VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書

目次
（概要）
1．概要
1－1

目次

（胴板）
2．胴板の耐震性についての計算 2－1
2.1 一般事項 2－1
2．1．1 記号の説明 2－1
2．1．2 形状－寸法 •材料 2－1
2．1．3 解析範囲 2－1
2．1．4 計算結果の概要 2－1
2.2 計算条件 2－5
2．2．1 設計条件 2－5
2．2．2 運転条件 2－5
2．2．3 材料 2－5
2．2．4 荷重の組合せ及び許容応力状態 2－5
2．2．5 荷重の組合せ及び応力評価 2－5
2．2．6 許容応力 2－5
2.3 応力計算 2－5
2．3．1 応力評価点 2－5
2．3．2 内圧による応力 2－5
2．3．3 外荷重による応力 2－6
2．3．4 応力の評価 2－6
2.4 応力強さの評価 2－6
2．4．1 一次一般膜応力強さの評価 2－6
2．4．2 一次膜 + 一次曲げ応力強さの評価 2－6
2．4．3 一次 + 二次応力強さの評価 2－6
2.5 繰返し荷重の評価 2－7
2．5．1 設計•建設規格 PVB－3140（6）についての検討 2－7
2.6 特別な応力の評価 2－8
2．6．1 支圧応力の評価 2－8

図表目次

（胴板）

図2－1 形状•寸法•材料•応力評価点 2－2
表2－1 計算結果の概要 2－4
表2－2 一次一般膜応力強さの評価のまとめ・ 2－9
表2－3 一次膜＋一次曲げ応力強さの評価のまとめ 2－10
表2－4 一次 + 二次応力強さの評価のまとめ 2－11
表2－5 支圧応力の評価に用いる荷重 2－12
表2－6 支圧応力の評価 2－12

目次

（下部鏡板）
3．下部鏡板の耐震性についての計算 3－1
3.1 一般事項 3－1
3．1．1 形状•寸法•材料 3－1
3．1．2 解析範囲 3－1
3．1．3 計算結果の概要 3－1
3.2 計算条件 3－4
3．2．1 設計条件 3－4
3．2．2 運転条件 3－4
3．2．3 材料 3－4
3．2．4 荷重の組合せ及び許容応力状態 3－4
3．2．5 荷重の組合せ及び応力評価 3－4
3．2．6 許容応力 3－4
3.3 応力計算 3－4
3．3．1 応力評価点 3－4
3．3．2 内圧による応力 3－4
3．3．3 外荷重による応力 3－5
3．3．4 応力の評価 3－5
3．4 応力強さの評価 3－5
3．4．1 一次一般膜応力強さの評価 3－5
3．4．2 一次膜 + 一次曲げ応力強さの評価 3－5
3．4．3 一次 + 二次応力強さの評価 3－5
3.5 繰返し荷重の評価 3－6
3．5．1 疲労解析 3－6

図表目次

（下部鏡板）
図3－1 形状•寸法•材料•応力評価点 3－2
表3－1 計算結果の概要 3－3
表3－2 一次一般膜応力強さの評価のまとめ・ 3－7
表3－3 一次膜＋一次曲げ応力強さの評価のまとめ 3－8
表3－4 一次＋二次応力強さの評価のまとめ 3－9
表3－5 疲労累積係数 3－10
表3－6 疲労累積係数の評価のまとめ 3－11

> 目次
> (制御棒駆動機構ハウジング貫通孔)
4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算 4－1
4.1 一般事項 4－1
4．1．1 記号の説明 4－1
4．1．2 形状－寸法 •材料 4－1
4．1．3 解析範囲 4－1
4．1．4 計算結果の概要 4－1
4．2 計算条件 4－4
4．2．1 設計条件 4－4
4．2．2 運転条件 4－4
4．2．3 材料 4－4
4．2．4 荷重の組合せ及び許容応力状態 4－4
4．2．5 荷重の組合せ及び応力評価 4－4
4．2．6 許容応力 4－4
4．3 応力計算 4－4
4．3．1 応力評価点 4－4
4．3．2 内圧による応力 4－4
4．3．3 外荷重による応力 4－5
4．3．4 応力の評価 4－5
4．4 応力強さの評価 4－5
4．4．1 一次一般膜応力強さの評価 4－5
4．4．2 一次膜 + 一次曲げ応力強さの評価 4－5
4．4．3 一次 + 二次応力強さの評価 4－5
4.5 繰返し荷重の評価 4－6
4．5．1 疲労解析 4－6
4． 6 特別な応力の評価 4－6
4．6．1 座屈に対する評価 4－6

図表目次

（制御棒駆動機構ハウジング貫通孔）
図4－1 形状•寸法•材料•応力評価点 4－2
表4－1 計算結果の概要 4－3
表4－2 一次一般膜応力強さの評価のまとめ． 4－8
表4－3 一次膜＋一次曲げ応力強さの評価のまとめ 4－9
表4－4 一次＋二次応力強さの評価のまとめ 4－10
表4－5 疲労累積係数 4－11
表4－6 疲労累積係数の評価のまとめ 4－14
表4－7 座屈に対する評価に用いる荷重 4－15
表4－8 座屈に対する評価 4－15

目次

（再循環水出口ノズル（N1））
5．再循環水出口ノズル（N1）の耐震性についての計算 5－1
5.1 一般事項 5－1
5．1．1 形状 • 寸法 •材料 5－1
5．1．2 解析範囲 5－1
5．1．3 計算結果の概要 5－1
5.2 計算条件 5－4
5．2．1 設計条件 5－4
5．2．2 運転条件 5－4
5．2．3 材料 5－4
5．2．4 荷重の組合せ及び許容応力状態 5－4
5．2．5 荷重の組合せ及び応力評価 5－4
5．2．6 許容応力 5－4
5．3 応力計算 5－4
5．3．1 応力評価点 5－4
5．3．2 内圧による応力 5－4
5．3．3 外荷重による応力 5－5
5．3．4 応力の評価 5－5
5．4 応力強さの評価 5－5
5．4．1 一次一般膜応力強さの評価 5－5
5．4．2 一次膜 + 一次曲げ応力強さの評価 5－5
5．4．3 一次 + 二次応力強さの評価 5－5
5.5 繰返し荷重の評価 5－6
5．5．1 疲労解析 5－6

図表目次

（再循環水出口ノズル（ N 1 ））
図 5－1 形状•寸法•材料•応力評価点 5－2
表5－1 計算結果の概要 5－3
表5－2 一次一般膜応力強さの評価のまとめ・ 5－7
表5－3 一次膜＋一次曲げ応力強さの評価のまとめ 5－8
表5－4 一次＋二次応力強さの評価のまとめ 5－9
表5－5 疲労累積係数。 5－10
表5－6 疲労累積係数の評価のまとめ 5－13

目次

（再循環水入口ノズル（N2））
6．再循環水入口ノズル（N2）の耐震性についての計算 6－1
6.1 一般事項 6－1
6．1．1 形状•寸法•材料 6－1
6．1．2 解析範囲 6－1
6．1．3 計算結果の概要 6－1
6.2 計算条件 6－4
6．2．1 設計条件 6－4
6．2．2 運転条件 6－4
6．2．3 材料 6－4
6．2．4 荷重の組合せ及び許容応力状態 6－4
6．2．5 荷重の組合せ及び応力評価 6－4
6．2．6 許容応力 6－4
6．3 応力計算 6－4
6．3．1 応力評価点 6－4
6．3．2 内圧及び差圧による応力 6－4
6．3．3 外荷重による応力 6－5
6．3．4 応力の評価 6－5
6．4 応力強さの評価 6－5
6．4．1 一次一般膜応力強さの評価 6－5
6．4．2 一次膜 + 一次曲げ応力強さの評価 6－5
6．4．3 一次 + 二次応力強さの評価 6－5
6.5 繰返し荷重の評価 6－6
6．5．1 疲労解析 6－6

図表目次

（再循環水入口ノズル（N2））
図6－1 形状•寸法•材料•応力評価点 6－2
表6－1 計算結果の概要 6－3
表6－2 一次一般膜応力強さの評価のまとめ・ 6－7
表6－3 一次膜＋一次曲げ応力強さの評価のまとめ 6－8
表6－4 一次 + 二次応力強さの評価のまとめ 6－9
表6－5 疲労累積係数． 6－10
表6－6 疲労累積係数の評価のまとめ 6－13

目次
 （主蒸気出口ノズル（N3））

7．主蒸気出口ノズル（N3）の耐震性についての計算 7－1
7.1 一般事項 7－1
7．1．1 形状•寸法•材料 7－1
7．1．2 解析範囲 7－1
7．1．3 計算結果の概要 7－1
7．2 計算条件 7－4
7．2．1 設計条件 7－4
7．2．2 運転条件 7－4
7．2．3 材料 7－4
7．2．4 荷重の組合せ及び許容応力状態 7－4
7．2．5 荷重の組合せ及び応力評価 7－4
7．2．6 許容応力 7－4
7．3 応力計算 7－4
7．3．1 応力評価点 7－4
7．3．2 内圧による応力 7－4
7．3．3 外荷重による応力 7－5
7．3．4 応力の評価 7－5
7.4 応力強さの評価 7－5
7．4．1 一次一般膜応力強さの評価 7－5
7．4．2 一次膜 + 一次曲げ応力強さの評価 7－5
7．4．3 一次 + 二次応力強さの評価 7－5
7.5 繰返し荷重の評価 7－6
7．5．1 疲労解析 7－6

図表目次

（主蒸気出口ノズル（N3））
図 7－1 形状•寸法•材料•応力評価点 7－2
表7－1 計算結果の概要 7－3
表7－2 一次一般膜応力強さの評価のまとめ・ 7－7
表7－3 一次膜＋一次曲げ応力強さの評価のまとめ 7－8
表7－4 一次 + 二次応力強さの評価のまとめ 7－9
表7－5 疲労累積係数 7－10
表 7－6 疲労累積係数の評価のまとめ 7－13

目次

（給水ノズル（N4））
8．給水ノズル（N4）の耐震性についての計算 8－1
8． 1 一般事項 8－1
8．1．1 形状•寸法•材料 8－1
8．1．2 解析範囲 8－1
8．1．3 計算結果の概要 8－1
8．2 計算条件 8－4
8．2．1 設計条件 8－4
8．2．2 運軽条件 8－4
8．2．3 材料 8－4
8．2．4 荷重の組合せ及び許容応力状態 8－4
8．2．5 荷重の組合せ及び応力評価 8－4
8．2．6 許容応力 8－4
8．3 応力計算 8－4
8．3．1 応力評価点 8－4
8．3．2 内圧及び差圧による応力 8－4
8．3．3 外荷重による応力 8－5
8．3．4 応力の評価 8－5
8． 4 応力強さの評価 8－5
8．4．1 一次一般膜応力強さの評価 8－5
8．4．2 一次膜 + 一次曲げ応力強さの評価 8－5
8．4．3 一次 + 二次応力強さの評価 8－5
8.5 繰返し荷重の評価 8－6
8．5．1 疲労解析 8－6

図表目次

（給水ノズル（N4））
図8－1 形状•寸法•材料•応力評価点 8－2
表8－1 計算結果の概要 8－3
表8－2 一次一般膜応力強さの評価のまとめ・ 8－7
表8－3 一次膜＋一次曲げ応力強さの評価のまとめ 8－8
表8－4 一次＋二次応力強さの評価のまとめ 8－9
表8－5 疲労累積係数 8－10
表8－6 疲労累積係数の評価のまとめ 8－13
9．低圧炉心スプレイノズル（N5）の耐震性についての計算 9－1
9.1 一般事項 9－1
9．1．1 形状 • 寸法 •材料 9－1
9．1．2 解析範囲 9－1
9．1．3 計算結果の概要 9－1
9．2 計算条件 9－4
9．2．1 設計条件 9－4
9．2．2 運転条件 9－4
9．2．3 材料 9－4
9．2．4 荷重の組合せ及び許容応力状態 9－4
9．2．5 荷重の組合せ及び応力評価 9－4
9．2．6 許容応力 9－4
9．3 応力計算 9－4
9．3．1 応力評価点 9－4
9．3．2 内圧及び差圧による応力 9－4
9．3．3 外荷重による応力 9－5
9．3．4 応力の評価 9－5
9.4 応力強さの評価 9－5
9．4．1 一次一般膜応力強さの評価 9－5
9．4．2 一次膜 + 一次曲げ応力強さの評価 9－5
9．4．3 一次 + 二次応力強さの評価 9－5
9.5 繰返し荷重の評価 9－6
9．5．1 疲労解析 9－6

図表目次

（低圧炉心スプレイノズル（N5））

図9－1 形状•寸法•材料•応力評価点 9－2
表9－1 計算結果の概要 9－3
表9－2 一次一般膜応力強さの評価のまとめ・•• 9－7
表9－3 一次膜＋一次曲げ応力強さの評価のまとめ 9－8
表9－4 一次 + 二次応力強さの評価のまとめ 9－9
表9－5 疲労累積係数 9－10
表9－6 疲労累積係数の評価のまとめ 9－13

目次

（低圧注水ノズル（N6））
10．低圧注水ノズル（N6）の耐震性についての計算 10－1
10．1 一般事項 10－1
10．1．1 形状 • 寸法 •材料 10－1
10．1．2 解析範囲 10－1
10．1．3 計算結果の概要 10－1
10．2 計算条件 10－4
10．2．1 設計条件 10－4
10．2．2 運転条件 10－4
10．2．3 材料 10－4
10．2．4 荷重の組合せ及び許容応力状態 10－4
10．2．5 荷重の組合せ及び応力評価• 10－4
10．2．6 許容応力 10－4
10．3 応力計算 10－4
10．3．1 応力評価点． 10－4
10．3．2 内圧及び差圧による応力 10－4
10．3．3 外荷重による応力 10－5
10．3．4 応力の評価 10－5
10．4 応力強さの評価 10－5
10．4．1 一次一般膜応力強さの評価 10－5
10．4．2 一次膜 + 一次曲げ応力強さの評価 $10-5$
10．4．3 一次 + 二次応力強さの評価． 10－5
10.5 繰返し荷重の評価 10－6
10．5．1 疲労解析 10－6

図表目次

（低圧注水ノズル（N6））
図10－1 形状•寸法•材料•応力評価点 10－2
表 10－1 計算結果の概要 10－3
表10－2 一次一般膜応力強さの評価のまとめ 10－7
表10－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 10－8
表10－4 一次＋二次応力強さの評価のまとめ 10－9
表10－5 疲労累積係数。 10－10
表10－6 疲労累積係数の評価のまとめ 10－13

目次

（上蓋スプレイノズル（N7））
11．上蓋スプレイノズル（N7）の耐震性についての計算 11－1
11.1 一般事項 11－1
11．1．1 形状•寸法•材料 11－1
11．1．2 解析範囲 11－1
11．1．3 計算結果の概要 11－1
11．2 計算条件 11－4
11．2．1 設計条件 11－4
11．2．2 運転条件 11－4
11．2．3 材料 11－4
11．2．4 荷重の組合せ及び許容応力状態 11－4
11．2．5 荷重の組合せ及び応力評価 11－4
11．2．6 許容応力 11－4
11.3 応力計算 11－4
11．3．1 応力評価点 11－4
11．3．2 内圧による応力 11－4
11．3．3 外荷重による応力 $11-5$
11．3．4 ボルト荷重による応力 $11-5$
11．3．5 応力の評価 11－5
11．4 応力強さの評価 $11-5$
11．4．1 一次一般膜応力強さの評価 11－5
11．4．2 一次膜 + 一次曲げ応力強さの評価 $11-5$
11．4．3 一次 + 二次応力強さの評価 11－6
11.5 繰返し荷重の評価 11－6
11．5．1 疲労解析 11－6

図表目次

> (上蓋スプレイノズル (N7))
図11－1 形状•寸法•材料•応力評価点 11－2
表11－1 計算結果の概要 11－3
表11－2 一次一般膜応力強さの評価のまとめ 11－7
表11－3 一次膜＋一次曲げ応力強さの評価のまとめ 11－8
表11－4 一次＋二次応力強さの評価のまとめ 11－9
表11－5 疲労累積係数 11－10
表11－6 疲労累積係数の評価のまとめ 11－12

> 目次 $($ ベントノズル (N8) $)$
12．ベントノズル（N8）の耐震性についての計算 12－1
12.1 一般事項 12－1
12．1．1 形状 • 寸法 •材料 12－1
12．1．2 解析範囲 12－1
12．1．3 計算結果の概要 12－1
12．2 計算条件 12－4
12．2．1 設計条件 12－4
12．2．2 運転条件 12－4
12．2．3 材料 12－4
12．2．4 荷重の組合せ及び許容応力状態 12－4
12．2．5 荷重の組合せ及び応力評価 12－4
12．2．6 許容応力 12－4
12.3 応力計算 12－4
12．3．1 応力評価点 12－4
12．3．2 内圧による応力 12－4
12．3．3 外荷重による応力 12－5
12．3．4 ボルト荷重による応力 12－5
12．3．5 応力の評価 12－5
12．4 応力強さの評価 12－5
12．4．1 一次一般膜応力強さの評価 12－5
12．4．2 一次膜 + 一次曲げ応力強さの評価 12－5
12．4．3 一次 + 二次応力強さの評価 12－6
12.5 繰返し荷重の評価 12－6
12．5．1 疲労解析 12－6

図表目次

(ベントノズル (N8))
図12－1 形状•寸法•材料•応力評価点 12－2
表12－1 計算結果の概要 12－3
表12－2 一次一般膜応力強さの評価のまとめ 12－7
表12－3 一次膜＋一次曲げ応力強さの評価のまとめ 12－8
表12－4 一次＋二次応力強さの評価のまとめ 12－9
表12－5 疲労累積係数． 12－10
表12－6 疲労累積係数の評価のまとめ 12－12

目次

（ジェットポンプ計測管貫通部ノズル（N9））

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算 13－1
13.1 一般事項 13－1
13．1．1 形状•寸法•材料 13－1
13．1．2 解析範囲 13－1
13．1．3 計算結果の概要 13－1
13．2 計算条件 13－4
13．2．1 設計条件 13－4
13．2．2 運転条件 13－4
13．2．3 材料 13－4
13．2．4 荷重の組合せ及び許容応力状態 13－4
13．2．5 荷重の組合せ及び応力評価 13－4
13．2．6 許容応力 13－4
13．3 応力計算 13－4
13．3．1 応力評価点 13－4
13．3．2 内圧による応力 13－4
13．3．3 外荷重による応力 13－5
13．3．4 応力の評価 13－5
13．4 応力強さの評価 13－5
13．4．1 一次一般膜応力強さの評価 13－5
13．4．2 一次膜 + 一次曲げ応力強さの評価 13－5
13．4．3 一次 + 二次応力強さの評価 13－5
13.5 繰返し荷重の評価 13－6
13．5．1 疲労解析 13－6
図表目次
（ジェットポンプ計測管貫通部ノズル（N9））
図13－1 形状•寸法•材料•応力評価点• 13－2
表13－1 計算結果の概要 13－3
表13－2 一次一般膜応力強さの評価のまとめ 13－7
表13－3 一次膜＋一次曲げ応力強さの評価のまとめ 13－8
表13－4 一次＋二次応力強さの評価のまとめ 13－9
表13－5 疲労累積係数． 13－10
表13－6 疲労累積係数の評価のまとめ 13－13

目次
（差圧検出・ほう酸水注入ノズル（N11））

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算 14－1
14.1 一般事項 14－1
14．1．1 形状 • 寸法 •材料 14－1
14．1．2 解析範囲 14－1
14．1．3 計算結果の概要 14－1
14．2 計算条件 14－4
14．2．1 設計条件 14－4
14．2．2 運転条件 14－4
14．2．3 材料 14－4
14．2．4 荷重の組合せ及び許容応力状態 14－4
14．2．5 荷重の組合せ及び応力評価•• 14－4
14．2．6 許容応力 14－4
14.3 応力計算 14－4
14．3．1 応力評価点 14－4
14．3．2 内圧による応力 14－4
14．3．3 外荷重による応力 14－5
14．3．4 応力の評価 14－5
14．4 応力強さの評価 14－5
14．4．1 一次一般膜応力強さの評価 14－5
14．4．2 一次膜 + 一次曲げ応力強さの評価 14－5
14．4．3 一次 + 二次応力強さの評価 14－5
14.5 繰返し荷重の評価 14－6
14．5．1 疲労解析 14－6

図表目次

（差圧検出・ほう酸水注入ノズル（N11））
図 14－1 形状•寸法•材料•応力評価点• 14－2
表14－1 計算結果の概要 14－3
表14－2 一次一般膜応力強さの評価のまとめ 14－7
表14－3 一次膜＋一次曲げ応力強さの評価のまとめ 14－8
表14－4 一次＋二次応力強さの評価のまとめ 14－9
表14－5 疲労累積係数• 14－10
表14－6 疲労累積係数の評価のまとめ 14－12
15．計装ノズル（N12，N13，N14）の耐震性についての計算 15－1
15.1 一般事項 15－1
15．1．1 形状•寸法•材料 15－1
15．1．2 解析範囲 15－1
15．1．3 計算結果の概要 15－1
15．2 計算条件 15－7
15．2．1 設計条件 15－7
15．2．2 運転条件 15－7
15．2．3 材料 15－7
15．2．4 荷重の組合せ及び許容応力状態 15－7
15．2．5 荷重の組合せ及び応力評価• 15－7
15．2．6 許容応力 15－7
15．3 応力計算 15－7
15．3．1 応力評価点 15－7
15．3．2 内圧による応力 15－7
15．3．3 外荷重による応力 15－8
15．3．4 応力の評価 15－8
15．4 応力強さの評価 15－8
15．4．1 一次一般膜応力強さの評価 15－8
15．4．2 一次膜 + 一次曲げ応力強さの評価 15－8
15．4．3 一次 + 二次応力強さの評価 15－8
15.5 繰返し荷重の評価 15－9
15．5．1 疲労解析 15－9

図表目次

（計装ノズル（N12，N13，N14））
図 15－1 形状•寸法•材料•応力評価点 15－2
表15－1 計装ノズルの計算結果の概要 15－4
表15－2 計装ノズルの一次一般膜応力強さの評価のまとめ 15－10
表15－3 計装ノズルの一次膜＋一次曲げ応力強さの評価のまとめ 15－13
表15－4 計装ノズルの一次＋二次応力強さの評価のまとめ 15－16
表15－5 計装ノズルの疲労累積係数 15－19
表15－6 計装ノズルの疲労累積係数の評価のまとめ 15－28

目次
 （ドレンノズル（N15））

16．ドレンノズル（N15）の耐震性についての計算 16－1
16.1 一般事項 16－1
16．1．1 形状•寸法•材料 16－1
16．1．2 解析範囲 16－1
16．1．3 計算結果の概要 16－1
16．2 計算条件 16－4
16．2．1 設計条件 16－4
16．2．2 運転条件 16－4
16．2．3 材料 16－4
16．2．4 荷重の組合せ及び許容応力状態 16－4
16．2．5 荷重の組合せ及び応力評価 16－4
16．2．6 許容応力 16－4
16．3 応力計算 16－4
16．3．1 応力評価点 16－4
16．3．2 内圧による応力 16－4
16．3．3 外荷重による応力 16－5
16．3．4 応力の評価 16－5
16．4 応力強さの評価 16－5
16．4．1 一次一般膜応力強さの評価 16－5
16．4．2 一次膜 + 一次曲げ応力強さの評価 16－5
16．4．3 一次 + 二次応力強さの評価 16－5
16.5 繰返し荷重の評価 16－6
16．5．1 疲労解析 16－6

図表目次

（ドレンノズル（N15））
図16－1 形状•寸法•材料•応力評価点 16－2
表16－1 計算結果の概要 16－3
表16－2 一次一般膜応力強さの評価のまとめ 16－7
表16－3 一次膜＋一次曲げ応力強さの評価のまとめ 16－8
表16－4 一次＋二次応力強さの評価のまとめ 16－9
表16－5 疲労累積係数． 16－10
表16－6 疲労累積係数の評価のまとめ 16－12

> 目次
> (高圧炉心スプレイノズル $(\mathrm{N} 16)$)
17．高圧炉心スプレイノズル（N16）の耐震性についての計算 17－1
17.1 一般事項 17－1
17．1．1 形状•寸法•材料 17－1
17．1．2 解析範囲 17－1
17．1．3 計算結果の概要 17－1
17．2 計算条件 17－4
17．2．1 設計条件 17－4
17．2．2 運転条件 17－4
17．2．3 材料 17－4
17．2．4 荷重の組合せ及び許容応力状態 17－4
17．2．5 荷重の組合せ及び応力評価 17－4
17．2．6 許容応力 17－4
17．3 応力計算 17－4
17．3．1 応力評価点 17－4
17．3．2 内圧及び差圧による応力 17－4
17．3．3 外荷重による応力 17－5
17．3．4 応力の評価 17－5
17．4 応力強さの評価 17－5
17．4．1 一次一般膜応力強さの評価 17－5
17．4．2 一次膜 + 一次曲げ応力強さの評価 17－5
17．4．3 一次 + 二次応力強さの評価 17－5
17.5 繰返し荷重の評価 17－6
17．5．1 疲労解析 17－6

図表目次

> (高圧炉心スプレイノズル (N16))
図 17－1 形状•寸法•材料•応力評価点 17－2
表17－1 計算結果の概要 17－3
表17－2 一次一般膜応力強さの評価のまとめ 17－7
表17－3 一次膜 + 一次曲げ応力強さの評価のまとめ・ 17－8
表17－4 一次＋二次応力強さの評価のまとめ 17－9
表17－5 疲労累積係数• 17－10
表17－6 疲労累積係数の評価のまとめ 17－13
18．ブラケット類の耐震性についての計算 18－1
18.1 一般事項 18－1
18．1．1 形状 •寸法 •材料 18－1
18．1．2 解析範囲 18－1
18．1．3 計算結果の概要 18－1
18.2 計算条件 18－6
18．2．1 設計条件 18－6
18．2．2 材料 18－6
18．2．3 荷重の組合せ及び許容応力状態 18－6
18．2．4 荷重の組合せ及び応力評価 18－6
18．2．5 許容応力 18－6
18．2．6 応力の記号と方向 18－6
18.3 応力計算 18－7
18．3．1 応力評価点 18－7
18．3．2 外荷重による応力 18－7
18．3．3 応力の評価 18－7
18．4 応力強さの評価 18－8
18．4．1 ブラケット付根の応力強さの評価 18－8
18．4．2 ロッド穴周辺の応力強さの評価 18－8

図表目次

（ブラケット類）
図 18－1 形状•寸法•材料 18－2
表 18－1 計算結果の概要 18－5
表18－2 ブラケット付根の一次一般膜応力強さの評価• 18－9
表18－3 ブラケット付根の一次膜＋一 次曲げ応力強さの評価 18－10
表18－4 ロッド穴周辺の純せん断応力の評価• 18－11
表18－5 ロッド穴周辺の一次膜＋一次曲げ応力強さの評価• 18－11

目次

（原子炉圧力容器支持スカート）
19．原子炉圧力容器支持スカートの耐震性についての計算 19－1
19.1 一般事項 19－1
19．1．1 記号の説明 19－1
19．1．2 形状•寸法•材料 19－1
19．1．3 解析範囲 19－1
19．1．4 計算結果の概要 19－1
19．2 計算条件 19－4
19．2．1 設計条件 19－4
19．2．2 運転条件 19－4
19．2．3 材料 19－4
19．2．4 荷重の組合せ及び許容応力状態 19－4
19．2．5 荷重の組合せ及び応力評価 19－4
19．2．6 許容応力 19－4
19．3 応力計算 19－5
19．3．1 応力評価点 19－5
19．3．2 内圧による応力 19－5
19．3．3 外荷重による応力 19－5
19．3．4 応力の評価 19－6
19．4 応力強さの評価 19－6
19．4．1 一次一般膜応力強さの評価 19－6
19．4．2 一次膜 + 一次曲げ応力強さの評価 19－6
19．4．3 一次 + 二次応力強さの評価 19－6
19.5 繰返し荷重の評価 19－6
19．5．1 疲労解析 19－6
19．6 特別な応力の評価 19－7
19．6．1 座屈に対する評価 19－7

図表目次

（原子炉圧力容器支持スカート）
図19－1 形状•寸法•材料•応力評価点 19－2
図19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル 19－9
図19－3 外荷重（非軸対称荷重）による応力計算のモデル 19－10
表19－1 計算結果の概要 19－3
表19－2 応力集中係数• 19－11
表19－3 一次一般膜応力強さの評価のまとめ 19－12
表19－4 一次膜 + 一次曲げ応力強さの評価のまとめ 19－13
表19－5 一次＋二次応力強さの評価のまとめ・ 19－14
表19－6 疲労累積係数 19－15
表19－7 疲労累積係数の評価のまとめ 19－16
表19－8 座屈に対する評価に用いる荷重 19－17
表19－9 座屈に対する評価 19－17

> 目次
> (原子炉圧力容器基礎ボルト)
20．原子炉圧力容器基礎ボルトの耐震性についての計算 20－1
20.1 一般事項 20－1
20．1．1 形状 • 寸法 •材料 20－1
20．1．2 解析範囲 20－1
20．1．3 計算結果の概要 20－1
20．2 計算条件 20－4
20．2．1 設計条件 20－4
20．2．2 材料 20－4
20．2．3 荷重の組合せ及び許容応力状態 20－4
20．2．4 荷重の組合せ及び応力評価• 20－4
20．2．5 許容応力 20－4
20．2．6 許容応力評価条件 20－4
20．3 応力計算 20－4
20．3．1 外荷重による応力 20－4
20．4 応力の評価 20－5

図表目次

（原子炉圧力容器基礎ボルト）
図20－1 形状•寸法•材料 20－2
表20－1 計算結果の概要 20－3
表20－2 許容応力評価条件• 20－6
表20－3 計算結果 20－6

1．概要

本計算書は，原子炉圧力容器（原子炉圧力容器支持スカート及び原子炉圧力容器基礎 ボルトを含む。）の耐震計算結果を示すものである。

本計算書の各機器は，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」 （以下「応力解析の方針」という。）に基づき評価する。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（1））及び平成元年 6 月 8 日付け元資庁第2015号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（2）） は以下「既工認」という。

2．胴板の耐震性についての計算
2.1 一般事項

本章は，胴板の耐震性についての計算である。
胴板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．1．1 記号の説明
記号の説明を「応力解析の方針」の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
N^{\prime}	荷重変動回数	回
$\Delta \sigma^{\prime}$	機械的荷重により生じる応力の全振幅	MPa
Sa	任意の点の繰返しピーク応力強さ	MPa
A_{c}	支圧面積	mm^{2}
W	炉心シュラウド支持ロッドから作用する荷重	N
$\mathrm{a} \sim \mathrm{d}$	支圧面積の計算に用いる寸法	mm
σ_{c}	平均支圧応力	MPa

2．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図2－1に示す。

2．1．3 解析範囲
解析範囲を図2－1に示す。

2．1．4 計算結果の概要

計算結果の概要を表2－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図2－1（1）形状•寸法•材料•応力評価点（単位：mm）
（胴板）

図2－1（2）形状•寸法•材料•応力評価点（単位：mm） （胴板の上部ウェッジ及び下部スタビライザとの接触部）

$$
\text { O } 2 \text { (3) VI-2-3-4-1-2 } \quad \text { R } 0
$$

表 2－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ			一次＋二次応力強さ		
		応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点
	III $_{\text {A }} \mathrm{S}$	173	303	P01－P02	173	394	P01－P02	－	－	－
胢板 SQV2A	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	173	320	P01－P02	173	416	P01－P02	－	－	－
SQV2A SFVQ1A	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	56	552	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	76	552	P01

表2－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	支圧応力の評価	
		$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	平均支圧応力

2． 2 計算条件

2．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

2．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

2．2．3 材料
各部の材料を図2－1に示す。

2．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

2．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

2．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

2．3 応力計算

2．3．1 応力評価点
応力評価点の位置を図2－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に定めるとおりである。

2．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

2．3．3 外荷重による応力

（1）荷重条件（L12，L14及びL16）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）c． に定めるとおりである。

2．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

2.4 応力強さの評価

2．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表2－2に示す。
表2－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

2．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表2－3に示す。
表2－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

2．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表2－4に示す。
表2－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{2}$ 及び $\mathrm{S}_{\mathrm{n}} \#^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」の 3.5 節に示す許容応力を満足する。

2.5 繰返し荷重の評価

2．5．1 設計•建設規格 PVB－3140（6）についての検討
添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－3140（6）の検討を行い，疲労解析が不要であることを示す。

著しい機械的荷重は， $\mathrm{S}=86 \mathrm{MPa}$ を超えるような応力変動を生じる荷重である。
N’は，「応力解析の方針」の 4.2 節に示すように地震荷重の繰返し回数が多い地震荷重S d＊の回数を用いる。
$\mathrm{N}^{\prime}=590$ 回
N’に対するS は，設計•建設規格 添付4－2 3．1よりS a＝684MPaである。
$\mathrm{S} d$ 又は S s 地震動による $\Delta \sigma$ は，「応力解析の方針」の4．2節に示すように地震荷重の大きいS s 地震動による応力の全振幅を用いる。
$\Delta \sigma=32 \times 2=64 \mathrm{MPa}$
したがって， S a $>\Delta \sigma$ であり，条件を満足する。
2.6 特別な応力の評価

2．6．1 支圧応力の評価
胴板には，炉心シュラウド支持ロッドから作用する荷重により，上部ウェッジ及び下部 スタビライザとの接触面に支圧応力が生じる。したがって，これらの荷重により発生する支圧応力の評価を行う。
（1）計算データ
上部ウェッジの幅
上部ウェッジの高さ

上部ウェッジの支圧面積

$$
A_{c}=(a-2 \cdot c) \cdot(b-2 \cdot d)=
$$

下部スタビライザの幅
下部スタビライザの高さ
下部スタビライザの隅の処理寸法
下部スタビライザの隅の処理寸法

下部スタビライザの支圧面積

$$
A_{c}=(\mathrm{a}-2 \cdot \mathrm{c}) \cdot(\mathrm{b}-2 \cdot \mathrm{~d})
$$

（2）荷重
各許容応力状態における炉心シュラウド支持ロッドから胴板に作用する水平力を表2－5に示す。
（3）平均支圧応力
平均支圧応力 σ_{c} は，次のようにして求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{W}}{\mathrm{~A}_{\mathrm{c}}}
$$

（4）支圧応力の評価
各許容応力状態における評価を表2－6に示す。
表2－6より，各許容応力状態の平均支圧応力は，「応力解析の方針」の3．5節に示す許容応力を満足する。

表 2－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	173	303	173	320
P01 P02	172	303	173	320

表2－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	173	394	173	416
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	172	394	173	416

[^0]表 2－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次 + 二次応力差最大範囲 $\left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right)$		
	$\mathrm{S}_{\mathrm{n}} \# 1 * 1$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
	56	76	552
$\mathrm{P} 01^{\prime}$	56	76	552
P 02	56	76	552
$\mathrm{P} 02^{\prime}$	56	76	552

注記 $* 1: S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表2－5 支圧応力の評価に用いる荷重
（単位：kN）

許容応力状態	評価部位	水平力＊ H
	上部ウェッジ支持面	
	下部スタビライザ支持面	

下部スタビライザに作用する荷重である。

表2－6 支圧応力の評価
（単位：MPa）

評価部位	許容応力状態	平均支圧応力	許容応力
上部ウェッジ支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	236	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	408	481
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	34	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	62	481

3．下部鏡板の耐震性についての計算
3.1 一般事項

本章は，下部鏡板の耐震性についての計算である。
下部鏡板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

```
3．1．1 形状•寸法•材料本章で解析する箇所の形状•寸法•材料を図3－1に示す。
```


3．1．2 解析範囲
 解析範囲を図3－1に示す。

3．1．3 計算結果の概要
計算結果の概要を表3－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図3－1 形状•寸法•材料•応力評価点（単位：mm）
O 2
（3） $\mathrm{VI}-2-3-4-1-2$
R 0

表 3－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
下部鏡板 SFVQ1A	III $_{\text {A }} \mathrm{S}$	104	303	P01＇－P02＇	101	388	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	103	320	P01＇－P02＇	122	410	P05＇－P06＇	－	－	－	－	－	－
	III $_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	168	552	P05	0． 043	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	232	552	P05			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

3．2 計算条件

3．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

3．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

3．2．3 材料
各部の材料を図3－1に示す。

3．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

3．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

3．2．6 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

3．3 応力計算

3．3．1 応力評価点
応力評価点の位置を図3－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に定めるとおりである。

3．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

3．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）e． に定めるとおりである。

3．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

3.4 応力強さの評価

3．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表3－2に示す。
表3－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

3．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表3－3に示す。
表3－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

3．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表3－4に示す。
表3－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{2}$ 及び $\mathrm{S}_{\mathrm{n}} \#^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」の 3.5 節に示す許容応力を満足する。

3.5 繰返し荷重の評価

3．5．1 疲労解析
下部鏡板の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表3－5に示す。また，各応力評価点における疲労累積係数を表3－6に示す。

表3－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 3－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	96	303	98	320
P01 P02	104	303	103	320

表 3－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	94	394	96	416
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	99	394	97	416
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	38	394	38	416
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	62	394	71	416
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	52	388	75	410
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \end{aligned}$	101	388	122	410

表 3－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{*} *^{1}$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	36	50	552
P01＇	36	50	552
P02	36	48	552
P02＇	36	48	552
P03	50	70	552
P03＇	50	70	552
P04	56	76	552
P04＇	56	76	552
P05	168	232	552
P05＇	168	232	552
P06	82	112	552
P06＇	82	112	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I A_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 3－5 疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P05 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ E 0 ／ E ）を乗じた値である。

表 3－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s} ~}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P01	0.002	0.000	0.000	0.002	1.000
P01	0.002	0.000	0.000	0.002	1.000
P02	0.001	0.000	0.000	0.001	1.000
P02	0.001	0.000	0.000	0.001	1.000
P03	0.014	0.000	0.000	0.014	1.000
P03	0.014	0.000	0.000	0.014	1.000
P04	0.006	0.000	0.000	0.006	1.000
P04	0.006	0.000	0.000	0.006	1.000
P05	0.021	0.014	0.022	0.043	1.000
P05	0.021	0.014	0.022	0.043	1.000
P06	0.008	0.000	0.000	0.008	1.000
P06	0.008	0.000	0.000	0.008	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算

4.1 一般事項

本章は，制御棒駆動機構ハウジング貫通孔の耐震性についての計算である。
制御棒駆動機構ハウジング貫通孔は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注：以下，制御棒駆動機構ハウジングを「ハウジング」，制御棒駆動機構ハウジング貫通孔ス タブチューブを「スタブチューブ」という。

4．1．1 記号の説明
記号の説明を「応力解析の方針」の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
R_{i}	スタブチューブの内半径	mm
t	スタブチューブの最小厚さ	mm
A	スタブチューブの断面積	mm^{2}
Z	スタブチューブの断面係数	mm^{3}
σ_{ca}	許容応力	MPa

4．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図4－1に示す。

4．1． 3 解析範囲
解析範囲を図4－1に示す。

4．1．4 計算結果の概要
計算結果の概要を表4－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図4－1 形状•寸法•材料•応力評価点（単位：mm）

表 4－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			疲労解析		
		応力強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
ハウジング SUSF316	III $_{\text {A }} \mathrm{S}$	48	143	P03－P04	48	197	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	49	280	P03－P04	102	386	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	80	360	P02	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	188	360	P02			
$\begin{aligned} & \text { スタブ } \\ & \text { チューブ } \\ & \text { NCF600-B } \end{aligned}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	8	196	P05＇－P06＇	187	287	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	9	334	P05＇－P06＇	207	487	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	52	492	P06	0.006	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	128	492	P06			
下部鏡板 リガメント SFVQ1A	III $_{\text {A }} \mathrm{S}$	144	303	P09－P10	149	454	P09－P10	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	143	320	P09－P10	148	481	P09－P10	－	－	－	－	－	－
	III $_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	0	552	P09	0． 003	1． 000	P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	2	552	P09			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

> 表4-1 (2) 計算結果の概要

部分及び材料	許容応力状態	座屈に対する評価	
		圧縮応力	許容応力
スタブチューブ NCF600－ B	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	36	101
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	74	126

4．2 計算条件

4．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

4．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

4．2．3 材料
各部の材料を図4－1に示す。

4．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

4．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

4．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

4．3 応力計算

4．3．1 応力評価点
応力評価点の位置を図4－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定めるとおりである。

4．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

4．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L19，L14及びL16）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
L14及びL16の荷重のらち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「STAX」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5計算機プログラム（解析コード）の概要」に示す。

その他の外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定めるとおりである。

4．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

4． 4 応力強さの評価

4．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表4－2に示す。
表4－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

4．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表4－3に示す。
表4－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

4．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表4－4に示す。
表4－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

4.5 繰返し荷重の評価

4．5．1 疲労解析
ハウジング，スタブチューブ及び下部鏡板リガメントの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表4－5に示す。 また，各応力評価点における疲労累積係数を表4－6に示す。

表4－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

4． 6 特別な応力の評価

4．6．1 座屈に対する評価
スタブチューブには，制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメン トにより，圧縮応力が生じる。したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スタブチューブの内半径
スタブチューブの最小厚さ

スタブチューブの断面積

スタブチューブの断面係数

$$
\mathrm{Z}=\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{4}-\mathrm{R}_{\mathrm{i}}^{4}}{\mathrm{R}_{\mathrm{i}}+\mathrm{t}}=\frac{\pi}{4} \times \square
$$

（2）荷重
スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」の4．2節に示す。
（3）圧縮応力
計算データ（断面性能）を基に，表4－7に示す各許容応力状態の荷重によってスタブチュ ーブに発生する圧縮応力を表4－8に示す。
（4）許容応力
各許容応力状態における許容応力の計算は，設計•建設規格 PVB－3117を準用して計算す る。
a．許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$
許容応力状態 $I I I I_{A} S$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.2 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

ここで，
$\mathrm{S}_{\mathrm{m}}=164 \mathrm{MPa}$
$\mathrm{B}=84 \mathrm{MPa}$
$\square{ }^{\circ} \mathrm{C}$ における値）
このうち B 値は，設計•建設規格 PVB－3117より，次のようにして求める。
設計•建設規格 付録材料図表 Part7 図1より

を用いて，設計•建設規格 付録材料図表 Part7 図7より
$\mathrm{B}=84 \mathrm{MPa}$
よって，許容応力 σ_{ca} は，
$\sigma_{\mathrm{ca}}=1.2 \cdot \mathrm{~B}=1.2 \times 84=101 \mathrm{MPa}$
b．許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.5 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

よって，許容応力 σ_{ca} は，
$\sigma_{\mathrm{ca}}=1.5 \cdot \mathrm{~B}=1.5 \times 84=126 \mathrm{MPa}$
（5）座屈に対する評価
各許容応力状態における座屈に対する評価を表4－8に示す。
表4－8より，各許容応力状態における圧縮応力は，許容応力を満足するため，座屈は発生 しない。

表 4－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	10	143	12	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	10	143	11	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	48	143	49	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	48	143	49	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	6	196	6	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	8	196	9	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	2	196	3	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	4	196	6	334
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	144	303	143	320

表 4－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	48	197	102	386
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	38	197	91	386
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	35	197	50	386
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	9	197	14	386
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	34	273	71	464
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	28	273	64	464
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	162	287	147	487
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	187	287	207	487
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	149	454	148	481

表 4－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次 + 二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	62	152	360
P01＇	62	152	360
P02	80	188	360
P02＇	80	188	360
P03	20	46	360
P03＇	20	46	360
P04	26	56	360
P04＇	26	56	360
P05	48	110	492
P05＇	48	110	492
P06	52	128	492
P06＇	52	128	492
P07	24	56	492
P07＇	24	56	492
P08	34	80	492
P08＇	34	80	492
P09	0	2	552
P10	0	0	552

注記 $* 1: ~ S_{n}{ }^{1}$ は許容応力状態 $\mathrm{II}_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 4－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P04 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{K}_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Se}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime *} \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	56	－	278	139	154	2173529	340	0.001
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\text {S }}=$								0.002

注：疲労累積係数の求め方は，「応力解析の方針」の 5．4．2項（疲労解析）に示す。注記 $~$ 1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

表 4－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & -\mathrm{P} 05 \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $~$ 1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

表 4－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{K}_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Se}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e}^{,} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	0	－	10	5	6	1000000	340	0.000
疲労累積係数 $\mathrm{U}_{\text {s s }}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.003$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Usss}^{\text {a }}=0.003$								

注：疲労累積係数の求め方は，「応力解析の方針」の 5．4．2項（疲労解析）に示す。注記 $~$ 1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

表 4－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U s s	U ${ }_{\text {f }}$	許容値
P01	0.000	0.000	0.000	0.000	1.000
P01＇	0.000	0.000	0.000	0.000	1.000
P02	0.000	0.000	0.001	0.001	1.000
P02＇	0.000	0.000	0.001	0.001	1.000
P03	0.000	0.000	0.000	0.000	1.000
P03＇	0.000	0.000	0.000	0.000	1.000
P04	0.001	0.000	0.001	0.002	1.000
P04＇	0.001	0.000	0.001	0.002	1.000
P05	0.003	0.001	0.003	0.006	1.000
P05，	0.003	0.001	0.003	0.006	1.000
P06	0.000	0.000	0.000	0.000	1.000
P06＇	0.000	0.000	0.000	0.000	1.000
P07	0.001	0.000	0.000	0.001	1.000
P07＇	0.001	0.000	0.000	0.001	1.000
P08	0.003	0.000	0.000	0.003	1.000
P08＇	0.003	0.000	0.000	0.003	1.000
P09	0.003	0.000	0.000	0.003	1.000
P10	0.003	0.000	0.000	0.003	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は

[^1]| 許容応力状態 | 鈖直力＊1
 $\mathrm{V}(\mathrm{kN})$ | モーメント＊2
 $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$ | |
| :---: | :---: | :---: | :---: |
| $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ | | | |
| $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ | | | |

注記＊1：「応力解析の方針」の4．2節に示す $\mathrm{V}_{1}+\mathrm{V}_{2}$ の値 $* 2:$ 「応力解析の方針」の 4.2 節に示す $\mathrm{M}_{1}+\mathrm{M}_{2}$ の値

表4－8 座屈に対する評価

5．再循環水出口ノズル（N1）の耐震性についての計算
5.1 一般事項

本章は，再循環水出口ノズル（N1）の耐震性についての計算である。
再循環水出口ノズル（N1）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

5．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図5－1に示す。

5．1．2 解析範囲
解析範囲を図5－1に示す。

5．1．3 計算結果の概要
計算結果の概要を表5－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図5－1 形状•寸法•材料•応力評価点（単位：mm）

表 5－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜 + 一次曲げ応力強さ(MPa)			一次＋二次応力強さ （MPa）			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	応力 強さ	許容応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	76	143	P01－P02	172	194	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	280	P01－P02	195	380	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	320	360	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	378＊2	360	P02			
溶接部 ステンレス鋼	III $_{\text {A }} \mathrm{S}$	62	143	P03－P04	145	197	P03－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	280	P03－P04	163	386	P03－P04	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	270	360	P04	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	320	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	III $_{\text {A }} \mathrm{S}$	75	303	P05－P06	180	409	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	80	320	P05－P06	204	432	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	344	552	P06	0． 071	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	410	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

5．2 計算条件

5．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

5．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

5．2．3 材料
各部の材料を図5－1に示す。

5．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

5．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

5．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

5．3 応力計算

5．3．1 応力評価点
応力評価点の位置を図5－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）h．に定めるとおりである。

5．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）h．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）h．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

5．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）h． に定めるとおりである。

5．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

5.4 応力強さの評価

5．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表5－2に示す。
表5－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

5．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表5－3に示す。
表5－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

5．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表5－4に示す。
表5－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\#} 1$ 及び $\mathrm{S}_{\mathrm{n}} \#^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P02及びP02＇

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P02及びP02’）にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。

5.5 繰返し荷重の評価

5．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表5－5に示す。 また，各応力評価点における疲労累積係数を表5－6に示す。

表5－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 5－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	76	143	81	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	73	143	77	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	62	143	65	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	59	143	62	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	75	303	80	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	73	303	77	320

表 5－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	168	194	190	380
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	172	194	195	380
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	145	197	163	386
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	145	197	163	386
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	180	409	204	432
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	162	409	186	432

表 5－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(P_{L}+P_{b}+Q\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{+1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	280	332	360
P01＇	280	332	360
P02	320	378＊3	360
P02＇	320	$378 * 3$	360
P03	228	272	360
P03＇	228	272	360
P04	270	320	360
P04＇	270	320	360
P05	302	360	552
P05，	302	360	552
P06	344	410	552
P06＇	344	410	552

注記 $* 1: ~ S_{n}{ }^{1}$ 1は許容応力状態 $\mathrm{II}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 5－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（E0／E）を乗じた値である。

表 5－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.001	0.001	0.001	0.002	1.000
P01	0.000	0.001	0.001	0.001	1． 000
P02	0.000	0.001	0.004	0.004	1． 000
P02＇	0.000	0.001	0.004	0.004	1． 000
P03	0.001	0.001	0.001	0.002	1． 000
P03＇	0.000	0.001	0.001	0.001	1． 000
P04	0.001	0.001	0.001	0.002	1． 000
P04＇	0.001	0.001	0.001	0.002	1． 000
P05	0.000	0.017	0.017	0.017	1． 000
P05，	0.000	0.017	0.017	0.017	1． 000
P06	0.000	0.071	0.067	0.071	1． 000
P06＇	0.000	0.071	0.067	0.071	1． 000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

6．再循環水入口ノズル（N2）の耐震性についての計算
6.1 一般事項

本章は，再循環水入口ノズル（N2）の耐震性についての計算である。
再循環水入口ノズル（N2）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

6．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図6－1に示す。

6．1．2 解析範囲
解析範囲を図6－1に示す。

6．1．3 計算結果の概要
計算結果の概要を表6－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図6－1 形状•寸法•材料•応力評価点（単位：mm）

表 6－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			一次＋二次応力強さ （MPa）			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	IIIA S	97	143	P01－P02	171	193	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	108	280	P01－P02	328	378	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	228	360	P02	0.625	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	730＊2	360	P02			
$\begin{aligned} & \text { サーマル } \\ & \text { スリーブ } \\ & \text { SUSF316 } \end{aligned}$	III $_{\text {A }} \mathrm{S}$	27	143	P05－P06	61	193	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	280	P05－P06	78	378	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	96	360	P06	0． 017	1． 000	P06＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	164	360	P06			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	IIIA ${ }_{\text {S }}$	65	303	P07－P08	86	409	P07＇－P08 ${ }^{\prime}$	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	72	320	P07－P08	185	432	P07＇－P08	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	170	552	P08	0． 100	1． 000	P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	488	552	P08			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

6．2 計算条件

6．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

6．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

6．2．3 材料
各部の材料を図6－1に示す。

6．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

6．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

6．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

6．3 応力計算
6．3．1 応力評価点
応力評価点の位置を図6－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）i．に定めるとおりである。

6．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）i．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）i．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

6．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）i． に定めるとおりである。

6．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

6.4 応力強さの評価

6．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表6－2に示す。
表6－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

6．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表6－3に示す。
表6－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

6．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表6－4に示す。
表6－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。
6.5 繰返し荷重の評価

6．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表6－5に示す。 また，各応力評価点における疲労累積係数を表6－6に示す。

表6－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 6－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	97	143	108	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	94	143	103	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	48	143	53	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	47	143	51	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	65	303	72	320
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	65	303	70	320

表 6－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 6－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次＋二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	202	$648 * 3$	360
P01＇	202	$648 * 3$	360
P02	228	730＊3	360
P02＇	228	730＊3	360
P03	102	284	360
P03＇	102	284	360
P04	120	342	360
P04＇	120	342	360
P05	86	144	360
P05＇	86	144	360
P06	96	164	360
P06＇	96	164	360
P07	148	426	552
P07	148	426	552
P08	170	488	552
P08＇	170	488	552

注記 $* 1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： S_{n} \＃2は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 6－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{K}_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	730	2． 064	868	896	993	545	340	0.624
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\text {s s }}=0.625$								

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2 ： S_{ℓ} に（ E 0 ／E）を乗じた値である。

E $=$

$\mathrm{Pa}, \mathrm{E}=$ \qquad MPa

表 6－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06’ } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2 ： S_{ℓ} に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=$

MPa，$E=$
 MPa

表 6－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2 ： $\mathrm{S}_{\text {e に（ } \mathrm{E} 0 \text {／} \mathrm{E} \text { ）を乗じた値である。 }}$

表 6－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U S s	U_{f}＊	許容値
P01	0.001	0.001	0.193	0.194	1． 000
P01	0.001	0.001	0.193	0.194	1.000
P02	0.001	0.001	0.624	0.625	1.000
P02＇	0.001	0.001	0.624	0.625	1.000
P03	0.001	0.001	0.078	0.079	1.000
P03＇	0.001	0.001	0.078	0.079	1.000
P04	0.001	0.000	0.001	0.002	1.000
P04＇	0.001	0.000	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1． 000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.002	0.016	0.016	1． 000
P06＇	0.001	0.002	0.016	0.017	1． 000
P07	0.001	0.001	0.030	0.031	1.000
P07 ${ }^{\prime}$	0.001	0.001	0.030	0.031	1． 000
P08	0.001	0.005	0.099	0.100	1.000
P08＇	0.001	0.005	0.099	0.100	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

7．主蒸気出口ノズル（N3）の耐震性についての計算
7.1 一般事項

本章は，主蒸気出口ノズル（N3）の耐震性についての計算である。
主蒸気出口ノズル（N3）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

7．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図7－1に示す。

7．1．2 解析範囲

解析範囲を図7－1に示す。

7．1．3 計算結果の概要
計算結果の概要を表7－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図7－1 形状•寸法•材料•応力評価点（単位：mm）

表 7－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜 + 一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	III $_{\text {A }} \mathrm{S}$	111	188	P01－P02	188	249	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	110	292	P01－P02	181	385	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	382	383	P02	0． 036	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	380	383	P02			
溶接部炭素鋼	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	81	188	P03－P04	153	253	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	292	P03－P04	147	391	P03＇－P04＇	－	－	－	－	－	－
	III $_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	310	383	P04	0.016	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	383	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	81	303	P05－P06	159	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	320	P05－P06	153	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	336	552	P06	0． 061	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	336	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重Sd＊又は地震荷重S s のいずれか大きい方を加えた値である。

7． 2 計算条件

7．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

7．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

7．2．3 材料
各部の材料を図7－1に示す。

7．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

7．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

7．2．6 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

7.3 応力計算

7．3．1 応力評価点
応力評価点の位置を図7－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。

7．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

7．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j． に定めるとおりである。

7．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

7． 4 応力強さの評価

7．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表7－2に示す。
表7－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

7．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表7－3に示す。
表7－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

7．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表7－4に示す。
表7－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{2}$ 及び S_{n} \＃2 は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」の 3.5 節に示す許容応力を満足する。

7.5 繰返し荷重の評価

7．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表7－5に示す。 また，各応力評価点における疲労累積係数を表7－6に示す。

表7－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 7－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	111	188	110	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	107	188	107	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	81	188	81	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	78	188	78	292
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	81	303	81	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	78	303	78	320

表 7－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	181	249	174	385
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	188	249	181	385
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	149	253	144	391
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	153	253	147	391
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	159	406	153	429
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	145	406	139	429

表 7－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次 + 二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{+1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	354	354	383
P01＇	354	354	383
P02	382	380	383
P02＇	382	380	383
P03	280	278	383
P03＇	280	278	383
P04	310	310	383
P04＇	310	310	383
P05	302	302	552
P05，	302	302	552
P06	336	336	552
P06＇	336	336	552

注記＊ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 7－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=$

表 7－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \mathrm{P} 04 \\
\text { 材 } & \text { 料 } & - \\
\text { 炭素鋼 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。

表 7－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。

表 7－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s} ~}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P01	0.001	0.035	0.020	0.036	1.000
P01	0.001	0.035	0.020	0.036	1.000
P02	0.000	0.029	0.017	0.029	1.000
P02	0.000	0.029	0.017	0.029	1.000
P03	0.001	0.011	0.006	0.012	1.000
P03	0.000	0.011	0.006	0.011	1.000
P04	0.000	0.016	0.009	0.016	1.000
P04	0.000	0.016	0.009	0.016	1.000
P05	0.001	0.017	0.010	0.018	1.000
P05	0.001	0.017	0.010	0.018	1.000
P06	0.001	0.060	0.034	0.061	1.000
P06	0.000	0.060	0.034	0.060	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

8．給水ノズル（N4）の耐震性についての計算
8.1 一般事項

本章は，給水ノズル（N4）の耐震性についての計算である。
給水ノズル（N4）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

8．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図8－1に示す。

8．1．2 解析範囲
解析範囲を図8－1に示す。

8．1．3 計算結果の概要
計算結果の概要を表8－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図8－1 形状•寸法•材料•応力評価点（単位：mm）

O 2
（3） $\mathrm{VI}-2-3-4-1-2$
R 0

表 8－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{A} \mathrm{~S}$	102	188	P01－P02	204	253	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	107	292	P01－P02	228	391	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	378	383	P02	0． 324	1． 000	P03＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$466 * 2$	383	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	61	303	P05－P06	128	415	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	63	320	P05－P06	147	439	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	252	552	P06	0． 034	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	322	552	P06			
サーマル スリーブ SFVC2B	$\mathrm{III}_{4} \mathrm{~S}$	12	188	P07－P08	44	262	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	14	292	P09－P10	53	394	P09－P10＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	94	383	P10	0． 324	1． 000	P07 ${ }^{\prime}$
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	162	383	P10			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

8．2 計算条件

8．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

8．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

8．2．3 材料
各部の材料を図8－1に示す。

8．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

8．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

8．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

8．3 応力計算

8．3．1 応力評価点
応力評価点の位置を図8－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）k．に定めるとおりである。

8．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）k．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）k．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

8．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）k． に定めるとおりである。

8．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

8． 4 応力強さの評価
8．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表8－2に示す。
表8－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

8．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表8－3に示す。
表8－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

8．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表8－4に示す。
表8－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。

8.5 繰返し荷重の評価

8．5．1 疲労解析
ノズルセーフエンド，ノズルエンド及びサーマルスリーブの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表8－5に示す。 また，各応力評価点における疲労累積係数を表8－6に示す。

表8－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 8－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	102	188	107	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	98	188	102	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	61	188	63	292
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	58	188	61	292
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	61	303	63	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	58	303	61	320
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	12	188	12	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	10	188	10	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	12	188	14	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	11	188	12	292

表 8－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	204	253	228	391
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	199	253	224	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	107	258	126	400
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	107	258	126	400
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	128	415	147	439
$\begin{aligned} & \hline \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	109	415	128	439
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \\ & \hline \end{aligned}$	24	262	24	405
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	44	262	54	405
$\begin{array}{r} \text { P09 } \\ \text { P10 } \\ \hline \end{array}$	31	255	48	394
$\begin{aligned} & \text { P09' } \\ & \text { P10 } \\ & \hline \end{aligned}$	36	255	53	394

表 8－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次＋二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{*} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	340	418＊3	383
P01＇	340	418＊3	383
P02	378	466＊3	383
P02＇	378	466＊3	383
P03	198	256	383
P03＇	198	256	383
P04	232	300	383
P04＇	232	300	383
P05	214	272	552
P05，	214	272	552
P06	252	322	552
P06＇	252	322	552
P07	50	82	383
P07＇	50	82	383
P08	58	98	383
P08＇	58	98	383
P09	82	142	383
P09＇	82	142	383
P10	94	162	383
P10＇	94	162	383

注記 $* 1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 8－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P03' } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。

表 8－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2 ： $\mathrm{S}_{\text {e に（ } \mathrm{E} 0 \text {／} \mathrm{E} \text { ）を乗じた値である。 }}$
$\mathrm{E}_{0}=\square$
MPa，$E=$
 MPa

表 8－5（3）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 - P07, } \\
& \text { 材 料 - SFVC2B }
\end{aligned}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	82	－	82	41	46	1000000	340	0.000
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.324$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\mathrm{s}}=0.324$								

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2 ： $\mathrm{S}_{\text {e に（ } \mathrm{E} 0 \text {／} \mathrm{E} \text { ）を乗じた値である。 }}$

表 8－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.004	0.021	0.039	0.043	1.000
P01	0.004	0.021	0.039	0.043	1． 000
P02	0.008	0.060	0.173	0.181	1.000
P02＇	0.003	0.060	0.173	0.176	1.000
P03	0.089	0.181	0.225	0.314	1.000
P03＇	0.099	0.181	0.225	0.324	1． 000
P04	0.006	0.005	0.008	0.014	1.000
P04＇	0.006	0.005	0.008	0.014	1． 000
P05	0.001	0.005	0.007	0.008	1． 000
P05＇	0.001	0.005	0.007	0.008	1.000
P06	0.001	0.025	0.033	0.034	1． 000
P06＇	0.001	0.025	0.033	0.034	1.000
P07	0．234	0.000	0.000	0． 234	1． 000
P07	0.324	0.000	0.000	0.324	1.000
P08	0.094	0.005	0.020	0.114	1.000
P08＇	0.093	0.005	0.020	0.113	1.000
P09	0.015	0.000	0.000	0.015	1． 000
P09＇	0.016	0.000	0.000	0.016	1． 000
P10	0.006	0.000	0.004	0.010	1． 000
P10＇	0.006	0.000	0.004	0.010	1． 000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

9．低圧炉心スプレイノズル（N5）の耐震性についての計算
9.1 一般事項

本章は，低圧炉心スプレイノズル（N5）の耐震性についての計算である。
低圧炉心スプレイノズル（N5）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

9．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図9－1に示す。

9．1．2 解析範囲
解析範囲を図9－1に示す。

9．1．3 計算結果の概要
計算結果の概要を表9－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図9－1 形状•寸法•材料•応力評価点（単位：mm）

表 9－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			一次＋二次応力強さ （MPa）			疲労解析		
		応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	89	188	P01－P02	214	253	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	92	292	P01－P02	276	391	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	374	383	P02	0． 290	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$522^{* 2}$	383	P02			
$\begin{gathered} \text { サーマル } \\ \text { スリーブ } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	17	188	P09－P10	39	247	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	292	P09－P10	58	382	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	102	383	P08	0． 009	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	178	383	P08			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	64	303	P11－P12	123	409	P11－P12	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	320	P11－P12	159	432	P11－P12	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－P12	－	－	－P12	222	552	P12	0． 025	1． 000	P12
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	552	P12			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}$ mを超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

9．2 計算条件

9．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

9．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

9．2．3 材料
各部の材料を図9－1に示す。

9．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

9．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

9．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

9．3 応力計算

9．3．1 応力評価点
応力評価点の位置を図9－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）ℓ ．に定めるとおりである。

9．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）l．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）l．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

9．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）ℓ 。 に定めるとおりである。

9．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

9．4 応力強さの評価

9．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表9－2に示す。
表9－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。

9．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表9－3に示す。
表9－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

9．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表9－4に示す。
表9－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。

9.5 繰返し荷重の評価

9．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表9－5に示す。 また，各応力評価点における疲労累積係数を表9－6に示す。

表9－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 9－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	64	303	65	320
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 9－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	97	255	130	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	28	249	39	385
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	123	409	159	432
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	100	409	136	432

表 9－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(P_{L}+P_{b}+Q\right) \end{gathered}$		
		$\mathrm{S}_{\mathrm{n}} \#^{\text {2 }}$＊	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	466＊3	383
P01＇	336	466＊3	383
P02	374	$522 * 3$	383
P02＇	374	$522 * 3$	383
P03	174	246	383
P03＇	174	246	383
P04	200	282	383
P04＇	200	282	383
P05	42	70	383
P05，	42	70	383
P06	46	82	383
P06＇	46	82	383
P07	98	166	383
P07	98	166	383
P08	102	178	383
P08＇	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10＇	66	110	383
P11	192	270	552
P11＇	192	270	552
P12	222	310	552
P12＇	222	310	552

注記 $*^{1}$ ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 9－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2 ： $\mathrm{S}_{\text {e に（ } \mathrm{E} 0 \text {／} \mathrm{E} \text { ）を乗じた値である。 }}$

表 9－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（E0／E）を乗じた値である。

表 9－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	US s	U_{f}＊	許容値
P01	0.001	0.020	0.087	0.088	1.000
P01＇	0.001	0.020	0.087	0.088	1． 000
P02	0.001	0.050	0.289	0.290	1． 000
P02＇	0.000	0.050	0.289	0.289	1． 000
P03	0.003	0.127	0.216	0.219	1． 000
P03＇	0.003	0.127	0.216	0.219	1． 000
P04	0.000	0.003	0.007	0.007	1.000
P04＇	0.000	0.003	0.007	0.007	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1． 000
P06	0.000	0.002	0.009	0.009	1.000
P06＇	0.000	0.002	0.009	0.009	1． 000
P07	0.001	0.000	0.001	0.002	1． 000
P07＇	0.001	0.000	0.001	0.002	1． 000
P08	0.001	0.000	0.005	0.006	1． 000
P08＇	0.001	0.000	0.005	0.006	1． 000
P09	0.000	0.000	0.000	0.000	1． 000
P09＇	0.001	0.000	0.000	0.001	1． 000
P10	0.001	0.000	0.000	0.001	1． 000
P10＇	0.001	0.000	0.000	0.001	1.000
P11	0.001	0.003	0.007	0.008	1． 000
P11＇	0.001	0.003	0.007	0.008	1.000
P12	0.001	0.015	0.024	0.025	1． 000
P12＇	0.001	0.015	0.024	0.025	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

10．低圧注水ノズル（N6）の耐震性についての計算
10.1 一般事項

本章は，低圧注水ノズル（N6）の耐震性についての計算である。
低圧注水ノズル（N6）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

10．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図10－1に示す。

10．1．2 解析範囲
解析範囲を図10－1に示す。

10．1．3 計算結果の概要

計算結果の概要を表10－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図10－1 形状•寸法•材料•応力評価点（単位：mm）

表 10－1 計算結果の概要

		一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
部分	許容心力状態	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \\ & \hline \end{aligned}$	許容 応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	III $_{\text {A }} \mathrm{S}$	115	188	P01－P02	227	253	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	157	292	P01－P02	349	391	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	402＊2	383	P02	0． 871	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$662 * 2$	383	P02			
サーマル スリーブ SFVC2B	III ${ }_{\text {A }}$ S	18	188	P07－P08	29	255	P05－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	21	292	P07－P08	29	385	P07－P08	－	－	－	－	－	－
	III $_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	50	383	P08	0． 001	1． 000	P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	76	383	P08			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	74	303	P09－P10	122	409	P09－P10	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	86	320	P09－P10	178	432	P09－P10	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	214	552	P10	0． 031	1． 000	P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	342	552	P10			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2：許容応力 $3 \cdot \mathrm{~S}$ mを超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

10.2 計算条件

10．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

10．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

10．2．3 材料
各部の材料を図10－1に示す。

10．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

10．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

10．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

10.3 応力計算

10．3．1 応力評価点
応力評価点の位置を図10－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）m．に定めるとおりである。

10．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）m．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）m．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

10．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）m． に定めるとおりである。

10．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

10． 4 応力強さの評価
10．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表10－2に示す。
表10－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

10．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表10－3に示す。
表10－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

10．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表10－4に示す。
表10－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}} \#^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。
10.5 繰返し荷重の評価

10．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表10－5に示 す。また，各応力評価点における疲労累積係数を表10－6に示す。

表10－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 10－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	115	188	157	292
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	109	188	155	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	74	188	86	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	72	188	83	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \text { P05 } \\ & \text { P06, } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	74	303	86	320
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	72	303	83	320

表 10－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	221	253	336	391
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	227	253	349	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	111	255	164	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	100	255	155	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	28	394
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	29	255	29	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	25	249	29	385
$\begin{aligned} & \text { P07' } \\ & \text { P08 } \end{aligned}$	24	249	25	385
$\begin{array}{r} \text { P09 } \\ \text { P10 } \\ \hline \end{array}$	122	409	178	432
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10 } \end{aligned}$	102	409	161	432

表 10－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{*} *^{1}$	$\mathrm{S}_{\mathrm{n}} \#^{\text {2 }}$＊	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	362	600＊3	383
P01＇	362	600＊3	383
P02	402＊3	662＊3	383
P02＇	$402 * 3$	662＊3	383
P03	172	276	383
P03＇	172	276	383
P04	194	314	383
P04＇	194	314	383
P05	26	42	383
P05＇	26	42	383
P06	34	42	383
P06＇	34	42	383
P07	42	68	383
P07	42	68	383
P08	50	76	383
P08＇	50	76	383
P09	190	300	552
P09＇	190	300	552
P10	214	342	552
P10＇	214	342	552

注記 $*^{1}: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次＋二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 10－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=$
 MPa

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{K}_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{\prime *} \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	76	－	80	40	45	1000000	340	0.000
疲労累積係数 $\mathrm{US} \mathrm{s} \mathrm{s}^{\prime}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US} \mathrm{s}^{\text {a }}=$								0.001

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ E 0 ／ E ）を乗じた値である。

表 10－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。

表 10－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U s s	U_{f}＊	許容値
P01	0.001	0.025	0.368	0.369	1.000
P01	0.001	0.025	0.368	0.369	1． 000
P02	0.001	0.078	0.870	0.871	1.000
P02＇	0.000	0.078	0.870	0.870	1． 000
P03	0.006	0.080	0．207	0.213	1． 000
P03＇	0.003	0.080	0．207	0.210	1． 000
P04	0.000	0.003	0.010	0.010	1.000
P04＇	0.000	0.003	0.010	0.010	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.000	0.000	0.000	1.000
P06＇	0.000	0.000	0.000	0.000	1.000
P07	0.001	0.000	0.000	0.001	1． 000
P07＇	0.001	0.000	0.000	0.001	1.000
P08	0.001	0.000	0.000	0.001	1.000
P08＇	0.000	0.000	0.000	0.000	1.000
P09	0.001	0.003	0.010	0.011	1． 000
P09＇	0.001	0.003	0.010	0.011	1.000
P10	0.001	0.012	0.030	0.031	1.000
P10＇	0.001	0.012	0.030	0.031	1． 000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

11．上蓋スプレイノズル（N7）の耐震性についての計算
11.1 一般事項

本章は，上蓋スプレイノズル（N7）の耐震性についての計算である。
上蓋スプレイノズル（N7）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

11．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図11－1に示す。

11．1．2 解析範囲

解析範囲を図11－1に示す。

11．1．3 計算結果の概要

計算結果の概要を表11－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図11－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 0

表 11－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			疲労解析		
		応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
フランジ部 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	45	303	P01＇－P02＇	76	454	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	320	P01＇－P02＇	80	481	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	82	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	90	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	138	303	P03－P04	331	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	137	320	P03－P04	355	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	526	552	P06	0． 292	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$572 * 2$	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊1 ：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

11.2 計算条件

11．2．1 設計条件

設計条件を「応力解析の方針」の4．1節に示す。

11．2．2 運転条件

考慮した運転条件を「応力解析の方針」の4．2節に示す。

11．2．3 材料

各部の材料を図11－1に示す。

11．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

11．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

11．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

11.3 応力計算

11．3．1 応力評価点
応力評価点の位置を図11－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

11．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

11．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n． に定めるとおりである。

11．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとお りである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n． に定めるとおりである。

11．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

11．4 応力強さの評価

11．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表11－2に示す。
表11－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

11．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表11－3に示す。
表11－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

11．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表11－4に示す。
表11－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

P06及びP06’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P06及びP06’）にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。

11.5 繰返し荷重の評価

11．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表11－5に示 す。また，各応力評価点における疲労累積係数を表11－6に示す。

表11－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表11－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	44	303	44	320
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	45	303	45	320
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	138	303	137	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	133	303	131	320
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	135	303	135	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	128	303	126	320

表11－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	62	454	66	481
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	76	454	80	481
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	302	406	330	429
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	215	406	240	429
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	331	406	355	429
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	171	406	194	429

表11－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次＋二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	54	60	552
P01＇	54	60	552
P02	82	90	552
P02＇	82	90	552
P03	428	472	552
P03＇	428	472	552
P04	480	528	552
P04＇	480	528	552
P05	468	508	552
P05，	468	508	552
P06	526	$572 * 3$	552
P06＇	526	$572 * 3$	552

注記＊ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \# 2$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot S_{m}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 11－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \quad \mathrm{E}=$

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=$ \qquad

表 11－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.001	0.003	0.003	0.004	1.000
P02	0.000	0.003	0.003	0.003	1.000
P03	0.001	0.052	0.041	0.053	1.000
P03	0.001	0.052	0.041	0.053	1.000
P04	0.007	0.231	0.184	0.238	1.000
P04	0.001	0.231	0.184	0.232	1.000
P05	0.002	0.069	0.051	0.071	1.000
P05	0.001	0.069	0.051	0.070	1.000
P06	0.004	0.204	0.288	0.292	1.000
P06	0.001	0.204	0.288	0.289	1.000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

12．ベントノズル（N8）の耐震性についての計算
12.1 一般事項

本章は，ベントノズル（N8）の耐震性についての計算である。
ベントノズル（N8）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

12．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図12－1に示す。

12．1．2 解析範囲
解析範囲を図12－1に示す。

12．1．3 計算結果の概要
計算結果の概要を表12－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図12－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 0

表 12－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			一次＋二次応力強さ （MPa）			疲労解析		
		応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力 強さ	許容応力	応力評価面	応力 強さ	許容応力	応力評価点	疲労累積係数＊	許容値	応力評価点
フランジ部 SFVQ1A	III $_{\text {A }} \mathrm{S}$	42	303	P01－P02	59	454	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	42	320	P01－P02	58	481	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	102	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	102	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	III $_{\text {A }} \mathrm{S}$	101	303	P03－P04	251	418	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	98	320	P03－P04	235	442	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	552	552	P06	0.578	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	542	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

12.2 計算条件

12．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

12．2．2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

12．2．3 材料
各部の材料を図12－1に示す。

12．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.4 節に示す。

12．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

12．2．6 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

12．3 応力計算

12．3．1 応力評価点
応力評価点の位置を図12－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

12．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

12．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o． に定めるとおりである。

12．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとお りである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o． に定めるとおりである。

12．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。
12.4 応力強さの評価

12．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表12－2に示す。
表12－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

12．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表12－3に示す。
表12－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

12．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表12－4に示す。
表12－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。
12.5 繰返し荷重の評価

12．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表12－5に示 す。また，各応力評価点における疲労累積係数を表12－6に示す。

表12－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 12－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	101	303	98	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04' } \end{aligned}$	98	303	94	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	98	303	96	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	95	303	91	320

O 2 （3）VI－2－3－4－1－2 R 0

表 12－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01＇ P02	52	454	58	481
P03 P04	227	418	215	442
P03 P04	130	418	118	442
P05 P06	251	418	235	442
P05 P06，	128	418	111	442

表 12－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	64	64	552
P01＇	64	64	552
P02	102	102	552
P02＇	102	102	552
P03	400	392	552
P03＇	400	392	552
P04	478	472	552
P04＇	478	472	552
P05	460	452	552
P05，	460	452	552
P06	552	542	552
P06＇	552	542	552

注記＊1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態III A S による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 12－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

表 12－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
E ${ }_{0}$ \qquad $\mathrm{Pa}, \mathrm{E}=$ \qquad MPa

表 12－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s} ~}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.000	0.004	0.002	0.004	1.000
P02	0.000	0.004	0.002	0.004	1.000
P03	0.000	0.041	0.022	0.041	1.000
P03	0.000	0.041	0.022	0.041	1.000
P04	0.002	0.189	0.105	0.191	1.000
P04	0.000	0.189	0.105	0.189	1.000
P05	0.001	0.065	0.036	0.066	1.000
P05	0.000	0.065	0.036	0.065	1.000
P06	0.001	0.577	0.166	0.578	1.000
P06	0.000	0.577	0.166	0.577	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算
13.1 一般事項

本章は，ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算である。 ジェットポンプ計測管貫通部ノズル（N9）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

13．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図13－1に示す。

13．1．2 解析範囲

解析範囲を図13－1に示す。

13．1．3 計算結果の概要
計算結果の概要を表13－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図13－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 0

表 13－1 計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

13.2 計算条件

13．2．1 設計条件

設計条件を「応力解析の方針」の4．1節に示す。

13．2．2 運転条件

考慮した運転条件を「応力解析の方針」の4．2節に示す。

13．2．3 材料
各部の材料を図13－1に示す。

13．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

13．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

13．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。
13.3 応力計算

13．3．1 応力評価点
応力評価点の位置を図13－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

13．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

13．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p． に定めるとおりである。

13．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。
13.4 応力強さの評価

13．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表13－2に示す。
表13－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

13．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表13－3に示す。
表13－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

13．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表13－4に示す。
表13－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

13.5 繰返し荷重の評価

13．5．1 疲労解析
ジェットポンプ計測管貫通部シール，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表13－5に示 す。また，各応力評価点における疲労累積係数を表13－6に示す。

表13－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 13－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	72	143	68	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	72	143	69	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	105	303	99	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	107	303	101	320

表 13－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	157	209	159	408
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	155	209	156	408
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	114	207	116	406
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	118	207	119	406
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	209	418	210	442
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	210	418	210	442

表 13－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{*} *^{1}$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	260	264	360
P01＇	260	264	360
P02	358	360	360
P02＇	358	360	360
P03	198	192	360
P03＇	198	192	360
P04	256	256	360
P04＇	256	256	360
P05	386	386	552
P05＇	386	386	552
P06	456	458	552
P06＇	456	458	552

注記 $~$ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 13－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（E0／E）を乗じた値である。

```
応力評価点 - P04
材 料 - ステンレス鋼
```

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e^{\prime} * 2} \\ & (\mathrm{MPa}) \end{aligned}$	$\mathrm{Na}_{\text {a }}$	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	256	－	256	128	142	3103670	590	0.001
疲労累積係数 $U_{\mathrm{n}}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=$								0.001

注：疲労累積係数の求め方は，「応力解析の方針」の 5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
E 0

MPa，E
\qquad MPa

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
E。

MPa，E \square MPa

表 13－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U s s	U_{f}＊	許容値
P01	0.000	0.001	0.001	0.001	1.000
P01	0.000	0.001	0.001	0.001	1． 000
P02	0.000	0.001	0.001	0.001	1.000
P02＇	0.000	0.001	0.001	0.001	1． 000
P03	0.000	0.001	0.001	0.001	1.000
P03＇	0.000	0.001	0.001	0.001	1.000
P04	0.000	0.001	0.001	0.001	1． 000
P04＇	0.000	0.001	0.001	0.001	1． 000
P05	0.000	0.037	0.021	0.037	1． 000
P05＇	0.000	0.037	0.021	0.037	1.000
P06	0.001	0.115	0.071	0.116	1． 000
P06＇	0.000	0.115	0.071	0.115	1． 000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算
14.1 一般事項

本章は，差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算である。
差圧検出・ほう酸水注入ノズル（N11）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} & \text { 14．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 14-1 \text { に示す。 }\end{aligned}$

14．1．2 解析範囲
解析範囲を図14－1に示す。

14．1．3 計算結果の概要
計算結果の概要を表14－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図14－1 形状•寸法•材料•応力評価点（単位：mm）
O 2
（3） $\mathrm{VI}-2-3-4-1-2$
R 0

表 14－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			一次十二次応力強さ （MPa）			疲労解析		
部分及び材科		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力 評価点	疲労累積係数＊	許容値	応力評価点
肉盛部高ニッケル合金	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	6	196	P01－P02	93	295	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	334	P01－P02	95	501	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	32	492	P02	0． 001	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	58	492	P02			
$\begin{gathered} \text { ノズル } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	32	143	P07－P08	32	207	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	37	280	P07－P08	47	406	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	68	360	P06	0． 004	1． 000	P08＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	142	360	P08			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

14．2 計算条件

14．2．1 設計条件

設計条件を「応力解析の方針」の4．1節に示す。

14．2．2 運転条件

考慮した運転条件を「応力解析の方針」の4．2節に示す。

14．2．3 材料
各部の材料を図14－1に示す。

14．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

14．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

14．2．6 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

14．3 応力計算

14．3．1 応力評価点
応力評価点の位置を図14－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

14．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

14．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q． に定めるとおりである。

14．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

14．4 応力強さの評価

14．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表14－2に示す。
表14－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

14．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表14－3に示す。
表14－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

14．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表14－4に示す。
表14－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2} 2$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

14.5 繰返し荷重の評価

14．5．1 疲労解析
肉盛部及びノズルの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表14－5に示 す。また，各応力評価点における疲労累積係数を表14－6に示す。

表14－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 14－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 14－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	18	295	22	501
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	18	295	24	501
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	87	295	84	501
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	93	295	95	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	20	207	29	406
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	29	207	40	406
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	32	207	47	406
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	23	207	41	406

表 14－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \#^{\text {2 }}$＊	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	20	40	492
P01＇	20	40	492
P02	32	58	492
P02＇	32	58	492
P03	12	16	492
P03＇	12	16	492
P04	16	30	492
P04＇	16	30	492
P05	48	80	360
P05＇	48	80	360
P06	68	114	360
P06，	68	114	360
P07	54	106	360
P07	54	106	360
P08	68	142	360
P08＇	68	142	360

注記 $* 1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 14－5（1）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P01 }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の 5．4．2項（疲労解析）に示す。注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ E 0 ／ E ）を乗じた値である。

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（Eol E ）を乗じた値である。

表 14－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U s d	U s s	U_{f}＊	許容値
P01	0.001	0.000	0.000	0.001	1.000
P01	0.001	0.000	0.000	0.001	1.000
P02	0.000	0.000	0.000	0.000	1． 000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1.000
P04	0.000	0.000	0.000	0.000	1.000
P04＇	0.000	0.000	0.000	0.000	1.000
P05	0.001	0.000	0.000	0.001	1． 000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.001	0.001	0.002	1． 000
P06＇	0.000	0.001	0.001	0.001	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1． 000
P08	0.000	0.001	0.003	0.003	1.000
P08＇	0.001	0.001	0.003	0.004	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

15．計装ノズル（N12，N13，N14）の耐震性についての計算
15.1 一般事項

本章は，計装ノズル（N12，N13及びN14）の耐震性についての計算である。
計装ノズル（N12，N13及びN14）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} 15.1 .1 & \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 15-1 \text { に示す。 }\end{aligned}$

15．1．2 解析範囲
解析範囲を図15－1に示す。

15．1．3 計算結果の概要
計算結果の概要を表15－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図 15－1（1）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N12 及びN13））

図 15－1（2）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N14））

O 2 （3）VI－2－3－4－1－2 R 0

表 15－1（1）計装ノズル（N12）の計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{S} \mathrm{d}^{*}$ 又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値3• S_{m} を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

O 2 （3）VI－2－3－4－1－2 R 0

表 15－1（2）計装ノズル（N13）の計算結果の概要

注：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{S} \mathrm{d}^{*}$ 又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

O 2 （3）VI－2－3－4－1－2 R 0

表 15－1（3）計装ノズル（N14）の計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

15.2 計算条件

15．2．1 設計条件

設計条件を「応力解析の方針」の4．1節に示す。

15．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

15．2．3 材料
各部の材料を図15－1に示す。

15．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.4 節に示す。

15．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

15．2．6 許容応力
許容応力を「応力解析の方針」の3．5節に示す。

15.3 応力計算

15．3．1 応力評価点
応力評価点の位置を図15－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

15．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

15．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r． に定めるとおりである。

15．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

15．4 応力強さの評価
15．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表15－2に示す。
表15－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

15．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表15－3に示す。
表15－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

15．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表15－4に示す。
（1）計装ノズル（N12及びN13）
表15－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P04及びP04

一次＋二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P04及びP04’）にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。
（2）計装ノズル（N14）
表15－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2} 2$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」の 3.5 節に示す許容応力を満足する。
15.5 繰返し荷重の評価

15．5．1 疲労解析
ノズルセーフエンド，溶接部近傍及びノズルエンドの応力評価点について，詳細な繰返 し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表15－5に示す。また，各応力評価点における疲労累積係数を表15－6に示す。

表15－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」の 3.5 節に示す許容値を満足する。

表 15－2（1）計装ノズル（N12）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	47	143	61	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	47	143	61	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	45	143	58	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	45	143	59	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	45	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	45	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	19	196	19	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	19	196	19	334

表 15－2（2）計装ノズル（N13）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	47	143	61	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	47	143	61	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	45	143	58	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	45	143	59	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	45	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	35	196	45	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	19	196	19	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	19	196	19	334

表 15－2（3）計装ノズル（N14）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	44	143	47	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	44	143	47	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	28	143	31	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	28	143	30	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	25	196	27	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	24	196	26	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	25	196	25	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	25	196	25	334

表 15－3（1）計装ノズル（N12）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	120	214	178	420
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	121	214	180	420
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	137	214	198	420
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	139	214	200	420
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	92	295	142	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	255	295	310	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	96	295	88	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	138	295	146	501

表 15－3（2）計装ノズル（N13）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	120	214	178	420
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	121	214	180	420
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	137	214	198	420
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	139	214	200	420
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	92	295	142	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	255	295	310	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	96	295	88	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	138	295	146	501

表 15－3（3）計装ノズル（N14）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	71	201	101	394
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	67	201	97	394
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	59	214	82	420
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	58	214	80	420
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	93	295	90	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	179	295	200	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	101	295	97	501
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	125	295	130	501

表 15－4（1）計装ノズル（N12）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	120	190	360
P01＇	120	190	360
P02	226	356	360
P02＇	226	356	360
P03	122	188	360
P03＇	122	188	360
P04	258	398＊3	360
P04＇	258	398＊3	360
P05	118	172	492
P05＇	118	172	492
P06	266	394	492
P06＇	266	394	492
P07	24	34	492
P07 ${ }^{\prime}$	24	34	492
P08	42	60	492
P08 ${ }^{\prime}$	42	60	492

注記 $*^{1}$ ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次十二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態IV A Sによる一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 15－4（2）計装ノズル（N13）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{\text {1 }}$＊1	$\mathrm{S}_{\mathrm{n}} \#^{2} * 2$	許容応力 3•S m
P01	120	190	360
P01＇	120	190	360
P02	226	356	360
P02＇	226	356	360
P03	122	188	360
P03＇	122	188	360
P04	258	398＊3	360
P04＇	258	398＊3	360
P05	118	172	492
P05＇	118	172	492
P06	266	394	492
P06＇	266	394	492
P07	24	34	492
P07	24	34	492
P08	42	60	492
P08＇	42	60	492

注記 $*^{1}$ ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次十二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態IV A Sによる一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 15－4（3）計装ノズル（N14）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(P_{L}+P_{b}+Q\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \#^{\text {2 }}$＊	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	142	360
P01＇	92	142	360
P02	114	180	360
P02＇	114	180	360
P03	64	96	360
P03＇	64	96	360
P04	98	150	360
P04＇	98	150	360
P05	62	94	492
P05＇	62	94	492
P06	106	158	492
P06＇	106	158	492
P07	16	24	492
P07	16	24	492
P08	26	38	492
P08＇	26	38	492

注記 $* 1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 15－5（1）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rrl}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}$

表 15－5（2）計装ノズル（N12）の疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P04’ }
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。

E ${ }_{0}$ \qquad MPa，E \qquad MPa

表 15－5（3）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	$\mathrm{Na}_{\text {a }}$	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	394	－	1926	963	948	630	340	0.540
				疲労累積係数 $U_{n}=$				0.005
				疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\text {s s }}=$				0． 545

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

E 0 \qquad IPa，E \qquad MPa

表 15－5（4）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}$

表 15－5（5）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}$

表 15－5（6）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

E 0
 MPa，E \qquad MPa

表 15－5（7）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01' } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
E ${ }_{0}$
 IPa，E
 MPa

表 15－5（8）計装ノズル（N14）の疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e^{* 1}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}^{\prime}{ }^{*}{ }^{2} \\ & (\mathrm{MPa} \end{aligned}$	$\mathrm{Na}_{\text {a }}$	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	96	－	96	48	53	100000000000	340	0.000
疲労累積係数 U S s $=0.000$								
						疲労累積係数	$\mathrm{U}_{\mathrm{n}}=$	0.001
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Uss}^{\text {a }}=0.001$								

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊ 2 ： S_{e} に（ E 0 ／ E ）を乗じた値である。

E。
 MPa，E \qquad MPa

表 15－5（9）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。

E 0
 MPa，E \qquad MPa

表 15－6（1）計装ノズル（N12）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U S s	U_{f}＊	許容値
P01	0.001	0.001	0.002	0.003	1.000
P01＇	0.000	0.001	0.002	0.002	1． 000
P02	0.001	0.001	0.001	0.002	1.000
P02＇	0.001	0.001	0.001	0.002	1． 000
P03	0.001	0.000	0.001	0.002	1.000
P03＇	0.001	0.000	0.001	0.002	1． 000
P04	0.000	0.001	0.003	0.003	1.000
P04＇	0.001	0.001	0.003	0.004	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.000	0.000	0.000	0.000	1． 000
P06	0.005	0.242	0.540	0.545	1.000
P06＇	0.005	0.242	0.540	0.545	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P08	0.001	0.000	0.001	0.002	1． 000
P08＇	0.001	0.000	0.001	0.002	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（2）計装ノズル（N13）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.001	0.001	0.002	0.003	1.000
P01＇	0.001	0.001	0.002	0.003	1.000
P02	0.000	0.001	0.001	0.001	1.000
P02＇	0.001	0.001	0.001	0.002	1.000
P03	0.001	0.000	0.001	0.002	1.000
P03＇	0.001	0.000	0.001	0.002	1.000
P04	0.001	0.001	0.003	0.004	1.000
P04＇	0.001	0.001	0.003	0.004	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.003	0.242	0.540	0.543	1.000
P06＇	0.001	0.242	0.540	0.541	1． 000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1.000
P08	0.005	0.000	0.001	0.006	1.000
P08＇	0.005	0.000	0.001	0.006	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（3）計装ノズル（N14）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	U s s	U_{f}＊	許容値
P01	0.000	0.001	0.003	0.003	1.000
P01＇	0.001	0.001	0.003	0.004	1.000
P02	0.001	0.000	0.000	0.001	1.000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1.000
P04	0.000	0.000	0.000	0.000	1.000
P04＇	0.000	0.000	0.000	0.000	1． 000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.004	0.016	0.017	1.000
P06＇	0.001	0.004	0.016	0.017	1． 000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1.000
P08	0.002	0.000	0.000	0.002	1.000
P08＇	0.002	0.000	0.000	0.002	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

16．ドレンノズル（N15）の耐震性についての計算
16.1 一般事項

本章は，ドレンノズル（N15）の耐震性についての計算である。
ドレンノズル（N15）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} & \text { 16．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図16－1に示す。 }\end{aligned}$

16．1．2 解析範囲
解析範囲を図16－1に示す。

16．1．3 計算結果の概要
計算結果の概要を表16－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図16－1 形状•寸法•材料•応力評価点（単位：mm）
O 2
（3） $\mathrm{VI}-2-3-4-1-2$
R 0

表 16－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力強さ	許容応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	70	188	P01－P02	187	262	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	70	292	P01－P02	182	405	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	376	383	P02	0． 047	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	378	383	P02			
肉盛部炭素鋼	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	36	188	P03－P04	217	279	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	35	292	P03－P04	214	432	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	234	383	P04	0． 027	1． 000	P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	234	383	P04			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

16．2 計算条件

16．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

16．2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

16．2．3 材料
各部の材料を図16－1に示す。

16．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

16．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

16．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

16．3 応力計算
16．3．1 応力評価点
応力評価点の位置を図16－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）s．に定めるとおりである。

16．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）s．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）s．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により（比倍して）計算する。

16．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）S． に定めるとおりである。

16．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

16． 4 応力強さの評価
16．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表16－2に示す。
表16－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

16．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表16－3に示す。
表16－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

16．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表16－4に示す。
表16－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。
16.5 繰返し荷重の評価

16．5．1 疲労解析
ノズルエンド及び肉盛部の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表16－5に示 す。また，各応力評価点における疲労累積係数を表16－6に示す。

表16－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 16－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	70	188	70	292
P01 P02	69	188	69	292
P03 P04	36	188	35	292
P03＇ P04	34	188	33	292

[^2]表 16－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	182	262	177	405
P01 P02	187	262	182	405
P03 P04	69	279	67	432
P03＇ P04	217	279	214	432

表 16－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次＋二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot S_{m}$
P01	312	312	383
P01＇	312	312	383
P02	376	378	383
P02＇	376	378	383
P03	160	158	383
P03＇	160	158	383
P04	234	234	383
P04＇	234	234	383

注記 $*^{1}$ ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態IV A Sによる一次 + 二次応力差の最大範囲を示す。

表 16－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{K}_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\square}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\square}^{\prime} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	376	－	436	218	243	12948	590	0.046
疲労累積係数 $\mathrm{US} \mathrm{d}^{\text {a }}$ 疾学 0.046								
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=0.047$								

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $~$ 1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2：Sロに（E0／E）を乗じた値である。
 MPa

表 16－5（2）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記 $⿻ 丷 木 斤 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2：Sロに（E0／E）を乗じた値である。

表 16－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	U_{s}	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.001	0.020	0.012	0.021	1.000
$\mathrm{P} 01^{\prime}$	0.001	0.020	0.012	0.021	1.000
P 02	0.001	0.046	0.026	0.047	1.000
$\mathrm{P} 02^{\prime}$	0.001	0.046	0.026	0.047	1.000
P03	0.002	0.001	0.001	0.003	1.000
P03	0.002	0.001	0.001	0.003	1.000
P04	0.001	0.025	0.014	0.026	1.000
$\mathrm{P} 04^{\prime}$	0.002	0.025	0.014	0.027	1.000

注記 $~$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

17．高圧炉心スプレイノズル（N16）の耐震性についての計算
17.1 一般事項

本章は，高圧炉心スプレイノズル（N16）の耐震性についての計算である。
高圧炉心スプレイノズル（N16）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

17．1．1 形状•寸法•材料
 本章で解析する箇所の形状•寸法•材料を図17－1に示す。

17．1．2 解析範囲

解析範囲を図17－1に示す。

17．1．3 計算結果の概要

計算結果の概要を表17－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図17－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－1－2 R 0

表 17－1 計算結果の概要

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値3• S_{m} を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

17．2 計算条件

17．2．1 設計条件
 設計条件を「応力解析の方針」の4．1節に示す。

17．2．2 運転条件

考慮した運転条件を「応力解析の方針」の4．2節に示す。

17．2．3 材料

各部の材料を図17－1に示す。

17．2．4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

17．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

17．2．6 許容応力

許容応力を「応力解析の方針」の 3.5 節に示す。

17．3 応力計算

17．3．1 応力評価点
応力評価点の位置を図17－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」の参照図書（1）t．に定めるとおりである。

17．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」の参照図書 （1）t．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）t．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により（比倍して）計算する。

17．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）t． に定めるとおりである。

17．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

17．4 応力強さの評価

17．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表17－2に示す。
表17－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

17．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表17－3に示す。
表17－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。

17．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表17－4に示す。
表17－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」の5．4節に示す簡易弾塑性解析の方法を適用する。

17.5 繰返し荷重の評価

17．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表17－5に示 す。また，各応力評価点における疲労累積係数を表17－6に示す。

表17－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

表 17－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	64	303	65	320
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 17－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	97	255	130	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	28	249	39	385
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	123	409	159	432
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	100	409	136	432

表 17－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\begin{gathered} \text { 一次 }+ \text { 二次応力差最大範囲 } \\ \left(\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}}+\mathrm{Q}\right) \end{gathered}$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	466＊3	383
P01＇	336	466＊3	383
P02	374	$522 * 3$	383
P02＇	374	$522 * 3$	383
P03	174	246	383
P03＇	174	246	383
P04	200	282	383
P04＇	200	282	383
P05	42	70	383
P05，	42	70	383
P06	46	82	383
P06＇	46	82	383
P07	98	166	383
P07 ${ }^{\prime}$	98	166	383
P08	102	178	383
P08＇	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10＇	66	110	383
P11	192	270	552
P11＇	192	270	552
P12	222	310	552
P12＇	222	310	552

注記 $*^{1}$ ： $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 IV A S による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 17－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02' } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{e} に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{Pa}, \mathrm{E}=$

Pa

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： S_{ℓ} に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{Pa}$

IPa

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$

注 ：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{ℓ} に（E0／E）を乗じた値である。

表 17－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	U S d	US s	U_{f}＊	許容値
P01	0.002	0.020	0.087	0.089	1.000
P01＇	0.001	0.020	0.087	0.088	1． 000
P02	0.000	0.050	0.289	0.289	1． 000
P02＇	0.001	0.050	0.289	0.290	1． 000
P03	0.023	0.127	0.216	0.239	1． 000
P03＇	0.019	0.127	0.216	0.235	1． 000
P04	0.000	0.003	0.007	0.007	1.000
P04＇	0.000	0.003	0.007	0.007	1． 000
P05	0.006	0.000	0.000	0.006	1.000
P05，	0.007	0.000	0.000	0.007	1． 000
P06	0.002	0.002	0.009	0.011	1.000
P06＇	0.002	0.002	0.009	0.011	1． 000
P07	0.002	0.000	0.001	0.003	1． 000
P07＇	0.002	0.000	0.001	0.003	1． 000
P08	0.003	0.000	0.005	0.008	1． 000
P08＇	0.002	0.000	0.005	0.007	1． 000
P09	0.000	0.000	0.000	0.000	1． 000
P09＇	0.001	0.000	0.000	0.001	1.000
P10	0.001	0.000	0.000	0.001	1． 000
P10＇	0.001	0.000	0.000	0.001	1.000
P11	0.000	0.003	0.007	0.007	1． 000
P11＇	0.000	0.003	0.007	0.007	1.000
P12	0.000	0.015	0.024	0.024	1． 000
P12＇	0.000	0.015	0.024	0.024	1.000

注記 $*$ ：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は地震荷重S s のいずれか大きい方を加えた値である。

18．ブラケット類の耐震性についての計算
18.1 一般事項

本章は，ブラケット類の耐震性についての計算である。
ブラケット類は，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。

18．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図18－1に示す。

18．1．2 解析範囲
解析範囲を図18－1に示す。

18．1．3 計算結果の概要
計算結果の概要を表18－1に示す。
なお，応力評価点の選定に当たつては，モーメントが大きくなるブラケット付根部及び穴により断面の小さくなるロッド穴周辺部に着目し，応力評価上厳しくなる評価点を記載 する。

図18－1（1）形状•寸法•材料（単位：mm）
（原子炉圧力容器スタビライザブラケット）

〔〕〕：材料

図18－1（2）形状•寸法•材料（単位：mm）
（給水スパージャブラケット，蒸気乾燥器支持ブラケット）

妒心スブレイブラケット
（高圧，低开）

〔 〕：材料

図18－1（3）形状•寸法•材料（単位：mm）
（炉心スプレイブラケット）

表 18－1 計算結果の概要
（単位：MPa）

ブラケット	許容応力状態	一次一般膜応力強さ		一次膜 + 一次曲げ 応力強さ		純せん断応力	
		応力強さ	許容 応力	応力 強さ	許容＊応力	応力	許容 応力
原子炉圧力容器 スタビライザ ブラケット	III ${ }_{\text {A }} \mathrm{S}$	52	303	110	454	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	70	326	149	490	－	－
蒸気乾燥器支持 ブラケット	III ${ }_{\text {A }} \mathrm{S}$	35	143	197	214	－	－
	IV A S	47	280	269	420	－	－
給水スパージャ ブラケット	III ${ }_{\text {A }} \mathrm{S}$	2	143	17	214	1	71
	IV ${ }_{\text {A }} \mathrm{S}$	2	280	17	420	1	168
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	6	143	41	214	－	－
	IV A S	6	280	45	420	－	－

注記＊：中実矩形断面の形状係数 α
を用いた。

18.2 計算条件

18．2．1 設計条件
設計条件を「応力解析の方針」の4．1節に示す。

18．2．2 材料
各部の材料を図18－1に示す。

18．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

18．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

18．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

18．2．6 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。
$\sigma \mathrm{x}$ ：周方向応力
$\sigma \mathrm{y}$ ：軸方向応力
σ z ：半径方向応力
$\tau \mathrm{xy}$ ：せん断応力
τ_{yz} ：せん断応力
τ_{zx} ：せん断応力

18.3 応力計算

18．3．1 応力評価点
応力評価点は，図18－1（1）～図18－1（3）に示すそれぞれのブラケット付根及び図18－1（2） に示す給水スパージャブラケットのロッド穴周辺とする。

18．3．2 外荷重による応力
（1）荷重条件
外荷重を「応力解析の方針」の4．2節に示す。
ブラケットの荷重作用点を図18－1に示す。
（2）計算方法
a．ブラケット付根の応力
ブラケット付根の応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）u． に定めるとおりである。

18．3．3 応力の評価
計算された応力から，応力強さを算出する。
応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

18． 4 応力強さの評価

18．4．1 ブラケット付根の応力強さの評価
（1）一次一般膜応力強さの評価
各許容応力状態における評価を表18－2に示す。
表18－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示 す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－3に示す。
表18－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

18．4．2 ロッド穴周辺の応力強さの評価
（1）純せん断応力の評価
各許容応力状態における評価を表18－4に示す。
表18－4より，各許容応力状態の純せん断応力は，「応力解析の方針」の3．5節に示す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－5に示す。
表18－5より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の3．5節に示す許容応力を満足する。

表18－2 ブラケット付根の一次一般膜応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力
		σ_{z}	τ	σ_{1}	σ_{2}	σ_{3}		
原子炉圧力容器 スタビライザ ブラケット	III ${ }_{A} \mathrm{~S}$	0	26	0	26	－26	52	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	0	35	0	35	－35	70	326
蒸気乾燥器支持ブラケット	III ${ }_{\text {A }} \mathrm{S}$	13	16	0	23	－11	35	143
	IV ${ }_{\text {A }} \mathrm{S}$	17	22	0	32	－15	47	280
給水スパージャブラケット	III ${ }_{\text {A }} \mathrm{S}$	1	0	0	1	0	2	143
	$I V_{A} \mathrm{~S}$	1	0	0	1	0	2	280
炉心スプレイブラケット	III ${ }_{\text {A }} \mathrm{S}$	4	2	0	4	－1	6	143
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	4	2	0	5	－1	6	280

表18－3 ブラケット付根の一次膜 + 一次曲げ応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力＊
		σ_{z}	τ	σ_{1}	σ_{2}	σ_{3}		
原子炉圧力容器$\begin{aligned} & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	96	26	0	103	－6	110	454
	IV A S	131	35	0	140	－9	149	490
蒸気乾燥器支持 ブラケット	III ${ }_{\text {A }} \mathrm{S}$	194	16	0	195	－1	197	214
	IV A S	265	22	0	267	－2	269	420
給水スパージャ ブラケット	III ${ }_{\text {A }} \mathrm{S}$	6	0	0	6	0	6	214
	IV A S	6	0	0	6	0	6	420
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	40	2	0	40	0	41	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	44	2	0	44	0	45	420

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。
（単位：MPa）

ブラケット	許容応力状態	純せん断応力	許容応力
給水スパージャ ブラケット	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	1	71
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	1	168

表18－5 ロッド穴周辺の一次膜＋一次曲げ応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力強さ	許容応力＊
給水スパージャ ブラケット	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	17	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	420

注記 $*:$ 中実矩形断面の形状係数 $\alpha=\square$ を用いた。

19．原子炉圧力容器支持スカートの耐震性についての計算
19.1 一般事項

本章は，原子炉圧力容器支持スカート（以下「スカート」という。）の耐震性についての計算である。

スカートは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
なお，スカートは，設計•建設規格 SSB－3010（1）の規定により，設計•建設規格 PVB－3110 からPVB－3117，PVB－3130，PVB－3140及びPVB－3310の規定を適用し，「応力解析の方針」に従 い解析する。

19．1．1 記号の説明

記号の説明を「応力解析の方針」の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
R_{m}	スカートの平均半径	mm
t	スカートの板厚	mm
A	スカートの断面積	mm^{2}
Z	スカートの断面係数	mm^{3}
ℓ	座屈長さ	mm
f_{c}	鉛直方向荷重に対する許容圧縮応力	MPa
f_{b}	曲げモーメントに対する許容曲げ応力	MPa
α	安全率	-
F	設計•建設規格	$\mathrm{SSB}-3121.1(1)$ に定める値

19．1．2 形状•寸法•材料

本章で解析する箇所の形状•寸法•材料を図19－1に示す。

19．1．3 解析範囲
解析範囲を図19－1に示す。

19．1．4 計算結果の概要

計算結果の概要を表19－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点 に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。

図19－1 形状•寸法•材料•応力評価点（単位：mm）
O 2
（3） $\mathrm{VI}-2-3-4-1-2$
R 0

表 19－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			一次＋二次応力強さ （MPa）			疲労解析		
		応力 強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { スカート } \\ \text { SGV480 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	85	199	P01＇－P02＇	78	255	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	106	280	P01＇－P02＇	99	358	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	230	403	P02	0． 082	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	312	403	P02			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

部分及び材料	許容応力状態	座屈に対する評価	
		計算結果	許容値
スカート SGV480	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	0.4	1.0
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	0.5	1.0

19.2 計算条件

$\begin{aligned} 19.2 .1 & \text { 設計条件 } \\ & \text { 設計条件を「応力解析の方針」の } 4.1 \text { 節に示す。 }\end{aligned}$

19．2．2 運転条件
考慮した運転条件を「応力解析の方針」の4．2節に示す。

19．2．3 材料
各部の材料を図19－1に示す。

19．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の3．4節に示す。

19．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」の4．4節に示す。

19．2．6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

19.3 応力計算

19．3．1 応力評価点
応力評価点の位置を図19－1に示す。
なお，応力集中を生じる箇所の応力集中係数を表19－2に示す。

19．3．2 内圧による応力
（1）荷重条件（L01）
最高使用圧力 ：8．62MPa
各運転条件における内圧：「応力解析の方針」の参照図書（1）a．参照
（2）計算方法
内圧による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「 A －SAFI A」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。

19．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
L12，L13及びL18の荷重のうち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「A－S A F I A」により行う。 L14及びL16の荷重のうち，軸対称荷重（鉛直力 V_{1} 及び V_{2} ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「S T A X」により行う。なお，評価に用 いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。
L14及びL16の荷重のうち，非軸対称荷重（水平力H及びモーメントM）による応力の計算 は，二次元軸対称の有限要素でモデル化し，計算機コード「ASHSD」により行う。 なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－3に示す。

19．3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強 さを算出する。
応力強さの算出方法は，「応力解析の方針」の5．3．2項に定めるとおりである。

19．4 応力強さの評価
19．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表19－3に示す。
表19－3より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5 節に示す許容応力を満足する。

19．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表19－4に示す。
表19－4より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」の 3．5節に示す許容応力を満足する。

19．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表19－5に示す。
表19－5より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」の 3.5 節に示す許容応力を満足する。
19.5 繰返し荷重の評価

19．5．1 疲労解析
スカートの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表19－6に示す。また，各応力評価点における疲労累積係数を表19－7に示す。

表19－7より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 の3．5節に示す許容値を満足する。

19.6 特別な応力の評価

19．6．1 座屈に対する評価
スカートには，鉛直力及びモーメントにより，圧縮応力が生じる。したがって，これ らの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スカートの平均半径 \square
スカートの板厚 $\mathrm{t}=\square \mathrm{mm}$（くされ代を除いた値）
スカートの断面積

スカートの断面係数

（2）荷重
スカートに作用する鉛直力及びモーメントを「応力解析の方針」の4．2節に示す。
（3）評価方法
各許容応力状態においてスカートに圧縮応力を生じさせる荷重は表19－8に示す鉛直力及 びモーメントである。

これらの荷重の組合せにより発生する圧縮応力の評価を以下により行う。

$$
\begin{aligned}
& \left(b / \mathrm{R}_{\mathrm{m}}=\square\right. \\
& \frac{\alpha \cdot\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / \mathrm{A}}{\mathrm{f}_{\mathrm{c}}}+\frac{\alpha \cdot(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}} \leqq 1.0
\end{aligned}
$$

ここに，
座屈長さ

鉛直方向荷重に対する許容圧縮応力 $f_{\mathrm{c}}=\mathrm{F}=199 \mathrm{MPa}$
曲げモーメントに対する許容曲げ応力 $f_{\mathrm{b}}=\mathrm{F}=199 \mathrm{MPa}$
安全率 $\quad \alpha=\square$
設計•建設規格 $\mathrm{SSB}-3121.1$（1）に定める値 $\mathrm{F}=199 \mathrm{MPa}$
（4）座屈に対する評価
各許容応力状態における座屈に対する評価を表19－9に示す。
表19－9より，各許容応力状態における座屈に対する評価は，許容値を満足するため，座屈 は発生しない。

図 19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル

表 19－2 応力集中係数

応力評価点	データ				K_{n} （引張り）	$\begin{gathered} \mathrm{K}_{\mathrm{b}} \\ \text { (曲げ) } \end{gathered}$
	T A（mm）	T B（mm）	R （mm）	$\mathrm{D}\left({ }^{\circ}\right)$		
P01，P01					2.0	1.6
P02，P02＇					2.0	1.6

注 ：計算方法は，「応力解析の方針」の参照図書（1）a．に定めるとおりである。

表 19－3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	35	199	56	280
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	85	199	106	280

表 19－4 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	42	255	63	358
P01 P02	78	255	99	358

表 19－5 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	一次 + 二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \#^{\text {2 }}$＊	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	130	403
P01＇	92	130	403
P02	230	312	403
P02＇	230	312	403

注記＊ 1 ： $\mathrm{S}_{\mathrm{n}}{ }^{+1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 19－6 疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SGV480 }
$$

注：疲労累積係数の求め方は，「応力解析の方針」の5．4．2項（疲労解析）に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： S_{e} に（ E 0 ／ E ）を乗じた値である。
E 0

MPa，$E=$

表 19－7 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	U_{n}	$\mathrm{U} \mathrm{s} \mathrm{d}^{2}$	$\mathrm{Us} \mathrm{s}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}} *$	許容値
P 01	0.016	0.001	0.003	0.019	1.000
$\mathrm{P} 01^{\prime}$	0.016	0.001	0.003	0.019	1.000
P 02	0.007	0.051	0.075	0.082	1.000
P02	0.007	0.051	0.075	0.082	1.000

注記＊：疲労累積係数 U_{f} は，運転状態 I 及びIIに地震荷重 S_{d}＊又は
地震荷重S s のいずれか大きい方を加えた値である。

表19－8 座屈に対する評価に用いる荷重

許容応力状態	鉛直力 ${ }^{1} 1$		$\begin{gathered} \text { モーメント*2 } \\ \text { M (kN•m) } \end{gathered}$	
	$\mathrm{V}_{1}(\mathrm{kN})$	$\mathrm{V}_{2}(\mathrm{kN})$		
III ${ }_{\text {A }} \mathrm{S}$				
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
＊2 ：「応力解析の方針」の4．2節に示すMの値				

表19－9 座屈に対する評価

20．原子炉圧力容器基礎ボルトの耐震性についての計算
20.1 一般事項

本章は，原子炉圧力容器基礎ボルト（以下「基礎ボルト」という。）の耐震性についての計算である。

基礎ボルトは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
$\begin{aligned} 20.1 .1 & \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図20－1に示す。 }\end{aligned}$

20．1．2 解析範囲
解析範囲を図20－1に示す。

20．1．3 計算結果の概要
計算結果の概要を表20－1に示す。

図20－1 形状•寸法•材料（単位：mm）

表20－1 計算結果の概要
（単位：MPa）

許容応力状態	地震荷重	応力の種類	計算結果	許容応力
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	$\mathrm{S} \mathrm{d}^{*}$	引張り	131	499^{*}
		せん断	18	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S s	引張り	194	499^{*}
		せん断	27	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{S} \mathrm{d}^{*}$	引張り	107	458^{*}
		せん断	18	353

注記 $*: ~ f t_{\mathrm{s}}=\operatorname{Min} .\left(1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ）

20.2 計算条件

20．2．1 設計条件
設計条件は，既工認から変更はなく「応力解析の方針」の参照図書（2）に定めるとおり である。

20．2．2 材料
各部の材料を図20－1に示す。

20．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態は，既工認から変更はなく「応力解析の方針」の参照図書（2）に定めるとおりである。

20．2．4 荷重の組合せ及び応力評価
応力評価は，20．2．3項に示す荷重の組合せにより発生する引張応力及びせん断応力に ついて行う。

20．2．5 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

20．2．6 許容応力評価条件
（1）許容応力状態III $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ の応力の評価には，運転状態 I 及びIIの荷重 と組み合わせる場合には $\square^{\circ} \mathrm{C}$ ，冷却材喪失事故後の荷重と組み合わせる場合には $\square \mathrm{C}$ に対 する許容応力を用いる。
（2）基礎ボルトの許容応力評価条件を表20－2に示す。

20.3 応力計算

20．3．1 外荷重による応力

（1）荷重条件
外荷重を「応力解析の方針」の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（2）に定めるとおりである。

20．4 応力の評価
各許容応力状態における評価を表20－3に示す。
表20－3より，各許容応力状態において基礎ボルトに発生する応力は，「応力解析の方針」の 3．5節に示す許容応力を満足する。

表 20－2 許容応力評価条件

評価部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎 ボルト	SNCM439	運転状態I 及びIIの温度	－			－
		運転状態IVの温度＊	－			－

注記＊：冷却材喪失事故後の温度を表す。

表20－3 計算結果

許容応力状態	地震荷重	温度 $\left({ }^{\circ} \mathrm{C}\right)$	応力の種類	計算結果 （MPa）	許容応力 （MPa）
III ${ }_{\text {A }} \mathrm{S}$	$S d^{*}$		引張り	131	499＊
			せん断	18	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S s		引張り	194	499＊
			せん断	27	384
IV A S	$S d^{*}$		引張り	107	458＊
			せん断	18	353

注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min} .\left(1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ）

VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性についての計算書

VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書
VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書
VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性についての計算書
VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）の耐震性につ いての計算書

VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2． 2 評価方針 4
2.3 適用基準 4
2.4 記号の説明 5
3．評価部位 6
4．構造強度評価 7
4.1 構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．2．1 荷重の組合せ及び許容応力状態 7
4．2．2 許容応力 7
4．2．3 許容応力評価条件 7
4．2．4 設計荷重 7
4．3 計算方法 8
4．4 応力の評価 8
5．参照図書 9

図表目次

図 2－1 スタビライザの耐震評価フロー 4
図 3－1 形状•寸法•材料 10
図 3－2 応力評価点 11
表 2－1 構造計画 3
表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） 12
表 4－2 許容応力（クラス 1 支持構造物） 13
表 4－3 許容応力評価条件 14
表 4－4 スタビライザに加わる荷重 15
表 4－5 評価結果まとめ 16

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，原子炉圧力容器スタビライザ（以下「スタビライザ」という。） が設計用地震力に対して十分な構造強度を有していることを説明するものである。

スタビライザは設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（参照図書（1））を「既工認」という。

2．一般事項
2.1 構造計画

スタビライザの構造計画を表2－1に示す。

表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
スタビライザは，原子炉しやへい壁に設置 されたソールプレー トに溶接される。	ブラケット，ロッド， ヨーク，座金及び皿ば ねで構成される，原子炉圧力容器が揺れた場合にこれを支持す るためのものであり，原子炉圧力容器外周 に 8 個等間隔に配置 されている。	

2．2 評価方針

スタビライザの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容応力に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容応力内に収まることを，「4．構造強度評価」にて示す方法にて確認することで実施する。

スタビライザの耐震評価フローを図 2－1に示す。

図 2－1 スタビライザの耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984，J E A G 4 6 O 1－1987 及びJ E A G 4 6 O 1－1991 追補版）（日本電気協会 電気技術基準調査委員会 昭和59年9月，昭和62年8月及び平成 3 年 6月）
（2）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））J S ME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」という。）

3．評価部位

本計算書で解析する箇所の形状•寸法•材料を図 3－1 に示す。
なお，スタビライザの応力評価点は，スタビライザを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を図 3－2 に示す。

4．構造強度評価

4.1 構造強度評価方法
（1）スタビライザは，原子炉しやへい壁に設置されたソールプレート上に溶接され，原子炉圧力容器の水平地震荷重を原子炉しゃへい壁に伝達させる構造である。スタビ ライザの耐震評価は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた荷重を用いて，参照図書（1）に示す既工認の手法に基づき構造強度評価を行う。
（2）構造強度評価に用いる寸法は，既工認からの変更はなく，参照図書（1）に定めると おりである。
（3）概略構造図を表2－1に示す。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
スタビライザの荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
スタビライザの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 4－2に示す。

4．2．3 許容応力評価条件
スタビライザの許容応力評価条件を表4－3に示す。

4．2．4 設計荷重

（1）最高使用温度
最高使用温度は，既工認からの変更はなく，参照図書（1）に定めるとおりである。
（2）スタビライザに加わる荷重及び設計用地震力
スタビライザに加わる荷重を表4－4に示す。
スタビライザの評価に用いる設計用地震力は，水平地震荷重として，添付書類「VI －2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた，「弾性設計用地震動 S d 又は静的地震力」及び「基準地震動S s 」の応答値を用いる。
（3）ロッド及びブラケットに加わる荷重
ロッド及びブラケットに加わる最大荷重は，次のようにして求める。
a． $\mathrm{Fo}-\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{H}} \geq 0$ の場合

$$
\mathrm{W}_{\mathrm{A}}=\mathrm{Fo}+\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{H}}
$$

b． $\mathrm{Fo}-\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{H}}<0$ の場合

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{A}}=\mathrm{F}_{\mathrm{H}} \\
& \mathrm{~F}_{\mathrm{H}_{1}}=\frac{1}{4} \cdot \mathrm{H}_{1} \\
& \mathrm{~F}_{\mathrm{H}_{2}}=\frac{1}{4} \cdot \mathrm{H}_{2}
\end{aligned}
$$

4． 3 計算方法
応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。
4.4 応力の評価

各許容応力状態における評価を表4－5に示す。
表 4－5 より，各許容応力状態の各応力は，「4．2．2 許容応力」に示す許容応力を満足する。

5．参照図書
（1）女川原子力発電所第2号機 第5回工事計画認可申請書 添付書類 IV－3－1－3－2「原子炉圧力容器スタビライザの応力計算書」

図 3－1 形状•寸法•材料（単位：mm）
（a）$E=r$

＊1：応力部侐点PO4
（b）ブラヶット
図4－1 応力評価点

はブラヶットと ソールプレート との椥接面を示 す。

図 3－2 応力評価点

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	原子炉圧力容器付属構造物	スタビライザ	S	—＊	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	III $_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$

注記＊：クラス 1 支持構造物の荷重の組合せ及び許容応力を準用する。

O 2 （3）VI－2－3－4－2－1 R 0

表4－2 許容応力（クラス 1 支持構造物）

許容応力状態	許容応力＊ （ボルト等以外）		許容応力 （ボルト等）
	一次応力		一次応力
	せん断	曲げ	引張り
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{fb}$	$1.5 \cdot \mathrm{ft}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{fs}$＊	$1.5 \cdot \mathrm{fb}$＊	$1.5 \cdot \mathrm{ft}$＊

注記＊：鋼構造設計規準（日本建築学会 2005改定）等の幅厚比の制限を満足させる。応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

O 2 （3）VI－2－3－4－2－1 R 0

表 4－3 許容応力評価条件

評価部位	材料		温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { y } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Su} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S y \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ロッド	棒鋼	SNCM439	最高使用温度	－			－
ブラケット	鋼板	SGV480	最高使用温度	－			－

表 4－4 スタビライザに加わる荷重

種別	記号	荷重
初期締付荷重	Fo	
スタビライザ全体に加わる S d＊地震時の 水平地震荷重	H 1	
スタビライザ全体に加わる S s 地震時の 水平地震荷重	H_{2}	

表 4－5 評価結果まとめ

（単位：MPa）

評価対象設備	評価部位		応力分類	III $_{\text {A }} \mathrm{S}$		$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
			算出応力	許容応力	算出応力	許容応力		
スタビライザ	P01	ロッド		引張応力	123	440	156	440
	P02	ブラケット	曲げ応力	71	228	90	274	
			せん断応力	17	114	22	137	
			組合せ応力	77	198	97	238	
	P03		曲げ応力	118	228	150	274	
			せん断応力	37	114	46	137	
			組合せ応力	134	198	170	238	
	P04		曲げ応力	－	－	－	－	
			せん断応力	29	114	37	137	
			組合せ応力	－	－	－	－	

VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 3
2.4 記号の説明 4
3．評価部位 5
4．固有周期 7
5．構造強度評価 8
5.1 構造強度評価方法 8
5.2 荷重の組合せ及び許容応力 8
5．2．1 荷重の組合せ及び許容応力状態 8
5．2．2 許容応力 8
5．2．3 使用材料の許容応力評価条件 8
5．2．4 設計荷重 12
5.3 設計用地震力 13
5.4 計算方法 15
5.5 計算条件 16
5.6 応力の評価 16
6．評価結果 17
6.1 設計基準対象施設としての評価結果 17
7．参照図書 21

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉格納容器スタビライザが設計用地震力に対して十分な構造強度を有していることを説明するも のである。

原子炉格納容器スタビライザは設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力に対する評価について記載するものとし，前述の荷重を除く荷重による原子炉格納容器スタビライザの評価は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（7．参照図書（1））に よる（以下「既工認」という。）。

2．一般事項

2.1 構造計画

原子炉格納容器スタビライザの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉格納容器スタビラ イザは，地震時の原子炉圧力容器及び原子炉しゃ へい壁に生じる荷重及び変位を小さくするため に，原子炉しやへい壁と原子炉格納容器シヤラグ の間に設置され，原子炉 しゃへい壁に支持され る。 前記荷重は，原子炉格納容器シヤラグを介し原子炉建屋に伝達させる。	パイプ，ガセットプレ ート，内側メイルシヤ ラグで構成される鋼製構造物である。	

2．2 評価方針

原子炉格納容器スタビライザの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及 び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まる ことを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

原子炉格納容器スタビライザの耐震評価フローを図 2－1に示す。

図 2－1 原子炉格納容器スタビライザの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補－ 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版）（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）
2.4 記号の説明

記号	記号の説明	単位
Bg	ガセットプレート付け根部の深さ	mm
B_{w}	ガセットプレート付け根部補強板の深さ	mm
C v	鉛直方向設計震度	－
D	死荷重	－
D 1	パイプの外径	mm
D_{2}	パイプの内径	mm
f_{b}	鋼材の許容曲げ応力	MPa
f c	鋼材の許容圧縮応力	MPa
f_{p}	鋼材の許容支圧応力	MPa
$\mathrm{f}_{\text {s }}$	鋼材の許容せん断応力	MPa
f_{t}	鋼材の許容引張応力	MPa
F_{t}	水平地震荷重	N
Hg_{g}	ガセットプレート付け根部の長さ	mm
$\mathrm{H}_{\text {s }}$	内側メイルシヤラグの接触部の長さ	mm
ℓ_{g}	原子炉格納容器スタビライザ 1 本の重心位置	mm
M	機械的荷重	－
M_{L}	地震と組み合わせる機械的荷重	－
P	圧力	－
P_{L}	地震と組み合わせる圧力	－
P_{x}	ガセットプレートに作用する水平荷重	N
P_{y}	ガセットプレートに作用する鉛直荷重	N
R 0	原子炉しやへい壁の外側円筒の半径	mm
R 1	荷重作用点半径（内側）	mm
S	許容引張応力	MPa
S d	弾性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
S s	基準地震動S s により定まる地震力	－
S_{u}	設計引張強さ	MPa
Sy	設計降伏点	MPa
S_{y}（RT）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
tg_{g}	ガセットプレート付け根部の板厚	mm
ts	内側メイルシャラグの接触部の板厚	mm
t w	ガセットプレート付け根部補強板の板厚	mm
W s	原子炉格納容器スタビライザ 1 本に作用する荷重	N
θ_{2}	図3－1 において定める角度	。

3．評価部位
原子炉格納容器スタビライザの形状及び主要寸法を図 3－1 に，使用材料及び使用部位を表 3－1 に示す。

断面BB

C－C 矢視図

$\mathrm{H}_{\mathrm{g}}=\square$
$\mathrm{t}_{\mathrm{g}}=\square$
（単位：mm）

図 3－1 原子炉格納容器スタビライザの形状及び主要寸法（その 1）

図 3－1 原子炉格納容器スタビライザの形状及び主要寸法（その 2）

表 3－1 使用材料表

使用部位	使用材料	備考
パイプ	STS42	STS410 相当
ガセットプレート	SM41B	SM400B 相当
内側メイルシヤラグ	SM41B	SM400B 相当

4．固有周期
（1）設計基準対象施設としての固有周期
設計基準対象施設における固有周期は，「5．2．4 設計荷重」に示す設計基準対象施設とし ての評価温度を考慮し算出する。固有周期を表 4－1 に示す。固有周期は 0.05 秒以下であり，剛であることを確認した。

表 4－1 固有周期（設計基準対象施設）

卓越方向	固有周期 (s)
水平方向（軸）	$-*$
水平方向（軸直角）	$-*$
鉛直方向（軸直角）	0.041

注記＊：固有周期は十分に小さく，計算を省略する。

5．構造強度評価

5.1 構造強度評価方法

（1）原子炉格納容器スタビライザは，原子炉しやへい壁と原子炉格納容器シヤラグの間に設置され，原子炉しやへい壁に支持された構造であり，地震荷重は原子炉格納容器シヤラグ を介して原子炉建屋に伝達される。

原子炉格納容器スタビライザの耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において計算された荷重を用いて，7．参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表 2－1 に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器スタビライザの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるものを表5－1に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力
原子炉格納容器スタビライザの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
原子炉格納容器スタビライザの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 5－3 に示す。

表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等 の区分	荷重の組合せ＊1，＊2		許容応力状態＊1
原子炉本体	圧力容器 付属構造物	原子炉格納容器スタビ ライザ	S	その他の支持構造物		（9）	
					$D+P+M+S d *$	（10）	III S
						（13）	11 S
						（15）	
						（11）	
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	（12）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
						（14）	
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：パイプ，ガセットプレート，内側メイルシヤラグはその他の支持構造物であるが，冷却材喪失事故後地震時の原子炉圧力容器及び原子炉 しやへい壁に生じる荷重を原子炉建屋に伝達させる機能の維持を確認する意味で，クラスMC支持構造物に準じた許容応力状態及び荷重 の組合せを適用する。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6 の荷重の組合せのNo．を示す。

表 5－2 クラスMC 支持構造物の許容応力

	ボルト等以外＊1，＊2										$\begin{aligned} & \text { ボルト等 } \\ & \hline \text { 一次応力 } \end{aligned}$	
	一次応力					一次＋二次応力						
	引張り	せん断	圧縮	曲げ	支圧	引張り ／圧縮	せん断	曲げ	支圧	座屈	引張り	せん断
$\mathrm{IIAS}_{\text {S }}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{f}$ c	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$	$1.5 \cdot \mathrm{f}_{\mathrm{p}}$	－	－	－	－	－	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{fs}^{*}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{ft}_{\mathrm{b}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{p}}{ }^{*}$	－	－	－	－	－	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{ff}^{*}$

注記 $* 1$ ：設計•建設規格等の幅厚比の規定を満足させる。
＊2：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

表5－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(R T) \\ (\mathrm{MPa}) \end{gathered}$
パイプ	STS42＊1	周囲環境 温度	171	－			－
ガセットプレート 及び内側メイルシヤラグ	SM41B＊2	周囲環境温度	171	－			－

注記＊1：STS410 相当
＊2：SM400B 相当

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用温度及び死荷重は，既工認から の変更はなく，7．参照図書（1）に定めるとおりである。

5.3 設計用地震力

評価に用いる設計用地震力を表5－4～表5－6に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

原子炉格納容器スタビライザ 1 本に作用する設計用地震力の計算方法は，既工認からの変更はなく，7．参照図書（1）に定めるとおりである。

表 5－4 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉 しやへい壁 $\begin{aligned} & \text { 0. P. } \\ & \text { 21. } 55 \end{aligned}$	－＊	0.041	－	$\mathrm{C}_{\mathrm{v}}=1.12$	－	$\mathrm{C}_{\mathrm{v}}=1.93$

注記＊：固有周期は十分に小さく，計算を省略する。

表 5－5 原子炉格納容器スタビライザ全体に作用する地震荷重 （設計基準対象施設）

地震荷重	水平地震荷重 F_{t} $\left(\times 10^{3} \mathrm{~N}\right)$
Sd^{*}	
S s	

表 5－6 原子炉格納容器スタビライザ 1 本に作用する地震荷重 （設計基準対象施設）

地震荷重	水平地震荷重W $\left(\times 10^{3} \mathrm{~N}\right)$
$\mathrm{S} \mathrm{d}^{*}$	
S s	

5.4 計算方法

原子炉格納容器スタビライザの応力評価点は，原子炉格納容器スタビライザを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－7 及び図 5－1 に示す。

応力計算方法は既工認から変更はなく，7．参照図書（1）に示すとおりである。

表 5－7 応力評価点

応力評価点番号	応力評価点
P1	パイプ
P2	ガセットプレート
P3	内側メイルシヤラグ

図 5－1 原子炉格納容器スタビライザの応力評価点
5.5 計算条件

応力計算に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。
5.6 応力の評価

「5．4 計算方法」で求めた応力が許容応力以下であること。

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉格納容器スタビライザの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1 及び表 6－2 に示す。

表 6－1 許容応力状態 $I_{A} S$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{\text {S }} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
原子炉格納容器スタビライザ	P1	パイプ		引張応力	40		\bigcirc	
				圧縮応力	40		\bigcirc	
	P2	ガセットプレート	曲げ応力	89		\bigcirc		
			せん断応力	41		\bigcirc		
			組合せ応力	114		\bigcirc		
	P3	内側メイルシヤラグ	支圧応力	40		\bigcirc		

注記＊：許容引張応力の値を用いる。

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）

注記＊：許容引張応力の値を用いる。

表 6－2（2）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}$ ）

	評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
				算出応力	許容応力				
				MPa	MPa				
	原子灲格納容器スタビライザ	P1	パイプ		引張応力	40		\bigcirc	
					圧縮応力	40		\bigcirc	
		P2	ガセットプレート	曲げ応力	89	\bigcirc			
				せん断応力	41	\bigcirc			
				組合せ応力	114	\bigcirc			
No		P3	内側メイルシヤラグ	支圧応力	40	\bigcirc			

注記＊：許容引張応力の値を用いる。

7．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書添付書類「IV－3－1－3－1 原子炉格納容器スタビライザの応力計算書」

VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性につい ての計算書

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2．2 評価方針 4
2.3 適用基準 5
2．4 記号の説明 6
3．評価部位 7
4．地震応答解析及び構造強度評価 8
4．1 地震応答解析及び構造強度評価方法 8
4．2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 許容応力評価条件 8
4．2．4 設計荷重 8
4．3 解析モデル及び諸元 8
4． 4 固有周期 9
4.5 設計用地震力 9
4． 6 計算方法 9
4．6．1 水平地震荷重による応力 9
4．6．2 鉛直地震荷重による応力 9
4．6．3 死荷重による応力 9
4．7 計算条件 10
4．8 応力の評価 10
5．参照図書 11

図表目次

図 2－1 CRD ハウジング支持金具の耐震評価フロー 4
図 3－1 CRD ハウジングレストレントビームの形状•寸法•材料•応力評価点 12
図 4－1 解析モデル 16
表 2－1 構造計画 3
表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） 13
表 4－2 許容応力（クラス 1 支持構造物） 14
表 4－3 許容応力評価条件 15
表 4－4 機器諸元 16
表 4－5 固有周期 17
表 4－6 設計用地震力（水平方向） 17
表 4－7 設計用地震力（鉛直方向） 17
表 4－8 評価結果まとめ 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，制御棒駆動機構ハウジング支持金具（以下「CRD ハウジング支持金具」という。）が設計用地震力に対して十分な構造強度を有していることを説明する ものである。

CRD ハウジング支持金具は設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（参照図書（1））を「既工認」という。

2．一般事項
2.1 構造計画

CRD ハウジング支持金具の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉本体基礎に CRD ハウジング支持金具を固定する。	CRD ハウジング支持金具は水平荷重を原子炉本体基礎に達す るように，制御棒駆動機構ハウジングを取り囲んだ構造とな っている。	

2.2 評価方針

CRD ハウジング支持金具の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容応力に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。 CRD ハウジング支持金具の耐震評価フローを図2－1に示す。

図 2－1 CRD ハウジング支持金具の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984（日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）（以降「J E A G 4 6 O 1 」と記載しているものは上記 3 指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））J SME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」という。）

2． 4 記号の説明

	記号	記号の説明	単位
	D	死荷重	－
	E	緃弾性係数	MPa
	f b	許容曲げ応力	MPa
	f c	許容圧縮応力	MPa
	f s	許容せん断応力	MPa
	$f{ }_{t}$	許容引張応力	MPa
	ℓ_{1}	CRD ハウジング支持金具の内のり寸法	mm
	ℓ_{2}	CRD ハウジング支持金具の内のり寸法	mm
	M	地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く） で設備に作用している機械的荷重	－
	M_{L}	地震との組合せが独立な運転状態IVの事故の直後を除き， その後に生じている死荷重及び地震荷重以外の機械的荷重	－
\bigcirc	mo	質量	kg
a + +	P	地震と組み合わすべきプラントの運転状態（地震との組合 せが独立な運転状態IV，Vは除く）における圧力荷重	－
I	P_{L}	地震との組合せが独立な運転状態IVの事故の直後を除き， その後に生じている圧力荷重	－
©\sim0	S	許容引張応力 設計•建設規格 付録材料図表 Part5表5又は表6に規定される値	MPa
	S d＊	弾性設計用地震動 S d により定まる地震力又は S クラス設備に適用される静的地震力のいずれか大きい方の地震力	－
	S s	基準地震動S s により定まる地震力	－
	Su	設計引張強さ 設計•建設規格 付録材料図表 Part5表9に規定される値	MPa
	S y	設計降伏点 設計•建設規格 付録材料図表 Part5 表8 に規定される値	MPa
	S_{y}（ R T）	$40^{\circ} \mathrm{C}$ における設計降伏点 設計•建設規格 付録材料図表 Part5 表8に規定される値	MPa
	T	温度	${ }^{\circ} \mathrm{C}$
	v	ポアソン比	－

3．評価部位

本計算書で解析するCRD ハウジングレストレントビームの形状•寸法•材料を図3－1 に示す。

なお，CRD ハウジンレストレントビームの応力評価点は，CRD ハウジングレストレン トビームを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位 を選定する。選定した応力評価点を図 3－1 に示す。

4．地震応答解析及び構造強度評価

4．1 地震応答解析及び構造強度評価方法
（1）CRD ハウジングレストレントビームは，原子炉本体の基礎の内周側に固定され， CRD ハウジングの水平地震荷重を原子炉本体の基礎に伝達する構造である。

CRD ハウジングレストレントビームの耐震評価は，「4．5 設計用地震力」に示す水平地震荷重及び鉛直地震力を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のと おりとする。

4．2．3 許容応力評価条件
許容応力評価条件を表4－3に示す。

4．2．4 設計荷重

（1）最高使用温度及び死荷重
最高使用温度及び死荷重は，既工認から変更はなく，参照図書（1）に定めるとお りである。

4．3 解析モデル及び諸元
CRD ハウジングレストレントビームの解析モデルを図 4－1に，解析モデルの概要を以下に示す。また，機器の諸元について表 4－4に示す。
（1）二次元はり要素による有限要素解析手法を適用する。
（2）拘束条件は，
（3）解析コードは「MSCN N A S T R A N 」を使用し，固有周期を求める。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

4． 4 固有周期

固有値解析の結果を表 4－5 に示す。固有周期は 0.05 秒以下であり，剛構造である ことを確認した。

4.5 設計用地震力

評価に用いる設計用地震力を表4－6及び表 4－7に示す。
CRD ハウジングレストレントビームに加わる地震荷重 S d＊及び地震荷重S s での水平地震荷重は添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並 びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において，CRD ハウジ ングレストレントビームがばね要素としてモデル化されているため，ばね反力として求めた水平地震荷重を用いる。

「弾性設計用地震動 S d 又は静的地震力」及び「基準地震動 S s 」による鉛直地震力は，「4．4 固有周期」に示す通り鉛直方向で剛構造であることから添付書類「VI－ 2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。
4.6 計算方法

応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。
以下の荷重を用いて応力評価断面の断面性状により各荷重による応力を算出し，適切に組み合わせることにより計算する。

4．6．1 水平地震荷重による応力
表 4－6に示す水平地震荷重を「4．3 解析モデル及び諸元」に示す解析モデルに入力し，静解析により得られる荷重（軸力，モーメント，せん断力）を用いる。

4．6．2 鉛直地震荷重による応力
表 4－7に示す鉛直地震力を「4．3 解析モデル及び諸元」に示す解析モデルに入力し，動的地震力及び静的地震力を用いた静解析により得られる荷重（モーメン ト，せん断力）を用いる。

4．6．3 死荷重による応力

「4．2．4（1）最高使用温度及び死荷重」に示す死荷重を「4．3 解析モデル及 び諸元」に示す解析モデルに入力し，静解析により得られる荷重（モーメント， せん断力）を用いる。

4．7 計算条件
応力解析に用いる荷重を「4．2 荷重の組合せ及び許容応力」及び「4．5 設計用地震力」に示す。
4.8 応力の評価

各許容応力状態における評価を表4－8に示す。
表 4－8より，各許容応力状態の各応力は，「4．2．2 許容応力」に示す許容応力を満足する。

5．参照図書

（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類 IV－3－1－3－3「制御棒駆動機構ハウジング支持金具の応力計算書」

：応力評価点
$\ell_{1}=\square$
$\ell_{2}=\square$

図 3－1 CRD ハウジングレストレントビームの形状•寸法•材料•応力評価点 （単位：mm）

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 | | 機器名称 | 耐震重要度
 分類 | 機器等
 の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記 $* 1: ~ ク ラ ス 1$ 支持構造物の荷重の組合せ及び許容応力を準用する。

表 4－2 許容応力（クラス 1 支持構造物）

許容応力状態	許容応力＊1，＊2 （ボルト等以外）			
	一次応力			
	引張	せん断	圧縮	曲げ
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{f}$ c	$1.5 \cdot \mathrm{fb}_{\text {b }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}^{*}$	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記＊1：鋼構造設計規準（日本建築学会 2005改定）等の幅厚比の制限を満足させる。
＊2：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

O 2 （3）VI－2－3－4－2－3 R 0

表 4－3 許容応力評価条件

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { y } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { u } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { S y } \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
レストレントビーム	鋼板				－			－
ブラケット	鋼板		周囲環境温度	171	－			－
スプライスプレート	鋼板				－			－

図 4－1 解析モデル

表 4－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m 0	kg	
温度条件	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	-	
節点数	-	-	

表 4－5 固有周期

モード	卓越方向	固有周期 (s)
1 次	鉛直	

表 4－6 設計用地震力（水平方向）

表 4－7 設計用地震力（鉛直方向）

注記＊1：S s 又は S d に基づく設計用最大応答加速度より定めた震度を示す。
＊2：静的震度（1．2•C v）を示す。

表 4－8 評価結果まとめ

評価対象 設備	評価部位		応力分類	III ${ }_{\text {A }}$ S		IV A S		
			算出応力	許容応力	算出応力	許容応力		
			MPa	MPa	MPa	MPa		
CRD ハウジ ング支持金具	P10	レストレントビーム		引張応力	4		8	
				圧縮応力	3		5	
			せん断応力	9	18			
			強軸曲げ応力	38	78			
			弱軸曲げ応力	3	4			
			組合せ応力	46	91			
	P11	ブラケット	引張応力	1	3			
			圧縮応力	10	21			
			せん断応力	3	6			
			強軸曲げ応力	19	38			
			弱軸曲げ応力	17	22			
			組合せ応力	45	80			
	P12	スプライスプレート	引張応力	2	3			
			圧縮応力	3	5			
			せん断応力	10	20			
			強軸曲げ応力	30	62			
			弱軸曲げ応力	3	3			
			組合せ応力	39	78			

VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（ティーよりN11ノ ズルまでの外管）の耐震性についての計算書

目次

1．一般事項 1
1．1 形状•寸法•材料 1
1．2 解析範囲 1
1．3 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2． 3 材料 4
2． 4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 内圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4.3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4．4 応力の評価 6
5．応力強さの評価 7
5.1 一次一般膜応力強さの評価 7
5.2 一次膜 + 一次曲げ応力強さの評価 7
5.3 一次 + 二次応力強さの評価 7
6．参照図書 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次膜＋一次曲げ応力強さの評価のまとめ 10
表 5－3 一次＋二次応力強さの評価のまとめ 11
R 0

1．一般事項
本計算書は，差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算について示すものである。

差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）は，原子炉圧力容器付属構造物であるため，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）は，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲

解析範囲を図1－1に示す。

1．3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

O 2 （3）VI－2－3－4－2－4 R 0

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次膜 + 一次曲げ応力強さ			一次 + 二次応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	IIIA ${ }_{\text {S }}$	42	114	P01＇－P02＇	42	159	P01＇－P02＇	11	285	P02
	$I V_{A} \mathrm{~S}$	42	228	P01＇－P02＇	42	318	P01＇－P02＇	25	285	P02

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.4 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.5 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく参照図書（1）a．に定めるとおりである。参照図書（1）a．に定める解析モデルを図3－1に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	1.04	0.78
基準地震動 S s	1.96	1.33

3．4 計算結果
3．4．1 固有周期
固有周期を下表に示す。
固有周期は，既工認から変更はなく参照図書（1）a．に示すとおり 0.05 秒以下で あり，剛であることを確認した。

モード	固有周期（ s ）	水平方向刺激係数		鉛直方向刺激係数
		X 方向	Y 方向	
1 次		－	－	－

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（8）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

4．2 内圧による応力

4．2．1 荷重条件（LO1）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

なお，重大事故等時の内圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（8）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）v．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．3．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.5節に示す許容応力を満足する。
5.2 一次膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」 の 3.5 節に示す許容応力を満足する。
5.2 一次 + 二次応力強さの評価

各許容応力状態における評価を表5－3に示す。
表 5－3 より，各許容応力状態の一次＋二次応力差の最大範囲は，「応力解析の方針」 の 3.5 節に示す許容応力を満足する。

6．参照図書
（1）女川原子力発電所第2号機 第5回工事計画認可申請書 添付書類
a．IV－2－3－9 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部及びティーより N11ノズルまでの外管）の耐震性についての計算書

表5－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{II}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	42	114	42	228
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	42	114	42	228

表5－2 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\mathrm{A}} \mathrm{S}$		許容応力状態 IV A S	
	応力強さ	許容応力	応力強さ	許容応力
P01 P02	42	159	42	318
P01， P02，	42	159	42	318

表5－3 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

分類	一次 + 二次応力差最大範囲$\left(P_{L}+P_{b}+Q\right)$		
応力評価点	$\mathrm{S}_{\mathrm{n}}{ }^{\# 1 * 1}$	$\mathrm{S}_{\mathrm{n}}{ }^{\# 2 * 2}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	9	21	285
P01＇	9	21	285
P02	11	25	285
P02＇	11	25	285

注記＊ $1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ による一次＋二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は許容応力状態IV A Sによる一次 + 二次応力差の最大範囲を示す。

VI－2－3－4－3 原子炉圧力容器内部構造物の耐震性についての計算書

VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針
VI－2－3－4－3－2 蒸気乾燥器の耐震性についての計算書
VI－2－3－4－3－3 気水分離器及びスタンドパイプの耐震性についての計算書
VI－2－3－4－3－4 シュラウドヘッドの耐震性についての計算書
VI－2－3－4－3－5 ジェットポンプの耐震性についての計算書
VI－2－3－4－3－6 給水スパージャの耐震性についての計算書
VI－2－3－4－3－7 高圧及び低圧炉心スプレイスパージャの耐震性についての計算書
VI－2－3－4－3－8 残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書
VI－2－3－4－3－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の耐震性についての計算書

VI－2－3－4－3－10 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の耐震性についての計算書
VI－2－3－4－3－11 中性子束計測案内管の耐震性についての計算書

VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2．2 評価方針 4
2.3 適用基準 5
2．4 記号の説明 6
3．計算条件 8
3.1 評価対象機器 8
3.2 形状及び寸法 8
3.3 荷重の組合せ及び許容応力状態（運転状態） 8
3．4 許容応力 9
3.5 許容応力評価条件 9
3.6 溶接部の継手効率 9
4．荷重条件 10
4．1 設計条件 10
4．2 運転条件 10
4.3 重大事故等時の条件 10
4． 4 荷重の組合せ及び応力評価 10
5．応力評価の手順 11
5.1 荷重条件の選定 11
5.2 応力の評価 11
5．2．1 主応力 11
5．2．2 応力強さ 11
5．2．3 一次応力強さ 11
5.3 特別な応力の評価 12
5．3．1 純せん断応力の評価 12
6．評価結果の添付 13
6． 1 応力評価結果 13
7．引用文献 14
8．参照図書 14
添付1 溶接部の継手効率 34

図表目次

図 2－1 原子炉圧力容器内部構造物の耐震評価フロー 4
図 2－2 原子炉圧力容器内部構造物の強度評価フロー 4
図 3－1 全体断面図 15
図 4－1 原子炉圧力容器内部構造物の差圧 16
表 2－1 原子炉圧力容器内部構造物の構造計画 3
表 3－1 荷重の組合せ及び許容応力状態 17
表 3－2 許容応力（原子炉圧力容器内部構造物） 20
表 3－3 許容応力評価条件 21
表 4－1 外荷重 22
表 4－2 荷重の組合せ 33

1．概要

本書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉圧力容器内部構造物に関する応力解析の方針を説明するもので ある。

なお，本書においては，原子炉圧力容器内部構造物の耐震評価及び重大事故等時にお ける強度評価について記載する。

耐震評価について，設計用地震力を除く荷重による原子炉圧力容器内部構造物の応力評価は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類
（参照図書（1））による（以下「既工認」という。）。
強度評価について，原子炉圧力容器内部構造物の応力評価は，既工認による。

注1：本書に記載していない特別な内容がある場合は，下記計算書に示す。なお，下記 のらち（1）から（10）を「耐震計算書」，（11）から（16）を「強度計算書」という。
（1）VI－2－3－4－3－2 蒸気乾燥器の耐震性についての計算書
（2）VI－2－3－4－3－3 気水分離器及びスタンドパイプの耐震性についての計算書
（3）VI－2－3－4－3－4 シュラウドヘッドの耐震性についての計算書
（4）VI－2－3－4－3－5 ジェットポンプの耐震性についての計算書
（5）VI－2－3－4－3－6 給水スパージャの耐震性についての計算書
（6）VI－2－3－4－3－7 高圧及び低圧炉心スプレイスパージャの耐震性についての計算書
（7）VI $-2-3-4-3-8$ 残留熱除去系配管（原子炉圧力容器内部）の耐震性について の計算書
（8）VI－2－3－4－3－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の耐震性についての計算書
（9）VI－2－3－4－3－10 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の耐震性についての計算書
（10）VI－2－3－4－3－11 中性子束計測案内管の耐震性についての計算書
（11）VI－3－別添 7－1 ジェットポンプの強度計算書
（12）VI－3－別添 7－2 給水スパージャの強度計算書
（13）VI－3－別添 7－3 高圧及び低圧炉心スプレイスパージャの強度計算書
（14）VI－3－別添 7－4 残留熱除去系配管（原子炉圧力容器内部）の強度計算書
（15）VI－3－別添 7－5 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の強度計算書
（16）VI－3－別添 7－6 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の強度計算書

注 2 ：図表は，原則として巻末に示す。

2．一般事項
2.1 構造計画

原子炉圧力容器内部構造物の構造計画を表 2－1 に示す。原子炉圧力容器内部構造物は，下記の機器により構成される。
（1）蒸気乾燥器
（2）気水分離器及びスタンドパイプ
（3）シュラウドヘッド
（4）ジェットポンプ
（5）給水スパージャ
（6）高圧及び低圧炉心スプレイスパージャ
（7）残留熱除去系配管（原子炉圧力容器内部）
（8）高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）
（9）差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）
（10）中性子束計測案内管

表 2－1 原子炉圧力容器内部構造物の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
蒸気乾燥器及び給水スパージャ は原子炉圧力容器内部のブラケ ットにより支持される。 気水分離器及びスタンドパイプ はシュラウドヘッドに接続され， シュラウドヘッドは炉心シュラ ウド上にボルトによりフランジ接続される。 ジェットポンプはシュラウドサ ポートプレート及び原子炉圧力容器により支持される。 高圧及び低圧炉心スプレイスパ ージャ，残留熱除去系配管は炉心 シュラウドにより支持される。 高圧及び低圧炉心スプレイ系配管は原子炉圧力容器内部のブラ ケット及び炉心シュラウドによ り支持される。 差圧検出・ほう酸水注入系配管は炉心シュラウド及びシュラウド サポートに設置されたサポート により支持される。 中性子束計測案内管は下部を中性子束計測ハウジングに接続さ れ，上部を炉心支持板により支持 される。	原子炉圧力容器内部構造物は蒸気乾燥器，気水分離器及びスタ ンドパイプ，シュラウ ドヘッド，ジェットポ ンプ，給水スパージ ヤ，高圧及び低圧炉心 スプレイスパージャ，残留熱除去系配管，高圧及び低圧炉心スプ レイ系配管，差圧検出・ほう酸水注入系配管，中性子束計測案内管により構成される。	（A）矢視 高圧炉心 スプレイ系配管 （B）（B）矢視

2．2 評価方針

原子炉圧力容器内部構造物の構造強度評価は，添付書類「VI－2－1－9 機能維持の基本方針」及び「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「 2.1 構造計画」にて示す原子炉圧力容器内部構造物の各機器を踏まえ計算書にて設定する箇所において，「4．荷重条件」にて設定した荷重に基づく応力が許容応力内に収まることを，「5．応力評価の手順」にて示す方法にて確認することで実施する。確認結果を計算書に示す。

原子炉圧力容器内部構造物の耐震評価フローを図2－1に，強度評価フローを図2－2 に示す。

図 2－1 原子炉圧力容器内部構造物の耐震評価フロー

図 2－2 原子炉圧力容器内部構造物の強度評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 － 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会）
（以降「JEAG4601」と記載しているものは上記3指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。）） J S ME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」という。）
（5）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第501号（以下「告示」という。）＊

注1 ：本書及び計算書において，設計•建設規格の条項は「設計•建設規格 $\bigcirc-\triangle \triangle \triangle \triangle(\diamond)$ a．（a）」とし，告示の条項は「告示第○条第○項第○号○ ○」として示す。

注2 ：耐震計算書では「設計•建設規格」を適用し，強度計算書では「告示」を適用する。

注記＊：原子炉圧力容器内部構造物の強度評価においては，告示の第 17 章「炉心支持構造物」の規定を準用する。

2． 4 記号の説明
本書及び計算書において，以下の記号を使用する。ただし，本書添付及び計算書中 に別途記載がある場合は，この限りでない。 なお，計算書における記号の字体及び大きさについては，本書と異なる場合がある。

記号	記号の説明	単位
H	水平力	N
M	モーメント	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{P}_{\text {b }}$	一次曲げ応力	MPa
P_{m}	一次一般膜応力	MPa
S 12	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S 23	主応力差 $\sigma_{2}-\sigma_{3}$	MPa
S 31	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
S d＊	弾性設計用地震動 S d により定まる地震力又はSクラス施設に適用される静的地震力のいずれか大きい方の地震力	－
S_{m}	設計応力強さ	MPa
S s	基準地震動 S s により定まる地震力	－
S u	設計引張強さ	MPa
S y	設計降伏点	MPa
S_{y}（ R T）	材料の $40^{\circ} \mathrm{C}$ における設計降伏点	MPa
T	ねじりモーメント	$\mathrm{N} \cdot \mathrm{m}$
V	鉛直力	N
η	溶接部の継手効率	－
${ }_{\sigma} 1$	主応力	MPa
$\sigma 2$	主応力	MPa
$\sigma 3$	主応力	MPa
$\sigma \ell$	軸方向応力	MPa
σ r	半径方向応力	MPa
σ t	周方向応力	MPa
$\tau_{\ell r}$	せん断応力	MPa
$\tau \mathrm{ret}$	せん断応力	MPa
τ t ℓ	せん断応力	MPa

記号	記号の説明	単位
III ${ }_{\text {A }} \mathrm{S}$	設計•建設規格の供用状態 C 相当の許容応力を基準として， それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
IV ${ }_{\text {A }} \mathrm{S}$	設計•建設規格の供用状態 D 相当の許容応力を基準として， それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	運転状態V（重大事故等時の状態）相当の応力評価を行ら許容応力状態を基本として，それに地震により生じる応力 に対する特別な応力の制限を加えた許容応力状態	－

3．計算条件
3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（表 2－1 及び図 3－1参照）

機器名称		評価対象		
		耐震性についての計算書 （許容応力状態に対する評価）		強度計算書$\binom{\text { 運転状態 } \mathrm{V}}{\text { に対する評価 }}$
		$\begin{gathered} \text { III }_{\mathrm{A}} \mathrm{~S} \\ \text { IV }_{\mathrm{A}} \mathrm{~S} \end{gathered}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
（1）	蒸気乾燥器	\bigcirc	$\times *$	$\times *$
（2）	気水分離器及びスタンドパイプ	\bigcirc	＊＊	＊＊
（3）	シュラウドヘッド	\bigcirc	\times＊	\times＊
（4）	ジェットポンプ	\bigcirc	\bigcirc	\bigcirc
（5）	給水スパージャ	\bigcirc	\bigcirc	\bigcirc
（6）	高圧及び低圧炉心 スプレイスパージャ	\bigcirc	\bigcirc	\bigcirc
（7）	残留熱除去系配管 （原子炉圧力容器内部）	\bigcirc	\bigcirc	\bigcirc
（8）	高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）	\bigcirc	\bigcirc	\bigcirc
（9）	差圧検出・ほう酸水注入系配管 （原子炉圧力容器内部）	\bigcirc	\bigcirc	\bigcirc
（10）	中性子束計測案内管	\bigcirc	$\times *$	$\times *$

注 ：「○」は評価対象，「×」は評価対象外を示す。
注記 $*$ ：設計基準対象施設としてのみ申請する機器。

3.2 形状及び寸法

各部の形状及び寸法は，計算書に示す。

3.3 荷重の組合せ及び許容応力状態（運転状態）

原子炉圧力容器内部構造物の荷重の組合せ及び許容応力状態（運転状態）のうち，設計基準対象施設の評価に用いるものを表3－1（1）に，重大事故等対処設備の評価に用いるものを表 3－1（2）に示す。また，各許容応力状態（運転状態）で考慮する荷重 は，4章に示すとおりである。

3．4 許容応力

（1）原子炉圧力容器内部構造物の耐震評価における許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表3－2に示す。
（2）原子炉圧力容器内部構造物の強度評価における許容応力は，表3－2に示す。
3.5 許容応力評価条件
（1）耐震評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は， それぞれ設計•建設規格 付録材料図表 Part5 表1，表8及び表9に定められたも のを使用する。
（2）強度評価において，設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は， それぞれ告示別表第 2 ，第 9 ，第 10 に定められたものを使用する。
（3）許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次応力の評価には，運転状態 I及びIIにおける流体の最高温度 \square に対する許容応力を用いる。許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ 及び運転状態 V の一次応力の評価には，運転状態 V における評価温度 に対する許容応力を用いる。
（4）原子炉圧力容器内部構造物の許容応力評価条件を表 3－3 に示す。 なお，各機器で使用される材料は，計算書に示す。
3.6 溶接部の継手効率
（1）溶接部の継手効率は，継手の種類と分類及び継手に適用する検査の種類により，耐震評価においては設計•建設規格 CSS－3150に，強度評価においては告示第 99条第4項に従って定める。溶接部の継手効率を添付1に示す。
（2）溶接部の許容応力は，材料の許容応力に継手効率を乗じたものとし，計算書に示 す。

4．荷重条件
原子炉圧力容器内部構造物は，以下の荷重条件に耐えることを確認する。
各機器の応力評価には，本章に示す荷重を考慮する。

4． 1 設計条件
設計条件は既工認からの変更はなく，参照図書（1）h．に定めるとおりである。

4．2 運軽条件
運転条件及び記号は，既工認からの変更はなく，参照図書（1）h．に定めるとおりであ る。

各機器の応力評価において考慮する外荷重の値を表4－1に示す。

4． 3 重大事故等時の条件
D

4． 4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価項目の対応を表4－2に示す。表4－2及び計算書において，荷重の種類と記号は以下のとおりである。

なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

荷重
（1）差圧
（2）死荷重
（3）地震荷重 S d＊（一次荷重）
（4）地震荷重 S s（一次荷重）

5．応力評価の手順
応力評価の手順について述べる。
5.1 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重を選定して計算を行う。

5.2 応力の評価

5．2．1 主応力

計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
主応力 σ は，引用文献（1）の $1 \cdot 3 \cdot 6$ 項により，次式を満足する 3 根 $\sigma_{1}, \sigma_{2}, ~ \sigma_{3}$ として計算する。

$$
\begin{aligned}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell^{2}}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{r}}{ }^{2}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\mathrm{t}} \cdot \sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}{ }^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{rt}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell^{2}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0}
\end{aligned}
$$

上式により主応力を求める。

5．2．2 応力強さ
以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{aligned}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1}
\end{aligned}
$$

5．2．3 一次応力強さ
設計基準対象施設として許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ ，許容応力状態 IV A S ，及び重大事故等対処設備として運転状態 V，許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ において生じる一次一般膜応力及び一次一般膜 + 一次曲げ応力の応力強さが，3．4節に示す許容応力を満足することを示す。

5．3 特別な応力の評価

5．3．1 純せん断応力の評価
純せん断荷重を受ける部分は，設計•建設規格 CSS－3114により評価する。解析箇所を以下に示す。評価方法は参照図書（1）i．に示し，許容応力は表 3－2 に示 す。
（1）蒸気乾燥器の耐震用ブロック

6．評価結果の添付

応力評価点番号は，機器ごとに記号 P01 からの連番とする。奇数番号を内面の点，偶数番号を外面の点として，計算書の形状•寸法•材料•応力評価点を示す図において定義する。

なお，軸対称モデル解析において，非軸対称な外荷重による応力評価を行った場合，荷重の入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力が極大となる方位の応力評価点は［例 P01］と表し，極小となる方位の応力評価点にはプライム（ ））を付けて［例 P01＇］と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

6.1 応力評価結果
（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次一般膜 + 一次曲げ応力強さの評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。 a．純せん断応力

7．引用文献
文献番号は，本書及び計算書において共通である。
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）
（2）ROARK，YOUNG：Formulas for Stress and Strain：FIFTH EDITION

8．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類
a．IV－2－3－4 給水スパージャの耐震性についての計算書
b．IV $-2-3-5$ 高圧及び低圧炉心スプレイスパージャの耐震性についての計算書
c．IV－2－3－6 ジェットポンプの耐震性についての計算書
d．IV $-2-3-7$ 残留熱除去系配管（原子炉圧力容器内部）の耐震性についての計算書
e．IV－2－3－8 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の耐震性についての計算書
f．IV－ $2-3-9$ 差圧検出・ほう酸水注入系配管（原子炬圧力容器内部及びティー よりN11ノズルまでの外管）の耐震性についての計算書
g．IV $-2-3-10$ 中性子束計測案内管の耐震性についての計算書
h．IV－3－1－2－1 原子炉圧力容器内部構造物の応力解析の方針
i．IV－3－1－2－2 蒸気乾燥器の応力計算書
j．IV－3－1－2－3 シュラウドヘッドの応力計算書
k．IV－3－1－2－4 気水分離器及びスタンドパイプの応力計算書
1．IV－3－1－2－5 給水スパージャの応力計算書
m．IV－3－1－2－6 高圧及び低圧炉心スプレイスパージャの応力計算書
n．IV－3－1－2－7 ジェットポンプの応力計算書
o．IV－3－1－2－8 残留熱除去系配管（原子炉圧力容器内部）の応力計算書
p．IV－3－1－2－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の応力計算書
q．IV－ $3-1-2-10$ 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の応力計算書
r．IV－3－1－2－11 中性子束計測案内管の応力計算書

図 3－1 全体断面図

（単位：MPa）

部位		運転状態 V
給水スパージャ	$\mathrm{P}_{6} 5_{5}=\mathrm{P}_{6}-\mathrm{P}_{5}$	
高圧及び低圧炉心スプレイ系配管	$\mathrm{P}_{75}=\mathrm{P}_{7}-\mathrm{P}_{5}$	
高圧及び低圧炉心スプレイスパージャ	$\mathrm{P}_{74}=\mathrm{P}_{7}-\mathrm{P}_{4}$	
	$\mathrm{P}_{13}=\mathrm{P}_{1}-\mathrm{P}_{3}$	
差圧検出・ほう酸水注入系配管	$\mathrm{P}_{81}=\mathrm{P}_{8}-\mathrm{P}_{1}$	
	$\mathrm{P}_{83}=\mathrm{P}_{8}-\mathrm{P}_{3}$	
	$\mathrm{P}_{112}=\mathrm{P}_{11}-\mathrm{P}_{2}$	
	$\mathrm{P}_{122}=\mathrm{P}_{12}-\mathrm{P}_{2}$	
残留熱除去系配管	$\mathrm{P}_{135}=\mathrm{P}_{13}-\mathrm{P}_{5}$	

図 4－1 原子炉圧力容器内部構造物の差圧

表 3－1（1）荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の 区分	荷重の組合せ	許容応力状態
	原子炉	蒸気乾燥器 気水分離器及びスタンドパイプ シュラウドヘッド ジェットポンプ 給水スパージャ 高圧及び低圧炉心スプレイスパージャ 残留熱除去系配管（原子炉圧力容器内部） 高圧及び低圧炉心スプレイ系配管（原子炉圧 力容器内部） 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部） 中性子束計測案内管	S	－	$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ \mathrm{M}_{\mathrm{D}}+\mathrm{Sd} * \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$
景子伊 本体	地う容器 内部 構造物				$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{D}}+ \\ & \mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{~s} \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

［記号の説明］
D ：死荷重
P_{D} ：地震と組み合わすべきプラントの運転状態 I 及びII（運転状態III及び地震従属事象として運転状態IVに包絡する状態がある場合 にはこれを含む。）又は当該設備に設計上定められた最高使用圧力による荷重
M_{D} ：地震と組み合わすべきプラントの運転状態 I 及びII（運転状態III及び地震従属事象として運転状態IVに包絡する状態がある場合 にはこれを含む。）又は当該設備に設計上定められた機械的荷重
Sd＊：弾性設計用地震動 S d により定まる地震力又はSクラス施設に適用される静的地震力
S S ：基準地震動 S s により定まる地震力

表 3－1（2）荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊	機器等の 区分	荷重の組合せ	状態
原子炉 本体	原子炉圧力容器内部構造物	給水スパージャ 残留熱除去系配管（原子炉圧力容器内部）	常設耐震／防止 常設／緩和常設／防止 （DB 拡張）	－	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+ \\ \mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \end{gathered}$	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。）
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V
		高圧炉心スプレイスパージャ高圧炉心スプレイ系配管（原子炉圧力容器内部）	常設耐震／防止常設／防止 （DB 拡張）	－	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+ \\ \mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \end{gathered}$	
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V
		ジェットポンプ 低圧炉心スプレイスパージャ 低圧炉心スプレイ系配管（原子炉 圧力容器内部）	常設／防止 （DB 拡張）	－	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\begin{gathered} \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+ \\ \mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \end{gathered}$	許容応力状態 $V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。）
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V
		差圧検出・ほう酸水注入系配管（原子炬圧力容器内部）	常設耐震／防止常設／緩和	－	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\begin{aligned} & \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+ \\ & \mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{~s} \end{aligned}$	許容応力状態 $V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容応力を用いる。）
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	運転状態V

［記号の説明］

D	：死荷重
P_{D}	：地震と組み合わすべきプラントの運転状態 I 及びII（運転状態III及び地震従属事象として運転状態IVに包絡する状態がある場
	合にはこれを含む。）又は当該設備に設計上定められた最高使用圧力による荷重
M_{D}	：地震と組み合わすべきプラントの運転状態 I 及びII（運転状態III及び地震従属事象として運転状態IVに包絡する状態がある場
	合にはこれを含む。）又は当該設備に設計上定められた機械的荷重
S s	：基準地震動 S s により定まる地震力
$\mathrm{P}_{\text {SAD }}$	：重大事故等時の状態（運転状態V）における運転状態等を考慮して当該設備に設計上定められた設計圧力による荷重
$\mathrm{M}_{\text {SAD }}$	：重大事故等時の状態（運転状態V）における運転状態等を考慮して当該設備に設計上定められた機械的荷重
P	：運転状態Vにおける圧力荷重
M	：運転状態Vで設備に作用している機械的荷重
A	：事故時荷重

注記＊：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB 拡張）」 は常設重大事故防止設備（設計基準拡張）を示す。

表 3－2 許容応力（原子炉圧力容器内部構造物）

状態	許容応力＊		
	一次一般膜応力	一次一般膜＋一次曲げ応力	純せん断応力
許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{~S}_{\mathrm{m}}$	左欄の 1.5 倍の値	$0.9 \cdot \mathrm{Sm}_{\mathrm{m}}$
許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$	$2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$		
許容応力状態 $V_{A} S$ （許容応力状態 $V_{A} S$ として許容応力状態 $V_{A} S$ の許容応力を用いる。）	ただし，AS S及びHNA については2／3•Suと $2.4 \cdot \mathrm{~S}_{\mathrm{m}}$ の小さい方。	左欄の 1.5 倍の値	1．2 $\cdot \mathrm{S}_{\mathrm{m}}$
運転状態 V （運転状態 Vとして運転状態IVの許容応力を用いる。）	$2 / 3 \cdot S_{u}$ ただし，AS S及びHNA については $2 / 3 \cdot S_{u}$ と $2.4 \cdot \mathrm{~S}_{\mathrm{m}}$ の小さい方。	左欄の 1.5 倍の値	

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3（1）許容応力評価条件（設計基準対象施設）

評価部位	材料		温度条件 （ ${ }^{\circ} \mathrm{C}$ ）	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
原子炉圧力容器内部構造物	オーステナイト系 ステンレス鋼及び 高ニッケル合金	SUS316	流体の最高温度				
		SUS316TP	流体の最高温度				
		SUS316L	流体の最高温度				
		SUS316LTP	流体の最高温度				
		SUSF316L	流体の最高温度				

表 3－3（2）許容応力評価条件（重大事故等対処施設）

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
原子炉圧力容器内部構造物	$\begin{gathered} \text { オーステナイト系 } \\ \text { ステンレス鋼及び } \\ \text { 高ニッケル合金 } \end{gathered}$	SUS316	評価温度				
		SUS316TP	評価温度				
		SUS316L	評価温度				
		SUS316LTP	評価温度				
		SUSF316L	評価温度				

表 4－1（1）外荷重

蒸気乾燥器外荷重

記号	荷重名称	鉛直力		水平力	
		全体にかか る荷重	最長の蒸気乾燥器ユニ ット列にか かる荷重	全体にかか る荷重	最長の蒸気乾燥器ユニ ット列に係 る荷重
		$\begin{gathered} \mathrm{V}_{1} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{2}{ }^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{H}_{1} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H}_{2}{ }^{* 2} \\ (\mathrm{kN}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊				
L16	地震荷重 S s				

表 4－1（2）外荷重

気水分離器及びスタンドパイプ外荷重

記号	荷重名称	荷重作用点	鉛直力	水平力	モーメント
			$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊				
L16	地震荷重S s				

\square

表 4－1（3）外荷重

シュラウドヘッド外荷重

記号	荷重名称	荷重作用点	鉛直力＊${ }^{\text {1 }}$	水平力	モーメント
			$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊				
L16	地震荷重S s				

表 4－1（4）外荷重

ジェットポンプ外荷重

表 4－1（5）外荷重

給水スパージャ外荷重

記号	荷重名称	荷重作用点	軸力	せん断力	$\begin{gathered} \text { ねじり } \\ \text { モーメント } \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$
			$\begin{gathered} \mathrm{F} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重					
L14	地震荷重S d＊					
L16	地震荷重S S					

表 4－1（6）外荷重

高圧及び低圧炉心スプレイスパージャ外荷重

記号	荷重名称	$\begin{gathered} \text { 荷重 } \\ \text { 作用点 } \end{gathered}$	軸力	せん断力	$\begin{gathered} \text { ねじり } \\ \text { モーメント } \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$
			$\begin{gathered} \mathrm{F} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重					
L14	地震荷重S d＊					
L16	地震荷重 S S					

表 4－1（7）外荷重

残留熱除去系配管外荷重

記号	荷重名称	荷重作用点	軸力	せん断力	$\begin{gathered} \text { ねじり } \\ \text { モーメント } \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$
			F (N)	$\begin{gathered} \mathrm{S} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重					
L14	地震荷重 S d＊					
L16	地震荷重 S s					

表 4－1（8）外荷重

高圧炉心スプレイ系配管外荷重

表 4－1（9）外荷重

低圧炉心スプレイ系配管外荷重

	記号	荷重名称	荷重作用点	軸力	せん断力	$\begin{gathered} \text { ねじり } \\ \text { モーメント } \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$
				F （N）	$\begin{gathered} \mathrm{S} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$
	L04	死荷重					
	L14	地震荷重S d＊					
$\stackrel{T}{\infty}$	L16	地震荷重S s					

表 4－1（10）外荷重

差圧検出・ほら酸水注入系配管外荷重

\square

表 4－1（11）外荷重

中性子束計測案内管外荷重

記号	荷重名称	荷重作用点	鉛直力	水平力	モーメント
			$\begin{gathered} \mathrm{V} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \hline \mathrm{H} \\ \text { (N) } \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{~N} \cdot \mathrm{~m}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊				
L16	地震荷重S s				

表 4－2 荷重の組合せ

状態	荷重の組合せ	応力評価
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 14$	$\begin{aligned} & \mathrm{P}_{\mathrm{m}} \\ & \mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}} \end{aligned}$
許容応力状態IV $\mathrm{A}^{\text {S }}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 16$	$\begin{aligned} & \mathrm{P}_{\mathrm{m}} \\ & \mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}} \end{aligned}$
運転状態 V	$\mathrm{L} 02+\mathrm{L} 04$	$\begin{aligned} & \mathrm{P}_{\mathrm{m}} \\ & \mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}} \end{aligned}$
許容応力状態 $V_{\text {A }} \mathrm{S}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 16$	$\begin{aligned} & \mathrm{P}_{\mathrm{m}} \\ & \mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}} \end{aligned}$

添付1 溶接部の継手効率

原子炉圧力容器内部構造物の主な溶接部の継手効率は，設計•建設規格 CSS－ 3150 ，告示 99 条第 4 項に従い，付表－1 のとおりに定められる。

付表－1

継手の箇所	継手の分類	継手の種類	検査の 種類＊	継手効率 η
シュラウドヘッド	鏡板とフランジの周継手			
気水分離器及び スタンドパイプ	管とスリーブの周継手			
	管と鏡板の周継手			
給水スパージャ	$\begin{array}{\|l} \text { サーマルスリーブと } \\ \text { ティーの周継手 } \end{array}$			
	ティーとヘッダの周継手			
高圧及び低圧炉心スプ レイ系配管	ヘッダと管の周継手			
	管と管の周継手			
高圧及び低圧炉心スプ レイスパージャ	管と管の周継手			
残留熱除去系配管	フランジネックとリング の周継手			
差圧検出・ほう酸水注入系配管	内管とティーの周継手			
	エルボとティーの周継手			
	管とティーの周継手			
蒸気乾燥器	リングとブロックの継手			
	蒸気乾燥器			
中性子束計測案内管	管と管の周継手			
ジェットポンプ	ディフューザの周継手			
	ライザブレースと原子炉圧力容器内壁との継手			
	ライザパイプの周継手			

注記 $*: ~$ 検査の種類を示す記号は次のとおりである。
PT＋RT：設計•建設規格 CSS－3150に定めるAの検査及び告示第 99 条第 4項に規定するイの検査
P P T ：設計•建設規格 CSS－3150に定めるCの検査及び告示第 99 条第 4項に規定する八の検査

PT：設計•建設規格 CSS－3150に定めるEの検査及び告示第 99 条第 4項に規定するホの検査

VI－2－3－4－3－2 蒸気乾燥器の耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 7
2． 1 設計条件 7
2.2 運転条件 7
2．3 材料 7
2.4 荷重の組合せ及び許容応力状態 7
2.5 荷重の組合せ及び応力評価 7
2.6 許容応力 7
3．応力計算 8
3.1 応力評価点 8
3.2 差圧による応力 8
3．2．1 荷重条件 8
3．2．2 計算方法 8
3.3 外荷重による応力 8
3．3．1 荷重条件 8
3．3．2 計算方法 8
3.4 応力の評価 8
4．応力強さの評価 9
4． 1 一次一般膜応力強さの評価 9
4.2 一次一般膜＋一次曲げ応力強さの評価 9
5．特別な応力の評価 10
5.1 純せん断応力の評価 10
5．1．1 計算方法 10
5．1．2 純せん断応力の評価 10
図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 5
表 4－1 一次一般膜応力強さの評価のまとめ 11
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 11
表 5－1 純せん断応力の評価 12

1．一般事項
本計算書は，蒸気乾燥器の応力計算について示すものである。
蒸気乾燥器は，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づ き評価する。

蒸気乾燥器は，設計基準対象施設においてSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲
解析範囲を図1－1に示す。

1．3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

0 d $\quad 6-\varepsilon-\hbar-\varepsilon-z-\mathrm{I} \Lambda$（8）$\quad$ O
蒸気乾燥器ユニット

図 1－1（1）形状•寸法•材料•応力評価点（蒸気乾燥器）（単位：mm）

図 1－1（2）形状•寸法•材料•応力評価点
（ユニット及びユニットサポート）（単位：mm）

図1－1（3）形状•寸法•材料•応力評価点（耐震用ブロック）（単位：mm）

O 2 （3）VI－2－3－4－3－2 R 0

表 1－1（1）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価点	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { ユニットサポート } \\ \text { SUS316L } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	2	57^{*}	P01	13	85＊	P01，
	IV A S	3	91＊	P01	17	137＊	P01，
	III ${ }_{\text {A }} \mathrm{S}$	2	57^{*}	P02	11	85＊	P02
	IV ${ }_{\text {A }} \mathrm{S}$	3	91＊	P02	16	137＊	P02＇
	III ${ }_{\text {A }} \mathrm{S}$	2	142	P03	5	214	P03
	IV ${ }_{\text {A }} \mathrm{S}$	3	228	P03	6	343	P03
	III ${ }_{\text {A }} \mathrm{S}$	2	142	P04	6	214	P04
	IV ${ }_{\text {A }} \mathrm{S}$	3	228	P04	8	343	P04
注記＊：継手効率	を乗じた値を示す。						

表 1－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	純せん断応力	
		平均せん断応力	許容応力
耐震用ブロック 溶接部 SUS316L	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	31	47^{*}

注記＊：継手効率 を乗じた値を示す。

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）i．に定めるとおりである。

3.2 差圧による応力

3.2 .1 荷重条件（L02）

各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）i．に定めるとおりである。

3．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）i．に定めるとおりである。
3.3 外荷重による応力
3.3 .1 荷重条件（L04，L14及び L16）

外荷重を「応力解析の方針」の表 4－1（1）に示す。

3．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）i．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1 に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表4－2に示す。
表 4－2 より，各許容応力状態の一次一般膜 + 一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

5．特別な応力の評価
5.1 純せん断応力の評価

5．1．1 計算方法
純せん断応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書 （1）i．に定めるとおりである。

5．1．2 純せん断応力の評価
各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の平均せん断応力は，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	2	57＊	3	91＊
P01＇	2	57＊	3	91＊
P02	2	57＊	3	91＊
P02＇	2	57＊	3	91＊
P03	2	142	3	228
P03＇	2	142	3	228
P04	2	142	3	228
P04＇	2	142	3	228

注記 $*: ~$ 継手効率 を乗じた値を示す。

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 III A S		許容応力状態IV A S	
	応力強さ	許容応力	応力強さ	許容応力
P01	3	85^{*}	8	137^{*}
P01＇	13	85^{*}	17	137^{*}
P02	5	85^{*}	10	137^{*}
P02＇	11	85^{*}	16	137^{*}
P03	5	214	6	343
P03＇	4	214	6	343
P04	6	214	8	343
P04＇	2	214	4	343

注記＊：継手効率 】を乗じた値を示す。

表 5－1 純せん断応力の評価
（単位：MPa）

応力評価面	許容応力状態	平均せん断応力	許容応力
せん断面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	31	47^{*}
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	42	62^{*}

注記 $*: ~$ 継手効率 \longrightarrow を乗じた値を示す。

$$
\begin{array}{ll}
\mathrm{VI}-2-3-4-3-3 & \text { 気水分離器及びスタンドパイプの耐震性についての } \\
& \text { 計算書 }
\end{array}
$$

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1．3 計算結果の概要 1
2．計算条件 5
2.1 設計条件 5
2.2 運転条件 5
2．3 材料 5
2.4 荷重の組合せ及び許容応力状態 5
2.5 荷重の組合せ及び応力評価 5
2.6 許容応力 5
3．応力計算 6
3.1 応力評価点 6
3.2 差圧による応力 6
3．2．1 荷重条件 6
3．2．2 計算方法 6
3.3 外荷重による応力 6
3．3．1 荷重条件 6
3．3．2 計算方法 6
3.4 応力の評価 6
4．応力強さの評価 7
4.1 一次一般膜応力強さの評価 7
4.2 一次一般膜 + 一次曲げ応力強さの評価 7

図表目次
図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 4
表 4－1 一次一般膜応力強さの評価のまとめ 8
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 8

1．一般事項
本計算書は，気水分離器及びスタンドパイプの応力計算について示すものである。
気水分離器及びスタンドパイプは，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

気水分離器及びスタンドパイプは，設計基準対象施設においてSクラス施設に分類 される。

以下，設計基準対象施設としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。
1.2 解析範囲

解析範囲を図1－1 に示す。

1.3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

$\mathrm{X} \sim \mathrm{X}$ 断面図
図 1－1（1）形状•寸法•材料•応力評価点

図 1－1（2）形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－3－3 R 0

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { スタンドパイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	8	57＊	P01＇－P02＇	60	85＊	P01＇－P02＇
	IV $\mathrm{A}^{\text {S }}$	11	91＊	P01＇－P02＇	93	137＊	P01＇－P02＇
$\begin{gathered} \text { スタンドパイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	8	57＊	P03＇－P04＇	8	85＊	P03＇－P04＇
	IV ${ }_{\text {A }} \mathrm{S}$	11	91＊	P03＇－P04＇	12	137＊	P03＇－P04＇
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）k．に定めるとおりである。

3.2 差圧による応力

3.2 .1 荷重条件（L02）

各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）k．に定めるとおりである。

3．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）k．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。
3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（2）に示す。

3．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）k．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の3．4節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表4－2に示す。
表 4－2より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」 の 3.4 節及び 3.6 節に示す許容応力を満足する。

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	7	57＊	11	91＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	8	57＊	11	91＊
$\begin{aligned} & \mathrm{P} 03 \\ & \mathrm{P} 04 \end{aligned}$	7	57＊	11	91＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	8	57＊	11	91＊
注記 $*: ~$ 継手効率		を乗じた値を示す。		

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	57	85＊	90	137＊
$\begin{aligned} & \mathrm{P} 01 \\ & \mathrm{P} 02 \end{aligned}$	60	85＊	93	137＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	8	85＊	11	137＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	8	85＊	12	137＊

注記 $*: ~$ 継手効率
を乗じた値を示す。
VI-2-3-4-3-4 シュラウドヘッドの耐震性についての計算書

目次

1．一般事項 1
1.1 記号の説明 1
1．2 形状•寸法•材料 1
1.3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2．2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．応力計算 5
3.1 応力評価点 5
3.2 差圧による応力 5
3．2．1 荷重条件 5
3．2．2 計算方法 5
3.3 外荷重による応力 5
3．3．1 荷重条件 5
3．3．2 計算方法 5
3.4 応力の評価 5
4．応力強さの評価 6
4.1 一次一般膜応力強さの評価 6
4.2 一次一般膜十一次曲げ応力強さの評価 6

図表目次
図 1－1 形状•寸法•材料•応力評価点 2
表 1－1 計算結果の概要 3
表 3－1 断面性状 7
表 4－1 一次一般膜応力強さの評価のまとめ 8
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 8

1．一般事項
本計算書は，シュラウドヘッドの応力計算について示すものである。
シュラウドヘッドは，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－ $+\underline{3}-1$ 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」とい
う。）に基づき評価する。
シュラウドヘッドは，設計基準対象施設においてSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。

1． 1 記号の説明
記号の説明は，「応力解析の方針」の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D_{i}	内径	mm
ts	鏡板の板厚	mm

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図 1－1 形状•寸法•材料•応力評価点（単位：mm）

$$
\mathrm{O} 2 \text { (3) VI-2-3-4-3-4 } \mathrm{R}
$$

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { シュラウドヘッド } \\ \text { SUS316L } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	11	142	P01－P02	206	214	P02
	IV A S	12	228	P01－P02	314	343	P02

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2．3 材料
各部の材料を図1－1に示す。

2． 4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1 に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。

3．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。

3.3 外荷重による応力

3．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（3）に示す。

3．3．2 計算方法
（1）一次一般膜応力
死荷重による一次一般膜応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。地震荷重による一次一般膜応力 は，次式で求める。

$$
\tau_{\ell r}=\frac{V}{A}+\frac{H}{A}
$$

（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜＋一次曲げ応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）j．に定めるとおりである。

3． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2項に定めるとおりである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価各許容応力状態における評価を表4－1に示す。

表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表4－2 に示す。
表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

表 3－1 断面性状

応力評価点	D_{i} (mm)	t s (mm)	A^{*} $\left(\mathrm{~mm}^{2}\right)$
$\mathrm{P} 01, \mathrm{P} 02$			
注記 $*: \mathrm{A}=\pi \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{t} \mathrm{s}$			

表 4－1 一次一般膜応力強さの評価のまとめ

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\mathrm{A}} \mathrm{S}$		許容応力状態 IV A S	
	応力強さ	許容応力	応力強さ	許容応力
P01	201	214	309	343
P01，	206	214	314	343
P02	206	214	314	343
P02，	201	214	309	343

VI-2-3-4-3-5 ジェットポンプの耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4．4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，ジェットポンプの応力計算について示すものである。
ジェットポンプは，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基 づき評価する。

ジェットポンプは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲
解析範囲を図1－1に示す。

1．3 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

：応力評価点
：材
料

図 1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－3－5 R 0

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { ライザ } \\ \text { SUS316TP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	43	$116 * 1$	P01＇－P02＇	69	$174^{* 1}$	P01－P02
	IV ${ }_{\text {A }} \mathrm{S}$	49	$185 * 1$	P01－P02	94	$277^{* 1}$	P01－P02
	$\mathrm{V}_{\text {A }} \mathrm{S}$	49	$183^{* 1}$	P01－P02	94	$275^{* 1}$	P01－P02
$\begin{gathered} \text { ディフューザ } \\ \text { SUS316L } \end{gathered}$	III $_{\text {A }} \mathrm{S}$	14	$92^{* 1}$	P03＇－P04＇	37	$139^{* 1}$	P03＇－P04＇
	IV A S	16	$148^{* 1}$	P03＇－P04＇	59	$223 * 1$	P03－P04＇
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	20	$145^{* 1}$	P03＇－P04＇	61	$218^{* 1}$	P03＇－P04＇
$\begin{gathered} \text { ライザブレース } \\ \text { SUS316 } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	20	$161^{* 2}$	P05－P06	59	$241^{* 2}$	P05－P06
	IV ${ }_{\text {A }} \mathrm{S}$	27	$256 * 2$	P05－P06	82	$384^{* 2}$	P05－P06
	$\mathrm{V}_{\text {A }} \mathrm{S}$	27	$254^{* 2}$	P05－P06	82	$381^{* 2}$	P05－P06
注記＊1：継手効率注記 $* 2$ ：継手効率	を乗じた値を示す。 を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に定め るとおりである。

「応力解析の方針」の参照図書（1）c．に定める解析モデルを図 3－1 に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	1.14	0.74
基準地震動 S s	2.11	1.28

3．4 計算結果

3．4．1 固有周期

固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）c．に示す とおり 0.05 秒以下であり，剛であることを確認した。

モード	固有周期（ s$)$	水平方向刺激係数		鉛直方向 刺激係数
		X 方向	Y 方向	
1 次		-	-	-

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（4）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（4）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）n．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
\square
図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	43	$116 * 1$	49	$185^{* 1}$	49	$183 * 1$
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	43	$116 * 1$	46	$185 * 1$	46	$183 * 1$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	14	$92^{* 1}$	15	$148^{* 1}$	20	$145^{* 1}$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	14	92^{*}	16	$148 * 1$	20	$145 * 1$
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	20	$161 * 2$	27	$256 * 2$	27	$254 * 2$
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	9	$161 * 2$	13	$256 * 2$	13	$254 * 2$

注記 $* 1$ ：継手効率
注記 $* 2$ ：継手効率 \qquad を乗じた値を示す。
を乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	69	$174 * 1$	94	$277 * 1$	94	$275 * 1$
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	48	$174 * 1$	68	277＊1	68	$275 * 1$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	36	$139 * 1$	58	$223 * 1$	61	$218 * 1$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	37	$139 * 1$	59	$223 * 1$	61	$218 * 1$
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	59	$241 * 2$	82	$384 * 2$	82	$381 * 2$
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	39	$241 * 2$	62	$384 * 2$	62	$381 * 2$
注記 $* 1$ ：継手効率注記 $* 2$ ：継手効率		を乗じた値を示す。 を乗じた値を示す。				

> VI-2-3-4-3-6 給水スパージャの耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4．4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，給水スパージャの応力計算について示すものである。
給水スパージャは，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基 づき評価する。

給水スパージャは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲

解析範囲を図1－1 に示す。

1．3 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－3－6 R

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一 次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { ティー } \\ \text { SUS316L } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	6	92＊	P01－P02	12	139＊	P01－P02
	IV ${ }_{\text {A }} \mathrm{S}$	9	148＊	P01－P02	17	223＊	P01－P02
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	9	145＊	P01－P02	17	218＊	P01－P02
$\begin{gathered} \text { ヘッダ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	6	92＊	P03－P04	25	139＊	P03－P04
	IV ${ }_{\text {A }} \mathrm{S}$	7	148＊	P03－P04	29	223＊	P03－P04
	$\mathrm{V}_{\text {A }} \mathrm{S}$	7	145＊	P03－P04	29	218＊	P03－P04
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）a．に定め るとおりである。

「応力解析の方針」の参照図書（1）a．に定める解析モデルを図 3－1 に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	1.70	0.82
基準地震動 S s	2.61	1.41

3．4 計算結果

3．4．1 固有周期

固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）a．に示す とおり 0.05 秒以下であり，剛であることを確認した。

モード	固有周期（s）	水平方向刺激係数		鉛直方向刺激係数
		X方向	Y方向	
1 次		－	－	－

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（5）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）1．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）1．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）1．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（5）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）1．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $\mathrm{A}^{\text {S }}$ S		許容応力状態IV $\mathrm{A}^{\text {S }}$ S		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	6	92＊	9	148＊	9	145^{*}
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	5	92＊	6	148＊	6	145^{*}
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	6	92＊	7	148＊	7	145^{*}
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	3	92＊	4	148＊	4	145＊

注記 $*: ~$ 継手効率
を乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	12	139＊	17	223 ＊	17	218＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	11	139＊	17	223 ＊	17	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	25	139＊	29	$223 *$	29	$218 *$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	24	139＊	28	223 ＊	28	218＊

注記＊：継手効率
を乗じた値を示す。

VI－2－3－4－3－7 高圧及び低圧炉心スプレイスパージャの耐震性につ いての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2． 1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4． 4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，高圧及び低圧炉心スプレイスパージャの応力計算について示すものであ る。

高圧及び低圧炉心スプレイスパージャは，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析 の方針」という。）に基づき評価する。

高圧炉心スプレイスパージャは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故防止設備 （設計基準拡張）に分類される。
低圧炉心スプレイスパージャは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。
1.2 解析範囲

解析範囲を図1－1 に示す。
1.3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－3－7 R 0

表1－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
ティー SUSF316L	III ${ }_{\text {A }} \mathrm{S}$	8	92＊	P01－P02	12	139＊	P01－P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	148＊	P01－P02	16	223＊	P01－P02
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	10	145＊	P01－P02	16	218＊	P01－P02
$\begin{gathered} \text { ヘッダ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	6	92＊	P03＇－P04＇	16	139＊	P03－P04
	IV ${ }_{\text {A }} \mathrm{S}$	7	148＊	P03＇－P04＇	23	223＊	P03－P04
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	7	145＊	P03＇－P04＇	23	218＊	P03－P04
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）b．に定め るとおりである。

「応力解析の方針」の参照図書（1）b．に定める解析モデルを図 3－1 に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	2.02	0.87
基準地震動 S s	3.29	1.50

3．4 計算結果

3．4．1 固有周期

固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）b．に示す とおり 0.05 秒以下であり，剛であることを確認した。

モード	固有周期（s）	水平方向刺激係数		鉛直方向刺激係数
		X方向	Y方向	
1 次		－	－	－

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（6）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）m．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）m．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）m．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（6）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）m．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。
\square

図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	8	92＊	10	148＊	10	145^{*}
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	7	92＊	8	148＊	8	145^{*}
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	6	92＊	7	148＊	7	145^{*}
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	6	92＊	7	148＊	7	145^{*}

注記 $*$ ：継手効率
を乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	12	139＊	16	223 ＊	16	218＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	8	139＊	11	223 ＊	11	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	16	139＊	23	223 ＊	23	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	14	139＊	21	223 ＊	21	218＊

注記 $*: ~$ 継手効率
を乗じた値を示す。

$$
\begin{array}{cl}
\text { VI-2-3-4-3-8 } & \text { 残留熱除去系配管 (原子炉圧力容器内部) の耐震性 } \\
\text { についての計算書 }
\end{array}
$$

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4．4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，残留熱除去系配管（原子炬圧力容器内部）の応力計算について示すもの である。
残留熱除去系配管（原子炉圧力容器内部）は，原子炉圧力容器内部構造物であるた め，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。
残留熱除去系配管（原子炉圧力容器内部）は，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。

1.2 解析範囲

解析範囲を図 1－1 に示す。

1.3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

O 2 （3）VI－2－3－4－3－8 R 0
図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （3）VI－2－3－4－3－8 R 0

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
スリーブ SUSF316L	III ${ }_{\text {A }} \mathrm{S}$	11	142	P01＇－P02＇	12	214	P01＇－P02＇
	IV ${ }_{\text {A }} \mathrm{S}$	11	228	P01＇－P02＇	14	343	P01＇－P02＇
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	11	223	P01＇－P02＇	14	335	P01＇－P02＇
$\begin{gathered} \text { リング } \\ \text { SUS316L } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	15	57＊	P03－P04	18	85＊	P03＇－P04＇
	IV ${ }_{\text {A }} \mathrm{S}$	15	91＊	P03－P04	21	137＊	P03＇－P04＇
	$\mathrm{V}_{\text {A }} \mathrm{S}$	15	89＊	P03－P04	21	134＊	P03＇－P04＇
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）d．に定め るとおりである。

「応力解析の方針」の参照図書（1）d．に定める解析モデルを図 3－1 に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	1.90	0.86
基準地震動 S s	3.08	1.48

3．4 計算結果

3．4．1 固有周期

固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）d．に示す とおり 0.05 秒以下であり，剛であることを確認した。

モード	固有周期 (s)		水平方向刺激係数		鉛直方向 刺激係数
	X 方向		Y 方向	-	
1 次			-	-	-

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（7）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」の表4－1（7）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）o．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	10	142	11	228	11	223
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	11	142	11	228	11	223
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	15	57＊	15	91＊	15	89＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	13	57＊	15	91＊	15	89＊

注記 $*: ~$ 継手効率
を乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	10	214	10	343	10	335
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	12	214	14	343	14	335
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	14	85＊	14	137＊	14	$134 *$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	18	85＊	21	137＊	21	$134 *$

注記＊：継手効率
を乗じた値を示す。

VI－2－3－4－3－9 高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 8
2.1 設計条件 8
2.2 運転条件 8
2． 3 材料 8
2.4 荷重の組合せ及び許容応力状態 8
2.5 荷重の組合せ及び応力評価 8
2.6 許容応力 8
3．外荷重の条件 9
3.1 計算方法 9
3.2 解析モデル 9
3.3 設計震度 9
3.4 計算結果 10
3．4．1 固有周期 10
3．4．2 地震荷重 10
4．応力計算 11
4.1 応力評価点 11
4．2 差圧による応力 11
4．2．1 荷重条件 11
4．2．2 計算方法 11
4.3 外荷重による応力 11
4．3．1 荷重条件 11
4．3．2 計算方法 11
4．4 応力の評価 11
5．応力強さの評価 12
5． 1 一次一般膜応力強さの評価 12
5.2 一次一般膜＋一次曲げ応力強さの評価 12
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 13
表 1－1 計算結果の概要 6
表 5－1 一次一般膜応力強さの評価のまとめ 14
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 15

1．一般事項
本計算書は，高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）の応力計算につ いて示すものである。

高圧及び低圧炉心スプレイ系配管（原子炉圧力容器内部）は，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

高圧炉心スプレイ系配管（原子炉圧力容器内部）は，設計基準対象施設においては S ク ラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故防止設備（設計基準拡張）に分類される。

低圧炉心スプレイ系配管（原子炉圧力容器内部）は，設計基準対象施設においてはSク ラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲
解析範囲を図1－1 に示す。
1.3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1（1）形状•寸法•材料•応力評価点（高圧炉心スプレイ系配管）（単位：mm）

図1－1（2）形状•寸法•材料•応力評価点（高圧炉心スプレイ系配管）（単位：mm）

図1－1（3）形状•寸法•材料•応力評価点（低圧炉心スプレイ系配管）（単位：mm）

図1－1（4）形状•寸法•材料•応力評価点（低圧炬心スプレイ系配管）（単位：mm）

O 2 （3）VI－2－3－4－3－9 R 0

表1－1（1）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
ヘッダ SUSF316L	III ${ }_{\text {A }} \mathrm{S}$	9	92＊	P01－P02	12	139＊	P01－P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	148＊	P01－P02	16	223＊	P01－P02
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	10	145＊	P01－P02	16	218＊	P01－P02
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	12	142	P03－P04	43	214	P03－P04
	IV A S	19	228	P03－P04	68	343	P03－P04
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	19	223	P03－P04	68	335	P03－P04
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	11	92＊	P05－P06	20	139＊	P05－P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	15	148＊	P05－P06	29	223＊	P05－P06
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	15	145＊	P05－P06	29	218＊	P05－P06
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	11	92＊	P07－P08	20	139＊	P07－P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	15	148＊	P07－P08	29	223＊	P07－P08
	$\mathrm{V}_{\text {A }} \mathrm{S}$	15	145＊	P07－P08	29	218＊	P07－P08

注記＊：継手効率 を乗じた値を示す。

O 2 （3）VI－2－3－4－3－9 R 0

> 表1-1 (2) 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
ヘッダ SUSF316L	III ${ }_{\text {A }} \mathrm{S}$	9	92＊	P09－P10	12	139＊	P09－P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	148＊	P09－P10	17	223＊	P09－P10
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	10	145＊	P09－P10	17	218＊	P09－P10
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	13	142	P11－P12	44	214	P11－P12
	IV A S	20	228	P11－P12	69	343	P11－P12
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	20	223	P11－P12	69	335	P11－P12
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	12	92＊	P13－P14	21	139＊	P13－P14
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	148＊	P13－P14	31	223＊	P13－P14
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	17	145＊	P13－P14	31	218＊	P13－P14
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	12	92＊	P15－P16	21	139＊	P15－P16
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	148＊	P15－P16	31	223＊	P15－P16
	$\mathrm{V}_{\text {A }} \mathrm{S}$	17	145＊	P15－P16	31	218＊	P15－P16

注記 $*: ~$ 継手効率 \square を乗じた値を示す。

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に定め るとおりである。

「応力解析の方針」の参照図書（1）e．に定める解析モデルを図 3－1 に示す。

3.3 設計震度

設計震度を下表に示す。

	設計震度			
	高圧炉心スプレイ系配管		低圧炉心スプレイ系配管	
	水平方向	鉛直方向	水平方向	鉛直方向
弾性設計用地震動 S d又は静的震度	2． 02	0． 87	2． 02	0． 87
基準地震動 S S	3． 29	1． 50	3.29	1． 50

3.4 計算結果

3．4．1 固有周期
固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）e．に示す とおり 0.05 秒以下であり，剛であることを確認した。

高圧炉心スプレイ系配管

モード	固有周期 (s)	水平方向刺激係数		鉛直方向 刺激係数
		X 方向	Y 方向	
1 次	\square	-	-	-

低圧炉心スプレイ系配管

モード	固有周期 (s)	水平方向刺激係数		鉛直方向 刺激係数
		X 方向	Y 方向	
1 次	-	-	-	-

3．4．2 地震荷重

解析により求めた高圧炉心スプレイ系配管の地震荷重を「応力解析の方針」の表 4－1（8）に，低圧炉心スプレイ系配管の地震荷重を「応力解析の方針」の表4－ 1（9）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14及び L16）
高圧炉心スプレイ系配管の外荷重を「応力解析の方針」の表4－1（8）に，低圧炉心スプレイ系配管の外荷重を「応力解析の方針」の表4－1（9）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）p．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	9	92＊	10	148＊	10	145^{*}
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	8	92＊	8	148＊	8	145^{*}
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	12	142	19	228	19	223
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	11	142	14	228	14	223
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	11	92＊	15	148＊	15	145^{*}
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	9	92＊	12	148＊	12	145＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	11	92＊	15	148＊	15	145^{*}
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	9	92＊	12	148＊	12	145^{*}
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	9	92＊	10	148＊	10	145^{*}
$\begin{aligned} & \text { P09' } \\ & \text { P10 } \end{aligned}$	8	92＊	8	148＊	8	145＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	13	142	20	228	20	223
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	11	142	15	228	15	223
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	12	92＊	17	148＊	17	145＊
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	10	92＊	12	148＊	12	145^{*}
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	12	92＊	17	148＊	17	145^{*}
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	10	92＊	12	148＊	12	145^{*}

注記＊：継手効率 \longrightarrow を乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$		許容応力状態 $V_{A} \mathrm{~S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	12	139＊	16	223 ＊	16	218＊
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	11	139＊	14	223 ＊	14	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	43	214	68	343	68	335
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	42	214	65	343	65	335
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	20	139＊	29	223＊	29	218＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	18	139＊	26	223＊	26	218＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	20	139＊	29	223＊	29	218＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	18	139＊	26	223 ＊	26	218＊
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	12	139＊	17	223＊	17	218＊
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	11	139＊	15	223＊	15	218＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	44	214	69	343	69	335
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	42	214	66	343	66	335
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	21	139＊	31	223＊	31	218＊
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	19	139＊	28	223＊	28	218＊
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	21	139＊	31	223 ＊	31	218＊
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	19	139＊	28	223 ＊	28	218＊

注記 $~: ~$ 継手効率 \square を乗じた値を示す。

VI－2－3－4－3－10 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2． 1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 設計震度 5
3.4 計算結果 5
3．4．1 固有周期 5
3．4．2 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4． 4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7
図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
表 1－1 計算結果の概要 3
表 5－1 一次一般膜応力強さの評価のまとめ 9
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 10

1．一般事項
本計算書は，差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）の応力計算につ いて示すものである。

差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）は，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

差圧検出・ほう酸水注入系配管（原子炉圧力容器内部）は，設計基準対象施設におい てはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及 び常設重大事故緩和設備に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲

解析範囲を図1－1に示す。

1．3 計算結果の概要

計算結果の概要を表1－1に示す。 なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	4	92＊	P01－P02	11	139＊	P01－P02
	IV A S	5	148＊	P01－P02	15	223＊	P01－P02
	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	5	145＊	P01－P02	15	218＊	P01－P02
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	3	92＊	P03－P04	4	139＊	P03＇－P04＇
	IV ${ }_{\text {A }} \mathrm{S}$	3	148＊	P03－P04	5	223＊	P03＇－P04＇
	$\mathrm{V}_{\text {A }} \mathrm{S}$	3	145＊	P03－P04	5	218＊	P03＇－P04＇
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{\text {A }} \mathrm{S}$	7	92＊	P05－P06	34	139＊	P05－P06
	IV ${ }_{\text {A }} \mathrm{S}$	10	148＊	P05－P06	55	223＊	P05－P06
	$\mathrm{V}_{\text {A }} \mathrm{S}$	10	145＊	P05－P06	55	218＊	P05－P06
注記 $*$ ：継手効	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」の 4.2 節に示す。
また，重大事故等時の条件を「応力解析の方針」の 4.3 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期及び地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に定め るとおりである。

「応力解析の方針」の参照図書（1）f．に定める解析モデルを図 3－1 に示す。

3．3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d 又は静的震度	1.04	0.78
基準地震動 S s	1.96	1.33

3．4 計算結果
3．4．1 固有周期
固有周期を下表に示す。
固有周期は，既工認から変更はなく「応力解析の方針」の参照図書（1）f．に示す とおり 0.05 秒以下であり，剛であることを確認した。

モード	固有周期（ s ）	水平方向刺激係数		鉛直方向刺激係数
		X方向	Y方向	
1 次		－	－	－

3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」の表4－1（10）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

なお，重大事故等時の差圧は，「2．2 運転条件」による。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（10）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）q．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

表5－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$ S		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	4	92＊	5	148＊	5	145＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	1	92＊	1	148＊	1	145＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	3	92＊	3	148＊	3	145＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	2	92＊	2	148＊	2	145＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	7	92＊	10	148＊	10	145＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	6	92＊	9	148＊	9	145＊

注記 $*: ~$ 継手効率
老乗じた値を示す。

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $\mathrm{A}^{\text {S }}$ S		許容応力状態IV $\mathrm{A}^{\text {S }}$		許容応力状態 $V_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	11	139＊	15	$223 *$	15	218＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	10	139＊	14	$223 *$	14	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	2	139＊	3	$223 *$	3	218＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	4	139＊	5	$223 *$	5	218＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	34	139＊	55	$223 *$	55	218＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	139＊	53	$223 *$	53	218＊
注記＊：継手効率						

VI－2－3－4－3－11 中性子束計測案内管の耐震性についての計算書

目次

1．一般事項 1
1.1 形状•寸法•材料 1
1．2 解析範囲 1
1.3 計算結果の概要 1
2．計算条件 4
2.1 設計条件 4
2.2 運転条件 4
2．3 材料 4
2.4 荷重の組合せ及び許容応力状態 4
2.5 荷重の組合せ及び応力評価 4
2.6 許容応力 4
3．外荷重の条件 5
3.1 計算方法 5
3.2 解析モデル 5
3.3 計算結果 5
3．3．1 固有周期 5
3．3．2 設計震度 5
3．3．3 地震荷重 5
4．応力計算 6
4． 1 応力評価点 6
4．2 差圧による応力 6
4．2．1 荷重条件 6
4．2．2 計算方法 6
4．3 外荷重による応力 6
4．3．1 荷重条件 6
4．3．2 計算方法 6
4．4 応力の評価 6
5．応力強さの評価 7
5． 1 一次一般膜応力強さの評価 7
5.2 一次一般膜＋一次曲げ応力強さの評価 7

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 解析モデル 8
図 3－2 解析モデル（中性子束計測案内管スタビライザ） 9
図 3－3 中性子束計測案内管と中性子束計測案内のグループ分割 10
図 3－4 振動モード図 11
表 1－1 計算結果の概要 3
表 3－1 解析モデルのデータ諸元 15
表 3－2 並進ばね定数 16
表 3－3 回転ばね定数 16
表 3－4 固有周期 17
表 3－5 設計震度 18
表 5－1 一次一般膜応力強さの評価のまとめ 19
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 20

1．一般事項
本計算書は，中性子束計測案内管の応力計算について示すものである。
中性子束計測案内管は，原子炉圧力容器内部構造物であるため，添付書類「VI－2－3－ 4－3－1 原子炉圧力容器内部構造物の応力解析の方針」（以下「応力解析の方針」とい う。）に基づき評価する。
中性子束計測案内管は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

1．1 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．2 解析範囲
解析範囲を図1－1に示す。

1.3 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図 1－1 形状•寸法•材料•応力評価点（単位：mm）

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
中性子束計測 広 5 会	III ${ }_{\text {A }} \mathrm{S}$	2	92＊	P01－P02	67	139＊	P01－P02
SUS316LTP	IV $\mathrm{A}_{\text {S }}$	3	148＊	P01－P02	102	$223 *$	P01－P02
注記 $*$ ：継手効率	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の 3.3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の 4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」の 3.4 節に示す。
溶接部の継手効率を「応力解析の方針」の 3.6 節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
解析コードは，「M S C N A S T R A N 」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

3.2 解析モデル

解析モデルを図 3－1，図 3－2 及び図 3－3に示す。
また，解析モデルのデータ諸元を表 3－1 に，中性子束計測案内管スタビライザのバ ネ定数を表3－2及び表3－3に示す。

本解析モデルは，図 3－1，図 3－2 及び図 $3-3$ に示すように \square

支持条件は，

3． 3 計算結果

3．3．1 固有周期
固有周期を表 3－4に，振動モード図を図3－4に示す。固有周期は，0．05秒を超 えており，柔構造であることを確認した。また，鉛直方向は5次モード以降に卓越し，固有周期は 0.05 秒以下であるとを確認した。

3．3．2 設計震度
設計震度を表3－5に示す。

3．3．3 地震荷重
解析により求めた地震荷重を「応力解析の方針」の表4－1（11）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

4．2 差圧による応力

4．2．1 荷重条件（LO2）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

4．2．2 計算方法
差圧による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

なお，各許容応力状態での差圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」の表4－1（11）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」の参照図書（1）r．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

4． 4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」の5．2．2 項に定めるとおりである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」の 3.4節及び 3.6 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価

各許容応力状態における評価を表5－2に示す。
表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」の 3.4 節及び 3.6 節に示す許容応力を満足する。

図 3－1 解析モデル

図 3－2 解析モデル（中性子束計測案内管スタビライザ）

図 3－3 中性子束計測案内管と中性子束計測案内のグループ分割

図 3－4（2）振動モード図（NS 方向， 2 次）
\square
図 3－4（4）振動モード図（NS 方向，4 次）

図 3－4（6）振動モード図（EW 方向，2次）

表 3－2 並進ばね定数
（単位： N / mm ）

表 3－3 回転ばね定数
（単位： N / mm ）

モード	卓越方向	固有周期 (s)	刺激係数
1 次			
2 次			
3 次			
4 次			

表 3－4（2）固有周期（EW 方向）

モード	卓越方向	固有周期 (s)	刺激係数
1 次			
2 次			
3 次			
4 次			

表 3－5 設計震度

＊ 1 ： 1 次固有周期について記載
＊ 2 ：ボルト締結構造物に適用される減衰定数
＊ 3 ：各モードの固有周期に対し弾性設計用地震動 Sd d り得られる震度
＊ 4 ：各モードの固有周期に対し基準地震動 S s より得られる震度
＊ 5 ：S s 又は S d に基づく設計用最大応答加速度より定めた震度を示す。
＊ 6 ：静的震度（1．2•Cv）を示す。

表 5－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	2	92＊	3	148＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	2	92＊	3	148＊
注記 $*$ ：継手効率				

表 5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{\text {A }} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	67	139＊	102	223 ＊
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	66	139＊	101	223 ＊
注記＊：継手効率 而を乗じた値を示す				

[^3]VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算書

VI－2－4－1 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算結果
VI－2－4－2 使用済燃料貯蔵設備の耐震性についての計算書
VI－2－4－3 使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書
VI－2－4－4 核燃料物質の取扱施設及び貯蔵施設の基本設計方針の耐震性についての説明書

VI－2－4－1 核燃料物質の取扱施設及び貯蔵施設の耐震性 についての計算結果
1．概要 1
2．耐震評価条件整理 1

1．概要

本資料は，核燃料物質の取扱施設及び貯蔵施設の耐震計算の手法及び条件の整理について説明するもの である。

2．耐震評価条件整理
核燃料物質の取扱施設及び貯蔵施設に対して，設計基準対象施設の耐震重要度分類，重大事故等対処設備の設備分類を整理した。既設の設計基潐対象施設については，耐震評価における手法及び条件について，既に認可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のうち，設計基準対象施設 であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異の有無を整理した。結果を表2－1 に示す。
核燃料物質の取扱施設及び貯蔵施設の耐震計算は表 2－1 に示す計算書に記載する。

	評価対象設備		設計基準対象施設			重大事故等対処設備		
			而震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊${ }^{* 1}$	設計基準対象施設との評価条件 の差異	耐震計算の記載箇所
	使斎然秺䁾設備	使用済燃料プー ル（設計基準対象施設としての み第1，2号機共用）	S	無	VI－2－4－2－1	常設而震／防止常設／緩和	有	VI－2－4－2－1
		使用済燃料貯蔵 ラック（設計基準対象施設とし てのみ第1，2号機共用）	S	有	VI－2－4－2－2	常設而震／防止常設／緩和	有	VI－2－4－2－2
		制御棒•破損燃料貯蔵ラック	S	無	VI－2－4－2－3	常設耐震／防止常設／緩和	有	VI－2－4－2－3
		使用済燃料プー ル水位／温度 （ガイドパルス式）	C	－＊2	VI－2－4－2－4	常設／防止常設／緩和	無	VI－2－4－2－4
		使用済然料プー ル水位／温度 （ヒートサーモ式）	－	－＊2	－	常設／防止常設／緩和	－	VI－2－4－2－5

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件 の差異	耐震計算の記載箇所
		燃料プール冷却浄化系熱交換器 （設計基準対象施設としてのみ第 1,2 号機共用）	B	－＊2	－	常設耐震／防止	－	VI－2－4－3－1－1
		燃料プール冷却浄化系ポンプ （設計基準対象施設としてのみ第 1,2 号機共用）	B	－＊2	－	常設而震／防止	－	VI－2－4－3－1－2
		主配管	S	有	VI－2－4－3－1－3	常設而震／防止 常設／緩和	無	$\begin{aligned} & \text { VI-2-4-3-1-3 } \\ & \text { VI-2-4-3-2-1 } \\ & \text { VI-2-4-3-3-1 } \end{aligned}$
	－	使用済燃料プー儿監視カメラ	－	－＊2	－	常設／防止常設／緩和	－	VI－2－4－4－1

注記＊1 ：「常設而震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止」は常設而震重要重大事故防止設備以外の常設重大事故防止設備を示す。
注記 $* 2$ ：本工事計画で新規に申請する設備であることから，差異比較の対象外。

VI－2－4－2 使用済燃料貯蔵設備の耐震性についての計算書

VI－2－4－2－2 使用済燃料貯蔵ラック（第1，2号機共用）の耐震性についての計算書 VI－2－4－2－3 制御棒•破損燃料貯蔵ラックの耐震性についての計算書

VI－2－4－2－4 使用済燃料プール水位／温度（ガイドパルス式）の耐震性についての計算書 VI－2－4－2－5 使用済燃料プール水位／温度（ヒートサーモ式）の耐震性についての計算書

VI－2－4－2－2 使用済燃料貯蔵ラック（第 1，2号機共用）の耐震性 についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4． 1 地震応答解析及び構造強度評価方法 7
4.2 荷重の組合せ及び許容応力 11
4．2．1 荷重の組合せ及び許容応力状態 11
4．2．2 許容応力 11
4．2．3 使用材料の許容応力評価条件 11
4.3 解析モデル及び諸元 16
4． 4 固有周期 20
4.5 設計用地震力 23
4.6 計算方法 25
4．6．1 部材の応力 25
4．6．2 基礎ボルトの応力 27
4．7 計算条件 29
4.8 応力の評価 29
4．8．1 部材の応力評価 29
4．8．2 基礎ボルトの応力評価 29
5．評価結果 30
5.1 設計基準対象施設としての評価結果 30
5.2 重大事故等対処設備としての評価結果 30

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，使用済燃料貯蔵ラック（以下「ラック」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

ラックは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画 ラックの構造計画を表 2－1 に示す。

表 2－1 構造計画

2.2 評価方針

ラックの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1 構造強度上 の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」に て示すラックの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3 解析モデ ル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。確認結果を「5．評価結果」に示す。

ラックの耐震評価フローを図2－1 に示す。

図2－1 ラックの耐震評価フロー

2.3 適用基準

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 • 補一 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 2005年版（2007年追補版含む。）J S M E S N C 1－2005／2007（（社）日本機械学会）（以下「設計•建設規格」とい う。）
2.4 記号の説明

記号	記号の説明	単位
σ_{ft}	はり部材に生じる引張応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
τ_{f}	はり部材に生じるせん断応力	MPa
τ_{xy}	シェル部材に生じるせん断応力	MPa

注1： $\mathrm{F}_{\mathrm{i}}, \mathrm{f}_{\mathrm{ji}}, \ell_{\mathrm{g}}, \ell_{\mathrm{ji}}, \mathrm{M}_{\mathrm{i}}$ 及び n_{ji} の添字 i の意味は，以下のとおりとする。
$\mathrm{i}=\mathrm{N}: \mathrm{NS}$（短辺）方向
$\mathrm{i}=\mathrm{E}: \mathrm{EW}$（長辺）方向
注 $2: ~ f_{j i}, ~ \ell_{j i}$ 及び $n_{j i}$ の添字 j はボルトの列番号を示すものとする。

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
設計震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用温度	${ }^{\circ} \mathrm{C}$	小数点以下第 1 位	四捨五入	整数位
質量	kg	-	—	整数位
長さ	mm	—	整数位 $* 1$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設計降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ラックの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる角管，補強板，燃料支持板，ベース及び基礎ボルトについて実施する。 ラックの耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法

（1）地震応答解析には，はり要素及びシェル要素を用いた有限要素法モデルによるスペク トルモーダル解析を用いる。
（2）ラックは，原子炉建屋の使用済燃料プールの底部（OP．21．38m）に基礎ボルトにより固定されるものとする。
（3）ラックの質量には，使用済燃料の質量及びラック自身の質量のほか，ラックに含まれ る水の質量及びラック外形の排除水質量＊を考慮する。
（4）地震力は，ラックに対して水平方向から作用するものとする。 ここで，水平方向地震力は，ラックの長辺方向に作用する場合及び短辺方向に作用す る場合を考慮する。
また，鉛直方向地震力は，水平方向地震力と同時に不利な方向に作用するものとす る。
（5）構造概念図（110 体ラックの例）を図 4－1 に，各ラックの構造概要図を図 4－2 及び図 4－3に示す。

注記＊：排除水質量とは，水中の機器の形状により排除される機器周囲の流体の質量であ る。

図 4－1 構造概念図（110体ラック）

注記＊：矢印の位躡は初強板：f の蝠方向の中心を示す。

図 4－2 構造概要図（110体ラック）

図 4－3 構造概要図（170 体ラック）

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
ラックの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
ラックの許容応力は，添付資料「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとお りとする。

4．2．3 使用材料の許容応力評価条件
ラックの許容応力評価条件のらち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 | | 機器名称 | 耐震設計上の
 重要度分類 | 機器等の区分 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |\quad| 荷重の組合せ |
| :---: |

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊2：S s との組み合わせ， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。
ì

| 施設区分 | | 機器名称 | 設備分類＊1 | 機器等の区分 | 荷重の組合せ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

＊2：重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1, ~ * 2 ~}$ （ボルト等以外）		許容限界＊1，＊2 （ボルト等）	
	一次応力		一次応力	
	引張り	せん断	引張り	せん断
III $_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot{ }_{\text {f }}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S} \text { の許容限界を用いる。) }\right) ~ \end{gathered}$				

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

	評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y} \quad(R T) \\ (\mathrm{MPa}) \end{gathered}$
	角管		最高使用温度	100	－	$171 * 2$	$441 * 2$	$205^{* 2}$
	補強板	SUS304	最高使用温度	100	－	171	441	205
	燃料支持板	SUS304	最高使用温度	100	－	171	441	205
	ベース	SUS304	最高使用温度	100	－	171	441	205
	基礎ボルト		最高使用温度	100	－			

注記 $* 1$ ：最高使用温度 $\left(100{ }^{\circ} \mathrm{C}\right)$ で算出
＊2 $\begin{aligned} & \text { する。 } \\ & \text { す } \\ & \mathrm{y}\end{aligned}, \mathrm{S}_{\mathrm{u}}$ の値は，SUS304の規格値を上回っているが，安全側の評価とするため，SUS304の値を使用

4.3 解析モデル及び諸元

ラックの解析モデルを図 4－4 及び図 4－5 に，解析モデルの概要を以下に示す。また，機器の諸元を表 4－6に示す。

ラックは，110体，170体ラック各々について，はり要素及びシェル要素を用いた有限要素 モデルとする。

角管はそれぞれ等価な断面特性を持つ 1 本のはり要素，補強板 $\mathrm{a} \sim \mathrm{e}$ についてもそれぞれ同様にはり要素とし，補強板 $\mathrm{f} \sim \mathrm{h}$ ，燃料支持板及びベースはシェル要素とする。

ベースは基礎ボルトをモデル化したバネ要素を介して床に固定されているものとする。
また，ラックの質量には，使用済燃料の質量，ラック自身の質量，ラックに含まれる水の質量及び排除水質量を考慮し，使用済燃料，ラックに含まれる水の質量及び排除水質量は，角管全長にわたって等分布に与える。

本ラックに使用する \qquad であり
 の縦弾性係数は

」にこ従って漸増する傾向にあるため，縦弾性係数は」の実験値を用いるものとする。
また，計算に用いる設計条件，固有周期の算出及び部材と基礎ボルトの応力評価に用いる要目を「4．地震応答解析及び構造強度評価」及び「5．評価結果」に示す。
解析コードは，「NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要に ついては，「VI－5 計算機プログラム（解析コード）の概要」に示す。
\square
図 4－5 解析モデル（170体ラック）

表 4－6 機器諸元

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：\square における実験値

4． 4 固有周期

固有値解析の結果を表 4－7 に，振動モード図を図 4－6～図4－9に示す。鉛直方向は，5次モ ード以降で卓越し，固有周期は，0．05秒以下であり，剛であることを確認した。

表 4－7 固有値解析結果

ラック	モード	固有周期 （s）	卓越方向	刺激係数		
				X	Y	Z
$\begin{aligned} & 110 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	5 次					
$\begin{aligned} & 170 \text { 体 } \\ & \text { ラック } \end{aligned}$	1 次					
	2 次					
	3 次					
	6 次					

図 4－6 振動モード（110体ラック）1次モード \square

図 4－7 振動モード（110 体ラック）2 次モード \square

4.5 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表 4－8 及び表 4－9 に示す。

表 4－8 設計用地震力（設計基準対象施設）
a． 110 体ラック

据付け場所及び	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）	$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { OP. } 22.50 * 1 \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－＊3	－＊3	$C_{H}=2.12$ 又は $* 4$	$\mathrm{C}_{\mathrm{V}}=1.56$	$10.0 * 5$	－

注記＊1：基準床レベルを示す。
＊2：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊ $3: ~ \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊4：基準地震動 S s に基づく設備評価用床応答曲線により得られる値。
＊ 5 ：試験等により，妥当性が確認されている値。
b． 170 体ラック

据付け場所及び	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { OP. } 22.50 * 1 \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－＊3	－＊3	$C_{H}=2.12$ 又は $* 4$	$\mathrm{C}_{\mathrm{V}}=1.56$	10．0＊5	－

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊3： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊4：基準地震動 S s に基づく設備評価用床応答曲線により得られる値。
＊5：試験等により，妥当性が確認されている値。

表 4－9 設計用地震力（重大事故等対処設備）
a． 110 体ラック

据付け場所及び	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { OP. } 22.50^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{V}}=1.56$	10．0＊4	－

注記 $~ 1 ~ 1 ~: ~$ 基準床レベルを示す。
＊2：固有値解析により， 0.05 秒以下であり，剛であることを確認した。 ＊3：基準地震動 S s に基づく設備評価用床応答曲線により得られる値。
＊4：試験等により，妥当性が確認されている値。
b． 170 体ラック

据付け場所及び	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { OP. } 22.50^{* 1} \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{V}}=1.56$	10． $0^{* 4}$	－

注記 $~ 1 ~ 1 ~: ~$ 基準床レベルを示す。
＊2：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊3：基準地震動 S s に基づく設備評価用床応答曲線により得られる値。
＊4：試験等により，妥当性が確認されている値。

4.6 計算方法

4．6．1 部材の応力
部材についての応力計算は，図 4－4 及び図 4－5 の解析モデルにて，角管，補強板，燃料支持板及びベースから成る系全体での応力計算を解析コード「NASTRAN」を使用し て行い，本項に示す計算方法に従って引張応力，せん断応力及び組合せ応力を計算する。
（1）はり部材の応力
解析コード内では，各部材の局所座標系，引張力 F_{x} ，せん断力 $\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$ ，及び曲 げモーメント $M_{y}, ~ M_{z}$ の働く向きを図 4－10に示すように設定している。

図 4－10 はり部材の応力計算モデル

引張力 F_{x} 及び曲げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ によりはり部材に生じる引張応力 $\sigma_{\mathrm{f}} \mathrm{t}$ は，（4．1）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ft}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{y}}}+\frac{\mathrm{M}_{\mathrm{z}}}{\mathrm{Z}_{\mathrm{z}}} \tag{4.1}
\end{equation*}
$$

せん断力 $\mathrm{F}_{\mathrm{y}}, ~ \mathrm{~F}_{\mathrm{z}}$ によりはり部材に生じるせん断応力 τ_{f} は，（4．2）式により求 める。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{y}}}{\mathrm{~A}_{\mathrm{y}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{x}}}\right)^{2}} \tag{4.2}
\end{equation*}
$$

組合せ応力 σ_{fa} は，（4．3）式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{ft}}^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \tag{4.3}
\end{equation*}
$$

（2）シェル部材の応力
解析コード内では，各部材の局所座標系，せん断応力 τ_{xy} 及び引張応力 $\sigma_{\mathrm{x}}, ~ \sigma_{\mathrm{y}}$ の作用する向きを，図4－11に示すように設定している。

図 4－11 シェル部材の応力計算モデル

シェル部材の組合せ応力 σ_{fa} は，上記で計算したせん断応力 $\tau_{\mathrm{x} \mathrm{y}}$ 及び引張応力 σ_{x} ，$\sigma_{\mathrm{y}}^{\mathrm{y} \text { を用いて，（4．4）式より求める。 }}$
$\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{x}}{ }^{2}+\sigma_{\mathrm{y}}{ }^{2}-\sigma_{\mathrm{x}} \cdot \sigma_{\mathrm{y}}+3 \cdot \tau_{\mathrm{xy}}{ }^{2}}$

4．6．2 基礎ボルトの応力
ラックの系全体での荷重計算を解析コード「NASTRAN」を使用して行い，求めら れた地震時のラックに作用する転倒モーメント M_{i} 及びベース底部に作用するせん断力 F_{i} が，図 4－12 のように負荷されるものとして基礎ボルトの応力を求める。

基礎ボルトの荷重状態を図4－12に示す。なお，本計算例ではボルトの列数は， 110 体ラ ックの N S 方向として $\ell_{1 \mathrm{i}} \sim \ell_{10 \mathrm{i}}$ の 10 箇所までとしたが，最大で 17 列のボルト列数に対応 する。

図 4－12 基礎ボルトの荷重状態（110 体ラックのN S 方向）
（1）引張応力
図 4－12 において支点まわりのモーメントの平衡により基礎ボルト 1 本当たりの引張力 $\mathrm{f}_{1 \mathrm{i}} \sim \mathrm{f}_{\mathrm{j} \text { i }}$ を求める。 $\mathrm{f}_{1 \mathrm{i}}>\mathrm{f}_{2 \mathrm{i}}>\cdots \cdots>\mathrm{f}_{\mathrm{j}}>\mathrm{i}$ の関係にあるので $\mathrm{f}_{1 \mathrm{i}}$ のみを （4．5）式より求める。

$$
\begin{equation*}
\mathrm{f}_{1 \mathrm{i}}=\frac{\ell_{1 \mathrm{i}} \cdot\left\{\sqrt{\mathrm{M}_{\mathrm{i}}{ }^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right)^{2}}-\mathrm{m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gi}}\right\}}{\mathrm{n}_{1 \mathrm{i}} \cdot{\ell_{1 \mathrm{i}}}^{2}+\mathrm{n}_{2 \mathrm{i}} \cdot{\ell_{2 \mathrm{i}}}^{2}+\cdots \cdots+\mathrm{n}_{\mathrm{ji}} \cdot \ell_{\mathrm{j} \mathrm{i}}{ }^{2}} \tag{4.5}
\end{equation*}
$$

したがって，引張力 $\mathrm{f}_{1 \mathrm{i}}$ により基礎ボルトに生じる引張応力 σ_{b} は，（4．6）式に より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{f}_{1 \mathrm{i}}}{\mathrm{~A}_{\mathrm{b}}} \tag{4.6}
\end{equation*}
$$

ただし， $\mathrm{f}_{1 \mathrm{i}}$ の値が負となった場合は，引張力が生じないので以降の引張応力の計算は省略する。
（2）せん断応力
せん断力 F_{i} により基礎ボルトに生じるせん断応力 τ_{b} は，（4．7）式により求め る。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{4.7}
\end{equation*}
$$

4.7 計算条件

応力解析に用いる自重及び荷重は，本計算書の【使用済燃料貯蔵ラックの耐震性についての計算結果】の設計条件及び機器要目に示す。

4． 8 応力の評価

4．8．1 部材の応力評価

4．6．1項で求めた各部材の引張応力 $\sigma_{\mathrm{f} \mathrm{t}}, ~ \sigma \mathrm{x}, ~ \sigma \mathrm{y}$ 及び組合せ応力 σ_{fa} が，許容引張応力 f_{t} 以下であること。

また，4．6．1項で求めた各部材のせん断応力 $\tau_{\mathrm{f}}, ~ \tau_{\mathrm{xy}}$ が，許容せん断応力 f_{s} 以下であ ること。
ただし，f_{t} 及び f_{s} は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5^{* 1}$
許容せん断応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5^{* 1}$

注記 $* 1$ ：
引張強さと降伏点（0．2 \％耐力）の値は，SUS304 の規格値を上回っているので，安全側の評価とするため，F及びF ${ }^{*}$ 値は SUS304 の値を使用する。

4．8．2 基礎ボルトの応力評価

4．6．2項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式より求めた許容引張応力 f_{t} 以下 であること。

また，4．6．2 項で求めた基礎ボルトのせん断応力 $\tau \mathrm{b}$ が，せん断力のみを受ける基礎ボル トの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であること。

$$
\begin{equation*}
f_{\mathrm{ts}}=1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{4.8}
\end{equation*}
$$

$$
\begin{align*}
& \text { かつ } \\
& f_{\mathrm{t} \mathrm{~s}} \leqq f_{\mathrm{to}} \tag{4.9}
\end{align*}
$$

ただし，f_{t} 。及び f_{s} は は下表による。

	弹性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 $f_{\mathrm{t} \text { o }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．評価結果
5.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足 しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は，基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足したため，弾性設計用地震動S d 及び静的震度による発生値の算出を省略した。
5.2 重大事故等対処設備としての評価結果

ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【使用済燃料貯蔵ラックの耐震性についての計算結果】。設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び床面高さ （m）	ラック	固有周期(s)		弾性設計用地震動 S d又は静的震度		基準地震動S s			最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向			
使用斎燃料貯蔵ラック	S	原子炉建屋OP． $22.50^{* 1}$	110 体ラック		0.05 以下＊${ }^{\text {2 }}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は ${ }^{\text {2 } 4}$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	66	－
			170 体ラック		0.05 以下＊${ }^{\text {2 }}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 4$	$\mathrm{C}_{\mathrm{V}}=1.56$	－	66	－

＊2：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊3： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
＊ 4 ：基準地震動 S s に基づく設計用床応答曲線から得られる値
$\stackrel{\omega}{\sim}$

	ラック		$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{F}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{R}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{W}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{V}} \\ & (-) \end{aligned}$	$\begin{aligned} & \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{8 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{EE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \hline \ell_{11 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{12 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$
	110 体ラック						1590	1． 56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429.5	265.5	101.5	－
	170 体ラック						1590	1． 56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249． 5	1085.5	921.5
	$\begin{gathered} \ell_{13 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{14 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{(\mathrm{mm})} \end{gathered}$	$\ell_{16 \mathrm{E}}$	$\begin{gathered} \ell_{(\mathrm{mm})} \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{~N}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
	－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
	757.5	593.5	429.5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\begin{gathered} \mathrm{n}_{4 \mathrm{E}}(-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}} \\ (-(\end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{7 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{8 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{9 \mathrm{EE}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}} \\ (\end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} n_{13 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} n_{15 E} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{17 \mathrm{E}}(-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{2 \mathrm{~N}} \\ & (-1 \end{aligned}$	$\begin{aligned} & \mathrm{n}_{3 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{4 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{6 \mathrm{~N}} \\ & (-) \end{aligned}$
2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出

ラック	地震の種類	$\begin{aligned} & \mathrm{F}_{\mathrm{N}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{F}_{\mathrm{E}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{N}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
110 体ラック	弾性設計用地震動 Sd又は静的震度	－	－	－	－
	基準地震動S s	1． 614×10^{6}	1． 435×10^{6}	5． 138×10^{9}	4． 098×10^{9}
170 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	2． 518×10^{6}	2． 071×10^{6}	7． 836×10^{9}	6． 659×10^{9}

1.3 計算数値

1．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\mathrm{fft}^{\text {f }}$	－	－	101	79
		せん断 $\tau_{\text {f }}$	－	－	40	21
		組合せ $\sigma_{\text {fa }}$	－	－	122	87
170体ラック		引張り $\sigma_{\text {f }}$	－	－	134	57
		せん断 τ_{f}	－	－	55	41
		組合せ $\sigma_{\text {fa }}$	－	－	164	91

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {f }}$	－	－	60	19
		せん断 $\tau_{\text {f }}$	－	－	46	35
		組合せ $\sigma_{\text {fa }}$	－	－	100	63
170体ラック	SUS304	引張り σ_{ft}	－	－	104	20
		せん断 τ_{f}	－	－	62	37
		組合せ $\sigma_{\text {fa }}$	－	－	149	67

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	37	21
		せん断 τ_{f}	－	－	32	13
		組合せ $\sigma_{\text {fa }}$	－	－	67	30
170体ラック	SUS304	引張り σ_{ft}	－	－	57	19
		せん断 τ_{f}	－	－	54	13
		組合せ $\sigma_{\text {f a }}$	－	－	110	29

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	75	70
		せん断 τ_{f}	－	－	32	48
		組合せ $\sigma_{\text {fa }}$	－	－	93	108
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	116	53
		せん断 τ_{f}	－	－	47	39
		組合せ $\sigma_{\text {fa }}$	－	－	141	86

（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	99	135
		せん断 τ_{f}	－	－	26	22
		組合せ $\sigma_{\text {fa }}$	－	－	109	140
170体ラック	SUS304	引張り σ_{ft}	－	－	149	116
		せん断 τ_{f}	－	－	45	23
		組合せ $\sigma_{\text {fa }}$	－	－	168	123

（6）補強板 e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	73	30
		せん断 $\tau_{\text {f }}$	－	－	5	9
		組合せ $\sigma_{\text {fa }}$	－	－	73	33
170体ラック	SUS304	引張り σ_{ft}	－	－	99	28
		せん断 $\tau_{\text {f }}$	－	－	8	8
		組合せ σ_{fa}	－	－	100	31

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{x}	－	－	18	13
		引張り σ_{y}	－	－	2	2
		せん断 τ_{xy}	－	－	29	2
		組合せ $\sigma_{\text {fa }}$	－	－	52	12
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	16	11
		引張り σ_{y}	－	－	1	3
		せん断 τ_{xy}	－	－	49	5
		組合せ $\sigma_{\text {f a }}$	－	－	86	12

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $0_{\text {x }}$	－	－	7	22
		引張り σ_{y}	－	－	47	18
		せん断 τ_{xy}	－	－	12	28
		組合せ $\sigma_{\text {fa }}$	－	－	49	52
170体ラック	SUS304	引張り $0_{\text {x }}$	－	－	5	20
		引張り $\sigma_{\text {y }}$	－	－	5	16
		せん断 τ_{xy}	－	－	38	31
		組合せ $\sigma_{\text {fa }}$	－	－	66	56

(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	13
		引張り σ_{y}	－	－	59	39
		せん断 τ_{xy}	－	－	1	5
		組合せ $\sigma_{\text {fa }}$	－	－	52	36
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	27	7
		引張り $\sigma_{\text {y }}$	－	－	69	37
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {f a }}$	－	－	60	35

1．3．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	115	83
		せん断 $\tau_{\text {b }}$	－	－	27	24
170体ラック		引張り $\sigma_{\text {b }}$	－	－	129	66
		せん断 $\tau_{\text {b }}$	－	－	32	26

1．4 応力

1．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{\mathrm{ft}}=101^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=101$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=40^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{f}}=40$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=122^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック		引張り	$\sigma_{\mathrm{ft}}=134 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=134$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=55^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=55$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=164 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=164$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=60^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=60$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=46^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=100^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=104^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=104$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=62^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=62$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=149^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=149$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=37^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=37$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=32^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=32$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=67^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=67$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{f} \mathrm{t}}=57^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=57$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=54 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=54$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=110^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=110$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=70^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=70$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=48^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=48$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=108^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=108$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=116^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=116$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=47^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=47$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=141^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=141$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=135^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=135$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=22^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=22$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=140^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=140$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=149^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=149$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=45^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=45$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=168^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=168$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（6）補強板e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=73 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=73$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=5^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=5$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=73^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=73$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{ft}}=99^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{f} \mathrm{t}}=99$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{f}}=8^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=8$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=100^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{x}=18 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=18$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=2$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=29 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x}} \mathrm{y}=29$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=16^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=16$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=1^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=1$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=49$＊	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=49$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=86^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=86$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=1^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=1$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=4^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=4$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x}}{ }=1 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x}}^{\mathrm{y}} \mathrm{l}=1$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=3^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=3$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{x}=2$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=2^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=2$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} y}=3^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=3$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=5$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{x}=22^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=22$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=18^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=18$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=28^{*}$	$f_{\text {s }}=118$	$\tau_{\mathrm{xy}}=28$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{x}=5$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=5^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=5$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{x y}=38 *$	$f_{\text {s }}=118$	$\tau_{\mathrm{xy}}=38$	$f_{\mathrm{s}}=118$
		組合せ	$\sigma_{\mathrm{fa}}=66^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=66$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{\mathrm{x}}=13^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=13$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=41^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=41$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} \mathrm{y}}=2^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=36 *$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=36$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=28^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=28$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=92^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=92$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{x} y}=2^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=82^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。
（11）ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	$\sigma_{x}=20^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{x}=20$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{\mathrm{y}}=59^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{y}}=59$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=1 *$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{x} \mathrm{y}}=1$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=52^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	$\sigma_{x}=27^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{x}}=27$	$f_{\mathrm{t}}=205$
		引張り	$\sigma_{y}=69^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{y}=69$	$f_{\mathrm{t}}=205$
		せん断	$\tau_{\mathrm{xy}}=2$＊	$f_{\text {s }}=118$	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\text {s }}=118$
		組合せ	$\sigma_{\mathrm{fa}}=60^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=60$	$f_{\mathrm{t}}=205$

注記＊：基準地震動 S s による算出応力の値
すべて許容応力以下である。

1．4．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	$\sigma_{\mathrm{b}}=115^{* 1}$	$f_{\mathrm{ts}}=455^{* 2}$	$\sigma_{\mathrm{b}}=115$	$f_{\mathrm{ts}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=27^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=27$	$f_{\text {s b }}=350$
170体ラック		引張り	$\sigma_{\mathrm{b}}=129 * 1$	$f_{\text {t s }}=455^{* 2}$	$\sigma_{\mathrm{b}}=129$	$f_{\mathrm{t} \mathrm{s}}=455^{* 2}$
		せん断	$\tau_{\mathrm{b}}=32^{* 1}$	$f_{\text {s b }}=350$	$\tau_{\mathrm{b}}=32$	$f_{\text {s b }}=350$

注記 $* 1$ ：基準地震動 S s による算出応力の値

$$
* 2: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \text { より算出 }
$$

すべて許容応力以下である。

【使用済燃料貯蔵ラックの耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	ラック	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鈖直方向			
使用済燃料財蔵ラック	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { OP. } 22.50^{* 1} \end{aligned}$	110 体ラック		0．05以下 ${ }^{2}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	100	－
			170 体ラック		0．05以下＊${ }^{\text {2 }}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$ 又は $* 3$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	100	－

注記 $* 1$ ：基準床レベルを示す。

$$
\text { *2: 固有値解析により } 0.05 \text { 秒以下であり, 剛であることを確認した。 }
$$

＊3：基準地震動 S s に基づく設計用床応答曲線から得られる値

ラック	$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{gathered} \mathrm{m}_{\mathrm{F}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{R}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{W}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \hline \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{V}} \\ & (-) \end{aligned}$	$\begin{aligned} & \hline \ell_{1 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{\text {2E }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \hline \ell_{3 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{TE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{EE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{EE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\text {10玉 }}(\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{11 \mathrm{E}}(\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{12 \mathrm{E}}(\mathrm{~m}) \end{aligned}$
110 体ラック					1590	1.56	1741.5	1577.5	1413.5	1249.5	1085.5	921.5	757.5	593.5	429.5	265.5	101.5	－
170 体ラック					1590	1.56	2725.5	2561.5	2397.5	2233.5	2069.5	1905.5	1741.5	1577.5	1413.5	1249.5	1085.5	921.5

$\begin{aligned} & \ell_{13 \mathrm{E}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{14 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{15 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{16 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{17 \mathrm{E}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\text {1N }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \ell_{2 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{5 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{6 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{7 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{8 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{9 \mathrm{~N}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{10 \mathrm{~N}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{n}_{1 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{E}} \\ (-) \end{gathered}$
－	－	－	－	－	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	921.5	835	10	2	2
757.5	593.5	429.5	265.5	101.5	1568.5	1408.5	1248.5	1088.5	928.5	741.5	581.5	421.5	261.5	101.5	1413.5	835	10	2	2

$\begin{aligned} & \mathrm{n}_{4 \mathrm{E}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{E}}(-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{6 \mathrm{E}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{7 \mathrm{E}}(-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{8 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{9 \mathrm{EE}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{10 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{11 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{12 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{13 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{14 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{15 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{16 \mathrm{E}} \\ (-) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{n}_{17 \mathrm{E}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{1 \mathrm{~N}} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{2 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{3 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{4 \mathrm{~N}} \\ (-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{5 \mathrm{~N}}(-) \end{gathered}$	$\begin{gathered} \mathrm{n}_{6 \mathrm{~N}} \\ (-() \end{gathered}$
2	2	2	2	2	2	2	10	－	－	－	－	－	－	11	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	10	17	2	2	2	2	2

$\mathrm{n}_{7 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{8 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{9 \mathrm{~N}}$ $(-)$	$\mathrm{n}_{10 \mathrm{~N}}$ $(-)$	n $(-)$
2	2	2	11	38
2	2	2	17	50

基礎ボルト材料	$\begin{aligned} & \hline \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{\mathrm{g}} \mathrm{(R} \mathrm{T)} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$

```
注記* 1:最高使用温度 (100 ' C) で算出
```

ラック	地震の種類	$\begin{aligned} & \mathrm{F}_{\mathrm{N}} \\ & (\mathrm{~N}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{E}} \\ & (\mathrm{~N}) \end{aligned}$	$\underset{(\mathrm{N} \cdot \mathrm{~mm})}{\mathrm{M}_{\mathrm{N}}}$	$\begin{gathered} \mathrm{M}_{\mathrm{E}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
110 体ラック	弾性設計用地震動 S d又は静的震度	－	－	－	－
	基準地震動S s	1.614×10^{6}	1． 435×10^{6}	5.138×10^{9}	4． 098×10^{9}
170 体ラック	弹性設計用地震動 d又は静的震度	－	－	－	－
	基準地震動S s	2． 518×10^{6}	2.071×10^{6}	7.836×10^{9}	6． 659×10^{9}

2.3 計算数値

2．3．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り σ_{ft}	－	－	101	79
		せん断 τ_{f}	－	－	40	21
		組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	122	87
170体ラック		引張り $\sigma_{\text {ft }}$	－	－	134	57
		せん断 τ_{f}	－	－	55	41
		組合せ $\sigma_{\text {f a }}$	－	－	164	91

（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	60	19
		せん断 τ_{f}	－	－	46	35
		組合せ $\mathrm{Of} \mathrm{a}_{\text {f }}$	－	－	100	63
170体ラック	SUS304	引張り σ_{ft}	－	－	104	20
		せん断 τ_{f}	－	－	62	37
		組合せ $\sigma_{\text {fa }}$	－	－	149	67

（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	37	21
		せん断 τ_{f}	－	－	32	13
		組合せ $\sigma_{\text {fa }}$	－	－	67	30
170体ラック	SUS304	引張り $\sigma_{\text {f }}$	－	－	57	19
		せん断 τ_{f}	－	－	54	13
		組合せ $\sigma_{\text {fa }}$	－	－	110	29

（4）補強板 C
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\mathrm{fft}^{\text {f }}$	－	－	75	70
		せん断 τ_{f}	－	－	32	48
		組合せ $\mathrm{ffa}^{\text {f }}$	－	－	93	108
170体ラック	SUS304	引張り $\sigma_{\text {ft }}$	－	－	116	53
		せん断 τ_{f}	－	－	47	39
		組合せ $\sigma_{\text {fa }}$	－	－	141	86

（5）補強板 d

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	99	135
		せん断 τ_{f}	－	－	26	22
		組合せ $\mathrm{ffa}_{\text {f }}$	－	－	109	140
170体ラック	SUS304	引張り σ_{ft}	－	－	149	116
		せん断 $\tau_{\text {f }}$	－	－	45	23
		組合せ $\mathrm{ffa}_{\text {f }}$	－	－	168	123

（6）補強板 e
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{ft}	－	－	73	30
		せん断 τ_{f}	－	－	5	9
		組合せ $\sigma_{\text {fa }}$	－	－	73	33
170体ラック	SUS304	引張り σ_{ft}	－	－	99	28
		せん断 τ_{f}	－	－	8	8
		組合せ $\sigma_{\text {fa }}$	－	－	100	31

（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	18	13
		引張り σ_{y}	－	－	2	2
		せん断 τ_{xy}	－	－	29	2
		組合せ $\sigma_{\text {fa }}$	－	－	52	12
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	16	11
		引張り σ_{y}	－	－	1	3
		せん断 τ_{xy}	－	－	49	5
		組合せ σ_{fa}	－	－	86	12

（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	1	1
		引張り $\sigma_{\text {y }}$	－	－	1	4
		せん断 τ_{xy}	－	－	2	1
		組合せ $\sigma_{\text {fa }}$	－	－	3	3
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	2	1
		引張り σ_{y}	－	－	2	3
		せん断 τ_{xy}	－	－	3	0
		組合せ $\sigma_{\text {fa }}$	－	－	5	3

（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	7	22
		引張り $\sigma_{\text {y }}$	－	－	47	18
		せん断 τ_{xy}	－	－	12	28
		組合せ $\sigma_{\text {fa }}$	－	－	49	52
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	5	20
		引張り $\sigma_{\text {y }}$	－	－	5	16
		せん断 τ_{xy}	－	－	38	31
		組合せ $\sigma_{\text {f a }}$	－	－	66	56

（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り σ_{x}	－	－	13	17
		引張り σ_{y}	－	－	41	26
		せん断 τ_{xy}	－	－	2	4
		組合せ σ_{fa}	－	－	36	23
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	28	12
		引張り σ_{y}	－	－	92	29
		せん断 τ_{xy}	－	－	2	7
		組合せ $\sigma_{\text {fa }}$	－	－	82	28

(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	20	13
		引張り $\sigma_{\text {y }}$	－	－	59	39
		せん断 τ_{xy}	－	－	1	5
		組合せ $\sigma_{\text {fa }}$	－	－	52	36
170体ラック	SUS304	引張り $\sigma_{\text {x }}$	－	－	27	7
		引張り $\sigma_{\text {y }}$	－	－	69	37
		せん断 τ_{xy}	－	－	2	4
		組合せ $\sigma_{\text {fa }}$	－	－	60	35

1．3．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			N S 方向	EW方向	N S 方向	EW方向
110体ラック		引張り $\sigma_{\text {b }}$	－	－	115	83
		せん断 $\tau_{\text {b }}$	－	－	27	24
170体ラック		引張り $\sigma_{\text {b }}$	－	－	129	66
		せん断 $\tau_{\text {b }}$	－	－	32	26

2． 4 応力

2．4．1 部材に生じる応力
（1）角管
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=101$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=40$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=122$	$f_{\mathrm{t}}=205$
170体ラック		引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=134$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=55$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=164$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（2）補強板 a
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=60$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=46$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=104$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=62$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=149$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（3）補強板 b
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=37$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=32$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=67$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=57$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=54$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=110$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（4）補強板 c

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=70$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=48$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=108$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=116$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=47$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=141$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（5）補強板 d
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f}}{ }_{\mathrm{t}}=135$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=22$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{f}_{\mathrm{a}}}=140$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=149$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=45$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=168$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（6）補強板 e

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=73$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=5$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=73$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{f} \mathrm{t}}=99$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{f}}=8$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=100$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（7）補強板 f
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=18$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=2$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=29$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{x}=16$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=1$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} y}=49$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=86$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（8）補強板 g
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=1$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=4$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} y}=1$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=3$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=2$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=2$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=3$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=5$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（9）補強板 h
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=22$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=18$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=28$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{x}=5$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=5$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{xy}}=38$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}=66}$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
（10）燃料支持板
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=13$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=41$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{x y}=2$	$f_{\text {s }}=118$
		組合せ	－	－	$\sigma_{\mathrm{ffa}=36}$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=28$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=92$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} y}=2$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。
(11) ベース
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=20$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{\mathrm{y}}=59$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=1$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=52$	$f_{\mathrm{t}}=205$
170体ラック	SUS304	引張り	－	－	$\sigma_{\mathrm{x}}=27$	$f_{\mathrm{t}}=205$
		引張り	－	－	$\sigma_{y}=69$	$f_{\mathrm{t}}=205$
		せん断	－	－	$\tau_{\mathrm{x} \mathrm{y}}=2$	$f_{\mathrm{s}}=118$
		組合せ	－	－	$\sigma_{\mathrm{fa}}=60$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。

2．4．2 基礎ボルトに生じる応力
（単位：MPa）

ラック	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
110体ラック		引張り	－	－	$\sigma_{b}=115$	$f_{\mathrm{t} \mathrm{s}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=27$	$f_{\mathrm{sb}}=341$
170体ラック		引張り	－	－	$\sigma_{\mathrm{b}}=129$	$f_{\mathrm{t} \mathrm{s}}=444^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=32$	$f_{\mathrm{s} \text { b }}=341$

注記 $*: ~ f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

VI－2－4－2－3 制御棒•破損燃料貯蔵ラックの耐震性についての計算書

目次
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
2． 4 記号の説明 4
2.5 計算精度と数値の丸め方 6
3．評価部位 6
4．固有周期 7
4． 1 固有周期の計算方法 7
4．2 固有周期の計算条件 8
4．3 固有周期の計算結果 9
5．構造強度評価 9
5.1 構造強度評価方法 9
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 16
5.4 計算方法 18
5．4．1 ラック部材の応力 18
5．4．2 ラック基礎ボルトの応力 20
5． 4.3 支持ビーム部材の応力 22
5．4．4 支持ビーム基礎ボルトの応力 24
5.5 計算条件 26
5.6 応力の評価 26
5．6．1 部材の応力評価 26
5．6．2 基礎ボルトの応力評価 26
6．評価結果 27
6.1 設計基準対象施設としての評価結果 27
6.2 重大事故等対処設備としての評価結果 27

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，制御棒•破損燃料貯蔵ラック（以下「ラック」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

ラックは，設計基準対象施設においてはSクラス施設，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画 ラックの構造計画を表 2－1 に示す。

表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ラックは，たて置形で ベースが使用済燃料プー ルの底に基礎ボルトを介 して固定され，さらに，側壁から支持ビームを介 して支持される。	アルミニウム合金製筒型枠組構造。	（単位：mm）

2.2 評価方針

ラックの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1 構造強度上 の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示すラックの部位を踏まえ「3．評価部位」にて設定する箇所において，「4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。 ラックの耐震評価フローを図 2－1 に示す。

図 2－1 ラックの耐震評価フロー

2.3 適用基準

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補一 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 2005年版（2007年追補版含む。）J S M E S N C 1－2005／2007（（社）日本機械学会）（以下「設計•建設規格」とい う。）

2． 4 記号の説明

記号	記号の説明	単位
A	ラック部材の断面積	mm ${ }^{2}$
$\mathrm{A}_{\text {B }}$	支持ビームの断面積	mm ${ }^{2}$
A_{i}	ラック部材のせん断断面積	mm ${ }^{2}$
$\mathrm{A}_{\text {S i }}$	ラックベースのせん断断面積	mm ${ }^{2}$
$A_{B H}, A_{B V}$	支持ビームのせん断断面積	mm ${ }^{2}$
A_{b}	基礎ボルトの軸断面積	mm ${ }^{2}$
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
E	縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1 又は SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 又は SSB－3133 に定める値	MPa
F_{a}	ラックに働く軸力	N
$\mathrm{F}_{\text {BHi }}, \mathrm{F}_{\mathrm{BV} \text { i }}$	支持ビームに働くせん断力	N
$\mathrm{F}_{\mathrm{E} \text { i }}$	支持ビームに働く軸力	N
F ${ }_{\text {i }}$	ラックに働くせん断力	N
F SB	ラック支持部に働くせん断力	N
F SC	ラック底部に働くせん断力	N
f ${ }_{\mathrm{j}}$	ラック基礎ボルトに働く引張力（ 1 本当たり）	N
$f_{\text {s }}$	部材の許容せん断応力	MPa
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
$f_{\text {t }}$	部材の許容引張応力	MPa
$f_{\text {t }}$ o	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$f_{\mathrm{t} \mathrm{s}}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度（ $\mathrm{g}=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
G	せん断弾性係数	MPa
h_{1}	破損燃料貯蔵時のラック重心高さ	mm
h_{2}	破損燃料貯蔵時のラック重心より支持点までの高さ	mm
h_{3}	支持ビーム中心からラック支持点までの高さ	mm
I ${ }_{\text {i }}$	ラックの断面二次モーメント	mm ${ }^{4}$
$I_{\text {S i }}$	ラックベースの断面二次モーメント	mm ${ }^{4}$
L ${ }_{\mathrm{j}}$	各質点間の距離	mm
$\ell_{\mathrm{g}} \mathrm{B}$	支持ビーム当板端から重心までの距離	mm
$\ell_{\mathrm{g} \text { i }}$	ラックベース端から重心までの距離	mm
ℓ_{j}	ラックベース端から基礎ボルトまでの距離	mm
$\mathrm{M}_{\mathrm{BHi}}, \mathrm{M}_{\mathrm{BVi}}$	支持ビームに働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{i}	ラックに働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$

記号	記号の説明	単位
$\mathrm{M}_{\text {S } B}$	ラック重心位置に働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {S C }}$	ベース底部に働くモーメント	$\mathrm{N} \cdot \mathrm{mm}$
m	破損燃料貯蔵時のラック全質量	kg
m_{B}	支持ビームの質量	kg
m_{C}	破損燃料コンテナの質量	kg
m_{F}	破損燃料の質量	kg
m_{R}	ラックの質量	kg
m_{W}	ラックに含まれる水の質量	kg
$\mathrm{m}_{\mathrm{jH}}, \mathrm{m}_{\mathrm{jV}}$	各質点の質量	kg
N_{pm}	支持ビーム基礎ボルトに働く最大引張力（1本当たり）	N
n в	支持ビーム基礎ボルトの全本数	－
n_{R}	ラック基礎ボルトの全本数	－
n j	各部の基礎ボルトの本数	－
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の	MPa
	$40^{\circ} \mathrm{C}$ における値	
$\mathrm{Z}_{\mathrm{BH}}, \quad \mathrm{Z}_{\mathrm{BV}}$	支持ビーム部材の断面係数	mm ${ }^{3}$
Z_{i}	ラック部材の断面係数	mm^{3}
σ b	基礎ボルトに生じる引張応力	MPa
$\sigma{ }_{\text {f a }}$	部材に生じる組合せ応力	MPa
σ_{fft}	部材に生じる引張応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
τ_{f}	部材に生じるせん断応力	MPa

 Z_{i} の添字 i の意味は，以下のとおりとする。

$$
\begin{aligned}
& \mathrm{i}=\mathrm{N}: \mathrm{NS} \text { (短辺) 方向 } \\
& \mathrm{i}=\mathrm{E}: \mathrm{EW} \text { (長辺) 方向 }
\end{aligned}
$$

注 $2: ~ f ~ j ~, ~ l i$ 及び n_{j} の添字 j はボルトの列番号を示すものとする。

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
設計震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
最高使用温度	${ }^{\circ} \mathrm{C}$	小数点以下第 1 位	四捨五入	整数位
質量	kg	-	—	整数位
長さ	mm	—	整数位 $* 1$	
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{* 2}$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における設計引張強さ及び設計降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ラックの耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる ラック本体，支持ビーム本体，ラック基礎ボルト及び支持ビーム基礎ボルトについて実施する。

ラックの耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4.1 固有周期の計算方法

ラックの短辺方向，長辺方向及び鉛直方向の各々について， 1 次元多質点系モデルとして考 える。

ラックの短辺方向及び長辺方向については，ラック自身の質量，ラックに含まれる水の質量及び管外径の排除水質量＊は，ラック全高にわたつて均等となるよう，各要素の長さに比例し て，各質点に振り分ける。また，破損燃料の質量及び破損燃料貯蔵コンテナの質量は，重心位置に加える。

一方，ラックの鉛直方向については，ラック自身の質量は，ラック全高にわたつて均等とな るよう，各要素の長さに比例して，各質点に振り分ける。また，破損燃料の質量，破損燃料貯蔵コンテナの質量，ラックに含まれる水の質量及び管外径の排除水質量＊は，ラックベース上面位置に加える。
振動解析は，計算機コード「NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コード）の概要」に示す。

なお，ラック部材及びラックベース部材の断面性能としては，せん断断面積及び断面二次モ ーメントを考慮するものとする。計算モデルを図 4－1 に示す。

注記＊：排除水質量とは，水中の機器の形状により排除される機器周囲の流体の質量である。

（長辺方向）

（短辺方向）

（鉛直方向）

図 4－1 計算モデル図

4．2 固有周期の計算条件

固有周期の計算に用いる数値を表 4－1 に示す。

表 4－1 機器要目（固有周期の計算の用いる要目）

E^{*} (MPa)	G^{*} (MPa)	I_{N} $\left(\mathrm{mm}^{4}\right)$	I_{E} $\left(\mathrm{mm}^{4}\right)$	A_{N} $\left(\mathrm{mm}^{2}\right)$	A_{E} $\left(\mathrm{mm}^{2}\right)$	I $\left(\mathrm{mm}^{4}\right)$
		1.073×10^{9}	9.485×10^{9}	2.294×10^{4}	2.294×10^{4}	9.494×10^{9}

I SE $\left(\mathrm{mm}^{4}\right)$	A_{SN} $\left(\mathrm{mm}^{2}\right)$	A_{SE} $\left(\mathrm{mm}^{2}\right)$	L_{1} $(\mathrm{~mm})$	L_{2} $(\mathrm{~mm})$	L_{3} $(\mathrm{~mm})$	L_{4} $(\mathrm{~mm})$
6.194×10^{10}	1.418×10^{5}	1.418×10^{5}				

L_{5} $(\mathrm{~mm})$	L_{6} $(\mathrm{~mm})$	L_{7} $(\mathrm{~mm})$	$\mathrm{m}_{1 \mathrm{H}}$ (kg)	$\mathrm{m}_{2 \mathrm{H}}$ (kg)	$\mathrm{m}_{3 \mathrm{H}}$ (kg)	$\mathrm{m}_{4 \mathrm{H}}$ (kg)

$\mathrm{m}_{5 \mathrm{H}}$ (kg)	$\mathrm{m}_{6 \mathrm{H}}$ (kg)	$\mathrm{m}_{7 \mathrm{H}}$ (kg)	$\mathrm{m}_{8 \mathrm{H}}$ (kg)	$\mathrm{m}_{1 \mathrm{~V}}$ $(\mathrm{~kg})$	$\mathrm{m}_{2 \mathrm{~V}}$ $(\mathrm{~kg})$	$\mathrm{m}_{3 \mathrm{~V}}$ $(\mathrm{~kg})$

$\mathrm{m}_{4 \mathrm{~V}}$ $(\mathrm{~kg})$	$\mathrm{m}_{5 \mathrm{v}}$ (kg)	$\mathrm{m}_{6 \mathrm{v}}$ (kg)	$\mathrm{m}_{7 \mathrm{~V}}$ $(\mathrm{~kg})$	$\mathrm{m}_{8 \mathrm{v}}$ (kg)

注記＊：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出。

4．3 固有周期の計算結果
固有周期の計算結果を表 4－2 に示す。

表 4－2 固有周期
（単位：s）

水平方向	NS 方向		
	EW方有周期		
	鉛直方向		

5．構造強度評価
5.1 構造強度評価方法
（1）ラックは，原子炉建屋の使用済燃料プールの底部（OP．21．38m）に基礎ボルトで固定さ れ，さらに，支持ビームにより短辺方向の上部を支持されるものとする。
（2）ラックの質量には，破損燃料と破損燃料コンテテ 10 本の質量，ラックの自身の質量， ラックに含まれる水の質量及び管外径の排除水質量を考慮する。
（3）地震力は，ラックに対して水平方向から作用するものとする。
ここで，水平方向地震力は，ラックの長辺方向に作用する場合と短辺方向に作用する場合を考慮する。
また，鉛直方向地震力は，水平方向地震力と同時に不利な方向に作用するものとす る。
（4）ラックの構造概要図を図 5－1 に示す。

図 5－1 構造概要図

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ラックの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるもの を表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示す。

5．2．2 許容応力
ラックの許容応力は，添付資料「VI－2－1－9 機能維持の基本方針」に基づき表 5－3 のとお りとする。

5．2．3 使用材料の許容応力評価条件
ラックの許容応力評価条件のらち，設計基準対象施設の評価に用いるものを表 5－4 に，重大事故等対処設備の評価に用いるものを表5－5に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震設計上の重要度分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の	使用済燃料 貯蔵設備	制御棒• 破損燃料貯蔵ラック	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}{ }^{* 2}$	$\mathrm{III}_{\text {A }} \mathrm{S}$
貯蔵施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$

注記 $* 1: そ の$ 他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊2：S s との組み合わせ， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。

| 施設区分 | | 機器名称 | | 設備分類＊1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | 機器等の区分

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
$* 2$ ：重大事故等その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）		許容限界＊1，＊2 （ボルト等）	
	一次応力		一次応力	
	引張り	せん断	引張り	せん断
III $_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}{ }^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$				

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ラック本体（管）		最高使用温度	66	－			
支持ビーム本体	SUS304	最高使用温度	66	－	188	479	205
ラック基礎ボルト		最高使用温度	66	－			
支持ビーム基礎ボルト		最高使用温度	66	－			

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
＊2：JIS H4080「アルミニウム及びアルミニウム合金継目無管」の引張強さと降伏点（0．2 \％耐力）の値を使用する。

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ラック本体（管）		最高使用温度	100	－			
支持ビーム本体	SUS304	最高使用温度	100	－	171	441	205
ラック基礎ボルト		最高使用温度	100	－			
支持ビーム基礎ボルト		最高使用温度	100	－			

注記 $* 1$ ：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出
＊2：JIS H4080「アルミニウム及びアルミニウム合金継目無管」の引張強さと降伏点（0．2 \％耐力）の値を使用する。
5.3 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づ き設定する。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表 5－6 及び表 5－7 に示す。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及び	方向	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）		水平方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
原子炉建屋	N S 方向	0．05以下＊3	$\begin{gathered} 0.05 \\ \text { 以下*3 } \end{gathered}$	－＊4	－＊4	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.56$	1． $0^{* 5}$	－
OP．22． 50 ＊2	EW方向					$\mathrm{C}_{\mathrm{H}}=6.21$			

注記＊1：N S 方向の設計震度に適用する基準床レベルを示す。
＊2：EW方向及び鉛直方向の設計震度に適用する基準床レベルを示す。 ＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。 ＊ $4: ~ \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。 ＊5：溶接構造物に適応される減衰定数の値

表 5－7 設計用地震力（重大事故等対処設備）

据付場所及び	方向	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
床面高さ （m）		水平方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平 方向	鉛直 方向
原子炉建屋	N S 方向	0．05以下＊3	$\begin{gathered} 0.05 \\ \text { 以下* } \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.56$	1． $0^{* 4}$	－
OP． $22.50 * 2$	EW方向					$\mathrm{C}_{\mathrm{H}}=6.21$			

注記 $* 1: ~ N S$ 方向の設計震度に適用する基準床レベルを示す。
＊2：EW方向及び鉛直方向の設計震度に適用する基準床レベルを示す。 ＊3：固有値解析により， 0.05 秒以下であり，剛であることを確認した。
＊4：溶接構造物に適応される減衰定数の値

5.4 計算方法

5．4．1 ラック部材の応力

地震時にラック底部に働くせん断力 $\mathrm{F}_{\mathrm{E}}, ~ \mathrm{~F}_{\mathrm{sc}}$ ，ラック支持部に働くせん断力 $\mathrm{F}_{\mathrm{s}} \mathrm{B}$ ，ラ ック底部に働くモーメント $\mathrm{M}_{\mathrm{E}}, ~ \mathrm{M}_{\mathrm{SC}}$ ，ラック重心位置に働くモーメント M_{S} 及 及びラック に働く軸力 F_{a} が，図 5－1 のように負荷されるものとして，ラック部材の応力を求める。

（ラック長辺方向）

（ラック短辺方向）

図 5－1 荷重状態

ラック全質量mは（5．1）式により求める。

$$
\begin{equation*}
\mathrm{m}=\mathrm{m}_{\mathrm{R}}+\mathrm{m}_{\mathrm{C}}+\mathrm{m}_{\mathrm{F}}+\mathrm{m}_{\mathrm{W}} \tag{5.1}
\end{equation*}
$$

（1）引張応力
ラックに働く軸力 F_{a} 及びラックに働くモーメント M_{i} により，ラック部材に生じ る引張応力 σ_{ft} は，（5．2）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{ft}}=\frac{\mathrm{F}_{\mathrm{a}}}{\mathrm{~A}}+\frac{\mathrm{M}_{\mathrm{i}}}{\mathrm{Z}_{\mathrm{i}}} \tag{5.2}
\end{equation*}
$$

ここで，ラックに働く軸力 F_{a} 及びラックに働くモーメント M_{i} は，（5．3）， （5．4），（5．5），（5．6）及び（5．7）式より求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{a}}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{N}}=\operatorname{Max}\left(\mathrm{M}_{\mathrm{SB}}, \mathrm{M}_{\mathrm{SC}}\right) \tag{5.4}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{M}_{\mathrm{SB}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1}{ }^{2} \cdot \mathrm{~h}_{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{3}} \cdot\left(2 \cdot \mathrm{~h}_{1}+3 \cdot \mathrm{~h}_{2}\right) \tag{5.5}\\
& \mathrm{M}_{\mathrm{SC}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{2}} \cdot\left(\mathrm{~h}_{1}+2 \cdot \mathrm{~h}_{2}\right) \quad \ldots \tag{5.6}\\
& \mathrm{M}_{\mathrm{E}}=\mathrm{F}_{\mathrm{E}} \cdot \mathrm{~h}_{1} \quad \ldots \tag{5.7}
\end{align*}
$$

（2）せん断応力
せん断力 F_{i} により，ラック部材に生じるせん断応力 τ_{f} は，（5．8）式より求める。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{~A}_{\mathrm{i}}} \tag{5.8}
\end{equation*}
$$

ここで，ラック部材に働くせん断力 F_{i} は，（5．9），（5．10），（5．11），（5．12）式よ り求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{N}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{SB}}, \mathrm{~F}_{\mathrm{SC}}\right) \tag{5.9}\\
& \mathrm{F}_{\mathrm{SB}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1}{ }^{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{3}} \cdot\left(2 \cdot \mathrm{~h}_{1}+3 \cdot \mathrm{~h}_{2}\right) \tag{5.10}\\
& \mathrm{F}_{\mathrm{SC}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{3}} \cdot\left(3 \cdot \mathrm{~h}_{1}{ }^{2}+6 \cdot \mathrm{~h}_{1} \cdot \mathrm{~h}_{2}+2 \cdot \mathrm{~h}_{2}{ }^{2}\right) \tag{5.11}\\
& \mathrm{F}_{\mathrm{E}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g} \tag{5.12}
\end{align*}
$$

（3）組合せ応力
ラック部材に生じる組合せ応力 $\sigma \mathrm{fa}$ は，（5．13）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{ft}}{ }^{2}+3 \cdot \tau_{\mathrm{f}}{ }^{2}} \tag{5.13}
\end{equation*}
$$

5．4．2 ラック基礎ボルトの応力

地震時にラックベース底部に働くせん断力 F_{i} 及びモーメント M_{i} が，図 5－2 のように負荷されるものとしてラック基礎ボルトの応力を求める。

（ラック長辺方向）

（ラック短辺方向）

図 5－2 荷重状態
（1）引張応力
図 5－2 においてラックの長辺方向を例にとり A 点まわりのモーメントの釣合いに よりラック基礎ボルト 1 本当たりに働く引張力 f j を求める。
$\mathrm{f}_{1}>\mathrm{f}_{2}>\cdots>\mathrm{f}_{6}$ の関係にあるので f_{1} のみを求める。

$$
\begin{equation*}
\mathrm{f}_{1}=\frac{\ell_{1} \cdot\left\{\sqrt{\mathrm{M}_{\mathrm{E}}{ }^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gE}}\right)^{2}}-\mathrm{m} \cdot \mathrm{~g} \cdot \ell_{\mathrm{ge}}\right\}}{\mathrm{n}_{1} \cdot{\ell_{1}}^{2}+\mathrm{n}_{2} \cdot \ell_{2}{ }^{2}+\cdots \cdots+\mathrm{n}_{5} \cdot \ell_{5}{ }^{2}+\mathrm{n}_{6} \cdot \ell_{6}{ }^{2}} \tag{5.14}
\end{equation*}
$$

引張力 f_{1} によりラック基礎ボルトに生じる引張応力 σ_{b} は，（5．15）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{f}_{1}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.15}
\end{equation*}
$$

ここで，ラックに働くモーメント M_{i} は，（5．16）及び（5．17）式より求める。

$$
\begin{equation*}
\mathrm{M}_{\mathrm{N}}=\mathrm{M}_{\mathrm{SC}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \cdot \mathrm{~h}_{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{2}} \cdot\left(\mathrm{~h}_{1}+2 \cdot \mathrm{~h}_{2}\right) \tag{5.16}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{E}}=\mathrm{F}_{\mathrm{E}} \cdot \mathrm{~h}_{1} \tag{5.17}
\end{equation*}
$$

ただし， f_{1} の値が負のときは基礎ボルトに引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算する。
せん断力 F_{i} により，ラック基礎ボルトに生じるせん断力 τ_{b} は，（5．18）式より求 める。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{R}} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.18}
\end{equation*}
$$

ラックに働くせん断力 F_{i} は，(5.19) 及び (5.20) 式より求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{N}}=\mathrm{F}_{\mathrm{SC}}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}_{2}}{2 \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)^{3}} \cdot\left(3 \cdot \mathrm{~h}_{1}^{2}+6 \cdot \mathrm{~h}_{1} \cdot \mathrm{~h}_{2}+2 \cdot \mathrm{~h}_{2}{ }^{2}\right) \tag{5.19}
\end{equation*}
$$

$\mathrm{F}_{\mathrm{E}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m} \cdot \mathrm{g}$

5．4．3 支持ビーム部材の応力

地震時に，支持ビーム部材に働く軸力 F_{Ei} ，せん断力 $\mathrm{F}_{\mathrm{BHi}}, \mathrm{F}_{\text {BVi }}$ 及び曲げモーメン ト $\mathrm{M}_{\mathrm{BH} \boldsymbol{i}}, ~ \mathrm{M}_{\mathrm{BVi}}$ が，図 5－3 に示すように負荷されるものとして支持ビーム部材の応力を求める。

図 5－3 荷重状態
（1）引張応力
支持ビーム部材に働く軸力 $\mathrm{F}_{\mathrm{E} i}$ 及び曲げモーメント $\mathrm{M}_{\mathrm{BVi}}$ ， $\mathrm{M}_{\mathrm{BH} \mathrm{i}}$ により支持ビー ム部材に生じる引張応力 σ_{ft} は，（5．21）式より求める。

$$
\begin{equation*}
\sigma_{f t}=\frac{F_{E i}}{A_{B}}+\frac{M_{B H i}}{Z_{B H}}+\frac{M_{B V i}}{Z_{B V}} \tag{5.21}
\end{equation*}
$$

ここで，支持ビーム部材に働く軸力 $\mathrm{F}_{\mathrm{E} \text { i }}$ 及び曲げモーメント $\mathrm{M}_{\mathrm{BHi}}$ ， $\mathrm{M}_{\mathrm{BV} \mathrm{V}_{\mathrm{i}} \text { を }}$ （5．22），（5．23），（5．24），（5．25），（5．26）及び（5．27）式により求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{EN}}=\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{SB}}+\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \tag{5.22}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{EE}}=0 \tag{5.23}
\end{equation*}
$$

$$
\begin{align*}
& M_{B V N}=\sqrt{\left(\frac{1}{2} \cdot F_{S B} \cdot h_{3}\right)^{2}+\left(C_{V} \cdot m_{B} \cdot g \cdot \ell_{g B}\right)^{2}}+m_{B} \cdot g \cdot \ell_{g B} \tag{5.24}\\
& \mathrm{M}_{\mathrm{BVE}}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \mathrm{lg}_{\mathrm{B}} \tag{5.25}\\
& M_{B H N}=0 \tag{5.26}\\
& \mathrm{M}_{\mathrm{BHE}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \mathrm{l}_{\mathrm{g}} \mathrm{~B} \tag{5.27}
\end{align*}
$$

（2）せん断応力
支持ビーム部材に働くせん断力 $\mathrm{F}_{\mathrm{BH} \mathrm{i}}$ ， $\mathrm{F}_{\mathrm{BV} \text { i }}$ により支持ビーム部材に生じるせん断応力 τ_{f} は，（5．28）式より求める。

$$
\begin{equation*}
\tau_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{BHi}}}{\mathrm{~A}_{\mathrm{BH}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{BVi}}}{\mathrm{~A}_{\mathrm{BV}}}\right)^{2}} \tag{5.28}
\end{equation*}
$$

支持ビーム部材に働くせん断力 $\mathrm{F}_{\mathrm{BH} \mathrm{i}}, ~ \mathrm{~F}_{\mathrm{BVi}}$ を（5．29），（5．30）及び（5．31）式によ り求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{BHN}}=0 \quad \cdots \ldots \ldots \ldots \ldots \tag{5.29}\\
& \mathrm{~F}_{\mathrm{BHE}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \ldots \tag{5.30}\\
& \mathrm{~F}_{\mathrm{BV}}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{m}_{\mathrm{B}} \cdot \mathrm{~g} \tag{5.31}
\end{align*}
$$

（3）組合せ応力
支持ビーム部材に生じる組合せ応力 σ_{fa} は，（5．32）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{fa}}=\sqrt{\sigma_{\mathrm{ft}}{ }^{2}+3 \cdot \tau_{\mathrm{f}}^{2}} \tag{5.32}
\end{equation*}
$$

5．4．4 支持ビーム基礎ボルトの応力
地震時に，支持ビームに働く軸力 F_{Ei} ，せん断力 $\mathrm{F}_{\mathrm{BHi} i}, ~ \mathrm{~F}_{\mathrm{BVi}}$ 及び曲げモーメントM BHi， $\mathrm{M}_{\mathrm{BV} \text { i }}$ が，図 5－4のように負荷されるものとして支持ビーム基礎ボルトの応力を求 める。

O 2 （3） $\mathrm{VI}-2-4-2-3 \quad \mathrm{R} \mathrm{O}$

図 5－4 荷重状態
（1）引張応力
支持ビームに働く曲げモーメント $\mathrm{M}_{\mathrm{BVi}}$ ， $\mathrm{M}_{\mathrm{BHi}}$ により生じる支持ビーム基礎ボ ルト 1 本当たりの引張力 $N_{p m}$ 及び，支持ビームに働く軸力 $\mathrm{F}_{\mathrm{E} i \mathrm{i}}$ により支持ビーム基礎ボルトに生じる引張応力 σ_{b} は，（5．33）式より求める。

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{N}_{\mathrm{pm}}}{\mathrm{~A}_{\mathrm{b}}}+\frac{\mathrm{F}_{\mathrm{Ei}}}{\mathrm{n}_{\mathrm{B}} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.33}
\end{equation*}
$$

ここで，支持ビーム基礎ボルト 1 本当たりの最大引張力 N_{pm} は，（5．34）式より求 める。

$$
\begin{equation*}
\mathrm{N}_{\mathrm{pm}}=\frac{\ell_{9} \cdot \mathrm{M}_{\mathrm{BHi}}}{\mathrm{n}_{9} \cdot{\ell_{9}}^{2}+\mathrm{n}_{10} \cdot \ell_{10}{ }^{2}}+\frac{\ell_{11} \cdot \mathrm{M}_{\mathrm{BV} \mathrm{i}}}{\mathrm{n}_{11} \cdot{\ell_{11}}^{2}+\mathrm{n}_{12} \cdot{\ell_{12}}^{2}} \tag{5.34}
\end{equation*}
$$

支持ビームに働く軸力 F_{Ei} 及び曲げモーメント $\mathrm{M}_{\mathrm{BHi}}, ~ \mathrm{M}_{\mathrm{BVi}}$ を（5．35），（5．36）， （5．37），（5．38），（5．39）及び (5.40) 式により求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{EN}}=\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{SB}}+\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \tag{5.35}\\
& \mathrm{~F}_{\mathrm{EE}}=0 \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{5.36}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{BVN}}=\sqrt{\left(\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{SB}} \cdot \mathrm{~h}_{3}\right)^{2}+\left(\mathrm{C}_{\mathrm{V}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gB}}\right)^{2}}+\mathrm{m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gB}} \tag{5.37}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{BVE}}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{gB}} \tag{5.38}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{BHN}}=0 \tag{5.39}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{BHE}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{g} \mathrm{~B}} \tag{5.40}
\end{equation*}
$$

（2）せん断応力
支持ビームに働くせん断力 $\mathrm{F}_{\text {BHi }}$ ， $\mathrm{F}_{\text {BVi }}$ により支持ビーム基礎ボルトに生じるせ ん断応力 $\tau_{\text {b は，}}$（5．41）式より求める。

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{BHi}}{ }^{2}+\mathrm{F}_{\mathrm{BVi}}{ }^{2}}}{\mathrm{n}_{\mathrm{B}} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.41}
\end{equation*}
$$

支持ビームに働くせん断力 $\mathrm{F}_{\mathrm{BHi}}, ~ \mathrm{~F}_{\text {BVi }}$ を (5.42) ，（5．43）及び (5.44) 式により求 める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{BHN}}=0 \quad \cdots \cdots \cdots \cdots \cdots \tag{5.42}\\
& \mathrm{~F}_{\mathrm{BHE}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m}_{\mathrm{B}} \cdot \mathrm{~g} \cdots \tag{5.43}\\
& \mathrm{~F}_{\mathrm{BV} \mathrm{i}}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{m}_{\mathrm{B}} \cdot \mathrm{~g} \tag{5.44}
\end{align*}
$$

5.5 計算条件

応力計算に用いる計算条件は，本計算書の【制御棒•破損燃料貯蔵ラックの耐震性について の計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 部材の応力評価

5．4．1項及び5．4．3項で求めた各部材の引張応力 $\sigma \mathrm{ft}$ 及び組合せ応力 $\sigma \mathrm{fa}$ が，許容引張応力 f_{t} 以下であること。

また，5．4．1項及び5．4．3項で求めた各部材のせん断応力 $\tau{ }_{\mathrm{f}}$ が，許容せん断応力 f_{s} 以下 であること。
ただし，f_{t} 及び f_{s} は下表による。

許容引張応力 f_{t}	$\frac{\mathrm{F}}{1.5} \cdot 1.5^{* 1}$	基準地震動 S s 設計用地震動 S d
又は静的震度		

注記 $* 1$ ： ニウム合金継目無管」の引張強さと降伏点（0．2 \％耐力）の値を用いて，設計•建設規格 SSB－3121．1 及び SSB－3121．3 に準じて求める。

5．6．2 基礎ボルトの応力評価

5．4．2 項及び 5．4．4 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ が，次式より求めた許容引張応力 f_{t} 以下であること。

また，5．4．2 項及び5．4．4項で求めた基礎ボルトのせん断応力 τ ьが，せん断力のみを受 ける基礎ボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下であること。

$$
\begin{equation*}
f_{\mathrm{ts}}=1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}} \tag{5.45}
\end{equation*}
$$

かつ

$$
\begin{equation*}
f_{\mathrm{t} \mathrm{~s}} \leqq f_{\mathrm{too}} \tag{5.46}
\end{equation*}
$$

ただし，f_{t} o及び $f_{\mathrm{s} \text { b }}$ は下表による。

	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
許容引張応力 $f_{\mathrm{t} \text { o }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果
6.1 設計基準対象施設としての評価結果

ラックの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足し ており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は，基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足したため，弾性設計用地震動S d 及び静的震度による発生値の算出を省略した。

6．2 重大事故等対処設備としての評価結果
ラックの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【制御棒•破損燃料貯蔵ラックの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震設計上の重要度分類	据付場所及び床面高さ （m）	方向	固有周期(s)		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鋁直方向	水平方向	鉛直方向			
制御棒•破損燃料貯蔵ラック	S	原子炉建屋OP． $33.20^{* 1}$OP． $22.50^{* 2}$	N S 方向	$0.05{\text { 以下 }{ }^{*} \text { 3 }}^{\text {a }}$	0.05 以下＊3	－＊4	－＊4	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	66	－
			EW方向					$\mathrm{C}_{\mathrm{H}}=6.21$				

注記＊1：N S 方向の設計震度に適用する基準床レベルを示す。
＊2：EW方向及び鉛直方向の設計震度に適用する基準床レベルを示す。
＊3：固有値解析により 0.05 秒以下であり，剛であることを確認した。
＊4： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。
1.2 ラック部材の応力評価に用いる要目

m $(\mathrm{~kg})$	m_{C} (kg)	m_{F} (kg)	m_{R} (kg)	m_{w} (kg)	h_{1} $(\mathrm{~mm})$	h_{2} $(\mathrm{~mm})$	A $\left(\mathrm{mm}^{2}\right)$	A_{N} $\left(\mathrm{mm}^{2}\right)$	A_{E} $\left(\mathrm{mm}^{2}\right)$	Z_{N} $\left(\mathrm{mm}^{3}\right)$	Z_{E} $\left(\mathrm{mm}^{3}\right)$
							4.589×10^{4}	2.294×10^{4}	2.294×10^{4}	3.885×10^{6}	1.152×10^{7}

注記＊1：JIS H4080「アルミニウム及びアルミニウム合金継目無管」の引張強さと降伏点（ 0.2% 耐力）の値を使用する。

$$
\mathrm{O} 2 \text { (3) VI-2-4-2-3 } \quad \mathrm{R} \mathrm{O}
$$

$\underset{(\mathrm{kg})}{\mathrm{m}}$	$\begin{aligned} & \mathrm{m}_{\mathrm{C}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{F}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{R}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{w}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{4} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{5} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{7} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{8} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{R}} \\ (-) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{n}_{1} \\ & (-) \end{aligned}$	$\begin{gathered} \mathrm{n}_{2} \\ (-) \\ \hline \end{gathered}$
					1639.5	1466.5	947.5	774.5	255.5	82.5	512.5	92.5	302.5	861	1． 018×10^{3}	12	2	2

n_{3} $(-)$	n_{4} $(-)$	n_{5} $(-)$	n_{6} $(-)$	n_{7} $(-)$	n_{8} $(-)$
2	2	2	2	6	6

材料	$\mathrm{S}_{\mathrm{y}}{ }^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F^{*} (MPa)

注記 $* 1$ ：最高使用温度（ $66{ }^{\circ} \mathrm{C}$ ）で算出
1.4 支持ビーム部材及び支持ビーム基礎ボルトの応力評価に用いる要目

$\begin{aligned} & \mathrm{m}_{\text {в }} \\ & (\mathrm{kg}) \end{aligned}$	$\begin{gathered} \ell_{9} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{10} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{11} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{12} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{\mathrm{g} \text { B }} \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{r} \mathrm{h}_{3} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{B}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{BH}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{BV}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{\text {в }} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{9} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{10} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{11} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{12} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{BH}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$
	230	50	280	50	315		1． 018×10^{3}	7． 000×10^{3}	3.215×10^{3}	3.097×10^{3}	4	2	2	2	2	5． 167×10^{4}

Z_{BV} $\left(\mathrm{mm}^{3}\right)$
3.523×10^{5}

	材料	$\mathrm{S}_{\mathrm{y}}{ }^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F^{*} (MPa)
支持ビーム 部材	SUS304	188	205	479	205	205
支持ビーム 基礎ボルト						
注記＊1：最高使用温度（ $\left.66{ }^{\circ} \mathrm{C}\right)$ で算出						

1.5 計算数値

1．5．1 ラック部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り $\mathrm{oft}_{\text {f }}$	－	－	24	76
	せん断 $\tau_{\text {f }}$	－	－	5	17
	組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	26	82

1．5．2 支持ビーム部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
SUS304	引張り $\mathrm{oft}^{\text {f }}$	－	－	30	29
	せん断 $\mathrm{\tau}_{\mathrm{f}}$	－	－	1	2
	組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	30	30

1．5．3 ラック基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り σ b	－	－	15	99
	せん断 τ b	－	－	5	31

1．5．4 支持ビーム基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り $\sigma_{\text {b }}$	－	－	26	4
	せん断 τ b	－	－	1	2

1．6 応力

1．6．1 ラック部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{\mathrm{ft}}=76^{*}$	$f_{\mathrm{t}}=108$	$\sigma_{\mathrm{ft}}=76$	$f_{\mathrm{t}}=108$
	せん断	$\tau_{\mathrm{f}}=17^{*}$	$f_{\mathrm{s}}=62$	$\tau_{\mathrm{f}}=17$	$f_{\mathrm{s}}=62$
	組合せ	$\sigma_{\mathrm{fa}}=82^{*}$	$f_{\mathrm{t}}=108$	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=108$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。

1．6．2 支持ビーム部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
SUS304	引張り	$\sigma_{\mathrm{ft}}=30^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{ft}}=30$	$f_{\mathrm{t}}=205$
	せん断	$\tau_{\mathrm{f}}=1^{*}$	$f_{\mathrm{s}}=118$	$\tau_{\mathrm{f}}=1$	$f_{\mathrm{s}}=118$
	組合せ	$\sigma_{\mathrm{fa}}=30^{*}$	$f_{\mathrm{t}}=205$	$\sigma_{\mathrm{fa}}=30$	$f_{\mathrm{t}}=205$

注記 $*$ ：基準地震動 S s による算出応力の値
すべて許容応力以下である。

1．6．3 ラック基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{\mathrm{b}}=99^{* 1}$	$f_{\mathrm{ts}}=455 * 2$	$\sigma_{\mathrm{b}}=99$	$f_{\mathrm{ts}}=455 * 2$
	せん断	$\tau_{\mathrm{b}}=31^{* 1}$	$f_{\mathrm{s} \mathrm{b}}=350$	$\tau_{\mathrm{b}}=31$	$f_{\text {s b }}=350$

注記＊ 1 ：基準地震動 S s による算出応力の値
$* 2: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t} \text { o }}\right]$ より算出
すべて許容応力以下である。

1．6．4 支持ビーム基礎ボルトに生じる応力
（単位：MPa）

材料	応力の種類	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	$\sigma_{\mathrm{b}}=26^{* 1}$	$f_{\mathrm{ts}}=455^{* 2}$	$\sigma_{\mathrm{b}}=26$	$f_{\mathrm{ts}}=455^{* 2}$
	せん断	$\tau_{\mathrm{b}}=1^{* 1}$	$f_{\mathrm{s} \mathrm{b}}=350$	$\tau_{\mathrm{b}}=1$	$f_{\text {s b }}=350$

注記 $* 1$ ：基準地震動 S s による算出応力の値
$* 2: f_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{t} \text { o }}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{t} \text { o }}\right]$ より算出
すべて許容応力以下である。

【制御棒•破損燃料貯蔵ラックの耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	方向	固有周期(s)		弾性設計用地震動S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向			
	常設耐震／防止常設／緩和	原子炉建屋 OP．33．20＊1 0P． $22.50 * 2$	NS 方向	$0.05{\text { 以下 }{ }^{*} \text { 3 }}^{\text {a }}$	0． 05 以下＊${ }^{\text {＊}}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.56$	－	100	－
			EW方向					$\mathrm{C}_{\mathrm{H}}=6.21$				

注記＊1：N S 方向の設計震度に適用する基準床レベルを示す。
＊2：EW方向及び鉛直方向の設計震度に適用する基準床レベルを示す。
＊3：固有値解析により 0.05 秒以下であり，剛であることを確認した。

注記＊1：JIS H4080「アルミニウム及びアルミニウム合金継目無管」の引張強さと降伏点（ 0.2% 耐力）の値を使用する。
2.3 ラック基礸ボルトの応力評価に用いる要目

$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{C}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{m}_{\mathrm{F}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{m}_{\mathrm{R}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{w}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{4} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{5} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{6} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{7} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{8} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{\mathrm{gN}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{gE}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{n}_{\mathrm{R}} \\ (-) \end{gathered}$	$\begin{aligned} & \mathrm{n}_{1} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{2} \\ & (-) \end{aligned}$
					1639.5	1466.5	947.5	774.5	255.5	82.5	512.5	92.5	302.5	861	1． 018×10^{3}	12	2	2

n_{3} $(-)$	n_{4} $(-)$	n_{5} $(-)$	n_{6} $(-)$	n_{7} $(-)$	n_{8} $(-)$
2	2	2	2	6	6

注記 $* 1$ ：最高使用温度（ $100{ }^{\circ} \mathrm{C}$ ）で算出
2.4 支持ビーム部材及び支持ビーム基礎ボルトの応力評価に用いる要目

$\begin{array}{r} \mathrm{m}_{\mathrm{B}} \\ (\mathrm{~kg}) \end{array}$	$\begin{gathered} l_{9} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{10} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{11} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{12} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{\mathrm{g} \text { B }} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{array}{r} \mathrm{h}_{3} \\ (\mathrm{~mm}) \end{array}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{B}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{BH}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{BV}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{n}_{\text {в }} \\ (-) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{n}_{9} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{10} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{n}_{11} \\ & (-) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{n}_{12} \\ & (-) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{BH}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$
	230	50	280	50	315		1． 018×10^{3}	7． 000×10^{3}	3． 215×10^{3}	3． 097×10^{3}	4	2	2	2	2	5.167×10^{4}

$Z_{B V}$ $\left(\mathrm{~mm}^{3}\right)$
3.523×10^{5}

	材料	$\mathrm{S}_{\mathrm{y}}^{* 1}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{RTT})$ (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{* 1}$ (MPa)	F (MPa)	F^{*} (MPa)
支持ビーム 部材	SUS 304	171	205	441	205	205
支持ビーム 基礎ボルト						
注記 $* 1$ ：最高使用温度 $\left(100{ }^{\circ} \mathrm{C}\right)$ で算出						

2.5 計算数値

2．5．1 ラック部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り $\mathrm{ff} \mathrm{t}^{\text {d }}$	－	－	24	76
	せん断 $\tau_{\text {f }}$	－	－	5	17
	組合せ $\sigma_{\text {f a }}$	－	－	26	82

2．5．2 支持ビーム部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
SUS304	引張り $\sigma_{\text {f t }}$	－	－	30	29
	せん断 $\tau_{\text {f }}$	－	－	1	2
	組合せ $\mathrm{Of} \mathrm{a}^{\text {a }}$	－	－	30	30

2．5．3 ラック基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り $\sigma_{\text {b }}$	－	－	15	99
	せん断 τ b	－	－	5	31

2．5．4 支持ビーム基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		N S 方向	EW方向	N S 方向	EW方向
	引張り ${ }_{\text {d }}$	－	－	26	4
	せん断 τ b	－	－	1	2

2.6 応力

2．6．1 ラック部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	－	－	$\sigma_{\mathrm{ft}}=76$	$f_{\mathrm{t}}=108$
	せん断	－	－	$\tau_{\mathrm{f}}=17$	$f_{\mathrm{s}}=62$
	組合せ	－	－	$\sigma_{\mathrm{fa}}=82$	$f_{\mathrm{t}}=108$

すべて許容応力以下である。

2．6．2 支持ビーム部材に生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
SUS304	引張り	－	－	$\sigma_{\mathrm{ft}}=30$	$f_{\mathrm{t}}=205$
	せん断	－	－	$\tau_{\mathrm{f}}=1$	$f_{\mathrm{s}}=118$
	組合せ	－	－	$\sigma_{\mathrm{fa}}=30$	$f_{\mathrm{t}}=205$

すべて許容応力以下である。

2．6．3 ラック基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	-	-	$\sigma_{\mathrm{b}}=99$	$f_{\mathrm{t} \mathrm{s}}=444^{*}$
	せん断	-	-	$\tau_{\mathrm{b}}=31$	$f_{\mathrm{s} \mathrm{b}}=341$

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

2．6．4 支持ビーム基礎ボルトに生じる応力
（単位：MPa）

材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
		算出応力	許容応力	算出応力	許容応力
	引張り	－	－	$\sigma_{\mathrm{b}}=26$	$f_{\mathrm{ts}}=444^{*}$
	せん断	－	－	$\tau_{\mathrm{b}}=1$	$f_{\text {s b }}=341$

注記 $*: f_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

VI－2－4－2－4 使用済燃料プール水位／温度（ガイドパルス式）の耐震性に ついての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 4
2．4 記号の説明 5
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．検出器の評価 8
4.1 検出器の地震応答解析及び構造強度評価。 8
4．1．1 検出器の地震応答解析及び構造強度評価方法 8
4．1．2 検出器の荷重の組合せ及び許容応力 8
 11
4．1．4 検出器の固有周期 13
4．1．5 検出器の設計用地震力 14
4．1．6 検出器の計算方法 15
4．1．7 検出器の計算条件 15
4．1．8 検出器の応力の評価 15
5．検出器架台の評価 16
5.1 検出器架台の固有周期 16
5．1．1 検出器架台の固有値解析方法• 16
5．1．2 検出器架台の解析モデル及び諸元 16
5．1．3 検出器架台の固有値解析結果• 17
5．2 検出器架台の構造強度評価 18
5．2．1 検出器架台の構造強度評価方法． 18
5．2．2 検出器架台の荷重の組合せ及び許容応力• 18
5．2．3 検出器架台の設計用地震力 20
5．2．4 検出器架台の計算方法 21
5．2．5 検出器架台の計算条件 25
5．2．6 検出器架台の応力の評価． 25
6．機能維持評価 26
6．1 電気的機能維持評価方法 26
7．評価結果 27
7.1 重大事故等対処設備としての評価結果 27

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール水位／温度（ガイドパルス式）が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

使用済燃料プール水位／温度（ガイドパルス式）は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては，常設重大事故防止設備及び常設重大事故緩和設備に分類 される。以下，重大事故等対処施設としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

使用済燃料プール水位／温度（ガイドパルス式）の構造計画を表2－1に示す。

表 2－1 構造計画

2．2 評価方針

使用済燃料プール水位／温度（ガイドパルス式）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す使用済燃料プール水位／温度（ガイドパルス式）の部位を踏まえ「3．評価部位」にて設定する箇所において，検出器については「4．1．3 検出器の解析モデル及び諸元」及び「4．1．4 検出器の固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．1 検出器の地震応答解析及び構造強度評価」にて示す方法 にて確認することで実施し，検出器架台については「5．1 検出器架台の固有周期」で算出し た固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．2 検出器架台の構造強度評価」にて示す方法にて確認することで実施する。また，使用済燃料プール水位／温度（ガイドパルス式）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果 を「7．評価結果」に示す。

使用済燃料プール水位／温度（ガイドパルス式）の耐震評価フローを図2－1に示す。

図 2－1 使用済燃料プール水位／温度（ガイドパルス式）の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会2005／2007） （以下「設計•建設規格」という。）

記号	記号の説明	単位
A_{b}	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
d 。	検出器保護管外径	mm
d_{i}	検出器保護管内径	mm
E	縦弾性係数	MPa
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133 に定める値	MPa
F_{b}	基礎ボルトに作用する引張力（1本当たり）	N
F_{x}	検出器取付部における水平方向荷重	N
F $\times 1$	地震力における水平方向荷重	N
$\mathrm{F}_{\times 11}$	地震力におけるX方向荷重	N
F×12	地震力におけるY方向荷重	N
F_{z}	検出器取付部における鉛直方向荷重	N
$\mathrm{F}_{\mathrm{xB}}{ }^{\text {b }}$	検出器取付部に作用する力（水平方向）	N
$\mathrm{F}_{\mathrm{z}} \mathrm{B}$	検出器取付部に作用する力（鉛直方向）	N
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$\mathrm{f}_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{1}	検出器架台の据付面から重心までの距離	mm
h 2	検出器取付部から検出器架台の重心までの鉛直方向距離	mm
ℓ_{1}	検出器架台の重心と基礎ボルト間の水平方向距離	mm
ℓ_{2}	検出器架台の重心と基礎ボルト間の水平方向距離	mm
$\ell_{\text {b }}$	検出器取付部中心から重心までの水平方向距離	mm
$\ell_{\text {p }}$	検出器長さ	mm
M_{x}	検出器架台の重心における検出器取付部から作用するモーメント （X軸回り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	検出器架台の重心における検出器取付部から作用するモーメント （Y軸回り）	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{mb}_{\mathrm{b}} 1$	検出器架台質量	kg
mb_{b}	検出器架台梁質量	kg
m_{p}	検出器質量	kg
m_{w}	検出器内包水質量	kg
n	基礎ボルトの本数	－

記号	記号の説明	単位
n_{f}	評価上引張力を受けるとして期待する基礎ボルトの本数	－
Q ${ }_{\text {b }}$	基礎ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9 に定める値	MPa
Sy	設計•建設規格 付録材料図表 Part5 表8 に定める値	MPa
S_{y}（R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の	MPa
	$40^{\circ} \mathrm{C}$ における値	
π	円周率	－
σ b	基礎ボルトに生じる引張応力	MPa
σ_{p}	検出器に生じる曲げ応力	MPa
$\sigma_{\mathrm{p} 1}$	地震力における曲げ応力	MPa
$\sigma_{\text {p } 11}$	地震力における軸応力	MPa
Opl 12	検出器に生じる組合せ応力	MPa
$\sigma_{\mathrm{p} 2}$	死荷重における軸応力	MPa
$\tau_{\text {b }}$	基礎ボルトに生じるせん断応力	MPa
v	ポアソン比	－
X	EW方向	－
Y	N S 方向	－
Z	鉛直方向	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
刺激係数	-	小数点以下第 4 位	四捨五入	小数点以下第 3 位
温度	${ }^{\circ} \mathrm{C}$	-	-	－
質量	mg		-	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値 とする。

3．評価部位

使用済燃料プール水位／温度（ガイドパルス式）の耐震評価は，検出器とそれを支持する検出器架台について評価を行う。

検出器については，「4．1 検出器の地震応答解析及び構造強度評価」に示す条件に基づき評価 を実施する。また，検出器架台については，「5．2 検出器架台の構造強度評価」に示す条件に基 づき，耐震評価上厳しくなる基礎ボルトについて評価を実施する。

使用済燃料プール水位／温度（ガイドパルス式）の耐震評価部位については，表2－1の概略構造図に示す。

4．検出器の評価
4.1 検出器の地震応答解析及び構造強度評価

4．1．1 検出器の地震応答解析及び構造強度評価方法
（1）地震力は，検出器に対して水平方向及び鉛直方向から作用するものとする。
（2）曲げの変形モードを考慮する。
（3）計算に用いる寸法は，公称値を使用する。

4．1．2 検出器の荷重の組合せ及び許容応力
4．1．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール水位／温度（ガイドパルス式）検出器の荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．1．2．2 検出器の許容応力
使用済燃料プール水位／温度（ガイドパルス式）検出器の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．1．2．3 検出器の使用材料の許容応力評価条件
使用済燃料プール水位／温度（ガイドパルス式）検出器の使用材料の許容応力評価条件のらち，重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	使用済燃料 貯蔵設備	使用済燃料プール水位温度（ガイドパルス式）	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
核燃料物質の 取扱施設及び貯蔵施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \\ \mathrm{I}_{\mathrm{A}} \mathrm{~S} \text { の許容限界 } \\ \text { を用いる。) } \end{gathered}$

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

許容応力状態	許容限界＊1，＊2 （ボルト等以外）				
	一次応力				
	引張	せん断	圧縮	曲げ	組合せ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$	$1.5 \cdot \mathrm{ff}_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{ff}_{\mathrm{b}}$＊	$1.5 \cdot \mathrm{ft}_{t}$＊
$\begin{gathered} \mathrm{V}_{A} S \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \\ \hline \end{gathered}$					

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
検出器		周囲環境温度		$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	

4．1．3 検出器の解析モデル及び諸元
使用済燃料プール水位／温度（ガイドパルス式）検出器の解析モデルを図4－1に，解析モデルの概要を以下に示す。また，機器の諸元を【使用済燃料プール水位／温度（ガ イドパルス式）（G41－LE201，TE202，TE203）の耐震性についての計算結果】の機器要目 に示す。
（1）使用済燃料プール水位／温度（ガイドパルス式）検出器は，図4－1に示す 3 次元管 モデルとして考える。
（2）拘束条件は，検出器 \square ，
固定する。
（3）円柱形状の検出器に含まれる水の質量及び水中の機器の形状により排除される検出器周囲の流体の質量である付加質量を考慮し，水の質量及び付加質量は，検出器の全長にわたつて水平方向に等分布に与えられる。
（4）解析コードは，「 A N S Y S 」を使用し，固有値及び応力を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
\square
図4－1 検出器の解析モデル

4．1．4 検出器の固有周期

検出器の固有値解析の結果を表 4－4 に，振動モード図を図 4－2 に示す。固有周期は，
0.05 秒を超えており，柔構造であることを確認した。鉛直方向は，16次モード以降で卓越し，固有周期は 0.05 秒以下であり剛であることを確認した。

表4－4 検出器の固有周期

モード	固有周期 （s）	卓越方向	水平方向刺激係数＊		鉛直方向 刺激係数＊
			X方向	Y方向	
1次		水平			
2次		水平			
3 次		水平			
4次		水平			
5 次		水平	－	－	－
6次		水平	－	－	－
7 次		水平	－	－	－
8次		水平	－	－	－
9次		水平	－	－	－
10次		水平	－	－	－
11次		水平	－	－	－
12次		水平	－	－	－
13次		水平	－	－	－
14次		水平	－	－	－
15次		水平	－	－	－
16次		鉛直	－	－	－

注記＊：刺激係数は，モード質量を正規化し，固有値ベクトルと質量マトリックスの積から算出し た値を示す。

図4－2 検出器振動モード図

4．1． 5 検出器の設計用地震力

耐震評価に用いる設計用地震力を表 4－5 に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－5 検出器の評価に用いる設計用地震力（重大事故等対処施設）

据付場所 及び	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		減衰定数 （\％）	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向 設計震度	水平方向設計震度	鉛直方向 設計震度	水平 方向	鉛直 方向
原子炉建屋 0．P．33． 20 ＊1			－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=2.65 \\ \text { 又は*2 } \end{gathered}$	$\mathrm{C}_{\mathrm{V}}=1.77$	1.0	－

注記 $*^{1}$ ：基準床レベルを示す。
＊2：基準地震動 S s に基づく設計用床応答曲線より得られる値

4．1．6 検出器の計算方法

4．1．6．1 地震力における応力の算出
（1）図4－1に示す解析モデルによりスペクトルモーダル解析を実施する。
（2）スペクトルモーダル解析によりX及びY方向における各節点の曲げモーメントを算出する。また，X及びY方向の曲げモーメントは，S R S S 法を用いて組み合わせ る。
（3）組み合わせた曲げモーメントを用いて，検出器の水平方向に発生する曲げ応力を算出する。算出結果を表4－6に示す。

（4）静的解析により検出器の Z 方向に発生する軸応力を算出する。
（5）水平方向の曲げ応力に Z 方向の軸応力を S R S S 法を用いて組み合わせる。

4．1．8 検出器の応力の評価

4．1．6．1項で求めた検出器に生じる応力は，設計•建設規格 付録材料図表 Part5 表8に定める使用材料の設計降伏点 S_{y} 以下であること。

5．検出器架台の評価

5.1 検出器架台の固有周期

5．1．1 検出器架台の固有値解析方法
使用済燃料プール水位／温度（ガイドパルス式）検出器架台の固有値解析方法を以下に示す。
（1）使用済燃料プール水位／温度（ガイドパルス式）検出器架台は「5．1．2 検出器架台の解析モデル及び諸元」に示すシェル要素及びソリッド要素として考える。

5．1．2 検出器架台の解析モデル及び諸元

使用済燃料プール水位／温度（ガイドパルス式）検出器架台の解析モデルを図 5－1 に，解析モデルの概要を以下に示す。機器の諸元を本計算書の【使用済燃料プール水位／温度 （ガイドパルス式）（G41－LE201，TE202，TE203）の耐震性についての計算結果】の機器要目に示す。
（1）拘束条件として，基礎ボルト部で X Y Z 方向を固定する。
（2）解析コードは「ANS Y S 」を使用し，固有値を求める。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 5－1 検出器架台の解析モデル

5．1．3 検出器架台の固有値解析結果

検出器架台の固有値解析結果を表5－1 に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり剛であることを確認し た。

表5－1 検出器架台の固有周期

モード	固有周期 （ s ）	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Y 方向	
1次		鉛直	－	－	－

5.2 検出器架台の構造強度評価

5．2．1 検出器架台の構造強度評価方法
5．1．2項（1）のほか，次の条件で計算する。
（1）地震力は，使用済燃料プール水位／温度（ガイドパルス式）検出器架台に対して水平方向及び鉛直方向から作用するものとする。
（2）「4．1．6 検出器の計算方法」に示す検出器の解析により得られた検出器取付部における荷重を，基礎ボルトの応力計算において組み合わせて評価するものとする。
（3）検出器架台の質量は，重心に集中するものとする。
（4）検出器架台の重心位置については，計算条件が厳しくなる位置に重心を設定するものと する。
（5）検出器架台の転倒方向は，図 5－2 及び図 5－3 に示す左右方向及び前後方向について検討 し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（6）計算に用いる寸法は，公称値を使用する。

5．2．2 検出器架台の荷重の組合せ及び許容応力
5．2．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール水位／温度（ガイドパルス式）検出器架台の荷重の組合せ及び許容応力状態のらち，重大事故等対処設備の評価に用いるものを表4－1 に示す。

5．2．2．2 検出器架台の許容応力
使用済燃料プール水位／温度（ガイドパルス式）検出器架台の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－2 のとおりとする。

5．2．2．3 検出器架台の使用材料の許容応力評価条件

使用済燃料プール水位／温度（ガイドパルス式）検出器架台の使用材料の許容応力評価条件のらち，重大事故等対処設備の評価に用いるものを表 5－3 に示す。

表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV }{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト		周囲環境温度		$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	

5．2．3 検出器架台の設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 検出器架台の評価に用いる設計用地震力（重大事故等対処施設）

据付場所 及び	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 33.20^{* 1} \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$

注記 $~ 1 ~ 1 ~: ~$ 基準床レベルを示す。
＊2：固有値解析により 0.05 秒以下であり剛であることを確認した。

5．2．4 検出器架台の計算方法

5．2．4．1 地震力における応力の算出
（1）検出器の地震応答解析により得られた検出器取付部におけるX及びY方向の荷重を用いる。
（2）地震力におけるそれぞれの X及びY方向の荷重をS R S S 法を用いて水平方向荷重 を算出する。算出結果を表5－5に示す。

表5－5 地震力における水平方向荷重（単位：N）

（3）検出器は鉛直方向において剛構造であることから，取付床面高さにおける鉛直方向設計震度を用いて検出器取付部における鉛直方向荷重を算出する。
（4）地震における鉛直方向荷重及び死荷重の最大値を絶対値和することにより，検出器取付部における鉛直方向荷重を算出する。検出器取付部における荷重の算出結果を表5－6に示す。

5．2．4．2 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度，検出器が架台の取付け部にもたらす荷重か ら算出された転倒モーメントにより生じる引張力とせん断力について計算する。

（1）引張応力

基礎ボルトに対する引張力は最も厳しい条件として，図5－2及び図5－3で最外列の基礎ボルトを支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものと して計算する。

引張力
左右方向（計算モデル図5－2の場合）

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{m}_{\mathrm{b} 1} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{1}-\mathrm{m}_{\mathrm{b} 1} \cdot \mathrm{~g} \cdot\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot \ell_{1}+\mathrm{M}_{\mathrm{x}}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.2,4.2.1}
\end{equation*}
$$

前後方向（計算モデル図 5－3 の場合）

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{m}_{\mathrm{b} 1} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{1}-\mathrm{m}_{\mathrm{b} 1} \cdot \mathrm{~g} \cdot\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot \ell_{1}+\mathrm{M}_{\mathrm{y}}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.2.4.2.2}
\end{equation*}
$$

ここで，水平及び鉛直方向の検出器取付部に作用する力 $\mathrm{F}_{\mathrm{x}} \mathrm{B}$ 及び $\mathrm{F}_{\mathrm{z}} \mathrm{B}$ は次式で求 める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{xB}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~m}_{\mathrm{b} 2}+\mathrm{F}_{\mathrm{x}} \tag{5.2.4.2.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{F}_{\mathrm{zB}}=\left(\mathrm{C}_{\mathrm{V}}-1\right) \cdot \mathrm{g} \cdot \mathrm{~m}_{\mathrm{b} 2}+\mathrm{F}_{\mathrm{z}} \tag{5,2,4.2,4}
\end{equation*}
$$

また，検出器架台の重心における検出器取付部から作用するX軸及びY軸周りのモ ーメント M_{x} 及び M_{y} は次式で求める。

$$
\mathrm{M}_{\mathrm{x}}=\mathrm{F}_{\mathrm{zB}} \cdot \ell_{1}+\mathrm{F}_{\mathrm{xB}} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)
$$

$$
\begin{equation*}
\mathrm{M}_{\mathrm{y}}=\mathrm{F}_{\mathrm{zB}} \cdot\left(l_{\mathrm{b}}+\ell_{2}\right)+\mathrm{F}_{\mathrm{xB}} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right) \tag{5.2.4.2.5}
\end{equation*}
$$

引張応力
$\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
（5．2．4．2．7）
ここで，基礎ボルトの軸断面積 A_{b} は次式で求める。

$$
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
$$

（5．2．4．2．8）
（2）せん断応力
基礎ボルトに対するせん断力は基礎ボルト全本数で受けるものとして計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{m}_{\mathrm{b} 11} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}}+\mathrm{F}_{\mathrm{xB}} \tag{5.2.4.2.9}
\end{equation*}
$$

せん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

（5．2．4．2．10）

5．2．5 検出器架台の計算条件

応力計算に用いる計算条件は，本計算書の【使用済燃料プール水位／温度（ガイドパル ス式）（G41－LE201，TE202，TE203）の耐震性についての評価結果】の設計条件及び機器要目に示す。

5．2．6 検出器架台の応力の評価
5．2．6．1 基礎ボルトの応力評価
5．2．4 項で求めた基礎ボルトの引張応力 σ b は次式より求めた許容引張応力 $\mathrm{f}{ }_{\mathrm{t}}$ 以下であること。ただし，f toは下表による。

せん断応力 τ bはせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であ ること。ただし，f sbは下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 f ${ }_{\mathrm{t}}$ 。	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法

使用済燃料プール水位／温度（ガイドパルス式）の電気的機能時評価について以下に示す。 なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づ き，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール水位／温度（ガイドパルス式）の機能確認済加速度は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき，同型式の構成部位のランダム波加振試験により電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1 に示す。

表 6－1 機能碓認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール水位 $/$ 温度（ガイドパ ルス式） （G41－LE201，TE202，TE203）	水平方向	
	鉛直方向	

7．評価結果

7.1 重大事故等対処設備としての評価結果

使用済燃料プール水位／温度（ガイドパルス式）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次ページ以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次ページ以降の表に示す。

【使用済燃料プール水位／温度（ガイドパルス式）（G41－LE201，TE202，TE203）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 検出器

機 器 名 称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
```使用斎燃料プール水位/ 温度(ガイドパルス式) (G41-LE201, TE202, TE203)```	常設／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. 33. } 20^{* 1} \end{aligned}$			－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=2.65 \\ \text { 又は*2 } \end{gathered}$	$\mathrm{C}_{\mathrm{v}}=1.77$	

注記＊1：基準床レベルを示す。
＊2：基準地震動 S s に基づく設計用床応答スペクトルより得られる値


E   $(\mathrm{MPa})$	$v$   $(-)$	要素数   （個）	節点数   （個）

No

モード	固有周期	卓越方向
1 次		水平
2 次		水平
3 次		水平
4 次		水平
5 次		水平
6 次		水平
7 次		水平
8 次		水平
9 次		水平
10 次		水平
11 次		水平
12 次		水平
13 次		水平
14 次		水平
15 次		水平
16 次		鉛直

1．1．4 計算数値
1．1．4．1 検出器に生じる応力

（単位：MPa）					
方向	地震力における曲げ応力	地震力における軸応力	死荷重における軸応力	検出器に生じる曲げ応力	検出器に生じる組合せ応力
X 方向					
Y 方向					
Z 方向					
水平方向					
3 方向					


			固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
機 器 名 称	設備分類	据付場所及び東面高 」   （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度	
```使用斎燃料プール水位/温 度(ガイドパルス式) (G41-LE201, TE202, TE203)```	常設／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } 33.20^{* 1} \end{aligned}$	$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$		－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	

注記 $* 1$ ：基準床レベルを示す。
＊ 2 ：固有値解析により 0.05 秒以下であり剛であることを確認した。

注記＊：基礎ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，
下段は前後方向転倒に対する評価時の要目を示す。

						転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\left.\mathrm{S}_{\mathrm{y}}^{\mathrm{y}} \mathrm{mPRa}\right)_{(\mathrm{RP})}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用地震動 Sd又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$
基礎ボルト	174	472	205	205	205	－	前後方向

E (MPa)	v $(-)$	要素数 （固）	節点数 （個）	

1．2．3 計算数値

1.3 結論

1．3．1 使用済燃料プール水位ノ温度（ガイドパルス式）の応力

部 材	材 料	応力	弾性設計用地震動 ${ }^{\text {a }}$ d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
検出器		曲げ	－	－	$\sigma_{\mathrm{p}}=125$	$\mathrm{S}_{\mathrm{y}}=169$
基礎ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=21$	$\mathrm{f}_{\mathrm{ts}}=123$＊
		せん断	－	－	$\tau_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{sb}}=94$

注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}}{ }_{\mathrm{o}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{t}}\right.$ ］より算出
すべて許容値応力以下である。

		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール水位／温度$\begin{gathered} \text { (ガイドパルス式) } \\ \text { (G41-LE201, TE202, } \\ \text { TE203) } \end{gathered}$	水平方向	2.21	
	鉛直方向	1． 47	

注記＊：基準地震動S s による定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面（左右方向）
側面（前後方向）

VI－2－4－2－5 使用済燃料プール水位／温度（ヒートサーモ式）の耐震性に ついての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 9
4． 1 固有値解析方法 9
4．2 解析モデル及び諸元 9
4.3 固有値解析結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重の組合せ及び許容応力 13
5．2．1 荷重の組合せ及び許容応力状態• 13
5．2．2 許容応力 13
5．2．3 使用材料の許容応力評価条件 13
5.3 設計用地震力 17
5.4 計算方法 18
5.5 計算条件 19
5．5．1 基礎ボルトの応力計算条件． 19
5.6 応力の評価 19
5．6．1 基礎ボルトの応力評価 19
5．6．2 検出器架台の応力評価 19
5．6．3 保護管の応力評価 20
5．6．4 ワーキングテーブルラグの応力評価． 20
6．機能維持評価 21
6． 1 電気的機能維持評価方法 21
7．評価結果 22
7.1 重大事故等対処設備としての評価結果 22

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール水位／温度（ヒートサーモ式）が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。
使用済燃料プール水位／温度（ヒートサーモ式）は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

使用済燃料プール水位／温度（ヒートサーモ式）の構造計画を表 2－1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，検出器架台，保護管，熱電対で構成される。熱電対は保護管内に 15 個内蔵され，保護管は，検出器架台と フランジにて接続する。 また，保護管は保護管 サポートに固定され，保護管サポートはワーキ ングテーブルラグに設置する。 検出器架台は，取付ボ ルトによりベースプレ ートに固定され，ベース プレートは基礎ボルト により床面に設置する。	熱電対	【使用済燃料プール水位／温度（ヒートサーモ式）】

2． 2 評価方針

使用済燃料プール水位／温度（ヒートサーモ式）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す使用済燃料プール水位／温度（ヒートサーモ式）の部位を踏まえ「3．評価部位」 にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認すること で実施する。また，使用済燃料プール水位／温度（ヒートサーモ式）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。

使用済燃料プール水位／温度（ヒートサーモ式）の耐震評価フローを図 2－1 に示す。

図 2－1 使用済燃料プール水位／温度（ヒートサーモ式）の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

記 号	記 号 の 説 明	単 位
A_{b}	基礎ボルトの軸断面積	mm^{2}
A_{c}	検出器架台の断面積	mm^{2}
A_{w}	ワーキングテーブルラグ下端の断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
d 。	保護管外径	mm
d_{i}	保護管内径	mm
F＊	設計•建設規格 SSB－3133に定める値	MPa
F ${ }_{\text {x }}$	地震応答解析による応力解析にて求められた X 軸方向に作用する力	N
F_{y}	地震応答解析による応力解析にて求められたY軸方向に作用する力	N
F_{z}	地震応答解析による応力解析にて求められた Z 軸方向に作用する力	N
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f so	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
f t 1	許容組合せ応力	MPa
1 p	保護管長さ	mm
m_{p}	質量	kg
$\mathrm{m}_{\mathrm{W} 1}$	保護管内包水質量	kg
mw 2	保護管付加質量	kg
M_{x}	地震応答解析による応力解析にて求められた X 軸方向に作用する モーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	地震応答解析による応力解析にて求められたY軸方向に作用する モーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {z }}$	地震応答解析による応力解析にて求められた Z 軸方向に作用する モーメント	$\mathrm{N} \cdot \mathrm{mm}$
n	基礎ボルトの本数	－

記 号	記 号	の	説	明	単 位
S_{u}	設計•建設規格 付録材料図表	Part5		に定める値	MPa
S_{y}	設計•建設規格 付録材料図表	Part5	表8	定める値	MPa
$\mathrm{S}_{\mathrm{y}}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 における値	Part5	表 8	定める材料の $40^{\circ} \mathrm{C}$	MPa
W	荷重				N
Z_{1}	弱軸回りの断面係数				mm^{3}
Z_{2}	強軸回りの断面係数				mm^{3}
Z p 1	ねじり断面係数				mm^{3}
$\sigma{ }_{t}$	発生引張応力				MPa
σ s	発生せん断応力				MPa
$\sigma{ }_{\mathrm{k}}$	組合せ応力				MPa

2.5 計算精度と数値の丸め方

計算精度は有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	—	整数位 $* 1$
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
使用済燃料プール水位／温度（ヒートサーモ式）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト，ワーキングテーブルラグに加え，主要部位となる検出器架台，保護管について評価を実施する。使用済燃料プール水位／温度（ヒートサ ーモ式）の耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
使用済燃料プール水位／温度（ヒートサーモ式）の固有値解析方法を以下に示す。
（1）使用済燃料プール水位／温度（ヒートサーモ式）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。
4.2 解析モデル及び諸元

使用済燃料プール水位／温度（ヒートサーモ式）の解析モデルを図 4－1 及び図 4－2 に，解析 モデルの概要を以下に示す。また機器の諸元を本計画書の【使用済燃料プール水位ノ温度（ヒ ートサーモ式）（G41－L／TE107，108，109，110，111，112，113，114，115，116，117，118，119， 120，TE121）の耐震性についての計算結果】のその他の機器要目に示す。
（1）解析モデルは，はり要素及び集中質量要素からなる三次元モデルで構築する。
（2）使用済燃料プール内の水位温度計の支持はワーキングテーブルラグを流用し，4 カ所で水平 2 方向（ X 軸 Z 軸）を拘束する。
（3）基礎部の X Y Z 方向及び回転方向を固定する。なお，基礎ボルト部は剛体として評価する。
（4）質量には，検出器架台や保護管，熱電対の質量のほか，円柱形状の保護管に含まれる水の質量及び検出器周囲の付加質量を考慮する。
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

図 4－1 解析モデル

鳥観図記号凡例

図 4－2 解析モデル（鳥観図）

4．3 固有値解析結果

固有値解析結果を表 4－1 に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 4－1 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		直方向
			Z方向	刺激係数	
1 次		水平	-	-	-

5．構造強度評価
5.1 構造強度評価方法

4．2項（1）から（5）のほか，次の条件で計算する。
（1）地震力は，使用済燃料プール水位／温度（ヒートサーモ式）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）解析コードは，「NX NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール水位／温度（ヒートサーモ式）の荷重の組合せ及び許容応力状態のう ち重大事故等対処設備の評価に用いるものを表5－1に示す。

5．2．2 許容応力
使用済燃料プール水位／温度（ヒートサーモ式）の許容応力は，添付書類「VI－2－1－9機能維持の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
使用済燃料プール水位／温度（ヒートサーモ式）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 5－3 に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記 $\boldsymbol{1}^{(1: ~ 「 ~}$ 常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）		許容限界＊1，＊2 （ボルト等以外）
	一次応力		一次応力
	引張り	せん断	引張り
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{t}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	100	212	373	-
検出器架台	SUS304	周囲環境温度	100	171	441	205
保護管	SUS316TP	周囲環境温度	100	176	476	205
ワーキング テーブルラグ	SUS304	周囲環境温度	100	171	441	205

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及 び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s	
	水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下* } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記 $* 1$ ：基準床レベルを示す。
$* 2$ ：固有値解析により 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

（1）図 4－1 及び図 4－2 に示す解析モデルにより地震応答解析を実施し，各軸方向に作用するモ ーメントを求める。
（2）解析によって得られた基礎ボルトの評価用の反力とモーメントを表 5－5 に，検出器架台の評価用の反力とモーメントを表 5－6 に，保護管の評価用の反力とモーメントを表 5－7に，ワ ーキングテーブルラグの評価用の反力とモーメントを表 5－8 に示す。

表5－5 基礎ボルト評価用反力，モーメント

対象部位	反力（N）			モーメント $(\mathrm{N} \cdot \mathrm{mm})$		
	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
基礎ボルト						

表5－6 検出器架台評価用反力，モーメント

対象部位	反力（ N ）			モーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）		
	F_{x}	F_{y}	F	$\mathrm{M}_{\text {x }}$	$\mathrm{M}_{\text {y }}$	M
検出器架台						

表 5－7 保護管評価用反力，モーメント

対象部位	反力（ N ）			モーメント（N•mm）		
	F_{x}	F ${ }_{\text {y }}$	F ${ }_{\text {z }}$	M_{x}	M_{y}	$\mathrm{M}_{\text {z }}$
保護管						

表 5－8 ワーキングテーブルラグ評価用反力，モーメント

対象部位	反力（N）			モーメント $(N \cdot m m)$		
	F_{x}	F_{y}	F_{z}	M_{x}	M_{y}	M_{z}
ワーキング テーブルラグ						

[^4]
5.5 計算条件

5．5．1 基礎ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【使用済燃料プール水位／温度（ヒートサーモ式） （G41－L／TE107，108，109，110，111，112，113，114，115，116，117，118，119，120，TE121） の耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 基礎ボルトの応力評価
基礎ボルトに生じる引張応力 $\sigma \mathrm{t}$ は次式より求めた許容引張応力 $\mathrm{f}{ }_{\mathrm{t}} \mathrm{s}$ 以下であること。 ただしftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t} 0}-1.6 \cdot \sigma_{\mathrm{s}}, \mathrm{f}_{\mathrm{to}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 $\sigma \mathrm{s}$ は，せん断力のみを受けるボルトの許容せん断応力 f s o 以下であるこ と。ただしfsoは下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t}} 0$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f so	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．6．2 検出器架台の応力評価

検出器架台に生じる組合せ応力は次式より求めた許容組合せ応力 f t t 以下であるこ と。ただしf tiは下表による。

基準地震動S s による 荷重との容組合せ合せの場合 $\mathrm{f}_{\mathrm{t} 1}$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5$

5．6．3 保護管の応力評価

保護管に生じる組合せ応力は次式より求めた許容組合せ応力 f t 1 以下であること。た だしf t 1 は下表による。

	基準地震動 S s による荷重との組合せの場合
許容組合せ応力 $\mathrm{f}_{\mathrm{t} 1}$	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

5．6．4 ワーキングテーブルラグの応力評価
ワーキングテーブルラグに生じる組合せ応力は次式より求めた許容組合せ応力 f t t 以下であること。ただし f ${ }_{\mathrm{t}}$ は下表による。

$\substack{\text { 基準地震動 } \mathrm{S} \text { s による } \\ \text { 荷重との容組合せ合せの場合 } \\ \mathrm{f}_{\mathrm{t} 1} \\ \hline}$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法

使用済燃料プール水位／温度（ヒートサーモ式）の電気的機能維持評価について以下に示 す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール水位／温度（ヒートサーモ式）の機能確認済加速度は，「VI－2－1－9 機能維持の基本方針」に基づき，加振試験により電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール水位／温度 （ヒートサーモ式） （G41－L／TE107，108，109， 110，111，112，113，114， 115，116，117，118，119， 120，TE121）	水平方向	

7．評価結果
7.1 重大事故等対処設備としての評価結果

使用済燃料プール水位／温度（ヒートサーモ式）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【使用済燃料プール水位／温度（ヒートサーモ式）（G41－L／TE107，108，109，110，111，112，113，114，115，116，117，118，119，120，TE121） の耐震性についての計算結果】
1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd洔静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール 水位 $/$ 温度 （ヒートサーモ式） （G41－L／TE107，108， $109,110,111,112,113$, $114,115,116,117,118$, 119,120, TE121）	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20^{*} 1 \end{gathered}$		$\stackrel{0.05}{\text { 以下 }} \stackrel{\text { 2 }}{ }$	- -	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	100

注記＊1：基準床レベルを示す。

N
1．2 機器要目
1．2．1 基礎ボルト

部 材	W (N)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	S y (MPa)	S_{u} (MPa)	F^{*} (MPa)
基礎ボルト		314	6	212	373	254	

1．2．2 検出器架台

部 材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T} \mathrm{)}$ (MPa)	F^{*} (MPa)
検出器架台	171	441	205	205

部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{p}} \\ & (\mathrm{~kg}) \end{aligned}$	$\mathrm{m}_{(\mathrm{wg})}$	$\begin{gathered} \mathrm{m}_{\mathrm{W}} 2 \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\circ} \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} 1 \mathrm{p} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{\text {y }}(\mathrm{RT} T) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
保護管				165.2	151.0	7620	176	476	205	205

1.2 .4 ワーキングテーブルラグ

部 材	A_{w} $\left(\mathrm{mm}^{2}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}^{(\mathrm{RPT})}(\mathrm{MPa})$	F^{*} (MPa)
ワーキングテ ーブルラグ	1000	171	441	205	205

1.3 計算数値

1.3 .1 基礎ボルトに作用する反力 \quad（単位：N）

部 材	F_{x}		F_{y}		F_{z}	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト	－		－		－	

部 材	M_{x}		M y		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－		－	

部 材	F_{x}		F_{y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
検出器架台	－		－		－	

N

1．3．6 保護管に作用するモーメント（単位：N•mm）

部 材	M_{x}		M_{y}		$\mathrm{M}_{\text {z }}$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
保護管	－		－		－	

1．3．7 ワーキングテーブルラグに作用する反力
（単位：N）

部 材	F_{x}		F_{y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
$\begin{gathered} \text { ワーキング } \\ \text { テーブルラグ } \end{gathered}$	－		－		－	

部 材	M_{x}		M_{y}		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
$\begin{gathered} \text { ワーキング } \\ \text { テーブルラグ } \end{gathered}$	－		－		－	

1． 4 結論

注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t} 0}-1.6\right.$ • $\left.\sigma_{\mathrm{s}}, \mathrm{f}_{\mathrm{t} 0}\right]$ より算出
すべて許容応力以下である。
1．4．2 検出器架台の応力
（単位：MPa）

部 材	材 料	応 力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			許容応力	算出応力	許容応力	
検出器架台	SUS304	組合せ	-	-	$\sigma_{\mathrm{k}}=18$	$\mathrm{f}_{\mathrm{t} 1}=205$

すべて許容応力以下である。

1．4．3 保護管の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
保護管	SUS316TP	組合せ	－	－	$\sigma_{\mathrm{k}}=38$	$\mathrm{f}_{\mathrm{t} 1}=205$

すべて許容応力以下である。
1．4．4 ワーキングテーブルラグの応力
（単位：MPa）

部 材	材 料	応 力	弾性設計用地震動 Sd 又は静的震度		基準地震動 S s	
			-	許容応力	算出応力	許容応力

すべて許容応力以下である。

1．4．5 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール 水位／温度 （ヒートサーモ式） （G41－L／TE107， 108，109，110， 111，112，113， 114，115，116， 117，118，119， 120，TE121）	水平方向	2.21 1.47	

注記＊：基準地震動 S s による定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
1.5 その他機器要目

（1）材料物性値 | 項目 | 記号 | 単位 | 入力値 |
| :---: | :---: | :---: | :---: |
| | | | |
| 縦弾性係数 | E | MPa | |
| ポアソン比 | v | - | |

VI－2－4－3 使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書

VI－2－4－3－1 燃料プール冷却浄化系の耐震性についての計算書
VI－2－4－3－2 燃料プール代替注水系の耐震性についての計算書
VI－2－4－3－3 燃料プールスプレイ系の耐震性についての計算書

VI－2－4－3－1 燃料プール泠却浄化系の耐震性についての計算書

VI $-2-4-3-1-1$ 燃料プール冷却浄化系熱交換器の耐震性についての計算書
VI－2－4－3－1－2 燃料プール冷却浄化系ポンプの耐震性についての計算書
VI－2－4－3－1－3 管の耐震性についての計算書（燃料プール冷却浄化系）

VI－2－4－3－1－2 燃料プール冷却浄化系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態• 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4． 1 動的機能維持評価方法 7
5．評価結果 8
5.1 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，燃料プール冷却浄化系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

燃料プール冷却浄化系ポンプは，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。 なお，燃料プール冷却浄化系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横軸ポンプであるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

燃料プール泠却浄化系ポンプの構造計画を表 2－1に示す。

O 2 （3）VI－2－4－3－1－2 R 0

表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

燃料プール冷却浄化系ポンプの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
燃料プール冷却浄化系ポンプの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－1に示す。

3．2．2 許容応力
燃料プール冷却浄化系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，表3－2 のとおりとする。

3．2．3 使用材料の許容応力評価条件

燃料プール冷却浄化系ポンプの使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表3－3に示す。
3.3 計算条件

応力計算に用いる計算条件は，本計算書の【燃料プール冷却浄化系ポンプの耐震性について の計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分		荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
－＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－2 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト		周囲環境温度	66			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	66			－

σ

4．機能維持評価

4． 1 動的機能維持評価方法
燃料プール泠却浄化系ポンプの動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

燃料プール泠却浄化系ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ポンプ	横形単段遠心式 ポンプ	水平	4． 0
		鉛直	2.0
原動機	横形ころがり軸受電動機	水平	7.0
		鉛直	2.0

5．評価結果
5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－4－3－1－2 R 0

【燃料プール冷却浄化系ポンプの耐震性についての計算結果】
1．重大事故等対処設備

1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 は静的震度		基淮地震動S s		ポンブ振動に よる震度	$\underset{\text { 最高使用温度 }}{\text {（ }}$	周囲噮境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鈖直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向設計震度			
燃料プール冷却浄化系ポンプ	常設而震／防止	$\begin{aligned} & \text { 原子炉建坔 } \\ & \text { O.P. } 15.00^{* 1} \end{aligned}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$		66	66

注記 $* 1$ ：基淮床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する。

| 部 材 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

予想最大両振幅 $(\mu \mathrm{m})$	回転速度 (rpm)

注記＊1：最高使用温度でで筧出
＊2：周囲環境温度で算出
＊3：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，下段は軸方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d 又は静的震度	$\begin{aligned} & \text { 基準地震動 } \end{aligned}$	弾性設計用地震動 S d 又は静的震度	$\underset{\mathrm{S} \mathrm{s}}{\text { 基準地震動 }}$
$\begin{gathered} \text { 基硞ボルト } \\ (\mathrm{i}=1) \end{gathered}$				
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$				
原動機取付ボルト $(\mathrm{i}=3)$				

1．4．1 ボルトの応力			弾性設計用地震動 ${ }^{\text {S d 又 }}$ 又静的震度		（単位： MPa ）	
部 材	材 料				基準地震動S s	
部 材	材 料	心 $刀$	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	－	－	$\sigma_{\mathrm{b} 1}=48$	$\mathrm{f}_{\mathrm{ts} 1}=202^{*}$
$(\mathrm{i}=1)$		せん断	－	－	$\tau_{\mathrm{b} 1}=30$	$\mathrm{f}_{\mathrm{sb} \text { b } 1}=155$
ポンプ取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}_{2}}=12$	$\mathrm{f}_{\mathrm{ts} 2}=202^{*}$
（ $\mathrm{i}=2)$		せん断	－	－	$\tau_{\mathrm{b} 2}=7$	$\mathrm{f}_{\mathrm{s} \text { b } 2}=155$
原動機取付ボルト		引張り	－	－	$\sigma_{\text {b } 3}=37$	$\mathrm{f}_{\mathrm{ts} 3}=185^{*}$
（ $\mathrm{i}=3$ ）		せん断	－	－	$\tau_{\mathrm{b} 3}=22$	$\mathrm{f}_{\mathrm{sb} 3}=142$

動的機能の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	1． 65	4.0
	鉛直方向	1． 15	2.0
原動機	水平方向	1． 65	7.0
	鉛直方向	1． 15	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-4-3-1-2 R 0 E

VI－2－4－3－1－3 管の耐震性についての計算書

 （燃料プール冷却浄化系）設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 9
3.1 計算方法 9
3.2 荷重の組合せ及び許容応力状態 10
3.3 設計条件 11
3.4 材料及び許容応力 20
3.5 設計用地震力 21
4．解析結果及び評価 24
4.1 固有周期及び設計震度 24
4． 2 評価結果 42
4．2．1 管の応力評価結果 42
4．2．2 支持構造物評価結果 45
4．2．3 弁の動的機能維持評価結果 46
4．2．4 代表モデルの選定結果及び全モデルの評価結果 47

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全6モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

－（A）

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊1	設備分類	機器等 の区分	耐震重要度分類	荷重の組合せ ${ }^{2} 2$ ，$* 3$	許容応 力状態
核燃料物質の取扱施設及び貯蔵施設	使用済燃料貯蔵槽冷却浄化設備	燃料プール泠却浄化系	D B	－	クラス 3 管	$\begin{gathered} \mathrm{S} \\ \mathrm{~B}-1 \end{gathered}$	$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	$\mathrm{III}_{\text {A }} \mathrm{S}$
							$\Pi_{L}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ S	
							$\Pi_{L}+\mathrm{S} \mathrm{s}$	S

注記＊1：D B は設計基準対象施設，S A は重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重を示す。
＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	S	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
F PC－002

管名称					対	応	す	る	評	価	点			
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3	\square		

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－OO2

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	S	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－003

管名称	対					応	＋			評	価	点			
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

并部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－OO3

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KFPC－142

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （MPa 要度分類	
1	3.73	66	216.3	8.2	STS 410	S	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KFPC－142

管名称	対					応					評	価	点			
1	1	2	3	4	5	6	7		8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	2	3	24	901	902				

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		13		19		901	
2		8		14		20		902	
3		9		15		21			
4		10		16		22			
5		11		17		23			
6		12		18		24			

支持点及び貫通部ばね定数
鳥 瞰 図
K F P C－ 142

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
7						
13						
19						
24						
901						
902						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S m	S y	Su	Sh
SUS304TP	66	－	188	479	－
STS410		－	231	407	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 0 2	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 0 3	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
K F P C－ 142	原子炉建屋		

0 y（

0 y（

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （3）VI－2－4－3－1－3（設）R 0

> 固有周期及び設計震度
> 鳥 瞰 図 FPC-003
0 y（

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 （3）VI－2－4－3－1－3（設）R 0

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （s）	応 答 水 平 震 度 ${ }^{1}$		応答鉛直震度＊${ }^{*}$	応答水平震度＊${ }^{*}$		応答鉛直震度 ${ }^{11}$
		x 方向	Z 方 向	Y 方 向	x 方向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次＊2							
動的 震 度＊3							
静 的 震 度＊4							

0 y（

モード	$\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
O 2 （3）VI－2－4－3－1－3（設）R 0
4．2．1 管の応力評価結果
4．2．1 管の応力評価結果
下記に示すとおり最大応力及び疲労累積係数はそれぞれ許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力 状態	最大応力評価点	最大 応力 区分	一次応力評価（MPa）		一次＋二次応力評価（MPa）		疲労評価 疲労累積係数 USd USs
				$\begin{gathered} \text { 計算応力 } \\ \operatorname{Sprgm}(S \mathrm{~S}) \\ \mathrm{Sprm}(\mathrm{~S}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ \text { S y *1 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	$\begin{aligned} & \text { 計算応力 } \\ & \text { Sn (S d) } \\ & \text { Sn (S s) } \end{aligned}$	許容応力 $\begin{aligned} & 2 \cdot \mathrm{Sy} \\ & 2 \cdot \mathrm{~S} y \end{aligned}$	
F P C－0 02	$\begin{aligned} & \text { III }_{A} \mathrm{~S} \\ & \text { III }_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \text { Sprm (Sd) } \\ \text { Sn (Sd) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$	$\begin{gathered} 127 \\ - \\ 224 \end{gathered}$	$\begin{gathered} 188 \\ - \\ 431 \end{gathered}$	$\begin{gathered} 239 \\ - \\ 436 \text { * } \end{gathered}$	376 376	$\begin{gathered} - \\ - \\ - \\ 0.0034 \end{gathered}$

注記＊：許容応力を超える計算応力に対して付記する。
＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S yと 1． $2 \cdot \mathrm{Sh}$ h らち大きい方とする。
管の応力評価結果
O 2 （3）VI－2－4－3－1－3（設）R 0
注記＊：許容応力を超える計算応力に対して付記する。
＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については， S y と $1.2 \cdot \mathrm{Sh}$ のうち大きい方とする。
下記に示すとおり最大応力及び疲労累積係数はそれぞれ許容値以下である。

鳥瞰図	許容応力状態	最大応力評価点	最大 応力 区分	一次応力評価（MPa）		一次 + 二次応力評価（MPa）		疲労評価 疲労累積係数 U S d US s
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprrm (S d) } \\ \text { Sprm(S s) } \end{gathered}$	許容応力 $\begin{gathered} S y * 1 \\ 0.9 \cdot S u \end{gathered}$	計算応力 $\begin{aligned} & S n(S d) \\ & S n(S s) \end{aligned}$	許容応力 $\begin{aligned} & 2 \cdot \mathrm{~S} y \\ & 2 \cdot \mathrm{~S} y \end{aligned}$	
F P C－O 03	III $_{\text {A }} \mathrm{S}$	12	S prm（S d）	127	188	－	－	－
	III $_{\text {A }} \mathrm{S}$	12	$\mathrm{Sn}(\mathrm{Sd})$	－	－	239	376	－
	$I V_{\text {A }} \mathrm{S}$	12	Sprm（S s ）	224	431	－	－	－
	$I V_{\text {A }} \mathrm{S}$	12	Sn（S s ）	－	－	436 ＊	376	0.0034

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価(MPa)		疲労評価
				計算応力 $\begin{aligned} & S \mathrm{prm}(\mathrm{Sd}) \\ & \mathrm{Sprm}(\mathrm{~S} \text {) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{Su} \end{aligned}$	計算応力 $\operatorname{Sn}(S s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
KF P C－142	$\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 115 \\ & 196 \end{aligned}$	$\begin{aligned} & 231 \\ & 366 \end{aligned}$	$\begin{aligned} & - \\ & 347 \end{aligned}$		－

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，Syと1。2•Shのらち大きい方とする。
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

0 y

支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
					計算荷重 （kN）	許容荷重 （kN）
－	－	－	－	－	－	－

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kNm）			応力分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
FPC－001－001A	アンカ	架構	STKR400	40	20	6	14	5	30	2	組合せ	139	280
KFPC－142－007R	レストレイント	架構	STKR400	40	37	16	11	－	－	－	組合せ	101	280

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\text {A }} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労累積係数	代 表
1	FPC－001	901	39	231	5.92	－	901	48	366	7． 62	－	19	176	376	2.13	－	－	－	－
2	FPC－002	12	127	188	1． 48	\bigcirc	12	224	431	1.92	－	12	436	376	0.86	\bigcirc	12	0.0034	\bigcirc
3	FPC－003	12	127	188	1． 48	\bigcirc	12	224	431	1.92	－	12	436	376	0.86	\bigcirc	12	0.0034	\bigcirc
4	KFPC－004	1	12	188	15.66	－	5	12	431	35.91	－	5	4	376	94.00	－	－	－	－
5	KFPC－005	1	12	188	15.66	－	5	12	431	35.91	－	5	4	376	94.00	－	－	－	－
6	KFPC－142	7	115	231	2． 00	－	7	196	366	1.86	\bigcirc	7	347	462	1．33	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 5
3．計算条件 12
3.1 計算方法 12
3.2 荷重の組合せ及び許容応力状態 13
3.3 設計条件 14
3.4 材料及び許容応力 24
3.5 設計用地震力 25
4．解析結果及び評価 28
4．1 固有周期及び設計震度 28
4． 2 評価結果 46
4．2．1 管の応力評価結果 46
4．2．2 支持構造物評価結果 49
4．2．3 弁の動的機能維持評価結果 50
4．2．4 代表モデルの選定結果及び全モデルの評価結果 51

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全8モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 (3) VI-2-4-3-1-3 (重) R 0

O 2 (3) VI-2-4-3-1-3 (重) R 0

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊${ }^{*}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
核燃料物質 の取扱施設及び貯蔵施設	使用済燃料貯蔵槽冷却浄化設備	燃料プール冷却浄化系	S A	常設耐震／防止	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊3：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $V_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－002

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
F P C－O 02

管名称					対	応	す	る	評	価	点			
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－OO2

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	X	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
FPC－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－003

管名称	対					応	す	る		評	価	点			
1	1	2	4	5	6	7	8	9	10	11	12	13	14	15	16

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		7		10		13		16	
5		8		11		14			
6		9		12		15			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
2	
3	
4	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	3			

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－OO3

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
5						
9						
12						
15						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 KF P C－ 122

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	1.37	66	114.3	6.0	STS410	200360	
2	1.37	66	165.2	7.1	STS410	-	200360
3	1.37	66	216.3	8.2	STS410	-	200360
4	1.37	66	216.3	8.2	SUS304TP	-	191720
5	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KF P C－ 122

配管の質量（付加質量含む）
鳥 瞰 図
K F P C－ 122

評価点の質量を下表に示す。

評価点	䀸量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
1		30		98		152		310	
2		31		99		153		401	
3		32		100		154		402	
4		36		101		155		403	
5		37		102		156		404	
6		38		103		157		405	
7		43		105		158		406	
9		44		108		168		410	
13		45		121		169		411	
14		46		128		170		800	
15		47		135		180		801	
16		48		136		181		802	
17		49		137		182		803	
18		85		138		183		804	
19		90		139		210		805	
20		91		140		217		901	
21		92		141		301		903	
25		93		142		302		905	
26		94		143		303		906	
27		95		144		304		907	
28		96		145		305		908	
29		97		146		309			

弁部の質量を下表に示す。
弁1 弁2
弁 3
弁 4
弁 5

評価点	質量 (kg)								
10		22		35		41		104	
11		23		34		40		106	
12		24		33		39		107	

弁6 弁7 弁8

評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)
147		306		407	
148		307		408	
149		308		409	
150		311		412	
151		312		413	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	11			
弁2	23			
弁3	34			
弁4	40			
弁5	106			
弁6	148			
弁7	307			
弁8	408			

支持点及び貫通部ばね定数
鳥 瞰 図
K F P C－ 122

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
6						
25						
30						
49						
85						
92						
103						
105						
＊＊ 110 ＊＊						
121						
128						
＊＊ 151 ＊＊						
210						
217						
310						
312						
411						
＊＊ 413 ＊＊						
413						
901						
903						
905						
906						
907						
908						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S m	S y	Su	Sh
SUS304TP	66	－	188	479	－
STS410		－	231	407	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
FPC－0 0 2	原多炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 0 3	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
 K F P C -122 原子炉建屋			

0 y（重）$\varepsilon-I-\varepsilon-\mp-Z-I \Lambda$（8）$\quad$ O
4．解析結果及び評価
4． 1 固有周期及び設計震度
鳥 瞰 図 FPC－002

0 y（重）$\varepsilon-I-\varepsilon-\tau-Z-I \Lambda$（ © \quad O

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
\square

$$
32 \text { 枠囲みの内容は商業機密の観点から公開できません。 }
$$

$$
33 \text { 枠囲みの内容は商業機密の観点から公開できません。 }
$$

O 2 （3）VI－2－4－3－1－3（重）R 0
固有周期及び設計震度

適用する地震動等		Sd 及び静的震度			S s		
モード	固有周期 （ s ）	応 答 水 平 震 度 ${ }^{* 1}$		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊${ }^{*}$		応答鉛直震度 ${ }^{* 1}$
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							

0 y（重）$\varepsilon-I-\varepsilon-\sqcap-Z-I \Lambda$（8）$Z O$

モード			激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

O 2 （3）VI－2－4－3－1－3（重）R 0

適用する地震動等		S d 及び静的震度			S s		
モード	$\frac{\text { 固有周期 }}{(\mathrm{s})}$	応 答 水 平 震 度＊1		応答鉛直震度＊1	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
17 次							
18 次＊2							
動	度＊3						
静	度＊4						

[^5]0 y（重）$\varepsilon-I-\varepsilon-\amalg-Z-I \Lambda$（8）$\quad \mathrm{O}$

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(Ss) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	計算応力 $\mathrm{Sn}(\mathrm{~S} s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
F P C－0 02	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$	223	431	$\overline{-}$	376	$\text { - } 0.0034$

注記 $*$ ：許容応力を超える計算応力に対して付記する。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）				疲労評価
				$\begin{gathered} \text { 計算応力 } \\ S \text { prm (S s) } \end{gathered}$	許容応力 0． $9 \cdot \mathrm{Su}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S}$ y	疲労累積係数 US s
FPC－003	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 223 \\ & - \end{aligned}$	$\begin{aligned} & \hline 431 \\ & - \end{aligned}$	$\overline{-}$	376	$\text { - } 0.0034$

注記＊：許容応力を超える計算応力に対して付記する。
管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）				疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	計算応力 $\operatorname{Sn}(S \mathrm{~s})$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
K F P C－122	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{gathered} \text { Sprm(Ss) } \\ \text { Sn (S s }) \end{gathered}$	$\begin{aligned} & 241 \\ & \hline \end{aligned}$	366	460	462	—

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式		評価結果	
				計算 荷重 （kN）	許容 荷重 （kN）
KFPC－122－151BA	ロッドレストレイント	RTS－3	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照	29	45

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力 分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
KFPC－102－901R	レストレイント	Uプレート	SS400	66	0	71	73	－	－	－	せん断	108	135
FPC－001－013A	アンカ	架構	STKR400	66	35	17	25	14	13	8	曲げ	115	433

4．2． 3 弁の動的機能維持評価結果
O2（3）VI－2－4－3－1－3（重）R 0

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果(MPa)	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	許容応力状態 VAS												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	代 表
1	FPC－001	19	39	431	11.05	－	19	176	376	2． 13	－	－	－	－
2	FPC－002	12	223	431	1． 93	－	12	436	376	0． 86	\bigcirc	12	0． 0034	\bigcirc
3	FPC－003	12	223	431	1.93	－	12	436	376	0． 86	\bigcirc	12	0． 0034	\bigcirc
4	KFPC－004	5	11	431	39.18	－	5	4	376	94	－	－	－	－
5	KFPC－005	5	11	431	39.18	－	5	4	376	94	－	－	－	－
6	KFPC－101	12	31	431	13.90	－	37	164	376	2． 29	－	－	－	－
7	KFPC－102	40	221	366	1.65	－	40	448	462	1． 03	－	－	－	－
8	KFPC－122	32	241	366	1.51	\bigcirc	32	460	462	1． 00	－	－	－	－

VI－2－4－3－2 燃料プール代替注水系の耐震性についての計算書

目 次

VI－2－4－3－2－1 管の耐震性についての計算書（燃料プール代替注水系）

> VI-2-4-3-2-1 管の耐震性についての計算書 （燃料プール代替注水系）

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 計算方法 11
3.2 荷重の組合せ及び許容応力状態 12
3.3 設計条件 133.4 材料及び許容応力21
3.5 設計用地震力 22
4．解析結果及び評価 24
4． 1 固有周期及び設計震度 24
4． 2 評価結果 26
4．2．1 管の応力評価結果 26
4．2．2 支持構造物評価結果 28
4．2．3 弁の動的機能維持評価結果 29
4．2．4 代表モデルの選定結果及び全モデルの評価結果 30

1．概要

本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 4 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記 号	内 容
（太線）	工事計画記載範囲の管のうち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	うち，他系統の管であって系統の概略を示すために表記する管
O○○－○○○	鳥瞰図番号
	アンカ

燃料プール代替注水系概略系統図

鳥瞰図記号凡例

記 号

\square

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊${ }^{*}$	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
核燃料物質の取扱施設及び貯蔵施設	使用済燃料貯蔵槽 冷却浄化設備	燃料プール代替注水系	S A	常設耐震／ 防止	重大事故等 $\text { クラス } 2 \text { 管 }$	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記 $* 1: ~ \mathrm{DB}$ は設計基準対象施設， S Aは重大事故等対処設備を示す。
＊2：「常設／緩和」は常設重大事故緩和設備を示す。
＊ 3 ：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－013

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	1.37	66	165.2	7.1	STS410	-	200360
2	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
FPC－013

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16
	17	18													
2	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
	48	49	50	51	52	53	54	55	56	57	58	59	60	62	63
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93
	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108
	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123
	124	125	126	127	128	129	130	131	132	133	134	135	136		

配管の質量（付加質量含む）
鳥 瞰 図
F P C－ 0
13

評価点の質量を下表に示す。

評価点	質量（kg）								
1		30		56		85		111	
2		31		57		86		112	
3		32		58		87		113	
4		33		59		88		114	
5		34		63		89		115	
6		35		64		90		116	
7		36		65		91		117	
8		37		66		92		118	
9		38		67		93		119	
10		39		68		94		120	
11		40		69		95		121	
12		41		70		96		122	
13		42		71		97		123	
17		43		72		98		124	
18		44		73		99		125	
19		45		74		100		126	
20		46		75		101		127	
21		47		76		102		128	
22		48		77		103		129	
23		49		78		104		130	
24		50		79		105		131	
25		51		80		106		132	
26		52		81		107		133	
27		53		82		108		134	
28		54		83		109		135	
29		55		84		110		136	

弁部の質量を下表に示す。
弁1 弁2

評価点	質量 (kg)	評価点	質量 (kg)
$\mathbf{1 4}$		60	
15		61	
16		62	
137			
$\mathbf{1 3 8}$			

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	15			
弁2	61			

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－013
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
2						
4						
10						
12						
19						
28						
31						
34						
38						
40						
42						
49						
53						
55						
63						
65						
68						
71						
73						
76						
81						
84						
＊＊ 84 ＊＊						
87						
89						
92						
94						
97						
100						
104						
107						
110						
112						
114						
119						
121						
124						
126						
129						
136						

支持点及び貫通部ばね定数
鳥 瞰 図
F PC－013

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
$138 * *$						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－014

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （重要度分類	
1	1.37	66	165.2	7.1	SUS304TP	-	191720

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－O14

管名称				対		応	す	る		評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
	76	77	78	79	80	81	82	83	84	85	86	87	88		

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		19		37		55		73	
2		20		38		56		74	
3		21		39		57		75	
4		22		40		58		76	
5		23		41		59		77	
6		24		42		60		78	
7		25		43		61		79	
8		26		44		62		80	
9		27		45		63		81	
10		28		46		64		82	
11		29		47		65		83	
12		30		48		66		84	
13		31		49		67		85	
14		32		50		68		86	
15		33		51		69		87	
16		34		52		70		88	
17		35		53		71			
18		36		54		72			

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－O14
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
4						
9						
12						
15						
19						
21						
24						
28						
31						
33						
35						
44						
46						
51						
53						
55						
58						
61						
63						
66						
68						
71						
75						
79						
81						
86						
88						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）				
		Sm	$\mathrm{S} y$	S u	S h	
STS410	66	-	231	407	-	
SUS304TP	66	-	188	479	-	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C -013	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－ 014	原子炉建屋		

0 d（重） $\mathrm{I}-Z-\varepsilon-\amalg-Z-\mathrm{I} \Lambda$（8）$\quad$ O
4．解析結果及ひ評価
4.1 固有周期及び設計震度

適用する地震動等		Sd 及び静的震度			S s		
モード	$\underset{(\mathrm{s})}{\substack{\text { 固有期 }}}$	応答水平震度＊		応答鉛直震度＊1	応答水平震度＊		応答鈖直震度 ${ }^{* 1}$
		x 方 向	Z 方 向	Y 方 向	x 方 向	Z 方 向	Y 方 向
1 次＊2							
動 的 震 度＊3							
静 的 震 度＊＊							

[^6]固有周期及び設計震度
鳥 瞰 図 FPC－O14

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （ s ）	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							

[^7]4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ S \operatorname{srm}(S s) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
F P C－0 1 3	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{array}{r} \hline 4 \\ 136 \end{array}$	$\begin{gathered} \mathrm{S} \text { p r m (S s }) \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$	$\begin{gathered} 46 \\ \hline \end{gathered}$	366	89	376	—

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\frac{\text { 一次 }+ \text { 二次応力評価 }}{(\mathrm{MPa})}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm} \text { prs }) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	$\begin{aligned} & \text { 計算応力 } \\ & \text { Sn(S s) } \end{aligned}$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
F P C－0 1 4	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 79 \\ & 88 \end{aligned}$	$\begin{gathered} \text { Sprm(Ss) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{gathered} 37 \\ - \end{gathered}$	431	$390 *$	376	$\overline{0.1882}$

[^8]0 y（重）$I-Z-\varepsilon-\sqcap-Z-I \Lambda$（8）$\quad \mathrm{O}$
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式		評価結果	
				計算 荷重 （kN）	許容 荷重 （kN）
FPC－013－138B	ロッドレストレイント	RSA－1	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照	5	15

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力分類	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
FPC－014－079R	レストレイント	ラグ	SUS304	66	4	5	19	－	－	－	組合せ	97	205
FPC－014－028A	アンカ	ラグ	SUS304	66	44	5	4	$60 \mathrm{~N} \cdot \mathrm{~m}$	$2323 \mathrm{~N} \cdot \mathrm{~m}$	$2584 \mathrm{~N} \cdot \mathrm{~m}$	組合せ	55	205

4．2．3 弁の動的機能維持評価結果
0 y（重）I－Z－\＆－t－z－IA（8）\quad O
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

－	－	－	－	－	－	－	－	－
¢㣌枵場	¢㸷莫虽	早棌	ホ入入	早係	木次			
$\text { (} e_{d W} \text {) }$ 						品䋛类至	7I止	呂嘼出

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果 を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

VI－2－4－3－2－1（重）R 0 E

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

	$\begin{aligned} & \text { 㫪 } \\ & \text { 耎 } \\ & \text { 繋 } \end{aligned}$	出业	｜	\bigcirc	｜	
		紫 畔 断	1	$\stackrel{\sim}{\infty} \stackrel{+}{\infty}$	1	1
		前遇场	｜	∞	｜	｜
		出岳	｜	\bigcirc	｜	｜
		烄	$\begin{aligned} & \text { N } \\ & \text { + } \end{aligned}$	$\begin{aligned} & \dot{\theta} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { H} \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \sim \end{aligned}$
			$\underset{\sim}{\bullet}$	$\underset{\sim}{\infty}$	$\stackrel{\ominus}{\infty}$	$\stackrel{\infty}{\infty}$
		$\frac{\text { 縕 }}{\frac{\pi}{\text { 而 }}}$	∞	৪্ণী	\pm	$\stackrel{\text { N }}{\text { N }}$
		爰遇沵	$\stackrel{0}{9}$	∞	$\overleftarrow{6}$	\checkmark
	R	出車	\bigcirc	｜	｜	｜
		$\frac{\text { 㖪 }}{\text { cese }}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & 4 \\ & \vdots \\ & \hdashline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \end{aligned}$
			ê	$\stackrel{\rightharpoonup}{2}$	${ }_{e}^{\bullet}$	$\stackrel{\rightharpoonup}{7}$
			$\stackrel{\square}{4}$	¢	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{7}$
		㖇㞅沵	＊	®	$\stackrel{\infty}{\sim}$	$\stackrel{1}{\sim}$
			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & 0 \\ & \text { U } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O O U 0 O
$\dot{8}$			－	\sim	\cdots	＋

VI－2－4－3－3 燃料プールスプレイ系の耐震性についての計算書

目 次

VI－2－4－3－3－1 管の耐震性についての計算書（燃料プールスプレイ系）

$$
\begin{gathered}
\text { VI-2-4-3-3-1 } \begin{array}{c}
\text { 管の耐震性についての計算書 } \\
\text { (燃料プールスプレイ系) }
\end{array} \text { 俍 }
\end{gathered}
$$

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 19
3.1 計算方法 19
3.2 荷重の組合せ及び許容応力状態 20
3.3 設計条件 21
3.4 材料及び許容応力 34
3.5 設計用地震力 35
4．解析結果及び評価 38
4.1 固有周期及び設計震度 38
4． 2 評価結果 41
4．2．1 管の応力評価結果 41
4．2．2 支持構造物評価結果 44
4．2．3 弁の動的機能維持評価結果 45
4．2．4 代表モデルの選定結果及び全モデルの評価結果 46

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 4 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

記 号

O 2 （3）VI－2－4－3－3－1（重）R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊${ }^{* 1}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
核燃料物質の取扱施設及び貯蔵施設	使用済燃料貯蔵槽冷却浄化設備	$\begin{gathered} \text { 燃料プールスプレ } \\ \text { イ系 } \end{gathered}$	S A	常設／緩和	重大事故等 $\text { クラス } 2 \text { 管 }$	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

[^9]＊2：「常設／緩和」は常設重大事故緩和設備を示す。
＊3：運転状態の添字Lは荷重を示す。
＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－016

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	1.37	66	114.3	6.0	STS410	-	200360
2	1.37	66	165.2	7.1	STS 410	-	200360

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FPC－016

管名称					対	応			る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
	46	47	48	49	50	60	61	62	63	64	65	66	68	69	70
	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85
	86	87	88	89	90	91	92	93	94	96	97	98	99	100	101
	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116
	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131
	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161
	162	165	166	167	168	169	170	171	172						
2	51	52	53	54	55	56	57	58	59	60					

配管の質量（付加質量含む）
鳥 瞰 図
FPC－016

評価点の質量を下表に示す。

評価点	質量（kg）								
1		34		70		106		139	
2		35		71		107		140	
3		36		72		108		141	
4		37		73		109		142	
5		38		74		110		143	
6		39		75		111		144	
7		40		76		112		145	
8		41		77		113		146	
9		42		78		114		147	
10		43		79		115		148	
11		44		80		116		149	
12		45		81		117		150	
13		46		82		118		151	
14		47		83		119		152	
15		48		84		120		153	
16		49		85		121		154	
17		50		86		122		155	
18		51		87		123		156	
19		52		88		124		157	
20		53		89		125		158	
21		54		90		126		159	
22		55		91		127		160	
23		56		92		128		161	
24		57		93		129		162	
25		58		97		130		165	
26		59		98		131		166	
27		60		99		132		167	
28		61		100		133		168	
29		62		101		134		169	
30		63		102		135		170	
31		64		103		136		171	
32		65		104		137		172	
33		69		105		138			

弁部の質量を下表に示す。
弁1
弁 2

評価点	質量 (kg)	評価点	質量 (kg)
94		66	
95		67	
96			68
		163	
		164	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	95			
弁2	67			

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－016
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
7						
9						
11						
14						
17						
19						
21						
24						
29						
31						
36						
38						
40						
43						
46						
48						
52						
54						
62						
64						
70						
72						
75						
78						
85						
87						
93						
97						
99						
104						
109						
112						
114						
118						
120						
123						
125						
130						
134						
137						
140						

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－O16

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
142						
146						
151						
153						
156						
159						
$* * 164 * *$						
170						
172						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－017

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	重要縦弾性係数 (MPa)	
1	1.37	66	114.3	6.0	STS410	-	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
FPC－O17

配管の質量（付加質量含むゝ）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		17		33		49		65	
2		18		34		50		66	
3		19		35		51		67	
4		20		36		52		68	
5		21		37		53		69	
6		22		38		54		70	
7		23		39		55		71	
8		24		40		56		72	
9		25		41		57		73	
10		26		42		58		74	
11		27		43		59		75	
12		28		44		60		76	
13		29		45		61		77	
14		30		46		62		78	
15		31		47		63			
16		32		48		64			

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－017
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
3						
7						
12						
19						
22						
24						
29						
31						
33						
35						
37						
41						
45						
47						
51						
53						
55						
59						
61						
63						
66						
68						
71						
73						
78						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
FPC－019

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	1.37	66	114.3	6.0	STS410	-	200360
2	1.37	66	165.2	7.1	STS410	-	200360
3	1.37	66	76.3	5.2	STS410	-	200360

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FPC－019

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	5	6	7								
2	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66
	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81
	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126
	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141
	142	143	144	145	146	147	148	149	150	151	152	153	154	155	
3	102	112	155	156	157	158	159	160	161	162	163	164	165	166	167
	168	169	170												

配管の質量（付加質量含む）
鳥 瞰 図
F P C－ 0
19

評価点の質量を下表に示す。

評価点	質量（kg）								
1		35		69		103		137	
2		36		70		104		138	
3		37		71		105		139	
4		38		72		106		140	
5		39		73		107		141	
6		40		74		108		142	
7		41		75		109		143	
8		42		76		110		144	
9		43		77		111		145	
10		44		78		112		146	
11		45		79		113		147	
12		46		80		114		148	
13		47		81		115		149	
14		48		82		116		150	
15		49		83		117		151	
16		50		84		118		152	
17		51		85		119		153	
18		52		86		120		154	
19		53		87		121		155	
20		54		88		122		156	
21		55		89		123		157	
22		56		90		124		158	
23		57		91		125		159	
24		58		92		126		160	
25		59		93		127		161	
26		60		94		128		162	
27		61		95		129		163	
28		62		96		130		164	
29		63		97		131		165	
30		64		98		132		166	
31		65		99		133		167	
32		66		100		134		168	
33		67		101		135		169	
34		68		102		136		170	

支持点及び貫通部ばね定数
鳥 瞰 図 FPC－019
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
9						
11						
16						
18						
21						
27						
29						
32						
35						
38						
41						
43						
46						
48						
50						
53						
56						
59						
62						
65						
67						
69						
72						
75						
78						
82						
85						
88						
91						
94						
96						
104						
106						
108						
114						
119						
121						
123						
126						
128						
131						

支持点及び貫通部ばね定数
鳥 瞰 図
FPC－O19

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
134						
137						
139						
141						
144						
147						
151						
157						
162						
167						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力（ MPa ）				
	$\left({ }^{\circ} \mathrm{C}\right)$	S m	S y	S u	S h	
STS410	66	-	231	407	-	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C -016	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 1 7	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
F P C－0 1 9	原子炉建屋		

O 2 （3）VI－2－4－3－3－1（重）R 0

> 4. 解析結果及び評価
> 4.1 固有周期及び設計震度
> 注記 $* 1$: 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。
> $\begin{aligned} & * 3: \mathrm{S} \mathrm{d} \text { 又 } \mathrm{S}^{2} \mathrm{~S} \mathrm{~s} \text { 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 } \\ & * 4: 3.6 \mathrm{C}_{\mathrm{I}} \text { 及び1.2 } \mathrm{C}_{\mathrm{V}} \text { より定めた震度をす。 }\end{aligned}$
固有周期及び設計震度

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （s）	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊1		応答鋁直震度＊1
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							
注記＊1 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 以下であることを示す。 ＊3：Sd又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 ＊4：3．6C 1 及び1．2 C_{V} より定めた震度を示す。							

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （ s ）	応 答 水 平 震 度＊1		応答鉛直震度＊1	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							
注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 以下であることを示す。 ＊3：Sd又はS s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 ＊4：3．6C 1 及び1．2 C_{V} より定めた震度を示す。							

4．2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \left(\begin{array}{l} \text { and } \end{array}\right. \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	計算応力 Sn (S s)	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
F P C－0 16	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{array}{r} 91 \\ 1 \end{array}$	$\begin{gathered} \mathrm{S} \text { prm(S s) } \\ \text { Sn }(\mathrm{S} s) \end{gathered}$	62	366	155	462	—

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ (\mathrm{MPa} \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprrm}(\mathrm{~S} \text { s }) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	$\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn}(\mathrm{~S} \text { s) } \end{aligned}$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
F P C－0 1 7	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 45 \\ & 78 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{gathered} 31 \\ - \end{gathered}$	$\begin{aligned} & 366 \\ & - \end{aligned}$	195	462	-

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力評価 }} \\ \hline \mathrm{Map} \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	計算応力 $\operatorname{Sn}(S \mathrm{~s})$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
F P C－0 1 9	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$	$\begin{gathered} 41 \\ - \end{gathered}$	$\begin{aligned} & 366 \\ & - \end{aligned}$	195	462	-

0 y（重）$I-\varepsilon-\varepsilon-\amalg-Z-I \Lambda$（8）$\quad$ O
4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式	材質 温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
				計算 荷重 （kN）	許容 荷重 （kN）
FPC－018－123B	ロッドレストレイント	RSA－06	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照	4	9

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力分類	$\begin{aligned} & \hline \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
FPC－019－106R	レストレイント	ラグ	SGV410	66	5	3	22	－	－	－	組合せ	95	254
FPC－017－001A	アンカ	ラグ	SGV410	66	24	2	2	$93 \mathrm{~N} \cdot \mathrm{~m}$	$492 \mathrm{~N} \cdot \mathrm{~m}$	$551 \mathrm{~N} \cdot \mathrm{~m}$	組合せ	65	254

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	許容応力状態 VAS												
		一次応力					一次＋二次応力					疲労評価		
		評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \end{aligned}$	計算 応力 （MPa）	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労 累積 係数	代
1	FPC－016	91	62	366	5.9	\bigcirc	1	155	462	2.9	－	－	－	－
2	FPC－017	45	31	366	11.8	－	78	195	462	2． 3	\bigcirc	－	－	－
3	FPC－018	18	58	366	6.3	－	12	93	462	4.9	－	－	－	－
4	FPC－019	1	41	366	8.9	－	1	195	462	2． 3	\bigcirc	－	－	－

VI－2－4－4 核燃料物質の取扱施設及び貯蔵施設の基本設計方針の耐震性に ついての説明書

VI－2－4－4－1 使用済燃料プール監視カメラの耐震性についての計算書

VI－2－4－4－1 使用済燃料プール監視カメラの耐震性についての計算書
1．使用済燃料プール監視カメラ 1
1．1 概要 1
1．2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方 6
1．3 評価部位 6
1． 4 固有周期 6
1．4．1 固有周期の算出方法 6
1．5 構造強度評価 7
1．5．1 構造強度評価方法 7
1．5．2 荷重の組合せ及び許容応力 7
1．5．3 設計用地震力 10
1．5．4 計算方法 11
1．5．5 計算条件 14
1．5．6 応力の評価 14
1．6 機能維持評価 15
1．6．1 電気的機能維持評価方法 15
1．7 評価結果 15
1．7．1 重大事故等対処設備としての評価結果 15
2．使用済燃料プール監視カメラ照明 19
2.1 概要 19
2.2 一般事項 19
2．2．1 構造計画 19
2．2．2 評価方針 21
2．2．3 適用規格•基準等 22
2．2．4 記号の説明 23
2．2．5 計算精度と数値の丸め方 24
2.3 評価部位 24
2．4 固有周期 24
2．4．1 固有周期の算出方法 24
2.5 構造強度評価 25
2．5．1 構造強度評価方法 25
2．5．2 荷重の組合せ及び許容応力 25
2．5．3 設計用地震力 28
2．5．4 計算方法 29
2．5．5 計算条件 32
2．5．6 応力の評価 32
2.6 機能維持評価 33
2．6．1 電気的機能維持評価方法 33
2.7 評価結果 33
2．7．1 重大事故等対処設備としての評価結果 33
3．使用済燃料プール監視カメラ現場制御盤 37
3.1 概要 37
3.2 一般事項 37
3．2．1 構造計画 37
3．3 固有周期 39
3．3．1 固有周期の算出方法 39
3.4 構造強度評価 39
3．4．1 構造強度評価方法 39
3．4．2 荷重の組合せ及び許容応力 39
3.5 機能維持評価 42
3．5．1 電気的機能維持評価方法 42
3．6 評価結果 42
3．6．1 重大事故等対処設備としての評価結果 42

1．使用済燃料プール監視カメラ
1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール監視カメラが設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

使用済燃料プール監視カメラは，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

1． 2 一般事項
1．2．1 構造計画
使用済燃料プール監視カメラの構造計画を表1－1 に示す。

O 2 （3） $\mathrm{VI}-2-4-4-1 \quad \mathrm{R} \mathrm{O}$

表 1－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
	可視光カメラ	【使用済燃料プール監視カメラ】
視カメラは，取付ボル トにてチャンネルベ ースに固定する。チャ ンネルベースは基礎 （床面）に基礎ボルト で固定する。		

1．2．2 評価方針

使用済燃料プール監視カメラの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．3 評価部位」にて設定する箇所において，「1．4 固有周期」で算出した固有周期に基 づく設計用地震力による応力等が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認することで実施する。

また，使用済燃料プール監視カメラの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の機能維持評価用加速度が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．7 評価結果」 に示す。

使用済燃料プール監視カメラの耐震評価フローを図1－1に示す。

図 1－1 使用済燃料プール監視カメラの耐震評価フロー

1．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4601 •補 -1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

1．2．4 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	ボルトの軸断面積＊1	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d_{i}	ボルトの呼び径＊1	mm
$\mathrm{F}_{\mathrm{i}}{ }^{*}$	設計•建設規格 SSB－3133に定める値＊1	MPa
F ${ }_{\text {b }}{ }_{\text {i }}$	ボルトに作用する引張力（1本当たり）＊ 1	N
f t o i	引張力のみを受けるボルトの許容引張応力＊1	MPa
f s b i	せん断力のみを受けるボルトの許容せん断応力＊1	MPa
f ts i	引張力とせん断力を同時に受けるボルトの許容引張応力＊1	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h i	据付面又は取付面から重心までの距離＊2	mm
$\ell_{1} \mathrm{i}$	重心とボルト間の水平方向距離＊ $1, ~ * 3$	mm
$\ell_{2} \mathrm{i}$	重心とボルト間の水平方向距離＊${ }^{\text {c ，＊＊} 3 ~}$	mm
$\mathrm{m}_{\text {i }}$	運転時質量＊2	kg
n i	ボルトの本数＊1	－
n f i	評価上引張力を受けるとして期待するボルトの本数＊1	－
Q bi	ボルトに作用するせん断力＊1	N
S ui	設計•建設規格 付録材料図表 Part5 表 9 に定める値＊1	MPa
S y i	設計•建設規格 付録材料図表 Part5 表 8 に定める値＊1	MPa
$\mathrm{S}_{\mathrm{y}} \mathrm{i}$（RT）	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ に おける値＊${ }^{*}$	MPa
π	円周率	－
σ b i	ボルトに生じる引張応力＊1	MPa
τ b i	ボルトに生じるせん断応力＊1	MPa

意味は，以下のとおりとする。
$\mathrm{i}=1$ ：基礎ボルト
i $=2$ ：取付ボルト
＊2： h_{i} 及び m_{i} の添字 i の意味は，以下のとおりとする。
$\mathrm{i}=1$ ：据付面
$\mathrm{i}=2$ ：取付面
$* 3: \ell_{1 \mathrm{i}} \leqq \ell_{2 \mathrm{i}}$

1．2．5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表1－2 に示すとおりである。

表 1－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

1．3 評価部位

使用済燃料プール監視カメラの耐震評価は「1．5．1 構造強度評価方法」に示す条件 に基づき，耐震評価上厳しくなる基礎ボルト及び取付ボルトについて評価を実施する。使用済燃料プール監視カメラの耐震評価部位については，表1－1 の概略構造図に示 す。

1． 4 固有周期

1．4．1 固有周期の算出方法
使用済燃料プール監視カメラの固有周期は，振動試験（加振試験）にて求める。試験の結果，剛であることを確認した。固有周期の確認結果を表1－3に示す。

表 1－3 固有周期（s）

水平方向	鉛直方向
0.05 以下	0.05 以下

1.5 構造強度評価

1．5．1 構造強度評価方法
（1）使用済燃料プール監視カメラの質量は重心に集中しているものとする。
（2）地震力は使用済燃料プール監視カメラに対して，水平方向及び鉛直方向から作用するものとする。
（3）使用済燃料プール監視カメラは取付ボルトでチャンネルベースに固定されて おり，固定端とする。
（4）チャンネルベースは基礎ボルトで基礎（床面）と固定されており，固定端とす る。
（5）床面据付の使用済燃料プール監視カメラの転倒方向は，長辺方向及び短辺方向 について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方を いう。）を記載する。
（6）使用済燃料プール監視カメラの重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
（7）耐震計算に用いる寸法は，公称値を使用する。

1．5．2 荷重の組合せ及び許容応力

1．5．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール監視カメラの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表1－4に示す。

1．5．2．2 許容応力

使用済燃料プール監視カメラの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－5 のとおりとする。

1．5．2．3 使用材料の許容応力評価条件
使用済燃料プール監視カメラの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表1－6に示す。

表 1－4 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質		使用済燃料プール監視カメラ	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
の取扱施設 及び 貯蔵施設	－				$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－5 許容応力（重大事故等その他の支持構造物）

\bullet
注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \text { i }}$ (MPa)	S_{ui} (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	100	194	373
（MPa）					

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－7に示す。
「基準地震動 S s 」による地震力は，添付資料「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき設定する。

表 1－7 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 36.60 \\ \left(0 . \text { P. } 41.20^{* 1}\right) \end{gathered}$	$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{gathered} C_{H}= \\ 3.43 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.89 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．5．4 計算方法
1．5．4．1 応力の計算方法
1．5．4．1．1 ボルトの計算方法
ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 1－2（1）計算モデル
（基礎ボルト 長辺方向転倒の場合）

図 1－2（2）計算モデル
（基礎ボルト 短辺方向転倒の場合）

枠囲みの内容は商業機密の観点から公開できません。

図 1－3（1）計算モデル
（取付ボルト 長辺方向転倒の場合）

図 1－3（2）計算モデル
（取付ボルト 短辺方向転倒の場合）

枠囲みの内容は商業機密の観点から公開できません。
（1）引張応力
ボルトに対する引張力は，最も厳しい条件として図 1－2（1），図 1－2（2），図1－3（1）およよび図 1－3（2）では最外列のボルトを支点とする転倒を考え，こ れを片側の最外列のボルトで受けるものとして計算する。
a．引張力
計算モデル図1－2（2），図1－3（1），図1－3（2）の場合の引張力。
$F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g-m_{i} \cdot\left(1-C_{V}\right) \cdot l_{2 i} \cdot g}{n_{f i} \cdot\left(l_{1 i}+l_{2 i}\right)}$
$F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g-m_{i} \cdot\left(1-C_{V}\right) \cdot l_{2 i} \cdot g}{n_{f i} \cdot\left(l_{2 i}-l_{1 i}\right)}$
b．引張応力
$\sigma_{b i}=\frac{F_{b i}}{A_{b i}}$
ここで，ボルトの軸断面積 A_{bi} は次式により求める。
$\mathrm{A}_{\mathrm{bi}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}{ }^{2}$ ．

ただし，Fbiが負のときボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
ボルトに対するせん断力は，ボルト全本数で受けるものとして計算する。
a．せん断力
$Q_{b i}=m_{i} \cdot C_{H} \cdot g$
b．せん断応力
$\tau_{b i}=\frac{Q_{b i}}{n_{i} \cdot A_{b i}}$

1．5．5 計算条件

1．5．5．1 ボルトの応力計算条件
ボルトの応力計算に用いる計算条件は，本計算書の【使用済燃料プール監視カメラの耐震性についての計算結果】の設計条件及び機器要目に示す。

1．5．6 応力の評価

1．5．6．1 ボルトの応力評価
1．5．4．1項で求めたボルトの引張応力 $\sigma \mathrm{bi}$ は次式より求めた許容引張応力
f t s i 以下であること。
ただし，ftoiは下表による。

（1．5．6．1．1）

せん断応力 τ biはせん断力のみを受けるボルトの許容せん断応力 f s bi以下であること。ただし，f s bi は下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 f t 。 i	$\frac{\mathrm{F}_{\mathrm{i}}{ }^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f}_{\mathrm{s}} \mathrm{~b} \text { i }$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1． 6 機能維持評価
1．6．1 電気的機能維持評価方法
使用済燃料プール監視カメラの電気的機能維持評価について，以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール監視カメラの機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－8に示す。

表 $1-8$ 機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
評価部位	方向	機能確認済加速度
使用済燃料プール 監視カメラ	水平	
	鉛直	

1．7 評価結果

1．7．1 重大事故等対処設備としての評価結果
使用済燃料プール監視カメラの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-4-4-1$
R 0

【使用済燃料プール監視カメラの而震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール監視カメラ	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 36.60 \\ \left(0 . \text { P. } 41.20^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=3.43$	$\mathrm{C}_{\mathrm{V}}=1.89$	100

注記＊：基淮床レベルを示す。

హ

	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}} * \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
部 材					弾性設計用地震動 Sd 又は静的震度	基淮地震動S s
基礎ボルト $(\mathrm{i}=1)$	194	373	－	232	－	長辺方向
取付ボルト $(\mathrm{i}=2)$	194	373	－	232	－	短辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-4-4-1$
R 0

1．3 計算数値

1 ボル	る力		（単位：N）	
部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 Sd 又は静的震度	基淮地震動S s	弾性設計用地震動 Sd 又は静的震度	基淮地震動S s
基礎ボルト $(\mathrm{i}=1)$	－		－	
取付ボルト $(\mathrm{i}=2)$	－		－	

1． 4 結論
1．4．1 ボルトの応力（単位： MPa ）

注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール監視カメラ	水平方向	2.86	
	鉛直方向	1.58	

注記 $*$ ：基淮地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3） $\mathrm{VI}-2-4-4-1 \quad \mathrm{R} 0$

長辺方向
$\stackrel{\rightharpoonup}{\infty}$

長辺方向

短辺方向

短辺方向
枠囲みの内容は商業機密の観点から公開できません。

2．使用済燃料プール監視カメラ照明

2.1 概要

本計画書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール監視カメラ照明が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。使用済燃料プール監視カメラ照明は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類 される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
使用済燃料プール監視カメラ照明の構造計画を表2－1に示す。

O 2 （3） $\mathrm{VI}-2-4-4-1 \quad \mathrm{R} \mathrm{O}$

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
	照明	【使用済燃料プール監視カメラ照明】
視カメラ照明は，取付 ボルトにてチャンネ ルベースに固定する。 チャンネルベースは基礎（床面）に基礎ボ ルトで固定する。		

2．2．2 評価方針

使用済燃料プール監視カメラ照明の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．3評価部位」にて設定する箇所において，「2．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「2．5 構造強度評価」にて示す方法にて確認することで実施する。

また，使用済燃料プール監視カメラ照明の機能維持評価は，添付書類「VI－2－1－ 9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の機能維持評価用加速度が電気的機能確認済加速度以下であることを，「2．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「2．7 評価結果」に示す。

使用済燃料プール監視カメラ照明の耐震評価フローを図2－1に示す。

図 2－1 使用済燃料プール監視カメラ照明の耐震評価フロー

2．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 • 補－1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

0

2．2．4 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	ボルトの軸断面積＊1	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d i	ボルトの呼び径＊1	mm
Fi_{i}＊	設計•建設規格 SSB－3133に定める値＊${ }^{\text { }}$	MPa
F ${ }_{\text {b }} \mathrm{i}$	ボルトに作用する引張力（1本当たり）＊1	N
f t o i	引張力のみを受けるボルトの許容引張応力＊1	MPa
f s b i	せん断力のみを受けるボルトの許容せん断応力＊1	MPa
f ts i	引張力とせん断力を同時に受けるボルトの許容引張応力＊1	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h_{i}	据付面又は取付面から重心までの距離＊2	mm
$\ell_{1 \mathrm{i}}$	重心とボルト間の水平方向距離＊${ }^{\text {c }}$ ，＊ 3	mm
$\ell_{2} \mathrm{i}$	重心とボルト間の水平方向距離＊ $1, * 3$	mm
$\mathrm{m}_{\text {i }}$	運転時質量＊2	kg
n i	ボルトの本数＊1	－
n f_{i}	評価上引張力を受けるとして期待するボルトの本数＊1	－
Q bi	ボルトに作用するせん断力＊1	N
S uid	設計•建設規格 付録材料図表 Part5 表 9 に定める値＊1	MPa
S y i	設計•建設規格 付録材料図表 Part5 表 8 に定める値＊1	MPa
$S_{\text {y i }}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値＊${ }^{*}$	MPa
π	円周率	－
$\sigma \mathrm{b}$ i	ボルトに生じる引張応力＊1	MPa
τ b i	ボルトに生じるせん断応力＊1	MPa

及び $\tau_{\mathrm{b} \text { i }}$ の添字 i の意味は，以下のとおりとする。
i＝ 1 ：基礎ボルト
$\mathrm{i}=2$ ：取付ボルト
＊ $2: ~ h i$ 及び m_{i} の添字 i の意味は，以下のとおりとする。
$i=1:$ 据付面
$i=2:$ 取付面
$* 3: \ell_{1 \mathrm{i}} \leqq \ell_{2 \mathrm{i}}$

2．2．5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記＊ 1 ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強 さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨 て，整数位までの値とする。

2.3 評価部位

使用済燃料プール監視カメラ照明の耐震評価は「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト及び取付ボルトについて評価を実施 する。

使用済燃料プール監視カメラ照明の耐震評価部位については，表2－1 の概略構造図 に示す。

2.4 固有周期

2．4．1 固有周期の算出方法
使用済燃料プール監視カメラ照明の固有周期は，振動試験（加振試験）にて求 める。試験の結果，剛であることを確認した。固有周期の確認結果を表2－3に示 す。

表 2－3 固有周期（s）

水平方向	鉛直方向
0.05 以下	0.05 以下

2.5 構造強度評価

2．5．1 構造強度評価方法
（1）使用済燃料プール監視カメラ照明の質量は重心に集中しているものとする。
（2）地震力は使用済燃料プール監視カメラ照明に対して，水平方向及び鉛直方向か ら作用するものとする。
（3）使用済燃料プール監視カメラ照明は取付ボルトでチャンネルベースに固定さ れており，固定端とする。
（4）チャンネルベースは基礎ボルトで基礎（床面）と固定されており，固定端とす る。
（5）床面据付の使用済燃料プール監視カメラ照明の転倒方向は，前後方向及び左右方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（6）使用済燃料プール監視カメラ照明の重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとす る。
（7）耐震計算に用いる寸法は，公称値を使用する。

2．5．2 荷重の組合せ及び許容応力

2．5．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール監視カメラ照明の荷重の組合せ及び許容応力状態のう ち重大事故等対処設備の評価に用いるものを表2－4に示す。

2．5．2．2 許容応力

使用済燃料プール監視カメラ照明の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－5のとおりとする。

2．5．2．3 使用材料の許容応力評価条件
使用済燃料プール監視カメラ照明の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表2－6に示す。

表 2－4 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質		使用済燃料プール監視カメラ照明	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss}^{* 3}$	$I V_{A} \mathrm{~S}$
の取扱施設及び貯蔵施設	－					$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{Ss}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－5 許容応力（重大事故等その他の支持構造物）

N
注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \text { i }}$ (MPa)	S_{ui} (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	100	194	373
（MPa）					

2．5．3 設計用地震力
耐震評価に用いる設計用地震力を表 2－7に示す。
「基準地震動 S s 」による地震力は，添付資料「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき設定する。

表 2－7 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 36.60 \\ \left(0 . \text { P. } 41.20^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下 }{ }^{*} 2 \end{aligned}$	$\begin{gathered} 0.05 \\ \text { 以下 } * 2 \end{gathered}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 3.43 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.89 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 ボルトの計算方法
ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。
\square
図 2－3（1）計算モデル（取付ボルト 左右転倒方向）
\square

図 2－3（2）計算モデル（取付ボルト 前後転倒方向）

枠囲みの内容は商業機密の観点から公開できません。
（1）引張応力
ボルトに対する引張力は，最も厳しい条件として図2－2（1），図 2－2（2），図2－3（1）及び図2－3（2）では最外列のボルトを支点とする転倒を考え，これ を片側の最外列のボルトで受けるものとして計算する。
a．引張力
計算モデル図2－2（1），図2－3（1），図2－3（1）の場合の引張力
$F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g-m_{i} \cdot\left(1-C_{V}\right) \cdot \ell_{2 i} \cdot g_{i}}{n_{f i} \cdot\left(l_{1 i}+\ell_{2 i}\right)}$
（2．5．4．1．1．1）

なお，計算モデル図2－2（2）の場合は以下式を用いる。
$F_{b i}=\frac{m_{i} \cdot C_{H} \cdot h_{i} \cdot g_{i}-m_{i} \cdot\left(1-C_{V}\right) \cdot \ell_{2 i} \cdot g}{n_{f i} \cdot\left(\ell_{2 i}-\ell_{1 i}\right)}$
b．引張応力
$\sigma_{b i}=\frac{F_{b i}}{A_{b i}}$
ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} i}$ は次式により求める。
$\mathrm{A}_{\mathrm{bi}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}{ }^{2}$ ．

ただし， $\mathrm{F}_{\mathrm{b}} \mathrm{i}$ が負のときボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
ボルトに対するせん断力は，ボルト全本数で受けるものとして計算する。
a．せん断力
$Q_{b i}=m_{i} \cdot C_{H} \cdot g$
（2．5．4．1．1．5）
b．せん断応力
$\tau_{b i}=\frac{Q_{b i}}{n_{i} \cdot A_{b i}}$

2．5．5 計算条件
2．5．5．1 ボルトの応力計算条件
ボルトの応力計算に用いる計算条件は，本計算書の【使用済燃料プール監視カメラ照明の耐震性についての計算結果】の設計条件及び機器要目に示す。

2．5．6 応力の評価

2．5．6．1 ボルトの応力評価
2．5．4．1項で求めたボルトの引張応力 $\sigma \mathrm{bi}$ は次式より求めた許容引張応力 f t s i 以下であること。

ただし，f toiは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \quad \mathrm{f}_{\mathrm{too}}\right] \tag{2.5.6.1.1}
\end{equation*}
$$

せん断応力 τ biはせん断力のみを受けるボルトの許容せん断応力 f s b i以下であること。ただし，f sbiは下表による。

	基準地震動 S s による荷重との組合せの場合
許容引張応力 ftoi	$\frac{\mathrm{F}_{\mathrm{i}}{ }^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f} \text { s b i }$	$\frac{\mathrm{F}_{\mathrm{i}}{ }^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
使用済燃料プール監視カメラ照明の電気的機能維持評価について，以下に示す。 なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール監視カメラ照明の機能確認済加速度は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表2－8に示す。

表 2－8 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール 監視カメラ照明	水平	
	鉛直	

2.7 評価結果

2．7．1 重大事故等対処設備としての評価結果
使用済燃料プール監視カメラ照明の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対し て十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-4-4-1$
R 0

【使用済然料プール監視カメラ照明の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール監視カメラ照明	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. } 36.60 \\ \text { (0.P. } \left.41.20^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=3.43$	$\mathrm{C}_{\mathrm{V}}=1.89$	100

注記＊：基準床レベルを示す。

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
					弾性設計用地震動 Sd 又は静的震度	基淮地震動S s
基礎ボルト $(i=1)$	194	373	－	232	－	前後方向
取付ボルト $(\mathrm{i}=2)$	194	373	－	232	－	前後方向

注記 $* 1$ ：各ボルトの機器要目における上段は前後方向転倒に対する評価時の要目を示し，下段は左右方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-4-4-1$
R 0
1.3 計算数値

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
$\begin{gathered} \text { 基礎ボルト } \\ \quad(\mathrm{i}=1) \end{gathered}$	－		－	
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	－		－	

1． 4 結論

注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール監視カメラ照明	水平方向	2.86	
	鉛直方向	1.58	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3） $\mathrm{VI}-2-4-4-1 \quad \mathrm{R} 0$

左右方向

前後方向
枠囲みの内容は商業機密の観点から公開できません。

3．使用済燃料プール監視カメラ現場制御盤
3.1 概要

本計画書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール監視カメラ現場制御盤が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものであ る。

使用済燃料プール監視カメラ現場制御盤は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価 を示す。

なお，使用済燃料プール監視カメラ現場制御盤は，「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形盤であるため，添付書類「VI－2－1－13－7 盤の耐震性 についての計算書作成の基本方針」に基づき評価を行う。
3.2 一般事項

3．2．1 構造計画
使用済燃料プール監視カメラ現場制御盤の構造計画を表3－1に示す。
O 2
（3） $\mathrm{VI}-2-4-4-1$
R 0

表 3－1 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
使用済燃料プール監視カメラ現場制御盤 は，基礎に埋め込まれ たチャンネルベース に取付ボルトで設置 する。チャンネルベー スは基礎ボルトにて基礎に固定する。	直立形 （鋼材及び鋼板を組 み合わせた自立閉鎖型の盤）	【使用済燃料プール監視カメラ現場制御盤】 正面	（1）	
				使用済燃料プール監視カメラ現場制御盤
			たて	1000 mm
			横	1000 mm
			高さ	1950 mm

3．3 固有周期

3．3．1 固有周期の算出方法
使用済燃料プール監視カメラ現場制御盤の固有周期は，構造が同等であり，同様な振動特性を持つ盤に対する振動試験（打振試験）の結果確認された固有周期 を使用する。固有周期の確認結果を表3－2 に示す。

表 3－2 固有周期（s）

水平方向	鉛直方向
0.05 以下	0.05 以下

3.4 構造強度評価

3．4．1 構造強度評価方法
使用済燃料プール監視カメラ現場制御盤の構造強度評価は，添付書類「VI－2－1－ 13－7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基 づき行う。

3．4．2 荷重の組合せ及び許容応力
3．4．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール監視カメラ現場制御盤の荷重の組合せ及び許容応力状態 のうち重大事故等対処設備の評価に用いるものを表3－3に示す。

3．4．2．2 許容応力
使用済燃料プール監視カメラ現場制御盤の許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表 3－4のとおりとする。

3．4．2．3 使用材料の許容応力評価条件
使用済燃料プール監視カメラ現場制御盤の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表3－5に示す。

表 3－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {P }}$	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質 の取扱施設及び貯蔵施設	－				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
		使用済燃料プール監視カメラ現場制御盤	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{Ss}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{Ss}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－4 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

注記＊ $1:$ 応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & S_{y ~ i ~}^{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	215	400	－
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	215	400	－

3.5 機能維持評価

3．5．1 電気的機能維持評価方法
使用済燃料プール監視カメラ現場制御盤の電気的機能維持評価は，添付書類「VI －2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基 づき行う。

使用済燃料プール監視カメラ現場制御盤の機能確認済加速度は，同形式の器具 の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。

機能確認済加速度を表3－6に示す。

表 3－6 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール 監視カメラ現場制御盤	水平	
	鉛直	

3.6 評価結果

3．6．1 重大事故等対処設備としての評価結果
使用済燃料プール監視カメラ現場制御盤の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力 に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【使用済然料プール監視カメラ現場制御盤の而震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基淮地震動S s		$\underset{\substack{\text { 周囲環境温度 } \\\left({ }^{\circ} \mathrm{C}\right)}}{ }$
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール 監視カメラ 現場制御盤	常設／防止常設／緩和	$\begin{aligned} & \text { 原子炬建屋 } \\ & \text { OP. 23. } 60 \\ & \text { (OP. 33. 20*) } \end{aligned}$	0． 05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記＊：基準床レー゙ルを示す。
1.2 機器要目

部 材	m_{i} (kg)	h_{i} (mm)	$\ell_{1 \mathrm{i}}{ }^{* 1}$ $(\mathrm{~mm})$	$\ell_{2 \mathrm{i}}{ }^{* 1}$ $(\mathrm{~mm})$	d_{i} (mm)	$\mathrm{A}_{\mathrm{b}} \mathrm{i}$ $(\mathrm{mm})^{2}$	n_{i}	$\mathrm{n}_{\mathrm{fi}}{ }^{* 1}$
基礎ボルト $(\mathrm{i}=1)$		2070			12	3		
取付ボルト $(\mathrm{i}=2)$		1950			3			

部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
					弾性設計用地震動 Sd 又は静的震度	基準地震動S s
基礎ボルト $(\mathrm{i}=1)$	215	400	－	258	－	前後方向
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \\ \hline \end{gathered}$	215	400	－	258	－	左右方向

注記＊1 ：各ボルトの機器要目における上段は前後方向転倒に対する評価時の要目を示し，
下段は左右方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-4-4-1$
R 0

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 Sd 又は静的震度	基準地震動S s	弾性設計用地震動 Sd 又は静的震度	基準地震動S s
基礎ボルト $(i=1)$	－		－	
取付ボルト $(i=2)$	－		－	

1．4 結論

注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール	水平方向	2.21	
現場制御盤	鉛直方向	1． 47	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．OZPA）はすべて機能確認済加速度以下である。

[^10]O 2 (3) $\mathrm{VI}-2-4-4-1 \quad \mathrm{R} 0$

O 2 (3) VI-2-4-4-1 R O E

VI－2－5 原子炉冷却系統施設の耐震性についての計算書

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
VI－2－5－2 原子炉冷却材再循環設備の耐震性についての計算書
VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書
VI－2－5－4 残留熱除去設備の耐震性についての計算書
VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書
VI－2－5－6 原子炉冷却材補給設備の耐震性についての計算書
VI－2－5－7 原子炉補機冷却設備の耐震性についての計算書

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
1．概要 1
2．耐震評価条件整理 1
R 0

1．概要

本資料は，原子炉冷却系統施設の耐震計算の手法及び条件の整理について説明するものである。

2．耐震評価条件整理

原子炉冷却系統施設に対して，設計基準対象施設の耐震クラス，重大事故等対処設備の設備分類 を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既に許可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のらち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異 の有無を整理した。結果を表1に示す。

原子炉冷却系統施設の耐震計算は表1に示す計算書に記載することとする。

表 1 耐震評価条件整理一覧表 $(1 / 29)$

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準 施工前に認 可された実 績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 字 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$	$\begin{array}{cc}\text { 再 } & \text { 原 } \\ \text { 循 } \\ \text { 烺 } \\ \text { 炩 } \\ \text { 設 } \\ \text { 備 却 } \\ \text { 材 }\end{array}$	再 原	ポンプ	S	無	$\mathrm{VI}-2-5-2-1-1$	－	－	－
		$\begin{aligned} & \text { 系 却 } \\ & \text { 材 } \end{aligned}$	主配管	S	有	$\mathrm{VI}-2-5-2-1-1$	－	－	－
			主蒸気逃がし安全弁逃がし并機能用 アキュムレータ	S	無	$\mathrm{VI}-2-5-3-1-1$	常設耐震／防止	無	$\mathrm{VI}-2-5-3-1-1$
	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \end{aligned}$		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	S	無	$\mathrm{VI}-2-5-3-1-1$	常設耐震／防止 常設／緩和	無	$\mathrm{VI}-2-5-3-1-1$
	$\begin{aligned} & \text { 材 } \\ & \text { の } \end{aligned}$ 循	$\begin{aligned} & \text { 泉 } \\ & \text { 系 } \end{aligned}$	安全弁	S	無	VI－2－5－3－1－2	常設耐震／防止常設／緩和	有	VI－2－5－3－1－2
	備		主要弁	S	無	VI－2－5－3－1－2	－	－	－
			主配管	S	有	VI－2－5－3－1－2	常設耐震／防止常設／緩和	有	VI－2－5－3－1－2

表1 耐震評価条件整理一覧表（2／29）

	評価対象設備			設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { 循 } \\ & \text { 環 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 主 } \\ & \text { 烝 } \\ & \text { 系 } \end{aligned}$	主配管（計測制御系統施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－6－1－1
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	$\mathrm{VI}-2-9-2-4-1$
		復	主要弁	S	無	VI－2－5－3－2－1	－	－	－
		系	主配管	S	有	VI－2－5－3－2－1	－	－	－
			残留熱除去系熱交換器	S	無	VI－2－5－4－1－1	常設／防止 （DB 拡張）	無	$\mathrm{VI}-2-5-4-1-1$
	残		残留熱除去系ポン プ	S	無	VI－2－5－4－1－2	常設／防止 （DB 拡張）	無	$\mathrm{VI}-2-5-4-1-2$
	$\begin{aligned} & \text { 畦 } \\ & \text { 除 } \\ & \text { 俋 } \end{aligned}$	$\begin{aligned} & \text { 熱 } \\ & \text { 蒢 } \end{aligned}$	残留熱除去系スト レーナ	S	無	VI－2－5－4－1－3	常設／防止 （DB 拡張）	有	$\mathrm{VI}-2-5-4-1-3$
	俑		主要弁	S	無	VI－2－5－4－1－4	－	－	－
			主配管	S	有	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-4-1-5 \end{aligned}$	常設／防止 （DB 拡張）	有	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-4-1-5 \end{aligned}$

表1 耐震評価条件整理一覧表（3／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 絲 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 残 } \\ & \text { 留 } \\ & \text { 熱 } \\ & \text { 䞮 } \\ & \text { 備 } \end{aligned}$		主配管（原子灯冷却材再循環設備 原子炉冷却材再循環系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－2－1－1
			主配管（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－4－3－1－1
		残 贸 场	原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\mathrm{VI}-2-9-2-4-1$
		$\begin{aligned} & \text { 除 } \\ & \text { 䒺 } \end{aligned}$	炉心支持構造物（原子炉本体に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
			原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－1－2

表 1 耐震評価条件整理一覧表（4／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 誨 } \end{aligned}$	残留熱除垚設備	残 留 熱 除 䒺	原子炉格納容器（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
			原子炉圧力容器内部構造物（原子炉建屋に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－3－5
		$\begin{array}{ll} \text { フ } & \text { 原 } \\ \text { ィ } & \text { 子 } \end{array}$	主要弁（原子炉格納施設に記載）	－	－＊2	－	常設耐震／防止	－	$\begin{aligned} & \mathrm{VI}-2-9-4-5-1-1 \\ & \mathrm{VI}-2-9-4-6-1-1 \end{aligned}$
		$\begin{array}{ll} \text { タ } & \text { 格 } \\ \text { 学 } & \text { 綌 } \\ \text { ト } & \text { 器 } \end{array}$	主配管（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	$\begin{aligned} & \text { VI }-2-9-4-4-4-1 \\ & \mathrm{VI}-2-9-4-5-1-1 \\ & \mathrm{VI}-2-9-4-6-1-1 \end{aligned}$

表 1 耐震評価条件整理一覧表（ $5 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設	残留熱除奎設備			－	—＊2	－	常設耐震／防止	－	$\mathrm{VI}-2-9-2-4-1$
				－	—＊2	－	常設耐震／防止	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
				－	－＊2	－	常設耐震／防止	－	VI－2－9－4－6－1－1
				－	—＊2	－	常設耐震／防止	－	VI－2－9－4－6－1－2

表 1 耐震評価条件整理一覧表（ $6 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 字 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$	残留熱除坴備	$\begin{array}{\|cc} \text { フ } & \text { 原 } \\ \text { ィ } & \text { 子 } \\ \text { ル } & \text { 㤱 } \end{array}$	T48－F020（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－9－4－5－1－1
			T48－F021（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－9－4－5－1－1
			主配管	－	－＊2	－	常設耐震／防止	－	VI－2－5－4－2－1
		$\begin{aligned} & \text { 圧 } \\ & \text { 強 } \\ & \text { 化 } \end{aligned}$	主配管（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	$\begin{aligned} & \mathrm{VI}-2-9-4-4-1-2 \\ & \mathrm{VI}-2-9-4-5-1-1 \end{aligned}$
		系	原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（ $7 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 采 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	残留熱除垚設備	耐 圧 强 华	原子炉格納容器（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
		系	T48－F019（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－9－4－5－1－1
			T48－F022（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	$\mathrm{VI}-2-9-4-5-1-1$
			排気筒（放射性廃棄物の廃棄施設に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－7－2－1

表 1 耐震評価条件整理一覧表 $(8 / 29)$

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設	非 常 用 炉 心冷却設備 そ の 他 原 子 注 水 設		高圧炉心スプレイ系ポンプ	S	無	VI－2－5－5－1－1	常設／防止 （DB 拡張）	無	VI－2－5－5－1－1
			復水貯蔵タンク（原子炉冷却材補給設備 補給水系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－6－2－2
		$\begin{aligned} & \text { 高 } \\ & \text { 炣 } \\ & \text { 烺 } \end{aligned}$	高圧炉心スプレイ系ストレーナ	S	無	VI－2－5－5－1－2	常設／防止 （DB 拡張）	有	VI－2－5－5－1－2
		$\begin{aligned} & \text { ス } \\ & \text { プ } \end{aligned}$	主要弁	S	無	$\mathrm{VI}-2-5-5-1-3$	－	－	－
		系	主配管	S	有	$\begin{aligned} & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-1-4 \end{aligned}$	常設／防止 （DB 拡張）	有	$\begin{aligned} & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-1-4 \end{aligned}$
			主配管（原子炉冷却材補給設備 補給水系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－6－2－3
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（ $9 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \end{aligned}$	非 常 用 炉 心 冷 却 設 備	高 圧 炉 场	原子炉格納容器（原子炉格納施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$	の 他 原 子 炉 注 水 設 備	$\begin{aligned} & \text { プ } \\ & \text { L } \\ & \text { } \\ & \text { 系 } \end{aligned}$	炉心支持構造物（原 子炉本体に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
			原子炉圧力容器（原子炉本体に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－1－2

表1 耐震評価条件整理一覧表（ $10 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 采 } \\ & \text { 統 } \\ & \text { 誨 } \\ & \text { 設 } \end{aligned}$	非 常 用 炉 心 冷 却 設 備 そ の 他 子 炻 注 設 備	$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \end{aligned}$	原子炉圧力容器内部構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \text { VI }-2-3-4-3-7 \\ & \text { VI-2-3-4-3-9 } \end{aligned}$
		$\begin{aligned} & \text { 心 } \\ & \text { ス } \\ & \text { プ } \end{aligned}$	E22－F003	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－5－1－3
		系	原子炉建屋ブロー アウトパネル（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－9－3－1－1
			低圧炉心スプレイ系ポンプ	S	無	VI－2－5－5－2－1	常設／防止 （DB 拡張）	無	VI－2－5－5－2－1
		$\begin{aligned} & \text { 低 } \\ & \text { 炉 } \\ & \text { 忍 } \end{aligned}$	低圧炉心スプレイ系ストレーナ	S	無	VI－2－5－5－2－2	常設／防止 （DB 拡張）	有	VI－2－5－5－2－2
		$\stackrel{7}{2}$	主要弁	S	無	$\mathrm{VI}-2-5-5-2-3$	－	－	－
			主配管	S	有	$\begin{aligned} & \mathrm{VI}-2-5-5-2-3 \\ & \mathrm{VI}-2-5-5-2-4 \end{aligned}$	常設／防止 （DB 拡張）	有	$\begin{aligned} & \mathrm{VI}-2-5-5-2-3 \\ & \mathrm{VI}-2-5-5-2-4 \end{aligned}$

表1 耐震評価条件整理一覧表（11／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 糸 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－2－4－1
	韭 常 炉 岕 洽 設 備 \vdots の 他 原		原子炉格納容器（原子炉格納施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
	$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$

表1 耐震評価条件整理一覧表（ $12 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設		$\begin{aligned} & \text { 低 } \\ & \text { 圧 } \\ & \text { 炉 } \end{aligned}$	原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－1－2
	韭 常	$\begin{aligned} & \text { ス } \\ & \text { プ } \\ & \text { L } \\ & \text { 系 } \end{aligned}$	原子炉圧力容器内部構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \text { VI }-2-3-4-3-7 \\ & \text { VI-2-3-4-3-9 } \end{aligned}$
	$\begin{aligned} & \text { 炉 } \\ & \text { 冷 } \\ & \text { 却 } \end{aligned}$		高圧代替注水系夕 ービンポンプ	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－5－3－1
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { の } \\ & \text { 他 } \\ & \text { 原 } \end{aligned}$	$\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 代 } \end{aligned}$	復水貯蔵タンク（原子炉冷却材補給設備 補給水系に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－2
	$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 的 } \end{aligned}$ 設	$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	主配管	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-3-2 \end{aligned}$
			主配管（原子炉冷却材の循環設備 主蒸気系，復水給水系 に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-3-1-2 \\ & \mathrm{VI}-2-5-3-2-1 \end{aligned}$

表1 耐震評価条件整理一覧表（13／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設			主配管（原子炉冷却材補給設備 原子炉隔離時冷却系，補給水系に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-6-1-3 \\ & \mathrm{VI}-2-5-6-2-3 \end{aligned}$
	嫦 用 炉 泠 却	高	主配管（原子炉冷却材浄化設備 原子炉冷却材浄化系に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－8－1－1
	$\begin{aligned} & \text { 備 } \\ & \text { の } \\ & \text { 他 } \\ & \text { 原 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	$\mathrm{VI}-2-9-2-4-1$
	炉 注 水 設 備		炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$

表1 耐震評価条件整理一覧表（ $14 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炬泠却系統施設	非 常 用 炉 心 冷 却 設 備 そ の 他 原 子 注 水 設 備	高 圧	原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－4－1－2
		替 注 水 系	原子炉圧力容器内部構造物（原子炉本体に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－4－3－6
		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \end{aligned}$	原子炉隔離時冷却系ポンプ（原子炉冷却材補給設備 原子炉隔離時冷却系 に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-5-6-1-1 \\ & \mathrm{VI}-2-5-6-1-2 \end{aligned}$
		離 時 泠 却 系	復水貯蔵タンク（原子炉冷却材補給設備 補給水系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－6－2－2
			主配管	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－5－1－3

表1 耐震評価条件整理一覧表（ $15 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 糸 } \\ & \text { 統 } \\ & \text { 誨 } \end{aligned}$	\qquad	主配管（原子炉冷却材の循環設備 主蒸気系，復水給水系 に記載）		－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \text { VI }-2-5-3-1-2 \\ & \text { VI }-2-5-3-2-1 \end{aligned}$
		原 子 炉 隔 離	主配管（原子炉冷却材補給設備 原子炬隔離時冷却系，補給水系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-5-6-1-3 \\ & \mathrm{VI}-2-5-6-2-3 \end{aligned}$
		$\begin{aligned} & \text { 冷 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	主配管（原子炉冷却材浄化設備 原子炉冷却材浄化系に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－8－1－1
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（ $16 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$		原	炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
		隔	原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－1－2
		$\begin{aligned} & \text { 却 } \\ & \text { 系 } \end{aligned}$	原子炉圧力容器内部構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－3－6
			E51－F008（原子炉冷却材補給設備 原子炉隔離時冷却系 に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－6－1－3

表1 耐震評価条件整理一覧表（ $17 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 糸 } \\ & \text { 統 } \\ & \text { 訑 } \end{aligned}$	韭常炉岕椧設備\vdotsの他原炉注水備		直流駆動低圧注水系ポンプ	－	—＊2	－	常設耐震／防止	－	VI－2－5－5－4－1
			復水移送ポンプ（原子炉冷却材補給設備 補給水系に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－1
		$\begin{aligned} & \text { 低 } \\ & \text { 代 } \\ & \text { 替替 } \\ & \text { 注 } \end{aligned}$	復水貯蔵タンク（原子炉冷却材補給設備 補給水系に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－2
			主配管	－	－＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-4-2 \end{aligned}$
			主配管（残留熱除去設備 残留熱除去系に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－4－1－4
			主配管（原子炉冷却材補給設備 補給水系に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－3

表1 耐震評価条件整理一覧表（18／29）

表1 耐震評価条件整理一覧表（19／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$			代替循環冷却ポン プ（原子炉格納施設 に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－4－3－4－1
	常 炉 岕 泠 却	代 $\begin{aligned} & \text { 代 } \\ & \text { 替 } \end{aligned}$	残留熱除去系スト レーナ（残留熱除去設備 残留熱除去系に記載）	－	－＊2	－	常設／緩和	－	VI－2－5－4－1－3
	$\begin{aligned} & \text { 佣 } \\ & \text { の } \\ & \text { 他 } \\ & \text { 原 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 環 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	主配管（残留熱除去設備 残留熱除去系に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \text { VI }-2-5-4-1-4 \\ & \text { VI }-2-5-4-1-5 \end{aligned}$
	$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 設 } \end{aligned}$		主配管（原子炉格納施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－4－3－4－2
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（20／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設	韭常用炉念椧設備¿他原炉注水設備		残留熱除去系熱交換器（残留熱除去設備 残留熱除去系 に記載）	－	－＊2	－	常設／緩和	－	VI－2－5－4－1－1
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \\ & \text { 玲 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器（原子炉格納施設に記載）	－	—＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
			炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$

表1 耐震評価条件整理一覧表（ $21 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原炉炩却系統施設	非 常 用 心 泠 却 設 備 の 他 原 子 注 水 設	$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \\ & \text { 珸 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設／緩和	－	VI－2－3－4－1－2
			原子炉圧力容器内部構造物（原子炉本体に記載）	－	－＊2	－	常設／緩和	－	VI－2－3－4－3－8
			ほう酸水注入系ポ ンプ（計測制御系統施設に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－6－4－1－1
		$\begin{gathered} \text { ほ } \\ \text { 方 } \\ \text { 酸 } \\ \text { 水 } \end{gathered}$	ほう酸水注入系貯蔵タンク（計測制御系統施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－6－4－1－2
		$\begin{aligned} & \text { 先 } \\ & \text { 系 } \end{aligned}$	主配管（計測制御系統施設に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－6－4－1－3
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（ $22 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 糸 } \\ & \text { 統 } \\ & \text { 誨 } \end{aligned}$	韭常用炉洽却設備\vdotsの他原炉注水設備	ほ	炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設耐震／防止	－	$\begin{aligned} & \text { VI }-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
		$\begin{aligned} & \text { 水 } \\ & \text { 注 } \\ & \text { 入 } \end{aligned}$	原子炉圧力容器（原子炉本体に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－3－4－1－2
			原子炉圧力容器付属構造物（原子炉本体に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－3－4－2－4
			原子炉圧力容器内部構造物（原子炉本体に記載）	－	—＊2	－	常設耐震／防止	－	VI－2－3－4－3－10

表1 耐震評価条件整理一覧表（23／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設			残留熱除去系ポン プ（残留熱除去設備残留熱除去系に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－2
		残 留 熱 除	残留熱除去系スト レーナ（残留熱除去設備 残留熱除去系に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－3
			主配管（残留熱除去設備 残留熱除去系に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-4-1-5 \end{aligned}$
			原子炉格納容器配管貫通部（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（ $24 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 設 } \end{aligned}$			炉心支持構造物（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
		$\begin{aligned} & \text { 残 } \\ & \text { 留 } \end{aligned}$	原子炉圧力容器（原子炉本体に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－1－2
		$\begin{aligned} & \text { 除 } \\ & \text { 去 } \end{aligned}$	原子炉格納容器（原子炉格納施設に記載）	－	—＊2	－	常設／防止 （DB 拡張）	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$

表1 耐震評価条件整理一覧表（25／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 誨 } \end{aligned}$	非 常 用 炉 心 冷 却 設 備 そ の 他 原 子 注 水 設 備	$\begin{aligned} & \text { 残 } \\ & \text { 留 } \end{aligned}$	原子炉圧力容器内部構造物（原子炉本体に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－3－4－3－8
		$\begin{aligned} & \text { 熱 } \\ & \text { 余 } \\ & \text { 系 } \end{aligned}$	残留熱除去系熱交換器（残留熱除去設備 残留熱除去系 に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－1
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 永 } \\ & \text { 源 } \\ & \text { 乿 } \end{aligned}$	主配管	－	－＊2	－	常設／防止常設／緩和		VI－2－5－5－5－1
	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \hline 子 \end{aligned}$	原子炉隔離時冷却系ポンプ	S	無	$\begin{aligned} & \mathrm{VI}-2-5-6-1-1 \\ & \mathrm{VI}-2-5-6-1-2 \end{aligned}$	－	－	－
	却	$\begin{aligned} & \text { 缡䧸 } \\ & \text { 時 } \end{aligned}$	主要弁	S	無	VI－2－5－6－1－3	－	－	－
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 却 } \\ & \text { 系 } \end{aligned}$	主配管	S	有	VI－2－5－6－1－3	－	－	－

表1 耐震評価条件整理一覧表（26／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉泠却系統施設	原子炉泠却材補給設備	$\begin{aligned} & \text { 補 } \\ & \text { 給 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	復水移送ポンプ	B	—＊2	－	－	－	－
			復水貯蔵タンク	B	—＊2	－	－	－	－
			主配管	B	－＊2	－	－	－	－
		原	原子炉補機冷却水系熱交換器	S	無	VI－2－5－7－1－1	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－1
	子 炉 補 機 却 設		原子炉補機冷却水 ポンプ	S	無	VI－2－5－7－1－2	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－2
		含	原子炉補機冷却海水ポンプ	S	無	VI－2－5－7－1－3	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－3

表1 耐震評価条件整理一覧表（ $27 / 29$ ）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	原子炉補機泠却設備		原子炬補機冷却水 サージタンク	S	－＊2	VI－2－5－7－1－4	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－4
			原子炉補機冷却海水系ストレーナ	S	無	VI－2－5－7－1－5	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－5
			主配管	S	有	VI－2－5－7－1－6	常設／防止 （DB 拡張） 常設／緩和 （DB 拡張）	無	VI－2－5－7－1－6
			高圧炉心スプレイ補機冷却水系熱交換器	S	無	VI－2－5－7－2－1	常設／防止 （DB 拡張）	無	VI－2－5－7－2－1
			高圧炉心スプレイ補機冷却水ポンプ	S	無	VI－2－5－7－2－2	常設／防止 （DB 拡張）	無	VI－2－5－7－2－2

表1 耐震評価条件整理一覧表（28／29）

		評価対象設備		設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 補 } \\ & \text { 幾 } \\ & \text { 却 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	高	高圧炉心スプレイ補機冷却海水ポン プ	S	無	VI－2－5－7－2－3	常設／防止 （DB 拡張）	無	VI－2－5－7－2－3
			高圧灲心スプレイ補機冷却水サージ タンク	S	—＊2	VI－2－5－7－2－4	常設／防止 （DB 拡張）	無	VI－2－5－7－2－4
			高圧炉心スプレイ補機冷却海水系ス トレーナ	S	無	VI－2－5－7－2－5	常設／防止 （DB 拡張）	無	$\mathrm{VI}-2-5-7-2-5$
			主配管	S	有	VI－2－5－7－2－5	常設／防止 （DB 拡張）	無	VI－2－5－7－2－5
		原	原子炉補機冷却水 サージタンク	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－7－1－4
		$\begin{aligned} & \text { 補 } \\ & \text { 機 } \\ & \text { 代 } \end{aligned}$	主配管	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \text { VI }-2-5-7-1-6 \\ & \mathrm{VI}-2-5-7-3-1 \end{aligned}$
		$\begin{aligned} & \text { 泠 } \\ & \text { 却 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	残留熱除去系熱交換器（残留熱除去設備 残留熱除去系）	－	－＊2	－	常設耐震／防止常設／緩和	－	$\mathrm{VI}-2-5-4-1-1$

O2（3）VI－2－5－1 R O E

表1 耐震評価条件整理一覧表（29／29）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 卉 } \\ & \text { 炉 } \\ & \text { 泠 } \end{aligned}$	原 子 炉 泠 却	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 泠 } \end{aligned}$	主要弁	S	無	VI－2－5－8－1－1	－	－	－
$\begin{aligned} & \text { 統 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 浄 } \\ & \text { 記 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 浄 } \\ & \text { 华 } \\ & \text { 系 } \end{aligned}$	主配管	S	有	VI－2－5－8－1－1	－	－	－

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB拡張）」は常設重大事故防止設
備（設計基準拡張），「常設／緩和（DB拡張）」は常設重大事故緩和設備（設計基準拡張）を示す。
$* 2$ ：本工事計画で新規に申請する設備であることから，差異比較の対象外。

VI－2－5－2 原子炉冷却材再循環設備の耐震性についての計算書

VI－2－5－2－1 原子炉再循環系の耐震性についての計算書

VI－2－5－2－1 原子炉再循環系の耐震性についての計算書

VI－2－5－2－1－1 管の耐震性についての計算書（原子炉再循環系）

VI－2－5－2－1－1 管の耐震性についての計算書 （原子炉再循環系）

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 17
3.1 計算方法 17
3.2 荷重の組合せ及び許容応力状態 18
3.3 設計条件 19
3．4 材料及び許容応力 40
3.5 設計用地震力 41
4．解析結果及び評価 43
4.1 固有周期及び設計震度 43
4． 2 評価結果 55
4．2．1 管の応力評価結果 55
4．2．2 支持構造物評価結果 60
4．2．3 弁の動的機能維持評価結果 61
4．2．4 代表モデルの選定結果及び全モデルの評価結果 62

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のらち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 2 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

鳥瞰図記号凡例

記 号
O 2 (3) VI-2-5-2-1-1 (設) R 0
O 2 (3) VI-2-5-2-1-1 (設) R 0
O2 (3) VI-2-5-2-1-1 (設) R 0

O 2 (3) VI-2-5-2-1-1 (設) R 0
O 2 (3) VI-2-5-2-1-1 (設) R 0
O 2 (3) VI-2-5-2-1-1 (設) R 0
O 2 (3) VI-2-5-2-1-1 (設) R 0

O 2 (3) VI-2-5-2-1-1(設) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備分類	機器等 の区分	耐震重要度分類	荷重の組合せ＊2，＊3	許容応力 状態
原子炉冷却系統施設	原子炬冷却材再循環設備	原子炉再循環系	D B	－	クラス 1 管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$	$\mathrm{III}_{4} \mathrm{~S}$
							$\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
							$\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	
原子炉冷却系統施設	原子炉冷却材浄化設備	原子炉冷却材浄化系	D B	－	$\begin{aligned} & \text { クラス } 1 \text { 管 } \\ & \text { クラス } 3 \text { 管 } \end{aligned}$	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$	$\mathrm{III}_{4} \mathrm{~S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
							$\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	
原子炉冷却系統施設	残留熱除去設備	残留熱除去系	D B	－	クラス1管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{Sd}$	$\mathrm{III}_{4} \mathrm{~S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{II}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
							$\mathrm{IV}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	

[^11]＊2：運転状態の添字 L は荷重，（L）は荷重が長期間作用している状態を示す。
＊3：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 PLR－0011

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPPa)
1	8.62	302	520.6	32.5	SUS316TP	S	175840
2	8.62	302	520.6	32.5	SUSF316	S	175840
3	10.40	302	520.6	32.5	SUS316TP	S	175840
4	10.40	302	520.6	32.5	SUSF316	S	175840
5	10.40	302	279.3	18.2	SUSF316	S	175840
6	10.40	302	416.0	26.2	SUSF316	S	175840
7	8.62	302	457.2	29.4	SUSF316	S	175840
8	8.62	302	457.2	29.4	STS410	S	184760
9	8.62	302	457.2	34.9	STS410	S	184760

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 㒈 図
PLR－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縱弾性係数 (MPa)
10	8.62	302	355.6	27.8	STS 410	S	184760
11	8.62	302	355.6	23.8	STS 410	S	184760
12	10.40	302	318.5	25.4	STS410	S	184760
13	10.40	302	318.5	25.4	SUSF316	S	175840

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
PLR－001

～

配管の質量（付加質量含む）
鳥 瞰 図
PLR－001

評価点の質量を下表に示す。

評価点	質量（kg）								
1		38		69		140		224	
2		39		70		141		225	
3		40		71		142		226	
4		41		72		143		501	
5		42		73		144		502	
6		43		101		145		503	
7		44		102		146		504	
8		45		103		147		800	
9		46		104		148		801	
10		47		105		149		802	
11		48		106		150		803	
15		49		107		151		804	
16		50		108		152		807	
17		51		109		153		901	
18		52		113		154		902	
19		53		114		155		903	
20		54		115		156		904	
24		55		116		164		905	
25		56		117		208		906	
26		57		118		209		907	
27		58		119		210		908	
28		59		120		211		909	
29		60		121		212		910	
30		61		122		213		911	
31		62		123		214		912	
32		63		124		215		913	
33		64		125		216		914	
34		65		126		217			
35		66		127		218			
36		67		135		222			
37		68		139		223			

鳥 瞰 図
PLR－001

弁部の質量を下表に示す。
弁1 弁2
弁3
弁 4
弁 5

評価点	質量（kg）								
12		21		110		128		136	
13		22		111		129		137	
14		23		112		130		138	
401		403				405			
402		404				406			

弁 6 弁 7 弁8

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
157		205		219	
158		206		220	
159		207		221	
407					
408					

$$
\begin{array}{llll}
\text { 鳥 } & \text { 瞰 } & \text { 図 } \quad \text { P R - } 0001
\end{array}
$$

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	13			
弁2	22			
弁3	111			
弁4	129			
弁5	137			
弁6	158			
弁7	206			
弁8	220			

支持点及び貫通部ばね定数
鳥 瞰 図
PLR－001

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	1						
	5						
	＊＊ 8 ＊＊						
	＊＊ 10 ＊＊						
	15						
	24						
	＊＊ 27 ＊＊						
	30						
0	＊＊31＊＊						
\bigcirc	＊＊ 33 ＊＊						
1	39						
$\begin{aligned} & N \\ & N \\ & \stackrel{1}{1} \\ & N \\ & N \end{aligned}$	＊＊ 46 ＊＊						
（2）	＊＊ 55 ＊＊						
	61						
	65						
	69						
	73						
	＊＊ 104 ＊＊						
	＊＊ 115 ＊＊						
	117						
	124						
	127						
	＊＊ 141 ＊＊						
	143						
	＊＊ 145 ＊＊						

\qquad
枠囲みの内容は商業機密の観点から公開できません。

支持点及び貫通部ばね定数
鳥 瞰 図
PLR－001

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね教数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊147＊＊						
	156						
	208						
	＊＊ 216 ＊＊						
	＊＊307＊＊						
	＊＊308＊＊						
	＊＊309＊＊						
4	＊＊310＊＊						
辟	311						
－	312						
$\stackrel{1}{1}$	313						
1	314						
N	＊＊ 315 ＊＊						
（2）	＊＊ 316 ＊＊						
0_{0}^{N}	＊＊317＊＊						
	＊＊318＊＊						
	＊＊319＊＊						
	＊＊ 406 ＊＊						
	＊＊ $408 * *$						
	901						
	＊＊ 902 ＊＊						
	＊＊903＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図
PLR－001

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
＊＊ 904 ＊＊						
＊＊ 905 ＊＊						
＊＊ 906 ＊＊						
＊＊ 907 ＊＊						
＊＊ 908 ＊＊						
＊＊ 909 ＊＊						
＊＊ 910 ＊＊						
＊＊ 911 ＊＊						
＊＊ 912 ＊＊						
＊＊ 913 ＊＊						
＊＊ 914 ＊＊						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
PLR－002（クラス1管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPPa)
1	8.62	302	520.6	32.5	SUSF316	S	175840
2	8.62	302	520.6	32.5	SUS316TP	S	175840
3	10.40	302	520.6	32.5	SUS316TP	S	175840
4	10.40	302	520.6	32.5	SUSF316	S	175840
5	10.40	302	279.3	18.2	SUSF316	S	175840
6	10.40	302	416.0	26.2	SUSF316	S	175840
7	10.40	302	318.5	25.4	STS410	S	184760
8	10.40	302	318.5	25.4	SUSF316	S	175840
9	8.62	302	216.3	15.1	SUSF316	S	175840

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
PLR－002（クラス1管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
10	8.62	302	216.3	15.1	STS 410	S	184760
11	8.62	302	60.5	8.7	$\mathrm{SFVC2B}$	S	184760
12	8.62	302	60.5	8.7	STS410	S	184760

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
PLR－002（クラス1管）

管名称	対					応	す		る	評	価	点			
1	1	2	3	4	6	7	8	9	10	11	12	17	18		
2	4	5	6	14	15	16	17	801	802	902					
3	19	20	21	803	901										
4	23	24	25	26	27	28	29	30	31	32	33	34	35		
5	35	36	37	38	39	43	47	52	56	58	59	60	61	62	63
	64	65	66	67	68	69	70	71	72	73					
6	35	40	41	42	43	44	45	46	47	48	49	50	51	52	53
	54	55	56	57	906	907									
7	207	208	209	210	211	212	213	214	215	216	217	218	220	221	222
	223	224	225	908	909										
8	29	223													
9	7	101													
10	101	102	103	105	106	107	108	109	110	111	112	113	114	115	116
	117	118	119	120	121	122	123	124	165	166	167	170	501	804	
11	108	138	502												
12	138	139	140	141	142	143	144	145	146	147	148	149	153	154	155
	156	157	158	169	503	504	903	904	905	911					

配管の質量（付加質量含む）
鳥 瞰 図
PLR－002（クラス1管）

評価点の質量を下表に示す。

評価点	質量（kg）								
1		36		65		138		214	
2		37		66		139		215	
3		38		67		140		216	
4		39		68		141		217	
5		40		69		142		221	
6		41		70		143		222	
7		42		71		144		223	
8		43		72		145		224	
9		44		73		146		225	
10		45		101		147		501	
11		46		102		148		502	
15		47		106		149		801	
16		48		107		153		802	
17		49		108		154		803	
18		50		109		155		804	
19		51		110		156		901	
20		52		111		157		902	
24		53		112		158		903	
25		54		113		165		904	
26		55		114		166		905	
27		56		115		167		906	
28		57		116		169		907	
29		58		117		170		908	
30		59		118		208		909	
31		60		119		209		911	
32		61		120		210			
33		62		121		211			
34		63		122		212			
35		64		123		213			

弁部の質量を下表に示す。
弁1 弁2
弁 3
弁 4
弁 5

評価点	質量（kg）								
12		21		103		124		134	
13		22		104		125		135	
14		23		105		126		136	
401		403				405		407	
402		404				406		408	

弁 6	弁 7		弁 8		
評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
503		205		218	
151		206		219	
504		207		220	

鳥 瞰 図 PLR－002（クラス1管）

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	13			
弁2	22			
弁3	104			
弁4	125			
弁5	135			
弁6	151			
弁7	206			
弁8	219			

支持点及び貫通部ばね定数
鳥 瞰 図 PLR－O02（クラス1管）
支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図 PLR－002（クラス1管）
支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	＊＊ 170 ＊＊						
	208						
	＊＊ 215 ＊＊						
	＊＊307＊＊						
	＊＊308＊＊						
	＊＊ 309 ＊＊						
\bigcirc	＊＊ 310 ＊＊						
	311						
㙳	312						
，	313						
，	314						
1	＊＊ 315 ＊＊						
5	＊＊ 316 ＊＊						
	＊＊ 317 ＊＊						
	＊＊ 318 ＊＊						
	＊＊ 319 ＊＊						
	＊＊ 406 ＊＊						
	408						
	＊＊ 408 ＊＊						
	511						
	＊＊ 901 ＊＊						
	＊＊ 902 ＊＊						

\qquad

支持点及び貫通部ばね定数
鳥 瞰 図 PLR－002（クラス1管）
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
903						
904						
＊＊ 906 ＊＊						
＊＊ 907 ＊＊						
＊＊908＊＊						
909						
＊＊ 911 ＊＊						

\square

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
PLR－002（クラス2以下の管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （MPa）要度分類	
1	8.83	302	216.3	18.2	STS410	S	184760

設計条件
管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
PLR－002（クラス2以下の管）

管名称		対	応	す	る	評	価	点	
1	136	137							

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量 (kg)	評価点	質量 (kg)
136	\square	137	\square

支持点及び貫通部ばね定数
鳥 瞰 図 PLR－002（クラス2以下の管）
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
137						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力（MPa）			
	$\left({ }^{\circ} \mathrm{C}\right)$	S m	S y	S u	S h
SFVC2B	302	125	187	-	-
STS410	302	122	182	404	-
SUS316TP	302	118	130	-	-
SUSF316	302	118	130	-	-

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類•VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
P L R－0 0 1	原子炉本体基礎		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
P L R－0 2	原子炉本体基礎		

O 2 （3） $\mathrm{VI}-2-5-2-1-1$（設） R 0

> 4. 解析結果及び評価
> 4.1 固有周期及び設計震度

[^12]0 y（

モード	$\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
16 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

O 2 （3）VI－2－5－2－1－1（設）R 0

適用する地震動等		Sd 及び静的震度			S s		
モード	固有周期 （ s ）	応 答 水 平 震 度 ${ }^{* 1}$		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊${ }^{* 1}$		応答鉛直震度＊${ }^{*}$
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
16 次							
17 次＊2							
動 的 震 度＊3							
静 的 震 度＊4							

[^13]0 y（

モード	$\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
16 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	最大応力区分	一次応力評価 （MPa）				$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
					$\begin{gathered} \text { 一次応力 } \\ \text { Sprm }(S \mathrm{~d}) \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \text { s }) \end{gathered}$	許容応力 $\begin{gathered} 2.25 \cdot \mathrm{Sm} \\ 3 \cdot \mathrm{Sm} \end{gathered}$	$\begin{aligned} & \text { ねじり応力 } \\ & \text { St (Sd) } \\ & \text { St (S s) } \end{aligned}$	$$	一次 + 二次応力	許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$	疲労累積係数 $\begin{aligned} & \mathrm{U}+\mathrm{US} \mathrm{~d} \\ & \mathrm{U}+\mathrm{US} \mathrm{~s} \end{aligned}$
PLR－001	IIIA ${ }_{\text {A }}$ S	6	TEE	Sprm（Sd）	194	265	－	－	－	－	－
	IIIA S	18	ELBOW	St（S d）	－	－	108 ＊	64	－	－	－
		6	TEE	Sn（S d）	－	－	－	－	402 ＊＊	354	0． 0071
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	136	Butt wELD	U＋US d	－	－	－	－	－	－	0． 0966
	$\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$	6	TEE	Sprm（Ss）	270	354	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	ELBOW	St（S s ）	－	－	164 ＊	86	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	6	TEE	$\mathrm{Sn}(\mathrm{S} \mathrm{s}$ ）	－	－	－	－	663 ＊＊	354	0． 1240
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	106	TEE	U＋US s	－	－	－	－	－	－	0． 2091

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S のとき 0 。 $55 \cdot \mathrm{Sm}$ ，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ のとき 0 。 73 • Sm を超える評価点のらち曲げとねじりによる応力は許容値を満足している。
鳥 瞰 図
PLR－001

評価点	一次応力評価 （MPa）			
	$\begin{aligned} & \text { ねじり応力 } \\ & S \text { t (S d) } \\ & \text { St (S s) } \end{aligned}$	$\begin{aligned} & \text { 許容応力 } \\ & 0 . \quad 55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{Sm} \end{aligned}$	$\begin{aligned} & \text { 曲げとねじり応力 } \\ & \text { St + S b (S d) } \end{aligned}$ $\mathrm{St}+\mathrm{Sb}(\mathrm{~S} s)$	許容応力 1．8•S m 2． $4 \cdot \mathrm{Sm}$
6	$\begin{array}{r} 73 * \\ 122 * \end{array}$	$\begin{aligned} & 64 \\ & 86 \end{aligned}$	$\begin{aligned} & 156 \\ & 232 \end{aligned}$	$\begin{aligned} & 212 \\ & 283 \end{aligned}$
18	$\begin{aligned} & 108 * \\ & 164 * \end{aligned}$	$\begin{aligned} & 64 \\ & 86 \end{aligned}$	$\begin{aligned} & 120 \\ & 184 \end{aligned}$	$\begin{aligned} & 212 \\ & 283 \end{aligned}$

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	最大応力 区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$				$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価 疲労累積係数 $\mathrm{U}+\mathrm{US}$ d $\mathrm{U}+\mathrm{U}$ S s
					$\begin{gathered} \text { 一次応力 } \\ \mathrm{Sprm}(\mathrm{Sd}) \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \mathrm{~s}) \end{gathered}$	許容応力 2． $25 \cdot \mathrm{Sm}$ $3 \cdot \mathrm{Sm}$	$\begin{aligned} & \text { ねじり応力 } \\ & \text { St (Sd) } \\ & \text { St (S s) } \end{aligned}$	$$	$\begin{array}{\|c\|} \hline \text { 一次 + 二次応力 } \\ S \mathrm{~S}(\mathrm{~S} \mathrm{~d}) \\ \mathrm{Sn}(\mathrm{~S} \mathrm{~s}) \end{array}$	許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S} \mathrm{~m} \\ & 3 \cdot \mathrm{~S} \mathrm{~m} \end{aligned}$	
PLR－002	IIIA S	29	TEE	Sprm（Sd）	200	265	－	－	－	－	－
	IIIA S	18	ELBOW	St（S d）	－	－	100 ＊	64	－	－	－
	IIIA S	35	TEE	Sn（S d）	－	－	－	－	$404 * *$	354	0． 0096
	IIIA S	108	TEE	$\mathrm{U}+\mathrm{US} \mathrm{d}$	－	－	－	－	－	－	0． 0365
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	29	TEE	Sprm（Ss）	282	354	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	ELBOW	St（S s ）	－	－	161 ＊	86	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	35	TEE	Sn（S s ）	－	－	－	－	657 ＊＊	354	0． 1202
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	222	ELBOW	U＋US s	－	－	－	－	－	－	0． 3181

＊印はねじりによる最大応力発生点において応力が許容応力を超えていることを示し，次頁に曲げとねじりによる応力評価結果を示す。
＊＊印は一次＋二次応力が許容応力を超えていることを示し，簡易弾塑性解析を行い疲労評価の結果疲労累積係数が 1 以下であり許容値を満足している。

下表に示すとおりねじりによる応力が許容応力状態III S のとき 0 。 $55 \cdot \mathrm{Sm}$ ，又は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ のとき 0 。 73 • Sm を超える評価点のらち曲げとねじりによる応力は許容値を満足している。
鳥 瞰 図
PLR－002

評価点	一次応力評価 （MPa）			
	$\begin{aligned} & \text { ねじり応力 } \\ & S \text { t (S d) } \\ & \text { St (S s) } \end{aligned}$	$\begin{aligned} & \text { 許容応力 } \\ & 0.55 \cdot \mathrm{~S} \mathrm{~m} \\ & 0.73 \cdot \mathrm{Sm} \end{aligned}$	$\begin{aligned} & \text { 曲げとねじり応力 } \\ & \mathrm{S} \text { t }+\mathrm{S} \text { b (S d) } \\ & \mathrm{S} \text { t }+\mathrm{Sb} \text { (S s }) \end{aligned}$	許容応力 1． $8 \cdot \mathrm{Sm}$ 2． $4 \cdot \mathrm{Sm}$
18	$\begin{aligned} & 100 * \\ & 161 * \end{aligned}$	$\begin{aligned} & 64 \\ & 86 \end{aligned}$	$\begin{aligned} & 119 \\ & 189 \end{aligned}$	$\begin{aligned} & 212 \\ & 283 \end{aligned}$
29	$\begin{array}{r} 70 * \\ 111 * \end{array}$	$\begin{aligned} & 64 \\ & 86 \end{aligned}$	$\begin{aligned} & 154 \\ & 236 \end{aligned}$	$\begin{aligned} & 212 \\ & 283 \end{aligned}$

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
クラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）		疲労評価
				計算応力 $\begin{aligned} & S p r m(S d) \\ & S p r m(S s) \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{y}^{* 1} \\ & 0 . \\ & 9 \cdot \mathrm{~S} \mathrm{u} \end{aligned}$	計算応力 $\operatorname{Sn}(S s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
PLR－002	$\begin{aligned} & \text { III } \mathrm{S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline 137 \\ & 137 \\ & 137 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S d) } \\ \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 126 \\ & 194 \end{aligned}$	$\begin{aligned} & \hline 182 \\ & 363 \\ & - \end{aligned}$			—

注記＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については， S yと1．2•Shのうち大きい方とする。
支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
					計算荷重 （kN）	許容 荷重 （kN）
PLR－001－316S	メカニカルスナッバ	SMS－40－100	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照		745	751
PLR－001－317S	メカニカルスナッバ	SMS－40－100			746	751
PLR－001－117B	ロッドレストレイント	RST－5			77	235
PLR－002－313H	コンスタントハンガ	CVS－160－62			184	193
PLR－001－005H	スプリングハンガ	VS030B－20			155	2×92

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
PLR－001－309R	レストレイント	$\begin{gathered} \text { リジット } \\ \text { ストラット } \end{gathered}$	SF45A	66	390	0	1834	－	－	－	せん断	55	125
PLR－002－137A	アンカ	ラグ	SGV410	302	77	31	144	38	65	16	組合せ	189	199

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能碓認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
G31－F003	電動ゲート弁	α（ S s ）	6.6	6.4	20.0	20.0	178	280

＊応答加速度は，打ち切り振動数を 50 Hz として計算した結果を示す。
4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を
記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		$\begin{aligned} & \hline \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	代 表
1	PLR－001	6	194	265	1． 36	－	6	270	354	1．31	－	6	663	354	0.53	\bigcirc	106	0.2091	－
2	PLR－002	29	200	265	1． 32	\bigcirc	29	282	354	1． 25	\bigcirc	35	657	354	0.53	－	222	0．3181	\bigcirc

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。
代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	PLR－002	137	126	182	1． 44	\bigcirc	137	194	363	1.87	\bigcirc	137	314	364	1.15	\bigcirc	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次＋二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力裕度最小を代表とする。

VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書

VI－2－5－3－1 主蒸気系の耐震性についての計算書

VI－2－5－3－1 主蒸気系の耐震性についての計算書

目 次

VI－2－5－3－1－1 アキュムレータの耐震性についての計算書

VI－2－5－3－1－1 アキュムレータの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
2.4 記号の説明 4
2.5 計算精度と数值の丸め方 8
3．評価部位 8
4．固有周期 9
4． 1 固有周期の計算方法 9
4．2 固有周期の計算条件 14
4.3 固有周期の計算結果 14
5．構造強度評価 15
5.1 構造強度評価方法 15
5.2 荷重の組合せ及び許容応力 15
5．2．1 荷重の組合せ及び許容応力状態． 15
5．2．2 許容応力 15
5．2．3 使用材料の許容応力評価条件． 15
5.3 設計用地震力 21
5.4 計算方法 22
5．4．1 応力の計算方法 22
5.5 計算条件 30
5.6 応力の評価 30
5．6．1 胴の応力評価 30
5．6．2 ラグの応力評価 31
5．6．3 取付ボルトの応力評価 31
5．6．4 H形鋼の応力評価 31
6．評価結果 32
6.1 設計基準対象施設としての評価結果 32
6．1．1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ 32
6．1．2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ 32
6．2 重大事故等対処設備としての評価結果 32
6．2．1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ 32
6．2．2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ 32

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，アキュムレータが設計用地震力に対して十分な構造強度を有していることを説明す るものである。

アキュムレータは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備におい ては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

対象機器は下記の二種あるが，共通の項目については単にアキュムレータと呼ぶ。

- 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
- 主蒸気逃がし安全弁自動減圧機能用アキュムレータ

2．一般事項
2.1 構造計画 アキュムレータの構造計画を表2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
アキュムレータは，胴を 4枚のラグで支持する。 ラグは胴の当て板に溶接 され，H形鋼には取付ボ ルトにより据え付ける。	上面及び下面に平板を有するたて置円筒形	【主蒸気逃がし安全弁逃がし弁機能用アキュムレータ】 【主蒸気逃がし安全弁自動減圧機能用アキュムレータ】

2.2 評価方針

アキュムレータの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示すアキュムレータの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

アキュムレータの耐震評価フローを図2－1に示す。

図 2－1 アキュムレータの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984，J EAG4601－1987及びJEAG4601－1991 追補版）（日本電気協会 電気技術基準調査委員会 昭和59年9月，昭和62年8月及び平成3年6月）
（2）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S NC1－2005／2007）（日本機械学会2007年9月）（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\text {b }}$	取付ボルトの断面積	mm^{2}
A h_{1}	逃がし开機能用アキュムレータのH形鋼の断面積	mm^{2}
A h_{2}	自動減圧機能用アキュムレータのH形鋼の断面積	mm^{2}
$\mathrm{A}_{\mathrm{r} 1}$	逃がし弁機能用アキュムレータのラグの断面積	mm ${ }^{2}$
Ar 2	自動減圧機能用アキュムレータのラグの断面積	mm^{2}
a_{1}	H 形鋼下端から荷重点 F_{2} までの距離（逃がし弁機能用アキュムレ ータ）	mm
a_{2}	H形鋼下端から荷重点 F_{4} までの距離（自動減圧機能用アキュムレ ータ）	mm
$\mathrm{a}_{2}{ }^{\prime}$	H形鋼下端から荷重点 F 6 までの距離（逃がし弁機能用アキュムレ ータ）	mm
b_{1}	逃がし弁機能用アキュムレータの荷重点 F_{1} から F_{2} までの距離	mm
b_{2}		mm
$\mathrm{b}_{2}{ }^{\prime}$	逃がし弁機能用アキュムレータの荷重点F $5^{\text {から F }} 6$ までの距離	mm
C 1	H 形鋼上端から荷重点 F_{1} までの距離（逃がし弁機能用アキュムレ ータ）	mm
C 2	H形鋼上端から荷重点 F_{3} までの距離（自動減圧機能用アキュムレ ータ）	mm
c $2{ }^{\prime}$	H形鋼上端から荷重点 F 5 までの距離（逃がし弁機能用アキュムレ ータ）	mm
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
D i	胴の内径	mm
d	取付ボルトの呼び径	mm
E	H形鋼の縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
$\mathrm{F}_{1}, \mathrm{~F}_{2}$	逃がし弁機能用アキュムレータ支持点における集中荷重 （逃がし弁機能用アキュムレータ2台の荷重）	N
$\mathrm{F}_{3}, \mathrm{~F}_{4}$	自動減圧機能用アキュムレータ支持点における集中荷重 （自動減圧機能用アキュムレータ1台の荷重）	N
$\mathrm{F}_{5}, \mathrm{~F}_{6}$	逃がし弁機能用アキュムレータ支持点における集中荷重 （逃がし弁機能用アキュムレータ1台の荷重）	N
F_{ah}	H形鋼に作用するせん断力	N
F_{sb}	取付ボルトに作用するせん断力	N

記号	記号の説明	単位
F s r	ラグに作用するせん断力	N
F_{tb}	取付ボルトに作用する引張力	N
ff_{b}	H形鋼の許容曲げ応力	MPa
$\mathrm{ff} \mathrm{br}^{\text {r }}$	ラグの許容曲げ応力	MPa
$\mathrm{f}_{\mathrm{b}} \mathrm{t}$	取付ボルトの引張応力とせん断応力の許容組合せ応力	MPa
f o	胴の許容組合せ応力	MPa
f s b	取付ボルトの許容せん断応力	MPa
f sh	H形鋼の許容せん断応力	MPa
f s r	ラグの許容せん断応力	MPa
f to	取付ボルトの許容引張応力	MPa
f_{tb}	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
$\mathrm{ff}_{\mathrm{th}}$	H形鋼の許容引張応力	MPa
$\mathrm{fr}_{\text {tr }}$	ラグの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
H_{1}	H 形鋼の中心から逃がし弁機能用アキュムレータの中心までの長 さ	mm
H_{2}	H形鋼の中心から自動減圧機能用アキュムレータの中心までの長 さ	mm
I 1	逃がし弁機能用アキュムレータのH形鋼の断面二次モーメント	mm ${ }^{4}$
I 2	自動減圧機能用アキュムレータのH形鋼の断面二次モーメント	mm^{4}
K	アキュムレータ支持構造物のばね定数	N / mm
L_{1}	逃がし升機能用アキュムレータのH形鋼長さ	mm
L_{2}	自動減圧機能用アキュムレータのH形鋼長さ	mm
ℓ_{1}	逃がし弁機能用アキュムレータのラグ付け根部より取付ボルト固定点までのZ軸方向の距離	mm
ℓ_{2}	逃がし弁機能用アキュムレータのラグ付け根部より取付ボルト固定点までのX軸方向の距離	mm
ℓ_{3}	自動減圧機能用アキュムレータのラグ付け根部より取付ボルト固定点までのZ軸方向の距離	mm
ℓ_{4}	自動減圧機能用アキュムレータのラグ付け根部より取付ボルト固定点までのX軸方向の距離	mm
M_{1}	逃がし弁機能用アキュムレータのH形鋼自重による曲げモーメン ト	$\mathrm{N} \cdot \mathrm{mm}$
M_{2}	固定端から長さ $\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)$ 離れた場所に働く水平力 F_{1} による曲 げモーメント	$\mathrm{N} \cdot \mathrm{mm}$

記号	記号の説明	単位
M_{3}	固定端から長さ a 1 離れた場所に働く水平力 F_{2} による曲げモーメ ント	$\mathrm{N} \cdot \mathrm{mm}$
M_{4}	$\mathrm{M}_{1}+\mathrm{M}_{2}+\mathrm{M}_{3}$	$\mathrm{N} \cdot \mathrm{mm}$
M_{5}	自動減圧機能用アキュムレータのH形鋼自重による曲げモーメン ト	$\mathrm{N} \cdot \mathrm{mm}$
M 6	固定端から長さ $\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right)$ 離れた場所に働く水平力 F_{3} による曲 げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{7}	固定端から長さ $\mathrm{a}_{2} 2$ 離れた場所に働く水平力 F_{4} による曲げモーメ ント	$\mathrm{N} \cdot \mathrm{mm}$
M_{8}	固定端から長さ $\left(\mathrm{b}_{2}{ }^{\prime}+\mathrm{b}_{2}{ }^{\prime}\right)$ 離れた場所に働く水平力 F_{5} による曲 げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{9}	固定端から長さa2離れた場所に働く水平力 F 6 による曲げモー メント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{10} 0$	逃がし弁機能用アキュムレータと自動減圧機能用アキュムレータ の重心の違いによるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{11}	$\mathrm{M}_{5}+\mathrm{M}_{6}+\mathrm{M}_{7}+\mathrm{M}_{8}+\mathrm{M}_{9}+\mathrm{M}_{10}$	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{x} \text { r }}$	水平X軸方向の地震荷重により働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{y} \mathrm{r}}$	鉛直方向の地震荷重により働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\mathrm{z} \text { r }}$	水平Z軸方向の地震荷重により働く曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{N}_{\mathrm{b} 1}$	逃がし升機能用アキュムレータのボルトの本数	－
$\mathrm{N}_{\mathrm{b} 2}$	自動減圧機能用アキュムレータのボルトの本数	－
N_{r}	ラグの枚数	－
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
T	アキュムレータと支持構造物を一体構造とした固有周期	S
t	胴板の厚さ	mm
W	逃がし升機能用アキュムレータ及びH形鋼等の全重量	N
W＇	自動減圧機能用アキュムレータ及びH形鋼等の全重量	N
W_{1}	逃がし升機能用アキュムレータ及び付属品の重量	N
W_{2}	自動減圧機能用アキュムレータ及び付属品の重量	N
ω_{1}	逃がし弁機能用アキュムレータのH形鋼単位長さ当り重量	N / mm
$\omega 2$	自動減圧機能用アキュムレータのH形鋼単位長さ当り重量	N / mm
$\mathrm{Z}_{\mathrm{h} 1}$	逃がし弁機能用アキュムレータのラグの強軸断面係数	mm^{3}
Z v 1	逃がし弁機能用アキュムレータのラグの弱軸断面係数	mm^{3}
$\mathrm{Z}_{\mathrm{h} 2}$	自動減圧機能用アキュムレータのラグの強軸断面係数	mm^{3}
Z v 2	自動減圧機能用アキュムレータのラグの弱軸断面係数	mm^{3}

記号	記号の説明	単位
Z_{1}	逃がし弁機能用アキュムレータのH形鋼の弱軸断面係数	mm^{3}
Z_{2}	自動減圧機能用アキュムレータのH形鋼の弱軸断面係数	mm ${ }^{3}$
$\sigma{ }_{\phi} 1$	内圧により胴に生じる周方向応力	MPa
$\sigma \times 1$	内圧により胴に生じる軸方向応力	MPa
σ 。	胴の組合せ一次一般膜応力の最大値	MPa
σ a	H形鋼に発生する曲げ応力とせん断応力による組合せ応力	MPa
σ b	取付ボルトに発生する引張応力	MPa
$\sigma \mathrm{ba}$	取付ボルトに発生する引張応力とせん断応力による組合せ応力	MPa
σ r	水平方向と鉛直方向の設計震度によりラグ 1 枚に発生する最大合	MPa
	成曲げ応力	
σ r a	ラグに発生する曲げ応力とせん断応力による組合せ応力	MPa
$\sigma \mathrm{rxy}$	水平X軸方向と鉛直方向の設計震度によりラグ 1 枚に発生する合成曲げ応力	MPa
$\sigma \mathrm{rzy}$	水平Z軸方向と鉛直方向の設計震度によりラグ1枚に発生する合成曲げ応力	MPa
$\sigma \mathrm{x} \mathrm{r}$	水平X軸方向の設計震度によりラグ1枚に発生する曲げ応力	MPa
$\sigma \mathrm{y} \mathrm{r}$	鉛直方向の設計震度によりラグ1枚に発生する曲げ応力	MPa
$\sigma \mathrm{zr}$	水平Z軸方向の設計震度によりラグ1枚に発生する曲げ応力	MPa
$\sigma \mathrm{y} \mathrm{b}$	H形鋼の固定端部に発生する曲げ応力	MPa
$\tau \mathrm{b}$	取付ボルトに発生するせん断応力	MPa
τ_{h}	H形鋼に発生するせん断応力	MPa
τ r	ラグに発生するせん断応力	MPa
δ_{1}	逃がし弁機能用アキュムレータのH形鋼に発生する自重によるた	mm
	わみ	
$\delta 2$	F_{1} によるたわみ	mm
$\delta{ }_{3}$	F 2 によるたわみ	mm
$\delta{ }_{4}$	$\delta_{1}+\delta_{2}+\delta_{3}$	mm
$\delta 5$	自動減圧機能用アキュムレータのH形鋼に発生する自重によるた わみ	mm
$\delta{ }_{6}$	F3によるたわみ	mm
$\delta{ }_{7}$	F4によるたわみ	mm
$\delta 8$	F 5 によるたわみ	mm
$\delta 9$	F6によるたわみ	mm
$\delta 10$	$\delta_{5}+\delta_{6}+\delta_{7}+\delta_{8}+\delta_{9}$	mm

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第4位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	最高使用圧力	MPa	－	－	小数点以下第 2 位＊1
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位
$\begin{aligned} & \text { 長 } \\ & \text { さ } \end{aligned}$	下記以外の長さ	mm	－	－	整数位＊1
	胴板の厚さ	mm	－	－	小数点以下第 1 位
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3		MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：絶対値が 1000 以上のときはべき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法に より補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
アキュムレータの耐震評価は，「5． 1 構造強度評価方法」に示す条件に基づき，耐震評価上厳 しくなるラグ，取付ボルト及びH形鋼について評価を実施する。アキュムレータの耐震評価部位 については，表 $2-1$ の概略構造図に示す。

4．固有周期

4.1 固有周期の計算方法

アキュムレータの固有周期の計算方法を以下に示す。
（1）計算モデル
a．アキュムレータは一端固定のH型鋼に 4 枚のラグで支持される。
b．アキュムレータのH形鋼への取付は図4－1に示す。
c．ラグはアキュムレータの胴に当て板を介して溶接され，アキュムレータの荷重は均等に負荷される。
d．耐震計算に用いる寸法は，公称値を使用する。
e．アキュムレータの荷重状態及び胴板に生じるモーメントを図 $4-2$ 及び図 $4-3$ に示す。
f．アキュムレータは，図 4－3に示す一端固定の梁モデルとして考える。

$A \sim A$ 矢視図

図 4－1 アキュムレータの取付構造

図 4－2 アキュムレータの荷重状態

図 4－3 アキュムレータの荷重状態
（2）水平方向固有周期
a．主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
図 4－3 における水平方向のばね定数は次式で求める。
H形鋼に働く自重によるたわみ δ_{1} は図4－3より

$$
\begin{equation*}
\delta_{1}=\frac{\omega_{1} \cdot \mathrm{~L}_{1}{ }^{4}}{8 \cdot \mathrm{E} \cdot \mathrm{I}_{1}} \tag{4.1.1.1}
\end{equation*}
$$

集中荷重 F_{1} によるたわみは

$$
\begin{equation*}
\delta_{2}=\frac{\mathrm{F}_{1} \cdot\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{1}} \cdot\left(1+\frac{3 \cdot \mathrm{C}_{1}}{2 \cdot\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right)}\right) \tag{4.1.1.2}
\end{equation*}
$$

集中荷重 F_{2} によるたわみは

$$
\begin{equation*}
\delta_{3}=\frac{\mathrm{F}_{2} \cdot \mathrm{a}_{1}{ }^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{1}} \cdot\left(1+\frac{3 \cdot\left(\mathrm{~b}_{1}+\mathrm{c}_{1}\right)}{2 \cdot \mathrm{a}_{1}}\right) \tag{4.1.1.3}
\end{equation*}
$$

したがって，全たわみは

$$
\begin{equation*}
\delta_{4}=\delta_{1}+\delta_{2}+\delta_{3} \tag{4.1.1.4}
\end{equation*}
$$

水平方向の固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~W}}{\mathrm{~g} \cdot 10^{3} \cdot \mathrm{~K}}} \tag{4.1.1.5}
\end{equation*}
$$

ここで，ばね定数は
$K=\frac{W}{\delta_{4}}$
固有周期の算出は，（4．1．1．5）式に（4．1．1．6）式を代入して

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\delta_{4}}{\mathrm{~g} \cdot 10^{3}}} \tag{4.1.1.7}
\end{equation*}
$$

b．主蒸気逃がし安全弁自動減圧機能用アキュムレータ
H形鋼に働く自重によるたわみ δ 5は図 4－3 より

$$
\begin{equation*}
\delta_{5}=\frac{\omega_{2} \cdot \mathrm{~L}_{2}{ }^{4}}{8 \cdot \mathrm{E} \cdot \mathrm{I}_{2}} \tag{4.1.2.1}
\end{equation*}
$$

集中荷重F3 よるたわみは

$$
\begin{equation*}
\delta_{6}=\frac{\mathrm{F}_{3} \cdot\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{2}} \cdot\left(1+\frac{3 \cdot \mathrm{C}_{2}}{2 \cdot\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right)}\right) \tag{4.1.2.2}
\end{equation*}
$$

集中荷重 F_{4} よるたわみは

$$
\begin{equation*}
\delta_{7}=\frac{\mathrm{F}_{4} \cdot \mathrm{a}_{2}{ }^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{2}} \cdot\left(1+\frac{3 \cdot\left(\mathrm{~b}_{2}+\mathrm{c}_{2}\right)}{2 \cdot \mathrm{a}_{2}}\right) \tag{4.1.2.3}
\end{equation*}
$$

集中荷重F5によるたわみは

$$
\begin{equation*}
\delta_{8}=\frac{\mathrm{F}_{5} \cdot\left(\mathrm{a}_{2}{ }^{\prime}+\mathrm{b}_{2}{ }^{\prime}\right)^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{2}} \cdot\left(1+\frac{3 \cdot \mathrm{c}_{2}{ }^{\prime}}{2 \cdot\left(\mathrm{a}_{2}{ }^{\prime}+\mathrm{b}_{2}{ }^{\prime}\right)}\right) \tag{4.1.2.4}
\end{equation*}
$$

集中荷重 F_{6} によるたわみは

$$
\begin{equation*}
\delta_{9}=\frac{\mathrm{F}_{6} \cdot \mathrm{a}_{2}^{\prime}{ }^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}_{2}} \cdot\left(1+\frac{3 \cdot\left(\mathrm{~b}_{2}^{\prime}+\mathrm{c}_{2}^{\prime}{ }^{\prime}\right)}{2 \cdot \mathrm{a}_{2}^{\prime}}\right) \tag{4.1.2.5}
\end{equation*}
$$

したがって，全たわみは

$$
\begin{equation*}
\delta_{10}=\delta_{5}+\delta_{6}+\delta_{7}+\delta_{8}+\delta_{9} \tag{4.1.2.6}
\end{equation*}
$$

水平方向の固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~W}}{\mathrm{~g} \cdot 10^{3} \cdot \mathrm{~K}}} \tag{4.1.2.7}
\end{equation*}
$$

ここで，ばね定数は
$K=\frac{W}{\delta_{10}}$
固有周期の算出は，（4．1．1．5）式に（4．1．1．6）式を代入して

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\delta_{10}}{\mathrm{~g} \cdot 10^{3}}} \tag{4.1.2.9}
\end{equation*}
$$

（3）鉛直方向固有周期
a．主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
図 4－3 における鉛直方向のばね定数は次式で求める。

$$
\begin{equation*}
K=\frac{1}{\frac{L_{1}}{E \cdot A_{h 1}}} \tag{4.1.3.1}
\end{equation*}
$$

鉛直方向の固有周期は次式で求める。

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~F}_{1}}{10^{3} \cdot \mathrm{~K}}} \tag{4.1.3.2}
\end{equation*}
$$

b．主蒸気逃がし安全弁自動減圧機能用アキュムレータ
図 4－3 における鉛直方向のばね定数は次式で求める。

$$
\begin{equation*}
\mathrm{K}=\frac{1}{\frac{L_{2}}{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{h} 2}}} \tag{4.1.4.1}
\end{equation*}
$$

鉛直方向の固有周期は次式で求める。

$$
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~F}_{3}+\mathrm{F}_{5}}{10^{3} \cdot \mathrm{~K}}}
$$

4．2 固有周期の計算条件

固有周期の計算に用いる計算条件は，本計算書の【主蒸気逃がし安全弁逃がし弁機能用アキ ュムレータの耐震性についての計算結果】及び【主蒸気逃がし安全弁自動減圧機能用アキュム レータの耐震性についての計算結果】の機器要目に示す。

4． 3 固有周期の計算結果

固有周期の評価結果を表 4－1 に示す。計算の結果，固有周期は 0.05 秒以下であり，剛である ことを確認した。

表 4－1 固有周期（単位：s）

	主蒸気逃がし安全弁逃がし弁 機能用アキュムレータ	主蒸気逃がし安全弁自動減圧 機能用アキュムレータ			
水平					
鉛直					

5．構造強度評価

5.1 構造強度評価方法

4．1項a．～f．のほか，次の条件で計算する。
地震力はアキュムレータに対して水平方向及び鉛直方向から作用するものとする。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
アキュムレータの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用い るものを表 5－1 に，重大事故等対処設備に用いるものを表 5－2 に示す。

5．2．2 許容応力
アキュムレータの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 5－3 及び表 5－4のとおりとする。

5．2．3 使用材料の許容応力評価条件
アキュムレータの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いる ものを表 5－5 に，重大事故等対処設備に用いるものを表 5－6に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉冷却材 の循環設備	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	S	クラス 3 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	III ${ }_{\text {aS }}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	IV AS
		主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	S	クラス 3 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	III ${ }_{\text {AS }}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	IV AS

注記＊：クラス 3 容器の支持構造物を含む。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {1 }}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉冷却材 の循環設備	主蒸気逃がし安全弁逃がし弁機能用 アキュムレータ	常設耐震／防止	$\begin{gathered} \text { 重大事故等 } \\ \text { クラス } 2 \text { 容器*2 } \end{gathered}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	IV ${ }_{\text {AS }}$
					$\mathrm{D}+\mathrm{Ps} \mathrm{SaD}^{+} \mathrm{MsAD}+\mathrm{Ss}$	VAS （VASとして IVAS の許容限界 を用いる。）
原子炉冷却系統施設	原子炉冷却材 の循環設備	主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	常設耐震／防止常設／緩和	$\begin{gathered} \text { 重大事故等 } \\ \text { クラス } 2 \text { 容器*2 } \end{gathered}$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\text {AS }}$
					$\mathrm{D}+\mathrm{Psad}+\mathrm{MsAD}+\mathrm{Ss}$	VAS （VASとして $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
計測制御系統施設	制御用空気設備	主蒸気逃がし安全弁自動減圧機能用 アキュムレータ	常設耐震／防止	$\begin{aligned} & \text { 重大事故等 } \\ & \text { クラス } 2 \text { 容器*2 } \end{aligned}$	$\mathrm{D}+\mathrm{Ps} \mathrm{SaD}^{+} \mathrm{MsAD}+\mathrm{Ss}$	VAS （VASとして $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1 ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス 2 容器の支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{Psad}+\mathrm{Msad}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（クラス 2,3 容器及び重大事故等クラス 2 容器）

注記 $* 1$ ：座屈による評価が必要な場合には，クラス MC 容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊ $3: 2 \cdot \mathrm{~S}_{\mathrm{y}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。 S_{m} は $2 / 3$ • S_{y} と読み替える。） の簡易弾塑性解析を用いる。

表 5－4 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊ （支持部）	
		一次応力
		組合せ
$\mathrm{III}_{A} \mathrm{~S}$	引張	$1.5 \cdot{ }_{\text {t }}$
	曲げ	$1.5 \cdot{ }_{\text {b }}$
	せん断	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	引張	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$
	曲げ	$1.5 \cdot \mathrm{f}{ }_{\text {b }}$
	せん断	$1.5 \cdot \mathrm{fs}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \text { の許容限界を用いる。) } \end{gathered}$	引張	$1.5 \cdot{ }_{\text {t }}$
	曲げ	$1.5 \cdot \mathrm{f}$ b
	せん断	$1.5 \cdot \mathrm{f}$ s

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{RT}) \\ (\mathrm{MPa}) \end{gathered}$
胴	$\begin{gathered} \text { SUS304 } \\ \text { SUS304TP } \end{gathered}$	最高使用温度	171	113	－	413	－
ラグ	SUS304	最高使用温度	171	－	150	413	205
取付ボルト	SUS304	周囲環境温度	171	－	150	413	205
H形鋼	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 厚さ } \leqq 40 \mathrm{~mm} \text {) } \end{gathered}$	周囲環境温度	171	－	192	373	－

表 5－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S (MPa)	S_{y} (MPa)	S_{u} (MPa)	S_{y} (RT) (MPa)
胴	SUS304 SUS304TP	最高使用温度	171	113	-	413	-
ラグ	SUS304TP	最高使用温度	171	-	150	413	205
取付ボルト	SUS304	周囲環境温度	171	-	150	413	205
H形鋼	SS400 （厚さ $\leqq 40 \mathrm{~mm}$ ）	周囲環境温度	171	-	192	373	-

5.3 設計用地震力

評価に用いる設計用地震力を表 5－7 及び表 5－8に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－7 設計用地震力（設計基準対象施設）

据付場所 及び 床面高さ （m）	固有周期（s）＊2		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\text { 0. P. 13. } 40^{* 1}$			1． 18	0． 92	1． 89	1． 59

注記 $* 1$ ：基準床レベルを示す。
＊2：上段は主蒸気逃がし安全弁逃がし弁機能用アキュムレータの値を示す。
下段は主蒸気逃がし安全弁自動減圧機能用アキュムレータの値を示す。

表 5－8 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ （m）	固有周期 $(\mathrm{s}) * 2$		弾性設計用地震動 S d又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 $\text { 0. P. 13. } 40^{* 1}$			－	－	1． 89	1． 59

注記 $~ 1 ~: ~$ 基準床レベルを示す。
＊2：上段は主蒸気逃がし安全弁逃がし弁機能用アキュムレータの値を示す。
下段は主蒸気逃がし安全弁自動減圧機能用アキュムレータの値を示す。

5．4 計算方法

5．4．1 応力の計算方法

応力計算は，絶対値和を用いて行う。
5．4．1．1 胴の応力
（1）内圧による応力
内圧による応力は次式で求める。

$$
\begin{align*}
& \sigma_{\Phi 1}=\frac{\mathrm{P}_{\mathrm{r}} \cdot\left(\mathrm{D}_{\mathrm{i}}+1.2 \cdot \mathrm{t}\right)}{2 \cdot \mathrm{t}} \tag{5.4.1.1.1}\\
& \sigma_{\mathrm{x} 1}=\frac{\mathrm{P}_{\mathrm{r}} \cdot\left(\mathrm{D}_{\mathrm{i}}+1.2 \cdot \mathrm{t}\right)}{4 \cdot \mathrm{t}} \\
& \sigma_{\mathrm{o}}=\sigma_{\Phi 1}+\sigma_{\mathrm{x} 1} \ldots \cdots
\end{align*}
$$

$$
\begin{equation*}
\sigma_{x 1}=\frac{P_{r} \cdot\left(D_{i}+1.2 \cdot t\right)}{4 \cdot t} \quad \ldots \tag{5.4.1.1.3}
\end{equation*}
$$

（2）運転時質量によるラグ付け根部の応力
胴は当て板を介してラグを取り付ける構造より，評価の厳しいラグの応力で代用可能な
ことから, 5.4.1.2 ラグの応力で評価する。
（3）地震動によるラグ付け根部の応力
胴は当て板を介してラグを取り付ける構造より，評価の厳しいラグの応力で代用可能な ことから，5．4．1．2 ラグの応力で評価する。

5．4．1．2 ラグの応力
ラグに働くモーメントを図 5－1 に示す

図 5－1 ラグに働くモーメント
（1）主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
a．曲げ応力
水平X軸方向の地震荷重によりラグ1枚に働く曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{\mathrm{xr}}=\frac{\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{H}} \cdot \ell_{1}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.1}
\end{equation*}
$$

よって，水平X軸方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{xr}}=\frac{\mathrm{M}_{\mathrm{xr}}}{\mathrm{Z}_{\mathrm{h} 1}} \tag{5.4.1.2.2}
\end{equation*}
$$

水平Z軸方向の地震荷重によりラグ1枚に働く曲げモーメント

$$
\begin{equation*}
M_{\mathrm{Zr}}=\frac{\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{H}} \cdot \ell_{2}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.3}
\end{equation*}
$$

よって，水平X軸方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{zr}}=\frac{\mathrm{M}_{\mathrm{zr}}}{\mathrm{Z}_{\mathrm{h} 1}} \tag{5,4.1.2,4}
\end{equation*}
$$

また，鉛直方向の地震荷重によりラグ1枚に働く曲げモーメントは

$$
\begin{equation*}
M_{y r}=\frac{W_{1} \cdot\left(1+C_{\mathrm{V}}\right) \cdot \ell_{1}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.5}
\end{equation*}
$$

よって，鉛直方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{yr}}=\frac{\mathrm{M}_{\mathrm{yr}}}{\mathrm{Z}_{\mathrm{v} 1}} \tag{5.4.1.2.6}
\end{equation*}
$$

以上により，水平X軸方向と鉛直方向の基準地震動 S s によりラグ1枚に発生する合成曲 げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{rxy}}=\sigma_{\mathrm{xr}}+\sigma_{\mathrm{yr}} \tag{5.4.1.2.7}
\end{equation*}
$$

また，水平Z軸方向と鉛直方向の基準地震動S s によりラグ1枚に発生する合成曲げ応力 は

$$
\begin{equation*}
\sigma_{\mathrm{rzy}}=\sigma_{\mathrm{zr}}+\sigma_{\mathrm{yr}} \tag{5.4.1.2.8}
\end{equation*}
$$

以上より，水平方向と鉛直方向の基準地震動 S s によりラグ1枚に発生する最大の合成曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{r}}=\max \left\{\sigma_{\mathrm{rxy}}, \quad \sigma_{\mathrm{rzy}}\right\} \tag{5.4.1.2.9}
\end{equation*}
$$

b．せん断応力
鉛直方向の基準地震動 S s によりラグに働くせん断力は，水平方向の地震動も考慮して

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sr}}=\frac{\mathrm{W}_{1} \cdot \sqrt{\left(1+\mathrm{C}_{\mathrm{V}}\right)^{2}+\mathrm{C}_{\mathrm{H}}{ }^{2}}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.10}
\end{equation*}
$$

よって，せん断応力は

$$
\begin{equation*}
\tau_{r}=\frac{F_{s r}}{A_{r 1}} \tag{5.4.1.2.11}
\end{equation*}
$$

c．組合せ応力
組合せ応力 σ_{ra} は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ra}}=\sqrt{\sigma_{\mathrm{r}}^{2}+3 \cdot \tau_{\mathrm{r}}^{2}} \tag{5.4.1.2.12}
\end{equation*}
$$

（2）主蒸気逃がし安全弁自動減圧機能用アキュムレータ
a．曲げ応力
水平 X 軸方向の地震荷重によりラグ 1 枚に働く曲げモーメントは

$$
\begin{equation*}
M_{\mathrm{xr}}=\frac{\mathrm{W}_{2} \cdot \mathrm{C}_{\mathrm{H}} \cdot \ell_{3}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.13}
\end{equation*}
$$

よって，水平X軸方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{xr}}=\frac{\mathrm{M}_{\mathrm{xr}}}{\mathrm{Z}_{\mathrm{h} 2}} \tag{5.4.1.2.14}
\end{equation*}
$$

水平Z軸方向の地震荷重によりラグ1枚に働く曲げモーメント

$$
\begin{equation*}
M_{\mathrm{zr}}=\frac{W_{2} \cdot c_{\mathrm{H}} \cdot 1_{4}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.15}
\end{equation*}
$$

よって，水平X軸方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{zr}}=\frac{\mathrm{M}_{\mathrm{zr}}}{\mathrm{Z}_{\mathrm{h} 2}} \tag{5.4.1.2.16}
\end{equation*}
$$

また，鉛直方向の地震荷重によりラグ1枚に働く曲げモーメントは

$$
\begin{equation*}
M_{\mathrm{yr}}=\frac{W_{2} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \ell_{3}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.17}
\end{equation*}
$$

よって，鉛直方向の曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{yr}}=\frac{M_{\mathrm{yr}}}{Z_{\mathrm{v} 2}} \tag{5.4.1.2.18}
\end{equation*}
$$

以上により，水平X軸方向と鉛直方向の基準地震動 S s によりラグ1枚に発生する合成曲 げ応力は

$$
\sigma_{\mathrm{rxy}}=\sigma_{\mathrm{xr}}+\sigma_{\mathrm{yr}}
$$

また，水平Z軸方向と鉛直方向の基準地震動S s によりラグ1枚に発生する合成曲げ応力 は

$$
\begin{equation*}
\sigma_{\mathrm{rzy}}=\sigma_{\mathrm{zr}}+\sigma_{\mathrm{yr}} \tag{5.4.1.2.20}
\end{equation*}
$$

以上より，水平方向と鉛直方向の基準地震動 S s によりラグ1枚に発生する最大の合成曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{r}}=\max \left\{\sigma_{\mathrm{rxy}}, \quad \sigma_{\mathrm{rzy}}\right\} \tag{5.4.1.2.21}
\end{equation*}
$$

b．せん断応力
鉛直方向の基準地震動 S s によりラグに働くせん断力は，水平方向の地震動も考慮して

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sr}}=\frac{\mathrm{W}_{2} \cdot \sqrt{\left(1+\mathrm{C}_{\mathrm{V}}\right)^{2}+\mathrm{C}_{\mathrm{H}}^{2}}}{\mathrm{~N}_{\mathrm{r}}} \tag{5.4.1.2.22}
\end{equation*}
$$

よって，せん断応力は

$$
\begin{equation*}
\tau_{\mathrm{r}}=\frac{\mathrm{F}_{\mathrm{sr}}}{\mathrm{~A}_{\mathrm{r} 2}} \tag{5.4.1.2.23}
\end{equation*}
$$

c．組合せ応力
組合せ応力 σ raは次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ra}}=\sqrt{\sigma_{\mathrm{r}}^{2}+3 \cdot \tau_{\mathrm{r}}^{2}} \tag{5.4.1.2.24}
\end{equation*}
$$

5．4．1．3 取付ボルトの応力

（1）主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
a．引張応力
水平方向の基準地震動 S s により取付ボルト1本に働く引張応力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{tb}}=\frac{\mathrm{W}_{1} \cdot \mathrm{C}_{\mathrm{H}}}{\mathrm{~N}_{\mathrm{b} 1}} \tag{5.4.1.3.1}
\end{equation*}
$$

取付ボルトの断面積 A_{b} は

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.3.2}
\end{equation*}
$$

よって，引張応力は

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{tb}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.3}
\end{equation*}
$$

b．せん断応力
鉛直方向の基準地震動 S s により取付ボルト1本に働くせん断応力は，水平方向の地震動も考慮して

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sb}}=\frac{\mathrm{W}_{1} \cdot \sqrt{\left(1+\mathrm{C}_{\mathrm{V}}\right)^{2}+\mathrm{C}_{\mathrm{H}}^{2}}}{\mathrm{~N}_{\mathrm{b} 1}} \tag{5.4.1.3.4}
\end{equation*}
$$

よって，取付ボルトのせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{sb}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.5}
\end{equation*}
$$

c．組合せ応力
組合せ応力 σ baは次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ba}}=\sqrt{\sigma_{\mathrm{b}}^{2}+3 \cdot \tau_{\mathrm{b}}^{2}} \tag{5,4.1.3.6}
\end{equation*}
$$

（2）主蒸気逃がし安全弁自動減圧機能用アキュムレータ
a．引張応力
水平方向の基準地震動 S s により取付ボルト1本に働く引張応力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{tb}}=\frac{W_{2} \cdot \mathrm{C}_{\mathrm{H}}}{\mathrm{~N}_{\mathrm{b} 2}} \tag{5.4.1.3.7}
\end{equation*}
$$

取付ボルトの断面積 A_{b} は

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5,4,1,3.8}
\end{equation*}
$$

$$
\begin{gather*}
\text { よって, 引張応力は } \\
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{tb}}}{\mathrm{~A}_{\mathrm{b}}} \ldots \ldots \tag{5.4.1.3.9}
\end{gather*}
$$

b．せん断応力
鉛直方向の基準地震動 S s により取付ボルト1本に働くせん断応力は，水平方向の地震動も考慮して

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sb}}=\frac{\mathrm{W}_{2} \cdot \sqrt{\left(1+\mathrm{C}_{\mathrm{V}}\right)^{2}+\mathrm{C}_{\mathrm{H}}^{2}}}{\mathrm{~N}_{\mathrm{b} 2}} \tag{5.4.1.3.10}
\end{equation*}
$$

よって，取付ボルトのせん断応力は

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{sb}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.3.11}
\end{equation*}
$$

c．組合せ応力
組合せ応力 σ_{ba} は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{ba}}=\sqrt{\sigma_{\mathrm{b}}^{2}+3 \cdot \tau_{\mathrm{b}}^{2}} \tag{5.4.1.3.12}
\end{equation*}
$$

5．4．1．4 H形鋼の応力

（1）主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
a．曲げ応力
H形鋼の固定端部に曲げ応力が多く発生すると考えられるので固定端部の計算を行う。図4－2より，H形鋼の自重による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{1}=\frac{\omega_{1} \cdot \mathrm{~L}_{1}^{2}}{2} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.1}
\end{equation*}
$$

固定端から長さ（ $\mathrm{a}_{1}+\mathrm{b}_{1}$ ）離れた場所に働く集中荷重 F_{1} による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{2}=\mathrm{F}_{1} \cdot\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right) \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.2}
\end{equation*}
$$

固定端から長さ a_{1} 離れた場所に働く集中荷重 F_{2} による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{3}=\mathrm{F}_{2} \cdot \mathrm{a}_{1} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.3}
\end{equation*}
$$

したがって，H形鋼の固定端部に働く曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{4}=\mathrm{M}_{1}+\mathrm{M}_{2}+\mathrm{M}_{3} \tag{5.4.1.4.4}
\end{equation*}
$$

よって，H形鋼の固体端部に生じる曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{yb}}=\frac{\mathrm{M}_{4}}{\mathrm{Z}_{1}} \tag{5.4.1.4.5}
\end{equation*}
$$

b．せん断応力
水平方向の基準地震動 S s により固定端部においてH形鋼に作用するせん断力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sh}}=\left(\mathrm{W}_{1}+\omega_{1} \cdot \mathrm{~L}_{1}\right) \cdot \mathrm{C}_{\mathrm{H}} \tag{5,4.1.4.6}
\end{equation*}
$$

せん断応力は

$$
\begin{equation*}
\tau_{\mathrm{h}}=\frac{\mathrm{F}_{\mathrm{sh}}}{\mathrm{~A}_{\mathrm{h} 1}} \tag{5.4.1.4.7}
\end{equation*}
$$

c．組合せ応力
組合せ応力 σ_{a} は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{a}}=\sqrt{\sigma_{\mathrm{yb}}{ }^{2}+3 \cdot \tau_{\mathrm{h}}^{2}} \tag{5.4.1.4.8}
\end{equation*}
$$

（2）主蒸気逃がし安全弁自動減圧機能用アキュムレータ
a．曲げ応力
H形鋼の固定端部に曲げ応力が多く発生すると考えられるので固定端部の計算を行う。図4－2より，H形鋼の自重による曲げモーメントは

$$
\begin{equation*}
M_{5}=\frac{\omega_{2} \cdot L_{2}{ }^{2}}{2} \cdot C_{H} \tag{5.4.1.4.9}
\end{equation*}
$$

固定端から長さ（ $\mathrm{a}_{2}+\mathrm{b}_{2}$ ）離れた場所に働く集中荷重 F_{3} による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{6}=\mathrm{F}_{3} \cdot\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.10}
\end{equation*}
$$

固定端から長さ a_{2} 離れた場所に働く集中荷重 F_{4} による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{7}=\mathrm{F}_{4} \cdot \mathrm{a}_{2} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.11}
\end{equation*}
$$

固定端から長さ（ $\mathrm{a}_{2}{ }^{\prime}+\mathrm{b}_{2}$ ’）離れた場所に働く集中荷重 F_{5} による曲げモーメントは $\mathrm{M}_{8}=\mathrm{F}_{5} \cdot\left(\mathrm{a}_{2}{ }^{\prime}+\mathrm{b}_{2}{ }^{\prime}\right) \cdot \mathrm{C}_{\mathrm{H}}$
固定端から長さ a_{2} ’離れた場所に働く集中荷重 F_{6} による曲げモーメントは

$$
\begin{equation*}
\mathrm{M}_{9}=\mathrm{F}_{6} \cdot \mathrm{a}_{2}^{\prime} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.13}
\end{equation*}
$$

$$
\begin{gather*}
\text { アキュムレータの重心, 質量の違いによる転倒モーメントは } \\
\mathrm{M}_{10}=\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot\left|W_{1} \cdot \mathrm{H}_{1}-W_{2} \cdot \mathrm{H}_{2}\right| \quad \ldots \tag{5.4.1.4.14}
\end{gather*}
$$

したがって，H形鋼の固定端部に働く曲げモーメントは

$$
\begin{equation*}
M_{11}=M_{5}+M_{6}+M_{7}+M_{8}+M_{9}+M_{10} \tag{5.4.1.4.15}
\end{equation*}
$$

よって，H形鋼の固体端部に生じる曲げ応力は

$$
\begin{equation*}
\sigma_{\mathrm{yb}}=\frac{\mathrm{M}_{11}}{Z_{2}} \tag{5.4.1.4.16}
\end{equation*}
$$

b．せん断応力
水平方向の基準地震動 S s により固定端部においてH形鋼に作用するせん断力は

$$
\begin{equation*}
\mathrm{F}_{\mathrm{sh}}=\left(\mathrm{W}_{2}+\omega_{2} \cdot \mathrm{~L}_{2}\right) \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.4.17}
\end{equation*}
$$

せん断応力は

$$
\begin{equation*}
\tau_{\mathrm{h}}=\frac{\mathrm{F}_{\mathrm{sh}}}{\mathrm{~A}_{\mathrm{h} 2}} \tag{5.4.1.4.18}
\end{equation*}
$$

c．組合せ応力

組合せ応力 σ_{a} は次式により求める。

$$
\begin{equation*}
\sigma_{\mathrm{a}}=\sqrt{\sigma_{\mathrm{yb}}^{2}+3 \cdot \tau_{\mathrm{h}}^{2}} \tag{5.4.3.4.19}
\end{equation*}
$$

5.5 計算条件

応力計算に用いる計算条件は，本計算書の【主蒸気逃がし安全弁逃がし弁機能用アキュムレ ータの耐震性についての計算結果】及び【主蒸気逃がし安全弁自動減圧機能用アキュムレータ の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 胴の応力評価
5．4．1．1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S_{a} 以下であること。 ただし，S aは下表による。

応力の種類	許容応力 S_{a}	
	弾性設計用地震動 S d 又は静的震度に よる荷重との組合せの場合	基準地震動 S s による荷重 との組合せの場合
一次一般膜応力	設計降伏点 S_{y} と設計引張強さ S_{u} の 0．6倍のいずれか小さい方の値。 ただし，オーステナイト系ステンレス鋼及び高ニッケル合金にあっては許容引張応力 S の 1.2 倍の方が大きい場合 はこの大きい方の値とする。	設計引張強さ S_{u} の0．6倍
一次応力	上記の 1.5 倍の値	上記の1．5倍の値
一次応力と 二次応力の和	地震動のみによる一次応力と二次応力の和の変動値が設計降伏点 S_{y} の 2 倍以下であれば，疲労解析は不要とする。	

5．6．2 ラグの応力評価

5．4．1．2項で求めたラグの曲げ応力，せん断応力及び組合せ応力が各許容応力 f_{br} ， f ${ }_{r}$ 及び $f_{t r}$ 以下であること。なお，$f_{b r}$ ，$f_{s r}$ 及び $f_{t r}$ は下表による。

	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動S s による荷重 との組合せの場合
$\begin{gathered} \text { 許容曲げ応力 } \\ \mathrm{f}_{\mathrm{b}} \mathrm{~F} \end{gathered}$	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}}{1.5}{ }^{*} \cdot 1.5$
許容せん断応力 f s r	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容組合せ応力 $f_{t r}$	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

5．6．3 取付ボルトの応力評価

5．4．1．3 項で求めた取付ボルトの引張応力，せん断応力及び組合せ応力が各許容応力 ft b，f sb，fit 以下であること。なお，$f_{t b}$ ，$f_{s b}$ ，$f_{b t}$ は下表による。

	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動S s による荷重 との組合せの場合
許容引張応力 ftb	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{F}{1.5}^{*} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{F}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容組合せ応力 $\mathrm{f}_{\mathrm{b}} \mathrm{t}$	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

5．6．4 H形鋼の応力評価

5．4．1．4 項で求めたH形鋼の曲げ応力，せん断応力及び組合せ応力が各許容応力 f_{bh} ， f sh ， f_{th} 以下であること。なお， f_{bh} ， f_{sh} ， f_{th} は下表による。

	弹性設計用地震動 S d 又は静的震 度による荷重との組合せの場合	基漼地震動 S s による荷重 との組合せの場合
許容曲げ応力 f_{bh}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5} \cdot 1.5$
許容せん断応力 f_{sh}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}^{*}} \cdot 1.5$
許容組合せ応力 f_{th}	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{~F}}{}^{*} \cdot 1.5$

6．評価結果

6.1 設計基準対象施設としての評価結果

6．1．1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
主蒸気逃がし安全弁逃がし弁機能用アキュムレータの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

6．1．2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ
主蒸気逃がし安全弁自動減圧機能用アキュムレータの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果

6．2．1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
主蒸気逃がし安全弁逃がし弁機能用アキュムレータの重大事故等対処設備としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

6．2．2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ
主蒸気逃がし安全弁自動減圧機能用アキュムレータの重大事故等対処設備としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】
1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基準地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
主蒸気逃がし安全弁逃がし卉機能用 アキュムレータ	S	原子炉格納容器 0．P． $13.40^{* 1}$			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=1.89$	$\mathrm{C}_{\mathrm{v}}=1.59$	1.77	171	171

＊2： $\mathrm{MI}_{\mathrm{S}} \mathrm{S}$ については，基準地震動 S s で評価する

W （N）	W_{1} （N）	$\begin{gathered} \omega_{1} \\ (\mathrm{~N} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathbf{c}_{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{b}_{1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} c_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{1} \\ \left(\mathrm{ma}^{4}\right) \end{gathered}$	$\begin{gathered} Z_{1} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{n}} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{v}_{1}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{n}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{r} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	Nr	$\mathrm{N}_{\mathrm{b} 1}$
2060	686.5	0． 4894	1000	575	320	105	1． 93×10^{5}	1． 600×10^{7}	1． 600×10^{5}	3． 969×10^{3}	378.0	6． 353×10^{3}	252.0	113.0	4	4

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	F_{1} $(\mathrm{~N})$	F_{2} $(\mathrm{~N})$
50	69	784.5	784.5

$\begin{aligned} & \mathrm{F}(\mathrm{H} \text { 形鋼) } \\ & (\mathrm{MPPa}) \end{aligned}$		$\mathrm{S}_{\mathrm{y}}^{(\mathrm{H} \text { (} \mathrm{H} \text { 形錭) }}$	$\underset{(\mathrm{MPa})}{\mathrm{F}(\mathrm{ラグ)}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}(\text { (ラグ) } \\ (\mathrm{PPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{(\mathrm{MPa})}^{*}(\mathrm{H} \text { 形錭) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\text { (ラグ) }) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$
192＊2	$\begin{gathered} 373 * 2 \\ (\text { (厚さ } \leqq 40 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 192^{* 2} \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \\ \hline \end{gathered}$	$203^{* 1}$	$413{ }^{*}$	$150 * 1$	$203 * 2$	413＊2	150＊2	$231 * 2$	$203^{* 1}$	$203^{* 2}$

記 $* 1:$ 最高使用温度で算出
$* 2:$ 周四境境昷度で萛出
1.3 結論

1．3．2 応力

1．3．2．1 朋に生じる応力 （単位：MPa） | 応力 | 周方向応力 | 軸方向応力 | 組合せ応力 | 許容応力＊ |
| :---: | :---: | :---: | :---: | :---: |
| 内压による応力 | $\sigma_{61}=23$ | $\sigma_{\times 1}=12$ | $\sigma_{0}=35$ | $f_{0}=135$ |許容応力以下である。 注記＊：包絡条件の許容応力状態 $\Pi_{1} A_{S}$ の許容值を記載

枠囲みの内容は商業機密の観点から公開できません。

【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】
2．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		$\begin{gathered} \text { 最高使用圧力 } \\ (\mathrm{MPa}) \end{gathered}$	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲澴境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
主蒸気逃がし安全弁自動减圧機能用 アキュムレータ	S	原子炉格納容器 0．P．13． $40^{* 1}$			－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=1.89$	$\mathrm{C}_{\mathrm{v}}=1.59$	1.77	171	171

$\begin{aligned} & \mathrm{W}^{\prime} \\ & (\mathrm{N}) \end{aligned}$	$\begin{aligned} & \mathrm{W}_{2} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \omega_{2} \\ (\mathrm{~N} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{r} \hline a_{2} \\ (\mathrm{~mm}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{b}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} c_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} a_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} c^{\mathrm{c}_{2}^{\prime}} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{2} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{2} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{array}{r} \begin{array}{r} Z_{n 2} \\ \left(m^{3}\right) \end{array} \\ \hline \end{array}$	$\begin{array}{r} \begin{array}{r} Z_{\mathrm{v}}{ }^{2} \\ \left(\mathrm{~mm}^{3}\right. \end{array} \\ \hline \end{array}$	$\begin{gathered} \mathrm{A}_{\mathrm{h} 2} \\ \left(\mathrm{~mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{r} 2} \\ \left(\mathrm{~mm}^{2}\right) \\ \hline \end{gathered}$
7752	3727	1． 687	1650	580	820	250	575	320	755	1． 93×10^{5}	2． 240×10^{8}	1． 120×10^{6}	2． 842×10^{4}	1． 557×10^{3}	2． 187×10^{4}	778.7

A_{b} $\left(\mathrm{mm}^{2}\right)$	N_{r}	$\mathrm{N}_{\mathrm{b} 2}$	F_{3} $(\mathrm{~N})$	F_{4} $(\mathrm{~N})$	F_{5} $(\mathrm{~N})$	F_{6} $(\mathrm{~N})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	H_{1} $(\mathrm{~mm})$	H_{2} $(\mathrm{~mm})$
113.0	4	8	1961	1961	392.3	392.3	63	152	250	380

$\begin{gathered} \mathrm{F}(\mathrm{H} \text { 形錭) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}}(\mathrm{H} \text { 形铜) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}(\mathrm{H} \text { 形鋼) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{F}(\text { (クグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}^{*}(\mathrm{H} \text { (形錭) } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}^{*}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \text { F (取付ボルト) } \\ (\mathbb{P P a}) \end{gathered}$
192＊2	$\begin{gathered} 373 * 2 \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} 192^{* 2} \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	$203^{* 1}$	413＊1	150＊1	203＊2	413＊2	150＊2	$231 * 2$	203＊1	203＊2

2.3 結論

2．3．2 応力

2．3．2．1 胴に生じる応力 （単位：MPa） | 応力 | 周方向応力 | 軸方向応力 | 組合せ応力 | 許容応力＊ |
| :---: | :---: | :---: | :---: | :---: |
| 内压による応力 | $\sigma_{\sigma 1}=33$ | $\sigma_{\times 1}=17$ | $\sigma_{o}=50$ | $f_{o}=135$ |

支持部に生じる応力			弾性設計用地震動S d 又 は静的震度		（単位： MPa ）	
					基漼地震動S s	
部材	材料	心力	算出応力＊	計容応力	算出応力	許容応力
ラグ	SUS304	曲げ	$\sigma_{\mathrm{r}}=107$	$\mathrm{f}_{\mathrm{br}}=203$	$\sigma_{r}=107$	$\mathrm{f}_{\mathrm{br}}=203$
		せん断	$\tau_{\mathrm{r}}=4$	$\mathrm{f}_{\mathrm{s} \mathrm{r}}=117$	$\tau_{r}=4$	$\mathrm{f}_{\mathrm{s} \mathrm{r}}=117$
		組合せ	$\sigma_{r_{a}}=108$	$\mathrm{f}_{\mathrm{tr}}=203$	$\sigma_{\mathrm{ra}}=108$	$\mathrm{f}_{\mathrm{tr}}=203$
取付ボルト	SUS304	引張	$\sigma_{\mathrm{b}}=8$	$\mathrm{f}_{\mathrm{t}} \mathrm{b}=152$	$\sigma_{\mathrm{b}}=8$	$\mathrm{f}_{\mathrm{tb}}=152$
		せん断	$\tau_{\text {b }}=14$	$\mathrm{f}_{\mathrm{sb}}=117$	$\tau_{\text {b }}=14$	$\mathrm{f}_{\mathrm{sb}}=117$
		組合せ	$\sigma_{\text {ba }}=25$	$\mathrm{f}_{\mathrm{b}}=152$	$\sigma_{\text {ba }}=25$	$\mathrm{f}_{\mathrm{b}}=152$
H 形鋼	SS400	曲げ	$\sigma_{\text {yb }}=15$	$\mathrm{f}_{\mathrm{b}}=192$	$\sigma_{y \mathrm{~b}}=15$	$\mathrm{f}_{\mathrm{b}}=231$
		せん断	$\tau_{\mathrm{h}}=1$	$\mathrm{ffsh}=111$	$\tau_{\text {h }}=1$	$\mathrm{ffsh}^{\text {¢ }}$ 133
		組合せ	$\sigma_{\mathrm{a}}=15$	$\mathrm{f}_{\mathrm{th}}=192$	$\sigma_{\mathrm{a}}=15$	$\mathrm{f}_{\mathrm{th}}=231$

【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】
3．重大事故等対処設備

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		最高使用圧力 （MPa）	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
主蒸気逃がし安全弁逃がし升機能用 アキュムレータ	S	原子炉格納容器 0．P． $13.40^{* 1}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.89$	$\mathrm{C}_{\mathrm{v}}=1.59$	1． 77	171	171

$\begin{aligned} & \hline \mathrm{W} \\ & (\mathrm{~N}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{W}_{1} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \omega 1 \\ (\mathrm{~N} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{a}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{b}_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{c}_{1} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \hline \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline I_{1} \\ \left(m^{4}\right) \\ \hline \end{gathered}$	$\begin{gathered} Z_{1} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{h}_{1}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{V}_{1}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{h} 1} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{r} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	Nr	$\mathrm{N}_{\mathrm{b} 1}$
2060	686.5	0． 4894	1000	575	320	105	1． 93×10^{5}	1． 600×10^{7}	1． 600×10^{5}	3． 969×10^{3}	378.0	6． 353×10^{3}	252.0	113.0	4	4

ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	F_{1} $(\mathrm{~N})$	F_{2} $(\mathrm{~N})$
50	69	784.5	784.5

$\begin{gathered} \mathrm{F}(\mathrm{H} \text { 形鋼) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}(\mathrm{H} \text { 形䥼) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{H} \text { 形铜) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\text { ラグ }) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\mathrm{H} \text { 形龬) } \\ (\mathrm{PPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\mathrm{~F} ク(\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$
$192 * 2$	$\begin{gathered} 373 * 2 \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 192^{* 2} \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	$203^{* 1}$	413＊1	150＊1	$203 * 2$	413＊2	$150 * 2$	$231 * 2$	$203 * 1$	$203^{* 2}$

[^14]O 2 （3）VI－2－5－3－1－1 R 0
3.3 結論

3．3．2 応力

3．3．2．1 胴に生じる応力 （単位：MPa） | 応力 | 周方向応力 | 軸方向応力 | 組合せ応力 | 許容応力 |
| :---: | :---: | :---: | :---: | :---: |
| 内応による応力 | $\sigma_{\phi 1}=23$ | $\sigma_{\times 1}=12$ | $\sigma_{0}=35$ | $f_{0}=135$ |許容応力以下である

部材	材料	応力	弾性設計用地震動S d 又 は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
ラグ	SUS304	曲げ	－	－	$\sigma_{\mathrm{r}}=65$	$\mathrm{f}_{\mathrm{b} \mathrm{r}}=203$
		せん断	－	－	$\tau_{\mathrm{r}}=3$	$\mathrm{ffsr}=117$
		組合せ	－	－	$\sigma_{\text {ra }}=65$	$\mathrm{f}_{\mathrm{tr}}=203$
取付ボルト	SUS304	引張	－	－	$\sigma_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{tb}}=152$
		せん断	－	－	$\tau_{\mathrm{b}}=5$	$\mathrm{f}_{\mathrm{sb}}=117$
		組合せ	－	－	$\sigma_{\mathrm{b}_{\mathrm{a}}}=9$	$\mathrm{f}_{\mathrm{b}} \mathrm{t}_{\mathrm{t}}=152$
H形鋼	SS400	曲げ	－	－	$\sigma_{\text {yb }}=17$	$\mathrm{f}_{\mathrm{b}}=231$
		せん断	－	－	$\tau_{h}=1$	$\mathrm{ff}_{\mathrm{sh}}=133$
		組合せ	－	－	$\sigma_{\mathrm{a}}=17$	$\mathrm{f}_{\mathrm{th}}=231$

【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】
4．重大事故等対処設備

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
主蒸気逃がし安全弁自動减圧機能用 アキュムレータ	S	原子炉格納容器 0．P． $13.40^{* 1}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.89$	$\mathrm{C}_{\mathrm{v}}=1.59$	1.77	171	171

$\begin{aligned} & \text { W' } \\ & \text { (N) } \end{aligned}$	$\begin{aligned} & \mathrm{W}_{2} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \omega_{2} \\ (\mathrm{~N} / \mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{L}_{2} \\ (\mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{a}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} b_{(m)}^{2} \\ (m) \end{gathered}$	$\begin{gathered} c_{2} \\ (\mathrm{~m}) \end{gathered}$	$\begin{aligned} & \mathrm{a}_{2} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{b}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{c}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{I}_{2} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$	$\begin{gathered} Z_{2} \\ \left(\mathrm{~m}^{3}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{n} 2} \\ & \left(\mathrm{~mm}^{3}\right) \end{aligned}$	$\begin{gathered} Z_{\mathrm{v} 2} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{n} 2} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{r} 2} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$
7752	3727	1． 687	1650	580	820	250	575	320	755	1． 93×10^{5}	2． 240×10^{8}	1． 120×10^{6}	2． 842×10^{4}	1． 557×10^{3}	2． 187×10^{4}	778.7

$\begin{gathered} \mathrm{F}(\mathrm{H} \text { 形鋮) } \\ (\mathrm{PPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}}^{(\mathrm{H} \text { 形鋼) }} \\ (\mathrm{MPa}) \end{gathered}$	$\mathrm{S}_{\mathrm{y}} \text { (H形鋼) }$ （MPa）	$\begin{gathered} \mathrm{F}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}^{(\text {(ラグ })} \\ (\mathbb{P P a}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\text { (ラグ) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}(\mathrm{H} \text { (形鈝) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*(\text { (ラグ) }}(\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \text { F (取付ボルト) } \\ (\mathrm{MPa}) \end{gathered}$
192＊2	$\begin{gathered} 373^{* 2} \\ (\text { 厚さ } \leqq 40 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 192^{* 2} \\ \text { (厚さ } \leqq 40 \mathrm{~mm} \text {) } \end{gathered}$	203＊1	413＊1	150＊1	$203 * 2$	413＊2	150＊2	$231 * 2$	$203^{* 1}$	203＊2

[^15]4.3 結論

4．3．2 応力

4．3．2．1 胴に生じる応力 （単位：MPa） | 応力 | 周方向応力 | 軸方向応力 | 組合せ応力 | 許容応力 |
| :---: | :---: | :---: | :---: | :---: |
| 内モよる応力 | $\sigma+1=33$ | $\sigma \times 17$ | $\sigma_{0}=50$ | $f_{0}=135$ |許容応力以下である。

4．3．2．2 支持部に生じる応力			弾性設計用地震動S d 又 は静的震度		（単位：MPa）	
					基準地震動S s	
部材	材料	史力	算出応力	許容応力	算出応力	許容応力
ラグ	SUS304	曲げ	－	－	$\sigma_{r}=107$	$\mathrm{f}_{\mathrm{b} \mathrm{r}}=203$
		せん断	－	－	$\tau_{r}=4$	$\mathrm{f}_{\mathrm{s} \mathrm{r}}=117$
		組合せ	－	－	$\sigma_{\mathrm{ra}}=108$	$\mathrm{ff}_{\mathrm{tr}}=203$
取付ボルト	SUS304	引張	－	－	$\sigma_{\mathrm{b}}=8$	$\mathrm{f}_{\mathrm{t}_{\mathrm{t}}=152}$
		せん断	－	－	$\tau_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{sb}}=117$
		組合せ	－	－	$\sigma_{\mathrm{ba}}=25$	$\mathrm{f}_{\mathrm{b}}=152$
H 形鋼	SS400	曲げ	－	－	$\sigma_{\text {yb }}=15$	$\mathrm{f}_{\mathrm{b}}=231$
		せん断	－	－	$\tau_{\text {h }}=1$	$\mathrm{f}_{\mathrm{sh}}=133$
		組合せ	－	－	$\sigma_{\mathrm{a}}=15$	$\mathrm{f}_{\mathrm{th}}=231$

VI－2－5－4 残留熱除去設備の耐震性についての計算書

VI－2－5－4－1 残留熱除去系の耐震性についての計算書
VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書

VI－2－5－4－1 残留熱除去系の耐震性についての計算書

VI－2－5－4－1－1 残留熱除去系熱交換器の耐震性についての計算書
VI－2－5－4－1－2 残留熱除去系ポンプの耐震性についての計算書

VI－2－5－4－1－2 残留熱除去系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有値解析及び構造強度評価 3
3.1 固有値解析及び構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 解析モデル及び諸元 10
3． 4 固有周期 10
3.5 設計用地震力 11
3.6 計算条件 11
4．機能維持評価 12
4． 1 動的機能維持評価方法 12
5．評価結果 13
5.1 設計基準対象施設としての評価結果 13
5.2 重大事故等対処設備としての評価結果 13

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，残留熱除去系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

残留熱除去系ポンプは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，残留熱除去系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のたて軸ポンプであるため，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性 についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

残留熱除去系ポンプの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
ポンプはポンプベー スに固定され，ポン プベースは基礎ボル トで基礎に据え付け る。	ターボ形 （ターボ形たて軸ポ ンプ）		（単位：mm）

3．固有値解析及び構造強度評価
3.1 固有値解析及び構造強度評価方法

残留熱除去系ポンプの構造強度評価は，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
残留熱除去系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表 3－ 2 に示す。

3．2．2 許容応力
残留熱除去系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 3－3及び表 3－4 のとおりとする。

3．2．3 使用材料の許容応力評価条件
残留熱除去系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表3－5に，重大事故等対処設備の評価に用いるものを表3－6に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
原子炉泠却 系統施設	残留熱除去 設備	残留熱除去系ポンプ応力状態			

注記＊1：クラス 2 ポンプの支持構造物を含む。
＊2：S s と組合せ， $\mathrm{IIII}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {P }}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$I V_{A} \mathrm{~S}$
	残留熱除去設備	残留熱除去系ポンプ	常設／防止 （DB 拡張）	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$		$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
	非常用炉心冷却設備そ の他原子炉注水設備	残留熱除去系ポンプ	常設／防止 （DB 拡張）	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \\ \mathrm{IV} \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { の許容限界 } \\ \text { を用いる。) } \end{gathered}$

（続き）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
原子炉格納施設	原子炉格納容器安全設備 格納容器ス プレイ冷却系	残留熱除去系ポンプ	常設／防止 （DB 拡張）	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）
	原子炉格納容器安全設 備 サプレッシ ョンプール 水冷却系	残留熱除去系ポンプ	常設／防止 （DB 拡張）	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \end{gathered}$ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス 2， 3 ポンプ及び重大事故等クラス 2 ポンプ）

許容応力状態	許容限界＊		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	
III ${ }_{A} \mathrm{~S}$	S_{y} と 0.6 • S_{u} の小さい方。 ただし，A S S 及びHNAにつ いては上記値と 1.2 •Sとの大 きい方。	左欄の 1.5 倍の値	S d 又は S s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 •S 以下であれば疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	
$V_{A} S$ （ $V_{A} S$ として $V_{A} S$ の許容限界を用いる。）			S s 地震動のみによる疲労解析を行い，疲労累積係数 が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S y 以下であれば疲労解析は不要。

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 許容応力（クラス 2，3支持構造物及び重大事故等クラス 2 支持構造物）

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{\text {y }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
バレルケーシング		最高使用温度	186	－			－
コラムパイプ		最高使用温度	186	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	186	－			－
原動機台取付ボルト		最高使用温度	186	－			－
原動機取付ボルト		周囲環境温度	66	－			－

表 3－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
バレルケーシング		最高使用温度	186	－			－
コラムパイプ		最高使用温度	186	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	186	－			－
原動機台取付ボルト		最高使用温度	186	－			－
原動機取付ボルト		周囲環境温度	66	－			－

3.3 解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は，本計算書の【残留熱除去系ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目に示す。解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要に ついては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.4 固有周期

固有値解析の結果を表3－7に示す。固有周期は 0.05 秒以下であり，剛構造であるこ とを確認した。また，鉛直方向の固有周期も 0.05 秒以下であることを確認した。

表 3－7 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向 刺激係数
		NS 方向	EW 方向	-	
1 次	水平	0.049	-	-	-

3.5 設計用地震力

評価に用いる設計用地震力を表3－8及び表3－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 3－8 設計用地震力（設計基準対象施設）

据付場所及び	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		減衰定数 （\％）	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平	鉛直
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. - } 8.10^{*} \end{aligned}$	0.049	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 0.48 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}= \\ 0.40 \end{gathered}$	$\begin{gathered} C_{H}= \\ 0.99 \end{gathered}$	$\begin{gathered} C_{v}= \\ 0.69 \end{gathered}$	－	－

注記＊：基準床レベルを示す。

表 3－9 設計用地震力（重大事故等対処設備）

据付場所及び	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		減衰定数 （\％）	
床面高さ （m）	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	水平	鉛直
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. }-8.10^{*} \end{aligned}$	0.049	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\begin{gathered} C_{H}= \\ 0.99 \end{gathered}$	$\begin{gathered} C_{v}= \\ 0.69 \end{gathered}$	－	－

注記＊：基準床レベルを示す。
3.6 計算条件

応力計算に用いる計算条件は，本計算書の【残留熱除去系ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

4．機能維持評価
4． 1 動的機能維持評価方法
残留熱除去系ポンプの地震後の動的機能維持評価は，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。残留熱除去系ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ポンプ	ピットバレル形 ポンプ	水平	10.0
	原動機		

5．評価結果
5.1 設計基準対象施設としての評価結果

残留熱除去系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

残留熱除去系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【残留熱除去系ポンプの耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地震動S d又は静的震度		基準地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （MPa）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
残留熱除去系 ポンプ	S	原子炉建屋 $\text { 0. P. }-8.10^{* 1}$	0.049	0.05 以 下	－＊	－＊2	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$		186	66	1.37	3.73

注記 ${ }^{2}$ ：基準床レベルを示す。
＊2：패 S については，基準地震動 S s で評価する。
1.2 機器要目

部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	d_{i} （mm）	$\begin{aligned} & \mathrm{A}_{\mathrm{bi}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{fi}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$					24	24	－				
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$					36	36	$\begin{gathered} 3.438 \times \\ 10^{6} \end{gathered}$				
原動機台取付ボルト $(i=3)$					16	16	$\begin{gathered} 3.438 \times \\ 10^{6} \end{gathered}$				
原動機取付ボルト $(\mathrm{i}=4)$					8	8	$\begin{gathered} 3.438 \times \\ 10^{6} \end{gathered}$				

（2）バレルケーシング，コラムパイプ

注記＊：最高使用温度で算出

注記＊1：最高使用温度で算出

1.3 計算数値
（1）ボルトに作用する力

	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{b} i}(\mathrm{~N})$	
部 材	弾性設計用地震動 Sd 又は静的震度	基淮地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾生設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \\ \hline \end{gathered}$						
原動機台取付ボルト $(i=3)$						
原動機取付ボルト $(\mathrm{i}=4)$						

（2）バレルケーシング，コラムパイプに作用する力

1.4 結論
©

モード	固有周期
水平 1 次	$\mathrm{T}_{\mathrm{H} 1}=0.049$
鉛直 1 次	$\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下

1．4．2 ボルトの応力（単位： MPa							1．4．3 バレルケーシング，コラムパイプの応力（単位：MPa）										
部 材	材 料	応力	弾性設計用地震動S d又は静的震度		基準地震動S s		部 材	材 料		一次一般摸応力							
						算出応力			許容応力								
			算出応力	許容応力			算出応力	許容応力	バレルケーシング		弾性設計用地震動S d	$\sigma=44$	S a $=190$				
基礸ボルト$(\mathrm{i}=1)$		引張り	$\sigma_{\mathrm{b} 1}=9$	$\mathrm{f}_{\mathrm{ts} 1}=491^{*}$	$\sigma_{b_{1}}=9$	$\mathrm{f}_{\mathrm{ts} 1}=491^{*}$	又は静的震度										
		せん断	$\tau_{b_{1}}=2$	$\mathrm{f}_{\mathrm{sb} 1}=378$	$\tau_{\mathrm{b}_{1}}=2$	$\mathrm{f}_{\mathrm{sb} 1}=378$	基準地震動S s	$\sigma=44$			S a $=218$						
ポンプ取付ボルト		引張り	$\sigma_{\mathrm{b} 2}=6$	$\mathrm{f}_{\mathrm{ts} 2}=456^{*}$	$\sigma_{\mathrm{b}_{2}}=6$	$\mathrm{f}_{\mathrm{ts} 2}=456^{*}$	コラムパイプ		弾性設計用地震動S d	$\sigma=26$	$\mathrm{S} \mathrm{a}=190$						
（ $\mathrm{i}=2$ ）		せん断	$\tau_{\mathrm{b} 2}=3$	$\mathrm{f}_{\mathrm{sb} 2}=351$	$\tau_{\mathrm{b}_{2}}=3$	$\mathrm{f}_{\text {sb } 2}=351$			又は静的震度								
原動機台取付ボルト$(\mathrm{i}=3)$		引張り	$\sigma_{\text {b } 3}=37$	$\mathrm{f}_{\mathrm{ts} 3}=444^{*}$	$\sigma_{\text {b } 3}=37$	$\mathrm{f}_{\mathrm{ts} 3}=444^{*}$			基準地震動S s	$\sigma=26$	S a $=218$						
		せん断	$\tau_{\mathrm{b} 3}=9$	$\mathrm{f}_{\mathrm{sb} 3}=342$	$\tau_{\text {b } 3}=9$	$\mathrm{ff}_{\text {sb } 3}=342$	すべて許容応力以下である。										
原動機取付ボルト$(\mathrm{i}=4)$		引張り	$\sigma_{\mathrm{b} 4}=38$	$\mathrm{f}_{\mathrm{ts} 4}=455^{*}$	$\sigma_{\text {b } 4}=38$	$\mathrm{f}_{\mathrm{ts} 4}=455^{*}$											
		せん断	$\tau_{\mathrm{b} 4}=16$	$\mathrm{f}_{\mathrm{sb} 4}=350$	$\tau_{\mathrm{b} 4}=16$	$\mathrm{f}_{\text {sb } 4}=350$											
て許容応力以下である。 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{b} i}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出																	
							枠囲みの内容は商業機密の観点から公開できません。										

1．4．4 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確忍済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	0.82	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動S s により定まる応答加速度を設定する。
機能維持評価用加速度は，すべて機能碓認済加速度以下である。

1.5 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	X	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
1	1－2	91		1.352×10^{10}
2	2－3	91		1.352×10^{10}
3	3－4	91		1． 352×10^{10}
4	4－5	91		1.352×10^{10}
5	5－6	91		1.352×10^{10}
6	6－7	91		1． 352×10^{10}
7	7－8	91		1.352×10^{10}
8	8－9	91		1． 352×10^{10}
9	9－10	91		1.352×10^{10}
10	10－11	91		3.841×10^{10}
11	11－12	91		1.370×10^{12}
12	12－13	91		3.841×10^{11}
13	13－14	91		2.879×10^{10}
14	14－15	91		2.879×10^{10}
15	15－16	91		2.879×10^{10}
16	16－17	91		1.582×10^{11}
17	17－18	91		2.724×10^{10}
18	18－19	91		2.724×10^{10}
19	19－20	91		2.724×10^{10}
20	20－21	94		1． 490×10^{9}
21	21－22	94		2.540×10^{9}
22	22－23	94		1.590×10^{9}
23	23－24	94		1.940×10^{9}
24	24－25	94		2.010×10^{9}
25	25－26	94		2.840×10^{9}
26	26－27	94		5.720×10^{8}
31	31－32	91		8． 161×10^{7}
32	32－33	91		5.506×10^{10}
33	33－34	91		2.398×10^{9}
34	34－35	91		6.945×10^{9}
35	35－36	91		1.522×10^{10}
36	36－37	91		3.423×10^{10}
37	37－38	91		5.573×10^{8}
38	38－39	91		8.250×10^{8}
39	39－40	91		1． 294×10^{9}
40	40－41	91		1.294×10^{9}
41	41－42	91		1． 294×10^{9}
42	42－43	91		1． 294×10^{9}
43	43－44	91		1.294×10^{9}
44	44－45	91		1.294×10^{9}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
51	51－52	93		4． 492×10^{5}
52	52－53	93		8． 762×10^{5}
53	53－54	93		8.762×10^{5}
54	54－55	93		2． 330×10^{6}
55	55－56	93		1． 472×10^{6}
56	56－57	93		2． 444×10^{6}
57	57－58	93		2． 444×10^{6}
58	58－59	93		4． 528×10^{6}
59	59－60	93		4.909×10^{6}
60	60－61	93		4． 909×10^{6}
61	61－62	93		4． 909×10^{6}
62	62－63	93		4． 909×10^{6}
63	63－64	93		4.909×10^{6}
64	64－65	93		4.528×10^{6}
65	65－66	93		4． 528×10^{6}
66	66－67	93		1.638×10^{6}
67	67－68	93		2． 895×10^{7}
68	68－69	94		1． 570×10^{7}
69	69－70	94		5． 480×10^{7}
70	70－71	94		1． 370×10^{8}
71	71－72	94		5.870×10^{7}
72	72－73	94		1． 850×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
31	51		
34	54		
36	56		
39	59		
44	64		
21	69		
26	72		
4	33		
8	37		
13	42		
16	45		
6	-		
12	-		
12	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	

	（続き）	
	節点番号	質量（kg）
	42	
	43	
	44	
	45	
	51	
	52	
	53	
	54	
	55	
	56	
	57	
	58	
	59	
	60	
	61	
	62	
\sim	63	
	64	
1	65	
$\stackrel{1}{4}$	66	
¢	67	
$\stackrel{1}{5}$	68	
	69	
（2）	70	
～	71	
\bigcirc	72	
	73	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縱弾性係数 (MPa)	質量密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	ポアソン比 $(-)$	材質	部位
91	186			0.3		
93					ポンプ	
94	66			0.3		
			0.3		ポンプ	
				原動機		

【残留熱除去系ポンプの耐震性についての計算結果】

2．重大事故等対処設備

2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾生設計用地震動 S d又は静的震度		基漼地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （MPa）	
			水平方向	鉛直方向	水平方向設計震度	鈖直方向 設計震度	水平方向設計震度	鋁直方向設計震度				吸込側	吐出側
残留熱除去系 ポンプ	常設／防止 （DB 拡張）	原子炉建屋 0．P．-8.10^{*}	0． 049	$\begin{gathered} 0.05 \text { 以 } \\ \text { 下 } \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		186	66	1.37	3.73

注記＊：基淮床レベルを示す。
2.2 機器要目

部 材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{bi}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n_{i}	n_{fi}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$
基礎ボルト $(i=1)$					24	24	－				
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$					36	36	$\begin{gathered} \hline 3.438 \times \\ 10^{6} \end{gathered}$				
原動機台取付ボルト $(\mathrm{i}=3)$					16	16	$\begin{gathered} 3.438 \times \\ 10^{6} \end{gathered}$				
原動機取付ボルト $(\mathrm{i}=4)$					8	8	$\begin{gathered} 3.438 \times \\ 10^{6} \end{gathered}$				

注記＊1：最高使用温度で算出
＊2：周囲環境温度で算出

（2）バレルケーシング，コラムパイプ

注記＊：最高使用温度で算出
2.3 計算数値
（1）ボルトに作用する力

（2）バレルケーシング，コラムパイプに作用する力

（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）		
	M	
部 材	弾生設計用地震動 Sd 又は静的震度	基準地震動 S s
バレルケーシング		
コラムパイプ		

$\stackrel{*}{c}$ 2．4．1 固有周期 \quad（単位： s ）

2．4．4 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能碓認済加速度
ポンプ	水平方向	0.82	10.0
	鈖直方向	0.57	1.0
原動機	水平方向	0.82	2.5
	鈖直方向	0.57	1.0

注記＊：基準地震動S s により定まる応答加速度を設定する。
機能維持評価用加速度は，すべて機能碓認済加速度以下である。

2.5 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	Z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）

節点番号	節点座標（mm）		
	x	y	z
41			
42			
43			
44			
45			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
1	1－2	91		1． 352×10^{10}
2	2－3	91		1． 352×10^{10}
3	3－4	91		1． 352×10^{10}
4	4－5	91		1． 352×10^{10}
5	5－6	91		1． 352×10^{10}
6	6－7	91		1． 352×10^{10}
7	7－8	91		1． 352×10^{10}
8	8－9	91		1． 352×10^{10}
9	9－10	91		1． 352×10^{10}
10	10－11	91		3.841×10^{10}
11	11－12	91		1． 370×10^{12}
12	12－13	91		3.841×10^{11}
13	13－14	91		2． 879×10^{10}
14	14－15	91		2.879×10^{10}
15	15－16	91		2． 879×10^{10}
16	16－17	91		1． 582×10^{11}
17	17－18	91		2． 724×10^{10}
18	18－19	91		2． 724×10^{10}
19	19－20	91		2． 724×10^{10}
20	20－21	94		1． 490×10^{9}
21	21－22	94		2.540×10^{9}
22	22－23	94		1.590×10^{9}
23	23－24	94		1.940×10^{9}
24	24－25	94		2.010×10^{9}
25	25－26	94		2.840×10^{9}
26	26－27	94		5.720×10^{8}
31	31－32	91		8.161×10^{7}
32	32－33	91		5.506×10^{10}
33	33－34	91		2.398×10^{9}
34	34－35	91		6.945×10^{9}
35	35－36	91		1． 522×10^{10}
36	36－37	91		3.423×10^{10}
37	37－38	91		5.573×10^{8}
38	38－39	91		8.250×10^{8}
39	39－40	91		1.294×10^{9}
40	40－41	91		1.294×10^{9}
41	41－42	91		1． 294×10^{9}
42	42－43	91		1.294×10^{9}
43	43－44	91		1.294×10^{9}
44	44－45	91		1． 294×10^{9}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
51	51－52	93		4.492×10^{5}
52	52－53	93		8． 762×10^{5}
53	53－54	93		8.762×10^{5}
54	54－55	93		2． 330×10^{6}
55	55－56	93		1． 472×10^{6}
56	56－57	93		2.444×10^{6}
57	57－58	93		2． 444×10^{6}
58	58－59	93		4． 528×10^{6}
59	59－60	93		4.909×10^{6}
60	60－61	93		4.909×10^{6}
61	61－62	93		4.909×10^{6}
62	62－63	93		4.909×10^{6}
63	63－64	93		4.909×10^{6}
64	64－65	93		4.528×10^{6}
65	65－66	93		4.528×10^{6}
66	66－67	93		1.638×10^{6}
67	67－68	93		2． 895×10^{7}
68	68－69	94		1． 570×10^{7}
69	69－70	94		5． 480×10^{7}
70	70－71	94		1． 370×10^{8}
71	71－72	94		5.870×10^{7}
72	72－73	94		1． 850×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
31	51		
34	54		
36	56		
39	59		
44	64		
21	69		
26	72		
4	33		
8	37		
13	42		
16	45		
6	-		
12	-		
12	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	

	（続き）	
	節点番号	質量（kg）
	42	
	43	
	44	
	45	
	51	
	52	
	53	
	54	
	55	
	56	
	57	
	58	
	59	
	60	
	61	
	62	
$\xrightarrow{\circ}$	63	
	64	
$\stackrel{1}{1}$	65	
${ }_{1}^{1}$	66	
¢	67	
5	68	
	69	
（2）	70	
\bigcirc	71	
\bigcirc	72	
	73	

（5）材料物性値

材料番号	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	縦弹性係数 （MPa）	質量密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
91	186			0.3		ポンプ
93	186			0.3		ポンプ
94	66			0.3		原動機

VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書

VI－2－5－4－2－1 管の耐震性についての計算書（耐圧強化ベント系）

> VI-2-5-4-2-1 管の耐震性についての計算書(耐圧強化ベント系)

重大事故等対処設備

目次

1．概要 1
2．概略系統図 2
3．計算条件 4
3.1 荷重の組合せ及び許容応力状態 4
4．解析結果及び評価 5

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図

概略系統図記号凡例

3．計算条件
3.1 荷重の組合せ及び許容応力状態
本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度 分類	荷重の組合せ＊3，＊4	許容応力状態＊5
原子炉冷却 系統施設	残留熱除去設備	耐圧強化ベント系	S A	常設耐震／防止	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{Sd}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$	
							$\mathrm{V}_{\mathrm{L}}+\mathrm{S}$ s	

注記 $* 1: ~ D B$ は設計基準対象施設，SAは重大事故等対処設備を示す。
＊3：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期的荷重が作用している状態を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

4．解析結果及び評価
以下の計算書の重大事故等対処設備に含まれる。
「VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系）」

VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性 についての計算書

目 次

VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－3 高圧代替注水系の耐震性についての計算書
VI－2－5－5－4 低圧代替注水系の耐震性についての計算書

VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書

VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書

VI－2－5－5－1－1 高圧炉心スプレイ系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有値解析及び構造強度評価 3
3.1 固有値解析及び構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 解析モデル及び諸元 9
3． 4 固有周期 9
3.5 設計用地震力 10
3.6 計算条件 114．機能維持評価12
4.1 基本方針 12
4． 2 ポンプの動的機能維持評価 12
4． 3 原動機の動的機能維持評価 13
4．3．1 評価対象部位 13
4．3．2 評価基準値 13
4．3．3 記号の説明 14
4．3．4評価方法 15
5．評価結果 18
5.1 設計基準対象施設としての評価結果 18
5.2 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，高圧炉心スプレイ系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

高圧炉心スプレイ系ポンプは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示 す。

なお，高圧炉心スプレイ系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のたて軸ポンプであるため，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また，高圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形すべり軸受電動機であり，機能維持評価において機能維持評価用加速度 が機能確認済加速度を上回ることから，原子力発電所耐震設計技術指針（J E A G 4 6 O

2．一般事項

2.1 構造計画

高圧炉心スプレイ系ポンプの構造計画を表2－1に示す。

O 2 （3）VI－2－5－5－1－1 R 0

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
ポンプはポンプベー スに固定され，ポン プベースは基礎ボル トで基礎に据え付け る。	$\begin{aligned} & \text { ターボ形 } \\ & \text { (ターボ形たて軸ポ } \\ & \text { ンプ) } \end{aligned}$		（単位：mm）

3．固有値解析及び構造強度評価
3.1 固有値解析及び構造強度評価方法

高圧炉心スプレイ系ポンプの構造強度評価は，添付書類「VI－2－1－13－5 たて軸ポン プの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
高圧炉心スプレイ系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 $3-1$ に，重大事故等対処設備の評価に用いるもの を表3－2に示す。

3．2．2 許容応力
高圧炉心スプレイ系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 $3-3$ 及び表 $3-4$ のとおりとする。

3．2．3 使用材料の許容応力評価条件
高圧炉心スプレイ系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－5 に，重大事故等対処設備の評価に用いるものを表3－6に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	非常用炉心冷却設備そ	高圧炉心スプレイ系 ポンプ	S	クラス 2 ポンプ＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd} \mathrm{d}^{* 2}$	III ${ }_{\text {A }} \mathrm{S}$
	の他原子炉注水設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：クラス 2 ポンプの支持構造物を含む。
＊2：S s と組合せ， $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス 2， 3 ポンプ及び重大事故等クラス 2 ポンプ）

許容応力状態	許容限界＊		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	
III ${ }_{A} \mathrm{~S}$	S_{y} と 0.6 • S_{u} の小さい方。 ただし，A S S 及びHNAにつ いては上記値と 1.2 •Sとの大 きい方。	左欄の 1.5 倍の値	S d 又はS s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 •S y以下であれば疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	
$V_{A} S$ （ $V_{A} S$ として $V_{A} S$ の許容限界を用いる。）			S s 地震動のみによる疲労解析を行い，疲労累積係数 が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S y 以下であれば疲労解析は不要。

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（設計基準対象施設）

表 3－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
バレルケーシング		最高使用温度	100	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	100	－			－
原動機台取付ボルト		最高使用温度	100	－			－
原動機取付ボルト		周囲環境温度	66	－			－

3．3解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は，本計算書の【高圧炉心スプレイ系ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目 に示す。解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3． 4 固有周期
固有値解析の結果を表3－7，振動モード図を図3－1 に示す。固有周期は 0.05 秒を超 えており，柔構造であることを確認した。また，鉛直方向の固有周期は 0.05 秒以下 であることを確認した。

表 3－7 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数＊		鉛直方向 刺激係数＊
		NS 方向	EW 方向	0.000	
1 次	水平	0.053	3.894	0.000	0.000
2 次	水平	0.026	-	-	-

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリクスの積から算出 した値を示す。

図 3－1 振動モード（1次モード 水平方向 0.053 s）

3.5 設計用地震力

評価に用いる設計用地震力を表3－8及び表3－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 3－8 設計用地震力（設計基準対象施設）

据付場所及び床面高さ（m）		原子炉建屋 0．P．－8．10＊1					
固有周期（s）		水平： $0.053 * 2$			鉛直： 0.05 以下		
減衰定数（\％）		水平： 1.0			鉛直：－		
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S s		
モード	固有周期 （s）	応答水平震度＊3		応答鉛直震度＊${ }^{3}$	応答水平震度＊${ }^{*}$		応答鉛直震度＊4
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.053	－＊7	－＊7	－	3.06	－	－
2 次	0.026	－	－	－	－	－	－
動的地震力＊5		－＊7	－＊7	－	0.92	0.99	0.69
静的地震力＊6		－＊ 7	－＊ 7	－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S d）より得られる震度を示す。 ＊4：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。
＊ $5: ~ \mathrm{~S} \mathrm{~s}$ 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
＊ 6 ：静的震度（3．6•C i 及び 1.2 •C v）を示す。
＊7： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 3－9 設計用地震力（重大事故等対処施設）

据付場所及び 床面高さ（m）		原子炉建屋 0．P．－8．10＊1					
固有周期（s）		水平： $0.053 * 2$ 鉛直： 0.05 以下					
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S s		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度 $*^{* 3}$		応答鉛直震度＊${ }^{3}$
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.053	－	－	－	3.06	－	－
2 次	0.026	－	－	－	－	－	－
動的地震力＊4		－	－	－	0.92	0.99	0.69
静的地震力		－	－	－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。 ＊4：S s 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
3.6 計算条件

応力計算に用いる計算条件は，本計算書の【高圧炉心スプレイ系ポンプの耐震性につ いての計算結果】の設計条件及び機器要目に示す。

4．機能維持評価

4.1 基本方針

高圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」 に記載の立形すべり軸受電動機であり，機能維持評価において機能維持評価用加速度 が機能確認済加速度を上回ることから，J E A G 4 6 0 1 に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA） を設定する。
（1）高圧炉心スプレイ系ポンプはピットバレル形ポンプであるため，添付書類「VI－2－ 1－9 機能維持の基本方針」に記載されているピットバレル形ポンプの機能確認済加速度を適用する。

4．2 ポンプの動的機能維持評価
高圧炉心スプレイ系ポンプは地震時動的機能維持が確認された機種と類似の構造及 び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
立型ポンプ	ピットバレル形 ポンプ	水平方向	10.0
	鉛直方向	1.0	

4． 3 原動機の動的機能維持評価

4．3．1 評価対象部位
J EAG4601の電動機の動的機能維持評価に従い，以下の部位について評価 を実施する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子のクリアランス
g．モータフレーム
h．軸継手
このうち「a．取付ボルト」については，「3．構造強度評価」に従い評価を行 った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していること を確認している。

以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子のクリアランス，モータフレームを評価対象部位とする。なお，軸継手はポ ンプ軸とモータ軸をリジットに接続するタイプであり，相対変位が発生しないこと， および地震荷重については軸受で負担するため軸継手部には有意な応力が発生し ないことから，計算書の評価対象外とする。

4．3．2 評価基準値

軸（回転子）及びモータフレームの許容応力は，クラス 2 ポンプの許容応力状態 III $_{A} \mathrm{~S}$ に準拠し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態III ${ }_{A} \mathrm{~S}$ に準拠し設定する。端子箱の許容応力はクラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。また軸受については，メーカ規定の軸受の定格荷重を，固定子 と回転子間のクリアランスは，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明

高圧炉心スプレイ系ポンプ用原動機の動的機能維持評価に使用する記号を表4－ 2 に示す。

表4－2 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}} \mathrm{t}$	端子箱取付ボルトの断面積	mm^{2}
A_{f}	モータフレームの断面積	mm^{2}
A ${ }_{\text {s }}$	軸の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C_{v}	鉛直方向設計震度	－
D	固定子の外径	mm
d s	軸の径	mm
F ${ }_{k}$	固定子に生じる組合せ荷重	N
$\mathrm{F}_{\mathrm{b}} \mathrm{t}$	端子箱取付ボルトに作用するせん断力	N
F kg_{g}	自重及び地震力により固定子に生じる荷重	N
F ${ }_{\mathrm{k} ~}^{\text {t }}$	電動機の回転による荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
L	固定子の溶接長さ	mm
M_{f}	モータフレームに作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{M}_{\text {s }}$	軸に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	電動機の回転速度	min^{-1}
n p	固定子の溶接数	－
n t	端子箱取付ボルトの本数	－
P	電動機出力	kW
p	固定子の溶接部の開先寸法	mm
$Q_{b i t}$	端子箱に作用するせん断力	N
S	固定子のすみ肉脚長	mm
Tm	電動機の回転による発生トルク	$\mathrm{N} \cdot \mathrm{m}$
Tma	電動機最大トルク	\％
T s	ポンプ運転による発生トルク	$\mathrm{N} \cdot \mathrm{mm}$
$W_{\text {c }}$	固定子コイル及びコア質量	kg
W f	モータフレーム質量	kg
W s	軸の質量	kg
W ${ }_{\text {t }}$	端子箱質量	kg
$\mathrm{Z}_{\text {f }}$	モータフレームの断面係数	mm^{3}
Z s	軸の断面係数	mm^{3}
σ m	モータフレームに生じる組合せ応力	MPa
σ s	軸に生じる組合せ応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	端子箱取付ボルトに生じる引張応力	MPa
$\sigma \mathrm{fm}$	モータフレームに生じる曲げ応力	MPa

記号	記号の説明	単位
σ_{fw}	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
σ_{sm}	軸に生じる曲げ応力	MPa
σ_{sw}	自重及び鉛直方向地震力により軸に生じる応力	MPa
τ_{k}	固定子に生じるせん断応力	MPa
τ_{s}	ポンプ運転によるねじり応力	MPa
$\tau_{\mathrm{b} \mathrm{t}}$	端子箱取付ボルトに生じるせん断応力	MPa

4．3．4 評価方法
（1）固定子
電動機の最大荷重（トルク）は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{974 \cdot \mathrm{P} \cdot \mathrm{~g}}{\mathrm{~N}} \cdot \frac{\mathrm{~T}_{\mathrm{m} \mathrm{a}}}{100} \tag{4.3.4.1}
\end{equation*}
$$

電動機の回転による荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kt}}=\frac{\mathrm{T}_{\mathrm{m}}}{1 / 2 \cdot \mathrm{D}} \tag{4.3.4.2}
\end{equation*}
$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kg}}=\mathrm{W}_{\mathrm{c}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{p}}+1\right) \tag{4.3.4.3}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{k}}=\sqrt{\mathrm{F}_{\mathrm{kt}}{ }^{2}+\mathrm{F}_{\mathrm{kg}}^{2}} \tag{4.3.4.4}\\
& \tau_{\mathrm{k}}=\frac{\mathrm{F}_{\mathrm{k}}}{(\mathrm{p}+\mathrm{s}) \cdot \mathrm{L} \cdot \mathrm{n}_{\mathrm{p}}} \tag{4.3.4.5}
\end{align*}
$$

（2）軸
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{sm}}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{s}}} \tag{4.3.4.6}
\end{equation*}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{sw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.7}
\end{equation*}
$$

c．ねじり応力

$$
\begin{align*}
& \mathrm{T}_{\mathrm{s}}=\frac{\mathrm{P}}{2 \pi / 60 \cdot \mathrm{~N}} \cdot 10^{6} \tag{4.3.4.8}\\
& \tau_{\mathrm{s}}=\frac{16 \cdot \mathrm{~T}_{\mathrm{s}}}{\pi \cdot \mathrm{~d}_{\mathrm{s}}{ }^{3}} \quad \cdot \tag{4.3.4.9}
\end{align*}
$$

N
d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\frac{1}{2} \cdot\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)+\frac{1}{2} \cdot \sqrt{\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)^{2}+4 \tau_{\mathrm{s}}^{2}} \tag{4.3.4.10}
\end{equation*}
$$

（3）端子箱
a．取付ボルトのせん断応力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{bt}}=\left(1+\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{~g} \tag{4.3.4.11}\\
& \tau_{\mathrm{b} t}=\frac{\mathrm{F}_{\mathrm{b} t}}{\mathrm{n}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{b} t}} \cdot \cdots \cdot \cdot \tag{4.3.4.12}
\end{align*}
$$

b．取付ボルトの引張応力

$$
\begin{equation*}
\sigma_{b t}=\frac{Q_{b t}}{n_{t} \cdot A_{b t}} \tag{4.3.4.13}
\end{equation*}
$$

（4）軸受
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，軸受の発生荷重を評価する。
（5）固定子と回転子のクリアランス
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，固定子一軸（回転子）の相対変位が固定子一軸（回転子）間空隙寸法を下回ること を確認する。
（6）モータフレーム
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\sigma_{\mathrm{fm}}=\frac{\mathrm{M}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{f}}}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{fw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{f}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{f}}} \tag{4.3.4.15}
\end{equation*}
$$

c．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sigma_{\mathrm{fm}}+\sigma_{\mathrm{fw}} \tag{4.3.4.16}
\end{equation*}
$$

5．評価結果
5.1 設計基準対象施設としての評価結果

高圧炉心スプレイ系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【高圧灲心スプレイ系ポンプの耐震性についての計算結果】
1．設計基準対象施設
1.1 構造強度評価

1．1．1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基漼地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	最高使用圧力 （MPa）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度				吸込側	吐出側
高圧梕ふプレイ系ポンプ	S	原子炉建屋 0．P．$-8.10^{* 1}$	0.053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		100	66	1.37	10.79

注記 $* 1$ ：基準床レベルを示す。
＊2：$\Pi_{4} S$ については，基準地震動 S s で評価する。
1．1．2 機器要目
ϖ

部 材	m_{i} （kg）	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} \mathrm{i}} \\ & \left(m m^{2}\right) \end{aligned}$	n_{i}	n_{ff}	$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$					24	24	－				
ポンプ取付ボルト $\text { (} \mathrm{i}=2)$					40	40	$\begin{gathered} \hline 1.210 \times \\ 10^{7} \end{gathered}$				
原動機台取付ボルト $(\mathrm{i}=3)$					20	20	$\begin{gathered} 1.210 \times \\ 10^{7} \\ \hline \end{gathered}$				
原動機取付ボルト $(\mathrm{i}=4)$					12	12	$\begin{gathered} 1.210 \times \\ 10^{7} \end{gathered}$				

（2）バレルケーシング

部 材	S (MPa)	S_{y} (MPa)	S_{u} (MPa)	D_{C} (mm)	t (mm)
バレルケーシング	-				

注記＊：最高使用温度で算出

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

1．1．3 計算数値
（1）ボルトに作用する力

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \\ \hline \end{gathered}$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(\mathrm{i}=4)$						

（2）バレルケーシングに作用する力

1．1．4 結論

N

1．1．4．1 単位： 有周期	
モード	固有周期
水平 1 次	$\mathrm{T}_{\mathrm{H} 1}=0.053$
鉛直 1 次	$\mathrm{T}_{\mathrm{V} 1}=0.05$ 以下

すべて許容応力以下である。

すべて許容応力以下である。
注記 $*: \mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to} \mathrm{o} \mathrm{i}}-1.6 \cdot \tau_{\mathrm{b} i} \quad, \quad \mathrm{f}_{\mathrm{to} \mathrm{i}}\right]$ より算出
1.2 動的機能維持評価

1．2．1 設計条件

機器名称	形式	定格容量$\left(\mathrm{m}^{3} / \mathrm{h}\right)$	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方 向	鈖直方 向	水平方向設計震度	鉛直方向設計震度			
高圧灲心スプレイ系 ポンプ	ピットバレル形ポンプ	325／1074	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0.053	$\begin{gathered} 0.05 \text { 以 } \\ \text { 下 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		100	66

注記 ${ }^{*}$ ：基淮床レベルを示す。

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方 向	鈖直方 向	水平方向設計震度	鉛直方向設計震度			
高圧炉心スプレイ系 ポンプ用原動機	立形すべり軸受電動機	1900	原子炉建屋 0．P．-8.10^{*}	0． 053	0.05 以 下	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		－	66

1．2．2 機器要目

（1）固定子

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	1180	100	5	10	2394	8

（2）軸

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$3.030 \times$ 10^{7}	$6.734 \times$ 10^{5}	2825	$2.835 \times$ 10^{4}	1500	190

（3）端子箱

部 材	W_{t} (kg)	n_{t}	A_{bt} $\left(\mathrm{mm}^{2}\right)$	Q_{bt} (N)
端子箱	70	10	113.1	$1.976 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$7.051 \times$ 10^{8}	$3.323 \times$ 10^{7}	11319	$8.213 \times$ 10^{4}

1．2．3 結論
1．2．3．1 機能確忍済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.70	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動 S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

1．2．3．2 立形すべり軸受電動機の動的機能維持評価
1．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1．2．3．2．2 上記以外の基本評価項目の評価
1．2．3．2．2．1 固定子の評価
（単位： MPa ）

評価部位	応力	発生応力	許容応力
固定子	せん断	5	53

すべて許容応力以下である。

1．2．3．2．2．2 軸（回転子）の評価位：MPa）		
評価部位	発生応力	許容応力
軸（回転子）	49	354

N

1．2．3．2．2．3 端子箱の評価			
評価部位 $: \mathrm{MPa}$ ） 端子箱 応力 発生応力 許容応力	引張り	175	185
	せん断	1	142

すべて許容応力以下である。
1．2．3．2．2．4 軸受の評価

評価部位	発生荷重	（位：N）
上部軸受	5.715×10^{4}	許容荷重
下部暧	5.360×10^{4}	
すべて許容荷重以下である		

すべて許容荷重以下である。

| 1．2．3．2．2．5 固定子と回転子のクリアランスの評価 | （単位： mm ） |
| :---: | :---: | :---: |
| 評価部位 回転子のたわみ 許容変位量
 固定子と回転子のクリアランス 0.83 3 | |

すべて許容変位量以下である。

| 1．2．3．2．2．6 モータフレームの評価 | （単位： MPa ） |
| :---: | :---: | :---: |
| 評価部位 発生応力 許容応力
 モータフレーム 25 309 | |

すべて許容応力以下である。

1.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	Z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）				
	節点番号	節点座標（mm）		
		x	y	z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	61			
	62			
	63			
	64			
	65			
	66			
	67			
\simeq	68			
	69			
1	70			
5	71			
¢	72			
5	73			
	74			
（2）	75			
N	76			
\bigcirc	77			
	78			
	79			
	80			
	81			
	82			
	83			
	84			
	85			
	86			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
1	1－2	91		1.915×10^{10}
2	2－3	91		1.915×10^{10}
3	3－4	91		1.915×10^{10}
4	4－5	91		1.915×10^{10}
5	5－6	91		1.915×10^{10}
6	6－7	91		1． 915×10^{10}
7	7－8	91		1.915×10^{10}
8	8－9	91		1.915×10^{10}
9	9－10	91		1.915×10^{10}
10	10－11	91		1.915×10^{10}
11	11－12	91		1.915×10^{10}
12	12－13	91		1.915×10^{10}
13	13－14	91		5.395×10^{10}
14	14－15	91		1． 724×10^{12}
15	15－16	91		4． 480×10^{11}
16	16－17	91		5.412×10^{10}
17	17－18	91		5.412×10^{10}
18	18－19	91		5． 412×10^{10}
19	19－20	91		2． 770×10^{11}
20	20－21	91		7.553×10^{10}
21	21－22	91		7.553×10^{10}
22	22－23	91		7.553×10^{10}
23	23－24	94		3.590×10^{9}
24	24－25	94		7.720×10^{9}
25	25－26	94		4.280×10^{9}
26	26－27	94		6． 400×10^{9}
27	27－28	94		7.350×10^{9}
28	28－29	94		2.640×10^{9}
29	29－30	94		3.640×10^{8}
31	31－32	91		8.161×10^{7}
32	32－33	91		6.230×10^{10}
33	33－34	91		2.398×10^{9}
34	34－35	91		7.918×10^{9}
35	35－36	91		1． 969×10^{10}
36	36－37	91		3.315×10^{10}
37	37－38	91		1． 969×10^{10}
38	38－39	91		4． 234×10^{10}
39	39－40	91		1.969×10^{10}
40	40－41	91		4.234×10^{10}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面積 （mm ${ }^{2}$ ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	41－42	91		1． 969×10^{10}
42	42－43	91		7.476×10^{9}
43	43－44	91		1.860×10^{9}
44	44－45	91		1． 860×10^{9}
45	45－46	91		1． 860×10^{9}
46	46－47	91		3.169×10^{9}
47	47－48	91		3.169×10^{9}
61	61－62	93		4． 492×10^{5}
62	62－63	93		8.762×10^{5}
63	63－64	93		8． 762×10^{5}
64	64－65	93		1． 277×10^{7}
65	65－66	93		9.517×10^{6}
66	66－67	93		9． 844×10^{6}
67	67－68	93		1.018×10^{7}
68	68－69	93		1.052×10^{7}
69	69－70	93		1.087×10^{7}
70	70－71	93		1． 124×10^{7}
71	71－72	93		1． 161×10^{7}
72	72－73	93		1.583×10^{7}
73	73－74	93		2． 170×10^{7}
74	74－75	93		2.170×10^{7}
75	75－76	93		2． 170×10^{7}
76	76－77	93		2.170×10^{7}
77	77－78	93		2.053×10^{7}
78	78－79	93		2.053×10^{7}
79	79－80	93		9． 198×10^{6}
80	80－81	93		1.636×10^{8}
81	81－82	94		3.830×10^{7}
82	82－83	94		1.640×10^{8}
83	83－84	94		3.570×10^{8}
84	84－85	94		1.460×10^{8}
85	85－86	94		7.730×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
31	61		
34	64		
36	66		
37	67		
38	68		
39	69		
40	70		
41	71		
42	72		
47	77		
4	33		
7	36		
16	45		
19	48		
24	82		
29	85		
6	-		
15	-		
15	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

（5）材料物性値

材料番号	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	縦弹性係数 （ MPa ）	質量密度 （kg／mm ${ }^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
91	100			0.3		ポンプ
93	100			0.3		ポンプ
94	66			0.3		原動機

【高圧烼心スプレイ系ポンプの耐震性についての計算結果】
2．重大事故等対処設備
2． 1 構造強度評価
2．1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動S d又は静的震度		基漼地震動S s		ポンブ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （MPa）	
			水平方向	鉛直方向	水平方向設計震度	鋁直方向 設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
高圧灲心スプレイ系ポンプ	常設／防止 （DB 拡張）	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0.053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		100	66	1.37	10.79

注記 $*$ ：基漼床レベルを示す。
2．1．2 機器要目

2．1． 3 計算数値
（1）ボルトに作用する力
（2）バレルケーシングに作用する力

（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）		
	M	
部 材	弾生設計用地震動 Sd又は静的震度	基準地震動 S s
バレルケーシング		

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 S d又は静的震度	基淮地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \\ \hline \end{gathered}$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(i=4)$						

2．1．4．2 ボルトの応力						（単位： MPa ）	2．1．4．3 バレルケーシングの応力			（単位： MPa ）		
部 材	材 料	応力	弾性設計用地震動 d又は静的震度		基準地震動S s		部 材 バレルケーシング	材 料		一次一般膜応力		
						算出応力			許容応力			
			算出応力	許容応力			算出応力		許容応力	弾性設計用地震動S d		
基磽ボルト		引張り	－	－	$\sigma_{\mathrm{b}_{1}}=44$	$\mathrm{f}_{\mathrm{ts} 1}=491^{*}$			又は静的震度	－	－	
（ $\mathrm{i}=1$ ）		せん断	－	－	$\tau_{\mathrm{b} 1}=4$	$\mathrm{f}_{\mathrm{sb} 1}=378$			基淮地震動S s	$\sigma=49$	$\mathrm{Sa}=223$	
ポンプ取付ボルト		引張り	－	－	$\sigma_{\mathrm{b} 2}=27$	$\mathrm{f}_{\mathrm{ts} 2}=474 *$		すべて許容応力以下である。				
$(\mathrm{i}=2)$		せん断	－	－	$\tau_{\mathrm{b} 2}=6$							
原動機台取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}_{3}}=103$	$\mathrm{f}_{\mathrm{ts} 3}=444^{*}$						
$(\mathrm{i}=3)$		せん断	－	－	$\tau_{\mathrm{b} 3}=23$	$\mathrm{f}_{\mathrm{sb} 3}=342$						
原動機取付ボルト$(i=4)$		引張り	－	－	$\sigma_{\text {b4 }}=148$	$\mathrm{f}_{\mathrm{ts} 4}=455^{*}$						
		せん断	－	－	$\tau_{\mathrm{b} 4}=53$	$\mathrm{f}_{\mathrm{sb} 4}=350$						
どて許容応力以下	注記	$\mathrm{f}_{\mathrm{tsi}}$	$[1.4 \cdot \mathrm{f}$	$\mathrm{i}^{-1.6}$ ．τ	$\mathrm{f}_{\mathrm{toi}}$ ］	出						

[^16]
2.2 動的機能維持評価

2．2．1 設計条件

機器名称	形式	定格容量 （ $\mathrm{m}^{3} / \mathrm{h}$ ）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度			
高圧炬心スプレイ系 ポンプ	ピットバレル形 ポンプ	325／1074	原子炉建屋 0．P．-8.10^{*}	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		100	66

注記＊：基淮床レベルを示す
\％

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		ポンブ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度			
高圧炬心スプレイ系 ポンプ用原動機	立形すべり軸受電動機	1900	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0． 053	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		－	66

2．2．2 機器要目

（1）固定子

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	1180	100	5	10	2394	8

（2）軸

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$3.030 \times$ 10^{7}	$6.734 \times$ 10^{5}	2825	$2.835 \times$ 10^{4}	1500	190

（3）端子箱

部 材	W_{t} (kg)	n_{t}	A_{bt} $\left(\mathrm{mm}^{2}\right)$	Q_{bt} (N)
端子箱	70	10	113.1	$1.976 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$7.051 \times$ 10^{8}	$3.323 \times$ 10^{7}	11319	$8.213 \times$ 10^{4}

2．2．3 結論
2．2．3．1 機能確忍済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.70	2.5
	鉛直方向	0.57	1.0

注記＊：基淮地震動 S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が機能碓認済加速度を超えるため，以下の項目について評価する。

2．2．3．2 立形すべり軸受電動機の動的機能維持評価

2．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
2．2．3．2．2 上記以外の基本評価項目の評価

| 2．2．3．2．2．1 固定子の評価 |
| :---: | :---: | :---: | :---: |
| 評価部位 応力 単位：MPa）
 固定子 せん断 応力 許容応力 |

すべて許容応力以下である。

2．2．3．2．2．2 軸（回転子）の評価		（単位：MPa）
評価部位	発生応力	許容応力
軸（回転子）	49	354

$\stackrel{\omega}{\sim}$

2．2．3．2．2．3 端子箱の評価
評価部位 応力 （単位： MPa ） 端子箱生応力 許容応力

すべて許容応力以下である。

2．2．3．2．2．4 軸受の評価				（単位：N）
評価部位	発生荷重	許容荷重		
上部軸㖟	5.715×10^{4}			
下部軸受	5.360×10^{4}			

すべて許容荷重以下である。

2．2．3．2．2．5 固定子と回転子のクリアランスの評価	（単位： mm ）	
評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0.83	3

すべて許容変位量以下である。

2．2．3．2．2．6 モータフレームの評価	（単位： MPa ）	
評価部位	発生応力	許容応力
モータフレーム	25	309

すべて許容応力以下である。

2.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	x	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）				
	節点番号	節点座標（mm）		
		x	y	z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	61			
	62			
	63			
	64			
	65			
	66			
	67			
\sim	68			
	69			
\checkmark	70			
\llcorner	71			
N	72			
$\stackrel{1}{5}$	73			
	74			
（2）	75			
\bigcirc	76			
\bigcirc	77			
	78			
	79			
	80			
	81			
	82			
	83			
	84			
	85			
	86			

（2）要素の断面性状

	断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
	1	1－2	91		1.915×10^{10}
	2	2－3	91		1.915×10^{10}
	3	3－4	91		1.915×10^{10}
	4	4－5	91		1.915×10^{10}
	5	5－6	91		1.915×10^{10}
	6	6－7	91		1.915×10^{10}
	7	7－8	91		1.915×10^{10}
	8	8－9	91		1.915×10^{10}
	9	9－10	91		1.915×10^{10}
	10	10－11	91		1.915×10^{10}
	11	11－12	91		1.915×10^{10}
	12	12－13	91		1.915×10^{10}
	13	13－14	91		5.395×10^{10}
	14	14－15	91		1． 724×10^{12}
	15	15－16	91		4.480×10^{11}
a	16	16－17	91		5.412×10^{10}
	17	17－18	91		5.412×10^{10}
	18	18－19	91		5.412×10^{10}
	19	19－20	91		2.770×10^{11}
	20	20－21	91		7.553×10^{10}
	21	21－22	91		7.553×10^{10}
	22	22－23	91		7.553×10^{10}
	23	23－24	94		3.590×10^{9}
	24	24－25	94		7.720×10^{9}
	25	25－26	94		4.280×10^{9}
	26	26－27	94		6． 400×10^{9}
	27	27－28	94		7.350×10^{9}
	28	28－29	94		2.640×10^{9}
	29	29－30	94		3.640×10^{8}
	31	31－32	91		8.161×10^{7}
	32	32－33	91		6.230×10^{10}
	33	33－34	91		2.398×10^{9}
	34	34－35	91		7.918×10^{9}
	35	35－36	91		1.969×10^{10}
	36	36－37	91		3.315×10^{10}
	37	37－38	91		1.969×10^{10}
	38	38－39	91		4.234×10^{10}
	39	39－40	91		1.969×10^{10}
	40	40－41	91		4.234×10^{10}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	41－42	91		1． 969×10^{10}
42	42－43	91		7.476×10^{9}
43	43－44	91		1.860×10^{9}
44	44－45	91		1.860×10^{9}
45	45－46	91		1.860×10^{9}
46	46－47	91		3.169×10^{9}
47	47－48	91		3.169×10^{9}
61	61－62	93		4.492×10^{5}
62	62－63	93		8.762×10^{5}
63	63－64	93		8． 762×10^{5}
64	64－65	93		1． 277×10^{7}
65	65－66	93		9.517×10^{6}
66	66－67	93		9.844×10^{6}
67	67－68	93		1.018×10^{7}
68	68－69	93		1.052×10^{7}
69	69－70	93		1.087×10^{7}
70	70－71	93		1． 124×10^{7}
71	71－72	93		1． 161×10^{7}
72	72－73	93		1.583×10^{7}
73	73－74	93		2． 170×10^{7}
74	74－75	93		2.170×10^{7}
75	75－76	93		2． 170×10^{7}
76	76－77	93		2.170×10^{7}
77	77－78	93		2.053×10^{7}
78	78－79	93		2.053×10^{7}
79	79－80	93		9． 198×10^{6}
80	80－81	93		1.636×10^{8}
81	81－82	94		3.830×10^{7}
82	82－83	94		1.640×10^{8}
83	83－84	94		3.570×10^{8}
84	84－85	94		1.460×10^{8}
85	85－86	94		7． 730×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
31	61		
34	64		
36	66		
37	67		
38	68		
39	69		
40	70		
41	71		
42	72		
47	77		
4	33		
7	36		
16	45		
19	48		
24	82		
29	85		
6	-		
15	-		
15	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

	（続き）	
	節点番号	質量（kg）
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	61	
	62	
	63	
	64	
	65	
	66	
	67	
	68	
$\xrightarrow{\sim}$	69	
	70	
$\stackrel{\square}{\square}$	71	
$\stackrel{1}{1}$	72	
＋10	73	
$\stackrel{1}{5}$	74	
	75	
（2）	76	
N	77	
\bigcirc	78	
	79	
	80	
	81	
	82	
	83	
	84	
	85	
	86	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弾性係数 （ MPa ）	質量密度 （kg／mm ${ }^{3}$ ）	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
91	100			0.3		ポンプ
93	100			0.3		ポンプ
94	66			0.3		原動機

枠囲みの内容は商業機密の観点から公開できません

VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書

VI－2－5－5－2－1 低圧炉心スプレイ系ポンプの耐震性についての計算書

VI－2－5－5－2－1 低圧炉心スプレイ系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有値解析及び構造強度評価 3
3.1 固有値解析及び構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 解析モデル及び諸元 9
3． 4 固有周期 9
3.5 設計用地震力 10
3.6 計算条件 114．機能維持評価12
4.1 基本方針 12
4.2 ポンプの動的機能維持評価 12
4． 3 原動機の動的機能維持評価 13
4．3．1 評価対象部位 13
4．3．2 評価基準値 13
4．3．3 記号の説明 14
4．3．4評価方法 15
5．評価結果 18
5.1 設計基準対象施設としての評価結果 18
5.2 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及 び機能維持の設計方針に基づき，低圧炉心スプレイ系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

低圧炉心スプレイ系ポンプは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示 す。

なお，低圧炉心スプレイ系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のたて軸ポンプであるため，添付書類「VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

また，低圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の立形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991追補版（社）日本電気協会）（以下「 J E A G 4 6 0 1 」という。）に定められ た評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

2．一般事項

2.1 構造計画

低圧炉心スプレイ系ポンプの構造計画を表2－1に示す。

表 2－1 構造計画

3．固有値解析及び構造強度評価
3.1 固有値解析及び構造強度評価方法

低圧炉心スプレイ系ポンプの構造強度評価は，添付書類「VI－2－1－13－5 たて軸ポン プの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
低圧炉心スプレイ系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 $3-1$ に，重大事故等対処設備の評価に用いるもの を表3－2に示す。

3．2．2 許容応力
低圧炉心スプレイ系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 $3-3$ 及び表 $3-4$ のとおりとする。

3．2．3 使用材料の許容応力評価条件
低圧炉心スプレイ系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－5 に，重大事故等対処設備の評価に用いるものを表3－6に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	非常用炉心冷却設備そ	低圧炉心スプレイ系 ポンプ	S	クラス 2 ポンプ＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd} \mathrm{d}^{* 2}$	III ${ }_{\text {A }} \mathrm{S}$
	の他原子炉注水設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：クラス 2 ポンプの支持構造物を含む。
＊2：S s と組合せ， $\mathrm{IIII}_{\mathrm{A}} \mathrm{S}$ の評価を実施する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉泠却系統施設	非常用炉心冷却設備そ の他原子炉注水設備	低圧炬心スプレイ系 ポンプ			$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
			常設／防止 （DB 拡張）	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} S$ として IV $\mathrm{A}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス $2, ~ 3$ ポンプ及び重大事故等クラス 2 ポンプ）

許容応力状態	許容限界＊		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	
III ${ }_{\text {A }} \mathrm{S}$	S_{y} と $0.6 \cdot \mathrm{~S}_{\mathrm{u}}$ の小さい方。 ただし，A S S 及び H N Aにつ いては上記値と 1.2 • S との大 きい方。	左欄の 1.5 倍の値	S d 又は S s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2•Sy以下であれば疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）			S s 地震動のみによる疲労解析を行い，疲労累積係数 が 1.0 以下であること。 ただし，地震動のみによる一次＋二次応力の変動値が 2 • S y 以下であれば疲労解析は不要。

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
バレルケーシング		最高使用温度	100	－			－
コラムパイプ		最高使用温度	100	－			－
基礎ボルト		周囲環境温度	66	－			－
ポンプ取付ボルト		最高使用温度	100	－			－
原動機台取付ボルト		最高使用温度	100	－			－
原動機取付ボルト		周囲環境温度	66	－			－

[^17]表 3－6 使用材料の許容応力評価条件（重大事故等対処設備）

3．3解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は，本計算書の【低圧炉心スプレイ系ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目 に示す。解析コードは，「MSC NASTRAN」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3． 4 固有周期
固有値解析の結果を表 3－7，振動モード図を図3－1に示すに示す。固有周期は 0.05秒を超えており，柔構造であることを確認した。また，鉛直方向の固有周期は 0.05秒以下であることを確認した。

表 3－7 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数＊		鉛直方向 刺激係数＊
		NS 方向	EW 方向	0.000	
1 次	水平	0.050	3.143	0.000	0.000
2 次	水平	0.020	-	-	-

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリクスの積から算出した値を示す。

3.5 設計用地震力

評価に用いる設計用地震力を表3－8及び表3－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。

表 3－8 設計用地震力（設計基準対象施設）

据付場所及び床面高さ（m）		原子炉建屋 0．P．－8．10＊ 1					
固有周期（s）		水平： $0.050 * 2$			鉛直： 0.05 以下		
減衰定数（\％）		水平： 1.0			鉛直：－		
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S s		
モード	固有周期 （s）	応答水平震度＊3		応答鉛直震度＊${ }^{3}$	応答水平震度＊${ }^{4}$		応答鉛直震度＊4
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.050	－＊7	－＊7	－	2． 70	－	－
2 次	0.020	－	－	－	－	－	－
動的地震力＊5		－＊7	－＊7	－	0.92	0.99	0.69
静的地震力＊6		－＊ 7	－＊ 7	－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S d）より得られる震度を示す。 ＊4：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。
＊ $5: ~ \mathrm{~S} \mathrm{~s}$ 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
＊6：静的震度（3．6•C i 及び 1.2 • C v）を示す。
＊7： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 3－9 設計用地震力（重大事故等対処施設）

据付場所及び床面高さ（m）		原子炉建屋 0．P．－8．10＊1					
固有周期（s）		水平： $0.050 * 2$ 鋁直： 0.05 以下					
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度＊3		応答鉛直震度＊3
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次	0.050	－	－	－	2.70	－	－
2 次	0.020	－	－	－	－	－	－
動的地震力＊4		－	－	－	0.92	0.99	0.69
静的地震力		－	－	－	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2： 1 次固有周期について記載。
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。 ＊4：S s 又は S d に基づく設計用最大応答加速度（1．2•ZPA）より定めた震度を示す。
3.6 計算条件

応力計算に用いる計算条件は，本計算書の【低圧炉心スプレイ系ポンプの耐震性につ いての計算結果】の設計条件及び機器要目に示す。

4．機能維持評価

4.1 基本方針

低圧炉心スプレイ系ポンプの原動機は，添付書類「VI－2－1－9 機能維持の基本方針」 に記載の立形ころがり軸受電動機であり，機能維持評価において機能維持評価用加速度が機能確認済加速度を上回ることから，J E A G 4 6 O 1 に定められた評価部位の健全性を詳細評価することで動的機能維持の確認を行う。

詳細評価に用いる機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線 の作成方針」に基づき，基準地震動 S s により定まる設計用最大応答加速度（1．0ZPA） を設定する。
（1）低圧炉心スプレイ系ポンプはピットバレル形ポンプであるため，添付書類「VI－2－ 1－9 機能維持の基本方針」に記載されているピットバレル形ポンプの機能確認済加速度を適用する。

4．2 ポンプの動的機能維持評価
低圧炉心スプレイ系ポンプは地震時動的機能維持が確認された機種と類似の構造及 び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
立型ポンプ	ピットバレル形 ポンプ	水平方向	10.0
		鉛直方向	1.0

4． 3 原動機の動的機能維持評価

4．3．1 評価対象部位
J EAG4601の電動機の動的機能維持評価に従い，以下の部位について評価 を実施する。
a．取付ボルト
b．固定子
c．軸（回転子）
d．端子箱
e．軸受
f．固定子と回転子のクリアランス
g．モータフレーム
h．軸継手
このうち「a．取付ボルト」については，「3．構造強度評価」に従い評価を行 った「5．評価結果」にて設計用地震力に対して十分な構造強度を有していること を確認している。

以上より，本計算書においては，固定子，軸（回転子），端子箱，軸受，固定子と回転子のクリアランス，モータフレームを評価対象部位とする。なお，軸継手はポ ンプ軸とモータ軸をリジットに接続するタイプであり，相対変位が発生しないこと， および地震荷重については軸受で負担するため軸継手部には有意な応力が発生し ないことから，計算書の評価対象外とする。

4．3．2 評価基準値

軸（回転子）及びモータフレームの許容応力は，クラス 2 ポンプの許容応力状態 III $_{A} \mathrm{~S}$ に準拠し設定する。固定子の許容応力はクラス 2 支持構造物の許容応力状態III ${ }_{A} \mathrm{~S}$ に準拠し設定する。端子箱の許容応力はクラス 2 支持構造物の許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に準拠し設定する。また軸受については，メーカ規定の軸受の定格荷重を，固定子 と回転子間のクリアランスは，変位可能寸法を評価基準値として設定する。

4．3．3 記号の説明

低圧炉心スプレイ系ポンプ用原動機の動的機能維持評価に使用する記号を表4－ 2 に示す。

表4－2 記号の説明

記号	記号の説明	単位
$\mathrm{A}_{\mathrm{b}}{ }_{\text {t }}$	端子箱取付ボルトの断面積	mm^{2}
A_{f}	モータフレームの断面積	mm^{2}
As	軸の断面積	mm^{2}
C_{P}	ポンプ振動による震度	－
C v	鉛直方向設計震度	－
D	固定子の外径	mm
d s	軸の径	mm
F ${ }_{k}$	固定子に生じる組合せ荷重	N
$\mathrm{F}_{\mathrm{b}} \mathrm{t}^{\text {f }}$	端子箱取付ボルトに作用するせん断力	N
F_{kg}	自重及び地震力により固定子に生じる荷重	N
F k_{t}	電動機の回転による荷重	N
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
L	固定子の溶接長さ	mm
M ${ }_{\text {f }}$	モータフレームに作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M s	軸に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
N	電動機の回転速度	min^{-1}
n p	固定子の溶接数	－
n t	端子箱取付ボルトの本数	－
P	電動機出力	kW
p	固定子の溶接部の開先寸法	mm
$Q_{b i}$	端子箱に作用するせん断力	N
s	固定子のすみ肉脚長	mm
Tm	電動機の回転による発生トルク	$\mathrm{N} \cdot \mathrm{m}$
Tma	電動機最大トルク	\％
T s	ポンプ運転による発生トルク	$\mathrm{N} \cdot \mathrm{mm}$
W ${ }_{\text {c }}$	固定子コイル及びコア質量	kg
W_{f}	モータフレーム質量	kg
W s	軸の質量	kg
W_{t}	端子箱質量	kg
$\mathrm{Z} \mathrm{f}_{\text {f }}$	モータフレームの断面係数	mm^{3}
Z s	軸の断面係数	mm^{3}
$\sigma \mathrm{m}$	モータフレームに生じる組合せ応力	MPa
σ s	軸に生じる組合せ応力	MPa
$\sigma \mathrm{b}$ t	端子箱取付ボルトに生じる引張応力	MPa
$\sigma \mathrm{fm}$	モータフレームに生じる曲げ応力	MPa

記号	記号の説明	単位
σ_{fw}	自重及び鉛直方向地震力によりモータフレームに生じる応力	MPa
σ_{sm}	軸に生じる曲げ応力	MPa
$\sigma_{\mathrm{s} \mathrm{w}}$	自重及び鉛直方向地震力により軸に生じる応力	MPa
τ_{k}	固定子に生じるせん断応力	MPa
τ_{s}	ポンプ運転によるねじり応力	MPa
$\tau_{\mathrm{b} \mathrm{t}}$	端子箱取付ボルトに生じるせん断応力	MPa

4．3．4 評価方法
（1）固定子
電動機の最大荷重（トルク）は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{m}}=\frac{974 \cdot \mathrm{P} \cdot \mathrm{~g}}{\mathrm{~N}} \cdot \frac{\mathrm{~T}_{\mathrm{m} \mathrm{a}}}{100} \tag{4.3.4.1}
\end{equation*}
$$

電動機の回転による荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kt}}=\frac{\mathrm{T}_{\mathrm{m}}}{1 / 2 \cdot \mathrm{D}} \tag{4.3.4.2}
\end{equation*}
$$

自重及び鉛直方向地震力により発生する荷重は次式で求める。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{kg}}=\mathrm{W}_{\mathrm{c}} \cdot \mathrm{~g} \cdot\left(\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{p}}+1\right) \tag{4.3.4.3}
\end{equation*}
$$

せん断応力は次式で求める。

$$
\begin{align*}
& \mathrm{F}_{\mathrm{k}}=\sqrt{\mathrm{F}_{\mathrm{k} \mathrm{t}^{2}+\mathrm{F}_{\mathrm{kg}}^{2}}} \tag{4.3.4.4}\\
& \tau_{\mathrm{k}}=\frac{\mathrm{F}_{\mathrm{k}}}{(\mathrm{p}+\mathrm{s}) \cdot \mathrm{L} \cdot \mathrm{n}_{\mathrm{p}}} \tag{4.3.4.5}
\end{align*}
$$

（2）軸
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\begin{equation*}
\sigma_{\mathrm{sm}}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{s}}} \tag{4.3.4.6}
\end{equation*}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{sw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{s}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{s}}} \tag{4.3.4.7}
\end{equation*}
$$

> c. ねじり応力

$$
\begin{align*}
& \mathrm{T}_{\mathrm{s}}=\frac{\mathrm{P}}{2 \pi / 60 \cdot \mathrm{~N}} \cdot 10^{6} \tag{4.3.4.8}\\
& \tau_{\mathrm{s}}=\frac{16 \cdot \mathrm{~T}_{\mathrm{s}}}{\pi \cdot \mathrm{~d}_{\mathrm{s}}{ }^{3}} \tag{4.3.4.9}
\end{align*}
$$

d．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{s}}=\frac{1}{2} \cdot\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)+\frac{1}{2} \cdot \sqrt{\left(\sigma_{\mathrm{sm}}+\sigma_{\mathrm{sw}}\right)^{2}+4 \tau_{\mathrm{s}}^{2}} \tag{4.3.4.10}
\end{equation*}
$$

（3）端子箱
a．取付ボルトのせん断応力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{bt}}=\left(1+\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{~g} \tag{4.3.4.11}\\
& \tau_{\mathrm{b} t}=\frac{\mathrm{F}_{\mathrm{b} t}}{\mathrm{n}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{b} t}} \quad \cdot \cdot \cdot \cdot \cdot \tag{4.3.4.12}
\end{align*}
$$

b．取付ボルトの引張応力

$$
\begin{equation*}
\sigma_{b t}=\frac{Q_{b t}}{n_{t} \cdot A_{b t}} \tag{4.3.4.13}
\end{equation*}
$$

（4）軸受
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，軸受の発生荷重を評価する。
（5）固定子と回転子のクリアランス
多質点はりモデルによる高圧炉心スプレイ系ポンプの応答解析結果を用い，固定子一軸（回転子）の相対変位が固定子一軸（回転子）間空隙寸法を下回ること を確認する。
（6）モータフレーム
a．曲げ応力
多質点はりモデルを用いて応答計算を行い，得られたモーメントにより，曲 げ応力は以下のようになる。

$$
\sigma_{\mathrm{fm}}=\frac{\mathrm{M}_{\mathrm{f}}}{\mathrm{Z}_{\mathrm{f}}}
$$

b．自重及び鉛直方向地震力による応力

$$
\begin{equation*}
\sigma_{\mathrm{fw}}=\frac{\left(1+\mathrm{C}_{\mathrm{V}}+\mathrm{C}_{\mathrm{P}}\right) \cdot \mathrm{W}_{\mathrm{f}} \cdot \mathrm{~g}}{\mathrm{~A}_{\mathrm{f}}} \tag{4.3.4.15}
\end{equation*}
$$

c．組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sigma_{\mathrm{fm}}+\sigma_{\mathrm{fw}} \tag{4.3.4.16}
\end{equation*}
$$

5．評価結果
5.1 設計基準対象施設としての評価結果

低圧炉心スプレイ系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

低圧炉心スプレイ系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【低王灲心スプレイ系ポンプの耐震性についての計算結果】
1．設計基準対象施設
1.1 構造強度評価

1．1．1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$	最高使用圧力 （ MPa ）	
			水平方向	鈖直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鋁直方向設計震度				吸込側	吐出側
低王炬心スプレイ系ポンプ	S	原子炉建屋 0．P．$-8.10^{* 1}$	0． 050	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		100	66	1.37	4.41

注記 $* 1$ ：基淮床レベルを示す。
＊2：IIISSについては，基準地震動 S s で評価する。
1．1．2 機器要目
ϖ

（2）バレルケーシング，コラムパイプ

注記＊：最高使用温度で算出

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

1．1．3 計算数値
（1）ボルトに作用する力

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{b} i}(\mathrm{~N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(\mathrm{i}=4)$						

（2）バレルケーシング，コラムパイプに作用する力

®

1．1．4 結論
1．1．4．1 图有周期
モード
モー
水平 1 次
鋁直 1 次
固有周期

すべて許容応力以下である。

1.2 動的機能維持評価

1．2．1 設計条件

機器名称	形式	定格容量 （ $\mathrm{m}^{3} / \mathrm{h}$ ）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方 向	鈖直方 向	水平方向設計震度	鉛直方向設計震度			
低王烼心スプレイ系 ポンプ	ピットバレル形ポンプ	1074	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0.050	$\begin{gathered} 0.05 \text { 以 } \\ \text { 下 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		100	66

注記＊：基淮床レベルを示す。

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲澴境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方 向	鋁直方 向	水平方向設計震度	鉛直方向設計震度			
低王炬心スプレイ系 ポンプ用原動機	立形ころがり軸受電動機	1000	原子炉建屋 0．P．-8.10^{*}	0． 050	$\begin{gathered} 0.05 \text { 以 } \\ \text { 下 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{V}}=0.57$		－	66

1．2．2 機器要目

（1）固定子

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	950	40	5	10	1618	16

（2）軸

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$1.130 \times$ 10^{7}	$2.362 \times$ 10^{5}	1700	$1.410 \times$ 10^{4}	1500	134

（3）端子箱

部 材	W_{t} (kg)	n_{t}	A_{bt} $\left(\mathrm{mm}^{2}\right)$	Q_{bt} (N)
端子箱	70	10	113.1	$1.131 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$3.702 \times$ 10^{8}	$1.800 \times$ 10^{7}	7000	$5.233 \times$ 10^{4}

1．2．3 結論
1．2．3．1 機能確忍済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.20	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動 S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

1．2．3．2 立形ころがり軸受電動機の動的機能維持評価
1．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
1．2．3．2．2 上記以外の基本評価項目の評価

1．2．3．2．2．1 単位： MPa ） 評価部位子の評価 応力 発生応力 許容応力 固定子 せん断 4 53				

すべて許容応力以下である。

1．2．3．2．2．2 軸（回転子）の評価	位 MPa ）	
評価部位	発生応力	許容応力
軸（回転子）	54	430

N

1．2．3．2．2．3 端子箱の評価
評価部位 応力 （単位： MPa ） 端子箱生応力 許容応力

すべて許容応力以下である。

評価部位	発生荷重	許容荷重
上部輷受	2． 449×10^{4}	
下部輣受	2． 983×10^{4}	

すべて許容荷重以下である。

| 1．2．3．2．2．5 固定子と回転子のクリアランスの評価 | （単位： mm ） |
| :---: | :---: | :---: |
| 評価部位 回転子のたわみ 許容変位量
 固定子と回転子のクリアランス 0.99 2.4 | |

すべて許容変位量以下である。

| 1．2．3．2．2．6 モータフレームの評価 | （単位： MPa ） |
| :---: | :---: | :---: |
| 評価部位 発生応力 許容応力
 モータフレーム 24 309 | |

すべて許容応力以下である。

1.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	X	y	z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）				
	節点番号	節点座標（mm）		
		x	y	z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	49			
	50			
	51			
	52			
	53			
	54			
	55			
\sim	56			
	57			
$\stackrel{\rightharpoonup}{1}$	58			
$\stackrel{\square}{5}$	59			
¢	60			
5	61			
	62			
（a）	63			
N	64			
\bigcirc	65			
	66			
	67			
	68			
	69			
	70			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
1	1－2	111		1． 805×10^{10}
2	2－3	111		1． 805×10^{10}
3	3－4	111		1． 805×10^{10}
4	4－5	111		1． 805×10^{10}
5	5－6	111		1． 805×10^{10}
6	6－7	111		1． 805×10^{10}
7	7－8	111		1． 805×10^{10}
8	8－9	111		1． 805×10^{10}
9	9－10	111		1． 805×10^{10}
10	10－11	111		1． 805×10^{10}
11	11－12	111		1． 805×10^{10}
12	12－13	111		1． 156×10^{12}
13	13－14	111		3． 891×10^{11}
14	14－15	111		3.411×10^{10}
15	15－16	111		3.411×10^{10}
16	16－17	111		3.411×10^{10}
17	17－18	111		2． 785×10^{11}
18	18－19	112		1． 888×10^{11}
19	19－20	112		4． 017×10^{10}
20	20－21	112		4． 017×10^{10}
21	21－22	112		4． 017×10^{10}
22	22－23	112		2． 163×10^{11}
23	23－24	113		2.040×10^{9}
24	24－25	113		4.600×10^{9}
25	25－26	113		2.030×10^{9}
26	26－27	113		2.810×10^{9}
27	27－28	113		2.790×10^{9}
28	28－29	113		3.470×10^{9}
29	29－30	113		5.620×10^{8}
30	31－32	114		3.746×10^{9}
31	32－33	114		1.314×10^{9}
32	33－34	114		1.314×10^{9}
33	34－35	114		5.320×10^{9}
34	35－36	114		5.320×10^{9}
35	36－37	114		5.320×10^{9}
36	37－38	114		5.670×10^{8}
37	38－39	114		5.670×10^{8}
38	39－40	114		5.670×10^{8}
39	40－41	114		5.670×10^{8}
40	41－42	114		5.670×10^{8}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 $\left(\mathrm{mm}^{2}\right)$	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
41	42－43	114		5.670×10^{8}
42	43－44	114		5.670×10^{8}
43	44－45	114		5.670×10^{8}
44	45－46	114		5.670×10^{8}
45	47－48	115		1． 018×10^{7}
46	48－49	115		1.018×10^{7}
47	49－50	115		1． 018×10^{7}
48	50－51	115		1.018×10^{7}
49	51－52	115		1.018×10^{7}
50	52－53	115		1.018×10^{7}
51	53－54	115		1.018×10^{7}
52	54－55	115		1． 018×10^{7}
53	55－56	115		1.018×10^{7}
54	56－57	115		1.018×10^{7}
55	57－58	115		1． 018×10^{7}
56	58－59	115		1.018×10^{7}
57	59－60	115		1.018×10^{7}
58	60－61	115		1． 018×10^{7}
59	61－62	115		1.018×10^{7}
60	62－63	115		1.018×10^{7}
61	63－64	115		1.018×10^{7}
62	64－65	116		6.330×10^{7}
63	65－66	117		1.670×10^{7}
64	66－67	117		5.860×10^{7}
65	67－68	117		1． 380×10^{8}
66	68－69	117		5.910×10^{7}
67	69－70	117		1． 850×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
6	35		
14	43		
17	46		
31	47		
34	50		
36	52		
37	53		
40	56		
45	61		
24	66		
29	69		
4	-		
13	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

	（続き）	
	節点番号	質量（kg）
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	49	
	50	
	51	
	52	
	53	
	54	
	55	
	56	
\square	57	
	58	
$\stackrel{\downarrow}{\top}$	59	
¢	60	
$\stackrel{1}{\sim}$	61	
$\stackrel{1}{5}$	62	
	63	
（2）	64	
N	65	
\bigcirc	66	
	67	
	68	
	69	
	70	

（5）材料物性値

【低王灲心スプレイ系ポンプの耐震性についての計算結果】

2．重大事故等対処設備
2． 1 構造強度評価
2．1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 S d又は静的震度		基準地震動S s		ポンブ振動 による震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）	最高使用圧力 （ MPa ）	
			水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鉛直方向設計震度				吸込側	吐出側
低王炬心スプレイ系ポンプ	常設／防止 （DB 拡張）	原子炉建屋 $\text { 0. P. -8. } 10^{*}$	0.050	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$		100	66	1.37	4.41

注記＊：基淮床レベルを示す。

2．1．3 計算数値
（1）ボルトに作用する力

部 材	$\mathrm{M}_{\mathrm{i}}(\mathrm{N} \cdot \mathrm{mm})$		$\mathrm{F}_{\mathrm{bi}}(\mathrm{N})$		$\mathrm{Q}_{\mathrm{bi}}(\mathrm{N})$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \\ \hline \end{gathered}$						
原動機台取付ボルト $(\mathrm{i}=3)$						
原動機取付ボルト $(i=4)$						

2．1．4 結論
（2）バレルケーシング，コラムパイプに作用する力
（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）

部 材	M	
	弾生設計用地震動 Sd 又は静的震度	基淮地震動 S s
バレルケーシング		
コラムパイプ		

ω 2．1．4．1 固有周期
（単位： s ）

2．1．4．2 ボルトの応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動S d又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
基碐ボルト		引張り	－	－	$\sigma_{\mathrm{b} 1}=32$	$\mathrm{f}_{\mathrm{ts} 1}=491^{*}$
（ $\mathrm{i}=1$ ）		せん断	－	－	$\tau_{\mathrm{b} 1}=3$	$\mathrm{ff}_{\text {sb } 1}=378$
ポンプ取付ボルト		引張り	－	－	$\sigma_{\mathrm{b} 2}=18$	$\mathrm{f}_{\mathrm{ts} 2}=474 *$
（ $\mathrm{i}=2$ ）		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	${\mathrm{ff} \mathrm{s}{ }_{2}=365}$
原動機台取付ボルト		引張り	－	－	$\sigma_{\text {b } 3}=105$	$\mathrm{f}_{\mathrm{ts} 3}=474 *$
（ $\mathrm{i}=3$ ）		せん断	－	－	$\tau_{\mathrm{b} 3}=19$	$\mathrm{ff}_{\text {s }{ }_{3}=365}$
原動機取付ボルト		引張り	－	－	$\sigma_{\text {b4 }}=141$	$\mathrm{f}_{\mathrm{ts} 4}=491$＊
（ $\mathrm{i}=4)$		せん断	－	－	$\tau_{\mathrm{b} 4}=43$	$\mathrm{f}_{\text {sb4 } 4}=378$

すべて許容応力以下である。

すべて許容応力以下である。注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出

2.2 動的機能維持評価

2．2．1 設計条件

機器名称	形式	定格容量 （ $\mathrm{m}^{3} / \mathrm{h}$ ）	据付場所及び床面高さ （m）	固有周期（s）		基淮地震動S s		ポンブ振動 による震度	最高使用 温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度			
低王炬心スプレイ系 ポンプ	ピットバレル形 ポンプ	1074	原子炉建屋 0．P．-8.10^{*}	0． 050	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{v}}=0.57$		100	66

注記＊：基漼床レベルを示す
\％

機器名称	形式	出力 （kW）	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		ポンブ振動 による震度	最高使用 温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境 温度 （ ${ }^{\circ} \mathrm{C}$ ）
				水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度			
低圧炉心スプレイ系 ポンプ用原動機	立形ころがり軸受電動機	1000	原子炉建屋 0．P．-8.10^{*}	0． 050	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.82$	$\mathrm{C}_{\mathrm{v}}=0.57$		－	66

2．2．2 機器要目

（1）固定子

部 材	N $\left(\mathrm{min}^{-1}\right)$	T_{ma} $(\%)$	D (mm)	L (mm)	p (mm)	s (mm)	W_{c} (kg)	n_{p}
固定子	1500	175	950	40	5	10	1618	16

（2）軸

部 材	M_{s} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{s} $\left(\mathrm{mm}^{3}\right)$	W_{s} (kg)	A_{s} $\left(\mathrm{mm}^{2}\right)$	N $\left(\mathrm{min}^{-1}\right)$	d_{s} (mm)
軸	$1.130 \times$ 10^{7}	$2.362 \times$ 10^{5}	1700	$1.410 \times$ 10^{4}	1500	134

（3）端子箱

部 材	W_{t} (kg)	n_{t}	A_{bt} $\left(\mathrm{mm}^{2}\right)$	Q_{bt} (N)
端子箱	70	10	113.1	$1.131 \times$ 10^{5}

（4）モータフレーム

部 材	M_{f} $(\mathrm{N} \cdot \mathrm{mm})$	Z_{f} $\left(\mathrm{mm}^{3}\right)$	W_{f} (kg)	A_{f} $\left(\mathrm{mm}^{2}\right)$
モータフレーム	$3.702 \times$ 10^{8}	$1.800 \times$ 10^{7}	7000	$5.233 \times$ 10^{4}

2．2．3 結論
2．2．3．1 機能確忍済加速度との比較
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	0.82	10.0
	鉛直方向	0.57	1.0
原動機	水平方向	4.20	2.5
	鉛直方向	0.57	1.0

注記＊：基準地震動 S s により定まる応答加速度とする。
ポンプは，機能維持評価用加速度が全て機能確認済加速度以下である。
原動機は，水平方向の機能維持評価用加速度が機能確認済加速度を超えるため，以下の項目について評価する。

2．2．3．2 立形ころがり軸受電動機の動的機能維持評価

2．2．3．2．1 代表評価項目の評価
原動機取付ボルトについては，構造強度評価にて設計用地震力に対して十分な構造強度を有しているため，計算は省略する。
2．2．3．2．2 上記以外の基本評価項目の評価

2．2．3．2．2．1 固定子の評価					（単位： MPa ）
評価部位	応力	発生応力	許容応力		
固定子	せん断	4	53		

すべて許容応力以下である。

2．2．3．2．2．2 軸（回転子）の評価		単位：MPa）
評価部位	発生応力	許容応力
軸（回転子）	54	430

$\stackrel{\omega}{\sim}$

2．2．3．2．2．3 端子箱の評価
評価部位 応力 （単位： MPa ） 端子箱生応力 許容応力

すべて許容応力以下である。

2．2．3．2．2．4 軸受の評価	（単位：N）	
評価部位	発生荷重	許容荷重
上部軸受	2.449×10^{4}	
下部軸受	2.983×10^{4}	

すべて許容荷重以下である。

2．2．3．2．2．5 固定子と回転子のクリアランスの評価	（単位： mm ）	
評価部位	回転子のたわみ	許容変位量
固定子と回転子のクリアランス	0.99	2.4

すべて許容変位量以下である。

2．2．3．2．2．6 モータフレームの評価	（単位： MPa ）	
評価部位	発生応力	許容応力
モータフレーム	24	309

すべて許容応力以下である。

2.3 その他の機器要目

（1）節点データ

節点番号	節点座標（mm）		
	X	y	Z
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			

（続き）				
	節点番号	節点座標（mm）		
		X	y	z
	41			
	42			
	43			
	44			
	45			
	46			
	47			
	48			
	49			
	50			
	51			
	52			
	53			
\bigcirc	54			
\sim	55			
－	56			
$\stackrel{1}{1}$	57			
$\stackrel{0}{5}$	58			
$\stackrel{1}{\sim}$	59			
5	60			
（	61			
（c）	62			
\sim	63			
\bigcirc	64			
	65			
	66			
	67			
	68			
	69			
	70			

（2）要素の断面性状

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \\ \hline \end{gathered}$
1	1－2	111		1． 805×10^{10}
2	2－3	111		1． 805×10^{10}
3	3－4	111		1． 805×10^{10}
4	4－5	111		1． 805×10^{10}
5	5－6	111		1． 805×10^{10}
6	6－7	111		1． 805×10^{10}
7	7－8	111		1． 805×10^{10}
8	8－9	111		1． 805×10^{10}
9	9－10	111		1． 805×10^{10}
10	10－11	111		1． 805×10^{10}
11	11－12	111		1． 805×10^{10}
12	12－13	111		1． 156×10^{12}
13	13－14	111		3． 891×10^{11}
14	14－15	111		3.411×10^{10}
15	15－16	111		3.411×10^{10}
16	16－17	111		3.411×10^{10}
17	17－18	111		2． 785×10^{11}
18	18－19	112		1． 888×10^{11}
19	19－20	112		4． 017×10^{10}
20	20－21	112		4． 017×10^{10}
21	21－22	112		4． 017×10^{10}
22	22－23	112		2． 163×10^{11}
23	23－24	113		2.040×10^{9}
24	24－25	113		4.600×10^{9}
25	25－26	113		2.030×10^{9}
26	26－27	113		2.810×10^{9}
27	27－28	113		2.790×10^{9}
28	28－29	113		3.470×10^{9}
29	29－30	113		5.620×10^{8}
30	31－32	114		3.746×10^{9}
31	32－33	114		1.314×10^{9}
32	33－34	114		1.314×10^{9}
33	34－35	114		5.320×10^{9}
34	35－36	114		5.320×10^{9}
35	36－37	114		5.320×10^{9}
36	37－38	114		5.670×10^{8}
37	38－39	114		5.670×10^{8}
38	39－40	114		5． 670×10^{8}
39	40－41	114		5.670×10^{8}
40	41－42	114		5.670×10^{8}

（続き）

断面特性番号 （要素番号）	要素両端の節点番号	材料 番号	断面積 （ mm^{2} ）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$
41	42－43	114		5.670×10^{8}
42	43－44	114		5.670×10^{8}
43	44－45	114		5.670×10^{8}
44	45－46	114		5.670×10^{8}
45	47－48	115		1． 018×10^{7}
46	48－49	115		1.018×10^{7}
47	49－50	115		1.018×10^{7}
48	50－51	115		1.018×10^{7}
49	51－52	115		1.018×10^{7}
50	52－53	115		1.018×10^{7}
51	53－54	115		1.018×10^{7}
52	54－55	115		1.018×10^{7}
53	55－56	115		1.018×10^{7}
54	56－57	115		1.018×10^{7}
55	57－58	115		1． 018×10^{7}
56	58－59	115		1.018×10^{7}
57	59－60	115		1.018×10^{7}
58	60－61	115		1.018×10^{7}
59	61－62	115		1.018×10^{7}
60	62－63	115		1.018×10^{7}
61	63－64	115		1.018×10^{7}
62	64－65	116		6.330×10^{7}
63	65－66	117		1.670×10^{7}
64	66－67	117		5.860×10^{7}
65	67－68	117		1.380×10^{8}
66	68－69	117		5.910×10^{7}
67	69－70	117		1． 850×10^{7}

（3）ばね結合部の指定

ばねの両端の節点番号		ばね定数	
6	35		
14	43		
17	46		
31	47		
34	50		
36	52		
37	53		
40	56		
45	61		
24	66		
29	69		
4	-		
13	-		

（4）節点の質量

節点番号	質量（kg）
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	

	（続き）	
	節点番号	質量（kg）
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	49	
	50	
	51	
	52	
	53	
	54	
	55	
	56	
\square	57	
	58	
$\stackrel{\downarrow}{\top}$	59	
\bigcirc	60	
$\stackrel{1}{\sim}$	61	
$\stackrel{1}{5}$	62	
	63	
（2）	64	
N	65	
\bigcirc	66	
	67	
	68	
	69	
	70	

（5）材料物性値

材料番号	温度 $\left({ }^{\circ} \mathrm{C}\right)$	縦弹性係数 （MPa）	質量密度 $\left(\mathrm{kg} / \mathrm{mm}^{3}\right)$	$\begin{gathered} \text { ポアソン比 } \\ (-) \end{gathered}$	材質	部位
111	100			0.3		ポンプ
112	66			0.3		ポンプ
113	66			0.3		原動機
114	100			0.3		ポンプ
115	100			0.3		ポンプ
116	66			0.3		ポンプ
117	66			0.3		原動機

VI－2－5－5－3 高圧代替注水系の耐震性についての計算書

VI－2－5－5－3－1 高圧代替注水系タービンポンプの耐震性についての計算書
VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）

$$
\begin{aligned}
& \text { VI-2-5-5-3-2 管の耐震性についての計算書 } \\
& \text { (高圧代替注水系) }
\end{aligned}
$$

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 6
3．計算条件 13
3.1 計算方法 13
3.2 荷重の組合せ及び許容応力状態 14
3.3 設計条件 15
3．4 材料及び許容応力 21
3.5 設計用地震力 22
4．解析結果及び評価 24
4．1 固有周期及び設計震度 24
4． 2 評価結果 31
4．2．1 管の応力評価結果 31
4．2．2 支持構造物評価結果 33
4．2．3 弁の動的機能維持評価結果 34
4．2．4 代表モデルの選定結果及び全モデルの評価結果 35

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

記 号	内 容
（太線）	工事計画記載範囲の管のうち，本計算書記載範囲の管
（細線）	工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管
－－－－－－－－－－（破線）	工事計画記載範囲外の管又は工事計画記載範囲の管の
	うち，他系統の管であって系統の概略を示すために表記する管
O○○－○○○	鳥瞰図番号
	アンカ

原子炉建屋 原子炉格納容器
原子炉格納容器 原子炉建屋

[^18]復水给水系

0 y（重）$\zeta-\varepsilon-G-9-Z-I \Lambda$（8）$\quad \mathrm{O}$

鳥瞰図記号凡例

記 号

O2 (3) VI-2-5-5-3-2 (重) R 0
O2 (3) VI-2-5-5-3-2 (重) R 0
O2 (3) VI-2-5-5-3-2 (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊1	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
原子炉冷却系統施設	非常用炉心冷却設備 その他原子炉注水設備	高圧代替注水系	S A	常設耐震／防止常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備 その他の安全設備	高圧代替注水系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備を，「常設／緩和」は常設重大事故緩和設備を示す。
＊ 3 ：運転状態の添字L は荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $I_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPAC－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	14.00	66	114.3	13.5	STS410	-	200360
2	14.00	66	165.2	18.2	STS410	-	200360
3	8.62	302	165.2	14.3	STS410	-	184760

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPAC－OO1

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		19		37		58		76	
2		20		38		59		77	
3		21		39		60		78	
4		22		40		61		79	
5		23		41		62		80	
6		24		42		63		81	
7		25		43		64		82	
8		26		44		65		83	
9		27		45		66		84	
10		28		46		67		85	
11		29		47		68		86	
12		30		48		69		87	
13		31		49		70		88	
14		32		50		71		89	
15		33		51		72		90	
16		34		52		73		91	
17		35		53		74			
18		36		57		75			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
54	
55	
56	
92	
93	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)	
弁1	55				

支持点及び貫通部ばね定数
鳥 瞰 図
HPAC－OO1
支持点部のばね定数を下表に示す。

\square

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 HPAC－003

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	10.34	315	165.2	14.3	STS410	-	183200
2	8.62	302	165.2	14.3	STS410	-	184760
3	8.62	302	114.3	11.1	STS410	-	184760
4	8.62	302	89.1	11.1	STS410	-	184760

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図
HPAC－OO

管名称				対		応	す		る	評	価	点			
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	34
	35	36	37	38	39	40	41	42	43	44	45	46	47		
2	49	50													
3	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
4	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78
	79														

配管の質量（付加質量含む）
0 d（重）$Z-\varepsilon-$－G－G－Z－I（8）\quad O
評価点の質量を下表に示す。

評価点	質量（kg）								
1		16		35		53		68	
2		17		36		54		69	
3		18		37		55		70	
4		19		38		56		71	
5		20		39		57		72	
6		21		40		58		73	
7		22		41		59		74	
8		23		42		60		75	
9		24		43		61		76	
10		25		44		62		77	
11		26		45		63		78	
12		27		46		64		79	
13		28		50		65			
14		29		51		66			
15		34		52		67			

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
47	
48	
49	
80	
81	

并部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	48			

支持点及び貫通部ばね定数
鳥 瞰 図 HPAC－003
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
3						
6						
9						
14						
16						
20						
27						
37						
43						
46						
52						
58						
61						
66						
＊＊ 68 ＊＊						
70						
79						
＊＊81＊＊						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S m	S y	Su	Sh
STS410	66	－	231	407	－
	302	－	182	404	－
	315	－	180	404	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
H P A C－O O 1	原子炉建屋		

設計用地震力
本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
H P A C－ 0 0 3			

O 2 （3）VI－2－5－5－3－2（重）R 0

[^19]| モード | $\text { 固 } \underset{(\mathrm{s})}{\text { 有 }} \text { 周 期 }$ | | 激 係 | 数＊ |
| :---: | :---: | :---: | :---: | :---: |
| | | X 方 向 | Y 方 向 | Z 方 向 |
| 1 次 | | | | |
| 2 次 | | | | |
| 3 次 | | | | |

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
0 y（重）$Z-\varepsilon-$－G－G－Z－I（8）\quad O
固有周期及び設計震度

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （ s ）	応 答 水 平 震 度＊1		応答鉛直震度 ${ }^{* 1}$	応 答 水 平 震 度＊1		応答鉛直震度＊1
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次 ${ }^{* 2}$	0． 048	－	－	－	－	－	－
動 的 震 度＊3		－	－	－	1.97	1.97	1.37
静 的 震 度 ${ }^{* 4}$		－	－	－	－	－	－
注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。 ＊2：固有周期が 0.050 s 以下であることを示す。 ＊3：S d 又 ${ }^{2} \mathrm{~S}$ s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 ＊4：3．6C I ひび1．2C V_{V} より定めた震度を示す。							

4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	一次応力評価 （MPa）		一次 + 二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm} \text { prs }) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	計算応力 $S n(S s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
H P A C－ 001	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 75 \\ & 71 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$	$\begin{gathered} 94 \\ - \end{gathered}$	$\begin{aligned} & 363 \\ & - \end{aligned}$	$\overline{149}$	364	-

管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力評価 }}{(\mathrm{MPa})} \text {. } \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ S \operatorname{srm}(S s) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{Su} \end{gathered}$	計算応力 $S n(S s)$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
H P A C－ 003	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn (S s }) \end{gathered}$	$\begin{gathered} 64 \\ - \end{gathered}$	$\begin{aligned} & \hline 363 \\ & - \end{aligned}$	171	360	一

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式	材質		評価結果	
					計算 荷重 （kN）	許容 荷重 （kN）
HPAC－003－070H	スプリングハンガ	VS30B－05	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照		884N	1230N
HPAC－001－093SB	メカニカルスナッバ	SMS－6－100			28	114
HPAC－001－080B	ロッドレストレイント	RTS－3			22	45

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
HPAC－001－053R	レストレイント	Uプレート	SS400	66	0	50	52	－	－	－	せん断	130	135
HPAC－001－091A	アンカ	ラグ	SGV410	302	11	9	18	9	10	3	組合せ	32	199

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果 を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

VI－2－5－5－4 低圧代替注水系の耐震性についての計算書

VI－2－5－5－4－1 直流駆動低圧注水系ポンプの耐震性についての計算書 VI－2－5－5－4－2 管の耐震性についての計算書（低圧代替注水系）

$$
\begin{gathered}
\text { VI-2-5-5-4-2 } \begin{array}{c}
\text { 管の耐震性についての計算書 } \\
\text { (低圧代替注水系) }
\end{array} \text { 隹 }
\end{gathered}
$$

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 7
3．計算条件 12
3.1 計算方法 12
3.2 荷重の組合せ及び許容応力状態 13
3.3 設計条件 14
3.4 材料及び許容応力 17
3.5 設計用地震力 18
4．解析結果及び評価 19
4．1 固有周期及び設計震度 19
4． 2 評価結果 25
4．2．1 管の応力評価結果 25
4．2．2 支持構造物評価結果 26
4．2．3 弁の動的機能維持評価結果 27
4．2．4 代表モデルの選定結果及び全モデルの評価結果 28

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 7 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，弁型式別に評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

0 y（重）Z－モ－G－G－Z－I \boldsymbol{C}（8）\quad O

低圧代替注水系概略系統図（その1）
O 2 （3）VI－2－5－5－4－2（重）R 0

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

施設名称	設備名称	系統名称	施設分類＊1	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
原子炉 冷却系統 施設	非常用炉心冷却設備 その他原子炉注水設備	低圧代替注水系	S A	常設耐震／防止常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備 その他の安全設備	原子炉格納容器下部注水系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備 その他の安全設備	原子炉格納容器代替スプレ イ冷却系	S A	常設耐震／防止常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備 その他の安全設備	代替循環冷却系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設	圧力低減設備 その他の安全設備	低圧代替注水系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

[^20]＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊3：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図
KMUWC－109

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料 $^{\text {耐震 }}$	縦弾性係数 （MPa）要度分類	
1	1.37	66	216.3	8.2	STPT370	-	200360

設計条件

管名称と対応する評価点
評価点の位置は，鳥瞰図に示す。
鳥 瞰 図 KMUWC－109

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
1		10		20		175		801	
4		11		21		176		904	
5		12		22		177		908	
6		14		23		178		916	
7		15		24		179		920	
8		18		25		212		921	
9		19		26		214			

支持点及び貫通部ばね定数
鳥 瞰 図 KMUWC－109
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
4						
11						
15						
18						
22						
26						
904						
908						
920						
921						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

| 材料 | 最高使用温度 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\left({ }^{\circ} \mathrm{C}\right)$ |

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類 VVI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

| 鳥 瞰 図 | 建物•構築物 | 標高（0．P．（m）） | |
| :---: | :---: | :---: | :---: | 減衰定数（\％）

O 2 （3） $\mathrm{VI}-2-5-5-4-2$（重） R 0
4．解析結果及び評価
鳥 瞰 図 KMUWC－109

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
$* 3:$ S 又 又 ${ }^{2} \mathrm{~S}$ s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
$* 4: 3.6 \mathrm{C}_{1}$ 及び $1.2 \mathrm{C}_{\mathrm{V}}$ より定めた震度を示す。
0 y（重）- －モ－G－G－Z－I \boldsymbol{C}（8）\quad O

モード	固 有 周 期 （ s ）		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
29 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
4． 2 評価結果
0 y（重）- －モ－G－G－Z－I \boldsymbol{C}（8）\quad O
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力 区分	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 0.9 \cdot \mathrm{~S} \mathrm{u} \end{gathered}$	計算応力 $S n(S s)$	許容応力 $2 \cdot \mathrm{~S} \text { y }$	疲労累積係数 US s
$\begin{aligned} & \text { KMUWC - } \\ & 109 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	$\begin{gathered} \hline \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~S}) \end{gathered}$	$\begin{aligned} & 187 \\ & - \end{aligned}$	$\begin{aligned} & \hline 324 \\ & - \end{aligned}$	330	398	-

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

	種類	型式	材質		評価結果	
支持構造物番号					$\begin{aligned} & \text { 計算 } \\ & \text { 荷重 } \\ & \text { (kN) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 荷重 } \\ & (\mathrm{kN}) \\ & \hline \end{aligned}$
KMUWC－109－904B	ロッドレストレイント	RTS－3	添付書類 配管及び 震計算に	$\begin{aligned} & \hline-1-12-1 \\ & \text { 造物の耐 } \\ & \text { 」参照 } \end{aligned}$	11	45

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 （ ${ }^{\circ} \mathrm{C}$ ）	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			$\begin{aligned} & \text { 応力 } \\ & \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$
					F_{X}	F_{Y}	F_{z}	M_{x}	M_{Y}	M_{z}			
KMUWC－102－150R	レストレイント	Uプレート	SS400	40	0	34	55	－	－	－	せん断	121	141
KıUWC－109－001A	アンカ	ラグ	SGV410	66	24	100	21	30	7	33	曲げ	342	460

4．2．3 弁の動的機能維持評価結果
O2（3）VI－2－5－5－4－2（重）R 0

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果(MPa)	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2． 4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果
を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

		芷业	｜	｜		｜	｜	｜	｜
			1	｜	｜	1	｜	1	｜
			｜	｜		｜	｜	｜	｜
	$$	出粫	｜	｜	\bigcirc	｜	｜	1	｜
		烄	$\begin{aligned} & \text { n } \\ & \text { in } \end{aligned}$	$\stackrel{\bullet}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\underset{\sim}{\text { む }}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	$\begin{aligned} & \mathbb{F} \\ & \dot{\sim} \end{aligned}$	$\underset{\sim}{\vec{i}}$
			$\begin{gathered} \mathfrak{O} \\ \text { O } \end{gathered}$	¢	$\stackrel{\infty}{\infty}$	Ơ	$\stackrel{\infty}{\infty}$	¢	¢
			$\underset{\sim}{\infty}$	No	৷	en en	$\stackrel{\Im}{7}$	O	$\stackrel{\infty}{\sim}$
		呋栜域	$\stackrel{\text { N }}{\underset{\sim}{4}}$	or	$\stackrel{\sim}{\sim}$	-	\checkmark	N	\checkmark
		枼獥	｜	｜	\bigcirc	｜	｜	｜	｜
		咬	$\stackrel{0}{0}$	$\stackrel{N}{\stackrel{N}{\mathrm{~N}}}$	$\stackrel{\cong}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{1}{\circ} \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{+} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \circ \\ & + \\ & + \end{aligned}$
			$\begin{aligned} & 0 \\ & e \end{aligned}$	$\underset{\sim}{\text { H }}$	$\underset{\sim}{\underset{\sim}{N}}$	ê	$\underset{\sim}{\text { H }}$	$\begin{aligned} & e \\ & e \end{aligned}$	¢
			กิ	$\stackrel{9}{7}$	$\stackrel{\sim}{\infty}$	－	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { ¢7 }}{ }$	$\stackrel{1}{\infty}$
			\＃	$\stackrel{9}{7}$	$\stackrel{\sim}{\sim}$	ন	\bigcirc	\bigcirc	\checkmark
			$\begin{aligned} & -3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 1 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Bे } \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$$	$$	3 8 -1	O O H U
$\dot{8}$			\rightarrow	\sim	∞	H	\llcorner	\bullet	\sim

VI－2－5－6 原子炉冷却材補給設備の耐震性についての計算書

VI－2－5－6－1 原子炉隔離時冷却系の耐震性についての計算書
VI－2－5－6－2 補給水系の耐震性についての計算書

VI－2－5－6－1 原子炉隔離時冷却系の耐震性についての計算書

VI－2－5－6－1－1 原子炉隔離時冷却系ポンプの耐震性についての計算書
VI－2－5－6－1－2 原子炉隔離時冷却系ポンプ駆動用タービンの耐震性についての計算書

VI－2－5－6－1－2 原子炉隔離時冷却系ポンプ駆動用 タービンの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4．1 動的機能維持評価方法 ． 7
5．評価結果 8
5.1 設計基準対象施設としての評価結果 8
5.2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉隔離時冷却系ポンプ駆動用タービン（以下「原子炉隔離時冷却系タービン」という。）が設計用地震力に対して十分な構造強度及 び動的機能を有していることを説明するものである。

原子炉隔離時冷却系タービンは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，原子炉隔離時冷却系タービンは，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

2.1 構造計画

原子炉隔離時冷却系タービンの構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
タービンはタービンベー スに固定され，タービン ベースは基礎ボルトで基礎に据え付ける。	背圧式蒸気タービ	（単位：mm）

3．構造強度評価

3.1 構造強度評価方法

原子炉隔離時冷却系タービンの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポ ンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行 う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
原子炉隔離時冷却系タービンの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表3－1に，重大事故等対処設備の評価に用いる ものを表3－2に示す。

3．2．2 許容応力
原子炉隔離時冷却系タービンの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件
原子炉隔離時冷却系タービンの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－4に，重大事故等対処設備の評価に用いるもの を表3－5に示す。

3．3 計算条件
応力計算に用いる計算条件は，本計算書の【原子炉隔離時冷却系ポンプ駆動用ター ビンの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
原子炉泠却 系統施設	原子炉冷却材 補給設備	原子炉隔離時冷却系 ポンプ駆動用 タービン			
容応力状態					

注記＊：クラス 2 ポンプの荷重の組合せ及び許容応力状態を適用する。また，クラス 2 ポンプの支持構造物を含む。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {P }}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	非常用炉心冷却設備その他原子炉注水設備	原子炉隔離時冷却系 ポンプ駆動用 タービン	常設／防止 （DB 拡張）		$D+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{A} \mathrm{~S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV } \\ { }_{\mathrm{A}} \mathrm{~S} \text { の許容限界 } \\ \text { を用いる。) } \end{gathered}$

注記 $* 1$ ：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 ポンプの荷重の組合せ及び許容応力状態を適用する。また，重大事故等クラス 2 ポンプの支持構造物を含 む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（クラス 2， 3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト		周囲環境温度	66		
$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)					
タービン取付 ボルト		最高使用温度	302		

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

4．機能維持評価

4． 1 動的機能維持評価方法
原子炉隔離時冷却系タービンの地震後の動的機能維持評価は，添付書類「VI－2－1－ 13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基 づき行う。

原子炉隔離時冷却系タービンは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
タービン	原子炉隔離時冷却系 ポンプ駆動用タービン	水平	2.4
	鉛直	1.0	

5．評価結果

5.1 設計基準対象施設としての評価結果

原子炉隔離時冷却系タービンの設計基準対象施設としての耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するた め，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

$$
\mathrm{O} 2 \text { (3) VI-2-5-6-1-2 R } 0
$$

【原子炣隔離時冷却系ポンフ駆動用タービンの而振性についての計算結果】
1．設計基準対象施設

1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 は静的震度		基準地震動S s		$\begin{array}{\|l\|} \hline \text { タービン振動 } \\ \text { による震俭 } \end{array}$	$\underset{\text { 最高使用温度 }}{\left({ }^{\circ}\right)}$	周囲環境温度 （ ${ }^{\text {C）}}$
			水平方向	鉛直方向	坔平方向 計計震度	$\begin{aligned} & \text { 鈖直方向 } \\ & \text { 設計震度 } \end{aligned}$	水平方向 設計震度	鉛直方向			
原子炬隔睢時冷却系 ポンフ駆動用タービン	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .-8.10^{* 1} \\ (0 . \mathrm{P} .-7.162) \end{gathered}$	－＊2	－＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.04$	$\mathrm{C}_{\mathrm{V}}=0.72$		302	66

注記 $* 1$ ：基淮床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する。
＊3： $\mathrm{m}_{1} \mathrm{~S}$ については，基準地震動 S s で評価する。
\bullet

部 材	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{SPa}}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{P P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}{ }^{*}{ }^{*}}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \end{aligned}$	
$\begin{gathered} \text { 基礫ボルト下 } \\ (\mathrm{i}=1) \\ \hline \end{gathered}$					－	軸直角	7.639×10^{5}
$\begin{gathered} \text { タービン取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$					－	軸直角	7.639×10^{5}

予想最大両振幅 $(\mu \mathrm{m})$	回転速度 (rpm)

注記＊1：各ボルトの機器要目における上段は軸直角方向䡌倒こ対する評価時の要目を示しっ下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度で算出
＊3：最高使用温度で算出
1.3 計算数値

部 材	$\mathrm{F}_{\mathrm{b} i}$		Q_{bi}	
	弾性設計用地震動 S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \end{aligned}$	弾性設計用地震動 S d又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基漼地震動 }}$
基礎ボルト $(\mathrm{i}=1)$	－		－	
$\begin{gathered} \text { タービン取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	－		－	

1.4 結論

1.4 .2 動的機能の評価結果

タービン		機能維持評価用加速度＊	機能碓認済加速度
ター	水平方向	0.86	2.4
	鈖直方向	0.59	1.0

[^21]機能維持評価用加速度（1．0ZPA）は，すべて機能碓認済加速度以下である。

【原子炉隔離侍冷却系ポンフ駆動用タービンの耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基漼地震動S s		タービン振動 による震度	最高使用温度 （ C ）	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \\ & \hline \end{aligned}$	$\underset{\text { 水平方向 }}{\text { 設計震度 }}$	鉛直方向 設計震度			
原子炉隔離時冷却系 ポンフ駆動用タービン	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { O.P. }-8.10^{* 1} \\ (0 . \mathrm{P} .-7.162) \end{gathered}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.04$	$\mathrm{C}_{\mathrm{v}}=0.72$		302	66

注記 $* 1$ ：基淮床レベルを示す
＊2：固有周期は十分に小さく，計算は省略する。

部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathbb{P P a})}{\mathrm{F}_{i}{ }^{i},}$	転倒方向		$\underset{(\mathrm{N} \cdot \mathrm{~m})}{\mathrm{M}_{\mathrm{p}}}$
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \end{aligned}$	
$\begin{gathered} \text { 基礎ボルト } \\ (\mathrm{i}=1) \end{gathered}$					－	軸直角	7.639×10^{5}
$\begin{gathered} \text { タービン取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$					－	軸直角	7.639×10^{5}

${ }^{\text {予想最大両振幅 }}\left(\begin{array}{l}(\mu \mathrm{m})\end{array}\right.$	回転速度 (rpm)

注記＊1：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，下段は軸万同転倒に対する評価時の要目を示す。
＊2：周囲環境温度で算出
＊3：最高使用温度で算出

O 2 （3）VI－2－5－6－1－2 R 0

2．3 計算数値

い
2.4 結論

部 材	材 料	応力	弾生設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
基磽ボルト		引張り	－	－	$\sigma_{\text {b } 1}=40$	$\mathrm{f}_{\mathrm{ts} 1}=202^{*}$
（ $\mathrm{i}=1$ ）		せん断	－	－	$\tau_{\mathrm{b} 1}=21$	$\mathrm{f}_{\mathrm{sb} 1}=155$
タービン取付ボルト		引張り	－	－	$\sigma_{\mathrm{b} 2}=40$	$\mathrm{f}_{\mathrm{ts} 2}=444^{*}$
（ i＝2）		せん断	－	－	$\tau_{\mathrm{b} 2}=10$	$\mathrm{f}_{\mathrm{sb} 2}=342$

2.4 .2 動的機能の評価結果

タービン	機能維持評価用加速度＊	機能碓認済加速度	
	水平方向	0.86	2.4
	鈖直方向	0.59	1.0

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-5-6-1-2 R O E

VI－2－5－6－2 補給水系の耐震性についての計算書

VI－2－5－6－2－1 復水移送ポンプの耐震性についての計算書
VI－2－5－6－2－2 復水貯蔵タンクの耐震性についての計算書

VI－2－5－6－2－1 復水移送ポンプの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 8
4．1 動的機能維持評価方法 8
5．評価結果 9
5.1 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，復水移送ポンプが設計用地震力に対して十分な構造強度及び動的機能 を有していることを説明するものである。

復水移送ポンプは，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，復水移送ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横軸ポンプであるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

復水移送ポンプの構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ポンプはポンプベースに固定され，ポンプベース は基礎ボルトで基礎に据 え付ける。	うず巻形 （らず巻形横軸ポンプ）	（単位：mm）

3．構造強度評価

3.1 構造強度評価方法

復水移送ポンプの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
復水移送ポンプの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用 いるものを表 3－1 に示す。

3．2．2 許容応力
復水移送ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 3－2 のとおりとする。

3．2．3 使用材料の許容応力評価条件

復水移送ポンプの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用い るものを表3－3に示す。

3.3 計算条件

応力計算に用いる計算条件は，本計算書の【復水移送ポンプの耐震性についての計算結果】 の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類 ${ }^{* 1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	非常用炉心 冷却設備 その他原子炉注水設備	復水移送ポンプ	常設耐震／防止常設／緩和	重大事故等$\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	IVAS
					$\mathrm{D}+\mathrm{PsAD}+\mathrm{Msad}+\mathrm{Ss}$	VAS （VASとして $\mathrm{IV}_{\mathrm{AS}}$ の許容限界 を用いる。）
	圧力低減設備 その他の安全設備の原子炉格納容器安全 設備 原子炉 格納容器 下部注水系	復水移送ポンプ	常設／緩和	重大事故等$\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}+\mathrm{S} \mathrm{s}^{* 3}$	IVAS
原子炉格納施設					$\mathrm{D}+\mathrm{PsAD}+\mathrm{Msad}+\mathrm{Ss}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （VASとして $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

（続き）

原子炉格納施設	圧力低減設備 その他の安全設備の原子炉格納容器安全 設備 原子炉格納容器代替スプ レイ冷却系				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	IV AS
		復水移送ポンプ	常設耐震／防止常設／緩和	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{PsAD}+\mathrm{Msad}+\mathrm{S} \mathrm{s}$	VAS （VASとして IVAS の許容限界 を用いる。）
	圧力低減設備				$\mathrm{D}+\mathrm{P} \mathrm{D}^{+} \mathrm{MD}+\mathrm{S} \mathrm{s}^{* 3}$	IVAS
	その他の安全設備の原子炉格納容器安全設備低圧代替注水系	復水移送ポンプ	常設／緩和	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{PsAD}+\mathrm{Msad}+\mathrm{S} \mathrm{s}$	VAS （ $\mathrm{V}_{\mathrm{A}} \mathrm{C}$ として IVAS の許容限界 を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊ 2 ：重大事故等クラス 2 ポンプの支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－2 許容応力（重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
IV $\mathrm{AS}^{\text {S }}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ V_{AS} としてIVAS の許容限界を用いる。）		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} u \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S \text { y }(R T) \\ (M P a) \end{gathered}$
基礎ボルト		周囲環境温度	66			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	66			－

4．機能維持評価

4．1 動的機能維持評価方法
復水移送ポンプの動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につい ての計算書作成の基本方針」に記載の評価方法に基づき行う。

復水移送ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるた め，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能維持加速度を適用する。機能維持加速度を表 4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ポンプ	横形単段遠心式 ポンプ	水平	3.2 （軸直角方向） 1.4 （軸方向）
	ホ鉛直	1.0	

5．評価結果

5.1 重大事故等対処設備としての評価結果

復水移送ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有している ことを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【復水移送ポンプの耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s		ポンプ振動による震度	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
復水移送ポンプ	常設耐震／防止常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-0.80^{* 1} \end{gathered}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{Cv}=0.88$		66	66

注記 $* 1$ ：基準床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する。

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} ~ \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { u i } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{Fi}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{Fi}^{2}} \quad *$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$			－		－	軸直角	－
$\begin{gathered} \text { ポンプ取付ボルト } \\ \quad(\mathrm{i}=2) \end{gathered}$			－		－	軸	－
原動機取付ボルト $(\mathrm{i}=3)$			－		－	軸	－
$\begin{gathered} \hline \mathrm{Hp}_{\mathrm{p}} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{N} \\ (\mathrm{rpm}) \end{gathered}$		ボルト 軸方向 囲環境 高使用	におけ する評価	段は軸直角方向転倒要目を示す。	対する評価時	示し，下段

1.3 計算数値

\leftharpoondown	1．4．1 ボルトの応力（単位：						
	部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
				算出応力	許容応力	算出応力	許容応力
	基礎ボルト		引張り	－	－	$\sigma \mathrm{b}_{1}=8$	$\mathrm{ft} \mathrm{s} 1=202^{*}$
	（ $\mathrm{i}=1)$		せん断	－	－	$\tau \mathrm{b}_{1}=7$	$\mathrm{f}_{\text {s b } 1}=155$
	ポンプ取付ボルト		引張り	－	－	$\sigma \mathrm{b} 2=14$	$\mathrm{f}_{\mathrm{ts} 2}=202^{*}$
	（ $\mathrm{i}=2)$		せん断	－	－	$\tau \mathrm{b}_{2}=7$	$\mathrm{f}_{\text {s b } 2}=155$
	原動機取付ボルト		引張り	－	－	$\sigma \mathrm{b}_{3}=13$	$\mathrm{f}_{\mathrm{ts} \mathrm{s}}=185^{*}$
	（ $\mathrm{i}=3)$		せん断	－	－	τ b $_{3}=8$	$\mathrm{f}_{\text {s b } 3}=142$

すべて許容応力以下である。
注記 $*: \mathrm{f}_{\mathrm{t}} \mathrm{si}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau \mathrm{bi}, \mathrm{f}_{\mathrm{toi}}\right]$

1．4．2 動的機能の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	1． 11	3.2 （軸直角方向） 1．4（軸方向）
	鉛直方向	0． 73	1.0
原動機	水平方向	1． 11	4.7
	鉛直方向	0． 73	1.0

注記＊：基準地震動S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－5－6－2－2 復水貯蔵タンクの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 8
3．評価部位 9
4．固有周期 9
4．1 固有周期の計算方法 9
4．2 固有周期評価結果 9
5．構造強度評価 10
5.1 構造強度評価方法 10
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5．2．4 風荷重 11
5．2．5 積雪荷重 11
5.3 計算条件 11
5.4 設計用地震力 17
5.5 応力の計算方法 17
5．5．1 胴の計算方法 17
5．5．2 基礎ボルトの計算方法 18
5．5．3 液面振動の計算方法 19
5.6 応力の評価 20
5．6．1 胴の応力評価 20
5．6．2 基礎ボルトの応力評価 22
6．評価結果 22
6． 1 重大事故等対処設備としての評価結果 22

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，復水貯蔵タンクが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

復水貯蔵タンクは，設計基準対象施設においては，Bクラスの施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。以下，重大事故対象設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

復水貯蔵タンクの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
胴下端を基礎ボルト で基礎に据え付ける。	上面に屋根，下面に平板を有するたて置円筒形容器である。	
		（単位：mm）

2．2 評価方針

復水貯蔵タンクの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」で得ら れた応答加速度及び断面力による応力等が許容限界内に収まることを，「5。構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。復水貯蔵タンクの耐震評価フローを図2－1 に示す。

図 2－1 復水貯蔵タンクの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A_{1}	液面の水平方向移動量	mm
A_{b}	基礎ボルトの軸断面積	mm^{2}
C v	鉛直方向設計震度	－
D b i	ベースプレートの内径	mm
D b o	ベースプレートの外径	mm
D c	基礎ボルトのピッチ円直径	mm
D i	胴の内径	mm
d	ボルトの呼び径	mm
$\mathrm{d}_{\mathrm{max}}$	タンク壁面での液面上昇量	mm
E	胴の縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
f_{b}	曲げモーメントに対する許容座屈応力	MPa
f c	軸圧縮荷重に対する許容座屈応力	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f t s	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
H	最高液位（水頭）	mm
H_{h}	胴の高さ	mm
H_{j}	評価部位 j における水頭	mm
H_{m}	最大液面高さ	mm
ℓ_{g}	基礎から容器重心までの距離	mm
M ${ }_{\text {j }}$	評価部位 j に作用する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
mo	容器の運転時質量（積雪含む）	kg
$\mathrm{m}_{\mathrm{e}} \mathrm{j}$	評価部位 j に作用する容器の空質量（積雪含む）	kg
n	基礎ボルトの本数	－
Q ${ }_{j}$	評価部位 j に作用するせん断力	N
R	胴の内半径	mm
S	設計•建設規格 付録材料図表 Part5 表5に定める値	MPa
$\mathrm{S}_{\text {A }}$	加速度応答スペクトル値	$\mathrm{m} / \mathrm{s}^{2}$
S a	胴の許容応力	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa

記号	記号の説明	単位
$S_{y(R T)}$	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
S	基礎ボルトと基礎の縦弾性係数比	－
T	液面の固有周期	S
T_{H}	水平方向固有周期	S
T V	鉛直方向固有周期	S
t j	評価部位 j の胴板厚さ	mm
η	座屈応力に対する安全率	－
θ_{h}	液面中心での水平面となす角度	rad
π	円周率	－
ρ^{\prime}	液体の密度（ $=$ 比重 $\times 10^{-6}$ ）	$\mathrm{kg} / \mathrm{mm}^{3}$
$\sigma 0$	胴の一次一般膜応力の最大値	MPa
$\sigma 0 \mathrm{c}$	胴の組合せ圧縮応力	MPa
$\sigma 0 \mathrm{t}$	胴の組合せ引張応力	MPa
O 2	地震動のみによる胴の一次応力と二次応力の和の変動値の最大値	MPa
$\sigma 2 \phi$	地震動のみによる胴の周方向一次応力と二次応力の和	MPa
$\sigma 2 \mathrm{c}$	地震動のみによる胴の一次応力と二次応力の和の変動値 （圧縮側）	MPa
$\sigma 2 \mathrm{t}$	地震動のみによる胴の一次応力と二次応力の和の変動値 （引張側）	MPa
$\sigma 2 \times \mathrm{c}$	地震動のみによる胴の軸方向一次応力と二次応力の和 （圧縮側）	MPa
$\sigma 2 \times \mathrm{t}$	地震動のみによる胴の軸方向一次応力と二次応力の和 （引張側）	MPa
σ b	基礎ボルトに生じる引張応力	MPa
$\sigma \times 1$,	静水頭により胴に生じる軸方向及び周方向応力	MPa
$\sigma{ }_{\phi} 1$		
$\sigma \times 2$	胴の空質量による軸方向圧縮応力	MPa
$\sigma \times 3$	胴の鉛直方向地震による軸方向応力	MPa
$\sigma \times 4$	水平方向地震により胴に生じる曲げモーメントによる軸方向応力	MPa
$\sigma \mathrm{x}$ c	胴の軸方向応力の和（圧縮側）	MPa
$\sigma \times \mathrm{t}$	胴の軸方向応力の和（引張側）	MPa
$\sigma{ }_{\phi}$	胴の周方向応力の和	MPa

記号	記号の説明	単位
$\sigma_{\phi 2}$	静水頭に鉛直方向地震が加わり胴に生じる周方向応力	MPa
τ_{1}	地震により胴に生じるせん断応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa
ω	液面の固有振動数	$\mathrm{Rad} / \mathrm{s}$
$\phi_{1}(\mathrm{x})$	圧縮荷重に対する許容座屈応力の関数	
$\phi_{2}(\mathrm{x})$	曲げモーメントに対する許容座屈応力の関数	MPa

注1：$H_{j}, ~ M_{j}, ~ m_{\mathrm{j}} \mathrm{j}, ~ \mathrm{Q}_{\mathrm{j}}$ 及び t_{j} の添字 j は，評価部位毎の値を示す。

2.5 計算精度と数値の丸め方

計算精度は有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－1 に示すとおりとする。

表 2－1 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
比重	－	小数点以下第 3 位	四捨五入	小数点以下第 2 位
質量	kg	－	－	整数位
長 下記以外の長さ	mm	－	－	整数位＊${ }^{1}$
さ 胴板の厚さ	mm	－	－	小数点以下第 1 位
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊ 2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位

復水貯蔵タンクの耐震評価は，「5．1構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる胴及び基礎ボルトについて評価を実施する。胴は上部になるに従い，段階的に板厚が減少するため，算出応力の許容応力に対する裕度が最小となる板厚を代表して評価する。

4．固有周期
4.1 固有周期の計算方法

水平方向については，「2．2 評価方針」に基づき，添付書類「VI－2－2－5 復水貯蔵夕 ンク基礎の地震応答計算書」の時刻歴応答解析によって得られた断面力を用いて応力評価を実施することから固有周期の算出は不要である。

鉛直方向については，添付書類「VI－2－1－13－3 平底たて置円筒形容器の耐震性につ いての計算書作成の基本方針」の「4．1 固有周期の計算方法」に基づき評価する。

4．2 固有周期評価結果
固有周期計算の結果，鉛直方向の固有周期は 0.05 秒以下であり，剛構造であること を確認した。

5．構造強度評価

5.1 構造強度評価方法

復水貯蔵タンクの構造強度評価は以下の条件で計算する。概要図を図 5－1 に示す。
（1）地震力は容器に対して水平方向及び鉛直方向から作用するものとする。
（2）容器は胴下端のベースプレートを円周上等ピッチの多数の基礎ボルトで基礎 に固定されており，固定端とする。
（3）胴をはりと考え，変形モードは曲げ及びせん断変形を考慮する。
（4）胴板は上部になるに従い，段階的に板厚が減少するため，板厚毎に設計する。
（5）耐震計算に用いる寸法は，公称値を使用する。

図 5－1 概要図

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
復水貯蔵タンクの荷重の組合せ及び許容応力状態のうち，重大事故等対処設備 の評価に用いるものを表5－1に示す。復水貯蔵タンクの構造や形状から，風荷重及び積雪荷重の影響が無視できないことから，風荷重及び積雪荷重を組合せて評価を行う。

5．2．2 許容応力

復水貯蔵タンクの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 5－2及び表 5－3 のとおりとする。

5．2．3 使用材料の許容応力評価条件
復水貯蔵タンクの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－4に示す。

5．2．4 風荷重
風荷重は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，風速 $30 \mathrm{~m} / \mathrm{s}$ を考慮して評価する。

5．2．5 積雪荷重

積雪荷重は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき， 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮して評価する。

5．3 計算条件
応力計算に用いる計算条件は，本計算書の【復水貯蔵タンクの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {1 }}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	非常用炉心冷却設備その他原子 炉注水設備高圧炉心スプレ イ系	復水貯蔵タンク	常設／防止 （DB 拡張）	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV ASの許容限界 を用いる。）
原子炉冷却系統施設	非常用炉心冷却設備その他原子炬注水設備高圧代替注水系	復水貯蔵タンク	常設耐震／防止 常設／緩和	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	IV ${ }_{\text {A }} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\text { (} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \text { としてIV }$ A S の許容限界 を用いる。）
原子炉冷却系統施設	非常用炉心冷却設備その他原子 炬注水設備原子炉隔離時冷却系	復水貯蔵タンク	常設／防止 （DB 拡張）	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV ASの許容限界 を用いる。）
原子炉冷却系統施設	非常用炉心冷却設備その他原子炉注水設備低圧代替注水系	復水貯蔵タンク	常設耐震／防止 常設／緩和	重大事故等 クラス 2 容器＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV ASの許容限界 を用いる。）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉格納施設	圧力低減設備 その他の安全設備の原子炉格納容器安全設備原子炉格納容器下部注水系	復水貯蔵タンク	常設／緩和	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV } \\ \mathrm{A} \text { S の許容限界 } \\ \text { を用いる。) } \end{gathered}$
	圧力低減設備 その他の安全設備の原子炉格納容器安全設備原子炉格納容器代替スプレイ冷却系	復水貯蔵タンク	常設耐震／防止常設／緩和	重大事故等 クラス 2 容器＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
原子炉格納施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV ASの許容限界 を用いる。）
原子炉格納施設	圧力低減設備 その他の安全設備の原子炉格納容器安全設備高圧代替注水系	復水貯蔵タンク	常設／緩和	重大事故等 クラス 2 容器＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV } \\ \mathrm{A}_{\mathrm{A}} \mathrm{~S} \text { の許容限界 } \\ \text { を用いる。) } \\ \hline \end{gathered}$
原子炉格納施設	圧力低減設備 その他の安全設備の原子炉格納容器安全設備低圧代替注水系	復水貯蔵タンク	常設／緩和	重大事故等$\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ としてIV ASの許容限界 を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備及び「常設／防止（DB 拡張）」 は常設重大事故防止設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 容器の支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等クラス 2 容器）

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 次応力 $\begin{array}{c}\text {－次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{array}$
$\mathrm{IV}_{A} \mathrm{~S}$			$\text { * } 3$
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$0.6 \cdot \mathrm{~S}_{\mathrm{u}}$	左欄の 1.5 倍の値	S s 地震動のみによる疲労解析を行い，疲労累積係数が 1．0以下であること。ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。

注記 $~ 1 ~: ~$ 座屈による評価は，クラス MC容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊3：2•S yを超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替え る。）の簡易弾塑性解析を用いる。

表 5－3 許容応力（重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界 $* 1, ~ * 2$ （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
胴板	SUS304	最高使用温度	66	188	479	－
基礎ボルト	$\begin{gathered} \text { SNB7 } \\ (\text { 径 } \leqq 63 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	725	860	－

5.4 設計用地震力

評価に用いる設計用地震力を表 5－5 に示す。
「基準地震動 S s 」による地震力のうち水平方向は，添付書類「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」の時刻歴応答解析にて得られた断面力（せん断力及 び曲げモーメント）を用いて評価を行う。

鉛直方向は，「VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書」で得られた応答加速度を用いて評価を行う。

表 5－5 設計用地震力（重大事故等対処設備）

評価部位	$\begin{aligned} & \text { 0. P. } \\ & (\mathrm{mm}) \end{aligned}$	基準地震動 S s		
		水平方向		鉛直方向
		せん断力 （ N ）	$\begin{gathered} \text { 曲げモーメント } \\ (\mathrm{N} \cdot \mathrm{~mm}) \end{gathered}$	設計震度 C V
胴板	19362	2． 705×10^{6}	5． 410×10^{9}	0.91
	17402	3.506×10^{6}	1． 136×10^{10}	
	15442	5.663×10^{6}	2． 089×10^{10}	
	13482	2． 373×10^{7}	6． 703×10^{10}	
	11552	3.847×10^{7}	1． 426×10^{11}	
基礎ボルト	9562	4． 811×10^{7}	2． 383×10^{11}	

5.5 応力の計算方法

応力計算における水平方向と鉛直方向の組合せについて，絶対値和を用いる。

5．5．1 胴の計算方法
（1）静水頭及び鉛直方向地震による応力

$$
\begin{align*}
& \sigma_{\phi 1}=\frac{\rho^{\prime} \cdot \mathrm{g}^{\prime} \cdot \mathrm{H}_{\mathrm{j}} \cdot \mathrm{D}_{\mathrm{i}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \\
& \sigma_{\phi 2}=\frac{\rho^{\prime} \cdot \mathrm{g}^{\prime} \cdot \mathrm{H}_{\mathrm{j}} \cdot \mathrm{D}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{v}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \tag{5.5.1.2}\\
& \sigma_{\mathrm{X} 1}=0 \quad \ldots \ldots \ldots \ldots \tag{5.5.1.3}
\end{align*}
$$

（2）運転時質量及び鉛直方向地震による応力
胴自身の質量による圧縮応力と鉛直方向地震による軸方向応力が生じる。

$$
\begin{align*}
& \sigma_{\mathrm{x}_{2}}=\frac{\mathrm{m}_{\mathrm{ej}} \cdot \mathrm{~g}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{j}}\right) \cdot \mathrm{t}_{\mathrm{j}}} \tag{5.5.1.4}\\
& { }^{\sigma} \mathrm{x}_{3}=\frac{\mathrm{m}_{\mathrm{ej}} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{v}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{j}}\right) \cdot \mathrm{t}_{\mathrm{j}}} \tag{5.5.1.5}
\end{align*}
$$

（3）水平方向地震による応力
水平方向の地震力により曲げモーメントによる軸方向応力と地震力によ るせん断応力が生じる。

$$
\begin{align*}
& \sigma_{\mathrm{X}_{4}}=\frac{4 \cdot \mathrm{M}_{\mathrm{j}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{j}}\right)^{2} \cdot \mathrm{t}_{\mathrm{j}}} \tag{5.5.1.6}\\
& \tau=\frac{2 \cdot \mathrm{Q}_{\mathrm{j}}}{\pi \cdot\left(\mathrm{D}_{\mathrm{i}}+\mathrm{t}_{\mathrm{j}}\right) \cdot \mathrm{t}_{\mathrm{j}}} \tag{5.5.1.7}
\end{align*}
$$

（4）組合せ応力
（1）～（3）によって求めた胴の応力は添付書類「VI－2－1－13－3 平底た て置円筒形容器の耐震性についての計算書作成の基本方針」の「5．3．1．1胴の計算方法」に基づき評価する。

5．5．2 基礎ボルトの計算方法
添付書類「VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成の基本方針」の「5．3．1．2 基礎ボルトの計算方法」に基づき評価する。

5．5．3 液面振動の計算方法

仮定：液面の振動は一次自由振動のみとする。
ここで計算手法は，U．S．Atomic Energy Commission TID－7024＂Nuclear Reactors and Earthquakes＂による。

$$
\text { 胴の内半径 : } \quad \mathrm{R}=\frac{\mathrm{D}_{\mathrm{i}}}{2}
$$

液面の固有振動数 ω は，

$$
\omega^{2}=\frac{1.84 \cdot \mathrm{~g} \cdot 10^{3}}{\mathrm{R}} \cdot \tanh \left(1.84 \cdot \frac{\mathrm{H}}{\mathrm{R}}\right)
$$

固有周期 T は，

$$
\mathrm{T}=\frac{2 \cdot \pi}{\omega}
$$

また，水の減衰定数は 0.5% とする。
固有周期 T に対する加速度応答スペクトル値 S_{A} から液面の水平方向の移動量 A_{1} は以下となる。

$$
\mathrm{A}_{1}=\frac{\mathrm{S}_{\mathrm{A}} \cdot 10^{3}}{\omega^{2}}
$$

この時，液面中心での水平面となす角度 θ_{h} は以下となり，

$$
\theta_{\mathrm{h}}=1.534 \cdot \frac{\mathrm{~A}_{1}}{\mathrm{R}} \cdot \tanh \left(1.84 \cdot \frac{\mathrm{H}}{\mathrm{R}}\right)
$$

タンク壁面での液面上昇量 $\mathrm{d}_{\mathrm{m}} \mathrm{a}$ x は，以下にて計算される。

$$
\mathrm{d}_{\mathrm{max}}=\frac{0.408 \cdot \mathrm{R} \cdot \operatorname{coth}\left(1.84 \cdot \frac{\mathrm{H}}{\mathrm{R}}\right)}{\frac{\mathrm{g} \cdot 10^{3}}{\omega^{2} \cdot \theta_{\mathrm{h}} \cdot \mathrm{R}}-1}
$$

最大液面高さ H_{m} は，

$$
H_{m}=H+d_{m a x}
$$

5.6 応力の評価

5．6．1 胴の応力評価

（1）5．5．1 項で求めた組合せ応力が胴の最高使用温度における許容応力 S a 以下 であること。ただし， S_{a} は下表による。

応力の種類	許容応力 S_{a}
	基準地震動 $\mathrm{S}_{\mathrm{s}} \mathrm{s}$ による荷重との組合せ
一次一般膜応力	設計引張強さ S_{u} の 0.6 倍
一次応力と	地震動のみによる一次応力と二次応力の和の変動値が設
二次応力の和	計降伏点 S_{y} の 2 倍以下であれば，疲労解析は不要とする。

一次応力の評価は算出応力が一次一般膜応力と同じ値であるので省略する。
（2）圧縮膜応力（圧縮応力と曲げによる圧縮側応力の組合せ）は次式を満足する

> こと。
（座屈の評価）

$$
\begin{equation*}
\frac{\eta \cdot\left(\sigma_{\mathrm{x}_{2}}+\sigma_{\mathrm{x}_{3}}\right)}{\mathrm{f}_{\mathrm{c}}}+\frac{\eta \cdot \sigma_{\mathrm{x}_{4}}}{\mathrm{f}_{\mathrm{b}}} \leqq 1 \tag{5.6.1.1}
\end{equation*}
$$

ここで，f c は次による。

$$
\begin{gather*}
\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \leqq \frac{1200 \cdot \mathrm{~g}^{\mathrm{F}}}{\mathrm{~F}} \text { のとき } \\
\mathrm{f}_{\mathrm{c}}=\mathrm{F} \quad \ldots \ldots \ldots . \tag{5.6.1.2}
\end{gather*}
$$

$\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}<\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}}$ のとき

$$
\mathrm{f}_{\mathrm{c}}=\mathrm{F} \cdot\left[1-\frac{1}{6800 \cdot \mathrm{~g}} \cdot\left\{\mathrm{~F}-\phi_{1}\left(\frac{8000 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right\} \cdot\left(\frac{\mathrm{D}_{\mathrm{i}}+2^{\cdot \mathrm{t}_{\mathrm{j}}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right]
$$

$$
\frac{8000 \cdot \mathrm{~g}^{2}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \leqq 800 \text { のとき }
$$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{c}}=\phi_{1}\left(\frac{\mathrm{D}_{\mathrm{i}}+2^{\cdot \mathrm{t}_{\mathrm{j}}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}\right) \tag{5.6.1.4}
\end{equation*}
$$

ただし，ϕ_{1}（ x$)$ は次の関数とする。

$$
\begin{equation*}
\phi_{1}(\mathrm{x})=0.6 \cdot \frac{\mathrm{E}}{\mathrm{x}} \cdot\left[1-0.901 \cdot\left\{1-\exp \left(-\frac{1}{16} \cdot \sqrt{\mathrm{x}}\right)\right\}\right] \tag{5.6.1.5}
\end{equation*}
$$

また，f b は次による。

$$
\begin{gather*}
\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \leqq \frac{1200 \cdot \mathrm{~g}^{\mathrm{F}}}{\mathrm{~F}} \text { のとき } \\
\mathrm{f}_{\mathrm{b}}=\mathrm{F}_{\mathrm{F}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \tag{5.6.1.6}
\end{gather*}
$$

$$
\begin{aligned}
& \frac{1200 \cdot \mathrm{~g}^{2}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}<\frac{9600 \cdot \mathrm{~g}^{\mathrm{F}}}{\mathrm{~F}} \text { のとき } \\
& \mathrm{f}_{\mathrm{b}}=\mathrm{F} \cdot\left[1-\frac{1}{8400 \cdot \mathrm{~g}^{2}} \cdot\left\{\mathrm{~F}-\phi_{2}\left(\frac{9600 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right\} \cdot\left(\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right)\right]
\end{aligned}
$$

$$
\begin{gather*}
\frac{9600 \cdot \mathrm{~g}_{\mathrm{i}}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \leqq 800 \text { のとき } \\
\mathrm{f}_{\mathrm{b}}=\phi_{2}\left(\frac{\mathrm{D}_{\mathrm{i}}+2^{2} \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}\right) \tag{5.6.1.8}
\end{gather*}
$$

ただし，$\phi_{2}(x)$ は次の関数とする。

$$
\begin{equation*}
\phi_{2}(\mathrm{x})=0.6 \cdot \frac{\mathrm{E}}{\mathrm{x}} \cdot\left[1-0.731 \cdot\left\{1-\exp \left(-\frac{1}{16} \cdot \sqrt{\mathrm{x}}\right)\right\}\right] \tag{5.6.1.9}
\end{equation*}
$$

η は安全率で次による。

$$
\begin{align*}
& \frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \leqq \frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}} \text { のとき } \\
& \eta=1 \tag{5.6.1.10}\\
& \frac{1200 \cdot \mathrm{~g}^{2}}{\mathrm{~F}}<\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}<\frac{8000 \cdot \mathrm{~g}^{2}}{\mathrm{~F}} \text { のとき } \\
& \eta=1+\frac{0.5 \cdot \mathrm{~F}}{6800 \cdot \mathrm{~g}} \cdot\left(\frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}}-\frac{1200 \cdot \mathrm{~g}}{\mathrm{~F}}\right) \\
& \frac{8000 \cdot \mathrm{~g}^{2}}{\mathrm{~F}} \leqq \frac{\mathrm{D}_{\mathrm{i}}+2 \cdot \mathrm{t}_{\mathrm{j}}}{2 \cdot \mathrm{t}_{\mathrm{j}}} \text { のとき } \\
& \eta=1.5 \tag{5.6.1.12}
\end{align*}
$$

5．6．2 基礎ボルトの応力評価
添付書類「VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成 の基本方針」の「5．4．2 基礎ボルトの応力評価」に基づき評価する。

6．評価結果

6． 1 重大事故等対処設備としての評価結果

復水貯蔵タンクの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【復水貯蔵タンクの耐震性についての計算結果】

1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	比重
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鉛直方向設計震度				
復水貯蔵タンク	常設／防止（DB 拡張）常設而震／防止常設／緩和	$\begin{aligned} & \text { 屋外 } \\ & \text { 0.P. } 9.50 * 1 \end{aligned}$	－＊2	0.018	－＊2	$\mathrm{C}_{\mathrm{V}}=0.91$	静水頭	66	40	1.00

注記 $* 1$ ：基準床レベルを示す。
＊ 2 ：時刻歴応答解析による断面力を用いて評価する

各評価部位の断面力 （水平方向）	$j=1$	$j=2$	$j=3$	$j=4$	$j=5$	$j=6$
$Q_{j}(N)$	2.705×10^{6}	3.506×10^{6}	5.663×10^{6}	2.373×10^{7}	3.847×10^{7}	4.811×10^{7}
$M_{j}(N \cdot \mathrm{~mm})$	5.410×10^{9}	1.136×10^{10}	2.089×10^{10}	6.703×10^{10}	1.426×10^{11}	2.383×10^{11}

1.2 機器要目

$\begin{aligned} & \hline \mathrm{m}_{0} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \ell_{\mathrm{g}} \\ (\mathrm{~mm}) \end{gathered}$	s	n	$\begin{aligned} & \mathrm{D}_{\mathrm{c}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{b} 0} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{bi}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$
3426800	20000	192000＊1	6234.5	15	90	20320	20640	20000	$\begin{gathered} 60 \\ \text { (M60) } \end{gathered}$	2827	10100

	$j=1$	$j=2$	$j=3$	$j=4$	$j=5$	$j=6$
$\mathrm{~m}_{\mathrm{e} j}(\mathrm{~kg})$	71700	81600	94700	110900	130000	152200
$\mathrm{t}_{\mathrm{j}}(\mathrm{mm})$	10.0	10.0	13.0	16.0	19.0	22.0
$\mathrm{H}_{\mathrm{j}}(\mathrm{mm})$	300	2260	4220	6180	8140	10100

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}}(\text { 胴板 }) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \begin{array}{c} \text { (胴板) } \\ (\mathrm{MPa}) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { S (胴板) } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { F (基詵ボルト) } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{F}^{*}\left(\begin{array}{c} \text { (基詵ボルト) } \\ \text { (MPa) } \end{array}\right. \\ \hline \end{gathered}$
$188 * 1$	$479 * 1$	－	$725^{* 2}$	$860 * 2$	－	602

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出

O 2 （3） $\mathrm{VI}-2-5-6-2-2 \quad \mathrm{R} 0$
2.3 計算数値

2．3．1 胴に生じる応力

（1）一次一般膜応力		（単位： MPa ）		
		基準地震動S s		
		$\mathrm{t}_{6}=22.0 \mathrm{~mm}, \quad \mathrm{j}=6$		
		周方向応力	軸方向応力	せん断応力
静水頭による応力		$\sigma_{\phi 1}=45$	－	－
鉛直方向地震による引張応力		$\sigma_{\phi 2}=41$	－	－
空質量による圧縮応力		－	$\sigma_{\times 2}=1$	－
鉛直方向地震による軸方向応力		－	$\sigma_{\times 3}=1$	－
水平方向地震による圧縮応力		－	$\sigma_{\times 4}=34$	$\tau=70$
応力の和	引張側	$\sigma_{\phi}=86$	$\sigma_{\mathrm{xt}}=34$	－
	圧縮側	$\sigma_{\phi}=-86$	$\sigma_{\mathrm{xc}}=37$	－
組合せ応力	引張り	$\sigma_{0 t}=135$		
	圧縮	$\sigma_{0 \mathrm{c}}=68$		

（3）圧縮と曲げの組合せ（座屈の評価）

	$\mathrm{t}_{6}=22.0 \mathrm{~mm}, \mathrm{j}=6$
$\frac{\eta \cdot\left(\sigma_{\mathrm{x} 2}+\sigma_{\mathrm{x} 3}\right)}{\mathrm{f}_{\mathrm{c}}}+\frac{\eta \cdot{ }^{\sigma} \mathrm{x} 4}{\mathrm{f}_{\mathrm{b}}}$	0.50

2．3．2 基礎ボルトに生じる応力 \quad（単位 ：MPa）

	基準地震動 S s
引張応力	$\sigma_{\mathrm{b}}=131$
せん断応力	$\tau_{\mathrm{b}}=190$

（2）地震動のみによって生じる一次応力と二次応力の和の変動値
（単位：MPa）

		基準地震動S s		
		$\mathrm{t}_{6}=22.0 \mathrm{~mm}, \quad \mathrm{j}=6$		
		周方向応力	軸方向応力	せん断応力
鉛直方向地震による応力		$\sigma_{\phi 2}=41$	$\sigma_{\times 3}=1$	－
水平方向地震による圧縮応力		－	$\sigma_{\times 4}=34$	$\tau=70$
応力の和	引張側	$\sigma_{2 \phi}=41$	$\sigma_{2 \times t}=35$	－
	圧縮側	$\sigma_{2 \phi}=-41$	$\sigma_{2 \times \mathrm{c}}=35$	－
組合せ応力 （変動値）	引張り	$\sigma_{2 t}=216$		
	圧縮	$\sigma_{2 \mathrm{c}}=153$		

O 2 （3）VI－2－5－6－2－2 R O E

2．3．3 液面振動の検討

液面の固有振動数	$\omega(\mathrm{rad} / \mathrm{s})$	1.311
液面の固有周期	$\mathrm{T}(\mathrm{s})$	4.793
スロッシング質量の最大加速度	$\mathrm{S}_{\mathrm{A}}\left(\mathrm{m} / \mathrm{s}^{2}\right)$	1.838
液体の水平方向移動量	$\mathrm{A}_{1}(\mathrm{~mm})$	1069
液面中心での水平面となす角	$\theta_{\mathrm{h}}(\mathrm{rad})$	0.156
タンク壁面での液面上昇量	$\mathrm{d}_{\mathrm{max}}(\mathrm{mm})$	1615
最大液面高さ	$\mathrm{H}_{\mathrm{m}}(\mathrm{mm})$	11715
胴の高さ	$\mathrm{H}_{\mathrm{h}}(\mathrm{mm})$	11800

最大液面高さ H_{m} が，タンク胴高さ H_{h} 以下である。
したがって，液面が振動しても屋根には影響を及ぼさない。

2． 4 結論

（単位：s）	
2．4．1 固有周期	固有周期
方 向	$\mathrm{T}_{\mathrm{H}}=\sigma^{*}$
水平方向	$\mathrm{T}_{\mathrm{V}}=0.018$
鉛直方向	

注記 $*$ ：時刻歴応答解析による断面力を用いて評価する。

注記＊： $\mathrm{fts}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{fto}_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, \mathrm{fto}\right]$
すべて許容応力以下である。

VI－2－5－7 原子炬補機冷却設備の耐震性についての計算書

VI－2－5－7－1 原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算書
VI－2－5－7－2 高圧炉心スプレイ補機冷却水系及び高圧炉心スプレイ補機冷却海水系の耐震性 についての計算書

VI－2－5－7－3 原子炉補機代替冷却水系の耐震性についての計算書

VI－2－5－7－1 原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性 についての計算書

VI－2－5－7－1－1 原子炉補機冷却水系熱交換器の耐震性についての計算書 VI－2－5－7－1－2 原子炉補機冷却水ポンプの耐震性についての計算書

VI－2－5－7－1－4 原子炉補機冷却水サージタンクの耐震性についての計算書
VI－2－5－7－1－5 原子炉補機冷却海水系ストレーナの耐震性についての計算書

$$
\begin{array}{cl}
\text { VI-2-5-7-1-5 } & \text { 原子炉補機冷却海水系ストレーナの } \\
& \text { 耐震性についての計算書 }
\end{array}
$$

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4.2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件 4
4．3 計算条件 4
5．評価結果 9
5.1 設計基準対象施設としての評価結果 9
5.2 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉補機冷却海水系ストレーナが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

原子炬補機冷却海水系ストレーナは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，原子炉補機冷却海水系ストレーナは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横置一胴円筒形容器であるため，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

原子炉補機冷却海水系ストレーナの構造計画を表 2－1 に示す。

表 2－1 構造計画

3．固有周期
3.1 固有周期の算出

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は，本計算書の【原子炉補機冷却海水系ストレーナの耐震性についての計算結果】の機器要目に示す。

計算の結果，固有周期は 0.05 秒以下であり，剛であることを確認した。
固有周期の計算結果を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平	0.010
鉛直	0.001

4．構造強度評価

4.1 構造強度評価方法

原子炉補機冷却海水系ストレーナの構造強度評価は，添付書類「VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

原子炉補機冷却海水系ストレーナの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1 に，重大事故等対処設備の評価に用いるものを表4－2 に示す。

4．2．2 許容応力
原子炉補機冷却海水系ストレーナの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 4－3 及び表 4－4 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉補機冷却海水系ストレーナの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－5に，重大事故等対処設備の評価に用いるものを表4－6に示 す。

4．3 計算条件
応力計算に用いる計算条件は，本計算書の【原子炉補機冷却海水系ストレーナの耐震性につ いての計算結果】の設計条件及び機器要目に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉補機	原子炉補機冷却海水系ストレーナ	S	クラス 3 容器＊	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	$\mathrm{III}_{4} \mathrm{~S}$
系統施設	冷却設備				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊：クラス 3 容器の支持構造物を含む。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却系統施設	原子炉補機冷却設備	原子炉補機泠却海水系 ストレーナ	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				重大事故等 $\text { クラス } 2 \text { 容器*2 }$	$\mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{Ss}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV } \\ { }_{A} \mathrm{~S} \text { の許容限界を } \\ \text { 用いる。) } \end{gathered}$

注記 $* 1$ ：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張），「常設／緩和（DB 拡張）」は常設重大事故緩和設備（設計基準拡張）を示す。
＊2：重大事故等クラス 2 容器の支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（クラス 2，3容器及び重大事故等クラス 2 容器）

許容応力状態	許容限界＊1，＊2		
	一次一般膜応力	- 次膜応力 + - 次曲げ応力	一次 + 二次応力 $\begin{gathered}\text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 }\end{gathered}$
$\mathrm{III}_{\text {A }} \mathrm{S}$	S_{y} と0．6• S u の小さい方。 ただし，AS S 及びHNAに ついては上記値と 1.2 •Sの らち大きい方とする。	左欄の 1.5 倍の値	S d 又はS s 地震動のみによる疲労解析を行い，疲労累積係数 が 1.0 以下であること。ただし，地震動のみによる一次 + 二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$0.6 \cdot \mathrm{~S}_{u}$	左欄の 1.5 倍の値	
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$			S s 地震動のみによる疲労解析を行い，疲労累積係数が 1.0 以下であること。ただし，地震動のみによる一次＋二次応力の変動値が $2 \cdot \mathrm{~S}_{\mathrm{y}}$ 以下であれば，疲労解析は不要。

注記 $* 1$ ：座屈による評価は，クラス MC 容器の座屈に対する評価式による。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
＊ $3: 2 \cdot \mathrm{~S}_{\mathrm{y}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。 S_{m} は $2 / 3 \cdot \mathrm{~S}_{\mathrm{y}}$ と読み替え
る。）の簡易弾塑性解析を用いる。

表 4－4 許容応力（クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	引張り	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}^{\text {s }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
胴板		最高使用温度	50	－			－
脚		周囲環境温度	50	－			－
基礎ボルト		周囲環境温度	50	－			－

表 4－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
胴板		最高使用温度	50	－			－
脚		周囲環境温度	50	－			－
基礎ボルト		周囲環境温度	50	－			－

5．評価結果
5.1 設計基準対象施設としての評価結果

原子炉補機冷却海水系ストレーナの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度 は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又 は静的震度による発生値の算出を省略した。

5.2 重大事故等対処設備としての評価結果

原子炉補機冷却海水系ストレーナの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【原子炉補機泠却海水系ストレーナの而震性についての計算結果】
1．設計基準対象施設

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 (MPa)	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
原子炉補機冷却海水系ストレーナ	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } \quad-8.10^{* 1} \end{gathered}$	0． 010	0． 001	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$	0.78	50	50

注記 $* 1$ ：基淮床レベルを示す。
$* 2: ~ \Pi_{A} S$ については，基準地震動 S s で評価する。

っ

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{4}\right)$	I_{sy} $\left(\mathrm{mm}^{4}\right)$	Z_{sx} $\left(\mathrm{mm}^{3}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)
242	70	1.174×10^{9}	2.630×10^{7}	2.981×10^{6}	2.330×10^{5}	2.581	0.991

A_{s} $\left(\mathrm{mm}^{2}\right)$	E_{s} $(\mathbb{1 P a})$	G_{s} $(\mathbb{P P a})$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{mr}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s}} 3$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 4}$ $\left(\mathrm{~mm}^{2}\right)$
2.253×10^{4}	201000	77300	5.881×10^{3}	1.411×10^{4}	4.129×10^{3}	1.120×10^{4}

$\mathrm{K}_{11}{ }^{* 1}$	$\mathrm{~K}_{12}{ }^{* 1}$	$\mathrm{~K}_{21}{ }^{* 1}$	$\mathrm{~K}_{22^{* 1}}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\bullet 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	-	-	1.58	1.17	1.39	1.05	0.79	0.43	1.67	1.19
1.76	1.20	-	-	1.58							

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	2	2	1	160	1000			60	100

■

$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (利板) } \\ (\mathbb{1 P a}) \end{gathered}$		$\begin{gathered} \mathrm{S} \\ \hline(\text { 月月同板 }) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{y}} \text { (脚) } \\ (\text { (NPa) } \end{gathered}$	$\begin{gathered} \hline \mathrm{S}_{\mathrm{u}} \text { (䀷) } \\ (\mathrm{NPa}) \end{gathered}$	$\begin{aligned} & \hline F \text { (INAN) } \\ & (\text { (NPa) } \end{aligned}$	$\begin{gathered} \mathrm{F}^{*} \text { (I脚) } \\ (\mathbb{N P a}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \text { (基聕术ルト) } \\ (\mathbb{N P a}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ \substack{\text { (基䞨术ルト) } \\ (\mathbb{N P a})} \end{gathered}$	$\begin{gathered} \hline \text { F (基礎ボルト) } \\ \text { (MPa) } \end{gathered}$	
		－								

注記 $* 1$ ：表中で上段は一次応力，下段は一次応力の係数とする。
＊ 2 ：最高使用温度て算出
＊3：周囲澴樈㳑度で算出
1.3 計算数値

1．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位： MPa ）

地震の種類地地震の方向応力の方向	弾性設計用地震動S d 又は静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$
内圧による応力 （鉛直方向地震時）	$\sigma_{\phi 2}=0$	－						
運転時質量による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 2}=1$						
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$	－	$\sigma_{x 6}=1$
長手方向地震により胴軸断面 全面に生じる引張応力	－	$\sigma_{\times 413}=1$	－	－	－	$\sigma_{\times 413}=1$	－	－
組合せ応力	$\sigma_{0 \ell}=19$		$\sigma_{0 \mathrm{c}}=19$		$\sigma_{0} e=19$		$\sigma_{0 c}=19$	

$\stackrel{\rightharpoonup}{*}$

－	地震の種類		弾性設計用地	又は静的震度					
	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内王に		$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$						
内圧に （鉛直）		$\sigma_{\phi 2}=0$	－						
$\begin{gathered} \text { 運転時質量に, } \\ \text { モーメント } \end{gathered}$		－	$\sigma_{\times 2}=1$						
鉛直方向地震に モーメントに	$\begin{aligned} & \text { 向曲げ } \\ & \text { 灾力 } \end{aligned}$	－	$\sigma_{\times 6}=1$						
運転時質量 により		$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$						
鉛直方向地 により		$\sigma_{\phi 71}=3$	$\sigma_{\times 71}=2$						
水平方向地震 による応力	引張り	$\begin{gathered} \sigma_{\phi 411}=10 \\ \sigma_{\phi 412}=8 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 411}=2 \\ & \sigma_{\times 412}=6 \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=6$	$\sigma \times 51=9$	$\begin{gathered} \sigma_{\phi 411}=10 \\ \sigma_{\phi 412}=8 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 411}=2 \\ & \sigma_{\times 412}=6 \end{aligned}$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
						$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$		
	せん断	$\tau_{l}=4$		$\tau_{c}=1$		$\tau_{\ell}=4$		$\tau_{\mathrm{c}}=1$	
組合せ応力		$\sigma_{1 \ell}=43$		$\sigma_{1 \mathrm{c}}=30$		$\sigma_{1 \ell}=43$		$\sigma_{1 \mathrm{c}}=30$	

（3）地震動のみによる一次応力と二次応力の和の変動値

	地震の種類		弾性設計用地	又は静的震度			基準		
\bigcirc	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧 （鉛直）		$\sigma_{\phi 2}=0$	－						
鋁直方向地雾曲げモーメン	$\begin{aligned} & \text { 方向 } \\ & \text { る応力 } \end{aligned}$	－	$\sigma_{x 6}=1$						
鉛直方向地 により		$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\times 71}=2 \\ \sigma \times 72=5 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 71}=2 \\ & \sigma_{\times 72}=5 \\ & \hline \end{aligned}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\times 71}=2 \\ \sigma \times 72=5 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma \times 71=2 \\ \sigma \times 72=5 \end{gathered}$
水平方向地震 による応力	引張り	$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$	$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
		$\begin{gathered} \sigma_{\phi 421}=8 \\ \sigma_{\phi 422}=18 \end{gathered}$	$\begin{aligned} & \sigma_{\times 421}=25 \\ & \sigma_{\times 422}=15 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=22$	$\sigma_{\times 52}=14$	$\begin{gathered} \sigma_{\phi 421}=8 \\ \sigma_{\phi 422}=18 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 421}=25 \\ & \sigma_{\times 422}=15 \end{aligned}$	$\sigma_{\phi 52}=22$	$\sigma_{\times 52}=14$
		$\sigma_{\phi 42}=26$	$\sigma_{\times 42}=39$			$\sigma_{\phi 42}=26$	$\sigma_{\times 42}=39$		
	せん断			$\tau_{\mathrm{c}}=1$		$\tau_{l}=4$		$\tau_{c}=1$	
組合せ応力		$\sigma_{2 \ell}=113$		$\sigma_{2 \mathrm{c}}=71$		$\sigma_{2 \ell}=113$		$\sigma_{2 \mathrm{c}}=71$	

1．3．2 脚に生じる応力
ϖ

$$
\mathrm{O} 2 \text { (3) VI-2-5-7-1-5 R } 0
$$

1.4 結論

1．4．1 固有周期		（単位：s）
方向	固有周期	
長手方向	$\mathrm{T}_{1}=0.010$	
横方向	$\mathrm{T}_{2}=0.004$	
鉛直方向	$\mathrm{T}_{3}=0.001$	

1．4．2 応力					（単位： MPa ）	
部 村		応	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
部 材	材 料	心	算出応力	許容応力	算出応力	許容応力
胴板		一次一般膜	$\sigma_{0}=19$	$\mathrm{S}_{\mathrm{a}}=231$	$\sigma_{0}=19$	$\mathrm{S}_{\mathrm{a}}=236$
		一次	$\sigma_{1}=43$	$\mathrm{S}_{\mathrm{a}}=346$	$\sigma_{1}=43$	$\mathrm{S}_{\mathrm{a}}=355$
		一次＋二次	$\sigma_{2}=113$	$\mathrm{S}_{\mathrm{a}}=462$	$\sigma_{2}=113$	$\mathrm{S}_{\mathrm{a}}=462$
脚		組合せ	$\sigma_{\text {s }}=24$	$\mathrm{f}_{\mathrm{t}}=231$	$\sigma_{\text {s }}=24$	$\mathrm{f}_{\mathrm{t}}=276$
基礎ボルト		引張り	$\sigma_{\mathrm{b}}=9$	$\mathrm{f}_{\mathrm{ts}}=173^{*}$	$\sigma_{\mathrm{b}}=9$	$\mathrm{f}_{\mathrm{ts}}=207^{*}$
		せん断	$\tau_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{sb}}=133$	$\tau_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{sb}}=159$
である。注記 $*: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$						

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾生設計用地震動S d又は静的震度		基淮地震動S s		最高使用圧力 （ MPa ）	最高使用温度 （ ${ }^{\text {C }}$ ）	周囲環境温度 （ ${ }^{\text {C）}}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
原子炬補機洽却海水系ストレーナ	常設／防止（DB 抆掁）常設／緩和（DB 拡掁）	$\begin{gathered} \text { 原子炬建屋 } \\ \text { O. P. }-8.10^{*} \\ \hline \end{gathered}$	0.010	0． 001	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$	0.78	50	50

注記＊：基漼床レベルを示す。

©

C_{1} $(\mathrm{~mm})$	C_{2} $(\mathrm{~mm})$	I_{sx} $\left(\mathrm{mm}^{1}\right)$	I_{sy} $\left(\mathrm{mm}^{1}\right)$	Z_{sx} $\left(\mathrm{mm}^{2}\right)$	Z_{sy} $\left(\mathrm{mm}^{3}\right)$	θ_{0} (rad)	θ (rad)
242	70	1.174×10^{9}	2.630×10^{7}	2.981×10^{6}	2.330×10^{5}	2.581	0.991

基礎ボルト

A_{s} $\left(\mathrm{mr}^{2}\right)$	E_{s} $(\mathbb{P a})$	G_{s} $\left.(\mathbb{P})^{2}\right)$	$\mathrm{A}_{\mathrm{s} 1}$ $\left(\mathrm{mr}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 2}$ $\left(\mathrm{~mm}^{2}\right)$	$\mathrm{A}_{\mathrm{s} 3}$ $\left(\mathrm{mr}^{2}\right)$	$\mathrm{A}_{\mathrm{s}} 4$ $\left(\mathrm{~mm}^{2}\right)$
2.253×10^{4}	201000	77300	5.881×10^{3}	1.411×10^{4}	4.129×10^{3}	1.120×10^{4}

$\mathrm{K}_{11}{ }^{* 1}$	$\mathrm{~K}_{12}{ }^{* 1}$	$\mathrm{~K}_{21}{ }^{* 1}$	$\mathrm{~K}_{22}{ }^{* 1}$	$\mathrm{~K}_{\ell 1}$	$\mathrm{~K}_{\ell 2}$	$\mathrm{~K}_{\mathrm{c} 1}$	$\mathrm{~K}_{\mathrm{c} 2}$	$\mathrm{C}_{\ell 1}$	$\mathrm{C}_{\bullet 2}$	$\mathrm{C}_{\mathrm{c} 1}$	$\mathrm{C}_{\mathrm{c} 2}$
0.91	1.68	-	-	1.58	1.17	1.39	1.05	0.79	0.43	1.67	1.19
1.76	1.20	-	-	1.58							

s	n	n_{1}	n_{2}	a (mm)	b (mm)	d (mm)	A_{b} (mm)	d_{1} $(\mathrm{~mm})$	d_{2} $(\mathrm{~mm})$
15	2	2	1	160	1000			60	100

た

2.3 計算数值

2．3．1 胴に生じる応力
（1）一次一般鄚応力
（単位： MPa ）

地震の種類地震の方向応力の方向	弾性設計用地震動S d 又 ${ }^{\text {a }}$ 静的震度				基淮地震動S s			
	長手方向		横方向		長手方向		横方向	
	周方向応力	軸万向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	－	－	－	－	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\mathrm{x} 1}=10$
内圧による応力 （鉛直方向地震時）	－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運転时質量による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	－	－	－	－	－	$\sigma_{\times 6}=1$	－	$\sigma_{x 6}=1$
長手方向地震により䏱車由断面 全面に生じる引張応力	－	－	－	－	－	$\sigma_{\times 413}=1$	－	－
組合せ応力	－		－		$\sigma_{0} e=19$		$\sigma_{0 \mathrm{c}}=19$	

\rightleftharpoons

－	地震の種類		戦生設計用地	又は静的震度					
	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内王に		－	－	－	－	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$	$\sigma_{\phi 1}=19$	$\sigma_{\times 1}=10$
内圧l （鉛直）		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
運鋶時質量に モーメントに		－	－	－	－	－	$\sigma_{\times 2}=1$	－	$\sigma_{\times 2}=1$
鉛直方向地震に モーメントに	$\begin{aligned} & \text { 向曲げ } \\ & \text { 応力 } \end{aligned}$	－	－	－	－	－	$\sigma_{x 6}=1$	－	$\sigma_{x 6}=1$
$\begin{array}{r} \text { 運軾时質量 } \\ \text { により } \end{array}$		－	－	－	－	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$	$\sigma_{\phi 3}=4$	$\sigma_{\times 3}=3$
鉛直方向地 により		－	－	－	－	$\sigma_{\phi 71}=3$	$\sigma_{\times 71}=2$	$\sigma_{\phi 71}=3$	$\sigma_{x 71}=2$
水平方向地震 による応力	引張り	－	-	－		$\begin{gathered} \sigma_{\phi 411}=10 \\ \sigma_{\phi 412}=8 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 411}=2 \\ & \sigma_{\times 412}=6 \\ & \hline \end{aligned}$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
		－	－			$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$		
	せん断	－		－		$\tau_{\ell}=4$		$\tau_{\mathrm{c}}=1$	
組合せ応力				－		$\sigma_{1 \ell}=43$		$\sigma_{1 \mathrm{c}}=30$	

（3）地震動のみによる一次応力と二次応力の和の変動値
（単位： MPa ）

－	地震の種類		弾性設計用地	又は静的震度			基哖		
\bigcirc	地震の方向								
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧 （鉛直）		－	－	－	－	$\sigma_{\phi 2}=0$	－	$\sigma_{\phi 2}=0$	－
鉛直方向地震曲げモーメント	$\begin{aligned} & \text { 方向 } \\ & \text { る応力 } \end{aligned}$	－	－	－	－	－	$\sigma_{\times 6}=1$	－	$\sigma_{\times 6}=1$
鉛直方向地信 により		$-$	$-$	$\begin{aligned} & - \\ & - \end{aligned}$	$-$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\times 71}=2 \\ \sigma \times 72=5 \end{gathered}$	$\begin{gathered} \sigma_{\phi 71}=3 \\ \sigma_{\phi 72}=7 \\ \hline \end{gathered}$	$\begin{aligned} \sigma \times 71 & =2 \\ \sigma \times 72 & =5 \end{aligned}$
水平方向地震 による応力	引張り	－	－	－	－	$\sigma_{\phi 41}=17$	$\sigma_{\times 41}=8$	$\sigma_{\phi 51}=6$	$\sigma_{\times 51}=9$
			－	－	－	$\begin{gathered} \sigma_{\phi 421}=8 \\ \sigma_{\phi 422}=18 \\ \hline \end{gathered}$	$\begin{aligned} & \sigma_{\times 421}=25 \\ & \sigma_{\times 422}=15 \\ & \hline \end{aligned}$	$\sigma_{\phi 52}=22$	$\sigma_{\times 52}=14$
		－	－			$\sigma_{\phi 42}=26$	$\sigma_{\times 42}=39$		
	せん断	－		－		τ_{0}		$\tau_{c}=1$	
組合せ応力				－		$\sigma_{2 \ell}=113$		$\sigma_{2 \mathrm{c}}=71$	

ϖ

	地震の種類	弾性設計	的震度		
	地震の方向	長手方向	横方向	長手方向	横方向
䆃較时質量による応力	圧縮	－	－	$\sigma_{\mathrm{s} 1}=1$	$\sigma_{\text {s } 1}=1$
鉛直方向地震による応力	圧縮	－	－	$\sigma_{\text {s } 4}=1$	$\sigma_{\text {s } 4}=1$
水平方向地震による応力	曲げ	－	－	$\sigma_{\text {s } 2}=21$	$\sigma_{\text {s } 3}=3$
	せん断	－	－	$\tau_{\mathrm{s} 2}=6$	$\tau_{\mathrm{s} 3}=1$
組合せ応力		－	－	$\sigma_{\mathrm{s} \ell}=24$	$\sigma_{\text {sc }}=4$

2.4 結論

2.4 .1 固有周期	
単位： s ）	
向	固有周期
長手方向	$\mathrm{T}_{1}=0.010$
横方向	$\mathrm{T}_{2}=0.004$
鈖直方向	$\mathrm{T}_{3}=0.001$

2．4．2 応力					（単位： MPa ）	
部 材	材 料	痛	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
	材 料	心	算出応力	許容応力	算出応力	許容応力
		一次一般膜	－	－	$\sigma_{0}=19$	$\mathrm{S}_{\mathrm{a}}=236$
胴板		一次	－	－	$\sigma_{1}=43$	$\mathrm{S}_{\mathrm{a}}=355$
		一次＋二次	－	－	$\sigma_{2}=113$	$\mathrm{S}_{\mathrm{a}}=462$
脚		組合せ	－	－	$\sigma_{\text {s }}=24$	$\mathrm{f}_{\mathrm{t}}=276$
ト		引張り	－	－	$\sigma_{\mathrm{b}}=9$	$\mathrm{f}_{\mathrm{ts}}=207^{*}$
ト		せん断	－	－	$\tau_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{sb}}=159$
許容応力以下である。注記米： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$						

VI－2－5－7－3 原子炉補機代替冷却水系の耐震性についての計算書

VI－2－5－7－3－1 管の耐震性についての計算書（原子炉補機代替冷却水系）

> VI-2-5-7-3-1 管の耐震性についての計算書
（原子炬補機代替冷却系）

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 7
3．計算条件 11
3.1 計算方法 11
3.2 荷重の組合せ及び許容応力状態 12
3.3 設計条件 13
3．4 材料及び許容応力 16
3.5 設計用地震力 17
4．解析結果及び評価 18
4.1 固有周期及び設計震度 18
4． 2 評価結果 22
4．2．1 管の応力評価結果 22
4．2．2 支持構造物評価結果 23
4．2．3 弁の動的機能維持評価結果 24
4．2．4 代表モデルの選定結果及び全モデルの評価結果 25

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 16 モデルのうち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

注記＊1：解析モデル上

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊1	設備分類＊2	機器等 の区分	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
原子炉冷却系統施設	原子炉補機冷却設備	原子炉補機代替冷却水系	S A	常設耐震／防止常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊3：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $V_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 RCW－043

管名称	$\underset{(\mathrm{MPa})}{\substack{\text { 最高使用圧力 } \\(2)}}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚さ } \\ (\mathrm{mm}) \end{gathered}$	材料	耐震重要度分類	緃弾性係数 （MPa）
1	1． 18	70	267.4	9.3	STS410	－	200200

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
RCW－043

配管の質量（付加質量含む）
0 y（重）$I-\varepsilon-L-G-Z-I \Lambda$（8）$\quad \mathrm{O}$
評価点の質量を下表に示す。

評価点	質量（kg）								
1		20		39		58		77	
2		21		40		59		78	
3		22		41		60		79	
4		23		42		61		80	
5		24		43		62		81	
6		25		44		63		82	
7		26		45		64		83	
8		27		46		65		84	
9		28		47		66		85	
10		29		48		67		86	
11		30		49		68		87	
12		31		50		69		88	
13		32		51		70		89	
14		33		52		71		90	
15		34		53		72		91	
16		35		54		73		92	
17		36		55		74		93	
18		37		56		75		94	
19		38		57		76			

支持点及び貫通部ばね定数
鳥 瞰 図 RCW－043
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
1						
4						
7						
9						
14						
17						
20						
24						
27						
29						
34						
37						
39						
45						
47						
53						
59						
61						
63						
65						
69						
73						
75						
79						
81						
84						
87						
94						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力（ MPa ）				
	$\left({ }^{\circ} \mathrm{C}\right)$	Sm	S y	S u	S h	
STS410	70	-	229	407	-	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類 VVI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
R C W－ 0 4 3	原子炉建屋		

O 2 （3）VI－2－5－7－3－1（重）R 0

0 y（重）$I-\varepsilon-L-G-Z-I \Lambda$（8）$\quad \mathrm{O}$

モード	固 $\underset{(\mathrm{s})}{\text { 有 }}$ 周 期		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，1 次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4． 2 評価結果
4．2．1 管の応力評価結果

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 支持構造物
 番号 | 種類 |

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力 分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
RCW－033－023A	アンカ	ラグ	SGV410	70	79	45	54	76	21	105	曲げ	207	485
RCW－040－051R	レストレイント	ラグ	SGV410	70	28	13	171	－	－	－	せん断	51	121
RCW－042－001A	アンカ	ラグ	SGV410	70	38	13	10	7	9	12	組合せ	81	252

4．2．3 弁の動的機能維持評価結果
O2（3）VI－2－5－7－3－1（重）R 0

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果(MPa)	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

No．	配管モデル	許容応力状態 V A S												
		一次応力					一次＋二次応力					疲労評価		
		評 偠 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
11	RCW－041	44	40	366	9.15	－	3	76	458	6． 02	－	－	－	－
12	RCW－042	18	41	366	8.92	－	45	113	458	4． 05	－	－	－	－
13	RCW－043	73	133	366	2.75	\bigcirc	73	265	458	1． 72	\bigcirc	－	－	－
14	RCW－044	33	77	366	4.75	－	32	201	458	2.27	－	－	－	－
15	RCW－045	15	37	366	9.89	－	15	76	458	6． 02	－	－	－	－
16	RCW－048	38	77	366	4.75	－	38	113	458	4． 05	－	－	－	－

VI－2－6 計測制御系統施設の耐震性についての計算書

VI－2－6－1 計測制御系統施設の耐震性についての計算結果
VI－2－6－2 制御材の耐震性についての計算書
VI－2－6－3 制御材駆動装置の耐震性についての計算書
VI－2－6－4 ほう酸水注入設備の耐震性についての計算書
VI－2－6－5 計測装置の耐震性についての計算書
VI－2－6－7 その他の計測制御設備の耐震性についての計算書

VI－2－6－1 計測制御奚統施設の耐震性についての計算結果
1．概要 1
2．耐震評価条件整理 1

1．概要
本説明書は，計測制御系統施設の耐震計算の手法及び条件の整理について説明するものである。

2．耐震評価条件整理
計測制御系統施設の設備に対して，設計基準対象施設の耐震重要度分類，重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既に認可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のうち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異の有無を整理した。結果を表1に示す。

計測制御系統施設の耐震計算は表 1 に示す計算書に記載することとする。

表1 耐震計算結果一覧表

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊${ }^{*}$	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	制 御 材	制 御 棒	制御棒	S	有	VI－2－6－2－1	常設耐震／防止	無	VI－2－6－2－1
	制 御 材 駆 動 装 置	－	制御棒駆動機構	S	－＊2	VI－2－6－3－1	常設耐震／防止	有	VI－2－6－3－1
		制	水圧制御ユニット	S	無	VI－2－6－3－2－1	常設耐震／防止	無	$\mathrm{VI}-2-6-3-2-1$
		棒	主要弁	S	－＊2	VI－2－6－3－2－2	常設耐震／防止	無	$\mathrm{VI}-2-6-3-2-2$
		動	主配管	S	有	VI－2－6－3－2－2	常設耐震／防止	無	$\mathrm{VI}-2-6-3-2-2$
		$\begin{aligned} & \text { 圧 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器配管貫通部 （原子炉格納施設に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－9－2－4－1
	ほう酸水注入設備	$\begin{gathered} \text { ほ } \\ \text { う } \\ \text { 酸 } \\ \text { 水 } \\ \text { 注 } \\ \text { 入 } \\ \text { 系 } \end{gathered}$	ほう酸水注入系ポンプ	S	無	VI－2－6－4－1－1	常設耐震／防止常設／緩和	無	VI－2－6－4－1－1
			ほう酸水注入系貯蔵タンク	S	無	VI－2－6－4－1－2	常設耐震／防止常設／緩和	無	VI－2－6－4－1－2
			主配管	S	無	VI－2－6－4－1－3	常設耐震／防止常設／緩和	有	VI－2－6－4－1－3
			炉心支持構造物 （炉心支持構造物に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－3－2
			原子炉圧力容器 （原子炉圧力容器に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－4－1－2

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	ほ 酸 水 注 入 設 備	ほ 酸 水 注 入 系	原子炉格納容器配管貫通部 （原子炉格納施設に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－9－2－4－1
			原子炉圧力容器付属構造物 （原子炉圧力容器付属構造物 に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－4－2
			原子炉圧力容器内部構造物 （原子炉圧力容器内部構造物 に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－3－4－3

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊${ }^{*}$	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	計 測 装 置	起動領域モニタ	S	無	VI－2－6－5－1－1	常設耐震／防止	有	VI－2－6－5－1－1
		出力領域モニタ	S	有	$\mathrm{VI}-2-6-5-1-2$	常設耐震／防止	有	$\mathrm{VI}-2-6-5-1-2$
		原子炉隔離時冷却系ポンプ駆動用 タービン入口蒸気圧力	S	－＊2	$\mathrm{VI}-2-6-5-2-1-1$	－	－	－
		高圧代替注水系ポンプ出口圧力	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－2－1－2
		直流駆動低圧注水系ポンプ出口圧力	－	－＊2	－	常設耐震／防止	－	VI－2－6－5－2－1－3
		代替循環冷却ポンプ出口圧力	－	－＊2	－	常設／緩和	－	$\mathrm{VI}-2-6-5-2-1-4$
		原子炉隔離時冷却系ポンプ出口圧力	S	－＊2	$\mathrm{VI}-2-6-5-2-1-5$	常設／防止 （DB 拡張）	有	VI－2－6－5－2－1－5
		$\begin{aligned} & \text { 高圧炉心スプレイ系ポンプ出口 } \\ & \text { 圧力 } \end{aligned}$	S	－＊2	$\mathrm{VI}-2-6-5-2-1-6$	常設／防止 （DB 拡張）	有	VI－2－6－5－2－1－6
		残留熱除去系ポンプ出口圧力	C	－＊2	－	常設／防止 （DB 拡張）	－	$\mathrm{VI}-2-6-5-2-1-7$
		$\begin{aligned} & \text { 低圧炉心スプレイ系ポンプ出口 } \\ & \text { 圧力 } \end{aligned}$	C	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－6－5－2－1－8
		復水移送ポンプ出口圧力	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－2－1－9
		残留熱除去系熱交換器入口温度	C	－＊2	－	常設／緩和常設／防止 （DB 拡張）	－	VI－2－6－5－2－2－1
		残留熱除去系熱交換器出口温度	C	－＊2	－	常設耐震／防止	－	VI－2－6－5－2－2－2

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	計 測 装 置	原子炉冷却材浄化系入口流量	S	無	$\mathrm{VI}-2-6-5-2-3-1$	－	－	－
		高圧代替注水系ポンプ出口流量	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－2－3－2
		残留熱除去系洗浄ライン流量 （残留熱除去系ヘッドスプレイ ライン洗浄流量）	－	－＊2	－	常設耐震／防止常設／緩和	－	$\mathrm{VI}-2-6-5-2-3-3$
		残留熱除去系洗浄ライン流量 （残留熱除去系 B 系格納容器冷却ライン洗浄流量）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－2－3－4
		直流駆動低圧注水系ポンプ出口流量	－	－＊2	－	常設耐震／防止	－	VI－2－6－5－2－3－5
		代替循環冷却ポンプ出口流量	－	－＊2	－	常設／緩和	－	VI－2－6－5－2－3－6
		原子炉隔離時冷却系ポンプ出口流量	S	－＊2	$\mathrm{VI}-2-6-5-2-3-7$	常設／防止 （DB 拡張）	有	VI－2－6－5－2－3－7
		高圧炉心スプレイ系ポンプ出口流量	S	－＊2	VI－2－6－5－2－3－8	常設／防止 （DB 拡張）	有	VI－2－6－5－2－3－8
		残留熱除去系ポンプ出口流量	S	－＊2	VI－2－6－5－2－3－9	常設／防止 （DB 拡張）	有	VI－2－6－5－2－3－9
		低圧炉心スプレイ系ポンプ出口流量	S	－＊2	VI－2－6－5－2－3－10	常設／防止 （DB 拡張）	有	VI－2－6－5－2－3－10
		原子炉圧力	S	－＊2	VI－2－6－5－3－1－1	常設耐震／防止常設／緩和	有	VI－2－6－5－3－1－1
		原子炉圧力（SA）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－3－1－2
		原子炉水位	S	－＊2	VI－2－6－5－3－2－1	－	－	－

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	計 測 装 置	原子炉水位（広帯域）	S	－＊2	VI－2－6－5－3－2－2	常設耐震／防止常設／緩和	有	VI－2－6－5－3－2－2
		原子炉水位（燃料域）	S	－＊2	VI－2－6－5－3－2－3	常設耐震／防止常設／緩和	有	VI－2－6－5－3－2－3
		原子炉水位（SA 広帯域）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－3－2－4
		原子炉水位（SA 燃料域）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－3－2－5
		ドライウェル圧力	S	－＊2	VI－2－6－5－4－1－1	常設／防止常設／緩和	有	VI－2－6－5－4－1－1
		圧力抑制室圧力	S	－＊2	VI－2－6－5－4－1－2	常設耐震／防止常設／緩和	有	VI－2－6－5－4－1－2
		ドライウェル温度	S	－＊2	VI－2－6－5－4－2－1	常設／防止常設／緩和	有	VI－2－6－5－4－2－1
		圧力抑制室内空気温度	S	－＊2	VI－2－6－5－4－2－2	常設耐震／防止常設／緩和	有	VI－2－6－5－4－2－2
		サプレッションプール水温度	S	－＊2	VI－2－6－5－4－2－3	常設耐震／防止常設／緩和	有	VI－2－6－5－4－2－3
		原子炉格納容器下部温度	－	－＊2	－	常設／緩和	－	VI－2－6－5－4－2－4
		格納容器内雰囲気酸素濃度	S	無	VI－2－6－5－4－3－1	常設／緩和	有	VI－2－6－5－4－3－1
		格納容器内水素濃度（D／W）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－4－4－1
		格納容器内水素濃度（S／C）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－4－4－2
		格納容器内雰囲気水素濃度	S	無	VI－2－6－5－4－4－3	常設／緩和	有	VI－2－6－5－4－4－3

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載筧所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載筧所
計 測 制 御 系 統 施 設	計 測 装 置	復水則	タンク水位	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－5－1
		原子㷧	循環ポンプ入口流量	S	－＊2	VI－2－6－5－6－1	－	－	－
		原子炻	納容器代替スプレイ流量	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－5－7－1
		原子炈	格納容器下部注水流量	－	－＊2	－	常設／緩和	－	$\mathrm{VI}-2-6-5-7-2$
		圧力抑	制室水位	S	－＊2	$\mathrm{VI}-2-6-5-8-1$	常設耐震／防止常設／緩和	有	VI－2－6－5－8－1
		原子火	納容器下部水位	－	－＊2	－	常設／緩和	－	$\mathrm{VI}-2-6-5-8-2$
		ドラ	エル水位	－	－＊2	－	常設／緩和	－	$\mathrm{VI}-2-6-5-8-3$
		原子炉	建屋内水素濃度	－	－＊2	－	常設／緩和	－	$\mathrm{VI}-2-6-5-9-1$
	$\begin{aligned} & \text { 制 } \\ & \text { 御 } \end{aligned}$ 用	$\begin{aligned} & \text { 高 } \\ & \text { 压 } \\ & \text { 嗉 } \end{aligned}$	主配管	S	－＊2	VI－2－6－6－1－1	常設耐震／防止	有	VI－2－6－6－1－1
	$\begin{aligned} & \text { 気 } \\ & \text { 設 } \end{aligned}$ 備	$\begin{aligned} & \text { 不 } \\ & \text { 供 } \\ & \text { 給 } \end{aligned}$	原子炉格納容器配管貫通部（原子炉格納施設 に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－9－2－4－1

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	制 御 用 空 気 設 備		主配管	－	－＊2	－	常設耐震／防止	－	VI－2－6－6－2－1
			原子炉格納容器配管貫通部（原子炉格納施設 に記載）	－	－＊2	－	常設耐震／防止	－	VI－2－9－2－4－1
	そ の 他 の 計 測 制 御 系 統 施 設	盤	計測制御設備の盤の耐震性についての計算書	S	無	VI－2－6－7－1	常設耐震／防止常設／防止常設／防止 （DB 拡張）常設／緩和	無	VI－2－6－7－1
		衛 星 電 話	衛星電話設備（固定型） （中央制御室）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－2－1
		$\begin{aligned} & \text { 固 } \\ & \text { 定 } \\ & \text { 型 } \end{aligned}$	衛星電話設備（屋外アン テナ）（中央制御室）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－2－2

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	そ の 他 の 計 測 制 御 系 統	衛 星 電 話 設	衛星電話設備（固定型） （緊急時対策所）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－2－3
		$\begin{aligned} & \text { 固 } \\ & \text { 定 } \\ & \text { 型 } \end{aligned}$	衛星電話設備（屋外アン テナ）（緊急時対策所）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－2－4
			無線連絡設備（固定型） （中央制御室）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－3－1
		$\begin{aligned} & \text { 連 } \\ & \text { 絡 } \\ & \text { 設 } \end{aligned}$	無線連絡設備（屋外アン テナ）（中央制御室）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－3－2
		$\begin{aligned} & \text { 䔬 } \\ & \text { 茾 } \end{aligned}$	無線連絡設備（固定型） （緊急時対策所）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－3－3
			無線連絡設備（屋外アン テナ）（緊急時対策所）	C	－＊2	－	常設／防止常設／緩和	－	VI－2－6－7－3－4

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施行前に認可された実績との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設			SPDS 表示装置	C	－＊2	－	常設／緩和	－	VI－2－6－7－4
			安全パラメータ表示シス テム（SPDS）無線通信用ア ンテナ	C	－＊2	－	常設／緩和	－	VI－2－6－7－5
	$\begin{aligned} & \text { 測 } \\ & \text { 制 } \\ & \text { 御 } \\ & \text { 系 } \\ & \text { 統 } \\ & \text { 施 } \end{aligned}$設		ワークを用いた通信連絡設備	C	－＊2	－	常設／その他	－	VI－2－6－7－6
			統合原子力防災ネット ワーク設備衛星アンテナ	C	－＊2	－	常設／その他	－	VI－2－6－7－7
			統合原子力防災ネット ワーク用通信機器収容架	C	－＊2	－	常設／その他	－	VI－2－6－7－8

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震 重要度 分類	新規制基準施行前 に認可された実績 との差異	耐震計算の記載箇所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
計 測 制 御 系 統 施 設	そ の 他 の 計 測 制 御 系 統 施 設	代替原子炉再循環ポンプトリップ遮断器	－	－＊2	－	常設耐震／防止	－	VI－2－6－7－9
		原子炬圧力容器温度	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－10
		フィルタ装置水位（広帯域）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－11
		フィルタ装置入口圧力（広帯域）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－12
		フィルタ装置出口圧力（広帯域）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－13
		フィルタ装置水温度の耐震性	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－14
		フィルタ装置出口水素濃度	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－6－7－15
		原子炉補機冷却水系系統流量	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－6－7－16
		残留熱除去系熱交換器冷却水入口流量	C	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－6－7－17
		静的触媒式水素再結合装置動作監視装置	－	－＊2	－	常設／緩和	－	VI－2－6－7－18

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張），「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び「常設／そ の他」は常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備を示す。
注記 $* 2$ ：本工事計画で新規に申請する設備であることから，差異比較の対象外。

VI－2－6－2 制御材の耐震性についての計算書

VI－2－6－2－1 制御棒の耐震性についての計算書

VI－2－6－2－1 制御棒の耐震性についての計算書

目 次

1．概要 1
2．一般事項 2
2.1 構造計画 2
3．燃料集合体の地震応答解析 3
4．制御棒の挿入性試験 4
4． 1 試験装置 4
4.2 試験方法 4
4.3 試験結果 4
5．制御棒挿入性に対する鉛直方向地震による影響評価 10
5.1 鉛直方向の作用荷重及びそれに伴う挿入時間遅れ 10
5.2 燃料集合体の浮上り 106．評価結果11
7．引用文献 11

1．概要

本計算書は，制御棒の耐震性について示すものである。
地震時において制御棒に要求される機能は，制御棒の挿入機能の確保である。
制御棒の挿入機能の確保については，原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）に従って，地震時における制御棒の挿入性についての検討を行い，基準地震動 S s に対し制御棒の挿入性が確保されることを確認する。ここで，地震時に制御棒の挿入性を阻害する支配的要因は，燃料集合体の水平方向地震による相対変位であることから，制御棒挿入試験は水平方向地震に対して実施する。また，鉛直方向地震 に対してはその影響を評価する。

制御棒の挿入機能確保に必要な形状を維持するための構造部材は，シース，ハンドル，タ イロッド，落下速度リミッタであり，制御棒挿入性試験により挿入機能が確認される。

なお，ボロンカーバイド型制御棒の運転寿命は，核的寿命及び機械的寿命のうち短い方で規定される。

ボロンカーバイド型制御棒のボロンカーバイド粉末を充てんした中性子吸収棒については，中性子照射によるガス等の発生に伴い中性子吸収棒の内圧が上昇するが，寿命末期において中性子吸収棒の変形は生じない。

以上より，制御棒の寿命中において中性子吸収材によるシースの変形はないことから，制御棒の挿入性に影響を与えることはない。

2．一般事項
2.1 構造計画

制御棒の構造計画を表2－1 に示す。
表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
制御棒は，カップリング ソケットにより制御棒駆動機構に支持される。	十字形制御棒制御棒の長さは 4400 mm であり，ブレードの幅 は249mmである。	

3．燃料集合体の地震応答解析
燃料集合体の地震応答解析は原子炉圧力容器内部構造物の一部として実施されており，詳細はVI－2－3－2「灲心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示す。

制御棒插入性の評価においては，材料物性の不確かさ等を考慮した最大応答相対変位 54.2 mm 及び最大鋁直加速度 $16.2 \mathrm{~m} / \mathrm{s}^{2}$ を用いる。

4．制御棒の挿入性試験
水平方向地震により燃料集合体に相対変位が生じた状態で制御棒の挿入性が確保されるこ とを確認するため，制御棒の挿入性試験を実施している。試験は2015年11月に当時の株式会社 東芝にて実施したものである。

4．1 試験装置

試験装置の概要を図4－1に示す。
試験装置は炉心を模擬するために，試験容器内に上部格子板，燃料集合体，制御棒案内管を据え付け，下部に制御棒駆動機構ハウジングを接続している。

試験用機器仕様の概要を表 4－1に示す。燃料集合体は質量を模擬するため燃料ペレット に鉛を使用している。制御棒及び制御棒駆動機構等の供試体は実機仕様である。

計測装置の概要を図 4－2に示す。

4．2 試験方法

試験条件を表4－2に示す。
図 4－1 に示す試験容器内に 4 体の質量模擬燃料集合体を組み込んで，加振台により試験容器を全体加振し，スクラム試験を実施した。

試験では，図 4－2 に示す計測装置により，燃料集合体の相対変位（振幅）及び制御棒の挿入時間を測定した。

4． 3 試験結果

図 4－3に燃料集合体相対変位と 75% ストロークスクラム時間の関係を示す。
図 4－3 に示すとおり，燃料集合体の相対変位が約 60 mm までの範囲において， 75% スト ロークスクラム時間が 1.62 秒以内であることを確認した。
なお，制御棒挿入試験後において制御棒の外観に有意な変化がないことを確認した。

表 4－1 試験用機器仕様の概要（ボロンカーバイド型制御棒用）

試験用機器	仕様の概要
	$\begin{array}{l}\text { 質量模擬燃料集合体 } \\ \text { 質量模擬のため集合体 } \\ \text { 鉛を使用 }\end{array}$
料ペレットに	

表 4－2 試験条件（ボロンカーバイド型制御棒用）

項目	条件
温度	室温
圧力	常圧＊
加振条件	加振方向：水平方向 加振振動数：約 5 Hz （燃料集合体の水中固有 振動数相当） 加振波形 ：正弦波
スクラム開始時 の制御棒位置	全引き抜き状態

注記＊：アキュムレータ圧力の調整により原子炉定格圧力
（6．93MPa［gage］）時のスクラムを模擬。

図 4－1 試験装置の概要

図 4－2 計測装置の概要

図 4－3 燃料集合体相対変位のスクラム時間に及ぼす影響
（ボロンカーバイド型制御棒）

5．制御棒挿入性に対する鉛直方向地震による影響評価鉛直方向地震により制御棒の挿入性に与える影響について，次の観点で評価する。
（1）鉛直方向の作用荷重及びそれに伴う挿入時間遅れ
（2）燃料集合体の浮上り
5.1 鉛直方向の作用荷重及びそれに伴う挿入時間遅れ制御棒に作用する荷重について，制御棒に作用する鉛直方向地震力と地震スクラムによ り生じるその他の荷重との大小関係を確認し，評価した。

その結果，交番荷重である鉛直地震動の加速度 $16.2 \mathrm{~m} / \mathrm{s}^{2}$ が，仮に常時制御棒の挿入方向 と逆向き（下向き）に作用した場合でも，制御棒の挿入力（上向き）は下向きの力に対し て，大きくなっており，鉛直方向の作用荷重による制御棒挿入性への影響はない。

また，鉛直方向の作用荷重は，実際には交番荷重として作用することから，挿入時間の遅れに対する影響は小さく，スクラム目安時間を超えることはない。
5.2 燃料集合体の浮上り

鉛直方向地震による燃料集合体の浮上りによる制御棒挿入性への影響については，引用文献（1）及び（2）で評価している。引用文献に基づいた影響評価により，女川原子力発電所第2号機における鉛直方向地震に対して燃料集合体が燃料支持金具設置深さ 60 mm を超える ような浮上りは生じないことを確認した。

また，鉛直方向地震に加えて水平方向地震が作用し，燃料支持金具の面に沿つて上方向 に移動する事象を想定する場合でも，燃料支持金具からの離脱は生じないことを確認した。

6．評価結果

燃料集合体の地震応答解析の結果，燃料集合体の最大応答相対変位は 54.2 mm である。
また，制御棒挿入試験の結果より，燃料集合体の相対変位が約 60 mm までの範囲において，通常のスクラム仕様値 75% ストローク 1.62 秒以下で挿入できること，並びに，制御棒挿入性試験後，制御棒の外観に有意な変化がないことを確認した。

さらに，鉛直方向地震による制御棒挿入性への影響について，制御棒に作用する荷重，挿入時間遅れ及び燃料集合体の浮上りに対して問題ないことを確認した。

したがって，基準地震動 S s に対する制御棒の挿入性と健全性は確保される。

7．引用文献
（1）独立行政法人 原子力安全基盤機構 平成 17 年度「原子力施設等の耐震性評価技術に関する試験及び調査 機器耐力その2（B W R 制御棒挿入性）に係る報告書」（平成18年9月）
（2）独立行政法人 原子力安全基盤機構 平成 17 年度「原子力施設等の耐震性評価技術に関する試験及び調査 機器耐力その 3 （総合評価）に係る報告書」（平成 18 年 8月）

VI－2－6－3 制御材駆動装置の耐震性についての計算書

VI－2－6－3－1 制御棒駆動機構の耐震性についての計算書
VI－2－6－3－2 制御棒駆動水圧設備の耐震性についての計算書

VI－2－6－3－1 制御棒駆動機構の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．構造強度評価 8
4.1 構造強度評価方法 8
4．2 荷重の組合せ及び許容応力 9
4．2．1 荷重の組合せ及び許容応力状態 9
4．2．2 許容応力 9
4．2．3 使用材料の許容応力評価条件 9
4.3 固有周期 12
4.4 設計用地震力 13
4.5 計算方法 14
4．5．1 応力の計算方法 14
4.6 計算条件 16
4．6．1 制御棒駆動機構の応力計算条件 16
4．6．2 運転条件 17
4．7 応力の評価 18
4．7．1 管の応力評価 18
5．評価結果 18
5.1 設計基準対象施設としての評価結果 18
5.2 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，制御棒駆動機構が設計用地震力に対して十分な構造強度を有していることを説明す るものである。

制御棒駆動機構は，設計基準対象施設においては S クラス施設に，重大事故等対処設備におい ては常設耐震重要重大事故防止設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

制御棒駆動機構の構造計画を表2－1 に示す。

2.2 評価方針

制御棒駆動機構の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」のうち「3．1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す制御棒駆動機構の部位を踏まえ「3．評価部位」にて設定する箇所において，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づく発生荷重による応力等が許容限界内に収まること を，「4．構造強度評価」にて示す方法にて確認することで実施する。
制御棒駆動機構の耐震評価フローを図2－1 に示す。

注記＊：発生荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における原子炉本体地震応答解析より得られる値。

図 2－1 制御棒駆動機構の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007（日本機械学会）

2.4 記号の説明

記号	記号の説明	単位
$\mathrm{B}_{1}, \mathrm{~B}_{2}$	設計•建設規格 PPB－3810に規定する応力係数 （一次応力の計算に使用するもの）	－
C 2	設計•建設規格 PPB－3810に規定する応力係数 （一次＋二次応力の計算に使用するもの）	－
D	管の外径	mm
E	設計•建設規格 付録材料図表 Part6 表1に規定する縦弾性係数	MPa
F_{w}	制御棒駆動機構の自重	N
F scr	スクラム反力により制御棒駆動機構に生じる荷重	N
F_{v}	鉛直方向震度により制御棒駆動機構に生じる地震荷重	N
K_{2}	設計•建設規格 PPB－3810に規定する応力係数 （ピーク応力の計算に使用するもの）	－
$\mathrm{K}_{\text {e }}$	繰返しピーク応力強さ係数	－
$\mathrm{M}_{\mathrm{hsg}}$	水平方向震度により制御棒駆動機構ハウジングに生じるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$M_{i p}$	管の機械的荷重（地震による慣性力を含む。）により生じるモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$M_{\text {i s }}$	管の地震動の慣性力と相対変位により生じるモーメントの全振幅	$\mathrm{N} \cdot \mathrm{mm}$
n i	繰返し荷重 i の実際の繰返し回数	回
N_{i}	設計•建設規格 PPB－3534による繰返し荷重 i の許容繰返し回数	回
P	地震と組合わせるべき運転状態における圧力	MPa
S_{ℓ}	繰返しピーク応力強さ	MPa
S_{m}	設計•建設規格 付録材料図表 Part5 表1に規定する材料の設計応力強さ	MPa
S_{n}	一次＋二次応力	MPa
$S_{\text {p }}$	ピーク応力	MPa
Sprm	一次応力	MPa
t	管の厚さ	mm
U	疲労累積係数	－
Z_{i}	管の断面係数	mm^{3}

2.5 計算精度と数値の丸め方

精度は有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりである。
表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
縦弾性係数		MPa	小数点以下第 1 位	四捨五入	整数位
断面係数		mm ${ }^{3}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊1
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{* 1}$
計算応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊2		MPa	小数点以下第 1 位	切捨て	整数位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
圧力		MPa	小数点以下第 3 位	四捨五入	小数点以下第 2 位
長さ	下記以外の長さ	mm	小数点以下第2位	四捨五入	小数点以下第 1 位
	計算上必要 な厚さ	mm	小数点以下第2位	切上げ	小数点以下第 1 位
	最小厚さ	mm	小数点以下第 2 位	切捨て	小数点以下第 1 位
温度		${ }^{\circ} \mathrm{C}$	小数点以下第 1 位	四捨五入	整数位
疲労累積係数		－	小数点以下第 5 位	切上げ	小数点以下第4位

注記 $* 1$ ：絶対値が 1000 以上のときは，べき数表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における応力強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
制御棒駆動機構の要求機能は，クラス 1 の耐圧バウンダリとスクラム機能である。本計算書で は，クラス 1 の耐圧バウンダリであり，耐震評価上厳しくなるフランジについて，「4．1 構造強度評価方法」に示す条件に基づき耐震計算を実施する。制御棒駆動機構の耐震評価部位について は，表 2－1 の概略構造図に示す。また，スクラム機能の耐震評価については，添付書類「VI－2－6－ 2－1 制御棒の耐震性についての計算書」にて確認している。

4．構造強度評価

4． 1 構造強度評価方法

（1）制御棒駆動機構は，制御棒駆動機構ハウジング下端に固定される。
（2）制御棒駆動機構ハウジングの下端フランジとの接合部品である制御棒駆動機構フランジを評価部位とし，フランジの最小板厚部を管とみなし，添付書類「VI－2－1－13－6 管の耐震性に ついての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。
（3）地震荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」で求めた制御棒駆動機構ハウジング下端のフランジ部分の値に基づき設定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）耐震評価は，設計基準対象施設と重大事故等対処設備の包絡条件で実施する。

管の耐震性についての計算

図4－1 評価モデル

4． 2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
制御棒駆動機構の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用い るものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2に示す。

4．2．2 許容応力
制御棒駆動機構の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
制御棒駆動機構の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いる ものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統設備	制御材駆動装置	制御棒駆動機構	S	－＊1	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	IIIA ${ }_{\text {S }}$ S
設備	装置				$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{d}^{*}$	

注記 $* 1: ク$ クス 1 管の荷重の組合せ及び許容応力を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統設備	制御材駆動装置	制御棒駆動機構	常設耐震／防止	－＊2	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$	
					－＊3	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 3}$

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：重大事故等クラス 2 管（クラス 1 管）の荷重の組合せ及び許容応力を適用する。
＊3：原子炉冷却材圧力バウンダリ範囲は重大事故等発生時の使用条件が設計条件（圧力•温度等）を超える時間が短期（10－2 年未満）で あるため，運転状態VにおいてS d 又はS s 地震力との組合せは考慮不要とする。

表 4－3 許容応力（クラス 1 管及び重大事故等クラス 2 管であってクラス 1 管）

許容応力状態	許容限界		
	一次 応力	一次＋二次応力	一次＋二次＋ピーク応力
$\mathrm{III}_{A} \mathrm{~S}$	2． 25 Sm	$3 \mathrm{~S}_{\mathrm{m}}$ S d 又は S s 地震動のみによる応力振幅について評価する。	S d 又はS s 地震動のみによる疲労累積係数と，運転状態 I，IIにおける疲労累積係数の和が 1.0 以下であること。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	3 Sm		

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	S_{m} (MPa)	S_{y} (MPa)	S_{u} (MPa)	S_{h} (MPa)
SUSF304	302	114	-	-	-

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	S_{m} (MPa)	S_{y} (MPa)	S_{u} (MPa)	S_{h} (MPa)
SUSF304	302	114	-	-	-

4．3 固有周期

表 2－1 の概略構造図に示すように，制御棒駆動機構は制御棒駆動機構ハウジングに据付部材 を介さずに，締付ボルトにて直接接続される構造である。したがって，固有周期は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」における原子炉本体地震応答解析により確認している。

4． 4 設計用地震力

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。

評価に用いる設計用地震力を表4－6及び表4－7に示す。

表 4－6 設計用地震力（設計基準対象施設）

据付場所 及び	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. 3. } 258^{* 1} \end{gathered}$	－＊2	$\mathrm{C}_{\mathrm{v}}=0.77$	－＊2	$\mathrm{C}_{\mathrm{V}}=1.32$

注記 $* 1$ ：基準床レベル（制御棒駆動機構ハウジング下端フランジの取付面のレベル）を示す。
＊2：水平方向震度により発生する荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき得られる値。

表 4－7 設計用地震力（重大事故等対処設備）

据付場所及び	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 3.258^{* 1} \end{gathered}$	－	－	－＊2	$\mathrm{C}_{\mathrm{V}}=1.32$

注記 $* 1$ ：基準床レベル（制御棒駆動機構ハウジング下端フランジの取付面のレベル）を示す。
＊2：水平方向震度により発生する荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき得られる値。

4.5 計算方法

4．5．1 応力の計算方法
（1）管の計算方法
地震荷重として制御棒駆動機構ハウジングの応答の最大値が作用するものとして実施す る。

耐震評価モデルを図4－2に示す。

図 4－2 耐震評価モデル
a．管に作用するモーメント
（a）管の機械的荷重（地震による慣性力を含む）により生じるモーメント
機械的荷重として自重とスクラム反力による荷重，地震による慣性力として地震動による鉛直荷重と応答モーメントを考量すると以下となる。

$$
\mathrm{M}_{\mathrm{ip}}=\mathrm{M}_{\mathrm{hsg}}+\mathrm{M}_{\mathrm{e}}
$$

$$
\begin{equation*}
=M_{h s g}+\frac{D_{o}^{2}+\left(D_{o}-2 \cdot t\right)^{2}}{8 \cdot D_{o}} \cdot F_{m} \tag{4.5.1}
\end{equation*}
$$

ここで，

$$
\begin{equation*}
\mathrm{F}_{\mathrm{m}}=\mathrm{F}_{\mathrm{w}}+\mathrm{F}_{\mathrm{scr} \mathrm{r}}+\mathrm{F}_{\mathrm{v}}^{*} \tag{4.5.2}
\end{equation*}
$$

注記＊：F ${ }_{\mathrm{v}}$ は，表 4－6 及び 4－7 に示す鉛直方向設計震度 $\mathrm{C} v$ より算出する鉛直
（b）管の地震動の慣性力と相対変位により生じるモーメントの全振幅
相対変位は生じないことから，地震動の慣性力として地震動による鉛直荷重と応答 モーメントを考慮すると以下となる。

$$
\begin{equation*}
M_{i s}=\left\{M_{h s g}+\frac{D_{o}^{2}+\left(D_{o}-2 \cdot t\right)^{2}}{8 \cdot D_{o}} \cdot F_{v}\right\} \times 2 \tag{4.5.3}
\end{equation*}
$$

b．耐震性についての計算
（a）一次応力

$$
\begin{equation*}
S_{p r m}=\frac{B_{1} \cdot P \cdot D_{o}}{2 \cdot t}+\frac{B_{2} \cdot M_{i p}}{Z_{i}} \tag{4.5.4}
\end{equation*}
$$

ここで，

$$
\begin{equation*}
Z_{i}=\frac{\pi}{32} \cdot \frac{\mathrm{D}_{\mathrm{o}}{ }^{4}-\left(\mathrm{D}_{\mathrm{o}}-2 \cdot \mathrm{t}\right)^{4}}{\mathrm{D}_{\mathrm{o}}} \tag{4.5.5}
\end{equation*}
$$

> とする。
（b）一次 + 二次応力

$$
\begin{equation*}
\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{C}_{2} \cdot \mathrm{M}_{\mathrm{is}}}{\mathrm{Z}_{\mathrm{i}}} \tag{4.5.6}
\end{equation*}
$$

（c）ピーク応力

$$
\begin{equation*}
\mathrm{S}_{\mathrm{p}}=\frac{\mathrm{K}_{2} \cdot \mathrm{C}_{2} \cdot \mathrm{M}_{\mathrm{is}}}{\mathrm{Z}_{\mathrm{i}}} \tag{4.5.7}
\end{equation*}
$$

（d）繰返しピーク応力強さ

$$
\begin{equation*}
\mathrm{S}_{\mathrm{e}}=\frac{\mathrm{K}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{p}}}{2} \tag{4.5.8}
\end{equation*}
$$

（e）疲労累積係数

$$
\begin{equation*}
\Sigma \frac{\mathrm{n}_{\mathrm{i}}}{\mathrm{~N}_{\mathrm{i}}} \leq 1.0 \tag{4.5.9}
\end{equation*}
$$

4.6 計算条件

4．6．1 制御棒駆動機構の応力計算条件
応力計算に用いる計算条件は，表 4－8 及び本計算書の【制御棒駆動機構の耐震性につい ての計算結果】の設計条件及び機器要目に示す。

表 4－8 計算条件

項目	記号	単位	数値等
材料	－	－	
設計•建設規格 PPB－3810 に規定する応力係数	B_{1}	－	
設計•建設規格 PPB－3810に規定する応力係数	B_{2}	－	
設計•建設規格 PPB－3810 に規定する応力係数	C 2	－	
管の外径	D	mm	
使用温度における材料の縦弾性係数	E	MPa	
自重	F_{w}	N	
スクラム反力により生じる荷重	$\mathrm{F}_{\mathrm{scr}}$	N	
鉛直方向震度（ S d ）により生じる地震荷重＊1	F_{v}	N	
鉛直方向震度（ S s ）により生じる地震荷重＊1	F_{v}	N	
設計•建設規格 PPB－3810に規定する応力係数	K 2	－	
繰返しピーク応力強さ係数	K_{e}	－	
水平方向震度（S d 又は静的震度）により制御棒駆動機構ハウジングに生じるモーメントの最大値＊2	$\mathrm{M}_{\mathrm{h} s \mathrm{~g}}$	$\mathrm{N} \cdot \mathrm{mm}$	
水平方向震度（S s ）により制御棒駆動機構ハウジン グに生じるモーメントの最大値＊2	$\mathrm{M}_{\mathrm{h} s \mathrm{~g}}$	$\mathrm{N} \cdot \mathrm{mm}$	
地震と組合わせるべき運転状態における圧力	P	MPa	
管の厚さ	t	mm	

注記＊1 ：添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」の原子炉本体地震応答解析により得られる応答軸力と鉛直方向設計震度より算出する鉛直方向荷重のらち大きい方の値。

注記 $* 2$ ：添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」の原子炉本体地震応答解析により得られた値。

枠囲みの内容は商業機密の観点から公開できません。

4．6．2 運転条件

制御棒駆動機構の応力計算に用いる運転条件は，表4－9に示すとおりである。

表 4－9 運転条件

4．7 応力の評価

4．7．1 管の応力評価
4．5．1 項で求めた応力が許容応力以下であること。許容応力は4．2．2項表4－3による。

5．評価結果
5.1 設計基準対象施設としての評価結果

制御棒駆動機構の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界 を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

制御棒駆動機構の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認し た。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【制御棒駆動機構の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機 器 名 称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）	弾性設計用地震動 S d又は静的震度		基準地震動 S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
				水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
制御棒駆動機構	S		－＊2	$-* 3$	$\mathrm{C}_{\mathrm{v}}=0.77$	－＊3	$\mathrm{C}_{\mathrm{v}}=1.32$	302	－

注記＊1：制御棒駆動機構ハウジングの取付面のレベルを示す。
＊2：固有周期は，添付書類 1 VI $-2-3-2$ 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」によるものとする。
＊ 3 ：水平方问震度により発生する荷重は，添付書類「VI－2－3－2 炉心，原子炉土力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき得られ る値。

部材 Z_{i} $\left(\mathrm{~mm}^{3}\right)$ B_{1} $\mathrm{~B}_{2}$ C_{2} $\mathrm{~K}_{2}$ $\mathrm{~K}_{\mathrm{e}}$
フランジ

＊2：最高使用温度で算出

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-6-3-1 \quad \mathrm{R} \mathrm{O}
$$

1.3 計算数値

部材	S_{p}（MPa）		Se （（MPa）		N_{i}（回）	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
フランジ						

1． 4 結論

許容応力状態	最大応力評価点	最大応力区分	一次応力評価（MPa）		一次 + 二次応力評価（ MPa ）		疲労評価
			$\begin{gathered} \text { 一次応力 } \\ S_{\text {prm }}(S d) \\ S_{\text {prm }}(S s) \end{gathered}$	許容応力 $\begin{gathered} 2.25 \cdot \mathrm{~S}_{\mathrm{m}} \\ 3 \cdot \mathrm{~S}_{\mathrm{m}} \end{gathered}$	$\begin{aligned} & \text { 一次 }+ \text { 二次応力 } \\ & S_{n}(S d) \\ & S_{n}(S s) \end{aligned}$	許容応力 $\begin{aligned} & 3 \cdot \mathrm{~S}_{\mathrm{m}} \\ & 3 \cdot \mathrm{~S}_{\mathrm{m}} \end{aligned}$	疲労累積係数 $\begin{gathered} \mathrm{U}+\mathrm{U}_{\mathrm{Sd}} \\ \mathrm{U}+\mathrm{U}_{\mathrm{S}} \end{gathered}$
$\mathrm{III}_{A} \mathrm{~S}$	フランジ最小断面	$S_{\text {prm }}(S \mathrm{~d})$	27	258	－	－	－
$\mathrm{III}_{\text {A }} \mathrm{S}$		$S_{n}(S d)$	－	－	25	344	－
$\mathrm{III}_{4} \mathrm{~S}$		$\mathrm{U}+\mathrm{U}_{\mathrm{Sd}}$	－	－	－	－	0． 0000
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		$S_{p r m}$（S s）	42	344	－	－	－
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		$S_{n}(\mathrm{~S} \mathrm{~s} \mathrm{)}$	－	－	54	344	－
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		$\mathrm{U}+\mathrm{US} \mathrm{s}$	－	－	－	－	0.0000

すべて許容応力以下である。

O 2 （3）VI－2－6－3－1 R 0
2．重大事故等対処設備

機 器 名 称	設備分類	据付場所及び床面高さ （m）	固有周期（s）	弹性設計用地震動 Sd又は静的震度		基準地震動S s		最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
				水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
制御棒駆動機構	常設耐震／防止		－＊2	－	－	－＊3	$\mathrm{C}_{\mathrm{v}}=1.32$	302	－

主記 $* 1$ ：制御棒駆動機構ハウジングの取付面のレベルを示す。
＊2：固有周期は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炬内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」によるものとする。
＊3：水平方向震度により発生する荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基整の地震応答計算書」に基づき得られる値。

部材	$\begin{gathered} Z_{i} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	B 1	B 2	C_{2}	K_{2}	K。	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{m}}}$	縦弹性係数 E （ MPa ）
フランジ							114	175840＊2

＊2：最高使用温度で算出

2．3 計算数値
管に作用するモーメント

2． 4 結論

許容応力状態	最大応力評価点	最大応力区分	一次応力評価（MPa）		一次＋二次応力評価（ MPa ）		疲労評価
			$\begin{gathered} \text { 一次応力 } \\ S_{p r m}(S s) \end{gathered}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} \text { 一次 + 二次応力 } \\ S_{n}(S S s) \end{gathered}$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$	疲労累積係数 $\mathrm{U}+\mathrm{U}_{\mathrm{s}}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	フランジ最小断面	$\mathrm{S}_{\mathrm{prm}}$（S s ）	42	344	－	－	－
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		S_{n}（S s ）	－	－	54	344	－
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		$\mathrm{U}+\mathrm{U}_{\mathrm{s}} \mathrm{s}$	－	－	－	－	0． 0000

すべて許容応力以下である。

VI－2－6－3－2 制御棒駆動水圧設備の耐震性についての計算書
$\mathrm{VI}-2-6-3-2-1$ 水圧制御コニットの耐震性についての計算書

VI－2－6－3－2－1 水圧制御ユニットの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．地震応答解析及び構造強度評価 8
4.1 地震応答解析及び構造強度評価方法 8
4.2 荷重の組合せ及び許容応力 8
4．2．1 荷重の組合せ及び許容応力状態 8
4．2．2 許容応力 8
4．2．3 使用材料の許容応力評価条件 8
4.3 解析モデル及び諸元 13
4． 4 固有周期 15
4.5 設計用地震力 16
4.6 計算方法 17
4．6．1 応力の計算方法 17
4．7 計算条件 23
4.8 応力の評価 23
4．8．1 フレームの応力評価 23
4．8．2 取付ボルトの応力評価 24
5．機能維持評価 25
5.1 動的機能維持評価方法 25
6．評価結果 26
6.1 設計基準対象施設としての評価結果 26
6．2 重大事故等対処設備としての評価結果 26

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，水圧制御ユニットが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

水圧制御ユニットは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

2．一般事項
2.1 構造計画

水圧制御ユニットの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
水圧制御ユニットのフレ ームは，十分剛な支持架構に取付ボルトにより固定されている。	アキュムレータ，窒素容器，スクラムパイロ ット弁，スクラム弁，配管ユニット，計装ユ ニット等の構成部品が フレームに取付けられ た構造。	（単位：mm）

枠囲みの内容は商業機密の観点から公開できません。

2．2 評価方針

水圧制御ユニットの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し た荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す水圧制御ユニ ットの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認すること で実施する。また，制御棒駆動水圧系スクラム弁の機能維持評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき，地震時の応答加速度が動的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認す ることで実施する。確認結果を「6．評価結果」に示す。

水圧制御ユニット及び制御棒駆動水圧系スクラム弁の耐震評価フローを図 2－1 に示す。

図 2－1 水圧制御ユニット及び制御棒駆動水圧系スクラム弁の耐震評価フロー

2.3 適用基準

本評価において適用する規格•基準等を以下に示す。

- 原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
- 発電用原子力設備規格 設計•建設規格（日本機械学会，2005／2007）（以下「設計•建設規格」という。）

記号	記号の説明	単位
A	フレームの断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{b} 1}$	フレームを床に取付けるボルトの軸断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{b} 2}$	フレームの上端を支持架構に取付けるボルトの軸断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{b} 3}$	フレームの中間を支持架構に取付けるボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d ${ }_{01}$	フレームを床に取付けるボルトの呼び径	mm
do2	フレームの上端を支持架構に取付けるボルトの呼び径	mm
d ${ }_{\text {o3 }}$	フレームの中間を支持架構に取付けるボルトの呼び径	nm
E	縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3又はSSB－3133に定める値	MPa
F_{b}－	節点－の取付ボルトに作用する引張力	N
F_{x}	フレームの軸力（ x 方向）	N
F_{y}	フレームのせん断力（ y 方向）	N
F_{8}	フレームのせん断力（ z 方向）	N
f_{b}	フレームの許容曲げ応力	MPa
f c	フレームの許容圧縮応力	MPa
f	フレーム又はボルト等の許容せん断応力	MPa
$\mathrm{f}_{\mathrm{s}} \mathrm{b}$	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
f_{t}	フレーム又はボルト等の許容引張応力	MPa
f_{t} 。	引張力のみを受ける取付ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
i	断面二次半径	mm
ℓ_{1}	フレームを床に取付けるボルト間の X 軸方向の取付距離	mm
ℓ_{2}	フレームの上端を支持架構に取付けるボルト間の Z 軸方向の取付距離	mm
ℓ_{3}	フレームの上端を支持架構に取付けるボルト間のY軸方向の取付距離	mm
ℓ_{4}	フレームの中間を支持架構に取付けるボルトとサポート端との Z軸方向の距離	mm
${ }_{5}$	フレームの中間を支持架構に取付けるボルトとサポート端との Y 軸方向の距離	mm
ℓ_{k}	座屈長さ	mm

記号	記号の説明	単位
M_{x}	フレームのねじりモーメント（x軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{y}	フレームの曲げモーメント（ y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
Mz	フレームの曲げモーメント（ z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
m	水圧制御ユニット解析モデル各節点の付加質量の合計	kg
N_{1}	フレームを床に取付けるボルトの本数	－
N_{2}	フレームの上端を支持架構に取付けるボルトの本数	－
N_{3}	フレームの中間を支持架構に取付けるボルトの本数	－
Q_{b}－	節点－の取付ボルトに作用するせん断力	N
r	フレームパイプの外半径	mm
R•，R＇॰，R＂॰	節点－の取付ボルトに作用する反力	N
S	設計•建設規格 付録材料図表 Part5 表5 に定める値	MPa
Su	設計•建設規格 付録材料図表 Part5 表9 に定める値	MPa
Sy	設計•建設規格 付録材料図表 Part5 表8 に定める値	MPa
$S_{y}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表8に定める材料の	MPa
	$40^{\circ} \mathrm{C}$ における値	
X，Y，Z	絶対（節点）座標軸	－
$\mathrm{x}, \mathrm{y}, \mathrm{z}$	局所（要素）座標軸	－
Z_{p}	フレームの效じり断面係数	mm^{3}
Z y	フレームの断面係数（ y 軸）	mm ${ }^{3}$
Z ${ }_{\text {z }}$	フレームの断面係数（ z 軸）	mm^{3}
Λ	フレームの限界細長比	－
λ	フレームの有効細長比	－
v	ポアソン比	－
v^{\prime}	座屈に対する安全率	－
π	円周率	－
$\sigma_{\text {b }}$	フレームに生じる曲げ応力	MPa
σ c	フレームに生じる圧縮応力	MPa
$\sigma_{\text {f }}$	フレームに生じる組合せ応力	MPa
$\sigma \mathrm{fa}$	フレームに生じる引張応力又は圧縮応力と曲げ応力の和	MPa
σ t	フレームに生じる引張応力	MPa
$\sigma_{t \mathrm{~b}}$－	節点の取付ボルトに生じる引張応力	MPa
τ	フレームに生じるせん断応力	MPa
$\tau_{\text {b }}$ •	節点－の取付ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
質量		kg	－	－	整数位＊${ }^{*}$
長	下記以外の長さ	mm	－	－	整数位＊${ }^{*}$
さ	部材断面寸法	mm	小数点以下第 2 位＊3	四捨五入	小数点以下第 1 位＊${ }^{2}$
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
縦弾性係数		MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
計算応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊5		MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。 ＊ 3 ：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊ 4 ：絶対値が 1000 以上のときはべき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

3．評価部位

水圧制御ユニットの耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなるフレーム及び取付ボルトについて実施する。なお，水圧制御ユ ニットは，構造物として十分な剛性を有しており，支持構造物であるフレーム及び取付ボルト が健全であればスクラム機能を維持できるため，フレーム及び取付ボルトを評価対象とする。水圧制御ユニットの耐震評価部位については，表2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法
（1）水圧制御ユニットのフレームは，十分剛な壁及び床に取付ボルトにより固定されるもの とする。
（2）水圧制御ユニットの質量には，フレーム自身の質量のほか，配管ユニット，スクラムパ イロット弁，スクラム弁，方向制御弁，チェック弁，ゲート弁，アキュムレータ，窒素容器，計装ユニット及びそれらに内包する水の質量を考慮する。
（3）地震力は，水圧制御ユニットに対して水平方向及び鉛直方向から個別に作用するものと し，作用する荷重の算出において組み合わせるものとする。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）概略構造図を表2－1に示す。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
水圧制御ニニットの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力

水圧制御ユニットの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表 4－3に示す。

4．2．3 使用材料の許容応力評価条件
水圧制御ユニットの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用 いるものを表 4－4 に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	制御棒駆動 水圧設備	水圧制御ユニット	S	クラス 2 容器＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}_{\mathrm{D}}+\mathrm{Sd}^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{MD}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1: そ の$ 他の支持構造物の荷重の組合せ及び許容応力を適用する。また，クラス 2 容器の支持構造物を含む。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
			$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{Md}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
制御ユニット	常設耐震／防止	$\begin{aligned} & \text { 重大事故等*2 } \\ & \text { クラス } 2 \text { 容器 } \end{aligned}$	$\mathrm{D}+\mathrm{Psad}+\mathrm{Msad}+\mathrm{Ss}$	$\begin{aligned} & \text { (} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { として } \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \text { の許容限界を } \\ & \text { 用いる。) } \end{aligned}$

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。また，重大事故等クラス 2 容器の支持構造物を含む。
＊ $3: 「 \mathrm{D}+\mathrm{PsAD}+\mathrm{MsAD}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）	許容限界＊1，＊2 （ボルト等）	
	一次応力	一次応力	
	組合せ	引張り	せん断
$\mathrm{III}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$			

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
フレーム		周囲環境温度		－	199	360	－
		周囲環境温度		－	234	385	－
		周囲環境温度		－	234	385	－
取付ボルト		周囲環境温度		－	730	868	－

4．3 解析モデル及び諸元

水圧制御ユニットの解析モデルを図 4－1 に，解析モデルの概要を以下に示す。また，機器 の諸元を本計算書の【水圧制御ユニットの耐震性についての計算結果】の機器要目に示す。
（1）図 4－1 中○内の数字は部材番号（要素番号），数字は節点番号を示す。
（2）図 4－1 中の実線は，構造評価対象のフレーム部材及び取付ボルト，点線は構造評価対象外のスクラムパイロット弁，スクラム弁，アキュムレータ，計装ユニット，窒素容器及 び配管等を概略表示したものである。
（3）水圧制御ユニットのフレーム部材をはり要素でモデル化したFEMモデルを用いる。な お，解析モデルには評価対象であるフレーム以外の部分も，質量を考慮するためにはり要素としてモデルに含める。
（4）水圧制御ユニット解析モデル各質点の質量は，スクラムパイロット弁，スクラム弁，ア キュムレータ，計装ユニット，窒素容器及び配管等であり，実際の位置を考慮して集中質量を付加する。それらの合計は \square kg である。
（5）拘束条件は，HCUフレーム下端，中段，上端を固定（ボルトによる固定）とする。
（6）解析コードは，「S O L V E R 」を使用し，固有値と各要素に発生する荷重及びモーメン トを求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 4－1 水圧制御ユニット解析モデル（単位：mm）

4． 4 固有周期

固有値解析の結果を表 4－6 に示す。固有周期は，0．05秒以下であり，剛であることを確認 した。

表 4－6 固有値解析結果

モード	卓越方向	固有周期 (s)	水平方向刺激係数		鉛直方向
			X 方向	Y 方向	刺激係数

4.5 設計用地震力

評価に用いる設計用地震力を表4－7 及び表 4－8に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－7 設計用地震力（設計基準対象施設）

据付場所 及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } \\ & \text { (0. } 00^{*} \\ & \text { (0.P. } \\ & \hline \end{aligned}$	0． 037	0.010	$\mathrm{C}_{\mathrm{H}}=0.78$	$\mathrm{C}_{\mathrm{V}}=0.68$	$\mathrm{C}_{\mathrm{H}}=1.67$	$\mathrm{C}_{\mathrm{v}}=1.16$

注記＊：基準床レベルを示す。

表 4－8 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } \quad 6.00^{*} \\ & \text { (0.P. } 8.13 \text {) } \end{aligned}$	0． 037	0.010	－	－	$\mathrm{C}_{\mathrm{H}}=1.67$	$\mathrm{C}_{\mathrm{V}}=1.16$

注記＊：基準床レベルを示す。

4.6 計算方法

4．6．1 応力の計算方法
4．6．1．1 フレームの応力
解析による計算で得られる各要素端での軸力 F_{x} ，せん断力 $\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$ ，ねじりモ ーメント M_{x} 及び曲げモーメント $M_{y}, ~ M_{z}$ より各応力を次のように求める。
（1）引張応力又は圧縮応力
$\sigma_{\mathrm{t}}=\frac{\left|\mathrm{F}_{\mathrm{x}}\right|}{\mathrm{A}}$
$\sigma_{\mathrm{c}}=-\frac{\left|\mathrm{F}_{\mathrm{x}}\right|}{\mathrm{A}}$
（2）せん断応力

$$
\begin{equation*}
\tau=\operatorname{Max}\left\{\sqrt{\left(\frac{\left|F_{y}\right|}{A}+\frac{\left|M_{x}\right|}{Z_{p}}\right)^{2}+\left(\frac{\left|F_{z}\right|}{A}\right)^{2}} \sqrt{\left(\frac{\left|F_{z}\right|}{A}+\frac{\left|M_{x}\right|}{Z_{p}}\right)^{2}+\left(\frac{\left|F_{y}\right|}{A}\right)^{2}}\right\} \tag{4.6.1.1.3}
\end{equation*}
$$

（3）曲げ応力
鋼管の場合は，

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\sqrt{\left(\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\mathrm{Z}_{\mathrm{y}}}\right)^{2}+\left(\frac{\left|\mathrm{M}_{\mathrm{z}}\right|}{\mathrm{Z}_{\mathrm{z}}}\right)^{2}} \tag{4.6.1.1.4}
\end{equation*}
$$

形鋼の場合は，

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\left|\mathrm{M}_{\mathrm{y}}\right|}{\mathrm{Z}_{\mathrm{y}}}+\frac{\left|\mathrm{M}_{\mathrm{z}}\right|}{\mathrm{Z}_{\mathrm{z}}} \tag{4.6.1.1.5}
\end{equation*}
$$

（4）組合せ応力

$$
\begin{equation*}
\sigma_{\mathrm{f}}=\sqrt{\sigma_{\mathrm{f}}{ }^{2}+3 \cdot \tau^{2}} \tag{4.6.1.1.6}
\end{equation*}
$$

ここで，

$\sigma_{\mathrm{fa}}=\frac{\left|\mathrm{F}_{\mathrm{x}}\right|}{\mathrm{A}}+\sigma_{\mathrm{b}}$

4．6．1．2 取付ボルトの応力
取付ボルトに生じる応力は，解析による計算で得られる各要素端での軸力 F_{x} ，せ ん断力 $\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{z}}$ ，ねじりモーメント M_{x} 及び曲げモーメント $\mathrm{M}_{\mathrm{y}}, ~ \mathrm{M}_{\mathrm{z}}$ から手計算に より，地震による引張応力とせん断応力について計算する。

4．6．1．2．1 フレームを床に取付けるボルトの応力
フレームを床に取付けるボルトの概要を図 4－2 に示す。

$i=5,6$

図 4－2 水圧制御ユニットの取付ボルトに作用する力とモーメント
（1）引張応力
取付ボルトに対する引張応力は，図 4－2 に示すフレームの節点 i 及び節点 j （ここで， （ i ，j ）の組合せは（ $5, ~ 1$ ）及び（ $6, ~ 2) ~$ ）での軸力とモーメントを考え，これを取付ボ ルトで受けるものとして計算する。
a．引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{bi}}=\left|\mathrm{F}_{\mathrm{yi}}\right|+\frac{\left|\mathrm{M}_{\mathrm{z}_{\mathrm{j}}}\right|}{\ell_{1}} \tag{4.6.1.2.1.1}\\
& \mathrm{~F}_{\mathrm{bj}}=\left|\mathrm{F}_{\mathrm{yj}}\right|+\frac{\left|\mathrm{M}_{\mathrm{z}_{\mathrm{i}}}\right|}{\ell_{1}} \tag{4.6.1.2.1.2}
\end{align*}
$$

b．引張応力

$$
\begin{align*}
& \sigma_{\mathrm{tbi}}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{b} 1}} \tag{4.6.1.2.1.3}\\
& \sigma_{\mathrm{tbj}}=\frac{\mathrm{F}_{\mathrm{bj}}}{\mathrm{~A}_{\mathrm{b} 1}} \tag{4.6.1.2.1.4}
\end{align*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 1}$ は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 1}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{o} 1}^{2} \tag{4.6.1.2.1.5}
\end{equation*}
$$

（2）せん断応力
a．せん断力

$$
\begin{align*}
& Q_{b i}=\sqrt{\left|F_{x i}\right|^{2}+\left(\left|F_{z i}\right|+\frac{\left|M_{x i}\right|}{r}\right)^{2}} \tag{4.6.1.2.1.6}\\
& Q_{b j}=\sqrt{\left|F_{x j}\right|^{2},\left(\left|F_{z j}\right|+\frac{\left|M_{x j}\right|}{r}\right)^{2}} \tag{4.6.1.2.1.7}
\end{align*}
$$

b．せん断応力

$$
\begin{align*}
\tau_{b i} & =\frac{F_{s i}}{A_{b 1}} \tag{4.6.1.2.1.8}\\
\tau_{b j} & =\frac{F_{s j}}{A_{b 1}} \tag{4.6.1.2.1.9}
\end{align*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 1}$ は，（4．6．1．2．1．5）式による。

4．6．1．2．2 フレームの上端を支持架構に取付けるボルトの応力
フレームの上端を支持架構に取付けるボルトの概要を図 4－3 に示す。

図 4－3 フレームの上端を支持架構に取付けるボルト
に作用する力とモーメント
（1）引張応力
図4－3 において節点 60 及び節点 61 での反力は

$$
\begin{align*}
& R_{60}=\left|F_{x 60}\right|+\frac{\left|M_{y_{661}}\right|}{\ell_{2}} \tag{4.6.1.2.2.1}\\
& R_{61}=\left|F_{x_{61}}\right|+\frac{\left|M_{y_{60} \mid}\right|}{\ell_{2}} \tag{4.6.1.2.2.2}
\end{align*}
$$

また，実際の取付ボルトの取付状態を考慮して， $\mathrm{M}_{z 60}$ 及び $\mathrm{M}_{\mathrm{z} 61}$ による反力は

$$
\begin{align*}
& R^{\prime}{ }_{60}=\frac{\left|\mathrm{M}_{260}\right|}{\ell_{3}} \tag{4.6.1.2.2.3}\\
& \mathrm{R}^{\prime}{ }_{61}=\frac{\left|\mathrm{M}_{261}\right|}{\ell_{3}} \tag{4.6.1.2.2.4}
\end{align*}
$$

したがって，取付ボルトに作用する反力は

$$
\begin{array}{r}
R^{\prime \prime}{ }_{60}=\frac{\left|\mathrm{R}_{60}\right|}{2}+\left|\mathrm{R}^{\prime}{ }_{60}\right| \quad . \\
\mathrm{R}^{\prime \prime}{ }_{61}=\frac{\left|\mathrm{R}_{61}\right|}{2}+\left|\mathrm{R}^{\prime}{ }_{61}\right| \quad . \tag{4.6.1.2.2.6}\\
\text { よって, 取付ボルトの引張応力は }
\end{array}
$$

$\sigma_{\mathrm{tb} 60}=\frac{\mathrm{R}^{\prime \prime}{ }_{60}}{\mathrm{~A}_{\mathrm{b} 2}}$
$\sigma_{t \mathrm{~b} 61}=\frac{\mathrm{R}^{\prime \prime}{ }_{61}}{\mathrm{~A}_{\mathrm{b} 2}}$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 2}$ は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 2}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{o} 2}{ }^{2} \tag{4.6.1.2.2.9}
\end{equation*}
$$

（2）せん断応力
図 4－3 において節点 60 及び節点 61 でのせん断力は

$$
\begin{align*}
& Q_{b 60}=\sqrt{\left|F_{y_{60}}\right|^{2}+\left|F_{z 60}\right|^{2}} \tag{4.6.1.2.2.10}\\
& Q_{b 61}=\sqrt{\left|F_{y_{61}}\right|^{2}+\left|F_{z 61}\right|^{2}} \tag{4.6.1.2.2.11}
\end{align*}
$$

よって，取付ボルトのせん断応力は

$$
\begin{align*}
\tau_{\mathrm{b} 60} & =\frac{\mathrm{F}_{\mathrm{s} 60}}{2 \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.1.2.2.12}\\
\tau_{\mathrm{b} 61} & =\frac{\mathrm{F}_{\mathrm{s} 61}}{2 \cdot \mathrm{~A}_{\mathrm{b} 2}} \tag{4.6.1.2.2.13}
\end{align*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 2}$ は，（4．6．1．2．2．9）式による。

4．6．1．2．3 フレームの中間を支持架構に取付けるボルトの応力

 フレームの中間を支持架構に取付けるボルトの概要を図 4－4 に示す。

図 4－4 フレームの中間を支持架構に取付けるボルト に作用する力とモーメント
（1）引張応力
図 4－4 において節点 64 及び節点 65 での反力は

$$
\begin{align*}
& R_{64}=\left|F_{x 64}\right|+\frac{\left|M_{y_{64} \mid}\right|}{\ell_{4}} \tag{4.6.1.2.3.1}\\
& R_{65}=\left|F_{x 65}\right|+\frac{\left|M_{y_{65} \mid}\right|}{\ell_{4}} \tag{4.6.1.2.3.2}
\end{align*}
$$

また，実際の取付ボルトの取付状態を考慮して， M_{260} 及び $\mathrm{M}_{z 61}$ による反力は

$$
\begin{align*}
& \mathrm{R}^{\prime}{ }_{64}=\frac{\left|\mathrm{M}_{264}\right|}{\ell_{5}} \tag{4.6.1.2.3.3}\\
& \mathrm{R}^{\prime}{ }_{65}=\frac{\left|\mathrm{M}_{265}\right|}{\ell_{5}} \\
& \text { (4.6.1.2.3.4) }
\end{align*}
$$

したがって，取付ボルトに作用する反力は

$$
\begin{align*}
& \mathrm{R}^{\prime \prime}{ }_{64}=\mathrm{R}_{64}\left|+\left|\mathrm{R}^{\prime}{ }_{64}\right|\right. \tag{4.6.1.2.3.5}\\
& \mathrm{R}^{\prime \prime}{ }_{65}=\mathrm{R}_{65}\left|+\left|\mathrm{R}^{\prime}{ }_{65}\right|\right. \tag{4.6.1.2.3.6}
\end{align*}
$$

よって，取付ボルトの引張応力は

$$
\begin{equation*}
\sigma_{\mathrm{tb} 64}=\frac{\mathrm{R}^{\prime \prime}{ }_{64}}{\mathrm{~A}_{\mathrm{b} 3}} \tag{4.6.1.2.3.7}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{tb} 65}=\frac{\mathrm{R}^{\prime \prime}{ }_{65}}{\mathrm{~A}_{\mathrm{b} 3}} \tag{4.6.1.2.3.8}
\end{equation*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 3}$ は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b} 3}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{o} 3}^{2} \tag{4.6.1.2.3.9}
\end{equation*}
$$

（2）せん断応力
図 4－4 において節点 64 及び節点 65 でのせん断力は

$$
\begin{align*}
& Q_{b 64}=\sqrt{\left|F_{y_{64} \mid}\right|^{2}+\left|F_{z 64}\right|^{2}} \tag{4.6.1.2.3.10}\\
& Q_{b 65}=\sqrt{\left|F_{y_{65}}\right|^{2}+\left|F_{z 65}\right|^{2}} \tag{4.6.1.2.3.11}
\end{align*}
$$

となる。
よって，取付ボルトのせん断応力は

$$
\begin{align*}
\tau_{\mathrm{b} 64} & =\frac{\mathrm{F}_{\mathrm{s} 64}}{\mathrm{~A}_{\mathrm{b} 3}} \tag{4.6.1.2.3.12}\\
\tau_{\mathrm{b} 65} & =\frac{\mathrm{F}_{\mathrm{s} 65}}{\mathrm{~A}_{\mathrm{b} 3}} \tag{4.6.1.2.3.13}
\end{align*}
$$

ここで，ボルトの軸断面積 $\mathrm{A}_{\mathrm{b} 3}$ は，（4．6．1．2．3．9）式による。

4.7 計算条件

応力解析に用いる自重（水圧制御ユニット）及び荷重（地震荷重）は，本計算書の【水圧制御ユニットの耐震性についての計算結果】の設計条件及び機器要目に示す。

4.8 応力の評価

4．8．1 フレームの応力評価
4．6．1．1項で求めた各応力が下表で定めた許容応力以下であること。ただし，許容組合 せ応力は f t 以下であること。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動S s による荷重との組合せの場合
許容引張応力 f t	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$
許容圧縮応力 f 。	$\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{F}{\nu} ; 1.5$	$\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}^{*}}{v} ; 1.5$
許容せん断応力 f s	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$
許容曲げ応力 f b	$\frac{\mathrm{F}}{1.5} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5} \cdot 1.5$

$$
\begin{align*}
& \text { ただし, } \\
& \lambda=\frac{\ell_{\mathrm{k}}}{\mathrm{i}} \tag{4.8.1.1}
\end{align*}
$$

弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合

$$
\begin{equation*}
\Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}}} \tag{4.8.1.2}
\end{equation*}
$$

基準地震動S s による荷重との組合せの場合

$$
\begin{align*}
\Lambda & =\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}}} * \tag{4.8.1.3}\\
v^{\prime} & =1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2} \tag{4.8,1.4}
\end{align*}
$$

4．8．2 取付ボルトの応力評価

4．6．1．2 項で求めた取付ボルトの引張応力 $\sigma \mathrm{tb}$ は，次式より求めた許容引張応力 f t s 以下であること。ただし，f toは下表による。
$\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$
（4．8．2．1）

せん断応力 τ_{b} はせん断力のみを受ける取付ボルトの許容せん断応力 f s b 以下であるこ と。ただし，f sbは下表による。

$>$	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重と の組合せの場合
許容引張応力 f t 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}}{2} \cdot{ }^{*} 1.5$
許容せん断応力 $\mathrm{f} \mathrm{sb}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価

5.1 動的機能維持評価方法

制御棒駆動水圧系スクラム弁の動的機能維持評価について以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

制御棒駆動水圧系スクラム弁は，地震時動的機能維持が確認された機種と類似の構造で あるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用す る。機能確認済加速度を表5－1 に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
制御棒駆動水圧系スクラム弁		
（弁番号：126）		

6．評価結果

6． 1 設計基準対象施設としての評価結果
水圧制御ユニットの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していること を確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果
水圧制御ユニットの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【水圧制御ユニットの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
水圧制御ユニット	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. } 6.00^{* 1} \\ \text { (0. P. } 8.13 \text {) } \end{gathered}$	0． 037	0． 010	$\mathrm{C}_{\mathrm{H}}=0.78 * 2$	$\mathrm{C}_{\mathrm{V}}=0.68 * 2$	$\mathrm{C}_{\mathrm{H}}=1.67$	$\mathrm{C}_{\mathrm{v}}=1.16$	－	

注記 $* 1$ ：基準床レベルを示す。
＊2： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

N

部材	材料	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
フレーム		209	366	209	250
		241	394	241	276
		241	394	241	276
		764	906	634	634

材料	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	v	$\begin{gathered} \ell_{\mathrm{k}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{i} \\ (\mathrm{~mm}) \end{gathered}$	λ	Λ	v^{\prime}	

注記 $* 1$ ：弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合
＊2：基準地震動S s による荷重との組合せの場合

3.1 フレームの荷重						（単位：N）	
$\begin{aligned} & \text { 要素 } \\ & \text { 番号 } \end{aligned}$	$\begin{aligned} & \text { 節点 } \\ & \text { 番号 } \end{aligned}$	F_{x}		F_{y}		F_{2}	
		弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 S d又は静的震度	基淮地震動S s
6	5	－		－		－	
12	13	－		－		－	
23	61	－		－		－	
41	51	－		－		－	
51	22	－		－		－	
58	42	－		－		－	
59	46	－		－		－	
60	45	－		－		－	
72	63	－		－		－	
73	63	－		－		－	
75	16	－		－		－	

注：添字x，y，zは要素に与えられた座標軸で，x 軸は常に要素の長手方向にとる。

O 2 （3）VI－2－6－3－2－1 R 0

要素番号	節点番号	M_{x}		M_{y}		M ${ }_{z}$	
		弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弹性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 S d又は静的震度	基準地震動S s
6	5	－		－		－	
12	13	－		－		－	
23	61	－		－		－	
41	51	－		－		－	
51	22	－		－		－	
58	42	－		－		－	
59	46	－		－		－	
60	45	－		－		－	
72	63	－		－		－	
73	63	－		－		－	
75	16	－		－		－	

注：添字 x, y, z は要素に与えられた座標軸で，x 軸は常に要素の長手方向にとる。

注：添字 x，y，z は要素に与えられた座標軸で，全体座標系と同一の方向。

要素番号	節点番号	M_{x}		M_{y}		M_{z}	
		弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動S s
74	64	－	－	－		－	
75	65	－	－	－		－	

要素番号	節点番号	F_{b}		Q ${ }_{\text {b }}$	
		弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動S s
74	64	－		－	
75	65	－		－	

1．4 結論

1.4 .1 固有周期	（単位：s）	
モード	方向	固有周期
1 次	水平	0.037
1 次	鉛直	0.010

部材	材料	応力	$\begin{aligned} & \text { 要素 } \\ & \text { 番号 } \end{aligned}$	節点番号	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
					算出応力＊1	許容応力	算出応力	許容応力
フレーム		引張り	41	51	σ ：$=4$	f ：$=209$	σ ：$=4$	f ：$=250$
		圧縮	12	13	σ 。 $=4 * 2$	f 。 $=194$	σ 。 $=4 * 2$	f．$=229$
		せん断	6	5	$\tau \quad=12$	f ．$=120$	$\tau \quad=12$	f ，$=144$
		曲げ	23	61	σ b $=53$	$\mathrm{f}_{\mathrm{b}}=209$	σ b $=53$	$\mathrm{f}_{\mathrm{b}}=250$
		組合せ	23	61	σ ：$=56$	f．$=209$	σ ：$=56$	f ：$=250$
		引張り	75	16	σ ，$=5$	f．$=241$	σ ，$=5$	f ．$=276$
		圧縮	75	16	σ 。 $=5$＊2	f．$=240$	σ 。 $=5$＊2	f．$=276$
		せん断	58	42	$\tau \quad=13$	f ：$=139$	$\tau \quad=13$	f．$=159$
		曲げ	59	46	$\sigma_{b}=35$	$\mathrm{f}_{\mathrm{b}}=241$	$\sigma_{\square}=35$	$\mathrm{f}_{\mathrm{b}}=276$
		組合せ	60	45	$\sigma,=41$	f．$=241$	$\sigma,=41$	f．$=276$
		引張り	51	22	σ ：$=7$	f ：$=241$	σ ：$=7$	f ．$=276$
		圧縮	51	22	σ 。 $=7$＊2	f 。 $=130$	σ 。 $=7$＊2	f．$=135$
		せん断	73	63	$\tau \quad=24$	f．$=139$	$\tau \quad=24$	f．$=159$
		曲げ	72	63	$\sigma_{\circ}=215$	$\mathrm{f}_{\mathrm{b}}=241$	$\sigma_{b}=215$	$\mathrm{f}_{\mathrm{b}}=276$
		組合せ	72	63	σ ，$=219$	f．$=241$	σ ，$=219$	f．$=276$
取付ボルト		引張り	74	64	$\sigma \times 5334$	f $\mathrm{s}=475$＊3	$\sigma_{\text {tb }}=334$	$\mathrm{ff}_{1 s}=475{ }^{* 3}$
		せん断	75	65	$\tau_{\mathrm{b}}=97$	f $s_{5}=366$	$\tau_{\mathrm{b}}=97$	f s $\mathrm{b}^{\text {＝}} 366$
べて許容応力以下である。 注記 $* 1:$ 基漼地震動 s s での算出応力を記載 ＊2：絶対值を記載								

4.3 動的機能の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
制御棒駆動水圧系スクラム弁	水平方向	1． 40	6.0
（弁番号：126）	鉛直方向	0.97	6.0
制御棒駆動水圧系スクラム弁	水平方向	1． 40	6.0
（弁番号：127）	鉛直方向	0.97	6.0

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度		
水圧制御ユニット	常設耐震／防止	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00^{*} \\ \text { (0. P. 8.13) } \end{gathered}$	0.037	0.010	－	－	$\mathrm{C}_{\mathrm{H}}=1.67$	$\mathrm{C}_{\mathrm{v}}=1.16$	－	

2.2 機器要目

m (kg)	N_{1} $(-)$	N_{2} $(-)$	N_{3} $(-)$	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	ℓ_{5} $(\mathrm{~mm})$

$\stackrel{\omega}{\aleph}$

部材	材料	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
		199	360	-	239
フレーム		234	385	-	270
		234	385	-	270
		730	868	-	607

枠囲みの内容は商業機密の観点から公開できません。

材料					
要素番号	$\text { (1), } \underset{(34)}{(2)},(3) \sim(41) \sim(23)$	（58）～（61）	（74），（75）	（46）～（51）	（71）\sim（73）
A $\left(\mathrm{mm}^{2}\right)$					
$\mathrm{Z}_{\mathrm{y}}\left(\mathrm{mm}^{3}\right)$					
$\mathrm{Z}_{\mathrm{z}}\left(\mathrm{mm}^{3}\right)$					
$Z_{\mathrm{p}}\left(\mathrm{mm}^{3}\right)$					
断面形状					
$\begin{aligned} & \text { 寸法 } \\ & (\mathrm{mm}) \end{aligned}$					

2． 3 計算数値
2．3．1 フレームの荷重
（単位：N）

要素番号	節点番号	F_{x}		F_{y}		F_{z}	
		弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
6	5	－		－		－	
12	13	－		－		－	
23	61	－		－		－	
41	51	－		－		－	
51	22	－		－		－	
58	42	－		－		－	
59	46	－		－		－	
60	45	－		－		－	
72	63	－		－		－	
73	63	－		－		－	
75	16	－		－		－	

要素番号	節点	M_{x}		M_{y}		M_{2}	
		弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s
6	5	－		－		－	
12	13	－		－		－	
23	61	－		－		－	
41	51	－		－		－	
51	22	－		－		－	
58	42	－		－		－	
59	46	－		－		－	
60	45	－		－		－	
72	63	－		－		－	
73	63	－		－		－	
75	16	－		－		－	

要素番号	節点番号	F_{x}		F_{y}		F_{z}	
		弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
74	64	－		－		－	
75	65	－		－		－	

要素番号	節点番号	F_{b}		Q_{b}	
		弾性設計用地震動 S d又は静的震度	基準地震動S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s
74	64	－		－	
75	65	－		－	

2.4 結論

2.4 .1 固有周期		
モード	卓越方向	（単位 $: s$ ）
1 次周期		
1 次	水平	0.037
鉛直	0.010	

O 2 （3）VI－2－6－3－2－1 R O E

		機能維持評価用加速度＊	機能碓認済加速度
制御棒駆動水圧系スクラム弁	水平方向	1． 40	6.0
（弁番号：126）	鉛直方向	0.97	6.0
制御棒駆動水圧系スクラム弁	水平方向	1． 40	6.0
（弁番号：127）	鉛直方向	0.97	6.0

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－4 ほら酸水注入設備の耐震性についての計算書

VI－2－6－4－1 ほう酸水注入系の耐震性についての計算書

VI－2－6－4－1 ほら酸水注入系の耐震性についての計算書

VI－2－6－4－1－1 ほう酸水注入系ポンプの耐震性についての計算書
VI－2－6－4－1－2 ほう酸水注入系貯蔵タンクの耐震性についての計算書
VI－2－6－4－1－3 管の耐震性についての計算書（ほう酸水注入系）

VI－2－6－4－1－1 ほう酸水注入系ポンプの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態• 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 8
4．1 動的機能維持評価方法 8
5．評価結果 9
5.1 設計基準対象施設としての評価結果 9
5.2 重大事故等対処設備としての評価結果 9

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ほう酸水注入系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

ほう酸水注入系ポンプは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象設備及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，ほう酸水注入系ポンプは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の横軸ポンプであるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

ほら酸水注入系ポンプの構造計画を表 2－1 に示す。

表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

ほう酸水注入系ポンプの構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
ほう酸水注入系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表 3－2 に示す。

3．2．2 許容応力
ほう酸水注入系ポンプの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き，表 3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件
ほう酸水注入系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 3－4に，重大事故等対処設備の評価に用いるものを表 $3-5$ に示す。

3.3 計算条件

応力計算に用いる計算条件は，本計算書の【ほう酸水注入系ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	ほう酸水					
系統施設	注入設備					

注記 $* 1$ ：クラス 2 ポンプの支持構造物を含む。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	ほう酸水注入設備	ほう酸水注入系 ポンプ	常設耐震／防止常設／緩和	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $V_{A} \mathrm{~S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）
原子炉冷却系統施設	非常用炉心冷却設備その他原子 炉注水設備	ほう酸水注入系 ポンプ	常設耐震／防止	重大事故等 $\text { クラス } 2 \text { ポンプ*2 }$	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} \mathrm{~S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）
原子炉 格納施設	圧力低減設備そ の他の安全設備	ほう酸水注入系 ポンプ	常設／緩和	重大事故等 クラス 2 ポンプ＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：重大事故等クラス 2 ポンプの支持構造物を含む。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s} 」$ の評価に包絡されるため，評価結果の記載を省略する。

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト		周囲環境温度	50			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	50			－
減速機取付ボルト		周囲環境温度	50			－

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 （ ${ }^{\circ} \mathrm{C}$ ）		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基䂾ボルト		周囲環境温度	66			－
ポンプ取付ボルト		最高使用温度	66			－
原動機取付ボルト		周囲環境温度	66			－
減速機取付ボルト		周囲環境温度	66			－
				棶囲めの内容は商業機密の箴点から公開できません。		

4．機能維持評価

4．1 動的機能維持評価方法
ほう酸水注入系ポンプの動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性 についての計算書作成の基本方針」に記載の評価方法に基づき行う。

ほう酸水注入系ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性 であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用す る。機能確認済加速度を表 4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ポンプ	横形 3 連往復動式 ポンプ（2）	水平	3.2
		鉛直	2.0
原動機	横形ころがり 軸受電動機	水平	7.0
		鉛直	2.0

5．評価結果
5.1 設計基準対象施設としての評価結果

ほう酸水注入系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していること を確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 Sd 及 及静的震度 は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 $\mathrm{S} d$ 又 は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

ほう酸水注入系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \mathrm{R} \mathrm{O}
$$

【ほう酸水注入系ポンプの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	而震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 は静的震度		基漼地震動S s		ポンプ振動に よる震度	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	
			水平方向	鈖直方向	$\begin{aligned} & \text { 永平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鎮方方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 水平万甹向 } \\ & \text { 設計震度 } \end{aligned}$	鋁直方向設計震度			
ほう酸水注入系ポンプ	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0. P. } 22.50^{* 1} \end{aligned}$	－＊2	－＊2	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$		66	50

注記＊1：基淮床レベルを示す
＊2：固有周期は十分に小さく，計算は省略する。

予想最大両振幅 $(\mu \mathrm{m})$	ポンプ回転速度 (rpm)	原動機回転速度 (rpm)
$\mathrm{H}_{\mathrm{p}}=90$		

注記 $* 1$ ：最高使用温度で算出
＊2：周囲環境温度で算出
＊3：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の
要目を示し，下段は軸方向転倒に対する評価時の要目を示す。
1.3 計算数値

部 材	$\mathrm{F}_{\mathrm{b} i}$		Q_{b}			
	弾性設計用地震動S d又は静的震度	基準地震動 S s	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \hline \text {. } \end{aligned}$		
$\begin{gathered} \text { 基礎ボルト } \\ (\mathrm{i}=1) \end{gathered}$						
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$						
原動機取付ボルト $(\mathrm{i}=3)$						
減速機取付ボルト $(\mathrm{i}=4)$						

1．4 結論

すべて許容応力以下である。 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
1．4．2 動的機能の評価結果

		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
ポンプ	機能維持評価用加速度＊	機能確認済加速度	
	水平方向	1.77	3.2
原動機	鉛直方向	1.30	2.0
	水平方向	1.77	7.0
	鉛直方向	1.30	2.0

[^22]$$
\text { O } 2 \text { (3) VI-2-6-4-1-1 } \quad \mathrm{R} \mathrm{O}
$$

【ほう酸水注入系ポンプの耐震性についての計算結果】
2．重大事故等対処設備

2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基淮地震動S s		ポンブ振動に よる震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲噮境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鋁直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 敦計震度 } \end{aligned}$	水平方向設計震度	鈖直方向設計震度			
ほら酸水注入系ポンプ	常設耐震／防止 常設 $/$ 緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O.P. } 22.50^{* 1} \\ & \hline \end{aligned}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$		66	66

記 $* 1$ ：基淮床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する。

N

| 部 材 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

予想最大両振幅 $(\mu \mathrm{m})$	ポンプ回転速度 (rpm)	原動機回転速度 (rpm)
$\mathrm{H}_{\mathrm{p}}=90$		

注記＊1：最高使用温度で算出
＊2：周囲擐境温度で籃
＊3：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の
要目を示し，下段は軸方向転倒に対する評俩時の要目を示す
2.3 計算数値

2．3．1 ボルトに作用する力

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	$\underset{\text { S s }}{\text { 基準地震動 }}$	弾性設計用地震動 S d 又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$
$\begin{gathered} \text { 基硞ボルト } \\ (\mathrm{i}=1) \end{gathered}$				
$\begin{gathered} \text { ポンプ取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$				
$\begin{gathered} \text { 原動機取付ボルト } \\ (\mathrm{i}=3) \end{gathered}$				
減速機取付ボルト $(i=4)$				

2． 4 結論
2．4．1 ボルトの応力（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	－	－	$\sigma_{\mathrm{b} 1}=67$	$\mathrm{f}_{\mathrm{ts} 1}=202^{*}$
（ $\mathrm{i}=1)$		せん断	－	－	$\tau_{\mathrm{b} 1}=23$	$\mathrm{f}_{\text {s b } 1}=155$
ポンプ取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}_{2}}=33$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=185^{*}$
（ i＝2）		せん断	－	－	$\tau_{\mathrm{b} 2}=22$	$\mathrm{f}_{\text {s b } 2}=142$
原動機取付ボルト		引張り	－	－	$\sigma_{\text {b } 3}=16$	$\mathrm{f}_{\mathrm{ts} 3}=202^{*}$
（ $\mathrm{i}=3)$		せん断	－	－	$\tau_{\mathrm{b} 3}=9$	$\mathrm{f}_{\text {s b } 3}=155$
減速機取付ボルト		引張り	－	－	$\sigma_{\text {b } 4}=14$	$\mathrm{f}_{\mathrm{ts} 4}=202^{*}$
（ i＝4）		せん断	－	－	$\tau_{\mathrm{b} 4}=5$	$\mathrm{f}_{\text {s b } 4}=155$

すべて許容応力以下である。
注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出

動的機能の評侕結果		機能維持評価用加速度＊	機能確認済加速度
ポンプ	水平方向	1． 77	3.2
	鉛直方向	1． 30	2.0
原動機	水平方向	1． 77	7.0
	鉛直方向	1． 30	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である

O 2 （3）VI－2－6－4－1－1 R 0 E

$\left(\ell_{11} \leq \ell_{21}\right)$

$\mathrm{C} \sim \mathrm{C}$ 矢視図
（原動機取付ボルト）

D～D 矢視図
（減速機取付ボルト）

$$
\frac{\mathrm{B} ~ \mathrm{~B} \text { 矢視図 }}{(\text { ポンプ取付ボルト) }}
$$

$$
\begin{aligned}
& \text { VI-2-6-4-1-3 管の耐震性についての計算書 } \\
& \text { (ほう酸水注入系) }
\end{aligned}
$$

設計基準対象施設

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 7
3.1 計算方法 7
3.2 荷重の組合せ及び許容応力状態 8
3.3 設計条件 9
3.4 材料及び許容応力 13
3.5 設計用地震力 14
4．解析結果及び評価 24
4．1 固有周期及び設計震度 15
4． 2 評価結果 21
4．2．1 管の応力評価結果 21
4．2．2 支持構造物評価結果 22
4．2．3 弁の動的機能維持評価結果 23
4．2．4 代表モデルの選定結果及び全モデルの評価結果 24

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 4 モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （3）VI－2－6－4－1－3（設）R 0

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設分類＊${ }^{1}$	設備分類	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度分類	荷重の組合せ $* 2, * 3$	許容応力 状態
測制御系統施設	ほう酸水注入設備	ほう酸水注入系	D B	－	クラス 2 管	S	$\mathrm{I}_{\mathrm{L}}+\mathrm{S} \mathrm{d}$	$\mathrm{III}_{A} \mathrm{~S}$
							$\Pi_{L}+\mathrm{S} \mathrm{d}$	
							$\mathrm{I}_{\mathrm{L}}+\mathrm{S}$ S	
							$\mathrm{II}_{L}+\mathrm{S} \mathrm{S}$	

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：運転状態の添字Lは荷重を示す。
＊ 3 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
SLC－0 03

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	8.62	302	48.6	5.1	SUS304TP	S	175840
2	8.62	302	48.6	5.1	SUS304TP	S	175840
3	8.62	302	48.6	5.1	SUS316LTP	S	175840

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
S L C－O 03

管名称				対		応	す		る	評	価	点			
1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	77	902													
2	77	201													
3	21	22	23	24	25	26	27	28	29	30	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
	70	78	79	80	81	202	800	801	804	901					

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		21		40		55		70	
6		22		41		56		77	
7		23		42		57		78	
8		24		43		58		79	
9		25		44		59		80	
10		26		45		60		81	
11		27		46		61		800	
12		28		47		62		801	
13		29		48		63		804	
14		30		49		64		901	
15		35		50		65		902	
16		36		51		66			
17		37		52		67			
18		38		53		68			
19		39		54		69			

弁部の質量を下表に示す。
弁1

評価点	質量（kg）
201	
20	
202	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	20			

支持点及び貫通部ばね定数
鳥 瞰 図
SLC－OO3

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	5						
	＊＊ 9 ＊＊						
	11						
	15						
	＊＊ 15 ＊＊						
	18						
	＊＊ 18 ＊＊						
\sim	22						
－	＊＊ 22 ＊＊						
I	＊＊ 25 ＊＊						
9	28						
$\stackrel{N}{N}$	＊＊ 38 ＊＊						
（a）							
N	53						
	56						
	59						
	63						
	＊＊ 63 ＊＊						
	67						
	70						
	77						
	＊＊ 77 ＊＊						
	78						
	79						
	＊＊ 79 ＊＊						
	80						
	＊＊ 80 ＊＊						

\square

支持点及び貫通部ばね定数
鳥 瞰 図
SLC－OO3

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
81						
＊＊ 81 ＊＊						
＊＊ 102 ＊＊						
901						
902						
＊＊ 902 ＊＊						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）			
		S m	S y	S u	Sh
SUS304TP	302	－	126	391	－
SUS316LTP		－	104	373	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
S L C－ 003	原子炉しゃへい壁		
	原子炉本体基礎		
	原子炉格納容器		
	原子炉建屋		

O 2 （3）VI－2－6－4－1－3（設）R 0

0 y（

モード	$\begin{gathered} \text { 固 有 周 } \\ (\mathrm{s}) \end{gathered} \text { 期 }$		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。

4.2 評価結果
4．2．1 管の応力評価結果
下記に示すとおり最大応力及び疲労累積係数はそれぞれ許容値以下である。 クラス 2 以下の管

鳥瞰図	許容応力 状態	最大応力評価点	最大 応力 区分	一次応力評価（MPa）		一次＋二次応力評価（MPa）		疲労評価 疲労累積係数 US d US s
				$\begin{gathered} \text { 計算応力 } \\ \operatorname{Sprm}(\mathrm{Sd}) \\ \mathrm{Sprm}(\mathrm{~S} . \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ \text { S y *1 } \\ 0.9 \cdot \text { S u } \end{gathered}$	$\begin{aligned} & \text { 計算応力 } \\ & \text { Sn (S d) } \\ & \text { Sn (S s) } \end{aligned}$	許容応力 $\begin{aligned} & 2 \cdot \mathrm{~S} y \\ & 2 \cdot \mathrm{~S} y \end{aligned}$	
SLC－0 03	$\begin{aligned} & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{III}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{IV} \mathrm{~A}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} \hline \text { Sprm (Sd) } \\ \text { Sn (Sd) } \\ \text { Sprm(S s) } \\ \text { Sn (S s) } \end{gathered}$	86 － 133	$\begin{gathered} 112 \\ - \\ 335 \end{gathered}$	$\begin{gathered} 114 \\ - \\ 209 * \end{gathered}$	$\begin{gathered} 208 \\ - \\ 208 \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ 0.0001 \end{gathered}$

注記＊：許容応力を超える計算応力に対して付記する。
＊1：オーステナイト系ステンレス鋼及び高ニッケル合金については，S yと 1．2•Shのうち大きい方とする。
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

支持構造物番号	種類	型式	材質 温度 ${ }^{\text {C }}$ ）	評価結果	
				計算 荷重 （kN）	許容 荷重 （kN）
SLC－001－970S	メカニカルスナッバ	NMB－003－125	添付書類「VI－2－1－12－1配管及び支持構造物の耐震計算について」参照	3	11
SLC－002－054BA	ロッドレストレイント	RST－S1		4	16

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
SLC－002－033R	レストレイント	架構	SS400	40	0	5	1	－	－	－	組合せ	212	280
SLC－003－070A	アンカ	ラグ	SUS304	302	6	2	2	$488 \mathrm{~N} \cdot \mathrm{~m}$	$368 \mathrm{~N} \cdot \mathrm{~m}$	$1018 \mathrm{~N} \cdot \mathrm{~m}$	曲げ	127	395

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （ MPa ）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 以下の管）

No．	配管モデル	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$					許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次応力					一次＋二次応力＊					疲労評価		
		評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代 表	評 価 点	計算 応力 （MPa）	許容 応力 （ MPa ）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労 累積 係数	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
1	SLC－001	83	109	188	1． 72	－	83	142	431	3.03	－	74	189	376	1.98	－	－	－	－
2	SLC－002	38	100	132	1． 32	－	38	138	351	2.54	－	38	215	252	1.17	－	－	－	－
3	SLC－003	50	86	112	1．30	\bigcirc	50	133	335	2.51	\bigcirc	50	209	208	0.99	\bigcirc	50	0.0001	\bigcirc
4	SLC－004	34	78	112	1． 43	－	1	111	335	3.01	－	4	175	208	1.18	－	－	－	－

注記＊： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力の許容値は $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ と同様であることから，地震荷重が大きい $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次十二次応力裕度最小を代表とする。

重大事故等対処設備

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 7
3.1 計算方法 7
3.2 荷重の組合せ及び許容応力状態 8
3.3 設計条件 9
3.4 材料及び許容応力 13
3.5 設計用地震力 14
4．解析結果及び評価 15
4．1 固有周期及び設計震度 15
4． 2 評価結果 21
4．2．1 管の応力評価結果 21
4．2．2 支持構造物評価結果 22
4．2．3 弁の動的機能維持評価結果 23
4．2．4 代表モデルの選定結果及び全モデルの評価結果 24

1．概要
本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 4 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

O 2 （3）VI－2－6－4－1－3（重）R 0

ほう酸水注入系概略系統図

鳥瞰図記号凡例

記 号

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「 I S A P」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態

施設名称	設備名称	系統名称	施設 分類＊${ }^{*}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度分類	荷重の組合せ＊3，＊${ }^{\text {a }}$	許容応力状態＊5
計測制御系統施設	ほう酸水注入設備	ほう酸水注入系	S A	常設耐震／防止常設／緩和	重大事故等ク ラス2管	－	$\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$	
							$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
原子炉冷却系統施設	非常用炉心冷却設備 その他原子炉注水設備	ほう酸水注入系	S A	常設耐震／防止	重大事故等ク ラス 2 管	－	$\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$	
							$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	
原子炉格納施設	圧力低減設備 その他の安全設備	ほう酸水注入系	S A	常設／緩和	重大事故等ク ラス 2 管	－	$\mathrm{V}_{\mathrm{L}}(\mathrm{L})+\mathrm{S} \mathrm{d}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
							$\mathrm{V}_{\mathrm{L}}(\mathrm{LL})+\mathrm{S} \mathrm{s}$	
							$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	

[^23]
3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図
SLC－0 03

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{(} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	10.34	315	48.6	5.1	SUS304TP	-	174800
2	10.34	315	48.6	5.1	SUS304TP	-	174800
3	10.34	315	48.6	5.1	SUS316LTP	-	174800

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
S L C－O 03

管名称				対		応	す		る	評	価	点			
1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	77	902													
2	77	201													
3	21	22	23	24	25	26	27	28	29	30	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69
	70	78	79	80	81	202	800	801	804	901					

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
5		21		40		55		70	
6		22		41		56		77	
7		23		42		57		78	
8		24		43		58		79	
9		25		44		59		80	
10		26		45		60		81	
11		27		46		61		800	
12		28		47		62		801	
13		29		48		63		804	
14		30		49		64		901	
15		35		50		65		902	
16		36		51		66			
17		37		52		67			
18		38		53		68			
19		39		54		69			

弁部の質量を下表に示す。
弁1

評価点	質量（kg）
201	
20	
202	

并部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	20			

支持点及び貫通部ばね定数
鳥 瞰 図
SLC－OO3

支持点部のばね定数を下表に示す。

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	5						
	＊＊ 9 ＊＊						
	11						
	15						
	＊＊ 15 ＊＊						
	18						
	＊＊ 18 ＊＊						
4	22						
\bigcirc	＊＊ 22 ＊＊						
I	＊＊ 25 ＊＊						
φ	28						
5	＊＊38＊＊						
（c）							
\sim	53						
	56						
	59						
	63						
	＊＊ 63 ＊＊						
	67						
	70						
	77						
	＊＊ $77 * *$						
	78						
	79						
	＊＊79＊＊						
	80						
	＊＊ 80 ＊＊						

支持点及び貫通部ばね定数
鳥 瞰 図
SLC－OO3

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
81						
＊＊ 81 ＊＊						
＊＊ 102 ＊＊						
901						
902						
＊＊ 902 ＊＊						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 （ ${ }^{\circ} \mathrm{C}$ ）	許容応力（MPa）			
		S m	S y	S u	Sh
SUS304TP	315	－	125	391	－
SUS316LTP		－	103	373	－

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥 瞰 図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
S L C－ 003	原子炉しやへい壁		
	原子炉本体基礎		
	原子炉格納容器		
	原子炉建屋		

O 2 （3）VI－2－6－4－1－3（重）R 0

> 4. 解析結果及び評価
> 4.1 固有周期及び設計震度
> 注記 $* 1$: 各モードの固有周期に対し, 設計用床応答曲線より得られる震度を示す。
> $\begin{aligned} & * 3: ~ \mathrm{~S} \mathrm{~d} \text { 又は } \mathrm{S} \mathrm{s} \text { 地震動に基づく設計用最大床応答加速度より定めた震度を示す。 } \\ & * 4: 3.6 \mathrm{C}_{\mathrm{I}} \text { 及び } 1.2 \mathrm{C}_{\mathrm{V}} \text { より定めた震度を示す。 }\end{aligned}$
0 y（重）$\varepsilon-$－- －$-9-Z-I \Lambda$（8）\quad O

モード	固 有 周 期		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次ページ以降に示す。
O 2 (3) $\mathrm{VI}-2-6-4-1-3$ (重) R 0
4． 2 評価結果
4．2．1 管の応力評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力 区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \text { Sprm(S s) } \end{gathered}$	許容応力 0． $9 \cdot \mathrm{~S} \mathrm{u}$	$\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn}(\mathrm{~S} \text { s) } \end{aligned}$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
S L C－0 03	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{gathered} \text { Sprm(S s) } \\ \text { Sn }(S \mathrm{~s}) \end{gathered}$	$\begin{gathered} 136 \\ - \end{gathered}$	$\begin{aligned} & 335 \\ & - \end{aligned}$	$211 *$	206	0.0001

[^24]下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	評価結果	
支持構造物番号					計算 荷重 （kN）	許容 荷重 （kN）
SLC－001－970S	メカニカルスナッバ	NMB－003－125	添付書類「VI－2－1－12－1 配管及び支持構造物の耐震計算について」参照		3	11
SLC－002－054BA	ロッドレストレイント	RST－S1			4	16

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
SLC－002－033R	レストレイント	架構	SS400	66	0	5	2	－	－	－	組合せ	212	270
SLC－003－070A	アンカ	ラグ	SUS304	315	6	2	2	$488 \mathrm{~N} \cdot \mathrm{~m}$	$368 \mathrm{~N} \cdot \mathrm{~m}$	$1016 \mathrm{~N} \cdot \mathrm{~m}$	曲げ	127	391

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （ MPa ）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

		出車	｜	｜	\bigcirc	｜
		次 腹 寝紫 㽤 整	1	1	\square 0 0	｜
		荋进顷	｜	｜	\bigcirc	｜
		出岳	｜	｜	\bigcirc	｜
		烄	$\begin{aligned} & \infty \\ & \stackrel{\infty}{-} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\rightleftarrows}$	$\begin{aligned} & \hat{o} \\ & \dot{0} \end{aligned}$	$\stackrel{\sim}{\sim}$
			$\underset{\sim}{\bullet}$	$\stackrel{\circ}{\stackrel{\circ}{\mathrm{N}}}$	© ơ	¢
			$\stackrel{\infty}{\infty}$	$\stackrel{10}{\sim}$	$\stackrel{\rightharpoonup}{\text { a }}$	$\stackrel{10}{\sim}$
		沙遇沵	せ	∞	\bigcirc	H
	令	出車	｜	｜	\bigcirc	｜
		烄	$\stackrel{O}{\stackrel{O}{\infty}}$	$\begin{aligned} & \circ \\ & \stackrel{0}{1} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \text { i } \end{aligned}$	$\begin{aligned} & \theta_{1} \\ & \dot{\sim} \end{aligned}$
			$\stackrel{\rightharpoonup}{7}$	Vo	들	した
			$\stackrel{\sim}{\square}$	언	$\stackrel{\sim}{\sim}$	$\stackrel{m}{=}$
		媼遇沵	∞	∞	\bigcirc	－
			$\stackrel{\rightharpoonup}{8}$ \vdots \vdots 	$$	$\begin{aligned} & \cong \\ & \vdots \\ & \vdots \\ & \underset{\sim}{3} \end{aligned}$	
		$\dot{8}$	\square	\sim	\cdots	H

VI－2－6－5 計測装置の耐震性についての計算書

目 次

VI－2－6－5－1 起動領域計測装置及び出力領域計測装置の耐震性についての計算書
VI－2－6－5－2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－3 原子炉圧力容器本体内の圧力又は水位を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素ガス濃度を計測する装置 （常設）の耐震性についての計算書

VI－2－6－5－6 原子炉冷却材再循環流量を計測する装置の耐震性についての計算書
VI－2－6－5－7 原子炉格納容器本体への泠却材流量を計測する装置の耐震性についての計算書
VI－2－6－5－8 原子炉格納容器本体の水位を計測する装置の耐震性についての計算書
VI－2－6－5－9 原子炉建屋内の水素ガス濃度を計測する装置の耐震性についての計算書

VI－2－6－5－1 起動領域計測装置及び出力領域計測装置の耐震性についての計算書

VI－2－6－5－1－1 起動領域モニタの耐震性についての計算書 VI－2－6－5－1－2 出力領域モニタの耐震性についての計算書

VI－2－6－5－1－1 起動領域モニタの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 9
4．1 固有値解析方法 9
4．2解析モデル及び諸元 9
4．3 固有値解析結果 11
5．地震応答解析及び構造強度評価 12
5.1 地震応答解析方法 12
5.2 構造強度評価方法 14
5.3 荷重の組合せ及び許容応力 14
5．3．1 荷重の組合せ及び許容応力状態 14
5．3．2 許容応力 14
5．3．3 使用材料の許容応力評価条件 14
5．3．4溶接部の継手効率 14
5.4 設計用地震力 18
5.5 計算方法 20
5．5．1 応力の計算方法 20
5.6 計算条件 25
5．6．1 起動領域モニタの応力計算条件 25
5.7 応力の評価 25
5．7．1 パイプの応力評価 25
6．評価結果 26
6.1 設計基準対象施設としての評価結果 26
6.2 重大事故等対処設備としての評価結果 26
7．引用文献 26

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，起動領域モニタが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

起動領域モニタは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2． 1 構造計画
起動領域モニタの構造計画を表2－1に示す。

計画の概要		概略構造図		
基礎•支持構造	主体構造			
検出器は，起動領域モニ タドライチューブに内包 され，炉心領域に設置さ れる。 起動領域モニタドライチ ユーブは，上端を上部格子板の穴に挿入し，プラ ンジャ（ばね）により支持され，下端部は中性子束計測案内管に炉心支持板位置でリングにより支持される。 炉心支持板より下方で は，中性子束計測案内管及び中性子束計測ハウジ ングでガイドされ，中性子束計測ハウジング下端 に取り付けられたフラン ジに固定される。	核分裂電離箱 （起動領域モニタ ドライチューブは 外径 \square の長 尺円筒形の炉内構造物である。）	【起動領域モニタ】		（単位：mm）

2.2 評価方針

起動領域モニタの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す起動領域モニタの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力，死荷重及び外圧による応力が許容限界内に収まることを，「5．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。確認結果を「6．評価結果」に示す。起動領域モニタの耐震評価フローを図2－1 に示す。

図 2－1 起動領域モニタの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A	断面積	mm^{2}
D i	内径	mm
D 。	外径	mm
E	縦弾性係数	MPa
F_{E}	応力評価点のせん断力	N
H	水平力	N
I	断面二次モーメント	mm^{4}
L	リングからプランジャ先端までの長さ	mm
l	リングからチャンネルボックスに接触する点までの距離	mm
e＇	リングから応力評価点までの距離	mm
M_{E}	応力評価点の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{P}_{\text {в }}$	チャンネルボックスからの支持反力	N
P 。	外圧	MPa
S_{12}	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S_{23}	主応力差 $\sigma_{2}-\sigma_{3}$	MPa
S_{31}	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
Sm	設計応力強さ 設計•建設規格 付録材料図表 Part5表1に定める値	MPa
S u	設計引張強さ 設計•建設規格 付録材料図表 Part5表 9 に定める値	MPa
$\mathrm{V}_{\text {D }}$	死荷重による鉛直力	N
V s	地震荷重による鉛直力	N
w	等分布荷重	N / mm
Y	外径と内径の比	－
δ D	設計たわみ量	mm
η	溶接部の継手効率	－
v	ポアソン比	－
σ_{1}	主応力	MPa
σ_{2}	主応力	MPa
$\sigma 3$	主応力	MPa
$\sigma \ell$	軸方向応力	MPa
σ r	半径方向応力	MPa
$\sigma \mathrm{t}$	周方向応力	MPa
$\tau \ell r$	せん断応力	MPa
$\tau \mathrm{r} \mathrm{t}$	せん断応力	MPa
τ t ℓ	せん断応力	MPa

2.5 計算精度と数値の丸め方

精度は有効数字 6 桁以上を確保する。表示する数値の丸め方は，表2－2 に示すとおり とする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第1位を切り捨て，整数位ま での値とする。

3．評価部位
起動領域モニタの耐震評価は，「5．2 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなるパイプについて実施する。起動領域モニタの耐震評価部位を図 3－1 に示 す。

なお，応力評価点は構造の不連続を考慮して応力の最も厳しい箇所を選び，応力評価点 を含む断面を，応力評価面と呼ぶ。

また，地震荷重による応力が極大となる方位の応力評価点は（P01）と表し，極小とな る方位の応力評価点にはプライム（＇）を付けて（P01＇）と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

図 3－1 形状•寸法•材料•応力評価点（単位：mm）

4．固有周期
4．1 固有値解析方法
起動領域モニタの固有値解析方法を以下に示す。
（1）起動領域モニタは，「4．2解析モデル及び諸元」に示す三次元はりモデルとして考 える。

4．2解析モデル及び諸元

起動領域モニタの解析モデルを図 4－1に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【起動領域モニタの耐震性についての計算結果】のその他の機器要目に示す。
（1）強度上重要で，耐震上の条件が最も厳しくなる炉心支持板と上部格子板間の起動領域モニタドライチューブをモデル化する。
（2）
（3）
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「 N A S T R A N 」を使用し，固有値を求める。なお，評価に用い る解析コードの検証及び妥当性評価等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。
\square
図 4－1 起動領域モニタ解析モデル

4． 3 固有値解析結果

固有値解析の結果を表4－1に，振動モード図を図4－2 に示す。
また，鉛直方向の固有周期は 0.05 秒以下であり，剛であることを確認した。
なお，各次数の振動モード図（刺激関数モード）は，各節点において，各次数の刺激係数の絶対値に振動モードを乗じて求めた刺激関数を，最大の刺激関数（1次）で正規化 したものである。

表 4－1 固有値解析結果

モード	卓越方向	固有周期 (s)	刺激係数＊1	
			水平方向＊2	鉛直方向
1 次	水平			-
2 次	水平			-
3 次	水平			-

注記＊1：固有値解析より得られる各次数の刺激係数に振動モードの最大値を乗 じて求めた刺激関数を示す。
＊2：X方向と Y 方向は同一である。

図 4－2 振動モード図（刺激関数モード）

5．地震応答解析及び構造強度評価
5.1 地震応答解析方法

4． 2 項（1）～（4）のほか，次の条件で計算する。
動的応答加速度は，スペクトルモーダル法により求めた応答加速度に，保守的に支持点の加速度（動的加速度と静的加速度の包絡値）を加えて求める。起動領域モニタの動的応答加速度分布図を図5－1 及び図5－2 に示す。
\square

図 5－1 動的応答加速度分布図（弾性設計用地震動 S d）

図 5－2 動的応答加速度分布図（基準地震動 S s ）

5.2 構造強度評価方法

4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，起動領域モニタに対して，水平方向及び鉛直方向から作用するものと する。

5.3 荷重の組合せ及び許容応力

5．3．1 荷重の組合せ及び許容応力状態

起動領域モニタの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1 に，重大事故等対処設備の評価に用いるものを表5－2 に示す。

5．3．2 許容応力
起動領域モニタの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 5－3 のとおりとする。

5．3．3 使用材料の許容応力評価条件

起動領域モニタの使用材料の許容応力評価条件のうち設計基準対象施設の評価 に用いるものを表 5－4 に，重大事故等対処設備の評価に用いるものを表 5－5 に示 す。

5．3．4 溶接部の継手効率

応力評価点は，溶接部でないため η \square を用いる。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度 分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $~$ ：原子炉圧力容器内部に位置するため，炉内構造物の荷重の組合せ及び許容応力を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
		起動領域モニタ	常設耐震／防止	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置				$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許容 } \\ \text { 限界を用いる。) } \\ \hline \end{gathered}$

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊ 2 ：原子炉圧力容器内部に位置するため，炉内構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

O 2 （3）VI－2－6－5－1－1 R 0

表 5－3 許容応力（炉内構造物）

許容応力状態	許容限界＊(ボルト等以外)	
	一次一般膜応力	一次一般膜 + 一次曲げ応力
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{Sm}_{\text {m }}$	左欄の 1.5 倍の値
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV } \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	ただし，オーステナイト系ステンレス鋼及び高ニッケル合金については $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \text { と } 2.4 \cdot \mathrm{~S}_{\mathrm{m}} \text { の小さい方。 }$	左欄の 1.5 倍の値

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

5.4 設計用地震力

耐震評価に用いる設計用地震力を表5－6及び表5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表5－6に示す。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及び 床面高さ（m）		原子炉格納容器内 0．P．6． 00 （0．P．16． $885{ }^{* 1}$ ）					
固有周期（s）＊2		水平		鉛直： 0.05 以下			
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度＊3		応答鉛直震度＊${ }^{2}$	応答水平震度＊${ }^{4}$		応答鉛直震度＊3
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次		8.17	8． 17	－	19.22	19． 22	－
2 次		7． 70	7． 70	－	14.86	14.86	－
3 次		－	－	－	－	－	－
動的地震力＊5		1． 47	1． 90	0.86	2.63	3． 08	1． 48
静的地震力＊6		0.91	0.92	0.29	－	－	－

注記 $* 1$ ：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：各モードの固有周期に対し，設計用床応答曲線（S d）より得られる震度を示す。 ＊4：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。 ＊5：S s 又は S d に基づく設計用最大応答加速度より定めた震度を示す。
＊ 6 ：静的震度（3．6•Ci 及び $1.2 \cdot \mathrm{Cv}$ ）を示す。

表 5－7 設計用地震力（重大事故等対処設備）

	据付場所及び 床面高さ（m）		原子炉格納容器内 0．P． 6.00 （0．P．16． $885^{* 1}$ ）					
	固有	（ s$)^{* 2}$		水平		分直： 0 。	以下	
	減衰	（\％）			平 ： 1.0	鉛直		
				計用地震 は静的震	$\text { 力 } S d$		地震動	
		固有周期	応答水	平震度	応答鉛直	応答水	震度＊3	応答鉛直
	ート	(s)	NS 方向	EW 方向	震度	NS 方向	EW 方向	震度＊2
	1 次		－	－	－	19.22	19.22	－
	2 次		－	－	－	14.86	14.86	－
	3 次		－	－	－	－	－	－
	動的地震力＊4		－	－	－	2.63	3.08	1． 48
$\begin{aligned} & 0 \\ & \sim \end{aligned}$	静的地震力		－	－	－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：各モードの固有周期に対し，設計用床応答曲線（S S ）より得られる震度を示す。 ＊ $4: ~ \mathrm{~S}$ s に基づく設計用最大応答加速度より定めた震度を示す。

5.5 計算方法

5．5．1 応力の計算方法
起動領域モニタの応力計算における，応力の記号とその方向は，以下のとおりと する。
σ_{t} ：周方向応力
$\sigma \ell$ ：軸方向応力
σ r ：半径方向応力
τ te：せん断応力

表 5－8 起動領域モニタに作用する外圧

許容応力状態	外圧
	P_{0}
	（ MPa ）
III ${ }_{\text {A }} \mathrm{S}$	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	

表 5－9 起動領域モニタに作用する死荷重

$*$ 荷重名称	鉛直力＊1

注記 $* 1$ ：検出器質量を考慮する。

表 5－10 起動領域モニタに作用する地震荷重

荷重名称	鉛直力＊${ }^{\text {1 }}$	水平力 $* 1, * 2$	地震時 起動領域モニタ設計たわみ量＊3
	$\begin{aligned} & \mathrm{V}_{\mathrm{s}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \delta_{\mathrm{D}} \\ (\mathrm{~mm}) \end{gathered}$
弾性設計用地震動 S d又は静的地震力			
基準地震動 S s			

注記 $~ * ~ 1: ~$ 検出器質量を考慮する。
＊ 2 ：水平力 Hは質量と動的応答加速度の積であり起動領域モニタに一様に加わる。 ＊3：燃料集合体の相対変位（地震時たわみ量）及び水平移動量と起動領域モニタの移動量の合計。燃料集合体の相対変位は添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎 の地震応答計算書」に基づき設定する。

5．5．1．1 外圧による応力

（1）一次一般膜応力
外圧 P。による一次一般膜応力は，下式により計算する。

$$
\begin{align*}
& \sigma_{\mathrm{t}}=-\frac{\mathrm{Y}}{\mathrm{Y}-1} \cdot \mathrm{P}_{0} \tag{5.5.1.1.1}\\
& \sigma_{\mathrm{e}}=-\frac{\mathrm{Y}^{2}}{\mathrm{Y}^{2}-1} \cdot \mathrm{P}_{0} \\
& \sigma_{\mathrm{r}}=-\frac{\mathrm{Y}}{\mathrm{Y}+1} \cdot \mathrm{P}_{0} \tag{5.5.1.1.3}
\end{align*}
$$

ここで，外径と内径の比 Y は次式により求める。
$Y=\frac{D_{o}}{D_{i}}$

（2）一次一般膜＋一次曲げ応力
外圧 P 。による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

5．5．1．2 死荷重による応力
死荷重による応力は，下式により計算する。

$$
\begin{equation*}
\sigma_{e}=-\frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{~A}} \tag{5.5.1.2.1}
\end{equation*}
$$

5．5．1．3 地震荷重による応力

（1）水平方向地震荷重による応力

応力計算モデルを，図 5－3に示す。

求める。

$$
\begin{align*}
& \mathrm{M}_{\mathrm{E}}=\mathrm{P}_{\mathrm{B}} \cdot\left(l-\ell^{\prime}\right)-\frac{1}{2} \cdot \mathrm{w} \cdot\left(l-\ell^{\prime}\right)^{2} \tag{5,5,1,3,1}\\
& \mathrm{~F}_{\mathrm{E}}=\mathrm{w} \cdot\left(l-\ell^{\prime}\right)-\mathrm{P}_{\mathrm{B}} \quad \cdots \cdots \cdots \tag{5.5.1.3.2}
\end{align*}
$$

ここで， $\mathrm{P}_{\mathrm{B}}, \mathrm{w}, ~ \ell$ は下式により求める。

$$
\begin{equation*}
\mathrm{P}_{\mathrm{B}}=\frac{\mathrm{w} \cdot \ell}{3} \tag{5.5.1.3.3}
\end{equation*}
$$

$\mathrm{w}=\frac{\mathrm{H}}{\mathrm{L}}$
（5．5．1．3．4）

$$
\begin{equation*}
\ell=\left(\frac{72 \cdot \delta_{\mathrm{D}} \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{w}}\right)^{\frac{1}{4}} \tag{5.5,1.3.5}
\end{equation*}
$$

したがって，応力評価点に生じる一次曲げ応力は，次式により計算する。

$$
\begin{equation*}
\sigma_{\ell}= \pm \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{I}} \cdot \frac{\mathrm{D}_{\mathrm{o}}}{2} \tag{5.5.1.3.6}
\end{equation*}
$$

また，応力評価点に生じる一次一般膜応力は，次式により計算する。

$$
\begin{equation*}
\tau_{\mathrm{t} \ell}= \pm \frac{\mathrm{F}}{\mathrm{E}} \tag{5.5.1.3.7}
\end{equation*}
$$

（2）鉛直方向地震荷重による応力
鉛直方向地震荷重による応力は，次式により計算する。

$$
\sigma_{\ell}=-\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~A}} \cdots \cdot(5.5 .1 .3 .8)
$$

図 5－3 地震荷重による応力の計算モデル

5．5．1．4 主応力及び応力強さ

（1）主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。組合せ応力は，一般に $\sigma_{\mathrm{t}}, \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{rt}}$ の 6 成分を持つ が，主応力 σ は，引用文献（1）の $1 \cdot 3 \cdot 6$ 項により，次式を満足する 3 根 $\sigma 1$ ， （ 2，σ_{3} として計算する。

$$
\begin{align*}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell^{2}}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{r}}{ }^{2}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\ell} \cdot \sigma_{\ell \mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}{ }^{2} \sigma_{\ell} \cdot \tau_{\mathrm{r}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell}{ }^{2}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0 \cdots \cdots \cdots \cdots \cdots(5.5 .1 .4 .1) \tag{5.5.1.4.1}
\end{align*}
$$

（2）応力強さ
以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{align*}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \text { (5.5.1.4.2) } \\
& \mathrm{S}_{23}=\sigma_{2}-\sigma_{3} \\
& \text { (5.5.1.4.3) } \\
& \mathrm{S}_{31}=\sigma_{3}-\sigma_{1} \tag{5,5,1.4.4}
\end{align*}
$$

5.6 計算条件

5．6．1 起動領域モニタの応力計算条件
応力計算に用いる計算条件は，本計算書の【起動領域モニタの耐震性について の計算結果】の設計条件及び機器要目に示す。

5．7 応力の評価
5．7．1 パイプの応力評価
5．5．1 項で求めたパイプの各応力強さが下表で定めた許容応力以下であること。

		弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動S s による 荷重との組合せの場合
$\begin{aligned} & 0 \\ & \simeq \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{1} \\ & 0 \end{aligned}$	$\begin{gathered} \text { 一次一般膜応力 } \\ \text { の許容応力 } \end{gathered}$	$1.5 \cdot \mathrm{Sm}_{\mathrm{m}}$	$2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ ただし，オーステナイト系ステン レス鋼及び高ニッケル合金につい ては $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ と $2.4 \cdot \mathrm{~S}_{\mathrm{m}}$ の小 さい方。
$\begin{aligned} & 5 \\ & \text { © } \\ & \sim \\ & 0 \end{aligned}$	- 次一般膜＋ - 次曲げ応力 の許容応力	上欄の 1.5 倍の値	上欄の 1.5 倍の値

6．評価結果
6.1 設計基準対象施設としての評価結果

起動領域モニタの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

6．2重大事故等対処設備としての評価結果
起動領域モニタの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

7．引用文献
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

【起動領域モニタの耐震性についての計算結果】
1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び床面高さ（m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		流体の最高温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$		外圧（MPa）	
			水平 方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	${ }_{\text {III }}^{4} \mathrm{~S}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{III}_{4} \mathrm{~S}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
起動領域モニタ	S	$\begin{gathered} \text { 原子炉格納容器内 } \\ 0 . \quad \\ \left(0 . \text { P. } \quad 16.885^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=1.90 \\ \text { 又は } * 2 \end{gathered}$	$\mathrm{C}_{\mathrm{v}}=0.86$	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=3.08 \\ \text { 又は } * 3 \end{gathered}$	$\mathrm{C}_{\mathrm{v}}=1.48$				

注記＊1：基準床レベルを示す。
＊ 2 ：弾性設計用地震動 S d 又は静的震度に基づく設計用床応答曲線から得られる値。
＊3：基準地震動 S s に基づく設計用床応答曲線から得られる値。

N

1． 4 結論

部材	材料	応力	応力評価面	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
				算出応力	許容応力	算出応力	許容応力
パイプ	一次一般膜応力強さ		P01，P02	33	179	34	284
			P01＇，P02＇	33	179	34	284
		一次一般膜 + 一次曲げ 応力強さ	P01，P02	195	268	345	427
			P01＇，P02＇	198	268	348	427

すべて許容応力以下である。
∞
1.5 その他の機器要目
（1）材料物性値

項目	記号	単位	入力値
材質	-	-	
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	
継手効率	η	-	

（2）部材の断面性状

部材番号	長さ (mm)	せん断断面積 $\left(\mathrm{mm}^{2}\right)$	断面二次モーメント $\left(\mathrm{mm}^{4}\right)$

枠囲みの内容は商業機密の観点から公開できません。

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ（m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\left\lvert\, \begin{gathered}\text { 流体の最高温度 } \\ \left({ }^{\circ} \mathrm{C}\right)\end{gathered}\right.$	外压（MPa）
			$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$	$\mathrm{V}_{A} \mathrm{~S}$
起動領域モニタ	常設耐震 ／防止	$\begin{gathered} \text { 原子炬格納容器内 } \\ 0 . \quad \\ \left(0 . \text { P. } 16.885^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}=3.08 \\ \text { 又は } * 2 \end{gathered}$	$\mathrm{C}_{\mathrm{v}}=1.48$		

注記＊1：基準床レベルを示す。
＊ 2 ：基準地震動 S s に基づく設計用床応答曲線から得られる値。

部材	$\begin{aligned} & \mathrm{V}_{\mathrm{D}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { D o } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \text { A } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \text { I } \\ \left(\mathrm{mm}^{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & e^{\prime} \\ & (\mathrm{mm}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$
パイプ										

	$\mathrm{V}_{\mathrm{s}}(\mathrm{N})$		$\mathrm{H}(\mathrm{N}) *$		$\delta_{\text {D }}(\mathrm{mm})$		w（ N / mm ）	
部材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
パイプ	－		－		－		－	

注記＊：各節点の水平力の合計

	$\ell(\mathrm{mm})$		$\mathrm{P}_{\mathrm{B}}(\mathrm{N})$		$\mathrm{F}_{\mathrm{E}}(\mathrm{N})$		$\mathrm{M}_{\mathrm{E}}(\mathrm{N} \cdot \mathrm{mm})$	
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s
パイプ	－		－		－		－	

2． 4 結論

部材	材料	応力	応力評価面	弹性設計用地震動 S d 又 は静的震度		基準地震動 S s	
				算出応力	許容応力	算出応力	許容応力
パイプ	一次一般膜応力強さ		P01，P02	－	－	42	282
			P01＇，P02＇	－	－	42	282
		一次一般膜 + 一次曲げ 応力強さ	P01，P02	－	－	349	424
			P01＇，P02	－	－	352	424

すべて許容応力以下である。
2.5 その他の機器要目

（1）材料物性値			
項目	記号	単位	入力値
材質	-	-	
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	
継手効率	η	-	

（2）部材の断面性状

部材番号	長さ (mm)	せん断断面積 $\left(\mathrm{mm}^{2}\right)$	断面二次モーメント $\left(\mathrm{mm}^{4}\right)$

VI－2－6－5－1－2 出力領域モニタの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 9
4．1 固有値解析方法 9
4．2解析モデル及び諸元 9
4．3 固有値解析結果 11
5．地震応答解析及び構造強度評価 12
5.1 地震応答解析方法 12
5.2 構造強度評価方法 14
5.3 荷重の組合せ及び許容応力 14
5．3．1 荷重の組合せ及び許容応力状態 14
5．3．2 許容応力 14
5．3．3 使用材料の許容応力評価条件 14
5．3．4溶接部の継手効率 14
5.4 設計用地震力 18
5.5 計算方法 20
5．5．1 応力の計算方法 20
5.6 計算条件 25
5．6．1 出力領域モニタの応力計算条件 25
5.7 応力の評価 25
5．7．1 出力領域モニタの応力評価 25
6．評価結果 26
6.1 設計基準対象施設としての評価結果 26
6.2 重大事故等対処設備としての評価結果 26
7．引用文献 26

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，出力領域モニタが設計用地震力に対して十分な構造強度を有して いることを説明するものである。

出力領域モニタは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，設計基準対象施設及 び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

出力領域モニタの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
検出器は，カバーチュー ブに内包され，炉心領域 に設置される。 カバーチューブは，上端 を上部格子板の穴に挿入 し，プランジャ（ばね）に より支持され，下端部は中性子束計測案内管に炉心支持板位置でリングに より支持される。 炉心支持板より下方で は，中性子束計測案内管及び中性子束計測ハウジ ングでガイドされ，中性子束計測ハウジング下端 に取り付けられたフラン ジに固定される。	核分裂電離箱 （出力領域モニタ のカバーチューブ は，外径 \square の 長尺円筒形の炉内構造物である。校正用導管はカバー チューブに内蔵さ れた外径 \square の長尺円筒形構造物である。）	【出力領域モニタ】	（単位：mm）

枠囲みの内容は商業機密の観点から公開できません。

2.2 評価方針

出力領域モニタの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す出力領域モニタの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力，死荷重及び外圧による応力が許容限界内に収まることを，「5．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。確認結果を「6．評価結果」に示す。

出力領域モニタの耐震評価フローを図2－1 に示す。

図 2－1 出力領域モニタの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A	断面積	mm^{2}
D i	内径	mm
D 。	外径	mm
E	縦弾性係数	MPa
F_{E}	応力評価点のせん断力	N
H	水平力	N
I	断面二次モーメント	mm^{4}
L	リングからプランジャ先端までの長さ	mm
ℓ	リングからチャンネルボックスに接触する点までの距離	mm
l＇	リングから応力評価点までの距離	mm
M_{E}	応力評価点の曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{P}_{\text {в }}$	チャンネルボックスからの支持反力	N
P 。	外圧	MPa
S_{12}	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S_{23}	主応力差 $\sigma_{2}-\sigma_{3}$	MPa
S_{31}	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
S m	設計応力強さ 設計•建設規格 付録材料図表 Part5表1に定める値	MPa
S_{u}	設計引張強さ 設計•建設規格 付録材料図表 Part5表 9 に定める値	MPa
V_{D}	死荷重による鉛直力	N
V s	地震荷重による鉛直力	N
w	等分布荷重	N / mm
Y	外径と内径の比	－
$\delta_{\text {D }}$	設計たわみ量	mm
η	溶接部の継手効率	－
v	ポアソン比	－
$\sigma 1$	主応力	MPa
$\sigma 2$	主応力	MPa
$\sigma 3$	主応力	MPa
$\sigma \ell$	軸方向応力	MPa
σ r	半径方向応力	MPa
σ t	周方向応力	MPa
τ ¢ r	せん断応力	MPa
$\tau_{\mathrm{r}}^{\mathrm{t}}$	せん断応力	MPa
τ t ℓ	せん断応力	MPa

2.5 計算精度と数値の丸め方

精度は有効数字 6 桁以上を確保する。表示する数値の丸め方は，表2－2 に示すとおり とする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1 ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
出力領域モニタの耐震評価は，「5．2 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなるカバーチューブと校正用導管について実施する。出力領域モニタの耐震評価部位を図3－1に示す。

なお，応力評価点は構造の不連続を考慮して応力の最も厳しい箇所を選び，応力評価点 を含む断面を，応力評価面と呼ぶ。

また，地震荷重による応力が極大となる方位の応力評価点は（P01）と表し，極小とな る方位の応力評価点にはプライム（＇）を付けて（P01＇）と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

図 3－1 形状•寸法•材料•応力評価点（単位：mm）

4．固有周期
4． 1 固有値解析方法
出力領域モニタの固有値解析方法を以下に示す。
（1）出力領域モニタは，「4．2解析モデル及び諸元」に示す三次元はりモデルとして考 える。

4．2解析モデル及び諸元

出力領域モニタの解析モデルを図 4－1に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【出力領域モニタの耐震性についての計算結果】のその他の機器要目に示す。
（1）強度上重要で，耐震上の条件が最も厳しくなる炉心支持板と上部格子板間の出力領域モニタをモデル化する。
（2）
（3）校正用導管は，カバーチューブに内蔵されており，炉心支持板と上部格子板間でカ バーチューブと一定の間隔が維持される構造となっている。地震時には，カバーチュ ーブと校正用導管は一体で振動する。
（4）
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「N A S T R A N 」を使用し，固有値を求める。なお，評価に用い る解析コードの検証及び妥当性評価等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

図 4－1 出力領域モニタ解析モデル

4． 3 固有値解析結果

固有値解析の結果を表4－1に，振動モード図を図4－2 に示す。
また，鉛直方向の固有周期は 0.05 秒以下であり，剛であることを確認した。
なお，各次数の振動モード図（刺激関数モード）は，各節点において，各次数の刺激係数の絶対値に振動モードを乗じて求めた刺激関数を，最大の刺激関数（1次）で正規化 したものである。

表 4－1 固有値解析結果

モード	卓越方向	固有周期（s）	刺激係数＊1	
			水平方向＊2	鉛直方向
1 次	水平			-
2 次	水平			-
3 次	水平		-	

注記＊1：固有値解析より得られる各次数の刺激係数に振動モードの最大値を乗 じて求めた刺激関数を示す。
＊2：X方向と Z 方向は同一である。

5．地震応答解析及び構造強度評価
5.1 地震応答解析方法

4． 2 項（1）～（5）のほか，次の条件で計算する。
動的応答加速度は，スペクトルモーダル法により求めた応答加速度に，保守的に支持点の加速度（動的加速度と静的加速度の包絡値）を加えて求める。出力領域モニタの動的応答加速度分布図を図5－1 及び図5－2 に示す。

図 5－1 動的応答加速度分布図（弾性設計用地震動 S d）
\square
図 5－2 動的応答加速度分布図（基準地震動 S s ）

5.2 構造強度評価方法

4．2項（1）～（5）のほか，次の条件で計算する。
（1）地震力は，出力領域モニタに対して，水平方向及び鉛直方向から作用するものと する。

5.3 荷重の組合せ及び許容応力

5．3．1 荷重の組合せ及び許容応力状態

出力領域モニタの荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示す。

5．3．2 許容応力
出力領域モニタの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 5－3 のとおりとする。

5．3．3 使用材料の許容応力評価条件

出力領域モニタの使用材料の許容応力評価条件のうち設計基準対象施設の評価 に用いるものを表 5－4 に，重大事故等対処設備の評価に用いるものを表 5－5 に示 す。

5．3．4 溶接部の継手効率

応力評価点は，溶接部でないため $\eta=\square$ を用いる。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $~: ~$ 原子炉圧力容器内部に位置するため，炉内構造物の荷重の組合せ及び許容応力を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {1 }}$	機器等の区分	荷重の組合せ	許容応力状態
		出力領域モニタ	常設耐震／防止	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置				$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：原子炉圧力容器内部に位置するため，炉内構造物の荷重の組合せ及び許容応力を適用する。 ＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

O 2 （3）VI－2－6－5－1－2 R 0

表 5－3 許容応力（炉内構造物）

許容応力状態	許容限界＊ （ボルト等以外）	
	一次一般膜応力	一次一般膜＋一次曲げ応力
III ${ }_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{Sm}_{\mathrm{m}}$	左欄の 1.5 倍の値
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$	
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$	ただし，オーステナイト系ステンレス鋼及び高ニッケル合金については $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ と 2.4 • S_{m} の小さい方。	左欄の 1.5 倍の値

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

注記＊：応力評価点の材料を示す。

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

注記＊：応力評価点の材料を示す。

5.4 設計用地震力

評価に用いる設計用地震力を表5－6及び表5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。また，減衰定数 は，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の減衰定数を用いる。評価に用いる設計用地震力を表5－6に示す。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及び床面高さ（m）		原子炉格納容器内 0．P． 6.00 （0．P．16． $885^{* 1}$ ）					
固有周期（s）＊2		水平		鉛直： 0.05 以下			
減衰定数（\％）		水平： 1.0 鉛直：－					
地震力		弹性設計用地震動 S d又は静的震度			基準地震動 S S		
モード	固有周期 （s）	応答水平震度＊3		応答鉛直震度＊2	応答水平震度＊${ }^{4}$		応答鉛直震度＊3
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次		11． 30	11． 30	－	24.83	24.83	－
2 次		7． 70	7． 70	－	14.86	14． 86	－
3 次		－	－	－	－	－	－
動的地震力＊5		1． 47	1． 90	0.86	2.63	3.08	1． 48
静的地震力＊${ }^{\text {相 }}$		0.91	0． 92	0． 29	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：各モードの固有周期に対し，設計用床応答曲線（S d）より得られる震度を示す。 ＊4：各モードの固有周期に対し，設計用床応答曲線（S s ）より得られる震度を示す。 ＊5：S s 又はS dに基づく設計用最大応答加速度より定めた震度を示す。
＊6：静的震度（3．6•C i 及び1．2•Cv）を示す。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ（m）		原子炉格納容器内 0．P． 6.00$\text { (0.P. 16. } \left.885^{* 1}\right)$					
固有周期（s）${ }^{* 2}$		水平		鉛直： 0.05 以下			
減衰定数（\％）		水平：1．0 鈖直：－					
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S s		
モード	固有周期 （s）	応答水平震度		応答鉛直震度	応答水平震度＊3		応答鉛直震度＊2
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次		－	－	－	24.83	24.83	－
2 次		－	－	－	14.86	14.86	－
3 次		－	－	－	－	－	－
動的地	力＊4	－	－	－	2.63	3.08	1.48
静的	震力	－	－	－	－	－	－

注記＊1：基準床レベルを示す。
＊2： 1 次固有周期について記載
＊3：各モードの固有周期に対し，設計用床応答曲線（S s）より得られる震度を示す。
＊4：S s に基づく設計用最大応答加速度より定めた震度を示す。

5.5 計算方法

5．5．1 応力の計算方法
出力領域モニタの応力計算における，応力の記号とその方向は，以下のとおりと する。
σ t ：周方向応力
σ e ：軸方向応力
σ r ：半径方向応力
τ te：せん断応力

出力領域モニタに作用する外圧を表 5－8，死荷重を表 5－9 及び地震荷重を表 5－

表 5－8 出力領域モニタに作用する外圧

許容応力状態 外圧 P_{0} (MPa)	

表 5－9 出力領域モニタに作用する死荷重

荷重名称	鉛直力	
	$\begin{aligned} & V_{\mathrm{D}} \\ & (\mathrm{~N}) \end{aligned}$	
	校正用導管＊	$\begin{gathered} \text { カバー } \\ \text { チューブ } \end{gathered}$
死荷重		

注記 $* 1$ ：検出器質量を考慮する。

枠囲みの内容は商業機密の観点から公開できません。

表 5－10 出力領域モニタに作用する地震荷重

荷重名称	鉛直力		水平力 $* 1, * 2$	地震時 出力領域モニタ 設計たわみ量＊3
	$\begin{aligned} & \mathrm{V} \text { s } \\ & (\mathrm{N}) \end{aligned}$			
	校正用導管＊	$\begin{gathered} \text { カバー } \\ \text { チューブ } \end{gathered}$	H （N）	$\begin{gathered} \delta_{\mathrm{D}} \\ (\mathrm{~mm}) \end{gathered}$
弾性設計用地震動 S d又は静的震度				
基準地震動 S s				

注記＊ 1 ：検出器質量を考慮する。
＊ $2:$ 水平力 H は質量と動的応答加速度の積であり出力領域モニタに一様に加わる。
＊3：燃料集合体の相対変位（地震時たわみ量）及び水平移動量と出力領域モニタの移動量の合計。燃料集合体の相対変位は添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎 の地震応答計算書」に基づき設定する。

5．5．1．1 外圧による応力

（1）一次一般膜応力外圧 P_{0} による一次一般膜応力は，下式により計算する。

$$
\begin{align*}
& \sigma_{\mathrm{t}}=-\frac{\mathrm{Y}}{\mathrm{Y}-1} \cdot \mathrm{P}_{0} \tag{5.5.1.1.1}\\
& \sigma_{\mathrm{e}}=-\frac{\mathrm{Y}^{2}}{\mathrm{Y}^{2}-1} \cdot \mathrm{P}_{0} \tag{5.5.1.1.2}\\
& \sigma_{\mathrm{r}}=-\frac{\mathrm{Y}}{\mathrm{Y}+1} \cdot \mathrm{P}_{0} \tag{5.5.1.1.3}
\end{align*}
$$

ここで，外径と内径の比 Y は次式により求める。

$$
\begin{equation*}
\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}} \tag{5.5,1,1.4}
\end{equation*}
$$

$\mathrm{D}_{\mathrm{o}}=$
$\mathrm{D}_{\mathrm{i}}=$

（2）一次一般膜＋一次曲げ応力
外圧 P 。による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

5．5．1．2 死荷重による応力
死荷重による応力は，下式により計算する。

$$
\begin{equation*}
\sigma_{\ell}=-\frac{\mathrm{V}_{\mathrm{D}}}{\mathrm{~A}} \tag{5.5,1,2.1}
\end{equation*}
$$

5．5．1．3 地震荷重による応力

（1）水平方向地震荷重による応力

応力計算モデルを，図 5－3に示す。

$$
\begin{align*}
& M_{E}=P_{B} \cdot\left(l-\ell^{\prime}\right)-\frac{1}{2} \cdot \mathrm{w} \cdot\left(l-\ell^{\prime}\right)^{2} \tag{5.5.1.3.1}\\
& \mathrm{~F}_{\mathrm{E}}=\mathrm{w} \cdot\left(l-\ell^{\prime}\right)-\mathrm{P}_{\mathrm{B}} \quad \cdots \cdots \cdot \tag{5.5.1.3.2}
\end{align*}
$$

ここで， $\mathrm{P}_{\mathrm{B}}, \mathrm{w}, \ell$ は下式により求める。

$$
\begin{equation*}
\mathrm{P}_{\mathrm{B}}=\frac{\mathrm{w} \cdot \ell}{3} \tag{5.5.1.3.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{w}=\frac{\mathrm{H}}{\mathrm{~L}} \tag{5,5,1,3,4}
\end{equation*}
$$

$$
\begin{equation*}
e=\left(\frac{72 \cdot \delta_{\mathrm{D}} \cdot \mathrm{E} \cdot \mathrm{I}}{\mathrm{w}}\right)^{\frac{1}{4}} \tag{5.5.1.3.5}
\end{equation*}
$$

したがって，応力評価点に生じる一次曲げ応力は，次式により計算する。

$$
\begin{equation*}
\sigma_{\ell}= \pm \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{I}} \cdot \frac{\mathrm{D}_{\mathrm{o}}}{2} \tag{5.5.1.3.6}
\end{equation*}
$$

また，応力評価点に生じる一次一般膜応力は，次式により計算する。

$$
\begin{equation*}
\tau_{\mathrm{t} \ell}= \pm \frac{\mathrm{F}_{\mathrm{E}}}{\mathrm{~A}} \tag{5,5,1,3,7}
\end{equation*}
$$

（2）鉛直方向地震荷重による応力
鉛直方向地震荷重による応力は，次式により計算する。

$$
\begin{equation*}
\sigma_{\ell}=-\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~A}} \tag{5,5,1,3,8}
\end{equation*}
$$

（単位：mm）
図 5－3 地震荷重による応力の計算モデル

5．5．1．4 主応力及び応力強さ

（1）主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
組合せ応力は，一般に $\sigma_{\mathrm{t}}, ~ \sigma_{\ell}, ~ \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{r}} \mathrm{t}^{\mathrm{C}}$ の 6 成分を持つ が，主応力 σ は，引用文献（1）の $1 \cdot 3 \cdot 6$ 項により，次式を満足する 3 根 σ ， $\sigma_{2}, ~ \sigma{ }_{3}$ として計算する。

$$
\begin{align*}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell}{ }^{2}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{rt}}{ }^{2}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\mathrm{t}} \cdot \sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}{ }^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{r}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell}{ }^{2}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0 \cdots \cdots \cdots \cdots(5.5 .1 .4 .1) \tag{5.5.1.4.1}
\end{align*}
$$

（2）応力強さ
以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{align*}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1} \tag{5,5,1.4.4}
\end{align*}
$$

$$
(5.5 .1 .4 .2)
$$

$$
(5.5 .1 .4 .3)
$$

5.6 計算条件

5．6．1出力領域モニタの応力計算条件
応力計算に用いる計算条件は，本計算書の【出力領域モニタの耐震性について の計算結果】の設計条件及び機器要目に示す。

5．7 応力の評価
5．7．1 出力領域モニタの応力評価
5．5．1項で求めたカバーチューブ及び校正用導管の各応力強さが下表で定めた許容応力以下であること。

	弾性設計用地震動 S d 又は静的震度による荷重との組合せの場合	基準地震動S s による荷重との組合せの場合
一次一般膜応力 の許容応力	1． $5 \cdot \mathrm{Sm}$	$2 / 3 \cdot S_{u}$ ただし，オーステナイト系ステン レス鋼及び高ニッケル合金につい ては $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ と 2.4 • S_{m} の小 さい方。
- 次一般膜 + - 次曲げ応力 の許容応力	上欄の 1.5 倍の値	上欄の 1.5 倍の値

6．評価結果
6.1 設計基準対象施設としての評価結果

出力領域モニタの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

出力領域モニタの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

7．引用文献
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

【出力領域モニタの耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ（m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		流体の最高温度$\left({ }^{\circ} \mathrm{C}\right)$		外圧（MPa）	
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	$\mathrm{III}_{4} \mathrm{~S}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{IIA}_{4} \mathrm{~S}$	$\mathrm{IV}_{4} \mathrm{~S}$
出力領域モニタ	S	$\begin{gathered} \text { 原子炉格納容器内 } \\ 0 . \text { P. } \quad 6.00 \\ \left(0 . \text { P. } 16.885^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{gathered} \text { С } \mathrm{H}=1.90 \\ \text { 又は } * 2 \end{gathered}$	$\mathrm{C} v=0.86$	$\begin{gathered} \text { С } \mathrm{H}=3.08 \\ \text { 又は } * 3 \end{gathered}$	$\mathrm{C} v=1.48$				

注記＊1：基準床レベルを示す。
＊2：弾性設計用地震動 S d 又は静的震度に基づく設計用床応答曲線から得られる値。
＊ 3 ：基準地震動 S s に基づく設計用床応答曲線から得られる値。

部材	$\mathrm{V}_{\mathrm{s}}(\mathrm{N})$		H（N）		$\delta_{\text {D }}(\mathrm{mm})$		w（ N / mm ）	
	弹性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
カバーチューブ								
校正用導管								

部材	$\ell(\mathrm{mm})$		$\mathrm{P}_{\mathrm{B}}(\mathrm{N})$		F_{E}（N）		$\mathrm{M}_{\mathrm{E}}(\mathrm{N} \cdot \mathrm{mm})$	
	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	$\left\lvert\, \begin{gathered}\text { 弹性設計用地震動 } \\ \mathrm{S} d \text { 又は静的震度 }\end{gathered}\right.$	基準地震動 S s	弹性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s	弹性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s
カバーチューブ								
校正用導管								

1． 4 結論

部材	材料	応力	応力評価面	弾性設計用地震動 S d 又は静的震度		基準地震動S s	
				算出応力	許容応力	算出応力	許容応力
カバーチューブ		一次一般膜応力強さ	P03，P04	6	173	11	260
			P03＇，P04＇	6	173	11	260
		一次一般膜 + 一次曲げ応力強さ	P03，P04	188	259	337	391
			P03＇，P04＇	192	259	342	391
校正用導管		一次一般膜応力強さ	P01，P02	29	146	32	233
			P01＇，P02＇	29	146	32	233
		一次一般膜 + 一次曲げ応力強さ	P01，P02	87	219	146	350
			P01＇，P02＇	88	219	146	350

注記＊：応力評価点の材料を示す。
すべて許容応力以下である。
1.5 その他の機器要目
（1）材料物性値

項目		記号	単位	入力値
材質	カバーチューブ	－	－	
	校正用導管	－	－	
縦弾性係数		E	MPa	
ポアソン比		v	－	
要素数		－	個	
節点数		－	個	
接手効率		η	－	

注記＊：応力評価点の材料を示す。

（3）節点の質量

節点番号	座標 (mm)	節点質量 (g)

枠囲みの内容は商業機密の観点から公開できません。

2．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ（m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		流体の最高温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	外圧（MPa）
			$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	$\mathrm{V}_{4} \mathrm{~S}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
出力領域モニタ	常設耐震 ／防止	$\begin{gathered} \text { 原子炉格納容器内 } \\ 0 .{ }^{0 . P .} 6.00 \\ \left(0 . \text { P. } 16.885^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\begin{gathered} \text { C н }=3.08 \\ \text { 又は } * 2 \end{gathered}$	$\mathrm{C} \mathrm{v}=1.48$		

注記＊1：基準床レベルを示す。
＊2：基準地震動 S s に基づく設計用床応答曲線から得られる値。

部材	$\mathrm{V}_{\text {S }}(\mathrm{N})$		H（N）		$\delta_{\text {D }}(\mathrm{mm})$		w（ N / mm ）	
	弹性設計用地震動 S d 又は静的震度	基準地震動 S s	弹性設計用地震動 Sd 又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s	弹性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s
カバーチューブ	－		－		－		－	
校正用導管	－		－		－		－	

部材	$\ell(\mathrm{mm})$		P_{B}（N）		F_{E}（N）		$\mathrm{M}_{\mathrm{E}}(\mathrm{N} \cdot \mathrm{mm})$	
	弹性設計用地震動 Sd又は静的震度	基準地震動 S s	弹性設計用地震動 Sd 又は静的震度	基準地震動 S s	弹性設計用地震動 Sd又は静的震度	基準地震動S s	弹性設計用地震動 Sd又は静的震度	基準地震動S s
カバーチューブ	－		－		－		－	
校正用導管	－		－		－		－	

2． 4 結論

部材	材料	応力	応力評価面	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
				算出応力	許容応力	算出応力	許容応力
カバーチューブ		一次一般膜応力強さ	P03，P04	－	－	11	260
			P03＇，P04＇	－	－	11	260
		一次一般膜＋一次曲げ応力強さ	P03，P04	－	－	337	391
			P03＇，P04＇	－	－	342	391
校正用導管		一次一般膜応力強さ	P01，P02	－	－	38	229
			P01＇，P02＇	－	－	39	229
		一次一般膜＋一次曲げ応力強さ	P01，P02	－	－	149	344
			P01＇，P02＇	－	－	150	344

注記＊：応力評価点の材料を示す。
すべて許容応力以下である。
2.5 その他の機器要目
（1）材料物性値

項目		記号	単位	入力値
材質	カバーチューブ	－	－	
	校正用導管	－	－	
縦弾性係数		E	MPa	
ポアソン比		v	－	
要素数		－	個	
節点数		－	個	
接手効率		η	－	

注記＊：応力評価点の材料を示す。

（3）節点の質量

節点番号	座標 (mm)	節点質量 (g)

VI－2－6－5－2 原子炉圧力容器本体の入口又は出口の原子炉冷却材の圧力，温度又は流量を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－2－1 一次冷却材圧力計測装置の耐震性についての計算書
VI－2－6－5－2－2 一次冷却材温度計測装置の耐震性についての計算書
VI－2－6－5－2－3 一次冷却材流量計測装置の耐震性についての計算書

VI－2－6－5－2－1 一次冷却材圧力計測装置の耐震性についての計算書

目 次

VI－2－6－5－2－1－1 原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の耐震性についての計算書
VI－2－6－5－2－1－2 高圧代替注水系ポンプ出口圧力の耐震性についての計算書
VI－2－6－5－2－1－3 直流駆動低圧注水系ポンプ出口圧力の耐震性についての計算書 VI－2－6－5－2－1－4 代替循環冷却ポンプ出口圧力の耐震性についての計算書

VI－2－6－5－2－1－5 原子炉隔離時冷却系ポンプ出口圧力の耐震性についての計算書 VI－2－6－5－2－1－6 高圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書 VI－2－6－5－2－1－7 残留熱除去系ポンプ出口圧力の耐震性についての計算書 VI－2－6－5－2－1－8 低圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書 VI－2－6－5－2－1－9 復水移送ポンプ出口圧力の耐震性についての計算書

VI－2－6－5－2－1－1 原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力 の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6． 1 設計基準対象施設としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力は，設計基準対象施設においてはS ク ラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価 を示す。

なお，原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。 計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	弾性圧力検出器	【原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力】

3．固有周期
3.1 固有周期の算出方法

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力が設置される計装ラックの固有周期 は，プラスチックハンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により記録解析する。試験の結果，剛であること を確認した。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

4．構造強度評価

4.1 構造強度評価方法

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の構造強度評価は，添付書類「VI－2－ 1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1に示す。

4．2．2 許容応力

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の使用材料の許容応力評価条件 のうち設計基準対象施設の評価に用いるものを表 4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－
取付ボルト $(i=2)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－

5．機能維持評価

5.1 電気的機能維持評価方法

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉隔離時冷却系ポンプ駆動用タービン入	水平	
口蒸気圧力 （E51－PT007）	鋁直	

[^25]6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉隔離時冷却系ポンプ駆動用タービン入口蒸気圧力（E51－PT007）の耐震性についての計算結果】

1．設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉隔離時冷却系ポ ンプ駆動用タービン入 口蒸気圧力 （E51－PT007）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	65

注記＊：基準床レベルを示す。
∞

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\underset{(\mathrm{mm})}{\mathrm{h}_{\mathrm{i}}}$	$\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{2 i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3} \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{b}}}$	n i	n f V i	n f_{Hi}
基礎ボルト $(i=1)$		500						6	2	3
取付ボルト $(\mathrm{i}=2)$		400						8	2	4

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}{ }^{\text {i }}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d } \mathrm{d} \text { 静的震度 } \end{gathered}$	基準地震動
基礎ボルト $(\mathrm{i}=1)$	206	386	206	247	鉛直方向	鉛直方向
取付ボルト $(\mathrm{i}=2)$	206	386	206	247	鉛直方向	鉛直方向

1.3 計算数値

1．4 結論

注記 $\boldsymbol{*}^{2} \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\left.\tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
$\begin{gathered} \text { 原子炉隔離時冷却系 } \\ \text { ポンプ区駆動用タービ } \\ \text { ン入口蒸気力 } \\ \text { (E51-PT007) } \\ \hline \end{gathered}$	水平方向	1.11	
	鉛直方向	0． 73	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$A \rightarrow$

VI－2－6－5－2－1－2 高圧代替注水系ポンプ出口圧力の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4.1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6．1 重大事故等対処設備としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，高圧代替注水系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

高圧代替注水系ポンプ出口圧力は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，高圧代替注水系ポンプ出口圧力が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

高圧代替注水系ポンプ出口圧力の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。 計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	弾性圧力検出器	【高圧代替注水系ポンプ出口圧力】

3．固有周期
高圧代替注水系ポンプ出口圧力が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用 する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4．1 構造強度評価方法
高圧代替注水系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

高圧代替注水系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力
高圧代替注水系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
高圧代替注水系ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i} \quad(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (\text { 径 } \leqq 16 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	234	385	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

5．機能維持評価
5.1 電気的機能維持評価方法

高圧代替注水系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラッ クの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
高圧代替注水系ポンプ出口圧力 （E61－PT003）	水平	
	鉛直	

[^26]6．評価結果
6.1 重大事故等対処設備としての評価結果

高圧代替注水系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【高圧代替注水系ポンプ出口圧力（E61－PT003）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
高圧代替注水系ポンプ出口圧力 （E61－PT003）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -0. 80 } \\ \text { (0.P. 6. 00*) } \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。
∞
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & l_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3} \mathrm{i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n f H i
基礎ボルト $(i=1)$		500						8	2	4
取付ボルト $(i=2)$		400						8	2	4

					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\left(\mathrm{m}^{\mathrm{a}}\right.}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$		基漼地震動 S s
基礎ボルト $(i=1)$	234	385	－	270	－	鉛直方向
取付ボルト $(\mathrm{i}=2)$	225	385	－	270	－	鉛直方向

1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
取付ボルト $(i=2)$	－		－	

1． 4 結論

1．4．1 ボルトの応力					（単位：MPa）	
部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	－	－	$\sigma_{\text {b } 1}=16$	$\mathrm{f}_{\mathrm{ts} 1}=202 *$
		せん断	－	－	$\tau_{\mathrm{b} 1}=5$	$\mathrm{f}_{\text {s b } 1}=155$
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=13$	$\mathrm{f}_{\mathrm{ts} 2}=202 *$
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=155$

注記 $*: ~ f_{t s i}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\left.\tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度	
高圧代替注水系ポン プ出口圧力 （E61－PT003）	水平方向	鉛直方向	1.31	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－2－1－3 直流駆動低圧注水系ポンプ出口圧力の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，直流駆動低圧注水系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

直流駆動低圧注水系ポンプ出口圧力は，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，直流駆動低圧注水系ポンプ出口圧力が設置される計器スタンションは，添付書類「VI－2－ 1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
$\begin{aligned} 2.1 & \text { 構造計画 } \\ & \text { 直流駆動低圧注水系ポンプ出口圧力の構造計画を表 2－1 に示す。 }\end{aligned}$

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	弾性圧力検出器	【直流駆動低圧注水系ポンプ出口圧力】

3．固有周期
直流駆動低圧注水系ポンプ出口圧力が設置される計器スタンションの固有周期は，構造が同等 であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認され た固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4． 1 構造強度評価方法
直流駆動低圧注水系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
直流駆動低圧注水系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
直流駆動低圧注水系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件

直流駆動低圧注水系ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	60	208	389	-

5．機能維持評価
5.1 電気的機能維持評価方法

直流駆動低圧注水系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
直流駆動低圧注水系ポンプ出口圧力 （E71－PT004）	水平	
	鉛直	

枠囲みの内容は商業機密の観点から公開できません。

6．評価結果
6.1 重大事故等対処設備としての評価結果

直流駆動低圧注水系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
O 2
（3） $\mathrm{VI}-2-6-5-2-1-3$
R 0

【直流駆動低圧注水系ポンプ出口圧力（E71－PT004）の耐震性についての計算結果】
1．重大事故等対処設備

1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
直流駆動低圧注水系 ポンプ出口圧力 （E71－PT004）	常設耐震／防止	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	60

注記＊：基準床レベルを示す。
∞

1．2 機器要目

部 材	$\mathrm{m}_{(\mathrm{kg})}$	$\begin{gathered} \mathrm{h}_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{\mathrm{a}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{b} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{d}}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	n f V	n f H
基礎ボルト		495						4	2	2

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{y}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	弾性設計用 地震動 Sd 又 は静的震度	$\stackrel{\text { 基準地震動 }}{\mathrm{S}}$
基礎ボルト	208	389	－	249	－	水平方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-1-3$
R 0
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	－		－	

1．4 結論

－注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6\right.$ • τ_{b} ， f_{to} ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
直流駆動低圧注水系 ポンプ出口圧力 （E71－PT004）	水平方向	1． 11	
	鉛直方向	0.73	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－2－1－4 代替循環冷却ポンプ出口圧力の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6．1 重大事故等対処設備としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，代替循環冷却ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

代替循環冷却ポンプ出口圧力は，重大事故等対処設備においては常設重大事故緩和設備に分類 される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，代替循環冷却ポンプ出口圧力が設置される計器スタンションは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施 する。

2．一般事項

2.1 構造計画

代替循環冷却ポンプ出口圧力の構造計画を表2－1に示す。

表 2－1 構造計画

3．固有周期
代替循環泠却ポンプ出口圧力が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

代替循環冷却ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンション の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
代替循環冷却ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
代替循環冷却ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
代替循環冷却ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400	-

5．機能維持評価

5.1 電気的機能維持評価方法

代替循環冷却ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
代替循環冷却ポンプ出口圧力 （E11－PT021）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

代替循環冷却ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-1-4$
R 0

【代替循環冷却ポンプ出口圧力（E11－PT021）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
代替循環冷却ポンプ出口圧力 （E11－PT021）	常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. }-8.10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	40

注記＊：基準床レベルを示す。
∞

1．2 機器要目

部 材	m (kg)	h_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	nf V	nfH
基礎ボルト		455				4	2	2		

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用地震動 S d 又 は静的震度	基準地震動 S
基礎ボルト	215	400	－	258	－	水平方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-1-4$
R 0
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	－		－	

1．4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=9$	$\mathrm{ff}_{\mathrm{ts}}=193 *$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{sb}}=148$

すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
代替循環冷却ポンブ出口圧力 （E11－PT021）	水平方向	1． 11	
	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-1-4 R O E }
$$

VI－2－6－5－2－1－5 原子炉隔離時冷却系ポンプ出口圧力の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
5．機能維持評価 7
5.1 電気的機能維持評価方法 7
6．評価結果 8
6． 1 設計基準対象施設としての評価結果• 8
6．2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉隔離時冷却系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉隔離時冷却系ポンプ出口圧力は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉隔離時冷却系ポンプ出口圧力が設置される計装ラックは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

2.1 構造計画

原子炉隔離時冷却系ポンプ出口圧力の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。 計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	弾性圧力検出器	【原子炬隔離時冷却系ポンプ出口圧力】

3．固有周期
3.1 固有周期の算出方法

原子炉隔離時冷却系ポンプ出口圧力が設置される計装ラックの固有周期は，プラスチックハ ンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピック アップ，振動計，分析器）により記録解析する。試験の結果，剛であることを確認した。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

4．構造強度評価
4． 1 構造強度評価方法
原子炉隔離時冷却系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
原子炉隔離時冷却系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力

原子炉隔離時冷却系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件

原子炉隔離時冷却系ポンプ出口圧力の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	原子炉隔離時冷却系ポンプ出口圧力	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}^{*}$	$\mathrm{III}_{4} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	計測装置	原子炉隔離時冷却系ポンプ出口圧力	常設／防止 （DB 拡張）	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y ~ i ~} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基整ボルト $(i=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \mathrm{i}}$ (MPa)	S_{ui} (MPa)
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(MPa)					

5．機能維持評価

5.1 電気的機能維持評価方法

原子炉隔離時冷却系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉隔離時冷却系ポンプ出口圧力 （E51－PT003）	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉隔離時冷却系ポンプ出口圧力の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6． 2 重大事故等対処設備としての評価結果
原子炉隔離時冷却系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉隔離時冷却系ポンプ出口圧力（E51－PT003）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { 原子炉隔離時冷却系ポ } \\ \text { ンプ出口圧力 } \\ \text { (E51-PT003) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \mathrm{P} .-0.80^{*}\right) \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	65

注記＊：基準床レベルを示す。
ω

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
					$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{Sd} \text { d } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
基礎ボルト $(i=1)$	206	386	206	247	鉛直方向	鉛直方向
取付ボルト $(i=2)$	206	386	206	247	鉛直方向	鉛直方向

1.3 計算数値

1．4 結論

注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4\right.$ • $\mathrm{f}_{\mathrm{toi}}-1.6$ • $\left.\tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
```原子炬隔離時冷却系 ポンプ出口圧力 (E51-PT003)```	水平方向	1.11	
	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$A \rightarrow$

$$
A \rightarrow
$$



$$
\mathrm{O} 2 \text { (3) VI-2-6-5-2-1-5 R }
$$

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉隔離時冷却系ポ ンプ出口圧力 (E51-PT003)	常設／防止 （DB 拡張）	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-8.10 \\ \left(0 . \text { P. }-0.80^{*}\right) \\ \hline \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	66

注記＊：基準床レベルを示す。
$\stackrel{N}{N}$

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \mathrm{i} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\ell_{1}}$	$\begin{aligned} & \ell_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{3 i} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n $\mathrm{fH}_{\mathrm{H}}$
基礎ボルト $(i=1)$		500						6	2	3
取付ボルト $(i=2)$		400						8	2	4


部 材	$\mathrm{S}_{\mathrm{y}} \mathrm{i}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}} \mathrm{i}$   $(\mathrm{MPa})$	$\mathrm{F}_{\mathrm{i}}$   $(\mathrm{MPa})$	$\mathrm{F}_{\mathrm{i}} *$   $(\mathrm{MPa})$	弾性設計転倒方向   地震動 S d   は静的震度	
基礎ボルト   $(\mathrm{i}=1)$	206	385	-	247	-	基準地震動   S   S
取付ボルト   $(\mathrm{i}=2)$	206	385	-	247	-	鈖直方向

2.3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
部 材	弾性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
取付ボルト $(i=2)$	－		－	

2． 4 結論
2．4．1 ボルトの応力（単位：MPa）
$\stackrel{\rightharpoonup}{\omega}$

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=21$	$\mathrm{f}_{\mathrm{ts} 1}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=7$	$\mathrm{f}_{\text {s b } 1}=142$
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=16$	$\mathrm{f}_{\mathrm{ts} 2}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=142$


すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度	
原子炉隔離時冷却系   ポプ出口圧力   （E51－PT003）	水平方向	鉛直方向	1.11	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$\mathrm{A} \rightarrow$

$A \rightarrow$


VI－2－6－5－2－1－6 高圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7
6．2 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，高圧炉心スプレイ系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

高圧炉心スプレイ系ポンプ出口圧力は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，高圧炉心スプレイ系ポンプ出口圧力が設置される計装ラックは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

## 2.1 構造計画

[^27]表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	【高圧炬心スプレイ系ポンプ出口圧力】   上面

3．固有周期
高圧炉心スプレイ系ポンプ出口圧力が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

高圧炉心スプレイ系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

## 4．2．2 許容応力

高圧炉心スプレイ系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

高圧炉心スプレイ系ポンプ出口圧力の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5に示す。
O 2
（3）VI－2－6－5－2－1－6
R 0

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	高圧炉心スプレイ系ポンプ			許容応力状態

注記 $*: ~ そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fm}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

高圧炉心スプレイ系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
高圧炉心スプレイ系ポンプ出口圧力   （E22－PT004）	水平	
	鉛直	

[^28]6．評価結果
6.1 設計基準対象施設としての評価結果

高圧炉心スプレイ系ポンプ出口圧力の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

高圧炉心スプレイ系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
O 2
（3） $\mathrm{VI}-2-6-5-2-1-6$
R 0

【高圧炉心スプレイ系ポンプ出口圧力（E22－PT004）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		  （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { 高圧炉心スプレイ系 } \\ \text { ポンプ出口圧力 } \\ \text { (E22-PT004) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. } 80 \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{v}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	40

注記＊：基準床レベルを示す。
$\infty$

## 1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\left(\begin{array}{l} \ell_{1} i \\ (\mathrm{~mm}) \end{array}\right.$	$\left(\begin{array}{l} \ell_{2} i \\ (\mathrm{~mm}) \end{array}\right.$	$\left(\begin{array}{l} \ell_{3} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n f Hi
取付ボルト $(i=2)$		500						14	3	4


				$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Fi}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{d} \text { 又 } \\ \text { 静的震度 } \end{gathered}$	基漼地震動 S S
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論

$\bullet$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
高圧炉心スプレイ系 ポンプ出口圧力 （E22－PT004）	水平方向	1． 31	
	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

# O 2 <br> (3) $\mathrm{VI}-2-6-5-2-1-6$ <br> R 0 


○ 2
（3） $\mathrm{VI}-2-6-5-2-1-6$
R 0

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度   $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
高圧炉心スプレイ系 ポンプ出口圧力 （E22－PT004）	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. }-0.80 \\ \text { (0. P. 6. } 00^{*} \text { ) } \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。

## 2.2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{i}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{2} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	nf V i	n f H i
取付ボルト $(i=2)$		500						14	3	4


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動S } \mathrm{S} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-1-6$
R 0
2.3 計算数値

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(i=2)$	－		－	

2． 4 結論
2．4．1 ボルトの応力（単位：MPa）

N

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=17$	$\mathrm{f}_{\mathrm{ts} 2}=202$＊
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 22}=155$

注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
高圧炉心スプレイ系	水平方向	1．31	
(E22-PT004)	鉛直方向	0.91	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-1-6 R O E }
$$



13


VI－2－6－5－2－1－7 残留熱除去系ポンプ出口圧力の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
3.1 固有周期の算出方法 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件 ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6． 1 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

残留熱除去系ポンプ出口圧力は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，残留熱除去系ポンプ出口圧力が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1 に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画	
E11－PT005A（代表）	VI－2－1－13－8 計装ラック		
E11－PT005B	の耐震性についての計算書	表 $2-1 \quad$ 構造計画	
E11－PT005C	作成の基本方針		

2．一般事項
2.1 構造計画

残留熱除去系ポンプ出口圧力の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	注記＊：検出器は代表して 1 台を示す。

3．固有周期
3.1 固有周期の算出方法

残留熱除去系ポンプ出口圧力が設置される計装ラックの固有周期は，プラスチックハンマ等 により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により記録解析する。試験の結果，剛であることを確認した。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期（単位：s）


4．構造強度評価
4． 1 構造強度評価方法
残留熱除去系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
残留熱除去系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1 に示す。

## 4．2．2 許容応力

残留熱除去系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
残留熱除去系ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{yi}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
$\mathrm{S}_{\mathrm{yi}}$   $(\mathrm{R} \mathrm{T})$   $(\mathrm{MPa})$					
取付ボルト   $(\mathrm{i}=2)$	SS 400   $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	66	225	385

## 5．機能維持評価

5.1 電気的機能維持評価方法

残留熱除去系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系ポンプ出口圧力   （E11－PT005A）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

残留熱除去系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【残留熱除去系ポンプ出口圧力（H22－P018A（E11－PT005A））の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系ポンプ出口圧力   （E11－PT005A）	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. 80 } \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。
$\infty$

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1, i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\left(\begin{array}{l} \ell_{3} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	nf V i	n f Hi
取付ボルト $(\mathrm{i}=2)$		500						16	4	4


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}{ }^{\mathrm{i}} \text { * }}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S s
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

1．3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）
$\bullet$

部 材	材 料	応力	弾性設計用地震動 S d 又 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=17$	$\mathrm{ft}_{\mathrm{ts} 2}=202 *$
		せん断	－	－	$\tau_{\text {b } 2}=5$	$\mathrm{f}_{\text {s b } 2}=155$


すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度	
残留熱除去系ポンプロ圧力   （E11－PT005A）	水平方向	鉛直方向	1.31	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-1-7 R O E }
$$



VI－2－6－5－2－1－8 低圧炉心スプレイ系ポンプ出口圧力の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件． ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6． 1 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，低圧炉心スプレイ系ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

低圧炉心スプレイ系ポンプ出口圧力は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，低圧炉心スプレイ系ポンプ出口圧力が設置される計装ラックは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

低圧炉心スプレイ系ポンプ出口圧力の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	【低圧炬心スプレイ系ポンプ出口圧力】   上面

3．固有周期
低圧炉心スプレイ系ポンプ出口圧力が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

## 4.1 構造強度評価方法

低圧炉心スプレイ系ポンプ出口圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

低圧炉心スプレイ系ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
低圧炉心スプレイ系ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

低圧炉心スプレイ系ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	計測装置	低圧炬心スプレイ系ポンプ出口圧力	常設／防止 （DB 拡張）	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$   （ $V_{A} S$ として   $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	$\begin{gathered} \text { 許容限界*1, *2 } \\ \text { (ボルト等) } \\ \hline \end{gathered}$	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i} \quad(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

5．機能維持評価
5.1 電気的機能維持評価方法

低圧炉心スプレイ系ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1 に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
低圧炉心スプレイ系ポンプ出口圧力   （E21－PT005）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

低圧炉心スプレイ系ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-1-8$
R 0

【低圧炉心スプレイ系ポンプ出口圧力（E21－PT005）の耐震性についての計算結果】
1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境   （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
低圧炉心スプレイ系 ポンプ出口圧力 （E21－PT005）	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -0. 80 } \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記 $*$ ：基準床レベルを示す。
$\infty$

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{3 i} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n f Hi
取付ボルト $(\mathrm{i}=2)$		500						14	3	4


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
取付ボルト $(\mathrm{i}=2)$	225	385	－	270	－	鉛直方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-1-8$
R 0

1．3 計算数値


1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）
$\odot$

部 材	材 料	応力	｜弾性設計用地震動S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=17$	$\mathrm{f}_{\mathrm{ts} 2}=202^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=155$

注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
低圧炉心スプレイ系   ポンプ出口圧力   （E21－PT005）	水平方向	鉛直方向	1.31

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


10

$$
\mathrm{A} \rightarrow
$$

VI－2－6－5－2－1－9 復水移送ポンプ出口圧力の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，復水移送ポンプ出口圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

復水移送ポンプ出口圧力は，重大事故等対処設備においては常設耐震重要重大事故防止設備及 び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，復水移送ポンプ出口圧力が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－ 9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

## 2.1 構造計画

復水移送ポンプ出口圧力の構造計画を表 2－1に示す。

表 2－1 構造計画


3．固有周期
復水移送ポンプ出口圧力が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期 を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

復水移送ポンプ出口圧力の構造強度評価は添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
4.2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

復水移送ポンプ出口圧力の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
復水移送ポンプ出口圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
復水移送ポンプ出口圧力の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

## 5．機能維持評価

5.1 電気的機能維持評価方法

復水移送ポンプ出口圧力の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンショ ンの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
復水移送ポンプ出口圧力 （P13－PT011）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

復水移送ポンプ出口圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【復水移送ポンプ出口圧力（P13－PT011）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
復水移送ポンプ出口圧力 （P13－PT011）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. }-0.80 \\ (0 . \text { P. 6. 00*) } \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。
$\infty$

## 1．2 機器要目

部 材	m   $(\mathrm{kg})$	h 2   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\ell_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nffV	nff
基礎ボルト		410.5				4	2	2		


部 材	$\mathrm{S} y$   $(\mathrm{MPa})$	$\mathrm{S} u$   $(\mathrm{MPa})$	F   $(\mathrm{MPa})$	$\mathrm{F} *$   $(\mathrm{MPa})$	弾性設計車倒方向   地震動 S d   は静的震度	
基礎ボルト	206	385	-	247	-	基準地震動   S S

○ 2
（3） $\mathrm{VI}-2-6-5-2-1-9$
R 0
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		$\mathrm{Q}_{\mathrm{b}}$	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	－		－	

1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
復水移送ポンプ出口	水平方向	1．31	
	鉛直方向	0.91	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-1-9 R O E }
$$



VI－2－6－5－2－2 一次冷却材温度計測装置の耐震性についての計算書

VI－2－6－5－2－2－1 残留熱除去系熱交換器入口温度の耐震性についての計算書 VI－2－6－5－2－2－2 残留熱除去系熱交換器出口温度の耐震性についての計算書

VI－2－6－5－2－2－1 残留熱除去系熱交換器入口温度の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2.2 評価方針 ..... 3
2.3 適用規格•基準等 ..... 3
3．評価部位 ..... 3
4．機能維持評価 ..... 4
4． 1 機能維持評価用加速度 ..... 4
4．2 機能確認済加速度 ..... 5
5．評価結果 ..... 6
5.1 重大事故等対処設備としての評価結果 ..... 6

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，残留熱除去系熱交換器入口温度が設計用地震力に対して十分な電気的機能を有して いることを説明するものである。

残留熱除去系熱交換器入口温度は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備に分類さ れる。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

残留熱除去系熱交換器入口温度の構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基䂰•支持構造	主体構造		
検出器は，残留熱除去系管に溶接された保護管 に固定する。	熱電対	【残留熱除去系熱交換器入口温度】	
			（単位：mm）

## 2.2 評価方針

残留熱除去系熱交換器入口温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

残留熱除去系熱交換器入口温度の耐震評価フローを図2－1に示す。


図 2－1 残留熱除去系熱交換器入口温度の耐震評価フロー

## 2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）

3．評価部位
残留熱除去系熱交換器入口温度は，残留熱除去系管に直接取り付けられた保護管に挿入され固定されることから，残留熱除去系管が支持している。残留熱除去系管の構造強度評価は，添付書類「VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）」にて実施しているため，本計算書では，残留熱除去系管の地震応答解析結果を用いた残留熱除去系熱交換器入口温度の電気的機能維持評価について示す。

4．機能維持評価
残留熱除去系熱交換器入口温度の電気的機能維持評価について，以下に示す。
4.1 機能維持評価用加速度

残留熱除去系熱交換器入口温度は残留熱除去系管に直接取り付けられた保護管に挿入され固定されることから，機能維持評価用加速度は，添付書類「VI－2－5－4－1－4 管の耐震性につい ての計算書（残留熱除去系）」に示す重大事故等対処設備の地震応答解析で評価した残留熱除去系熱交換器入口温度取付部に相当する質点に生じる応答加速度又は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる基準床レベルの応答加速度 のいずれか大きい値とする。機能維持評価用加速度を表 4－1 及び表 4－2 に示す。

表 4－1 機能維持評価用加速度（質点に生じる応答加速度）（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

機器名称	対象機器設置箇所   （m）	方向	基準地震動S s
			機能維持評価用加速度
残留熱除去系熱交換器	戋留貥除土管	水平	6． 73
（E11－TE010A）	$\text { . P. 17. } 27$	鉛直	3.34
残留熱除去系熱交換器	残留熱除去系管	水平	6． 54
（E11－TE010B）	0．P．17． 27	鉛直	4.42

表 4－2 機能維持評価用加速度（基準床レベルの応答加速度）（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

機器名称	対象機器設置箇所   （m）	方向	基準地震動S s
			機能維持評価用加速度
残留熱除去系熱交換器		水平	1． 77
（E11－TE010A）   （E11－TE010B）	(0. P. 22. 50*)	鉛直	1． 30

注記＊：基準床レベルを示す。

## 4.2 機能確認済加速度

残留熱除去系熱交換器入口温度の機能碓認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，当該検出器と類似の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表 4－3 に示す。

表 4－3 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系熱交換器入口温度   （E11－TE010A）   （E11－TE010B）   水平		
	鉛直	

5．評価結果
5.1 重大事故等対処設備としての評価結果

残留熱除去系熱交換器入口温度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【残留熱除去系熱交換器入口温度（E11－TE010A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
残留熱除去系熱交換器入口温度   （E11－TE010A）	水平方向	6.73	
	鉛直方向	水平方向	3.34
	鉛直方向	6.54	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－5－2－2－2 残留熱除去系熱交換器出口温度の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2.2 評価方針 ..... 3
2.3 適用規格•基準等 ..... 3
3．評価部位 ..... 3
4．機能維持評価 ..... 4
4． 1 機能維持評価用加速度 ..... 4
4．2 機能確認済加速度 ..... 5
5．評価結果 ..... 6
5.1 重大事故等対処設備としての評価結果 ..... 6

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，残留熱除去系熱交換器出口温度が設計用地震力に対して十分な電気的機能を有して いることを説明するものである。

残留熱除去系熱交換器出口温度は，設計基準対象施設においてはC クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備と しての電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

残留熱除去系熱交換器出口温度の構造計画を表 2－1 に示す。

表 2－1 構造計画


## 2.2 評価方針

残留熱除去系熱交換器出口温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

残留熱除去系熱交換器出口温度の耐震評価フローを図2－1に示す。


図 2－1 残留熱除去系熱交換器出口温度の耐震評価フロー

## 2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）

3．評価部位
残留熱除去系熱交換器出口温度は，残留熱除去系管に直接取り付けられた保護管に挿入され固定されることから，残留熱除去系管が支持している。残留熱除去系管の構造強度評価は，添付書類「VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）」にて実施しているため，本計算書では，残留熱除去系管の地震応答解析結果を用いた残留熱除去系熱交換器出口温度の電気的機能維持評価について示す。

4．機能維持評価
残留熱除去系熱交換器出口温度の電気的機能維持評価について，以下に示す。
4.1 機能維持評価用加速度

残留熱除去系熱交換器出口温度は残留熱除去系管に直接取り付けられた保護管に挿入され固定されることから，機能維持評価用加速度は，添付書類「VI－2－5－4－1－4 管の耐震性につい ての計算書（残留熱除去系）」に示す重大事故等対処設備の地震応答解析で評価した残留熱除去系熱交換器出口温度取付部に相当する質点に生じる応答加速度又は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動S s により定まる基準床レベルの応答加速度 のいずれか大きい値とする。機能維持評価用加速度を表 4－1 及び表 4－2 に示す。

表 4－1 機能維持評価用加速度（質点に生じる応答加速度）（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

機器名称	対象機器設置箇所   （m）	方向	基準地震動 S s
			機能維持評価用加速度
残留熱除去系熱交換器   出口温度 (E11-TE007A)	残留熱除去系管$\begin{aligned} & (\text { RHR }-008) \\ & \text { 0. P. 15. } 73 \end{aligned}$	水平	6． 41
		鉛直	3.35
残留熱除去系熱交換器   出口温度   （E11－TE007B）	残留熱除去系管$\begin{aligned} & (\text { RHR }-013) \\ & \text { 0. P. 15. } 73 \end{aligned}$	水平	6． 30
		鉛直	5.50

表 4－2 機能維持評価用加速度（基準床レベルの応答加速度）（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

機器名称	対象機器設置箇所	方向	基準地震動 S s
（m）	機能維持評価用加速度		
留熱除去系熱交換器   出口温度   （E11－TE007A）   （E11－TE007B）	原子炉建屋   0．P． 15.00   （0．P．22．50＊）	水平	1.77
	鉛直	1.30	

注記＊：基準床レベルを示す。

## 4.2 機能確認済加速度

残留熱除去系熱交換器出口温度の機能碓認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，当該検出器と類似の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表 4－3 に示す。

表 4－3 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系熱交換器出口温度   （E11－TE007A）   （E11－TE007B）水平		
	鉛直	

5．評価結果
5.1 重大事故等対処設備としての評価結果

残留熱除去系熱交換器出口温度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【残留熱除去系熱交換器出口温度（E11－TE007A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果

$$
\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

		機能維持評価用加速度	機能確認済加速度
残留熱除去系熱交換器出口温度   （E11－TE007A）	水平方向	6.41	
	鉛直方向	水平方向	3.35
	鉛直方向	6.30	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－5－2－3 一次冷却材流量計測装置の耐震性についての計算書

VI－2－6－5－2－3－1 原子炉冷却材浄化系入口流量の耐震性についての計算書
VI－2－6－5－2－3－2 高圧代替注水系ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－3 残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量） の耐震性についての計算書

VI－2－6－5－2－3－4 残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の耐震性についての計算書
VI－2－6－5－2－3－5 直流駆動低圧注水系ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－6 代替循環冷却ポンプ出口流量の耐震性についての計算書
VI－2－6－5－2－3－7 原子炉隔離時冷却系ポンプ出口流量の耐震性についての計算書 VI－2－6－5－2－3－8 高圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書 VI－2－6－5－2－3－9 残留熱除去系ポンプ出口流量の耐震性についての計算書 VI－2－6－5－2－3－10 低圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書

VI－2－6－5－2－3－1 原子炉冷却材浄化系入口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉冷却材浄化系入口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉冷却材浄化系入口流量は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉冷却材浄化系入口流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

## 2.1 構造計画

原子炉冷却材浄化系入口流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【原子炉冷却材浄化系入口流量】

3．固有周期
原子炉冷却材浄化系入口流量が設置される計装ラックの固有周期は，構造が同等であり，同様 な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用す る。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉冷却材浄化系入口流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

原子炉冷却材浄化系入口流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉冷却材浄化系入口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

原子炉冷却材浄化系入口流量の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	原子炉冷却材浄化系入口流量	S		

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}^{\text {s }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{yi}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
取付ボルト   $(\mathrm{i}=2)$	SS 400   $(16 \mathrm{~mm}<$ 径 $\leq 40 \mathrm{~mm})$	周囲環境温度	40	235	400
$(\mathrm{MPa})$					

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉冷却材浄化系入口流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉冷却材浄化系入口流量   $($ G31－FT001A）	水平	
	鋁直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉冷却材浄化系入口流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉泠却材浄化系入口流量（G31－FT001A）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉冷却材浄化系入口流量 （G31－FT001A）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{V}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。
$\infty$
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{i}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{3 i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{i}}}$	n i	nf V i	n $\mathrm{fH}_{\mathrm{Hi}}$
取付ボルト $(\mathrm{i}=2)$		500						16	4	4


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}} \text { * }}$	弾性設計用   地震動 S d 又   は静的震度	基準地震動 S s
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉冷却材浄化系	水平方向	1.65	
（G31－FT001A）	鉛直方向	1.15	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


VI－2－6－5－2－3－2 高圧代替注水系ポンプ出口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
3.1 固有周期の算出方法 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件 ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6． 1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，高圧代替注水系ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

高圧代替注水系ポンプ出口流量は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，高圧代替注水系ポンプ出口流量が設置される計器スタンションは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施 する。

2．一般事項
$\begin{aligned} 2.1 & \text { 構造計画 } \\ & \text { 高圧代替注水系ポンプ出口流量の構造計画を表 } 2-1 \text { に示す。 }\end{aligned}$

表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【高圧代替注水系ポンプ出口流量】

3．固有周期
3.1 固有周期の算出方法

高圧代替注水系ポンプ出口流量が設置される計器スタンションの固有周期は，プラスチック ハンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピッ クアップ，振動計，分析器）により記録解析する。試験の結果，剛であることを確認した。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）


4．構造強度評価

## 4.1 構造強度評価方法

高圧代替注水系ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンショ ンの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4． 2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
高圧代替注水系ポンプ出口流量の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

## 4．2．2 許容応力

高圧代替注水系ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
高圧代替注水系ポンプ出口流量の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $($ 径 $\leqq 16 \mathrm{~mm})$	周囲環境温度	66	234	385	-

## 5．機能維持評価

5.1 電気的機能維持評価方法

高圧代替注水系ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタ ンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
高圧代替注水系ポンプ出口流量   （E61－FT004）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

高圧代替注水系ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【高圧代替注水系ポンプ出口流量（E61－FT004）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
高圧代替注水系ポンプ出口流量 （E61－FT004）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. 80 } \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記 $~$ ：基準床レベルを示す。
$\infty$
1．2 機器要目

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\ell_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nfV
基礎ボルト		440				4		2	


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用 地震動 Sd 又 は静的震度	基準地震動 S s
基礎ボルト	234	385	－	270	－	水平方向

1.3 計算数値


1． 4 結論

1．4．1 ボルトの応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=9$	$\mathrm{f}_{\mathrm{ts}}=202^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{sb}}=155$

－注記 $*$ ： $\mathrm{f}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
高圧代替注水系	水平方向	1.31	
$(\mathrm{E} 61-\mathrm{FT} 004)$	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


VI－2－6－5－2－3－3 残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプ レイライン洗浄流量）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するも のである。

残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）が設置さ れる計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性について の計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）】

3．固有周期
残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対 する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

## 4.1 構造強度評価方法

残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」 に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分	機器名称	設備分類＊1	機器等の区分		荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

## 5．機能維持評価

5.1 電気的機能維持評価方法

残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系洗浄ライン流量（残留熱除去系	水平	
ヘッドスプレイライン洗浄流量）   （E11－FT017A）	鉛直	

[^29]6．評価結果
6.1 重大事故等対処設備としての評価結果

残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-3$
R 0

【残留熱除去系洗浄ライン流量（残留熱除去系ヘッドスプレイライン洗浄流量）（E11－FT017A）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		$\underset{\text { 周囲環境 }}{\text { 温 }}$   （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系洗浄ライ ン流量（残留熱除去系 ヘッドスプレイライン洗浄流量）   （E11－FT017A）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	66

注記 $*$ ：基準床レベルを示す。
$\infty$

$$
1.2 \text { 機器要目 }
$$

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\ell_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nfV	nff
基礎ボルト		414				4	2	2		


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}^{*}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
基礎ボルト	206	385	－	247	－	水平方向

1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		Q b	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
残留熱除去系洗浄ラ			
イン流量（残留熱除	水平方向	1.65	
ライン洗浄流量）   （E11－FT017A）	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


VI－2－6－5－2－3－4 残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明する ものである。

残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器泠却ライン洗浄流量）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）が設置 される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性につい ての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量）の構造計画 を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【残留熱除去系洗浄ライン流量（残留熱除去系 B 采格納容器泠却ライン洗浄流量）】

3．固有周期
残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－ 1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価
4.1 構造強度評価方法

残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」 に記載の耐震計算方法に基づき行う。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の荷重 の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

## 4．2．2 許容応力

残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置	残留熱除去系洗浄ライン流量 （残留熱除去系 B 系格納容器冷却ライン洗浄流量）	常設耐震／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$   （ $V_{A} S$ として   $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界   を用いる。）

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

## 5．機能維持評価

5.1 電気的機能維持評価方法

残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。
機能確認済加速度を表 5－1 に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系洗浄ライン流量（残留熱除去系   B 系格納容器冷却ライン洗浄流量）   （E11－FT017B）	水平	
	鋁直	

[^30]6．評価結果
6.1 重大事故等対処設備としての評価結果

残留熱除去系洗浄ライン流量（残留熱除去系 B 系格納容器冷却ライン洗浄流量）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【残留熱除去系洗浄ライン流量（残留熱除去系B系格納容器泠却ライン洗浄流量）（E11－FT017B）の耐震性についての計算結果】 1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ   （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境 温度   $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系洗浄ライ ン流量（残留熱除去系 B 系格納容器泠却ライ ン洗浄流量） （E11－FT017B）	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 15.00^{*} \end{aligned}$	0．05以下	0．05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。
$\infty$
1.2 機器要目

部 材	m   $(\mathrm{kg})$	h 1   $(\mathrm{~mm})$	$\ell_{1} * 1$   $(\mathrm{~mm})$	$\ell_{2} * 1$   $(\mathrm{~mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	$\mathrm{nf} * 1$
基礎ボルト		350			4	2		


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
基礎ボルト	206	385	－	247	－	前後方向

注記＊1 ：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は前後方向転倒に対する評価時の要目を示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-4$
R 0
1.3 計算数値


1．4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 教静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=10$	$\mathrm{f}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{sb}}=142$

－注記 $*$ ： $\mathrm{f}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。


注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


正面（左右方向）


側面（前後方向）

VI－2－6－5－2－3－5 直流駆動低圧注水系ポンプ出口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，直流駆動低圧注水系ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

直流駆動低圧注水系ポンプ出口流量は，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，直流駆動低圧注水系ポンプ出口流量が設置される計器スタンションは，添付書類「VI－2－ 1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
$\begin{aligned} 2.1 & \text { 構造計画 } \\ & \text { 直流駆動低圧注水系ポンプ出口流量の構造計画を表 } 2-1 \text { に示す。 }\end{aligned}$

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【直流駆動低圧注水系ポンプ出口流量】

3．固有周期
直流駆動低圧注水系ポンプ出口流量が設置される計器スタンションの固有周期は，構造が同等 であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認され た固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

直流駆動低圧注水系ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

直流駆動低圧注水系ポンプ出口流量の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
直流駆動低圧注水系ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
直流駆動低圧注水系ポンプ出口流量の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$   （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	60	208	389	-

## 5．機能維持評価

5.1 電気的機能維持評価方法

直流駆動低圧注水系ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
直流駆動低圧注水系ポンプ出口流量   （E71－FT005）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

直流駆動低圧注水系ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-5$
R 0

【直流駆動低圧注水系ポンプ出口流量（E71－FT005）の耐震性についての計算結果】
1．重大事故等対処設備

## 1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
直流駆動低圧注水系ポ ンプ出口流量 （E71－FT005）	常設耐震／防止	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. }-8.10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	60

注記＊：基準床レベルを示す。
$\infty$

## 1．2 機器要目

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$l_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nfV	nfH
基礎ボルト		455				4	2	2		


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$		基準地震動
基礎ボルト	208	389	－	249	－	水平方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-3-5$
R 0
1.3 計算数値


1． 4 結論
1．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=8$	$\mathrm{ffts}^{\text {e }}=187^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s} \text { b }}=144$

$\bullet$

すべて許容応力以下である。


注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


正面（水平方向）

VI－2－6－5－2－3－6 代替循環冷却ポンプ出口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件． ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，代替循環冷却ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

代替循環冷却ポンプ出口流量は，重大事故等対処設備においては常設重大事故緩和設備に分類 される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，代替循環冷却ポンプ出口流量が設置される計器スタンションは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施 する。

2．一般事項

## 2.1 構造計画

代替循環冷却ポンプ出口流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【代替循環冷却ポンプ出口流量】

3．固有周期
代替循環冷却ポンプ出口流量が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1 に示す。

表3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4． 1 構造強度評価方法
代替循環泠却ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンション の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
4.2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

代替循環冷却ポンプ出口流量の荷重の組合せ及び許容応力状態のらち重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力
代替循環冷却ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
代替循環冷却ポンプ出口流量の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表 4－3に示す。
O 2
（3） $\mathrm{VI}-2-6-5-2-3-6$
R 0

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
O 2
（3） $\mathrm{VI}-2-6-5-2-3-6$
R 0

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400	-

5．機能維持評価
5.1 電気的機能維持評価方法

代替循環冷却ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
代替循環冷却ポンプ出口流量		
（E11－FT022）		

6．評価結果
6.1 重大事故等対処設備としての評価結果

代替循環冷却ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-6$
R 0

【代替循環冷却ポンプ出口流量（E11－FT022）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
代替循環冷却ポンプ出口流量 （E11－FT022）	常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-8.10 \\ \left(0 . \text { P. }-0.80^{*}\right) \\ \hline \end{gathered}$	0.05 以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	40

注記＊：基準床レベルを示す。
$\infty$
1.2 機器要目

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\mathbf{l}_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nf V	nfH
基礎ボルト		455			4	2	2			


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	単性設計用 地震甥 S は静的震度	基準地震動 S s
基礎ボルト	215	400	－	258	－	水平方向

O 2
（3） $\mathrm{VI}-2-6-5-2-3-6$
R 0

1．3 計算数値


1．4 結論

－注記 $* ~: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結		（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
代替循環冷却ポンプ	水平方向	1.11	
（E11－FT022）	鉛直方向	0．73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


正面（水平方向）

VI－2－6－5－2－3－7 原子炉隔離時冷却系ポンプ出口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件． ..... 3
5．機能維持評価 ..... 7
5.1 電気的機能維持評価方法 ..... 7
6．評価結果 ..... 8
6.1 設計基準対象施設としての評価結果• ..... 8
6．2 重大事故等対処設備としての評価結果• ..... 8

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉隔離時冷却系ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉隔離時冷却系ポンプ出口流量は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉隔離時冷却系ポンプ出口流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

## 2.1 構造計画

原子炉隔離時冷却系ポンプ出口流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	差圧式流量検出器	【原子炬隔離時冷却系ポンプ出口流量】

3．固有周期
原子炉隔離時冷却系ポンプ出口流量が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価
4.1 構造強度評価方法

原子炉隔離時冷却系ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
原子炉隔離時冷却系ポンプ出口流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
原子炉隔離時冷却系ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉隔離時冷却系ポンプ出口流量の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。
O 2
（3）VI－2－6－5－2－3－7
R 0

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	原子炉隔離時冷却系ポンプ			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設／防止（D B 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
*2: その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2   （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 （3）VI－2－6－5－2－3－7 R 0

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－
取付ボルト $(i=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{yi}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
基礎ボルト   $(\mathrm{i}=1)$	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
$(\mathrm{MPa})$					

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉隔離時冷却系ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉隔離時冷却系ポンプ出口流量   （E51－FT004）	水平	
	鉛直	

[^31]6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉隔離時冷却系ポンプ出口流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6． 2 重大事故等対処設備としての評価結果
原子炉隔離時冷却系ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉隔離時冷却系ポンプ出口流量（E51－FT004）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		$\underset{\text { 周囲環境 }}{\text { 温度 }}$   $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉隔離時冷却系 ポンプ出口流量 （E51－FT004）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{v}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{v}}=0.88$	65

注記 $*$ ：基準床レベルを示す。
$\sigma$

## 1．2 機器要目



	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{Su}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F}_{i} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{Fi}_{\mathrm{i}}}$	転倒方向	
部 材						基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	206	386	206	247	鉛直方向	鉛直方向
取付ボルト $(i=2)$	206	386	206	247	鉛直方向	鋁直方向

1．3 計算数値


1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉隔離時冷却系	水平方向	1.11	
(E51-FT004)	鉛直方向	0.73	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$\mathrm{A} \rightarrow$

$$
A \rightarrow
$$



2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\mathrm{C}}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉隔離時冷却系 ポンプ出口流量 （E51－FT004）	常設／防止 （ D B拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	66

注記＊：基準床レベルを示す。

N

## 2.2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{i}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\ell_{1}}$	$\begin{aligned} & \ell_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & l_{3} i \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n $\mathrm{f}_{\mathrm{Hi}}$
基礎ボルト $(i=1)$		500						6	2	3
取付ボルト $(i=2)$		400						8	2	4


部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \mathrm{a} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}} \text { * }}$	転倒方向	
					$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
基礎ボルト $(i=1)$	206	385	－	247	－	鉛直方向
取付ボルト $(i=2)$	206	385	－	247	－	鉛直方向

2．3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	F ${ }_{\text {b }}$		Q	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
取付ボルト $(i=2)$	－		－	

2.4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=21$	$\mathrm{f}_{\mathrm{ts} 1}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=7$	$\mathrm{f}_{\text {s b } 1}=142$
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=16$	$\mathrm{ff} \mathrm{t} \mathrm{s} 2=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=142$


すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
原子炉隔離時冷却系 ポンプ出口流量 （E51－FT004）	水平方向	1.11	
	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-3-7 R O E }
$$


$\mathrm{A} \rightarrow$

$$
\mathrm{A} \rightarrow
$$



VI－2－6－5－2－3－8 高圧炉心スプレイ系ポンプ出口流量の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7
6．2 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，高圧炉心スプレイ系ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

高圧炉心スプレイ系ポンプ出口流量は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，高圧炉心スプレイ系ポンプ出口流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

## 2.1 構造計画

高圧炉心スプレイ系ポンプ出口流量の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【高圧炉心スプレイ系ポンプ出口流量】

3．固有周期
高圧炉心スプレイ系ポンプ出口流量が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

高圧炉心スプレイ系ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

高圧炉心スプレイ系ポンプ出口流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

## 4．2．2 許容応力

高圧炉心スプレイ系ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

高圧炉心スプレイ系ポンプ出口流量の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-8$
R 0

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	高圧炉心スプレイ系ポンプ			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fm}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

高圧炉心スプレイ系ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
高圧炉心スプレイ系ポンプ出口流量   （E22－FT005B）	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

高圧炉心スプレイ系ポンプ出口流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6． 2 重大事故等対処設備としての評価結果
高圧炉心スプレイ系ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
O 2
（3） $\mathrm{VI}-2-6-5-2-3-8$
R 0

【高圧彷心スプレイ系ポンプ出口流量（E22－FT005B）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
高圧炉心スプレイ系 ポンプ出口流量 （E22－FT005B）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. } 80 \\ \left(0 . \mathrm{P} .6 .00^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{v}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記 $~$ ：基準床レベルを示す。
$\infty$


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \underset{\mathrm{u}}{\mathrm{Su}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}{ }^{\text {a }}$		基準地震動
取付ボルト $(\mathrm{i}=2)$	235	400	235	280	鉛直方向	鉛直方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-3-8$
R 0

1．3 計算数値


1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 又静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=9$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=176^{*}$	$\sigma_{\mathrm{b} 2}=17$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=3$	$\mathrm{f}_{\text {s b } 2}=135$	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=161$

$\bullet$
すべて許容応力以下である。

1．4．2 電気的機能維持の評価		果 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
高圧炉心スプレイ系	水平方向	1． 31	
(E22-FT005B)	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

# O 2 <br> (3) $\mathrm{VI}-2-6-5-2-3-8$ <br> R 0 


○ 2
（3） $\mathrm{VI}-2-6-5-2-3-8$
R 0

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
高圧炉心スプレイ系 ポンプ出口流量 （E22－FT005B）	常設／防止 （DB 拡張）	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-0.80 \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$	0.05 以下	0．05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。
2.2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\ell_{1}}$	$\begin{gathered} l_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{3} \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f v i	n f $\mathrm{Hi}^{\text {i }}$
取付ボルト $(i=2)$		500						14	3	4


				$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S
取付ボルト $(\mathrm{i}=2)$	225	385	－	270	－	鉛直方向

○ 2
（3） $\mathrm{VI}-2-6-5-2-3-8$
R 0

2． 3 計算数値

2．3．1 ホルトに作用する			（単位：N）	
	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		Q bi	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論


心 注記＊： $\mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, ~ \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
高圧炉心スプレイ系 ポンプ出口流量 （E22－FT005B）	水平方向	1.31	
	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


$$
\mathrm{A} \rightarrow
$$



VI－2－6－5－2－3－9 残留熱除去系ポンプ出口流量の耐震性についての計算書

## 目次

1．残留熱除去系ポンプ出口流量（E11－FT006A，B） ..... 1
1.1 概要 ..... 1
1．2 一般事項 ..... 1
1．2．1 構造計画 ..... 1
1．3 固有周期 ..... 3
1．3．1 固有周期の算出方法 ..... 3
1.4 構造強度評価 ..... 3
1．4．1 構造強度評価方法 ..... 3
1．4．2 荷重の組合せ及び許容応力 ..... 3
1.5 機能維持評価 ..... 6
1．5．1 電気的機能維持評価方法 ..... 6
1． 6 評価結果 ..... 7
1．6．1 設計基準対象施設としての評価結果 ..... 7
1．6．2 重大事故等対処設備としての評価結果 ..... 7
2．残留熱除去系ポンプ出口流量（E11－FT006C） ..... 14
2.1 概要 ..... 14
2.2 一般事項 ..... 14
2．2．1 構造計画 ..... 14
2．3 固有周期 ..... 16
2．3．1 固有周期の算出方法 ..... 16
2.4 構造強度評価 ..... 16
2．4．1 構造強度評価方法 ..... 16
2．4．2 荷重の組合せ及び許容応力 ..... 16
2.5 機能維持評価 ..... 20
2．5．1 電気的機能維持評価方法． ..... 20
2.6 評価結果 ..... 21
2．6．1 設計基準対象施設としての評価結果 ..... 21
2．6．2 重大事故等対処設備としての評価結果 ..... 21

1．残留熱除去系ポンプ出口流量（E11－FT006A，B）

## 1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系ポンプ出口流量（E11－FT006A，B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

残留熱除去系ポンプ出口流量（E11－FT006A，B）は，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，残留熱除去系ポンプ出口流量（E11－FT006A，B）が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価につ いては，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同 じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
E11－FT006A（代表）	VI－2－1－13－8 計装ラック	
E11－FT006B	の耐震性についての計算書   作成の基本方針	表 1－2 構造計画

## 1.2 一般事項

## 1．2．1 構造計画

残留熱除去系ポンプ出口流量（E11－FT006A）の構造計画を表 1－2 に示す。

表 1－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【残留熱除去系ポンプ出口流量（H22－P018A（E11－FT006A））】   注記＊：検出器は代表して 1 台を示す。

## 1．3 固有周期

1．3．1 固有周期の算出方法
残留熱除去系ポンプ出口流量（E11－FT006A）が設置される計装ラックの固有周期は，プ ラスチックハンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により記録解析する。試験の結果，剛である ことを確認した。固有周期の確認結果を表1－3に示す。

表 1－3 固有周期（単位：s）

水平方向	鉛直方向

## 1．4 構造強度評価

## 1．4．1 構造強度評価方法

残留熱除去系ポンプ出口流量（E11－FT006A）の構造強度評価は，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行う。

## 1．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
残留熱除去系ポンプ出口流量（E11－FT006A）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 1－4に，重大事故等対処設備の評価に用いるもの を表1－5に示す。
（2）許容応力
残留熱除去系ポンプ出口流量（E11－FT006A）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－6のとおりとする。
（3）使用材料の許容応力評価条件
残留熱除去系ポンプ出口流量（E11－FT006A）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 1－7 に，重大事故等対処設備の評価に用いるものを表1－8に示す。
O 2
（3）VI－2－6－5－2－3－9
R 0

表 1－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	残留熱除去系ポンプ出口流量 （E11－FT006A）	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 1－5 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－6 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 1－7 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{array}{r} \mathrm{S}_{\mathrm{y} \text { i }} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i} \quad(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 1－8 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \mathrm{i}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
取付ボルト					
$(\mathrm{i}=2)$	SS 400	S i（R T）			
$(\mathrm{MPa})$					

## 1.5 機能維持評価

1．5．1 電気的機能維持評価方法
残留熱除去系ポンプ出口流量（E11－FT006A）の電気的機能維持評価は，添付書類「VI－2－ 1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づ き行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－9に示す。

表 $1-9$	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
残留熱除去系ポンプ出口流量   （E11－FT006A）	水平	
	鉛直	

## 1.6 評価結果

1．6．1 設計基準対象施設としての評価結果
残留熱除去系ポンプ出口流量（E11－FT006A）の設計基準対象施設としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

1．6．2 重大事故等対処設備としての評価結果
残留熱除去系ポンプ出口流量（E11－FT006A）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分 な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-9$
R 0

【残留熱除去系ポンプ出口流量（E11－FT006A）の耐震性についての計算結果】
1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び床面高さ   （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度   $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系ポンプ出口流量 （E11－FT006A）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { (0.P. -0. } 80 \\ \text { (0.P. 6. } 00^{*} \text { ) } \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{V}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記 $*$ ：基準床レベルを示す。
$\infty$


部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{Fi}_{i} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}{ }^{2}}$	転倒方向	
					弾性設計用地震動 S d 又 は静的震度	基準地震動 S s
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\text {b } 2}=10$	$\mathrm{f}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=17$	$\mathrm{f}_{\mathrm{ts} 2}=210$＊
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {sb } 2}=135$	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=161$

$\bullet$
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結		迷 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
残留熱除去系ポンプ   出口流量	水平方向	1.31	
（E11－FT006A）	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-6-5-2-3-9 R 0


$$
\mathrm{O} 2 \text { (3) VI-2-6-5-2-3-9 R O }
$$

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系ポンプ出口流量   （E11－FT006A）	常設／防止 （DB 拡張）	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-0.80 \\ \left(0 . \text { P. 6. } 00^{*}\right) \\ \hline \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}{ }^{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \\ \hline \end{gathered}$	基漼地震動 S S
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

2.3 計算数値


2． 4 結論


心 注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
残留熱除去系ポンプ出口流量   （E11－FT006A）	水平方向	1． 31	
	鉛直方向	0.91	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-6-5-2-3-9 R 0


2．残留熱除去系ポンプ出口流量（E11－FT006C）

## 2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系ポンプ出口流量（E11－FT006C）が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

残留熱除去系ポンプ出口流量（E11－FT006C）は，設計基準対象施設においてはSクラス施設 に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価 を示す。

なお，残留熱除去系ポンプ出口流量（E11－FT006C）が設置される計装ラックは，添付書類「VI －2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施す る。
2.2 一般事項

## 2．2．1 構造計画

残留熱除去系ポンプ出口流量（E11－FT006C）の構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	差圧式流量検出器	

## 2.3 固有周期

2．3．1 固有周期の算出方法
残留熱除去系ポンプ出口流量（E11－FT006C）が設置される計装ラックの固有周期は，プ ラスチックハンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により記録解析する。試験の結果，剛である ことを確認した。固有周期の確認結果を表2－2に示す。

表 2－2 固有周期（単位：s）


## 2.4 構造強度評価

## 2．4．1 構造強度評価方法

残留熱除去系ポンプ出口流量（E11－FT006C）の構造強度評価は，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行う。

## 2．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
残留熱除去系ポンプ出口流量（E11－FT006C）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表2－3に，重大事故等対処設備の評価に用いるもの を表2－4に示す。
（2）許容応力
残留熱除去系ポンプ出口流量（E11－FT006C）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－5 のとおりとする。
（3）使用材料の許容応力評価条件
残留熱除去系ポンプ出口流量（E11－FT006C）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表2－6に，重大事故等対処設備の評価に用いるものを表 2－7に示す。
○ 2
（3） $\mathrm{VI}-2-6-5-2-3-9$
R 0

表 2－3 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	残留熱除去系ポンプ出口流量   （E11－FT006C）			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 2－4 荷重の組合せ及び許容応力状態（重大事故等対処設備）
$\rightleftharpoons$

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－5 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－6 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   （ $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i} \quad(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	65	206	386	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \\ \hline \end{gathered}$			206	386	－

表 2－7 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$			206	385	－

## 2.5 機能維持評価

2．5．1 電気的機能維持評価方法
残留熱除去系ポンプ出口流量（E11－FT006C）の電気的機能維持評価は，添付書類「VI－2－ 1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づ き行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表2－8に示す。

表 2－8 機能確認済加速度		
評価部位	方向	機能確認済加速度
残留熱除去系ポンプ出口流量   （E11－FT006C）	水平	
	鋁直	

[^32]
## 2.6 評価結果

2．6．1 設計基準対象施設としての評価結果
残留熱除去系ポンプ出口流量（E11－FT006C）の設計基準対象施設としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

2．6．2 重大事故等対処設備としての評価結果
残留熱除去系ポンプ出口流量（E11－FT006C）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分 な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【残留熱除去系ポンプ出口流量（E11－FT006C）の耐震性についての計算結果】

1．設計基準対象施設

機器名称	耐震重要度分類	据付場所及び床面高さ   （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度   $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系ポンプ出口流量 （E11－FT006C）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. -0. } 80^{*}\right) \end{gathered}$			$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	65

注記＊：基準床レベルを示す。


部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Fi}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					$\begin{gathered} \hline \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S s
基礎ボルト $(i=1)$	206	386	206	247	鉛直方向	鉛直方向
取付ボルト $(i=2)$	206	386	206	247	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
残留熱除去系ポンプ	水平方向	1.11	
(E11-FT006C)	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$A \rightarrow$

24


$$
\mathrm{O} 2 \text { (3) VI-2-6-5-2-3-9 R }
$$

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系ポンプ出口流量 （E11－FT006C）	常設／防止 （DB 拡張）	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	66

注記＊：基準床レベルを示す。

## 2.2 機器要目



					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{Fi}_{\mathrm{i}}}$	弾性設計用地震動 S d 又 は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	206	385	－	247	－	鉛直方向
取付ボルト $(\mathrm{i}=2)$	206	385	－	247	－	鉛直方向

2.3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	F ${ }_{\text {b }}$		Q	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	－		－	
取付ボルト $(i=2)$	－		－	

2． 4 結論
2．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=23$	$\mathrm{f}_{\mathrm{ts} 1}=185 *$
		せん断	－	－	$\tau_{\mathrm{b} 1}=8$	$\mathrm{f}_{\mathrm{sb} 1}=142$
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=18$	$\mathrm{f}_{\mathrm{ts} 2}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=142$


すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

|  |  | 機能維持評価用加速度 |
| :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-2-3-9 R O E }
$$


$A \rightarrow$


VI－2－6－5－2－3－10 低圧炉心スプレイ系ポンプ出口流量の耐震性について の計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7
6．2 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，低圧炉心スプレイ系ポンプ出口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

低圧炉心スプレイ系ポンプ出口流量は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，低圧炉心スプレイ系ポンプ出口流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

低圧炉心スプレイ系ポンプ出口流量の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【低圧炉心スプレイ系ポンプ出口流量】   上面

3．固有周期
低圧炉心スプレイ系ポンプ出口流量が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

低圧炉心スプレイ系ポンプ出口流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

低圧炉心スプレイ系ポンプ出口流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

## 4．2．2 許容応力

低圧炉心スプレイ系ポンプ出口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

低圧炉心スプレイ系ポンプ出口流量の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－4に，重大事故等対処設備の評価に用いるものを表 4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	低圧炉心スプレイ系ポンプ			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{ff}_{\text {t }}$	$1.5 \cdot \mathrm{f}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
取付ボルト $(i=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

低圧炉心スプレイ系ポンプ出口流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

表 $5-1$ 機能確認済加速度		
評価部位	方向	機能確認済加速度
低圧炉心スプレイ系ポンプ出口流量   （E21－FT006）	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

低圧炉心スプレイ系ポンプ出口流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

低圧炉心スプレイ系ポンプ出口流量の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【低圧炉心スプレイ系ポンプ出口流量（E21－FT006）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
低圧炉心スプレイ系 ポンプ出口流量 （E21－FT006）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. } 80 \\ \left(0 . \mathrm{P} .6 .00^{*}\right) \end{gathered}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{v}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記＊：基準床レベルを示す。
$\infty$

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\underset{(\mathrm{mm})}{\mathrm{h}_{\mathrm{i}}}$	$\left(\begin{array}{l} \ell_{1} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\ell_{2}}$	$\left(\begin{array}{l} \ell_{3} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n f Hi
取付ボルト $(i=2)$		500						14	3	4


					転倒方向	
部 材	$\underset{(\mathrm{MPa}}{\mathrm{S}}$	$\begin{gathered} \underset{u}{\mathrm{Su}^{( }} \mathrm{MPa} \end{gathered}$	$\begin{gathered} \mathrm{F}_{i} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{Fi}_{\mathrm{i}}}$		基準地震動
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=9$	$\mathrm{f}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=17$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=3$	$\mathrm{f}_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\mathrm{s} \mathrm{b} 2}=161$

$\circ$
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
低圧炉心スプレイ系	水平方向	1.31	
(E21-FT006)	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\mathrm{C}}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
低圧炉心スプレイ系 ポンプ出口流量 （E21－FT006）	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. - } 0.80 \\ \text { (0. P. 6. } 00^{*} \text { ) } \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	66

注記＊：基準床レベルを示す。


				$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S
取付ボルト $(\mathrm{i}=2)$	225	385	－	270	－	鉛直方向

2． 3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		Q	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(i=2)$	－		－	

2． 4 結論


心 注記＊： $\mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, ~ \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

低圧炉心スプレイ系   ポンプ出口流量   （E21－FT006）	水平方向	鉛直方向	1.31
	維持評価用加速度＊	能確認済加速度	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

## O 2 (3) VI-2-6-5-2-3-10 R O E



VI－2－6－5－3 原子炉圧力容器本体内の圧力又は水位を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－3－1 原子炉圧力容器本体内圧力計測装置の耐震性についての計算書
VI－2－6－5－3－2 原子炉圧力容器本体内水位計測装置の耐震性についての計算書

VI－2－6－5－3－1 原子炉圧力容器本体内圧力計測装置の耐震性についての計算書

VI－2－6－5－3－1－1 原子炉圧力の耐震性についての計算書
VI－2－6－5－3－1－2 原子炉圧力（SA）の耐震性についての計算書

VI－2－6－5－3－1－1 原子炉圧力の耐震性についての計算書

目次
1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4.2 荷重の組合せ及び許容応力• ..... 3
4．2．1 荷重の組合せ及び許容応力状態• ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件 ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6． 1 設計基準対象施設としての評価結果 ..... 7
6．2 重大事故等対処設備としての評価結果 ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉圧力（B21－PT023A，B，C，D）は，設計基準対象施設においてはSクラス施設に分類され る。原子炉圧力（B21－PT051A，B）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉圧力が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性 についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
B21－PT023A（代表）		
B21－PT023B	VI－2－1－13－8 計装ラック	
B21－PT023C	の耐震性についての計算書	表 $2-1 \quad$ 構造計画
B21－PT023D	作成の基本方針	
B21－PT051A（代表）		
B21－PT051B		

2．一般事項
2.1 構造計画

原子炉圧力の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	（単位：mm）   注記＊：検出器は代表して 1 台を示す。

3．固有周期
原子炉圧力が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

原子炉圧力の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるも のを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
原子炉圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉圧力の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるもの を表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	原子炉圧力			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性について の計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1 に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉圧力		
（B21－PT023A，B21－PT051A）	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉圧力の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認し た。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

原子炉圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉圧力（B21－PT023A，B21－PT051A）の耐震性についての計算結果】

1．設計基準対象施設
1．1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{aligned} & \text { 原子炉圧力 } \\ & \text { (B21-PT023A, } \\ & \text { B21-PT051A) } \end{aligned}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 15.00 \\ \left(0 . \mathrm{P} .22 .50^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=1.13$	$\mathrm{C}_{\mathrm{V}}=0.91$	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{v}}=1.56$	40

注記＊：基準床レベルを示す。
$\infty$


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度 $\mid$		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=13$	$\mathrm{ff}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=22$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {sb } 2}=135$	$\tau_{\mathrm{b} 2}=7$	$\mathrm{f}_{\text {s b } 2}=161$

$\circ$
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
原子炉圧力   （B21－PT023A，   B21－PT051A）	水平方向	1.77	
	鉛直方向	1.30	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-6-5-3-1-1 R 0


2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{aligned} & \text { 原子炉圧力 } \\ & \text { (B21-PT051A) } \end{aligned}$	常設耐震／防止常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0.P. } 15.00 \\ \left(0 . \text { P. } 22.50^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	66

注記＊：基準床レベルを示す。


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S
取付ボルト $(\mathrm{i}=2)$	225	385	－	270	－	鉛直方向

枠囲みの内容は商業機密の観点から公開できません。
2.3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		Q	
部 材	弾性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論


心 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果

|  |  | 機能維持評価用加速度＊ |  |
| :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

# O 2 (3) VI-2-6-5-3-1-1-R O F 



VI－2－6－5－3－1－2 原子炉圧力（SA）の耐震性についての計算書
1．原子炉圧力（SA）（計装ラック） ..... 1
1.1 概要 ..... 1
1．2 一般事項 ..... 1
1．2．1 構造計画 ..... 1
1．3 固有周期 ..... 3
1．4 構造強度評価 ..... 3
1．4．1 構造強度評価方法 ..... 3
1．4．2 荷重の組合せ及び許容応力 ..... 3
1.5 機能維持評価 ..... 6
1．5．1 電気的機能維持評価方法 ..... 6
1． 6 評価結果 ..... 7
1．6．1 重大事故等対処設備としての評価結果 ..... 7
2．原子炉圧力（SA）（計器スタンション（B21－PT060A）） ..... 11
2.1 概要 ..... 11
2.2 一般事項 ..... 11
2．2．1 構造計画 ..... 11
2.3 固有周期 ..... 13
2.4 構造強度評価 ..... 13
2．4．1 構造強度評価方法 ..... 13
2．4．2 荷重の組合せ及び許容応力 ..... 13
2.5 機能維持評価 ..... 16
2．5．1 電気的機能維持評価方法 ..... 16
2.6 評価結果 ..... 17
2．6．1 重大事故等対処設備としての評価結果 ..... 17
3．原子炉圧力（SA）（計器スタンション（B21－PT060B）） ..... 21
3.1 概要 ..... 21
3.2 一般事項 ..... 21
3．2．1 構造計画 ..... 21
3.3 固有周期 ..... 23
3．4 構造強度評価 ..... 23
3．4．1 構造強度評価方法 ..... 23
3．4．2 荷重の組合せ及び許容応力 ..... 23
3.5 機能維持評価 ..... 26
3．5．1 電気的機能維持評価方法 ..... 26
3.6 評価結果 ..... 27
3．6．1 重大事故等対処設備としての評価結果 ..... 27

1．原子炉圧力（SA）（計装ラック）

## 1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉圧力（SA）（計装ラック）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉圧力（SA）（計装ラック）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉圧力（SA）（計装ラック）が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価につ いては，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度となるこ とから，構造強度評価の代表として選定した検出器を代表として評価する。

評価対象を表1－1に示す。
表 1－1 概略構造識別

評価部位	評価方法	構造計画		
B21－PT045A（代表）	VI－2－1－13－8 計装ラック			
B21－PT045B	の耐震性についての計算書	表 $1-2$ 構造計画		
B21－PT045C	作成の基本方針			
B21－PT045D				

## 1.2 一般事項

## 1．2．1 構造計画

原子炉圧力（SA）（計装ラック）の構造計画を表1－2 に示す。

表 1－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は取付板取付ボルトにより計装ラッ クに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	（単位：mm）   注記＊：検出器は代表して 1 台を示す。

## 1．3 固有周期

原子炉圧力（SA）（計装ラック）が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表1－3に示す。

表 1－3 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 1．4 構造強度評価

1．4．1 構造強度評価方法
原子炉圧力（SA）（計装ラック）の構造強度評価は，添付書類「VI－2－1－13－8 計装ラッ クの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
（2）許容応力
原子炉圧力（SA）（計装ラック）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－5 のとおりとする。
（3）使用材料の許容応力評価条件
原子炉圧力（SA）（計装ラック）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表1－6に示す。

表 1－4 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－5 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 1－6 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y ~ i ~}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 1.5 機能維持評価

1．5．1 電気的機能維持評価方法
原子炉圧力（SA）（計装ラック）の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－7に示す。

表 1－7 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉圧力（SA）   $(\mathrm{B} 21-\mathrm{PT} 045 \mathrm{~A})$	水平	
	鉛直	

## 1.6 評価結果

1．6．1 重大事故等対処設備としての評価結果
原子炉圧力（SA）（計装ラック）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉圧力（SA）（計装ラック）（H22－P005A（B21－PT045A））の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉圧力（SA）   （B21－PT045A）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .15 .00 \\ \left(0 . \mathrm{P} .22 .50^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	66

注記 $*: ~$ 基準床レベルを示す。
$\infty$
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\underset{(\mathrm{mm})}{\mathrm{h}_{\mathrm{i}}}$	$\left(\underset{(\mathrm{mm})}{\ell_{1}}\right.$	$\left(\underset{(\mathrm{mm})}{\ell_{2}}\right.$	$\left(\begin{array}{l} \ell_{3} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n f Hi
取付ボルト $(i=2)$		500						16	4	4


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）
$\bullet$

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=22$	$\mathrm{f}_{\mathrm{ts} 2}=202 *$
		せん断	－	－	$\tau_{\text {b } 2}=7$	$\mathrm{f}_{\text {s b } 2}=155$

注記米： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}\right.$ ， $\left.\mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉圧力（SA） （B21－PT045A）	水平方向	1． 77	
	鋁直方向	1.30	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


2．原子炉圧力（SA）（計器スタンション（B21－PT060A））

## 2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉圧力（SA）（計器スタンション（B21－PT060A））が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉圧力（SA）（計器スタンション（B21－PT060A））は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉圧力（SA）（計器スタンション（B21－PT060A））が設置される計器スタンション は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンショ ンであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。
2.2 一般事項

## 2．2．1 構造計画

原子炉圧力（SA）（計器スタンション（B21－PT060A））の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	弾性圧力検出器	【原子炉圧力（SA）（計器スタンション（B21－PT060A））】

## 2． 3 固有周期

原子炉圧力（SA）（計器スタンション（B21－PT060A））が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。

固有周期の確認結果を表2－2に示す。

表 2－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

2.4 構造強度評価

2．4．1 構造強度評価方法
原子炉圧力（SA）（計器スタンション（B21－PT060A））の構造強度評価は，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

2．4．2 荷重の組合せ及び許容応力
（1）荷重の組合せ及び許容応力状態
原子炉圧力（SA）（計器スタンション（B21－PT060A））の荷重の組合せ及び許容応力状態 のうち重大事故等対処設備の評価に用いるものを表2－3に示す。
（2）許容応力
原子炉圧力（SA）（計器スタンション（B21－PT060A））の許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表2－4のとおりとする。
（3）使用材料の許容応力評価条件
原子炉圧力（SA）（計器スタンション（B21－PT060A））の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表 $2-5$ に示す。

表 2－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－4 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s ${ }^{\text {＊}}$

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

E
表 2－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(R T) \\ (M P a) \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－

## 2.5 機能維持評価

2．5．1 電気的機能維持評価方法
原子炉圧力（SA）（計器スタンション（B21－PT060A））の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 2－6に示す。

表 2－6 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉圧力（SA）   （B21－PT060A）	水平	
	鉛直	

枠囲みの内容は商業機密の観点から公開できません。

## 2.6 評価結果

2．6．1 重大事故等対処設備としての評価結果
原子炉圧力（SA）（計器スタンション（B21－PT060A））の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉圧力（SA）（計器スタンション（B21－PT060A））の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { 原子炉圧力 (SA) } \\ (\mathrm{B} 21-\mathrm{PT} 060 \mathrm{~A}) \end{gathered}$	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P.15.00 } \\ \left(0 . \mathrm{P} .22 .50^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	66

注記＊：基準床レベルを示す。
1.2 機器要目

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\ell_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nfV	nff
基礎ボルト		455				4	2	2		


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
基礎ボルト	206	385	－	247	－	水平方向

1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		$\mathrm{Q}_{\mathrm{b}}$	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	－		－	

1．4 結論


Ш $\quad$ 注記 $*: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

|  |  |  |  |  | 機能維持評価用加速度 |
| :---: | :---: | :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


正面（水平方向）


側面（鉛直方向）

3．原子炉圧力（SA）（計器スタンション（B21－PT060B））

## 3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉圧力（SA）（計器スタンション（B21－PT060B））が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉圧力（SA）（計器スタンション（B21－PT060B））は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉圧力（SA）（計器スタンション（B21－PT060B））が設置される計器スタンション は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンショ ンであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。
3.2 一般事項

## 3．2．1 構造計画

原子炉圧力（SA）（計器スタンション（B21－PT060B））の構造計画を表 3－1 に示す。

表 3－1 構造計画


## 3．3 固有周期

原子炉圧力（SA）（計器スタンション（B21－PT060B））が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－2 に示す。

表 3－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 3．4 構造強度評価

3．4．1 構造強度評価方法
原子炉圧力（SA）（計器スタンション（B21－PT060B））の構造強度評価は，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 3．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
原子炉圧力（SA）（計器スタンション（B21－PT060B））の荷重の組合せ及び許容応力状態 のうち重大事故等対処設備の評価に用いるものを表3－3に示す。
（2）許容応力
原子炉圧力（SA）（計器スタンション（B21－PT060B））の許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表3－4のとおりとする。
（3）使用材料の許容応力評価条件
原子炉圧力（SA）（計器スタンション（B21－PT060B））の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表 3－5 に示す。

表 3－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－4 許容応力（重大事故等その他の支持構造物）


注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
©
表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$
基礎ボルト	SS 400   $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
$(\mathrm{MPa})$					

## 3.5 機能維持評価

3．5．1 電気的機能維持評価方法
原子炉圧力（SA）（計器スタンション（B21－PT060B））の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 3－6に示す。

表 3－6 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉圧力（SA）   （B21－PT060B）	水平	
	鉛直	

[^33]
## 3.6 評価結果

3．6．1 重大事故等対処設備としての評価結果
原子炉圧力（SA）（計器スタンション（B21－PT060B））の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉圧力（SA）（計器スタンション（B21－PT060B））の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉圧力（SA） （B21－PT060B）	常設耐震／防止常設／緩和	原子炉建屋 0．P．15．00＊	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記 $~$ ：基準床レベルを示す。


部 材	$\mathrm{S}_{\mathrm{y}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{u}}$   $(\mathrm{MPa})$	F   $(\mathrm{MPa})$	$\mathrm{F} *$   $(\mathrm{MPa})$	弾性設計転倒方向   地震動 S d   は静的震度	
基礎ボルト	206	385	-	247	-	基準地震動   S

注記＊1 ：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は前後方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		$\mathrm{Q}_{\mathrm{b}}$	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1．4 結論


すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

|  |  |  |  |  | 機能維持評価用加速度 |
| :--- | :---: | :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


正面（左右方向）


側面（前後方向）

VI－2－6－5－3－2 原子炉圧力容器本体内水位計測装置の耐震性についての計算書

VI－2－6－5－3－2－1 原子炉水位の耐震性についての計算書
VI－2－6－5－3－2－2 原子炉水位（広帯域）の耐震性についての計算書
VI－2－6－5－3－2－3 原子炉水位（燃料域）の耐震性についての計算書
VI－2－6－5－3－2－4 原子炉水位（SA 広帯域）の耐震性についての計算書
VI－2－6－5－3－2－5 原子炉水位（SA 燃料域）の耐震性についての計算書

VI－2－6－5－3－2－1 原子炉水位の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉水位が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉水位は，設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉水位が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性 についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
B21－LT024A（代表）		
B21－LT024B		
B21－LT024C		
B21－LT024D		
B21－LT026A	VI－2－1－13－8 計装ラック	
B21－LT026B	の耐震性についての計算書	表 $2-1$
B21－LT026C 構造計画		
B21－LT026D	作成の基本方針	
B21－LT031A		
B21－LT031B		
B21－LT031C		
B21－LT031D		
B21－LT038A		
B21－LT038B		
B21－LT054		

2．一般事項

## 2.1 構造計画

原子炉水位の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式水位検出器	【原子炉水位（H22－P005A（B21－LT024A））】   側面   （単位：mm）   注記＊：検出器は代表して 1 台を示す。

3．固有周期
原子炉水位が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉水位の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

原子炉水位の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるも のを表4－1に示す。

4．2．2 許容応力
原子炉水位の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

## 4．2．3 使用材料の許容応力評価条件

原子炉水位の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるもの を表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	而震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	原子炉水位	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	$\mathrm{III}_{4} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{A} \mathrm{~S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} i}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
取付ボルト   $(\mathrm{i}=2)$	SS 400   $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400
$(\mathrm{MPa})$					

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉水位の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性について の計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉水位   $(B 21-L T 024 A)$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉水位の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認し た。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉水位（B21－LT024A）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{aligned} & \text { 原子炉水位 } \\ & (\mathrm{B} 21-\mathrm{LT} 024 \mathrm{~A}) \end{aligned}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .15 .00 \\ \left(0 . \mathrm{P} .22 .50^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=1.13$	$\mathrm{C}_{\mathrm{V}}=0.91$	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	40

注記＊：基準床レベルを示す。
$\infty$
1．2 機器要目

部 材	$\begin{gathered} \mathrm{m}_{\mathrm{i}} \\ \mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n $\mathrm{f}_{\mathrm{Hi}}$
取付ボルト $(i=2)$		500						16	4	4


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}} \text { * }}$	弾性設計用   地震動 S d 又   は静的震度	基準地震動 S s
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度 $\mid$		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=13$	$\mathrm{ff}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=22$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {sb } 2}=135$	$\tau_{\mathrm{b} 2}=7$	$\mathrm{f}_{\text {s b } 2}=161$

$\circ$
すべて許容応力以下である。


注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


VI－2－6－5－3－2－2 原子炉水位（広帯域）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果 ..... 7
6．2 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉水位（広帯域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉水位（広帯域）（B21－LT036A，B，C，D，LT037A，B，C，D）は，設計基準対象施設におい てはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類され る。原子炉水位（広帯域）（B21－LT052A，B）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類 される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉水位（広帯域）が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系 の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラッ クの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
B21－LT036A（代表）		
B21－LT036B		
B21－LT036C		
B21－LT036D	VI－2－1－13－8 計装ラック	
B21－LT037A	の耐震性についての計算書	表 $2-1$
B21－LT037B 構造計画		
B21－LT037C	作成の基本方針	
B21－LT037D		
B21－LT052A（代表）		
B21－LT052B		

2．一般事項

## 2.1 構造計画

原子炉水位（広帯域）の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式水位検出器	注記＊：検出器は代表して 1 台を示す。

3．固有周期
原子炉水位（広帯域）が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉水位（広帯域）の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性につ いての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
原子炉水位（広帯域）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
原子炉水位（広帯域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉水位（広帯域）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	原子炉水位（広帯域） （B21－LT036A，LT052A）	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	IIIAS
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{S}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
		原子炉水位（広帯域） （B21－LT036A，LT052A）	常設耐震／防止常設／緩和 ${ }^{* 2}$	—＊3	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 4$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置				$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$V_{A S}$   （ $V_{A} S$ として   $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：B21－LT036A は常設耐震／防止，B21－LT052A は常設耐震／防止及び常設／緩和に分類される。
＊ 3 ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $4: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fm}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。 ＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉水位（広帯域）の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉水位（広帯域）   $(B 21-L T 036 A, ~ L T 052 A) ~$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉水位（広帯域）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

原子炉水位（広帯域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉水位（広帯域）（B21－LT036A，LT052A）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉水位（広帯域）   （B21－LT036A， LT052A）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{v}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。
$\infty$
1．2 機器要目


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPPa} \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	弾性設計用 地震動 S d 又 は静的震度	基準地震動 S s
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1．3 計算数値


1． 4 結論

## 1．4．1 ボルトの応力

（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度 $\mid$		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=11$	$\mathrm{ff}_{\mathrm{ts} 2}=176$＊	$\sigma_{\mathrm{b} 2}=20$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {sb } 2}=135$	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=161$

$\bullet$
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		機能維持評価用加速度＊	機能確認済加速度
原子炉水位（広帯域）   （B21－LT036A，LT052A）		水平方向	1.65

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


$$
\mathrm{A} \rightarrow
$$



2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s		$\begin{gathered} \text { 周臬環境 } \\ \text { (温 }{ }^{\circ} \mathrm{C} \text { ) } \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { 原子炉水位 (広带域) } \\ \text { (B21-LT036A, } \\ \text { LT052A) } \end{gathered}$	常設耐震／防止常設／緩和＊1	$\begin{gathered} \hline \text { 原子炉建屋 } \\ 0 . \text { P. } 6.00 \\ \text { (0.P. } 15.00^{* 2} \text { ) } \end{gathered}$	0． 05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	66

注記＊1：B21－LT036A は常設耐震／防止，B21－LT052A は常設耐震／防止及び常設／緩和に分類される。
注記 $* 2$ ：基準床レベルを示す。


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Su}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}{ }^{*}}$		
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

2.3 計算数値

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論


へ
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
$\begin{gathered} \hline \text { 原子炉水位 (広帯域) } \\ (\text { B21-LT036A, } \\ \text { LT052A) } \\ \hline \end{gathered}$	水平方向	1． 65	
	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

# O 2 (3) VI-2-6-5-3-2-2 R O E 



$$
\mathrm{A} \rightarrow
$$

13


VI－2－6－5－3－2－3 原子炉水位（燃料域）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4.1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件－ ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6.1 設計基準対象施設としての評価結果• ..... 7
6．2 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉水位（燃料域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉水位（燃料域）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉水位（燃料域）が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系 の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラッ クの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画	
B21－LT044A（代表）	VI－2－1－13－8 計装ラック   B21－LT044B	の耐震性についての計算書   作成の基本方針	表2－1 構造計画

2．一般事項

## 2.1 構造計画

原子炉水位（燃料域）の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。   計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式水位検出器	

3．固有周期
原子炉水位（燃料域）が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉水位（燃料域）の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性につ いての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
原子炉水位（燃料域）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
原子炉水位（燃料域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉水位（燃料域）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御   系統施設	計測装置	原子炉水位（燃料域）	S		

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ $\left(\mathrm{V}_{\mathrm{A}} \mathrm{S}\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
$G$
表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{array}{r} \mathrm{S}_{\mathrm{y} \text { i }} \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i} \quad(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \mathrm{i}}$   $(\mathrm{MPa})$	$\mathrm{S}_{\mathrm{ui}}$   $(\mathrm{MPa})$
取付ボルト					
$(\mathrm{i}=2)$	SS 400	S i（R T）			
$(\mathrm{MPa})$					

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉水位（燃料域）の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉水位（燃料域） （B21－LT044A）	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉水位（燃料域）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

原子炉水位（燃料域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

## 【原子炉水位（燃料域）（B21－LT044A）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		  （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉水位（燃料域） $(\mathrm{B} 21-\mathrm{LT} 044 \mathrm{~A})$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{V}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。
$\infty$

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\underset{(\mathrm{mm})}{\mathrm{h}_{\mathrm{i}}}$	$\left(\begin{array}{l} \ell_{1} i \\ (\mathrm{~mm}) \end{array}\right.$	$\left(\underset{(\mathrm{mm})}{\ell_{2}}\right.$	$\left(\begin{array}{l} \ell_{3} i \\ (\mathrm{~mm}) \end{array}\right.$	$\underset{(\mathrm{mm})}{\mathrm{d}_{\mathrm{i}}}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f V i	n $\mathrm{f}_{\mathrm{Hi}}$
取付ボルト $(i=2)$		500						16	4	4


					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値


1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度 $\mid$		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=11$	$\mathrm{ff}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=18$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {sb } 2}=135$	$\tau_{\mathrm{b} 2}=6$	$\mathrm{f}_{\text {s b } 2}=161$

$\bullet$
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
原子炉水位（燃料域）   （B21－LT044A）	水平方向	1.65	
	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \left.{ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{array}{\|l} \text { 原子炉水位 (燃料域) } \\ (\mathrm{B} 21-\mathrm{LT} 044 \mathrm{~A}) \end{array}$	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ 0 \text { 0. P. } 600 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	66

注記＊：基準床レベルを示す。

部 材	$\underset{(\mathrm{mg})}{ }$		$\left.\left(\mathrm{l} \mathbf{l}_{1}\right)^{2}\right)$	$(\mathrm{mm})$	$\begin{aligned} & \ell_{3} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} d_{i}^{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \mathrm{i}^{\left(\mathrm{mm}^{2}\right)} \end{gathered}$	n i	nf V i	nf Hi
取付ボルト $(i=2)$		500						16	4	4


					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPPa} \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \left.\mathrm{F}_{\mathrm{MP}}^{\mathrm{i}}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }_{(\mathrm{MPa})} \end{aligned}$	弾性設計用 地震動 s d は解的震度	$\underset{\mathrm{S}}{\text { 基準地震動 }}$
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

2.3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(i=2)$	－		－	

2． 4 結論


心 注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
原子炉水位（燃料域）   （B21－LT044A）	水平方向	1.65	
	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。


VI－2－6－5－3－2－4 原子炉水位（SA 広帯域）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件． ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉水位（SA 広帯域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉水位（SA 広帯域）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及 び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉水位（SA 広帯域）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－ 1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

原子炉水位（SA 広帯域）の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式水位検出器	【原子炉水位（SA 広帯域）】

3．固有周期
原子炉水位（SA 広帯域）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期 を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4.1 構造強度評価方法

原子炉水位（SA 広帯域）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4.2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

原子炉水位（SA 広帯域）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉水位（SA 広帯域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉水位（SA 広帯域）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分  			機器名称	設備分類＊1	機器等の区分

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2   （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉水位（SA 広帯域）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンシ ョンの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉水位（SA 広帯域）   $(\mathrm{B} 21-\mathrm{LT} 058)$	水平	
	鉛直	

[^34]6．評価結果
6.1 重大事故等対処設備としての評価結果

原子炉水位（SA 広帯域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉水位（SA 広帯域）（B21－LT058）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd双は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{aligned} & \hline \text { 原子炉水位 } \\ & \text { (SA 広帯域) } \\ & \text { (B21-LT058) } \end{aligned}$	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記 $*$ ：基準床レベルを示す。
$\infty$

## 1．2 機器要目

部 材	m   $(\mathrm{kg})$	$\mathrm{h}_{2}$   $(\mathrm{~mm})$	$\ell_{3}$   $(\mathrm{~mm})$	$\ell_{\mathrm{a}}$   $(\mathrm{mm})$	$\ell_{\mathrm{b}}$   $(\mathrm{mm})$	d   $(\mathrm{mm})$	$\mathrm{A}_{\mathrm{b}}$   $\left(\mathrm{mm}^{2}\right)$	n	nff	nff
基礎ボルト		455				4	2	2		


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{Sd} \text { d } \\ \text { は静的震度 } \end{gathered}$	$\underset{\mathrm{S}}{\text { 基準地震動 }}$
基礎ボルト	206	385	－	247	－	水平方向

○ 2
（3） $\mathrm{VI}-2-6-5-3-2-4$
R 0
1.3 計算数値


1．4 結論

－注記 $* ~: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。
1.4 .2 電気的機能維持の評価結果

					機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
原子炉水位   （SA 広帯域）   （B21－LT058）	水平方向	1.65				
	鉛直方向	1.15				

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-3-2-4 R O E }
$$



VI $-2-6-5-3-2-5$ 原子炉水位（SA 燃料域）の耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
3．固有周期 ..... 3
4．構造強度評価 ..... 3
4． 1 構造強度評価方法 ..... 3
4．2 荷重の組合せ及び許容応力 ..... 3
4．2．1 荷重の組合せ及び許容応力状態 ..... 3
4．2．2 許容応力 ..... 3
4．2．3 使用材料の許容応力評価条件． ..... 3
5．機能維持評価 ..... 6
5.1 電気的機能維持評価方法 ..... 6
6．評価結果 ..... 7
6．1 重大事故等対処設備としての評価結果• ..... 7

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉水位（SA 燃料域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉水位（SA 燃料域）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及 び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉水位（SA 燃料域）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－ 1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。   計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式水位検出器	【原子炉水位（SA 燃料域）】   正面   側面

3．固有周期
原子炉水位（SA 燃料域）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期 を使用する。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

## 4．構造強度評価

4． 1 構造強度評価方法
原子炉水位（SA 燃料域）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
4.2 荷重の組合せ及び許容応力

## 4．2．1 荷重の組合せ及び許容応力状態

原子炉水位（SA 燃料域）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉水位（SA 燃料域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
原子炉水位（SA 燃料域）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分  			機器名称	設備分類＊1	機器等の区分

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2   （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－

## 5．機能維持評価

5.1 電気的機能維持評価方法

原子炉水位（SA 燃料域）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンシ ョンの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。
計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉水位（SA 燃料域） （B21－LT059）	水平	
	鉛直	

[^35]6．評価結果
6.1 重大事故等対処設備としての評価結果

原子炉水位（SA 燃料域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有 していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉水位（SA 燃料域）（B21－LT059）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉水位 （SA 燃料域） （B21－LT059）	常設耐震／防止常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。
$\infty$


					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F} *}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S ．
基礎ボルト	206	385	－	247	－	水平方向

○ 2
（3） $\mathrm{VI}-2-6-5-3-2-5$
R 0
1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	$\mathrm{F}_{\mathrm{b}}$		$\mathrm{Q}_{\mathrm{b}}$	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論

－注記 $* ~: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉水位	水平方向	1.65	
（B21－LT059）	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-3-2-5 R O E }
$$




[^0]:    0
    VI－2－3－4－1－2
    （a）
    ${ }^{\sim}$

[^1]:    地震荷重S S のいずれか大きい方を加えた値である。

[^2]:    0
    $\sim$
    $\mathrm{VI}-2-3-4-1-2$
    （a）
    $\stackrel{\sim}{\sim}$

[^3]:    VI－2－3－4－3－11 R O E
    （a）
    ～
    $\bigcirc$

[^4]:    枠囲みの内容は商業機密の観点から公開できません。

[^5]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^6]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^7]:    注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^8]:    注記＊：許容応力を超える計算応力に対して付記する。

[^9]:    注記 $* 1$ ：D B は設計基準対象施設， SA A 重大事故等対処設備を示す。

[^10]:    枠囲みの内容は商業機密の観点から公開できません。

[^11]:    注記＊1：D B は設計基準対象施設，SAは重大事故等対処設備を示す。

[^12]:    注記 $~ 1 ~$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    $* 3: \mathrm{Sd}$ 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
    ＊4：3．6C $\mathrm{I}_{\mathrm{I}}$ 及び1．2 $\mathrm{C}_{\mathrm{V}}$ より定めた震度を小す。

[^13]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    

[^14]:    ＊ 1 ：最高使用温度で算出
    ＊ 2 ：周囲噮境温度で算出

[^15]:    ＊1：最高使业温度で算
    ＊ 2 ：周囲環境温度で算出

[^16]:    枓囲みの内容は商業機密の観点から公開できません。

[^17]:    枠囲みの内容は商業機密の観点から公開できません。

[^18]:    注記＊1：解析モデル上 $\begin{aligned} & \text { 原子炉隔離時冷却系に含める。 }\end{aligned}$高圧代替注水系概略系統図（その 2 ）

[^19]:    注記＊1：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
    ＊3：S d 又は ${ }^{*} 4: 3.6 \mathrm{C}_{\mathrm{I}}$ 及び1．2 $\mathrm{C}_{\mathrm{V}}$ より震動に基づく設計用最大床応答加速度より定めた震度を示す。

[^20]:    注記＊1：D Bは設計基準対象施設，S Aは重大事故等対処設備を示す。

[^21]:    注記 $~: ~$ 基準地震動 S s により定まる応答加速度とする。

[^22]:    注記＊：基準地震動S s により定まる応答加速度とする。
    機能維持評価用加速度（1．0ZPA）は，すべて機能唯認済加速度以下である。

[^23]:    注記＊1：D B は設計基準対象施設，S A は重大事故等対処設備を示す。
    ＊2：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
    ＊3：運転状態の添字Lは荷重，（L）は荷重が長期間作用している状態，（LL）は（L）より更に長期間的荷重が作用している状態を示す。 ＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
    ＊5：許容応力状態 $V_{A} S$ は許容応力状態 $V_{A} S$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ として評価を実施する。

[^24]:    注記＊：許容応力を超える計算応力に対して付記する。

[^25]:    枠囲みの内容は商業機密の観点から公開できません。

[^26]:    枠囲みの内容は商業機密の観点から公開できません。

[^27]:    高圧炉心スプレイ系ポンプ出口圧力の構造計画を表 2－1に示す。

[^28]:    枠囲みの内容は商業機密の観点から公開できません。

[^29]:    枠囲みの内容は商業機密の観点から公開できません

[^30]:    枠囲みの内容は商業機密の観点から公開できません。

[^31]:    枠囲みの内容は商業機密の観点から公開できません。

[^32]:    枠囲みの内容は商業機密の観点から公開できません。

[^33]:    枠囲みの内容は商業機密の観点から公開できません

[^34]:    枠囲みの内容は商業機密の観点から公開できません。

[^35]:    枠囲みの内容は商業機密の観点から公開できません。

