系戻り）（北）	I	\bigcirc	\bigcirc		

	$\begin{aligned} & \text { 誘 } \\ & \text { 䨝 } \\ & \text { 分 } \end{aligned}$	稀	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & 1 \\ & 1 \\ & \text { ド } \end{aligned}$				考
		$\begin{aligned} & \text { 原 } \\ & \text { 炧 } \\ & \text { 部 } \\ & \text { 林 } \\ & \text { 㳸 } \\ & \text { 奚 } \end{aligned}$	主配管	原子炉圧力容器～原子炉冷却材浄化系再生熱交換器入口配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				G31－F001～原子炉格納容器配管貫通部（X－50）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉格納容器配管貫通部（X－50）～原子炉泠却材浄化系再生熱交換器	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬冷却材浄化系再生熱交換器連絡管（管側）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系再生熱交換器～原子炉泠却材浄化系非再生熱交換器	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器連絡管	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系非再生熱交換器～原子炉冷却材浄化系ポンプ	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系ポンプ～原子炬冷却材浄化系ろ過脱塩器	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系ろ過脱塩器～原子炬冷却材净化系再生熱交換器	既設設備であり，当時の調達管理に基つ き実施している。				
				原子炬冷却材浄化系再生熱交換器連絡管（胴側）	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炉冷却材浄化系再生熱交換器～G31－F022	既設設備であり，当時の調達管理に基づ き実施している。				
				G31－F022～高圧代替注水系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				高圧代替注水系注入配管合流点～原子炬冷却材浄化系 A 系注入配管合流点	I	\bigcirc	\bigcirc		
				原子炉冷却材浄化系再生熱交換器（胴側）出口配管分岐点～原子炉隔離時冷却系注入配管合流点	既設設備であり，当時の調達管理に基づ き実施している。				
				原子炬隔離時泠却系注入配管合流点～原子炉冷却材浄化系 B 系注入配管合流点	既設設備であり，当時の調達管理に基つ き実施している。				
			－＊	ドライウェル送風機冷却コイルドレン流量	既設設備であり，当時の調達管理に基づ き実施している。				
				ドライウェル床ドレンサンプ水位	既設設備であり，当時の調達管理に基づ き実施している。				

発 雷 原 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	系		機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 烸 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \hline \end{aligned}$	蒸多1ビ$\vdots$$の$附属備	$\begin{aligned} & \text { 給 } \\ & \text { 水 } \\ & \text { 蓺 } \\ & \text { 器 } \\ & \text { L } \\ & \text { シ } \\ & \text { シ } \\ & \text { ト } \end{aligned}$	管等	主配管	湿分分離加熱器第 2 段加熱器～湿分分離加熱器第2段加熱器ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離加熱器第2段加熱器ドレンタンク～ N22－F022A，B	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離加熱器第 1 段加熱器～湿分分離加熱器第1段加熱器ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離加熱器第1段加熱器ドレンタンク～ N22－F023A，B	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離加熱器～湿分分離ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離ドレンタンク～N22－F024A，B	既設設備であり，当時の調達管理に基づ き実施している。				
		－＊	管等	蒸気だめ，ドレン タンク	湿分分離加熱器第1段加熱器ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				
					湿分分離加熱器第2段加熱器ドレンタンク	既設設備であり，当時の調達管理に基づ き実施している。				

[^5]VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画計測制御系統施設
R 0
2
0
1
1
1
5
（a）
～ 0

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
設計	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー卜」	
		基本設計方針の作成（設計 1）				- 様式－2 - 技術基準規則	- 様式 -3 - 様式－4	工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ	
	$\begin{gathered} 3.3 .3 \\ (1) \end{gathered}$		©	－	－	- 様式 -2 - 様式－4 - 実用炉規則別表第二 - 技術基準規則	－様式 -5	一要領「品証様式のチェックシー卜」	
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式－6 - 様式－7		
						－基本設計方針	－様式 -5		
	3．3． 3 （2）	適合性確認対象設備の各条文への適合性を確保するため の設計（設計 2） 1．共通的に適用される設計 2．計測制御系統施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認 2.2 機能を兼用する機器を含む設備に係る設計 （1）ほう酸水注入系 （2）制御用空気設備 －高圧窒素ガス供給系	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針	－様式－8の「設工認設計結果（要目表 ／設計方針）」 欄	－	
			「原子炉冷却系統施設」参照			「原子炬冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	
			©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針 - 設置変更許可申請書	- 機能単位の系統図 - 設定根拠の「（概要）」部分	－	
			©	－	－	- 機能単位の系統図 - 設定根拠の「（概要）」部分 - 設備図書 - 基本設計方針 - VI－1－10－9 の「2．1 非常用発電装置」におい て実施した設計結果	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 機器の配置を明示した図面 - 構造図 - 単線結線図	－	

各段階	プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係$\text { © : 主担当 } O \text { : 䦔連 }$			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	2.3 機能を兼用する機器を含む計測制御施設の 系統図に関する取りまとめ 3．計測装置の設計	©	－	－	- 様式 -2 - 様式 -5 - 機能単位の系統図	－計測制御系統施設に係る系統図	－
		©	－	－	- 基本設計方針 - 設置変更許可時の設計資料 - 設備図書 - VI－1－10－9の「2．1 非常用発電装置」におい て実施した設計結果	- 要目表 - 計測制御系統図 - 計測装置の検出器の取付位置を明示し た図面 －計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－
	4．格納容器内雾囲気ガスサンプリング装置に関す る設計	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可申請書	- 基本設計方針機器 - 設備別記載事項の設定根拠に関する説明書	－
	5．安全保護装置の不正アクセス防止の設計	©	－	－	- 基本設計方針 - 設備図書	－計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－
	6．工学的安全施設等の設計	©	－	－	- 設置変更許可時の設計資料 - 設備図書	- 要目表 - 工学的安全施設等の起動（作動）信号 の設定値の根拠に関する説明書 －発電用原子炉の運転を管理するための制御装置に係る制御方法に関する説明書 －工学的安全施設等の起動（作動）信号 の起動（作動）回路の説明図	－
	7．通信連絡設備に関する設計	©	－	－	- 基本設計方針 - 設備図書 - VI－1－10－9 の「2．1 非常用発電装置」及び「2．2電力貯蔵装置」において実施した設計結果 －VI－1－10－16 の「3．2 情報の把握に関する設計」において実施した設計結果 －VI－1－10－16の「3．3 通信連絡に関する設計」 において実施した設計結果	- 通信連絡設備に関する説明書 - 通信連絡設備の取付箇所を明示した図面	－
	8．原子炉冷却材圧力バウンダリを減圧するための設備の設計	©	－	\bigcirc	- 設備図書 - 設置変更許可申請書 - 業務報告書	- 要目表 - 計測制御系統施設に係る系統図 - 構造図	－仕様書

各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3 (5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
							－VI－1－10－9の「2．2 電力貯蔵装置」において実施した設計結果	－計測制御系統施設に係る機器の配置を明示した図面 －設備別記載事項の設定根拠に関する説明書 －単線結線図	
		9．中央制御室の機能の設計	©	－	－	- 様式 -7 - 設備図書 - 基本設計方針	- 要目表 - 中央制御室の機能に関する説明書 - 非常用照明に関する説明書	－	
	$\text { 3.3. } 3$ （3）	設計のアウトプットに対する検証	©	－	－	－様式－2～様式 -8	－	－基本設計アウトプット	
	3.3.3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	$\text { 3.3. } 3$ （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式 -8 の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
	3．5．2	使用前事業者検査の計画	－	（0）	\bigcirc	－様式－8の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
	3．5．3	検査計画の管理	－	©	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（）	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－	
			－	（0）	\bigcirc	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（0）	\bigcirc	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレ—ド及び実績（設備関係）

$\begin{aligned} & \text { 発 } \\ & \text { 雷 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 種 } \\ & \text { 類 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 制 } \\ & \text { 蓹 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	制御駆駆俉蹎	制御椿駆憅水系	制御棒駆動水圧設備	主配管	制御棒駆動水圧系窒素容器～制御棒駆動水圧系 アキュムレータ	既設設基づき	り，当時の ている。	調達管理に		
					制御棒駆動水圧系アキュムレータ～制御棒駆動水圧系アキュムレータ出口配管合流点	既設設備 基づき䒠	り，当時の ている。	調達管理に		
					C12－D001－126～水圧制御コニット（挿入配管）	既設設備 基づき実	り，当時の ている。	調達管理に		
					水圧制御ユニット（引抜配管）～C12－D001－127	既設設基づき	り，当時の ている。	調達管理に		
					C12－D001－127～マニホールド	既設設備基づき䒠	$\begin{aligned} & \text { ゆり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					C12－D001－127～水圧制御ユニット（スクラム排出 ヘッダー入口）	既設設備基づき実	り，当時の ている。	調達管理に		
					水圧制御ユニット（挿入配管）～原子炉格納容器配管貫通部（X－20）	既設設備基づき実	り，当時の ている。	調達管理に		
					原子炬格納容器配管貫通部（X－20）	既設設備 基づき実	り，当時の ている。	調達管理に		
					原子炉格納容器配管貫通部（X－20）～制御棒駆動機構ハウジング	既設設備 基づき実	り，当時の ている。	婤達管理に		
					制御棒駆動機構ハウジング～原子炉格納容器配管貫通部（X－21）	既設設基づき	り，当時の ている。	調達管理に		
					原子炬格納容器配管貫通部（X－21）	既設設借基づき実	り，当時の ている。	調達管理に		
					原子炉格納容器配管貫通部（ $\mathrm{X}-21$ ）～水圧制御ユ ニット（引抜配管）	既設設備基づき実	り，当時の ている。	調達管理に		
					水圧制御ユニット（スクラム排出ヘッダー入口） ～スクラム排出容器	既設設備基づき実	$\begin{aligned} & \text { り, 当時の } \\ & \text { ている。 } \end{aligned}$	调達管理に		
	$\begin{aligned} & \text { ほ } \\ & \text { 孰 } \\ & \text { 酸 } \\ & \text { 注 } \\ & \text { 入 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ほ } \\ & \text { 年 } \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 入 } \\ & \text { 系 } \end{aligned}$	ポンプ	－＊	ほら酸水注入系ポンプ	既設設基づき	$\begin{aligned} & \text { りり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
			容器	－＊	ほう酸水注入系貯蔵タンク	既設設基づき	り，当時の ている。	婤達管理に		
			安全弁及び逃が し弁	－＊	C41－F003A，B（ほう酸水注入系ポンプ（A），（B）吐出 ライン逃がし弁）	既設設備であり，当時の調達管理に基づき実施している。				
					C41－F022（ほう酸水注入系ポンプ吸込ライン逃が し弁）	既設設備であり，当時の調達管理に基づき実施している。				
			主配管	－＊	ほう酸水注入系貯蔵タンク～ほう酸水注入系ポ ンプ	既設設備であり，当時の調達管理に基づき実施している。				
					ほう酸水注入系ポンプ～原子炉格納容器配管貫通部（X－22）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（X－22）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－22）～差圧検出・ほ ら酸水注入系配管（ティーよりN11 ノズルまでの外管）	既設設備であり，当時の調達管理に基づき実施している。				
	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 㯰 } \end{aligned}$	－＊	起動領域計測装置（中性子源領域 計測装置，中間領	－＊	起動領域モニタ	既設設備であり，当時の調達管理に基づき実施している。				
			域計測装置）及び出力領域計測装置		出力領域モニタ	既設設備であり，当時の調達管理に基づき実施している。				
			原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量（代替注水の流量を含 む。）を計測する装置	－＊	原子炬隔離時冷却系ポンプ駆動用タービン入口蒸気圧力	既設設備であり，当時の調達管理に基づき実施している。				
					高圧代替注水系ポンプ出口圧力	I	\bigcirc	\bigcirc		
					直流駆動低圧注水系ポンプ出口圧力	I	\bigcirc	\bigcirc		
					代替循環冷却ポンプ出口圧力	I	\bigcirc	\bigcirc		
					原子炬隔離時冷却系ポンプ出口圧力	既設設備であり，当時の調達管理に基づき実施している。				

	$\begin{aligned} & \text { 設 } \\ & \text { 窚 } \\ & \text { 分 } \end{aligned}$	番	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { ! } \\ & \text { ド } \end{aligned}$				考
	$\begin{aligned} & \text { 謓 } \\ & \text { 㵆 } \\ & \text { 蹎 } \end{aligned}$	非常用炉心洽却 設備その他原子 炉注水設備に係 る容器内又は貯 蔵槽内の水位を 計測する装置 原子炉泠却材再 循環流量（改良型 沸騰水型発電用 原子炉施設に係 るものにあって は，炉心流量）を 計測する装置		－＊	復水貯蔵タンク水位	I	\bigcirc	\bigcirc		
				－＊	原子炬再循環ポンプ入口流量		り，当時の ている。	周達管理に		
		－＊	原子炉格納容器		原子炉格納容器代替スプレイ流量	I	\bigcirc	\bigcirc		
			装置		原子炉格納容器下部注水流量	I	\bigcirc	\bigcirc		
					圧力抑制室水位	I	\bigcirc	\bigcirc		
			本体の水位を計	－＊	原子炉格納容器下部水位	I	\bigcirc	\bigcirc		
					ドライウェル水位	I	\bigcirc	\bigcirc		
			原子炉建屋内の水素ガス濃度を計測する装置	－＊	原子炬建屋内水素濃度	I	\bigcirc	\bigcirc		
					原子炬圧力高	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	り，当時の ている。	周達管理に		
					原子炬水位低（レベル 3）	既設設備基づき実	$\begin{aligned} & \text { b, 当時 } 0 \\ & \text { ている。 } \end{aligned}$	周達管理に		
					ドライウェル圧力高		$\begin{aligned} & \text { b) 当時 } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					中性子束高	$\begin{aligned} & \text { 既設設作基づつ } \\ & \text { 基 } \end{aligned}$	$\begin{aligned} & \text { bり, 当時 } \sigma \\ & \text { ている。 } \end{aligned}$	周達管理に		
					原子炉周期（ペリオド）短		$\begin{aligned} & \text { り, 当時 } \sigma \\ & \text { ている。 } \end{aligned}$	周達管理に		
	原				スクラム排出容器水位高		$\begin{aligned} & \text { り, 当時 } \sigma \\ & \text { ている。 } \end{aligned}$	周達管理に		
		－＊	－＊	－＊	核計測装置動作不能	$\begin{aligned} & \text { 既設設 } \\ & \text { 其づき } \end{aligned}$	り，当時の ている。	周達管理に		
	$\begin{aligned} & \text { 儫 } \\ & \text { 㑾 } \end{aligned}$				主蒸気管放射能高		$\begin{aligned} & \text { bり, 当時o } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					主蒸気隔離升閉	$\begin{aligned} & \text { 既設設借俗基づき } \end{aligned}$	$\text { り, 当時 } 0$ ている。	周達管理に		
					主蒸気止め弁閉		$\begin{aligned} & \text { り, 当時 } \sigma \\ & \text { ている。 } \end{aligned}$	周達管理に		
					蒸気加減升急速閉	既設設借 基づき実	$\begin{aligned} & \text { り, 当時 } 0 \\ & \text { ている。 } \end{aligned}$	周達管理に		
					原子炉モードスイッチ「停止」	$\begin{aligned} & \text { 既設設借俗基づつ } \end{aligned}$	$\text { り, 当時 } \sigma$ ている。	周達管理に		
					手動		$\begin{aligned} & \text { b, 当時o } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					地震加速度大		$\begin{aligned} & \text { り, 当時 } 0 \\ & \text { ている。 } \end{aligned}$	周達管理に		
					主蒸気隔催弁 原子炬水位低（レベル 2）		$\begin{aligned} & \text { b, 当時 } 0 \\ & \text { ている。 } \end{aligned}$	周達管理に		
	$\begin{aligned} & \text { 意 } \\ & \text { 易 } \end{aligned}$				主蒸気隔離弁 主蒸気管圧力低	既設設体基づき実	$\begin{aligned} & \text { り, 当時 } 0 \\ & \text { ている。 } \end{aligned}$	周達管理に		
	$\begin{aligned} & \text { 峑 } \\ & \text { 䣤 } \end{aligned}$	－＊	－＊	－＊	主蒸気隔噰亣 主蒸気管放射能高	既設設借基づき実	り，当時の ている。	周達管理に		
	$\begin{aligned} & \text { おす。 } \\ & \text { 起 } \\ & \text { 動 } \end{aligned}$				主蒸気隔離升 主蒸気管トンネル温度高	既設設位基づき実	り，当時の ている。	周達管理に		
					主蒸気隔騅弁 主蒸気管流量大	既設設侑基づき実	$\text { り, 当時 } \sigma$ ている。	周達管理に		

	$\begin{aligned} & \text { 設 } \\ & \text { 粸 } \\ & \text { 分 } \end{aligned}$	系		機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { F゙ } \end{aligned}$				考
			主配管		P54－F070A \sim B21－F023H，J，L	既設設備であり，当時の調達管理に基づき実施している。				
					B21－F023H～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（H）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ一夕（H）出口配管合流点～B21—F001H	既設設備であり，当時の調達管理に基づき実施している。				
					B21－F023J～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（J）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ一夕（J）出口配管合流点～B21－F001J	既設設備であり，当時の調達管理に基づき実施している。				
					B21－F023L～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（L）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ一夕（L）出口配管合流点～B21－F001L	既設設備であり，当時の調達管理に基づき実施している。				
					連結管～高圧窒素がス供給系 B 系窒素供給配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					高圧窒素ガス供給系 B 系窒素供給配管合流点～ P54－F068B	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F068B～原子炉格納容器配管貫通部（ X －72B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －72B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－72B）～P54－F070B	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F070B～B21－F023A，C，E	既設設備であり，当時の調達管理に基づき実施している。				
				－＊	B21－F023A～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（A）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ 一夕（A）出口配管合流点～B21－F001A	既設設備であり，当時の調達管理に基づき実施している。				
					B21－F023C～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（C）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ 一夕（C）出口配管合流点～B21－F001C	既設設備であり，当時の調達管理に基づき実施している。				
					B21－F023E～主蒸気逃がし安全弁自動減圧機能用 アキュムレータ（E）出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					主蒸気逃がし安全弁自動減圧機能用アキュムレ ータ（E）出口配管合流点～B21－F001E	既設設備であり，当時の調達管理に基づき実施している。				
					T48－F030～P54－F015 および P54－F069A，B	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F069A～高圧室素がス供給系A系窒素供給配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F069B～高圧窒素ガス供給系 B 系窒素供給配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F015A～原子炬格納容器配管貫通部（ X －73）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －73）～P54－F020	既設設備であり，当時の調達管理に基づき実施している。				
					P54－F020～B21－F022A，B，C，D，E，F，G，H，J，K，L	既設設備であり，当時の調達管理に基づき実施している。				
					連結管	既設設備であり，当時の調達管理に基づき実施している。				

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。
VI-1-10-6 本設工認に係る設計の実績, 工事及び検査の計画

放射性廃棄物の廃棄施設
\circ
9
\vdots
$!$
5
©
\sim

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。
本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
$\begin{aligned} & \text { 設 } \\ & \text { 計 } \end{aligned}$	3．3．1		適合性碓認対象設備に対する要求事項の明確化	（ ）	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式 -2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー卜」	
		基本設計方針の作成（設計 1）				- 様式－2 - 技術基準規則	- 様式 -3 - 様式 -4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ	
	3.3.3 （1）		©	－	－	- 様式 -2 - 様式 -4 - 実用炉規則別表第二 - 技術基準規則	－様式 -5	ー要領「品証様式のチェックシー ト」	
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式 -6 - 様式－7		
						－基本設計方針	－様式 -5		
		適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2）	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針	－様式 -8 の「設工認設計結果（要目表 ／設計方針）」欄	－	
		1．共通的に適用される設計		炉冷却 殳」参朐		「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	
	3.3.3 （2）	2．放射性廃棄物の廃棄施設の設計	©	－	－	- 様式 -2 - 基本設計方針 - 既工認 - 設置変更許可申請書 - 設備図書	－要目表	－	
		3．放射性廃棄物の廃棄施設の兼用に関する設計 3.1 設備に係る設計のための系統の明確化及び兼用する機能の確認	©	－	－	- 様式－2 - 様式 -5 - 基本設計方針 - 設置変更許可申請書	- 機能単位の系統図 - 設定根拠の「（概要）」部分	－	

各段階		プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 ○ ：主担当 O ：開連			インプット	アウトプット	他の記録類
		計画：3．4．1～3．7．2	本店	発電所	供給者			
		3.2 機能を兼用する機器を含む設備に係る設計 （1）気体，液体又は固体廃蓑物処理設備 －排気筒 （2）堰その他の設備	©	－	\bigcirc	- 設備図書 - 機能単位の系統図 - 設定根拠の「（概要）」部分 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 機器の配置を明示した図面 - 構造図	－仕様書
	$\text { 3.3. } 3$ （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット
	3.3.3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認于 ェックシート」
	3.3.3 （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式一 8 の「設備の具体的設計結果」欄	－仕様書
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式－8の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式 -8 の「確認方法」欄	－
	3．5．3	検査計画の管理	－	（0）	\bigcirc	－適合性確認の検査計画	－検査成績書	－
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（）	\bigcirc	－溶接部詳細一覧表	－工事記録	－
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－
			－	©	\bigcirc	－検査要領書	－検査記録	－
	3．7．2	識別管理及びトレーサビリティ	－	（ ）	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

発 電 原 子 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
放射性廃物の隥施設	気 体， 液 体 又 は 直 廃 䥼 処 理 設				床ドレン・化学廃液脱塩器～K21－F202	既設設備 づき実施	$\begin{aligned} & \text { らり, 当時の } \\ & \text { いる。 } \end{aligned}$	坢管理に基		
			床		床ドレン・化学廃液脱塩器～床ドレン・化学廃液 サンプルタンク	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	り，当時の ている。	釡管理に基		
		$\begin{aligned} & \text { 体 } \\ & \text { 廃 } \\ & \hline ⿷ ⿻ ⿳ 一 一 𠃌 丨 女 口 ~ \end{aligned}$	$\stackrel{V}{V}$		床ドレン・化学廃液サンプルタンク～床ドレン・化学廃液サンプルポンプ	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	$\begin{aligned} & \text { らり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	幸管理に基		
		$\begin{aligned} & \text { 物 } \\ & \text { 拠 } \\ & \text { 理 } \end{aligned}$	$\begin{aligned} & \text { 学 } \\ & \text { 発 } \end{aligned}$		床ドレン・化学廃液サンプルポンプ～廃液サンプ ルポンプ出口配管合流点	既設設揀 づき実施	$\begin{aligned} & \text { らり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	釡管理に基		
			系		床ドレン・化学廃液サンプルポンプ出口配管分岐点～放水路配管合流点	既設設使 づき実旅	$\begin{aligned} & \text { らり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	幸管理に基		
					第1号機ランドリドレン系～放水路 （第 1，2号機共用）	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	$\begin{aligned} & \text { わり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	幸管理に基		
		固体廃物処理系			サイトバンカ貯蔵プール～スキマサージタンク （第1号機設備，第1，2，3号機共用）	既設設揀 づき実施	$\begin{aligned} & \text { らり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	釡管理に基		
			$\begin{aligned} & \text { イ } \\ & \text { バ } \end{aligned}$	主配管	スキマサージタンク～プール水循環ポンプ （第 1 号機設備，第 $1,2,3$ 号機共用）	既設設備 づき実旅	り，当時の いる。	釡管理に基		
			$\begin{aligned} & \text { 力 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		プール水循環ポンプ～プール水ろ過器 （第 1 号機設備，第 $1,2,3$ 号機共用）	既設設借 づき実	$\begin{aligned} & \text { らり, 当時の言 } \\ & \text { いる。 } \end{aligned}$	坢管理に基		
					プール水ろ過器～サイトバンカ貯蔵プール （第1号機設備，第1，2， 3 号機共用）	既設設借 づき実施	り，当時の いる。	幸管理に基		
					デカントポンプ～廃液収集槽入口収集管	既設設備 づき実	り，当時の ている。	幸管理に基		
					復水系逆洗受タンク～復水系逆洗移送ポンプ	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	り，当時の ている。	单管理に基		
					復水系逆洗移送ポンプ～浄化系沈降分離槽	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	り，当時の ている。	幸管理に基		
					浄化系沈降分離槽～デカントポンプ	既設設借 づき実施	あり，当時の ている。	幸管理に基		
					使用済樹脂貯蔵槽～デカントポンプ入口配管合流点	既設設侑 づき実旅	の，当時の ている。	幸管理に基		
			廃		浄化系沈降分離槽～スラッジ放出ポンプ入口配管合流点	既設設 づき実	あり，当時の ている。	单管理に基		
			$\begin{aligned} & \text { ラ } \\ & \text { シ } \\ & \text { ジ } \end{aligned}$	主配管	K21－F101～浄化系沈降分離槽	既設設 づき実	の，当時の くいる。	幸管理に基		
					K21－F103～浄化系沈降分離槽	既設設㷌 づき実	の，当時の ている。	釡管理に基		
					K21－F201～使用済樹脂貯蔵槽	既設設借 づき実	の，当時の ている。	坢管理に基		
					K21－F202～使用済樹脂貯蔵槽	既設設借 づき実旅	の，当時の ている。	坢管理に基		
					使用済樹脂貯蔵槽～スラッジ放出ポンプ	既設設備 づき実施	あり，当時の ている。	釡管理に基		
					スラッジ放出ポンプ～固化系乾燥機給液タンク	既設設侵 づき実	の，当時の ている。	羍管理に基		
			濃縮発夜系	主配管	K22－F001A，B～濃縮廃液貯蔵タンク	既設設使 づき実	の，当時の ている。	釡管理に基		
					濃縮察液貯蔵タンク～濃縮廃液ポンプ	既設設使 づき実旅	の，当時の ている。	单管理に基		
					濃縮廃液ポンプ～固化系乾燥機給液タンク	既設設揀 づき実	の，当時の ている。	坢管理に基		

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	番		機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { ! } \\ & \text { ド } \end{aligned}$				考
放 射 性 廃 物	$\begin{aligned} & \text { 堰 } \\ & \vdots \\ & \text { 他 } \\ & \text { 他 } \end{aligned}$	－＊	－＊	原子炉格納容器本体外に設置される流体状の放射性廃棄物を内包する容器 からの流体状の放射性廃	原子炬建屋地上 1 階の施設处との境界壁面及び施設外への出入口床面（原子炬建屋地上 1 階屋外 の出入口，原子炬建屋地上 1 階タービン建屋を結 ぶ連絡通路，原子炉建屋地上 1 階廃妻物处理系制御室出入口，原子炉建屋地上 1 階通路部出入口）	既設設備であり，当時の調達管理に基 づき実施している。				
				を防止するために施設す る堰	タービン建屋地下 2 階及び制御建屋地下 2 階配管 エリアの施設外との境界壁面及びこれに囲まれた床面（タービン建屋地下 2 階 TCW 熱交換器室出入口）	既設設備であり，当時の調達管理に基 づき実施している。				

注記＊：「一」は，該当する系統が存在しない場合を示す。

VI－1－10－7 本設工認に係る設計の実績，工事及び検査の計画放射線管理施設
R 0
1
\vdots
1
1
5
（a）
～

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
設計	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	（	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー卜」	
		基本設計方針の作成（設計 1）				- 様式 -2 - 技術基準規則	- 様式 -3 - 様式 -4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ	
	$\begin{gathered} 3.3 .3 \\ (1) \end{gathered}$		©	－	－	- 様式 -2 - 様式 -4 - 実用炬規則別表第二 - 技術基準規則	－様式 -5	ー要領「品証様式のチェックシー卜」	
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式－6 - 様式 -7		
						－基本設計方針	－様式 -5		
	3．3． 3 （2）	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2） 1．共通的に適用される設計	©	－	－	- 様式－2 - 様式 -5 - 基本設計方針	－様式－8 の「設工認設計結果（要目表 ／設計方針）」欄	－	
			「原子炉冷却系統施設」参照			「原子炬冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	
		2．プロセスモニタリング設備に関する設計 2.1 原子炉格納容器本体内の放射性物質濃度を計測する装置							
		2．1．1 格納容器内雰囲気放射線モニタ (D/W, S/C)	－	- -	－	- 基本設計方針 - 設備図書 - 既工認 - VI－1－10－9 の「2．1 非常用発電装置」におい て実施した設計結果 －VI－1－10－9 の「2．2 電力貯蔵装置」において実施した設計結果	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －放射線管理用計測装置の検出器の取付箇所を明示した図面 －単線結線図	－	

各段階	プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組緎内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	3．2．2 使用済燃料プール上部空間放射線モ ニ夕（低線量，高線量）				－VI－1－10－9 の「2．1 非常用発電装置」におい て実施した設計結果	範囲に関する説明書	
		©	－	－	- 基本設計方針 - 設備図書 - 既工認 - VI－1－10－9の「2．1 非常用発電装置」及び「2．2電力貯蔵装置」において実施した設計結果	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －放射線管理用計測装置の検出器の取付箇所を明示した図面 －放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－
	4．固定式周辺モニタリング設備に関する設計	©	－	－	- 基本設計方針 - 設備図書 - 既工認 - VI－1－10－9 の「2．1 非常用発電装置」におい て実施した設計結果	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －放射線管理用計測装置の検出器の取付箇所を明示した図面 －放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－
	5．移動式周辺モニタリング設備に関する設計 5.1 可搬型モニタリングポスト						
		©	－	－	- 基本設計方針 - 設備図書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －放射線管理用計測装置の検出器の取付箇所を明示した図面 －放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－
	5.2 可搬型放射線計測装置	©	－	－	- 基本設計方針 - 設備図書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －放射線管理用計測装置の検出器の取付箇所を明示した図面 －放射線管理用計測装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書	－

各段階	プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 $○$ ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
					が所有する気象データ，試験結果を踏まえ設定した中央制御室内への空気流入率，運転員 の交替要員体制及びマスクの着用並びに評価点の位置及び滞在時間）		
	10.2 緊急時対策所	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - VI－1－10－16 の「3．1 居住性の確保に関する設計」における防護措置 －VI－1－10－16 の「2．1 設置場所等に関する設計」における設計結果 －業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 緊急時対策所の居住性に関する説明書 - 放射線管理施設に係る機器（放射線管理用計測装置を除く。）の配置を明示 した図面 －放射線管理施設に係る機器（放射線管理用計測装置を除く。）の系統図 －生体遮蔽装置の放射線の遮蔽及び熱除去についての計算書 －構造図	－仕様書
	11．中央制御室待避所に関する設計	©	－	\bigcirc	- 基本設計方針 - 既工認 - 設置変更許可申請書 - 設備図書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 中央制御室の居住性に関する説明書 - 放射線管理施設に係る機器（放射線管理用計測装置を除く。）の系統図 - 構造図 - 放射線管理施設に係る機器（放射線管理用計測装置を除く。）の配置を明示 した図面	－仕様書
3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式－2～様式 -8	－	－基本設計アウトプット
3.3.3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認于 ェックシート」
$\text { 3.3. } 3$ （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5）	組織内外の相互関係$\text { © : 主担当 } O \text { : 関運 }$			インプット	アウトプット	他の記録類
		計画：3．4．1～3．7．2	本店	発電所	供給者			
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式—8 の「設備の具体的設計結果」欄	－仕様書
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式 -8 の「確認方法」欄	－
	3．5．3	検査計画の管理	－	（	\bigcirc	－適合性確認の検査計画	－検査成績書	－
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（）	\bigcirc	－溶接部詳細一覧表	－工事記録	－
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－
			－	（0）	\bigcirc	－検査要領書	－検査記録	－
	3．7．2	識別管理及びトレーサビリティ	－	（）	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

様式 -9

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画原子炉格納施設
R 0
VI－1－10－8
（a）
～

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
$\left.\right\|_{\mid} \text {設 }$	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式 -2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー卜」	
	3．3．3	基本設計方針の作成（設計 1）	©	－	－	- 様式 -2 - 技術基準規則	- 様式 -3 - 様式 -4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー ト」	
						- 様式 -2 - 様式 -4 - 実用炉規則別表第二 - 技術基準規則	－様式 -5		
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式 -6 - 様式 -7		
						－基本設計方針	－様式 -5		
	3.3.3 （2）	適合性確認対象設備の各条文への適合性を確保するため の設計（設計 2） 1．共通的に適用される設計 2．原子炉格納施設の兼用に関する設計 2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認	©	－	－	- 様式 -2 - 様式 -5 - 基本設計方針	－様式－8 の「設工認設計結果（要目表 ／設計方針）」 欄	－	
				沪冷却」参照		「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	
			©	－	－	- 様式－2 - 様式 -5 - 基本設計方針 - 設置変更許可時の設計結果 - 設備図書 - 設置変更許可申請書 - 原子炉格納施設の設計条件	－原子炉格納施設の設計条件に関する説明書 - 機能単位の系統図 - 設定根拠の「（概要）」部分	－	

各段階		プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		計画：3．4．1～3．7．2	本店	発電所	供給者			
		2． 2 機能を兼用する機器を含む設備に係る設計 （1）原子炉格納容器本体 （2）原子炉格納容器配管貫通部及び電気配線貫通部 （3）原子炉建屋 （4）原子炉格納容器安全設備 - 原子炉格納容器スプレイ泠却系 - 代替循環冷却系 - 原子炉格納容器下部注水系 （5）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 - 非常用ガス処理系 - 放射性物質拡散抑制系（放水設備（大気への拡散抑制設備）） - 可搬型窒素ガス供給系 - 原子炉格納容器フィルタベント系 （6）原子炉格納容器調気設備 －原子炉格納容器調気系 （7）圧力逃がし装置 －原子炉格納容器フィルタベント系 （8）放射性物質拡散抑制系（海洋への拡散抑制設備（シルトフェンス））						
		2．2．1 兼用を含む原子炉格納施設の機器の仕様等に関する設計	©	－	\bigcirc	- 機能単位の系統図 - 設定根拠の「（概要）」部分 - 設備図書 - 原子炉格納施設の設計条件 - 基本設計方針 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 機器の配置を明示した図面 - 構造図	－仕様書
		2．2．2 各機器固有の設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申請書 - 設置変更許可時の設計結果 - 既工認 - 「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」 - 業務報告書 - VI－1－10－9 の「2． 1 非常用発電装置」におい て設計した結果	－原子炉格納施設の設計条件に関する説明書 －原子炉格納施設の水素濃度低減性能に関する説明書 －圧力低減設備その他の安全設備のポン プの有効吸込水頭に関する説明書 －単線結線図	－仕様書

各段階	プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互關係 ○：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	2.3 機能を兼用する機器を含む原子炉格納施設 の系統図に関する取りまとめ	©	－	－	- 様式 -2 - 様式 -5 - 機能単位の系統図	－原子炉格納施設に係る系統図	－
	3．原子炬格納施設の設計 3.1 原子炉格納容器に係る設計	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の解析結果 - 既工認 - 「重要構造物安全評価（原子炉格納容器信頼性実証事業）に関する総括報告書」	－原子炉格納施設の設計条件に関する説明書 －設備別記載事項の設定根拠に関する説明書	－仕様書
	3.2 原子炉格納容器隔離弁に係る設計	©	－	－	- 基本設計方針 - 設備図書 - 原子炉格納施設の設計条件	－原子炉格納施設の設計条件に関する説明書	－
	3.3 重大事故等時における原子炉格納容器の放射性物質の閉じ込め機能評価	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 既工認 - 発電用原子力設備規格 設計•建設規格 - 重大事故等時における原子炉格納容器の放射性物質の閉じ込め機能評価に用いる評価温度及び評価圧力 - 通商産業省告示第 5 0 1 号 - 既往研究での試験結果 - 業務報告書	－原子炉格納施設の設計条件に関する説明書	- 仕様書 - 解析業務チェックシート
	3.4 原子炉格納容器の破損を防止するための水素 3．4．1 可搬型窒素ガス供給系の設計	－	减設備の	設計	- 基本設計方針 - 設置変更許可申請書 - 様式 -2 - 原子炉格納施設の設計条件 - 設備図書 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 －原子炉格納施設の設計条件に関する説明書 －原子炉格納施設の水素濃度低減性能に関する説明書 －原子炉格納施設に係る機器の配置を明示した図面 - 原子炉格納施設に係る系統図 - 構造図	－仕様書

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
								示した図面 - 原子炉格納施設に係る系統図 - 構造図	
		4.3 原子炉建屋ブローアウトパネル関連設備の設計	（	－	\bigcirc	- 基本設計方針 - 設備図書 - 業務報告書 - VI－1－10－9 の「2．1 非常用発電装置」におい て実施した設計結果	- 基本設計方針機器 - 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書	－仕様書	
	$\text { 3. 3. } 3$ （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3．3． 3 （4）	設工認申請書の作成	（0）	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3 （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式 -8 の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式一8の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
	3．5．3	検査計画の管理	－	（ ）	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	©	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－	
			－	（	\bigcirc	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（）	\bigcirc	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

発 電 原 炉 炉 施 の 種 頪	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分		機器名	グ 1 ド				考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炇 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 俗 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䌋 } \\ & \text { 器 } \end{aligned}$	－＊	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－36）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－37）	既設設很 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（X－50）	既設設使 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（X－51）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（X－52）	既設設揀基づき	あり，当時の している。	調達管理に		
					原子炬格納容器配管貫通部（X－60）	既設設 基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（ $\mathrm{X}-61 \mathrm{~A}$ ）	既設設使基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －61B）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －62A）	既設設揀基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －62B）	既設設揀 基づき	あり，当時の している。	調達管理に		
					原子炬格納容器配管貫通部（X－63）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（X－64）	既設設揀基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－70）	既設設揀基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（X－71）	既設設揀基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（ X －72A $)$	既設設使 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －72B）	既設設使基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－73）	既設設揀基づき	あり，当時の している。	調達管理に		
					原子炬格納容器配管貫通部（X－80）	既設設使 基づき	あり，当時の している。	調達管理に		
					原子炬格納容器配管貫通部（X－81）	既設設揀基づき	$\begin{aligned} & \text { あり, 当時 } \sigma \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~A}$ ）	既設設揀 基づき	$\begin{aligned} & \text { 女り, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（ X －82B）	既設設揀基づき	$\begin{aligned} & \text { あり, 当時 } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（X－90）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－91）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（ X －92）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（X－93）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（ ${ }^{\text {－}}$－ 066 B）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（ X －130A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －130B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －130C）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －130D）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（ X －131）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －132A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －132B）	既設設備であり，当時の調達管理に基づき実施している。				

様式 -9

様式 -9
11

$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 斻 } \\ & \text { 謁 } \\ & \text { 種 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	系	機器区分		機器名	グ	ᄀ品保 ．買 安 3 ネ定 設 又 計ン 開 卜 発 シ の 즈テ 適 ム 用 計 有 画 無			考
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 誨 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 綌 } \\ & \text { 器 } \end{aligned}$	－＊	原子炉格納容器配管貫通部及び電気配線貫通部		原子炉格納容器配管貫通部（ X －242）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（ $\mathrm{X}-243$ ）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（ X －260A）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －260B）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －261A）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －261B）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －262A）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －262B）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －263）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X － 270 A ）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X （270B）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X （270C）	既設設 基づき	あり，当時の している。	調達管理に		
				配管貫通部	原子炉格納容器配管貫通部（ X －270D）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －270E）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －270F）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －271A）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －271B）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X － 272 A ）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －272B）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X － 272 C ）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －272D）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －272E）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（ X － 272 F ）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ $\mathrm{X}-280$ ）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X －281）	I	\bigcirc	\bigcirc		
				電気配線貫通部	原子炬格納容器電気配線貫通部（X－100A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－100B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－100C）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－100D）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－101A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－101B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－101C）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（X－101D）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器電気配線貫通部（ X －102A）	既設設備であり，当時の調達管理に基づき実施している。				

発 電 原 炉 施 設 の 種	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
原炉格納施設	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 䌋 } \\ & \text { 器 } \end{aligned}$			電気配線貫通部	原子炉格納容器電気配線貫通部（ X －102B）	$\begin{aligned} & \text { 既設設价 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時 } 0 \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（ X －102C）	既設設 基づき	あり，当時の している。	调達管理に		
					原子炉格納容器電気配線貫通部（X－102D）	既設設基づき	$\begin{aligned} & \text { あり, 当時 } \sigma \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（ X －102E）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（ $\mathrm{X}-103 \mathrm{~A})$	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	调達管理に		
					原子炉格納容器電気配線貫通部（ X －103B）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器電気配線貫通部（ $\mathrm{X}-103 \mathrm{C}$ ）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器電気配線貫通部（ $\mathrm{X}-104 \mathrm{~A})$	既設設揀基づき	あり，当時の している。	調達管理に		
			原子炬格納容器配管貫通		原子炉格納容器電気配線貫通部（ $\mathrm{X}-104 \mathrm{~B}$ ）	$\begin{aligned} & \text { 既設設价 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	调達管理に		
			部及び電気配線貫通部		原子炉格納容器電気配線貫通部（ $\mathrm{X}-104 \mathrm{C})$	既設設揀 基づき	あり，当時の している。	调達管理に		
					原子炉格納容器電気配線貫通部（X－104D）	既設設信 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器電気配線貫通部（ $\mathrm{X}-105 \mathrm{~A})$	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（ X －105B）	既設設基づき	あり，当時の している。	調達管理に		
					原子炉格納容器電気配線貫通部（ X －105C）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（X－105D）	既設設基づき	$\begin{aligned} & \text { あり, 当時 } \sigma \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（X－106A）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器電気配線貫通部（ $\mathrm{X}-250 \mathrm{~A}$ ）	既設設 基づき	あり，当時の している。	調達管理に		
					原子炉格納容器電気配線貫通部（X－250B）	$\begin{aligned} & \text { 既設設俗 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時 } \sigma \\ & \text { している。 } \end{aligned}$	調達管理に		
	$\begin{aligned} & \text { 原 } \\ & \text { 㴃 } \\ & \text { 建 } \\ & \text { } \end{aligned}$	－＊	原子炬建屋原子炉棟	－＊	原子炉建屋原子炉棟（二次格納施設）	既設設基づき	あり，当時の している。	調達管理に		
			機器搬出入口		原子炬建屋大物般入口	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時 } \sigma \\ & \text { している。 } \end{aligned}$	調達管理に		
			エアロック		原子炉建屋エアロック	$\begin{aligned} & \text { 既設設借 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	䎻達管理に		
			原子炬建屋基硔スラブ		原子炉建屋基䃝版	既設設借 基づき	あり，当時の している。	調達管理に		
	圧方低減備\succsimの他の安設備	－＊	真空破壊装置	－＊	真空破壊弁（T11－F034A，B，C，D，E，F）	既設設基づき	$\begin{aligned} & \text { あり, 当時 } 0 \\ & \text { している。 } \end{aligned}$	調達管理に		
			ダウンカマ		ダウンカマ	既設設基づき	$\begin{aligned} & \text { あり, 当時 } 0 \\ & \text { している。 } \end{aligned}$	調達管理に		
					ベント管	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	䎻達管理に		
			ベント管		ベント管ベローズ	$\begin{aligned} & \text { 既設設休 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時 } O \\ & \text { している。 } \\ & \hline \end{aligned}$	調達管理に		
			ベントヘッダ		ベントヘッダ	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
		$\begin{aligned} & \text { プ原 } \\ & \text { 亿集 } \end{aligned}$			ドライウェルスプレイ管	既設設 基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
		系綌 器 相			サプレッションチェンバスプレイ管	既設設基づき	あり，当時の している。	調達管理に		
		$\begin{aligned} & \text { 部 原 } \\ & \text { 注 } \end{aligned}$			復水移送ポンプ	既設設基づき	あり，当時の している。	調達管理に		
		系 格	原子炉格納容器安全設備	ポンプ	大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc		
		欲			代替循環冷却ポンプ	I	\bigcirc	\bigcirc		

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 炻 } \\ & \text { 格 } \\ & \text { 葹 } \\ & \text { 設 } \end{aligned}$			原子炉格納容器安全設備	容器	復水販蔵タンク	$\begin{aligned} & \text { 既設設侑信 } \\ & \text { 基 } \end{aligned}$	あり, 当時の している。	調達管理に		
				3 過装置	残留熱除去系ストレーナ（A）	既設設儲基づき実	あり，当時の している。	調達管理に		
					E11－F048A（残留熱除去系 A 系注入ライン逃が し弁）	$\begin{aligned} & \text { 既設設㑓づ基 } \end{aligned}$	あり, 当時の している。	調達管理に		
				安全弁及び逃がし弁	E11－F084（代替循環冷却ポンプ吐出ライン逃 がし弁）	I	\bigcirc	\bigcirc		
					E11－F085（代替循環冷却ポンプ吸込ライン逃 がし弁）	I	\bigcirc	\bigcirc		
				主配管	復水貯蔵タンク～E22－F014	既設設備 基づき実	$\begin{aligned} & \text { あり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					E22－F014～補給水よりの第一アンカ	$\begin{aligned} & \text { 既設設備づ基 } \end{aligned}$	あり，当時の している。	調達管理に		
					補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点		あり，当時の している。	調達管理に		
					復水眝蔵タンク出口配管分岐点～低圧代替注水系吸达配管分岐点	I	\bigcirc	\bigcirc		
					低圧代替注水采吸込配管分岐点 \sim P13－F072	I	\bigcirc	\bigcirc		
					P13－F072～補給水系配管合流点	I	\bigcirc	\bigcirc		
					補給水系配管合流点～復水移送ポンプ	I	\bigcirc	\bigcirc		
					復水移送ポンプ～低圧代替注水系注入配管分岐点	$\begin{aligned} & \text { 既設設侑基づ表 } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	$\begin{aligned} & \text { 既設設侑僙 } \\ & \text { 基づ } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	I	\bigcirc	\bigcirc		
					低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分岐点	I	\bigcirc	\bigcirc		
					原子炬格納容器下部注水系注入配管分岐点 ～原子炉格納容器配管貫通部（X－92）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（ X －92）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（X－92）～原子炉格納容器下部注水配管開放端	I	\bigcirc	\bigcirc		
					残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－214A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－214A）～サプ レッションチェンバ出口配管 A 系合流点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションチェンバ出口配管 A 系合流点 ～代替循環冷却系吸込配管分岐点	I	\bigcirc	\bigcirc		
					代替循環冷却系吸込配管分岐点～代替循環泠却ポンプ	I	\bigcirc	\bigcirc		
					代替循環冷却ポンプ～代替循環椧却系注入配管合流点	I	\bigcirc	\bigcirc		
					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		

	$\begin{aligned} & \text { 設 } \\ & \text { 馛 } \\ & \text { 分 } \end{aligned}$	系	機器区		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器 (A)	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時 } \\ & \text { している。 } \end{aligned}$	調達管理に		
					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設健 基づき実	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	輖達管理に		
					残留熱除去系熱交換器代替循擐冷却系出口配管分岐点～残留熱除去系熱交换器（A）バイ パス配管合流点	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	蟹達管理に		
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交换器（A）バイパス配管合流点	既設設伍基づき実	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	制達管理に		
		原			残留熱除去系熱交換器代替循環冷却系出口配管分岐点～E11－F088	I	\bigcirc	\bigcirc		
		䈷			E11－F088～低圧代替注水系注入配管合流点 2	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 眔 } \\ & \text { 部 } \end{aligned}$	原子炬格納容器安全設備	主配管	原子炉•格納容器下部注水接続口（北）～低圧代替注水系注入配管 A 系分岥点	I	\bigcirc	\bigcirc		
		永			原子炉格納容器下部注水系注入配管分岐点 ～低圧代替注水系注入配管 A 系分岐点	I	\bigcirc	\bigcirc		
					原子炉•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1	I	\bigcirc	\bigcirc		
					取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					送水用ホース（ 300 A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					注水用ヘッダ	I	\bigcirc	\bigcirc		
					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
			原子炉格納容器安全設備	ポンプ	復水移送ポンプ	既設設備であり，当時の調達管理に基づき実施している。				
					大容量送水ポンプ（タイプI）	I	\bigcirc	\bigcirc		
				容器	復水貯蔵タンク		$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
				主配管	復水貯蔵タンク～E22－F014	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	蟹達管理に		
					E22－F014～補給水よりの第一アンカ	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	蟹達管理に		
					補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点		$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
					低圧代替注水系吸达配管分岐点 $~$ P13－F072	I	\bigcirc	\bigcirc		
					P13－F072～補給水系配管合流点	I	\bigcirc	\bigcirc		
					補給水系配管合流点～復水移送ポンプ	I	\bigcirc	\bigcirc		
					復水移送ポンプ～低圧代替注水系注入配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	I	\bigcirc	\bigcirc		

ज

発 雷 原 炉 施 設 の 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \end{aligned}$	系	機器区		機器名	$\begin{aligned} & \text { グ } \\ & \text { ト } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	圧方澸設備\vdotsの他の安設備				低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分岐点	I	\bigcirc	\bigcirc		
					原子炉格納容器下部注水系注入配管分岐点 ～低圧代替注水系注入配管 A 系分岐点	I	\bigcirc	\bigcirc		
					低圧代替注水系注入配管 A 系分岐点～E11－ F041	I	\bigcirc	\bigcirc		
					E11－F041～低圧代替注水系A系注入配管合流点	既設設基づき	あり，当時の している。	調達管理に		
					ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系 A 系注入配管合流点	既設設基づき	あり，当時の している。	調達管理に		
					ドライウェルスプレイ注入配管 A 系分岐点～原子炉格納容器代替スプレイ泠却系 A 系注入配管合流点	I	\bigcirc	\bigcirc		
					原子炉格納容器代替スプレイ泠却系A系注入配管合流点～原子炉格納容器配管貫通部（X－ 30A）	I	\bigcirc	\bigcirc		
		原			原子炉格納容器配管貫通部（X－30A）	既設設基づき	あり，当時の している。	調達管理に		
					ドライウェルスプレイ管	既設設基づき	あり，当時の している。	調達管理に		
		$\begin{aligned} & \text { 嚾 } \\ & \text { 替 } \end{aligned}$	原子炉格納容器安全設備	主配管	低圧代替注水系注入配管 B 系分岐点～E11－ F026B	既設設基づき	あり，当時の している。	調達管理に		
		$\begin{aligned} & \text { ro } \\ & \text { L } \end{aligned}$			E11－F026B～低圧代替注水系 B 系注入配管合流点	既設設基づき	あり，当時の している。	調達管理に		
		$\begin{aligned} & \text { 佮 } \\ & \text { 絫 } \end{aligned}$			ドライウェルスプレイ注入配管 B 系分岐点～低圧代替注水系 B 系注入配管合流点	既設設基づき	あり，当時の している。	調達管理に		
					ドライウェルスプレイ注入配管 B 系分岐点～原子炉格納容器代替スプレイ泠却系 B 系注入配管合流点	I	\bigcirc	\bigcirc		
					原子炉格納容器代替スプレイ冷却系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－ 30B）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（ X －30B）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					格納容器スプレイ接続口（北）～原子炉格納容器代替スプレイ冷却系A系注入配管合流点	I	\bigcirc	\bigcirc		
					格納容器スプレイ接続口（東）～原子炉格納容器代替スプレイ冷却系 B 系注入配管合流点	I	\bigcirc	\bigcirc		
					取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					送水用ホース（ $300 \mathrm{~A}: 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					注水用ヘッダ	I	\bigcirc	\bigcirc		
					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \\ & \text { 浍 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器安全設備	熱交換器	残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づき実施している。				
				ポンプ	代替循環冷却ポンプ	I	\bigcirc	\bigcirc		
				万過装置	残留熱除去系ストレーナ（A）	既設設備であり，当時の調達管理に基づき実施している。				

	$\begin{aligned} & \text { 設 } \\ & \text { 倸 } \\ & \text { 分 } \\ & \text { 分 } \end{aligned}$	棌	機器区		機器名	$\begin{gathered} \text { グ } \\ 1 \\ \text { ド } \end{gathered}$				考
			原子炉格納容器安全設備		E11－F084（代替循環冷却ポンプ吐出ライン逃 がし弁）	I	\bigcirc	\bigcirc		
					E11－F085（代替循環泠却ポンプ吸込ライン逃 がし弁）	I	\bigcirc	\bigcirc		
					E11－F048A（残留熱除去系 A 系注入ライン逃が し弁）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり, 当時	調達管理に		
					E11－F048B（残留熱除去系 B 系注入ライン逃が し弁）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
				主配管	残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	あり，当時の している。	調達管理に		
					原子炉格納容器配管貫通部（ X － 214 A ）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－214A）～サプ レッションチェンバ出口配管 A 系合流点	既設設健 基づき実	あり，当時の している。	調達管理に		
					サプレッションチェンバ出口配管A系合流点 ～代替循睘冷却系吸込配管分岐点	I	\bigcirc	\bigcirc		
					代替循環冷却系吸込配管分岐点～代替循環冷却ポンブ	I	\bigcirc	\bigcirc		
					代替循環泠却ポンプ～代替循澴泠却系注入配管合流点	I	\bigcirc	\bigcirc		
					代替循澴冾却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器 (A)	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { り, 当時 } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設恠基づき実	あり，当時の している。	調達管理に		
					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイ パス配管合流点	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { pり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					残留熱除去系熱交換器（A）バイパス配管合流点～原子炬停止時冷却モードA系注入配管分岐点	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { らり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					原子炉停止時冷却モード A 系注入配管分㞳点 ～ドライウェルスプレイ注入配管A系分岐点	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { Lている。 } \end{aligned}$	調達管理に		
					ドライウェルスプレイ注入配管 A 系分岐点～原子炉格納容器代替スプレイ泠却系A系注入配管合流点	I	\bigcirc	\bigcirc		
					原子炉格納容器代替スプレイ椧却系 A 系注入配管合流点～原子炬格納容器配管貫通部（X－ 30A）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（X－30A）	既設設備であり，当時の調達管理に基づき実施している。 既設設備であり，当時の調達管理に基づき実施している。				
					ドライウェルスプレイ管					
					残留熱除去系熱交換器代替循澴洽却系出口配管分岐点～E11－F088	I	\bigcirc	\bigcirc		
					E11－F088～低圧代替注水系注入配管合流点 2	I	\bigcirc	\bigcirc		
					低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	I	\bigcirc	\bigcirc		
					低圧代替注水系注入配管 B 系分岐点～E11－ F026B	既設設備であり，当時の調達管理に基づき実施している。				

発 電 有 的 炉 施 設 の 顐	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$				考
$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 誨 } \end{aligned}$	圧低澸設備\vdotsの他安全設備				E11－F026B～低圧代替注水系 B 系注入配管合流点	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	既設設基づき	$\begin{aligned} & \text { 历り, 当時の } \\ & \text { ている。 } \end{aligned}$	周達管理に		
					原子炉格納容器配管貫通部（ X －31B）	既設設基づき	のり，当時の てている。	周達管理に		
		代 替 循 地	师格納容品它全設		原子炉格納容器配管貫通部（X－31B）～原子炉圧力容器	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	り，当時の している。	調達管理に		
		$\begin{aligned} & \text { 詅 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	炻格納容哭安全設	王配管	ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系 A 系注入配管合流点	既設設備基づき䒠	り，当時の ている。	郮達管理に		
					低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（X－31A）	既設設基づき	り，当時の ている。	調達管理に		
					原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器	既設設 基づき	$\begin{aligned} & \text { あり, 当時 } \\ & \text { ている。 } \end{aligned}$	調達管理に		
		高垈替注水系	原子炬格納容器安全設備	ポンプ	高圧代替注水系タービンポンプ	I	\bigcirc	\bigcirc		
				容器	復水貯蔵タンク	既設設 基づき	り，当時の てている。	調達管理に		
				主配管	原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	既設設基づき	$\begin{aligned} & \text { 历り, 当時 } \\ & \text {-ている。 } \end{aligned}$	調達管理に		
					原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）	既設設基づき	$\begin{aligned} & \text { 历り, 当時の } \\ & \text { Cいる。 } \end{aligned}$	調達管理に		
					原子炬格納容器配管貫通部（X－36）	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { ている。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { Cいる。 } \end{aligned}$	調達管理に		
					原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	I	\bigcirc	\bigcirc		
					高圧代替注水系蒸気入口配管分岐点～高圧代替注水系タービンポンプ	I	\bigcirc	\bigcirc		
					高圧代替注水系タービンポンプ～原子炉隔離時冷却系タービン排気配管合流点	I	\bigcirc	\bigcirc		
					原子炉隔離時冷却系タービン排気配管合流点～原子炉格納容器配管貫通部（X－222）	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（X－222）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－222）～原子炉隔離時冷却系スパージャ	既設設備であり，当時の調達管理に基づき実施している。				
					復水貯蔵タンク～E22－F014	既設設備であり，当時の調達管理に基づき実施している。				
					E22－F014～補給水よりの第一アンカ	既設設備であり，当時の調達管理に基づき実施している。				
					補給水よりの第一アンカ～復水貯蔵タンク出口配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
					低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	I	\bigcirc	\bigcirc		
					高圧代替注水系吸込配管分岐点～高圧代替注水系タービンポンプ	I	\bigcirc	\bigcirc		

発 雷 原 筓 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爷 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器		機器名	$\begin{aligned} & \text { グ } \\ & \text { レ } \\ & \text { ド } \end{aligned}$		ᄀ 品 保 ． 7 質安 4 齐定 調 メ のシ 適 有 么 無 計		考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 䛌 } \\ & \text { 俗 } \end{aligned}$					原子炉格納容器配管貫通部（X－31A）～原子炉圧力容器	既設設基づき	あり，当時の している。	周達管理に		
					低圧代替注水系注入配管 B 系分岐点～E11－ F026B	既設設揀基づき	あり，当時の している。	周達管理に		
					E11－F026B～低圧代替注水系 B 系注入配管合流点	既設設揀基づき	あり，当時の している。	周達管理に		
					低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	既設設揀基づき	あり，当時の している。	周達管理に		
					原子炉格納容器配管貫通部（X－31B）	既設設基づき	あり，当時の している。	周達管理に		
		$\begin{aligned} & \text { 低 } \\ & \text { 代 } \end{aligned}$			原子炉格納容器配管貫通部（X－31B）～原子炉圧力容器	既設設揀基づき	あり，当時の している。	周達管理に		
		$\begin{aligned} & \text { 㲾 } \\ & \text { 系 } \end{aligned}$			原子炉•格納容器下部注水接続口（北）～低圧代替注水系注入配管 A 系分岐点	I	\bigcirc	\bigcirc		
					原子炉•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1	I	\bigcirc	\bigcirc		
					取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~mm}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
					注水用ヘッダ	I	\bigcirc	\bigcirc		
					送水用ホース（150A： $1 \mathrm{~m}, 2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { ほ } \\ & \text { 酸 } \\ & \text { 醁 } \\ & \text { 注 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器安全設備	ポンプ	ほら酸水注入系ポンプ	既設設備であり，当時の調達管理に基づき実施している。				
				容器	ほら酸水注入系貯蔵タンク	既設設備であり，当時の調達管理に基づき実施している。				
				安全弁及び逃がし弁	C41－F003A，B（ほう酸水注入系ポンプ（A），（B）吐出ライン逃がし弁）	既設設備であり，当時の調達管理に基づき実施している。				
					C41－F022（ほう酸水注入系ポンプ吸込ライン逃がし弁）	既設設備であり，当時の調達管理に基づき実施している。				
				主配管	ほう酸水注入系貯蔵タンク～ほう酸水注入系ポンプ	既設設備であり，当時の調達管理に基づき実施している。				
					ほう酸水注入系ポンプ～原子炉格納容器配管貫通部（X－22）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（ X －22）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－22）～差圧検出・ほう酸水注入系配管（ティーより N11 ノ ズルまでの外管）	既設設備であり，当時の調達管理に基づき実施している。				
			原子炉格納容器安全設備	熱交換器	残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づき実施している。				
				ポンプ	残留熱除去系ポンプ（A），（B）	既設設備であり，当時の調達管理に基づき実施している。				
				万過装置	残留熱除去系ストレーナ（A）	既設設備であり，当時の調達管理に基づき実施している。				

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	系	機器区		機器名	$\begin{aligned} & \text { グ } \\ & 1 \\ & 1 \\ & \text { ド } \end{aligned}$				考
			原子炉格納容器安全設備	主配管	残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－214B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（X－214B）～サプ レッションチェンバ出口配管 B 系合流点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションチェンバ出口配管B系合流点 ～残留熱除去系ポンプ（B）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系ポンプ $(B) \sim$ 残留熱除去系熱交換器（B）バイパス配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モードB B 系注入配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉停止時冷却モードB系注入配管分岐点 ～ドライウェルスプレイ注入配管B系分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					ドライウェルスプレイ注入配管 B 系分岐点～原子炉格納容器代替スプレイ泠却系B系注入配管合流点	I	\bigcirc	\bigcirc		
					原子炬格納容器代替スプレイ椧却系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－ 30B）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（ X －30B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉停止時椧却モードB系注入配管分岐点 ～サプレッションプール水冷却モードB系戻 り配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションプール水冷却モードB系戻り配管分岐点～サプレッションチェンバスプ レイ注入配管B系分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションチェンバスプレイ注入配管 B系分岐点～原子炉格納容器配管貫通部（X－ 213B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－213B）	既設設備であり，当時の調達管理に基づき実施している。				
		眓		熱交換器	残留熱除去系熱交換器（ A ）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & \text { 系 } \\ & \text { 茾 } \end{aligned}$		ポンプ	残留熱除去系ポンプ（A），（B）	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & L \\ & \text { v } \\ & \text { シ } \end{aligned}$			残留熱除去系ストレーナ（ $\mathrm{A}^{\text {a }}$	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & \text { ヨ } \\ & \text { シ } \end{aligned}$	原子炉格納容器安全	万過翌直	残留熱除去系ストレーナ（B）	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & \text { 先 } \\ & \text { 水 } \\ & \text { 偘 } \end{aligned}$		安全弁及び逃がし弁	E11－F048A（线留熱除去系A系注入ライン逃が し弁）	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & \text { モ } \\ & \text { 上゙ } \end{aligned}$			E11－F048B（线留熱除去系 B 系注入ライン逃が (弁)	既設設備であり，当時の調達管理に基づき実施している。				

発 電 原 炇 施 設 の 顐	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$		$\begin{aligned} & \overrightarrow{7} \text { 磒 保 } \\ & \text { 安 } \\ & 4 \text { 覥 } \\ & \text { 調 } \\ & \text { 調 } \\ & \text { 達 } \\ & \text { の } \\ & \text { の } \\ & \text { 適 ス } \\ & \text { 有公 } \\ & \text { 無 計 } \\ & \text { 画 } \end{aligned}$		考
原炉格納施設	圧方澸備信の他の安設備		原子炬格納容器安全設備	主配管	残留熱除去系ストレーナ (A)～原子炉格納容器配管貫通部（X－214A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（X－214A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－214A）～サプ レッションチェンバ出口配管 A 系合流点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションチェンバ出口配管A系合流点 ～代替循環冷却系吸込配管分岐点	I	\bigcirc	\bigcirc		
					代替循環冷却系吸込配管分岐点～残留熱除去系ポンプ（A）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	I	\bigcirc	\bigcirc		
					残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイ パス配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉停止時冷却モード A 系注入配管分岐点 ～サプレッションプール水冷却モード A 系戻 り配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションプール水泠却モード A 系戻り配管分岐点～原子炉格納容器配管貫通部（X－ 215A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（X－215A）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－215A）～サプ レッションプール水冷却配管 A 系開放端	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炬格納容器配管貫通部（ X －214B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－214B）～サプ レッションチェンバ出口配管 B 系合流点	既設設備であり，当時の調達管理に基づき実施している。				
					サプレッションチェンバ出口配管B系合流点 ～残留熱除去系ポンプ（B）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モードB系注入配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉停止時冷却モードB系注入配管分岐点 ～サプレッションプール水泠却モード B 系戻 り配管分岐点	既設設備であり，当時の調達管理に基づき実施している。				

発 雷 原 子 炉 施 設 種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$	7 賀保 －マ 替 設 メ 開卜 の 즈テ 適 尐 有画 無	7 賀保 －マ嫢 4 齐定 調 メ に ト のシ 適 有 么 無 計		考
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	$\begin{aligned} & \text { 圧 } \\ & \text { 低 } \\ & \text { 減 } \\ & \text { 備 } \\ & \vdots \\ & \text { の } \\ & \text { 他 } \\ & \text { 安 } \\ & \text { 全 } \\ & \text { 設 } \end{aligned}$		原子炬格納容器安全設備	主配管	サプレッションプール水泠却モード B 系戻り配管分岐点～原子炉格納容器配管貫通部（X－ 215B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－215B）	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（X－215B）～サプ レッションプール泠却配管 B 系開放端	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \\ & \text { 羙 } \\ & \text { ス } \\ & \text { 処 } \\ & \text { 理 } \end{aligned}$	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	加熱器	非常用ガス処理系空気乾燥装置	既設設備であり，当時の調達管理に基づき実施している。				
				主要弁	T46－F001A，B（非常用ガス処理系入口弁 （A），（B））	既設設備であり，当時の調達管理に基づき実施している。				
					T46－F003A，B（非常用ガス処理系フィルタ装置出口弁（A），（B））	既設設備であり，当時の調達管理に基づき実施している。				
				主配管	T48－F045～非常用ガス処理系空気乾燥装置入口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					非常用ガス処理系空気乾燥装置入口配管合流点～非常用ガス処理系排風機	既設設備であり，当時の調達管理に基づき実施している。				
					原子炉建屋内～非常用ガス処理系排風機入口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					非常用ガス処理系排風機～非常用ガス処理系フィルタ装置	既設設備であり，当時の調達管理に基づき実施している。				
					非常用ガス処理系フィルタ装置～非常用ガ ス処理系フィルタ装置出口配管合流点	既設設備であり，当時の調達管理に基づき実施している。				
					非常用ガス処理系フィルタ装置出口配管合流点～排気筒	既設設備であり，当時の調達管理に基づき実施している。				
				排風機	非常用ガス処理系排風機	既設設備であり，当時の調達管理に基づき実施している。				
				フィルター	非常用ガス処理系フィルタ装置	既設設備であり，当時の調達管理に基づき実施している。				
			放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	加熱器	可燃性ガス濃度制御系再結合装置加熱器	既設設備であり，当時の調達管理に基づき実施している。				
				安全弁及び逃がし弁	T49－F007A，B（可燃性ガス濃度制御系 A，B 系出 ロライン逃し弁）	既設設備であり，当時の調達管理に基づき実施している。				
				主要弁	T49－F001A，B（可燃性ガス A，B 系濃度制御系入口隔離弁）	既設設備であり，当時の調達管理に基づき実施している。				
					T49－F003A，B（可燃性ガス A，B 系濃度制御系出口隔離弁）	既設設備であり，当時の調達管理に基づき実施している。				
					ドライウェル～可燃性ガス濃度制御系再結合装置	既設設備であり，当時の調達管理に基づき実施している。				
				主配管	可燃性ガス濃度制御系再結合装置～T49－ F003A，B	既設設備であり，当時の調達管理に基づき実施している。				
					T49－F003A，B～サプレッションチェンバ	既設設備であり，当時の調達管理に基づき実施している。				
				ブロワ	可燃性がス濃度制御系再結合装置ブロワ	既設設備であり，当時の調達管理に基づき実施している。				
				再結合装置	可燃性ガス濃度制御系再結合装置	既設設備であり，当時の調達管理に基づき実施している。				
		$\begin{gathered} \text { 原 } \\ \text { 度炉 } \\ \text { 抑建 } \\ \text { 制屋 } \\ \text { 系 水 } \\ \text { 素 } \\ \text { 濃 } \end{gathered}$	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	再結合装置	静的触媒式水素再結合装置	I	\bigcirc	\bigcirc		

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & 1 \\ & \text { ド } \end{aligned}$				考
			放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主要弁	T48－F019（ドライウェルベント用出口隔離弁）	I	\bigcirc	\bigcirc		
					$\begin{aligned} & \text { T48-F022(サプレッションチェンババント用 } \\ & \text { 出口隔離亣) } \end{aligned}$	I	\bigcirc	\bigcirc		
					T63－F001（原子炬格納容器フィルタベント系 ベントライン隔離弁（A））	I	\bigcirc	\bigcirc		
					T63－F002（原子炬格納容器フィルタベント系 ベントライン隔離弁（B））	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（ X －230）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	睭達管理に		
					原子炉格納容器配管貫通部（X－230）～ドライ ウェル出口配管分岐点	I	\bigcirc	\bigcirc		
					原子炉格納容器配管貫通部（ X －81）	$\begin{aligned} & \text { 既設設 } \\ & \text { 基づき } \end{aligned}$	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					原子炉格納容器配管貫通部（X－81）～ドライ ウェル出口配管分岐点	既設設基づき	$\begin{aligned} & \text { あり, 当時の } \\ & \text { している。 } \end{aligned}$	調達管理に		
					サプレッションチェンバ出口配管分岐点 3～ フィルタ装置	I	\bigcirc	\bigcirc		
					フィルタ装置～フィルタ装置出口側ラプチ ヤディスク	I	\bigcirc	\bigcirc		
					フィルタ装置出口側ラプチャディスク～排気管	I	\bigcirc	\bigcirc		
					フィルタ装置（A）～フィルタ装置（B）	I	\bigcirc	\bigcirc		
					フィルタ装置（B）～フィルタ装置（C）	I	\bigcirc	\bigcirc		
					フィルタ装置連結管	I	\bigcirc	\bigcirc		
					可搬型室素がス供給装置接続口（屋外）～ T48－F011 入口側合流点	I	\bigcirc	\bigcirc		
					可搬型窒素がス供給装置接続口（屋内）～ド ライウェル寧素供給配管合流点	I	\bigcirc	\bigcirc		
					T48－F011 入口側合流点～T48－F002 出口側合流点	I	\bigcirc	\bigcirc		
					T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	既設設備であり，当時の調達管理に基づき実施している。 既設設備であり，当時の調達管理に基づき実施している。				
					原子炉格納容器配管貫通部（ $\mathrm{X}-80$ ）					
					ドライウェル窒素供給配管分岐点 2～原子炉格納容器配管貫通部（X－281）	I	\bigcirc	\bigcirc		
					原子炬格納容器配管貫通部（ X －281）	I	\bigcirc	\bigcirc		
					ドライウェル窒素供給配管分岐点 1～T48－ F066	I	\bigcirc	\bigcirc		
					T48－F066～フィルタ装置入口配管合流点	I	\bigcirc	\bigcirc		
					フィルタ装置水補給接続口（屋外）～フィル夕装置	I	\bigcirc	\bigcirc		
					$\begin{aligned} & \text { フィルタ装置水補給接続口 (屋内) ~フィル } \\ & \text { 夕装置 } \end{aligned}$	I	\bigcirc	\bigcirc		
					絰素供給用ホース（50A： 5 m ）	I	\bigcirc	\bigcirc		
					窒素供給用ヘッダ	I	\bigcirc	\bigcirc		
					可搬型窒素がス供給装置接続管	I	\bigcirc	\bigcirc		
					取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	I	\bigcirc	\bigcirc		

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－9 本設工認に係る設計の実績，工事及び検査の計画非常用電源設備
R 0
VI－1－10－9
（a）
～

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

各段階			組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
			本店	発電所	供給者			
		2．1．2 ガスタービン発電機	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用発電装置の出力の決定に関する説明書 －非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 非常用電源設備に係る系統図 - 構造図	－仕様書
		2．1．3 電源車	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用発電装置の出力の決定に関する説明書 －非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 非常用電源設備に係る系統図 - 構造図	－
		2．1．4 電源車（緊急時対策所用）	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用発電装置の出力の決定に関する説明書 －非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 非常用電源設備に係る系統図 - 構造図	－
		2．1．5 可搬型窒素ガス供給装置発電設備	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用発電装置の出力の決定に関する説明書 －非常用電源設備に係る機器の配置を明示し た図面 - 非常用電源設備に係る系統図 - 構造図	－仕様書

各段階		プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 © ：主担当 O ：開連			インプット	アウトプット	他の記録類
			本店	発電所	供給者			
		2.2 電力貯蔵装置						
		2．2．1 125V蓄電池	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可申時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 構造図	－仕様書
		2．2．2 125V代替蓄電池	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 構造図	－仕様書
		2．2．3 250V蓄電池	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 構造図	－仕様書
		2．2．4 主蒸気逃がし安全弁用可搬型蓄電池	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 主蒸気逃がし安全弁用電磁弁の所要負荷	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 構造図	－仕様書
		2.3 無停電電源装置						
		2．3．1 無停電交流電源用静止形無停電電源装置	©	－	\bigcirc	- 基本設計方針 - 設備図書	- 要目表 - 非常用電源設備に係る機器の配置を明示し た図面 - 単線結線図 - 構造図	－仕様書
		2．3．2 125V代替充電器	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 基本設計方針機器 - 設備別記載事項の設定根拠に関する説明書 - 単線結線図	－仕様書

各段階			組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類
			本店	発電所	供給者			
		2．3．3 250V充電器	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 基本設計方針機器 - 設備別記載事項の設定根拠に関する説明書 - 単線結線図	－仕様書
		2． 4 燃料設備 2．4．1 軽油タンク （1）設備に係る設計のための系統の明確化及び兼用する機能の確認	©	－	－	- 様式－2 - 様式 -5 - 基本設計方針 - 設置変更許可時の設計資料	- 機能単位の系統図 - 設定根拠の「（概要）」部分	－
		（2）機能を兼用する機器を含む設備に係 る設計 （1）燃料設備 －軽油タンク	©	－	\bigcirc	- 機能単位の系統図 - 設定根拠の「（概要）」部分 - 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 －補機駆動用燃料設備に係る機器の配置を明示した図面 －構造図	－仕様書
		（3）機能を兼用する機器を含む非常用電源設備の系統図に関する取りまとめ	©	－	－	- 様式 -2 - 様式 -5 - 機能単位の系統図	－非常用電源設備に係る系統図	－
		2．4．2 緊急時対策所軽油タンク	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 非常用電源設備に係る系統図 - 構造図	－仕様書
		2．4．3 燃料移送ポンプ	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 業務報告書	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面 - 非常用電源設備に係る系統図 - 構造図	－仕様書
		2．4．4 タンクローリ	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 設備別記載事項の設定根拠に関する説明書 - 非常用電源設備に係る機器の配置を明示し た図面	－

各段階		$\begin{gathered} \text { プロセス } \quad \text { (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
								- 非常用電源設備に係る系統図 - 構造図	
		2．5．1 代替所内電気設備	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 基本設計方針機器 - 設備別記載事項の設定根拠に関する説明書 - 単線結線図	－仕様書	
		2.6 非常用電源系統	©	－	\bigcirc	- 設備図書 - 「HEAF 火災が発生するアークエネルギーの閾値の評価に用いるデータ（研究報告書）」	－非常用発電装置の出力の決定に関する説明書	－仕様書	
	3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3．3． 3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3 （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
工 事 及 び	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式－8の「設工認設計結果（要目表／設計方針）」 欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
検	3.5 .3	検査計画の管理	－	（0）	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
査	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（ ）	\bigcirc	－溶接部詳細一覧表	－工事記録	－	
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式 -8 の「確認方法」欄 - 工事の方法	－検査要領書	－	
			－	©	\bigcirc	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（0）	\bigcirc	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

	$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { の } \\ & \text { 顐 } \end{aligned}$		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$		機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
	幟 常 電 源 設 備	韭常発電装直				ポンプ	ガスタービン発電設備燃料移送ポンプ	I	\bigcirc	\bigcirc	
							ガスタービン発電設備軽油タンク	I	\bigcirc	\bigcirc	
							ガスタービン発電設備燃料小出槽	I	\bigcirc	\bigcirc	
							非常用ディーゼル発電設備軽油タンク	I	\bigcirc	\bigcirc	
							高圧灲心スプレイ系ディーゼル発電設備軽油 タンク	I	\bigcirc	\bigcirc	
							タンクローリ	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
							ガスタービン発電設備軽油タンク給油口～ガ スタービン発電設備軽油タンク	I	\bigcirc	\bigcirc	
							ガスタービン発電設備軽油タンク～ガスター ビン発電設備軽油タンク出口配管分岐点	I	\bigcirc	\bigcirc	
			ガ				ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備燃料移送ポンプ	I	\bigcirc	\bigcirc	
			$\begin{aligned} & \text { タ } \\ & 1 \\ & \text { 上゙ } \end{aligned}$	－＊			ガスタービン発電設備燃料移送ポンプ～ガス タービン発電設備燃料小出槽	I	\bigcirc	\bigcirc	
			発 設 信				非常用ディーゼル発電設備軽油タンク～燃料移送ポンプ入口配管分岐点	I	\bigcirc	\bigcirc	
						王配菅	燃料移送ポンプ入口配管分岐点～非常用ディ ーゼル発電設備軽油タンク払出口	既設設 に基つ	であり，当時実施している	の調達管理	
							高圧灲心スプレイ系ディーゼル発電設備軽油 タンク～高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点	I	\bigcirc	\bigcirc	
							高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点～高圧炉心スプレ イ系ディーゼル発電設備軽油タンク払出口	既設設備であり，当時の調達管理 に基づき実施している。			
							軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
					発電機	発電機	ガスタービン発電機	I	\bigcirc	\bigcirc	
						劯磁装置	ガスタービン発電機励磁装置	I	\bigcirc	\bigcirc	
						保護継電装置	ガスタービン発電機保護継電装置	I	\bigcirc	\bigcirc	
						原動機との連結方法	原動機との連結方法（ガスタービン発電設備）	I	\bigcirc	\bigcirc	
			可搬型僣挍流電設備	－＊	内燃機関	機関並びに過給機	電源車（内燃機関）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						調速装置及 び非常調速	電源車（調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						装置	電源車（非常調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						内燃機関に附属する泠却水設備	電源車（冷却水ポンプ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						$\begin{aligned} & \text { 然料デイタ } \\ & \text { ンクヌはサ } \\ & \text { ービスタ } \\ & \text { ク } \end{aligned}$	電源車（燃料タンク）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		奚	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
				－＊	燃料設備	容器	非常用ディーゼル発電設備軽油タンク	I	\bigcirc	\bigcirc	
							高圧炉心スプレイ系ディーゼル発電設備軽油 タンク	I	\bigcirc	\bigcirc	
							ガスタービン発電設備軽油タンク	I	\bigcirc	\bigcirc	
							タンクローリ	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						主配管	非常用ディーゼル発電設備軽油タンク～燃料移送ポンプ入口配管分岐点	I	\bigcirc	\bigcirc	
							燃料移送ポンプ入口配管分岐点～非常用ディ一ゼル発電設借軽油タンク払出口	既設設備であり，当時の調達管理 に基づき実施している。			
							高圧炬心スプレイ系ディーゼル発電設備軽油 タンク～高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプス口配管分岐点	I	\bigcirc	\bigcirc	
							高圧炬心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点～高圧炬心スプレ イ系ディーゼル発電設備軽油タンク払出口	既設設備であり，当時の調達管理 に基づき実施している。			
							ガスタービン発電設備軽油タンク～ガスター ビン発電設備軽油タンク出口配管分岐点	I	\bigcirc	\bigcirc	
							ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備軽油タンク払出口	I	\bigcirc	\bigcirc	
							軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
							給油用ホース（ $\phi 25: 50 \mathrm{~m}$ ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
					発電機	発電機	電源車（ ${ }^{\text {（発電機）}}$	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						励磁装置	電源車（（励磁装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						保護継電装置	電源車（保護継電装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						原動機との連結方法	原動機との連結方法（可搬型代替交流電源設備）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
				－＊	内燃機関	機関並びに 過給機	電源車（内燃機関）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						調速装置及	電源車（調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						装置	電源車（非常調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						内燃機関に 附属する泠 却水設備	電源車（给却水ポンプ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						$\begin{aligned} & \text { 燃料デイタ } \\ & \text { ンクヌはサ } \\ & \text { ービスタン } \\ & \text { ク } \end{aligned}$	電源車（燃料タンク）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		奚	機器区分		機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備考	
				内燃機関		機関並びに過給機	電源車（（緊急時対策所用）（内然機関）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						調速装置及 び非常調速装置	電源車（（緊急時対策所用）（調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						電源車（緊急時対策所用）（非常調速装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。		
						内燃機関に附属する泠却水設備	電源車（緊急時対策所用）（冷却水ポンプ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						$\begin{aligned} & \text { 燃料デイタ } \\ & \text { ソクヌはサ } \\ & \text { ービスタン } \\ & \text { ク } \end{aligned}$	電源車（緊急時対策所用）（燃料タンク）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
				－＊	燃料設備		容器	緊急時対策所軽油タンク	I	\bigcirc	\bigcirc	
						主配管	緊急時対策所軽油タンク～給油口	I	\bigcirc	\bigcirc		
							給油用ホース（20A： 7 m ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
					発電機	発電機	電源車（ 緊急時対策所用）（発電機）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						励磁装置	電源車（ 緊急時対策所用）（励磁装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						保護継電装 置	電源車（緊急時対策所用）（保護継電装置）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
						原動機との 連結方法	原動機との連結方法（緊急時対策所ディーゼル発電設備）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。	
				－＊	内燃機関	機関並びに 過給機	可搬型窒素がス供給装置発電設備（内燃機関）	I	\bigcirc	\bigcirc		
						調速装置及 び非常調速装置	可搬型室素がス供給装置発電設備（調速装置）	I	\bigcirc	\bigcirc		
							可搬型窒素ガス供給装置発電設備（非常調速装置）	I	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { 燃料デイタ } \\ & \text { ンクヌは } \\ & \text { ービスタン } \\ & \text { ク } \end{aligned}$	可搬型窒素ガス供給装置発電設備（燃料タン ク）	I	\bigcirc	\bigcirc		

εI

	$\begin{aligned} & \text { 発 } \\ & \text { 雷 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { 設 } \\ & \text { 顐 } \end{aligned}$		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \end{aligned}$	系	機器	区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { レ } \\ & \text { ド } \end{aligned}$			備 考
その他発電原烺际附属施	韭常䨮源設備						非常用ディーゼル発電設備軽油タンク	I	\bigcirc	\bigcirc	
							高圧炉心スプレイ系ディーゼル発電設備軽油 タンク	I	\bigcirc	\bigcirc	
							ガスタービン発電設備軽油タンク	I	\bigcirc	\bigcirc	
							タンクローリ	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
							非常用ディーゼル発電設備軽油タンク～燃料移送ポンプ入口配管分岐点	I	\bigcirc	\bigcirc	
							燃料移送ポンプ入口配管分岐点～非常用ディ ーゼル発電設備軽油タンク払出口	I	\bigcirc	\bigcirc	
			可 搬		燃料設備		高圧炬心スプレイ系ディーゼル発電設備軽油 タンク～高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点	I	\bigcirc	\bigcirc	
		輩 常 登	$\begin{aligned} & \text { 坴 } \\ & \text { 素 } \\ & \text { 不 } \\ & \text { 供 } \end{aligned}$	＊		主配管	高圧炉心スプレイ系ディーゼル発電設備燃料移送ポンプ入口配管分岐点～高圧炉心スプレ イ系ディーゼル発電設備軽油タンク払出口	I	\bigcirc	\bigcirc	
		$\begin{aligned} & \text { 電 } \\ & \text { 㯰 } \end{aligned}$	$\begin{aligned} & \text { 装 } \\ & \text { 簤 } \end{aligned}$				ガスタービン発電設備軽油タンク～ガスター ビン発電設備軽油タンク出口配管分岐点	I	\bigcirc	\bigcirc	
			霖 備				ガスタービン発電設備軽油タンク出口配管分岐点～ガスタービン発電設備軽油タンク払出口	I	\bigcirc	\bigcirc	
							軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
							給油用ホース（ $\left.{ }^{\text {a }} 25: 50 \mathrm{~m}\right)$	－	\bigcirc	－	原子力部門外の部署が調達しているため，グレード は対象外である。
						発電機	可搬型窒素がス供給装置発電設備（発電機）	I	\bigcirc	\bigcirc	
						励磁装置	可搬型空素がス供給装置発電設備（励磁装置）	I	\bigcirc	\bigcirc	
					発電機	保護継電装置	可搬型窒素ガス供給装置発電設備（保護継電装置）	I	\bigcirc	\bigcirc	
						原動機との連結方法	原動機との連結方法（可搬型窒素ガス供給装置発電設備）	I	\bigcirc	\bigcirc	
				－＊	無停電電源装置	－＊	無停電交流電源用静止形無停電電源装置	I	\bigcirc	\bigcirc	
			電貯蔵装直	－＊	電力貯蔵装置	－＊	125 V 蓄電池 2 A 及び2 2 B	I	\bigcirc	\bigcirc	
							125 V 蓄電池 2 H	既設設備であり，当時の調達管理 に基づき実施している。			
							125 V 代替蓄電池	I	\bigcirc	\bigcirc	
							250 V 蓄電池	I	\bigcirc	\bigcirc	
							主蒸気逃がし安全弁用可搬型蓄電池	III	\bigcirc	\bigcirc	

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－10 本設工認に係る設計の実績，工事及び検査の計画常用電源設備

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。
本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
$\begin{aligned} & \text { 設 } \\ & \text { 計 } \end{aligned}$	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書 - 設置許可基準規則 - 安全審査指針 - 技術基準規則 - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ ー要領「品証様式のチェックシー卜」	
		基本設計方針の作成（設計 1）				- 様式 -2 - 技術基準規則	- 様式 -3 - 様式 -4	工事計画認可申請に係る品証様式 および基本設計方針の個別レビュ	
	3.3.3 （1）		（ ）	－	－	- 様式－2 - 様式 -4 - 実用炉規則別表第二 - 技術基準規則	－様式 -5	ー要領「品証様式のチェックシー卜」	
						- 設置変更許可申請書 - 設置許可基準規則 - 技術基準規則	- 様式 -6 - 様式 -7		
						－基本設計方針	－様式 -5		
	3．3．3 （2）	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2） 1．共通的に適用される設計	©	－	－	- 様式－2 - 様式 -5 - 基本設計方針	－様式一 8 の「設工認設計結果（要目表／設計方針）」 欄	－	
			「原子炉冷却系統施設」参照			「原子炉冷却系統施設」参照	「原子炬冷却系統施設」参照	「原子炉泠却系統施設」参照	
		2．発電所構内における電気系統の信頼性確保に関する設計						－	
		2.21 相の電路の開放に対する検知及び電力の安定性回復に関する設計	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 既工認	- 要目表 - 常用電源設備の健全性に関する説明書 - 送電関係一覧図 - 単線結線図 - 常用電源設備に係る機器の配置を明示した図面	－	

各段階		プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
			3．電線路の独立性及び物理的分離に関する設計						
		3.1 送電系統の独立性に関する設計	©	－	－	- 基本設計方針 - 設置変更許可時の設計資料 - 既工認	- 常用電源設備の健全性に関する説明書 - 送電関係一覧図 - 単線結線図	－	
		3.2 送電系統の物理的分離に関する設計	©	－	－	- 基本設計方針 - 設置変更許可時の設計資料 - 既工認	－常用電源設備の健全性に関する説明書	－	
		4．発電用原子炉施設の電力供給確保に関する設計							
		4． 1 電力の供給が同時に停止しない設計	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 既工認	- 要目表 - 常用電源設備の健全性に関する説明書 - 常用電源設備に係る機器の配置を明示し た図面	－	
		4.2 送受電設備の耐震性，津波，塩害に関する設計	（ $)$	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	- 要目表 - 常用電源設備の健全性に関する説明書 - 常用電源設備に係る機器の配置を明示し た図面	－	
	$\text { 3.3. } 3$ （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3．3．3 （4）	設工認申請書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認于 エックシート」	
	$\text { 3.3. } 3$ （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
$\begin{aligned} & \text { 工 } \\ & \text { 事 } \end{aligned}$	3．4． 1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－	
事 及 び 検	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式－8 の「設工認設計結果（要目表／設計方針）」 欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－	
査	3．5．3	検査計画の管理	－	©	\bigcirc	－適合性確認の検査計画	－検査成績書	－	
	3． 5.4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（ ）	\bigcirc	－溶接部詳細一覧表	－工事記録	－	

各段階	$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係 ○ ：主担当 O ：䦎連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－
		－	（ ）	\bigcirc	－検査要領書	－検査記録	－
3．7．2	識別管理及びトレーサビリティ	－	©	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { l } \\ & \text { ド } \end{aligned}$				考
		発電機	－＊	発電機	発電機	既設設備であり，当時の調達管理に基づき実施している。				
				励磁装置	発電機励磁装置	既設設備であり，当時の調達管理に基づき実施している。				
				保護継電装置	発電機（保護継電装置）	既設設備であり，当時の調達管理に基づき実施している。				
				原動機との連結方法	原動機との連結方法	既設設備であり，当時の調達管理に基づき実施している。				
		変圧器	－＊	変圧器	主変圧器	既設設備であり，当時の調達管理に基づき実施している。				
				保護継電装置	主変压器（保䚺継電装置）	既設設備であり，当時の調達管理に基づき実施している。				
		遮断器	－＊	遮断器	線路用 275 kV 遮断器（牡鹿幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
					線路用 275 kV 遮断器（松島幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）	既設設備であり，当時の調達管理に基づき実施している。				
				保護継電装置	線路用 275 kV 遮断器（牞鹿幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）（保護继電装置）	既設設備であり，当時の調達管理に基づき実施している。				
					線路用 275 kV 遮断器（松島幹線用）（第 1 号機設備，第 $1,2,3$ 号機共用）（保護继電装置）	既設設備であり，当時の調達管理に基づき実施している。				

注記＊：「一」は，該当する系䖻が存在しない場合を示す。

VI－1－10－11 本設工認に係る設計の実績，工事及び検査の計画補助ボイラー

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

本設工認に係る設計の実績，工事及び検査の計画

各段階		プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 © ：主担当 O ：関運			インプット	アウトプット	他の記録類
		計画：3．4．1～3．7．2	本店	発電所	供給者			
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式 -8 の「設備の具体的設計結果」欄	－仕様書
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8の「確認方法」欄	－
	3．5．3	検査計画の管理	－	©	\bigcirc	－適合性確認の検査計画	－検査成績書	－
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（）	\bigcirc	－溶接部詳細一覧表	－工事記録	－
	3．5．5	使用前事業者検査の実施	－	（0）	\bigcirc	- 様式 -8 の「確認方法」欄 - 工事の方法	－検査要領書	－
			－	（0）	\bigcirc	－検査要領書	－検査記録	－
	3．7．2	識別管理及びトレーサビリティ	－	©	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）様式—9										
		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \vdots \\ & \text { ド } \end{aligned}$			備	考
	$\begin{aligned} & \text { 補 } \\ & \text { 然 } \\ & 1 \\ & \stackrel{\rightharpoonup}{ラ} \end{aligned}$				対象設備なし					

VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画

火災防護設備

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

各段階	プロセス（設計対象） 実績：3．3．1～3．3．3（5） 計画：3．4．1～3．7．2	組織内外の相互関係 ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	6.2 火災の影響軽減対策のうち火災防護対象機器等の系統分離	©	－	\bigcirc	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 適用規格	－発電用原子炉施設の火災防護に関する説明書	－仕様書
	6．3 換気空調設備に対する火災の影響軽減対策	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	－発電用原子灲施設の火災防護に関する説明書	－
	6．4 煙に対する火災の影響軽減対策	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 適用規格	－発電用原子炉施設の火災防護に関する説明書	－
	6.5 油タンクに対する火災の影響軽減対策	©	－	－	- 基本設計方針 - 関係法令 - 設備図書	－発電用原子炉施設の火災防護に関する説明書	－
	6． 6 ケーブル処理室に対する火災の影響軽減対策	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料	－発電用原子炉施設の火災防護に関する説明書	－
	7．原子炉の安全確保 7.1 原子炉の安全停止対策	©	－	－	- 基本設計方針 - 設置変更許可時の設計資料 - 適用規格	－発電用原子炉施設の火災防護に関する説明書	－
	7．2 火災の影響評価	©	－	－	- 基本設計方針 - 設備図書 - 設置変更許可時の設計資料 - 適用規格	－発電用原子炉施設の火災防護に関する説明書	－
	8．火災防護計画	©	－	－	－「1．」から「7．」の設計における運用の措置に関する設計リスト	－発電用原子炉施設の火災防護に関する説明書	－
3.3.3 （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット
3.3.3 （4）	設工認申請（届出）書の作成	©	－	－	- 設計 1 - 設計 2 - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」
3.3.3 （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録

各段階		プロセス（設計対象）実績：3．3．1～3．3．3（5）	組織内外の相互関係 ○：主担当 O ：関運			インプット	アウトプット	他の記録類
		計画：3．4．1～3．7．2	本店	発電所	供給者			
工 事 及 び 検 査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	\bigcirc	- 設計資料 - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	\bigcirc	- 仕様書 - 工事の方法	－工事記録	－
	3．5．2	使用前事業者検査の計画	－	©	\bigcirc	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式－8 の「確認方法」欄	－
	3．5．3	検査計画の管理	－	（）	\bigcirc	－適合性確認の検査計画	－検査成績書	－
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（ ）	\bigcirc	－溶接部詳細一覧表	－工事記録	－
	3．5．5	使用前事業者検査の実施	－	©	\bigcirc	- 様式－8の「確認方法」欄 - 工事の方法	－検査要領書	－
			－	©	\bigcirc	－検査要領書	－検査記録	－
	3．7．2	識別管理及びトレーサビリティ	－	（）	\bigcirc	－	－検査記録	－

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \hline \end{aligned}$		奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$				考
	$\begin{aligned} & \text { 火炎 } \\ & \text { 防 } \\ & \text { 塈 } \\ & \text { 備 } \end{aligned}$					原子炬建屋	既設設 づき実	り，当時の いる。	達管理に基		
		炎				タービン建屋	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$		達管理に基		
		$\begin{aligned} & \text { 爻 } \\ & \text { 域 } \end{aligned}$				制御建屋	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り, 当時の言 いる。	達管理に基		
		$\begin{aligned} & \text { 造 } \\ & \text { 棃 } \end{aligned}$	－＊	－＊	－＊	海水ポンプ室エリア	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り, 当時の言 いる。	達管理に基		
		$\begin{aligned} & \text { び } \\ & \text { 炎 } \\ & \text { 俗 } \end{aligned}$				軽油タンクエリア	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \hline \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
		$\begin{aligned} & \text { 区 } \\ & \text { 亚 } \end{aligned}$				復水貯蔵タンクエリア	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り, 当時の訃 いる。	達管理に基		
		仡				緊急時対策建屋	I	\bigcirc	\bigcirc		
						緊急用電気品建屋エリア	I	\bigcirc	\bigcirc		
		$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 水 } \end{aligned}$		ポンプ	電動機駆動消火ポンプ（第1，2号機共用）	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
					容器	消火水タンク	III	\bigcirc	\bigcirc		
					販蔵槽	消火水槽（第1，2号機共用）	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	$\begin{aligned} & \text { り, 当時の言 } \\ & \text { いる。 } \end{aligned}$	達管理に基		
						消火水槽～電動機駆動消火ポンプ（A） （第1，2号機共用）	$\begin{aligned} & \text { 既設設備 } \\ & \text { づき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
						消火水タンク～電動機駆動消火ポンプ（A）入口配管合流点	III	\bigcirc	\bigcirc		
						消火水槽～電動機駆動消火ポンプ（B） （第 1,2 号機共用）	$\begin{aligned} & \text { 既設設備 } \\ & \text { づきき実施 } \end{aligned}$	り，当時の いる。	達管理に基		
				屋内水消火系		消火水タンク～電動機駆動消火ポンプ（B）入口配管合流点	III	\bigcirc	\bigcirc		
					主配管	電動機駆動消火ポンプ（A）～消火水ヘッダ分岐点（第 1,2 号機共用）	既設設備 づき実施	り, 当時の いる。	達管理に基		
						電動機駆動消火水ポンプ（B）～電動機駆動消火ポンプ（A）出口配管合流点 （第1，2号機共用）	既設設 づき実	り，当時の いる。	達管理に基		
						消火水ヘッタタ分岐点～制御建屋供給配管分岐点（第1，2号機共用）	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実友 } \end{aligned}$	り，当時の いる。	達管理に基		
						制御建屋供給配管分岐点～タービン建屋供給配管分岐点	$\begin{aligned} & \text { 既設設 } \\ & \text { づき実 } \end{aligned}$	り，当時の いる。	達管理に基		
						タービン建屋供給配管分岐点～原子炬建屋供給配管分岐点	既設設借 づき実施	り，当時の いる。	達管理に基		
				屋外水消火系	ポンプ	屋外消火系電動機駆動消火ポンプ	III	\bigcirc	\bigcirc		
						屋外消火系ディーゼル駆動消火ポンプ	III	\bigcirc	\bigcirc		
					容器	屋外消火系消火水タンク	III	\bigcirc	\bigcirc		
					主配管	No． 1 屋外消火系消火水タンク～屋外消火系電動機駆動消火ポンプ	III	\bigcirc	\bigcirc		
						No． 2 屋外消火系消火水タンク～屋外消火系電動機駆動消火ポンプ入口配管合流点	III	\bigcirc	\bigcirc		
						No． 1 屋外消火系消火水タンク～屋外消火系 ディーゼル駆動消火ポンプ	III	\bigcirc	\bigcirc		
						No． 2 屋外消火系消火水タンク～屋外消火系 ディーゼル駆動消火ポンプ入口配管合流点	III	\bigcirc	\bigcirc		
						屋外消火系電動機駆動消火ポンプ～海水ポン プ室及び復水貯蔵タンク／軽油タンクエリア供給配管分岐点	III	\bigcirc	\bigcirc		
						屋外消火系ディーゼル駆動消火ポンプ～屋外消火系電動機駆動消火ポンプ出口配管合流点	III	\bigcirc	\bigcirc		

			$\begin{aligned} & \text { 設 } \\ & \text { 縓 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	$\xrightarrow[\text { グ }]{\substack{\text { r } \\ \text { ド }}}$			備 考
		$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 妿 } \\ & \text { 裉 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	RHR（A）室 ／RHR（B）室／B3F通路・サン プ室消火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～RHRポンプ（B）室	III	\bigcirc	\bigcirc	
						RHR ポンプ (A) 室分岐点 \sim RHR ポンプ (A) 室	III	\bigcirc	\bigcirc	
						B3F 南側通路，R／A HCW•LCW サンプ室分岐点 ～B3F 南側通路，R／A HCW•LCW サンプ室	III	\bigcirc	\bigcirc	
				LPCS ポン プ・ラック室／HPCS ポンプ・ラ ック室消火系	容器	ハロン1301貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～LPCS ポンプ室，LPCS計装ラック室	III	\bigcirc	\bigcirc	
						HPCS ポンプ室，HPCS 計装ラック室分岐点～ HPCS ポンプ室，HPCS 計装ラック室	III	\bigcirc	\bigcirc	
				RCW（B）（D） ／HPCW／ NSD／B2F ハッチ室消火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～HPCW 熱交換器・ポン プ室	III	\bigcirc	\bigcirc	
						B2F ハッチ室分岐点～B2F ハッチ室	III	\bigcirc	\bigcirc	
						R／B NSD サンプ室分岐点～R／B NSD サンプ室	III	\bigcirc	\bigcirc	
						RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室分岐点～RCW 熱交換器（B）（D）室，RCW ポンプ （B）（D）室	III	\bigcirc	\bigcirc	
				RHR（C）室 ／RCIC タ ービンポ ンプ室消 火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～RCIC タービンポンプ室	III	\bigcirc	\bigcirc	
						RHR ポンプ（ C 室分岐点～RHR ポンプ（ C ）室	III	\bigcirc	\bigcirc	
				RCW 熱交換器・ポン プ（A）（C）室消火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～RCW 熱交換器・ポンプ （A）（C）室	III	\bigcirc	\bigcirc	
				B2F 南側通路／バ ルブラッ ピング室消火系	容器	ハロン1301貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 販蔵容器～バルブラッピング室	III	\bigcirc	\bigcirc	
						B2F 南側通路，RHR（ A ）計装ラック室分岐点～ B2F 南側通路，RHR（ A ）計装ラック室	III	\bigcirc	\bigcirc	
				IA • SA 空気圧縮機室／B2F東側通路消火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～IA•SA 空気圧縮機 （A）（B）室	III	\bigcirc	\bigcirc	
						B2F 東側通路分岐点 \sim B2F 東側通路	III	\bigcirc	\bigcirc	
				CRD ポン プ室消火系	容器	ハロン1301貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 眝蔵容器～CRD ポンプ室	III	\bigcirc	\bigcirc	

		設 備 区分	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { ! } \\ & \text { ド } \end{aligned}$			備 考
		消 炎 備	$\begin{aligned} & \text { 㕣 } \\ & \text { 染 } \\ & \text { 爻 } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	B1F ハッ于室消火系	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～B1F ハッチ室	III	\bigcirc	\bigcirc	
				区 分 III	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～区分III HPCS 電気品室	III	\bigcirc	\bigcirc	
				区分II非	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
				室消火系	主配管	ハロン 1301 貯蔵容器～区分II非常用MCC 室	III	\bigcirc	\bigcirc	
					容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～導電率計ラック室	III	\bigcirc	\bigcirc	
				FPC ポンプ	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
					主配管	ハロン 1301 貯蔵容器～FPC ポンプ（A）（B）室	III	\bigcirc	\bigcirc	
				HWH 熱交	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
				プ室消火系	主配管	ハロン 1301 貯蔵容器～HWH 熱交換器・ポンプ室	III	\bigcirc	\bigcirc	
					容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
				気品室（1）		ハロン 1301 貯蔵容器～緊急用電気品室（2）	III	\bigcirc	\bigcirc	
					主配管	緊急用電気品室（1）分岐点～緊急用電気品室 （1）	III	\bigcirc	\bigcirc	
				区分 I 非	容器	ハロン1301的蔵容器	III	\bigcirc	\bigcirc	
				制御盤室消火系	主配管	ハロン 1301 貯蔵容器～区分 I 非常用 D／G 制御盤室	III	\bigcirc	\bigcirc	
				区分III非	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
				制御盤室 消火系	主配管	ハロン 1301 貯蔵容器～区分III非常用 D／G 制御盤室	III	\bigcirc	\bigcirc	
				ディーゼ	容器	ハロン 1301 貯蔵容器	III	\bigcirc	\bigcirc	
				（HPCS）室消火系	主配管	ハロン 1301 販蔵容器～ディーゼル発電機 （HPCS）室	III	\bigcirc	\bigcirc	
					容器	ハロン1301貯蔵容器	III	\bigcirc	\bigcirc	
				常用 D／G		ハロン 1301 貯蔵容器 $\sim \mathrm{R}-12$ 階段室	III	\bigcirc	\bigcirc	
				段室消火系	主配管	区分II非常用D／G制御盤室，室素ボンベ設置 スペース分岐点～区分II非常用 D／G 制御盤室，室素ボンべ設置スペース	III	\bigcirc	\bigcirc	

			$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
	$\begin{aligned} & \text { 炎 } \\ & \text { 良 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 哙 } \\ & \text { 備 } \end{aligned}$			容器	FK－5－1－12 貯蔵容器（S1019）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C100（17）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C40317）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S1017）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S1018）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P403（13），C403（15），C100（15）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯藏容器（P40311），C403（17），C100（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P403（12），C403（1），C100（4）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 頂蔵容器（C40316，C100＠16）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P403（9），C403（11），C100（11）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S1016）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P403（11），C403（1），C100（12）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 䝪蔵容器（P5039，P202（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（C5018，C202⑥）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S2026）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P503（11）${ }^{\text {成）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P503（10），P2028）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 䝪蔵容器（C5019， ，C202（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S202（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（C50111，C2029）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P5031（1），P202（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 眝蔵容器（S2028）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P2029），C501（10），C202 8）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P202（11），C501（12），C202（11）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S709（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S708 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C40332，C809 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P101®），C403（3），C100（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P101（11），C403（22），C100（21）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（S101（18），S709（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P2011，C201用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P7019），P700＠9，P610⑥用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（K7028，K7068）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K602（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P602⑥，C60644，C601（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P701 8），P700 8 ），P610 ⑤用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C6063）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S6023）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（7），K706（7），P701（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（7），P610（4），P602（4）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 眝蔵器器（P602（5）用）	III	\bigcirc	\bigcirc	

			$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
	炎总良謢備	消炎備			容器	FK－5－1－12 貯蔵容器（K7026），K706⑥）P701用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（6），P610（3），P602（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C6062）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S602（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（5），K706（5），P701（5）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（5），P610（2），P602（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K601，P600，P601 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S601（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（4），K7064），P701（4）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（4），P610＠1），P602（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P201®用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（1），K706（1），P701（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（1），P500（1），P501（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（2），K706（2），P701（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（2），P500（2），P501（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C606（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（3），K706（3），P701（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（3），P500（3），P501（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S602（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C602（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C6032）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S600（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C601（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C6022）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S600（4）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S600（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S6013）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S600（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300①，C300⑤）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S300（5）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300（3），C300（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S3006）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300（2），C300＠（6）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
							III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（K10033，P402（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P102（5），C100（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S100（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K10066，P402®用）	III	\bigcirc	\bigcirc	

			$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	番	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$			備 考
	炎防謢備	$\begin{aligned} & \text { 消 } \\ & \text { 䪯 } \\ & \text { 備 } \end{aligned}$			容器	FK－5－1－12 販蔵容器（P102＠），C10088）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S10044） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K1007，P402（7） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P102（7），C10092用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K2012，P5028）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P2013），C200®2）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P2014，C2003（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K2013，P5029）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S200（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C20044）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P2015）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S100（5）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P102（2），C10002）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 歕蔵容器（K10002，P402（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 圙蔵容器（P102（1），C10003）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K100（1），P402（1）${ }^{\text {成）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S200（1）${ }^{\text {成）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S601（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K60211，P603，C603（1）用）	III	\bigcirc	\bigcirc	
							III	\bigcirc	\bigcirc	
						FK－5－1－12 頂蔵容器（K201（1），P502（7）${ }^{\text {a }}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P1024，C10026用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K100（5），P402（5）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S100（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（P1023），C100（2）${ }^{\text {成）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（K10044，P4024）${ }^{\text {（1）}}$ ）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S100＠）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K1008），P4028）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 頂蔵容器（P1028，C100＠用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S1009）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S1008）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P1029，C100＠13用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 販蔵容器（K1009，P4029）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P502（11）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K20144）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S300（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C3009）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K610（3），K611（3），K612（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K610（2），K611②，K612（2）用）	III	\bigcirc	\bigcirc	
							III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（K003（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K003（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K0033）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S003（3）用）	III	\bigcirc	\bigcirc	

				采	機器区分	機器名	グ l ド			備 考
	$\begin{aligned} & \text { 炎 } \\ & \text { 倣 } \\ & \text { 謢 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 憊 } \end{aligned}$				FK－5－1－12 貯蔵容器（C008（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S003（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C008（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S003（1）${ }^{\text {成）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C008（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C004用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C001（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S001（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K002 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（C00111） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S001（1）${ }^{\text {咸）}}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S751（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S750（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S750（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S7512）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S7503）用）	III	\bigcirc	\bigcirc	
					容器	FK－5－1－12 貯蔵容器（S751（3）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S75044） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S75144）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S750（5）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（C002（2）用）	III	\bigcirc	\bigcirc	
				ブ		FK－5－1－12 眝蔵容器（C003 用）	III	\bigcirc	\bigcirc	
				$\stackrel{\vdash}{L}$		FK－5－1－12 貯蔵容器（S002 用）	III	\bigcirc	\bigcirc	
				消		FK－5－1－12 貯蔵容器（S750＠用）	III	\bigcirc	\bigcirc	
				系		FK－5－1－12 貯蔵器器（C002（1） 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S750（7）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S7516）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S7515）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S754 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S755 用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵器器（S752（1）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S752（2）用）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S753 用）	III	\bigcirc	\bigcirc	
					主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (P800 用)~ケーブルトレ } \\ & \text { イ (P800) } \\ & \hline \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P401，P404，P801，P803 用）～ケーブルトレイ（P401，P404，P801，P803）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P802 用)~ケーブルトレ } \\ & \text { イ(P802) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S100(2)用)~ケーブルト } \\ & \text { レイ (S100(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C400②)用)~ケーブルト } \\ & \text { レイ (C4002)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P400 用)~ケーブルトレ } \\ & \text { イ (P400) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S100(1)用)~ケーブルト } \\ & \text { レイ (S100) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C400①用)~ケーブルト } \\ & \text { レイ (C400 1) } \end{aligned}$	III	\bigcirc	\bigcirc	

	発 電 有 原 炉 施 設 の 種 類		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	系	機器区分	機器名	グ l ド				考
その他発電原炉阤附属施	$\begin{aligned} & \text { 火 } \\ & \text { 災 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	消 火 設 備	$\begin{aligned} & \text { ケ } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \\ & \text { ト } \\ & \text { L } \\ & \text { 消 } \\ & \text { 火 } \\ & \text { 設 } \end{aligned}$		主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S202③用)~ケーブルト } \\ & \text { レイ(S2023) } \end{aligned}$	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C501（5），C202（3）用）～ケ ーブルトレイ（C501⑤），C202③）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P503（4），P202（2）用）～ケ ーブルトレイ（P50344，P202（2））	III	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C300①用)~ケーブルト } \\ & \text { レイ (C300①) } \end{aligned}$	III	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S300①)用)~ケーブルト } \\ & \text { レイ(S3001) } \end{aligned}$	III	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S101(12)用)~ケーブルト } \\ & \text { レイ (S10112)) } \end{aligned}$	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C403（21）用）～ケーブルト レイ（C403（21）	III	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S101⑪用)~ケーブルト } \\ & \text { レイ(S10111) } \end{aligned}$	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P101（11），C403（19），C100（19）用）～ケーブルトレイ（P101（11），C403 19，C100 （19）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P101（12），C403（20），C100（20）用）～ケーブルトレイ（P101（12），C403（22），C100 （20）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（S101（10）$)$～ケーブルト レイ（S101（10）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C403（18）用）～ケーブルト レイ（C40318）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C100 18 ）用）～ケーブルト レイ（C100 18 ）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（S1019）用）～ケーブルト レイ（S1019）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C100（17）用）～ケーブルト レイ（C10017）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C40317）用）～ケーブルト レイ（C40317）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（S10177） 用）～ケーブルト レイ（S1017）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（S1018）用）～ケーブルト レイ（S1018）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P403（13），C403（15），C100（15） 用）～ケーブルトレイ（P403（13），C403（15），C100 （15）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P403（11），C403（13），C100（13） 用）～ケーブルトレイ（P403（11），C403（13），C100 （13）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P403（12），C403（14），C100（14） 用）～ケーブルトレイ（P403（12），C403（14），C100 （14）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（C403（16），C100⒃ 用）～ケ ーブルトレイ（C403（16），C10016）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P403（9），C403（11），C100（11） 用）～ケーブルトレイ（P403（9），C403（11），C100 (11)	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（S1016）用）～ケーブルト レイ（S1016）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P403（11），C403（12），C100（12）用）～ケーブルトレイ（P403（10），C403112，C100 （12）	III	\bigcirc	\bigcirc		
						FK－5－1－12 貯蔵容器（P503⑨，P202（7）用）～ケ ーブルトレイ（P503（9），P202 7 ）	III	\bigcirc	\bigcirc		
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C5018), C202⑥用)~ケ } \\ & \text { ーブルトイ } \end{aligned}$	III	\bigcirc	\bigcirc		

			$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	采	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \vdots \\ & 1 \\ & \text { ド } \end{aligned}$			備 考
	$\begin{aligned} & \text { 炎 } \\ & \text { 燩 } \\ & \text { 售 } \\ & \text { 犕 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$			主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P602(5)用)~ケーブルト } \\ & \text { レイ(P602) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702⑥，K706（6），P701⑥）用）～ケーブルトレイ（K702®），K706⑥，P701 （6）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700＠©，P610（3），P602（3）用）～ケーブルトレイ（P700（6）P610（3），P602 （3）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C606②)用)~ケーブルト } \\ & \text { レイ (C606(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S602②用)~ケーブルト } \\ & \text { レイ(S602)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（5），K706（5），P7015）用）～ケーブルトレイ（K702（5），K70665）P701 （5）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700 5 ），P610 ②，P602（2）用）～ケーブルトレイ（P700（5），P610（2），P602 （2）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K601，P600，P601 用）～ケ ーブルトレイ（K601，P600，P601）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S601②用)~ケーブルト } \\ & \text { レイ (S601(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（4），K706（4）P701 4）用）～ケーブルトレイ（K70244，K706（4），P701 （4）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700＠4），P610（1），P602（1）用）～ケーブルトレイ（P700④，P610（1），P602 （1）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P201（6）用）～ケーブルト レイ（P201⑥）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（1），K706（1），P701（1）用）～ケーブルトレイ（K702（1），K706①，P701 （1）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（1），P500（1），P501（1） 用）～ケーブルトレイ（P700（1），P500（1），P501 （1）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702（2），K706②），P701（2）用）～ケーブルトレイ（K702（2），K706（2），P701 （2）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（2），P500 ②，P501（2）用）～ケーブルトレイ（P700（2），P500（2），P501 （2）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C606①)用)~ケーブルト } \\ & \text { レイ (C606(1)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K702 3 ），K706（3），P701（3）用）～ケーブルトレイ（K7023，K706（3），P701 （3）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P700（3），P500（3），P501（3）用）～ケーブルトレイ（P700（3），P500 3），P501 （3）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S602(1)用)~ケーブルト } \\ & \text { レイ (S6621) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C602(1)用)~ケーブルト } \\ & \text { レイ (C6021)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C603（2）用）～ケーブルト レイ（C603（2）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S600(1)用)~ケーブルト } \\ & \text { レイ (S600(1)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C601①用)~ケーブルト } \\ & \text { レイ (C61(1)) } \end{aligned}$	III	\bigcirc	\bigcirc	

			$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \\ & \hline \end{aligned}$	采	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
	$\begin{aligned} & \text { 炎 } \\ & \text { 竨 } \\ & \text { 鹪 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \text { r } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { r } \\ & \text { 人 } \\ & \text { 消 } \\ & \text { 奚 } \end{aligned}$	主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C602②用)~ケーブルト } \\ & \text { レイ(C622)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S600（4）用）～ケーブルト レイ（S600（4）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S600(3)用)~ケーブルト } \\ & \text { レイ (S600(3)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S6013）用）～ケーブルト レイ（S601 3 ）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S600②)用)~ケーブルト } \\ & \text { レイ (S60(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300（1），C300（5）用）～ケ ーブルトレイ（P300（1），C300⑤）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S300(5)用)~ケーブルト } \\ & \text { レイ (S300 5) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300③），C300（7）用）～ケ ーブルトレイ（P300③，C300（7）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S300©（6）用）～ケーブルト レイ（S300（6）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300（2），C300（6） 用）～ケ ーブルトレイ（P300（2），C300⑥）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P300（4），C3008）用）～ケ ーブルトレイ（P300④，C3008）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K100（3），P402（3）用）～ケ ーブルトレイ（K100（3），P402③）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P1025 5 ，C100（27）$)$～ケ ーブルトレイ（P102⑤，C100（27））	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S100(3)用)~ケーブルト } \\ & \text { レイ } \mathrm{S} 100 \text { (3) }) \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K100 © 6 ，P402（6）用）～ケ ーブルトレイ（K100⑥，P402⑥）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P102 © 6 ，C100（28）用）～ケ ーブルトレイ（P102⑥，C100（88）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S100（4）用）～ケーブルト レイ（S100（4）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K100（7）P402（7）用）～ケ ーブルトレイ（K100（7），P402（7）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P102（7），C100（29）用）～ケ ーブルトレイ（P102（7），C100（29）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K201（2），P502（8）用）～ケ ーブルトレイ（K201（2），P5028）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P201（3），C200②）用）～ケ ーブルトレイ（P201③，C200②）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P20144，C200（3）用）～ケ ーブルトレイ（P201（4），C200③）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（K201（3），P502⑨用）～ケ ーブルトレイ（K201③，P502③）	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S200(2)用)~ケーブルト } \\ & \text { レイ (S200(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C200(4)用)~ケーブルト } \\ & \text { レイ (C200(4)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P201(5)用)~ケーブルト } \\ & \text { レイ (P20155) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S100(5)用)~ケーブルト } \\ & \text { レイ (S100 5) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（P102②），C100（24）用）～ケ ーブルトレイ（P102（2），C100（24））	III	\bigcirc	\bigcirc	

			$\begin{aligned} & \text { 設 } \\ & \text { 䐘 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$			備 考
	$\begin{aligned} & \text { 炎 } \\ & \text { 陔 } \\ & \text { 擎 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 焩 } \\ & \text { 備 } \end{aligned}$		$\begin{gathered} \text { ケ } \\ \text { l } \\ \text { 兄 } \\ \text { N } \\ \text { 1 } \\ \text { 消 } \\ \text { 采 } \end{gathered}$	主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(K003(2)用)~ケーブルト } \\ & \text { レイ (K003(2)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(K003(3)用)~ケーブルト } \\ & \text { レイ(K003(3)) } \end{aligned}$	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（S003（3）用）～ケーブルト レイ（S003（3）	III	\bigcirc	\bigcirc	
						FK－5－1－12 貯蔵容器（C008（3）用）～ケーブルト レイ（C008（3）	III	\bigcirc	\bigcirc	
						```FK-5-1-12 貯蔵容器(S003(2)用)~ケーブルト レイ(S003(2)```	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（C008（2）用）～ケーブルト レイ（C008（2））	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S003（1）用）～ケーブルト レイ（S003（1））	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C008①用)~ケーブルト } \\ & \text { レイ (C008(1)) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C004 用)~ケーブルトレ } \\ & \text { イ (C0004) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（C001（2）用）～ケーブルト レイ（C001（2））	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S001（2）用）～ケーブルト レイ（S001（2））	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（K002 用）～ケーブルトレ イ（K002）	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（C001①）用）～ケーブルト レイ $($ C001 1 ）	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S001(1)用)~ケーブルト } \\ & \text { レイ (S001(1)) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S751(1)用) ~ケーブル } \\ & \text { トレイ }{ }^{\text {S71 }} \text { ) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { Fk-5-1-12 貯蔵容器(S750(1)用) ~ケーブル } \\ & \text { トレイ(S7501) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S750（2）用）～ケーブルト レイ（S750 2 ）	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵器(S7512)用) ~ケーブル } \\ & \text { トレイ (S752) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S7503用) ~ケーブル } \\ & \text { トレイ(S7503)) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
							III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S750④)用) ~ケーブル } \\ & \text { トレイ (S75044) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S751④)用) ~ケーブル } \\ & \text { トレイ(S7514)) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S750⑤用)~ケーブルト } \\ & \text { レイ(S75⑤) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{array}{\|l} \begin{array}{l} \text { FK-5-1-12 眝蔵容器(C002②用)~ケーブルト } \\ \text { レイ (C0022) } \end{array} \\ \hline \end{array}$	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（C003 用）～ケーブルト レイ（C003）	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S002 用）～ケーブルト レイ（S002）	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S750＠（ 用）～ケーブル トレイ（S750＠）	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C002①用) ~ケーブル } \\ & \text { トレイ(C021) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S750(7)用)~ケーブルト } \\ & \text { レイ(S7507) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S7516）用）～ケーブル トレイ	III	$\bigcirc$	$\bigcirc$	


	発		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { ! } \\ & \text { ド } \end{aligned}$			備 考
	$\begin{aligned} & \text { 火炎 } \\ & \text { 防 } \\ & \text { 讙 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \text { ケ } \\ & \text { フ } \\ & \text { ブ } \\ & \text { r } \\ & \text { L } \\ & \text { K } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	FK－5－1－12 貯蔵容器（S751（5）用）～ケーブル トレイ（S75155）	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S754 用）～ケーブルト レイ(S754)	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S755 用）～ケーブルトレ $\uparrow$（S755）	III	$\bigcirc$	$\bigcirc$	
						$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S752①)用)~ケーブルト } \\ & \text { レイ (S752(1)) } \end{aligned}$	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S752（2）用）～ケーブルト   レイ（S752（2））	III	$\bigcirc$	$\bigcirc$	
						FK－5－1－12 貯蔵容器（S753 用）～ケーブルト   レイ（S753）	III	$\bigcirc$	$\bigcirc$	

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画

浸水防護施設

## 1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。


各段階	$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係   © ：主担当 O ：䦎連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
	2.3 入力津波の設定	©	－	$\bigcirc$	- 基本設計方針   - 設備図書   - 設置変更許可申請書   - 業務報告書   - 敷地及び敷地周辺の地図   - 敷地前面海域における適用可能な通過船舶航路   －敷地周辺における潮位に係る適用可能な観測記録   －基準地震動	－発電用原子炉施設の自然現象等による損傷防止に関する説明書	- 仕様書   - 解析業務チェックシート
	2.4 入力津波による津波防護対象設備への影響評価の実施	©	－	$\bigcirc$	- 基本設計方針   - 設備図書   - 業務報告書   - 設置変更許可申請書	－発電用原子炉施設の自然現象等による損傷防止に関する説明書	- 仕様書   - 解析業務チェックシート
	2.5 津波防護に関する施設の設計方針の設定	©	－	$\bigcirc$	- 基本設計方針   - 設備図書   - 業務報告書   - VI－1－10－9 の「2．1 非常用発電装置」で実施 した設計結果	- 要目表   - 発電用原子炉施設の自然現象等による損傷の防止に関する説明書   －環境測定装置の構造図及び取付箇所を明示した図面   －浸水防護施設に係る機器の配置を明示 した図面   －構造図	－仕様書
	3．溢水防護に関する設計   3.1 基本方針の設定	©	－	－	- 基本設計方針   - 「原子力発電所の内部溢水評価ガイド（平成 26年 8 月 6 日原規技発第 1408064 号原子力規制委員会）」	－発電用原子炉施設の溢水防護に関する説明書	－
	3.2 防護すべき設備の設定	©	$\bigcirc$	－	- 基本設計方針   - 設備図書   - ウォークダウンの実施報告書	－発電用原子炉施設の溢水防護に関する説明書	－
	3.3 溢水評価の実施	©	$\bigcirc$	$\bigcirc$	- 基本設計方針   - 設備図書   - ウォークダウンの実施報告書   - 業務報告書	－発電用原子炉施設の溢水防護に関する説明書	- 仕様書   - 解析業務チェックシート


各段階		プロセス（設計対象）   実績：3．3．1～3．3．3（5）   計画：3．4．1～3．7．2	組織内外の相互関係   © ：主担当 O ：䦎運			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
			3.4 溢水防護施設の詳細設計	©	－	－	- 基本設計方針   - 設備図書	- 要目表   - 発電用原子炉施設の溢水防護に関する説明書   －浸水防護施設に係る機器の配置を明示 した図面   －構造図	－
	3.3.3   （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット	
	3．3．3   （4）	設工認申請書の作成	©	－	－	- 設計 1   - 設計 2   - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3   （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
工   事   及   び   検   査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	$\bigcirc$	- 設計資料   - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	$\bigcirc$	- 仕様書   - 工事の方法	－工事記録	－	
	3．5．2	使用前事業者検査の計画	－	©	$\bigcirc$	－様式一8の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式 -8 の「確認方法」欄	－	
	3．5．3	検査計画の管理	－	©	$\bigcirc$	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（0）	$\bigcirc$	－溶接部詳細一覧表	－工事記録	－	
	3． 5.5	使用前事業者検査の実施	－	©	$\bigcirc$	- 様式－8の「確認方法」欄   - 工事の方法	－検査要領書	－	
			－	（	$\bigcirc$	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（）	$\bigcirc$	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	采	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$			備 考
			－＊	－＊	防潮堤（鉿管式鉿直壁）	I	$\bigcirc$	$\bigcirc$	
					防潮堤（盛土堤防）	I	$\bigcirc$	$\bigcirc$	
					防潮壁（第 2 号機海水ポンプ室）	I	$\bigcirc$	$\bigcirc$	
					防潮壁（第 2 号機放水立坑）	I	$\bigcirc$	$\bigcirc$	
					防潮壁（第3号機海水ポンプ室）	I	$\bigcirc$	$\bigcirc$	
					防潮壁（第3号機放水立坑）	I	$\bigcirc$	$\bigcirc$	
					防潮壁（第3号機海水熱交換器建屋）	I	$\bigcirc$	$\bigcirc$	
					取放水路流路縮小工（第1号機取水路）（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	
					取放水路流路縮小工（第1号機放水路）	I	$\bigcirc$	$\bigcirc$	
					貯留堰（No．1），（No．2），（No．3），（No．4），（No．5），（No．6）	既設設備であり，当時の調達管理に基づき実施している。			
					屋外排水路逆流防止設備（防潮堤南側）（No．1），（No．2），（No．3）	I	$\bigcirc$	$\bigcirc$	
					屋外排水路逆流防止設備（防湖堤北側）	I	$\bigcirc$	$\bigcirc$	
					補機洽却海水系放水路逆流防止設備（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	
					水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリ ア）（No．1）	I	$\bigcirc$	$\bigcirc$	
					水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリ ア）（No．2）	I	$\bigcirc$	$\bigcirc$	
					浸水防止蓋（ 原子炉機器冷却海水配管ダクト）	I	$\bigcirc$	$\bigcirc$	
					浸水防止䒸（揚水井戸（第 2 号機海水ポンプ室防潮壁区画内）	I	$\bigcirc$	$\bigcirc$	
					浸水防止监（揚水井戸（第 3 号機海水ポンプ室防潮壁区画内）	I	$\bigcirc$	$\bigcirc$	
					浸水防止监（第3号機補機冷却海水采放水ピット）	I	$\bigcirc$	$\bigcirc$	
					浸水防止蓋（第 3 号機海水熱交換器建屋海水ポンプ設置 エリア角落し部）	I	$\bigcirc$	$\bigcirc$	
					浸水防止蓋（第3号機海水熱交換器建屋海水ポンプ設置 エリア点検用開口部）（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	
					第 2 号機原子炬補機冷却海水ポンプ（A）（C）室逆止升付フ アンネル（No．1），（No．2），（No．3）	I	$\bigcirc$	$\bigcirc$	
					第 2 号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付フ アンネル（No．1），（No．2），（No．3）	I	$\bigcirc$	$\bigcirc$	
					第 2 号機高圧灲心スプレイ補機冷却海水ポンプ室逆止弁付ファンネル（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	
					第 2 号機タービン補機冷却海水ポンプ室逆止升付ファン ネル（No．1），（No．2），（No．3）	I	$\bigcirc$	$\bigcirc$	
					第 3 号機原子炬補機洽却海水ポンプ（A）（C）室逆止升付フ アンネル（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	
					第 3 号機原子炉補機泠却海水ポンプ（B）（D）室逆止弁付フ アンネル（No．1），（No．2）	I	$\bigcirc$	$\bigcirc$	



	$\begin{aligned} & \text { 発 } \\ & \text { 電 } \\ & \text { 原 } \\ & \text { 炉 } \\ & \text { 施 } \\ & \text { の } \\ & \text { 顐 } \end{aligned}$	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	系	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$			備 考
	浸水防護誨設	内郭浸水防譙設備	－＊	防水区画構造物	RCW Hx（A）（C）室－共通通路浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					HPCW Hx 室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					HPCW Hx 室－RCW Hx（B）（D）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					制御建屋浸水防止水密扉（No．3）	I	$\bigcirc$	$\bigcirc$	
					制御建屋浸水防止水密扉（No．1）	I	$\bigcirc$	$\bigcirc$	
					制御建屋浸水防止水密扉（No．2）	I	$\bigcirc$	$\bigcirc$	
					補助ボイラー建屋連絡階段管理区域外伝播防止水密扉	I	$\bigcirc$	$\bigcirc$	
					計測制御電源室（B）浸水防止水密扉（No．1）	I	$\bigcirc$	$\bigcirc$	
					計測制御電源室（B）浸水防止水密扉（No．3）	I	$\bigcirc$	$\bigcirc$	
					計測制御電源室（B）浸水防止水密扉（No．2）	I	$\bigcirc$	$\bigcirc$	
					RSS 盤室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					計測制御電源室（A）－常用および共通 $M / C \cdot P / C$ 室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					制御建屋空調機械（A）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉（No．1）	I	$\bigcirc$	$\bigcirc$	
					250 V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					ISI 室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					制御建屋空調機械（B）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉（No．2）	I	$\bigcirc$	$\bigcirc$	
					燃料移送ポンプ（H）室一燃料移送ポンプ（A）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					燃料移送ポンプ（A）室一燃料移送ポンプ（B）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					HPSW ポンプ室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					TSW ポンプ室－RSWポンプ（B）（D）室浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					第 2 号機 MCR 浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					RW 電気品室（ $B$ ）浸水防止水密扉	I	$\bigcirc$	$\bigcirc$	
					北西階段室管理区域外伝播防止水密扉	I	$\bigcirc$	$\bigcirc$	
					原子炉建屋大物般入口	I	$\bigcirc$	$\bigcirc$	
					原子炉建屋管理区域外伝播防止水密扉（No．3）	I	$\bigcirc$	$\bigcirc$	
					RW 制御室管理区域外伝播防止水密扉	I	$\bigcirc$	$\bigcirc$	
					原子炉建屋管理区域外伝播防止水密扉（No．1）	I	$\bigcirc$	$\bigcirc$	
					原子炉建屋管理区域外伝播防止水密扉（No．2）	I	$\bigcirc$	$\bigcirc$	
					制御建屋管理区域外伝播防止水密扉（No．1）	I	$\bigcirc$	$\bigcirc$	


	発 電 原 子炉 施 設 の種 類	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \hline \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \end{aligned}$	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { L } \\ & \text { ド } \end{aligned}$		7 䁚保   －专 規   4 ネ定   調 メ   達 シ   のシ   適 ス   有 ム   無 計   画	備 考
	$\begin{aligned} & \text { 浸 } \\ & \text { 水 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 設 } \end{aligned}$	内郭浸水防譙讗備	－＊	防水区画構造物	タービン建屋管理区域外伝播防止水密扉	I	$\bigcirc$	$\bigcirc$	
					主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉	I	$\bigcirc$	$\bigcirc$	
					原子炬建屋浸水防止水密扉（No．4）	I	$\bigcirc$	$\bigcirc$	
					燃料移送ポンプ（ $A$ ）室浸水防止水密扉	III	$\bigcirc$	$\bigcirc$	
					燃料移送ポンプ（ $B$ ）室浸水防止水密扉	III	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-01$ 階段浸水防止殹（ （地 3 3階）	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-02$ 階段浸水防止堰（地上 3 階）	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-01$ 階段浸水防止堰（ （地 2 2階）	I	$\bigcirc$	$\bigcirc$	
					FCS 再結合装置（ A ）室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					FCS 再結合装置（ $\mathrm{B}^{\text {a }}$ 室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-02$ 階段浸水防止堰（地上 2 階）	I	$\bigcirc$	$\bigcirc$	
					SGTS ヒータコニット（ $)^{\text {）} \text { 室浸水防止堰 }}$	I	$\bigcirc$	$\bigcirc$	
					CAMS ラック（ ）$^{\text {室浸水防止堰 }}$	I	$\bigcirc$	$\bigcirc$	
					SGTS ヒータコニット（ A ）室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					CAMS ラック（ A ）室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					SGTSフィルタコニット室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-01$ 階段浸水防止殹（ ${ }^{\text {a }}$ 地上 1 階）	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-02$ 階段浸水防止堰（ t 地 1 階）	I	$\bigcirc$	$\bigcirc$	
					バルブ（ $B$ ）室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					バルブ（ $A$ ）室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					FPC ポンプ室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-01$ 階段浸水防止堰（地下 1 階）	I	$\bigcirc$	$\bigcirc$	
					$\mathrm{R}-02$ 階段浸水防止殹（ （地 1 階）	I	$\bigcirc$	$\bigcirc$	
					MS トンネル室浸水防止医	I	$\bigcirc$	$\bigcirc$	
					RCIC MCC 室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					TIP 駆動装置室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					復水補給水ポンプ室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					CUW 配管・バルブ室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					原子炉補機（A）室送風機室一原子炉補機（HPCS）室送風機室浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					原子炉補機（HPCS）室送風機室－原子炉補機（B）室送風機室 および送風機エリア浸水防止堰	I	$\bigcirc$	$\bigcirc$	
					2F通路浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					区分 I－III非常用 D／G 制御盤室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					D／G 補機（ $A$ ）室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					区分IIIHPCS 電気品室浸水防止殹	I	$\bigcirc$	$\bigcirc$	
					静止型PLR ポンプ電源装置室浸水防止医	I	$\bigcirc$	$\bigcirc$	


		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	艈	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { r } \\ & \text { ド } \end{aligned}$				考
		内郭隻水良謢備	－＊	防水区画構造物	IA－SA 室および通路浸水防止殹	I	$\bigcirc$	$\bigcirc$		
					区分 I ケーブル処理室浸水防止殹	I	$\bigcirc$	$\bigcirc$		
					常用系ケーブル処理室浸水防止堰（No．2）	I	$\bigcirc$	$\bigcirc$		
					常用系ケーブル処理室浸水防止堰（No．1）	I	$\bigcirc$	$\bigcirc$		
					タービン建屋管理区域外伝播防止殹（No．3）	I	$\bigcirc$	$\bigcirc$		
					タービン建屋管理区域外伝播防止殹（No．4）	I	$\bigcirc$	$\bigcirc$		
					タービン建屋管理区域外伝播防止殹（No．2）	I	$\bigcirc$	$\bigcirc$		
					タービン建屋管理区域外伝播防止殹（No．1）	I	$\bigcirc$	$\bigcirc$		
					HNCW 冷凁機・ポンプ室管理区域外伝播防止殹	I	$\bigcirc$	$\bigcirc$		
					CAMS（A）室空調機浸水防止殹	I	$\bigcirc$	$\bigcirc$		
					CAMS（B）室空調幾浸水防止医	I	$\bigcirc$	$\bigcirc$		
					中央制御室再循澴フィルタ装置浸水防止殹	I	$\bigcirc$	$\bigcirc$		
					制御建屋浸水防止水密扉（No．4）	I	$\bigcirc$	$\bigcirc$		
					制御建屋浸水防止水密扉（No．5）	1	$\bigcirc$	$\bigcirc$		
					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蒠 （No．1）	I	$\bigcirc$	$\bigcirc$		
					地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋 （No．2）	I	$\bigcirc$	$\bigcirc$		
					地下軽油タンク機器搬出入用浸水防止蓋	I	$\bigcirc$	$\bigcirc$		
					ハッチ上部スペース浸水防止殹	I	$\bigcirc$	$\bigcirc$		
					原子炉建屋地上 1 階の施設外との境界壁面及び施設外へ の出入口床面（原子炉建屋地上 1 階屋外への出入口，原子炉建屋地上 1 階タービン建屋を結ぶ連絡通路，原子炉建屋地上 1 階廃安物処理系制御室出入口，原子炉建屋地上 1階通路部出入口）	既設設備であり，当時の調達管理に基づき実施している。				
					タービン建屋地下 2 階及び制御建屋地下 2 階配管エリア の施設外との境界壁面及びこれに囲まれた床面（タービ こ建屋地下 2 階 TCW 熱交換器室出入口）	既設設備であり，当時の調達管理に基づき実施している。				

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設借区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－14 本設工認に係る設計の実績，工事及び検査の計画

補機駆動用燃料設備
（非常用電源設備及び補助ボイラーに係るものを除く。）

## 1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第2号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。
本設工認に係る設計の実績，工事及び検査の計画

	各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係   ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
			本店	発電所	供給者					
	設計	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書   - 設置許可基準規則   - 技術基準規則	－	－
		3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書   - 設置許可基準規則   - 安全審査指針   - 技術基準規則   - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ ュー要領「品証様式のチェックシ ート」	
			基本設計方針の作成（設計 1）				- 様式－2   - 技術基準規則	- 様式 -3   - 様式－4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ	
0 $\sim$ $\sim$		3．3． 3   （1）		©	－	－	- 様式 -2   - 様式 -4   - 実用炉規則別表第二   - 技術基準規則	－様式 -5	ュー要領「品証様式のチェックシ   ート」	
$\begin{aligned} & O \\ & \stackrel{1}{1} \\ & \stackrel{S}{5} \end{aligned}$							- 設置変更許可申請書   - 設置許可基準規則   - 技術基準規則	- 様式－6   - 様式－7		
							－基本設計方針	－様式 -5		
$\begin{aligned} & \text { N } \end{aligned}$			適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2）	©	－	－	- 様式 -2   - 様式 -5   - 基本設計方針	－様式一8の「設工認設計結果（要目表／設計方針）」欄	－	
			1．共通的に適用される設計		冷却参照		「原子炬冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炬冷却系統施設」参照	
		3.3.3   （2）	2．補機駆動用燃料設備の兼用に関する設計   2.1 設備に係る設計のための系統の明確化及び兼用する機能の確認	©		－	- 様式 -2   - 様式 -5   - 基本設計方針   - 設置変更許可時の設計資料	- 機能単位の系統図   - 設定根拠の「（概要）」部分	－	
			2.2 機能を兼用する機器を含む設備に係る設計   （1）燃料設備   －タンクローリ	©	－	－	- 機能単位の系統図   - 設定根拠の「（概要）」部分   - 設備図書   - 基本設計方針   - 設置変更許可時の設計資料	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 非常用電源設備に係る系統図   - 非常用電源設備に係る機器の配置を明示し た図面   －補機駆動用燃料設備に係る機器の配置を明	－	


各段階	プロセス（設計対象）   実績：3．3．1～3．3．3（5）   計画：3．4．1～3．7．2	組織内外の相互関係   ○ ：主担当 O ：䦎連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
						示した図面   - 補機駆動用燃料設備に係る系統図   - 構造図	
	2.3 機能を兼用する機器を含む補機駆動用燃料設備の系統図に関する取りまとめ	（ ）	－	－	- 様式 -2   - 様式 -5   - 機能単位の系統図	－補機駆動用燃料設備に係る系統図	－
	3．補機駆動用燃料設備の設計   3.1 大容量送水ポンプ（タイプ I ）（燃料タンク）	©	－	－	- 基本設計方針   - 設備図書	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 補機駆動用燃料設備に係る機器の配置を明示した図面   - 補機駆動用燃料設備に係る系統図   - 構造図	－
	3.2 大容量送水ポンプ（タイプII）（燃料タンク）	©	－	－	- 基本設計方針   - 設備図書	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 補機駆動用燃料設備に係る機器の配置を明示した図面   - 補機駆動用燃料設備に係る系統図   - 構造図	－
	3.3 原子炉補機代替冷却水系熱交換器ユニット （燃料タンク）	©	－	－	- 基本設計方針   - 設備図書	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 補機駆動用燃料設備に係る機器の配置を明示した図面   - 補機駆動用燃料設備に係る系統図   - 構造図	－
	3.4 軽油タンク	©	－	$\bigcirc$	- 基本設計方針   - 設備図書   - 設置変更許可時の設計資料   - 業務報告書	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 補機駆動用燃料設備に係る機器の配置を明示した図面   - 補機駆動用燃料設備に係る系統図   - 構造図	－仕様書
3.3.3   （3）	設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット


各段階		プロセス（設計対象）   実績：3．3．1～3．3．3（5）   計画：3．4．1～3．7．2	組織内外の相互関係   © ：主担当 O ：関運			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
	3.3.3   （4）		設工認申請書の作成	©	－	－	- 設計 1   - 設計 2   - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」
	3.3.3   （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	$\bigcirc$	- 設計資料   - 業務報告書	－様式 -8 の「設備の具体的設計結果」欄	－仕様書	
	3． 4.2	具体的な設備の設計に基づく工事の実施	－	©	$\bigcirc$	- 仕様書   - 工事の方法	－工事記録	－	
工 事 及 び	3．5．2	使用前事業者検査の計画	－	©	$\bigcirc$	－様式一 8 の「設工認設計結果（要目表／設計方針）」 欄及び「設備の具体的設計結果」欄   －工事の方法	－様式 -8 の「確認方法」欄	－	
検	3．5．3	検査計画の管理	－	（ ）	$\bigcirc$	－適合性確認の検査計画	－検査成績書	－	
査	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（0）	$\bigcirc$	－溶接部詳細一覧表	－工事記録	－	
	3．5．5	使用前事業者検査の実施	－	（ ）	$\bigcirc$	- 様式－8の「確認方法」欄   - 工事の方法	－検査要領書	－	
			－	（	$\bigcirc$	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（	$\bigcirc$	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	奚	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { 1 } \\ & \text { ド } \end{aligned}$			備 考
		燃䜃儶	－＊	容器	非常用ディーゼル発電設備軽油タンク	I	$\bigcirc$	$\bigcirc$	
					高圧炬ふスプレイ系ブイーゼル発電設備軽油タンク	I	$\bigcirc$	$\bigcirc$	
					ガスタービン発電設備軽油タンク	I	$\bigcirc$	$\bigcirc$	
					大容量送水ポンプ（タイプI）（燃料タンク）	I	$\bigcirc$	$\bigcirc$	
					大容量送水ポンプ（タイプII）（然料タンク）	I	$\bigcirc$	$\bigcirc$	
					原子炻補機代替冷却水系熱交換器ユニット（ ）然料タン ク）	I	$\bigcirc$	$\bigcirc$	
					タンクローリ	－	$\bigcirc$	－	原子力部門外の部署が調達し ているため，グレードは対象外 である。
				主配管	非常用ディーゼル発電設備軽油タンク～燃料移送ポン プス口配管分叶点	I	$\bigcirc$	$\bigcirc$	
					燃料移送ポンプ入口配管分岐点～非常用ディーゼル発電設備軽油タンク払出口	I	$\bigcirc$	$\bigcirc$	
					高圧炉心スプレイ系ディーゼル発電設備軽油タンク～高圧炉心スプレイ系ディーゼル発電設備燃料移送ポン プ入口配管分岐点	I	$\bigcirc$	$\bigcirc$	
					高圧炉心スプレイ系ディーゼル発電設備燃料移送ポン プ入口醮管分岐点～高圧炬心スプレイ系ディーゼル発電設備軽油タンク払出口	I	$\bigcirc$	$\bigcirc$	
					ガスタービン発電設備軽油タンク～ガスタービン発電設備轾油タンク出口配管分岐点	I	$\bigcirc$	$\bigcirc$	
					ガスタービン発電設備軽油タンク出口配管分岐点～ガ スタービン発電設備軽油タンク払出口	I	$\bigcirc$	$\bigcirc$	
					軽油払出用ホース（外径 $63 \mathrm{~mm}: 2 \mathrm{~m}$ ）	－	$\bigcirc$	－	原子力部門外の部署が調達し ているため，グレードは対象外 である。
					給油用ホース（ $\dagger 25: 50 \mathrm{~m}$ ）	－	$\bigcirc$	－	原子力部門外の部署が調達し ているため，グレードは対象外 である。



VI－1－10－15 本設工認に係る設計の実績，工事及び検査の計画非常用取水設備

## 1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3.3(5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係   © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
\|設計	3．3．1		適合性確認対象設備に対する要求事項の明確化	©	－	－	- 設置変更許可申請書   - 設置許可基準規則   - 技術基準規則	－	－
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定	©	－	－	- 設置変更許可申請書   - 設置許可基準規則   - 安全審査指針   - 技術基準規則   - 旧技術基準規則	－様式－2	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ ュー要領「品証様式のチェックシ ート」	
		基本設計方針の作成（設計 1）				- 様式 -2   - 技術基準規則	- 様式 -3   - 様式 -4	－工事計画認可申請に係る品証様式 および基本設計方針の個別レビ	
	3．3．3   （1）		©	－	－	- 様式－2   - 様式 -4   - 実用炉規則別表第二   - 技術基準規則	－様式 -5	ュー要領「品証様式のチェックシ   ート」	
						- 設置変更許可申請書   - 設置許可基準規則   - 技術基準規則	- 様式－6   - 様式 -7		
						－基本設計方針	－様式 -5		
	3.3.3   （2）	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2）   1．共通的に適用される設計	©	－	－	- 様式－2   - 様式 -5   - 基本設計方針	－様式－8の「設工認設計結果（要目表／設計方針）」欄	－	
			「原子炉泠却系統施設」参照			「原子炉冷却系統施設」参照	「原子炉冷却系統施設」参照	「原子炬冷却系統施設」参照	
		2．非常用取水設備の兼用に関する設計   2.1 設備に係る設計のための兼用する機能の確認   2.2 機能を兼用する機器を含む設備に係る設計   （1）取水設備   －貯留堰	©	－	－	- 様式－2   - 様式 -5	－設定根拠の「（概要）」部分	－	
			©	－	－	- 設定根拠の「（概要）」部分   - 設備図書	- 要目表   - 設備別記載事項の設定根拠に関する説明書   - 機器の配置を明示した図面   - 構造図	－	
		3．泠却水を確保するための設計	©	－	－	- 基本設計方針   - 設備図書   - 泠却に必要な海水量	- 要目表   - 取水口及び放水口に関する説明書	－	


各段階		$\begin{gathered} \text { プロセス (設計対象) } \\ \text { 実績: 3.3.1~3.3 (5) } \\ \text { 計画: 3.4.1~3.7.2 } \end{gathered}$	組織内外の相互関係   ○ ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
							－VI－1－10－13 の「2．4 入力津波による津波防護対象設備への影響評価の実施」において実施 した評価結果	－設備別記載事項の設定根拠に関する説明書   - 非常用取水設備の配置を明示した図面   - 構造図	
	$\text { 3.3. } 3$   （3）	設計のアウトプットに対する検証	©	－	－	－様式－2～様式 -8	－	－基本設計アウトプット	
	3．3． 3   （4）	設工認申請書の作成	©	－	－	- 設計 1   - 設計 2   - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	$\bigcirc$	- 設計資料   - 業務報告書	－様式－8 の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	$\bigcirc$	- 仕様書   - 工事の方法	－工事記録	－	
工 事 及	3．5．2	使用前事業者検査の計画	－	©	$\bigcirc$	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄   －工事の方法	－様式－8の「確認方法」欄	－	
栓	3．5．3	検査計画の管理	－	（0）	$\bigcirc$	－適合性確認の検査計画	－検査成績書	－	
查	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（	$\bigcirc$	－溶接部詳細一覧表	－工事記録	－	
査	3．5．5	使用前事業者検査の実施	－	©	$\bigcirc$	- 様式－8の「確認方法」欄   - 工事の方法	－検査要領書	－	
			－	©	$\bigcirc$	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（ ）	$\bigcirc$	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

		$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	愻	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \text { ! } \\ & \text { ド } \end{aligned}$				考
		$\underset{\substack{\text { 聚 } \\ \text { 水 } \\ \text { 備 }}}{ }$	－＊	－＊	貯留堰   （No．1），（No．2），（No．3），（No．4），（No．5），（No．6）	既設設備であり，当時の調達管理 に基づき実施している。				
					取水口	既設設備であり，当時の調達管理 に基づき実施している。				
					取水路	既設設備であり，当時の調達管理 に基づき実施している。				
					海水ポンプ室	既設設備であり，当時の調達管理 に基づき実施している。				

注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画緊急時対策所

## 1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式－ 1 により示す。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

本設工認に係る設計の実績，工事及び検査の計画


各段階	プロセス（設計対象）   実績：3．3．1～3．3．3（5）   計画：3．4．1～3．7．2	組織内外の相互関係   © ：主担当 $○$ ：関連			インプット	アウトプット	他の記録類
		本店	発電所	供給者			
					用）」において実施した設計結果   －VI－1－10－9 の「2．4．2 緊急時対策所軽油タン ク」において実施した設計結果		
	3．緊急時対策所機能に係る設計   3.1 居住性の確保に関する設計	©	－	$\bigcirc$	- 基本設計方針   - 設備図書   - 「原子力発電所中央制御室の居住性に係る被 ばく評価手法について（内規）」   －「実用発電用原子炉に係る重大事故等の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」   －「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則の解釈」   - 評価上参考となる公的規格   - 業務報告書   - VI－1－10－7の「3．1．1 緊急時対策所可搬型工 リアモニタ」において実施した設計結果   －VI－1－10－7の「5． 1 可搬型モニタリングポス ト」において実施した設計結果   －VI－1－10－7 の「8．出入管理設備に関する設計」において実施した設計結果   －VI－1－10－7 の「10．2 緊急時対策所」において実施した設計結果   - 設備に関する情報   - 解析の入力条件となる情報（発電所で収集し ている当社が所有する気象データ，要員の滞在及びマスクの運用並びに評価点の位置及び滞在時間）	- 要目表   - 緊急時対策所の居住性に関する説明書   - 緊急時対策所の機能に関する説明書	- 仕様書   - 解析業務チェックシート
	3.2 情報の把握に関する設計	©	－	－	- 基本設計方針   - VI－1－10－5 の「7．通信連絡設備に関する設計」において実施した設計結果	- 要目表   - 緊急時対策所の機能に関する説明書	－
	3.3 通信連絡に関する設計	©	－	－	- 基本設計方針   - VI－1－10－5 の「7．通信連絡設備に関する設計」において実施した設計結果	- 要目表   - 緊急時対策所の機能に関する説明書	－


各段階		プロセス（設計対象）   実績：3．3．1～3．3．3（5）   計画：3．4．1～3．7．2	組織内外の相互関係   © ：主担当 O ：関連			インプット	アウトプット	他の記録類	
		本店	発電所	供給者					
	$\text { 3.3. } 3$   （3）		設計のアウトプットに対する検証	©	－	－	－様式 $-2 \sim$ 様式 -8	－	－基本設計アウトプット
	3．3．3   （4）	設工認申請書の作成	©	－	－	- 設計 1   - 設計 2   - 工事の方法	－設工認申請書案	－工事計画認可申請 申請書類の記載の適切性確認要領「適切性確認 チェックシート」	
	3.3.3   （5）	設工認申請書の承認	©	－	－	－設工認申請書案	－設工認申請書	－原子炉施設保安委員会議事録	
工   事   及   び   検   査	3．4．1	設工認に基づく具体的な設備の設計の実施（設計 3）	－	©	$\bigcirc$	- 設計資料   - 業務報告書	－様式－8の「設備の具体的設計結果」欄	－仕様書	
	3．4．2	具体的な設備の設計に基づく工事の実施	－	©	$\bigcirc$	- 仕様書   - 工事の方法	－工事記録	－	
	3．5．2	使用前事業者検査の計画	－	©	$\bigcirc$	－様式一 8 の「設工認設計結果（要目表／設計方針）」欄及び「設備の具体的設計結果」欄 －工事の方法	－様式 -8 の「確認方法」欄	－	
	3．5．3	検査計画の管理	－	©	$\bigcirc$	－適合性確認の検査計画	－検査成績書	－	
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	（0）	$\bigcirc$	－溶接部詳細一覧表	－工事記録	－	
	3． 5.5	使用前事業者検査の実施	－	©	$\bigcirc$	- 様式一 8 の「確認方法」欄   - 工事の方法	－検査要領書	－	
			－	（0）	$\bigcirc$	－検査要領書	－検査記録	－	
	3．7．2	識別管理及びトレーサビリティ	－	（）	$\bigcirc$	－	－検査記録	－	

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）


注記＊：「一」は，該当する系統が存在しない場合，又は実用炬規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

VI－2 耐震性に関する説明書

VI－2－1 耐震設計の基本方針
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書
VI－2－3 原子炉本体の耐震性についての計算書
VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算書
VI－2－5 原子炉冷却系統施設の耐震性についての計算書
VI－2－6 計測制御系統施設の耐震性についての計算書
VI－2－7 放射性廃棄物の廃棄施設の耐震性についての計算書
VI－2－8 放射線管理施設の耐震性についての計算書
VI－2－9 原子炉格納施設の耐震性についての計算書
VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書
VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書
VI－2－13 地下水位低下設備の耐震性についての計算書

VI－2－1 耐震設計の基本方針

VI－2－1－1 耐震設計の基本方針
VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要
VI－2－1－3 地盤の支持性能に係る基本方針
VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
VI－2－1－5 波及的影響に係る基本方針
VI－2－1－6 地震応答解析の基本方針
VI－2－1－7 設計用床応答曲線の作成方針
VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針
VI－2－1－9 機能維持の基本方針
VI－2－1－10 ダクティリティに関する設計方針
VI－2－1－11 機器•配管の耐震支持設計方針
VI－2－1－12 配管及び支持構造物の耐震計算について
VI－2－1－13 機器•配管系の計算書作成の方法

> VI-2-1-7 設計用床応答曲線の作成方針
1．概要 ..... 1
2．設計用床応答曲線及び設計用最大応答加速度作成に係る基本方針及び作成方法 ..... 1
2.1 基本方針 ..... 1
2．1．1 設計用床応答曲線 ..... 1
2．1．2 設計用最大応答加速度 ..... 1
2．2 作成方法 ..... 3
2．2．1 応答スペクトルの作成方法 ..... 3
2．2．2 設計用床応答曲線及び設計用最大応答加速度の作成方法 ..... 3
2．2．3 設計用床応答曲線の作成位置 ..... 6
2．2．4 設計用床応答曲線及び設計用最大応答加速度の適用方法 ..... 6
3．地震応答解析モデル ..... 7
4．設計用最大応答加速度及び設計用床応答曲線 ..... 16
4.1 弾性設計用地震動 S d ..... 16
4．2 基準地震動 S s ..... 16

## 1．概要

本資料は，添付書類「VI－2－1－1 耐震設計の基本方針」のうち「4．設計用地震力」 に基づき，機器•配管系の動的解析に用いる設計用床応答曲線の作成方針及びその方針 に基づき作成した設計用床応答曲線に関して説明するものである。また，機器•配管系 の静的解析に用いる設計用最大応答加速度及び静的震度についても併せて説明する。

2．設計用床応答曲線及び設計用最大応答加速度作成に係る基本方針及び作成方法

## 2.1 基本方針

2．1．1 設計用床応答曲線
（1）添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．地震応答解析の方針」に基づき策定した各原子炉施設の解析モデルに対して，入力地震動を用い た時刻歴応答解析を行い，各質点位置における加速度応答時刻歴を求める。入力地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に基づくものとして，表 2－1 及び表 $2-2$ に示す。
（2）（1）で求めた各質点の加速度応答時刻歴を入力として，減衰付 1 自由度系の応答スペクトルを必要な減衰定数の値に対して求める。
（3）（2）で求めた応答スペクトルに対し，各原子炉施設の固有周期のシフトを考慮 し，周期方向に $\pm 10 \%$ の拡幅を行う。本資料においては，これを「床応答曲線」と いう。
（4）（3）で求めた床応答曲線に対し，材料物性の不確かさ等を考慮して作成したも のを設計用床応答曲線とする。

2．1．2 設計用最大応答加速度
2．1．1（1）で求めた各質点の加速度応答時刻歴の最大値（最大応答加速度）に対し，材料物性の不確かさ等や乾燥収縮及び地震によるコンクリートのひび割れ に対する影響を考慮して作成したものを設計用最大応答加速度とする。

表 2－1 入力地震動（基準地震動 S s ）

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s－D 2	海洋プレート内地震（SMGA＊マントル内）の応答スペクト ルに基づく手法による基準地震動	1， 000	600
S s－D 3	海洋プレート内地震（SMGA＊地殻内）の応答スペクトルに基づく手法による基準地震動	800	500
S s－F 1	プレート間地震の断層モデルを用いた手法による基準地震動（応力降下量（短周期レベル）の不確かさ）	717	393
S s－F 2	プレート間地震の断層モデルを用いた手法による基準地震動（SMGA＊位置と応力降下量（短周期レベル）の不確 かさの重畳）	722	396
S s－F 3	海洋プレート内地震（SMGA＊マントル内）の断層モデルを用いた手法による基準地震動（SMGA＊マントル内集約）	835	443
S s－N 1	2004年北海道留萌支庁南部地震（K—NET港町）の検討結果に保守性を考慮した地震動	620	320

注記＊：強震動生成域

表 2－2 入力地震動（弾性設計用地震動 S d）

弾性設計用地震動	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
$\mathrm{S} \mathrm{d}-\mathrm{D} 1$	371	249
$\mathrm{~S} \mathrm{~d}-\mathrm{D} 2$	580	348
$\mathrm{~S} \mathrm{~d}-\mathrm{D} \mathrm{3}$	464	290
$\mathrm{~S} \mathrm{~d}-\mathrm{F} 1$	359	197
$\mathrm{~S} \mathrm{~d}-\mathrm{F} 2$	361	198
$\mathrm{~S} \mathrm{~d}-\mathrm{F} \mathrm{3}$	418	222
$\mathrm{~S} \mathrm{~d}-\mathrm{N} 1$	310	160

## 2．2 作成方法

2．2．1 応答スペクトルの作成方法
（1）解析方法
2．1．1（1）で述べた方針で時刻歴応答解析を行い，各モデルの各質点におけ る加速度応答時刻歴を求める。この加速度応答時刻歴を入力波として応答ス ペクトルを作成する。すなわち，入力波の絶対加速度を $\mathrm{Y}_{\mathrm{i}}$ とおけば，質点系 の振動方程式は，

$$
\ddot{Z}_{i}+2 \cdot h \cdot \omega \cdot \dot{Z}_{i}+\omega^{2} \cdot Z_{i}=-\ddot{Y}_{i} \cdot \cdots \cdot(2.1)
$$

ただし，
$\omega$ ：質点系の固有円振動数
$Z_{i} \quad$ ：i 質点上の質点の相対変位
h ：減衰定数
地震の間の $\ddot{Y}_{i}+\ddot{Z}_{i}$ の最大値を $\omega$ 及び h をパラメータとして求め，応答スペ クトルを作成する。応答スペクトルの作成には，「FRS Calculation System」，

「VIANA」，「CHERRY」，「FACS」及び「FRS Enveloping for BWR」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機 プログラム（解析コード）の概要」に示す。
（2）減衰定数
応答スペクトルは，添付書類「VI－2－1－6 地震応答解析の基本方針」の機器•配管系の減衰定数を用いて作成する。
（3）数値計算用諸元
固有周期作成幅

$$
0.05 \sim 1.0 \mathrm{~s}
$$

固有周期計算間隔
$0.05 \sim$
0.1 s
$\Delta \omega=4.0 \mathrm{rad} / \mathrm{s}$
$0.1 \sim 0.2 \mathrm{~s}$
$\Delta \omega=1.5 \mathrm{rad} / \mathrm{s}$
$0.2 \sim$
0.39 s
$\Delta \omega=0.5 \mathrm{rad} / \mathrm{s}$
$0.39 \sim 0.94 \mathrm{~s}$
$\Delta \omega=1.0 \mathrm{rad} / \mathrm{s}$
$0.94 \sim 1.0 \mathrm{~s}$
$\Delta \omega=0.38 \mathrm{rad} / \mathrm{s}$

2．2．2 設計用床応答曲線及び設計用最大応答加速度の作成方法
（1）設計用床応答曲線
設計用床応答曲線は，基準地震動 S s 又は弾性設計用地震動 S d による時刻歴応答解析から得られる応答波を用いて作成した応答スペクトルを固有周期の多少 のずれにより，応答に大幅な変化が生じないよう周期軸方向に $\pm 10 \%$ の拡幅を行 ったものと材料物性の不確かさ等を考慮して作成した応答スペクトルを包絡させ

たものである（図2－1）。ただし，材料物性の不確かさ等を考慮して作成する応答 スペクトルについては，$\pm 10 \%$ の拡幅は考慮しない。
（2）設計用最大応答加速度
設計用最大応答加速度は，基準地震動 S s 又は弾性設計用地震動 S d による時刻歴応答解析から得られる応答波の最大値（最大応答加速度）と材料物性の不確 かさ等を考慮した時刻歴応答解析から得られる応答波の最大値を包絡させたもの である。


図 2－1 設計用床応答曲線の作成方法

2．2．3 設計用床応答曲線の作成位置
図 $3-1(1) \sim$ 図 $3-2(5)$ の解析モデルについて設計用床応答曲線及び設計用最大応答加速度を作成する。

## 2．2．4 設計用床応答曲線及び設計用最大応答加速度の適用方法

（1）概要
機器•配管系の動的地震力を求める場合は，それぞれの据付け位置における設計用床応答曲線又は設計用最大応答加速度を使用して設計震度を定める。この場合，以下の運用方法に従う。
（2）運用方法
a．設計用床応答曲線
（a）振動方向に合わせ，水平方向及び鉛直方向の各方向の設計用床応答曲線を使用する。
（b）設計用床応答曲線は，配管系が設置されている位置を包絡する設計用床応答曲線を適用する。また，異なる建物•構築物を渡る配管系については，配管系が設置されている位置を包絡する設計用床応答曲線を適用する。ただし，設計用床応答曲線の運用において合理性が示される場合には，その方法を採用 できるものとする。
（c）設計用床応答曲線を用いて動的解析を行う場合には以下に示す方法により モード合成を行うものとする。

$\mathrm{T}_{\mathrm{s}} \quad$ ： s 次の固有周期
$\alpha_{\mathrm{s}} \quad: ~ \mathrm{~T}_{\mathrm{s}}$ に対応する震度
$\phi_{s i}: ~ s$ 次のi質点の固有モード
$\beta_{\mathrm{s}}$ ： s 次の刺激係数
$\mathrm{A}_{\mathrm{i}} \quad$ ：i質点の設計震度

$$
A_{i}=\sqrt{\sum_{s=1}^{n}\left(\beta_{s} \cdot \phi_{s i} \cdot \alpha_{s}\right)^{2}}
$$

b．設計用最大応答加速度
（a）振動方向に合わせ，水平方向及び鉛直方向の各方向の設計用最大応答加速度を使用する。なお，耐震計算書においては，無次元化した設計震度として記載されることもある。
（b）設計用最大応答加速度は，配管系が設置されている位置を包絡する設計用最大応答加速度を適用する。また，異なる建物•構築物を渡る配管系について は，配管系が設置されている位置を包絡する設計用最大応答加速度を適用す る。ただし，設計用最大応答加速度の運用において合理性が示される場合には， その方法を採用できるものとする。

## 3．地震応答解析モデル

（1）原子炉建屋
原子炉建屋の地震応答解析モデルには，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載する解析モデルを用いる。水平方向の地震応答解析モデルを図 3－1（1）及び図 3－1（2）に，鉛直方向の地震応答解析モデルを図3－1（3）に示す。 （2）制御建屋

制御建屋の地震応答解析モデルには，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に記載する解析モデルを用いる。水平方向の地震応答解析モデルを図 3－2
（1）及び図3－2（2）に，鉛直方向の地震応答解析モデルを図3－2（3）に，誘発上下動を考慮する場合の地震応答解析モデルを図3－2（4）及び図3－2（5）に示す。



図 3－1（1）原子炉建屋の地震応答解析モデル（NS 方向）


注記＊1：プール壁の回転ばね
注記 $* 2:$ 内部ボックス壁の軸抵抗を考慮した回転ばね

図3－1（2）原子炉建屋の地震応答解析モデル（EW 方向）


注記＊：屋根トラス端部回転拘束ばね

図 3－1（3）原子炉建屋の地震応答解析モデル（鉛直方向）


図 3－2（1）制御建屋の地震応答解析モデル（NS 方向）

$$
\mathrm{Ec}=13240 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\mathrm{Gc}=5690 \mathrm{~N} / \mathrm{mm}^{2}
$$


O．P． 29.150 m

図 3－2（2）制御建屋の地震応答解析モデル（EW 方向）



図 3－2（4）制御建屋の地震応答解析モデル（誘発上下動考慮，NS 方向）


図 3－2（5）制御建屋の地震応答解析モデル（誘発上下動考慮，EW 方向）

4．設計用最大応答加速度及び設計用床応答曲線
本章では，施設ごとの各床面の設計用最大応答加速度及び静的震度並びに設計用床応答曲線を示す。また，添付書類「VI－2－1－1 耐震設計の基本方針」の「4．設計用地震力」に従って算出した値以上となるように作成した静的震度についても示す。

## 4． 1 弾性設計用地震動 S d

建屋の各床面の弾性設計用地震動 S d に対する設計用最大応答加速度及び静的震度を表 4－1－1 及び表 4－1－2 に，各床面の減衰定数に応じた弾性設計用地震動 S d に対する設計用床応答曲線の図番一覧表を表 4－2－1 及び 4－2－2 に示す。また，建物•構築物等と表番号の関係を表4－1 に示す。

表 4－1 建物•構築物等と表番号の関係（弾性設計用地震動 S d）

No．	建物•構築物等	設計用最大応答加速度   及び静的震度	設計用床応答曲線（S d）
1	原子炉建屋	表 $4-1-1$	表 $4-2-1$
2	制御建屋	表 $4-1-2$	表 $4-2-2$

## 4.2 基準地震動 S s

建屋の各床面の基準地震動 S s に対する設計用最大応答加速度を表 4－3－1 及び表 4－3－2 に，各床面の減衰定数に応じた弾性設計用地震動S d に対する設計用床応答曲線の図番一覧表を表4－4－1 及び4－4－2に示す。また，建物•構築物等と表番号の関係 を表4－2に示す。

表 4－2 建物構築物等と表番号の関係（基準地震動S s）

No．	建物•構築物等	設計用最大応答加速度	設計用床応答曲線（S s ）
1	原子炉建屋	表 4－3－1	表 4－4－1
2	制御建屋	表 4－3－2	表 4－4－2

表 4－1－1 原子炉建屋の弾性設計用地震動 $\mathrm{S} d$ に対する設計用最大応答加速度及び静的震度

構造物名	質点番号		$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		静的震度	
	水平	鉛直		水平	鉛直	水平	鉛直	$\begin{gathered} \text { 水平 } \\ (3.6 \mathrm{Ci}) \end{gathered}$	鉛直   （1．2Cv）
原子炉   建屋	$\begin{aligned} & \text { NS:6, } 18 \\ & \text { EW: } 10,20 \end{aligned}$	4	水平 50.500   鉛直 48.725	3.12	1.01	3． 74	1． 21	2． 65	0． 29
	$\text { NS : 7, } 19$   EW：11， 21	5	41． 200	2.01	0． 92	2． 41	1． 10	1． 87	
	$\begin{aligned} & \text { NS: } 1,8,13,20,25 \\ & \text { EW: } 1,12,15,22,27 \end{aligned}$	6	33． 200	1． 31	0． 86	1． 57	1． 03	1.14	
	$\begin{gathered} \text { NS : } 2,9,14,21,26 \\ \text { EW: } 2,6,13,16,23,28 \end{gathered}$	7	22． 500	0.95	0.76	1． 13	0．91	0.92	
	$\begin{gathered} \mathrm{NS}: 3,10,15,22,27 \\ \mathrm{EW}: 3,7,14,17,24,29 \end{gathered}$	8	15． 000	0． 80	0． 67	0.96	0． 80	0． 80	
	$\begin{aligned} & \text { NS: } 4,11,16,23,28 \\ & \text { EW:4, 8, 18, 25, } 30 \end{aligned}$	9	6． 000	0.60	0.53	0． 72	0． 63	0.68	
	NS：5，12，24， 29 EW：5，9，26， 31	10	－0． 800	0.53	0． 43	0.63	0.51	0． 58	
	$\begin{aligned} & \text { NS: } 30 \\ & \text { EW: } 32 \end{aligned}$	11	－8． 100	0． 40	0.33	0． 48	0． 40	0.36	

表 4－1－2 制御建屋の弾性設計用地震動 Sd に対する設計用最大応答加速度及び静的震度

構造物名	質点番号		$$	$\begin{gathered} \text { 最大応答加速度 } \\ \left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0 \end{gathered}$		最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$		静的震度	
	水平	鉛直		水平	鉛直	水平	鉛直		鉛直   （1．2Cv）
制御   建屋	1，9， 10	1	29． 150	2.02	1． 02	2． 43	1． 22	1.08	0． 29
	2， 11	2	22.950	1． 34	0.90	1． 61	1． 08	0.90	
	3， 12	3	19． 500	1． 23	0．78	1． 48	0．93	0.81	
	4， 13	4	15.000	1.04	0.63	1． 25	0． 76	0.70	
	5， 14	5	8． 000	0． 76	0． 46	0． 91	0.55	0.58	
	6	6	1． 500	0.64	0.35	0． 77	0． 42	0.36	

表 4－2－1（1）設計用床応答曲線一覧表（S d，原子炉建屋：水平方向）（1／2）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S d	原子炉   建屋	水平   方向	$\begin{gathered} \text { NS } \\ 6,18 \\ \text { EW } \\ 10,20 \end{gathered}$	50． 500	0.5	RB－SdH－RB5－005
					1.0	RB－SdH－RB5－010
					1.5	RB－SdH－RB5－015
					2.0	RB－SdH－RB5－020
					2.5	RB－SdH－RB5－025
					3.0	RB－SdH－RB5－030
					4.0	RB－SdH－RB5－040
					5.0	RB－SdH－RB5－050
			$\begin{gathered} \text { NS } \\ 7,19 \\ \text { EW } \\ 11,21 \end{gathered}$	41.200	0.5	RB－SdH－RB4－005
					1.0	RB－SdH－RB4－010
					1.5	RB－SdH－RB4－015
					2.0	RB－SdH－RB4－020
					2.5	RB－SdH－RB4－025
					3.0	RB－SdH－RB4－030
					4.0	RB－SdH－RB4－040
					5.0	RB－SdH－RB4－050
			$\begin{gathered} \text { NS } \\ 1,8,13 \\ 20,25 \end{gathered}$	33． 200	0.5	RB－SdH－RB3－005
					1.0	RB－SdH－RB3－010
					1.5	RB－SdH－RB3－015
					2.0	RB－SdH－RB3－020
			$\begin{gathered} \text { EW } \\ 1,12,15 \\ 22,27 \end{gathered}$		2.5	RB－SdH－RB3－025
					3.0	RB－SdH－RB3－030
					4.0	RB－SdH－RB3－040
					5.0	RB－SdH－RB3－050
			NS$\begin{gathered} 2,9,14 \\ 21,26 \end{gathered}$	22． 500	0.5	RB－SdH－RB2－005
					1.0	RB－SdH－RB2－010
					1.5	RB－SdH－RB2－015
					2.0	RB－SdH－RB2－020
					2.5	RB－SdH－RB2－025
			$\begin{gathered} \text { EW } \\ 2,6,13 \\ 16,23,28 \end{gathered}$		3.0	RB－SdH－RB2－030
					4.0	RB－SdH－RB2－040
					5.0	RB－SdH－RB2－050
					7.0	RB－SdH－RB2－070

表 4－2－1（1）設計用床応答曲線一覧表（S d，原子炉建屋 ：水平方向）（2／2）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S d	原子炉   建屋	水平   方向	$\begin{gathered} \text { NS } \\ 3,10,15 \\ 22,27 \\ \\ \text { EW } \\ 3,7,14 \\ 17,24,29 \end{gathered}$	15.000	0.5	RB－SdH－RB1－005
					1.0	RB－SdH－RB1－010
					1.5	RB－SdH－RB1－015
					2.0	RB－SdH－RB1－020
					2.5	RB－SdH－RB1－025
					3.0	RB－SdH－RB1－030
					4.0	RB－SdH－RB1－040
					5.0	RB－SdH－RB1－050
					7.0	RB－SdH－RB1－070
			$\begin{gathered} \text { NS } \\ 4,11,16 \\ 23,28 \\ \text { EW } \\ 4,8,18 \\ 25,30 \end{gathered}$	6． 000	0.5	RB－SdH－RBB1－005
					1.0	RB－SdH－RBB1－010
					1.5	RB－SdH－RBB1－015
					2.0	RB－SdH－RBB1－020
					2.5	RB－SdH－RBB1－025
					3.0	RB－SdH－RBB1－030
					4.0	RB－SdH－RBB1－040
					5.0	RB－SdH－RBB1－050
			$\begin{gathered} \text { NS } \\ 5,12,24 \\ 29 \\ \\ \text { EW } \\ 5,9,26 \\ 31 \end{gathered}$	－0．800	0.5	RB－SdH－RBB2－005
					1.0	RB－SdH－RBB2－010
					1.5	RB－SdH－RBB2－015
					2.0	RB－SdH－RBB2－020
					2.5	RB－SdH－RBB2－025
					3.0	RB－SdH－RBB2－030
					4.0	RB－SdH－RBB2－040
					5.0	RB－SdH－RBB2－050
			$\begin{aligned} & \text { NS } \\ & 30 \end{aligned}$	－8． 100	0.5	RB－SdH－RBB3－005
					1.0	RB－SdH－RBB3－010
					1.5	RB－SdH－RBB3－015
					2.0	RB－SdH－RBB3－020
			$\begin{aligned} & \text { EW } \\ & 32 \end{aligned}$		2.5	RB－SdH－RBB3－025
					3.0	RB－SdH－RBB3－030
					4.0	RB－SdH－RBB3－040
					5.0	RB－SdH－RBB3－050

表 4－2－1（2）設計用床応答曲線一覧表（S d，原子炉建屋：鉛直方向）（1／2）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S d	原子炉   建屋	鉛直   方向	4	48.725	0.5	RB－SdV－RB5－005
					1.0	RB－SdV－RB5－010
					1.5	RB－SdV－RB5－015
					2.0	RB－SdV－RB5－020
					2.5	RB－SdV－RB5－025
					3.0	RB－SdV－RB5－030
					5.0	RB－SdV－RB5－050
			5	41.200	0.5	RB－SdV－RB4－005
					1.0	RB－SdV－RB4－010
					1.5	RB－SdV－RB4－015
					2.0	RB－SdV－RB4－020
					2.5	RB－SdV－RB4－025
					3.0	RB－SdV－RB4－030
					5.0	RB－SdV－RB4－050
			6	33.200	0.5	RB－SdV－RB3－005
					1.0	RB－SdV－RB3－010
					1.5	RB－SdV－RB3－015
					2.0	RB－SdV－RB3－020
					2.5	RB－SdV－RB3－025
					3.0	RB－SdV－RB3－030
					5.0	RB－SdV－RB3－050
			7	22． 500	0.5	RB－SdV－RB2－005
					1.0	RB－SdV－RB2－010
					1.5	RB－SdV－RB2－015
					2.0	RB－SdV－RB2－020
					2.5	RB－SdV－RB2－025
					3.0	RB－SdV－RB2－030
					5.0	RB－SdV－RB2－050

表 4－2－1（2）設計用床応答曲線一覧表（S d，原子炉建屋 ：鉛直方向）（2／2）

	地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
	S d	原子炉   建屋	鉛直   方向	8	15． 000	0.5	RB－SdV－RB1－005
						1.0	RB－SdV－RB1－010
						1.5	RB－SdV－RB1－015
						2.0	RB－SdV－RB1－020
						2.5	RB－SdV－RB1－025
						3.0	RB－SdV－RB1－030
						5.0	RB－SdV－RB1－050
				9	6． 000	0.5	RB－SdV－RBB1－005
						1.0	RB－SdV－RBB1－010
						1.5	RB－SdV－RBB1－015
						2.0	RB－SdV－RBB1－020
$\bigcirc$						2.5	RB－SdV－RBB1－025
a						3.0	RB－SdV－RBB1－030
I						5.0	RB－SdV－RBB1－050
$\uparrow$				10	－0．800	0.5	RB－SdV－RBB2－005
5						1.0	RB－SdV－RBB2－010
（2）						1.5	RB－SdV－RBB2－015
～						2.0	RB－SdV－RBB2－020
$\bigcirc$						2.5	RB－SdV－RBB2－025
						3.0	RB－SdV－RBB2－030
						5.0	RB－SdV－RBB2－050
				11	－8． 100	0.5	RB－SdV－RBB3－005
						1.0	RB－SdV－RBB3－010
						1.5	RB－SdV－RBB3－015
						2.0	RB－SdV－RBB3－020
						2.5	RB－SdV－RBB3－025
						3.0	RB－SdV－RBB3－030
						5.0	RB－SdV－RBB3－050

標高：0．P． 50.500 m
波形名：弾性設計用地震動 Sd

標高：0．P． 50.500 m
波形名：弾性設計用地震動 $S$ d

構造物名：原子炉建屋
減衰定数：1．\％\％
50.0
X
授
【RB－SdH－RB5－015】
——水平方向
標高：0．P．50．500m


構造物名：原子炉建屋
減衰定数：1．5\％
50.0
華
授



構造物名：原子炉建屋
減衰定数： $2.5 \%$
波形名：弾性設計用地震動 Sd
25.

竍
至
固 有 周 期（s）

構造物名：原子炉建屋
減衰定数： $3.0 \%$ 波形名：弾性設計用地震動 S d
25. ——水平方向造物名•原子烺屋


固 有 周 期（s）

減衰定数：4．0\％
25.
准
授
標高：0．P．50．500m
波形名：弾性設計用地震動 $S$ d

構造物名：原子炉建屋
減衰定数：5．\％\％
25.
X
凅


標高：0．P．41．200m
波形名：弾性設計用地震動 S d


構造物名：原子炉建屋
減衰定数：1．5\％
25.

新
至



減衰定数：3． $0 \%$
10． 0
華
授

減衰定数：4． $0 \%$
新
童
標高：0．P．41．200m
波形名：弾性設計用地震動S d

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：5． $0 \%$
希
童

構造物名：原子炉建屋
減衰定数：0．5\％
波形名：弾性設計用地震動 Sd
固 有 周 期（s）

減衰定数：1． $0 \%$
25.
X
凅

減衰定数：1．5\％
25.
Y
凅


構造物名：原子炉建屋
減衰定数：2．0\％

水平方向


10． 0
X
资


減衰定数：3． $0 \%$
（
至

減衰定数：4． $0 \%$
華
疽

減衰定数：5． $0 \%$
装

標高：0．P．22．500m


固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1． $0 \%$
喟
単


減衰定数：2．0\％
－
授

10． 0
X
䙵



[^6]標高：0．P．22．500m
固 有 周 期（s）
標高：0．P．22．500m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：5．0\％
5.
资
標高：0．P．22．500m
波形名：弾性設計用地震動 Sd

構造物名：原子炉建屋
減衰定数：7． $0 \%$
5.

標高：0．P．15．000m
波形名：弾性設計用地震動S d

構造物名：原子炉建屋
減衰定数：1． $0 \%$
肴
至
標高：0．P． 15.000 m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．5\％
X
至
標高：0．P．15．000m
波形名：弾性設計用地震動S d

減衰定数：2．0\％
10． 0
x
単
【RB－SdH－RB1－025】
標高：0．P．15．000m
波形名：弾性設計用地震動 S d

減衰定数： $2.5 \%$
5.
至
標高：0．P．15．000m
波形名：弾性設計用地震動 S d

構造物名：原子炉建屋
減衰定数：3． $0 \%$
5.
雍
固 有 周 期（s）
標高：0．P．15．000m
波形名：弾性設計用地震動 S d
構造物名：原子炬建屋
減衰定数：4． $0 \%$

固 有 周 期（s）
標高：0．P．15．000m
波形名：弾性設計用地震動S d

構造物名：原子炉建屋
減衰定数：5． $0 \%$
5.
x
资
固 有 周 期（s）
標高：0．P． 15.000 m ——水平方向標高：O．P． 15.000 m
波形名：弾性設計用地震動 S d

構造物名：原子炉建屋
減衰定数：7．\％
5.0

10．0

【RB－SdH－RBB1－005】 —水平方向

標高：0．P．6．000m

華 疽

構造物名：原子炉建屋
減衰定数：0．5\％


【RB－SdH－RBB1－010】

## ——水平方向

標高：0．P． 6.000 m
 10.0
2.0
0.0

并
致
構造物名：原子炉建屋
減衰定数：1． $0 \%$
【RB－SdH－RBB1－015】

減衰定数：1．5\％

固 有 周 期（s）

【RB－SdH－RBB1－020】

## ——水平方向

標高：0．P． 6.000 m
波形名：弾性設計用地震動S d

減衰定数：2．0\％
構造物名：原子炉建屋


固 有 周 期（s）
5.
4.
$\cdots$
พ

舀
【RB－SdH－RBB1－025】標高：0．P． 6.000 m
波形名：弾性設計用地震動 S d （100

構造物名：原子炉建屋
減衰定数： $2.5 \%$

【RB－SdH－RBB1－030】
——水平方向

標高：0．P． 6.000 m
波形名：弾性設計用地震動S d


辣
装
構造物名：原子炉建屋
減衰定数：3． $0 \%$
5.
固 有 周 期（s）

【RB－SdH－RBB1－040】
——水平方向

標高：0．P．6．000m



㳯
至
減衰定数：4． $0 \%$
5.

【RB－SdH－RBB1－050】
——水平方向 2．0

標高：0．P． 6.000 m
波形名：弾性設計用地震動S d

華
至
固 有 周 期（s）

構造物名：原子炉建屋
減衰定数：5．0\％
－

【RB－SdH－RBB2－005】

標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d 2．0．0

華
㻎
構造物名：原子炉建屋
減衰定数：0．5\％

【RB－SdH－RBB2－010】



X
票
構造物名：原子炉建屋
減衰定数：1．0\％
5.

4
$\infty$
N
1.0
1.00

【RB－SdH－RBB2－015】

## ——水平方向

標高：0．P．－ 0.800 m
波形名：弹性設計用地震動 S d


肴
這

構造物名：原子炉建屋
減衰定数： $1.5 \%$

【RB－SdH－RBB2－020】
——水平方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動 Sd

減衰定数：2． $0 \%$

【RB－SdH－RBB2－025】



X
䙵
減衰定数：2．5\％
5.

4

【RB－SdH－RBB2－030】
——水平方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動 Sd


固 有 周 期（s）

減衰定数：3．0\％
構造物名：原子炉建屋
5.
脿

【RB－SdH－RBB2－040】
——水平方向

標高：0．P．-0.800 m



華
至

【RB－SdH－RBB2－050】
——水平方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動S d 0．0

章
装
【RB－SdH－RBB3－005】
標高：0．P．-8.100 m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：0．5\％
5.
N
1.
$\begin{array}{lllllll}0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
［RB－SdH－RBB3－010】

## ——水平方向

標高：0．P．－8．100m
波形名：弹性設計用地震動 S d


構造物名：原子炉建屋
減衰定数：1．0\％

【RB－SdH－RBB3－015】

標高：0．P．－8．100m
波形名：弾性設計用地震動 Sd


構造物名：原子炉建屋
減衰定数：1．5\％
新倍

【RB－SdH－RBB3－020】 ——水平方向

標高：0．P．-8.100 m
波形名：弾性設計用地震動 S d


華
装

【RB－SdH－RBB3－025】

## ——水平方向

標高：0．P．－8．100m
波形名：弾性設計用地震動S d


竍
至

【RB－SdH－RBB3－030】
——水平方向

標高：0．P．－8．100m
波形名：弾性設計用地震動S d （40

華
董
減衰定数：3．0\％

［RB－SdH－RBB3－040】 －

標高：0．P．－8．100m
波形名：弾性設計用地震動 S d （4．0

X
這

【RB－SdH－RBB3－050】
——水平方向

標高：0．P．－8．100m
波形名：弾性設計用地震動S d


羙
装


構造物名：原子炉建屋
標高：0．P． 48.725 m
波形名：弾性設計用地震動 S d

減衰定数：1． $0 \%$
10． 0
込
電
【RB－SdV－RB5－015】 ——鉛直方向
標高：0．P．48．725m
 （10．0
固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．5\％
妞
至

減衰定数：2． $0 \%$
波形名：弾性設計用地震動 Sd
Y
至

[^7]
【RB－SdV－RB5－030】

構造物名：原子炉建屋

[^8]

減衰定数：5． $0 \%$
5.
\％
至
【RB－SdV－RB4－005】 ——鉛直方向
【RB－SdV－RB4－010】
——鉛直方向
標高：0．P．41．200m
波形名：弾性設計用地震動S d （10．0）
固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1． $0 \%$
華
至
【RB－SdV－RB4－015】

標高：0．P．41．200m
波形名：弹性設計用地震動 $\operatorname{Sd}$
固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．5\％
至
【RB－SdV－RB4－020】
——鉛直方向

固 有 周 期（s）
構造物名：原子炉建屋
波形名：弾性設計用地震動S d
減衰定数：2．0\％
標高：0．P．41．200m
【RB－SdV－RB4－025】
——鉛直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動S d
固
【RB－SdV－RB4－030】


減衰定数：3． $0 \%$
5.0
【RB－SdV－RB4－050】
——鉛直方向

構造物名：原子炬建屋
波形名：弹性設計用地震動 Sd
減衰定数：5． $0 \%$
5.0
標高：0．P．41．200m
【RB－SdV－RB3－005】
——鉛直方向
標高：0．P．33．200m
波形名：弾性設計用地震動 Sd

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：0．5\％
非
至
【RB－SdV－RB3－010】 ——鉛直方向
【RB－SdV－RB3－015】
——鉛直方向
標高：0．P．33．200m
波形名：弾性設計用地震動S d （10．0）
固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．5\％
至
【RB－SdV－RB3－020】 ——鉛直方向
標高：0．P．33．200m
波形名：弹性設計用地震動 S d

構造物名：原子炉建屋
減衰定数：2． $0 \%$
－
盗


構造物名：原子炉建屋
標高：0．P．33．200m
波形名：弾性設計用地震動S d

減衰定数： $2.5 \%$
5
$\cdots$
$\sim$

沗
【RB－SdV－RB3－030】
——鉛直方向 2．0
構造物名：原子炉建屋
波形名：弾性設計用地震動S d
減衰定数：3． $0 \%$
標高：0．P．33．200m
【RB－SdV－RB3－050】
——鋁直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動S d
減衰定数：5． $0 \%$
5.0
標高：0．P．33．200m
波形名：弹性設計用地辰動S屋
【RB－SdV－RB2－005】 ——鉛直方向
標高：0．P．22．500m
波形名：弾性設計用地震動S d

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：0．5\％
X
㝻
標高：0．P．22．500m
波形名：弹性設計用地震動 S d （10．0
構造物名：原子炉建屋
減衰定数：1．\％\％
屰
霊
固 有 周 期（s）
【RB－SdV－RB2－015】
——鉛直方向
標高：0．P． 22.500 m
波形名：弾性設計用地震動S d

構造物名：原子炉建屋
減衰定数：1．5\％
固 有 周 期（s）

減衰定数：2． $0 \%$
5.
－
董


構造物名：原子炉建屋
標高：0．P．22．500m
波形名：弾性設計用地震動 S d

減衰定数：2．5\％


構造物名：原子炉建屋
標高：0．P．22．500m
波形名：弾性設計用地震動 S d

減衰定数：3． $0 \%$
5
x
凅
【RB－SdV－RB2－050】
——鉛直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動 Sd
減衰定数：5． $0 \%$
標高：0．P． 22.500 m
5.
【RB－SdV－RB1－005】
——鉛直方向
標高：0．P． 15.000 m
波形名：弾性設計用地震動 Sd

構造物名：原子炉建屋
減衰定数：0．5\％
希
至
固 有 周 期（s）
標高：0．P．15．000m
波形名：弹性設計用地震動 S d

減衰定数：1． $0 \%$
5.
X
全
【RB－SdV－RB1－015】
——鉛直方向
標高：0．P．15．000m
波形名：弾性設計用地震動S d

構造物名：原子炉建屋
減衰定数：1．5\％
5.0
X
盗
【RB－SdV－RB1－020】
——鉛直方向
標高：0．P．15．000m
波形名：弾性設計用地震動S d 0．0
構造物名：原子炉建屋
減衰定数：2． $0 \%$
－
盗
【RB－SdV－RB1－025】
——鉛直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動 Sd
減衰定数：2．5\％
標高：0．P．15．000m
5.
【RB－SdV－RB1－030】
——鉛直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動 Sd
減衰定数： $3.0 \%$
標高：0．P．15．000m
5.
【RB－SdV－RB1－050】
——鉛直方向

構造物名：原子炉建屋
波形名：弾性設計用地震動 $S$ d
減衰定数：5． $0 \%$
標高：0．P．15．000m
波形名：弾性設計用地震動S 5.
【RB－SdV－RBB1－005】標高：0．P． 6.000 m
波形名：弹性設計用地震動 S d構造物名：原子炉建屋
減衰定数：0．5\％

固 有 周 期（s）
【RB－SdV－RBB1－010】標高：O．P． 6.000 m
波形名：弾性設計用地震動 S d
減衰定数：1． $0 \%$

［RB－SdV－RBB1－015】

$$
\begin{aligned}
& \text { 標高: 0.P. } 6.000 \mathrm{~m} \\
& \text { 波形名: 弾性設計用地震動 S d }
\end{aligned}
$$ （4．0

童
【RB－SdV－RBB1－020】標高：0．P． 6.000 m
波形名：弾性設計用地震動 S d構造物名：原子炉建屋
減衰定数：2．0\％

【RB－SdV－RBB1－025】

$$
\begin{aligned}
& \text { 標高: 0.P. } 6.000 \mathrm{~m} \\
& \text { 波形名: 弾性設計用地震動 S d }
\end{aligned}
$$ 0．0

減衰定数： $2.5 \%$
X
這
【RB－SdV－RBB1－030】標高：0．P． 6.000 m
波形名：弹性設計用地震動 S d （100
構造物名：原子炉建屋
減衰定数：3．0\％
【RB－SdV－RBB1－050】標高： $0 . \mathrm{P} .6 .000 \mathrm{~m}$
波形名：弹性設計用地震動 S d （100
構造物名：原子炉建屋減衰定数 ：5． $0 \%$
路
盖
装
【RB－SdV－RBB2－005】
——鉛直方向
標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d 5.0
1.0
0.0
減衰定数：0．5\％
－
童
［RB－SdV－RBB2－010】
——鉛直方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d

構造物名：原子炉建屋
減衰定数：1． $0 \%$


固 有 周 期（s）
［RB－SdV－RBB2－015】
——鉛直方向
標高：0．P．-0.800 m
 3．0
減衰定数：1．5\％

㶾

【RB－SdV－RBB2－020】
——鉛直方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d 2．0

X
资

構造物名：原子炉建屋
減衰定数：2． $0 \%$

【RB－SdV－RBB2－025】 ——鉿直方向 （40．0
構造物名：原子炉建屋標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d
減衰定数： $2.5 \%$

【RB－SdV－RBB2－030】
——鉛直方向

標高：0．P．-0.800 m
波形名：弾性設計用地震動 S d

構造物名：原子炉建屋
減衰定数：3．0\％


固 有 周 期（s）
【RB－SdV－RBB2－050】
$-$
標高：0．P．-0.800 m
波形名：弾性設計用地震動S d （4．0
減衰定数：5． $0 \%$
澕
童
【RB－SdV－RBB3－005】
——鉛直方向
標高：0．P．－8．100m
波形名：弾性設計用地震動S d

減衰定数：0． $5 \%$

童
標高：0．P．－8．100m
波形名：弹性設計用地震動 d 2．0
減衰定数：1． $0 \%$

電
［RB－SdV－RBB3－015】
——鉛直方向
標高：0．P．－8．100m
 3．0
減衰定数：1．5\％

㮸
【RB－SdV－RBB3－020】
——鉛直方向
標高：0．P．－8．100m
波形名：弾性設計用地震動 S d
構造物名：原子炉建屋
減衰定数：2． $0 \%$
减空处数：2．0\％

【RB－SdV－RBB3－025】
——鉛直方向
標高：0．P．－8．100m
波形名：弾性設計用地震動 S d

減衰定数：2．5\％

蜼道
【RB－SdV－RBB3－030】
——鉛直方向
標高：0．P．－8．100m
波形名：弹性設計用地震動 d （40
減衰定数：3． $0 \%$
爻
這
【RB－SdV－RBB3－050】
——鉛直方向
標高：0．P．－8．100m
波形名：弹性設計用地震動S d （4．0
減衰定数：5． $0 \%$
单
觻

$$
4
$$

表 4－2－2（1）設計用床応答曲線一覧表（S d，制御建屋：水平方向）（ $1 / 2$ ）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S d	制御   建屋	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	NS 方向   1，9， 10   EW 方向   1，9， 10	29． 150	0.5	CB－SdH－CB4－005
					1.0	CB－SdH－CB4－010
					1.5	CB－SdH－CB4－015
					2.0	CB－SdH－CB4－020
					2.5	CB－SdH－CB4－025
					3.0	CB－SdH－CB4－030
					4.0	CB－SdH－CB4－040
					5.0	CB－SdH－CB4－050
			NS 方向   2，11   EW 方向   2， 11	22.950	0.5	CB－SdH－CB3－005
					1.0	CB－SdH－CB3－010
					1.5	CB－SdH－CB3－015
					2.0	CB－SdH－CB3－020
					2.5	CB－SdH－CB3－025
					3.0	CB－SdH－CB3－030
					4.0	CB－SdH－CB3－040
					5.0	CB－SdH－CB3－050
			NS 方向   3， 12   EW 方向   3， 12	19.500	0.5	CB－SdH－CB2－005
					1.0	CB－SdH－CB2－010
					1.5	CB－SdH－CB2－015
					2.0	CB－SdH－CB2－020
					2.5	CB－SdH－CB2－025
					3.0	CB－SdH－CB2－030
					4.0	CB－SdH－CB2－040
					5.0	CB－SdH－CB2－050
			NS 方向   4， 13   EW 方向   4， 13	15.000	0.5	CB－SdH－CB1－005
					1.0	CB－SdH－CB1－010
					1.5	CB－SdH－CB1－015
					2.0	CB－SdH－CB1－020
					2.5	CB－SdH－CB1－025
					3.0	CB－SdH－CB1－030
					4.0	CB－SdH－CB1－040
					5.0	CB－SdH－CB1－050

表 4－2－2（1）設計用床応答曲線一覧表（S d，制御建屋：水平方向）（2／2）

地震波	建屋	方向	質点番号	標高 O．P．（m）	減衰定数（\％）	図番
	制御建屋	水平   方向	NS 方向 $5,14$   EW 方向 $5,14$	8． 000	0.5	CB－SdH－CBB1－005
					1． 0	CB－SdH－CBB1－010
					1.5	CB－SdH－CBB1－015
					2.0	CB－SdH－CBB1－020
					2.5	CB－SdH－CBB1－025
					3.0	CB－SdH－CBB1－030
					4.0	CB－SdH－CBB1－040
					5.0	CB－SdH－CBB1－050
S					0.5	CB－SdH－CBB2－005
					1.0	CB－SdH－CBB2－010
					1.5	CB－SdH－CBB2－015
$\bigcirc$					2.0	CB－SdH－CBB2－020
$\square$				1.5	2.5	CB－SdH－CBB2－025
$\stackrel{1}{1}$			EW分向		3.0	CB－SdH－CBB2－030
$\stackrel{1}{1}$					4.0	CB－SdH－CBB2－040
，					5.0	CB－SdH－CBB2－050

表 4－2－2（2）設計用床応答曲線一覧表（S d，制御建屋：鉛直方向）（ $1 / 2$ ）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S d	制御   建屋	$\begin{aligned} & \text { 鉛直 } \\ & \text { 方向 } \end{aligned}$	1	29． 150	0.5	CB－SdV－CB4－005
					1.0	CB－SdV－CB4－010
					1.5	CB－SdV－CB4－015
					2.0	CB－SdV－CB4－020
					2.5	CB－SdV－CB4－025
					3.0	CB－SdV－CB4－030
					5.0	CB－SdV－CB4－050
			2	22.950	0.5	CB－SdV－CB3－005
					1.0	CB－SdV－CB3－010
					1.5	CB－SdV－CB3－015
					2.0	CB－SdV－CB3－020
					2.5	CB－SdV－CB3－025
					3.0	CB－SdV－CB3－030
					5.0	CB－SdV－CB3－050
			3	19． 500	0.5	CB－SdV－CB2－005
					1.0	CB－SdV－CB2－010
					1.5	CB－SdV－CB2－015
					2.0	CB－SdV－CB2－020
					2.5	CB－SdV－CB2－025
					3.0	CB－SdV－CB2－030
					5.0	CB－SdV－CB2－050
			4	15． 000	0.5	CB－SdV－CB1－005
					1.0	CB－SdV－CB1－010
					1.5	CB－SdV－CB1－015
					2.0	CB－SdV－CB1－020
					2.5	CB－SdV－CB1－025
					3.0	CB－SdV－CB1－030
					5.0	CB－SdV－CB1－050

表 4－2－2（2）設計用床応答曲線一覧表（S d，制御建屋：鉛直方向）（2／2）

地震波	建屋	方向	質点番号	標高 O．P．（m）	減衰定数（\％）	図番
	制御   建屋	鉛直   方向	5	8.000	0.5	CB－SdV－CBB1－005
					1.0	CB－SdV－CBB1－010
					1.5	CB－SdV－CBB1－015
					2.0	CB－SdV－CBB1－020
					2.5	CB－SdV－CBB1－025
					3.0	CB－SdV－CBB1－030
S					5.0	CB－SdV－CBB1－050
			6	1． 500	0.5	CB－SdV－CBB2－005
					1.0	CB－SdV－CBB2－010
					1.5	CB－SdV－CBB2－015
					2.0	CB－SdV－CBB2－020
$\bigcirc$					2.5	CB－SdV－CBB2－025
$\stackrel{1}{4}$					3.0	CB－SdV－CBB2－030
$\stackrel{\uparrow}{1}$					5． 0	CB－SdV－CBB2－050

【CB－SdH－CB4－005】
標高：0．P．29．150m
波形名：弾性設計用地震動 Sd

構造物名：制御建屋
減衰定数：0． $5 \%$
標高：0．P． $29.150 \mathrm{~m} \quad$ ——水平方向
 25．0
構造物名：制御建屋
減衰定数：1．0\％

【CB－SdH－CB4－015】
標高：0．P．29．150m

構造物名：制御建屋
減衰定数： $1.5 \%$ 波形名：弹性設計用地震動 S d
標高：0．P．29．150m
 25．0 0 20．0
減衰定数：2．0\％
華
堛
【CB－SdH－CB4－025】水平方向

標高：0．P．29．150m
波形名：弾性設計用地震動 S d

減衰定数：4． $0 \%$
25.
水平方向標高：O．P． 29.150 m析
標高：0．P．29．150m
波形名：弾性設計用地震動 $\mathrm{S} d$

構造物名：制御建屋
減衰定数：5．\％\％
25.固有周期（s）
【CB－SdH－CB3－005】
標高：0．P．22．950m


【CB－SdH－CB3－010】標高：0．P． $22.950 \mathrm{~m} \quad-\quad$ 水平方向
波形名：弾性設計用地震動 S d

構造物名：制御建屋
減衰定数：1． $0 \%$相
【CB－SdH－CB3－015】
標高：0．P．22．950m
波形名：弾性設計用地震動 Sd 25．0 0 200
構造物名：制御建屋
減衰定数：1．5\％
水平方向標高：O．P．22． 950 m
X
堛標高：0．P． $22.950 \mathrm{~m} \quad$ ——水平方向
波形名：弾性設計用地震動 S d 25．0
構造物名：制御建屋
減衰定数：2．0\％波㱛名：
【CB－SdH－CB3－025】
標高：0．P．22．950m


減衰定数： $2.5 \%$
25.
X
童
【CB－SdH－CB3－030】
標高：0．P．22．950m
波形名：弾性設計用地震動 S d

減衰定数：3． $0 \%$
25.
豆
呙
米
前標高：O．P． $22.950 \mathrm{~m} \quad$ —
波形名•弹性双計用地震動S標高：0．P． $22.950 \mathrm{~m} \quad-\quad$ 水平方向


固 有 周 期（s）
構造物名：制御建屋
減衰定数：4． $0 \%$相標高：0．P． 22.950 m
波形名：弹性設計用地震動S d

固 有 周 期（s）
構造物名：制御建屋標高：0．P． 22.950 m
波形名：弹性設計用地震動 S d
減衰定数：5．0\％
水平方向相
【CB－SdH－CB2－005】
標高：0．P．19．500m
波形名：弾性設計用地震動S d

構造物名：制御建屋
減衰定数：0．5\％
25.
X
㝻

減衰定数：1．0\％
25.

眰

減衰定数：1．5\％
25.
水平方向標高：O．P． 19.500 m相

減衰定数：2． $0 \%$
25.
品
芽
菏標高：O．P． 19.500 m
波形名•弾性双計用地震動


減衰定数：2．5\％
25.水平方向

固 有 周 期（s）
構造物名：制御建屋
減衰定数：3． $0 \%$
波形名：弾性設計用地震動 Sd

標高：0．P．19．500m
波形名：弾性設計用地震動 S d
構造物名：制御建屋
減衰定数：4． $0 \%$
固 有 周 期（s）
【CB－SdH－CB2－050】標高：0．P． $19.500 \mathrm{~m} \quad$ ——水平方向
波形名：弾性設計用地震動 Sd

固 有 周 期（s）
構造物名：制御建屋
減衰定数：5． $0 \%$
济
至
【CB－SdH－CB1－005】
波形名：弾性設計用地震動 S d

構造物名：制御建屋
減衰定数：0．5\％

標高：0．P．15．000m
波形名：弾性設計用地震動 Sd

構造物名：制御建屋
減衰定数：1．0\％

固 有 周 期 (s)
【CB－SdH－CB1－015】
標高：0．P． 15.000 m
波形名：弾性設計用地震動 S d物
構造物名：制御建屋
減衰定数：1．5\％固 有 周 期（s）
標高：0．P．15．000m

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．0\％
波形名：弾性設計用地震動S d
竍
至
標高：0．P．15．000m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
標高：0．P．15．000m

波形名：弾性設計用地震動 S d
固 有 周 期（s）
構造物名：制御建屋
減衰定数：3． $0 \%$
標高：0．P．15．000m
波形名：弾性設計用地震動 S d

【CB－SdH－CB1－050】
標高：0．P． 15.000 m


8．0

【CB－SdH－CBB1－005】
——水平方向

標高：0．P．8．000m
波形名：弹性設計用地震動 S d

華 童
構造物名：制御建屋
減衰定数：0． $5 \%$


【CB－SdH－CBB1－010】

固 有 周 期（s）

構造物名：制御建屋
減衰定数：1．0\％
肴
资
【CB－SdH－CBB1－015】
——水平方向
標高：0．P．8．000m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．5\％

【CB－SdH－CBB1－020】
——水平方向


命
至

標高：0．P． 8.000 m
波形名：弾性設計用地震動S d

構造物名：制御建屋
減衰定数：2．0\％
【CB－SdH－CBB1－025】
——水平方向
標高：0．P．8．000m


固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．5\％

【CB－SdH－CBB1－030】

標高：0．P． 8.000 m
波形名：弾性設計用地震動 S d


固 有 周 期（s）

構造物名：制御建屋
減衰定数：3． $0 \%$

【CB－SdH－CBB1－040】
——水平方向

標高：0．P．8．000m
波形名：弾性設計用地震動 S d


構造物名：制御建屋
減衰定数：4． $0 \%$
5
4
๑
，
1.
$\begin{array}{llll}0.70 & 0.80 & 0.90 & 1.00\end{array}$

固 有 周 期（s）

【CB－SdH－CBB1－050】
——水平方向

標高：0．P．8．000m
波形名：弾性設計用地震動 S d


X
這
減衰定数：5． $0 \%$
5.0
4.
1.
$\begin{array}{lllllll}0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$

【CB－SdH－CBB2－005】



固 有 周 期（s）

構造物名：制御建屋
減衰定数：0． $5 \%$
5

خ
童

【CB－SdH－CBB2－010】
——水平方向

標高：0．P． 1.500 m
波形名：弾性設計用地震動 Sd 2．0

固 有 周 期（s）

構造物名：制御建屋
減衰定数：1．0\％
㯰
【CB－SdH－CBB2－015】
——水平方向
標高：0．P．1．500m
波形名：弾性設計用地震動 S d

固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．5\％

【CB－SdH－CBB2－020】
——水平方向

標高：0．P． 1.500 m

## 波

 2．0
減衰定数：2． $0 \%$
至
【CB－SdH－CBB2－025】
——水平方向

【CB－SdH－CBB2－030】
——水平方向

標高：0．P． 1.500 m
波形名：弾性設計用地震動S d 5.0固 有 周 期（s）

構造物名：制御建屋
減衰定数：3．0\％
竞

【CB－SdH－CBB2－040】
——水平方向

標高：0．P．1．500m
波形名：弾性設計用地震動 S d 2．0固 有 周 期（s）

構造物名：制御建屋
減衰定数：4． $0 \%$
和喵
【CB－SdH－CBB2－050】
——水平方向
【CB－SdV－CB4－005】


減衰定数：0． $5 \%$
25.
20.
保说
【CB－SdV－CB4－010】


減衰定数：1．0\％
25.
20.
10.
10
1.00
【CB－SdV－CB4－015】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．5\％
【CB－SdV－CB4－020】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．0\％
【CB－SdV－CB4－025】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．5\％

【CB－SdV－CB4－030】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：3． $0 \%$
【CB-SdV-CB4-050】

【CB－SdV－CB3－005】
減衰定数：0．5\％

$$
\begin{array}{ll}
\text { 標高: 0.P. 22.950m } & \\
\text { 波形名: 弾性設計用地震動 S d }
\end{array}
$$


【CB－SdV－CB3－010】
標高：0．P．22．950m
波形名：弹性設計用地震動 Sd （10．0
構造物名：制御建屋
減衰定数：1．0\％標高：0．P．22．950m
【CB－SdV－CB3－015】
減衰定数：1．5\％

$$
\begin{aligned}
& \text { 標高: 0. P. } 22.950 \mathrm{~m} \\
& \text { 波形名: 弾性設計用地震動 } \mathrm{Sd}
\end{aligned}
$$


【CB－SdV－CB3－020】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2． $0 \%$
【CB－SdV－CB3－025】標高：0．P． $22.950 \mathrm{~m} \quad$ ——鉛直方向
波形名：弾性設計用地震動 S d

減衰定数：2．5\％波㱛名：
【CB－SdV－CB3－030】

構造物名：制御建屋 1
0
減衰定数：3．0\％
【CB－SdV－CB3－050】

構造物名：制御建屋
減衰定数：5． $0 \%$

【CB－SdV－CB2－005】

標高：0．P．19．500m
波形名：弾性設計用地震動S d

減衰定数：0．5\％
资
【CB－SdV－CB2－010】
 ［8：
固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．0\％
X
资
【CB－SdV－CB2－015】

$\begin{array}{cccc}0.40 & 0.50 & 0.60 \\ \text { 固有周 期（s）}\end{array}$
構造物名：制御建屋

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．0\％

減衰定数：2．5\％
X
至
【CB－SdV－CB2－030】
 （1）
固 有 周 期（s）
構造物名：制御建屋
減衰定数：3．0\％
X
至
【CB-SdV-CB2-050】

【CB－SdV－CB1－005】

固 有 周 期（s）
構造物名：制御建屋
減衰定数： $0.5 \%$
【CB－SdV－CB1－010】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．0\％
【CB－SdV－CB1－015】

構造物名：制御建屋
固 有 周 期 (s)
【CB－SdV－CB1－020】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．0\％
【CB－SdV－CB1－025】

標高：0．P．15．000m
波形名：弾性設計用地震動S d

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．5\％
【CB－SdV－CB1－030】


構造物名：制御建屋
減衰定数：3． $0 \%$
【CB－SdV－CB1－050】
標高：0．P．15．000m
波形名：弾性設計用地震動 S d
構造物名：制御建屋
減衰定数：5． $0 \%$

【CB－SdV－CBB1－005】
——鉛直方向
標高：0．P．8．000m
波形名：弾性設計用地震動 S d 8．0
固 有 周 期（s）
構造物名：制御建屋
減衰定数：0． $5 \%$
X
䙵
【CB－SdV－CBB1－010】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：1． $0 \%$
【CB－SdV－CBB1－015】
標高：0．P．8．000m
波形名：弾性設計用地震動 S d

減衰定数：1．5\％
【CB－SdV－CBB1－020】
——鉛直方向
標高：0．P．8．000m


減衰定数：2． $0 \%$
【CB－SdV－CBB1－025】


減衰定数：2．5\％
【CB－SdV－CBB1－030】


減衰定数：3． $0 \%$
【CB－SdV－CBB1－050】
——鉛直方向
標高：0．P．8．000m
波形名：弾性設計用地震動 S d

減衰定数：5． $0 \%$

空
【CB－SdV－CBB2－005】
——鉛直方向
標高：0．P． 1.500 m
波形名：弾性設計用地震動 Sd

固 有 周 期（s）
構造物名：制御建屋
減衰定数：0．5\％
華
至
【CB－SdV－CBB2－010】
——鉛直方向
標高：0．P．1．500m
波形名：弾性設計用地震動 S d

減衰定数：1．0\％
脿
【CB－SdV－CBB2－015】
——鉛直方向
標高：0．P． 1.500 m
波形名：弾性設計用地震動 S d

減衰定数：1．5\％
雍

【CB－SdV－CBB2－020】
——鉛直方向

標高：0．P． 1.500 m


溝造物名：制御建屋
減衰定数：2． $0 \%$
【CB－SdV－CBB2－025】
——鉛直方向

【CB－SdV－CBB2－030】
——鉛直方向

標高：0．P． 1.500 m
波形名：弾性設計用地震動 Sd

溝造物名：制御建屋
減衰定数：3．0\％


減衰定数：5．\％
表 4－3－1 原子炉建屋の基準地震動 S s に対する設計用最大応答加速度

構造物名	質点番号		$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度   $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$	
	水平	鉛直		水平	鉛直	水平	鉛直
原子炉   建屋	$\begin{aligned} & \text { NS: 6, } 18 \\ & \text { EW: } 10,20 \end{aligned}$	4	水平 50.500   鉛直 48.725	6.07	1． 74	7． 28	2． 09
	NS：7， 19   EW：11， 21	5	41． 200	2． 86	1． 58	3.43	1． 89
	$\begin{aligned} & \text { NS: } 1,8,13,20,25 \\ & \text { EW: } 1,12,15,22,27 \end{aligned}$	6	33． 200	2． 21	1． 47	2.65	1.77
	$\begin{gathered} \text { NS: } 2,9,14,21,26 \\ \text { EW:2, 6, 13, 16, 23, } 28 \end{gathered}$	7	22． 500	1． 77	1． 30	2.12	1.56
	$\begin{gathered} \text { NS: } 3,10,15,22,27 \\ \text { EW:3, } 7,14,17,24,29 \end{gathered}$	8	15.000	1.65	1． 15	1.97	1．37
	$\begin{aligned} & \text { NS: } 4,11,16,23,28 \\ & \text { EW:4, 8, 18, 25, } 30 \end{aligned}$	9	6． 000	1． 31	0.91	1.57	1． 09
	NS：5，12，24， 29   EW：5，9，26， 31	10	－0． 800	1.11	0.73	1． 34	0.88
	$\begin{aligned} & \text { NS: } 30 \\ & \text { EW: } 32 \end{aligned}$	11	－8． 100	0． 82	0.57	0.99	0.69

表 4－3－2 制御建屋の基準地震動 S s に対する設計用最大応答加速度

構造物名	質点番号		$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	最大応答加速度$\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.0$		最大応答加速度 $\left(\times 9.80665 \mathrm{~m} / \mathrm{s}^{2}\right) \times 1.2$	
	水平	鉛直		水平	鉛直	水平	鉛直
制御   建屋	1，9， 10	1	29． 150	3.37	1． 91	4.05	2． 29
	2， 11	2	22． 950	2.32	1． 67	2.78	2． 00
	3， 12	3	19． 500	1． 90	1． 44	2.28	1． 73
	4， 13	4	15． 000	1． 87	1． 16	2.25	1． 39
	5， 14	5	8． 000	1． 62	0． 84	1.95	1.01
	6	6	1． 500	1.13	0.66	1.35	0． 79

表 4－4－1（1）設計用床応答曲線一覧表（S s，原子炉建屋：水平方向）（1／2）


表 4－4－1（1）設計用床応答曲線一覧表（S s，原子炉建屋：水平方向）（2／2）


表 4－4－1（2）設計用床応答曲線一覧表（S s，原子炉建屋：鉛直方向）（1／2）


表 4－4－1（2）設計用床応答曲線一覧表（S s ，原子炉建屋 ：鉛直方向）（2／2）


【RB－SsH－RB5－005】


[^9]

固 有 周 期（s）
標高：0．P．50．500m
波形名：基準地震動 S s


構造物名：原子炉建屋
減衰定数：1． $0 \%$
100.0

亩
新道

$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \text { ———水平方向 } \\ \text { 減衰定数 ：} 2.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s} & \end{array}$
$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \text { ———水平方向 } \\ \text { 減衰定数 ：} 2.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s} & \end{array}$

標高：0．P． 50.500 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：2．5\％
50.0
華
沗
標高：0．P． 50.500 m
波形名：基準地震動 S s構造物名：原子炉建屋
減衰定数： $3.0 \%$

$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \\ \text { 減衰定数：} 4.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s} & \text { 水平方向 }\end{array}$
$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \\ \text { 減衰定数：} 4.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s} & \text { 水平方向 }\end{array}$

$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \\ \text { 減衰定数：} 4.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s} & \text { 水平方向 }\end{array}$
$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \text { ———水平方向 } \\ \text { 減衰定数 }: 5.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s}\end{array}$
$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \text { ———水平方向 } \\ \text { 減衰定数 }: 5.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s}\end{array}$

$\begin{array}{lll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 50.500 \mathrm{~m} & \text { ———水平方向 } \\ \text { 減衰定数 }: 5.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s}\end{array}$

標高：0．P．41．200m
波形名：基準地震動 S s 30.0
構造物名：原子炉建屋
減衰定数：1．0\％
－
授

構造物名：原子炉建屋
減衰定数： $1.5 \%$ 波形名：基準地震動 s
固 有 周 期（s）


[^10]25． 0





構造物名：原子炉建屋
減衰定数： $0.5 \%$ 波形名：基準地震動 S s

固 有 周 期（s）


[^11]固 有 周 期（s）
標高：0．P．33．200m
波形名：基準地震動 S s

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．5\％
25.
辣
至



$$
\mathrm{O} 2 \quad \text { (3) } \quad \mathrm{VI}-2-1-7 \quad \mathrm{R} 0
$$
【RB－SsH－RB3－040】
——水平方向

【RB－SsH－RB3－050】

標高：0．P． 33.200 m
波形名：基準地震動S s
構造物名：原子炉建屋
減衰定数：5． $0 \%$

固 有 周 期（s）


[^12]波形名 ：基準地辰動
固 有 周 期（s）




\[

$$
\begin{array}{llll}
\mathrm{O} 2 & \text { (3) VI-2-1-7 } & \mathrm{R} & 0
\end{array}
$$
\]

【RB－SsH－RB2－030】 ——水平方向

標高：0．P．22．500m
波形名：基準地震動S s

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：4． $0 \%$
前
装

減衰定数：5． $0 \%$
波形名：基準地震動 S s 10
標高：0．P． 22.500 m
娍定定数

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：10．0\％
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数： $0.5 \%$ 波形名：基準地震動 S s
固 有 周 期（s）
構造物名：原子炉建屋
減衰定数：1．0\％
25.0
標高：0．P．15．000m
波形名：基準地震動 S s

翟




構造物名：原子炉建屋
減衰定数： $2.5 \%$
波形名：基準地震動S s章


[^13]脿
固 有 周 期（s）


[^14]

単


[^15]固 有 周 期（s）

減衰定数： $10.0 \%$

【RB－SsH－RBB1－005】 ——水平方向標高：0．P． 6.000 m
波形名：基準地震動S s構造物名：原子炉建屋
減衰定数： $0.5 \%$

［RB－SsH－RBB1－010】
——水平方向標高：0．P． 6.000 m
波形名：基準地震動 S s波形名：基準地震動S s

【RB－SsH－RBB1－015】
——水平方向

固 有 周 期（s）
構造物名：原子炉建屋
標高：0．P． 6.000 m
波形名：基準地震動 S s
減衰定数：1．5\％
竎 票
【RB－SsH－RBB1－020】
——水平方向

$$
\begin{array}{ll}
\text { 構造物名: 原子炬建屋 } & \text { 標高: 0.P. } 6.000 \mathrm{~m} \\
\text { 減衰定数: } 2.0 \% & \text { 波形名: 基準地震動 S s }
\end{array}
$$


固 有 周 期（s）

【RB－SsH－RBB1－025】



苗
至

構造物名：原子炉建屋
標高：0．P．6．000m
波形名：基準地震動 S s

減衰定数： $2.5 \%$
10． 0
8

【RB－SsH－RBB1－030】
——水平方向

[^16]

固 有 周 期（s）

10． 0
喕

【RB－SsH－RBB1－040】
——水平方向

標高：0．P． 6.000 m
波形名：基準地震動 S s


固 有 周 期（s）

構造物名：原子炉建屋
減衰定数： $4.0 \%$
【RB－SsH－RBB1－050】
——水平方向

構造物名：原子炉建屋
波形名：基準地震動 S s
標高：0．P． 6.000 m
減衰定数：5．0\％


【RB－SsH－RBB2－010】 $\begin{array}{ll}\text { 標高：0．P．}-0.800 \mathrm{~m} & \\ \text { 波形名：基準地震動 S s }\end{array}$


構造物名：原子炉建屋
減衰定数：1．0\％
\＃X
単
［RB－SsH－RBB2－015】

## ——水平方向

標高：0．P．-0.800 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：1．5\％


固 有 周 期（s）

【RB－SsH－RBB2－020】

## ——水平方向

標高：0．P．-0.800 m
波形名：基準地震動S s

構造物名：原子炉建屋
減衰定数：2． $0 \%$


固 有 周 期（s）

【RB－SsH－RBB2－025】

## ——水平方向

標高：0．P．-0.800 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数： $2.5 \%$


電

固 有 周 期（s）

【RB－SsH－RBB2－030】標高：0．P．-0.800 m
波形名：基準地震動 S s


減衰定数：3．0\％
5.
$\begin{array}{lllllllllll}0.00 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$

【RB－SsH－RBB2－040】
——水平方向

標高：0．P．-0.800 m
波形名：基準地震動S s
波形名：基準地震動S


固 有 周 期（s）

構造物名：原子炉建屋
減衰定数：4．0\％

【RB－SsH－RBB2－050】
——水平方向


竍
至
構造物名：原子炉建屋
標高：0．P．-0.800 m
波形名：基準地震動 S s
5.0

減衰定数：5． $0 \%$
固 有 周 期（s）


【RB－SsH－RBB3－005】

## ——水平方向

標高：0．P．-8.100 m波形名：基準地震動S s

華 凅

構造物名：原子炉建屋
減衰定数：0．5\％颇形名：基淮地震動

固 有 周 期（s）

【RB－SsH－RBB3－010】


x
童
構造物名：原子炉建屋
減衰定数：1． $0 \%$
5

。
固 有 周 期（s）
【RB－SsH－RBB3－015】
——水平方向

構造物名：原子炉建屋
波形名：基準地震動 S s
標高：0．P．-8.100 m
減衰定数：

【RB－SsH－RBB3－020】

## ——水平方向

標高：0．P．-8.100 m
波形名：基準地震動 S s


羙
至
減衰定数：2．0\％
5.
$\infty$
1.
$0.80 \quad 0.90 \quad 1.00$
$0.60 \quad 0.70$
资

構造物名：原子炉建屋
減衰定数：2．5\％

【RB－SsH－RBB3－025】

## ——水平方向 <br> 

標高：0．P．-8.100 m
波形名：基準地震動 S s

$\qquad$

［RB－SsH－RBB3－030】

## ——水平方向

標高：0．P．-8.100 m
波形名：基準地震動 S s


華
這
減衰定数：3． $0 \%$
5.

4


込
種

減衰定数：4． $0 \%$
構造物名：原子炉建屋
造物名：原子屋屋

## 減钲定数： 4

【RB－SsH－RBB3－040】
——水平方向

標高：0．P．-8.100 m
波形名：基準地震動S s


固 有 周 期（s）
［RB－Ssi－RBB3－050】
——水平方向

標高：0．P．-8.100 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：5．0\％
減钲定数：5．


固 有 周 期（s）





[^17]舀
【RB－SsV－RB5－025】 ——鉛直方向

$\begin{array}{ll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．} 48.725 \mathrm{~m} \\ \text { 減衰定数：} 3.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \text { s }\end{array}$
波形名：基準地震動 S S

減衰定数：3． $0 \%$
10． 0
资
標高： 0. P． 48.725 m
波形名：基準地震動S s （

$$
\begin{aligned}
& \text { 構造物名: 原子炉建屋 } \\
& \text { 減衰定数: 5. } 0 \%
\end{aligned}
$$


【RB－SsV－RB4－010】



【RB－SsV－RB4－015】

[^18]10． 0
$\times$
希
疽

減衰定数：2．0\％
竍
至

10． 0
新
至
【RB－SsV－RB4－030】
——鉛直方向
標高：0．P． 41.200 m
波形名：基準地震動 S s
構造物名：原子炉建屋
減衰定数：3．0\％

【RB－SsV－RB4－050】
——鉿直方向

構造物名：原子炉建屋
減衰定数：0．5\％
波形名：基準地震動 S s
25． 0
標高：0．P．33．200m
標高：0．P． 33.200 m
波形名：基準地震動S s

【RB－SsV－RB3－015】
——鉛直方向
標高：0．P． 33.200 m
波形名：基準地震動S s
構造物名：原子炉建屋
減衰定数： $1.5 \%$



[^19]童
【RB－SsV－RB3－025】
——鉛直方向


[^20]希
童


[^21]単
【RB－SsV－RB2－005】
——鉛直方向


【RB－SsV－RB2－010】
——鉛直方向

標高：0．P． 22.500 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：1．0\％


固 有 周 期（s）
【RB－SsV－RB2－015】
——鉛直方向
固 有 周 期（s）
波形名：基準地震動S s

構造物名：原子炉建屋
減衰定数：1．5\％
標高：0．P． 22.500 m


[^22]凅

標高：0．P． 22.500 m
波形名：基準地震動 S s
減衰定数: 2. 5\%
減衰定数： $3.0 \%$
波

波形名：基準地震動 S s
標高：0．P．22．500m

減衰定数：5．0\％
波形名：基準地震動S s
標高：0．P．22．500m
i
路 1
【RB－SsV－RB1－005】 ——鉛直方向

【RB－SsV－RB1－010】

## ——鉛直方向

標高：0．P． 15.000 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：1．0\％


固 有 周 期（s）
【RB－SsV－RB1－015】 ——鉛直方向


[^23]10． 0
雍
【RB-SsV-RB1-025】



[^24]X
䙵
【RB－SsV－RB1－050】
【RB－SsV－RBB1－005】
——鉛直方向
標高：0．P． 6.000 m
波形名：基準地震動

固 有 周 期（s）
構造物名：原子炉建屋
減衰定数： $0.5 \%$ 波形名：基準地震動 S s
波形名：其場動
X
授
［RB－SsV－RBB1－010】
$-$

標高：0．P． 6.000 m
波形名：基準地震動 S s 8．0．0
－
㶾
構造物名：原子炉建屋
減衰定数：1． $0 \%$

【RB－SsV－RBB1－015】 ——鉛直方向

標高：0．P． 6.000 m
波形名：基準地震動S s
波形名：基準地震動 S

構造物名：原子炉建屋
減衰定数：1．5\％

【RB－SsV－RBB1－020】
——鉛直方向


標高：0．P． 6.000 m
波形名：基準地震動 S s

辛
至
固 有 周 期（s）

構造物名：原子炉建屋
減衰定数：2．0\％
5.
【RB－SsV－RBB1－025】
——鉛直方向

構造物名：原子炉建屋
波形名：基準地震動S s
固 有
［RB－SsV－RBB1－030】
－

標高：0．P．6．000m
波形名：基準地震動 S s 5.0
0.0
0.0

亩
単
減衰定数：3． $0 \%$
－
$0.40-0.50-0.60-0.70-0.80-0.90-1.00$
【RB－SsV－RBB1－050】
——鉿直方向

構造物名：原子炉建屋
波形名：基準地震動S s
標高：0．P． 6.000 m
減衰定数：5．\％
5.

【RB－SsV－RBB2－005】 ——鉛直方向

標高：0．P．-0.800 m
波形名：基準地震動S s 2．0
0.0
0.0
0.0

新
崣

構造物名：原子炉建屋
減衰定数：0．5\％
［RB－SsV－RBB2－010】 $-$

標高：0．P．-0.800 m
波形名：基準地震動 S s


畄
電
減衰定数：1． $0 \%$
5.0

4
［RB－SsV－RBB2－015】 ——鉛直方向 3.0

標高：0．P．-0.800 m
波形名：基準地震動 S s

X
童
固 有 周 期（s）

構造物名：原子炉建屋
減衰定数： $1.5 \%$
，

【RB－SsV－RBB2－020】
——鉛直方向

標高：0．P．-0.800 m
波形名：基準地震動S s

構造物名：原子炉建屋
減衰定数：2． $0 \%$

【RB－SsV－RBB2－025】 ——鉛直方向 （
$\begin{array}{ll}\text { 構造物名：原子炉建屋 } & \text { 標高：0．P．}-0.800 \mathrm{~m} \\ \text { 減衰定数：} 2.5 \% & \text { 波形名：基準地震動 } \mathrm{S}\end{array}$
減衰定数：2．5\％
波形名：基準地震動 S S

【RB－SsV－RBB2－030】
——鉛直方向

標高：0．P．-0.800 m
波形名：基準地震動S s

構造物名：原子炉建屋
減衰定数：3． $0 \%$

【RB－SsV－RBB2－050】
——鉛直方向

構造物名：原子炉建屋
波形名：基準地震動 S s
標高：0．P．-0.800 m
波形名：基準地辰動
減衰定数：5． $0 \%$
5.
【RB－SsV－RBB3－005】標高：0．P．-8.100 m
波形名：基準地震動 S s 5.0

構造物名：原子炉建屋
減衰定数：0．5\％
童
［RB－SsV－RBB3－010】
－

標高：0．P．-8.100 m
波形名：基準地震動 S s


X
盗
減衰定数：1． $0 \%$
5.0

4

【RB－SsV－RBB3－015】

## ——鉛直方向

標高：0．P．-8.100 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：1．5\％


畒
咨


【RB－SsV－RBB3－020】
－

標高：0．P．-8.100 m
波形名：基準地震動 S s

構造物名：原子炉建屋
減衰定数：2． $0 \%$


固 有 周 期（s）
【RB－SsV－RBB3－025】 ——鉛直方向

構造物名：原子炉建屋
波形名：基準地震動 S s
標高：0．P．－8．100m
波形名：基準地震動 S
減衰定数：2．5\％


【RB－SsV－RBB3－030】
——鉛直方向

標高：0．P．-8.100 m
波形名：基準地震動 S s 2.0
1.0

華
资
減衰定数：3． $0 \%$

【RB－SsV－RBB3－050】
——鉛直方向

構造物名：原子炉建屋
波形名：基準地震動 S s
減衰定数：5． $0 \%$
標高：0．P．－8．100m
5.

$$
\mathrm{O} 2 \quad \text { (3) } \quad \mathrm{VI}-2-1-7 \quad \mathrm{R} 0
$$

表 4－4－2（1）設計用床応答曲線一覧表（S s，制御建屋：水平方向）（ $1 / 2$ ）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S s	制御   建屋	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	NS 方向   1，9， 10   EW 方向 1，9， 10	29． 150	0.5	CB－SsH－CB4－005
					1.0	CB－SsH－CB4－010
					1.5	CB－SsH－CB4－015
					2.0	CB－SsH－CB4－020
					2.5	CB－SsH－CB4－025
					3.0	CB－SsH－CB4－030
					4.0	CB－SsH－CB4－040
					5.0	CB－SsH－CB4－050
			NS 方向 $2,11$   EW 方向 $2,11$	22.950	0.5	CB－SsH－CB3－005
					1.0	CB－SsH－CB3－010
					1.5	CB－SsH－CB3－015
					2.0	CB－SsH－CB3－020
					2.5	CB－SsH－CB3－025
					3.0	CB－SsH－CB3－030
					4.0	CB－SsH－CB3－040
					5.0	CB－SsH－CB3－050
			NS 方向   3， 12   EW 方向   3， 12	19.500	0.5	CB－SsH－CB2－005
					1.0	CB－SsH－CB2－010
					1.5	CB－SsH－CB2－015
					2.0	CB－SsH－CB2－020
					2.5	CB－SsH－CB2－025
					3.0	CB－SsH－CB2－030
					4.0	CB－SsH－CB2－040
					5.0	CB－SsH－CB2－050
			NS 方向$4,13$	15． 000	0.5	CB－SsH－CB1－005
					1． 0	CB－SsH－CB1－010
					1.5	CB－SsH－CB1－015
					2.0	CB－SsH－CB1－020
					2.5	CB－SsH－CB1－025
			EW 方向$4,13$		3.0	CB－SsH－CB1－030
					4.0	CB－SsH－CB1－040
					5.0	CB－SsH－CB1－050

表 4－4－2（1）設計用床応答曲線一覧表（S s ，制御建屋：水平方向）（2／2）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
					0.5	CB－SsH－CBB1－005
					1.0	CB－SsH－CBB1－010
					1.5	CB－SsH－CBB1－015
					2.0	CB－SsH－CBB1－020
					2.5	CB－SsH－CBB1－025
					3.0	CB－SsH－CBB1－030
					4． 0	CB－SsH－CBB1－040
	制御	水平			5.0	CB－SsH－CBB1－050
	建屋	方向			0.5	CB－SsH－CBB2－005
					1.0	CB－SsH－CBB2－010
					1.5	CB－SsH－CBB2－015
$\bigcirc$					2． 0	CB－SsH－CBB2－020
$\square$				1.500	2.5	CB－SsH－CBB2－025
$\uparrow$					3.0	CB－SsH－CBB2－030
$\stackrel{1}{\sim}$			6		4． 0	CB－SsH－CBB2－040
5					5． 0	CB－SsH－CBB2－050

表 4－4－2（2）設計用床応答曲線一覧表（S s，制御建屋：鉛直方向）（ $1 / 2$ ）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
S s	制御   建屋	鉛直   方向	1	29． 150	0.5	CB－SsV－CB4－005
					1.0	CB－SsV－CB4－010
					1.5	CB－SsV－CB4－015
					2.0	CB－SsV－CB4－020
					2.5	CB－SsV－CB4－025
					3.0	CB－SsV－CB4－030
					5.0	CB－SsV－CB4－050
			2	22．950	0.5	CB－SsV－CB3－005
					1.0	CB－SsV－CB3－010
					1.5	CB－SsV－CB3－015
					2.0	CB－SsV－CB3－020
					2.5	CB－SsV－CB3－025
					3.0	CB－SsV－CB3－030
					5.0	CB－SsV－CB3－050
			3	19． 500	0.5	CB－SsV－CB2－005
					1． 0	CB－SsV－CB2－010
					1.5	CB－SsV－CB2－015
					2.0	CB－SsV－CB2－020
					2.5	CB－SsV－CB2－025
					3.0	CB－SsV－CB2－030
					5.0	CB－SsV－CB2－050
			4	15． 000	0.5	CB－SsV－CB1－005
					1.0	CB－SsV－CB1－010
					1.5	CB－SsV－CB1－015
					2.0	CB－SsV－CB1－020
					2.5	CB－SsV－CB1－025
					3.0	CB－SsV－CB1－030
					5.0	CB－SsV－CB1－050

表 4－4－2（2）設計用床応答曲線一覧表（S s ，制御建屋：鉛直方向）（2／2）

地震波	建屋	方向	質点番号	標高 0．P．（m）	減衰定数（\％）	図番
	制御   建屋	鉛直   方向	5	8． 000	0.5	CB－SsV－CBB1－005
					1.0	CB－SsV－CBB1－010
					1.5	CB－SsV－CBB1－015
					2． 0	CB－SsV－CBB1－020
					2.5	CB－SsV－CBB1－025
					3.0	CB－SsV－CBB1－030
S					5.0	CB－SsV－CBB1－050
S					0.5	CB－SsV－CBB2－005
					1.0	CB－SsV－CBB2－010
					1.5	CB－SsV－CBB2－015
			6	1． 500	2.0	CB－SsV－CBB2－020
$\bigcirc$					2.5	CB－SsV－CBB2－025
$\square$					3.0	CB－SsV－CBB2－030
$\stackrel{\uparrow}{1}$					5.0	CB－SsV－CBB2－050



[^25]標高：0．P． 29.150 m
波形名：基準地震動 S s標高：0．P． 29.150 m
波形名：基準地震動 S s

【CB－SsH－CB4－025】
水平方向 $\square$
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$

【CB-SsH-CB4-030】
 $\square$
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$

【CB-SsH-CB4-040】

$$
0 \text { d } \quad L-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$
【CB－SsH－CB4－050】
水平方向
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$
【CB－SsH－CB3－005】
票
甘
前

標高：0．P． 22.950 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数：0．5\％

固 有 周 期（s）

【CB－SsH－CB3－015】
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$
標高：0．P． 22.950 m
波形名：基準地震動 S s
構造物名：制御建屋

【CB－SsH－CB3－020】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$

構造物名：制御建屋
波形名：基準地震動 S s
減衰定数：2．
固 有 周 期（s）

【CB－SsH－CB3－030】


$$
0 \text { y } \quad L-I-Z-I \Lambda \quad \text { (\&) } \quad Z O
$$


$\begin{array}{ll}\text { 構造物名：制御建屋 } & \text { 標高：0．P．} 22.950 \mathrm{~m} \\ \text { 減衰定数：} 3.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s}\end{array}$
減衰定数：3．0\％
固 有 周 期（s）
【CB－SsH－CB3－040】
㤩
艺
前

$$
0 \text { y } \quad L-I-Z-I \Lambda \quad \text { (\&) } \quad Z O
$$

【CB－SsH－CB3－050】


$$
0 \text { y } \quad L-I-Z-I \Lambda \quad \text { (\&) } \quad Z O
$$

標高：0．P． 22.950 m
波形名：基準地震動 S s

構造物名：制御建屋
減衰定数：5． $0 \%$
固 有 周 期（s）
【CB－SsH－CB2－005】
票
甘
前
標高：0．P． 19.500 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数：0．5\％

固 有 周 期（s）


減衰定数：1．0\％
25.
X
逼
【CB－SsH－CB2－015】
標高：0．P． 19.500 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数： $1.5 \%$

【CB－SsH－CB2－020】
票
相
关
1

$$
0 \text { y } \quad L-I-Z-I \Lambda \quad \text { (\&) } \quad Z O
$$


【CB-SsH-CB2-030】
 -

$$
0 \text { y } \quad L-I-Z-I \Lambda \quad \text { (\&) } \quad Z O
$$




[^26]
減衰定数：5． $0 \%$
波形名：基準地震動 S s
波形名•基苹地震動
－
咨
【CB－SsH－CB1－005】要
园
前 －標高：0．P． 15.000 m
波形名：基準地震動 S s構造物名：制御建屋


【CB－SsH－CB1－015】要
床
前
1
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$ 25．0
固 有 周 期（s）
構造物名：制御建屋
減衰定数： $1.5 \%$
標高：0．P．15．000m
波形名：基準地震動 S s
妞
咨

波形名：基準地震動 S s
標高：0．P．15．000m
減衰定数：2． $0 \%$
眰

【CB－SsH－CB1－030】


[^27]咠 﨎
固 有 周 期（s）


[^28][^29]標高：0．P． $15.000 \mathrm{~m} \quad \square$ 水平方向

固 有 周 期（s）
X
资
【CB－SsH－CBB1－005】
——水平方向

[^30] 25．0 0 20
華 臿

固 有 周 期（s）

【CB－SsH－CBB1－010】
——水平方向

標高：0．P． 8.000 m
波形名：基準地震動 S s

構造物名：制御建屋
減衰定数：1．0\％


固 有 周 期（s）

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

【CB－SsH－CBB1－015】
——水平方向


【CB－SsH－CBB1－020】
——水平方向

標高：0．P． 8.000 m
波形名：基準地震動 S s

構造物名：制御建屋
減衰定数：2． $0 \%$

$\begin{array}{lllll}0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
固 有 周 期（s）

【CB－SsH－CBB1－025】
——水平方向

$\begin{array}{lllllllllll}0.00 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
固 有 周 期（s）

> 標高: 0.P. 8.000 m
> 波形名: 基準地震動 S s

構造物名：制御建屋
減衰定数：2．5\％
至

【CB－SsH－CBB1－030】
——水平方向標高：0．P． 8.000 m
波形名：基準地震動 S s 8．0

固 有 周 期（s）

構造物名：制御建屋
減衰定数：3． $0 \%$
X
䙵

固 有 周 期（s）

【CB－SsH－CBB1－040】
——水平方向

> 標高: 0.P. 8.000 m
> 波形名: 基準地震動 S s

構造物名：制御建屋
減衰定数：4． $0 \%$


童

【CB－SsH－CBB1－050】
——水平方向


固 有 周 期（s）

> 標高: 0.P. 8.000 m
> 波形名: 基準地震動 S s

構造物名：制御建屋
減衰定数：5． $0 \%$
8.

喕
【CB－SsH－CBB2－005】 ——水平方向

[^31]
固 有 周 期（s）

【CB－SsH－CBB2－010】
——水平方向

標高：0．P． 1.500 m
波形名：基準地震動 S s

構造物名：制御建屋
減衰定数：1．0\％


固 有 周 期（s）
【CB－SsH－CBB2－015】
——水平方向

固 有 周 期（s）
構造物名：制御建屋

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

標高：0．P．1．500m
波形名：基準地震動 S S

【CB－SsH－CBB2－020】



固 有 周 期（s）

【CB－SsH－CBB2－025】
——水平方向

> 標高: 0.P. 1.500 m
> 波形名: 基準地震動 S s


竍
至
固 有 周 期（s）

構造物名：制御建屋
減衰定数：2．5\％
5.

4
๗
$\sim$
1.0
0.0
$\begin{array}{lllllll}0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
【CB－SsH－CBB2－030】
——水平方向
標高：0．P． 1.500 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数：3． $0 \%$

固 有 周 期（s）

【CB－SsH－CBB2－040】



固 有 周 期（s）

3

構造物名：制御建屋
減衰定数：4． $0 \%$
凅
【CB－SsH－CBB2－050】
——水平方向
標高：0．P． 1.500 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数：5． $0 \%$

固 有 周 期（s）
【CB－SsV－CB4－005】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$



減衰定数：0． $5 \%$
50.
40.
盗

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

【CB－SsV－CB4－010】 $\begin{array}{ll}\text { 標高：0．P．29．} 150 \mathrm{~m} & \\ \text { 波形名：基準地震動S s 鉛直方向 }\end{array}$

【CB－SsV－CB4－015】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$



固 有 周 期（s）
構造物名：制御建屋
減衰定数：1．5\％
25.
X
単
【CB－SsV－CB4－020】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$

標高：0．P．29． 150 m
波形名：基準地震動 S s


$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

【CB－SsV－CB4－025】
標高：0．P． 29.150 m
波形名：基準地震動S s

【CB-SsV-CB4-030】


$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

【CB－SsV－CB4－050】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$



固 有 周 期（s）
構造物名：制御建屋
減衰定数：5． $0 \%$
X
资
【CB－SsV－CB3－005】
標高：0．P． 22.950 m
波形名：基準地震動S s
構造物名：制御建屋
減衰定数：0．5\％

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

2－鉛直方向

【CB－SsV－CB3－010】


減衰定数： $1.0 \%$
25.
20.
10.

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

$\begin{array}{lllllllllll}0.00 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
X
脿
【CB－SsV－CB3－015】

標高：0．P． 22.950 m
波形名：基準地震動 S s

減衰定数：1．5\％

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

X
単
【CB－SsV－CB3－020】
鉛直方向

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$

標高：0．P． 22.950 m
波形名：基準地震動 S s
構造物名：制御建屋
減衰定数：2． $0 \%$ 友

【CB－SsV－CB3－025】
鉛直方向
構造物名：制御建屋

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

標高：0．P． 22.950 m
波形名：基準地震動 S s

【CB－SsV－CB3－030】


減衰定数：3． $0 \%$

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

波形名：基準地震動 S s
피피
逼
【CB－SsV－CB3－050】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：5．0\％

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

X
资
【CB-SsV-CB2-005】


【CB－SsV－CB2－010】
減衰定数：1．0\％
25.
20． 0
Hintive

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$



【CB－SsV－CB2－015】


減衰定数： $1.5 \%$
25.
20.
10.
$0.80 \quad 0.90 \quad 1.00$
固
$\qquad$

$$
0 \text { y } \quad L-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (\&) } \quad \mathrm{O}
$$

$\begin{array}{llll}0.40 & 0.50 & 0.60 & 0.70\end{array}$
【CB－SsV－CB2－020】

$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$



減衰定数：2． $0 \%$
25.
X
逼
【CB－SsV－CB2－025】

[^32]
減衰定数： $2.5 \%$
$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$
爻
凅
【CB－SsV－CB2－030】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：3． $0 \%$
$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$
X
童


減衰定数：5．0\％

【CB-SsV-CB1-005】
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$


【CB－SsV－CB1－010】
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$


減衰定数：1．0\％
25.
X
凅
【CB－SsV－CB1－015】
$$
0 \text { d } \quad \mathrm{L}-\mathrm{I}-\mathrm{Z}-\mathrm{I} \Lambda \quad \text { (8) } \quad \mathrm{O}
$$


構造物名：制御建屋
減衰定数：1．5\％
25.
辣
凅

$\begin{array}{lllllllllll}0.00 & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 & 0.90 & 1.00\end{array}$
【CB－SsV－CB1－020】

固 有 周 期（s）
構造物名：制御建屋
減衰定数：2． $0 \%$
【CB－SsV－CB1－025】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：2．5\％

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} \mathrm{O}
$$

주
凅
【CB－SsV－CB1－030】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：3． $0 \%$
X
资
【CB－SsV－CB1－050】


固 有 周 期（s）
構造物名：制御建屋
減衰定数：5． $0 \%$
10
๓
童
【CB－SsV－CBB1－005】 ——鉛直方向

[^33] 20．0 0 20
【CB－SsV－CBB1－010】


固 有 周 期（s）
構造物名：制御建屋
X
童
【CB－SsV－CBB1－015】
——鉛直方向

固 有 周 期（s）
構造物名：制御建屋
波形名：基準地震動 S s

【CB－SsV－CBB1－020】
——鉛直方向

標高：0．P． 8.000 m
波形名：基準地震動 S s

構造物名：制御建屋
減衰定数：2．0\％

【CB－SsV－CBB1－025】



亦
罣
減衰定数：2．5\％
【CB－SsV－CBB1－030】


減衰定数：3．0\％
$\begin{array}{cccc}0.40 & 0.50 & 0.60 \\ \text { 固 有 周 期（s）}\end{array}$
$0.10-0.20-0.30$
5.0
4
脿

【CB－SsV－CBB1－050】
——鉛直方向

[^34]

X
授
【CB－SsV－CBB2－005】
——鉛直方向

> 標高: 0.P. 1.500 m
> 波形名: 基準地震動 S s 2．0．0
固 有 周 期（s）
構造物名：制御建屋
減衰定数：0．5\％

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} 0
$$



【CB－Ss V－CBB2－010】


減衰定数：1．0\％
喕

【CB－Ss V－CBB2－015】

## －

標高：0．P． 1.500 m
波形名：基準地震動 S s 5.0
0.0
0.0

斉
䙵
構造物名：制御建屋
減衰定数：1．5\％
固 有 周 期（s）

$$
\mathrm{O} 2 \quad \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} 0
$$

【CB－SsV－CBB2－020】
——鉛直方向

[^35] 2．0
固 有 周 期（s）
【CB－SsV－CBB2－025】
——鉛直方向

> 標高: 0.P. 1.500 m
> 波形名: 基準地震動 S s 1.0
2.0
0.0
減衰定数：2．5\％


$$
\mathrm{O} 2 \quad \text { (3) } \mathrm{VI}-2-1-7 \quad \mathrm{R} 0
$$

単

【CB－SsV－CBB2－030】
——鉛直方向

[^36] 3．0

X
装

【CB－SsV－CBB2－050】
——鉛直方向
$\begin{array}{ll}\text { 構造物名：制御建屋 } & \text { 標高：0．P．} 1.500 \mathrm{~m} \\ \text { 減衰定数：} 5.0 \% & \text { 波形名：基準地震動 } \mathrm{S} \mathrm{s}\end{array}$

固 有 周 期（s）

VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書

VI－2－2－1 原子炉建屋の地震応答計算書
VI－2－2－2 原子炉建屋の耐震性についての計算書
VI－2－2－3 制御建屋の地震応答計算書
VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書
VI－2－2－6 復水貯蔵タンク基礎の耐震性についての計算書
VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書

VI－2－2－2 原子炬建屋の耐震性についての計算書

## 目次

1．概要 ..... 1
2．基本方針 ..... 2
2.1 位置 ..... 2
2.2 構造概要 ..... 3
2.3 評価方針 ..... 12
2.4 適用規格•基準等 ..... 15
3．地震応答解析による評価方法 ..... 16
4．地震応答解析による評価結果 ..... 18
4．1耐震壁のせん断ひずみの評価結果 ..... 18
4．2 保有水平耐力の評価結果 ..... 22

1．概要
本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，原子炬建屋の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は地震応答解析による評価により行う。

原子炉建屋は，建屋内部に「Sクラスの施設」が収納されている。このため，設計基準対象施設においては「Sクラスの施設の間接支持構造物」に，重大事故等対処施設に おいては「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）の間接支持構造物」に分類される。原子炉建屋のらち，原子炉建屋原子炉棟（二次格納施設）は，設計基準対象施設においては「Sクラスの施設」に，重大事故等対処施設においては「常設重大事故緩和設備」に分類される。また，原子炉建屋を構成する壁及びスラブの一部は，原子炉建屋の 2 次しやへい壁及び補助し やへいに該当し，その 2 次しゃへい壁及び補助しやへいは，重大事故等対処施設におい て，「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」に分類される。

以下，原子炉建屋の「Sクラスの施設の間接支持構造物」及び「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張） の間接支持構造物」としての分類に応じた耐震評価を示す。

なお，「Sクラスの施設」及び「常設重大事故緩和設備」としての分類に応じた耐震評価は，原子炉建屋原子炉棟（二次格納施設）については，添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」にて，原子炉建屋大物搬入口については，添付書類「VI－2－9－3－2 原子炉建屋大物搬入口の耐震性についての計算書」にて，原子炉建屋エアロックについては，添付書類「VI－2－9－3－3 原子炉建屋エ アロックの耐震性についての計算書」にて，原子炉建屋基礎版については，添付書類「VI －2－9－3－4 原子炉建屋基礎版の耐震性についての計算書」にて，使用済燃料プールにつ いては，添付書類「VI－2－4－2－1 使用済燃料プール（キャスクピットを含む）（第1，2号機共用）の耐震性についての計算書」にて実施する。また「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」としての分類に応じた耐震評価は，2次しゃへい壁及び補助しゃへいについては，添付書類「VI－2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」にて実施する。

2．基本方針
2.1 位置

原子炉建屋の設置位置を図2－1に示す。


図 2－1 原子炉建屋の設置位置

## 2.2 構造概要

原子炉建屋は，地下 3 階，地上 3 階建で，基礎底面からの高さは 64.6 m であり，平面は下部で $77.0 \mathrm{~m}\left(\mathrm{NS}\right.$ 方向）$\times 84.0 \mathrm{~m}\left(\mathrm{EW}\right.$ 方向）$*^{1}$ のほぼ正方形である。建屋の構造は鉄筋コンクリート造（一部鉄骨鉄筋コンクリート造及び鉄骨造）である。

原子炉建屋の中央部には，平面が $66.0 \mathrm{~m} \times 53.0 \mathrm{~m}^{* 1}$（最下階）で地下 3 階，地上 3 階建 の原子炉建屋原子炉棟（以下「原子炉棟」という。）があり，その周囲には地下 3 階，地上 2 階建の原子炉建屋付属棟（以下「付属棟」という。）が配置され，これらは同一基礎版上に設置された一体構造である。また，原子炉建屋は隣接する他の建屋と構造的に分離している。

原子炉建屋の基礎は，厚さ 6.0 m のべた基礎で，支持地盤である砂岩及び頁岩上に設置されている。

原子炉建屋の主たる耐震要素は，原子炉格納容器のまわりを囲んでいる 1 次しやへ い壁（以下「シェル壁：SW」という。），原子炉棟の外壁（以下「内部ボックス壁：IW」とい う。）及び付属棟の外壁（以下「外部ボックス壁：OW」という。）である。

なお，燃料取替床（0．P．${ }^{* 2} 33.2 \mathrm{~m}$ ）には使用済燃料プールが設置されている。原子炉建屋の概略平面図及び概略断面図を図2－2及び図2－3に示す。注記 $* 1$ ：建屋寸法は壁外面押えとする。
＊2：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。

（単位：m）

（単位：m）
図2－2（2）原子炉建屋の概略平面図（0．P．-0.8 m ）

（単位：m）
図2－2（3）原子炉建屋の概略平面図（0．P．6． 0 m ）

（単位：m）
図 2－2（4）原子炉建屋の概略平面図（0．P．15．0m）

（単位：m）
図2－2（5）原子炉建屋の概略平面図（0．P．22．5m）

（単位：m）
図 2－2（6）原子炉建屋の概略平面図（0．P．33．2m）


図2－2（7）原子炉建屋の概略平面図（0．P．41．2m）

（単位：m）
図 2－3（1）原子炉建屋の概略断面図（A－A 断面 NS 方向）

（単位：m）
図 2－3（2）原子炉建屋の概略断面図（B－B 断面 EW 方向）

## 2． 3 評価方針

原子炉建屋は，建屋内部の一部に基準地震動 S s 及び弾性設計用地震動 S d に対し て機能維持が要求される施設が収納されている。このため，設計基準対象施設におい ては「Sクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）及び常設重大事故緩和設備（設計基準拡張）の間接支持構造物」に分類される。

原子炉建屋の設計基準対象施設としての評価においては，基準地震動 S s による地震力に対する評価（以下「S s 地震時に対する評価」という。）及び保有水平耐力の評価を行うこととし，それぞれの評価は，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」の結果を踏まえたものとする。原子炉建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，耐震壁のせん断ひずみ及び保有水平耐力の評価を行う ことで，原子炉建屋の地震時の構造強度及び機能維持の確認を行う。評価にあたつて は，材料物性の不確かさを考慮する。表2－1 に材料物性の不確かさを考慮する解析ケ ースを示す。

また，重大事故等対処施設としての評価においては，S s 地震時に対する評価及び保有水平耐力の評価を行う。ここで，原子炉建屋は使用済燃料プールにおいて，運転時，設計基準事故時及び重大事故等時の状態で，温度の条件が異なるが，コンクリー トの温度が上昇した場合においても，コンクリートの圧縮強度の低下は認められず，剛性低下は認められるが，その影響は小さいと考えられること，また，「発電用原子力設備規格 コンクリート製原子炉格納容器規格（（社）日本機械学会，2003）」では要素内の温度差及び拘束力により発生する熱応力は自己拘束的な応力であり，十分な塑性変形能力がある場合は終局耐力に影響しないとされていることから，重大事故等対処施設としての評価は，設計基準対象施設としての評価と同一となる。

図 2－4に原子炉建屋の評価フローを示す。

表 2－1 材料物性の不確かさを考慮する解析ケース

検討ケース	スケルトンカーブ		建屋   減衰	地盤物性	
	初期岡性	終局耐力		入力地震動	底面地盤ばね
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	2011年3月11日東北地方太平洋沖地震の観測記録を用いたシミュレー ション解析により補正	設計基準強度 を用い JEAG 式 で評価	5\％	表層上部：非線形性を考慮表層下部 ：Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤
ケース 2	同上	同上	同上	表層上部：非線形性を考慮表層下部：Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋${ }^{\text {a }}$
ケース 3				表層上部：非線形性を考慮表層下部：Vs $900-100 \mathrm{~m} / \mathrm{s}$	標準地盤－$\sigma$
ケース 4	基本ケースの 0.78倍	同上	同上	表層上部：非線形性を考慮表層下部：Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤
ケース 5				表層上部：非線形性を考慮表層下部：Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋${ }^{\text {a }}$
ケース 6				表層上部：非線形性を考慮表層下部： $\mathrm{V}_{\mathrm{s}} 900-100 \mathrm{~m} / \mathrm{s}$	標準地盤－$\sigma$



注記＊：添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」の結果を踏まえた評価を行ら。

図2－4 原子炉建屋の評価フロー

## 2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1988年改定）
- 鋼構造設計規準－許容応力度設計法－（（社）日本建築学会，2005 年改定）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）
－発電用原子力設備規格 コンクリート製原子炉格納容器規格（（社）日本機械学会，2003）

3．地震応答解析による評価方法
原子炉建屋の構造強度については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有することを確認する。

また，支持機能の維持については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における原子炉建屋の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持方針に基づき，表 3－1 及び表 3－2のとおり設定する。

表 3－1 地震応答解析による評価における許容限界 （設計基準対象施設としての評価）

要求機能	機能設計上の   性能目標	地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
－	構造強度を有 すること	基準地震動 S s	耐震壁＊1	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ $2.0 \times 10^{-3}$
		保有水平耐力	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有する ことを確認	必要保有水平耐力
支持機能＊2	機器•配管系等 の設備を支持 する機能を損 なわないこと	基準地震動 S s	耐震壁＊1	最大応答せん断ひずみ が支持機能を維持する ための許容限界を超え ないことを確認	せん断ひずみ $2.0 \times 10^{-3}$

注記 $~$ 1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑え られるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足してい れば，建物•構築物に要求される機能は維持される。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

表 3－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	機能維持の ための考え方	許容限界 （評価基準値）
－	構造強度を有 すること	$\underset{\mathrm{S} \mathrm{s}}{\text { 基準地震動 }}$	耐震壁＊1	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ $2.0 \times 10^{-3}$
		保有水平耐力	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有する ことを確認	必要保有水平耐力
支持機能＊2	機器•配管系等 の設備を支持 する機能を損 なわないこと	$\underset{\mathrm{S}}{\text { 基準地震動 }}$	耐震壁＊1	最大応答せん断ひずみ が支持機能を維持する ための許容限界を超え ないことを確認	せん断ひずみ $2.0 \times 10^{-3}$

注記＊ 1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑え られるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足してい れば，建物•構築物に要求される機能は維持される。
＊2 ：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

4．地震応答解析による評価結果
4．1 耐震壁のせん断ひずみの評価結果
鉄筋コンクリート造耐震壁について，S s 地震時の各層の最大応答せん断ひずみが許容限界（2．0×10 ${ }^{-3}$ ）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは $1.617 \times 10^{-3}$（NS 方向，IW－ J部，S s－F 3，ケース 5，要素番号（7））であり，許容限界（ $2.0 \times 10^{-3}$ ）を超えな いことを確認した。各要素の耐震壁の最大応答せん断ひずみ一覧を表 4－1 に示す。各表において，各要素の最大応答せん断ひずみのうち最も大きい値について，せん断ス ケルトンカーブ上にプロットした図を図4－1に示す。

表 4－1（1）せん断スケルトンカーブ上の最大応答せん断ひずみ（NS 方向）

要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
（1）	0.59	2． 0
（2）	0． 74	
（3）	0.68	
（4）	0． 49	
（5）	0.65	
（6）	1． 33	
（7）	1． 62	
（8）	0.59	
（9）	0． 78	
（10）	0． 76	
（11）	0.55	
（12）	0.68	
（13）	0.16	
（14）	0.38	
（15）	0.41	
（16）	0． 76	


要素番号	$\begin{gathered} \text { 最大応答 } \\ \text { せん断ひずみ } \\ \left(\times 10^{-3}\right) \\ \hline \end{gathered}$	許容限界 $\left(\times 10^{-3}\right)$
（17）	0． 40	2． 0
（18）	1． 48	
（19）	1.51	
（20）	0． 74	
（21）	0.96	
（22）	0.77	
（23）	0.52	
（24）	0.88	
（25）	0． 72	
（26）	0.83	
（27）	0． 77	
（28）	0.52	
（29）	0.79	
（32）	1． 54	
（34）	1． 43	

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を表示。


表 4－1（2）せん断スケルトンカーブ上の最大応答せん断ひずみ（EW 方向）

要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
（1）	0.57	2． 0
（2）	0.56	
（3）	0． 71	
（4）	0.50	
（5）	0.64	
（6）	0． 44	
（7）	0． 77	
（8）	0.52	
（9）	0.68	
（10）	0.87	
（11）	0.98	
（12）	0． 42	
（13）	0.50	
（14）	0.21	
（15）	0.39	
（16）	0.61	


要素   番号	最大応答   せん断ひずみ   $\left(\times 10^{-3}\right)$	許容限界   $\left(\times 10^{-3}\right)$
$(17)$	0.78	
$(18)$	0.41	
$(19)$	1.06	
$(20)$	0.97	
$(21)$	0.51	
$(22)$	0.77	
$(23)$	0.66	
$(24)$	0.50	
$(25)$	0.72	
$(26)$	0.56	
$(27)$	0.77	
$(28)$	0.60	
$(29)$	0.52	
$(30)$	0.67	
$(32)$	0.97	

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を表示。


（a）NS 方向（S s－F 3，ケース 5，要素番号（7））

（b）EW方向（S s－F 3，ケース 5，要素番号（19））

図 4－1 せん断スケルトンカーブ上の最大応答せん断ひずみ

4．2 保有水平耐力の評価結果
各層において，保有水平耐力 $Q_{u}$ が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全裕度 を有していることを確認する。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 $Q_{u}$ の比較結果を表 $4-2$ に示す。各層にお いて，保有水平耐力 $Q_{u}$ が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有してい ることを確認した。

なお，必要保有水平耐力 $Q_{u n}$ に対する保有水平耐力 $Q_{u}$ の比は最小で 2.97 である。

表 4－2 必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} \mathrm{n}}$ と保有水平耐力 $\mathrm{Q}_{\mathrm{u}}$ の比較結果
（a）NS 方向

階	$0 . \mathrm{P} .(\mathrm{m})$	必要保有水平耐力   $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$	保有水平耐力   $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
CRF	$50.5 \sim 41.2$	41.87	167.63	4.00
3 F	$41.2 \sim 33.2$	73.50	255.03	3.47
2 F	$33.2 \sim 22.5$	290.02	1051.27	3.62
1 F	$22.5 \sim 15.0$	564.86	1680.01	2.97
B1F	$15.0 \sim 6.0$	751.06	2291.56	3.05
B2F	$6.0 \sim-0.8$	876.43	2927.93	3.34
B3F	$-0.8 \sim-8.1$	969.61	3158.21	3.26

（b）EW方向

階	0．P．（m）	必要保有水平耐力   $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$	保有水平耐力   $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
CRF	$50.5 \sim 41.2$	41.11	133.63	3.25
3 F	$41.2 \sim 33.2$	75.04	229.17	3.05
2 F	$33.2 \sim 22.5$	294.88	1118.71	3.79
1 F	$22.5 \sim 15.0$	567.55	1770.92	3.12
B1F	$15.0 \sim 6.0$	751.75	2313.97	3.08
B2F	$6.0 \sim-0.8$	875.49	3039.28	3.47
B3F	$-0.8 \sim-8.1$	969.61	3286.17	3.39

VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書

目 次
1．概要 ..... 1
2．基本方針 ..... 2
2.1 位置 ..... 2
2.2 構造概要 ..... 3
2．3 解析方針 ..... 5
2.4 適用基準 ..... 7
3．解析方法 ..... 8
3.1 地震時荷重算出断面 ..... 8
3．2 解析方法 ..... 10
3．2．1 構造部材 ..... 13
3．2．2 地盤物性及び材料物性のばらつき ..... 13
3．2．3 減衰定数 ..... 14
3．2．4 地震応答解析の解析ケースの選定． ..... 15
3.3 荷重及び荷重の組合せ ..... 17
3．3．1 耐震評価上考慮する状態 ..... 17
3．3．2 荷重 ..... 17
3．3．3 荷重の組合せ ..... 18
3.4 入力地震動 ..... 19
3.5 解析モデル及び諸元 ..... 34
3．5．1 解析モデル ..... 34
3．5．2 使用材料及び材料の物性値 ..... 36
3．5．3 地盤の物性値 ..... 36
3．5．4 地下水位 ..... 37
4．解析結果 ..... 39
4．1 南北方向の解析結果 ..... 39
4．2 東西方向の解析結果 ..... 116

## 1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する復水貯蔵タンク基礎の地震応答解析について説明するものである。

本地震応答解析は，復水貯蔵タンク基礎が耐震性に関する技術基準へ適合することを確認する ために用いる応答値を抽出するものである。

復水貯蔵タンク基礎は，面部材として加振方向に平行に配置される妻壁や隔壁及びしやへい壁 を有する箱形構造物であることから，二次元地震応答解析により地震時荷重を算定し，その荷重 を三次元構造解析モデルに作用させて耐震評価を実施するものである。よって，地震応答解析に より抽出する応答値は，三次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

復水貯蔵タンク基礎の位置を図 $2-1$ に示す。


図 2－1 復水貯蔵タンク基礎の位置図

## 2.2 構造概要

復水貯蔵タンク基礎の平面図を図2－2に，断面図を図 2－3 及び図 $2-4$ に示す。
復水貯蔵タンク基礎は，復水貯蔵タンク及び復水移送系配管等をしやへい壁，バルブ室，連絡ダクト及び基礎版の各部材で間接支持しており，支持機能が要求される。

復水貯蔵タンク基礎は，復水貯蔵タンク等を間接支持する基礎版と円筒形のしやへい壁等か ら構成される。基礎版は幅 26.75 m （東西）$\times 32.45 \mathrm{~m}$（南北），厚さ 5.00 m ，しやへい壁は内径 23.10 m ，壁厚 1.00 m （地上部は 0.50 m ），高さ 8.60 m の鉄筋コンクリート造の地中構造物で，マ ンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されてい る。

復水貯蔵タンク基礎は，面部材として加振方向に平行に配置される妻壁や隔壁及びしやへい壁を有する箱形構造物である。


図 2－2 復水貯蔵タンク基礎平面図


図 2－3 復水貯蔵タンク基礎断面図（A－A 断面，南北）


図 2－4 復水貯蔵タンク基礎断面図（B－B 断面，東西）

## 2．3 解析方針

復水貯蔵タンク基礎は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s に対して地震応答解析を実施する。

図 $2-5$ に復水貯蔵タンク基礎の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 地震時荷重算出断面」に示す断面にお いて，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法に よる時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用い て実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，復水貯蔵タンクに発生する断面力（応答せん断力及び応答曲げモーメント）は復水貯蔵タンクの耐震評価に用いる。また，地震時土圧，慣性力及び基礎地盤の接地圧は，復水貯蔵タンク基礎の耐震評価に用いる。


注記 $*$ ：断面力の抽出結果は，添付書類「VI－2－5－6－2－2 復水貯蔵タンクの耐震性についての計算書」に示す。

図2－5 復水貯蔵タンク基礎の地震応答解析フロー

## 2.4 適用基準

適用する規格，基準等を以下に示す。

- コンクリート標準示方書［構造性能照査編］（土木学会，2002年制定）
- 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）
－原子力発電所耐震評価技術指針 J E A G 4 6 0 1－1987（社団法人 日本電気協会 電気技術基準調査委員会）

3．解析方法
3.1 地震時荷重算出断面

復水貯蔵タンク基礎の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，しゃへい壁及び復水貯蔵タンクの中心を通る基礎長辺方向（ $\mathrm{A}-\mathrm{A}$ 断面，南北）及び基礎短辺方向（ $\mathrm{B}-\mathrm{B}$ 断面，東西）の両断面とする。地震時荷重算出用地質断面図を図 3－2 及び図 3－3 に示す。

なお，復水貯蔵タンク基礎は基礎版上に円筒形のしゃへい壁が設置された構造であり，強軸方向•弱軸方向が明確ではない。よって，構造物及び機器•配管系の耐震評価に用いる応答値 の抽出は，基礎長辺方向（ $\mathrm{A}-\mathrm{A}$ 断面，南北）及び基礎短辺方向（ $\mathrm{B}-\mathrm{B}$ 断面，東西）の両断面に対 して実施する。

（単位：m）

図 3－1 復水貯蔵タンク基礎の地震時荷重算出断面位置図


図 3－2 復水貯蔵タンク基礎 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）

西 東


図 3－3 復水貯蔵タンク基礎 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，東西）

## 3．2 解析方法

復水貯蔵タンク基礎の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」の うち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

南北方向において隣接構造物となる原子炉建屋は，復水貯蔵タンク基礎の耐震評価において保守的な評価となるよう盛土としてモデル化する。一方，復水貯蔵タンク基礎は軽油タンク室及び軽油タンク連絡ダクトと同一の MMRを共有しており，お互いの振動の影響を受けることか ら，南北方向においては軽油タンク室及び軽油タンクを，東西方向においては軽油タンク連絡 ダクトをモデル化する。

復水貯蔵タンク基礎は基礎版上のしやへい壁，バルブ室及び連絡ダクトから構成されており，基礎版上に復水貯蔵タンクが間接支持されていることから，これらの相互作用を考慮するため に，復水貯蔵タンク，しやへい壁，バルブ室及び連絡ダクトが一体構造として挙動するように モデル化する。各構造部材は奥行方向 1 m 当たりに換算した質点と線形はり要素によりモデル化し，復水貯蔵タンクの内包水のスロッシングを考慮したモデル化とする。復水貯蔵タンク基礎のモデル図を図 $3-4$ 及び図 $3-5$ に示す。また，しやへい壁に対しては，周辺地盤の影響を考慮するため，しやへい壁と周辺地盤を剛ばね要素で接続する。なお，地盤については地盤の ひずみ依存性を適切に考慮できるようモデル化する。
地震応答解析については，解析コード「SLAP Ver．6．64」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

（a）水平方向モデル

（b）鉛直方向モデル

図 3－4 復水貯蔵タンク基礎のモデル図（南北方向）

（a）水平方向モデル

（b）鉛直方向モデル

図 3－5 復水貯蔵タンク基礎のモデル図（東西方向）

## 3．2．1 構造部材

鉄筋コンクリート部材は，質点及び線形はり要素によりモデル化する。

## 3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

復水貯蔵タンク基礎は，MMR 上に設置され，周囲が埋戻されており，主たる荷重は盛土等の土圧となることから，盛土，旧表土，D級岩盤の初期せん断弾性係数のばらつきを考慮する。

初期せん断弾性係数の標準偏差 $\sigma$ を用いて設定した解析ケース（2）及び③を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース④を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	材料物性 （コンクリート） （ $\mathrm{E}_{0}$ ：ヤング係数）	地盤物性	
		盛土，旧表土，D級岩盤 （ $\mathrm{G}_{0}$ ：初期せん断弾性係数）	CL級岩盤，$C_{M}$ 級岩盤，   CH級岩盤，B級岩盤   （ $\mathrm{G}_{\mathrm{d}}$ ：動せん断弾性係数）
$\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②）	設計基準強度	平均値 $+1 \sigma$	平均値
ケース③	設計基準強度	平均値－1 $\sigma$	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記 $*: ~$ 既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表 $3-2$ に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
$\alpha, \beta$ ：係数

表3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

地震時荷重算出断面	$\alpha$	$\beta$
南北方向	$2.357 \times 10^{-1}$	$1.273 \times 10^{-3}$
東西方向	$2.667 \times 10^{-1}$	$1.125 \times 10^{-3}$

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース（1）（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 以上となる照査項目に対して，最も厳しい地震動を用い て，表 3－1 に示す解析ケース（2）～（4）を実施する。耐震評価における解析ケースを表3－3 に示す。

表 3－3 耐震評価における解析ケース

解析ケース			ケース①	ケース（2）	ケース③	ケース（4）
			基本ケース	地盤物性のばら つき（＋1 $\sigma$ ）を考慮した解析ケ ース	地盤物性のばら つき（－1 $\sigma$ ）を考慮した解析ケ ース	材料物性   クリート）   強度を考慮   解析ケース
地盤物性			平均値	平均値＋1 $\sigma$	平均値－1 $\sigma$	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S s－D 1	＋＋＊1	$\bigcirc$	基準地震動 S s（7波）に水平動の位相反転 を考慮した地震動（7波）を加えた全 14 波 により照査を行ったケース①（基本ケース）		
		$-+* 1$	$\bigcirc$			
	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$	$++* 1$	$\bigcirc$			
		$-+* 1$	$\bigcirc$			
	S s－D 3	$++* 1$	$\bigcirc$	の結果から，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査の照査項目ご		
		$-+* 1$	$\bigcirc$			
	S s－F 1	$+*^{* 1}$	$\bigcirc$	とに照査値が 0.5 以上となる照査項目に対		
		－＋＊ 1	$\bigcirc$	して，最も厳しい（許容限界に対する裕度が		
	S s－F 2	$++* 1$	$\bigcirc$	最も小さい）地震動を用いてケース（2）～④		
		$-+* 1$	$\bigcirc$	を実施する。		
	S s－F 3	$++* 1$	$\bigcirc$	すべての照査項目の照査値がいずれも 0.5未満の場合は，照査値が最も厳しくなる地震動を用いてケース（2）～④を実施する。		
		－＋＊ 1	$\bigcirc$			
	S s－N1	$++* 1$	$\bigcirc$			
		$-+^{* 1}$	$\bigcirc$			

注記＊ 1 ：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル（土木学会 原子力土木委員会，2005 年 6 月）（以下「土木学会マニュアル」という。） に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース① に加え，表3－1 に示す解析ケース（2）～④を実施する。機器•配管系の応答加速度抽出における解析ケースを表3－4に示す。

表 3－4 機器•配管系の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース②）	ケース③）	ケース④
			基本ケース	地盤物性のば らつき（＋1 o）を考慮し た解析ケース	地盤物性のば らつき（－1 o）を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考慮した解析ヶ ース
地盤物性			平均値	平均値＋1 $\sigma$	平均値－1 $\sigma$	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S s－D 1	$+{ }^{* 1}$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	S s－D 2	$++* 1$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	S s－D 3	$+{ }^{* 1}$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	S s－F 1	$++* 1$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	$\mathrm{S} \mathrm{s}-\mathrm{F} 2$	$+{ }^{* 1}$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	$\mathrm{Ss}-\mathrm{F} 3$	$++* 1$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	S s－N 1	$++* 1$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$

注記 $* 1$ ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

## 3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

## 3．3．1 耐震評価上考慮する状態

復水貯蔵タンク基礎の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。鉄筋コンクリート造であり，しやへい壁の一部を除き大半が埋設され た構造であるため，風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

## 3．3．2 荷重

復水貯蔵タンク基礎の地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（ P ）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。

## 3．3．3 荷重の組合せ

荷重の組合せを表3－5に示す。

表 3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重
P：積載荷重（積雪荷重 $\mathrm{P}_{\mathrm{s}}$ を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）

## 3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $3-6$ に入力地震動算定の概念図を，図 $3-7 \sim$ 図 $3-20$ に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「SHAKE Ver．1．6」を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

地下構造モデル 構造物位置地盤モデル 地震応答解析モデル


図 3－6 入力地震動算定の概念図

（b）加速度応答スペクトル
図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－D 1）


図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

（b）加速度応答スペクトル
図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－D 2）


（b）加速度応答スペクトル
図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－D 2）


（b）加速度応答スペクトル
図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分 ：S s－D 3）


（b）加速度応答スペクトル
図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－D 3）


（b）加速度応答スペクトル
図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－F 1）

（b）加速度応答スペクトル
図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－F 1）


（b）加速度応答スペクトル
図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－F 2）


（b）加速度応答スペクトル
図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル
図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－F 3）


（b）加速度応答スペクトル
図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－F 3）

（a）加速度時刻歴波形
（b）加速度応答スペクトル
図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（水平成分：S s－N 1）


（b）加速度応答スペクトル
図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル
（鉛直成分：S s－N 1）

## 3.5 解析モデル及び諸元

## 3．5．1 解析モデル

復水貯蔵タンク基礎の地震応答解析モデルを図 3－21 及び図 3－22に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
復水貯蔵タンク基礎は基礎版上のしやへい壁，バルブ室及び連絡ダクトから構成されて おり，基礎版上に復水貯蔵タンクが間接支持されていることから，これらの相互作用を考慮するために，各構造部材を奥行方向 1 m 当たりに換算した質点と線形はり要素によりモ デル化する。なお，復水貯蔵タンクの内包水のスロッシングを考慮したモデル化とする。
（4）地盤のモデル化
D級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。
（5）隣接構造物のモデル化
隣接構造物となる原子炉建屋は，復水貯蔵タンク基礎の耐震評価において保守的な評価 となるよう盛土としてモデル化する。一方，復水貯蔵タンク基礎とMMR を共有する軽油タ ンクと軽油タンク室及び軽油タンク連絡ダクトは，お互いの振動の影響を考慮するためモ デル化する。
（6）ジョイント要素の設定
地震時の「造物」，「地盤とMMR」及び「地盤と構造物」との接合面における剥離及びす べりを考慮するため，これらの接合面にジョイント要素を設定する。


図 $3-22$ 復水貯蔵タンク 基礎の地震応答解析モデル図（東西方向）

3．5．2 使用材料及び材料の物性値
構造物の使用材料を表3－6，材料の物性値を表3－7及び表3－8に示す。

表 3－6 使用材料

材料		仕様	
コンク   リート	Lゃへい壁，バルブ室，バルブ室（ハッチ   部）側壁，連絡ダクト，基礎版	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$	
	バルブ室（ハッチ部）頂版	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$	
	鉄筋		SD345
復水貯蔵タンク		SUS304	

表 3－7 材料の物性値（構造部材）

表 3－8 材料の物性値（復水貯蔵タンク）

材料	項目	材料諸元
復水貯蔵タンク	ヤング係数   $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$1.92 \times 10^{5}$
	せん断弾性係数   $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$7.38 \times 10^{4}$

3．5．3 地盤の物性値
地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

## 3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い，設定する。設計用地下水位の一覧を表3－9に，設計用地下水位を図3－23 及び図3－24に示す。

表 3－9 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
復水貯蔵タンク基礎	南北方向	0. P．-3.00 m
	東西方向	0. P．$-3.00 \mathrm{~m} \sim 0$. P．+3.00 m



図 3－23 設計用地下水位（南北方向）



図 3－24 設計用地下水位（東西方向）

## 4．解析結果

4.1 南北方向の解析結果

耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図 4－1～図4－14に示す。また，解析ケース（1） において，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析ケース（2）～（4）の最大加速度分布図を図 4－15～図4－17 に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～④についてす べての基準地震動S s に対する最大加速度分布図を図4－18～図4－38に示す。

0．P．（m）


（a） S s－D $1(++)$ 水平
図 4－1（1）最大加速度分布図（1／17）（解析ケース（1）


図 4－1（2）最大加速度分布図（1／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平
図 4－2（1）最大加速度分布図（2／17）（解析ケース（1）

0．P．（m）



構造スケール $\qquad$
応答値スケール $\qquad$

公直
図 4－2（2）最大加速度分布図（2／17）（解析ケース（1）

しゃへい壁•基礎版

構造スケール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答値スケール $\qquad$ ${ }^{000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平
図 4－3（1）最大加速度分布図（3／17）（解析ケース（1）

O．P．（m）


しゃへい壁•基楨版



$$
\begin{aligned}
& 687 \\
& 687
\end{aligned}
$$

構造スケール $\qquad$ （m）

応答値スケール


687
連絡ダクト
車絡ダクト
$\qquad$
 ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直
図 4－3（2）最大加速度分布図（3／17）（解析ケース（1）

（a） S s $-\mathrm{D} 2(-+)$ 水平
図 4－4（1）最大加速度分布図（4／17）（解析ケース（1）

0．P．（m）

構造スクール $\qquad$ $\stackrel{2}{ }$（m）
応答估スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
しゃへい壁•基碇版



（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+) \quad$ 鉛直
図 4－4（2）最大加速度分布図（4／17）（解析ケース（1）

0．P．（m）

（a） S s $-\mathrm{D} 3(++)$ 水平
図 4－5（1）最大加速度分布図（5／17）（解析ケース（1）

O．P．（m）

構造スケール $\qquad$ ${ }^{2}(\mathrm{~m})$
応答估スケール $\qquad$
しやへい壁•基礎版

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直
図 4－5（2）最大加速度分布図（5／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平
図 4－6（1）最大加速度分布図（6／17）（解析ケース（1）

O．P．（m）


横造スグール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$

応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$



連絡ダクト

$$
{ }^{00}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)
$$




（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直
図 4－6（2）最大加速度分布図（6／17）（解析ケース（1）

0．P．（m）

（a） S s－F $1(++)$ 水平
図 4－7（1）最大加速度分布図（7／17）（解析ケース（1）

0．P．（m）

構造スケール $\qquad$ $\stackrel{2}{(\mathrm{~m})}$
応答値スクール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
しやへい壁•基礎版


（b）S s－F $1(++)$ 鉛直
図 4－7（2）最大加速度分布図（7／17）（解析ケース（1）

0．P．（m）


（a） S s $-\mathrm{F} 1(-+)$ 水平
図 4－8（1）最大加速度分布図（8／17）（解析ケース（1）

O．P．（m）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 鉛直
図 4－8（2）最大加速度分布図（8／17）（解析ケース（1）

0．P．（m）

しゃへい壁•基礩版

構造スケール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平
図 4－9（1）最大加速度分布図（9／17）（解析ケース（1）

O．P．（m）

構造スクール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答値スケール



（b） S s $-\mathrm{F} 2(++)$ 鉛直
図 4－9（2）最大加速度分布図（9／17）（解析ケース（1）

（a） S s－F $2(-+)$ 水平
図 4－10（1）最大加速度分布図（10／17）（解析ケース（1）

O．P．（m）


（b） S s－F $2(-+)$ 鉛直
図 4－10（2）最大加速度分布図（10／17）（解析ケース（1）

0．P．（m）

（a） S s－F $3(++)$ 水平
図 4－11（1）最大加速度分布図（11／17）（解析ケース（1）


連絡ダクト

構造スケール $\qquad$ $\xrightarrow{2}(\mathrm{~m})$

応答值スクール $\qquad$
$\underset{\infty}{\infty} \quad \underset{\sim}{\infty}$
－

$\therefore \underset{\sim}{\circ}$
＂D品品 $\underset{\sim}{\circ}$
 Gig
$\xrightarrow{|l| l|l|}$



復水貯蔵タンク

しやへい壁•基礎版
583
（
鉛直
図 4－11（2）最大加速度分布図（11／17）（解析ケース（1）

（a） S s $-\mathrm{F} 3(-+)$ 水平
図 4－12（1）最大加速度分布図（12／17）（解析ケース（1）

O．P．（m）

構造スクール $\qquad$ $\stackrel{2}{(m)}$
応答値スケール $\qquad$ ${ }^{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$


的直
図 4－12（2）最大加速度分布図（12／17）（解析ケース（1）

構造スケール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

しゃへい壁•基礎版
（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平
図 4－13（1）最大加速度分布図（13／17）（解析ケース（1）


バルブ室

## 連絡ダクト


構造スケール $\qquad$ $\xrightarrow{2}(\mathrm{~m})$
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{\mathrm{z}}\right)$


復水貯蔵タンク
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直
図 4－13（2）最大加速度分布図（13／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平
図 4－14（1）最大加速度分布図（14／17）（解析ケース（1）


図 4－14（2）最大加速度分布図（14／17）（解析ケース（1）

O．P．（m）

（a） S s－D $2(++)$ 水平
図 4－15（1）最大加速度分布図（15／17）
（解析ケース（2）：せん断破壊に対する最大照査値ケース（基礎版））

O．P．（m）

構造スケール $\qquad$ （m）
応答値スグール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
しやへい壁•基礎版
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鋁直
図 4－15（2）最大加速度分布図（ $15 / 17$ ）
（解析ケース（2）：せん断破壊に対する最大照査値ケース（基礎版））


図 4－16（1）最大加速度分布図（16／17）
（解析ケース（3）：せん断破壊に対する最大照査値ケース（基礎版））

0．P．（m）



図 4－16（2）最大加速度分布図（16／17）
（解析ケース（3）：せん断破壊に対する最大照査値ケース（基礎版））

0．P．（m）


図 4－17（1）最大加速度分布図（17／17）
（解析ケース（4）：せん断破壊に対する最大照査値ケース（基礎版））



連絡ダクト
バルブ室


構造スケール $\qquad$ $\int^{2}(\mathrm{~m})$

心簽値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鋁直
図 4－17（2）最大加速度分布図（17／17）
（解析ケース（4）：せん断破壊に対する最大照査値ケース（基礎版））

0．P．（m）


（a） S s－D $1(++)$ 水平
図 4－18（1）最大加速度分布図（1／21）（解析ケース（2）

O．P．（m）





構造スケール $\qquad$ $\stackrel{2}{4}$（m）

応答估スケール $\qquad$


$$
{ }^{0} \quad{ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{\mathrm{s}}\right)
$$ （

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ 鉛直
図 4－18（2）最大加速度分布図（1／21）（解析ケース（2）

（a） S s－D $2(++)$ 水平
図 4－19（1）最大加速度分布図（2／21）（解析ケース（2）

O．P．（m）



構造スケール $\qquad$
応答値スクール $\qquad$

連絡ダクト
（b） S s－D $2(++)$ 鉛直
図 4－19（2）最大加速度分布図（2／21）（解析ケース（2）


図 4－20（1）最大加速度分布図（3／21）（解析ケース（2）

O．P．（m）



連絡ダクト
バルブ室

構造スタール
${ }^{0}$ $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$

応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{\mathrm{a}}\right)$



（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鋁直
図 4－20（2）最大加速度分布図（3／21）（解析ケース（2）


（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平
図 4－21（1）最大加速度分布図（4／21）（解析ケース（2）

O．P．（m）

構造スクール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答估スケール $\square$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{*}\right)$


復水貯蔵タンク
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 鉛直

図 4－21（2）最大加速度分布図（4／21）（解析ケース（2）

0．P．（m）

（a） S s－F $2(++)$ 水平
図 4－22（1）最大加速度分布図（5／21）（解析ケース（2）


図 4－22（2）最大加速度分布図（5／21）（解析ケース（2）

0．P．（m）

（a） S s－F $3(++)$ 水平
図 4－23（1）最大加速度分布図（6／21）（解析ケース（2）


図 4－23（2）最大加速度分布図（6／21）（解析ケース（2）

0．P．（m）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平
図 4－24（1）最大加速度分布図（7／21）（解析ケース（2）

O．P．（m）


構造スケール $\qquad$ $\stackrel{2}{(m)}$
応答値スクール $\square$ $\stackrel{2000}{ }\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
しゃへい壁•基礎版


份直
図 4－24（2）最大加速度分布図（7／21）（解析ケース（2）


図 4－25（1）最大加速度分布図（8／21）（解析ケース（3）


図 4－25（2）最大加速度分布図（8／21）（解析ケース（3）


図 4－26（1）最大加速度分布図（9／21）（解析ケース（3）


図4－26（2）最大加速度分布図（9／21）（解析ケース（3）

## O．P．（m）



（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平
図 4－27（1）最大加速度分布図（10／21）（解析ケース③）

0．P．（m）


（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直
図 4－27（2）最大加速度分布図（10／21）（解析ケース（3）

## O．P．（m）



（a） S s－F $1(++)$ 水平
図 4－28（1）最大加速度分布図（11／21）（解析ケース（3）


図 4－28（2）最大加速度分布図（11／21）（解析ケース（3）
o．P．（m）

（a） S s－F $2(++)$ 水平
図 4－29（1）最大加速度分布図（12／21）（解析ケース（3）


図 4－29（2）最大加速度分布図（12／21）（解析ケース（3）

## 0．P．（m）


（a） S s $-\mathrm{F} 3(++)$ 水平
図 4－30（1）最大加速度分布図（13／21）（解析ケース（3）


図 4－30（2）最大加速度分布図（13／21）（解析ケース（3）


図 4－31（1）最大加速度分布図（14／21）（解析ケース③）


図 4－31（2）最大加速度分布図（14／21）（解析ケース（3）

（a） S s－D $1(++)$ 水平
図 4－32（1）最大加速度分布図（15／21）（解析ケース（4）


図 4－32（2）最大加速度分布図（15／21）（解析ケース（4）

O．P．（m）

（a） S s－D $2(++)$ 水平
図 4－33（1）最大加速度分布図（16／21）（解析ケース（4）


図 4－33（2）最大加速度分布図（16／21）（解析ケース（4）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 水平
図 4－34（1）最大加速度分布図（17／21）（解析ケース（4）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直
図 4－34（2）最大加速度分布図（17／21）（解析ケース（4）

0．P．（m）
－

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平
図 4－35（1）最大加速度分布図（18／21）（解析ケース（4）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 鉛直
図 4－35（2）最大加速度分布図（18／21）（解析ケース（4）

0．P．（m）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 水平
図 4－36（1）最大加速度分布図（19／21）（解析ケース（4）


図 4－36（2）最大加速度分布図（19／21）（解析ケース（4）

（a） S s $-\mathrm{F} 3(++)$ 水平
図 4－37（1）最大加速度分布図（20／21）（解析ケース（4）

0．P．（m）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直
図 4－37（2）最大加速度分布図（20／21）（解析ケース（4）
構造スケール $\qquad$ （m）
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{\text {s }}\right)$
しやへい壁•基礎版

（t）
水平
図 4－38（1）最大加速度分布図（21／21）（解析ケース（4）

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直
図 4－38（2）最大加速度分布図（21／21）（解析ケース（4）

## 4．2 東西方向の解析結果

耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図4－39～図4－52に示す。また，解析ケース ①化いて，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動につい て，解析ケース（2）～（4）の最大加速度分布図を図4－53～図4－55に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～（4）についてす べての基準地震動S s に対する最大加速度分布図を図4－56～図4－76に示す。


図 4－39（1）最大加速度分布図（1／17）（解析ケース（1）


構造スケール $\qquad$ $\stackrel{2}{(m)}$

応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
しやへい壁•基礎版
（b） S s $-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－39（2）最大加速度分布図（1／17）（解析ケース（1）


図 4－40（1）最大加速度分布図（2／17）（解析ケース（1）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－40（2）最大加速度分布図（2／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平

図 4－41（1）最大加速度分布図（3／17）（解析ケース（1）


図 4－41（2）最大加速度分布図（3／17）（解析ケース（1）


（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

図 4－42（1）最大加速度分布図（4／17）（解析ケース（1）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－42（2）最大加速度分布図（4／17）（解析ケース（1）

（a） S s $-\mathrm{D} 3(++)$ 水平

図 4－43（1）最大加速度分布図（5／17）（解析ケース（1）

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－43（2）最大加速度分布図（5／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

図 4－44（1）最大加速度分布図（6／17）（解析ケース（1）

（b） S s－D $3(-+)$ 鉛直

図 4－44（2）最大加速度分布図（6／17）（解析ケース（1）


図 4－45（1）最大加速度分布図（7／17）（解析ケース（1）


図 4－45（2）最大加速度分布図（7／17）（解析ケース（1）

（a） S s $-\mathrm{F} 1(-+)$ 水平

図 4－46（1）最大加速度分布図（8／17）（解析ケース（1）

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(-+)$ 鉛直

図 4－46（2）最大加速度分布図（8／17）（解析ケース（1）


図 4－47（1）最大加速度分布図（9／17）（解析ケース（1）

（b） S s－F $2(++)$ 鉛直

図 4－47（2）最大加速度分布図（9／17）（解析ケース（1）

構造スケール $\qquad$ ！（m）
応答値スケール ${ }^{0}{ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（a） S s $-\mathrm{F} 2(-+)$ 水平

図 4－48（1）最大加速度分布図（10／17）（解析ケース（1）


図 4－48（2）最大加速度分布図（10／17）（解析ケース（1）


図 4－49（1）最大加速度分布図（11／17）（解析ケース（1）

（b）S s－F $3(++)$ 鉛直

図 4－49（2）最大加速度分布図（11／17）（解析ケース（1）


図 4－50（1）最大加速度分布図（12／17）（解析ケース（1）

（b） S s $-\mathrm{F} 3(-+)$ 鉛直

図 4－50（2）最大加速度分布図（12／17）（解析ケース（1）


図 4－51（1）最大加速度分布図（13／17）（解析ケース（1）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－51（2）最大加速度分布図（13／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

図 4－52（1）最大加速度分布図（14／17）（解析ケース（1）


図 4－52（2）最大加速度分布図（14／17）（解析ケース（1）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平
図 4－53（1）最大加速度分布図（ $15 / 17$ ）
（解析ケース（2）：せん断破壊に対する最大照査値ケース（上部構造））

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直
図 4－53（2）最大加速度分布図（ $15 / 17$ ）
（解析ケース（2）：せん断破壊に対する最大照査値ケース（上部構造））

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 水平
図 4－54（1）最大加速度分布図（ $16 / 17$ ）
（解析ケース③：せん断破壊に対する最大照査値ケース（上部構造））

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直
図 4－54（2）最大加速度分布図（16／17）
（解析ケース③：せん断破壊に対する最大照査値ケース（上部構造））


図 4－55（1）最大加速度分布図（17／17）
（解析ケース④）せん断破壊に対する最大照査値ケース（上部構造））

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鋁直
図 $4-55$（2）最大加速度分布図（ $17 / 17$ ）
（解析ケース（4）：せん断破壊に対する最大照査値ケース（上部構造））

構造スケール $\qquad$ $\xrightarrow{2}(\mathrm{~m})$
応答値スケール ${ }^{0}{ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{3}\right)$
しゃんい壁•其㮱棹
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 水平

図 4－56（1）最大加速度分布図（1／21）（解析ケース（2）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－56（2）最大加速度分布図（1／21）（解析ケース（2）


図 4－57（1）最大加速度分布図（2／21）（解析ケース（2）

（b） S s $-\mathrm{D} 2(++)$ 鉛直

図 4－57（2）最大加速度分布図（2／21）（解析ケース（2）


図 4－58（1）最大加速度分布図（3／21）（解析ケース（2）


図 4－58（2）最大加速度分布図（3／21）（解析ケース（2）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

図 4－59（1）最大加速度分布図（4／21）（解析ケース（2）

（b）S s－F 1 （ ++ ）鉛直

図 4－59（2）最大加速度分布図（4／21）（解析ケース（2）

（a） S s－F $2(++)$ 水平

図 4－60（1）最大加速度分布図（5／21）（解析ケース（2））

（b） S s－F $2(++)$ 鉛直

図 4－60（2）最大加速度分布図（5／21）（解析ケース（2）

（a） S s $-\mathrm{F} 3(++)$ 水平

図 4－61（1）最大加速度分布図（6／21）（解析ケース（2）

（b） S s $-\mathrm{F} 3(++)$ 鉛直

図 4－61（2）最大加速度分布図（6／21）（解析ケース（2）

構造スケール $\qquad$ ？（n）
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{\mathrm{s}}\right)$
（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(++)$ 水平

図 4－62（1）最大加速度分布図（7／21）（解析ケース（2）

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－62（2）最大加速度分布図（7／21）（解析ケース（2）


図 4－63（1）最大加速度分布図（8／21）（解析ケース（3）

（b） S s $-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－63（2）最大加速度分布図（8／21）（解析ケース（3）


図 4－64（1）最大加速度分布図（9／21）（解析ケース（3）

（b） S s $-\mathrm{D} 2(++)$ 鉛直

図 4－64（2）最大加速度分布図（9／21）（解析ケース（3）

（a） S s $-\mathrm{D} 3(++)$ 水平

図 4－65（1）最大加速度分布図（10／21）（解析ケース③）


図 4－65（2）最大加速度分布図（10／21）（解析ケース③）


図 4－66（1）最大加速度分布図（11／21）（解析ケース（3）

（b）S s－F 1 （ ++ ）鉛直

図 4－66（2）最大加速度分布図（11／21）（解析ケース③）

構造スケール $\qquad$ $\stackrel{2}{1}(\mathrm{~m})$
応答値スケール $\qquad$ ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（a） S s－F $2(++)$ 水平

図 4－67（1）最大加速度分布図（12／21）（解析ケース（3）


図 4－67（2）最大加速度分布図（12／21）（解析ケース③）


図 4－68（1）最大加速度分布図（13／21）（解析ケース③）


図 4－68（2）最大加速度分布図（13／21）（解析ケース（3）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

図 4－69（1）最大加速度分布図（14／21）（解析ケース③）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－69（2）最大加速度分布図（14／21）（解析ケース（3）


図 4－70（1）最大加速度分布図（15／21）（解析ケース（4）

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－70（2）最大加速度分布図（15／21）（解析ケース（4）


図 4－71（1）最大加速度分布図（16／21）（解析ケース（4）

（b） S s $-\mathrm{D} 2(++)$ 鉛直

図 4－71（2）最大加速度分布図（16／21）（解析ケース（4）


図 4－72（1）最大加速度分布図（17／21）（解析ケース（4）

（b） S s $-\mathrm{D} 3(++)$ 鉛直

図 4－72（2）最大加速度分布図（17／21）（解析ケース（4）


図 4－73（1）最大加速度分布図（18／21）（解析ケース（4）


図 4－73（2）最大加速度分布図（18／21）（解析ケース（4）

（a） S s－F $2(++)$ 水平

図 4－74（1）最大加速度分布図（19／21）（解析ケース（4）

（b） S s－F $2(++)$ 鉛直

図 4－74（2）最大加速度分布図（19／21）（解析ケース（4）


図 4－75（1）最大加速度分布図（20／21）（解析ケース（4）


図 4－75（2）最大加速度分布図（20／21）（解析ケース（4）


図 4－76（1）最大加速度分布図（21／21）（解析ケース（4）

（b）S s－N $1 \quad(++)$ 鉛直

図 4－76（2）最大加速度分布図（21／21）（解析ケース（4）


[^0]:    ：岩盤内構造物のため相対沈下量が生じない箇所 MMR又はセメント改良土により構造物を埋め戻すため相対沈下量が生じない箇所相対沈下量が評価基準値を上回る箇所

[^1]:    ：岩盤内構造物のため相対沈下量が生じない箇所
    MMR又はセメント改良土により構造物を埋め戻すため相対沈下量が生じない箇所
    ：相対沈下量が評価基準值を上回る箇所

[^2]:    $\square$
    セメント改良土により埋め戻すため相対沈下量が生じない箇所相対沈下量が評価基準值を上回る箇所

[^3]:    ：浮上り評価対象
    ：条件に該当する場合
    －：地盤改良部のため，評価対象から除く

[^4]:    枠囲みの内容は商業機密の観点から公開できません。

[^5]:    注記＊：「一」は，該当する系統が存在しない場合，又は実用炉規則別表第二を細分化した際に，該当する設備区分若しくは機器区分名称が存在しない場合を示す。

[^6]:    
    波形名：弾性設計用地震動S

    減衰定数：4． $0 \%$

[^7]:    

[^8]:    波形名：弾性設計用地震動 S d

[^9]:    標高：0．P． 50.500 m
    波形名：基準地震動 S s

    構造物名：原子炉建屋
    減衰定数：0．5\％

[^10]:    構造物名：原子炉建屋
    標高：0．P．41．200m
    波形名：基準地震動 S s

    減衰定数：2． $0 \%$

[^11]:    構造物名：原子炉建屋
    標高：0．P．33．200m
    波形名：基準地震動 S s

[^12]:    波形名：基準地震動S s

    減衰定数：0．5\％

[^13]:    構造物名：原子炉建屋
    標高：0．P．15．000m
    波形名：基準地震動 S s

    減衰定数－

[^14]:    構造物名：原子炉建屋
    標高：0．P．15．000m
    波形名：基準地震動 S s

    減衰定数

[^15]:    標高：0．P．15．000m
    波形名：基準地震動S s

    減衰定数：5．

[^16]:    標高：0．P． 6.000 m
    波形名：基準地震動 S s

    構造物名：原子炉建屋
    減衰定数：3． $0 \%$

[^17]:    構造物名：原子炉建屋
    標高：0．P．48．725m
    波形名：基準地震動 S s

    減衰定数 -2.0

[^18]:    構造物名：原子炉建屋
    標高：0．P．41．200m
    波形名：基準地震動 S s

    減衰定数：
    波

[^19]:    構造物名：原子炉建屋
    標高：0．P．33．200m
    波形名：基準地震動 S s

    減衰定数

[^20]:    構造物名：原子炉建屋
    標高：0．P．33．200m
    波形名：基準地震動 S s

    減衰定数 2 ． 5

[^21]:    構造物名：原子炉建屋
    標高：0．P．33．200m
    波形名：基準地震動 S s

    減衰定数

[^22]:    構造物名：原子炉建屋
    標高：0．P．22．500m
    波形名：基準地震動 S s

    減衰定数

[^23]:    構造物名：原子炉建屋
    標高：0．P．15．000m
    波形名：基準地震動S s

    減衰定数：2． $0 \%$

[^24]:    構造物名：原子炉建屋
    標高：0．P．15．000m
    波形名：基準地震動 S s

    減衰定数：3． $0 \%$

[^25]:    減衰定数：1．0\％

[^26]:    標高：0．P．19．500m
    波形名：基準地震動 S S
    波形名：基準地震動 S

    減衰定数：4． $0 \%$

[^27]:    標高：0．P．15．000m
    波形名：基準地震動 S S

    構造物名：制御建屋
    減衰定数：3．0\％

[^28]:    標高：0．P．15．000m
    波形名：基準地震動 S S

    減衰定数：4． 0

[^29]:    波形名：基準地震動 S s

    構造物名：制御建屋
    減衰定数：5． $0 \%$

[^30]:    標高：0．P．8．000m
    波形名：基準地震動 S S

    構造物名：制御建屋
    減衰定数：0． $5 \%$潼

[^31]:    標高：0．P． 1.500 m
    波形名：基準地震動 S S

    構造物名：制御建屋
    減衰定数：0． $5 \%$

[^32]:    標高：0．P．19．500m
    波形名：基準地震動 S s

[^33]:    標高：0．P． 8.000 m
    波形名：基準地震動 S S

[^34]:    標高：0．P．8．000m
    波形名：基準地震動 S s

    構造物名：制御建屋
    減衰定数：5．0\％

[^35]:    標高：0．P． 1.500 m
    波形名：基準地震動 S S

    構造物名：制御建屋
    減衰定数：2． $0 \%$

[^36]:    波形名：基準地震動 S s

    減衰定数：3． $0 \%$

