VI－2－2－24 緊急時対策建屋の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 7
2.4 適用規格•基準等 9
3．地震応答解析による評価方法 10
4．応力解析による評価方法 12
4． 1 評価対象部位及び評価方針 12
4．2 荷重及び荷重の組合せ 13
4．3 許容限界 17
4． 4 解析モデル及び諸元 19
4．5 評価方法 21
5．地震応答解析による評価結果 24
5.1 耐震壁のせん断ひずみの評価結果 24
5.2 接地圧の検討結果 26
5.3 保有水平耐力の評価結果 27
6．応力解析による評価結果 28

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，緊急時対策建屋の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析による評価及び応力解析による評価に基づき行う。

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及 び常設重大事故緩和設備の間接支持構造物」に分類される。また，緊急時対策建屋を構成する壁及びスラブの一部は緊急時対策所遮蔽に該当し，その緊急時対策所遮蔽は，重大事故等対処施設において「常設重大事故緩和設備」に分類される。

以下，「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」としての分類に応じた耐震評価を示す。

なお，緊急時対策所遮蔽の「常設重大事故緩和設備」としての分類に応じた耐震評価は，添付書類「VI－2－8－4－5 緊急時対策所遮蔽の耐震性についての計算書」 にて実施する。

2.1 位置

緊急時対策建屋の設置位置を図2－1に示す。

図 2－1 緊急時対策建屋の設置位置

2． 2 構造概要

緊急時対策建屋は，地下 2 階，地上 2 階建で，基礎底面からの高さは 30.4 m （地上高 さは 13.9 m ）であり，平面は $36.4 \mathrm{~m}(\mathrm{NS}$ 方向）$\times 36.4 \mathrm{~m}(\mathrm{EW}$ 方向）＊の正方形である。建屋の構造は鉄筋コンクリート造である。

緊急時対策建屋の基礎は，厚さ 6.0 m で，はね出しを有し，平面は 47.0 m （NS 方向）\times 47．0m（EW 方向）の正方形であり，支持地盤である砂岩に岩着している。

緊急時対策建屋の主たる耐震要素は，建屋外壁の耐震壁で，基礎版から屋上階床面 まで連続しており，壁厚は $0.5 \mathrm{~m} \sim 2.2 \mathrm{~m}$ である。建屋は全体として非常に剛性が高く，地震時の水平力はすべてこれらの耐震壁で負担する。

緊急時対策建屋の概略平面図及び概略断面図を図2－2及び図2－3に示す。

注記＊：建屋寸法は壁外面押えとする。

θ PN

（単位：m）
図 2－2（1）緊急時対策建屋の概略平面図（0．P．＊ 51.5 m ）

注記 $*: ~ 0$. P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－ 0.74 m である。

○
$\square P N$

（単位：m）
図 2－2（2）緊急時対策建屋の概略平面図（0．P．57．3m）

$\Delta P N$

（単位：m）
図 2－2（3）緊急時対策建屋の概略平面図（0．P．62．2m）

（単位：m）
図 2－2（4）緊急時対策建屋の概略平面図（0．P．69．4m）

（単位：m）
図 $2-3$（1）緊急時対策建屋の概略断面図（A－A 断面，NS 方向）

（単位：m）
図 $2-3$（2）緊急時対策建屋の概略断面図（B－B 断面，EW 方向）

2.3 評価方針

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

緊急時対策建屋の評価においては，基準地震動 S s による地震力に対する評価 （以下「S s 地震時に対する評価」という。）及び保有水平耐力の評価を行う こととし，それぞれの評価は添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」の結果を踏まえたものとする。緊急時対策建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価におい ては耐震壁のせん断ひずみ，接地圧及び保有水平耐力の評価を，応力解析によ る評価においては基礎版の断面の評価を行うことで，緊急時対策建屋の地震時 の構造強度及び機能維持の確認を行う。評価にあたつては材料物性の不確かさ を考慮する。表2－1に材料物性の不確かさを考慮する解析ケースを示す。

緊急時対策建屋の評価フローを図2－4に示す。

表 2－1 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋 減裹	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		－σ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	基本ケースの $0.8 \text { 倍 }$	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相当

図 2－4 緊急時対策建屋の評価フロー

2．4 適用規格•基準等緊急時対策建屋の評価において，適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－（（社）日本建築学会，1999年改定）
－原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会， 2005）（以下「R C－N 規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）

3．地震応答解析による評価方法
緊急時対策建屋の構造強度については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひず み及び最大接地圧が許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力 に対して妥当な安全余裕を有することを確認する。

また，支持機能の維持については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における緊急時対策建屋の許容限界は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，表3－1のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ $\text { 2. } 0 \times 10^{-3}$
	基礎地盤	最大接地圧が地盤の支持力度以下であること を確認	極限支持力度 ${ }^{* 2}$ $11400 \mathrm{kN} / \mathrm{m}^{2}$
保有水平耐力	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有する ことを確認	必要保有水平耐力
基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が支持機能を維持する ための許容限界を超え ないことを確認	せん断ひずみ 2.0×10^{-3}

注記＊1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従することと，また，全体に剛性の高 い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形 が抑えられるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足 していれば，建物•構築物に要求される機能は維持される。
＊2：添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に示す地盤の支持力試験結果に基づき設定する。
＊ 3 ：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

4．応力解析による評価方法
4.1 評価対象部位及び評価方針

緊急時対策建屋の応力解析による評価対象部位は，基礎版とし，S s 地震時 に対して以下の方針に基づき評価を行う。

S s 地震時に対する評価は，3次元FEMモデルを用いた弾性応力解析によるこ ととし，地震力と地震力以外の荷重の組合せ結果，発生する応力が「RC－N規準」に基づき設定した許容限界を超えないことを確認する。

3 次元FEMモデルを用いた弾性応力解析にあたつては，添付書類「VI－2－2－23緊急時対策建屋の地震応答計算書」より得られた結果を用いて，荷重の組合せ を行う。また，断面の評価については，材料物性の不確かさを考慮した断面力 に対して行うこととする。応力解析による評価フローを図 $4-1$ に示す。
添付書類「VI-2-2-23 緊急時対策建屋
の地震応答計算書」

図 4－1 応力解析による評価フロー

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せを用いる。

4．2．1 荷重

（1）固定荷重
固定荷重は建屋自重，機器荷重，配管荷重，積雪荷重，常時土圧荷重及び浮力 とする。なお，積雪量は 43 cm とし，地震荷重と組合せるため，その 0.35 倍の積雪荷重を考慮する。常時土圧荷重は「J E A G 4 6 O 1－1991 追補版」によるも のとし，図 $4-2$ に常時土圧を示す。また，浮力は，地下水位面を地表面 （0．P．62．0m）とし，基礎版に上向きの等分布荷重として入力する。なお，基礎版のはね出し部については，はね出し部の体積に応じた浮力を上向きの等分布荷重として入力する。
（2）積載荷重

積載荷重は，表4－1のとおり設定する。

表 4－1 積載荷重

	積載荷重 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
RF	600
2 F （屋外）	600
2 F （屋内）	800
1 F	800
B1F	800
B2F	800

（3）地震荷重
a．水平地震荷重
水平地震荷重は，基準地震動 S s による地震応答解析結果より設定する。なお，水平地震荷重は材料物性の不確かさを考慮した地震応答解析結果を包絡したもの とする。表 4－2 及び表 4－3 に応力解析で考慮した基準地震動 S s 時の水平地震荷重を示す。

表 4－2 水平地震荷重（せん断力）
（a）NS 方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(\mathrm{A}$ 通り）	166.94
耐震壁 $(\mathrm{E}$ 通り）	166.05

（b）EW方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(1$ 通り）	166.00
耐震壁 $(5$ 通り）	166.74

表 4－3 水平地震荷重（曲げモーメント）
（a）NS 方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(\mathrm{A}$ 通り）	295.90
耐震壁 $(\mathrm{E}$ 通り）	299.13

（b）EW方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(1$ 通り）	295.57
耐震壁 $(5$ 通り）	299.26

b．鉛直地震荷重
鉛直地震荷重は，基準地震動 S s による地震応答解析結果より鉛直震度として設定する。なお，鉛直震度は材料物性の不確かさを考慮した地震応答解析結果を包絡したものとする。表4－4に応力解析で考慮した基準地震動S s 時の鉛直地震荷重を示す。

表 4－4 鉛直地震荷重（鉛直震度）

部位	鉛直震度
耐震壁	0.981
基礎版	0.442

c．地震時土圧荷重
地震時土圧荷重は，常時土圧に地震時増分土圧を加えて算出する。地震時増分土圧は材料物性の不確かさを考慮した地震応答解析結果を基にして「 J E A G 4 6 O 1－1991 追補版」の地震時増分土圧式から加力側増分土圧及び支持側増分土圧を包絡したものとする。図4－2に地震時土圧を示す。

図 4－2 常時土圧及び地震時土圧

4．2．2 荷重の組合せ

荷重の組合せを表4－5に示す。

表 4－5 荷重の組合せ

外力の状態	荷重の組合せ
$\mathrm{S} \mathrm{s} \mathrm{地 震 時}$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

$\begin{array}{ll}\text { G } & \text { ：固定荷重 } \\ \text { P } & \text { ：積載荷重 } \\ \text { S s } & \text { ：地震荷重（地震時土圧荷重を含む）}\end{array}$

4． 3 許容限界

応力解析による評価における緊急時対策建屋の基礎版の許容限界は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，表4－6のとおり設定する。

また，コンクリート，鉄筋の許容応力度を表4－7及び表4－8に示す。

表 4－6 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	機能維持のための考え方	許容限界
－	構造強度を有す ること	基準地震動 S s	基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「R C -N 規準」 に基づく短期許容応力度＊${ }^{*}$
支持 機能＊2	機器•配管系等 の設備を支持す る機能を損なわ ないこと	基準地震動 S s	基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	「 R C -N 規準」 に基づく短期許容応力度＊1

注記 $~$ 1 ：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定すること とし，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

表 $4-7$ コンクリートの許容応力度

設計基準強度 Fc $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん短期 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
	20	1.18

表 4－8 鉄筋の許容応力度

種別	短期	
	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	345	345
SD390	390	390
SD490	490	490

[^0]
4． 4 解析モデル及び諸元

4．4．1 モデル化の基本方針
（1）基本方針
応力解析は， 3 次元 FEM モデルを用いた弾性応力解析とする。解析には，解析 コード「MSCN N S S T R A N 」を用いる。解析コードの検証及び妥当性確認 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

基礎版については，0．P． $45.5 \mathrm{~m} ~ 0$ ．P． 51.5 m をモデル化する。 基礎版のモデル図 を図4－3に示す。
（2）使用要素
解析モデルに使用する FEM 要素は，基礎版についてはシェル要素とする。また，基礎版より立ち上がっている耐震壁については，はり要素として剛性を考慮する。解析モデルの節点数は867，要素数は810である。
（3）境界条件
3 次元 FEM モデルの基礎版底面に，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に示す地盤ばねを離散化して，水平方向及び鉛直方向のばねを設 ける。3 次元 FEM モデルの水平方向のばねについては，地震応答解析モデルのス ウェイばねを，鉛直方向のばねについては，地震応答解析モデルのロッキングば ねを基に設定を行う。

なお，基礎版底面の地盤ばねについては，引張力が発生した時に浮上りを考慮 する。また，基礎版周囲の側面に地盤ばねを設ける。

図 4－3 基礎版の解析モデル図

4．4．2 解析諸元

使用材料の物性値を表4－9に示す。

表 4－9 コンクリートの物性値

部 位	設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\left.\mathrm{E} \mathrm{(N/mm}^{2}\right)$	ポアソン比 v
基礎版	30.0	2.44×10^{4}	0.2

4． 5 評価方法

4．5．1 応力解析方法

緊急時対策建屋の基礎版について，S s 地震時に対して 3 次元 FEM モデルを用 いた弾性応力解析を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重ケースによる応力を組み合わせて求める。

注記＊：計算上の座標軸を基準として，NS 方向は $\mathrm{S} \rightarrow \mathrm{N}$ 方向の加力， EW方向は $\mathrm{E} \rightarrow \mathrm{W}$ 方向の加力，鉛直方向は下向きの加力を記載して いる。
（2）荷重の組合せケース
荷重の組合せケースを表4－10に示す。
水平地震力と鉛直地震力の組合せは，「原子力発電所耐震設計技術規程 J E A C 4 6 0 1－2008（（社）日本電気協会，2008 年）」を参考に，組合せ係数法（組合せ係数は1．0と0．4）を用いるものとする。

表 4－10 荷重の組合せケース

外力の状態	ケース No．	荷重の組合せ
S s 地震時	1	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{sud}$
	2	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sns}+0.4 \mathrm{~S} \mathrm{sud}$
	3	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	4	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sns}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	5	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{swe}+0.4 \mathrm{~S} \mathrm{sud}$
	6	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{sud}$
	7	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{we}^{+}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{DU}$
	8	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	9	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{sud}$
	10	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sns}+1.0 \mathrm{~S}$ sud
	11	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	12	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sns}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	13	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{swe}+1.0 \mathrm{~S}$ s ud
	14	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{sud}$
	15	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{we}^{+}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	16	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{DU}$

（3）荷重の入力方法
a．地震荷重
地震荷重は，上部構造物の基礎版への地震時反力を考慮する。基礎版底面に生 じる反力が，基準地震動 S s に対する地震応答解析結果と等価になるように設定 する。基礎版内に作用する荷重は，S s 地震時の上部構造による入力荷重と基礎版底面に発生する荷重の差をFEM モデルの各要素の大きさに応じて分配し，節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の荷重については，FEM モデルの各節点又は各要素に集中荷重又 は分布荷重として入力する。

4．5．2 断面の評価方法

（1）軸力及び曲げモーメントに対する断面の評価方法
各断面は，軸力，曲げモーメント及び面内せん断力を受ける鉄筋コンクリート造長方形仮想柱として算定する。 S s 地震時において，軸力，曲げモーメント及 び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C -N 規準」に基づき，評価対象部位に生じる面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認する。

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5_{\mathrm{w}} \mathrm{f}_{\mathrm{t}}(\mathrm{p} \mathrm{w}-0.002)\right\} \\
& \text { ここで, } \\
& \mathrm{Q}_{\mathrm{A}} \text { : 許容面外せん断力 (N) } \\
& \mathrm{b} \text { : 断面の幅 (mm) } \\
& \text { j: 断面の応力中心間距離で, 断面の有効せいの } 7 / 8 \text { 倍の値 (mm) } \\
& \alpha \text { : せん断スパン比 } \mathrm{M} / ~(\mathrm{Q} \cdot \mathrm{~d}) \text { による割増し係数 } \\
& \text { (2を超える場合は } 2 \text {, } 1 \text { 未満の場合は } 1 \text { とする。) } \\
& \alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{~d})+1} \\
& \text { M : 曲げモーメント (} \mathrm{N} \cdot \mathrm{~mm} \text {) } \\
& \text { Q : せん断力 (} \mathrm{N} \text {) } \\
& \mathrm{d} \text { : 断面の有効せい (mm) } \\
& \mathrm{f}_{\mathrm{s}} \text { : コンクリートの短期許容せん断応力度で, 表 4-6に示す値 }
\end{aligned}
$$ （ $\mathrm{N} / \mathrm{mm}^{2}$ ）

w f t ：せん断補強筋の短期許容引張応力度で，表 4－7 に示す値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w ：せん断補強筋比で，次式による。（0．002 以上とする。＊）

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{w}} & =\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b} \cdot \mathrm{x}} \\
\mathrm{a}_{\mathrm{w}} & : \text { せん断補強筋の断面積 }\left(\mathrm{mm}^{2}\right) \\
\mathrm{x} & : \text { せん断補強筋の間隔 }(\mathrm{mm})
\end{array}
$$

5．地震応答解析による評価結果
5.1 耐震壁のせん断ひずみの評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の各層の最大応答せん断ひ ずみが許容限界（2．0×10 0^{-3} ）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは 0.276×10^{-3}（NS方向， S s－D 2，ケース 5 ，要素番号（1））であり，許容限界（2．0×10 ${ }^{-3}$ ）を超えな いことを確認した。耐震壁の最大応答せん断ひずみ一覧を表5－1に示す。各表 において，最大応答せん断ひずみのうち最も大きい値について，せん断スケル トンカーブ上にプロットした図を図5－1に示す。

表5－1 耐震壁の最大応答せん断ひずみ
（a）NS方向

0．P． (m)	階	地震応答解 析モデルの 要素番号	最大応答せん断 ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$69.4 \sim 75.9$	2 F	1	0.276	2.0
$62.2 \sim 69.4$	1 F	2	0.264	2.0
$57.3 \sim 62.2$	B1F	3	0.257	2.0
$51.5 \sim 57.3$	B2F	4	0.271	2.0
$69.4 \sim 75.9$	2 F	5	0.274	2.0
$62.2 \sim 69.4$	1 F	6	0.262	2.0
$57.3 \sim 62.2$	B1F	7	0.256	2.0
$51.5 \sim 57.3$	B2F	8	0.271	2.0

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を示す。
（b）EW方向

0．P． (m)	階	地震応答解 析モデルの 要素番号	最大応答せん断 ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$69.4 \sim 75.9$	2 F	1	0.275	2.0
$62.2 \sim 69.4$	1 F	2	0.273	2.0
$57.3 \sim 62.2$	B1F	3	0.256	2.0
$51.5 \sim 57.3$	B2F	4	0.271	2.0
$69.4 \sim 75.9$	2 F	5	0.270	2.0
$62.2 \sim 69.4$	$1 F$	6	0.270	2.0
$57.3 \sim 62.2$	B1F	7	0.256	2.0
$51.5 \sim 57.3$	B2F	8	0.271	2.0

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を示す。

（a）NS方向（S s－D 2，ケース5，要素番号（1））

（b）EW方向（S s－D 2，ケース 5 ，要素番号（1））

図5－1 せん断スケルトンカーブ上の最大応答せん断ひずみ

5.2 接地圧の検討結果

S s 地震時の最大接地圧が，地盤の極限支持力度（ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えない ことを確認する。

材料物性の不確かさを考慮したS s 地震時の最大接地圧は $744 \mathrm{kN} / \mathrm{m}^{2}$ であるこ とから，地盤の極限支持力度を超えないことを確認した。

地震時の最大接地圧を表5－2に示す。

	NS 方向	EW 方向
検討ケース	$\begin{aligned} & \mathrm{S} \text { s - D } 3, \\ & \text { ケース } 1 \end{aligned}$	$\begin{gathered} \mathrm{S} s-\mathrm{D} 3, \\ \text { ケース } 1 \end{gathered}$
$\begin{gathered} \text { 鉛直力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	366.56	366． 56
転倒モーメント $\mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{~m}\right)$	713.07	711.93
最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	744	743

5． 3 保有水平耐力の評価結果

保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有する ことを確認する。なお，各部材の保有水平耐力 Q_{u} は，添付書類「VI－2－2－23緊急時対策建屋の地震応答計算書」に示すせん断力のスケルトン曲線の Q_{3} に基づき算出する。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 Q_{u} の比較結果を表5－3に示す。保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有することを確認した。なお，必要保有水平耐力 $Q_{u n}$ に対する保有水平耐力 Q_{u} の比は最小 で 6.51 である。

表 5－3 必要保有水平耐力 Q_{un} と保有水平耐力 Q_{u} の比較結果
（a）NS 方向

0．P． (m)	必要保有水平耐力 $\mathrm{Qun}_{\mathrm{n}}(\mathrm{kN})$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}(\mathrm{kN})$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
$75.9 \sim 69.4$	29576	192505	6.51
$69.4 \sim 62.2$	60038	516753	8.61
$62.2 \sim 57.3$	83181	713943	8.58
$57.3 \sim 51.5$	103088	850597	8.25

（b）EW方向

0．P． (m)	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}(\mathrm{kN})$	$\mathrm{Q}_{\mathrm{u} /} / \mathrm{Q}_{\mathrm{un}}$
$75.9 \sim 69.4$	29620	193136	6.52
$69.4 \sim 62.2$	60087	512501	8.53
$62.2 \sim 57.3$	83181	716237	8.61
$57.3 \sim 51.5$	103088	853422	8.28

6．応力解析による評価結果

基礎版の断面の評価結果を以下に示す。また，緊急時対策建屋の基礎版の配筋領域図を図6－1に，配筋一覧を表6－1に示す。

断面の評価結果を記載する要素を，以下のとおり選定する。
軸力，曲げモーメント及び面内せん断力に対する評価については，配筋量に対 する必要鉄筋量の割合が最大となる要素を選定し，面外せん断力に対する評価に ついては，短期許容せん断力に対する面外せん断力の割合が最大となる要素をそ れぞれ選定する。

選定した要素の位置を図6－2に，評価結果を表6－2に示す。
S s 地震時において，軸力，曲げモーメント及び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認した。また，面外せん断力が短期許容せん断力を超えないことを確認した。

表 6－1 基礎版の配筋一覧
（a）主筋

領域	上ば筋		下ば筋	
	方向	配筋	方向	配筋
A	NS	2－D38＠200	NS	2－D38＠200
	EW	2－D38＠200	EW	2－D38＠200
B	NS	3－D38＠200	NS	3－D38＠200
	EW	3－D38＠200	EW	3－D38＠200
C	NS	4－D38＠200	NS	4－D38＠200
	EW	4－D38＠200	EW	4－D38＠200
D	NS	8－D38＠200	NS	8－D38＠200
	EW	8－D38＠200	EW	8－D38＠200

注記：主筋はすべてSD490
（b）せん断補強筋

領域	配筋
a	D38＠400 $\times 200($ SD390 $)$
b	D32＠600 $\times 200($ SD390 $)$
c	D19＠600 $\times 200($ SD345 $)$

（a）NS 方向主筋

（b）EW方向主筋

図6－1（1）基礎版の配筋領域図

（c）せん断補強筋

図 6－1（2）基礎版の配筋領域図

要素番号： 638

図 6－2 最大検定比発生位置

表6－2 評価結果

	評価項目			要素 番号	荷重の 組合せ ケース	解析 結果	許容値
	軸力 $+$曲げ	$\begin{gathered} \text { NS } \\ \text { 方向 } \end{gathered}$	必要鉄筋量／配筋量	171	3	0.31	1． 00
	面内 せん断力	$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	必要鉄筋量／配筋量	78	8	0.31	1． 00
		$\begin{gathered} \text { NS } \\ \text { 方 向 } \end{gathered}$	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	247	1	0． 62	2． 36
M		$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	638	6	0.62	2.36
\bigcirc							
H I I I \vdots							
（a）							
\bigcirc							

VI－2－2－25 排気筒基礎の地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2． 3 解析方針 8
2.4 適用規格•基準等 10
3．解析方法 11
3.1 設計に用いる地震波 11
3.2 地震時荷重算出断面 26
3.3 解析方法 28
3．3．1 構造部材 28
3．3．2 地盤物性及び材料物性の不確かさ 28
3．3．3 減衰定数 30
3．3．4 地震応答解析の解析ケースの選定 31
3.4 荷重及び荷重の組合せ 34
3．4．1 耐震評価上考慮する状態 34
3．4．2 荷重 34
3．4．3 荷重の組合せ 35
3.5 入力地震動 36
3． 6 解析モデル及び諸元 51
3．6．1 解析モデル 51
3．6．2 使用材料及び材料の物性値 54
3．6．3 地盤の物性値 54
3．6．4 地下水位 55
4．解析結果 56
4.1 地震応答解析結果 56

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく排気筒基礎の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

2．基本方針
2.1 位置

排気筒の設置位置を図2－1に示す。

2.2 構造概要

排気筒は，地上からの高さ 160.0 m であり，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身2本を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第3号機排気筒で支持構造物を共有する集合方式である。排気筒の基礎は，フーチング基礎形式の鉄筋コンクリート造である。基礎版の形状 は 38.0 m （NS）$\times 38.0 \mathrm{~m}$（EW），厚さ 5.0 m であり， 0. P．＊${ }^{*}-4.0 \mathrm{~m}$ で岩盤上に設置されてい る。筒身部を支える柱（以下「筒身柱」という。）は，平面形状 $14.0 \mathrm{~m} \times 14.0 \mathrm{~m}$ ，高さ 14． 3 m であり，鉄塔部を支える 4 本の柱（以下「鉄塔柱」という。）は，平面形状 5.0 m $\times 5.0 \mathrm{~m}$ ，高さ 14.3 m である。それぞれの柱は，断面形状 $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$ のつなぎはりでつ ながれている。これらの筒身柱，鉄塔柱，つなぎはり及び基礎版で囲まれた基礎の内側は，コンクリートで充填されている（以下「充填コンクリート」という。）。

排気筒の概要図及び概略平面図を図2－2 及び図2－3 に，排気筒基礎の平面図を図 $2-4$ ，断面図を図 $2-5$ 及び図 $2-6$ に示す。

注記 $*: ~ 0 . P$ ．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0． 74 m である。

図 2－2 排気筒の概要図

A－A断面（第4支持点）

O 2 （3） $\mathrm{VI}-2-2-25 \quad \mathrm{R} \mathrm{O}$

オイルダンパ設置

B－B断面

E－E断面

F－F断面（第2支持点）

$\mathrm{G}-\mathrm{G}$ 断面

$\underline{H — H ⿰ ⿺ 𠃊 ⿻ 丷 木 斤 斤 斤 斤 . ~(\text { 面（第1支持点）}}$

I－I断面（基部）

図 2－3 排気筒の概略平面図

図 2－4 排気筒基礎平面図（単位：m）

図 2－5 排気筒基礎断面図（A－A 断面，NS 断面）（単位：m）

図 2－6 排気筒基礎断面図（B－B 断面，EW 断面）（単位：m）

2.3 解析方針

排気筒基礎の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。

図 2－7 に排気筒基礎の地震応答解析フローを示す。
地震応答解析は，「3．2 地震時荷重算出断面」に示す断面において，「3．3 解析方法」に基づき二次元有限要素法による時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．4 荷重及び荷重の組合せ」及び「3．6解析モデル及び諸元」に示す条件及び地震応答解析モデルを用い，「3．5 入力地震動」 により設定する入力地震動を用いて実施する。

排気筒基礎の地震応答解析による応答加速度は，排気筒の入力地震動及び機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び接地圧は，排気筒基礎の耐震評価に用いる。

図 2－7 排気筒基礎の地震応答解析フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法•同施行令
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補
- 1984 （（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1999）
- 原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005制定）

3．解析方法

3.1 設計に用いる地震波

排気筒基礎の地震応答解析に用いる入力地震動は，解放基盤表面で定義される地震動を一次元重複反射理論により地震応答解析モデル底面位置で評価したものを用いる。解放基盤表面で定義される地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す基準地震動 S s 及び弾性設計用地震動 S d を用 いる。基準地震動 S s 及び弾性設計用地震動 S d の加速度時刻歴波形及び加速度応答 スペクトルを図 3－1～図3－4に示す。

図 3－1（1）加速度時刻歴波形（基準地震動 S s，水平方向）（ $1 / 3$ ）

図 3－1（2）加速度時刻歴波形（基準地震動 S s，水平方向）（2／3）

図 3－1（3）加速度時刻歴波形（基準地震動 S s，水平方向）（3／3）

図 3－1（4）加速度時刻歴波形（基準地震動 S s，鉛直方向）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f） S s -F 3
図 3－1（5）加速度時刻歴波形（基準地震動 S s，鉛直方向）（2／3）

図 3－1（6）加速度時刻歴波形（基準地震動 S s，鉛直方向）（3／3）

図 3－2（1）加速度応答スペクトル（基準地震動 S s，水平方向）

図 3－2（2）加速度応答スペクトル（基準地震動 S s，鉛直方向）

図 3－3（1）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（1／3）

（e）$\quad \mathrm{Sd}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ d－F 3
図 3－3（2）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（2／3）

図 3－3（3）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（3／3）

図 3－3（4）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（1／3）

図 3－3（5）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（2／3）

図 3－3（6）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（3／3）

減衰定数： 0.05

図 3－4（1）加速度応答スペクトル（弾性設計用地震動 S d，水平方向）

図 3－4（2）加速度応答スペクトル（弾性設計用地震動 S d，鉛直方向）

3.2 地震時荷重算出断面

排気筒基礎の地震時荷重算出断面位置を図 3－5に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，基礎の中心を通る南北方向のNS断面（図中の A－A断面）及び東西方向の EW 断面（図中の B－B 断面）の両断面とする。地震時荷重算出用地質断面図を図3－6及び図3－7に示す。

図 3－5 排気筒基礎の地震時荷重算出断面位置図

図 3－6 排気筒基礎 地震時荷重算出用地質断面図（NS 断面）

図 3－7 排気筒基礎 地震時荷重算出用地質断面図（EW 断面）

3．3 解析方法

排気筒基礎の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」の うち，「2．1 建物•構築物」に示す解析方法及び解析モデルを踏まえて実施する。地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 又は弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動 の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

NS 断面において隣接構造物となる排気筒連絡ダクト，第 3 号機排気筒連絡ダクト は，排気筒基礎の耐震評価において保守的な評価となるよう盛土としてモデル化する。排気筒基礎のモデル化は，筒身柱，鉄塔柱，つなぎはり，基礎版及び充填コンクリ ートの剛性を，構造物中心位置において各構造部材と等価な剛性を有する線形はり要素と等価な質量を有する質点でモデル化する。排気筒は基礎の上端に質点として考慮 する。

また，地盤については，動的変形特性のひずみ依存性を適切に考慮できるよう平面 ひずみ要素にてモデル化する。地震応答解析については，解析コード「TDAP Ver3．11」 を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．3．1 構造部材

鉄筋コンクリート部材は，線形はり要素でモデル化する。排気筒は質点でモデ ル化する。
3.3 .2 地盤物性及び材料物性の不確かさ

地盤物性及び材料物性の不確かさの影響を考慮するため，表 3－1 に示す解析 ケースを設定する。

排気筒基礎は，岩盤上に直接構築され，周囲が盛土で埋戻されており，盛土等 の土圧が主たる荷重となる他，基礎の質量が大きく，作用する慣性力も主たる荷重となることから，すべての地盤のせん断弾性係数のばらつきを考慮する。

せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び③を実施する ことにより地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケー ス④を実施することにより，材料物性のばらつきの影響を考慮する。

なお，排気筒基礎は，許容応力度法により設計を行っており，十分に裕度を確保した設計としていることから，材料物性のばらつきを考慮した解析ケース（4）に よる耐震評価は実施せず，機器•配管系に対する応答加速度抽出においては，材料物性のばらつきを考慮した解析ケース④を実施する。

排気筒に対する応答加速度抽出においては，排気筒応答への影響の大きい地震

動に対してばらつきを考慮した解析を実施することとし，基本ケースの地震応答解析の照査値が最大となる地震動を基準地震動S s から選定する。

なお，排気筒に対する材料物性のばらつきを考慮した解析ケース（4）は，排気筒 に対する影響が少ないことから地盤のせん断弾性係数のばらつきを考慮した解析 ケース（2）及び③）を考慮する。

詳細な解析ケースの考え方は，「3．3．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	材料物性 （コンクリート） （ $\mathrm{E}_{0}:$ ヤング係数）	地盤物性
		旧表土，盛土，D級岩盤 C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B 級岩盤 （G：せん断弹性係数）
$\begin{gathered} \text { ケース①) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma$
ケース③）	設計基準強度	平均値－1 σ
ケース（4）	実強度に基づく圧縮強度＊	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．3．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰を解析モデル全体に与える。固有値解析結果に基づき設定した α, β を表 3 － 2 に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表 3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

地震時荷重算出断面	α	β
NS 断面	7.113×10^{-1}	4.218×10^{-4}
EW 断面	4.543×10^{-1}	6.604×10^{-4}

3．3．4 地震応答解析の解析ケースの選定

（1）排気筒基礎の耐震評価における解析ケース
排気筒基礎の耐震評価においては，すべての基準地震動 S s の正位相及び水平動の位相反転に対し，解析ケース（1）（基本ケース）を実施する。解析ケース（1）に おいて，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごと に照査値が 0.5 以上となる照査項目に対して，最も厳しい地震動を用いて，表 3 －1 に示す解析ケース（2）及び（3）を実施する。耐震評価における解析ケースを表3 -3 に示す。

表 3－3 排気筒基礎の耐震評価における解析ケース

解析ケース			ケース（1）	ケース②	ケース③
			基本ケース	地盤物性のばらつ き（ +1 o）を考慮した解析ケース	地盤物性のばらつ き（ -1σ ）を考慮した解析ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ
材料物性			設計基準強度	設計基準強度	設計基準強度
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\mathrm{Ss}-\mathrm{D} 1$	＋＋＊	\bigcirc	基準地震動 S s（7 波）に水平動の位相反転を考慮した地震動（7 波）を加 えた全 14 波により照査を行ったケー ス（1）（基本ケース）の結果から，曲げ・軸力系の破壊，せん断破壊及び基礎地盤の支持力照査の各照査項目ごと に照査値が 0.5 以上となる照査項目 に対して，最も厳しい（許容限界に対 する裕度が最も小さい）地震動を用 いてケース（2）～（3）を実施する。 すべての照査項目の照査值がいずれ も 0.5 未満の場合は，照査値が最も厳しくなる地震動を用いてケース（2） ～（3）を実施する。	
		－＋＊	\bigcirc		
	S s－D 2	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－D 3	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－F 1	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－F 2	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－F 3	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－N 1	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		

注記＊：耐震評価にあたっては，原子力発電所屋外重要土木構造物の耐震性能照査指針• マニュアル（土木学会 原子力土木委員会，2005年6月）（以下「土木学会マニ ュアル」という。）に従い，水平方向の位相反転を考慮する。地震動の位相につ いて，++ の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケ ースを示す。
（2）排気筒に対する応答加速度抽出のための解析ケース
排気筒に対する応答加速度抽出においては，すべての基準地震動 S s の正位相 に対し，解析ケース①（基本ケース）を実施する。解析ケース①において，排気筒の筒身，主柱材それぞれの断面算定結果に対して，最も厳しい地震動を用いて，表 3－1に示す水平動の位相反転を考慮した解析ケース（1），及び解析ケース（2），（3） を実施する。排気筒の応答加速度抽出における解析ケースを表 $3-4$ に示す。

表 3－4 排気筒の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース（2）	ケース③
			基本ケース	地盤物性のばらつ き（ $+1 \sigma$ ）を考慮 した解析ケース	地盤物性のばらつ き（－1 \quad ）を考慮 した解析ケース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ
材料物性			設計基準強度	設計基準強度	設計基準強度
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 1 \\ & \mathrm{~S} \text { d }-\mathrm{D} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 2 \\ & \mathrm{~S} \text { d }-\mathrm{D} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle^{* 2}$	$\triangle * 2$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} d-\mathrm{D} 3 \end{aligned}$	$+*^{* 1}$	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & S \mathrm{~s}-\mathrm{F} 1 \\ & \mathrm{~S} d-\mathrm{F} 1 \end{aligned}$	＋＋＊1	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-+* 1$	$\triangle^{* 2}$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{Sd}-\mathrm{F} 3 \end{aligned}$	$+*^{* 1}$	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & S \mathrm{~s}-\mathrm{N} 1 \\ & \mathrm{~S} \text { d }-\mathrm{N} 1 \end{aligned}$	＋＋＊1	\bigcirc	$\triangle^{* 2}$	$\triangle^{* 2}$
		$-{ }^{* 1}$	$\triangle^{* 2}$		

注記＊1：耐震評価にあたっては，土木学会マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：\triangle については，正位相による解析ケース（1）において，排気筒の筒身，主柱材それ ぞれの断面算定結果が最も厳しい地震動を用いる。なお，S d の評価は，S s の評価結果が最も厳しくなる地震動について，地盤物性及び材料物性の不確かさ を考慮する。
（3）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮と して解析ケース（1）に加え，表3－1に示す解析ケース（2）～④を実施する。機器•配管系の応答加速度抽出における解析ケースを表3－5に示す。

表 3－5 機器•配管系の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース（2）	ケース③）	ケース（4）
			基本ケース	地盤物性のば らつ き（＋ 1 o）を考慮し た解析ケース	地盤物性のば らつき（－ 1 o ）を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考慮した解析ケ ース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊${ }^{2}$
地震動位相	$\begin{aligned} & S s-D 1 \\ & S d-D 1 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 2 \\ & \mathrm{~S} d-\mathrm{D} 2 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} d-\mathrm{D} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \mathrm{~s}-\mathrm{F} 1 \\ & \mathrm{~S} d-\mathrm{F} 1 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{Sd}-\mathrm{F} 3 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{N} 1 \\ & \mathrm{~S} \mathrm{~d}-\mathrm{N} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記＊ 1 ：地震動の位相について，++ の左側は水平動，右側は鉛直動を表す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.4 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「V－2－1－9 機能維持の基本方針」に基づき設定する。

3．4．1 耐震評価上考慮する状態

排気筒基礎の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただ し，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
固定荷重に対して，積雪荷重が十分に小さいことから考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．4．2 荷重

排気筒基礎の地震応答解析において考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，充填コンクリート自重，排気筒荷重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載物はないため，積載荷重は考慮しない。
（3）積雪荷重（ P_{s} ）
固定荷重に対して，非常に小さいことから積雪荷重は考慮しない。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（S d）
弾性設計用地震動 S d による荷重を考慮する。

3．4．3 荷重の組合せ
荷重の組合せを表3－6に示す。

表 3－6 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{S} \mathrm{d}$

注記 $*: ~$ 排気筒及び機器•配管系の耐震設計に用いる。

G ：固定荷重
S s ：地震荷重（基準地震動 S s ）
S d ：地震荷重（弾性設計用地震動 S d）

3.5 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．1建物•構築物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。な お，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用 いる。

図 $3-8$ に入力地震動算定の概念図を，図 $3-9$ 及び図 $3-10$ に基準地震動 S s の加速度時刻歴波形及び加速度応答スペクトルを，図3－11及び図3－12に弾性設計用地震動 S d の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「SHAKE Ver1．6」を使用する。解析コードの検証及び妥当性確認の概要に ついては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 3－8 入力地震動算定の概念図

図 3－9（1）入力地震動の加速度時刻歴波形
（基準地震動 S s，水平成分）（ $1 / 3$ ）

図 3－9（2）入力地震動の加速度時刻歴波形
（基準地震動 S s，水平成分）（2／3）

図 3－9（3）入力地震動の加速度時刻歴波形
（基準地震動 S s ，水平成分）（3／3）

図 3－9（4）入力地震動の加速度時刻歴波形
（基準地震動 S s，鉛直成分）（ $1 / 3$ ）

図 3－9（5）入力地震動の加速度時刻歴波形
（基準地震動 S s，鉛直成分）（2／3）

図 3－9（6）入力地震動の加速度時刻歴波形
（基準地震動 S s ，鉛直成分）（3／3）

図 3－10（1）入力地震動の加速度応答スペクトル
（基準地震動 S s ，水平成分）

図3－10（2）入力地震動の加速度応答スペクトル
（基準地震動 S s ，鉛直成分）

図 3－11（1）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d ，水平成分）（ $1 / 3$ ）

図 3－11（2）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，水平成分）（2／3）

図 3－11（3）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，水平成分）（3／3）

図 3－11（4）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（ $1 / 3$ ）

（e） $\mathrm{S} d-\mathrm{F} 2$

（f）S d－F 3
図 3－11（5）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（2／3）

図 3－11（6）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（3／3）

図 3－12（1）入力地震動の加速度応答スペクトル
（弾性設計用地震動 S d，水平成分）

図 3－12（2）入力地震動の加速度応答スペクトル
（弾性設計用地震動 S d，鉛直成分）
3.6 解析モデル及び諸元

3．6．1 解析モデル
排気筒基礎の地震応答解析モデルを図 $3-13 \sim$ 図 $3-15$ に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件 の影響が地盤及び構造物の応力状態に影響を及ぼさないよう，十分に広い領域と する。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
筒身柱，鉄塔柱，つなぎはり及び基礎版の剛性を，構造物中心位置において各構造部材と等価な剛性を有する線形はり要素と等価な質量を有する質点でモデル化する。排気筒は基礎の上端に質点として考慮する。また，基礎の構造部材と地盤の相互作用を考慮するため，構造部材に対して十分に剛な断面性能を有する仮想剛梁を水平方向に配置する。
（4）地盤のモデル化
D級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土•旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひず み要素でモデル化する。充填コンクリートは，構造物中心位置での線形はり要素 に質量と剛性を考慮する。
（5）隣接構造物のモデル化
NS 方向において隣接構造物となる排気筒連絡ダクト，第 3 号機排気筒連絡ダク トは，排気筒基礎の耐震評価において保守的な評価となるよう盛土としてモデル化する。
（6）ジョイント要素の設定
地震時の「地盤と構造物」との接合面における剥離及びすべりを考慮するため， これらの接合面にジョイント要素を設定する。

図 3－13 排気筒基礎の地震応答解析モデル図（NS 断面）

図 3－14 排気筒基礎の地震応答解析モデル図（EW 断面）

$\left[\begin{array}{r}\text { 凡例 } \\ - \\ \text {－}\end{array}\right.$

質点
（質点間は線形梁要素）

- —：仮想剛梁
- —：ジョイント要素

図 3－15 排気筒基礎の地震応答解析モデル図（拡大図）

3．6．2 使用材料及び材料の物性値
構造物の使用材料を表3－7に示す。

表 3－7 使用材料の材料定数

使用材料	ヤング係数 E^{*} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	ポアソン比	備考

注記＊：括弧内は，既設構造物のコア採取による圧縮強度試験の結果に基づくヤ

3．6．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

3．6．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い，地表面に設定する。設計用地下水位の一覧を表 $3-8$ に，設計用地下水位を図 $3-16$ 及び図 $3-17$ に示す。

表 3－8 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
排気筒基礎	NS 断面	0. P． 14.8 m
	EW 断面	0. P． 14.8 m

4^{s}
$\xrightarrow{\mathrm{N}}$

第1速度層
第2速度層

図 3－16 設計用地下水位（NS 断面）

図 3－17 設計用地下水位（EW 断面）

4．解析結果

4． 1 地震応答解析結果
基本ケースの地震応答解析結果を示す。排気筒基礎のNS 断面及びEW 断面の基準地震動S s による最大応答加速度を図 4－1～図4－4に，弾性設計用地震動Sdによる最大応答加速度を図4－5及び図4－6に示す。

また，排気筒基礎地盤の支持性能評価に用いる接地圧を表4－1 に示す。

（a）水平方向

$\mathrm{Ss}-\mathrm{D} 1$	$\mathrm{Ss}-\mathrm{D} 2$	Ss－D3	Ss－F1	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$
	－	－－	\square	\square	\square	－
969	1075	968	833	868	1026	828
919	1024	843	792	814	978	814
869	964	809	753	776	908	810
806	863	735	673	740	832	787
807	920	683	663	851	787	853

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	－－	－－－	\square	－	－	－
644	661	715	419	449	702	390
619	649	694	416	443	693	378
602	628	656	409	432	671	371
565	570	562	386	404	627	347
548	550	499	369	385	596	330

（b）鉛直方向

図 4－1 最大応答加速度（基準地震動 S s $(++)$ ，NS 断面）

（a）水平方向

（b）鉛直方向

図 4－2 最大応答加速度（基準地震動 S s（ -+ ），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	ーー－	－	\square	\square	\square	－
732	696	723	419	479	584	415
725	686	707	416	477	577	411
716	666	672	409	472	563	403
688	616	591	389	458	524	381
666	580	549	373	445	493	363

（b）鉛直方向

図 4－3 最大応答加速度（基準地震動 S s $(++)$ ，EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
－	－－	－－	－	\square	－	－
1111	1272	1037	973	1019	1024	872
1058	1146	962	898	945	972	863
1011	1098	872	804	901	919	835
975	994	776	733	816	834	797
936	909	742	694	847	865	897

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	ーー－	－${ }^{-}$	\square	－	－	－
744	722	764	427	444	560	415
739	716	747	424	440	551	411
726	700	714	418	435	530	403
694	657	627	400	427	479	382
671	622	567	385	421	444	367

（b）鉛直方向

図 4－4 最大応答加速度（基準地震動 S s $(-+)$ ，EW 断面）

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	ーーー	－－	\square	－	－	－
569	644	580	432	435	532	416
540	622	509	405	407	506	410
512	590	484	380	393	474	404
464	546	427	336	365	409	387
454	682	463	317	351	438	375

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
\square	－－－	－．－	－	－	－	－
370	381	416	212	222	342	194
361	375	405	209	219	339	192
350	362	381	207	214	333	187
330	331	325	196	200	308	175
319	309	293	187	190	294	167

（b）鉛直方向

図 4－5 最大応答加速度（弾性設計用地震動 $\mathrm{S} \mathrm{d}(++)$ ，NS 断面）

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－	－－		－	－	
689	834	635	467	533	597	440
646	751	568	419	499	545	430
605	663	506	371	466	521	419
576	579	440	365	419	473	404
561	549	431	379	435	435	403

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－－－	－．		\square	－	
444	400	420	212	240	294	199
440	394	411	210	237	291	197
431	383	392	206	232	283	193
410	355	351	196	218	264	181
395	334	318	188	209	249	173

（b）鉛直方向

図 4－6 最大応答加速度（弾性設計用地震動 S d（＋＋），EW 断面）

表 4－1（1）基準地震動 S s による地震応答解析結果に基づく接地圧（1／2）

地震動		最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right)$
S s－D 1	$++$	2550	1． 82
	－＋	2840	1． 82
S s－D 2	＋＋	2870	1． 84
	$-+$	3260	2.03
S s－D 3	＋＋	2450	1.58
	$-+$	2290	1.50
S s－F 1	＋＋	2250	1.65
	－＋	2290	1.58
S s－F 2	＋＋	2280	1． 59
	－＋	2380	1.63
S s－F 3	＋＋	2650	1.83
	－＋	2860	1． 62
S s－N 1	$++$	2120	1.53
	$-+$	1780	1． 41

表 4－1（2）基準地震動 S s による地震応答解析結果に基づく接地圧（2／2）

VI－2－2－26 排気筒基礎の耐震性についての計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2．3 評価方針 6
2.4 適用規格•基準等 9
3．地震応答解析による評価方法 10
4．応力解析による評価方法 11
4．1 評価対象部位及び評価方針 11
4．2 荷重及び荷重の組合せ 13
4．2．1 荷重 13
4．2．2 荷重の組合せ 18
4．3 許容限界 19
4． 4 解析モデル及び諸元 21
4．4．1 モデル化の基本方針 21
4．4．2 解析諸元 23
4.5 評価方法 24
4．5．1 応力解析方法 24
4．5．2 断面の評価方法 26
5．評価結果 29
5.1 地震応答解析による評価結果 29
5.2 応力解析による評価結果 31

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，排気筒基礎の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析及び応力解析により評価を行う。

排気筒基礎は，設計基準対象施設においては「Sクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

以下，それぞれの分類に応じた耐震評価を示す。

2．基本方針

2.1 位置

排気筒基礎を含む排気筒の設置位置を図2－1に示す。

2.2 構造概要

排気筒は，地上からの高さ 160.0 m であり，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身2本を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第3号機排気筒で支持構造物を共有する集合方式である。排気筒の基礎は，フーチング基礎形式の鉄筋コンクリート造である。基礎版の形状 は 38.0 m （NS）$\times 38.0 \mathrm{~m}$（EW），厚さ 5.0 m であり， 0. P．＊${ }^{*}-4.0 \mathrm{~m}$ で岩盤上に設置されてい る。筒身部を支える柱（以下「筒身柱」という。）は，平面形状 $14.0 \mathrm{~m} \times 14.0 \mathrm{~m}$ ，高さ 14． 3 m であり，鉄塔部を支える 4 本の柱（以下「鉄塔柱」という。）は，平面形状 5.0 m $\times 5.0 \mathrm{~m}$ ，高さ 14.3 m である。それぞれの柱は，断面形状 $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$ のつなぎはりでつ ながれている。これらの筒身柱，鉄塔柱，つなぎはり及び基礎版で囲まれた基礎の内側は，コンクリートで充填されている（以下，「充填コンクリート」という。）。排気筒基礎の平面図を図2－2 に，断面図を図 $2-3$ 及び図 $2-4$ に示す。

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0．74m である。

図 2－2 排気筒基礎平面図（単位：m）

図 2－3 排気筒基礎断面図（A－A 断面，NS 断面）（単位：m）

図 2－4 排気筒基礎断面図（B－B 断面，EW 断面）（単位：m）

2． 3 評価方針

排気筒基礎の評価対象部位は，筒身柱，鉄塔柱，つなぎはり及び基礎版とし，設計基準対象施設及び重大事故等対処施設としての評価においては，基準地震動 S s によ る地震力に対する評価（以下「 S s 地震時に対する評価」という。）を行うこととする。 なお，排気筒の荷重は，地震時における基礎反力と風荷重が作用した時の基礎反力を排気筒基礎に作用させる。充填コンクリートは，鉄筋コンクリート部材の変形抑制の ため，埋戻土を置換えたものである。

排気筒基礎の設計基準対象施設としての評価においては，S s 地震時に対する評価 は，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」の結果を踏まえたものとす る。排気筒基礎の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価においては接地圧の評価を，応力解析による評価においては断面の評価を行うことで，排気筒基礎の地震時の構造強度及び支持機能の確認を行う。評価にあたつては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」による地盤物性及び材料物性の不確かさを考慮する。また，重大事故等対処施設としての評価に おいては，S s 地震時に対する評価を行うこととする。ここで，排気筒基礎では，運転時，設計基準事故時及び重大事故等時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。表 $2-1$ に地盤物性及び材料物性の不確かさを考慮する解析ケースを，図 $2-5$ に排気筒基礎の評価フローを示す。

表 2－1 地盤物性及び材料物性の不確かさを考慮する解析ケース

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性
		旧表土，盛土，D級岩盤 C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B級岩盤 （G：せん断弾性係数）
$\begin{gathered} \text { ケース①) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma$
ケース③）	設計基準強度	平均値－1 σ

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法•同施行令
- 原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984（（社）日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1999）
- 建築基礎構造設計指針（（社）日本建築学会，2001改定）
- 原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005制定）（以下「R C－N 規準」という。）

3．地震応答解析による評価方法
地震応答解析による評価において，排気筒基礎の構造強度については，添付書類「VI －2－2－25 排気筒基礎の地震応答計算書」に基づき，地盤物性及び材料物性の不確かさを考慮した最大接地圧が許容限界を超えないことを確認する。

地震応答解析による評価における排気筒基礎の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 3－1 及び表 3－2 のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
構造強度を有すること	基準地震動 S s	基礎地盤	最大接地圧が地盤 の極限支持力度を超えないことを確認	極限支持力度＊ （ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）

注記＊：支持地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力度とする。

表 3－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
構造強度を有すること	基準地震動 S s	基礎地盤	最大接地圧が地盤 の極限支持力度を超えないことを確認	極限支持力度＊ $\left(11400 \mathrm{kN} / \mathrm{m}^{2}\right)$

注記＊：支持地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力度とする。

4．応力解析による評価方法

4． 1 評価対象部位及び評価方針
排気筒基礎の応力解析による評価対象部位は筒身柱，鉄塔柱，つなぎはり及び基礎版とし，三次元 FEM モデルを用いた応力解析により評価を行う。三次元 FEM モデルを用いた応力解析にあたっては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」 により算出された荷重の組合せを行う。応力解析による評価フローを図4－1 に示す。

S s 地震時に対する評価は，地震力と地震力以外の荷重の組合せの結果，発生する応力が，「 R C -N 規準」に基づき設定した許容限界を超えないことを確認する。

なお，断面の評価については，地盤物性及び材料物性の不確かさを考慮した断面力 に対して行らこととする。

注：［ ］内は，本資料における章番号を示す。
注記＊：地盤物性及び材料物性の不確かさについては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づき設定する。

図 4－1 応力解析による評価フロー

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せを用いる。

4．2．1 荷重
（1）固定荷重（G）
排気筒基礎に作用する固定荷重として次のものを考慮する。
－鉄筋コンクリート構造体（筒身柱，鉄塔柱，つなぎはり及び基礎版）の自重：
$24.0 \mathrm{kN} / \mathrm{m}^{3}$

- 充填コンクリートの自重： $23.0 \mathrm{kN} / \mathrm{m}^{3}$
- 筒身柱，鉄塔柱に作用する排気筒の自重並びに配管の重量
- 浮力： $184.4 \mathrm{kN} / \mathrm{m}^{2}$
（2）積載荷重（ P ）
積載物はないため，積載荷重は考慮しない。
（3）積雪荷重（ P s ）
積雪荷重については，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるた めの係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2 項 により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）風荷重（ P_{k} ）
風荷重は，添付書類「VI－2－7－2－1 排気筒の耐震性についての計算書」に基づ き，排気筒に風荷重が作用した際に，筒身柱，鉄塔柱に作用する反力を考慮する。風荷重を表4－1に，筒身柱，鉄塔柱の配置図を図4－2に示す。

表 4－1 風荷重（ P_{k} ）（I 方向載荷＊）

荷重名称	作用位置	鉛直力	水平力			
		$\begin{gathered} \mathrm{N} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} Q_{x} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{Y}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{x}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{Y}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
風荷重	筒身柱 1	0	100	100	－1100	500
	筒身柱 2	0	100	100	－1100	500
	鉄塔柱 1	4000	600	800	－200	－200
	鉄塔柱 2	1800	－300	500	－300	200
	鉄塔柱 3	－4000	600	800	－200	－200
	鉄塔柱 4	－1800	－300	500	－300	200

注記＊：I 方向載荷とIII方向載荷による反力は同値であるため，I 方向載荷を代表して記載する。

図 4－2 筒身柱，鉄塔柱の配置図
（5）地震荷重（ S s ）
a．慣性力（ K_{s} ）
地震時における基礎の慣性力は，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」により求められた水平震度及び鉛直震度から算定する。水平震度及 び鉛直震度は，地震応答解析で発生した震度を全時刻包絡することで安全側に設定する。

許容応力度に対する発生応力度が最大となる，せん断破壊に対する断面算定時における水平震度及び鉛直震度を表4－2 及び表4－3に示す。

表 4－2 慣性力（ K_{s} ）（水平震度）（ $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ ，ケース（1）$)$

位 置	水平震度
0. P． $10.41 \sim 15.30 \mathrm{~m}$	1.16
0. P． $6.60 \sim 10.41 \mathrm{~m}$	1.05
0．P． $1.00 \sim 6.60 \mathrm{~m}$	0.92
0．P．$-4.00 \sim 1.00 \mathrm{~m}$	0.51

表 4－3 慣性力（ K_{s} ）（鉛直震度）（ $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ ，ケース（1）$)$

位 置	鉛直震度
0. P． $10.41 \sim 15.30 \mathrm{~m}$	0.78
0. P． $6.60 \sim 10.41 \mathrm{~m}$	0.77
0. P． $1.00 \sim 6.60 \mathrm{~m}$	0.67
0．P．$-4.00 \sim 1.00 \mathrm{~m}$	0.61

b．地震時土圧荷重（ E_{s} ）
地震時土圧荷重は，入力地震動ごとに添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」により算定される，構造物の左右に発生した地震時土圧を全時刻包絡することで，加力側の土圧荷重を安全側に設定する。なお，支持側の土圧荷重については，保守的に考慮しない。

許容応力度に対する発生応力度が最大となる，せん断破壊に対する断面算定時における地震時土圧による荷重分布図を図4－3に示す。

図 $4-3$ 地震時土圧による荷重分布（S s－D $2(-+)$ ，ケース（1）
c．地震時の上部工反力 $\left(\mathrm{U}_{\mathrm{s}}\right)$
地震時における上部工の反力は，添付書類「VI－2－7－2－1 排気筒の耐震性に ついての計算書」に基づき，排気筒に地震荷重が作用した際に，筒身柱，鉄塔柱に作用する反力を考慮する。上部工反力は，すべてのS s 地震動と不確かさ を考慮した反力を安全側に包絡したものとする。

地震時の上部工反力を表4－4に，筒身柱，鉄塔柱の配置図を図 $4-2$ に示す。

表 4－4 地震時上部工反力（ U_{s} ）（I 方向載荷＊）

荷重名称	作用位置	鉛直力	水平力			
		$\begin{gathered} \mathrm{N} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{x}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{Y}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{x}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{Y}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
地震時上 部工反力	筒身柱 1	4500	100	400	－7600	800
	筒身柱 2	－4500	100	400	－7600	800
	鉄塔柱 1	10100	1400	3000	－2400	－500
	鉄塔柱 2	10100	－1400	3000	－2400	500
	鉄塔柱 3	－10100	1400	3000	－2400	－500
	鉄塔柱 4	－10100	－1400	3000	－2400	500

注記＊：I 方向載荷とIII方向載荷による反力は同値であるため，I 方向載荷を代表して記載する。

4．2．2 荷重の組合せ
荷重の組合せは表4－5による。
表 4－5 荷重の組合せ

外力の状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+\mathrm{S} \mathrm{s}$

G	：固定荷重
$\mathrm{P}_{\text {s }}$	：積雪荷重
P_{k}	：風荷重
S s	：基準地震動 S s による地震力（ $\mathrm{S} \mathrm{s}=\mathrm{K}_{\mathrm{s}}+\mathrm{E}_{\mathrm{s}}+\mathrm{U} \mathrm{s}$ ）
K s	：基準地震動 S s による慣性力
Es	：基準地震動 S s による地震時土圧荷重
U s	：基準地震動 S s による地震時の上部工反力

4． 3 許容限界

応力解析による評価における排気筒基礎の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき，表4－6及 び表 4－7のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表4－8及び表4－9に示す。

表 4－6 応力解析による評価における許容限界（設計基準対象施設としての評価）

要求 機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊
支持 機能	筒身及び機器•配管系等 の設備を支持する機能 を損なわな いこと	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊

注記＊：許容限界は，「 R C－N 基準」に基づき，終局耐力に対して妥当な裕度を有する短期許容応力度を用いる。

表 4－7 応力解析による評価における許容限界（重大事故等対処施設としての評価）

要求 機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊
支持 機能	筒身及び機器•配管系等 の設備を支持する機能 を損なわな いこと	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊

注記＊：許容限界は，「 R C－N 基準」に基づき，終局耐力に対して妥当な裕度を有する短期許容応力度を用いる。

表 4－8 コンクリートの許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

外力の状態	設計基準強度 $\mathrm{F} \mathrm{c}_{\mathrm{c}}=20.5$			
	長 期		短 期	
	圧縮	せん断	圧縮	せん断
S s 地震時	6.8	0.68	13.6	1.02

表 4－9 鉄筋の許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

外力の状態	鉄筋径	長 期		短 期	
		引張及び 圧縮	せん断補強	引張及び 圧縮	せん断補強
		SD345	SD345	SD345	SD345
S s 地震時	D25以下	215	195	345	345
	D29以上	195			

4．4 解析モデル及び諸元
4．4．1 モデル化の基本方針
（1）基本方針
応力解析は，三次元 FEMモデルを用いた応力解析を実施する。解析には，解析 コード「SLAPVer6．65」を用いる。また，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力解析にあたつて，排気筒基礎の各部位（筒身柱，鉄塔柱，つなぎはり及び基礎版）を線形ソリッド要素にてモデル化しっこれらの構造部材を耐震評価する。 なお，応力の伝達を考慮するため，充填コンクリートについても線形ソリッド要素にてモデル化する。

解析モデルを図4－4及び図4－5に示す。
（2）境界条件
三次元 FEM モデルの基礎版底面に，水平方向及び鉛直方向の地盤ばねを設ける。三次元 FEM モデルの水平方向及び鉛直方向の地盤ばねについては，「JEAG4 601－1991追補版」に記載の振動アドミッタンス理論に基づいて評価する。

図 4－4 解析モデル図（鳥瞰図）

図 4－5 解析モデル図（鳥瞰図（充填コンクリート非表示））

4．4．2 解析諸元

使用材料の物性値を表 4－10及び表 4－11に示す。

表 4－10 コンクリートの物性値

部 位	設計基準強度 $\mathrm{F}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
筒身柱 鉄塔柱 つなぎはり な基礎版			
充填 コンクリート	20.5	2.15×10^{4}	0.2

部 位	鉄筋の種類	ヤング係数 $\left.\mathrm{E} \mathrm{(N/mm}^{2}\right)$
筒身柱 鉄塔柱 つなぎはり な基礎版		

4．5 評価方法

4．5．1 応力解析方法
排気筒基礎について，S s 地震時に対して三次元 FEMモデルを用いた線形解析 を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重ケースによる応力を組み合わせて求める。
G ：固定荷重
Ps：積雪荷重
P_{k} ：風荷重
S sh（Ns，＋＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への正位相（ ++ ）＊2で加振した際に生じる水平方向の地震力

S SH（EW，＋＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{*}$ への正位相 $(++) * 2$ で加振した際に生じる水平方向の地震力

S s v（NS，＋＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への正位相 $(++) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S S V（EW，＋＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{*}$ への正位相 $(++) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S SH（NS，－＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への逆位相 $(-+) * 2$ で加振した際に生じる水平方向の地震力

S SH（EW，－＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{1}$ への逆位相 $(-+) * 2$ で加振した際に生じる水平方向の地震力

S S v（Ns，－＋）：基準地震動 S s による入力地震動を NS 断面＊ 1 への逆位相 $(-+) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S S V（EW，－＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{2}$ への逆位相 $(-+) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

注記＊1：添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づく，排気筒基礎の地震応答解析における NS 断面，EW 断面を表す。 ＊2：添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づく，排気筒基礎の地震応答解析における水平方向の位相反転を表す。地震動の位相について，＋＋は左側の水平動，右側は鉛直動を表 し，「一」は位相を反転させたケースを示す。
＊ 3 ：鉛直方向は上向きの加力を正として記載している。
（2）荷重の組合せケース
荷重の組合せケースを表4－12に示す。
荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重に対し，組合せ係数法（組合せ係数は1．0と0．4）を用いる。

表 4－12 荷重の組合せケース

外力の状態	$\begin{gathered} \text { ケース } \\ \text { No. } \end{gathered}$	荷重の組合せ
S s 地震時	1－1	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\text {s }}^{\text {H（NS },++)}+0.4 \mathrm{~S}_{\text {s v }}^{(\mathrm{NS},++)}$
	1－2	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{NS},++)}-0.4 \mathrm{~S} \mathrm{~s} \mathrm{v}(\mathrm{NS},++)$
	1－3	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}{ }_{(\mathrm{NS},++)}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{v}_{(\mathrm{NS},++)}$
	1－4	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},++)}-1.0 \mathrm{~S} \mathrm{~S}_{\mathrm{v}(\mathrm{NS},++)}$
	1－5	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},++)}+0.4 \mathrm{~S} \mathrm{~S}_{\mathrm{V}(\mathrm{EW},++)}$
	1－6	$\left.\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{sh(EW,++)}-0.4 \mathrm{~S}_{\text {s v（EW，}}++\right)$
	1－7	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},++)}+1.0 \mathrm{~S} \mathrm{~S}_{\mathrm{V}(\mathrm{EW},++)}$
	1－8	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},++)}-1.0 \mathrm{~S}_{\text {S }}^{\text {v（EW，}}$（＋）
	2－1	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},-+)}+0.4 \mathrm{~S} \mathrm{~s}_{\mathrm{v}(\mathrm{NS},-+)}$
	2－2	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{NS},-+)}-0.4 \mathrm{~S}_{\text {s v }}^{(\mathrm{NS},-+)}$
	2－3	
	2－4	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S} \mathrm{shH}_{(\mathrm{Ns},-+)}-1.0 \mathrm{~S} \mathrm{~Sv}(\mathrm{NS},-+)$
	2－5	
	2－6	
	2－7	
	2－8	

（3）荷重の入力方法
a．地震荷重
排気筒基礎に作用する慣性力については，FEM モデルの各要素の質量に応じ て分配し，節点荷重として入力する。

排気筒基礎側面に作用する地震時土圧荷重については，土圧の作用面に対し，節点荷重として入力する。

排気筒から排気筒基礎に作用する地震力については，筒身脚部，主柱材脚部 からの曲げモーメント，軸力及びせん断力を節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の固定荷重，積雪荷重，風荷重については，FEM モデルの各節点又は各要素に，集中荷重又は分布荷重として入力する。

4．5．2 断面の評価方法

排気筒基礎について，軸力及び曲げモーメント並びに面外せん断力が，各許容値を超えないことを確認する。
（1）軸力及び曲げモーメントに対する断面の評価方法
軸力及び曲げモーメントによるコンクリート及び鉄筋の発生応力度が表 4－8及び表 4－9に示す許容応力度を超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき行う。
面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認 する。
a．梁の評価
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5_{\mathrm{w}} \mathrm{f}_{\mathrm{t}}\left(\mathrm{p} \mathrm{w}^{-}-0.002\right)\right\}$
ここで，
Q_{A} ：許容面外せん断力（N）
b：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値 （mm）
α ：許容せん断力の割増し係数
（2を超える場合は 2,1 未満の場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$

M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度で，表4－8に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
w f t ：せん断補強筋の短期許容引張応力度で，表 4－9 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w ：せん断補強筋比で，次式による＊。
$\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{b}_{\mathrm{x}}}$
a w ：せん断補強筋の断面積（ mm^{2} ）
b x ：せん断補強筋の間隔（mm）
注記＊：せん断補強筋比は 0.002 以上のため，せん断補強筋がない領域 がある基礎版については，0．002とする。
b．柱の評価
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\mathrm{f}_{\mathrm{s}}+0.5_{\mathrm{w}} \mathrm{f}_{\mathrm{t}}(\mathrm{p} \mathrm{w}-0.002)\right\}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値 （mm）
fs：コンクリートの短期許容せん断応力度で，表4－8に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
wf t：せん断補強筋の短期許容引張応力度で，表4－9 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{p} w$ ：せん断補強筋比で，次式による＊。
$\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{b}_{\mathrm{x}}}$

5．評価結果

5.1 地震応答解析による評価結果

地震時の最大接地圧が，基礎地盤の許容限界を超えないことを確認する。 S s 地震時の最大接地圧を表5－1に示す。

地盤物性及び材料物性の不確かさを考慮した地震時の最大接地圧が $4170 \mathrm{kN} / \mathrm{m}^{2}$（ S $\mathrm{s}-\mathrm{D} 2(-+)$ ，EW 断面）であることから，地盤の極限支持力度（ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）を超 えないことを確認した。

表 5－1 $\quad \mathrm{S} \mathrm{s}$ 地震時の最大接地圧

	NS 断面	EW 断面
検討ケース	$\begin{gathered} \mathrm{Ss}-\mathrm{D} 2(-+), \\ \text { ケース (1) } \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{D} 2(-+), \\ \text { ケース (1) } \end{gathered}$
$\begin{gathered} \text { 鉛直力 } \\ \mathrm{N} \quad\left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	2.66	2． 77
$\begin{aligned} & \text { 転倒モーメント } \\ & \mathrm{M}\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right) \end{aligned}$	2.03	2． 39
最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	3260	4170
極限支持力度 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	11400	11400

5.2 応力解析による評価結果

「4．5．2 断面の評価方法」に基づいた断面の評価結果を以下に示す。また，三次元 FEMモデルの概略配筋図を図5－1に示す。

鉄筋コンクリートの軸力及び曲げモーメント並びに面外せん断力に対する評価にお いて，許容応力度に対する発生応力度の割合（応力度比）が各部材で最大となる評価結果を表5－2～表5－4に示す。また，最大となる評価結果の部位を図5－2～図5— 5 に示す。

S s 地震時において，鉄筋コンクリートの軸力及び曲げモーメント並びに面外せん断力に対する発生応力度が，各許容応力度を超えないことを確認した。

（a）概略配筋図（平面図）

（c）概略配筋図（ $\mathrm{B}-\mathrm{B}$ 断面）

（e）概略配筋図（D－D 断面）

（b）概略配筋図（ $\mathrm{A}-\mathrm{A}$ 断面）

（d）概略配筋図（C－C 断面）

（f）概略配筋図（E－E 断面）

図 5－1（1）排気筒基礎概略配筋図（1／2）

（g）概略配筋図（F－F 断面）
（h）概略配筋図（ $\mathrm{G}-\mathrm{G}$ 断面）

図 5－1（2）排気筒基礎概略配筋図（2／2）

図 5－2 評価位置図

（a）軸力＋曲げモーメント

（b）面外せん断力
図 5－3 要素位置（筒身柱及び鉄塔柱）

（a）軸力＋曲げモーメント

（b）面外せん断力
図 5－4 要素位置（つなぎはり）

（a）軸力＋曲げモーメント

（b）面外せん断力
図 5－5 要素位置（基礎版）

表5－2 S s 地震時における曲げ・軸力系の破壊に対する評価結果（コンクリート）

評価位置＊${ }^{*}$		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \text { M z } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	曲げモー $\begin{gathered} \text { メント } \\ \text { My } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力＊3 N $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\sigma^{\prime}{ }^{c}{ }^{c}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	応力度比 $\sigma^{\prime} \mathrm{c} / \sigma^{\prime} \mathrm{ca}$
筒身柱	25	1	1－4	ケース（1）	S s－F 3	8739	27462	89237	0.8	13.6	0.06
鉄塔柱	23	1	2－6	ケース（2）	S s－D 2	9044	2923	37037	1.8	13.6	0． 13
$\begin{gathered} \text { つなぎ } \\ \text { はり } \end{gathered}$	34	1	1－5	ケース（1）	S s－D 2	715	665	6681	1． 4	13.6	0.10
基礎版	11	621	1－5	ケース（1）	S s－D 2	$-8833 * 2$	－	11540	4． 0	13.6	0.30

注記＊1：評価位置は図5－2に示す。
∞
＊2：上縁圧縮を＋とする。
＊ 3 ：圧縮を＋とする。

表5－3 S s 地震時における曲げ・軸力系の破壊に対する評価結果（鉄筋）

評価位置＊1		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \text { M z } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \text { M y } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力＊3 $\begin{gathered} \mathrm{N} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	発生応力度 $\begin{gathered} \sigma \mathrm{s} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容 応力度 $\begin{gathered} \sigma \mathrm{s} \text { a } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度比 $\sigma \mathrm{s} / \sigma \mathrm{sa}$
筒身柱	25	6	1－5	ケース（1）	S s－D 2	145705	5914	15191	16	345	0.05
鉄塔柱	21	11	2－1	ケース①	S s－D 2	2898	5511	－10451	128	345	0.38
$\begin{gathered} \text { つなぎ } \\ \text { はり } \end{gathered}$	32	23	1－5	ケース①	S s－D 2	－1032	454	－4676	83	345	0． 24
基礎版	11	644	1－2	ケース（1）	S s－D 2	$-2152 * 2$	－	518	42	345	0.12

注記＊1：評価位置は図5－2に示す。
＊2：上縁圧縮を＋とする。
＊ 3 ：圧縮を＋とする。
表5－4 S s 地震時におけるせん断破壊に対する評価結果

評価位置＊		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	発生 せん断力 $\begin{gathered} \mathrm{V} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	短期許容 せん断力 $\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	応力度比 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
筒身柱	25	1	2－6	ケース①	S s－D 2	102574	150768	0.69
鉄塔柱	24	1	2－5	ケース（2）	S s－D 2	12784	21511	0.60
つなぎはり	35	5	1－5	ケース（1）	S s－D 2	2346	9819	0． 24
基礎版	11	894	1－5	ケース（1）	S s－D 2	5508	8520	0.65

注記 $*: ~$ 評価位置は図 5－2に示す。

VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 解析方針 9
2.4 適用規格•基準等 11
3．解析方法 12
3.1 設計に用いる地震波 12
3.2 地震応答解析モデル 20
3．3 解析方法 34
3．4 解析条件 37
4．解析結果 50
4． 1 動的解析 50
4.2 必要保有水平耐力 65
別紙1 第3号機海水熱交換器建屋の弾性設計用地震動 S d－D 2 による地震応答解析結果について

1．概要
本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく第3号機海水熱交換器建屋の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び浸水防護施設の設計用地震力として用いる。また，必要保有水平耐力については建物•構築物の構造強度の確認に用いる。

2．基本方針
2.1 位置

第3号機海水熱交換器建屋の設置位置を図2－1に示す。

図 2－1 第3号機海水熱交換器建屋の設置位置

2.2 構造概要

第3号機海水熱交換器建屋は地下 3 階，地上 1 階建で，基礎底面からの高さは 27.5 m であり，平面は 40.5 m （NS）$\times 37.0 \mathrm{~m}$（EW）＊である。

建屋の構造は鉄筋コンクリート造であり，その主たる耐震要素は耐震壁である。
第3号機海水熱交換器建屋の基礎は，厚さ 3.0 m のべた基礎で，底面地盤である砂岩及び頁岩上に設置されており，一部は底面地盤上に打設されたマンメイドロック上に設置されている。

第3号機海水熱交換器建屋の概略平面図及び概略断面図を図2－2 及び図2－3に示 す。

注記＊：建屋寸法は壁外面押えとする。

（単位：m）
図 2－2（1）第3号機海水熱交換器建屋の概略平面図（0．P．＊－9．5m）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－ 0.74 m である。

（単位：m）
図 $2-2$（2）第3号機海水熱交換器建屋の概略平面図（0．P．－1．1m）

（単位：m）
図2－2（3）第3号機海水熱交換器建屋の概略平面図（0．P．8．0m）

PN

A 1

（単位：m）
図2－3（1）第3号機海水熱交換器建屋の概略断面図（A－A 断面 NS 方向）

（単位：m）
図2－3（2）第3号機海水熱交換器建屋の概略断面図（B－B 断面 EW 方向）

2.3 解析方針

第3号機海水熱交換器建屋の地震応答解析は，添付書類「VI－2－1－6 地震応答解析 の基本方針」に基づいて行う。

図 2－4に第3号機海水熱交換器建屋の地震応答解析フローを示す。
地震応答解析は，「3．1 設計に用いる地震波」及び「3．2 地震応答解析モデル」に おいて設定した地震応答解析モデルを用いて実施することとし，「3．3 解析方法」及 び「3．4 解析条件」に基づき，「4．1 動的解析」においては，材料物性の不確かさを考慮し，加速度，変位，せん断ひずみ，接地圧等を含む各種応答値を，「4．2 必要保有水平耐力」においては必要保有水平耐力を算出する。

注 ：［ ］内は，本資料における章番号を示す。
注記＊：材料物性の不確かさを考慮する。

図 2－4 第3号機海水熱交換器建屋の地震応答解析フロー
2.4 適用規格•基準等

第3号機海水熱交換器建屋の地震応答解析において適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1991年改定）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）

3．解析方法

3.1 設計に用いる地震波

第3号機海水熱交換器建屋の地震応答解析モデルは，建屋と地盤の相互作用を評価 した建屋－地盤連成モデルとする。この連成モデルへの入力地震動は，水平方向につ いては，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」 に示す基準地震動 S s から，建屋底面位置（0．P．－ 12.5 m ）より上部の地盤の振動特性を考慮して算定した地震動を用いる。鉛直方向については，基準地震動 S s を用いる。基準地震動 S s の加速度時刻歴波形及び加速度応答スペクトルを図 $3-1 \sim$ 図 $3-3$ に示す。

（c） S s－D 3
図 3－1（1）加速度時刻歴波形（基準地震動 S s，水平方向）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f）S s－F 3
図 3－1（2）加速度時刻歴波形（基準地震動 S s，水平方向）（2／3）

図 3－1（3）加速度時刻歴波形（基準地震動 S s ，水平方向）（3／3）

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－2（1）加速度時刻歴波形（基準地震動 S s，鉛直方向）（1／3）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f） S s－F 3
図 3－2（2）加速度時刻歴波形（基準地震動 S s，鉛直方向）（2／3）

図 3－2（3）加速度時刻歴波形（基準地震動 S s，鉛直方向）（3／3）

図 3－3（1）加速度応答スペクトル（基準地震動 S s，水平方向）

図 3－3（2）加速度応答スペクトル（基準地震動 S s，鉛直方向）
3.2 地震応答解析モデル

地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。地震応答解析モデルの設定に用いた使用材料の物性値を表3－1に示す。

表 3－1 使用材料の物性値

使用材料	ヤング係数 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 弾性係数 G $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	減衰定数 h $(\%)$	備考

3．2．1 水平方向

（1）地震応答解析モデル
水平方向の地震応答解析モデルは，建屋を曲げ変形とせん断変形をする耐震壁部からなる質点系モデルとし，地盤を等価なばねで評価した建屋一地盤連成モデ ルとする。

水平方向の地震応答解析モデル及び諸元を図 3－4に示す。図 $3-4$ に示す誘発上下動を考慮する場合の地震応答解析モデルについては，「原子力発電所耐震設計技術指針 J E A C 4 6 O 1－2015（（社）日本電気協会）」を参考に，水平加振 により励起される上下応答を評価するために，後述の鉛直方向の地震応答解析モ デルの諸元（図 $3-10$ ）及び接地率に応じて変化する回転•鉛直連成ばねについ ても考慮している。なお，平成 23 年（2011 年）東北地方太平洋沖地震等の地震 やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下については，観測記録や試験データなどから適切に地震応答解析モデルへ反映し，保守性を確認した上で適用する。耐震壁の初期剛性の設計値に対する補正係数を表3－2に示 す。
（2）地盤ばね
基礎版底面下の地盤は，水平方向の地震応答解析モデルにおいては水平ばね及 び回転ばねで置換している。この水平ばね及び回転ばねは，「JEAG4601－ 1991 追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動 アドミッタンス理論に基づいて評価している。いずれのばねも振動数に依存した複素剛性として表現されるが，図 $3-5$ に示すようにばね定数として，実部の静的 な値（ K_{c} ）を，また，減衰係数（ C_{c} ）として，建屋一地盤連成モデルの 1 次固有円振動数（ ω_{1} ）に対応する虚部の値と原点を結ぶ直線の傾きを採用することにより近似する。このうち，回転ばねには，基礎浮上りによる幾何学的非線形性を考慮 する。基礎底面ばねの評価には解析コード「ADMITHF」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。地盤ばね定数及び減衰係数を表 $3-3$ に，地盤モデルの物性値を表3－4に示す。
（3）入力地震動
地震応答解析モデルへの入力地震動は，解放基盤表面レベルで定義される基準地震動 S s から以下の手順で算定する。まず，解放基盤表面相当以深の地盤を一次元地盤としてモデル化し，一次元波動論に基づく評価により O．P．－ 200 m の入射波を算定する。算定した O．P．-200 m の入射波を，表層地盤の非線形性を考慮した一次元地盤モデルに入力して逐次非線形解析を行い，建屋基礎底面での地盤の応答を評価して入力地震動とする。また，建屋基礎底面レベルにおけるせん断力（以下「切欠き力」という。）を入力地震動に付加することにより，地盤の切欠き効果 を考慮する。表3－4に示す地盤モデルのうち表層地盤（0．P．14．8m～0．P．-12.5 m ） には，地盤調査結果に基づき，初期せん断剛性 G_{0} ，G／G $\mathrm{o}_{0}-\gamma$ 曲線及びh $-\gamma$曲線の非線形特性を設定した。 G／Go $-\gamma$ 曲線及びh $-\gamma$ 曲線の非線形特性を図 $3-6$ 及び図 $3-7$ に示す。図 $3-8$ に地震応答解析モデルに入力する地震動の概念図を，設定した地盤定数に基づき算定した基礎底面位置（0．P．-12.5 m ）にお ける入力地震動の加速度応答スペクトルを図 3－9 に示す。入力地震動の算定に は，解析コード「SHAKE」及び「mflow」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

注：質点 $11 \sim 15$ 及び要素 $(11) \sim(14)$ の諸元は図 $3-10$ の質点 $1 \sim 5$ 及び要素 $(1) \sim(4)$ の諸元に対応する。

図 3－4 地震応答解析モデル及び諸元

表 3－2 耐震壁の初期剛性の設計値に対する補正係数

方向	耐震壁の初期剛性の設計値に対する 補正係数
NS	0.80
EW	0.80

ばね定数：底面ばねは 0 Hz のばね定数 K_{c} で定数化
減衰係数：建屋一地盤連成系の 1 次固有円振動数 ω_{1} に対応する虚部の値と原点とを結ぶ直線の傾き C c で定数化

図 $3-5$ 地盤ばねの定数化の概要

表 $3-3$ 地盤ばね定数と減衰係数
（a）NS 方向

地盤ばね 成分	ばね定数 K_{c}	減衰係数
C_{c}		

（b）EW 方向

地盤ばね 成分	ばね定数 K_{c}	減衰係数
C_{c}		

表 3－4 第3号機海水熱交換器建屋の地震応答解析に用いる地盤モデルの地盤物性値

	$\begin{gathered} \text { 地層レベル } \\ 0 . \mathrm{P} .(\mathrm{m}) \\ \hline \end{gathered}$	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断波速度 $V_{S}(\mathrm{~m} / \mathrm{s})$	減衰定数＊2 h（\％）
表層地盤		18.6	$* 1$	$3 * 3$
底面地盤	－12．50	26.1	1360	3
	－27． 00	26.4	2040	3
	－50．00	26.5	2520	3
	－200． 0	26.5	2520	3

注記 $\boldsymbol{*}^{2}: ~ 0$. P．14． $8 \mathrm{~m} \sim 0$ ．P．-12.5 m は，上載圧依存を考慮してせん断波速度と相関 のある初期せん断剛性 G o を設定する。また，ひずみ依存による非線形特性を考慮する。地盤の応答解析においては 20 層に分割する。
＊2：0．P．14． $8 \mathrm{~m} \sim 0$ ．P．-12.5 m の表層地盤の 1 次振動数及び 2 次振動数を基準と
して，レーリー減衰を 4 Hz 及び 12 Hz で設定する。

＊3：ひずみ依存による非線形特性を考慮する。

初期せん断剛性 G o は，PS 検層結果により次式で設定する。

$$
\begin{equation*}
\mathrm{G}_{0}=1787 \cdot \sigma_{c}{ }_{c}^{0.84} \tag{3.1}
\end{equation*}
$$

ここで，

$$
\sigma_{\mathrm{c}}=\mathrm{Z} \cdot \rho_{\mathrm{t}} \cdot 2 / 3\left(\mathrm{MN} / \mathrm{m}^{2}\right)
$$

Z：深度（m）

$$
\rho_{\mathrm{t}}=18.6\left(\mathrm{kN} / \mathrm{m}^{3}\right)
$$

$\mathrm{G} / \mathrm{G}_{0}-\gamma$ 曲線は，原位置せん断試験結果による強度定数と拘束圧から求め たせん断強度 τ_{m} と初期せん断剛性 G_{0} から，基準ひずみ γ_{m} を算定し次式により求める。

$$
\begin{equation*}
\mathrm{G} / \mathrm{G}_{0}=1 /\left(1+\gamma / \gamma_{\mathrm{m}}\right) \tag{3.2}
\end{equation*}
$$

ここで,

$$
\gamma_{\mathrm{m}}=\tau_{\mathrm{m}} / \mathrm{G}_{0}
$$

$$
\tau_{\mathrm{m}}=\tau_{0}+\sigma_{\mathrm{m}} \cdot \tan \phi \quad\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
$$

$$
\tau_{0}=0.1\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
$$

$$
\left.\phi=33.9 \quad{ }^{\circ}\right)
$$

$$
\sigma_{\mathrm{m}}=3 / 4 \cdot \mathrm{Z} \cdot \rho_{\mathrm{t}}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
$$

$\mathrm{h}-\gamma$ 曲線は，繰返し三軸試験結果に基づき次式により求める。

$$
\begin{equation*}
\mathrm{h}=0.183 \cdot \gamma /(\gamma+0.000261) \tag{3.3}
\end{equation*}
$$

図 $3-6 \quad \mathrm{G} / \mathrm{G}_{0}-\gamma$ 曲線

図 $3-7 \quad h-\gamma$ 曲線

図 3－8 地震応答解析モデルに入力する地震動の概念図（水平方向）

図 3－9 入力地震動の加速度応答スペクトル
（基準地震動 S s ，0．P．-12.5 m ）

3．2．2 鉛直方向

（1）地震応答解析モデル
鉛直方向の地震応答解析モデルは，耐震壁部の軸剛性を評価した質点系モデル とし，地盤を等価なばねで評価した建屋－地盤連成モデルとする。

鉛直方向の地震応答解析モデル及び諸元を図 3－10に示す。なお，鉛直方向の軸剛性に関しては，平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコン クリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下の影響が確認されな かったことから，設計剛性とする。
（2）地盤ばね
基礎版底面下の地盤は，鉛直方向の地震応答解析モデルにおいては鉛直ばねで置換している。この鉛直ばねは，「JEAG 4 6 O 1－1991追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動アドミッタンス理論に基づ いて評価しており，振動数に依存した複素剛性として表現される。図 $3-5$ に示す ようにばね定数として，実部の静的な値（ K_{c} ）を，また，減衰係数（ C_{c} ）として，建屋－地盤連成モデルの1次固有円振動数（ ω_{1} ）に対応する虚部の値と原点を結 ぶ直線の傾きを採用することにより近似する。基礎底面ばねの評価には解析コー ド「ADMITHF」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。地盤ばね定数及び減裹係数を表 $3-5$ に示す。
（3）入力地震動
地震応答解析モデルへの入力地震動は，「3．1 設計に用いる地震波」に示す基準地震動S s とし，基礎底面レベルに直接入力する。図 3－11に地震応答解析モ デルに入力する地震動の概念図を示す。

図 3－10 地震応答解析モデル及び諸元（鉛直方向）

表 3－5 地盤ばね定数と減衰係数（鉛直方向）

地盤ばね 成分	ばね定数 K_{c}	減衰係数 C_{c}
底面•鉛直	$1.310 \times 10^{9}(\mathrm{kN} / \mathrm{m})$	$1.327 \times 10^{7}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$

図 3－11 地震応答解析モデルに入力する地震動の概念図（鉛直方向）

3.3 解析方法

第3号機海水熱交換器建屋について，動的解析により応答加速度，応答変位，応答 せん断力，応答曲げモーメント，応答軸力，応答せん断ひずみ及び接地圧を算出する。 また，静的解析により必要保有水平耐力を算出する。

第3号機海水熱交換器建屋の地震応答解析には，解析コード「NUPP4」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．3．1 動的解析

建物•構築物の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の解析方法に基づき，時刻歴応答解析により実施する。

なお，最大接地圧は，「原子力発電所耐震設計技術規程 J E A C 4 6 0 1－2015 （（社）日本電気協会）」を参考に，水平応答と鉛直応答から組合せ係数法（組合 せ係数は1．0と0．4）を用いて算出する。

3．3．2 必要保有水平耐力
各層の必要保有水平耐力 Q_{un} は，次式により算出する。

$$
\begin{equation*}
Q_{u n}=D_{s} \cdot F_{e s} \cdot Q_{u d} \tag{3.4}
\end{equation*}
$$

ここで，
D ：各層の構造特性係数
Fes：各層の形状特性係数

地震力によって各層に生じる水平力 Q_{ud} は，次式により算出する。

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{ud}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{~W}_{\mathrm{i}} \tag{3.5}
\end{equation*}
$$

ここで，
n ：施設の重要度分類に応じた係数（1．0）
C_{i} ：第 i 層の地震層せん断力係数
$W_{i} \quad$ ：第i層が支える重量

地震層せん断力係数 C i は，次式により算出する。

$$
\begin{equation*}
\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{i}} \cdot \mathrm{C}_{0} \tag{3.6}
\end{equation*}
$$

ここで，
Z ：地震地域係数（1．0）
$R_{t} \quad$ ：振動特性係数（1．0）
$\mathrm{A}_{\mathrm{i}} \quad$ ：第i層の地震層せん断力係数の高さ方向の分布係数
Co ：標準せん断力係数（1．0）

なお，A_{i} はモーダル解析により以下のとおり算出する。

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}{ }^{\prime} / \mathrm{A}_{1}^{\prime}
$$

$A_{i}^{\prime}=\sqrt{\sum_{j=1}^{k}\left(\sum_{m=i}^{n} W_{m} \cdot \beta_{j} \cdot U_{m j} \cdot R_{t}\left(T_{j}\right)\right)^{2}} / \sum_{m=i_{i}}^{n} w_{m}$

ここで，
n ：建物•構築物の層数
$\mathrm{w}_{\mathrm{m}} \quad$ ：第 m 層の重量
$\beta_{\mathrm{j}} \cdot \mathrm{U}_{\mathrm{m} \mathrm{j}}$ ：第 m 層の j 次刺激関数
T ：固有値解析により得られる建物•構築物の j 次固有周期
R_{t}（ T_{j} ）：周期 T_{j} に対応する加速度応答スペクトルの値
（建築基準法施行令第 88 条第 1 項に与えられている振
動特性係数 R_{t} の T_{j} に対する値とする。地盤種別は第
1 種地盤とする。）
k ：考慮すべき最高次数

3． 4 解析条件

3．4．1 建物•構築物の復元力特性
（1）耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）
耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）は，「J E A G 460 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁のせ ん断応力度一せん断ひずみ関係を図3－12に示す。

τ_{1} ：第1折点のせん断応力度
τ_{2} ：第 2 折点のせん断応力度
τ_{3} ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第 2 折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4.0 \times 10^{-3}\right)$

図 3－12 耐震壁のせん断応力度一せん断ひずみ関係
（2）耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
耐震壁のせん断応力度一せん断ひずみ関係の履歴特性は，「JEAG4601－ 1991 追補版」に基づき，最大点指向型モデルとする。耐震壁のせん断応力度一せ ん断ひずみ関係の履歴特性を図3－13に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：負側最大点指向
d．各最大点は，スケルトン上を移動することにより更新される。
e．安定ループは面積を持たない。

図 3－13 耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
（3）耐震壁の曲げモーメント一曲率関係（ $\mathrm{M}-\phi$ 関係）
耐震壁の曲げモーメント—曲率関係（M－ C 関係）は，「J E A G 4 6 O 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁の曲げモーメ ントー曲率関係を図3－14に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
$\phi 3$ ：終局点の曲率

図 3－14 耐震壁の曲げモーメントー曲率関係
（4）耐震壁の曲げモーメント一曲率関係の履歴特性
耐震壁の曲げモーメントー曲率関係の履歴特性は，「J E A G 4 6 O 1－1991 追補版」に基づき，ディグレイディングトリリニア型モデルとする。耐震壁の曲げ モーメントー曲率関係の履歴特性を図 3－15に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：最大点指向型で，安定ループは最大曲率に応じた等価粘性減衰を与 える平行四辺形をしたディグレイディングトリリニア型とする。平行四辺形の折点は最大値から $2 \cdot \mathrm{M}_{1}$ を減じた点とする。ただし，負側最大点が第2折点を超えていなければ，負側第2折点を最大点とする安定ループを形成する。また，安定ループ内部での繰り返しに用いる剛性は安定ループの戻り剛性に同じとする。
d．各最大点はスケルトン上を移動することにより更新される。

図 3－15 耐震壁の曲げモーメントー曲率関係の履歴特性
（5）剛性低下を考慮したスケルトンカーブの設定
設計基準強度により算定したスケルトンカーブに対して，地震観測記録に基づ き評価した建屋剛性に整合するようにスケルトンカーブの初期剛性を補正する。剛性低下を考慮したスケルトンカーブの概念を図3－16及び図3－17に示す。

τ_{1} ：第1折点のせん断応力度
τ_{2} ：第2折点のせん断応力度
$\tau 3$ ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第2折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4 \times 10^{-3}\right)$
$\tau 1$ ：初期剛性補正後の第 1 折点のせん断応力度
γ_{1}^{\prime} ：初期剛性補正後の第1折点のせん断ひずみ
注 ：剛性低下を考慮したスケルトンカーブの $\tau 1$ は及び $\gamma 1$ は J E A G 式とは対応しない

図 3－16 耐震壁のせん断応力度一せん断ひずみ関係の スケルトンカーブの初期剛性の補正

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
ϕ_{3} ：終局点の曲率
M_{1}^{\prime} ：初期剛性補正後の第1折点の曲げモーメント
$\phi 11$ ：初期剛性補正後の第 1 折点の曲率
注：剛性低下を考慮したスケルトンカーブの M_{1}^{\prime} 及び ϕ ！は J E A G 式とは対応しない

図 3－17 耐震壁の曲げモーメントー曲率関係の スケルトンカーブの初期剛性の補正
（6）スケルトンカーブの諸数値
第3号機海水熱交換器建屋の各耐震壁について算出したせん断力及び曲げモー メントのスケルトンカーブの諸数値を表 $3-6$ 及び表 $3-7$ に示す。

表 3－6（1）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）
NS 方向

$0 . P$. (m)	τ_{1}^{\prime} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1}^{\prime} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$15.0 \sim 8.0$	1.97	2.51	5.91	0.216	0.491	4.00
$8.0 \sim-1.1$	2.06	2.64	5.86	0.227	0.515	4.00
$-1.1 \sim-9.5$	2.20	2.82	6.24	0.242	0.550	4.00

表 3－6（2）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）
EW 方向

$0 . \mathrm{P}$. (m)	τ_{1}^{\prime} $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1}^{\prime} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$15.0 \sim 8.0$	1.97	2.51	6.04	0.216	0.491	4.00
$8.0 \sim-1.1$	2.06	2.64	5.99	0.227	0.515	4.00
$-1.1 \sim-9.5$	2.20	2.82	6.26	0.242	0.550	4.00

表 $3-7$（1）曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）
NS 方向

$0 . \mathrm{P}$. (m)	M_{1}^{\prime} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1}^{\prime} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-5} / \mathrm{m}\right)$
$15.0 \sim 8.0$	2.98	5.84	7.98	0.589	4.95	98.9
$8.0 \sim-1.1$	4.16	8.36	11.1	0.646	5.05	101
$-1.1 \sim-9.5$	6.73	15.0	20.1	0.746	5.27	105

表 $3-7$（2）曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）
EW方向

$0 . \mathrm{P}$. (m)	M_{1}^{\prime} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1}^{\prime} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-5} / \mathrm{m}\right)$
$15.0 \sim 8.0$	2.95	5.34	7.72	0.644	5.40	108
$8.0 \sim-1.1$	4.31	8.22	11.6	0.708	5.55	111
$-1.1 \sim-9.5$	4.99	11.2	15.5	0.818	5.81	116

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねに関する曲げモーメントー回転角の関係は「JEAG4601 －1991追補版」に基づき，浮上りによる幾何学的非線形性を考慮する。地盤の回転 ばねの曲げモーメントー回転角の関係を図3－18に示す。

浮上り時の地盤の回転ばねの剛性は，図 3－18の曲線で表され，減裹係数は，回転ばねの接線剛性に比例するものとして考慮する。

M ：軽倒モーメント
M_{0} ：浮上り限界転倒モーメント $(=\mathrm{W} \cdot \mathrm{L} / 6)$
θ ：回転角
θ o ：浮上り限界回転角
K_{0} ：地盤の回転ばね定数（浮上り前）
K ：地盤の回転ばね定数（浮上り後）
W：建屋総重量
L ：建屋基礎幅

図 3－18 地盤の回転ばねのモーメントー回転角の関係

3．4．3 誘発上下動を考慮する基礎浮上り評価法
図 3－4に示す誘発上下動を考慮した地震応答解析モデルでは「J E A G 4 6 O 1－1991追補版」に基づく基礎の浮上り非線形性を考慮できる水平ばね K_{HH}及び回転ばね $K_{R R}$ に加えて，「原子力発電所耐震設計技術規程 J E A C 4601 －2015（（社）日本電気協会）」を参考に，接地率 $\eta_{\mathrm{t}} \mathrm{t}$ に応じて時々刻々と変化す る鉛直ばね $\mathrm{K}_{\mathrm{V} V}$ 及 び回転•鉛直連成ばね K_{VR} を考慮している。

図 3－19に誘発上下動を考慮する場合の地震応答解析モデルの概念図を，表 3 －8に基礎浮上り時の地盤ばねの剛性と減衰の評価式を示す。
$\left\{\begin{array}{c}\mathrm{P} \\ \mathrm{N} \\ \mathrm{M}\end{array}\right\}=\left[\begin{array}{ccc}\mathrm{K}_{\mathrm{HH}} & 0 & 0 \\ 0 & \mathrm{~K}_{\mathrm{VVV}} & \mathrm{K}_{V_{V R}} \\ 0 & \mathrm{~K}_{\mathrm{VRR}} & \mathrm{K}_{\mathrm{RR}}\end{array}\right]\left\{\begin{array}{c}\mathrm{u}_{0} \\ \mathrm{w}_{0} \\ \theta\end{array}\right\}$
ここで，
P ：水平方向慣性力
N ：鉛直方向慣性力
M ：転倒モーメント
$K_{H H}, K_{V V}, K_{R R}$ ：
水平，鉛直，回転ばねの対角項
K_{VR} ：回転•鉛直連成ばね
$\mathrm{u}_{0}, \mathrm{w}_{0}, \quad \theta$ ：

基礎底面中心の各変位及び回転角

図 3－19 誘発上下動を考慮する場合の地震応答解析モデルの概念図

表 3－8 誘発上下動考慮モデルの基礎浮上り時の地盤ばねの剛性と減衰

	剛性	減衰
鉛直ばね	$\mathrm{K}_{\mathrm{VV}}=\eta_{\mathrm{t}}{ }^{\beta} \cdot \mathrm{K}_{\mathrm{V} 0}$	$\mathrm{C}_{\mathrm{vv}}=\mathrm{C}_{\mathrm{Vo}}{ }^{\text {a }}$ • $\eta_{\mathrm{t}}{ }^{\alpha / 2}$
回転•鉛直連成ばね	$\mathrm{K}_{\mathrm{VR}}=\left(1-\eta_{\mathrm{t}}\right) / 2 \cdot \mathrm{~L} \cdot \mathrm{~K}_{\mathrm{VV}}$	$\mathrm{C}_{\mathrm{VR}}=0$
回転ばね	$\mathrm{K}_{\mathrm{R} R}=\left(\mathrm{M}-\mathrm{K}_{\mathrm{VR}} \cdot \mathrm{w}_{0}\right) / \theta$	$\mathrm{C}_{\mathrm{RR}}=\mathrm{C}_{\mathrm{R} 0}{ }^{\text {a }} \eta_{\mathrm{t}}{ }^{\alpha / 2}$
$\begin{array}{r} \eta_{\mathrm{t}}=\left(\theta_{\mathrm{o}} / \theta\right)^{2 /(} \\ \theta: \text { 回転角 } \end{array}$		㔯直変位 腩性 た値（三角形分布6．0） 減衰係数 減衰係数

3．4．4 材料物性の不確かさ

解析においては，「3．2 地震応答解析モデル」に示す物性値及び定数を基本ケ ースとし，材料物性の不確かさを考慮する。材料物性の不確かさを考慮した地震応答解析は，基本ケースによる地震応答解析で，部材または質点の応答値のうち，加速度，変位，せん断力，曲げモーメント及び軸力のいずれかが最大値となった地震動を基準地震動 S s から選定し実施する。

材料物性の不確かさのらち，地盤物性については，地盤調査結果の平均値をも とに設定した数値を基本ケースとし，底面地盤のせん断波速度のばらつきは，変動係数 $\pm 7 \%$ を考慮する。 0. P． 14.8 m から 0 ．P．-12.5 m の表層地盤は，非線形性を考慮しているためばらつきは考慮しない。

建屋剛性の不確かさについて，水平方向については基準地震動 S s 入力後の建屋全体の平均的な剛性低下を全ての基準地震動 S s について評価し，最も剛性低下するケースの低下後の剛性を初期剛性の不確かさとして考慮する。なお，終局耐力については，実機のコンクリート強度が設計基準強度より高い傾向にあり，終局耐力はその分高いほうに上振れすることが考えられるが，終局耐力の増加は建屋の変形を抑制する方向の評価となることから，これを考慮しない。また，鉛直方向については，水平方向に比べ剛性の低下量は小さく，これまでの経年変化 によって設計基準強度に基づく剛性（以下「設計剛性」という。）を下回っていな いこと，建屋シミュレーション解析では設計剛性に基づく解析モデルで記録を再現できたこと，また，剛性の変化が建屋応答に与える感度が小さいことから，初期剛性の不確かさは考慮しない。

材料物性の不確かさを考慮する地震応答解析ケースを表 3－9に，地盤物性の不確かさを考慮した解析用地盤物性を表3－10に示す。

表 3－9 材料物性の不確かさを考慮する地震応答解析ケース

表 3－10 地盤物性の不確かさを考慮した解析用地盤物性

	$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	地盤のせん断波速度（m／s）		
		基本ケース	＋σ 相 当	－σ 相 当
表層地盤	14.8	＊	＊	＊
底面地盤	－12．5	1360	1460	1260
	－27．0	2040	2180	1900
	－50．0	2520	2700	2340
	－200．0	2520	2700	2340

注記＊：0．P．14．8m～0．P．-12.5 m は，上載圧依存を考慮してせん断波速度と相関のある初期せん断剛性 G oを設定する。また，ひずみ依存によ る非線形特性を考慮する。（詳細は表 3－4 及び図 $3-6$ に従う。）

4．解析結果

4． 1 動的解析
本資料においては，代表として基本ケースの地震応答解析結果を示す。

4．1．1 固有値解析結果
基本ケースの地震応答解析モデルの固有値解析結果（固有周期，固有振動数及 び刺激係数）を表4－1 に示す。刺激関数図を図 4－1 に示す。

なお，刺激係数は，各次の固有ベクトル $\{u\}$ に対し，最大振幅が 1.0 となるよう に規準化した値を示す。

4．1．2 地震応答解析結果

基準地震動 S s による最大応答値を図4－2～図4－12，表4－2 及び表4－3 に示す。また，基準地震動 S s に対する最大応答値を図4－13及び図4－14の耐震壁のスケルトンカーブ上にプロットして示す。表 4－4 に基準地震動 S s による地震応答解析結果に基づく接地率を示す。

表 4－1 固有値解析結果
（a）NS 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.137	7.28	1.364	全体 1 次
2	0.057	17.40	0.524	全体 2 次
3	0.045	22.39	0.176	
4	0.034	29.16	0.296	全体 3 次

（b）EW 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.149	6.69	1.349	全体 1 次
2	0.062	16.21	0.490	全体 2 次
3	0.044	22.65	0.099	
4	0.035	28.46	0.272	全体 3 次

（c）UD 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.054	18.49	1.381	全体 1 次
2	0.023	43.79	0.507	全体 2 次
3	0.015	67.10	0.164	全体 3 次
4	0.011	90.57	0.024	

固有周期	0.137 s
固有振動数	7.28 Hz
刺激係数	1.364

| | $O P 15.00 \mathrm{M}$ |
| :--- | :--- | :--- | :--- |

\qquad $+1$

固有周期 0.057 s
 固有振動数 $\quad 17.40 \mathrm{~Hz}$
 刺激係数 0.524

$-1 \quad 0 \quad+$

固有周期 0.034 s
固有振動数 29.16 Hz刺激係数 0.296
$-1 \quad 0 \quad+$

4 次モード

図 4－1（1）刺激関数図（NS 方向）

固有周期	0.149 s
固有振動数	6.69 Hz
刺激係数	1.349

$\begin{array}{lll}-1 & 0 & +1\end{array}$

OP 15.00 M

OP 8.00 M

OP -1 ．10M

OP－9． 50 M
OP－12．50M
1 次モード
固有周期 0.044 s
固有振動数 22.65 Hz刺激係数 0.099
－1 \qquad $+1$

3 次モード

固有周期 0.062 s
固有振動数 16.21 Hz
刺激係数 0.490

OP 15．00M

OP 8.00 M

OP -1.10 M

OP－9．50M
OP－12．50M
2 次モード
固有周期 0.035 s
固有振動数 28.46 Hz
刺激係数 0.272
$-1 \quad 0 \quad+1$

4 次モード

図 4－1（2）刺激関数図（EW 方向）

固有周期	0.054 s
固有振動数	18.49 Hz
刺激係数	1.381

1 次モード
固有周期 0.015 s
固有振動数 67.10 Hz刺激係数 0.164
$\begin{array}{ll}\text { 固有周期 } & 0.023 \mathrm{~s} \\ \text { 固有振動数 } & 43.79 \mathrm{~Hz} \\ \text { 刺激係数 } & 0.507\end{array}$
\qquad $+1$

2 次モード
固有周期 0.011 s
固有振動数 90.57 Hz
刺激係数 0.024
$-1 \quad 0 \quad+1$

4 次モード

図 4－1（3）刺激関数図（UD 方向）

注：網掛け部分は最大値

図 4－2 最大応答加速度（基準地震動 S s，NS 方向）

注：網掛け部分は最大値

図 4－3 最大応答変位（基準地震動 S s，NS 方向）

図 4－4 最大応答せん断力（基準地震動 S s，NS 方向）

図 4－5 最大応答曲げモーメント（基準地震動 S s，NS 方向）

表 4－2 最大応答せん断ひずみ一覧（基準地震動 S s，NS 方向）

要素 番号	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$								
	0.18	0.18	0.17	0.16	0.15	0.18	0.11	0.18	
最大値									
(2)	0.51	0.60	0.45	0.32	0.34	0.52	0.19	0.60	
(3)	0.36	0.50	0.36	0.25	0.32	0.31	0.21	0.50	

注：網掛け部分は最大値

図 4－6 最大応答加速度（基準地震動 S s，EW 方向）

図 4－7 最大応答変位（基準地震動 S s，EW 方向）

図 4－8 最大応答せん断力（基準地震動 S s，EW 方向）

S s－D 1	S s－D 2	S s－D 3	S s－F 1	S s－F 2	S s－F 3	S s -N 1	最大値
0.329	0.368	0.338	0.257	0.247	0.483	0.146	0．483
0.948	1． 21	1． 18	0.846	0.976	1． 27	0.689	1． 27
1． 20	1． 38	1． 38	1． 14	1.23	1.81	0.834	1.81
3.14	3． 43	3． 44	2.61	3.05	3． 45	2.35	3.45
3.43	3． 84	3.89	2.83	3.32	3.93	2． 50	3.93
5.98	6． 56	6． 43	4.99	5.55	6． 51	4.58	6． 56
6.02	6． 57	6.43	5.04	5.62	6.51	4． 60	6.57
7.07	7． 73	7.35	5.87	6.53	7.57	5.55	7.73

注：網掛け部分は最大値

図 4－9 最大応答曲げモーメント（基準地震動 S s，EW 方向）

表 4－3 最大応答せん断ひずみ一覧（基準地震動 S s，EW 方向）

要素	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$							$\begin{gathered} \text { 最大値 } \\ \left(\times 10^{-3}\right) \end{gathered}$
番号	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{Ss}-\mathrm{D} 2$	S s－D3	S s －F1	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	S s－N1	
（1）	0.16	0． 18	0． 19	0.13	0.16	0． 18	0． 12	0． 19
（2）	0.24	0.30	0.28	0． 19	0.21	0.27	0.18	0.30
（3）	0.77	1.05	0.68	0.39	0． 49	1.00	0． 42	1.05

注：網掛け部分は最大値

図 4－10 最大応答加速度（基準地震動 S s，鉛直方向）

図 4－11 最大応答変位（基準地震動 S s ，鉛直方向）

図 4－12 最大応答軸力（基準地震動 S s，鉛直方向）

要素番号（1）
0 y $66-7-7-\mathrm{I} \Lambda$（६） ZO

要素番号（3）
図4－13（1）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）

$$
\mathrm{OS} \mathrm{~s}-\mathrm{D} 1 \quad \mathrm{DS} \mathrm{~s}-\mathrm{D} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{D} 3 \bullet \mathrm{~S} \mathrm{~s}-\mathrm{F} 1 \Delta \mathrm{~S} \mathrm{~s}-\mathrm{F} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 3 \times \mathrm{S} \mathrm{~s}-\mathrm{N} 1
$$

図 4－13（2）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s，EW 方向）

要素番号（1）
0 d $66-6-7-\mathrm{I} \Lambda$（8） ZO

要素番号（2）

図 4－14（1）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）

要素番号（1）
0 y $66-7-7-\mathrm{I} \Lambda$（8） ZO

要素番号（2）

要素番号（3）

図4－14（2）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，EW 方向）

表 4－4 基準地震動 S s による地震応答解析結果に基づく接地率
（a）NS 方向

地震動	最大接地圧 $\left(\times 10^{3} \mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$
$\mathrm{S} \mathrm{s}-\mathrm{D} 1^{*}$	2.41	8.50	54.5
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2^{*}$	5.24	8.72	52.1
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3^{*}$	1.88	7.90	61.3
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1^{*}$	1.26	7.58	64.9
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2^{*}$	1.35	7.65	64.1
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3^{*}$	2.17	8.18	58.1
$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$	0.87	5.70	86.0

（b）EW 方向

地震動	最大接地圧 $\left(\times 10^{3} \mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$
$\mathrm{S} \mathrm{s}-\mathrm{D} 1^{*}$	1.59	7.13	63.0
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2^{*}$	3.59	7.77	55.1
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3^{*}$	2.01	7.36	60.2
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	0.94	5.91	77.9
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	1.16	6.58	69.6
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3^{*}$	2.23	7.55	57.8
$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$	0.91	5.57	82.0

注記＊：誘発上下動を考慮したケースを示す。
4.2 必要保有水平耐力

「3．3解析方法」による解析方法で算出した必要保有水平耐力 Qun を表 $4-6$ に示 す。

構造特性係数Dsは以下の条件に基づき設定している。
耐震壁は全てせん断破壊型であるため建築基準法施行令に基づく耐力壁の種別は WDとする。

耐震壁が全ての地震荷重を負担するため，耐震壁が分担する保有水平耐力の比 $\beta \mathrm{u}$ は1．0となる。

以上の条件から構造特性係数D ${ }^{\text {s }} 0.55$ となる。
形状特性係数 F esは
$\mathrm{F}_{\mathrm{s}}=1.0$（剛性率が 0.6 以上のため）
$\mathrm{F}_{\mathrm{e}}=1.0$（偏心率が 0.15 以下のため）
より， 1.0 となる。

表 4－6 必要保有水平耐力
（a）NS 方向

階	0．P．（m）	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$
B1F	$15.0 \sim 8.0$	0.55	1.0	61.36
B2F	$8.0 \sim-1.1$	0.55	1.0	117.55
B3F	$-1.1 \sim-9.5$	0.55	1.0	162.95

（b）EW 方向

階	0．P．（m）	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$
B1F	$15.0 \sim 8.0$	0.55	1.0	59.11
B2F	$8.0 \sim-1.1$	0.55	1.0	114.27
B3F	$-1.1 \sim-9.5$	0.55	1.0	162.95

別紙1 第3号機海水熱交換器建屋の弾性設計用地震動 S d－D 2 による地震応答解析結果について

目次
1．概要 別紙 1－1
2．設計に用いる地震波 別紙 1－3
3．解析結果 別紙 1－7
3.1 地震応答解析結果 別紙 1－7

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく第3号機海水熱交換器建屋の弾性設計用地震動S d－D 2 による地震応答解析結果を示すものである。地震応答解析により算出した各種応答値は，添付書類「VI－3－別添3津波又は溢水への配慮が必要な施設の強度に関する説明書」に示す浸水防護施設の余震荷重として用いる。 なお，本資料で用いる地震応答解析モデル，解析方法及び解析条件は添付書類「VI－2－ 2－29 第3号機海水熱交換器建屋の地震応答計算書」に準じるものとする。弾性設計用地震動 S d－D 2 に対する材料物性の不確かさを考慮する地震応答解析ケースを表 1－ 1 に示す。

表 1－1 材料物性の不確かさを考慮する地震応答解析ケース

2．設計に用いる地震波
第3号機海水熱交換器建屋の地震応答解析に用いる入力地震動は，水平方向につい ては，添付書類「VI－2－1－2 基準地震動S s 及び弾性設計用地震動 S d の策定概要」 に示す弾性設計用地震動 S d－D 2 から，建屋底面位置（ 0. P．－12．5m）より上部の地盤 の振動特性を考慮して算定した地震動を用いる。鉛直方向については，弾性設計用地震動 S d－D 2 を用いる。

弾性設計用地震動 S d－D 2 の加速度時刻歴波形及び加速度応答スペクトルを図2－ 1 及び図 2－2に，基礎底面位置（0．P．-12.5 m ）における入力地震動の加速度応答スペ クトルを図 $2-3$ に示す。

（a）水平方向

（b）鉛直方向
図 2－1 加速度時刻歴波形（弾性設計用地震動 S d－D 2）

図 2－2 加速度応答スペクトル（弾性設計用地震動 S d－D 2）

図 2－3 入力地震動の加速度応答スペクトル （弾性設計用地震動 S d－D 2，0．P．－12．5m）

3．解析結果
3.1 地震応答解析結果

弾性設計用地震動 S d－D 2 による最大応答値を図 3－1～図3－5に示す。また，弾性設計用地震動 S d－D 2 に対する最大応答値を図 3－6の耐震壁のスケルトンカ ーブ上にプロットして示す。

図 3－1 最大応答加速度（弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ ，NS 方向）

図 3－2 最大応答変位（弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ ，NS 方向）

図 3－3 最大応答加速度（弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ ，EW 方向）

図 3－4 最大応答変位（弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ ，EW 方向）

図 3－5 最大応答加速度（弾性設計用地震動 $S d-D 2$ ，UD 方向）
\square

要素番号（1）

要素番号（3）

図 $3-6(1)$ せん断スケルトンカーブ上の最大応答値 （弾性設計用地震動 S d－D 2，NS 方向）

要素番号（1）

要素番号（3）

VI－2－2－30 第3号機海水熱交換器建屋の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 9
2.4 適用規格•基準等 12
3．地震応答解析による評価方法 13
4．地震応答解析による評価結果 14
4．1耐震壁のせん断ひずみの評価結果 14
4．2 保有水平耐力の評価結果 17

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，第3号機海水熱交換器建屋の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は地震応答解析による評価により行う。

第3号機海水熱交換器建屋は，建屋内外部に浸水防護施設（防潮壁及び浸水防止蓋） が設置されている。このため，設計基準対象施設において「浸水防護施設の間接支持構造物」に分類される。

以下，第3号機海水熱交換器建屋の「浸水防護施設の間接支持構造物」としての分類 に応じた耐震評価を示す。

2．基本方針
2.1 位置

第3号機海水熱交換器建屋の設置位置を図2－1に示す。

図 2－1 第3号機海水熱交換器建屋の設置位置

2.2 構造概要

第3号機海水熱交換器建屋は地下 3 階，地上 1 階建で，基礎底面からの高さは 27.5 m であり，平面は 40.5 m （NS）$\times 37.0 \mathrm{~m}$（EW）＊である。

建屋の構造は鉄筋コンクリート造であり，その主たる耐震要素は耐震壁である。
第3号機海水熱交換器建屋の基礎は，厚さ 3.0 m のべた基礎で，支持地盤である砂岩及び頁岩上に設置されており，一部は支持地盤上に打設されたマンメイドロック上に設置されている。

第3号機海水熱交換器建屋の概略平面図及び概略断面図を図2－2 及び図2－3 に示 す。

注記＊：建屋寸法は壁外面押えとする。

（単位：m）
図 $2-2$（1）第3号機海水熱交換器建屋の概略平面図（0．P．－9．5m）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。

（単位：m）
図2－2（2）第3号機海水熱交換器建屋の概略平面図（0．P．－1．1m）

（単位：m）
図 $2-2$（3）第3号機海水熱交換器建屋の概略平面図（0．P．8．0m）

（単位：m）
図2－3（1）第3号機海水熱交換器建屋の概略断面図（A－A 断面 NS 方向）

（単位：m）
図2－3（2）第3号機海水熱交換器建屋の概略断面図（B－B 断面 EW 方向）

2． 3 評価方針

第3号機海水熱交換器建屋は，建屋内外部に浸水防護施設（防潮壁及び浸水防止蓋） が設置されている。このため，設計基準対象施設においては「浸水防護施設の間接支持構造物」に分類される。

第3号機海水熱交換器建屋の設計基準対象施設としての評価においては，基準地震動 S s による地震力に対する評価（以下「 S s 地震時に対する評価」という。）及び保有水平耐力の評価を行うこととし，それぞれの評価は，添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」の結果を踏まえたものとする。第3号機海水熱交換器建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，耐震壁のせん断ひずみ及び保有水平耐力の評価を行うことで，第3号機海水熱交換器建屋 の地震時の構造強度及び機能維持の確認を行う。評価にあたつては，材料物性の不確 かさを考慮する。表2－1 に材料物性の不確かさを考慮する解析ケースを示す。

図 $2-4$ に第 3 号機海水熱交換器建屋の評価フローを示す。

表 2－1 材料物性の不確かさを考慮する解析ケース

検討ケース	スケルトンカーブ		建屋材料減衰	地盤物性	
	初期岡性	終局耐力		入力地震動	底面地盤ばね
$\begin{array}{\|l} \text { ケース } 1 \\ \text { (工認モデル) } \end{array}$	2011年3月11日東北地方太平洋沖地震の観測記録を用いたシミュレーシ ヨン解析により補正	設計基準強度を用い JEAG 式で評価	5\％	表層地盤の非線形性を考慮	標準地盤
ケース2	同上	同上	同上	同上	標準地盤＋σ
ケース 3					標準地盤－σ
ケース 4	基本ケースの 0.53 倍	同上	同上	同上	標準地盤
ケース 5					標準地盤＋σ
ケース6					標準地盤－σ

注記＊：添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」の結果を踏まえた評価を行う。

図 2－4 第3号機海水熱交換器建屋の評価フロー
2.4 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1991年改定）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）

3．地震応答解析による評価方法
第3号機海水熱交換器建屋の構造強度については，添付書類「VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有することを確認する。

また，支持機能の維持については，添付書類「VI－2－2－29 第3号機海水熱交換器建屋 の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断 ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における第3号機海水熱交換器建屋の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持方針に基づ き，表3－1 のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

要求機能	機能設計上の 性能目標	地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
－	構造強度を有 すること	基準地震動 S s	耐震壁＊1	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ 2.0×10^{-3}
		保有水平耐力	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有する ことを確認	必要保有水平耐力
支持機能＊2	浸水防護施設 を支持する機能を損なわな いこと	基準地震動 S s	耐震壁＊1	最大応答せん断ひずみ が支持機能を維持する ための許容限界を超え ないことを確認	せん断ひずみ 2.0×10^{-3}

注記 $~$ 1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑え られるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足してい れば，建物•構築物に要求される機能は維持される。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含ま れる。

4．地震応答解析による評価結果
4．1耐震壁のせん断ひずみの評価結果
鉄筋コンクリート造耐震壁について，S s 地震時の各層の最大応答せん断ひずみが許容限界（2．0×10 ${ }^{-3}$ ）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは 1.07×10^{-3}（EW 方向，S s －D 2，ケース 5，要素番号（3））であり，許容限界（ 2.0×10^{-3} ）を超えないことを確認した。各要素の耐震壁の最大応答せん断ひずみ一覧を表4－1に示す。各要素の最大応答せん断ひずみのうち最も大きい値について，せん断スケルトンカーブ上にプロッ トした図を図4－1に示す。

表 4－1 せん断スケルトンカーブ上の最大応答せん断ひずみ
（a）NS 方向

0．P． (m)	階	地震応答解析 モデルの 要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$15.0 \sim 8.0$	B1F	(1)	0.43	2.020
$8.0 \sim-1.1$	B2F	(2)	0.77	
$-1.1 \sim-9.5$	B3F	(3)	0.61	

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を表示
（b）EW方向

0．P． (m)	階	地震応答解析 モデルの 要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$15.0 \sim 8.0$	B1F	(1)	0.40	2.0
$8.0 \sim-1.1$	B2F	(2)	0.50	
$-1.1 \sim-9.5$	B3F	(3)	1.07	

注：ハッチングは各要素の最大応答せん断ひずみのらち最も大きい値を表示

（a）NS 方向（S s－D 2，ケース 5，要素番号（2））

（b）EW 方向（S s－D 2，ケース 5，要素番号（3））図 4－1 せん断スケルトンカーブ上の最大応答せん断ひずみ

4．2 保有水平耐力の評価結果

各層において，保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全裕度 を有していることを確認する。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 Q_{u} の比較結果を表 4－2 に示す。各層にお いて，保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有してい ることを確認した。

なお，必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} n}$ に対する保有水平耐力 Q_{u} の比は最小で 3.97 である。

表 4－2 必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} \mathrm{n}}$ と保有水平耐力 Q_{u} の比較結果
（a）NS 方向

階	0．P．（m）	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
B1F	$15.0 \sim 8.0$	61.36	477.91	7.79
B2F	$8.0 \sim-1.1$	117.55	568.90	4.84
B3F	$-1.1 \sim-9.5$	162.95	893.38	5.48

（b）EW方向

階	0．P．（m）	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}\left(\times 10^{3} \mathrm{kN}\right)$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}\left(\times 10^{3} \mathrm{kN}\right)$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
B1F	$15.0 \sim 8.0$	59.11	446.44	7.55
B2F	$8.0 \sim-1.1$	114.27	619.92	5.43
B3F	$-1.1 \sim-9.5$	162.95	647.41	3.97

VI－2－3 原子炉本体の耐震性についての計算書

VI－2－3－1 原子炉本体の耐震性についての計算結果
VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書

VI－2－3－3 炉心の耐震性についての計算書
VI－2－3－4 原子炉圧力容器の耐震性についての計算書

VI－2－3－1 原子炉本体の耐震性についての計算結果

1．概要

本資料は，原子炉本体の設備の耐震計算の手法及び条件の整理について説明するもの である。

2．耐震評価条件整理
原子炉本体の設備に対して，設計基準対象施設の耐震クラス，重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既に認可を受けた実績と差異の有無を整理した。また，重大事故等対処設備のらち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件 と設計基準対象施設の評価条件の差異の有無を整理した。結果を表2－1に示す。原子炉本体の耐震計算は表2－1に示す計算書に記載する。

表2－1 耐震評価条件整理一覧表（1／4）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	炉	燃料集合体	－	有	VI－2－3－3－1	－	－	－
	$\begin{aligned} & \text { 炉 } \\ & \text { 心 } \\ & \text { 支 } \\ & \text { 持 } \\ & \text { 構 } \\ & \text { 造 } \\ & \text { 物 } \end{aligned}$	炉心シュラウド	S	無	VI－2－3－3－2－2	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊1
		$\begin{aligned} & \text { シュラウドサポー } \\ & \text { ト } \end{aligned}$	S	無	VI－2－3－3－2－3	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊1
		炉心シュラウド支持ロッド	S	無	VI－2－3－3－2－4	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊1
		上部格子板	S	無	VI－2－3－3－2－5	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	—＊1

表2－1 耐震評価条件整理一覧表（2／4）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	炉心支持構造物	炉心支持板	S	無	VI－2－3－3－2－6	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊1
		燃料支持金具	S	－＊2	VI－2－3－3－2－7	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	—＊1
		制御棒案内管	S	無	VI－2－3－3－2－8	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊1
	原子	圧力容器	S	無	VI－2－3－4－1－2	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊3

表2－1 耐震評価条件整理一覧表（3／4）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された 実績との差異	耐震計算の記載箇所	設備分類	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	付子 属 炉 構 圧 造力 物 容 器	原子炉圧力容器ス タビライザ	S	無	VI－2－3－4－2－1	－	－	－
		原子炉格納容器ス タビライザ	S	無	VI－2－3－4－2－2	－	－	－
		制御棒駆動機構ハ ウジング支持金具	S	無	VI－2－3－4－2－3	－	－	－
		差圧検出・ほう酸水注入系配管（ティー よりN11ノズルまで の外管）	S	無	VI－2－3－4－2－4	（原子炉冷却系統施設，計測制御系統施設及び原子炉格納施設に記載）	－	－＊3
	$\begin{aligned} & \text { 原 } \\ & \text { 内蔀 炉 } \\ & \text { 煹圧 } \\ & \text { 造 力 } \\ & \text { 物 容 } \\ & \text { 器 } \end{aligned}$	蒸気乾燥器	S	無	VI－2－3－4－3－2	－	－	－
		気水分離器	S	無	VI－2－3－4－3－3	－	－	－
		シュラウドヘッド	S	無	VI－2－3－4－3－4	－	－	－
		ジェットポンプ	S	無	VI－2－3－4－3－5	（原子炉冷却系統施設に記載）	有	VI－2－3－4－3－5
		給水スパージャ	S	無	VI－2－3－4－3－6	（原子炉泠却系統施設，原子炉格納施設に記載）	有	VI－2－3－4－3－6
		高圧及び低圧炉心 $\begin{aligned} & \text { スプレイスパージ } \\ & \text { ヤ } \end{aligned}$	S	無	VI－2－3－4－3－7	（原子炉冷却系統施設に記載）	有	VI－2－3－4－3－7

表2－1 耐震評価条件整理一覧表（4／4）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 本 } \\ & \text { 体 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 内李 } \\ & \text { 部炉 } \\ & \text { 構圧 } \\ & \text { 告 力 } \\ & \text { 容 } \\ & \text { 器 } \end{aligned}$	残留熱除去系配管 （原子炉圧力容器内部）	S	無	VI－2－3－4－3－8	（原子炉冷却系統施設，原子炉格納施設 に記載）	有	VI－2－3－4－3－8
		高圧及び低圧炉心 スプレイ系配管（原子炉圧力容器内部）	S	無	VI－2－3－4－3－9	（原子炉冷却系統施設に記載）	有	VI－2－3－4－3－9
		差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）	S	無	VI－2－3－4－3－10	（原子炉冷却系統施設に記載）	有	VI－2－3－4－3－10
		中性子束計測案内管	S	無	VI－2－3－4－3－11	－	－	－

注記＊1：炉心支持構造物については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡されことから評価省略。
＊2：本工事計画で新規に申請する設備であることから，差異比較の対象外
＊3：原子炉圧力容器については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡されことから評価省略。

VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書
1．概要 1
2．基本方針 1
2.1 構造概要 1
2．2 解析方針 4
2.3 適用規格•基準等 4
3．解析方法 4
3.1 入力地震動 4
3.2 地震応答解析モデル 7
3．2．1 大型機器系 7
3．2．2 炉内構造物系 26
3.3 解析方法 48
3．3．1 動的解析 48
3．3．2 静的解析 48
3.4 解析条件 49
3．4．1 耐震壁の復元力特性 49
3．4．2 地盤の回転ばねの復元力特性 49
3．4．3 原子炉本体の基礎の復元力特性 49
3．4．4 誘発上下動を考慮する場合の基礎浮上り評価方法 53
3．4．5 材料物性の不確かさ等 53
4．解析結果 55
4． 1 固有値解析 55
4．1．1 大型機器系 55
4．1．2 炉内構造物系 55
4．2 地震応答解析及び静的解析 152
4．2．1 大型機器系 152
4．2．2 炉内構造物系 230
5．設計用地震力 316
5.1 弾性設計用地震動 S d 316
5.2 基準地震動 S s 316

1．概要

本計算書は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく灲心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答解析について説明 するものである。

地震応答解析により算出した各種応答値及び静的地震力は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

2．基本方針

2.1 構造概要

原子炉建屋内の原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎等の大型機器，構築物は，その支持構造上から建屋との連成が無視できないため，図 3－1～図 3－10に示すように原子炉建屋と連成で解析する。

原子炉格納容器は，円筒形の鋼製のドライウェル及び円環形の鋼製のサプレッションチェン バからなり，水平地震力は 0．P． 22.500 m で原子炉格納容器シヤラグを介して原子炉建屋に伝達 され，下端は 0．P．1．150m で原子炉建屋基礎版に支持される。
原子炉しゃへい壁は原子炉圧力容器を取り囲む二重円筒鋼板の壁であり，内部にモルタルが充てんされる。また，原子炉格納容器スタビライザを介して原子炉格納容器に結ばれ，さらに原子炉圧力容器スタビライザを介して原子炉圧力容器に結ばれる。

原子炉圧力容器は，鋼製の円筒形容器であり，O．P．\square（原子炉圧力容器スタビライザに より水平方向に支持され，その下部は原子炉圧力容器支持スカートを介して0．P．\square で原子炉本体の基礎により支持される。
原子炉本体の基礎は円筒形の鋼製（無筋コンクリート充てん）構造物で原子炉圧力容器基礎 ボルトにより原子炉圧力容器支持スカートを介して原子炉圧力容器を支持するとともに原子炉 しゃへい壁を支持しており，原子炉本体の基礎の下端は原子炉建屋基礎版に固定する。
原子炬圧力容器内には，気水分離器及びスタンドパイプ，炬心シュラウド，燃料集合体，制御棒，制御棒案内管，制御棒駆動機構ハウジング，ジェットポンプ等が収納される。
炬心シュラウドは薄肉円筒形で，鉛直方向は下部胴下端でシュラウドサポートレグにより原子炉圧力容器に支持され，また上部胴上端とシュラウドサポートプレートが炉心シュラウド支持ロッドにより支持される。水平方向は，上部胴は上部サポートにより，中間胴下端は下部ス タビライザにより，また下部胴下端はシュラウドサポートプレートにより原子炉圧力容器に支持される構造である。炉心シュラウド上部には，さら形のシュラウドヘッドがあり（以下，炉心シュラウド及びシュラウドヘッドを「炉心シュラウド」と総称する。），その上に163本のスタ ンドパイプが立ち，その上の気水分離器を支持している。炉心シュラウド内部には560本の燃料集合体が収納され，下端を炬心支持板，上端を上部格子板で支持されることにより正確に位置が定められている。燃料集合体に加わる荷重は，水平方向は上部格子板及び炉心支持板を支持する炉心シュラウド，鉛直方向は制御棒案内管及び制御棒案内管を支持する制御棒駆動機構

ハウジングを介し，原子炉圧力容器に伝達される。
制御棒駆動機構は，原子炉圧力容器下部鏡板を貫通し取り付けられる 137 本の制御棒駆動機構ハウジング内に納められ，その上端に取り付けられる制御棒を炉心に挿入する機能を有して いる。

また，炉心シュラウドと原子炉圧力容器の間には，ジェットポンプがシュラウドサポート上 に 20 個据付けられているが，質量が小さく，炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。

同様に中性子束計測案内管及び中性子束計測ハウジングについても炉内の構造物の振動に与 える影響は小さいため質量のみを考慮する。これらの構造概要を図 2－1 及び図 2－2 に示す。

図 2－1 原子炉格納容器，原子炉しゃへい壁，原子炉本体の基礎及び原子炉圧力容器等の構造概要図

図 2－2 原子炉圧力容器内部の構造概要図

2． 2 解析方針

大型機器系の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。

地震応答解析は，「3．2 地震応答解析モデル」において設定した地震応答解析モデル及び「3．1入力地震動」において設定した入力地震動を用いて直接積分法による解析を実施し，各種応答値を算出する。
2.3 適用規格•基準等

大型機器系及び炉内構造物系の地震応答解析において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984 （（社）日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会） （以下「JEAG4601－1991追補版」という。）

3．解析方法
3.1 入力地震動

地震応答解析モデルへの入力地震動は，添付書類「VI－2－1－2 基準地震動S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面で定義された基準地震動 S s 及び弾性設計用地震動 S d を用いて，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」で建屋基礎底面レベ ルでの地盤の応答として評価されたものを使用する。基準地震動 S s 及び弾性設計用地震動S d の最大加速度を表3－1 及び表3－2に示す。

表 3－1 基準地震動 S s の最大加速度

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
S s－D 2	海洋プレート内地震（SMGA＊マントル内）の応答スペクトルに基 づく手法による基準地震動	1， 000	600
S s－D 3	海洋プレート内地震（SMGA＊地殻内）の応答スペクトルに基づく手法による基準地震動	800	500
S s－F 1	プレート間地震の断層モデルを用いた手法による基準地震動 （応力降下量（短周期レベル）の不確かさ）	717	393
S s－F 2	プレート間地震の断層モデルを用いた手法による基準地震動 （SMGA＊位置と応力降下量（短周期レベル）の不確かさの重畳）	722	396
S s－F 3	海洋プレート内地震（SMGA＊マントル内）の断層モデルを用いた手法による基準地震動（SMGA＊マントル内集約）	835	443
S s－N 1	2004 年北海道留萌支庁南部地震（K－NET 港町）の検討結果に保守性を考慮した地震動	620	320

注記 $*: ~$ 強震動生成域

表 3－2 弾性設計用地震動 S d の最大加速度

弾性設計用地震動	最大加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
S d－D 1	371	249
S d－D 2	580	348
S d－D 3 d－F 1	464	290
S d－F 2	359	197
S d－F 3－N 1	361	198
S		

3.2 地震応答解析モデル
 地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデ ルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。

3．2．1 大型機器系
3．2．1．1 水平方向
水平方向地震応答解析モデルは図 3－1 及び図 3－2に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎は，それぞれの質点間を等価な曲げ，せん断剛性を有する無質量のはり又は無質量のばねにより結合する。
原子灲格納容器は 12 質点でモデル化し，原子炉格納容器シヤラグと等価なばねで建屋モデルと結合し，下端は原子炉建屋基䂣版と剛に結合する。

原子炉圧力容器，原子灲しやへい壁及び原子炉本体の基礎はそれぞれ 8 質点， 5 質点， 4質点でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザと等価なばねで，原子炉しやへい壁上端と結び，さらに原子炉格納容器スタビライザと等価なばねにより原子炉格納容器を介し，原子炉建屋に結合する。原子炉圧力容器の下端は，原子炉本体 の基礎の上端に剛に結合し，原子炉本体の基礎の下端は原子炉建屋基礎版上端と剛に結合する。
原子炉建屋は質点系でモデル化し，地盤を等価なばねで評価した建屋一地盤連成モデ ルとする。

建屋底面下の地盤は，水平ばね及び回転ばねで置換する。また，基礎版底面における地盤の水平及び回転ばねは，それ以深の地盤を等価な半無限地盤とみなして，波動論に より評価する。
図 3－1 及び図 3－2 に示した大型機器系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表3－3～表3－16に示す。 また，解析に用いる各構造物の物性値を表 3－24，表 3－25 及び表 3－27に示す。なお，原子炉建屋のスケルトンカーブ及び地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

図 3－3 及び図 3－4 に示す，誘発上下動を考慮する場合の地震応答解析モデルについて は，「原子力発電所耐震設計技術規程 J E A C 4 6 0 1－2008（（社）日本電気協会）」 を参考に，水平加振により励起される上下応答を評価するために，鉛直方向モデルの諸元及び接地率に応じて変化する回転•鉛直連成ばねについても考慮している。
原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。

3．2．1．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－5 に示すように，原子炉建屋，原子炉格納容器，原子炉圧力容器，原子炉しゃへい壁及び原子炉本体の基礎等の各質点間を等価な軸剛性 を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価な曲げ， せん断剛性を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転ばねで結合する。
原子炉格納容器，原子炉圧力容器，原子炉しやへい壁及び原子炉本体の基礎はそれぞ $れ 10$ 質点， 8 質点， 5 質点， 4 質点でモデル化する。原子炉格納容器の下端は，原子炉建屋と剛に結合される。原子炉圧力容器支持スカートの下端は，原子炉本体の基礎の上端 に剛に結合されており，原子炉本体の基礎の下端は，原子炉建屋と剛に結合される。

大型機器系の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化す る点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔について は，工学的判断を加えて定めるものとする。
また，水平方向地震応答解析モデルで考慮している水平ばね（原子炉格納容器スタビ ライザ等）については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鉛直方向地震応答解析モデルでは考慮しない。

図 3－5に示した鋁直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－17～表3－23に示す。また，解析に用いる各構造物の物性値を表3－26及び表3－28に示す。

なお，原子炉建屋の地盤ばね定数については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の値を使用する。

記号	内容
－	質点
।	はり
———	水平ばね
（6）	回転ばね

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{4}	燃料交換バローズ
K_{6}	所員用エアロック
K_{6}	バント管

図 3－1 大型機器系地震応答解析モデル（NS 方向，誘発上下動を考慮しない場合）

記号	内容
-	質点
।	はり
——n－	水平ばね
（6）	回転ばね

K_{1}	原子炉格納容器シヤラグ
K_{2}	原子炉格納容器スタビライザ
K_{3}	原子炉圧力容器スタビライザ
K_{1}	燃料交換ベローズ
K_{5}	所員用エアロック
K_{6}	ベント管

原子炉建屋

原子炉圧力容器及び

（昼位：m）

0．P． 48.725
0．P． 41.200
0．P． 33.200
O．P． 22.510
0．P． 15.000
0．P． 6.000
0．P．-0.800
0．P．-8.100
0．P．-14.100
図 3－5 大型機器系地震応答解析モデル（鉛直方向）

表 3－3 原子炬建屋のモデル諸元（NS 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
	61	33． 200		10． 70	29． 20	30.8	1． 410
	60	22.500			59.40	59.2	2.510
	59	15．000		9.50	59．40	59.2	2． 560
	58	6． 000		9． 00	73.40	75.0	3． 410
	57	－0．800		6.80	108.90	107.8	3.520
	2	－8． 100		7． 30	114． 40	107.8	－
	56	50.500		9． 30	3． 84	10.0	0.141
	55	41.200					0． 252
	54	33.200		8． 00	6． 35	18.2	6． 120
	53	22.500		10.70	54． 30	59.4	9． 430
	52	15.000		7． 50	101． 20	85.8	8． 580
	51	6． 000		9． 00	159． 50	123． 2	9． 940
\bigcirc	50	－0．800		6.80	211.10	165.2	10.61
\simeq	2	－8．100		7． 30	216． 10	165.2	－
\bigcirc	49	33.200		10． 70	3． 83	50.6	0． 412
1	48	22.500					0.932
N	46	15.000		7.50	9.63	72.7	1． 150
5	45	6． 000		9.00	11.20	71.0	0．761
（1）	3	1． 150		4． 85	10.50	66.8	－
	44	50.500		9． 30	3.90	10.0	0.141
\sim	43	41.200		8.00	6.8	18.	0.309
O	42	33.200		8.00	6． 82	18.2	5.090
	41	22.500		10.70	50.70	59.8	6． 840
	40	15.000		7． 50	105． 30	90.0	7.100
	39	6.000		9． 00	132． 10	118.7	7.870
	38	－0．800		6.80	184． 10	155． 3	7． 140
	2	－8．100		7． 30	188.30	159.8	－
	37	33.200		10.70	22.40	28． 4	0.872
	36	22.500					1． 350
	35	15． 000		7.50	46.50	52.0	2． 250
	34	6． 000		9.00	62.80	77.0	2． 700
	33	－0．800		6.80	84.00	107.8	3.040
	2	－8．100		7． 30	81.60	107.8	－
	3	1． 150		9． 25	15．70	108.0	0.921
	2	－8． 100					38.16
	1	－14．100		6.00	3195． 70	6468.0	23． 06

表 3－4 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面 $\left(\mathrm{m}^{2}\right)$	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{m}^{2}\right)$
44	50.500	-	9.30	0.0794	0.1844	-
43	41.200	-	8.00	0.4001	7.56	-
42	33.200	-	8.30	0.0794	0.1844	-
56	50.500	-	9.30	-		
55	41.200	-	8.00	0.7001	7.56	-
54	33.200	-			-	

表 3－5 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰 $(\%)$
37	42	3.570×10^{6}	5.0
36	41	3.614×10^{6}	5.0
35	40	3.820×10^{6}	5.0
34	39	4.613×10^{6}	5.0
33	38	8.792×10^{6}	5.0
44	56	1.365×10^{5}	5.0
42	49	2.457×10^{6}	5.0
41	48	2.871×10^{6}	5.0
40	46	5.825×10^{6}	5.0
39	45	3.840×10^{6}	5.0
38	50	8.208×10^{5}	5.0
49	54	3.199×10^{6}	5.0
48	53	3.335×10^{6}	5.0
46	52	5.723×10^{6}	5.0
45	51	4.043×10^{6}	5.0
54	61	2.233×10^{6}	5.0
53	60	2.704×10^{6}	5.0
52	59	2.125×10^{6}	5.0
51	58	2.557×10^{6}	5.0
50	57	1.711×10^{6}	5.0

表 3－6 原子炉格納容器のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
32					
31					
30					
29					
28					
27					
26					
25					
24					
23					
22					
21					
62 （3）					

表 3－7 原子炉しやへい壁のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
20					
19					
18					
17					
16					
7					

表 3－8 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
62 （3）					

表 3－9 大型機器系のばね定数（NS 方向）

No．	は名称	ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－10 原子炉建屋のモデル諸元（EW 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
	63	33.200		10． 70	29． 90	32.4	1． 130
	62	22.500					1． 900
	61	15． 000		7.50	60． 50	54.7	2． 790
	60	6． 000		9.00	80.30	84.0	3.740
	59	－0．800		6.80	105． 80	109． 2	3． 760
	2	－8．100		7． 30	105.90	117.6	－
	58	50.500		9． 30	6． 49	13.3	0． 247
	57	41.200		8.00	10.30	21.2	0.285
	56	33.200		8.00	10.30	21.2	6.640
	55	22.500		10． 70	27． 30	53.0	9． 240
	54	15.000		7.50	107.30	79.8	9.010
	53	6.000		9.00	152.30	121.4	10． 12
\bigcirc	52	－0．800		6.80	216.90	170.0	10． 121
\propto	2	－8．100		7． 30	213.80	167.2	－
\cdots	51	33.200		10． 70	3.07	63.3	0． 720
1	50	22.500		7.50	9.63	72.7	1． 610
$\stackrel{1}{1}$	48	15.000		9． 50	9.63	72.7	1． 050
5	47	6． 000		9． 00	11． 20	71.0	0． 761
（1）	3	1． 150		4． 85	10.50	66.8	－
	46	50.500		9． 30	6． 49	13． 3	0． 247
\sim	45	41.200					0． 475
O	44	33.200		8.00	12.50	17.4	5.610
	43	22.500		10． 70	29.50	51.8	5.830
	42	15． 000		7.50	34.00	36.5	0.099
	41	22.500		7.50	66.10	76.6	3.900
	40	15.000		9.00	9270	107.1	9． 890
	39	6． 000		9.00	92.70	107.1	11． 43
	38	－0．800		6.80	219.90	163.7	11．15
	2	－8．100		7． 30	227.80	169.0	－
	37	33.200		10． 70	37.60	41.0	2． 590
	36	22.500					2． 860
	35	15． 000		7.50	65.30	57.4	2． 580
	34	6． 000		9.00	85.90	84.0	3.080
	33	－0．800		6.80	110.90	114.8	3． 120
	2	-8.100		7． 30	113.10	117.6	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8．100					45.39
	1	－14．100		6.00	3803． 20	6468.0	27.44

表 3－11 原子炉建屋（補強部材）のモデル諸元（EW 方向）

質点 番号	標高 $0 . P . ~$	質量 (m)	部材長 (m)	断面二次 モーメント $\left(\times 10^{3} \mathrm{~m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{m}^{2}\right)$
45	41.200	-	8.00	1.8883	8.58	-
44	33.200	-		-		

表 3－12 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	回転ばね 定数 （ $\mathrm{t} \cdot \mathrm{m} / \mathrm{rad}$ ）	減衰 （\％）
37	44	1． 790×10^{6}	－	5.0
36	41	6.941×10^{6}	－	5.0
35	40	5． 216×10^{6}	－	5.0
34	39	5.952×10^{6}	－	5.0
33	38	6.932×10^{6}	－	5.0
41	43	4.589×10^{6}	－	5.0
40	42	4． 898×10^{6}	－	5.0
39	47	4． 147×10^{6}	－	5.0
38	52	6． 961×10^{5}	－	5.0
46	58	2.427×10^{5}	－	5.0
44	51	5． 404×10^{6}	3.62×10^{8}	5.0
43	50	7.870×10^{6}	3.62×10^{8}	5.0
42	48	6.680×10^{6}	－	5.0
51	56	2． 019×10^{6}	3.62×10^{8}	5.0
50	55	2． 367×10^{6}	3.62×10^{8}	5.0
48	54	2.522×10^{6}	－	5.0
47	53	3.962×10^{6}	－	5.0
56	63	4． 150×10^{6}	－	5.0
55	62	4.530×10^{6}	－	5.0
54	61	4． 206×10^{6}	－	5.0
53	60	4.926×10^{6}	－	5.0
52	59	7.985×10^{6}	－	5.0
39	42	－	9.90×10^{9}	5.0

表 3－13 原子炉格納容器のモデル諸元（EW 方向）

	質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
	32					
	31					
	30					
	29					
	28					
	27					
	26					
	25					
	24					
	23					
	22					
	21					
\bigcirc	64 （3）					
\sim						
\cdots	表 3－14 原子炉しゃへい壁のモデル諸元（EW 方向）					
1 $\stackrel{1}{1}$ 1						
5	番号					
（2）	20					
	19					
$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	18					
	17					
	16					
	7					

表 3－15 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
64 （3）					

表 3－16 大型機器系のばね定数（EW 方向）

No．	名称	ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰定数 $(\%)$
K_{1}	原子炉格納容器シヤラグ		1.0
$\mathrm{~K}_{2}$	原子炉格納容器スタビライザ		1.0
$\mathrm{~K}_{3}$	原子炉圧力容器スタビライザ		1.0
$\mathrm{~K}_{4}$	燃料交換ベローズ		1.0
$\mathrm{~K}_{5}$	所員用エアロック		1.0
$\mathrm{~K}_{6}$	ベント管		1.0

表 3－17 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $\left(\times 10^{6} \mathrm{t} / \mathrm{m}\right)$
1	48． 725		7.525	20.81
2	41.200		8． 000	49． 21
3	33.200			
4	22.500		10． 700	140.00
			7.500	284.60
5	15． 000		9.000	284.40
6	6． 000		6． 800	509． 30
7	－0． 800		7.300	486.60
8	－8． 100			
9	-14.100		6.000	2910.60

表 3－18 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
1	48.725	－	6． 400	6.99	1.11
10	48.725	333		6.99	
11	48.725	326	6． 300		1.12
12	48.725	163	6． 300	6.99	0． 773

表 3－19 原子炉格納容器のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
41				
40				
39				
38				
37				
36				
35				
34				
33				
32				
14				

表 3－20 原子炉しゃへい壁のモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
23				
22				
21				
20				
19				
18				

表 3－21 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3－22 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
14				
8				

表 3－23 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	減衰定数 $(\%)$
K_{θ}	トラス端部回転拘束ばね	3.278×10^{6}	5.0

表 3－24 解析に用いる建屋の物性値（NS 方向）

名称	縦弾性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 $(\%)$
原子炉建屋	202.5	0.167	5.0
原子炉建屋（オペフロ上部）	81.0	0.167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0
原子炉建屋（鉄骨ブレース）	2100.0	0.3	2.0

表 3－25 解析に用いる建屋の物性値（EW 方向）

名称	縦弾性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比v	減衰定数 $(\%)$
原子炉建屋	216.0	0.167	5.0
原子炉建屋（オペフロ上部）	135.0	0.167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0

表 3－26 解析に用いる建屋の物性値（鉛直方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－27 解析に用いる大型機器系の物性値（水平方向）

名称	縦弾性係数E $\left(\times 10^{7} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉しやへい壁			5.0
原子炉本体の基礎			5.0
原子炉圧力容器			1.0
原子炉圧力容器スカート			1.0
原子炉格納容器			1.0

表 3－28 解析に用いる大型機器系の物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しやへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
原子炉格納容器	1.0

3．2．2 炉内構造物系

3．2．2．1 水平方向

水平方向地震応答解析モデルは図 3－6 及び図 3－7に示すように，原子炉建屋，原子炉 しゃへい壁，原子炉本体の基礎，原子炉圧力容器，炉心シュラウド，燃料集合体，制御棒案内管及び制御棒駆動機構ハウジング等の各質点間を等価な曲げ，せん断剛性を有す る無質量のはり又は無質量のばねにより結合する。
原子炉しやへい壁は5質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 18 質点 でモデル化する。原子炉圧力容器は原子炉圧力容器スタビライザ及び原子炉本体の基礎 を介して原子炉建屋に支持される。
炉心シュラウドは，下部胴下端がシュラウドサポートプレート及びシュラウドサポー トレグの回転ばねにより原子炉圧力容器と結合され，上部胴上端が炉心シュラウド支持 ロッドの回転ばねによりシュラウドサポートプレートと結合される。また，上部胴は上部サポートの水平ばねにより，中間胴下端は下部スタビライザの水平ばねにより原子炉圧力容器と結合される。
気水分離器及びスタンドパイプは 3 質点，炉心シュラウドは 10 質点，燃料集合体は 7質点，制御棒案内管は 4 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。こ れらを 0．P．\square でシュラウドサポートと等価な回転ばねを介して，原子炉圧力容器 と結合する。

なお，ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，質量が小さく炉内の構造物の振動に与える影響は小さいため質量のみを考慮する。また，原子炉圧力容器内の燃料集合体，炉心シュラウド等のモデル化においては，炉水による付加質量効果を模擬するため仮想質量を考慮する。

図 3－6及び図 3－7に示した炉内構造物系の水平方向地震応答解析モデルの各質点質量，部材長，断面二次モーメント，有効せん断断面積，ばね定数等を表 3－29～表3－50に示 す。また，解析に用いる各構造物の物性値を表 3－62，表 3－63 及び表 3－65に示す。

図 3－8 及び図 3－9に示す誘発上下動を考慮する場合の地震応答解析モデルについては，大型機器系の地震応答解析モデルと同様に，水平加振により励起される上下応答を評価 するために，鉛直方向モデルの諸元及び接地率に応じて変化する回転•鉛直連成ばねに ついても考慮している。
原子炉本体の基礎の復元力特性は，建屋の方向別に，原子炉本体の基礎の要素を単位 とした水平断面形状より設定する。
シュラウド，炉心シュラウド支持ロッド，上部サポート及び下部スタビライザにおい て考慮すべき地震荷重が最大となるケースとして，以下の 4 通りのモデルを想定する。

- シュラウド健全モデル
- 上部胴上端（H1）き裂ケース
- 下部胴上端（H6b）き裂ケース
－全溶接線（周方向）分離時モデル

3．2．2．2 鉛直方向

鉛直方向地震応答解析モデルは図 3－10 に示すように，原子炉建屋，原子炉しやへい壁，原子炉本体の基礎，原子炉圧力容器，炉心シュラウド，制御棒案内管及び制御棒駆動機構ハウジング，炉心シュラウド支持ロッド等の各質点間を等価な軸剛性を有する無質量のばねにより結合する。また，屋根トラスは，各質点間を等価な曲げ，せん断剛性 を有する無質量のはりで結合し，支持端部の回転拘束と等価な回転ばねで結合する。
原子炉しゃへい壁は 5 質点，原子炉本体の基礎は 4 質点，原子炉圧力容器は 19 質点 でモデル化する。原子炉圧力容器は原子炉本体の基礎を介して原子炉建屋に支持される。

気水分離器及びスタンドパイプは 3 質点，炉心シュラウドは 11 質点，制御棒案内管は 3 質点，制御棒駆動機構ハウジングは 6 質点でモデル化する。

ジェットポンプ，中性子束計測案内管，中性子束計測ハウジングについては，水平方向と同様に質量のみを考慮する。

炉内構造物の質点は原則として，水平方向と同一とし，部材の端点及び剛性の変化す る点，応力評価点等に設けるが，全体の振動特性が把握できるよう，質点間隔について は，工学的判断を加えて定めるものとする。ただし，灲心シュラウドについては，シュ ラウドサポートレグ上下端に質点を設け，原子炉圧力容器下部鏡板に結合する。

また，水平方向解析モデルで考慮している水平ばね（原子炉圧力容器スタビライザ等） については，鉛直方向に対しては拘束効果がない構造となっているか，拘束効果があっ ても本体部材の鉛直剛性に対して無視できる程度に小さい値であるため，鋁直方向地震応答解析モデルでは考慮しない。

なお，鉛直方向地震応答解析モデルでは，炉水による付加質量効果は小さいため仮想質量は考慮しない。

図 3－10に示した鉛直方向地震応答解析モデルの各質点質量，部材長，ばね定数等を表 3－51～表3－61 に示す。また，解析に用いる各構造物の物性値を表3－64 及び表3－66に示す。

記号	内容
\bullet	質点
I	はり
－－M－	水平ばね
\varnothing ¢ 0	回転ばね

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング Vストンドーム
K_{1}	シュラウドサポート
K_{5}	上部サポート
K_{6}	下部スタビライザ
K_{7}	炉心シュラウド支持ロッド

図 3－6 炉内構造物系地震応答解析モデル（NS 方向，誘発上下動を考慮しない場合）

記号	内容
-	質点
－	はり
- －	水平ばね
回転ばね	

K_{1}	原子炉格納容器スタビライザ
K_{2}	原子炉圧力容器スタビライザ
K_{3}	制御棒駆動機構ハウジング
K_{1}	シストラウントビーム

図 3－7 炬内構造物系地震応答解析モデル（EW 方向，誘発上下動を考慮しない場合）
0．P． 50.500
0．P． 41.200
0．P． 33.200
0．P． 22.500
0．P． 15.000
0．P． 6.000
0．P．-0.800
0．P．-8.100
0．P．-14.100

（単位：m）

8
\sim
\sim
∞
0
0
0
0．P． 22.500
0．P． 15.000
0．P． 6.000
0．P．-0.800
0．P．－8． 100
0．P．-14.100
図 3－10 炉内構造物系地震応答解析モデル（鉛直方向）

表 3－29 原子炉建屋のモデル諸元（NS 方向）

	質点 番号	標高 0．P．（m）	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \\ \hline \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
	89	33.200		10． 70	29． 20	30.8	1． 410
	88	22.500					2.510
	87	15.000		7.50	59．40	59.2	2． 560
	86	6． 000		9.00	73． 40	75.0	3.410
	85	－0． 800		6.80	108.90	107.8	3.520
	2	－8．100		7． 30	114． 40	107.8	－
	84	50.500		9． 30	3． 84	10.0	0.141
	83	41.200		8.00	6.35	18.2	0． 252
	82	33.200		8.00	6． 35	18.2	6.120
	81	22.500		10． 70	54． 30	59.4	9． 430
	80	15.000		7.50	101． 20	85.8	8.580
	79	6.000		9． 00	159.50	123.2	9． 940
	78	－0．800		6.80	211.10	165.2	10.61
\bigcirc	2	－8．100		7． 30	216． 10	165.2	－
	77	33.200		10． 70	3.83	50.6	0.412
\bigcirc	76	22.500		7.50	9.63	72.7	0.932
	74	15.000		9.50	9.63	72.7	1． 150
	73	6.000		9.00	11． 20	71.0	0． 761
©	3	1． 150		4． 85	10.50	66.8	－
\sim	72	50.500		9． 30	3.90	10.0	0． 141
\bigcirc	71	41.200					0． 309
	70	33.200		8.00	6.82	18． 2	5.090
	69	22.500		10． 70	50． 70	59.8	6． 840
	68	15.000		7.50	105． 30	90.0	7.100
	67	6.000		9． 00	132． 10	118.7	7． 870
	66	－0． 800		6.80	184． 10	155.3	7.140
	2	－8． 100		7． 30	188． 30	159.8	－
	65	33.200		10． 70	22． 40	28.4	0.872
	64	22.500		750	46.50	52.0	1． 350
	63	15.000		9.50	46.50	77.0	2． 250
	62	6． 000		6.80	84.80	107.8	2． 700
	61	－0．800		6． 80	84.00	107.8	3.040
	2	－8．100		7． 30	81.60	107.8	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8．100					38． 16
	1	－14．100		6.00	3195.70	6468.0	23． 06

表 3－30 原子炉建屋（補強部材）のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
72	50.500	－	9． 30	0.0794	0.1844	－
71	41． 200	－				－
70	33.200	－	8． 00	0． 4001	7.56	－
84	50.500	－	9． 30	0.0794	0． 1844	－
83	41.200	－				－
82	33． 200	－	8． 00	0． 7001	7.56	－

表 3－31 原子炉建屋（床ばね）のモデル諸元（NS 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	減衰 $(\%)$
65	70	3.570×10^{6}	5.0
64	69	3.614×10^{6}	5.0
63	68	3.820×10^{6}	5.0
62	67	4.613×10^{6}	5.0
61	66	8.792×10^{6}	5.0
72	84	1.365×10^{5}	5.0
70	77	2.457×10^{6}	5.0
69	76	2.871×10^{6}	5.0
68	74	5.825×10^{6}	5.0
67	73	3.840×10^{6}	5.0
66	78	8.208×10^{5}	5.0
77	82	3.199×10^{6}	5.0
76	81	3.335×10^{6}	5.0
74	80	5.723×10^{6}	5.0
73	79	4.043×10^{6}	5.0
82	89	2.233×10^{6}	5.0
81	88	2.704×10^{6}	5.0
80	87	2.125×10^{6}	5.0
79	86	2.557×10^{6}	5.0
78	85	1.711×10^{6}	5.0

表 3－32 原子炉しやへい壁のモデル諸元（NS 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
60					
59					
58					
57					
56					
7					

表 3－33 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（NS 方向）

質点番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
90 （3）					

表 3－34 原子炉圧力容器下部鏡板のモデル諸元（NS 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－35 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－36 燃料集合体のモデル諸元（NS 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
55					
50					
49					
48					
47					
46					
54					

表 3－37 制御棒案内管のモデル諸元（NS 方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－38 制御棒駆動機構ハウジングのモデル諸元（NS 方向）

質点 番号	標高 0. P. (m)	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
43					
38					
39					
40					
41					
42					

表 3－39 炉内構造物系のばね定数（NS 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（t／m）	1． 0
K_{2}	原子炉圧力容器スタビライザ	（t／m）	1.0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（t／m）	1.0
K_{4}	シュラウドサポート	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0
K_{5}	上部サポート	（t／m）	1.0
K_{6}	下部スタビライザ	（t／m）	1.0
K_{7}	炉心シュラウド支持ロッド	$(t \cdot m / r a d)$	1． 0

表 3－40 原子炉建屋のモデル諸元（EW 方向）

	質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）	回転慣性 $\left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right)$
	91	33.200		10.70	29． 90	32.4	1． 130
	90	22.500					1． 900
	89	15.000		7.50	60.50	54.7	2． 790
	88	6． 000		9.00	80.30	84.0	3． 740
	87	－0． 800		6.80	105． 80	109． 2	3． 760
	2	－8．100		7． 30	105.90	117.6	－
	86	50.500		9． 30	6． 49	13． 3	0． 247
	85	41.200		8.00	10， 30	21.2	0.285
	84	33.200		8.00	10． 30	21.2	6.640
	83	22.500		10.70	27． 30	53.0	9． 240
	82	15.000		7.50	107． 30	79.8	9． 010
	81	6.000		9.00	152.30	121.4	10． 12
	80	－0．800		6.80	216.90	170.0	10．12
\bigcirc	2	－8．100		7． 30	213.80	167.2	－
\sim	79	33.200		10.70	3.07	63.3	0． 720
\uparrow	78	22.500		7.50	9.63	72.7	1． 610
\uparrow	76	15.000		7． 50	9.63	72.7	1． 050
P	75	6． 000		9． 00	11.20	71.0	0． 761
（2）	3	1． 150		4． 85	10.50	66.8	－
～	74	50.500		9． 30	6． 49	13． 3	0． 247
\bigcirc	73	41.200					0． 475
	72	33.200		8.00	12.50	17.4	5.610
	71	22.500		10． 70	29． 50	51.8	5.830
	70	15.000		7.50	34.00	36.5	0． 099
	69	22.500		7.50	66.10	76.6	3.900
	68	15.000		9.00	9270	107.1	9． 890
	67	6． 000		9.00	219.90	107.1	11.43
	66	－0． 800		6.80	219.90	163.7	11.15
	2	－8．100		7． 30	227.80	169.0	－
	65	33.200		10． 70	37.60	41.0	2.590
	64	22.500					2． 860
	63	15． 000		7.50	65.30	57.4	2.580
	62	6． 000		9.00	85.90	84.0	3.080
	61	－0．800		6． 80	110.90	114.8	3.120
	2	－8．100		7． 30	113.10	117.6	－
	3	1． 150		9． 25	15． 70	108.0	0.921
	2	－8． 100					45.39
	1	－14．100		6.00	3803． 20	6468.0	27． 44

表 3－41 原子炉建屋（補強部材）のモデル諸元（EW 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\times 10^{3} \mathrm{~m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）	$\begin{gathered} \text { 回転慣性 } \\ \left(\times 10^{6} \mathrm{t} \cdot \mathrm{~m}^{2}\right) \end{gathered}$
73	41.200	－	8.00	1． 8883	8.58	－
72	33． 200	－				－

表 3－42 原子炉建屋（床ばね）のモデル諸元（EW 方向）

質点 番号		ばね定数 $(\mathrm{t} / \mathrm{m})$	回転ばね定数 （ $\mathrm{t} \cdot \mathrm{m} / \mathrm{rad}$ ）	減衰 （\％）
65	72	1． 790×10^{6}	－	5.0
64	69	6． 941×10^{6}	－	5.0
63	68	5． 216×10^{6}	－	5.0
62	67	5． 952×10^{6}	－	5.0
61	66	6． 932×10^{6}	－	5.0
69	71	4.589×10^{6}	－	5.0
68	70	4． 898×10^{6}	－	5.0
67	75	4． 147×10^{6}	－	5.0
66	80	6． 961×10^{5}	－	5.0
74	86	2． 427×10^{5}	－	5.0
72	79	5． 404×10^{6}	3.62×10^{8}	5.0
71	78	7． 870×10^{6}	3.62×10^{8}	5.0
70	76	6． 680×10^{6}	－	5.0
79	84	2． 019×10^{6}	3.62×10^{8}	5.0
78	83	2． 367×10^{6}	3.62×10^{8}	5.0
76	82	2.522×10^{6}	－	5.0
75	81	3． 962×10^{6}	－	5.0
84	91	4． 150×10^{6}	－	5.0
83	90	4.530×10^{6}	－	5.0
82	89	4． 206×10^{6}	－	5.0
81	88	4.926×10^{6}	－	5.0
80	87	7.985×10^{6}	－	5.0
67	70	－	9.90×10^{9}	5.0

表 3－43 原子炉しやへい壁のモデル諸元（EW 方向）

質点 番号	標高 0．P．（m）	質量 （t）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
60					
59					
58					
57					
56					
7					

表 3－44 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（EW 方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
24					
23					
22					
21					
20					
19					
18					
17					
16					
15					
14					
13					
12					
11					
10					
9					
8					
7					
6					
5					
4					
92 （3）					

表 3－45 原子炉圧力容器下部鏡板のモデル諸元（EW 方向）

質点 番号	標高 $0 . \mathrm{P} .(\mathrm{m})$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
8					
38					

表 3－46 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （ m^{2} ）
37					
36					
35					
34					
33					
32					
31					
30					
29					
28					
27					
26					
25					
51					

表 3－47 燃料集合体のモデル諸元（EW 方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 $\left(\mathrm{m}^{2}\right)$
55					
50					
49					
48					
47					
46					
54					

表 3－48 制御棒案内管のモデル諸元（EW 方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
53					
45					
44					
52					

表 3－49 制御棒駆動機構ハウジングのモデル諸元（EW 方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	$\begin{gathered} \hline \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積 （m²）
43					
38					
39					
40					
41					
42					

表 3－50 炉内構造物系のばね定数（EW 方向）

No．	名称	ばね定数	減衰定数 （\％）
K_{1}	原子炉格納容器スタビライザ	（t／m）	1.0
K_{2}	原子炉圧力容器スタビライザ	（t／m）	1． 0
K_{3}	制御棒駆動機構ハウジング レストレントビーム	（t／m）	1.0
K_{4}	シュラウドサポート	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0
K_{5}	上部サポート	（t／m）	1.0
K_{6}	下部スタビライザ	（t／m）	1． 0
K_{7}	炉心シュラウド支持ロッド	$(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	1.0

表 3－51 原子炉建屋のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $\left(\times 10^{6} \mathrm{t} / \mathrm{m}\right)$
1	48.725		7.525	20.81
2	41.200		8． 000	49． 21
3	33.200		8． 000	49.21
4	22.500		10．700	140.00
5			7.500	284.60
5	15.000		9.000	284． 40
6	6． 000		6． 800	509． 30
7	－0．800			
8	－8． 100		7． 300	486.60
9	-14.100		6． 000	2910.60

表 3－52 原子炉建屋（屋根トラス部）のモデル諸元（鉛直方向）

質点 番号	標高 $0 . P . ~(m)$	質量 (t)	部材長 (m)	断面二次 モーメント $\left(\mathrm{m}^{4}\right)$	有効せん断 断面積 $\left(\mathrm{m}^{2}\right)$
1	48.725	-	6.400	6.99	1.11
10	48.725	333	6.300	6.99	1.12
11	48.725	326	6.300	6.99	0.773
12	48.725	163	6	2	

表 3－53 原子炉しやへい壁のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
23				
22				
21				
20				
19				
18				

表 3－54 原子炉圧力容器及び原子炉本体の基礎のモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばねる定数 $(\mathrm{t} / \mathrm{m})$
40				
39				
38				
37				
36				
35				
34				
33				
32				
31				
30				
29				
28				
27				
26				
25				
24				
18				
17				
16				
15				
14				

表 3－55 インナーコンクリートのモデル諸元（鉛直方向）

質点 番号	標高 0. P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
14				
8				

表 3－56 原子炉圧力容器下部鏡板のモデル諸元（鉛直方向）

質点番号	$\begin{gathered} \text { 標高 } \\ \text { 0.P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 （t／m）
24				
41				
60				

表 3－57 気水分離器，スタンドパイプ及び炉心シュラウドのモデル諸元（鉛直方向）

質点番号	標高 0．P．（m）	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
55				
54				
53				
52				
51				
50				
49				
48				
47				
46				
45				
44				
43				
42				
41				

表 3－58 炉心シュラウド支持ロッドのモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
51				
25				

表 3－59 制御棒案内管のモデル諸元（鉛直方向）

質点 番号	標高 0．P．(m)	質量 (t)	部材長 (m)	ばね定数 $(\mathrm{t} / \mathrm{m})$
64				
63				
62				
61				

表 3－60 制御棒駆動機構ハウジングのモデル諸元（鉛直方向）

質点 番号	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	質量 （ t ）	部材長 （m）	ばね定数 $(\mathrm{t} / \mathrm{m})$
61				
60				
59				
58				
57				
56				

表 3－61 原子炉建屋屋根トラス部のばね定数

No．	名称	ばね定数 $(\mathrm{t} \cdot \mathrm{m} / \mathrm{rad})$	減衰定数 $(\%)$
K_{θ}	トラス端部回転拘束ばね	3.278×10^{6}	5.0

表 3－62 解析に用いる建屋の物性値（NS 方向）

名称	縦弹性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 （\％）
原子炉建屋	202.5	0． 167	5.0
原子炉建屋（オペフロ上部）	81.0	0． 167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0
原子炉建屋（鉄骨ブレース）	2100.0	0.3	2.0

表 3－63 解析に用いる建屋の物性値（EW 方向）

名称	縦弾性係数 E $\left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比 v	減衰定数 $(\%)$
原子炉建屋	216.0	0.167	5.0
原子炉建屋（オペフロ上部）	135.0	0.167	5.0
原子炉建屋（補強耐震壁）	257.0	0.2	5.0

表 3－64 解析に用いる建屋の物性値（鉛直方向）

| 名称 | $\begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\ \left(\times 10^{4} \mathrm{t} / \mathrm{m}^{2}\right)\end{array}$ | ポアソン比 v |
| :--- | :---: | :---: | :---: | \(\left.\begin{array}{c}減衰定数

(\%)\end{array}\right]\)

表 3－65 解析に用いる大型機器系の物性値（水平方向）

名称	縦弾性係数 E $\left(\times 10^{7} \mathrm{t} / \mathrm{m}^{2}\right)$	ポアソン比v	減衰定数 $(\%)$
原子炉しやへい壁		5.0	
原子炉本体の基礎		5.0	
原子炉圧力容器		1.0	
原子炉圧力容器支持スカート		1.0	
炉心シュラウド		1.0	
原子炉圧力容器下部鏡板		1.0	
制御棒案内管		1.0	
制御棒駆動機構ハウジング		3.5	
燃料集合体		7.0	

表 3－66 解析に用いる大型機器系の物性値（鉛直方向）

名称	減衰定数 $(\%)$
原子炉しやへい壁	5.0
原子炉本体の基礎	5.0
原子炉圧力容器	1.0
炉心シュラウド	1.0
原子炉圧力容器下部鏡板	1.0
制御棒案内管	1.0
制御棒駆動機構ハウジング	1.0
炉心シュラウド支持ロッド	1.0

3.3 解析方法

「3．2 地震応答解析モデル」において設定した地震応答解析モデルを用いて，電子計算機に より，剛性マトリックス，質量マトリックスを作り，固有振動数，固有モードマトリックス等 を求める。次に，入力地震動に対する各質点の加速度，変位，せん断力（軸力）等を時刻歴応答解析法により時間の関数として求め，地震継続時間中のこれらの最大値を求める。

以上の計算は，解析コード「T D A P III」を使用し，時刻歴応答解析を実施する。評価に用い る解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム （解析コード）の概要」に示す。

3．3．1 動的解析

大型機器系の地震応答計算書の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析方法に基づき，時刻歴応答解析により実施する。

3．3．2 静的解析

（1）水平地震力
水平地震力は「VI－2－2－1 原子炉建屋の地震応答計算書」に記載の方法に基づき，算出する。水平地震力算定用の基準面は地表面（0．P．14．8m）とし，基準面より上の部分（地上部分）の地震力は，地震層せん断力係数を用いて，次式により算出する。なお，機器•配管系につい ては，算出した値を 1.2 倍して用いる。
$\mathrm{Q}_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{C}_{\circ}$
ここで,
Q_{i} ：第 i 層に生じる水平地震力
n ：施設の重要度分類に応じた係数（3．0）
C_{i} ：第 i 層の地震層せん断力係数
W_{i} ：第 i 層が支える重量
Z ：地震地域係数（1．0）
R_{t} ：振動特性係数（0．8）
A_{i} ：第 i 層の地震層せん断力係数の高さ方向の分布係数
C_{\circ} ：標準層せん断力係数（0．2）

基準面より下の部分（地下部分）の地震力は，当該部分の重量に，次式によって算定する地下震度を乗じて定める。なお，機器•配管系については，算出した値を 1.2 倍して用いる。
$\mathrm{K}=0.1 \times \mathrm{n} \times(1-\mathrm{H} / 40) \times \alpha$
ここで，
K ：地下部分の水平震度
n ：施設の重要度分類に応じた係数（3．0）

H ：地下の各部分の基準面からの深さ（m）
α ：建物•構築物側方の地盤の影響を考慮した水平地下震度の補正係数（1．0）
（2）鉛直地震力
鉛直地震力は，鉛直震度 0.3 を基準とし，建物•構築物の振動特性及び地盤の種類等を考慮 して，次式によって算定する鉛直震度を用いて定める。なお，機器•配管系については，算出 した値を 1.2 倍して用いる。ここで，鉛直方向の静的地震力は，一律に同じ値を適用する。
$C_{v}=0.3 \cdot R_{v}$
ここで，
C_{v} ：鉛直震度
R_{v} ：鉛直方向振動特性係数（ 0.8 ）

3.4 解析条件

3．4．1 耐震壁の復元力特性

耐震壁の復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねの復元力特性については，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」に示す。

3．4．3 原子炉本体の基礎の復元力特性

（1）原子炉本体の基礎のせん断力－せん断変形角関係（ $Q^{-} \gamma$ 関係）
原子炉本体の基礎のせん断力－せん断変形角関係（Q－γ 関係）は，コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎のせん断力ーせん断変形角関係を図3－11に示す。

Q_{1} ：第 1 折点のせん断力
Q_{2} ：第 2 折点のせん断力
γ_{1} ：第1折点のせん断変形角
γ_{2} ：第 2 折点のせん断変形角
図 3－11 原子炉本体の基礎のせん断力ーせん断変形角関係
（2）原子炉本体の基礎のせん断力－せん断変形角関係の履歴特性
原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性は，最大点指向型モデルとす る。原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性を図 3－12 に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大
（3）原子炉本体の基礎の曲げモーメント－曲率関係（M－ϕ 関係）
原子炉本体の基礎の曲げモーメント－曲率関係（M－${ }^{-1}$ 関係）は，コンクリートのひび割れ を表す第1折点と鋼板の降伏を表す第2折点までを設定する。原子炉本体の基礎の曲げモ ーメントー曲率関係を図3－13に示す。

M_{1} ：第 1 折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント

$$
\phi_{1} \text { : 第 } 1 \text { 折点の曲率 }
$$

ϕ_{2} ：第 2 折点の曲率
図 3－13 原子炉本体の基礎の曲げモーメント－曲率関係
（4）原子炉本体の基礎の曲げモーメント－曲率関係の履歴特性
原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性は，最大点指向型モデルとする。原子炉本体の基礎のせん断力ーせん断変形角関係の履歴特性を図 3－14に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第 1 折点を超えていなければ，負側第 1 折点に向かう。
c．各最大点は，スケルトン上を移動することにより更新される。
d．安定ループは面積を持たない。
図 3－14 原子炉本体の基礎の曲げモーメントー曲率関係の履歴特性
（5）スケルトンカーブの諸数値
原子炉本体の基礎の各要素について算定したせん断力及び曲げモーメントのスケルトン カーブの諸数値を表 3－67～表3－70に示す。なお，曲げモーメントのスケルトンカーブの算定には，解析コード「SCC」を使用する。評価に用いる解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

表 3－67 せん断力のスケルトンカーブ（ $\mathrm{Q}-\gamma$ 関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	2． 867	1． 859	24.63	27.17
	4	5． 343	1． 808	29． 06	33.23
62 （90）＊	3	5． 428	1． 837	29． 06	33.23

注記 $~$ ：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－68 曲げモーメントのスケルトンカーブ（M一 －関係）（NS 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{8} \mathrm{kN} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} 1 / \mathrm{m}\right) \end{gathered}$
7	6	1． 032	1． 036	16． 81	38.53
	5	1． 107	1． 151	15． 98	38.49
	4	1． 740	1． 721	16． 36	38． 39
62 （90）＊	3	1． 738	1． 799	15． 73	38.50

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－69 せん断力のスケルトンカーブ（ $\mathrm{Q}-\gamma$ 関係）（EW 方向）

質点番号	要素番号	$\begin{gathered} \mathrm{Q}_{1} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{1} \\ \left(\times 10^{-4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{2} \\ \left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	$\begin{gathered} \gamma_{2} \\ \left(\times 10^{-4}\right) \end{gathered}$
7	6	5． 042	1． 775	34.90	32.51
6					
	5	5． 400	1． 859	39． 48	31.21
	4	5． 343	1． 808	29． 06	33.23
64 （92）＊	3	5． 032	1． 837	27． 23	33.20

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

表 3－70 曲げモーメントのスケルトンカーブ（M－ϕ 関係）（EW 方向）

質点番号	要素番号	M_{1} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{1} $\left(\times 10^{-5} 1 / \mathrm{m}\right)$	M_{2} $\left(\times 10^{8} \mathrm{kN} \cdot \mathrm{mm}\right)$	ϕ_{2} $\left(\times 10^{-5} \mathrm{l} / \mathrm{m}\right)$
7	6	1.032	1.036	16.81	38.53

注記＊：（ ）内は炉内構造物モデルの質点番号を示す。

3．4．4 誘発上下動を考慮する場合の基礎浮上り評価方法

誘発上下動を考慮する場合の基礎浮上り評価方法については，添付書類「VI－2－2－3
制御建屋の地震応答計算書」に示す。

3．4．5 材料物性の不確かさ等
解析においては，添付書類「VI－2－2－1 原子炉建屋の地震応答計算書」にて考慮する材料物性の不確かさに加え，原子炉本体の基礎のコンクリート剛性を低下させたケース考慮す る。材料物性の不確かさを考慮する解析ケースを表3－71に示す。
表 3－71 建屋－機器連成解析において材料物性の不確かさを考慮する解析ケース

検討ケース	建屋初期剛性	地盤物性		原子炉本体の基礎 の初期剛性	備考
		入力地震動	底面地盤ばね		
ケース1	3.11 地震シミュレーション	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	標準	基本ケース
ケース 2	同上	表層上部非線形非線形表層下部 Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋σ	標準	
ケース 3	同上	表層上部非線形非線形表層下部 Vs 900－100m／s	標準地盤－σ	標準	
ケース 4	基本ケースの 0.78 倍	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	標準	基準地震動 S s 固有の解析ケース
ケース 5	同上	表層上部非線形非線形表層下部 Vs $900+100 \mathrm{~m} / \mathrm{s}$	標準地盤＋σ	標準	基準地震動 S s 固有の解析ケース
ケース 6	同上	表層上部非線形非線形表層下部 Vs 900－100m／s	標準地盤－σ	標準	基準地震動 S s 固有の解析ケース
ケース 7	3.11 地震シミュレーション	表層上部非線形非線形表層下部 Vs $900 \mathrm{~m} / \mathrm{s}$	標準地盤	3.11 地震シミュレーション＊	建屋－機器連成解析固有のケース

注記＊：原子炉建屋の耐震壁の初期剛性の設計値に対する補正係数（地下 3 階から地上 2 階，NS 方向：0．75，EW 方向：0．80）を適用する。

4．解析結果
本章では，代表として，弾性設計用地震動 Sd 及び基準地震動 S s の基本ケースの地震応答解析結果を示す。なお，炉内構造物系については，シュラウド健全ケースの結果を示す。
4． 1 固有値解析
4．1．1 大型機器系
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－1～表4－3に示す。また，図 4－1～図 4－41 に振動モード図を示す。
4．1．2 炉内構造物系
計算の結果得られた固有値の中で，固有周期 0.050 s までの次数についてまとめた結果を表 4－4～表 4－6に示す。また，図 4－42～図 4－92 に振動モード図を示す。

表 4－1 大型機器系の固有値解析結果＊（NS 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 236	2． 222	原子炉建屋
2	0． 123	－2． 741	原子炉建屋
3	0.116	－1．113	原子炉建屋
4	0． 097	2． 048	原子炉建屋
5	0.093	－1．037	原子炉建屋
6	0． 090	－1． 774	原子炉圧力容器
7	0.089	－0． 033	原子炉建屋
8	0． 082	－0． 001	原子炉建屋
9	0． 074	－0． 614	原子炉建屋
10	0． 071	0． 445	原子炉建屋
11	0.068	－0． 374	原子炉建屋
12	0． 065	－0． 596	原子炉建屋
13	0． 063	－0．668	原子炉建屋
14	0． 060	0.047	原子炉建屋
15	0.058	0.475	原子炉建屋
16	0.055	－0． 590	原子炉圧力容器
17	0． 052	1． 558	原子炉建屋
18	0． 051	0． 438	原子炉建屋
19	0.050	0.173	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－2 大型機器系の固有値解析結果＊（EW 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 228	2． 197	原子炉建屋
2	0.125	1．928	原子炉建屋
3	0.116	0.066	原子炉建屋
4	0.098	0.619	原子炉建屋
5	0.091	－0． 782	原子炉建屋
6	0.090	－1．793	原子炉圧力容器
7	0.086	2． 182	原子炉建屋
8	0.077	1． 023	原子炉建屋
9	0.074	0． 369	原子炉建屋
10	0.070	－0． 244	原子炉建屋
11	0.067	－0． 521	原子炉建屋
12	0． 064	0． 549	原子炉建屋
13	0． 062	－0． 256	原子炉建屋
14	0． 060	1． 549	原子炉建屋
15	0． 059	0． 109	原子炉建屋
16	0． 055	－0． 329	原子炉建屋
17	0． 055	0． 558	原子炉圧力容器
18	0． 052	－2． 456	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－3 大型機器系の固有値解析結果＊（鉛直方向）

次数	固有周期 (s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.381	原子炉建屋

注記 $*$ ：固有周期 0.050 s 以上の次数について記載した。

図 4－1 大型機器系の振動モード図（1 次）（NS 方向）

$$
\begin{aligned}
& \text { 固有周期 (s): } 0.123 \\
& \text { 刺激係数 } \quad:-2.741
\end{aligned}
$$

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): 0.116 \\
& \text { 刺激係数 } \quad:-1.113
\end{aligned}
$$

原子炉建屋原子炉圧力容器及び

図 4－3 大型機器系の振動モード図（3 次）（NS 方向）

$\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
 （a）
 O 2

固有周期 $(\mathrm{s}): 0.097$
刺激係数 $: 2.048$

図 4－4 大型機器系の振動モード図（4 次）（NS 方向）

原子炉建屋

$$
\begin{aligned}
& \\
& \text { 固有周期 (s): } 0.093 \\
& \text { 刺激係数 }:-1.037
\end{aligned}
$$

原子炉

原子炉圧力容器及び
$\theta--\theta--\theta-\theta--\theta-\cdots-\cdots-\theta-\theta-\theta-\theta-\theta-\theta$

図 4－5 大型機器系の振動モード図（5 次）（NS 方向）
O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

プラント名：女川原子力発電所第 2 号機

O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

固有周期 $(\mathrm{s}): 0.071$
刺激係数 $: 0.445$

プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期（ s ）： 0.065
刺激係数 $\quad:-0.596$

プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $: 0.047$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.058$
刺激係数 $: 0.475$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: ~: ~-0.590 ~$

プラント名：女川原子力発電所第2号機
固有周期（ s ）： 0.052
刺激係数 $: 1.558$
O 2 （3） $\mathrm{V}-2-3-2 \mathrm{R} \mathrm{O}$
プラント名：女川原子力発電所第2号機

図 4－17 大型機器系の振動モード図（17 次）（NS 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.051$
刺激係数 $: 0.438$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.050$
刺激係数 $: 0.173$

図 4－19 大型機器系の振動モード図（19 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.125$
刺激係数 $: ~: 1.928$

図 4－21 大型機器系の振動モード図（2 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.116$
刺激係数 $\quad: 0.066$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.098$
刺激係数 $: 0.619$

$$
\begin{aligned}
& \begin{array}{r}
782^{\circ} 0- \\
160^{\circ} 0
\end{array} \\
& \begin{array}{l}
\text { 固有周期 (s): } \\
\text { 刺激係数 : }
\end{array}
\end{aligned}
$$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.090$
刺激係数 $\quad:-1.793$

固有周期 $(\mathrm{s}): 0.086$
刺激係数 $\quad: 2.182$
原子炉建屋

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.077$
刺激係数 $: 1.023$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.074$
刺激系数 $\quad: 0.369$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.070$
刺激係数 $\quad:-0.244$
プラント名：女川原子力発電所第 2 号機

図 4－29 大型機器系の振動モード図（10 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.064$
刺激係数 $\quad: 0.549$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.062$
刺激係数 $: ~: ~-0.256 ~$

図 4－32 大型機器系の振動モード図（13 次）（EW 方向）
プラント名：女川原子力発電所第 2 号機

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): ~: ~ 0.060 \\
& \text { 刺激係数 } \quad: 1.549
\end{aligned}
$$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $\quad: 0.109$

プラント名：女川原子力発電所第 2 号機

図 4－35 大型機器系の振動モード図（16 次）（EW 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: 0.558$
原子炉建屋
プラント名：女川原子力発電所第 2 号機

O 2 （3） $\mathrm{VI}-2-3-2$ R 0

O 2 （3）VI－2－3－2
R 0

プラント名：女川原子力発電所第 2 号機

原子炉建屋
O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第 2 号機

原子炉建屋
$\mathrm{O} 2 \mathrm{VI}-2-3-2 \mathrm{R} 0$
プラント名：女川原子力発電所第2号機

表 4－4 炉内構造物系の固有値解析結果＊（NS 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 237	9． 023	原子炉建屋
2	0． 229	7． 968	燃料集合体
3	0． 123	2． 705	原子炉建屋
4	0.118	－1． 519	炉心シュラウド
5	0.116	－3． 848	原子炉建屋
6	0． 097	－2． 066	原子炉建屋
7	0． 093	1． 039	原子炉建屋
8	0． 090	2． 070	原子炉圧力容器
9	0.089	－0． 091	原子炉建屋
10	0.082	0.001	原子炉建屋
11	0． 074	－0．717	原子炉建屋
12	0． 071	－0． 527	原子炉建屋
13	0.068	－0．372	原子炉建屋
14	0.066	2． 206	制御棒案内管
15	0． 065	－1． 729	原子炉建屋
16	0.063	1． 077	原子炉建屋
17	0． 060	－0． 084	原子炉建屋
18	0.059	－0．364	原子炉建屋
19	0． 058	－0．771	燃料集合体
20	0.056	－3．586	炉心シュラウド
21	0． 053	-5.222	原子炉圧力容器
22	0． 052	－7． 672	原子炉建屋
23	0.051	－0．434	原子炉建屋
24	0.050	0.311	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－5 炉内構造物系の固有値解析結果＊（EW 方向）

次数	固有周期（s）	刺激係数	卓越部位
1	0． 231	18.712	燃料集合体
2	0． 227	17． 658	原子炉建屋
3	0.125	2． 617	原子炉建屋
4	0.117	2． 888	炉心シュラウド
5	0.116	－0． 130	原子炉建屋
6	0． 098	0． 630	原子炉建屋
7	0.091	－0． 820	原子炉建屋
8	0.090	－1．751	原子炉圧力容器
9	0.086	2． 243	原子炉建屋
10	0.077	1． 120	原子炉建屋
11	0． 074	－0． 379	原子炉建屋
12	0.070	0． 238	原子炉建屋
13	0.067	0.505	原子炉建屋
14	0． 066	－0． 366	制御棒案内管
15	0． 064	－0． 599	原子炉建屋
16	0． 062	－0． 271	原子炉建屋
17	0． 060	2． 781	原子炉建屋
18	0.059	0.114	原子炉建屋
19	0． 058	－1． 209	燃料集合体
20	0.056	－3． 214	炉心シュラウド
21	0． 055	1． 326	原子炉建屋
22	0． 053	－5． 150	原子炉圧力容器
23	0.052	7． 104	原子炉建屋

注記＊：固有周期 0.050 s 以上の次数について記載した。

表 4－6 炉内構造物系の固有値解析結果＊（鉛直方向）

次数	固有周期 (s)	刺激係数	卓越部位
1	0.339	1.458	原子炉建屋
2	0.100	1.584	原子炉建屋
3	0.079	1.360	原子炉建屋
4	0.051	-0.380	原子炉建屋

注記 $*: ~$ 固有周期 0.050 s 以上の次数について記載した。
固有周期 $(\mathrm{s}): 0.237$
刺激係数 $\quad: 9.023$

プラント名：女川原子力発電所第 2 号機
刺激係数 $\quad: 7.968$

図 4－44 炉内構造物系の振動モード図（3 次）（NS 方向）
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.118$
刺激係数 $\quad:-1.519$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.116$
刺激係数 $\quad:-3.848$

固有周期 $(\mathrm{s}): 0.097$
刺激係数 $\quad:-2.066$

[^1]
原子炉圧力容器及び 原子炉本体の基礎

ラウド

制御棒駆動機構
図 4－47 炉内構造物系の振動モード図（6 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.093$
刺激係数 $: ~: 1.039$
プラント名：女川原子力発電所第 2 号機

プラント名：女川原子力発電所第2号機
固有周期（ s ）： 0.090
刺激係数 $: 2.070$
原子炉建屋
原子炉圧力容器及び
ラウド
燃料集合体
制御棒駆動機構
ハウジング
図 4－49 炉内構造物系の振動モード図（8 次）（NS 方向）

$$
\begin{aligned}
& \text { 固有周期 }(\mathrm{s}): 0.089 \\
& \text { 刺激係数 } \quad:-0.091
\end{aligned}
$$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.082$
刺激係数 $: 0.001$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.074$
刺激係数 $\quad:-0.717$

O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
原子炉建屋
原子炬圧力容器及び
制御棒案内管
制御棒駆動機構
図 4－54 炉内構造物系の振動モード図（13 次）（NS 方向）

固有周期 $(\mathrm{s}): 0.066$
刺激係数 $\quad: 2.206$
固有周期 $(\mathrm{s}): 0.065$
刺激係数 $\quad:-1.729$
原子炉建屋

原子炉圧力容器及び 原子炉本体の硣

ラウド
図 4－56 炉内構造物系の振動モード図（15 次）（NS 方向）
プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.063$
刺激係数 $: ~: 1.077$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $\quad:-0.084$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $: ~:-0.364$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.058$
刺激係数 $\quad:-0.771$

固有周期 $(\mathrm{s}): 0.056$
刺激係数 $\quad: ~-3.586$

原子炉建屋

原子炉圧力容器及び 巷炉本体

ラウド
$00000000-000000$ 萑：

$\stackrel{2}{2}$

固有周期 $(\mathrm{s}): 0.051$
刺激係数 $\quad:-0.434$
原子炉建屋
原子炉圧力容器及び
原子炉本体の基礎
制御棒案内管

固有周期（s）：0． 050
刺激係数 ：0．311
固有周期 $(\mathrm{s}): 0.231$
刺激係数 $\quad: ~ 18.712$

図 4－66 炉内構造物系の振動モード図（1 次）（EW 方向）
固有周期 $(\mathrm{s}): 0.227$
刺激係数 $\quad: 17.658$

図 4－67 炉内構造物系の振動モード図（2 次）（EW 方向）

固有周期 $(\mathrm{s}): 0.117$
刺激係数 $\quad .2 .888$

図 4－71 炉内構造物系の振動モード図（6 次）（EW 方向）
固有周期 $(\mathrm{s}): 0.091$
刺激係数 $\quad: ~-0.820$

プラント名：女川原子力発電所第2号機

固有周期 $(\mathrm{s}): 0.090$
刺激係数 $: ~:-1.751$
原子炉建屋
図 4－73 炉内構造物系の振動モード図（8 次）（EW 方向）
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.077$
刺激係数 $\quad: 1.120$
固有周期 $(\mathrm{s}): 0.074$
刺激係数 $\quad:-0.379$
固有周期 $(\mathrm{s}): 0.070$
刺激係数 $\quad .0 .238$

プラント名：女川原子力発電所第 2 号機
固有周期 $(\mathrm{s}): 0.067$
刺激係数 $: 0.505$

固有周期 $(\mathrm{s}): 0.064$
刺激係数 $\quad: ~-0.599$
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
原子炉建屋

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.060$
刺激係数 $\quad: 2.781$

プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.059$
刺激係数 $\quad: 0.114$
O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機

原子炉建屋
原子炉圧力容器及び
炉心シュラウド
固有周期 $(\mathrm{s}): 0.055$
刺激係数 $: ~: ~ 1.326$
制御棒案内管制御棒駆動機構
ハウジング図 4－86 炉内構造物系の振動モード図（21 次）（EW 方向）
原子炉建屋

O 2 （3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.339$
刺激係数 $\quad: 1.458$
原子炉建屋

O2（3）VI－2－3－2 R 0
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.100$
刺激係数 $: ~: ~ 1.584$
プラント名：女川原子力発電所第2号機

原子炉建屋
O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.079$
刺激係数 $: ~: ~ 1.360 ~$
プラント名：女川原子诗発电所第2号機

O 2 （3） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 0$
プラント名：女川原子力発電所第2号機
固有周期 $(\mathrm{s}): 0.051$
刺激係数 $\quad:-0.380$原子炉建屋

4．2 地震応答解析及び静的解析

4．2．1 大型機器系

（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－93～図 4－ 116 に，算定したスケルトンカーブと最大応答値の関係を図 4－117～図4－120に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ，原子炉格納容器シヤラグ，ベント管，燃料交換ベローズ及び所員用エアロックに加わる力（ばね反力）を表4－1に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－121～図4－129 に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表 4－2 に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－130～図4－153 に，算定したス ケルトンカーブと最大応答値の関係を図 4－154～図4－157に，原子炉圧力容器スタビライザ，原子炉格納容器スタビライザ，原子炉格納容器シヤラグ，ベント管，燃料交換ベローズ及び所員用エアロックに加わる力（ばね反力）を表 4－3 に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－158～図4－166に示す。

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.75	11.3	9.44	5.64	7.81	8． 22	7.83	9． 13	原子炬格納容器頂部
9.32	10.7	8.91	5.34	7.35	7.64	7.58	9.13	
8.01	8.87	7.23	4． 46	5.98	5． 95	6.86	7.44	シャラグ位置
6.78	7． 19	5.87	3.95	4.74	5． 16	6.11	7.44	
5.95	6.38	5． 05	3． 63	4.21	4． 72	5.63	6． 48	
4.67	5． 03	4． 10	3.17	3.83	4． 24	5.00	6． 48	
4.18	4.23	3.94	3． 36	4.01	4． 04	4.45	5.53	
3.97 3.82	$\text { 4. } 42$	$\begin{aligned} & 4.04 \\ & 4.15 \end{aligned}$	$\text { 3. } 46$ 3.50	$\begin{aligned} & \text { 4. } 06 \\ & 4.03 \end{aligned}$	$\text { 4. } 44$ $\text { 4. } 65$	$\begin{aligned} & 4.23 \\ & 4.06 \end{aligned}$	5.53	原子炬格納容器基部

図 4－93 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉格納容器）

$\left(\mathrm{m} / \mathrm{s}^{2}\right)$
図 $4-93$

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
11.2	11.5	9.71	6． 36	9.07	9.65	11.5	11.9	原子炉格納容器頂部
10.7	11.0	9． 24	6． 07	8.64	9． 22	11.0	11.3	
$\begin{aligned} & 10.2 \\ & 9.82 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 8.80 \\ & 8.50 \end{aligned}$	$\begin{aligned} & 5.79 \\ & 5.61 \end{aligned}$	$\begin{aligned} & 8.23 \\ & 7096 \end{aligned}$	$\begin{aligned} & 8.82 \\ & 8.56 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 10.5 \end{aligned}$	燃料交換べローズ位置
9.15	9． 44	7.87	5． 22	7.38	8． 00	9.45	9.76	シヤラグ位置
7.62	7.87	6． 50	4． 38	6.08	6． 69	7.91	8.14	
6.63	6． 84	5． 62	3.84	5.23	5． 85	6.91	7.08	
5.01	5.22	4． 19	2． 96	3.86	4． 48	5.28	5.36	
3． 47	3． 71	2.94	2． 11	2.58	3． 19	3.73	3.71	
$\begin{aligned} & 2.86 \\ & 2.43 \end{aligned}$	3.11 3． 69	$\begin{aligned} & \text { 2. } 45 \\ & \text { 2. } 10 \end{aligned}$	1.77 1.53	$\begin{aligned} & \text { 2. } 07 \\ & \text { 1. } 77 \end{aligned}$	2． 68 2． 32	$\begin{aligned} & 3.11 \\ & 2.67 \end{aligned}$	$\begin{aligned} & 3.06 \\ & 2.59 \end{aligned}$	原子炉格納容器基部

図 4－94 最大応答変位 弾性設計用地震動S d 及び静的解析（NS 方向 原子炉格納容器）

変位（mm）
d 0

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
147	171	140	85.9	119	124	119	137	原子炬格納容器頂部
287	332	272	168	231	239	234	274	
$\begin{aligned} & 1590 \\ & 1930 \end{aligned}$	$\begin{aligned} & 1800 \\ & 2240 \end{aligned}$	$\begin{aligned} & 1890 \\ & 2280 \end{aligned}$	$\begin{aligned} & 873 \\ & 1120 \end{aligned}$	$\begin{aligned} & 1210 \\ & 1460 \end{aligned}$	$\begin{aligned} & 1130 \\ & 1440 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1670 \end{aligned}$	$\begin{aligned} & 1650 \\ & 2100 \end{aligned}$	燃料交換ベローズ位置
12300	12800	10500	7270	10600	10700	12300	13800	シヤラグ位置
13200	13400	11200	7740	11200	11400	13100	14800	
13800	13900	11700	8030	11500	11800	13600	15400	
14700	14800	12200	8440	12000	12600	14600	16700	
15000	15100	12400	8570	12100	12900	14900	17200	
$\begin{aligned} & 15500 \\ & 15500 \end{aligned}$	$\begin{aligned} & 15700 \\ & 15700 \end{aligned}$	$\begin{aligned} & 12700 \\ & 12700 \end{aligned}$	$\begin{aligned} & 8800 \\ & 8800 \end{aligned}$	$\begin{aligned} & 12100 \\ & 12100 \end{aligned}$	$\begin{aligned} & 13700 \\ & 13700 \end{aligned}$	$\begin{aligned} & 15700 \\ & 15700 \end{aligned}$	$\begin{aligned} & 18400 \\ & 18400 \end{aligned}$	原子炉格納容器基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
原子炬格納容器）
弾性設計用地震動 S d 及び静的解析（NS 方向

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉格納容器頂部
338	393	323	198	273	286	274	316	
$\begin{gathered} 950 \\ 2980 \end{gathered}$	$\begin{aligned} & 1110 \\ & 3470 \end{aligned}$	$\begin{gathered} 904 \\ 3520 \end{gathered}$	$\begin{aligned} & 556 \\ & 1770 \end{aligned}$	$\begin{gathered} 765 \\ 2260 \end{gathered}$	$\begin{gathered} 796 \\ 2320 \end{gathered}$	$\begin{gathered} 772 \\ 2580 \end{gathered}$	$\begin{aligned} & 902 \\ & 3190 \end{aligned}$	燃料交換べローズ位置
8570	9990	10200	5030	6500	6520	7420	9310	シヤラグ位置
62400	63500	55500	36700	52600	52000	61200	69900	
101000	102000	87300	58800	84400	84400	98400	112000	
167000	169000	144000	97700	141000	142000	165000	187000	
238000	241000	203000	139000	198000	203000	235000	268000	
$\begin{aligned} & 268000 \\ & 290000 \end{aligned}$	$\begin{aligned} & 271000 \\ & 293000 \end{aligned}$	$\begin{aligned} & 228000 \\ & 246000 \end{aligned}$	$\begin{aligned} & 156000 \\ & 169000 \end{aligned}$	$\begin{aligned} & 223000 \\ & 240000 \end{aligned}$	$\begin{aligned} & 228000 \\ & 248000 \end{aligned}$	$\begin{aligned} & 265000 \\ & 287000 \end{aligned}$	$\begin{aligned} & 302000 \\ & 329000 \end{aligned}$	原子炉格納容器基部

図 4－96 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉格納容器）

最大応答加速度（ $\mathrm{m} / \mathrm{s}^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9． 26	9． 75	10.6	4.81	6.74	5． 79	7.20	7.44	原子炬しやへい壁頂部
8.22	8.88	9.47	4.77	6.01	5.67	6.92	7． 44	
7.79	8.33	8． 23	5． 08	6.04	5． 42	6.72	7.44	
8.04	7．73	7． 16	5.08	5.90	5． 63	6.39	6.48	
7.38	6． 69	5．93	4.85	5． 39	5．70	5.80	6． 48	
5.34	5.68	4．72	4． 25	4． 43	5.34	4.99	6． 48	原子炬しやへい壁基部

図 4－97 最大応答加速度 弾性設計用地震動 $\mathrm{S} d$ 及び静的解析（NS 方向 原子炉しやへい壁）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.23	9． 90	8.53	5． 27	7． 42	7.76	9． 75	10.2	原子炬しやへい壁頂部
8.23	8.89	7.63	4.71	6.61	6． 95	8.78	9.11	
7.15	7.79	6.63	4． 14	5.74	6． 10	7．73	7.97	
6． 16	6.76	5.67	3.61	4.94	5． 33	6.74	6.89	
5.09	5.60	4.57	3.03	4.03	4． 48	5.61	5.68	
3.80	4.18	3.26	2.31	2.91	3． 43	4． 20	4.18	原子炉しやへい壁基部

図 4－98 最大応答変位 弾性設計用地震動 $\mathrm{S} d$ 及び静的解析（NS 方向 原子炉しやへい壁）
変位（mm）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
3640	3540	3530	1800	2780	2910	1350	1300	原子炉しやへい壁頂部
3060	4210	2700	2170	3420	3230	2560	2910	
4980	5180	4820	3190	4360	3980	4730	5820	
6600	7060	6840	3990	5720	5510	6680	7950	
8410	9060	8870	5210	7480	7320	8930	10600	
8410	9060	8870	5210	7480	7320	8930	10600	原子炉しやへい壁基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
原子炉しやへい壁）

（II） $\mathrm{d}^{\circ} 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉しやへい壁頂部
10100	9750	9720	4960	7660	8010	3710	3570	
16400	21700	17100	11100	17300	17200	11000	11900	
26200	33700	21500	18100	27700	26100	22400	26700	
43400	47200	37600	28700	40700	38800	39800	48900	
70900	73600	67600	44600	61600	59800	70100	86300	原子炉しやへい壁基部

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
15.5	18.0	18.0	8.67	13.3	11.8	8.65	11.0	原子炉圧力容器頂部
13.7	15.8	15.9	7． 55	11.5	9． 76	8.01	11.0	燃料交換ベローズ位置
12.2	14.0	14.2	6． 65	9．99	8.21	7.54	11.0	
10.9	12.3	12.7	5.83	8.64	7． 29	7.17	8.93	原子炉圧力容器スタビライサ位置
8.86	9． 95	10.6	4． 99	6． 75	6． 63	6.72	8.93	
7.41	8.43	8.27	5.28	5.46	6． 01	6.35	7.77	
7.12	7.08	6． 04	5． 13	5． 09	6． 25	5． 85	7.77	
6.63	6． 23	5． 20	4． 89	4． 89	6． 11	5.52	7.77	原子炉圧力容器交持スカート位置
	5． 53	4.72 4.68	4．${ }^{\text {4．}} 15$	4．${ }_{\text {4 }} \times 1.34$		4.99 4.87	6． 68	原子炉本体の基廎頂部
4.37	5.06	4.47	3． 89	4． 14	4． 98	4.71	5.53	
4.01	4． 75	${ }^{4.31}$	3． 67	4． 05	4． 80	4． 43	5.53	
3.82	4． 46	4． 15	3.50	4． 03	4． 65	4.06	5.53	原子炉本体の基碳基部

図 4－101 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）
$\begin{array}{cccc}5.00 & 10.00 \\ \\ \text { 加速度 }\left(\mathrm{m} / \mathrm{s}^{2}\right) \\ \text { 図 } & 4-101 & \text { 最大応答加速度 }\end{array}$

最大応答変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
12.2	13.5	12.0	7.03	9.80	9． 83	12.7	13.6	原子炬圧力容器頂部
11.1	12.3	10.8	6． 36	8． 89	8． 98	11.6	12.4	燃料交換バローズ位置
10.2	11.3	9.87	5． 83	8.16	8.31	10.8	11.4	
9.41	10.4	9.05	5． 36	7． 52	7． 73	9.95	10.5	原子炉圧力容器スタビライザ位置
8.07	8.94	7.72	4． 61	6． 43	6． 70	8.63	9.05	
6.63	7.38	6.26	3.84	5． 26	5． 61	7.19	7.47	
5.31	5． 91	4． 87	3． 13	4． 18	4． 60	5.83	5． 98	
4.61	5． 12	4.11	2.75	3.60	4． 06	5.09	5.17	原子炉圧力容器支持スカート位置
$\begin{aligned} & 3.80 \\ & 3.59 \end{aligned}$	4．${ }^{\text {3 }}$ ． 95	$\begin{aligned} & 3.26 \\ & 3: 09 \end{aligned}$	2． 2120	2． 919	3.43 3.26	4.20 3.97	4.18 3.95	原子炬本体の基碩頂部
3.22	3.53	2． 77	1．98	2． 40	2．96	3.55	3.49	
2.79	3． 07	2． 41	1． 74	2.04	2． 61	3.07	3.00	
2.43	2． 69	2． 10	1． 53	1． 77	2． 32	2.67	2.59	原子炉本体の基礎基部

図 4－102 最大応答変位 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

変位（mm）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
261	308	306	148	224	201	151	188	原子炬圧力容器頂部
971	1180	1120	658	853	923	622	806	燃料交換ベローズ位置
2140	2480	2490	1260	1810	1650	1340	1880	
1590	1790	1680	963	1200	1350	585	339	原子炉圧力容器スタビライザ位置
1810	2080	1540	1240	1800	1600	1590	1840	
3430	3820	3810	1980	2840	2680	3270	4130	
4410	4930	4980	2660	3630	3670	4380	5660	
5450	5940	5950	3640	4520	4600	5480	7270	原子炬圧力容器支持スカート位置
15000 16100	$\begin{aligned} & 16100 \\ & 17400 \end{aligned}$	$\begin{aligned} & 15700 \\ & 16600 \end{aligned}$	$\begin{aligned} & 9790 \\ & 10900 \end{aligned}$	$\begin{aligned} & 12800 \\ & 13700 \end{aligned}$	$\begin{aligned} & 12800 \\ & 13900 \end{aligned}$	15700 17000	19500 21300	原子炉本体の基䂾頂部
17200	18600	17400	12000	14500	15000	18300	23000	
18100	19700	18100	12900	15200	16100	19500	24500	
18100	19700	18100	12900	15200	16100	19500	24500	原子炉本体の基䂾基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－103 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

$$
\text { せん断力 }\left(\times 10^{3} \mathrm{~N}\right)
$$

（w）${ }^{\mathrm{d}} \times 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉圧力容器頂部
716	844	838	405	612	549	413	515	燃料交換ベローズ位置
2840	3300	3280	1840	2480	2570	1780	2280	
6890	7990	7990	4230	5910	5690	4310	5830	原子炉圧力容器スタビライザ位置
7680	11000	7520	6150	8630	8900	6270	6970	
14300	18600	12700	10700	15200	14500	12000	13700	
25500	27500	24900	17400	23400	21100	22900	28000	
33800	37000	34800	21700	28600	26400	30900	39200	原子炉圧力容器支持スカート位置
$\begin{array}{r} 45400 \\ 116000 \\ 128000 \end{array}$	$\begin{array}{r} 50100 \\ 124000 \\ 136000 \end{array}$	$\begin{gathered} 48300 \\ 116000 \\ 129000 \end{gathered}$	$\begin{aligned} & 27200 \\ & 71500 \\ & 77300 \end{aligned}$	$\begin{gathered} 37500 \\ 97200 \\ 106000 \end{gathered}$	$\begin{gathered} 34600 \\ 92800 \\ 103000 \end{gathered}$	$\begin{array}{r} 42600 \\ 113000 \\ 125000 \end{array}$	$\begin{array}{r} 55800 \\ 143000 \\ 158000 \end{array}$	原子炉本体の基礎頂部
146000	157000	149000	87200	122000	120000	147000	186000	
176000	190000	181000	104000	148000	148000	181000	229000	
207000	225000	214000	123000	176000	178000	218000	276000	原子炉本体の基礎基部

弾性設計用地震動 Sd 及び静的解析（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

$100000 \begin{array}{cc}200000 & 300000 \\ \text { モーメント }\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) & \end{array}$
図 4－104 最大応答モーメント

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
10.1	10.3	11.2	5.41	8． 01	6． 77	7.58	9.28	原子炬格納容器頂部
9.54	9． 64	10.6	5． 17	7.63	6． 45	7.37	9.28	
$\begin{aligned} & 9.04 \\ & 8.69 \end{aligned}$	9.05 8.65	$\begin{aligned} & 10.1 \\ & 9.64 \end{aligned}$	$\begin{aligned} & \text { 4. } 97 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 7.24 \\ & 6.98 \end{aligned}$	$\begin{aligned} & 6.13 \\ & 5.92 \end{aligned}$	$\begin{aligned} & 7.16 \\ & 7.03 \end{aligned}$	$\begin{aligned} & 9.28 \\ & 9.28 \end{aligned}$	燃料交換ベローズ位置
7.95	8． 00	8.81	4.61	6． 40	5． 46	6.77	7.48	シヤラグ位置
6.45	6． 70	7． 08	4.04	5． 28	4． 58	6． 11	7.48	
5.52	5． 92	5.96	3． 71	4． 62	4． 04	5． 70	6． 49	
4.66	4.82	4． 46	3.35	4.01	3． 75	5.04	6． 49	
4． 47	4． 36	4.08	3． 17	3． 46	4． 01	4.44	5.53	
$\begin{aligned} & 4.37 \\ & 4.22 \end{aligned}$	$\begin{aligned} & \text { 4. } 68 \\ & 4.65 \end{aligned}$	$\begin{aligned} & 4.36 \\ & 4.46 \end{aligned}$	$\begin{aligned} & 3.15 \\ & 3.06 \end{aligned}$	$\begin{aligned} & 3.41 \\ & 3.38 \end{aligned}$	$\begin{aligned} & \text { 4. } 08 \\ & \text { 4. } 03 \end{aligned}$	$\begin{aligned} & 4.20 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 5.53 \\ & 5.53 \end{aligned}$	原子炉格納容器基部

図 4－105 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉格納容器）

15． 00
加速度（m／s ${ }^{2}$ ）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
11.1	11.3	9.91	6． 25	8． 79	8． 14	10.4	11.6	原子炉格納容器頂部
10.6	10.8	9． 46	5.98	8.39	7.78	9.92	11.1	
$\begin{aligned} & 10.1 \\ & 9.73 \end{aligned}$	$\begin{aligned} & 10.3 \\ & 9.93 \end{aligned}$	$\begin{aligned} & 9.03 \\ & 8.73 \end{aligned}$	$\begin{aligned} & 5.73 \\ & 5.56 \end{aligned}$	$\begin{aligned} & 8.01 \\ & 7.76 \end{aligned}$	$\begin{aligned} & 7.44 \\ & 7.21 \end{aligned}$	$\begin{aligned} & 9.49 \\ & 9.21 \end{aligned}$	$\begin{aligned} & 10.6 \\ & 10.3 \end{aligned}$	燃料交換べローズ位置
9.04	9． 26	8.11	5． 20	7.23	6． 74	8.60	9.54	シヤラグ位置
7.47	7.73	6． 74	4． 38	5． 98	5． 63	7.21	7.94	
6.44	6.74	5.84	3.84	5． 18	4.91	6． 30	6.89	
4.79	5.14	4． 40	2.96	3.88	3． 76	4.83	5.21	
3.23	3.62	3． 06	2.12	2.66	2． 67	3.42	3.60	
$\begin{aligned} & 2.61 \\ & 2.20 \end{aligned}$	$\begin{aligned} & 3.02 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 2.54 \\ & 2.18 \end{aligned}$	$\begin{aligned} & \text { 1. } 79 \\ & \text { 1. } 55 \end{aligned}$	$\begin{aligned} & 2.18 \\ & 1.84 \end{aligned}$	$\begin{aligned} & \text { 2. } 24 \\ & 1.93 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 2.46 \end{aligned}$	$\begin{aligned} & 2.96 \\ & 2.50 \end{aligned}$	原子炉格納容器基部

図 4－106 最大応答変位 弾性設計用地震動 Sd 及び静的解析（EW 方向 原子炉格納容器）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
150	153	166	82.4	118	101	115	140	原子炬格納容器頂部
292	297	324	161	230	196	226	279	
$\begin{aligned} & 1760 \\ & 2190 \end{aligned}$	$\begin{aligned} & 2070 \\ & 2500 \end{aligned}$	$\begin{aligned} & 1890 \\ & 2360 \end{aligned}$	$\begin{gathered} 934 \\ 1140 \end{gathered}$	$\begin{aligned} & 1350 \\ & 1090 \end{aligned}$	$\begin{aligned} & 1300 \\ & 1590 \end{aligned}$	$\begin{aligned} & 1340 \\ & 1690 \end{aligned}$	$\begin{aligned} & 1680 \\ & 2150 \end{aligned}$	燃料交換ベローズ位置
13300	13700	11700	6940	10600	9380	11600	14200	シヤラグ位置
14200	14500	12700	7470	11300	9970	12400	15100	
14700	15000	13200	7830	11700	10400	13000	15800	
15400	15700	14000	8440	12200	11000	13900	17000	
15600	15800	14300	8700	12400	11300	14400	17600	
$\begin{aligned} & 16000 \\ & 16000 \end{aligned}$	$\begin{aligned} & 16000 \\ & 16000 \end{aligned}$	$\begin{aligned} & 14700 \\ & 14700 \end{aligned}$	$\begin{aligned} & 9270 \\ & 9270 \end{aligned}$	$\begin{aligned} & 13000 \\ & 13000 \end{aligned}$	$\begin{aligned} & 11700 \\ & 11700 \end{aligned}$	$\begin{aligned} & 15300 \\ & 15300 \end{aligned}$	$\begin{aligned} & 18800 \\ & 18800 \end{aligned}$	原子炉格納容器基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
原子炉格納容器）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉格納容器頂部
346	353	383	190	272	232	264	321	
$\begin{gathered} 969 \\ 3420 \end{gathered}$	$\begin{gathered} 986 \\ 3870 \end{gathered}$	$\begin{aligned} & 1080 \\ & 3690 \end{aligned}$	$\begin{aligned} & 533 \\ & 1750 \end{aligned}$	$\begin{gathered} 763 \\ 2630 \end{gathered}$	$\begin{aligned} & 649 \\ & 2440 \end{aligned}$	$\begin{aligned} & 747 \\ & 2600 \end{aligned}$	$\begin{aligned} & 916 \\ & 3260 \end{aligned}$	燃料交換べローズ位置
9780	11200	10600	5050	7540	7060	7500	9500	シヤラグ位置
68300	67200	62100	34800	53000	46900	58300	71600	
109000	108000	98100	56100	85000	75300	93700	115000	
180000	181000	163000	94000	142000	126000	157000	191000	
255000	257000	230000	135000	201000	179000	224000	274000	
$\begin{aligned} & 286000 \\ & 309000 \end{aligned}$	$\begin{aligned} & 288000 \\ & 311000 \end{aligned}$	$\begin{aligned} & 259000 \\ & 280000 \end{aligned}$	$\begin{aligned} & 153000 \\ & 166000 \end{aligned}$	$\begin{aligned} & 225000 \\ & 244000 \end{aligned}$	$\begin{aligned} & 201000 \\ & 218000 \end{aligned}$	$\begin{aligned} & 253000 \\ & 275000 \end{aligned}$	$\begin{aligned} & 309000 \\ & 336000 \end{aligned}$	原子炉格納容器基部

図 4－108 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉格納容器）

最大応答加速度（ $\mathrm{m} / \mathrm{s}^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.91	11.8	9.83	5.53	7.63	7． 10	7．16	7． 48	原子炬しゃへい壁頂部
9.16	9． 96	8.21	5.36	7． 23	6． 50	6.75	7.48	
8.46	10.1	7． 49	5． 16	7.16	6． 47	6． 43	7.48	
8.07	9． 60	7． 36	5.07	6． 55	5．77	6． 16	6． 49	
7.18	8． 18	6.60	4.60	5.32	5． 32	5.64	6． 49	
5.54	5.94	5． 28	3.71	3.90	4． 69	4.82	6． 49	原子炬しやへい壁基部

図 4－109 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉しやへい壁）

最大応答変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9.56	9.93	8． 75	5.36	7.36	6． 76	8.93	9.93	原子炬しやへい壁頂部
8.50	8.93	7.81	4.86	6.59	6． 05	8.05	8.89	
7.34	7.83	6.80	4.31	5.76	5.31	7.08	7.75	
6.26	6.77	5.84	3.77	4．96	4.64	6． 16	6.68	
5.05	5.55	4．76	3． 14	4.06	3.87	5.11	5.47	
3.58	4.04	3.44	2.33	2． 93	2.91	3.78	3.97	原子炉しやへい壁基部

図 4－110 最大応答変位 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉しやへい壁）

$\begin{array}{lll}\text { 変位（mm）} & 10.00 & 15.00 \\ & & \end{array}$
図

最大応答せん断力（ $\times 10^{3}$ N）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
3460	4310	3230	2350	3330	2690	1810	1280	原子炉しやへい壁頂部
2920	4160	2760	2300	3500	2780	2120	2900	
5360	5300	5140	3080	4310	3750	4430	5830	
7100	7770	6730	4310	5900	4840	6380	7960	
9210	10300	8590	6000	7710	6760	8570	10600	
9210	10300	8590	6000	7710	6760	8570	10600	原子炉しやへい壁基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
原子炉しやへい壁）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炬しやへい壁頂部
9540	11900	8920	6480	9180	7430	4970	3540	
17800	21900	15600	12100	19100	15100	10300	11800	
24900	33700	23800	18400	27000	23000	18900	26700	
44600	47300	42300	26300	37500	35100	36100	49000	
75400	75000	70700	43700	61700	52500	66000	86400	原子炉しやへい壁基部

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
16．9	23.8	16.3	9.88	13.2	14.6	9.95	11.2	原子炬圧力容器頂部
14.0	20.5	14.1	8． 47	11.5	12.5	9.02	11.2	燃料交換ベローズ位置
12.9	17.9	12.3	7． 48	10.2	10.8	8.26	11.2	
11.8	15.4	10.8	6.83	9． 21	9． 16	7.59	8.98	原子炉圧力容器スタビライザ位置
10.3	11.9	8． 53	6． 16	7． 90	7.71	6.68	8.98	
8.35	8.64	6． 89	5.50	6． 42	6． 05	5.88	7.79	
7.11	7． 43	6.07	4.83	5． 16	4． 89	5． 36	7.79	
6． 50	7.06	5.74	4.35	4.64	4． 94	5.12	7.79	原子炉圧力容器支持スカート位置
$\begin{aligned} & 5.54 \\ & 5.32 \end{aligned}$	$\begin{aligned} & 5.94 \\ & 5.87 \end{aligned}$	$\begin{aligned} & 5.28 \\ & 5.20 \end{aligned}$	3． 3 3 3 3	3． 90 3． 3	$\begin{aligned} & \text { 4. } 69 \\ & 4.61 \end{aligned}$	$\begin{aligned} & 4.82 \\ & 4.69 \end{aligned}$	6.49 6.49 5.53	原子炉本体の基赞頂部
4.98	5.64	5.04	3． 43	3.63	4． 47	4.59	5.53	
4.56	5． 19	4.76	3.21	3． 46	4． 25	4.28	5.53	
4.22	4.65	4． 46	3.06	3.38	4． 03	4.01	5.53	原子炉本体の基䂾基部

図 4－113 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
13.2	13.5	12.2	7.04	9.62	8.91	11.7	13.4	原子炬圧力容器頂部
11.9	12.3	11.0	6． 43	8.72	8． 10	10.7	12.1	燃料交換ベローズ位置
10.9	11.3	10.1	5． 95	8.02	7． 46	9.84	11.2	
9.95	10.4	9． 18	5． 52	7.41	6． 89	9． 13	10.3	原子炉圧力容器スタビライザ位置
8.45	8． 90	7． 82	4.81	6． 36	5． 94	7.91	8.83	
6.83	7.31	6． 35	4． 02	5． 24	4． 94	6.57	7.26	
5.32	5． 81	5． 00	3． 26	4． 19	4． 02	5.31	5.77	
4.51	5． 00	4． 28	2． 84	3.62	3.51	4.61	4.96	原子炉圧力容器支持スカート位置
$\begin{aligned} & 3.58 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 3.80 \end{aligned}$	$\begin{aligned} & 3.44 \\ & 3: 23 \end{aligned}$	2． 23.	$\begin{aligned} & \text { 2. } 93 \\ & 2 . \\ & \hline \end{aligned}$	$\begin{aligned} & 2.91 \\ & 2 . \\ & \hline \end{aligned}$	$\begin{aligned} & 3.78 \\ & 3.56 \end{aligned}$	3．${ }^{\text {3 }} 737$	原子炉本体の基䃁頂部
2.99	3． 44	2.91	2． 01	2． 48	2． 51	3.24	3.37	
2.55	2． 99	2． 52	1． 76	2． 14	2． 20	2.82	2.91	
2.20	2． 60	2． 18	1． 55	1.84	1． 93	2.46	2.50	原子炉本体の基䂾基部

図 4－114 最大応答変位 弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

変位 (mm)

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	敖的解析	
289	402	278	170	224	248	173	191	原子炻圧力容鮞湏部
1240	1610	1110	670	928	976	658	808	燃料交换バローズ位蠋
2370	3230	2280	1380	1890	2020	1480	1900	
1550	1870	1500	1200	1100	1560	699	333	原子炉圧力容器スタビライザ位置
1840	2110	1760	1140	1650	1480	1390	1840	
3670	4130	3510	2330	3020	2820	3130	4140	
4940	5250	4400	3260	3930	3660	4170	5680	
6180	6070	5310	4130	4820	4330	5180	7280	原子炉压力容器文持スカート位置
16500 17500	${ }_{171000}^{1620}$	15000 16100	11100 12000	13300 14300	11800 18800	15000 16200	19600 2400	原子炉本体の基㝥頂部
18800	18000	17200	13000	15300	13900	17500	23000	
20000	19100	18200	13800	16100	14900	18700	24600	
20000	19100	18200	13800	16100	14900	18700	24600	原子炉本体の基硞者部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
弾性設計用地震動 Sd 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）
（ㅃ）${ }^{\mathrm{d}}{ }^{\circ} 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0	0	0	0	0	0	0	0	原子炉圧力容器頂部
791	1100	763	466	613	678	474	523	燃料交換べローズ位置
3510	4590	3140	1940	2650	2820	1920	2300	
7990	10600	7460	4540	6230	6640	4710	5880	原子炉圧力容器スタビライサ位置
8750	9700	8480	5980	8780	7710	5410	7000	
15400	16700	14800	10200	14400	12500	10400	13700	
28000	29600	26900	16000	22900	20300	21100	28000	
36900	39900	35400	21600	29500	25800	29200	39300	原子炬圧力容器支持スカート位置
$\begin{aligned} & 48990 \\ & \begin{array}{l} 18500 \\ 136000 \end{array} \end{aligned}$	$\begin{aligned} & 53800 \\ & 1188000 \\ & 14000 \end{aligned}$	$\begin{aligned} & 47000 \\ & 1189000 \\ & \text { 12900 } \end{aligned}$	$\begin{aligned} & 291100 \\ & \begin{array}{l} 7800 \\ 80100 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 39500 \\ & 9600 \\ & 1 \\ & 107000 \end{aligned}$		$\begin{aligned} & 40900 \\ & 10000 \\ & 19000 \end{aligned}$	$\begin{aligned} & 55990 \\ & 153000 \\ & 158000 \end{aligned}$	原子炉本体の基硙頂部
156000	161000	148000	95300	124000	106000	139000	186000	
185000	193000	178000	12000	151000	131000	172000	23000	
217000	226000	209000	146000	18000	159000	208000	276000	原子炉本体の基兟基部

弾性設計用地震動 S d 及び静的解析（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

[^2]300000

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－67に対応

図 4－117 $\mathrm{Q}-\gamma$ 関係と最大応答値（弹性設計用地震動 $\mathrm{S} d, \mathrm{NS}$ 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－68に対応

図 4－118 $\mathrm{M}-\phi$ 関係と最大応答値（弾性設計用地震動 $\mathrm{S} d$ ，NS 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－69に対応

図 4－119 Q－γ 関係と最大応答値（弹性設計用地震動 $\mathrm{S} d, \mathrm{EW}$ 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~d}$ 基本ケース全 7 波の最大値 （図中に応答が最大となる地震動を示す）

注記 $*$ ：各図上に記載の要素番号は表 3－70に対応

図 4－120 $\mathrm{M}-\phi$ 関係と最大応答値（弾性設計用地震動 S d，EW 方向）

O 2 （3）VI－2－3－2 R 0									
表 4－1 弾性設計用地震動 S d 及び静的解析によるばね反力									
名称	方向	最大地震応答値$\left(\times 10^{3} \mathrm{~N}\right)$							
		Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析
原子炉格納容器 シヤラグ	NS	10900	13100	12200	7260	9130	10300	7900	8020
	EW	10600	14600	10300	7970	8410	10500	7050	8270
原子炉格納容器 スタビライザ	NS	7130	7750	7180	4070	4310	5490	2360	2450
	EW	7030	8560	7140	4510	4760	5860	2520	2500
原子炉圧力容器スタビライザ	NS	3470	4250	4250	2090	2990	2900	1760	2480
	EW	3840	5810	3990	2520	3010	3300	2090	2520
燃料交換 ベローズ	NS	746	886	894	409	585	601	451	564
	EW	854	1060	752	494	655	645	503	584
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	NS	146	157	121	84.8	101	109	132	157
	EW	137	145	150	85.8	112	98.4	130	157
ベント管	NS	677	782	697	560	634	689	543	624
	EW	764	1210	760	555	829	693	548	624

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
4.26	5． 42	5.01	2． 45	2.77	3.26	2． 19	原子炉格納容器頂部
4.23	5.36	5.00	2． 43	2． 76	3.25	2． 19	
4.12 4.05	5.20 5.00	4.93 4.77	2． 37 2． 30	2.75 2.72	3.25 3.22	2． 18 2． 18	シヤラグ位置
3.87	4.70	4.23	2． 16	2． 62	3.04	2． 16	
3.69	4． 44	3.97	2． 06	2． 52	2.87	2． 14	
3.35	4.05	3.54	1.91	2.36	2.64	2． 10	
3.09	3.65	2.98	1． 88	2． 17	2.40	2． 01	
$\begin{aligned} & 3.01 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 3.44 \\ & 3.20 \end{aligned}$	$\begin{aligned} & 2.71 \\ & 2.52 \end{aligned}$	$\begin{aligned} & 1.88 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 2.07 \\ & 1.99 \end{aligned}$	$\begin{aligned} & 2.29 \\ & 2.19 \end{aligned}$	$\begin{aligned} & 1.96 \\ & 1.91 \end{aligned}$	原子炉格納容器基部

図 4－121 最大応答加速度 弾性設計用地震動 S d（鉛直方向 原子炉格納容器）

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.593	0． 458	0.411	0． 265	0.346	0.303	0． 301	原子炬格納容器頂部
0.592	0． 458	0.411	0． 264	0． 346	0． 302	0． 301	
$\begin{aligned} & 0.590 \\ & 0.589 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.455 \end{aligned}$	$\begin{aligned} & 0.409 \\ & 0.408 \end{aligned}$	$\begin{aligned} & 0.264 \\ & 0.263 \end{aligned}$	$\begin{aligned} & 0.345 \\ & 0.345 \end{aligned}$	$\begin{aligned} & 0.301 \\ & 0.301 \end{aligned}$	$\begin{aligned} & 0.300 \\ & 0.300 \end{aligned}$	燃料交換ベローズ位置
0.586	0． 451	0.404	0． 261	0．343	0.299	0． 298	シヤラグ位置
0.576	0． 441	0.393	0． 257	0． 339	0． 294	0． 294	
0.567	0． 433	0.383	0． 253	0． 335	0． 289	0． 290	
0.550	0． 418	0． 365	0． 244	0． 328	0． 280	0． 282	
0.530	0． 400	0.343	0． 234	0.318	0． 269	0． 272	
$\begin{aligned} & 0.520 \\ & 0.511 \end{aligned}$	$\begin{aligned} & 0.399 \\ & 0.398 \end{aligned}$	$\begin{aligned} & 0.335 \\ & 0.328 \end{aligned}$	$\begin{aligned} & 0.229 \\ & 0.224 \end{aligned}$	$\begin{aligned} & 0.313 \\ & 0.308 \end{aligned}$	$\begin{aligned} & 0.263 \\ & 0.259 \end{aligned}$	$\begin{aligned} & 0.268 \\ & 0.263 \end{aligned}$	原子炉格納容器基部

図 4－122 最大応答変位 弾性設計用地震動 S d（鉛直方向 原子炉格納容器）
（ய）${ }^{\mathrm{d}}{ }^{\circ} 0$

最大応答軸力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
63.7	81.0	74.8	36.8	41.1	49.5	32.6	原子炉格納容器頂部
127	161	150	73.2	82.2	98.7	65.2	
$\begin{aligned} & 491 \\ & 695 \end{aligned}$	$\begin{aligned} & 619 \\ & 875 \end{aligned}$	$\begin{aligned} & 584 \\ & 828 \end{aligned}$	$\begin{aligned} & 284 \\ & 403 \end{aligned}$	$\begin{aligned} & 324 \\ & 460 \end{aligned}$	$\begin{aligned} & 387 \\ & 550 \end{aligned}$	$\begin{aligned} & 257 \\ & 366 \end{aligned}$	燃料交換べローズ位置
1350	1680	1600	778	901	1080	721	シヤラグ位置
1850	2260	2150	1060	1250	1480	1010	
2210	2690	2520	1260	1490	1760	1210	
2840	3440	3130	1610	1940	2260	1600	
3120	3770	3410	1760	2140	2480	1780	
$\begin{aligned} & 3730 \\ & 3730 \end{aligned}$	$\begin{aligned} & 4500 \\ & 4500 \end{aligned}$	$\begin{aligned} & 3990 \\ & 3990 \end{aligned}$	$\begin{aligned} & 2110 \\ & 2110 \end{aligned}$	$\begin{aligned} & 2600 \\ & 2600 \end{aligned}$	$\begin{aligned} & 2990 \\ & 2990 \end{aligned}$	$\begin{aligned} & 2210 \\ & 2210 \end{aligned}$	原子炬格納容器基部

注 ：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
図 4－123 最大応答軸力 弾性設計用地震動S d（鉛直方向 原子炉格納容器）

最大応答加速度（m／s s^{2} ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
6.54	8.87	7.43	4.01	4.12	7.21	2． 23	原子炉しゃへい壁頂部
6.44	8.70	7.13	3． 94	4． 02	6.99	2． 22	
6.14	8． 19	6.58	3． 75	3． 77	6.47	2.21	
5.63	7． 27	5.83	3． 43	3.38	5.79	2． 19	
4.89	6． 09	4．89	2． 92	2.76	4． 82	2． 14	
3.63	4． 35	3.42	2． 15	2.30	3.17	2.03	原子炉しやへい壁基部

図 4－124 最大応答加速度 弾性設計用地震動 S d（鉛直方向 原子炉しやへい壁）
（ㄸi）${ }^{\mathrm{d}} \cdot 0$

最大応答変位 (mm)							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.675	0.585	0．483	0． 380	0． 400	0.419	0.336	原子炉しゃへい壁頁部
0.670	0.576	0.476	0． 375	0． 396	0.414	0． 334	
0.658	0.549	0．458	0． 363	0． 387	0． 400	0． 328	
0.638	0.511	0．437	0． 344	0． 373	0．380	0． 320	
0.608	0． 451	0． 409	0． 314	0． 352	0.349	0． 307	
0.557	0． 417	0．362	0． 264	0． 325	0． 298	0． 284	原子炉しやへい壁基部

最大応答䡛力（ $\times 10^{3} \mathrm{~N}$ ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
1100	1500	1230	674	687	1210	375	原子灲しやへい壁頂部
2500	3360	2740	1530	1550	2720	857	
4900	6510	5220	3000	3010	5230	1730	
6720	8830	7130	4110	4120	7120	2450	
8570	11100	9010	5250	5200	9030	3290	
8570	11100	9010	5250	5200	9030	3290	原子炉しやへい壁基部

[^3]図 4－126 最大応答軸力 弾性設計用地震動 S d（鉛直方向 原子炉しやへい壁）

 $\begin{array}{ll}\text { 図 } 4-126 & \\ \text { 最 }\end{array}$
（ㅃ）$\cdot \mathrm{d} \cdot 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
5.15	6． 41	6． 16	3.01	3.03	5.00	2． 20	原子炉圧力容器頂部
5.13	6． 39	6． 13	3． 00	3.02	4.98	2． 20	燃料交換バローズ位置
5.10	6． 34	6.03	2． 96	2． 99	4.92	2． 19	
5.04	6． 27	5.84	2． 89	2． 94	4.80	2． 18	原子灲圧力容器スタビライザ位置
4.93	6． 11	5.44	2． 75	2.84	4.55	2． 15	
4.81	5． 94	4.95	2． 58	2． 71	4.21	2． 13	
4.65	5． 72	4.41	2． 49	2． 59	3.85	2． 12	
4.53	5． 56	4.11	2． 45	2． 52	3.64	2． 11	原子炉圧力容器支持スカート位置
3.63 3.50	4． 35	3.42 3.29 3.0	2． 2.15	2.30 2.26	3.17 3.05	2．${ }_{\text {2．}}$ ． 02	原子炉本体の基礎頂部
3.22	3.84	3.00	2． 04	2． 18	2.78	1． 99	
2.94	3． 47	2.70	1． 96	2． 09	2． 49	1． 95	
2.93	3.20	2.52	1． 86	1． 99	2． 19	1.91	原子炉本体の基䂾基部

弾性設計用地震動 S d（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答変位 (mm)							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.628	0． 479	0.420	0． 319	0． 362	0.353	0． 318	原子炬圧力容器頂部
0.627	0． 479	0.419	0． 318	0． 361	0.352	0． 317	燃料交換ベローズ位置
0.626	0． 477	0.418	0．317	0．361	0.351	0．317	
0.623	0． 474	0.416	0.315	0． 359	0.349	0.315	原子炉圧力容器スタビライザ位置
0.616	0． 468	0.410	0． 310	0． 355	0.343	0． 312	
0.607	0． 460	0.403	0． 303	0． 350	0.336	0． 308	
0． 596	0． 450	0.395	0． 295	0． 344	0.328	0． 303	
0.588	0． 444	0.389	0． 290	0．340	0． 322	0． 300	原子炉圧力容器支持スカート位置
$\begin{aligned} & 0.557 \\ & 0.552 \end{aligned}$	$\begin{aligned} & 0.417 \\ & 0.414 \end{aligned}$	$\begin{aligned} & 0.362 \\ & 0.357 \end{aligned}$	$\begin{aligned} & 0.264 \\ & 0.259 \end{aligned}$	$\begin{aligned} & 0.325 \\ & 0.322 \end{aligned}$	$\begin{aligned} & 0.298 \\ & 0.293 \end{aligned}$	$\begin{aligned} & 0.284 \\ & 0.282 \end{aligned}$	原子炉本体の基䃓頂部
0.540	0． 406	0.347	0． 249	0.318	0.283	0． 277	
0.526	0． 398	0.336	0． 237	0.313	0． 271	0． 270	
0.511	0． 398	0.328	0． 224	0． 308	0.259	0． 263	原子炉本体の基礎基部

原子炉本体の基礎）

枠囲みの内容は商業機裹の

（ய）${ }^{\circ} \mathrm{d} \times 0$

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
89.4	112	105	51.6	51.7	85.4	37.8	原子炉圧力容器頂部
652	814	760	376	377	621	276	燃料交換べローズ位置
1140	1410	1320	651	654	1080	480	
1460	1800	1680	832	838	1380	617	原子炉圧力容器スタビライザ位置
1880	2320	2150	1070	1080	1770	803	
2270	2790	2550	1280	1300	2120	977	
2660	3270	2930	1480	1520	2450	1160	
5570	6830	5570	2970	3120	4810	2540	原子炉圧力容器支持スカート位置
15100 16000	18700 19800	$\begin{aligned} & 15500 \\ & 16400 \end{aligned}$	$\begin{aligned} & 8720 \\ & 9250 \end{aligned}$	8230 8840	14600 15500	6340 6880	原子炬本体の基礎頂部
16900	20800	17300	9780	9480	16300	7450	
17600	21700	18000	10300	10100	17000	7980	
17600	21700	18000	10300	10100	17000	7980	原子炉本体の基礎基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
弾性設計用地震動 $\mathrm{S} d$（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

（ㅍ）$\cdot \mathrm{d} \cdot 0$
O 2 （3）VI－2－3－2 R 0

表 4－2	静的震度（鉛直方向）
種別	0.24 鉛直方向静的震度 $(1.0 \mathrm{Cv})$
建物•構築物	0.29 $(1.2 \mathrm{Cv})$
機器•配管系	

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right.$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
15.4	19.0	17.0	10.9	14.0	14.4	13.0	原子炉格納容器頂部
14.5	18.0	16.0	10.5	13.0	13.4	12.8	
13.6 13.1	17.0 16.3	15.0 14.3	10.1 9.81	12.3 11.9	12.4 11.7	$\begin{aligned} & 12.5 \\ & 12.3 \end{aligned}$	燃料交换バローズ位置
12.4	14.8	12.7	9.23	11.1	10.2	11.8	シャラグ位置
10.3	11.7	10.4	8.10	9.71	9.36	11.2	
9.38	9． 72	9.01	7． 33	8.84	9.04	10.7	
8． 50	8.23	7． 17	6.11	7.50	8.40	9.79	
7.64	7.28	6.57	6． 28	7． 89	8.74	8． 63	
7.30 7.12	7.56 7.51	6.89 7.25	6.54 6.64	8． 00 7.96	$\begin{aligned} & 9.41 \\ & 9.85 \end{aligned}$	$\begin{aligned} & 8.19 \\ & 7.84 \end{aligned}$	原子炉格納容器基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
24.3	23.2	17.9	12.9	19.5	18.7	25.0	原子炬格納容器頂部
23.2	22.1	17.1	12.4	18.6	17.9	23.9	
$\begin{aligned} & 22.1 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 21.1 \\ & 20.4 \end{aligned}$	$\begin{aligned} & \text { 16. } \\ & \text { 15.7 } \end{aligned}$	$\begin{aligned} & 11.8 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 17.7 \\ & 17.1 \end{aligned}$	$\begin{aligned} & 17.1 \\ & 16.6 \end{aligned}$	$\begin{aligned} & 22.8 \\ & 22.1 \end{aligned}$	燃料交換じローズ位置
19.9	19.0	14.5	10.7	15.9	15.5	20.6	シヤラグ位置
16.5	15.9	12.0	8.97	13.1	13.0	17.2	
14.3	13.8	10.4	7.85	11.3	11.3	15.0	
10.8	10.5	7.69	6.04	8.42	8.63	11.5	
7.37	7． 29	5.27	4． 30	5．72	6.08	8.04	
$\begin{aligned} & 6.00 \\ & 5.09 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { 6. } 02 \\ & 5.13 \end{aligned}$	$\begin{aligned} & 4.36 \\ & 3.72 \end{aligned}$	$\begin{aligned} & 3.60 \\ & 3.11 \end{aligned}$	$\begin{aligned} & 4.67 \\ & 3.95 \\ & 3.95 \end{aligned}$	$\begin{aligned} & 5.06 \\ & 4.33 \\ & 4 . \end{aligned}$	$\begin{aligned} & 6.70 \\ & 5.76 \end{aligned}$	原子炬格納容器基部

図 4－131 最大応答変位 基準地震動 S s（NS 方向 原子炉格納容器）

最大応答せん断力 $\left(\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
228	286	250	165	211	220	187	原子炬格納容器頂部
443	556	485	324	407	423	371	
$\begin{aligned} & 2850 \\ & 3400 \end{aligned}$	$\begin{aligned} & 3100 \\ & 3920 \end{aligned}$	$\begin{aligned} & 3390 \\ & 4080 \end{aligned}$	$\begin{aligned} & 1850 \\ & 2300 \end{aligned}$	$\begin{aligned} & 2340 \\ & 2790 \end{aligned}$	$\begin{aligned} & 2320 \\ & 2880 \end{aligned}$	$\begin{aligned} & 2270 \\ & 2840 \end{aligned}$	燃料交換べローズ位置
26000	25100	19600	13900	22100	21800	26700	シヤラグ位置
27300	26500	20800	14800	23100	22600	27900	
28200	27400	21500	15500	23700	23200	28700	
29500	28700	22500	16600	24600	24500	30200	
30000	29200	22700	17100	24900	25100	30800	
$\begin{aligned} & 31000 \\ & 31000 \end{aligned}$	$\begin{aligned} & 30200 \\ & 30200 \end{aligned}$	$\begin{aligned} & 23200 \\ & 23200 \end{aligned}$	$\begin{aligned} & 18000 \\ & 18000 \end{aligned}$	$\begin{aligned} & 25000 \\ & 25000 \end{aligned}$	$\begin{aligned} & 27200 \\ & 27200 \end{aligned}$	$\begin{aligned} & 32300 \\ & 32300 \end{aligned}$	原子炬格納容器基部

[^4]最大応答せん断力 基準地震動 S s（NS 方向 原子炉格納容器）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss －F2	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$	
0	0	0	0	0	0	0	原子炬格納容器頂部
525	657	576	381	486	506	431	
$\begin{aligned} & 1470 \\ & 5230 \end{aligned}$	$\begin{aligned} & 1850 \\ & 6160 \end{aligned}$	$\begin{aligned} & 1620 \\ & 6330 \end{aligned}$	$\begin{aligned} & 1080 \\ & 3560 \end{aligned}$	$\begin{aligned} & 1360 \\ & 4420 \end{aligned}$	$\begin{aligned} & 1410 \\ & 4580 \end{aligned}$	$\begin{aligned} & 1230 \\ & 4350 \end{aligned}$	燃料交换心゙ローズ位置
15200	17600	18300	10300	12500	13000	12600	シヤラグ位置
127000	124000	103000	69500	109000	103000	128000	
205000	200000	163000	112000	174000	167000	207000	
342000	332000	266000	186000	289000	279000	346000	
484000	471000	375000	267000	408000	397000	492000	
$\begin{aligned} & 544000 \\ & 589000 \end{aligned}$	$\begin{aligned} & 529000 \\ & 573000 \end{aligned}$	$\begin{aligned} & 420000 \\ & 454000 \end{aligned}$	$\begin{aligned} & 301000 \\ & 327000 \end{aligned}$	$\begin{aligned} & 458000 \\ & 494000 \end{aligned}$	$\begin{aligned} & 446000 \\ & 485000 \end{aligned}$	$\begin{aligned} & 553000 \\ & 600000 \end{aligned}$	原子炬格納容器基部

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
16.2	16.7	18.6	9． 90	13.5	12.9	13.2	原子炉しやへい壁頂部
15.2	15.5	16.3	9． 71	12.3	12.5	12.9	
14.3	14.4	14.0	10.1	12.0	11.5	12.7	
14.1	12.8	11.6	9． 93	11.3	11.4	12.0	
12.5	11.5	10.3	9． 35	10.3	11.6	10.6	
9． 90	9． 20	8.80	8． 10	8． 72	11.2	9． 15	原子炉しやへい壁基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
19.9	20.1	16.1	10.7	16.5	15.1	20.8	原子炬しやへい壁頂部
17.7	18.1	14.5	9.55	14.8	13.6	18.7	
15.4	15.9	12.6	8． 35	13.0	12.0	16.4	
13.4	13.9	10.8	7.26	11.2	10.5	14.3	
11.1	11.5	8.73	6． 07	9． 17	8.75	12.0	
8.25	8． 49	6． 18	4.65	6． 66	6.63	9． 03	原子炬しやへい壁基部

図 4－135 最大応答変位 基準地震動 S s（NS 方向 原子炉しやへい壁）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
6790	6840	5660	3390	6270	6410	3660	原子炉しやへい壁頂部
5910	6190	4740	3760	5550	6500	5080	
8290	8560	7750	5420	7400	6870	7820	
11400	12500	11400	7250	10700	9780	11200	
15600	16600	14600	9890	14300	13200	15400	
15600	16600	14600	9890	14300	13200	15400	原子炉しやへい壁基部

[^5]図 4－136 最大応答せん断力 基準地震動 S S（NS 方向 原子炉しやへい壁）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉しやへい壁頂部
18800	18900	15700	9340	17300	17700	10100	
32300	32200	27000	19100	33000	36100	24500	
47500	50900	37800	31300	44800	49600	43800	
73800	76800	56600	48900	67200	63700	70900	
118000	122000	108000	76200	106000	101000	116000	原子炉しやへい壁基部

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
28.5	29.7	29.1	17.4	24.3	25.9	16.6	原子炉圧力容器頂部
24.9	26.2	26.2	14.9	21.4	22.0	15.4	燃料交換バローズ位置
22.1	23.3	23.9	12.9	19.1	19.4	14.5	
19.4	20.7	21.9	11.6	16.9	17.0	14.0	原子炉圧力容器スタビライザ位置
17.0	17.2	19.0	10.3	14.0	14． 1	13.5	
14.9	13.6	14.8	10.6	11.8	13.4	12.4	
12． 6	11.4	11.1	9． 98	9． 89	13.4	10.8	
11.4	10.2	10.1	9． 43	9． 50	12．9	9． 94	原子炉圧力容器支持スカート位置
9.90 9.52	9． 8.20	8.80 8.63	8． 7.10	8.72 8.57	11.2 11.0	9． 8.15	原子炉本体の基礎頂部
9.00	8． 47	8.08	7． 37	8.22	10.5	8.37	
8.15	8.01	7.64	6． 95	8． 03	10.1	8． 10	
7.12	7.51	7.25	6． 64	7.96	9.85	7.84	原子炉本体の基䂾基部

図 4－138 最大応答加速度 基準地震動 S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）
（Wi）${ }^{\mathrm{d}} \cdot 0$

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
25.8	26.6	22.4	14.1	21.8	19.3	26.8	原子炉圧力容器頂部
23.5	24.3	20.3	12.8	19.9	17.6	24.5	燃料交換ベローズ位置
21.7	22.4	18.6	11.8	18.3	16.3	22.7	
20.1	20.8	17.1	10.9	16.9	15.1	21.1	原子炬圧力容器スタビライサ位置
17.3	18.0	14.6	9． 42	14.6	13.1	18.4	
14.3	15.0	11.9	7.81	12.0	11.0	15.4	
11.5	12.1	9． 27	6． 32	9． 56	8.99	12.5	
10.0	10.5	7.85	5． 54	8． 24	7.91	10.9	原子炉圧力容器文持スカート位置
8.25 $7: 76$	－${ }^{8} \mathbf{7} 979$	${ }^{6} .18$	${ }_{4}^{4.45}$	6．${ }_{6} 264$	${ }_{\text {c }}^{6.63}$	8． 81	原子炉本体の基徥頂部
6.90	7.04	5.03	4． 00	5． 49	5.65	7.62	
5.91	5． 99	4.31	3． 52	4.64	4.93	6． 59	
5.09	5.13	3.72	3． 11	3． 95	4.33	5.76	原子炉本体の基痿基部

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
482	510	495	301	410	445	281	原子炉圧力容器頂部
1690	1890	1780	1230	1490	1890	974	燃料交換べローズ位置
3800	3960	3990	2380	3200	3540	2330	
3200	3050	2790	1860	3000	3040	1970	原子炉圧力容器スタビライザ位置
3020	3270	2330	2110	2850	2770	2920	
5850	6150	6360	3870	5440	4570	5620	
8270	8260	8310	5210	7280	5960	7700	
10600	10200	9950	6990	8920	8450	9660	原子炉圧力容器支持スカート位置
28700 31200	$\begin{aligned} & 28300 \\ & 30200 \end{aligned}$	$\begin{aligned} & 25900 \\ & 27100 \end{aligned}$	$\begin{aligned} & 18700 \\ & 20600 \end{aligned}$	24500 26100	21800 23700	$\begin{aligned} & 27300 \\ & 29600 \end{aligned}$	原子炉本体の基䂾頂部
33700	32200	28000	22600	27500	26300	31800	
36000	34100	28800	24300	28700	28600	34000	
36000	34100	28800	24300	28700	28600	34000	原子炉本体の基碐基部

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－140 最大応答せん断力 基準地震動S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉圧力容器頂部
1320	1400	1360	824	1130	1220	769	燃料交換ベローズ位置
5020	5400	5130	3410	4350	5330	2840	
12300	12700	12700	7810	10400	12100	7250	原子炉圧力容器スタビライザ位置
13000	16100	12200	10800	12700	16900	10700	
23600	27500	19000	18400	23000	26800	21200	
42000	46700	38500	29300	38600	38200	37000	
55900	59500	54900	37800	49800	46200	49900	原子炉圧力容器支持スカート位置
$\begin{array}{r} 74600 \\ 19000 \\ 206000 \end{array}$	$\begin{gathered} 77800 \\ 199000 \\ 222000 \end{gathered}$	$\begin{gathered} 77700 \\ 185000 \\ 206000 \end{gathered}$	$\begin{gathered} 50100 \\ 126000 \\ 138000 \end{gathered}$	$\begin{array}{r} 69220 \\ 172000 \\ 190000 \end{array}$	$\begin{gathered} 60100 \\ 157000 \\ 173000 \end{gathered}$	$\begin{array}{r} 70900 \\ 185000 \\ 205000 \end{array}$	原子炬本体の基䂾頂部
240000	261000	240000	161000	222000	202000	243000	
301000	321000	293000	197000	272000	248000	303000	
369000	385000	347000	237000	326000	297000	368000	原子炉本体の基䂾基部

図 4－141 最大応答モーメント 基準地震動 S s（NS 方向 原子炉圧力容器及び原子炉本体の基礎）
（ㅃ）${ }^{\mathrm{d}}{ }^{\circ} 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
16.5	18.5	19.4	10.9	15.5	14.1	14.0	原子炉格納容器頂部
15.5	17.5	18.4	10.4	14.8	13.4	13.6	
$\begin{aligned} & 14.7 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 16.4 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 17.3 \\ & 16.6 \end{aligned}$	$\begin{aligned} & 9.99 \\ & 9.75 \end{aligned}$	$\begin{aligned} & 14.1 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 12.8 \\ & 12.3 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 13.0 \end{aligned}$	燃料交換ベローズ位置
13.2	14.2	15.0	9． 23	12.8	11.3	12.4	シヤラグ位置
11.5	12.3	12.0	8． 13	11.2	9.38	11.3	
11.2	10.8	10.5	7． 44	10.2	8.06	10.6	
9.93	8． 07	8.86	6． 47	8.42	7.46	9． 75	
7.58	8.63	6.65	6． 31	6． 89	8.17	8.88	
$\begin{aligned} & 7.23 \\ & 6.88 \end{aligned}$	$\begin{aligned} & 8.82 \\ & 8.71 \end{aligned}$	$\begin{aligned} & 6.91 \\ & 6.96 \end{aligned}$	$\begin{aligned} & 6.25 \\ & 6.05 \end{aligned}$	$\begin{aligned} & 6.55 \\ & 6.69 \end{aligned}$	$\begin{aligned} & 8.35 \\ & 8.25 \end{aligned}$	$\begin{aligned} & 8.38 \\ & 8.17 \end{aligned}$	原子炉格納容器基部

$10.00 \quad 15.00 \quad 20.00$
図 $4-142$
最大応答加速度 基準地震動 S s（EW 方向 原子炉格納容器）
do

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
24.0	21.5	18.2	13.0	18.9	16.0	21.5	原子炉格納容器頂部
23.0	20.5	17.4	12.4	18.1	15.3	20.6	
21.9 21.2	19.6 19.0	16.6 16.1	11.9 11.6	$\begin{aligned} & 17.3 \\ & 16.8 \end{aligned}$	14.6 14.2	19.7 19.1	燃料交換バローズ位置
19.8	17.7	14.9	10.8	15.6	13.2	17.9	シヤラグ位置
16.4	14.8	12.4	9． 07	13.0	11.1	14.9	
14.2	12.8	10.7	7． 96	11.3	9.65	13.0	
10.6	9． 64	7.96	6． 15	8.54	7.41	9． 87	
7.19	6． 68	5.41	4． 43	5.97	5.30	6.95	
$\begin{aligned} & 5.86 \\ & 4.93 \end{aligned}$	$\begin{aligned} & 5.51 \\ & 4.68 \end{aligned}$	$\begin{aligned} & 4.40 \\ & 3.69 \end{aligned}$	$\begin{aligned} & 3.74 \\ & 3.24 \end{aligned}$	$\begin{aligned} & \text { 4. } 96 \\ & \text { 4. } 24 \end{aligned}$	$\begin{aligned} & 4.47 \\ & 3.86 \end{aligned}$	$\begin{aligned} & 5.80 \\ & \text { 4. } 98 \end{aligned}$	原子炬格納容器基部

（WI）${ }^{\mathrm{d}}{ }^{\circ} 0$
図 4－143 最大応答変位 基準地震動 S s（EW 方向 原子炉格納容器）

図 $4-143$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉格納容器頂部
563	619	663	386	527	481	476	
$\begin{aligned} & 1580 \\ & 5670 \end{aligned}$	$\begin{aligned} & 1740 \\ & 6210 \end{aligned}$	$\begin{aligned} & 1860 \\ & 6270 \end{aligned}$	$\begin{aligned} & 1080 \\ & 3760 \end{aligned}$	$\begin{aligned} & 1480 \\ & 5070 \end{aligned}$	$\begin{aligned} & 1360 \\ & 5140 \end{aligned}$	$\begin{aligned} & 1350 \\ & 4660 \end{aligned}$	燃料交換ベローズ位置
16300	17800	17900	11000	14600	14900	13500	シヤラグ位置
142000	129000	115000	72100	111000	91900	123000	
228000	207000	183000	116000	178000	148000	198000	
379000	343000	302000	194000	296000	246000	329000	
538000	484000	428000	278000	420000	349000	468000	
$\begin{aligned} & 604000 \\ & 654000 \end{aligned}$	$\begin{aligned} & 543000 \\ & 587000 \end{aligned}$	$\begin{aligned} & 481000 \\ & 520000 \end{aligned}$	$\begin{aligned} & 314000 \\ & 341000 \end{aligned}$	$\begin{aligned} & 472000 \\ & 512000 \end{aligned}$	$\begin{aligned} & 392000 \\ & 425000 \end{aligned}$	$\begin{aligned} & 526000 \\ & 570000 \end{aligned}$	原子炬格納容器基部

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
17.2	16.6	16.1	11.6	15.3	13.9	12.9	原子炉しやへい壁頂部
16.3	14.6	13.6	11.3	15.3	13.4	12.7	
15.9	14.6	13.0	11.5	14.9	13.1	12.2	
15.1	13.9	12.5	11.3	13.3	11.6	11.4	
12.7	12.1	11.1	10.1	10.7	11.1	10.7	
9． 45	10.0	9.27	7.91	8.07	9． 72	9． 28	原子炉しやへい壁基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
20.2	18.3	16.1	11.5	16.3	13.5	18.6	原子炉しやへい壁頂部
18.0	16.4	14.4	10.5	14.7	12.1	16.8	
15.6	14.4	12.5	9． 30	12.9	10.6	14.7	
13.4	12.5	10.7	8． 15	11.2	9.27	12.8	
10.9	10.3	8.68	6． 79	9． 23	7.77	10.6	
7.93	7． 49	6.17	5.01	6.73	5.85	7.83	原子炬しやへい壁基部

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
4980	6040	5810	4660	4600	5770	3400	原子炉しやへい壁頂部
5260	6640	4870	4490	5490	5640	4450	
8910	8610	7940	5390	7380	6480	7540	
11700	11700	10700	8100	10700	8760	11100	
16400	14900	14600	11800	14700	12400	15100	
16400	14900	14600	11800	14700	12400	15100	原子炉しやへい壁基部

[^6]最大応答せん断力 基準地震動 S s（EW 方向 原子炉しや～い壁）

（ㄸi）${ }^{\mathrm{d}} \mathrm{d} \cdot 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉しやへい壁頂部
13800	16700	16100	12900	12700	16000	9380	
25000	35300	27300	24500	28300	32000	20500	
45400	53300	38700	34400	43600	43400	38200	
77400	75300	63700	45900	63700	59400	64700	
128000	121000	110000	76700	106000	89800	113000	原子炉しやへい壁基部

図 4－149 最大応答モーメント 基準地震動S s（EW 方向 原子炉しやへい壁）
（II）$\cdot \mathrm{d} \cdot 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
27.4	31.7	27.3	23.8	26.2	31.2	18.1	原子炉圧力容器頂部
23.7	26.3	23.3	20.6	22.9	26.6	15.9	燃料交換バローズ位置
21.9	22.8	20．6	17.9	20.4	22.9	14.4	
20.2	20.0	18．3	15.5	18.1	19.5	13.0	原子炉圧力容器スタビライザ位置
18.2	18.3	15.1	12.4	15.2	15.4	12.4	
16． 3	16.0	13.5	11.0	12.5	12.4	11.6	
13.2	12.4	11.0	10.2	10.5	9.84	11.0	
11.4	10.6	9.88	9． 23	9． 62	10．2	10.2	原子炉圧力容器支持スカート位置
9．45	${ }_{9}^{10.0} 9$	9.27 8.64 8.1	7． 7.41	8．${ }^{\text {7．} 67}$	9．72	9． 888	原子炉本体の基礎頂部
8.39	9.71	8.11	6． 96	7． 03	9.25	8． 58	
7.68	9． 24	7.20	6． 46	6． 76	8.75	8.65	
6.88	8.71	6.96	6． 05	6． 69	8.25	8． 17	原子炉本体の基䂾基部

図 4－150 最大応答加速度 基準地震動 S s（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

最大応答変位 (mm)							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
26.8	24.2	22.1	15.0	21.1	17.9	24.3	原子炉圧力容器頂部
24.4	22.0	20.0	13.8	19.3	16.2	22.2	沵料交換ベローズ位置
22.4	20.2	18.4	12.8	17.8	14.9	20.5	
20.6	18.7	16.9	11.9	16.6	13.8	19.0	原子炬圧力容器スタビライザ位置
17.7	16.1	14.4	10.4	14.4	11.9	16.5	
14.5	13.4	11.8	8.70	12.0	9.90	13.8	
11.5	10.7	9． 20	7.07	9． 60	8.07	11.1	
9.81	9． 25	7.82	6． 15	8.31	7.07	9． 60	原子炬圧力容器交持スカート位置
7．93	7．49	${ }_{5}^{6.174}$	5．${ }^{\text {4．}} 72$	6． 6.31	5.85	7． 7.35	原子炉本体の基䅘頂部
6.65	6． 30	5.11	4． 27	5.68	5.03	6． 63	
5.70	5.41	4.32	3.71	4.89	4． 40	5．72	
4.93	4.68	3.69	3． 24	4.24	3.86	4.98	原子炬本体の基楸基部

図 4－151 最大応答変位 基準地震動 S s（EW 方向 原子炉圧力容器及び原子炉本体の基礎）
（II） $\mathrm{d}^{\prime} 0$

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
468	536	463	399	441	530	320	原子炉圧力容器頂部
1890	2130	1880	1550	1730	2060	1230	燃料交換バローズ位置
3760	4210	3770	3250	3500	4260	2520	
2560	2550	2770	2300	1950	2780	1720	原子炉圧力容器スタビライザ位置
3130	3200	2600	2120	2770	2490	2600	
5970	6480	5700	4260	5140	5190	5500	
8550	8930	7850	6200	7040	6940	7490	
10900	11100	9870	8030	8950	8340	9540	原子炉圧力容器支持スカート位置
29100 31600	$\begin{aligned} & 27000 \\ & 29100 \end{aligned}$	$\begin{aligned} & 26200 \\ & 28000 \end{aligned}$	21700 23700	25300 27400	$\begin{aligned} & 21800 \\ & 23900 \end{aligned}$	26900 29300	原子炉本体の基嘥頂部
34000	31200	29700	25600	29500	26200	31700	
36000	32800	31000	27200	31200	28100	33800	
36000	32800	31000	27200	31200	28100	33800	原子炉本体の基礎基部

[^7]

（Wi）$\cdot \mathrm{d} \cdot 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0	0	0	0	0	0	0	原子炉圧力容器頂部
1290	1470	1270	1100	1210	1460	878	燃料交換バローズ位置
5410	6120	5380	4480	4990	5950	3570	
12600	14100	12600	10700	11500	14100	8350	原子炉圧力容器スタビライザ位置
15600	16900	14300	12800	16000	14400	10500	
25200	27900	21900	20100	26000	22500	19900	
45200	45000	40700	29900	39000	35900	36800	
59700	57500	54700	38700	49300	47500	49700	原子炉圧力容器支持スカート位置
$\begin{array}{r} 79600 \\ 207000 \\ 226000 \end{array}$	$\begin{gathered} 77800 \\ 195000 \\ 214000 \end{gathered}$	$\begin{gathered} 74400 \\ 184000 \\ 203000 \end{gathered}$	$\begin{aligned} & 53300 \\ & 129000 \\ & 144000 \end{aligned}$	$\begin{gathered} 66400 \\ 167000 \\ 186000 \end{gathered}$	$\begin{array}{r} 64000 \\ 148000 \\ 164000 \end{array}$	$\begin{array}{r} 69800 \\ 182000 \\ 1803000 \end{array}$	原子炉本体の基整頂部
259000	246000	236000	174000	220000	191000	239000	
311000	298000	291000	222000	275000	232000	298000	
368000	360000	349000	273000	333000	277000	362000	原子炉本体の基䂾基部

図 4－153 最大応答モーメント 基準地震動 S s（EW 方向 原子炉圧力容器及び原子炉本体の基礎）

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表3－67 に対応

図 4－154 Q $-\gamma$ 関係と最大応答値（基準地震動 S s，NS 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表3－68 に対応

図 4－155 M－ϕ 関係と最大応答値（基準地震動 S s，NS 方向）
$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中の応答が最大となる地震動を示す）

注記 $*$ ：各図上に記載の要素番号は表 3－69に対応

図 4－156 Q $-\gamma$ 関係と最大応答値（基準地震動 S s，EW 方向）

凡例

$\square: ~ \mathrm{~S} \mathrm{~s}$ 基本ケース全 7 波の最大値 （図中の応答が最大となる地震動を示す）

注記＊：各図上に記載の要素番号は表 3－70に対応

図 4－157 $\mathrm{M}-\phi$ 関係と最大応答値（基準地震動 S s，EW 方向）
O 2 （3） $\mathrm{VI}-2-3-2$ R 0
表 4－3 基準地震動S s によるばね反力

名称	方向	最大地震応答値$\left(\times 10^{3} \mathrm{~N}\right)$						
		Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
原子炉格納容器 シヤラグ	NS	24700	24200	21900	13100	22600	20700	24800
	EW	22500	25800	21600	15500	15900	20000	21300
原子炉格納容器スタビライザ	NS	14800	13300	13200	8260	10900	13600	6160
	EW	13200	12800	13200	9050	10600	12900	6650
原子炉圧力容器スタビライザ	NS	6690	7700	7420	4450	6260	6870	3770
	EW	7200	7350	6770	5630	6090	6980	4280
燃料交換ベローズ	NS	1500	1660	1620	891	1310	1440	1020
	EW	1640	1500	1340	1110	1380	1410	965
$\begin{gathered} \text { 所員用 } \\ \text { エアロック } \end{gathered}$	NS	229	261	223	176	204	208	257
	EW	261	281	251	180	231	209	231
ベント管	NS	1140	1630	1150	1020	1230	1610	1020
	EW	1280	1820	1320	1150	1220	1510	1050

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
7.35	9． 35	8.64	4． 90	5.53	6.52	4.38	原子炉格納容器頂部
7.28	9． 24	8.62	4． 86	5． 52	6.49	4.37	
7.10 6.98	8.97 8.62	8.49 8.22	4.73 4.60	5.49 5.44	6.49 6.43	4.35 4.35	シヤラグ位置
6.66	8． 09	7.29	4.31	5.23	6.07	4.31	
6.36	7． 65	6.84	4． 11	5.04	5.74	4． 27	
5.78	6． 98	6． 10	3． 82	4.71	5.28	4． 19	
5.33	6． 29	5.14	3． 75	4.33	4.80	4.02	
$\begin{aligned} & 5.19 \\ & 5.05 \end{aligned}$	$\begin{aligned} & 5.93 \\ & 5.51 \end{aligned}$	$\begin{aligned} & 4.67 \\ & 4.35 \end{aligned}$	$\begin{aligned} & 3.75 \\ & 3.71 \end{aligned}$	$\begin{aligned} & \text { 4. } 14 \\ & 3.97 \end{aligned}$	$\begin{aligned} & 4.57 \\ & 4.37 \end{aligned}$	$\begin{aligned} & 3.92 \\ & 3.81 \end{aligned}$	原子炉格納容器基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.03	0． 790	0.709	0． 529	0.692	0.605	0.602	原子炬格納容器頂部
1.02	0． 789	0.707	0． 528	0． 691	0.604	0． 602	
$\begin{aligned} & 1.02 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 0.786 \\ & 0.784 \end{aligned}$	$\begin{aligned} & 0.705 \\ & 0.703 \end{aligned}$	$\begin{aligned} & 0.527 \\ & 0.526 \end{aligned}$	$\begin{aligned} & 0.690 \\ & 0.689 \end{aligned}$	$\begin{aligned} & 0.602 \\ & 0.601 \end{aligned}$	$\begin{aligned} & 0.600 \\ & 0.599 \end{aligned}$	燃料交換べローズ位置
1.01	0． 778	0.696	0． 522	0． 686	0.597	0． 596	シヤラグ位置
0． 993	0． 761	0.677	0． 513	0． 678	0． 587	0． 587	
0.978	0． 746	0.661	0． 505	0.670	0.577	0． 579	
0.948	0． 720	0.629	0． 488	0.655	0.560	0． 564	
0.913	0． 690	0.592	0． 467	0.635	0.537	0． 544	
$\begin{aligned} & 0.896 \\ & 0.881 \end{aligned}$	$\begin{aligned} & 0.687 \\ & 0.686 \end{aligned}$	$\begin{aligned} & 0.577 \\ & 0.565 \end{aligned}$	$\begin{aligned} & 0.457 \\ & 0.448 \end{aligned}$	$\begin{aligned} & 0.625 \\ & 0.616 \end{aligned}$	$\begin{aligned} & 0.526 \\ & 0.517 \end{aligned}$	$\begin{aligned} & 0.535 \\ & 0.526 \end{aligned}$	原子炉格納容器基部

最大応答変位 基準地震動 S s（鉛直方向 原子炉格納容器）
図 4－159

変位（mm）
500

霥

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
110	140	129	73.5	82.2	99.0	65.2	原子炉格納容器頂部
219	278	258	147	165	198	131	
$\begin{aligned} & 846 \\ & 1200 \end{aligned}$	$\begin{aligned} & 1070 \\ & 1510 \end{aligned}$	$\begin{aligned} & 1010 \\ & 1430 \end{aligned}$	$\begin{aligned} & 568 \\ & 805 \end{aligned}$	$\begin{aligned} & 647 \\ & 920 \end{aligned}$	$\begin{aligned} & 774 \\ & 1100 \end{aligned}$	$\begin{aligned} & 513 \\ & 731 \end{aligned}$	燃料交換ベローズ位置
2330	2900	2760	1560	1810	2160	1450	シヤラグ位置
3190	3900	3710	2120	2490	2950	2010	
3810	4640	4340	2510	2980	3520	2420	
4900	5930	5380	3210	3870	4510	3190	
5380	6500	5870	3520	4280	4960	3560	
$\begin{aligned} & 6430 \\ & 6430 \end{aligned}$	$\begin{aligned} & 7760 \\ & 7760 \end{aligned}$	$\begin{aligned} & 6880 \\ & 6880 \end{aligned}$	$\begin{aligned} & 4220 \\ & 4220 \end{aligned}$	$\begin{aligned} & 5200 \\ & 5200 \end{aligned}$	$\begin{aligned} & 5980 \\ & 5980 \end{aligned}$	$\begin{aligned} & 4420 \\ & 4420 \end{aligned}$	原子炬格納容器基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 基準地震動 S s（鉛直方向 原子炉格納容器）

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
11.3	15.3	12.9	8.01	8.23	14.5	4． 45	原子炬しゃへい壁頂部
11.1	15.0	12.3	7.87	8.04	14.0	4.44	
10.6	14.2	11.4	7． 49	7.53	13.0	4.41	
9.70	12.6	10.1	6． 86	6． 76	11.6	4.37	
8.43	10.5	8.42	5.83	5.51	9.64	4.27	
6.26	7.50	5.89	4． 30	4． 59	6．34	4． 05	原子炉しゃへい壁基部

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.17	1.01	0.832	0． 759	0．799	0.837	0． 671	原子炉しやへい壁頂部
1．16	0． 992	0.820	0． 750	0． 792	0.827	0． 667	
1.14	0.946	0.790	0．725	0.773	0.800	0.656	
1.10	0.880	0.753	0． 687	0． 745	0.760	0． 639	
1.05	0． 777	0.704	0． 627	0． 703	0.697	0.613	
0.960	0．719	0．623	0． 528	0． 649	0.595	0． 568	原子炉しやへい壁基部

最大応答軸力（ $\times 10^{3} \mathrm{~N}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1900	2580	2120	1350	1380	2420	750	原子炬しやへい壁頂部
4300	5790	4720	3060	3100	5440	1720	
8440	11300	9000	5990	6020	10500	3450	
11600	15300	12300	8220	8230	14300	4890	
14800	19100	15600	10500	10400	18100	6570	
14800	19100	15600	10500	10400	18100	6570	原子炉しやへい壁基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

（W）${ }^{\mathrm{d}}{ }^{\circ} 0$

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
8.87	11.1	10．7	6． 02	6.05	10.0	4.40	原子炉圧力容器頂部
8.85	11.1	10.6	5.99	6． 03	9.95	4． 39	燃料交換ベローズ位置
8.79	11.0	10． 4	5.91	5.98	9.84	4.37	
8.69	10.8	10．1	5． 78	5.88	9.60	4． 35	原子炉圧力容器スタビライザ位置
8.50	10.6	9.38	5． 50	5.67	9.09	4． 29	
8.29	10.3	8.52	5． 16	5． 41	8.41	4． 26	
8.01	9.85	7.60	4． 97	5.17	7.70	4． 24	
7.80	9． 58	7.09	4． 90	5.03	7.28	4.22	原子炉圧力容器支持スカート位置
6.26 6.04	7.50 7.21	$\begin{aligned} & 5.89 \\ & 5.66 \end{aligned}$	4． 30 4.23	4.59 4.52	$\begin{aligned} & \text { 6. } 34 \\ & 6.09 \end{aligned}$	$\begin{aligned} & \text { 4. } 05 \\ & \text { 4. } 03 \end{aligned}$	原子炉本体の基礎頂部
5.55	6． 62	5.16	4． 08	4.36	5.56	3.97	
5.06	5.97	4.66	3.91	4． 18	4.97	3.90	
5.05	5.51	4.35	3.71	3.97	4.37	3.81	原子炉本体の基礎基部

図 4－164 最大応答加速度 基準地震動 S s（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

（ㅃ）$\cdot \mathrm{d} \cdot 0$

最大応答変位 (mm)							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.09	0． 826	0.723	0． 637	0． 723	0.705	0.635	原子炉圧力容器頂部
1.09	0． 825	0.722	0． 636	0． 722	0.704	0． 634	燃料交換ベローズ位置
1.08	0． 823	0.720	0．634	0． 721	0.701	0． 633	
1.08	0． 818	0.716	0． 630	0.717	0.697	0． 630	原子炉圧力容器スタビライザ位置
1.07	0．807	0.707	0． 620	0.710	0.686	0.624	
1.05	0． 792	0.695	0． 606	0． 699	0.671	0.615	
1.03	0．776	0.680	0． 590	0．687	0.655	0． 605	
1.02	0.765	0.671	0． 579	0．679	0.644	0． 599	原子炉圧力容器支持スカート位置
0.960 0.951	$\begin{aligned} & 0.719 \\ & 0.713 \end{aligned}$	$\begin{aligned} & 0.623 \\ & 0.615 \end{aligned}$	$\begin{aligned} & 0.528 \\ & 0.518 \end{aligned}$	0.649 0.644	$\begin{aligned} & 0.595 \\ & 0.585 \end{aligned}$	$\begin{aligned} & 0.568 \\ & 0.564 \end{aligned}$	原子炉本体の基碮頂部
0.930	0． 699	0.599	0． 498	0．636	0.565	0． 553	
0.907	0． 686	0.579	0． 474	0.626	0.542	0.540	
0.881	0． 686	0.565	0． 448	0.616	0.517	0． 526	原子炉本体の基䂾基部

図 4－165 最大応答変位 基準地震動 S s（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

（ய）${ }^{\mathrm{d}}{ }^{\circ} 0$

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
155	193	181	104	104	171	75.6	原子炉圧力容器頂部
1130	1410	1310	751	753	1250	552	燃料交換べローズ位置
1960	2430	2270	1310	1310	2160	960	
2510	3100	2900	1670	1680	2760	1240	原子炬圧力容器スタビライザ位置
3240	4000	3700	2140	2160	3540	1610	
3910	4810	4390	2550	2600	4230	1960	
4580	5640	5040	2950	3040	4890	2320	
9600	11800	9590	5930	6240	9610	5070	原子炬圧力容器支持スカート位置
25900 27500	$\begin{aligned} & 32200 \\ & 34000 \end{aligned}$	$\begin{aligned} & 26600 \\ & 28200 \end{aligned}$	17500 18500	16500 17700	$\begin{aligned} & 29200 \\ & 30900 \end{aligned}$	12700 13800	原子炬本体の基磑頂部
29000	35800	29700	19600	19000	32600	14900	
30400	37400	31000	20500	20200	34000	16000	
30400	37400	31000	20500	20200	34000	16000	原子炉本体の基䂾基部

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
図 4－166 最大応答軸力 基準地震動 S S（鉛直方向 原子炉圧力容器及び原子炉本体の基礎）

（ii）${ }^{\mathrm{d}}{ }^{\circ} 0$

4．2．2 炉内構造物系

（1）弾性設計用地震動 S d 及び静的解析
水平方向の弾性設計用地震動 S d による地震応答解析及び静的解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－167～図 4－ 198 に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ば ね反力，せん断力）を表 4－4 に示す。燃料集合体の最大応答相対変位については，図 4－172及び図 4－188に示す。

鉛直方向の弾性設計用地震動 S d による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－199～図 4－207に示す。また，鉛直方向の静的解析は実施せず，一律に算定することから，表 4－5 に鉛直方向の静的震度を示す。
（2）基準地震動 S s
水平方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位，最大応答せん断力及び最大応答モーメントを図 4－208～図 4－239に，制御棒駆動機構ハウジングレストレントビーム，シュラウドサポート，上部格子板，炉心支持板，炉心 シュラウド支持ロッド，上部サポート及び下部スタビライザに加わる力（ばね反力，せん断力）を表 4－6に示す。燃料集合体の最大応答相対変位については，図 4－213 及び図 4－229に示す。

鉛直方向の基準地震動 S s による地震応答解析より得られた各点の最大応答加速度，最大応答変位及び最大応答軸力を図 4－240～図4－248に示す。

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
30.9	30.4	26.3	15.7	18.7	21.7	12.1	11.0	気水分離器頂部
17.3	18.7	14.9	9． 06	11.4	14.0	9.01	8.93	
11.8	13.2	10.8	6． 46	8． 67	10.8	8.28	8.93	
10.5	10.8	9.23	6． 03	7.58	9． 34	7.81	8.93	シュラウドヘッド上部鏡板頂部
9.82	9． 79	8.61	5． 80	7.02	8.95	7.62	8.93	
9.34	9． 28	8.21	5． 64	6． 59	8.65	7.41	8.93	上部格子板
8.84	8.77	7.90	5． 46	6.32	8.31	7.24	8.93	
8.34	8.24	7.59	5． 25	6． 10	7． 95	7.08	8.93	
7.96	7． 76	7． 29	5． 02	5.86	7． 56	6.91	7.77	
7.79	7.32	6.98	4.77	5.61	7． 16	6.72	7.77	
7.62	7.03	6.66	4.61	5.32	6． 74	6.48	7.77	
7.46	6． 82	6． 35	4． 67	5． 16	6． 35	6． 29	7.77	灯心支持板
7.03	6． 52	5． 77	4． 79	4.90	5． 96	5.93	7.77	
6.69	6． 24	5． 48	4.86	4． 69	6． 03	5.62	7.77	炉心シュラウド下部胴

図 4－167 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 炉心シュラウド）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
14.2	15.4	13.1	7.86	10.2	12.8	13.5	14.7	気水分離器頂部
12.6	13.5	11.4	6． 97	9.21	11.5	12.3	13.2	
11.4	12.1	10.2	6． 33	8． 47	10.4	11.3	12.0	
10.2	10.9	9.05	5． 72	7.67	9． 28	10.3	10.9	シュラウドヘッド上部鏡板頂部
9.63	10.4	8.52	5． 42	7.27	8． 76	9.75	10.3	
9.21	9． 90	8． 12	5． 19	6.96	8． 37	9.37	9.86	上部格子板
8.71	9． 39	7.67	4.94	6.61	7.91	8.94	9.38	
8.23	8.89	7.23	4.69	6． 26	7． 46	8.51	8.91	
7.76	8.41	6.80	4． 44	5.91	7． 02	8.08	8.44	
7.30	7.95	6． 38	4． 19	5.58	6． 60	7.67	7.97	
6.86	7.51	5.97	3.95	5.25	6． 18	7.26	7.52	
6.44	7． 08	5.58	3． 71	4.92	5． 78	6.86	7.07	炉心支持板
5.68	6． 29	4.93	3.31	4． 36	5.08	6． 16	6.29	
4.99	5． 54	4.34	2.93	3.83	4． 43	5． 49	5.56	炬心シュラウド下部胴

図 4－168 最大応答変位 弾性設計用地震動 S d 及び静的解析（NS 方向 炉心シュラウト）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	気水分離器頂部
303	299	257	162	190	220	122	112	
941	946	804	506	611	679	401	406	
$\begin{aligned} & 2170 \\ & \begin{array}{l} 2960 \\ 2550 \end{array} \end{aligned}$	$\begin{gathered} 2300 \\ 3200 \\ 2025 \end{gathered}$	$\begin{aligned} & 1820 \\ & 24470 \\ & 2160 \end{aligned}$	$\begin{aligned} & 1240 \\ & 17100 \\ & 1400 \end{aligned}$	$\begin{aligned} & 1400 \\ & 20010 \\ & 1606 \end{aligned}$	$\begin{aligned} & 1 \\ & 240 \\ & 2000 \end{aligned}$	881 1180 938	1060 1490 1130 1	シュラウドへッド上部䥊板頂部
${ }_{3250}^{2000}$	${ }_{3570}$	${ }_{2700}$	1820	2190	${ }_{2740}$	1200	1540	上部格子板
4050	4330	3140	2610	2990	3320	1870	2220	
4910	5220	4040	3380	3810	4010	2580	2940	
5900	6220	5080	4070	4600	4800	3260	3690	
6900	7320	6090	4670	5340	5670	3860	4470	
7830	8500	7080	5180	6030	6600	4390	5290	
8750	9750	8080	5660	6700	7600	4910	6130	炉必支持板
11500	12700	10700	7490	9100	10200	7170	8650	
14300	16300	13400	9360	11600	13100	9470	11300	炉心シュラウド下部㒳

図 4－170 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 炉心シュラウド）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
9． 34	9． 28	8.21	5.64	6． 59	8． 65	7.41	8.93	上部格子板
13.6	16.4	10.6	8.79	10.9	12.2	10.5	8.93	
19.0	22.7	14.9	12.1	14.5	14.9	13.4	8.93	
21.0	25.1	16.2	13.0	16.4	15.7	14.7	7.77	燃料集合体中央
18.8	22.3	14.1	11.4	14.7	14.3	13.0	7.77	
12.5	15.9	9.86	8.23	10.5	11.0	9． 68	7.77	
7.46	6.82	6． 35	4.67	5． 16	6． 35	6.29	7.77	炬心支持板

図 4－171 最大応答加速度 弾性設計用地震動S d 及び静的解析（NS 方向 燃料集合体）

最大応答相対変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0． 00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
12.3	15.1	9． 57	7.31	9． 91	9． 30	8.50	4.53	
21.2	26.1	16.6	12.7	17.2	16.1	14.7	7.75	
24.5	30.1	19.1	14.6	19.9	18.6	17.0	8． 89	燃料集合体中央
21.2	26.0	16.5	12.7	17.2	16.2	14.7	7.69	
12.3	15.0	9． 50	7． 28	9． 94	9． 34	8.48	4.47	
0.00	0． 00	0.00	0.00	0.00	0.00	0.00	0.00	炬心支持板

図 4－172 最大応答相対変位 弾性設計用地震動 S d 及び静的解析（NS 方向 燃料集合体）

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
1660	2060	1320	1010	1340	1260	1170	665	上部格子板
1200	1480	927	725	969	905	823	389	
436	515	330	267	360	339	292	106	
439	560	358	278	344	355	306	141	燃料集合体中央
1200	1480	930	721	967	901	822	387	
1670	2010	1280	989	1360	1280	1150	633	
1670	2010	1280	989	1360	1280	1150	633	炬心支持板

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－173 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（NS 方向 燃料集合体）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	上部格子板
1170	1450	923	708	939	882	817	468	
2000	2480	1580	1210	1620	1520	1400	741	
2310	2840	1800	1390	1880	1760	1600	815	燃料集合体中央
2010	2450	1550	1200	1630	1540	1390	717	
1180	1420	895	695	951	900	809	445	
0.00	0.00	0.00	0.00	0.00	0．00	0.00	0.00	炬心支持板

図 4－174 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 燃料集合体）

最大応答加速度（ $\mathrm{m} / \mathrm{s}^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
7.46	6.82	6.35	4.67	5． 16	6． 35	6． 29	7.77	炬心支持板
10.8	13.2	11.8	5.71	6.54	14.4	7.41	7.77	
12.8	16.6	14.0	7.01	7．73	18.8	7.67	7.77	
8.55	8.80	8.50	4.11	4.73	11.0	6． 09	7.77	制啲棒案内管下端

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
6.44	7．08	5.58	3.71	4.92	5． 78	6.86	7.07	炬心支持板
6.52	6.86	5.32	3.58	4.60	5． 37	6． 62	6.88	
6． 19	6.38	5． 15	3.35	4.24	4． 90	6． 16	6.42	
4.78	5.11	3.96	2.70	3.37	4． 00	5.06	5.22	制御棒案内管下端

御棒案内管）

最大応答せん断力（ $\times 10^{3}$ N）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
324	437	355	184	180	493	119	150	炬心支持板
84.3	116	90.8	46.7	46.6	132	22.5	22.3	
277	375	303	157	154	424	95.9	117	
277	375	303	157	154	424	95.9	117	制啲棒案内管下端

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
制御棒案内管）

図 4－177 最大応答せん断力

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0． 00	0.00	0． 00	0． 00	0.00	0.00	炬心支持板
380	511	416	215	211	577	140	175	
478	647	522	270	265	731	166	201	
0.00	0.00	0． 00	0.00	0．00	0． 00	0.00	0.00	制啲棒案内管下端

図 4－178 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 制御棒案内管）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right.$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
8.55	8.80	8.50	4.11	4.73	11.0	6.09	7.77	制御棒案内管下端
6.28	6.65	5.59	4． 70	4． 48	6． 35	5.25	7.77	原子炉圧力容器底部
7.46	8.82	6． 03	5． 56	4． 80	8． 09	5.39	7.77	
8.74	12.6	7.52	6． 62	5.47	10.5	5.57	6． 63	
7.95	11.3	7． 29	6． 22	5.17	9.63	5.19	6． 63	
5.26	6． 20	4.99	4． 45	4.21	6． 03	4.84	6． 63	制御棒駆動機構ハウジング下端

図 4－179 最大応答加速度 弾性設計用地震動 S d 及び静的解析（NS 方向 制御棒駆動機構ハウジング）

最大応答変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
4.78	5.11	3.96	2． 70	3.37	4． 00	5． 06	5.22	制御棒案内管下端
4.02	4． 47	3． 49	2． 44	3.05	3.66	4． 49	4.52	原子炉圧力容器底部
3.78	4.21	3.31	2． 36	2． 90	3.51	4． 28	4.35	
3.62	4． 03	3.21	2． 33	2.82	3． 42	4． 15	4.27	
3.42	3.79	3． 03	2.21	2.64	3． 24	3.91	4.00	
3.15	3． 46	2.75	1.98	2． 34	2.96	3.55	3.54	制御棒駆動機構ハウジング下端

図 4－180 最大応答変位 弾性設計用地震動 S d 及び静的解析（NS 方向 制御棒駆動機構ハウジング）

$\begin{array}{lll} & 4.00 & 6.00 \\ \text { 変位 }(\mathrm{mm}) & \\ & \end{array}$
（w） d 0

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
400	556	440	232	229	632	165	251	制御棒紮内管下端
203	270	167	155	128	235	141	189	原子炬圧力容器底部
107	158	95.0	83.6	69.5	131	73.1	89.4	
8.28	9.80	10.3	4.66	8.04	7． 44	7.85	4． 49	
107	150	92.5	80.7	65.6	129	60.2	80.4	
107	150	92.5	80.7	65.6	129	60.2	80.4	制御桋鴚動機構ハウジング下端

[^8]図 4－181 最大応答せん断力 弾性設計用地震動S d 及び静的解析（NS 方向 制御棒駆動機構ハウジング）

最大応䈶モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制㵌棬案内管下端
${ }_{240}^{440}$	611 290	483 179	＋255	${ }_{145}^{252}$	${ }_{294}^{694}$	181 167	${ }_{215}^{276}$	原子炉压力容器底部
22.8	25.4	26.0	14.5	19.7	19.7	21.4	14.2	
119	164	103	86.8	69.6	142	60.0	80.6	
114	159	98.2	85.6	69.6	137	63.9	85.4	
0.00	0． 00	0． 00	0.00	0.00	0.00	0.00	0.00	

図 4－182 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（NS 方向 制御棒駆動機構ハウジング）

最大応答加速度（m／s s^{2} ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
47.9	53.9	47.0	24.5	28.5	31.7	13.8	11.2	気水分離器頂部
27.4	29.7	27.5	15.9	17.1	21.0	9． 70	8． 98	
19.1	19.8	19.3	11.6	13.2	16.2	8.30	8.98	
15.8	17.1	15.9	9.67	11.6	14.2	7.82	8.98	シュラウドヘッド上部鏡板頂部
14.3 13.1	17.9 14.9	14.3 13.0	8.86 8.36	10.8 10.2	13.2 12.4	7.50 7.29	8.98 8.98	上部格子板
13.1 12.2	14.9 14.0	13.0 11.9	8.36 7.86	10.2 9.54	12.4 11.7	7.29 7.07	8.98 8.98	上部格子板
11.3	13.0	10.9	7.33	8.86	10.9	6.87	8.98	
10.3	11.9	9.73	6.78	8． 13	9．99	6.62	7.79	
9.17	10.7	8.54	6.22	7.35	9． 16	6.37	7． 79	
8.21	9． 48	7.96	5.64	6.54	8.33	6． 12	7.79	
7.33	8． 26	7． 45	5.07	5.73	7.53	5.88	7． 79	炬心支持板
6.45	7.02	6.71	4.59	4.85	6.35	5． 45	7.79	
6.45	6.64	6.04	4.38	4.37	5． 36	5.14	7.79	炉心シュラウド下部胴

（삐） $\mathrm{d} \cdot 0$

最大応答変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
17.2	16.1	13.0	10.9	10.7	13.6	12.1	14.5	気水分維器頂部
14.2	13.8	10.2	9.13	8． 70	11.3	10.9	13.0	
12.1	12.1	8.89	7.86	7． 29	9.70	9.94	11.8	
10.5	10.6	7.87	6.87	6.53	8.43	9.04	10.7	シュラウドヘッド上部鏡板頂部
9． 65	9.89	7.37	6． 40	6． 18	7.83	8.59	10.1	
9． 06	9.33	6． 99	6.03	5． 90	7.35	8.24	9.66	上部格子板
8.43	8.75	6.61	5.64	5.63	6.85	7.86	9.18	
7.81	8.16	6.23	5.26	5.34	6.35	7.47	8.71	
7.20	7.57	5.85	4.88	5． 06	5.85	7． 09	8.23	
6.62	6． 99	5． 48	4.51	4.77	5.35	6.72	7.77	
6.06	6.41	5． 10	4.15	4． 48	4.86	6.36	7.31	
5.54	5.86	4.77	3.81	4． 25	4.39	6.00	6.86	炬心支持板
4.86	5.27	4.47	3.30	3． 86	3.65	5.38	6.08	
4.41	4.74	4． 15	2.89	3.50	3.45	4.80	5.35	炉心シュラウド下部胴

心シュラウド）
枠囲みの内容は商粂

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
383	433	376	198	231	251	112	88.5	気水分睢器頂部
816	905	814	454	499	581	269	231	
1300	1440	1330	728	838	932	321	390	
1610	1870	1650	941	1110	1230	382	491	シュラウドーッド上部镜板頂部
2090	2420	2170	1250	1480	1640	479	${ }^{630}$	
1870	1710	1440	1160	1530	1540	1010	973	上部格子板
2120	2020	1710	1210	1620	1650	962	1030	
2360 2500	2380	2080	1390	1730	1890 2160	906 867	1080 1120 118	
2590 2830	2720 3150	2490 2830	1580	1820 1960	2160 2390	867	1120	
2830	3150	2830	1750	1960	2390 2560	848	1170 1210	
3140 3500	$\begin{aligned} & 3450 \\ & 3380 \\ & 330 \end{aligned}$	$\begin{aligned} & 3080 \\ & 3030 \\ & 3030 \end{aligned}$	1870 2080	2110 2440	$\begin{aligned} & 2560 \\ & 3030 \end{aligned}$	852 1720	1210 2170	
3500	3380	3030	2080	2440	3030	1720	2170	炉引支持板
3590	3550	3130	2110	2490	3090	1730	2240	
3590	3550	3130	2110	2490	3090	1730	2240	

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
炉心シュラウド）
図 4－185

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0． 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
491	555	482	253	295	322	143	114	
1540	1720	1520	835	934	1070	488	410	
$\begin{aligned} & 3690 \\ & 5080 \\ & 4490 \end{aligned}$	$\begin{aligned} & 4020 \\ & 54560 \end{aligned}$	$\begin{aligned} & 3500 \\ & 5180 \\ & 4490 \end{aligned}$	$\begin{aligned} & 2050 \\ & 2850 \\ & 2440 \end{aligned}$	$\begin{gathered} 2310 \\ \begin{array}{c} 2300 \\ 2750 \end{array} \\ \hline 2750 \end{gathered}$	$\begin{aligned} & 2550 \\ & \begin{array}{l} 2550 \\ 35500 \end{array} \\ & 31100 \end{aligned}$	$\begin{aligned} & 1030 \\ & 1350 \\ & 11100 \end{aligned}$	$\begin{gathered} 1070 \\ 1500 \\ 1500 \end{gathered}$	
5750	6260	5780	3170	3570	4050	1380	1550	上部格子板
6500	7310	6670	3730	4410	4940	2050	2240	
7940	8720	7720	4510	5530	6100	2720	2960	
9590	10400	8930	5480	6720	7300	3340	3710	
11400	12300	10500	6590	7980	8640	3890	4500	
13400	14400	12500	7800	9280	10400	4400	5320	
15400	16700	14600	9110	10700	12200	4900	6170	炬心支持板
19500	20300	17900	11600	13500	15700	6880	8700	
23600	24100	21200	14100	16400	19300	8880	11400	炬心シュラウド下部胴

図 4－186 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 炉心シュラウド）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
13.1	14.9	13.0	8.36	10.2	12.4	7.29	8.98	上部格子板
12.1	13.8	10.8	7． 75	9． 63	10.7	9.01	8.98	
14.0	18.5	12.2	9． 97	12.6	11.5	11.0	8.98	
15.8	20.4	12.8	10.5	14.0	12.1	11.4	7.79	燃料集合体中央
13.8	18.7	11.7	8.83	12.9	11.1	10.2	7．79	
9．00	13.1	8． 23	6． 00	9． 34	7.91	7.99	7.79	
7.33	8.26	7.45	5.07	5．73	7.53	5.88	7．79	炬心支持板

図 4－187 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 燃料集合体）

最大応答相対変位 (mm)								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0． 00	0． 00	0． 00	0． 00	0.00	0.00	0.00	上部格子板
10.3	13.2	8． 43	6． 44	8.73	7.97	7． 05	4.54	
17.7	22.8	14.7	11.3	15.1	13.9	12.2	7．78	
20.5	26.3	17.0	13.1	17.4	16.1	14.1	8.92	燃料集合体中央
17.7	22.8	14.7	11.4	15.1	14.0	12.3	7．72	
10.3	13.2	8． 50	6． 59	8． 67	8． 09	7.07	4． 48	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炬心支持板

図 4－188 最大応答相対変位 弾性設計用地震動 S d 及び静的解析（EW 方向 燃料集合体）

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
1380	1760	1120	896	1190	1040	950	668	上部格子板
1010	1300	841	660	863	811	688	390	
369	489	324	282	308	330	257	106	
367	493	297	242	337	275	250	142	燃料集合体中央
1010	1300	832	652	860	803	687	388	
1390	1790	1160	909	1160	1110	964	635	
1390	1790	1160	909	1160	1110	964	635	炬心支持板

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－189 最大応答せん断力 弾性設計用地震動 S d 及び静的解析（EW 方向 燃料集合体）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0． 00	0． 00	0.00	0.00	0.00	0.00	0.00	上部格子板
965	1240	785	630	835	728	668	470	
1680	2160	1380	1060	1440	1300	1160	744	
1940	2490	1610	1250	1650	1530	1340	818	燃料集合体中央
1680	2160	1400	1100	1420	1340	1170	719	
971	1260	816	640	813	777	678	446	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	炬心支持板

図 4－190 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 燃料集合体）

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
7.33	8． 26	7． 45	5.07	5.73	7． 53	5.88	7.79	炉心支持板
6.58	9.01	6． 90	4.87	5.38	6． 63	5.51	7.79	
7.09	9． 97	8.24	5.11	5． 48	7． 35	5.48	7.79	
6.41	7.22	5． 54	4.54	4． 44	5． 15	4.67	7.79	制御棒案内管下端

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
5.54	5.86	4.77	3.81	4.25	4． 39	6． 00	6.86	炉心支持板
5.08	5． 58	4． 59	3.64	4． 00	4． 10	5.63	6.67	
4.61	5.16	4． 32	3.34	3.68	3.67	5.17	6.21	
3.86	4.26	3.74	2． 68	3.13	3． 18	4.31	5.01	制御棒案内管下端

図 4－192 最大応答変位 弾性設計用地震動 S d 及び静的解析（EW 方向 制御棒案内管）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
183	263	192	110	113	180	81.4	150	炬心支持板
46.4	64.3	47.3	26.6	25.1	45.8	14.1	22.3	
156	223	163	92.5	93.1	153	64.4	117	
156	223	163	92.5	93.1	153	64.4	117	制御棒案内管下端

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
制御棒案内管）

図 4－193 最大応答せん断力

300
断力 $\left(\times 10^{3} \mathrm{~N}\right)$
図 $4-193$
（u） d 0

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0． 00	0.00	0． 00	0． 00	0.00	0.00	炬心支持板
214	308	225	129	132	210	95.4	176	
268	383	280	160	161	264	111	202	
0.00	0.00	0． 00	0.00	0．00	0． 00	0.00	0.00	制啲棒案内管下端

図 4－194 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 制御棒案内管）

最大応答加速度（m／s ${ }^{2}$ ）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
6.41	7.22	5.54	4.54	4． 44	5.15	4.67	7.79	制御棒案内管下端
5.96	7.01	5.71	4． 12	4． 02	5． 31	4.91	7.79	原子炉圧力容器底部
7.45	9.74	6.99	4.81	5.01	5.61	4.84	7． 79	
10.1	12.7	9． 60	6.71	6.31	8． 42	4.93	6.63	
9.29	11.9	8.85	6.24	6． 00	7.91	4.78	6.63	
5.31	7.64	5.68	4.00	3.94	4.65	4.48	6.63	制御棒駆動機構ハウジング下端

図 4－195 最大応答加速度 弾性設計用地震動 S d 及び静的解析（EW 方向 制御棒駆動機構ハウジング）

最大応答変位（mm）								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
3.86	4.26	3.74	2.68	3.13	3.18	4.31	5.01	制御棒案内管下端
3.44	3． 78	3.35	2.39	2． 83	2． 88	3.90	4.31	原子炉圧力容器底部
3.25	3． 49	3.17	2.35	2． 75	2.83	3.73	4． 15	
3.24	3.45	3.09	2.38	2． 75	2.85	3.64	4.08	
3.05	3.28	2.92	2.25	2.60	2.71	3.45	3.85	
2.73	2． 96	2.66	1.97	2.28	2． 41	3.13	3.42	制御棒駆動機構ハウジング下端

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
212	305	232	133	135	214	111	252	制㵌棒案内管下端
222	282	209	147	146	174	129	191	原子炬圧力容器底部
126	158	120	84.8	81.9	108	67.7	90． 9	
9． 23	12.3	9.84	4.91	7.65	6． 89	6.87	5.99	
123	159	119	81.0	79.0	102	54.5	78.9	
123	159	119	81.0	79.0	102	54.5	78.9	

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－197 最大応答せん断力 弾性設計用地震動S d 及び静的解析（EW 方向 制御棒駆動機構ハウジング）
$\rightarrow-\mathrm{Sd}-\mathrm{D} 1 \quad \rightarrow-\mathrm{Sd}-\mathrm{D} 2 \quad \rightarrow-\mathrm{Sd}-\mathrm{D} 3$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$								備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	制徂棒案内管下端
${ }_{234}^{233}$	335 292	255 218	146 159	148 170	$\begin{aligned} & 236 \\ & 190 \end{aligned}$	${ }_{122}^{157}$	${ }_{221}^{277}$	原子炬压力容器底部
28.0	28.5	29.4	14.2	20.4	18.6	21.8	18.9	
135	175	131	87.1	86.8	109	51.8	77.4	
131	169	127	86.0	83.9	109	57.9	83.8	
0.00	0． 00	0． 00	0.00	0.00	0.00	0.00	0.00	

図 4－198 最大応答モーメント 弾性設計用地震動 S d 及び静的解析（EW 方向 制御棒駆動機構ハウジング）

表 4－4 弾性設計用地震動 S d 及び静的解析によるばね反力，せん断力

名称	単位	方向	最大地震応答値							
			Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	静的解析
制御棒駆動機構ハウジング レストレントビーム	$\times 10^{3} \mathrm{~N}$	NS	155	199	138	122	102	184	102	142
		EW	172	229	164	113	113	136	95.6	141
	$\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$	NS	14300	16300	13400	9360	11600	13100	9470	11300
		EW	23600	24100	21200	14100	16400	19300	8880	11400
上部サポート	$\times 10^{3} \mathrm{~N}$	NS	921	1080	874	596	726	786	479	547
		EW	1540	1610	1450	869	1170	1240	485	551
下部スタビライザ	$\times 10^{3} \mathrm{~N}$	NS	243	299	232	162	202	219	148	167
		EW	399	397	360	226	297	323	137	168
炉心シュラウド支持ロッド	$\times 10^{3} \mathrm{~N}$	NS	96.3	104	87.9	63.4	74.4	83.0	58.4	70.8
		EW	163	171	149	95.5	113	129	57.2	71.2
上部格子板	$\times 10^{3} \mathrm{~N}$	NS	1740	2140	1390	1060	1400	1340	1240	739
		EW	1490	1890	1230	965	1280	1150	1010	742
炉心支持板	$\times 10^{3} \mathrm{~N}$	NS	2160	2600	1780	1280	1660	1920	1410	956
		EW	1740	2240	1520	1140	1400	1460	1180	958

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
5． 93	7.56	6． 29	3.53	3.23	5.87	2.28	気水分離器頂部
5．93	7.55	6． 28	3.53	3.23	5． 86	2.28	
5．90	7.51	6． 25	3.51	3.21	5． 84	2.27	
5． 84	7.43	6． 19	3.47	3.18	5． 79	2.27	シュラウドヘッド上部鏡板頂部
5． 44	6． 79	5． 69	3.18	2.95	5． 45	2.20	
5． 39	6.72	5． 63	3.15	2.92	5． 41	2.20	上部格子板
5． 31	6.62	5． 55	3.10	2.89	5． 35	2.19	
5.23	6． 52	5． 46	3.05	2.85	5． 29	2.19	
5． 15	6.41	5． 38	2.99	2.82	5． 22	2.18	
5． 07	6． 30	5． 29	2.94	2.78	5． 16	2.18	
5． 00	6． 19	5． 22	2.88	2.74	5． 09	2.18	
4． 93	6.08	5． 14	2.83	2.70	5． 02	2.17	炬心支持板
4．78	5.88	4． 97	2.73	2.65	4． 86	2． 16	
4.62	5.67	4． 80	2.63	2.62	4.71	2.15	炬心シュラウド下部胴
4.37	5.34	4.54	2.46	2.57	4． 44	2.13	

図 4－199 最大応答加速度 弾性設計用地震動 S d（鉛直方向 炉心シュラウド）

（ㅃ）$\cdot \mathrm{d} \cdot 0$

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.644	0.538	0.459	0． 350	0.382	0.389	0.325	気水分離器頂部
0.644	0． 538	0． 459	0． 350	0． 382	0． 389	0． 325	
0.643	0.536	0． 458	0． 349	0.381	0.388	0.324	
0.641	0． 532	0． 456	0． 347	0．380	0.386	0． 324	シュラウドへッド上部鏡板頂部
0.628	0． 503	0.441	0． 334	0． 371	0.372	0.317	
0.626	0． 499	0． 439	0． 332	0． 369	0.370	0.317	上部格子板
0.624	0． 495	0． 436	0． 330	0． 368	0． 368	0.316	
0.621	0． 490	0．433	0． 328	0． 366	0.366	0.314	
0.619	0． 485	0.431	0． 325	0.365	0.363	0.313	
0.617	0． 480	0.428	0． 323	0．363	0.361	0.312	
0.614	0． 475	0.425	0． 321	0．361	0.358	0.311	
0.611	0． 470	0． 422	0． 318	0． 360	0.355	0．310	炬心支持板
0.606	0． 459	0.416	0． 313	0.356	0.350	0． 307	
0.600	0． 448	0.410	0． 307	0． 352	0.344	0． 305	炬心シュラウド下部胴
0.590	0． 439	0.398	0． 297	0.346	0.333	0． 300	

図 4－200 最大応答変位 弾性設計用地震動 S d（鉛直方向 炉心シュラウド）

最大応答軸力（ $\times 10^{3} \mathrm{~N}$ ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
47.0	59.8	49.3	27.8	25.7	46.1	18.1	気水分峸唯頂部
141	179	148	83.0	76.8	139	54.2	
218	276	228	128	119	213	83.6	
308	390	322	181	168	302	119	シュラウドヘッド上部䥊板頂部
448	567	469	264	245	443	176	
526	664	550	309	287	521	208	上部格子板
542	684	567	319	296	538	214	
557	704	583	328	304	554	221	
573	723	599	337	313	569	228	
588	742	615	346	321	585	234	
603	761	631	354	330	601	241	
748	941	783	439	410	751	306	炉心支持板
761	957	796	446	417	765	312	
767	965	803	450	421	771	315	炉心シュラウド下部网
767	965	803	450	421	771	315	

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 弾性設計用地震動 S d（鉛直方向 炉心シュラウド）

軸力（ $\times 10^{3} \mathrm{~N}$ ）

最大応答加速度（m／s ${ }^{2}$ ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
5.84	7.48	6.27	3.48	3.24	5． 74	2.25	炬心支持板
5.56	7.04	5.94	3.28	3.08	5.54	2.23	
5.26	6.61	5． 62	3.09	2.92	5．33	2.21	
4.87	6.03	5． 16	2.80	2.71	5． 02	2.18	制啲棒案内管下端

図 4－202 最大応答加速度 弾性設計用地震動 S d（鉛直方向 制御棒案内管）

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.643	0.534	0． 457	0． 348	0．380	0.387	0． 324	炬心支持板
0.634	0.515	0.447	0． 340	0． 374	0.378	0． 320	
0.625	0． 496	0.437	0． 331	0.368	0.369	0.316	
0.611	0． 469	0． 421	0． 317	0．359	0.354	0.310	制㮩棒案内管下端

図 4－203 最大応答変位 弾性設計用地震動 S d（鉛直方向 制御棒案内管）

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
1110	1420	1180	654	616	1090	428	炉心支持板
1140	1460	1210	671	633	1110	439	
1170	1490	1240	687	648	1140	451	
1170	1490	1240	687	648	1140	451	制啲棒案内管下端

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 弾性設計用地震動 S d（鉛直方向 制御棒案内管）

（ㅍ）$\cdot \mathrm{d} \cdot 0$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
4.87	6.03	5． 16	2.80	2.71	5.02	2.18	制御棒案内管下端
4.73	5.84	5.01	2.70	2.67	4． 90	2.17	原子炬圧力容器底部
4.76	5.88	5． 04	2.71	2.68	4． 95	2.17	
4．78	5.91	5． 07	2.72	2.69	5． 00	2.17	
4.80	5.94	5． 10	2.73	2.70	5.04	2.17	
4． 82	5.98	5.12	2.74	2.71	5.08	2.17	制御棒駆動機構ハウジング下端

最大応答変位（mm）							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
0.611	0． 469	0.421	0.317	0． 359	0.354	0.310	制御棒案内管下端
0.606	0． 459	0.416	0.312	0.356	0.349	0． 307	原子炉圧力容器底部
0.607	0． 461	0.417	0.313	0.356	0.350	0． 308	
0.608	0． 463	0.418	0.314	0.357	0.351	0． 308	
0.609	0． 464	0.419	0.315	0.358	0.352	0． 309	
0.610	0． 466	0． 420	0.316	0.358	0.353	0． 309	制御棒駆動機構ハウジング下端

最大応答䡛力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1	
1200	1540	1280	708	668	1180	467	制御棒案内管下端
309	384	331	176	176	327	141	原子炉圧力容器底部
282	351	302	161	160	299	129	
255	317	273	145	145	270	116	
227	283	244	130	129	241	104	
227	283	244	130	129	241	104	制御桋駩㗢機構ハウジング下端

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

図 4－207 最大応答軸力 弾性設計用地震動 S d（鉛直方向 制御棒駆動機構ハウジング）
O 2 （3）VI－2－3－2 R 0

表 4－5	静的震度（鉛直方向）
種別	0.24 鉛直方向静的震度 建物•構築物
機器•配管系	0.29 $(1.2 \mathrm{Cv})$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
42.4	54.3	35.3	23.7	45.9	56.3	25.8	気水分離器頂部
25.1	30.2	25.0	15.1	24.9	27.0	17.7	
21.2	22.4	20． 5	10.8	18.2	16． 5	15.4	
19．3	19.0	17.6	9． 62	16.5	14.1	14.6	シュラウドヘッド上部鏡板頂部
18.3 17.6	17.5 16.4	16．4	9.14 8.75	15.8 15.0	13.7	14.1 14.0	
17.6 16.8	16.4 15.3	15.4 14.4	8.75 8.33	15.0 14.3	13.3 12.9	14.0 13.6	上部格子板
16.1	14.5	13.3	7.91	13.6	12.4	13.3	
15.4	14.2	12.3	7.80	12.9	11.9	12.8	
14.7	13.7	11.4	8． 08	12.2	12.1	12.6	
14.0	13.4	11.1	8.34	11.3	12.5	12.3	
13.3	13.1	10.9	8． 59	10.6	12.8	12.0	炉心支持板
12.7	11.9	10．4	8.97	9． 75	12.6	11.4	
12．3	11.0	9.93	9． 19	9． 19	12.4	10.7	炬心シュラウド下部胴

最大応答加速度 基準地震動 S s（NS 方向 炉心シュラウド）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
27.0	30.2	25.1	15.5	23.9	23.6	27.9	気水分離器頂部
24.1	25.9	21.9	13.5	21.8	20.7	25.5	
22.1	23.0	19.4	12.2	19.9	18.9	23.5	
20.1	21.1	17.4	11.0	18.0	17.1	21.4	シュラウドヘッド上部鏡板頂部
19.1	20.1	16.4	10.4	17.0	16.2	20.4	
18.4	19.4	15.6	9． 90	16.3	15.6	19.6	上部格子板
17.5	18.4	14.8	9． 37	15.4	14.8	18.7	
16.6	17.6	14.0	8.87	14.6	14.0	17.8	
15.8	16.7	13.1	8.44	13.8	13.2	17.0	
14.9	15.8	12.3	8． 03	13.0	12.5	16.1	
14.1	15.0	11.6	7.63	12.2	11.8	15.3	
13． 4	14.2	10.8	7.24	11.4	11.1	14.5	炬心支持板
11.9	12.7	9.52	6． 54	10.1	9.79	13.0	
10.6	11.2	8.36	5.88	8.81	8.64	11.6	炬心シュラウド下部胴

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
323	443	278	194	365	458	210	気水分離器頂部
694	909	651	437	755	892	486	
1120	1350	1030	596	1400	1060	716	
1450	1690	1370	710	1760	1270	878	シュラウドヘッド上部鏡板頂部
1880	2120	1810	932	2220	1670	1090	
2950	2990	2500	2160	2690	2630	2210	上部格子板
2750	2790	2660	2050	2760	2400	2110	
2570	2520	2660	1770	2730	2270	1870	
2610	2850	2580	1420	2650	2090	1610	
2620	3110	2480	1330	2600	2090	1460	
2680	3330	2530	1320	2850	2190	1400	
4440	4810	4130	2860	4430	4240	3670	炬心支持板
4350	4730	4210	2890	4470	4340	3660	
4350	4730	4210	2890	4470	4340	3660	炬心シュラウド下部胴

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
最大応答せん断力 基準地震動S s（NS 方向 炉心シュラウド）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0． 00	0.00	0.00	0.00	0.00	0.00	気水分離器頂部
414	567	356	248	468	587	269	
1310	1740	1170	808	1440	1740	886	
$\begin{aligned} & 3050 \\ & 4250 \\ & 4500 \end{aligned}$	$\begin{aligned} & 3990 \\ & 5380 \\ & 4630 \end{aligned}$	$\begin{aligned} & 2610 \\ & 3810 \\ & 3140 \end{aligned}$	1810 2420 1960 2500	3770 5310 4460 5880	3510 4490 3890 4640	$\begin{aligned} & 2060 \\ & 2830 \\ & 2280 \end{aligned}$	シュラウドヘッド上部鏡板頂部 上部格子板
4650 6100	5870 7550	4310 5520	2500 3770	5880 7640	4640 6490	2980	上部格子板
7680	9230	7210	5010	9490	8100	5660	
9330	10800	8950	6110	11300	9340	6860	
11100	12200	10700	7030	13100	10200	7920	
12700	13600	12400	7800	14700	10700	8850	
14500	15100	14100	8500	16300	12000	9730	炉心支持板
18800	19300	18500	11600	20400	15000	13100	
23200	23800	23300	15000	24600	20000	17300	炬心シュラウド下部胴

最大応答加速度（m／s s^{2} ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
17.6	16.4	15.4	8． 75	15.0	13.3	14.0	上部格子板
24.5	26.2	20.6	16.8	21.1	21.7	20.5	
34.5	35.3	26.9	24.8	29.6	28.3	25.3	
37.2	39.4	28.9	27.1	33.0	30.4	27.4	燃料集合体中央
32.1	36.6	25.4	23.5	30.1	27.6	24.2	
22.1	26.9	18.7	16.5	21.2	21.0	18.6	
13.3	13.1	10.9	8． 59	10.6	12.8	12.0	炉心支持板

図 4－212 最大応答加速度 基準地震動 S s（NS 方向 燃料集合体）

図 4－213 最大応答相対変位 基準地震動 S s（NS 方向 燃料集合体）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
2990	3180	2370	2180	2660	2330	2170	上部格子板
2090	2240	1650	1550	1920	1630	1520	
743	809	586	548	705	602	537	
803	832	653	590	714	721	556	燃料集合体中央
2090	2230	1660	1550	1920	1620	1520	
2900	3130	2260	2130	2680	2350	2160	
2900	3130	2260	2130	2680	2350	2160	炬心支持板

[^9]最大応答せん断力 基準地震動 S s（NS 方向 燃料集合体）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0． 00	0.00	0． 00	0.00	0.00	0.00	上部格子板
2100	2240	1670	1530	1870	1640	1530	
3570	3810	2830	2620	3220	2760	2590	
4070	4350	3210	3000	3710	3160	2970	燃料集合体中央
3500	3770	2750	2590	3230	2770	2580	
2040	2200	1590	1500	1880	1650	1520	
0.00	0． 00	0.00	0． 00	0.00	0.00	0.00	炬心支持板

| | | | |
| :--- | :--- | :--- | :--- | :--- |

図 4－216 最大応答加速度 基準地震動 S s（NS 方向 制御棒案内管）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
13.4	14.2	10.8	7． 24	11.4	11.1	14.5	炬心支持板
13.1	14.2	10.1	6． 90	10.4	10.0	13.8	
12.3	13.4	9.58	6． 41	9． 43	9.02	12.9	
9.78	10.6	7.42	5． 40	7.64	7.64	10.6	制御棒案内管下端

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
573	688	620	364	426	1230	220	炬心支持板
147	178	163	91.9	106	323	46.5	
489	587	532	310	361	1060	178	
489	587	532	310	361	1060	178	制㵌棒案内管下端

[^10]最大応答せん断力 基準地震動 S s（NS 方向 制御棒案内管）

（Wi）${ }^{\mathrm{d}} \cdot 0$

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0． 00	0.00	0.00	0． 00	炉心支持板
671	805	726	426	499	1440	258	
843	1020	917	534	623	1820	308	
0.00	0． 00	0.00	0． 00	0.00	0.00	0.00	制㵌棒案内管下端

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
17.1	15.2	14.1	8． 36	12.2	24.5	11.5	制御棒案内管下端
11.2	10.9	9.61	8． 87	8.93	13.0	9． 83	原子炉圧力容器底部
13.6	15.1	11.5	10.1	9.82	16.5	10.3	
16.3	21.1	14.0	11.8	13.0	25.3	10.8	
14.6	19.4	13.1	11.3	12.4	23.2	10.8	
8.91	10.9	9． 10	8． 20	8.73	12.2	9． 69	制御棒駆動機構八ウジング下端

図 4－220 最大応答加速度 基準地震動 S s（NS 方向 制御棒駆動機構ハウジング）

最大応答変位 (mm)							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
9.78	10.6	7.42	5． 40	7.64	7.64	10.6	制御淎案内管下端
8.49	9.01	6． 48	4． 88	6.99	7.07	9.36	原子炉圧力容器底部
7.95	8． 46	6． 14	4． 68	6． 56	6.79	8.85	
7.59	8.11	5.94	4． 59	6． 29	6.65	8.56	
7.15	7． 59	5.57	4． 36	5． 89	6.29	8． 05	
6.61	6.87	5.00	3.97	5.32	5.66	7.31	制御棒駆動機構ハウジング下端

図 4－221 最大応答変位 基準地震動 S s（NS 方向 制御棒駆動機構ハウジング）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
734	900	801	465	548	1580	306	制㗢棒案内管下端
374	454	322	277	289	524	282	原子炬圧力容器度部
200	261	175	151	176	316	151	
17.5	20.5	18.0	9． 60	15.3	18.5	18.7	
195	255	177	142	156	299	124	
195	255	177	142	156	299	124	

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
（NS 方向 制御棒駆動機構ハウジング）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制䮅椦案内管下端
$\begin{aligned} & 807 \\ & 301 \\ & 3 \end{aligned}$	$\begin{aligned} & 989 \\ & 479 \end{aligned}$	$\begin{aligned} & 880 \\ & 332 \\ & 38 \end{aligned}$	$\begin{aligned} & 510 \\ & 296 \end{aligned}$	$\begin{aligned} & 603 \\ & 333 \end{aligned}$	$\begin{aligned} & 1740 \\ & 569 \\ & 5 \end{aligned}$	336 342	原子炉圧力容器底部
53.7	59.1	49.8	29.1	46.0	48.4	50.0	
217	279	195	153	159	322	116	
207	271	188	151	165	318	132	
0.00	0． 00	0.00	0.00	0.00	0.00	0.00	

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
76.0	75.8	74.5	48.8	54.1	67.5	30.9	気水分離器頂部
45.7	36.4	43.3	30.3	35.3	42.0	16.8	
32.8	22.6	29．8	23.3	24.0	30.2	15.7	
27.1	20.3	24.3	19.3	20.0	26.8	14.7	シュラウドヘッド上部鏡板頂部
24.5	18.9	21.8	18.0	18.9	25.1	14.3	
22.4	17.9	20.0	17.0	18.0	23.7	14.0	上部格子板
20． 3	16.8	18.7	16.1	17.1	22.2	13.6	
18.4	15.5	17.4	15.1	16.2	20.8	13.3	
16.6	14.2	15.9	14.0	15.1	19.2	12.9	
14.7	13.0	14.7	12.9	13.9	17.6	12.5	
13.1	12.6	13.9	11.8	12.7	16.1	12.0	
12.1	12.2	13.2	10.7	11.7	14.7	11.7	灯心支持板
11.4	11.2	11.8	9． 48	10.5	12.5	11.4	
11.4	10.7	10.6	9.32	9． 44	10.8	11.2	炬心シュラウド下部胴

最大応答加速度 基準地震動 S s（EW 方向 炉心シュラウド）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
28.4	24.2	21.3	22.2	20.5	26.6	24.7	気水分離器頂部
24． 1	21.3	17.9	18.6	17.4	21.5	22.3	
21.0	19.2	15.8	16.1	15.7	18.6	20.4	
18.4	17.5	14.2	14.1	14.3	16．2	18.5	シュラウドヘッド上部鏡板頂部
17.2	16.6	13.4	13.1	13.6	15.1	17.6	
16． 3	15.9	12.8	12.4	13.1	14.2	16.8	上部格子板
15． 3	15.1	12.2	11.6	12.5	13.2	16.0	
14.5	14.4	11.6	10.8	11.9	12.2	15.3	
13.7	13.6	11.0	10.1	11.4	11.3	14.5	
13.0	12.9	10.4	9.31	10.8	10.4	13.7	
12.4	12.2	9.72	8.60	10.3	9.52	13.0	
11.7	11.5	9.12	7.94	9． 76	8.74	12.3	炬心支持板
10.6	10.2	8.33	6． 97	8.89	7.49	11.0	
9.45	8． 99	7.63	6.21	8． 07	6.96	9.80	炬心シュラウド下部胴

最大応答せん断力（ $\times 10^{3} \mathrm{~N}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
608	603	596	395	431	532	250	気水分離器頂部
1340	1190	1290	875	992	1190	515	
2260	1420	2070	1430	1690	1800	835	
2850	1820	2560	1880	2250	2330	1010	シュラウドヘッド上部鏡板頂部
3750	2350	3330	2480	2980	3070	1210	
3470	2690	2460	2460	3180	2890	1990	上部格子板
3910	2480	2970	2560	3210	3080	2010	
4240	2650	3420	2790	3300	3610	1890	
4530	3030	3850	3130	3580	4100	1710	
5000	3350	4390	3430	3850	4510	1570	
5480	3590	4780	3670	4140	4810	1730	
6110	4330	4880	4200	4720	5860	3160	炬心支持板
6240	4480	5050	4250	4810	5980	3180	
6240	4480	5050	4250	4810	5980	3180	炬心シュラウド下部胴

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
最大応答せん断力 基準地震動S s（EW 方向 炉心シュラウド）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	気水分離器頂部
779	773	764	506	553	682	321	
2500	2300	2410	1620	1830	2210	981	
$\begin{aligned} & 6240 \\ & 8710 \\ & 7670 \end{aligned}$	$\begin{aligned} & 4660 \\ & 5980 \\ & 5460 \end{aligned}$	$\begin{aligned} & 5880 \\ & 8100 \\ & 7050 \end{aligned}$	$\begin{aligned} & 3950 \\ & 5470 \\ & 4690 \end{aligned}$	4520 6320 5500 7140	4960 6850 5990 7890	$\begin{aligned} & 2380 \\ & 3260 \\ & 2740 \end{aligned}$	シュラウドヘッド上部鏡板頂部 上部格子板
11500	6480 7120	9040 10400	6080 7480	7880 880	9170	4840	上部格子板
14200	8660	12100	9180	11000	11300	6100	
17100	10300	13900	11200	13300	13400	7200	
20100	12000	16200	13400	15700	16200	8160	
23300	13600	19000	15700	18400	19300	9260	
26600	15700	22300	18300	21200	22700	10400	炬心支持板
33500	20800	27400	23200	26500	29500	13700	
40600	26000	33000	28100	32000	36400	17000	炬心シュラウド下部胴

図 4－227 最大応答モーメント 基準地震動S s（EW 方向 炉心シュラウド）

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
22.4	17.9	20.0	17.0	18.0	23.7	14.0	上部格子板
20.8	21.9	17.5	15.9	19.6	21.0	16.8	
26.3	28.9	22.0	21.3	26.9	21.9	21.8	
29.5	32.5	23.2	23.3	30.5	23.8	22.6	燃料集合体中央
26.1	29.1	20.8	20.0	28.0	22.7	20.1	
17.9	21.5	14.7	12.9	19.6	16． 3	15.4	
12． 1	12.2	13.2	10.7	11.7	14.7	11.7	炬心支持板

図 4－228 最大応答加速度 基準地震動 S s（EW 方向 燃料集合体）

最大応答相対変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0． 00	0.00	0． 00	0.00	0.00	0.00	上部格子板
18.8	20.6	15.5	15.0	18.7	15.2	13.7	
32.5	35.6	26.8	25.9	32.3	26.5	23.7	
37.5	41.2	31.0	29.9	37.3	30.7	27.3	燃料集合体中央
32.5	35.8	26.9	25.9	32.3	26.7	23.6	
18.8	20.7	15.6	14.9	18.7	15.5	13.7	
0.00	0.00	0.00	0． 00	0.00	0.00	0.00	炬心支持板

図 4－229 最大応答相対変位 基準地震動 S s（EW 方向 燃料集合体）

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
2550	2750	2060	2040	2520	1980	1890	上部格子板
1850	2020	1530	1500	1820	1550	1330	
685	783	584	631	683	628	504	
682	736	549	547	689	548	486	燃料集合体中央
1850	2020	1520	1480	1830	1530	1320	
2530	2840	2120	2040	2540	2130	1870	
2530	2840	2120	2040	2540	2130	1870	炬心支持板

[^11]最大応答せん断力 基準地震動 S s（EW 方向 燃料集合体）

最大応答モーメント $\left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0． 00	0． 00	0.00	0． 00	上部格子板
1800	1930	1450	1440	1770	1400	1330	
3080	3350	2520	2460	3050	2480	2250	
3550	3900	2930	2820	3520	2920	2570	燃料集合体中央
3070	3410	2560	2480	3060	2560	2240	
1780	2000	1490	1440	1790	1500	1320	
0.00	0.00	0.00	0． 00	0． 00	0.00	0． 00	炬心支持板

最大応答加速度 基準地震動 S s（EW 方向 制御棒案内管）

最大応答変位 (mm)							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
11.7	11.5	9． 12	7.94	9．76	8.74	12.3	炉心支持板
11.1	11.1	8.66	7.59	9． 10	8.15	11.4	
10.3	10.3	8.05	6.97	8.36	7.32	10.5	
8． 49	8． 24	6.81	5． 69	7.21	6． 45	8.75	制啲棒案内管下端

[^12]（ㄸ）${ }^{\circ}{ }^{\circ} \times 0$

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
325	633	331	217	241	307	158	炬心支持板
80.0	170	81.7	53.3	54.6	72.8	38.2	
275	546	280	184	201	258	134	
275	546	280	184	201	258	134	制御棒案内管下端

[^13]

最大応答モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0． 00	0.00	0.00	0.00	炬心支持板
380	742	387	254	283	359	185	
474	941	483	316	346	445	230	
0.00	0．00	0.00	0.00	0.00	0.00	0． 00	制御棒案内管下端

最大応答モーメント 基準地震動 S s（EW 方向 制御棒案内管）

最大応答加速度（m／s s^{2} ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
10.1	12.3	10.2	9.81	8.60	10.2	10.4	制御棒案内管下端
10.4	11.0	9.66	8.76	8． 30	10.8	10.6	原子炉圧力容器底部
11.7	14.5	11.6	9． 85	10.2	12.2	11.4	
14.3	20.0	16.6	12.7	13.9	16.1	14.2	
13.6	18.5	15.5	11.8	13.1	15.4	13.3	
9． 26	11.7	9.15	7.87	8． 03	10.6	10.6	

図 4－236 最大応答加速度 基準地震動 S s（EW 方向 制御棒駆動機構ハウジング）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
8.49	8.24	6.81	5． 69	7.21	6.45	8． 75	制御淎案内管下端
7.46	7． 21	6.00	5.11	6． 52	5.80	7.86	原子炉圧力容器底部
6.93	6.82	5.65	5.01	6． 30	5.67	7． 54	
6.63	6.67	5.50	5.04	6． 24	5.67	7． 42	
6.28	6． 26	5.16	4． 77	5． 89	5． 40	6． 99	
5.82	5.60	4.62	4． 17	5． 21	4.83	6． 24	制御棒駆動機構ハウジング下端

最大応答せん断力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
378	807	390	274	286	376	191	制㗢棒案内管下端
325	437	353	281	297	328	326	原子炉圧力容器底部
177	253	206	161	171	208	192	
19.1	18.8	18.5	11.1	17.9	13.8	20.3	
181	236	202	153	170	200	163	
181	236	202	153	170	200	163	

注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
図 4－238 最大応答せん断力 基準地震動 S s（EW 方向 制御棒駆動機構ハウジング）

最大応答モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	制御棒案内管下端
416 382	${ }_{489} 87$	428 373	${ }_{321}^{301}$	314 344	413 360	210 385	原子炬圧力容器底部
57.0	59.8	50.7	29.9	44.9	38.8	55.2	
199	253	220	164	185	212	170	
192	251	215	162	181	212	173	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	

表 4－6 基準地震動S s によるばね反力，せん断力

名称	単位	方向	最大地震応答値						
			Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
制御棒駆動機構ハウジングレストレントビーム	$\times 10^{3} \mathrm{~N}$	NS	278	350	260	218	218	393	213
		EW	264	327	279	215	242	264	237
	$\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$	NS	23200	23800	23300	15000	24600	20000	17300
		EW	40600	26000	33000	28100	32000	36400	17000
上部サポート	$\times 10^{3} \mathrm{~N}$	NS	1590	1680	1540	922	1680	1170	1020
		EW	2770	1720	2250	1770	2210	2390	1130
下部スタビライザ	$\times 10^{3} \mathrm{~N}$	NS	433	453	409	261	430	346	273
		EW	709	441	573	458	560	621	298
炉心シュラウド支持ロッド	$\times 10^{3} \mathrm{~N}$	NS	157	164	153	95.9	174	125	110
		EW	280	168	228	192	222	242	114
上部格子板	$\times 10^{3} \mathrm{~N}$	NS	3140	3320	2500	2260	2790	2440	2290
		EW	2740	2900	2230	2180	2670	2180	2010
炉心支持板	$\times 10^{3} \mathrm{~N}$	NS	3770	4110	3130	2690	3350	3870	2650
		EW	3130	3750	2750	2500	3050	2770	2290

最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
10.3	13.1	10.9	7． 06	6． 46	11.8	4.56	気水分離器頂部
10.3	13.1	10.9	7.05	6． 45	11.8	4.55	
10.2	13.0	10.8	7.01	6． 42	11.7	4.55	
10.1	12.8	10.7	6． 94	6． 36	11.6	4． 53	シュラウドへッド上部鏡板頂部
9.37	11.8	9.81	6． 36	5． 90	10.9	4． 40	
9.28	11.6	9.71	6． 29	5.84	10.9	4.39	上部格子板
9.15	11.5	9.56	6． 19	5． 78	10.7	4.38	
9.02	11.3	9.42	6． 09	5.70	10.6	4.37	
8.88	11.1	9.26	5． 98	5.63	10.5	4.37	
8.75	10.9	9.12	5． 87	5.56	10.4	4.36	
8.63	10.7	8.99	5． 76	5． 48	10.2	4.35	
8.50	10.5	8.86	5． 65	5． 40	10.1	4.34	炉心支持板
8.23	10.2	8.57	5． 45	5． 30	9.72	4.32	
7.95	9． 78	8.28	5． 25	5.24	9.42	4． 29	炬心シュラウド下部胴
7.53	9.21	7.82	4.91	5.13	8.87	4． 26	

最大応答加速度 基準地震動 S s（鉛直方向 炉心シュラウド）

O
+
\square

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.12	0．927	0.792	0． 700	0． 764	0.778	0.649	気水分離器頂部
1.11	0.926	0.791	0． 700	0． 763	0.777	0.649	
1.11	0． 923	0.790	0.698	0． 762	0.776	0.648	
1.11	0．917	0.786	0.694	0．760	0.772	0.647	シュラウドヘッド上部鏡板頂部
1.09	0． 867	0.759	0． 667	0．741	0.744	0.634	
1.08	0． 861	0.756	0． 664	0．738	0.740	0． 633	上部格子板
1.08	0． 852	0.752	0． 660	0．735	0.735	0.631	
1.08	0．844	0.747	0．655	0． 732	0.731	0． 628	
1.07	0.836	0.742	0． 650	0． 729	0.726	0.626	
1.07	0． 828	0.738	0.646	0． 726	0.721	0． 624	
1.06	0.819	0.733	0． 641	0． 722	0.715	0.622	
1.06	0.810	0.728	0． 635	0． 719	0.710	0.619	灯心支持板
1.05	0． 792	0.717	0． 625	0.711	0.699	0.614	
1.04	0.773	0.706	0.614	0． 704	0.687	0.609	炬心シュラウド下部胴
1.02	0． 757	0.687	0． 594	0.691	0.666	0.600	

最大応答変位 基準地震動 S s（鉛直方向 炉心シュラウド）

軸力 $\left(\times 10^{3} \mathrm{~N}\right)$

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
81.1	103	85.0	55.5	51.3	92.2	36.2	気水分離器頂部
243	309	255	166	154	277	109	
375	476	393	256	237	426	168	
530	673	555	362	335	604	237	シュラウドヘッド上部鏡板僋部
772 906	977 1150	808 948	527 618	$\begin{aligned} & 489 \\ & 5971 \end{aligned}$	886	$\begin{aligned} & 351 \\ & 415 \end{aligned}$	上部格子板
933	1180	947	637	591	1080	428	上部格子板
960	1220	1010	655	608	1110	441	
987	1250	1040	673	625	1140	455	
1020	1280	1060	691	642	1170	468	
1040	1320	1090	708	659	1210	481	
1290	1630	1350	877	819	1510	611	炬心支持板
1320	1650	1380	892	834	1530	623	
1330	1670	1390	899	841	1550	629	炬心シュラウド下部同
1330	1670	1390	899	841	1550	629	

注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 基準地震動 S s（鉛直方向 炉心シュラウド）
図 $4-242$

図 4－243 最大応答加速度 基準地震動 S s（鉛直方向 制御棒案内管）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.11	0． 920	0.788	0． 696	0． 759	0.773	0.647	炬心支持板
1.10	0.888	0.770	0.679	0.747	0.755	0． 639	
1.08	0．855	0． 753	0． 661	0． 735	0.737	0.631	
1.06	0.808	0．726	0． 634	0． 717	0.708	0.619	制㵌棒案内管下端

最大応答変位 基準地震動 S s（鉛直方向 制御棒案内管）

最大応答䡛力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1910	2440	2030	1310	1240	2170	855	炬心支持板
1970	2510	2090	1350	1270	2220	878	
2010	2570	2140	1380	1300	2280	902	
2010	2570	2140	1380	1300	2280	902	制御缽案内管下端

注：要素上端の質点位置に軸力を記載。なお」，最下端の要素は要素下端の質点位置にも軸力を記載。
最大応答軸力 基準地震動 S s（鉛直方向 制御棒案内管）
（ㅃ） $\mathrm{d} \cdot 0$

最大応答加速度（m／s ${ }^{2}$ ）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
8.40	10.4	8.90	5． 59	5． 42	10． 1	4.35	制御棒案内管下端
8.16	10.1	8.64	5． 39	5． 34	9.80	4.33	原子炉圧力容器底部
8.20	10.2	8.69	5.41	5． 36	9.90	4． 33	
8.24	10.2	8.74	5． 43	5． 38	9.99	4.33	
8.28	10.3	8.79	5． 45	5． 39	10.1	4.33	
8.31	10.4	8.83	5． 48	5.41	10．2	4.33	制御棒駆動機構八ウジング下端

図 4－246 最大応答加速度 基準地震動 S s（鉛直方向 制御棒駆動機構ハウジング）

最大応答変位（mm）							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
1.06	0.808	0.726	0． 634	0.717	0.708	0.619	制御棒案内管下端
1.05	0． 790	0.716	0.624	0.711	0.698	0.614	原子炉圧力容器底部
1.05	0.794	0.718	0.626	0.712	0.700	0.615	
1.05	0． 797	0.720	0． 628	0． 714	0.702	0.616	
1.05	0． 800	0.722	0.630	0.715	0.704	0.617	
1.06	0.803	0.724	0.632	0.716	0.706	0.618	制御棒駆動機構ハウジング下端

$\begin{array}{lrl} & 1.000 & 1.500 \\ \text { 変位 }(\mathrm{mm}) & & \end{array}$
図 4－247 最大応答変位 基準地震動 S s（鉛直方向 制御棒駆動機構ハウジング）

最大応答軸力（ $\left.\times 10^{3} \mathrm{~N}\right)$							備考
Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	
2070	2640	2200	1420	1340	2350	933	制御棒案内管下端
533	662	571	352	351	654	282	原子炉圧力容器底部
486	605	521	321	320	597	257	
439	546	470	290	289	540	232	
392	488	420	259	258	482	207	
392	488	420	259	258	482	207	制御椅駆縣機構入ウジング下端

[^14]図 4－248 最大応答軸力 基準地震動 S s（鉛直方向 制御棒駆動機構ハウジング）

5．設計用地震力
5.1 弾性設計用地震動 S d

弾性設計用地震動 S d（以下「S d」という。）に基づく設計用地震力表5－1～表5－5に示す。 ここでは，地震力として，せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示している。
5.2 基準地震動 S s

基準地震動 S s（以下「S s 」という。）に基づく設計用地震力を表 5－6～表5－10に示す。 ここでは，地震力として，せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示している。

表 5－1 設計用地震力及び静的地震力（せん断力，S d）（1／2）

	構造物	標高		
	構造物	0．P．（m）	設計用地震力	静的地震力
			422	191
			1.66×10^{3}	808
			3.37×10^{3}	1． 90×10^{3}
			1.98×10^{3}	339
			2.11×10^{3}	1.84×10^{3}
			4． 18×10^{3}	4． 14×10^{3}
			5.27×10^{3}	5.68×10^{3}
			6.31×10^{3}	7.28×10^{3}
			1． 69×10^{4}	1.96×10^{4}
	原子师木体の基䂰		1.82×10^{4}	2.14×10^{4}
	原于炉本体の基礎		1.95×10^{4}	2． 30×10^{4}
\circ \sim			2． 05×10^{4}	2． 46×10^{4}
\cdots			4.41×10^{3}	1． 30×10^{3}
1 \cdots			4.25×10^{3}	2.91×10^{3}
5	原子炉しやへい壁		5.54×10^{3}	5.83×10^{3}
			7.85×10^{3}	7.96×10^{3}
（2）			1． 03×10^{4}	1． 06×10^{4}
\bigcirc			175	140
			340	279
			2.17×10^{3}	1.68×10^{3}
			2.62×10^{3}	2.15×10^{3}
	原子炉格納容器		1． 40×10^{4}	1． 42×10^{4}
	原子西格納容器		1． 49×10^{4}	1.51×10^{4}
			1.54×10^{4}	1.58×10^{4}
			1.62×10^{4}	1． 70×10^{4}
			1． 64×10^{4}	1.76×10^{4}
			1． 68×10^{4}	1． 88×10^{4}

表 5－1 設計用地震力及び静的地震力（せん断力，S d）（2／2）

表 5－2 設計用地震力及び静的地震力（モーメント，\quad S d）（1／2）

		標高	モー	．mm）
	物	0．P．（m）	設計用地震力	静的地震力
			0	0
			1． 16×10^{6}	5.23×10^{5}
			4． 72×10^{6}	2． 30×10^{6}
			1.11×10^{7}	5.88×10^{6}
	原子炉圧力容器		1． 14×10^{7}	7.00×10^{6}
			1． 88×10^{7}	1． 37×10^{7}
			3.00×10^{7}	2.80×10^{7}
			4． 01×10^{7}	3.93×10^{7}
			5． 40×10^{7}	5.59×10^{7}
			1． 30×10^{8}	1.43×10^{8}
			1． 43×10^{8}	1.58×10^{8}
	原子炉本体の基礎		1． 64×10^{8}	1． 86×10^{8}
			1.96×10^{8}	2.30×10^{8}
\sim			2． 33×10^{8}	2.76×10^{8}
			0	0
¢			1． 22×10^{7}	3.57×10^{6}
$\stackrel{1}{1}$	原子师しやへい辟		2.24×10^{7}	1.19×10^{7}
5	原子䙺しやへい壁		3.39×10^{7}	2.67×10^{7}
（2）			4.79×10^{7}	4.90×10^{7}
			7.80×10^{7}	8.64×10^{7}
N			0	0
\bigcirc			4． 02×10^{5}	3.21×10^{5}
			1.13×10^{6}	9.16×10^{5}
			4． 05×10^{6}	3.26×10^{6}
			1.17×10^{7}	9.50×10^{6}
	原子炉格納容器		7.16×10^{7}	7.16×10^{7}
			1.14×10^{8}	1.15×10^{8}
			1.89×10^{8}	1.91×10^{8}
			2． 67×10^{8}	2.74×10^{8}
			3.00×10^{8}	3.09×10^{8}
			3.24×10^{8}	3.36×10^{8}

表 5－2 設計用地震力及び静的地震力（モーメント，\quad S d）（2／2）

表 5－3 設計用地震力（軸力，S d）（1／2）

	構造物	$\begin{gathered} \text { 標高 } \\ 0 . .^{(2)} \end{gathered}$	$\begin{gathered} \text { 軸力 }(\mathrm{kN)} \\ \hline \text { 設計用地震力 } \end{gathered}$
			119
			860
			1． 50×10^{3}
	原子师区力容品		1． 92×10^{3}
	场容器		2． 47×10^{3}
			2.96×10^{3}
			3.46×10^{3}
			7.13×10^{3}
			1.96×10^{4}
			2.07×10^{4}
	原子㕩本体の		2.18×10^{4}
\circ \sim			2． 28×10^{4}
\sim			1． 53×10^{3}
$\stackrel{1}{\sim}$			3.44×10^{3}
5	原子炉しやへい壁		6.68×10^{3}
			9.06×10^{3}
			1． 15×10^{4}
N 0			82.9
			165
			634
			896
	原子炬格納容吕		1.73×10^{3}
	原了閶格納容器		2.33×10^{3}
			2． 77×10^{3}
			3.54×10^{3}
			3.88×10^{3}
			4． 64×10^{3}

表 5－3 設計用地震力（軸力，$\quad \mathrm{S}$ d）（2／2）

表 5－4 設計用地震力及び静的地震力（ばね反力，S d）

名称	ばね反力（kN）	
	設計用地震力	静的地震力
原子炉圧力容器スタビライザ	6.05×10^{3}	2.52×10^{3}
原子炉格納容器スタビライザ	9． 04×10^{3}	2.50×10^{3}
原子炉格納容器シヤラグ	1． 48×10^{4}	8.27×10^{3}
ベント管	1． 28×10^{3}	624
燃料交換ベローズ	1． 10×10^{3}	584
所員用エアロック	163	157
制御棒駆動機構ハウジング レストレントビーム	231	142
炉心シュラウド回転ばね $[\mathrm{kN} \cdot \mathrm{mm}]$	2.55×10^{7}	1． 14×10^{7}
上部サポート	3.41×10^{3}	551
下部スタビライザ	874	168

表 5－5 設計用地震力及び静的地震力（相対変位，S d）

名称	$\begin{gathered} \text { 標高 } \\ 0 . \quad(\mathrm{m}) \end{gathered}$	相対変位（mm）	
		設計用地震力	静的地震力
燃料集合体		0	0
		16． 4	4.6
		28.3	7.8
		32.7	9.0
		28.3	7.8
		16.3	4.5
		0	0

表 5－6 設計用地震力（せん断力，S s ）（1／2）

構造物	標高0. P. (m)	せん断力（kN）
		設計用地震力
原子炉圧力容器		559
		2.22×10^{3}
		4． 40×10^{3}
		3.69×10^{3}
		3.90×10^{3}
		6． 74×10^{3}
		9． 30×10^{3}
		1.15×10^{4}
原子炉本体の基礎		3.06×10^{4}
		3.33×10^{4}
		3.64×10^{4}
		3.93×10^{4}
原子炉しやへい壁		7.41×10^{3}
		7.84×10^{3}
		1.02×10^{4}
		1.35×10^{4}
		1.75×10^{4}
原子炉格納容器		312
		609
		3.46×10^{3}
		4.17×10^{3}
		3.45×10^{4}
		3.57×10^{4}
		3.65×10^{4}
		3.79×10^{4}
		3.85×10^{4}
		3.99×10^{4}

表 5－6 設計用地震力（せん断力，S s ）（2／2）

表 5－7 設計用地震力（モーメント，S s ）（1／2）

	構造物	標高	モーメント（kN•mm）
	構造物	0．P．（m）	設計用地震力
			0
			1． 54×10^{6}
			6.38×10^{6}
			1． 48×10^{7}
	原子炉圧力容器		1． 97×10^{7}
			3.26×10^{7}
			5.21×10^{7}
			6.59×10^{7}
			8.91×10^{7}
			2.34×10^{8}
			2.57×10^{8}
	原子炉本体の基礎		2.96×10^{8}
			3.60×10^{8}
\bigcirc			4.28×10^{8}
\sim			0
\sim			2.05×10^{7}
$\stackrel{1}{\sim}$			4． 16×10^{7}
＞	原子炉しやへい壁		6.37×10^{7}
			9.11×10^{7}
（2）			1.45×10^{8}
N			0
\bigcirc			7.20×10^{5}
			2． 02×10^{6}
			6.57×10^{6}
			1． 87×10^{7}
	原子炉格納容器		1.64×10^{8}
			2.65×10^{8}
			4.42×10^{8}
			6.25×10^{8}
			7.02×10^{8}
			7.59×10^{8}

表 5－7 設計用地震力（モーメント，S s ）（2／2）

	構造物	標高	モーメント $(\mathrm{kN} \cdot \mathrm{mm})$
	構造物	0．P．（m）	設計用地震力
			0
			8.53×10^{5}
			2． 73×10^{6}
			6.72×10^{6}
			9.34×10^{6}
			8.24×10^{6}
			1． 07×10^{7}
	炉心シュラウド		1.21×10^{7}
			1． 49×10^{7}
			1． 79×10^{7}
			2.10×10^{7}
			2.43×10^{7}
			2． 77×10^{7}
\bigcirc			3.48×10^{7}
			4.21×10^{7}
\cdots			0
$\stackrel{1}{\sim}$			1.81×10^{6}
，	制御棒案内管		2.28×10^{6}
			0
（2）			0
\sim			2.19×10^{6}
\bigcirc			6.60×10^{5}
	制御棒駆動機構 ハウジング		7.90×10^{4}
			3.51×10^{5}
			3.49×10^{5}
			0
			0
			2.68×10^{6}
			4.52×10^{6}
	燃料集合体		5.11×10^{6}
			4． 38×10^{6}
			2.54×10^{6}
			0

表 5－8 設計用地震力（軸力，S s ）（1／2）

	構造物	$\begin{gathered} \text { 標高 } \\ \text { O.P. (m) } \end{gathered}$	$\frac{\text { 軸力 }(\mathrm{kN})}{\text { 設計用地震力 }}$
			204
			1． 49×10^{3}
			2.58×10^{3}
			3． 30×10^{3}
			4.25×10^{3}
			5.10×10^{3}
			5.96×10^{3}
			1． 23×10^{4}
			3． 38×10^{4}
	其椚		3.57×10^{4}
	京丁炜体の基䂦		3． 76×10^{4}
\bigcirc			3． 92×10^{4}
			2.64×10^{3}
∞			5.92×10^{3}
1	原子炉しやへい壁		1． 16×10^{4}
－			1． 57×10^{4}
（2）			1.98×10^{4}
\cdots			143
			285
			1． 10×10^{3}
			1.55×10^{3}
	原子师格納容品		2． 97×10^{3}
	皂子阬格納容器		4． 01×10^{3}
			4． 77×10^{3}
			6． 10×10^{3}
			6． 69×10^{3}
			7． 99×10^{3}

表 5－8 設計用地震力（軸力，S s ）（2／2）

表 5－9 設計用地震力（ばね反力，S s ）

名称	ばね反力 (kN)
	設計用地震力
原子炉圧力容器スタビライザ	8.25×10^{3}
原子炉格納容器スタビライザ	1.58×10^{4}
原子炉格納容器シヤラグ	3.41×10^{4}
ベント管	2.06×10^{3}
燃料交換ベローズ	1.71×10^{3}
所員用エアロック	304
制御棒駆動機構ハウジング	473
レストレンドーム	

表 5－10 設計用地震力（相対変位，S s ）

名称	$\begin{gathered} \text { 標高 } \\ 0 . .^{(m)} \end{gathered}$	相対変位（mm）
		設計用地震力
燃料集合体		0
		27.4
		47.2
		54.2
		46.8
		27.0
		0

VI－2－3－3 炉心の耐震性についての計算書

VI－2－3－3－1 燃料集合体の耐震性についての計算書
VI－2－3－3－2 炉心支持構造物の耐震性についての計算書

VI－2－3－3－1 燃料集合体の耐震性についての計算書
1．概要 1
2．一般事項 2
2.1 構造計画 2
2.2 評価方針 4
2.3 適用規格•基準等 5
2． 4 記号の説明 6
2．4．1 9×9 燃料（A 型） 6
2．4．2 9×9 燃料（B 型） 8
3．燃料集合体の地震応答解析 13
4．地震時の制御棒挿入性試験検討 14
5．地震時の燃料被覆管の応力評価 15
5.1 燃料被覆管の応力評価で考慮する荷重の組合せ及び許容応力状態 15
5.2 燃料被覆管の応力評価における評価部位 15
5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力 16
5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価 16
5．4．1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位 16
5．4．2 地震時のスペーサ間及びスペーサ部の応力評価の方法 16
5．4．3 検討内容 17
5.5 下部端栓溶接部の燃料被覆管の応力評価 18
5．5．1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位 18
5．5．2 地震時の下部端栓溶接部の応力評価の方法 18
5．5．3 下部端栓溶接部の疲労評価 20
5．5．4 検討内容 21
5． 6 検討結果 21
6．引用文献 51
付録 1 応力計算結果の応力分類処理方法 52

1．概要

本計算書は，燃料集合体の耐震性について示すものである。
地震時において燃料集合体に要求されるのは，制御棒の挿入機能の確保，崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持である。

制御棒の挿入機能の確保については，原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984（（社）日本電気協会）に従って，地震時におけ る制御棒の挿入性についての検討を行い，基準地震動 S s に対し制御棒の挿入性が確保 されることを，VI－2－6－2－1「制御棒の耐震性についての計算書」にて説明する。

崩壊熱除去可能な形状の維持については，VI－2－3－3－2「炉心支持構造物の耐震性につ いての計算書」にてその詳細を示すとおり，燃料集合体を支持している炉心支持構造物 が耐震設計上の重要度分類Sクラスで設計され，その支持機能は地震時においても維持 されるので，崩壊熱除去可能な形状は維持されると考えられる。燃料被覆管自体の損傷 は必ずしも崩壊熱除去可能な形状の喪失を意味するわけではないが，ここではVI－2－1－9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき，燃料被覆管の地震時応力を弾性解析によって求め，燃料被覆管が健全であり，崩壊熱除去可能な形状 が維持されることを確認する。

燃料被覆管の閉じ込め機能の維持については，通常運転時の状態で燃料被覆管に作用 する荷重及び運転時の異常な過渡変化時の状態のらち地震によって引き起こされるおそ れのある事象によって燃料被覆管に作用する荷重と地震力を組み合わせても，燃料被覆管に発生する応力が放射性物質の閉じ込め機能に影響しないことを確認する。

2．一般事項
2.1 構造計画

燃料集合体の構造計画を表2－1 に示す。なお，燃料集合体には 9×9 燃料（A 型）と 9×9 燃料（ B 型）がある。

表 2－1 燃料集合体の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
炉心は最外周部の一部を除き十字型制御棒とそれ を囲む4体の燃料集合体を 1 セルとして構成される。燃料集合体の下部は下部 タイプレートの着座面が炉心支持板上の燃料支持金具に嵌合して支持され，上部はセルを構成する燃料集合体が上部格子板内 で水平方向に支持される。上下部タイプレート，スペ ーサ，ウォータロッド（又 はウォータチャンネル）及 びタイロッドは結合又は支持により骨格を形成す る。 4 体の燃料集合体の外側にはめたチャンネルボ ックスの外面が制御棒＊1 の通路を構成する。	9×9 燃料（A 型）の燃料集合体 ${ }^{* 2}$ は 74本の燃料棒と 2 本の ウォータロッドを， 9×9 燃料（ B 型）の燃料集合体＊3は72本の燃料棒と 1 本の ウォータチャンネ ルを，それぞれ $9 \times$ 9 の正方格子に配列 して 7 個のスペーサ により束ね，それら の上下端が上部タ イプレート及び下部タイプレートと嵌合することによ り形成される。燃料集合体を炉心 に装荷する際には，外側にはチャンネ ルボックスをはめ る。	

注記 $* 1:$ 制御棒の構造計画の詳細は，VI－2－6－2－1「制御棒の耐震性についての計算書」に示す。
＊ $2: 9 \times 9$ 燃料（A 型）燃料集合体の詳細図を図2－1 へ示す。
＊ $3: 9 \times 9$ 燃料（B型）燃料集合体の詳細図を図2－2へ示す。
9×9 燃料（ A 型）には 2 本の太径のウォータロッドがあるが， 9×9 燃料（ B 型）で は1本の角管のウォータチャンネルであり，また， 9×9 燃料（ A 型）のみに部分長燃料棒が存在するといった違いがある。

2.2 評価方針

地震時において燃料集合体に要求されるのは，制御棒の挿入機能の確保，崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持であり，地震時においてチ ャンネルボックスに要求されるのは，制御棒の挿入機能の確保である。

制御棒の地震時挿入性の評価については，炉心を模擬した実物大の部分モデルによ る加振時制御棒挿入試験結果から挿入機能に支障を与えない燃料集合体の最大相対変位を求め，地震応答解析から求めた燃料集合体の最大応答相対変位がその燃料集合体 の最大相対変位を下回ることを確認する。制御棒の地震時挿入性の評価は，VI－2－6－2－ 1 「制御棒の耐震性についての計算書」に示す。

崩壊熱除去可能な形状の維持については，燃料集合体を支持している炉心支持構造物の支持機能が維持され，燃料被覆管の一次応力により構造的に崩壊するような状態 となることを防ぐことで崩壊熱除去可能な形状は維持されると考えられる。燃料被覆管自体の損傷は必ずしも崩壊熱除去可能な形状の喪失を意味するわけではないが，保守的に燃料被覆管の地震時応力を弹性解析で求め，原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）に規定されている評価基準に従 い許容限界以下であることを確認する。

燃料被覆管の地震時応力は，運転時（通常運転時及び地震によって引き起こされる おそれのある過渡変化時）に燃料被覆管に作用している荷重と地震力を組み合わせて評価する。また，運転中に燃料に生じる燃料被覆管の腐食等の照射の影響を考慮して，燃料被覆管の地震時応力を求める。

燃料被覆管の閉じ込め機能の維持については，運転時と地震時に燃料被覆管に作用 する荷重を組み合わせても，燃料被覆管の応答がおおむね弾性状態にとどまり，燃料被覆管に発生する応力が許容限界以下であること，地震時の繰返し荷重により燃料被覆管に応力振幅が作用しても疲労破壊しないことを確認する。

地震時の燃料被覆管の耐震評価フローを，図 2－3 に示す。
崩壊熱除去可能な形状の維持に関する燃料集合体の耐震評価の方法は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の実績に基づいて いる。

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 • 補

- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
－発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明
2．4．1 9×9 燃料（A 型）

記号	記号の説明	単位
A	スペーサの接触力に基づく応力計算に用いる定数	－
P c	冷却材圧力	MPa
P_{g}	燃料棒内圧 ${ }^{* 1}$	MPa
r 1	燃料被覆管の外半径＊${ }^{\text {2 }}$	mm
r 2	燃料被覆管の内半径＊${ }^{\text {2 }}$	mm
r m	燃料被覆管の平均半径＊${ }^{\text {2 }}$	mm
t	燃料被覆管の肉厚＊${ }^{\text {2 }}$	mm
d	燃料被覆管の楕円度	mm
q c r	燃料被覆管の臨界座屈荷重	MPa
f	スペーサ接触力	N
α	燃料被覆管の熱膨張率	${ }^{\circ} \mathrm{C}^{-1}$
E	燃料被覆管の縦弾性係数	MPa
v	燃料被覆管のポアソン比	－
l	スペーサ間距離	mm
δ	水力振動による燃料棒の振幅	mm
T 0	燃料被覆管の外面温度	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{1}$	燃料被覆管の内外面温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{2}$	燃料被覆管の円周方向温度差	${ }^{\circ} \mathrm{C}$
F	膨張スプリング等による軸方向荷重に基づき燃料棒に作用す る力	N
G h	地震時の水平方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
G v	地震時の鉛直方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
W r	燃料棒の全質量	kg
W s	スペーサ間距離当たりの燃料棒質量	kg
Z	燃料被覆管の断面係数＊2	mm^{3}
L	燃料棒の全長	mm
Y	地震時の燃料集合体の最大変位	mm
$\Delta \sigma$	地震期間中の繰返し荷重による応力振幅（応力強さの振幅）	MPa
N	$\Delta \sigma$ に対応するジルカロイの設計疲労曲線の許容サイクル数	回
n	地震力の繰返し回数	回
S y	燃料被覆管（ジルカロイ）の降伏応力＊3	MPa
S u	燃料被覆管（ジルカロイ）の引張強さ＊3	MPa

注記＊1：
＊2：燃料被覆管の
照射に伴ら腐食減肉を考慮。
＊3：燃料被覆管の温度及び照射の効果を考慮。

2．4．2 9×9 燃料（B 型）

記号	記号の説明	単位
P_{i}	燃料棒内圧	MPa
P 。	泠却材圧力	MPa
r i	燃料被覆管の内半径＊${ }^{\text { }}$	mm
r o	燃料被覆管の外半径＊ 2	mm
r m	燃料被覆管の平均半径＊${ }^{\text {2 }}$	mm
D 。	燃料被覆管の外径＊${ }^{\text {2 }}$	mm
D i	燃料被覆管の内径＊${ }^{\text { }}$	mm
t	燃料被覆管の肉厚＊${ }^{*}$	mm
v	燃料被覆管のポアソン比	－
E	燃料被覆管の縦弾性係数	MPa
I	燃料被覆管の断面二次モーメント	mm^{4}
ω	燃料被覆管の楕円度	mm
$\mathrm{P}_{\mathrm{cr}} \mathrm{r}$	燃料被覆管の臨界座屈荷重	MPa
1	スペーサ間距離	mm
A	水力振動による燃料棒の振幅	mm
L	燃料棒の全長	mm
W 。	燃料要素単位長重量＊3	$\mathrm{kg} / \mathrm{mm}$
W	実際の燃料要素単位長重量	kg／mm
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
G h	地震時の水平方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
G v	地震時の鉛直方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
Y	地震時の燃料集合体の最大変位	mm
$\mathrm{C}_{1} \sim \mathrm{C}_{7}$	定数	－
T	燃料被覆管温度	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$	燃料被覆管の内外面温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{i}}$	燃料被覆管の内面周方向最大温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$ 。	燃料被覆管の外面周方向最大温度差	${ }^{\circ} \mathrm{C}$
δ	燃料被覆管の外径と内径の比	－
$\alpha_{\text {r }}$	燃料被覆管の半径方向熱膨張係数	${ }^{\circ} \mathrm{C}^{-1}$
$\alpha_{\text {z }}$	燃料被覆管の軸方向熱膨張係数	${ }^{\circ} \mathrm{C}^{-1}$
P	燃料要素と支持格子の接触力	N
N_{1}	燃料体当たりの支持格子数	－
N_{2}	タイロッド燃料要素数	－

記号	記号の説明	単位
N 3	標準燃料要素数	－
μ	支持格子－燃料要素間の摩擦係数	－
S	燃料被覆管断面積	mm^{2}
F ${ }_{\text {i }}$	プレナムスプリング力	N
F e	膨張スプリング力	N
S y	燃料被覆管（ジルカロイ）の降伏応力＊4	MPa
S u	燃料被覆管（ジルカロイ）の引張強さ＊4	MPa

注記 $* 1$ ：燃料被覆管の
＊ 2 ：燃料被覆管

照射に伴う腐食減肉を考慮。
＊ 3 ：鉛直地震加速度に基づく応力は，地震時鉛直方向最大加速度を見かけの質量増加として扱い，燃料要素単位長質量W。で考慮している。
＊4：燃料被覆管の温度及び照射の効果を考慮。

図 2－1 9×9 燃料（A 型）燃料集合体の詳細図

図 2－2 9×9 燃料（B 型）燃料集合体の詳細図

図 2－3 地震時の燃料被覆管の耐震評価フロー

3．燃料集合体の地震応答解析
燃料集合体の地震応答解析は原子炉圧力容器内部構造物の一部として実施されており， この詳細はVI－2－3－2「炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示されている。

燃料集合体の剛性はチャンネルボックスにより支配され，燃料集合体の質量は燃料タ イプによらずほぼ同等であることから，燃料集合体の地震応答は燃料タイプによらず， この燃料集合体の地震応答解析結果が適用可能である。設計用地震波としては，基準地震動 S s 及び弾性設計用地震動 S d を採用している。

応答解析は，時刻歴応答解析法を適用して建屋のNS及びEWの水平方向並びに鉛直方向について，基本ケースの他に材料物性の不確かさ等を考慮した解析も実施している。地震時に燃料集合体に要求される制御棒挿入性，崩壊熱除去可能な形状維持及び燃料被覆管の閉じ込め機能の維持の評価においては，基本ケースの最大応答相対変位及び最大応答加速度に対し，材料物性の不確かさ等を考慮した最大応答相対変位 54.2 mm （S s）， 32.7 mm （ S d ），最大水平加速度 $56.3 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$ ， $34.1 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ 及び最大鉛直加速度 $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s}), 9.5 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ を用いる。また，下部端栓溶接部の応力評価では，水平地震加速度として下部端栓溶接部直上の下部タイプレートースペーサ間の燃料棒に作用する水平加速度の最大値 $35.4 \mathrm{~m} / \mathrm{s}^{2}\left(\mathrm{~S}\right.$ s ）， $20.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ を用いる。

4．地震時の制御棒挿入性試験検討
地震時における制御棒挿入性についての検討方法は，3章で設定した最大応答相対変位 54.2 mm が，制御棒挿入性試験にて確認された挿入機能に支障を与えない最大燃料集合体変位を下回ることを確認する。

VI－2－6－2－1「制御棒の耐震性についての計算書」にその詳細を示すとおり制御棒挿入機能は確保される。

5．地震時の燃料被覆管の応力評価

5.1 燃料被覆管の応力評価で考慮する荷重の組合せ及び許容応力状態

地震時に燃料集合体に要求される崩壊熱除去可能な形状の維持及び燃料被覆管の閉 じ込め機能の維持に関する燃料被覆管の応力評価は，表 5－1 及び表 5－2 に示す荷重の組合せにより燃料被覆管に発生する応力を弾性解析で求める。表 5－1 及び表5－2 の地震荷重 S d＊及びS s 以外の荷重については，通常運転時及び地震によって引き起こ されるおそれのある過渡事象として炉心出力が上昇する（出力過渡）事象及び炉心圧力が上昇する（圧力過渡）事象において燃料集合体に作用する荷重を考慮する。また，地震荷重 S d＊は，弾性設計用地震動 S d による地震力又は静的地震力のいずれか大 きい方の地震荷重であるが，本評価では静的地震力より大きい弾性設計用地震動 S d による地震力が対象となる。表 5－1 及び表 5－2 のそれぞれの評価で対象とする応力分類について，せん断歪エネルギ説（von Mises 理論）に基づく相当応力を計算し，当該の許容応力に対する比（設計比）を評価する。
（1）崩壊熱除去可能な形状の維持に関する応力評価
崩壊熱除去可能な形状の維持に関する応力評価では，表 5－1 に示すように，原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）に基 づき一次応力を対象として，許容応力 0.7 S u に対する設計比を評価する。崩壊熱除去可能な形状の維持に用いる手法は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の実績に基づいている。
（2）燃料被覆管の閉じ込め機能の維持に関する応力評価
燃料被覆管の閉じ込め機能の維持に関する応力評価では，表 5－2 に基づき，静的地震力より大きい弾性設計用地震動 S d における荷重条件に対して燃料被覆管がおおむ ね弾性状態にとどまること，基準地震動S s における荷重条件に対して破断延性限界 に余裕を有していることを確認するため，一次応力＋二次応力を対象として，許容応力として弾性設計用地震動 S d に対してS y，基準地震動 S s に対してS uを適用し，設計比を評価する。
5.2 燃料被覆管の応力評価における評価部位

地震時の崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関す る燃料被覆管の応力評価では，2．1節に記載した燃料集合体内の燃料棒の構造より， スペーサ間及びスペーサ部，並びに下部端栓溶接部（閉じ込め機能維持の評価のみ） について評価を行う。ここで，スペーサ間及びスペーサ部では，ジルカロイ－2 製の燃料被覆管の内面にジルコニウムが内張り（ジルコニウムライナ）されているが，

応力評価の対象となる。また，下部端栓の材料は燃料被覆管と同じジルカロイ－2 であ り，下部端栓と燃料被覆管の突合せ部は溶加材を用いないTIG 溶接により溶接されて おり，ジルカロイ－2 部が応力評価の対象となる。

5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力

炉内には炉内滞在期間の異なる種々の燃料が混在しているが，地震時の燃料被覆管応力評価では，それらの燃料から炉内滞在期間が 0 年， 2.2 年， 8.0 年の燃料で代表 させて，それぞれ寿命初期，寿命中期，寿命末期として，燃料棒熱•機械設計解析に より個々の応力評価部位の解析条件を設定する。また，応力評価の対象であるジルカ ロイ－2の許容応力には，個々の応力評価部位における燃料被覆管の温度及び照射の影響を考慮して，図 5－1 から図 5－4 の設計値を用いる。
5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価

5．4．1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位
地震時におけるスペーサ間及びスペーサ部の応力評価では，燃料集合体の相対変位（閉じ込め機能維持の評価のみ），燃料集合体に作用する水平地震加速度及び鉛直地震加速度として， 3 章で設定した $54.2 \mathrm{~mm}, ~ 56.3 \mathrm{~m} / \mathrm{s}^{2}$ 及び $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$並びに 32.7 mm ， $34.1 \mathrm{~m} / \mathrm{s}^{2}$ 及び $9.5 \mathrm{~m} / \mathrm{s}^{2}$（S d）を用いる。

崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関するス ペーサ間及びスペーサ部の応力評価に用いる地震加速度及び燃料集合体の相対変位等の解析条件を表 5－3（1）及び表 5－4（1），スペーサ間及びスペーサ部の応力評価に用いる数値又は数式を表5－3（2）及び表 5－4（2）に示す。

5．4．2 地震時のスペーサ間及びスペーサ部の応力評価の方法
地震時におけるスペーサ間及びスペーサ部の応力評価に用いる解析コードは 9×9 型（A型）については「F U R S T」， 9×9 型（B 型）については「B S P A N 2 」により実施する。

なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI －5 計算機プログラム（解析コード）の概要」に示す。

地震時のスペーサ間及びスペーサ部の応力評価のフローを図 5－5 に，その詳細 を以下に示す。
（1）応力の計算
応力計算は，以下の（2）に示すように，通常運転時及び地震によって引き起こさ れるおそれのある過渡時の応力に地震により発生する応力を加え合せて三軸方向 （半径方向，円周方向及び軸方向）について解析し，それらより相当応力を計算

する。
（2）発生応力
通常運転時及び過渡時並びに地震時に発生する応力として，表 5－5 を考慮する。燃料被覆管に発生する各応力については，燃料被覆管を厚肉円筒と見なし，複数のスペーサで支持された燃料棒を梁と見なして個々の応力の計算式を設定して いる。燃料被覆管に発生する応力の計算式を表 5－6 及び表 5－8，燃料被覆管に発生する応力の模式図を図 5－6に示す。また，地震時の崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関するスペーサ間及びスペーサ部の地震時の応力評価における応力の組合せを，表 5－7 及び表 5－9 に示す。
（3）設計比の評価
設計比の評価では，燃料被覆管温度，燃料棒内圧，炉心条件，燃料棒寸法及び許容応力の統計的分布を考慮し，モンテカルロ法により統計評価を行う。ここで，燃料被覆管温度及び燃料棒内圧については， 9×9 型（A 型）は燃料棒熱•機械設計コード「 P R I M E 」（引用文献（1），（2）参照），9 $\times 9$ 型（B 型）は燃料棒熱•機械設計コード「CARO」（引用文献（3）参照）による解析結果をそれぞれ用いる。

なお，燃料被覆管温度及び燃料棒内圧の評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コード）の概要」 に示す。

モンテカルロ法による評価では，1 回の試行ごとに乱数を用い，統計的分布に従い設定される入力条件から 1 つの設計比が得られる。この試行を繰り返すこと により設計比の統計的分布を求め，設計比の 95% 確率上限値が 1 以下であること をもって，燃料集合体の耐震性を確認する。

5．4．3 検討内容

崩壊熱除去可能な形状及び燃料被覆管の閉じ込め機能が維持されることを確認 するため，通常運転時及び地震によって引き起こされるおそれのある過渡変化時 に燃料被覆管に作用する荷重に加えて，地震時における水平地震加速度，燃料集合体相対変位（燃料被覆管の閉じ込め機能の維持の評価のみに使用）及び鉛直地震加速度を考慮した燃料被覆管応力評価を実施する。
（1）崩壊熱除去可能な形状の維持に関する応力評価
VI－2－3－3－2「炉心支持構造物の耐震性についての計算書」にてその詳細を示す とおり，燃料集合体を支持している炉心支持構造物は，地震時にもその支持機能 は維持されるので，崩壊熱除去可能な形状は維持されると考えられる。崩壊熱除

去可能な形状の維持についてはさらに，基準地震動 S s 及び弹性設計用地震動 S d による地震力並びに静的地震力に対し崩壊熱除去可能な形状が維持されること を確認するため，燃料被覆管の地震時応力を弹性解析によって求めた結果，設計比の 95% 確率上限値が 1 を下回る結果を得た。
地震時の崩壊熱除去可能な形状の維持に関する応力評価の結果を，表 5－10 及 び表 5－11に示す。
（2）燃料被覆管の閉じ込め機能の維持に関する応力評価
燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動S s による地震力に対して許容応力をSu，弾性設計用地震動Sdによる地震力に対 して許容応力をS y として燃料被覆管の地震時応力を弾性解析によってそれぞれ求めた結果，設計比の 95% 確率上限値が 1 を下回る結果を得た。
地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価の結果を，表 5－12及び表 5－13に示す。
5.5 下部端栓溶接部の燃料被覆管の応力評価

5．5．1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位
地震時における下部端栓溶接部の応力評価では，燃料集合体相対変位，燃料集合体に作用する水平地震加速度及び鉛直地震加速度として，3章で設定した $54.2 \mathrm{~mm}, ~ 35.4 \mathrm{~m} / \mathrm{s}^{2}$ 及び $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$ 並びに $32.7 \mathrm{~mm}, ~ 20.8 \mathrm{~m} / \mathrm{s}^{2}$ 及び $9.5 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S}$ d）を用いる。なお，水平地震加速度 $35.4 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$ 及び $20.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ は，下部端栓溶接部直上の下部タイプレートースペーサ間の燃料棒に作用する水平加速度である。

5．5．2 地震時の下部端栓溶接部の応力評価の方法

地震時における下部端栓溶接部の応力評価は，端栓溶接部の形状が複雑なため有限要素法による汎用の解析コード「ANS Y S 」を用いて発生応力を評価し，許容応力として弾性設計用地震動 S d ではS y，基準地震動S s ではSuに対す る相当応力の比（設計比）を評価する。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI －5 計算機プログラム（解析コード）の概要」に示す。

地震時の下部端栓溶接部の応力評価のフローを，図 5－7 に示す。
（1）下部端栓溶接部の応力評価モデル
下部端栓溶接部の応力評価では，最初に下部端栓溶接部近傍の下部端栓，燃料被覆管及びペレットをモデル化し，有限要素法を用いた熱解析により下部端栓溶

接部近傍での温度分布を評価する。
次に，熱解析で得られた下部端栓溶接部近傍の温度分布を読み込み，熱膨張差 による熱応力の分布，運転時及び地震時の荷重条件に基づき発生する応力分布を有限要素法を用いた機械解析により評価する。機械解析では，

を用いた発生応力が大きくな
る解析モデルを用いている。
熱解析モデル及び機械解析モデルを，それぞれ図 5－8 から図 5－10に示す。
（2）下部端栓溶接部の熱解析での入力データ
通常運転時及び過渡時における下部端栓溶接部近傍の温度分布を評価するため，表 5－14の項目を考慮している。

なお，解析モデル上下端は断熱の境界条件とし，ペレット一下部端栓接触面に は熱抵抗がないものとして，上記の保守側の入力と合わせて，下部端栓溶接部近傍の温度分布による熱応力が大きくなるような解析を実施する。
（3）下部端栓溶接部の応力評価で考慮する荷重
通常運転時及び過渡時並びに地震時に下部端栓溶接部に作用する荷重として，表5－15を考慮する。

なお地震時には，水平地震加速度，燃料集合体の相対変位及び鉛直地震加速度 により発生する軸方向荷重が反転することを考慮して，軸方向の引張応力及び圧縮応力の絶対値が個々に大きくなるように組合わせた解析を実施する。

（4）設計比の評価

設計比の評価では，燃料被覆管温度，燃料棒内圧，炉心条件，燃料棒寸法及び許容応力の統計的分布を考慮し，それぞれの 95% 確率上／下限値に基づき解析結果が保守側となるように設定した入力値を用いて決定論的評価を実施する。ここ で，燃料被覆管温度及び燃料棒内圧については， 9×9 型（A 型）は燃料棒熱•機械設計コード「 P R I M E 」（引用文献（1），（2）参照）， 9×9 型（ B 型）は燃料棒熱•機械設計コード「CARO」（引用文献（3）参照）による解析結果をそれぞれ用い る。
応力計算は，厳しい条件となる過渡時の炉心条件に地震による荷重を加え合せ て，下部端栓溶接部に発生する三軸方向（半径方向，円周方向及び軸方向）の応力を解析し，それらより相当応力を計算する。

また，燃料被覆管の閉じ込め機能の維持に関する評価では，一次応力＋二次応力を対象としているが，解析コード「ANS Y S 」での有限要素法による端栓溶

接部の応力解析においては，応力集中によるピーク応力を含む結果となっている。 このため，付録 1 に示す応力分類処理方法に従って，全発生応力から一次応力 +二次応力を分類する。

燃料被覆管の閉じ込め機能の維持に関する評価で要求されている許容応力は，弾性設計用地震動 S d に対してS y，基準地震動 S s に対して S u であるが，そ れぞれの許容応力について下部端栓溶接部の温度及び照射の影響を考慮した保守側の 95% 確率下限値を用いる。

5．5．3 下部端栓溶接部の疲労評価

5．5．2 項の有限要素法を用いた解析コード「ANS Y S 」で得られる応力集中 によるピーク応力を含む下部端栓溶接部の応力強さに基づき，地震期間中に負荷 される繰返し荷重による燃料被覆管の疲労評価を実施する。
燃料被覆管の疲労限界に対する設計基準は，累積損傷の法則（Miner の仮説）及び Langer－0－Donnell の考え方に基づく。

燃料装荷から取出しまでの炉内滞在期間を8年とした炉内滞在期間中に燃料被覆管に作用する温度，圧力及び出力の予測サイクルによる疲労に加え，地震動に よる繰返し荷重を考慮し，疲労累積係数が 1.0 以下であることを確認する。

地震時の下部端检溶接部の疲労評価のフローを，図 5－11 に示す。
（1）地震期間中の繰返し荷重による応力振幅
地震期間中に下部端栓溶接部に負荷されるピーク応力を含む応力振幅（ $\Delta \sigma$ ） の評価においては，作用方向が反転する地震の繰返し荷重により三軸方向の応力成分の大小関係が大きく変化するため主応力の方向が有意に変化する。このため， 9×9 燃料（A型）については，日本産業規格 J I S B 8266 「圧力容器の構造一特定規格 附属書8（規定）圧力容器の応力解析及び疲労解析」の 3．2．1 a） 2）の主応力方向が変動する場合の応力強さ振幅の算出手法に基づき，応力強さの振幅を評価する。 9×9 燃料（B 型）については，延性材料に対する評価において よく一致することが知られているせん断歪エネルギ説（von Mises 理論）に基づ き，燃料被覆管の相当応力の振幅を評価する。
（2）ジルカロイの設計疲労曲線
燃料被覆管の疲労評価に用いるジルカロイの設計疲労曲線（引用文献（4）参照） を，図 5－12 に示す。（1）の方法で評価された地震期間中の繰返し荷重による応力振幅（主応力の方向が変化する場合の応力強さの振幅，$\Delta \sigma$ ）を，図 5－12 と対比 することにより，許容サイクル数（N）を求める。
（3）地震力の繰返し回数に基づく疲労累積係数の評価
地震力の繰返し回数（ n ）を（2）で求めた許容サイクル数（N）で除すことによ り，地震力が繰り返された場合の疲労累積係数を評価する。なお，地震力の繰返 し回数（n）には，340回（S s ）及び590回（S d）を用いる。

5．5．4 検討内容

燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動 S S による地震力に対して許容応力をS u，弾性設計用地震動 S d による地震力に対 して許容応力をS y として下部端栓溶接部の地震時応力を解析コード「ANS Y S」で求めた結果，それぞれ設計比が 1 を下回る結果を得た。

地震時における下部端栓溶接部の応力評価の結果を，表 5－16及び表 5－17に示 す。

燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動S s又は弾性設計用地震動 S d による地震力がそれぞれ繰り返された場合の応力振幅 と繰返し回数より疲労累積係数を評価した結果，地震動による疲労累積係数増分 を加えても疲労累積係数は1を下回る結果を得た。

地震時における下部端栓溶接部の疲労評価の結果を，表 5－18 及び表 5－19に示 す。

5.6 検討結果

通常運転時及び地震によって引き起こされるおそれのある過渡変化時に燃料被覆管 に作用する荷重に加えて，水平地震加速度，燃料集合体の相対変位（閉じ込め機能維持の評価のみ）及び鉛直地震加速度を考慮した燃料被覆管応力評価を実施した。

その結果，崩壊熱除去可能な形状の維持に関する燃料被覆管の設計比が最大となる のは寿命初期で，その値は 9×9 燃料（A型）で $0.43, ~ 9 \times 9$ 燃料（B 型）で 0.52 であ り，設計比が 1 を下回つていることから，地震時にも崩壊熱除去可能な形状は維持さ れることを確認した。

地震時の燃料被覆管の閉じ込め機能の維持に関する燃料被覆管の設計比が最大とな るのは寿命初期であり，スペーサ間及びスペーサ部では 9×9 燃料（A 型）で 0.79 ， 9×9 燃料（ B 型）で 0.78 ，下部端栓溶接部では 9×9 燃料（ A 型）で $0.72,9 \times 9$ 燃料 （B型）で 0.69 で，設計比は 1 を下回つている。また，地震時の繰返し荷重に基づく燃料被覆管の疲労累積係数は 9×9 燃料（A 型）で $0.031 ~(S ~ s) ~ 及 ひ ゙ ~ 0.005 ~(S ~ d) ~, ~$
疲労累積係数（ 9×9 燃料（A 型）で約 $0.003, ~ 9 \times 9$ 燃料（B 型）で約 0.006 ，引用文献 （5），（6）参照）に付加しても 1 を下回つている。これらの結果より，地震時の燃料被覆管の閉じ込め機能が維持されることを確認した。

表 5－1 崩壊熱除去可能な形状維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力	許容限界
	状態	一次応力
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	III ${ }_{\text {A }} \mathrm{S}$	$0.7 \cdot \mathrm{Su}^{* 1}{ }^{*}{ }^{2}$
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	IV A S	

注記＊1：せん断ひずみエネルギ説に基づく相当応力に対して評価する。 ＊2：使用温度及び照射の効果を考慮して許容値を設定する。

表 5－2 閉じ込め機能維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力状態	許容限界	
		一次 + 二次応力	一次 + 二次 + ピーク応力
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$	III ${ }_{\text {A }} \mathrm{S}$	S y＊${ }^{*}$＊ 2	S d 又は S s 地震動のみによる疲労解析を行い，運転状態 I，II における疲労累積係数との和が 1．0以下であること。
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S u＊${ }^{*}$ ，${ }^{2}$	

注記＊1：せん断ひずみエネルギ説に基づく相当応力に対して評価する。
＊2：使用温度及び照射の効果を考慮して許容値を設定する。
＊ $3:$ 運転時の異常な過渡変化時として，運転状態IIIの制御棒引抜きについても考慮す る。

表 5－3（1）スペーサ間及びスペーサ部の応力評価に用いる解析条件（9×9燃料（A 型））

項目	解析条件
寿命時期	寿命初期／中期／末期
評価部位	スペーサ間／スペーサ部
計算機コード	F UR S T
地震動	基準地震動 S s／弾性設計用地震動 S d
水平方向加速度：G h $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	56.3 （ S s ）／34．1（ S d ）
鉛直方向加速度：G v ${ }^{\text {a }}$（m／s ${ }^{2}$ ）	$16.2(\mathrm{~S} \mathrm{~s} \mathrm{)} / 9.5$（ S d ）
燃料集合体変位：Y（mm）＊	54.2 （ S s ）／32．7（ S d）

注記＊：燃料被覆管の閉じ込め機能の維持に関する評価にのみ使用

表 5－3（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ A 型））

記号	単位	数値又は数式	特記事項
A	－		
P c	MPa		圧力過渡時の冷却材圧力
P_{g}	MPa		燃料棒熱•機械設計解析結果
r_{1}	mm	$\mathrm{r}_{2}+\mathrm{t}$	
r 2	mm		
r m	mm	$\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) / 2$	
t	mm		照射に伴う腐食減肉を考慮
d	mm		
q c r	MPa		
f	N		
α	${ }^{\circ} \mathrm{C}^{-1}$		
E	MPa		
v	－		
l	mm		
δ	mm		
T0	${ }^{\circ} \mathrm{C}$		燃料棒熱•機械設計解析結果
$\Delta \mathrm{T}_{1}$	${ }^{\circ} \mathrm{C}$		燃料棒熱•機械設計解析結果
$\Delta \mathrm{T}_{2}$	${ }^{\circ} \mathrm{C}$		
F	N		
W r	kg		
W s	kg		
Z	mm^{3}	$\pi\left(\mathrm{r}_{1}{ }^{4}-\mathrm{r}_{2}{ }^{4}\right) /\left(4 \mathrm{r}_{1}\right)$	
L	mm		
S y	MPa	図 5－1 参照＊1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図5－2 参照＊1	燃料被覆管の温度及び照射の効果を考慮

注記＊1：統計分布を考慮。
＊2：寿命初期，寿命中期及び寿命末期の値。

表 5－4（1）スペーサ間及びスペーサ部の応力評価に用いる解析条件（9×9燃料（B 型））

項目	解析条件
寿命時期	寿命初期／中期／末期
評価部位	スペーサ間／スペーサ部
計算機コード	B S P A N 2
地震動	基準地震動 S s／弾性設計用地震動 S d
水平方向加速度：G h $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	56.3 （ S s ）／34．1（ S d ）
鉛直方向加速度：G v（m／s ${ }^{2}$ ）	$16.2(\mathrm{~S} \mathrm{~s} \mathrm{)} / 9.5(\mathrm{~S} \mathrm{~d})$
燃料集合体変位：Y（mm）＊	54.2 （ S s ）／32．7（ S d）

注記＊：燃料被覆管の閉じ込め機能の維持に関する評価にのみ使用

表 5－4（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ B 型））（ $1 / 2$ ）

記号	単位	数値又は数式	特記事項
			燃料棒熱•機械設計解析結果
$\mathrm{P}_{\text {i }}$	MPa		
P 。	MPa		圧力過渡時の泠却材圧力
r i	mm	$\mathrm{D}_{\mathrm{i}} / 2$	
r o	mm	D 。／2	
r m	mm	$\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{o}}\right) / 2$	
D 。	mm	$\mathrm{D}_{\mathrm{i}}+2 \mathrm{t}$	
D i	mm		
t	mm		照射に伴う腐食減肉を考慮
v	－		
E	MPa		
I	mm^{4}	$\pi\left(\mathrm{D}_{\mathrm{o}}{ }^{4}-\mathrm{D}_{\mathrm{i}}{ }^{4}\right) / 64$	
ω	mm		
$\mathrm{P}_{\mathrm{c} \text { r }}$	MPa		
1	mm		
A	mm		
L	mm		
W 。	$\mathrm{kg} / \mathrm{mm}$		
W	kg／mm		
g	$\mathrm{m} / \mathrm{s}^{2}$	9． 80665	
C 1	－		
C_{2}	－		
C 3	－		
C 4	－		
C 5	－		
C 6	－		
C_{7}	－		
T	${ }^{\circ} \mathrm{C}$		
$\Delta \mathrm{T}$	${ }^{\circ} \mathrm{C}$		
$\Delta \mathrm{T}_{\mathrm{i}}$	${ }^{\circ} \mathrm{C}$		

表 5－4（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ B 型））$(2 / 2)$

記号	単位	数値又は数式	特記事項
$\Delta \mathrm{T}$ 。	${ }^{\circ} \mathrm{C}$		
δ	－	$\mathrm{D}_{\mathrm{o}} / \mathrm{D}_{\mathrm{i}}$	
$\alpha_{\text {r }}$	${ }^{\circ} \mathrm{C}^{-1}$		
α_{z}	${ }^{\circ} \mathrm{C}^{-1}$		
P	N		
N_{1}	－		
N_{2}	－		
N_{3}	－		
μ	－		
S	mm^{2}	$\pi\left(\mathrm{r}_{0}{ }^{2}-\mathrm{r}_{\mathrm{i}}{ }^{2}\right)$	
F i	N		
F e	N		
S y	MPa	図 5－3，図 5－4 参照＊1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図 5－3，図 5－4 参照＊1	燃料被覆管の温度及び照射の効果を考慮

注記 $* 1$ ：統計分布を考慮。
＊2：寿命初期，寿命中期及び寿命末期の値。

表 5－5 燃料被覆管に発生する応力

考慮する応力	スペーサ間	スペーサ部	条件
内外圧力差に基づく応力	\bigcirc	\bigcirc	通常運転時及び過渡時
水力振動に基づく応力	\bigcirc	$\bigcirc * 1$	
楕円度に基づく応力	\bigcirc	\bigcirc	
スペーサの接触力に基づく応力	－	\bigcirc	
半径方向温度差に基づく熱応力	\bigcirc	\bigcirc	
円周方向温度差に基づく熱応力	\bigcirc	\bigcirc	
膨張スプリング等による軸方向荷重に基づく応力	\bigcirc	\bigcirc	
ウォータチャンネルと燃料被覆管の熱膨張差による応力	O＊2	O＊2	
燃料棒のたわみに基づく応力	\bigcirc	\bigcirc	
チャンネルボックスのたわみに基づく応力	\bigcirc	\bigcirc	地震時
鉛直地震加速度に基づく応力	\bigcirc	\bigcirc	

注記 $* 1: 9 \times 9$ 燃料（A 型）の場合に考慮。
＊ $2: 9 \times 9$ 燃料（ B 型）の場合に考慮。

表 5－6（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（A 型））（ $1 / 2$ ）

表 5－6（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）

$$
(9 \times 9 \text { 燃料 }(A \text { 型 })) \quad(2 / 2)
$$

応力の種類	応力の成分	外面	内面
（7）膨張 ス	半径方向		
プリング等	円周方向		
による軸方			
向荷重に基 づく応力	軸方向		
（一次応力）			

表 5－6（2）スペーサ間及びスペーサ部の応力の計算式（地震時）
（ 9×9 燃料（A 型））

応力の種類	応力の成分	外面	内面
（8）スペーサ間での燃料棒 のたわみに基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（9）スペーサ部での燃料棒 のたわみに基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（10）チャンネルボックス のたわみに基づく応力 （二次応力）	半径方向		
	円周方向		
	軸方向		
（11）鉛直地震加速度に基$\begin{aligned} & \text { づく応力 } \\ & \text { (一次応力) } \end{aligned}$	半径方向		
	円周方向		
	軸方向		

表 5－7 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ （ 9×9 燃料（ A 型））

解析分類	評価位置	応力分類	応力組合せ＊
崩壊熱除去可能 な形状の維持	スペーサ間	一次応力	$(1)+(2)+(3)+(7)+(8)+(11)$
	スペーサ部		$(1)+(2)+(3)+(7)+(9)+(11)$
閉じ込め機能の維持	スペーサ間	$\begin{aligned} & \text { 一次応力 } \\ & + \text { 二次応力 } \end{aligned}$	$(1)+(2)+(3)+(5)+(6)+(7)+(8)+(10)+(11)$
	スペーサ部		$(1)+(2)+(3)+(4)+(5)+(6)+(7)+(9)+(10)+(11)$

注記＊：表 5－6の応力の種類を示す各番号の応力の組合せを示す。

表 5－8（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（ B 型））（ $1 / 2$ ）

表 5－8（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（ B 型））（ $2 / 2$ ）

応力の種類	応力の成分	内面	外面
（6）燃料被覆管周方向温度勾配による応力 （二次応力）	円周方向 半径方向 軸方向		
（7）ウォータ チャンネルと燃料被覆管の熱膨張差によ る応力 （二次応力）	円周方向 半径方向 軸方向		
（8）膨張スプ リングおよび プレナムスプ リングによる 応力 （二次応力）	円周方向半径方向軸方向		

表 5－8（2）スペーサ間及びスペーサ部の応力の計算式（地震時）
（ 9×9 燃料（ B 型））

表 5－9 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ （ 9×9 燃料（ B 型））

解析分類	評価位置	応力分類	応力組合せ＊
崩壊熱除去可能 な形状の維持	スペーサ間	一次応力	$(1)+(2)+(3)+(9)$
	スペーサ部		$(1)+(2)+(9)$
閉じ込め機能の維持	スペーサ間	$\begin{aligned} & \text { 一次応力 } \\ & + \text { 二次応力 } \end{aligned}$	$(1)+(2)+(3)+(5)+(6)+(7)+(8)+(9)+(10)$
	スペーサ部		$(1)+(2)+(4)+(5)+(6)+(7)+(8)+(9)+(10)$

注記＊：表5－8の応力の種類を示す各番号の応力の組合せを示す。

表 5－10 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果 （ 9×9 燃料（A 型））

地震動	許容応力	運転条件＊	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{gathered} \text { スペーサ部 } \\ \text { (設計比) } \end{gathered}$
				一次応力	一次応力
基準地震動 S s	0． 7 Su	圧力過渡	寿命初期	0． 43	0． 40
			寿命中期	0.26	0． 25
			寿命末期	0.27	0． 25

注記＊：解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過渡のみを評価対象とした。

表 5－11 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果
（ 9×9 燃料（ B 型））

地震動	許容応力	運転条件＊	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{gathered} \text { スペーサ部 } \\ \text { (設計比) } \end{gathered}$
				一次応力	一次応力
基準地震動 S s	0.7 S u	圧力過渡	寿命初期	0.52	0.52
			寿命中期	0.39	0.39
			寿命末期	0.37	0． 37

注記＊：解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過渡のみを評価対象とした。

表 5－12 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果
（ 9×9 燃料（ A 型））

地震動	許容応力	運転条件	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{aligned} & \text { スペーサ部 } \\ & \text { (設計比) } \end{aligned}$
				$\begin{gathered} \text { 一次応力 }+ \\ \text { 二次応力 } \end{gathered}$	一次応力 +二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.54	0． 49
			寿命中期	0.33	0.29
			寿命末期	0.29	0.31
		出力過渡	寿命初期	0.54	0． 44
			寿命中期	0.35	0.32
			寿命末期	0.30	0.30
弾性設計用地震動 S d	S y	圧力過渡	寿命初期	0.79	0.70
			寿命中期	0.29	0.27
			寿命末期	0.25	0.24
		出力過渡	寿命初期	0.75	0.61
			寿命中期	0.31	0.29
			寿命末期	0.26	0.24

表 5－13 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果 （ 9×9 燃料（ B 型））

地震動	許容応力	運転条件	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{aligned} & \text { スペーサ部 } \\ & \text { (設計比) } \end{aligned}$
				$\begin{gathered} \text { 一次応力 }+ \\ \text { 二次応力 } \end{gathered}$	一次応力 +二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.59	0.57
			寿命中期	0． 42	0． 40
			寿命末期	0.38	0.36
		出力過渡	寿命初期	0.60	0.58
			寿命中期	0． 45	0． 42
			寿命末期	0.38	0.37
弾性設計用地震動 S d	S y	圧力過渡	寿命初期	0.75	0.78
			寿命中期	0.36	0.32
			寿命末期	0.30	0.28
		出力過渡	寿命初期	0.73	0． 74
			寿命中期	0.39	0.34
			寿命末期	0.30	0.27

表 5－14 下部端栓溶接部の熱解析で考慮する項目

	考慮する項目
ペレットの発熱	
ジルカロイ部材の γ 発熱＊	
ペレットー被覆管ギャップ熱伝達	
被覆表面熱伝達係数	
ペレット及びジルカロイ部材の熱伝導率	

注記 $*: ~ 9 \times 9$ 燃料（ A 型）の場合に考慮。

表 5－15 下部端栓溶接部の応力評価で考慮する荷重

考慮する荷重	条件
下部端栓及び被覆管部における温度分布（熱解析結果を読み込む）	通常運転時及び過渡時
燃料棒内圧	
冷却材圧力	
内外圧力差による軸方向荷重（軸方向応力）	
膨張スプリング等による軸方向荷重（軸方向応力）＊1	
燃料被覆管の周方向温度差及び端栓取付角公差による初期曲がりに基づく曲げ荷重（曲げ応力）＊	
燃料棒のたわみに基づく曲げ荷重（曲げ応力）	地震時
チャンネルボックスのたわみに基づく曲げ荷重（曲げ応力）	
鉛直地震加速度に基づく軸方向荷重（軸方向応力）＊2	

注記 $* 1: 9 \times 9$ 燃料（ A 型）の場合に考慮。
＊ $2: 9 \times 9$ 燃料（B 型）の場合，鉛直方向地震加速度は地震時にかかる荷重への見かけ の質量増加として考慮。

表 5－16 地震時の下部端栓溶接部の応力評価結果（ 9×9 燃料（A 型））

注記＊：下部端栓部の燃料棒の出力は低く，出力過渡時に発生する応力は圧力過渡時 の応力より小さいため，圧力過渡時のみを評価対象とした。

表 5－17 地震時の下部端栓溶接部の応力評価結果 $(9 \times 9$ 燃料（ B 型））

地震動	許容応力	運転条件＊	寿命時期	下部端栓溶接部 （設計比）
				一次応力 +二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.50
			寿命中期	0． 45
			寿命末期	0． 44
弾性設計用地震動	S y	圧力過渡	寿命初期	0.69
			寿命中期	0.54
S d			寿命末期	0． 52

注記 $~$ ：下部端栓部の燃料棒の出力は低く，出力過渡時に発生する応力は圧力過渡時 の応力より小さいため，圧力過渡時のみを評価対象とした。

表 5－18 地震時の下部端栓溶接部の疲労評価結果（ 9×9 燃料（A型））

地震動	寿命時期	応力振幅 （MPa）	$\begin{gathered} \text { 許容 } \\ \text { サイクル数 } \end{gathered}$	地震荷重の繰返し回数	疲労係数の増分＊
基準地震動 S s	寿命初期	108	1． 1×10^{4}	340	0.031
	寿命中期	107	1． 1×10^{4}	340	0.031
	寿命末期	108	1． 1×10^{4}	340	0.031
弾性設計用地震動	寿命初期	65	1． 3×10^{5}	590	0.005
	寿命中期	64	1． 5×10^{5}	590	0． 004
S d	寿命末期	65	1.3×10^{5}	590	0.005

注記＊：燃料の全寿命を通した疲労累積係数（約 0.003 ，引用文献（5）参照）を付加しても 1を下回っている。

表 5－19 地震時の下部端栓溶接部の疲労評価結果（ 9×9 燃料（ B 型））

地震動	寿命時期	応力振幅 （MPa）	$\begin{gathered} \text { 許容 } \\ \text { サイクル数 } \end{gathered}$	地震荷重の繰返し回数	疲労係数の増分＊
基準地震動 S s	寿命初期	141	4.1×10^{3}	340	0.082
	寿命中期	138	4． 6×10^{3}	340	0.073
	寿命末期	137	5.0×10^{3}	340	0.068
弾性設計用地震動 S d	寿命初期	73	6.5×10^{4}	590	0.010
	寿命中期	72	7.2×10^{4}	590	0.009
	寿命末期	71	7.6×10^{4}	590	0.008

注記＊：燃料の全寿命を通した疲労累積係数（約 0.006 ，引用文献（6）参照）を付加しても 1を下回っている。
\square
図 5－1 ジルカロイ－2 降伏応力の設計値（公称値）（9×9燃料（A 型））
\square
図 5－2 ジルカロイ－2引張強さの設計値（公称値）（ 9×9 燃料（ A 型））
\square
図 5－3 ジルカロイ－2 降伏応力及び引張強さの設計値（公称値） （ 9×9 燃料（ B 型）スペーサ間及びスペーサ部）
\square
図 5－4 ジルカロイ－2 降伏応力及び引張強さの設計値（95\％確率下限値） （ 9×9 燃料（ B 型）下部端栓溶接部）

図 5－5 地震時のスペーサ間及びスペーサ部の応力評価のフロー

図 5－7 地震時の下部端栓溶接部の応力評価のフロー
\square
図 5－8 下部端栓溶接部の応力評価における熱解析モデル（ 9×9 燃料（A 型））

図 5－9 下部端栓溶接部の応力評価における機械解析モデル $(9 \times 9$ 燃料（A 型））
\square
図 5－10 下部端栓溶接部の応力評価における熱•機械解析モデル $(9 \times 9$ 燃料（B 型））

図 5－11 地震時の下部端栓溶接部の疲労評価のフロー

図 5－12 ジルカロイの設計疲労曲線＊

注記＊：ジルカロイ設計疲労曲線は，引用文献（4）に基づき，ジルカロイ－2 の未照射材及 び照射材についての疲労試験結果をベースに，ジルカロイー4等の機械特性及び疲労特性がジルカロイ－2とほぼ同等であることを確認し，ジルカロイ－2， 3 及び 4共通の設計曲線として設定したものである。Langer－0’ Donne11 は，設計曲線を保守側に見積もるため，未照射材及び照射材それぞれについて応力を $1 / 2$ ，サイ クル数を1／20とし，未照射材及び照射材の両者の包絡線を Langer－0’ Donnell の設計疲労曲線としている。

6．引用文献
（1）「沸騰水型原子力発電所 燃料の設計手法について」，株式会社日立製作所，H L R－ 033 訂1，平成 10 年 2 月
（2）「沸騰水型原子力発電所 燃料の設計手法について」，株式会社東芝，T L R－045 改訂 1 ，平成 10 年 1 月
（3）「沸騰水型軽水炉用燃料の設計手法について」，原子燃料工業株式会社，N L R－14，昭和 62 年 12 月
（4）W．J．0＇Donnell and B．F．Langer，＂Fatigue Design Basis for Zircaloy Components＂，Nuclear Science and Engineering，20，1－12（1964）
（5）女川原子力発電所第 2 号機「燃料体設計認可申請書」（GNF 燃設認第 35 号，平成 21年10月16日認可）
（6）女川原子力発電所第 2 号機及び第 3 号機「燃料体設計認可申請書」（ 20 原燃東 第 802 号，平成 21 年 1 月 7 日認可）

付録 1 応力計算結果の応力分類処理方法

燃料被覆管下部端栓溶接部は，切欠き形状を含む複雑な形状（付図－1参照）であるため有限要素法を用いた解析コード「ANS Y S 」により発生応力を求めており，算出される応力値には（一次応力 + 二次応力 + ピーク応力）の全応力成分が含まれる（付図 -2 参照）。 ピーク応力は，応力集中又は局部熱応力により，一次応力又は二次応力に付加される応力 の増加分として定義されており，その特徴は，それによって大きな変形は起こらないが， それが繰り返されると疲労破壊の原因となることがあるとされている（「設計•建設規格」参照）。原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984（（社）日本電気協会）においてもピーク応力は疲労破壊が対象とされている。よっ て，解析コード「ANSYS」の計算モデル中のメッシュ要素の節点での応力解析結果か ら，下記に示す応力分類処理を行い，一次応力＋二次応力及びピーク応力を求める。
（1）応力評価断面として，付図－1 に示す端栓一被覆管溶接面を選択する。
（2）（1）で選んだ応力評価断面に対して，断面内の全ての節点の応力を積分し，断面平均応力（膜応力）及び断面内での曲げの釣合いが等価となる曲げ応力の等価直線成分 を求める。この膜応力と曲げ応力の等価直線成分を合計したものを一次応力 + 二次応力とする（付図－2 参照）。
（3）応力評価断面における応力分布と（2）で求めた一次応力＋二次応力（膜応力と曲げ応力の等価直線成分の合計）との差をピーク応力とする（付図 -2 参照）。
応力が最も厳しい条件となるのはピーク応力の方向と正味の曲げモーメントの方向が一致するケースであり，下部端栓溶接部の応力解析では燃料被覆管内面位置が該当する。よ って，付図－2に示すように，設計比の評価には燃料被覆管内面位置での応力を用いる。

付図－1 下部端栓部の有限要素法による応力解析体系の模式図

付図－2 応力分布と応力分類処理結果の模式図

VI－2－3－3－2 炉心支持構造物の耐震性についての計算書

VI－2－3－3－2－1 炉心支持構造物の応力解析の方針
VI－2－3－3－2－2 炉心シュラウドの耐震性についての計算書
VI－2－3－3－2－3 シュラウドサポートの耐震性についての計算書
VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書
VI－2－3－3－2－5 上部格子板の耐震性についての計算書
VI－2－3－3－2－6 炉心支持板の耐震性についての計算書
VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書
VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書

VI－2－3－3－2－1 炉心支持構造物の応力解析の方針

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2.2 評価方針 4
2.3 適用基準 5
2．4 記号の説明 6
3．計算条件 8
3.1 評価対象機器 8
3.2 形状及び寸法 8
3.3 荷重の組合せ及び許容応力状態（運転状態） 8
3.4 許容応力 9
3.5 許容応力評価条件 9
3.6 溶接部の継手効率 9
4．荷重条件 10
4．1 設計条件 10
4．2 運転条件 10
4．3 重大事故等時の条件 10
4． 4 荷重の組合せ及び応力評価 10
5．応力評価の手順 11
5.1 計算に使用する解析コード 11
5.2 荷重条件の選定 11
5.3 応力の評価 11
5．3．1 主応力 11
5．3．2 応力強さ 11
5．3．3 一次応力強さ 12
5．4 特別な応力の評価 12
5．4．1 純せん断応力の評価 12
5．4．2 支圧応力の評価 12
5．4．3 座屈の評価 12
6．評価結果の添付 13
6.1 応力評価結果 13
7．引用文献 14
8．参照図書 14
添付 1 溶接部の継手効率 31

図表目次

図 2－1 炉心支持構造物の耐震評価フロー 4
図 2－2 炉心支持構造物の強度評価フロー 4
図 3－1 全体断面図 15
図 4－1 炉心支持構造物の差圧 16
表 2－1 炉心支持構造物の構造計画 3
表 3－1 荷重の組合せ及び許容応力状態 17
表 3－2 許容応力（炉心支持構造物） 19
表 3－3 許容応力評価条件 20
表 4－1 外荷重 22
表 4－2 荷重の組合せ 30

1．概要

本書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，炉心支持構造物に関する応力解析の方針を説明するものである。

なお，本書においては，炉心支持構造物の耐震評価及び重大事故等時における強度評価について記載する。

耐震評価について，設計用地震力を除く荷重による炉心支持構造物（シュラウドサポ ート，上部格子板，炉心支持板，燃料支持金具及び制御棒案内管を除く）の応力評価 は，平成 17 年 2 月 4 日付け東北電原第 145 号にて届出た工事計画の添付書類（参照図書
（1））による（以下，「既工認」という）。
強度評価について，炉心支持構造物（シュラウドサポート，上部格子板，炉心支持板，燃料支持金具及び制御棒案内管を除く）の応力評価は，既工認による。

注1：本書に記載していない特別な内容がある場合は，下記計算書に示す。なお，下記 のらち（1）から（7）を「耐震計算書」，（8）から（14）を「強度計算書」という。
（1）VI－2－3－3－2－2 炉心シュラウドの耐震性についての計算書
（2）VI－2－3－3－2－3 シュラウドサポートの耐震性についての計算書
（3）VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書
（4）VI－2－3－3－2－5 上部格子板の耐震性についての計算書
（5）VI－2－3－3－2－6 炉心支持板の耐震性についての計算書
（6）VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書
（7）VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書
（8）VI－3－別添 6－1 炉心シュラウドの強度計算書
（9）VI－3－別添6－2 シュラウドサポートの強度計算書
（10）VI－3－別添 6－3 炉心シュラウド支持ロッドの強度計算書
（11）VI－3－別添 6－4 上部格子板の強度計算書
（12）VI－3－別添 6－5 炉心支持板の強度計算書
（13）VI－3－別添 6－6 燃料支持金具の強度計算書
（14）VI－3－別添 6－7 制御棒案内管の強度計算書
注 2 ：図表は，原則として巻末に示す。

2．一般事項
2.1 構造計画

炉心支持構造物の構造計画を表2－1に示す。炉心支持構造物は，下記の機器により構成される。
（1）炉心シュラウド
（2）シュラウドサポート
（3）炉心シュラウド支持ロッド
（4）上部格子板
（5）炉心支持板
（6）燃料支持金具
（7）制御棒案内管

表 2－1 炉心支持構造物の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
炉心を構成する燃料集合体，制御棒は，炉心シュラウド内に設けられ る。 炉心シュラウドは，原子炉圧力容器下部鏡板に溶接されたシュラウドサ ポートにより支持される。また，炉心 シュラウド支持ロッドによって水平及び鉛直方向に拘束される。 燃料集合体は，燃料支持金具を介 して制御棒案内管（ただし，周辺燃料支持金具を介する場合は炉心支持板）によって支持される。また，水平方向については，上部格子板及び炉心支持板によって支持される。	炉心支持構造物は，炉心シュラウド，シュラウ ドサポート，炉心シュラ ウド支持ロッド，上部格子板，炬心支持板，燃料支持金具，制御棒案内管 により構成される。	

2． 2 評価方針

炉心支持構造物の構造強度評価は，添付書類「VI－2－1－9 機能維持の基本方針」及 び「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，

「2．1 構造計画」にて示す炉心支持構造物の各機器を踏まえ計算書にて設定する箇所において，「4．荷重条件」にて設定した荷重に基づく応力が許容応力内に収まる ことを，「5．応力評価の手順」にて示す方法にて確認することで実施する。確認結果を計算書に示す。

炉心支持構造物の耐震評価フローを図2－1に，強度評価フローを図2－2に示す。

図 2－1 炉心支持構造物の耐震評価フロー

図 2－2 炉心支持構造物の強度評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補 － 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会） （以降「JEAG4601」と記載しているものは上記3指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。）） J S M E S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」という。）
（5）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第 5 0 1 号（以下「昭和55年告示」という。）
（6）発電用原子力設備に関する構造等の技術基準（平成6年7月21日 通商産業省告示第 501 号（以下「平成6年告示」という。）

注1：本書及び計算書において，設計•建設規格の条項は「設計•建設規格
 $\triangle \triangle \Delta(\diamond)$ a．（a）」とし，昭和 55 年告示の条項は「昭和 55 年告示第○条第○項第○号○○」とし，平成6年告示の条項は「平成6年告示第○条第○項第○号○○」とし て示す。
注2：耐震計算書では「設計•建設規格」を適用し，強度計算書では「昭和 55 年告示」又は「平成6年告示」を適用する。

2． 4 記号の説明
本書及び計算書において，以下の記号を使用する。ただし，本書添付及び計算書中 に別途記載ある場合は，この限りでない。

なお，計算書における記号の字体及び大きさについては，本書と異なる場合がある。

記号	記号の説明	単位
H	水平力	N
M	モーメント	$N \cdot m$
P_{b}	一次曲げ応力	MPa
P_{m}	一次一般膜応力	MPa
S 12	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S 23	主応力差 $\mathrm{O}_{2}-\mathrm{O}_{3}$	MPa
S 31	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
S d＊	弾性設計用地震動 S d により定まる地震力又は S クラス施設に適用される静的地震力のいずれか大きい方の地震力	－
Sm_{m}	設計応力強さ	MPa
S s	基準地震動S s により定まる地震力	－
S u	設計引張強さ	MPa
S_{y}	設計降伏点	MPa
S_{y}（ R T ）	材料の $40^{\circ} \mathrm{C}$ における設計降伏点	MPa
V	鉛直力	N
η	溶接部の継手効率	－
${ }_{\sigma} 1$	主応力	MPa
O 2	主応力	MPa
$\sigma 3$	主応力	MPa
$\sigma \ell$	軸方向応力	MPa
σ r	半径方向応力	MPa
$\sigma \mathrm{t}$	周方向応力	MPa
$\tau_{\ell r}$	せん断応力	MPa
$\tau \mathrm{rat}$	せん断応力	MPa
τ t ℓ	せん断応力	MPa

| 記号 | 記号の説明 | 単位 |
| :---: | :--- | :---: | :---: |
| $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | 設計•建設規格の供用状態C相当の許容応力を基準として，
 それに地震により生じる応力に対する特別な応力の制限を
 加えた許容応力状態 | - |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | 設計•建設規格の供用状態D相当の許容応力を基準として，
 それに地震により生じる応力に対する特別な応力の制限を
 加えた許容応力状態 | - |
| $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ | 運転状態V（重大事故等時の状態）相当の応力評価を行う
 許容応力状態を基本として，それに地震により生じる応力
 に対する特別な応力の制限を加えた許容応力状態 | - |

3．計算条件
3.1 評価対象機器

応力評価を行ら機器は，次のとおりである。（表 2－1 及び図 3－1参照）

機器名称		評価対象		
		耐震性についての計算書 （許容応力状態に対する評価）		強度計算書$\binom{\text { 運転状態 } V}{\text { 対する評価 }}$
		III $_{\text {A }} \mathrm{S}, \mathrm{IV} \mathrm{A}^{\text {S }}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
（1）	炉心シュラウド	\bigcirc	\bigcirc	\bigcirc
（2）	シュラウドサポート	\bigcirc	\bigcirc	\bigcirc
（3）	炉心シュラウド支持ロッド	\bigcirc	\bigcirc	\bigcirc
（4）	上部格子板	\bigcirc	\bigcirc	\bigcirc
（5）	炉心支持板	\bigcirc	\bigcirc	\bigcirc
（6）	燃料支持金具	\bigcirc	\bigcirc	\bigcirc
（7）	制御棒案内管	\bigcirc	\bigcirc	\bigcirc

注：「○」は評価対象を示す。
3.2 形状及び寸法

各部の形状及び寸法は，計算書に示す。
3.3 荷重の組合せ及び許容応力状態（運転状態）

炉心支持構造物の荷重の組合せ及び許容応力状態（運転状態）のうち，設計基準対象施設の評価に用いるものを表3－1（1）に，重大事故等対処設備の評価に用いるもの を表3－1（2）に示す。また，各許容応力状態（運転状態）で考慮する荷重は，4章に示 すとおりである。

なお，炉心支持構造物については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡される。

3．4 許容応力

（1）耐震評価における許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表3－2に示す。この表に記載のない圧縮荷重を受ける場合に対する許容応力 は，計算書に記載するものとする。
（2）強度評価における許容応力は，表3－2に示す。この表に記載のない圧縮荷重を受 ける場合に対する許容応力は，計算書に記載するものとする。

3.5 許容応力評価条件

（1）耐震評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は，それぞれ設計•建設規格 付録材料図表 Part5表1，表8及び表9に定めら れたものを使用する。
（2）強度評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は，それぞれ炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッ ドは平成 6 年告示別表第 2，第 9，第 10 に定められたものを使用し，炉心シュラ ウド，シュラウドサポート及び炉心シュラウド支持ロッドを除く炉心支持構造物 は昭和55年告示別表第2，第9，第 10 に定められたものを使用する。
（3）許容応力状態 $I I I_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次応力の評価には，運転状態 I及びIIにおける流体の最高温度 \square に対する許容応力を用いる。運転状態 V の一次応力の評価には，運転状態Vにおける評価温度 \qquad に対する許容応力を用 いる。
（4）炉心支持構造物の許容応力評価条件を表3－3に示す。 なお，各機器で使用される材料は，計算書に示す。
3.6 溶接部の継手効率
（1）溶接部の継手効率は，継手の種類と分類及び継手に適用する検査の種類によ り，耐震評価においては設計•建設規格 CSS－3150に，強度評価において，炉心 シュラウド及びシュラウドサポートは平成 6 年告示第 99 条第 4 項に，炉心シュラ ウド，シュラウドサポート及び炉心シュラウド支持ロッドを除く炉心支持構造物 は昭和 55 年告示第 99 条第 4 項に従って定める。溶接部の継手効率を添付 1 に示 す。
（2）溶接部の許容応力は，材料の許容応力に継手効率を乗じたものとし，計算書に示す。

4．荷重条件
炉心支持構造物は，以下の荷重条件に耐えることを確認する。各機器の応力評価には，本章に示す荷重を考慮する。

4． 1 設計条件
設計条件は既工認からの変更はなく，参照図書（1）a．に定めるとおりである。

4．2 運転条件
運転条件及び記号は，既工認からの変更はなく，参照図書（1）a．に定めるとおりであ る。

各機器の応力評価において考慮する外荷重の値を表4－1に示す。
4.3 重大事故等時の条件
\qquad

4． 4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価項目の対応を表4－2に示す。表4－2 及び計算書におい て，荷重の種類と記号は以下のとおりである。

なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

荷重
（1）差圧
（2）死荷重
（3）機器の地震時の慣性力による地震荷重 S d＊（一次荷重）
（4）機器の地震時の慣性力による地震荷重 S s（一次荷重）

5．応力評価の手順
応力評価の手順について述べる。
5.1 計算に使用する解析コード

解析コードは「 A－S A F I A 」，「 P I P E 」，「 S T A X 」及び「 A S H S D」を用いる。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
5.2 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。
5.3 応力の評価

5．3．1 主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
組合せ応力は，一般に $\sigma_{\mathrm{t}}, \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{r}}{ }_{\mathrm{t}}$ の 6 成分を持つが，主応力 σ は，引用文献（1）の $1 \cdot 3 \cdot 6$ 項により，次式を満足する 3 根 $\sigma_{1}, \sigma_{2}, ~ \sigma_{3}$ として計算する。

$$
\begin{aligned}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell}{ }^{2}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{rt}}{ }^{2}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}{ }^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{rt}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell^{2}}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0
\end{aligned}
$$

上式により主応力を求める。

5．3．2 応力強さ

以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{aligned}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1}
\end{aligned}
$$

5．3．3 一次応力強さ

設計基準対象施設として許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ 及び重大事故等対処設備として運転状態Vにおいて生じる一次一般膜応力及び一次一般膜＋一次曲げ応力の応力強さが，3．4節に示す許容応力を満足することを示す。

5． 4 特別な応力の評価

5．4．1 純せん断応力の評価
純せん断荷重を受ける部分は，設計基準対象施設として設計•建設規格 CSS－ 3114 に，重大事故等対処設備として平成 6 年告示第 96 条第 1 項第 1 号へにより評価する。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は応力計算書に示す。
（1）炉心シュラウド支持ロッドのトグルピン

5．4．2 支圧応力の評価

支圧荷重を受ける部分は，設計基準対象施設として設計•建設規格 CSS－3115 に，重大事故等対処設備として平成 6 年告示第 96 条第 1 項第 1 号卜により評価 する。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は応力計算書 に示す。
（1）炉心シュラウドの上部格子板及び炉心支持板支持面
（2）炉心シュラウドの上部サポート支持面
（3）シュラウドサポートプレートのトグルバー支持面

5．4．3 座屈の評価

軸圧縮荷重又は外圧を受ける部分は，設計基準対象施設として設計•建設規格 SSB－3121．1に，重大事故等対処設備として平成 6 年告示第 88 条第 3 項第 1 号又 は昭和 55 年告示第 96 条第 1 項第 1 号チ，昭和 55 年告示第 96 条第 2 項第 1 号に より評価する。解析箇所を以下に示す。評価方法及び許容応力は，計算書に示 す。
（1）シュラウドサポートレグ
（2）制御棒案内管

6．評価結果の添付

応力評価点番号は，機器ごとに記号 P01 からの連番とする。奇数番号を内面の点，偶数番号を外面の点として，計算書の形状•寸法•材料•応力評価点を示す図において定義する。

なお，軸対称モデル解析において，非軸対称な外荷重による応力評価を行った場合，荷重の入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力が極大となる方位の応力評価点は［例 P01］と表し，極小となる方位の応力評価点にはプライム（＇）を付けて［例 P01＇］と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

6.1 応力評価結果

（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次一般膜 + 一次曲げ応力強さの評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。
a．純せん断応力
b．支圧応力
c．座屈

7．引用文献
文献番号は，本書及び計算書において共通である。
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

8．参照図書
（1）女川原子力発電所第2号機工事計画届出書（平成17年2月4日東北電原第145号）添付書類
a．IV－2－1－1 炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッド の応力解析の方針
b．IV－2－1－2 炬心シュラウドの応力計算書
c．IV－2－1－4 炉心シュラウド支持ロッドの応力計算書

図 3－1 全体断面図

（単位：MPa）

部位	運転状態 V
$\mathrm{P}_{12}=\mathrm{P}_{1}-\mathrm{P}_{2}$	
$\mathrm{P}_{13}=\mathrm{P}_{1}-\mathrm{P}_{3}$	
$\mathrm{P}_{32}=\mathrm{P}_{3}-\mathrm{P}_{2}$	
$\mathrm{P}_{34}=\mathrm{P}_{3}-\mathrm{P}_{4}$	
$\mathrm{P}_{45}=\mathrm{P}_{4}-\mathrm{P}_{5}$	

図 4－1 炉心支持構造物の差圧

表 3－1（1）荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	炉心支持構造物	$\begin{aligned} & \text { 炉心シュラウド } \\ & \text { シュラウドサポート } \end{aligned}$	S	炉心支持構造物	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$
		上部格子板炉心支持板			$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{S}^{*}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$
		炉心支持板 燃料支持金具 制御棒案内管			$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	

D ：死荷重
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）における圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）で設備に作用している機械的荷重
S d＊：弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力
$P_{L} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
S s ：基準地震動 S s により定まる地震力

表 3－1（2）荷重の組合せ及び許容応力状態（重大事故等対処施設）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
原子炉 本体	炉心支持構造物	炉心シュラウド シュラウドサポート 炉心シュラウド支持ロッド 上部格子板 炉心支持板 燃料支持金具 制御棒案内管	常設耐震／防止 常設／緩和 常設／防止 （DB 拡張）	－	$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}$＊	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	（VASとしてIVASの 許容応力を用いる。）
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V

［記号の説明］
D ：死荷重
$P_{L} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
$\stackrel{\infty}{\infty}$
S d＊：弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vにおける圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vで設備に作用している機械的荷重
S s ：基準地震動 S s により定まる地震力
$P_{\text {SAL }}$ ：重大事故等時の状態（運転状態 V）で長期的（長期（L））に作用する圧力荷重
$M_{S A L}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する機械的荷重
S d ：弾性設計用地震動 S d により定まる地震力
$P_{\text {SALL }}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する圧力荷重
$M_{\text {SALL }}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する機械的荷重
A ：事故時荷重
注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

表 3－2 許容応力（炉心支持構造物）

状態	許容応力＊			
	一次一般膜応力	一次一般膜＋一次曲げ応力	純せん断応力	支圧応力
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{~S}_{\mathrm{m}}$	左欄の 1.5 倍の値	$0.9 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} 1.5 \cdot \mathrm{~S}_{\mathrm{y}} \\ \left(2.25 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$
許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	$2 / 3 \cdot S_{u}$ ただし，AS S 及びHNAに ついては $2 / 3 \cdot S_{u}$ と $2.4 \cdot \mathrm{~S}_{\mathrm{m}}$ の小さい方。		$1.2 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} 2 \cdot \mathrm{~S}_{\mathrm{y}} \\ \left(3 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$
許容応力状態 $V_{A} S$ （許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ とし て許容応力状態IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。）				
運転状態 V （運転状態Vとして運転状態IVの許容応力を用い る。）				

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3（1）許容応力評価条件（耐震評価）

表3－3（2）許容応力評価条件（炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッドの強度評価）

評価部位	材料		温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
炉心支持構造物	$\begin{gathered} \text { オーステナイト系 } \\ \text { ステンレス鋼及び } \\ \text { 高ニッケル合金 } \end{gathered}$	SUS316L	評価温度				
		NCF600－P	評価温度				
		NCF750 相当	価温度				
			評価温度				
		GXM1 相当	評価温度				

表 3－3（3）許容応力評価条件（炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッドを除く炉心支持構造物の強度評価）

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
炉心支持構造物	オーステナイト系 ステンレス鋼及び 高ニッケル合金	SUS316	評価温度				
		SUS316L	評価温度				
		SUS316LTP	評価温度				
		SCS19A	評価温度				

表 4－1（1）外荷重

炉心シュラウド外荷重

表 4－1（2）外荷重

シュラウドサポート外荷重

記号	荷重名称		鉛直力			水平力	モーメント
			$\begin{gathered} \mathrm{V}_{1} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{3}{ }^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L02	差圧＊2						
L04	死荷重	$\begin{aligned} & \mathrm{C} 19^{* 3}, \quad \mathrm{C} 02^{* 4} \text { を } \\ & \text { 除く運転時 } \end{aligned}$					
		C19＊3					
		C02＊${ }^{\text {＋}}$					
L14	地震荷重S d＊＊						
L16	地震荷重 S s						

表 4－1（3）外荷重

炉心シュラウド支持ロッド外荷重

	記号	荷重名称	鉛直力	水平力	モーメント
			$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	H （N）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
	L02	差圧＊${ }^{1}$			
	L04	死荷重			
	L14	地震荷重S d＊＊			
	L16	地震荷重S s			
\square					

表 4－1（4）外荷重

上部格子板外荷重

記号	荷重名称	鉛直力＊1	水平力＊2
		V （N）	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L04	死荷重		
L14	地震荷重S d＊		
L16	地震荷重 S S		

表 4－1（5）外荷重

炉心支持板外荷重

記号	荷重名称	鉛直力		水平力＊${ }^{\text {a }}$
		$\mathrm{V}_{1} * 1$ （N）	$\mathrm{V}_{2} * 2$ （N）	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L04	死荷重			
L14	地震荷重S d＊			
L16	地震荷重 S s			

表 4－1（6）外荷重

燃料支持金具外荷重

記号	荷重名称	荷重作用点	鉛直力	水平力	モーメント
			V （N）	H （N）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$
L04	死荷重				
L14	地震荷重 S d＊				
L16	地震荷重S s				

表 4－1（7）外荷重

制御棒案内管外荷重

記号	荷重名称	荷重作用点	鉛直力	水平力	モーメント
			$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊				
L16	地震荷重S s				

表 4－2 荷重の組合せ

状態	荷重の組合せ	応力評価			
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 14$	P_{m} $\mathrm{P}_{\mathrm{m}}$$+\mathrm{P}_{\mathrm{b}}$	$	$	P_{m}
:---					
$\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}}$					

添付1溶接部の継手効率

炉心支持構造物の主な溶接部の継手効率は，設計•建設規格 CSS－3150，昭和55年告示第 99 条第 4 項及び平成 6 年告示第 99 条第 4 項に従い，付表－1 のとおりに定められる。

注記 $*$ ：検査の種類を示す記号は次のとおりである。
P T＋R T ：設計•建設規格 CSS－3150 に定めるAの検査，昭和 55 年告示第 99 条第 4 項及び平成 6 年告示第 99 条第 4 項に定めるイの検査
PPT：設計•建設規格 CSS－3150 に定めるCの検査，昭和 55 年告示第 99 条第 4 項及び平成 6 年告示第 99 条第 4 項に定める八の検査
P T ：設計•建設規格 CSS－3150 に定めるEの検査，昭和 55 年告示第 99 条第 4 項及び平成 6 年告示第 99 条第 4 項に定める木の検査
VI-2-3-3-2-2 炉心シュラウドの耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 5
2.1 設計条件 5
2.2 運転条件 5
2．3 材料 5
2.4 荷重の組合せ及び許容応力状態 5
2.5 荷重の組合せ及び応力評価 5
2.6 許容応力 5
2.7 応力の記号と方向 5
3．応力計算 5
3.1 応力評価点 6
3.2 差圧による応力 6
3．2．1 荷重条件 6
3．2．2 計算方法 6
3.3 外荷重による応力 7
3．3．1 荷重条件 7
3．3．2 計算方法 7
3.4 応力の評価 7
4．応力強さの評価 8
4.1 一次一般膜応力強さの評価 8
4.2 一次一般膜 + 一次曲げ応力強さの評価 8
5．特別な応力の評価 9
5.1 支圧応力の評価 9
5．1．1 支圧面積 9
5．1．2 支圧荷重 9
5．1．3 平均支圧応力 9
5．1．4 支圧応力の評価 9
図 1－1 形状•寸法•材料•応力評価点 2
図 5－1 支圧荷重の支持面 10
表 1－1 計算結果の概要 3
表 3－1 断面性状 12
表 4－1 一次一般膜応力強さの評価のまとめ 13
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 14
表 5－1 支圧応力の評価 15

1．一般事項
本計算書は，炉心シュラウドの応力計算について示すものである。
炉心シュラウドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

炉心シュラウドは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 記号の説明
記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D_{i}	内径	mm
D_{o}	外径	mm
I	断面二次モーメント	mm^{4}
σ c	平均支圧応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1.3 解析範囲

解析範囲を図1－1に示す。
なお，下部胴とシュラウドサポートとの接合部の応力解析及び評価は，添付書類「VI $-2-3-3-2-3$ シュラウドサポートの耐震性についての計算書」に記載する。

1．4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

表1－1（1）計算結果の概要

（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
上部胴 SUS316L	III ${ }_{\text {A }} \mathrm{S}$	22	142	P01＇－P02＇	22	214	P01＇－P02＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	26	228	P01＇－P02＇	26	343	P01＇－P02＇
	III ${ }_{\text {A }} \mathrm{S}$	19	92＊	P03＇－P04＇	19	139＊	P03＇－P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	148＊	P03＇－P04＇	28	223＊	P03＇－P04＇
中間胴 SUS316L	III ${ }_{\text {A }} \mathrm{S}$	22	92＊	P05＇－P06＇	22	139＊	P05＇－P06＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	31	148＊	P05＇－P06 ${ }^{\prime}$	31	223＊	P05＇－P06 ${ }^{\prime}$
	III ${ }_{\text {A }} \mathrm{S}$	46	142	P07＇－P08＇	46	214	P07＇－P08＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	71	228	P07＇－P08＇	71	343	P07＇－P08＇
	III ${ }_{\text {A }} \mathrm{S}$	46	92＊	P09＇－P10＇	46	139＊	P09＇－P10＇
	IV ${ }_{\text {A }} \mathrm{S}$	71	148＊	P09＇－P10＇	71	223＊	P09＇－P10＇
下部胴SUS316L	III ${ }_{\text {A }} \mathrm{S}$	56	92＊	P11＇－P12＇	56	139＊	P11＇－P12＇
	IV A S	82	148＊	P11＇－P12＇	82	$223 *$	P11＇－P12＇

注記 $*: ~$ 継手効率 回を乗じた値を示す。

表 1－1（2）計算結果の概要
（単位： MPa ）

部分及び材料	許容応力状態	支圧応力	
		平均支圧応力	許容応力
上部格子板支持面 SUS316L	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	4	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	5	210
炉心支持板支持面 SUS316L	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	1	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	1	210
上部サポート支持面 SUS316L	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	95	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	160	210

O 2 （3）VI－2－3－3－2－2 R 0

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。

σ_{t} ：周方向応力
σ_{e} ：軸方向応力
σ_{r} ：半径方向応力
τ_{t} ： ：せん断応力

$\tau_{\ell \mathrm{r}}$ ：せん断応力
H：水平力
M ：モーメント
V ：鉛直力

3．応力計算
3.1 応力評価点

応力評価点の位置を図 $1-1$ に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）b．に定めるとおりである。

3．2．2 計算方法

（1）一次一般膜応力
差圧 P による一次一般膜応力は，次式で求める。

$$
\sigma_{\mathrm{t}}=\frac{1}{\mathrm{Y}-1} \cdot \mathrm{P}
$$

$$
\sigma_{e}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

$$
\sigma_{\mathrm{r}}=-\frac{1}{\mathrm{Y}+1} \cdot \mathrm{P}
$$

ここで， $\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}$
（2）一次一般膜＋一次曲げ応力
差圧による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

3.3 外荷重による応力

3．3．1 荷重条件（L04，L14 及び L16）外荷重を「応力解析の方針」の表4－1（1）に示す。

3．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{D}_{\mathrm{o}}}{2} \\
& \tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{~A}}
\end{aligned}
$$

（2）一次一般膜 + 一次曲げ応力
外荷重による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

5．特別な応力の評価
5.1 支圧応力の評価

炉心シュラウドの上部格子板支持面及び炉心支持板支持面には，それぞれの鉛直力 により支圧応力が生じ，炉心シュラウドの上部サポート支持面には炉心シュラウド支持ロッドの軸力による支圧応力が発生するため，支圧応力の評価を行う。

5．1．1 支圧面積（図 5－1 参照）
（1）上部格子板支持面
上部格子板支持面の支圧荷重を受ける面積は，以下のとおりである。

（2）炉心支持板支持面炉心支持板支持面の支圧荷重を受ける面積は，以下のとおりである。

（3）上部サポート支持面
上部サポート支持面の支圧荷重を受ける面積は，以下のとおりである。

5．1．2 支圧荷重
各許容応力状態における上部格子板支持面，炉心支持板支持面及び上部サポー ト支持面に作用する鉛直力を「応力解析の方針」の表 4－1（1）（荷重作用点G，H及びJ）に示す。

5．1．3 平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次式で求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

5．1．4 支圧応力の評価
各許容応力状態における評価を表5－1に示す。
表 5－1 より，各許容応力状態の平均支圧応力は，「応力解析の方針」の 3．4節に示す許容応力を満足する。

注記＊：上部格子板の接触幅
a．上部格子板

b．炉心支持板

図5－1（1）支圧荷重の支持面（単位：mm）

c．上部サポート

図 5－1（2）支圧荷重の支持面（単位：mm）

表3－1 断面性状

応力評価点	D_{o} (mm)	D_{i} (mm)	A $\left(\mathrm{mm}^{2}\right)$	I $\left(\mathrm{mm}^{4}\right)$
$\mathrm{P} 01, \mathrm{P} 02$				
$\mathrm{P} 03, \mathrm{P} 04$				
$\mathrm{P} 05, \mathrm{P} 06$				
$\mathrm{P} 07, \mathrm{P} 08$				
$\mathrm{P} 09, \mathrm{P} 10$				
$\mathrm{P} 11, \mathrm{P} 12$				

表4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	142	22	228
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	142	26	228
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	16	92＊	24	148＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	19	92＊	28	148＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	17	92＊	25	148＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	22	92＊	31	148＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	40	142	65	228
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	46	142	71	228
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	40	92＊	65	148＊
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	46	92＊	71	148＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	44	92＊	68	148＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	56	92＊	82	148＊

注記＊：継手効率
を乗じた値を示す。

表4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	214	22	343
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	214	26	343
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	16	139＊	24	223＊
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	19	139＊	28	223＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	17	139＊	25	$223 *$
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	22	139＊	31	$223 *$
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	40	214	65	343
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	46	214	71	343
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	40	139＊	65	$223 *$
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	46	139＊	71	223＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	44	139＊	68	223 ＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	56	139＊	82	223＊
注記 $*$ ：継手効率		を乗じた値を示す。		

	（単位：MPa）		
応力評価面	許容応力状態	平均支圧応力	許容応力
上部格子板 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	4	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	5	210

表 5－1（2）支圧応力の評価

応力評価面	許容応力状態	平均支圧応力	許容応力
炉心支持板 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	1	157
	IV	AS	1

表 5－1（3）支圧応力の評価
（単位：MPa）

		（単位：MPa）	
応力評価面	許容応力状態	平均支圧応力	許容応力
上部サポート 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	95	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	160	210

> VI-2-3-3-2-3 シュラウドサポートの耐震性についての計算書
1．一般事項 1
1.1 記号の説明 1
1．2 形状•寸法•材料 2
1.3 解析範囲 2
1．4 計算結果の概要 2
2．計算条件 6
2.1 設計条件 6
2.2 運転条件 6
2． 3 材料 6
2.4 荷重の組合せ及び許容応力状態 6
2.5 荷重の組合せ及び応力評価 6
2.6 許容応力 6
2.7 応力の記号と方向 6
3．応力計算 7
3.1 応力評価点 7
3.2 差圧による応力 7
3.3 外荷重による応力 7
3．3．1 シュラウドサポート全体に作用する外荷重 7
3．3．2 支持ロッドから作用する荷重 7
3.4 応力の評価 9
4．応力強さの評価 9
4.1 一次一般膜応力強さの評価 9
4.2 一次一般膜 + 一次曲げ応力強さの評価 9
5．特別な応力の評価 10
5.1 軸圧縮荷重による座屈に対する評価 10
5.2 支圧応力の評価 13

図表目次

図 1－1 形状•寸法•材料•応力評価点 3
図 3－1 応力計算のモデル 14
図 3－2 支持ロッドから作用する荷重による応力の計算モデル 15
図 5－1 支圧荷重の支持面 16
表 1－1 計算結果の概要 4
表 4－1 一次一般膜応力強さの評価のまとめ 17
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 18
表 5－1 座屈に対する評価 19
表 5－2 支圧応力の評価 19

1．一般事項
本計算書は，シュラウドサポートの応力計算について示すものである。
シュラウドサポートは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

シュラウドサポートは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注：以下，シュラウドサポートレグ，シュラウドサポートシリンダ，シュラウドサポ ートプレート，炉心シュラウド下部胴及び炉心シュラウド支持ロッドを，それぞ れ「レグ」，「シリンダ」，「プレート」，「下部胴」及び「支持ロッド」とい う。

1.1 記号の説明

記号の説明を「応力解析の方針」の2．4節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	レグ1本当たりの断面積	mm^{2}
B	レグの幅	mm
C	部材両端の拘束条件に対する座屈長さの係数	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
f c	許容応力 設計•建設規格 SSB－3121．1（3）に定める値	MPa
I	座屈軸についての断面二次モーメント	mm^{4}
W	支持ロッドから作用する荷重	N
$c \sim e$	支圧面積の計算に用いる寸法	mm
i	座屈軸についての断面二次半径	mm
l	レグの長さ	mm
ℓ_{k}	座屈長さ	mm
T	レグの板厚	mm
Λ	限界細長比	－
λ	有効細長比	－
v	設計•建設規格 SSB－3121．1（3）a．に定める v	－
A_{C}	支圧面積	mm^{2}
σ c	平均支圧応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1． 4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目 し，各部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－3－2－3 R 0

表 1－1（1）計算結果の概要
（単位： MPa ）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面
レグ	III ${ }_{\text {A }} \mathrm{S}$	167	221＊	P01－P02	167	332＊	P01－P02
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	251	300＊	P01－P02	251	450＊	P01－P02
シリンダ	III $_{\text {A }} \mathrm{S}$	75	246	P07－P08	75	369	P07－P08
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	115	334	P07－P08	115	501	P07－P08
プレート	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	76	246	P15＇－P16＇	127	332＊	P17－P18
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	130	334	P15＇－P16＇	210	450＊	P17－P18
下部胴	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	101	128＊	P19－P20	101	193＊	P19－P20
SUS316L	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	160	205＊	P19－P20	160	308＊	P19－P20

注記＊：継手効率 字を乗じた値を示す。

O 2 （3）VI－2－3－3－2－3 R 0

表1－1（2）計算結果の概要

（単位：MPa）			
部分及び材料	許容応力状態	座屈に対する評価	
	レグ	圧縮応力	許容応力
NCF600－P	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	118	198
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	189	209

表1－1（3）計算結果の概要

（単位：MPa）			
部分及び材料	許容応力状態	支圧応力の評価	
		平均支圧応力	許容応力
プレートのトグル支持面 NCF600－P	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	134	291
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	227	388

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の4．1節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の3．4節に示す。
溶接部の継手効率を「応力解析の方針」の3．6節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
σ t ：周方向応力
σ_{ℓ} ：軸方向応力
σ_{r} ：半径方向応力
$\tau_{\text {te }}$ ：せん断応力
$\tau_{\ell r}$ ：せん断応力
τ_{rt} ：せん断応力

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。

3．2 差圧による応力
（1）荷重条件（L02）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）a．に定 めるとおりである。
（2）計算方法
差圧による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「S T A X」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要について は，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図3－1に示す。

3.3 外荷重による応力

3．3．1 シュラウドサポート全体に作用する外荷重
（1）荷重条件（L04，L14及びL16）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
軸対称荷重（鉛直力 $V_{1}, ~ V_{2}$ 及び V_{3} ）による応力の計算は，二次元軸対称の有限要素 でモデル化し，計算機コード「S T A X 」により行う。非軸対称荷重（水平力 H及びモ ーメントM）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コー ド「A S H S D」により行う。

応力計算のモデル及び仮定した境界条件（拘束条件）を図3－1に示す。
また，プレートより上の部位について，水平力によるせん断応力の計算は，計算機コード「 P I P E 」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．3．2 支持ロッドから作用する荷重

（1）荷重条件（L02，L14及びL16）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
支持ロッドから作用する荷重による応力の計算は，以下の式で算出する。
支持ロッドから作用する荷重は，プレートを垂直上方に引っ張る荷重であるが，荷重が作用する位置の周辺は，図 3－2 に示すように原子炉圧力容器やシリンダ等で拘束されており，支持ロッドを中心とした円板を仮定することで支持ロッド近傍に発生する応力と拘束され た位置での応力を求める。

具体的には，外周固定，内周に輪形荷重が作用する円板モデルを仮定し，その内部に発生 する応力を計算する。
計算式は，「応力解析の方針」の引用文献（1）のA4 の表 26 のNo． 10 式による。この計算式において，支持ロッドの穴の周辺部については，円板モデルの内周に発生する応力を適用 し，原子炉圧力容器で拘束されている部分については，円板モデルの外周に発生する応力を適用する。

応力を求める計算式を以下に示す。なお，計算式中の記号は，図 3－2 に示すとおりである。

支持ロッドの穴の周辺部

$$
\begin{aligned}
& \sigma_{\mathrm{t}}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\left\{2 \cdot(1+v) \cdot\left(\mathrm{X}+\ln \frac{\mathrm{a}}{\mathrm{~b}}\right)-(1-v) \cdot\left(1-\mathrm{Y} \cdot \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right\} \\
& \sigma_{\ell}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\left\{2 \cdot(1+v) \cdot\left(\mathrm{X}+\ln \frac{\mathrm{a}}{\mathrm{~b}}\right)+(1-v) \cdot\left(1-\mathrm{Y} \cdot \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right\}
\end{aligned}
$$

原子炉圧力容器で拘束されている部分

$$
\begin{aligned}
& \sigma_{\mathrm{t}}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\{2 \cdot(1+v) \cdot \mathrm{X}+(1-v) \cdot(1-\mathrm{Y})\} \\
& \sigma_{\ell}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\{2 \cdot(1+v) \cdot \mathrm{X}-(1-v) \cdot(1-\mathrm{Y})\}
\end{aligned}
$$

応力式の複号は，上がプレート上面，下がプレート下面を表す。
ここで，

$$
\begin{aligned}
\mathrm{X}=- & \frac{1}{2} \cdot \frac{\mathrm{a}^{2}}{(1-v) \cdot \mathrm{a}^{2}+(1+v) \cdot \mathrm{b}^{2}} \\
& \cdot\left\{2 \cdot(1+v) \cdot \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \cdot \ln \frac{\mathrm{a}}{\mathrm{~b}}+(1-v) \cdot\left(1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}\right)\right\}
\end{aligned}
$$

$$
\mathrm{Y}=-\frac{2 \cdot \mathrm{~b}^{2}}{(1-v) \cdot \mathrm{a}^{2}+(1+v) \cdot \mathrm{b}^{2}} \cdot\left\{(1+v) \cdot \ln \frac{\mathrm{a}}{\mathrm{~b}}-1\right\}
$$

v ：ポアソン比（ $~ \square ~$
また，せん断応力は，次式で求める。
支持ロッドの穴の周辺部

$$
\tau_{\mathrm{r} t}=\frac{\mathrm{W}}{2 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{t}}
$$

原子炉圧力容器で拘束されている部分

$$
\tau_{\ell r}=\frac{\mathrm{W}}{2 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{t}}
$$

上記の方法で求めた応力を一次応力として用いる。

3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価

4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の3．4節及び 3.6節に示す許容応力を満足する。
4.2 一次一般膜＋一次曲げ応力強さの評価

各許容応力状態における評価を表4－2に示す。
表4－2より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の3．4節及び3．6節に示す許容応力を満足する。

5．特別な応力の評価
5.1 軸圧縮荷重による座屈に対する評価

レグには，シュラウドサポートに作用する鉛直力及びモーメントにより，圧縮応力が生じる。
したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
a．座屈長さ $\quad \ell_{\mathrm{k}}$

$$
\begin{aligned}
& \ell_{\mathrm{k}}=\mathrm{C} \cdot \ell=0.7 \times \square=\square \mathrm{mm} \\
& \text { ここで, } \quad \mathrm{C}=0.7 \\
& \quad \ell: \text { レグの長さ }=\square \mathrm{mm}
\end{aligned}
$$

b．座屈軸についての断面二次半径 i

ここで，I：座屈軸についての断面二次モーメント

A：レグ 1 本当たりの断面積

c．有効細長比 λ

（2）荷重
シュラウドサポートに作用する鉛直力及びモーメントを「応力解析の方針」の4．2節に示す。
（3）圧縮応力
各許容応力状態においてレグに発生する圧縮応力を表5－1に示す。
レグに発生する圧縮応力は，応力評価面P03’－P04’ での一次一般膜応力（ σ e）を示す。
（4）許容応力
各許容応力状態における許容応力の計算は，設計•建設規格 SSB－3121を準用して計算す る。
a．許容応力状態 III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ における許容応力度 F は，以下の 3 つの値のうち小さい方を用 いる。

1． $35 \cdot \mathrm{~S}_{\mathrm{y}}=262 \mathrm{MPa}$${ }^{\circ} \mathrm{C}$ における値）
$0.7 \cdot \mathrm{~S}_{\mathrm{u}}=350 \mathrm{MPa}$

DCにおける値） $\mathrm{S}_{\mathrm{y}}=245 \mathrm{MPa}$ における値）

したがって，許容応力度 $\mathrm{F}=245 \mathrm{MPa}$ とする。
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ における許容応力 f cは，次のように得られる。

限界細長比：$\Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}}}=\sqrt{\frac{\pi^{2} \times \square}{0.6 \times 245}}=\square$

ここで， E ：縦弾性係数 $=$ \square MPa

ゆえに，$\lambda<\Lambda$ なので f c は，

$$
\mathrm{f}_{\mathrm{c}}=1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}}{v}
$$

$$
\left.=1.5 \times\{1-0.4 \times \square)^{2}\right\} \times \frac{245}{\square}=198 \mathrm{MPa}
$$

ここで，

$$
v=1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}=1.5+\frac{2}{3} \times \square
$$

b．許容応力状態 $I V_{\mathrm{A}} \mathrm{S}$
許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ における許容応力度 F ＊は，以下の 3 つの値のうち小さい方を用いる。
$1.35 \cdot \mathrm{~S}_{\mathrm{y}}=262 \mathrm{MPa}$
$\square{ }^{\circ} \mathrm{C}$ における値）
$0.7 \cdot \mathrm{~S}_{\mathrm{u}}=350 \mathrm{MPa}$ ${ }^{\circ} \mathrm{C}$ における値）
$1.2 \cdot \mathrm{~S}_{\mathrm{y}}=294 \mathrm{MPa}$ における値）
したがって，許容応力度 $\mathrm{F}^{*}=262 \mathrm{MPa}$ とする。
許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ における許容応力 f 。は，次のように得られる。

$$
\text { 限界細長比: } \Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}^{*}}}=\sqrt{\frac{\pi^{2} \backslash}{0.6 \times 262}} \square
$$

ここで， E ：縱弾性係数 $=~ \square \mathrm{MPa} \quad \square{ }^{\circ} \mathrm{C}$ における値）
ゆえに，$\lambda<\Lambda$ なので f 。は，

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}} & =1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}^{*}}{v} \\
& =1.5 \times\left\{1-0.4 \times()^{2}\right\} \times 262=209 \mathrm{MPa}
\end{aligned}
$$

ここで，

$$
v=1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}=1.5+\frac{2}{3} \times \square
$$

（5）軸圧縮荷重による座屈に対する評価
各許容応力状態における軸圧縮荷重による座屈に対する評価を表5－1に示す。
表5－1より，各許容応力状態における圧縮応力は，許容応力を満足するため，座屈は発生し ない。

5.2 支圧応力の評価

プレートには，図 5－1 に示すように支持ロッドから作用する鉛直力により，プレートと支持 ロッドのトグルとの接触面に支圧応力が生じる。したがって，この荷重により発生する支圧応力の評価を行う。
（1）計算データ
a．支圧面積 A_{C}

（2）荷重
プレートに支持ロッドから作用する鉛直力を「応力解析の方針」の4．2節に示す。

3）平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次のようにして求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{W}}{\mathrm{Ac}}
$$

（4）支圧応力の評価
各許容応力状態における評価を表5－2に示す。
表5－2より，各許容応力状態における平均支圧応力は，「応力解析の方針」の 3.4 節に示す許容応力を満足する。

図3－1 応力計算のモデル

（外周固定の円板モデル）

図3－2 支持ロッドから作用する荷重による応力の計算モデル

支持ロッドのトグル

図5－1 支圧荷重の支持面

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	167	221^{*}	251	300 ＊
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	102	$221 *$	186	300 ＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	143	246	217	334
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	88	246	161	334
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	57	246	87	334
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	41	246	71	334
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	75	246	115	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	55	246	95	334
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	63	246	96	334
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	41	246	74	334
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	55	$221 *$	91	300 ＊
$\begin{aligned} & \hline \text { P11' } \\ & \text { P12 } \end{aligned}$	55	221^{*}	91	300 ＊
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	56	246	86	334
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	44	246	74	334
$\begin{aligned} & \hline \text { P15 } \\ & \text { P16 } \end{aligned}$	69	246	122	334
$\begin{aligned} & \hline \text { P15 } \\ & \text { P16 } \end{aligned}$	76	246	130	334
$\begin{aligned} & \text { P17 } \\ & \text { P18 } \end{aligned}$	45	$221 *$	83	300 ＊
$\begin{aligned} & \hline \text { P17 } \\ & \text { P18 } \end{aligned}$	60	$221 *$	98	300 ＊
$\begin{aligned} & \text { P19 } \\ & \text { P20 } \end{aligned}$	101	128＊	160	205^{*}
$\begin{aligned} & \hline \text { P19' } \\ & \text { P20' } \end{aligned}$	81	128＊	140	205^{*}

注記＊：継手効率 目を乗じた値を示す。

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

（単位：MPa）				
応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	167	$332 *$	251	450 ＊
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	102	332^{*}	186	450 ＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	143	369	217	501
$\begin{aligned} & \text { P03' } \\ & \text { P04' } \end{aligned}$	88	369	161	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	57	369	87	501
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	41	369	71	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	75	369	115	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	55	369	95	501
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	63	369	96	501
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	41	369	74	501
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	55	$332 *$	91	450＊
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	55	$332 *$	91	450 ＊
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	56	369	86	501
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	44	369	74	501
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	69	369	122	501
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	76	369	130	501
$\begin{aligned} & \text { P17 } \\ & \text { P18 } \end{aligned}$	127	$332 *$	210	450 ＊
$\begin{aligned} & \hline \text { P17 } \\ & \text { P18 } \end{aligned}$	106	$332 *$	190	450 ＊
$\begin{aligned} & \text { P19 } \\ & \text { P20 } \end{aligned}$	101	193＊	160	308＊
$\begin{aligned} & \hline \text { P19' } \\ & \text { P20' } \end{aligned}$	81	193＊	140	308^{*}

注記＊：継手効率 \square を乗じた値を示す。

表5－1 座屈に対する評価
（単位：MPa）

応力評価面	許容応力状態	圧縮応力	許容応力
P03 ${ }^{\prime}$－P04 ${ }^{\prime}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	118	198
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	189	209

表5－2 支圧応力の評価
（単位：MPa）

評価部位	許容応力状態	平均支圧応力	竐： MPa ）
プレー応力			
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	134	291

VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 9
2.1 設計条件 9
2.2 運転条件 9
2．3 材料 9
2.4 荷重の組合せ及び許容応力状態 9
2.5 荷重の組合せ及び応力評価 9
2.6 許容応力 9
2.7 応力の記号と方向 9
3．応力計算 10
3.1 応力評価点 10
3.2 上部サポートの外荷重による応力 10
3．2．1 荷重条件 10
3．2．2 計算方法 10
3.3 上部タイロッド（P05～P08）の外荷重による応力 11
3．3．1 荷重条件 11
3．3．2 計算方法 11
3.4 上部タイロッド $(\mathrm{P} 13 \sim \mathrm{P} 16)$ ，下部タイロッド及びトグルクレビスの 外荷重による応力 12
3．4．1 荷重条件 12
3．4．2 計算方法 12
3.5 応力の評価 13
4．応力強さの評価 14
4.1 一次一般膜応力強さの評価 14
4.2 一次一般膜＋一次曲げ応力強さの評価 14
5．特別な応力の評価 15
5.1 せん断応力の評価 15
5．1．1 せん断面積 15
5．1．2 純せん断荷重 15
5．1．3 平均せん断応力 15
5．1．4 せん断応力の評価 15

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 7
表 3－1 断面性状 16
表 4－1 一次一般膜応力強さの評価のまとめ 17
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 18
表 5－1 せん断応力の評価 19
R 0

1．一般事項
本計算書は，炉心シュラウド支持ロッドの応力計算について示すものである。炉心シュラウド支持ロッドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価す る。

炉心シュラウド支持ロッドは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故緩和設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1． 1 記号の説明
記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D。	外径	mm
I	断面二次モーメント	mm^{4}
L	荷重作用点と応力評価断面との距離	mm
t	板厚	mm
b	六角断面の対面距離	mm
τ	平均せん断応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1． 4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

応力評価点
［ ］：材 料

図1－1（1）形状•寸法•材料•応力評価点（単位：mm）

図 1－1（2）形状•寸法•材料•応力評価点（単位：mm）

図 1－1（3）形状•寸法•材料•応力評価点（単位：mm）

C 部詳細

図 1－1（4）形状•寸法•材料•応力評価点（単位：mm）

$F-F$ 断面

$G-G$ 断面
（トグルクレビス）

D 部詳紐

［ ］：材 料

図 1－1（5）形状•寸法•材料•応力評価点（単位：mm）

表1－1（1）計算結果の概要

（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { 上部サポート } \\ \text { (タイプ 1) } \\ \text { NCF750 相当 } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	140	483	P01－P02	246	724	P01－P02
	IV A S	237	585	P01－P02	415	878	P01－P02
$\begin{aligned} & \text { 上部サポート } \\ & \text { (タイプ 2) } \\ & \text { NCF750 相当 } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	151	483	P03－P04	262	724	P03－P04
	IV ${ }_{\text {A }} \mathrm{S}$	254	585	P03－P04	443	878	P03－P04
上部タイロッド （タイプ 1） GXM1 相当	III ${ }_{\text {A }} \mathrm{S}$	169	303	P05－P06	242	454	P05－P06
	IV ${ }_{\text {A }} \mathrm{S}$	285	368	P05－P06	390	553	P05－P06
上部タイロッド （タイプ 2） GXM1 相当	III ${ }_{\text {A }} \mathrm{S}$	169	303	P07－P08	242	454	P07－P08
	IV A S	285	368	P07－P08	390	553	P07－P08
下部タイロッド NCF750 相当	III ${ }_{\text {A }} \mathrm{S}$	198	483	P09－P10	284	724	P09－P10
	IV ${ }_{\text {A }} \mathrm{S}$	335	585	P09－P10	417	878	P09－P10
トグルクレビス NCF750 相 当	III ${ }_{\text {A }} \mathrm{S}$	304	483	P11－P12	304	724	P11－P12
	IV ${ }_{\text {A }} \mathrm{S}$	515	585	P11－P12	515	878	P11－P12
上部タイロッド （タイプ 1 ） GXM1 相当	III ${ }_{\text {A }} \mathrm{S}$	137	303	P13－P14	190	454	P13－P14
	IV ${ }_{\text {A }} \mathrm{S}$	231	368	P13－P14	405	553	P13－P14
上部タイロッド （タイプ 2） GXM1 相当	III ${ }_{\text {A }} \mathrm{S}$	86	303	P15－P16	113	454	P15－P16
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	146	368	P15－P16	234	553	P15－P16

表 1－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	せん断応力	
		平均せん断応力	許容応力
トグルピン NCF750 相当	III $_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	386

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
2.7 応力の記号と方向応力の記号とその方向は，以下のとおりとする。

上部サポート
σ t ：周方向応力

σ e ：軸方向応力
σ r ：半径方向応力
$\tau \mathrm{te}$ ：せん断応力
H：水平力
M ：モーメント
V ：鉛直力

上部サポート以外

3．応力計算
3.1 応力評価点

応力評価点の位置を図 $1-1$ に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 上部サポートの外荷重による応力

3．2．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表 4－1（3） に示す。

3．2．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\tau_{\mathrm{t} \ell}=\frac{\mathrm{V}}{\mathrm{A}}$
（2）一次一般膜 + 一次曲げ応力
外荷重による一次一般膜＋一次曲げ応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V} \cdot \mathrm{L}}{2 \cdot \mathrm{I}} \cdot \frac{\mathrm{t}}{2}$
$\tau_{t e}=\frac{V}{A}$
3.3 上部タイロッド（P05～P08）の外荷重による応力

3．3．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表 4－1（3） に示す。

3．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}$
$\tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力外荷重による一次一般膜＋一次曲げ応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{~b}}{2 \cdot \cos \square}
$$

$$
\tau_{\mathrm{t}}=\frac{\mathrm{H}}{\mathrm{~A}}
$$

3.4 上部タイロッド（P13～P16），下部タイロッド及びトグルクレビスの外荷重による応力

3．4．1 荷重条件（L02，L04，L14及びL16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」の表4－1（3） に示す。

3．4．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}$
$\tau_{t}=\frac{\mathrm{H}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜十一次曲げ応力は，次式で求める。なおトグルクレ ビスについては，外荷重による一次一般膜＋一次曲げ応力は，一次一般膜応力 と同じである。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{D}}{\mathrm{o}}{ }_{2}^{2}$
$\tau_{\mathrm{t}} \ell=\frac{\mathrm{H}}{\mathrm{A}}$

3.5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価各許容応力状態における評価を表4－1に示す。

表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節 に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節に示す許容応力を満足する。

5．特別な応力の評価
炉心シュラウド支持ロッドの軸力により，トグルピンにはせん断応力が生じる。こ れについて，せん断応力の評価を行う。
5.1 せん断応力の評価

5．1．1 せん断面積
（1）トグルピン（図 $1-1$（5）参照）
トグルピンが鉛直荷重を受けるせん断面積は次のようになる。

5．1．2 純せん断荷重
各許容応力状態におけるトグルピンに作用する鉛直力を「応力解析の方針」の表 4－1（3）に示す。

5．1．3 平均せん断応力平均せん断応力 τ は，次式によって求める。

$$
\tau=\frac{\mathrm{H}}{\mathrm{~A}}
$$

5．1．4 せん断応力の評価
各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の平均せん断応力は，「応力解析の方針」の3．4節 に示す許容応力を満足する。

表3－1 断面性状

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	140	483	237	585
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	124	483	221	585
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	151	483	254	585
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	131	483	234	585
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	198	483	335	585
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	176	483	313	585
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	304	483	515	585
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	268	483	479	585
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	137	303	231	368
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	120	303	215	368
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	86	303	146	368
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	76	303	136	368

表4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	246	724	415	878
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	217	724	386	878
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	262	724	443	878
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	229	724	410	878
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	284	724	417	878
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	262	724	395	878
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	304	724	515	878
$\begin{aligned} & \hline \text { P11' } \\ & \text { P12 } \end{aligned}$	268	724	479	878
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	190	454	405	553
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	174	454	389	553
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	113	454	234	553
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	103	454	223	553

表5－1 せん断応力の評価
（単位：MPa）

応力評価面	許容応力状態	平均せん断応力	許容応力
トグルピン	III $_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	368

VI－2－3－3－2－5 上部格子板の耐震性についての計算書
1．一般事項 1
1.1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
2.7 応力の記号と方向 4
3．応力計算 5
3.1 応力評価点 5
3.2 差圧による応力 5
3．2．1 荷重条件 5
3．2．2 計算方法 5
3.3 外荷重による応力 6
3．3．1 荷重条件 6
3．3．2 計算方法 6
3.4 応力の評価 7
4．応力強さの評価 8
4.1 一次一般膜応力強さの評価 8
4.2 一次一般膜十一次曲げ応力強さの評価 8

図表目次
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 応力計算モデル 9
表 1－1 計算結果の概要 3
表 3－1 断面性状 10
表 4－1 一次一般膜応力強さの評価のまとめ 11
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 12

1．一般事項
本計算書は，上部格子板の応力計算について示すものである。
上部格子板は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

上部格子板は，設計基準対象施設においてSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
1.1 記号の説明

記号の説明を，「応力解析の方針」の2．4節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
a	グリッドプレートの高さ	mm
b	グリッドプレート下溝の高さ	mm
c	グリッドプレート上溝の高さ	mm
d	グリッドプレートの高さ	mm
e	グリッドプレート切欠きの高さ	mm
h	グリッドプレートの板厚	mm
L	グリッドプレート13スパンの長さ	mm
ℓ	グリッドプレート1スパンの長さ	mm
Z	断面係数	mm^{3}

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1.3 解析範囲

解析範囲を図1－1に示す。

1．4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図 1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－3－2－5 R 0

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価点	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { グリッドプレート } \\ \text { SUS316L } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	8	142	P01	93	214	P01
	IV ${ }_{\text {A }} \mathrm{S}$	14	228	P01	150	343	P01
	III $_{\text {A }} \mathrm{S}$	8	142	P02	93	214	P02
	IV ${ }_{\text {A }} \mathrm{S}$	14	228	P02	150	343	P02

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

2．7 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。
なお，主応力の算出は，「応力解析の方針」の5．3．1項に示される式において， $\sigma_{\mathrm{t}}, \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{rt}}$ をそれぞれ $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}, \tau_{\mathrm{x}}^{\mathrm{y}}, \tau_{\mathrm{yz}}, \tau_{\mathrm{zx}}$ に添字を置き換えて求める。

$\sigma \mathrm{x}$ ： x 方向応力
σ_{y} ：y 方向応力
$\sigma_{z}: ~ z ~$ 方向応力
$\tau \mathrm{xy}$ ：せん断応力
τ_{yz} ：せん断応力
τ_{zx} ：せん断応力

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」の参照図書（1）a．に定めるとおりで ある。

3．2．2 計算方法
差圧 P_{34} による応力は，次式で求められる。なお，計算は，最大応力の発生する最長の グリッドプレートについて行う。計算モデルを図3－1に示す。
（1）一次応力
a．差圧 P_{34} による荷重

$$
\mathrm{W}_{\mathrm{P}}=-\mathrm{P}_{34} \cdot \mathrm{~h} \cdot \mathrm{~L}
$$

b．端部におけるモーメント
$\stackrel{\sim}{\circ}$

$$
\mathrm{M}=\frac{\mathrm{W}_{\mathrm{P}} \cdot \mathrm{~L}}{12}
$$

c．曲げ応力

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}}{\mathrm{Z}_{1}}
$$

d．せん断応力

$$
\tau_{\mathrm{zx}}=\frac{\mathrm{W}_{\mathrm{P}}}{2 \cdot \mathrm{~A}}
$$

3．3 外荷重による応力

3．3．1 荷重条件（L04，L14及びL16）
外荷重を「応力解析の方針」の表 4－1（4）に示す。

3．3．2 計算方法
外荷重による応力は，以下により求める。応力計算モデルを図 3－1に示す。
（1）一次応力
a．鉛直方向荷重による応力
（a）グリッドプレートの端部における鉛直方向荷重

$$
\mathrm{W}_{\mathrm{v}}=13 \cdot \mathrm{~V}
$$

（b）グリッドプレートの端部におけるモーメント

$$
M_{v}=\frac{W_{v} \cdot L}{12}
$$

（c）曲げ応力

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{v}}}{\mathrm{Z}_{1}}
$$

（d）せん断応力
$\tau_{\mathrm{zx}}=\frac{\mathrm{W}_{\mathrm{V}}}{2 \cdot \mathrm{~A}}$
b．水平方向荷重による応力
（a）格子1個当たりの水平方向荷重

（b）格子の端部におけるモーメント

$$
\mathrm{M}_{\mathrm{H}}=\frac{\mathrm{W}_{\mathrm{H}} \cdot 1}{12}
$$

（c）曲げ応力

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{H}}}{\mathrm{Z}_{2}}
$$

（d）せん断応力
$\tau_{\mathrm{zx}}=\frac{\mathrm{W}_{\mathrm{H}}}{2 \cdot \mathrm{~A}}$

3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6節に示す許容応力を満足する。

4．2 一次一般膜十一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜十一次曲げ応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。

表 3－1 断面性状

応力評価点	a (mm)	h (mm)	A $\left(\mathrm{mm}^{2}\right)$	$\mathrm{Z}_{1}{ }^{* 1}$ $\left(\mathrm{~mm}^{3}\right)$	$\mathrm{Z}_{2}{ }^{* 2}$ $\left(\mathrm{~mm}^{3}\right)$
P01，P02					

注記＊1 ：グリッドプレートの y 軸まわりの断面係数
＊ 2 ：グリッドプレートの z 軸まわりの断面係数

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	8	142	14	228
P01＇	8	142	13	228
P02	8	142	14	228
P02，	8	142	13	228

表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	93	214	150	343
P01＇	77	214	134	343
P02	93	214	150	343
P02＇	77	214	134	343

VI－2－3－3－2－6 炉心支持板の耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状• 寸法•材料 2
1．3 解析範囲 2
1．4 計算結果の概要 2
2．計算条件 7
2．1 設計条件 7
2.2 運転条件 7
2． 3 材料 7
2.4 荷重の組合せ及び許容応力状態 7
2.5 荷重の組合せ及び応力評価 7
2.6 許容応力 7
2.7 応力の記号と方向 8
3．応力計算 9
3.1 応力評価点 9
3.2 差圧による応力 9
3．2．1 荷重条件 9
3．2．2 計算方法 9
3.3 外荷重による応力 12
3．3．1 荷重条件 12
3．3．2 計算方法 12
3.4 応力の評価 14
4．応力強さの評価 15
4.1 一次一般膜応力強さの評価 15
4.2 一次一般膜 + 一次曲げ応力強さの評価 15
図 1－1 形状•寸法•材料•応力評価点 3
図 3－1 補強ビームの応力計算モデル 16
図 3－2 支持板の応力計算モデル 18
表 1－1 計算結果の概要 6
表 3－1 断面性状 20
表 4－1 一次一般膜応力強さの評価のまとめ 21
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 22

1．一般事項
本計算書は，炉心支持板の応力計算について示すものである。
炉心支持板は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

炉心支持板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備にお いては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1． 1 記号の説明

記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
a i	補強ビーム長さ	mm
b e	等価幅	mm
D	制御棒案内管用穴径	mm
e 0	中立軸からの距離	mm
e 0^{\prime}	中立軸からの距離	mm
e 1	中立軸からの距離	mm
e ${ }_{1}{ }^{\prime}$	中立軸からの距離	mm
h c	支持板の板厚	mm
h o	補強ビーム高さ	mm
h_{1}	補強ビーム高さ	mm
I 0	断面二次モーメント	mm^{4}
I_{1}	断面二次モーメント	mm^{4}
I 2	断面二次モーメント	mm^{4}
I 3	断面二次モーメント	mm^{4}
I_{A}	断面二次モーメント	mm^{4}
$I_{\text {B }}$	断面二次モーメント	mm^{4}
ℓ_{i}	補強ビームの長さ	mm
ℓ_{p}	補強ビーム 1 スパン当たりの長さ	mm
t	補強ビーム板厚	mm

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

生1：各補強ビームの寸法を図1－1（3）に示す。
注2：B部の詳細は図1－1（2）参照。

図1－1（1）形状•寸法•材料•応力評価点

：応力評価点

図 1－1（2）形状•寸法•材料•応力評価点

各補強ビームのa1，も1 の寸法（単位：mm）

ビームNo.	ai	$\ell \mathbf{i}$
補強ビームNo． 1		
補強ビームNo． 2		
補強ビームNo． 3		
補強ビームNo． 4		
補強ビームNo． 5		
補強ビームNo． 6		

（単位：mm）
図 1－1（3）形状•寸法•材料•応力評価点

表1－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価点	応力強さ	許容応力	応力評価点
補強ビーム SUS316	III ${ }_{\text {A }} \mathrm{S}$	12	116＊	P03	60	268	P01 ${ }^{\text {，}}$
	IV $\mathrm{A}_{\text {S }}$	13	185＊	P03	61	427	P01 ${ }^{\text {，}}$
支持板 SUS316	III ${ }_{\text {A }} \mathrm{S}$	31	178	P07	142	268	P07，
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	50	284	P07	214	427	P07，

注記＊：継手効率 を乗じた値を示す。

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
なお，主応力の算出は，「応力解析の方針」の5．3．1項に示される式において，$\sigma \mathrm{t}$ ，
 を置き換えて求める。

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」の参照図書（1）a．に定めるとおりで ある。

3．2．2 計算方法

（1）補強ビーム
a．差圧による荷重
補強ビームの荷重計算モデルを図 3－1 に示す。
差圧による単位長さ当たりの分布荷重 W_{1} は，次式で求める。

$$
\mathrm{W}_{1}=\mathrm{P}_{13} \cdot \frac{2}{\ell_{\mathrm{p}}} \cdot\left(\ell_{\mathrm{p}}^{2}-\frac{\pi}{4} \cdot \mathrm{D}^{2}\right)
$$

b．曲げ応力（一次応力）
図 3－1 に示す補強ビームの荷重計算モデルにより荷重を求め，図 3－1 に示 す補強ビームの応力計算モデルにより曲げ応力を求める。ここで，断面二次モ ーメント I_{0} ，I_{1} は，支持板を穴の部分の面積を除いたものと等しい面積を持 つ穴のない帯状の板に置き換えて計算する。穴としては，制御棒案内管の入る穴及び中性子束計測案内管の入る穴を考慮する。
（a） $0 \leqq x \leqq$ li のとき
イ．モーメント

$$
\mathrm{M}=\frac{\mathrm{W}_{1}}{2} \cdot\left(\mathrm{a}_{\mathrm{i}}{ }^{2}-\mathrm{x}^{2}\right)
$$

ロ．曲げ応力

$$
\begin{array}{ll}
\sigma_{\mathrm{x}}=-\frac{\mathrm{M}}{\mathrm{I}_{1}} \cdot \mathrm{e}_{1} & (\text { 補強ビームの下端 }) \\
\sigma_{\mathrm{x}}=\frac{\mathrm{M}}{\mathrm{I}_{1}} \cdot \mathrm{e}_{1}^{\prime} & (\text { 補強ビームの上端 })
\end{array}
$$

（b）$\quad \ell_{\mathrm{i}} \leqq \mathrm{x} \leqq \mathrm{a}_{\mathrm{i}}$ のとき
イ．モーメント

$$
\mathrm{M}=\frac{\mathrm{W}_{1}}{2} \cdot\left(\mathrm{a}_{\mathrm{i}}{ }^{2}-\mathrm{x}^{2}\right)
$$

口．曲げ応力

$$
\begin{array}{ll}
\sigma_{\mathrm{x}}=-\frac{\mathrm{M}_{0}}{\mathrm{I}_{0}} \cdot \mathrm{e}_{0} & (\text { 補強ビームの下端 }) \\
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{0}}{\mathrm{I}_{0}} \cdot \mathrm{e}_{0}^{\prime} & (\text { 補強ビームの上端 })
\end{array}
$$

ここで， I_{1} ：I I_{1} 部の断面二次モーメント
I o ：I o 部の断面二次モーメント
c．せん断応力（一次一般膜応力）
補強ビームの固定端でせん断力は最大となり，補強ビームの中央でせん断力は 0 となる。

補強ビームの固定端におけるせん断応力は次式で求める。

$$
\tau_{z x}=\frac{\mathrm{F}}{\mathrm{~A}_{0}}
$$

ここで，F：固定端におけるせん断力

$$
\mathrm{F}=\mathrm{W}_{1} \cdot \mathrm{a}_{\mathrm{i}}
$$

A_{0} ：固定端の断面積

$$
\mathrm{A}_{0}=\mathrm{b}_{\mathrm{e}} \cdot \mathrm{~h}_{\mathrm{c}}+\mathrm{h}_{0} \cdot \mathrm{t}
$$

（2）支持板
a．差圧による荷重
支持板の荷重計算モデルを図3－2 に示す。
差圧による単位長さ当たりの分布荷重 W_{2} は，次式で求める。

$$
\mathrm{W}_{2}=\mathrm{P}_{13} \cdot \frac{1}{\ell_{4}} \cdot\left(\ell_{4} \cdot \ell_{\mathrm{p}}-\frac{\pi}{4} \cdot \mathrm{D}^{2}\right)
$$

b．曲げ応力（一次応力）
図 3－2 に示す支持板の応力計算モデルにより曲げ応力を求める。
（a）モーメント

$$
\mathrm{M}=\mathrm{M}_{\mathrm{B}}-\mathrm{W}_{2} \cdot \ell_{4} \cdot \mathrm{y}+\frac{\mathrm{W}_{2}}{2} \cdot \mathrm{y}^{2}
$$

（b）曲げ応力
固定端における曲げ応力は，次式で求める。

$$
\begin{array}{ll}
\sigma_{y}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{2}} \cdot \frac{\mathrm{hc}}{2} & \text { (支持板の下面) } \\
\sigma_{\mathrm{y}}=-\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{2}} \cdot \frac{\mathrm{hc}}{2} & \text { (支持板の上面) }
\end{array}
$$

また， $\mathrm{y}=\square \mathrm{mm}$ における曲げ応力は，次式で求める。

$$
\begin{array}{ll}
\sigma_{\mathrm{y}}=\frac{\mathrm{M}(\mathrm{y} \square)}{\mathrm{I}_{3}} \cdot \frac{\mathrm{hc}}{2} & \text { (支持板の下面) } \\
\sigma_{\mathrm{y}}=-\frac{\mathrm{M}(\mathrm{y}=\square}{\mathrm{I}_{3}} \cdot \frac{\mathrm{~h} \mathrm{c}}{2} & \text { (支持板の上面) }
\end{array}
$$

ここで， M_{B} ：固定端モーメント

$$
\mathrm{M}_{\mathrm{B}}=\left[\frac{2 \cdot \ell_{4}^{3}-\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{3}}-1\right) \cdot\left(e_{3}^{3}-\ell_{2}^{3}-3 \cdot e_{2}^{3} \cdot \ell_{4}+3 \cdot \ell_{2}^{2} \cdot e_{4}\right)}{6 \cdot\left\{\ell_{4}+\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{3}}-1\right) \cdot\left(\ell_{3}-\ell_{2}\right)\right\}}\right] \cdot \mathrm{W}_{2}
$$

I_{2} ： I_{2} 部の断面二次モーメント
I_{3} ： I_{3} 部の断面二次モーメント
c．せん断応力（一次一般膜応力）
固定端におけるせん断応力は，次式で求める。

$$
\tau_{\mathrm{yz}}=\frac{\mathrm{W}_{2} \cdot \ell_{4}}{\mathrm{hc} \cdot \ell_{5}}
$$

$\mathrm{y}=\square \mathrm{mm}$ におけるせん断応力は，次式で求める。

$$
\tau_{\mathrm{yz}}=\frac{\mathrm{w}_{2}}{\mathrm{hc} \cdot \ell_{6}} \cdot\left(\ell_{4}-\square\right)
$$

3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（5）に示す。

3．3．2 計算方法
（1）補強ビーム
a．死荷重による単位長さ当たりの分布荷重
補強ビームの荷重計算モデルを図 3－1に示す。
死荷重による単位長さ当たりの分布荷重 W_{3} は，次式で求める。

$$
\mathrm{W}_{3}=\frac{\mathrm{V}_{1}}{\ell_{\mathrm{p}}}
$$

b．鉛直方向地震荷重による単位長さ当たりの分布荷重
補強ビームの荷重計算モデルを図 3－1 に示す。
鉛直方向地震荷重による単位長さ当たりの分布荷重 W_{4} は，次式で求める。

$$
\mathrm{W}_{4}=\frac{\mathrm{V}_{1}}{\ell_{\mathrm{p}}}
$$

c．曲げ応力及びせん断応力
3．2．2（1）項と同様にして求める。
（2）支持板
a．死荷重による単位長さ当たりの分布荷重
支持板の荷重計算モデルを図 3－2 に示す。
死荷重による単位長さ当たりの分布荷重 W_{5} は，次式で求める。

$$
\mathrm{W}_{5}=\frac{\mathrm{V}_{2}}{2 \cdot \ell_{4}}
$$

b．鉛直方向地震荷重による単位長さ当たりの分布荷重
支持板の荷重計算モデルを図3－2に示す。
鉛直方向地震荷重による単位長さ当たりの分布荷重W6は，次式で求める。

$$
\mathrm{W}_{6}=\frac{\mathrm{V}_{2}}{2 \cdot \ell_{4}}
$$

c．水平方向地震荷重による荷重
図 3－2 に示す 1 本の制御棒案内管が支持板に与える水平方向地震荷重 H_{p} は，次 の値を用いる。

ここで，Hは水平方向地震荷重で，「応力解析の方針」の表 4－1（5）に示すとおり である。
d．曲げ応力及びせん断応力
（a）鉛直方向荷重（死荷重及び鉛直方向地震荷重）
3．2．2（2）項と同様にして求める。
（b）水平方向地震荷重
図 3－2 に示す支持板の応力計算モデルにより曲げ応力を求める。
イ．モーメント
固定端におけるモーメント M_{A}

口．引張応力（一次一般膜応力）
固定端における引張応力

$$
\sigma_{\mathrm{y}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{5}}
$$

$\mathrm{y}=\square \mathrm{mm}$ における引張応力

$$
\sigma_{\mathrm{y}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{6}}
$$

八．曲げ応力（一次応力）
固定端における曲げ応力

$$
\sigma_{y}=\frac{M_{A}}{I_{A}} \cdot \frac{\ell_{5}}{2}
$$

$\sigma_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{B}}} \cdot \frac{\ell_{6}}{2}$

ここで， $\mathrm{I}_{\mathrm{A}}: \mathrm{I}_{\mathrm{A}}$ 部の断面二次モーメント
I в：I B 部の断面二次モーメント

二．せん断応力（一次一般膜応力）
固定端におけるせん断応力

$$
\tau_{\mathrm{xy}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{5}}
$$

$$
\begin{gathered}
\mathrm{y}=\square \mathrm{mm} \text { におけるせん断応力 } \\
\tau_{\mathrm{xy}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{6}}
\end{gathered}
$$

3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

（単位：mm）
図3－1（1）補強ビームの応力計算モデル

（単位：mm）

図 3－1（2）補強ビームの応力計算モデル

注記＊：固定端から最小幅に
なる部分まての距離

（単位：mm）

図3－2（1）支持板の応力計算モデル

Hpの方向が䋠強ビームに垂直な場合

Hp の方向か補強ビームそ平行を場合

Hp：制御棒案内管用穴1つ当 b K作用する水平地震荷重
（単位：mm）
図 3－2（2）支持板の応力計算モデル

表3－1 断面性状

応力評価点	補強ビームに平行な軸		補強ビームに垂直な軸	
	I $\left(\mathrm{mm}^{4}\right)$	e（mm）	I $\left(\mathrm{mm}^{4}\right)$	e（mm）
P01，P01＇				
P02，P02＇				
P03，P03＇				
P04，P04＇				
P05，P05，				
P06，P06＇				
P07，P07，				
P08，P08＇				

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価点	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	0	178	0	284
P01＇	0	178	0	284
P02	0	178	0	284
P02＇	0	178	0	284
P03	12	$116 * 1$	13	$185 * 1$
P03＇	12	$116 * 1$	12	$185 * 1$
P04	12	178	13	284
P04＇	12	178	12	284
P05	9	$107 * 2$	14	$170 * 2$
P05＇	9	$107 * 2$	14	$170 * 2$
P06	9	178	14	284
P06＇	9	178	14	284
P07	31	178	50	284
P07＇	31	178	50	284
P08	31	178	50	284
P08＇	31	178	50	284
注記 $* 1$ ：継手効率注記 $* 2$ ：継手効率		を乗じた値を示す。 を乗じた値を示す。		

表4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価点	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	57	268	56	427
P01＇	60	268	61	427
P02	28	268	28	427
P02＇	26	268	26	427
P03	12	$174 * 1$	13	$277 * 1$
P03＇	12	$174 * 1$	12	$277 * 1$
P04	12	268	13	427
P04＇	12	268	12	427
P05	41	$161 * 2$	57	$256 * 2$
P05＇	36	$161 * 2$	52	$256 * 2$
P06	29	268	33	427
P06＇	67	268	82	427
P07	106	268	177	427
P07＇	142	268	214	427
P08	116	268	187	427
P08＇	132	268	204	427
注記 $* 1$ ：継手効率注記 $* 2$ ：継手効率		を乗じた値を示す。 を乗じた値を示す。		

VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書

目次

1．一般事項 1
1.1 記号の説明 1
1．2 形状•寸法•材料 1
1.3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 5
2.1 設計条件 5
2.2 運転条件 5
2．3 材料 5
2.4 荷重の組合せ及び許容応力状態 5
2.5 荷重の組合せ及び応力評価 5
2.6 許容応力 5
2.7 応力の記号と方向 5
3．応力計算 6
3.1 応力評価点 6
3.2 差圧による応力 6
3．2．1 荷重条件 6
3．2．2 計算方法 6
3.3 外荷重による応力 7
3．3．1 荷重条件 7
3．3．2 計算方法 7
3.4 応力の評価 7
4．応力強さの評価 8
4.1 一次一般膜応力強さの評価 8
4.2 一次一般膜十一次曲げ応力強さの評価 8

図表目次
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 中央燃料支持金具の差圧による応力計算モデル 9
図 3－2 中央燃料支持金具の外荷重による応力計算モデル 9
表 1－1 計算結果の概要 4
表 3－1 断面性状 10
表 4－1 一次一般膜応力強さの評価のまとめ 11
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 12

1．一般事項

本計算書は，燃料支持金具の応力計算について示すものである。
燃料支持金具は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

燃料支持金具は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 記号の説明
記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D_{i}	内径	mm
D_{o}	外径	mm
I	断面二次モーメント	mm^{4}

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1（1）形状•寸法•材料•応力評価点（単位：mm）

：応力評価点
〔 〕：材 料

図1－1（2）形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－3－2－7 R 0

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
中央燃料支持金具 SCS19A	III ${ }_{\text {A }} \mathrm{S}$	22	173	P01＇－P02，	22	259	P01＇－P02＇
	IV ${ }_{\text {A }} \mathrm{S}$	34	248	P01＇－P02＇	34	372	P01＇－P02＇
周辺燃料支持金具 SUS316LTP	III $_{\text {A }} \mathrm{S}$	12	85＊	P03＇－P04＇	12	128＊	P03＇－P04＇
	IV $\mathrm{A}_{\text {S }} \mathrm{S}$	19	137＊	P03＇－P04＇	19	205＊	P03＇－P04＇
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
$\sigma_{\mathrm{t}} \quad$ ：周方向応力
σ ：：軸方向応力
σ r ：半径方向応力
τ te：せん断応力

3．応力計算
3.1 応力評価点

応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」の参照図書（1）a．に定めるとおり である。

3．2．2 計算方法
中央燃料支持金具の差圧による応力は，応力評価点の位置における断面で，外径 を $\square \mathrm{mm}$ とし，かつ厚さが最小となる円筒を考え計算する。中央燃料支持金具の差圧による応力計算のモデルを図 3－1 に示す。周辺燃料支持金具の差圧による応力は，応力評価点の位置における断面の円筒 を考え計算する。
（1）一次一般膜応力
差圧 P_{13} による一次一般膜応力は，次式で求める。

$$
\sigma_{\mathrm{t}}=\frac{1}{\mathrm{Y}-1} \cdot \mathrm{P}_{13}
$$

$$
\sigma_{\ell}=\frac{1}{\mathrm{Y}^{2}-1} \cdot \mathrm{P}_{13}
$$

$$
\sigma_{\mathrm{r}}=-\frac{1}{\mathrm{Y}+1} \cdot \mathrm{P}_{13}
$$

ここで， $\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}$
（2）一次一般膜＋一次曲げ応力
差圧による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

3.3 外荷重による応力

3．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（6）に示す。

3．3．2 計算方法
中央燃料支持金具の外荷重による応力は，応力評価点の位置における断面にお いて，その断面の最小板厚及び内幅を用いて算出される最小外往 \square か円筒を考え計算する。

中央燃料支持金具の外荷重による応力計算のモデルを図3－2に示す。
周辺燃料支持金具の外荷重による応力は，応力評価点の位置における断面の円筒を考え計算する。
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\ell}=\frac{V}{A}+\frac{M}{I} \cdot \frac{D_{o}}{2} \\
& \tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{~A}}
\end{aligned}
$$

（2）一次一般膜 + 一次曲げ応力
外荷重による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

図 3－1 中央燃料支持金具の差圧による応力計算モデル（単位：mm）

図 3－2 中央燃料支持金具の外荷重による応力計算モデル（単位：mm）

表 3－1 断面性状

応力評価点	D_{o} (mm)	D_{i} (mm)	A $\left(\mathrm{mm}^{2}\right)$	I $\left(\mathrm{mm}^{4}\right)$
$\mathrm{P} 01, \mathrm{P} 02^{*}$				
$\mathrm{P} 03, \mathrm{P} 04$				

注記＊：上段は差圧による応力計算モデルの断面性状を示し，下段は外荷重による応力計算モデルの断面性状を示す。

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	173	29	248
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	173	34	248
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	10	85＊	16	137＊
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	12	85＊	19	137＊

注記 $*: ~$ 継手効率
を乗じた値を示す。

表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 III $\mathrm{A}^{\text {S }}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	259	29	372
$\begin{aligned} & \mathrm{P} 01 \\ & \mathrm{P} 02 \end{aligned}$	22	259	34	372
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	10	128＊	16	205＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	12	128＊	19	205＊
注記 $*$ ：継手効率		を乗じた値を示す。		

VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 4
2．1 設計条件 4
2.2 運転条件 4
2． 3 材料 4
2．4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
2.7 応力の記号と方向 4
3．応力計算 5
3.1 応力評価点 5
3.2 差圧による応力 5
3．2．1 荷重条件 5
3．2．2 計算方法 5
3.3 外荷重による応力 5
3．3．1 荷重条件 5
3．3．2 計算方法 5
3.4 応力の評価 6
4．応力強さの評価 7
4.1 一次一般膜応力強さの評価 7
4.2 一次一般膜 + 一次曲げ応力強さの評価 7

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 3
表 3－1 断面性状 8
表 4－1 一次一般膜応力強さの評価のまとめ 9
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，制御棒案内管の応力計算について示すものである。
制御棒案内管は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

制御棒案内管は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
1.1 記号の説明

記号の説明を「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号		記号の説明
A	断面積	単位
Z	断面係数	mm^{2}
$\mathrm{~mm}^{3}$		

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。

1．3 解析範囲

解析範囲を図1－1 に示す。
1.4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

：応力評価点
〕 ：材
料

図 1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－3－2－8 R 0

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
長手中央部 SUS316L	III ${ }_{\text {A }} \mathrm{S}$	36	142	P01－P02	36	214	P01－P02
	IV ${ }_{\text {A }} \mathrm{S}$	81	228	P01－P02	81	343	P01－P02
下部溶接部 SUS316L	III ${ }_{\text {A }} \mathrm{S}$	9	92＊	P03－P04	9	139＊	P03－P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	12	148＊	P03－P04	12	223＊	P03－P04

注記＊：継手効率 ${ }^{(1)}$ を乗じた値を示す。

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

2． 7 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。

σ t ：周方向応力

$\sigma \ell:$ ：軸方向底力
σr ：半径方向虑力
$\tau \ell \mathrm{r}$ ：せん断応力

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」の 4.2 節に示す。

3．2．2 計算方法
差圧による一次応力の計算は，計算機コード「 A－S A F I A」を用いて行う。 なお，評価に用いる計算機コードの概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。
3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（7）に示す。

3．3．2 計算方法
（1）死荷重による応力（L04）
死荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=-\frac{\mathrm{V}}{\mathrm{~A}}
$$

（2）地震荷重による応力（L14，L16）
a．鉛直方向地震荷重による応力
鉛直方向地震荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

b．水平方向地震荷重による応力
（a）曲げモーメントによる応力
曲げモーメントによる一次一般膜応力は，次式で求める。

$$
\sigma_{e}=\frac{\mathrm{M}}{\mathrm{Z}}
$$

（b）水平力による応力
水平方向地震により生ずる水平力による一次一般膜応力は，次式で求める。

$$
\tau_{\ell r}=\frac{H}{A}
$$

3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

表 3－1 断面性状

応力評価点	A $\left(\mathrm{mm}^{2}\right)$	Z $\left(\mathrm{mm}^{3}\right)$
$\mathrm{P} 01, \mathrm{P} 02$		
$\mathrm{P} 03, \mathrm{P} 04$		

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$ S	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	36	142	81	228
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	35	142	80	228
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	9	92＊	12	148＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	7	92＊	11	148＊
注記 $*$ ：継手効率				

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$ S	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	36	214	81	343
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	35	214	80	343
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	9	139＊	12	223＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	7	139＊	11	223＊
注記＊：継手効率		を乗じた値を示す。		

VI－2－3－4 原子炉圧力容器の耐震性についての計算書

VI－2－3－4－1 原子炉圧力容器本体の耐震性についての計算書
VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性についての計算書
VI－2－3－4－3 原子炉圧力容器内部構造物の耐震性についての計算書

VI－2－3－4－1 原子炉圧力容器本体の耐震性についての計算書

VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針
VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書
VI-2-3-4-1-1 原子炉圧力容器の応力解析の方針

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2．2 評価方針 4
2.3 適用基準 5
2． 4 記号の説明 6
3．計算条件 9
3.1 評価対象機器 9
3.2 形状及び寸法 10
3.3 物性値 10
3.4 荷重の組合せ及び許容応力状態（運転状態） 10
3.5 許容応力 10
3.6 許容応力評価条件 11
4．荷重条件 12
4．1 設計条件 12
4．2 運転条件 12
4.3 重大事故等時の条件 12
4． 4 荷重の組合せ及び応力評価 13
5．応力評価の手順 14
5.1 計算に使用する解析コード 14
5.2 荷重条件の選定 14
5.3 応力の評価 14
5．3．1 主応力 14
5．3．2 応力強さ 14
5．3．3 一次応力強さ 15
5．3．4 一次 + 二次応力強さ 15
5.4 繰返し荷重の評価 15
5．4．1 疲労解析不要の検討 15
5．4．2 疲労解析 15
5.5 ボルトの応力評価 16
5.6 特別な応力の評価 16
5．6．1 純せん断応力の評価 16
5．6．2 支圧応力の評価 16
5．6．3 座屈の評価 17
5．7 原子炉圧力容器基礎ボルトの評価 17
6．評価結果の添付 18
6.1 応力評価結果 18
6.2 繰返し荷重の評価結果 19
7．引用文献 20
8．参照図書 20

図表目次

図 2－1 原子炉圧力容器の耐震評価フロー 4
図 2－2 原子炉圧力容器の強度評価フロー 4
図 3－1 全体断面図 21
図 4－1 運転状態Vにおける差圧 22
表 2－1 原子炉圧力容器の構造計画。 3
表 3－1 繰返し荷重の評価に使用する材料の物性値 23
表 3－2 荷重の組合せ及び許容応力状態． 24
表3－3 許容応力（クラス 1 容器及び重大事故等クラス 2 ） 26
表 3－4 許容応力（クラス 1 支持構造物及び重大事故等クラス 2 支持構造物） 27
表3－5 許容応力評価条件 28
表 4－1 外荷重 30
表 4－2 荷重の組合せ 42
表 5－1 繰返しピーク応力強さの割増し方法 43

1．概要

本書は，添付書類「VI－2－1－9 機能維持の基本方針」及び「VI－3－1－5 重大事故等クラス2機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」にて設定している構造強度の設計方針に基づき，原子炉圧力容器（原子炉圧力容器支持スカート及び原子炉圧力容器基礎ボ ルトを含む）に関する応力解析の方針を説明するものである。

なお，本書においては，原子炉圧力容器の耐震評価及び重大事故等時における強度評価につ いて記載する。

耐震評価について，設計用地震力を除く荷重による原子炉圧力容器本体の応力評価は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））に，原子炉圧力容器基礎ボルトの応力評価の手順は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類（参照図書（2））による。

強度評価について，重大事故等時の内圧を除く荷重による原子炉圧力容器本体の応力評価 は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））に よる。

注1：本書に記載していない特別な内容がある場合は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」（以下「耐震計算書」という。）及 び「VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書」（以下「強度計算書」 という。）に示す。
注2：図表は，原則として巻末に示す。
注3：平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））及び平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類（参照図書（2））は以下「既工認」という。

2．一般事項
2.1 構造計画

原子炉圧力容器の構造計画を表2－1に示す。
原子炉圧力容器は，下記の機器により構成される。
（1）胴板
（2）上部鏡板，鏡板フランジ，胴板フランジ及びスタッドボルト
（3）下部鏡板
（4）制御棒駆動機構ハウジング貫通孔
（5）中性子束計測ハウジング貫通孔
（6）再循環水出口ノズル（N1）
（7）再循環水入口ノズル（N2）
（8）主蒸気出口ノズル（N3）
（9）給水ノズル（N4）
（10）低圧炉心スプレイノズル（N5）
（11）低圧注水ノズル（N6）
（12）上蓋スプレイノズル（N7）
（13）ベントノズル（N8）
（14）ジェットポンプ計測管貫通部ノズル（N9）
（15）差圧検出・ほう酸水注入ノズル（N11）
（16）計装ノズル（N12，N13，N14）
（17）ドレンノズル（N15）
（18）高圧炉心スプレイノズル（N16）
（19）ブラケット類
（20）原子炉圧力容器支持スカート
（21）原子炉圧力容器基礎ボルト

表2－1 原子炉圧力容器の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉圧力容器を原子炉圧力容器支持スカートが支持す る。また，原子炉圧力容器支持スカートは原子炉圧力容器基礎ボルトにて原子炉本体基礎に固定される。	原子炉圧力容器は，胴板，上部鏡板，鏡板フランジ，胴板 フランジ及びスタッドボル ト，下部鏡板，制御棒駆動機構ハウジング貫通孔，中性子束計測ハウジング貫通孔，再循環水出口ノズル，再循環水入口ノズル，主蒸気出ロノズ ル，給水ノズル，低圧炉心ス プレイノズル，低圧注水ノズ ル，上蓋スプレイノズル，べ ントノズル，ジェットポンプ計測管貫通部ノズル，差圧検出・ほう酸水注入ノズル，計装ノズル，ドレンノズル，高圧炉心スプレイノズル，ブラ ケット類，原子炉圧力容器支持スカート，原子炉圧力容器基礎ボルトより構成される。	

2.2 評価方針

原子炉圧力容器の構造強度評価は，添付書類「VI－2－1－9 機能維持の基本方針」，「VI－3－1－5重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び

「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「2．1 構造計画」にて示す原子炉圧力容器の各機器を踏まえ計算書にて設定する箇所において，「4．荷重条件」にて設定した荷重に基づく応力等が許容応力内に収まることを，「5．応力評価の手順」に示す方法にて確認することで実施する。確認結果を計算書に示す。

原子炉圧力容器の耐震評価フローを図2－1に，強度評価フローを図2－2に示す。

図2－1 原子炉圧力容器の耐震評価フロー

図2－2 原子炉圧力容器の強度評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会） （以降「J E A G 4 6 O 1 」と記載しているものは上記 3 指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））J S ME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」とい う。）
（5）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第 501 号（以下「告示」という。）

注1：本書及び計算書において，設計•建設規格の条項は「設計•建設規格$\triangle \triangle(\diamond)$ a．（a）」とし，告示の条項は「告示第○条第○項第○号○○」として示 す。

注2：耐震計算書では「設計•建設規格」を適用し，強度計算書では「告示」を適用する。

2.4 記号の説明

本書及び計算書において，以下の記号を使用する。ただし，本書及び計算書中に別途記載 ある場合は，この限りでない。

記号	記号の説明	単位
A 0	簡易弾塑性解析に使用する係数	－
a	簡易弾塑性解析に使用する係数	－
B 0	簡易弾塑性解析に使用する係数	－
E	縦弾性係数	MPa
E 0	設計疲労線図に使用されている縦弾性係数	MPa
$\mathrm{f}_{\mathrm{t} \text { 。 }}$	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{sb}	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f st	基礎ボルトの許容組合せ応力	MPa
F ${ }_{x}$	水平力	N
F_{y}	鉛直力	N
F_{z}	軸力	N
H	水平力	N
i	応力振幅のタイプ	－
K	簡易弾塑性解析に使用する係数	－
$\mathrm{K}_{\text {e }}$	簡易弾塑性解析に用いる繰返しピーク応力強さの補正係数	－
M	モーメント	$N \cdot m$
M_{z}	ねじりモーメント	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{Na}_{\text {a }}$	$\mathrm{S}_{\text {e }}$ ¢ に対応する許容繰返し回数	回
N_{c}	実際の繰返し回数	回
P_{b}	一次曲げ応力	MPa
P_{L}	一次局部膜応力	MPa
P_{m}	一次一般膜応力	MPa
Q	二次応力	MPa
q	簡易弾塑性解析に使用する係数	－
S d＊	弾性設計用地震動 S d により定まる地震力又はS クラス施設に適用される静的地震力のいずれか大きい方の地震力	－
S s	基準地震動S s により定まる地震力	－

記号	記号の説明	単位
S	10^{6} 回又は 10^{11} 回に対する許容繰返しピーク応力強さ	MPa
S_{12}	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S_{23}	主応力差 $\sigma_{2}-\sigma_{3}$	MPa
S 31	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
S_{ℓ}	繰返しピーク応力強さ	MPa
$\mathrm{S}_{\text {e }}{ }^{\text {，}}$	補正繰返しピーク応力強さ	MPa
S_{m}	設計応力強さ	MPa
S_{n}	運転状態I 及びIIにおける一次＋二次応力の応力差最大範囲	MPa
$\mathrm{S}_{\mathrm{n}} \#^{\#}$	地震荷重S d＊による一次＋二次応力の応力差最大範囲	MPa
$\mathrm{S}_{\mathrm{n}} \#^{2}$	地震荷重S s による一次＋二次応力の応力差最大範囲	MPa
S_{p}	一次 + 二次 + ピーク応力の応力差範囲	MPa
Sp ${ }_{\text {\＃}} 1$	地震荷重S d＊による一次 + 二次＋ピーク応力の応力差範囲	MPa
S_{p} \＃2	地震荷重S s による一次＋二次＋ピーク応力の応力差範囲	MPa
S_{u}	設計引張強さ	MPa
S y	設計降伏点	MPa
S_{y}（R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
Uf_{f}	疲労累積係数（ $U_{\mathrm{n}}+\mathrm{Us}^{\text {d 又 }}$ 又 $\mathrm{U}_{\mathrm{n}}+\mathrm{Us} \mathrm{s}^{\text {s }}$ ）	－
U_{n}	運転状態I 及びIIにおける疲労累積係数	－
$\mathrm{US} \mathrm{d}^{\text {d }}$	地震荷重S d＊による疲労累積係数	－
U s s	地震荷重S s による疲労累積係数	－
V	鉛直力	N
α	形状係数（純曲げによる全断面降伏荷重と初期降伏荷重の比，又は 1．5のいずれか小さい方の値）	－
σ_{1}	主応力	MPa
$\sigma 2$	主応力	MPa
$\sigma 3$	主応力	MPa

	記号	記号の説明	単位
	σ b	引張応力	MPa
	σ_{e}	軸方向応力	MPa
	$\sigma_{\text {r }}$	半径方向応力	MPa
	σ_{t}	周方向応力	MPa
	τ_{b}	せん断応力	MPa
	$\tau_{\text {er }}$	せん断応力	MPa
	τ r t	せん断応力	MPa
	$\tau{ }_{\text {te }}$	せん断応力	MPa
	$\mathrm{III}_{\text {A }} \mathrm{S}$	設計•建設規格の供用状態C相当の許容応力を基準として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	設計•建設規格の供用状態 D 相当の許容応力を基準として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
4	$\mathrm{V}_{\text {A }} \mathrm{S}$	運転状態V（重大事故等時の状態）相当の応力評価を行う許容応力状態を基本として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－

3．計算条件

3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（表2－1及び図3－1参照）

機器名称			評価対象		
			耐震性についての計算書 （許容応力状態に対する評価）		強度計算書$\binom{\text { 運転状態 } \mathrm{V}}{\text { に対する評価 }}$
			$\begin{aligned} & \text { III }_{A} \mathrm{~S} \\ & \text { IV } \mathrm{A}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
（1）	胴板		\bigcirc	\bigcirc	\bigcirc
（2）	上部鏡板，鏡板フランジ，胴板フランジ及び スタッドボルト		$\times^{* 1}$	$\times^{* 1}$	\bigcirc
（3）	下部鏡板		\bigcirc	\bigcirc	\bigcirc
（4）	制御棒駆動機構ハウジング貫通孔		\bigcirc	\bigcirc	\bigcirc
（5）	中性子束計測ハウジング貫通孔		$\times{ }^{* 2}$	$\times{ }^{* 2}$	\bigcirc
（6）	再循環水出口ノズル（N1）		\bigcirc	\bigcirc	\bigcirc
（7）	再循環水入口ノズル（N2）		\bigcirc	\bigcirc	\bigcirc
（8）	主蒸気出ロノズル（N3）		\bigcirc	\bigcirc	\bigcirc
（9）	給水ノズル（N4）		\bigcirc	\bigcirc	\bigcirc
（10）	低圧炉心スプレイノズル（N5）		\bigcirc	\bigcirc	\bigcirc
（11）	低圧注水ノズル（N6）		\bigcirc	\bigcirc	\bigcirc
（12）	上蓋スプレイノズル（N7）		\bigcirc	\bigcirc	\bigcirc
（13）	ベントノズル（N8）		\bigcirc	\bigcirc	\bigcirc
（14）	ジェットポンプ計測管貫通部ノズル（ N 9$)$		\bigcirc	\bigcirc	\bigcirc
（15）	差圧検出・ほう酸水注入ノズル（N11）		\bigcirc	\bigcirc	\bigcirc
（16）	計装ノズル（N12，N13，N14）		\bigcirc	\bigcirc	\bigcirc
（17）	ドレンノズル（N15）		\bigcirc	\bigcirc	\bigcirc
（18）	高圧炉心スプレイノズル（N16）		\bigcirc	\bigcirc	\bigcirc
（19）	$\begin{aligned} & \text { ブ } \\ & \text { ラ } \\ & \text { 俭 } \\ & \text { 颣 } \end{aligned}$	原子炉圧力容器スタビライザブラケット	\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（20）		蒸気乾燥器ホールドダウンブラケット	$\times^{* 4}$	$\times^{* 3}$	$\times^{* 3}$
（21）		ガイドロッドブラケット	$\times^{* 4}$	$\times^{* 3}$	$\times^{* 3}$
（22）		蒸気乾燥器支持ブラケット	\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（23）		給水スパージャブラケット	\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（24）		炉心スプレイブラケット	\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（25）	原子炉圧力容器支持スカート		\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（26）	原子炉圧力容器基礎ボルト		\bigcirc	$\times^{* 3}$	$\times^{* 3}$
（27）	差圧検出・ほう酸水注入系配管（ティーよりN11ノズル までの外管）＊5		\bigcirc	\bigcirc	\bigcirc

注：「○」は評価対象，「×」は評価対象外を示す。
注記＊1：作用する主たる荷重は内圧であり，地震力を負担するような部位ではなく，既工認からの変更はない ため，評価対象機器としない。
＊2：結果が厳しくなる制御棒駆動機構ハウジング貫通孔を代表として評価するため，評価対象機器としな い。
＊3：設計基準対象施設としてのみ申請する施設
＊4：使用条件が一時的（機器搬出入時又は事故時の蒸気乾燥器浮上がり等）なものであり，通常運転時に外荷重が作用せず，既工認からの変更はないため，評価対象機器としない。
＊5：第1種管（クラス1管）であるが，告示第46条第1項および設計•建設規格 PPB－3112の規定に より，第1種容器（クラス1容器）として，本応力解析の方針を適用する。

3.2 形状及び寸法

各部の形状及び寸法は，計算書に示す。

3.3 物性値

地震荷重による繰返し荷重の評価に使用する材料の物性値を表3－1に示す。
3.4 荷重の組合せ及び許容応力状態（運転状態）

原子炉圧力容器の荷重の組合せ及び許容応力状態（運転状態）のうち，設計基準対象施設 の評価に用いるものを表3－2（1）に，重大事故等対処設備の評価に用いるものを表3－2（2）に示 す。また，各許容応力状態（運転状態）で考慮する荷重は，4章に示すとおりである。 なお，原子炉圧力容器については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡される。

3.5 許容応力

（1）原子炉圧力容器の耐震評価における許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－3に示す。この表に記載のない圧縮荷重を受ける場合に対す る許容応力は，計算書に記載するものとする。
（2）強度評価における許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき表3－3に示す。この表に記載のない圧縮荷重を受ける場合に対する許容応力は，計算書に記載するもの とする。
（3）原子炉圧力容器基礎ボルトの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－4に示す。

3． 6 許容応力評価条件

（1）耐震評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は， それぞれ設計•建設規格 付録材料図表 Part5 表1，表2，表8及び表9に定められた ものを使用する。
（2）強度評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は， それぞれ告示別表第2，第3，第9，第10に定められたものを使用する。
（3）許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次応力の評価には，運転状態 I 及 びIIにおける流体の最高温度 \square に対する許容応力を用いる。運転状態Vの一次応力強さの評価には，運転状態Vにおける評価温度 いに対する許容応力を用いる。 また，許容応力状態III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力及び繰返し荷重 の評価には，運転温度として定格出力運転時の蒸気温度 \square に対する許容応力を用 いる。
（4）原子炉圧力容器の許容応力評価条件を表3－5に示す。 なお，原子炉圧力容器基礎ボルトの許容応力評価条件及び各機器で使用される材料は，計算書に示す。

4．荷重条件
原子炉圧力容器は，以下の荷重条件に耐えることを確認する。
各機器の応力評価には，本章に示す荷重を考慮する。

4．1 設計条件
設計条件は既工認からの変更はなく，参照図書（1）a．に定めるとおりである。

4．2 運転条件

運転条件及び記号は，既工認からの変更はなく，参照図書（1）a．に定めるとおりである。
各機器の応力評価において考慮する外荷重の値を表4－1に示す。
また，地震荷重S d＊及び地震荷重S s の繰返し回数は，地震動に対する応答特性等を考慮して，地震荷重 S d＊は590回，地震荷重 S s は340回とする。

4.3 重大事故等時の条件

重大事故等時の条件は以下のとおりである。

4． 4 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価項目の対応を表4－2に示す。表4－2及び計算書において，荷重の種類と記号は以下のとおりである。

なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

荷重記号
（1）内圧
（2）差圧
（3）死荷重
（4）熱変形力（熱膨張差により生じる荷重）
（5）活荷重（流体反力，スクラム反力及びその他機器作動時に働く荷重）
（6）熱負荷
（7）ボルト締結力
（8）配管又は機器の地震時の慣性力による地震荷重 $\mathrm{S} \mathrm{d}^{*}$＊（一次荷重）
（9）配管又は機器の拘束点の地震時の相対変位による地震荷重 $\mathrm{S}_{\mathrm{d}} \mathrm{d}^{*}$（二次荷重）
（10）配管又は機器の地震時の慣性力による地震荷重 S s（一次荷重）
（11）配管又は機器の拘束点の地震時の相対変位による地震荷重 S s（二次荷重）
（12）外荷重（運転状態 I 及びIIにおける荷重）
［L12，L13，L18，L19］
（13）外荷重（運転状態 V における荷重）

5．応力評価の手順
応力評価の手順について述べる。
5.1 計算に使用する解析コード

解析コードは「 A－S A F I A 」，「 P I P E 」，「 S T A X 」 及び「 A S H S $\mathrm{D} 」$ を用いる。なお，評価に用いる解析コードの検証及び妥当性確認等の概要につい ては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
5.2 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。

5.3 応力の評価

5．3．1 主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
組合せ応力は，一般に $\sigma_{\mathrm{t}}, \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{r}}{ }_{\mathrm{t}}$ の6成分を持つが，主応力 σ
は，引用文献（1）の1．3．6項により，次式を満足する3根 $\sigma_{1}, ~ \sigma_{2}, ~ \sigma_{3}$ として計算する。

$$
\begin{aligned}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell}{ }^{2}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{rt}^{2}}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\mathrm{t}} \cdot \sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{rt}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell^{2}}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0
\end{aligned}
$$

上式により主応力を求める。

5．3．2 応力強さ
以下の3つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{aligned}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1}
\end{aligned}
$$

5．3．3 一次応力強さ

設計基準対象施設として許容応力状態 $I I I_{A} S$ ，許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ 及び重大事故等対処設備として運転状態Vにおいて生じる一次一般膜応力，一次局部膜応力及び一次膜＋一次曲 げ応力の応力強さが，3．5節に示す許容応力を満足することを示す。

ただし，一次局部膜応力より一次膜＋一次曲げ応力の方が発生値及び許容応力の観点で厳しくなることから，一次局部膜応力強さの評価については省略する。

5．3．4 一次 + 二次応力強さ
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ において生じる一次 + 二次応力の応力差最大範囲（ $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}, ~ \mathrm{~S}_{\mathrm{n}}{ }^{\# 2}$ ）が，3．5節に示す許容応力を満足することを示す。

本規定を満足しない応力評価点については，5．4節で述べる設計•建設規格 PVB－3300に基づいた簡易弾塑性解析を行う。

5.4 繰返し荷重の評価

繰返し荷重の評価は，運転状態 I 及びIIによる荷重並びに許容応力状態 $I_{\mathrm{A}} \mathrm{S}$ 及 及 及許容応力状態IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ による荷重を用いて，次の方法によって行う。

5．4．1 疲労解析不要の検討

本項の検討は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－3140（6）を満たすことを示す。

5．4．2 疲労解析

以下の手順で疲労解析を行う。
（1）運転状態 I 及びIIにおいて生じる一次＋二次＋ピーク応力の応力差の変動並びに許容応力状態 $I I I A_{A} S$ 及び許容応力状態 $I_{A} S$ において生じる一次 + 二次 + ピーク応力の応力差の変動を求める。また，この変動の繰返し回数として，参照図書（1）a．に示す各運転条件の繰返し回数及び 4.2 節に示す地震荷重の繰返し回数を考慮する。
（2）応力差の変動とその繰返し回数より，一次＋二次＋ピーク応力の応力差範囲 （ $\mathrm{S}_{\mathrm{p}}, ~ \mathrm{~S}_{\mathrm{p}}{ }^{\# 1}$ 及び S_{p} \＃2 ）及びこの応力振幅の繰返し回数を求める。
（3）繰返しピーク応力強さは，次式により求める。

$$
S_{e}=\frac{S_{p}}{2}
$$

ただし，一次＋二次応力の応力差最大範囲（ $S_{n}, ~ S_{n}{ }^{\# 1}$ 又は $S_{n}{ }^{\# 2}$ ）が $3 \cdot S_{m}$ を超える応力評価点については，設計•建設規格 PVB－3300の簡易弾塑性解析の適用性の検討を行い，適合する場合は，表5－1に示す方法により繰返しピーク応力強

さの割増しを行う。
（4）設計疲労線図に使用している縦弾性係数（E o ）と解析に用いる縦弾性係数（E） との比を考慮し，繰返しピーク応力強さを次式で補正する。

なお，Eと E o は表3－1に示す。
（5）疲労累積係数（ U_{f} ）
疲労累積係数（ U_{f} ）は， $\mathrm{S}_{\mathrm{e}}{ }^{\prime}$ に対応する許容繰返し回数が 10^{6} 回以下（低合金鋼及び炭素鋼）又は 10^{11} 回以下（オーステナイト系ステンレス鋼及び高ニッケル合金）となる応力振幅について，次式により求める。設計•建設規格 PVB－3114又は PVB－3315に従って，運転状態I 及びIIにおける疲労累積係数 U_{n} と許容応力状態 III $_{\mathrm{A}} \mathrm{S}$ における疲労累積係数 U_{sd} 又は許容応力状態IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ における疲労累積係数 U_{s} の和 $\mathrm{U}_{\mathrm{f}}\left(\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{s} d}\right.$ 又は $\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{s}}$ ）が，1以下であることを示す。 オーステナイト系ステンレス鋼及び高ニッケル合金の場合，繰返しピーク応力強 さ194MPa以下の設計疲労線図は，設計•建設規格 表 添付4－2－2の曲線Cを用い る。

疲労累積係数 $\left(U_{f}\right)=\sum_{i=1}^{k} \frac{N_{c}(i)}{N_{a}(i)}$
5.5 ボルトの応力評価

ボルトの応力評価は，重大事故等対処設備として告示第 13 条第 1 項第 2 号八に基づき，ボルト の軸方向に垂直な断面の平均引張応力及び平均引張応力十曲げ応力について行う。運転状態V において生じる平均引張応力及び平均引張応力＋曲げ応力が，3．5節に示す許容応力を満足する ことを示す。

5.6 特別な応力の評価

5．6．1 純せん断応力の評価
純せん断荷重を受ける部分は，設計基準対象施設として設計•建設規格 PVB－3115によ り評価する。解析箇所を以下に示す。評価方法は参照図書（1）u．に示し，許容応力は表3－3 に示す。
（1）ブラケット類
5．6．2 支圧応力の評価
支圧荷重を受ける部分は，設計•建設規格 PVB－3116により評価する。解析箇所を以下 に示す。評価方法及び許容応力は，計算書に示す。
（1）胴板

5．6．3 座屈の評価
軸圧縮荷重又は外圧を受ける部分は，設計基準対象施設として設計•建設規格 PVB－ 3117あるいはJ E A G 4 6 O 1 に，重大事故等対処設備として告示第13条第1項第1号又又 は告示第 13 条第 2 項に基づき評価する。解析箇所を以下に示す。評価方法及び許容応力は，計算書に示す。
（1）制御棒駆動機構ハウジング貫通孔スタブチューブ
（2）原子炉圧力容器支持スカート

5． 7 原子炉圧力容器基礎ボルトの評価
原子炉圧力容器基礎ボルトの評価方法は参照図書（2）に示す。基礎ボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 $\mathrm{f}_{\mathrm{t}} \mathrm{s}$ 以下であること。ただし， f_{t} 。は下表による。

$$
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min} .\left(1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right)
$$

せん断応力 τ_{b} はせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であること。 ただし，$f_{\text {s bは下表による。 }}$

	弾性設計用地震動 S d 又は静的 震度による荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{to}	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f} \mathrm{s} \mathrm{b}^{2}$	$\frac{\mathrm{~F}}{1.5 \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \sqrt{3}} \cdot 1.5$

［記号の説明］

$$
\begin{array}{lll}
\mathrm{F} & : \text { 設計•建設規格 } & \mathrm{SSB}-3121.1 \text { (1)に定める値 } \\
\mathrm{F}^{*} & \text { : 設計•建設規格 } & \mathrm{SSB}-3133 \text { に定める値 }
\end{array}
$$

6．評価結果の添付
応力評価点番号は，機器ごとに記号P01からの連番とする。奇数番号を内面の点，偶数番号を外面の点として，計算書の形状•寸法•材料•応力評価点を示す図において定義する。

なお，軸対称モデル解析において，非軸対称な外荷重による応力評価を行った場合，荷重の入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力 が極大となる方位の応力評価点は［例 P01］と表し，極小となる方位の応力評価点にはプライ ム（’）を付けて［ 例 P01’］と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

6． 1 応力評価結果

（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次膜 + 一次曲げ応力強さの評価のまとめ
c．一次 + 二次応力強さの評価のまとめ
d．疲労累積係数の評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。
a．純せん断応力
b．支圧応力
c．座屈
（3）原子炉圧力容器基礎ボルトの評価は，次の応力評価結果を記載する。
a．引張応力
b．せん断応力

6． 2 繰返し荷重の評価結果

運転状態 I 及びIIにおける疲労累積係数に許容応力状態 I_{A} S又は許容応力状態 $V_{A} S$ のいずれ か大きい方の疲労累積係数を加えた値の計算結果については，それぞれの部分で最も厳しい部分について添付する。

7．引用文献
文献番号は，本書及び計算書において共通である。
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

8．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類
a．IV－3－1－1－1 原子炉圧力容器の応力解析の方針
b．IV－3－1－1－2 原子炉圧力容器の穴と補強についての計算書
c．IV－3－1－1－3 胴板の応力計算書
d．IV－3－1－1－4 上部鏡板，鏡板フランジ及び胴板フランジの応力計算書
e．IV－3－1－1－5 下部鏡板の応力計算書
f．IV－3－1－1－6 制御棒駆動機構ハウジング貫通孔の応力計算書
g．IV－3－1－1－7 中性子束計測ハウジング貫通孔の応力計算書
h．IV－3－1－1－8 再循環水出口ノズル（N1）の応力計算書
i．IV－3－1－1－9 再循環水入口ノズル（N2）の応力計算書
j．IV－3－1－1－10 主蒸気出口ノズル（N3）の応力計算書
k．IV－3－1－1－11 給水ノズル（N4）の応力計算書
l．IV－3－1－1－12 低圧炉心スプレイノズル（N5）の応力計算書
m．IV－3－1－1－13 低圧注水ノズル（N6）の応力計算書
n．IV－3－1－1－14 上蓋スプレイノズル（N7）の応力計算書
o．IV－3－1－1－15 ベントノズル（N8）の応力計算書
p．IV－3－1－1－16 ジェットポンプ計測管貫通部ノズル（N9）の応力計算書
q．IV－3－1－1－17 差圧検出・ほう酸水注入ノズル（N11）の応力計算書
r．IV－3－1－1－18 計装ノズル（N12，N13，N14）の応力計算書
s．IV－3－1－1－19 ドレンノズル（N15）の応力計算書
t．IV－3－1－1－20 高圧炉心スプレイノズル（N16）の応力計算書
u．IV－3－1－1－21 ブラケット類の応力計算書
v．IV－3－1－3－7 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書
（2）女川原子力発電所第 2 号機 第 1 回工事計画認可申請書 添付書類
IV－2－4－1－1 原子炉圧力容器基礎ボルトの耐震性についての計算書

図3－1 全体断面図

Px：スリーブ内圧力
Py：原子炉圧力容器内圧力
差圧（ $\mathrm{P} x \mathrm{x} \mathrm{y}$ ）$=P \mathrm{P}-\mathrm{P} \mathrm{y}$
（単位：MPa）

部位		運転状態
V		

図4－1 運転状態Vにおける差圧

表3－1 繰返し荷重の評価に使用する材料の物性値

| 材料 | E
 $\times 10^{5}$
 (MPa) | S_{m} | S | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (MPa) | E_{0}
 $\times 10^{5}$
 (MPa) | q | A_{0} | $\mathrm{~B}_{0}$ |
| (MPa) | | | | |$|$

［記号の説明］

E
S_{m}
S
：運転温度
 に対する縦弾性係数

に対する設計応力強さ
：運転温度
：設計•建設規格 表 添付 $4-2-1$ の $\mathrm{S}_{\mathrm{u}} \leqq 550 \mathrm{MPa}$ の 10^{6} 回に対する繰返し ピーク応力強さ，設計•建設規格 表 添付4－2－2の曲線Cの 10^{11} 回に対する繰返しピーク応力強さ

E 0
：設計•建設規格
添付4－2に記載された縦弾性係数
q， A_{0} ， B_{0} ：設計•建設規格 表 PVB－3315－1に示された簡易弾塑性解析に使用する係数の値

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	原子炉圧力容器及び炉心	原子炉圧力容器	S	クラス 1 容器 $*^{1}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$
					$D+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}^{*}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}$ s	

［記号の説明］

D ：死荷重
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）における圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）で設備に作用している機械的荷重
$S \mathrm{~d}$＊：弾性設計用地震動 S d により定まる地震力又はSクラス施設に適用される静的地震力
$P_{L} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重 S s ：基準地震動 S s により定まる地震力

注記＊1：クラス1支持構造物を含む。

表 3－2（2）荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {d }}$	機器等の区分	荷重の組合せ	状態
原子炉本体	原子炉 圧力容器 及び炉心	原子炉圧力容器	常設耐震／防止常設／緩和常設／防止 （DB拡張）	重大事故等クラス2	$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}$＊	許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\text {SAL }}+\mathrm{Sd}$	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	状態IV A S の許容応力を用いる。）
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V

［記号の説明］
D ：死荷重
P_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
$S d^{*}$ ：弾性設計用地震動 S d により定まる地震力又はSクラス施設に適用される静的地震力
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vにおける圧力荷重 M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態 Vで設備に作用している機械的荷重

S s ：基準地震動 S s により定まる地震力
PsAL ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する圧力荷重
$M_{S A L}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する機械的荷重
S d ：弾性設計用地震動 S d により定まる地震力
$P_{\text {SALL }}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する圧力荷重
$M_{S A L L}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する機械的荷重
A ：事故時荷重
注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

表3－3 許容応力（クラス1容器及び重大事故等クラス2容器）

状態	許容応力＊3					
	一次一般膜応力	- 次膜＋ - 次曲げ応力	一次 + 二次応力	$\begin{gathered} \text { 一次 + 二次 + } \\ \text { ピーク応力 } \end{gathered}$	純せん断応力	支圧応力
許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$	S_{y} と $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，AS S 及びHNAにつ いては1．2•等它をす。	左欄の 1.5 倍の値 ${ }^{* 1}$	$3 \cdot \mathrm{~S}_{\mathrm{m}}^{* 2}$ S d またはS s地震動＊4のみによ る応力振幅につ いて評価する。	S d またはS s地震動＊4のみに よる疲労解析を行い，運転状態 I及びIIにおける疲労累積係数と の和が 1.0 以下 であること。＊5	$0.6 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}{ }^{* 6} \\ \left(1.5 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$
許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$	$\begin{aligned} & 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \\ & \text { ただし, ASS及びHNA } \\ & \text { については } 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \text { と } \\ & \text { に. } 4 \cdot \mathrm{~S}_{\mathrm{m}} \text { の小さい方。 } \end{aligned}$	左欄の 1.5 倍の値＊1			$0.4 \cdot \mathrm{~S}_{\mathrm{u}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}{ }^{* 6} \\ \left(1.5 \cdot \mathrm{~S}_{\mathrm{u}}\right) \end{gathered}$
許容応力状態 $V_{A} S$ （許容応力状態 $V_{A} S$ として許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用 いる。）						
運転状態V （運転状態Vとして運転状態IVの許容応力を用いる。）			－	－		

注記＊1 ：設計•建設規格 PVB－3111による場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ）を用いる。
＊2：3• S_{m} を超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く）の簡易弾塑性解析を用いる。
＊ 3 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。
＊4：クラス 1 容器及び重大事故クラス 2 においては， S d ＊または S s 地震力を考慮する。
＊5：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。 ただし，PVB－3140（6）の「応力の全振幅」は「S d＊又はS s 地震動による応力の全振幅」と読み替える。
＊6：（）内は，支圧荷重の作用端から自由端までの距離が支圧荷重の作用幅より大きい場合の値。

表3－4 許容応力（クラス1支持構造物及び重大事故等クラス2支持構造物）

許容応力状態	許容応力 ${ }^{*} 1,{ }^{*} 2$ （ボルト等）	
	一次応力	
	引張	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\text {s }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV } \mathrm{A} S\right. \text { の } \\ \text { 許容応力を用いる) } \end{gathered}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

［記号の説明］
f_{t} ：許容引張応力 ボルト等に対して設計•建設規格 SSB－3131（1）に定める値 f_{s} ：許容せん断応力 ボルト等に対して設計•建設規格 SSB－3131（2）に定める値
f_{t}＊：上記の f_{t} の値を算出する際に設計•建設規格 付属材料図表 Part5 表8に定める値とあるのを設計•建設規格 付属材料図表 Part5 表 8 に定める値 の 1.2 倍と読み替えて計算した値
f_{s}＊：上記の f_{s} の値を算出する際に設計•建設規格 付属材料図表 Part5 表8に定める値とあるのを設計•建設規格 付属材料図表 Part5 表 8 に定める値 の 1.2 倍と読み替えて計算した値

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊ 2 ：当該の応力が生じない場合，規格基準で省略可能とされてる場合及び他の応力で代表可能である場合は評価を省略する。

表3－5（1）許容応力評価条件（耐震評価）

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
原子炉 圧力容器	炭素鋼及び低合金鋼	SQV2A	流体の最高温度				
			運転温度				
		SFVC2B	流体の最高温度				
			運転温度				
		SFVQ1A	流体の最高温度				
			運転温度				
		SGV480	流体の最高温度				
			運転温度				
	オーステナイト系 ステンレス鋼及び高ニッケル合金	SUS316LTP	流体の最高温度				
			運転温度				
		SUSF316	流体の最高温度				
			運転温度				
		NCF600－B	流体の最高温度				
			運転温度				

表 3－5（2）許容応力評価条件（強度評価）

表4－1（1）外荷重

下部鏡板外荷重

記号	荷重名称	運転状態	鉛直力		水平力	モーメント
			$\begin{aligned} & \mathrm{V}_{1}{ }^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{2}{ }^{* 2} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L12	外荷重A	運転状態 I 及びII （下記を除く運転時）				
L13	外荷重B	運転状態 I 及びII （スクラム時）				
L18	外荷重C	運転状態 I 及びII （耐圧試験時）				
L21	外荷重E	運転状態V				
L14	地震荷重S					
L16	地震荷重S					

炉心シュラウド支持ロッドから原子炉圧力容器胴板に作用する外荷重

記号	荷重名称		水平力
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L14	地震荷重S d＊	上部ウェッジ	
		下部スタビライザ	
L16	地震荷重S S	上部ウェッジ	
		下部スタビライザ	

表 4－1（3）外荷重

制御棒駆動機構ハウジング貫通孔外荷重

$\begin{aligned} & \text { 記 } \\ & \text { 号 } \end{aligned}$	荷重名称	運転状態	鉛直力		水平力		モーメント	
			$\begin{array}{r} V_{1} \\ (\mathrm{kN}) \end{array}$	$\begin{array}{r} \mathrm{V}_{2} \\ (\mathrm{kN}) \end{array}$	$\begin{array}{r} \mathrm{H}_{1} \\ (\mathrm{kN}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{H}_{2} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{1} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L12	外荷重A	運転状態 I 及びII （下記を除く運転時）						
L13	外荷重B	運転状態I 及びII （スクラム時）＊1，＊2						
L18	外荷重C	運転状態I 及びII （バッファ効果なし）＊1						
L19	外荷重D	運転状態I 及びII (ロッドスタック) *1						
L21	外荷重E	運転状態V						
L14	地震荷重S	d^{*}						
L16	地震荷重S							

表 4－1（4）外荷重

ノズル外荷重

ノズル	記号	荷重名称	力		モーメント		荷重作用点位置 （mm）
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{z}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	
再循環水出ロノズ ル （N1）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					
再循環水入口ノズ ル （N2）	L04	死荷重					
	L07	熱変形力					
	L14						
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重S s（二次）					
主蒸気出 ロノズル （N3）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
給水ノズ ル （N4）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
低圧，高圧炉心ス プレイノ ズル （N5，N16）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重S s（二次）					

ノズル外荷重

ノズル	記号	荷重名称	力		モーメント		荷重作用点 位置 （mm）
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{z} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	
低圧注水 ノズル （N6）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
$\begin{aligned} & \text { 上蓋スプ } \\ & \text { レイノ ズ } \\ & \text { ル (N7) } \end{aligned}$	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊${ }^{\text {＊}}$（一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
$\begin{aligned} & \text { ベントノ } \\ & \text { ズル (N8) } \end{aligned}$	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
ジェット ポンプ計 測管貫通 部ノズル （N9）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
差 圧 検 出・ほう 酸水注入 ノズル （N11）＊1	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重S s（二次）					

ノズル外荷重

\square

表 4－1（5）外荷重

ノズルサーマルスリーブ荷重

\square

表 4－1（6）外荷重

ブラケット外荷重

表 4－1（7）外荷重

原子炉圧力容器基礎ボルト外荷重

記号	荷重名称	軸力		せん断力	モーメント
		$\begin{array}{cc} \hline \text { N } \\ \\ \\ (\text { (kN } \text { 最大) } \end{array}$	$\begin{array}{cc} \hline \text { N } \begin{array}{c} \text { (最小) } \\ (\mathrm{kN}) \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Q} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
－	運転状態 I 及び II				
－	運転状態IV＊1				
L14	地震荷重S d＊				
L16	地震荷重S s				

表 4－1（8）外荷重

表4－2 荷重の組合せ

状態	荷重の組合せ	応力評価
運転状態I 及びIII	$\begin{aligned} & \mathrm{L} 01+\mathrm{L} 02+(\mathrm{L} 04, \mathrm{~L} 12, \mathrm{~L} 13, \mathrm{~L} 18 \text { 又は L19) * } \\ & +\mathrm{L} 07+\mathrm{L} 08+\mathrm{L} 10+\mathrm{L} 11 \end{aligned}$	$P_{L}+P_{b}+Q$ 疲労解析
許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$	$\begin{aligned} & \text { L01+L02+(L04, L12, L13, L18 又は L19) * } \\ & +\mathrm{L} 08+\mathrm{L} 11+\mathrm{L} 14 \end{aligned}$	$\begin{aligned} & P_{m} \\ & P_{L}+P_{b} \end{aligned}$
	$\mathrm{L} 14+\mathrm{L} 15$	$P_{L}+P_{b}+Q$ 疲労解析
許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$	$\begin{aligned} & \mathrm{L} 01+\mathrm{L} 02+(\mathrm{L} 04, \mathrm{~L} 12, \mathrm{~L} 13, \mathrm{~L} 18 \text { 又は L19) * } \\ & +\mathrm{L} 08+\mathrm{L} 11+\mathrm{L} 16 \end{aligned}$	$\begin{aligned} & P_{m} \\ & P_{L}+P_{b} \end{aligned}$
	$\mathrm{L} 16+\mathrm{L} 17$	$P_{L}+P_{b}+Q$ 疲労解析
運転状態V	$\mathrm{L} 01+\mathrm{L} 02+$（L04 又は L21）＊＋L08＋L11	$\begin{aligned} & P_{m} \\ & P_{L}+P_{b} \end{aligned}$

注記＊：（ ）内の荷重のうち，各運転条件において実際に考慮する荷重を組合せる。

表5－1 繰返しピーク応力強さの割増し方法

S_{n}	Se
$3 \cdot \mathrm{~S}_{\mathrm{m}}$ 末満	$\mathrm{S}_{\ell}=\frac{\mathrm{S}_{\mathrm{p}}}{2}$
3－ S_{m} 以上	$\mathrm{S}_{\boldsymbol{e}}=\frac{\mathrm{K}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{p}}}{2}$ K_{e} は，次の手順により計算する。 （1） $\mathrm{K}<\mathrm{B}_{0}$ （1） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}}<\frac{\left(q+\frac{A_{0}}{K}-1\right)-\sqrt{\left(q+\frac{A_{0}}{K}-1\right)-4 \cdot A_{0} \cdot(q-1)}}{2 \cdot A_{0}} \\ & K_{e}=1+A_{0} \cdot\left(\frac{S_{n}}{3 \cdot S_{m}}-\frac{1}{K}\right) \end{aligned}$ （2） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}} \geq \frac{\left.\left(q+\frac{A_{0}}{K}-1\right)-\sqrt{\left(q+\frac{A_{0}}{K}-1\right.}\right)-4 \cdot A_{0} \cdot(q-1)}{2 \cdot A_{0}} \\ & K_{e}=1+(q-1) \cdot\left(1-\frac{3 \cdot S_{m}}{S_{n}}\right) \end{aligned}$ （2） $\mathrm{K} \geqq \mathrm{B}_{0}$ （1） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}}<\frac{(q-1)-\sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}}{a} \\ & K_{e}=a \cdot \frac{S_{n}}{3 \cdot S_{m}}+A_{0} \cdot\left(1-\frac{1}{K}\right)+1-a \end{aligned}$ （2）$\frac{S_{n}}{3 \cdot S_{m}} \geq \frac{(q-1)-\sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}}{a}$ $\mathrm{K}_{\mathrm{e}}=1+(\mathrm{q}-1) \cdot\left(1-\frac{3 \cdot \mathrm{~S}_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{n}}}\right)$ ここで， $\mathrm{K}=\frac{\mathrm{S}_{\mathrm{p}}}{\mathrm{~S}_{\mathrm{n}}}$ $a=A_{0} \cdot\left(1-\frac{1}{K}\right)+(q-1)-2 \cdot \sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}$

注1：q， A_{0} ， B_{0} は，表3－1に示す。
注 2 ：地震荷重 Sd ＊及び地震荷重 S s にあっては， S_{n} をそれぞれ $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ ， $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ と読み替え， S_{p} をそれぞれ $\mathrm{S}_{\mathrm{p}}{ }^{\# 1}$ ， $\mathrm{S}_{\mathrm{p}} \mathrm{m}^{\# 2}$ と読み替えるものとする。

[^0]: VI－2－2－24 R 0
 （）

 N

[^1]: プラント名：女川原子力発電所第2号機

[^2]: モーメント（ $\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$ ）
 図 4－116 最大応答モーメント

[^3]: 注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

[^4]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^5]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^6]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^7]: 注 ：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^8]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^9]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^10]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^11]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。

[^12]: 図 4－233 最大応答変位 基準地震動 S s（EW 方向 制御棒案内管）

[^13]: 注：要素上端の質点位置にせん断力を記載。なお，最下端の要素は要素下端の質点位置にもせん断力を記載。
 最大応答せん断力 基準地震動 S s（EW 方向 制御棒案内管）

[^14]: 注：要素上端の質点位置に軸力を記載。なお，最下端の要素は要素下端の質点位置にも軸力を記載。

