VI－2－6－5－4 原子炉格納容器本体内の圧力，温度，酸素ガス濃度又は水素 ガス濃度を計測する装置（常設）の耐震性についての計算書

VI－2－6－5－4－1 原子炉格納容器内圧力計測装置の耐震性についての計算書
VI－2－6－5－4－2 原子炉格納容器内温度計測装置の耐震性についての計算書
VI－2－6－5－4－3 原子炉格納容器内酸素ガス濃度計測装置の耐震性についての計算書
VI－2－6－5－4－4 原子炉格納容器内水素ガス濃度計測装置の耐震性についての計算書

VI－2－6－5－4－1 原子炉格納容器内圧力計測装置の耐震性についての計算書

VI－2－6－5－4－1－1 ドライウェル圧力の耐震性についての計算書
VI－2－6－5－4－1－2 圧力抑制室圧力の耐震性についての計算書

VI－2－6－5－4－1－1 ドライウェル圧力の耐震性についての計算書

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
3．固有周期 5
4．構造強度評価 5
4． 1 構造強度評価方法 5
4．2 荷重の組合せ及び許容応力 5
4．2．1 荷重の組合せ及び許容応力状態 5
4．2．2 許容応力 5
4．2．3 使用材料の許容応力評価条件． 5
5．機能維持評価 10
5.1 電気的機能維持評価方法 10
6 評価結果 11
6.1 設計基準対象施設としての評価結果 11
6.2 重大事故等対処設備としての評価結果 11

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ドライウェル圧力が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

ドライウェル圧力（B21－PT047A，B，C，D，PT048A，B，C，D，PT055A，B，C，D，T48－PT014， PT017）は，設計基準対象施設においては S クラス施設に分類される。ドライウェル圧力（T48－ PT034）は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，ドライウェル圧力が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
B21－PT047A		
B21－PT047B（代表）		
B21－PT047C		
B21－PT047D（代表）		
B21－PT048A		
B21－PT048B（代表）		
B21－PT048C	VI－2－1－13－8 計装ラック	表 2－1 構造計
B21－PT048D（代表）	の耐震性についての計算書	表2－2 構造計画
B21－PT055A	作成の基本方針	
B21－PT055B		
B21－PT055C（代表）		
B21－PT055D（代表）		
T48－PT014		
T48－PT017（代表）		
T48－PT034（代表）		

2．一般事項
2.1 構造計画

ドライウェル圧力の構造計画を表 2－1 及び表 2－2 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。 計装ラックは，チャン ネルベースに取付ボルト で固定され，チャンネル ベースは壁に基礎ボルト で設置する。	弾性圧力検出器	

表 2－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。 計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	（単位：mm） 注記＊：検出器は代表して 1 台を示す。

3．固有周期
ドライウェル圧力が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性 を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4． 1 構造強度評価方法
ドライウェル圧力の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性について の計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

ドライウェル圧力の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用 いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表4－2 に示す。

4．2．2 許容応力
ドライウェル圧力の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件

ドライウェル圧力の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用い るものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	$\begin{gathered} \text { ドライウェル圧力 } \\ \text { (B21-PT047B } \end{gathered}$	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	IIIAS
		B21－PT047D				
		B21－PT048B				
		B21－PT048D			$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
		B21－PT055C				
		B21－PT055D				
		T48－PT017）				

の 注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 （3）VI－2－6－5－4－1－1 R 0

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y ~ i ~} \quad(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト $(\mathrm{i}=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	215	400	－
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$		40	235	400	－

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{yi} (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	66	225	385
(MPa)					

5．機能維持評価

5.1 電気的機能維持評価方法

ドライウェル圧力の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性に ついての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
ドライウェル圧力	水平	
（B21－PT055C		
B21－PT055D		
T48－PT034）	鉛直	
ドライウェル圧力		
（B21－PT047B	水平	
B21－PT047D		
B21－PT048B		
B21－PT048D	鉛直	
T48－PT017）		

6．評価結果
6.1 設計基準対象施設としての評価結果

ドライウェル圧力の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果
ドライウェル圧力の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【ドライウェル圧力（H22－P006C（B21－PT047B，D，PT055C，T48－PT017））の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { ドライウェル圧力 } \\ \text { (B21-PT047B, D, } \\ \text { PT055C, T48-PT017) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 22.50 \\ \left(0 . \text { P. } 33.20^{*}\right) \end{gathered}$	0．05 以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.03$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	40

注記＊：基準床レベルを示す。

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
					$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S
基礎ボルト $(i=1)$	215	400	215	258	鉛直方向	鉛直方向
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値

1．4 結論
1．4．1 ボルトの応力

部 材	材 料	応 力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	$\sigma_{\mathrm{b}_{1}}=29$	$\mathrm{f}_{\mathrm{ts} 1}=161 *$	$\sigma_{\mathrm{b} 1}=46$	$\mathrm{f}_{\mathrm{ts} 1}=193 *$
		せん断	$\tau_{\mathrm{b} 1}=16$	$\mathrm{f}_{\mathrm{sb} 1}=124$	$\tau_{\mathrm{b}_{1}}=24$	$\mathrm{f}_{\mathrm{sb} 1}=148$
取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=16$	$\mathrm{f}_{\mathrm{ts} 2}=176 *$	$\sigma_{\mathrm{b} 2}=25$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=135$	$\tau_{\mathrm{b} 2}=6$	$\mathrm{f}_{\text {s b } 2}=161$

注記 $*: ~ \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • τ_{bi} ， $\mathrm{f}_{\mathrm{toi}}$ ］より算出。
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
$\begin{gathered} \text { ドライウェル圧力 } \\ \text { (B21-PT047B, D, } \\ \text { T48-PT017) } \\ \hline \end{gathered}$	水平方向	2.21	
	鉛直方向	1． 47	
$\begin{gathered} \text { ドライウェル圧力 } \\ (\mathrm{B} 21-\mathrm{PT} 055 \mathrm{C}) \end{gathered}$	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

【ドライウェル圧力（H22－P006D（B21－PT048B，D，PT055D））の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { ドライウェル圧力 } \\ \text { (B21-PT048B, D, } \\ \text { PT055D) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 22.50 \\ \left(0 . \mathrm{P} .33 .20^{*}\right) \end{gathered}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.03$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	40

注記＊：基準床レベルを示す。

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値

1．4 結論

ふ
すべて許容応力以下である。

1．4．2 電気的機能維持の評価		機能維持評価用加速度＊	機能確認済加速度
$\begin{aligned} & \text { ドライウェル圧力 } \\ & \text { (B21-PT048B, D) } \end{aligned}$	水平方向	2.21	
	鉛直方向	1． 47	
$\begin{aligned} & \text { ドライウェル圧力 } \\ & \text { (B21-PT055D) } \end{aligned}$	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

【ドライウェル圧力（H22－P006D（T48－PT034））の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { ドライウェル圧力 } \\ \text { (T48-PT034) } \end{gathered}$	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 22.50 \\ \left(0 . \text { P. } 33.20^{*}\right) \end{gathered}$	0．05 以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	66

注記＊：基準床レベルを示す。

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}^{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	225	385	－	270	－	鉛直方向

1．3 計算数値

1．4 結論

৮ 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

					機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
ドライウェル圧力 （T48－PT034）	水平方向	2.21				
	鉛直方向	1.47				

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

20

VI－2－6－5－4－1－2 圧力抑制室圧力の耐震性についての計算書
1．圧力抑制室圧力（計装ラック（T48－PT018A）） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1.3 固有周期 3
1．4 構造強度評価 3
1．4．1 構造強度評価方法 3
1．4．2 荷重の組合せ及び許容応力 3
1.5 機能維持評価 6
1．5．1 電気的機能維持評価方法． 6
1． 6 評価結果 7
1．6．1 設計基準対象施設としての評価結果 7
2．圧力抑制室圧力（計器スタンション（T48－PT018B）） 11
2.1 概要 11
2.2 一般事項 11
2．2．1 構造計画 11
2.3 固有周期 13
2.4 構造強度評価 13
2．4．1 構造強度評価方法 13
2．4．2 荷重の組合せ及び許容応力 13
2.5 機能維持評価 16
2．5．1 電気的機能維持評価方法• 16
2.6 評価結果 17
2．6．1 設計基準対象施設としての評価結果 17
3．圧力抑制室圧力（計器スタンション（T48－PT019）） 21
3.1 概要 21
3.2 一般事項 21
3．2．1 構造計画 21
3.3 固有周期 23
3.4 構造強度評価 23
3．4．1 構造強度評価方法 23
3．4．2 荷重の組合せ及び許容応力 23
3.5 機能維持評価 26
3．5．1 電気的機能維持評価方法． 26
3.6 評価結果 27
3．6．1 重大事故等対処設備としての評価結果 27

1．圧力抑制室圧力（計装ラック（T48－PT018A））

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室圧力（計装ラック（T48－PT018A））が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室圧力（計装ラック（T48－PT018A））は，設計基準対象施設においてはSクラス施設 に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，圧力抑制室圧力（計装ラック（T48－PT018A））が設置される計装ラックは，添付書類「VI －2－1－13 機器•配管系の計算書作成の方法」に記載のある壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

1.2 一般事項

1．2．1 構造計画

圧力抑制室圧力（計装ラック（T48－PT018A））の構造計画を表1－1 に示す。

表 1－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。 計装ラックは，チャン ネルベースに取付ボルト で設置する。	弾性圧力検出器	【圧力抑制室圧力（計装ラック（T48－PT018A））】

1．3 固有周期

圧力抑制室圧力（計装ラック（T48－PT018A））が設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表1－2 に示す。

表 1－2 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

1．4 構造強度評価

1．4．1 構造強度評価方法
圧力抑制室圧力（計装ラック（T48－PT018A））の構造強度評価は，添付書類「VI－2－1－13－ 8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行う。

1．4．2 荷重の組合せ及び許容応力
（1）荷重の組合せ及び許容応力状態
圧力抑制室圧力（計装ラック（T48－PT018A））の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表1－3に示す。
（2）許容応力
圧力抑制室圧力（計装ラック（T48－PT018A））の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－4のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室圧力（計装ラック（T48－PT018A））の使用材料の許容応力評価条件のらち設計基準対象施設の評価に用いるものを表1－5に示す。

表 1－3 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御 系統施設 計測装置	圧力抑制室圧力				許容応力状態

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

O 2 （3）VI－2－6－5－4－1－2 R 0

表 1－4 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} i}$ (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400
(MPa)					

1.5 機能維持評価

1．5．1 電気的機能維持評価方法
圧力抑制室圧力（計装ラック（T48－PT018A））の電気的機能維持評価は，添付書類「VI－ 2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基 づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 1－6に示す。

表 1－6	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
圧力抑制室圧力		
（T48－PT018A）		

1.6 評価結果

1．6．1 設計基準対象施設としての評価結果
圧力抑制室圧力（計装ラック（T48－PT018A））の設計基準対象施設としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室圧力（計装ラック（T48－PT018A））の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室圧力 （T48－PT018A）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{V}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。
∞
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} l_{2} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n i	n f v i	n f_{Hi}
取付ボルト $(i=2)$		400						8	2	4

					転倒方向	
部 材	Sy i （MPa）	Sui （MPa）	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}} \boldsymbol{*}$	弾性設計用地震動 S d 又 は静的震度	基準地震動 S s
取付ボルト $(i=2)$	215	400	215	258	鉛直方向	鉛直方向

1.3 計算数値

1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\text {b } 2}=9$	$\mathrm{f}_{\mathrm{ts} 2}=161$＊	$\sigma_{\text {b } 2}=15$	$\mathrm{f}_{\mathrm{ts} 2}=193$＊
		せん断	$\tau_{\mathrm{b} 2}=3$	$\mathrm{f}_{\text {sb } 2}=124$	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=148$

\bullet
すべて許容応力以下である。

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

2．圧力抑制室圧力（計器スタンション（T48－PT018B））

2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室圧力（計器スタンション（T48－PT018B））が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室圧力（計器スタンション（T48－PT018B））は，設計基準対象施設においてはSクラ ス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価 を示す。

なお，圧力抑制室圧力（計器スタンション（T48－PT018B））が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のある直立形計器スタンショ ンであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。
2.2 一般事項

2．2．1 構造計画

圧力抑制室圧力（計器スタンション（T48－PT018B））の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。計器スタンションは，基礎に基礎ボルトで設置 する。	弾性圧力検出器	【圧力抑制室圧力（計器スタンション（T48－PT018B））】
		（単位：mm）

2． 3 固有周期

圧力抑制室圧力（計器スタンション（T48－PT018B））が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計装スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。

固有周期の確認結果を表2－2に示す。

表 2－2 固有周期	
水平方向	鉛直方向
0．05以下	0． 05 以下

2.4 構造強度評価

2．4．1 構造強度評価方法
圧力抑制室圧力（計器スタンション（T48－PT018B））の構造強度評価は，添付書類「VI－ 2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

2．4．2 荷重の組合せ及び許容応力
（1）荷重の組合せ及び許容応力状態
圧力抑制室圧力（計器スタンション（T48－PT018B））の荷重の組合せ及び許容応力状態の うち設計基準対象施設の評価に用いるものを表 2－3に示す。
（2）許容応力
圧力抑制室圧力（計器スタンション（T48－PT018B））の許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表 2－4のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室圧力（計器スタンション（T48－PT018B））の使用材料の許容応力評価条件のう ち設計基準対象施設の評価に用いるものを表 2－5 に示す。

表 2－3 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	圧力抑制室圧力	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{S}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

O 2 （3）VI－2－6－5－4－1－2 R 0

表 2－4 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400
(MPa)					

2.5 機能維持評価

2．5．1 電気的機能維持評価方法
圧力抑制室圧力（計器スタンション（T48－PT018B））の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 2－6に示す。

枠囲みの内容は商業機密の観点から公開できません。

2.6 評価結果

2．6．1 設計基準対象施設としての評価結果
圧力抑制室圧力（計器スタンション（T48－PT018B））の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室圧力（計器スタンション（T48－PT018B））の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室圧力 （T48－PT018B）	S	原子炉建屋 0．P．6．00＊	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.72$	$\mathrm{C}_{\mathrm{V}}=0.63$	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	40

注記＊：基準床レベルを示す。

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{array}{r} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{array}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S s
基礎ボルト	215	400	215	258	前後方向	前後方向

注記 $* 1$ ：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は前後方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．4 結論

1．4．1 ボルトの応力

（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	$\sigma_{\mathrm{b}}=8$	$\mathrm{f}_{\mathrm{ts}}=161$＊	$\sigma_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{ts}}=193 *$
		せん断	$\tau_{\mathrm{b}}=1$	$\mathrm{f}_{\mathrm{s} \text { b }}=124$	$\tau_{\mathrm{b}}=1$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=148$

ϖ
すべて許容応力以下である。

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面（左右方向）

側面（前後方向）

$\left(\ell_{1} \leqq \ell_{2}\right)$

3．圧力抑制室圧力（計器スタンション（T48－PT019））

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室圧力（計器スタンション（T48－PT019））が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室圧力（計器スタンション（T48－PT019））は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，圧力抑制室圧力（計器スタンション（T48－PT019））が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のある壁掛形計器スタンショ ンであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

3．2 一般事項

3．2．1 構造計画

圧力抑制室圧力（計器スタンション（T48－PT019））の構造計画を表 3－1 に示す。

表3－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	弾性圧力検出器	【圧力抑制室圧力（計器スタンション（T48－PT019））】

3． 3 固有周期

圧力抑制室圧力（計器スタンション（T48－PT019））が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計装スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。

固有周期の確認結果を表 3－2 に示す。

表 3－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

3． 4 構造強度評価
3．4．1 構造強度評価方法
圧力抑制室圧力（計器スタンション（T48－PT019））の構造強度評価は，添付書類「VI－2－ 1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
圧力抑制室圧力（計器スタンション（T48－PT019））の荷重の組合せ及び許容応力状態の らち重大事故等対処設備の評価に用いるものを表3－3に示す。
（2）許容応力
圧力抑制室圧力（計器スタンション（T48－PT019））の許容応力は，添付書類「VI－2－1－9機能維持の基本方針」に基づき表3－4 のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室圧力（計器スタンション（T48－PT019））の使用材料の許容応力評価条件のう ち重大事故等対処設備の評価に用いるものを表3－5に示す。

表 3－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－4 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \\ \hline \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{fs}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(RPa)					

3.5 機能維持評価

3．5．1 電気的機能維持評価方法
圧力抑制室圧力（計器スタンション（T48－PT019））の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－6に示す。

表 $3-6$	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
圧力抑制室圧力		
（T48－PT019）		

枠囲みの内容は商業機密の観点から公開できません。

3.6 評価結果

3．6．1 重大事故等対処設備としての評価結果
圧力抑制室圧力（計器スタンション（T48－PT019））の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対し て十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

[^0]【圧力抑制室圧力（計器スタンション（T48－PT019））の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室圧力 (T48-PT019)	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
基礎ボルト	206	385	－	247	－	水平方向

1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q b	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1．4 結論

© 注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right]$ より算出。
すべて許容応力以下である。

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-4-1-2 R O E }
$$

ω_{\circ}^{∞}

正面（水平方向）

側面（鉛直方向）

VI－2－6－5－4－2 原子炉格納容器内温度計測装置の耐震性についての計算書

VI－2－6－5－4－2－1 ドライウェル温度の耐震性についての計算書
VI－2－6－5－4－2－2 圧力抑制室内空気温度の耐震性についての計算書
VI－2－6－5－4－2－3 サプレッションプール水温度の耐震性についての計算書
VI－2－6－5－4－2－4 原子炉格納容器下部温度の耐震性についての計算書

VI－2－6－5－4－2－1 ドライウェル温度の耐震性についての計算書
1．ドライウェル温度（T48－TE012A，B，C，D，E，F） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方 6
1．3 評価部位 7
1．4 固有周期 7
1．4．1 固有値解析方法 7
1．4．2 解析モデル及び諸元 7
1．4．3 固有値解析結果 9
1.5 構造強度評価 10
1．5．1 構造強度評価方法 10
1．5．2 荷重の組合せ及び許容応力• 10
1．5．3 設計用地震力 13
1．5．4 計算方法 14
1．5．5 計算条件 18
1．5．6 応力の評価 18
1．6 機能維持評価 19
1．6．1 電気的機能維持評価方法． 19
1.7 評価結果 20
1．7．1 設計基準対象施設としての評価結果 20
2．ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J） 25
2.1 概要 25
2.2 一般事項 25
2．2．1 構造計画 25
2．2．2 評価方針 28
2．2．3 適用規格•基準等 28
2.3 評価部位 28
2． 4 機能維持評価 29
2．4．1 機能維持評価用加速度 29
2．4．2 機能確認済加速度 30
2.5 評価結果 31
2．5．1 設計基準対象施設としての評価結果 31
2．5．2 重大事故等対処設備としての評価結果 31
3．ドライウェル温度（T48－TE012N，P，R，S，T） 34
3.1 概要 34
3.2 一般事項 34
3．2．1 構造計画 34
3．2．2 評価方針 36
3．2．3 適用規格•基準等 37
3．2．4 記号の説明 38
3．2．5 計算精度と数値の丸め方． 39
3.3 評価部位 40
3． 4 固有周期 40
3．4．1 固有値解析方法 40
3．4．2 解析モデル及び諸元 40
3．4．3 固有値解析結果 42
3.5 構造強度評価 43
3．5．1 構造強度評価方法 43
3．5．2 荷重の組合せ及び許容応力 43
3．5．3 設計用地震力 46
3．5．4 計算方法 47
3．5．5 計算条件 51
3．5．6 応力の評価 51
3.6 機能維持評価 52
3．6．1 電気的機能維持評価方法． 52
3.7 評価結果 53
3．7．1 設計基準対象施設としての評価結果 53
4．ドライウェル温度（T48－TE026A，B，K，L） 58
4.1 概要 58
4.2 一般事項 58
4．2．1 構造計画 58
4．2．2 評価方針 60
4．2．3 適用規格•基準等 61
4．2．4 記号の説明 62
4．2．5 計算精度と数値の丸め方 63
4.3 評価部位 64
4． 4 固有周期 64
4．4．1 固有値解析方法 64
4．4．2 解析モデル及び諸元 64
4．4．3 固有値解析結果 66
4.5 構造強度評価 67
4．5．1 構造強度評価方法 67
4．5．2 荷重の組合せ及び許容応力 67
4．5．3 設計用地震力 70
4．5．4 計算方法 71
4．5．5 計算条件 75
4．5．6 応力の評価 75
4． 6 機能維持評価 76
4．6．1 電気的機能維持評価方法． 76
4.7 評価結果 77
4．7．1 重大事故等対処設備としての評価結果 77
5．ドライウェル温度（T48－TE026C，D，E，F，G，H） 82
5.1 概要 82
5.2 一般事項 82
5．2．1 構造計画 82
5．2．2 評価方針 84
5．2．3 適用規格•基準等 85
5．2．4 記号の説明 86
5．2．5 計算精度と数値の丸め方 87
5.3 評価部位 88
5． 4 固有周期 88
5．4．1 固有値解析方法 88
5．4．2 解析モデル及び諸元 88
5．4．3 固有値解析結果 90
5.5 構造強度評価 91
5．5．1 構造強度評価方法 91
5．5．2 荷重の組合せ及び許容応力． 91
5．5．3 設計用地震力 94
5．5．4 計算方法 95
5．5．5 計算条件 99
5．5．6 応力の評価 99
5.6 機能維持評価 100
5．6．1 電気的機能維持評価方法． 100
5.7 評価結果 101
5．7．1 重大事故等対処設備としての評価結果 101

1．ドライウェル温度（T48－TE012A，B，C，D，E，F）

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ドライウェル温度（T48－TE012A，B，C，D，E，F）が設計用地震力 に対して十分な構造強度及び電気的機能を有していることを説明するものである。

ドライウェル温度（T48－TE012A，B，C，D，E，F）は，設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，計器取付金具の溶接部に作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価 については，機能維持評価用加速度が最大となる設置床高さの計器について代表として評価す る。評価対象を表1－1に示す。

表 1－1 概略構造識別

1.2 一般事項

1．2．1 構造計画

ドライウェル温度（T48－TE012A）の構造計画を表1－2 に示す。

表 1－2 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
検出器は，溶接により基礎に設置する。	熱電対	【ドライウェル温度（T48－TE012A）】 側面	（単位：mm）

1．2．2 評価方針

ドライウェル温度（T48－TE012A）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．2．1 構造計画」 にて示すドライウェル温度（T48－TE012A）の部位を踏まえ「1．3 評価部位」にて設定する箇所において，「1．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認することで実施する。また，ドライウェル温度（T48－TE012A）の機能維持評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度 が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．7 評価結果」に示す。

ドライウェル温度（T48－TE012A）の耐震評価フローを図 1－1 に示す。

図 1－1 ドライウェル温度（T48－TE012A）の耐震評価フロー

1．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 601－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

1．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{w} X}$	溶接部の F x に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} Z}$	溶接部の F 2 に対する有効断面積	mm ${ }^{2}$
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
f_{s}	溶接部の許容せん断応力	MPa
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（Y軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
s	溶接脚長	mm
t	溶接の有効長さ（ X 方向）	mm
u	溶接の有効長さ（ Z 方向 ）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計•建設規格 付録材料図表 Part5 表8 亿定める値	MPa
$S_{y}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねどり断面係数	mm ${ }^{3}$
Z_{x}	溶接全断面における断面係数（X軸）	mm ${ }^{3}$
Z_{z}	溶接全断面における断面係数（ Z 軸 ）	mm ${ }^{3}$
σ t	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
$\sigma_{\text {w }}$	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

1．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 1－3 に示すとおりとする。

表 1－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	$\mathrm{mm}{ }^{2}$	有效数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 析＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

1．3 評価部位

ドライウェル温度（T48－TE012A）の耐震評価は，「1．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。ドライウェル温度（T48－TE012A）の耐震評価部位については，表 1－2 の概略構造図に示す。

1． 4 固有周期

1．4．1 固有値解析方法
ドライウェル温度（T48－TE012A）の固有値解析方法を以下に示す。
（1）ドライウェル温度（T48－TE012A）は，「1．4．2 解析モデル及び諸元」に示す三次元は りモデルとして考える。

1．4．2 解析モデル及び諸元

ドライウェル温度（T48－TE012A）の解析モデルを図 1－2 に，解析モデルの概要を以下に示す。
（1）計器取付金具は，ドライウェル内のプラットフォームに固定されることから，計算モデ ルでは，計器取付金具は（1）及び（2）の部材で組まれた直線とみなし，支持点（計器取付金具基礎部） 1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表1－4，部材の機器要目を表1－5に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

（単位：mm）
図 1－2 ドライウェル温度（T48－TE012A）解析モデル

[^1]表 1－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	171
緱弾性係数	E	MPa	
ポアソン比	v	-	
ボア要素数	-	個	
節点数	-	個	

表 1－5 部材の機器要目

枠囲みの内容は商業機密の観点から公開できません。

1．4．3 固有値解析結果

固有値解析結果を表1－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 1－6 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向 刺激係数
			X 方向	Z 方向	
1 次		水平	-	-	-

1.5 構造強度評価

1．5．1 構造強度評価方法

1．4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，ドライウェル温度（T48－TE012A）に対して，水平方向及び鉛直方向から同時 に作用するものとする。
（2）ドライウェル温度（T48－TE012A）は溶接によりドライウェル内のプラットフォームに固定されるものとする。
（3）ドライウェル温度（T48－TE012A）の質量は検出器及び計器取付金具を考慮する。
（4）解析コードは，「NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

1．5．2 荷重の組合せ及び許容応力
1．5．2．1 荷重の組合せ及び許容応力状態
ドライウェル温度（T48－TE012A）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表1－7に示す。

1．5．2．2 許容応力

ドライウェル温度（T48－TE012A）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－8のとおりとする。

1．5．2．3 使用材料の許容応力評価条件

ドライウェル温度（T48－TE012A）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表1－9に示す。

表 1－7 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	ドライウェル温度 （T48－TE012A）	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd} \mathrm{N}^{*}$	$\mathrm{III}_{4} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
O 2
（3） $\mathrm{VI}-2-6-5-4-2-1$
R 0

表 1－8 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{f}$ c	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊	$1.5 \cdot \mathrm{fr}_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－9 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
溶接部		周囲環境温度	171	150	413	205

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－10に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 1－10 設計用地震力（設計基準対象施設）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉遮蔽辟 } \\ & \text { P.P. } 15.900^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=1.25$	$\mathrm{C}_{\mathrm{V}}=1.04$	$\mathrm{C}_{\mathrm{H}}=1.99$	$\mathrm{C}_{\mathrm{V}}=1.78$

注記＊1：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．5．4 計算方法

1．5．4．1 応力の計算方法
1．5．4．1．1 溶接部の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。

図 1－3 計算モデル（左右方向転倒）

緥：力を受けると仮定する溶接部

O 2
図 1－4 計算モデル（前後方向転倒）

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 1－11 に示す。

表1－11 溶接部発生反力，モーメント

対象計器	許容応力状態	反力（ N ）			モーメント $(\mathrm{N} \cdot \mathrm{mm})$		
		F_{X}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{z}
T48－TE012A	C（ $\mathrm{IIT}_{A} \mathrm{~S}$ ）						
	D（ $\mathrm{IV}_{\text {A }} \mathrm{S}$ ）						

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{~A}_{\mathrm{w}}} \tag{1.5.4.1.1.1}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
A_{w}=2 \cdot a(t+u) \tag{1.5.4.1.1.2}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{1.5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{X}}{A_{w X}}+\frac{M_{Y}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{Y}}{Z_{P}}\right)^{2}} \tag{1.5.4.1.1.4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{Wx}}, ~ \mathrm{~A}_{\mathrm{wz}}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
A_{wx} ， $\mathrm{A}_{\mathrm{w} Z}$ は，次式により求める。

$$
\begin{align*}
& A_{w X}=2 \cdot a \cdot t \tag{1.5.4.1.1.5}\\
& A_{w Z}=2 \cdot a \cdot u \tag{1.5.4.1.1.6}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 1－3 及び図 1－4 でX軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{1.5.4.1.1.7}
\end{equation*}
$$

$Z_{x}, ~ Z_{Z}$ は溶接断面の X 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{1.5.4.1.1.8}
\end{equation*}
$$

1．5．5 計算条件

1．5．5．1 溶接部の応力計算条件
応力計算に用いる計算条件は，本計算書の【ドライウェル温度（T48－TE012A）の耐震性についての計算結果】の設計条件及び機器要目に示す。

1．5．6 応力の評価
1．5．6．1 溶接部の応力評価
1．5．4．1．1 項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただ し，f s は下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動S s による荷重との組合せの場合
許容せん断応力 f s	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1．6．1 電気的機能維持評価方法
ドライウェル温度（T48－TE012A）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

ドライウェル温度（T48－TE012A）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－12に示す。

表 1－12	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
ドライウェル温度 （T48－TE012A）	水平	
	鋁直	

1.7 評価結果

1．7．1 設計基準対象施設としての評価結果
ドライウェル温度（T48－TE012A）の設計基準対象施設としての耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

```
【ドライウェル温度(T48-TE012A) の耐震性についての計算結果】
```

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { ドライウェル温度 } \\ (\mathrm{T} 48-\mathrm{TE} 012 \mathrm{~A}) \end{gathered}$	S	原子炉遮蔽壁 0．P．15． 950 ＊1		$\begin{gathered} 0.05 \\ \text { 以下 } * 2 \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=1.25$	$\mathrm{C}_{\mathrm{V}}=1.04$	$\mathrm{C}_{\mathrm{H}}=1.99$	$\mathrm{C}_{\mathrm{V}}=1.78$	171

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

						転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \underset{(\mathrm{MPa})}{(\mathrm{R} \mathrm{~T})} \\ \text { (}{ }^{(2)} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{d} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
溶接部	150	413	205	203	203	前後方向	前後方向

1．3 計算数値

	M_{x}		M_{Y}		M_{z}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部						

N
1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	$\sigma_{t}=1$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{t}=1$	$\mathrm{f}_{\mathrm{s}}=117$
		せん断	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=117$	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=117$
		曲げ	$\sigma_{\mathrm{b}}=9$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{s}}=117$
		組合せ	$\sigma_{\mathrm{w}}=9$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{\mathrm{w}}=14$	$\mathrm{f}_{\mathrm{s}}=117$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

－		機能維持評価用加速度＊	機能確認済加速度
ドライウェル温度 （T48－TE012A）	水平方向	1.66	
	鉛直方向	1． 49	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
	-	-	
	m_{a}	kg	
	T	${ }^{\circ} \mathrm{C}$	171
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

側面（前後方向）

2．ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）が設計用地震力に対 して十分な電気的機能を有していることを説明するものである。

ドライウェル温度（T48－TE012G，H，J，K，L，M）は，設計基準対象施設においてはS クラス施設に分類される。ドライウェル温度（T48－TE026J）は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類さ れる。以下，設計基準対象施設及び重大事故等対処設備としての電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の構造計画を表 2－1 及び表 2－ 2 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，溶接により ドライウェル泠却系ダク トに設置する。	熱電対	【ドライウェル温度（T48－TEO12G，H，J，K，L，M）】 （単位：mm）

表 2－2 構造計画

2．2．2 評価方針

ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「2．4 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「2．5 評価結果」に示す。

ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の耐震評価フローを図 2－1 に示す。

図 2－1 ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の耐震評価フロー

2．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）

2.3 評価部位

ドライウェル温度（T48－TE012G，H，J，K，L，M）は，ドライウェル冷却系ダクトに直接取り付けられた保護管に挿入され固定されることから，ドライウェルが支持している。ドライウェ ル温度（T48－TE026J）は，溶接によりドライウェル内の架構に設置することから，ドライウェ ルが支持している。ドライウェルの構造強度評価は，添付書類「VI－2－9－2－1－1 ドライウェル の耐震性についての計算書」にて実施しているため，本計算書では，原子炉格納容器本体の地震応答解析結果を用いたドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の電気的機能維持評価について示す。

2.4 機能維持評価

ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の電気的機能維持評価について，以下に示す。

2．4．1 機能維持評価用加速度
ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）はドライウェル冷却系ダクト に直接取り付けられた保護管又はドライウェル内の架構に固定されることから，機能維持評価用加速度は，「基準地震動 S s 」による地震力として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。機能維持評価用加速度を表 2－3 に示す。

表 2－3 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
$\begin{gathered} \text { ドライウェル温度 } \\ \text { (T48-TE012G, H, J) } \end{gathered}$	$\begin{gathered} \text { 原子炉遮蔽壁 } \\ \text { O.P. 15. } 950 \\ \text { (0.P.18. } 790^{*} \text {) } \end{gathered}$	水平	1.71
		鉛直	1.58
$\begin{aligned} & \text { ドライウェル温度 } \\ & \text { (T48-TE012K, L, M, } \\ & \text { TE026J) } \end{aligned}$	原子炉格納容器$\begin{aligned} & \text { 0.P. 2. } 600 \\ & \left(0 . \text { P. } 4.600^{*}\right) \end{aligned}$	水平	1.09
		鉛直	0.67

注記＊：基準床レベルを示す。

2．4．2 機能確認済加速度

ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験 において電気的機能の健全性を確認した評価部位の加速度を適用する。機能確認済加速度 を表2－4に示す。

表 2－4 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
ドライウェル温度 （T48－TE012G，H，J，K，L，M）	水平	
	鉛直	
ドライウェル温度 （T48－TE026J）	水平	
	鉛直	

2.5 評価結果

2．5．1 設計基準対象施設としての評価結果
ドライウェル温度（T48－TE012G，H，J，K，L，M）の設計基準対象施設としての耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力 に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

2．5．2 重大事故等対処設備としての評価結果
ドライウェル温度（T48－TE026J）の重大事故等時の状態を考慮した場合の耐震評価結果 を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対 して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【ドライウェル温度（T48－TE012G，H，J，K，L，M，TE026J）の耐震性についての計算結果】
1．設計基準対象施設
1．1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
ドライウェル温度 （T48－TE012G，H，J）	水平方向	1.71	
	鉛直方向	1.58	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．重大事故等対処設備
2.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
ドライウェル温度（T48－TE026J）	水平方向	1.09	
	鉛直方向	0.67	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

3．ドライウェル温度（T48－TE012N，P，R，S，T）

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ドライウェル温度（T48－TE012N，P，R，S，T）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

ドライウェル温度（T48－TE012N，P，R，S，T）は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示 す。

なお，構造強度評価については，計器取付金具の溶接部に作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価 については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計器取付金具が剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価 する。評価対象を表 3－1に示す。

表 3－1 概略構造識別

評価部位	評価方法	構造計画
T48－TE012N		
T48－TE012P		
T48－TE012R	3.5 構造強度評価	表3－2 構造計画
T48－TE012S（代表）		
T48－TE012T		

3.2 一般事項

3．2．1 構造計画

ドライウェル温度（T48－TE012S）の構造計画を表 3－2 に示す。

表3－2 構造計画

3．2．2 評価方針

ドライウェル温度（T48－TE012S）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．2．1 構造計画」 にて示すドライウェル温度（T48－TE012S）の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「3．5 構造強度評価」にて示す方法にて確認することで実施する。また，ドライウェル温度（T48－TE012S）の機能維持評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度 が電気的機能確認済加速度以下であることを，「3．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「3．7 評価結果」に示す。

ドライウェル温度（T48－TE012S）の耐震評価フローを図 3－1 に示す。

図 3－1 ドライウェル温度（T48－TE012S）の耐震評価フロー

3．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 601－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1•補—1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
$\mathrm{A}_{\text {w }}$	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} Y}$	溶接部の F_{Y} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} Z}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
f s	溶接部の許容せん断応力	MPa
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（Y軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
S	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねじり断面係数	mm^{3}
Z_{Y}	溶接全断面における断面係数（ Y 軸）	mm^{3}
Z_{Z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
σ t	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 3－3に示すとおりとする。

表 3－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊1
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 ${ }^{* 2}$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 行 ${ }^{* 2}$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 行 ${ }^{* 2}$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

3.3 評価部位

ドライウェル温度（T48－TE012S）の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。ドライウェル温度（T48－TE012S）の耐震評価部位については，表 3－2 の概略構造図に示す。

3.4 固有周期

3．4．1 固有値解析方法

ドライウェル温度（T48－TE012S）の固有値解析方法を以下に示す。
（1）ドライウェル温度（T48－TE012S）は，「3．4．2 解析モデル及び諸元」に示す三次元はり モデルとして考える。

3．4．2 解析モデル及び諸元

ドライウェル温度（T48－TE012S）の解析モデルを図 3－2 に，解析モデルの概要を以下に示す。
（1）計器取付金具は，バルクヘッド補強部材に固定されることから，計算モデルでは，計器取付金具を直線とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 3－4，部材の機器要目を表3－5 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

支持点
（計器取付金具基礎部）
：検出器質点
（単位：mm）
図 3－2 ドライウェル温度（T48－TE012S）解析モデル

表 3－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	171
縦弾性係数	E	MPa	
ポアソンン比	v	-	
ポ			
要素数	-	個	
節点数	-	個	

表 3－5 部材の機器要目

材料	
対象要素	（1）
A（mm）	
$\mathrm{I}_{\mathrm{x}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{P}}\left(\mathrm{mm}^{4}\right)$	
断面形状（mm）	 $(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

3．4．3 固有値解析結果

固有値解析結果を表 3－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 3－6 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鋁直方向 刺激係数
			X 方向	Z方向	
1 次		水平	－	－	－

3.5 構造強度評価

3．5．1 構造強度評価方法

3．4．2項の（1）から（4）のほか，次の条件で計算する。
（1）地震力は，ドライウェル温度（T48－TE012S）に対して，水平方向及び鉛直方向から同時 に作用するものとする。
（2）ドライウェル温度（T48－TE012S）は溶接によりバルクヘッド補強部材に固定されるもの とする。
（3）ドライウェル温度（T48－TE012S）の質量は検出器及び計器取付金具を考慮する。
（4）解析コードは，「NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

3．5．2 荷重の組合せ及び許容応力
3．5．2．1 荷重の組合せ及び許容応力状態
ドライウェル温度（T48－TE012S）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表3－7に示す。

3．5．2．2 許容応力

ドライウェル温度（T48－TE012S）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－8 のとおりとする。

3．5．2．3 使用材料の許容応力評価条件

ドライウェル温度（T48－TE012S）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表3－9に示す。

表 3－7 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	$\begin{gathered} \text { ドライウェル温度 } \\ \text { (T48-TE012S) } \end{gathered}$	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
O 2
（3） $\mathrm{VI}-2-6-5-4-2-1$
R 0

表 3－8 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{f}{ }_{\text {c }}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

45
表 3－9 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
溶接部		周囲環境温度	171	150	413	205

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－10に示す。
「弾性設計用地震動 S d 又は静的震度」又は「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－10 設計用地震力（設計基準対象施設）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉圧力容器 0．P．23． 667 （0．P．25． $858^{* 1}$ ）		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=2.61$	$\mathrm{C}_{\mathrm{V}}=0.84$	$\mathrm{C}_{\mathrm{H}}=3.35$	$\mathrm{C}_{\mathrm{V}}=1.44$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 溶接部の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。

駼：力を受けると仮定する溶接部

図 3－3 計算モデル（水平方向転倒）

襨：力を受けると仮定する溶接部

図 3－4 計算モデル（鉛直方向転倒）

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 3－11 に示す。

表 3－11 溶接部発生反力，モーメント

対象計器	許容応力状態	反力（ N ）			モーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）		
		F ${ }_{x}$	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{z}
T48－TE012S	C（ $\mathrm{III}_{4} \mathrm{~S}$ ）						
	D（ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ ）						

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{w}}} \tag{3.5.4.1.1.1}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\mathrm{A}_{\mathrm{w}}=2 \cdot \mathrm{a} \cdot \mathrm{t}
$$

ただし，溶接部の有効のど厚 a は，

$$
\mathrm{a}=0.7 \cdot \mathrm{~s}
$$

（3．5．4．1．1．3）
（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{3,5,4,1,1,4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{WY}}, ~ \mathrm{~A}_{\mathrm{WZ}}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
A_{WY} ， $\mathrm{A}_{\mathrm{w} Z}$ は，次式により求める。

$$
\begin{align*}
& A_{w Y}=2 \cdot a \cdot t \tag{3,5,4,1,1.5}\\
& A_{w Z}=2 \cdot a \cdot t \tag{3.5,4.1.1.6}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 3－3 及び図 3－4 でY軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{Y}}}{\mathrm{Z}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{3.5,4.1.1.7}
\end{equation*}
$$

$\mathrm{Z}_{\mathrm{Y}}, ~ \mathrm{Z}_{\mathrm{Z}}$ は溶接断面の Y 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{3.5.4.1.1.8}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 溶接部の応力計算条件
応力計算に用いる計算条件は，本計算書の【ドライウェル温度（T48－TE012S）の耐震性についての計算結果】の設計条件及び機器要目に示す。

3．5．6 応力の評価
3．5．6．1 溶接部の応力評価
3．5．4．1．1 項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただ し，f s は下表による。

弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの応力 場合 fs_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

3.6 機能維持評価

3．6．1 電気的機能維持評価方法
ドライウェル温度（T48－TE012S）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

ドライウェル温度（T48－TE012S）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－12に示す。

表 3－12 機能確認済加速度（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
ドライウェル温度 （T48－TE012S）	水平	
	鋁直	

3.7 評価結果

3．7．1 設計基準対象施設としての評価結果
ドライウェル温度（T48－TE012S）の設計基準対象施設としての耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

```
【ドライウェル温度(T48-TE012S) の耐震性についての計算結果】
```

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { ドライウェル温度 } \\ \text { (T48-TE012S) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉圧力容器 } \\ \text { 0. P. 23. } 667 \\ \left(0 . \text { P. } 25.858^{* 1}\right) \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=2.61$	$\mathrm{C}_{\mathrm{V}}=0.84$	$\mathrm{C}_{\mathrm{H}}=3.35$	$\mathrm{C}_{\mathrm{V}}=1.44$	171

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	$\underset{(\mathrm{MPa}}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(\mathrm{RPa}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
						$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{Sd} \text { d } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S s
溶接部	150	413	205	203	203	鉛直方向	鉛直方向

1．3 計算数値

$\stackrel{\odot}{\circ}$
1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	$\sigma_{\mathrm{t}}=1$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{t}=1$	$\mathrm{f}_{\mathrm{s}}=117$
		せん断	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=117$	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=117$
		曲げ	$\sigma_{\mathrm{b}}=39$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{\mathrm{b}}=51$	$\mathrm{f}_{\mathrm{s}}=117$
		組合せ	$\sigma_{\mathrm{w}}=40$	$\mathrm{f}_{\mathrm{s}}=117$	$\sigma_{\mathrm{w}}=52$	$\mathrm{f}_{\mathrm{s}}=117$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
ドライウェル温度 （T48－TE012S）	水平方向	機能維持評価用加速度＊	機能確認済加速度
	鉛直方向	2.80	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目
\％

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	171
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

側面（鉛直方向）

4．ドライウェル温度（T48－TE026A，B，K，L）

4． 1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ドライウェル温度（T48－TE026A，B，K，L）が設計用地震力に対し て十分な構造強度及び電気的機能を有していることを説明するものである。

ドライウェル温度（T48－TE026A，B，K，L）は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，計器取付金具の溶接部に作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価 については，機能維持評価用加速度が最大となる設置床高さの計器について代表として評価す る。評価対象を表 4－1 に示す。

表 4－1 概略構造識別

評価部位	評価方法	構造計画
T48－TE026A（代表）		
$\begin{aligned} & \text { T48-TE026B (代表) } \\ & \text { T48-TE026K } \\ & \text { T48-TE026L } \end{aligned}$	4．5 構造強度評価	表 4－2 構造計画

4.2 一般事項

4．2．1 構造計画

ドライウェル温度（T48－TE026A，B）の構造計画を表 4－2 に示す。

表 4－2 構造計画

4．2．2 評価方針

ドライウェル温度（T48－TE026A，B）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「4．2．1 構造計画」 にて示すドライウェル温度（T48－TE026A，B）の部位を踏まえ「4．3 評価部位」にて設定 する箇所において，「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．5 構造強度評価」にて示す方法にて確認すること で実施する。また，ドライウェル温度（T48－TE026A，B）の機能維持評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4． 6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「4．7 評価結果」に示す。

ドライウェル温度（T48－TE026A，B）の耐震評価フローを図 4－1 に示す。

図 4－1 ドライウェル温度（T48－TE026A，B）の耐震評価フロー

4．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 601－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

4．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$A_{w Y}$	溶接部の F_{Y} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} Z}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
f s	溶接部の許容せん断応力	MPa
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（ Y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
s	溶接脚長	mm
t_{1}	溶接の有効長さ（短辺）	mm
t 2	溶接の有効長さ（ 長辺）	mm
$\mathrm{S}_{\text {u }}$	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねじり断面係数	mm^{3}
Z_{Y}	溶接全断面における断面係数（ Y 軸）	mm^{3}
Z_{Z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

4． 2.5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 4－3 に示すとおりとする。

表 4－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	$\mathrm{mm}{ }^{2}$	有效数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 析＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

4．3 評価部位

ドライウェル温度（T48－TE026A，B）の耐震評価は，「4．5．1 構造強度評価方法」に示す条件 に基づき，耐震評価上厳しくなる溶接部について実施する。ドライウェル温度（T48－TE026A，
B）の耐震評価部位については，表 4－2 の概略構造図に示す。

4． 4 固有周期

4．4．1 固有値解析方法
ドライウェル温度（T48－TE026A，B）の固有値解析方法を以下に示す。
（1）ドライウェル温度（T48－TE026A，B）は，「4．4．2 解析モデル及び諸元」に示す三次元は りモデルとして考える。

4．4．2 解析モデル及び諸元
ドライウェル温度（T48－TE026A，B）の解析モデルを図 4－2 に，解析モデルの概要を以下 に示す。
（1）計器取付金具は，ドライウェル内の架構に固定されることから，計算モデルでは，計器取付金具は（1）及び（2）の部材で組まれた L 字とみなし，支持点（計器取付金具基礎部） 1 点 で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 4－4，部材の機器要目を表4－5 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

：支持点
（計器取付金具基礎部）
：検出器質点
（単位：mm）

図 4－2 ドライウェル温度（T48－TE026A，B）解析モデル

表 4－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソンン比	v	-	
ボアソ	-	個	
要素数	-	個	
節点数	-		

表 4－5 部材の機器要目

材料		
対象要素	（1）	（2）
A（ mm^{2} ）		
I x $\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
$I_{\text {P }}\left(\mathrm{mm}^{4}\right)$		
断面形状（mm）	$(a \times b \times c)$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

[^2]
4．4．3 固有値解析結果

固有値解析結果を表 4－6 に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 4－6 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鋁直方向刺激係数
			X 方向	Z 方向	
1 次		鉛直	－	－	－

4.5 構造強度評価

4．5．1 構造強度評価方法

4．4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，ドライウェル温度（T48－TE026A，B）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）ドライウェル温度（T48－TE026A，B）は溶接によりドライウェル内の架構に固定されるも のとする。
（3）ドライウェル温度（T48－TE026A，B）の質量は検出器及び計器取付金具を考慮する。
（4）解析コードは，「NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

4．5．2 荷重の組合せ及び許容応力
4．5．2．1 荷重の組合せ及び許容応力状態
ドライウェル温度（T48－TE026A，B）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－7に示す。

4．5．2．2 許容応力
ドライウェル温度（T48－TE026A，B）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表 4－8 のとおりとする。

4．5．2． 3 使用材料の許容応力評価条件
ドライウェル温度（T48－TE026A，B）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4－9 に示す。

表 4－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－8 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$				

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－9 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		啁囲環境温度	200	144	402	205

4．5．3 設計用地震力

耐震評価に用いる設計用地震力を表4－10に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 4－10 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ (m)	固有周期 (s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

4．5．4 計算方法

4．5．4．1 応力の計算方法
4．5．4．1．1 溶接部の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。

經：力を受けると仮定する溶接部

図 4－3 計算モデル（水平方向転倒）

56 ：力を受けると仮定する溶接部

図 4－4 計算モデル（鉛直方向転倒）

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 4－11 に示す。

表 4－11 溶接部発生反力，モーメント

対象計器	許容応力状態	反力（N）			モーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）		
		F_{x}	F_{Y}	F_{z}	M ${ }_{\text {x }}$	M_{Y}	M_{z}
T48－TE026A，B	D（ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ ）						

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{w}}} \tag{4.5.4.1.1.1}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{4.5.4.1.1.4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{WY}}, ~ \mathrm{~A}_{\mathrm{WZ}}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{WY}}, ~ \mathrm{~A}_{\mathrm{wZ}}$ は，次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w} Y}=\mathrm{a} \cdot \mathrm{t}_{1}+\mathrm{a} \cdot \mathrm{t}_{2} \tag{4.5.4.1.1.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w} Z}=\mathrm{a} \cdot \mathrm{t}_{1}+\mathrm{a} \cdot \mathrm{t}_{2} \tag{4.5.4.1.1.6}
\end{equation*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 4－3 及び図 4－4 でY軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{Y}}}{\mathrm{Z}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{4.5.4.1.1.7}
\end{equation*}
$$

$\mathrm{Z}_{\mathrm{Y}}, ~ \mathrm{Z}_{\mathrm{Z}}$ は溶接断面の Y 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{4.5.4.1.1.8}
\end{equation*}
$$

4．5．5 計算条件

4．5．5．1 溶接部の応力計算条件
応力計算に用いる計算条件は，本計算書の【ドライウェル温度（T48－TE026A，B）の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．5．6 応力の評価

4．5．6．1 溶接部の応力評価
4．5．4．1．1項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただ し，f s は下表による。

	基準地震動S s による 荷重との組合せの場合
許容せん断応力 fs	$\frac{\mathrm{F} *}{1.5 \cdot \sqrt{3}} \cdot 1.5$

4.6 機能維持評価

4．6．1 電気的機能維持評価方法

ドライウェル温度（T48－TE026A，B）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

ドライウェル温度（T48－TE026A，B）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 4－12に示す。

表 4－12 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
ドライウェル温度 （T48－TE026A，B）	水平	
	鋁直	

4． 7 評価結果

4．7．1 重大事故等対処設備としての評価結果
ドライウェル温度（T48－TE026A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【ドライウェル温度（T48－TE026A，B）の耐震性についての計算結果】

1．重大事故等対処設備

1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
ドライウェル温度 （T48－TE026A，B）	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉圧力容器 } \\ 0 . \text { P. } 25.858 \\ \left(0 . \text { P. } 28.600^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=4.03$	$\mathrm{C}_{\mathrm{V}}=1.44$	200

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

						転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \underset{(\mathrm{MPa})}{(\mathrm{R} \mathrm{~T})} \\ \text { (}{ }^{(2)} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{d} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
溶接部	144	402	205	－	194	－	水平方向

1．3 計算数値

部 材	M_{x}		M_{Y}		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	－		－		－	

Əै
1．4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{t}=0$	$\mathrm{f}_{\mathrm{s}}=112$
		せん断	－	－	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=112$
		曲げ	－	－	$\sigma_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s}}=112$
		組合せ	－	－	$\sigma_{\mathrm{w}}=3$	$\mathrm{f}_{\mathrm{s}}=112$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
ドライウェル温度 （T48－TE026A，B）	水平方向	3.36	
	鉛直方向	1． 20	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
ポ 要素数	-	個	
節点数	-	個	

[^3]

転倒方向

正面（水平方向）

側面（鉛直方向）

5．ドライウェル温度（T48－TE026C，D，E，F，G，H）

5.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ドライウェル温度（T48－TE026C，D，E，F，G，H）が設計用地震力 に対して十分な構造強度及び電気的機能を有していることを説明するものである。

ドライウェル温度（T48－TE026C，D，E，F，G，H）は，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，計器取付金具の溶接部に作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるドライウェル温度（T48－TE026F）を代表として評価する。

また，電気的機能維持評価については，機能維持評価用加速度が最大となるドライウェル温度（T48－TE026D）を代表として評価する。評価対象を表5－1に示す。

表 5－1 概略構造識別

評価部位	評価方法	構造計画
T48－TE026C		
T48－TE026D（代表）（電気的		
機能維持評価）		
T48－TE026E		
T48－TE026F（代表）（構造強	5.5	構造強度評価
度評価）		表5－2
T48－TE026G 構造計画		
T48－TE026H		

5.2 一般事項

5．2．1 構造計画

ドライウェル温度（T48－TE026F）の構造計画を表 5－2 に示す。

表 5－2 構造計画

5．2．2 評価方針

ドライウェル温度（T48－TE026F）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「5．2．1 構造計画」 にて示すドライウェル温度（T48－TE026F）の部位を踏まえ「5．3 評価部位」にて設定する箇所において，「5．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等 が許容限界内に収まることを，「5． 5 構造強度評価」にて示す方法にて確認することで実施する。また，ドライウェル温度（T48－TE026D）の機能維持評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度 が電気的機能確認済加速度以下であることを，「5． 6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．7 評価結果」に示す。

ドライウェル温度（T48－TE026D，F）の耐震評価フローを図 5－1 に示す。

図 5－1 ドライウェル温度（T48－TE026D，F）の耐震評価フロー

5．2．3 適用規格•基準等
本評価について適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 601－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

5．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
$\mathrm{A}_{\text {w }}$	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} X}$	溶接部の F x に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} Z}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{Z}	溶接部に作用する力（ Z 方向）	N
f s	溶接部の許容せん断応力	MPa
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（Y軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
S	溶接脚長	mm
t	溶接の有効長さ（ X 方向）	mm
u	溶接の有効長さ（ Z 方向）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$\mathrm{S}_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねじり断面係数	mm^{3}
Z_{X}	溶接全断面における断面係数（ X 軸）	mm^{3}
Z_{z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
σ t	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

5．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 5－3 に示すとおりとする。

表 5－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	$\mathrm{mm}{ }^{2}$	有效数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 析＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

5.3 評価部位

ドライウェル温度（T48－TE026F）の耐震評価は，「5．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。ドライウェル温度（T48－TE026F）の耐震評価部位については，表 5－2 の概略構造図に示す。

5.4 固有周期

5．4．1 固有値解析方法
ドライウェル温度（T48－TE026F）の固有値解析方法を以下に示す。
（1）ドライウェル温度（T48－TE026F）は，「5．4．2 解析モデル及び諸元」に示す三次元はり モデルとして考える。

5．4．2 解析モデル及び諸元

ドライウェル温度（T48－TE026F）の解析モデルを図 5－2 に，解析モデルの概要を以下に示す。
（1）計器取付金具は，ドライウェル内の架構に固定されることから，計算モデルでは，計器取付金具を直線とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 5－4，部材の機器要目を表 5－5 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

図 5－2 ドライウェル温度（T48－TE026F）解析モデル

表 5－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
維弾性係数	E	MPa	
ポアソン比	v	-	
ボア要素数	-		
節点数	-	個	

表 5－5 部材の機器要目

朹囲みの内容は商業機密の観点から公開できません。

5．4．3 固有値解析結果

固有値解析結果を表 5－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 5－6 固有值解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鋁直方向 刺激係数
			X方向	Z方向	
1 次		水平	－	－	－

5.5 構造強度評価

5．5．1 構造強度評価方法

5．4．2 項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，ドライウェル温度（T48－TE026F）に対して，水平方向及び鉛直方向から同時 に作用するものとする。
（2）ドライウェル温度（T48－TE026F）は溶接によりドライウェル内の架構に固定されるもの とする。
（3）ドライウェル温度（T48－TE026F）の質量は検出器及び計器取付金具を考慮する。
（4）解析コードは，「NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

5．5．2 荷重の組合せ及び許容応力

5．5．2．1 荷重の組合せ及び許容応力状態
ドライウェル温度（T48－TE026F）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 5－7 に示す。

5．5．2．2 許容応力

ドライウェル温度（T48－TE026F）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－8 のとおりとする。

5．5．2． 3 使用材料の許容応力評価条件

ドライウェル温度（T48－TE026F）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 5－9 に示す。

表 5－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－8 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}^{*}$	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$				

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－9 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		周囲環境温度	200	144	402	205

5．5．3 設計用地震力

「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。耐震評価に用いる設計用地震力を表 5－10に示す。

表 5－10 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉遮蔽壁 } \\ \text { O.P. } 9.448 \\ \left(0 . \text { P. 10. } 600^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } * 2 \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.82$	$\mathrm{C}_{\mathrm{V}}=1.33$

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5．5．4 計算方法

5．5．4．1 応力の計算方法
5．5．4．1．1 溶接部の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。

図 5－3 計算モデル（水平方向転倒）

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 5－11 に示す。

表 5－11 溶接部発生反力，モーメント

対象計器	許容応力状態	反力（ N ）			モーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）		
		F ${ }_{\text {x }}$	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{z}
T48－TE026F	D（ $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ ）						

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{~A}_{\mathrm{w}}} \tag{5.5.4.1.1.1}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=2 \cdot \mathrm{a}(\mathrm{t}+\mathrm{u}) \tag{5.5.4.1.1.2}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{5.5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{X}}{A_{w X}}+\frac{M_{Y}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{Y}}{Z_{P}}\right)^{2}} \tag{5.5.4.1.1.4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{Wx}}, ~ \mathrm{~A}_{\mathrm{wz}}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{wx}}, \mathrm{A}_{\mathrm{wz}}$ は，次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{wx}}=2 \cdot \mathrm{a} \cdot \mathrm{t} \tag{5.5.4.1.1.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w} Z}=2 \cdot \mathrm{a} \cdot \mathrm{u} \tag{5.5.4.1.1.6}
\end{equation*}
$$

[^4]（3）曲げ応力
溶接部に対する曲げモーメントは，図 5－3 及び図 5－4 でX軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{5,5,4.1.1.7}
\end{equation*}
$$

$Z_{x}, ~ Z_{z}$ は溶接断面の X 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{5.5.4.1.1.8}
\end{equation*}
$$

5．5．5 計算条件

5．5．5．1 溶接部の応力計算条件
応力計算に用いる計算条件は，本計算書の【ドライウェル温度（T48－TE026D，F）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5．5．6 応力の評価

5．5．6．1 溶接部の応力評価
5．5．4．1．1項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただ し，f s は下表による。

	基準地震動S s による 荷重との組合せの場合
許容せん断応力 fs	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5.6 機能維持評価

5．6．1 電気的機能維持評価方法

ドライウェル温度（T48－TE026D）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。機能維持評価用加速度を表 5－12に示す。

ドライウェル温度（T48－TE026D）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。機能確認済加速度を表 5－13に示す。

表 5－12 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
ドライウェル温度 （T48－TE026D）	原子炉遮蔽壁	水平	1.71
	（0．P．18．790＊）	鉛直	1.58

注記＊：基準床レベルを示す。

表 5－13 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
ドライウェル温度 （T48－TE026D）	水平	
	鉛直	

5.7 評価結果

5．7．1 重大事故等対処設備としての評価結果
ドライウェル温度（T48－TE026D，F）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【ドライウェル温度（T48－TE026D，F）の耐震性についての計算結果】
1．重大事故等対処設備

1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
ドライウェル温度 （T48－TE026F）	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉遮蔽壁 } \\ \text { 0.P. } 9.448 \\ \left(0 . \text { P. } 10.600^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.82$	$\mathrm{C}_{\mathrm{V}}=1.33$	200

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

$\stackrel{\sim}{\circ}$	部 材	$\binom{\mathrm{s}}{(\mathrm{~mm}}$	$\begin{gathered} a \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\left(\begin{array}{c} \mathrm{u} \\ (\mathrm{~mm}) \end{array}\right.$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{wX}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} ~} \mathrm{Z} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{z}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{P}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$
	溶接部										

						転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \underset{(\mathrm{MPa})}{(\mathrm{R} \mathrm{~T})} \\ \text { (}{ }^{(2)} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{d} \text { d 又 } \\ \text { は静的震度 } \end{gathered}$	基準地震動 S S
溶接部	144	402	205	－	194	－	鉛直方向

1．3 計算数値

$\stackrel{\rightharpoonup}{\circ}$
1．4 結論

部 材	材 料	応力	弾性設計用地震動S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{t}=1$	$\mathrm{f}_{\mathrm{s}}=112$
		せん断	－	－	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=112$
		曲げ	－	－	$\sigma_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s}}=112$
		組合せ	－	－	$\sigma_{\mathrm{w}}=3$	$\mathrm{f}_{\mathrm{s}}=112$

すべて許容応力以下である。

O 2 （3）VI－2－6－5－4－2－1 R 0

1．4．2 電気的機能維持の評価結果
1．4．2 電気的機能維持の評価結果

ドライウェル温度 （T48－TE026D）		機能維持評価用加速度＊	機能確認済加速度
	鉛直方向	1.71	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
ポア要素数	-	個	
節点数	-	個	

VI－2－6－5－4－2－2 圧力抑制室内空気温度の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 5
5．評価結果 6
5.1 設計基準対象施設としての評価結果． 6
5.2 重大事故等対処設備としての評価結果 6

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，圧力抑制室内空気温度が設計用地震力に対して十分な電気的機能を有していること を説明するものである。

圧力抑制室内空気温度は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

圧力抑制室内空気温度の構造計画を表 2－1に示す。

表2－1 構造計画

2.2 評価方針

圧力抑制室内空気温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下 であることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

圧力抑制室内空気温度の耐震評価フローを図2－1に示す。

図 2－1 圧力抑制室内空気温度の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）

3．評価部位
圧力抑制室内空気温度は，溶接によりサプレッションチェンバ内の強め輪に設置することから， サプレッションチェンバが支持している。サプレッションチェンバの構造強度評価は，添付書類「VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書」にて実施しているため，本計算書では，サプレッションチェンバ内の地震応答解析結果を用いた圧力抑制室内空気温度の電気的機能維持評価について示す。

4．機能維持評価
圧力抑制室内空気温度の電気的機能維持評価については，以下に示す。
4.1 機能維持評価用加速度

圧力抑制室内空気温度はサプレッションチェンバ内の強め輪に固定されることから，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動S s により定まる基準床レベルの応答加速度の値とする。評価用加速度を表 4－1 に示す。

表 4－1 評価用加速度（基準床レベルの応答加速度）
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動S s
			機能維持評価用加速度
圧力抑制室内空気温度 （T48－TE013A，B，C，D）	原子炉建屋 0．P．-0.80 （0．P．－8．10＊）	水平	0． 82
		鋁直	0． 57

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

圧力抑制室内空気温度の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表 4－2 に示す。

表 4－2 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
圧力抑制室内空気温度		
（T48－TE013A，B，C，D）	水平	
	鉛直	

5．評価結果
5.1 設計基準対象施設としての評価結果

圧力抑制室内空気温度の設計基準対象施設としての耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持されてい ることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

圧力抑制室内空気温度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室内空気温度（T48－TE013A，B，C，D）の耐震性についての計算結果】
1．設計基準対象施設
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
圧力抑制室内空気温度 （T48－TE013A，B，C，D）	水平方向	0.82	
	鋁直方向	0.57	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．重大事故等対処設備
2.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
\checkmark

		機能維持評価用加速度	機能確認済加速度
圧力抑制室内空気温度 （T48－TE013A，B，C，D）	0.82		
	水平方向	鉛直方向	0.57

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－5－4－2－3 サプレッションプール水温度の耐震性についての計算書
1．概要 1
2．一般事項 3
2.1 構造計画 3
2.2 評価方針 6
2.3 適用規格•基準等 7
2． 4 記号の説明 7
2.5 計算精度と数値の丸め方 8
3．評価部位 9
4．固有周期 9
4． 1 固有値解析方法 9
4．2 解析モデル及び諸元 9
4.3 固有値解析結果 14
5．構造強度評価 15
5.1 構造強度評価方法 15
5.2 荷重の組合せ及び許容応力 15
5．2．1 荷重の組合せ及び許容応力状態 15
5．2．2 許容応力 15
5．2．3 使用材料の許容応力評価条件． 15
5.3 設計用地震力 19
5.4 計算方法 20
5．4．1 応力の計算方法 20
5.5 計算条件 23
5．5．1 U ボルトの応力計算条件 23
5.6 応力の評価 23
5．6．1 U ボルトの応力評価 23
6．機能維持評価 24
6.1 電気的機能維持評価方法 24
7．評価結果 25
7.1 設計基準対象施設としての評価結果 25
7.2 重大事故等対処設備としての評価結果 25

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，サプレッションプール水温度が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

サプレッションプール水温度（T11－TE001A，TE002A，TE003A，TE004A，TE005A，TE006A，TE007A， TE008A，TE009A，TE010A，TE011A，TE012A，TE013A，TE014A，TE015A，TE016A）は，設計基準対象施設においてはS クラス施設に分類される。サプレッションプール水温度（T11－TE001B，TE002B， TE003B，TE004B，TE005B，TE006B，TE007B，TE008B，TE009B，TE010B，TE011B，TE012B，TE013B， TE014B，TE015B，TE016B）は，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。 なお，構造強度評価については，計器取付金具のUボルトに作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価に ついては，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計器取付金具のUボルトが剛構造 の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
T11－TE001A		
T11－TE002A		
T11－TE003A（代表）		
T11－TE004A		
T11－TE005A		
T11－TE006A		
T11－TE007A		
T11－TE008A		
T11－TE009A		
T11－TE010A		
T11－TE011A		
T11－TE012A		
T11－TE013A		
T11－TE014A		
T11－TE015A		
T11－TE016A		表 2－1 構造計画
T11－TE001B		表 2－2 構造計画
T11－TE002B		
T11－TE003B		
T11－TE004B		
T11－TE005B		
T11－TE006B		
T11－TE007B		
T11－TE008B		
T11－TE009B（代表）		
T11－TE010B		
T11－TE011B		
T11－TE012B		
T11－TE013B		
T11－TE014B		
T11－TE015B		
T11－TE016B		

2．一般事項
2.1 構造計画

サプレッションプール水温度の構造計画を表 2－1 及び表 2－2 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，保護管内に収容され，保護管は計器取付金具にUボルトで固定する。	測温抵抗体	【サプレッションプール水温度（T11－TE003A）】 正面 側面 （単位：mm）

表 2－2 構造計画

2.2 評価方針

サプレッションプール水温度の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示すサプレ ッションプール水温度の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，

「5．構造強度評価」にて示す方法にて確認することで実施する。また，サプレッションプー ル水温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，
「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」 に示す。

サプレッションプール水温度の耐震評価フローを図 2－1 に示す。

図 2－1 サプレッションプール水温度の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

2． 4 記号の説明

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 2－3に示すとおりとする。

表 2－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，心゙き数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値と する。

3．評価部位
サプレッションプール水温度（T11－TE003A，TE009B）の耐震評価，「5．1 構造強度評価方法」 に示す条件に基づき，耐震評価上厳しくなるUボルトについて実施する。サプレッションプール水温度（T11－TE003A，TE009B）の耐震評価部位については，表2－1 及び表 2－2 の概略構造図に示 す。

4．固有周期

4． 1 固有値解析方法
サプレッションプール水温度（T11－TE003A，TE009B）の固有値解析方法を以下に示す。
（1）サプレッションプール水温度（T11－TE003A，TE009B）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4．2 解析モデル及び諸元

サプレッションプール水温度（T11－TE003A，TE009B）の解析モデルを図 4－1 及び図4－2に，解析モデルの概要を以下に示す。
（1）計器取付金具は，サプレッションプールの強め輪に固定されることから，図 4－1 の（1）から ⑦及び図4－2の（8）から（18）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部） 3 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質点は保護管上端に集中するものとし，保護管及び計器取付金具の質点はUボルトに設置する。機器諸元を表 4－1，部材の機器要目を表4－2に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コー ド）の概要」に示す。

（単位：mm）
図 4－1 サプレッションプール水温度（T11－TE003A）解析モデル

支持点
（計器取付金具基礎部）
－検出器及びサポート質点
（単位：mm）
図 4－2 サプレッションプール水温度（T11－TE009B）解析モデル

表 4－1 機器諸元
（図 4－1 サプレッションプール水温度（T11－TE003A）解析モデル）

項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
	m_{b}		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	104
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

（図 4－2 サプレッションプール水温度（T11－TE009B）解析モデル）

項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
	$\mathrm{m}_{\mathrm{b} 1}$		
	$\mathrm{m}_{\mathrm{b} 2}$		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

[^5]表 4－2 部材の機器要目

4．3 固有値解析結果

固有値解析結果を表 4－3 及び表 4－4に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3 固有値解析結果（T11－TE003A）
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		水平	－	－	－

表 4－4 固有値解析結果（T11－TE009B）
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		水平	－	－	－

5．構造強度評価
5． 1 構造強度評価方法
4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，サプレッションプール水温度（T11－TE003A，TE009B）に対して，水平方向から作用するものとする。
（2）サプレッションプール水温度（T11－TE003A，TE009B）は，U ボルトに固定されるものとす る。
（3）サプレッションプール水温度（T11－TE003A，TE009B）の質量は検出器，保護管及び計器取付金具を考慮する。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態

サプレッションプール水温度（T11－TE003A，TE009B）の荷重の組合せ及び許容応力状態 のうち設計基準対象施設の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用 いるものを表 5－2 に示す。

5．2．2 許容応力
サプレッションプール水温度（T11－TE003A，TE009B）の許容応力は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき表5－3 のとおりとする。

5．2．3 使用材料の許容応力評価条件

サプレッションプール水温度（T11－TE003A，TE009B）の使用材料の許容応力評価条件の らち設計基準対象施設の評価に用いるものを表 5－4 に，重大事故等対処設備の評価に用い るものを表 5－5 に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	$\begin{gathered} \text { サプレッションプール水温度 } \\ \text { (T11-TE003A, T11-TE009B) } \end{gathered}$	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

ڤ

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
U ボルト		周囲環境温度	104	169	439

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
U ボルト		啁囲環境温度	200	144	402	205

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－6，表 5－7 及び表 5－8に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（T11－TE003A）（設計基準対象施設）

据付場所及び 床面高さ （m）	固有周期 （s）		弹性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .-8.10^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$

注記 $~ 1 ~: ~$ 基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
表 5－7 設計用地震力（T11－TE009B）（設計基準対象施設）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. - }-8.10^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
表 5－8 設計用地震力（T11－TE009B）（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. -8. 10*1 } \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 U ボルトの計算方法
U ボルトの応力は，地震による震度により作用する力によって生じる引張力とせん断力について計算する。

図 5－1 計算モデル（T11－TE003A）

図 5－2 計算モデル（T11－TE009B）
（1）引張応力
Uボルト（1本当たり）に対する引張応力は，下式により計算する。

引張力

$$
\begin{equation*}
\mathrm{P}_{2}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}_{2}}{\left(2 \cdot \mathrm{~A}_{\mathrm{t}}\right)} \tag{5.4.1.1.2}
\end{equation*}
$$

ここで，Uボルトの軸断面積 A_{t} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{t}}=\frac{\pi}{4} \cdot \mathrm{D}_{0}^{2} \tag{5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
Uボルトに対するせん断応力は，各方向の有効せん断面積で受けるものとして計算す る。

せん断力

$$
\begin{equation*}
\mathrm{P}_{3}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{s}}=\frac{\mathrm{P}_{3}}{\mathrm{~A}_{\mathrm{s}}} \tag{5.4.1.1.5}
\end{equation*}
$$

ここで，Uボルトの軸断面積 A_{s} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{s}}=\frac{\pi}{4} \cdot \mathrm{D}_{0}^{2} \tag{5.4.1.1.6}
\end{equation*}
$$

（3）組合せ応力
Uボルト対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\mathrm{F}_{\mathrm{a}}=\operatorname{MAX}\left(\frac{\left(\mathrm{F}_{\mathrm{t}}+1.6 \cdot \mathrm{~F}_{\mathrm{s}}\right)}{1.4}, \mathrm{~F}_{\mathrm{t}}\right) \tag{5.4.1.1.7}
\end{equation*}
$$

5． 5 計算条件

5．5．1 U ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【サプレッションプール水温度（T11－TE003A， TE009B）の耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 Uボルトの応力評価
5．4．1項で求めたUボルトの組合応力 F a は次式より求めた許容引張応力 f t 以下である こと。ただし，f t は下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動S s による荷重との組合せの場合
許容引張応力 f ${ }_{\text {t }}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

サプレッションプール水温度（T11－TE003A，TE009B）の電気的機能維持評価について以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づ き，基準地震動 S s により定まる応答加速度を設定する。

サプレッションプール水温度（T11－TE003A，TE009B）の機能確認済加速度は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6－1 に示す。

表 6－1 機能確認済加速度（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

評価部位	方向	機能確認済加速度
サプレッションプール水温度 （T11－TE003A）	水平	
	鉛直	
サプレッションプール水温度 （T11－TE009B）	水平	
	鉛直	

7．評価結果
7.1 設計基準対象施設としての評価結果

サプレッションプール水温度（T11－TE003A，T11－TE009B）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

7.2 重大事故等対処設備としての評価結果

サプレッションプール水温度（T11－TE009B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【サプレッションプール水温度（T11－TE003A）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
サプレッションプール 水温度 （T11－TE003A）	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .-8.10^{* 1} \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下 } * 2 \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$	104

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)
U ボルト	169	439	205	205	205

1．3 計算数値

1．4 結論
 N

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
サプレッションプー ルフ水温度 （T11－TE003A）	水平方向	0.82	
	鉛直方向	0.57	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	－	－	
質量	$\mathrm{m}_{\text {a }}$	kg	
	m_{b}		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	104
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

∞

上面

正面

側面

【サプレッションプール水温度（T11－TE009B）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
サプレッションプール水温度 （T11－TE009B）	S	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. - }-8.10^{* 1} \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下 } \end{gathered}$	$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$	104

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)
Uボルト	169	439	205	205	205

1.3 計算数値

部 材	P_{2}		P_{3}	
	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s
Uボルト				

1．4 結論

$\stackrel{\omega}{\bullet}$
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
サプレッションプー ル ル 水温度 $(T 11-T E 009 B)$	水平方向	0.82	
	鉛直方向	0.57	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	－	－	
	m_{a}		
質量	$\mathrm{m}_{\mathrm{b} 1}$	kg	
	$\mathrm{m}_{\mathrm{b} 2}$		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

N

[^6]

上面

正面

側面
○ 2
（3） $\mathrm{VI}-2-6-5-4-2-3$
R 0

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { サプレッションプール } \\ \text { 水温度 } \\ \text { (T11-TE009B) } \end{gathered}$	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .-8.10^{* 1} \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$	200

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)
U ボルト	144	402	205	-	194

2． 4 結論

すべて許容応力以下である。
$\stackrel{\sim}{\sim}$
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
2.5 その他の機器要目

項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
	$\mathrm{m}_{\mathrm{b} 1}$		
	$\mathrm{m}_{\mathrm{b} 2}$		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

$\stackrel{\omega}{\circ}$

$$
\text { O } 2 \text { (3) VI-2-6-5-4-2-3 R O E }
$$

上面

正面

側面

VI－2－6－5－4－2－4 原子炉格納容器下部温度の耐震性についての計算書
1．原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 3
1.3 評価部位 3
1． 4 機能維持評価 4
1．4．1 機能維持評価用加速度 4
1．4．2 機能確認済加速度 5
1.5 評価結果 6
1．5．1 重大事故等対処設備としての評価結果 6
2．原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B） 8
2.1 概要 8
2.2 一般事項 8
2．2．1 構造計画 8
2．2．2 評価方針 10
2．2．3 適用規格•基準等 11
2．2．4 記号の説明 12
2．2．5 計算精度と数値の丸め方． 13
2.3 評価部位 14
2． 4 固有周期 14
2．4．1 固有値解析方法 14
2．4．2 解析モデル及び諸元 14
2．4．3 固有値解析結果 17
2.5 構造強度評価 18
2．5．1 構造強度評価方法 18
2．5．2 荷重の組合せ及び許容応力． 19
2．5．3 設計用地震力 22
2．5．4 計算方法 23
2．5．5 計算条件 27
2．5．6 応力の評価 27
2.6 機能維持評価 28
2．6．1 電気的機能維持評価方法． 28
2． 7 評価結果 29
2．7．1 重大事故等対処設備としての評価結果 29
3．原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B） 34
3.1 概要 34
3.2 一般事項 34
3．2．1 構造計画 34
3．2．2 評価方針 36
3．2．3 適用規格•基準等 37
3．2．4 記号の説明 38
3．2．5 計算精度と数値の丸め方 39
3.3 評価部位 40
3． 4 固有周期 40
3．4．1 固有値解析方法 40
3．4．2 解析モデル及び諸元 40
3．4．3 固有値解析結果 43
3.5 構造強度評価 44
3．5．1 構造強度評価方法 44
3．5．2 荷重の組合せ及び許容応力 45
3．5．3 設計用地震力 48
3．5．4 計算方法 49
3．5．5 計算条件 53
3．5．6 応力の評価 53
3.6 機能維持評価 54
3．6．1 電気的機能維持評価方法． 54
3.7 評価結果 55
3．7．1 重大事故等対処設備としての評価結果 55

1．原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

1.2 一般事項

1．2．1 構造計画
原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の構造計画を表1－1に示す。

表 1－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，溶接により原子炉本体基礎の壁面に設置する。	熱電対	【原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）】 側面 正面 （単位：mm）

1．2．2 評価方針

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．4 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．5 評価結果」に示す。

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の耐震評価フローを図1－1に示す。

図 1－1 原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の耐震評価フロー

1．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）

1.3 評価部位

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）は，溶接により原子炉本体基礎 の壁面に設置することから，原子炉本体基礎が支持している。原子炉本体基礎の構造強度評価 は，添付書類「VI－2－9－2－1－1 ドライウェルの耐震性についての計算書」にて実施しているた め，本計算書では，原子炉本体基礎の地震応答解析結果を用いた原子炉格納容器下部温度（T48－ L／TE045A，B，L／TE049A，B）の電気的機能維持評価について示す。

1． 4 機能維持評価

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の電気的機能維持評価について，以下に示す。

1．4．1 機能維持評価用加速度

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）は原子炉本体基礎の壁面に固定されることから，機能維持評価用加速度は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき設定する。機能維持評価用加速度を表 1－2 に示す。

表 1－2 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
原子炉格納容器下部温度$\begin{gathered} (\mathrm{T} 48-\mathrm{L} / \mathrm{TE} 045 \mathrm{~A}, \mathrm{~B}, \\ \mathrm{L} / \mathrm{TE} 049 \mathrm{~A}, \mathrm{~B}) \end{gathered}$	原子炉本体基礎$\begin{aligned} & \text { 0. P. }-2.500 \\ & \left(0 . \text { P. 1. } 150^{*}\right) \end{aligned}$	水平	1.15
		鉛直	0.59

注記＊：基準床レベルを示す。

1．4．2 機能確認済加速度

原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，当該検出器と同形式の検出器単体 の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表1－3に示す。

表 1－3 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器下部温度	水平	
（T48－L／TE045A，B，L／TE049A，B）	鋁直	

1．5 評価結果

1．5．1 重大事故等対処設備としての評価結果
原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下 であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部温度（T48－L／TE045A，B，L／TE049A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
原子炉格納容器下部温度	水平方向	1.15	
（T48－L／TE045A，B，L／TE049A，B）	鉛直方向	0.59	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，原子炉本体基礎の壁面に取付ボルト で設置する。	熱電対	【原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）】
		（単位：mm）

2．2．2 評価方針

原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．2．1 構造計画」にて示す原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A， B）の部位を踏まえ「2．3 評価部位」にて設定する箇所において，「2．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「2．5構造強度評価」にて示す方法にて確認することで実施する。また，原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「2． 6 機能維持評価」にて示す方法にて確認するこ とで実施する。確認結果を「2．7 評価結果」に示す。

原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の耐震評価フローを図2－1に示す。

図 2－1 原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の耐震評価フロー

2．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133 に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b}} 1$	鉛直方向地震及び取付面に対し左右方向の水平方向地震によりボル トに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b}} 2$	鉛直方向地震及び取付面に対し前後方向の水平方向地震によりボル トに作用する引張力（1本当たり）	N
f s b	せん断力のみを受けるボルトの許容せん断応力	MPa
f t o	引張力のみを受けるボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	ボルト取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊1	mm
ℓ_{2}	重心とボルト間の水平方向距離＊1	mm
ℓ_{3}	重心と上側ボルト間の距離	mm
ℓ_{4}	重心と下側ボルト間の距離	mm
m	検出器及び計器取付金具の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n f H	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q_{b}	ボルトに作用するせん断力	N
$Q_{\text {b H }}$	水平方向転倒モデルにおけるボルトに作用するせん断力	N
$Q_{\text {bHi }}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震によりボルトに作用するせん断力	N
$Q_{\text {bH } 2}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により重心の偏心を考慮したボルトに作用するせん断力	N
$Q_{\text {bH3 }}$	水平方向転倒モデルにおける鉛直方向地震によりボルトに作用する せん断力	N
$Q_{\text {bH4 }}$	水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮 したボルトに作用するせん断力	N

記 号	記 号 の 説 明	単 位
$\mathrm{Q}_{\mathrm{b} V}$	鉛直方向転倒モデルにおけるボルトに作用するせん断力 水平方向転倒モデルにおける鉛直方向地震によりボルトに作用する せん断力 水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮	N
$\mathrm{Q}_{\mathrm{b} V 1}$		N
$\mathrm{Q}_{\mathrm{b} V 2}$	水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮 したボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $* 1: \ell_{1} \leqq \ell_{2}$

2．2．5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

2.3 評価部位

原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる取付ボルトについて実施する。原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の耐震評価部位については，表 2－1 の概略構造図に示す。

2． 4 固有周期

2．4．1 固有値解析方法
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の固有値解析方法を以下に示す。
（1）原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）は，「2．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

2．4．2 解析モデル及び諸元
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の解析モデルを図 2－2 に，解析モデルの概要を以下に示す。
（1）計器取付金具は原子炉本体基礎の壁面に固定されることから，（1）～③）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表2－3，部材の機器要目を表2－4に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

（単位：mm）

図 2－2 原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）解析モデル

表 2－3 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	ma	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 2－4 部材の機器要目

材料		
対象要素	（1）－（3）	（2）
A（ mm^{2} ）		
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
$I_{\text {P }}\left(\mathrm{mm}^{4}\right)$		
断面形状（mm）	$(a \times b \times c)$	$(a \times b \times c)$

2．4．3 固有値解析結果
固有値解析結果を表2－5に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X方向	Z 方向	
1 次		水平	－	－	－

2.5 構造強度評価

2．5．1 構造強度評価方法
2．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）は，取付ボルトにより原子炉本体基礎の壁面に固定されるものとする。
（3）原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の質量は，検出器及び計器取付金具を考慮する。

2．5．2 荷重の組合せ及び許容応力
2．5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表2－6に示す。

2．5．2．2 許容応力
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－7 のとおりとする。

2．5．2．3 使用材料の許容応力評価条件
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表2－8に示す。

表 2－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊ 2 ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-6-5-4-2-4 \quad \mathrm{R} \mathrm{O}
$$

表 2－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
取付ボルト		周囲環境温度	200	144	402	205

2．5．3 設計用地震力
耐震評価に用いる設計用地震力を表 2－9に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0.P. }-2.500 \\ \left(0 . \text { P. } 1.150^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } * 2 \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$

注記＊1：基準床レベルを示す。

[^7]
2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 2－3 計算モデル（水平方向転倒）

図 2－4 計算モデル（鉛直方向転倒）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 2－3 及び図 2－4 で片側の列の取付ボルトを支点とする転倒を考え，これを片側の列の取付ボルトで受 けるものとして計算する。

引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 11}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(\ell_{2}-\ell_{1}\right) \cdot \mathrm{n}_{\mathrm{fH}}}+\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}}{\left(\ell_{4}-\ell_{3}\right) \cdot \mathrm{n}_{\mathrm{fV}}} \cdots \cdots(2.5 .4 .1 .1 .1) \\
& \mathrm{F}_{\mathrm{b} 2}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell_{3}+\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}}{\left(\ell_{4}-\ell_{3}\right) \cdot \mathrm{n}_{\mathrm{fV}}} \cdots \cdots \cdot(2.5 .4 .1 .1 .2) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \mathrm{~F}_{\mathrm{b} 2}\right) \quad \ldots \ldots(2.5 .4 .1 .1 .3) \tag{2.5.4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{2.5.4.1.1.5}
\end{equation*}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して固定部の取付ボル ト全本数で受けるものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bH} 1}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \text { (2.5.4.1.1.6) } \\
& \mathrm{Q}_{\mathrm{bH} 2}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell_{4}}{\ell_{4}-\ell_{3}} \mathrm{n}^{*} \\
& Q_{\mathrm{bH} 3}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \\
& \mathrm{Q}_{\mathrm{bH} 4}=\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{2}}{\ell_{2}-\ell_{1}} \mathrm{n}^{*} \\
& \mathrm{Q}_{\mathrm{bH}}=\sqrt{\left(\mathrm{Q}_{\mathrm{bH} 1}+\mathrm{Q}_{\mathrm{bH} 2}\right)^{2}+\left(\mathrm{Q}_{\mathrm{bH} 3}+\mathrm{Q}_{\mathrm{bH} 4}\right)^{2}} \quad \cdots \text { (2.5.4.1.1.10) } \\
& \mathrm{Q}_{\mathrm{bV} 1}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{2.5.4.1.1.11}\\
& \mathrm{Q}_{\mathrm{bV} 2}=\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{2}}{\ell_{2}-\ell_{1}} \mathrm{n}^{*} \tag{2.5.4.1.1.12}\\
& \mathrm{Q}_{\mathrm{bV}}=\mathrm{Q}_{\mathrm{bV} 1}+\mathrm{Q}_{\mathrm{bV} 2} \tag{2.5.4.1.1.13}\\
& Q_{b}=\operatorname{Max}\left(Q_{b H}, Q_{b V}\right) \tag{2.5.4.1.1.14}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.15}
\end{equation*}
$$

注記＊：本計算式のみ取付ボルト1本に作用するせん断力であり，全本数 n 本分に換算するため n 倍とする。

2．5．5 計算条件
2．5．5．1 取付ボルトの応力計算条件応力計算に用いる計算条件は，本計算書の【原子炉格納容器下部温度（T48－L／TE046A， B，L／TE050A，B）の耐震性についての計算結果】の設計条件及び機器要目に示す。

2．5．6 応力の評価
2．5．6．1 取付ボルトの応力評価
2．5．4．1．1 項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{too}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \quad \cdots \ldots \ldots \ldots \ldots \ldots \ldots(2.5 .6 .1 .1)
$$

せん断応力 τ bはせん断力のみを受ける取付ボルトの許容せん断応力 f s b 以下であ ること。ただし，f s b は下表による。

	基準地震動S s による荷重との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表2－10に示す。

表2－10 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器下部温度 $(T 48-\mathrm{L} / \mathrm{TE} 046 \mathrm{~A}, \mathrm{~B}$, $\mathrm{L} / \mathrm{TE} 050 \mathrm{~A}, \mathrm{~B})$	水平	
	鋁直	

2．7 評価結果

2．7．1 重大事故等対処設備としての評価結果
原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部温度（T48－L／TE046A，B，L／TE050A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器下部温度 （T48－L／TE046A，B， L／TE050A，B）	常設／緩和	原子炉本体基礎 $\begin{gathered} \text { 0. P. }-2.500 \\ \left(0 . \text { P. 1. } 150^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$	200

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
© 1.2 機器要目

部 材	m (kg)	h (mm)	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{fV}	n_{fH}
取付ボルト		50					4	2	2		

						転倒方向	
部 材	（MPa）	（MPa）	（MPa）	(MPa)	(MPa)	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
取付ボルト	144	402	205	－	194	－	鈖直方向

O 2
（3）VI－2－6－5－4－2－4
R 0

1．3 計算数値

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
取付ボルト	－		－	

1． 4 結論

1．4．1 ボルトの応力					（単位：MPa）	
部 材	材 料	応力	弾性設計用地震動 S d 又 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{ts}}=145^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=13$	$\mathrm{f}_{\mathrm{s} \text { b }}=112$

注記＊： $\mathrm{f}_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6\right.$ • τ_{b} ， f_{to} ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

| | | | 機能維持評価用加速度 ${ }^{*}$ |
| :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-4-2-4 R } 0
$$

1.5 その他の機器要目			
項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

側面（鉛直方向）

3．原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）
3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。
3.2 一般事項

3．2．1 構造計画
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の構造計画を表 3－1に示す。

表 3－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，溶接により原子炉本体基礎の壁面に設置する。	熱電対	【原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）】

3．2．2 評価方針

原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「3．2．1 構造計画」にて示す原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A， B）の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「3．5構造強度評価」にて示す方法にて確認することで実施する。また，原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「3． 6 機能維持評価」にて示す方法にて確認するこ とで実施する。確認結果を「3．7 評価結果」に示す。

原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の耐震評価フローを図 3－1 に示す。

図 3－1 原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の耐震評価フロー

3．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4601 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$A_{w Y}$	溶接部の F_{Y} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} ~}^{\text {L }}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{Z}	溶接部に作用する力（ Z 方向）	N
$\mathrm{f}_{\text {s }}$	溶接部の許容せん断応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
e	重心と溶接部中心間の水平方向距離	mm
m	検出器及び計器取付金具の質量	kg
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（ Y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
s	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
u	溶接の有効長さ（ Z 方向 ）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねじり断面係数	mm^{3}
Z_{Y}	溶接全断面における断面係数（ Y 軸）	mm^{3}
Z_{Z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。表示する数値の丸め方は，表3－2 に示すとおりとする。

表 3－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，心゙き数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3.3 評価部位

原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の耐震評価部位については，表3－1 の概略構造図に示す。

3． 4 固有周期

3．4．1 固有値解析方法
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の固有値解析方法を以下に示す。
（1）原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）は，「3．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

3．4．2 解析モデル及び諸元
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の解析モデルを図 3－2に，解析モデルの概要を以下に示す。
（1）計器取付金具は，原子炉本体基礎の壁面に固定されることから，計算モデルでは，計器取付金具を直線とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 3－3，部材の機器要目を表 3－4 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

：支持点
（計器取付金具基礎部）
－検出器質点
X （水平）
（単位：mm）
図 3－2 原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）解析モデル

表 3－3 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 3－4 部材の機器要目

材料	
対象要素	（1）
A $\left(\mathrm{mm}^{2}\right)$	
I Y $\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$I_{\text {P }}\left(\mathrm{mm}^{4}\right)$	
断面形状（mm）	$(a \times b \times c)$

枠囲みの内容は商業機密の観点から公開できません。

3．4．3 固有値解析結果

固有値解析結果を表3－5 に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		鉛直	－	－	－

3.5 構造強度評価

3．5．1 構造強度評価方法
3．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）は，溶接により原子炉本体基礎の壁面に固定されるものとする。
（3）原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の質量は，検出器及び計器取付金具を考慮する。

3．5．2 荷重の組合せ及び許容応力
3．5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－6に示す。

3．5．2．2 許容応力
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－7 のとおりとする。

3．5．2．3 使用材料の許容応力評価条件
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表3－8に示す。

表 3－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
		原子炉格納容器下部温度$\begin{gathered} (\mathrm{T} 48-\mathrm{L} / \mathrm{TE} 047 \mathrm{~A}, \mathrm{~B}, \\ \mathrm{L} / \mathrm{TE} 048 \mathrm{~A}, \mathrm{~B}) \end{gathered}$	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置				$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
$* 2: そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
$* 3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため, 評価結果の記載を省略する。

表 3－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－8 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
溶接部		周囲環境温度	200	144	402	205

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－9に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－9 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0.P. }-2.500 \\ \left(0 . \text { P. } 1.150^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$

注記＊1：基準床レベルを示す。

[^8]
3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 溶接部の計算方法
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

綡囉：力を受けると仮定する溶接部

図 3－3 計算モデル（水平方向転倒）

魏：力を受けると仮定する溶接部

図 3－4 計算モデル（鉛直方向転倒）
（1）引張応力
溶接部に対する引張応力は，図 3－4でX軸方向に対する引張力を全溶接断面積 で受けるものとして計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \tag{3.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{w}}} \tag{3.5.4.1.1.2}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
A_{w}=2 \cdot a(t+u) \tag{3.5.4.1.1.3}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{3.5.4.1.1.4}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力
計算モデル図 3－3 の場合のせん断力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{Y}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{3.5.4.1.1.5}\\
& \mathrm{~F}_{\mathrm{Z}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \quad \cdots . \tag{3.5.4.1.1.6}
\end{align*}
$$

計算モデル図 3－4の場合のせん断力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Y}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{3.5.4.1.1.7}
\end{equation*}
$$

計算モデル図 3－3 及び図 3－4 の場合のねじりモーメント

$$
\begin{equation*}
M_{X}=m \cdot\left(1+C_{v}\right) \cdot g \cdot \ell \tag{3.5.4.1.1.8}
\end{equation*}
$$

せん断応力
計算モデル図 3－3 の場合のせん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{3.5.4.1.1.9}
\end{equation*}
$$

計算モデル図 3－4の場合のせん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{3,5,4,1,1,10}
\end{equation*}
$$

ここで， A_{wY} ， $\mathrm{A}_{\mathrm{w} Z}$ はせん断力を受ける各方向の有効断面積， Z_{p} は溶接断面 におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{w} Y}, \mathrm{~A}_{\mathrm{w} Z}$ は，次式により求める。

$$
\begin{align*}
& A_{w Y}=2 \cdot a \cdot t \tag{3.5,4.1.1.11}\\
& A_{w Z}=2 \cdot a \cdot u \tag{3,5,4.1.1.12}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 3－3及び図 3－4 でY軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げモーメント
計算モデル図 3－3 の場合の曲げモーメント

$$
\begin{align*}
& \mathrm{M}_{\mathrm{Y}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \cdots \tag{3.5.4.1.1.13}\\
& \mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h} \tag{3,5,4,1,1,14}
\end{align*}
$$

計算モデル図 3－4 の場合の曲げモーメント

$$
\begin{align*}
& \mathrm{M}_{\mathrm{Y}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell \quad \cdots \cdot \tag{3.5,4.1.1.15}\\
& \mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h} \tag{3,5,4,1,1,16}
\end{align*}
$$

曲げ応力
計算モデル図 3－3及び図 3－4 の場合の曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{Y}}}{\mathrm{Z}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{3.5,4.1.1.17}
\end{equation*}
$$

$Z_{Y}, ~ Z_{Z}$ は溶接断面のY軸及びZ軸に関する断面係数を示す。
（4）組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{3,5,4,1,1.18}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 溶接部の応力計算条件応力計算に用いる計算条件は，本計算書の【原子炉格納容器下部温度（T48－L／TE047A， B，L／TE048A，B）の耐震性についての計算結果】の設計条件及び機器要目に示す。

3．5．6 応力の評価

3．5．6．1 溶接部の応力評価
3．5．4．1．1 項で求めた溶接部に発生する応力は，許容応力 f s 以下であること。ただ し，f s は下表による。

	基準地震動S s による 荷重との組合せの場合
許容せん断応力 fs	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

3.6 機能維持評価

3．6．1 電気的機能維持評価方法
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－10に示す。

表 3－10	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
原子炉格納容器下部温度 $(T 48-L / T E 047 A, ~ B, ~$ L／TE048A，B）	水平	
	鋁直	

3.7 評価結果

3．7．1 重大事故等対処設備としての評価結果
原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部温度（T48－L／TE047A，B，L／TE048A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器下部温度 (T48-L/TE047A, B, L/TE048A, B)	常設／緩和	$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0. P. }-2.500 \\ \left(0 . \text { P. 1. } 150^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$	200

注記 $* 1$ ：基準床レベルを示す。

$$
\text { *2: 固有値解析より } 0.05 \text { 秒以下であり剛であることを確認した。 }
$$

ㅇ． 1.2 機器要目

部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} Y} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} ~} \mathrm{Z} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{Y}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{Z}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{P}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$
溶接部													

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} F \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
						弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
溶接部	144	402	205	－	194	－	鉛直方向

1.3 計算数値

1．3．1 溶接部に作用する力
（単位：N）

	F_{x}		F_{Y}		F_{z}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	－		－		－	

1．3．2 溶接部に作用するモーメント（単位：N•mm）
or

部 材	M_{x}		M_{Y}		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	－		－		－	

1． 4 結論
1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{t}=0$	$\mathrm{f}_{\mathrm{s}}=112$
		せん断	－	－	$\tau=3$	$\mathrm{f}_{\mathrm{s}}=112$
		曲げ	－	－	$\sigma_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s}}=112$
		組合せ	－	－	$\sigma_{\mathrm{w}}=4$	$\mathrm{f}_{\mathrm{s}}=112$

すべて許容応力以下である。

$$
\mathrm{O} 2 \text { (3) VI-2-6-5-4-2-4 R 0 }
$$

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
原子炉格納容器下部温度	水平方向	1.15	
（148－L／1E047A，B， L／TE048A，B）	鉛直方向	0． 59	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

¢	項目	記号	単位	入力値
	材質	－	－	
	質量	$\mathrm{ma}_{\text {a }}$	kg	
	温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
	縦弾性係数	E	MPa	
	ポアソン比	v	－	
	要素数	－	個	
	節点数	－	個	

側面（鉛直方向）

VI－2－6－5－4－3 原子炉格納容器内酸素ガス濃度計測装置の耐震性について の計算書

VI－2－6－5－4－3－1 格納容器内雾囲気酸素濃度の耐震性についての計算書

VI－2－6－5－4－3－1 格納容器内雰囲気酸素濃度の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4．1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態• 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件． 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 設計基準対象施設としての評価結果• 7
6.2 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内雰囲気酸素濃度が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

格納容器内雰囲気酸素濃度（D23－02T003A，B）は，設計基準対象施設においてはS クラス施設 に，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，格納容器内雰囲気酸素濃度が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計装ラックであるため，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
$\begin{aligned} & \text { D23-0 }{ }_{2} \text { T003A (代表) } \\ & \text { D23-0 }{ }_{2} \text { T003B } \end{aligned}$	VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針	表 2－1 構造計画

2．一般事項
2.1 構造計画

格納容器内雰囲気酸素濃度の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより計装ラック に取付けられた取付金具に固定される。 計装ラックは，チャン ネルベースに取付ボル トで設置する。	熱磁気風式酸素検出器	【格納容器内雰囲気酸素濃度（H22－P382A（D23－02T003A））】 正面 側面
		（単位 ：mm）

3．固有周期
格納容器内雰囲気酸素濃度が設置される計装ラックの固有周期は，振動試験（加振試験）にて求める。試験の結果，剛であることを確認した。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

4．構造強度評価

4． 1 構造強度評価方法
格納容器内雰囲気酸素濃度の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性 についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

格納容器内雰囲気酸素濃度の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
格納容器内雰囲気酸素濃度の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
格納容器内雰囲気酸素濃度の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
	計測装置	格納容器内雰囲気酸素濃度	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{4} \mathrm{~S}$
系紋施双					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊ 1 ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

$\stackrel{\rightharpoonup}{\square}$	施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
						$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
	計測制御系統施設	計測装置	格納容器内雰囲気酸素濃度	常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
		一次応力

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{yi} (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}}(\mathrm{R} T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

5．機能維持評価
5.1 電気的機能維持評価方法

格納容器内雰囲気酸素濃度の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 5－1 に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内雰囲気酸素濃度 $\left(\mathrm{D} 23-0_{2} \mathrm{~T} 003 \mathrm{~A}\right)$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

格納容器内雰囲気酸素濃度の設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

格納容器内雰囲気酸素濃度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器内雰囲気酸素濃度（D23－02T003A）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雰囲気酸素濃度 $\left(\mathrm{D} 23-\mathrm{O}_{2} \mathrm{~T} 003 \mathrm{~A}\right)$	S	原子炉建屋 OP． 22.50 $\left(0\right.$ P． $\left.33.20^{*}\right)$			$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.03$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記 $~: ~$ 基準床レベルを示す。
∞
1．2 機器要目

部 材	$\begin{gathered} \mathrm{m}_{\mathrm{i}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1 \mathrm{i}}{ }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 \mathrm{i}}{ }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n fii＊
取付ボルト$(i=2)$		1850					18	9
								2

部 材	$\begin{gathered} \mathrm{S}_{\text {y i }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}{ }^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(\mathrm{i}=2)$	235	400	235	280	長辺方向	長辺方向

注記＊：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

1．3 計算数値

1．4 結論

注記 $*: f_{t \mathrm{si}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\tau_{\mathrm{bi} i}, \mathrm{f}_{\mathrm{toi}}$ ］より算出。
\circ
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
格納容器内雰囲気 酸素濃度 $\left(\mathrm{D} 23-\mathrm{O}_{2} \mathrm{~T} 03 \mathrm{~A}\right)$	水平方向	2.21	

注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雰囲気酸素濃度 （D23－02T003A）	常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { OP. } 22.50 \\ \left(0 \text { P. } 33.20^{*}\right) \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	66

注記＊：基準床レベルを示す。

2．2 機器要目

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} \text { i }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト (i=2)	225	385	－	270	－	長辺方向

注記＊：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
2.3 計算数値
2.3

2． 4 結論
2．4．1 ボルトの応力（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=173$	$\mathrm{f}_{\mathrm{ts} 2}=202^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=16$	$\mathrm{f}_{\mathrm{sb} 2}=155$

注記＊：f $\mathrm{tsi}^{2}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
へ すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
格納容器内雰囲気 酸素濃度 $\left(\mathrm{D} 23-0_{2} \mathrm{~T} 003 \mathrm{~A}\right)$	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－4－4 原子炉格納容器内水素ガス濃度計測装置の耐震性について の計算書

VI－2－6－5－4－4－1 格納容器内水素濃度（D／W）の耐震性についての計算書 VI－2－6－5－4－4－2 格納容器内水素濃度（S／C）の耐震性についての計算書 VI－2－6－5－4－4－3 格納容器内雰囲気水素濃度の耐震性についての計算書

VI－2－6－5－4－4－1 格納容器内水素濃度（D／W）の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 4
2.3 適用規格•基準等 5
2.4 記号の説明 6
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 8
4．1 固有値解析方法 8
4．2 解析モデル及び諸元 8
4.3 固有値解析結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 12
5．2．1 荷重の組合せ及び許容応力状態• 12
5．2．2 許容応力 12
5．2．3 使用材料の許容応力評価条件 12
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力の計算方法 16
5.5 計算条件 19
5．5．1 溶接部の応力計算条件． 19
5.6 応力の評価 19
5．6．1 溶接部の応力評価 19
6．機能維持評価 20
6． 1 電気的機能維持評価方法 20
7．評価結果 21
7.1 重大事故等対処設備としての評価結果 21

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内水素濃度（D／W）が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

格納容器内水素濃度（D／W）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については溶接部に作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表して評価する。また，電気的機能維持評価に用いる機能維持評価用加速度 は，設置床高さが同じで，同構造の場合は同じ加速度となることから，構造強度評価の代表とし て選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

2．一般事項
2.1 構造計画

格納容器内水素濃度（D／W）の構造計画を表 2－1（1）及び表 2－1（2）に示す。

表 2－1（1）構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより計器取付金具に固定される。 計器取付金具は，格納容器内の構造物に溶接 で固定する。	水素吸蔵材料式水素検出器	【格納容器内水素濃度（D／W）（D23－H2E101A）】 （単位：mm）

表 2－1（2）構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより計器取付金具に固定される。 計器取付金具は，格納容器内の構造物に溶接 で固定する。	水素吸蔵材料式水素検出器	【格納容器内水素濃度（D／W）（D23－H2E101B）】

2．2 評価方針

格納容器内水素濃度（D／W）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す格納容器内水素濃度（D／W）の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」 で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，格納容器内水素濃度（D／W）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。格納容器内水素濃度（D／W）の耐震評価フローを図 2－1 に示す。

図 2－1 格納容器内水素濃度（D／W）の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
S	溶接脚長	mm
A_{w}	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} X}$	溶接部の F x に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} ~}$	溶接部の F z に対する有効断面積	mm^{2}
$\mathrm{b}_{1}, \mathrm{~b}_{2}$	溶接の有効長さ（ X 方向）	mm
$\mathrm{h}_{1}, \mathrm{~h}_{2}$	溶接の有効長さ（ Z 方向）	mm
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F^{*}	設計•建設規格 SSB－3121．3 に定める値	MPa
F x	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
f s	溶接部の許容せん断応力 （ f s を 1.5 倍した値又は f s＊を 1.5 倍した値）	MPa
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（Y軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
Z ${ }_{\text {x }}$	溶接全断面における X 軸方向の断面係数	mm^{3}
$\mathrm{Z}_{\text {z }}$	溶接全断面における C 軸方向の断面係数	mm^{3}
Z_{p}	溶接全断面におけるねじり断面係数	mm^{3}
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
S_{y}（RT）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
$\sigma_{\text {b }}$	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
格納容器内水素濃度（D／W）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる格納容器内水素濃度（D／W）（D23－H2E101B）の計器取付金具の溶接部について実施 する。格納容器内水素濃度（D／W）の耐震評価部位については，表2－1（2）の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
格納容器内水素濃度（D／W）の固有値解析方法を以下に示す。
（1）格納容器内水素濃度（D／W）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4．2 解析モデル及び諸元
格納容器内水素濃度（D／W）の解析モデルを図 4－1 に，解析モデルの概要を以下に示す。
（1）計器取付金具は格納容器内構造物に固定されることから，（1）から（8）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部）2 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は計器取付金具の検出器取付位置に分散されるものと し，質点は検出器の取付位置に設置する。機器諸元を表 4－1，部材の機器要目を表 4－2 に示 す。
（3）拘束条件として，支持点（計器取付金具基礎部）のXYZ方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

図 4－1 格納容器内水素濃度（D／W）解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m a	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－2 部材の機器要目

材料			
対象要素	（1）－（2）	（3）－（6）	（7）－8）
A（ mm^{2} ）			
I y $\left(\mathrm{mm}^{4}\right)$			
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$			
$I_{\mathrm{p}}\left(\mathrm{mm}^{4}\right)$			
断面形状（mm）			\square $(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

枠囲みの内容は商業機密の観点から公開できません。

4．3 固有値解析結果

固有値解析結果を表 4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3					（単位：s）
	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			X方向	Z方向	刺激係数
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4． 2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，格納容器内水素濃度（D／W）に対して，水平方向及び鉛直方向から同時に作用す るものとする。
（2）格納容器内水素濃度（D／W）は，計器取付ボルトにより計器取付金具に固定される。計器取付金具は，格納容器内構造物に溶接で固定されているものとする。
（3）格納容器内水素濃度（D／W）の質量は検出器及び計器取付金具を考慮する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態

格納容器内水素濃度（D／W）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備 の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
格納容器内水素濃度（D／W）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
格納容器内水素濃度（D／W）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容 } \\ \text { 限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$＊	$1.5 \cdot \mathrm{f}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}_{\text {b }}$＊

$\stackrel{\rightharpoonup}{\triangleright}$
記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		周囲環境温度	200	144	402	205

枠囲みの内容は商業機密の鼣点から公開できません。

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

> 表 5-4 設計用地震力 (重大事故等対処設備)

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉遮蔽壁 0．P．21． 550 ＊		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.33$	$\mathrm{C}_{\mathrm{V}}=1.93$

注記 $~ 1 ~$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 溶接部の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用い て理論式にて溶接部を評価する。

X

図 5－1 計算モデル（溶接部）

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 5－5 に示す。

表 5－5 溶接部発生反力，モーメント

対象計器	反力（N）			モーメント $(\mathrm{N} \cdot \mathrm{mm})$		
	F_{X}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}
D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$						

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{~A}_{\mathrm{w}}} \tag{5.4.1.1}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=\mathrm{a} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+\mathrm{b}_{1}+\mathrm{b}_{2}\right) \tag{5.4.1.2}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{5,4.1.3}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，全溶接断面積で受けるものとして計算する。

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{X}}{A_{w X}}+\frac{M_{Y}}{Z_{p}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{Y}}{Z_{p}}\right)^{2}} \tag{5.4.1.4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{wX}}, ~ \mathrm{~A}_{\mathrm{w} Z}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面におけるね じり断面係数を示す。
$\mathrm{A}_{\mathrm{wx}}, \mathrm{A}_{\mathrm{w} 2}$ は，次式により求める。

$$
\begin{align*}
& A_{w X}=a \cdot\left(b_{1}+b_{2}\right) \tag{5.4.1.5}\\
& A_{w Z}=a \cdot\left(h_{1}+h_{2}\right) \tag{5.4.1.6}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げ応力は，図5－1でX軸方向，Z軸方向に対する曲げモーメントを中心軸の外側の溶接部で受けるものとして計算する。

曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{x}}}{\mathrm{Z}_{\mathrm{x}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{5.4.1.7}
\end{equation*}
$$

Z_{x}, Z_{z} は溶接断面の X 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{5.4.1.8}
\end{equation*}
$$

5.5 計算条件

5．5．1 溶接部の応力計算条件
溶接部の応力計算に用いる計算条件は，本計算書の【格納容器内水素濃度（D／W）（D23－ H_{2} E101B）の耐震性についての計算結果】の設計条件および機器要目に示す。
5.6 応力の評価

5．6．1 溶接部の応力評価
5．4．1．1 項で求めた溶接部に発生する応力は，許容応力 f s 以下であること。ただし， f s は下表による。
\(\left.\begin{array}{c|c|}\hline 基準地震動 S s による

荷重との組合せの場合\end{array}\right]\)| $*$ |
| :---: |
| 許容せん断応力 |
| fs |$\quad \frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価
6． 1 電気的機能維持評価方法
格納容器内水素濃度（D／W）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づ き，基準地震動 S s により定まる応答加速度を設定する。

格納容器内水素濃度（D／W）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6－1 に示す。

表 6－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内水素濃度（D／W） （D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$ ）	水平	
	鉛直	

7．評価結果
7.1 重大事故等対処設備としての評価結果

格納容器内水素濃度（D／W）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器内水素濃度（D／W）（D23－H2E101B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd洔静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内水素濃度 （D／W） （D23－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$ ）	常設耐震／防止常設／緩和	原子炉遮蔽壁 0．P．21． 550 ＊1		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.33$	$\mathrm{C}_{\mathrm{V}}=1.93$	200

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	F (MPa)	F^{*} (MPa)
溶接部	144	402	205	-	194

O 2
（3） $\mathrm{VI}-2-6-5-4-4-1$
R 0
1.3 計算数値

1．3．1 溶接部に作用する力
（単位：N）

	F_{x}		F_{Y}		F_{z}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd更は静的震度	基準地震動 S s
溶接部	－		－		－	

すべて許容応力以下である。
O 2
（3） $\mathrm{VI}-2-6-5-4-4-1$
R 0

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
格納容器内水素濃度 （D／W） （D23－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}\right)$	水平方向	1.95	
	鉛直方向	1.61	

注記＊：基準地震動 S s により定まる応答力の速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$\stackrel{\sim}{\perp}$	項目	記号	単位	入力値
	材質	－	－	
	質量	$\mathrm{m}_{\text {a }}$	kg	
	温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
	縦弾性係数	E	MPa	
	ポアソン比	v	－	
	要素数	－	個	
	節点数	－	個	

O 2
（3） $\mathrm{VI}-2-6-5-4-4-1$
R O E

（平面方向）

25

VI－2－6－5－4－4－2 格納容器内水素濃度（S／C）の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4.1 固有値解析方法 7
4．2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 18
5．5．1 計器取付ボルトの応力計算条件 18
5.6 応力の評価 18
5．6．1 計器取付ボルトの応力評価 18
6．機能維持評価 19
6.1 電気的機能維持評価方法 19
7．評価結果 20
7.1 重大事故等対処設備としての評価結果 20

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内水素濃度（S／C）が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

格納容器内水素濃度（S／C）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については計器取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値 の小さい方）となるものを代表して評価する。また，電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで，同構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

| 評価部位 | 評価方法 | 構造計画 |
| :---: | :---: | :---: | :---: |
| $\mathrm{D} 23-\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}$（代表） | 5．構造強度評価 | 表 $2-1 \quad$ 構造計画 |
| $\mathrm{D} 23-\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~B}$ | | |

2．一般事項
2.1 構造計画

格納容器内水素濃度（S／C）の構造計画を表 2－1 に示す。

表 2－1 構造計画

2． 2 評価方針

格納容器内水素濃度（S／C）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す格納容器内水素濃度（S／C）の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」 で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，格納容器内水素濃度（S／C）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。

格納容器内水素濃度（S／C）の耐震評価フローを図 2－1 に示す。

図 2－1 格納容器内水素濃度（S／C）の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F^{*}	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b} 1}$	鉛直方向地震及び壁掛の取付面に対し左右方向の水平方向地震により ボルトに作用する引張力（1本当たり）	N
F b 2	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震により ボルトに作用する引張力（1本当たり）	N
f s b	せん断力のみを受けるボルトの許容せん断応力（f s を 1.5 倍した値又 は f s＊を 1.5 倍した値）	MPa
f to	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f t ＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h_{2}	取付面から重心までの距離	mm
ℓ_{3}	評価上の支点と重心までの距離	mm
$\ell_{\text {a }}$	側面（左右）ボルト間の距離	mm
$\ell_{\text {b }}$	上下ボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（側面方向）	－
n ff	評価上引張力を受けるとして期待するボルトの本数（正面方向）	－
Q b	ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{b} 1}$	水平方向地震によりボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{b} 2}$	鉛直方向地震によりボルトに作用するせん断力	N

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 33	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
格納容器内水素濃度（S／C）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる計器取付ボルトについて実施する。格納容器内水素濃度（S／C）の耐震評価部位 については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
格納容器内水素濃度（S／C）の固有値解析方法を以下に示す。
（1）格納容器内水素濃度（S／C）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4.2 解析モデル及び諸元

格納容器内水素濃度（S／C）の解析モデルを図 4－1 に，解析モデルの概要を以下に示す。
（1）計器取付金具はサプレッションチェンバ内に固定されることから，（1）から（4）の部材で組ま れた支持構造物とみなし，支持点（計器取付金具基礎部）4 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は計器取付金具の検出器取付位置に分散されるものと する。機器諸元を表 4－1，部材の機器要目を表 4－2 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

図 4－1 格納容器内水素濃度（S／C）解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－2 部材の機器要目

材料		
対象要素	（1）－（2）	（3）－（4）
A $\left(\mathrm{mm}^{2}\right)$		
$\mathrm{I}_{\mathrm{y}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
$I_{\mathrm{p}}\left(\mathrm{mm}^{4}\right)$		
断面形状 （mm）	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(a \times b \times c)$

枠囲みの内容は商業機密の観点から公開できません。

4．3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3					（単位：s）
モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			X方向	Z方向	刺激係数
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4． 2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，格納容器内水素濃度（S／C）に対して，水平方向及び鉛直方向から同時に作用する ものとする。
（2）格納容器内水素濃度（S／C）は，計器取付ボルトにより計器取付金具に固定されているもの とする。
（3）格納容器内水素濃度（S／C）の質量は検出器を考慮する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
格納容器内水素濃度（S／C）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備 の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
格納容器内水素濃度（S／C）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
格納容器内水素濃度（S／C）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 5－3 に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
計器取付ボルト		周囲環境温度	200	120	407
(SPa)					

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S_{d} 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0. P. }-0.80 \\ \left(0 . \mathrm{P} .-8.10^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } * 2 \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 計器取付ボルトの計算方法
計器取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図5－1 計算モデル（水平方向転倒の場合）

図5－2 計算モデル（鉛直方向転倒の場合）
（1）引張応力
計器取付ボルトに対する引張力は，図5－1及び図5－2でそれぞれのボルトを支点とする転倒を考え，これを片側のボルトで受けるものとして計算する。
引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b}_{1}}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{2}}{\mathrm{nff}_{\mathrm{H}} \cdot \ell_{\mathrm{a}}}+\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}_{2}}{\mathrm{nfv}^{\prime} \cdot \ell_{\mathrm{b}}}\right) \tag{5.4.1.1.1}\\
& \mathrm{F}_{\mathrm{b}_{2}}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \ell_{3}+(1+\mathrm{CVV}) \cdot \mathrm{h}_{2}}{\mathrm{nfV} \cdot \ell_{\mathrm{b}}}\right) \quad \cdots \tag{5.4.1.1.2}
\end{align*}
$$

$F{ }_{b}=\operatorname{Max}\left(F_{b_{1}}, F_{b_{2}}\right)$
（5．4．1．1．3）

引張応力

$$
\begin{equation*}
\sigma \mathrm{b}=\frac{\mathrm{Fb}}{\mathrm{Ab}} \tag{5.4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A b は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.1.5}
\end{equation*}
$$

ただし，Fbが負のときボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
計器取付ボルトに対するせん断力は，計器取付ボルト全本数で受けるものとして計算 する。
せん断力

$$
\begin{align*}
& Q_{b_{1}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \quad \ldots \ldots \ldots \tag{5.4.1.1.6}\\
& \mathrm{Q}_{\mathrm{b}_{2}}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \quad \ldots \ldots \tag{5.4.1.1.7}\\
& \mathrm{Q}_{\mathrm{b}}=\sqrt{\left(\mathrm{Q}_{1}\right)^{2}+\left(\mathrm{Q}_{2}\right)^{2}} . \tag{5.4.1.1.8}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau \mathrm{b}=\frac{\mathrm{Qb}}{\mathrm{n} \cdot \mathrm{Ab}} \tag{5.4.1.1.9}
\end{equation*}
$$

5.5 計算条件

5．5．1 計器取付ボルトの応力計算条件
計器取付ボルトの応力計算に用いる計算条件は，本計算書の【格納容器内水素濃度 （S／C）（D23－ $\left.\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}\right) ~$ の耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 計器取付ボルトの応力評価
5．4．1．1項で求めたボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 ft s 以下であ ること。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f} \mathrm{t} \mathrm{~s}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, \mathrm{f} \mathrm{to}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 $\tau \mathrm{b}$ は，せん断力のみを受ける計器取付ボルトの許容せん断応力 f s b 以下で あること。ただし，f s b は下表による。

	基準地震動S s による荷重との組合せの場合
許容引張応力 f to	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f} \text { sb }$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価
6． 1 電気的機能維持評価方法
格納容器内水素濃度（S／C）の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づ き，基準地震動 S s により定まる応答加速度を設定する。

格納容器内水素濃度（S／C）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6－1 に示す。

表 6－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内水素濃度（S／C） （D23－ $\left.\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}\right)$	水平	
	鉛直	

7．評価結果
7.1 重大事故等対処設備としての評価結果

格納容器内水素濃度（S／C）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器内水素濃度（S／C）（D23－H2E102A）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内水素濃度 （S／C） （D23－ $\mathrm{H}_{2} \mathrm{E} 102 \mathrm{~A}$ ）	常設耐震／防止常設／緩和	原子炉建屋 $0 . \mathrm{P} .{ }^{-0.80} 80$ $\left(0 . \mathrm{P} .-8.10^{* 1}\right)$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$	200

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材						弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
計器取付ボルト	120	407	175	－	162	－	水平方向

1.3 計算数値

1.4 結論

Nすべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

| | | | 機能維持評価用加速度＊ |
| :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動 S_{S} により定まる応答力の速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-5-4-4-2 R } 0
$$

1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弹性係数	E	MPa	
ポアソンン比	v	-	
要素数	-	個	
節点数	-	個	

O 2 (3) VI-2-6-5-4-4-2 R O E

VI－2－6－5－4－4－3 格納容器内雰囲気水素濃度の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4．1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態• 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件． 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 設計基準対象施設としての評価結果• 7
6.2 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内雰囲気水素濃度が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

格納容器内雾囲気水素濃度（D23－ $\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}$ ，B， $\mathrm{H}_{2} \mathrm{~T} 002 \mathrm{~A}$ ，B）は，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，格納容器内雰囲気水素濃度が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計装ラックであるため，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
$\begin{aligned} & \text { D23- } \mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A} \text { (代表) } \\ & \mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~B} \\ & \mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 002 \mathrm{~A} \\ & \mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 002 \mathrm{~B} \end{aligned}$	VI－2－1－13－8 計装ラックの耐震性についての計算書作成 の基本方針	表 2－1 構造計画

2．一般事項
2.1 構造計画

格納容器内雰囲気水素濃度の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより計装ラック に取付けられた取付金具に固定される。 計装ラックは，チャン ネルベースに取付ボル トで設置する。	熱伝導率式水素検出器	【格納容器内雾囲気水素濃度（H22－P382A（D23－H2T001A））】 正面 側面
		（単位：mm）

3．固有周期
格納容器内雰囲気水素濃度が設置される計装ラックの固有周期は，振動試験（加振試験）にて求める。試験の結果，剛であることを確認した。固有周期の確認結果を表3－1 に示す。

> 表 3-1 固有周期 (単位: s)

4．構造強度評価

4.1 構造強度評価方法

格納容器内雰囲気水素濃度の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性 についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

格納容器内雰囲気水素濃度の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 4－1 に，重大事故等対処設備の評価に用いるものを表 4－2 に示す。

4．2．2 許容応力
格納容器内雰囲気水素濃度の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件
格納容器内雰囲気水素濃度の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4－4 に，重大事故等対処設備の評価に用いるものを表 4－5 に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	格納容器内雰囲気水素濃度	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	$\mathrm{II}_{4} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{A} \mathrm{~S}$

注記＊ 1 ：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

$\stackrel{\rightharpoonup}{\square}$	施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
						$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
	計測制御系統施設	計測装置	格納容器内雰囲気水素濃度	常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
		一次応力

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{yi} (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{yi}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{yi}}(\mathrm{R} T) \\ (\mathrm{MPa}) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	225	385	－

5．機能維持評価
5.1 電気的機能維持評価方法

格納容器内雰囲気水素濃度の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 5－1 に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内雰囲気水素濃度 $\left(\mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}\right)$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

格納容器内雰囲気水素濃度の設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

格納容器内雰囲気水素濃度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器内雰囲気水素濃度（D23－H2T001A）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雰囲気水素濃度 $\text { (D23- } \left.\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}\right)$	S	原子炉建屋 OP． 22.50 $\left(0 \mathrm{P} .33 .20^{*}\right)$			$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.03$	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記 $~: ~$ 基準床レベルを示す。
1．2 機器要目
∞

部 材	$\begin{gathered} \mathrm{m}_{\mathrm{i}} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1 \mathrm{i}}{ }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 \mathrm{i}}{ }^{*} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{array}{r} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{array}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n fii＊
取付ボルト$(i=2)$		1850					18	9
						2		

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} \mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト （i＝2）	235	400	235	280	長辺方向	長辺方向

注記＊：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

1．3 計算数値

1．4 結論

部材	材	应力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	材	心	算出応力	許容応力	算出応力	許容応力
取付ボルト(i=2)	SS400	引張り	$\sigma_{\text {b } 2}=80$	$\mathrm{f}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=173$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b}_{2}}=10$	$\mathrm{f}_{\mathrm{s} \mathrm{b}_{2}}=135$	$\tau_{\mathrm{b} 2}=16$	$\mathrm{f}_{\mathrm{s} \mathrm{b}_{2}}=161$

注記 $*^{*} \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}$ ］より算出。
\circ
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
格納容器内雰囲気 水素濃度 $\left(\mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}\right)$	水平方向	2.21	
	鋁直方向	1.47	

注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雰囲気水素濃度 $\left(\mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}\right)$	常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { OP. } 22.50 \\ \left(0 \mathrm{P} . ~ 33.20^{*}\right) \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	66

注記＊：基準床レベルを示す。

2．2 機器要目

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} \text { i }} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{ui}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト (i=2)	225	385	－	270	－	長辺方向

注記 $~$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

2．3 計算数値

2． 4 結論
2．4．1 ボルトの応力（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b}_{2}}=173$	$\mathrm{f}_{\mathrm{ts} 2}=202^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=16$	$\mathrm{f}_{\mathrm{sb} 2}=155$

すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
格納容器内雰囲気 水素濃度 $\left(\mathrm{D} 23-\mathrm{H}_{2} \mathrm{~T} 001 \mathrm{~A}\right)$	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－6 原子炉冷却材再循環流量を計測する装置の耐震性についての計算書

VI－2－6－5－6－1 原子炉再循環ポンプ入口流量の耐震性についての計算書

VI－2－6－5－6－1 原子炉再循環ポンプ入口流量の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4.1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 設計基準対象施設としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉再循環ポンプ入口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉再循環ポンプ入口流量は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉再循環ポンプ入口流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
B32－FT001A	VI－2－1－13－8 計装ラック	
B32－FT001E（代表）	の耐震性についての計算書 作成の基本方針	表 $2-1 \quad$ 構造計画

2．一般事項

2.1 構造計画

原子炉再循環ポンプ入口流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。 計装ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【原子炉再循環ポンプ入口流量（H22－P004A（B32－FT001E））】 上面 注記＊：検出器は代表して 1 台を示す。

3．固有周期
原子炉再循環ポンプ入口流量が設置される計装ラックの固有周期は，構造が同等であり，同様 な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用す る。固有周期の確認結果を表 3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

原子炉再循環ポンプ入口流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
原子炉再循環ポンプ入口流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉再循環ポンプ入口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件

原子炉再循環ポンプ入口流量の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	計測装置	原子炉再循環ポンプ入口流量	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}{ }^{*}$	$\mathrm{III}_{A} \mathrm{~S}$
系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} i}$ (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400
(MPa)					

5．機能維持評価
5.1 電気的機能維持評価方法

原子炉再循環ポンプ入口流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉再循環ポンプ入口流量 $(\mathrm{B} 32-\mathrm{FTO} 01 \mathrm{E})$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉再循環ポンプ入口流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉再循環ポンプ入口流量（B32－FT001E）の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度$\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉再循環ポンプ入口流量 （B32－FT001E）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.96$	$\mathrm{C}_{\mathrm{V}}=0.80$	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	40

注記＊：基準床レベルを示す。
∞
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{2} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} i \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b} i} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	nf V i	n f_{Hi}
取付ボルト $(i=2)$		500						14	3	4

					転倒方向	
部 材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}} \text { * }}$	弾性設計用 地震動 S d 又 は静的震度	基準地震動 S s
取付ボルト $(i=2)$	235	400	235	280	鉛直方向	鉛直方向

1．3 計算数値

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=11$	$\mathrm{ff}_{\mathrm{ts} 2}=176$＊	$\sigma_{\text {b } 2}=20$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=135$	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\mathrm{s} \text { b } 2}=161$

ω
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炬再循環ポンプ	水平方向	1.65	
(B32-FT001E)	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 (3) VI-2-6-5-6-1 R O E

VI－2－6－5－7 原子炉格納容器本体への冷却材流量を計測する装置の耐震性 についての計算書

VI－2－6－5－7－1 原子炉格納容器代替スプレイ流量の耐震性についての計算書
VI－2－6－5－7－2 原子炉格納容器下部注水流量の耐震性についての計算書

VI－2－6－5－7－1 原子炉格納容器代替スプレイ流量の耐震性についての計算書

目次

1．原子炉格納容器代替スプレイ流量（E11－FT018A） 1
1．1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．3 固有周期 3
1．4 構造強度評価 3
1．4．1 構造強度評価方法 3
1．4．2 荷重の組合せ及び許容応力 3
1.5 機能維持評価 6
1．5．1 電気的機能維持評価方法． 6
1． 6 評価結果 7
1．6．1 重大事故等対処設備としての評価結果 7
2．原子炉格納容器代替スプレイ流量（E11－FT018B） 11
2.1 概要 11
2.2 一般事項 11
2．2．1 構造計画 11
2.3 固有周期 13
2.4 構造強度評価 13
2．4．1 構造強度評価方法 13
2．4．2 荷重の組合せ及び許容応力 13
2.5 機能維持評価 16
2．5．1 電気的機能維持評価方法． 16
2.6 評価結果 17
2．6．1 重大事故等対処設備としての評価結果 17

1．原子炉格納容器代替スプレイ流量（E11－FT018A）

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器代替スプレイ流量（E11－FT018A）が設計用地震力 に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉格納容器代替スプレイ流量（E11－FT018A）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備 としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉格納容器代替スプレイ流量（E11－FT018A）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションで あるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。
1.2 一般事項

1．2．1 構造計画
原子炉格納容器代替スプレイ流量（E11－FT018A）の構造計画を表1－1に示す。

表 1－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【原子炉格納容器代替スプレイ流量（E11－FT018A）】

1．3 固有周期

原子炉格納容器代替スプレイ流量（E11－FT018A）が設置される計器スタンションの固有周期 は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験） の結果確認された固有周期を使用する。固有周期の確認結果を表 1－2 に示す。

表 1－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

1．4 構造強度評価

1．4．1 構造強度評価方法
原子炉格納容器代替スプレイ流量（E11－FT018A）の構造強度評価は，添付書類「VI－2－1－ 13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

1．4．2 荷重の組合せ及び許容応力
（1）荷重の組合せ及び許容応力状態
原子炉格納容器代替スプレイ流量（E11－FT018A）の荷重の組合せ及び許容応力状態のう ち重大事故等対処設備の評価に用いるものを表1－3に示す。
（2）許容応力
原子炉格納容器代替スプレイ流量（E11－FT018A）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－4のとおりとする。
（3）使用材料の許容応力評価条件
原子炉格納容器代替スプレイ流量（E11－FT018A）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表1－5に示す。

表 1－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	計測装置	原子炉格納容器代替スプレイ流量	常設耐震／防止 常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\text {A }} \mathrm{S}$
計測制御系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} \mathrm{~S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－4 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(R T) \\ (M P a) \end{gathered}$
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－

1.5 機能維持評価

1．5．1 電気的機能維持評価方法
原子炉格納容器代替スプレイ流量（E11－FT018A）の電気的機能維持評価は，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 1－6に示す。

評価部位	方向	機能確認済加速度
原子炉格納容器代替スプレイ流量 $(\mathrm{E} 11-\mathrm{FT} 018 \mathrm{~A})$	水平	
	鋁直	

枠囲みの内容は商業機密の観点から公開できません。

1.6 評価結果

1．6．1 重大事故等対処設備としての評価結果
原子炉格納容器代替スプレイ流量（E11－FT018A）の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器代替スプレイ流量（E11－FT018A）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境 温度 （ $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器代替 スプレイ流量 （E11－FT018A）	常設耐震／防止常設／緩和	$\begin{gathered} \hline \text { 原子炉建屋 } \\ \text { 0.P. } 15.00 \\ \left(0 . \text { P. } 22.50^{*}\right) \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	66

注記＊：基準床レベルを示す。
∞
1．2 機器要目

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用 地震動 動 $_{\text {は解的震度 }}$	基漼地震動 S ．
基硞ボルト	206	385	－	247	－	水平方向

1.3 計算数値

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動S s
基礎ボルト	－		－	

1．4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=12$	$\mathrm{ff}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s} \text { b }}=142$

○ 注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， f_{to} ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
原子炉格納容器代替スプレイ流量（E11－FT018A）	水平方向	1.77	
	鉛直方向	1． 30	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

2．原子炉格納容器代替スプレイ流量（E11－FT018B）

2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器代替スプレイ流量（E11－FT018B）が設計用地震力 に対して十分な構造強度及び電気的機能を有していることを説明するものである。
原子炉格納容器代替スプレイ流量（E11－FT018B）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備 としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉格納容器代替スプレイ流量（E11－FT018B）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンションで あるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2.2 一般事項

2．2．1 構造計画

原子炉格納容器代替スプレイ流量（E11－FT018B）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【原子炉格納容器代替スプレイ流量（E11－FT018B）】

2． 3 固有周期

原子炉格納容器代替スプレイ流量（E11－FT018B）が設置される計器スタンションの固有周期 は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験） の結果確認された固有周期を使用する。固有周期の確認結果を表 2－2 に示す。

表 2－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

2.4 構造強度評価

2．4．1 構造強度評価方法
原子炉格納容器代替スプレイ流量（E11－FT018B）の構造強度評価は，添付書類「VI－2－1－ 13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

2．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
原子炉格納容器代替スプレイ流量（E11－FT018B）の荷重の組合せ及び許容応力状態のう ち重大事故等対処設備の評価に用いるものを表 2－3 に示す。
（2）許容応力
原子炉格納容器代替スプレイ流量（E11－FT018B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 2－4 のとおりとする。
（3）使用材料の許容応力評価条件
原子炉格納容器代替スプレイ流量（E11－FT018B）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 2－5 に示す。

表 2－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	計測装置	原子炉格納容器代替スプレイ流量	常設耐震／防止 常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－4 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	66	206	385	－

2.5 機能維持評価

2．5．1 電気的機能維持評価方法
原子炉格納容器代替スプレイ流量（E11－FT018B）の電気的機能維持評価は，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 2－6に示す。

表 2－6 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器代替スプレイ流量 （E11－FT018B）	水平	
	鉛直	

2.6 評価結果

2．6．1 重大事故等対処設備としての評価結果
原子炉格納容器代替スプレイ流量（E11－FT018B）の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器代替スプレイ流量（E11－FT018B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$ （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器代替 スプレイ流量 （E11－FT018B）	常設耐震／防止常設／緩和	原子炉建屋 0．P．15． 00^{*}	0.05 以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記 $~$ ：基準床レベルを示す。

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用 地震動 Sd 又 は静的震度	基漼地震動 S S
基礎ボルト	206	385	－	247	－	前後方向

注記＊1 ：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は前後方向転倒に対する評価時の要目を示す。

$$
\mathrm{O} 2 \text { (3) VI-2-6-5-7-1 R } 0
$$

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=15$	$\mathrm{f}_{\mathrm{ts} \text { s }}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{sb}}=142$

ϖ
すべて許容応力以下である。

1．4．2 電気的機能維持の評価		機能維持評価用加速度＊	機能確認済加速度
原子炉格納容器代替 スプレイ流量 （E11－FT018B）	水平方向	1.65	
	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－7－2 原子炉格納容器下部注水流量の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6．1 重大事故等対処設備としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器下部注水流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉格納容器下部注水流量は，重大事故等対処設備においては常設重大事故緩和設備に分類 される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉格納容器下部注水流量が設置される計器スタンションは，添付書類「VI－2－1－13機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI －2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施 する。

2．一般事項
2.1 構造計画

原子炉格納容器下部注水流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に基礎ボルトで設置 する。	差圧式流量検出器	【原子炉格納容器下部注水流量】 正面	側面 （単位：mm）

3．固有周期
原子炉格納容器下部注水流量が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

原子炉格納容器下部注水流量の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンション の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

原子炉格納容器下部注水流量の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉格納容器下部注水流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件

原子炉格納容器下部注水流量の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

5．機能維持評価

5.1 電気的機能維持評価方法

原子炉格納容器下部注水流量の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器下部注水流量 $(\mathrm{P} 13-\mathrm{FT} 035)$	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

原子炉格納容器下部注水流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部注水流量（P13－FT035）の耐震性についての計算結果】

1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器下部注水流量 （P13－FT035）	常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。
∞
1．2 機器要目

部 材	m (kg)	h 2 $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	nffV	nff
基礎ボルト		440				4	2	2		

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { は静的震度 } \end{gathered}$	基漼地震動 S S
基礎ボルト	206	385	－	247	－	水平方向

1.3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F		Q	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{sb}}=142$

－注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， f_{to} ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉格納容器下部	水平方向	1.65	
（P13－FT035）	鉛直方向	1.15	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－8 原子炉格納容器本体の水位を計測する装置の耐震性について の計算書

VI－2－6－5－8－1 圧力抑制室水位の耐震性についての計算書
VI－2－6－5－8－2 原子炉格納容器下部水位の耐震性についての計算書
VI－2－6－5－8－3 ドライウェル水位の耐震性についての計算書

VI－2－6－5－8－1 圧力抑制室水位の耐震性についての計算書
1．圧力抑制室水位（T48－LT020） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方 6
1．3 評価部位 7
1．4 固有周期 7
1．4．1 固有周期の算出方法 7
1.5 構造強度評価 7
1．5．1 構造強度評価方法 7
1．5．2 荷重の組合せ及び許容応力 8
1．5．3 設計用地震力 11
1．5．4 計算方法 12
1．5．5 計算条件 15
1．5．6 応力の評価 15
1．6 機能維持評価 16
1．6．1 電気的機能維持評価方法． 16
1．7 評価結果 17
1．7．1 設計基準対象施設としての評価結果 17
2．圧力抑制室水位（T48－LT021） 22
2.1 概要 22
2.2 一般事項 22
2．2．1 構造計画 22
2．2．2 評価方針 24
2．2．3 適用規格•基準等 25
2．2．4 記号の説明 26
2．2．5 計算精度と数値の丸め方 27
2.3 評価部位 28
2.4 固有周期 28
2.5 構造強度評価 28
2．5．1 構造強度評価方法 28
2．5．2 荷重の組合せ及び許容応力 29
2．5．3 設計用地震力 32
2．5．4 計算方法 33
2．5．5 計算条件 36
2．5．6 応力の評価 36
2.6 機能維持評価 37
2．6．1 電気的機能維持評価方法• 37
2.7 評価結果 38
2．7．1 設計基準対象施設としての評価結果 38
3．圧力抑制室水位（T48－LT027） 42
3.1 概要 42
3．2．一般事項 42
3．2．1 構造計画 42
3．3 固有周期 44
3.4 構造強度評価 44
3．4．1 構造強度評価方法 44
3．4．2 荷重の組合せ及び許容応力 44
3.5 機能維持評価 47
3．5．1 電気的機能維持評価方法． 47
3.6 評価結果 48
3．6．1 重大事故等対処設備としての評価結果 48
4．圧力抑制室水位（T48－LT027B） 52
4． 1 概要 52
4． 2 一般事項 52
4．2．1 構造計画 52
4.3 固有周期 54
4.4 構造強度評価 54
4．4．1 構造強度評価方法 54
4．4．2 荷重の組合せ及び許容応力 54
4． 5 機能維持評価 57
4．5．1 電気的機能維持評価方法 57
4.6 評価結果 58
4．6．1 重大事故等対処設備としての評価結果 58

1．圧力抑制室水位（T48－LT020）
1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室水位（T48－LT020）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室水位（T48－LT020）は，設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。
1.2 一般事項

1．2．1 構造計画
圧力抑制室水位（T48－LT020）の構造計画を表 1－1 に示す。

表 1－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，埋込金物に溶接で設置す る。	差圧式水位検出器	【圧力抑制室水位（T48－LT020）】

1．2．2 評価方針

圧力抑制室水位（T48－LT020）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．2．1 構造計画」にて示 す圧力抑制室水位（T48－LT020）の部位を踏まえ「1．3 評価部位」にて設定する箇所にお いて，「1．4 固有周期」で測定した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認することで実施する。 また，圧力抑制室水位（T48－LT020）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認すること で実施する。確認結果を「1．7 評価結果」に示す。

圧力抑制室水位（T48－LT020）の耐震評価フローを図 1－1 に示す。

図 1－1 圧力抑制室水位（T48－LT020）の耐震評価フロー

1．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

1．2．4 記号の説明

記号	記号の説明	単位
a	溶接部の有効のど厚	mm
$\mathrm{A}_{\text {w }}$	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} X}$	溶接部の F x に対する有効断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{w} Z}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F^{*}	設計•建設規格 SSB－3121．3に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
f s	溶接部の許容せん断応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{x}	重心と溶接部中心までの距離（ X 方向）	mm
m	検出器及び計器スタンションの質量	kg
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（ Y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
S	溶接脚長	mm
t	溶接の有効長さ（ X 方向）	mm
u	溶接の有効長さ（ Z 方向）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
$Z_{\text {P }}$	溶接全断面におけるねじり断面係数	mm^{3}
Z_{X}	溶接全断面における断面係数（ X 軸）	mm^{3}
Z_{z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
σ t	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

1．2．5 計算精度と数値の丸め方
計算精度は，有效数字 6 桁以上を確保する。
表示する数値の丸め方は表 1－2 に示すとおりである。

表1－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

1．3 評価部位

圧力抑制室水位（T48－LT020）の耐震評価は，「1．5．1 構造強度評価方法」に示す条件に基づ き，耐震評価上厳しくなる溶接部について評価を実施する。圧力抑制室水位（T48－LT020）の耐震評価部位については，表1－1 の概略構造図に示す。

1． 4 固有周期

1．4．1 固有周期の算出方法

圧力抑制室水位（T48－LT020）が設置される計器スタンションの固有周期は，プラスチ ックハンマ等により，当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）により記録解析する。試験の結果，剛であること を確認した。固有周期の確認結果を表1－3に示す。

1.5 構造強度評価

1．5．1 構造強度評価方法
（1）圧力抑制室水位（T48－LT020）の質量は重心に集中しているものとする。
（2）地震力は圧力抑制室水位（T48－LT020）に対して，水平方向及び鉛直方向から作用するも のとする。
（3）圧力抑制室水位（T48－LT020）は溶接で埋込金物に固定されるものとする。
（4）転倒方向は，図 1－2，図 1－3 計算モデルにおける左右方向及び前後方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（5）圧力抑制室水位（T48－LT020）の重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。

1．5．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
圧力抑制室水位（T48－LT020）の荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表 1－4 に示す。
（2）許容応力
圧力抑制室水位（T48－LT020）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 1－5 のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室水位（T48－LT020）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 1－6に示す。

表 1－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ
計測制御 系統施設	計測装置	圧力抑制室水位（T48－LT020）	S		
許容応力状態					

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表1－5 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$	$1.5 \cdot \mathrm{f}$ b
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$ s＊	$1.5 \cdot \mathrm{fc}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－6 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
溶接部		周囲環境温度	65	217	386	-

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－7に示す。
「弾性設計用地震動 S d 又は静的地震動」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 1－7 設計用地震力（設計基準対象施設）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd又は静的震度		基準地震動S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度
原子炉建屋 0．P．-8.10 ＊			$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{v}}=0.69$

注記＊：基準床レベルを示す。

1．5．4 計算方法

1．5．4．1 応力の計算方法
1．5．4．1．1 溶接部の応力
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

緗緮：力を受けると仮定する溶接部

図 1－2 計算モデル（左右方向転倒）

納 ：力を受けると仮定する溶接部

図 1－3 計算モデル（前後方向転倒）
（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張力
計算モデル図 1－2 の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Y}}=\mathrm{m} \cdot\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{1.5.4.1.1.1}
\end{equation*}
$$

計算モデル図 1－3 の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Y}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{1.5.4.1.1.2}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{~A}_{\mathrm{w}}} \tag{1.5.4.1.1.3}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{W} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=2 \cdot \mathrm{a} \cdot(\mathrm{t}+\mathrm{u}) \tag{1.5.4.1.1.4}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\mathrm{a}=0.7 \cdot \mathrm{~s}
$$

（1．5．4．1．1．5）
（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力
計算モデル図 1－2 の場合のせん断力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Z}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \tag{1.5.4.1.1.6}
\end{equation*}
$$

計算モデル図 1－3 の場合のせん断力

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g}
$$

（1．5．4．1．1．7）

計算モデル図 1－2 の場合のねじりモーメント

$$
\begin{equation*}
\mathrm{M}_{\mathrm{Y}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell_{\mathrm{X}} \tag{1.5.4.1.1.8}
\end{equation*}
$$

せん断応力
計算モデル図 1－2 の場合のせん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{Z}}}{\mathrm{~A}_{\mathrm{wZ}}}+\frac{\mathrm{M}_{\mathrm{Y}}}{\mathrm{Z}_{\mathrm{P}}}\right)^{2}+\left(\frac{\mathrm{M}_{\mathrm{Y}}}{Z_{\mathrm{P}}}\right)^{2}} \tag{1.5.4.1.1.9}
\end{equation*}
$$

計算モデル図 1－3 の場合のせん断応力

$$
\begin{equation*}
\tau=\frac{\mathrm{F}_{\mathrm{X}}}{\mathrm{~A}_{\mathrm{wX}}} \tag{1.5.4.1.1.10}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{wx}}, ~ \mathrm{~A}_{\mathrm{w} Z}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
A_{wx} ， $\mathrm{A}_{\mathrm{w} Z}$ は，次式により求める。

$$
\begin{align*}
& A_{w X}=2 \cdot a \cdot t \tag{1.5.4.1.1.11}\\
& A_{w Z}=2 \cdot a \cdot u \tag{1.5.4.1.1.12}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 1－2 及び図 1－3 でX軸方向，Z軸方向に対する曲げモーメントを溶接部で受けるものとして計算する。

曲げモーメント
計算モデル図 1－2 の場合の曲げモーメント

$$
\begin{align*}
& \mathrm{M}_{\mathrm{X}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \cdots \cdot \tag{1.5.4.1.1.13}\\
& \mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{\mathrm{X}} \tag{1.5.4.1.1.14}
\end{align*}
$$

計算モデル図 1－3 の場合の曲げモーメント

$$
\begin{equation*}
\mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}+\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{\mathrm{X}} \tag{1.5,4.1.1.15}
\end{equation*}
$$

曲げ応力
計算モデル図 1－2の場合の曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{X}}}{\mathrm{Z}_{\mathrm{Z}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{x}}} \tag{1.5.4.1.1.16}
\end{equation*}
$$

計算モデル図 1－3 の場合の曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{x}}} \tag{1.5.4.1.1.17}
\end{equation*}
$$

（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{1.5.4.1.1.18}
\end{equation*}
$$

1．5．5 計算条件
1．5．5．1 溶接部の応力計算条件
溶接部の応力計算に用いる計算条件は，本計算書の【圧力抑制室水位（T48－LT020） の耐震性についての計算結果】の設計条件及び機器要目に示す。

1．5．6 応力の評価
1．5．6．1 溶接部の応力評価
1．5．4．1 項で求めた溶接部に発生する応力は，許容応力 f s 以下であること。ただし，

	弾性設計用地震動 Sd 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1．6．1 電気的機能維持評価方法
圧力抑制室水位（T48－LT020）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 1－8に示す。

表 1－8 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
圧力抑制室水位 $(\mathrm{T} 48-\mathrm{LT} 020)$	水平	
	鉛直	

1．7．評価結果

1．7．1 設計基準対象施設としての評価結果
圧力抑制室水位（T48－LT020）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室水位（T48－LT020）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室水位 （T48－LT020）	S	原子炉建屋 $\text { 0. P. }-8.10^{*}$			$\mathrm{C}_{\mathrm{H}}=0.48$	$\mathrm{C}_{\mathrm{V}}=0.40$	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$	65

注記＊：基準床レベルを示す。

	部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{x} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{wX}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} Z} \mathrm{Z} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{x}} \\ \left(\mathrm{~mm}^{3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{Z}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{P}} \\ \left(\mathrm{~mm}^{3}\right) \\ \hline \end{gathered}$
∞	溶接部		620											

部 材	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)	弾性設計用地震動方向 S d 又は静的震度 基準地震動 S 溶接部 $\quad 217$

O 2 （3）VI－2－6－5－8－1 R 0
1.3 計算数値

1．3．1 溶接部に作用する力
（単位：N）

部 材	F_{x}		F_{Y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部					－	－

部 材	M_{x}		M_{Y}		M_{Z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	－	－	－	－		

1．4 結論
1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	$\sigma_{t}=1$	$\mathrm{f}_{\mathrm{s}}=125$	$\sigma_{\mathrm{t}}=1$	$\mathrm{f}_{\mathrm{s}}=150$
		せん断	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=125$	$\tau=1$	$\mathrm{f}_{\mathrm{s}}=150$
		曲げ	$\sigma_{\mathrm{b}}=18$	$\mathrm{f}_{\mathrm{s}}=125$	$\sigma_{\mathrm{b}}=27$	$\mathrm{f}_{\mathrm{s}}=150$
		組合せ	$\sigma_{\mathrm{w}}=18$	$\mathrm{f}_{\mathrm{s}}=125$	$\sigma_{\mathrm{w}}=28$	$\mathrm{f}_{\mathrm{s}}=150$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

$$
\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
圧力抑制室水位 （T48－LT020）	水平方向	0.82	
	鉛直方向	0.57	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

側面（前後方向）

2．圧力抑制室水位（T48－LT021）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室水位（T48－LT021）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室水位（T48－LT021）は，設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
圧力抑制室水位（T48－LT021）の構造計画を表 2－1 に示す。

表 2－1 構造計画

2．2．2 評価方針

圧力抑制室水位（T48－LT021）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2．1 構造計画」にて示 す圧力抑制室水位（T48－LT021）の部位を踏まえ「2．3 評価部位」にて設定する箇所にお いて，「2．4 固有周期」で測定した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「2．5 構造強度評価」にて示す方法にて確認することで実施する。 また，圧力抑制室水位（T48－LT021）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「2．6 機能維持評価」にて示す方法にて確認すること で実施する。確認結果を「2．7 評価結果」に示す。

圧力抑制室水位（T48－LT021）の耐震評価フローを図 2－1 に示す。

図 2－1 圧力抑制室水位（T48－LT021）の耐震評価フロー

2．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2．2．4 記号の説明

記号	記号の説明	単位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 1}$	溶接部の F w_{1} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 2}$	溶接部の $\mathrm{F}_{\mathrm{w} 2}$ に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F^{*}	設計•建設規格 SSB－3121．3に定める値	MPa
F_{w}	溶接部に作用する引張力	N
$\mathrm{F}_{\mathrm{w} 1}$	鉛直方向地震及び壁掛形計器スタンションの取付面に対し左右方向 の水平方向地震により溶接部に作用する引張力	N
Fw2	鉛直方向地震及び壁掛形計器スタンションの取付面に対し前後方向 の水平方向地震により溶接部に作用する引張力	N
Q w	溶接部に作用するせん断力	N
Q w 1	水平方向地震により溶接部に作用するせん断力	N
Q w 2	鉛直方向地震により溶接部に作用するせん断力	N
f_{s}	溶接部の許容せん断応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	側面（左右）溶接部間の距離	mm
ℓ_{2}	下側溶接部中心と上側溶接部端部までの距離	mm
ℓ_{3}	重心と下側溶接部中心間の距離	mm
m	検出器及び計器スタンションの質量	kg
n	溶接箇所数	－
n f V	評価上引張力を受けるとして期待する溶接箇所数（鉛直方向転倒）	－
nf H	評価上引張力を受けるとして期待する溶接箇所数（水平方向転倒）	－
s	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
u	溶接の有効長さ（ Z 方向）	mm
$\mathrm{S}_{\text {u }}$	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$\mathrm{S}_{\mathrm{y}}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

2．2．5 計算精度と数値の丸め方
計算精度は，有效数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりである。

表2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 析 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

2.3 評価部位

圧力抑制室水位（T48－LT021）の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づ き，耐震評価上厳しくなる溶接部について評価を実施する。圧力抑制室水位（T48－LT021）の耐震評価部位については，表 2－1 の概略構造図に示す。

2.4 固有周期

圧力抑制室水位（T48－LT021）が設置される計器スタンションの固有周期は，構造が同等であ り，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表2－3 に示す。

表 2－3 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

2.5 構造強度評価

2．5．1 構造強度評価方法

（1）圧力抑制室水位（T48－LT021）の質量は重心に集中しているものとする。
（2）地震力は圧力抑制室水位（T48－LT021）に対して，水平方向及び鉛直方向から作用するも のとする。
（3）圧力抑制室水位（T48－LT021）は溶接で壁面に固定されるものとする。
（4）転倒方向は，図 2－2，図 2－3 計算モデルにおける水平方向及び鉛直方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（5）圧力抑制室水位（T48－LT021）の重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。

2．5．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
圧力抑制室水位（T48－LT021）の荷重の組合せ及び許容応力状態のうち設計基準対象施設 の評価に用いるものを表 2－4に示す。
（2）許容応力
圧力抑制室水位（T48－LT021）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 2－5 のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室水位（T48－LT021）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表2－6に示す。

表 2－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	
計測制御 系統施設	計測装置	圧力抑制室水位（T48－LT021）	S			許容応力状態

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 2－5 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{III}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{f}$ c	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$＊	$1.5 \cdot \mathrm{fs}$＊	$1.5 \cdot \mathrm{ff}{ }^{*}$	$1.5 \cdot \mathrm{fb}^{*}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－6 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
溶接部		周囲環境温度	65	217	386	-

2．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 2－7 に示す。
「弾性設計用地震動 S d 又は静的地震動」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－7 設計用地震力（設計基準対象施設）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \mathrm{P} .-0.80^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$

注記＊：基準床レベルを示す。

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 溶接部の応力
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 2－2 計算モデル（水平方向転倒）

図 2－3 計算モデル（鉛直方向転倒）
（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張力
計算モデル図 2－2 の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}}{\mathrm{n}_{\mathrm{fH}} \cdot \ell_{1}}+\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{2}}\right) \tag{2.5,4.1.1.1}
\end{equation*}
$$

計算モデル図 2－3 の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \ell_{3}+\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{2}}\right) \tag{2.5.4.1.1.2}\\
& \mathrm{F}_{\mathrm{w}}=\mathrm{Max}\left(\mathrm{~F}_{\mathrm{w} 1}, \mathrm{~F}_{\mathrm{w} 2}\right) \quad \ldots \ldots \ldots \ldots . \tag{2.5.4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{w}}}{\mathrm{~A}_{\mathrm{w}}} \tag{2,5,4,1,1.4}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{W} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=\mathrm{a} \cdot(\mathrm{t}+\mathrm{u}) \tag{2.5,4.1.1.5}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{2,5,4.1.1.6}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \quad \ldots \ldots(2.5 .4 .1 .1 .7) \\
& \mathrm{Q}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2.5 .4 .1 .1 .8) \\
& \mathrm{Q}_{\mathrm{w}}=\sqrt{\left(\mathrm{Q}_{\mathrm{w} 1}\right)^{2}+\left(\mathrm{Q}_{\mathrm{w} 2}\right)^{2}} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2.5 .4 .1 .1 .9) \tag{2.5.4.1.1.8}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{Q_{w 1}}{n \cdot A_{w 1}}\right)^{2}+\left(\frac{Q_{w 2}}{n \cdot A_{w 2}}\right)^{2}} \tag{2,5,4.1,1.10}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{w} 1}, ~ \mathrm{~A}_{\mathrm{w} 2}$ はせん断力を受ける各方向の有効断面積を示す。
$\mathrm{A}_{\mathrm{w} 11}, \mathrm{~A}_{\mathrm{w} 2}$ は，次式により求める。

$$
\begin{align*}
& A_{w 1}=a \cdot u \\
& \text { (2.5.4.1.1.11) } \\
& \mathrm{A}_{\mathrm{w} 2}=\mathrm{a} \cdot \mathrm{t} \tag{2.5.4.1.1.12}
\end{align*}
$$

（3）組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}\right)^{2}+\tau^{2}} \tag{2.5.4.1.1.13}
\end{equation*}
$$

2．5．5 計算条件
2．5．5．1 溶接部の応力計算条件
溶接部の応力計算に用いる計算条件は，本計算書の【圧力抑制室水位（T48－LT021） の耐震性についての計算結果】の設計条件及び機器要目に示す。

2．5．6 応力の評価
2．5．6．1 溶接部の応力評価
2．5．4．1項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただし， f s は下表による。

弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
圧力抑制室水位（T48－LT021）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 2－8 に示す。

表 2－8 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
圧力抑制室水位		
（T48－LT021）	水平	
	鉛直	

[^9]
2.7 評価結果

2．7．1 設計基準対象施設としての評価結果
圧力抑制室水位（T48－LT021）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室水位（T48－LT021）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室水位 （T48－LT021）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	65

注記 $*:$ 基準床レベルを示す。

部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \hline \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{u} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	n	n f V	n f H	$\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} 1} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} 2} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$
溶接部		447.5					2	1	2						

部 材	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)	転倒方向		弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
溶接部	217	386	217	261	水平方向			

O 2 （3）VI－2－6－5－8－1 R 0
1.3 計算数値

1． 4 結論
1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	$\sigma_{\mathrm{t}}=7$	$\mathrm{f}_{\mathrm{s}}=125$	$\sigma_{\mathrm{t}}=12$	$\mathrm{f}_{\mathrm{s}}=150$
		せん断	$\tau=3$	$\mathrm{f}_{\mathrm{s}}=125$	$\tau=5$	$\mathrm{f}_{\mathrm{s}}=150$
		組合せ	$\sigma_{\mathrm{w}}=7$	$\mathrm{f}_{\mathrm{s}}=125$	$\sigma_{\mathrm{w}}=13$	$\mathrm{f}_{\mathrm{s}}=150$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
圧力抑制室水位 （T48－LT021）	水平方向	1.11	
	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

側面（鉛直方向）

3．圧力抑制室水位（T48－LT027）

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室水位（T48－LT027）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室水位（T48－LT027）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，圧力抑制室水位（T48－LT027）が設置される計器スタンションは，添付書類「VI－2－1－ 13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価 を実施する。
3.2 一般事項

表 3－1 構造計画

3．3 固有周期

圧力抑制室水位（T48－LT027）が設置される計器スタンションの固有周期は，構造が同等であ り，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－2に示す。

表 3－2 固有周期
（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

3．4 構造強度評価

3．4．1 構造強度評価方法
圧力抑制室水位（T48－LT027）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
圧力抑制室水位（T48－LT027）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－3 に示す。
（2）許容応力
圧力抑制室水位（T48－LT027）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 3－4 のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室水位（T48－LT027）の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表3－5 に示す。

表 3－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分			機器名称	設備分類＊1	機器等の区分

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－4 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(MPa)					

3.5 機能維持評価

3．5．1 電気的機能維持評価方法
圧力抑制室水位（T48－LT027）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 3－6に示す。

表 3－6 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
圧力抑制室水位（T48－LT027）	水平	
	鉛直	

3.6 評価結果

3．6．1 重大事故等対処設備としての評価結果
圧力抑制室水位（T48－LT027）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室水位（T48－LT027）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室水位 （T48－LT027）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. -0. } 80^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	66

注記＊：基準床レベルを示す。
1.2 機器要目

部 材	m (kg)	h_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	nfv	nff
		414				4	2	2		

部 材	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	$\mathrm{F} *$ (MPa)	転倒方向性設計用地震動 Sd 又 又静的震度	基準地震動 S s s
基礎ボルト	206	385	-	247	-	水平方向

1．3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1．4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=7$	$\mathrm{f}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s} \text { b }}=142$

注記 $*: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$ より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

圧力抑制室水位 $(T 48-L T 027)$	水平方向	機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
	鉛直方向	1.11	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面（水平方向）

側面（鉛直方向）

4．圧力抑制室水位（T48－LT027B）

4． 1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，圧力抑制室水位（T48－LT027B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

圧力抑制室水位（T48－LT027B）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，圧力抑制室水位（T48－LT027B）が設置される計器スタンションは，添付書類「VI－2－1－ 13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価 を実施する。
4.2 一般事項

表 4－1 構造計画

4． 3 固有周期

圧力抑制室水位（T48－LT027B）が設置される計器スタンションの固有周期は，構造が同等で あり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認され た固有周期を使用する。固有周期の確認結果を表 4－2 に示す。

表 4－2 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4． 4 構造強度評価

4．4．1 構造強度評価方法
圧力抑制室水位（T48－LT027B）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．4．2 荷重の組合せ及び許容応力

（1）荷重の組合せ及び許容応力状態
圧力抑制室水位（T48－LT027B）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－3 に示す。
（2）許容応力
圧力抑制室水位（T48－LT027B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－4 のとおりとする。
（3）使用材料の許容応力評価条件
圧力抑制室水位（T48－LT027B）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－5に示す。

表 4－3 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－4 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\text {s }}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

4.5 機能維持評価

4．5．1 電気的機能維持評価方法
圧力抑制室水位（T48－LT027B）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器 スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価 する。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表4－6に示す。

表 4－6	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
圧力抑制室水位（T48－LT027B）	水平	
	鉛直	

4.6 評価結果

4．6．1 重大事故等対処設備としての評価結果
圧力抑制室水位（T48－LT027B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【圧力抑制室水位（T48－LT027B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
圧力抑制室水位 （T48－LT027B）	常設耐震／防止常設／緩和	原子炉建屋 $\text { 0. P. }-8.10^{*}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=0.99$	$\mathrm{C}_{\mathrm{V}}=0.69$	66

注記＊：基準床レベルを示す。

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	206	385	－	247	－	前後方向

注記＊1：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は
前後方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．4 結論

8 注記 $*$ ： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6\right.$ • $\tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認済加速度
圧力抑制室水位 （T48－LT027B）	水平方向	0.82	
	鉛直方向	0.57	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－5－8－2 原子炬格納容器下部水位の耐震性についての計算書
1．原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 3
1.3 評価部位 3
1． 4 機能維持評価 4
1．4．1 機能維持評価用加速度 4
1．4．2 機能確認済加速度 5
1.5 評価結果 6
1．5．1 重大事故等対処設備としての評価結果 6
2．原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B） 8
2.1 概要 8
2.2 一般事項 8
2．2．1 構造計画 8
2．2．2 評価方針 10
2．2．3 適用規格•基準等 11
2．2．4 記号の説明 12
2．2．5 計算精度と数値の丸め方． 13
2.3 評価部位 14
2． 4 固有周期 14
2．4．1 固有値解析方法 14
2．4．2 解析モデル及び諸元 14
2．4．3 固有値解析結果 17
2.5 構造強度評価 18
2．5．1 構造強度評価方法 18
2．5．2 荷重の組合せ及び許容応力． 19
2．5．3 設計用地震力 22
2．5．4 計算方法 23
2．5．5 計算条件 27
2．5．6 応力の評価 27
2.6 機能維持評価 28
2．6．1 電気的機能維持評価方法． 28
2． 7 評価結果 29
2．7．1 重大事故等対処設備としての評価結果 29
3．原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B） 34
3.1 概要 34
3.2 一般事項 34
3．2．1 構造計画 34
3．2．2 評価方針 36
3．2．3 適用規格•基準等 37
3．2．4 記号の説明 38
3．2．5 計算精度と数値の丸め方 39
3.3 評価部位 40
3． 4 固有周期 40
3．4．1 固有値解析方法 40
3．4．2 解析モデル及び諸元 40
3．4．3 固有値解析結果 43
3.5 構造強度評価 44
3．5．1 構造強度評価方法 44
3．5．2 荷重の組合せ及び許容応力 45
3．5．3 設計用地震力 48
3．5．4 計算方法 49
3．5．5 計算条件 53
3．5．6 応力の評価 53
3． 6 機能維持評価 54
3．6．1 電気的機能維持評価方法． 54
3.7 評価結果 55
3．7．1 重大事故等対処設備としての評価結果 55

1．原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。
1.2 一般事項

1．2．1 構造計画
原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の構造計画を表1－1に示す。

表 1－1 構造計画

1．2．2 評価方針

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．4 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．5 評価結果」に示す。

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の耐震評価フローを図1－1に示す。

図 1－1 原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の耐震評価フロー

1．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）

1.3 評価部位

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）は，溶接により原子炉本体基礎 の壁面に設置することから，原子炉本体基礎が支持している。原子炉本体基礎の構造強度評価 は，添付書類「VI－2－9－2－1－1 ドライウェルの耐震性についての計算書」にて実施しているた め，本計算書では，原子炉本体基礎の地震応答解析結果を用いた原子炉格納容器下部水位（T48－ L／TE045A，B，L／TE049A，B）の電気的機能維持評価について示す。

1． 4 機能維持評価

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の電気的機能維持評価について，以下に示す。

1．4．1 機能維持評価用加速度

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）は原子炉本体基礎の壁面に固定されることから，機能維持評価用加速度は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」 に基づき設定する。機能維持評価用加速度を表 1－2 に示す。

表 1－2 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
原子炉格納容器下部水位$\begin{gathered} \text { (T48-L/TE045A, B, } \\ \text { L/TE049A, B) } \end{gathered}$	原子炉本体基礎$\begin{aligned} & \text { 0. P. }-2.500 \\ & \left(0 . \text { P. 1. } 150^{*}\right) \end{aligned}$	水平	1.15
		鉛直	0.59

注記＊：基準床レベルを示す。

1．4．2 機能確認済加速度

原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，当該検出器と同形式の検出器単体 の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表1－3に示す。

表 1－3 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器下部水位	水平	
（T48－L／TE045A，B，L／TE049A，B）	鋁直	

1．5 評価結果

1．5．1 重大事故等対処設備としての評価結果
原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下 であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部水位（T48－L／TE045A，B，L／TE049A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
原子炉格納容器下部水位	水平方向	1.15	
（T48－L／TE045A，B，L／TE049A，B）	鉛直方向	0.59	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，原子炉本体基礎の壁面に取付ボルト で設置する。	電極式水位検出器	【原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）】
		（単位：mm）

2．2．2 評価方針

原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．2．1 構造計画」にて示す原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A， B）の部位を踏まえ「2．3 評価部位」にて設定する箇所において，「2．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「2．5構造強度評価」にて示す方法にて確認することで実施する。また，原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「2．6 機能維持評価」にて示す方法にて確認するこ とで実施する。確認結果を「2．7 評価結果」に示す。

原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の耐震評価フローを図2－1に示す。

図 2－1 原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の耐震評価フロー

2．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b}} 1$	鉛直方向地震及び取付面に対し左右方向の水平方向地震によりボル トに作用する引張力（1本当たり）	N
F b 2	鉛直方向地震及び取付面に対し前後方向の水平方向地震によりボル トに作用する引張力（1本当たり）	N
$f \mathrm{sb}$	せん断力のみを受けるボルトの許容せん断応力	MPa
f to	引張力のみを受けるボルトの許容引張応力	MPa
$\mathrm{ft} \mathrm{s}^{\text {d }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	ボルト取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊1	mm
ℓ_{2}	重心とボルト間の水平方向距離＊1	mm
ℓ_{3}	重心と上側ボルト間の距離	mm
ℓ_{4}	重心と下側ボルト間の距離	mm
m	検出器及び計器取付金具の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n f H	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q_{b}	ボルトに作用するせん断力	N
$Q_{\text {bH }}$	水平方向転倒モデルにおけるボルトに作用するせん断力	N
$Q_{\text {b }} 1$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震によりボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bH} 2}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により重心の偏心を考慮したボルトに作用するせん断力	N
$Q_{\text {b }}{ }^{\text {3 }}$	水平方向転倒モデルにおける鉛直方向地震によりボルトに作用する せん断力	N
$\mathrm{Q}_{\mathrm{bH} 4}$	水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮 したボルトに作用するせん断力	N

記 号	記 号 の 説 明	単 位
$\mathrm{Q}_{\mathrm{b} V}$	鉛直方向転倒モデルにおけるボルトに作用するせん断力 水平方向転倒モデルにおける鉛直方向地震によりボルトに作用する せん断力 水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮	N
$\mathrm{Q}_{\mathrm{b} V 1}$		N
$\mathrm{Q}_{\mathrm{b} V 2}$	水平方向転倒モデルにおける鉛直方向地震により重心の偏心を考慮 したボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT}$ ）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $* 1: \ell_{1} \leqq \ell_{2}$

2．2．5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 标＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 行 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

2.3 評価部位

原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる取付ボルトについて実施する。原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の耐震評価部位については，表 2－1 の概略構造図に示す。

2． 4 固有周期

2．4．1 固有値解析方法
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の固有値解析方法を以下に示す。
（1）原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）は，「2．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

2．4．2 解析モデル及び諸元
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の解析モデルを図 2－2に，解析モデルの概要を以下に示す。
（1）計器取付金具は原子炉本体基礎の壁面に固定されることから，（1）～③）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表2－3，部材の機器要目を表2－4に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

（単位：mm）

図 2－2 原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）解析モデル

表 2－3 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	ma	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 2－4 部材の機器要目

材料		
対象要素	（1）－（3）	（2）
A（ mm^{2} ）		
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
I P $\left(\mathrm{mm}^{4}\right)$		
断面形状（mm）	$(a \times b \times c)$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

2．4．3 固有値解析結果
固有値解析結果を表2－5に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X方向	Z 方向	
1 次		水平	－	－	－

2.5 構造強度評価

2．5．1 構造強度評価方法
2．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）は，取付ボルトにより原子炉本体基礎の壁面に固定されるものとする。
（3）原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の質量は，検出器及び計器取付金具を考慮する。

2．5．2 荷重の組合せ及び許容応力
2．5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の荷重の組合せ及び許容応力状態のらち重大事故等対処設備の評価に用いるものを表2－6に示す。

2．5．2．2 許容応力
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－7 のとおりとする。

2．5．2．3 使用材料の許容応力評価条件
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表2－8に示す。

表 2－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉格納容器下部水位 （T48－L／TE046A，B， L／TE050A，B）			$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
			常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV} \mathrm{N}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}$＊	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
取付ボルト		周囲環境温度	200	144	402	205

2．5．3 設計用地震力
耐震評価に用いる設計用地震力を表 2－9に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0.P. }-2.500 \\ \left(0 . \text { P. } 1.150^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } * 2 \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$

注記＊1 ：基準床レベルを示す。

$$
\text { *2: 固有値解析より } 0.05 \text { 秒以下であり剛であることを確認した。 }
$$

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 2－3 計算モデル（水平方向転倒）

図 2－4 計算モデル（鉛直方向転倒）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 2－3 及び図 2－4 で片側の列の取付ボルトを支点とする転倒を考え，これを片側の列の取付ボルトで受 けるものとして計算する。

引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 1}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h}}{\left(\ell_{2}-\ell_{1}\right) \cdot \mathrm{n}_{\mathrm{fH}}}+\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}}{\left(\ell_{4}-\ell_{3}\right) \cdot \mathrm{n}_{\mathrm{fV}}} \tag{2.5.4.1.1.1}\\
& \mathrm{~F}_{\mathrm{b} 2}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell_{3}+\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h}}{\left(\ell_{4}-\ell_{3}\right) \cdot \mathrm{n}_{\mathrm{fV}}} \\
& \mathrm{~F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \mathrm{~F}_{\mathrm{b} 2}\right) \\
& \text { (2.5.4.1.1.2) } \\
& \text { (2.5.4.1.1.3) }
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{2.5.4.1.1.5}
\end{equation*}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して固定部の取付ボル ト全本数で受けるものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bH} 1}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \text { (2.5.4.1.1.6) } \\
& \mathrm{Q}_{\mathrm{bH} 2}=\frac{\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell_{4}}{\ell_{4}-\ell_{3}} \mathrm{n}^{*} \\
& Q_{\mathrm{bH} 3}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \\
& \mathrm{Q}_{\mathrm{bH} 4}=\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{2}}{\ell_{2}-\ell_{1}} \mathrm{n}^{*} \\
& \mathrm{Q}_{\mathrm{bH}}=\sqrt{\left(\mathrm{Q}_{\mathrm{bH} 1}+\mathrm{Q}_{\mathrm{bH} 2}\right)^{2}+\left(\mathrm{Q}_{\mathrm{bH} 3}+\mathrm{Q}_{\mathrm{bH} 4}\right)^{2}} \quad \cdots \text { (2.5.4.1.1.10) } \\
& \mathrm{Q}_{\mathrm{bV} 1}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{2.5.4.1.1.11}\\
& \mathrm{Q}_{\mathrm{bV} 2}=\frac{\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \ell_{2}}{\ell_{2}-\ell_{1}} \mathrm{n}^{*} \tag{2.5.4.1.1.12}\\
& \mathrm{Q}_{\mathrm{b} V}=\mathrm{Q}_{\mathrm{bV} 1}+\mathrm{Q}_{\mathrm{bV} 2} \tag{2.5.4.1.1.13}\\
& Q_{b}=\operatorname{Max}\left(Q_{b H}, Q_{b V}\right) \tag{2.5.4.1.1.14}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.15}
\end{equation*}
$$

注記＊：本計算式のみ取付ボルト1本に作用するせん断力であり，全本数 n 本分に換算するため n 倍とする。

2．5．5 計算条件
2．5．5．1 取付ボルトの応力計算条件応力計算に用いる計算条件は，本計算書の【原子炉格納容器下部水位（T48－L／TE046A， B，L／TE050A，B）の耐震性についての計算結果】の設計条件及び機器要目に示す。

2．5．6 応力の評価
2．5．6．1 取付ボルトの応力評価
2．5．4．1．1 項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{too}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \quad \cdots \ldots \ldots \ldots \ldots \ldots \ldots(2.5 .6 .1 .1)
$$

せん断応力 τ bはせん断力のみを受ける取付ボルトの許容せん断応力 f s b 以下であ ること。ただし，f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 fto	$\frac{\mathrm{F}}{}{ }^{*}$
許容せん断応力 fsbb	$\frac{\mathrm{F}^{*}}{1.5 \cdot 5} \cdot 1.5$

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表2－10に示す。

表 2－10 機能確認済加速度（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉格納容器下部水位 $(T 48-L / T E 046 A, ~ B, ~$ L／TE050A，B）	水平	
	鉛直	

2．7 評価結果

2．7．1 重大事故等対処設備としての評価結果
原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部水位（T48－L／TE046A，B，L／TE050A，B）の耐震性についての計算結果】
1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器下部水位 （T48－L／TE046A，B， L／TE050A，B）	常設／緩和	$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0. P. - } 2.500 \\ \text { (0. P. 1. } 1500^{* 1} \text {) } \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{v}}=0.70$	200

注記 $* 1$ ：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。
© 1.2 機器要目

部 材	m (kg)	h (mm)	ℓ_{1} $(\mathrm{~mm})$	ℓ_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{4} $(\mathrm{~mm})$	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{fV}	n_{fH}
取付ボルト									4	2	2

						転倒方向	
部 材	(MPa)	（MPa）	（MPa）	(MPa)	（MPa）	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
取付ボルト	144	402	205	－	194	－	鉛直方向

$$
\mathrm{O} 2 \text { (3) VI-2-6-5-8-2 } \quad \text { R } 0
$$

1．3 計算数値

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
取付ボルト	－		－	

1．4 結論

1．4．1 ボルトの応力					（単位：MPa）	
部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{ts}}=145^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=13$	$\mathrm{f}_{\mathrm{sb}}=112$

注記＊： $\mathrm{f}_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6\right.$ • $\tau \mathrm{b}, \mathrm{f}_{\mathrm{to}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

| | | | 機能維持評価用加速度 ${ }^{*}$ |
| :---: | :---: | :---: | :---: | 機能確認済加速度

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\mathrm{O} 2 \text { (3) VI-2-6-5-8-2 R } 0
$$

1.5 その他の機器要目			
項目	記号	単位	入力値
材質	-	-	
質量	ma	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

側面（鉛直方向）

3．原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）
3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。
3.2 一般事項

3．2．1 構造計画
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の構造計画を表 3－1に示す。

表 3－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，溶接により原子炉本体基礎の壁面に設置する。	電極式水位検出器	【原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）】

3．2．2 評価方針

原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「3．2．1 構造計画」にて示す原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A， B）の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「3．5構造強度評価」にて示す方法にて確認することで実施する。また，原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「3． 6 機能維持評価」にて示す方法にて確認するこ とで実施する。確認結果を「3．7 評価結果」に示す。

原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の耐震評価フローを図 3－1 に示す。

図 3－1 原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の耐震評価フロー

3．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$A_{w Y}$	溶接部の F_{Y} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} ~}^{\text {L }}$	溶接部の F_{z} に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3 に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（Y方向）	N
F_{Z}	溶接部に作用する力（ Z 方向）	N
$\mathrm{f}_{\text {s }}$	溶接部の許容せん断応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
e	重心と溶接部中心間の水平方向距離	mm
m	検出器及び計器取付金具の質量	kg
M_{X}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（ Y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	溶接部に作用するモーメント（ Z 軸）	$\mathrm{N} \cdot \mathrm{mm}$
s	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
u	溶接の有効長さ（ Z 方向 ）	mm
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
Z_{P}	溶接全断面におけるねじり断面係数	mm^{3}
Z_{Y}	溶接全断面における断面係数（ Y 軸）	mm^{3}
Z_{Z}	溶接全断面における断面係数（ Z 軸）	mm^{3}
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。表示する数値の丸め方は，表3－2 に示すとおりとする。

表 3－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3.3 評価部位

原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の耐震評価部位については，表3－1 の概略構造図に示す。

3． 4 固有周期

3．4．1 固有値解析方法
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の固有値解析方法を以下に示す。
（1）原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）は，「3．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

3．4．2 解析モデル及び諸元

原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の解析モデルを図 3－2に，解析モデルの概要を以下に示す。
（1）計器取付金具は，原子炉本体基礎の壁面に固定されることから，計算モデルでは，計器取付金具を直線とみなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 3－3，部材の機器要目を表 3－4 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

：支持点
（計器取付金具基礎部）
－検出器質点
X（水平）
（単位：mm）
図 3－2 原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）解析モデル

表 3－3 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m a	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

材料	
対象要素	（1）
A（mm ${ }^{2}$	
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$I_{\text {P }}\left(\mathrm{mm}^{4}\right)$	
断面形状（mm）	$(a \times b \times c)$

枠囲みの内容は商業機密の観点から公開できません。

3．4．3 固有値解析結果

固有値解析結果を表3－5 に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 3－5 固有値解析結果（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			Z方向	刺激係数	
1 次		鉛直	-	-	-

3.5 構造強度評価

3．5．1 構造強度評価方法
3．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）は，溶接により原子炉本体基礎の壁面に固定されるものとする。
（3）原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の質量は，検出器及び計器取付金具を考慮する。

3．5．2 荷重の組合せ及び許容応力

3．5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－6に示す。

3．5．2．2 許容応力
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－7 のとおりとする。

3．5．2．3 使用材料の許容応力評価条件
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表3－8に示す。

表 3－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－8 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		周囲環境温度	200	144	402	205

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－9に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0.P. }-2.500 \\ \left(0 . \text { P. } 1.150^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$

注記＊1：基準床レベルを示す。

$$
\text { *2: 固有値解析より } 0.05 \text { 秒以下であり剛であることを確認した。 }
$$

3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 溶接部の計算方法
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

綡囉：力を受けると仮定する溶接部

図 3－3 計算モデル（水平方向転倒）

綴：力を受けると仮定する溶接部

図 3－4 計算モデル（鉛直方向転倒）
（1）引張応力
溶接部に対する引張応力は，図 3－4でX軸方向に対する引張力を全溶接断面積 で受けるものとして計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \tag{3.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{~A}_{\mathrm{w}}} \tag{3.5.4.1.1.2}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
A_{w}=2 \cdot a(t+u) \tag{3.5.4.1.1.3}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{3.5.4.1.1.4}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力
計算モデル図 3－3 の場合のせん断力

$$
\begin{align*}
& F_{Y}=m \cdot\left(1+C_{V}\right) \cdot g \tag{3.5.4.1.1.5}\\
& F_{Z}=m \cdot C_{H} \cdot g \quad \cdots \tag{3.5.4.1.1.6}
\end{align*}
$$

計算モデル図 3－4の場合のせん断力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{Y}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \tag{3.5.4.1.1.7}
\end{equation*}
$$

計算モデル図 3－3及び図 3－4 の場合のねじりモーメント

$$
\begin{equation*}
M_{X}=m \cdot\left(1+C_{v}\right) \cdot g \cdot \ell \tag{3.5.4.1.1.8}
\end{equation*}
$$

せん断応力
計算モデル図 3－3 の場合のせん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{w Z}}+\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{3.5.4.1.1.9}
\end{equation*}
$$

計算モデル図 3－4の場合のせん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{Y}}{A_{w Y}}+\frac{M_{X}}{Z_{P}}\right)^{2}+\left(\frac{M_{X}}{Z_{P}}\right)^{2}} \tag{3,5,4,1,1,10}
\end{equation*}
$$

ここで， A_{wY} ， $\mathrm{A}_{\mathrm{w} Z}$ はせん断力を受ける各方向の有効断面積， Z_{p} は溶接断面 におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{w} Y}, \mathrm{~A}_{\mathrm{w} Z}$ は，次式により求める。

$$
\begin{align*}
& A_{w Y}=2 \cdot a \cdot t \tag{3.5,4.1.1.11}\\
& A_{w Z}=2 \cdot a \cdot u \tag{3,5,4.1.1.12}
\end{align*}
$$

（3）曲げ応力
溶接部に対する曲げモーメントは，図 3－3 及び図 3－4 でY軸方向，Z軸方向に対する曲げモーメントを最も外側の溶接部で受けるものとして計算する。

曲げモーメント
計算モデル図 3－3 の場合の曲げモーメント

$$
\begin{align*}
& \mathrm{M}_{\mathrm{Y}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \mathrm{~h} \cdot \cdots \tag{3.5.4.1.1.13}\\
& \mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h} \tag{3,5,4,1,1,14}
\end{align*}
$$

計算モデル図 3－4 の場合の曲げモーメント

$$
\begin{align*}
& \mathrm{M}_{\mathrm{Y}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \cdot \ell \quad \cdots \cdot \tag{3.5,4.1.1.15}\\
& \mathrm{M}_{\mathrm{Z}}=\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{g} \cdot \mathrm{~h} \tag{3,5,4,1,1,16}
\end{align*}
$$

曲げ応力
計算モデル図 3－3及び図 3－4 の場合の曲げ応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{Y}}}{\mathrm{Z}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\mathrm{Z}_{\mathrm{Z}}} \tag{3.5,4.1.1.17}
\end{equation*}
$$

$Z_{Y}, ~ Z_{Z}$ は溶接断面のY軸及びZ軸に関する断面係数を示す。
（4）組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} \tag{3,5,4,1,1.18}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 溶接部の応力計算条件応力計算に用いる計算条件は，本計算書の【原子炉格納容器下部水位（T48－L／TE047A， B，L／TE048A，B）の耐震性についての計算結果】の設計条件及び機器要目に示す。

3．5．6 応力の評価

3．5．6．1 溶接部の応力評価
3．5．4．1．1 項で求めた溶接部に発生する応力は，許容応力 f s 以下であること。ただ し，f s は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 fs	$\frac{\mathrm{F}}{}$$*$ $1.5 \cdot \sqrt{3}$ 1.5

3.6 機能維持評価

3．6．1 電気的機能維持評価方法
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－10に示す。

表 3－10	機能確認済加速度	$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
原子炉格納容器下部水位 $(T 48-L / T E 047 A, ~ B, ~$ L／TE048A，B）	水平	
	鋁直	

3.7 評価結果

3．7．1 重大事故等対処設備としての評価結果
原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉格納容器下部水位（T48－L／TE047A，B，L／TE048A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 $\mathrm{S} d$ 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉格納容器下部水位 $\begin{gathered} \text { (T48-L/TE047A, B, } \\ \text { L/TE048A, B) } \end{gathered}$	常設／緩和	$\begin{gathered} \text { 原子炉本体基礎 } \\ \text { 0. P. }-2.500 \\ \left(0 . \text { P. 1. } 150^{* 1}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$		－	－	$\mathrm{C}_{\mathrm{H}}=1.38$	$\mathrm{C}_{\mathrm{V}}=0.70$	200

注記 $* 1$ ：基準床レベルを示す。

$$
\text { *2: 固有値解析より } 0.05 \text { 秒以下であり剛であることを確認した。 }
$$

요 1.2 機器要目

部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{u} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} Y} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} Z} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{Y}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{Z}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{P}} \\ \left(\mathrm{~mm}^{3}\right) \end{gathered}$
溶接部													

部 材	$\begin{gathered} \mathrm{S}_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
						弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	144	402	205	－	194	－	鈖直方向

1．3 計算数値
1．3．1 溶接部に作用する力
（単位：N）

	F ${ }_{\text {x }}$		F_{Y}		F_{z}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	－		－		－	

1.4 結論

1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{\mathrm{t}}=0$	$\mathrm{f}_{\mathrm{s}}=112$
		せん断	－	－	$\tau=3$	$\mathrm{f}_{\mathrm{s}}=112$
		曲げ	－	－	$\sigma_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s}}=112$
		組合せ	－	－	$\sigma_{\mathrm{w}}=4$	$\mathrm{f}_{\mathrm{s}}=112$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
原子炉格納容器下部水位	水平方向	1.15	
L／TE048A，B）	鉛直方向	0． 59	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

¢	項目	記号	単位	入力値
	材質	－	－	
	質量	m_{a}	kg	
	温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
	縦弾性係数	E	MPa	
	ポアソン比	v	－	
	要素数	－	個	
	節点数	－	個	

正面（水平方向）

側面（鉛直方向）

VI－2－6－5－8－3 ドライウェル水位の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 5
5．評価結果 6
5.1 重大事故等対処設備としての評価結果 6

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，ドライウェル水位が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

ドライウェル水位は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

ドライウェル水位の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
検出器は，溶接により ドライウェル内の架構に設置する。	電極式水位検出器	【ドライウェル水位】 側面	正面 （単位：mm）

2.2 評価方針

ドライウェル水位の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であ ることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

ドライウェル水位の耐震評価フローを図 2－1 に示す。

図 2－1 ドライウェル水位の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）

3．評価部位
ドライウェル水位は，溶接により原子炉格納容器内の架構に設置することから，原子炉格納容器が支持している。原子炉格納容器の構造強度評価は，添付書類「VI－2－9－2－1－1 ドライウェル の耐震性についての計算書」にて実施しているため，本計算書では，原子炉格納容器本体の地震応答解析結果を用いたドライウェル水位の電気的機能維持評価について示す。

4．機能維持評価
ドライウェル水位の電気的機能維持評価について，以下に示す。
4.1 機能維持評価用加速度

ドライウェル水位は原子炉格納容器内の架構に固定されることから，機能維持評価用加速度 は，「基準地震動 S s 」による地震力として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。機能維持評価用加速度を表4－1 に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
ドライウェル水位 （T48－L／TE051A，B，		水平	1． 19
$\begin{array}{ll} \mathrm{L} / \mathrm{TE} 052 \mathrm{~A}, & \mathrm{~B}, \\ \mathrm{~L} / \mathrm{TE} 053 \mathrm{~A}, & \mathrm{~B}) \end{array}$	(0. P. 3. 050*)	鉛直	0.63

注記＊：基準床レベルを示す。

4． 2 機能確認済加速度

ドライウェル水位の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表4－2 に示す。

表 4－2 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
$\begin{gathered} \text { ドライウェル水位 } \\ (\mathrm{T} 48-\mathrm{L} / \mathrm{TE} 051 \mathrm{~A}, \mathrm{~B}, \mathrm{~L} / \mathrm{TE} 052 \mathrm{~A}, \mathrm{~B}, \\ \mathrm{L} / \mathrm{TE} 053 \mathrm{~A}, \mathrm{~B}) \end{gathered}$	水平	
	鉛直	

5．評価結果
5.1 重大事故等対処設備としての評価結果

ドライウェル水位の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持さ れていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【ドライウェル水位（T48－L／TE051A，B，L／TE052A，B，L／TE053A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
$\begin{aligned} & \text { ドライウェル水位 } \\ & \text { (T48-L/TE051A, B, L/TE052A, } \\ & \text { B, L/TE053A, B) } \end{aligned}$	水平方向	1． 19	
	鉛直方向	0.63	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－5－9 原子炉建屋内の水素ガス濃度を計測する装置の耐震性につい ての計算書

目 次

VI－2－6－5－9－1 原子炉建屋内水素濃度の耐震性についての計算書

VI－2－6－5－9－1 原子炉建屋内水素濃度の耐震性についての計算書

目次

1．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}, ~ B\right) ~$ 1
1.1 概要 1
1．2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方． 6
1.3 評価部位 7
1．4 固有周期 7
1．4．1 固有値解析方法 7
1．4．2 解析モデル及び諸元 7
1．4．3 固有値解析結果 10
1.5 構造強度評価 11
1．5．1 構造強度評価方法 11
1．5．2 荷重の組合せ及び許容応力 11
1．5．3 設計用地震力 14
1．5．4 計算方法 15
1．5．5 計算条件 18
1．5．6 応力の評価 18
1． 6 機能維持評価 19
1．6．1 電気的機能維持評価方法． 19
1．7 評価結果 20
1．7．1 重大事故等対処設備としての評価結果 20
2．原子炉建屋内水素濃度（ $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 205$ ） 25
2.1 概要 25
2.2 一般事項 25
2．2．1 構造計画 25
2．2．2 評価方針 27
2．2．3 適用規格•基準等 28
2．2．4 記号の説明 29
2．2．5 計算精度と数値の丸め方． 30
2.3 評価部位 31
2． 4 固有周期 31
2．4．1 固有値解析方法 31
2．4．2 解析モデル及び諸元 31
2．4．3 固有値解析結果 34
2.5 構造強度評価 35
2．5．1 構造強度評価方法 35
2．5．2 荷重の組合せ及び許容応力 35
2．5．3 設計用地震力 38
2．5．4 計算方法 39
2．5．5 計算条件 42
2．5．6 応力の評価 42
2.6 機能維持評価 43
2．6．1 電気的機能維持評価方法． 43
2.7 評価結果 44
2．7．1 重大事故等対処設備としての評価結果 44
3．原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204$ ） 49
3.1 概要 49
3.2 一般事項 49
3．2．1 構造計画 49
3．2．2 評価方針 51
3．2．3 適用規格•基準等 52
3．2．4 記号の説明 53
3．2．5 計算精度と数値の丸め方 54
3．3 評価部位 55
3． 4 固有周期 55
3．4．1 固有値解析方法 55
3．4．2 解析モデル及び諸元 55
3．4．3 固有値解析結果 58
3.5 構造強度評価 59
3．5．1 構造強度評価方法 59
3．5．2 荷重の組合せ及び許容応力 59
3．5．3 設計用地震力 62
3．5．4 計算方法 63
3．5．5 計算条件 65
3．5．6 応力の評価 65
3． 6 機能維持評価 66
3．6．1 電気的機能維持評価方法． 66
3．7 評価結果 67
3．7．1 重大事故等対処設備としての評価結果 67

1．原子炉建屋内水素濃度（T71－H2E101A，B）

1．1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ，B）が設計用地震力に対し て十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ，B）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表して評価する。また，電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで，同構造の場合は同じ加速度となることから，構造強度評価 の代表として選定した検出器を代表として評価する。評価対象を表1－1 に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$（代表） T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~B}$	1.5 構造強度評価	表 1－2 構造計画

1.2 一般事項

1．2．1 構造計画

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の構造計画を表 1－2 に示す。

表1－2 構造計画

		概略構造図	

1．2．2 評価方針

原子炉建屋内水素濃度（T71－H2E101A）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の部位を踏まえ「 1.3 評価部位」にて設定する箇所において，「1．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．7 評価結果」に示す。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の耐震評価フローを図 $1-1$ に示す。

図 1－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の耐震評価フロー

1．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

1．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A ${ }_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131 に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b} 1}$	鉛直方向地震及び壁掛の取付面に対し左右方向の水平方向地震により ボルトに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b} 2}$	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震により ボルトに作用する引張力（1 本当たり）	N
f s b	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又 はfs＊ 1.5 倍した値）	MPa
f_{t} 。	引張力のみを受けるボルトの許容引張応力（ f_{t} を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
$\mathrm{ft} \mathrm{s}^{\text {f }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心と下側ボルト間の距離	mm
ℓ_{2}	上側ボルトと下側ボルト間の距離	mm
ℓ_{3}	評価上の支点と引張力を受けるとして期待するボルト間の距離	mm
ℓ_{4}	重心と重心から最も遠い位置のボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n_{fH}	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q b	ボルトに作用するせん断力	N
$Q_{b h}$	水平方向転倒モデルにおける取付ボルトに作用するせん断力	N
$Q_{b h 1}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により取付ボルトに作用するせん断力	N
$Q_{b \mathrm{~b} 2}$	水平方向転倒モデルにおける鉛直方向地震により取付ボルトに作用す るせん断力	N
$Q_{\text {bh } 3}$	水平方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用 するせん断力	N

記 号	記 号 の 説 明	単 位
$\mathrm{Q}_{\mathrm{b} V}$	鉛直方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bv} 1}$	鉛直方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する力	N
$\mathrm{Q}_{\mathrm{b} V 2}$	鉛直方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(\mathrm{R} \mathrm{T})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ_{b}	ボルトに生じるせん断応力	MPa

1．2．5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表1－3に示すとおりとする。

表 1－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{* 1}$
面積	mm^{2}	有效数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有效数字 5 桁目	四捨五入	有効数字 4 标＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

1．3 評価部位

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震評価は，「1．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の取付ボルトについ て実施する。原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震評価部位については，表1－2 の概略構造図に示す。

1．4 固有周期

1．4．1 固有値解析方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）は，「1．4．2 解析モデル及び諸元」に示す三次元 はりモデルとして考える。

1．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－H2E101A）の解析モデルを図 1－2 に，解析モデルの概要を以下に示す。
（1）原子炉建屋水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ において，計器取付金具は原子炉建屋構造物に固定さ れることから，（1）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部） 1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表1－4，部材の機器要目を表1－5に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）のX Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

（計器取付金具基礎部）
（検出器質点
（単位：mm）

図 1－2 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ 解析モデル

[^10]表 1－4 機器諸元（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$

項目	記号	単位	入力値
材質	-	-	kS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	ポアソン比 ポアソ
要素数	v	-	
節点数	-	個	

表 1－5 部材の機器要目（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$

材料	SS400
対象要素	（1）
A（ mm^{2} ）	
I y $\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
I $\mathrm{p}\left(\mathrm{mm}^{4}\right)$	
断面形状（mm）	$(a \times b \times c \times d)$

[^11]
1．4．3 固有値解析結果

固有値解析結果を表1－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 1－6 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）
固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			Z 方向	刺激係数	
1 1次		水平	-	-	-

1.5 構造強度評価

1．5．1 構造強度評価方法

1．4．2項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表1－2に示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ は，原子炉建屋構造物に溶接された計器取付金具に取付ボルトで固定されるものとする。

1．5．2 荷重の組合せ及び許容応力

1．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right)$ の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表1－7に示す。

1．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E101A）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表1－8のとおりとする。

1．5．2．3 使用材料の許容応力評価条件

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表1－9に示す。

表 1－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉建屋内水素濃度	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－8 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－9		使用材料の許容応力評価条件（重大事故等対処設備）				
評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	
取付ボルト		周囲環境温度	66	188	479	205

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－10に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 1－10 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鋁直方向設計震度	水平方向設計震度	鋁直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20 \\ \text { (0.P. } 50.50^{* 1} \text {) } \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 7.28 \end{gathered}$	$\begin{aligned} & C_{V}= \\ & 2.09 \end{aligned}$

注記 $* 1$ ：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．5．4 計算方法

1．5．4．1 応力の計算方法
1．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 1－3（1）計算モデル（水平方向転倒の場合）

図 1－3（2）計算モデル（鉛直方向転倒の場合）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 1－3（1）及び図 1－3（2）で最外列の取付ボルトを支点とする転倒を考え，これを片側の最外列の取付ボルトで受けるもの として計算する。

引張力

計算モデル図 1－3（1）の場合の引張力

$$
\begin{equation*}
F_{b 1}=m \cdot g \cdot\left(\frac{\left(1+C_{v}\right) \cdot h^{n}}{n_{\mathrm{fV}} \cdot l_{2}}+\frac{C_{H} \cdot h_{f H}}{n_{f} \cdot l_{3}}\right) \tag{1.5.4.1.1.1}
\end{equation*}
$$

計算モデル図 1－3（2）の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}+\mathrm{C}_{\mathrm{H}} \cdot \ell_{1}}{\mathrm{n}_{\mathrm{fVV}} \cdot \ell_{2}}\right) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \mathrm{~F}_{\mathrm{b} 2}\right) \ldots \ldots \ldots \ldots \tag{1.5.4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して取付ボルト全本数で受ける ものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bh} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdots \cdots \cdots \tag{1.5.4.1.1.6}\\
& \mathrm{Q}_{\mathrm{bh} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \quad \cdots \ldots \ldots \tag{1.5.4.1.1.7}\\
& \mathrm{Q}_{\mathrm{bh} 3}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{1.5.4.1.1.8}
\end{align*}
$$

$$
\begin{aligned}
& Q_{b h}=\sqrt{\left(Q_{b h 1}\right)^{2}+\left(Q_{b h 2}+Q_{b h 3}\right)^{2}} \\
& \mathrm{Q}_{\mathrm{bv} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{Q}_{\mathrm{b} V 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \\
& Q_{b V}=Q_{b V 1}+Q_{b V 2} \\
& \mathrm{Q}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{Q}_{\mathrm{bh}}, \mathrm{Q}_{\mathrm{bV}}\right)
\end{aligned}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.14}
\end{equation*}
$$

注記＊：本計算式のみ取付ボルト 1 本に作業するせん断力であり，全本数 n 本文に換算す るため n 倍とする。

1．5．5 計算条件

1．5．5．1 取付ボルトの応力計算条件
取付ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の耐震性についての計算結果】の設計条件および機器要目に示す。

1．5．6 応力の評価

1．5．6．1 取付ボルトの応力評価
1．5．4．1．1 項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{1.5.6.1.1}
\end{equation*}
$$

せん断応力 τ bはせん断力のみを受ける取付ボルト及び基礎ボルトの許容せん断応力 f s b 以下であること。ただし，f sbは下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{to} \text { o }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 ftsb^{*}	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－H2E101A）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能 の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－11に示す。

表 1－11 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度 （ $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）	水平	
	鉛直	

1.7 評価結果

1．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（ $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}\right) ~$ の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向設計震度	
原子炉建屋内水素濃度 （ $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）	常設／緩和	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . \text { P. } 33.20 \\ & \left(0 . \text { P. } 50.50^{* 1}\right) \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下 } * 2 \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=7.28$	$\mathrm{C}_{\mathrm{v}}=2.09$	66

記＊1：基準床レベルを示す
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．2 機器要目
1．2．1 原子炉建屋内水素濃度

部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1} * \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2} * \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{3} * \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{4} * \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	n f H	n f v＊
取付ボルト		285							4	2	2
										2	2

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{Su} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{\mathrm{g}} \underset{(\mathrm{MPa})}{(\mathrm{R} \mathrm{~T})} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材						弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	188	479	205	－	205	－	水平方向

注記＊：機器要目における上段は鉛直方向転倒に対する評価時の要目を示し，下段は水平方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F b		Q b	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	－		－	

1． 4 結論
1．4．1 ボルトの応力（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	－	－	$\sigma_{\mathrm{b}}=96$	$\mathrm{ff}_{\mathrm{ts}}=138^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=48$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=118$

N すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
－		機能維持評価用加速度＊	$\underset{\text { 機能確認済加速 }}{\text { 度 }}$
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 101 \mathrm{~A}$ ）	水平方向	6.07	
	鉛直方向	1．74	

注記＊：基準地震動 S s により定まる応答力の速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3）VI－2－6－5－9－1 R 0
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	SS 400
質量	ma	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

O 2 （3）VI－2－6－5－9－1 R 0

正面（水平方向）
側面（鉛直方向）

2．原子炉建屋内水素濃度（ $\left.\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 205\right)$
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価 を示す。
2.2 一般事項

2．2．1 構造計画
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボル トにより計器取付金具に固定される。 計器取付金具は，原子炉建屋構造物に溶接で固定する。	触媒式水素検出器	【原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$ 】 原子炉建屋構造物 上面 原子炉建屋構造物 正面 側面

2．2．2 評価方針

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の応力評価は，添付書類「VI $-2-1-9$ 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－H2E205）の部位を踏まえ「2．3 評価部位」にて設定する箇所において，「2．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「2．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－H2E205）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「2．6 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「2．7 評価結果」に示す。原子炉建屋内水素濃度（T71－H2E205）の耐震評価フローを図 2－1 に示す。

図 2－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の耐震評価フロー

2．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2．2．4 記号の説明

記 号	記 号 の 説 明	単 位
$\mathrm{A}_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F^{*}	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b} 1}$	鉛直方向地震及び壁掛の取付面に対し左右方向の水平方向地震によりボ ルトに作用する引張力（1 本当たり）	N
$\mathrm{F}_{\mathrm{b}} 2$	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震によりボ ルトに作用する引張力（1 本当たり）	N
f_{sb}	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又は f s＊を 1.5 倍した値）	MPa
$\mathrm{f}_{\mathrm{t} \text { 。 }}$	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f_{t}＊を 1.5 倍した値）	MPa
$\mathrm{fr} \mathrm{s}^{\text {f }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心と下側ボルト間の距離	mm
ℓ_{2}	上側ボルトと下側ボルト間の距離	mm
ℓ_{3}	評価上の支点と引張力を受けるとして期待するボルト間の距離	mm
ℓ_{4}	重心と重心から最も遠い位置のボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
n f V	評価上引張力を受けるとして期待するボルトの本数（鉛直方向）	－
n_{fH}	評価上引張力を受けるとして期待するボルトの本数（水平方向）	－
Q b	ボルトに作用するせん断力	N
Q_{bh}	水平方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bh} 1}$	水平方向転倒モデルにおける検出器取付面に対し左右方向の水平方向地震により取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bh} 2}$	水平方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する せん断力	N
$\mathrm{Q}_{\mathrm{bh} 3}$	水平方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N

記 号	記 号 の 説 明	単 位
$\mathrm{Q}_{\mathrm{b} V}$	鉛直方向転倒モデルにおける取付ボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{bv} 1}$	鉛直方向転倒モデルにおける鉛直方向地震により取付ボルトに作用する力	N
$\mathrm{Q}_{\mathrm{b} V 2}$	鉛直方向転倒モデルにおける重心の偏心を考慮した取付ボルトに作用す るせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(\mathrm{R} \mathrm{T})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ_{b}	ボルトに生じるせん断応力	MPa

2．2．5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有效数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
$* 2:$ 絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

2.3 評価部位

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の取付ボルトについ て実施する。原子炉建屋内水素濃度（T71－H2E205）の耐震評価部位については，表2－1 の概略構造図に示す。

2． 4 固有周期

2．4．1 固有値解析方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~ の$ 固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度は，「2．4．2 解析モデル及び諸元」に示す三次元はりモデルとし て考える。

2．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の解析モデルを図 2－2 に，解析モデルの概要を以下に示す。
（1）原子炉建屋水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）において，計器取付金具は原子炉建屋構造物に固定さ れることから，（1）の部材で組まれた支持構造物とみなし，支持点（計器取付金具基礎部） 2 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表2－3，部材の機器要目を表2－4に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

（単位：mm）

図 2－2 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）解析モデル

表 2－3 機器諸元（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$

項目	記号	単位	入力値
材質	-	-	SS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 2－4 部材の機器要目（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right)$

材料	SS400
対象要素	（1）
A（ mm^{2} ）	
I y $\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{p}}\left(\mathrm{mm}^{4}\right)$	
断面形状（mm）	$(a \times b \times c \times d)$

[^12]
2．4．3 固有値解析結果

固有値解析結果を表2－5 に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 2－5 原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）
固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			Z方向	刺激係数	
1 次		水平	-	-	-

2.5 構造強度評価

2．5．1 構造強度評価方法

2．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~ に$ 対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表 2－1 に示す原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）は，原子炉建屋構造物に溶接された計器取付金具に取付ボルトで固定されるものとする。

2．5．2 荷重の組合せ及び許容応力
2．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表2－6に示す。

2．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E205）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表 2－7 のとおりとする。

2．5．2． 3 使用材料の許容応力評価条件
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表2－8に示す。

表 2－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉建屋内水素濃度	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{* 1, * 2}$ （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} V_{A} S \\ \left(V_{A} S \text { としてIV }{ }_{A} S\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表2－8						
使用材料の許容応力評価条件（重大事故等対処設備）						
評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	
取付ボルト		周囲環境温度	130	161	429	205

2．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 2－9 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉建屋 $\begin{gathered} \text { 0. P. }-0.80 \\ \left(0 . \text { P. } 6.00^{* 1}\right) \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{gathered} C_{H}= \\ 1.57 \end{gathered}$	$\begin{gathered} C_{V}= \\ 1.09 \end{gathered}$

注記 $⿻ コ 一^{1}$ ：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 2－3（1）計算モデル（水平方向転倒の場合）

$\mathrm{m} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{g}$

図 2－3（2）計算モデル（鉛直方向転倒の場合）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 2－3（1）及び図 2－3（2）で最外列の取付ボルトを支点とする転倒を考え，これを片側の最外列の取付ボルトで受けるもの として計算する。

引張力

計算モデル図 2－3（1）の場合の引張力

$$
\begin{equation*}
F_{b 1}=m \cdot g \cdot\left(\frac{\left(1+C_{v}\right) \cdot h_{f_{V}} \cdot l_{2}}{n_{f H} \cdot l_{3}}\right) \tag{2.5.4.1.1.1}
\end{equation*}
$$

計算モデル図 2－3（2）の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}+\mathrm{C}_{\mathrm{H}} \cdot \ell_{1}}{\mathrm{n}_{\mathrm{fV},} \cdot \ell_{2}}\right) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \quad \mathrm{~F}_{\mathrm{b} 2}\right) \quad \ldots \ldots \ldots \ldots . \tag{2.5,4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2,5,4.1.1.4}
\end{equation*}
$$

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{2.5.4.1.1.5}
\end{equation*}
$$

（2）せん断応力
取付ボルトに対するせん断力は，重心位置の偏心を考慮して取付ボルト全本数で受ける ものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{bh} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdots \cdots \cdots \tag{2.5.4.1.1.6}\\
& \mathrm{Q}_{\mathrm{bh} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \quad \cdots \ldots \ldots \tag{2.5.4.1.1.7}\\
& \mathrm{Q}_{\mathrm{bh} 3}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{2.5.4.1.1.8}
\end{align*}
$$

$$
\begin{align*}
& Q_{b h}=\sqrt{\left(Q_{b h 1}\right)^{2}+\left(Q_{b h 2}+Q_{b h 3}\right)^{2}} \tag{2.5.4.1.1.9}\\
& \mathrm{Q}_{\mathrm{bv} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{Q}_{\mathrm{b} V 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \frac{\ell_{4}}{\ell_{3}} \cdot \mathrm{n}^{*} \tag{2.5.4.1.1.11}\\
& Q_{b V}=Q_{b V 1}+Q_{b V 2} \tag{2.5.4.1.1.12}\\
& \mathrm{Q}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{Q}_{\mathrm{bh}}, \mathrm{Q}_{\mathrm{bv}}\right) \\
& \text { (2.5.4.1.1.10) } \\
& \text { (2.5.4.1.1.13) }
\end{align*}
$$

せん断応力

$$
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}}
$$

注記＊：本計算式のみ取付ボルト 1 本に作業するせん断力であり，全本数 n 本文に換算す るため n 倍とする。

2．5．5 計算条件
2．5．5．1 取付ボルトの応力計算条件
取付ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の耐震性についての計算結果】の設計条件および機器要目に示す。

2．5．6 応力の評価

2．5．6．1 取付ボルトの応力評価
2．5．4．1．1項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{2.5.6.1.1}
\end{equation*}
$$

せん断応力 τ ьはせん断力のみを受ける取付ボルト及び基礎ボルトの許容せん断応力 f s b 以下であること。ただし，f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{fta}_{\mathrm{to}}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 ftsb	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.6 機能維持評価

2．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~ の$ 電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 205\right) ~$ の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能 の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表2－10に示す。

表 2－10 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度		
（T71－H2E205）	水平	
	鉛直	

2.7 評価結果

2．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋内水素濃度（T71－H2E205）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名 称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）	常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \mathrm{P} .-0.80 \\ & \left(0 . \mathrm{P} .6 .00^{* 1}\right) \end{aligned}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	130

注記＊1：基漼床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．2 機器要目
1．2．1 原子炉建屋内水素濃度

						転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{MP}} \end{gathered}$	$\begin{gathered} \mathrm{Su} \\ (\mathrm{MPa}) \end{gathered}$	（MPa）	(MPa)	(MPa)	弾性設計用地震動 S d 又は静的震度	$\begin{gathered} \hline \text { 基漼地震動 } \\ \text { S s } \end{gathered}$
取付ボルト	161	429	205	－	205	－	水平方向

注記＊：機器要目における上段は鉛直方向転倒に対する評価時の要目を示し，下段は水平方向転倒に対する評価時の要目を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト	-		-	

1．4 結論

すべて許容応力以下である。
ゃ

1．4．2 電気的機能維持の評価結		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 205$ ）	水平方向	1.31	
	鉛直方向	0.91	

注記＊：基準地震動 S s により定まる応答力の速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3）VI－2－6－5－9－1 R 0
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	SS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

正面（水平方向）

側面（鉛直方向）

3．原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204\right)$

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202, \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203, \mathrm{~T} 71-$ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明する ものである。

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 201, ~ \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202$ ， $\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 203, ~ \mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 204$ ）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表して評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる設置床高さの検出器について代表として評価する。評価対象を表 3－ 1 に示す。

表 3－1 概略構造識別

評価部位	評価方法	構造計画	
$\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 201$			
$\mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 202$	3.5	構造強度評価	表 $3-2$
$\mathrm{~T} 71-\mathrm{H}_{2} \mathrm{E} 203$	構造計画		
$\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 204$（代表）			

3.2 一般事項

3．2．1 構造計画
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の構造計画を表 3－2 に示す。

$$
\mathrm{O} 2 \text { (3) } \mathrm{VI}-2-6-5-9-1 \quad \mathrm{R} \mathrm{O}
$$

表 3－2 構造計画

3．2．2 評価方針

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の応力評価は，添付書類「VI $-2-1-9$ 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．2．1 構造計画」にて示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「3．5 構造強度評価」にて示す方法にて確認する ことで実施する。また，原子炉建屋内水素濃度（T71－H2E204）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「3．6 機能維持評価」にて示 す方法にて確認することで実施する。確認結果を「3．7 評価結果」に示す。原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の耐震評価フローを図 3－1 に示す。

図 3－1 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の耐震評価フロー

3．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
$\mathrm{A}_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131 に定める値	MPa
F＊	設計•建設規格 SSB－3133 に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{f}_{\mathrm{s}} \mathrm{b}$	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又 はfs＊を 1.5 倍した値）	MPa
ft_{t} 。	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	評価上の支点と引張力を受けるとして期待する基礎ボルト間の距離	mm
ℓ_{2}	評価上の支点と重心の距離	mm
m	検出器及び計器取付金具の質量	kg
n	ボルトの本数	－
n f	評価上引張力を受けるとして期待するボルトの本数	－
Q_{b}	ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表Part5 表 8 に定める値	MPa
S_{y}（R	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ におけ	MPa
T）	る値	
π	円周率	－
$\sigma_{\text {b }}$	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。表示する数値の丸め方は，表 3－3 に示すとおりとする。

表 3－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有效数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有效数字 5 桁目	四捨五入	有効数字 4 析＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。 $* 2$ ：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3.3 評価部位

原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の基礎ボルトについ て実施する。原子炉建屋内水素濃度（T71－H2E204）の耐震評価部位については表3－2 の概略構造図に示す。

3.4 固有周期

3．4．1 固有値解析方法原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ の$ 固有値解析方法を以下に示す。
（1）原子炉建屋内水素濃度（T71 $\left.-\mathrm{H}_{2} \mathrm{E} 204\right) ~ は, ~ 「 3.4 .2$ 解析モデル及び諸元」に示す三次元 はりモデルとして考える。

3．4．2 解析モデル及び諸元

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の解析モデルを図 3－2 に，解析モデルの概要を以下 に示す。また，機器諸元を本計算書【原子炉建屋内水素濃度（T71－H2E204）の耐震性について の計算結果】のその他の機器要目に示す。
（1）原子炉建屋水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）において，計器取付金具は（1）及び（2）の鋼材で L 字に組 まれて原子炉建屋の天井に固定されることから，（1）及び（2）の部材で組まれた支持構造物と みなし，支持点（計器取付金具基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 3－4，部材の機器要目を表 3－5 に示す。
（3）拘束条件として，支持点（計器取付金具基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

図 3－2 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ 解析モデル

[^13]表 3－4 機器諸元（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$

項目	記号	単位	入力値	
材質	-	-		
質量	m_{b}	kg	SS 400	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$		
縦弾性係数	E	MPa		
ポアソン比	v	-		
ポア0				
要素数	-	個		
節点数	-	個		

表 3－5 部材の機器要目（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$

材料		SS400
対象要素	（1）	（2）
A（mm ${ }^{2}$		
I y $\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
$I_{p}\left(m m^{4}\right)$		
断面形状 (mm)		

[^14]
3．4．3 固有値解析結果

固有値解析結果を表3－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 3－6 原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right)$
固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			Z 方向	刺激係数	
1 次		水平	-	-	-

3.5 構造強度評価

3．5．1 構造強度評価方法
3．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ に$ 対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）表 3－2 に示す原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ は$ ，基礎ボルトにより天井面に固定さ れるものとする。

3．5．2 荷重の組合せ及び許容応力
3．5．2．1 荷重の組合せ及び許容応力状態
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表3－7に示す。

3．5．2．2 許容応力
原子炉建屋内水素濃度（T71－H2E204）の許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表 3－8 のとおりとする。

3．5．2．3 使用材料の許容応力評価条件
原子炉建屋内水素濃度（T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表3－9に示す。

表 3－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	計測装置	原子炉建屋内水素濃度	常設／緩和		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{A} \mathrm{~S}\right. \\ \text { の許容限界を用 } \\ \text { いる。) } \end{gathered}$

注記 $* 1$ ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－8 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。）	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。
σ
表 3－9 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)			
周囲環境温度	80	201	379	-	

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－10に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－10 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. 15. } 00 \\ \text { (0.P. 33. } 20^{* 1} \text {) } \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{gathered} C_{H}= \\ 2.65 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.77 \end{gathered}$

注記＊1：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

転倒方向

図 3－3（1）計算モデル（短辺方向転倒の場合）

図 3－3（2）計算モデル（長辺方向転倒の場合）
（1）引張応力
基礎ボルトに対する引張力は，最も厳しい条件として，図 3－3（1）で最外列の基礎ボルト を支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものとして計算する。 また，図 3－3（2）では検出器の端部を支点とする転倒を考え，これを基礎ボルト全数で受け るものとして計算する。

引張力
計算モデル図3－3（1）及び図3－3（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}+\left(\mathrm{C}_{\mathrm{v}}+1\right) \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot \ell_{1}}\right) \tag{3.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{3.5.4.1.1.2}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{3.5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{3.5.4.1.1.4}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{3.5.4.1.1.5}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【原子炉建屋内水素濃度 （T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~ の$ 耐震性についての計算結果】の設計条件および機器要目に示す。

3．5．6 応力の評価

3．5．6．1 基礎ボルトの応力評価
3．5．4．1．1 項で求めた基礎ボルトの引張応力 σ b は次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{3.5,6,1.1}
\end{equation*}
$$

せん断応力 $\tau \mathrm{b}$ はせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であ ること。ただし，f sbは下表による。

	基準地震動 S s による荷 重との組合せの場合
許容引張応力 $\mathrm{f} \mathrm{too}^{*}$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f} \mathrm{sbb}^{2}$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

3.6 機能維持評価

3．6．1 電気的機能維持評価方法
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能 の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－11に示す。

表 3－11 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）	水平	
	鉛直	

3.7 評価結果

3．7．1 重大事故等対処設備としての評価結果
原子炉建屋内水素濃度（T71－ $\left.\mathrm{H}_{2} \mathrm{E} 204\right) ~$ の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋内水素濃度（T71－H2E204）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉建屋内水素濃度 （T71－ $\mathrm{H}_{2} \mathrm{E} 204$ ）	常設／緩和	原子炉建屋 0．P． 15.00 $\left(0\right.$. P． $\left.33.20^{* 1}\right)$		$\begin{gathered} 0.05 \\ \text { 以下 }{ }^{*} 2 \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	80

注記＊1：基漼床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(\mathrm{RT} T) \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材						弾性設計用地震動 S d 又は静的震度	基準地震動 S S
基礎ボルト	201	379	－	－	241	－	短辺方向

注記＊：機器要目における上段は長辺方向転倒に対する評価時の要目を示し，下段は短辺方向転倒に対する評価時の要目を示す。

1．3 計算数値
1．3．1 ボルトに作用する

部 材	$F_{\text {b }}$		Q_{b}	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論
1．4．1 ボルトの応力

注記＊： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
	機能維持 評価用加速度＊	機能確認済加速度	
原子炉建屋内水素濃度 $\left(\mathrm{T} 71-\mathrm{H}_{2} \mathrm{E} 204\right)$	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動 S s により定まる応答力の速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O 2 （3）VI－2－6－5－9－1 R 0
1.5 その他の機器要目

項目	記号	単位	入力値	
材質	-	-		
質量	m_{b}	kg	SS 400	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$		
縦弾性係数	E	MPa		
ポアソン比	v	-		
要素数	-	個		
節点数	-	個		

正面（短辺方向）

側面（長辺方向）

> VI-2-6-7 その他の計測制御設備の耐震性についての計算書

目 次

VI－2－6－7－1 計測制御設備の盤の耐震性についての計算書
VI－2－6－7－2 衛星電話設備（固定型）の耐震性についての計算書
VI－2－6－7－3 無線連絡設備（固定型）の耐震性についての計算書
VI－2－6－7－4 安全パラメータ表示システム（SPDS）SPDS 表示装置の耐震性についての計算書
VI－2－6－7－5 安全パラメータ表示システム（SPDS）無線通信用アンテナの耐震性についての計算書

VI－2－6－7－6 統合原子力防災ネットワークを用いた通信連絡設備の耐震性についての計算書 VI－2－6－7－7 統合原子力防災ネットワーク設備衛星アンテナの耐震性についての計算書 VI－2－6－7－8 統合原子力防災ネットワーク用通信機器収容架の耐震性についての計算書 VI－2－6－7－9 代替原子炉再循環ポンプトリップ遮断器の耐震性についての計算書 VI－2－6－7－10 原子炉圧力容器温度の耐震性についての計算書

VI－2－6－7－11 フィルタ装置水位（広帯域）の耐震性についての計算書
VI－2－6－7－12 フィルタ装置入口圧力（広帯域）の耐震性についての計算書
VI－2－6－7－13 フィルタ装置出口圧力（広帯域）の耐震性についての計算書 VI－2－6－7－14 フィルタ装置水温度の耐震性についての計算書 VI－2－6－7－15 フィルタ装置出口水素濃度の耐震性についての計算書 VI－2－6－7－16 原子炉補機冷却水系系統流量の耐震性についての計算書 VI－2－6－7－17 残留熱除去系熱交換器冷却水入口流量の耐震性についての計算書 VI－2－6－7－18 静的触媒式水素再結合装置動作監視装置の耐震性についての計算書

VI－2－6－7－1 計測制御設備の盤の耐震性についての計算書

目次

1．計測制御設備の盤（ベンチ形） 1
1． 1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．3 固有周期 3
1．3．1 固有周期の算出方法 3
1． 4 構造強度評価 4
1．4．1 構造強度評価方法 4
1．4．2 荷重の組合せ及び許容応力 4
1．4．2．1 荷重の組合せ及び許容応力状態 4
1．4．2．2 許容応力 4
1．4．2．3 使用材料の許容応力評価条件 4
1.5 機能維持評価 8
1．5．1 電気的機能維持評価方法 8
1.6 評価結果 9
1．6．1 設計基準対象施設としての評価結果 9
1．6．2 重大事故等対処設備としての評価結果 9
2．計測制御設備の盤（直立形） 16
2.1 概要 16
2.2 一般事項 17
2．2．1 構造計画 17
2.3 固有周期 19
2．3．1 固有周期の算出方法 19
2． 4 構造強度評価 20
2．4．1 構造強度評価方法 20
2．4．2 荷重の組合せ及び許容応力 20
2．4．2．1 荷重の組合せ及び許容応力状態 20
2．4．2．2 許容応力 20
2．4．2．3 使用材料の許容応力評価条件 20
2.5 機能維持評価 22
2．5．1 電気的機能維持評価方法 22
2．6 評価結果 23
2．6．1 設計基準対象施設としての評価結果 23

1．計測制御設備の盤（ベンチ形）
1．1 概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，計測制御設備の盤（ベンチ形）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

計測制御設備の盤（ベンチ形）のうち原子炉冷却制御盤 ESS－I •IIIは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故防止設備，常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉冷却制御盤 ESS－I •IIIは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載のベンチ形盤であるため，添付書類「VI－2－1－13－7 盤の耐震性 についての計算書作成の基本方針」に基づき評価を行う。

構造強度評価については，計測制御設備の盤（ベンチ形）のボルトに作用する応力 の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。電気的機能維持評価については機能確認済加速度が最も低い器具を代表として評価す る。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
原子炉冷却制御盤ESS－I •III（代表）	VI－2－1－13－7 盤の耐震性 についての計算書作成の基本方針	表1－2 構造計画
原子炉冷却制御盤 ESS－II		
原子炉補機制御盤		
原子炉制御盤		

1．2 一般事項

1．2．1 構造計画

原子炉冷却制御盤 ESS－I •IIIの構造計画を表1－2に示す。
O 2
3） $\mathrm{VI}-2-6-7-1$
R 0

表 1－2 構造計画

1． 3 固有周期

1．3．1 固有周期の算出方法
水平方向の固有周期は，プラスチックハンマ等により当該装置に振動を与え自由減衰振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）に より記録解析する。試験の結果，剛であることを確認した。

鉛直方向の固有周期は，構造が同等であり，同様な振動特性を持つ盤に対する振動試験（打振試験）の結果確認された固有周期を使用する。

固有周期の確認結果を表1－3に示す。

表 1－3 固有周期
（単位：s）

名称	方向	固有周期
原子炉冷却制御盤 ESS－I • III	水平	
	鉛直	0.05 以下

1． 4 構造強度評価

1．4．1 構造強度評価方法
盤の構造強度評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の耐震計算方法に基づき行う。

1．4．2 荷重の組合せ及び許容応力
1．4．2．1 荷重の組合せ及び許容応力状態
盤の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いる ものを表1－4に，重大事故等対処設備の評価に用いるものを表1－5に示す。

1．4．2．2 許容応力
盤の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表1－6 のとおりとする。

1．4．2．3 使用材料の許容応力評価条件
盤の使用材料の許容応力のうち設計基準対象施設の評価に用いるものを表1－ 7 に，重大事故等対処設備の評価に用いるものを表1－8に示す。

表 1－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態		
計測制御	その他の							
系統施設	計測制御							
系統施設							\quad	原子灯冷却制御盤
:---:								
ESS－I •III								

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
cr
表 1－5 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{\text {1 }}$	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統施設	その他の計測制御系統施設	原子炉冷却制御盤ESS- I • III	常設耐震／防止 常設／防止 常設／防止 （DB 拡張） 常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
						$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
						（ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$ の許容限
						界を用いる。）

注記 $\boldsymbol{*}^{1}$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／防止」は常設重大事故防止設備，「常設／防止（DB 拡張）」 は常設重大事故防止設備（設計基準拡張），「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。 ＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表1－6 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	$\begin{aligned} & \text { 許容限界*1, *2 } \\ & \text { (ボルト等) } \end{aligned}$		
	一次応力		
	引張り		せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\text {t }}$		$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$		$1.5 \cdot \mathrm{fs}^{*}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－7 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & S_{y i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 1－8 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \mathrm{i}}$ (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400
(MPa)					

1.5 機能維持評価

1．5．1 電気的機能維持評価方法
盤の電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

盤に設置される器具の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の器具及び当該器具と類似の器具単体の正弦波加振試験 において，電気的機能の健全性を確認した器具の最大加速度を適用する。機能確認済加速度を表1－9に示す。

表 1－9 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉冷却制御盤 ESS －I •III	水平	$(\mathrm{H} 11-\mathrm{P} 601-1)$

1． 6 評価結果

1．6．1 設計基準対象施設としての評価結果
原子炉冷却制御盤 ESS－I •IIIの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

1．6．2 重大事故等対処設備としての評価結果

原子炉冷却制御盤 ESS－I •IIIの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉冷却制御盤 ESS－I • III（H11－P601－1）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { 周囲擐境温度 }}$
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$		$\begin{aligned} & \text { 水平方向訽設忛震 } \end{aligned}$	$\begin{aligned} & \text { 鋁直方向荷仆震度 } \end{aligned}$	
$\begin{gathered} \hline \text { 原子炉泠却制御盤 } \\ \text { ESS-I II } \\ \text { (H11-P601-1) } \end{gathered}$	S	$\begin{aligned} & \text { 制御建屋 } \\ & \text { O. } \\ & \text { (0. P. 22. } 23.45 \text {) } \end{aligned}$		0． 05 以下	$\mathrm{C}_{\mathrm{H}}=1.68$	$\mathrm{C}_{\mathrm{v}}=1.10$	$\mathrm{C}_{\mathrm{H}}=2.89$	$\mathrm{C}_{\mathrm{v}}=2.03$	40

注記＊：基準床レベルを示す。

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1 ;}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2_{i}{ }^{* 1}}^{(\mathrm{mm})} \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\substack{\mathrm{A}_{\mathrm{b} i} \\\left(\mathrm{~mm}^{2}\right)}}{ }$	n_{i}	$\mathrm{n}_{\mathrm{fi}}{ }^{\text {＊}}$
取付ボルト （ $\mathrm{i}=2$ ）		2300	455	955	$\begin{gathered} 16 \\ \text { (M16) } \end{gathered}$	201． 1	63	15
			0	4500				6

$\stackrel{\rightharpoonup}{\circ}$

	$\underset{(\mathbb{M P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	転倒方向	
部 材					弾性設計用地震動 d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	短辺方向	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 S d又は静的震度		弾性設計用地震動S d又は静的震度	
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	6． 885×10^{3}	1.537×10^{4}	6． 178×10^{4}	1． 063×10^{5}

1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材		応 力	弾性設計用地震動S d 又は静的震度		基淮地震動S s	
			算出応力	許容応力	算出応力	許容応力
$\underset{\substack{\text { 取付ボルト } \\ \mathrm{i}=2)}}{ }$	SS400	引張り	$\sigma_{\mathrm{b} 2}=35$	$\mathrm{f}_{\mathrm{ts} 2}=176{ }^{*}$	$\sigma_{\mathrm{b} 2}=77$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=9$	$\mathrm{f}_{\mathrm{sb} 2}=161$

注記＊$: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right.$ ］より算出
も すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能碓認済加速度
$\begin{gathered} \text { 原子炉冷却制御盤 } \\ \text { ESSSI.I•II } \\ \text { (H11-P601-1) } \end{gathered}$	水平方向	2.41	
	鉛直方向	1.69	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

【原子炉冷却制御盤ESS－I•III（H11－P601－1）の而震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d又は静的震度		基準地震動S s		周囲環境温度(C)
			水平方向	鉛直方向		鉛直方向 設計震度	$\underset{\substack{\text { 水平方向 } \\ \text { 計震度 }}}{\text { 俍 }}$	鈖直方向 設計震度	
$\begin{gathered} \text { 原子炉冷却制御船 } \\ \text { ESS-I }(\text { H11-P601-1 }) \end{gathered}$	常設耐震 常設／防止常設 1 防止 （DB 拡張）常設 緩和	$\begin{aligned} & \text { 制御建屋 } \\ & \text { (... } \\ & \text { (0.P. P. 23. } 95 \text { 45) } \end{aligned}$		0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.89$	$\mathrm{C}_{\mathrm{V}}=2.03$	40

注記＊：基準床レベルを示す。

部 材	$\underset{(\mathbb{P a})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}{ }^{*} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \end{aligned}$
	235	400	－	280	－	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 Sd又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$	弾性設計用地震動S d又は静的震度	基準地震動 S s
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	－	1.537×10^{4}	－	1． 063×10^{5}

2． 4 結論
2．4．1 ボルトの応力（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=77$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=9$	$\mathrm{ff}_{\mathrm{sb} 2}=161$

注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right.$ ］より算出。
ゅ すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

| | | | 機能維持評価用加速度＊ |
| :---: | :---: | :---: | :---: | 機能確認斎加速度

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

2．計測制御設備の盤（直立形）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，計測制御設備の盤（直立形）が設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

計測制御設備の盤（直立形）のうち出力領域モニタ盤（A）RPS－I は，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

なお，出力領域モニタ盤（A）RPS－I は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形盤であるため，添付書類「VI－2－1－13－7 盤の耐震性 についての計算書作成の基本方針」に基づき評価を行う。

構造強度評価については，計測制御設備の盤（直立形）のボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。電気的機能維持評価については機能確認済加速度が最も低い器具を代表として評価す る。

表 2－1 概略構造識別

評価部位	評価方法	構造計画
出力領域モニタ盤（A）RPS－I（代表）	$\mathrm{VI}-2-1-13-7$ 盤の耐震性についての計算書作成の基本方針	表 2－2 構造計画
2 号 SPDS サーバ筐体（A）		
2 号 SPDS サーバ筐体（B）		
起動領域モニタ安全系プロセス放射線 モニタ盤 （A）RPS－I		
起動領域モニタ安全系プロセス放射線 モニタ盤（B）RPS－II		
格納容器内雰囲気モニタ盤（A）ESS－I		
格納容器内雰囲気モニタ盤（ ${ }^{\text {a }}$ ）ESS－II		
サプレッションプール水温度記録監視盤区分 I		
サプレッションプール水温度記録監視盤区分 II		
AM 制御盤		
フィルタベント系制御盤		
R／B 水素ベント・PAR 温度監視盤		
SFP 監視盤		
代替注水制御盤		
HPAC 制御盤		
重大事故時モニタ盤（1）		

評価部位	評価方法	構造計画
重大事故時モニタ盤（2）	VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針	表 2－2 構造計画
重大事故時監視盤（1）		
重大事故時監視盤（2）		
DCLI 制御盤		
2 号 SPDS 緊急時伝送盤（1）		
2 号 SPDS 緊急時伝送盤（3）		
2 号 SPDS 緊急時伝送盤（4）		
中央制御室外原子炉停止装置盤 ESS－I		
中央制御室外原子炉停止装置盤 ESS－II		

2． 2 一般事項
2．2．1 構造計画
出力領域モニタ盤（A）RPS－I の構造計画を表 2－2 に示す。
○ 2
（3） $\mathrm{VI}-2-6-7-1$
R 0

表 2－2 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
出力領域モニタ盤（A） RPS－I は，基礎に固定 されたチャンネルベ ースに取付ボルトで設置する。	直立形 （鋼材及び鋼板を組 み合わせた自立閉鎖型の盤）	【出力領域モニタ盤（A）RPS－I】		
				出力領域モニタ盤（A）RPS－I
			たて	1000 mm
			横	3000 mm
			高さ	2300 mm

2． 3 固有周期

2．3．1 固有周期の算出方法
水平方向の固有周期は，プラスチックハンマ等により当該盤に振動を与え自由減裹振動を固有振動数測定装置（圧電式加速度ピックアップ，振動計，分析器）によ り固有振動数（共振周波数）を記録解析する。試験の結果，剛であることを確認し た。

鉛直方向の固有周期は，構造が同等であり，同様な振動特性を持つ盤に対する振動試験（打振試験）の結果確認された固有周期を使用する。

固有周期の確認結果を表2－3に示す。

表 2－3 固有周期
（単位：s）

名称	方向	固有周期
出力領域モニタ盤（A）RPS－I	水平	
	鉛直	0.05 以下

2． 4 構造強度評価

2．4．1 構造強度評価方法
盤の構造強度評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成 の基本方針」に記載の耐震計算方法に基づき行う。

2．4．2 荷重の組合せ及び許容応力
2．4．2．1 荷重の組合せ及び許容応力状態
盤の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いる ものを表2－4に示す。

2．4．2．2 許容応力
盤の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－5 のとおりとする。

2．4．2．3 使用材料の許容応力評価条件
盤の使用材料の許容応力のうち設計基準対象施設の評価に用いるものを表 2－ 6 に示す。

表 2－4 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御	その他の	出力領域モニタ盤 （A）RPS－I	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	III ${ }_{\text {A }} \mathrm{S}$
系統施設	系統施設				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 2－5 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}^{*}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－6 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\mathrm{S}_{\mathrm{y} \mathrm{i}}$ (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	
(MPa)					

2.5 機能維持評価

2．5．1 電気的機能維持評価方法
盤の電気的機能維持評価は，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

盤に設置される器具の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の器具及び当該器具と類似の器具単体の正弦波加振試験 において，電気的機能の健全性を確認した器具の最大加速度を適用する。機能確認済加速度を表2－7に示す。

表 2－7 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
出力領域モニタ盤（A）RPS－I	水平	
	鉛直	

2.6 評価結果

2．6．1 設計基準対象施設としての評価結果
出力領域モニタ盤（A）RPS－I の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【出力領域モニタ盤（A）RPS－I（H11－P608－1）の耐震性についての計算結果】
1．設計基準対象施設
1．1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的麎度		基淮地震動S s		周囲環境温度(C)
			水平方向	鉛直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \\ & \hline \end{aligned}$	鉛直方向 設什震度	$\underset{\substack{\text { 水平方向 } \\ \text { 設計震度 }}}{\text { 俍 }}$	鉛直方向設計震度	
$\begin{gathered} \hline \text { 出力領域モ二夕盤 } \\ (A \text { RPS- RPS } \\ \text { (H11-P608-1) } \end{gathered}$	S	$\begin{aligned} & \text { 制御建屋 } \\ & \text { O.P. } \\ & \text { (0.P. 22. } 9545 \text {. } \end{aligned}$		0.05 以下	$\mathrm{C}_{\mathrm{H}}=1.68$	$\mathrm{C}_{\mathrm{v}}=1.10$	$\mathrm{C}_{\mathrm{H}}=2.89$	$\mathrm{C}_{\mathrm{v}}=2.03$	40

注記 $~: ~$ 基準床レベルを示す。

部 材	$\begin{aligned} & \hline \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{1 \mathrm{i}}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 i}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{A}_{\mathrm{b} i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	$\mathrm{nf} \mathrm{i}^{* 1}$
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$		1633	223	687	$\begin{gathered} 16 \\ \text { (M16) } \end{gathered}$	201.1	36	12
			837	2073				2

$\stackrel{\sim}{\perp}$

部 材	$\underset{(\mathbb{P P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{P a})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathbb{P P a})}{\mathrm{F}_{\mathrm{i}}}$	$\underset{(\underset{i}{ }}{\substack{\mathrm{MPa}^{i}}}$	転倒方向	
					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	235	400	235	280	長辺方向	長辺方向

注記 $* 1$ ：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{bi}		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \hline \text { 基漼地震動 } \\ & \text { 信 } \end{aligned}$	弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \mathrm{S} \text { 俍 } \end{aligned}$
取付ボルト （ $\mathrm{i}=2$ ）	1.641×10^{4}	3.811×10^{4}	5． 437×10^{4}	9． 353×10^{4}

1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動S d 又は静的震度		基漼地震動S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト （ $\mathrm{i}=2$ ）		引張り	$\sigma_{\mathrm{b}^{2}}=82$	$\mathrm{f}_{\mathrm{ts} 2}=176{ }^{\text {＊}}$	$\sigma_{\mathrm{b} 2}=190$	$\mathrm{f}_{\mathrm{ts} 2}=210^{*}$
		せん断	$\tau_{\mathrm{b} 2}=8$	$\mathrm{f}_{\mathrm{sb} 2}=135$	$\tau_{\mathrm{b} 2}=13$	$\mathrm{ff}_{\text {s }{ }_{2}=161}$

注記＊$: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right.$ ］より算出
へ すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

| | | | 機能維持評価用加速度＊ |
| :---: | :---: | :---: | :---: | 機能確羿済加速度

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

O（3）VI－2－6－7－1 R O E

側面
（短刀方向）

VI－2－6－7－2 衛星電話設備（固定型）の耐震性についての計算書

VI－2－6－7－2－1 衛星電話設備（固定型）（中央制御室）の耐震性についての計算書 VI－2－6－7－2－2 衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算書 VI－2－6－7－2－3 衛星電話設備（固定型）（緊急時対策所）の耐震性についての計算書 VI－2－6－7－2－4 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書

$$
\begin{array}{ll}
\text { VI-2-6-7-2-1 } & \text { 衛星電話設備 (固定型) (中央制御室) } \\
& \text { の耐震性についての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 4
5．評価結果 5
5.1 重大事故等対処設備としての評価結果 5

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，衛星電話設備（固定型）（中央制御室）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

衛星電話設備（固定型）（中央制御室）は，設計基準対象施設においてはCクラス施設 に，重大事故等対処設備においては発電所内の通信連絡機能は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に，発電所外の通信連絡機能は常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

衛星電話設備（固定型）（中央制御室）の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
電話機は固定金具にて机上に固縛する。 机は取付金物を使用し，ボルトで床に固定する。	電話機	

2.2 評価方針

衛星電話設備（固定型）（中央制御室）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法に て確認することで実施する。確認結果を「5．評価結果」に示す。

衛星電話設備（固定型）（中央制御室）の耐震評価フローを図2－1 に示す。

図 2－1 衛星電話設備（固定型）（中央制御室）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
衛星電話設備（固定型）（中央制御室）は，電話機を固定金具にて机上に固縛すること から，机が支持している。机は取付金物にて床に固定する。本計算書では，衛星電話設備（固定型）（中央制御室）の電気的機能維持評価について示す。

4．機能維持評価

衛星電話設備（固定型）（中央制御室）の電気的機能維持の評価について，以下に示す。
4． 1 機能維持評価用加速度
衛星電話設備（固定型）（中央制御室）は，電話機を固定金具にて机上に固縛するこ とから，机が支持している。机についても取付金物にて床に固定することから，設計用地震力は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す，衛星電話設備（固定型）（中央制御室）の設置床における基準地震動 S s に基づく設備評価用床応答曲線とし，機能維持評価用加速度には設置床の最大応答加速度を適用する。

機能維持評価用加速度を表4－1 に示す。

表 4－1 機能維持評価用加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 (m)	方向	機能維持評価用 加速度
衛星電話設備（固定型） （中央制御室）	制御建屋（中央制御室） 0．P．23．50＊ （0．P．24．22）	水平方向	2.32
	鉛直方向	1.67	

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

衛星電話設備（固定型）（中央制御室）の機能確認済加速度には，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき，同形式の機器のランダム波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表4－2に示す。

表 4－2 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	方向	機能確認済加速度
衛星電話設備（固定型）	水平方向	3.03
（中央制御室）	鉛直方向	2.11

5．評価結果

5.1 重大事故等対処設備としての評価結果

衛星電話設備（固定型）（中央制御室）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能を有していることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【衛星電話設備（固定型）（中央制御室）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
衛星電話設備（固定型） （中央制御室）	水平方向	2.32	3.03
	鉛直方向	1.67	2.11

注記＊：基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-2-2 } & \text { 衛星電話設備 (屋外アンテナ) } \\
& \text { の耐震性にい詇制御室) }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4．1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4.3 解析モデル及び諸元 11
4． 4 固有周期 14
4.5 設計用地震力 14
4.6 計算方法 15
4.7 計算条件 17
4.8 応力の評価 17
5．機能維持評価 18
5.1 電気的機能維持評価方法 18
6．評価結果 18
6．1重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，衛星電話設備（屋外アンテナ）（中央制御室）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものであ る。

衛星電話設備（屋外アンテナ）（中央制御室）は，設計基準対象施設においてはCクラ ス施設に，重大事故等対処設備においては発電所内の通信連絡機能は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に，発電所外の通信連絡機能は常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項
2．1 構造計画
衛星電話設備（屋外アンテナ）（中央制御室）の構造計画を表2－1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
屋外アンテナを取付金具にてアンテナ取付架台に取り付け る。 アンテナ取付架台 は，ベースプレート及びリブプレートよ り構成する。 アンテナ取付架台 は，基礎ボルトにて壁に固定する。	屋外アンテナ	

2.2 評価方針

衛星電話設備（屋外アンテナ）（中央制御室）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す衛星電話設備（屋外アンテナ）（中央制御室）の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まる ことを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施 する。また，衛星電話設備（屋外アンテナ）（中央制御室）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価フローを図2－1に示す。

図 2－1 衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007（日本機械学会）

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
E	縦弾性係数	MPa
v	ポアソン比	－
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
A	アンテナ取付架台の断面積	mm^{2}
$I_{\text {y }}$	アンテナ取付架台の断面二次モーメント（Y軸）	mm^{4}
I_{z}	アンテナ取付架台の断面二次モーメント（ Z 軸）	mm^{4}
J	アンテナ取付架台のねじり定数	mm^{4}
A_{y}	アンテナ取付架台の有効せん断断面積（Y軸）	mm^{2}
A_{z}	アンテナ取付架台の有効せん断断面積（ Z 軸）	mm^{2}
Z_{y}	アンテナ取付架台の断面係数（Y軸）	mm^{3}
Z_{z}	アンテナ取付架台の断面係数（ Z 軸）	mm^{3}
F ${ }_{\text {b }}$	基礎ボルトに作用する引張力	N
Q_{b}	基礎ボルトに作用するせん断力	N
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N
A_{b}	基礎ボルトの断面積	mm^{2}
f t o	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力 （ f s＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	処理方法	表示桁
固有周期		S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度		－	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度		${ }^{\circ} \mathrm{C}$	－	－	整数位
質量		kg	－	－	整数位＊${ }^{1}$
長さ	下記以外の長さ	mm	－	整数位＊1	整数位＊${ }^{1}$
	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位 ${ }^{* 2,3}$
面積		mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
モーメント		$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力		N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
縦弾性係数		MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
算出応力		MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊5		MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位

衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，衛星電話設備（屋外アンテナ）（中央制御室）の取付架台は，構造物とし て十分な剛性を有しており，基礎ボルトが健全であれば衛星電話設備（屋外アンテナ）
（中央制御室）の機能を維持できるため，基礎ボルトを評価対象とする。
衛星電話設備（屋外アンテナ）（中央制御室）の耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価
4． 1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，アンテナ取付架台をはり要素としてモデル化した 3 次元 F EMモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛で あることを確認した上で， 1.2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）屋外アンテナは，建屋の壁面に設置し，基礎ボルトにより固定されるものとする。
（3）解析モデルの質量には，屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。

4． 2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
衛星電話設備（屋外アンテナ）（中央制御室）の重大事故等対処設備の評価に用 いる荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
衛星電話設備（屋外アンテナ）（中央制御室）の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表4－2 に示す。

4．2．3 使用材料の許容応力評価条件
衛星電話設備（屋外アンテナ）（中央制御室）の使用材料の許容応力評価条件の らち重大事故等対処設備の評価に用いるものを表 4－3 に示す。

4．2． 4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，衛星電話設備（屋外アンテナ）（中央制御室） の架台形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準 となる基準速度圧を表4－4に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

注記 $~$ 1：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備 を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{k}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 $* 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \\ \hline \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R}$ T） (MPa)
基礎ボルト	SUS304	周囲環境温度	40	205	520	-

| 表 $4-4$ | 基準速度圧 |
| :---: | :---: | （単位： $\mathrm{N} / \mathrm{m}^{2}$ ）

4.3 解析モデル及び諸元

衛星電話設備（屋外アンテナ）（中央制御室）の解析モデルを図4－1に，解析モデル の諸元を表4－5，外形図を図4－2に示す。
（1）図4－1 の \triangle は拘束節点を示し，■は質量付加位置を表す。
（2）屋外アンテナ本体は加振試験により剛であることが確認されているため，剛体とし てモデル化した。屋外アンテナの質量は，耐震評価上厳しくなる最上端の節点位置 に質量要素として設定した。取付金具の質量は取付位置から耐震評価上厳しくなる先端位置に質量要素として設定した。アンテナ取付架台，ベースプレート及びリブ プレートの質量は，はり要素の材料特性に質量密度を設定することでモデル化した。
（3）拘束条件として，図4－1の のの節点について，基礎ボルトにて壁面に固定されるた め，XYZ 並進方向を拘束する。また，部材中心からボルト位置までは剛体としてモ デル化した。
（4）部材の機器要目を表4－6に示す。
（5）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

表 4－5 解析モデルの諸元

項目	単位	入力値
材料	-	STKR400
温度条件	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	MPa	2.02×10^{5}
ポアソン比	-	0.3
寸法	-	図 $4-2$
要素数	個	18
節点数	個	17
質量（屋外アンテナ）	kg	2
質量（アンテナ取付金具）	kg	10

表 4－6 部材の機器要目

機器名称			衛星電話設備 （屋外アンテナ） （中央制御室）
対象要素			アンテナ取付架台
材料			STKR400
断面形状			角形鋼管
寸法		mm	$125 \times 125 \times 6$
断面積	A	mm^{2}	2． 763×10^{3}
$\begin{aligned} & \text { 断面二次 } \\ & \text { モーメン } \end{aligned}$	I y	mm^{4}	6． 410×10^{6}
	I_{z}	mm^{4}	6． 410×10^{6}
ねじり定数	J	mm^{4}	1． 010×10^{7}
せん断断面積	A_{y}	mm^{2}	1． 212×10^{3}
	A_{z}	mm^{2}	1． 212×10^{3}
断面係数	$\mathrm{Z}_{\text {y }}$	mm^{3}	1． 030×10^{5}
	$\mathrm{Z}_{\text {z }}$	mm^{3}	1． 030×10^{5}

（単位：mm）
図 4－2 衛星電話設備（屋外アンテナ）（中央制御室）外形図

4．4 固有周期

固有値解析の結果を表4－7に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－7 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.05 以下	水平

4.5 設計用地震力

評価に用いる設計用地震力を表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－8 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ (m)	固有周期 (s)		基準地震動 S s	
	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 0．P． 33.20^{*}	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記 $~$ ：基準床レベルを示す。

4． 6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－9の式によ り最大応力を算出する。なお，風荷重について表4－4に示す基準速度圧が，壁面に設置されているアンテナ取付架台に向かい，0度，45度又は90度の方向から常時作用す るものとして解析を行う。

最大応力発生部位を図4－3に示す。

応力の種類	単位	応力計算式
引張応力 $\sigma_{\text {b t }}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 $\tau_{\text {b }}$	MPa	$\frac{Q_{b}}{A_{b}}$

基礎ボルトに作用するせん断力 $\quad \mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}$

図 4－3 最大応力発生部位

4． 7 計算条件

4．7．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【衛星電話設備（屋外 アンテナ）（中央制御室）の耐震性についての計算結果】の設計条件及び機器要目 に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4.6 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b} \mathrm{t}$ は次式より求めた許容引張応力 f t s以下であること。

ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$

> せん断応力 τ_{b} は, せん断力のみを受けるボルトの許容せん断応力 f s b 以下であること。
> ただし, f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価

5.1 電気的機能維持評価方法

衛星電話設備（屋外アンテナ）（中央制御室）の電気的機能維持評価について，以下 に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

衛星電話設備（屋外アンテナ）（中央制御室）の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，同形式の屋外アンテナの サインビート波加振試験において，電気的機能の健全性を確認した評価部位の加速度 を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
衛星電話設備 （屋外アンテナ） （中央制御室）	水平方向	4.44
	鉛直方向	2.30

6．評価結果

6.1 重大事故等対処設備としての評価結果

衛星電話設備（屋外アンテナ）（中央制御室）の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（6）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（7）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－7－2－2 R 0

【衛星電話設備（屋外アンテナ）（中央制御室）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
衛星電話設備 （屋外アンテナ） （中央制御室）	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ 0 \text { P. } 33.20^{*} \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記＊：基準床レベルを示す。

1．2 機器要目
4． 3 項に示すとおり。

1．3 計算数値
基礎ボルト

記号	説明	単位	値
F_{b}	基礎ボルトに作用する引張力	N	8.655×10^{3}
Q_{x}	基礎ボルトに作用するX軸方向のせん断力	N	1.774×10^{3}
Q_{z}	基礎ボルトに作用するZ軸方向のせん断力	N	1.283×10^{4}
Q_{b}	基礎ボルトに作用するせん断力	N	1.295×10^{4}
$\mathrm{~A}_{\mathrm{b}}$	基礎ボルトの断面積（M16ボルト）	mm^{2}	201.1
$\mathrm{~F}^{*}$	設計•建設規格 \quad SSB－3133に定める値	MPa	246

1． 4 結論

1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	基準地震動 S s	
			算出応力	許容応力
基礎ボルト	SUS304	引張り	$\sigma_{\mathrm{b} \mathrm{t}}=44$	$\mathrm{f}_{\mathrm{ts}}=184 *$
		せん断	$\tau_{\mathrm{b}}=65$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
衛星電話設備 （屋外アンテナ） （中央制御室）	水平方向	2.79	4.44
	鉛直方向	1.47	2.30

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-2-3 } & \text { 衛星電話設備 (固定型) (緊急時対策所) } \\
& \text { の耐震性にいいての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 4
5．評価結果 5
5.1 重大事故等対処設備としての評価結果 5

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，衛星電話設備（固定型）（緊急時対策所）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

衛星電話設備（固定型）（緊急時対策所）は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては発電所内の通信連絡機能は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に，発電所外の通信連絡機能は常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

衛星電話設備（固定型）（緊急時対策所）の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
電話機は固定金具にて机上に固縛する。 机は取付金物を使用し，ボルトで床に固定する。	電話機	

2.2 評価方針

衛星電話設備（固定型）（緊急時対策所）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法に て確認することで実施する。確認結果を「5．評価結果」に示す。

衛星電話設備（固定型）（緊急時対策所）の耐震評価フローを図2－1 に示す。

図 2－1 衛星電話設備（固定型）（緊急時対策所）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
衛星電話設備（固定型）（緊急時対策所）は，電話機を固定金具にて机上に固縛するこ とから，机が支持している。机は取付金物にて床に固定する。本計算書では，衛星電話設備（固定型）（緊急時対策所）の電気的機能維持評価について示す。

4．機能維持評価

衛星電話設備（固定型）（緊急時対策所）の電気的機能維持の評価について，以下に示 す。
4． 1 機能維持評価用加速度
衛星電話設備（固定型）（緊急時対策所）は，電話機を固定金具にて机上に固縛する ことから，机が支持している。机についても取付金物にて床に固定することから，設計用地震力は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す，衛星電話設備（固定型）（緊急時対策所）の設置床における基準地震動 S s に基づく設備評価用床応答曲線とし，機能維持評価用加速度には設置床の最大応答加速度を適用する。

機能維持評価用加速度を表4－1に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 (m)	方向	機能維持評価用 加速度
衛星電話設備（固定型） （緊急時対策所）	緊急時対策建屋 0．P．551．50＊ （0．P．52．32）	水平方向	0.74
	鉛直方向	0.63	

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

衛星電話設備（固定型）（緊急時対策所）の機能確認済加速度には，添付書類「VI－ 2－1－9 機能維持の基本方針」に基づき，同形式の機器のランダム波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表4－2に示す。

表 4－2 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	方向	機能確認済加速度
衛星電話設備（固定型）	水平方向	3.03
（緊急時対策所）	鉛直方向	2.11

5．評価結果

5.1 重大事故等対処設備としての評価結果

衛星電話設備（固定型）（緊急時対策所）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能を有していることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2

【衛星電話設備（固定型）（緊急時対策所）の耐震性についての計算結果】
1．重大事故等対処設備
1．1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
衛星電話設備（固定型） （緊急時対策所）	水平方向	0.74	3.03
	鉛直方向	0.63	2.11

注記 $*: ~$ 基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-2-4 } & \text { 衛星電話設備 (屋外アンテナ) } \\
& \text { の耐震性についての計算急書時対策所) }
\end{array}
$$

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4． 1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4．3 解析モデル及び諸元 11
4． 4 固有周期 14
4.5 設計用地震力 14
4.6 計算方法 15
4．7 計算条件 17
4．8 応力の評価 17
5．機能維持評価 18
5.1 電気的機能維持評価方法 18
6．評価結果 18
6． 1 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，衛星電話設備（屋外アンテナ）（緊急時対策所）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

衛星電話設備（屋外アンテナ）（緊急時対策所）は，設計基準対象施設においてはCク ラス施設に，重大事故等対処設備においては発電所内の通信連絡機能は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に，発電所外の通信連絡機能は常設重大事故緩和設備に分類される。以下，重大事故等対処設備として の構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2．1 構造計画
衛星電話設備（屋外アンテナ）（緊急時対策所）の構造計画を表2－1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
屋外アンテナを取付金具にてアンテ ナ取付架台に取り付ける。 アンテナ取付架台 は，ベースプレート及びリブプレート より構成する。 アンテナ取付架台 は，基礎ボルトにて壁に固定する。	屋外アンテナ	

2.2 評価方針

衛星電話設備（屋外アンテナ）（緊急時対策所）の応力評価は，添付書類「VI－2－1－ 9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．1 構造計画」にて示す衛星電話設備（屋外アンテナ）（緊急時対策所）の部位 を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。また，衛星電話設備（屋外アンテナ）（緊急時対策所）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持 の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，

「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震評価フローを図 2－1 に示す。

図 2－1 衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007（日本機械学会）

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
E	縦弾性係数	MPa
v	ポアソン比	－
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
A	アンテナ取付架台の断面積	mm^{2}
$I_{\text {y }}$	アンテナ取付架台の断面二次モーメント（Y軸）	mm^{4}
I_{z}	アンテナ取付架台の断面二次モーメント（ Z 軸）	mm^{4}
J	アンテナ取付架台のねじり定数	mm^{4}
A_{y}	アンテナ取付架台の有効せん断断面積（Y軸）	mm^{2}
A_{z}	アンテナ取付架台の有効せん断断面積（ Z 軸）	mm^{2}
Z_{y}	アンテナ取付架台の断面係数（Y軸）	mm^{3}
Z_{z}	アンテナ取付架台の断面係数（ Z 軸）	mm^{3}
F ${ }_{\text {b }}$	基礎ボルトに作用する引張力	N
Q_{b}	基礎ボルトに作用するせん断力	N
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N
A_{b}	基礎ボルトの断面積	mm^{2}
f t o	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力 （ f s＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{1}$
長	下記以外の長さ	mm	－	整数位＊${ }^{*}$	整数位＊${ }^{1}$
さ	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位 ${ }^{* 2,3}$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{\text {a }}$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位
衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震評価は，「4．1 地震応答解析及 び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，衛星電話設備（屋外アンテナ）（緊急時対策所）の取付架台は，構造物 として十分な剛性を有しており，基礎ボルトが健全であれば衛星電話設備（屋外アンテ ナ）（緊急時対策所）の機能を維持できるため，基礎ボルトを評価対象とする。

衛星電話設備（屋外アンテナ）（緊急時対策所）の評価部位については，表2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価
4．1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，アンテナ取付架台をはり要素としてモデル化した 3 次元FEMモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛で あることを確認した上で，1．2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）屋外アンテナは，建屋の壁面に設置し，基礎ボルトにより固定されるものとする。
（3）解析モデルの質量には，屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
衛星電話設備（屋外アンテナ）（緊急時対策所）の重大事故等対処設備の評価に用いる荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力

衛星電話設備（屋外アンテナ）（緊急時対策所）の許容応力は，添付書類「VI－ 2－1－9 機能維持の基本方針」に基づき表4－2に示す。

4．2．3 使用材料の許容応力評価条件
衛星電話設備（屋外アンテナ）（緊急時対策所）の使用材料の許容応力評価条件 のうち重大事故等対処設備の評価に用いるものを表4－3 に示す。

4．2．4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，衛星電話設備（屋外アンテナ）（緊急時対策所） の架台形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準 となる基準速度圧を表4－4に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ	許容応力状態
計測制御系統施設	その他	衛星電話設備 (屋外アンテナ) （緊急時対策所）	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss}+\mathrm{P}_{\mathrm{k}}^{* 3}$ $\mathrm{D}+\mathrm{PSAD}^{\text {S }}+\mathrm{M}_{\text {SAD }}+\mathrm{SS}+\mathrm{P}_{\mathrm{k}}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備 を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{k}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 $* 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \\ \hline \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R}$ T） (MPa)
基礎ボルト	SUS304	周囲環境温度	40	205	520	-

| 表 $4-4$ | 基準速度圧 |
| :---: | :---: | （単位： $\mathrm{N} / \mathrm{m}^{2}$ ）

4.3 解析モデル及び諸元

衛星電話設備（屋外アンテナ）（緊急時対策所）の解析モデルを図4－1に，解析モデ ルの諸元を表 4－5，外形図を図4－2に示す。
（1）図4－1 の \triangle は拘束節点を示し，■ は質量付加位置を表す。
（2）屋外アンテナ本体は加振試験により剛であることが確認されているため，剛体とし てモデル化した。屋外アンテナの質量は，耐震評価上厳しくなる最上端の節点位置 に質量要素として設定した。取付金具の質量は取付位置から耐震評価上厳しくなる先端位置に質量要素として設定した。アンテナ取付架台，ベースプレート及びリブ プレートの質量は，はり要素の材料特性に質量密度を設定することでモデル化した。
（3）拘束条件として，図4－1の \triangle の節点について，基礎ボルトにて壁面に固定されるた め，XYZ 並進方向を拘束する。また，部材中心からボルト位置までは剛体としてモ デル化した。
（4）部材の機器要目を表4－6に示す。
（5）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

表 4－5 解析モデルの諸元

項目	単位	入力値
材料	-	STKR400
温度条件	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	MPa	2.02×10^{5}
ポアソン比	-	0.3
寸法	-	図 $4-2$
要素数	個	18
節点数	個	17
質量（屋外アンテナ）	kg	2
質量（アンテナ取付金具）	kg	10

表 4－6 部材の機器要目

機器名称			衛星電話設備 （屋外アンテナ） （緊急時対策所）
対象要素			アンテナ取付架台
材料			STKR400
断面形状			角形鋼管
寸法		mm	$125 \times 125 \times 6$
断面積	A	mm^{2}	2.763×10^{3}
断面二次 モーメント	I y	mm^{4}	6． 410×10^{6}
	I_{z}	mm^{4}	6． 410×10^{6}
ねじり定数	J	mm^{4}	1． 010×10^{7}
せん断断面積	A_{y}	mm^{2}	1． 212×10^{3}
	A_{z}	mm^{2}	1． 212×10^{3}
断面係数	Z y	mm^{3}	1． 030×10^{5}
	$\mathrm{Z}_{\text {z }}$	mm^{3}	1． 030×10^{5}

側面図

正面図
（単位：mm）

図 4－2 衛星電話設備（屋外アンテナ）（緊急時対策所）外形図

4．4 固有周期

固有値解析の結果を表4－7に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－7 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.05 以下	水平

4.5 設計用地震力

評価に用いる設計用地震力を表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－8 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ (m)	固有周期 (s)		基準地震動 S s	
	水平方向		鉛直方向	水平方向 設計震度
鉛直方向 設計震度				
緊急時対策建屋 $0 . P .75 .90^{*}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記＊：基準床レベルを示す。

4． 6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－9の式によ り最大応力を算出する。なお，風荷重について表4－4に示す基準速度圧が，壁面に設置されているアンテナ取付架台に向かい，0度，45度又は90度の方向から常時作用す るものとして解析を行う。

最大応力発生部位を図4－3に示す。

応力の種類	単位	応力計算式
引張応力 $\sigma_{\text {b t }}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 $\tau_{\text {b }}$	MPa	$\frac{Q_{b}}{A_{b}}$

基礎ボルトに作用するせん断力 $\quad \mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}$

図 4－3 最大応力発生部位

4． 7 計算条件

4．7．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【衛星電話設備（屋外 アンテナ）（緊急時対策所）の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4.6 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b} \mathrm{t}$ は次式より求めた許容引張応力 f t s以下であること。

ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$

> せん断応力 τ_{b} は, せん断力のみを受けるボルトの許容せん断応力 f s b 以下であること。
> ただし, f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価
5.1 電気的機能維持評価方法

衛星電話設備（屋外アンテナ）（緊急時対策所）の電気的機能維持評価について，以下に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

衛星電話設備（屋外アンテナ）（緊急時対策所）の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，同形式の屋外アンテナ のサインビート波加振試験において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1に示す。

表 $5-1$ 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
衛星電話設備 $($ 屋外アンテナ $)$ $\left(\begin{array}{l}\text {（緊急時対策所）}\end{array}\right.$ 水平方向	4.44	
鉛直方向	2.30	

6．評価結果

6.1 重大事故等対処設備としての評価結果

衛星電話設備（屋外アンテナ）（緊急時対策所）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（6）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（7）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－7－2－4 R 0

【衛星電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
衛星電話設備 （屋外アンテナ） （緊急時対策所）	常設／防止常設／緩和	緊急時対策建屋 $\text { 0. P. } 75.90^{*}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記＊：基準床レベルを示す。

1．2 機器要目
4． 3 項に示すとおり。

19
1．3 計算数値

記号	説明	単位	値
F_{b}	基礎ボルトに作用する引張力	N	3.413×10^{3}
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N	1.156×10^{3}
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N	4.058×10^{3}
Q_{b}	基礎ボルトに作用するせん断力	N	4.219×10^{3}
$\mathrm{~A}_{\mathrm{b}}$	基礎ボルトの断面積（M16ボルト）	mm^{2}	201.1
$\mathrm{~F}^{*}$	設計•建設規格 \quad SSB－3133 に定める値	MPa	246

1． 4 結論

1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	基準地震動 S s	
			算出応力	許容応力
基礎ボルト	SUS304	引張り	$\sigma_{\mathrm{b} \mathrm{t}}=17$	$\mathrm{ff}_{\mathrm{ts}}=184 *$
		せん断	$\tau_{\mathrm{b}}=21$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
衛星電話設備 （屋外アンテナ） （緊急時対策所）	水平方向	2.79	4.44
	鉛直方向	1.47	2.30

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－3 無線連絡設備（固定型）の耐震性についての計算書

VI－2－6－7－3－1 無線連絡設備（固定型）（中央制御室）の耐震性についての計算書 VI－2－6－7－3－2 無線連絡設備（屋外アンテナ）（中央制御室）の耐震性についての計算書 VI－2－6－7－3－3 無線連絡設備（固定型）（緊急時対策所）の耐震性についての計算書

VI－2－6－7－3－4 無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算書

$$
\begin{array}{ll}
\text { VI-2-6-7-3-1 } & \text { 無線連絡設備 (固定型) (中央制御室) } \\
& \text { の耐震性についての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 4
5．評価結果 5
5.1 重大事故等対処設備としての評価結果 5

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，無線連絡設備（固定型）（中央制御室）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

無線連絡設備（固定型）（中央制御室）は，設計基準対象施設においてはCクラス施設 に，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

無線連絡設備（固定型）（中央制御室）の構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
無線機は固定金具にて机上に固縛する。 机は取付金物を使用し，ボルトで床に固定する。	無線機	

2.2 評価方針

無線連絡設備（固定型）（中央制御室）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法に て確認することで実施する。確認結果を「5．評価結果」に示す。

無線連絡設備（固定型）（中央制御室）の耐震評価フローを図2－1 に示す。

図 2－1 無線連絡設備（固定型）（中央制御室）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
無線連絡設備（固定型）（中央制御室）は，無線機を固定金具にて机上に固縛すること から，机が支持している。机は取付金物にて床に固定する。本計算書では，無線連絡設備（固定型）（中央制御室）の電気的機能維持評価について示す。

4．機能維持評価
無線連絡設備（固定型）（中央制御室）の電気的機能維持の評価について，以下に示す。
4． 1 機能維持評価用加速度
無線連絡設備（固定型）（中央制御室）は，無線機を固定金具にて机上に固縛するこ とから，机が支持している。机についても取付金物にて床に固定することから，設計用地震力は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す，無線連絡設備（固定型）（中央制御室）の設置床における基準地震動 S s に基づく設備評価用床応答曲線とし，機能維持評価用加速度には設置床の最大応答加速度を適用する。

機能維持評価用加速度を表4－1 に示す。

表 4－1 機能維持評価用加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 (m)	方向	機能維持評価用 加速度
無線連絡設備（固定型） （中央制御室）	制御建屋（中央制御室） 0．P．23．50＊ （0．P．24．22）	水平方向	鉛直方向

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

無線連絡設備（固定型）（中央制御室）の機能確認済加速度には，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき，同形式の機器のランダム波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表4－2 に示す。

表 4－2 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	方向	機能確認済加速度
無線連絡設備（固定型）	水平方向	3.03
（中央制御室）	鉛直方向	2.11

5．評価結果

5.1 重大事故等対処設備としての評価結果

無線連絡設備（固定型）（中央制御室）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能を有していることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【無線連絡設備（固定型）（中央制御室）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
無線連絡設備（固定型） （中央制御室）	水平方向	2.32	3.03
	鉛直方向	1.67	2.11

注記＊：基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-3-2 } & \text { 無線連絡設備 (屋外アンテナ) } \\
& \text { の耐震性にい央制御室) }
\end{array}
$$

1．概要 1
2．一般事項 1
2． 1 構造計画 1
2． 2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4.1 地震応答解析及び構造強度評価方法 7
4． 2 荷重の組合せ及び許容応力 7
4.3 解析モデル及び諸元 11
4． 4 固有周期 14
4.5 設計用地震力 14
4.6 計算方法 15
4.7 計算条件 17
4.8 応力の評価 17
5．機能維持評価 18
5.1 電気的機能維持評価方法 18
6．評価結果 18
6． 1 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，無線連絡設備（屋外アンテナ）（中央制御室）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものであ る。

無線連絡設備（屋外アンテナ）（中央制御室）は，設計基準対象施設においてはCクラ ス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備と しての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

無線連絡設備（屋外アンテナ）（中央制御室）の構造計画を表2－1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
屋外アンテナを取付金具にてアンテ ナ取付架台に取り付ける。 アンテナ取付架台 は，ベースプレート及びリブプレート より構成する。 アンテナ取付架台 は，基礎ボルトにて壁に固定する。	屋外アンテナ	

2.2 評価方針

無線連絡設備（屋外アンテナ）（中央制御室）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す無線連絡設備（屋外アンテナ）（中央制御室）の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まる ことを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施 する。また，無線連絡設備（屋外アンテナ）（中央制御室）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。無線連絡設備（屋外アンテナ）（中央制御室）の耐震評価フローを図2－1 に示す。

図 2－1 無線連絡設備（屋外アンテナ）（中央制御室）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007（日本機械学会）

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
E	縦弾性係数	MPa
v	ポアソン比	－
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
A	アンテナ取付架台の断面積	mm^{2}
$I_{\text {y }}$	アンテナ取付架台の断面二次モーメント（Y軸）	mm^{4}
I_{z}	アンテナ取付架台の断面二次モーメント（ Z 軸）	mm^{4}
J	アンテナ取付架台のねじり定数	mm^{4}
A_{y}	アンテナ取付架台の有効せん断断面積（Y軸）	mm^{2}
A_{z}	アンテナ取付架台の有効せん断断面積（ Z 軸）	mm^{2}
Z_{y}	アンテナ取付架台の断面係数（Y軸）	mm^{3}
Z_{z}	アンテナ取付架台の断面係数（ Z 軸）	mm^{3}
F ${ }_{\text {b }}$	基礎ボルトに作用する引張力	N
Q_{b}	基礎ボルトに作用するせん断力	N
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N
A_{b}	基礎ボルトの断面積	mm^{2}
f t o	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力 （ f s＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{\text {P }}$
長	下記以外の長さ	mm	－	整数位＊${ }^{1}$	整数位＊${ }^{1}$
さ	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位 $* 2,3$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{\text {a }}$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊ 2 ：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位

無線連絡設備（屋外アンテナ）（中央制御室）の耐震評価は，「4．1 地震応答解析及び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトを選定して実施する。なお，無線連絡設備（屋外アンテナ）（中央制御室）の取付架台は，構造物と して十分な剛性を有しており，基礎ボルトが健全であれば無線連絡設備（屋外アンテナ） （中央制御室）の機能を維持できるため，基礎ボルトを評価対象とする。

無線連絡設備（屋外アンテナ）（中央制御室）の評価部位については，表2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価
4． 1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，アンテナ取付架台をはり要素としてモデル化した 3 次元 F EMモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛で あることを確認した上で，1．2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）屋外アンテナは，建屋の壁面に設置し，基礎ボルトにより固定されるものとする。
（3）解析モデルの質量には，屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
無線連絡設備（屋外アンテナ）（中央制御室）の重大事故等対処設備の評価に用 いる荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
無線連絡設備（屋外アンテナ）（中央制御室）の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表4－2に示す。

4．2．3 使用材料の許容応力評価条件
無線連絡設備（屋外アンテナ）（中央制御室）の使用材料の許容応力評価条件の うち重大事故等対処設備の評価に用いるものを表4－3 に示す。

4．2．4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，無線連絡設備（屋外アンテナ）（中央制御室） の架台形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準 となる基準速度圧を表4－4 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ	許容応力状態
計測制御系統施設	その他	無線連絡設備 （屋外アンテナ） （中央制御室）	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss}+\mathrm{P}_{\mathrm{k}}^{* 3}$ $\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{MSAD}^{\text {S }}+\mathrm{SS}+\mathrm{P}_{\mathrm{k}}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$ $V_{A} S$ （ V_{A} Sとして $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備 を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{k}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 $* 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \\ \hline \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R}$ T） (MPa)
基礎ボルト	SUS304	周囲環境温度	40	205	520	-

| 表 $4-4$ | 基準速度圧 |
| :---: | :---: | （単位： $\mathrm{N} / \mathrm{m}^{2}$ ）

4.3 解析モデル及び諸元

無線連絡設備（屋外アンテナ）（中央制御室）の解析モデルを図4－1に，解析モデル の諸元を表 4－5，外形図を図4－2に示す。
（1）図4－1 の \triangle は拘束節点を示し，■ は質量付加位置を表す。
（2）屋外アンテナ本体は加振試験により剛であることが確認されているため，剛体とし てモデル化した。屋外アンテナの質量は，耐震評価上厳しくなる最上端の節点位置 に質量要素として設定した。取付金具の質量は取付位置から耐震評価上厳しくなる先端位置に質量要素として設定した。アンテナ取付架台，ベースプレート及びリブ プレートの質量は，はり要素の材料特性に質量密度を設定することでモデル化した。
（3）拘束条件として，図4－1の のの節点について，基礎ボルトにて壁面に固定されるた め，XYZ 並進方向を拘束する。また，部材中心からボルト位置までは剛体としてモ デル化した。
（4）部材の機器要目を表4－6に示す。
（5）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

表 4－5 解析モデルの諸元

項目	単位	入力値
材料	-	STKR400
温度条件	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	MPa	2.02×10^{5}
ポアソン比	-	0.3
寸法	-	図 $4-2$
要素数	個	18
節点数	個	17
質量（屋外アンテナ）	kg	5
質量（アンテナ取付金具）	kg	5

表 4－6 部材の機器要目

機器名称			無線連絡設備 （屋外アンテナ） （中央制御室）
対象要素			アンテナ取付架台
材料			STKR400
断面形状			角形鋼管
寸法		mm	$125 \times 125 \times 6$
断面積	A	mm^{2}	2.763×10^{3}
$\begin{aligned} & \text { 断面二次 } \\ & \text { モーメント } \end{aligned}$	I y	mm^{4}	6． 410×10^{6}
	I_{z}	mm^{4}	6． 410×10^{6}
ねじり定数	J	mm^{4}	1． 010×10^{7}
せん断断面積	A_{y}	mm^{2}	1． 212×10^{3}
	A_{z}	mm^{2}	1． 212×10^{3}
断面係数	Z y	mm^{3}	1． 030×10^{5}
	$\mathrm{Z}_{\text {z }}$	mm^{3}	1． 030×10^{5}

図 4－2 無線連絡設備（屋外アンテナ）（中央制御室）外形図

4．4 固有周期

固有値解析の結果を表4－7に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－7 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.05 以下	水平

4.5 設計用地震力

評価に用いる設計用地震力を表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－8 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ (m)	固有周期 (s)		基準地震動 S s	
	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 $0 . P .33 .20 *$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記＊：基準床レベルを示す。

4． 6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－9の式によ り最大応力を算出する。なお，風荷重について表4－4に示す基準速度圧が，壁面に設置されているアンテナ取付架台に向かい，0度，45度又は90度の方向から常時作用す るものとして解析を行う。

最大応力発生部位を図4－3に示す。

応力の種類	単位	応力計算式
引張応力 $\sigma_{\text {b t }}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 $\tau_{\text {b }}$	MPa	$\frac{Q_{b}}{A_{b}}$

基礎ボルトに作用するせん断力 $\quad \mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}$

図 4－3 最大応力発生部位

4． 7 計算条件

4．7．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【無線連絡設備（屋外 アンテナ）（中央制御室）の耐震性についての計算結果】の設計条件及び機器要目 に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4.6 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b} \mathrm{t}$ は次式より求めた許容引張応力 f t s以下であること。

ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$

> せん断応力 τ_{b} は, せん断力のみを受けるボルトの許容せん断応力 f s b 以下であること。
> ただし, f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価

5.1 電気的機能維持評価方法

無線連絡設備（屋外アンテナ）（中央制御室）の電気的機能維持評価について，以下 に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

無線連絡設備（屋外アンテナ）（中央制御室）の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，同形式の屋外アンテナの サインビート波加振試験において，電気的機能の健全性を確認した評価部位の加速度 を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
無線連絡設備 （屋外アンテナ） （中央制御室）	水平方向	4.44
	鉛直方向	2.30

6．評価結果

6．1 重大事故等対処設備としての評価結果
無線連絡設備（屋外アンテナ）（中央制御室）の重大事故等時の状態を考慮した場合 の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－7－3－2 R 0

【無線連絡設備（屋外アンテナ）（中央制御室）の耐震性についての計算結果】
1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
無線連絡設備 （屋外アンテナ） （中央制御室）	常設／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20^{*} \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記 $~: ~$ 基準床レベルを示す。
1．2 機器要目
4． 3 項に示すとおり。

19
1．3 計算数値

記号	説明	単位	値
F_{b}	基礎ボルトに作用する引張力	N	7.200×10^{3}
Q_{x}	基礎ボルトに作用するX軸方向のせん断力	N	1.590×10^{3}
Q_{z}	基礎ボルトに作用するZ軸方向のせん断力	N	1.016×10^{4}
Q_{b}	基礎ボルトに作用するせん断力	N	1.028×10^{4}
$\mathrm{~A}_{\mathrm{b}}$	基礎ボルトの断面積（M16ボルト）	mm^{2}	201.1
$\mathrm{~F}^{*}$	設計•建設規格 \quad SSB－3133に定める値	MPa	246

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	基準地震動 S s	
			算出応力	許容応力
基礎ボルト	SUS304	引張り	$\sigma_{\mathrm{b} \mathrm{t}}=36$	$\mathrm{ff}_{\mathrm{ts}}=184 *$
		せん断	$\tau_{\mathrm{b}}=52$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
無線連絡設備 （屋外アンテナ） （中央制御室）	水平方向	2.79	4.44
	鉛直方向	1.47	2.30

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-3-3 } & \text { 無線連絡設備 (固定型) (緊急時対策所) } \\
& \text { の耐震性にいての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 3
3．評価部位 3
4．機能維持評価 4
4.1 機能維持評価用加速度 4
4． 2 機能確認済加速度 4
5．評価結果 5
5.1 重大事故等対処設備としての評価結果 5

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，無線連絡設備（固定型）（緊急時対策所）が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

無線連絡設備（固定型）（緊急時対策所）は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備として の電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

無線連絡設備（固定型）（緊急時対策所）の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
無線機は固定金具にて机上に固縛する。 机は取付金物を使用し，ボルトで床に固定する。	無線機	

2.2 評価方針

無線連絡設備（固定型）（緊急時対策所）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法に て確認することで実施する。確認結果を「5．評価結果」に示す。

無線連絡設備（固定型）（緊急時対策所）の耐震評価フローを図2－1 に示す。

図 2－1 無線連絡設備（固定型）（緊急時対策所）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
無線連絡設備（固定型）（緊急時対策所）は，無線機を固定金具にて机上に固縛するこ とから，机が支持している。机は取付金物にて床に固定する。本計算書では，無線連絡設備（固定型）（緊急時対策所）の電気的機能維持評価について示す。

4．機能維持評価

無線連絡設備（固定型）（緊急時対策所）の電気的機能維持の評価について，以下に示 す。
4． 1 機能維持評価用加速度
無線連絡設備（固定型）（緊急時対策所）は，無線機を固定金具にて机上に固縛する ことから，机が支持している。机についても取付金物にて床に固定することから，設計用地震力は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す，無線連絡設備（固定型）（緊急時対策所）の設置床における基準地震動 S s に基づく設備評価用床応答曲線とし，機能維持評価用加速度には設置床の最大応答加速度を適用する。

機能維持評価用加速度を表4－1に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 (m)	方向	機能維持評価用 加速度
無線連絡設備（固定型） （緊急時対策所）	緊急時対策建屋 0．P．55．50＊ （0．P．52．32）	水平方向	0.74
	鉛直方向	0.63	

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

無線連絡設備（固定型）（緊急時対策所）の機能確認済加速度には，添付書類「VI－ 2－1－9 機能維持の基本方針」に基づき，同形式の機器のランダム波加振試験において電気的機能の健全性を確認した加速度を適用する。機能確認済加速度を表4－2 に示す。

表 4－2 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	方向	機能確認済加速度
無線連絡設備（固定型）	水平方向	3.03
（緊急時対策所）	鉛直方向	2.11

5．評価結果

5.1 重大事故等対処設備としての評価結果

無線連絡設備（固定型）（緊急時対策所）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能を有していることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【無線連絡設備（固定型）（緊急時対策所）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
無線連絡設備（固定型） （緊急時対策所）	水平方向	0.74	3.03
	鉛直方向	0.63	2.11

注記＊：基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\begin{array}{ll}
\text { VI-2-6-7-3-4 } & \text { 無線連絡設備 (屋外アンテナ) (緊急時対策所) } \\
& \text { の耐震性についての計算書 }
\end{array}
$$

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2． 2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4.1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4.3 解析モデル及び諸元 11
4． 4 固有周期 14
4.5 設計用地震力 14
4． 6 計算方法 15
4.7 計算条件 17
4.8 応力の評価 17
5．機能維持評価 18
5.1 電気的機能維持評価方法 18
6．評価結果 18
6． 1 重大事故等対処設備としての評価結果 18

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，無線連絡設備（屋外アンテナ）（緊急時対策所）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

無線連絡設備（屋外アンテナ）（緊急時対策所）は，設計基準対象施設においてはCク ラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備 としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

無線連絡設備（屋外アンテナ）（緊急時対策所）の構造計画を表2－1 に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
屋外アンテナを取付金具にてアンテナ取付架台に取り付け る。 アンテナ取付架台 は，ベースプレート及びリブプレートよ り構成する。 アンテナ取付架台 は，基礎ボルトにて壁に固定する。	屋外アンテナ	

2.2 評価方針

無線連絡設備（屋外アンテナ）（緊急時対策所）の応力評価は，添付書類「VI－2－1－ 9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．1 構造計画」にて示す無線連絡設備（屋外アンテナ）（緊急時対策所）の部位 を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認 することで実施する。また，無線連絡設備（屋外アンテナ）（緊急時対策所）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持 の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，

「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震評価フローを図 2－1 に示す。

図 2－1 無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007（日本機械学会）

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
E	縦弾性係数	MPa
v	ポアソン比	－
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
A	アンテナ取付架台の断面積	mm^{2}
$I_{\text {y }}$	アンテナ取付架台の断面二次モーメント（Y軸）	mm^{4}
I_{z}	アンテナ取付架台の断面二次モーメント（ Z 軸）	mm^{4}
J	アンテナ取付架台のねじり定数	mm^{4}
A_{y}	アンテナ取付架台の有効せん断断面積（Y軸）	mm^{2}
A_{z}	アンテナ取付架台の有効せん断断面積（ Z 軸）	mm^{2}
Z_{y}	アンテナ取付架台の断面係数（Y軸）	mm^{3}
Z_{z}	アンテナ取付架台の断面係数（ Z 軸）	mm^{3}
F ${ }_{\text {b }}$	基礎ボルトに作用する引張力	N
Q_{b}	基礎ボルトに作用するせん断力	N
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N
A_{b}	基礎ボルトの断面積	mm^{2}
f t o	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力 （ f s＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{1}$
長	下記以外の長さ	mm	－	整数位＊${ }^{1}$	整数位＊${ }^{1}$
さ	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位 $* 2,3$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{\text {a }}$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊ 2 ：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊ 3 ：計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。
＊4：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。

3．評価部位

無線連絡設備（屋外アンテナ）（緊急時対策所）の耐震評価は，「4．1 地震応答解析及 び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトを選定し て実施する。なお，無線連絡設備（屋外アンテナ）（緊急時対策所）の取付架台は，構造物として十分な剛性を有しており，基礎ボルトが健全であれば無線連絡設備（屋外アン テナ）（緊急時対策所）の機能を維持できるため，基礎ボルトを評価対象とする。

無線連絡設備（屋外アンテナ）（緊急時対策所）の評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価
4． 1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，アンテナ取付架台をはり要素としてモデル化した 3 次元 F EMモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛で あることを確認した上で，1．2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）屋外アンテナは，建屋の壁面に設置し，基礎ボルトにより固定されるものとする。
（3）解析モデルの質量には，屋外アンテナの質量とアンテナ取付架台の質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
無線連絡設備（屋外アンテナ）（緊急時対策所）の重大事故等対処設備の評価に用いる荷重の組合せ及び許容応力状態を表4－1 に示す。

4．2．2 許容応力
無線連絡設備（屋外アンテナ）（緊急時対策所）の許容応力は，添付書類「VI－ 2－1－9 機能維持の基本方針」に基づき表 4－2に示す。

4．2．3 使用材料の許容応力評価条件
無線連絡設備（屋外アンテナ）（緊急時対策所）の使用材料の許容応力評価条件 のうち重大事故等対処設備の評価に用いるものを表4－3 に示す。

4．2．4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，無線連絡設備（屋外アンテナ）（緊急時対策所） の架台形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準 となる基準速度圧を表4－4 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ	許容応力 状態
計測制御系統施設	その他	無線連絡設備 （屋外アンテナ） （緊急時対策所）	常設／防止常設／緩和	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Ss}+\mathrm{P}_{\mathrm{k}}^{* 3}$ $\mathrm{D}+\mathrm{P}_{\text {SAD }}+\mathrm{MSAD}^{\text {S }}+\mathrm{SS}+\mathrm{P}_{\mathrm{k}}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{~S}$ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ （ V_{A} Sとして $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記 $* 1$ ：「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備，「常設／緩和」は常設重大事故緩和設備 を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{k}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 $* 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \\ \hline \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R}$ T） (MPa)
基礎ボルト	SUS304	周囲環境温度	40	205	520	-

| 表 $4-4$ | 基準速度圧 |
| :---: | :---: | （単位： $\mathrm{N} / \mathrm{m}^{2}$ ）

4．3 解析モデル及び諸元
無線連絡設備（屋外アンテナ）（緊急時対策所）の解析モデルを図4－1に，解析モデ ルの諸元を表 4－5，外形図を図4－2に示す。
（1）図4－1 の \triangle は拘束節点を示し，■ は質量付加位置を表す。
（2）屋外アンテナ本体は加振試験により剛であることが確認されているため，剛体とし てモデル化した。屋外アンテナの質量は，耐震評価上厳しくなる最上端の節点位置 に質量要素として設定した。取付金具の質量は取付位置から耐震評価上厳しくなる先端位置に質量要素として設定した。アンテナ取付架台，ベースプレート及びリブ プレートの質量は，はり要素の材料特性に質量密度を設定することでモデル化した。
（3）拘束条件として，図4－1 の \triangle の節点について，基礎ボルトにて壁面に固定されるた め，XYZ 並進方向を拘束する。また，部材中心からボルト位置までは剛体としてモ デル化した。
（4）部材の機器要目を表4－6に示す。
（5）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

表 4－5 解析モデルの諸元

項目	単位	入力値
材料	-	STKR400
温度条件	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	MPa	2.02×10^{5}
ポアソン比	-	0.3
寸法	-	図 $4-2$
要素数	個	18
節点数	個	17
質量（屋外アンテナ）	kg	5
質量（アンテナ取付金具）	kg	5

表 4－6 部材の機器要目

機器名称			無線連絡設備 （屋外アンテナ） （緊急時対策所）
対象要素			アンテナ取付架台
材料			STKR400
断面形状			角形鋼管
寸法		mm	$125 \times 125 \times 6$
断面積	A	mm^{2}	2.763×10^{3}
$\begin{aligned} & \text { 断面二次 } \\ & \text { モーメント } \end{aligned}$	I_{y}	mm^{4}	6． 410×10^{6}
	I_{z}	mm^{4}	6． 410×10^{6}
ねじり定数	J	mm^{4}	1． 010×10^{7}
せん断断面積	A_{y}	mm^{2}	1． 212×10^{3}
	A_{z}	mm^{2}	1． 212×10^{3}
断面係数	Z y	mm^{3}	1． 030×10^{5}
	$\mathrm{Z}_{\text {z }}$	mm^{3}	1． 030×10^{5}

図 4－2 無線連絡設備（屋外アンテナ）（緊急時対策所）外形図

4． 4 固有周期

固有値解析の結果を表4－7に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－7 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.05 以下	水平

4.5 設計用地震力

評価に用いる設計用地震力を表4－8に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－8 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ (m)	固有周期 (s)		基準地震動 S s	
	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度
緊急時対策建屋 $0 . P .75 .90^{*}$	0.05 以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記＊：基準床レベルを示す。

4． 6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－9の式によ り最大応力を算出する。なお，風荷重について表4－4に示す基準速度圧が，壁面に設置されているアンテナ取付架台に向かい，0度，45度又は90度の方向から常時作用す るものとして解析を行う。

最大応力発生部位を図4－3に示す。

応力の種類	単位	応力計算式
引張応力 $\sigma_{\text {b t }}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 $\tau_{\text {b }}$	MPa	$\frac{Q_{b}}{A_{b}}$

基礎ボルトに作用するせん断力 $\quad \mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{z}}{ }^{2}}$

図 4－3 最大応力発生部位

4． 7 計算条件

4．7．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【無線電話設備（屋外 アンテナ）（緊急時対策所）の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4.6 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b} \mathrm{t}$ は次式より求めた許容引張応力 f t s以下であること。

ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$

せん断応力 τ bは，せん断力のみを受けるボルトの許容せん断応力 f s b 以下 であること。

ただし，f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価
5.1 電気的機能維持評価方法

無線電話設備（屋外アンテナ）（緊急時対策所）の電気的機能維持評価について，以下に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

無線電話設備（屋外アンテナ）（緊急時対策所）の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，同形式の屋外アンテナ のサインビート波加振試験において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1に示す。

表 $5-1$ 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
無線電話設備 （屋外アンテナ） （緊急時対策所）	水平方向	4.44
	鉛直方向	2.30

6．評価結果

6.1 重大事故等対処設備としての評価結果

無線電話設備（屋外アンテナ）（緊急時対策所）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（6）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（7）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

O 2 （3）VI－2－6－7－3－4 R 0

【無線電話設備（屋外アンテナ）（緊急時対策所）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	
無線電話設備 （屋外アンテナ） （緊急時対策所）	常設／防止常設／緩和	$\begin{aligned} & \text { 緊急時対策建屋 } \\ & \text { 0.P. } 75.90^{*} \end{aligned}$	0．05以下	0.05 以下	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記＊：基準床レベルを示す。
1．2 機器要目
4． 3 項に示すとおり。

19
1.3 計算数値

記号	説明	単位	値
F_{b}	基礎ボルトに作用する引張力	N	4.007×10^{3}
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N	1.170×10^{3}
Q_{z}	基礎ボルトに作用する Z 軸方向のせん断力	N	4.867×10^{3}
Q_{b}	基礎ボルトに作用するせん断力	N	5.006×10^{3}
$\mathrm{~A}_{\mathrm{b}}$	基礎ボルトの断面積（M16ボルト）	mm^{2}	201.1
$\mathrm{~F}^{*}$	設計•建設規格 \quad SSB－3133 に定める値	MPa	246

1． 4 結論

1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	基準地震動 S s	
			算出応力	許容応力
基礎ボルト	SUS304	引張り	$\sigma_{\mathrm{b} \mathrm{t}}=20$	$\mathrm{f}_{\mathrm{tss}}=184 *$
		せん断	$\tau_{\mathrm{b}}=25$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
無線電話設備 $\left(\begin{array}{l}\text { 屋外アンテナ）} \\ \text {（緊急時対策所）}\end{array}\right.$ 水平方向	2.79	4.44	
鉛直方向	1.47	2.30	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－4 SPDS 表示装置の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 4
5．評価結果 5
5.1 重大事故対処設備としての評価結果 5

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，SPDS 表示装置が設計用地震力に対して十分な電気的機能を有して いることを説明するものである。

SPDS 表示装置は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備 においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

なお，電気的機能維持評価については，評価用加速度が最大となる機器について代表 として評価する。評価対象を表1－1に示す。

表 $1-1 \quad$ 概略構造識別
機器名称
評価方法
SPDS 表示装置（待避所）（代表）
SPDS 表示装置（緊急時対策室）

2．一般事項
2.1 構造計画

SPDS 表示装置の構造計画を表2－1に示す。
O 2
（3）
VI－2－6－7－4
R 0

表 2－1 SPDS 表示装置の構造計画

2.2 評価方針

SPDS 表示装置の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法にて確認することで実施す る。確認結果を「5．評価結果」に示す。

SPDS 表示装置の耐震評価フローを図2－1に示す。

図 2－1 SPDS 表示装置の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984（日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（日本電気協会）

3．評価部位
SPDS 表示装置は，「2．1 構造計画」に示すとおり，ノートPCを固縛用バンド及び粘着固定シートにて机上に固縛することから，机が支持している。机は取付金物にて床に固定する。この据付状態における SPDS 表示装置の電気的機能維持について評価を実施 する。

4．機能維持評価

SPDS 表示装置の電気的機能維持評価について，以下に示す。
4． 1 機能維持評価用加速度
SPDS 表示装置は，ノートPCを固縛用バンド及び粘着固定シートにて机上に固縛す ることから，机が支持している。机は取付金物にて床に固定することから，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動S s により定まる SPDS 表示装置の設置床における最大応答加速度を適用す る。

評価用加速度を表4－1に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	据付場所及び床面高さ (m)	方向	機能維持 評価用加速度
SPDS 表示装置（待避所）	制御建屋 $0 . P .22 .95 *$	水平方向	2.32
	鉛直方向	1.67	

注記 $*: ~$ 基準床レベルを示す。

4．2 機能確認済加速度

SPDS 表示装置の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，「2．1 構造計画」に示す実機の据付状態を模擬し，正弦波加振試験におい て電気的機能の健全性を確認した最大加速度を適用する。

機能確認済加速度を表4－2に示す。

表 4－2	機能確認済加速度	速度（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
評価部位	方向	機能確認済加速度
SPDS 表示装置	水平方向	
（待避所）	鉛直方向	

5．評価結果

5.1 重大事故等対処設備としての評価結果

SPDS 表示装置の重大事故等の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能を有していることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁の表に示す。
O 2
（3）
VI－2－6－7－4
R O E

【SPDS 表示装置の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果

		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
SPDS 伝送装置 （待避所）	水平方向	機能維持評価用加速度＊	機能確忍済加速度
	鉛直方向	2.32	

注記 $*$ ：基漼地震動 s s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－5 安全パラメータ表示システム（SPDS）無線通信用アンテナの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用規格•基準等 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4.1 固有周期の算出方法 7
5．構造強度評価 8
5.1 構造強度評価方法 8
5.2 荷重の組合せ及び許容応力 8
5．2．1 荷重の組合せ及び許容応力状態 8
5．2．2 許容応力 8
5．2．3 使用材料の許容応力評価条件 8
5．2．4 風荷重 8
5．2．5 積雪荷重 8
5.3 設計用地震力 12
5．4 計算方法 13
5．4．1 応力の計算方法 13
5． 5 計算条件 16
5．5．1 ボルトの応力計算条件 16
5.6 応力の評価 17
5．6．1 ボルトの応力評価 17
6．機能維持評価 18
6．1 電気的機能維持評価方法 18
7．評価結果 19
7．1 重大事故等対処設備としての評価結果 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，安全パラメータ表示システム（SPDS）無線通信用ア ンテナが設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明 するものである。

無線通信用アンテナは，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備とし ての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，無線通信用アンテナの基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。ま た，電気的機能維持評価については評価用加速度が最大となる器具を代表として評価す る。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
無線通信用アンテナ（原子炉建屋側）（代表）		
無線通信用アンテナ（緊急時対策建屋側）		

2．一般事項
2.1 構造計画

無線通信用アンテナの構造計画を表2－1に示す。

○
（3） $\mathrm{VI}-2-6-7-5$
R 0

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
無線通信用アンテ ナは，アンテナ金具で無線通信用アンテナ取付架台に設置する。 無線通信用アンテ ナ取付架台は基礎（壁面）に基礎ボルトで設置する。	無線通信用アンテナ	【無線通信用アンテナ（原子炉建屋側）】 396.1 正面 （単位：mm）

2.2 評価方針

無線通信用アンテナの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示 す無線通信用アンテナの部位を踏まえ「3．評価部位」にて設定する箇所において，

「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。 また，無線通信用アンテナの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認する ことで実施する。確認結果を「7．評価結果」に示す。

無線通信用アンテナの耐震評価フローを図2－1に示す。

図 2－1 無線通信用アンテナの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J EAG4601•補－1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007） （以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
F b 1	鉛直方向地震及び壁掛盤取付面に対し左右方向の水平方向地震によりボルトに作用する引張力（1 本当たり）（壁掛形）	N
F b 2	鉛直方向地震及び壁掛盤取付面に対し前後方向の水平方向地震によりボルトに作用する引張力（1 本当たり）（壁掛形）	N
f sb	せん断力のみを受けるボルトの許容せん断応力	MPa
f to	引張力のみを受けるボルトの許容引張応力	MPa
$\mathrm{f}_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h 2	取付面から重心までの距離（壁掛型）	mm
ha	取付面からアンテナ先端までの距離（壁掛型）	mm
ℓ_{3}	重心と下側ボルト間の距離（壁掛型）	mm
$\ell_{\text {a }}$	側面（左右）ボルト間の距離（壁掛型）	mm
$\ell_{\text {b }}$	上下ボルト間の距離（壁掓型）	mm
m	無線通信用アンテナの質量	kg
n	ボルトの本数	－
	評価上引張力を受けるとして期待するボルトの本数（側面方向）（壁掛形） 評価上引張力を受けるとして期待するボルトの本数（正面方向）（壁掛形）	- -
P_{k}	風荷重	N
$\mathrm{P}_{\text {s }}$	積雪荷重	N
Q_{b}	ボルトに作用するせん断力	N
Q b_{1}	水平方向地震によりボルトに作用するせん断力（壁掛型）	N
Q b_{2}	鉛直方向地震によりボルトに作用するせん断力（壁掛型）	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表8 亿定める値	MPa
$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ π	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ における値円周率	MPa
σ b	ボルトに生じる引張応力	MPa
$\tau{ }_{\text {b }}$	ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	—	整数位
長さ	mm	—	整数位 $* 1$	
面積	mm	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$				

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

無線通信用アンテナの耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。

無線通信用アンテナの耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有周期の算出方法
無線通信用アンテナの固有周期は，振動試験（加振試験）にて求める。試験の結果，剛であることを確認した。固有周期の確認結果を表4－1に示す。

表 4－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

5．構造強度評価

5.1 構造強度評価方法
（1）無線通信用アンテナの質量は，重心に集中しているものとする。
（2）地震力は，無線通信用アンテナに対して，水平方向及び鉛直方向から作用する ものとする。
（3）無線通信用アンテナは基礎ボルトで基礎（壁面）に固定されており，固定端と する。
（4）転倒方向は，図5－1及び図5－2における水平方向及び鉛直方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（5）無線通信用アンテナの重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
（6）耐震計算書に用いる寸法は，公称値を使用する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
無線通信用アンテナの荷重の組合せ及び許容応力状態のうち，重大事故等対処設備の評価に用いるものを表5－1に示す。

5．2．2 許容応力

無線通信用アンテナの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
無線通信用アンテナの使用材料の許容応力評価条件のうち，重大事故等対処設備の評価に用いるものを表5－3に示す。

5．2．4 風荷重

風荷重は，風速 $30 \mathrm{~m} / \mathrm{s}$ を使用し，無線通信用アンテナの形状，風向きを踏まえ，作用する風圧力を算出する。風圧力の算出の基準となる基準速度圧を表5－4に示 す。

5．2．5 積雪荷重

積雪荷重は，単位荷重 $20 \mathrm{~N} / \mathrm{cm} / \mathrm{m}^{2} *$ を使用し，無線通信用アンテナの形状を踏ま え，作用する積雪荷重を算出する。算出した積雪荷重を表5－5に示す。

注記＊：積雪量 1 cm ごとに $1 \mathrm{~m}^{2}$ あたり 20 N であることを示す。
O 2
（3）
VI－2－6－7－5
R 0

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{K}}+\mathrm{P}_{\mathrm{S}} *^{3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	その他	無線通信用アンテナ	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}+\mathrm{S}} \mathrm{s}+\mathrm{P}_{\mathrm{K}}+\mathrm{P}_{\mathrm{S}}$	$V_{A} S$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限 界を用いる。）

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}+\mathrm{P}_{\mathrm{K}}+\mathrm{P}_{\mathrm{S}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

10

注記 $*^{1}$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

表 5－4 基準速度圧
（単位：N）

使用する部位	基準速度圧
無線通信用アンテナ取付架台	255.0

■

表 $5-5$	積雪荷重	（単位：N）
使用する部位	積雪荷重	
無線通信用アンテナ取付架台	119.2	

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－6に示す。
「基準値震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（重大事故等対処設備）

据付場所及び	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準値震動 S S	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20 \\ \text { (0.P. } 41.20^{*} \text {) } \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=3.43$	$\mathrm{C}_{\mathrm{V}}=1.89$

注記＊：基準床レベルを示す。

5．4 計算方法

5．4．1 応力の計算方法
5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 5－1 計算モデル（水平方向転倒）

図 5－2 計算モデル（鉛直方向転倒）
（1）引張応力
基礎ボルトに対する引張力は，最も厳しい条件として，図5－1及び図5－2で最外列の基礎ボルトを支点とする転倒を考え，これを片側の最外列の基礎ボルトで受 けるものとして計算する。
a．引張力
計算モデル図5－1の場合の引張力

$$
\mathrm{F}_{\mathrm{b} 1}=\left(\mathrm{m} \cdot \mathrm{~g}+0.35 \mathrm{P}_{\mathrm{s}}\right) \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{2}}{\mathrm{n}_{\mathrm{fH}} \cdot \ell_{\mathrm{a}}}+\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{\mathrm{b}}}\right)+\left(\frac{\mathrm{P}_{\mathrm{K}} \cdot \mathrm{~h}_{\mathrm{a}}}{\mathrm{n}_{\mathrm{fH}} \cdot \ell_{\mathrm{a}}}\right)
$$

（5．4．1．1．1）
計算モデル図5－2の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\left(\mathrm{m} \cdot \mathrm{~g}+0.35 \mathrm{P}_{\mathrm{s}}\right) \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \ell_{3}+\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{\mathrm{fV}} \cdot \ell_{\mathrm{b}}}\right) \cdot(5.4 .1 .1 .2) \\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\mathrm{b} 1}, \mathrm{~F}_{\mathrm{b} 2}\right) \cdots \ldots \tag{5.4.1.1.3}
\end{align*}
$$

b．引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.4}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.1.5}
\end{equation*}
$$

ただし，Fbが負のとき基礎ボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算す る。
a．せん断力

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{b} 1}=(\mathrm{m} \cdot \mathrm{~g}+0.35 \mathrm{P} \mathrm{~s}) \cdot \mathrm{C}_{\mathrm{H}} \\
& \text { (5.4.1.1.6) } \\
& \mathrm{Q}_{\mathrm{b} 2}=\left(\mathrm{m} \cdot \mathrm{~g}+0.35 \mathrm{P}_{\mathrm{s}}\right) \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \\
& \text { (5.4.1.1.7) } \\
& Q_{b}=\sqrt{\left(Q_{b_{1}}\right)^{2}+\left(Q_{b_{2}}\right)^{2}} \\
& \text { (5.4.1.1.8) }
\end{aligned}
$$

b．せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}+\mathrm{P}_{\mathrm{K}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.9}
\end{equation*}
$$

5．5 計算条件
5．5．1 ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【無線通信用アンテナ （原子炉建屋側）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5．6 応力の評価

5．6．1 ボルトの応力評価
5.4 項で求めたボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 f t s 以下 であること。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 $\tau \mathrm{b}$ は，せん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であること。ただし，f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 fto	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f sb	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

無線通信用アンテナの電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

無線通信用アンテナの機能確認済加速度は，添付書類「VI－2－1－9 機能維持の方針」 に基づき，加振試験により電気的機能の健全性を確認した評価部位の加速度を適用す る。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

7．評価結果

7．1 重大事故等対処設備としての評価結果
無線通信用アンテナの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。

発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

$$
\text { O } 2 \text { (3) VI }-2-6-7-5 \text { R } 0
$$

【無線通信用アンテナ（原子炬建屋側）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）				基淮地震動S s		$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { 周囲環境温度 }}$
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直方向 計計震度	$\underset{\substack{\text { 水平方向 } \\ \text { 設計震度 }}}{ }$	鉛直方向設計震度	
無線通信用アンテナ （原子炉建屋側）	常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20 \\ \left(0 . \text { P. } 41.20^{*}\right) \end{gathered}$	0.05 以下	0． 05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=3.43$	$\mathrm{C}_{\mathrm{v}}=1.89$	40

注記＊：基淮床レベルを示す。

1.2 機器要目

～

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材					弾性設計用地震動S d又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 俍 } \end{aligned}$
基礎ボルト	235	400	－	280	－	水平方向

O 2
（3） $\mathrm{VI}-2-6-7-5$
R 0

1．3 計算数値

1．3．1 ボルトに作用する力			（単位：N）	
	F_{b}		Q b	
部 材	弾性設計用地震動 S d又は静的震度	$\begin{gathered} \hline \text { 基漼地震動 } \\ \mathrm{S} \text {. } \end{gathered}$	弾性設計用地震動 S d又は静的震度	基漼地震動 S s
基礎ボルト	－	2． 264×10^{3}	－	2.826×10^{3}

1． 4 結論

	材 料	応力	弾性設計用地震動S d 又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=12$	$\mathrm{f}_{\mathrm{ts}}=210$＊
		せん断	－	－	$\tau_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{sb}}=161$

注記 $*: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出
すべて許容応力以下である。
$\stackrel{\sim}{\bullet}$
1．4．2 電気的機能維持の評価結果

		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
無線通信用アンテナ （原子炉建屋側）	水平方向	機能維持評価用加速度＊	機能確認済加速度
	鉛直方向	2.86	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

正面（水平方向）

側面（鉛直方向）

$$
\begin{array}{ll}
\text { VI-2-6-7-6 } & \text { 統合原子力防災ネットワークを用いた } \\
& \text { 通信連絡設備の耐震性についての計算書 }
\end{array}
$$

1．概要 1
2．一般事項 1
2.1 構造計画 1
2． 2 評価方針 3
2.3 適用基準 3
3．評価部位 3
4．機能維持評価 5
4.1 機能維持評価用加速度 5
4.2 機能確認済加速度 6
5．評価結果 6
5.1 重大事故等対処設備としての評価結果 6

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持 の設計方針に基づき，統合原子力防災ネットワークを用いた通信連絡設備が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

統合原子力防災ネットワークを用いた通信連絡設備は，設計基準対象施設においては Cクラス施設に，重大事故等対処設備においては常設重大事故等対処設備（防止でも緩和でもない設備）に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示す。

2．一般事項

2．1 構造計画

統合原子力防災ネットワークを用いた通信連絡設備の構造計画を表 2－1 から表2－3 に示す。

統合原子力防災ネットワークを用いた通信連絡設備は，IP 電話（有線系），IP 電話 （衛星系），IP－FAX 及びテレビ会議システムで構成される。

表 2－1 構造計画（IP 電話（有線系）及び IP 電話（衛星系））

計画の概要		概略構造図
基礎•支持構造	主体構造	
IP 電話（有線系）及び IP 電話（衛星系）は固定金具にて机上に固縛する。 机は取付金物を使用し，ボルト で床に固定す る。	電話機	

表 2－2 構造計画（IP－FAX）

計画の概要		概略構造図
基礎•支持構造	主体構造	
IP－FAX は取付架台内に固定す る。 取付架台はボル トで床に固定す る。	F A X	

表 2－3 構造計画（テレビ会議システム）

計画の概要		概略構造図
基礎•支持構造	主体構造	
テレビ会議シス テム用の液晶テ レビは，枠組で固縛し，ボルトで壁 に固定する。 カメラ等の機器 はテーブルに固縛し，ボルトで壁 に固定する。	テレビ	

2． 2 評価方針

統合原子力防災ネットワークを用いた通信連絡設備の機能維持評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時 の応答加速度が電気的機能確認済加速度以下であることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

統合原子力防災ネットワークを用いた通信連絡設備の耐震評価フローを図 2－1 に示す。

図 2－1 統合原子力防災ネットワークを用いた通信連絡設備の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
IP 電話（有線系）及び IP 電話（衛星系）は，電話機を固定金具にて机上に固縛する ことから，机が支持している。机は取付金物にて床に固定する。

IP－FAX は，FAXを取付架台内に固定することから，取付架台が支持している。取付架台はボルトにて床に固定する。

テレビ会議システムは，液晶テレビを枠組で固縛することから，枠組が支持している。枠組はボルトにて壁に固定する。また，カメラ等の機器は，テーブルに固縛することか ら，テーブルが支持している。テーブルはボルトにて壁に固定する。

本計算書では，加振試験結果を用いた統合原子力防災ネットワークを用いた通信連絡設備の電気的機能維持評価について示す。

図 3－1 IP 電話（有線系）外形図

図 3－2 IP 電話（衛星系）外形図

図 3－3 IP－FAX 外形図

図 3－4 テレビ会議システム外形図

4．機能維持評価

統合原子力防災ネットワークを用いた通信連絡設備の電気的機能維持の評価について，以下に示す。

4.1 機能維持評価用加速度

統合原子力防災ネットワークを用いた通信連絡設備のうち IP 電話及び IP－FAX は，緊急時対策所の床に固定される。また，統合原子力防災ネットワークを用いた通信連絡設備のうちテレビ会議システムは，緊急時対策所の壁に固定されることから，設計用地震力は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す，統合原子力防災ネットワークを用いた通信連絡設備の設置床における基準地震動 S s に基づく設備評価用床応答曲線とし，機能維持評価用加速度には設置床の最大応答加速度を適用 する。

機能維持評価用加速度を表4－1に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置個所 （m）	方向	機能維持評価用加速度
統合原子力防災ネットワー クを用いた通信連絡設備 （IP 電話）	緊急時対策建屋$\begin{array}{lr} \text { 0. P. } & 51.50^{*} \\ \text { (0. P. } & 52.32 \text {) } \end{array}$	水平方向	0． 74
		鉛直方向	0.63
統合原子力防災ネットワー クを用いた通信連絡設備 （IP－FAX）	緊急時対策建屋$\begin{array}{lr} \text { 0.P. } & 51.50^{*} \\ \text { (0. P. } & 51.60 \text {) } \end{array}$	水平方向	0． 74
		鉛直方向	0.63
統合原子力防災ネットワー クを用いた通信連絡設備 （テレビ会議システム）	緊急時対策建屋$\text { 0. P. } 57.30^{*}$	水平方向	1． 01
		鉛直方向	0． 73

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

統合原子力防災ネットワークを用いた通信連絡設備のうち IP 電話の機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の機器のラン ダム波加振試験において電気的機能の健全性を確認した加速度を適用する。

また，統合原子力防災ネットワークを用いた通信連絡設備のらち IP－FAX 及びテレ ビ会議システムの機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき，同形式の機器のサインビート波加振試験において電気的機能の健全性を確認した加速度を適用する。

機能確認済加速度を表4－2 に示す。

表 4－2 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
IP 電話（地上系）	水平方向	3.03
	鉛直方向	2.11
IP 電話（衛星系）	水平方向	3.03
	鉛直方向	2.11
IP－FAX	水平方向	1.33
	鉛直方向	1.15
テレビ会議システム	水平方向	1.75
	鉛直方向	1.30

5．評価結果

5.1 重大事故等対処設備としての評価結果

統合原子力防災ネットワークを用いた通信連絡設備の重大事故等時の状態を考慮し た場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下 であり，設計用地震力に対して電気的機能が維持されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【統合原子力防災ネットワークを用いた通信連絡設備の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
IP 電話（地上系）	水平方向	0． 74	3.03
	鉛直方向	0.63	2． 11
IP 電話（衛星系）	水平方向	0． 74	3.03
	鉛直方向	0． 63	2． 11
IP－FAX	水平方向	0． 74	1． 33
	鉛直方向	0． 63	1． 15
テレビ会議システム	水平方向	1.01	1． 75
	鉛直方向	0． 73	1． 30

注記＊：基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－6－7－7 統合原子力防災ネットワーク設備衛星アンテナ の耐震性についての計算書
1．概要 1
2．一般事項 1
2． 1 構造計画 1
2． 2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 8
4.1 固有値解析方法 8
4.2 解析モデル及び諸元 8
4．3 固有値解析結果 10
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 12
5．2．1 荷重の組合せ及び許容応力状態 12
5．2．2 許容応力 12
5．2．3 使用材料の許容応力評価条件 12
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力の計算方法 16
5.5 計算条件 21
5．5．1 基礎ボルトの応力計算条件 21
5.6 応力の評価 21
5．6．1 ボルトの応力評価 21
6．機能維持評価 22
6.1 電気的機能維持評価方法 22
7．評価結果 23
7． 1 重大事故等対処設備としての評価結果 23

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，統合原子力防災ネットワーク設備衛星アンテナが設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

統合原子力防災ネットワーク設備衛星アンテナは，設計基準対象施設においてはCク ラス施設に重大事故等対処設備においては常設重大事故等対処設備（防止でも緩和でも ない設備）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

統合原子力防災ネットワーク設備衛星アンテナの構造計画を表 2－1 に示す。

O 2
（3） $\mathrm{VI}-2-6-7-7$
R 0

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
衛星アンテナは，ボル トにより衛星アンテナ支持架台に固定され，衛星アンテナ支持架台は基礎ボルトにより基礎 に固定される。 ODU（送受信装置）は， ボルトにより ODU 支持架台に固定され，ODU 支持架台は基礎ボルトに より基礎に固定される。 ODU と衛星アンテナ はステー及びアームに より連結される。	アンテナ		

2.2 評価方針

統合原子力防災ネットワーク設備衛星アンテナの応力評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，
「2．1 構造計画」にて示す統合原子力防災ネットワーク設備衛星アンテナの部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，統合原子力防災ネット ワーク設備衛星アンテナの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認すること で実施する。確認結果を，「7．評価結果」に示す。

統合原子力防災ネットワーク設備衛星アンテナの耐震評価フローを図 2－1 に示す。

図 2－1 統合原子力防災ネットワーク設備衛星アンテナの耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補— 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007） （以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F^{*}	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
f s b	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又は f s＊を 1.5 倍した値）	MPa
f t o	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又 は f t＊を 1.5 倍した値）	MPa
f ts	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊	mm
ℓ_{2}	重心とボルト間の水平方向距離＊	mm
m	質量	kg
n	ボルトの本数	－
n f	評価上引張力を受けるとして期待するボルトの本数	－
Q b	ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{\text {y }}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $*: \ell_{1} \leqq \ell_{2}$
2.5 計算精度と数値の丸め方

計算精度は有効桁数 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{\text {c }}$
長	下記以外の長さ	mm	－	整数位＊${ }^{1}$	整数位＊${ }^{\text {＊}}$
さ	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第1位＊2，3
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊4
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{2}$
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。 ＊ 3 ：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。 ＊ 4 ：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位

統合原子力防災ネットワーク設備衛星アンテナの耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，統合原子力防災ネットワーク設備衛星アンテナは，構造物として十分な剛性を有してい るため，基礎ボルトを評価対象とする。

統合原子力防災ネットワーク設備衛星アンテナの評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4．1 固有値解析方法
統合原子力防災ネットワーク設備衛星アンテナの固有値解析方法を以下に示す。
（1）統合原子力防災ネットワーク設備衛星アンテナを「4．2 解析モデル及び諸元」に示 す 3 次元はり要素及びシェル要素によりモデル化した 3 次元 F E Mモデルとする。

4．2 解析モデル及び諸元
統合原子力防災ネットワーク設備衛星アンテナの解析モデルを図4－1に，解析モデ ルの概要を表 4－1 に示す。
（1）統合原子力防災ネットワーク設備衛星アンテナの質量は，重心に集中するものとす る。
（2）統合原子力防災ネットワーク設備衛星アンテナの重心位置については，計算条件が厳しくなる位置に重心位置を設定するものとする。
（3）ODU は，取り付け位置に質量要素として付加する。
（4）拘束条件は，基礎ボルト固定部をピン固定とする。
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「 M S C N A S T R A N 」を使用する。なお，評価に用いる「M S C N A S T R A N 」の検証及び妥当性確認などの概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

表 4－1 解析モデルの諸元

項目		記号	単位	入力値
材質		－	－	SS400（16mm 以下）
		－	－	SS400（ 25 mm 以下）
		－	－	STK400
		－	－	A5052P－H34
		－	－	A6063S－T5
		－	－	SUS304
温度条件	雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	SS400／STK400	E	MPa	2.05×10^{5}
	A5052P－H34	E	MPa	7.0×10^{4}
	A6063S－T5	E	MPa	7.0×10^{4}
	SUS304	E	MPa	1.93×10^{5}
密度	SS400／STK400	V	$\mathrm{kg} / \mathrm{mm}^{3}$	7.87×10^{-6}
	A5052P－H34	V	$\mathrm{kg} / \mathrm{mm}^{3}$	2.7×10^{-6}
	A6063S－T5	V	$\mathrm{kg} / \mathrm{mm}^{3}$	2.7×10^{-6}
	SUS304	V	$\mathrm{kg} / \mathrm{mm}^{3}$	8.03×10^{-6}

4． 3 固有値解析結果
固有値解析結果（固有振動数及び固有周期）を表4－2に示す。また，振動モード図 を図 4－2 から図 4－3 に示す。左右方向は 3 次モードにおいて卓越し，固有振動数が 20 Hz 以上（固有周期が 0.05 秒以下）であり，剛であることを確認した。また，前後方向は5次モードにおいて，鉛直方向は10次モード以降において卓越し，それぞれ固有振動数が 20 Hz 以上（固有周期が 0.05 秒以下）であり，剛であることを確認した。

表 4－2 固有値解析結果

モード	卓越方向	固有振動数 （Hz）	固有周期 （s）	水平方向刺激係数		鉛直方向刺激係数
				X方向 （前後方向）	$\begin{gathered} \text { Y方向 } \\ (\text { 左右方向) } \end{gathered}$	
3 次	水平方向	23.2	0.043	－0．016	－0．311	0.000
5 次	水平方向	24.5	0.041	－0．313	0.010	－0．007

図 4－2 3 次モード図（ $23.2 \mathrm{~Hz}, 0.043 \mathrm{~s}$ ）

図 4－3 5 次モード図（ $24.5 \mathrm{~Hz}, 0.041 \mathrm{~s}$ ）

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（6）のほか，次の条件で計算する。
（1）地震力は，統合原子力防災ネットワーク設備衛星アンテナに対して，水平方向及び鉛直方向から作用するものとする。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
統合原子力防災ネットワーク設備衛星アンテナの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表5－1 に示す。

5．2．2 許容応力
統合原子力防災ネットワーク設備衛星アンテナの許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表5－2 に示す。

5．2．3 使用材料の許容応力評価条件
統合原子力防災ネットワーク設備衛星アンテナの使用材料の許容応力評価条件 のうち重大事故等対処設備の評価に用いるものを表 5－3 に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

※ 注記 $* 1: 「 そ の$ 他」は常設重大事故等対処設備（防止でも緩和でもない設備）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}^{\prime}}+\mathrm{M}_{\mathrm{SAD}^{\prime}}+\mathrm{S}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 荷許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV } \mathrm{I}\right. \text { S } \\ \text { の許容限界を用いる。) } \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SUS304	周囲環境温度	40	205	520	-

5.3 設計用地震力

「基準地震動 S s 」による地震力は，「VI－2－1－7 設計用応答曲線の作成方針」に基 づき設定する。

評価に用いる設計用地震力を表5－4に示す。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
緊急時対策所建屋 $\begin{aligned} & \text { 0. P. } \quad 75.90^{* 1} \\ & \text { (0. P. } 77.11 \text {) } \end{aligned}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.70$

注記＊1：基準床レベルを示す。

5．4 計算方法

5．4．1 応力の計算方法
5．4．1．1 基礎ボルトの計算方法
衛星アンテナ支持架台および ODU 支持架台を基礎に固定する基礎ボルトは，円周配置ボルトであるが，鉛直方向の設計震度が 1 G を超えることから添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」のボルトの評価法を基本として評価を行う。

計算モデル及び基礎ボルトの配置図を図 5－1 に示す。

前後方向計算モデル概念図（側面図）
左右方向計算モデル概念図（正面図）

：基礎ボルト位置

図 5－1 計算モデル及び基礎ボルト配置図
（1）衛星アンテナ支持架台の基礎ボルト
この項目において衛星アンテナ支持架台の基礎ボルトを「基礎ボルト1」 という。
a．引張応力
基礎ボルト 1 に生じる引張応力は，以下のとおり計算する。

引張応力	単位	計算式
前後加振時		$\sigma_{\mathrm{b} 11}=\frac{\mathrm{F}_{\mathrm{b} 1} * 1}{\mathrm{~A}_{\mathrm{b} 1}}$
	MPa	$\sigma_{\mathrm{b} 12}=\frac{\mathrm{F}_{\mathrm{b} 2} * 2}{\mathrm{~A}_{\mathrm{b} 1}}$
右加振時		

注記 $* 1: \mathrm{F}_{\mathrm{b} 1}=\frac{\left(\mathrm{C}_{\mathrm{V}}-1\right) \cdot \mathrm{m}_{1} \cdot \mathrm{~g}}{\mathrm{n}_{1}}+\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{1} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \cdot \mathrm{D}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}}{2 \mathrm{I}_{1}}$
$* 2: \mathrm{F}_{\mathrm{b} 2}=\frac{\left(\mathrm{C}_{\mathrm{V}}-1\right) \cdot \mathrm{m}_{1} \cdot \mathrm{~g}}{\mathrm{n}_{1}}+\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{1} \cdot \mathrm{~g} \cdot \mathrm{~h}_{1} \cdot \mathrm{D}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}}{2 \mathrm{I}_{1}}$

記号の説明を表5－5に示す。

表 5－5 記号の説明

記号	説明	単位	数値
C_{v}	鉛直方向設計震度	－	1.70
m_{1}	質点1の質量	kg	700
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$	9． 80665
C_{H}	水平方向設計震度	－	3.34
h_{1}	基礎から質点1の重心までの距離	mm	2630
n 1	基礎ボルト 1 の本数	－	6
$\mathrm{A}_{\mathrm{b} 1}$	基礎ボルト 1 の軸断面積（ $=\pi \cdot \mathrm{d}_{1}{ }^{2} / 4$ ）	mm^{2}	706.9
d_{1}	基礎ボルト 1 の呼び径	－	30
D_{1}	基礎ボルト配置径	mm	450
I_{1}	基礎ボルト全体の断面二次モーメント	mm ${ }^{4}$	1． 074×10^{8}

b．せん断応力
基礎ボルト 1 に生じるせん断応力は次のとおり計算する。

せん断応力	単位	計算式
前後加振時	MPa	$\tau_{\mathrm{b} 11}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{1} \cdot g}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}}$
左右加振時		$\tau_{\mathrm{b} 12}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{1} \cdot g}{\mathrm{n}_{1} \cdot \mathrm{~A}_{\mathrm{b} 1}}$

記号の説明を表5－6に示す。

記号	説明	単位	数値
C_{H}	水平方向設計震度	-	3.34
$\mathrm{~m}_{1}$	質点 1 の質量	kg	700
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$	9.80665
n_{1}	基礎ボルト 1 の本数	-	6
$\mathrm{~A}_{\mathrm{b} 1}$	基礎ボルト1 の軸断面積 $\left(=\pi \cdot \mathrm{d}_{1}{ }^{2} / 4\right)$	mm^{2}	706.9

（2）ODU 支持架台の基礎ボルト
この項目においてODU 支持架台の基䂣ボルトを「基礎ボルト 2 」という。 a．引張応力

基整ボルト 2 に生じる引張応力は，以下のとおり計算する。

引張応力	単位	計算式
前後加振時		$\sigma_{\mathrm{b}_{21}}=\frac{\mathrm{F}_{\mathrm{b} 1}{ }^{* 1}}{\mathrm{~A}_{\mathrm{b} 2}}$
		$\sigma_{\mathrm{b} 22}=\frac{\mathrm{F}_{\mathrm{b} 2}{ }^{* 2}}{\mathrm{~A}_{\mathrm{b} 2}}$

注記 $* 1: \mathrm{F}_{\mathrm{b} 1}=\frac{\left(\mathrm{C}_{\mathrm{V}}-1\right) \cdot \mathrm{m}_{2} \cdot \mathrm{~g}}{\mathrm{n}_{2}}+\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{2} \cdot \mathrm{~g} \cdot \mathrm{~h}_{2} \cdot \mathrm{D}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}{2 \mathrm{I}_{2}}$ ＊2： $\mathrm{F}_{\mathrm{b} 2}=\frac{\left(\mathrm{C}_{\mathrm{V}}-1\right) \cdot \mathrm{m}_{2} \cdot \mathrm{~g}}{\mathrm{n}_{2}}+\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{2} \cdot \mathrm{~g} \cdot \mathrm{~h}_{2} \cdot \mathrm{D}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}{2 \mathrm{I}_{2}}$

記号の説明を表 5－7に示す。

表 5－7 記号の説明

記号	説明	単位	数値
C_{V}	鉛直方向設計震度	-	1.70
$\mathrm{~m}_{2}$	質点2の質量	kg	300
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$	9.80665
C_{H}	水平方向設計震度	-	3.34
$\mathrm{~h}_{2}$	基礎から質点2の重心までの距離	mm	1400
n_{2}	基礎ボルト2 の本数	-	6
$\mathrm{~A}_{\mathrm{b} 2}$	基礎ボルト2の軸断面積 $\left(=\pi \cdot \mathrm{d}_{2}{ }^{2} / 4\right)$	mm^{2}	706.9
$\mathrm{~d}_{2}$	基礎ボルト2の呼び径	-	30
D_{2}	基礎ボルト配置径	mm^{2}	450
I_{2}	基礎ボルト全体の断面二次モーメント	mm^{4}	1.074×10^{8}

b．せん断応力
基礎ボルト 2 に生じるせん断応力は次のとおり計算する。

世ん断応力	単位	計算式
前後加振時	MPa	$\tau_{\mathrm{b}_{22}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{2} \cdot g}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}$
		$\tau_{\mathrm{b}_{22}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{m}_{2} \cdot \mathrm{~g}}{\mathrm{n}_{2} \cdot \mathrm{~A}_{\mathrm{b} 2}}$

記号の説明を表 5－8 に示す。

表 5－8 記号の説明

記号	説明	単位	数値
C_{H}	水平方向設計震度	-	3.34
$\mathrm{~m}_{2}$	質点2の質量	kg	300
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$	9.80665
n_{2}	基礎ボルト2 の本数	-	6
$\mathrm{~A}_{\mathrm{b} 2}$	基礎ボルト2の軸断面積 $\left(=\pi \cdot \mathrm{d}_{2}{ }^{2} / 4\right)$	mm^{2}	706.9

5.5 計算条件

5．5．1 基礎ボルトの応力計算条件
（1）耐震計算モデルは1質点系モデルとする。基礎ボルトの評価において衛星アン テナ支持架台とODU 支持架台は独立していると仮定して評価する。
（2）衛星アンテナ支持架台の基礎ボルト（基礎ボルト 1）の評価には衛星アンテナ支持架台側の質量を，ODU 支持架台の基礎ボルト（基礎ボルト 2）の評価には ODU 部側の質量を考慮する。中間に位置するステー及びアームの質量は保守的 に両者に考慮する。
（3）衛星アンテナの重心位置に地震荷重が作用するものとする。
5.6 応力の評価

5．6．1 ボルトの応力評価
5.4 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 f t s 以下であること。ただし，f toは下表による。

$$
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \cdots \cdots \cdots \cdots \cdots(5.6 .1 .1)
$$

せん断応力 $\tau \mathrm{b}$ はせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下 であること。ただし，f sbは下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f}_{\mathrm{s} \text { b }}$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法
統合原子力防災ネットワーク設備衛星アンテナの電気的機能維持評価について以下 に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

統合原子力防災ネットワーク設備衛星アンテナの機能確認済加速度は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，同型式の ODU 単体の正弦波加振試験におい て電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
00 ODU	水平方向	3.56
	鉛直方向	2.15

7．評価結果
7.1 重大事故等対処設備としての評価結果

統合原子力防災ネットワーク設備衛星アンテナの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【統合原子力防災ネットワーク設備衛星アンテナの耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
統合原子力防災 ネットワーク設備衛星アンテナ	その他	緊急時対策所建屋 $\begin{aligned} & \text { 0. P. } 75.90^{* 1} \\ & \text { (0. P. } 77.11 \text {) } \end{aligned}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=3.34$	$\mathrm{C}_{\mathrm{v}}=1.70$	40

注記 $* 1$ ：基準床レベルを示す。

1． 2 機器要目

$\stackrel{\sim}{\Perp}$

部 材	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$
基礎ボルト 1 （衛星アンテナ支持架台）	30 （M30）	706.9	6	1000
基礎ボルト 2 （ODU 支持架台）	30 （M30）	706.9	6	

部 材	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
基礎ボルト1 （衛星アンテナ支持架台）	205	520	205	246
基礎ボルト2 （0DU 支持架台）	205	520	205	246

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q ${ }_{\text {b }}$	
	弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト 1 （衛星アンテナ支持架台）	－	9． 010×10^{4}	－	3． 821×10^{3}
基礎ボルト 2 （ODU 支持架台）	－	2． 072×10^{4}	－	1． 638×10^{3}

1.4 結論

1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	弾性設計用地震動 S d又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト 1 （衛星アンテナ支持架台）	SUS304	引張り	－	－	$\sigma_{\mathrm{b}}=128$	$\mathrm{f}_{\mathrm{ts}}=184^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=6$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$
基礎ボルト 2 （ODU 支持架台）	SUS304	引張り	－	－	$\sigma_{\mathrm{b}}=30$	$\mathrm{ffts}_{\mathrm{s}}=184^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=142$

すべて許容応力以下である。
注記 $*: \mathrm{f}_{\mathrm{t}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}} \mathrm{o}_{\mathrm{o}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{t}} \mathrm{o}\right]$ より算出

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
ODU	水平方向	2． 79	3.56
	鉛直方向	1． 42	2． 15

注記 $*: ~$ 基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は全て機能確認済加速度以下である。
1.5 その他の機器要目

4． 2 項に示すとおり

VI－2－6－7－8 統合原子力防災ネットワーク用通信機器収容架 の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．地震応答解析及び構造強度評価 7
4．1 地震応答解析及び構造強度評価方法 7
4．2 荷重の組合せ及び許容応力 7
4.3 解析モデル及び諸元 10
4． 4 固有周期 13
4.5 設計用地震力 13
4.6 計算方法 14
4．7 計算条件 15
4．8 応力の評価 15
5．機能維持評価 16
5.1 電気的機能維持評価方法 16
6．評価結果 17
6.1 重大事故等対処設備としての評価結果 17

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，統合原子力防災ネットワーク用通信機器収容架が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するもので ある。

統合原子力防災ネットワーク用通信機器収容架は，設計基準対象施設においてはCク ラス施設に，重大事故等対処設備においては常設重大事故等対処設備（防止でも緩和で もない設備）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

統合原子力防災ネットワーク用通信機器収容架の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
統合原子力防災ネッ トワーク用通信機器収容架は，基礎ボル トで床に固定する。	直立型（鋼材及び鋼板を組み合わせ た自立閉鎖型の収容架）		容架 約 1800 mm	約 870 mm

2.2 評価方針

統合原子力防災ネットワーク用通信機器収容架の応力評価は，添付書類「VI－2－1－9機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，
「2．1 構造計画」にて示す統合原子力防災ネットワーク用通信機器収容架の部位を踏まえ，「3．評価部位」にて設定する箇所において，「4．3 解析モデル及び諸元」及 び「4．4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認す ることで実施する。また，統合原子力防災ネットワーク用通信機器収容架の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「5．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

統合原子力防災ネットワーク用通信機器収容架の耐震評価フローを図2－1 に示す。

図 2－1 統合原子力防災ネットワーク用通信機器収容架の耐震評価フロー
2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－ 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）
（4）発電用原子力設備規格 設計•建設規格 J S M E S N C 1－2005／2007（日本機械学会）

記号	記号の説明	単位
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
T	温度条件（雰囲気温度）	${ }^{\circ} \mathrm{C}$
E	縦弾性係数	MPa
v	ポアソン比	－
S y	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
A	収容架構成部材の断面積	mm^{2}
$I_{\text {y }}$	収容架構成部材の断面二次モーメント（Y軸）	mm^{4}
I_{z}	収容架構成部材の断面二次モーメント（ Z 軸）	mm^{4}
J	収容架構成部材のねじり定数	mm^{4}
A_{y}	収容架構成部材の有効せん断断面積（Y 軸）	mm^{2}
A_{z}	収容架構成部材の有効せん断断面積（ Z 軸）	mm^{2}
$\mathrm{Z}_{\text {y }}$	収容架構成部材の断面係数（Y軸）	mm^{3}
$\mathrm{Z}_{\text {z }}$	収容架構成部材の断面係数（ Z 軸）	mm^{3}
F ${ }_{\text {b }}$	基礎ボルトに作用する引張力	N
Q b	基礎ボルトに作用するせん断力	N
Q \times	基礎ボルトに作用する X 軸方向のせん断力	N
Q y	基礎ボルトに作用する Y 軸方向のせん断力	N
A_{b}	基礎ボルトの断面積	mm^{2}
f t o	引張力のみを受ける基礎ボルトの許容引張応力 （ f t＊を 1.5 倍した値）	MPa
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力 （f s＊を 1.5 倍した値）	MPa
$\mathrm{ff} \mathrm{t} \mathrm{s}^{\text {d }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
$\sigma \mathrm{b} \mathrm{t}$	基礎ボルトに生じる引張応力	MPa
τ_{b}	基礎ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

	数値の種類	単位	処理桁	処理方法	表示桁
	固有周期	S	小数点以下第 4 位	四捨五入	小数点以下第 3 位
	震度	－	小数点以下第 3 位	切上げ	小数点以下第 2 位
	温度	${ }^{\circ} \mathrm{C}$	－	－	整数位
	質量	kg	－	－	整数位＊${ }^{\text {P }}$
長	下記以外の長さ	mm	－	整数位＊1	整数位＊1
さ	部材断面寸法	mm	小数点以下第 2 位	四捨五入	小数点以下第 1 位 ${ }^{* 2,3}$
	面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊${ }^{*}$
	モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
	縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
	算出応力	MPa	小数点以下第 1 位	切上げ	整数位
	許容応力＊5	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊ 2 ：設計上定める値が小数点以下第 2 位の場合は，小数点以下第 2 位表示とする。
＊3：設計上定める値が小数点以下第 3 位の場合は，小数点以下第 3 位表示とする。 ＊ 4 ：絶対値が 1000 以上のときは，べき数表示とする。
＊5：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位

統合原子力防災ネットワーク用通信機器収容架の耐震評価は，「4．1 地震応答解析及 び構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。なお，統合原子力防災ネットワーク用通信機器収容架は，構造物として十分 な剛性を有しており，基礎ボルトが健全であれば統合原子力防災ネットワーク用通信機器収容架の機能を維持できるため，基礎ボルトを評価対象とする。

統合原子力防災ネットワーク用通信機器収容架の耐震評価部位については，表 2－1 の概略構造図に示す。

4．地震応答解析及び構造強度評価

4． 1 地震応答解析及び構造強度評価方法
（1）固有周期及び荷重を求めるため，統合原子力防災ネットワーク用通信機器収容架を はり要素としてモデル化した3次元 F EMモデルによる固有値解析を行う。固有周期が 0.05 秒以下であり，剛であることを確認した上で， 1.2 倍した設置床の最大応答加速度を用いた静解析を実施する。
（2）統合原子力防災ネットワーク用通信機器収容架は，床面に設置し，基礎ボルトによ り固定されるものとする。
（3）解析モデルの質量には，統合原子力防災ネットワーク用通信機器収容架と収容機器及びトレイの質量を考慮する。
（4）耐震計算に用いる寸法は，公称値を使用する。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
統合原子力防災ネットワーク用通信機器収容架の重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力

統合原子力防災ネットワーク用通信機器収容架の許容応力は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき表4－2に示す。

4．2．3 使用材料の許容応力評価条件
統合原子力防災ネットワーク用通信機器収容架の使用材料の許容応力評価条件 のうち重大事故等対処設備の評価に用いるものを表 4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

注記 $* 1$ ：「その他」は常設重大事故等対処設備（防止でも緩和でもない設備）を示す。
∞
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S}_{\mathrm{s}}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{*} 1, ~ * 2$ （ボルト等）	
	一次応力	
	引張り	せん断
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}{ }^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}{ }^{*}$
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の } \\ \text { 許容限界を用いる。) } \end{gathered}$		

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400	周囲環境温度	40	235	400	-

4.3 解析モデル及び諸元

統合原子力防災ネットワーク用通信機器収容架の解析モデルを図4－1 に，解析モデ ルの諸元を表 4－4，外形図を図4－2に示す。
（1）図4－1 の \triangle は拘束節点を示し，■ は質量付加位置を表す。
（2）図 4－1 の赤線は溝形鋼を，青線は山形鋼を示す。破線は荷重振分用の剛体を示す。
（3）収容機器及びトレイの質量は，耐震評価上厳しくなるトレイ下端位置に質量要素と して設定した。扉及び側面鋼板は安全側の評価としてモデル化を行わず，主部材の材料特性に質量密度を設定することでモデル化した。
（4）拘束条件として，図4－1の \triangle の節点について，基礎ボルトにて床面に固定されるた め，XYZ 並進方向を拘束する。
（5）部材の機器要目を表4－5に示す。
（6）解析コードは「 M S C N A S T A R A N 」を使用する。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 解析モデル図

表 4－4 解析モデルの諸元

項目	単位	入力値
材料	-	SS 400
温度条件	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	MPa	2.02×10^{5}
ポアソン比	-	0.3
寸法	-	図 $4-2$
要素数	個	492
節点数	個	418
総質量	kg	763

表 4－5 部材の機器要目

機器名称			統合原子力防災ネットワーク用通信機器収容架			
対象要素			柱•梁	梁	$\begin{gathered} \hline \text { ブレース・ } \\ \text { トレイ } \\ \text { 取付梁 } \\ \hline \end{gathered}$	ブレース
材料			SS400	SS400	SS400	SS400
断面形状			溝形鋼	山形鋼（1）	山形鋼（2）	山形鋼（3）
寸法		mm	$125 \times 65 \times 6 \times 8$	$65 \times 65 \times 8$	$50 \times 50 \times 6$	$40 \times 40 \times 5$
断面積	A	mm^{2}	1． 711×10^{3}	976.1	564.4	375.5
断面二次モーメント	I_{y}	mm^{4}	4． 240×10^{6}	3.680×10^{5}	1． 260×10^{5}	5.420×10^{4}
	I_{z}	mm^{4}	6． 180×10^{5}	3.680×10^{5}	1． 260×10^{5}	5． 420×10^{4}
ねじり定数	J	mm^{4}	3.000×10^{4}	2.082×10^{4}	6.768×10^{3}	3.125×10^{3}
せん断断面積	A_{y}	mm^{2}	654.0	456.0	264.0	175.0
	A_{z}	mm^{2}	1.040×10^{3}	456.0	264.0	175.0
断面係数	Z_{y}	mm^{3}	6.780×10^{4}	7.960×10^{3}	3.550×10^{3}	1． 910×10^{3}
	$\mathrm{Z}_{\text {z }}$	mm^{3}	1． 340×10^{4}	7.960×10^{3}	3.550×10^{3}	1.910×10^{3}

（単位：mm）

図 4－2 統合原子力防災ネットワーク用通信機器収容架 外形図

4． 4 固有周期
固有値解析の結果を表4－6に示す。
一次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

表 4－6 固有値解析結果

モード	固有周期 (s)	卓越方向
1 次	0.05 以下	水平

4.5 設計用地震力

評価に用いる設計用地震力を表4－7に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用応答曲線の作成方針」に基づき設定する。

表 4－7 設計用地震力（重大事故等対処設備）

据付場所 及び 床面高さ （m）	固有周期 （s）		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度
緊急時対策建屋 $\begin{gathered} 0 . \text { P. } 51.50 * \\ (0 . \text { P. } \\ \hline 1.85) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.88$	$\mathrm{C}_{\mathrm{v}}=0.75$

注記＊：基準床レベルを示す。

4． 6 計算方法
FEM解析の結果から得られる基礎ボルト部の最大荷重を用いて，表4－8の式によ り最大応力を算出する。

最大応力発生部位を図4－3に示す。

表 4－8 応力計算式

応力の種類	単位	応力計算式
引張応力 $\sigma_{\mathrm{b} t}$	MPa	$\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$
せん断応力 τ_{b}	MPa	$\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{A}_{\mathrm{b}}}$

ここで，
基礎ボルトに作用するせん断力 $\mathrm{Q}_{\mathrm{b}}=\sqrt{\mathrm{Q}_{\mathrm{x}}{ }^{2}+\mathrm{Q}_{\mathrm{y}}{ }^{2}}$

図 4－3 最大応力発生部位

4．7 計算条件

4．7．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【統合原子力防災ネッ トワーク 用通信機器収容架の耐震性についての計算結果】の設計条件及び機器要目に示す。

4．8 応力の評価

4．8．1 基礎ボルトの応力評価
4.6 項で求めた基礎ボルトの引張応力 $\sigma \mathrm{b} \mathrm{t}$ は次式より求めた許容引張応力 f t s以下であること。

ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{4.8.1.1}
\end{equation*}
$$ であること。

ただし，f s b は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{t} \text { 。 }}$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

5．機能維持評価

5.1 電気的機能維持評価方法

統合原子力防災ネットワーク用通信機器収容架の電気的機能維持評価について，以下に示す。

なお，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき評価する。

統合原子力防災ネットワーク用通信機器収容架の機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，統合原子力防災ネット ワーク用通信機器収容架に収容する機器の正弦波加振試験において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1 に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
L2SW（衛星用）	水平方向	1． 64
	鉛直方向	1． 18
IDU	水平方向	1． 45
	鉛直方向	0.99
ODU－INTFC－B0X	水平方向	1． 45
	鉛直方向	0.99
L2SW	水平方向	1． 64
	鉛直方向	1． 18
L3SW	水平方向	1． 64
	鉛直方向	1． 18
衛星ルータ	水平方向	1． 64
	鉛直方向	1． 18
ONU	水平方向	1． 64
	鉛直方向	1． 18
VoIP－GW	水平方向	1． 64
	鉛直方向	1． 18

6．評価結果

6． 1 重大事故等対処設備としての評価結果
統合原子力防災ネットワーク用通信機器収容架の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【統合原子力防災ネットワーク用通信機器収容架の耐震性についての計算結果】
1．重大事故等対処設備

1.1 設計条件

注記＊：基準床レベルを示す。

1．2 機器要目
4． 3 項に示すとおり。

1．3 計算数値
基礎ボルト

記号	説明	単位	値
F_{b}	基礎ボルトに作用する引張力	N	4.967×10^{3}
Q_{x}	基礎ボルトに作用する X 軸方向のせん断力	N	21.23
Q_{y}	基礎ボルトに作用するY軸方向のせん断力	N	3.613×10^{3}
Q_{b}	基礎ボルトに作用するせん断力	N	3.613×10^{3}
$\mathrm{~A}_{\mathrm{b}}$	基礎ボルトの断面積	mm^{2}	201.1
F ＊	設計•建設規格 $\quad \mathrm{SSB}-3133$ に定める値	MPa	280

1． 4 結論

1．4．1 ボルトの応力
（単位：MPa）

部材	材料	応力	基準地震動 S s	
			許容応力	
基礎ボルト	SS 400	引張り	$\sigma_{\mathrm{b} \mathrm{t}}=25$	$\mathrm{f}_{\mathrm{t} \mathrm{s}}=210$＊
		$\tau_{\mathrm{b}}=18$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=161$	

すべて許容応力以下である。 注記 $*: ~ f t \mathrm{~s}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}} \mathrm{f}-1.6 \cdot \tau_{\mathrm{b}}\right.$ ， $\mathrm{f}_{\mathrm{t}} \mathrm{f}$ ］より算出

1．4．2 電気的機能維持の評価結果（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。

評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－9 代替原子炉再循環ポンプトリップ遮断器の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4．2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件 4
5．機能維持評価 7
5.1 電気的機能維持評価方法 7
6．評価結果 8
6.1 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，代替原子炉再循環ポンプトリップ遮断器が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

代替原子炉再循環ポンプトリップ遮断器は，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，代替原子炉再循環ポンプトリップ遮断器は，以下の表1－1に示す盤から構成さ れ，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形盤である ため，添付書類「VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針」に基づき評価を行う。

表1－1 代替原子炉再循環ポンプトリップ遮断器の構成

2．一般事項
2.1 構造計画

代替原子炉再循環ポンプトリップ遮断器の構造計画を表2－1に示す。
○ 2
（3） $\mathrm{VI}-2-6-7-9$
R 0

表 2－1 構造計画

3．固有周期
代替原子炉再循環ポンプトリップ遮断器の固有周期は，構造が同等であり，同様な振動特性を持つ盤に対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期

名称	方向	固有周期
代替原子炉再循環ポンプトリップ遮断器	水平	0.05 以下
	鉛直	0.05 以下

4．構造強度評価
4.1 構造強度評価方法

代替原子炉再循環ポンプトリップ遮断器の構造強度評価は，添付書類「VI－2－1－13－ 7 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行 う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
代替原子炉再循環ポンプトリップ遮断器の荷重の組合せ及び許容応力状態のう ち重大事故等対処設備としての評価に用いるものを表4－1に示す。

4．2．2 許容応力
代替原子炉再循環ポンプトリップ遮断器の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
代替原子炉再循環ポンプトリップ遮断器の使用材料の許容応力評価条件のらち重大事故等対処設備としての評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。
○ 2
（3） $\mathrm{VI}-2-6-7-9$
R 0

表 4－2 許容応力（重大事故等その他の支持構造物）

＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} S_{y i}(R T) \\ (M P a) \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	周囲環境温度	40	215	400	－
取付ボルト $(i=2)$	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	235	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

代替原子炉再循環ポンプトリップ遮断器の電気的機能維持評価は，添付書類「VI－2－ 1－13－7 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行 う。

代替原子炉再循環ポンプトリップ遮断器の機能確認済加速度は，同形式の器具の正弦波加振試験において，電気的機能の健全性を確認した器具の最大加速度を適用する。機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
代替原子炉再循環ポンプトリップ遮断器(H21-P251, H21-P261)	水平	
	鉛直	

6．評価結果

6.1 重大事故等対処設備としての評価結果

代替原子炉再循環ポンプトリップ遮断器の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
O 2 （3）VI－2－6－7－9
R 0

【代替原子炉再循環ポンプトリップ遮断器（H21－P251，H21－P261）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計十用地震動S d又は静的震度		基漼地震動S s		$\underset{\left({ }^{\circ} \text { 用囲睘境温度 }\right.}{\substack{ \\\text {（ }}}$
			水平方向	鈖直方向	$\begin{aligned} & \text { 水平方可 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 設計震度 } \end{aligned}$	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鈖直方向 設計震度	
代替原子炉再循環ポンプ トリッブ遮断器 （H21－P251，H21－P261）	常設而震／防止	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. }-0.80^{*} \end{aligned}$	0． 05 以下	0． 05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{v}}=0.88$	40

注記＊：基準床レベルを示す。
σ

部 材	$\underset{(\mathbb{P a})}{\mathrm{S}_{\mathrm{i}}}$	$\underset{(\mathbb{P a})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$		転倒方向	
					弾性設計用地震動 Sd又は静的震度	基淮地震動 S s
基礎ボルト $(\mathrm{i}=1)$	215	400	－	258	－	短辺方向
$\begin{gathered} \text { 取付ボルト } \\ (\mathrm{i}=2) \end{gathered}$	235	400	－	280	－	長辺方向

注記＊1：各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
O 2
（3） $\mathrm{VI}-2-6-7-9$

R 0

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

部 材	$\mathrm{F}_{\mathrm{b} i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動S d又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基蕉地震動 }}$	弾性設計用地震動 Sd又は静的震度	$\begin{aligned} & \text { 基漼地震動 } \\ & \text { 保 } \end{aligned}$
基礎ボルト $(\mathrm{i}=1)$	－	1． 661×10^{4}	－	7.375×10^{4}
取付ボルト （ $\mathrm{i}=2$ ）	－	1． 759×10^{4}	－	7.096×10^{4}

1.4 結論

注記＊$: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		機能維持評価用加速度＊	機能確認斎加速度
代替原子炉再循環ポンプ トリップ遮断器 （H21－P251，H21－P261）	水平方向	1.11	
	鉛直方向	0.73	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
O 2
（3） $\mathrm{VI}-2-6-7-9$
R 0

正而方向

$\mathrm{A} \sim \mathrm{A}$ 矢視図

正面
（短边方向）
（短辺方向）

側面 （長辺方向）

VI－2－6－7－10 原子炉圧力容器温度の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 4
2.3 適用規格•基準等 4
3．評価部位 4
4．機能維持評価 5
4． 1 機能維持評価用加速度 5
4．2 機能確認済加速度 6
5．評価結果 7
5.1 重大事故等対処設備としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，原子炉圧力容器温度が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

原子炉圧力容器温度は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示 す。

2．一般事項
2.1 構造計画

原子炉圧力容器温度の構造計画を表 2－1，表 2－2 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，原子炉圧力容器に直接取り付けられ た熱電対パッドにボルト を用いて固定する。	熱電対	【原子炉圧力容器温度（B21－TE030B，J，M）】 正面 （単位：mm）

表 2－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，原子炉圧力容器のノズルに直接取り付けられたバンドの熱電対ハウジング部にボルト を用いて固定する。	熱電対	【原子炬圧力容器温度（B21－TE030D，F）】 正面

2.2 評価方針

原子炉圧力容器温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下で あることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

原子炉圧力容器温度の耐震評価フローを図2－1に示す。

図 2－1 原子炉圧力容器温度の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）

3．評価部位
原子炉圧力容器温度は，原子炉圧力容器に直接取り付けられた熱電対パッド及びバンドに固定 されることから，原子炉圧力容器が支持している。原子炉圧力容器の構造強度評価は，添付書類
「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」にて実施しているため，本計算書 では，原子力圧力容器の地震応答解析結果を用いた原子炉圧力容器温度の電気的機能維持評価に ついて示す。

4．機能維持評価
原子炉圧力容器温度の電気的機能維持評価について，以下に示す。

4． 1 機能維持評価用加速度

原子炉圧力容器温度は，原子炉圧力容器に直接取り付けられた熱電対パッド及びバンドに固定されることから，機能維持評価用加速度は，「基準地震動 S s 」による地震力として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。機能維持評価用加速度を表4－1 に示す。

表 4－1 機能維持評価用加速度（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S s
			機能維持評価用加速度
原子炉圧力容器温度(B21-TE030B)	原子炉圧力容器$\begin{aligned} & \text { 0.P. 23. } 667 \\ & \left(0 . \text { P. 25. } 858^{*}\right) \end{aligned}$	水平	2． 80
		鉛直	1． 20
原子炉圧力容器温度(B21-TE030D, F)	原子炉圧力容器$\begin{aligned} & \text { 0.P. 18. } 417 \\ & \left(0 . \text { P. 21. } 770^{*}\right) \end{aligned}$	水平	2． 32
		鉛直	1． 17
原子炉圧力容器温度(B21-TE030J)	原子炉圧力容器$\begin{gathered} \text { 0. P. 9. } 334 \\ \left(0 . \text { P. 11. } 310^{*}\right) \end{gathered}$	水平	1． 65
		鉛直	1． 05
原子炉圧力容器温度(B21-TE030M)	原子炉圧力容器$\begin{aligned} & \text { 0. P. 7. } 040 \\ & \left(0 . \text { P. 9. } 334^{*}\right) \end{aligned}$	水平	1． 57
		鉛直	1.02

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

原子炉圧力容器温度の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度 を適用する。
機能確認済加速度を表4－2に示す。

表 4－2	機能確認済加速度	
評価部位	方向	機能確認済加速度
原子炉圧力容器温度		
（B21－TE030B，D，F，J，M）	水平	
	鉛直	

5．評価結果
5.1 重大事故等対処設備としての評価結果

原子炉圧力容器温度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。機能維持評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持 されていることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉圧力容器温度（B21－TE030B，D，F，J，M）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

∞
注記＊：基準地震動 S s により定まる加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－11 フィルタ装置水位（広帯域）の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4.1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力• 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，フィルタ装置水位（広帯域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

フィルタ装置水位（広帯域）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。

なお，フィルタ装置水位（広帯域）が設置される計器スタンションは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－ 1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。構造強度評価については，計器スタンションの基礎ボルトに作用する応力の裕度が厳しい条件 （許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価に ついては，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで計器スタンションが剛構造の場合は同じ加速度とな ることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－ 1 に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画	
T63－LT010A（代表）	VI－2－1－13－9 計器スタンシ		
T63－LT010B	ョンの耐震性についての計算	表2－1 構造計画	
T63－LT010C	書作成の基本方針		

2．一般事項

2.1 構造計画

> フィルタ装置水位 (広帯域) の構造計画を表 2-1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定され，取付板は，取付板取付ボルトにより計器スタンションに固定 される。 計器スタンションは，基礎に基礎ボルトで設置する。	差圧式水位検出器	【フィルタ装置水位（広帯域）（T63－LT010A）】 （単位：mm）

3．固有周期
フィルタ装置水位（広帯域）が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価
4． 1 構造強度評価方法
フィルタ装置水位（広帯域）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンション の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
フィルタ装置水位（広帯域）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
フィルタ装置水位（広帯域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
フィルタ装置水位（広帯域）の使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分	機器名称	設備分類＊1	機器等の区分		荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(MPa)					

5．機能維持評価

5.1 電気的機能維持評価方法

フィルタ装置水位（広帯域）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタン ションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
フィルタ装置水位（広帯域） $(\mathrm{T} 63-\mathrm{LT010A})$	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

フィルタ装置水位（広帯域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

$$
\mathrm{O} 2 \text { (3) VI-2-6-7-11 } \mathrm{R} \mathrm{O}
$$

【フィルタ装置水位（広帯域）（T63－LT010A）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
フィルタ装置水位 （広帯域） （T63－LT010A）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。
∞

1．2 機器要目

部 材	m (kg)	h_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	nfV
基礎ボルト						4 fH			

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 Sd 又は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$
基礎ボルト	206	385	－	247	－	水平方向

O 2
（3） $\mathrm{VI}-2-6-7-11$
R 0
1.3 計算数値

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{s} \text { b }}=142$

\circ
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
フィルタ装置水位	水平方向	1.65	
(T63-LT010A)	鉛直方向	1.15	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-7-11 R O E }
$$

VI－2－6－7－12 フィルタ装置入口圧力（広帯域）の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 66．評価結果7
6．1 重大事故等対処設備としての評価結果• 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，フィルタ装置入口圧力（広帯域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

フィルタ装置入口圧力（広帯域）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，フィルタ装置入口圧力（広帯域）が設置される計器スタンションは，添付書類「VI－2－1－ 13 機器•配管系の計算書作成の方法」に記載の壁掛形計器スタンションであるため，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項

2.1 構造計画

[^15]表2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定され，取付板は，取付板取付ボルトにより計器スタンションに固定 される。 計器スタンションは，基礎に基礎ボルトで設置する。	弾性圧力検出器	【フィルタ装置入口圧力（広帯域）】 （単位：mm）

3．固有周期
フィルタ装置入口圧力（広帯域）が設置される計器スタンションの固有周期は，構造が同等で あり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

フィルタ装置入口圧力（広帯域）の構造強度評価は，添付書類「VI－2－1－13－9 計器スタンシ ョンの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
フィルタ装置入口圧力（広帯域）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1に示す。

4．2．2 許容応力
フィルタ装置入口圧力（広帯域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件

フィルタ装置入口圧力（広帯域）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400	-

5．機能維持評価
5.1 電気的機能維持評価方法

フィルタ装置入口圧力（広帯域）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器ス タンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
フィルタ装置入口圧力（広帯域） （T63－PT003）	水平	
	鉛直	

6．評価結果
6.1 重大事故等対処設備としての評価結果

フィルタ装置入口圧力（広帯域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【フィルタ装置入口圧力（広帯域）（T63－PT003）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環境 } \\ \text { 温度 } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
フィルタ装置入口圧力 （広帯域） （T63－PT003）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P.15.00 } \\ \left(0 . \mathrm{P} .22 .50^{*}\right) \end{gathered}$	0.05 以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	40

注記＊：基準床レベルを示す。
∞
1.2 機器要目

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$		基準地震動
基礎ボルト	215	400	－	258	－	水平方向

1.3 計算数値

1．4 結論
1．4．1 ボルトの応力
（単位：MPa）

部 材	材 料	応 力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	S 400	引張り	-	-	$\sigma_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{t}}=193^{*}$
		-	-	$\tau_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{sb}}=148$	

\bullet
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
フィルタ装置入口	水平方向	1． 77	
（T63－PT003）	鉛直方向	1． 30	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-7-12 R O E }
$$

VI－2－6－7－13 フィルタ装置出口圧力（広帯域）の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
5．構造強度評価 7
5.1 構造強度評価方法 7
5.2 荷重の組合せ及び許容応力 8
5．2．1 荷重の組合せ及び許容応力状態• 8
5．2．2 許容応力 8
5．2．3 使用材料の許容応力評価条件 8
5.3 設計用地震力 11
5.4 計算方法 12
5．4．1 応力の計算方法 12
5.5 計算条件 15
5．5．1 溶接部の応力計算条件 15
5.6 応力の評価 15
5．6．1 溶接部の応力評価 15
6．機能維持評価 16
6．1 電気的機能維持評価方法 16
7．評価結果 17
7.1 重大事故等対処設備としての評価結果 17

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，フィルタ装置出口圧力（広帯域）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

フィルタ装置出口圧力（広帯域）は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

フィルタ装置出口圧力（広帯域）の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に埋め込まれた埋込金物に溶接で設置する。	弾性圧力検出器	【フィルタ装置出口圧力（広帯域）】

2．2 評価方針

フィルタ装置出口圧力（広帯域）の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示すフィ ルタ装置出口圧力（広帯域）の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で測定した固有周期に基づく設計用地震力による応力等が許容限界内に収まること を，「5．構造強度評価」にて示す方法にて確認することで実施する。また，フィルタ装置出口圧力（広帯域）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であるこ とを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。

フィルタ装置出口圧力（広帯域）の耐震評価フローを図 2－1 に示す。

図 2－1 フィルタ装置出口圧力（広帯域）の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

記号	記号の説明	単位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 1}$	溶接部の F w_{1} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 2}$	溶接部の F w 2 に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
F_{w}	溶接部に作用する引張力	N
F w 1	鉛直方向地震及び壁掛形計器スタンションの取付面に対し左右方向 の水平方向地震により溶接部に作用する引張力	N
$\mathrm{F}_{\mathrm{w} 2}$	鉛直方向地震及び壁掛形計器スタンションの取付面に対し前後方向 の水平方向地震により溶接部に作用する引張力	N
Q_{w}	溶接部に作用するせん断力	N
$\mathrm{Q}_{\mathrm{w} 1}$	水平方向地震により溶接部に作用するせん断力	N
Qw 2	鉛直方向地震により溶接部に作用するせん断力	N
$\mathrm{f}_{\text {s }}$	溶接部の許容せん断応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	側面（左右）溶接部間の距離	mm
ℓ_{2}	下側溶接部中心と上側溶接部端部までの距離	mm
ℓ_{3}	重心と下側溶接部中心間の距離	mm
m	検出器及び計器スタンションの質量	kg
n	溶接箇所数	－
n f V	評価上引張力を受けるとして期待する溶接箇所数（鉛直方向転倒）	－
n f H	評価上引張力を受けるとして期待する溶接箇所数（水平方向転倒）	－
S	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
u	溶接の有効長さ（ Z 方向）	mm
$\mathrm{S}_{\text {u }}$	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
フィルタ装置出口圧力（広帯域）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づ き，耐震評価上厳しくなる溶接部について評価を実施する。フィルタ装置出口圧力（広帯域）の耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
フィルタ装置出口圧力（広帯域）が設置される計器スタンションの固有周期は，構造が同等で あり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表 4－1 に示す。

| 表 4－1 | 固有周期 |
| :--- | :--- |\quad（単位： s ）

5．構造強度評価

5.1 構造強度評価方法

（1）フィルタ装置出口圧力（広帯域）の質量は重心に集中しているものとする。
（2）地震力はフィルタ装置出口圧力（広帯域）に対して，水平方向及び鉛直方向から作用す るものとする。
（3）フィルタ装置出口圧力（広帯域）は溶接で壁面に固定されるものとする。
（4）転倒方向は，図 5－1，図 5－2 計算モデルにおける水平方向及び鉛直方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（5）フィルタ装置出口圧力（広帯域）の重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行らものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
フィルタ装置出口圧力（広帯域）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
フィルタ装置出口圧力（広帯域）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件

フィルタ装置出口圧力（広帯域）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fm}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	S_{y} $(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		周囲環境温度	66	216	385	-

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P.15.00 } \\ \left(0 . \text { P. } 22.50^{*}\right) \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$

注記＊：基準床レベルを示す。

5.4 計算方法

5．4．1 応力の計算方法
（1）溶接部の応力
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせ ん断力について計算する。

図 5－1 計算モデル（水平方向転倒）

図 5－2 計算モデル（鉛直方向転倒）

a．引張応力

溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張力
計算モデル図 5－1 の場合の引張力

$$
\begin{equation*}
F_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}}{\mathrm{n}_{\mathrm{fH}} \cdot \mathrm{l}_{1}}+\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot l_{2}}\right) \tag{5.4.1.1}
\end{equation*}
$$

計算モデル図 5－2 の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot l_{3}+\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot l_{2}}\right) \tag{5.4.1.2}\\
& \mathrm{F}_{\mathrm{w}}=\mathrm{Max}\left(\mathrm{~F}_{\mathrm{w} 1}, \mathrm{~F}_{\mathrm{w} 2}\right) \quad \ldots \ldots \ldots \ldots \tag{5.4.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{w}}}{\mathrm{~A}_{\mathrm{w}}} \tag{5.4.1.4}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=\mathrm{a} \cdot(\mathrm{t}+\mathrm{u}) \tag{5.4.1.5}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{5.4.1.6}
\end{equation*}
$$

b．せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdot \tag{5.4.1.7}\\
& \mathrm{Q}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \tag{5.4.1.8}\\
& \mathrm{Q}_{\mathrm{w}}=\sqrt{\left(\mathrm{Q}_{\mathrm{w} 1}\right)^{2}+\left(\mathrm{Q}_{\mathrm{w} 2}\right)^{2}} \tag{5.4.1.9}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{Q_{w 1}}{n \cdot A_{w 1}}\right)^{2}+\left(\frac{Q_{w 2}}{n \cdot A_{w 2}}\right)^{2}} \tag{5.4.1.10}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{w} 11}, ~ \mathrm{~A}_{\mathrm{w} 2}$ はせん断力を受ける各方向の有効断面積を示す。
$\mathrm{A}_{\mathrm{w} 1}$ ， $\mathrm{A}_{\mathrm{w} 2}$ は，次式により求める。

$$
\begin{align*}
& \mathrm{A}_{\mathrm{w} 1}=\mathrm{a} \cdot \mathrm{u} \tag{5.4.1.11}\\
& \mathrm{~A}_{\mathrm{w} 2}=\mathrm{a} \cdot \mathrm{t} \tag{5.4.1.12}
\end{align*}
$$

c．組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}\right)^{2}+\tau^{2}} \tag{5.4.1.13}
\end{equation*}
$$

5.5 計算条件

5．5．1 溶接部の応力計算条件
溶接部の応力計算に用いる計算条件は，本計算書の【フィルタ装置出口圧力（広帯域） （T63－PT006）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 溶接部の応力評価
5．4．1項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただし， f s は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 f_{s}	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

フィルタ装置出口圧力（広帯域）の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器ス タンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6－1に示す。

表 6－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
フィルタ装置出口圧力（広帯域） （T63－PT006）	水平	
	鉛直	

7．評価結果
7.1 重大事故等対処設備としての評価結果

フィルタ装置出口圧力（広帯域）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-6-7-13$
R 0

【フィルタ装置出口圧力（広帯域）（T63－PT006）の耐震性についての計算結果】

1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（ s ）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
フィルタ装置出口圧力 （広帯域） （T63－PT006）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P.15.00 } \\ \left(0 . \text { P. } 22.50^{*}\right) \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.12$	$\mathrm{C}_{\mathrm{V}}=1.56$	66

注記＊：基準床レベルを示す。

					転倒方向	
部 材	(MPa)	（MPa）	(MPa)	（MPa）	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
溶接部	216	385	－	260	－	水平方向

O 2
1.3 計算数値

1． 4 結論
1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{\mathrm{t}}=13$	$\mathrm{f}_{\mathrm{s}}=150$
		せん断	－	－	$\tau=5$	$\mathrm{f}_{\mathrm{s}}=150$
		組合せ	－	－	$\sigma_{\mathrm{w}}=14$	$\mathrm{f}_{\mathrm{s}}=150$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
フィルタ装置出口圧力 （広帯域） （T63－PT006） 水水平方向	鉛直方向	1.77	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-7-13 R O E }
$$

正面（水平方向）

側面（鉛直方向）

VI－2－6－7－14 フィルタ装置水温度の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 3
3．評価部位 3
4．機能維持評価 4
4． 1 機能維持評価用加速度 4
4．2 機能確認済加速度 5
5．評価結果 6
5.1 重大事故等対処設備としての評価結果 6

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき，フィルタ装置水温度が設計用地震力に対して十分な電気的機能を有していることを説明するものである。

フィルタ装置水温度は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての電気的機能維持評価を示 す。

2．一般事項
2.1 構造計画

フィルタ装置水温度の構造計画を表 2－1 に示す。

表 2－1 構造計画

2.2 評価方針

フィルタ装置水温度の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下で あることを，「4．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「5．評価結果」に示す。

フィルタ装置水温度の耐震評価フローを図 2－1 に示す。

図 2－1 フィルタ装置水温度の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E AG4601•補－1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）

3．評価部位
フィルタ装置水温度は，フィルタ装置に直接取り付けられた保護管に挿入され固定されること から，フィルタ装置が支持している。フィルタ装置の構造強度評価は，添付書類「VI－2－9－4－6－1－ 2 フィルタ装置の耐震性についての計算書」にて実施しているため，本計算書では，フィルタ装置の地震応答解析結果を用いたフィルタ装置水温度の電気的機能維持評価について示す。

4．機能維持評価
フィルタ装置水温度の電気的機能維持評価について，以下に示す。
4.1 機能維持評価用加速度

フィルタ装置水温度はフィルタ装置に直接取り付けられた保護管に插入されることから，機能維持評価用加速度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定す る。機能維持評価用加速度を表 4－1 に示す。

表 4－1 機能維持評価用加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

機器名称	対象機器設置箇所 （m）	方向	基準地震動 S S
			機能維持評価用加速度
フィルタ装置水温度 （T63－TE011A，B，C）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 15.00 \\ \text { (0.P. } 22.50^{*} \text {) } \end{gathered}$	水平	1． 77
		鉛直	1． 30

注記＊：基準床レベルを示す。

4．2 機能確認済加速度

フィルタ装置水温度の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した加速度 を適用する。機能確認済加速度を表4－2 に示す。

表 4－2 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
フィルタ装置水温度 （T63－TE011A，B，C）	水平	
	鉛直	

5．評価結果
5.1 重大事故等対処設備としての評価結果

フィルタ装置水温度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。評価用加速度は機能確認済加速度以下であり，設計用地震力に対して電気的機能が維持されてい ることを確認した。
（1）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【フィルタ装置水温度（T63－TE011A，B，C）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 電気的機能維持の評価結果

$$
\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

		機能維持評価用加速度	機能確認済加速度
フィルタ装置水温度 （T63－TE011A，B，C）	水平方向	1.77	
	鉛直方向	1.30	

機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－6－7－15 フィルタ装置出口水素濃度の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4.1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6． 1 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，フィルタ装置出口水素濃度が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

フィルタ装置出口水素濃度は，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，フィルタ装置出口水素濃度が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計装ラックであるため，添付書類「VI－2－1－13－8 計装 ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画	
$\mathrm{T} 63-\mathrm{H}_{2} \mathrm{E} 208$（代表）	$\mathrm{VI}-2-1-13-8 \quad$ 計装ラックの		
$\mathrm{T} 63-\mathrm{H}_{2} \mathrm{E} 209$	耐震性についての計算書作成 の基本方針	表 $2-1$	構造計画

2．一般事項
2.1 構造計画

フィルタ装置出口水素濃度の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより計装ラック に取付けられた取付板 に固定される。 計装ラックは，チャン ネルベースに取付ボル トで固定され，チャンネ ルベースは，床に基礎ボ ルトで設置する。	熱伝導率式水素検出器	【フィルタ装置出口水素濃度 H22－P384（T63－ $\left.\mathrm{H}_{2} \mathrm{E} 208\right)$ 】 正面

3．固有周期
フィルタ装置出口水素濃度が設置される計装ラックの固有周期は，振動試験（加振試験）にて求める。試験の結果，剛であることを確認した。固有周期の確認結果を表 3－1 に示す。

表 3－1 固有周期（単位：s）

4．構造強度評価
4.1 構造強度評価方法

フィルタ装置出口水素濃度の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性 についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
フィルタ装置出口水素濃度の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 4－1 に示す。

4．2．2 許容応力
フィルタ装置出口水素濃度の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
フィルタ装置出口水素濃度の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4－3 に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称		設備分類＊1	機器等の区分

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{yi} (MPa)	S_{ui} (MPa)	$\mathrm{S}_{\mathrm{yi}}(\mathrm{R} \mathrm{T)}$ (MPa)	
基礎ボルト $(\mathrm{i}=1)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	66	225	385	-
取付ボルト $(\mathrm{i}=2)$	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	66	225	385	-

5．機能維持評価

5.1 電気的機能維持評価方法

フィルタ装置出口水素濃度の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度

評価部位	方向	機能確認済加速度
フィルタ装置出口 水素濃度 $\left(\mathrm{T} 63-\mathrm{H}_{2} \mathrm{E} 208\right)$	水平	
	鉛直	

6．評価結果
6． 1 重大事故等対処設備としての評価結果
フィルタ装置出口水素濃度の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【フィルタ装置出口水素濃度（T63－ $\left.\mathrm{H}_{2} \mathrm{E} 208\right)$ の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
フィルタ装置出口水素濃度 （T63－ $\mathrm{H}_{2} \mathrm{E} 208$ ）	常設耐震／防止常設／緩和	原子炉建屋 OP． 22.50 （OP． 33.20^{*} ）			－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	66

注記 $*$ ：基準床レベルを示す。
∞

	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\begin{gathered} \mathrm{Sui}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} F_{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}}{ }^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト (i=1)	225	385	－	270	－	長辺方向
取付ボルト $(i=2)$	225	385	－	270	－	長辺方向

1.3 計算数値

1．3．1 ボルトに作用する力（単位：N）

部 材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		Q_{bi}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
取付ボルト $(i=2)$	－		－	

1．4 結論

注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

1．4．2 电気的機能紶持の評仙結果		機能維持評価用加速度＊	済加速度
フィルタ装置出口水素濃度 （T63－ $\mathrm{H}_{2} \mathrm{E} 208$ ）	水平方向	2.21	
	鉛直方向	1． 47	

注記＊：基準地震動 S S_{S} により定まる応答力の速度とする。
評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O2（3）VI－2－6－7－15 R O E

VI－2－6－7－16 原子炉補機冷却水系系統流量の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4．2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件－ 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 66．評価結果7
6.1 設計基準対象施設としての評価結果• 7
6．2 重大事故等対処設備としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉補機冷却水系系統流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉補機冷却水系系統流量は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設重大事故防止設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，原子炉補機冷却水系系統流量が設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるため，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価について は，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価 に用いる機能維持評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度 となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画	
P42－FT006A	$\mathrm{VI}-2-1-13-8 \quad$ 計装ラックの		
P42－FT006B（代表）	耐震性についての計算書作成 の基本方針	表2－1 構造計画	

2．一般事項
2.1 構造計画

原子炉補機冷却水系系統流量の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計装ラ ックに固定される。 計器ラックは，チャン ネルベースに取付ボルト で設置する。	差圧式流量検出器	【原子炉補機冷却水系系統流量（H22－P603（P42－FT006B））】 側面 注記＊：検出器は代表して 1 台を示す。

3．固有周期
原子炉補機冷却水系系統流量が設置される計装ラックの固有周期は，構造が同等であり，同様 な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認された固有周期を使用す る。固有周期の確認結果を表 3－1に示す。

表 $3-1$	固有周期
水平位：s）	
0.05 以下	鉛直方向

4．構造強度評価

4.1 構造強度評価方法

原子炉補機冷却水系系統流量の構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態

原子炉補機冷却水系系統流量の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1に，重大事故等対処設備の評価に用いるものを表4－2 に示 す。

4．2．2 許容応力
原子炉補機冷却水系系統流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表 4－3 のとおりとする。

4．2．3 使用材料の許容応力評価条件

原子炉補機冷却水系系統流量の使用材料の許容応力評価条件のうち設計基準対象施設 の評価に用いるものを表 4－4に，重大事故等対処設備の評価に用いるものを表 4－5に示す。

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	
計測制御 系統施設	計測装置	原子炉補機冷却水系系統流量	S			許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

注記＊1：「常設／防止」は常設重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$I I I A^{\text {S }}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$V_{A} S$ $\left(V_{A} S\right.$ として $V_{A} S$ の許容限界を用いる。）$) ~$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

注記＊ 1 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{yi} (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400
(MPa)					

表 4－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{yi} (MPa)	S_{ui} (MPa)
取付ボルト $(\mathrm{i}=2)$	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	40	215	400
(MPa)					

5．機能維持評価

5.1 電気的機能維持評価方法

原子炉補機冷却水系系統流量の電気的機能維持評価は，添付書類「VI－2－1－13－8 計装ラック の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉補機冷却水系系統流量 $(\mathrm{P} 42-\mathrm{FT} 006 \mathrm{~B})$	水平	
	鉛直	

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉補機冷却水系系統流量の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有して いることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
6.2 重大事故等対処設備としての評価結果

原子炉補機冷却水系系統流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3）VI－2－6－7－16
R 0

【原子炉補機冷却水系系統流量（H22－P603（P42－FT006B））の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉補機冷却水系系統流量 （P42－FT006B）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0．05以下	$\mathrm{C}_{\mathrm{H}}=0.63$	$\mathrm{C}_{\mathrm{V}}=0.51$	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	40

注記 $*$ ：基準床レベルを示す。
∞
1．2 機器要目

部 材	$\underset{(\mathrm{kg})}{\mathrm{m}_{\mathrm{i}}}$	$\begin{gathered} \mathrm{h}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \ell_{1 \mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & \ell_{2} i \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{aligned} & l_{3 i} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{d}_{\mathrm{i}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \mathrm{i} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	n i	n f Vio	n f H i
取付ボルト $(i=2)$		400						8	2	4

					転倒方向	
部 材	$\underset{(\mathrm{MPa}}{\mathrm{S}}$	$\begin{gathered} \underset{u}{\mathrm{Su}^{(}} \mathrm{MPa} \end{gathered}$	$\begin{gathered} \mathrm{F}_{i} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})^{2}}{\mathrm{~F}_{2}}$		基準地震動
取付ボルト $(i=2)$	215	400	215	258	鉛直方向	鉛直方向

O 2

1．3 計算数値

1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=10$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=161^{*}$	$\sigma_{\mathrm{b} 2}=17$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=193^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=124$	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=148$

\bullet
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
原子炉補機冷却水系	水平方向	1.11	
（P42－FT006B）	鉛直方向	0.73	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

10

○ 2
（3）VI－2－6－7－16
R 0

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉補機冷却水系系統流量 （P42－FT006B）	常設／防止	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0. P. -8. } 10 \\ \left(0 . \text { P. }-0.80^{*}\right) \end{gathered}$	0．05以下	0.05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.34$	$\mathrm{C}_{\mathrm{V}}=0.88$	40

注記＊：基準床レベルを示す。

					転倒方向	
部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u} i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}_{\mathrm{i}}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 } \mathrm{S} \text { d } \\ \text { は静的震度 } \\ \hline \end{gathered}$	基準地震動 S S
取付ボルト $(i=2)$	215	400	－	258	－	鉛直方向

2.3 計算数値

2．3．1 ボルトに作用する力			（単位：N）	
	F		Q	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
取付ボルト $(i=2)$	－		－	

2． 4 結論

心 注記 $*: \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出。
すべて許容応力以下である。

2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
原子炉補機冷却水系系統流量 （P42－FT006B）	水平方向	1.11	
	鉛直方向	0.73	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\text { O } 2 \text { (3) VI-2-6-7-16 R O E }
$$

$$
A \rightarrow
$$

13

VI－2－6－7－17 残留熱除去系熱交換器冷却水入口流量の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
5．構造強度評価 7
5.1 構造強度評価方法 7
5.2 荷重の組合せ及び許容応力 8
5．2．1 荷重の組合せ及び許容応力状態• 8
5．2．2 許容応力 8
5．2．3 使用材料の許容応力評価条件 8
5.3 設計用地震力 11
5.4 計算方法 12
5．4．1 応力の計算方法 12
5.5 計算条件 15
5．5．1 溶接部の応力計算条件 15
5.6 応力の評価 15
5．6．1 溶接部の応力評価 15
6．機能維持評価 16
6．1 電気的機能維持評価方法 16
7．評価結果 17
7.1 重大事故等対処設備としての評価結果 17

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，残留熱除去系熱交換器冷却水入口流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

残留熱除去系熱交換器冷却水入口流量は，設計基準対象施設においてはCクラス施設に，重大事故等対処設備においては常設重大事故防止設備（設計基準拡張）に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，計器スタンションの溶接部に作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価 については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じで計器スタンションが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価す る。

評価対象を表1－1に示す。

2．一般事項
2.1 構造計画

残留熱除去系熱交換器冷却水入口流量の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボ ルトにより取付板に固定 され，取付板は，取付板取付ボルトにより計器ス タンションに固定され る。 計器スタンションは，基礎に埋め込まれた埋込金物に溶接で設置する。	差圧式流量検出器	【残留熱除去系熱交換器冷却水入口流量（P42－FT016A）】

2.2 評価方針

残留熱除去系熱交換器冷却水入口流量の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示 す残留熱除去系熱交換器冷却水入口流量の部位を踏まえ「3．評価部位」にて設定する箇所に おいて，「4．固有周期」で測定した固有周期に基づく設計用地震力による応力等が許容限界内 に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，残留熱除去系熱交換器冷却水入口流量の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。

残留熱除去系熱交換器冷却水入口流量の耐震評価フローを図 2－1 に示す。

図 2－1 残留熱除去系熱交換器冷却水入口流量の耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 • 補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

記号	記号の説明	単位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 1}$	溶接部の F w_{1} に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} 2}$	溶接部の F w 2 に対する有効断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
F_{w}	溶接部に作用する引張力	N
F w 1	鉛直方向地震及び壁掛形計器スタンションの取付面に対し左右方向 の水平方向地震により溶接部に作用する引張力	N
$\mathrm{F}_{\mathrm{w} 2}$	鉛直方向地震及び壁掛形計器スタンションの取付面に対し前後方向 の水平方向地震により溶接部に作用する引張力	N
Q_{w}	溶接部に作用するせん断力	N
$\mathrm{Q}_{\mathrm{w} 1}$	水平方向地震により溶接部に作用するせん断力	N
Qw 2	鉛直方向地震により溶接部に作用するせん断力	N
$\mathrm{f}_{\text {s }}$	溶接部の許容せん断応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	側面（左右）溶接部間の距離	mm
ℓ_{2}	下側溶接部中心と上側溶接部端部までの距離	mm
ℓ_{3}	重心と下側溶接部中心間の距離	mm
m	検出器及び計器スタンションの質量	kg
n	溶接箇所数	－
n f V	評価上引張力を受けるとして期待する溶接箇所数（鉛直方向転倒）	－
n f H	評価上引張力を受けるとして期待する溶接箇所数（水平方向転倒）	－
S	溶接脚長	mm
t	溶接の有効長さ（Y方向）	mm
u	溶接の有効長さ（ Z 方向）	mm
$\mathrm{S}_{\text {u }}$	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ に おける値	MPa
$\sigma{ }_{\text {t }}$	溶接部に生じる引張応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位ま での値とする。

3．評価部位
残留熱除去系熱交換器冷却水入口流量の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について評価を実施する。残留熱除去系熱交換器冷却水入口流量の耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
残留熱除去系熱交換器冷却水入口流量が設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認さ れた固有周期を使用する。固有周期の確認結果を表4－1 に示す。

| 表 4－1 | 固有周期 |
| :---: | :--- |\quad（単位：s）

5．構造強度評価

5.1 構造強度評価方法

（1）残留熱除去系熱交換器冷却水入口流量の質量は重心に集中しているものとする。
（2）地震力は残留熱除去系熱交換器冷却水入口流量に対して，水平方向及び鉛直方向から作用するものとする。
（3）残留熱除去系熱交換器泠却水入口流量は溶接で壁面に固定されるものとする。
（4）転倒方向は，図 5－1，図5－2計算モデルにおける水平方向及び鉛直方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（5）残留熱除去系熱交換器冷却水入口流量の重心位置については，転倒方向を考慮して，計算条件が厳しくなる位置に重心位置を設定して耐震性の計算を行うものとする。
（6）耐震計算に用いる寸法は，公称値を使用する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
残留熱除去系熱交換器冷却水入口流量の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
残留熱除去系熱交換器冷却水入口流量の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件

残留熱除去系熱交換器冷却水入口流量の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
	計測装置	残留熱除去系熱交換器冷却水 入口流量（P42－FT016A）	常設／防止 （DB 拡張）	－＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 3$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御 系統施設					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト以外）			
	一次応力			
	引張り	せん断	圧縮	曲げ
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$				
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fm}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	S_{y} $(\mathrm{R} \mathrm{T})$ (MPa)
溶接部		周囲環境温度	66	216	385	-

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ (0 . \text { P. 15.00*) } \end{gathered}$	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$

注記＊：基準床レベルを示す。

5.4 計算方法

5．4．1 応力の計算方法
（1）溶接部の応力
溶接部の応力は，地震による震度により作用するモーメントによって生じる引張力とせ ん断力について計算する。

図 5－1 計算モデル（水平方向転倒）

図 5－2 計算モデル（鉛直方向転倒）

a．引張応力

溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張力
計算モデル図 5－1 の場合の引張力

$$
\begin{equation*}
F_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}}{\mathrm{n}_{\mathrm{fH}} \cdot \mathrm{l}_{1}}+\frac{\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot l_{2}}\right) \tag{5.4.1.1}
\end{equation*}
$$

計算モデル図 5－2 の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot l_{3}+\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}}{\mathrm{n}_{\mathrm{fV}} \cdot l_{2}}\right) \tag{5.4.1.2}\\
& \mathrm{F}_{\mathrm{w}}=\mathrm{Max}\left(\mathrm{~F}_{\mathrm{w} 1}, \mathrm{~F}_{\mathrm{w} 2}\right) \quad \ldots \ldots \ldots \ldots \tag{5.4.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{w}}}{\mathrm{~A}_{\mathrm{w}}} \tag{5.4.1.4}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{w}}=\mathrm{a} \cdot(\mathrm{t}+\mathrm{u}) \tag{5.4.1.5}
\end{equation*}
$$

ただし，溶接部の有効のど厚 a は，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{5.4.1.6}
\end{equation*}
$$

b．せん断応力
溶接部に対するせん断応力は，各方向の有効せん断面積で受けるものとして計算する。

せん断力

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{w} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdots \cdots \cdot \tag{5.4.1.7}\\
& \mathrm{Q}_{\mathrm{w} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(1+\mathrm{C}_{\mathrm{V}}\right) \tag{5.4.1.8}\\
& \mathrm{Q}_{\mathrm{w}}=\sqrt{\left(\mathrm{Q}_{\mathrm{w} 1}\right)^{2}+\left(\mathrm{Q}_{\mathrm{w} 2}\right)^{2}} \tag{5.4.1.9}
\end{align*}
$$

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{Q_{w 1}}{n \cdot A_{w 1}}\right)^{2}+\left(\frac{Q_{w 2}}{n \cdot A_{w 2}}\right)^{2}} \tag{5.4.1.10}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{w} 11}, ~ \mathrm{~A}_{\mathrm{w} 2}$ はせん断力を受ける各方向の有効断面積を示す。
$\mathrm{A}_{\mathrm{w} 1}$ ， $\mathrm{A}_{\mathrm{w} 2}$ は，次式により求める。

$$
\begin{align*}
& \mathrm{A}_{\mathrm{w} 1}=\mathrm{a} \cdot \mathrm{u} \tag{5.4.1.11}\\
& \mathrm{~A}_{\mathrm{w} 2}=\mathrm{a} \cdot \mathrm{t} \tag{5.4.1.12}
\end{align*}
$$

c．組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}\right)^{2}+\tau^{2}} \tag{5.4.1.13}
\end{equation*}
$$

5.5 計算条件

5．5．1 溶接部の応力計算条件
溶接部の応力計算に用いる計算条件は，本計算書の【残留熱除去系熱交換器冷却水入口流量（P42－FT016A）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 溶接部の応力評価
5．4．1項で求めた溶接部に発生する応力は，許容応力 f s以下であること。ただし， f s は下表による。

	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 fs	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法

残留熱除去系熱交換器冷却水入口流量の電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 6－1に示す。

表 6－1 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
残留熱除去系熱交換器冷却水入口流量 $(\mathrm{P} 42-\mathrm{FT016A})$	水平	
（鉛直		

7．評価結果
7.1 重大事故等対処設備としての評価結果

残留熱除去系熱交換器冷却水入口流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及 び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

$$
\mathrm{O} 2 \text { (3) VI-2-6-7-17 } \mathrm{R} \mathrm{O}
$$

【残留熱除去系熱交換器冷却水入口流量（P42－FT016A）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd对は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
残留熱除去系熱交換器泠却水入口流量 （P42－FT016A）	常設／防止 （DB 拡張）	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. } 15.00^{*}\right) \end{gathered}$	0．05以下	0．05 以下	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	66

注記＊：基準床レベルを示す。

∞	部 材	$\begin{gathered} \mathrm{m} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{gathered} \mathrm{h} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{s} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{a} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{u} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	n	n f v	n_{ff}	$\begin{gathered} \ell_{1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{3} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{w}} \\ \left(\mathrm{~mm}^{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} 1} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{\mathrm{w} 2} \\ & \left(\mathrm{~mm}^{2}\right) \\ & \hline \end{aligned}$
	溶接部		447.5					2	1	2						

部 材	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} F \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} * \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
溶接部	216	385	－	260	－	水平方向

O 2
（3） VI－2－6－7－17
R 0

1．3 計算数値

1． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
溶接部		引張り	－	－	$\sigma_{\mathrm{t}}=15$	$\mathrm{f}_{\mathrm{s}}=150$
		せん断	－	－	$\tau=5$	$\mathrm{f}_{\mathrm{s}}=150$
		組合せ	－	－	$\sigma_{\mathrm{w}}=15$	$\mathrm{f}_{\mathrm{s}}=150$

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
残留熱除去系熱交換器	水平方向	1.65	
(P42-FT016A)	鉛直方向	1.15	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面（水平方向）

側面（鉛直方向）

VI－2－6－7－18 静的触媒式水素再結合装置動作監視装置の耐震性について の計算書
1．静的触媒式水素再結合装置動作監視装置（T71－TE001，002） 1
1.1 概要 1
1.2 一般事項 1
1．2．1 構造計画 1
1．2．2 評価方針 3
1．2．3 適用規格•基準等 4
1．2．4 記号の説明 5
1．2．5 計算精度と数値の丸め方 6
1.3 評価部位 7
1． 4 固有周期 8
1．4．1 固有値解析方法 8
1．4．2 解析モデル及び諸元 8
1．4．3 固有値解析結果 10
1.5 構造強度評価 11
1．5．1 構造強度評価方法 11
1．5．2 荷重の組合せ及び許容応力 11
1．5．3 設計用地震力 14
1．5．4 計算方法 15
1．5．5 計算条件 19
1．5．6 応力の評価 19
1． 6 機能維持評価 20
1．6．1 電気的機能維持評価方法 20
1.7 評価結果 21
1．7．1 重大事故等対処設備としての評価結果 21
2．静的触媒式水素再結合装置動作監視装置（T71－TE003，004） 26
2.1 概要 26
2.2 一般事項 26
2．2．1 構造計画 26
2．2．2 評価方針 28
2．2．3 適用規格•基準等 29
2．2．4 記号の説明 30
2．2．5 計算精度と数値の丸め方 31
2.3 評価部位 32
2． 4 固有周期 33
2．4．1 固有値解析方法 33
2．4．2 解析モデル及び諸元 33
2．4．3 固有値解析結果 37
2.5 構造強度評価 38
2．5．1 構造強度評価方法 38
2．5．2 荷重の組合せ及び許容応力 38
2．5．3 設計用地震力 41
2．5．4 計算方法 42
2．5．5 計算条件 46
2．5．6 応力の評価 46
2.6 機能維持評価 47
2．6．1 電気的機能維持評価方法 47
2.7 評価結果 48
2．7．1 重大事故等対処設備としての評価結果 48
3．静的触媒式水素再結合装置動作監視装置（T71－TE005，006，007，008） 53
3.1 概要 53
3.2 一般事項 53
3．2．1 構造計画 53
3．2．2 評価方針 55
3．2．3 適用規格•基準等 56
3．2．4 記号の説明 57
3．2．5 計算精度と数値の丸め方 58
3．3 評価部位 59
3．4 固有周期 60
3．4．1 固有値解析方法 60
3．4．2 解析モデル及び諸元 60
3．4．3 固有値解析結果 64
3.5 構造強度評価 65
3．5．1 構造強度評価方法 65
3．5．2 荷重の組合せ及び許容応力 65
3．5．3 設計用地震力 68
3．5．4 計算方法 69
3．5．5 計算条件 73
3．5．6 応力の評価 73
3.6 機能維持評価 74
3．6．1 電気的機能維持評価方法． 74
3.7 評価結果 75
3．7．1 重大事故等対処設備としての評価結果 75

1．静的触媒式水素再結合装置動作監視装置（T71－TE001，002）

1.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，静的触媒式水素再結合装置動作監視装置（T71－TE001，002）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

静的触媒式水素再結合装置動作監視装置（T71－TE001，002）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。

なお，構造強度評価については，サポート鋼材の基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じでサポート鋼材が剛構造 の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表1－1に示す。

1．2 一般事項

1．2．1 構造計画

静的触媒式水素再結合装置動作監視装置（T71－TE002）の構造計画を表 1－2 に示す。

表 1－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，サポート鋼材に固定し，サポート鋼材は，基礎ボルトにより壁面に設置する。	熱電対	【静的触媒式水素再結合装置動作監視装置（T71－TE002）】 上面 サポート鋼材 （角型鋼管） 正面 側面

1．2．2 評価方針

静的触媒式水素再結合装置動作監視装置（T71－TE002）の応力評価は，添付書類「VI－2－ 1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「1．2．1 構造計画」にて示す静的触媒式水素再結合装置動作監視装置（T71－TE002）の部位を踏まえ「1．3 評価部位」にて設定する箇所において，「 1.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「1．5 構造強度評価」にて示す方法にて確認することで実施する。また，静的触媒式水素再結合装置動作監視装置（T71－TE002）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「1．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1．7 評価結果」に示す。

静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震評価フローを図 1－1 に示 す。

図 1－1 静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震評価フロー

1．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一 1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

1．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力（1本当たり）	N
F_{x}	サポート鋼材基礎部に作用する力（ X 方向）	N
F_{Y}	サポート鋼材基礎部に作用する力（Y方向）	N
F_{z}	サポート鋼材基礎部に作用する力（ Z 方向）	N
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f_{ts}	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
ℓ_{1}	基礎ボルトの応力計算に用いる距離（水平方向）	mm
ℓ_{2}	基礎ボルトの応力計算に用いる距離（鉛直方向）	mm
ℓ_{3}	基礎ボルトの応力計算に用いる距離（水平方向と鉛直方向の小さい方）	mm
M_{X}	サポート鋼材基礎部に作用するモーメント（X軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	サポート鋼材基礎部に作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	サポート鋼材基礎部に作用するモーメント（ Z 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
m_{a}	検出器の質量	kg
m_{b}	サポート鋼材の質量	kg
n	基礎ボルトの本数	－
n Y	M_{Y} の引張力に耐えうる基礎ボルトの本数	－
n z	M_{Z} の引張力に耐えうる基礎ボルトの本数	－
Q_{b}	基礎ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
S_{y}（R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	基礎ボルトに生じる引張応力	MPa
$\tau_{\text {b }}$	基礎ボルトに生じるせん断応力	MPa

1．2．5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表1－3に示すとおりとする。

表 1－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊${ }^{*}$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位 までの値とする。

1.3 評価部位

静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震評価は，「1．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト部について実施する。静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震評価部位については，表 1－2 の概略構造図 に示す。

1． 4 固有周期

1．4．1 固有値解析方法

静的触媒式水素再結合装置動作監視装置（T71－TE002）の固有値解析方法を以下に示す。
（1）静的触媒式水素再結合装置動作監視装置（T71－TE002）は，「1．4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

1．4．2 解析モデル及び諸元

静的触媒式水素再結合装置動作監視装置（T71－TE002）の解析モデルを3次元はりモデル として図1－2に，解析モデルの概要を以下に示す。
（1）サポート鋼材は，原子炉建屋壁面に固定されることから，（1）～④の部材で組まれた支持構造物とみなし，支持点（サポート鋼材基礎部）1点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は，質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表1－4，部材の機器要目を表1－5に示す。
（3）拘束条件として，支持点（サポート鋼材基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

図 1－2 静的触媒式水素再結合装置動作監視装置（T71－TE002）解析モデル

表 1－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	$\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{b}}$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソンン比	v	-	
ボ要素数	-	個	
節点数	-	個	

表 1－5 部材の機器要目

材料		
対象要素	（1）－（2）－（3）	（4）
A（mm）		
$\mathrm{I}_{\mathrm{x}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$		
$\mathrm{I}_{\mathrm{P}}\left(\mathrm{mm}^{4}\right)$		
断面形状（mm）		$(a \times b \times c)$

1．4．3 固有値解析結果

固有値解析結果を表1－6に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 1－6 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向 刺激係数
			Z方向	X方向	
1 次		鉛直	－	－	－

1.5 構造強度評価

1．5．1 構造強度評価方法

1．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，静的触媒式水素再結合装置動作監視装置（T71－TE002）に対して，水平方向及 び鉛直方向から同時に作用するものとする。
（2）静的触媒式水素再結合装置動作監視装置（T71－TE002）は，基礎ボルトにより原子炉建屋壁面に固定されるものとする。
（3）静的触媒式水素再結合装置動作監視装置（T71－TE002）の質量は，検出器及びサポート鋼材を考慮する。
（4）解析コードは，「NX NASTRAN」を使用し，荷重を求める。

1．5．2 荷重の組合せ及び許容応力

1．5．2．1 荷重の組合せ及び許容応力状態
静的触媒式水素再結合装置動作監視装置（T71－TE002）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表1－7に示す。

1．5．2．2 許容応力

静的触媒式水素再結合装置動作監視装置（T71－TE002）の許容応力は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき表 1－8 のとおりとする。

1．5．2．3 使用材料の許容応力評価条件

静的触媒式水素再結合装置動作監視装置（T71－TE002）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表1－9に示す。

表 1－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	その他の計測制御系統施設	静的触媒式水素再結合装置動作監視装置	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 1－8 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1－9 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(RPa)					

1．5．3 設計用地震力

耐震評価に用いる設計用地震力を表1－10に示す。
「基準地震動S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 1－10 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O.P. } 33.20^{* 1} \\ & \text { (0.P. } 36.058 \text {) } \end{aligned}$	0．05以下＊2		－	－	$\mathrm{C}_{\mathrm{H}}=2.93$	$\mathrm{C}_{\mathrm{v}}=1.82$

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

1．5．4 計算方法

1．5．4．1 応力の計算方法
1．5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

転倒方向

図 1－3 計算モデル（水平方向転倒）

図 1－4 計算モデル（鉛直方向転倒）

地震応答解析によって得られたサポート鋼材基礎部の評価点の最大反力とモー メントを表1－11に示す。

表 1－11 サポート鋼材発生反力，モーメント

対象計器	反力（N）				モーメント（N•mm）		
	F_{x}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}	
静的触媒式水 素再結合装置 動作監視装置 （T71－TE002）							

（1）引張応力
基礎ボルト（1 本当たり）に対する引張応力は，下式により計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{x}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{Y}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{Z}}} \tag{1.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.2}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{1.5.4.1.1.3}
\end{equation*}
$$

（2）せん断応力
基礎ボルト（1 本当たり）に対するせん断応力は，下式により計算する。

せん断力
$Q_{b}=\frac{\sqrt{F_{Y}{ }^{2}+F_{Z}{ }^{2}}}{n}+\frac{M_{X}}{\ell_{3} \cdot n}$
（1．5．4．1．1．4）

ここで，ボルトの応力計算に用いる距離 ℓ_{3} は次式により求める。

$$
\begin{equation*}
\ell_{3}=\operatorname{Min}\left(\ell_{1}, \ell_{2}\right) \tag{1.5.4.1.1.5}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{1.5.4.1.1.6}
\end{equation*}
$$

1．5．5 計算条件

1．5．5．1 基礎ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震性についての計算結果】の設計条件及び機器要目に示す。

1．5．6 応力の評価

1．5．6．1 基礎ボルトの応力評価
1．5．4．1．1項で求めた基礎ボルトの引張応力 σ b は次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

せん断応力 τ bはせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であ ること。ただし，f s b は下表による。

	基準地震動S s による 荷重との組合せの場合
許容引張応力 f_{t}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{ffsb}_{\mathrm{sb}}$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1．6．1 電気的機能維持評価方法

静的触媒式水素再結合装置動作監視装置（T71－TE002）の電気的機能維持評価について以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

静的触媒式水素再結合装置動作監視装置（T71－TE002）の機能確認済加速度は，添付書類
「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験にお いて電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表1－12に示す。

表 1－12 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
静的触媒式水素再結合装置 動作監視装置 （T71－TE002）	水平	
	鉛直	

1．7 評価結果

1．7．1 重大事故等対処設備としての評価結果
静的触媒式水素再結合装置動作監視装置（T71－TE002）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対 して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【静的触媒式水素再結合装置動作監視装置（T71－TE002）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
静的触媒式水素再結合装置動作監視装置 （T71－TE002）	常設／緩和	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & \text { O. P. } 33.20^{* 1} \\ & \text { (0. P. 36. } 058 \text {) } \\ & \hline \end{aligned}$	0.05 以下＊${ }^{2}$		－	－	$\mathrm{C}_{\mathrm{H}}=2.93$	$\mathrm{C}_{\mathrm{V}}=1.82$	66

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

N

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{y}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$		基準地震動 S s
基硞ボルト	206	385	－	247	－	水平方向

1.3 計算数値

N

1．3．3 基礎ボルトに作用する力			（単位：N）	
	F_{b}		Q b	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論
1．4．1 基礎ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=11$	$\mathrm{f}_{\mathrm{tss}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s} \text { b }}=142$

注記 $*: ~ \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊${ }^{*}$	機能確認済加速度
静的触媒式水素再結合	水平方向	2． 45	
(T71-TE002)	鉛直方向	1． 51	

$\stackrel{\sim}{\circ}$
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	$\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{b}}$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

25

側面（鉛直方向）

2．静的触媒式水素再結合装置動作監視装置（T71－TE003，004）
2.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，静的触媒式水素再結合装置動作監視装置（T71－TE003，004）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

静的触媒式水素再結合装置動作監視装置（T71－TE003，004）は，重大事故等対処設備におい ては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及 び電気的機能維持評価を示す。
2.2 一般事項

2．2．1 構造計画
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，サポート鋼材に固定し，サポート鋼材は，基礎に基礎ボルト で設置する。	熱電対	【静的触媒式水素再結合装置動作監視装置（T71－TE003，004）】 （単位：mm）

2．2．2 評価方針

静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「2．2．1 構造計画」にて示す静的触媒式水素再結合装置動作監視装置（T71－TE003，004） の部位を踏まえ「2．3 評価部位」にて設定する箇所において，「2．4 固有周期」で算出し た固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「2．5 構造強度評価」にて示す方法にて確認することで実施する。また，静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「2． 6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「2．7 評価結果」に示す。

静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震評価フローを図 2－1 に示す。

図 2－1 静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震評価フロー

2．2．3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一 1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

2．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C v	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力（1本当たり）	N
F_{x}	サポート鋼材基礎部に作用する力（ X 方向）	N
F_{Y}	サポート鋼材基礎部に作用する力（Y方向）	N
F_{z}	サポート鋼材基礎部に作用する力（ Z 方向）	N
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f t o	引張力のみを受ける基礎ボルトの許容引張応力	MPa
f ts	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
ℓ_{1}	基礎ボルトの応力計算に用いる距離（水平方向）	mm
ℓ_{2}	基礎ボルトの応力計算に用いる距離（前後方向）	mm
ℓ_{3}	基礎ボルトの応力計算に用いる距離（水平方向と前後方向の小さい方）	mm
M_{X}	サポート鋼材基礎部に作用するモーメント（X軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	サポート鋼材基礎部に作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	サポート鋼材基礎部に作用するモーメント（ Z 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
m_{a}	検出器の質量	kg
m_{b}	サポート鋼材の質量	kg
n	基礎ボルトの本数	－
n x	M_{X} の引張力に耐えうる基礎ボルトの本数	－
n z	M_{Z} の引張力に耐えうる基礎ボルトの本数	－
Q_{b}	基礎ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{y}（R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

2．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊${ }^{*}$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。

2．3 評価部位

静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震評価は，「2．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト部について実施する。静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震評価部位については，表 2－1 の概略構造図に示す。

2． 4 固有周期

2．4．1 固有値解析方法
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の固有値解析方法を以下に示す。
（1）静的触媒式水素再結合装置動作監視装置（T71－TE003，004）は，「2．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

2．4．2 解析モデル及び諸元
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の解析モデルを 3 次元はり モデルとして図 2－2 に，解析モデルの概要を以下に示す。
（1）サポート鋼材は，原子炉建屋床面に固定されることから，（1）～（10）の部材で組まれた支持構造物とみなし，支持点（サポート鋼材基礎部）1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は，質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表2－4，部材の機器要目を表 $2-5$ に示す。
（3）拘束条件として，支持点（サポート鋼材基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

（単位：mm）

図 2－2 静的触媒式水素再結合装置動作監視装置（T71－TE003，004）解析モデル

表 2－3 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	$\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{b}}$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソンン比	v	-	
ボア要素数	-		
節点数	-	個	

表 2－4 部材の機器要目

材料				
対象要素	（1）－（2）	（3）－（6）	（7）－8）	（9）－（10）
A（mm ${ }^{2}$				
I x $\left(\mathrm{mm}^{4}\right)$				
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$				
$\mathrm{I}_{\mathrm{Z}}\left(\mathrm{mm}^{4}\right)$				
$I_{P}\left(m^{4}\right)$				
断面形状 （mm）	$(a \times b \times c)$	$(a \times b \times c)$	\square $(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	 $(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

2．4．3 固有値解析結果

固有値解析結果を表2－5 に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 2－5 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			Z 方向	X方向	
1 次		水平	－	－	－

2.5 構造強度評価

2．5．1 構造強度評価方法

2．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，静的触媒式水素再結合装置動作監視装置（T71－TE003，004）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）静的触媒式水素再結合装置動作監視装置（T71－TE003，004）は，基礎ボルトにより原子炉建屋床面に固定されるものとする。
（3）静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の質量は，検出器及びサポ ート鋼材を考慮する。
（4）解析コードは，「NX NASTRAN」を使用し，荷重を求める。

2．5．2 荷重の組合せ及び許容応力
2．5．2．1 荷重の組合せ及び許容応力状態
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表2－6に示す。

2．5．2．2 許容応力
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表2－7 のとおりとする。

2．5．2．3 使用材料の許容応力評価条件
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表2－8に示す。

表 2－6 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	その他の計測制御系統施設	静的触媒式水素再結合装置動作監視装置	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 2－7 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{V}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}$ s＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2－8 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385	-

2．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 2－9に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 2－9 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. } 33.20^{* 1} \end{aligned}$		0．05以下＊2	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$

注記＊1：基準床レベルを示す。

$$
\text { * } 2 \text { : 固有値解析より } 0.05 \text { 秒以下であり剛であることを確認した。 }
$$

2．5．4 計算方法

2．5．4．1 応力の計算方法
2．5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 2－3 計算モデル（水平方向転倒）

図 2－4 計算モデル（前後方向転倒）

地震応答解析によって得られたサポート鋼材基礎部の評価点の最大反力とモー メントを表 2－10に示す。

表 2－10 サポート鋼材発生反力，モーメント

対象計器	反力（N）					モーメント（N•mm）		
	F_{X}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}		
静的触媒式水素 再結合装置動作 監視装置 （T71－TE003， 004）								

（1）引張応力
基礎ボルト（1 本当たり）に対する引張応力は，下式により計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{X}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{X}}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{Z}}} \tag{2.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.2}
\end{equation*}
$$

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{2,5,4.1.1.3}
\end{equation*}
$$

（2）せん断応力
基礎ボルト（1 本当たり）に対するせん断応力は，下式により計算する。

せん断力
$Q_{b}=\frac{\sqrt{F_{X}{ }^{2}+F_{z}{ }^{2}}}{n}+\frac{M_{Y}}{\ell_{3} \cdot n}$
（2．5．4．1．1．4）

ここで，ボルトの応力計算に用いる距離 ℓ_{3} は次式により求める。

$$
\begin{equation*}
\ell_{3}=\operatorname{Min}\left(\ell_{1}, \ell_{2}\right) \tag{2.5.4.1.1.5}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{2.5.4.1.1.6}
\end{equation*}
$$

2．5．5 計算条件
2．5．5．1 基礎ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震性についての計算結果】の設計条件及び機器要目に示す。

2．5．6 応力の評価

2．5．6．1 基礎ボルトの応力評価
2．5．4．1．1項で求めた基礎ボルトの引張応力 σ bは次式より求めた許容引張応力 f t s 以下であること。ただし，ftoは下表による。

$$
\mathrm{f}_{\mathrm{t} \mathrm{~s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{too}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(2.5 .6 .1 .1)
$$

せん断応力 τ_{b} はせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であ ること。ただし，f s b は下表による。

許容引張応力 f_{to}	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$

2． 6 機能維持評価

2．6．1 電気的機能維持評価方法
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表2－11に示す。

表 2－11 機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
静的触媒式水素再結合装置 動作監視装置 （T71－TE003，004）	水平	
	鉛直	

2.7 評価結果

2．7．1 重大事故等対処設備としての評価結果
静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2

【静的触媒式水素再結合装置動作監視装置（T71－TE003，004）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
静的触媒式水素再結合装置動作監視装置 （T71－TE003，004）	常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 33. } 20^{* 1} \end{aligned}$		0．05以下＊2	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	66

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}^{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	弾性設計用 地震動 Sd 又 は静的震度	$\underset{\mathrm{S} \text { s }}{\text { 基準地震動 }}$
基礎ボルト	206	385	－	247	－	水平方向

1.3 計算数値

1．3．1 サポート鋼材基礎部に作用する力
（単位：N）

장

1．3．3 基礎ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部 材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論
1．4．1 基礎ボルトの応力

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=14$	$\mathrm{f}_{\mathrm{ts}}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{sb}}=142$

注記＊： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
静的触媒式水素再結合	水平方向	2.21	
（T71－TE003，004）	鉛直方向	1． 47	

은
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	$\mathrm{m}_{\mathrm{a}}, \mathrm{m}_{\mathrm{b}}$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソン比	v	-	
ボ要素数	-	個	
節点数	-	個	

正面（水平方向）

側面（前後方向）

3．静的触媒式水素再結合装置動作監視装置（T71－TE005，006，007，008）

3.1 概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，静的触媒式水素再結合装置動作監視装置（T71－TE005，006，007， 008）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するも のである。

静的触媒式水素再結合装置動作監視装置（T71－TE005，006，007，008）は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，構造強度評価については，サポート鋼材の基礎ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じでサポート鋼材が剛構造 の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象を表3－1に示す。

表 3－1 概略構造識別

評価部位	評価方法		
T71－TE005 構造計画			
T71－TE006			
T71－TE007（代表）	3.5	構造強度評価	表 $3-2$
T71－TE008（構造計画			

3.2 一般事項

3．2．1 構造計画

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の構造計画を表 3－2に示す。

表3－2 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，サポート鋼材に固定し，サポート鋼材は，基礎ボルトにより壁面に設置する。	熱電対	【静的触媒式水素再結合装置動作監視装置（T71－TE007，008）】

3．2．2 評価方針

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の応力評価は，添付書類「VI －2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づ き，「3．2．1 構造計画」にて示す静的触媒式水素再結合装置動作監視装置（T71－TE007，008） の部位を踏まえ「3．3 評価部位」にて設定する箇所において，「3．4 固有周期」で算出し た固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「3．5 構造強度評価」にて示す方法にて確認することで実施する。また，静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「3．6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「3．7 評価結果」に示す。

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震評価フローを図 3－1 に示す。

図 3－1 静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震評価フロー

3．2．3 適用規格•基準等
本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補一 1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版 （（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007） （以下「設計•建設規格」という。）

3．2．4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	基礎ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
C V	鉛直方向設計震度	－
d	基礎ボルトの呼び径	mm
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	基礎ボルトに作用する引張力（ 1 本当たり）	N
F_{x}	サポート鋼材基礎部に作用する力（ X 方向）	N
F_{Y}	サポート鋼材基礎部に作用する力（Y方向）	N
F_{z}	サポート鋼材基礎部に作用する力（ Z 方向）	N
f s b	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
f to	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$\mathrm{f}_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受ける基礎ボルトの許容引張応力	MPa
ℓ_{1}	基礎ボルトの応力計算に用いる距離（水平方向）	mm
ℓ_{2}	基礎ボルトの応力計算に用いる距離（鉛直方向）	mm
ℓ_{3}	基礎ボルトの応力計算に用いる距離（水平方向と鉛直方向の小さい方）	mm
M_{X}	サポート鋼材基礎部に作用するモーメント（X軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	サポート鋼材基礎部に作用するモーメント（Y軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Z}	サポート鋼材基礎部に作用するモーメント（ Z 軸周り）	$\mathrm{N} \cdot \mathrm{mm}$
m_{a}	検出器の質量	kg
$\mathrm{m}_{\mathrm{b},} \mathrm{m}_{\mathrm{c},} \mathrm{m}_{\mathrm{d}}$	サポート鋼材の質量	kg
n	基礎ボルトの本数	－
n x	M_{X} の引張力に耐えうる基礎ボルトの本数	－
n Y	M_{Y} の引張力に耐えうる基礎ボルトの本数	－
Q_{b}	基礎ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表9に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表8に定める値	MPa
S_{y}（ R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお	MPa
S	ける値	
π	円周率	－
σ b	基礎ボルトに生じる引張応力	MPa
τ b	基礎ボルトに生じるせん断応力	MPa

3．2．5 計算精度と数値の丸め方
精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 3－3 に示すとおりとする。

表 3－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊${ }^{*}$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とす る。

3．3 評価部位

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震評価は，「3．5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルト部について実施する。静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震評価部位については，表 3－2 の概略構造図に示す。

3.4 固有周期

3．4．1 固有値解析方法
静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の固有値解析方法を以下に示す。
（1）静的触媒式水素再結合装置動作監視装置（T71－TE007，008）は，「3．4．2 解析モデル及 び諸元」に示す三次元はりモデルとして考える。

3．4．2 解析モデル及び諸元
静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の解析モデルを 3 次元はり モデルとして図 3－2に，解析モデルの概要を以下に示す。
（1）サポート鋼材は，原子炉建屋壁面に固定されることから，（1）～⑰の部材で組まれた支持構造物とみなし，支持点（サポート鋼材基礎部）1点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は，質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表3－4，部材の機器要目を表3－5に示す。
（3）拘束条件として，支持点（サポート基礎部）の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NX NASTRAN」を使用し，固有値を求める。
なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI －5 計算機プログラム（解析コード）の概要」に示す。

図 3－2 静的触媒式水素再結合装置動作監視装置（T71－TE007，008）解析モデル

表 3－4 機器諸元

項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
	m_{b}	kg	
	m_{c}	kg	
	m_{d}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	66
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

表 3－5 部材の機器要目

材料				
対象要素	（1）－（5），（9）－（11）	（6）- 8	（12）－（13）	（14）－（17）
A（ mm^{2} ）				
$I_{x}\left(\mathrm{~mm}^{4}\right)$				
$\mathrm{I}_{\mathrm{Y}}\left(\mathrm{mm}^{4}\right)$				
$\mathrm{I}_{\mathrm{Z}}\left(\mathrm{mm}^{4}\right)$				
$\mathrm{I}_{\mathrm{P}}\left(\mathrm{mm}^{4}\right)$				
断面形状 （mm）	$(\mathrm{a} \times \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(a \times b \times c)$	$(a \times b \times c)$

3．4．3 固有値解析結果

固有値解析結果を表 3－6に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認し た。

表 3－6 固有値解析結果					（単位：s）
モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向 刺激係数
			Z 方向	X方向	
1 次		水平	－	－	－

3.5 構造強度評価

3．5．1 構造強度評価方法

3．4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，静的触媒式水素再結合装置動作監視装置（T71－TE007，008）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）静的触媒式水素再結合装置動作監視装置（T71－TE007，TE008）は，基礎ボルトにより原子炉建屋壁面に固定されるものとする。
（3）静的触媒式水素再結合装置動作監視装置（T71－TE007，TE008）の質量は，検出器及びサ ポート鋼材を考慮する。
（4）解析コードは，「NX NASTRAN」を使用し，荷重を求める。

3．5．2 荷重の組合せ及び許容応力
3．5．2．1 荷重の組合せ及び許容応力状態
静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の荷重の組合せ及び許容応力状態のらち重大事故等対処設備の評価に用いるものを表3－7に示す。

3．5．2．2 許容応力

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－8 のとおりとする。

3．5．2． 3 使用材料の許容応力評価条件

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表3－9に示す。

表 3－7 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 3}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
計測制御系統施設	その他の計測制御系統施設	静的触媒式水素再結合装置動作監視装置	常設／緩和	—＊2	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界 を用いる。）

注記＊1：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－8 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{IV}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}$＊

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－9 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	66	206	385
(MPa)					

3．5．3 設計用地震力

耐震評価に用いる設計用地震力を表 3－10に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 3－10 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ (m)	固有周期 (s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

3．5．4 計算方法

3．5．4．1 応力の計算方法
3．5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じ る引張力とせん断力について計算する。

図 3－3 計算モデル（水平方向転倒）

図 3－4 計算モデル（鉛直方向転倒）

地震応答解析によって得られたサポート鋼材基礎部の評価点の最大反力とモー メントを表 3－11に示す。

表 3－11 サポート鋼材発生反力，モーメント

対象計器	反力（N）				モーメント（N•mm）		
	F_{X}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}	
静的触媒式水素 再結合装置動作 監視装置 （T71－TE007， 008）							

（1）引張応力
基礎ボルト（1 本当たり）に対する引張応力は，下式により計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{Z}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{Y}}}{\ell_{1} \cdot \mathrm{n}_{\mathrm{Y}}}+\frac{\mathrm{M}_{\mathrm{X}}}{\ell_{2} \cdot \mathrm{n}_{\mathrm{X}}} \tag{3.5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}}
$$

（3．5．4．1．1．2）

ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{3,5,4,1,1.3}
\end{equation*}
$$

（2）せん断応力基礎ボルト（1 本当たり）に対するせん断応力は，下式により計算する。 せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\frac{\sqrt{\mathrm{F}_{\mathrm{Y}}{ }^{2}+\mathrm{F}_{\mathrm{X}}^{2}}}{\mathrm{n}}+\frac{\mathrm{M}_{\mathrm{Z}}}{\ell_{3} \cdot \mathrm{n}} \tag{3.5.4.1.1.4}
\end{equation*}
$$

ここで，ボルトの応力計算に用いる距離 ℓ_{3} は次式により求める。

$$
\begin{equation*}
\ell_{3}=\operatorname{Min}\left(\ell_{1}, \ell_{2}\right) \tag{3.5,4.1.1.5}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{3.5.4.1.1.6}
\end{equation*}
$$

3．5．5 計算条件

3．5．5．1 基礎ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震性についての計算結果】の設計条件及び機器要目に示す。

3．5．6 応力の評価

3．5．6．1 基礎ボルトの応力評価
3．5．4．1．1項で求めた基礎ボルトの引張応力 σ b は次式より求めた許容引張応力 f t s以下であること。ただし，ftoは下表による。

$$
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{too}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(3.5 .6 .1 .1)
$$

せん断応力 τ bはせん断力のみを受ける基礎ボルトの許容せん断応力 f s b 以下であ ること。ただし，f s b は下表による。

許容引張応力 $\mathrm{f}_{\mathrm{to} \text { o }}$	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 f_{sb}	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$

3.6 機能維持評価

3．6．1 電気的機能維持評価方法

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の電気的機能維持評価につ いて以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき，基準地震動 S s により定まる応答加速度を設定する。

静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表3－12に示す。

表 3－12 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
静的触媒式水素再結合装置 動作監視装置 （T71－TE007，008）	水平	
	鉛直	

[^16]
3.7 評価結果

3．7．1 重大事故等対処設備としての評価結果
静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の重大事故等時の状態を考慮 した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力 に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2

【静的触媒式水素再結合装置動作監視装置（T71－TE007，008）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
静的触媒式水素再結合装置動作監視装置 （T71－TE007，008）	常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { O. P. 33. } 20^{* 1} \\ & \text { (0. P. 41. 692) } \end{aligned}$		0．05以下＊2	－	－	$\mathrm{C}_{\mathrm{H}}=3.64$	$\mathrm{C}_{\mathrm{V}}=1.91$	66

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

નૈ

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \text { 弾性設計用 } \\ \text { 地震動 S d 又 } \\ \text { 铮的震度 } \end{gathered}$	基準地震動 S S
基礎ボルト	206	385	－	247	－	鉛直方向

1．3 計算数値
1．3．1 サポート鋼材基礎部に作用する力
（単位：N）

コ

1．3．3 基礎ボルトに作用する力			（単位：N）	
	F_{b}		Q_{b}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト	－		－	

O 2
（3）
$\mathrm{VI}-2-6-7-18$
R 0

1． 4 結論
1．4．1 基礎ボルトの応力

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=24$	$\mathrm{f}_{\mathrm{ts} \text { s }}=185^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=3$	$\mathrm{f}_{\mathrm{sb}}=142$

注記＊： $\mathrm{f}_{\mathrm{t} \mathrm{s}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right.$ ］より算出。
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
静的触媒式水素再結合	水平方向	3.03	
(T71-TE007, 008)	鉛直方向	1.60	

$\stackrel{\rightharpoonup}{\infty}$
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 （3）VI－2－6－7－18 R 0
1.5 その他の機器要目

VI－2－7 放射性廃棄物の廃棄施設の耐震性についての計算書

VI－2－7－1 放射性廃棄物の廃棄施設の耐震性についての計算結果
VI－2－7－2 気体廃棄物処理系の耐震性についての計算書
VI－2－7－3 液体廃棄物処理系の耐震性についての計算書

VI－2－7－1 放射性廃棄物の廃棄施設の耐震性についての計算結果
1．概要 1
2．耐震評価条件整理 1

1．概要
本説明書は，放射性廃棄物の廃棄施設の耐震計算の手法及び条件の整理について説明するものであ る。

2．耐震評価条件整理
放射性廃棄物の廃棄施設に対して，設計基準対象施設の耐震重要度分類，重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既に認可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のうち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件との差異 の有無を整理した。結果を表1に示す。

放射性廃棄物の廃棄施設の耐震計算は表 1 に示す計算書に記載することとする。

表1 耐震計算結果一覧表

VI－2－7－2 気体廃棄物処理系の耐震性についての計算書

VI－2－7－2－1 排気筒の耐震性についての計算書

VI－2－7－2－1 排気筒の耐震性についての計算書
（I）排気筒の地震応答計算書
（II）排気筒の耐震計算書
（ I ）排気筒の地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2． 3 解析方針 8
3．解析方法 10
3.1 解析モデル 10
3.2 入力地震動 19
3.3 解析方法 62
3.4 解析条件 66
4．解析結果 69
4． 1 動的解析 69
4． 2 静的解析 130

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく排気筒の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値及び静的地震力は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

また，各種応答値については排気筒の構造強度の確認にも用いる。

2．基本方針
2.1 位置

排気筒の設置位置を図2－1に示す。

2.2 構造概要

排気筒は，地上からの高さ 160.0 m ，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身 2本を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第3号機排気筒で支持構造物を共有する集合方式である。

筒身と鉄塔は 0. P．＊+41.8 m ， 0 ．P．$+74.8 \mathrm{~m}, ~ 0$. P．+161.8 m の 3 つの高さで接続されて おり，更に 0．P．＋134． 8 m は制震オイルダンパで接続されている。

排気筒基礎は全幅 38.0 m ，全高 19.3 m の四角形の鉄筋コンクリート造フーチング基礎である。

以下に構造概要を示す。

構造概要

- 構造形式 四角鉄塔支持形鋼管構造（制震装置付）
- 排気筒高さ 160.0 m （0．P．+174.8 m ）
- 鉄塔高さ 147.0 m （0．P．+161.8 m ）
- 筒身内径 頂部 3.0 m

基部 $\quad 3.7 \mathrm{~m}$
－鉄塔幅 頂部 11．0m
根開き 30.0 m
－支持点位置
0．P．$+41.8 \mathrm{~m}, \quad 0 . \mathrm{P} .+74.8 \mathrm{~m}, \quad$ 0．P．$+134.8 \mathrm{~m}, \quad 0 . \mathrm{P} .+161.8 \mathrm{~m}$
－基礎
鉄筋コンクリート造フーチング基礎

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） -0.74 m である。

排気筒の概要図及び概略平面図を図 $2-2$ 及び図 $2-3$ に，排気筒基礎の平面図を図 $2-4$ ，断面図を図 $2-5$ 及び図 $2-6$ に示す。

図 2－2 排気筒の概要図

> D-D断面

$\underline{G-G \text { 断面 }}$

オイルダンパ設置

B－B断面

E－E断面

I－I断面（基部）

図 2－3 排気筒の概略平面図

図 2－4 排気筒基礎平面図（単位：m）

図 2－5 排気筒基礎断面図（A－A 断面，NS 断面）（単位：m）
\qquad B－B 断面図
$\xrightarrow{\mathrm{E}}$

図 2－6 排気筒基礎断面図（B－B 断面，EW 断面）（単位：m）

2． 3 解析方針

排気筒の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づ いて行う。

図 $2-7$ に排気筒の地震応答解析フローを示す。
地震応答解析は，「3．1 解析モデル」において設定した地震応答解析モデルを用い て実施することとし，「3．3 解析方法」及び「3．4 解析条件」に基づき，「4．1 動的解析」においては，地盤物性，材料物性および制震オイルダンパのばらつきを適切に考慮し，加速度，変位，曲げモーメント，軸力を含む各種応答値を算出する。また，「4．2 静的解析」において，固定荷重及び静的地震力による部材応力を算出する。

注：［ ］内は，本資料における章番号を示す。

図 2－7 排気筒の地震応答解析フロー

3．解析方法

3.1 解析モデル

3．1．1 概要
地震応答解析モデルは，排気筒基礎上端レベル（0．P．$+15.3 \mathrm{~m}) ~$ より上部を対象 とした質点モデルとし，筒身及び鉄塔部材は梁要素でモデル化する。筒身及び鉄塔の基部各点と排気筒平面中心位置との間を剛部材で連結した，基部固定モデル とする。また，排気筒の 0. P．＋134． 8 m には 8 台の制震装置（制震オイルダンパ） が設置されている。排気筒の地震応答解析モデルを図3－1 に示す。地震応答解析 は時刻歴応答解析により行う。

注記＊：M1 は筒身の内径 3.0 m ，M2 は筒身の内径 3.7 m の位置を示す。
図 3－1 排気筒の地震応答解析モデル

3．1．2 部材の接合条件
部材間の接合条件は以下とする。

主柱材—主柱材	$:$ 剛接合
主柱材—斜材	$:$ ピン接合
主柱材 - 水平材	$:$ ピン接合

筒身一鉄塔の支持点＊：水平方向固定，鉛直方向フリー

注記＊：制震オイルダンパ設置支持点を除く。

3．1．3 筒身及び鉄塔部材

使用材料の材料定数を表3－1に，各層に集約した重量を表3－2に示す。各層 の重量は筒身と鉄塔主柱材の質点に振り分け，各層の重量には，筒身及び鉄塔の自重の他に，制震オイルダンパ，歩廊等の付属設備の重量を考慮する。

筒身，主柱材，斜材及び水平材の部材諸元一覧を表 3－3～表3－6に示す。解析入力値には，腐食代を考慮しない断面性能を用いる。

表 3－1 使用材料の材料定数

使用材料	ヤング係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比	減衰定数 h $(\%)$	備考

表 3－2 排気筒の重量

	位置＊		
0．P．（m）		筒身	鉄塔
174.8	TOP	123.0	－
161.8	A	182.6	140.2
155.5	A＇	120.2	113.2
149． 1	B	127.7	176.9
142.0	B	135.3	175.9
134.8	C	293.8	624.4
126.8	C＇	156.1	279． 8
118． 3	D	170.2	383.3
108.8	D＇	184.6	405.5
98.8	E	181.8	678.0
86.4	E＇	227.1	618.1
74.8	F	248.3	973.7
61.2	G	312.2	1196.3
41.8	H	434.6	2047． 7
15.3	1	250.9	1150.8
合計		3148.4	8963.8

注記＊：位置については図 $3-1$ に示す。

表 3－3 筒身の部材諸元一覧

標高	区間＊${ }^{\text {1 }}$	筒身		断面積$\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	せん断断面積 $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\begin{gathered} \text { 断面 } 2 \text { 次 } \\ \text { モーメント } \\ \left(\times 10^{4} \mathrm{~mm}^{4}\right) \end{gathered}$	備考
		$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	板厚 （mm）				
174．8－24．3	TOP－M1	3020	10	945.6	472.8	10700000	一般部
24．3－19．3	M1－M2	3370	10	1056	527.8	14900000	テーパー部＊2
19．3－15．3	M2－I	3720	10	1166	582.8	20100000	拡幅部

注記＊1：区間については図 3－1に示す。
＊2：テーパー部の断面性能は区間の上端と下端の外径の平均値より算出した。

	区間＊	母材鋼管		断面積$\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	せん断断面積 $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\begin{gathered} \text { 断面 } 2 \text { 次 } \\ \text { モーメント } \\ \left(\times 10^{4} \mathrm{~mm}^{4}\right) \end{gathered}$	備考
0. P. (m)		外径 （mm）	板厚 （mm）				
161．8－155．5	A－A ${ }^{\prime}$	457． 2	7.9	111.5	55.76	28100	
155．5－149．1	$A^{\prime}-B$	457.2	7.9	177.4	88.71	46100	補強材（ $\mathrm{t}=9$ ）
149．1－142．0	B－B＇	457.2	7.9	177.0	88.50	45700	補強材（ $\mathrm{t}=6, \mathrm{t}=6$ ）
142．0－134．8	B＇－C	609.6	9.5	325.3	162.6	151000	補強材（ $\mathrm{t}=12, \mathrm{t}=6$ ）
134．8－126．8	C－C＇	609.6	9.5	380.1	190.0	179000	補強材（ $\mathrm{t}=16, \mathrm{t}=9$ ）
126．8－118．3	C＇－D	711.2	12.7	473.0	236.5	299000	補強材（ $\mathrm{t}=6, \mathrm{t}=22$ ）
118．3－108．8	D－D＇	711.2	12.7	490.8	245.4	312000	補強材（ $\mathrm{t}=6, \mathrm{t}=25$ ）
108．8－98．8	D＇－E	812.8	16	620.8	310.4	506000	補強材（ $\mathrm{t}=9, \mathrm{t}=16$ ）
98．8－86．4	E－E＇	812.8	16	640.8	320.4	523000	補強材（ $\mathrm{t}=9, \mathrm{t}=19$ ）
86．4－74．8	E＇－F	1000	18	698.0	349.0	851000	補強材（ $\mathrm{t}=9$ ）
74．8－61．2	F－G	1000	18	698.0	349.0	851000	補強材（ $\mathrm{t}=9$ ）
61．2－41．8	G－H	1100	18	768.6	384.3	1140000	補強材（ $\mathrm{t}=9$ ）
41．8－28．6	H－H＇	1100	20	888.2	444.1	1310000	補強材（ $\mathrm{t}=12$ ）
28．6－15．3	H＇－I	1100	20	1082	541.0	1620000	補強材（ $\mathrm{t}=12, \mathrm{t}=22$ ）

注記＊：区間については図 3－1に示す。

表 3－5 斜材の部材諸元一覧

標高	区間＊	母材鋼管		断面積$\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	せん断 断面積 $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\begin{gathered} \text { 断面 } 2 \text { 次 } \\ \text { モーメント } \\ \left(\times 10^{4} \mathrm{~mm}^{4}\right) \end{gathered}$	備考
		$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	板厚 （mm）				
161．8－155．5	A－A＇	355.6	6.4	70.21	35.11	10700	
155．5－149．1	$A^{\prime}-B$	355.6	6． 4	70.21	35.11	10700	
149．1－142．0	B－B＇	406.4	6． 4	80.43	40.21	16100	
142．0－134．8	B＇－C	406.4	6． 4	80.43	40.21	16100	
134．8－126．8	C－C＇	457.2	6.4	90.64	45.32	23000	
126．8－118．3	$\mathrm{C}^{\prime}-\mathrm{D}$	457.2	6． 4	90.64	45.32	23000	
118．3－108．8	D－D＇	508.0	6.4	100.9	50.43	31700	
108．8－98．8	D＇－E	508.0	6.4	100.9	50.43	31700	
98．8－86．4	E－E＇	609.6	6． 4	121.3	60.64	55200	
86．4－74．8	$E^{\prime}-\mathrm{F}$	609.6	6． 4	121.3	60.64	55200	
74．8－61．2	F－G	711.2	9.5	209． 4	104.7	129000	
$61.2-41.8$	G－H	558.8	9.5	217.2	108.6	83100	補強材（ $\mathrm{t}=6$ ）
41．8－15．3	H－I	609.6	16.0	298.4	149.2	132000	

注記＊：区間については図 3－1に示す。

標高	位置＊	母材鋼管		断面積$\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	せん断 断面積 $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\begin{gathered} \text { 断面 } 2 \text { 次 } \\ \text { モーメント } \\ \left(\times 10^{4} \mathrm{~mm}^{4}\right) \end{gathered}$	備考
		外径 （mm）	板厚 (mm)				
161.8	A	318.5	6.4	109.1	54.53	13900	補強材（ $\mathrm{t}=9$ ）
149.1	B	318.5	6.4	62.75	31.38	7640	
134.8	C	318.5	6.4	135.4	67.69	17600	補強材（ $\mathrm{t}=6, \mathrm{t}=16$ ）
118.3	D	318.5	6.4	62.75	31.38	7640	
98.8	E	406.4	6.4	80.43	40.21	16100	
74.8	F	457.2	6.4	90.64	45． 32	23000	
61.2	G	457.2	6.4	90.64	45.32	23000	
41.8	H	508.0	6.4	100.9	50.43	31700	

注記＊：位置については図 3－1に示す。

3．1．4 制震オイルダンパ
0．P．＋134． 8 m の支持点では筒身と鉄塔を制震オイルダンパで接続する。制震オ イルダンパの配置図を図 3－2に，諸元を表 3－7示す。個々の制震オイルダンパ は，減衰係数と剛性を有するダッシュポットとばねが直列に結合するモデルで構成され，制震オイルダンパには水平方向の相対速度に比例した減衰力が発生する。筒身から張り出した支持点アームの先端に制震オイルダンパを接続する。筒身間 は筒身から張り出した筒身連結材で接続する。筒身連結材同士の結合条件は，軸方向と鉛直方向をフリー，軸直交方向を固定とする。支持点アームと筒身連結材 は剛の梁要素でモデル化する。

注記＊：筒身連結材の結合条件
（1）：軸方向，鉛直方向（フリー）
（2）：軸直交方向（固定）
図 3－2 制震オイルダンパ配置図

表 3－7 制震オイルダンパの諸元

標高 $0 . \mathrm{P} . ~$ $(\mathrm{~m})$	位置 *	減衰係数 $(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$	剛性 $(\mathrm{kN} / \mathrm{mm})$	許容速度 $(\mathrm{m} / \mathrm{s})$	許容変位 (mm)
134.8	C	350	45	1.20	± 400

注記 $*: ~$ 位置については図 $3-1$ に示す。

3.2 入力地震動

排気筒の地震応答解析に用いる入力地震動は，基準地震動 S s 及び弾性設計用地震動 S d による「VI－2－2－25 排気筒基礎の地震応答計算書」から得られる基礎上端レベ ル（0．P．$+15.3 \mathrm{~m}) ~ の \mathrm{NS}$ 断面，EW 断面の応答加速度（並進，鉛直，回転成分）を用い る。

代表として，入力地震動のうち，基準地震動 S s の基本ケース及び弾性設計用地震動S d の基本ケースの加速度時刻歴波形及び加速度応答スペクトルを図3－3～図3－ 6 に示す。

図 3－3（1）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 並進成分）（1／3）

図 $3-3$（2）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 並進成分）（2／3）

図 3－3（3）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 並進成分）（3／3）

図 3－3（4）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 鉛直成分）（ $1 / 3$ ）

図 $3-3$（5）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 鉛直成分）（2／3）

図 3－3（6）入力地震動の加速度時刻歴波形
（基準地震動 S s ，NS 断面 鉛直成分）（3／3）

図 $3-3$（7）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 回転成分）（ $1 / 3$ ）

（d） S s -F 1

（e） S s -F 2

（f）$\quad \mathrm{S}$ s -F 3
図 $3-3$（8）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 回転成分）（2／3）

図3－3（9）入力地震動の加速度時刻歴波形
（基準地震動 S s，NS 断面 回転成分）（3／3）

図 $3-3$（10）入力地震動の加速度時刻歴波形 （基準地震動 S s ，EW 断面 並進成分）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ s -F 3
図 3－3（11）入力地震動の加速度時刻歴波形 （基準地震動 S s ，EW 断面 並進成分）（2／3）

図 3－3（12）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 並進成分）（3／3）

図 3－3（13）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 鉛直成分）（ $1 / 3$ ）

図 3－3（14）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 鉛直成分）（2／3）

図 3－3（15）入力地震動の加速度時刻歴波形 （基準地震動 S s ，EW 断面 鉛直成分）（3／3）

図 3－3（16）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 回転成分）（1／3）

図 3－3（17）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 回転成分）（2／3）

図 $3-3$（18）入力地震動の加速度時刻歴波形 （基準地震動 S s，EW 断面 回転成分）（3／3）

図 $3-4$（1）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 並進成分）（1／3）

図 $3-4$（2）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 並進成分）（2／3）

図 3－4（3）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 並進成分）（3／3）

図 $3-4$（4）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 鉛直成分）（1／3）

図 $3-4$（5）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 鉛直成分）（2／3）

図 3－4（6）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 鉛直成分）（3／3）

図 $3-4(7) \quad$ 入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 回転成分）（1／3）

図 3－4（8）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 回転成分）（2／3）

図 $3-4$（9）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，NS 断面 回転成分）（3／3）

図 3－4（10）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 並進成分）（1／3）

図 3－4（11）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 並進成分）（2／3）

図 3－4（12）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 並進成分）（3／3）

図 3－4（13）入力地震動の加速度時刻歴波形
（弾性設計用地震動 $\mathrm{S} d, ~ E W$ 断面 鉛直成分）（ $1 / 3$ ）

図 3－4（14）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 鉛直成分）（2／3）

図 3－4（15）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 鉛直成分）（3／3）

図 3－4（16）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 回転成分）（1／3）

図 3－4（17）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 回転成分）（2／3）

図 3－4（18）入力地震動の加速度時刻歴波形
（弾性設計用地震動 S d，EW 断面 回転成分）（3／3）

図 3－5（1）入力地震動の加速度応答スペクトル （基準地震動 S s，NS 断面 並進成分）

図 $3-5$（2）入力地震動の加速度応答スペクトル
（基準地震動 S s ，NS 断面 鉛直成分）

図 3－5（4）入力地震動の加速度応答スペクトル
（基準地震動 S s，EW 断面 並進成分）

図 3－5（6）入力地震動の加速度応答スペクトル
（基準地震動 S s，EW 断面 回転成分）

図 3－6（1）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，NS 断面 並進成分）

図 3－6（2）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，NS 断面 鉛直成分）

図 3－6（3）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，NS 断面 回転成分）

図 3－6（4）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，EW 断面 並進成分）

図 3－6（5）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，EW 断面 鉛直成分）

図 3－6（6）入力地震動の加速度応答スペクトル （弾性設計用地震動 S d，EW 断面 回転成分）

3.3 解析方法

解析コードは「DYNA2E Ver8．1．0」を用いる。解析モデルは解析上の固定点を排気筒基部レベルの中心位置にとつた基部固定モデルとする。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

地震応答解析は，直接積分法による時刻歴応答解析とする。減衰は，筒身 1.0% と鉄塔 2.0% の部位別の減衰定数を用いたひずみエネルギー比例型減衰で評価する。

3．3．1 動的解析

建物•構築物の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の解析方法に基づき，時刻歴応答解析により実施する。

時刻歴応答解析は，排気筒の基部に排気筒基礎上面の応答加速度を入力し，部材応力を算出する。

応答加速度の組合せは，NS 断面又はEW 断面の並進，鉛直，回転成分を組み合 わせており， 2 方向（3成分）（水平1方向（並進•回転）及び鉛直方向）の同時入力とする。

地震応答解析は図 3－7 に示すI～IV方向の加振を行う。 I 方向加振では排気筒基礎の地震応答解析（EW 断面）より算定された応答加速度を用い，III方向加振 では排気筒基礎の地震応答解析（NS 断面）より算定された応答加速度を用いる。 II方向及びIV方向加振では，同方向の排気筒基礎の地震応答解析がないことから， NS 断面又はEW 断面の地震応答解析より算定された応答加速度を用いることで，部材応力を算出する。

入力地震動と加振方向の組合せを表 3－8に示す。

図 3－7 加振方向の説明

表 3－8 入力地震動と加振方向の組合せ

	入力地震動						
	EW 断面				NS 断面		
	並進	回転	鉛直	並進	回転	鉛直	
	\bigcirc	\bigcirc	\bigcirc	-	-	-	
II 方向	\bigcirc	\bigcirc	\bigcirc	-	-	-	
	-	-	-	\bigcirc	\bigcirc	\bigcirc	
III方向	-	-	-	\bigcirc	\bigcirc	\bigcirc	
IV 方向	\bigcirc	\bigcirc	\bigcirc	-	-	-	
	-	-	-	\bigcirc	\bigcirc	\bigcirc	

3．3．2 静的地震力

（1）水平地震力
水平地震力算定用の基準面は排気筒基礎上端レベル（0．P．+15.3 m ）とし，基準面より上の部分（地上部分）の地震力は，地震層せん断力係数を用いて，次式に より算出する。
$\mathrm{Q}_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{Z} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}$
$\mathrm{C}_{\mathrm{i}}=\mathrm{R}_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{C}_{0}$

ここで，

Q_{i} ：第 i 層に生じる水平地震力
n ：施設の重要度分類に応じた係数（3．0）
Z ：地震地域係数（1．0）
Ci ：第i層の地震層せん断力係数
W_{i} ：第i層が支える重量
R_{t} ：振動特性係数（0．8）
A_{i} ：第i層の地震層せん断力係数の高さ方向の分布係数
Co ：標準せん断力係数（0．2）
なお，A_{i} はモーダル解析により以下のとおり算出する。
$\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}{ }^{\prime} / \mathrm{A}_{1}{ }^{\prime}$
$A_{i}^{\prime}=\sqrt{\sum_{j=1}^{k}\left(\sum_{m=i}^{n} w_{m} \cdot \beta_{j} \cdot U_{m j} \cdot R_{t}\left(T_{j}\right)\right)^{2}} / \sum_{m=i}^{n} w_{m}$
ここで
n ：建物•構築物の層数
$\mathrm{w}_{\mathrm{m}} \quad:$ 第 m 層の重量
$\beta_{\mathrm{j}} \cdot \mathrm{U}_{\mathrm{m} \mathrm{j}}$ ：第 m 層の j 次刺激関数
T ：固有値解析により得られる建物•構築物の j 次固有周期
$R_{t}\left(T_{j}\right) ~: ~$ 周期 T_{j} に対応する加速度応答スペクトルの値
（建築基準法施行令第 88 条第 1 項に与えられている振動特性係数 R_{t} の T_{j} に対する値とする。地盤種別は第 1 種地盤と する。）
k ：考慮すべき最高次数
（2）鉛直地震力
鉛直地震力は，鉛直震度 0.3 を基準とし，建物•構築物の振動特性及び地盤の種類等を考慮して，次式によって算定する鉛直震度を用いて定める。

$$
C_{v}=R_{V} \cdot 0.3
$$

ここで，
C_{V} ：鉛直震度
R_{V} ：鉛直方向振動特性係数（0．8）

3． 4 解析条件

3．4．1 排気筒基礎の応答の不確かさ等
解析においては，排気筒基礎の地震応答解析における基本ケースの応答値を用 いた解析を基本ケースとし，排気筒基礎の応答の不確かさ等を考慮する。排気筒基礎の応答の不確かさ等を考慮した地震応答解析は，排気筒応答への影響の大き い地震動に対して実施することとし，基本ケースの地震応答解析の照査値が最大 となる地震動を基準地震動 S s から選定する。弾性設計用地震動S d については，基準地震動 S s において影響が大きい排気筒基礎の応答の不確かさ等に対し，影響検討を行う。

排気筒の材料物性の不確かさとして，制震オイルダンパは，性能変動として減衰係数の不確かさを考慮する。排気筒基礎の応答の不確かさについては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」による不確かさを考慮するが，コ ンクリートのヤング係数の不確かさについては，影響が少ないことから地盤のせ ん断弾性係数の不確かさを考慮する。

排気筒基礎の応答の不確かさ等を考慮する際のII方向及びIV方向の入力地震動 は，基本ケースにおけるII方向，IV方向加振で入力した NS 断面，EW 断面の排気筒基礎の地震応答解析による応答加速度のうち，評価結果が厳しい EW 断面の排気筒基礎の地震応答解析による応答加速度を用いる。

排気筒基礎の応答の不確かさ等を考慮する地震応答解析ケースを表 3－9及び表 3－10に示す。

表 3－9 不確かさを考慮する物性

解析ケース		地盤物性 旧表土，盛土，D級岩盤 C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B級岩盤 （G：せん断弾性係数）	材料物性 （制震オイルダンパ） （C：減衰係数）	材料物性 （コンクリート） （ E_{0} ：ヤング係数）
ケース①	基本ケース	平均値	設計値	設計基準強度
ケース（2）	地盤物性のばらつき （＋1 o ）を考慮した解析ケース	平均値 $+1 \sigma$	設計値	設計基準強度
ケース（3）	地盤物性のばらつき （－1 o ）を考慮した解析ケース	平均値－1 σ	設計値	設計基準強度
ケース（4）	制震オイルダンパの ばらつき（0．8C）を考慮した解析ケース	平均値	設計値 $\times 0.8$	設計基準強度
ケース（5）	制震オイルダンパの ばらつき（1．2C）を考慮した解析ケース	平均値	設計値 $\times 1.2$	設計基準強度

解析ケース			ケース（1）	ケース（2）	ケース（3）	ケース（4）	ケース（5）
地 震 動	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 1 \\ & \mathrm{~S} d-\mathrm{D} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$	m			
	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 2 \\ & \mathrm{~S} \text { d }-\mathrm{D} 2 \end{aligned}$	$+*^{*}$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$				
	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 3 \\ & \mathrm{~S} \text { d }-\mathrm{D} 3 \end{aligned}$	$++* 1$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$				
	$\begin{array}{lll} S & s & F \\ S & 1 \\ S & F \end{array}$	$++* 1$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$				
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} \text { d }-\mathrm{F} 2 \end{aligned}$	$+*^{*} 1$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$	\ldots			
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{~S} \text { d }-\mathrm{F} 3 \end{aligned}$	$+*^{*}$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-{ }^{*} 1$	$\triangle * 2$				
	$\begin{aligned} & S \mathrm{~s}-\mathrm{N} 1 \\ & \mathrm{~S} d-\mathrm{N} 1 \end{aligned}$	$++* 1$	\bigcirc	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$				-

注記 $* 1$ ：耐震評価にあたつては，原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（土木学会 原子力土木委員会，2005年6月）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：\triangle については，正位相による解析ケース（1）において，排気筒の筒身，主柱材それぞれの断面算定結果が最も厳しい地震動を用いる。なお，S d の評価は，S s の評価結果が最も厳しくなる地震動について，地盤物性及び材料物性の不確か さを考慮する。

4．解析結果

4． 1 動的解析
4．1．1 固有値解析結果
地震応答解析モデルの固有値解析結果を表4－1に示す。主要なモードを図4－ 1 に示す。

表 4－1 固有値解析結果

モード No．	振動数 (Hz)	固有周期 (s)	刺激係数			備考
	X 方向	Y 方向	Z 方向			
1	0.851	1.175	0.818	0.818	0.000	全体 1 次
2	1.387	0.721	0.344	0.344	0.000	筒身 2 次， 鉄塔 1 次
3	2.451	0.408	-0.531	-0.531	0.000	全体 2 次
4	3.821	0.262	-0.229	-0.229	0.000	筒身 3 次
5	4.082	0.245	0.448	0.448	0.000	全体 3 次

図 $4-1$（1）固有モード図 $(1 / 2)$

（e）モードNo． 5
図 $4-1$（2）固有モード図 $(2 / 2)$

4．1．2 地震応答解析結果

基準地震動 S s 及び弾性設計用地震動 S d に対する各質点位置での加速度，変位，軸力，曲げモーメントの最大応答値及び高さ方向の応答分布を図 $4-2 \sim$ 図 4 －9に示す。

基準地震動 S s 及び弾性設計用地震動 S d に対する応答について，排気筒の直交方向加振では，I 方向加振（EW 断面の応答加速度を入力）とIII方向加振（NS 断面の応答加速度を入力）の解析結果を示す。排気筒の斜め方向加振（II方向加振及びIV方向加振）については，入力地震動における応答加速度が大きい，EW 断面 の応答加速度を入力した解析結果を代表として示す。

また，基準地震動 S s に対する制震装置（制震オイルダンパ）の最大応答値を表 4－2に示す。

図 $4-2$（1）最大応答加速度（基準地震動 S s ）（1／7）

$\begin{gathered} \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III 方向	I 方向	III 方向
174.8	TOP	－	－	37.8	33.7
161.8	A	21.7	19.4	21.4	18.9
155.5	A＇	37.3	34.8	20.7	18.6
149.1	B	15.8	13.3	22.6	19.3
142.0	B＇	25.7	26.5	15.8	14.9
134.8	C	14.9	11.9	16.6	13.8
126.8	C＇	33.6	31.2	16.5	14.7
118.3	D	18.7	21.0	20.4	17.4
108.8	D＇	29.7	24.4	22.0	19.1
98.8	E	18.8	17.1	20.6	20.5
86.4	E＇	21.7	20.1	19.0	19.5
74.8	F	15.5	14.6	15.4	14.8
61.2	G	25.5	21.4	24.0	22.0
41.8	H	14.6	12.9	17.4	16.8
15.3	I	13.1	10.8	13.1	10.8

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$（直交方向）

$\begin{gathered} \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{gathered}$	位置	鉄塔部		筒身部	
		II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	35.2	40.7
161.8	A	20.8	22.5	20.5	22.1
155.5	A ${ }^{\text {，}}$	37.5	37.2	20.0	21.7
149.1	B	15.1	15.6	20.8	23.8
142.0	B＇	26.2	27.2	16.4	15.7
134.8	C	14.9	14.4	16.5	16.5
126.8	C＇	33.1	33.6	16.4	16.0
118.3	D	19.8	18.8	19.6	20.7
108.8	D＇	31.0	26.4	20.8	22.7
98.8	E	20.3	17.1	20.1	21.5
86.4	E＇	23.0	21.5	17.4	20.1
74.8	F	18.2	15.2	14.4	15.7
61.2	G	26.2	23.9	21.5	26.1
41.8	H	14.8	13.7	19.2	13.6
15.3	1	13.1	13.1	13.1	13.1

（d） S s－D 2 （斜め方向）

図 $4-2$（2）最大応答加速度（基準地震動 S s ）（2／7）

図 4－2（3）最大応答加速度（基準地震動 S s ）（3／7）

．P．（m）

$\begin{gathered} \hline \text { 高さ(m) } \\ 0 . \mathrm{P} . \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	26.4	26.3
161.8	A	20.6	19.6	20.8	19.3
155.5	A＇	32.1	29.6	19.7	19.1
149.1	B	14.7	15.1	18.5	17.3
142.0	B＇	20.0	20.6	16.2	13.8
134.8	C	11.7	10.3	13.0	11.4
126.8	C＇	19.4	18.5	13.5	13.6
118.3	D	14.6	13.2	14.5	14.7
108.8	D＇	22.1	18.1	16.1	16.0
98.8	E	16.1	14.3	16.9	16.7
86.4	E＇	19.6	15.0	14.8	14.0
74.8	F	15.7	12.2	13.6	11.9
61.2	G	21.4	16.2	22.2	21.4
41.8	H	11.6	10.5	14.4	12.4
15.3	I	9.17	8． 34	9.17	8． 34

（g） S s－F 1 （直交方向）

$\begin{gathered} \hline \text { 高さ(m) } \\ \text { 0. P. } \end{gathered}$	位置	鉄塔部		筒身部	
		II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	25.5	27.1
161.8	A	20.4	20.8	20.3	21.1
155.5	A＇	34.0	32.7	19.0	20.2
149.1	B	15.0	16.0	18.4	18.3
142.0	B＇	20.6	21.1	16.3	16.0
134.8	C	12.3	11.0	13.2	12.7
126.8	C＇	21.3	20.8	12.9	13.8
118.3	D	13.6	15.8	15.0	14.1
108.8	D＇	21.6	22.5	15.7	16.7
98.8	E	16.8	15.7	16.7	17.5
86.4	E＇	17.7	20.5	13.2	16.1
74.8	F	15.9	15.2	13.1	14.4
61.2	G	24.3	19.2	20.2	22.1
41.8	H	11.7	11.8	15.7	10.3
15.3	I	9.17	9.17	9． 17	9.17

（h）S s－F 1 （斜め方向）

図 4－2（4）最大応答加速度（基準地震動 S s ）（4／7）

図 $4-2$（5）最大応答加速度（基準地震動 S s ）（5／7）

図 $4-2$（6）最大応答加速度（基準地震動 S s ）（6／7）

—— I 方向（EW断面）
0．P．（m）－－－－III方向（NS断面）

（m） S s－N 1 （直交方向）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	45.1	46.5
161.8	A	27.7	27.8	28.2	28.5
155.5	A^{\prime}	39.9	39.8	24.2	24.5
149.1	B	16.3	16.5	21.0	21.0
142.0	B＇	21.1	22.0	17．2	17.1
134.8	C	12.0	12.3	14.1	12.8
126.8	C＇	22.6	21.6	15.3	14.5
118.3	D	16.1	16.8	16.2	16.9
108.8	D＇	21.2	22.4	18.2	19.6
98.8	E	19.9	19.3	20.6	21.0
86.4	E＇	22.1	21.1	18.7	19.3
74.8	F	19.6	20.0	19.2	20.0
61.2	G	19.5	19.6	20.4	22.9
41.8	H	16.9	17.3	14.8	16.4
15.3	1	8.62	8.62	8.62	8.62

（n）S s－N 1 （斜め方向）

図 4－2（7）最大応答加速度（基準地震動 S s ）（7／7）

$$
\begin{array}{ll}
& \text { — I 方向 (Ew断面) } \\
\text { 0. P. (m) } & -\cdots-\cdots \text { III方向 (NS断面) }
\end{array}
$$

$\begin{gathered} \text { 高さ(m) } \\ \text { O. P. } \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	326	337
161.8	A	276	290	276	291
155.5	A＇	256	270	258	273
149.1	B	234	245	244	257
142.0	B＇	212	223	236	243
134.8	C	196	197	230	232
126.8	C＇	177	175	221	222
118.3	D	156	154	207	207
108.8	D＇	135	133	184	184
98.8	E	113	111	151	151
86.4	E＇	87.3	85.9	105	104
74.8	F	65.9	64.5	67.6	66.2
61.2	G	47.2	45.8	53.3	47.9
41.8	H	31.9	27.8	31.5	27.0
15.3	I	0.00	0． 00	0.00	0.00

（a）S s－D 1 （直交方向）

- — I 方向（EW断面）
- －－．．III方向（NS断面）
n）

（b） S s－D 1 （斜め方向）

図 4－3（1）最大応答変位（基準地震動 S s ）（1／7）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	239	229
161.8	A	231	215	232	215
155.5	A^{\prime}	216	201	229	210
149.1	B	198	185	223	203
142.0	B＇	182	170	212	191
134.8	C	163	152	196	176
126.8	C＇	149	134	174	163
118.3	D	140	117	162	153
108.8	D＇	128	107	148	137
98.8	E	112	92.9	127	115
86.4	E＇	88.5	73.8	93.0	76.3
74.8	F	67.9	56.5	68.6	57.1
61.2	G	47.0	40.2	54.3	44.5
41.8	H	29.1	26.4	28.2	24.5
15.3	I	0.00	0.00	0.00	0.00

（c） S s－D 2 （直交方向）

（e） S s－D 3 （直交方向）

$$
\begin{array}{ll}
& \text { — I 方向 (EW断面) } \\
\text { 0. P. (m) } & ---\cdot \text { III方向 (NS断面) }
\end{array}
$$

（m）

（g） S s－F 1 （直交方向）

（h）S s－F 1 （斜め方向）

図 4－3（4）最大応答変位（基準地震動 S s ）（4／7）

$$
\begin{array}{ll}
& \text { — I 方向 (EW断面) } \\
\text { 0. P. (m) } & ---\cdot \text { III方向 (NS断面) }
\end{array}
$$

$\begin{gathered} \text { 高さ (m) } \\ \text { 0. P. } \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	262	275
161.8	A	209	233	210	234
155.5	A＇	188	212	196	220
149.1	B	167	190	182	206
142.0	B＇	150	169	165	189
134.8	C	131	150	151	182
126.8	C＇	117	131	153	174
118.3	D	103	116	154	164
108.8	D＇	97.5	101	143	151
98.8	E	92.6	88.0	124	127
86.4	E＇	81.1	71.3	94.7	88.8
74.8	F	68.4	57.6	70.6	59.0
61.2	G	52.8	42.8	63.8	54.3
41.8	H	36.6	31.6	34.9	30.1
15.3	I	0.00	0． 00	0.00	0.00

（i）$\quad \mathrm{S}$ s－F 2 （直交方向）

（j）S s－F 2 （斜め方向）

図 4－3（5）最大応答変位（基準地震動 S s ）（5／7）

（k）S s－F 3 （直交方向）

（1）S s－F 3 （斜め方向）

図 4－3（6）最大応答変位（基準地震動 S s）（6／7）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	395	334
161.8	A	328	277	331	279
155.5	A＇	291	246	308	260
149.1	B	252	213	286	242
142.0	B＇	218	182	260	220
134.8	C	183	150	230	194
126.8	C＇	155	134	210	184
118.3	D	140	122	193	171
108.8	D＇	124	109	169	151
98.8	E	107	95.1	141	126
86.4	E＇	89.3	79.4	101	90.6
74.8	F	83.4	74.5	85.6	76.4
61.2	G	65.1	58.6	79.6	72.3
41.8	H	47.0	42.5	45.4	41.1
15.3	I	0.00	0.00	0.00	0.00

（m） S s－N 1 （直交方向）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		II 方向	IV方向	II 方向	IV 方向
174.8	TOP	－	－	393	397
161.8	A	328	329	329	332
155.5	A＇	295	297	307	308
149.1	B	252	253	285	287
142.0	B＇	220	219	260	260
134.8	C	184	183	231	229
126.8	C＇	161	159	213	208
118.3	D	138	141	196	190
108.8	D＇	123	125	171	167
98.8	E	106	108	141	141
86.4	E＇	91.1	90.8	99.1	102
74.8	F	82.9	84.4	84.2	86.9
61.2	G	66.7	66.8	77.3	81.8
41.8	H	47.2	46.8	43.5	47.2
15.3	I	0.00	0.00	0.00	0.00

（n）S s－N 1 （斜め方向）

図 4－3（7）最大応答変位（基準地震動 S s ）（7／7）
——I方向（EW⿰⿺𠃊⿻丷木斤斤斤面）

0．P．（m）

（kN）
——I 方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	192	198
155.5	A＇	A－A^{\prime}	132	138	471	485
149.1	B	$A^{\prime}-B^{\prime}$	962	848	650	669
142.0	B，	B $-B^{\prime}$	1030	894	834	857
134.8	C	B＇－C	2020	1960	1020	1050
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	2230	2050	1410	1440
118.3	D	C＇－D	3100	2830	1600	1630
108.8	D，	D－D＇	3200	2940	1790	1810
98.8	E	D＇－E	4030	3840	1970	1990
86.4	E＇	E－E＇	4150	4010	2130	2140
74.8	F	E＇－F	4400	4550	2300	2290
61.2	G	F－G	4340	4630	2450	2420
41.8	H	G－H	4820	4800	2590	2540
15.3	I	H－I	5750	5610	2700	2690

鉄塔部は主柱材の応答値を示す。
（a）S s－D 1 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	190	193
155.5	A^{\prime}	A－A＇	139	136	465	473
149.1	B	$A^{\prime}-{ }^{\text {b }}$	1290	1340	641	653
142.0	B＇	B－B＇	1360	1410	823	838
134.8	C	$\mathrm{B}^{\prime}-\mathrm{C}$	2710	2790	1010	1030
126.8	C＇	C $-{ }^{\text {c }}$	2910	3000	1390	1410
118.3	D	C＇－D	4190	4280	1580	1600
108.8	D	D－D＇	4290	4380	1760	1790
98.8	E	$D^{\prime}-\mathrm{E}$	5350	5440	1950	1980
86.4	E＇	E－E＇	5470	5560	2100	2140
74.8	F	$E^{\prime}-\mathrm{F}$	6060	6030	2270	2310
61.2	G	$F-\mathrm{G}$	6010	6010	2420	2460
41.8	H	G－H	6690	6580	2560	2610
15.3	I	H－I	7910	7770	2660	2710

鉄塔部は主柱材の応答値を示す。
（b） S s－D 1 （斜め方向）

図 4－4（1）最大応答軸力（基準地震動 S s）（1／7）

（c） S s－D 2 （直交方向）

$$
\begin{aligned}
& \text { ——II 方向 (EW断面) } \\
& \text {----•IV方向(EW断面) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (kN) }
\end{aligned}
$$

（kN）

（e） S s－D 3 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	148	151
155.5	A＇	A－A＇	99.3	110	362	370
149.1	B	$A^{\prime}-B^{\prime}$	694	634	500	511
142.0	B＇	B $-B^{\prime}$	752	714	641	655
134.8	C	B＇－C	1450	1370	785	800
126.8	C＇	C－C＇	1690	1630	1080	1100
118.3	D	C＇－D	2410	2320	1230	1260
108.8	D＇	D－D＇	2540	2460	1380	1410
98.8	E	D＇－E	3230	3230	1530	1570
86.4	E＇	$\mathrm{E}-\mathrm{E}^{\prime}$	3460	3450	1670	1730
74.8	F	E＇－F	4430	4470	1830	1910
61.2	G	F－G	4650	4660	1990	2080
41.8	H	$\mathrm{G}-\mathrm{H}$	4470	4470	2140	2240
15.3	I	H－I	5290	5030	2260	2370

鉄塔部は主柱材の応答値を示す。

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	137	153
155.5	A^{\prime}	A－A＇	105	104	336	373
149.1	B	$A^{\prime}-B^{\prime}$	931	960	463	515
142.0	B＇	B $-\mathrm{B}^{\prime}$	992	1030	593	661
134.8	C	B＇－C	1950	1970	725	809
126.8	C＇	C－C＇	2130	2160	996	1120
118.3	D	C＇－D	3070	3150	1130	1270
108.8	D＇	D－D＇	3210	3290	1270	1430
98.8	E	D＇－E	4080	4120	1410	1580
86.4	E＇	E－E＇	4320	4380	1550	1730
74.8	F	$E^{\prime}-\mathrm{F}$	5720	5720	1710	1880
61.2	G	F－G	5980	5940	1860	2040
41.8	H	G－H	6130	6100	2000	2200
15.3	I	H－I	7210	7160	2110	2340

鉄塔部は主柱材の応答値を示す。
（f）S s－D 3 （斜め方向）

図 4－4（3）最大応答軸力（基準地震動 S s）（3／7）

- —I方向（EW⿰⿺𠃊⿻丷木斤斤斤面）
- －－－－III方向（NS断面）

（kN）
——I 方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	105	94.7
155.5	A＇	A $-A^{\prime}$	67.5	66.6	257	232
149.1	B	$A^{\prime}-B^{\prime}$	857	784	355	319
142.0	B＇	B $-\mathrm{B}^{\prime}$	880	822	454	408
134.8	C	B＇－C	1830	1750	555	499
126.8	C＇	C－C＇	1900	1790	775	691
118.3	D	C＇－D	3050	2970	894	788
108.8	D＇	D－D＇	3080	2990	1020	895
98.8	E	D＇－E	4160	4100	1150	1010
86.4	E＇	E－E＇	4160	4110	1260	1120
74.8	F	$E^{\prime}-\mathrm{F}$	4810	4870	1380	1230
61.2	G	F－G	4850	4800	1490	1330
41.8	H	$\mathrm{G}-\mathrm{H}$	4320	4360	1590	1420
15.3	I	H－I	5050	5150	1700	1540

鉄塔部は主柱材の応答値を示す。
（g）S s－F 1 （直交方向）

（h）S s－F 1 （斜め方向）

図 4－4（4）最大応答軸力（基準地震動 S s）（4／7）

（i）S s－F 2 （直交方向）

$$
\begin{aligned}
& \text { ——II 方向(EW断面) } \\
& ---- \text { IV 方向 }(\text { EW断面) }
\end{aligned}
$$

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	132	159
155.5	A＇	A－A＇	80.0	78.8	324	390
149.1	B	$A^{\prime}-B^{\prime}$	1350	1440	448	540
142.0	B＇	B $-\mathrm{B}^{\prime}$	1380	1480	577	695
134.8	C	B＇－C	2740	2860	709	855
126.8	C＇	C－C＇	2860	2980	984	1190
118.3	D	C＇－D	3720	3680	1130	1360
108.8	D＇	D－D＇	3740	3680	1270	1530
98.8	E	D＇－E	4720	4680	1410	1710
86.4	E＇	E－E＇	4790	4750	1540	1870
74.8	F	$E^{\prime}-\mathrm{F}$	5230	5260	1680	2040
61.2	G	F－G	5270	5280	1820	2210
41.8	H	$\mathrm{G}-\mathrm{H}$	5010	4850	1970	2390
15.3	I	H－I	5930	5830	2130	2570

鉄塔部は主柱材の応答値を示す。
（j）S s－F 2 （斜め方向）
——I 方向（EW断面）
0．P．（m）－－－－III方向（NS断面）

鉄塔部は主柱材の応答値を示す。

図 4－4（5）最大応答軸力（基準地震動S s）（5／7）
——I方向（EW断面）

0．P．（m）

（kN）

——I方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

（k）S s－F 3 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	224	229
155.5	A＇	A－A	123	143	551	563
149.1	B	$A^{\prime}-B^{\prime}$	775	748	763	779
142.0	B＇	B $-B^{\prime}$	884	876	983	1010
134.8	C	$\mathrm{B}^{\prime}-\mathrm{C}$	1750	1800	1210	1240
126.8	C＇	C－C＇	2150	2260	1690	1710
118.3	D	C＇－D	2490	2620	1930	1950
108.8	D＇	D－D＇	2660	2830	2170	2200
98.8	E	$D^{\prime}-\mathrm{E}$	3150	3310	2420	2440
86.4	E＇	$E-E^{\prime}$	3400	3560	2630	2650
74.8	F	$E^{\prime}-\mathrm{F}$	2880	3350	2860	2900
61.2	G	$F-\mathrm{G}$	3130	3670	3080	3120
41.8	H	G－H	2940	3170	3350	3370
15.3	1	H－I	3480	3720	3620	3640

鉄塔部は主柱材の応答値を示す。

高さ（m） $0 . \mathrm{P}$ ．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	201	234
155.5	A＇	A $-\mathrm{A}^{\prime}$	125	126	494	575
149.1	B	$A^{\prime}-B^{\prime}$	999	1040	684	796
142.0	B＇	B $-\mathrm{B}^{\prime}$	1100	1150	880	1030
134.8	C	B＇－C	2210	2250	1090	1270
126.8	C＇	C－C＇	2610	2650	1510	1760
118.3	D	C＇－D	3070	3110	1720	2010
108.8	D＇	D－D＇	3270	3330	1940	2270
98.8	E	D＇－E	3790	3830	2150	2520
86.4	E＇	E－E＇	4050	4120	2340	2750
74.8	F	$E^{\prime}-\mathrm{F}$	3400	3460	2540	2990
61.2	G	F－G	3680	3740	2730	3230
41.8	H	G－H	3370	3300	2990	3510
15.3	I	H－I	4040	3960	3250	3780

鉄塔部は主柱材の応答値を示す。
（1）S s－F 3 （斜め方向）

図 4－4（6）最大応答軸力（基準地震動 S s）（6／7）

（kN）
——I 方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	92.3	106
155.5	A＇	A－A ${ }^{\text {，}}$	72.6	77.2	227	261
149.1	B	$A^{\prime}-B^{\prime}$	1340	1150	314	360
142.0	B，	B $-\mathrm{B}^{\prime}$	1400	1200	403	462
134.8	C	B＇－C	3010	2570	493	566
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	3220	2740	678	778
118.3	D	C＇－D	4390	3700	769	883
108.8	D，	D－D＇	4460	3770	860	986
98.8	E	D＇－E	5510	4780	946	1090
86.4	E＇	E－E＇	5580	4900	1030	1170
74.8	F	$E^{\prime}-\mathrm{F}$	5670	4970	1110	1260
61.2	G	F－G	5790	5150	1190	1330
41.8	H	G－H	4180	3690	1270	1410
15.3	I	H－I	4740	4260	1320	1500

鉄塔部は主柱材の応答値を示す。
（m）S s－N 1（直交方向）

（n）S s－N 1 （斜め方向）

図 4－4（7）最大応答軸力（基準地震動 S s）（7／7）
 O 2 （3）VI－2－7－2－1
——II方向（EW断面）
－－－－－IV方向（EW断面）

—— I 方向（EW断面）
－－－－III方向（NS断面）
0. P. (m) ----III方向 (NS断面)
（a）S s－D 1 （直交方向）
（b）S s－D 1 （斜め方向）

図 4－5（1）最大応答曲げモーメント（基準地震動S s）（1／7）

図 4－5（2）最大応答曲げモーメント（基準地震動S s）（2／7）

——II方向（EW断面）

0．P．（m）

0．P．（m）I 方向（EW断面） $-\cdots$－－III方向（NS断面）

（e）S s－D 3 （直交方向）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	2.0	1.6	2350	1870
155.5	$\mathrm{A}^{\text {，}}$	41.5	38.7	1980	1530
149.1	B	23.6	20.9	2570	2170
142.0	B，	68.2	65.6	2790	2800
134.8	C	103	101	3210	3160
126.8	C，	160	158	2570	2450
118.3	D	137	132	3290	3130
108.8	D＇	180	188	3590	3350
98.8	E	240	240	2940	2850
86.4	E＇	299	304	2090	1810
74.8	F	358	355	3700	3610
61.2	G	173	163	2750	2390
41.8	H	138	121	1420	1160
15.3	1	1140	1080	3430	3250

鉄塔部は主柱材の応答値を示す。

高さ（m） $0 . \mathrm{P}$ ．	位置	鉄塔部		筒身部	
		II 方向	IV方向	II 方向	IV方向
174.8	TOP	－	－	0.0	0.0
161.8	A	2.4	2.1	2180	2500
155.5	A^{\prime}	44.7	41.8	1860	2080
149.1	B	25.8	27.8	2420	2700
142.0	B＇	70.2	70.6	2700	2860
134.8	C	116	123	3070	3340
126.8	C＇	175	175	2530	2580
118.3	D	171	171	3280	3290
108.8	D＇	191	195	3480	3670
98.8	E	289	292	2790	3070
86.4	E＇	324	330	2000	2150
74.8	F	435	440	3610	3790
61.2	G	176	163	2680	2820
41.8	H	138	131	1320	1360
15.3	I	1140	1160	3330	3690

鉄塔部は主柱材の応答値を示す。
（f） S s－D 3 （斜め方向）

図 4－5（3）最大応答曲げモーメント（基準地震動S s）（3／7）

図 4－5（4）最大応答曲げモーメント（基準地震動 S s ）（4／7）

図 4－5（5）最大応答曲げモーメント（基準地震動S s）（5／7）

$$
\begin{array}{ll}
\text { I 方向 (EW断面) } & \text { — I 方向 (EW断面) } \\
\cdots--- \text { III方向 (NS断面) } & \text { 0. P. (m) } \\
\cdots--\cdot \text { III方向 (NS断面) }
\end{array}
$$

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	2.0	1.7	2560	2430
155.5	A＇	48.9	52.4	2200	1970
149.1	B	31.7	31.9	2470	2470
142.0	B＇	93.2	94.0	2500	2550
134.8	C	125	118	2200	2230
126.8	C，	225	213	1920	1830
118.3	D	152	143	2310	2510
108.8	D＇	231	242	3380	3040
98.8	E	311	293	3300	3130
86.4	E＇	268	292	2100	1860
74.8	F	348	356	3020	2620
61.2	G	178	178	3370	2890
41.8	H	139	134	1490	1230
15.3	I	1390	1330	4060	3920

鉄塔部は主柱材の応答値を示す。
（k）S s－F 3 （直交方向）

（1）S s－F 3 （斜め方向）

図 4－5（6）最大応答曲げモーメント（基準地震動S s）（6／7）

——II方向（EW断面）
——方向（EW断面）
--- III方向（NS断面）

0．P．（m）I 方向（EW断面） $-\cdots$－－III方向（NS断面）

（m）S s－N 1（直交方向）

高さ（m） $0 . \mathrm{P}$ ．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	3.1	2.6	3740	3210
155.5	A＇	52.2	45.6	2170	1840
149.1	B	38.3	34.7	2640	2320
142.0	B＇	66.4	67.6	3180	2670
134.8	C	148	125	3380	2960
126.8	C，	242	218	3010	2530
118.3	D	208	187	3530	2920
108.8	D＇	182	167	4630	3900
98.8	E	399	358	4110	3670
86.4	E＇	438	392	2730	2500
74.8	F	491	443	4290	3470
61.2	G	167	151	3020	2890
41.8	H	109	93.6	1560	1450
15.3	I	1990	1790	6290	5660

鉄塔部は主柱材の応答値を示す。

高さ（m） $0 . \mathrm{P}$ ．	位置	鉄塔部		筒身部	
		II 方向	IV方向	II 方向	IV方向
174.8	TOP	－	－	0.0	0.0
161.8	A	4.3	3.3	3680	3790
155.5	A^{\prime}	54.9	55.6	2180	2150
149.1	B	47.4	49.6	2620	2650
142.0	B＇	73.7	74.9	3140	3210
134.8	C	183	189	3300	3440
126.8	C＇	269	277	2960	3040
118.3	D	281	285	3510	3560
108.8	D＇	210	214	4580	4670
98.8	E	500	513	4080	4140
86.4	E＇	504	530	2610	2860
74.8	F	634	659	4230	4390
61.2	G	179	184	2900	3130
41.8	H	120	114	1600	1470
15.3	I	2090	2100	5970	6580

鉄塔部は主柱材の応答値を示す。
（n）S s－N 1 （斜め方向）

図 4－5（7）最大応答曲げモーメント（基準地震動 S s ）
—— I 方向（EW断面）
．－．－．III方向（NS断面）

0．P．（m）

—— I 方向（EW断面）

$$
\text { 0. P. (m) } \quad \text {---- III方向 (NS断面) }
$$

$\begin{gathered} \text { 高さ(m) } \\ \text { 0. P. } \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	19.2	15.9
161.8	A	11.1	11.8	11.6	12.1
155.5	A＇	22.4	20.6	11.1	11.2
149.1	B	8． 79	8． 08	10.5	12.0
142.0	B＇	16.5	16.6	8.90	9.30
134.8	C	7.74	7.48	7.27	7.47
126.8	C＇	19.1	17.9	7.57	7.21
118.3	D	10.4	9.67	8.69	9.12
108.8	D＇	15.5	13.9	10.2	10.5
98.8	E	11.6	9.13	11.5	10.9
86.4	E＇	12.8	11.4	10.3	10.6
74.8	F	11.1	9.27	10.0	8.36
61.2	G	14.5	13.0	13.8	12.9
41.8	H	8． 83	7.30	8.98	7.45
15.3	I	6.90	5． 70	6． 90	5.70

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1$（直交方向）
—— II 方向（EW断面）

$\begin{gathered} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{gathered}$	位置	鉄塔部		筒身部	
		II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	18.2	20.0
161.8	A	11.0	11.4	11.3	11.8
155.5	A＇	21.2	21.5	10.8	11.6
149.1	B	9.42	8.48	10.1	11.1
142.0	B＇	17.1	16.7	8.93	9.03
134.8	C	7.70	7.68	7.62	7.30
126.8	C＇	19.4	18.8	8． 10	7.25
118.3	D	10.3	11.0	8.32	8.86
108.8	D＇	15.9	15.1	9.71	10.5
98.8	E	12.7	10.8	11.4	11.5
86.4	E＇	12.4	11.6	9.82	11.0
74.8	F	11.0	11.0	10.4	10.4
61.2	G	14.5	14.0	13.0	14.9
41.8	H	9.12	8.78	9.73	8． 29
15.3	I	6． 90	6． 90	6． 90	6． 90

（b） S d－D 1 （斜め方向）

図 4－6（1）最大応答加速度（弾性設計用地震動 S d）（1／7）

図 4－6（2）最大応答加速度（弾性設計用地震動 S d）（2／7）

図 4－6（3）最大応答加速度（弾性設計用地震動 S d ）（3／7）

図 4－6（4）最大応答加速度（弾性設計用地震動 S d）（4／7）

図 4－6（5）最大応答加速度（弾性設計用地震動 S d）（5／7）

図 $4-6$（6）最大応答加速度（弾性設計用地震動 S d）（6／7）

（m） S d－N 1 （直交方向）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	22.0	22.6
161.8	A	13.9	14.0	14.2	14.3
155.5	A^{\prime}	20.0	20.1	12.1	12.2
149.1	B	8.15	8.25	10.5	10.6
142.0	B，	10.9	11.1	8.78	8.57
134.8	C	5.98	6.02	7.28	6.59
126.8	C＇	11.3	10.8	7.83	7.62
118.3	D	8.18	8.20	8.32	8.56
108.8	D＇	10.7	11.2	8.81	9.51
98.8	E	10.1	9.72	10.1	10.3
86.4	E＇	10.9	10.5	9.28	9.53
74.8	F	9.67	9.85	9． 48	9.93
61.2	G	9． 72	9.74	10.4	11.6
41.8	H	8.25	8.49	7.05	7.97
15.3	I	4． 40	4． 40	4． 40	4． 40

（n）$\quad \mathrm{S}$ d－N 1 （斜め方向）

図 4－6（7）最大応答加速度（弾性設計用地震動 S d）（7／7）

図 4－7（1）最大応答変位（弾性設計用地震動S d）（1／7）

図 4－7（2）最大応答変位（弾性設計用地震動 S d）（2／7）

図 $4-7$（3）最大応答変位（弾性設計用地震動 S d）（3／7）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	156	160
161.8	A	136	139	137	139
155.5	A＇	126	126	131	132
149.1	B	115	113	125	124
142.0	B＇	105	102	118	115
134.8	C	92.9	90.8	109	104
126.8	C＇	80.2	78.9	97.3	94.8
118.3	D	65.5	65.2	90.3	84.5
108.8	D＇	59.4	53.3	85.7	77.0
98.8	E	52.9	46.5	73.6	66.3
86.4	E＇	44.4	38.8	52.9	47.6
74.8	F	36.3	31.8	37.2	32.7
61.2	G	26.4	23.5	28.4	26.0
41.8	H	15.5	14.3	14.8	13.7
15.3	I	0.00	0.00	0.00	0.00

（g）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 1$（直交方向）

$\begin{gathered} \text { 高さ(m) } \\ \text { 0. P. } \end{gathered}$	位置	鉄塔部		筒身部	
		II 方向	IV方向	II方向	IV 方向
174.8	TOP	－	－	156	156
161.8	A	137	136	137	136
155.5	A^{\prime}	128	127	132	130
149.1	B	116	115	127	124
142.0	B＇	106	104	119	117
134.8	C	93.8	92.3	111	107
126.8	C＇	82.5	81.2	98.9	95.7
118.3	D	66.1	65.0	91.4	89.2
108.8	D＇	60.1	59.5	86.3	85.0
98.8	E	53.4	52.5	73.8	73.4
86.4	E＇	45.3	44.7	52.8	52.9
74.8	F	36.2	36.7	36.6	37.7
61.2	G	28.1	27.0	27.8	29.0
41.8	H	15.8	15.4	14.4	15.0
15.3	I	0.00	0.00	0.00	0.00

（h）S d－F 1 （斜め方向）

図 4－7（4）最大応答変位（弾性設計用地震動 S d）（4／7）

図 4－7（5）最大応答変位（弾性設計用地震動 S d）（5／7）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{－＿I 方向（EW断面）} \& \multirow[b]{2}{*}{0．P．（m）} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{—— I 方向（EW断面）
－－－－• III方向（NS断面）}} \& \& \& 位置 \& \& \& \&

\hline \multirow[b]{2}{*}{0．P．（m）} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{－－－－• III方向（NS断面）

鉄塔部}} \& \& \& \& \& \& 0．P． \& \& I 方向 \& III方向 \& I 方向 \& III方向

\hline \& \& \& \& \& \multicolumn{4}{|r|}{筒身部} \& 174.8 \& TOP \& － \& － \& 67.7 \& 61.7

\hline \multirow[t]{2}{*}{161.8} \& \& \& \& 174.8 \& \& \& \& \& 161.8 \& A \& 50.8 \& 47.4 \& 51.3 \& 47.8

\hline \& \& \& \& 161.8
155.5 \& \& \& \& \& 155.5 \& A＇ \& 44.8 \& 42.5 \& 46.1 \& 43.6

\hline 149.1 \& \& \& \& $$
149.1
$$ \& \& \& \& \& 149.1 \& B \& 36.1 \& 34.6 \& 42.3 \& 40.4

\hline 142.0 \& \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 142.0 \\
& 134.8
\end{aligned}
$$} \& \& \& \& \& 142.0 \& B＇ \& 30.4 \& 31.0 \& 39.0 \& 37.4

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 134.8 \\
& 126.8
\end{aligned}
$$} \& \& \& \& \& \& \& \& \& 134.8 \& C \& 29.2 \& 30.5 \& 35.6 \& 34.6

\hline \& \& \& \& 126.8 \& \& \& \& \& 126.8 \& C＇ \& 29.0 \& 30.6 \& 34.6 \& 31.4

\hline 118.3 \& \& \& \& 118.3 \& \& \& \& \& 118.3 \& D \& 28.0 \& 29.5 \& 34.6 \& 30.7

\hline 108.8 \& \& \& \& 108.8 \& \& \& \& \& 108.8 \& D＇ \& 26.8 \& 28.0 \& 33.8 \& 29.0

\hline 98.8 \& \& \& \& 98.8 \& \& \& \& \& 98.8 \& E \& 26.0 \& 23.9 \& 35.3 \& 29.1

\hline 86.4 \& \& \& \& 86.4 \& \& \& \& \& 86.4 \& E＇ \& 24.7 \& 20.2 \& 29.0 \& 24.2

\hline 74.8 \& \& \& \& 74.8 \& \& \& \& \& 74.8 \& F \& 23.3 \& 18.8 \& 23.7 \& 19.3

\hline 61.2 \& \& \& \& 61.2 \& \& \& \& \& 61.2 \& G \& 18.3 \& 16.0 \& 23.3 \& 19.6

\hline 41.8 \& \& \& \& 41.8 \& \& \& \& \& 41.8 \& H \& 14.2 \& 13.2 \& 13.5 \& 12.0

\hline 15． 3 \& \& \& \& 15． 3 \& \& \& \& \& 15.3 \& I \& 0.00 \& 0.00 \& 0.00 \& 0.00

\hline 0 \& 200 \& 400 \& $$
\begin{gathered}
600 \\
(\mathrm{~mm})
\end{gathered}
$$ \& 0 \& \& 200 \& 400 \& \[

$$
\begin{gathered}
600 \\
(\mathrm{~mm})
\end{gathered}
$$
\] \& \& \& \& \& \&

\hline
\end{tabular}

（k）S d－F 3 （直交方向）

（m）S d－N 1（直交方向）

（n）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1$（斜め方向）

図 4－7（7）最大応答変位（弾性設計用地震動 S d）（7／7）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1$（直交方向）

－II 方向（EW断面） --- －IV方向 $(E W$ W断面）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	109	111
155.5	A^{\prime}	A $-A^{\prime}$	82.1	80.4	266	271
149.1	B	$A^{\prime}-B^{\prime}$	704	728	368	374
142.0	B＇	B $-\mathrm{B}^{\prime}$	744	768	473	480
134.8	C	B＇－C	1480	1530	579	588
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	1600	1650	798	810
118.3	D	C＇－D	2300	2350	906	920
108.8	D＇	D－D＇	2360	2410	1020	1030
98.8	E	D＇－E	3090	3060	1120	1140
86.4	E＇	$\mathrm{E}-\mathrm{E}^{\prime}$	3090	3080	1210	1230
74.8	F	$E^{\prime}-\mathrm{F}$	3880	3870	1310	1330
61.2	G	F－G	3850	3860	1390	1410
41.8	H	G－H	4020	3980	1470	1500
15.3	I	H－I	4600	4530	1530	1560

鉄塔部は主柱材の応答値を示す。

0．P．（m）－－－－－III方向（NS断面）

鉄塔部は主柱材の応答値を示す。
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1$（斜め方向）
図 4－8（1）最大応答軸力（弾性設計用地震動 S d）（ $1 / 7$ ）

- —I方向（EW⿰⿺𠃊⿻丷木斤斤斤面）
- －－－－III方向（NS断面）

（kN）
——I 方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	102	102
155.5	A＇	A－A ${ }^{\text {，}}$	73.2	70.4	251	251
149.1	B	$A^{\prime}-B^{\prime}$	505	474	348	346
142.0	B，	B $-\mathrm{B}^{\prime}$	557	487	450	444
134.8	C	B＇－C	1150	1010	555	542
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	1300	1160	777	744
118.3	D	C＇－D	1790	1510	889	841
108.8	D，	D－D＇	1850	1570	1010	945
98.8	E	D＇－E	2230	1870	1120	1060
86.4	E＇	E－E＇	2270	1950	1210	1160
74.8	F	$E^{\prime}-\mathrm{F}$	2180	2110	1320	1270
61.2	G	F－G	2190	2270	1410	1390
41.8	H	G－H	2410	2320	1520	1530
15.3	I	H－I	2830	2800	1660	1650

鉄塔部は主柱材の応答値を示す。
（c） S d－D 2 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	97.4	104
155.5	A＇	A－A＇	74.1	72.8	240	256
149.1	B	$A^{\prime}-{ }^{\text {b }}$	692	708	332	355
142.0	B＇	B－B＇	748	746	428	459
134.8	C	B＇－C	1540	1530	529	566
126.8	C＇	C－C＇	1700	1700	741	792
118.3	D	C＇－D	2400	2400	848	905
108.8	D＇	D－D＇	2460	2470	957	1020
98.8	E	D＇－E	2990	2970	1070	1140
86.4	E＇	E－E＇	3030	3020	1160	1240
74.8	F	$E^{\prime}-\mathrm{F}$	2920	2880	1260	1340
61.2	G	F－G	2960	2960	1360	1430
41.8	H	$\mathrm{G}-\mathrm{H}$	3310	3300	1470	1540
15.3	I	H－I	3760	3800	1590	1690

鉄塔部は主柱材の応答値を示す。
（d）S d－D 2 （斜め方向）

図 4－8（2）最大応答軸力（弾性設計用地震動S d）（2／7）

（e）$\quad \mathrm{S}$ d－D 3 （直交方向）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	86.1	88.9
155.5	A＇	A－A ${ }^{\text {，}}$	53.6	59.3	212	218
149.1	B	$A^{\prime}-B^{\prime}$	414	419	292	301
142.0	B，	B $-\mathrm{B}^{\prime}$	447	460	375	386
134.8	C	$\mathrm{B}^{\prime}-\mathrm{C}$	857	896	458	473
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	968	995	631	649
118.3	D	C＇－D	1370	1340	716	740
108.8	D，	D－D ${ }^{\prime}$	1450	1370	803	832
98.8	E	D＇－E	1860	1930	889	923
86.4	E＇	E－E＇	1990	2060	965	1020
74.8	F	$E^{\prime}-\mathrm{F}$	2540	2680	1070	1120
61.2	G	F－G	2670	2790	1160	1220
41.8	H	G－H	2510	2740	1250	1310
15.3	I	H－I	2910	3000	1330	1380

鉄塔部は主柱材の応答値を示す。

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	79.5	88.8
155.5	A^{\prime}	A $-A^{\prime}$	57.0	56.2	195	218
149.1	B	$A^{\prime}-B^{\prime}$	554	573	269	301
142.0	B＇	B $-{ }^{\prime}$	589	609	345	387
134.8	C	B＇－C	1160	1170	422	473
126.8	C＇	C－C＇	1260	1280	580	652
118.3	D	C＇－D	1740	1780	658	741
108.8	D＇	D－D＇	1820	1870	737	831
98.8	E	D＇－E	2330	2370	814	920
86.4	E＇	E－E＇	2480	2510	895	999
74.8	F	$E^{\prime}-\mathrm{F}$	3280	3280	989	1100
61.2	G	F－G	3420	3400	1080	1190
41.8	H	$\mathrm{G}-\mathrm{H}$	3360	3350	1170	1290
15.3	I	H－I	3970	3940	1230	1360

鉄塔部は主柱材の応答値を示す。
（f）\quad S d－D 3 （斜め方向）

図 4－8（3）最大応答軸力（弾性設計用地震動 S d）（3／7）

- —I方向（EW⿰⿺𠃊⿻丷木斤斤斤面）
- －－－－III方向（NS断面）

0．P．（m）

（kN）
——I 方向（EW断面）
0．P．（m）－－－－－III方向（NS断面）

（kN）
（g） S d－F 1 （直交方向）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	53.0	45.0
155.5	A＇	A－A ${ }^{\text {，}}$	33.6	33.1	130	110
149.1	B	$A^{\prime}-B^{\prime}$	413	402	180	152
142.0	B，	B $-\mathrm{B}^{\prime}$	428	421	230	194
134.8	C	B＇－C	881	872	282	236
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	900	871	395	327
118.3	D	C＇－D	1370	1430	454	373
108.8	D，	D－D ${ }^{\prime}$	1390	1440	517	421
98.8	E	D＇－E	1870	1920	580	469
86.4	E＇	E－E＇	1860	1920	637	513
74.8	F	$E^{\prime}-\mathrm{F}$	2290	2260	697	564
61.2	G	F－G	2310	2210	752	610
41.8	H	G－H	2050	2000	803	663
15.3	I	H－I	2370	2150	861	717

鉄塔部は主柱材の応答値を示す。

$\begin{gathered} \text { 高さ }(\mathrm{m}) \\ 0 . \mathrm{P} . \end{gathered}$	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	47.0	55.7
155.5	A＇	A－A＇	35.9	35.4	116	137
149.1	B	$A^{\prime}-B^{\prime}$	561	571	161	189
142.0	B＇	B－B＇	563	576	208	242
134.8	C	B＇－C	1210	1230	256	296
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	1240	1250	357	413
118.3	D	C＇－D	1870	1880	409	475
108.8	D＇	D－D＇	1880	1900	461	540
98.8	E	D＇－E	2540	2550	516	606
86.4	E＇	E－E＇	2540	2550	566	666
74.8	F	$E^{\prime}-\mathrm{F}$	3200	3160	620	730
61.2	G	F－G	3220	3170	668	787
41.8	H	G －H	2860	2830	712	841
15.3	I	H－I	3290	3260	762	902

鉄塔部は主柱材の応答値を示す。
（h）\quad S d－F 1 （斜め方向）

図 4－8（4）最大応答軸力（弾性設計用地震動 S d）（4／7）

（i） S d－F 2 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	69.0	82.7
155.5	A^{\prime}	A－A＇	40.7	40.0	170	204
149.1	B	$A^{\prime}-\mathrm{B}$	648	690	235	282
142.0	B＇	B－B＇	665	706	303	364
134.8	C	B＇－C	1300	1360	372	447
126.8	C＇	C－C＇	1360	1420	517	621
118.3	D	C＇－D	1910	1900	589	708
108.8	D＇	D－D＇	1910	1880	663	798
98.8	E	D＇－E	2390	2370	737	887
86.4	E’	E－E＇	2390	2370	804	968
74.8	F	$E^{\prime}-\mathrm{F}$	2530	2550	878	1060
61.2	G	F－G	2510	2540	950	1150
41.8	H	$\mathrm{G}-\mathrm{H}$	2640	2610	1030	1250
15.3	I	H－I	3140	3090	1110	1340

鉄塔部は主柱材の応答値を示す。
（j）S d－F 2（斜め方向）

図 4－8（5）最大応答軸力（弾性設計用地震動 S d）（5／7）

$\begin{array}{\|c} \hline \text { 高さ (m) } \\ 0 . \mathrm{P} . \end{array}$	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	112	116
155.5	A＇	A－A ${ }^{\text {，}}$	63.5	75.8	276	285
149.1	B	$A^{\prime}-B^{\prime}$	364	371	383	394
142.0	B，	B $-\mathrm{B}^{\prime}$	433	459	493	508
134.8	C	B＇－C	859	864	606	626
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	1060	1110	843	871
118.3	D	C＇－D	1230	1190	962	994
108.8	D，	D－D＇	1320	1300	1090	1120
98.8	E	D＇－E	1550	1550	1210	1250
86.4	E＇	E－E＇	1650	1700	1320	1360
74.8	F	$E^{\prime}-\mathrm{F}$	1380	1450	1430	1490
61.2	G	F－G	1470	1600	1540	1610
41.8	H	G－H	1290	1330	1680	1730
15.3	I	H－I	1580	1520	1810	1880

鉄塔部は主柱材の応答値を示す。
（k） S d－F 3 （直交方向）

—— II 方向（EW断面）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	101	117
155.5	A＇	A－A＇	65.0	65.3	249	288
149.1	B	$A^{\prime}-B^{\prime}$	476	494	344	399
142.0	B＇	B $-\mathrm{B}^{\prime}$	549	549	443	514
134.8	C	B＇－C	1080	1100	545	632
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	1270	1300	756	879
118.3	D	C＇－D	1520	1540	864	1010
108.8	D＇	D－D＇	1600	1620	975	1140
98.8	E	D＇－E	1860	1880	1090	1260
86.4	E＇	E－E＇	1960	1990	1180	1380
74.8	F	$E^{\prime}-\mathrm{F}$	1600	1600	1280	1500
61.2	G	F－G	1710	1740	1370	1600
41.8	H	G－H	1430	1450	1500	1750
15.3	I	H－I	1850	1850	1630	1890

鉄塔部は主柱材の応答値を示す。
（1）S d－F 3 （斜め方向）

図 4－8（6）最大応答軸力（弾性設計用地震動S d）（6／7）

（m）$\quad \mathrm{S}$ d -N 1 （直交方向）

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV 方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	48.1	49.2
155.5	A^{\prime}	A－A＇	39.1	39.3	119	121
149.1	B	$A^{\prime}-\mathrm{B}$	914	938	164	167
142.0	B＇	B－B＇	945	969	210	215
134.8	C	B＇－C	2040	2070	257	263
126.8	C＇	C－C＇	2150	2190	353	361
118.3	D	C＇－D	3030	3060	400	409
108.8	D＇	D－D＇	3070	3100	445	456
98.8	E	D＇－E	3810	3840	489	500
86.4	E＇	E－E＇	3850	3880	526	538
74.8	F	E^{\prime}－F	4010	4030	564	581
61.2	G	F－G	4070	4090	596	621
41.8	H	$\mathrm{G}-\mathrm{H}$	3090	3130	627	657
15.3	I	H－I	3490	3560	652	681

鉄塔部は主柱材の応答値を示す。
（n）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1$（斜め方向）
図 4－8（7）最大応答軸力（弾性設計用地震動 $\mathrm{S} d$ ）（7／7）
 O 2 （3）VI－2－7－2－1

0．P．（m）
——方向（EW断面）
--- III方向（NS断面） 0．P．（m）

0．P．（m）I 方向（EW断面） $-\cdots--$ III方向（NS断面）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1$（直交方向）

高さ（m） $0 . \mathrm{P}$ ．	位置	鉄塔部		筒身部	
		II 方向	IV方向	II 方向	IV方向
174.8	TOP	－	－	0.0	0.0
161.8	A	1.9	1.7	1500	1640
155.5	A＇	31.8	31.4	1540	1570
149.1	B	19.8	20.6	1580	1570
142.0	B＇	55.1	54.1	1670	1680
134.8	C	85.2	90.1	2010	2140
126.8	C＇	126	124	1570	1560
118.3	D	110	110	1830	1820
108.8	D＇	146	150	2090	2140
98.8	E	200	201	1960	2050
86.4	E＇	216	215	1050	1200
74.8	F	269	299	2250	2320
61.2	G	112	114	1800	2110
41.8	H	81.5	82.7	775	876
15.3	I	855	838	2510	2610

鉄塔部は主柱材の応答値を示す。
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 1$（斜め方向）

図 4－9（1）最大応答曲げモーメント（弾性設計用地震動 S d）（1／7）

図 4－9（2）最大応答曲げモーメント（弾性設計用地震動 S d）（2／7）

——II方向（EW断面）
－－－－－IV方向（EW断面）
——方向（EW断面）
--- III方向（NS断面）

0．P．（m）\quad I 方向（EW断面） $-\cdots$ II方向（NS断面）

（e） S d－D 3 （直交方向）

高さ（m） $0 . \mathrm{P}$ ．	位置	鉄塔部		筒身部	
		II 方向	IV方向	II 方向	IV方向
174.8	TOP	－	－	0.0	0.0
161.8	A	1.5	1.3	1240	1360
155.5	A＇	24.7	23.1	1080	1200
149.1	B	15.2	16.2	1380	1530
142.0	B＇	40.5	40.8	1500	1590
134.8	C	66.4	69.9	1690	1840
126.8	C＇	99.4	103	1400	1430
118.3	D	101	101	1840	1860
108.8	D＇	109	111	1940	2040
98.8	E	151	153	1560	1720
86.4	E＇	184	187	1100	1190
74.8	F	249	250	2020	2140
61.2	G	96.3	97.3	1500	1590
41.8	H	77.3	73.3	762	763
15.3	I	677	637	1820	2040

鉄塔部は主柱材の応答値を示す。
（f）$\quad \mathrm{S}$ d－D 3 （斜め方向）

図 4－9（3）最大応答曲げモーメント（弾性設計用地震動 S d）（3／7）

$\begin{array}{ll} & \text {－I 方向（EW断面）} \\ \text { 0．P．（m）} & -\cdots \text { III方向（NS断面）}\end{array}$

（g） S d -F 1 （直交方向）

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	1.1	1.0	1060	1120
155.5	A＇	19.5	17.8	927	723
149.1	B	12.7	12.8	1070	928
142.0	B＇	26.0	22.4	1450	1290
134.8	C	49.8	44.1	1660	1470
126.8	C＇	83.0	76.5	1380	1270
118.3	D	73.8	71.4	1500	1480
108.8	D＇	77.9	69.5	1730	1630
98.8	E	136	133	1470	1350
86.4	E＇	178	175	1000	877
74.8	F	186	189	1970	1870
61.2	G	86.4	74.9	1560	1240
41.8	H	61.6	50.9	777	731
15.3	I	621	571	2050	1880

鉄塔部は主柱材の応答値を示す。

（j）S d－F2（斜め方向）

図 4－9（5）最大応答曲げモーメント（弾性設計用地震動 S d）（5／7）

——I方向（EW断面） 0．P．（m）－－－－III方向（NS断面）

$\begin{gathered} \hline \text { 高さ (m) } \\ \text { O. P. } \\ \hline \end{gathered}$	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	1.0	0.8	1310	1150
155.5	A^{\prime}	24.2	26.0	1150	989
149.1	B	15.3	16.4	1190	1170
142.0	B＇	47.3	49.4	1170	1060
134.8	C	61.4	56.8	1060	911
126.8	C＇	114	110	881	761
118.3	D	75.2	71.9	1100	1150
108.8	D＇	116	124	1600	1400
98.8	E	153	154	1630	1470
86.4	E＇	126	136	1020	929
74.8	F	179	169	1360	1080
61.2	G	84.4	85.8	1620	1370
41.8	H	68.2	62.0	740	604
15.3	I	689	646	2000	1840

（k） S d - F 3 （直交方向）

（1） $\mathrm{S} \mathrm{d}-\mathrm{F} 3$（斜め方向）

図 4－9（6）最大応答曲げモーメント（弾性設計用地震動S d）（6／7）
 O 2 （3）VI－2－7－2－1

0．P．（m）

> ——方向(EW断面)
> $\cdots--$ III方向 (NS断面)
0．P．（m）

0．P．（m）I 方向（EW断面） $-\cdots$－－III方向（NS断面）

（m）$\quad \mathrm{S}$ d -N 1 （直交方向）

（n）S d－N 1（斜め方向）

図 4－9（7）最大応答曲げモーメント（弾性設計用地震動 S d）（7／7）

表 4－2 制震装置（制震オイルダンパ）の最大応答値（基準地震動 S s ）

	最大応答速度 $(\mathrm{m} / \mathrm{s})$	最大応答変位 (mm)
S s－D 1	0.89	77
S s－D 2	0.90	71
S s－D 3	0.55	74
S s－F 1	0.57	77
S s－F 2	0.76	64
S s－F 3	0.71	38
S s－N 1	0.86	62

4． 2 静的解析

静的地震力に対する応答について，排気筒の直交方向加振の I 方向加振と III 方向加振の解析結果を，また，排気筒の斜め方向加振のII方向加振とIV方向加振の解析結果 を示す。

「3．3 解析方法」による解析方法で算出した算定結果を表 $4-3$ に，最大応答値及 び高さ方向の分布を図4－10～図4－12に示す。

表 4－3 静的地震力の算定結果

位置	標高 0．P． （m）	高さ方向の分布係数 A_{i}	地震層せん断力係数 C i	層せん断力 分布 Q_{i} （kN）
TOP	174.8	4． 109	0.658	242.9
A	161.8	3.175	0.508	
A＇	155.5	2.922	0． 468	679.4
B	149.1	2． 637	0． 422	953.6
				1245.5
B＇	142.0	2． 406	0.385	
C	134.8	1． 919	0． 308	1495.8
				2045.0
C＇	126.8	1． 779	0.285	2265.0
D	118.3	1． 602	0． 257	
D＇	108.8	1． 458	0． 234	2469.3
				2662.5
E	98.8	1． 324	0.212	
E＇	86.4	1． 260	0． 202	2959.0
				3331.7
F	74.8	1． 227	0． 197	
G	61.2	1． 202	0． 193	3971.4
H	41.8	1． 131	0.181	4764.2
I	15.3	1． 000	0． 160	5815.9

高さ（m） 0 ．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	352	352
161.8	A	338	338	339	339
155.5	A＇	312	312	336	336
149.1	B	286	286	333	333
142.0	B＇	259	259	327	327
134.8	C	232	232	315	315
126.8	C＇	205	205	295	295
118.3	D	176	176	266	266
108.8	D＇	147	147	225	225
98.8	E	119	119	176	176
86.4	E＇	90.0	90.0	114	114
74.8	F	65.3	65.3	67.0	67.0
61.2	G	42.9	42.9	37.6	37.6
41.8	H	19.8	19.8	17.0	17.0
15.3	I	0.00	0.00	0.00	0.00

（a）直交方向

$$
\begin{array}{ll}
& - \text { II 方向 } \\
\text { 0. P. (m) } & -\cdots \text { IV方向 }
\end{array}
$$

（mm）

> —II 方向
> $\cdots--\cdot$ IV 方向

（kN）

$$
\begin{array}{ll}
& \text { I 方向 } \\
\text { 0. P. (m) } & --- \text { III方向 }
\end{array}
$$

高さ（m） 0．P．	位置	区間	鉄塔部		筒身部	
			I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	14.8	14.8
155.5	A＇	A－A＇	9.5	9.5	36.7	36.7
149.1	B	$A^{\prime}-B^{\prime}$	667	667	51.0	51.0
142.0	B＇	B $-\mathrm{B}^{\prime}$	677	677	66.4	66.4
134.8	C	B＇－C	1460	1460	82.6	82.6
126.8	C＇	C－C＇	1500	1500	118	118
118.3	D	C＇－D	2470	2470	137	137
108.8	D＇	D－D＇	2490	2490	158	158
98.8	E	D＇－E	3540	3540	180	180
86.4	E＇	E－E＇	3580	3580	202	202
74.8	F	$E^{\prime}-\mathrm{F}$	4790	4790	229	229
61.2	G	F－G	4840	4840	259	259
41.8	H	$\mathrm{G}-\mathrm{H}$	5550	5550	296	296
15.3	I	H－I	6130	6130	348	348

鉄塔部は主柱材の応答値を示す。
（a）直交方向

高さ（m）0. P.	位置	区間	鉄塔部		筒身部	
			II 方向	IV 方向	II 方向	IV方向
174.8	TOP	－	－	－	－	－
161.8	A	TOP－A	－	－	14.8	14.8
155.5	A ${ }^{\text {，}}$	A－A	9.9	10.0	36.7	36.7
149.1	B	$A^{\prime}-B^{\prime}$	937	937	51.0	51.0
142.0	B＇	B $-\mathrm{B}^{\prime}$	947	946	66.4	66.4
134.8	C	B＇－C	2050	2050	82.6	82.6
126.8	C＇	$\mathrm{C}-\mathrm{C}^{\prime}$	2090	2090	118	118
118.3	D	C＇－D	3460	3460	137	137
108.8	D＇	D－D＇	3480	3470	158	158
98.8	E	$D^{\prime}-\mathrm{E}$	4950	4950	180	180
86.4	E＇	E－E＇	4990	4990	202	202
74.8	F	$E^{\prime}-\mathrm{F}$	6680	6690	229	229
61.2	G	F－G	6730	6740	259	259
41.8	H	$\mathrm{G}-\mathrm{H}$	7740	7740	296	296
15.3	1	H－I	8520	8520	348	348

鉄塔部は主柱材の応答値を示す。
（b）斜め方向

図 4－11 最大応答軸力（静的地震力）

I－Z－L－6－Iム
©

$$
\begin{array}{ll}
& \text { I 方向 } \\
0 . \text { P. (m) } & -\cdots \text { III方向 }
\end{array}
$$

（a）直交方向

高さ（m） 0．P．	位置	鉄塔部		筒身部	
		I 方向	III方向	I 方向	III方向
174.8	TOP	－	－	0.0	0.0
161.8	A	1． 6	1.6	1580	1580
155.5	A＇	16.0	16.0	62.1	62.1
149.1	B	15.5	15.5	1280	1280
142.0	B，	10.3	10.3	2190	2190
134.8	C	58.4	58.4	2730	2730
126.8	C＇	105	105	2620	2620
118.3	D	98.4	98.4	2160	2160
108.8	D＇	61.7	61.7	1360	1360
98.8	E	176	176	205	205
86.4	E＇	257	257	1610	1610
74.8	F	246	246	3890	3890
61.2	G	116	116	1540	1540
41.8	H	61.3	61.3	265	265
15.3	I	506	506	2280	2280

鉄塔部は主柱材の応答値を示す。
（II）排気筒の耐震計算書
1．基本方針 1
1．1 評価方針 1
1.2 適用規格•基準等 3
2．評価方法 4
2.1 荷重及び部材応力の組合せ 4
2．1．1 荷重 4
2．1．2 部材応力の組合せ 9
2.2 許容限界 10
2.3 使用材料及び材料の許容応力度 11
2.4 断面の評価方法 13
2．4．1 筒身 13
2．4．2 鉄塔 13
3．評価結果 14
3.1 耐震評価結果 14
4．制震装置（制震オイルダンパ）及び支持点部の評価 27
4.1 制震装置（制震オイルダンパ）の評価 27
4.2 制震装置（制震オイルダンパ）支持点部の評価 28
5．筒身脚部及び鉄塔脚部の断面評価 36
5.1 評価方法 36
5.2 アンカーボルトに対する検討 38
5．2．1 アンカーボルトの引張応力度に対する検討 38
5．2．2 アンカーボルトのせん断応力度に対する検討 39
5．2．3 引張力とせん断力を同時に受けるアンカーボルトの引張応力度に対する検討39
5．2．4 コンクリートのコーン状破壊に対する検討 40
5． 3 ベースプレートに対する検討 41
5．3．1 コンクリートの圧縮応力度に対する検討 41
5．3．2 ベースプレートの面外曲げに対する検討 41
5.4 フランジプレートに対する検討 42
5．4．1 フランジプレートの面外曲げに対する検討 42
5.5 リブプレートに対する検討 43
5．5．1 リブプレートの圧縮応力度に対する検討 43
5．5．2 リブプレートのせん断応力度に対する検討 44
5．6 評価結果 45

1．基本方針

1.1 評価方針

排気筒は，第 2 号機，第 3 号機の筒身と第 2,3 号機共用の鉄塔で構成される。
筒身は，設計基準対象施設においては「S クラスの施設の主要設備」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」 に分類される。

鉄塔は，設計基準対象施設においては「S クラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

排気筒の設計基準対象施設及び重大事故等対処施設としての評価においては，風荷重及び基準地震動 S s による地震力に対する評価（以下「 S s 地震時に対する評価」 という。）を行う。

また，筒身の評価においては，弾性設計用地震動 S d による地震力又は静的地震力 のいずれか大きい方の地震力に対する評価（以下「 S d 地震時に対する評価」という。） を行う。

S s 地震時に対する評価及びS d 地震時に対する評価は，「（I）排気筒の地震応答計算書」の結果を踏まえたものとし，排気筒基礎の応答の不確かさ等を考慮する。

排気筒の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析及び応力解析により算出した部材応力の組合せに対して，材料強度より算出した弾性限強度及び短期許容応力度による評価を行うことで，筒身及び鉄塔に対する地震時の構造強度及び機能維持の確認を行う。

図 $1-1$ に排気筒の評価フローを示す。

図 1－1 排気筒の評価フロー

1．2 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法•同施行令
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984（（社）日本電気協会）
－原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
－2015年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所 2015）（以下「技術基準解説書」という。）
－鋼構造設計規準一許容応力度設計法—（（社）日本建築学会，2005改定）（以下「鋼構造設計規準」という。）
－容器構造設計指針•同解説（（社）日本建築学会，2010）（以下「容器構造設計指針」という。）
- 煙突構造設計指針（（社）日本建築学会，2007）
- 煙突構造設計施工指針（（一財）日本建築センター，1982）
- 各種合成構造設計指針•同解説（（社）日本建築学会，2010改定）
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1999）（以下「R C規準」という。）
－日本工業規格（J I S ）

2．評価方法

2.1 荷重及び部材応力の組合せ

2．1．1 荷重
（1）固定荷重（G）
「（I）排気筒の地震応答計算書」に基づき，固定荷重を考慮する。部材応力 は「（I）排気筒の地震応答計算書」の地震応答解析モデルと同一のモデルに固定荷重を入力し，静的応力解析から算出する。解析コードは「DYNA2E Ver8．1．0」 を用いる。
（2）積載荷重（P）
積載物はないため，積載荷重は考慮しない。
（3）積雪荷重（ P s ）
歩廊の床材はグレーチングのため雪が積もらない構造となっている。よって，積雪荷重は考慮しない。
（4）風荷重（ P_{k} ）
風荷重は，「建築基準法施行令」に定められた速度圧に風力係数と受風面積を乗 じて得られる風荷重を考慮する。部材応力は「（I）排気筒の地震応答計算書」 の地震応答解析モデルと同一のモデルに風荷重を入力し，静的応力解析から算出 する。解析コードは「DYNA2E Ver8．1．0」を用いる。

$$
\mathrm{P}_{\mathrm{k}}=\mathrm{q} \cdot \mathrm{C}_{\mathrm{f}} \cdot \mathrm{~A}
$$

ここで
P_{k} ：風荷重（ N ）
$\mathrm{q} \quad:$ 速度圧 $\left(\mathrm{N} / \mathrm{m}^{2}\right)=0.6 \cdot \mathrm{E} \cdot \mathrm{V}_{0}{ }^{2}$
Vo ：当該地の基準風速（ $\mathrm{V}_{\mathrm{o}}=30 \mathrm{~m} / \mathrm{s}$ ）
E ：国土交通大臣が定める方法により算出した数値（ $\left.=\mathrm{E}_{\mathrm{r}}{ }^{2} \cdot \mathrm{G}_{\mathrm{f}}\right)$
Er ：平均風速の高さ方向の分布を表す係数

$$
\mathrm{E}_{\mathrm{r}}=1.7\left(\mathrm{H} / \mathrm{Z}_{\mathrm{G}}\right)^{\alpha} \quad\left(\mathrm{H}>\mathrm{Z}_{\mathrm{b}}\right)
$$

$\mathrm{H} \quad$ ：地盤面からの高さ $(\mathrm{m}) ~(H=160.0 \mathrm{~m})$
$Z_{b}, Z_{G}, \alpha:$ 地表面粗度区分に応じて定められる数値 （当該地の地表面粗度区分 II ：$Z_{b}=5 \mathrm{~m}, ~ Z_{G}=350 \mathrm{~m}$ ， $\alpha=0.15$ ）
$\mathrm{G}_{\mathrm{f}} \quad:$ ガスト影響係数 $\left(\mathrm{G}_{\mathrm{f}}=1.0\right)$
C_{f} ：煙突構造設計施工指針による風力係数
筒身 風方向 0.5 ，風直交方向 0.7 （I 方向）
風方向 0.75 （II方向）
鉄塔 2.4 （I 方向），2．2（II方向）
A ：煙突構造設計施工指針による受風面積（ m^{2} ）

風荷重の作用方向の説明図を図 $2-1$ に示す。風荷重の算定結果を表2－1及び表2－2に示す。

図 2－1 風荷重作用方向の説明

表 2－1 風荷重の算定結果（筒身部）

標高 0．P． （m）	位置＊	風荷重 $\mathrm{P}_{\mathrm{k}}(\mathrm{kN})$		
		I 方向		II 方向
		風方向	風直交方向	風方向
174.8	TOP	26.4	37.0	39.6
161.8	A	36.9	51.6	55.3
155.5	A ${ }^{\text {，}}$	24.3	34.0	36.4
149.1	B	25.8	36.1	38.7
142.0	B＇	27． 3	38.2	41.0
134.8	C	29.0	40.6	43.5
126.8	C＇	31.5	44.1	47.2
118.3	D	34.4	48.1	51.5
108.8	D＇	37.2	52.1	55.8
98.8	E	42.8	59.8	64.1
86． 4	E＇	45.8	64.1	68.7
74.8	F	48.1	67.3	72.1
61.2	G	63.0	88.1	94.4
41.8	H	87.6	122.7	131.4
15.3	I	56.2	78.7	84.3

注記＊：位置は「（I）排気筒の地震応答計算書」の図 3－1 に示す。

表 2－2 風荷重の算定結果（鉄塔部）

標高 $0 . \mathrm{P}$ ． （m）	位置＊	風荷重 $\mathrm{P}_{\mathrm{k}}(\mathrm{kN})$	
		I 方向	II 方向
174.8	TOP	－	－
161.8	A	47． 4	43.4
155.5	A＇	36.6	33.6
149.1	B	54.4	49.9
142.0	B	53.6	49.1
134.8	C	114.6	105.0
126.8	C＇	71.3	65.4
118.3	D	92.0	84.3
108.8	D＇	101.6	93.2
98.8	E	170.2	156.1
86.4	E＇	135.7	124.4
74.8	F	189． 2	173.5
61.2	G	260.2	238.5
41.8	H	420.5	385.4
15.3	I	162.1	148.6

注記＊：位置は「（I）排気筒の地震応答計算書」の図 3－1に示す。
（5）地震荷重（S s ）
基準地震動 S s の入力地震動による部材応力は「（I）排気筒の地震応答計算書」の地震応答解析結果による。
（6）地震荷重（S d）
弾性設計用地震動 S d の入力地震動による地震荷重又は排気筒に適用される静的地震力による地震荷重による部材応力は「（I）排気筒の地震応答計算書」の地震応答解析結果による。

2．1．2 部材応力の組合せ
部材応力の組合せを表2－3に示す。
表 2－3 部材応力の組合せ

外力の状態	ケース名	部材応力の組合せ
S s 地震力	I 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}(\mathrm{I})+\mathrm{S} \mathrm{s}$（ I ）
	II 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}$（II）+S s （ II ）
	III 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}$（III）+S s （III）
	IV 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}(\mathrm{IV})+\mathrm{S} \mathrm{s}$（IV）
S d 地震力又は静的地震力	I 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}(\mathrm{I})+\mathrm{S} \mathrm{d}$（ I ）
	II 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}$（ II）+S d （ II）
	III方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}$（III）+S d （III）
	IV 方向	$\mathrm{G}+\mathrm{P}_{\mathrm{k}}(\mathrm{IV})+\mathrm{Sd}$（IV）

注記＊：記号の説明
G
P_{k}（I）：I 方向からの風荷重の作用により発生する部材応力
P_{k}（II）：II 方向からの風荷重の作用により発生する部材応力
P_{k}（III）：III方向からの風荷重の作用により発生する部材応力
P_{k}（IV）：IV方向からの風荷重の作用により発生する部材応力
S s（I）：基準地震動 S s＊の I 方向加振により発生する部材応力
S s（II）：基準地震動 S s＊の II 方向加振により発生する部材応力
S s（III）：基準地震動 S s＊のIII方向加振により発生する部材応力
S S（IV）：基準地震動 S s＊のIV方向加振により発生する部材応力
S d（I）：弾性設計用地震動 S d＊の I 方向加振により発生する部材応力
Sd（II）：弾性設計用地震動 S d＊の I 方向加振により発生する部材応力
S d（III）：弾性設計用地震動 S d＊の I 方向加振により発生する部材応力
S d（IV）：弾性設計用地震動 S d＊の I 方向加振により発生する部材応力

注記＊：基準地震動 S s 及び弾性設計用地震動 S d は，水平 1 方向（並進•回転）及び鉛直方向を同時入力する。

2．2 許容限界

耐震評価における筒身及び鉄塔の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき，表2－4及び表2－ 5 のとおり設定する。

表 2－4 耐震評価における許容限界（設計基準対象施設としての評価）

機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
構造強度を	基準地震動 S s	筒身， 鉄塔	部材に生じる応力が構造強度を確保する ための許容限界を超 えないことを確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊${ }^{*}$
有すること	弾性設計用地震動 S d及び 静的地震力	筒身	部材に生じる応力が弾性状態に留まる範囲で耐えることを確認	部材に生じる応力が短期許容応力度に基づく許容値＊${ }^{2}$

注記＊1：許容限界は終局耐力に対して妥当な裕度を有する弾性限強度を用いる。鋼材 の基準強度 F を「技術基準解説書」に準拠して 1.1 F と読み替え，筒身の許容限界は「容器構造設計指針」によって求めた地震時許容応力度，鉄塔の許容限界は「平13国交告第1024号」による材料強度とする。
＊2：許容限界は「容器構造設計指針」によって求めた短期許容応力度とする。

表 2－5 耐震評価における許容限界（重大事故等対処施設としての評価）

機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
構造強度を 有すること	基準地震動 S s	筒身， 鉄塔	部材に生じる応力が構造強度を確保する ための許容限界を超 えないことを確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊

注記＊：許容限界は終局耐力に対して妥当な裕度を有する弾性限強度を用いる。鋼材の基準強度 F を「技術基準解説書」に準拠して 1.1 F と読み替え，筒身の許容限界は「容器構造設計指針」によって求めた地震時許容応力度，鉄塔の許容限界 は「平13国交告第1024号」による材料強度とする。
2.3 使用材料及び材料の許容応力度

筒身の鋼材については，J I S G 3 1 1 4 「溶接構造用耐候性熱間圧延鋼材」に規定されるSMA400APを使用する。

鉄塔の鋼材は，J I S G 3 1 0 1 「一般構造用圧延鋼材」に規定される SS400， J I S G 3 4 4 4 「一般構造用炭素鋼鋼管」に規定されるSTK400，STK490のいずれ かを使用する。

筒身脚部，鉄塔脚部，支持点アーム，補強リング（以下「脚部等」という。）の鋼材 は，J I S G 3 1 0 1 「一般構造用圧延鋼材」に規定される SS400，J I S G 3106 「溶接構造用圧延鋼材」に規定されるSM400Aのいずれかを使用する。なお，鉄塔脚部のアンカーボルトは，直径が 40 mm を超える鋼材を使用する。

使用材料の材料定数を表 $2-6$ に，制震オイルダンパの許容値を表 $2-7$ に示す。
また，基礎で使用するコンクリートの設計基準強度 F c は $20.5 \mathrm{~N} / \mathrm{mm}^{2}$ とし，コン クリートの許容応力度を表2－8に示す。

表 2－6 使用材料の材料定数

板厚	材料	基準強度 $\mathrm{F}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	備考

表 2－7 制震オイルダンパの許容値

標高 $0 . \mathrm{P} .(\mathrm{m})$	位置	許容速度 $(\mathrm{m} / \mathrm{s})$	許容変位 (mm)
134.8	C	1.20	± 400

表 2－8 コンクリートの許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

外力の状態	設計基準強度 $\mathrm{F}{ }_{\mathrm{c}}=20.5$	
	長 期	短 期
	圧縮	圧縮
S s 地震時	6.8	13.6

2.4 断面の評価方法

「2．1 荷重及び部材応力の組合せ」により組み合わせた設計用部材応力に対して筒身と鉄塔の各部材の断面検定を次の通り行う。

2．4．1 筒身

筒身部材について，板厚 2 mm （外側 1 mm ，内側 1 mm ）の腐食代を考慮し，次式の応力度比によって断面検定を行う。

$$
\frac{{ }^{\sigma} \mathrm{c}_{\mathrm{f}}^{\mathrm{cr}}}{}+\frac{\sigma_{\mathrm{b}}}{\mathrm{~b}_{\mathrm{cr}}} \leqq 1
$$

ここに
$\sigma \mathrm{c}$ ：圧縮応力度 $\sigma{ }_{\mathrm{c}}=\mathrm{N} / \mathrm{A}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
N ：軸力（ N ）
A：筒身の断面積（ mm^{2} ）
σ_{b} ：曲げ応力度 $\sigma_{\mathrm{b}}=\mathrm{M} / \mathrm{Z} \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z ：筒身の断面係数（ mm^{3} ）
c f cr ：局部座屈を考慮した圧縮応力度に対する許容値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
${ }_{b} \mathrm{f}_{\mathrm{c} r}$ ：局部座屈を考慮した曲げ応力度に対する許容値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
c f cr及び $\mathrm{b}_{\mathrm{b}} \mathrm{cr}$ は「容器構造設計指針」による材料強度の評価式に「技術基準解説書」
に基づき F 値 $\times 1.1$ を適用して算定する。 S d地震時の評価では， c f cr 及び b f cr は「容器構造設計指針」によって求めた短期許容応力度とする。

2．4．2 鉄塔

主柱材，斜材，水平材について，板厚 1 mm （外側のみ）の腐食代を考慮し，次式の応力度比によって断面検定を行う。

$$
\frac{\sigma_{\mathrm{c}}}{\mathrm{f}}+\frac{\sigma_{\mathrm{c}}}{\mathrm{f}} \mathrm{~b} \leqq 1
$$

ここに
$\sigma \mathrm{c}$ ：圧縮応力度 $\sigma_{\mathrm{c}}=\mathrm{N} / \mathrm{A}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
N ：軸力（ N ）
A：鉄塔の断面積（ mm^{2} ）
σ_{b} ：曲げ応力度 $\sigma_{\mathrm{b}}=\mathrm{M} / \mathrm{Z} \quad\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z ：鉄塔の断面係数（ mm^{3} ）
f c ：圧縮応力度に対する許容値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
f b ：曲げ応力度に対する許容値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
f c及び f b は「平 13 国交告第 1024 号」による材料強度の評価式に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定する。

3．評価結果

3.1 耐震評価結果

「2．4 断面の評価方法」に基づいた断面の評価結果を以下に示す。断面の評価結果 を記載する検討ケースは，軸力及び曲げモーメントによる断面検定において，応力度比が最大となるケースとする。

基準地震動 S s 並びに弾性設計用地震動 S d 及び静的地震力において，軸力及び曲 げモーメントによる発生応力度の評価値が各許容値を超えないことを確認した。

基準地震動S s に対する断面算定結果を表3－1～表3－5に，弾性設計用地震動 Sd及び静的地震力対する断面算定結果を表3－6に示す。

表 3－1（1）S s 地震時における第2号機筒身の断面算定表（SMA400AP）（1／2）

高さ 0．P． （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \sigma_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\frac{\sigma_{c}}{{ }_{c} f_{c r}}+\frac{\sigma_{b}}{{ }_{b} f_{c r}}$
		N (kN)		地震動 （ケース） （加振方向）	寸法 (mm)	$\begin{gathered} \mathrm{A} * \\ \left(\times 10^{2} \mathrm{~mm}^{2}\right) \end{gathered}$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
161.8	A	375.2	4121.6	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (5) }) \\ (\text { IV 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	5.0	72.7	0.37
155.5	A ${ }^{\prime}$	865.6	3090.6	$\begin{gathered} \text { S s - D } 1 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	11.5	54.6	0.31
149.1	B	971.7	4279． 4	$\begin{gathered} \text { S s - F } 2 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	12.9	75.5	0． 42
142.0	B ${ }^{\prime}$	1109.4	5136.6	$\begin{gathered} \text { S s - F } 2 \\ (\text { ケース (1) }) \\ (\text { III方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	14.7	90.6	0.50
134.8	C	1859.8	5210.5	$\begin{gathered} \mathrm{S} \text { s - D } 1 \\ (ケ ー ス(1)) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	24.6	91.9	0.55
126.8	C＇	2108.7	4656.8	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(4) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	27.9	82.2	0.52
118.3	D	2391.4	5328.7	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	31.7	94.0	0． 60
108.8	D ${ }^{\prime}$	2678.5	5896.2	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	35.5	104.0	0.66
98.8	E	2939.7	4791.5	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(5)) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	38.9	84.6	0.59

表 3－1（2）S s 地震時における第2号機筒身の断面算定表（SMA400AP）（2／2）

高さ 0．P． （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{{ }_{c} f_{c r}}+\frac{\sigma_{b}}{{ }_{b} f_{c r}}$
		N (kN)	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 （ケース） （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	Z * $\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
86.4	E＇	3807.8	2799.9	$\begin{gathered} \text { S s - F } 3 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	50.4	49． 4	0． 48
74.8	F	3516.6	6781.6	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(5)) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	46.5	119.7	0． 79
61.2	G	3860.7	4990.4	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (3) }) \\ (\text { II 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	51.1	88.1	0． 66
41.8	H	5065.7	1824.9	$\begin{gathered} \text { S s - F } 3 \\ \text { (ケース (1) } \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	67.0	32.2	0． 48
24.3	M1	5065.7	2905.8	$\begin{gathered} \mathrm{S} \text { s - F } 3 \\ \text { (ケース (1) } \\ \text { (I 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	67.0	51.3	0． 57
19．3	M2	5065.7	4171.8	$\begin{gathered} \mathrm{S} \text { s - F } 3 \\ \text { (ケース (1) } \\ \text { (I 方向) } \\ \hline \end{gathered}$	¢ 3720×10	932.4	86200	186.7	202.2	54.4	48.4	0． 54
15.3	I	2730.4	7859.8	$\begin{gathered} \text { S s - N } 1 \\ (ケ ー ス ~(4) ~ \end{gathered}$	¢ 3720×10	932.4	86200	186.7	202.2	29.3	91.2	0.61

注記＊：使用板厚より腐食代（外側 1 mm ，内側 1 mm ）を控除して算出

表 $3-2(1) \quad$ S s 地震時における第 3 号機筒身の断面算定表（SMA400AP）（1／2）

高さ 0. P. （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{\mathrm{c}}}{{ }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}}}+\frac{\sigma_{\mathrm{b}}}{{ }_{\mathrm{b}} \mathrm{f}_{\mathrm{cr}}}$
		N (kN)	M $(\mathrm{kN} \cdot \mathrm{~m})$	地震動 （ケース） （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
161.8	A	375.9	4106.0	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	5.0	72.5	0． 37
155.5	A	862.2	3123.5	$\begin{gathered} \text { S s - D } 1 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	11.4	55.1	0． 32
149．1	B	936.9	4313.3	$\begin{gathered} \text { S s - F } 2 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	12.4	76.1	0． 42
142．0	B ${ }^{\prime}$	1156． 3	5115.5	$\begin{gathered} \text { S s - F } 2 \\ (\text { ケース (1) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	15.3	90.3	0． 50
134.8	C	1893.8	5208． 2	$\begin{gathered} \mathrm{S} \text { s - D } 1 \\ (\text { ケース (1) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	25.1	91.9	0.55
126．8	C＇	1969.4	4645.6	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (4) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	26.1	82.0	0.51
118．3	D	2237． 1	5338.7	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(5)) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	29.6	94.2	0.59
108．8	D ${ }^{\prime}$	2713.2	5791.7	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(5)) \\ (\text { IV 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	35.9	102．2	0.65
98.8	E	2976.5	4805.7	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (5) }) \\ (\mathrm{IV} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	39.4	84.8	0． 59

表 $3-2(2) \quad$ S s 地震時における第 3 号機筒身の断面算定表（SMA400AP）（2／2）

高さ 0．P． （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{fr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{{ }_{c} f_{c r}}+\frac{\sigma_{b}}{{ }_{b} f_{c r}}$
		N (kN)	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 (ケース) （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	Z^{*} $\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
86.4	E＇	3940.2	2953.7	$\begin{gathered} \mathrm{S} \text { s - F } 3 \\ \text { (ケース (1) } \\ (\mathrm{IV} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	52.1	52.1	0.50
74.8	F	3341.0	6745.8	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (ケ ー ス(5)) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	44． 2	119.0	0． 77
61.2	G	3860.7	4990.4	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ (\text { ケース (3) }) \\ (\text { II 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	51.1	88.1	0.66
41.8	H	5221.3	1814.9	$\begin{gathered} \text { S s - F } 3 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	69.1	32.1	0． 49
24.3	M1	5221.3	3088.9	$\begin{gathered} \text { S s - F } 3 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3020×10	756.4	56700	203.7	215.8	69.1	54.5	0． 60
19．3	M2	5221.3	4485.2	$\begin{gathered} \text { S s - F } 3 \\ (ケ ー ス ~(1) ~ \end{gathered}$	¢ 3720×10	932.4	86200	186.7	202.2	56.0	52.1	0.56
15.3	I	5221.3	5602.2	$\begin{gathered} \mathrm{S} \text { s - F } 3 \\ (\text { ケース (1) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	¢ 3720×10	932.4	86200	186.7	202.2	56.0	65.0	0． 63

注記＊：使用板厚より腐食代（外側 1 mm ，内側 1 mm ）を控除して算出

表3－3（1）S s 地震時における主柱材の断面算定表（STK400）（1／2）

19

高さ 0．P． （m）	区間	評価用部材断面力			使用部材				ℓ_{k}(mm)	λ	$\mathrm{f}$$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \mathrm{f}_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \sigma \text { c } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}}$
		N （kN）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 (ケース) （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$	(mm)							
$\begin{aligned} & 161.8- \\ & 155.5 \end{aligned}$	A－A＇	158.2	67.8	$\begin{gathered} \text { S s - D } 2 \\ \text { (ケース (3) }) \\ (\text { III方向) } \end{gathered}$	$\phi 457.2$ $\times 7.9$	97． 17	1070	158	6316	40.0	245.7	258.5	16.3	63.4	0． 32
$\begin{gathered} 155.5- \\ 149.1 \end{gathered}$	$A^{\prime}-B$	2227.8	58.1	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (3) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\phi 457.2$ $\times 7.9$	155.6	1700	160	6413	40.1	245.7	258.5	143.2	34.2	0． 72
$\begin{gathered} 149.1- \\ 142.0 \end{gathered}$	B－B＇	2334.2	79.6	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (\text { ケース (3) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\phi 457.2$ $\times 7.9$	151.6	1660	160	7117	44.5	242.7	258.5	154.0	48.0	0.83
$\begin{gathered} 142.0- \\ 134.8 \end{gathered}$	B＇－C	4889． 4	224.4	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (\text { ケース (3) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\phi 609.6$ $\times 9.5$	291.3	4260	215	7214	33.6	249.5	258.5	167.9	52.7	0.88
$\begin{gathered} 134.8- \\ 126.8 \end{gathered}$	C－C＇	5279.3	277.8	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (\text { ケース (4) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\phi 609.6$ $\times 9.5$	345.9	5060	216	8018	37． 2	247.4	258.5	152.7	55.0	0.83
126．8－ 118.3	C^{\prime}－D	7432． 1	341.6	$\begin{gathered} \mathrm{S} \text { s -N } 1 \\ \text { (ケース (4) } \\ (\text { IV 方向) } \\ \hline \end{gathered}$	$\phi 711.2$ $\times 12.7$	433.3	7240	250	8514	34.1	249． 2	258.5	171.6	47． 2	0.88
118．3－ 108.8	D－D＇	7610． 1	340.8	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (4) }) \\ (\text { IV 方向) } \end{gathered}$	$\phi 711.2$ $\times 12.7$	451.2	7520	251	9526	38.0	247.0	258.5	168.7	45.4	0.86
$\begin{gathered} 108.8- \\ 98.8 \end{gathered}$	D^{\prime}－E	9540.8	611.3	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (4) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 812.8 \\ \times 16.0 \end{gathered}$	575.6	11000	284	10040	35.4	248.5	258.5	165.8	55.6	0． 89
$\begin{aligned} & 98.8- \\ & 86.4 \end{aligned}$	E－E’	9777．9	660.3	$\begin{gathered} \text { S s - N } 1 \\ (\text { ケース (4) }) \\ (\text { IV 方向) } \end{gathered}$	$\begin{gathered} \phi 812.8 \\ \times 16.0 \end{gathered}$	595.6	11400	285	12441	43.7	243.3	258.5	164.2	58.0	0． 90

表 3－3（2）S s 地震時における主柱材の断面算定表（STK400）（2／2）

高さ 0．P． （m）	区間	評価用部材断面力			使用部材				ℓ_{k} （mm）	λ	f．$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	f b$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}}$
		N （kN）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 （ケース） （加振方向）	寸法 （mm）	$\begin{gathered} \mathrm{A}^{*} \\ \left(\times 10^{2} \mathrm{~mm}^{2}\right) \end{gathered}$		i （mm）							
$\begin{gathered} 86.4- \\ 74.8 \end{gathered}$	E＇－F	10781.0	775.6	$\begin{gathered} \mathrm{S} \text { s-N } 1 \\ (ケ ー ス(5)) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	$\begin{aligned} & \phi 1000 \\ & \times 18.0 \end{aligned}$	650.5	15500	348	11654	33.5	249.5	258.5	165.8	50.1	0.86
$\begin{aligned} & 74.8- \\ & 61.2 \end{aligned}$	F－G	11129．9	773.0	$\begin{gathered} \mathrm{Ss}-\mathrm{N} 1 \\ (ケ ー ス(5) \\ (\text { (} \mathrm{IV} \text { 方向) } \end{gathered}$	$\begin{array}{r} \phi 1000 \\ \times 18.0 \end{array}$	650.5	15500	348	13621	39.2	246.2	258.5	171.1	49.9	0.89
$\begin{gathered} 61.2- \\ 41.8 \end{gathered}$	G－H	10383.4	195.0	$\begin{aligned} & \text { S s-D } 1 \\ & (ケ ー ス(1) \end{aligned}$ (II 方向)	$\begin{aligned} & \phi 1100 \\ & \times 18.0 \end{aligned}$	716.5	18900	384	19580	51.0	237.8	258.5	145.0	10.4	0.65
$\begin{gathered} 41.8- \\ 28.6 \end{gathered}$	H－H＇	12371．2	845.6	$\begin{gathered} \hline \text { S s -D } 1 \\ \text { (ケース (11) } \\ (\text { II 方向) } \\ \hline \end{gathered}$	$\begin{aligned} & \phi 1100 \\ & \times 20.0 \end{aligned}$	836.0	21900	384	13350	34.8	248.8	258.5	148.0	38.7	0.75
$\begin{gathered} 28.6- \\ 15.3 \end{gathered}$	H＇－I	11088.0	2042.0	$\begin{aligned} & \mathrm{Ss}-\mathrm{N} 1 \\ & \left(\text { ケース }{ }^{(1)}\right) \\ & (\mathrm{II} \text { 方向) } \end{aligned}$	$\begin{aligned} & \phi 1100 \\ & \times 20.0 \end{aligned}$	1020	26600	386	13350	34.6	248.9	258.5	108.8	76.8	0.74

注記＊：補強材の断面性能を含み，使用板厚より腐食代（外側 1 mm ）を控除して算出

記号の説明

i ：断面二次半径
ℓ_{k} ：座屈長さ
λ ：細長比 $\left(\ell_{\mathrm{k}} / \mathrm{i}\right)$

表 3－4（1）S s 地震時における斜材の断面算定表（STK400）（1／2）

高さ		評価用部材断面力			使用部材				$\ell_{\mathrm{k}}$$(\mathrm{mm})$	λ	$\begin{gathered} \mathrm{fc} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma_{\mathrm{b}}}{\mathrm{f}_{\mathrm{b}}}$
0. P. （m）	区間	N (kN)	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 （ケース） （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$	(mm)							
$\begin{gathered} 161.8- \\ 155.5 \end{gathered}$	A－A＇	967.5	0.0	$\begin{gathered} \mathrm{S} s-\mathrm{N}_{1} 1 \\ (\text { ケース (4) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 355.6 \\ \times 6.4 \end{gathered}$	59． 07	506	123	8568	69.7	219.8	258.5	163.8	0.0	0． 75
155.5^{-} 149． 1	$A^{\prime}-\mathrm{B}$	1015.7	0.0	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ \text { (ケース (4) } \\ \text { (I 方向) } \end{gathered}$	$\begin{gathered} \phi 355.6 \\ \times 6.4 \end{gathered}$	59.07	506	123	8640	70.3	219.1	258.5	172.0	0.0	0． 79
$\begin{gathered} 149.1- \\ 142.0 \end{gathered}$	B－B＇	1135.4	0.0	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (ケ ー ス(4) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 406.4 \\ \times 6.4 \end{gathered}$	67.68	666	141	9589	68.1	221.6	258.5	167.8	0.0	0． 76
$\begin{gathered} 142.0- \\ 134.8 \end{gathered}$	B＇－C	1097.6	0.0	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{N} 1 \\ (\text { ケース (4) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 406.4 \\ \times 6.4 \end{gathered}$	67.68	666	141	9660	68.6	221.0	258.5	162.2	0.0	0． 74
$\begin{gathered} 134.8- \\ 126.8 \end{gathered}$	C－C’	1188.3	0.0	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{N} 1 \\ \text { (ケース (4) } \\ \text { (I 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 457.2 \\ \times 6.4 \end{gathered}$	76． 30	848	159	10737	67.6	222.1	258.5	155.8	0.0	0． 71
126.8- 118.3	C＇－D	1084.7	0.0	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 1 \\ \text { (ケース (1) } \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 457.2 \\ \times 6.4 \end{gathered}$	76． 30	848	159	11112	69.9	219.6	258.5	142.2	0.0	0.65
$\begin{gathered} 118.3- \\ 108.8 \end{gathered}$	D－D’	1248.3	0.0	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{F} 1 \\ \text { (ケース (1) } \\ \text { (I 方向) } \end{gathered}$	$\begin{gathered} \phi 508.0 \\ \times 6.4 \end{gathered}$	84.92	1050	176	12431	70.7	218.7	258.5	147.0	0.0	0.68
$\begin{gathered} 108.8- \\ 98.8 \end{gathered}$	D＇－E	1155.7	0.0	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{F} 1 \\ (\text { ケース (1) } \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 508.0 \\ \times 6.4 \end{gathered}$	84.92	1050	176	12822	72.9	216.2	258.5	136.1	0.0	0.63
98. 8- 86.4	E－E’	1533.1	0.0	$\begin{gathered} \mathrm{S} \text { s - D } 2 \\ \text { (ケース (5) } \\ \text { (I 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 609.6 \\ \times 6.4 \end{gathered}$	102.1	1520	212	15581	73.5	215.5	258.5	150.2	0.0	0． 70

表3－4（2）S s 地震時における斜材の断面算定表（STK400）（2／2）

	区間	評価用部材断面力			使用部材				ℓ_{k}	λ	$\mathrm{f}$$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\begin{gathered} \mathrm{ff}_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma}{\mathrm{f}_{\mathrm{b}}}$
0．P． （m）		N （kN）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 （ケース） （加振方向）	寸法 （mm）	$\mathrm{A}^{* 1}$ $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$	$\begin{gathered} \mathrm{i} \\ (\mathrm{~mm}) \end{gathered}$							
$\begin{gathered} 86.4^{-} \\ 74.8 \end{gathered}$	$E^{\prime}-\mathrm{F}$	1597.5	0.0	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (3) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 609.6 \\ \times 6.4 \end{gathered}$	102.1	1520	212	14963	70.6	218.8	258.5	156.5	0.0	0.72
$\begin{aligned} & 74.8- \\ & 61.2 \end{aligned}$	F－G	2995． 4	0.0	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ \text { (ケース (3) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 711.2 \\ \times 9.5 \end{gathered}$	187.1	3230	247	17487	70.8	218.6	258.5	160.1	0.0	0.74
$\begin{aligned} & 61.2- \\ & 41.8 \end{aligned}$	G－H	3101.9	19． 4	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ \text { (ケース (3) } \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\phi 558.8$ $\times 9.5$	190.6	2550	195	11997	61.6	228.3	258.5	162.8	7． 7	0.75
$\begin{aligned} & 41.8- \\ & 15.3 \end{aligned}$	H－I	5517.0	52.1	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ (\text { ケース (3) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{aligned} & \phi 609.6 \\ & \times 16.0^{* 2} \end{aligned}$	279.2	4030	209	15269	73.1	276.4	357.5	197.7	13.0	0.76

注記 $* 1$ ：補強材の断面性能を含み，使用板厚より腐食代（外側 1 mm ）を控除して算出
＊2：材質はSTK490を使用している
記号の説明
i ：断面二次半径
ℓ_{k} ：座屈長さ
λ ：細長比 $\left(\ell_{\mathrm{k}} / \mathrm{i}\right)$

表3－5（1）S s 地震時における水平材の断面算定表（STK400）（1／2）

高さ 0．P． （m）	位置	評価用部材断面力			使用部材				ℓ_{k} （mm）	λ	f$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	f b$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{f_{c}}+\frac{\sigma}{f_{b}}$
		$\begin{aligned} & \mathrm{N} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 （ケース） （加振方向）	寸法 （mm）	$\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\begin{gathered} \mathrm{Z}^{*} \\ \left(\times 10^{3} \mathrm{~mm}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{i} \\ (\mathrm{~mm}) \end{gathered}$							
161.8	A	995.3	42.3	$\begin{gathered} \mathrm{S} \text { s-N } 1 \\ \text { (ケース (3) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 318.5 \\ \times 6.4 \end{gathered}$	93.80	708	112	7252	64.8	225.0	258.5	106.2	59.8	0.71
149． 1	B	81.8	9.6	$\begin{gathered} \text { S s - D } 2 \\ \text { (ケース (3) }) \\ \text { (III方向) } \end{gathered}$	$\begin{gathered} \phi 318.5 \\ \times 6.4 \end{gathered}$	52.77	403	110	6099	55.5	233.9	258.5	15.6	23.9	0． 16
134.8	C	458.4	125.7	$\begin{gathered} \mathrm{S} \text { s-D } 2 \\ (ケ ー ス(5)) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 318.5 \\ \times 6.4 \end{gathered}$	117.4	871	113	6774	60.0	229.8	258.5	39.1	144.4	0.73
118.3	D	191.0	4.4	$\begin{aligned} & \mathrm{S} \text { s-D } 2 \\ & \text { (ケース (4) } \end{aligned}$ (III方向)	$\begin{gathered} \phi 318.5 \\ \times 6.4 \end{gathered}$	52.77	403	110	7552	68.7	220.9	258.5	36.2	11.0	0.21
98.8	E	340.9	4.3	$\begin{gathered} \mathrm{S} \text { s-D } 2 \\ (ケ ー ス(3)) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	$\begin{gathered} \phi 406.4 \\ \times 6.4 \end{gathered}$	67.68	666	141	8631	61.3	228.6	258.5	50.4	6.5	0． 25
74.8	F	807.9	3.7	$\begin{gathered} \mathrm{S} \text { s-N } 1 \\ (ケ ー ス(3)) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\begin{gathered} \phi 457.2 \\ \times 6.4 \end{gathered}$	76． 30	848	159	10144	63.8	226.1	258.5	105． 9	4.4	0． 49

表3－5（2）S s 地震時における水平材の断面算定表（STK400）（2／2）

	位置	評価用部材断面力			使用部材				ℓ_{k}	λ	$\begin{gathered} \mathrm{f}_{\mathrm{c}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{f}_{\mathrm{b}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{\mathrm{f}_{\mathrm{c}}}+\frac{\sigma}{\mathrm{f}_{\mathrm{b}}}$
0. P. （m）		N （kN）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	地震動 (ケース) （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$	$\begin{gathered} \mathrm{i} \\ (\mathrm{~mm}) \end{gathered}$							
61.2	G	1081.4	8.9	$\begin{gathered} \text { S s - F } 1 \\ (\text { ケース (1) }) \\ (\text { II 方向) } \end{gathered}$	$\phi 457.2$ $\times 6.4$	76． 30	848	159	11000	69.2	220.4	258.5	141.8	10.5	0.69
41.8	H	1279.1	4． 1	$\begin{gathered} \mathrm{S} \text { s - N } 1 \\ \text { (ケース (3) } \\ (\mathrm{I} \text { 方向) } \end{gathered}$	$\phi 508.0$ $\times 6.4$	84.92	1050	176	12692	72.2	217.0	258.5	150.7	4.0	0． 71

注記＊：補強材の断面性能を含み，使用板厚より腐食代（外側 1 mm ）を控除して算出
記号の説明
i ：断面二次半径
ℓ_{k} ：座屈長さ
λ ：細長比（ $\ell_{\mathrm{k}} / \mathrm{i}$ ）

表 3－6（1）S d 地震時における第2号機筒身の断面算定表（SMA400AP）（1／2）

高さ 0. P. （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{c}}{{ }_{c} f_{c r}}+\frac{\sigma_{b}}{{ }_{b} f_{c r}}$
		N (kN)	M $(\mathrm{kN} \cdot \mathrm{~m})$	地震動 （ケース） （加振方向）	寸法 （mm）	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
161.8	A	378.4	2285.7	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (3) }) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	5.1	40.4	0.26
155.5	A	576.3	1932．1	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 1 \\ (\text { ケース (1) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	7.7	34.1	0． 24
149．1	B	726.7	2611.9	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (2) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	9.7	46.1	0． 32
142．0	B ${ }^{\prime}$	870.7	3239.9	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (3) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	11.6	57.2	0． 39
134.8	C	609． 3	4428.6	静的地震力 （I方向）	¢ 3020×10	756.4	56700	166.9	182.5	8.1	78.2	0． 48
126．8	C＇	706.0	4451.4	静的地震力 （I方向）	¢ 3020×10	756.4	56700	166.9	182.5	9． 4	78.6	0． 49
118．3	D	1655.7	3709.0	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	21.9	65.5	0.50
108．8	D ${ }^{\prime}$	1859.2	3904． 4	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	24.6	68.9	0.53
98.8	E	2047． 3	2961.2	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (5) }) \\ (\mathrm{I} \text { 方向) } \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	27.1	52.3	0． 45

表 3－6（2）S d 地震時における第2号機筒身の断面算定表（SMA400AP）（2／2）

高さ 0．P． （m）	位置	評価用部材断面力			使用部材			$\begin{gathered} { }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\begin{gathered} { }_{\mathrm{b}} \mathrm{f}_{\mathrm{cr}} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	$\frac{\sigma_{\mathrm{c}}}{{ }_{\mathrm{c}} \mathrm{f}_{\mathrm{cr}}}+\frac{\sigma_{\mathrm{b}}}{{ }_{\mathrm{b}} \mathrm{f}_{\mathrm{cr}}}$
		N (kN)	M $(\mathrm{kN} \cdot \mathrm{~m})$	地震動 (ケース) （加振方向）	寸法 (mm)	A* $\left(\times 10^{2} \mathrm{~mm}^{2}\right)$	$Z *$ $\left(\times 10^{3} \mathrm{~mm}^{3}\right)$					
86.4	E＇	2220.3	1954． 4	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (2) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	29． 4	34.5	0． 37
74.8	F	1333.5	6306.6	静的地震力 （I方向）	¢ 3020×10	756.4	56700	166.9	182.5	17． 7	111.3	0． 72
61.2	G	2736.4	3209.3	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (3) }) \\ (\text { II 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	36． 2	56.7	0.53
41.8	H	3044.1	1323.5	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 2 \\ (\text { ケース (2) }) \\ (\mathrm{I} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	40.3	23.4	0． 37
24． 3	M1	2999.8	2215.1	$\begin{gathered} \hline \mathrm{S} \mathrm{~d}-\mathrm{D} 1 \\ (\text { ケース (1) }) \\ (\mathrm{IV} \text { 方向) } \\ \hline \end{gathered}$	¢ 3020×10	756.4	56700	166.9	182.5	39.7	39.1	0． 46
19．3	M2	2999.8	3055.1	$\begin{gathered} \hline \mathrm{S} \mathrm{~d}-\mathrm{D} 1 \\ (\text { ケース (1) }) \\ (\mathrm{IV} \text { 方向) } \\ \hline \end{gathered}$	¢ 3720×10	932.4	86200	145.3	165.3	32.2	35.5	0.44
15.3	I	2999.8	3784.6	$\begin{gathered} \mathrm{S} \mathrm{~d}-\mathrm{D} 1 \\ (ケ ー ス(1)) \\ (\mathrm{IV} \text { 方向) } \end{gathered}$	¢ 3720×10	932.4	86200	145.3	165.3	32.2	44.0	0.49

注記＊：使用板厚より腐食代（外側 1 mm ，内側 1 mm ）を控除して算出

4．制震装置（制震オイルダンパ）及び支持点部の評価
4． 1 制震装置（制震オイルダンパ）の評価
表 4－1に評価結果を示す。制震装置（制震オイルダンパ）は，「（I）排気筒の地震応答計算書」において算出される最大応答値を用いて評価する。このうち，最大応答変位については，風荷重による最大応答変位を組み合わせて評価する。なお，最大応答変位は絶対値による評価を行っている。

表 4－1 により，制震オイルダンパの各評価値は，許容値以下であることを確認し た。

表 4－1 制震オイルダンパの最大応答値及び許容値（基準地震動 S s ）

	最大応答速度 $(\mathrm{m} / \mathrm{s})$	最大応答変位＊ (mm)
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} \mathrm{1}$	0.89	123
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{D} \mathrm{2}$	0.90	117
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{D} \mathrm{3}$	0.55	120
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} \mathrm{1}$	0.57	123
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} \mathrm{2}$	0.76	110
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} \mathrm{3}$	0.71	84
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~N} \mathrm{1}$	0.86	108
許容値	1.20	400

注記＊：上表の値には風荷重の応答を含む。

4．2 制震装置（制震オイルダンパ）支持点部の評価

制震装置（制震オイルダンパ）支持部平面図及び支持点荷重を図4－1に示す。
制震装置（制震オイルダンパ）と筒身は，支持点アームの先端で接続しており，制震装置（制震オイルダンパ）の反力は支持点アームの先端に伝達し，筒身周囲に設け た補強リングによって抵抗されることから，支持点アームと補強リングの評価を行う。

制震装置（制震オイルダンパ）支持部の評価は，基準地震動 S s による地震荷重に対して行う。支持点アームに加わる地震荷重は，すべての基準地震動 S s による排気筒基礎の不確かさ等を考慮した地震応答解析により求まる制震装置（制震オイルダン パ）の反力を包絡した値を設定する。

支持点アーム及び補強リングの構成断面を図 4－2 に示す。制震オイルダンパ取付部及び筒身連結部より作用する支持点反力から，支持点部の構成断面に発生する部材力を算定する。発生部材力に対して評価断面において応力度計算を行い，発生応力度 が許容応力度以下であることを確認する。鋼材の許容応力度は，「鋼構造設計規準」に規定される短期応力に対する許容応力度の評価式に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定する。応力度計算において，各プレートには外面 1 mm の腐食代 を考慮する。

支持点アーム及び補強リングの断面評価結果を表4－2及び表4－3に示す。表4－2及び表 $4-3$ により，支持点アーム及び補強リングの評価値は，各許容値以下であるこ とを確認した。

注記＊：東側，南側の支持点アームに作用す る反力のうち大きい荷重を P 1 ，小さい荷重をP2とする。

図 4－1（1）制震オイルダンパ支持点平面図及び支持点荷重 $(1 / 2)$

図 4－1（2）制震オイルダンパ支持点平面図及び支持点荷重（2／2）

図 4－2（1）支持点アームの構成断面（単位：mm）（1／2）

図4－2（2）補強リングの構成断面（D－D 断面）（2／2）

表 4－2（1）支持点アームの断面評価結果（ $1 / 3$ ）

項目		記号	単位	数値
ダンパー反力		P	kN	360
設計反力		P 1	kN	720
材質		－	－	SS400
基準強度		F	kN	235
ヤング係数		E	$\mathrm{N} / \mathrm{mm}^{2}$	205000
断面変化部 （ $\mathrm{A}-\mathrm{A}$ 断面）	フランジ幅	B 1	mm	500
	ウェブ高さ	H 1	mm	400
	フランジ板厚（使用板厚）	t f 1	mm	32
	ウェブ板厚（使用板厚）	t w 1	mm	22
	曲げモーメント	M_{A}	kN • m	362
	せん断力	$\mathrm{Q}_{\text {A }}$	kN	720
	断面係数	Za_{A}＊	cm^{3}	5420
	せん断断面積	A SA＊	cm^{2}	67.60
	曲げ応力度	$\sigma \mathrm{b} \mathrm{A}$	$\mathrm{N} / \mathrm{mm}^{2}$	66.8
	せん断応力度	$\tau_{\text {A }}$	$\mathrm{N} / \mathrm{mm}^{2}$	106.6
	合成応力度	σ A	$\mathrm{N} / \mathrm{mm}^{2}$	196.4
	許容曲げ応力度	f_{b}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	許容せん断応力度	f_{s}	$\mathrm{N} / \mathrm{mm}^{2}$	149.2
	許容引張応力度	f_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	曲げ応力度比	$\sigma \mathrm{ba} / \mathrm{f} \mathrm{b}$	－	0.26
	せん断応力度比	$\tau_{\mathrm{A}} / \mathrm{f} \mathrm{s}$	－	0． 72
	合成応力度比	$\sigma_{\mathrm{A}} / \mathrm{f}_{\mathrm{t}}$	－	0.76

注記＊：断面性能は腐食代を考慮した値である。
応力度の算出式は以下のとおりである。
$\sigma_{\mathrm{bA}}=\mathrm{M}_{\mathrm{A}} / \mathrm{Z}_{\mathrm{A}}$
$\tau_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} / \mathrm{As}_{\mathrm{A}}$
$\sigma_{\mathrm{A}}=\left(\sigma_{\mathrm{bA}}{ }^{2}+3 \tau_{\mathrm{A}}{ }^{2}\right)^{1 / 2}$

表 4－2（2）支持点アームの断面評価結果（2／3）

項目		記号	単位	数値
ダンパー反力		P	kN	360
設計反力		P 1	kN	720
材質		－	－	SS400
基準強度		F	kN	235
ヤング係数		E	$\mathrm{N} / \mathrm{mm}^{2}$	205000
筒身取付部 （ $\mathrm{B}-\mathrm{B}$ 断面）	フランジ幅	B 2	mm	500
	ウェブ高さ	H2	mm	600
	フランジ板厚（使用板厚）	t f 2	mm	32
	ウェブ板厚（使用板厚）	t w 2	mm	22
	軸力	$\mathrm{N}_{\text {B }}$	kN	510
	曲げモーメント	$\mathrm{M}_{\text {B }}$	kN • m	867
	せん断力	$\mathrm{Q}_{\text {B }}$	kN	510
	断面積	AB_{B}＊	cm^{2}	622.8
	断面係数	$\mathrm{Z}_{\mathrm{B}}{ }^{*}$	cm^{3}	10700
	せん断断面積	As B＊	cm^{2}	322.8
	圧縮応力度	σ с в	$\mathrm{N} / \mathrm{mm}^{2}$	8.2
	曲げ応力度	σ b в	$\mathrm{N} / \mathrm{mm}^{2}$	81.1
	せん断応力度	τ в	$\mathrm{N} / \mathrm{mm}^{2}$	15.8
	合成応力度	σ в	$\mathrm{N} / \mathrm{mm}^{2}$	93.4
	許容圧縮応力度	f c	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	許容曲げ応力度	f_{b}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	許容せん断応力度	$\mathrm{f}_{\text {s }}$	$\mathrm{N} / \mathrm{mm}^{2}$	149.2
	許容引張応力度	f_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	圧縮と曲げの組合せ応力度比	$\begin{aligned} & \sigma_{\mathrm{cB}} / \mathrm{f}_{\mathrm{c}} \\ & +\sigma_{\mathrm{bB}} / \mathrm{f}_{\mathrm{b}} \end{aligned}$	－	0． 36
	せん断応力度比	$\tau_{\mathrm{B}} / \mathrm{f}$ s	－	0.11
	合成応力度比	$\sigma \mathrm{B} / \mathrm{f} \mathrm{t}$	－	0.37

注記＊：断面性能は腐食代を考慮した値である。
応力度の算出式は以下のとおりである。
$\sigma_{\mathrm{c}}{ }_{\mathrm{B}}=\mathrm{N}_{\mathrm{B}} / \mathrm{A}_{\mathrm{B}}$
$\sigma_{\mathrm{b}}=\mathrm{M}_{\mathrm{B}} / \mathrm{Z}_{\mathrm{B}}$
$\tau_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} / \mathrm{ASB}_{\text {в }}$
$\sigma_{\mathrm{B}}=\left(\left(\sigma_{\mathrm{cB}}+\sigma_{\mathrm{bB}}\right)^{2}+3 \tau_{\mathrm{B}}{ }^{2}\right)^{1 / 2}$

表 4－2（3）支持点アームの断面評価結果（3／3）

項目		記号	単位	数値
ダンパー反力		P	kN	360
設計反力		P 1	kN	720
材質		－	－	SS400
基準強度		F	kN	235
ヤング係数		E	$\mathrm{N} / \mathrm{mm}^{2}$	205000
筒身取付部 （ $\mathrm{C}-\mathrm{C}$ 断面）	ウェブ幅	H3	mm	380
	ウェブ板厚（使用板厚）	t w 3	mm	22
	ウェブ間隔（上下）	B 3	mm	400
	ウェブ間隔（水平）	H4	mm	1400
	軸力	N_{C}	kN	510
	曲げモーメント	M_{C}	kN • m	867
	せん断力	Q c	kN	510
	断面積	Ac_{C}＊	cm^{2}	304.0
	断面係数	$\mathrm{Z} \mathrm{c}^{*}$	cm^{3}	11800
	せん断断面積	A Sc＊	cm^{2}	304.0
	圧縮応力度	σ c c	$\mathrm{N} / \mathrm{mm}^{2}$	16.8
	曲げ応力度	σ b c	$\mathrm{N} / \mathrm{mm}^{2}$	73.5
	せん断応力度	τ c	$\mathrm{N} / \mathrm{mm}^{2}$	16.8
	合成応力度	σ c	$\mathrm{N} / \mathrm{mm}^{2}$	94.9
	許容圧縮応力度	f c	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	許容曲げ応力度	f b	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	許容せん断応力度	f s	$\mathrm{N} / \mathrm{mm}^{2}$	149.2
	許容引張応力度	f t	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	圧縮と曲げの組合せ応力度比	$\begin{gathered} \sigma_{\mathrm{cc}} / \mathrm{f}_{\mathrm{c}} \\ +\sigma_{\mathrm{bc}} / \mathrm{f}_{\mathrm{b}} \end{gathered}$	－	0.36
	せん断応力度比	$\tau_{\mathrm{c}} / \mathrm{ff}$	－	0． 12
	合成応力度比	$\sigma \mathrm{c} / \mathrm{ft}$	－	0． 37

注記＊：断面性能は腐食代を考慮した値である。
応力度の算出式は以下のとおりである。
$\sigma_{\mathrm{c}} \mathrm{C}=\mathrm{N}_{\mathrm{c}} / \mathrm{A}_{\mathrm{c}}$
$\sigma_{\mathrm{bc}}=\mathrm{M}_{\mathrm{C}} / \mathrm{Z}_{\mathrm{c}}$
$\tau_{\mathrm{c}}=\mathrm{Q}_{\mathrm{c}} / \mathrm{Asc}_{\mathrm{sc}}$
$\sigma_{c}=\left((\sigma \mathrm{cc}+\sigma \mathrm{bc})^{2}+3 \tau \mathrm{c}^{2}\right)^{1 / 2}$

表 4－3 補強リングの断面評価結果

項目		記号	単位	数値
設計反力	$\begin{aligned} & \text { 支持点アーム側 } \\ & \text { (P 1 > P } 2 \text { とする) } \end{aligned}$	P 1	kN	720
		P 2	kN	540
	筒身連結材側	P 3	kN	100
材質		－	－	SS400
基準強度		F	kN	235
ヤング係数		E	$\mathrm{N} / \mathrm{mm}^{2}$	205000
断面寸法 （使用板厚を示 す）	筒身内径	D	mm	3000
	筒身母材の有効幅	λ	mm	125.2
	筒身板厚	t s	mm	10
	フランジ板厚（内側）	t f 1	mm	20
	フランジ板厚（外側）	t f 2	mm	40
	ウェブ板厚（内側）	t w 1	mm	16
	ウェブ板厚（外側）	t w 2	mm	40
	リング高さ	H	mm	400
	リング幅（内側）	B 1	mm	145
	リング幅（外側）	B 2	mm	260
軸力		N	kN	474
曲げモーメント		M	kN • m	758
せん断力		Q	kN	496
断面積		A＊	cm^{2}	519.3
断面係数		Z＊	cm^{3}	4140
せん断断面積		A s＊	cm^{2}	247.3
圧縮応力度		σ c	$\mathrm{N} / \mathrm{mm}^{2}$	9.2
曲げ応力度		σ b	$\mathrm{N} / \mathrm{mm}^{2}$	183.1
せん断応力度		τ	$\mathrm{N} / \mathrm{mm}^{2}$	20.1
合成応力度		σ	$\mathrm{N} / \mathrm{mm}^{2}$	195.5
許容圧縮応力度		f_{c}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
許容曲げ応力度		f_{b}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
許容せん断応力度		f s	$\mathrm{N} / \mathrm{mm}^{2}$	149.2
許容引張応力度		f_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
圧縮と曲げの組合せ応力度比		$\begin{gathered} \sigma \mathrm{c} / \mathrm{fc} \\ +\sigma_{\mathrm{b}} / \mathrm{f}_{\mathrm{b}} \\ \hline \end{gathered}$	－	0.75
せん断応力度比		τ / fs	－	0.14
合成応力度比		$\sigma / \mathrm{ft}_{\mathrm{t}}$	－	0.76

注記＊：断面性能は腐食代を考慮した値である。

応力度の算出式は以下のとおりである。なお，筒身母材の有効幅（ λ ）は，「鋼構造設計規準」の 1 縁支持他縁自由の板要素の幅厚比より算出する。

$$
\begin{aligned}
\sigma_{\mathrm{c}} & =\mathrm{N} / \mathrm{A} \\
\sigma_{\mathrm{b}} & =\mathrm{M} / \mathrm{Z} \\
\tau & =\mathrm{Q} / \mathrm{A} \\
\sigma_{\mathrm{s}} & =\left(\left(\sigma_{\mathrm{c}}+\sigma_{\mathrm{b}}\right)^{2}+3 \tau^{2}\right)^{1 / 2} \\
\lambda & =0.53 \sqrt{\mathrm{E} / \mathrm{F}} \cdot \mathrm{t} \mathrm{~s}
\end{aligned}
$$

5．筒身脚部及び鉄塔脚部の断面評価
5.1 評価方法

脚部の概要図を図5－1 に示す。鋼材の許容応力度は，「鋼構造設計規準」に規定さ れる短期応力に対する許容応力度の評価式に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定する。コンクリートの許容応力度は，「R C 規準」に規定される短期許容応力度とする。アンカーボルト以外の各プレートには， 2 mm の腐食代（両面 1 mm ずつ） を考慮する。筒身脚部及び鉄塔脚部の脚部評価用反力を表5－1及び表5－2に示す。

断面図

平面 図
（a）筒身脚部

断面図

平面図
（b）鉄塔脚部

注：板厚は使用板厚を示す。
図 5－1 脚部の概要図（単位：mm）

表 5－1 筒身脚部の評価用反力（ $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ，ケース（1））

軸力 $($ 圧縮側） (kN)	軸力 $($ 引張側） (kN)	せん断力	曲げ モーメント	ねじり $(\mathrm{kN} \cdot \mathrm{m})$
5380	-2231	329	5629	モーメント $(\mathrm{kN} \cdot \mathrm{m})$

表 5－2 鉄塔脚部の評価用反力（ S s－N 1，ケース（3））

軸力 $($ 圧縮側） (kN)	軸力 $($ 引張側） (kN)	せん断力	曲げ モーメント	ねじり モーメント $(\mathrm{kN} \cdot \mathrm{m})$
17042	-12551	4800	2582	287

5．2 アンカーボルトに対する検討

5．2．1 アンカーボルトの引張応力度に対する検討
アンカーボルトに作用する引張力は脚部に作用する軸力と曲げモーメントの荷重状態に応じて算出する。

すべてのアンカーボルトが引張状態となる場合，アンカーボルトの全数で引張力に対抗する。このときアンカーボルトに作用する引張力は次式の通り算定する。
$\mathrm{P}=\mathrm{N} / \mathrm{n}_{0}+\mathrm{M} / \mathrm{Z}_{\mathrm{b}}$
ここに
P：1本当たりのアンカーボルトに作用する引張力（N）
N ：軸力（ N ）
no ：アンカーボルト本数（本）（ $\mathrm{n}_{\mathrm{o}}=$ 筒身：60本，鉄塔：24本）
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Z_{b} ：アンカーボルト群の中心線周りの断面係数（mm）
（ $\mathrm{Z}_{\mathrm{b}}=$ 筒身： 63000 mm ，鉄塔： 10800 mm ）
中立軸が断面内にあり一部のアンカーボルトが引張状態となる場合，断面内の圧縮荷重に対しては圧縮側にあるベースプレート下面のコンクリートで，引張力 に対しては引張側にあるアンカーボルトで抵抗する。このときアンカーボルトに作用する引張力はベースプレートの平面形状を円環の鉄筋コンクリート断面とし た応力算定式より求める。

アンカーボルトの引張応力度が以下に示す引張応力度の許容値以下であること を確認する。

$$
\sigma_{\mathrm{t}} \leqq \mathrm{f}_{\mathrm{t}}
$$

ここに
σ_{t} ：アンカーボルトねじ部の引張応力度 $\sigma_{\mathrm{t}}=\mathrm{P} / \mathrm{A}_{\mathrm{e}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{P}: 1$ 本当たりのアンカーボルトに作用する引張力（N）
A ：アンカーボルトねじ部有効断面積（ mm^{2} ）
$\left(\mathrm{A}_{\mathrm{e}}=\right.$ 筒身 ： $561 \mathrm{~mm}^{2}$ ，鉄塔： $5590 \mathrm{~mm}^{2}$ ）
f_{t} ：アンカーボルトの許容引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（「鋼構造設計規準」の鋼材の短期許容引張応力度の評価式に
「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定）

5．2．2 アンカーボルトのせん断応力度に対する検討
せん断力とねじりモーメントの設計用反力に対してアンカーボルトに作用する せん断力を次式の通り算定する。
$\mathrm{Q}=\mathrm{S} / \mathrm{n}_{0}+\mathrm{T} / \mathrm{Z}_{\mathrm{t}}$
ここに
Q：1 本当たりのアンカーボルトに作用するせん断力（ N ）
S ：せん断力（ N ）
T：ねじりモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
n_{ol} ：アンカーボルト本数（本）（ $\mathrm{n}_{0}=$ 筒身： 60 本，鉄塔： 24 本）
Z_{t} ：アンカーボルト群の中心周りの断面係数（mm）
（ $\mathrm{Z}_{\mathrm{t}}=$ 筒身： 126000 mm ，鉄塔： 21600 mm ）
アンカーボルトのせん断応力度が以下に示すせん断応力度の許容値以下である ことを確認する。

$$
\tau \leqq \mathrm{f}_{\mathrm{s}}
$$

ここに
τ ：アンカーボルト放じ部のせん断応力度 $\tau=\mathrm{Q} / \mathrm{A}$ 。 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{Q}: 1$ 本当たりのアンカーボルトに作用するせん断力（N）
A。：アンカーボルトねじ部有効断面積（ mm^{2} ）
fs ：アンカーボルトの許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（「鋼構造設計規準」の鋼材の短期許容せん断応力度の評価式
に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定）

5．2．3引張力とせん断力を同時に受けるアンカーボルトの引張応力度に対する検討引張力とせん断力を同時に受けるアンカーボルトの引張応力度が以下に示す引張応力度の許容値以下であることを確認する。
$\sigma_{\mathrm{t}} \leqq \mathrm{f}_{\mathrm{t} \mathrm{s}}$
ここに
σ_{t} ：アンカーボルトねじ部の引張応力度 $\sigma_{\mathrm{t}}=\mathrm{P} / \mathrm{A} \mathrm{e}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{P} \quad: 1$ 本当たりのアンカーボルトに作用する引張力（ N ）
A。：アンカーボルトねじ部有効断面積（ mm^{2} ）
f ts ：引張力とせん断力を同時に受けるアンカーボルトの許容引張応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right), \mathrm{f}_{\mathrm{ts}}=1.4 \mathrm{f}_{\mathrm{t}}-1.6 \tau$ かつ， $\mathrm{f}_{\mathrm{ts}} \leqq \mathrm{f} \mathrm{t}$
$\mathrm{f}_{\mathrm{t}} \quad$ ：5．2．1 に規定するアンカーボルトの許容引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\tau \quad: 5.2 .2$ に規定するアンカーボルトねじ部のせん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）

5．2．4 コンクリートのコーン状破壊に対する検討
コンクリートのコーン状破壊に対する許容引張力は，アンカーボルトの引張力 が以下に示すコンクリート部の引張力に対する許容値以下であることを確認する。

$$
P \leqq p_{a}=\operatorname{Min}\left(p_{a_{1}}, p_{a_{2}}\right)
$$

ここに，
$\mathrm{p}_{\mathrm{a} 1}=0.31 \cdot \mathrm{~K}_{1} \cdot \mathrm{~A}_{\mathrm{C}} \sqrt{\mathrm{F}_{\mathrm{C}}}$
$\mathrm{p}_{\mathrm{a} 2}=\mathrm{K}_{2} \cdot \alpha_{\mathrm{c}} \cdot \mathrm{A}_{\mathrm{o}} \cdot \mathrm{F}_{\mathrm{c}}$
ここに
P：5．2．1に規定するボルト 1 本当たりの引張荷重（N）
p_{a} ：アンカーボルト1本当たりのコンクリート部の許容引張荷重 （N）
$\mathrm{p}_{\mathrm{a}} 1$ ：コンクリート躯体がコーン状破壊する場合のアンカーボルト 1 本当たりの許容引張荷重（N）
$\mathrm{p}_{\mathrm{a}} 2$ ：アンカーボルト頭部に接するコンクリート部が支圧破壊する場合のアンカーボルト 1 本当たりの許容引張荷重（ N ）
K_{1} ：コーン状破壊する場合の引張耐力の低減係数（ $\mathrm{K}_{1}=2 / 3$ ）
K_{2} ：支圧破壊する場合の引張耐力の低減係数 $\left(\mathrm{K}_{2}=1\right)$
Fc：コンクリートの設計基準強度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
A_{C} ：コンクリートのコーン状破壊面の有効投影面積（ mm^{2} ）
$\alpha_{\mathrm{c}} \quad$ ：支圧面積と有効投影面積から定まる定数，$\alpha_{\mathrm{c}}=\sqrt{\mathrm{A}_{\mathrm{c}} / \mathrm{A}_{\mathrm{o}}}$ で 6 を超える場合は 6

A 0 ：支圧面積（ mm^{2} ）

5.3 ベースプレートに対する検討

5．3．1 コンクリートの圧縮応力度に対する検討
ベースプレート下面のコンクリートの圧縮応力度が以下に示す圧縮応力度の許容値以下であることを確認する。

$$
\sigma_{\mathrm{c}} \leqq \mathrm{f}_{\mathrm{c}}
$$

ここに

$$
\begin{array}{ll}
\sigma_{\mathrm{c}} & : \text { コンクリートの圧縮応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\
\mathrm{f}_{\mathrm{c}} & : \text { コンクリートの短期許容圧縮応力度 }\left(\mathrm{N} / \mathrm{mm}^{2}\right)
\end{array}
$$

（「R C 規準」の短期許容圧縮応力度）
5．3．2 ベースプレートの面外曲げに対する検討
ベースプレートの下面にはコンクリートの圧縮応力度（ σ_{c} ）が等分布荷重とし て作用する（図 5－2）。リブプレート及び筒身，又はリブプレート及び鉄塔の部材位置を固定とする 3 辺固定 1 辺自由板としてベースプレートの面外曲げ応力度 を算定する。ベースプレートの面外の曲げ応力度が以下に示す曲げ応力度の許容値以下であることを確認する。

ここに
σ в b ：ベースプレートの面外の曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（等分布荷重を受ける 3 辺固定板 1 辺自由スラブの応力図よ り算定）
f b 1 ：面外に曲げを受ける板の許容曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（「鋼構造設計規準」の面外に曲げを受ける板の短期許容曲げ応力度の評価式に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定）

（a）正面図

（b）断面図

図 5－2 ベースプレート応力算定説明図

5．4 フランジプレートに対する検討

5．4．1 フランジプレートの面外曲げに対する検討
フランジプレートにはアンカーボルトの引張力（ P ）が集中荷重として作用す る（図 $5-3$ ）。リブプレート位置を固定とする 2 辺固定板（両端固定梁）として フランジプレートの面外の曲げ応力度を算定する。フランジプレートの面外の曲 げ応力度が以下に示す曲げ応力度の許容値以下であることを確認する。

$$
\sigma_{\mathrm{Fb}} \leqq \mathrm{f}_{\mathrm{b} 1}
$$

ここに
（リブプレート間を梁スパンとする両端固定梁として算定）
f b 1 ：面外に曲げを受ける板の許容曲げ応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（「鋼構造設計規準」の面外に曲げを受ける板の短期許容曲げ
応力度の評価式に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定）

（a）正面図

（b）断面図

図 5－3 フランジプレート応力算定説明図

5.5 リブプレートに対する検討

5．5．1 リブプレートの圧縮応力度に対する検討
アンカーボルトからの引張力（ P ）又はベースプレート下面からの圧縮力
（ $\sigma_{\text {c ）}}$ によってリブプレートに圧縮応力度が作用する（図5－4）。リブプレー トの圧縮応力度はアンカーボルトの引張力とベースプレート下面のコンクリート圧縮応力度から求めた圧縮力を比較して大きい方の値を用いて算定する。リブプ レートの圧縮応力度が以下に示す圧縮応力度の許容値以下であることを確認する。
$\sigma_{\mathrm{Rc}} \leqq \mathrm{f}$ c
ここに
$\sigma \mathrm{Rc}$ ：リブプレートの圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
f c ：リブプレートの許容圧縮応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（リブプレートは「鋼構造設計規準」の幅厚比制限を満足す るものとし，f cは「技術基準解説書」に基づき F 値 $\times 1.1$ の値）

（a）アンカーボルトからの引張力作用時

（b）ベースプレート下面からの圧縮力作用時
図 5－4 リブプレート応力算定説明図

5．5．2 リブプレートのせん断応力度に対する検討

アンカーボルトからの引張力（ P ）又はベースプレート下面からの圧縮力（ σ_{c} ） によってリブプレートにせん断応力度が作用する（図 5－4）。リブプレートのせん断応力度はアンカーボルトの引張力とベースプレート下面のコンクリート圧縮応力度から求めた圧縮力を比較して大きい方の値を用いて算定する。リブプレート のせん断応力度が以下に示すせん断応力度の許容値以下であることを確認する。
$\tau \mathrm{R} \leqq \mathrm{f}$ s
ここに
$\tau_{\mathrm{R}} \quad$ ：リブプレートのせん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
f s ：リブプレートの許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
（「鋼構造設計規準」の鋼材の短期許容せん断応力度の評価式
に「技術基準解説書」に基づき F 値 $\times 1.1$ を適用して算定）

5.6 評価結果

筒身脚部及び鉄塔脚部の各部位の評価結果を表 $5-3$ 及び表 $5-4$ に，発生応力／許容値の一覧表を表5－5及び表5－6に示す。なお，本節における応力計算結果は，各地震動，検討ケースに対して，I～IV方向の軸力•曲げモーメントの最大値同士を組 み合わせて用いたものである。

表 5－5及び表 5－6により，筒身脚部及び鉄塔脚部における各部位の発生応力は，各許容値以下であることを確認した。

表 $5-3$（1）筒身脚部の評価結果（ $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ，ケース（1））（1／2）

項目		記号	単位	数値
アンカーボルト の検討	アンカーボルトの材質	－	－	SS400
	アンカーボルトの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	アンカーボルトの引張力（1本当たり）	P	kN	124
	アンカーボルトのせん断力（1 本当た り）	Q	kN	6． 13
	アンカーボルトのねじ部有効断面積	$\mathrm{A}_{\text {e }}$	mm^{2}	561
	アンカーボルトの引張応力度	$\sigma \mathrm{t}$	$\mathrm{N} / \mathrm{mm}^{2}$	221.1
	アンカーボルトの許容引張応力度	f_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	アンカーボルトのせん断応力度	τ	$\mathrm{N} / \mathrm{mm}^{2}$	11.0
	アンカーボルトの許容せん断応力度	f s	$\mathrm{N} / \mathrm{mm}^{2}$	149.2
	アンカーボルトの許容引張応力度（せん断力との組合せ）	f t s	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
コンク リートの コーン状破壊に 対する検討	コンクリートの基準強度	F c	$\mathrm{N} / \mathrm{mm}^{2}$	20.5
	コンクリートのコーン状破壊面の有効投影面積（1本当たり）	A_{C}	mm^{2}	495625
	アンカーボルト頭部の支圧面積（1 本当 たり）	A 0	mm^{2}	44729
	コンクリート部の許容引張荷重（1 本当 たり）	p a	kN	463
コンクリートの 圧縮応力度に対 する検討	ベースプレートの幅	B b	mm	450
	ベースプレート下面のコンクリートの圧縮応力度	σ c	$\mathrm{N} / \mathrm{mm}^{2}$	1.9
	コンクリートの許容圧縮応力度	f c	$\mathrm{N} / \mathrm{mm}^{2}$	13.6

表 5－3（2）筒身脚部の評価結果（S s－F 3 ，ケース（1）（2／2）

項目		記号	単位	数値
ベースプレート の面外曲げに対 する検討	ベースプレートの材質	－	－	SS400
	ベースプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	ベースプレートの板厚（使用板厚）	t b	mm	24
	$\begin{aligned} & \text { ベースプレートに作用する面外曲げモ } \\ & \text { ーメント (単位幅当たり) } \end{aligned}$	M_{b}	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$	6955
	ベースプレートの面外曲げモーメント に対する断面係数（単位幅当たり）	$\mathrm{Z}_{\mathrm{b}}{ }^{*}$	$\mathrm{mm}^{3} / \mathrm{mm}$	80.6
	ベースプレートの面外曲げ応力度	σ в b	$\mathrm{N} / \mathrm{mm}^{2}$	86.3
	ベースプレートの許容面外曲げ応力度	$\mathrm{f}_{\mathrm{b}} 1$	$\mathrm{N} / \mathrm{mm}^{2}$	298.2
フランジプレー トの面外曲げに対する検討	フランジプレートの材質	－	－	SS400
	フランジプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	フランジプレートの板厚（使用板厚）	t f	mm	24
	$\begin{aligned} & \text { フランジプレートに作用する面外曲げ } \\ & \text { モーメント } \end{aligned}$	M_{f}	$\mathrm{kN} \cdot \mathrm{mm}$	3410
	フランジプレートの面外曲げモーメン トに対する断面係数	$\mathrm{Z}_{\mathrm{f}}{ }^{*}$	mm^{3}	25800
	フランジプレートの面外曲げ応力度	σ F b	$\mathrm{N} / \mathrm{mm}^{2}$	132.2
	フランジプレートの許容面外曲げ応力度	f b 1	$\mathrm{N} / \mathrm{mm}^{2}$	298． 2
リブプレートの 検討	リブプレートの材質	－	－	SS400
	リブプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	リブプレートの板厚（使用板厚）	t r	mm	12
	リブプレートに作用する圧縮力	P_{r}	kN	184
	リブプレートの断面積（軸断面）	$\mathrm{A}_{\mathrm{r}}{ }^{*}$	mm^{2}	3850
	リブプレートの断面積（せん断面）	Arss^{*}	mm^{2}	3560
	圧縮応力度	$\sigma \mathrm{Rc}$	$\mathrm{N} / \mathrm{mm}^{2}$	47.8
	許容圧縮応力度	f c	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	せん断応力度	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	51.7
	許容せん断応力度	f s	$\mathrm{N} / \mathrm{mm}^{2}$	149.2

注記＊：断面性能は腐食代を考慮した値である。
応力度の算出式は以下のとおりである。

$$
\begin{array}{ll}
\sigma_{\mathrm{Bb}}=\mathrm{M}_{\mathrm{b}} / \mathrm{Z}_{\mathrm{b}} \quad \sigma_{\mathrm{Fb}}=\mathrm{M}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{f}} \\
\sigma_{\mathrm{Rc}}=\mathrm{P}_{\mathrm{r}} / \mathrm{A}_{\mathrm{r}} \quad \tau_{\mathrm{R}}=\mathrm{P}_{\mathrm{r}} / \mathrm{A}_{\mathrm{r}}
\end{array}
$$

表5－4（1）鉄塔脚部の評価結果（S s－N 1，ケース（3）（1／2）

項目		記号	単位	数値
アンカーボルト の検討	アンカーボルトの材質	－	－	SS400
	アンカーボルトの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	215
	アンカーボルトの引張力（1本当たり）	P	kN	763
	アンカーボルトのせん断力（1 本当た り）	Q	kN	213.3
	アンカーボルトのねじ部有効断面積	$\mathrm{A}_{\text {e }}$	mm ${ }^{2}$	5590
	アンカーボルトの引張応力度	σ t	$\mathrm{N} / \mathrm{mm}^{2}$	136.5
	アンカーボルトの許容引張応力度	ff_{t}	$\mathrm{N} / \mathrm{mm}^{2}$	236.5
	アンカーボルトのせん断応力度	τ	$\mathrm{N} / \mathrm{mm}^{2}$	38.2
	アンカーボルトの許容せん断応力度	f s	$\mathrm{N} / \mathrm{mm}^{2}$	136.5
	アンカーボルトの許容引張応力度（せん断力との組合せ）	f_{ts}	$\mathrm{N} / \mathrm{mm}^{2}$	236.5
コンクリートの コーン状破壊に対する検討	コンクリートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	20.5
	コンクリートのコーン状破壊面の有効投影面積（1本当たり）	A_{c}	mm ${ }^{2}$	1080000
	アンカーボルト頭部の支圧面積（1 本当 たり）	A 0	mm ${ }^{2}$	64292
	コンクリート部の許容引張荷重（1 本当 たり）	pa	kN	1009
コンクリートの 圧縮応力度に対 する検討	ベースプレートの幅	B b	mm	800
	ベースプレート下面のコンクリートの圧 縮応力度	σ c	$\mathrm{N} / \mathrm{mm}^{2}$	6.1
	コンクリートの許容圧縮応力度	f	$\mathrm{N} / \mathrm{mm}^{2}$	13.6

表5－4（2）鉄塔脚部の評価結果（S s－N 1，ケース（3）（2／2）

項目		記号	単位	数値
ベースプレート の面外曲げに対 する検討	ベースプレートの材質	－	－	SM400A
	ベースプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	ベースプレートの板厚（使用板厚）	t b	mm	30
	ベースプレートに作用する面外曲げモ ーメント（単位幅当たり）	M_{b}	$\mathrm{N} \cdot \mathrm{mm} / \mathrm{mm}$	24505
	ベースプレートの面外曲げモーメント に対する断面係数（単位幅当たり）	$\mathrm{Z}_{\mathrm{b}}{ }^{*}$	$\mathrm{mm}^{3} / \mathrm{mm}$	130
	ベースプレートの面外曲げ応力度	σ в b	$\mathrm{N} / \mathrm{mm}^{2}$	188.5
	ベースプレートの許容面外曲げ応力度	f b 1	$\mathrm{N} / \mathrm{mm}^{2}$	298.2
フランジプレー トの面外曲げに対する検討	フランジプレートの材質	－	－	SM400A
	フランジプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	215
	フランジプレートの板厚（使用板厚）	t f	mm	50
	$\begin{aligned} & \text { フランジプレートに作用する面外曲げ } \\ & \text { モーメント } \end{aligned}$	M_{f}	$\mathrm{kN} \cdot \mathrm{mm}$	22509
	フランジプレートの面外曲げモーメン トに対する断面係数	$\mathrm{Z}_{\mathrm{f}}{ }^{*}$	mm^{3}	159000
	フランジプレートの面外曲げ応力度	σ F b	$\mathrm{N} / \mathrm{mm}^{2}$	141.6
	フランジプレートの許容面外曲げ応力度	f b 1	$\mathrm{N} / \mathrm{mm}^{2}$	272.8
リブプレートの 検討	リブプレートの材質	－	－	SS400
	リブプレートの基準強度	F	$\mathrm{N} / \mathrm{mm}^{2}$	235
	リブプレートの板厚（使用板厚）	t r	mm	18
	リブプレートに作用する圧縮力	Pr_{r}	kN	864
	リブプレートの断面積（軸断面）	$\mathrm{A}_{\mathrm{r}}{ }^{*}$	mm^{2}	8720
	リブプレートの断面積（せん断断面）	$\mathrm{A}_{\mathrm{rss}}{ }^{*}$	mm^{2}	7840
	圧縮応力度	$\sigma \mathrm{Rc}$	$\mathrm{N} / \mathrm{mm}^{2}$	99.1
	許容圧縮応力度	f c	$\mathrm{N} / \mathrm{mm}^{2}$	258.5
	せん断応力度	τ_{R}	$\mathrm{N} / \mathrm{mm}^{2}$	110.3
	許容せん断応力度	f s	$\mathrm{N} / \mathrm{mm}^{2}$	149.2

注記＊：断面性能は腐食代を考慮した値である。
応力度の算出式は以下のとおりである。

$$
\begin{array}{ll}
\sigma_{\mathrm{Bb}}=\mathrm{M}_{\mathrm{b}} / \mathrm{Z}_{\mathrm{b}} \quad \sigma_{\mathrm{Fb}}=\mathrm{M}_{\mathrm{f}} / \mathrm{Z}_{\mathrm{f}} \\
\sigma_{\mathrm{Rc}}=\mathrm{P}_{\mathrm{r}} / \mathrm{A}_{\mathrm{r}} \quad \tau_{\mathrm{R}}=\mathrm{P}_{\mathrm{r}} / \mathrm{A}_{\mathrm{rs}}
\end{array}
$$

表 5－5 筒身脚部の評価結果（ $\mathrm{S} \mathrm{s}-\mathrm{F} 3$ ，ケース（1）

評価部位	応力分類	単位	発生応力	許容値	発生応力 ／許容値
アンカーボルト	引張	$\mathrm{N} / \mathrm{mm}^{2}$	221.1	258.5	0.86
	せん断	$\mathrm{N} / \mathrm{mm}^{2}$	11.0	149.2	0.08
	組合せ	$\mathrm{N} / \mathrm{mm}^{2}$	221.1	258.5	0.86
コンクリート（コーン状破壊）	引張＊	kN	124	463	0． 27
コンクリート（圧縮）	圧縮	$\mathrm{N} / \mathrm{mm}^{2}$	1.9	13.6	0． 14
ベースプレート	面外曲げ	$\mathrm{N} / \mathrm{mm}^{2}$	86.3	298.2	0． 29
フランジプレート	面外曲げ	$\mathrm{N} / \mathrm{mm}^{2}$	132.2	298.2	0． 45
リブプレート	圧縮	$\mathrm{N} / \mathrm{mm}^{2}$	47.8	258.5	0． 19
	せん断	$\mathrm{N} / \mathrm{mm}^{2}$	51.7	149.2	0． 35

注記＊：アンカーボルト 1 本当たりの引張力

表 5－6 鉄塔脚部の評価結果（ $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ ，ケース（3）$)$

評価部位	応力分類	単位	発生応力	許容値	発生応力 ／許容値
アンカーボルト	引張	$\mathrm{N} / \mathrm{mm}^{2}$	136.5	236.5	0.58
	せん断	$\mathrm{N} / \mathrm{mm}^{2}$	38.2	136.5	0． 28
	組合せ	$\mathrm{N} / \mathrm{mm}^{2}$	136.5	236.5	0.58
コンクリート（コーン状破壊）	引張＊	kN	763	1009	0． 76
コンクリート（圧縮）	圧縮	$\mathrm{N} / \mathrm{mm}^{2}$	6.1	13.6	0． 45
ベースプレート	面外曲げ	$\mathrm{N} / \mathrm{mm}^{2}$	188.5	298.2	0.64
フランジプレート	面外曲げ	$\mathrm{N} / \mathrm{mm}^{2}$	141.6	272.8	0.52
リブプレート	圧縮	$\mathrm{N} / \mathrm{mm}^{2}$	99.1	258.5	0.39
	せん断	$\mathrm{N} / \mathrm{mm}^{2}$	110.3	149.2	0． 74

注記＊：アンカーボルト 1 本当たりの引張力

VI－2－7－3 液体廃棄物処理系の耐震性についての計算書

VI－2－7－3－2 サプレッションプール水貯蔵系の耐震性についての計算書

VI－2－7－3－2 サプレッションプール水貯蔵系の耐震性についての計算書

目 次

VI－2－7－3－2－1 管の耐震性についての計算書（サプレッションプール水貯蔵系）

VI－2－7－3－2－1 管の耐震性についての計算書 （サプレッションプール水貯蔵系）

本資料は，実用発電用原子炉及びその附属施設の技術基準に関する規則第5条（地震による損傷 の防止）の技術上の基準に対し，サプレッションプール水貯蔵系設備を撤去することによる影響を説明するものである。

液体廃棄物処理系であるサプレッションプール水貯蔵系設備と取合ら既設設備は，サプレッショ ンチェンバ，残留熱除去系配管及び床ドレン・化学廃液采配管，電源供給元である制御盤，操作盤等である。

サプレッションプール水貯蔵系設備の撤去工事においては，サプレッションプール水貯蔵系設備 と既設設備の取合い部は適切に処置することとしている。
具体的には，配管は取合い部で切断し閉止することで既設設備と切り離し，また制御盤，操作盤等については，予備化，端末処理等を行うこととしており，添付書類「VI－2－2－2 原子灯建屋の耐震性についての計算書」にて評価する原子炉建屋，添付書類「VI－2－9－2－1－2 サプレッションチェ ンバの耐震性についての計算書」にて評価するサプレッションチェンバ，添付書類「VI－2－5－4－1－4管の耐震性についての計算書（残留熱除去系）」にて評価する残留熱除去系配管及び床ドレン・化学廃液系配管への耐震性に影響を及ぼすことはない。

VI－2－8 放射線管理施設の耐震性についての計算書

VI－2－8－1 放射線管理施設の耐震性についての計算結果
VI－2－8－2 放射線管理用計測装置についての耐震計算書
VI－2－8－3 換気設備の耐震性についての計算書
VI－2－8－4 生体遮蔽装置の耐震性についての計算書

VI－2－8－1 放射線管理施設の耐震性についての計算結果
1．概要 1
2．耐震評価条件整理 1

1．概要
本説明書は，放射線管理施設の耐震計算の手法及び条件の整理について説明するものである。

2．耐震評価条件整理
放射線管理施設の設備に対して，設計基準対象施設の耐震重要度分類，重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既 に認可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のうち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異の有無を整理した。結果を表1に示す。

放射線管理施設の耐震計算は表1に示す計算書に記載することとする。

表1 耐震評価条件整理一覧表

評価対象設備			設計基準対象施設			重大事故等対処設備		
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \\ \hline \end{gathered}$	新規制基準施行前に認可された 実績との差異	耐震計算の記載箇所	設備分類＊${ }^{11}$	設計基準対象施設との評価条件の差異	耐震計算の記載箇所
放 射 線 管 理 施 設	放 射 線 管 理 用 計 測 装 置	主蒸気管放射線モニタ	S	－＊2	VI－2－8－2－1－1－1	－	－	－
		格納容器内雰囲気放射線モニタ (D/W)	S	－＊2	VI－2－8－2－1－2－1	常設耐震／防止常設／緩和	有	VI－2－8－2－1－2－1
		格納容器内雾囲気放射線モニタ (S/C)	S	－＊2	VI－2－8－2－1－2－2	常設耐震／防止常設／緩和	有	VI－2－8－2－1－2－2
		原子炉建屋原子炉棟排気放射線 モニタ	S	－＊2	VI－2－8－2－1－3－1	－	－	－
		フィルタ装置出口放射線モニタ	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－8－2－1－3－2
		燃料取替エリア放射線モニタ	S	無	VI－2－8－2－1－3－3	－	－	－
		耐圧強化ベント系放射線モニタ	－	－＊2	－	常設耐震／防止	－	VI－2－8－2－1－3－4
		使用済燃料プール上部空間放射線 モニタ（低線量）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－8－2－2－1－1
		使用済燃料プール上部空間放射線 モニタ（高線量）	－	－＊2	－	常設耐震／防止常設／緩和	－	VI－2－8－2－2－1－2
		主配管（ダクト）	S	無	VI－2－8－3－1－1	常設耐震／防止常設／緩和	無	VI－2－8－3－1－1
	換	中央制御室送風機	S	無	VI－2－8－3－1－2	常設耐震／防止常設／緩和	無	VI－2－8－3－1－2
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$	中央制御室再循環送風機	S	無	VI－2－8－3－1－3	常設耐震／防止常設／緩和	無	VI－2－8－3－1－3
		中央制御室排風機	S	無	VI－2－8－3－1－4	常設耐震／防止常設／緩和	無	VI－2－8－3－1－4

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止」は常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び「常設／その他」は常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備を示す。
注記 $* 2$ ：本工事計画で新規に申請する設備であることから，差異比較の対象外。

VI－2－8－2 放射線管理用計測装置についての耐震計算書

VI－2－8－2－1 プロセスモニタリング設備の耐震性についての計算書
VI－2－8－2－2 エリアモニタリング設備の耐震性についての計算書

VI－2－8－2－1 プロセスモニタリング設備の耐震性についての計算書

VI－2－8－2－1－1 主蒸気管中の放射性物質濃度を計測する装置の耐震性についての計算書
VI－2－8－2－1－2 原子炉格納容器本体内の放射性物質濃度を計測する装置の耐震性についての計算書
VI－2－8－2－1－3 放射性物質により汚染するおそれがある管理区域から環境に放出する排水中又は排気中の放射性物質濃度を計測する装置の耐震性についての計算

VI－2－8－2－1－1 主蒸気管中の放射性物質濃度を計測する装置の耐震性につ いての計算書

VI－2－8－2－1－1－1 主蒸気管放射線モニタの耐震性についての計算書

VI－2－8－2－1－1－1 主蒸気管放射線モニタの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4． 1 固有値解析方法 7
4． 2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 17
5．5．1 保持金具支持部取付ボルトの応力計算条件 17
5.6 応力の評価 18
5．6．1 保持金具支持部取付ボルトの応力評価 18
6．機能維持評価 19
6.1 電気的機能維持評価方法 19
7．評価結果 20
7.1 設計基準対象施設としての評価結果 20

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，主蒸気管放射線モニタが設計用地震力に対して十分 な構造強度及び電気的機能を有していることを説明するものである。

主蒸気管放射線モニタは，設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については，保持金具支持部取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで保持金具が剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表と して評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
D11－RE001A（代表）		
D11－RE001B	5．構造強度評価	表 $2-1$
D11－RE001C 構造計画		
D11－RE001D		

2．一般事項
2.1 構造計画

主蒸気管放射線モニタの構造計画を表2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，保持金具 に固定され検出器ウ エル内に固定する。 保持金具は，検出器 ウェル先端と鉛プラ グにより固定され，水平方向は保持金具支持部により固定され る。また，保持金具は，保持金具支持部及び保持金具支持部取付 ボルトで支持される。	電離箱	【主蒸気管放射線モニタ（D11－RE001A）】保持金具支持部 $A-A$ 矢視 正面 保持金具支持部拡大図 （単位：mm）

2.2 評価方針

主蒸気管放射線モニタの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す主蒸気管放射線モニタの部位を踏まえ「3．評価部位」にて設定する箇所におい て，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施す る。また，主蒸気管放射線モニタの機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認 することで実施する。確認結果を「7．評価結果」に示す。

主蒸気管放射線モニタの耐震評価フローを図2－1 に示す。

図 2－1 主蒸気管放射線モニタの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984（（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会 2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

	記 号	記 号 の 説 明	単 位
	A_{b}	ボルトの軸断面積	mm^{2}
	A	部材の断面積	mm^{2}
	C_{H}	水平方向設計震度	－
	$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
	d	ボルトの呼び径	mm
	F	設計•建設規格 SSB－3131に定める値	MPa
	F＊	設計•建設規格 SSB－3133に定める値	MPa
	F_{b}	ボルトに作用する引張力（1本当たり）	N
	I_{p}	保持金具の断面二次極モーメント	mm ${ }^{4}$
	I_{y}	保持金具の断面二次モーメント（ y 軸）	mm ${ }^{4}$
	I_{z}	保持金具の断面二次モーメント（ z 軸）	mm^{4}
	f ${ }_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力	MPa
0	g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
	m	質量	kg
$\stackrel{T}{1}$	n f	評価上引張力を受けるとして期待するボルトの本数	－
¢	S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
¢	$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$\stackrel{1}{5}$	$S_{\text {y }}(\mathrm{RT})$	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ におけ	MPa
（－）		る値	
ค	π	円周率	－
\bigcirc	σ b	ボルトに生じる引張応力	MPa
	$\tau_{\text {b }}$	ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表2－2 に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

主蒸気管放射線モニタの耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる保持金具支持部取付ボルトについて実施する。主蒸気管放射線モ ニタの耐震評価部位については，表2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
主蒸気管放射線モニタの固有値解析方法を以下に示す。
（1）主蒸気管放射線モニタは，「4．2解析モデル及び諸元」に示す三次元はりモデルとし て考える。

4． 2 解析モデル及び諸元

主蒸気管放射線モニタの解析モデルを図4－1 に，解析モデルの概要を以下に示す。ま た，機器の諸元を本計算書の【主蒸気管放射線モニタ（D11－RE001A）の耐震性について の計算結果】のその他の機器要目に示す。
（1）保持金具は検出器ウェル内に固定されることから，（1）の部材の直線とみなし，支持点（保持金具支持部，保持金具上端及び下端）7点で固定されるものとする。
（2）解析モデルにおいて，検出器及び保持金具の質量は質点に集中するものとし，質点 は保持金具支持部の支持間隔の中心に設置する。
（3）主蒸気管放射線モニタの重心位置については，転倒方向を考慮して，計算条件が厳 しくなる位置に重心位置を設定して耐震性の計算を行らものとする。
（4）拘束条件として，支持点（保持金具支持部）をXY方向及び回転方向を固定される ものとし，支持点（保持金具上端及び下端）を X Y Z 方向及び回転方向を固定され るものとする。
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「 N A S T R A N 」を使用し，固有値を求める。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5－4 計算機プ ログラム（解析コード）の概要」に示す。

図 4－1 主蒸気管放射線モニタ解析モデル
－：支持点（保持金具支持部，保持金具上端及び下端）
－検出器及び保持金具の質点

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m a	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	55
ポアソンン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－2 部材の機器要目

材料	
対象要素	
A $\left(\mathrm{mm}^{2}\right)$	
$\mathrm{I}_{\mathrm{y}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{p}}\left(\mathrm{mm}^{4}\right)$	
断面形状 (mm)	

4． 3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方 向	
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4． 2 項（1）～（5）のほか，次の条件で計算する。
（1）地震力は，主蒸気管放射線モニタに対して，水平方向及び鉛直方向から同時に作用 するものとする。
（2）主蒸気管放射線モニタは，保持金具により検出器ウェル内に固定される。保持金具 は，ウェル先端と鉛プラグにより軸方向を固定し，保持金具支持部で検出器ウェル内面に接触して半径方向を固定され，保持金具支持部は，保持金具支持部取付ボル トで支持されているものとする。
（3）主蒸気管放射線モニタの質量は，検出器及び保持金具を考慮する。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
主蒸気管放射線モニタの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1に示す。

5．2．2 許容応力
主蒸気管放射線モニタの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表5－2のとおりとする。

5．2．3 使用材料の許容応力評価条件
主蒸気管放射線モニタの使用材料の許容応力評価条件のうち設計基準対象施設 の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $* 1: そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 5－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$I V_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$ s

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。

表 5－3 使用材料の許容応力（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)					
保持金具					
支持部取付ボルト					

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S S 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（設計基準対象施設）

据付場所及び	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 15.00*1 } \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下 } * 2 \end{gathered}$	－＊3	－＊3	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.97 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}= \\ 1.37 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊ $3: \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 保持金具支持部取付ボルトの計算方法
保持金具支持部取付ボルトの応力は，地震による震度により作用する地震力によって生じる引張力について計算する。

軽倒方向

図5－1 計算モデル
（1）引張応力
保持金具支持部取付ボルトに対する引張力は，転倒支点となるボルト列を支点とする転倒を考え，これをもら片側のボルト列で受けるものとして計算する。

引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{l}_{1}}{\mathrm{n}_{\mathrm{f}} \cdot \ell_{2}} \tag{5.4.1.1.1}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.2}
\end{equation*}
$$

ここで，保持金具支持部取付ボルトの軸断面積 A b は次式により求める。
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}$

5.5 計算条件

5．5．1 保持金具支持部取付ボルトの応力計算条件保持金具支持部取付ボルトの応力計算に用いる計算条件は，本計算書の【主蒸気管放射線モニタ（D11－RE001A）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 保持金具支持部取付ボルトの応力評価
5．4．1項で求めた保持金具支持部取付ボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 f t 。以下であること。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容引張応力 to	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\mathrm{~F}^{*} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法
主蒸気管放射線モニタの電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

主蒸気管放射線モニタの機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
主蒸気管放射線モニタ （D11－RE001A）	水平	
	鉛直	

7．評価結果

7.1 設計基準対象施設としての評価結果

主蒸気管放射線モニタの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【主蒸気管放射線モニタの耐震性（D11－RE001A）についての計算結果】
1．設計基準対象施設
1．1 設計条件

機 器 名 称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
主蒸気管放射線モニタ (D11-RE001A)	S	原子炉建屋 $\text { 0.P. } 15.00^{* 1}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	55

注記 $* 1$ ：基準床レベルを示す。
＊2：固有値解析で剛であることを確認した。
＊ $3: \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

1．2 機器要目

1．2．1 主蒸気管放射線モニタ

1.2 .1 主烝気管放射線モニタ
部材 m (kg) ℓ_{1} $(\mathrm{~mm})$ ℓ_{2} $(\mathrm{~mm})$ d (mm) A_{b} $\left(\mathrm{mm}^{2}\right)$ n_{f}
保持金具 支持部取付ボルト

部材	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{RT})$ (MPa)	F (MPa)	F^{*} (MPa)
保持金具 支持部取付ボルト	195	496	205	205	205

1．3 計算数値
1．3．1 ボルトに作用する力
（単位：N）

1．4結論

部材	材 料	応力	弾性設計用地震動 S d 又 は静的震度		基準地震動 S s	
			算出応力＊	許容応力	算出応力	許容応力
保持金具 支持部取付ボルト		引張り	$\sigma_{\mathrm{b}}=13$	$f_{\mathrm{t} \text { o }}=153$	$\sigma_{\mathrm{b}}=13$	$f_{\mathrm{t} \text { o }}=153$

注記＊：基準地震動 S s による算出値
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度	機能確認済加速度
主蒸気管放射線モニタ （D11－RE001A）	水平方向	1.65	
	鉛直方向	1.15	

注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－8－2－1－2 原子炉格納容器本体内の放射性物質濃度を計測する装置の耐震性についての計算書
VI－2－8－2－1－2－1 格納容器内雾囲気放射線モニタ（D／W）の耐震性についての計算書
VI－2－8－2－1－2－2 格納容器内雰囲気放射線モニタ（S／C）の耐震性についての計算書

VI－2－8－2－1－2－1 格納容器内雰囲気放射線モニタ（D／W）の耐震性につ いての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4．1 固有値解析方法 7
4．2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力の計算方法 16
5.5 計算条件 17
5．5．1 保持金具支持部取付ボルトの応力計算条件 17
5.6 応力の評価 17
5．6．1 保持金具支持部取付ボルトの応力評価 17
6．機能維持評価 18
6.1 電気的機能維持評価方法 18
7．評価結果 19
7． 1 設計基準対象施設としての評価結果 19
7.2 重大事故等対処設備としての評価結果 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内雰囲気放射線モニタ（D／W）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

格納容器内雰囲気放射線モニタ（D／W）は，設計基準対象施設においてはS クラス施設 に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については保持金具支持取付ボルトに作用する応力の裕度が厳しい条件 （許容値／発生値に小さい方）となるものを代表して評価する。また，電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで，同構造の場合は同じ加速度となる ことから，構造強度評価の代表として選定した検出器を代表として評価する。評価対象 を表1－1に示す。

表 1－1 概略構造識別

| 評価部位 | 評価方法 | 構造計画 |
| :---: | :---: | :---: | :---: |
| D23－RE005A（代表） | 5．構造強度評価 | 表 $2-1 \quad$ 構造計画 |
| D23－RE005B | | |

2．一般事項
2.1 構造計画

格納容器内雰囲気放射線モニタ（D／W）の構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，保持金具 に固定され取付ボル トで原子炉格納容器貫通部のスリーブに固定する。 また，保持金具は， スリーブ内面に保持金具支持部及び保持金具支持部取付ボル トで支持する。	電離箱	【格納容器内雰囲気放射線モニタ（D／W）（D23－RE005A）】

2.2 評価方針

格納容器内雰囲気放射線モニタ（D／W）の応力評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す格納容器内雰囲気放射線モニタ（D／W）の部位を踏まえ「3．評価部位」 にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，格納容器内雰囲気放射線モニタ（D／W）の機能維持評価 は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針 に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」 に示す。

格納容器内雰囲気放射線モニタ（D／W）の耐震評価フローを図2－1 に示す。

図 2－1 格納容器内雰囲気放射線モニタ（D／W）の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 O 1 •補 －1984，J E A G 4 6 O 1－1987及び J E A G 4 6 0 1－1991追補版）（（社）日本電気協会電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3年 6 月）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。）） J S M E S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」という。）

2． 4 記号の説明

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

格納容器内雾囲気放射線モニタ（D／W）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる保持金具支持部取付ボルトについて実施する。格納容器内雰囲気放射線モニタ（D／W）の耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
格納容器内雰囲気放射線モニタ（D／W）の固有値解析方法を以下に示す。
（1）格納容器内雰囲気放射線モニタ（D／W）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4.2 解析モデル及び諸元

格納容器内雰囲気放射線モニタ（D／W）の解析モデルを図 4－1 に，解析モデルの概要 を以下に示す。
（1）保持金具は円筒でスリーブ内に固定されることから，（1）の部材の直線とみなし，支持点（保持金具支持部及び取付ボルト）5点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表4－1 及び表 4－2 に，部材の機器要目を表4－3に示す。
（3）拘束条件として，支持点（保持金具支持部）をXY方向及び回転方向を固定され るものとし，支持点（取付ボルト）を X Y Z 方向及び回転方向を固定されるものと する。なお，取付ボルトは剛体として評価する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

（単位：mm）
図 4－1 格納容器内雰囲気放射線モニタ（D／W）解析モデル

表 4－1 機器諸元（設計基準対象施設）

項目	記号	単位	入力値
材質	-	-	
質量	ma	kg	
等分布質量	m b	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	171
縦弾性係数	E	MPa	
ポアソンン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－2 機器諸元（重大事故等対処設備）

項目	記号	単位	入力値
材質	-	-	
質量	ma	kg	
等分布質量	m b	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	200
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－3 部材の機器要目

枠囲みの内容は商業機密の観点から公開できません。

4． 3 固有値解析結果

固有値解析結果のらち設計基準対象施設の評価に用いるものを表4－4に，重大事故等対処設備の評価に用いるものを表4－5に示す。

設計基準対象施設の 1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であ り，剛であることを確認した。

重大事故等対処設備の 1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下で あり，剛であることを確認した。

表 4－4 固有値解析結果（設計基準対象施設）
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向

表 4－5 固有値解析結果（重大事故等対処設備）
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，格納容器内雰囲気放射線モニタ（D／W）に対して，水平方向及び鉛直方向 から同時に作用するものとする。
（2）格納容器内雰囲気放射線モニタ（D／W）は，保持金具の取付ボルトで原子炉格納容器貫通部に固定される。保持金具は，保持金具支持部でスリーブ内面に接触して固定されて，保持金具支持部は，保持金具支持部取付ボルトで支持されているものと する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
格納容器内雰囲気放射線モニタ（D／W）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1に，重大事故等対処設備の評価に用いるものを表5－2に示す。

5．2．2 許容応力
格納容器内雰囲気放射線モニタ（D／W）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－3 のとおりとする。

5．2．3 使用材料の許容応力評価条件
格納容器内雰囲気放射線モニタ（D／W）の使用材料の許容応力評価条件のらち設計基準対象施設の評価に用いるものを表 5－4に，重大事故等対処設備の評価に用 いるものを表5－5に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

へ

施設区分	機器名称	設備分類＊ 1	機器等の区分	荷重の組合せ	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
保持金具 支持部取付ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	171	176	373	-

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
保持金具 支持部取付ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	周囲環境温度	200	170	373	-

5.3 設計用地震力

耐震評価に用いる設計用地震力を表5－6及び表5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 6.00 \\ \left(0 . \text { P. 15. } 00^{* 11}\right) \end{gathered}$	$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$		－＊3	－＊3	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.97 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.37 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊ $3: \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 6.00 \\ \left(0 . \text { P. 15. } 00^{* 1}\right) \end{gathered}$		0.05 以下 $*^{2}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.97 \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{v}}= \\ 1.37 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5．4 計算方法

5．4．1 応力の計算方法
保持金具支持部取付ボルトの応力は，地震による震度により作用する地震力に よって生じるせん断力について計算する。

図5－1 計算モデル
（1）せん断応力
保持金具支持部取付ボルトに対するせん断力は，図5－1に示す水平方向及び鉛直方向の地震力を，取付ボルト全本数で受けるものとして計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot \frac{\mathrm{C}_{\mathrm{H}}+\left(\mathrm{C}_{\mathrm{v}}-1\right)}{\sqrt{2}} \quad \cdot \cdots \cdot \cdot \cdot \tag{5.4.1.1}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau \mathrm{b}=\frac{\mathrm{Qb}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.2}
\end{equation*}
$$

ここで，取付ボルトの断面積 A b は次式により求める。

$$
\begin{equation*}
\mathrm{Ab}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.3}
\end{equation*}
$$

5．5 計算条件

5．5．1 保持金具支持部取付ボルトの応力計算条件
保持金具支持部取付ボルトの応力計算に用いる計算条件は，本計算書の【格納容器内雰囲気放射線モニタ（D／W）（D23－RE005A）の耐震性についての計算結果】の設計条件及び機器要目に示す。
5.6 応力の評価

5．6．1 保持金具支持部取付ボルトの応力評価
5．4．1項で求めた保持金具支持部取付ボルトのせん断応力 $\tau \mathrm{b}$ は，せん断力のみ を受けるボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下であること。ただし，$f_{\mathrm{s}} \mathrm{b}$ は下表によ る。

| 弾性設計用地震動 S d |
| :---: | :---: | :---: |
| 又は静的震度による |
| 荷重との組合せの場合 |\quad| 基準地震動 S s による |
| :---: |
| 荷重との組合せの場合 |

6．機能維持評価

6.1 電気的機能維持評価方法

格納容器内雰囲気放射線モニタ（D／W）の電気的機能維持評価について以下に示す。 なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

格納容器内雰囲気放射線モニタ（D／W）の機能確認済加速度は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内雰囲気放射線モニタ（D／W）(D23-RE005A)	水平	
	鉛直	

7．評価結果

7． 1 設計基準対象施設としての評価結果
格納容器内雰囲気放射線モニタ（D／W）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
7.2 重大事故等対処設備としての評価結果

格納容器内雰囲気放射線モニタ（D／W）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
○ 2
（3） $\mathrm{VI}-2-8-2-1-2-1$
R 0

【格納容器内雰囲気放射線モニタ（D／W）（D23－RE005A）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{gathered} \text { 周囲環 } \\ \text { 境温度 } \\ \left({ }^{C}\right) \end{gathered}$
			水平方向	鉛直方向	水平方向 設計震度	$\begin{aligned} & \text { 鉛直方向 } \\ & \text { 計 } \end{aligned}$	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { 格納容器内雰囲気 } \\ \text { 放射線モニタ (D/W) } \\ \text { (D23-RE005A) } \end{gathered}$	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .6 .00 \\ \left(0 . \mathrm{P} .15 .00^{* 1}\right) \end{gathered}$	$\stackrel{0.05}{\text { 以下 }}{ }_{2}$		－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{v}}=1.37$	171

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊3： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

部 材	$\mathrm{m}_{(\mathrm{kg})}$	$\begin{gathered} \mathrm{d} \\ (\mathrm{~mm}) \end{gathered}$	$\underset{\left(\mathrm{mm}^{2}\right)}{\mathrm{A}_{\mathrm{b}}}$	n	$\underset{(\mathrm{MPa}}{\mathrm{y}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}^{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$
保持金具支持部取付ボルト				2	176	373	176	211

1．3 計算数値

ボルトに作用する力（単位：N）		
	Q_{b}	
部 材	弾性設計用地震動 S d 又は静的震度	基準地震動 S S
保持金具支持部取付ボルト	－	

O 2
（3） $\mathrm{VI}-2-8-2-1-2-1$

R 0

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

注記＊：基準地震動S s による算出値
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
格納容器内雰囲気 放射線モニタ（D／W） （D23－RE005A）	水平方向	1.65	
	鉛直方向	1.15	

へ 注記 $*$ ：基漼地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
等分布質量	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

○ 2
（3） $\mathrm{VI}-2-8-2-1-2-1$
R 0

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\underset{\text { 周囲環境 }}{\text { 温度 }}$ $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雾囲気放射線モニタ（D／W） （D23－RE005A）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 6.00 \\ \left(0 . \text { P. } 15.00^{* 1}\right) \end{gathered}$		$\stackrel{0.05}{\text { 以下 }} \stackrel{\text { 2 }}{2}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.97$	$\mathrm{C}_{\mathrm{V}}=1.37$	200

注記＊1 ：基漼床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
2.2 機器要目

部 材	m (kg)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
保持金具支持部 取苻ホルト		2	170	373	-	204		

2．3 計算数値

O 2
（3） $\mathrm{VI}-2-8-2-1-2-1$

R 0

2． 4 結論

部 材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
保持金具支持部取付ボルト	SS400	せん断	－	－	$\tau_{\mathrm{b}}=38$	$f_{\text {s b }}=117$

すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

	機能維持評価用加速度＊	機能確認済加速度	
格納容器内雰囲気 放射線モニタ（D／W） （D23－RE005A）	水平方向	1.65	
	1.15		

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。
2.5 その他の機器要目
2.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
等分布質量	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	
ポアソン比	v	-	
ポア要素数	-	個	
節点数	-	個	

O 2 (3) VI-2-8-2-1-2-1 R O E

VI－2－8－2－1－2－2 格納容器内雰囲気放射線モニタ（S／C）の耐震性につ いての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 4
2.3 適用規格•基準等 5
2.4 記号の説明 6
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 8
4． 1 固有値解析方法 8
4．2 解析モデル及び諸元 8
4．3 固有値解析結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重の組合せ及び許容応力 13
5．2．1 荷重の組合せ及び許容応力状態 13
5．2．2 許容応力 13
5．2．3 使用材料の許容応力評価条件 13
5.3 設計用地震力 17
5．4 計算方法 18
5．4．1 溶接部（D23－RE006A）の応力の計算方法 18
5．4．2 溶接部（D23－RE006B）の応力の計算方法 21
5.5 計算条件 24
5．5．1 溶接部の応力計算条件 24
5.6 応力の評価 24
5．6．1 溶接部の応力評価 24
6．機能維持評価 25
6．1 電気的機能維持評価方法 25
7．評価結果 26
7． 1 設計基準対象施設としての評価結果 26
7．2 重大事故等対処設備としての評価結果 26

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，格納容器内雰囲気放射線モニタ（S／C）が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

格納容器内雰囲気放射線モニタ（S／C）は，設計基準対象施設においては S クラス施設 に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

格納容器内雰囲気放射線モニタ（S／C）の構造計画を表2－1 及び表2－2に示す。

表 2－1 構造計画

計画の概要		概略構造図		
基礎•支持構造	主体構造			
検出器は，取付ボル トにより計器スタン ションに取付けられ た取付板に固定され る。 計器スタンション は，原子炉建屋内の構造物に溶接で固定す る。	電離箱	【格納容器内雾囲気放射線モニタ（S／C）（D23－RE006A）】 \square 上面 正面	側面	（単位：mm）

表 2－2 構造計画

2.2 評価方針

格納容器内雰囲気放射線モニタ（S／C）の応力評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す格納容器内雰囲気放射線モニタ（S／C）の部位を踏まえ「3．評価部位」 にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，格納容器内雰囲気放射線モニタ（S／C）の機能維持評価 は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針 に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」 に示す。

格納容器内雰囲気放射線モニタ（S／C）の耐震評価フローを図2－1に示す。

図 2－1 格納容器内雰囲気放射線モニタ（S／C）の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 O 1 •補 －1984，J E A G 4 6 O 1－1987 及び J E A G 4 6 0 1－1991追補版）（（社）日本電気協会電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3年 6 月）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））
J S M E S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
a	溶接部の有効のど厚	mm
A_{w}	溶接部の有効断面積	mm ${ }^{2}$
$\mathrm{A}_{\mathrm{w}} \mathrm{X}$	溶接部の Fx に対する有効断面積	mm^{2}
$\mathrm{A}_{\mathrm{w} ~}$	溶接部の F_{z} に対する有効断面積	mm^{2}
$\mathrm{b}_{1}, \mathrm{~b}_{2}$	溶接の有効長さ（ x 方向）	mm
$\mathrm{b}_{3}, \mathrm{~b}_{4}$	溶接の有効長さ（ x 方向）	mm
$\mathrm{h}_{1}, \mathrm{~h}_{2}$	溶接の有効長さ（ z 方向）	mm
C_{H}	水平方向設計震度	－
C v	鉛直方向設計震度	－
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{x}	溶接部に作用する力（ X 方向）	N
F_{Y}	溶接部に作用する力（ Y 方向）	N
F_{z}	溶接部に作用する力（ Z 方向）	N
$f_{\text {s }}$	溶接部の許容せん断応力 （fs を 1.5 倍した値又は f s＊を 1.5 倍した値）	MPa
M_{x}	溶接部に作用するモーメント（ X 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{Y}	溶接部に作用するモーメント（ Y 軸）	$\mathrm{N} \cdot \mathrm{mm}$
M_{z}	溶接部に作用するモーメント（ C 軸）	$\mathrm{N} \cdot \mathrm{mm}$
s	溶接脚長	mm
Su	設計•建設規格 付録材料図表 Part5 表9に定める値	
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	
$S_{\text {y }}$（R T）	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ における値	
Z x	溶接部の溶接全断面における X 軸方向の断面係数	mm^{3}
Z z	溶接部の溶接全断面における C 軸方向の断面係数	mm ${ }^{3}$
Zp	溶接全断面におけるねじり断面係数	mm^{3}
σ t	溶接部に生じる引張応力	MPa
σ b	溶接部に生じる曲げ応力	MPa
σ w	溶接部に生じる組合せ応力	MPa
τ	溶接部に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 2－3 に示すとおりとする。

表 2－3 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3 $*$	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊ 2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

格納容器内雾囲気放射線モニタ（S／C）の耐震評価は，「5．1構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる溶接部について実施する。格納容器内雰囲気放射線モニタ（S／C）の耐震評価部位については，表2－1 及び表 2－2 の概略構造図に示す。

4．固有周期
4．1 固有値解析方法
格納容器内雰囲気放射線モニタ（S／C）の固有値解析方法を以下に示す。
（1）格納容器内雰囲気放射線モニタ（S／C）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4．2 解析モデル及び諸元

格納容器内雰囲気放射線モニタ（S／C）の解析モデルを図 4－1 及び図 4－2 に，解析モ デルの概要を以下に示す。
（1）格納容器内雰囲気放射線モニタ（S／C）（D23－RE006A）は，計器スタンションで原子炉建屋構造物に固定されることから，（1）から⑤の部材で組まれた支持構造物とみな し，支持点（原子炉建屋構造物との溶接点） 2 点で固定されるものとする。
格納容器内雾囲気放射線モニタ（S／C）（D23－RE006B）は，計器スタンションで原子炉建屋構造物に固定されることから，（1）及び②）の部材で組まれた支持構造物とみなし，支持点（原子炉建屋構造物との溶接点） 1 点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は質点に集中するものとし，質点は検出器の取付位置に設置する。機器諸元を表 4－1，表 4－2，表 4－4 及び表 4－5 に，部材の機器要目を表 4－3及び表4－6に示す。
（3）拘束条件として，支持点（原子炉建屋構造物との溶接点）をXYZ 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

（単位：mm）
図 4－1 格納容器内雰囲気放射線モニタ（S／C）（D23－RE006A）解析モデル

U \ll ：支持点
（原子炉建屋構造物との溶接点）
－検出器質点
（単位：mm）
図 4－2 格納容器内雰囲気放射線モニタ（S／C）（D23－RE006B）解析モデル

> 枠囲みの内容は商業機密の観点から公開できません。

表 4－1 機器諸元（D23－RE006A）（設計基準対象施設）

項目	記号	単位	入力値
材質	-	-	
質量	m a	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	100
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－2 機器諸元（D23－RE006A）（重大事故等対処設備）

項目	記号	単位	入力値
材質	-	-	
質量	$\mathrm{m} a$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－3 部材の機器要目（D23－RE006A）

材料		
対象要素	（1）－（5）	
A（mm ${ }^{2}$		
I y $\left(\mathrm{mm}^{4}\right)$		
$I_{z}\left(\mathrm{~mm}^{4}\right)$		
I p $\left(\mathrm{mm}^{4}\right)$		
断面形状（mm）		
		$\times \mathrm{c}$ ）

表 4－4 機器諸元（D23－RE006B）（設計基準対象施設）

項目	記号	単位	入力値
材質	-	-	
質量	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	100
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－5 機器諸元（D23－RE006B）（重大事故等対処設備）

項目	記号	単位	入力値
材質	-	-	
質量	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

表 4－6 部材の機器要目（D23－RE006B）

朹囲みの内容は商業機密の観点から公開できません。

4．3 固有値解析結果

固有値解析結果を表 4－7 及び表 4－8 に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－7 格納容器内雰囲気放射線モニタ（S／C）（D23－RE006A）固有値解析結果（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方 向	
1 次		水平	－	－	－

表 4－8 格納容器内雰囲気放射線モニタ（S／C）（D23－RE006B）固有値解析結果（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方 向	Z 方 向	
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，格納容器内雰囲気放射線モニタ（S／C）に対して，水平方向及び鉛直方向 から同時に作用するものとする。
（2）格納容器内雰囲気放射線モニタ（S／C）は，取付ボルトにより計器スタンションに固定され，計器スタンションは，原子炉建屋内構造物に溶接で固定されているもの とする。
（3）格納容器内雰囲気放射線モニタ（S／C）の質量は検出器及び計器スタンションを考慮する。
（4）解析コードは，「NASTRAN」を使用し，荷重を求める。なお，評価に用いる解析コ ードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラ ム（解析コード）の概要」に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
格納容器内雰囲気放射線モニタ（S／C）の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1に，重大事故等対処設備の評価に用いるものを表5－2に示す。

5．2．2 許容応力

格納容器内雰囲気放射線モニタ（S／C）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－3 のとおりとする。

5．2．3 使用材料の許容応力評価条件
格納容器内雰囲気放射線モニタ（S／C）の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表5－4に，重大事故等対処設備の評価に用 いるものを表 5－5 に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ

注記 $* 1: そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分	機器名称	設備分類＊1	機器等の区分	荷重の組合せ	

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界 $* 1, ~ * 2$ （ボルト等以外）				
	一次応力				
	引張り	せん断	圧縮	曲げ	支圧
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{f}{ }_{\text {c }}$	$1.5 \cdot \mathrm{ff}$	$1.5 \cdot \mathrm{f}_{\mathrm{p}}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot{ }_{\text {f }}{ }^{*}$	$1.5 \cdot \mathrm{f}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}{ }^{*}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{ff}_{\mathrm{p}}$＊
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{A} \mathrm{~S} \text { としてIV}{ }_{A} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$					

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

$$
\mathrm{O} 2 \text { (3) VI-2-8-2-1-2-2 R O }
$$

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)	
溶接部		周囲環境温度	100	196	373	-

表 5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
溶接部		周囲環境温度	130	187	373

5.3 設計用地震力

耐震評価に用いる設計用地震力を表5－6及び表5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S S 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及 び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. -0. } 80 \\ \left(0 . \text { P. 6. } 00^{* 1}\right) \end{gathered}$		0.05 以下＊2	－＊3	－＊3	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.57 \end{gathered}$	$\begin{gathered} C_{v}= \\ 1.09 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊ $3: \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所及 び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉建屋 $\begin{gathered} \text { 0.P. }-0.80 \\ \left(0 . \text { P. 6. } 00^{* 1}\right) \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下 } * 2 \end{gathered}$	－	－	$\begin{gathered} \mathrm{C}_{\mathrm{H}}= \\ 1.57 \end{gathered}$	$\begin{gathered} C_{V}= \\ 1.09 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5． 4 計算方法

5．4．1 溶接部（D23－RE006A）の応力の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。なお，溶接部の評価は，有効断面積が小さい溶接部Bを代表として評価する。

䦓四：力を受けると仮定する溶接部B

図 5－1 D23－RE006A の計算モデル

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 5－8に示 す。

表 5－8 溶接部発生反力，モーメント

対象計器	反力（N）				モーメント $(N \cdot m m)$		
	F_{x}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}	
D23－RE006A							

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力
$\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{A}_{\mathrm{W}}}$
ここで，溶接部の有効断面積 A_{w} は，次式により求める。
$A_{W}=a \cdot\left(b_{3}+b_{4}\right)$

ただし，溶接部の有効のど厚 a は，
$\mathrm{a}=0.7 \cdot \mathrm{~s}$
（5．4．1．3）
（2）せん断応力
溶接部に対するせん断応力は，全溶接断面積で受けるものとして計算する。

せん断応力
$\tau=\sqrt{\left(\frac{F_{X}}{A_{W X}}+\frac{M_{Y}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{W Z}}+\frac{M_{Y}}{Z_{P}}\right)^{2}}$
ここで， A_{wx} ， A_{wz} はせん断力を受ける各方向の有効断面積， Z_{p} は溶接断面におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{wx}}, \mathrm{A}_{\mathrm{wz}}$ は，次式により求める。
$\mathrm{A}_{\mathrm{WX}}=\mathrm{A}_{\mathrm{W} Z}=\mathrm{a} \cdot\left(\mathrm{b}_{3}+\mathrm{b}_{4}\right)$
（3）曲げ応力
溶接部に対する曲げ応力は，図 5－1 でX軸方向，Z 軸方向に対する曲げモーメ トを中心軸の外側の溶接部で受けるものとして計算する。

曲げ応力

$\mathrm{Z}_{\mathrm{x}}, \mathrm{Z}_{\mathrm{z}}$ は溶接部の溶接断面の X 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力
溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\begin{equation*}
\sigma_{\mathrm{W}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}} . \tag{5.4.1.7}
\end{equation*}
$$

5．4．2 溶接部（D23－RE006B）の応力の計算方法
三次元はりモデルによる地震応答解析から溶接部の荷重を算出し，その結果を用いて理論式にて溶接部を評価する。

図 5－2 D23－RE006B の計算モデル

地震応答解析によって得られた溶接部評価点の反力とモーメントを表 5－9に示 す。

表 5－9 溶接部発生反力，モーメント

対象計器	反力（N）				モーメント $(N \cdot m m)$		
	F_{x}	F_{Y}	F_{Z}	M_{X}	M_{Y}	M_{Z}	
D23－RE006B							

（1）引張応力
溶接部に対する引張応力は，全溶接断面積で受けるものとして計算する。

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{Y}}}{\mathrm{~A}_{\mathrm{W}}} \tag{5.4.2.1}
\end{equation*}
$$

ここで，溶接部の有効断面積 A_{w} は次式により求める。
$\mathrm{A}_{\mathrm{W}}=\mathrm{a} \cdot\left(\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{b}_{1}+\mathrm{b}_{2}\right)$

ただし，溶接部の有効のど厚 aは，

$$
\begin{equation*}
\mathrm{a}=0.7 \cdot \mathrm{~s} \tag{5.4.2.3}
\end{equation*}
$$

（2）せん断応力
溶接部に対するせん断応力は，全溶接断面積で受けるものとして計算する。

せん断応力

$$
\begin{equation*}
\tau=\sqrt{\left(\frac{F_{X}}{A_{W X}}+\frac{M_{Y}}{Z_{P}}\right)^{2}+\left(\frac{F_{Z}}{A_{W Z}}+\frac{M_{Y}}{Z_{P}}\right)^{2}} \tag{5.4.2.4}
\end{equation*}
$$

ここで， $\mathrm{A}_{\mathrm{Wx}}, ~ \mathrm{~A}_{\mathrm{Wz}}$ はせん断力を受ける各方向の有効断面積， Z_{P} は溶接断面 におけるねじり断面係数を示す。
$\mathrm{A}_{\mathrm{wx}}, \mathrm{A}_{\mathrm{wz}}$ は，次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{WX}}=\mathrm{A}_{\mathrm{WZ}}=\mathrm{a} \cdot\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+\mathrm{b}_{1}+\mathrm{b}_{2}\right) \tag{5.4.2.5}
\end{equation*}
$$

枠囲みの内容は商業機密の観点から公開できません。
（3）曲げ応力
溶接部に対する曲げ応力は，図 5－2 でX 軸方向，Z 軸方向に対する曲げモーメ ントを中心軸の外側の溶接部で受けるものとして計算する。

曲げ応力
$\sigma_{b}=\frac{M_{x}}{Z_{x}}+\frac{M_{Z}}{Z_{Z}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \ldots \ldots$（5．4．2．6）
Z_{x}, Z_{z} は溶接断面の X 軸及び Z 軸に関する断面係数を示す。
（4）組合せ応力溶接部に対する組合せ応力は，各応力を足し合わせたものとして計算する。

$$
\sigma_{\mathrm{w}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+\tau^{2}}
$$

（5．4．2．7）

5.5 計算条件

5．5．1 溶接部の応力計算条件
応力計算に用いる計算条件は，本計算書の【格納容器内雰囲気放射線モニタ （S／C）（D23－RE006A，B）の耐震性についての計算結果】の設計条件および機器要目に示す。
5.6 応力の評価

5．6．1 溶接部の応力評価
5．4．1 及び5．4．2 項で求めた溶接部に発生する応力は，許容応力 f_{s} 以下である こと。ただし，f_{s} は下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 f_{s}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

格納容器内雰囲気放射線モニタ（S／C）の電気的機能維持評価について以下に示す。 なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

格納容器内雰囲気放射線モニタ（S／C）の機能確認済加速度は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1 に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
格納容器内雰囲気放射線モニタ（S／C）(D23-RE006A, B)	水平	
	鉛直	

7．評価結果

7． 1 設計基準対象施設としての評価結果
格納容器内雰囲気放射線モニタ（S／C）の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 S d 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。
7.2 重大事故等対処設備としての評価結果

格納容器内雰囲気放射線モニタ（S／C）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器内雰囲気放射線モニタ（S／C）（D23－RE006A，B）の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名 称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
格納容器内雾囲気放射線モニタ（S／C） （（D23－RE006A，B）	S	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. }-0.80 \\ \left(0 . \mathrm{P} .6 .00^{* 1}\right) \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－＊3	－＊3	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{v}}=1.09$	100

注記＊1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊3： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

N

部 材	S （MPa）	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
溶接部 （D23－RE006A）	196	373	196	235
溶接部 （D23－RE006B）				

1．3 計算数値
1．3．1 溶接部に作用する力
（単位：N）

部 材	F_{x}		F_{Y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006A) } \\ \hline \end{gathered}$	－		－		－	
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006B) } \\ \hline \end{gathered}$	－		－		－	

部 材	M_{X}		M_{Y}		M_{Z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006A) } \end{gathered}$	－		－		－	
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006B) } \end{gathered}$	－		－		－	

1． 4 結論
1．4．1 溶接部の応力
（単位：MPa）

部 材	材 料	応力	弾性設計用地震動 Sd又は静的震度		基準地震動 S s	
			算出応力＊	許容応力	算出応力	許容応力
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006A) } \end{gathered}$		引張り	$\sigma_{\mathrm{t}}=2$	$f_{\mathrm{s}}=113$	$\sigma_{t}=2$	$f_{\mathrm{s}}=135$
		せん断	$\tau=8$	$f_{\mathrm{s}}=113$	$\tau=8$	$f_{\mathrm{s}}=135$
		曲げ	$\sigma_{\mathrm{b}}=37$	$f_{\mathrm{s}}=113$	$\sigma_{\mathrm{b}}=37$	$f_{\mathrm{s}}=135$
		組合せ	$\sigma_{\mathrm{W}}=39$	$f_{\mathrm{s}}=113$	$\sigma_{\mathrm{W}}=39$	$f_{\mathrm{s}}=135$
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006B) } \end{gathered}$		引張り	$\sigma_{\mathrm{t}}=1$	$f_{\mathrm{s}}=113$	$\sigma_{t}=1$	$f_{\mathrm{s}}=135$
		せん断	$\tau=1$	$f_{\mathrm{s}}=113$	$\tau=1$	$f_{\mathrm{s}}=135$
		曲げ	$\sigma_{\mathrm{b}}=28$	$f_{\mathrm{s}}=113$	$\sigma_{\mathrm{b}}=28$	$f_{\mathrm{s}}=135$
		組合せ	$\sigma_{\mathrm{W}}=29$	$f_{\mathrm{s}}=113$	$\sigma_{\mathrm{w}}=29$	$f_{\mathrm{s}}=135$

注記＊：基準地震動S s による算出値
すべて許容応力以下である。

O 2 （3）VI－2－8－2－1－2－2 R O

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
格納容器内雰囲気	水平方向	1． 31	
（D23－RE006A，B）	鉛直方向	0.91	

注記 $*$ ：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
©
1.5 その他の機器要目

項目	記号	単位	入力値	
			D23－RE006A	D23－RE006B
材質	－	－		
質量	m_{a}	kg		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	100	100
縦弾性係数	E	MPa		
ポアソン比	v	－		
要素数	－	個		
節点数	－	個		

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	$\begin{aligned} & \text { 水平方向 } \\ & \text { 設計震度 } \end{aligned}$	鉛直有向 設計震度	
格納容器内雾囲気放射線モニタ（S／C） （（D23－RE006A，B）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \mathrm{P} .-0.80 \\ \left(0 . \mathrm{P} .6 .00^{* 1}\right) \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\mathrm{C}_{\mathrm{H}}=1.57$	$\mathrm{C}_{\mathrm{V}}=1.09$	130

注記＊1：基漼床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

部 材	S (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)
溶接部 （D23－RE006A）	187	373	-	225
溶接部 $(\mathrm{D} 23-\mathrm{RE} 006 \mathrm{~B})$				

2．3 計算数値
2．3．1 溶接部に作用する力

部 材	F_{x}		F_{Y}		F_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
$\begin{gathered} \hline \text { 溶接部 } \\ \text { (D23-RE006A) } \end{gathered}$	－		－		－	
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006B) } \end{gathered}$	－		－		－	

枠囲みの内容は商業機密の観点から公開できません。

2．3．2 溶接部に作用するモーメント
（単位： $\mathrm{N} \cdot \mathrm{mm}$ ）

部 材	M_{X}		M_{Y}		M_{z}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
$\begin{gathered} \hline \text { 溶接部 } \\ \text { (D23-RE006A) } \end{gathered}$	－		－		－	
溶接部 （D23－RE006B）	－		－		－	

2． 4 結論
2．4．1 溶接部の応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
$\begin{gathered} \text { 溶接部 } \\ \text { (D23-RE006A) } \end{gathered}$		引張り	－	－	$\sigma_{t}=2$	$f_{\mathrm{s}}=129$
		せん断	－	－	$\tau=8$	$f_{\mathrm{s}}=129$
		曲げ	－	－	$\sigma_{\mathrm{b}}=37$	$f_{\mathrm{s}}=129$
		組合せ	－	－	$\sigma_{W}=39$	$f_{\mathrm{s}}=129$
溶接部 （D23－RE006B）		引張り	－	－	$\sigma_{t}=1$	$f_{\mathrm{s}}=129$
		せん断	－	－	$\tau=1$	$f_{\mathrm{s}}=129$
		曲げ	－	－	$\sigma_{\mathrm{b}}=28$	$f_{\mathrm{s}}=129$
		組合せ	－	－	$\sigma_{\mathrm{w}}=29$	$f_{\mathrm{s}}=129$

すべて許容応力以下である。
2．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
格納容器内雰囲気放射線モニタ（S／C） （D23－RE006A，B）	水平方向	1.31	
	鉛直方向	0.91	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
2.5 その他の機器要目

項目	記号	単位	入力値	
		D23－RE006A	D23－RE006B	
材質	-	-		
質量	ma	kg		
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	130	130
縦弾性係数	E	MPa		
ポアソン比	v	-		
要素数	-	個		
節点数	-	個		

33

∞ ：力を受けると仮定しない溶接部A

m临：力を受けると仮定する溶接部B

VI－2－8－2－1－3 放射性物質により汚染するおそれがある管理区域から環境 に放出する排水中又は排気中の放射性物質濃度を計測する装置の耐震性についての計算書

VI－2－8－2－1－3－1 原子炉建屋原子炉棟排気放射線モニタの耐震性についての計算書 VI－2－8－2－1－3－2 フィルタ装置出口放射線モニタの耐震性についての計算書

VI－2－8－2－1－3－3 燃料取替エリア放射線モニタの耐震性についての計算書
VI－2－8－2－1－3－4 耐圧強化ベント系放射線モニタの耐震性についての計算書

VI－2－8－2－1－3－1 原子炉建屋原子炉棟排気放射線モニタの耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 3
4． 1 構造強度評価方法 3
4.2 荷重の組合せ及び許容応力 3
4．2．1 荷重の組合せ及び許容応力状態 3
4．2．2 許容応力 3
4．2．3 使用材料の許容応力評価条件 3
5．機能維持評価 6
5.1 電気的機能維持評価方法 6
6．評価結果 7
6.1 設計基準対象施設としての評価結果 7

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，原子炉建屋原子炉棟排気放射線モニタが設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

原子炉建屋原子炉棟排気放射線モニタは，設計基準対象施設においてはS クラス施設 に分類される。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価 を示す。

なお，原子炉建屋原子炉棟排気放射線モニタが設置される計装ラックは，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載の壁掛形計装ラックであるた め，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計装ラックの取付ボルトに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで計装ラックが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表と して評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
D11－RE002A（代表）	VI－2－1－13－8 計装ラック	
D11－RE002B	の耐震性についての計算書	表 $2-1$
D11－RE002C 構造計画		
D11－RE002D	作成の基本方針	

2．一般事項
2.1 構造計画

原子炉建屋原子炉棟排気放射線モニタの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，検出器取付ボルトにより取付金具に固定され，取付金具は取付金具取付 ボルトにより検出器収納箱内部に固定さ れる。 検出器収納箱は取付ボルトによりチャ ンネルベースに固定 され，チャンネルベー スは，壁に基礎ボルト で設置する。	半導体式	【原子炉建屋原子炉棟排気放射線モニタ（D11－RE002A）】

3．固有周期
原子炉建屋原子炉棟排気放射線モニタが設置される計装ラックの固有周期は，構造が同等であり，同様な振動特性を持つ計装ラックに対する振動試験（打振試験）の結果確認 された固有周期を使用する。固有周期の確認結果を表3－1に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4． 1 構造強度評価方法
原子炉建屋原子炉棟排気放射線モニタの構造強度評価は，添付書類「VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4． 2 荷重の組合せ及び許容応力
4．2．1荷重の組合せ及び許容応力状態
原子炉建屋原子炉棟排気放射線モニタの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表4－1に示す。

4．2．2 許容応力
原子炉建屋原子炉棟排気放射線モニタの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表4－2のとおりとする。

4．2．3使用材料の許容応力評価条件
原子炉建屋原子炉棟排気放射線モニタの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表4－3に示す。

O 2 （3）VI－2－8－2－1－3－1 R 0

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
放射線管理施設	放射線管理用計測装置	原子炉建屋原子炉棟排気放射線モニタ	S		$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d}^{*}$	III $_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1: そ の$ 他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 4－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}$ s＊

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト $(i=1)$	$\begin{gathered} \mathrm{SS} 400 \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	215	400	－
取付ボルト $(i=2)$	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$		40	215	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

原子炉建屋原子炉棟排気放射線モニタの電気的機能維持評価は，添付書類「VI－2－1－ 13－8 計装ラックの耐震性についての計算書作成の基本方針」に記載の評価方法に基づ き行う。

計装ラックに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能 の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
原子炉建屋原子炉棟排気 放射線モニタ （D11－RE002A）	水平	
	鉛直	

枠囲みの内容は商業機密の観点から公開できません。

6．評価結果
6.1 設計基準対象施設としての評価結果

原子炉建屋原子炉棟排気放射線モニタの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【原子炉建屋原子炉棟排気放射線モニタ（D11－RE002A）の耐震性についての計算結果】
1．設計基準対象施設
1．1設計条件

機器 名 称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境 温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
原子炉建屋原子炉棟排気放射線モニタ （D11－RE002A）	S	$\begin{gathered} \text { 原子炉建屋 } \\ 0 . \text { P. } 27.20 \\ \left(0 . \text { P. } 33.20^{* 1}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{v}}=1.77$	40

注記＊1：基準床レベルを示す。
＊2： $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

	$\begin{aligned} & \mathrm{S}_{\mathrm{y} i} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*}{ }_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
部 材					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	215	400	215	258	水平方向	水平方向
取付ボルト $(i=2)$	215	400	215	258	水平方向	水平方向

1．3 計算数値

部 材	F bi		Q_{b}	
	弾性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト (i=1)	－		－	
取付ボルト (i=2)	－		－	

1． 4 結論

部材	材 料	応力	弹性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力＊1	許容応力	算出応力	許容応力
基整ボルト$(\mathrm{i}=1)$	SS400	引張り	$\sigma_{\mathrm{b}_{1}}=12$	$\mathrm{f}_{\mathrm{ts} 1}=161^{* 2}$	$\sigma_{\mathrm{b}} 1012$	$\mathrm{f}_{\mathrm{ts} 1}=193 * 2$
		せん断	$\tau_{\mathrm{b} 1}=5$	$\mathrm{f}_{\mathrm{s} \text { b } 1}=124$	$\tau_{\mathrm{b} 1}=5$	$\mathrm{f}_{\mathrm{s} \text { b } 1}=148$
基礎ボルト （i＝2）	SS400	引張り	$\sigma_{\mathrm{b} 2}=3$	$\mathrm{f}_{\mathrm{ts} 2}=161^{* 2}$	$\sigma_{\mathrm{b}_{2}}=3$	$\mathrm{f}_{\mathrm{ts} 2}=193^{* 2}$
		せん断	$\tau_{\text {b } 2}=2$	$\mathrm{f}_{\mathrm{s} \mathrm{b}_{2}=124}$	$\tau_{\mathrm{b} 2}=2$	$\mathrm{f}_{\mathrm{s} \text { b } 2}=148$

注記＊1：基準地震動 S s による算出値

すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果

		機能維持 評価用加速度 $*$	機能確認済加速度
原子炉建屋原子炉棟排気 放射線モニタ （D11－RE002A）	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

VI－2－8－2－1－3－2 フィルタ装置出口放射線モニタの耐震性について の計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2． 4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4．1 固有値解析方法 7
4．2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5．3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 17
5．5．1 取付ボルトの応力計算条件 17
5.6 応力の評価 17
5．6．1 取付ボルトの応力評価 17
6．機能維持評価 18
6.1 電気的機能維持評価方法 18
7．評価結果 19
7．1 重大事故等対処設備としての評価結果 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，フィルタ装置出口放射線モニタが設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

フィルタ装置出口放射線モニタは，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備として の構造強度評価及び電気的機能維持評価を示す。

2．一般事項
2.1 構造計画

フィルタ装置出口放射線モニタの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボル トにより架台に固定 される。 架台は，床及び壁に基礎ボルトで設置す る。	電離箱	【フィルタ装置出口放射線モニタ】 上面 側面 （単位：mm）

2.2 評価方針

フィルタ装置出口放射線モニタの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示すフィルタ装置出口放射線モニタの部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力によ る応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認す ることで実施する。また，フィルタ装置出口放射線モニタの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。 フィルタ装置出口放射線モニタの耐震評価フローを図2－1に示す。

図 2－1 フィルタ装置出口放射線モニタの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984，J E A G 4 6 O 1－1987及び J E A G 4 6 0 1－1991追補版）（（社）日本電気協会電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3年6月）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。）） J S ME S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$f_{\text {s b }}$	せん断力のみを受けるボルトの許容せん断応力（ f s を 1.5 倍した値又 は f s＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力（ f t を1．5倍した値又は f t＊を 1.5 倍した値）	MPa
$f_{\mathrm{t}} \mathrm{s}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊	mm
ℓ_{2}	重心とボルト間の水平方向距離＊	mm
m	質量	kg
n	ボルトの本数	－
n f	評価上引張力を受けるとして期待するボルトの本数	－
Q b	ボルトに作用するせん断力	N
S u	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
S_{y}	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{\text {y }}$（ R T ）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $*: \ell_{1} \leqq \ell_{2}$
2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

フィルタ装置出口放射線モニタの耐震評価は，「5．1 構造強度評価方法」に示す条件 に基づき，耐震評価上厳しくなる取付ボルトについて実施する。フィルタ装置出口放射線モニタの耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
フィルタ装置出口放射線モニタの固有値解析方法を以下に示す。
（1）フィルタ装置出口放射線モニタは「4．2 解析モデル及び諸元」に示す三次元はり モデルとして考える。

4.2 解析モデル及び諸元

フィルタ装置出口放射線モニタの解析モデルを図 4－1に，解析モデルの概要を以下 に示す。
（1）検出器は，架台で原子炉建屋床及び壁に固定されることから，（1）から（33）の部材で組まれた構造とみなし，支持点（架台基礎部）15点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量 m_{a} aは架台の（13）及び（14）の部材の検出器取付位置に分散され， m_{b} は架台の（24）から 3 3 の部材の検出器取付位置に分散されるものと する。また，解析モデルにおいて，検出器（鉛遮へい体含む）は剛構造とみなす。機器諸元を表 4－1，部材の機器要目を表4－2 に示す。
（3）拘束条件として，基礎部の X Y Z 方向及び回転方向を固定する。なお，基礎ボル ト部は剛体として評価する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

図 4－1 フィルタ装置出口放射線モニタ解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	－	－	
質量	$\mathrm{ma}_{\text {a }}$	kg	
	mb^{*}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

注記＊： m_{b} における上段は水平方向の解析における検出器の質量を示し，
下段は鉛直方向の解析における検出器の質量を示す。

表 4－2 部材の機器要目

材料					
対象 要素	（1）－（12）	（13）－（14）	（15）－（23）	（24）－（31）	（32）－（33）
$\begin{gathered} \mathrm{A} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$					
$\begin{gathered} \mathrm{I}_{\mathrm{y}} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$					
$\begin{gathered} \mathrm{I}_{\mathrm{z}} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$					
$\begin{gathered} I_{p} \\ \left(\mathrm{~mm}^{4}\right) \end{gathered}$					
断面形状 （mm）					
	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c} \times \mathrm{d})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

4．3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは鉛直方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		鉛直	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（4）のほか，次の条件で計算する。
（1）地震力は，フィルタ装置出口放射線モニタに対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）フィルタ装置出口放射線モニタは，基礎ボルトにより床及び壁に固定された架台 に取付ボルトにより固定されるものとする。
（3）検出器 2 台は同一構造であることから，1台を代表して評価する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
フィルタ装置出口放射線モニタの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 5－1 に示す。

5．2．2 許容応力
フィルタ装置出口放射線モニタの許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表 5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
フィルタ装置出口放射線モニタの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{sAD}}+\mathrm{Ss}$ 」の評価に包絡されるため，評価結果の記載を省略する。

N
表 5－2 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
取付ボルト	SS 400 $(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)			
周囲環境温度	40	215	400	-	

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S S	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉建屋 $\begin{gathered} \text { 0.P.24. } 80 \\ \left(0 . \text { P. } 33.20^{* 1}\right) \end{gathered}$	$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$		－	－	$\begin{aligned} & C_{H}= \\ & 2.65 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.77 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5．4 計算方法

5．4．1 応力の計算方法
5．4．1．1 取付ボルトの計算方法
取付ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 5－1（1）計算モデル
（短辺方向転倒の場合）

図 5－1（2）計算モデル
（長辺方向転倒の場合）
（1）引張応力
取付ボルトに対する引張力は，最も厳しい条件として，図 5－1（1）及び図 5－ 1 （2）で最外列の取付ボルトを支点とする転倒を考え，これを片側の最外列の取付ボルトで受けるものとして計算する。

引張力
計算モデル図 5－1（1）及び図 5－1（2）の場合の引張力
$\mathrm{F}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{h}^{-}-\left(1-\mathrm{C}_{\mathrm{V}}\right) \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)}\right) \ldots \ldots \ldots \ldots$（5．4．1．1．1）
引張応力
$\sigma_{b}=\frac{F_{b}}{A_{b}}$
（5．4．1．1．2）

ここで，取付ボルトの軸断面積 A_{b} は次式により求める。
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}$
（2）せん断応力
取付ボルトに対するせん断力は，取付ボルト全本数で受けるものとして計算 する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \tag{5.4.1.1.4}
\end{equation*}
$$

せん断応力
$\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{A}_{\mathrm{b}}}$

5.5 計算条件

5．5．1 取付ボルトの応力計算条件
応力計算に用いる計算条件は，本計算書の【フィルタ装置出口放射線モニタ （T63－RE009A，B）の耐震性についての計算結果】の設計条件および機器要目に示 す。
5.6 応力の評価

5．6．1 取付ボルトの応力評価
5．4．1．1 項で求めた取付ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{ts} 以下であること。ただし，f_{t} oは下表による。

$$
f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right] \cdots \cdots \cdots \cdots \cdots \cdots \cdot \cdots \cdot(5.6 .1 .1)
$$

せん断応力 τ bは，せん断力のみを受ける取付ボルトの許容せん断応力 $f_{\mathrm{s} \mathrm{b}}$ 以下であること。ただし，$f_{\mathrm{s} \text { b は下表による。 }}$

許容引張応力	
$f_{\mathrm{t} \text { o }}$	基準地震動 S s による 荷重との組合せの場合
許容せん断応力 $_{f_{\mathrm{sb}}}^{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

フィルタ装置出口放射線モニタの電気的機能維持評価について以下に示す。
なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

フィルタ装置出口放射線モニタの機能確認済加速度は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
フィルタ装置出口 放射線モニタ （T63－RE009A） （T63－RE009B）	水平	
	鉛直	

7．評価結果

7．1 重大事故等対処設備としての評価結果
フィルタ装置出口放射線モニタの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【フィルタ装置出口放射線モニタ（T63－RE009A，B）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		$\begin{aligned} & \text { 周囲環 } \\ & \text { 境温度 } \\ & \left({ }^{\text {C }}\right) \end{aligned}$
			水平方向	鉛直方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉛直方向設計震度	
$\begin{gathered} \text { フィルタ装置出口 } \\ \text { 放射線モタ } \\ \text { (T63-RE009A, B) } \\ \hline \end{gathered}$	常設耐震／防止常設／緩和	$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { (0.P. } 24.80 \\ & \text { (0.P. } \left.33.20^{* 1}\right) \end{aligned}$	$\stackrel{0.05}{\text { 以下 }} \stackrel{1}{2}$		－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	40

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

					転倒方向	
部 材	$(\mathrm{MPa}$	$\left(\mathrm{MPa}^{\mathrm{u}}\right)$	(MPa)	$\left(\mathrm{F}^{\mathrm{F}}{ }^{\text {a }}\right.$ ）	弾性設計用地震動 $\mathrm{S} d$ 又は静的震度	基準地震動 S s
取付ボルト	215	400	－	258	－	長辺方向

注記＊：各ボルトの機器要目における上段は長辺方向転倒に対する評価時の要目を示し，下段は短辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S_{d} 又は静的震度	基準地震動 S s
取付ボルト	－		－	

1． 4 結論

注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出
$\stackrel{\sim}{-}$
すべて許容応力以下である。
1．4．2 電気的機能維持の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
フィルタ装置出口 放射線モニタ （T63－RE009A，B）	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。

項目	記号	単位	入力値
材質	－	－	
質量	m_{a}	kg	
	$\mathrm{m}_{\mathrm{b}}{ }^{*}$	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	E	MPa	
ポアソン比	v	－	
要素数	－	個	
節点数	－	個	

$$
\text { O } 2 \text { (3) VI-2-8-2-1-3-2 R O E }
$$

正面（短辺方向）

側面（長辺方向）

VI－2－8－2－1－3－3 燃料取替エリア放射線モニタの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 8
4． 1 固有値解析方法 8
4．2解析モデル及び諸元 8
4．3 固有値解析結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 12
5．2．1 荷重の組合せ及び許容応力状態 12
5．2．2 許容応力 12
5．2．3 使用材料の許容応力評価条件 12
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力の計算方法 16
5.5 計算条件 20
5．5．1 検出器取付ボルトの応力計算条件 20
5.6 応力の評価 20
5．6．1 ボルトの応力評価 20
6．機能維持評価 21
6.1 電気的機能維持評価方法 21
7．評価結果 22
7.1 設計基準対象施設としての評価結果 22

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，燃料取替エリア放射線モニタが設計用地震力に対し て十分な構造強度及び電気的機能を有していることを説明するものである。

燃料取替エリア放射線モニタは，設計基準対象施設においてはSクラス施設に分類さ れる。以下，設計基準対象施設としての構造強度評価及び電気的機能維持評価を示す。

構造強度評価については，計器スタンションに作用する応力の裕度が厳しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，評価用加速度が最大となる計器について代表として評価する。電気的機能維持評価に用いる評価用加速度は，設置床高さが同じで計器スタンションが剛構造の場合は同じ加速度となることから，構造強度評価の代表として選定した検出器を代表と して評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
D11－RE003A（代表）		
D11－RE003B	5．構造強度評価	表 $2-1$
D11－RE003C 構造計画		
D11－RE003D		

2．一般事項
2.1 構造計画

燃料取替エリア放射線モニタの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
架台は，壁面に架台取付ボルトにて固定 する。 検出器は，検出器取付ボルトにより取付金具に固定され，取付金具は，取付金具取付 ボルトにより架台に固定される。	半導体式	【燃料取替エリア放射線モニタ（D11－RE003A）】 正面 側面

2.2 評価方針

燃料取替エリア放射線モニタの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す燃料取替エリア放射線モニタの部位を踏まえ「3。評価部位」にて設定 する箇所において，「4．固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認する ことで実施する。また，燃料取替エリア放射線モニタの機能維持評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」 にて示す方法にて確認することで実施する。確認結果を「7．評価結果」に示す。

燃料取替エリア放射線モニタの耐震評価フローを図2－1に示す。

図 2－1 燃料取替エリア放射線モニタの耐震評価フロー

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補 － 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
A	部材の断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F^{*}	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b}} 1$	鉛直方向地震及び壁掛の取付面に対し左右方向の水平方向地震によ りボルトに作用する引張力（1本当たり）	N
$\mathrm{F}_{\mathrm{b} 2}$	鉛直方向地震及び壁掛の取付面に対し前後方向の水平方向地震によ りボルトに作用する引張力（1本当たり）	N
I_{p}	取付金具の断面二次極モーメント	mm ${ }^{4}$
I_{y}	取付金具の断面二次モーメント（ y 軸）	mm^{4}
I_{z}	取付金具の断面二次モーメント（ z 軸）	mm^{4}
f s b	せん断力のみを受けるボルトの許容せん断応力	MPa
f t o	引張力のみを受けるボルトの許容引張応力	MPa
$\mathrm{f}_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h 2	取付面から重心までの距離	mm
ℓ_{3}	重心と下側ボルト間の距離	mm
$\ell_{\text {a }}$	側面（左右）ボルト間の距離	mm
ℓ_{b}	上下ボルト間の距離	mm
m	検出器の質量	kg
n	ボルトの本数	－
n_{fv}	評価上引張力を受けるとして期待するボルトの本数（側面方向）	－
$\mathrm{n}_{f \mathrm{H}}$	評価上引張力を受けるとして期待するボルトの本数（正面方向）	－
Q_{b}	ボルトに作用するせん断力	N
Q b_{1}	水平方向地震によりボルトに作用するせん断力	N
$\mathrm{Q}_{\mathrm{b} 2}$	鉛直方向地震によりボルトに作用するせん断力	N

記 号	記 号 の 説 明	単 位
S u	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5 表8に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
燃料取替エリア放射線モニタの耐震評価は，「5．1構造強度評価方法」に示す条件に基 づき，耐震評価上厳しくなる検出器取付ボルトについて実施する。燃料取替エリア放射線 モニタの耐震評価部位については，表 2－1 の概略構造図に示す。

4．固有周期
4． 1 固有値解析方法
燃料取替エリア放射線モニタの固有値解析方法を以下に示す。
（1）燃料取替エリア放射線モニタは，「4．2解析モデル及び諸元」に示す三次元はりモ デルとして考える。

4． 2 解析モデル及び諸元
燃料取替エリア放射線モニタの解析モデルを図 4－1 に，解析モデルの概要を以下に示す。また，機器の諸元を本計算書の【燃料取替エリア放射線モニタ（D11－RE003A）の耐震性についての計算結果】のその他の機器要目に示す。
（1）検出器は，取付金具及び架台で原子炉建屋壁に固定されることから，（1）～③の部材 で組まれた構造とみなし，支持点（取付金具基礎部）1点で固定されるものとする。
（2）解析モデルにおいて，検出器の質量は取付金具の検出器取付位置に分散されるもの とする。
（3）拘束条件として，基礎部の X Y Z 方向及び回転方向を固定する。
（4）耐震計算に用いる寸法は，公称値を使用する。
（5）解析コードは，「 N A S T R A N」を使用し，固有値を求める。添付書類「VI－5－4 計算機プログラム（解析コード）の概要」に示す。

（単位：mm）
図 4－1 燃料取替エリア放射線モニタ解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	SS400
質量	ma	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	40
縦弾性係数	E	MPa	
ポアソン比	v	-	
ポアソ素数	-	個	
節点数	-	個	

材料	SS400
対象要素	（1）－（3）
A（ mm^{2} ）	
I y $\left(\mathrm{mm}^{4}\right)$	
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$	
$I_{\mathrm{p}}\left(\mathrm{mm}^{4}\right)$	
断面形状 （mm）	$(a \times b \times c)$

4． 3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。また，鉛直方向は 2 次モード以降で卓越し，固有周期は 0.05 秒以下であり剛 であることを確認した。

表 4－3 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向
			Z 方向	刺激係数	
1 次		水平	-	-	-

5．構造強度評価

5.1 構造強度評価方法

4．2 項（1）～（4）のほか，次の条件で計算する。
（1）地震力は，燃料取替エリア放射線モニタに対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）燃料取替エリア放射線モニタは，検出器取付ボルトにより取付金具に固定されてい るものとする。
（3）燃料取替エリア放射線モニタの質量は検出器を考慮する。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態

燃料取替エリア放射線モニタの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5－1に示す。

5．2．2 許容応力
燃料取替エリア放射線モニタの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
燃料取替エリア放射線モニタの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
		燃料取替エリア放射線モニタ	S	－＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd} \mathrm{d}^{*}$	IIIA ${ }_{\text {S }}$ S
管理施設	計測装置				$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 5－2 許容応力（その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}{ }^{\text {＊}}$

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

$$
\mathrm{O} 2 \text { (3) VI-2-8-2-1-3-3 R O }
$$

表 5－3 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
検出器取付ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40	235	400

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S S 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（設計基準対象施設）

据付場所及び	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20 \\ \left(0 . \text { P. } 41.20^{* 1}\right) \end{gathered}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－＊3	－＊3	$\begin{aligned} & \mathrm{C}_{\mathrm{H}}= \\ & 3.43 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.89 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。
＊ $3: \mathrm{III}_{\mathrm{A}} \mathrm{S}$ については，基準地震動 S s で評価する。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 検出器取付ボルトの計算方法
検出器取付ボルトの応力は，地震による震度により作用するモーメントに よって生じる引張力とせん断力について計算する。

転倒方向

$m \cdot\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{g}$

図5－1（1）計算モデル
（水平方向転倒の場合）

図5－1（2）計算モデル
（鉛直方向転倒の場合）
（1）引張応力
検出器取付ボルトに対する引張力は，最も厳しい条件として，図5－1（1）及び図 5－1（2）で最外列の検出器取付ボルトを支点とする転倒を考え，これを片側の最外列の検出器取付ボルトで受けるものとして計算する。

引張力
計算モデル図5－1（1）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b} 1}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{2}}{\mathrm{n}_{f \mathrm{H}} \cdot \ell_{\mathrm{a}}}+\frac{\left(1+\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{f \mathrm{v}} \cdot \ell_{\mathrm{b}}}\right) \ldots \ldots . \tag{5.4.1.1.1}
\end{equation*}
$$

計算モデル図5－1（2）の場合の引張力

$$
\begin{align*}
& \mathrm{F}_{\mathrm{b} 2}=\mathrm{m} \cdot \mathrm{~g} \cdot\left(\frac{\mathrm{C}_{\mathrm{H}} \cdot \ell_{3}+\left(1+\mathrm{C}_{\mathrm{V}}\right) \cdot \mathrm{h}_{2}}{\mathrm{n}_{f \mathrm{~V}} \cdot \ell_{\mathrm{b}}}\right) . \tag{5.4.1.1.2}\\
& \mathrm{F}_{\mathrm{b}}=\operatorname{Max}\left(\mathrm{F}_{\left.\mathrm{b}_{1}, \mathrm{~F}_{\mathrm{b}}\right)}\right) \quad \ldots \ldots \ldots \ldots \ldots \ldots \tag{5.4.1.1.3}
\end{align*}
$$

引張応力

$$
\begin{equation*}
\sigma \mathrm{b}=\frac{\mathrm{Fb}}{\mathrm{Ab}} \tag{5.4.1.1.4}
\end{equation*}
$$

ここで，検出器取付ボルトの軸断面積 A b は次式により求める。

$$
\begin{equation*}
\mathrm{Ab}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.1.5}
\end{equation*}
$$

（2）せん断応力
検出器取付ボルトに対するせん断力は，検出器取付ボルト全本数で受けるもの として計算する。

せん断力

$$
\begin{aligned}
& \mathrm{Q}_{\mathrm{b}}^{1}=\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \\
& \mathrm{Q}_{\mathrm{b}_{2}}=\mathrm{m} \cdot \mathrm{~g} \cdot(1+\mathrm{C} \mathrm{v}) \\
& \text { (5.4.1.1.7) } \\
& Q b=\sqrt{\left(Q_{b_{1}}\right)^{2}+\left(Q_{b_{2}}\right)^{2}} \\
& \text { (5.4.1.1.8) }
\end{aligned}
$$

せん断応力

$$
\begin{equation*}
\tau \mathrm{b}=\frac{\mathrm{Qb}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{Ab}_{\mathrm{b}}} \tag{5.4.1.1.9}
\end{equation*}
$$

5.5 計算条件

5．5．1 検出器取付ボルトの応力計算条件
検出器取付ボルトの応力計算に用いる計算条件は，本計算書の【燃料取替エリ ア放射線モニタ（D11－RE003A）の耐震性についての計算結果】の設計条件及び機器要目に示す。

5． 6 応力の評価
5．6．1 ボルトの応力評価
5．4．1．1項で求めた検出器取付ボルトの引張応力 $\sigma \mathrm{b}$ は次式より求めた許容引張応力 $\mathrm{f}_{\mathrm{t} \text { s }}$ 以下であること。ただし， f t。は下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{too}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 τ_{b} は，せん断力のみを受ける検出器取付ボルトの許容せん断応力 f sb以下であること。ただし，f sbは下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組み合わせの場合	基準地震動 S s による荷重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 $f_{s} b$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6． 1 電気的機能維持評価方法
燃料取替エリア放射線モニタの電気的機能維持評価について，以下に示す。 なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。燃料取替エリア放射線モニタの機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
燃料取替エリア 放射線モニタ （D11－RE003A）	水平	
	鉛直	

7．評価結果

7.1 設計基準対象施設としての評価結果

燃料取替エリア放射線モニタの設計基準対象施設としての耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。なお，弾性設計用地震動 $\mathrm{S} d$ 及び静的震度は基準地震動 S s を下回っており，基準地震動 S s による発生値が，弾性設計用地震動 S d 又は静的震度に対する評価における許容限界を満足するため，弾性設計用地震動 S d 又は静的震度による発生値の算出を省略した。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【燃料取替エリア放射線モニタの耐震性（D11－RE003A）についての計算結果】
1．設計基準対象施設
1．1設計条件

機 器 名 称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
燃料取替エリア放射線モニタ （D11－RE003A）	S	原子炉建屋 0．P． 33.20 $\left(0\right.$. P． $41.20^{* 1}$ ）		$\begin{aligned} & 0.05 \\ & \text { 以下 } \end{aligned}$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=3.43$	$\mathrm{C}_{\mathrm{v}}=1.89$	40

注記 $~$ 1：基準床レベルを示す。
＊ $2: ~ I I I A S$ については，基準地震動 S s で評価する。
1．2 機器要目

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	（MPa）	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
検出器取付ボルト	235	400	235	280	鉛直方向	鉛直方向

1.3 計算数値

1． 4 結論

部材	材 料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力＊1	許容応力	算出応力	許容応力
検出器取付ボルト	SS400	引張り	$\sigma_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{ts}}=176{ }^{* 2}$	$\sigma_{\mathrm{b}}=4$	$\mathrm{f}_{\mathrm{ts}}=210^{* 2}$
		せん断	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s}} \mathrm{b}=135$	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s}} \mathrm{b}=161$

注記 $* 1$ ：基準地震動 S s による算出値
＊2： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4\right.$ • $\mathrm{f}_{\mathrm{t}}{ }^{\circ}-1.6$ • τ_{b} ， $\mathrm{f}_{\mathrm{t}} \mathrm{o}$ ］より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		機能維持評価用加速度＊	機能確認済加速度
	水平方向	2.86	
（D11－RE003A）	鉛直方向	1． 58	

～注記＊：基準地震動 S s により定まる応答加速度とする。
評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	SS 400
質量	m_{a}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	40
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

正面（水平方向）
側面（鉛直方向）

VI－2－8－2－1－3－4 耐圧強化ベント系放射線モニタの耐震性について の計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
4．構造強度評価 4
4.1 構造強度評価方法 4
4．2 荷重の組合せ及び許容応力 4
4．2．1 荷重の組合せ及び許容応力状態 4
4．2．2 許容応力 4
4．2．3 使用材料の許容応力評価条件 4
5．機能維持評価 7
5.1 電気的機能維持評価方法 7
6．評価結果 8
6． 1 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，耐圧強化ベント系放射線モニタが設計用地震力に対 して十分な構造強度及び電気的機能を有していることを説明するものである。

耐圧強化ベント系放射線モニタは，重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお，耐圧強化ベント系放射線モニタが設置される計器スタンションは，添付書類「VI －2－1－13 機器•配管系の計算書作成の方法」に記載の直立形計器スタンションであるた め，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

構造強度評価については，計器スタンションの基礎ボルトに作用する応力の裕度が厳 しい条件（許容値／発生値の小さい方）となるものを代表として評価する。また，電気的機能維持評価については，機能維持評価用加速度が最大となる計器について代表とし て評価する。電気的機能維持評価に用いる機能維持評価用加速度は，設置床高さが同じ で計器スタンションが剛構造の場合は同じ加速度となることから，構造強度評価の代表 として選定した検出器を代表として評価する。評価対象を表1－1に示す。

表 1－1 概略構造識別

評価部位	評価方法	構造計画
D11－RE019A（代表）	$\mathrm{VI}-2-1-13-9$ 計器スタン	
D11－RE019B	ションの耐震性についての 計算書作成の基本方針	表2－1 構造計画

2．一般事項
2.1 構造計画

耐圧強化ベント系放射線モニタの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図	
基礎•支持構造	主体構造		
検出器は，取付ボル トにより計器スタン ションに固定される。 計器スタンション は，基礎に基礎ボルト で設置する。	電離箱	【耐圧強化ベント系放射線モニタ（D11－RE019A）】 上面 正面	（単位：mm）

3．固有周期
耐圧強化ベント系放射線モニタが設置される計器スタンションの固有周期は，構造が同等であり，同様な振動特性を持つ計器スタンションに対する振動試験（打振試験）の結果確認された固有周期を使用する。固有周期の確認結果を表3－1 に示す。

表 3－1 固有周期（単位：s）

水平方向	鉛直方向
0.05 以下	0.05 以下

4．構造強度評価

4.1 構造強度評価方法

耐圧強化ベント系放射線モニタの構造強度評価は，添付書類「VI－2－1－13－9 計器ス タンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づ き行う。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
耐圧強化ベント系放射線モニタの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力
耐圧強化ベント系放射線モニタの許容応力は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき表4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
耐圧強化ベント系放射線モニタの使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
基礎ボルト	$\begin{gathered} \text { SS400 } \\ (40 \mathrm{~mm}<\text { 径 } \leqq 100 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40	215	400	－

5．機能維持評価

5.1 電気的機能維持評価方法

耐圧強化ベント系放射線モニタの電気的機能維持評価は，添付書類「VI－2－1－13－9計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基 づき行う。

計器スタンションに設置される検出器の機能確認済加速度は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において，電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
耐圧強化ベント系 放射線モニタ （D11－RE019A）	水平	
	鉛直	

6．評価結果

6.1 重大事故等対処設備としての評価結果

耐圧強化ベント系放射線モニタの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【耐圧強化ベント系放射線モニタ（D11－RE019A）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
耐圧強化ベント系放射線モニタ （D11－RE019A）	常設耐震／防止	原子炉建屋 0．P． 27.20 （0．P． 33.20^{*} ）	0．05以下	0．05以下	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	40

注記＊：基準床レベルを示す。
\bullet

					転倒方向	
部 材	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{y}}}$	$\underset{(\mathrm{MPa}}{\mathrm{S}_{\mathrm{a}}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}^{*}}$	弾性設計用 地震動 S d 又 は静的震度	基準地震動 S S
基礎ボルト	215	400	－	258	－	前後方向

注記＊：各ボルトの機器要目における上段は左右方向転倒に対する評価時の要目を示し，下段は前後方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Q_{b}	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1.4 結論

1．4．1 ボルトの応力
（単位： MPa ）

部 材	材 料	応力	弾性設計用地震動 S d 又は静的震度｜		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=17$	$\mathrm{f}_{\mathrm{ts}}=193 *$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{s} \text { b }}=148$

っ 注記＊： $\mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果			$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
		機能維持評価用加速度＊	機能確認済加速度
耐圧強化ベント系放射線モニタ （D11－RE019A）	水平方向	2.21	
	鉛直方向	1.47	

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

VI－2－8－2－2 エリアモニタリング設備の耐震性についての計算書

VI－2－8－2－2－1 使用済燃料貯蔵槽エリアの線量当量率を計測する装置の耐震性についての計算書

VI－2－8－2－2－1 使用済燃料貯蔵槽エリアの線量当量率を計測する装置の耐震性についての計算書

VI－2－8－2－2－1－1 使用済燃料プール上部空間放射線モニタ（低線量）の耐震性についての計算書 VI－2－8－2－2－1－2 使用済燃料プール上部空間放射線モニタ（高線量）の耐震性についての計算書

VI－2－8－2－2－1－1 使用済燃料プール上部空間放射線モニタ（低線量）の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4．1 固有値解析方法 7
4.2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 17
5．5．1 基礎ボルトの応力計算条件 17
5.6 応力の評価 17
5．6．1 基礎ボルトの応力評価 17
6．機能維持評価 18
6.1 電気的機能維持評価方法 18
7．評価結果 19
7.1 重大事故等対処設備としての評価結果 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール上部空間放射線モニタ（低線量） が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するも のである。

使用済燃料プール上部空間放射線モニタ（低線量）は，重大事故等対処設備において は常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

使用済燃料プール上部空間放射線モニタ（低線量）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボル トにより計器スタン ションに固定される。計器スタンション は，床に基礎ボルトで設置する。	電離箱	【使用済燃料プール上部空間放射線モニタ（低線量）】 上面 （単位：mm）

2.2 評価方針

使用済燃料プール上部空間放射線モニタ（低線量）の応力評価は，添付書類「VI－2－ 1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基 づき，「2．1 構造計画」にて示す使用済燃料プール上部空間放射線モニタ（低線量） の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出 した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，使用済燃料プール上部空間放射線モニタ（低線量）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認 することで実施する。確認結果を「7．評価結果」に示す。

使用済燃料プール上部空間放射線モニタ（低線量）の耐震評価フローを図2－1に示 す。

図 2－1 使用済燃料プール上部空間放射線モニタ（低線量）の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 O 1 • 補 －1984，J E A G 4 6 O 1－1987及び J E A G 4 6 0 1－1991追補版）（（社）日本電気協会電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3年 6 月）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））
J S M E S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」という。）
2.4 記号の説明

記 号	記 号 の 説 明	単 位
A_{b}	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$f_{\text {S b }}$	せん断力のみを受けるボルトの許容せん断応力（ f sを 1.5 倍した値又 は f s＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
$f_{\mathrm{t} \text { s }}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊	mm
ℓ_{2}	重心とボルト間の水平方向距離＊	mm
m	質量	kg
n	ボルトの本数	－
n_{f}	評価上引張力を受けるとして期待するボルトの本数	－
$Q_{\text {b }}$	ボルトに作用するせん断力	N
$\mathrm{S}_{\text {u }}$	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
S_{y}（ R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $*: ~ \ell 1 \leqq \ell 2$

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3 $*$	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊ 2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

使用済燃料プール上部空間放射線モニタ（低線量）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。使用済燃料プール上部空間放射線モニタ（低線量）の耐震評価部位については，表2－1 の概略構造図に示す。

4．固有周期
4．1 固有値解析方法
使用済燃料プール上部空間放射線モニタ（低線量）の固有値解析方法を以下に示す。
（1）使用済燃料プール上部空間放射線モニタ（低線量）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4.2 解析モデル及び諸元

使用済燃料プール上部空間放射線モニタ（低線量）の解析モデルを図4－1 に，解析 モデルの概要を以下に示す。
（1）検出器は，計器スタンションで原子炉建屋床に固定されることから，（1）から（6）の部材で組まれた構造とみなし，支持点（計器スタンション基礎部）2点で固定され るものとする。
（2）解析モデルにおいて，検出器の質量 m_{a} 及び m_{b} は計器スタンションの（3）から（6）の部材の検出器取付位置に分散されるものとする。機器諸元を表 4－1，部材の機器要目を表4－2に示す。
（3）拘束条件として，基礎部の X Y Z 方向及び回転方向を固定する。なお，基礎ボル ト部は剛体として評価する。
（4）使用済燃料プール上部空間放射線モニタ（低線量）は，使用済燃料プール上部空間放射線モニタ（高線量）と同じ計器スタンションに設置されるため，使用済燃料 プール上部空間放射線モニタ（高線量）も考慮して評価する。
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

（単位：mm）

図 4－1 使用済燃料プール上部空間放射線モニタ（低線量）解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
	m_{b}	kg	
縦弾性係数	T	${ }^{\circ} \mathrm{C}$	100
ポアソン比	E	MPa	
要素数	v	-	
節点数	-	個	

表 4－2 部材の機器要目

材料			
対象要素	（1）	（2）	（3）－（6）
A（ mm^{2} ）			
$I_{\text {y }}\left(\mathrm{mm}^{4}\right)$			
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$			
I p $\left(\mathrm{mm}^{4}\right)$			
断面形状 （mm）			
	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

4． 3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（5）のほか，次の条件で計算する。
（1）地震力は，使用済燃料プール上部空間放射線モニタ（低線量）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）使用済燃料プール上部空間放射線モニタ（低線量）は，基礎ボルトにより床に固定されるものとする。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール上部空間放射線モニタ（低線量）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表5－1に示す。

5．2．2 許容応力
使用済燃料プール上部空間放射線モニタ（低線量）の許容応力は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき表5－2のとおりとする。

5．2．3 使用材料の許容応力評価条件
使用済燃料プール上部空間放射線モニタ（低線量）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

12
表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\text {A }} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{\text {s }}$

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400				
$(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$					

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 33. } 20^{* 1} \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{aligned} & C_{H}= \\ & 2.65 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.77 \end{gathered}$

注記＊1：基準床レベルを示す。
＊ 2 ：固有値解析より 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 5－1（1）計算モデル
（短辺方向転倒の場合）

図 5－1（2）計算モデル
（長辺方向転倒の場合）
（1）引張応力
基礎ボルトに対する引張力は，最も厳しい条件として，図 5－1（1）及び図 5－ 1 （2）では最外列の基礎ボルトを支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものとして計算する。

引張力
計算モデル図 5－1（1）及び図 5－1（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot \mathrm{~g} \cdot(1-\mathrm{C} v) \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.4.1.1.1}
\end{equation*}
$$

引張応力
$\sigma_{b}=\frac{F_{b}}{A_{b}}$
ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。
$A_{b}=\frac{\pi}{4} \cdot d^{2}$
（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算 する。

せん断力
$Q_{b}=m \cdot g \cdot C_{H}$
（5．4．1．1．4）

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.5}
\end{equation*}
$$

5.5 計算条件

5．5．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【使用済燃料プール上部空間放射線モニタ（低線量）（D21－RE043）の耐震性についての計算結果】の設計条件および機器要目に示す。

5.6 応力の評価

5．6．1 基礎ボルトの応力評価
5．4．1．1 項で求めた基礎ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

せん断応力 τ bはせん断力のみを受ける基礎ボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下 であること。ただし，f_{sb} は下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

使用済燃料プール上部空間放射線モニタ（低線量）の電気的機能維持評価について以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール上部空間放射線モニタ（低線量）の機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール上部空間 放射線モニタ（低線量） （D21－RE043）\quad 水平		

7．評価結果

7.1 重大事故等対処設備としての評価結果

使用済燃料プール上部空間放射線モニタ（低線量）の重大事故等時の状態を考慮し た場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【使用済燃料プール上部空間放射線モニタ（低線量）（D21－RE043）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール上部空間放射線モニタ （低線量） （D21－RE043）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20^{* 1} \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	100

注記＊ 1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

					転倒方向	
部 材	$\underset{(\mathrm{MPa}}{\mathrm{y}} \mathrm{~S}^{2}$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{1}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	194	373	－	232	－	短辺方向

注記＊：各ボルトの機器要目における上段は長辺方向転倒に対する評価時の要目を示し，
下段は短辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力

部 材	F_{b}		Q ${ }_{\text {b }}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

1． 4 結論

1．4．1 ボルトの応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動 Sd又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\text {b }}=45$	$f_{\mathrm{ts}}=174^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=4$	$f_{\text {s b }}=134$

$\stackrel{\wedge}{-}$
注記 $*: f_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau \mathrm{~b}, f_{\mathrm{to}}\right]$ より算出
すべて許容応力以下である。

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
使用済燃料プール上	水平方向	2． 21	
（低線量） （D21－RE043）	鉛直方向	1． 47	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	100
縦弹性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

N

23

側面（短辺方向）

VI－2－8－2－2－1－2 使用済燃料プール上部空間放射線モニタ（高線量）の耐震性についての計算書

目次

1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 7
4．1 固有値解析方法 7
4.2 解析モデル及び諸元 7
4．3 固有値解析結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 17
5．5．1 基礎ボルトの応力計算条件 17
5.6 応力の評価 17
5．6．1 基礎ボルトの応力評価 17
6．機能維持評価 18
6.1 電気的機能維持評価方法 18
7．評価結果 19
7.1 重大事故等対処設備としての評価結果 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，使用済燃料プール上部空間放射線モニタ（高線量） が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するも のである。

使用済燃料プール上部空間放射線モニタ（高線量）は，重大事故等対処設備において は常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

2．一般事項

2.1 構造計画

使用済燃料プール上部空間放射線モニタ（高線量）の構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，取付ボル トにより計器スタン ションに固定される。 計器スタンション は，床に基礎ボルトで設置する。	電離箱	【使用済燃料プール上部空間放射線モニタ（高線量）】 上面 （単位：mm）

2.2 評価方針

使用済燃料プール上部空間放射線モニタ（高線量）の応力評価は，添付書類「VI－2－ 1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基 づき，「2．1 構造計画」にて示す使用済燃料プール上部空間放射線モニタ（高線量） の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」で算出 した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。また，使用済燃料プール上部空間放射線モニタ（高線量）の機能維持評価は，添付書類「VI－2－1－9 機能維持 の基本方針」にて設定した電気的機能維持の方針に基づき，地震時の応答加速度が電気的機能確認済加速度以下であることを，「6．機能維持評価」にて示す方法にて確認 することで実施する。確認結果を「7．評価結果」に示す。

使用済燃料プール上部空間放射線モニタ（高線量）の耐震評価フローを図2－1に示 す。

図 2－1 使用済燃料プール上部空間放射線モニタ（高線量）の耐震評価フロー
2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 O 1 •補 －1984，J E A G 4 6 O 1－1987及び J E A G 4 6 0 1－1991追補版）（（社）日本電気協会電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3年 6 月）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））
J S M E S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」という。）
2.4 記号の説明

記 号	記 号 の 説 明	単 位
$\mathrm{A}_{\text {b }}$	ボルトの軸断面積	mm^{2}
C_{H}	水平方向設計震度	－
$\mathrm{C}_{\text {v }}$	鉛直方向設計震度	－
d	ボルトの呼び径	mm
F	設計•建設規格 SSB－3131に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
$f_{\text {s b }}$	せん断力のみを受けるボルトの許容せん断応力（ f sを 1.5 倍した値又 は f s＊を 1.5 倍した値）	MPa
$f_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力（ f t を 1.5 倍した値又は f t＊を 1.5 倍した値）	MPa
f_{ts}	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度（ $=9.80665$ ）	$\mathrm{m} / \mathrm{s}^{2}$
h	取付面から重心までの距離	mm
ℓ_{1}	重心とボルト間の水平方向距離＊	mm
ℓ_{2}	重心とボルト間の水平方向距離＊	mm
m	質量	kg
n	ボルトの本数	－
n_{f}	評価上引張力を受けるとして期待するボルトの本数	－
Q ${ }_{\text {b }}$	ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
$S_{\text {y }}$	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
S_{y}（ R T）	設計•建設規格 付録材料図表 Part5 表 8 に定める材料の $40^{\circ} \mathrm{C}$ にお ける値	MPa
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
τ b	ボルトに生じるせん断応力	MPa

注記 $*: ~ \ell 1 \leqq \ell 2$

2.5 計算精度と数値の丸め方

精度は 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位 $* 1$
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3 $*$	MPa	小数点以下第 1 位	切捨て	整数位

注記＊1：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊ 2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位

使用済燃料プール上部空間放射線モニタ（高線量）の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。使用済燃料プール上部空間放射線モニタ（高線量）の耐震評価部位については，表2－1 の概略構造図に示す。

4．固有周期
4．1 固有値解析方法
使用済燃料プール上部空間放射線モニタ（高線量）の固有値解析方法を以下に示す。
（1）使用済燃料プール上部空間放射線モニタ（高線量）は，「4．2 解析モデル及び諸元」に示す三次元はりモデルとして考える。

4.2 解析モデル及び諸元

使用済燃料プール上部空間放射線モニタ（高線量）の解析モデルを図4－1 に，解析 モデルの概要を以下に示す。
（1）検出器は，計器スタンションで原子炉建屋床に固定されることから，（1）から（6）の部材で組まれた構造とみなし，支持点（計器スタンション基礎部）2点で固定され るものとする。
（2）解析モデルにおいて，検出器の質量 m_{a} 及び m_{b} は計器スタンションの（3）から（6）の部材の検出器取付位置に分散されるものとする。機器諸元を表 4－1，部材の機器要目を表4－2に示す。
（3）拘束条件として，基礎部の X Y Z 方向及び回転方向を固定する。なお，基礎ボル ト部は剛体として評価する。
（4）使用済燃料プール上部空間放射線モニタ（高線量）は，使用済燃料プール上部空間放射線モニタ（低線量）と同じ計器スタンションに設置されるため，使用済燃料 プール上部空間放射線モニタ（低線量）も考慮して評価する。
（5）耐震計算に用いる寸法は，公称値を使用する。
（6）解析コードは，「NASTRAN」を使用し，固有値を求める。なお，評価に用いる解析 コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログ ラム（解析コード）の概要」に示す。

（単位：mm）

図 4－1 使用済燃料プール上部空間放射線モニタ（高線量）解析モデル

表 4－1 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
	m_{b}	kg	
縦弾性係数	T	${ }^{\circ} \mathrm{C}$	100
ポアソン比	E	MPa	
要素数	v	-	
節点数	-	個	

表 4－2 部材の機器要目

材料			
対象要素	（1）	（2）	（3）－（6）
A（ mm^{2} ）			
$I_{\text {y }}\left(\mathrm{mm}^{4}\right)$			
$\mathrm{I}_{\mathrm{z}}\left(\mathrm{mm}^{4}\right)$			
I p $\left(\mathrm{mm}^{4}\right)$			
断面形状 （mm）			
	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$	$(\mathrm{a} \times \mathrm{b} \times \mathrm{c})$

4． 3 固有値解析結果

固有値解析結果を表4－3に示す。
1 次モードは水平方向に卓越し，固有周期が 0.05 秒以下であり，剛であることを確認した。

表 4－3 固有値解析結果
（単位：s）

モード	固有周期	卓越方向	水平方向刺激係数		鉛直方向刺激係数
			X 方向	Z 方向	
1 次		水平	－	－	－

5．構造強度評価

5.1 構造強度評価方法

4．2項（1）から（5）のほか，次の条件で計算する。
（1）地震力は，使用済燃料プール上部空間放射線モニタ（高線量）に対して，水平方向及び鉛直方向から同時に作用するものとする。
（2）使用済燃料プール上部空間放射線モニタ（高線量）は，基礎ボルトにより床に固定されるものとする。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
使用済燃料プール上部空間放射線モニタ（高線量）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表5－1に示す。

5．2．2 許容応力
使用済燃料プール上部空間放射線モニタ（高線量）の許容応力は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき表5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件
使用済燃料プール上部空間放射線モニタ（高線量）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。
＊ $3: 「 \mathrm{D}+\mathrm{P}_{\mathrm{sAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

12
表 5－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\text {A }} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV}{ }_{\mathrm{A}} \mathrm{~S}\right. \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$	$1.5 \cdot \mathrm{ff}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}{ }^{\text {s }}$

注記＊1：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400				
$(40 \mathrm{~mm}<$ 径 $\leqq 100 \mathrm{~mm})$					

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－4 に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所及び 床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 原子炉建屋 } \\ & \text { 0.P. 33. } 20^{* 1} \end{aligned}$		$\begin{gathered} 0.05 \\ \text { 以下*2 } \end{gathered}$	－	－	$\begin{aligned} & C_{H}= \\ & 2.65 \end{aligned}$	$\begin{gathered} \mathrm{C}_{\mathrm{V}}= \\ 1.77 \end{gathered}$

注記＊1：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

5.4 計算方法

5．4．1 応力の計算方法
5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は，地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 5－1（1）計算モデル
（短辺方向転倒の場合）

図 5－1（2）計算モデル
（長辺方向転倒の場合）
（1）引張応力
基礎ボルトに対する引張力は，最も厳しい条件として，図 5－1（1）及び図 5－ 1 （2）では最外列の基礎ボルトを支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものとして計算する。

引張力
計算モデル図 5－1（1）及び図 5－1（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}-\mathrm{m} \cdot \mathrm{~g} \cdot(1-\mathrm{C} v) \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.4.1.1.1}
\end{equation*}
$$

引張応力
$\sigma_{b}=\frac{F_{b}}{A_{b}}$
ここで，基礎ボルトの軸断面積 A_{b} は次式により求める。
$\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}$
（2）せん断応力
基礎ボルトに対するせん断力は，基礎ボルト全本数で受けるものとして計算 する。

せん断力
$\mathrm{Q}_{\mathrm{b}}=\mathrm{m} \cdot \mathrm{g} \cdot \mathrm{C}_{\mathrm{H}}$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.5}
\end{equation*}
$$

5.5 計算条件

5．5．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【使用済燃料プール上部空間放射線モニタ（高線量）（D21－RE044）の耐震性についての計算結果】の設計条件および機器要目に示す。

5.6 応力の評価

5．6．1 基礎ボルトの応力評価
5．4．1．1 項で求めた基礎ボルトの引張応力 σ bは次式より求めた許容引張応力 f_{t} 以下であること。ただし，f_{t} 。は下表による。

せん断応力 τ bはせん断力のみを受ける基礎ボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下 であること。ただし，$f_{\mathrm{sb} \text { bは下表による。 }}$

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S s による 荷重との組合せの場合
許容引張応力 f_{t} 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．機能維持評価

6.1 電気的機能維持評価方法

使用済燃料プール上部空間放射線モニタ（高線量）の電気的機能維持評価について以下に示す。

なお，機能維持評価用加速度は添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき，基準地震動 S s により定まる応答加速度を設定する。

使用済燃料プール上部空間放射線モニタ（高線量）の機能確認済加速度には，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表6－1に示す。

表 6－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
使用済燃料プール上部空間 放射線モニタ（高線量） （D21－RE044）	水平	
	鉛直	

7．評価結果

7．1 重大事故等対処設備としての評価結果
使用済燃料プール上部空間放射線モニタ（高線量）の重大事故等時の状態を考慮し た場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【使用済燃料プール上部空間放射線モニタ（高線量）（D21－RE044）の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動 S s		周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
使用済燃料プール上部空間放射線モニタ （高線量） （D21－RE044）	常設耐震／防止常設／緩和	$\begin{gathered} \text { 原子炉建屋 } \\ \text { 0.P. } 33.20^{* 1} \end{gathered}$		$\begin{aligned} & 0.05 \\ & \text { 以下*2 } \end{aligned}$	－	－	$\mathrm{C}_{\mathrm{H}}=2.65$	$\mathrm{C}_{\mathrm{V}}=1.77$	100

注記＊ 1 ：基準床レベルを示す。
＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

					転倒方向	
部 材	$(\underset{(\mathrm{MPa}}{\mathrm{y}})$	$\binom{\mathrm{S}}{(\mathrm{MPa}}$	$\underset{(\mathrm{MPa})}{\mathrm{F}}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	194	373	－	232	－	短辺方向

注記＊：各ボルトの機器要目における上段は長辺方向転倒に対する評価時の要目を示し，
下段は短辺方向転倒に対する評価時の要目を示す。
1.3 計算数値

1．3．1 ボルトに作用する力

部 材	F_{b}		Q b	
	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト	－		－	

1.4 結論

1．4．1 ボルトの応力					（単位： MPa ）	
部 材	材 料	応力	弾性設計用地震動 Sd 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=45$	$f_{\mathrm{ts}}=174^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=4$	$f_{\text {s b }}=134$

1．4．2 電気的機能維持の評価結果		$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
		機能維持評価用加速度＊	機能確認済加速度
$\begin{aligned} & \text { 使用済燃料プール上 } \\ & \text { 部空間放射線モニタ } \end{aligned}$	水平方向	2． 21	
$\begin{gathered} (\text { 高線量 } \\ \text { (D21-RE044) } \\ \hline \end{gathered}$	鉛直方向	1． 47	

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）はすべて機能確認済加速度以下である。
1.5 その他の機器要目

項目	記号	単位	入力値
材質	-	-	
質量	m_{a}	kg	
	m_{b}	kg	
温度条件 （雰囲気温度）	T	${ }^{\circ} \mathrm{C}$	100
縦弾性係数	E	MPa	
ポアソン比	v	-	
要素数	-	個	
節点数	-	個	

基礎ボルト

23

側面（短辺方向）

VI－2－8－3 換気設備の耐震性についての計算書

VI－2－8－3－1 中央制御室換気空調系の耐震性についての計算書
VI－2－8－3－2 緊急時対策所換気空調系の耐震性についての計算書
VI－2－8－3－3 中央制御室待避所加圧空気供給系の耐震性についての計算書
VI－2－8－3－4 緊急時対策所加圧空気供給系の耐震性についての計算書

VI－2－8－3－1 中央制御室換気空調系の耐震性についての計算書

VI－2－8－3－1－1 中央制御室換気空調系ダクトの耐震性についての計算書
VI－2－8－3－1－2 中央制御室送風機の耐震性についての計算書
VI－2－8－3－1－3 中央制御室再循環送風機の耐震性についての計算書
VI－2－8－3－1－4 中央制御室排風機の耐震性についての計算書
VI－2－8－3－1－5 中央制御室再循環フィルタ装置の耐震性についての計算書

VI－2－8－3－1－1 中央制御室換気空調系ダクトの耐震性についての計算書

目次
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 5
2.4 記号の説明 6
2．4．1 矩形ダクトの記号の説明 6
2．4．2 円形ダクトの記号の説明 7
2.5 計算精度と数値の丸め方 8
3．評価部位 8
4．固有振動数 9
4．1 固有振動数の計算方法 9
5．構造強度評価 11
5.1 構造強度評価方法 11
5．1．1 矩形ダクトの構造強度評価方法 11
5．1．2 円形ダクトの構造強度評価方法 12
5.2 荷重の組合せ及び許容応力 13
5．2．1 荷重の組合せ及び許容応力状態 13
5．2．2 許容限界 13
5．2．3 使用材料の許容応力評価条件 13
5.3 設計用地震力 17
6．評価結果 17
6.1 設計基準対象施設としての評価結果 17
6.2 重大事故等対処設備としての評価結果 19
7．支持構造物設計の基本方針 19
7.1 支持構造物の構造及び種類 19
7.2 支持構造物の耐震性確認 19

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」及び「IV－2－1－12－2 ダクト及び支持構造物の耐震計算について」にて設定している設計方針に基づき，中央制御室換気空調系ダクト が設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価 は，構造強度評価により行う。

中央制御室換気空調系ダクトは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．一般事項

2.1 構造計画

中央制御室換気空調系ダクトの構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基啱•文持構造	主体構造	
支持構造物を介して躯体 －支持されている。	$\begin{aligned} & \hline \text { 矩形ダクト } \\ & \text { 円形ダクト } \end{aligned}$	（溶接型円形ダクト） （溶接型矩形ダクト）

2． 2 評価方針

中央制御室換気空調系ダクト及びその支持構造物は適切な剛性を有するとともに，許容座屈曲げモーメントを満足する支持間隔とすることにより耐震性を確保する。

支持間隔の算定は，ダクトの固有振動数（fd）が十分剛（ 20 Hz 以上）となるよう算定する手法を用いて支持間隔を決定する。支持点間隔設定手順を図 $2-1$ に示す。こうして定められた支持間隔以内で支持することにより耐震性を確保する。直管部，曲管部，分岐部，重量物の取付部，伸縮継手部の支持間隔に対する方針を以下に示す。
（1）直管部
直管部は，図 2－1 で求まる支持間隔以下で支持するものとする。また，直管部が長い箇所 には軸方向を拘束する支持構造物を設ける。
（2）曲管部及び分岐部
曲管部及び分岐部は，図2－1 で求まる支持間隔に縮小率を乗じた支持間隔を用いて支持点 を設計する。
（3）重量物の取付部
ダクトに自動ダンパ，弁等の重量物が取り付く場合は，重量物自体又は近傍を支持するも のとする。なお，近傍を支持する場合においては図 2－1 で求まる支持間隔と，当該重量物を考慮した支持間隔を用いて，支持点を設計する。
（4）伸縮継手部
ダクトに伸縮継手がある場合は，双方接続部の近傍を支持するものとする。
（5）ダクトの支持構造物は，原則として建屋の壁，天井等に埋め込まれた埋込金物より支持す るものとする。

図 2－1 ダクト支持点間隔設定手順

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」とい う。）
2.4 記号の説明

2．4．1 矩形ダクトの記号の説明

注記＊：出典 共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究」より，理論値と実験値の比率から定まる係数を用いる。

2．4．2 円形ダクトの記号の説明

記号	記号の説明	単位
f	固有振動数	Hz
π	円周率	－
l	両端単純支持間隔	mm
E	縦弾性係数	MPa
g	重力加速度	$\mathrm{mm} / \mathrm{s}^{2}$
I	断面二次モーメント	mm^{4}
Z	断面係数	mm^{3}
W	ダクト単位長さ重量	N / mm
β	弾性座屈曲げモーメントの補正係数（＝	－
d_{1}	ダクト内径寸法	mm
d 2	ダクト外径寸法	mm
R	ダクト内半径寸法	mm
t	ダクト板厚	mm
M_{0}	発生曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
α	設計震度	－
M	許容座屈曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
S	許容座屈曲げモーメントの安全係数（＝	－
$\mathrm{M}_{\mathrm{c} \text { r }}$	弾性座屈曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
M_{T}	座屈限界曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
v	ポアソン比（ $=0.3$ ）	－
σ c r	弾性座屈応力	MPa
σ y	降伏点	MPa

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	－	整数位 $* 1$
支持間隔	mm	十の位	切捨て	整数位
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ダクトの耐震評価は「5．1構造強度評価方法」に示す条件に基づき，ダクトについて評価を実施する。

4．固有振動数
4．1 固有振動数の計算方法
（1）計算モデル
ダクト系は，図 4－1 に示す両端を支持構造物で支持された両端単純支持ばりにモデル化す る。

図 4－1 両端単純支持ばり
（2）固有振動数
a．矩形ダクトの固有振動数計算方法
両端単純支持された矩形ダクトの固有振動数は，次式で与えられる。算出に用いる矩形 ダクトの断面図を図 4－2 に示す。

$$
\begin{align*}
\mathrm{f} & =\frac{\pi}{2 \cdot e^{2}} \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~g}}{\mathrm{~W}}} \quad \ldots \ldots \ldots . \tag{4.1}\\
& \text { ここで, } \\
\mathrm{I} & =\left(\frac{\mathrm{t} \cdot \mathrm{~b} \mathrm{e}^{3}}{6}+\mathrm{ae} \cdot \mathrm{t} \cdot \frac{\mathrm{~b} \mathrm{e}^{2}}{2}\right) \cdot \beta \tag{4.2}
\end{align*}
$$

（4．1）及び（4．2）式の出典：共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究（S60～S61）」

図 4－2 矩形ダクトの断面図
b．円形ダクトの固有振動数計算方法
両端単純支持された円形ダクトの固有振動数は，次式で与えられる。算出に用いる円形 ダクトの断面図を図 4－3 に示す。

$$
\begin{align*}
\mathrm{f} & =\frac{\pi}{2 \cdot \ell^{2}} \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~g}}{\mathrm{~W}}} \tag{4.3}\\
& \text { ここで, } \\
\mathrm{I} & =\frac{\pi}{64}\left(\mathrm{~d}_{2}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \tag{4.4}
\end{align*}
$$

図 4－3 円形ダクトの断面図

5．構造強度評価

5.1 構造強度評価方法

5．1．1 矩形ダクトの構造強度評価方法
矩形ダクトの座屈評価を示す。地震時，両端単純支持された矩形ダクトに生じる曲げモ ーメントは次式で与えられる。

$$
\begin{equation*}
\mathrm{M}_{0}=\frac{\alpha \cdot \mathrm{W} \cdot \ell^{2}}{8} \tag{5.1}
\end{equation*}
$$

ここで，矩形ダクトの座屈による大変形を防ぐために矩形ダクトに生じる曲げモーメン トが許容座屈曲げモーメント以下となるようにする。

$$
\begin{equation*}
\mathrm{M}_{0} \leqq \mathrm{M} \tag{5.2}
\end{equation*}
$$

（5．1），（5．2）式より許容座屈曲げモーメントから定まる支持間隔は次式で与えられる。

$$
\begin{align*}
& \ell=\sqrt{\frac{8 \cdot \mathrm{M}}{\mathrm{~W} \cdot \alpha}} \tag{5.3}\\
& \text { ここで, } \\
& \mathrm{M}=\mathrm{S} \cdot \mathrm{M}_{\mathrm{T}} \tag{5.4}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{M}_{\mathrm{T}}=\lambda \cdot \frac{\pi \cdot \mathrm{t} \cdot \mathrm{I}}{\sqrt{1-v^{2}} \cdot \mathrm{~b}^{2}} \cdot \sqrt{\mathrm{E} \cdot \sigma_{\mathrm{y}}} \cdot \gamma \tag{5.5}\\
& \mathrm{I}=\frac{\mathrm{t} \cdot \mathrm{~b}^{3}}{6}+\mathrm{a} \mathrm{e} \cdot \mathrm{t} \cdot \frac{\mathrm{~b}^{2}}{2} \quad \ldots \ldots . \tag{5.6}
\end{align*}
$$

（5．2）～（5．6）式の出典：共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関 する研究（S60～S61）」

5．1．2 円形ダクトの構造強度評価方法

円形ダクトの座屈評価を示す。地震時，両端単純支持された円形ダクトに生じる曲げモ ーメントは次式で与えられる。

$$
\begin{equation*}
\mathrm{M}_{0}=\frac{\alpha \cdot \mathrm{W} \cdot \ell^{2}}{8} \tag{5.7}
\end{equation*}
$$

ここで，円形ダクトの座屈による大変形を防ぐために円形ダクトに生じる曲げモーメン トが許容座屈曲げモーメント以下となるようにする。

$$
\begin{equation*}
\mathrm{M}_{0} \leqq \mathrm{M} \tag{5.8}
\end{equation*}
$$

（5．7），（5．8）式より許容座屈曲げモーメントから定まる支持間隔は次式で与えられる。

$$
\begin{align*}
& \ell=\sqrt{\frac{8 \cdot \mathrm{M}}{\mathrm{~W} \cdot \alpha}} \tag{5.9}\\
& \text { ここで, } \\
& \mathrm{M}=\mathrm{S} \cdot \mathrm{M}_{\mathrm{T}} \tag{5.10}\\
& \mathrm{M}_{\mathrm{T}}=\min \left(\begin{array}{lll}
\sigma_{\mathrm{cr}}, & \sigma_{\mathrm{y}}
\end{array}\right) \cdot \mathrm{Z} \tag{5.11}\\
& \sigma_{\mathrm{cr}}=\frac{\mathrm{M}_{\mathrm{c} \mathrm{r}}}{\mathrm{Z}} \tag{5.12}\\
& M_{c r}=\frac{\beta \cdot E \cdot R \cdot t^{2}}{\left(1-v^{2}\right)} \tag{5.13}\\
& \mathrm{Z}=\frac{\pi}{32} \cdot \frac{\mathrm{~d}_{2}{ }^{4}-\mathrm{d}_{1}{ }^{4}}{\mathrm{~d}_{2}} \tag{5.14}
\end{align*}
$$

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ダクトの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示す。

5．2．2 許容限界
ダクトの許容限界を表5－3及び表5－4に示す。

5．2．3 使用材料の許容応力評価条件
ダクトの許容応力のうち設計基準対象施設の評価に用いるものを表 5－5 に，重大事故等対処設備の評価に用いるものを表 5－6に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震設計上の重要度分類	機器等の区分	荷重の組合せ	許容応力状態
放射線管理施設	換気設備	中央制御室換気空調系主配管	S	Non＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{d} * * 2$	$\mathrm{III}_{4} S^{* 2}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：クラス4管の荷重の組合せ及び許容応力状態を適用する。
＊2：ダクトの耐震支持間隔の算出においては，許容値となる許容座屈曲げモーメントの算出にあたり，評価手法上，ダクト材の降伏点を使用す るため，基準地震動 S s 評価と弾性設計用地震動 S d 又は静的地震力（ $\mathrm{S} \mathrm{d}^{*}$ ）評価に用いる係数，許容値に差異はない。また，発生曲げ

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
放射線管理施設	換気設備	中央制御室換気空調系主配管	常設耐震／防止 常設／緩和	重大事故等 クラス2管	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s}^{* 2}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{A} \mathrm{~S}\left(\mathrm{~V}_{A} \mathrm{~S} \text { として } \mathrm{IV}_{A} \mathrm{~S}\right. \text { の }$ 許容限界を用いる。）

注記 $\boldsymbol{*}^{2}$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容限界（クラス 4 管）

\begin{tabular}{|c|c|}
\hline 許容応力状態 \& 許容限界

\hline III ${ }_{\text {A }} \mathrm{S}$

$\mathrm{IV}_{\text {A }} \mathrm{S}$ \& | 地震時の加速度に対し機能が保たれるようサポートのスパン長を最大許容ピッチ以下に確保すること。 |
| :--- |
| （最大許容ピッチは式（5．3）から（5．6）及び（5．9）から（5．14）に基づき座屈限界曲げモーメントより算出する。） |

\hline
\end{tabular}

表 5－4 許容限界（重大事故等クラス 2 管（クラス 4 管））

許容応力状態	許容限界
IV ${ }_{\text {A }} \mathrm{S}$ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	地震時の加速度に対し機能が保たれるようサポートのスパン長を最大許容ピッチ以下に確保すること。 （最大許容ピッチは式（5．3）から（5．6）及び（5．9）から（5．14）に基づき座屈限界曲げモーメントより算出する。）

表 5－5 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S^{*} (MPa)	S_{y} (MPa)	$\mathrm{S}_{\mathrm{u}} *^{*}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)	
ダクト	SS 400	最高使用温度	40	-	\square	-	-

注記＊：評価に使用していない許容応力については「—」と記載する。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}^{*} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{~T})^{*} \\ (\mathrm{MPa}) \end{gathered}$
ダクト	SS400	最高使用温度	40	－		－	－

注記＊：評価に使用していない許容応力については「—」と記載する。

5.3 設計用地震力

本計算書において評価に用いる静的震度及び基準地震動 S s による地震力は添付書類「VI－ 2－1－7 設計用床応答曲線の作成方針」に基づく。

なお，ダクトの耐震支持間隔の算出においては，許容値となる許容座屈曲げモーメントの算出にあたり，評価手法上，ダクト材の降伏点を使用するため，S s 評価と S d＊評価に用いる許容値に差異はない。また，発生曲げモーメントの算出に当たつては，S d＊は S s に包絡される ため，S d＊に対する評価は省略する。

6．評価結果

6.1 設計基準対象施設としての評価結果

中央制御室換気空調系ダクトの耐震支持間隔は，「2．2 評価方針」に示す手法から定めてお り，設計基準対象施設としての支持間隔を表 6－1に示す。この支持間隔以内で支持することに より，耐震性を確保する。

表 6－1 中央制御室換気空調系ダクトの耐震支持間隔（設計基準対象施設としての評価結果）
（単位：mm）

ダクト 種別＊	ダクト		板厚	$\begin{gathered} \text { 支持間隔 } \\ (\mathrm{fd} \geqq 20 \mathrm{~Hz}) \end{gathered}$	
	長辺	短辺			
	200	200	2． 3		
	200	200	3.2		
	426.6	337.6	3.2		
	427.6	342.6	3.2		
	481.6	378.6	3.2		
	500	400	2.3		
	500	400	3.2		
	500	450	2.3		
	500	450	3.2		
	500	500	2.3		
	600	550	2.3		
	600	550	3.2		
鋼板	650	300	2.3		
溶接矩形ダクト	650	300	3.2		
（SS400）	800	400	3.2		
	850	600	2.3		
	900	900	2.3		
	1183.6	850.6	3.2		
	1400	1400	2.3		
	1400	1400	3.2		
	1600	1350	4.5		
	1850	1300	2.3		
	1850	1300	3.2		
	2000	900	2.3		
	2000	900	3.2		
	2000	1000	2.3		
	2000	1000	3.2		
鋼板 溶接円形ダクト （SS400）	¢ 250		2.3		
	$\phi 250$		3.2		
	$\phi 453.6$		3.2		
	¢ 502.6		3.2		
	$\phi 550$		2． 3		
	$\phi 550$		3.2		
	¢ 650		2.3		
	¢ 1118		4.5		

注記＊：全て保温有りとして算出。

6．2 重大事故等対処設備としての評価結果

重大事故等対処設備としての支持間隔は，設計基準対象施設としての支持間隔と同様である ため，記載を省略する。

7．支持構造物設計の基本方針

7.1 支持構造物の構造及び種類

支持構造物は，形鋼及び角形鋼管を組み合わせた溶接構造を原則とし，その用途に応じて以下に大別する。
（1）ダクト軸直角の 2 方向を拘束するもの
（2）ダクト軸方向及び軸直角の 3 方向を拘束するもの

図 7－1～図7－3 に支持構造物の代表例を示す。

7.2 支持構造物の耐震性確認

各支持構造物を，型式（R2，R 3）毎に分類し，そのうち型式毎に最大の発生応力となる支持構造物を代表として，その耐震性の確認結果を表 7－1 に示す。

耐震性の確認には，解析コード「S A P－IV」を使用する。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

表 7－1 ダクト支持構造物の耐震性確認結果

構造物	型式＊	許容応力 状態	設計 温度	発生応力 (MPa)	許容応力 (MPa)
支持架構	R 2	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$40^{\circ} \mathrm{C}$	72	280
	R 3	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$40^{\circ} \mathrm{C}$	114	280

注記＊：「R2」はダクト軸直角の 2 方向を拘束するもの，「R3」はダクト軸方向及び軸直角方向の 3 方向を拘束するものを示す。

$$
k a
$$

$a-a$ 天視

図 7－1 2 方向（軸直角方向）拘束の代表例

$$
k-b
$$

図 7－2 3 方向（軸方向及び軸直角方向）拘束の代表例

図 7－3 垂直ダクトの支持の代表例

VI－2－8－3－1－2 中央制御室送風機の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4.1 動的機能維持評価方法 7
5．評価結果 8
5.1 設計基準対象施設としての評価結果 8
5.2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，中央制御室送風機が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

中央制御室送風機は，設計基準対象施設においてはS クラス施設に，重大事故等対処設備にお いては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，中央制御室送風機は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載 の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

中央制御室送風機の構造計画を表2－1 に示す。

表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

中央制御室送風機の構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性について の計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
中央制御室送風機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用 いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表3－2に示す。

3．2．2 許容応力
中央制御室送風機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件
中央制御室送風機の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用い るものを表 3－4に，重大事故等対処設備の評価に用いるものを表 $3-5$ に示す。
3.3 計算条件

応力計算に用いる計算条件は，本計算書の【中央制御室送風機の耐震性についての計算結果】 の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $* 1$ ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1 ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{A} \mathrm{~S}$ の許容限界を用いる。）		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	394	

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	394

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

4．機能維持評価
4． 1 動的機能維持評価方法
中央制御室送風機の動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に記載の評価方法に基づき行う。

中央制御室送風機は地震時動的機能維持が確認された機種と類似の構造及び振動特性である ため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ファン	遠心直結型ファン	水平	2.6
		2.0	
原動機	横形ころがり 軸受電動機	水平	7.0
	鉛直	2.0	

5．評価結果

5.1 設計基準対象施設としての評価結果

中央制御室送風機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

中央制御室送風機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【中央制御室送風機の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		送風機振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向 設計震度			
中央制御室送風機	S	$\begin{gathered} \text { 制御建屋 } \\ \text { 0.P. } 1.50^{* 1} \end{gathered}$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.77$	$\mathrm{C}_{\mathrm{V}}=0.42$	$\mathrm{C}_{\mathrm{H}}=1.35$	$C_{V}=0.79$		－	40＊3

注記 $* 1$ ：基準床しベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
$* 3$ ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
\bullet

1.2 機器要目

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{2} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基碮ボルト $(i=1)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	231	276	軸直角	軸直角	－
原動機取付ボルト $(i=2)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	231	276	軸直角	軸直角	

注記 $* 1$ ：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 Sd 又は静的震度	$\begin{gathered} \text { 基漼地震動 } \\ \text { S s } \end{gathered}$	弾性設計用地震動 S d 又は静的震度	$\begin{gathered} \hline \text { 基漼地震動 } \\ \text { S s } \end{gathered}$
基礎ボルト $(i=1)$				
原動機取付ボルト $(\mathrm{i}=2)$				

1．4 結論

部材	材料	応力	弾性設計用地震動 S d 又 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	$\sigma_{\text {b } 1}=13$	$\mathrm{f}_{\mathrm{ts} 1}=173$＊	$\sigma_{\mathrm{b}}^{1} 1027$	$\mathrm{f}_{\mathrm{ts} 1}=207^{*}$
		せん断	$\tau_{\mathrm{b} 1}=8$	$\mathrm{f}_{\text {s b } 1}=133$	$\tau_{\mathrm{b} 1}=13$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(\mathrm{i}=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=7$	$\mathrm{ff}_{\mathrm{ts} 2}=173$＊	$\sigma_{\mathrm{b}_{2}}=16$	$\mathrm{f}_{\mathrm{ts} 2}=207^{*}$
		せん断	$\tau_{\mathrm{b} 2}=7$	$\mathrm{f}_{\mathrm{sb} 2}=133$	$\tau_{\mathrm{b} 2}=12$	$\mathrm{f}_{\mathrm{sb} 2}=159$

すべて許容応力以下である。
注記 $*: \mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
1．4．2 動的機能の評価結果

$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$			
ファン	機能維持評価用加速度 $*$	機能確認済加速度	
	鉛直方向	1.13	2.6
原動機	水平方向	0.66	2.0
	鉛直方向	1.13	7.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

【中央制御室送風機の耐震性についての計算結果】

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基準地震動S s		送風機振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \end{aligned}$	$\begin{aligned} & \text { 鉛直 } \\ & \text { 方向 } \end{aligned}$	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鈖直方向設計震度			
中央制御室送風機	常設耐震／防止 常設／緩和	$\begin{gathered} \text { 制御建屋 } \\ 0 . P .1 .50 * 1 \end{gathered}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{Cv}=0.79$		－	40＊3

注記 $* 1$ ：基準床レベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
＊3 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { S u i } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{2} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	
基礎ボルト $(\mathrm{i}=1)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	－	276	－	軸直角	－
原動機取付ボルト $(i=2)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	－	276	－	軸直角	

注記 $* 1:$ 各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

2．3 計算数値
2．3．1 ボルトに作用する力（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 Sd更静的震度	基漼地震動 S s	弾性設計用地震動 S d 又は静的震度	$\begin{gathered} \hline \text { 基漼地震動 } \\ \text { S s } \end{gathered}$
基礎ボルト $(i=1)$	－		－	
原動機取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論

部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=27$	$\mathrm{ff}_{\mathrm{ts} 1}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=13$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\text {b } 2}=16$	$\mathrm{f}_{\mathrm{t} \mathrm{s} 2}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=12$	$\mathrm{f}_{\text {s b } 2}=159$

すべて許容応力以下である。
注記＊： $\mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
2．4．2 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ファン	水平方向	1.13	2.6
	鉛直方向	0.66	2.0
原動機	水平方向	1.13	7.0
	鉛直方向	0.66	2.0

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2 （3）VI－2－8－3－1－2 R O E

A～A矢視図
（基礎ボルト）
（原動機取付ボルト）

VI－2－8－3－1－3 中央制御室再循環送風機の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4.1 動的機能維持評価方法 7
5．評価結果 8
5.1 設計基準対象施設としての評価結果 8
5.2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，中央制御室再循環送風機が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

中央制御室再循環送風機は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，中央制御室再循環送風機は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」 に記載の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

中央制御室再循環送風機の構造計画を表 2－1に示す。

[^17]表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

中央制御室再循環送風機の構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性に ついての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
中央制御室再循環送風機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 3－1に，重大事故等対処設備の評価に用いるものを表3－2 に示す。

3．2．2 許容応力
中央制御室再循環送風機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件
中央制御室再循環送風機の使用材料の許容応力評価条件のうち設計基準対象施設の評価 に用いるものを表 3－4 に，重大事故等対処設備の評価に用いるものを表 3－5 に示す。
3.3 計算条件

応力計算に用いる計算条件は，本計算書の【中央制御室再循環送風機の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

注記＊ 1 ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$I I I A^{\text {S }}$	$1.5 \cdot \mathrm{ft}_{\mathrm{t}}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{\text {A }} \mathrm{S}$		
$V_{A} S$ （ $V_{A} S$ として $\mathrm{IV}_{A} S$ の許容限界を用いる。）		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
基礎ボルト	$\begin{gathered} \mathrm{SS} 400 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40＊	231	394	－
原動機取付 ボルト	$\begin{gathered} \text { SS400 } \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	周囲環境温度	40＊	231	394	－

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	394

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

4．機能維持評価
4． 1 動的機能維持評価方法
中央制御室再循環送風機の動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

中央制御室再循環送風機は地震時動的機能維持が確認された機種と類似の構造及び振動特性 であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用す る。機能確認済加速度を表4－1に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ファン	遠心直結型ファン	水平	2.6
		2.0	
原動機	横形ころがり 軸受電動機	水平	7.0
	鉛直	2.0	

5．評価結果

5.1 設計基準対象施設としての評価結果

中央制御室再循環送風機の設計基準対象施設としての耐震評価結果を以下に示す。発生值は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有しているこ とを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

中央制御室再循環送風機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有し
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【中央制御室再循環送風機の耐震性についての計算結果】
1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		送風機振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向設計震度	鈖直方向設計震度	水平方向設計震度	鉛直方向設計震度			
中央制御室再循環送風機	S	制御建屋 0．P．1． $50 * 1$	－＊2	－＊2	$\mathrm{CH}_{\mathrm{H}}=0.77$	$\mathrm{Cv}=0.42$	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{v}}=0.79$		－	$40^{* 3}$

注記＊1 ：基準床レベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
＊ 3 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
\bullet
1.2 機器要目

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { S u i } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{2} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$	$\begin{gathered} 231 * 2 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	231	276	軸直角	軸直角	－
原動機取付ボルト $(i=2)$	$\begin{gathered} 231 * 2 \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	231	276	軸直角	軸直角	

注記＊1：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$				
原動機取付ボルト $(i=2)$				

1．4 結論

部材	材料	応力	弾性設計用地震動 S d 又 は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	$\sigma_{\mathrm{b} 1}=7$		$\sigma_{\text {b } 1}=15$	$\mathrm{f}_{\mathrm{ts} 1}=207^{*}$
		せん断	$\tau_{\mathrm{b} 1}=5$	$\mathrm{f}_{\text {s b } 1}=133$	$\tau_{\mathrm{b} 1}=8$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\mathrm{b}_{2}}=4$	$\mathrm{f}_{\mathrm{ts} 2}=173^{*}$	$\sigma_{\mathrm{b}_{2}}=9$	$\mathrm{f}_{\mathrm{ts} 2}=207^{*}$
		せん断	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=133$	$\tau_{\mathrm{b} 2}=6$	$\mathrm{f}_{\mathrm{sb} 2}=159$

すべて許容応力以下である。
注記 $*: \mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau \mathrm{bi}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
1．4．2 動的機能の評価結果

ファン	機能維持評価用加速度 ${ }^{*}$	機能確認済加速度	
	1.13	2.6	
	鉛直方向	動機	水平方向
	鉛直方向	0.66	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

【中央制御室再循環送風機の耐震性についての計算結果】
2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		送風機振動 による震度	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
中央制御室再循環送風機	常設耐震／防止常設／緩和	$\begin{gathered} \text { 制御建屋 } \\ \text { 0.P. } 1.50^{* 1} \end{gathered}$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{V}}=0.79$		－	$40^{* 3}$

注記＊1 ：基準床レベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
＊3 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

部材	$\begin{aligned} & \mathrm{S}_{\text {y i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{ui}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{2} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	－	276	－	軸直角	－
原動機取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	－	276	－	軸直角	

注記 $* 1$ ：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 Sd更は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
原動機取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論

すべて許容応力以下である。
注記米：f $\mathrm{tsi}_{\mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau \mathrm{bi}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
2．4．2 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度 ${ }^{*}$	機能確認済加速度
ファン	水平方向	1.13	2.6
	鉛直方向	0.66	2.0
原動機	水平方向	1.13	7.0
	鉛直方向	0.66	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$\mathrm{A} \sim \mathrm{A}$ 矢視図
（基礎ボルト）
（原動機取付ボルト）

VI－2－8－3－1－4 中央制御室排風機の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4.1 動的機能維持評価方法 7
5．評価結果 8
5.1 設計基準対象施設としての評価結果 8
5.2 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，中央制御室排風機が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

中央制御室排風機は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備にお いては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，中央制御室排風機は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」に記載 の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

中央制御室排風機の構造計画を表 2－1 に示す。

表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

中央制御室排風機の構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性について の計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
中央制御室排風機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用 いるものを表 3－1 に，重大事故等対処設備の評価に用いるものを表3－2に示す。

3．2．2 許容応力
中央制御室排風機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 3－3 のとおりとする。

3．2．3 使用材料の許容応力評価条件
中央制御室排風機の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用い るものを表 3－4に，重大事故等対処設備の評価に用いるものを表 $3-5$ に示す。
3.3 計算条件

応力計算に用いる計算条件は，本計算書の【中央制御室排風機の耐震性についての計算結果】 の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 3－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

注記＊1 ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2 ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

許容応力状態	$\begin{gathered} \hline \text { 許容限界*1, *2 } \\ \text { (ボルト等) } \end{gathered}$	
	一次応力	
	引張り	せん断
$\mathrm{II}_{4} \mathrm{~S}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{fs}$
$\mathrm{IV}_{4} \mathrm{~S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{fs}$＊
$\mathrm{V}_{\mathrm{A}} \mathrm{~S}$ （ $V_{A} S$ として $V_{A} S$ の許容限界を用いる。）		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $($ 径 $\leqq 16 \mathrm{~mm})$	周囲環境温度	40^{*}	241	394	

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400 $($ 径 $\leqq 16 \mathrm{~mm})$	周囲環境温度	40^{*}	241	394
原動機取付 ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	-

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

4．機能維持評価
4． 1 動的機能維持評価方法
中央制御室排風機の動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に記載の評価方法に基づき行う。

中央制御室排風機は地震時動的機能維持が確認された機種と類似の構造及び振動特性である ため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ファン	遠心直動型ファン	水平	5.2
		2.0	
原動機	横形ころがり 軸受電動機	水平	7.0
	鉛直	2.0	

5．評価結果

5.1 設計基準対象施設としての評価結果

中央制御室排風機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。
5.2 重大事故等対処設備としての評価結果

中央制御室排風機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【中央制御室排風機の耐震性についての計算結果】

1．設計基準対象施設
1.1 設計条件

機器名称	耐震重要度分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基準地震動S s		排風機振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
中央制御室排風機	S	制御建屋 0．P．1． $50 * 1$	－＊2	－＊2	$\mathrm{C}_{\mathrm{H}}=0.77$	$\mathrm{Cv}=0.42$	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{v}}=0.79$		－	$40 * 3$

注記 $* 1$ ：基準床レベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
＊3：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
\bullet
1．2 機器要目

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$	$\begin{gathered} 241^{* 2} \\ (\text { 径 } \leqq 16 \mathrm{~mm}) \end{gathered}$	$394 * 2$	241	276	軸	軸	－
原動機取付ボルト $(i=2)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	231	276	軸	軸	－

注記 $* 1$ ：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$				
原動機取付ボルト $(i=2)$				

1． 4 結論

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(i=1)$	SS400	引張り	$\sigma_{\mathrm{b} 1}=7$	$\mathrm{ft}_{\mathrm{ts} 1}=180^{*}$	$\sigma_{\mathrm{b} 1}=16$	$\mathrm{f}_{\mathrm{ts} 1}=207^{*}$
		せん断	$\tau_{\mathrm{b} 1}=5$	$\mathrm{f}_{\text {s b } 1}=139$	$\tau_{\mathrm{b} 1}=8$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(i=2)$	SS400	引張り	$\sigma_{\mathrm{b} 2}=16$	$\mathrm{f}_{\mathrm{ts} 2}=173$＊	$\sigma_{\mathrm{b} 2}=24$	$\mathrm{f}_{\mathrm{ts} 2}=207^{*}$
		せん断	$\tau_{\mathrm{b} 2}=5$	$\mathrm{f}_{\text {s b } 2}=133$	$\tau_{\mathrm{b} 2}=8$	$\mathrm{f}_{\text {s b } 2}=159$

すべて許容応力以下である。
注記 $*: ~ \mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6\right.$ • $\left.\tau \mathrm{bi}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
1．4．2 動的機能の評価結果

$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$			
ファン	機能維持評価用加速度 $*$	機能確認済加速度	
	鉛直方向	1.13	5.2
原動機	水平方向	0.66	2.0
	鉛直方向	1.13	7.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$$
\mathrm{O} 2 \text { (3) VI-2-8-3-1-4 R O }
$$

【中央制御室排風機の耐震性についての計算結果】

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び 床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		排風機振動 による震度	最高使用温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \\ & \hline \end{aligned}$	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鋁直方向設計震度			
中央制御室排風機	常設耐震 $/$ 防止常設／緩和	制御建屋 0．P． $1.50 * 1$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{V}}=0.79$		－	40＊3

注記 $* 1$ ：基準床レベルを示す。
＊2 ：固有周期は十分に小さく，計算は省略する。
＊3：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Fi}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$	$\begin{gathered} 241 * 2 \\ (\text { 径 } \leqq 16 \mathrm{~mm}) \\ \hline \end{gathered}$	$394 * 2$	－	276	－	軸	－
原動機取付ボルト $(i=2)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	－	276	－	軸	－

予想最大両振幅 $(\mu \mathrm{m})$	回転速度 (rpm)

注記 $* 1$ ：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
$* 2$ ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
2.3 計算数値

2．3．1 ボルトに作用する力（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 Sd 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	－		－	
原動機取付ボルト $(\mathrm{i}=2)$	－		－	

2． 4 結論

部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{\text {b } 1}=16$	$\mathrm{ft} \mathrm{s} 1^{\text {c }}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=8$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(i=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=24$	$\mathrm{ft} \mathrm{s} 2=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=8$	$\mathrm{f}_{\text {s b } 2}=159$

すべて許容応力以下である。
注記＊： $\mathrm{f}_{\mathrm{tsi}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
2．4．2 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ファン	水平方向	1.13	5.2
	鉛直方向	0.66	2.0
原動機	水平方向	1.13	7.0
	鉛直方向	0.66	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

$A \rightarrow$
$\mathrm{A} \sim \mathrm{A}$ 矢視図 （原動機取付ボルト）

VI－2－8－3－1－5 中央制御室再循環フィルタ装置の耐震性 についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．評価部位 7
4．固有周期 8
4.1 固有周期の計算方法 8
4.2 固有周期の計算条件 9
4.3 固有周期の計算結果 9
5．構造強度評価 10
5.1 構造強度評価方法 10
5.2 荷重の組合せ及び許容応力 10
5．2．1 荷重の組合せ及び許容応力状態 10
5．2．2 許容応力 10
5．2．3 使用材料の許容応力評価条件 10
5.3 設計用地震力 14
5.4 計算方法 15
5．4．1 応力の計算方法 15
5.5 計算条件 19
5．5．1 基礎ボルトの応力計算条件 19
5.6 応力の評価 19
5．6．1 ボルトの応力評価 19
6．評価結果 20
6.1 設計基準対象施設としての評価結果 20
6.2 重大事故等対処設備としての評価結果 20

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，中央制御室再循環フィルタ装置が設計用地震力に対して十分な構造強度を有してい ることを説明するものである。

中央制御室再循環フィルタ装置は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

中央制御室再循環フィルタ装置の構造計画を表2－1 に示す。

表 2－1 構造計画

2．2 評価方針

中央制御室再循環フィルタ装置の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1構造計画」にて示す中央制御室再循環フィルタ装置の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まるこ とを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

中央制御室再循環フィルタ装置の耐震評価フローを図 2－1 に示す。

中央制御室再循環フィルタ装置の構造強度評価

図 2－1 中央制御室再循環フィルタ装置の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984， J E A G 4 6 0 1－1987 及びJ E A G 4 6 0 1－1991 追補版）（（社）日本電気協会）
（2）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」とい う。）
2.4 記号の説明

記 号	記 号 の 説 明	単 位
$\mathrm{A}_{\text {b }}$	ボルトの軸断面積	mm^{2}
$\mathrm{A}_{\text {e }}$	有効せん断断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{v}	鉛直方向設計震度	－
d	ボルトの呼び径	mm
E	縦弾性係数	MPa
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3133に定める値	MPa
F_{b}	ボルトに作用する引張力（1本当たり）	N
f s b	せん断力のみを受けるボルトの許容せん断応力	MPa
f ${ }_{\text {t }}$ 。	引張力のみを受けるボルトの許容引張応力	MPa
f ts	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
G	せん断弾性係数	MPa
9	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h	据付面から重心までの距離	mm
I	断面二次モーメント	mm^{4}
K_{H}	水平方向ばね定数	N / m
K_{V}	鉛直方向ばね定数	N / m
ℓ_{1}	重心とボルト間の水平方向距離＊	mm
ℓ_{2}	重心とボルト間の水平方向距離＊	mm
m	運転時質量	kg
n	ボルトの本数	－
n f	評価上引張力を受けるとして期待するボルトの本数	－
Q_{b}	ボルトに作用するせん断力	N
S_{u}	設計•建設規格 付録材料図表 Part5 表 9 に定める値	MPa
S y	設計•建設規格 付録材料図表 Part5 表 8 に定める値	MPa
$S_{y}(\mathrm{RT})$	設計•建設規格 付録材料図表Part5表8に定める材料の $40^{\circ} \mathrm{C}$ における値	MPa
T_{H}	水平方向固有周期	S
T ${ }_{V}$	鉛直方向固有周期	S
π	円周率	－
σ b	ボルトに生じる引張応力	MPa
$\tau \mathrm{b}$	ボルトに生じるせん断応力	MPa

注記 $*: \ell_{1} \leqq \ell_{2}$
2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 2－2 に示すとおりとする。

表2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊1
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 标＊2
断面二次モーメント	mm^{4}	有効数字 5 析目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 行＊2
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記 $* 1$ ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2：絶対値が 1000 以上のときは，べき数表示とする。
＊ 3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
中央制御室再循環フィルタ装置の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づき，耐震評価上厳しくなる基礎ボルトについて実施する。中央制御室再循環フィルタ装置の耐震評価部位については，表2－1の概略構造図に示す。

4．固有周期
4.1 固有周期の計算方法

中央制御室再循環フィルタ装置の固有周期の計算方法を以下に示す。
（1）計算モデル
a．中央制御室再循環フィルタ装置の質量は重心に集中するものとする。
b．中央制御室再循環フィルタ装置は基礎ボルトで基礎に固定されており，固定端とする。
c．中央制御室再循環フィルタ装置をはりと考え，変形モードは曲げ及びせん断変形を考慮 する。
d．耐震計算に用いる寸法は，公称値を使用する。
中央制御室再循環フィルタ装置は，図 4－1 に示す下端固定の 1 質点系振動モデルとして考え る。

図 4－1 固有周期の計算モデル
（2）水平方向固有周期
曲げ及びせん断変形によるばね定数 K_{H} は次式で求める。

$$
\begin{equation*}
K_{H}=\frac{1000}{\frac{h^{3}}{3 \cdot E \cdot I}+\frac{h}{G \cdot A_{e}}} \tag{4.1.1}
\end{equation*}
$$

したがって，固有周期 T_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{H}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\mathrm{H}}}} \tag{4.1.2}
\end{equation*}
$$

（3）鉛直方向固有周期
軸方向変形によるばね定数 K_{V} は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{V}}=\frac{1000}{\frac{\mathrm{~h}}{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{e}}}} \tag{4.1.3}
\end{equation*}
$$

注記＊：断面積には，固有周期が大きく算出される有効せん断断面積 A_{e} を用いる。 したがって，固有周期 T v は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{v}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.1.4}
\end{equation*}
$$

4．2 固有周期の計算条件
固有周期の計算に用いる計算条件は，本計算書の【中央制御室再循環フィルタ装置の耐震性 についての計算結果】の機器要目に示す。

4.3 固有周期の計算結果

固有周期の計算結果を表 4－1 に示す。計算の結果，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

5．構造強度評価

5.1 構造強度評価方法

4． 1 項 a．～d．のほか，次の条件で計算する。
（1）地震力は中央制御室再循環フィルタ装置に対して水平方向及び鉛直方向から作用するもの とする。
（2）転倒方向は図 5－1 及び図 5－2 における長辺方向及び短辺方向について検討し，計算書には計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態

中央制御室再循環フィルタ装置の荷重の組合せ及び許容応力状態のらち設計基準対象施設の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示 す。

5．2．2 許容応力

中央制御室再循環フィルタ装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－3 のとおりとする。

5．2．3 使用材料の許容応力評価条件
中央制御室再循環フィルタ装置の使用材料の許容応力評価条件のうち設計基準対象施設 の評価に用いるものを表5－4に，重大事故等対処設備の評価に用いるものを表5－5に示す。

表 5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
放射線管理施設	換気設備	中央制御室再循環 フィルタ装置	S	—＊1	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{Sd}$＊	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S}$ s	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1:$ その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1 ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－3 許容応力（その他の支持構造物及び重大事故等その他の支持構造物）

注記＊1 ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－4 使用材料の許容応力評価条件（設計基準対象施設）

| 評価部材 | 材料 | 温度条件
 $\left({ }^{\circ} \mathrm{C}\right)$ | S_{y}
 (MPa) | S_{u}
 (MPa) | $\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$
 (MPa) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 基礎ボルト | SS 400
 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$ | 周囲環境温度 | 40^{*} | 231 | 394 |

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

| 評価部材 | 材料 | 温度条件
 $\left({ }^{\circ} \mathrm{C}\right)$ | S_{y}
 (MPa) | S_{u}
 (MPa) | $\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$
 (MPa) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 基礎ボルト | SS 400
 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$ | 周囲環境温度 | 40^{*} | 231 | 394 |

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

5.3 設計用地震力

耐震評価に用いる設計用地震力を表 5－6 及び表 5－7 に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所及び	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{aligned} & \text { 制御建屋 } \\ & \text { 0.P. 1. } 50 \text { * } \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=0.77$	$\mathrm{C}_{\mathrm{V}}=0.42$	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{v}}=0.79$

注記 $*$ ：基準床レベルを示す。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所及び	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S S	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
$\begin{gathered} \text { 制御建屋 } \\ \text { 0.P. 1. } 50 \text { * } \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{v}}=0.79$

注記＊：基準床レベルを示す。

5．4 計算方法

5．4．1 応力の計算方法
5．4．1．1 基礎ボルトの計算方法
基礎ボルトの応力は地震による震度により作用するモーメントによって生じる引張力とせん断力について計算する。

図 5－1（1）計算モデル
（短辺方向転倒 $-1 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right) \geqq 0$ の場合）

図 5－1（2）計算モデル
（短辺方向転倒 $-2 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right)<0$ の場合）

A
\downarrow

図 5－2（1）計算モデル
（長辺方向転倒 $-1 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right) \geqq 0$ の場合）

図 5－2（2）計算モデル
（長辺方向転倒 $-2 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right)<0$ の場合）
（1）引張応力
基礎ボルトに対する引張力は最も厳しい条件として，図 5－1 及び図 5－2 で最外列のボルト を支点とする転倒を考え，これを片側の最外列の基礎ボルトで受けるものとして計算する。

引張力
計算モデル図 5－1（1）及び図 5－2（1）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \mathrm{~h}-\left(1-\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \ell_{1}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.4.1.1.1}
\end{equation*}
$$

計算モデル図 5－1（2）及び図 5－2（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{b}}=\frac{\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g} \cdot \mathrm{~h}-\left(1-\mathrm{C}_{\mathrm{v}}\right) \cdot \mathrm{m} \cdot \mathrm{~g} \cdot \ell_{2}}{\mathrm{n}_{\mathrm{f}} \cdot\left(\ell_{1}+\ell_{2}\right)} \tag{5.4.1.1.2}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.3}
\end{equation*}
$$

ここで，基䂣ボルトの軸断面積 A_{b} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{b}}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \tag{5.4.1.1.4}
\end{equation*}
$$

ただし， F_{b} が負のとき基礎ボルトには引張力が生じないので，引張応力の計算は行わな い。
（2）せん断応力
基礎ボルトに対するせん断力は基整ボルト全本数で受けるものとして計算する。 せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}=\mathrm{C}_{\mathrm{H}} \cdot \mathrm{~m} \cdot \mathrm{~g} \tag{5.4.1.1.5}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{\mathrm{b}}=\frac{\mathrm{Q}_{\mathrm{b}}}{\mathrm{n} \cdot \mathrm{~A}_{\mathrm{b}}} \tag{5.4.1.1.6}
\end{equation*}
$$

5.5 計算条件

5．5．1 基礎ボルトの応力計算条件
基礎ボルトの応力計算に用いる計算条件は，本計算書の【中央制御室再循環フィルタ装置 の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 ボルトの応力評価
5.4 項で求めたボルトの引張応力 σ bは次式より求めた許容引張応力 f t s 以下であるこ と。ただし，ftoは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{ts}}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, \mathrm{f}_{\mathrm{to}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 $\tau \mathrm{b}$ はせん断力のみ受けるボルトの許容せん断応力 f s b 以下であること。た だし，f sbは下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S S による荷重との組合せの場合
許容引張応力 f t o	$\frac{F}{2} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{2} \cdot 1.5$
許容せん断応力 f_{sb}	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果
6.1 設計基準対象施設としての評価結果

中央制御室再循環フィルタ装置の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

6．2 重大事故等対処設備としての評価結果
中央制御室再循環フィルタ装置の重大事故時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

$$
\mathrm{O} 2 \text { (3) VI-2-8-3-1-5 R O }
$$

【中央制御室再循環フィルタ装置の耐震性についての計算結果】
1．設計基準対象施設
1．1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 Sd 又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
中央制御室再循環 フィルタ装置	S	$\begin{aligned} & \text { 制御建屋 } \\ & 0 . \mathrm{P} .1 .50^{* 1} \end{aligned}$			$\mathrm{C}_{\mathrm{H}}=0.77$	$\mathrm{C}_{\mathrm{v}}=0.42$	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{V}}=0.79$	－	$40 * 2$

注記 $* 1$ ：基準床レベルを示す。
＊2 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

部材	$\begin{gathered} \mathrm{A}_{\mathrm{b}} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
						弾性設計用地震動 Sd 又は静的震度	基準地震動 S s
基礎ボルト		$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	231	276	短辺	短辺

E (MPa)	G (MPa)	I $\left(\mathrm{mm}^{4}\right)$	A_{e} $\left(\mathrm{mm}^{2}\right)$

注記＊1 ：ボルトにおける上段は短辺方向転倒に対する評価時の要目を示し，
下段は長辺方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部材	F_{b}		Q ${ }_{\text {b }}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト				

1．4 結論

1.4 .1	固有周期	（単位：s）		
方向	有周期			
水平方向				
鉛直方向				

N

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	$\sigma_{\mathrm{b}}=3$	$\mathrm{ff}_{\mathrm{ts}}=173^{*}$	$\sigma_{\mathrm{b}}=27$	$\mathrm{ff}_{\mathrm{ts}}=207^{*}$
		せん断	$\tau_{\mathrm{b}}=22$	$\mathrm{f}_{\mathrm{sb}}=133$	$\tau_{\mathrm{b}}=38$	$\mathrm{f}_{\mathrm{sb}}=159$

【中央制御室再循環フィルタ装置の耐震性についての計算結果】

2．重大事故等対処設備
2.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動 S d 又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鈖直方向設計震度		
中央制御室再循環 フィルタ装置	常設耐震／防止 常設／緩和	制御建屋 0．P． $1.50^{* 1}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.35$	$\mathrm{C}_{\mathrm{v}}=0.79$	－	40＊2

注記 $* 1$ ：基準床レベルを示す。
＊2 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
※

部材	$\begin{aligned} & \mathrm{A}_{\mathrm{b}} \\ & \left(\mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{F}^{*} \\ (\mathrm{MPa}) \end{gathered}$	転倒方向	
						弹性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト		$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	394＊2	－	276	－	短辺

注記＊1：ボルトにおける上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
2.3 計算数値

2．3．1 ボルトに作用する力
（単位：N）

部材	F_{b}		Q ${ }_{\text {b }}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト	－		－	

2.4 結論

2.4 .1	（単位：$:$ 有周期		
方向	固有周期		
水平方向			
鉛直方向			

$\stackrel{\sim}{\perp}$

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=27$	$\mathrm{f}_{\mathrm{ts}}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b}}=38$	$\mathrm{f}_{\mathrm{s} \mathrm{b}}=159$

O 2
（3）
VI－2－8－3－1－5
R O E

A～A矢祝図

VI－2－8－3－2 緊急時対策所換気空調系の耐震性についての計算書

VI－2－8－3－2－1 緊急時対策所換気空調系ダクトの耐震性についての計算書
VI－2－8－3－2－2 管の耐震性についての計算書（緊急時対策所換気空調系）
VI－2－8－3－2－3 緊急時対策所非常用送風機の耐震性についての計算書
VI－2－8－3－2－4 緊急時対策所非常用フィルタ装置の耐震性についての計算書

VI－2－8－3－2－1 緊急時対策所換気空調系ダクトの耐震性についての計算書

目次
1．概要
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 5
2． 4 記号の説明 6
2.5 計算精度と数値の丸め方 7
3．評価部位 7
4．固有振動数 8
4．1 固有振動数の計算方法 8
5．構造強度評価 9
5.1 構造強度評価方法 9
5.2 荷重の組合せ及び許容応力 10
5．2．1 荷重の組合せ及び許容応力状態• 10
5．2．2 許容限界 10
5．2．3 使用材料の許容応力評価条件 10
5.3 設計用地震力 13
6．評価結果 13
6.1 重大事故等対処設備としての評価結果 13
7．支持構造物設計の基本方針 15
7.1 支持構造物の構造及び種類 15
7.2 支持構造物の耐震性確認 15

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」及び「IV－2－1－12－2 ダクト及び支持構造物の耐震計算について」にて設定している設計方針に基づき，緊急時対策所換気空調系ダク トが設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は，構造強度評価により行う。

緊急時対策所換気空調系ダクトは，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

緊急時対策所換気空調系ダクトの構造計画を表2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
支持構造物を介して躯体 へ支持されている。	矩形ダクト	A部詳細 （溶接型矩形ダクト） （はぜ折り型矩形ダクト）

2.2 評価方針

緊急時対策所換気空調系ダクト及びその支持構造物は適切な剛性を有するとともに，許容座屈曲げモーメントを満足する支持間隔とすることにより耐震性を確保する。
支持間隔の算定は，ダクトの固有振動数（fd）が十分剛（ 20 Hz 以上）となるよう算定する手法を用いて支持間隔を決定する。支持点間隔算出手順を図 $2-1$ に示す。こうして定められた支持間隔以内で支持することにより耐震性を碓保する。直管部，曲管部，分岐部，重量物の取付部，伸縮継手部の支持間隔に対する方針を以下に示す。
（1）直管部
直管部は，図 2－1 で求まる支持間隔以下で支持するものとする。また，直管部が長い箇所 には軸方向を拘束する支持構造物を設ける。
（2）曲管部及び分岐部
曲管部及び分岐部は，図 2－1 で求まる支持間隔に縮小率を乗じた支持間隔を用いて支持点を設計する。
（3）重量物の取付部
ダクトに自動ダンパ，弁等の重量物が取り付く場合は，重量物自体又は近傍を支持するも のとする。なお，近傍を支持する場合においては図 2－1 で求まる支持間隔と，当該重量物を考慮した支持間隔を用いて，支持点を設計する。
（4）伸縮継手部
ダクトに伸縮継手がある場合は，双方接続部の近傍を支持するものとする。
（5）ダクトの支持構造物は，原則として建屋の壁，天井等に埋め込まれた埋込金物より支持す るものとする。

図 2－1 ダクト支持点間隔算出手順

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991追補版（（社）日本電気協会）
（4）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007）（（社）日本機械学会 2007年9月）（以下「設計•建設規格」とい う。）
2.4 記号の説明

記号	記号の説明	単位
f	固有振動数	Hz
π	円周率	－
l	両端単純支持間隔	mm
E	縦弾性係数	MPa
g	重力加速度	$\mathrm{mm} / \mathrm{s}^{2}$
I	断面二次モーメント	mm^{4}
W	ダクト単位長さ重量	N / mm
β	断面二次モーメントの安全係数	－
a	ダクト長辺寸法	mm
b	ダクト短辺寸法	mm
a e	ダクトフランジの有効幅	mm
b e	ダクトウェブの有効幅	mm
t	ダクト板厚	mm
M_{0}	発生曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
α	設計震度	－
M	許容座屈曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
S	許容座屈曲げモーメントの安全係数（ $=\square$	－
M_{T}	座屈限界曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
λ	座屈限界曲げモーメントの補正係数＊	－
v	ポアソン比（＝0．3）	－
$\sigma \mathrm{y}$	降伏点	MPa
γ	座屈限界曲げモーメントの安全係数（ \square	－

注記＊：出典 共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究」より，理論値と実験値の比率から定まる係数を用いる。

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-2$ に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	-	整数位＊1
支持間隔	mm	十の位	切捨て	整数位
面積	$\mathrm{mm}{ }^{2}$	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
モーメント	$\mathrm{N} \cdot \mathrm{mm}$	有効数字 5 桁目	四捨五入	有効数字 4 桁＊2
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
許容応力 $* 3$	MPa	小数点以下第 1 位	切捨て	整数位

注記＊ 1 ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
ダクトの耐震評価は「5．1 構造強度評価方法」に示す条件に基づき，ダクトについて評価を実施する。

4．固有振動数
4．1 固有振動数の計算方法
（1）計算モデル
ダクト系は，図 4－1 に示す両端を支持構造物で支持された両端単純支持ばりにモデル化 する。

図 4－1 両端単純支持ばり
（2）固有振動数
両端単純支持された矩形ダクトの固有振動数は，次式で与えられる。算出に用いる矩形ダ クトの断面図を図4－2 に示す。

$$
\begin{equation*}
\mathrm{f}=\frac{\pi}{2 \cdot \mathrm{l}^{2}} \cdot \sqrt{\frac{\mathrm{E} \cdot \mathrm{I} \cdot \mathrm{~g}}{\mathrm{~W}}} \tag{4.1}
\end{equation*}
$$

ここで,

$$
\begin{equation*}
I=\left(\frac{\mathrm{t} \cdot \mathrm{~b} \mathrm{e}^{3}}{6}+\mathrm{ae} \cdot \mathrm{t} \cdot \frac{\mathrm{~b} \mathrm{e}^{2}}{2}\right) \cdot \beta \tag{4.2}
\end{equation*}
$$

（4．1）及び（4．2）式の出典：共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関 する研究（S60～S61）」

図4－2 矩形ダクトの断面図

5．構造強度評価

5.1 構造強度評価方法

矩形ダクトの座屈評価を示す。地震時，両端単純支持された矩形ダクトに生じる曲げモーメ ントは次式で与えられる。

$$
\begin{equation*}
\mathrm{M}_{0}=\frac{\alpha \cdot \mathrm{W} \cdot \mathrm{l}^{2}}{8} \tag{5.1}
\end{equation*}
$$

ここで，矩形ダクトの座屈による大変形を防ぐために矩形ダクトに生じる曲げモーメントが許容座屈曲げモーメント以下となるようにする。

$$
\begin{equation*}
\mathrm{M}_{0} \leqq \mathrm{M} \tag{5.2}
\end{equation*}
$$

（5．1），（5．2）式より許容座屈曲げモーメントから定まる支持間隔は次式で与えられる。

$$
\begin{align*}
& \mathrm{l}=\sqrt{\frac{8 \cdot \mathrm{M}}{\mathrm{~W} \cdot \alpha}} \tag{5.3}\\
& \text { ここで, } \\
& \mathrm{M}=\mathrm{S} \cdot \mathrm{M}_{\mathrm{T}} \tag{5.4}\\
& \mathrm{M}_{\mathrm{T}}=\lambda \cdot \frac{\pi \cdot \mathrm{t} \cdot \mathrm{I}}{\sqrt{1-v^{2} \cdot \mathrm{~b}^{2}}} \cdot \sqrt{\mathrm{E} \cdot \sigma_{\mathrm{y}}} \cdot \gamma \tag{5.5}\\
& I=\frac{t \cdot b^{3}}{6}+a e \cdot t \cdot \frac{b^{2}}{2} \tag{5.6}
\end{align*}
$$

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

（5．2）～（5．6）式の出典 ：共同研究報告書「機器配管系の合理的な耐震設計手法の確立に関する研究（S60～S61）」
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ダクトの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるもの を表5－1に示す。

5．2．2 許容限界
ダクトの許容限界を表5－2に示す。

5．2．3 使用材料の許容応力評価条件
ダクトの許容応力のうち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態
放射線管理施設	換気設備	緊急時対策所換気空調系主配管	常設／緩和	重大事故等	$\mathrm{D}+\mathrm{P}_{\mathrm{D}}+\mathrm{M}_{\mathrm{D}}+\mathrm{S} \mathrm{s} * 2$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
				クラス 2 管	$\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\text {SAD }}+\mathrm{S}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \text { (} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \text { として } \mathrm{V}_{\mathrm{A}} \mathrm{~S} \text { の許 } \\ \text { 容限界を用いる。) } \end{gathered}$

注記＊1 ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：「 $+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

ت
表 5－2 許容限界（重大事故等クラス2管（クラス 4 管））

\begin{tabular}{|c|c|}
\hline 許容応力状態 \& 許容限界

\hline $\mathrm{IV}_{A} \mathrm{~S}$

$\mathrm{~V}_{\mathrm{A}} \mathrm{S}$ \& 地震時の加速度に対し機能が保たれるようサポートのスパン長を最大許容ピッチ以下に確保すること。 （最大許容ピッチは式（5．3）から（5．6）に基づき座屈限界曲げモーメントより算出する。）

\hline
\end{tabular}

O 2 （3）VI－2－8－3－2－1 R 0

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S^{*} (MPa)	S_{y} (MPa)	$\mathrm{S}_{\mathrm{u}}{ }^{*}$ (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
ダクト			最高使用温度	40	-	-	-

注記＊：評価に使用していない許容応力については「—」と記載する。

5.3 設計用地震力

本計算書において評価に用いる静的震度及び基準地震動 S s による地震力は添付書類「VI－ 2－1－7 設計用床応答曲線の作成方針」に基づく。

6．評価結果
6.1 重大事故等対処設備としての評価結果

緊急時対策所換気空調系ダクトの耐震支持間隔は，「2．2 評価方針」に示す手法から定めて おり，重大事故等対処設備としての支持間隔を表 6－1 に示す。この支持間隔以内で支持するこ とにより，耐震性を確保する。

表 6－1 緊急時対策所換気空調系ダクトの耐震支持間隔
（重大事故等対処設備としての評価結果）
（単位：mm）

ダクト 種別＊	ダクト		板厚	支持間隔$(\mathrm{fd} \geqq 20 \mathrm{~Hz})$
	長辺	短辺		
	150	150	0.8	
	200	200	0.8	
はぜ折りダクト	300	300	0.8	
	350	350	0.8	
	400	200	0.8	
溶接ダクト	150	150	2.0	
	350	350	2.0	

注記＊：全て保温有りとして算出。

7．支持構造物設計の基本方針
7.1 支持構造物の構造及び種類

支持構造物は，形鋼及び角形鋼管を組み合わせた溶接構造を原則とし，その用途に応じて以下に大別する。
（1）ダクト軸直角の 2 方向を拘束するもの
（2）ダクト軸方向及び軸直角の 3 方向を拘束するもの

図 $7-1 \sim$ 図 $7-3$ に支持構造物の代表例を示す。

7.2 支持構造物の耐震性確認

各支持構造物を，型式（R2，R 3 ）毎に分類し，そのうち型式毎に最大の発生応力となる支持構造物を代表として，その耐震性の確認結果を表 7－1に示す。

耐震性の確認には，解析コード「 S A P－IV」を使用する。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

表 7－1 ダクト支持構造物の耐震性確認結果

構造物	型式＊	許容応力 状態	設計 温度	発生応力 (MPa)	許容応力 (MPa)
	R 2	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$40^{\circ} \mathrm{C}$	40	280
	R 3	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$40^{\circ} \mathrm{C}$	57	280

注記＊：「R2」はダクト軸直角の2方向を拘束するもの，「R3」はダクト軸方向及び軸直角方向 の 3 方向を拘束するものを示す。

$$
\leqslant a
$$

a一a矢視

図 7－1 2 方向（軸直角方向）拘束の代表例

$$
k-b
$$

$\underline{\underline{b-b} \text { 矢視 }}$
$k-b$
$1 \leqslant 0$

ポップリベット

$c-c$ 矢視

図7－2 3 方向（軸方向及び軸直角方向）拘束の代表例

VI－2－8－3－2－2 管の耐震性についての計算書（緊急時対策所換気空調系）

重大事故等対処設備
R 0
（重）

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 13
3.1 計算方法 13
3.2 荷重の組合せ及び許容応力状態 14
3.3 設計条件 15
3.4 材料及び許容応力 24
3.5 設計用地震力 25
4．解析結果及び評価 27
4．1 固有周期及び設計震度 27
4． 2 評価結果 29
4．2．1 管の応力評価結果 29
4．2．2 支持構造物評価結果 31
4．2．3 并の動的機能維持評価結果 32
4．2．4 代表モデルの選定結果及び全モデルの評価結果 33

1．概要

本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また，全 $13 モ テ ゙ ル の う ち, ~$ 各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4 に記載する。
（2）支持構造物

工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果 を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

2.2 鳥瞰図

鳥瞰図記号凡例

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「S O L VER」を使用し，解析コードの検証及び妥当性碓認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態
本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度分類	荷重の組合せ＊3，＊4	許容応力状態＊5
緊急時対策所	換気設備	緊急時対策所換気空調系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
＊2：「常設／緩和」は常設重大事故緩和設備を示す。
＊ 3 ：運転状態の添字 L は荷重を示す。
＊ 4 ：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{V}_{A} \mathrm{~S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。

3．3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

管名称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 外径 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	耐震重要度分類	縦弾性係数 （MPa）
1	0.005	40	318.5	10.3	STS410	－	201670
2	0.005	40	267.4	9.3	STS410	－	201670

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。

配管の質量（付加質量含む）
鳥 瞰 図 HVAC3－1
評価点の質量を下表に示す。

評価点	質量（kg）	評価点	質量（kg）	評価点	質量（kg）
1		3		5	
2		4		9	

弁部の質量を下表に示す。
弁1

評価点	質量 (kg)
6	
7	
8	

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)	
弁1	7				

支持点及び貫通部ばね定数

鳥 瞰 図 HVAC 3－1
支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数 $(\mathrm{N} / \mathrm{mm})$			各軸回り回転ばね定数 $(\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad})$		
	X	Y	Z	X	Y	Z
1						
9						

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

管名称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外径 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	耐震 重要度分類	縦弾性係数 （MPa）
1	0.005	40	267.4	9.3	STS410	－	201670

管名称と対応する評価点

評価点の位置は鳥瞰図に示す。

鳥 瞰 図				H V A C 14									
管名称	対応する評価点												
	1	2	3	4	5	6	7	8	9	10	11	13	14
	15	16	17	18	19	20	21	22	23	24	25	26	27
	28	29	30	32	33	34	35	36	37	38	39	40	41
	42	43	44	45	46	47	48	49	50	51	52	53	54
	55	56	57	58	59	60	61	62	63	64	65	66	67
	68	69	70	71	72	73	74	75	76	77	78	79	80
	81	82	83	85	86	87	88	89	90	91	92	93	94
	95	96	97	98	99	101	102						

O 2 （3）VI－2－8－3－2－2（重）R 0

配管の質量（付加質量含む）
鳥 瞰 図 HVAC14
評価点の質量を下表に示す。

評価点	質量（kg）								
1		22		43		61		79	
2		23		44		62		80	
3		24		45		63		81	
4		25		46		64		82	
5		26		47		65		86	
6		27		48		66		87	
7		28		49		67		88	
8		29		50		68		89	
9		33		51		69		90	
10		34		52		70		91	
14		35		53		71		92	
15		36		54		72		93	
16		37		55		73		94	
17		38		56		74		95	
18		39		57		75		96	
19		40		58		76		97	
20		41		59		77		98	
21		42		60		78		102	

弁部の質量を下表に示す。
弁1弁 2

評価点	質量（kg）	評価点	質量（kg）
11		83	
12		84	
13		85	
103		107	
104		108	
106		110	

弁 3 弁 4

評価点	質量 (kg)	評価点	質量 (kg)
30		99	
31		100	
32		101	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁 1	12			
弁 2	84			
弁 3	31			
弁 4	100			

支持点及び貫通部ばね定数

鳥 瞰 図 HVAC14
支持点部のばね定数を下表に示す。

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）				
		Sm	Sy	Su	S h	
$\operatorname{STS} 410$	40	-	245	410	-	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥瞰図	建屋•構築物	標高（0．P．（m））	減衰定数（\％）
HVAC $3-1$	緊急時対策建屋		

設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥瞰図	建屋•構築物	標高（0．P．（m））	減衰定数（\％）

4．解析結果及び評価
4． 1 固有周期及び設計震度

HV A C 3－1

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であることを示す。地管加動に基づく設計用最大床応り定めた震度を示す。
＊4：3．6C I 及び1．2CVより定めた震度を示す。
解析結果及び評価
固有周期及び設計震度

鳥 瞰 図 HVAC14

適用する地震動等		S d 及び静的震度			S s		
モード	$\frac{\text { 固有周期 }}{(\mathrm{s})}$	応答水平震度＊1		応答鉛直震度 ${ }^{1}$	応答水平震度 ${ }^{* 1}$		応答鉛直震度＊${ }^{\text {P }}$
		X 方向	Z 方 向	Y 方 向	X 方向	Z 方 向	Y 方 向
1 次＊2							
動的 震 度＊3							
静的 震度＊4							

注記 $* 1$ ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 以下であること訑震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2CVより定めた震度を示す。
4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力 区分	$\begin{gathered} \text { 一次応力評価 } \\ \text { (MPa) } \end{gathered}$		$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{S} \operatorname{prm}(\mathrm{~S} \text { s }) \end{gathered}$	$\begin{aligned} & \text { 許容応力 } \\ & 0.9 \cdot \mathrm{~S} \mathrm{u} \end{aligned}$	$\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn} \mathrm{n}(\mathrm{~S} \text { s }) \end{aligned}$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
HVAC 3－1	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Sprm}(\mathrm{~S} s) \\ \mathrm{Sn}(\mathrm{~S} s) \\ \hline \end{gathered}$	22	369	84	490	－

評価結果

鳥瞰図	許容応力状態	最大応力評価点	最大応力区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \operatorname{Sprm}(\mathrm{S} \text { s }) \end{gathered}$	許容応力 $0.9 \cdot \mathrm{~S} \mathrm{u}$	$\begin{aligned} & \text { 計算応力 } \\ & \mathrm{Sn} \text { (S s) } \end{aligned}$	許容応力 $2 \cdot \mathrm{~S} y$	疲労累積係数 US s
HVAC14	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{gathered} \text { Sprm (S s }) \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$	32	369	$\overline{60}$	490	－

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

| 支持構造物
 番 | 種類 |
| :---: | :---: | :---: | :---: | :---: | :---: |

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\mathrm{C}}\right) \end{aligned}$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			$\begin{aligned} & \text { 応力 } \\ & \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \\ & \hline \end{aligned}$
					F_{x}	F_{Y}	F_{z}	M_{x}	M_{Y}	$\mathrm{M}_{\text {z }}$			
K11003－404	レストレイント	ラグ	SM400B	50	10． 206	5． 286	19.408	－	－	－	組合せ	106	121
K11003－402	アンカ	ラグ	SM400B	50	26．674	20.694	26.684	20.052	4.9	19．836	組合せ	117	422

4．2．3 弁の動的機能維持評価結果

弁番号	型式	要求 機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	裕度	代表	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	計算応力 （MPa）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	代 表
1	HVAC1－1	6	21	369	17.57	－	6	32	490	15.31	－	－	－	－
2	HVAC1－2	2	10	369	36.90	－	2	14	490	35.00	－	－	－	－
3	HVAC1－3	4	4	369	92.25	－	4	6	490	81.66	－	－	－	－
4	HVAC3－1	1	22	369	16.77	－	1	84	490	5.83	○＊	－	－	－
5	HVAC4－1	6	21	369	17． 57	－	6	32	490	15.31	－	－	－	－
6	HVAC4－2	1	7	369	52.71	－	1	10	490	49.00	－	－	－	－
7	HVAC4－3	4	4	369	92.25	－	4	6	490	81.66	－	－	－	－
8	HVAC6－1	1	22	369	16．77	－	1	84	490	5.83	－＊	－	－	－

O 2 （3）VI－2－8－3－2－2（重）R O E
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ \text { (MPa) } \end{gathered}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ \text { (MPa) } \end{gathered}$	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 疲労 } \\ & \text { 累積 } \\ & \text { 係数 } \end{aligned}$	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$
9	HVAC11－1	1	6	369	61.50	－	1	12	490	40.83	－	－	－	－
10	HVAC11－2	1	14	369	26． 35	－	1	40	490	12.25	－	－	－	－
11	HVAC14	33	32	369	11.53	\bigcirc	33	60	490	8.16	－	－	－	－
12	HVAC36－1	6	22	369	16． 77	－	6	43	490	11.39	－	－	－	－
13	HVAC36－2	1	5	369	73.80	－	1	6	490	81.66	－	－	－	－

VI－2－8－3－2－3 緊急時対策所非常用送風機の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．構造強度評価 3
3.1 構造強度評価方法 3
3.2 荷重の組合せ及び許容応力 3
3．2．1 荷重の組合せ及び許容応力状態 3
3．2．2 許容応力 3
3．2．3 使用材料の許容応力評価条件 3
3.3 計算条件 3
4．機能維持評価 7
4.1 動的機能維持評価方法 7
5．評価結果 8
5.1 重大事故等対処設備としての評価結果 8

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，緊急時対策所非常用送風機が設計用地震力に対して十分な構造強度及 び動的機能を有していることを説明するものである。

緊急時対策所非常用送風機は，重大事故等対処設備においては常設重大事故緩和設備に分類さ れる。以下，重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお，緊急時対策所非常用送風機は，添付書類「VI－2－1－13 機器•配管系の計算書作成の方法」 に記載の横軸ポンプと類似の構造であるため，添付書類「VI－2－1－13－4 横軸ポンプの耐震性につ いての計算書作成の基本方針」に基づき評価を実施する。

2．一般事項
2.1 構造計画

緊急時対策所非常用送風機の構造計画を表2－1に示す。

表 2－1 構造計画

3．構造強度評価
3.1 構造強度評価方法

緊急時対策所非常用送風機の構造強度評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性 についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3．2．1 荷重の組合せ及び許容応力状態
緊急時対策所非常用送風機の荷重の組合せ及び許容応力状態のうち重大事故等対処設備 の評価に用いるものを表3－1に示す。

3．2．2 許容応力
緊急時対策所非常用送風機の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表3－2のとおりとする。

3．2．3 使用材料の許容応力評価条件
緊急時対策所非常用送風機の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 $3-3$ に示す。
3.3 計算条件

応力計算に用いる計算条件は，本計算書の【緊急時対策所非常用送風機の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

| 施設区分 | 機器名称 | 設備分類＊1 | 機器等の区分 | 荷重の組合せ | 許容応力状態 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記＊1 ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 3－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界＊1，＊2 （ボルト等）	
	一次応力	
	引張り	せん断
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S} \text { としてIV} \mathrm{A}_{\mathrm{A}} \mathrm{~S}\right. \text { の許容限界を用いる。) } \end{gathered}$		

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leqq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	394	

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

4．機能維持評価
4． 1 動的機能維持評価方法
緊急時対策所非常用送風機の動的機能維持評価は，添付書類「VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

緊急時対策所非常用送風機は地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため，添付書類「VI－2－1－9 機能維持の基本方針」に記載の機能確認済加速度を適用 する。機能確認済加速度を表4－1 に示す。

表 4－1 機能確認済加速度
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	形式	方向	機能確認済加速度
ファン	遠心直動型ファン	水平	5.2
		2.0	
原動機	横形ころがり 軸受電動機	水平	7.0
	鉛直	2.0	

5．評価結果
5.1 重大事故等対処設備としての評価結果

緊急時対策所非常用送風機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
動的機能維持評価の結果を次頁以降の表に示す。

【緊急時対策所非常用送風機の耐震性についての計算結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又 静的震度		基準地震動S s		送風機振動 による震度	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$
			水平方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度			
緊急時対策所非常用送風機	常設／緩和	緊急時対策建屋 $\text { 0. P. } 62.20 * 1$	－＊2	－＊2	－	－	$\mathrm{C}_{\mathrm{H}}=1.68$	$\mathrm{C}_{\mathrm{V}}=1.12$		－	$40^{* 3}$

注記 $* 1$ ：基準床レベルを示す。
＊2：固有周期は十分に小さく，計算は省略する。
＊3 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

1．2 機器要目

ω

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y} \text { i }} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{u}} \mathrm{i} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}}{ }^{*} \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向		$\begin{gathered} \mathrm{M}_{\mathrm{P}} \\ (\mathrm{~N} \cdot \mathrm{~mm}) \end{gathered}$
					弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基礎ボルト $(i=1)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \\ \hline \end{gathered}$	$394 * 2$	－	276	－	軸	－
原動機取付ボルト $(\mathrm{i}=2)$	$\begin{gathered} 211^{* 2} \\ (40 \mathrm{~mm}<\text { 径 }) \end{gathered}$	$394 * 2$	－	253	－	軸	－

注記＊1：各ボルトの機器要目における上段は軸直角方向転倒に対する評価時の要目を示し，
下段は軸方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b} i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(i=1)$	－		－	
原動機取付ボルト $(\mathrm{i}=2)$	－		－	

1．4 結論

部材	材料	応力	弾性設計用地震動 S d 又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=26$	$\mathrm{ffts} 1^{\text {c }}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=12$	$\mathrm{f}_{\text {s b } 1}=159$
原動機取付ボルト$(\mathrm{i}=2)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 2}=8$	$\mathrm{f}_{\mathrm{ts} 2}=190^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 2}=4$	$\mathrm{f}_{\text {s b } 2}=146$

すべて許容応力以下である。
注記＊： $\mathrm{f}_{\mathrm{ts} \mathrm{i}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau \mathrm{bi}, \mathrm{f}_{\mathrm{toi}}\right]$ より算出
1．4．2 動的機能の評価結果
$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

		機能維持評価用加速度＊	機能確認済加速度
ファン	水平方向	1.40	5.2
	鉛直方向	0.93	2.0
原動機	水平方向	1.40	7.0
	鉛直方向	0.93	2.0

注記＊：基準地震動 S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2

VI－2－8－3－2－4 緊急時対策所非常用フィルタ装置の耐震性 についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2．2 評価方針 3
2.3 適用基準 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 7
3．評価部位 8
4．固有周期 9
4.1 固有周期の計算方法 9
4.2 固有周期の計算条件 10
4.3 固有周期の計算結果 10
5．構造強度評価 11
5.1 構造強度評価方法 11
5.2 荷重の組合せ及び許容応力 11
5．2．1 荷重の組合せ及び許容応力状態 11
5．2．2 許容応力 11
5．2．3 使用材料の許容応力評価条件 11
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力の計算方法 16
5.5 計算条件 20
5．5．1 ボルトの応力計算条件 20
5.6 応力の評価 20
5．6．1 ボルトの応力評価 20
6．評価結果 21
6.1 重大事故等対処設備としての評価結果 21

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，緊急時対策所非常用フィルタ装置が設計用地震力に対して十分な構造強度を有して いることを説明するものである。

緊急時対策所非常用フィルタ装置は，重大事故等対処設備においては常設重大事故緩和設備に分類される。以下，重大事故等対処設備としての構造強度評価を示す。

2．一般事項
2.1 構造計画

緊急時対策所非常用フィルタ装置の構造計画を表 2－1 に示す。

表 2－1 構造計画

2.2 評価方針

緊急時対策所非常用フィルタ装置の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．1 構造計画」にて示す緊急時対策所非常用フィルタ装置の部位を踏まえ「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まるこ とを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

緊急時対策所非常用フィルタ装置の耐震評価フローを図 2－1 に示す。

緊急時対策所非常用フィルタ装置の構造強度評価

図 2－1 緊急時対策所非常用フィルタ装置の耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針（重要度分類•許容応力編 J E A G 4 6 0 1 •補－1984， J E A G 4 6 O 1－1987及びJ E A G 4 6 O 1－1991 追補版）（（社）日本電気協会 電気技術基準調査委員会 昭和 59 年 9 月，昭和 62 年 8 月及び平成 3 年 6 月）
（2）発電用原子力設備規格（設計•建設規格（2005 年版（2007 年追補版含む。））J S ME S N C 1－2005／2007）（（社）日本機械学会 2007 年 9 月）（以下「設計•建設規格」という。）
2.4 記号の説明

記 号	記 号 の 説 明	単 位
$\mathrm{A}_{\mathrm{b}} \mathrm{i}$	ボルトの軸断面積＊1	mm^{2}
$\mathrm{A}_{\text {e }}$	有効せん断断面積	mm^{2}
C_{H}	水平方向設計震度	－
C_{V}	鉛直方向設計震度	－
d_{i}	ボルトの呼び径＊1	mm
E	縦弾性係数	MPa
$\mathrm{F}{ }_{\mathrm{i}}$	設計•建設規格 SSB－3121．1（1）に定める値＊1	MPa
F ii＊	設計•建設規格 SSB－3133に定める値＊1	MPa
$\mathrm{F}_{\mathrm{b}} \mathrm{i}$	ボルトに作用する引張力（1本当たり）＊1	N
f s b i	せん断力のみを受けるボルトの許容せん断応力＊1	MPa
f toi	引張力のみを受けるボルトの許容引張応力＊1	MPa
f ts i	引張力とせん断力を同時に受けるボルトの許容引張応力＊1	MPa
G	せん断弾性係数	MPa
g	重力加速度 $(=9.80665)$	$\mathrm{m} / \mathrm{s}^{2}$
h_{i}	架台上面又は据付面から重心までの距離＊2	mm
I	断面二次モーメント	mm^{4}
K_{H}	水平方向ばね定数	N／m
K_{v}	鉛直方向ばね定数	N／m
$\ell_{1 \mathrm{i}}$	重心とボルト間の水平方向距離 $* 1, * 3$	mm
$\ell_{2} \mathrm{i}$	重心とボルト間の水平方向距離＊1，＊3	mm
m_{i}	運転時質量＊2	kg
n i	ボルトの本数＊1	－
n f i	評価上引張力を受けるとして期待するボルトの本数＊1	－
n q i	せん断力を受けるボルトの本数＊1	－
$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	ボルトに作用するせん断力＊1	N
Sui	設計•建設規格 付録材料図表Part5表9に定める値＊1	MPa
$\mathrm{S}_{\mathrm{y} \text { i }}$	設計•建設規格 付録材料図表Part5表8に定める値＊1	MPa
$\mathrm{S}_{\mathrm{y} i}(\mathrm{R} T)$	設計•建設規格 付録材料図表 Part5表8に定める材料の $40^{\circ} \mathrm{C}$ における値＊${ }^{*}$	MPa
T_{H}	水平方向固有周期	S
T ${ }_{V}$	鉛直方向固有周期	S
π	円周率	－
σ b i	ボルトに生じる引張応力＊1	MPa
τ b i	ボルトに生じるせん断応力＊1	MPa

注記＊1 ： $\mathrm{A}_{\mathrm{bi}}, \mathrm{d}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{i}}{ }^{*}, \mathrm{~F}_{\mathrm{bi}}, \mathrm{f}_{\mathrm{sbi}}, \mathrm{f}_{\mathrm{toi}}, \mathrm{f}_{\mathrm{tsi}}, \ell_{1 \mathrm{i}}, \ell_{2 \mathrm{i}}, \mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{fi}}$ ， $\mathrm{n}_{\mathrm{qi}}, \mathrm{Q}_{\mathrm{bi}}, \mathrm{S}_{\mathrm{ui}}, \mathrm{S}_{\mathrm{yi}}, \mathrm{S}_{\mathrm{yi}}(\mathrm{RT})$ ，$\sigma_{\mathrm{b} i}$ 及び τ_{bi} の添字 i の意味は，以下の とおりとする。
i＝ 1 ：基礎ボルト
$\mathrm{i}=2$ ：取付ボルト
＊ $2: \mathrm{h}_{\mathrm{i}}$ 及び m_{i} の添字 i の意味は，以下のとおりとする。
$\mathrm{i}=1$ ：据付面
$\mathrm{i}=2$ ：架台上面
$* 3: \ell_{1 \mathrm{i}} \leqq \ell_{2 \mathrm{i}}$

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は表 $2-2$ に示すとおりとする。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
質量	kg	-	-	整数位
長さ	mm	-	整数位 $* 1$	
面積	mm^{2}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
断面二次モーメント	mm^{4}	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位

注記＊ 1 ：設計上定める値が小数点以下の場合は，小数点以下表示とする。
＊2 ：絶対値が 1000 以上のときは，べき数表示とする。
＊3 ：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
緊急時対策所非常用フィルタ装置の耐震評価は，「5．1 構造強度評価方法」に示す条件に基づ き，耐震評価上厳しくなる基礎ボルト及び取付ボルトについて実施する。緊急時対策所非常用フ ィルタ装置の耐震評価部位については，表 $2-1$ の概略構造図に示す。

4．固有周期
4． 1 固有周期の計算方法
緊急時対策所非常用フィルタ装置の固有周期の計算方法を以下に示す。
（1）計算モデル
a．緊急時対策所非常用フィルタ装置の質量は重心に集中するものとする。
b．緊急時対策所非常用フィルタ装置は架台上にあり，架台は基礎ボルトで基礎に固定され ており，固定端とする。
c．緊急時対策所非常用フィルタ装置をはりと考え，変形モードは曲げ及びせん断変形を考慮する。
d．耐震計算に用いる寸法は，公称値を使用する。
緊急時対策所非常用フィルタ装置は，図 4－1 に示す下端固定の1質点系振動モデルとして考える。

図 4－1 固有周期の計算モデル
（2）水平方向固有周期
曲げ及びせん断変形によるばね定数 K_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{H}}=\frac{1000}{\frac{\mathrm{~h}_{1}{ }^{3}}{3 \cdot \mathrm{E} \cdot \mathrm{I}}+\frac{\mathrm{h}_{1}}{\mathrm{G} \cdot \mathrm{~A}_{\mathrm{e}}}} \tag{4.1.1}
\end{equation*}
$$

したがって，固有周期 T_{H} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{H}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{1}}{\mathrm{~K}_{\mathrm{H}}}} \tag{4.1.2}
\end{equation*}
$$

（3）鉛直方向固有周期
軸方向変形によるばね定数 K_{V} は次式で求める。

$$
\begin{equation*}
\mathrm{K}_{\mathrm{v}}=\frac{1000}{\frac{\mathrm{~h}_{1}}{\mathrm{E} \cdot \mathrm{~A}_{\mathrm{e}}}} \tag{4.1.3}
\end{equation*}
$$

注記＊：断面積には，固有周期が大きく算出される有効せん断断面積 A_{e} を用いる。 したがって，固有周期 T_{v} は次式で求める。

$$
\begin{equation*}
\mathrm{T}_{\mathrm{v}}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}_{1}}{\mathrm{~K}_{\mathrm{v}}}} \tag{4.1.4}
\end{equation*}
$$

4．2 固有周期の計算条件
固有周期の計算に用いる計算条件は，本計算書の【緊急時対策所非常用フィルタ装置の耐震性についての計算結果】の機器要目に示す。

4.3 固有周期の計算結果

固有周期の計算結果を表4－1 に示す。計算の結果，固有周期は 0.05 秒以下であり，剛であ ることを確認した。

5．構造強度評価

5.1 構造強度評価方法

4． 1 項 a．～d．のほか，次の条件で計算する。
（1）地震力は緊急時対策所非常用フィルタ装置に対して水平方向及び鉛直方向から作用するも のとする。
（2）転倒方向は図 5－1 及び図 5－2 における長辺方向及び短辺方向について検討し，計算書に は計算結果の厳しい方（許容値／発生値の小さい方をいう。）を記載する。
（3）基礎ボルトに対するせん断力はボルト全本数で受けるものとする。
また，取付ボルトに対するせん断力は，長辺方向にスライドできるものとし，固定部（2 本） のボルト本数のみで受けるものとする。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
緊急時対策所非常用フィルタ装置の荷重の組合せ及び許容応力状態のらち重大事故等対処設備の評価に用いるものを表5－1 に示す。

5．2．2 許容応力

緊急時対策所非常用フィルタ装置の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－2 のとおりとする。

5．2．3 使用材料の許容応力評価条件

緊急時対策所非常用フィルタ装置の使用材料の許容応力評価条件のらち重大事故等対処設備の評価に用いるものを表5－3に示す。

表 5－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1 ：「常設／緩和」は常設重大事故緩和設備を示す。
＊2 ：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 5－2 許容応力（重大事故等その他の支持構造物）

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
基礎ボルト	SS 400 $(16 \mathrm{~mm}<$ 径 $\leq 40 \mathrm{~mm})$	周囲環境温度	40^{*}	231	394	-
取付ボルト	SCM435	最高使用温度	60	743	882	-

注記＊：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

5.3 設計用地震力

耐震評価に用いる設計用地震力を表5－4に示す。
「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」 に基づき設定する。

表 5－4 設計用地震力（重大事故等対処設備）

据付場所 及び	固有周期（s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
床面高さ （m）	水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
緊急時 対策建屋 $\text { 0.P. 62. } 20^{*}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.68$	$\mathrm{C}_{\mathrm{V}}=1.12$

注記＊：基準床レベルを示す。

5.4 計算方法

5．4．1 応力の計算方法

5．4．1．1 ボルトの計算方法
基礎ボルト及び取付ボルトの応力は地震による震度により作用するモーメントによっ て生じる引張力とせん断力について計算する。

図 5－1（1）計算モデル
（短辺方向転倒 $-1 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right) \geqq 0$ の場合）

図 5－1（2）計算モデル
（短辺方向転倒 $-2 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right)<0$ の場合）

図5－2（1）計算モデル
（長辺方向転倒 $-1 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right) \geqq 0$ の場合）

$\hat{1}$

図 5－2（2）計算モデル
（長辺方向転倒 $-2 \quad\left(1-\mathrm{C}_{\mathrm{V}}\right)<0$ の場合）
（1）引張応力
ボルトに対する引張力は最も厳しい条件として，図 5－1 及び図 5－2 で最外列のボルトを支点とする転倒を考え，これを片側の最外列のボルトで受けるものとして計算する。

引張力
計算モデル図5－1（1）及び図5－2（1）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{bi}}=\frac{\mathrm{m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot\left(1-\mathrm{C}_{\mathrm{v}}\right) \cdot \ell_{1 \mathrm{i}}}{\mathrm{n}_{\mathrm{fi}} \cdot\left(\ell_{1 \mathrm{i}}+\ell_{2 \mathrm{i}}\right)} \tag{5.4.1.1.1}
\end{equation*}
$$

計算モデル図 5－1（2）及び図 5－2（2）の場合の引張力

$$
\begin{equation*}
\mathrm{F}_{\mathrm{bi}}=\frac{\mathrm{m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~h}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}} \cdot \mathrm{~g} \cdot\left(1-\mathrm{C}_{\mathrm{v}}\right) \cdot \ell_{2 \mathrm{i}}}{\mathrm{n}_{\mathrm{fi}} \cdot\left(\ell_{1 \mathrm{i}}+\ell_{2 \mathrm{i}}\right)} \tag{5.4.1.1.2}
\end{equation*}
$$

引張応力

$$
\begin{equation*}
\sigma_{\mathrm{bi}}=\frac{\mathrm{F}_{\mathrm{bi}}}{\mathrm{~A}_{\mathrm{bi}}} \tag{5.4.1.1.3}
\end{equation*}
$$

ここで，ボルトの軸断面積 A_{bi} は次式により求める。

$$
\begin{equation*}
\mathrm{A}_{\mathrm{bi}}=\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{i}}^{2} \tag{5.4.1.1.4}
\end{equation*}
$$

ただし， F_{b} iが負のときボルトには引張力が生じないので，引張応力の計算は行わない。
（2）せん断応力
基礎ボルトに対するせん断力は基整ボルト全本数で受けるものとして計算する。
また，取付ボルトに対するせん断力は固定部（ 2 本）のボルト本数のみで受けるものとし て計算する。

せん断力

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{b}}{ }=\mathrm{m}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \tag{5.4.1.1.5}
\end{equation*}
$$

せん断応力

$$
\begin{equation*}
\tau_{b i}=\frac{\mathrm{Q}_{\mathrm{bi}}}{\mathrm{n}_{\mathrm{q} i} \cdot \mathrm{~A}_{\mathrm{bi}}} \tag{5.4.1.1.6}
\end{equation*}
$$

5.5 計算条件

5．5．1 ボルトの応力計算条件
ボルトの応力計算に用いる計算条件は，本計算書の【緊急時対策所非常用フィルタ装置の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5．6．1 ボルトの応力評価
5．4 項で求めたボルトの引張応力 $\sigma \mathrm{b}$ i は次式より求めた許容引張応力 f t si 以下である こと。ただし，ftoiは下表による。

$$
\begin{equation*}
\mathrm{f}_{\mathrm{tsi}}=\mathrm{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{toi}}-1.6 \cdot \tau_{\mathrm{bi}}, \mathrm{f}_{\mathrm{toi}}\right] \tag{5.6.1.1}
\end{equation*}
$$

せん断応力 $\tau_{\mathrm{b}} \mathrm{i}$ はせん断力のみ受けるボルトの許容せん断応力 f s b i 以下であること。 ただし，f sbiは下表による。

	弾性設計用地震動 S d又は静的震度による荷重との組合せの場合	基準地震動 S s による荷重 との組合せの場合
許容引張応力 $\mathrm{f}_{\mathrm{too}}$	$\frac{\mathrm{F}_{\mathrm{i}}}{2} \cdot 1.5$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{2} \cdot 1.5$
許容せん断応力 $\mathrm{f}_{\mathrm{s} \text { b }}$	$\frac{\mathrm{F}_{\mathrm{i}}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{F}_{\mathrm{i}}^{*}}{1.5 \cdot \sqrt{3}} \cdot 1.5$

6．評価結果
6． 1 重大事故等対処設備としての評価結果
緊急時対策所非常用フィルタ装置の重大事故時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有してい ることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。

【緊急時対策所非常用フィルタ装置の耐震性についての計算結果】
1．重大事故等対処設備
1．1 設計条件

	設備分類	据付場所及び床面高さ （m）	固有周期（s）		弾性設計用地震動S d 又は静的震度		基準地震動S s		最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	周囲環境温度 $\left({ }^{\circ} \mathrm{C}\right)$
機器名称			$\begin{aligned} & \text { 水平 } \\ & \text { 方向 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 鉛直 } \\ & \text { 方向 } \\ & \hline \end{aligned}$	水平方向 設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度		
緊急時対策所非常用フィルタ装置	常設／緩和	$\begin{gathered} \text { 緊急時対策建屋 } \\ \text { O.P. } 62.20^{* 1} \end{gathered}$			－	－	$\mathrm{C}_{\mathrm{H}}=1.68$	$\mathrm{C}_{\mathrm{v}}=1.12$	60	$40^{* 2}$

注記 $*_{1}$ ：基準床レベルを示す。
＊2 ：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。

1．2 機器要目

N

部材	$\begin{aligned} & \mathrm{m}_{\mathrm{i}} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \mathrm{h}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \ell_{1 \mathrm{i}}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \ell_{2 \mathrm{i}}{ }^{* 1} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{aligned} & \mathrm{d}_{\mathrm{i}} \\ & (\mathrm{~mm}) \end{aligned}$	$\begin{gathered} \mathrm{A}_{\mathrm{b}}^{\mathrm{i}} \mathrm{i} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	n i	n f i ${ }^{*}$	$\mathrm{n}_{\mathrm{q}} \mathrm{i}$
基礎ボルト					24	452． 4	12	6	12
（ $\mathrm{i}=1)$					(M24)			2	
取付ボルト					24	452． 4	12	6	2
（ i＝2）					（M24）			2	

部材	$\begin{aligned} & \mathrm{S}_{\mathrm{y}}^{\mathrm{i}} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { S u i } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{gathered} \mathrm{F}_{\mathrm{i}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{i}} \text { * } \\ & (\mathrm{MPa}) \end{aligned}$	転倒方向	
					弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基整ボルト $(i=1)$	$\begin{gathered} 231^{* 2} \\ (16 \mathrm{~mm}<\text { 径 } \leqq 40 \mathrm{~mm}) \end{gathered}$	$394 * 2$	－	276	－	短辺
取付ボルト $(i=2)$	$743 * 3$	882＊3	－	617	－	短辺

E (MPa)	G (MPa)	I $\left(\mathrm{mm}^{4}\right)$	A_{e} $\left(\mathrm{mm}^{2}\right)$

注記 $* 1$ ：ボルトにおける上段は短辺方向転倒に対する評価時の要目を示し，下段は長辺方向転倒に対する評価時の要目を示す。
＊2：周囲環境温度が $50^{\circ} \mathrm{C}$ 以下の場合は，耐震計算上は $50^{\circ} \mathrm{C}$ とする。
＊3：最高使用温度で算出
1.3 計算数値

1．3． 1 ボルトに作用する力
（単位：N）

部材	$\mathrm{F}_{\mathrm{b}} \mathrm{i}$		$\mathrm{Q}_{\mathrm{b}} \mathrm{i}$	
	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弹性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト $(\mathrm{i}=1)$	－		－	
取付ボルト $(\mathrm{i}=2)$	－		－	

1． 4 結論
1．4．1 ボルトの応力
（単位：MPa）

N

部材	材料	応力	弾性設計用地震動 S d 又 ${ }^{\text {又 }}$ 静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト$(\mathrm{i}=1)$	SS400	引張り	－	－	$\sigma_{\mathrm{b} 1}=40$	$\mathrm{ff}_{\mathrm{ts} 1}=207^{*}$
		せん断	－	－	$\tau_{\mathrm{b} 1}=21$	$\mathrm{f}_{\text {s b } 1}=159$
取付ボルト$(\mathrm{i}=2)$	SCM435	引張り	－	－	$\sigma_{\text {b } 2}=33$	$\mathrm{ft} \mathrm{s} 2=463 *$
		せん断	－	－	$\tau_{\mathrm{b} 2}=106$	$\mathrm{f}_{\mathrm{sb} 2}=356$

VI－2－8－3－3 中央制御室待避所加圧空気供給系の耐震性についての計算書

VI－2－8－3－3－1 管の耐震性についての計算書（中央制御室待避所加圧空気供給系）
VI－2－8－3－3－2 差圧計（中央制御室待避所用）の耐震性についての計算書

> VI-2-8-3-3-1 管の耐震性についての計算書(中央制御室待避所加圧空気供給系)

重大事故等対処設備
1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 9
3.1 計算方法 9
3.2 荷重の組合せ及び許容応力状態 10
3.3 設計条件 11
3．4 材料及び許容応力 20
3.5 設計用地震力 21
4．解析結果及び評価 22
4.1 固有周期及び設計震度 22
4．2 評価結果 28
4．2．1 管の応力評価結果 28
4．2．2 支持構造物評価結果 29
4．2．3 弁の動的機能維持評価結果 30
4．2．4 代表モデルの選定結果及び全モデルの評価結果 31

1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」，「VI－2－1－12－1 配管及び支持構造物の耐震計算について」及び「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」に基 づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有している ことを説明するものである。

評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全3モデルのうち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を 4．2．4に記載する。
（2）支持構造物
工事計画記載範囲の支持点のらち，種類及び型式ごとの反力が最大となる支持点の評価結果を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁 を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

	記号	内容
0 哄	（太線） （細線） （破線）	工事計画記載範囲の管のうち，本計算書記載範囲の管 工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管 工事計画記載範囲外の管又は工事計画記載範囲の管のうち，他系統の管であって系統の概略を示すために表記する管 鳥瞰図番号 アンカ

中央制御室待避所加圧空気供給系概略系統図

鳥瞰図記号凡例

3．計算条件
3.1 計算方法

管の構造強度評価は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。解析コードは，「NuPIAS」を使用し，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

O 2 （3）VI－2－8－3－3－1（重）R 0
3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類＊${ }^{1}$	設備分類＊2	機器等の区分	耐震重要度分類	荷重の組合せ＊3，4	許容応力状態＊5
放射線管理施設	換気設備	中央制御室待避所加圧空気供給系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S} \mathrm{s}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，S Aは重大事故等対処設備を示す。
＊2：「常設／緩和」は常設重大事故緩和設備を示す。
＊
＊ 3 ：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $V_{A} S$ は許容応力状態 $V_{A} S$ の許容限界を使用し，許容応力状態 $V_{A} S$ として評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥瞰図番号 MHAPS－001

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料	耐震重要度 分類	縦弾性係数 (MPa)
1	22.00	40	21.7	3.7	SUS304TP	-	194000
2	22.00	40	34.0	4.5	SUS304TP	-	194000
3	22.00	40	21.7	3.7	SUS304TP	-	194000

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。

鳥瞰図番号 MHAPS－001

配管の質量（付加質量含む）

評価点の質量を下表に示す。

鳥瞰図番号 MHAPS－001

| 評価点 | 質量
 (kg) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

鳥瞰図番号 MHAPS－001

弁部の質量を下表に示す。

鳥瞰図番号 MHAPS－001

弁1	弁2			弁3		弁4		弁5	
評価点	質量 （kg）	評価点	質量 （kg）	評価点	質量 (kg)	評価点	質量 (kg)	評価点	質量 (kg)

弁6 弁 7

評価点	質量 (kg)	評価点	質量 (kg)

弁部の寸法を下表に示す。

鳥瞰図番号 MHAPS－001

弁 No．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁 1	3	21.7	3.7	-
弁 2	159	21.7	3.7	-
弁 3	168	34.0	4.5	-
弁 4	145	21.7	3.7	-
弁 5	154	21.7	3.7	-
弁 6	118	34.0	4.5	-
弁 7	123	34.0	4.5	-

支持点部のばね定数を下表に示す。

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力（MPa）	
	$\left({ }^{\circ} \mathrm{C}\right)$	S_{y}	S_{u}
SUS304TP	40	205	520

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥瞰図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
MHAPS－001	制御建屋	0．P．29． 150	2.0
		0．P． 22.950	2.0
		0．P．19． 500	2.0
		0．P．15． 000	2.0
		0．P．8． 000	2.0
		0．P．1． 500	2． 0

4．解析結果及び評価
4.1 固有周期及び設計震度

鳥瞰図番号 MHAPS－001

適用す	地震動等		S d 及	的震度			
	固有周期	応答水	震度＊1	応答鉛直震度＊1	応答水	震度＊${ }^{\text {¹ }}$	応答鉛直震度＊1
		x 方向	Z 方向	Y 方向	x 方向	Z 方向	Y 方向
1 次	$0.044^{* 2}$	－	－	－	－	－	－
動的震度＊3		－	－	－	2． 28	2.28	1． 73
静的震度＊4		－	－	－	－	－	－

注記＊1 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。
＊2：固有周期が 0.050 s 末満であることを示す。
＊3：Sd又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び $1.2 \mathrm{C}_{\mathrm{v}}$ より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図番号 MHAPS－001

モード	固有周期	刺激係数＊		
	(s)	X 方向	Y 方向	Z 方向
1 次	0.044	0.059	0.347	0.668

注記＊：刺激係数は，モード質量を正規化し，固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図
振動モード図は， 3 次モードまでを代表とし，各質点の変位の相対量•方向を細線で図示し，次ページ以降に示す。

4．2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力評価点	最大応力 区分	一次応力評価（MPa）		一次＋二次応力評価（MPa）		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ S_{p r m}(S s) \end{gathered}$	許容応力 $0.9 \mathrm{~S}_{\mathrm{u}}$	$\begin{gathered} \text { 計算応力 } \\ S_{n}(S s) \end{gathered}$	許容応力 $2 \mathrm{~S}_{\mathrm{y}}$	疲労累積係数 US s
MHAPS－001	$\begin{aligned} & V_{A} S \\ & V_{A} S \end{aligned}$	$\begin{aligned} & 145 \\ & 159 \end{aligned}$	$\begin{gathered} S_{\mathrm{prm}}(\mathrm{~S} s) \\ \mathrm{S}_{\mathrm{n}}(\mathrm{~S} s) \end{gathered}$	161	468	243	410	- -

4．2．2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果（荷重評価）

					評価結果 支持構造物 番号	

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント $(\mathrm{kN} \cdot \mathrm{m})$			応力 分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{z}			
SP－019	レストレイント	架構	STKR400	40	3	1	0	－	－	－	垂直＋ せん断	43	141
SP－071－01	アンカ	架構	STKR400	40	5	4	5	1	1	1	垂直＋ せん断	47	141

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 m / s^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果 を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	許容応力状態 $V_{A} S$												
		一次応力					一次＋二次応力					疲労評価		
		評価点	計算応力 （MPa）	許容応力 （MPa）	裕度	代表	評価点	計算応力 （ MPa ）	許容応力 （MPa）	裕度	代表	評価点	疲労累積係数	代表
1	MHAPS－001	145	161	468	2． 90	\bigcirc	159	243	410	1.68	\bigcirc	－	－	－
2	MHAPS－002	151	128	468	3． 65	－	151	237	410	1． 72	－	－	－	－
3	MHAPS－003	3	23	468	20.3	－	4	53	410	7.73	－	－	－	－

VI－2－8－3－3－2 差圧計（中央制御室待避所用）の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
3.2 固有周期の計算条件 4
3.3 固有周期の計算結果 4
4．構造強度評価 5
4.1 構造強度評価方法 5
4.2 荷重の組合せ及び許容応力 5
5．機能維持評価 8
5.1 機能維持評価方法 86．評価結果96．1 重大事故等対処設備としての評価結果9

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，差圧計（中央制御室待避所用）が設計用地震力に対して十分な構造強度及び機能を有していることを説明するものである。
差圧計（中央制御室待避所用）は，重大事故等対処設備においては常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備に分類される。以下，重大事故等対処設備 としての構造強度評価及び機能維持評価を示す。

2．一般事項
本計算書は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を行う。

2.1 構造計画

差圧計（中央制御室待避所用）の構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，検出器取付 ボルトにより取付板に固定され，取付板は，溶接により計器スタンシ ョンに固定される。 計器スタンションは，壁面に基礎ボルトで設置する。	弾性型差圧検出器	上面 （単位：mm）

3．固有周期
3.1 固有周期の算出方法

差圧計（中央制御室待避所用）の固有周期の計算方法を以下に示す。
（1）差圧計（中央制御室待避所用）は，図 3－1 に示す壁固定の 1 質点系振動モデルとして考え る。
（2）計器スタンションは鋼材で上下 2 箇所を制御建屋壁面に固定することから，計算モデルで は，計器スタンションを直線とみなし，支持点（計器スタンション基礎部）2点で固定さ れるものとする。
（3）検出器及び計器スタンションの質量は，質点に集中するものとし，質点は計器スタンショ ンの中心に設定する。
（4）図 3－1 中の は検出器及び計器スタンションの質点，は計器スタンションの支持点， —は計器スタンションを示す。

3．1．1 水平方向（X方向， Z 方向）
（1）X方向及びZ方向に対する固有周期T（s）を次式で求める。

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{m}{1000} \cdot\left(\frac{\ell_{b}^{3}}{48 \cdot E \cdot I}+\frac{\ell_{b}}{4 \cdot A_{b} \cdot G}\right)} \quad . \tag{3.1.1.1}
\end{equation*}
$$

3．1．2 鉛直方向（Y方向）
（1）Y方向は十分な剛性を有していることから，固有周期の計算を省略する。

図 3－1 固有周期の計算モデル

3．2 固有周期の計算条件

固有周期の計算に用いる数値を表 3－1 に示す。

表 3－1 固有周期の計算条件

項目	記号	単位	数値等
検出器及び計器スタンションの質量	m	kg	8
上下ボルト間の距離（壁掛形）	$\ell_{\text {b }}$	mm	200
計器スタンションの材質	－	－	STKR400
縦弾性係数	E	MPa	202000
断面二次モーメント	I	mm^{4}	9． 860×10^{5}
最小有効せん断断面積	A_{b}	mm^{2}	675
せん断弾性係数	G	MPa	77700
計器スタンションの断面形状（mm）			

3.3 固有周期の計算結果

固有周期の計算の結果から，水平方向は 0.05 秒以下であり，剛であることを確認した。ま た，鉛直方向は十分な剛性を有していることから，固有周期の計算を省略した。

固有周期の計算結果を表3－2に示す。

表 3－2 固有周期（s）

水平方向	鉛直方向
0.001	-

4．構造強度評価
4.1 構造強度評価方法

差圧計（中央制御室待避所用）の構造は壁掛形計器スタンションであるため，構造強度評価 は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」 に記載の耐震計算方法に基づき評価する。

4．2 荷重の組合せ及び許容応力
4．2．1 荷重の組合せ及び許容応力状態
差圧計（中央制御室待避所用）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表4－1 に示す。

4．2．2 許容応力
差圧計（中央制御室待避所用）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のとおりとする。

4．2．3 使用材料の許容応力評価条件
差圧計（中央制御室待避所用）の使用材料は許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記 $* 1$ ：「常設／その他」は常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備を示す。
＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

許容応力状態	許容限界 ${ }^{*} 1, * 2$ （ボルト等）		
		一次応力	

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4－3 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)
基礎ボルト	SS 400 $($ 径 $\leqq 16 \mathrm{~mm})$	周囲環境温度	40	245	400
(SPa)					

5．機能維持評価
5.1 機能維持評価方法

差圧計（中央制御室待避所用）の機能維持評価について，以下に示す。
機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

差圧計（中央制御室待避所用）の機能確認済加速度には，同形式の検出器単体の正弦波加振試験において，機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表 5－1 に示す。

表 5－1 機能確認済加速度

評価部位	方向	機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
差圧計 （中央制御室待避所用）	水平	10.22
	鉛直	5.78

6．評価結果
6.1 重大事故等対処設備としての評価結果

差圧計（中央制御室待避所用）の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び機能を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
機能維持評価の結果を次頁以降の表に示す。

【差圧計（中央制御室待避所用）の重大事故等対処設備としての評価結果】
1．重大事故等対処設備
1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方 向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
差圧計 （中央制御室待避所用）	$\begin{aligned} & \text { 常設 / } \\ & \text { その他 } \end{aligned}$	$\begin{aligned} & \text { 制御建屋 } \\ & \text { (0P. } 22.95^{*} \\ & \text { (0P.29.15) } \end{aligned}$	0.001	－	－	－	$\mathrm{C}_{\mathrm{H}}=4.05$	$\mathrm{C}_{\mathrm{v}}=2.29$	40

注記＊：基準床レベルを示す。
1.2 機器要目

部 材	m (kg)	h_{2} $(\mathrm{~mm})$	$\boldsymbol{\ell}_{3}$ $(\mathrm{~mm})$	$\boldsymbol{\ell}_{\mathrm{a}}$ (mm)	$\boldsymbol{\ell}_{\mathrm{b}}$ (mm)	d (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{fV}	n_{fH}
基礎ボルト	8	46	100	150	200	12 $(\mathrm{M12)}$	113.1	4	2	2

部 材	$\left(\begin{array}{c} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa} \end{array}\right.$	$\underset{(\mathrm{MPa})}{\mathrm{S}_{\mathrm{u}}}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MPa}) \end{gathered}$	$\underset{(\mathrm{MPa}}{\mathrm{F}^{*}}$	転倒方向	
					弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト	245	400	－	280	－	水平方向

1．3 計算数値
1．3．1 ボルトに作用する力

部 材	$F{ }_{\text {b }}$		Q b	
	弾性設計用地震動 S d又は静的震度	基準地震動 S s	弾性設計用地震動 S d又は静的震度	基準地震動 S s
基礎ボルト	－	109． 1	－	409． 4

1． 4 結論

すべて許容応力以下である。

機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

正面（水平方向）

VI－2－8－3－4 緊急時対策所加圧空気供給系の耐震性についての計算書

VI－2－8－3－4－1 管の耐震性についての計算書（緊急時対策所加圧空気供給系）
VI－2－8－3－4－2 差圧計（緊急時対策所用）の耐震性についての計算書

VI－2－8－3－4－1 管の耐震性についての計算書 （緊急時対策所加圧空気供給系）

重大事故等対処設備
O2（3）VI－2－8－3－4－1（重）R 0

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 6
3．計算条件 43
3.1 計算方法 43
3.2 荷重の組合せ及び許容応力状態 44
3.3 設計条件 45
3.4 材料及び許容応力 66
3.5 設計用地震力 67
4．解析結果及び評価 69
4．1 固有周期及び設計震度 69
4． 2 評価結果 75
4．2．1 管の応力評価結果 75
4．2．2 支持構造物評価結果 77
4．2．3 并の動的機能維持評価結果 78
4．2．4 代表モデルの選定結果及び全モデルの評価結果 79

1．概要

本計算書は，添付書類「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」（以下「基本方針」という。）に基づき，管，支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデル単位に記載する。また，全9モデルのうち，各応力区分における最大応力評価点の許容値／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4．2．4に記載する。
（2）支持構造物

工事計画記載範囲の支持点のうち，種類及び型式単位に反力が最大となる支持点の評価結果 を代表として記載する。
（3）弁
機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として，評価結果を記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

緊急時対策所加圧空気供給系摡略系統図
$(そ$ そ 1）より
（その1）より

2.2 鳥瞰図

鳥瞰図記号凡例

O (3) VI-2-8-3-4-1 (重) R O

O (3) VI-2-8-3-4-1 (重) R O

R 0

VI-2-8-3-4-1 (重)

O 2

O 2 (3) VI-2-8-3-4-1 (重) R 0

| |
| :---: | :---: |

O (3) VI-2-8-3-4-1 (重) R O

O 2 (3) VI-2-8-3-4-1 (重) R 0

O 2 (3) VI-2-8-3-4-1 (重) R 0

3．計算条件
3.1 計算方法

管の構造強度評価は，「基本方針」に記載の評価方法に基づき行う。解析コードは，「S O L VER」を使用し，解析コードの検証及び妥当性碓認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
3.2 荷重の組合せ及び許容応力状態
本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	$\begin{aligned} & \text { 施設 } \\ & \text { 分類*1 } \end{aligned}$	設備分類＊2	$\begin{aligned} & \text { 機器等 } \\ & \text { の区分 } \end{aligned}$	耐震重要度 分類	荷重の組合せ＊3，＊4	許容応力状態＊5
緊急時対策所	換気設備	緊急時対策所加圧空気供給系	S A	常設／緩和	重大事故等 クラス 2 管	－	$\mathrm{V}_{\mathrm{L}}+\mathrm{S}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$

注記＊1：D B は設計基準対象施設，SAは重大事故等対処設備を示す。
＊2：「常設／緩和」は常設重大事故緩和設備を示す。
＊3：運転状態の添字Lは荷重を示す。
＊4：許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
＊5：許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ は許容応力状態 $\mathrm{V}_{A} \mathrm{~S}$ の許容限界を使用し，許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ として評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

管名称	最高使用圧力 （MPa）	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 外径 } \\ & (\mathrm{mm}) \end{aligned}$	$\begin{aligned} & \text { 厚さ } \\ & (\mathrm{mm}) \end{aligned}$	材料	耐震重要度分類	縦弾性係数 (MPa)
1	22.00	66	34.0	6． 4	SUS304TP	－	191720

管名称と対応する評価点

評価点の位置は鳥瞰図に示す。

管名称	対応する評価点												
1	1	2	3	4	5	6	7	8	9	10	11	12	13
	14	15	16	17	18	19	20	21	22	23	24	25	26
	27	28	29	30	31	32	33	34	35	36	37	38	39
	40	41	42	43	44	45	46	47	48	49	50	51	52
	53	54	55	56	57	58	59	60	61	62	63	64	65
	66	67	68	69	70	71	72	73	74	75	76	77	78
	79	80	81	82	83	84	85	86	87	88	89	90	91
	92	93	94	95	96	97	98	99	100	101	102	103	104
	105	106	107	108	109	110	111	112	113	114	115	116	117
	118	119	120	121	122	123	124	125	126	127	128	129	130
	131	132	133	134	135	136	137	138	139	140	141	142	143
	144	145	146	147	148	149	150	151	152	153	154	155	156
	157	158	159	160	161	162	163	164	165	166	167	168	169
	170	171	172	173	174	175	176	177	178	179	180	181	182
	183	184	185	186	187	188	189	190	191	192	193	194	195
	196	197	198	199	200	201	202	203	204	205	206	207	208
	209	210	211	212	213	214	215	216	217	218	219	220	221
	222	223	224	225	226	227	228	229	230	231	232	233	234
	235	236	237	238	239	240	241	242	243	244	245	246	247
	248	249	250	251	252	253	254	255	256	257	258	259	260
	261	262	263	264	265	266	267	268	269	270	271	272	273
	274	275	276	277	278	279	280	281	282	283	284	285	286
	287	288	289	290	291	292	293	294	295	296	297	298	299
	300	301	303	304	305	306	307	308	309	310	311	313	314
	315	316	317	318	319	320	321	323	324	325	326	327	328
	329	330	331	332	334	335	336	337	338	339	340	341	342
	344	345	346	347	348	349	350	351	352	354	355	356	357
	358	359	360	361	362	364	365	366	367	368	369	370	371
	372	374	375	376	377	378	379	380	381	382	384	385	386
	387	388	389	390	391	392	394	395	396	397	398	399	400
	401	402	404	405	406	407	408	409	410	411	412	414	415
	416	417	418	419	420	421	422	424	425	426	427	428	429
	430	431	432	434	435	436	437	438	439	440	441	442	444
	445	446	447	448	449	450	451	452	454	455	456	457	458

管名称	対応する評価点												
	459	460	461	462	464	465	466	467	468	469	470	471	472
	474	475	476	477	478	479	480	481	482	484	485	486	487
	488	489	490	491	492	494	495	496	497	498	499	500	501
	502	503	505	506	507	508	509	510	511	512	513	514	515
	516	518	519	520	521	522	523	524	525	526	528	529	530
	531	532	533	534	535	536	538	539	540	541	542	543	544
	545	546	548	549	550	551	552	553	554	555	556	558	559
	560	561	562	563	564	565	566	568	569	570	571	572	573
	574												

配管の質量（付加質量含む）
鳥 瞰 図 HAPS－001
評価点の質量を下表に示す。

評価点	質量（kg）								
1		35		69		103		137	
2		36		70		104		138	
3		37		71		105		139	
4		38		72		106		140	
5		39		73		107		141	
6		40		74		108		142	
7		41		75		109		143	
8		42		76		110		144	
9		43		77		111		145	
10		44		78		112		146	
11		45		79		113		147	
12		46		80		114		148	
13		47		81		115		149	
14		48		82		116		150	
15		49		83		117		151	
16		50		84		118		152	
17		51		85		119		153	
18		52		86		120		154	
19		53		87		121		155	
20		54		88		122		156	
21		55		89		123		157	
22		56		90		124		158	
23		57		91		125		159	
24		58		92		126		160	
25		59		93		127		161	
26		60		94		128		162	
27		61		95		129		163	
28		62		96		130		164	
29		63		97		131		165	
30		64		98		132		166	
31		65		99		133		167	
32		66		100		134		168	
33		67		101		135		169	
34		68		102		136		170	

評価点	質量（kg）								
171		205		239		273		310	
172		206		240		274		314	
173		207		241		275		315	
174		208		242		276		316	
175		209		243		277		317	
176		210		244		278		318	
177		211		245		279		319	
178		212		246		280		320	
179		213		247		281		324	
180		214		248		282		325	
181		215		249		283		326	
182		216		250		284		327	
183		217		251		285		328	
184		218		252		286		329	
185		219		253		287		330	
186		220		254		288		331	
187		221		255		289		335	
188		222		256		290		336	
189		223		257		291		337	
190		224		258		292		338	
191		225		259		293		339	
192		226		260		294		340	
193		227		261		295		341	
194		228		262		296		345	
195		229		263		297		346	
196		230		264		298		347	
197		231		265		299		348	
198		232		266		300		349	
199		233		267		304		350	
200		234		268		305		351	
201		235		269		306		355	
202		236		270		307		356	
203		237		271		308		357	
204		238		272		309		358	

評価点	質量（kg）								
359		405		448		491		534	
360		406		449		495		535	
361		407		450		496		539	
365		408		451		497		540	
366		409		455		498		541	
367		410		456		499		542	
368		411		457		500		543	
369		415		458		501		544	
370		416		459		502		545	
371		417		460		506		549	
375		418		461		507		550	
376		419		465		508		551	
377		420		466		509		552	
378		421		467		510		553	
379		425		468		511		554	
380		426		469		512		555	
381		427		470		513		559	
385		428		471		514		560	
386		429		475		515		561	
387		430		476		519		562	
388		431		477		520		563	
389		435		478		521		564	
390		436		479		522		565	
391		437		480		523		569	
395		438		481		524		570	
396		439		485		525		571	
397		440		486		529		572	
398		441		487		530		573	
399		445		488		531		574	
400		446		489		532			
401		447		490		533			

弁部の質量を下表に示す。

弁 6
弁 7
弁 8
弁 9
弁 10

評価点	質量（kg）								
352		362		372		382		392	
353		363		373		383		393	
354		364		374		384		394	

弁11
弁 12
弁 13
弁14
弁 15

評価点	質量（kg）								
402		412		422		432		442	
403		413		423		433		443	
404		414		424		434		444	

弁16 弁17 弁18 弁19 弁20

評価点	質量（kg）								
452		462		472		482		492	
453		463		473		483		493	
454		464		474		484		494	

弁 21
弁 22
弁 23
弁2 4
弁 25

評価点	質量（kg）								
503		516		526		536		546	
504		517		527		537		547	
505		518		528		538		548	

弁26
弁 27

評価点	質量（kg）	評価点	質量（kg）
556		566	
557		567	
558		568	

弁部の寸法を下表に示す。

弁N0．	評価点	外径（mm）	厚さ（mm）	長さ（mm）
弁1	302			
弁2	312			
弁3	322			
弁4	333			
弁5	343			
弁6	353			
弁7	363			
弁8	373			
弁9	383			
弁10	393			
弁11	403			
弁12	413			
弁13	423			
弁14	433			
弁15	443			
弁16	453			
弁17	463			
弁1889	473			
弁19	483			
弁20	493			
弁21	504			
弁22	517			
弁23	527			
弁24	537			
弁25	547			
弁26	557			
弁27	567			

支持点及び貫通部ばね定数

$$
\text { 鳥 瞰 図 } \quad \text { HAPS - } 001
$$

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
2						
7						
12						
18						
20						
22						
24						
30						
32						
37						
42						
44						
46						
48						
50						
56						
58						
63						
68						
76						
83						
86						
88						
90						
92						
97						
99						
101						
103						
108						

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
111						
115						
117						
121						
123						
126						
131						
133						
135						
137						
139						
142						
146						
150						
152						
154						
156						
159						
161						
163						
169						
174						
179						
181						
183						
185						
190						
195						
197						
202						

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
310						
314						
316						
318						
320						
324						
326						
329						
331						
335						
337						
339						
341						
345						
347						
349						
351						
355						
357						
359						
361						
365						
367						
369						
371						
375						
377						
379						
381						
385						

	支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
		X	Y	Z	X	Y	Z
	387						
	389						
	391						
	395						
	397						
	399						
	401						
	405						
	407						
	409						
\bigcirc	411						
	415						
（冉	417						
\sim	419						
1	421						
∞	425						
$\begin{aligned} & i \\ & 5 \end{aligned}$	427						
	429						
（－）	431						
$\begin{gathered} \text { N } \\ 0 \end{gathered}$	435						
	437						
	439						
	441						
	445						
	447						
	449						
	451						
	455						
	457						
	459						

O 2 （3）VI－2－8－3－4－1（重）R 0

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
461						
465						
467						
469						
471						
475						
477						
479						
481						
485						
487						
489						
491						
495						
497						
499						
501						
506						
508						
511						
513						
515						
519						
521						
523						
525						
529						
531						
533						
535						

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

管名称と対応する評価点

評価点の位置は鳥瞰図に示す。

${ }^{\circ}$

配管の質量（付加質量含む）
鳥 瞰 図 HAPS－002
評価点の質量を下表に示す。

評価点	質量（kg）								
1		27		55		83		113	
2		28		56		84		114	
3		29		63		85		118	
4		30		64		86		119	
8		31		65		87		120	
9		35		66		88		121	
10		36		67		89		122	
11		37		71		90		123	
12		41		72		91		127	
13		42		73		92		128	
14		43		74		93		129	
15		44		75		94		130	
16		45		76		100		131	
17		46		77		101		132	
18		50		78		105		133	
19		51		79		106		134	
21		52		80		107		138	
22		53		81		108		142	
23		54		82		112			

弁部の質量を下表に示す。
弁1弁2

評価点	質量（kg）	評価点	質量（kg）
32		109	
33		110	
34		111	
215		212	
217		214	

弁3 弁4 弁5
弁 6
弁 7

評価点	質量（kg）								
5		24		38		47		57	
6		25		39		48		58	
7		26		40		49		59	

弁 8
弁 9
弁 10
弁11
弁12

評価点	質量（kg）								
60		68		139		135		124	
61		69		140		136		125	
62		70		141		137		126	

弁 13
弁 14

評価点	質量（kg）	評価点	質量（kg）
115		102	
116		103	
117		104	

弁部の寸法を下表に示す。

弁N0．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁 1	33			
弁 2	110			
弁 3	6			
弁 4	25			
弁 5	39			
弁 6	48			
弁 7	58			
弁 8	61			
弁 9	69			
弁 10	140			
弁 11	136			
弁 12	125			
弁 13	116			
弁 14	103			

支持点及び貫通部ばね定数

> 鳥 瞰 図 HAPS-002

支持点部のばね定数を下表に示す。

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力（MPa）				
		Sm	Sy	S u	S h	
SUS304TP	66	-	188	479	-	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥瞰図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
HAPS－0．01	緊急時対策建屋		

設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。
なお，設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき策定したものを用いる。また，減衰定数は添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の減衰定数を用いる。

鳥瞰図	建物•構築物	標高（0．P．（m））	減衰定数（\％）
HAPS－002	緊急時対策建屋		

4．解析結果及び評価
4.1 固有周期及び設計震度
HAPS－O 01

適用する地震動等		S d 及び静的震度			S s		
モード	固有周期 （ s ）	応答水平震度＊${ }^{*}$		応答鉛直震度＊1	応答水平震度＊${ }^{*}$		応答鉛直震度＊1
		X 方向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次＊2							
動的 震 度＊3							
静 的 震 度＊4							

[^18]＊2 ：Sd 又は S s s地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2CVより定めた震度を示す。
解析結果及び評価
鳥 瞰 図 HAPS－002

適用する地震動等		S d 及び静的震度			S s		
モード	$\underset{(\mathrm{s})}{\text { 固有期 }}$	応答水平震度＊1		応答鉛直震度＊1	応答水平震度 ${ }^{1}$		応答鉛直震度＊1
		X 方 向	Z 方 向	Y 方 向	X 方 向	Z 方 向	Y 方 向
1 次							
2 次							
3 次＊2							
動的 震 度＊3							
静 的 震 度＊4							

[^19]＊3：S d 又は S s 地震動に基づく設計用最大床応答加速度より定めた震度を示す。
＊4：3．6C I 及び1．2CVより定めた震度を示す。
固有周期及び設計震度
O 2 （3）VI－2－8－3－4－1（重）R 0
各モードに対応する刺激係数
鳥 瞰 図 HAPS－002

モード	固 有 周 期 （ s ）		激 係	数＊
		X 方 向	Y 方 向	Z 方 向
1 次				
2 次				

代表的振動モード図

振動モード図は，3次モードまでを代表とし，各質点の変位の相対量•方向を破線で図示し，次 ページ以降に示す。
O2 (3) VI-2-8-3-4-1 (重) R 0
O (3) VI-2-8-3-4-1 (重) R O
4． 2 評価結果
4．2．1 管の応力評価結果
下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 2 以下の管

鳥瞰図	許容応力状態	最大応力 評価点	最大応力区分	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
				$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sprm} \text { (S s) } \end{gathered}$	許容応力 0.9 Su $0.9 \mathrm{~S} \mathrm{u}$	$\begin{gathered} \text { 計算応力 } \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$	$\begin{gathered} \text { 許容応力 } \\ 2 \mathrm{~S} \mathrm{y} \end{gathered}$	疲労累積係数 US s
HAPS－ 001	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & 491 \\ & 491 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Sprm (S s }) \\ \mathrm{Sn}(\mathrm{~S} s) \\ \hline \end{gathered}$	115	431	180	376	－

評価結果

鳥瞰図	許容応力状態	最大応力 評価点	最大応力 区分	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+ \text { 二次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$		疲労評価
				$\begin{gathered} \hline \text { 計算応力 } \\ \mathrm{Sprm} \text { (S s) } \end{gathered}$	$\begin{gathered} \hline \text { 許容応力 } \\ 0.9 \mathrm{~S} \mathrm{u} \end{gathered}$	$\begin{gathered} \text { 計算応力 } \\ \mathrm{S} \text { (} \mathrm{n} \text { (S s) } \end{gathered}$	許容応力 $2 \mathrm{~S} y$	疲労累積係数 U S s
HAPS－ 002	$\begin{aligned} & \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ & \mathrm{~V}_{\mathrm{A}} \mathrm{~S} \end{aligned}$	$\begin{gathered} 32 \\ 106 \end{gathered}$	$\begin{gathered} \text { Sprm (S s }) \\ \mathrm{Sn}(\mathrm{~S} \text { s }) \end{gathered}$	122	431	141	－ 376	－

4．2．2 支持構造物評価結果
下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。
支持構造物評価結果（荷重評価）

				支持構造物 番号		種類

支持構造物評価結果（応力評価）

支持構造物番号	種類	型式	材質	温度 $\left({ }^{\circ} \mathrm{C}\right)$	支持点荷重						評価結果		
					反力（kN）			モーメント（kN•m）			応力 分類	計算 応力 （MPa）	許容 応力 （MPa）
					F_{x}	F_{Y}	F_{z}	M_{X}	M_{Y}	M_{Z}			
KB4001－011	レストレイント	ラグ	SUS304	50	1	1	4	－	－	－	組合せ	57	118
KB1001－082	アンカ	ラグ	SM400B	50	11	5	7	3	5	4	組合せ	44	422

4．2．3 弁の動的機能維持評価結果
下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	型式	要求 機能	機能維持評価用加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		機能確認済加速度$\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$		構造強度評価結果 （MPa）	
			水平	鉛直	水平	鉛直	計算応力	許容応力
－	－	－	－	－	－	－	－	－

4．2．4 代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	計算応力 （MPa）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 許容応力力 } \\ (\mathbb{N P a}) \end{gathered}$	裕度	代	$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 疲学 } \\ & \text { 畨積 } \\ & \text { 係数 } \\ & \hline \end{aligned}$	代
1	HAPS－001	491	115	431	3.74	－	491	180	376	2.08	\bigcirc	－	－	－
2	HAPS－002	32	122	431	3.53	\bigcirc	106	141	376	2． 66	－	－	－	－
3	HAPS－003	105	74	431	5.82	－	105	145	376	2． 59	－	－	－	－
4	HAPS－004	1	15	431	28.73	－	1	30	376	12.53	－	－	－	－
5	HAPS－005	7	23	431	18.73	－	18	32	376	11.75	－	－	－	－
6	HAPS－008	5	12	369	30.75	－	5	6	490	81.66	－	－	－	－
7	HAPS－009	1	21	369	17.57	－	1	18	490	27． 22	－	－	－	－
8	HAPS－011－1	1	6	431	71.83	－	1	2	376	188.00	－	－	－	－

O 2 （3）VI－2－8－3－4－1（重）R O E
代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス2管であってクラス2以下の管）

No．	配管モデル	許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$												
		一次応力					一次＋二次応力					疲労評価		
		$\begin{aligned} & \text { 評 } \\ & \text { 価 } \\ & \text { 点 } \\ & \hline \end{aligned}$	計算応力 （MPa）	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	$\begin{gathered} \text { 計算応力 } \\ (\mathrm{MPa}) \end{gathered}$	許容応力 （MPa）	裕度	$\begin{aligned} & \text { 代 } \\ & \text { 表 } \end{aligned}$	評 価 点	疲労累積係数	代表
9	HAPS－101	2	53	431	8.13	－	2	40	376	9． 40	－	－	－	－

VI－2－8－3－4－2 差圧計（緊急時対策所用）の耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
3．固有周期 3
3.1 固有周期の算出方法 3
3.2 固有周期の計算条件 4
3.3 固有周期の計算結果 4
4．構造強度評価 5
4.1 構造強度評価方法 5
4.2 荷重の組合せ及び許容応力 5
5．機能維持評価 8
5.1 電気的機能維持評価方法 8
6．評価結果 8
6.1 重大事故等対処設備としての評価結果 8

1．概要
本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，差圧計（緊急時対策所用）が設計用地震力に対して十分な構造強度及 び電気的機能を有していることを説明するものである。

差圧計（緊急時対策所用）は，重大事故等対処設備においては常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備に分類される。以下，重大事故等対処設備とし ての構造強度評価及び電気的機能維持評価を示す。

2．一般事項
本計算書は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に基づき評価を行う。

2.1 構造計画

差圧計（緊急時対策所用）の構造計画を表 2－1 に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
検出器は，計器取付ボルトに より計器スタンションに取付 けられた計器取付板に固定さ れる。 計器スタンションは，基礎に基礎ボルトで設置する。	弾性型圧力検出器	

3．固有周期
3.1 固有周期の算出方法

差圧計（緊急時対策所用）計器スタンションの固有周期の計算方法を以下に示す。
（1）差圧計（緊急時対策所用）計器スタンションは，図 3－1 に示す壁固定の 1 質点系振動モ デルとして考える。
（2）計器スタンションは鋼材で上下 2 箇所を緊急時対策建屋壁面に固定することから，計算 モデルでは，計器スタンションを直線とみなし，支持点（計器スタンション基礎部）2 点 で固定されるものとする。
（3）検出器及び計器スタンションの質量は，質点に集中するものとし，質点は検出器の位置 に設定する。
（4）図 3－1 中のは検出器及び計器スタンションの質点，○は計器スタンションの支持点， ——は計器スタンションを示す。

3．1．1 水平方向（X方向， Z 方向）

（1）X方向及びZ方向に対する固有周期を次式で求める。

$$
\begin{equation*}
\mathrm{T}=2 \cdot \pi \cdot \sqrt{\frac{\mathrm{~m}}{10^{3}} \cdot\left(\frac{\ell_{\mathrm{b}}^{3}}{48 \cdot \mathrm{E}_{1} \cdot \mathrm{I}_{1}}+\frac{\ell_{\mathrm{b}}}{4 \cdot \mathrm{~A}_{\mathrm{b}} \cdot \mathrm{G}_{1}}\right)} \tag{3.1.1.1}
\end{equation*}
$$

3．1．2 鉛直方向（Y方向）

（1）Y方向は十分な剛性を有していることから，固有周期の計算を省略する。

図 3－1 固有周期の計算モデル

3.2 固有周期の計算条件

固有周期の計算に用いる数値を表3－1に示す。

表 3－1 固有周期の計算条件

項目	記号		単位	数値等
検出器及び計器スタンションの質量	m		kg	37
上下ボルト間の距離（壁掛形）	ℓ_{b}		mm	720
計器スタンションの材質	－		－	STKR400
縦弾性係数	E		MPa	202000
断面二次モーメント	I		mm ${ }^{4}$	1． 870×10^{6}
最小有効せん断断面積	A ${ }_{\text {b }}$		mm^{2}	640
せん断弾性係数	G		MPa	77700
計器スタンションの断面形状（mm）				$\xrightarrow{\rightarrow}$

3.3 固有周期の計算結果

固有周期の計算の結果から，水平方向は 0.05 秒以下であり，剛であることを確認した。ま た，鉛直方向は十分な剛性を有していることから，固有周期の計算を省略した。固有周期の計算結果を表3－2に示す。

表 3－2 固有周期（s）

水平方向		鉛直方向
		-

4．構造強度評価
4． 1 構造強度評価方法
差圧計（緊急時対策所用）の構造は壁掛形計器スタンションであるため，構造強度評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載 の耐震計算方法に基づき評価する。
4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
差圧計（緊急時対策所用）の荷重の組合せ及び許容応力状態のうち重大事故等対処設備 の評価に用いるものを表4－1に示す。

4．2．2 許容応力
差圧計（緊急時対策所用）の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」 に基づき表4－2のとおりとする。

4．2．3 使用材料の許容応力評価条件
差圧計（緊急時対策所用）の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表4－3に示す。

表 4－1 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊1	機器等の区分	荷重の組合せ	許容応力状態

注記＊1：「常設 そ そ他」は常設重大事故防止設備及び常設重大事故緩和設備以外の常設重大事故等対処設備を示す。 ＊2：その他の支持構造物の荷重の組合せ及び許容応力を適用する。
＊3：「 $\mathrm{D}+\mathrm{P}_{\mathrm{SAD}}+\mathrm{M}_{\mathrm{SAD}}+\mathrm{S} \mathrm{s}$ 」の評価に包絡されるため，評価結果の記載を省略する。

表 4－2 許容応力（重大事故等その他の支持構造物）

表 4－3 使用材料の許容応力（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ (MPa)
基礎ボルト	SS400 $(40 \mathrm{~mm}<$ 径 $)$	周囲環境温度	40	215	400	-

5．機能維持評価

5.1 電気的機能維持評価方法

差圧計（緊急時対策所用）の電気的機能維持評価について，以下に示す。
電気的機能維持評価は，添付書類「VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

差圧計（緊急時対策所用）の機能確認済加速度には，同形式の検出器単体の正弦波加振試験 において，電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表5－1に示す。

表 5－1 機能確認済加速度 $\quad\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

評価部位	方向	機能確認済加速度
差圧計（緊急時対策所用）	水平	4.0
	鉛直	3.0

6．評価結果

6.1 重大事故等対処設備としての評価結果

差圧計（緊急時対策所用）の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度及び電気的機能 を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を次頁以降の表に示す。
（2）機能維持評価結果
電気的機能維持評価の結果を次頁以降の表に示す。

【差圧計（緊急時対策所用）の而震評価結果】
1．重大事故等対処設備

機器名称	設備分類	据付場所及び床面高さ （m）	固有周期 （s）		弾性設計用地震動S d又は静的震度		基淮地震動S s		周囲環境温度 （ ${ }^{\circ} \mathrm{C}$ ）
			水平方向	鉛直方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度	
差圧計 （緊急時対策所用）	常設／¢の他	緊急時対策建屋 OP．51．50＊ （OP．57．30）		－	－	－	$\mathrm{C}_{\mathrm{H}}=1.21$	$\mathrm{C}_{\mathrm{v}}=0.87$	40

注記 $*$ ：基淮床レベルを示す。

1．2 機器要目
1．2．1 差圧計（緊急時対策所用）

部 材	m (kg)	h_{2} $(\mathrm{~mm})$	ℓ_{3} $(\mathrm{~mm})$	ℓ_{a} (mm)	ℓ_{b} (mm)	A_{b} $\left(\mathrm{mm}^{2}\right)$	n	n_{fV}	n_{fH}
基礎ボルト			4	2	2				

部 材	S_{y} (MPa)	S_{u} (MPa)	F (MPa)	F^{*} (MPa)	弾性設計用地震動 S d 又は静的震度	転倒方向
基準地震動 S s						
楚ボルト	215 $(40 \mathrm{~mm}$＜径）	400	-	258	-	水平方向

1.3 計算数値

1．3．1 ボルトに作用する力
（単位：N）

部 材	F_{b}		Qb	
	弾性設計用地震動S d又は静的震度	基淮地震動S s	弾性設計用地震動S d又は静的震度	基淮地震動S s
基礎ボルト	－		－	

1．4 結論

部 材	材 料	応力	弾性設計用地震動S d又は静的震度		基準地震動S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト	SS400	引張り	－	－	$\sigma_{\mathrm{b}}=8$	$\mathrm{f}_{\mathrm{ts}}=193 *$
		せん断	－	－	$\tau_{\mathrm{b}}=2$	$\mathrm{f}_{\mathrm{sb}}=148$

1．4．2 電気的機能維持の評価結果

$$
\text { 注記 } *: \mathrm{f}_{\mathrm{ts}}=\operatorname{Min}\left[1.4 \cdot \mathrm{f}_{\mathrm{t}}-1.6 \cdot \tau \mathrm{~b}, \mathrm{f}_{\mathrm{to}}\right] \text { より算出 }
$$

注記＊：基準地震動S s により定まる応答加速度とする。
機能維持評価用加速度（1．0ZPA）は，すべて機能確認済加速度以下である。

O 2

転倒方向

11

VI－2－8－4 生体遮蔽装置の耐震性についての計算書

VI－2－8－4－1 2 次しゃへい壁の耐震性についての計算書
VI－2－8－4－2 補助しゃへいの耐震性についての計算書
VI－2－8－4－3 中央制御室しゃへい壁の耐震性についての計算書
VI－2－8－4－4 中央制御室待避所遮蔽の耐震性についての計算書
VI－2－8－4－5 緊急時対策所遮蔽の耐震性についての計算書

VI－2－8－4－1 2 次しやへい壁の耐震性についての計算書

添付書類「VI－2－8－4－1 2 次しやへい壁の耐震性についての計算書」は，添付書類「VI －2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」に做らも のとする。

VI－2－8－4－2 補助しやへいの耐震性についての計算書

添付書類「VI－2－8－4－2 補助しやへいの耐震性についての計算書」は，添付書類「VI －2－9－3－1 原子炉建屋原子炉棟（二次格納施設）の耐震性についての計算書」に做らも のとする。

VI－2－8－4－3 中央制御室しやへい壁の耐震性についての計算書

目次

1．概要 1
2．基本方針（中央制御室しやへい壁） 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 7
2.4 適用規格•基準等 10
3．地震応答解析による評価方法（中央制御室しやへい壁） 11
4．応力解析による評価方法（中央制御室しやへい壁） 13
4． 1 評価対象部位及び評価方針 13
4．1．1 天井スラブ及び床スラブ 13
4．1．2 耐震壁 17
4.2 荷重及び荷重の組合せ 20
4．2．1 天井スラブ及び床スラブ 20
4．2．2 耐震壁 22
4．3 許容限界 23
4． 4 解析モデル及び諸元 25
4．4．1 天井スラブ及び床スラブ 25
4．4．2 耐震壁 27
4．5 評価方法 28
4．5．1 天井スラブ及び床スラブの応力解析方法 28
4．5．2 耐震壁の応力解析方法． 32
4．5．3 天井スラブ及び床スラブの断面評価方法 33
4．5．4 耐震壁の断面評価方法． 33
5．評価結果（中央制御室しやへい壁） 34
5.1 地震応答解析による評価結果． 34
5.2 応力解析による評価結果 37
5．2．1 天井スラブ及び床スラブの評価結果 37
5．2．2 耐震壁の評価結果 44
6．基本方針（中央制御室バウンダリ） 47
6． 1 位置 47
6．2 構造概要 48
6．3 評価方針 50
6．4 適用規格•基準等 52
7．地震応答解析による評価方法（中央制御室バウンダリ） 53
8．応力解析による評価方法（中央制御室バウンダリ） 55
8.1 評価対象部位及び評価方針 55
8．2 荷重及び荷重の組合せ 59
8． 3 許容限界 62
8．4 解析モデル及び諸元 64
8.5 評価方法 66
8．5．1 応力解析方法 66
8．5．2 断面評価方法 69
9．評価結果（中央制御室バウンダリ） 70
9.1 地震応答解析による評価結果． 70
9.2 応力解析による評価結果 73
別紙1 中央制御室の気密性に関する計算書

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則」第 38 条に おいて設置することが要求されている中央制御室について，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，中央制御室しゃへい壁の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析による評価及び応力解析 による評価により行う。

なお，中央制御室は，添付書類「VI－1－7－3 中央制御室の居住性に関する説明書」に おいて，「実用発電用原子炉及びその付属施設の技術基準に関する規則」第38条及び第 74 条並びにそれらの「実用発電用原子炉及びその付属施設の技術基準に関する規則の解釈」に基づく居住性の評価を行っており，中央制御室換気設備の処理対象となるバウ ンダリ（以下「中央制御室バウンダリ」という。）を定めている。以下，中央制御室の うち構造強度及び遮蔽性が要求される範囲（以下「中央制御室しゃへい壁」という。） と中央制御室バウンダリの耐震評価をそれぞれ示す。

2．基本方針（中央制御室しやへい壁）
中央制御室しやへい壁は設計基準対象施設においては「Sクラスの施設」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」 に分類される。以下，それぞれの分類に応じた中央制御室しゃへい壁としての耐震評価 を示す。

2.1 位置

中央制御室しやへい壁は，制御建屋の一部を構成している。中央制御室しやへい壁 を含む制御建屋の設置位置を図2－1に示す。

図 2－1 中央制御室しやへい壁を含む制御建屋の設置位置

2.2 構造概要

制御建屋は地下 2 階，地上 3 階建で，基礎底面からの高さは 30.65 m であり，平面は下部で $41.0 \mathrm{~m}(\mathrm{NS}$ 方向 $) \times 40.0 \mathrm{~m}\left(\mathrm{EW}\right.$ 方向）$*^{1}$ のほぼ正方形である。

建屋の構造は鉄筋コンクリート造（一部鉄骨造）であり，その主たる耐震要素は建屋 の外周の耐震壁である。

制御建屋の基礎は，厚さ 3.0 m のべた基礎で，支持地盤である砂岩及び頁岩上に設置 されており，一部は支持地盤上に打設されたマンメイドロック上に設置されている。中央制御室は 0. P．${ }^{* 2} 22.95 \mathrm{~m} \sim 0$. P． 29.15 m に位置する。平面規模は， 41.0 m （NS 方向） ×40．0m（EW 方向）である。中央制御室しやへい壁は，中央制御室を取り囲む壁，床ス ラブ及び天井スラブで構成されており，壁の厚さは口床スラブ及び天井スラブの厚さは ごある。

中央制御室しゃへい壁の概略平面図及び概略断面図を図2－2 及び図2－3に示す。

注記 $* 1$ ：建屋寸法は壁外面押えとする。
0.74 m である。

（単位：m）

図 2－2（1）中央制御室しやへい壁の概略平面図（0．P．29．15m）

図 2－2（2）中央制御室しやへい壁の概略平面図（0．P．22．95m）

2.3 評価方針

中央制御室しゃへい壁は，設計基準対象施設においては「Sクラスの施設」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」に分類される。

中央制御室しやへい壁は，中央制御室を取り囲む耐震壁，床スラブ及び天井スラブ で構成されており，設計基準対象施設としての評価においては，弾性設計用地震動S dによる地震力又は静的地震力のいずれか大きい方の地震力に対する評価（以下「S d 地震時に対する評価」という。）及び基準地震動 S s による地震力に対する評価（以下「S s 地震時に対する評価」という。）を行う。

中央制御室しゃへい壁の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき，「3．地震応答解析による評価方法（中央制御室しやへい壁）」においては耐震壁 についてせん断ひずみの評価を，「4．応力解析による評価方法（中央制御室しやへい壁）」においては耐震壁，床スラブ及び天井スラブについて断面の評価を行うことで，地震時の構造強度及び機能維持の確認を行う。

それぞれの評価は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」の結果を踏 まえたものとする。評価にあたつては材料物性の不確かさを考慮する。表2－1 に材料物性の不確かさを考慮する解析ケースを示す。

静的地震力に対する評価については，平成2年5月24日付け元資庁第14466号に て認可された工事計画の添付書類「IV－2－4 制御建屋の耐震性についての計算書」（以下「既工認」という。）にて実施しているため，弾性設計用地震動 S d による地震力ま たは静的地震力のいずれか大きい方の地震力に対する評価は，弾性設計用地震動 $\mathrm{S} d$ による地震力に対する評価を行うこととする。

なお，中央制御室しやへい壁の地震時の構造強度及び機能維持の確認には，地震応答解析による評価において保有水平耐力の評価及び支持機能の確認が必要であるが，中央制御室しやへい壁が制御建屋の一部であることを踏まえ，中央制御室しやへい壁 を含む制御建屋全体としての評価結果を添付書類「VI－2－2－4 制御建屋の耐震性につ いての計算書」に示す。

また，重大事故等対処施設としての評価においては，S s 地震時に対する評価を行 う。ここで，中央制御室しゃへい壁では，運転時，設計基準事故時及び重大事故等時 の状態において，圧力，温度等の条件について有意な差異がないことから，重大事故等対処施設としての評価は，設計基準対象施設としての評価と同一となる。

中央制御室しやへい壁の評価フローを図2－4に示す。

表 2－1 材料物性の不確かさを考慮する解析ケース

対象地震動	ケース名	スケルトンカーブ		建屋材料減衰	地盤物性	
		初期剛性	終局耐力		入力地震動	底面地盤ばね
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本ケース) } \end{gathered}$	2011年3月11日東北地方太平洋沖地震の観測記録を用 いたシミュレーション解析 により補正	設計基準強度を用い JEAG 式で評価	5\％	直接入力	標準地盤
	ケース 2	同上	同上	同上	同上	標準地盤＋${ }^{\text {a }}$
	ケース 3				同上	標準地盤－σ
	ケース 4	基本ケースの 0.70 倍	同上	同上	同上	標準地盤
	ケース 5				同上	標準地盤＋σ
	ケース 6				同上	標準地盤 $-\sigma$
基準地震動S s （鉛直）	$\begin{gathered} \text { ケース } 1 \\ \text { (基本ケース) } \end{gathered}$	設計岡性	－	5\％	直接入力	標準地盤
	ケース 2	同上	－	同上	同上	標準地盤＋${ }^{\text {a }}$
	ケース 3					標準地盤 $-\sigma$
弾性設計用地震動S d （水平，鉛直）	$\begin{gathered} \text { ケース } 1 \\ \text { (基本ケース) } \end{gathered}$	水平： 3.11 地震シミュレー ション淂鋪正 鉛直 $:$ 設計剛性	－	$\begin{gathered} 5 \% \\ \text { (水平, 鉛直とも) } \end{gathered}$	水平：直接入力 鉛直 ：直接入力	標準地盤
	ケース 2	同上	－	同上	同上	標準地盤＋${ }^{\text {a }}$
	ケース 3				同上	標準地盤 $-\sigma$

図 2－4 中央制御室しやへい壁の評価フロー

2.4 適用規格•基準等

中央制御室しやへい壁の評価において，適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1988年改定）
- 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－（（社）日本建築学会，1999年改定）
－原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005） （以下「R C－N 規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）

3．地震応答解析による評価方法（中央制御室しやへい壁）
中央制御室しやへい壁の構造強度については，添付書類「VI－2－2－3 制御建屋の地震応答計算書」による結果に基づき，材料物性の不確かさを考慮した最大応答せん断ひず みが許容限界を超えないことを確認する。

また，遮蔽性の維持については，添付書類「VI－2－2－3 制御建屋の地震応答計算書」 による結果に基づき，材料物性の不確かさを考慮した最大応答せん断ひずみが許容限界 を超えないことを確認する。

地震応答解析による評価における中央制御室しやへい壁の許容限界は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，表 $3-1$ 及び表 $3-2$ のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
－	構造強度を 有すること	基準地震動 S s	耐震壁＊	最大応答せん断ひ ずみが構造強度を確保するための許容限界を超えない ことを確認	せん断ひずみ $\text { 2. } 0 \times 10^{-3}$
遮蔽性	遮蔽体の損傷 により遮蔽性能を損なわな いこと	基準地震動 S s	耐震壁＊	最大応答せん断ひ ずみが遮蔽性を維持するための許容限界を超えないこ とを確認	せん断ひずみ 2.0×10^{-3}

注記＊：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱，は り，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造 となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えら れるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足していれば，建物•構築物に要求される機能は維持される。

表 3－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持の ための考え方	許容限界 （評価基準値）
－	構造強度を 有すること	基準地震動 S s	耐震壁＊	最大応答せん断ひ ずみが構造強度を確保するための許容限界を超えない ことを確認	せん断ひずみ 2.0×10^{-3}
遮蔽性	遮蔽体の損傷 により遮蔽性能を損なわな いこと	基準地震動 S s	耐震壁＊	最大応答せん断ひ ずみが遮蔽性を維持するための許容限界を超えないこ とを確認	せん断ひずみ 2.0×10^{-3}

注記＊：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱，は り，間仕切壁等が耐震壁の変形に追従すること，また，全体に剛性の高い構造 となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えら れるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足していれ ば，建物•構築物に要求される機能は維持される。

4．応力解析による評価方法（中央制御室しやへい壁）
4． 1 評価対象部位及び評価方針
中央制御室しゃへい壁の応力解析による評価対象部位は，中央制御室しやへい壁を構成する天井スラブ，床スラブ及び耐震壁とし，弾性応力解析により評価を行う。弾性応力解析にあたつては，添付書類「VI－2－2－3 制御建屋の地震応答計算書」による結果を用いて，荷重の組合せを行う。

4．1．1 天井スラブ及び床スラブ

（1） S d 地震時に対する評価
S d 地震時に対する評価は，材料物性の不確かさを考慮した鉛直方向の地震力 と地震力以外の荷重の組合せの結果により発生する応力が，「R C -N 規準」に基 づき設定した許容限界を超えないことを確認する。
（2）S s 地震時に対する評価
S s 地震時に対する評価は，材料物性の不確かさを考慮した鉛直方向の地震力 と地震力以外の荷重の組合せの結果，発生する応力が，「 R C -N 規準」に基づき設定した許容限界を超えないことを確認する。

評価については，各断面についてスラブの検定値が最も大きい部材を選定して示す。応力解析による評価フローを図4－1 に，選定した部材を図4－2 に示す。

なお，水平方向の地震荷重に対する評価は，建屋全体が剛性の高い構造となっ ており，耐震壁間での相対変形が小さく，スラブの面内変形が抑えられることか ら，「3．地震応答解析による評価方法（中央制御室しやへい壁）」に含まれる。

図 4－1 天井スラブ及び床スラブの応力解析による評価フロー

図 $4-2$（1）スラブの評価を記載する部材の位置（RF，0．P．29．15m）

（単位：m）

図 $4-2$（2）スラブの評価を記載する部材の位置（3F，0．P．22．95m）

4．1． 2 耐震壁

（1）S d 地震時に対する評価
S d 地震時に対する評価は，材料物性の不確かさを考慮した地震力と地震力以外の荷重の組合せの結果により発生する応力が，「R C－N 規準」に基づき設定し た許容限界を超えないことを確認する。

応力解析による評価フローを図4－3に，選定した部材を図4－4に示す。

図 4－3 耐震壁の応力解析による評価フロー

（単位：m）
図 4－4 耐震壁の評価を記載する部材の位置

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重組合せを用いる。

4．2．1 天井スラブ及び床スラブ

（1）荷重
a．鉛直荷重
応力解析において考慮する固定荷重（G）及び積載荷重（P）を表4－1 及び表 4－2に示す。
b．地震荷重（S s，S d）
鉛直地震力は，材料物性の不確かさを考慮した基準地震動 S s 及び弾性設計用地震動 S d に対する地震応答解析より算定される動的地震力により設定する。

天井スラブ及び床スラブが，長辺方向 $6.9 \mathrm{~m} \sim 8.3 \mathrm{~m}$ ，短辺方向 $2.3 \mathrm{~m} \sim 6.3 \mathrm{~m}$ で厚

表 4－1 固定荷重（G）

部位	固定荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
天井スラブ (1)	7.2
天井スラブ ${ }^{(2)}$	7.2
床スラブ 1 （	7.2

表 4－2 積載荷重（P）

部位	積載荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
天井スラブ 1 （	2.2
天井スラブ（2）	2.3
床スラブ 1 （	12.0

枠囲みの内容は商業機密の観点から公開できません。
$\underset{\text {（m）}}{\text { O．} \mathrm{P}}$

注1 ：数字は質点番号を示す。
注2 ：（ ）内は要素番号を示す。
注3：○印の動的応答を用いる。

図 4－5 基準地震動 S s 及び弾性設計用地震動 S d に対する質点系モデル（鋁直方向）
（2）荷重の組合せ
荷重の組合せを表4－3に示す。

4．2．2 耐震壁

水平地震力及び鉛直地震力は，弾性設計用地震動 S d に対する地震応答解析に より算定される動的地震力より設定する。なお，水平地震力及び鉛直地震力は材料物性の不確かさを考慮した地震応答解析結果を包絡したものとする。

表 $4-3$	荷重の組合せ
荷重状態	荷重の組合せ
S d 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{d}$
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重
P ：積載荷重
S d ：S d 地震荷重
S s ：S s 地震荷重

4．3 許容限界

応力解析による評価における中央制御室しゃへい壁の許容限界は，添付書類「VI－2－ 1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の基本方針に基 づき，表 4－4及び表 4－5のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表4－6及び表4－7に示す。

表 4－4 応力解析による評価における許容限界
（設計基準対象施設としての評価）

要求機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「 R C -N 規準」 に基づく終局強度
		弾性設計用地震動 S d及び静的地震力	$\begin{gathered} \text { 耐震壁 } \\ \hline \begin{array}{c} \text { 天井スラブ } \\ \text { 床スラブ } \end{array} \end{gathered}$	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「R C -N 規準」 に基づく 短期許容応力度
遮蔽性	遮蔽体の損傷により遮蔽性能を損 なわないこ と	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを確認	「 R C -N 規準」 に基づく短期許容応力度＊
		弾性設計用地震動 S d及び 静的地震力	\qquad 天井スラブ床スラブ	部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを確認	「R C -N 規準」 に基づく 短期許容応力度

注記＊：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。

表 4－5 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を 有すること	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「R C -N 規準」 に基づく終局強度
遮蔽性	遮蔽体の損傷により遮蔽性能を損 なわないこ と	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを確認	「 R C $-N$ 規準」 に基づく 短期許容応力度＊

注記＊：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。

設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
32.4	21.6	1.21

表 4－7 鉄筋の許容応力度

種別	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD35 $(\mathrm{SD} 345$ 相当）	345	345

4．4 解析モデル及び諸元

4．4．1 天井スラブ及び床スラブ
（1）モデル化の基本方針
スラブの鉛直地震動による影響に対する検討において，柱，壁及びはりで囲ま れた範囲についてモデル化する。

スラブの解析モデルは，天井スラブ（1）については単位幅についてはりで支持さ れた両端固定はりとして評価する。天井スラブ（2）及び床スラブ（1）については，四辺固定版として評価する。スラブの解析モデルを図4－4に示す。

等分布荷重

（a）天井スラブ（1）（両端固定はり）

（b）天井スラブ（2）（四辺固定版）

図4－4（1）解析モデル

図 4－4（2）解析モデル
（2）解析諸元
使用材料の物性値を表4－8に示す。

表 4－8 使用材料の物性値
\(\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { コンクリートの } \\
\text { 設計基準強度 } \\
\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array} & \begin{array}{l}\text { ヤング係数 } \\
\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array}
$$ \& ポアソン比

v\end{array}\right]\)	32.4	2.51×10^{4}	0.2

4．4．2 耐震壁

（1）モデル化の基本方針
耐震壁の応力は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に基づき評価する。
（2）解析諸元
使用材料の物性値を表4－9に示す。

表 4－9 使用材料の物性値

コンクリートの 設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
v		

4． 5 評価方法

4．5．1 天井スラブ及び床スラブの応力解析方法
（1）荷重ケース
作用荷重のうち地震荷重は，鉛直荷重と同じ下向きに作用する場合に生じる応力が最大となるため，地震荷重は鉛直下向きの場合のみ考慮する。
（2）長期荷重時の応力の算出方法
長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力の算出方法は下式の通りである。長期荷重時の端部曲げモーメント，中央部曲げモーメ ント及びせん断力を表4－10に示す。

（四辺固定版）

－短辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{x}} 1$ ）

$$
\mathrm{M}_{\mathrm{x} 1}=-\frac{1}{12} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－短辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{x} 2}$ ）

$$
\mathrm{M}_{\mathrm{x} 2}=\frac{1}{18} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－短辺のせん断力（ Q_{x} ）

$$
\mathrm{Q}_{\mathrm{x}}=0.52 \mathrm{w} \cdot 1_{\mathrm{x}}
$$

－長辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 1}$ ）

$$
\mathrm{M}_{\mathrm{Y} 1}=-\frac{1}{24} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 2}$ ）

$$
\mathrm{M}_{\mathrm{Y} 2}=\frac{1}{36} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺のせん断力（ Q_{Y} ）

$$
\mathrm{Q}_{\mathrm{Y}}=0.46 \mathrm{w} \cdot 1_{\mathrm{x}}
$$

ここで，
1 x ：短辺有効スパン（m）
1 Y ：長辺有効スパン（m）
w ：単位面積あたりの長期荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
$\mathrm{W}_{\mathrm{X}}=\frac{\mathrm{l}_{\mathrm{Y}}{ }^{4}}{\mathrm{l}_{\mathrm{X}^{4}+\mathrm{l}_{\mathrm{Y}}}{ }^{4}} \cdot \mathrm{~W}$
（両端固定はり）
－端部曲げモーメント $\left(\mathrm{M}_{\mathrm{E}}\right)$

$$
\mathrm{M}_{\mathrm{E}}=-\frac{1}{12} \mathrm{w} \cdot \mathrm{l}^{2}
$$

－中央部曲げモーメント（ M_{C} ）

$$
\mathrm{M}_{\mathrm{C}}=\frac{1}{24} \mathrm{w} \cdot 1^{2}
$$

－端部せん断力（ Q_{E} ）

$$
\mathrm{Q}_{\mathrm{E}}=\frac{1}{2} \mathrm{w} \cdot \mathrm{l}
$$

```
ここで,
    1 : 有効スパン (m)
    w : 単位面積あたりの長期荷重 (kN/m2)
```

表 4－10 長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力

部位	スラブ厚 (mm)	方向	端部曲げ モメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	中央部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	せん断力 $(\mathrm{kN} / \mathrm{m})$
天井スラブ（1）		短辺（NS）	4.1	2.1	10.8
天井スラブ（2）		短辺（NS）	23.6	15.7	31.1
	長辺（EW）	15.7	10.5	27.5	
床スラブ（1）		短辺（NS）	13.0	8.7	29.0

（3）応力の算出方法
「（2）長期荷重時の応力の算出方法」における長期荷重時の端部曲げモーメ ント，中央部曲げモーメント及びせん断力を，中央制御室天井レベル（0．P．29．15m，質点番号 1）及び中央制御室床レベル（0．P．22．15m，質点番号2）の鉛直方向最大応答加速度より算出した鉛直震度により係数倍することで算出する。鉛直方向最大応答加速度を表4－11に，算出した端部曲げモーメント，中央部曲げモーメン ト及びせん断力を表4－12に示す。

表 4－11 地震応答解析による最大応答加速度
（a）弾性設計用地震動 S d

質点番号	$0 . \mathrm{P}$. (m)	最大値 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
1	29.15	991
2	22.95	876

（b）基準地震動 S s

質点番号	$0 . \mathrm{P}$. (m)	最大値 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
1	29.15	1754
2	22.95	1574

表 4－12 鉛直震度より算出した端部曲げモーメント，中央部曲げモーメント及びせん断力
（a）弾性設計用地震動 S d

部位	検討用鉛直震度	方向	$\begin{gathered} \text { 端部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \hline \text { 中央部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	せん断力 $(\mathrm{kN} / \mathrm{m})$
天井スラブ（1）	2.02	短辺（NS）	8.3	4.2	21.8
天井スラブ（2）	2.02	短辺（NS）	47.7	31.7	62.8
		長辺（EW）	31.7	21.2	55.6
床スラブ①	1． 90	短辺（NS）	24.7	16.5	55.1
		長辺（EW）	12.7	8.6	48.6

（b）基準地震動 S s

部位	検討用鉛直震度	方向	$\begin{gathered} \text { 端部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 中央部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	せん断力 $(\mathrm{kN} / \mathrm{m})$
天井スラブ①	2． 79	短辺（NS）	11.4	5.9	30.1
天井スラブ（2）	2． 79	短辺（NS）	65.8	43.8	86.8
		長辺（EW）	43.8	29.3	76． 7
床スラブ①	2． 61	短辺（NS）	33.9	22.7	75.7
		長辺（EW）	17.5	11.7	66.8

4．5．2 耐震壁の応力解析方法

水平地震力は，弾性設計用地震動 S d に対する地震応答解析より算定される動的地震力及び層せん断力係数 $3.0 \cdot \mathrm{C}$ i より算定される静的地震力より設定する。

S d 地震荷重は，弾性設計用地震動 S d に対する質点系モデルの中央制御室レ ベル（0．P．22．95m～0．P．29．15m 要素番号（1）及び（6））の最大応答せん断力より設定する。材料物性の不確かさを考慮した中央制御室レベルにおける層せん断力 を表4－13に示す。

弾性設計用地震動 S d による地震力は静的地震力を上回るため，弾性設計用地震動 S d による地震力により耐震壁の検討を行う。

表 4－13 層せん断力（弾性設計用地震動 S d による地震力及び静的地震力）

部位	方向	要素番号	弾性設計用地震動 S d による地震力 $\left(\times 10^{3} \mathrm{kN}\right)$	層せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$	
				弾性設計用地震動 S d による地震力	静的地震力
中央制御室	NS	（1）	21.80	42.92	24.65
		（6）	21.12		
	EW	（1）	23.60	44． 44	24.54
		（6）	20.84		

4．5．3 天井スラブ及び床スラブの断面評価方法

（1）曲げモーメントに対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる曲げモーメン トが，次式をもとに計算した短期許容曲げモーメントを超えないことを確認する。

```
M
ここで,
    MA
    a t : 引張鉄筋断面積 (mm
    f t : 引張鉄筋の短期許容引張応力度 (N/mm2)
    j:断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
```

（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる面外せん断力 が，次式をもとに計算した許容面外せん断力を超えないことを確認する。
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f} \mathrm{s}_{\mathrm{s}}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：せん断スパン比 $\mathrm{M} / ~(\mathrm{Q} \cdot \mathrm{d})$ による割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

4．5．4 耐震壁の断面評価方法
S d 地震時について，せん断力による応力は全て鉄筋で負担し，また，曲げモ ーメントにより生じる引張応力についても鉄筋で負担することとし，必要鉄筋比 が設計鉄筋比を超えていないことを確認する。

5．評価結果（中央制御室しやへい壁）
5.1 地震応答解析による評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の最大応答せん断ひずみが許容限界（2．0×10 ${ }^{-3}$ ）を超えないことを確認する。当該階の耐震壁の最大応答せん断ひずみ一覧を表5－1 に，質点系モデルを図5－1に，材料物性の不確かさを考慮した最大応答値をせん断スケルトンカーブ上にプロットし図 5－2 に示す。

材料物性の不確かさを考慮した最大応答せん断ひずみは 0.79×10^{-3}（要素番号（6）， NS 方向，S s－D 2，ケース6）であり，許容限界（ 2.0×10^{-3} ）を超えないことを確認した。

表 5－1 耐震壁の最大応答せん断ひずみ

方向	階	部位	ケース	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
NS	3	$\begin{gathered} \text { 要素番号 (6) } \\ (0 . \mathrm{P} .22 .95 \mathrm{~m} \sim \\ 29.15 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ \text { ケース } 6 \end{gathered}$	0． 79	2.0
EW	3	$\begin{gathered} \text { 要素番号 (1) } \\ (0 . \mathrm{P} .22 .95 \mathrm{~m} \sim \\ 29.15 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ \text { ケース } 6 \end{gathered}$	0.58	2.0

図 5－1 質点系モデル（水平方向）

（a）NS 方向（S s－D 2，ケース 6，要素番号（6））

（b）EW方向（S s－D 2，ケース 6，要素番号（1））
図 5－2 せん断スケルトンカーブ上の最大応答せん断ひずみ

5.2 応力解析による評価結果

5．2．1 天井スラブ及び床スラブの評価結果
スラブの配筋一覧を表5－2に示す。また，「4．5．3 天井スラブ及び床スラブの断面評価方法」に基づいた断面の評価結果を表 5－3 及び表5－4に示す。 S d 地震時及びS s 地震時において，発生値が許容限界を超えないことを確認した。

表 5－2 スラブの配筋一覧
（a）天井（0．P．29．15m）

部材	方向	上ば筋		下ば筋	
		配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）	配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$
天井スラブ（1）	NS	D16＠200	995	D16＠200	995
天井スラブ（2）	NS	D16＠200	995	D16＠200	995
	EW	D16＠200	995	D16＠200	995

（b）床（0．P． 22.95 m ）

部材	方向	上ば筋		下ば筋	
		配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$	配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）
床スラブ 1 ）	NS	D16＠200	995	D16＠200	995
	EW	D16＠200	995	D16＠200	995

表 5－3（1）評価結果（天井スラブ（1），弾性設計用地震動 S d）

方向	NS 方向
厚さt（mm）×幅 b（mm）	］$\times 1000$
有効せい d（mm）	236
上ば筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
下ば筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
発生曲げモーメント $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	8． 3
許容限界 $\quad M_{A}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71
検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0． 12
発生せん断力 Q （ kN / m ）	21.8
せん断スパン比による割増係数 α	1． 53
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	383
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.06
判定	可

表 5－3（2）評価結果（天井スラブ（2），弾性設計用地震動 S d）

方向	NS 方向	EW 方向
厚さt（mm）×幅 b（mm）	$\square \times 1000$	
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
発生曲げモーメント M （ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）	47.7	31.7
許容限界 $\mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0.68	0． 45
発生せん断力 Q （ kN / m ）	62.8	55.6
せん断スパン比による割増係数 α	1	1． 17
許容限界 Q_{A}（ kN / m ）	250	293
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0． 26	0． 19
判定	可	可

表 5－3（3）評価結果（床スラブ（1），弾性設計用地震動 S d）

方向	NS 方向	EW 方向
厚さ t （mm）×幅 b （ mm ）		00
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	24.7	12． 7
許容限界 $M_{A}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{A}$	0.35	0.18
発生せん断力 Q （ kN / m ）	55.1	48.6
せん断スパン比による割増係数 α	1.38	1． 90
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	346	476
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.16	0.11
判定	可	可

表 5－4（1）評価結果（天井スラブ（1），基準地震動 S s ）

表 5－4（2）評価結果（天井スラブ（2），基準地震動 S s ）

方向	NS 方向	EW 方向
厚さt（mm）×幅 b（mm）		00
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	65.8	43.8
許容限界 $M_{A}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{A}$	0.93	0.62
発生せん断力 Q （ kN / m ）	86.8	76.7
せん断スパン比による割増係数 α	1	1． 17
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	250	293
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.35	0． 27
判定	可	可

表 5－4（3）評価結果（床スラブ（1），基準地震動 S s ）

方向	NS 方向	EW 方向
厚さt（mm）×幅 b（mm）		00
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	33.9	17.5
許容限界 $M_{A}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{A}$	0.48	0.25
発生せん断力 Q （ kN / m ）	75.7	66.8
せん断スパン比による割増係数 α	1.38	1． 90
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	346	476
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0． 22	0.15
判定	可	可

5．2．2 耐震壁の評価結果

評価対象とする耐震壁を示したものを図5－3に，配筋一覧を表5－5に示す。 また，「4．5．4 耐震壁の断面評価方法」に基づいた断面の評価結果を表5－6に示 す。

S d 地震時において，必要鉄筋比が設計鉄筋比を超えないことを確認した。

図 5－3 評価対象とする耐震壁

表 5－5 耐震壁の配筋一覧

階	壁記号	$\begin{aligned} & \text { 壁厚 } \\ & (m m) \end{aligned}$	縦筋		横筋	
			配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）	配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）
3			2－D19＠200	2870	2－D19＠200	2870

表 5－6 評価結果（3階，弾性設計用地震動 S d）

	0．P．（m）	0．P．22．95～0．P．29． 15			
	壁位置 （通り）	cA	cF	c 1	c 7
壁記号					
	断面積（m²）	12.6	16． 4	16． 0	15.2
壁厚（mm）					
配 筋	縦筋配筋	2－D19＠200	2－D19＠200	2－D19＠200	2－D19＠200
	縱筋設計鉄筋比 $P_{g}(\%)$	0.717	0.717	0.717	0.717
	横筋配筋	2－D19＠200	2－D19＠200	2－D19＠200	2－D19＠200
	横筋設計鉄筋比 $P_{g}(\%)$	0． 717	0.717	0.717	0.717
せ ん 断 に 対 す る 検 討	$\begin{gathered} \text { せん断力 } \\ \mathrm{Q}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	21.1	21.8	23.6	20.8
	せん断力応力度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	1． 67	1． 33	1． 48	1． 37
	必要鉄筋比 P_{Q}（\％）	0． 484	0.385	0． 428	0.397
	曲げモーメント $\mathrm{M}\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right)$	1． 84	2.36	2． 29	1.99
	$\begin{gathered} \text { 軸力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	3.59	4． 23	4.05	3． 37
	鉛直震度	0． 407	0． 407	0． 407	0． 407
	必要鉄筋比 P_{M}（\％）	0.170	0.233	0． 206	0． 200
$\left(\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{M}}\right) / \mathrm{P}_{\mathrm{g}}$		0.92	0.87	0.89	0.84
判定		可	可	可	可

6．基本方針（中央制御室バウンダリ）
6． 1 位置
中央制御室バウンダリは，制御建屋の一部を構成している。中央制御室バウンダリ を含む制御建屋の設置位置を図6－1に示す。

図6－1 中央制御室バウンダリを含む制御建屋の設置位置

6． 2 構造概要

制御建屋は地下 2 階，地上 3 階建で，基礎底面からの高さは 30.65 m であり，平面は下部で $41.0 \mathrm{~m}(\mathrm{NS}$ 方向）$\times 40.0 \mathrm{~m}(\mathrm{EW}$ 方向）＊のほぼ正方形である。

建屋の構造は鉄筋コンクリート造（一部鉄骨造）であり，その主たる耐震要素は建屋 の外周の耐震壁である。

制御建屋の基礎は，厚さ 3.0 m のべた基礎で，支持地盤である砂岩及び頁岩上に設置 されており，一部は支持地盤上に打設されたマンメイドロック上に設置されている。中央制御室は 0 ．P． $22.95 \mathrm{~m} \sim 0$ ．P． 29.15 m に位置する。平面は， $41.0 \mathrm{~m} ~(\mathrm{NS}$ 方向）$\times 40.0 \mathrm{~m}$ （EW 方向）である。中央制御室バウンダリは，中央制御室を取り囲む壁，床スラブ及 び天井スラブで構成されており，壁の厚さは \square床スラブ及び天井スラブの厚さは である。

中央制御室バウンダリの範囲を図6－2に示す。

注記 $~$ ：建屋寸法は壁外面押えとする

図 6－2 中央制御室バウンダリの範囲

6． 3 評価方針

中央制御室バウンダリは，添付書類「VI－2－1－9 機能維持の基本方針」に示すとお り，換気設備とあいまつて，気密性維持の境界において気圧差を確保することで必要 な気密性を維持する設計とする。なお，重大事故対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備」に分類される。

中央制御室バウンダリは，中央制御室を取り囲む壁，床スラブ及び天井スラブで構成されており，設計基準対象施設としての評価においては，S s 地震時に対する評価 を行う。

中央制御室バウンダリの評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基 づき，「7．地震応答解析による評価方法（中央制御室バウンダリ）」においては耐震壁についてせん断ひずみの評価を，「8．応力解析による評価方法（中央制御室バウン ダリ）」においては床スラブ及び天井スラブについて断面の評価を行うことで，地震時 の構造強度及び機能維持の確認を行う。機能維持の確認において，建物•構築物の構造強度の許容限界であるせん断ひずみを用いて算定した空気漏えい量が，設置する換気設備の性能を下回ることで必要な気密性を維持する設計とする（「別紙1 中央制御室の気密性に関する計算書」参照）。それぞれの評価は，添付書類「VI－2－2－3 制御建屋の地震応答計算書」の結果を踏まえたものとする。評価にあたつては材料物性の不確かさを考慮する。

重大事故等対処施設としての評価においては，S s 地震時に対する評価を行う。こ こで，中央制御室バウンダリでは，運転時，設計基準事故時及び重大事故等時の状態 において，圧力，温度等の条件について有意な差異がないことから，重大事故等対処施設としての評価は，設計基準対象施設としての評価と同一となる。中央制御室バウンダリの評価フローを図6－3に示す。

図6－3 中央制御室バウンダリの評価フロー

6．4 適用規格•基準等
中央制御室バウンダリの評価において，適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説一許容応力度設計法－（（社）日本建築学会，1999年改定）
- 原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）

7．地震応答解析による評価方法（中央制御室バウンダリ）
中央制御室バウンダリの気密性の維持については，添付書類「VI－2－2－3 制御建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひ ずみが許容限界を超えないことを確認する。

地震応答解析による評価における中央制御室バウンダリの許容限界は，添付書類「VI －2－1－9 機能維持の基本方針」に基づき，表 7－1及び表7－2のとおり設定する。

表 7－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

要求機能	機能設計上 の性能目標	地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
気密性	換気性能と あいまって 気密性能を 維持するこ と	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断 ひずみが気密性 を維持するため の許容限界を超 えないことを確認	せん断ひずみ $2.0 \times 10^{-3} * 2$

注記＊1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱，は り，間仕切壁等が耐震壁の変形に追従することと，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑 えられるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足して いれば，建物•構築物に要求される機能は維持される。
＊2 ：事故時に換気性能とあいまって居住性を維持できる気密性を有する設計とし，地震時においてもその機能を維持できる設計とする。耐震壁の気密性に対す る許容限界の適用性は，「別紙 1 中央制御室の気密性に関する計算書」に示 す。

表 7－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

要求 機能	機能設計上 の性能目標	地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
気密性	換気性能と あいまって気密性能を維持するこ と	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひ ずみが気密性を維持するための許容限界を超えないこ とを確認	せん断ひずみ $2.0 \times 10^{-3} * 2$

注記＊1 ：建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱，は り，間仕切壁等が耐震壁の変形に追従することと，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑 えられるため，各層の耐震壁の最大応答せん断ひずみが許容限界を満足して いれば，建物•構築物に要求される機能は維持される。 ＊2 ：事故時に換気性能とあいまって居住性を維持できる気密性を有する設計とし，地震時においてもその機能を維持できる設計とする。耐震壁の気密性に対す る許容限界の適用性は，「別紙1 中央制御室の気密性に関する計算書」に示 す。

8．応力解析による評価方法（中央制御室バウンダリ）
8.1 評価対象部位及び評価方針

中央制御室バウンダリの応力解析による評価対象部位は，中央制御室バウンダリを構成する天井スラブ及び床スラブとし，弾性応力解析により評価を行う。弾性応力解析にあたつては，添付書類「VI－2－2－3 制御建屋の地震応答計算書」による結果を用 いて，荷重の組合せを行う。
（1）S s 地震時に対する評価
S s 地震時に対する評価は，材料物性の不確かさを考慮した鉛直方向の地震力と地震力以外の荷重の組合せの結果，発生する応力が，「R C－N 規準」に基づき設定した許容限界を超えないことを確認する。

評価については，各断面についてスラブの検定値が最も大きい部材を選定して示す。応力解析による評価フローを図8－1 に，選定した部材を図8－2 に示す。

なお，水平方向の地震荷重に対する評価は，建屋全体が剛性の高い構造となってお り，耐震壁間での相対変形が小さく，スラブの面内変形が抑えられることから，「7．地震応答解析による評価方法（中央制御室バウンダリ）」に含まれる。

図 8－1 天井スラブ及び床スラブの応力解析による評価フロー

図8－2（1）スラブの評価を記載する部材の位置（RF，0．P．29．15m）

（単位：m）

図8－2（2）スラブの評価を記載する部材の位置（3F，0．P．22．95m）

8．2 荷重及び荷重の組合せ
荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重組合せを用いる。
（1）荷重
a．鉛直荷重
応力解析において考慮する固定荷重（DL）及び積載荷重（LL）を表 8－1 及び表 8－2に示す。

表 8－1 固定荷重（D L）

部位	固定荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
天井スラブ 1 ）	7.2
天井スラブ（2）	7.2
床スラブ ${ }^{(1)}$	7.2

表 8－2 積載荷重（L L ）

部位	積載荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
天井スラブ 1 ）	2.2
天井スラブ ${ }^{(2)}$	2.3
床スラブ 1 （	12.0

b．地震荷重（S s ）
鉛直地震力は，材料物性の不確かさを考慮した基準地震動 S S に対する地震応答解析より算定される動的地震力により設定する。

天井スラブ及び床スラブが，長辺方向 $6.9 \mathrm{~m} \sim 8.3 \mathrm{~m}$ ，短辺方向 $2.3 \mathrm{~m} \sim 6.3 \mathrm{~m}$ で厚さ \square の鉄筋コンクリート造スラブであることから剛とみなす。

鉛直方向の地震荷重は，図 8－3 に示す基準地震動S s に対する質点系モデルの中央制御室天井レベル（0．P．29． 15 m ，質点番号1）及び中央制御室床レベル（0．P．22．95 m，質点番号 2）の鉛直方向最大応答加速度より算定される誘発上下動を考慮した鉛直震度とする。
$\underset{(\mathrm{m})}{0 . \mathrm{P} .}$

注1 ：数字は質点番号を示す。
注2 ：（ ）内は要素番号を示す。
注3：○印の動的応答を用いる。

図 8－3 基準地震動S S に対する質点系モデル（鉛直方向）
（2）荷重の組合せ
荷重の組合せを表 8－3に示す。

表 8－3 荷重の組合せ

荷重状態	荷重の組合せ
S s 地震時	$\mathrm{D} \mathrm{L}+\mathrm{L} \mathrm{L}+\mathrm{S} \mathrm{s}$

D L ：固定荷重
L L ：積載荷重
S s ：S s 地震荷重

8． 3 許容限界

応力解析による評価における中央制御室バウンダリの許容限界は，添付書類「VI－2－ 1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の基本方針に基 づき，表 $8-4$ 及び表 $8-5$ のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表8－6及び表8－7に示す。

表 8－4 応力解析による評価における許容限界
（設計基準対象施設としての評価）

要求機能	機能設計上 の性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
気密性	換 気 性 能と あいまって気密性能を維持するこ と	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを確認	「R C -N 規準」 に基づく短期許容応力度＊

注記＊：地震時に生じる応力に対して許容応力度設計とし，地震時及び地震後において も気密性を維持できる設計とする。

表 8－5 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上 の性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
気密性	換気性能と あいまって気密性能を維持するこ と	基準地震動 S s	天井スラブ床スラブ	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを確認	「R C -N 規準」 に基づく短期許容応力度＊

注記＊：地震時に生じる応力に対して許容応力度設計とし，地震時及び地震後において も気密性を維持できる設計とする。

表 8－6 コンクリートの許容応力度

設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
32.4	21.6	1.21

表 $8-7$ 鉄筋の許容応力度

種別	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD35 $(\mathrm{SD} 345$ 相当）	345	345

8． 4 解析モデル及び諸元

（1）モデル化の基本方針
スラブの鉛直地震動による影響に対する検討において，柱，壁及びはりで囲まれた範囲についてモデル化する。

スラブの解析モデルは，天井スラブ①については単位幅についてはりで支持された両端固定はりとして評価する。天井スラブ（2）及び床スラブ（1）については，四辺固定版 として評価する。スラブの解析モデルを図 8－4に示す。

（a）天井スラブ（1）（両端固定はり）

（b）天井スラブ（2）（四辺固定版）

図 8－4（1）解析モデル

図 8－4（2）解析モデル
（2）解析諸元
使用材料の物性値を表8－8に示す。

表 8－8 使用材料の物性値

コンクリートの 設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比
v		

8． 5 評価方法

8．5．1 応力解析方法
（1）荷重ケース
作用荷重のうち地震荷重は，鉛直荷重と同じ下向きに作用する場合に生じる応力が最大となるため，地震荷重は鉛直下向きの場合のみ考慮する。
（2）長期荷重時の応力の算出方法
長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力の算出方法は下式の通り算出する。長期荷重時の端部曲げモーメント，中央部曲げモー メント及びせん断力を表8－9に示す。

（四辺固定版）

－短辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{X}}{ }_{1}$ ）

$$
\mathrm{M}_{\mathrm{x} 1}=-\frac{1}{12} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}^{2}
$$

－短辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{x} 2}$ ）

$$
\mathrm{M}_{\mathrm{x} 2}=\frac{1}{18} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－短辺のせん断力（ Q x ）

$$
\mathrm{Q}_{\mathrm{x}}=0.52 \mathrm{w} \cdot 1_{\mathrm{x}}
$$

－長辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{Y}} 1$ ）

$$
\mathrm{M}_{\mathrm{Y} 1}=-\frac{1}{24} \mathrm{~W} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 2}$ ）

$$
\mathrm{M}_{\mathrm{Y} 2}=\frac{1}{36} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺のせん断力（ Q_{y} ）
$\mathrm{Q}_{\mathrm{Y}}=0.46 \mathrm{w} \cdot 1_{\mathrm{X}}$
ここで，
1 x ：短辺有効スパン（m）
1 Y ：長辺有効スパン（m）
w ：単位面積あたりの長期荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
$\mathrm{w}_{\mathrm{x}}=\frac{\mathrm{l}_{\mathrm{Y}}^{4}}{\mathrm{l}_{\mathrm{X}^{4}}+\mathrm{l}_{\mathrm{Y}}^{4}} \mathrm{~W}$
（両端固定はり）
－端部曲げモーメント $\left(\mathrm{M}_{\mathrm{E}}\right)$

$$
\mathrm{M}_{\mathrm{E}}=-\frac{1}{12} \mathrm{w} \cdot \mathrm{l}^{2}
$$

－中央部曲げモーメント（ M_{C} ）

$$
\mathrm{M}_{\mathrm{C}}=\frac{1}{24} \mathrm{w} \cdot 1^{2}
$$

－端部せん断力（ Q_{E} ）

$$
\mathrm{Q}_{\mathrm{E}}=\frac{1}{2} \mathrm{w} \cdot \mathrm{l}
$$

```
ここで,
    1 : 有効スパン (m)
    w : 単位面積あたりの長期荷重 (kN/m2)
```

表 8－9 長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力

部位	$\begin{gathered} \text { スラブ厚 } \\ (\mathrm{mm}) \end{gathered}$	方向	$\begin{gathered} \text { 端部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 中央部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	せん断力 $(\mathrm{kN} / \mathrm{m})$
天井スラブ（1）		短辺（NS）	4.1	2.1	10.8
天井スラブ（2）		短辺（NS）	23.6	15.7	31.1
		長辺（EW）	15.7	10.5	27.5
床スラブ①		短辺（NS）	13.0	8.7	29.0
		長辺（EW）	6． 7	4． 5	25.6

（3）応力の算出方法
「（2）長期荷重時の応力の算出方法」における長期荷重時の端部曲げモーメ ント，中央部曲げモーメント及びせん断力を，中央制御室天井レベル（0．P．29．15m，質点番号1）及び中央制御室床レベル（0．P．22．15m，質点番号2）の鉛直方向最大応答加速度より算出した鉛直震度により係数倍することで算出する。鉛直方向最大応答加速度を表 8－10に，算出した端部曲げモーメント，中央部曲げモーメン ト及びせん断力を表8－11に示す。

表 8－10 地震応答解析による最大応答加速度（基準地震動 S s ）

質点番号	$0 . \mathrm{P}$. (m)	最大値 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
1	29.15	1754
2	22.95	1574

表 8－11 鉛直震度より算出した端部曲げモーメント，中央部曲げモーメント及びせん断力（基準地震動 S s ）

部位	検討用鉛直震度	方向	$\begin{gathered} \text { 端部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 中央部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	せん断力 （kN／m）
天井スラブ（1）	2． 79	短辺（NS）	11.4	5.9	30.1
天井スラブ（2）	2． 79	短辺（NS）	65.8	43.8	86.8
		長辺（EW）	43.8	29． 3	76． 7
床スラブ ${ }^{\text {（ }}$	2.61	短辺（NS）	33.9	22.7	75.7
		長辺（EW）	17.5	11.7	66.8

8．5．2 断面評価方法

（1）曲げモーメントに対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる曲げモーメン トが，次式をもとに計算した短期許容曲げモーメントを超えないことを確認する。

```
M
ここで,
    MA : 短期許容曲げモーメント (N
    a t : 引張鉄筋断面積 (mm
    f t : 引張鉄筋の短期許容引張応力度 (N/mm2)
    j:断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
```

（2）面外せん断力に対する断面の評価方法
断面の評価は，「 R C－N 規準」に基づき，評価対象部位に生じる面外せん断力 が，次式をもとに計算した許容面外せん断力を超えないことを確認する。
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f}{ }_{\mathrm{s}}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：せん断スパン比 $\mathrm{M} / ~(\mathrm{Q} \cdot \mathrm{d})$ による割増し係数
（2を超える場合は 2，1 未満の場合は1とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

9．評価結果（中央制御室バウンダリ）
9.1 地震応答解析による評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の最大応答せん断ひずみが許容限界を超えないことを確認する。当該階の耐震壁の最大応答せん断ひずみ一覧を表9— 1 に，質点系モデルを図 9－1に，最大応答せん断ひずみをせん断スケルトンカーブに プロットした図を図9－2に示す。

材料物性の不確かさを考慮した最大応答せん断ひずみは 0.79×10^{-3}（要素番号（6）， NS 方向，S s－D 2 ，ケース6）であり，許容限界（ 2.0×10^{-3} ）を超えないことを確認した。

表 9－1 耐震壁の最大応答せん断ひずみ

方向	階	部位	ケース	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
NS	3	$\begin{gathered} \text { 要素番号 (6) } \\ (0 . \text { P. } 22.95 \mathrm{~m} \sim \\ 29.15 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ \text { ケース } 6 \end{gathered}$	0． 79	2.0
EW	3	$\begin{gathered} \text { 要素番号 (1) } \\ (0 . \mathrm{P} .22 .95 \mathrm{~m} \sim \\ 29.15 \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ \text { ケース } 6 \end{gathered}$	0.58	2.0

図 9－1 質点系モデル（水平方向）

（a）NS 方向（S s－D 2，ケース 6，要素番号（6））

（b）EW方向（S s－D 2，ケース 6，要素番号（1））
図 9－2 せん断スケルトンカーブ上の最大応答せん断ひずみ

9.2 応力解析による評価結果

スラブの配筋一覧を表9－2に示す。また，「8．5．2 断面評価方法」に基づいた断面 の評価結果を表9－3に示す。

S s 地震時において，発生値が許容限界を超えないことを確認した。

表 9－2 スラブの配筋一覧
（a）天井（0．P．29．15m）

部材	方向	上ば筋		下ば答	
		配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）	配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$
天井スラブ（1）	NS	D16＠200	995	D16＠200	995
天井スラブ（2）	NS	D16＠200	995	D16＠200	995
	EW	D16＠200	995	D16＠200	995

（b）床（0．P． 22.95 m ）

部材	方向	上ば筋		下ば筋	
		配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）	配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）
床スラブ①	NS	D16＠200	995	D16＠200	995
	EW	D16＠200	995	D16＠200	995

表 9－3（1）評価結果（天井スラブ（1），基準地震動 S s ）

方向	NS 方向
厚さt（mm）×幅 b（mm）	$\times 1000$
有効せい d（mm）	236
上ば筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
下ば筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	11.4
許容限界 $\mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71
検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0.17
発生せん断力 Q （ kN / m ）	30.1
せん断スパン比による割増係数 α	1． 53
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	383
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.08
判定	可

表 9－3（2）評価結果（天井スラブ（2），基準地震動 S s ）

方向	NS 方向	EW 方向
厚さ t （ mm ）×幅 b （ mm ）	$\times 1000$	
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	65.8	43.8
許容限界 $\mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{A}$	0.93	0.62
発生せん断力 Q （ kN / m ）	86.8	76． 7
せん断スパン比による割増係数 α	1	1． 17
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	250	293
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.35	0． 27
判定	可	可

表 9－3（3）評価結果（床スラブ（1），基準地震動 S s ）

方向	NS 方向	EW 方向
厚さt（mm）×幅 b（mm）	$\times 1000$	
有効せい d（mm）	236	
配筋	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D16@200 } \\ \left(995 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	33.9	17.5
許容限界 $\quad \mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	71	71
検定値 $\mathrm{M} / \mathrm{M}_{A}$	0.48	0.25
発生せん断力 Q （ kN / m ）	75.7	66.8
せん断スパン比による割増係数 α	1.38	1． 90
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	346	476
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0． 22	0.15
判定	可	可

別紙1 中央制御室の気密性に関する計算書
1．概要 別紙 1－1
2．既往の知見等の整理 別紙 1－1
3．中央制御室バウンダリにおける空気漏えい量に対する影響検討 別紙 1－3
3.1 検討方針 別紙 1－3
3.2 空気漏えい量の算定結果 別紙 1－5
3.3 空気流入率の比較 別紙 1－5
3.4 検討結果 別紙 1－6
4．まとめ 別紙 1－6

1．概要

「発電用原子炉施設に関する耐震設計審査指針」（昭和 53 年 9 月制定）におけるAク ラスの施設の気密性について，原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987
（（社）日本電気協会）（以下「JEAG4601－1987」という。）では，S ${ }_{1}$ 地震動に対し弾性範囲であることを確認することで，機能が維持されるとしている。

機能維持の設計方針では，耐震壁のせん断ひずみが概ね弾性状態にとどまることを基本としたうえで，概ね弾性状態を超える場合は，地震応答解析による耐震壁のせん断ひ ずみから算定した空気漏えい量が，設置する換気設備の性能を下回ることで必要な気密性を維持する設計としている。その場合，気密性を要求される施設に対し，基準地震動 S s による鉄筋コンクリート造耐震壁の許容限界をせん断ひずみ 2.0×10^{-3} としている。

中央制御室しやへい壁の地震応答解析による評価において，鉄筋コンクリート造耐震壁の許容限界として設定したせん断ひずみ 2.0×10^{-3} の適用性について確認するために，耐震壁のせん断ひび割れと空気漏えい量の関係に係る既往の知見を整理するとともに，中央制御室空調装置の処理対象となるバウンダリ（以下「中央制御室バウンダリ」とい う。）における空気漏えい量に対する影響を評価する。

2．既往の知見等の整理
（財）原子力発電技術機構は，「原子力発電施設耐震信頼性実証試験に関する報告書＊ ${ }^{1}$ 」において，J E A G 4 6 0 1－1987による許容限界の目安値（ S_{2} 地震時に対してせ ん断変形角 $2 / 1000 \mathrm{rad}$ ，静的地震力に対して $\tau=\tau_{u} / 1.5$ ）において想定されるひび割 れを残留ひび割れと仮定した場合の外気侵入量を算出し，気圧差維持のためのファン容量と比較することで，空気漏えい量に対する評価を実施している。その結果「残留ひび割れからの外気侵入量は，ファン容量に比較すると無視できるほど小さいことが明らか になった」としている。

また，（財）原子力発電技術機構は，「原子炉建屋の弾塑性試験に関する報告書 $~ 2 ~ 」 ~ 」 ~ に ~$ おいて，耐震壁の残留ひび割れからの通気量の評価式が，十分に実機への適用性がある ことを確認している。更に，開口部の存在による通気量割増率の評価式も示されており，

「開口部の残留ひび割れ幅の割増率がおおよそ推定できる」としている。
したがって，中央制御室バウンダリを構成する壁が鉄筋コンクリート造であり，壁厚 も「原子炉建屋の弾塑性試験に関する報告書」に示される壁厚と同程度であることから，同文献にて提案されている各評価式を用い，中央制御室バウンダリにおける空気漏えい量の算出を行ら。以下に評価式を示す。

総漏えい量

$$
\begin{align*}
& \mathrm{Q} \cdot \mathrm{~A} \cdot \triangle_{\mathrm{Q}}(\mathrm{~L} / \mathrm{min}) \tag{2.1}\\
& \text { ここで, } \\
& \text { A : 壁の面積 (m²) } \\
& \mathrm{Q}=\mathrm{C} \cdot \gamma^{2.57} \cdot \Delta \mathrm{P} / \mathrm{T} \\
& \text { ここで, } \\
& \text { Q : 単位面積あたりの流量 (} \mathrm{L} / \mathrm{min} / \mathrm{m}^{2} \text {) } \\
& \text { C : 定数 } \\
& \text { (中央値は } 2.24 \times 10^{6}, ~ 95 \% \text { 非超過値は } 1.18 \times 10^{7}, 5 \% \text { 非超過値は } 4.21 \times 10^{5} \text {) } \\
& \gamma \text { : 最大せん断ひずみ } \\
& \triangle \mathrm{P} \text { : 差圧 (mmAq) } \\
& \text { T : 壁厚 (cm) }
\end{align*}
$$

$\Delta_{Q}=\left\{\left(\alpha^{2}-1\right) \cdot\left(\frac{Q^{\prime}}{Q_{0}}-1\right)-1\right\} \cdot \beta+1$
ここで，
Δ_{Q} ：通気量割増率
α ：通気量割増範囲 $(=3)$
$\frac{Q}{Q_{0}}$ ：定数
（中央値とみなされる評価法では1．81，安全側とみなされる評価法では 7．41）
β ：壁の見付け面積に対する開口の総面積

注記 $* 1$ ：財団法人 原子力発電技術機構「原子力発電施設耐震信頼性実証試験 原子炉建屋総合評価 建屋基礎地盤系評価に関する報告書（その 2 ）平成 8 年度」
＊ 2 ：財団法人 原子力発電技術機構「耐震安全解析コード改良試験 原子炉建屋の弾塑性試験 試験結果の評価に関する報告書 平成 5 年度」

3．中央制御室バウンダリにおける空気漏えい量に対する影響検討
3.1 検討方針

「原子炉建屋の弾塑性試験に関する報告書」に基づき，（2．1）式～（2．3）式により，中央制御室バウンダリを構成する壁の最大せん断ひずみが許容限界（ 2.0×10^{-3} ）に達したときの空気漏 えい量を算定し，空気漏えい量から算出した空気流入率が，被ばく評価用に用いる空気流入率 （1．0 回／h）を超えないことを確認する。ここで中央制御室バウンダリ内体積は $8900 \mathrm{~m}^{3}$ とす る。
中央制御室バウンダリの範囲を図 3－1 に示す。中央制御室バウンダリ（0．P．22．95m～ 0．P．29． 15 m ）を構成する壁の壁厚は \square である。

図 3－1 中央制御室バウンダリの範囲

3.2 空気漏えい量の算定結果

中央制御室バウンダリの空気漏えい量を算定した。本検討は，地震応答解析のせん断ひずみ の許容限界としてせん断ひずみ 2.0×10^{-3} を用いることの適用性を確認することが目的である ことから，評価式における定数について，安全側の値を用いた。算定結果を表3－1 に示す。

表 3－1 中央制御室バウンダリの気密性計算結果

壁厚 T （cm）	定数 ${ }_{\text {C }}$	$\frac{\mathrm{Q}}{\mathrm{Q}_{0}}$	せん断 ひずみ＊1 γ	$\begin{gathered} \text { 差圧*2 } \\ \Delta \mathrm{P} \\ (\mathrm{mmAq}) \end{gathered}$	壁の＊3 面積 A $\left(\mathrm{m}^{2}\right)$	$\begin{gathered} \text { 漏えい量 } \\ Q \\ \left(\mathrm{~L} / \mathrm{min} / \mathrm{m}^{2}\right) \end{gathered}$	壁の見 付け面積に対 する開 口の総 面積 β	通気量割増率 Δ_{Q}	総漏えい量 $\begin{gathered} \mathrm{Q} \times \mathrm{A} \\ \times \Delta_{\mathrm{Q}} \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$
	1.18×10^{7}	7.41	2.0×10^{-3}	20.0	25． 83	1． 37	0． 000	1． 00	35.29
	1.18×10^{7}	7.41	2． 0×10^{-3}	20.0	98.28	1． 37	0.046	3.33	446.99
	1.18×10^{7}	7.41	2.0×10^{-3}	20.0	40.32	1． 37	0． 050	3.53	194.55
	1.18×10^{7}	7.41	2.0×10^{-3}	20.0	33． 39	1． 37	0． 053	3.65	166.52
	1． 18×10^{7}	7.41	2.0×10^{-3}	20.0	27． 09	1． 37	0． 012	1.59	58.99
	1． 18×10^{7}	7.41	2.0×10^{-3}	20.0	352.17	0.68	0． 000	1.00	240.58
	1． 18×10^{7}	7.41	2.0×10^{-3}	20.0	253.26	0.68	0． 020	1.98	342.88
	1.18×10^{7}	7.41	2.0×10^{-3}	20.0	170． 73	0.68	0． 052	3.63	423.70
								合計	1909． 49

注記＊1：保守的に各壁のせん断ひずみが同時に許容限界となることを想定。
＊2：中央制御室空気流入率測定試験結果に基づいた保守的な値。
＊ 3 ：中央制御室バウンダリを構成する壁の総面積を用いる。

3.3 空気流入率の比較

総漏えい量から算出した空気流入率及び，被ばく評価に用いる空気流入率の比較を表3－2に示す。中央制御室バウンダリについて総漏えい量から算出した空気流入率は，被ばく評価に用 いる空気流入率の 1% 程度であることを確認した。

表 3－2 総漏えい量から算出した空気流入率と被ばく評価に用いる空気流入率の比較
（回／h）

総漏えい量から算出した空気流入率	被ばく評価用に用いる空気流入率
0.013^{*}	1.0

注記＊：空気漏えい量の合計値を中央制御室気密バウンダリ内体積で除した数値 （中央制御室気密バウンダリ内体積は $8900 \mathrm{~m}^{3}$ とする。）

枠囲みの内容は商業機密の観点から公開できません。

3． 4 検討結果

中央制御室バウンダリについて総漏えい量から算出した空気流入率は，被ばく評価用に用い る空気流入率を超えないことを確認した。

よって，中央制御室バウンダリは，鉄筋コンクリート造耐震壁の許容限界をせん断ひずみ 2.0×10^{-3} とした場合において，換気設備とあいまって機能を維持できる気密性を有している。

4．まとめ
中央制御室バウンダリは，鉄筋コンクリート造耐震壁の許容限界として設定したせん断ひずみ 2.0×10^{-3} を適用した場合において，換気性能とあいまって機能を維持できる気密性を有している ことを確認した。

以上より，中央制御室しやへい壁の地震応答解析による評価において，換気設備とあいまって気密性を維持するために設定する許容限界として，せん断ひずみ 2.0×10^{-3} を用いることの適用性を確認した。

VI－2－8－4－4 中央制御室待避所遮蔽の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 6
2.4 適用規格•基準等 8
3．応力解析による評価方法 9
3.1 評価対象部位及び評価方針 9
3．1．1 スラブ 9
3．1．2 壁 12
3.2 荷重及び荷重の組合せ 14
3．2．1 スラブ 14
3．2．2 壁 16
3．3 許容限界 18
3.4 解析モデル 20
3.5 評価方法 21
3．5．1 応力解析方法 21
3．5．2 スラブの断面評価方法． 23
3．5．3 壁の断面評価方法 23
4．評価結果 24
別紙1 中央制御室待避所の気密性に関する計算書

1．概要

本資料は，炉心の著しい損傷後の原子炉格納容器フィルタベント系を作動させる場合 に放出される放射性雲通過時において，中央制御室待避所にとどまる運転員の被ばくを低減するために設置する中央制御室待避所遮蔽について，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震時の構造強度及び機能維持の確認について説明するもの であり，その評価は，地震応答解析による評価及び応力解析による評価により行う。

2．基本方針
中央制御室待避所遮蔽は，重大事故等対処施設においては「常設重大事故緩和設備」 に分類される。以下，分類に応じた耐震評価を示す。

2.1 位置

中央制御室待避所遮蔽は，制御建屋内にある中央制御室待避所の一部を構成してい る。中央制御室待避所遮蔽を含む制御建屋の位置を図2－1 に示す。

図 2－1 中央制御室待避所遮蔽を含む制御建屋の設置位置

2.2 構造概要

制御建屋は地下 2 階，地上 3 階建で，基礎底面からの高さは 30.65 m であり，平面は下部で $41.0 \mathrm{~m}(\mathrm{NS}$ 方向）$\times 40.0 \mathrm{~m}(\mathrm{EW}$ 方向）$*$ のほぼ正方形である。

建屋の構造は鉄筋コンクリート造（一部鉄骨造）であり，その主たる耐震要素は建屋 の外周の耐震壁である。

制御建屋の基礎は，厚さ 3.0 m のベた基礎で，支持地盤である砂岩及び頁岩上に設置 されており，一部は支持地盤上に打設されたマンメイドロック上に設置されている。中央制御室待避所は制御建屋の3階に位置する。中央制御室待避所は，中央制御室待避所遮蔽（新設壁，新設スラブ）及び中央制御室しやへい壁（耐震壁，床スラブ） で構成されており，壁の厚さは \qquad スラブの厚さは \square である。中央制御室待避所の概略平面図及び概略断面図を図2－2 及び図2－3に示す。

注記＊：建屋寸法は壁外面押えとする。

（単位：m）

（単位：mm）
中央制御室待避所平面拡大図
中央制御室しやへい壁（壁）を示す。中央制御室待避所遮蔽（壁）を示す。
図 2－2 中央制御室侍避所の概略平面図（制御建屋 $3 \mathrm{~F}, ~ 0 . \mathrm{P} .{ }^{*} 22.95 \mathrm{~m}$ ）

注記 $*: ~ 0 . P$ ．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。

枠囲みの内容は商業機密の観点から公開できません。

図 2－3 中央制御室待避所の概略断面図（A－A 断面）

2．3 評価方針

中央制御室待避所遮蔽は，重大事故等対処施設においては「常設重大事故緩和設備」 に分類される。

中央制御室待避所は，中央制御室待避所遮蔽（新設壁，新設スラブ）及び中央制御室しやへい壁（耐震壁，床スラブ）で構成されており，重大事故等対処施設としての評価においては，基準地震動 S s による地震力に対する評価（以下「 S s 地震時に対 する評価」という。）を行う。

中央制御室待避所を構成する中央制御室待避所遮蔽及び中央制御室しやへい壁の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価においては耐震壁についてせん断ひずみの評価を，応力解析による評価においては新設スラブ，床スラブ及び新設壁について断面の評価を行うことで，地震時の構造強度及び機能維持の確認を行う。機能維持の確認において，建物•構築物の構造強度の許容限界であるせん断ひずみを用いて算定した空気漏えい量が，設置する換気設備の性能を下回ることで必要な気密性を維持する設計とする（別紙 1 「中央制御室待避所 の気密性に関する計算書」参照）。それぞれの評価は，添付書類「VI－2－2－3 制御建屋 の地震応答計算書」の結果を踏まえたものとする。評価に当たつては材料物性の不確 かさを考慮する。中央制御室待避所遮蔽の評価フローを図2－4に示す。

なお，中央制御室待避所を構成する耐震壁は，中央制御室しやへい壁の一部である ことを踏まえ，地震時の構造強度及び機能維持の確認は添付書類「VI－2－8－4－3 中央制御室しやへい壁の耐震性についての計算書」によるものとする。また，制御建屋は地震力を主に耐震壁で負担する構造となっており，柱，はり，間仕切壁等は耐震壁の変形に追従すること，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため，各層の耐震壁がせん断ひずみの許容限界を満足していれば，建物•構築物に要求される機能は維持される。

注記 $* 1$ ：地震応答解析による評価は添付書類「VI－2－8－4－3 中央制御室しゃへ い壁の耐震性についての計算書」によるものとする。
＊2：添付書類「VI－2－2－3 制御建屋の地震応答計算書」の結果を踏まえた評価を行う。

図2－4 中央制御室待避所遮蔽の評価フロー

2.4 適用規格•基準等

中央制御室待避所遮蔽の評価において，適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，1988年改定）
- 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－（（社）日本建築学会，1999 年改定）
－原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005） （以下「R C－N 規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991追補版（（社）日本電気協会）

3．応力解析による評価方法
3.1 評価対象部位及び評価方針

中央制御室待避所遮蔽の応力解析による評価対象部位は，中央制御室待避所を構成 する新設スラブ，床スラブ及び新設壁とし，弾性応力解析により評価を行う。弾性応力解析にあたつては，添付書類「VI－2－2－3 制御建屋の地震応答計算書」による結果 を用いて，荷重の組合せを行う。

3．1．1 スラブ
S s 地震時に対する評価は，材料物性の不確かさを考慮した鉛直方向の地震力 と地震力以外の荷重の組合せの結果，発生する応力が，「R C -N 規準」に基づき設定した許容限界を超えないことを確認する。評価については，スラブの検定比 が大きい部材を選定して示すこととし，評価対象は床スラブとする。

応力解析による評価フローを図 3－1 に，スラブの評価を記載する部材の位置 を図3－2に示す。

なお，水平方向の地震荷重に対する評価は，建屋全体が剛性の高い構造となっ ており，耐震壁間での相対変形が小さく，スラブの面内変形が抑えられることか ら，地震応答解析による評価に含まれる。

図3－1 スラブの応力解析による評価フロー

（単位：mm）

図 3－2 スラブの評価を記載する部材の位置

3．1．2 壁

S s 地震時に対する評価は，材料物性の不確かさを考慮した水平方向の地震力 により発生する応力が，「R C－N 規準」に基づき設定した許容限界を超えないこ とを確認する。

応力解析による評価フローを図3－3に，壁の評価を記載する部材の位置を図 3 －4に示す。

図 3－3 新設壁の応力解析による評価フロー

中央制御室しやへい壁（壁）を示す。中央制御室待避所遮蔽（壁）を示す。
評価対象部位
（単位：mm）

図 3－4 壁の評価を記載する部材の位置

3.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せを用いる。

3．2．1 スラブ

（1）荷重
a．鉛直荷重
応力解析において考慮する固定荷重（G）及び積載荷重（P）を表3－1 及び表 3－2に示す。

表 3－1 固定荷重（G）

部位	固定荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
床スラブ	9.6

表 3－2 積載荷重（P）

部位	積載荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
床スラブ	6.3

b．地震荷重（S s ）
鉛直地震力は，基準地震動 S s に対する地震応答解析より算定される動的地震力により設定する。

床スラブが，長辺方向 7.6 m ，短辺方向 $1.6 \mathrm{~m} \sim 4.1 \mathrm{~m}$ で厚さ \square の鉄筋コ ンクリート造スラブであることから剛とみなす。

鉛直方向の地震荷重は，図 $3-5$ に示す基準地震動 S s に対する制御建屋の質点系モデルの中央制御室床レベル（0．P．22．95m，質点番号 2）の鉛直方向最大応答加速度より算定される誘発上下動を考慮した鉛直震度とする。

図 3－5 基準地震動S s に対する質点系モデル（鉛直方向）
（2）荷重の組合せ
荷重の組合せを表3－3に示す。

表 3－3 荷重の組合せ

荷重状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重
P ：積載荷重
S s ：S s 地震荷重

3．2．2 壁

水平地震力は，保守的に基準地震動 S s に対する地震応答解析により算定され る動的地震力より設定する。

S s 地震荷重は，図 3－6 に示す基準地震動 S s に対する制御建屋の質点系モ デルの中央制御室床レベル（0．P．22．95m，要素番号（6））の最大応答せん断力によ るものとする。

注 ：印の動的応答を用いる。

図 3－6 基準地震動 S s に対する質点系モデル（水平方向）

3．3 許容限界

応力解析による評価における中央制御室待避所遮蔽の許容限界は，添付書類「VI－ 2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の基本方針に基づき，表 3－4のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表 3－5及び表 3－6に示す。

表 3－4 応力解析による評価における許容限界

要求 機能	機能設計上 の性能目標	地震力	部 位	機能維持のための考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	スラブ 新設壁	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「R C－N 規準」 に基づく終局強度
遮蔽性	遮蔽体の損傷により遮蔽性能を損 なわないこ と	基準地震動 S s	スラブ 新設壁	部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを確認	「 R C $-N$ 規準」 に基づく 短期許容応力度 ${ }^{*} 1$
気密性	換気性能と あいまって 気密性能を 維持するこ と	基準地震動 S s	スラブ 新設壁	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを確認	「 R C -N 規準」 に基づく短期許容応力度 $*^{2}$

注記＊1：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定すること
とし，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：地震時に生じる応力に対して許容応力度設計とし，地震時及び地震後におい ても気密性を維持できる設計とする。

表 $3-5$	コンクリートの許容応力度	
設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
32.4	21.6	1.21

表 3－6 鉄筋の許容応力度

種別	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD35 （SD345 相当）	345	345

3． 4 解析モデル

スラブの鉛直地震動による影響に対する検討において，柱，壁及びはりで囲まれた図 3－2 に示す範囲についてモデル化する。

スラブの解析モデルは，床スラブについては，四辺固定版として評価する。スラブ の解析モデルを図 3－7に示す。

図 $3-7$ 床スラブ解析モデル

3.5 評価方法

3．5．1 応力解析方法
（1）荷重ケース
作用荷重のうち地震荷重は，鉛直荷重と同じ下向きに作用する場合に生じる応力が最大となるため，地震荷重は鉛直下向きの場合のみ考慮する。
（2）長期荷重時の応力の算出方法
長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力の算出方法は下式の通りである。長期荷重時の端部曲げモーメント，中央部曲げモーメ ント及びせん断力を表3－7に示す。

（四辺固定版）

－短辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{x}} 1$ ）

$$
\mathrm{M}_{\mathrm{X}_{1}}=-\frac{1}{12} \mathrm{w}_{\mathrm{x}} \cdot \mathrm{l}_{\mathrm{x}}{ }^{2}
$$

－短辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{x}} 2$ ）

$$
\mathrm{M}_{\mathrm{x} 2}=\frac{1}{18} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－短辺のせん断力（ Q_{x} ）

$$
\mathrm{Q}_{\mathrm{x}}=0.52 \mathrm{w} \cdot 1_{\mathrm{x}}
$$

－長辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 1}$ ）

$$
\mathrm{M}_{\mathrm{Y} 1}=-\frac{1}{24} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 2}$ ）

$$
\mathrm{M}_{\mathrm{Y} 2}=\frac{1}{36} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺のせん断力（ Q_{y} ）
$\mathrm{Q}_{\mathrm{Y}}=0.46 \mathrm{w} \cdot \mathrm{l}_{\mathrm{X}}$
ここで，
1 x ：短辺有効スパン（m）
1 Y ：長辺有効スパン（m）
w ：単位面積あたりの長期荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
$W_{x}=\frac{l^{4}}{l_{X^{4}}^{4}+1_{Y}^{4}} \cdot W^{4}$

表 3－7 長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力

部位	スラブ 厚 (m)	方向	端部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	中央部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	せん断力 $(\mathrm{kN} / \mathrm{m})$
床スラブ	\square	短辺 (NS)	20.5	13.7	33.9

（3）S s 地震時の応力の算出方法
「（2）長期荷重の応力の算出方法」における長期荷重時の端部曲げモーメン ト，中央部曲げモーメント及びせん断力を，中央制御室床レベル（0．P．22．95m，質点番号 2）の鉛直方向最大応答加速度より算出した鉛直震度により係数倍する ことで算出する。鉛直方向最大応答加速度を表 $3-8$ に示す。また，鉛直震度よ り算出した端部曲げモーメント，中央部曲げモーメント及びせん断力を表 3－9 に示す。

表 3－8 地震応答解析による最大応答加速度（基準地震動 S S ）

質点番号	$0 . \mathrm{P}$. (m)	最大値 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
2	22.95	1574

表 3－9 鉛直震度より算出した端部曲げモーメント，中央部曲げモーメント
及びせん断力

部位	検討用 鉛直震度	方向	端部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	中央部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	せん断力 $(\mathrm{kN} / \mathrm{m})$
床スラブ	2.61	短辺（NS）	53.5	35.8	88.5
		長辺（EW）	29.0	19.3	78.3

3．5．2 スラブの断面評価方法

（1）曲げモーメントに対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる曲げモーメ ントが，次式をもとに計算した短期許容曲げモーメントを超えないことを確認す る。

```
M ( 
ここで,
    MA : 短期許容曲げモーメント (N•mm)
    a t : 引張鉄筋断面積 (mm}\mp@subsup{}{}{2}
    f t : 引張鉄筋の短期許容引張応力度 (N/mm2)
    j:断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値(mm)
```

（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる面外せん断力が，次式をもとに計算した許容面外せん断力を超えないことを確認する。

```
\(\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f}_{\mathrm{s}}\)
ここで,
```

Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：せん断スパン比 $\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})$ による割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

3．5．3 壁の断面評価方法

S s 地震時について，せん断力による応力は，すべて鉄筋で負担することと し，必要鉄筋比が設計鉄筋比を超えないことを確認する。

4．評価結果
スラブの配筋一覧を表4－1に示す。また，「3．5．2 スラブの断面評価方法」及び
「3．5．3 壁の断面評価方法」に基づいた断面の評価結果を表4－2及び表4－3に示 す。 S s 地震時において，発生値が許容限界を超えないことを確認した。

表 4－1 スラブの配筋一覧

部材	方向	上ば筋		下ば筋	
		配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$	配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）
床スラブ	NS	D19＠200	1435	D19＠200	1435
	EW	D19＠200	1435	D19＠200	1435

表 4－2 床スラブの評価結果（基準地震動 S S ）

方向		NS 方向	EW 方向
厚さt（mm）×幅 b（mm）		$\square \times 1000$	$\square \times 1000$
有効せい d（mm）		332	332
配筋	上ば筋	$\begin{gathered} \text { D19@200 } \\ \left(1435 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D19@200 } \\ \left(1435 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	下ば筋	$\begin{gathered} \text { D19@200 } \\ \left(1435 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D19@200 } \\ \left(1435 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$	発生曲げモーメントM $(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m})$	53.5	29． 0
	許容限界 M_{A} （ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）	144	144
	検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0.38	0.21
面外 せん断力	発生せん断力 Q $(\mathrm{kN} / \mathrm{m})$	88.5	78.3
	せん断スパン比による 割増係数 α	1． 42	1． 89
	許容限界 Q_{A} （kN／m）	500	665
	検定値 $\mathrm{Q} / \mathrm{Q}_{\text {A }}$	0.18	0． 12
判定		可	可

表 4－3 新設壁の評価結果（基準地震動 S s ）

方向		NS 方向	EW 方向
0．P．（m）		$22.95 \sim 26.50$	$22.95 \sim 26.50$
壁厚（mm）		\square	\square
配筋	縦筋配筋	$\begin{gathered} \text { 2-D19@200 } \\ \left(2870 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { 2-D19@200 } \\ \left(2870 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	縦筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	1.14	1． 14
	横筋配筋	$\begin{gathered} 2-\text { D19@200 } \\ \left(2870 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} 2-\text { D19@200 } \\ \left(2870 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	横筋設計鉄筋比 $P_{g}(\%)$	1.14	1.14
面内 せん断力	せん断応力度 τ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	2.54	2． 24
	必要鉄筋比 $P_{Q}(\%)$	0． 74	0.65
	$\mathrm{P}_{\mathrm{Q}} / \mathrm{P}_{\mathrm{g}}$	0.65	0.57
判定		可	可

別紙1 中央制御室待避所の気密性に関する計算書
1．概要 別紙 1－1
2．既往の知見等の整理 別紙 1－1
3．待避所バウンダリにおける空気漏えい量に対する影響検討 別紙 1－3
3.1 検討方針 別紙 1－3
3.2 空気漏えい量の算定結果 別紙 1－5
3.3 総漏えい量と加圧設備必要換気量の比較 別紙 1－5
3.4 検討結果 別紙 1－6
4．まとめ 別紙 1－6

1．概要

「発電用原子炉施設に関する耐震設計審査指針」（昭和53年9月制定）におけるAク ラスの施設の気密性について，原子力発電所耐震設計技術指針J E A G 4 6 O 1－1987 （（社）日本電気協会）（以下「JEAG4601－1987」という。）では，S ${ }_{1}$ 地震動 に対し弾性範囲であることを確認することで，機能が維持されるとしている。

機能維持の設計方針では，耐震壁のせん断ひずみが概ね弾性状態にとどまることを基本としたうえで，概ね弾性状態を超える場合は，地震応答解析による耐震壁のせん断ひ ずみから算定した空気漏えい量が，設置する換気設備の性能を下回ることで必要な気密性を維持する設計としている。その場合，気密性を要求される施設に対し，基準地震動 S s による鉄筋コンクリート造耐震壁の許容限界をせん断ひずみ 2.0×10^{-3} としてい る。

中央制御室待避所遮蔽の地震応答解析による評価において，鉄筋コンクリート造耐震壁の許容限界として設定したせん断ひずみ 2.0×10^{-3} の適用性について確認するため に，耐震壁のせん断ひび割れと空気漏えい量の関係に係る既往の知見を整理するととも避所バウンダリ」という。）における空気漏えい量に対する影響を評価する。

2．既往の知見等の整理
（財）原子力発電技術機構は，「原子力発電施設耐震信頼性実証試験に関する報告書 ＊1」において，J E A G 4 6 O 1－1987による許容限界の目安値（ S_{2} 地震時に対して せん断変形角 $2 / 1000 \mathrm{rad}$ ，静的地震力に対して $\tau=\tau u / 1.5)$ において想定されるひび割れを残留ひび割れと仮定した場合の外気侵入量を算出し，気圧差維持のためのファン容量と比較することで，空気漏えい量に対する評価を実施している。その結果「残留ひ び割れからの外気侵入量は，ファン容量に比較すると無視できるほど小さいことが明ら かになった。」としている。

また，（財）原子力発電技術機構は，「原子炉建屋の弾塑性試験に関する報告書＊2 」 に おいて，耐震壁の残留ひび割れからの通気量の評価式が，十分に実機への適用性がある ことを確認している。更に，開口部の存在による通気量割増率の評価式も示されてお り，「開口部の残留ひび割れ幅の割増率がおおよそ推定できる」としている。

したがって，待避所バウンダリを構成する壁が鉄筋コンクリート造であり，壁厚も
「原子炉建屋の弾塑性試験に関する報告書」に示される壁厚と同程度であることから，同文献にて提案されている各評価式を用い，待避所バウンダリにおける空気漏えい量の算出を行う。以下に評価式を示す。

総漏えい量

$\mathrm{Q} \cdot \mathrm{A} \cdot \triangle_{\mathrm{Q}}$		（L／min）	（2．1）
ここで，			
A	：壁の面積		
$\mathrm{Q}=$	－$\gamma^{2.57} \cdot \Delta$	／	（2．2）
ここ			

Q ：単位面積あたりの流量 $\left(\mathrm{L} / \mathrm{min} / \mathrm{m}^{2}\right)$
C ：定数
（中央値は $2.24 \times 10^{6}, ~ 95 \%$ 非超過値は $1.18 \times 10^{7}, 5 \%$ 非超過値は 4.21×10^{5} ）
γ ：最大せん断ひずみ
$\triangle \mathrm{P}$ ：差圧（mmAq）
T：壁厚（cm）
$\Delta_{Q}=\left\{\left(\alpha^{2}-1\right) \cdot\left(\frac{Q^{\prime}}{Q_{0}}-1\right)-1\right\} \cdot \beta+1$
ここで，
\triangle_{Q} ：通気量割増率
α ：通気量割増範囲 $(=3)$
$\frac{Q^{\prime}}{Q_{0}}$ ：定数
（中央値とみなされる評価法では1．81，安全側とみなされる評価法では7．41） β ：壁の見付け面積に対する開口の総面積

注記 $* 1$ ：財団法人原子力発電技術機構「原子力発電施設耐震信頼性実証試験原子炉建屋総合評価 建屋基礎地盤系評価に関する報告書（その 2 ）平成 8 年度」
＊2：財団法人原子力発電技術機構「耐震安全解析コード改良試験 原子炉建屋の弾塑性試 験試験結果の評価に関する報告書 平成5年度」

3．待避所バウンダリにおける空気漏えい量に対する影響検討
3.1 検討方針

「原子炉建屋の弾塑性試験に関する報告書」に基づき，（2．1）式～（2．3）式により，待避所バウンダリを構成する壁のせん断ひずみが許容限界（2．0×10 ${ }^{-3}$ ）に達したと きの空気漏えい量を算定し，加圧設備必要換気量 $\left(0.5\left(\mathrm{~m}^{3} / \mathrm{min}\right)\right)$ を超えないことを確認する。

待避所バウンダリ範囲を図3－1に示す。待避所バウンダリ（0．P．22．95m～0．P． 26.50 m ）を構成する壁の壁厚は \square である。

（b）待避所バウンダリの概要

図 3－1 待避所バウンダリの範囲

3.2 空気漏えい量の算定結果

待避所バウンダリの壁厚ごとに空気漏えい量を算定した。本検討は，地震応答解析 のせん断ひずみの許容限界としてせん断ひずみ 2.0×10^{-3} を用いることの適用性を確認することが目的であることから，評価式における定数について，安全側の値を用い た。算定結果を表3－1に示す。

表 3－1 待避所バウンダリの気密性計算結果

$\begin{gathered} \text { 壁厚 } \\ \mathrm{T} \\ (\mathrm{~cm}) \end{gathered}$	定数 ${ }^{\text {C }}$	$\frac{\mathrm{Q}}{\mathrm{Q}_{0}}$	せん断 ひずみ*1 γ	$\begin{gathered} \text { 差圧 } * 2 \\ \Delta \mathrm{P} \\ (\mathrm{mmAq}) \end{gathered}$	壁の＊3 面積 A （ m^{2} ）	漏えい量 Q $\begin{gathered} \left(\mathrm{L} / \mathrm{min} / \mathrm{m}^{2}\right. \\) \end{gathered}$	壁の見付け面積に対 する開口の総面積 β	通気量割増率 Δ_{Q}	総漏えい量 $\begin{gathered} \mathrm{Q} \times \mathrm{A} \\ \times \Delta_{\mathrm{Q}} \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$
	1． 18×10^{7}	7． 41	2.0×10^{-3}	2.1	20.96	0.11	0.000	1． 00	2． 41
	1.18×10^{7}	7.41	2.0×10^{-3}	2.1	25.91	0.11	0.089	5.48	16． 30
	1． 18×10^{7}	7.41	2.0×10^{-3}	22.1	46.86	0.75	0.000	1． 00	35． 37
								合計	54.08

注記＊1：保守的に各壁のせん断ひずみが同時に許容限界となることを想定。
＊ 2 ：待避所バウンダリの加圧に必要な差圧条件とする。
＊ 3 ：気密バウンダリを構成する壁の総面積を用いる。
3.3 総漏えい量と加圧設備必要換気量の比較

待避所バウンダリの総漏えい量と加圧設備必要換気量を表3－2に示す。待避所バウ ンダリについて総漏えい量は，加圧設備必要換気量の 10% 程度であることを確認し た。

表 3－2 総漏えい量と加圧設備必要換気量の比較
（ $\mathrm{m}^{3} / \mathrm{min}$ ）

総漏えい量	加圧設備必要換気量
0.054	0.5

枠囲みの内容は商業機密の観点から公開できません。

3．4 検討結果

待避所バウンダリについて，総漏えい量は加圧設備必要換気量を超えないことを確認した。

よって，待避所バウンダリは，鉄筋コンクリート造耐震壁の許容限界をせん断ひず み 2.0×10^{-3} とした場合において，換気設備とあいまって機能を維持できる気密性を有している。

4．まとめ
待避所バウンダリは，鉄筋コンクリート造耐震壁の許容限界として設定したせん断ひ ずみ 2.0×10^{-3} を適用した場合において，換気設備とあいまって機能を維持できる気密性を有していることを確認した。

以上より，制御建屋の中央制御室待避所の地震応答解析による評価において，換気設備とあいまって気密性を維持するために設定する許容限界として，せん断ひずみ $2.0 \times$ 10^{-3} を用いることの適用性を確認した。

VI－2－8－4－5 緊急時対策所遮蔽の耐震性についての計算書

目 次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 10
2.4 適用規格•基準等 13
3．地震応答解析による評価方法 14
4．応力解析による評価方法 15
4． 1 評価対象部位及び評価方針 15
4．1．1 床スラブ及び屋根スラブ 15
4.2 荷重及び荷重の組合せ 20
4．2．1 床スラブ及び屋根スラブ 20
4．3 許容限界 23
4.4 解析モデル及び諸元 24
4．4．1 床スラブ及び屋根スラブ 24
4．5 評価方法 26
4．5．1 床スラブ及び屋根スラブの応力解析方法． 26
4．5．2 床スラブ及び屋根スラブの断面評価方法 29
5．評価結果 30
5.1 地震応答解析による評価結果 30
5.2 応力解析による評価結果 33
別紙1 緊急時対策所の気密性についての計算書

1．概要

本資料は，重大事故等が発生した場合において，緊急時対策建屋内緊急時対策所（以下「緊急時対策所」という。）にとどまる要員の被ばくを低減するために設置する緊急時対策所遮蔽（以下「緊急時対策所遮蔽」という。）について，添付書類「VI－2－1－9機能維持の基本方針」に基づき，緊急時対策所遮蔽の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析による評価及び応力解析 による評価により行う。

2．基本方針
緊急時対策所遮蔽は，重大事故等対処施設においては「常設重大事故緩和設備」に分類される。

以下，それぞれの分類に応じた緊急時対策所遮蔽としての耐震評価を示す。

2.1 位置

緊急時対策所遮蔽は，緊急時対策建屋の一部を構成している。緊急時対策所遮蔽を含む緊急時対策建屋の設置位置を図2－1に示す。

図 2－1 緊急時対策所遮蔽を含む緊急時対策建屋の設置位置

2.2 構造概要

緊急時対策建屋は，地下 2 階，地上 2 階建で，基礎底面からの高さは 30.4 m （地上高さは 13.9 m ）であり，平面は 36.4 m （ NS 方向）$\times 36.4 \mathrm{~m}$（EW 方向）$* 1$ の正方形である。建屋の構造は鉄筋コンクリート造である。

緊急時対策建屋の基礎は，厚さ 6.0 m で，はね出しを有し，平面は 47．0m（NS 方向）$\times 47.0 \mathrm{~m}(\mathrm{EW}$ 方向）の正方形であり，支持地盤である砂岩に岩着している。

緊急時対策建屋の主たる耐震要素は，建屋外壁の耐震壁で，基礎版から屋上階床面 まで連続しており，壁厚は $0.5 \mathrm{~m} \sim 2.2 \mathrm{~m}$ である。建屋は全体として非常に剛性が高く，地震時の水平力はすべてこれらの耐震壁で負担する。

緊急時対策所は地下 2 階（0．P．${ }^{* 2} 51.5 \mathrm{~m} \sim 0$ ．P．57．3m）に位置する。平面規模は， 25.25 m （NS 方向）$\times 25.25 \mathrm{~m}(E W$ 方向）である。緊急時対策所遮蔽は，緊急時対策所を取り囲 むコンクリート壁（耐震壁及び間仕切壁）及びコンクリートスラブ（床スラブ及び屋根 スラブ）で構成されており，壁の厚さは
床スラブの厚さは である。

緊急時対策所遮蔽の概略平面図及び概略断面図を図2－2及び図2－3に示す。

注記 $* 1$ ：建屋寸法は壁外面押えとする
注記 $* 2: 0$. P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0． 74 m である。

図 2－2（1）緊急時対策所遮蔽の概略平面図（0．P．51．5m）

藋囫：緊急時対策所遮蔽（壁）

図 2－2（2）緊急時対策所遮蔽の概略平面図（0．P．57．3m）

聯勿：緊急時対策所遮蔽（壁）
：緊急時対策所遮蔽（床）

図 2－2（3）緊急時対策所遮蔽の概略平面図（0．P．62．2m）

（単位：m）
（緊急時対策所遮蔽（床）
図 2－2（4）緊急時対策所遮蔽の概略平面図（0．P．69．4m）

（単位：m）
［］．］：緊急時対策所遮蔽（壁）
［ 23 ：緊急時対策所遮蔽（床）

図 2－3（1）緊急時対策所遮蔽の概略断面図（A－A 断面 NS 方向）

（単位：m）
$\left[\begin{array}{l}\text { ：}: \text { 緊急時対策所遮蔽（壁）} \\ \text { ：緊急時対策所遮蔽（床）}\end{array}\right.$
図2－3（2）緊急時対策所遮蔽の概略断面図（B－B 断面 EW 方向）

2． 3 評価方針

緊急時対策所遮蔽は，重大事故等対処施設においては「常設重大事故緩和設備」に分類される。

緊急時対策所遮蔽は，緊急時対策所を取り囲むコンクリート壁（耐震壁及び間仕切壁）及びコンクリートスラブ（床スラブ及び屋根スラブ）で構成されており，重大事故等対処施設としての評価においては，基準地震動S s による地震力に対する評価（以下「S s 地震時に対する評価」という。）を行う。

緊急時対策所遮蔽の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，
「3．地震応答解析による評価」においては，耐震壁についてせん断ひずみの評価を，「4．応力解析による評価」においては，床スラブ及び屋根スラブについて断面の評価 を行うことで，地震時の構造強度及び機能維持の確認を行う。

それぞれの評価は，「VI－2－2－23 緊急時対策建屋の地震応答計算書」の結果を踏ま えたものとする。評価にあたつては材料物性の不確かさを考慮する。表2－1に材料物性の不確かさを考慮する解析ケースを示す。

緊急時対策所遮蔽の評価フローを図 $2-4$ に示す。

表 2－1 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG 式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		－σ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	基本ケースの $0.8 \text { 倍 }$	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相当

注記＊：添付資料「VI－2－2－23 緊急時対策建屋の地震応答計算書」の結果を踏まえた評価を行う。

図 2－4 緊急時対策所遮蔽の評価フロー

2． 4 適用規格•基準等
緊急時対策所遮蔽の評価において，適用する規格•基準等を以下に示す。

- 建築基準法•同施行令
- 鉄筋コンクリート構造計算規準•同解説一許容応力度設計法－（（社）日本建築学会，1999年改定）
－原子力施設鉄筋コンクリート構造計算規準•同解説（（社）日本建築学会，2005） （以下「R C－N 規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補
- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）（以下「JEAG4601－1991追補版」という。）

3．地震応答解析による評価方法
緊急時対策所遮蔽の構造強度については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」による結果に基づき，材料物性の不確かさを考慮した最大応答せん断ひ ずみが許容限界を超えないことを確認する。

また，遮蔽性及び気密性の維持については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」による結果に基づき，材料物性の不確かさを考慮した最大応答せん断 ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における緊急時対策所遮蔽の許容限界は，添付書類「VI－2－1－ 9 機能維持の基本方針」に基づき，表3－1のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界
－	構造強度を有すること	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ 2.0×10^{-3}
遮蔽性	遮蔽体の損傷 により遮蔽性 を損なわない こと	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が遮蔽性を維持するた めの許容限界を超えな いことを確認	せん断ひずみ 2.0×10^{-3}
気密性	換気性能とあ いまって気密性能を維持す ること	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が気密性を維持するた めの許容限界を超えな いことを確認	せん断ひずみ $2.0 \times 10^{-3} \quad * 2$

注記 $~ 1 ~: ~$ 建屋全体としては，地震力を主に耐震壁で負担する構造となっており，柱， はり，間仕切壁等が耐震壁の変形に追従することと，また，全体に剛性の高 い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形 が抑えられるため，各層の耐震壁が最大応答せん断ひずみの許容限界を満足 していれば，建物•構築物に要求される機能は維持される。
＊2：緊急時対策所は，事故時に換気性能とあいまつて居住性を維持できる気密性 を有する設計とし，地震時においてもその機能を維持できる設計とする。耐震壁の気密性に対する許容限界の適用性は，「別紙1 緊急時対策建屋の気密性に関する計算書」に示す。

4．応力解析による評価方法
4． 1 評価対象部位及び評価方針
緊急時対策所遮蔽の応力解析による評価対象部位は，緊急時対策所遮蔽を構成する床スラブ及び屋根スラブとし，弾性応力解析により評価を行う。弾性応力解析にあた っては，添付書類「VI－2－2－24 緊急時対策建屋の耐震性についての計算書」による結果を用いて，荷重の組合せを行う。

4．1．1 床スラブ及び屋根スラブ
S s 地震時に対する評価は，材料物性の不確かさを考慮した鉛直方向の地震力 と地震力以外の荷重の組合せの結果，発生する応力が，「R C -N 規準」に基づき設定した許容限界を超えないことを確認する。

評価については，各断面についてスラブスパン，スラブに作用する荷重等を考慮 して，検定値が最も大きい部材を選定して示す。応力解析による評価フローを図 4 － 1 に，選定した部材の位置を図 4－2 に示す。

なお，水平方向の地震荷重に対する評価は，建屋全体が剛性の高い構造となって おり，耐震壁間での相対変形が小さく，スラブの面内変形が抑えられることから，地震応答解析による評価に含まれる。

図 4－1 床スラブ及び屋根スラブの応力解析による評価フロー

（単位：m）
図 4－2（1）床スラブの評価を記載する部材の位置（B1F 0．P．57．3m）

図 4－2（2）床スラブの評価を記載する部材の位置（1F 0．P．62．2m）

図 4－2（3）屋根スラブの評価を記載する部材の位置（2F 0．P．69．4m）

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せを用いる。

4．2．1 床スラブ及び屋根スラブ
（1）荷重
a．鉛直荷重
応力解析において考慮する固定荷重，積載荷重及び積雪荷重を表4－1，表4－ 2 及び表 4－3に示す。なお，積雪量は，石巻測候所の最深積雪量（1923年2月 17 日）を考慮して 43 cm とし，地震時は 0.35 の係数を乗じた積雪荷重とする。

表 4－1 固定荷重（G）

部位	固定荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
床スラブ (1)	19.00
床スラブ (2)	16.60
屋根スラブ	19.80

表 4－2 積載荷重（P）

部位	積載荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
床スラブ (1)	7.20
床スラブ (2)	8.20
屋根スラブ	8.10

表 4－3 積雪荷重（ P s ）

外力の状態	積雪荷重 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
地震時	0.30

b．地震荷重（S s ）
鉛直地震力は，基準地震動 S s に対する地震応答解析より算定される動的地震力に材料物性の不確かさを考慮して設定する。

床スラブが，NS 方向 9.0 m ，EW 方向 9.0 m スパン，屋根スラブは，NS 方向 9.0 m ， EW 方向 7.8 m スパンで厚さ \square の鉄筋コンクリート造スラブであることか ら剛とみなす。

鉛直方向の地震荷重は，図 4－7 に示す基準地震動 S s に対する質点系モデル の地下 1 階～地上 2 階レベル（0．P．57．3m～0．P．69．4m，質点番号 $2 \sim 4$ ）の鉛直方向最大応答加速度より算定される鉛直震度とする。

0．P．
（m）

注1 ：数字は質点番号を示す。
注2 ：（ ）内は要素番号を示す。
注3：○印の動的応答を用いる。

図 4－7 基準地震動 S s に対する質点系モデル（UD 方向）
（2）荷重の組合せ
荷重の組合せを表4－4に示す。

表 4－4 荷重の組合せ

荷重状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{P}_{\mathrm{s}}+\mathrm{S} \mathrm{s}$

G	$:$ 固定荷重
P	$:$ 積載荷重
P_{s}	$:$ 積雪荷重（屋根スラブのみ考慮）
S s	$: ~$

4．3 許容限界

応力解析による評価における緊急時対策所遮蔽の許容限界は，添付書類「VI－2－1－9機能維持の基本方針」に記載の構造強度上の制限及び機能維持の基本方針に基づき，表4－5のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表4－6及び表4－7に示す。

表 4－5 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	機能維持のための考え方	許容限界
－	構造強度を有すること	基準地震動 S s	床スラブ 屋根スラブ	部材に生じる応力が構造強度を確保する ための許容限界を超 えないことを確認	「R C -N 規準」 に基づく終局強度
遮蔽性	遮蔽体の損傷 により遮蔽性 を損なわない こと	基準地震動 S s	床スラブ 屋根スラブ	部材に生じる応力が遮蔽性を維持するた めの許容限界を超え ないことを確認	「 R C－N 規準」 に基づく短期許容応力度 $*^{2}$
気密性	換気性能とあ いまって気密性能を維持す ること	基準地震動 S s	床スラブ 屋根スラブ	部材に生じる応力が気密性を維持するた めの許容限界を超え ないことを確認	「R C -N 規準」 に基づく短期許容応力度 $*^{2}$

注記＊1：許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：地震時に生じる応力に対して許容応力度設計とし，地震時及び地震後において も気密性を維持できる設計とする。

表 4－6 コンクリートの許容応力度

設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
30	20	1.18

表 4－7 鉄筋の許容応力度

種別	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	345	345
SD390	390	390

4． 4 解析モデル及び諸元

4．4．1 床スラブ及び屋根スラブ
（1）モデル化の基本方針
スラブの鉛直地震動による影響に対する検討において，柱，壁及びはりで囲ま れた範囲についてモデル化する。

スラブの解析モデルは，四辺固定版として評価する。スラブの解析モデルを図 4－4に示す。

等分布荷重

（a）床スラブ（1）（2）（四辺固定版）

等分布荷重

（b）屋根スラブ（四辺固定版）
図 4－4 解析モデル
（2）解析諸元
使用材料の物性値を表4－8に示す。

表 4－8 使用材料の物性値
\(\left.$$
\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { コンクリートの } \\
\text { 設計基準強度 } \\
\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array} & \begin{array}{l}\text { ヤング係数 } \\
\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)\end{array}
$$ \& ポアソン比

v\end{array}\right]\)| 30.0 | 2.44×10^{4} | 0.2 |
| :---: | :---: | :---: | :---: | :---: |

4． 5 評価方法

4．5．1 床スラブ及び屋根スラブの応力解析方法
（1）荷重ケース
作用荷重のうち地震荷重は，固定荷重及び積載荷重と同じ下向きに作用する場合に生じる応力が最大となるため，地震荷重は鉛直下向きの場合のみ考慮する。
（2）長期荷重の算出方法
長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力の算出方法は下式の通りである。長期荷重時の端部曲げモーメント，中央部曲げモーメ ント及びせん断力を表4－9に示す。

（四辺固定版）

－短辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{x}} 1$ ）

$$
\mathrm{M}_{\mathrm{X} 1}=-\frac{1}{12} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}^{2}}^{2}
$$

－短辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{x} 2}$ ）

$$
\mathrm{M}_{\mathrm{X} 2}=\frac{1}{18} \mathrm{w}_{\mathrm{x}} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－短辺のせん断力（ Q x）

$$
Q_{X}=0.52 w \cdot 1_{x}
$$

－長辺の端部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 1}$ ）

$$
\mathrm{M}_{\mathrm{Y} 1}=-\frac{1}{24} \mathrm{w} \cdot \mathrm{l}_{\mathrm{x}}^{2}
$$

－長辺の中央部曲げモーメント（ $\mathrm{M}_{\mathrm{Y} 2}$ ）

$$
\mathrm{M}_{\mathrm{Y} 2}=\frac{1}{36} \mathrm{w} \cdot 1_{\mathrm{x}}{ }^{2}
$$

－長辺のせん断力（ Q_{Y} ）

$$
Q_{Y}=0.46 w \cdot l_{x}
$$

－ $1_{\mathrm{x}}=1_{\mathrm{Y}}$ のせん断力 $\left(\mathrm{Q}_{\mathrm{X}}=\mathrm{Q}_{\mathrm{y}}\right)$

$$
\mathrm{Q}_{\mathrm{X}}=\mathrm{Q}_{\mathrm{Y}}=0.44 \mathrm{w} \cdot 1_{\mathrm{x}}
$$

ここで,

1 x ：短辺有効スパン（m）
1 Y ：長辺有効スパン（m）
w ：単位面積あたりの長期荷重（ $\mathrm{kN} / \mathrm{m}^{2}$ ）
$\mathrm{W}_{\mathrm{x}}=\frac{\mathrm{l}^{4}{ }^{4}}{1_{\mathrm{X}^{4}+1}{ }^{4}} \mathrm{~W}$

表 4－9 長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力

部位	$\begin{gathered} \text { スラブ厚 } \\ (\mathrm{mm}) \end{gathered}$	方向	$\begin{gathered} \hline \text { 端部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 中央部曲げ } \\ \text { モーメント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	せん断力 $(\mathrm{kN} / \mathrm{m})$
床スラブ 1 ）		NS • EW	88.4	59.0	103.8
床スラブ（2）		NS • EW	83.7	55.8	98． 2
屋根スラブ	\square	短辺（NS）	90.4	60.3	113.2
		長辺（EW）	70.7	47． 2	100.1

（3）応力の算出方法
「（2）長期荷重の算出方法」における長期荷重時の端部曲げモーメント，中央部曲げモーメント及びせん断力を，地下 1 階～地上 2 階レベル（0．P．57．3m～ 0．P．69． 4 m ，質点番号 $2 \sim 4$ ）の鉛直方向最大応答加速度より算出した鉛直震度に より係数倍することで算出する。鉛直方向最大応答加速度を表4－10に，算出し た端部曲げモーメント，中央部曲げモーメント及びせん断力を表4－11に示す。

表 4－10 地震応答解析による最大応答加速度

部位	質点番号	最大値 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
床スラブ 1 ）	4	708
床スラブ（2）	3	908
屋根スラブ	2	1214

表 4－11 鉛直震度より算出した端部曲げモーメント，中央部曲げモーメント
及びせん断力

部位	検討用 鉛直震度	方向	端部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	中央部曲げ モーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	せん断力 $(\mathrm{kN} / \mathrm{m})$
床スラブ（1）	0.72	NS•EW	152.1	101.4	178.5
床スラブ（2）	0.93	NS•EW	161.5	107.7	189.5
	1.24	短辺（NS）	204.7	136.5	256.2
	長辺（EW）	160.1	106.8	226.6	

4．5．2 床スラブ及び屋根スラブの断面評価方法

（1）曲げモーメントに対する断面の評価方法
断面の評価は，「 R C－N 規準」に基づき，評価対象部位に生じる曲げモーメン トが，短期許容曲げモーメントを超えないことを確認する。

```
M
ここで,
    MA : 短期許容曲げモーメント (N
    a t : 引張鉄筋断面積 (mm
    f t : 引張鉄筋の短期許容引張応力度 (N/mm2)
    j:断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
```

（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる面外せん断力 が，次式をもとに計算した許容面外せん断力を超えないことを確認する。
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f}{ }_{\mathrm{s}}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割り増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$

M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

5．評価結果

5.1 地震応答解析による評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の最大応答せん断ひずみが許容限界（2．0×10 3 ）を超えないことを確認する。当該階の耐震壁の最大応答せん断ひずみ一覧を表5－1に，質点系モデルを図5－1に，材料物性の不確かさを考慮した最大応答値をせん断スケルトンカーブ上にプロットし図5－2 に示す。

材料物性の不確かさを考慮した最大応答せん断ひずみは 0.271×10^{-3}（要素番号（4）， （8），NS 方向，EW 方向，S s－D 2，ケース 5）であり，許容限界（ 2.0×10^{-3} ）を超 えないことを確認した。

表 5－1 耐震壁の最大応答せん断ひずみ

方向	階	部位	ケース	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
NS	B2	$\begin{aligned} & \text { 要素番号 (4), (8) } \\ & (0 . \text { P. } 51.5 \mathrm{~m} \sim 57.3 \mathrm{~m}) \end{aligned}$	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{D} 2 \\ \text { ケース } 5 \end{gathered}$	0． 271	2.0
EW	B2	$\begin{aligned} & \text { 要素番号 (4), (8) } \\ & (0 . \text { P. } 51.5 \mathrm{~m} \sim 57.3 \mathrm{~m}) \end{aligned}$	$\begin{gathered} \mathrm{S} s-\mathrm{D} 2 \\ \text { ケース } 5 \end{gathered}$	0.271	2.0

図 5－1 質点系モデル（水平方向）

（a）NS 方向（S s－D 2，ケース 5，要素番号（4），（8））

（b）EW方向（S s－D 2，ケース 5，要素番号（4），（8））

図 5－2 せん断スケルトンカーブ上の最大応答せん断ひずみ

5.2 応力解析による評価結果

床スラブ及び屋根スラブの配筋一覧を表5－2に示す。また，「4．5．3 床スラブ及 び屋根スラブの断面評価方法」に基づいた断面の評価結果を表 $5-3$ に示す。 S s 地震時において，発生値が許容値を超えないことを確認した。

表 5－2 スラブの配筋一覧

部材	方向	上ば筋		下ば筋	
		配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）	配筋	断面積 （ $\mathrm{mm}^{2} / \mathrm{m}$ ）
床スラブ①	NS	D25＠200	2535	D25＠200	2535
	EW	D25＠200	2535	D25＠200	2535
床スラブ（2）	NS	D25＠200	2535	D25＠200	2535
	EW	D25＠200	2535	D25＠200	2535
屋根スラブ	NS	D32＠200	3970	D32＠200	3970
	EW	D32＠200	3970	D32＠200	3970

表5－3（1）評価結果（床スラブ，基準地震動 S s ）

部材	床スラブ 1 （	床スラブ（2）
厚さ t （mm）×幅 b（mm）	$\pm \times 1000$	$\pm \times 1000$
有効せい d（mm）	588	488
配筋	$\begin{gathered} \text { D25@200 } \\ \left(2535 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D25@200 } \\ \left(2535 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D25@200 } \\ \left(2535 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D25@200 } \\ \left(2535 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
発生曲げモーメント $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	152.1	161.5
許容値 $\mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	449.9	373.4
検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0．339	0． 433
発生せん断力 Q （ $\mathrm{kN} / \mathrm{m})$	178.5	189.5
せん断スパン比による割増係数 α	1． 63	1． 46
許容値 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	989.5	735.6
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0． 18	0． 26
判定	可	可

表 5－3（2）評価結果（屋根スラブ，基準地震動 S s ）

方向	短辺（EW）方向	長辺（NS）方向
厚さ t （mm）×幅 b（mm）	$\times 1000$	
有効せい d（mm）	360	
配筋	$\begin{gathered} \text { D32@200 } \\ \left(3970 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D32@200 } \\ \left(3970 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
	$\begin{gathered} \text { D32@200 } \\ \left(3970 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \text { D32@200 } \\ \left(3970 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
発生曲げモーメント $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	204.7	160.1
許容値 $\quad \mathrm{M}_{\mathrm{A}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	487.7	
検定値 $\mathrm{M} / \mathrm{M}_{\mathrm{A}}$	0． 420	0.329
発生せん断力 Q （ kN / m ）	256.2	226.6
せん断スパン比による割増係数 α	1． 24	1． 35
許容値 Q_{A}（ $\left.\mathrm{kN} / \mathrm{m}\right)$	460.9	501.7
検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.56	0． 45
判定	可	可

別紙1 緊急時対策所の気密性に関する計算書
目 次
1．概要 別紙 1－1
2．既往の知見等の整理 別紙 1－1
3．緊急時対策所バウンダリにおける空気漏えい量に対する影響検討． 別紙 1－3
3.1 検討方針 別紙1－3
3.2 空気漏えい量の算定結果 別紙 1－5
3.3 総漏えい量と緊急時対策所加圧設備（空気ボンベ）必要換気量の比較 別紙 1－5
3.4 検討結果 別紙 1－6
4．まとめ 別紙 1－6

1．概要

「発電用原子炉施設に関する耐震設計審査指針」（昭和53年9月制定）におけるAクラスの施設の気密性について，原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1987（（社）日本電気協会）（以下「JEAG4601－1987」という。）では，S 1_{1} 地震動に対し弾性範囲であることを確認する ことで，機能が維持されるとしている。

添付書類「V－2－1－9 機能維持の基本方針」の機能維持の設計方針では，耐震壁のせん断ひず みが概ね弾性状態にとどまることを基本としたうえで，概ね弾性状態を超える場合は，地震応答解析による耐震壁のせん断ひずみから算定した空気漏えい量が，設置する加圧設備の性能を下回 ることで必要な気密性を維持する設計としている。その場合，気密性を要求される施設に対し，基準地震動 S s による鉄筋コンクリート造耐震壁の許容限界をせん断ひずみ 2.0×10^{-3} としてい る。

緊急時対策所遮蔽の地震応答解析による評価において，鉄筋コンクリート造耐震壁の許容限界 として設定したせん断ひずみ 2.0×10^{-3} の適用性について確認するために，耐震壁のせん断ひび割 れと空気漏えい量の関係に係る既往の知見を整理するとともに，緊急時対策所加圧設備（空気ボ ンベ）の処理対象となるバウンダリ（以下「緊急時対策所バウンダリ」という。）における空気漏 えい量に対する影響を評価する。

2．既往の知見等の整理
（財）原子力発電技術機構は，「原子力発電施設耐震信頼性実証試験に関する報告書＊1」におい て，J E A G 4 6 O 1－1987による許容限界の目安値（ S 2 地震時に対してせん断変形角 $2 / 1000 \mathrm{rad}$ ，静的地震力に対して $\tau=\tau u / 1.5)$ において想定されるひび割れを残留ひび割れと仮定した場合の外気侵入量を算出し，気圧差維持のためのファン容量と比較することで，空気漏えい量に対する評価を実施している。その結果「残留ひび割れからの外気侵入量は，ファン容量に比較すると無視できるほど小さいことが明らかになった。」としている。

また，（財）原子力発電技術機構は，「原子炉建屋の弾塑性試験に関する報告書＊2」において，耐震壁の残留ひび割れからの通気量の評価式が，十分に実機への適用性があることを確認してい る。更に，開口部の存在による通気量割増率の評価式も示されており，「開口部の残留ひび割れ幅の割増率がおおよそ推定できる。」としている。

したがって，緊急時対策所バウンダリを構成する壁が鉄筋コンクリート造であり，壁厚も，「原子炉建屋の弾塑性試験に関する報告書」に示される壁厚と同程度であることから，同文献にて提案されている各評価式を用い，緊急時対策所バウンダリにおける空気漏えい量の算出を行う。以下に評価式を示す。

総漏えい量
$\mathrm{Q} \cdot \mathrm{A} \cdot \triangle_{\mathrm{Q}} \quad(\mathrm{L} / \mathrm{min})$

ここで，
A ：壁の面積（m²）
$\mathrm{Q}=\mathrm{C} \cdot \gamma^{2.57} \cdot \Delta \mathrm{P} / \mathrm{T}$
ここで，
Q ：単位面積あたりの流量（L／min $/ \mathrm{m}^{2}$ ）
C ：定数
（中央値は2． $24 \times 10^{6}, ~ 95 \%$ 非超過値は $1.18 \times 10^{7}, 5 \%$ 非超過値は 4.21×10^{5} ）
γ ：最大せん断ひずみ
$\triangle \mathrm{P}$ ：差圧（mmAq）
T ：壁厚（cm）
$\Delta_{\mathrm{Q}}=\left\{\left(\alpha^{2}-1\right) \cdot\left(\frac{Q^{\prime}}{Q_{0}}-1\right)-1\right\} \cdot \beta+1$
ここで，
\triangle_{Q} ：通気量割増率
α ：通気量割増範囲 $(=3)$
$\frac{Q^{2}}{Q_{0}}$ ：定数
（中央値とみなされる評価法では1．81，安全側とみなされる評価法では7．41）
$\beta \quad$ ：壁の見付け面積に対する開口の総面積

注記＊1：財団法人 原子力発電技術機構「原子力発電施設耐震信頼性実証試験 原子炉建屋総合評価 建屋基礎地盤系評価に関する報告書（その 2 ）平成 8 年度」
＊2：財団法人 原子力発電技術機構「耐震安全解析コード改良試験 原子炉建屋の弾塑性試験試験結果の評価に関する報告書 平成5年度」

3．緊急時対策所バウンダリにおける空気漏えい量に対する影響検討

3.1 検討方針

「原子炉建屋の弾塑性試験に関する報告書」に基づき，（2．1）式から（2．3）式により，緊急時対策所バウンダリを構成する壁の最大せん断ひずみが許容限界（ 2.0×10^{-3} ）に達したときの空気漏えい量を算定し，緊急時対策所加圧設備（空気ボンベ）必要換気量（290（ $\left.\mathrm{m}^{3} / \mathrm{h}\right)$ ）を超えない ことを確認する。
緊急時対策所バウンダリ範囲を図3－1に示す。緊急時対策所バウンダリ（0．P．51．50m～0．P． 56．60m）を構成する壁の壁厚は \qquad である。

3.2 空気漏えい量の算定結果

緊急時対策所バウンダリの壁厚ごとに空気漏えい量を算定した。本検討は，地震応答解析の せん断ひずみの許容限界としてせん断ひずみ 2.0×10^{-3} を用いることの適用性を確認すること が目的であることから，評価式における定数について，安全側の値を用いた。算定結果を表3－ 1に示す。

表 3－1 緊急時対策所バウンダリの気密性計算結果

壁厚 T （cm）	定数		最大＊${ }^{*}$ せん断 ひずみ γ	$\begin{gathered} \text { 差圧*2 } \\ \Delta \mathrm{P} \\ (\mathrm{mmAq}) \end{gathered}$	壁の＊3 面積 A （m）	$\begin{gathered} \text { 漏えい量 } \\ Q \\ \left(\mathrm{~L} / \mathrm{min} / \mathrm{m}^{2}\right) \end{gathered}$	壁の見 付け面 積に対 する開 口の総 面積 β	通気量割増率 Δ_{Q}	総漏えい量$\begin{gathered} \mathrm{Q} \times \mathrm{A} \\ \times \Delta_{\mathrm{Q}} \\ (\mathrm{~L} / \mathrm{min}) \end{gathered}$
	C	$\frac{\mathrm{Q}}{\mathrm{Q}_{0}}$							
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	100． 47	0.03	0． 000	1.00	2． 55
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	34． 43	0.11	0． 139	8.00	30.69
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	28.31	0.11	0． 000	1.00	3.16
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	94． 35	0.11	0． 089	5.48	57.67
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	89． 25	0.11	0.068	4.43	44.04
	1． 18×10^{7}	7.41	2.0×10^{-3}	4． 1	5． 10	0.04	0.000	1.00	0． 19
	1． 18×10^{7}	7.41	2.0×10^{-3}	4． 1	28． 31	0.11	0． 000	1． 00	3． 16
	1． 18×10^{7}	7.41	2.0×10^{-3}	4.1	39． 78	0.11	0． 055	3． 76	16． 65
	1． 18×10^{7}	7.41	2.0×10^{-3}	4． 1	11.33	0.11	0． 443	23． 28	29． 38
	1． 18×10^{7}	7.41	2.0×10^{-3}	4． 1	83． 90	0.03	0． 000	1.00	2． 13
								合計	189.60

注記＊1：保守的に各壁の最大せん断ひずみが同時に許容限界となることを想定。
＊2：緊急時対策所バウンダリの加圧に必要な差圧条件とする。
＊ 3 ：気密バウンダリを構成する壁の総面積を用いる。

3.3 総漏えい量と緊急時対策所加圧設備（空気ボンベ）必要換気量の比較

緊急時対策所バウンダリの総漏えい量と緊急時対策所加圧設備（空気ボンベ）必要換気量を表3－2に示す。緊急時対策所バウンダリについて総漏えい量は，緊急時対策所加圧設備（空気 ボンベ）必要換気量の 4% 程度であることを確認した。

表 3－2 総漏えい量と緊急時対策所加圧設備（空気ボンベ）必要換気量の比較

$$
\left(\mathrm{m}^{3} / \mathrm{h}\right)
$$

総漏えい量	緊急時対策所加圧設備（空気ボンベ）必要換気量
11.4	290

[^20]
3.4 検討結果

緊急時対策所バウンダリについて，総漏えい量は緊急時対策所加圧設備（空気ボンベ）必要換気量を超えないことを確認した。

よって，緊急時対策所バウンダリは，鉄筋コンクリート造耐震壁の許容限界をせん断ひずみ 2.0×10^{-3} とした場合において，加圧設備とあいまって機能を維持できる気密性を有している。

4．まとめ
緊急時対策所バウンダリは，鉄筋コンクリート造耐震壁の許容限界として設定したせん断ひず み 2.0×10^{-3} を適用した場合において，加圧設備とあいまって機能を維持できる気密性を有して いることを確認した。

以上より，緊急時対策所遮蔽の地震応答解析による評価において，加圧設備とあいまって気密性を維持するために設定する許容限界として，せん断ひずみ 2.0×10^{-3} を用いることの適用性を確認した。

VI－2－9 原子灲格納施設の耐震性についての計算書

VI－2－9－1 原子炉格納施設の耐震性についての計算結果
VI－2－9－2 原子炉格納容器の耐震性についての計算書
VI－2－9－3 原子炉建屋の耐震性についての計算書
VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書

VI－2－9－1 原子炉格納施設の耐震性についての計算結果
R 0

目次

1．概要 \cdot ．．． 1

1．概要

本資料は，原子炉格納施設の耐震計算の手法及び条件の整理について説明するものである。

2．耐震評価条件整理
原子炉格納施設に対して，設計基準対象施設の耐震クラス，重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については，耐震評価における手法及び条件について，既に認可を受けた実績との差異の有無を整理した。また，重大事故等対処設備のうち，設計基準対象施設であるものについては，重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異の有無を整理した。結果を表1に示す。

原子炉格納施設の耐震計算は表 1 に示す計算書に記載することとする。

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（1／31）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	原子炉格納容器	原子炉格納容器	S	有	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \end{aligned}$	常設耐震／防止常設／緩和	有	VI－2－9－2－1－1 VI－2－9－2－1－2 VI－2－9－2－1－3 VI－2－9－2－1－4 VI－2－9－2－1－5
		機器搬出入用ハッチ	S	無	VI－2－9－2－2－1	常設耐震／防止常設／緩和	有	VI－2－9－2－2－1
		逃がし安全弁搬出入口	S	無	VI－2－9－2－2－2	常設耐震／防止常設／緩和	有	VI－2－9－2－2－2
		制御棒駆動機構搬出入口	S	無	VI－2－9－2－2－3	常設耐震／防止常設／緩和	有	VI－2－9－2－2－3
		$\begin{aligned} & \text { サプレッションチェンバ出入 } \\ & \text { 口 } \end{aligned}$	S	—＊2	VI－2－9－2－2－4	常設耐震／防止常設／緩和	有	VI－2－9－2－2－4
		所員用エアロック	S	無	VI－2－9－2－3－1	常設耐震／防止常設／緩和	有	VI－2－9－2－3－1
		原子炉格納容器配管貫通部	S	無	VI－2－9－2－4－1	常設耐震／防止常設／緩和	有	VI－2－9－2－4－1
		原子炉格納容器電気配線貫通部	S	無	VI－2－9－2－4－2	常設耐震／防止常設／緩和	有	VI－2－9－2－4－2

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（2／31）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 誨 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 建 } \\ & \text { 屋 } \end{aligned}$	原子炉建屋原子炉棟（二次格納施設）	S	無	VI－2－9－3－1	常設／緩和	無	VI－2－9－3－1
		原子炉建屋大物搬入口	S	無	VI－2－9－3－2	常設／緩和	無	VI－2－9－3－2
		原子炉建屋エアロック	S	無	VI－2－9－3－3	常設／緩和	無	VI－2－9－3－3
		原子炉建屋基礎版	－	無	VI－2－9－3－4	－	－	－
	$\begin{aligned} & \text { 圧 } \\ & \text { 力 } \end{aligned}$	真空破壊弁	S	無	VI－2－9－4－2	常設耐震／防止常設／緩和	有	VI－2－9－4－2
	$\begin{aligned} & \text { 低 } \\ & \text { 㳚 } \\ & \text { } \end{aligned}$	ダウンカマ	S	無	VI－2－9－4－1	常設耐震／防止 常設／緩和	有	VI－2－9－4－1
	$\begin{aligned} & \text { 佣 } \\ & \text { の } \end{aligned}$	ベント管	S	無	VI－2－9－4－2	常設耐震／防止常設／緩和	有	VI－2－9－4－2
	$\begin{aligned} & \text { ® } \\ & \text { の } \\ & \text { 安 } \end{aligned}$	ベント管ベローズ	S	無	VI－2－9－4－2	常設耐震／防止常設／緩和	有	VI－2－9－4－2
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$	ベントヘッダ	S	無	VI－2－9－4－2	常設耐震／防止 常設／緩和	有	VI－2－9－4－2

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（3／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	圧 方 減 設 備 の 他 安 全 備		主配管	S	無	VI－2－9－4－3－1－1	常設耐震／防止常設／緩和	有	VI－2－9－4－3－1－1
			復水移送ポンプ （原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	VI－2－5－6－2－1
		子 炉 格 納 容 器 部	代替循環冷却ポ ンプ（圧力低減設備その他の安全設備 代替循環冷却系に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－4－3－4－1
		$\begin{aligned} & \text { 水 } \\ & \text { 系 } \end{aligned}$	復水貯蔵タンク （原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	VI－2－5－6－2－2

表 1 耐震評価条件整理一覧表（4／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$		原炉烙納警器部注水系	残留熱除去系ス トレーナ（原子炉冷却系統施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－5－4－1－3
			主配管	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \text { VI }-2-9-4-3-2-1 \\ & \text { VI }-2-9-4-3-4-2 \end{aligned}$
			主配管（原子炉冷却系統施設に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-4-2 \\ & \mathrm{VI}-2-5-6-2-3 \end{aligned}$
			原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（5／31）

6

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\multirow[b]{2}{*}{評価対象設備}} \& \multicolumn{3}{|c|}{設計基準対象施設} \& \multicolumn{3}{|c|}{重大事故等対処設備} \\
\hline \& \& \& \& 耐震重要度分類 \& 新規制基準施工前に認可された実績との差異 \& 耐震計算の記載個所 \& 設備分類＊1 \& 設計基準対象施設との評価条件の差異 \& 耐震計算の記載個所 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { 原 } \\
\& \text { 炉 } \\
\& \text { 格 } \\
\& \text { 納 } \\
\& \text { 施 }
\end{aligned}
\]} \& 圧
吕
低
減
設
備
そ
の
他 \& \[
\begin{aligned}
\& \text { 原 } \\
\& \text { 子 } \\
\& \text { 炉 } \\
\& \text { 格 } \\
\& \text { 蒳 } \\
\& \text { 㗊 }
\end{aligned}
\] \& \begin{tabular}{l}
原子炉格納容器 \\
（原子炉格納容器に記載）
\end{tabular} \& － \& —＊2 \& － \& 常設／緩和 \& －

- \& $$
\begin{aligned}
& \mathrm{VI}-2-9-2-1-1 \\
& \mathrm{VI}-2-9-2-1-2 \\
& \mathrm{VI}-2-9-2-1-3 \\
& \mathrm{VI}-2-9-2-1-4 \\
& \mathrm{VI}-2-9-2-1-5 \\
& \mathrm{VI}-2-9-2-2-1 \\
& \mathrm{VI}-2-9-2-2-2 \\
& \mathrm{VI}-2-9-2-2-3 \\
& \mathrm{VI}-2-9-2-2-4 \\
& \mathrm{VI}-2-9-2-3-1
\end{aligned}
$$

\hline \& \[
$$
\begin{aligned}
& \text { 他 } \\
& \text { 安 } \\
& \text { 全 } \\
& \text { 設 } \\
& \text { 備 }
\end{aligned}
$$

\] \& | 部 |
| :--- |
| 注 |
| 水 |
| 系 | \& 残留熱除去系熱交換器（原子炉冷却系統施設に記載） \& － \& —＊2 \& － \& 常設／緩和 \& － \& VI－2－5－4－1－1

\hline
\end{tabular}

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（6／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 設 } \end{aligned}$	圧方低減設備その他の安全設備		復水移送ポンプ （原子炉冷却系統施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－1
		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \end{aligned}$	復水貯蔵タンク （原子炉冷却系統施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－5－6－2－2
		$\begin{aligned} & \text { 替 } \\ & \text { K } \end{aligned}$	主配管	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-4-3-1-1 \\ & \mathrm{VI}-2-9-4-3-3-1 \end{aligned}$
		$\begin{aligned} & \text { イ } \\ & \text { 冷 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	主配管（原子炉冷却系統施設に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-4-2 \\ & \mathrm{VI}-2-5-6-2-3 \end{aligned}$
			原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－9－2－4－1

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（7／31）

8

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準 施工前に認 可された実 績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 俗 } \end{aligned}$	圧力低減設備その他の安全設備	原 子 炉 格 納 容 器 替 K プ し 冷 却 系	原子炉格納容器 （原子炉格納容器に記載）	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \end{aligned}$	残留熱除去系熱交換器（原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	$\mathrm{VI}-2-5-4-1-1$
		$\begin{aligned} & \text { 環 } \\ & \text { 冷 } \end{aligned}$	代替循環冷却ポ ンプ	－	—＊2	－	常設／緩和	－	$\mathrm{VI}-2-9-4-3-4-1$
		系	残留熱除去系ス トレーナ（原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	$\mathrm{VI}-2-5-4-1-3$

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（8／31）

6

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準 施工前に認 可された実 績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 設 } \end{aligned}$	圧方低減設備¿の他の安全設備		主配管	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \text { VI-2-9-4-3-1-1 } \\ & \text { VI-2-9-4-3-2-1 } \\ & \text { VI-2-9-4-3-4-2 } \end{aligned}$
			主配管（原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-4-1-4 \\ & \mathrm{VI}-2-5-5-4-2 \end{aligned}$
		$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 循 } \end{aligned}$	原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－2－4－1
		$\begin{aligned} & \text { 環 } \\ & \text { 冷 } \\ & \text { 却 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器 （原子炉格納容器に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$

O 2

表1 耐震評価条件整理一覧表（9／31）

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（10／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉格納施設	圧力低減設備その他の安全設備	高圧代替注水系	高圧代替注水系 タービンポンプ （原子炉冷却系統施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－5－5－3－1
			復水貯蔵タンク （原子炉冷却系統施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－5－6－2－2
			主配管（原子炉冷却系統施設に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-5-3-1-2 \\ & \mathrm{VI}-2-5-3-2-1 \\ & \mathrm{VI}-2-5-5-1-3 \\ & \mathrm{VI}-2-5-5-3-2 \\ & \mathrm{VI}-2-5-6-1-3 \\ & \mathrm{VI}-2-5-8-1-1 \end{aligned}$
			原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－2－4－1

表1 耐震評価条件整理一覧表（11／31）

O 2

表1 耐震評価条件整理一覧表（12／31）

	評価対象設備			設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
		$\begin{aligned} & \text { 低 } \\ & \text { 圧 } \\ & \text { 岱 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 系 } \end{aligned}$	復水移送ポンプ （原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	VI－2－5－6－2－1
			復水貯蔵タンク （原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	VI－2－5－6－2－2
			主配管（原子炉冷却系統施設に記載）	－	—＊2	－	常設／緩和	－	VI－2－5－4－1－4 VI－2－5－5－1－3 VI－2－5－5－4－2 VI－2－5－6－2－3
			原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－2－4－1

O 2

表1 耐震評価条件整理一覧表（13／31）

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（14／31）

評価対象設備					設計基準対			大事故等対処	
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
		$\begin{aligned} & \text { ほ } \\ & \text { 酸 } \\ & \text { 永 } \\ & \text { 方 } \\ & \text { 系 } \end{aligned}$	ほう酸水注入系 ポンプ	－	－＊2	－	常設／緩和	－	VI－2－6－4－1－1
			ほう酸水注入系貯蔵タンク	－	－＊2	－	常設／緩和	－	VI－2－6－4－1－2
			主配管（計測制御系統施設に記載）	－	－＊2	－	常設／緩和	－	VI－2－6－4－1－3
			原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－2－4－1

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（15／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉格納施設	圧方低減設備その他の安全設備	$\begin{aligned} & \text { ほ } \\ & \text { う } \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 隻 } \\ & \text { 系 } \end{aligned}$	原子炉圧力容器付属構造物（原子炉本体に記載）	－	—＊2	－	常設／緩和	－	VI－2－3－4－2－4
			原子炉圧力容器内部構造物（原子炉本体に記載）	－	－＊2	－	常設／緩和	－	VI－2－3－4－3－10
			炉心支持構造物 （原子炉本体に記載	－	—＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-3-3-2-2 \\ & \mathrm{VI}-2-3-3-2-3 \\ & \mathrm{VI}-2-3-3-2-4 \\ & \mathrm{VI}-2-3-3-2-5 \\ & \mathrm{VI}-2-3-3-2-6 \\ & \mathrm{VI}-2-3-3-2-7 \\ & \mathrm{VI}-2-3-3-2-8 \end{aligned}$
			原子炉圧力容器 （原子炉圧力容器に記載）	－	—＊2	－	常設／緩和	－	VI－2－3－4－1－2

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（16／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蜼 } \\ & \text { 䛌 } \end{aligned}$		残	残留熱除去系熱交換器（原子炬冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－1
			残留熱除去系ポ ンプ（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－2
		$\begin{aligned} & \text { 冷 } \\ & \text { 却 } \\ & \text { モ } \\ & \text { E゙ } \end{aligned}$	残留熱除去系ス トレーナ（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－3
			主配管	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－9－4－3－1－1

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（17／31）

O 2

表1 耐震評価条件整理一覧表（18／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 焙 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 㗶 } \end{aligned}$		$\begin{aligned} & \text { 殱 } \\ & \text { 熱 } \\ & \text { 棌 } \end{aligned}$	残留熱除去系熱交換器（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－1
		$\begin{aligned} & \text { シ } \\ & \text { シ } \\ & \text { シ } \end{aligned}$	残留熱除去系ポ ンプ（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－2
		$\begin{aligned} & \text { ル } \\ & \text { 永 } \\ & \text { 椧 } \\ & \text { 帮 } \end{aligned}$	残留熱除去系ス トレーナ（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－3
		E゙	主配管（原子炉冷却系統施設に記載）	－	－＊2	－	常設／防止 （DB 拡張）	－	VI－2－5－4－1－4

O 2

表1 耐震評価条件整理一覧表（19／31）

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（20／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉格納施設	圧 力 減 設 備 そ の 他 の 安 設 備	非 常 用 ガ ス 処 理	主要弁	S	無	VI－2－9－4－4－1－2	－	－	－
			主配管	S	有	$\mathrm{VI}-2-9-4-4-1-2$	常設／緩和	有	VI－2－9－4－4－1－2
			非常用ガス処理系排風機	S	無	$\mathrm{VI}-2-9-4-4-1-3$	常設／緩和	無	VI－2－9－4－4－1－3
			非常用ガス処理系フィルタ装置	S	無	VI－2－9－4－4－1－4	－	－	－

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（21／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 学 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 設 } \end{aligned}$	圧方低減設備その他の安全設備		原子炉建屋原子炉棟（二次格納施設）（原子炉建屋 に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－3－1
			原子炉建屋大物搬入口（原子炉建屋に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－3－2
		$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \\ & \text { ガ } \\ & \text { ス } \end{aligned}$	原子炉建屋エア ロック（原子炉建屋に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－3－3
			排気筒（放射性廃棄物の廃棄施設 に記載）	－	—＊2	－	常設／緩和	－	VI－2－7－2－1
			原子炉建屋ブロ ーアウトパネル閉止装置	－	—＊2	－	常設／緩和	－	VI－2－9－4－4－1－5

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（22／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 誨 } \\ & \text { 俗 } \end{aligned}$	圧力低減設備¿の他の安全設備	可燃性カス濃度制御	可燃性ガス濃度制御系再結合装置加熱器	S	無	VI－2－9－4－4－2－1	－	－	－
			主要弁	S	無	VI－2－9－4－4－2－1	－	－	－
			主配管	S	有	VI－2－9－4－4－2－1	－	－	－
			可燃性ガス濃度制御系再結合装置ブロワ	S	無	VI－2－9－4－4－2－2	－	－	－
			可燃性ガス濃度制御系再結合装置	S	無	VI－2－9－4－4－2－3	－	－	－

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（23／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原子炉格納施設	圧分低減設備〒の他の安全設備		静的触媒式水素再結合装置	－	－＊2	－	常設／緩和	－	VI－2－9－4－4－3－1
		$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 建 } \\ & \text { 屋 } \end{aligned}$	原子炉建屋原子炉棟（二次格納施設）（原子炉建屋 に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－3－1
		度 制 御 系	原子炉建屋大物搬入口（原子炉建屋に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－3－2
			原子炉建屋エア ロック（原子炉建屋に記載）	－	－＊2	－	常設／緩和	－	VI－2－9－3－3

表1 耐震評価条件整理一覧表（24／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
			主配管	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-4-4-4-1 \\ & \mathrm{VI}-2-9-4-5-1-1 \end{aligned}$
原	圧 力 低 減 設	可 搬 型	原子炉格納容器配管貫通部（原子炉格納容器に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－2－4－1
$\begin{aligned} & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	そ の 他 の 安 全 設 備	$\begin{aligned} & \text { 素 } \\ & \text { 力 } \\ & \text { 不 } \\ & \text { 供 } \\ & \text { 給 } \end{aligned}$	原子炉格納容器 （原子炉格納容器に記載）	－	—＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$

表1 耐震評価条件整理一覧表（25／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	圧方低減設備¿の他の安全設備	$\begin{aligned} & \text { 原 } \\ & \text { び } \\ & \text { ひ炉 } \\ & \text { 可 烙 } \\ & \text { 燃 納 } \\ & \text { 性 容 } \\ & \text { 方 } \\ & \text { 澧 } \end{aligned}$	フィルタ装置 （フィルタベ ント系（圧逃が し装置）に記載）	－	—＊2	－	常設／緩和	－	VI－2－9－4－6－1－2
		$\begin{aligned} & \text { 度 } \\ & \text { イ } \\ & \text { 制 タ } \\ & \text { 御 ぶ } \\ & \text { 設 シ } \\ & \text { 備 ト } \\ & \text { 並 系 } \\ & \text { に } \\ & \text { 格 放 } \end{aligned}$	主要弁（フィル タベント系（圧逃がし装置）に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \text { VI }-2-9-4-5-1-1 \\ & \text { VI }-2-9-4-6-1-1 \end{aligned}$
			主配管	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \text { VI-2-9-4-4-4-1 } \\ & \text { VI-2-9-4-5-1-1 } \\ & \text { VI-2-9-4-6-1-1 } \end{aligned}$

表1 耐震評価条件整理一覧表（26／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊1	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	圧力低減設備¿の他の安全設備		フィルタ装置出口側ラプチ ャディスク（フ ィルタベント系（圧逃がし装置）に記載）	－	—＊2	－	常設／緩和	-	VI－2－9－4－6－1－1
			原子炉格納容器配管貫通部 （原子炉格納容器に記載）	－	—＊2	－	常設／緩和	－	$\mathrm{VI}-2-9-2-4-1$

表1 耐震評価条件整理一覧表（27／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
原 子 炉 格 納 施 設	圧 方 低 減 設 備 ¿ の 他 の 安 全 設 備		原子炉格納容器（原子炉格納容器に記載）	－	－＊2	－	常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$

表1 耐震評価条件整理一覧表（28／31）

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（29／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準施工前に認可された実績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 李 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	圧方低減設備¿の他の安全設備	原	フィルタ装置	－	—＊2	－	常設耐震／防止常設／緩和	－	VI－2－9－4－6－1－2
		$\begin{aligned} & \text { 格 } \\ & \text { 蒳 } \\ & \text { 容 } \end{aligned}$	主要弁	－	－＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-4-5-1-1 \\ & \mathrm{VI}-2-9-4-6-1-1 \end{aligned}$
		$\begin{aligned} & \text { イ } \\ & \text { ル } \\ & \text { タ } \\ & \text { ベ } \end{aligned}$	フィルタ装置出口側ラプチ ャディスク	－	－＊2	－	常設耐震／防止 常設／緩和	－	VI－2－9－4－6－1－1
		$\begin{aligned} & \text { 系 } \\ & \text { 厈 } \\ & \text { 务 } \\ & \text { 逃 } \end{aligned}$	主配管	－	—＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \text { VI }-2-9-4-4-4-1 \\ & \mathrm{VI}-2-9-4-5-1-1 \\ & \mathrm{VI}-2-9-4-6-1-1 \end{aligned}$
		$\begin{aligned} & \text { か } \\ & \text { L } \\ & \text { 装 } \\ & \text { 直 } \end{aligned}$	原子炉格納容器配管貫通部 （原子炉格納容器に記載）	－	—＊2	－	常設耐震／防止 常設／緩和	－	VI－2－9－2－4－1

O 2 （3）VI－2－9－1 R 0

表1 耐震評価条件整理一覧表（30／31）

評価対象設備				設計基準対象施設			重大事故等対処設備		
				耐震重要度分類	新規制基準 施工前に認 可された実 績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	圧 力 低 減 設 備 そ の 他 の 安 設 備		原子炉格納容器（原子炉格納容器に記載）	－	－＊2	－	常設耐震／防止常設／緩和	－	$\begin{aligned} & \mathrm{VI}-2-9-2-1-1 \\ & \mathrm{VI}-2-9-2-1-2 \\ & \mathrm{VI}-2-9-2-1-3 \\ & \mathrm{VI}-2-9-2-1-4 \\ & \mathrm{VI}-2-9-2-1-5 \\ & \mathrm{VI}-2-9-2-2-1 \\ & \mathrm{VI}-2-9-2-2-2 \\ & \mathrm{VI}-2-9-2-2-3 \\ & \mathrm{VI}-2-9-2-2-4 \\ & \mathrm{VI}-2-9-2-3-1 \end{aligned}$

O 2 （3）VI－2－9－1 R O E

表1 耐震評価条件整理一覧表（31／31）

評価対象設備			設計基準対象施設			重大事故等対処設備		
			耐震重要度分類	新規制基準 施工前に認 可された実 績との差異	耐震計算の記載個所	設備分類＊${ }^{1}$	設計基準対象施設との評価条件の差異	耐震計算の記載個所
$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 施 } \end{aligned}$	$\begin{aligned} & そ \\ & \text { の } \\ & \text { 他 } \end{aligned}$	原子炉建屋ブローアウト パネル	－	—＊2	－	常設耐震／防止	－	VI－2－9－3－1－1

注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB拡張）」は常設重大事故防止設備（設計基準拡張）を示す。
＊2：本工事で新規に申請する設備であることから，差異比較の対象外。

VI－2－9－2 原子炉格納容器の耐震性についての計算書

VI－2－9－2－1 原子炉格納容器本体の耐震性についての計算書
VI－2－9－2－2 機器搬出入口の耐震性についての計算書
VI－2－9－2－3 エアロックの耐震性についての計算書
VI－2－9－2－4 原子炉格納容器配管貫通部及び電気配線貫通部の耐震性についての計算書

VI－2－9－2－1 原子炉格納容器本体の耐震性についての計算書

VI－2－9－2－1－1 ドライウェルの耐震性についての計算書
VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書 VI－2－9－2－1－3 原子炉格納容器シヤラグの耐震性についての計算書 VI－2－9－2－1－5 ボックスサポートの耐震性についての計算書

VI－2－9－2－1－1 ドライウェルの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 3
2.4 記号の説明 4
3．評価部位 5
4．固有周期 8
5．構造強度評価 9
5.1 構造強度評価方法 9
5.2 荷重の組合せ及び許容応力 9
5．2．1 荷重の組合せ及び許容応力状態 9
5．2．2 許容応力 9
5．2．3 使用材料の許容応力評価条件 9
5．2．4 設計荷重 15
5.3 設計用地震力 16
5.4 計算方法 18
5.5 計算条件 20
5.6 応力の評価 20
6．評価結果 21
6.1 設計基準対象施設としての評価結果 21
6．2 重大事故等対処設備としての評価結果 31
7．参照図書 38

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，ドライウェルが設計用地震力に対して十分な構造強度を有していることを説明するものである。

ドライウェルは，設計基準対象施設においては S クラス施設に，重大事故等対処設備におい ては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力及び重大事故等時に対 する評価について記載するものとし，前述の荷重を除く荷重によるドライウェルの評価は，平成 2 年 5 月 24 日付け元資庁第 14466 号にて認可された工事計画の添付書類（参照図書（1））によ る（以下「既工認」という。）。

2．一般事項

2.1 構造計画

 ドライウェルの構造計画を表2－1に示す。表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
ドライウェルは，原子炉格納容器シヤラグ及び基部（サンドクッション部）を原子炉建屋により拘束された構造であり，水平方向荷重は原子炉格納容器シヤラグ及び基部 を介して，鉛直方向荷重 は基部を介して原子炉建屋に伝達される。	内半径 \square mm，板厚 \square mm の上鏡，内径 \square mm，板 \square厚 \square mm のナックル部，内半径 \square mm， \square mm の上部球形部，内径 \square mm ，板 \square 1mm の円筒部 \square半径 \square mm ，板厚 \square mm の下鏡で構成される鋼製構造物である。 ドライウェル基部外側 には，サンドクッショ ンを備える。	（単位：mm）

2． 2 評価方針

ドライウェルの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

ドライウェルの耐震評価フローを図 2－1 に示す。

図 2－1 ドライウェルの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補－ 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版）（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

	4 記号の説明		
	記号	記号の説明	単位
	A	断面積	mm^{2}
	C v	鉛直方向設計震度	－
	D	死荷重	－
	D i	直径（ $\mathrm{i}=1,2)$	mm
	f_{b}	曲げモーメントに対する座屈応力	MPa
	$\mathrm{f}_{\text {c }}$	軸圧縮荷重に対する座屈応力	MPa
	$\ell_{\text {i }}$	長さ（ $\mathrm{i}=1,2,3 \cdots$ ）	mm
	M	機械的荷重，曲げモーメント	－， $\mathrm{N} \cdot \mathrm{mm}$
	M_{L}	地震と組み合わせる機械的荷重	－
	$\mathrm{M}_{\text {SAL }}$	機械的荷重（SA 後長期（L）機械的荷重）	－
	M $\mathrm{SaLL}^{\text {d }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
	P	圧力，軸圧縮荷重	，
\bigcirc	$P_{\text {L }}$	地震と組み合わせる圧力	－
a	$\mathrm{P}_{\text {SAL }}$	圧力（SA 後長期（L）圧力）	kPa
I	$\mathrm{P}_{\text {SALL }}$	圧力（SA 後長期（LL）圧力）	kPa
¢	R i	半径（ $\mathrm{i}=1,2,3)$	mm
I	S	許容引張応力	MPa
5	S d	弾性設計用地震動S d により定まる地震力	－
（a）	S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
\sim	S s	基準地震動S s こより定まる地震力	－
\bigcirc	S_{u}	設計引張強さ	MPa
	S_{y}	設計降伏点	MPa
	S_{y}（RT）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
	t_{i}	厚さ（ $\mathrm{i}=1,2,3 \cdots)$	mm
	$\mathrm{T}_{\text {SAL }}$	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
	Tsall	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
	Z	断面係数	－
	α	純曲げによる全断面降伏荷重と初期降伏荷重の比または 1.5 の いずれか小さい方の値，安全率	－
	A S S	オーステナイト系ステンレス鋼	－
	HNA	高ニッケル合金	－

3．評価部位
ドライウェルの形状及び主要寸法を図 3－1 及び図 3－2 に，使用材料及び使用部位を表3－1に示す。

（1）上鏡球形部
（2）上鏡ナックル部
（3）円筒部
（4）フランジ
（5）ナックル部
（6）上部球形部
（7）ドライウェルスプレイ管取付部
（8）下鏡
⑨サンドクッション部

（単位：mm）

図 3－1 ドライウェルの形状及び主要寸法

（単位：mm）

図 3－2 サンドクッション部の形状及び主要寸法

表 3－1 使用材料表

使用部位	使用材料	備考
ドライウェル	SGV49（SGV480）	
	SPV50（SPV490）	

4．固有周期
ドライウェルは，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」にて計算したドライウェルの設計用地震力を用いて評価することとし，固有周期の計算は省略する。

5．構造強度評価

5.1 構造強度評価方法

（1）ドライウェルは，原子炉格納容器シヤラグ及び基部（サンドクッション部）を原子炉建屋により拘束された構造であり，水平方向荷重は原子炉格納容器シヤラグ及び基部を介し て，鉛直方向荷重は基部を介して原子炉建屋に伝達される。

ドライウェルの耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において計算された荷重を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
ドライウェルの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用 いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力
ドライウェルの許容応力は添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－3 に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
ドライウェルの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用い るものを表 5－4に，重大事故等対処設備の評価に用いるものを表 5－5に示す。

表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等 の区分	荷重の組合せ＊1		許容応力状態
原子炉格納施設	原子炉格納 容器	ドライウェル	S	クラスMC 容器	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}{ }^{*}$	$\begin{aligned} & (9) \\ & (10) \\ & (13) \\ & (15) \\ & \hline \end{aligned}$	$\mathrm{III}_{4} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{aligned} & (11) \\ & (12) \\ & (14) \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}^{* * 2}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

＊2：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，泠却材喪失事故後の最大内圧との組合せを考慮する。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ＊		許容応力状態
原子炉格納施設	原子炉格納容器	ドライウェル	常設耐震／防止常設／緩和	重大事故等クラス2容器	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\text {SAL }}+\mathrm{Sd}{ }^{* 3}$	（V（L）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$
					$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	（V（LL）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。 ＊3：重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－3 クラスMC容器及び重大事故等クラス2容器の許容応力（その1）

注記＊ $1: 3 \cdot \mathrm{~S}$ を超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。また， S_{m} は S と読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d 又はS s 地震動による応力の全振幅」と読み替える。
＊3：運転状態 I，Iに において，疲労解析を要しない場合は，地震動のみによる疲労累積係数を 1.0 以下とする。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ） を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

応力分類許容応力状態	特別な応力限界 （座屈）
IIIAS	軸圧縮荷重と曲げモーメントが負荷される場合，次の不等式を満足しなければならない。
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{f} \mathrm{c}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}} \leqq 1.0$
$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{*}$	本式の適用範囲は ℓ / R R 5 以下とする。ただし，強め輪等 により ℓ / R が 0.5 以下となる場合は，その効果を別途検討 により考慮することができる。

注記＊： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	Sy （MPa）	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \quad(\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \\ \hline \end{gathered}$
ドライウェル	$\begin{gathered} \text { SGV49 } \\ \text { (SGV480) } \end{gathered}$	周囲環境温度	171	131	229	423	－
	$\begin{gathered} \text { SPV50 } \\ \text { (SPV490) } \end{gathered}$	周囲環境温度	171	167	429	550	－

表5－5 使用材料の許容応力評価条件（重大事故等対処設備）

＊1：SA 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（ LL ）の時 $111^{\circ} \mathrm{C}$ 。
＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度，死荷重及 び活荷重は，既工認からの変更はなく，参照図書（1）に定めるとおりである。
（2）重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 $\mathrm{P}_{\text {SAL }}$	640 kPa （SA 後長期（L））
内圧 $\mathrm{P}_{\text {SAL L }}$	427 kPa （SA 後長期（LL））
温度 T SAL	$178^{\circ} \mathrm{C}$（SA 後長期（L））
温度 T SALL	$111^{\circ} \mathrm{C}$（SA 後長期（LL））

5.3 設計用地震力

評価に用いる設計用地震力を表5－6～表5－9に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 0. P.	－	－	－	$\mathrm{C}_{\mathrm{v}}=0.57$	－	$\mathrm{C}_{\mathrm{v}}=0.98$

表 5－7 設計用地震力（重大事故等対処設備）

据付場所 及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d		基準地震動 S s	
	水平 方向	鉛直 方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉格納容器 0. P.	－	－	－	$\mathrm{C}_{\mathrm{v}}=0.57$	－	$\mathrm{C}_{\mathrm{v}}=0.98$

表 5－8 設計用地震力（設計基準対象施設）

応力評価点＊	水平荷重 S d ＊		水平荷重 S S	
	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{gathered} \text { モーメント } \\ \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{gathered}$	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{gathered} \text { モーメント } \\ \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{gathered}$
P1				
P2				
P3				
P4				
P5				
P6				
P7				
P8				
P9				
P10				
P11				

注記 $*$ ：応力評価点の位置は，図 5－1 参照のこと。
表 5－9 設計用地震力（重大事故等対処設備）

応力評価点＊1	水平荷重 S d ＊2		水平荷重 S s	
	$\begin{aligned} & \hline \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{aligned} & \hline \text { モーメント } \\ & \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \end{aligned}$	$\begin{aligned} & \text { せん断力 } \\ & \left(\times 10^{3} \mathrm{~N}\right) \end{aligned}$	$\begin{gathered} \text { モーメント } \\ \left(\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}\right) \\ \hline \end{gathered}$
P1				
P2				
P3				
P4				
P5				
P6				
P7				
P8				
P9				
P10				
P11				

注記 $* 1$ ：応力評価点の位置は，図 5－1 参照のこと。
＊2：重大事故等対処設備に対し，弾性設計用地震動 $\mathrm{S} d$ に加えて静的地震力を考慮する。

枠囲みの内容は商業機密の観点から公開できません。

5．4 計算方法

ドライウェルの応力評価点は，ドライウェルを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－10 及び図 5－1 に示 す。

応力計算方法は既工認から変更はなく，参照図書（1）に示すとおりである。
応力評価点 P1～P11 は既工認の各荷重による応力を比倍（圧力比，震度比等）し評価する。

表 5－10 応力評価点

応力評価点番号	応力評価点
P1	上鏡球形部
P2	上鏡球形部と上鏡ナックル部の接合部
P3	円筒部と上フランジの接合部
P4	下フランジと円筒部の接合部
P5	円筒部とナックル部の接合部
P6	ナックル部と上部球形部の接合部
P7	ドライウェルスプレイ管取付部
P8	上部球形部と円筒部の接合部
P9	円筒部中心部
P10	円筒部と下鏡の接合部
P11	サンドクッション部

（単位：mm）
図 5－1 ドライウェルの応力評価点

5．5 計算条件
応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。
5.6 応力の評価

「5．4 計算方法」で求めた応力が許容応力以下であること。ただし，一次十二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300 に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

6．評価結果

6． 1 設計基準対象施設としての評価結果
ドライウェルの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界 を満足しており，設計用地震力に対して十分な構造強度を有していることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1～表6－3に示す。

表 6－1 許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{4} \mathrm{~S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	2	229	\bigcirc	
				一次膜応力 + 一次曲げ応力	2	344	\bigcirc	
			一次 + 二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	5	344	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	4	344	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	11	344	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	12	344	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	22	344	\bigcirc		
			一次＋二次応力	36	393	\bigcirc		

表 6－1 許容応力状態 $I_{A} S$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）（その 2 ）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{\text {A }} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P7	ドライウェルスプレイ管取付部		一次膜応力 + 一次曲げ応力	42	344	\bigcirc	
				一次＋二次応力	82	393	\bigcirc	
	P8	上部球形部と円筒部の接合部	一次膜応力 + 一次曲げ応力	43	495	\bigcirc		
			一次＋二次応力	82	501	\bigcirc		
	P9	円筒部中心部	一次一般膜応力	44	330	\bigcirc		
			一次膜応力 + 一次曲げ応力	44	495	\bigcirc		
			一次＋二次応力	84	501	\bigcirc		
	P10	円筒部と下鏡の接合部	一次膜応力 + 一次曲げ応力	58	495	\bigcirc		
			一次＋二次応力	104	501	\bigcirc		
	P11	サンドクッション部	一次膜応力＋一次曲げ応力	65	495	\bigcirc		
			一次＋二次応力	134	501	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	2	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	2	380	\bigcirc	
			一次＋二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	6	380	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	6	380	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	15	380	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	16	380	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	29	380	\bigcirc		
			一次＋二次応力	62	393	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P7	ドライウェルスプレイ管取付部		一次膜応力 + 一次曲げ応力	70	380	\bigcirc	
				一次＋二次応力	140	393	\bigcirc	
	P8	上部球形部と円筒部の接合部	一次膜応力 + 一次曲げ応力	67	495	\bigcirc		
			一次 + 二次応力	130	501	\bigcirc		
	P9	円筒部中心部	一次一般膜応力	71	330	\bigcirc		
			一次膜応力 + 一次曲げ応力	71	495	\bigcirc		
			一次＋二次応力	138	501	\bigcirc		
	P10	円筒部と下鏡の接合部	一次膜応力 + 一次曲げ応力	90	495	\bigcirc		
			一次＋二次応力	168	501	\bigcirc		
	P11	サンドクッション部	一次膜応力 + 一次曲げ応力	104	495	\bigcirc		
			一次＋二次応力	220	501	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d} \mathrm{d}^{*}$ ）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	56	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	56	380	\bigcirc	
			一次＋二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	82	380	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	33	380	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	27	380	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	41	380	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	118	380	\bigcirc		
			一次 + 二次応力	18	393	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}{ }^{*}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P7	ドライウェルスプレイ管取付部		一次膜応力 + 一次曲げ応力	70	380	\bigcirc	
				一次 + 二次応力	82	393	\bigcirc	
	P8	上部球形部と円筒部の接合部	一次膜応力 + 一次曲げ応力	93	495	\bigcirc		
			一次 + 二次応力	82	501	\bigcirc		
	P9	円筒部中心部	一次一般膜応力	111	330	\bigcirc		
			一次膜応力 + 一次曲げ応力	111	495	\bigcirc		
			一次 + 二次応力	84	501	\bigcirc		
	P10	円筒部と下鏡の接合部	一次膜応力 + 一次曲げ応力	97	495	\bigcirc		
			一次＋二次応力	102	501	\bigcirc		
	P11	サンドクッション部	一次膜応力 + 一次曲げ応力	99	495	\bigcirc		
			一次 + 二次応力	130	501	\bigcirc		

表 6－3（1）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）

評価対象設備		評価部位	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ffc}_{\mathrm{c}}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.33	1.0	\bigcirc	
	P11	サンドクッション部	0.47	1.0	\bigcirc	

表 6－3（2）座屈応力に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）

評価対象設備		評価部位	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ff}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.50	1.0	\bigcirc	
	P11	サンドクッション部	0.70	1.0	\bigcirc	

表6－3（3）座屈応力に対する評価結果（D $\left.+P_{L}+M_{L}+S d^{*}\right)$

評価対象設備		評価部位	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ff}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.31	1.0	\bigcirc	
	P11	サンドクッション部	0.43	1.0	\bigcirc	

6． 2 重大事故等対処設備としての評価結果
ドライウェルの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価結果を表6－4及び表6－5に示す。

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	111	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	111	379	\bigcirc	
			一次＋二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	162	379	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	63	379	\bigcirc		
			一次＋二次応力	6	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	49	379	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	79	379	\bigcirc		
			一次＋二次応力	22	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	235	379	\bigcirc		
			一次＋二次応力	18	393	\bigcirc		

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P7	ドライウェルスプレイ管取付部		一次膜応力 + 一次曲げ応力	118	379	\bigcirc	
				一次＋二次応力	82	393	\bigcirc	
	P8	上部球形部と円筒部の接合部	一次膜応力 + 一次曲げ応力	165	490	\bigcirc		
			一次＋二次応力	82	501	\bigcirc		
	P9	円筒部中心部	一次一般膜応力	207	327	\bigcirc		
			一次膜応力 + 一次曲げ応力	207	490	\bigcirc		
			一次＋二次応力	84	501	\bigcirc		
	P10	円筒部と下鏡の接合部	一次膜応力 + 一次曲げ応力	157	490	\bigcirc		
			一次＋二次応力	102	501	\bigcirc		
	P11	サンドクッション部	一次膜応力 + 一次曲げ応力	151	490	\bigcirc		
			一次＋二次応力	130	501	\bigcirc		

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P1	上鏡球形部		一次一般膜応力	74	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	74	379	\bigcirc	
			一次 + 二次応力	0	393	\bigcirc		
	P2	上鏡球形部と上鏡ナックル部の接合部	一次膜応力 + 一次曲げ応力	109	379	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P3	円筒部と上フランジの接合部	一次膜応力 + 一次曲げ応力	45	379	\bigcirc		
			一次＋二次応力	10	393	\bigcirc		
	P4	下フランジと円筒部の接合部	一次膜応力 + 一次曲げ応力	36	379	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P5	円筒部とナックル部の接合部	一次膜応力 + 一次曲げ応力	55	379	\bigcirc		
			一次＋二次応力	30	393	\bigcirc		
	P6	ナックル部と上部球形部の接合部	一次膜応力 + 一次曲げ応力	158	379	\bigcirc		
			一次 + 二次応力	32	393	\bigcirc		

表6－4（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{S}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
ドライウェル	P7	ドライウェルスプレイ管取付部		一次膜応力 + 一次曲げ応力	99	379	\bigcirc	
				一次＋二次応力	138	393	\bigcirc	
	P8	上部球形部と円筒部の接合部	一次膜応力 + 一次曲げ応力	129	490	\bigcirc		
			一次＋二次応力	128	501	\bigcirc		
	P9	円筒部中心部	一次一般膜応力	153	327	\bigcirc		
			一次膜応力 + 一次曲げ応力	153	490	\bigcirc		
			一次＋二次応力	136	501	\bigcirc		
	P10	円筒部と下鏡の接合部	一次膜応力 + 一次曲げ応力	139	490	\bigcirc		
			一次＋二次応力	164	501	\bigcirc		
	P11	サンドクッション部	一次膜応力 + 一次曲げ応力	149	490	\bigcirc		
			一次＋二次応力	212	501	\bigcirc		

表6－5（1）座屈応力に対する評価結果（ $\left.\mathrm{D}+\mathrm{P}_{\mathrm{SAL}^{2}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}\right)$

評価対象設備	評価部位		$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ff}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{ff}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.32	1.0	\bigcirc	
	P11	サンドクッション部	0． 45	1． 0	\bigcirc	

表6－5（2）座屈応力に対する評価結果（D $\left.+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}\right)$

評価対象設備		評価部位	$\frac{\alpha(\mathrm{P} / \mathrm{A})}{\mathrm{ff}}+\frac{\alpha(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}}$	許容値	判定	備考
ドライウェル	P10	円筒部と下鏡の接合部	0.48	1.0	\bigcirc	
	P11	サンドクッション部	0.69	1.0	\bigcirc	

7．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－4 ドライウェルの強度計算書」

VI－2－9－2－1－2 サプレッションチェンバの耐震性についての計算書
1．概要 1
2．一般事項 1
2.1 構造計画 1
2.2 評価方針 3
2.3 適用基準 3
2.4 記号の説明 4
3．評価部位 5
4．固有周期 8
5．構造強度評価 9
5.1 構造強度評価方法 9
5.2 荷重の組合せ及び許容応力 9
5．2．1 荷重の組合せ及び許容応力状態 9
5．2．2 許容応力 9
5．2．3 使用材料の許容応力評価条件 9
5．2．4 設計荷重 14
5.3 設計用地震力 15
5.4 計算方法 16
5．4．1 応力評価点 16
5．4．2 解析モデル及び諸元 18
5．4．3 応力計算方法 21
5.5 計算条件 21
5.6 応力の評価 21
6．評価結果 22
6.1 設計基準対象施設としての評価結果 22
6．2 重大事故等対処設備としての評価結果 29
7．参照図書 34

1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－ 1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，サプレッションチ エンバが設計用地震力に対して十分な構造強度を有していることを説明するものである。

サプレッションチェンバは，設計基準対象施設においては S クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力及び重大事故等時に対 する評価について記載するものとし，前述の荷重を除く荷重によるサプレッションチェンバの評価は，平成2年5月24日付け元資庁第14466号にて認可された工事計画の添付書類（参照図書（1））による（以下「既工認」という。）。

2．一般事項

2.1 構造計画 サプレッションチェンバの構造計画を表 2－1 に示す。

表 2－1 構造計画

2．2 評価方針

サプレッションチェンバの応力評価は，添付書類「VI－1－8－1 原子炉格納施設の設計条件 に関する説明書」及び添付書類「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所において，「4．固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まるこ とを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示す。

サプレッションチェンバの耐震評価フローを図 2－1 に示す。

図 2－1 サプレッションチェンバの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（（社）日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補— 1984 （（社）日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版）（（社）日本電気協会）
（4）発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

	2.4 記号の説		
	記号	記号の説明	単位
	D	死荷重	－
	D_{1}	直径	mm
	E	縦弾性係数	MPa
	ℓ_{i}	長さ（ $\mathrm{i}=1,2,3)$	mm
	M	機械的荷重	－
	M_{L}	地震と組み合わせる機械的荷重	－
	$\mathrm{M}_{\text {SAL }}$	機械的荷重（SA 後長期（L）機械的荷重）	－
	$\mathrm{M}_{\text {SALL }}$	機械的荷重（SA 後長期（LL）機械的荷重）	－
	P	圧力	－
	P_{L}	地震と組み合わせる圧力	－
	$\mathrm{P}_{\text {SAL }}$	圧力（SA 後長期（L）圧力）	kPa
	Psall	圧力（SA 後長期（LL）圧力）	kPa
\bigcirc	R_{1}	半径	mm
\square	S	許容引張応力	MPa
I	S d	弾性設計用地震動S d により定まる地震力	－
$\stackrel{1}{~}$	S d＊	弾性設計用地震動S d により定まる地震力又は静的地震力	－
I	S s	基準地震動S sにより定まる地震力	－
5	S_{u}	設計引張強さ	MPa
（c）	Sy	設計降伏点	MPa
\sim	S_{y}（RT）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
\bigcirc	t_{1}	厚さ	mm
	T	温度	${ }^{\circ} \mathrm{C}$
	T SAL	温度（SA 後長期（L）温度）	${ }^{\circ} \mathrm{C}$
	T Sall	温度（SA 後長期（LL）温度）	${ }^{\circ} \mathrm{C}$
	α	純曲げによる全断面降伏荷重と初期降伏荷重の比または 1.5 の いずれか小さい方の値	－
	θ_{1}	角度	－
	v	ポアソン比	－
	A S S	オーステナイト系ステンレス鋼	－
	HNA	高ニッケル合金	－

3．評価部位
サプレッションチェンバの形状及び主要寸法を図 3－1 及び図 3－2 に，使用材料及び使用部位 を表3－1に示す。

A～A 断面図

$$
\mathrm{D}_{1}=\square \quad \mathrm{R}_{1}=\square \quad \mathrm{t}_{1}=\square \quad \theta_{1}=\square
$$

（単位：mm）
図 3－1 サプレッションチェンバの形状及び主要寸法
\square
（単位：mm）

図 3－2 サプレッションチェンバ強め輪の形状及び主要寸法

枠囲みの内容は商業機密の観点から公開できません。

表 3－1 使用材料表

使用部位	使用材料	備考
サプレッションチェンバ	SGV49（SGV480）	

4．固有周期
（1）設計基準対象施設としての固有周期
設計基準対象施設における固有周期は表 4－1 に示すとおりである。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔であることを確認した。

表 4－1 固有周期（設計基準対象施設）

	固有周期
(s)	

（2）重大事故等対処設備としての固有周期
重大事故等対処設備における固有周期は表 4－2 に示すとおりである。水平方向及び鉛直方向に対し，固有周期は 0.05 秒を超えており，柔であることを確認した。

表 4－2 固有周期（重大事故等対処設備）

	固有周期 (s)
卓越方向	0.091
水平方向	0.083
鉛直方向	

5．構造強度評価
5.1 構造強度評価方法
（1）サプレッションチェンバは，ボックスサポートにより拘束支持された円環状の円筒構造 であり，荷重はボックスサポートを介して原子炉建屋に伝達される。

サプレッションチェンバの耐震評価として，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」において計算された荷重を用いて，「5．4 計算方法」に示す方法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。

5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
サプレッションチェンバの荷重の組合せ及び許容応力状態のらち，設計基準対象施設 の評価に用いるものを表 5－1 に，重大事故等対処設備の評価に用いるものを表 5－2 に示 す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せ は，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せを選定する。

5．2．2 許容応力

サプレッションチェンバの許容応力は添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 5－3に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
サプレッションチェンバの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 5－4に，重大事故等対処設備の評価に用いるものを表 5－5 に示す。

表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等 の区分	荷重の組合せ＊1		許容応力状態
原子炉格納施設	原子炉格納容器	$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	S	$\begin{gathered} \text { クラスMC } \\ \text { 容器 } \end{gathered}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}{ }^{*}$	$\begin{gathered} (9) \\ (10) * 3 \\ (13) \\ (15) \\ \hline \end{gathered}$	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{gathered} (11) \\ (12) * 3 \\ (14) \end{gathered}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd} \mathrm{C}^{* 2}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記 $* 1$ ：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6の荷重の組合せのNo．を示す。
＊2：原子炉格納容器は冷却材喪失事故後の最終障壁となることから，構造体全体としての安全裕度を確認する意味で，泠却材喪失事故後の最大内圧との組合せを考慮する。
＊3：荷重の組合せとして考慮しないので評価しない。

表 5－2 荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊${ }^{1}$	機器等 の区分	荷重の組合せ＊2		許容応力状態
原子炉格納	原子炉格納	サプレッショ	常設耐震／防止	重大事故等	$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{Sd}^{* 3}$	（V（L）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$
施設	容器	ンチェンバ	常設／緩和	クラス2容器	$\mathrm{D}+\mathrm{P}_{\text {Sall }}+\mathrm{Msall}^{\text {d }}+\mathrm{S} \mathrm{s}$	（V（LL）－1）	$\mathrm{V}_{\mathrm{A}} \mathrm{S}^{* 4}$

注記 $* 1$ ：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備を示す。 ＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－7の荷重の組合せのNo．を示す。 ＊3：重大事故等後の最高内圧及び最高温度との組合せを考慮する。
＊4： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－3 クラスMC容器及び重大事故等クラス2容器の許容応力

注記＊ $1: 3$ •Sを超えるときは弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く。また， S_{m} は S と読み替える。）の簡易弾塑性解析を用いる。
＊2：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d 又はS s 地震動による応力の全振幅」と読み替える。
＊3：運転状態 I，II において，疲労解析を要しない場合は，地震動のみによる疲労累積係数を1．0以下とする。
＊4：設計•建設規格 PVB－3111に準じる場合は，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ α ） を用いる。
＊5： $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ として $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の許容限界を用いる。

表5－4 使用材料の許容応力評価条件（設計基準対象施設）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$		S (MPa)	S_{y} (MPa)	S_{u} (MPa)
サプレッションチェンバ	SGV49 （SGV480）	周囲環境 温度	104	131	237	430
(MPa)						

表5－5 使用材料の許容応力評価条件（重大事故等対処設備）

評価部材	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S (MPa)	S_{y} (MPa)	S_{u} (MPa)	$\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T)}$ (MPa)
サプレッションチェンバ	SGV49 （SGV480）	周囲環境 温度	$111 / 178^{* 1}$ $(200) * 2$	131	226	422

注記＊1：SA 後長期（L）の時 $178^{\circ} \mathrm{C}$ ， SA 後長期（LL）の時 $111^{\circ} \mathrm{C}$ 。
＊2：重大事故等時の評価温度として，保守的に限界温度を適用する。

5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用圧力，最高使用温度及び水力学的動荷重は，参照図書（1）に定めるとおりである。死荷重として，サプレッションチェン バ，ボックスサポート及びサプレッションプール水の自重を考慮する。
（2）重大事故等対処設備としての設計荷重
a．重大事故等対処設備としての評価圧力及び評価温度
重大事故等対処設備としての評価圧力及び評価温度は，以下のとおりとする。

内圧 P SAL	640 kPa （ S A 後長期（L））
内圧 P SALL	427 kPa （ S A 後長期（LL））
温度 T SAL	$178^{\circ} \mathrm{C}$（ S A 後長期（L））
温度 T SALL	$111^{\circ} \mathrm{C}$（S A 後長期（LL））

b．水力学的動荷重
重大事故等対処設備としての水力学的動荷重は，参照図書（1）に示すとおりである。

5.3 設計用地震力

評価に用いる設計用地震力を表 5－6 及び表 5－7に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

表 5－6 設計用地震力（設計基準対象施設）

据付場所 及び設置高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
	水平 方向	鉛直 方向	水平方向設計震度	$* 1$ 鉛直方向設計震度	水平方向設計震度	＊ 1 鉛直方向設計震度	水平 方向	鉛直 方向
原子炉格納容器 $\begin{gathered} \text { 0. P. } \\ -8.10 \end{gathered}$	0． 069	0.065						

注記＊1：上段は設計用床応答曲線より得られる震度，中段は設計用最大応答加速度より得られる震度，下段は静的震度を示す。
＊2：鋼製格納容器に適用される減衰定数の値。

表 5－7 設計用地震力（重大事故等対処設備）

据付場所 及び 設置高さ （m）	固有周期 （s）		弾性設計用地震動 S d又は静的震度		基準地震動 S s		減衰定数(\%)	
	水平 方向	鉛直 方向	＊ 1 水平方向設計震度	＊1 鉛直方向設計震度	$* 1$ 水平方向設計震度	$* 1$ 鉛直方向設計震度	水平 方向	鉛直 方向
原子炉格納容器 $\begin{aligned} & \text { 0. P. } \\ & -8.10 \end{aligned}$	0.091	0.083						

注記 $* 1:$ 上段は設計用床応答曲線より得られる震度，中段は設計用最大応答加速度より得られる震度，下段は静的震度を示す。
＊2：鋼製格納容器に適用される減衰定数の値。

枠囲みの内容は商業機密の観点から公開できません。

5.4 計算方法

5．4．1 応力評価点
サプレッションチェンバの応力評価点は，サプレッションチェンバを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－8 及び図 5－1 に示す。

表 5－8 応力評価点

応力評価点番号	応力評価点
P1	胴中央部外側
P2	胴中央部底部
P3	胴中央部内側
P4	胴中央部頂部
P5	胴エビ継手部外側
P6	胴エビ継手部底部
P7	胴エビ継手部内側
P8	胴エビ継手部頂部
P9	内側ボックスササ゚ート取付部
P10	外側ボックスサポート取付部

$\mathrm{A} \sim \mathrm{A}$ 断面図

図 5－1 サプレッションチェンバの応力評価点

5．4．2 解析モデル及び諸元

設計基準対象施設としての評価及び重大事故等対処設備としての評価には，以下の 3 つの解析モデルを用いる。

解析コードは「MSCN N S T R A N 」 を使用する。なお，評価に用いる解析コー ドの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
（1）サプレッションチェンバ全体はりモデル
応力評価点 P1～P4 の地震荷重による応力は，サプレッションチェンバ全体をはり要素 にモデル化して計算する。解析モデルを図 5－2 に，諸元を表 5－9 に示す。ボックスサポ ート下端を
（2）サプレッションチェンバ部分シェルモデル（圧力荷重）
応力評価点 P1～P10 の圧力による応力は，サプレッションチェンバを構成する円筒の うち 2 個をシェル要素にモデル化して計算する。解析モデルを図 5－3に，諸元を表5－9に示す。円筒部の端面を

（3）サプレッションチェンバ部分シェルモデル（強制変位荷重）
応力評価点 P1～P10 の死荷重による応力及び応力評価点 P5～P10 の地震荷重による応力は，サプレッションチェンバを構成する円筒のうち 2 個をシェル要素にモデル化して計算する。解析モデルを図5－4に，諸元を表5－9に示す。円筒部端面の各節点を \qquad

ボックスサポート下端（代表）

図 5－2 解析モデル（1）サプレッションチェンバ全体はりモデル

円筒部端面（代表）

ボックスサポート下端 （代表）

図 5－3 解析モデル（2）サプレッションチェンバ部分シェルモデル（圧力荷重）

図 5－4 解析モデル（3）サプレッションチェンバ部分シェルモデル（強制変位荷重）

表 5－9（1）機器諸元（その 1）

項目	記号	単位	入力値	
			設計基準対象施設	重大事故等対処設備
材質	－	－	SGV49（SGV480 相当）	
機器質量	－	ton		
水密度	－	ton／m ${ }^{3}$		
水位	－	mm	0．P．-3800	0．P．-1514
温度条件	T	${ }^{\circ} \mathrm{C}$		
縦弾性係数	E	MPa		
ポアソン比	v	－		

表 5－9（2）機器諸元（その 2）

項目			個数
要素数	（1）	サプレッションチェンバ全体はりモデル	
	（2）	サプレッションチェンバ部分シェルモデル（圧力荷重）	
	（3）	サプレッションチェンバ部分シェルモデル（強制変位荷重）	
節点数	（1）	サプレッションチェンバ全体はりモデル	
	（2）	サプレッションチェンバ部分シェルモデル（圧力荷重）	
	（3）	サプレッションチェンバ部分シェルモデル（強制変位荷重）	

5．4．3 応力計算方法

サプレッションチェンバの応力計算方法について以下に示す。
（1）設計基準対象施設としての応力計算
設計基準対象施設における応力は，応力評価点 P1～P4 に対し，「5．4．2 解析モデル及 び諸元」に示すサプレッションチェンバ全体はりモデル及びサプレッションチェンバ部分シェルモデルにより算出する。また，応力評価点 P5～P10 に対し，「5．4．2 解析モデ ル及び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を用いる。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。
（2）重大事故等対処設備としての応力計算
重大事故等対処設備における応力は，応力評価点 P1～P4 に対し，「5．4．2 解析モデル及び諸元」に示すサプレッションチェンバ全体はりモデル及びサプレッションチェンバ部分シェルモデルにより算出する。また，応力評価点 P5～P10 に対し，「5．4．2 解析モ デル及び諸元」に示すサプレッションチェンバ部分シェルモデルにより算出する。水力学的動荷重は，参照図書（1）に示す水力学的動荷重による応力を比例倍して算出する。水平 2 方向及び鉛直方向の設計用地震力による応力は，二乗和平方根により組み合わせる。

5.5 計算条件

応力解析に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」 に示す。

5.6 応力の評価

「5．4 計算方法」で求めた応力が許容応力以下であること。ただし，一次十二次応力が許容値を満足しない場合は，設計•建設規格 PVB－3300 に基づいて疲労評価を行い，疲労累積係数が 1.0 以下であること。

6．評価結果

6.1 設計基準対象施設としての評価結果

サプレッションチェンバの設計基準対象施設としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており，設計用地震力に対して十分な構造強度を有していることを確認 した。
（1）構造強度評価結果
構造強度評価の結果を表 6－1 及び表 6－2 に示す。

表 6－1 許容応力状態 $I_{A} S$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}^{*}$ ）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{4} \mathrm{~S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	25	237	\bigcirc	
				一次膜応力 + 一次曲げ応力	25	356	\bigcirc	
			一次＋二次応力	26	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	38	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	38	356	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	26	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	26	356	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	19	237	\bigcirc		
			一次膜応力 + 一次曲げ応力	19	356	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	26	356	\bigcirc		
			一次＋二次応力	40	393	\bigcirc		

表 6－1 許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{4} \mathrm{~S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	78	356	\bigcirc	
				一次＋二次応力	46	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	43	356	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	18	356	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	94	356	\bigcirc		
			一次＋二次応力	126	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	84	356	\bigcirc		
			一次＋二次応力	86	393	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	34	258	\bigcirc	
				一次膜応力 + 一次曲げ応力	34	387	\bigcirc	
			一次＋二次応力	44	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	48	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	48	387	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	35	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	35	387	\bigcirc		
			一次＋二次応力	44	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	29	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	29	387	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	41	387	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		

表 6－2（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	92	387	\bigcirc	
				一次 + 二次応力	82	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	69	387	\bigcirc		
			一次＋二次応力	130	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	25	387	\bigcirc		
			一次＋二次応力	46	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	131	387	\bigcirc		
			一次＋二次応力	232	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	111	387	\bigcirc		
			一次＋二次応力	160	393	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d} \mathrm{N}^{*}$ ）（その 1 ）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	65	258	\bigcirc	
				一次膜応力 + 一次曲げ応力	65	387	\bigcirc	
			一次＋二次応力	26	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	65	258	\bigcirc		
			一次膜応力 + 一次曲げ応力	65	387	\bigcirc		
			一次＋二次応力	28	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	43	387	\bigcirc		
			一次＋二次応力	40	393	\bigcirc		

表 6－2（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d} \mathrm{d}^{*}$ ）（その 2）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	42	387	\bigcirc	
				一次＋二次応力	46	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	70	387	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	41	387	\bigcirc		
			一次＋二次応力	26	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	82	387	\bigcirc		
			一次＋二次応力	126	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	77	387	\bigcirc		
			一次＋二次応力	86	393	\bigcirc		

6．2 重大事故等対処設備としての評価結果
サプレッションチェンバの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有している ことを碓認した。
（1）構造強度評価結果
構造強度評価結果を表6－3に示す。

表6－3（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}^{2}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その1）

評価対象設備	評価部位		応力分類			判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	198	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	198	379	\bigcirc	
			一次＋二次応力	48	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	200	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	200	379	\bigcirc		
			一次＋二次応力	52	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	198	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	198	379	\bigcirc		
			一次＋二次応力	48	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	199	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	199	379	\bigcirc		
			一次＋二次応力	52	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	102	379	\bigcirc		
			一次 + 二次応力	78	393	\bigcirc		

表6－3（1）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SAL}^{2}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$ ）（その 2 ）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	112	379	\bigcirc	
				一次＋二次応力	52	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	160	379	\bigcirc		
			一次＋二次応力	72	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	125	379	\bigcirc		
			一次＋二次応力	46	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	212	379	\bigcirc		
			一次＋二次応力	138	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	236	379	\bigcirc		
			一次＋二次応力	160	393	\bigcirc		

表6－3（2）許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{SALL}}+\mathrm{M}_{\mathrm{SALL}}+\mathrm{S} \mathrm{s}$ ）（その1）

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P1	胴中央部外側		一次一般膜応力	168	253	\bigcirc	
				一次膜応力 + 一次曲げ応力	168	379	\bigcirc	
			一次＋二次応力	92	393	\bigcirc		
	P2	胴中央部底部	一次一般膜応力	171	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	171	379	\bigcirc		
			一次＋二次応力	102	393	\bigcirc		
	P3	胴中央部内側	一次一般膜応力	168	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	168	379	\bigcirc		
			一次＋二次応力	92	393	\bigcirc		
	P4	胴中央部頂部	一次一般膜応力	172	253	\bigcirc		
			一次膜応力 + 一次曲げ応力	172	379	\bigcirc		
			一次＋二次応力	102	393	\bigcirc		
	P5	胴エビ継手部外側	一次膜応力 + 一次曲げ応力	111	379	\bigcirc		
			一次＋二次応力	154	393	\bigcirc		

評価対象設備	評価部位		応力分類	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$		判定	備考	
			算出応力	許容応力				
			MPa	MPa				
$\begin{gathered} \text { サプレッショ } \\ \text { ンチェンバ } \end{gathered}$	P6	胴エビ継手部底部		一次膜応力 + 一次曲げ応力	105	379	\bigcirc	
				一次＋二次応力	98	393	\bigcirc	
	P7	胴エビ継手部内側	一次膜応力 + 一次曲げ応力	152	379	\bigcirc		
			一次＋二次応力	140	393	\bigcirc		
	P8	胴エビ継手部頂部	一次膜応力 + 一次曲げ応力	110	379	\bigcirc		
			一次＋二次応力	90	393	\bigcirc		
	P9	内側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	196	379	\bigcirc		
			一次＋二次応力	264	393	\bigcirc		
	P10	外側ボックスサポート取付部	一次膜応力 + 一次曲げ応力	233	379	\bigcirc		
			一次＋二次応力	310	393	\bigcirc		

7．参照図書
（1）女川原子力発電所第 2 号機 第 2 回工事計画認可申請書添付書類「IV－3－1－1－13 サプレッションチェンバの強度計算書」

[^0]: ○ 2
 （3） $\mathrm{VI}-2-6-5-4-1-2$
 R 0

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

[^2]: 枠囲みの内容は商業機密の観点から公開できません。

[^3]: 枠囲みの内容は商業機密の観点から公開できません。

[^4]: 枠囲みの内容は商業機密の観点から公開できません。

[^5]: 枠囲みの内容は商業機密の観点から公開できません。

[^6]: 枠囲みの内容は商業機密の観点から公開できません。

[^7]: ＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

[^8]: ＊2：固有値解析より 0.05 秒以下であり剛であることを確認した。

[^9]: 枠囲みの内容は商業機密の観点から公開できません。

[^10]: 枠囲みの内容は商業機密の観点から公開できません。

[^11]: 枠囲みの内容は商業機密の観点から公開できません。

[^12]: 枠囲みの内容は商業機密の観点から公開できません。

[^13]: 枠囲みの内容は商業機密の観点から公開できません。

[^14]: 枠囲みの内容は商業機密の観点から公開できません。

[^15]: フィルタ装置入口圧力（広帯域）の構造計画を表 2－1 に示す。

[^16]: 枠囲みの内容は商業機密の観点から公開できません。

[^17]: O 2
 （3）
 $\mathrm{VI}-2-8-3-1-3$
 R 0

[^18]: 注記＊1 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^19]: 注記＊1 ：各モードの固有周期に対し，設計用床応答曲線より得られる震度を示す。

[^20]: 枠囲みの内容は商業機密の観点から公開できません。

