本資	資料のうち,	枠囲みの内容
は,	機密事項に	属しますので
公開	「できません	~o

柏崎刈羽原子力発電所第	97号機 工事計画審査資料
資料番号	KK7 補足−028 改 1
提出年月日	2020年10月12日

工事計画に係る説明資料(機器・配管系の耐震性についての計算書等)

2020年10月 東京電力ホールディングス株式会社 1. 工事計画添付書類に係る補足説明資料

添付書類の記載内容を補足するための資料を以下に示す。

資料	工認添付書類	補足説明資料
1	V-2-1-7 設計用床応答曲線の作成方針	KK7 補足-028-1 設計用床応答曲線の作成方針に関する補足 説明資料
2	 V-2-2-4 原子炉本体の基礎の地震応答計算書 V-2-3-1 炉心,原子炉圧力容器及び圧力容器内部構 造物の地震応答計算書 	KK7 補足-028-2 建屋-機器連成解析に関する補足説明資料
3	V-2-1-9 機能維持の基本方針	KK7 補足-028-3 耐震評価における等価繰返し回数について
4	V-2 耐震性に関する説明書	KK7 補足-028-4 動的機能維持の詳細評価について(新たな 検討又は詳細検討が必要な設備の機能維持 評価について)
5	V-2 耐震性に関する説明書	KK7 補足-028-5 弁の動的機能維持評価について
6	V-2 耐震性に関する説明書	KK7 補足-028-6 ケミカルアンカの高温環境下での使用につ いて
7	V-2 耐震性に関する説明書	KK7 補足-028-7 加振試験について
8	 V-2-10-2 浸水防護施設の耐震性に関する説明書 V-2-別添2 溢水防護に係る施設の耐震性に関する説明書 V-3-別添3 津波又は溢水への配慮が必要な施設の強度 に関する説明書 	KK7 補足-028-8 浸水防護施設の耐震性に関する説明書の補 足説明資料
9	V-2-別添3 可搬型重大事故等対処設備の耐震性に関す る説明書	KK7 補足-028-9 可搬型重大事故等対処設備の耐震性に関す る説明書に係る補足説明資料
10	 V-1-2-1 原子炉本体の基礎に関する説明書 V-2 耐震性に関する説明書 V-3 強度に関する説明書 	KK7 補足-028-10 機電分耐震計算書の補足について
11	V-2-別添1 火災防護設備の耐震性に関する説明書	KK7 補足-028-11火災防護設備の耐震性に関する説明書の補足説明資料

設計用床応答曲線の作成方針に関する補足説明資料

- 1. 設計用床応答曲線の作成方法及び適用方法について
- 2. 機器・配管系の耐震設計における剛柔判定を行う固有周期について
- 3. 原子炉建屋の床応答曲線における水平方向(NS方向, EW方向)の応答の相違の要因 について

1. 設計用床応答曲線の作成方法及び適用方法について

目 次	
-----	--

1.	概要 ••••••	•• 1
2.	設計用床応答曲線 I の作成方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 1
2. 2	1 基本方針	·• 1
2.2	2 地震応答解析の実施	•• 3
2.3	3 応答スペクトルの作成 ・・・・・	•• 5
2.4	4 基礎地盤の傾斜の影響の考慮	•• 5
2.5	5 機器の固有周期のずれ等の影響の考慮 ・・・・・・・・・・・・・・・・・・・・・・・・	•• 5
2.6	6 材料物性の不確かさ等の影響の考慮 ······	•• 5
3.	設計用床応答曲線Ⅱの作成方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 7
4.	設計用床応答曲線の適用方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•• 7

添付資料1 各設備の耐震計算書に適用する設計用地震力

1. 概要

機器・配管系の評価においては、V-2-1-7「設計用床応答曲線の作成方針」に示す通り、設計 用床応答曲線として、設計用床応答曲線 I 又は設計用床応答曲線 II を用いる。

ここで,設計用床応答曲線 I は,その作成過程において,応答スペクトルの拡幅や複数の応答 スペクトルの包絡等の処理を行うことで,材料物性の不確かさ等が機器・配管系の評価に及ぼす 影響を,予め織り込めるように配慮して作成するものであり,設計用床応答曲線 II は,全ての固 有周期における震度が設計用床応答曲線 I 以上となるように作成するものである。

本資料は、これらの設計用床応答曲線の作成方法及び適用方法について説明するものである。 ここで、設計用床応答曲線を作成する建物・構築物等を、表1-1に整理する。

分類	施設名称			
	原子炉建屋			
	大型機器系(原子炉本体基礎等)			
	炉内構造物系(圧力容器内部構造物等)			
石井 州加 。 林美 经门州加	タービン建屋			
建物・博楽物	コントロール建屋			
	廃棄物処理建屋			
	緊急時対策所			
	格納容器圧力逃がし装置基礎			
	軽油タンク基礎			
导力委要 [. + 排`生物	燃料移送系配管ダクト			
医外里安工 个 傅道物	第一ガスタービン発電機基礎			
	第一ガスタービン発電機用燃料タンク基礎			

表 1-1 設計用床応答曲線を作成する建物・構築物等

- 2. 設計用床応答曲線 I の作成方法
- 2.1 基本方針

設計用床応答曲線 I の作成方法の全体像は, 図 2-1 に示す通りである。以降, 「2.2」~「2.6」 で各項目の詳細な説明を行う。

図 2-1 設計用床応答曲線 I の作成方法

2.2 地震応答解析の実施

(1) 建物・構築物

建物・構築物の地震応答解析は、表 2-2の解析ケースで実施する。なお、表 2-2は、建物・構築物の地震応答計算書に記載される解析ケースを整理したものである。ここで、本資料では、材料物性の不確かさ等を考慮したケース(ケース 2~8)を「不確かさケース」として扱う。

○:地震応答解析を実施する解析ケース / −:地震応答解析を実施しない解析ケース

施設 基本 ケース 材料物性の不確かさ等を考慮したケース									
	地震古效	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	ケース7	ケース8
名称	計算書	工認モデル	建屋剛性+σ 地盤剛性+σ	建屋剛性 $-\sigma$ 地盤剛性 $-\sigma$	建屋剛性 コア平均	建屋剛性 -2σ	回転ばね低減	原子炉本体基礎 ダイヤフラムフロア 実強度	原子炉本体基礎 スケルトン曲線 曲線包絡
原子炉建屋	V-2-2-1	0	0	0	0	0	0	_	_
大型機器系	V-2-2-4	0	0	0	0	0	0	0	0
炉内構造物系	V-2-3-1	0	0	0	0	0	0	0	0
タービン建屋	V-2-2-5	0	0	0	0	0	_	_	—
コントロール 建屋	V-2-2-9	0	0	0	0	0	0	_	_
廃棄物処理建屋	V-2-2-11	0	0	0	0	0	_	_	_
緊急時対策所	V-2-2-15	0	0	0	0	0	_	—	_
格納容器圧力 逃がし装置基礎	V-2-2-13	0	〇 (地盤剛性+σ)	〇 (地盤剛性-σ)	_	_	_	_	_

表 2-2 地震応答解析を実施する解析ケースの整理(建物・構築物)

(2) 屋外重要土木構造物

屋外重要土木構造物の地震応答解析は,図 2-2 の図中に記載に記載するケース③,④, ⑤の解析ケースで実施する。(KK 補足-027 資料1参照)

ここで、本資料では、ケース④を「基本ケース」、ケース③及びケース⑤を「不確かさケ ース」として扱う。

図 2-2 地震応答解析を実施する解析ケースの整理(屋外重要土木構造物)

2.3 応答スペクトルの作成

「2.2」で示した地震応答解析(基本ケース及び不確かさケース)から得られる,加速度応答時刻歴を入力波として,応答スペクトルを作成する。

以降,本資料では,基本ケースの地震応答解析に基づく応答スペクトルを「応答スペクトル (基本ケース)」,不確かさケースの地震応答解析に基づく応答スペクトルを「応答スペクトル (不確かさケース)」という。

2.4 基礎地盤の傾斜の影響の考慮(図 2-3)

水平方向の応答スペクトル(基本ケース)に対して,工事計画に係る補足説明資料【KK7 補 足-024 資料7 基礎地盤傾斜による影響の補足説明資料】に示す方法に従い,全周期に sin θ(θ は傾斜角)以上の震度を加算する。なお,本項は地震動及び地殻変動による基礎地盤の傾斜が 1/2000 を超える地震動にのみ考慮することを原則とする。

2.5 機器の固有周期のずれ等の影響の考慮(図2-4)

「2.3」で作成した応答スペクトル(基本ケース)に対して、「2.4」に示した方法で「基礎地 盤の傾斜の影響」を考慮した上で、JEAG4601-1987を参照し、機器の固有周期のずれ や、地盤物性、建屋剛性、地盤ばね定数の算出式及び減衰定数、模擬地震波の位相特性等とい った因子の変動に伴う応答スペクトルの変動の影響をカバーすることを目的として、周期軸方 向に±10%拡幅することとする。

2.6 材料物性の不確かさ等の影響の考慮(図 2-5)

「2.5」で作成したものと、「2.3」で作成した応答スペクトル(不確かさケース)を包絡させることにより、材料物性の不確かさ等の影響についての配慮を行い、これを設計用床応答曲線 Iとする。

図 2-3 基礎地盤の傾斜の影響を考慮する方法

図 2-4 機器の固有周期のずれ等の影響を考慮する方法(±10%拡幅)

図 2-5 材料物性の不確かさ等の影響を考慮する方法

3. 設計用床応答曲線Ⅱの作成方法

設計用床応答曲線IIは,設計用床応答曲線Iの設定に先立って機器・配管系の耐震設計を行 うことを目的として作成したものであり,事前検討段階の地震応答解析モデル(平成18年耐震 設計審査指針改定に伴い実施した耐震安全性評価に用いたもの等)による床応答曲線を係数倍 すること等により作成し,設計用床応答曲線Iを包絡することを確認したものを使用する。

ここで,設計用床応答曲線 I は,「2.」に示した方法で,基礎地盤の傾斜の影響や材料物性の不確かさ等の影響を考慮しているため,設計用床応答曲線 II も,これらの影響を考慮したものとなる。

4. 設計用床応答曲線の適用方法

機器・配管系の評価においては,設計用床応答曲線 I 又は設計用床応答曲線 II を用いる。 機器・配管系の評価に用いる設計用床応答曲線の一例を図 4-1 に示す。

ここで,設計用床応答曲線I,設計用床応答曲線IIは,それぞれ「2.」,「3.」に示した方法 で,基礎地盤の傾斜の影響や材料物性の不確かさ等の影響を予め織り込んでいるため,機器・ 配管系の評価において,いずれの条件を用いた場合でも,その結果は,これらの影響を考慮し たものとなる。また,各設備の耐震計算書に適用する設計用床応答曲線,設計用最大応答加速 度,地震荷重(せん断力,モーメント,配管反力等)を添付資料1に示す。

図 4-1 設計用床応答曲線の例

各設備の耐震計算書に適用する設計用地震力

各設備の耐震計算書に適用する設計用床応答曲線,設計用最大応答加速度,地震荷重(せん断力, モーメント,配管反力等)(以下本資料では総称して「設計用地震力」という。)を表2に整理する。 表2では設計用地震力を,以下の3種類に区別している。

・設計用 I

・設計用Ⅱ

・その他

ここで、「設計用 I 」及び「設計用 II」は、V-2-1-7「設計用床応答曲線の作成方針」、V-2-2-4 「原子炉本体の基礎の地震応答計算書」、V-2-3-1「炉心、原子炉圧力容器及び圧力容器内部構造物 の地震応答計算書」に示す設計用地震力である。また、「その他」は評価の合理化や保守的な条件で 評価を行うことを目的として、下記の方法で個別に設定した設計用地震力であり、設計用 I による 値を上回ることを確認している。

・過去の評価(建設時工認での評価,耐震設計審査指針改定時の耐震安全性評価等)の際に用いた設計用最大応答加速度又は地震荷重を活用するもの(シュラウドサポート,ブラケット等)

・配管反力の算出に先立ち工学的判断により定めた地震荷重を用いて評価を行うもの(ノズル等)

表2においては「設計用Ⅰ」,「設計用Ⅱ」,「その他」を用いている場合に,それぞれ「Ⅰ」,「Ⅱ」, 「その他」と表記し,同一の耐震計算書で複数の耐震条件を使用する場合は「分類等」欄に表1の 分類を記載している。

	分類	内容	設備例
a.	機器別	同一の耐震計算書に複数の機器が存在し,機器毎 (管についてはモデル毎)に設計用Ⅰ,設計用Ⅱを 使い分けているもの	 ・管 ・可燃性ガス濃度制御系 再結合装置 ・非常用ディーゼル発電機
b.	Ss/Sd 別	Ss を用いた評価, Sd を用いた評価で設計用Ⅰ,設計用Ⅱ,その他を使い分けているもの	 ・上部格子板 ・炉心支持板 ・燃料支持金具
с.	DBA/SA 別	設計基準対処施設としての評価,重大事故対処設備 としての評価で設計用Ⅰ,設計用Ⅱを使い分けてい るもの	・下部ドライウェル機器搬入用 ハッチ
d.	弁動的	構造強度評価で設計用Ⅱを使用しているが,弁動的 機能維持評価では,弁動的機能維持評価の方針に従 い設計用Ⅰを使用しているもの	・管
е.	機器動的	構造強度評価で設計用Ⅱを使用しているが,動的・ 電気的機能維持評価では,機能維持評価用加速度が 機能確認済加速度以内に収まるように設計用Ⅰを 使用しているもの	・燃料プール冷却浄化系ポンプ ・非常用ガス処理系排風機

表1 複数の耐震条件を使用する場合の分類

ᅮᆁᇛᆃᅭᄆ	図書名称		設計用床応答曲線又は	設計用最大応答加速度	地震荷重	分類等
上認凶害俄方		設備を設直9 る旭設石 が	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	
V −1	説明書	—	_	_	-	—
V-1-2	原子炉本体の説明書	—	—	—	-	—
V-1-2-1	原子炉本体の基礎に関する説明書	大型機器系	Ι	_	I , その他	b.(Ss/Sd別)
V-2	耐震性に関する説明書	_	-	_	-	_
V-2-1	耐震設計の基本方針	_	_	_	-	_
V-2-2	耐震設計上重要な設備を設置する施設の耐震性についての計算書	_	_	_	-	_
V-2-3	原子炉本体の耐震性に関する説明書	-	—	_	-	_
V-2-3-1	炉心, 原子炉圧力容器及び圧力容器内部構造物の地震応答計算書	-	—	_	-	_
V-2-3-2	炉心の耐震性についての計算書	—	-	_	-	—
V-2-3-2-1	炉心の耐震計算結果	—	-	_	-	—
V-2-3-2-1(1)	燃料集合体の耐震性についての計算書	炉内構造物系	Ι	_	I	_
V-2-3-2-2	炉心支持構造物の応力解析の方針	—	—	—	-	—
V-2-3-2-3	炉心支持構造物の応力計算書	—	-	_	-	—
Ⅴ-2-3-2-3に含む	炉心シュラウドの応力計算	炉内構造物系	П	_	Ⅱ,その他	b.(Ss/Sd別)
Ⅴ-2-3-2-3に含む	シュラウドサポートの応力計算	炉内構造物系	Ⅱ, その他	_	Ⅱ,その他	b.(Ss/Sd別)
▼-2-3-2-3に含む	上部格子板の応力計算	炉内構造物系	Ι, Π	_	I, II, その他	b.(Ss/Sd別)
▼-2-3-2-3に含む	炉心支持板の応力計算	炉内構造物系	Ι, Π	_	Ι, Π	b.(Ss/Sd別)
Ⅴ-2-3-2-3に含む	燃料支持金具の応力計算	炉内構造物系	Ι, Π	_	Ι, Π	b.(Ss/Sd別)
Ⅴ-2-3-2-3に含む	制御棒案内管の応力計算	炉内構造物系	—	_	Ⅱ, その他	b.(Ss/Sd別)
V-2-3-3	原子炉圧力容器の耐震性についての計算書	-	-	_	-	_
V-2-3-3-1	原子炉圧力容器本体の耐震性についての計算書	—	_	—	_	_
V-2-3-3-1-1	原子炉圧力容器の応力解析の方針	-	-	—	—	—
V-2-3-3-1-2	原子炉圧力容器の耐震計算結果	-	-	—	—	—
▼-2-3-3-1-2に含む	ブラケット類の応力計算	—	—	—	-	—

表2 各設備の耐震計算書に適用する設計用地震力(2/22)

ᅮᇌᇭᆃᅭᇦ	同 妻友 	設備を設置する施設名称	設計用床応答曲線又は	t設計用最大応答加速度	地震荷重 (せん断力, モーメント, 配管反力等)	分類等
上 認 凶 書 畬 亏	凶者石竹		構造強度評価	動的·電気的機能維持評価		
▼-2-3-3-1-2に含む	スタビライザブラケット	大型機器系	_	-	Ⅱ, その他	b.(Ss/Sd別)
▼-2-3-3-1-3に含む	蒸気乾燥器支持ブラケット	大型機器系	Ⅱ, その他	-	_	b.(Ss/Sd別)
Ⅴ-2-3-3-1-2に含む	給水スパージャブラケット	大型機器系	_	-	その他	_
▼-2-3-3-1-2に含む	低圧注水スパージャブラケット	大型機器系	_	-	その他	_
▼-2-3-3-1-2に含む	原子炉圧力容器支持スカートの応力計算	大型機器系	Ⅱ, その他	-	Ⅱ, その他	b.(Ss/Sd別)
▼-2-3-3-1-2に含む	原子炉圧力容器基礎ボルトの応力計算	大型機器系	П	-	Ⅱ, その他	b.(Ss/Sd別)
V-2-3-3-1-3	原子炉圧力容器本体の応力計算書	-	—	-	_	—
Ⅴ-2-3-3-1-3に含む	胴板の応力計算	大型機器系	Ⅱ, その他	-	Ⅱ, その他	b.(Ss/Sd別)
Ⅴ-2-3-3-1-3に含む	下部鏡板の応力計算	炉内構造物系	Ⅱ, その他	-	Ⅱ, その他	b.(Ss/Sd別)
Ⅴ-2-3-3-1-3に含む	制御棒駆動機構ハウジング貫通孔の応力計算	炉内構造物系	Ⅱ, その他	-	Ⅱ, その他	b.(Ss/Sd別)
▼-2-3-3-1-3に含む	原子炉冷却材再循環ポンプ貫通孔(N1)の応力計算	炉内構造物系	I	-	I	_
Ⅴ-2-3-3-1-3に含む	主蒸気ノズル(N3)の応力計算	大型機器系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	給水ノズル(N4)の応力計算	大型機器系	_	-	その他	_
▼-2-3-3-1-3に含む	低圧注水ノズル(N6)の応力計算	大型機器系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	上蓋スプレイ・ベントノズル(N7)の応力計算	原子炉建屋	_	-	その他	—
Ⅴ-2-3-3-1-3に含む	原子炉停止時冷却材出ロノズル(N8, N10)の応力計算	大型機器系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	原子炉冷却材再循環ポンプ差圧検出ノズル(N9)の応力計算	大型機器系 炉内構造物系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	炉心支持板差圧検出ノズル(N11)の応力計算	大型機器系 炉内構造物系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	計装ノズル(N12, N13, N14)の応力計算	大型機器系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	ドレンノズル(N15)の応力計算	大型機器系	_	-	その他	_
Ⅴ-2-3-3-1-3に含む	高圧炉心注水ノズル(N16)の応力計算	大型機器系 炉内構造物系	_	-	その他	_
V-2-3-3-2	原子炉圧力容器付属構造物の耐震性についての計算書	—		-	_	—
V-2-3-3-2-1	原子炉圧力容器付属構造物の耐震計算結果	-	-	-	-	-
▼-2-3-3-2-1に含む	原子炉冷却材再循環ポンプモータケーシングの応力計算	炉内構造物系	I	-	I	_

表2 各設備の耐震計算書に適用する設計用地震力(3/22)

ᅮᆁᇛᅕᅭᄆ	[] 국 성 관	設備を設置する施設名称	設計用床応答曲線又は	t設計用最大応答加速度	地震荷重 (せん断力, モーメント, 配管反力等)	分類等
上認凶書 奋 亏	凶舌名称		構造強度評価	動的·電気的機能維持評価		
V-2-3-3-2-2	原子炉圧力容器スタビライザの応力計算書	大型機器系	_	_	Ⅱ, その他	b.(Ss/Sd別)
V-2-3-3-2-3	制御棒駆動機構ハウジングレストレントビームの応力計算書	大型機器系 炉内構造物系	П	_	Ⅱ, その他	b.(Ss/Sd別)
V-2-3-3-3	原子炉圧力容器内部構造物の耐震性についての計算書	_	—	-	_	_
V-2-3-3-3-1	原子炉圧力容器内部構造物の応力解析の方針	—	—	-	-	-
V-2-3-3-3-2	原子炉圧力容器内部構造物の耐震計算結果	—	—	-	-	-
Ⅴ-2-3-3-3-2に含む	蒸気乾燥器の応力計算	大型機器系	П	-	_	_
▼-2-3-3-3-2に含む	気水分離器及びスタンドパイプの応力計算	炉内構造物系	_	-	Ⅱ, その他	b.(Ss/Sd別)
▼-2-3-3-3-2に含む	シュラウドヘッドの応力計算	炉内構造物系	_	-	Ⅱ, その他	b.(Ss/Sd別)
▼-2-3-3-3-2に含む	中性子束計測案内管の応力計算	炉内構造物系	П	-	_	_
V-2-3-3-3-3	原子炉圧力容器内部構造物の応力計算書	—	—	-	-	_
▼-2-3-3-3-3に含む	給水スパージャの応力計算	大型機器系	П	_	_	_
▼-2-3-3-3-3に含む	高圧炉心注水スパージャの応力計算	炉内構造物系	П	_	_	_
▼-2-3-3-3-3に含む	低圧注水スパージャの応力計算	大型機器系	П	-	_	_
▼-2-3-3-3-3に含む	高圧炉心注水系配管(原子炉圧力容器内部)の応力計算	炉内構造物系	П	-	_	_
V-2-4	核燃料物質の取扱施設及び貯蔵施設の耐震性に関する説明書	—	—	-	-	-
V-2-4-1	核燃料物質の取扱施設及び貯蔵施設の耐震計算結果	_	_	-	_	_
▼-2-4-1に含む	制御棒・破損燃料貯蔵ラックの耐震性についての計算書	原子炉建屋	I	-	_	_
V-2-4-2	使用済燃料貯蔵設備の耐震性についての計算書	—	—	-	-	-
V-2-4-2-1	使用済燃料貯蔵プール及びキャスクピットの耐震性についての計算書	_	_	-	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-4-2-2	使用済燃料貯蔵ラックの耐震性についての計算書	原子炉建屋	I	-	_	_
V-2-4-2-3	使用済燃料貯蔵プール水位・温度(SA)の耐震性についての計算書	原子炉建屋	I	I	_	_
V-2-4-2-4	使用済燃料貯蔵プール水位・温度(SA広域)の耐震性についての計算書	原子炉建屋	I	I	_	_
V-2-4-2-5	使用済燃料貯蔵プール監視カメラの耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-4-2-6	使用済燃料貯蔵プール監視カメラ用空冷装置の耐震性についての計算書	原子炉建屋	П	п	_	_

て割回事業日	図ま々な	設備を設置する施設名称	設計用床応答曲線又は	設計用最大応答加速度	地震荷重 (せん断力, モーメント, 配管反力等)	分類等
工芯凶害毋方	凶音石仰		構造強度評価	動的·電気的機能維持評価		
V-2-4-3	使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書	—	—	—	—	—
V-2-4-3-1	燃料プール冷却浄化系の耐震性についての計算書	—	-	-	-	—
V-2-4-3-1-1	燃料プール冷却浄化系熱交換器の耐震性についての計算書	原子炉建屋	Ш	_	-	_
V-2-4-3-1-2	燃料プール冷却浄化系ポンプの耐震性についての計算書	原子炉建屋	Ш	I	—	e.(機器動的)
V-2-4-3-1-3	管の耐震性についての計算書	原子炉建屋	Ш	—	—	_
V-2-4-3-2	燃料プール代替注水系の耐震性についての計算書	_	-	-	-	_
V-2-4-3-2-1	管の耐震性についての計算書	原子炉建屋	І, Ш	_	-	a.(機器別)
V-2-5	原子炉冷却系統施設の耐震性に関する説明書	—	—	—	—	—
V-2-5-1	原子炉冷却系統施設の耐震計算結果	—	—	—	—	—
▼-2-5-1に含む	原子炉冷却材再循環ポンプの耐震性についての計算書(原子炉冷却系統施 設 原子炉冷却材再循環設備)	大型機器系	П	—	—	_
▼-2-5-1に含む	管の耐震性についての計算書(原子炉冷却材の循環設備 復水給水系)	大型機器系 タービン建屋	Ι, Π	I	—	a.(機器別) d.(弁動的)
▼-2-5-1に含む	管の耐震性についての計算書(原子炉冷却材浄化設備 原子炉冷却材浄化 系)	原子炉建屋 大型機器系	П	I	—	d.(弁動的)
V-2-5-2	原子炉冷却材の循環設備の耐震性についての計算書	_	-	-	-	_
V-2-5-2-1	主蒸気系の耐震性についての計算書	_	-	-	-	_
V-2-5-2-1-1	アキュムレータの耐震性についての計算書	大型機器系	Ш	—	—	_
V-2-5-2-1-2	管の耐震性についての計算書	大型機器系 タービン建屋	Ι, Π	I	—	a.(機器別) d.(弁動的)
V-2-5-3	残留熱除去設備の耐震性についての計算書	_	-	-	-	_
V-2-5-3-1	残留熱除去系の耐震性についての計算書	_	-	-	-	_
V-2-5-3-1-1	残留熱除去系熱交換器の耐震性についての計算書	原子炉建屋	Ι	_	-	_
V-2-5-3-1-2	残留熱除去系ポンプの耐震性についての計算書	原子炉建屋	П	I	—	e.(機器動的)
V-2-5-3-1-3	残留熱除去系ストレーナの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-5-3-1-4		原子炉建屋	П	_	_	_
V-2-5-3-1-5	残留熱除去系ストレーナ取付部コネクタの耐震性についての計算書	原子炉建屋	П	_	-	_
V-2-5-3-1-6	管の耐震性についての計算書	原子炉建屋 大型機器系	Ш	I	-	d.(弁動的)

表2 各設備の耐震計算書に適用する設計用地震力(5/22)

て調励事業日	(D) 事 <i>/ 2</i> 社	乳曲な 乳 業 ナ z 拡 乳 タ み	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上 認 凶 書 番 亏	凶害名孙	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	77264
V-2-5-4	非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書	—	—	_	_	_
V-2-5-4-1	高圧炉心注水系の耐震性についての計算書	_	-	_	_	-
V-2-5-4-1-1	高圧炉心注水系ポンプの耐震性についての計算書	原子炉建屋	П	I	_	e.(機器動的)
V-2-5-4-1-2	高圧炉心注水系ストレーナの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-5-4-1-3	高圧炉心注水系ストレーナ部ティーの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-5-4-1-4	高圧炉心注水系ストレーナ取付部コネクタの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-5-4-1-5	管の耐震性についての計算書	原子炉建屋 大型機器系 廃棄物処理建屋	Ι, Π	I	_	a.(機器別) d.(弁動的)
V-2-5-4-2	原子炉隔離時冷却系の耐震性についての計算書	_	-	_	-	—
V-2-5-4-2-1	原子炉隔離時冷却系ポンプの耐震性についての計算書	原子炉建屋	Ш	I	_	e.(機器動的)
V-2-5-4-2-2	原子炉隔離時冷却系ポンプ駆動用蒸気タービンの耐震性についての計算書	原子炉建屋	Ι	I	_	_
V-2-5-4-2-3	原子炉隔離時冷却系ストレーナの耐震性についての計算書	原子炉建屋	П	_	_	—
V-2-5-4-2-4	原子炉隔離時冷却系ストレーナ部ティーの耐震性についての計算書	原子炉建屋	П	_	_	—
V-2-5-4-2-5	管の耐震性についての計算書	原子炉建屋	Ι, Π	I	_	a.(機器別) d.(弁動的)
V-2-5-4-3	高圧代替注水系の耐震性についての計算書	-	-	-	-	-
V-2-5-4-3-1	高圧代替注水系ポンプの耐震性についての計算書	原子炉建屋	Ш	П	_	—
V-2-5-4-3-2	管の耐震性についての計算書	原子炉建屋	I	_	_	—
V-2-5-4-4	低圧代替注水系の耐震性についての計算書	-	-	-	-	—
V-2-5-4-4-1	管の耐震性についての計算書	原子炉建屋	Ι, Π	_	-	a.(機器別)
V-2-5-4-5	水の供給設備の耐震性についての計算書	—	—	_	-	-
V-2-5-4-5-1	管の耐震性についての計算書	廃棄物処理建屋	I	_	_	—
V-2-5-5	原子炉冷却材補給設備の耐震性についての計算書	—	—	_	-	—
V-2-5-5-1	補給水系の耐震性についての計算書	—	—	—	—	—
V-2-5-5-1-1	 復水移送ポンプの耐震性についての計算書	廃棄物処理建屋	П	I	_	e.(機器動的)
V-2-5-5-1-2	復水貯蔵槽の耐震性についての計算書		_	_		建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外

表2 各設備の耐震計算書に適用する設計用地震力(6/22)

て釣回事業只	同事々れ	記供た記署する体記タ社	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上 認凶害奋亏	凶害名孙	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	刀强夺
V-2-5-5-1-3	管の耐震性についての計算書	廃棄物処理建屋	Ш	_	_	_
V-2-5-6	原子炉補機冷却設備の耐震性についての計算書	—	—	-	-	—
V-2-5-6-1	原子炉補機冷却水系及び原子炉補機冷却海水系の耐震性についての計算 書	_	_	_	-	—
V-2-5-6-1-1	原子炉補機冷却水系熱交換器の耐震性についての計算書	タービン建屋	I	_	_	_
V-2-5-6-1-2	原子炉補機冷却水ポンプの耐震性についての計算書	タービン建屋	Ш	I	_	e.(機器動的)
V-2-5-6-1-3	原子炉補機冷却海水ポンプの耐震性についての計算書	タービン建屋	Ι, Π	I	_	b.(Ss/Sd別) e.(機器動的)
V-2-5-6-1-4	原子炉補機冷却水系サージタンクの耐震性についての計算書	原子炉建屋	Ш	_	_	—
V-2-5-6-1-5	原子炉補機冷却海水系ストレーナの耐震性についての計算書	タービン建屋	Ш	_	_	—
V-2-5-6-1-6	管の耐震性についての計算書	原子炉建屋 タービン建屋	Ι, Π	I	_	a.(機器別) d.(弁動的)
V-2-5-6-2	代替原子炉補機冷却系の耐震性についての計算書	—	—	-	-	—
V-2-5-6-2-1	管の耐震性についての計算書	タービン建屋	Ι, Π	_	_	a.(機器別)
V-2-6	計測制御系統施設の耐震性に関する説明書	—	—	_	-	—
V-2-6-1	計測制御系統施設の耐震計算結果	—	—	-	-	—
V-2-6-1 (1)	原子炉圧力の耐震性についての計算書	原子炉建屋	Ш	п	_	—
V-2-6-1 (2)	原子炉水位(狭帯域)の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-1 (3)	原子炉水位(広帯域)の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-1 (4)	格納容器内圧力の耐震性についての計算書	原子炉建屋	Ш	п	_	—
V-2-6-1 (5)	原子炉系炉心流量の耐震性についての計算書	原子炉建屋	Ш	п	_	—
V-2-6-1 (6)	制御棒駆動機構充てん水圧力の耐震性についての計算書	原子炉建屋	Ш	п	_	—
V-2-6-1 (7)	サプレッションチェンバプール水位の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-6-1 (8)	地震加速度の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-1 (9)	主蒸気管トンネル温度の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-1 (10)	主蒸気管流量の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-2	制御材の耐震性についての計算書	-	-	-	-	—

表2 各設備の耐震計算書に適用する設計用地震力(7/22)

ᅮᇌᅈᆂᆇᄆ	四十 4 4	記供た記罢士て体記々社	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上認凶書番号	凶舌名称	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	刀块守
V-2-6-2-1	制御棒の耐震性についての計算書	炉内構造物系	_	_	I	_
V-2-6-3	制御材駆動装置の耐震性についての計算書	-	-	_	-	_
V-2-6-3-1	制御棒駆動機構の耐震性についての計算書	炉内構造物系	П	_	П	_
V-2-6-3-2	制御棒駆動水圧設備の耐震性についての計算書	—	-	—	-	_
V-2-6-3-2-1	制御棒駆動系の耐震性についての計算書	—	-	—	-	-
V-2-6-3-2-1-1	水圧制御ユニットの耐震性についての計算書	原子炉建屋	Ш	П	_	—
V-2-6-3-2-1-2	管の耐震性についての計算書	原子炉建屋 大型機器系	Ι, Π	_	_	a.(機器別)
V-2-6-4	ほう酸水注入設備の耐震性についての計算書	—	-	—	-	_
V-2-6-4-1	ほう酸水注入系の耐震性についての計算書	—	-	—	-	_
V-2-6-4-1-1	ほう酸水注入系ポンプの耐震性についての計算書	原子炉建屋	П	I	—	e.(機器動的)
V-2-6-4-1-2	ほう酸水注入系貯蔵タンクの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-6-4-1-3	管の耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-6-5	計測装置の耐震性についての計算書	—	-	—	-	_
V-2-6-5-1	起動領域モニタの耐震性についての計算書	炉内構造物系	Ι	_	I	—
V-2-6-5-2	出力領域モニタの耐震性についての計算書	炉内構造物系	Ι	_	I	—
V-2-6-5-3	高圧炉心注水系ポンプ吐出圧力の耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-6-5-4	残留熱除去系ポンプ吐出圧力の耐震性についての計算書	原子炉建屋	П	П	—	_
V-2-6-5-5	残留熱除去系熱交換器入口温度の耐震性についての計算書	原子炉建屋	—	I	_	—
V-2-6-5-6	残留熱除去系熱交換器出口温度の耐震性についての計算書	原子炉建屋	—	I	_	—
V-2-6-5-7	復水補給水系温度(代替循環冷却)の耐震性についての計算書	原子炉建屋	—	Ι	_	_
V-2-6-5-8	残留熱除去系系統流量の耐震性についての計算書	原子炉建屋	П	Ш	_	_
V-2-6-5-9	原子炉隔離時冷却系系統流量の耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-6-5-10	高圧炉心注水系系統流量の耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-6-5-11	高圧代替注水系系統流量の耐震性についての計算書	原子炉建屋	П	П	_	_

表2 各設備の耐震計算書に適用する設計用地震力(8/22)

ᅮᇘᇭᆂᆇᄆ	回 書 夕 み	乳供な乳業ナス体乳タ 分	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上 認凶書奋亏	凶害名称	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	力投夺
V-2-6-5-12	復水補給水系流量(RHR A系代替注水流量)の耐震性についての計算書	原子炉建屋	п	п	_	_
V-2-6-5-13	復水補給水系流量(RHR B系代替注水流量)の耐震性についての計算書	原子炉建屋	п	П	_	_
V-2-6-5-14	原子炉圧力の耐震性についての計算書	原子炉建屋	п	П	_	_
V-2-6-5-15	原子炉圧力(SA)の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-16	原子炉水位(広帯域)の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-17	原子炉水位(燃料域)の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-18	原子炉水位(SA)の耐震性についての計算書	原子炉建屋	п	П	_	_
V-2-6-5-19	格納容器内圧力(D/W)の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-20	格納容器内圧力(S/C)の耐震性についての計算書	原子炉建屋	п	п	_	_
V-2-6-5-21	ドライウェル雰囲気温度の耐震性についての計算書	大型機器系	п	п	_	_
V-2-6-5-22	サプレッションチェンバ気体温度の耐震性についての計算書	大型機器系	П	п	_	_
V-2-6-5-23	サプレッションチェンバプール水温度の耐震性についての計算書	大型機器系	П	п	_	_
V-2-6-5-24	格納容器内酸素濃度の耐震性についての計算書	原子炉建屋	п	п	_	_
V-2-6-5-25	格納容器内水素濃度の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-26	格納容器内水素濃度(SA)の耐震性についての計算書	大型機器系	п	п	_	—
V-2-6-5-27	復水貯蔵槽水位(SA)の耐震性についての計算書	廃棄物処理建屋	п	П	_	_
V-2-6-5-28	復水補給水系流量(格納容器下部注水流量)の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-29	サプレッションチェンバプール水位の耐震性についての計算書	原子炉建屋	п	п	_	—
V-2-6-5-30	格納容器下部水位の耐震性についての計算書	大型機器系	П	П	_	—
V-2-6-5-31	原子炉建屋水素濃度の耐震性についての計算書	原子炉建屋	п	П	_	_
V-2-6-6	制御用空気設備の耐震性についての計算書	_	_	_	_	_
V-2-6-6-1	高圧窒素ガス供給系の耐震性についての計算書	—	-	-	—	—
V-2-6-6-1-1	管の耐震性についての計算書	原子炉建屋 大型機器系	п	_	_	_
V-2-6-6-2	逃がし安全弁の作動に必要な窒素ガス喪失時の減圧設備の耐震性について の計算書	-	-	-	_	-

表2 各設備の耐震計算書に適用する設計用地震力(9/22)

ᅮᄏᇞᆂᅭᄆ	回まなか	設備を設置する施設を称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上 認凶害奋亏	凶害名孙	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	分規寺
V-2-6-6-2-1	管の耐震性についての計算書	原子炉建屋	Ш	_	_	_
V-2-6-7	その他の計測制御系統施設の耐震性についての計算書	—	—	_	_	_
V-2-6-7-1	ATWS緩和設備(代替制御棒挿入機能)の耐震性についての計算書	—	-	_	_	-
V-2-6-7-1(1)	検出器の耐震性についての計算書	原子炉建屋	П	П	_	—
V-2-6-7-1(2)	ATWS緩和設備制御盤の耐震性についての計算書	コントロール建屋	П	П	_	—
V-2-6-7-1(3)	代替制御棒挿入機能用電磁弁の耐震性についての計算書	原子炉建屋	—	П	_	—
V-2-6-7-2	ATWS緩和設備(代替冷却材再循環ポンプ・トリップ機能)の耐震性についての計算書	—	—	—	-	—
V-2-6-7-2(1)	検出器の耐震性についての計算書	原子炉建屋	П	П	_	—
V-2-6-7-2(2)	原子炉冷却材再循環ポンプ可変周波数電源装置主回路の耐震性について の計算書	原子炉建屋	П	I	_	e.(機器動的)
V-2-6-7-2(3)	原子炉冷却材再循環ポンプ可変周波数電源装置制御盤の耐震性について の計算書	原子炉建屋	П	П	_	—
V-2-6-7-3	代替自動減圧ロジック(代替自動減圧機能)の耐震性についての計算書	—	—	_	_	_
V-2-6-7-3(1)	検出器の耐震性についての計算書	原子炉建屋	Ш	П	_	_
V-2-6-7-3(2)	安全系多重伝送盤の耐震性についての計算書	原子炉建屋	П	П	_	—
V-2-6-7-3(3)	安全系補助継電器盤の耐震性についての計算書	コントロール建屋	П	П	_	—
V-2-6-7-4	盤の耐震性についての計算書	—	—	—	-	—
V-2-6-7-4 (1)	ESF盤の耐震性についての計算書	コントロール建屋	Ш	П	_	—
V-2-6-7-4 (2)	安全保護系盤の耐震性についての計算書	コントロール建屋	П	П	_	—
V-2-6-7-4 (3)	中央制御室外原子炉停止制御盤の耐震性についての計算書	原子炉建屋	Ш	Ш	_	—
V-2-6-7-4 (4)	中央運転監視盤の耐震性についての計算書	コントロール建屋	Ш	Ш	_	—
V-2-6-7-4 (5)	運転監視補助盤の耐震性についての計算書	コントロール建屋	П	Ш	_	—
V-2-6-7-4 (6)	原子炉系記録計盤の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-4 (7)	格納容器補助盤の耐震性についての計算書	コントロール建屋	П	П	_	—
V-2-6-7-4 (8)	高圧代替注水系制御盤の耐震性についての計算書	コントロール建屋	П	П	_	_
V-2-6-7-4 (9)	使用済燃料貯蔵プール水位・温度(SA広域)監視制御盤の耐震性についての 計算書	コントロール建屋	П	П	_	—

表2 各設備の耐震計算書に適用する設計用地震力(10/22)

	のま々れ	<u> 乳供た 乳 果 ナ 2 体 乳 夕 み</u>	設計用床応答曲線又は	t設計用最大応答加速度	地震荷重	分類等
上 認 凶 音 俄 亏	凶害石林	設備を設直9つ他設石が	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	
V-2-6-7-4 (10)	格納容器圧力逃がし装置制御盤の耐震性についての計算書	コントロール建屋	Ш	п	_	
V-2-6-7-4 (11)	フィルタ装置出口放射線モニタ前置増幅器盤の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-6-7-4 (12)	起動領域モニタ前置増幅器盤の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-6-7-4 (13)	核計装系盤の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-4 (14)	安全系プロセス放射線モニタ盤の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-4 (15)	格納容器内雰囲気モニタ盤の耐震性についての計算書	コントロール建屋	Ш	п	_	—
V-2-6-7-4 (16)	格納容器内水素モニタ盤の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-4 (17)	事故時放射線モニタ盤の耐震性についての計算書	コントロール建屋	Ш	п	_	—
V-2-6-7-4 (18)	使用済燃料貯蔵プール監視カメラ制御架の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-5	安全パラメータ表示システム(SPDS)の耐震性についての計算書	_	—	_	_	—
V-2-6-7-5 (1)	データ伝送装置の耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-6	安全パラメータ表示システム(SPDS)(6,7号機共用)の耐震性についての計算 書	_	_	_	_	_
V-2-6-7-6 (1)	緊急時対策支援システム伝送装置の耐震性についての計算書	緊急時対策所	I	I	_	_
V-2-6-7-6 (2)	SPDS表示装置の耐震性についての計算書	緊急時対策所	Ι	I	_	—
V-2-6-7-6 (3)	メッシュ型アンテナの耐震性についての計算書	コントロール建屋 緊急時対策所	П	п	_	—
V-2-6-7-6 (4)	通信収容架の耐震性についての計算書	コントロール建屋 緊急時対策所	Ш	п	_	—
V-2-6-7-7	データ伝送設備の耐震性についての計算書	緊急時対策所	Ι	I	_	—
V-2-6-7-8	データ表示装置(中央制御室待避室)の耐震性についての計算書	コントロール建屋	П	п	_	—
V-2-6-7-9	衛星電話設備(常設)の耐震性についての計算書	-	-	-	-	-
V-2-6-7-9 (1)	アンテナの耐震性についての計算書	コントロール建屋	Ш	п	_	_
V-2-6-7-9 (2)	通信収容架の耐震性についての計算書	コントロール建屋	Ш	п	_	—
V-2-6-7-10	衛星電話設備(常設)(中央制御室待避室)の耐震性についての計算書	-	_	-	-	
V-2-6-7-10 (1)	アンテナの耐震性についての計算書	コントロール建屋	П	п	_	_
V-2-6-7-10 (2)	通信収容架の耐震性についての計算書	コントロール建屋	П	п	_	

て河回事業日	四本 4 2	記典ナ記票ナッサシックな	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上認凶書奋亏 	凶害名称	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	分類寺
V-2-6-7-11	衛星電話設備(常設)(6,7号機共用)の耐震性についての計算書	-	-	—	—	—
V-2-6-7-11 (1)	アンテナの耐震性についての計算書	緊急時対策所	П	п	_	—
V-2-6-7-11 (2)	通信収容架の耐震性についての計算書	緊急時対策所	П	п	_	_
V-2-6-7-12	無線連絡設備(常設)の耐震性についての計算書	-	-	—	-	—
V-2-6-7-12 (1)	アンテナの耐震性についての計算書	コントロール建屋	Ш	Ш	_	—
V-2-6-7-12 (2)	通信収容架の耐震性についての計算書	コントロール建屋	Ш	Ш	_	—
V-2-6-7-13	無線連絡設備(常設)(中央制御室待避室)の耐震性についての計算書	-	-	—	-	—
V-2-6-7-13 (1)	アンテナの耐震性についての計算書	コントロール建屋	П	п	—	—
V-2-6-7-13 (2)	通信収容架の耐震性についての計算書	コントロール建屋	Ш	Ш	_	—
V-2-6-7-14	無線連絡設備(常設)(6,7号機共用)の耐震性についての計算書	-	-	-	-	—
V-2-6-7-14 (1)	アンテナの耐震性についての計算書	緊急時対策所	П	П	_	_
V-2-6-7-14 (2)	通信収容架の耐震性についての計算書	緊急時対策所	П	П	_	_
V-2-6-7-15	統合原子力防災ネットワークを用いた通信連絡設備(テレビ会議システム, IP-電話機及びIP-FAX)の耐震性についての計算書	-	-	—	-	—
V-2-6-7-15(1)	衛星無線通信装置用アンテナの耐震性についての計算書	緊急時対策所	Ш	п	—	_
V-2-6-7-15(2)	テレビ会議システム用ディスプレイの耐震性についての計算書	緊急時対策所	Ш	п	—	_
V-2-6-7-15(3)	テレビ会議システム用カメラの耐震性についての計算書	緊急時対策所	Ш	п	-	—
V-2-6-7-15(4)	通信収容架の耐震性についての計算書	緊急時対策所	Ш	Ш	_	—
V-2-6-7-15(5)	通信端末収容台の耐震性についての計算書	緊急時対策所	Ш	п	—	_
V-2-6-7-16	5号機屋外緊急連絡用インターフォンの耐震性についての計算書	緊急時対策所	Ш	Ш	_	—
V-2-6-7-17	原子炉圧力容器温度の耐震性についての計算書	大型機器系	-	п	—	—
V-2-6-7-18	フィルタ装置水位の耐震性についての計算書	格納容器圧力逃がし装置基礎	Ш	п	_	_
V-2-6-7-19	フィルタ装置入口圧力の耐震性についての計算書	原子炉建屋	Ш	П	_	_
V-2-6-7-20	フィルタ装置水素濃度の耐震性についての計算書	原子炉建屋	Ш	П	_	_
V-2-6-7-21	フィルタ装置金属フィルタ差圧の耐震性についての計算書	格納容器圧力逃がし装置基礎	Ш	П	_	_

表2 各設備の耐震計算書に適用する設計用地震力(12/22)

ᅮᄏᇞᆂᅭᄆ	때 추 수 또		設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上認凶書奋亏 	図書名称	設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	刀狽夺
V-2-6-7-22	フィルタ装置スクラバ水pHの耐震性についての計算書	格納容器圧力逃がし装置基礎	П	П	_	
V-2-6-7-23	原子炉補機冷却水系系統流量の耐震性についての計算書	タービン建屋	П	П	_	_
V-2-6-7-24	残留熱除去系熱交換器入口冷却水流量の耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-6-7-25	復水移送ポンプ吐出圧力の耐震性についての計算書	廃棄物処理建屋	П	П	—	—
V-2-6-7-26	静的触媒式水素再結合器動作監視装置の耐震性についての計算書	原子炉建屋	П	П	—	—
V-2-6-7-27	格納容器内ガスサンプリングポンプの耐震性についての計算書	原子炉建屋	П	П	—	_
V-2-6-7-28	格納容器内ガス冷却器の耐震性についての計算書	原子炉建屋	Ш	_	—	_
V-2-7	放射性廃棄物の廃棄施設の耐震性に関する説明書	-	—	_	—	—
V-2-7-1	放射性廃棄物の廃棄施設の耐震計算結果	_	-	_	_	—
▼-2-7-1に含む	管の耐震性についての計算書(気体、液体又は固体廃棄物処理設備 放射 性ドレン移送系)	原子炉建屋 大型機器系	П	_	—	_
V-2-7-2	気体、液体又は固体廃棄物処理設備の耐震性についての計算書	—	_	_	—	_
V-2-7-2-1	主排気筒の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8	放射線管理施設の耐震性に関する説明書	—	-	-	-	—
V-2-8-1	放射線管理施設の耐震計算結果	-	-	-	-	—
V-2-8-1 (1)	主蒸気管放射線モニタの耐震性についての計算書	原子炉建屋	П	П	—	_
V-2-8-1 (2)	燃料取替エリア排気放射線モニタの耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-8-1 (3)	原子炉区域換気空調系排気放射線モニタの耐震性についての計算書	原子炉建屋	П	П	—	—
V-2-8-2	放射線管理用計測装置の耐震性についての計算書	—	-	-	—	—
V-2-8-2-1	プロセスモニタリング設備の耐震性についての計算書	—	-	-	-	—
V-2-8-2-1-1	格納容器内雰囲気放射線モニタ(D/W)の耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-8-2-1-2	格納容器内雰囲気放射線モニタ(S/C)の耐震性についての計算書	原子炉建屋	Ш	Ш	—	—
V-2-8-2-1-3	フィルタ装置出口放射線モニタの耐震性についての計算書	原子炉建屋	Ш	Ш	_	
V-2-8-2-1-4	耐圧強化ベント系放射線モニタの耐震性についての計算書	原子炉建屋	Ш	Ш	_	
V-2-8-2-2	エリアモニタリング設備の耐震性についての計算書	-	_		_	_

表2 各設備の耐震計算書に適用する設計用地震力(13/22)

て割回事業日	同事々れ	記供な記署する体記タ社	設計用床応答曲線又は設計用最大応答加速度		地震荷重	八茶生
上談凶者俄安	凶害石称	設備を設直9 る他設石 が	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	ノ及守
V-2-8-2-2-1	使用済燃料貯蔵プール放射線モニタ(低レンジ)の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-8-2-2-2	使用済燃料貯蔵プール放射線モニタ(高レンジ)の耐震性についての計算書	原子炉建屋	п	п	_	_
V-2-8-3	換気設備の耐震性についての計算書	—	_	-	_	—
V-2-8-3-1	中央制御室換気空調系	—	-	_	-	-
V-2-8-3-1-1	中央制御室換気空調系	—	-	_	-	-
V-2-8-3-1-1-1	管の耐震性についての計算書	コントロール建屋	I	_	_	_
V-2-8-3-1-1-2	中央制御室送風機,中央制御室排風機及び中央制御室再循環送風機の耐 震性についての計算書	コントロール建屋	I	I	_	_
V-2-8-3-1-1-3	中央制御室再循環フィルタ装置の耐震性についての計算書	コントロール建屋	П	_	_	_
V-2-8-3-1-2	中央制御室待避室陽圧化換気空調系	—	—	-	-	—
V-2-8-3-1-2-1	管の耐震性についての計算書	コントロール建屋 廃棄物処理建屋	Ι, Π	_	_	a.(機器別)
V-2-8-3-2	緊急時対策所換気空調系	_	_	_	_	_
V-2-8-3-2-1	管の耐震性についての計算書	緊急時対策所	П	_	_	_
V-2-8-4	生体遮蔽装置の耐震性についての計算書	—	—	-	-	—
V-2-8-4-1	二次遮蔽壁の耐震性についての計算書	—	—	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-2	補助遮蔽の耐震性についての計算書	—	—	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-3	中央制御室遮蔽の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-4	中央制御室待避室遮蔽の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-5	緊急時対策所遮蔽の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-6	フィルタベント遮蔽壁の耐震性についての計算書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-8-4-7	配管遮蔽の耐震性についての計算書	原子炉建屋 格納容器圧力逃がし装置基礎	І, П	_	_	a.(機器別)
V-2-8-5	その他の放射線管理施設の耐震性についての計算書		_	_	_	_
V-2-8-5-1	中央制御室外気取入れ・排気ダクトの耐震性についての計算書	_	_	-	-	_
▼-2-8-5-1に含む	中央制御室外気取入れ・排気ダクトの耐震性についての計算書	コントロール建屋	I	_	_	_
▼-2-8-5-1に含む	中央制御室外気取入れ・排気ダクト(6号機設備)の耐震性についての計算書	コントロール建屋	I	_	_	_

~ 끸@ ᅕ ᅭᄆ	図書名称	- 売 , た ・ 売 , 平 ナ エ な ・ か タ み ・ か	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
工認凶害奋亏		設備を設直する施設名称	構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	万浪寺
V-2-9	原子炉格納施設の耐震性に関する説明書	_	-	_	_	_
V-2-9-1	原子炉格納施設の耐震計算結果	-	-	-	-	-
▼-2-9-1に含む	可燃性ガス濃度制御系の耐震性についての計算書	—	—	_	-	—
Ⅴ-2-9-1に含む	可燃性ガス濃度制御系再結合装置の耐震性についての計算書	原子炉建屋	Ι, Π	I	-	a.(機器別) e.(機器動的)
V-2-9-2	原子炉格納容器の耐震性についての計算書	—	-	-	-	—
V-2-9-2-1	原子炉格納容器コンクリート部の耐震性についての計算書	_	—	_	-	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-2-2	原子炉格納容器ライナ部の耐震性についての計算書	_	—	_	-	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-2-3	ドライウェル上鏡の耐震性についての計算書	原子炉建屋	П	_	_	b.(Ss/Sd別)
V-2-9-2-4	下部ドライウェルアクセストンネルスリーブ及び鏡板(所員用エアロック付)の 耐震性についての計算書	原子炉建屋	I, II	_	_	c.(DBA/SA別)
V-2-9-2-5	下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付)の 耐震性についての計算書	原子炉建屋	Ι, Π	_	_	c.(DBA/SA別)
V-2-9-2-6	クエンチャサポート基礎の耐震性についての計算書	大型機器系	_	_	その他	_
V-2-9-2-7	上部ドライウェル機器搬入用ハッチの耐震性についての計算書	原子炉建屋	Ш	_	-	_
V-2-9-2-8	下部ドライウェル機器搬入用ハッチの耐震性についての計算書	原子炉建屋	Ι, Π	_	-	c.(DBA/SA別)
V-2-9-2-9	サプレッションチェンバ出入口の耐震性についての計算書	原子炉建屋	Ш	_	-	_
V-2-9-2-10	上部ドライウェル所員用エアロックの耐震性についての計算書	原子炉建屋	Ш	_	-	_
V-2-9-2-11	下部ドライウェル所員用エアロックの耐震性についての計算書	原子炉建屋	I, II	_	_	c.(DBA/SA別)
V-2-9-2-12	原子炉格納容器配管貫通部の耐震性についての計算書	原子炉建屋 大型機器系 タービン建屋	_	_	その他	_
V-2-9-2-13	原子炉格納容器電気配線貫通部の耐震性についての計算書	原子炉建屋	—	_	その他	_
V-2-9-3	原子炉建屋の耐震性についての計算書	—	-	_	-	_
V-2-9-3-1	原子炉建屋原子炉区域(二次格納施設)の耐震性についての計算書	_	—	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-3-1-1	燃料取替床ブローアウトパネルの耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-3-1-2	主蒸気系トンネル室ブローアウトパネルの耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-3-2	原子炉建屋機器搬出入口の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-3-3	原子炉建屋エアロックの耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外

て釣回事業只	同事 // 社	む供た記罢する体 記夕 社	設計用床応答曲線又は設計用最大応答加速度		地震荷重	
上 認凶音	凶害石が	設備を設直9 る他設石 が	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	刀規守
V-2-9-3-4	原子炉建屋基礎スラブの耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-9-4	圧力低減設備その他の安全設備の耐震性についての計算書	—	—	_	-	—
V-2-9-4-1	真空破壊弁の耐震性についての計算書	大型機器系	Ш	п	_	_
V-2-9-4-2	ダイヤフラムフロアの耐震性についての計算書	大型機器系	П	_	Ⅱ, その他	b.(Ss/Sd別)
V-2-9-4-3	ベント管の耐震性についての計算書	原子炉建屋 大型機器系	Ш	_	_	—
V-2-9-4-4	原子炉格納容器安全設備の耐震性についての計算書	—	-	_	-	—
V-2-9-4-4-1	格納容器スプレイ冷却系の耐震性についての計算書	—	-	_	-	-
V-2-9-4-4-1-1	ドライウェルスプレイ管の耐震性についての計算書	原子炉建屋	I	_	_	_
V-2-9-4-4-1-2	サプレッションチェンバスプレイ管の耐震性についての計算書	原子炉建屋 大型機器系	I	_	_	—
V-2-9-4-4-2	格納容器下部注水系の耐震性についての計算書	—	—	_	_	—
V-2-9-4-4-2-1	管の耐震性についての計算書	大型機器系	П	_	_	_
V-2-9-4-4-3	代替循環冷却系の耐震性についての計算書	-	-	_	_	—
V-2-9-4-4-3-1	管の耐震性についての計算書	_	_	_	_	他の耐震計算書に結果を記載 しているため対象外
V-2-9-4-5	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再 循環設備の耐震性についての計算書	—	_	_	_	—
V-2-9-4-5-1	非常用ガス処理系の耐震性についての計算書	—	-	_	-	—
V-2-9-4-5-1-1	非常用ガス処理系乾燥装置の耐震性についての計算書	原子炉建屋	П	_	_	—
V-2-9-4-5-1-2	管の耐震性についての計算書	原子炉建屋	Ι, Π	I	_	a.(機器別) d.(弁動的)
V-2-9-4-5-1-3	非常用ガス処理系排風機の耐震性についての計算書	原子炉建屋	П	I	_	e.(機器動的)
V-2-9-4-5-1-4	非常用ガス処理系フィルタ装置の耐震性についての計算書	原子炉建屋	П	_	_	-
V-2-9-4-5-2	可燃性ガス濃度制御系の耐震性についての計算書	—	_	_	_	_
V-2-9-4-5-2-1	管の耐震性についての計算書	原子炉建屋	Ι, Π	I	_	a.(機器別) d.(弁動的)
V-2-9-4-5-3	水素濃度抑制系の耐震性についての計算書	_	_	_	_	_
V-2-9-4-5-3-1	静的触媒式水素再結合器の耐震性についての計算書	原子炉建屋	Ш	_	_	_
V-2-9-4-5-4	耐圧強化ベント系の耐震性についての計算書	—	—	-	-	_

て刻の事業只	同書夕社	設備を設置する施設名称	設計用床応答曲線又は	t設計用最大応答加速度		八新佐
工祕凶音曲方	因言石柳	設 備 ぞ 設 直 9 る 加 設 右 が	構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	万規寺
V-2-9-4-5-4-1	管の耐震性についての計算書	_	_	_	_	他の耐震計算書に結果を記載 しているため対象外
V-2-9-4-5-5	格納容器圧力逃がし装置の耐震性についての計算書	_	-	-	-	—
V-2-9-4-5-5-1	ドレン移送ポンプの耐震性についての計算書	格納容器圧力逃がし装置基礎	Π	п	_	—
V-2-9-4-6	原子炉格納容器調気設備の耐震性についての計算書	_	-	-	-	—
V-2-9-4-6-1	不活性ガス系の耐震性についての計算書	_	-	-	-	—
V-2-9-4-6-1-1	管の耐震性についての計算書	原子炉建屋	Ι, Π	_	_	—
V-2-9-4-7	圧力逃がし装置の耐震性についての計算書	_	—	-	_	—
V-2-9-4-7-1	格納容器圧力逃がし装置の耐震性についての計算書	—	_	-	_	—
V-2-9-4-7-1-1	ドレンタンクの耐震性についての計算書	格納容器圧力逃がし装置基礎	Ш	_	_	—
V-2-9-4-7-1-2	管の耐震性についての計算書	原子炉建屋 格納容器圧力逃がし装置基礎	Ι, Π	_	_	a.(機器別)
V-2-9-4-7-1-3	フィルタ装置の耐震性についての計算書	格納容器圧力逃がし装置基礎	Π	_	_	—
V-2-9-4-7-1-4	よう素フィルタの耐震性についての計算書	格納容器圧力逃がし装置基礎	Ш	_	_	—
V-2-9-4-8	原子炉格納容器付属構造物の耐震性についての計算書	_	-	-	-	—
V-2-9-4-8-1	下部ドライウェルアクセストンネルの耐震性についての計算書	原子炉建屋 大型機器系	Ι	_	_	—
V-2-9-5	その他の原子炉格納施設の耐震性についての計算書	_	-	-	_	_
V-2-9-5-1	コリウムシールドの耐震性についての計算書	大型機器系	Ι	-	-	—
V-2-9-5-2	管の耐震性についての計算書(格納容器圧力逃がし装置)	原子炉建屋	Ι	_	_	—
V-2-9-5-3	遠隔手動弁操作設備の耐震性についての計算書	原子炉建屋	Ι	I	_	—
V-2-9-5-4	遠隔手動弁操作設備遮蔽の耐震性についての計算書	原子炉建屋	Ι	_	_	—
V-2-9-5-5	燃料取替床ブローアウトパネル閉止装置の耐震性についての計算書	原子炉建屋	I	I	_	—
V-2-10	その他発電用原子炉の附属施設の耐震性に関する説明書	—	—	-	-	_
V-2-10-1	非常用電源設備の耐震性に関する説明書	_	_	-	-	—
V-2-10-1-1	非常用電源設備の耐震計算結果	—	_	-	-	_
▼-2-10-1-1に含む	バイタル交流電源装置の耐震性についての計算書	コントロール建屋	П	п	-	—

工認図書番号	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	/\ # T hit.
			構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	分類等
V-2-10-1-2	非常用発電装置の耐震性についての計算書	—	-	-	-	_
V-2-10-1-2-1	非常用ディーゼル発電設備の耐震性についての計算書	_	_	_	_	_
V-2-10-1-2-1-1	非常用ディーゼル発電機の耐震性についての計算書	原子炉建屋	Ι, Π	I	_	a.(機器別) e.(機器動的)
V-2-10-1-2-1-2	空気だめの耐震性についての計算書	原子炉建屋	П	_	_	—
V-2-10-1-2-1-3	空気圧縮機の耐震性についての計算書	原子炉建屋	П	_	_	—
V-2-10-1-2-1-4	燃料ディタンクの耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-10-1-2-1-5	燃料移送ポンプの耐震性についての計算書	軽油タンク基礎	П	І, П	_	a.(機器別) e.(機器動的)
V-2-10-1-2-1-6	軽油タンクの耐震性についての計算書	軽油タンク基礎	П	_	_	—
V-2-10-1-2-1-7	管の耐震性についての計算書	原子炉建屋 軽油タンク基礎 燃料移送系配管ダクト	Ι, Π	_	_	a.(機器別)
V-2-10-1-2-1-8	非常用ディーゼル発電設備制御盤の耐震性についての計算書	原子炉建屋	Ш	п	_	—
V-2-10-1-2-2	代替交流電源設備の耐震性についての計算書	-	-	-	-	-
V-2-10-1-2-2-1	第ーガスタービン発電機の耐震性についての計算書	第ーガスタービン発電機基礎	_	I	_	_
V-2-10-1-2-2-2	第一ガスタービン発電機用燃料移送ポンプの耐震性についての計算書	第ーガスタービン発電機用燃 料タンク基礎	I	I	_	-
V-2-10-1-2-2-3	第一ガスタービン発電機用燃料タンクの耐震性についての計算書	第ーガスタービン発電機用燃 料タンク基礎	Ι	_	_	—
V-2-10-1-2-2-4	第ーガスタービン発電機用燃料小出し槽の耐震性についての計算書	_	_	_	_	加振試験により測定された 応答加速度を 使用するものであるため対象外
V-2-10-1-2-2-5	軽油タンク(6号機設備)の耐震性についての計算書	軽油タンク基礎(6号機設備)	П	_	_	—
V-2-10-1-2-2-6	管の耐震性についての計算書	第ーガスタービン発電機用 燃料タンク基礎 第ーガスタービン発電機基礎	Ι	_	_	a.(機器別)
V-2-10-1-2-2-7	第一ガスタービン発電機用発電機の耐震性についての計算書	第一ガスタービン発電機基礎	—	I	_	_
V-2-10-1-2-2-8	第一ガスタービン発電機用制御盤の耐震性についての計算書	第一ガスタービン発電機基礎	—	I	_	—
V-2-10-1-3	その他の電源装置の耐震性についての計算書	_	_	-	_	_
V-2-10-1-3-1	AM用直流125V充電器の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-10-1-3-2	直流125V蓄電池の耐震性についての計算書	コントロール建屋	Ш	_	_	
V-2-10-1-3-3	AM用直流125V蓄電池の耐震性についての計算書	原子炉建屋	Ш	_	_	_

表2 各設備の耐震計算書に適用する設計用地震力(18/22)

工認図書番号	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	/\ # <u>#</u> ##~
			構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	》
V-2-10-1-4	その他の非常用電源設備の耐震性についての計算書	_	-	_	_	_
V-2-10-1-4-1	緊急用断路器の耐震性についての計算書	第一ガスタービン発電機基礎	Ι	_	_	_
V-2-10-1-4-2	緊急用電源切替箱断路器の耐震性についての計算書	コントロール建屋	П	_	_	_
V-2-10-1-4-3	緊急用電源切替箱接続装置の耐震性についての計算書	原子炉建屋	П	_	_	_
V-2-10-1-4-4	AM用動力変圧器の耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-10-1-4-5	AM用MCCの耐震性についての計算書	原子炉建屋	П	П	_	_
V-2-10-1-4-6	AM用切替盤の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-10-1-4-7	AM用操作盤の耐震性についての計算書	原子炉建屋 コントロール建屋	П	П	_	_
V-2-10-1-4-8	メタルクラッド開閉装置の耐震性についての計算書	原子炉建屋	П	п	_	_
V-2-10-1-4-9	パワーセンタの耐震性についての計算書	原子炉建屋 タービン建屋	Ш	П	_	_
V-2-10-1-4-10	モータコントロールセンタの耐震性についての計算書	原子炉建屋 コントロール建屋 タービン建屋	П	П	_	_
V-2-10-1-4-11	動力変圧器の耐震性についての計算書	原子炉建屋 タービン建屋	П	_	_	_
V-2-10-1-4-12	5号機原子炉建屋内緊急時対策所用電源盤の耐震性についての計算書	緊急時対策所	П	п	_	_
V-2-10-1-4-13	5号機原子炉建屋内緊急時対策所用交流110V分電盤の耐震性についての計 算書	緊急時対策所	П	П	_	_
V-2-10-1-4-14	直流125V充電器の耐震性についての計算書	コントロール建屋	П	П	_	_
V-2-10-1-4-15	直流125V主母線盤の耐震性についての計算書	コントロール建屋	Ш	п	_	_
V-2-10-1-4-16	125V同時投入防止用切替盤の耐震性についての計算書	コントロール建屋	Ш	п	_	_
V-2-10-1-4-17	直流125V HPAC MCCの耐震性についての計算書	原子炉建屋	Ш	п	_	_
V-2-10-2	浸水防護施設の耐震性に関する説明書	—	—	—	—	—
V-2-10-2-1	浸水防護施設の耐震計算結果	-	_	_	_	_
V-2-10-2-2	外郭浸水防護設備の耐震性についての計算書	—	—	—	_	—
V-2-10-2-2-1	取水槽閉止板の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-2-3	内郭浸水防護設備の耐震性についての計算書	-	-	—	—	_
V-2-10-2-3-1	水密扉の耐震性についての計算書	_	—	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外

工認図書番号	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	1) #Z M-
			構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	分類等
V-2-10-2-3-2	水密扉付止水堰の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-2-3-3	止水堰の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-2-4	その他の浸水防護施設の耐震性についての計算書	—	—	-	-	-
V-2-10-2-4-1	床ドレンライン浸水防止治具の耐震性についての計算書	タービン建屋 コントロール建屋	I	I	_	_
V-2-10-2-4-2	貫通部止水処置の耐震性についての計算書	原子炉建屋 タービン建屋	I	I	_	—
V-2-10-2-4-3	取水槽水位計の耐震性についての計算書	_	_	_	_	_
V-2-10-2-4-3 (1)	検出器の耐震性についての計算書	タービン建屋	П	Ш	_	_
V-2-10-2-4-3 (2)	バブラー管の耐震性についての計算書	タービン建屋	I	_	_	_
V-2-10-2-4-3(3)	アキュムレータの耐震性についての計算書	タービン建屋	П	_	_	_
V-2-10-2-4-3(4)	ボンベラックの耐震性についての計算書	タービン建屋	I	_	_	_
V-2-10-2-4-3(5)	管の耐震性についての計算書	タービン建屋	I	_	_	—
V-2-10-2-4-4	津波監視カメラの耐震性についての計算書	-	-	-	-	—
V-2-10-2-4-4(1)	津波監視カメラの耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-2-4-4(2)	津波監視カメラ制御架の耐震性についての計算書	コントロール建屋	П	Ш	_	_
V-2-10-3	非常用取水設備の耐震性に関する説明書	_	_	_	_	_
V-2-10-3-1	取水設備の耐震性についての計算書	_	-	_	_	_
V-2-10-3-1-1	非常用取水設備の耐震計算結果	_	—	-	-	_
V-2-10-3-1-2	海水貯留堰の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-2-1	海水貯留堰の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-2-2	取水護岸の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-3	海水貯留堰(6号機設備)の耐震性についての計算書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-3-1	海水貯留堰(6号機設備)の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-3-2	取水護岸(6号機設備)の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-4		_	_		_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外

工認図書番号	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	八石佐
			構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	分 規寺
V-2-10-3-1-5	スクリーン室(6号機設備)の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-6	取水路の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-7	取水路(6号機設備)の耐震性についての計算書	_	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-8	補機冷却用海水取水路の耐震性についての計算書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-3-1-9	補機冷却用海水取水槽の耐震性についての計算書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-10-4	緊急時対策所の耐震性に関する説明書	—	_	-	-	—
V-2-10-4-1	緊急時対策所の耐震計算結果	—	_	-	-	-
V-2-10-4-2	その他の緊急時対策所の耐震性についての説明書	—	—	-	-	—
V-2-10-4-2-1	5号機原子炉建屋内緊急時対策所(対策本部)二酸化炭素吸収装置の耐震 性についての計算書	緊急時対策所	П	п	_	—
V-2-11	波及的影響を及ぼすおそれのある施設の耐震性についての計算書	—	—	-	-	—
V-2-11-1	波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針	—	—	-	-	-
V-2-11-2	波及的影響を及ぼすおそれのある施設の耐震性についての計算書	—	—	-	-	-
V-2-11-2-1	サービス建屋の耐震性についての計算書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-11-2-2	竜巻対策設備の耐震性についての計算書	—	-	-	-	-
V-2-11-2-2-1	非常用ディーゼル発電設備燃料移送ポンプ防護板の耐震性についての計算 書	—	_	_	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
V-2-11-2-2-2	非常用ディーゼル発電設備燃料移送配管防護板の耐震性についての計算書	軽油タンク基礎	П	_	_	—
V-2-11-2-2-3	竜巻防護鋼製フードの耐震性についての計算書	原子炉建屋	Ι	_	_	_
V-2-11-2-2-4	換気空調系ダクト防護壁の耐震性についての計算書	タービン建屋 コントロール建屋	Ι	_	_	—
V-2-11-2-2-5	原子炉補機冷却海水系配管防護壁の耐震性についての計算書	タービン建屋	Ι	_	_	—
V-2-11-2-3	中央制御室天井照明の耐震性についての計算書	コントロール建屋	Ι	_	_	—
V-2-11-2-4	原子炉建屋クレーンの耐震性についての計算書	原子炉建屋	I	-	-	—
V-2-11-2-5	燃料取替機の耐震性についての計算書	原子炉建屋	I	_	_	_
V-2-11-2-6	原子炉遮蔽壁の耐震性についての計算書	大型機器系	П	—	п	_
V-2-11-2-7	原子炉ウェル遮蔽プラグの耐震性についての計算書	_	_	-	_	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外

ᅮᇌᅈᆂᅭᄆ	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	八新生
工论凶害毋方			構造強度評価	動的·電気的機能維持評価	(せん断力, モーメント, 配管反力等)	分規寺
V-2-11-2-8	耐火隔壁の耐震性についての計算書	原子炉建屋 コントロール建屋	Ι	_	_	_
V-2-12	水平2方向及び鉛直方向地震力の組合せに関する影響評価結果	—	-	—	—	—
Ⅴ-2-別添1	火災防護設備の耐震性に関する計算書	—	-	—	—	—
Ⅴ-2-別添1-1	火災防護設備の耐震計算の方針	_	-	-	-	_
Ⅴ-2-別添1-2	火災感知器の耐震計算書	原子炉建屋 燃料移送系配管ダクト	I , その他	Ι	—	a.(機器別) e.(機器動的)
Ⅴ-2-別添1-3	火災受信機盤の耐震計算書	コントロール建屋	Ι	Ι	—	_
Ⅴ-2-別添1-4	ボンベラックの耐震計算書	原子炉建屋 コントロール建屋 廃棄物処理建屋 緊急時対策所	I , その他	Ι	_	a.(機器別) e.(機器動的)
Ⅴ-2-別添1-5	選択弁の耐震計算書	原子炉建屋	Ι	Ι	_	_
Ⅴ-2-別添1-6	消火配管の耐震計算書	原子炉建屋 タービン建屋 コントロール建屋 廃棄物処理建屋 緊急時対策所	Ι, Π	_	_	a.(機器別)
Ⅴ-2-別添1-7	制御盤の耐震計算書	原子炉建屋	その他	Ι	_	e.(機器動的)
Ⅴ-2-別添1-8	火災防護設備の水平2方向及び鉛直方向地震力の組合せに関する影響評 価	_	—	—	—	—
V-2-別添2	泣水防護に係る施設の耐震性に関する説明書	—	-	-	-	—
Ⅴ-2-別添2-1	溢水防護に係る施設の耐震計算書の方針	—	-	-	-	—
Ⅴ-2-別添2-2	溢水源としない耐震B,Cクラス機器の耐震計算書	原子炉建屋 タービン建屋 コントロール建屋	Ι, Π	_	_	a.(機器別)
Ⅴ-2-別添2-3	溢水防護に係る施設の水平2方向及び鉛直方向地震力の組合せに関する影響評価結果	—	-	-	-	—
Ⅴ-2-別添2-4	循環水系隔離システムの耐震性についての計算書	タービン建屋	Ш	Ш	_	_
Ⅴ-2-別添2-5	復水器水室出入口弁の耐震性についての計算書	タービン建屋	Ι	Ι	—	_
Ⅴ-2-別添2-6	タービン補機冷却海水系隔離システムの耐震性についての計算書	タービン建屋	П	Ш	_	_
Ⅴ-2-別添2-7	タービン補機冷却海水ポンプ吐出弁の耐震性についての計算書	タービン建屋	Ι	Ι	_	_
▼-2-別添3	可搬型重大事故等対処設備の耐震性に関する説明書	_	_	-	_	_
Ⅴ-2-別添3-1	可搬型重大事故等対処設備の耐震計算の方針	—	—	-	—	—
▼-2-別添3-2	可搬型重大事故等対処設備の保管場所における入力地震動	-	-	-	-	-

表2 各設備の耐震計算書に適用する設計用地震力(22/22)

工認図書番号	図書名称	設備を設置する施設名称	設計用床応答曲線又は設計用最大応答加速度		地震荷重	\\ ## //*
			構造強度評価	動的·電気的機能維持評価	(せん断カ, モーメント, 配管反力等)	刀規守
Ⅴ-2-別添3-3	可搬型重大事故等対処設備のうち車両型設備の耐震計算書	—	—	—	—	建物・構築物又は土木構造物の 地震応答計算結果を直接 使用するものであるため対象外
Ⅴ-2-別添3-4	可搬型重大事故等対処設備のうちボンベ設備の耐震計算書	原子炉建屋 コントロール建屋 廃棄物処理建屋 緊急時対策所	І, Ш	_	-	a.(機器別)
Ⅴ-2-別添3-5	可搬型重大事故等対処設備のうちその他設備の耐震計算書	原子炉建屋 コントロール建屋 緊急時対策所	_	I	_	_
V-2-別添3-6	可搬型重大事故等対処設備の水平2方向及び鉛直方向地震力の組合せに 関する影響評価結果	—	_	_	_	—
2. 機器・配管系の耐震設計における剛柔判定

を行う固有周期について

目 次

1.	剛柔判定を行う固有周期の考え方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	剛柔判定を行う固有周期と地震力の算定法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	実機に対する適用性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
4.	剛柔判断及び打切り振動数に係る検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9

1. 剛柔判定を行う固有周期の考え方

機器・配管系の耐震設計では,基準地震動Ss,弾性設計用地震動Sdに対して動的解析を行い 水平及び鉛直方向の動的地震力を定める。その機器・配管系が柔構造と判断される場合には,動的 解析により地震力を算定し,剛構造と判断される場合には,機器・配管系の設置床面の最大応答加 速度の1.2倍の加速度を震度(1.2ZPA)とした静的解析により地震力を算定する。

ここで,剛柔判定の固有周期と動的解析の適用範囲の概要を図1に示す。剛柔判定の固有周期は, 地震動による応答増幅が大きくなる建物・構築物の卓越周期から(十分)離隔した位置に設定し, 動的解析の適用要否の決定に用いている。なお,この考え方は,JEAG4601-1970に示され ている。

図1 剛柔判定の固有周期と動的解析の適用範囲(概要図)

2. 剛柔判定を行う固有周期と地震力の算定法

JEAG4601-1987の抜粋を図2に示す。機器・配管系の剛柔判定については、JEAG4 601-1987 に例示されているとおり、機器・配管系の1次固有周期が0.05 秒以下の場合は剛、 0.05 秒を超える場合は柔とする。この方針は、既工認と同じである。

機器・配管系の耐震設計では、剛柔判定の固有周期 0.05 秒を超える場合は地震応答を動的解析に より行い、0.05 秒以下の地震応答は動的解析を行うのに代えて静的解析を行う。

6.4.3 動的地震力の概要

機器・配管系の耐震設計に用いる動的地震力は,重要性の高いAsクラス機器の地震力 を基本に定めるものである。本項では,その概要を示し,地震力算定の詳細は「6.5 地震 応答解析」に述べることとする。

As 及び A クラス機器

A クラス機器に関しては、基準地震動 S1 に対し動的解析(地盤-建屋-機器連成の 解析あるいは据付位置における設計用床応答スペクトルを用いた解析等)により算定さ れる水平地震力を適用する。A クラス機器の中で特に重要な As クラス機器に関しては、 さらに基準地震動 S2 に対し動的解析によって得られる水平地震力をも適用する。ただ し、その機器が剛構造と判断される場合(例えば機器の1次固有振動数が20Hz 以上、 あるいは、設計用床応答スペクトルの卓越する領域より高い固有振動数を有する場合) には、その機器の据付位置における建物の応答加速度を基に定まる震度により地震力を 算定する。なお、As、A クラスの機器については鉛直地震力をも考慮し、基準地震動 の最大加速度を1/2とした鉛直震度(高さ方向については一定とする)より求まる鉛直 地震力を水平地震力と同時に不利な方向で組合せる。

図2 JEAG4601-1987 (抜粋)

3. 実機に対する適用性

JEAG4601-1987の記載は、水平方向の動的解析への適用として剛柔判定の固有周期0.05 秒の考え方を示したものである。新規制基準においては、鉛直方向についても水平方向と同様に動 的な扱いとするため、鉛直方向も含め剛柔判定の固有周期0.05秒が地震力算定に適用可能である ことを検討した。本検討に際して参照したJEAG4601-1970の抜粋を図3に示す。JEAG 4601-1970には建物・構築物の卓越固有周期の1/2を剛柔判定の固有周期とするとの考え方が 示されており、原子力発電所の建物・構築物の卓越周期は一般に、0.1~0.5秒(2~10Hz)であるこ とを考慮して、0.05秒を剛柔判定の固有周期とすれば十分であると記載されている。

柏崎刈羽原子力発電所の原子炉建屋地震応答解析モデルに基づく,水平方向及び鉛直方向におけ る固有周期(基準地震動 Ss-1の例)を表1及び表2並びに図4~図6に示す。建屋の卓越固有周期 は水平及び鉛直方向とも概ね0.2秒以上であり,剛柔判定の固有周期0.05秒は,原子炉建屋の卓 越固有周期に対して十分な離隔(卓越固有周期の1/2以下)をもって設定されている。また加速度 応答スペクトルを図7に,変位応答スペクトルを図8に示すが,固有周期0.05秒で加速度は概ね 収斂している。

上記の検討結果より,既工認と同じ剛柔判定の固有周期 0.05 秒は,建屋の卓越固有周期に対して 十分な離隔をもっており,柏崎刈羽原子力発電所の水平及び鉛直方向の地震力算定に適用可能であ ることを確認した。

> 原子力発電所の場合について一般的にみると、地盤の卓越振動数、構築物の固有振動数を あわせ考えて、2~10 Hz が取付け点の卓越振動数域すなわち床応答曲線が持ち上る領域 と考えられる。したがって動特性がまったく不明な場合には一応これより共振領域としては 1~20 Hz を考えれば一応十分であろう。

> そこで固有振動数の評価に当って重要なことは、対象となっている機械系が固有振動数解 析を必要とする範囲にあるか否かを判定することである。明らかに20Hzよりはるかに高 い固有振動数を有すると推定される対象につき、多くの計算を行なう必要はない。その推定 は在来の経験であってもよし、対象物あるいはそれと類似な機器についての試験の結果であ ってもよい。この試験もたとえば簡単に木槌でたたいてみるといったことであってよいので ある。ときには、これによって支持金具の不完全さなどを見出すことができる。

> > 図3 JEAG4601-1970 (抜粋)

3

	NS 📿	方向	EW 方向		
次数	固有周期	固有振動数	固有周期	固有振動数	
	(s)	(Hz)	(s)	(Hz)	
1次	0. 439	2. 28	0. 429	2.33	
2次	0.192	5.20	0.191	5.23	

表1 原子炉建屋地震応答解析モデルの固有値解析結果(水平方向)

表2 原子炉建屋地震応答解析モデルの固有値解析結果(鉛直方向)

Ver Her	固有周期	固有振動数
次致	(s)	(Hz)
1次	0.258	3.87

屋根トラス部が卓越するモード除く

図5 刺激関数図 (Ss-1, EW 方向)

図6 刺激関数図 (Ss-1, UD 方向)

図7(1) 原子炉建屋(T.M.S.L.12.3m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

(鉛直方向,減衰定数 1.0%)

図 8(1) 原子炉建屋(T.M.S.L.12.3m)の変位応答スペクトル (水平方向,減衰定数1.0%)

図 8(2) 原子炉建屋(T.M.S.L.12.3m)の変位応答スペクトル (鉛直方向,減衰定数 1.0%)

- 4. 剛柔判断及び打切り振動数に係る検討
- (1) 剛柔判断の閾値を 0.05 秒とすることに関連する知見
 地震動の高振動数領域においては地震力が短い周期で交番することから地震による変位やエネ
 ルギーが小さくなる傾向があり、設備の損傷の観点からは影響は小さいと考えられることから、
 0.05 秒を剛柔判断の閾値としている。この地震動の高振動数領域が設備の損傷に与える影響は小さいとの考え方は、米国における地震時の点検・再起動等においても取り入れられている。

地震動の 0.1 秒以下の高振動数領域が設備の損傷に与える影響は小さいと考えられている知見 を以下に記載する。

a. JEAG4601-1987 版で機器が剛構造と判断される場合の例示として、1次固有振動数 が20Hz以上、あるいは、設計用床応答スペクトルの卓越する領域より高い振動数を有する場合 を掲示している。また、JEAG4601-1970では、一般的なものとして、2~10Hz が取付け 点の卓越振動数域と考えられ、共振領域としては1~20Hz を考えれば十分であろうとしている。

JEAG4601-1987における剛柔判断の固有振動数20Hz以上の考え方は,水平方向の動 的解析への適用として示したものであるが,鉛直方向においてもJEAG4601-1970の考 え方に基づき,原子炉建屋の卓越固有周期が剛柔判断の固有周期0.05秒に対して,十分な離隔 を有することを確認している。また,構造強度の評価に直接かかわる変位応答スペクトルにお ける0.1秒での応答について概ね収斂していることを確認している。

b. 過去に, 観測された地震動が 0.1 秒以下の周期領域のみで設計時の想定を超えた原子力発電 所では被害の発生が無い。

【周期0.1秒以下で設計時の想定を超える地震動が観測された原子力発電所】

女川原子力発電所(2005年宮城県沖地震)

米国 Perry 原子力発電所(1986 年 Leroy 地震) **

米国 Summer 原子力発電所(1978 年小規模地震多数) ※

- ※出典: EPRI 1988.7 A Criterion for Determining Exceedance of the Operating Basis Earthquake
- c. 気象庁の震度階: 近地地震などでは短周期成分が多く含まれており、日本では経験的に地 震動と破壊の状態との関係を震度で示している。気象庁震度階の元となっている計測震度では、 周期 0.1 秒よりも短周期側の地震動成分をフィルタでカットしている。
- d. 米国の規格: 地震後の対応に関する米国の規格:Nuclear Plant Response to an Earthquake (ANSI/ANS-2.23-2002)では、観測された地震が設計用の地震動を超えたか否かの判定(OBE Exceedance Criteria)で、応答スペクトルで0.1秒以下の周期帯について考慮外としている。
 本規格では、CAV (Cumulative Absolute Velocity)という指標を導入して観測された地震動の 有効性(構造物の破壊に対する影響度)を判定している。

原波形と 0.1 秒のフィルタを掛けた波形について各々CAV を算出し、その比を地震による影

響の程度を示す震度(米国では修正メルカリ震度を使用している)に対してプロットすると, 破損が生じるといわれる修正メルカリ震度VII程度以上で安定し,0.1 秒のフィルタを掛けた波 形が破損との関係をより良く表している。

e. 米国電力研究所の調査^{*}: 10Hz を超える振動数領域における高加速度振動による設備の影響について調査を行い,一部の設備を除き影響は無視できると結論付けている。

固有振動数が低い設備は高振動数領域の加速度には影響を受けず,また,固有振動数が高い 設備についても,高振動数領域における加速度では変位や応力が小さくなるため。

高振動数領域でSSE (Safety Shutdown Earthquake)を超える地震動に見舞われた米国内の 発電所(上記 b.の発電所)において,設備に影響が無かったことも紹介されている。

- ※出典: EPRI 2006.12 Program on Criterion Technology Innovation: The Effects of High-Frequency Ground Motion on Structures, Components, and Equipment in Nuclear Power Plants
- f. 建築構造学大系振動理論:振動理論(大崎著)によると、速度応答スペクトルに関して系に 与える最大のエネルギーと密接な関係があると述べられている。最大相対変位に角周波数を乗 じたものが速度応答スペクトルとなるため、単位質量あたりの最大エネルギーは、速度応答ス ペクトルで表すことができる。よって、速度応答スペクトルは構造物に対して固有周期に応じ て与える一種のエネルギースペクトルであると解釈することが出来る。

なお, b. ~d. についての情報は,一般社団法人日本原子力技術協会(現一般社団法人原子力安 全推進協会)地震後の機器健全性評価ガイドライン(平成24年3月)にまとめて記述されてい る。

http://www.gengikyo.jp/archive/pdf/JANTI-SANE-G1.pdf

(2) 変位応答スペクトルを踏まえた剛柔判定の検討

原子炉遮蔽壁(T.M.S.L. 18.44m)における基準地震動Ssによる加速度応答スペクトルを図9 に示す。また、同様に変位応答スペクトルを図10に示す。

加速度応答スペクトルでは 0.05 秒未満で一定の加速度値を有するが、構造強度の評価に直接 かかわる変位応答スペクトル^{*}の卓越周期に対し、剛柔判定の固有周期 0.05 秒は、十分な離隔を もって設定されていることが分かる。

※: 機器・配管系の動的解析に適用されるスペクトルモーダル解析(JEAG4601-1987
 P565,567)では、加速度応答スペクトルから各モードに対応する応答変位を求め、この応答変位に剛性を乗じて部材力(曲げモーメント、せん断力等)を算出している。

図 9(1) 原子炉遮蔽壁(T.M.S.L. 18.44m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

図 9(2) 原子炉遮蔽壁(T.M.S.L. 18.44m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

図 10(1) 原子炉遮蔽壁(T.M.S.L. 18.44m)の変位応答スペクトル (水平方向,減衰定数 1.0%)

図 10(2) 原子炉遮蔽壁(T.M.S.L. 18.44m)の変位応答スペクトル (鉛直方向,減衰定数 1.0%)

(3) 動的解析法の妥当性確認

本項では現行の動的解析法が,構造強度設計を行う上で妥当であること,すなわち,変位応答 スペクトルをベースに設定した剛柔判定の固有周期が耐震設計を行う上で妥当性を有しているこ とを確認する。なお,弁の動的機能維持評価に適用する加速度値の算定方法については,工事計 画に係る補足説明資料【KK7 補足-028-5 弁の動的機能維持評価について】に示す。

a. 検討対象設備

検討対象設備は、20Hz 近傍に卓越する応答に対する検討を行う観点から 20Hz 近傍に卓越す る応答を有する構築物の設計用床応答曲線を適用する設備を選定する。また、設計用床応答曲 線を 20Hz までの作成としていることを踏まえて、1 次固有振動数が 20Hz 近傍に有する設備を 選定する。

(a) 20Hz 近傍に卓越する応答を有する設計用床応答曲線を適用する設備

代表構築物の加速度応答スペクトルの傾向を確認する。代表構築物の加速度応答スペクトルを添付図 1~添付図 4 に,最大応答加速度(1.2ZPA)を添付表 1~添付表 2 に示す。

·原子炉建屋

水平及び鉛直方向ともに剛領域になるに従って加速度値が低下傾向にあり 20Hz 近傍に卓 越するピークはない。

・原子炉遮蔽壁及び原子炉本体基礎 水平方向では剛領域になるに従って加速度値が低下傾向にあり 20Hz 近傍に卓越するピー クはない。鉛直方向では上層階ほど 20Hz 近傍に卓越する応答を有する。

上述した各構築物の加速度応答スペクトルの傾向として原子炉建屋(水平方向及び鉛直方 向)の応答,原子炉遮蔽壁及び原子炉本体基礎(水平方向)の応答については,剛領域にな るに従って加速度値は低下傾向にあり,20Hz 近傍に卓越する応答はないため,20Hz 近傍に卓 越する応答を有する原子炉遮蔽壁及び原子炉本体基礎(鉛直方向)の設計用床応答曲線を適 用し評価する設備に対して検討を行う。

原子炉遮蔽壁及び原子炉本体基礎(鉛直方向)の設計用床応答曲線を適用し耐震評価を実施する設備を表3に示す。動的解析法の妥当性確認のための検討対象設備については、20Hz 近傍の加速度値が最も大きい原子炉遮蔽壁の設計用床応答曲線を適用する もののうち、一次応力の裕度が最も小さい主蒸気系配管(モデル No. MS-PD-1)を対象として 検討する。

設備名称	評価に適用する設計用	一次固有周期(s)	
	床応答曲線の作成位置		
制御棒駆動系配管			
原子炉符却材净化米配官			
高圧炉心注水系配管			
主蒸気系配管			
液体廃棄物処理系配管			
残留熱除去系配管			
高圧窒素ガス供給系配管			

表3 原子炉遮蔽壁及び原子炉本体基礎(鉛直方向)の設計用床応答曲線を適用する設備

- (b) 1次固有振動数が20Hz 近傍に有する設備 原子炉建屋に設置される配管系において、20Hz 近傍に1次固有振動数を有する設備を選定 する。20Hz 近傍に1次固有振動数を有する配管系として、1次として_____、2次として の振動モードを有するほう酸水注入系配管(モデル No. SLC-R-2)を選定する。
- b. 確認方法

図 11 に検討における地震応答解析で考慮する固有振動数領域を示す。本検討は, 50Hz の領 域まで作成した検討用の床応答曲線を適用した地震応答解析結果を用いて行う。

また,従来の耐震設計で適用している 20Hz までの領域を考慮した地震応答解析結果と比較 する。

図11 地震応答解析で考慮する固有振動数領域

c. 検討用床応答曲線

地震応答解析に適用する検討用床応答曲線を図 12 に示す。剛領域の設備応答の影響を確認 する観点から,固有周期 0.02 秒 (50Hz)まで作成するとともに,設計用床応答曲線と同様に基 本ケースについては周期軸方向に 10%拡幅する。また,検討用床応答曲線の固有周期の計算間 隔は,表4に示す計算間隔を用いる。

固有周期	計算間隔
(s)	(∠ω :rad/s)
0.02~0.1	4.0
0.1~0.2	1.5
0.2~0.39	1.0
0.39~0.6	0.3
0.6~1.0	0.5

表4 固有周期の計算間隔

d. 検討対象設備の主要諸元,解析モデル

検討対象設備として主蒸気系配管,ほう酸水注入系配管の主要仕様,解析モデル図,固有振 動数及び刺激係数,主要次数のモード図を示す。

(a) 主蒸気系配管

主蒸気系配管の主要仕様を表 5 に,解析モデル図を図 13 に,固有振動数及び刺激係数を 表 6 に,主要次数のモード図を図 14 に示す。

項目	主要仕様		
最高使用圧力	0 60		
(MPa)	8. 62		
最高使用温度	200		
(°C)	302		
外径	711.2		
(mm)			
厚さ	25.7		
(mm)	35.7		
材料	STS480		

表5 主蒸気系配管の主要仕様

図13 主蒸気系配管の解析モデル図

	固有振動数	固有周期	刺激係数*					
モード	(Hz)	(s)	vth		~ 7 七白	水平	方向 7 七向	鉛直方向 V 士向
			入 /同	Y方问	Z力凹	X 力 凹	Z万円	Y万円
注記*:ウ	刺激係数は	,モード質	量を正規(化し,固有べ	クトルと質	「量マトリッ	クスの積か	ら算出した

表6 主蒸気系配管の固有振動数及び刺激係数

値を示す。

図 14(1) 主蒸気系配管のモード図

図 14(2) 主蒸気系配管のモード図

(b) ほう酸水注入系配管

ほう酸水注入系配管の主要仕様を表7に、解析モデル図を図15に、固有振動数及び刺激 係数を表8に、主要次数のモード図を図16に示す。

項目	主要仕様		
最高使用圧力	0 60		
(MPa)	0. 02		
最高使用温度	200		
(°C)	302		
外径	19 G		
(mm)	40.0		
厚さ	F 1		
(mm)	5.1		
材料	SUS316LTP		

表7ほう酸水注入系配管の主要仕様

図 15 ほう酸水注入系配管の解析モデル図

	固有振動数	固有周期	刺激係数*			設計震度			
モード				州 成 7	下女		水平	方向	鉛直方向
	(112)	(3)	X方向	Y方向	J Z	方向	X方向	Z方向	Y方向
>>=====	おいうなまたいよ	て、15斤-	見え, 一相/		5 ~ 7]	11.所見		カマの住み	と答用した

表8 ほう酸水注入系配管の固有振動数及び刺激係数

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した 値を示す。

図 16(1) ほう酸水注入系配管のモード図

図16(2)ほう酸水注入系配管のモード図

e. 解析結果

設計用床応答曲線を用いた地震応答解析結果,検討用床応答曲線を用いた地震応答解析結果 及び静的解析結果を示す。

(a) 主蒸気系配管

評価結果を表 9 に示すとともに、最大応力発生部位を図 17 に示す。一次応力の裕度が最 も小さい主蒸気系配管(モデル No. MS-PD-1)について、現行の手法である設計用床応答曲線 を用いた 20Hz までの領域を考慮した地震応答解析結果 266MPa に対して、検討用床応答曲線 を用いて 50Hz までの領域を考慮した地震応答解析結果は 278MPa であり、応力値は増加した ものの、その増加は僅かであり、許容値を満足することが確認された。

		一次応力	許容応力	
		(MPa)	(MPa)	
	20Hz までの領域を考慮			
	した地震応答解析結果	266		
羽行の手汁に	(設計用床応答曲線)		375	
現日の子伝に	静的解析	206		
よる評価結末	(1.2ZPA)	206		
	包絡値	266*		
	50Hz までの領域を考慮			
妥当性検討用	した地震応答解析結果	278	375	
	(検討用床応答曲線)			

表9 主蒸気系配管の評価結果

注記*:設計用床応答曲線 I 及び設計用最大応答加速度 I を用いて算出した値であるため,耐震計算書(V-2-5-2-1-2)の値(設計用床応答曲線Ⅱ及び設計用最大応答加速度Ⅱを用いて算出)とは異なる。

図17 主蒸気系配管の最大応力発生部位

(b) ほう酸水注入系配管

評価結果を表 10 に示すとともに、最大応力発生部位を図 18 に示す。現行の手法である設計用床応答曲線を用いた 20Hz までの領域を考慮した地震応答解析結果 28MPa に対して、検討用床応答曲線を用いて 50Hz までの領域を考慮した地震応答解析結果は 45MPa であった。また 1.2ZPA を用いた静的解析による評価結果は 64MPa であった。

以上のとおり,現行の手法による評価結果 64MPa が妥当性検討結果 45MPa を上回る結果となった。

		一次応力	許容応力	
		(MPa)	(MPa)	
	20Hz までの領域を考慮			
	した地震応答解析結果 28			
田仁の毛汁に	(設計用床応答曲線)		282	
現日の手法に	静的解析	C A		
よる評価栢木	(1.2ZPA)	64		
	包絡値	64*		
	50Hz までの領域を考慮			
妥当性検討用	した地震応答解析結果	45	282	
	(検討用床応答曲線)			

表10 ほう酸水注入系の評価結果

注記*:設計用床応答曲線 I 及び設計用最大応答加速度 I を用いて算出した値であるため,耐震計算書(V-2-6-4-1-3)の値(設計用床応答曲線 II 及び設計用最大応答加速度 II を用いて算出)とは異なる。

図18 ほう酸水注入系の最大応力発生部位

以上のとおり,主蒸気系配管及びほう酸水注入系配管ともに現行の手法による評価結果に対して,妥当性検討として実施した 50Hz までの領域を考慮した地震応答解析結果による応力値の増加は僅か,若しくは下回ることが確認できた。

応力値の増加が僅かである理由としては,図10変位応答スペクトルで示したように,高振動 数側では応答変位が小さく,機器に発生する応力への寄与は,低振動数側と比較しても相対的 に小さくなるため,20Hz 未満の振動数領域での応力が支配的となり,20Hz 以上の振動数領域を 考慮しても有意な応力の上昇が現れなかったものと考えられる。 (4) まとめ

現行手法の妥当性検討として,20Hz 近傍に卓越する応答を有する床応答スペクトルを適用する 主蒸気系配管及び 20Hz 近傍に1 次固有振動数を有するほう酸水注入系配管を対象に地震応答解 析を実施した(表11参照)。

対象設備	説明	
	20Hz 近傍に卓越する応答を示す原子炉遮蔽壁の設	
主蒸気系配管	計用床応答曲線を適用するもののうち, 一次応力の	
	裕度が最も小さい設備として選定した。	
ほう酸水注入系配管	20Hz 近傍に1次固有振動数を有する設備として選	
	定した。1 次固有振動数 , 2 次固有振動数	
	であり,現行手法では1次固有振動数のみ考慮され	
	る。	

表 11 妥当性検討に用いた対象設備

解析結果のまとめを表12に示す。

主蒸気系配管は、現行手法による発生応力に対して、妥当性検討による発生応力の増加が確認 されたものの、増分は僅かであった。これは、1~8次の固有振動数(20Hz 未満)での応答の配管 に発生する応力への寄与が、9次以降の固有振動数での応答に対して相対的に小さいことによる ものと考えられる。

また,ほう酸水注入系配管は,現行手法のうち動的解析による発生応力に対して,妥当性検討 による発生応力が大きくなったものの,静的解析による発生応力は,妥当性検討による発生応力 より大きくなっており,動的解析に加えて静的解析を行うことで 50Hz までの領域を考慮した地 震応答解析を行うよりも保守的な結果が得られることを確認した。

以上のとおり,剛柔判定の固有周期を20Hzとし,現行手法で解析を実施することは,耐震設計 を行う上で妥当であると考える。

計在訊供	発生応力 (MPa)			
刘豕武加	現行手法	妥当性検討	計谷心刀(MPa)	
主蒸気系配管	266 (動的解析:266 静的解析:206)	278	375	
ほう酸水注入系配管	64 (動的解析:28 静的解析:64	45	282	

表 12 現行手法及び妥当性検討の評価結果まとめ

添付図1(1) 原子炉建屋(T.M.S.L.49.7m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(2) 原子炉建屋(T.M.S.L. 38. 200m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(3) 原子炉建屋(T.M.S.L.31.700m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図 1(4) 原子炉建屋(T.M.S.L.23.500m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図1(5) 原子炉建屋(T.M.S.L.18.100m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(6) 原子炉建屋(T.M.S.L.12.300m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(7) 原子炉建屋(T.M.S.L.4.800m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(8) 原子炉建屋(T.M.S.L.-1.700m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図1(9) 原子炉建屋(T.M.S.L.-8.200m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図 2(1) 原子炉建屋(T.M.S.L. 49.700m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 2(2) 原子炉建屋(T.M.S.L. 38. 200m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 2(3) 原子炉建屋(T.M.S.L. 31.700m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 2(4) 原子炉建屋(T.M.S.L.23.500m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 2(5) 原子炉建屋(T.M.S.L. 18. 100m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図2(6) 原子炉建屋(T.M.S.L.12.300m)の加速度応答スペクトル(鉛直方向,減衰定数1.0%)

添付図 2(7) 原子炉建屋(T.M.S.L.4.800m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 2(8) 原子炉建屋(T.M.S.L.-1.700m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 2(9) 原子炉建屋(T.M.S.L.-8.200m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 3(1) 原子炉遮蔽壁(T.M.S.L.21.200m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図3(2) 原子炉遮蔽壁(T.M.S.L. 18.440m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図 3(3) 原子炉遮蔽壁(T.M.S.L. 17.020m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(4) 原子炉遮蔽壁(T.M.S.L. 15.600m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(5) 原子炉遮蔽壁(T.M.S.L. 13. 950m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図3(6) 原子炉本体基礎(T.M.S.L.12.300m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図 3(7) 原子炉本体基礎(T.M.S.L.8.200m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(8) 原子炉本体基礎(T.M.S.L.7.000m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(9) 原子炉本体基礎(T.M.S.L.4.500m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(10) 原子炉本体基礎(T.M.S.L.3.500m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図 3(11) 原子炉本体基礎(T.M.S.L.1.700m)の加速度応答スペクトル (水平方向,減衰定数 1.0%)

添付図3(12) 原子炉本体基礎(T.M.S.L.-2.100m)の加速度応答スペクトル (水平方向,減衰定数1.0%)

添付図4(1) 原子炉遮蔽壁(T.M.S.L.21.200m)の加速度応答スペクトル(鉛直方向,減衰定数1.0%)

添付図 4(2) 原子炉遮蔽壁(T.M.S.L. 18.440m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 4(3) 原子炉遮蔽壁(T.M.S.L. 17.020m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 4(4) 原子炉遮蔽壁(T.M.S.L. 15.600m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 4(5) 原子炉遮蔽壁(T.M.S.L.13.950m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図4(6) 原子炉本体基礎(T.M.S.L.12.300m)の加速度応答スペクトル(鉛直方向,減衰定数1.0%)

添付図 4(7) 原子炉本体基礎(T.M.S.L.8.200m)の加速度応答スペクトル(鉛直方向,減衰定数 1.0%)

添付図 4(8) 原子炉本体基礎(T.M.S.L.7.000m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 4(9) 原子炉本体基礎(T.M.S.L.4.500m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 4(10) 原子炉本体基礎(T.M.S.L.3.500m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図 4(11) 原子炉本体基礎(T.M.S.L.1.700m)の加速度応答スペクトル (鉛直方向,減衰定数 1.0%)

添付図4(12) 原子炉本体基礎(T.M.S.L.-2.100m)の加速度応答スペクトル (鉛直方向,減衰定数1.0%)

									最大応	答加速度	(×9.8m/s ¹	²) ×1.2	_					
構造物名	質点 番号	標高 T. M. S. L. (m)	Ss	s-1	Ss	-2	Ss	-3	Ss	-4	Ss	-5	Ss	-6	Ss	-7	Ss	-8
		(ш)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	1	49.700	2.17	2.03	1.34	1.77	1.33	1.25	0.97	1.12	0.83	1.25	1.00	1.14	0.82	1.44	1.78	1.66
	2	38.200	1. 49	1.54	1.06	1.42	1.09	1.04	0.75	0.86	0.64	1.05	0.78	0.88	0.61	1.10	1.38	1.32
	3	31.700	1.34	1.26	0.95	1.35	0.96	0.93	0.64	0.75	0.59	0.95	0.67	0.78	0.54	0. 99	1.23	1.16
	4	23.500	1. 14	1.10	0.82	1.20	0.84	0.83	0.52	0.76	0.52	0.84	0.55	0.80	0.48	0.85	1.12	1.10
面子标建员	5	18.100	1.02	1.00	0.74	1.13	0.77	0.76	0. 45	0.76	0.47	0.77	0.47	0.80	0.42	0.78	1.00	1.01
成于为"建产	6	12.300	0.91	0.94	0.64	1.03	0.73	0.73	0.39	0.74	0.43	0.71	0.40	0.79	0.36	0.73	0.89	0.91
	7	4.800	0.81	0.84	0.61	0.97	0.69	0.69	0.33	0.67	0.39	0.64	0.33	0.72	0.35	0.69	0.76	0.79
	8	-1.700	0.85	0.86	0.57	1.02	0.71	0.70	0.32	0.60	0.35	0.61	0.35	0.65	0.33	0.68	0.69	0.69
	9	-8.200	0.72	0.72	0.55	0.89	0.77	0.76	0.33	0.53	0.33	0.61	0.37	0.57	0.31	0.69	0.61	0.62
	10	-13.700	0.78	0.75	0.56	0.85	0.82	0.80	0.34	0.52	0.32	0.61	0, 38	0.55	0.31	0.70	0.58	0.58

添付表1(1) 原子炉建屋の最大応答加速度(水平方向, 1.2ZPA)

添付表1(2) 原子炉建屋の最大応答加速度(鉛直方向, 1.2ZPA)

						最大応答加速度	$(\times 9.8 \text{m/s}^2) \times 1.2$			
構造物名	質点 番号	標高 T. M. S. L.	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
		(m)	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直
	1	49.700	1. <mark>1</mark> 8	0.75	0.81	0.59	0.58	0.61	0.59	0.44
	2	38, 200	1. <mark>1</mark> 3	0.73	0.76	0.56	0.57	0.58	0.57	0.39
	3	31.700	1. <mark>1</mark> 0	0.71	0.74	0.53	0.56	0.56	0.55	0.35
	4	23, 500	1.07	0. 70	0. 73	0.52	0.54	0.53	0.54	0.33
医乙烷体品	5	18.100	1.04	0.69	0.73	0.50	0.53	0.52	0.52	0.32
原于炉建屋	6	12.300	1.02	0.68	0.72	0.48	0.52	0.51	0.50	0.30
	7	4.800	0. 99	0.65	0.71	0.47	0.50	0.50	0.47	0.29
	8	-1.700	0.96	0.63	0.72	0.47	0.49	0. 49	0.44	0.30
	9	-8.200	0.95	0.60	0.71	0.46	0.48	0.47	0. 42	0.31
	10	-13.700	0.95	0.59	0.72	0.46	0.47	0.47	0.41	0.31

添付表 2(1)	原子炉遮蔽壁及び原子炉本体基礎の最大応答加速度	(水平方向,	1.2ZPA)

		栖高							最大応	答加速度	(×9.8m/s	$^{2}) \times 1.2$						
構造物名	質点番号	T. M. S. L.	Ss	s=1	Ss	-2	Ss	-3	Ss	-4	Ss	s-5	Ss	-6	Ss	-7	Ss	-8
	- par - 2	(m)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	18	21.200	1.32	1.51	0.90	1.74	1.00	0.97	0.50	1.17	0.60	0.97	0.52	1.22	0.59	0.86	1.18	1.20
	19	18.440	1.20	1.35	0.82	1.62	0.91	0.89	0.48	1.07	0.55	0.90	0.47	1.12	0.53	0.81	1.09	1.12
原子炉遮蔽壁	20	17.020	1.14	1.25	0.78	1.52	0.86	0.85	0.46	0.99	0.53	0.86	0.45	1.04	0.49	0.79	1.05	1.07
	21	15.600	1.07	1.14	0.74	1.39	0.82	0.83	0.44	0.91	0.50	0.82	0.44	0.97	0.45	0.78	1.01	1.03
	22	13.950	0.99	1.01	0.70	1.24	0.77	0.78	0.42	0.83	0.46	0.77	0.42	0.88	0.41	0.76	0.94	0.96
	23	12.300	0.93	0.95	0.66	1.10	0.75	0.76	0.41	0.77	0.43	0.73	0.41	0.82	0.37	0.74	0.89	0.90
	24	8.200	0.89	0.88	0.64	1.08	0.73	0.73	0.38	0.72	0.41	0.68	0.37	0.77	0.35	0.72	0.87	0.86
	25	7.000	0.87	0.87	0.63	1.07	0.72	0.72	0.37	0.70	0.41	0.67	0.36	0.75	0.35	0.71	0.87	0.85
西了标士仕其难	26	4.500	0.84	0.84	0.60	1.04	0.69	0.69	0.35	0.67	0.39	0.63	0.34	0.71	0.34	0.69	0.87	0.80
原于7户平1平盘键	27	3.500	0.82	0.82	0.61	1.02	0.68	0.68	0.34	0.65	0.39	0.63	0.34	0.71	0.33	0.69	0.87	0.79
	28	1.700	0.79	0.79	0.60	1.00	0.67	0.67	0.33	0.64	0.38	0.63	0.34	0.68	0.33	0.68	0.88	0.78
	29	-2.100	0.80	0.77	0.57	0.97	0.71	0.70	0.32	0.60	0.36	0.62	0.35	0.63	0.32	0.68	0.81	0.74
	30	-4.700	0.77	0.73	0.55	1.02	0.74	0.73	0.32	0.58	0.34	0.62	0.36	0.61	0.31	0.68	0.72	0.68

添付表 2(2) 原子炉遮蔽壁及び原子炉本体基礎の最大応答加速度(鉛直方向, 1.2ZPA)

	100 kz	標高				最大応答加速度($(\times 9.8 \text{m/s}^2) \times 1.2$			
構造物名	質点番号	T. M. S. L.	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
		(m)	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直
	76	21.200	1.03	0.64	0.81	0.53	0.55	0.54	0.58	0.45
	77	18.440	1.03	0.64	0.81	0.53	0.55	0.54	0.58	0.45
原子炉遮蔽壁	78	17.020	1.03	0.64	0.80	0.52	0.55	0.54	0.57	0.45
	79	15.600	1.02	0.64	0.80	0.52	0.55	0.53	0.57	0.44
	80	13.950	1.01	0.63	0.79	0.52	0.54	0.53	0.55	0.43
	81	12.300	1.00	0.63	0.79	0.51	0.53	0.52	0.54	0.42
	82	8.200	0.99	0.63	0.78	0.50	0.52	0.52	0.53	0.41
	83	7.000	0.99	0.62	0.78	0.50	0.52	0.51	0.52	0.41
雨又病未休非常	84	4.500	0.98	0.62	0.77	0.49	0.51	0.51	0.51	0.39
所丁州本海 權	85	3.500	0.97	0.62	0.76	0.49	0.50	0.50	0.49	0.38
	86	1.700	0.97	0.62	0.75	0.48	0.50	0.49	0.48	0.37
	87	-2.100	0.96	0.61	0. 73	0. 47	0.48	0.48	0.44	0.34
	88	-4.700	0.95	0.61	0.72	0.46	0.48	0.47	0.42	0.32

3. 原子炉建屋の床応答曲線における水平方向 (NS方向, EW方向)の応答の相違の要因について

1. 概要

本資料は、「V-2-1-7 設計用床応答曲線の作成方針」に掲載する原子炉建屋の床応答曲線において、固有周期0.40(s)付近でのEW方向の応答が、NS方向の応答に比較して大きくなっている要因を説明するものである。

2. 床応答曲線(NS方向, EW方向)の応答の比較

原子炉建屋の床応答曲線は図1に示す通り,固有周期0.40(s)付近でのEW方向の応答が, NS方向の応答に比較して大きくなっている。

ここで、これらの床応答曲線を構成する応答スペクトル(基本ケース)は、図2-1及 び図2-2に示すものであり、これより、EW方向の床応答曲線におけるピークは、EW方向 のSs-2の応答スペクトルにおける固有周期0.40(s)付近のピークによるものであること が分かる。

3. 応答の相違の要因

入力地震動の加速度応答スペクトル (Ss-1~8) を図3-1及び図3-2に,原子炉建屋の 固有値解析結果 (Ss-2) を表1-1及び表1-2に示す。

ここに示す通り,EW方向の入力地震動の加速度応答スペクトル(Ss-2)は,原子炉建 屋の1次固有周期(0.428(s))付近にピークを有している。

これにより、EW方向のSs-2の応答スペクトルにおいては、固有周期0.40(s)付近に大き なピークが生じ、結果として、固有周期0.40(s)付近における床応答曲線(NS方向、EW方 向)の応答の差が生じているものと考える。

[K07-RB-SsH-RB84]

図1 床応答曲線(原子炉建屋) (V-2-1-7「設計用床応答曲線の作成方針」より抜粋)

図 2-1 応答スペクトル(基本ケース, NS 方向)(原子炉建屋)

図 2-2 応答スペクトル(基本ケース, EW 方向)(原子炉建屋)

図 3-1 入力地震動の加速度応答スペクトル (NS 方向)

図 3-2 入力地震動の加速度応答スペクトル (EW 方向)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考
1	0.438	2.28	1.585	建屋-地盤連成1次
2	0.192	5.21	-0.698	
3	0.091	11.03	0.068	
4	0.078	12.89	0.062	
5	0.077	12.99	0.070	

表1-1 固有値解析結果(Ss-2)(原子炉建屋)(NS方向) (V-2-2-1「原子炉建屋の地震応答計算書」より抜粋)

注記*:モードごとに固有ベクトルの最大値を1に規準化して得られる刺激係数を示す。

表1-2 固有値解析結果(Ss-2)(原子炉建屋)(EW方向) (V-2-2-1「原子炉建屋の地震応答計算書」より抜粋)

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数*	備考
1	0.428	2.34	1.547	建屋-地盤連成1次
2	0.191	5.25	-0.618	
3	0.082	12.16	-0.029	
4	0.077	12.97	0. 139	
5	0.071	14.03	-0. 044	

注記*:モードごとに固有ベクトルの最大値を1に規準化して得られる刺激係数を示す。

建屋一機器連成解析に関する補足説明資料

- 1. 建屋-機器連成解析モデルの時刻歴応答解析における材料物性の不確かさ等を考慮した設計用 地震力の設定について
- 2. 建屋-機器連成解析の補足について

1. 建屋-機器連成解析モデルの時刻歴応答解析における材料物性の

不確かさ等を考慮した設計用地震力の設定について

1.	概要		1
2.	建屋-	-機器連成解析における材料物性の不確かさ等の考慮について ・・・・・・・・・・・	1
2.	1 材料	科物性の不確かさ等を考慮したケースに用いる入力地震動 ・・・・・・・・・・・・	3
2.2	2 材料	科物性の不確かさ等を踏まえた設計用地震力の設定 ・・・・・・・・・・・・・・・・・・・・・	3
3.	耐震調	計算に用いる鉛直方向荷重について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
3.	1 耐象	雲計算に用いる鉛直方向荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
3. 2	2 耐象	雲計算に用いる鉛直方向荷重の整理結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
4.	静的地	地震力について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
4.	1 地創	雲層せん断力係数及び地下部分の水平震度の算定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
4. 2	2 今回	回工認モデルに基づく地震層せん断力係数及び地下部分の水平震度の算定結果 ・・・・	73

目 次

1. 概要

スペクトルモーダル解析による機器・配管系の耐震評価においては、周期軸方向に±10%拡幅さ せた設計用床応答曲線を用いることにより材料物性の不確かさ等による影響を考慮している。 本資料は、建屋-機器連成解析モデルを用いる時刻歴応答解析における材料物性の不確かさ等 を考慮した設計用地震力の設定方法を示すとともに、その適用について補足するものである。

2. 建屋-機器連成解析における材料物性の不確かさ等の考慮について

建屋-機器連成解析における材料物性の不確かさ等の考慮には、材料物性の不確かさ等を考慮 した建屋-機器連成解析の結果を踏まえる。具体的には、V-2-2-1「原子炉建屋の地震応答計算 書」に基づいた材料物性の不確かさに加え、V-2-2-4「原子炉本体の基礎の地震応答計算」及び V-2-3-1「炉心、原子炉圧力容器及び原子炉圧力容器内部構造物の地震応答計算書」に基づいた 不確かさ等を考慮したケースの地震応答解析結果と地震動及び地殻変動による基礎地盤の傾斜に 対する影響を考慮する。表 2-1 に基本ケース及び材料物性の不確かさ等を考慮するケースにお けるモデル諸元を示す。なお、ケース7及びケース8の設定については、工事計画に係る補足説 明資料【KK7 補足-028-2-2 建屋-機器連成地震応答解析の補足について】にて説明している。

	<u> </u>	王 波伸进冰件	ニマーション シイゴイナホ	N H W H	言うですのであってい		
400mm		コンクリート剛性	-11	回転	-11일 고파 나다	原子炉本体基礎	~ 刑
快回ンーへ	原子炉建屋	原子炉本体 基礎	ダイヤフラム フロア	はない	地位 通过	のヘクルトイ 曲線の設定方法	捕ん
①ケース1 (工認モデル)	実強度 43.1N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32. 3N/mm ²	100%	標準地盤	折線近似	ま本ケース
②ケース 2 (建屋剛性+ σ , 地盤剛性+ σ)	実強度 + σ 46.0N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32.3N/mm ²	100%	標準地盤+ σ (<mark>新期</mark> 砂層+13%, 古安田層+25%, 西山層+10%)	折線近似	地盤剛性の変化に 伴い、回転ばね定 数が変化
③	実強度 $-\sigma$ 40. $2\mathrm{N/mm^2}$	設計基準強度 29.4N/mm ²	設計基準強度 32.3N/mm ²	100%	標準地盤一 σ (<mark>新期</mark> 砂層-13%, 古安田層-25%, 西山層-10%)	折線近似	地盤剛性の変化に 伴い、回転ばね定 数が変化
④ケース4(建屋剛性 コア平均)	実強度 (コア平均) 55.7N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32.3N/mm ²	100%	標準地盤	折線近似	
⑤ケース 5 (建屋剛性-2 o)	実強度-2σ 37.2N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32.3N/mm ²	100%	標準地盤	折線近似	
⑤ケース 6 (回転ばね低減)	実強度 43.1N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32.3N/mm ²	20%	標準地盤	折線近似	
⑦ケース7 (原子炉本体基礎 ダイ ヤフラムフロア 実強度)	実強度 43.1N/mm ²	実強度 39. 2N/mm ²	実強度 43.1N/mm ²	100%	標準地盤	折線近似	建屋-機器 連成解析固有 のケース
 ⑧ケース8 (原子炉本体基礎 スケルトン曲線 曲線包絡) 	実強度 43.1N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 32. 3N/mm ²	100%	標準地盤	折線近似 (曲線近似を 包絡)	建屋 – 機器 連成解析固有 のケース

表2-1 建屋一機器連成解析における材料物件の不確かさ等を考慮する解析ケース

2.1 材料物性の不確かさ等を考慮したケースに用いる入力地震動

入力地震動は、基本ケースについては、全ての弾性設計用地震動Sd及び基準地震動Ssを 用いる。また、材料物性の不確かさ等を考慮したケースについては、基本ケースの各質点で地 震力が最大となる地震動Sd-1,2,8,Ss-1,2,8に加えて、原子炉建屋での検討に用いる地震 動Sd-3及びSs-3を用いる。地震力が最大となる地震動を整理した結果を表 2-2及び表 2-3 に示す。

2.2 材料物性の不確かさ等を踏まえた設計用地震力の設定

材料物性の不確かさ等を考慮したケースの地震応答解析結果を踏まえて,設計用地震力 I を 設定する。

耐震計算は,原則として設計用地震力 I 又は設計用地震力 I に対して保守性を持たせた設計 用地震力 II を用いて行う。各設計用地震力の設定方法を以下及び図 2-1 に示す。

- 設計用地震力I(材料物性の不確かさ等を考慮した設計用地震力)
- 設計用地震力 I は,基本ケースの地震応答解析結果から得られた地震力に対して,地震動及び地殻変動による基礎地盤の傾斜に対する影響と材料物性の不確かさ等を考慮したケースの 地震応答解析結果から得られた地震力を考慮して作成する(表 2-4 及び表 2-5)。なお,地 震動及び地殻変動による基礎地盤の傾斜に対する影響は,工事計画に係る補足説明資料【KK7 補足-024-7 基礎地盤傾斜による影響の補足説明資料】に基づき考慮する。
- ② 設計用地震力II(設計用地震力Iに対して保守性を持たせた設計用地震力)

設計用地震力IIは、事前検討段階の地震応答解析モデル(平成18年耐震設計審査指針改定 に伴い実施した耐震安全性評価に用いたもの)による地震力を係数倍したもの等と設計用地 震力Iを包絡することにより、保守的に作成する(表2-6及び表2-7)。

図 2-1 設計用地震力 I 及び設計用地震力 II の作成方法
3)
1
ч Ч
ŝ
最大となる弾性設計用地震動 の
せん断力)が
地震力(
(1)
2 - 2
表

							せん断ブ	⁴ 7 (kN)							
Š	d-1	Sd	-2	-bS	3	Sd-	.4	Sd-	-5	-DS	-9	Sd	-7	Sd-	-8
NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
18(3 177	90.6	208	118	112	61.5	130	60.3	109	57.1	136	61.9	86.6	138	131
262	3 762	395	895	502	482	269	560	264	474	249	587	268	385	598	570
1340	1190	683	1220	944	816	511	825	509	767	548	846	515	646	1070	912
2410) 2230	1210	2490	1630	1480	864	1600	889	1440	877	1680	892	1180	1910	1730
1960	0621 (1030	1990	1350	1240	768	1350	773	1220	768	1410	773	1010	1510	1400
2860) 2660	1550	3120	1920	1800	1120	2050	1120	1820	1060	2150	1100	1540	2260	2110
- 369(3470	2040	4170	2450	2420	1450	2720	1440	2400	1380	2840	1400	2070	2960	2800
528(5040	3080	6160	3730	3720	2110	4090	2100	3550	2040	4240	1980	3210	4380	4170
181() 1860	1300	2160	1610	1600	777	1610	855	1530	784	1670	782	1480	1730	1720
828	859	262	1010	744	738	356	748	393	716	361	760	361	689	798	262
774() 7470	5040	9640	6260	6250	3350	6640	3390	5710	3270	6870	2930	5520	6930	6690
47() 445	240	512	297	305	160	334	157	288	153	363	156	244	350	339
3450) 3300	1780	3910	2230	2250	1180	2490	1180	2130	1110	2630	1150	1850	2720	2610
3910) 3740	2040	4450	2560	2580	1350	2850	1350	2450	1280	3010	1310	2130	3100	2970
5660) 5450	3110	6610	3890	3950	2060	4270	2050	3750	1980	4470	1960	3300	4620	4450
6110) 5880	3400	7170	4250	4310	2250	4640	2250	4090	2160	4860	2130	3630	5030	4850
10700	٥٤ ل	7320	8070	6950	6070	6180	6140	5130	5680	6170	6420	5160	5910	7010	5710
15000	13300	11700	13900	12400	11100	9400	9730	8870	11100	9650	9930	8110	11200	15000	13200
15800	14100	12500	15300	13300	12000	9840	10800	9450	12000	10100	11100	8530	12100	16300	14500
16400	14800	13000	16400	14000	12700	10200	11600	0066	12600	10400	11900	8830	12800	17200	15400
16900) 15300	13400	17100	14400	13200	10400	12100	10200	13000	10600	12500	9010	13200	17900	16000
18100	16600	14200	18600	15300	14100	10800	13200	10900	14100	11100	13700	9400	14300	19300	17300
1930() 17800	15000	20200	16300	15200	11200	14400	11600	15100	11500	14900	9720	15400	20700	18600
20300	18900	15700	21600	17400	16200	11500	15400	12200	16100	11800	16000	0266	16500	21900	19800

の最大値を示す。

標高 T.M.S.L. (m	26.01	23.55	22. 16	20.49	18.71	16.56	15.26	12.33	9.40	6.90	4.95	9.40	8.20	21.20	18.44	17.02	15.60	13.95	12.30	8.20	7.00	4.50	3.50	1.70	-2.10	-4.70	-8.20	
名称						原子炉圧力容器						原子炉圧力容器	スカート			原子炉遮蔽壁							原子炉本体基礎					

2 2 I-DS I 1 .) 上記表のハッ .. 迸

				表 2	2-2 (1) 持	地力(セノ	い断力)が見	景大となる引	単性設計用 J	也震動 S d (2/3)						
	中里								せん断う	J (kN)			-				
名称	你问 TMSI (m)	Sd-	-1	Sd	-2	Sd-	3	Sd-	4	Sd-1	2	Sd-	.9	Sd-	7	Sd-8	~
	1. M. U. L. VIII/	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	14.433	748	760	782	594	559	552	311	602	350	561	327	642	348	737	547	530
	13. 721	489	497	564	401	396	386	207	420	248	376	216	448	244	499	356	336
拿过 金子	19.009	169	175	203	141	144	138	69.8	147	92.1	133	72.7	157	89.8	172	119	115
燃料果宣体	12. 29/	182	184	210	147	141	140	78.4	157	86.7	145	80.8	168	86.0	186	131	122
	11. 285 10 873	492	500	566	403	395	386	209	423	248	379	218	451	244	501	358	338
	10.161	726	739	771	581	561	549	301	588	356	554	318	626	352	720	532	510
	10.161	114	113	88.9	160	91.8	94.7	50.1	103	49.9	87.9	52.1	109	44. 3	82.2	98.1	94.5
	9. 045	87.9	87.4	68.7	125	70.1	71.7	39.4	79.6	38.6	67.6	40.9	84.0	34.2	63.0	74.7	71.7
知体存在内	9.402	48.2	46.5	37.8	67.5	38.7	37.7	21.8	42.3	20.2	35.1	23.0	44.8	18.4	33.2	37.2	36.6
则仰怿杀[1] [[0. 393	26.3	27.0	22.1	37.5	21.9	24.1	11.4	24.2	11.0	22.4	11.9	25.2	10.4	19.5	23.3	23.9
	6 70E	81.9	81.1	63.5	116	66.4	65.5	36.7	73.2	35.6	62.3	38.5	77.4	32.1	57.8	67.7	66.2
	0. <i>19</i> 0 6. 347	120	118	92.1	168	96.9	93. 9	53.8	105	51.5	87.6	56.5	112	46.9	84.2	96. 7	94.6
制御棒駆動機構	6.347	169	164	125	232	137	131	75.4	148	73.6	119	78.7	157	66.8	120	137	137
ハウジング	5.817	220	214	163	299	178	174	97.4	195	96.5	157	102	204	88.4	161	183	181
	0.000 1.019	51.9	50.2	38.3	64.1	45.1	42.0	20.7	42.5	24.7	42.5	23.0	46.5	22.8	43.6	53.8	52.2
	4. 212	24.0	23.4	14.9	25.9	18.3	18.0	8.86	16.3	9.72	17.0	9.65	17.8	9.10	17.2	23.8	22.6
制御棒駆動機構	100.0	18.0	17.4	12.3	20.4	12.6	13.8	6.49	13.6	7.11	13.1	6.47	14.4	6.10	10.7	14.8	15.9
、ウジング (市面)	2. 300	51.4	51.3	39.1	64.6	42.4	42.8	20.6	42.8	22.4	37.9	21.8	46.7	20.0	37.6	42.3	40.7
「別」	1. 033	70.9	71.5	57.0	97.2	55.4	59.3	30.6	61.9	27.4	47.1	32.5	64.9	26.2	48.3	57.3	54.8
	0.184	13. 2	13.3	9.51	16.5	9.64	10.3	5.08	10.5	4.45	8.72	5.42	11.4	4.12	7.65	9.96	9.58
	5.817	73. 3	71.9	51.7	90.1	62.3	60.5	29.1	59. 0	32.2	57.5	29.7	64.1	30.5	56.7	71.2	68.5
	5.000	44. 6	43.9	30.8	55.3	37.3	35.3	17.3	34.7	19.0	34.3	17.9	37.4	18.1	33.3	43.2	42.8
制御棒駆動機構	4. 212	13.3	12.3	7.19	13.7	9.18	8.32	4.12	9.17	4.54	8.23	4.21	9.34	4.49	7.97	11.6	12.7
ハウジング	100.0	26.4	26.6	20.4	33.1	22.0	21.8	10.7	22.6	11.9	20.0	11.2	24.4	10.4	19.5	21.6	21.8
(外側)	2. 300	58.4	58.1	47.7	81.0	52.1	50.9	25.3	51.5	27.1	46.7	26.8	54.5	24.5	46.1	52.8	49.3
	1.032	63.6	64.3	55.3	88.5	56.1	54.1	28.8	59.1	28.5	45.9	30.4	61.3	25.3	46.6	50.9	54.0
	0.184	11.4	10.9	8.98	13.9	9.40	8.87	4.66	9.83	4.48	7.19	4.79	10.3	4.01	7.05	8.31	8.76
注: 上記表のハッチン	がは Sd-1~8 の	最大値を示す	} •				-	-	-		-	-	-		-		

\mathbb{S}
Ч
\mathcal{O}
たとなる弾性設計用地震動
愚
(2 2 2
断力
せん
地震力(せん
(1) 地震力(せん
-2 (1) 地震力 (せん

									5									
		小 単								せん断力	(kN)							
	名称	下M S I (m)	-bS	-1	Sd-	2	Sd-:	8	Sd-4		Sd-5		Sd-	-6	Sd-	-7	Sd-	8
		1. M. U. L. (III)	SN	EW	NS	EW	SN	EW	NS	EW	NS	EW	SN	EW	SN	EW	SN	EW
		19.472	110	102	89.3	93.9	84.7	72.8	47.3	80.8	51.6	76.4	44.4	84.2	38.9	74.0	57.0	47.8
	気水分離器及び	18.716	312	293	2.56	268	2.34	211	133	2.2.7	143	210	1 2,4	235	108	207	168	141
		17.179	413	391	351	379	321	301	175	310	188	283	164	322	158	289	260	230
		16.506	435	421	375	408	351	328	186	332	205	302	174	344	172	312	290	263
		15.641	482	461	413	440	385	358	201	362	230	336	188	374	190	338	311	291
		15.200	581	536	497	499	449	410	234	422	283	409	220	436	227	390	347	334
		14.433	1540	1490	1020	1190	939	926	482	991	598	1020	561	1070	543	1230	948	966
		13. /21	1560	1490	1040	1210	967	939	484	1010	620	1020	567	1080	542	1220	945	995
		13.009	1560	1470	1050	1210	987	944	478	1010	635	1010	565	1080	529	1190	926	977
		12.29/	1540	1450	1060	1220	1000	941	471	1010	645	066	560	1070	510	1150	905	961
		11. 585	1540	1440	1060	1230	1010	936	483	1000	653	976	556	1060	495	1110	918	955
	炉心シュラウド	10.8/3	1540	1430	1070	1240	1020	936	496	1000	663	696	556	1060	507	1100	928	953
		9.645	1550	1440	1080	1240	1020	941	501	1010	671	677	558	1070	515	1100	922	949
		10.161	919	937	770	758	630	632	372	636	410	708	403	677	406	847	693	721
		9.645	2490	2440	1530	2020	1600	1510	807	1620	957	1730	943	1750	860	2000	1600	1710
		9.402	2520	2460	1540	2050	1620	1520	813	1640	968	1750	952	1770	868	2010	1610	1720
		6. 395 7 388	2550	2480	1550	2080	1630	1540	824	1650	981	1770	964	1780	878	2030	1630	1760
		6. 795	2570	2490	1550	2100	1640	1540	832	1650	987	1790	971	1780	882	2040	1640	1780
		6.253	300	298	327	538	266	260	163	229	163	189	153	258	132	199	226	228
	原子炉冷却材	5.376	229	225	238	397	176	172	125	164	119	134	117	183	96. 5	126	152	150
	冉伯琛ジノノ	4.523	187	183	193	320	141	134	102	131	96.9	106	94.6	144	76.7	99.4	118	116
: 江	上記表のハッチン	グは Sd-1~8 の:	最大値を示す	₫. 0														

表 2-2 (1) 地震力(せん断力)が最大となる弾性設計用地震動 S d (3/3)

								モーメント	⊦ (kN • m)					-		
(m	Sa	1-1	Sd	-2	-DS	-3	Sd-	-4	Sd-	-5	-bS	-6	Sd-	7	Sd-	8
/m	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53	458	436	223	512	289	276	151	320	148	268	141	334	152	213	340	322
63	1560	1500	771	1760	986	945	525	1100	515	927	487	1150	525	748	1170	1110
94	3790	3480	1840	3800	2560	2310	1330	2470	1370	2210	1390	2550	1380	1790	2950	2640
16	8080	7450	3990	8180	5450	4930	2860	5320	2950	4760	2950	5530	2970	3860	6340	5710
63	12300	11300	6210	12400	8330	7580	4510	8220	4610	7370	4590	8560	4630	6010	9570	8630
62	16000	14800	8220	16500	10800	9910	5960	10900	6060	9730	5960	11400	6060	8010	12500	11300
32	26800	24900	14200	28700	18000	16600	10200	18800	10300	16700	9810	19700	10200	14100	21200	19500
00	42200	39600	23000	46700	28100	27200	16400	30700	16400	27100	15700	32000	16000	23500	34000	31600
707	6130	6320	4400	7380	5490	5450	2640	5490	2910	5220	2660	5640	2660	5050	5880	5850
04	1620	1680	1160	1970	1450	1440	696	1460	768	1400	705	1490	706	1350	1560	1550
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02	37400	34900	19200	39600	25100	23400	13800	25800	14000	22900	13500	26900	14100	18700	28700	26700
00	46600	43800	25000	51200	31000	29400	17800	33400	17900	29700	17000	34800	17600	25200	37000	34500
00;	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40	1300	1230	664	1410	820	841	443	922	434	795	423	1000	431	674	996	934
20	6200	5910	3190	6970	3990	4030	2110	4460	2100	3820	2000	4740	2060	3300	4800	4610
00	11800	11200	6090	13300	7630	7700	4030	8500	4010	7300	3820	0006	3920	6330	9200	8830
50	21100	20200	11200	24200	14000	14200	7440	15500	7390	13500	7080	16400	7150	11800	16800	16200
00	31200	29900	16800	36000	21000	21300	11200	23200	11100	20200	10700	24400	10700	17800	25100	24200
6	53600	47400	41000	45900	43200	37700	34100	32100	30500	37200	35100	32300	29200	38500	49200	42000
3	93800	83000	63900	85900	73300	65800	48900	64500	48500	66500	51800	66300	46600	61900	83100	76000
00	110000	96900	77800	102000	87400	78200	60000	76100	59000	00267	63200	78200	56200	75300	100000	91000
00	147000	129000	109000	140000	119000	107000	84400	103000	82300	110000	88200	106000	77400	105000	138000	125000
00	162000	143000	122000	156000	133000	119000	94500	114000	92000	122000	98600	117000	86200	118000	155000	140000
00.	191000	169000	146000	185000	158000	142000	113000	136000 135000	110000	146000	118000	140000	102000	142000	186000	167000
00	259000	232000	199000	254000	215000	194000	154000	185000	150000	199000	159000	191000	138000	195000	257000	229000
00.	308000	278000	238000	304000	256000	232000	183000	221000	180000	237000	189000	228000	163000	234000	310000	277000
00	378000	343000	293000	377000	314000	287000	223000	272000	222000	291000	229000	283000	198000	290000	387000	345000
6	最大値を示	: J.														

表 2-2(2) 地震力(モーメント)が最大となる弾性設計用地震動 Sd (1/3)

標高 T. M. S. L. (m	26.01	23.55	22.16	20.49	18.71	16.56	15.26	12.35	9.4(6.9(4.95	9.4(8.2(21.2(18.44	17.02	15.60	13.95	12.30	8.2(7.00	4.50	3.5(1.70	-2.1(-4.7(-8.2(
名称						日子上山	界士炉压力谷奋					原子炉圧力容器	スカート			原子炉遮蔽壁							原子炉本体基礎				

				1			2	0 K. U V/X	インメーキ	(kN • m)	(0)						
名称	標高 T M S I (m)	Sd	-1	Sd	-2	Sd-3		Sd− [_]	1	-PS	2	Sd-	-9	Sd	2-	S-bS	~
	1. M. O. L. VIII/	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	14.433	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	13.721	532	541	557	423	398	393	222	428	250	400	233	457	247	525	389	377
	13.009	881	895	958	707	679	667	369	727	426	667	386	775	421	880	642	607
燃料集合体	12.297	966	1010	1100	805	781	765	418	831	491	761	438	886	485	1000	726	686
	11.585	866	881	952	701	681	665	363	719	430	664	381	767	424	869	633	598
	10.873	517	526	549	414	400	391	215	418	254	394	226	446	250	512	378	363
	10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.645	58.8	58.4	45.9	82.7	47.4	48.9	25.8	53.1	25.7	45.3	26.9	56.1	22.9	42.4	50.6	48.8
	9.402	80.1	79.6	62.6	113	64.4	66.3	35.4	72.4	35.1	61.7	36.8	76.5	31.2	57.7	68.8	66.1
制御棒案内管	8. 395	125	124	96.1	179	101	99.5	56.3	113	55.1	95.4	58.5	119	49.1	89.0	106	102
	7.388	102	101	78.9	144	82.8	80.7	45.8	90.6	44.1	76.2	48.1	96.0	40.0	71.9	83.4	80.7
	6.795	53.6	52.6	41.2	75.2	43.4	42.0	24.1	47.2	23.1	39. 2	25.3	50.0	21.0	37.7	43.3	42.3
	6.347	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
#1 까지 모두님과 구구 내장/ 반면	6.347	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
制御棒駆動機構	5.817	89.4	87.1	66.4	123	72.5	69.6	39.9	78.5	39.0	63. 3	41.7	83.1	35.4	63.6	72.8	72.6
		254	247	188	347	206	198	113	225	111	180	118	236	102	184	210	208
	000 °C	61.3	59.1	48.7	83.3	52.4	50.4	26.6	52.9	27.4	48.1	28.2	57.5	24.9	49.0	54.8	54.7
	4.213	19.5	19.6	17.5	31.1	20.0	19.8	10.0	20.5	9.90	14.9	11.3	21.0	8.45	14.2	11.6	13.9
制御棒駆動機構	3. 361	23.7	22.1	9.94	15.3	14.9	14.4	7.84	16.9	8.82	11.5	8.36	16.1	8.44	11.2	11.9	12.2
ハウジング	2.508	26.4	25.8	16.2	28.4	21.0	20.5	9.46	21.6	9.96	15.3	10.2	21.8	8.15	16.7	14.7	12.8
(内側)	1.655	61.0	61.5	48.1	82.1	47.1	50.5	25.9	52.5	22.8	40.3	27.5	55.3	22.0	40.5	48.8	46.6
	0.934	9.88	9.99	7.13	12.4	7.23	7.75	3.81	7.90	3. 33	6.54	4.07	8.57	3.09	5.74	7.47	7.18
	0. 184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5.817	77.5	76.6	57.6	103	66.4	65.1	32.2	64.5	33.0	60.5	34.0	69.7	31.4	60.3	71.9	68.9
	5.066	22.9	23.0	19.0	35.2	20.2	20.1	11.0	20.3	9.54	17.5	11.7	22.0	8.78	18.2	19.0	17.7
	4.213	20.6	20.1	11.6	18.6	14.6	13.3	7.11	12.5	9.17	13.0	7.53	12.4	7.45	13.4	18.9	19.0
制御棒駆動機構	3. 361	30.1	30.5	16.4	28.2	20.8	19.4	10.2	18.1	13.0	18.5	10.5	18.7	11.1	18.9	28.3	29.2
く う う く う () () () () () () () () () () () () ()	2.508	21.8	24.0	9.08	15.1	13.4	14.2	5.93	15.5	6.87	10.5	6.29	14.9	6.35	10.3	10.6	12.8
	1.655	54.3	54.2	46.6	74.2	47.4	45.6	24.2	49.9	23.9	38.4	25.4	51.7	21.1	38.9	42.9	45.4
	0.934	8.53	8.16	6.73	10.4	7.05	6.65	3.49	7.37	3.36	5.39	3.59	7.71	3.01	5.29	6.24	6.57
	0.184	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
注: 上記表のハッチン	グは Sd-1~8 の1	最大値を示	€														

地震力(モーメント)が最大となる弾性設計用地震動 S d (2/3) -2 (2) 表 2-

					1 (,))		~ ~		エントーキ	(kN·m)	10 101						
	名称	標高	Sd	-1	-pS	-2	Sd-5		-PS	4	Sd-t		-PS	-9	-pS		-bS	8
		Т. М. S. L. (m)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
		19.472	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	気水分離器及び	18.716	83.1	77.4	67.5	71.0	64.0	55.0	35.8	61.1	39.0	57.8	33.6	63.6	29.4	55.9	43.0	36.1
	スタンドパイプ	17.179	561	526	459	483	423	378	240	408	259	381	224	424	193	373	299	251
		16.506	839	789	695	737	615	580	358	615	379	562	335	639	299	562	473	401
		15.641	1220	1150	1020	1090	915	861	518	900	539	824	485	936	448	832	721	622
		15.266	1390	1320	1170	1250	1060	993	594	1030	620	949	555	1070	519	958	837	727
		14.433	1850	1760	1580	1670	1430	1330	788	1370	855	1290	736	1430	708	1280	1120	966
		13.721	2870	2770	2290	2490	2100	1960	1100	2060	1280	1980	1070	2160	696	2030	1690	1590
		13.009	3980	3840	3030	3330	2780	2590	1420	2760	1720	2680	1440	2920	1250	2900	2290	2300
		12.297	5090	4880	3780	4170	3480	3230	1750	3470	2170	3380	1810	3670	1600	3740	2910	2990
		11.585	6180	5910	4530	5020	4190	3870	2080	4170	2630	4070	2170	4420	1960	4560	3550	3670
		10.873	7260	6920	5280	5870	4910	4510	2410	4870	3100	4750	2520	5170	2310	5350	4200	4340
	炉心シュラウド	10.161	8350	7930	6040	6740	5640	5170	2730	5580	3570	5430	2920	5910	2660	6130	4860	4990
		9.645	9140	8670	6590	7360	6170	5660	2970	0609	3910	5930	3200	6460	2920	6690	5330	5470
		10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0 <i>6</i> 1E	474	484	397	391	325	326	192	328	212	365	208	350	209	437	358	372
		9. 040	9600	9150	6800	7720	6400	5920	3070	6370	4050	6180	3380	6770	3090	7120	5620	5830
		9.402	10200	9740	7160	8200	6770	6280	3240	6760	4280	6600	3610	7190	3300	7610	6000	6240
		8. 395	12700	12200	8670	10200	8320	7800	3920	8370	5260	8340	4560	8940	4170	9620	7570	7950
		7.388	15300	14700	10200	12300	9890	9340	4660	10000	6240	10100	5520	10700	5050	11700	9170	9690
		6.795	16800	16200	11100	13500	10800	10300	5140	11000	6830	11200	6090	11800	5570	12900	10100	10700
		6.253	608	600	646	1070	498	485	334	448	324	369	314	502	263	358	426	425
	原子炉冷却材	5.376	355	348	367	611	269	261	194	251	184	204	180	278	148	192	230	226
	再循環ポンプ	4.523	159	156	164	273	120	115	87.2	111	82.6	90.1	80.6	123	65.4	84.7	101	98.8
		3.671	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
注:	上記表のハッチン	グは Sd-1~8 の;	最大値を示	et.														

表 2-2(2) 地震力(モーメント)が最大となる弾性設計用地震動 Sd (3/3)

	ł Ľ					(kN)			
名录	镖司 T.M.S.L. (m)	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	9-PS	Zd-7	Sd-8
	26.013	91.2	56. 6	70.5	45.9	48.3	46.9	50.7	39.6
	23. 553	425	264	328	214	225	218	236	184
	22. 163	778	484	601	392	413	400	432	338
	20. 494	1470	913	1130	739	627	754	815	637
	18.716	1730	1080	1340	873	920	891	963	753
	17.179	1880	1170	1460	949	1000	969	1050	818
	16.506	2090	1300	1620	1050	1110	1080	1160	606
	15.641	2190	1360	1690	1100	1160	1120	1210	949
	15.266	2320	1440	1790	1170	1230	1190	1280	1000
	14. 433	2420	1510	1870	1220	1290	1240	1340	1050
	13. 721	2520	1570	1950	1270	1340	1290	1390	1090
	13.009	2610	1630	2020	1320	1390	1340	1450	1130
原子炉上力浴器	12.297	2710	1690	2090	1360	1440	1390	1500	1170
	11.585	2800	1750	2170	1410	1490	1440	1550	1210
	10.873	2900	1810	2240	1460	1540	1490	1600	1250
	10. 161	2980	1860	2300	1500	1580	1530	1650	1290
	9.645	3040	1900	2350	1530	1610	1560	1680	1310
	9.402	5250	3230	4050	2650	2800	2710	2970	2340
	8.395	5110	3140	3950	2580	2730	2640	2900	2280
	1.388	5000	3080	3860	2530	2680	2590	2840	2230
	6.795	4450	2730	3430	2250	2380	2300	2530	1990
	6. 253 5. 783	4010	2460	3100	2030	2150	2080	2290	1800
	5.817 5.066	2200	1340	1690	1110	1180	1140	1260	994
原子炉圧力容器 スカート	9.402 8.200	8450	5230	6530	4260	4500	4350	4740	3720
	21.200	303	186	235	151	161	156	170	133
	18.440	1700	1050	1320	849	902	874	953	747
原子炉遮蔽壁	17.020	2070	1280	1610	1040	1100	1060	1160	910
	13.050	3640	2250	2830	1830	1930	1870	2030	1590
	13. 950	4090	2530	3180	2050	2170	2100	2280	1780
	12.300	0096	6020	7460	4830	5080	4910	5270	4120
	8. 200 7. 000	20100	12600	15600	10100	10700	10300	11100	8700
	1.000	21700	13500	16800	10900	11500	11100	11900	9330
	4. 300	22900	14300	17800	11500	12100	11700	12600	9830
原子炉本体基礎	0. 2000	23700	14900	18400	11900	12500	12100	13000	10100
	9 100 J	25500	16000	19800	12800	13400	13100	13900	10800
	-4 700	27300	17200	21200	13700	14400	14000	14800	11500
	-8 200	28900	18300	22500	14500	15200	14800	15600	12100
注: 上記表のハッチン	ゲは Sd-1~8 の」	最大値を示す。		-					

表 2-2 (3) 地震力(軸力)が最大となる弾性設計用地震動 S d (1/3)

			(1) 7 7 7 (1)			(0/7) 7 (位)			
	山 里				軸力	(kN)			
名称	T. M. S. L. (m)	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Sd-7	Sd-8
	14.433	88.9	53. 7	68.5	45.5	48. 7	46.3	52. 0	41.1
	13.721	267	161	205	136	146	139	156	123
燃料集合体	13.009	444	268	342	227	243	231	259	205
	12.29/	621	375	478	317	339	323	362	287
	11. 585	262	481	614	407	435	415	465	367
	10.8/3	973	588	750	497	530	506	566	448
	10.161	1200	723	921	610	650	622	695	549
	9. 645	1210	732	932	617	657	629	703	555
	9.402	1230	746	950	629	670	641	716	565
制御棒案内管	8. 395 7 200	1270	768	626	647	689	660	737	582
	1.388	1300	786	1000	662	705	675	754	595
	0. 193 6. 347	1320	798	1020	672	715	685	764	604
制御棒駆動機構	6.347	1350	817	1040	687	732	701	782	617
ハウジング	5.817	1380	833	1060	701	746	715	262	629
	5. U00	354	217	273	177	187	182	200	158
	4. 213	335	205	259	168	177	173	190	149
制御棒駆動機構	3.301	315	193	243	158	166	162	179	140
くウジング	2. 508	296	181	228	148	156	153	168	132
(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(1. 000	65.3	40.0	50.4	32.7	34.5	33. 7	37.1	29.1
	0. 334	9.51	5.83	7.35	4. 76	5.02	4.91	5.40	4.25
	5.817	363	225	281	181	191	187	203	159
	5.066	346	214	268	173	182	178	194	152
制御棒駆動機構	4. 213	328	203	253	164	172	169	183	144
ハウジング	3.301	308	191	238	154	162	159	173	135
(外側)	2. 300	290	179	224	145	152	149	162	127
	1. 033	63.9	39.6	49.4	31.9	33.5	32.9	35.8	28.0
	0. 184	9.31	5.76	7.20	4. 65	4.89	4. 79	5.21	4.09
注: 上記表のハッチン	グは Sd-1~8 の1	最大値を示す。							

地震力(軸力)が最大となる弾性設計用地震動 S d (2/3) 表 2-2 (3)

					軸力	1 (kN)			
名恭	標高 T.M.S.L. (m)	Sd-1	Sd-2	Sd-3	Sd-4	Sd-5	Sd-6	Zd-7	Sd-8
すする第四日よう	19.472	34. 5	20. 7	26.5	17.8	19.0	18. 0	20.3	16.1
メタンドパイプ	18.716	105	63. 0	80.8	54. 2	57.9	54. 9	61.9	49.1
	11.1/9	203	122	156	105	112	106	119	94.7
	10.300	287	172	220	148	158	150	169	134
	15.041	475	287	366	243	259	247	277	219
	15.200	523	316	403	267	285	273	305	241
	14.433	654	396	504	333	355	341	380	301
	13. /21	675	409	521	344	367	352	393	310
	13.009	269	423	537	354	378	363	405	320
	12.29/	718	436	554	365	389	374	417	330
	11. 585	739	449	570	376	401	385	429	339
炉心シュラウド	10.873	761	462	587	387	412	396	441	349
	10.101	780	474	601	396	422	905	452	357
	9.040	1080	660	834	547	582	261	622	490
	9.402	1110	677	855	561	296	575	638	502
	8.395 7 199	1150	703	888	582	619	262	. 661	520
	1. 300 6. 70E	1180	724	914	266	636	614	680	535
	0.190	1230	751	947	621	659	636	704	554
	5. 783	1250	766	966	633	672	649	717	564
	6. 253	275	171	212	138	145	141	152	119
原子炉冷却材 再循環ポンプ	5.37b	247	154	191	124	130	127	137	107
	3.671	213	132	164	107	112	109	118	92.1
注: 上記表のハッチン	·グは Sd-1~8 の.	最大値を示す。	(V) 0 0 #	支援士 (デオロナ)	重ᡅᆊᄱᇨᆂᄰᇺᆛᆊᆸ᠉	「と」を選びてい			
			女 2 一 2 (4)	地震刀(NaraRJJ)	か 東 不 ど ぷ つ 坤 性 政 🖥	☆ 計用			

表 2-2 (3) 地震力(軸力)が最大となる弾性設計用地震動 S d (3/3)

	8	EW	854	6680
	Sd-	NS	906	5730
	L-	EW	525	5690
	Sd-	NS	337	3100
	-9	EW	756	7860
	Sd-	NS	334	4450
	-2	EW	623	6180
力(kN)	Sd	NS	355	4040
ばね反	-4	EW	726	7300
	Sd	NS	326	4780
	-3	EW	639	8940
	Sd	SN	683	9040
	-2	EW	1240	14500
	PS	SN	512	0287
	[-1	EW	1040	8550
	Sc	SN	1070	8730

13

注: 上記表のハッチングは Sd-1~8 の最大値を示す。

ダイヤフラムフロア

原子炉圧力容器 スタビライザ

名称

			EW	0	2.38	4.08	4.70	4.07	2.35	0
		Sd-8	SN	0	2.51	4.33	4.98	4.31	2.49	0
			EW	0	3.43	5.93	6.82	5.91	3.41	0
		Zd-7	SN	0	1.65	2.86	3.30	2.86	1.66	0
			EW	0	3.02	5.22	6.02	5.20	3.00	0
		Sd-6	SN	0	1.51	2.60	2.99	2.59	1.50	0
			EW	0	2.61	4.51	5.20	4.50	2.60	0
地震動 S d	(ШШ)	3-pS	SN	0	1.67	2.89	3.34	2.90	1.68	0
となる基準	晨大応答変	1	EW	0	2.83	4.90	5.64	4.88	2.82	0
位) が最大	шЩ	Sd-2	SN	0	1.44	2.48	2.86	2.47	1.43	0
力(相対変/		3	EW	0	2.61	4.51	5.20	4.50	2.60	0
(5) 地震		Sd-S	SN	0	2.66	4.60	5.31	4.60	2.66	0
表 2-2		2	EW	0	2.76	4.77	5.49	4.75	2.75	0
		Sd-	SN	0	3.73	6.46	7.45	6.45	3.72	0
		1	EW	0	3.50	6.03	6.93	6.00	3.47	0
		Sd-	SN	0	3.44	5.93	6.82	5.90	3.41	0
	—		-			—	—		—	_

の最大値を示す。

	レグは	10.16	10.87	11.58	12.29	13.00	13.72	14.43	標高 T. M. S. L. (
名 然料集合体	上記表のハッチ)				燃料集合体				名称

				4°			「「」」		147、第十	1 (kN)							
名称	→ me me u u u	Ss-	-1	Ss-	-2	Ss-	3	Ss-4	4	Ss-	2	Ss-	6	Ss-	7	Ss-6	~
	I. M. S. L. (m)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	SN	EW
	26.013	317	356	199	424	229	222	111	272	135	210	121	278	134	177	271	289
	23. 553	1340	1510	865	1830	980	956	485	1170	588	919	517	1210	577	775	1160	1250
	22.103	2570	2320	1550	2450	1800	1580	1010	1660	1070	1430	1090	1690	1060	1290	2120	1890
	20. 494	4370	4370	2770	4980	3140	2900	1630	3290	1920	2760	1790	3400	1870	2390	3730	3630
西之后已土余思	10.110	3290	3390	2200	3790	2480	2280	1350	2640	1550	2190	1470	2710	1530	1880	3030	2740
原士炉庄儿谷奋	10.203 15 969	4880	5170	3280	5990	3660	3440	1950	4070	2310	3430	2090	4210	2220	2940	4360	4260
	15.202	6350	6770	4280	8040	4780	4550	2560	5390	3020	4590	2680	5600	2860	4000	5670	5680
	12.332	9110	9740	6330	12100	7010	6920	3820	7960	4460	6940	3790	8420	4090	6340	8370	8600
	9.402	3680	3980	2690	4610	3120	3100	1580	3050	1710	2920	1590	3240	1490	3000	3870	3710
	4.950	1710	1830	1250	2140	1450	1440	736	1400	662	1350	736	1480	689	1390	1800	1720
原子炉圧力容器 スカート	9.402	14000	14700	10100	19100	11700	11700	6270	12700	6940	11300	6120	13500	6110	11000	14000	13900
	21.200	802	883	512	1010	601	584	301	696	348	583	307	728	337	503	694	708
	18.440	6040	6640	3960	8000	4510	4370	2260	5200	2710	4420	2330	5460	2550	3870	5280	5660
原子炉遮蔽壁	17.020	6870	7540	4510	9080	5130	5010	2590	5930	3090	5060	2650	6220	2900	4440	6020	6430
	12.000	10100	11100	6730	13300	7640	7650	3920	8780	4610	7630	3950	9190	4280	6840	9080	9530
	10.900	10900	12000	7330	14400	8300	8350	4280	9510	5020	8320	4300	9970	4630	7510	9920	10400
	8 200	17400	13400	11200	15600	10400	8160	8140	9830	8060	7710	7850	9770	7820	8760	15400	9980
	0.200	29300	23700	20000	28500	19800	17100	14400	15000	14400	16900	14600	15600	13100	17500	29200	23200
	1.000	31500	26200	21600	31200	21500	19000	15300	17000	15700	18800	15500	17800	14000	19400	31500	25700
	4. 300	33500	28000	22900	33300	22900	20300	15900	18600	16600	20200	16200	19500	14700	20900	33400	27600
原子炉本体基礎	0.000	34800	29100	23700	34800	23800	21300	16300	19600	17300	21000	16600	20600	15100	21900	34600	28800
	-0 100 -0 100	37700	31600	25700	37900	26000	23600	17200	21800	18700	23100	17500	23000	16000	24100	37400	31800
	-2.100	40100	33900	27500	41300	28100	25900	18100	24100	20200	25200	18400	25500	17100	26500	40400	34700
	-4. 700 -8. 200	42000	36100	29200	44300	30000	27900	18800	26200	21500	27000	19100	27700	18200	28700	43000	37200
注: 上記表のハッチン	グは Ss-1~8 の	最大値を示	₫.														

\frown
3
E
~
0
$\overline{0}$
嬱
震
杓
劐
141
1
NO
t
J
K
Ē
14
\mathcal{H}
$\widehat{\Box}$
Ĺ,
邂
\sim
Þ
Ý
F
шŔ
有
五
_
Ξ
<u> </u>
ကို
2
ШX
ΨĦ

Ł

名称	1								「この思う	(NIN)							
秋	標画			1						4			,	1		1	T
	T. M. S. L. (m)	Ss-	1	Ss-2	2	Ss-3		Ss-4		Ss-5		-SS-	.9	Ss-	-2	Ss-{	~
		NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
1	14.433	1580	1590	1770	1460	1290	1240	608	1150	744	1150	640	1230	722	1450	1190	1150
	13.721	1030	1040	1270	995	910	867	407	805	521	791	419	858	505	980	778	732
- - -	10,009	350	359	456	352	331	312	139	283	193	268	141	300	184	342	264	259
▲ ①	12. 29/	386	385	472	365	328	316	154	301	182	306	158	322	184	362	288	265
	11. 303	1030	1040	1270	666	912	869	411	809	521	799	424	862	504	986	785	733
	10. 161	1520	1540	1740	1440	1290	1230	587	1120	753	1100	612	1200	729	1420	1160	1130
I	10.161	236	227	184	312	176	186	90.9	206	97.2	170	95.1	213	94.3	168	220	211
	9.645	189	176	142	242	138	141	71.7	160	74.4	129	74.8	165	72.8	127	173	166
	9.402	112	97.9	80.2	130	74.6	74.3	42.1	87.9	38.9	65.6	43.8	88.0	39.0	68.3	97.8	88.1
米乙间	5. 395 7 986	62.0	65.0	46.0	72.0	41.3	46.9	20.9	47.1	22.5	42.5	22.0	49.6	21.9	40.7	52.2	53.8
_1	1.388 6.705	183	167	134	224	128	129	70.1	150	68.6	118	72.9	154	67.8	119	165	152
-	0. 193 6. 347	264	237	193	327	188	184	103	218	97.9	164	107	222	97.5	170	238	208
動機構	6.347	351	319	260	459	269	255	142	302	138	229	148	309	134	240	330	282
ング	5.817 E off	453	411	330	597	352	340	179	390	183	307	187	402	170	322	425	376
	0.000	154	121	85.0	149	89.2	90.3	43.8	86.6	53.6	82.5	45.0	90.8	43.6	90.5	136	106
	4.213	87.1	62.5	39.9	69.6	38.1	39.5	17.9	34.7	22.8	36. 2	19.2	36.4	17.8	37.3	94.8	49.6
動機構 -	3.301	47.5	38.2	23.9	37.1	25.4	26.1	13.8	25.4	14.7	21.8	14.0	26.7	12.7	20.2	48.7	32.2
С Щ	2. 300	103	109	75.2	133	81.0	82.6	41.4	86.2	41.8	71.4	40.0	89.5	39.8	72.1	93.8	82.6
	1. 033 0. 034	177	164	113	186	118	119	59.1	124	58.3	96.4	62.1	130	54.0	87.0	147	115
_1	0. 184	35.6	27.7	18.9	29.6	22.5	20.3	9.75	21.1	9.79	15.7	10.3	21.6	9.06	14.5	35.3	21.0
	5.817	165	152	109	182	119	119	59.4	121	68.8	109	58.6	127	57.0	116	162	145
	5.066	108	89.1	65.5	111	72.0	71.1	34.7	71.4	41.7	63. 6	34.2	75.0	33.5	70.1	105	92.6
動機構	4. 212	45.4	33.7	16.8	36.9	18.8	17.2	8.52	17.4	10.6	16.0	9.60	18.4	8.65	19.0	46.9	28.6
ング	0.500	58.6	56.6	39.4	69.4	42.4	42.1	21.0	45.3	21.7	37.6	20.7	47.2	20.9	37.8	49.2	44.2
	2. 308 1 6EE	126	130	91.5	165	102	101	48.4	104	52.2	87.7	50.5	109	48.8	88.7	116	103
	0.034	185	166	108	187	106	107	56.1	119	54.5	92.4	58.5	124	54.3	87.5	119	109
	0. 184	35.1	29.9	17.8	29.9	17.2	17.1	9.03	19.5	9.00	14.7	9.42	20.3	9.22	13.2	22.3	17.2

$\widehat{\mathbb{C}}$
(2/;
S
S
が最大となる基準地震動
(せん断力)
地震力
(1)
-3
長 2-

		北								せん断力	(kN)							
	名称	尔M S I (m)	Ss-	-1	Ss-	-2	Ss-6	3	Ss-4	1	Ss-5		Ss-	6	Ss-	7	Ss-8	
		1. M. J. L. (III)	SN	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	SN	EW	SN	EW
		19.472	224	220	187	202	171	154	93. 5	174	110	159	85.8	181	79.0	151	142	109
	気水分離器及び スカンドルペイ	18.716	633	612	536	573	469	441	262	498	306	437	240	512	224	431	380	313
		17.179	850	822	738	814	699	634	342	674	387	579	318	696	309	612	554	496
		16.506	908	873	290	885	728	687	360	723	420	617	338	742	336	662	620	570
		15.641	1010	955	872	956	797	750	387	786	470	681	363	806	371	717	690	633
		15.266	1220	1120	1050	1060	921	862	448	911	577	828	438	936	447	816	803	734
		14.433	3250	3100	2300	2690	2030	2080	1050	2090	1230	2010	1200	2210	1190	2460	2050	2110
		13. 721	3280	3110	2340	2720	2040	2100	1050	2130	1280	2030	1210	2250	1190	2450	2040	2110
		13.009	3260	3060	2340	2730	2060	2100	1040	2140	1300	2020	1200	2250	1150	2390	2040	2080
		12.29/	3220	3020	2320	2740	2080	2090	1010	2130	1320	1990	1190	2240	1110	2310	2020	2030
		11. 385	3180	2980	2300	2750	2100	2080	266	2140	1330	1970	1180	2230	1070	2250	2020	2010
	炉心シュラウド	10.8/3	3180	2970	2310	2770	2110	2080	995	2150	1340	1970	1190	2240	1060	2230	2090	2000
		9.645	3200	2980	2340	2770	2130	2090	1000	2180	1360	1990	1200	2260	1070	2240	2130	2000
		10.161	1920	1960	1760	1700	1420	1390	730	1190	882	1360	786	1280	859	1680	1480	1550
		9.645	5270	5090	3360	4530	3390	3370	1760	3390	1940	3350	2030	3580	1880	4010	3620	3630
		9.402	5320	5130	3390	4580	3430	3400	1780	3420	1960	3370	2050	3620	1890	4040	3690	3660
		8.395	5380	5180	3400	4660	3460	3440	1810	3450	1990	3410	2080	3650	1910	4090	3780	3710
		6. 795	5400	5200	3420	4720	3480	3460	1820	3460	2000	3440	2090	3660	1920	4120	3820	3750
		6. 253	626	645	622	1070	513	504	323	452	333	366	294	503	274	406	467	472
	原子炉冷却材	5.376	466	481	464	792.	342	334	2.51	325	2.42.	260	2.28	354	193	2.56	317	316
	再循環ポンプ	4.523		101	1	1		1	4	1	1]	1			1		
		3.671	373	384	377	640	270	262	204	258	192	204	186	280	151	200	250	247
注:	上記表のハッチン	グは Ss-1~8 の	最大値を示す]				,			,						,	

表 2-3(1) 地震力(せん断力)が最大となる基準地震動 Ss (3/3)

		-		-		-		モーメント	$(kN \cdot m)$	-		-		-		
(n	Ss	-1	Ss	-2	Ss-	-3	Ss-	4	Ss-	-5	Ss-(9	Ss-	7	Ss-	8
π/	NS	EW	NS	EW	SN	EW	NS	EW	NS	EW	SN	EW	NS	EW	SN	EW
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53	622	876	489	1040	563	547	273	699	333	516	297	684	330	437	666	711
63	2640	2980	1690	3590	1930	1880	947	2300	1150	1790	1020	2360	1130	1510	2280	2440
94	6930	6850	4280	7680	4920	4510	2590	5060	2940	4160	2840	5170	2900	3620	5830	5600
16	14700	14600	9210	16500	10500	9670	5470	10900	6340	0206	6020	11200	6220	7870	12400	12100
63	21700	21800	14000	24700	15800	14600	8340	16600	9680	13800	9150	17100	9500	11900	19000	17900
62	27900	28500	18200	32500	20500	19000	10800	21900	12700	18200	11800	22500	12400	15700	24600	23500
32	46300	48300	30800	56000	34200	32000	17900	37600	21500	31600	19600	38900	20800	27200	41000	40100
0	73000	76800	49200	91600	54600	51400	29000	00609	34500	52000	30700	63400	32700	45300	64900	65200
70	12500	13500	9140	15700	10600	10600	5390	10300	5840	9920	5400	11000	5070	10200	13200	12600
04	3340	3580	2440	4190	2840	2800	1440	2730	1560	2640	1440	2890	1350	2720	3510	3360
50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
02	64500	67900	42000	77000	47900	45000	24400	52100	29500	42700	27300	53500	28800	36700	58000	55100
00	80600	84900	53800	00666	59800	56400	31300	66800	37800	56300	33900	69300	36100	48700	72400	71400
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40	2210	2440	1410	2790	1660	1610	830	1920	961	1610	848	2010	930	1390	1920	1950
20	10800	11800	7040	14100	8060	7810	4040	9310	4810	7880	4150	9760	4550	6880	9410	10000
00	20500	22500	13400	27000	15300	14900	7720	17700	9200	15100	7910	18600	8680	13200	18000	19100
50	37100	40800	24500	49000	27900	27400	14200	32200	16800	27700	14400	33800	15700	24400	32900	34800
00	55100	60600	36600	72700	41600	41200	21200	47900	25100	41400	21400	50200	23400	36800	49200	51900
	109000	79100	66400	102000	00669	57900	52700	49200	47200	54600	53600	50600	46000	57100	106000	71900
3	184000	156000	112000	183000	128000	113000	83200	114000	84700	109000	87500	118000	82100	105000	178000	141000
00	217000	180000	134000	217000	151000	133000	100000	132000	101000	129000	105000	136000	97600	126000	212000	167000
00	293000	237000	185000	292000	202000	177000	138000	174000	139000	176000	144000	181000	132000	174000	289000	227000
8	000000	000120	000000	000100	000100	102000	1 5 4000	100000	1 EEAAA	100000	10000		00071	195000	000000	00000
8	000070	000107	700007	000420	224000	130000	104000	120000	TODUCOT	Taonon	TOUUUU	000007	141000	194000	000226	000662
00	384000	310000	250000	383000	264000	233000	183000	227000	185000	234000	189000	236000	174000	233000	382000	302000
00	516000	428000	348000	518000	359000	317000	247000	307000	252000	321000	253000	322000	234000	323000	517000	419000
00	611000	515000	419000	618000	430000	381000	292000	368000	303000	385000	299000	386000	277000	390000	616000	506000
00	756000	640000	522000	762000	531000	475000	356000	455000	376000	477000	364000	479000	337000	487000	757000	633000
9	最大値を示	€														

表 2-3 (2) 地震力 (モーメント) が最大となる基準地震動 S s (1/3)

標高 T.M.S.L. (回	26.01	23.55	22.16	20.49	18.71	16.56	容器 15.26	12.33	9.40	6.90	4.95	5.40	8.20	21.20	18.44	睫 17.02	15.60	13.95	12.30	8. 20	7.00	4.50	§礎 3.50	1.70	-2.10	-4.70	
安							原子炉压					原子炉压	スカー			原子何張							原子炉本				

				<i>7</i>	17 0 17	地成ノノト		シントなくて	モーネント	(hv m) (hv m)	0)						
名称	標高	Ss-		Ss	5-2	Ss-	~	SS-4		SS-[Ss-	-9	Ss-	2	Ss-8	
	T. M. S. L. (m)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
	14.433	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	13.721	1120	1130	1260	1040	915	881	433	816	529	820	456	876	514	1030	844	816
	13.009	1850	1870	2160	1750	1560	1500	722	1390	006	1380	747	1490	873	1730	1400	1340
燃料集合体	12.297	2090	2120	2480	1990	1800	1720	820	1590	1040	1570	847	1700	1000	1970	1590	1500
	11.585	1820	1840	2150	1730	1570	1500	710	1380	206	1350	736	1470	878	1710	1380	1320
	10.873	1080	1100	1240	1020	917	877	418	799	536	786	436	854	519	1010	823	802
	10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	9.645	122	117	95.1	161	91.0	95.8	46.9	106	50.2	87.7	49.1	110	48.7	86.6	114	109
	9.402	168	159	130	220	125	130	64.3	145	68.2	119	67.2	150	66.3	118	155	149
制御棒案内管	8. 395	274	255	201	345	198	196	104	229	106	182	108	235	104	181	251	238
	7.388	226	205	166	279	161	159	87.7	187	84.5	144	91.2	191	83.8	147	204	184
	6.795	118	106	86.3	146	84.3	82.3	46.1	97.4	43.8	73.5	47.9	99.2	43.6	75.9	106	93. 2
	6.347	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
#1 까지 19도보포 수수 나가고	6.347	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
制御俸駆動機構	5.817	186	169	138	243	143	135	75.4	160	73.2	122	78.4	164	71.2	127	175	150
	UUV L	523	474	384	691	407	388	210	453	210	352	218	465	199	367	493	428
	000 °C	149	151	98.9	187	109	107	51.7	112	54.5	94.1	54.3	118	51.9	102	146	121
	4.213	49.8	50.7	35.8	69.3	39.3	39.1	20.6	39.7	19.2	28.4	22.9	41.1	18.4	28.9	36.0	32.3
制御棒駆動機構	3.361	70.5	61.1	29.0	54.4	34.7	27.1	17.7	31.5	17.4	22.5	19.7	30.4	17.1	27.1	76.9	26.7
ハウジング	2.508	89.3	76.0	35.2	66.6	56.3	43.2	20.2	39.9	21.0	34.4	20.7	40.7	18.3	33.5	105	29.7
(内側)	1.655	154	138	95.5	156	102	101	49.8	105	49.4	81.2	52.3	110	45.7	72.7	132	99.0
	0.934	26.7	20.8	14.2	22.2	16.9	15.2	7.31	15.8	7.34	11.8	7.73	16.2	6.80	10.9	26.5	15.8
	0.184	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	5.817	162	169	118	211	131	132	61.6	135	69.7	116	63.7	142	61.6	124	166	150
	5.066	54.8	55.2	37.6	74.1	43.4	42.6	21.6	44.6	20.0	34.8	22.8	46.4	18.9	37.6	44.5	41.4
	4.213	63.6	47.2	25.7	45.0	27.7	26.7	14.7	23.9	17.7	23.1	16.5	24.3	16.3	24.5	53.2	38.1
制御棒駆動機構	3.361	97.2	71.2	38.2	69.6	41.2	40.6	19.4	34.4	26.5	35.1	22.6	36.6	22.9	37.9	92.3	61.4
(大) () () () () () () () () () () () () ()	2.508	74.2	58.5	23.4	47.5	31.8	26.6	14.2	29.8	13.7	19.3	15.8	29.3	16.2	23.0	73.6	27.2
	1.655	160	142	91.0	157	88.9	89.8	47.2	100	45.9	77.7	49.2	105	46.1	72.9	102	91.5
	0.934	26.3	22.4	13.4	22.4	12.9	12.8	6.77	14.6	6.75	11.1	7.07	15.2	6.92	9.88	16.8	12.9
	0.184	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
注: 上記表のハッチン	グは Ss-1~8 の	最大値を示) 。														

表 2-3 (2) 地震力 (モーメント) が最大となる基準地震動 S s (2/3)

					¥					イントーキ	(lrN • m)	6						
	H 4L	標司	c	,	c		c		c				c		c	t	c	
	名称	T. M. S. L. (m)	Ss	-1	SS-	-2	Ss-	~	Ss	4	SS-5		Ss-	-6	SS-	L-	Ss-	20
			NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
		19.472	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
111	気水分離器及び	18.716	169	166	141	152	129	117	70.6	132	83.1	120	64.8	137	59.7	114	107	82.4
· \	スタンドパイプ	17.179	1140	1110	963	1030	849	791	473	895	553	790	433	922	403	775	687	560
		16.506	1700	1640	1460	1580	1270	1220	701	1350	811	1160	644	1390	605	1190	1050	880
		15.641	2470	2390	2140	2330	1900	1810	1010	1970	1160	1690	930	2030	883	1760	1560	1340
		15.266	2840	2750	2470	2690	2200	2080	1160	2260	1310	1950	1060	2320	1020	2030	1790	1560
		14.433	3820	3680	3330	3560	2960	2780	1530	3010	1760	2630	1420	3080	1390	2700	2330	2150
		13.721	6020	5740	4920	5390	4370	4110	2140	4470	2640	3940	2090	4640	1950	4260	3640	3470
		13.009	8360	7950	6560	7260	5810	5570	2780	5950	3550	5280	2850	6210	2660	5860	4980	4830
		12.297	10700	10100	8230	9140	7280	7070	3420	7450	4470	6620	3670	7780	3480	7560	6340	6300
		11.585	13000	12300	9880	11000	8760	8560	4060	8950	5410	2662	4500	9350	4260	9200	7690	7750
		10.873	15200	14400	11500	12900	10200	10000	4690	10500	6350	9390	5330	10900	5030	10800	9050	9160
~	炉心シュラウド	10.161	17500	16500	13100	14900	11800	11500	5360	12000	7310	10800	6170	12500	5780	12400	10400	10600
		9.645	19100	18000	14300	16300	12900	12600	5870	13100	8010	11800	6790	13600	6330	13500	11400	11600
		10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0 615	991	1010	910	877	734	717	377	615	455	700	405	661	444	866	763	798
		9.040	20100	19000	14900	17100	13400	13200	6210	13600	8280	12400	7180	14200	6730	14400	12200	12300
		9.402	21400	20200	15700	18200	14100	14000	6620	14400	8750	13300	7670	15100	7190	15400	13000	13200
		8. 395	26700	25400	19100	22800	17400	17400	8370	17800	10700	16600	9720	18700	0606	19400	16600	16900
		7.388	32200	30600	22500	27500	20800	20900	10200	21300	12700	20000	11800	22300	11000	23500	20200	20600
		6.795	35400	33700	24500	30300	22700	22900	11200	23300	13900	22000	13100	24500	12100	26000	22500	22800
		6.253	1260	1300	1240	2130	958	939	668	889	661	716	605	977	532	733	871	881
	原子炉冷却材	5.376	715	737	717	1220	522	508	388	497	370	396	354	540	293	386	483	480
	再循環ポンプ	4.523	318	327	321	546	230	223	174	220	163	174	159	238	129	171	213	210
		3.671	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
注:	上記表のハッチン	グは Ss-1~8 の	最大値を示	₫.														

表 2-3 (2) 地震力 (モーメント) が最大となる基準地震動 S (3/3)

					軸力	(kN)			
機器	镖司 T.M.S.L.(m)	Ss-1	Ss-2	Ss-3	Ss-4	2-SS	Ss-6	Ss-7	Ss-8
	26.013	183	113	142	93. 2	97.4	95.8	102	79.3
	23.553	852	528	662	434	454	446	472	369
	22.163	1560	967	1210	795	832	818	866	677
	20.494	2940	1820	2290	1500	1570	1540	1630	1280
	18.716	3480	2160	2700	1770	1860	1820	1930	1510
	17.179	3780	2340	2940	1930	2020	1980	2090	1640
	16.506	4200	2610	3270	2140	2240	2200	2320	1820
	15.641	4390	2720	3410	2240	2340	2300	2430	1900
	15.266	4650	2890	3620	2370	2480	2440	2570	2010
	14.433	4850	3020	3780	2480	2590	2550	2680	2100
	13.721	5050	3140	3930	2570	2700	2650	2790	2180
	13.009	5240	3260	4080	2670	2800	2750	2900	2260
原子炉压力容器	12.297	5430	3380	4230	2770	2900	2850	3000	2340
	11.585	5620	3500	4380	2870	3000	2950	3100	2430
	10.873	5810	3610	4530	2960	3100	3050	3210	2510
	10.161	5970	3720	4660	3050	3190	3130	3300	2580
	9.645	0609	3790	4750	3110	3260	3200	3360	2630
	9.402	10400	6470	8160	5390	5680	5520	5920	4640
	8.395	10200	6310	7950	5250	5530	5380	5780	4520
	1.388	0266	6170	7780	5140	5420	5270	5660	4430
	0.795	8860	5480	6920	4570	4820	4690	5050	3960
	6. 253 5. 783	8000	4940	6240	4130	4350	4230	4570	3580
	5.817 5.066	4380	2690	3410	2260	2390	2320	2510	1980
原子炉圧力容器 スカート	9.402 8.200	16900	10500	13200	8660	9100	8890	9460	7400
	21.200	604	373	471	308	325	318	339	266
	18.440	3390	2100	2640	1730	1820	1780	1900	1490
原子炉遮蔽壁	17.020	4130	2560	3220	2110	2220	2170	2310	1810
	15.600	7270	4510	5680	3720	3910	3820	4050	3180
	13.950	8160	5070	6380	4170	4380	4290	4540	3560
	12.300	19200	12000	15100	9810	10300	10100	10500	8210
	00.200	40200	25100	31500	20600	21600	21100	22200	17300
	1 500	43200	27100	33900	22100	23200	22700	23800	18600
	4. 300	45600	28600	35900	23400	24500	24000	25100	19600
原子炉本体基礎	0. 2000	47200	29600	37100	24200	25300	24800	25900	20200
	1.100 9 100	50800	32000	40000	26000	27200	26700	27800	21600
	-4 700	54500	34400	42900	27800	29000	28600	29600	22900
	-8 200	57800	36500	45500	29500	30700	30300	31100	24100
注: 上記表のハッチン	ゲは Ss-1~8 の ₅	最大値を示す。						-	

表 2-3 (3) 地震力(軸力)が最大となる基準地震動 S s (1/3)

			表 2-3 (5	3) 地震力 (軸力) が	、最大となる基準地震重	∯Ss(2/3)			
	中 単	-		-	軸力	(kN)		-	
名称	惊司 T.M.S.L. (m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
	14.433	177	108	138	91.9	97.7	95.0	104	82.2
	13.721	532	325	415	276	293	285	311	246
燃料集合体	13.009	886	541	691	459	487	474	518	410
	12.29/	1240	757	966	642	681	663	724	572
	11. 585	1590	972	1240	824	874	850	929	734
	10.8/3	1940	1190	1510	1010	1070	1040	1130	893
	10.101	2390	1460	1860	1230	1310	1270	1390	1090
	9.045	2410	1480	1880	1250	1320	1290	1400	1110
	9.402	2460	1500	1920	1270	1350	1310	1430	1130
制御棒案内管	8. 399 7 900	2530	1550	1980	1310	1390	1350	1470	1160
	1.388 6.705	2590	1590	2020	1340	1420	1380	1510	1190
	6. 347	2630	1610	2050	1360	1440	1400	1530	1200
制御棒駆動機構	6.347	2690	1650	2100	1390	1470	1430	1560	1230
ハウジング	5.817	2740	1680	2140	1420	1500	1460	1590	1250
	5.000	703	434	547	362	381	369	399	312
	4.213	665	411	518	343	361	350	378	296
制御棒駆動機構	3.301	626	387	487	323	339	329	355	278
くウジング	2. 300	588	363	457	303	319	309	334	261
	1.033	130	80.1	101	66.9	70.4	68.2	73.7	57.7
	0. 184	18.9	11. 7	14.7	9. 75	10.3	9.94	10.7	8.41
	5.817	721	449	562	371	389	378	403	315
	5.066	688	429	536	354	371	361	385	300
制御捧豚動機構	4. 213	651	406	508	335	351	341	365	284
いウジング	3.301	612	382	478	315	331	321	343	268
(外側)	2.508	575	359	449	296	311	302	322	251
	1. 033 0 034	127	79.1	98.9	65.3	68.5	66.5	71.1	55.5
	0.184	18.5	11. 5	14.4	9.52	9.98	9.69	10.4	8.08
注: 上記表のハッチン	<u> グは Ss-1~8 の</u> 損	長大値を示す。							

					軸力	(kN)			
機器	標高 T.M.S.L.(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
ミュレンティ	19.472	68.8	41.9	53.8	35.8	38. 0	37.1	40.7	32. 3
ス小び開始及いメタンドパイプ	18.716	210	128	164	109	116	113	124	98.5
	16.179	405	246	316	211	223	218	239	190
	10.300	571	348	446	297	315	308	337	268
	15.041	247	579	739	492	521	202	554	438
	15.200	1040	639	814	541	574	558	609	481
	14.433	1300	800	1020	676	716	969	759	598
	13. 121	1350	826	1050	698	739	718	783	617
	13.009	1390	852	1080	720	763	740	807	636
	12.291	1430	879	1120	742	786	763	832	655
	11. 585	1470	905	1150	764	808	785	856	674
炉心シュラウド	10.8/3	1520	931	1180	786	832	808	880	693
	10.101	1560	954	1210	805	852	827	106	209
	9.040	2160	1330	1680	1110	1180	1140	1240	972
	9.402	2210	1360	1720	1140	1210	1170	1270	966
	8. 395 7. 200	2290	1410	1790	1190	1250	1220	1320	1030
	1.300 6.705	2360	1450	1840	1220	1290	1250	1350	1060
	6.130	2450	1510	1910	1260	1330	1300	1400	1100
	5. 783	2500	1540	1940	1290	1360	1320	1430	1120
	6. 253	546	341	428	280	295	287	303	235
原子炉冷却材 亜循電ポンプ	5.376	492	308	386	252	265	259	273	212
	4. 323 3. 671	423	265	332	217	228	223	235	182
注: 上記表のハッチン	·グは Ss-1~8 の.	最大値を示す。	- c	- 「「「」とない、上市では、「」	一番曲となり十国に い	「い」「「「」」「「」」「「」」」			

表 2-3 (3) 地震力(軸力)が最大となる基準地震動 S s (3/3)

心反判い

	-8	EW	1910	15900
	Ss-	NS	1810	12000
	L-	EW	1180	13800
	Ss-	NS	806	6010
	-9	EW	1690	20000
	Ss-	NS	738	8880
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14200			
	8800			
	18600			
	8430			
	-3	EW	1380	18000
	Ss ⁻	NS	1450	17900
	-2	EW	2650	34100
	Ss.	NS	1310	12400
	-1	EW	2180	19100
	Ss	SN	2130	19400

23

注: 上記表のハッチングは Ss-1~8 の最大値を示す。

ダイヤフラムフロア

原子炉圧力容器 スタビライザ

名称

					表 2-3	(5) 地震大) (相対変位	び) が最大と	なる基準地	₫震動Ss							
	÷ H								相対変位	۲ (mm)							
名称	標司 TMSI(m)	Ss	-1	Ss-	-2	Ss-	-3	SS-4	1	Ss-5		Ss-	-9	Ss-	2	S-SS	8
	1. M. U. L. \III/	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	SN	EW	NS	EW	SN	EW
	14.433	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	13.721	7.23	7.31	8.42	6.83	6.12	5.86	2.82	5.41	3.53	5.37	2.92	5.79	3.42	6.75	5.47	5.23
	13.009	12.5	12.6	14.6	11.8	10.6	10.1	4.86	9.36	6.11	9.27	5.03	10.0	5.92	11.7	9.42	9.00
燃料集合体	12.297	14.3	14.5	16.8	13.6	12.2	11.7	5.59	10.8	7.05	10.7	5.79	11.5	6.83	13.4	10.8	10.4
	11.585	12.4	12.5	14.5	11.8	10.6	10.1	4.84	9. 33	6.12	9.22	5.01	9.97	5.93	11.6	9.39	8.97
	10.873	7.15	7.24	8.40	6.80	6.12	5.85	2.79	5.38	3.54	5.32	2.89	5.75	3.43	6.71	5.43	5.20
	10.161	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
注: 上記表のハッチン	グは Ss-1~8 の」	最大値を示	if.														

	11年11年				t	せん断力(ト	KN)			
夕称	「「「「「「」」	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	きルまし 田
	1. M. S. L. (m)	1	2	3	4	5	6	7	8	
	(111)	(基本)								地辰/月1
	26.013	209	229	189	207	212	213	203	197	229
	23.553	895	986	819	888	909	916	878	849	986
	22.163	1340	1370	1420	1320	1350	1480	1350	1360	1480
	20.494	2490	2700	2480	2470	2510	2650	2470	2420	2700
	18.716	1990	2160	1970	1960	2010	2130	1980	2030	2160
原子炉上力容器	16.563	3130	3340	2880	3020	3160	3190	3110	3090	3340
	15.262	4170	4430	3860	4000	4210	4260	4140	4090	4430
	12.332	6170	6560	5730	5970	6230	6290	6150	6110	6560
	9.402	2170	2210	2060	2270	2210	2170	2220	2270	2270
	6.904 4.950	1010	1010	940	1050	988	998	996	1050	1050
原子炉圧力容器	9. 402	0640	10100	8070	0.460	0.01.0	0010	0740	0000	10100
スカート	8.200	9640	10100	8970	9460	9810	9810	9740	9660	10100
	21.200	512	540	477	496	522	525	506	487	540
	18.440	3920	4180	3650	3850	3960	4020	3870	3670	4180
原子炉遮蔽壁	17.020	4460	4760	4150	4380	4510	4570	4410	4200	4760
	15.600	6620	7010	6140	6440	6660	6770	6520	6300	7010
	13.950	7170	7580	6660	6980	7220	7340	7060	6840	7580
	12.300	10700	10100	10500	9170	11400	11100	11800	13600	13600
	8.200	15000	14800	16500	13600	15700	15600	16200	18200	18200
	7.000	16300	15900	17800	14800	17000	17000	17400	19500	19500
	4.500	17300	16800	18900	15800	17900	18000	18400	20400	20400
原子炉本体基礎	3. 500	17900	17300	19500	16400	18600	18600	19000	21000	21000
	1.700	19300	18400	21000	17700	20000	20100	20400	22400	22400
	-2.100	20700	19600	22400	19100	21400	21500	21800	23900	23900
	-4.700	21900	20900	23600	20300	22600	22600	23000	25300	25300
	-8.200	=1000		_0000		0				

表 2-4(1) 設計用地震力 I (せん断力, Sd) (1/3)

					ł	せん断力()	KN)			
名称	一 標 局 T M S L	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	設計田
	(m)	1	2	3	4	5	6	7	8	地震力 I
	1/ /33	(基本)		0010	750	004	004		701	0010
	13 721	782	751	2210	756	804	804	119	781	2210
	13 009	564	488	1600	539	586	581	562	563	1600
燃料集合体	12, 297	203	176	577	197	214	209	202	203	577
	11. 585	211	182	595	199	217	217	210	210	595
	10.873	567	493	1610	541	587	584	564	566	1610
	10.161	772	729	2190	740	799	793	768	770	2190
	10.161	161	169	149	161	156	163	155	156	169
	9.645	126	133	117	127	121	127	121	122	133
	9.402	67.6	72.2	63.5	69.5	66.0	68.5	63.6	66.1	72.2
制御俸柔内官	8.395	37.5	39.5	34.5	36.4	36.8	38.4	36.3	37.3	39.5
	7.388 6.705	116	124	109	119	114	118	111	114	124
	6.347	169	178	158	173	165	171	162	166	178
制御棒駆動機構	6. 347	233	246	218	243	229	236	226	230	246
ハウジング	5.817	300	313	279	309	293	303	293	298	313
	5.066	64.1	63.3	60.2	68.0	62.0	65.8	62.1	63.5	68.0
	4. 213	25.9	25.6	24.8	28.1	24.3	27.1	24.9	24.8	28.1
制御棒駆動機構	3.361	20.4	19.5	19.9	21.5	21.0	20.7	20.8	20.3	21.5
ハウジング	2.508	64.7	63.1	60.4	65.0	64.6	65.1	64.2	65.7	65.7
(内側)	1.655	97.2	94.2	90.8	99.3	97.7	98.4	96.8	92.5	99.3
	0. 934	16.5	15.6	16.0	17.1	16.3	17.1	16.6	15.6	17.1
	5.817	90.2	91.9	82.4	95.4	88.8	90.5	87.7	90.3	95.4
	5.066	55.3	55.8	50.8	58.9	53.1	55.9	51.7	53.2	58.9
圳御梼取動機構	4.213	13.7	16.7	13.5	15.7	13.3	14.3	13.7	12.8	16.7
いウジング	3. 361	33.1	32.2	30.6	33.7	33.1	33.3	32.8	34.0	34.0
(外側)	2.508	81.0	79.2	74.1	83.5	80.1	81.8	78.3	80.5	83.5
	1.655	88.6	84.4	80.3	89.8	89.3	88.9	88.6	87.6	89.8
	0. 934	13.9	14.5	12.6	14.3	14.3	13.9	14.1	13.7	14.5

表 2-4(1) 設計用地震力 I (せん断力, Sd) (2/3)

	神中				t	せん断力(ト	xN)			
夕称	信 (市) (市)	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	:小計 田
	1. m. S. L. (m)	1	2	3	4	5	6	7	8	□ 山震力 I
		(基本)								PED/12/17 1
気水分離哭及び	19.472	110	112	108	98.1	115	108	110	109	115
スタンドパイプ	18.716	312	310	309	282	323	304	307	308	323
	17.179	414	420	458	377	427	409	407	410	458
	16.506	435	445	500	408	450	442	434	432	500
	15.641	482	486	557	448	491	476	481	477	557
	15.266	581	574	671	521	581	574	576	576	671
	14. 433	1550	1490	2520	1470	1530	1530	1540	1540	2520
	13.721	1570	1490	2430	1470	1540	1550	1560	1560	2430
	13.009	1560	1480	2310	1450	1520	1540	1550	1550	2310
	12. 297	1550	1460	2220	1420	1490	1530	1540	1540	2220
	11.585	1540	1440	2130	1410	1480	1520	1530	1530	2130
炉心シュラウド	10.873	1540	1440	2090	1400	1480	1520	1530	1530	2090
	10. 161 9. 645	1550	1440	2110	1410	1480	1530	1540	1550	2110
	10.161	938	938	2190	945	935	920	935	934	2190
	9.645	2500	2440	2050	9410	9470	2460	2400	2400	2950
	9.402	2500	2440	2000	2410	2470	2400	2490	2490	2000
	8.395	2030	2470	2010	2430	2490	2490	2520	2510	2010
	7.388	2000	2490	3910	2400	2010	2520	2000	2000	3910
	6. 795	2570	2510	3920	2470	2520	2540	2560	2560	3920
	6.253	538	548	508	526	540	546	527	540	548
県 子 炉 伶 却 材 再 毎 冊 ポ 、 プ	5.376	397	408	369	398	395	400	390	395	408
+++1個塚小イノ	4. 523	320	327	296	320	318	323	313	317	327

表 2-4(1) 設計用地震力 I (せん断力, Sd) (3/3)

	揮卓				モー	·メント(k	N • m)			
名称	信 「 T M S L	ケース	設計田							
	(m)	1	2	3	4	5	6	7	8	地震力 I
	06 010	(基本)	0	0	0	0	0	0	0	
	26.013	0	0	0	0	0	0	0	0	0
	23.553	513	563	465	510	520	524	498	483	563
	22.163	1760	1940	1610	1750	1790	1800	1720	1670	1940
	20. 494	3800	4140	3900	3790	3860	4140	3790	3780	4140
	18.716	8190	8920	8310	8160	8290	8840	8100	8070	8920
原子炉圧力容器	16. 563	12500	13600	12600	12400	12600	13500	12400	12500	13600
	15.262	16500	17900	16300	16300	16700	17500	16400	16300	17900
	12.332	28700	30900	27000	28000	29000	29400	28500	28200	30900
	9 402	46800	50100	43400	45500	47200	47800	46500	46000	50100
	5. 102	7380	7480	6940	7700	7440	7360	7470	7700	7700
	6.904	1970	1980	1840	2040	1930	1950	1950	2040	2040
	4.950	0	0	0	0	0	0	0	0	0
原子炉圧力容器	9.402	39700	43000	37700	38400	39900	41000	39100	38500	43000
スカート	8.200	51300	55000	47500	49700	51600	52400	50800	50100	55000
	21.200	0	0	0	0	0	0	0	0	0
	18.440	1420	1490	1320	1370	1440	1450	1400	1350	1490
原子炉遮蔽壁	17.020	6970	7420	6500	6840	7060	7150	6890	6560	7420
	15.600	13300	14200	12400	13100	13500	13700	13200	12500	14200
	13.950	24200	25800	22500	23700	24500	24800	23900	22900	25800
	12.300	36100	38300	33500	35200	36400	36900	35600	34200	38300
	0 000	53700	51400	56000	48400	56000	55800	57800	65800	65800
	8.200	93900	91100	98600	86500	97300	102000	98500	107000	107000
	7.000	110000	107000	116000	101000	115000	119000	116000	127000	127000
	4.500	147000	143000	159000	134000	153000	158000	156000	173000	173000
原子炉本体基礎	3.500	163000	158000	178000	149000	169000	174000	172000	192000	192000
	1.700	192000	186000	212000	175000	199000	204000	203000	227000	227000
	-2.100	259000	252000	289000	236000	268000	272000	275000	309000	309000
	-4.700	311000	301000	346000	285000	323000	325000	330000	370000	370000
	-8.200	387000	369000	426000	355000	401000	404000	409000	456000	456000

表 2-4(2) 設計用地震力 I (モーメント, Sd) (1/3)

	揮卓				モー	-メント(k	N • m)			
名称	「「「「「」」です。	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	設計田
× 11 / 11	(m)	1	2	3	4	5	6	7	8	地震力Ⅰ
		(基本)								-0/12/17 1
	14. 433	0	0	0	0	0	0	0	0	0
	13.721	557	535	1580	538	572	572	555	556	1580
	13.009	958	881	2720	912	989	986	954	956	2720
燃料集合体	12.297	1110	997	3130	1060	1140	1140	1100	1100	3130
	11.585	953	868	2710	912	987	980	948	951	2710
	10.873	550	519	1560	527	569	564	547	549	1560
	10.161	0	0	0	0	0	0	0	0	0
	10.161	0	0	0	0	0	0	0	0	0
	9.645	82.8	87.2	76.7	83.1	80.2	83.8	79.9	80.5	87.2
	9.402	114	120	105	114	110	115	110	110	120
制御棒案内管	8.395	180	191	167	184	172	182	173	174	191
	7.388	145	154	136	148	141	147	138	142	154
	6.795	75.3	79.6	70.6	77.2	73.9	76.4	72.3	74.1	79.6
	6.347	0	0	0	0	0	0	0	0	0
制御梼馭動機構	6.347	0	0	0	0	0	0	0	0	0
ハウジング	5.817	124	130	116	129	121	125	120	122	130
	5 066	348	365	325	360	341	352	339	345	365
	0.000	83.4	82.8	75.4	87.8	81.6	84.0	81.4	79.7	87.8
	4.213	31.1	29.9	27.3	32.6	30.4	31.5	29.6	27.8	32.6
制御棒駆動機構	3. 361	23.8	23.5	21.5	23.1	24.3	23.6	23.4	24.7	24.7
ハウジング	2.508	28.4	27.4	27.0	31.2	28.8	28.6	28.7	25.4	31.2
(内側)	1.655	82.1	79.6	77.4	84.2	82.4	83.6	82.0	78.0	84.2
	0.934	12.4	11.7	12.0	12.9	12.2	12.8	12.5	11.7	12.9
	0.184	0	0	0	0	0	0	0	0	0
	5.817	103	104	93.3	109	100	104	98.9	98.9	109
	5.066	35.2	35.0	31.6	37.6	34.3	35.6	33.4	32.5	37.6
and the later second state to the	4.213	20.6	23.9	20.0	22.4	20.9	20.9	20.3	20.7	23.9
制御棒駆動機構	3.361	30.6	36.7	30.9	33.6	31.3	30.4	30.0	30.3	36.7
ハワシンク (気和)	2.508	24.1	29.0	21.8	26.6	25.1	24.3	23.6	23.4	29.0
(フド1則)	1.655	74.2	70.5	67.3	74.9	75.0	74.4	74.4	73.4	75.0
	0.934	10.4	10.9	9.45	10.7	10.7	10.4	10.6	10.3	10.9
	0.184	0	0	0	0	0	0	0	0	0

表 2-4 (2) 設計用地震力 I (モーメント, Sd) (2/3)

	17 J				モー	·メント(k	N • m)			
夕称	信 信 て MSI	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	∋∿⇒l. ⊞
70.10	т. м. з. L. (m)	1	2	3	4	5	6	7	8	設訂用 地震力Ⅰ
		(基本)								
日本の	19.472	0	0	0	0	0	0	0	0	0
気水分離器及び	18.716	83.2	84.4	81.0	74.2	87.0	81.2	82.5	81.9	87.0
スタンドハイン	17.179	562	560	555	507	582	546	551	554	582
	16.506	839	835	850	760	869	814	824	830	869
	15.641	1220	1220	1290	1110	1260	1180	1200	1210	1290
	15.266	1400	1400	1490	1270	1440	1350	1370	1380	1490
	14.433	1860	1880	2050	1690	1930	1800	1820	1840	2050
	13.721	2880	2810	3730	2700	2930	2840	2860	2850	3730
	13.009	3990	3830	5420	3720	4020	3940	3960	3960	5420
	12.297	5090	4870	7050	4750	5100	5040	5060	5060	7050
	11.585	6190	5900	8610	5760	6160	6110	6150	6140	8610
	10.873	7270	6920	10100	6750	7200	7180	7230	7220	10100
炉心シュラウド	10.161	8350	7930	11600	7730	8230	8250	8310	8300	11600
	9.645	9150	8680	12700	8450	8990	9030	9100	9090	12700
	10.161	0	0	0	0	0	0	0	0	0
	0.645	484	484	1130	488	483	475	483	482	1130
	9.045	9600	9150	13600	8930	9460	9480	9550	9540	13600
	9.402	10200	9740	14500	9520	10100	10100	10200	10200	14500
	8.395	12800	12200	18400	12000	12600	12600	12700	12700	18400
	7.388	15300	14700	22300	14500	15100	15100	15300	15300	22300
	6.795	16900	16200	24700	15900	16600	16600	16800	16800	24700
	6.253	1070	1110	1010	1070	1070	1080	1060	1070	1110
原子炉冷却材	5.376	611	626	566	612	607	616	598	607	626
再循環ポンプ	4. 523	273	279	252	273	271	275	267	271	279
	3.671	0	0	0	0	0	0	0	0	0

表 2-4 (2) 設計用地震力 I (モーメント, Sd) (3/3)

	揮卓					軸力(kN))			
名称	(宗向) Т М Ѕ І	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	設計田
-U 41.	(m)	1 (基本)	2	3	4	5	6	7	8	地震力 I
	26.013	91.2	90.3	93.4	89.4	90.4	91.2	89.2	91.2	93.4
	23.553	425	421	435	417	421	425	416	425	435
	22.163	778	770	797	763	772	778	762	778	797
	20.494	1470	1460	1510	1440	1460	1470	1440	1470	1510
	18.716	1740	1720	1780	1700	1720	1740	1700	1740	1780
	17.179	1890	1870	1940	1850	1870	1890	1850	1890	1940
	16.506	2100	2070	2150	2060	2080	2100	2050	2100	2150
	15.641	2190	2170	2250	2150	2170	2190	2140	2190	2250
	15.266	2320	2290	2380	2270	2300	2320	2270	2320	2380
	14. 433	2430	2400	2490	2380	2410	2430	2370	2430	2490
	13.721	2520	2490	2590	2470	2500	2520	2470	2520	2590
医子尼尼士皮胆	13.009	2620	2590	2690	2560	2600	2620	2560	2620	2690
原于炉庄刀谷畚	12.297	2710	2680	2790	2660	2690	2710	2660	2710	2790
	11. 585	2810	2770	2890	2750	2790	2810	2750	2810	2890
	10.873	2900	2870	2980	2840	2880	2900	2840	2900	2980
	10.161	2980	2950	3070	2920	2960	2980	2920	2980	3070
	9.645	3040	3010	3130	2980	3030	3040	2980	3040	3130
	9.402	5250	5180	5350	5140	5180	5250	5100	5250	5350
	8.395	5110	5050	5210	5000	5050	5110	4960	5110	5210
	7.388	5010	4940	5100	4900	4940	5010	4860	5010	5100
	6.795 C 959	4450	4400	4520	4360	4390	4450	4320	4450	4520
	6. 253 5. 783	4020	3970	4080	3930	3960	4020	3890	4020	4080
	5.817 5.066	2200	2170	2230	2150	2170	2200	2120	2200	2230
原子炉圧力容器	9.402	8450	8340	8640	8270	8350	8450	8230	8450	8640
	21. 200	. 303	300	306	297	299	303	293	303	306
	18.440	1700	1680	1720	1670	1680	1700	1640	1700	1720
原子炉遮蔽壁	17.020	2070	2050	2100	2030	2040	2070	2000	2070	2100
	15.600	3640	3600	3700	3580	3600	3640	3540	3640	3700
	13.950	4090	4040	4160	4020	4040	4090	3970	4090	4160
	12.300	9610	9440	9880	9440	9530	9610	9400	9610	9880
	8.200	20200	19900	20700	19800	20000	20200	19700	20200	20700
	7.000	21700	21300	22300	21300	21500	21700	21200	21700	22300
	4.500	22900	22500	23600	22500	22800	22900	22500	22900	23600
原子炉本体基礎	3.500	23700	23300	24400	23300	23600	23700	23300	23700	24400
	1.700	25500	25100	26400	25100	25400	25500	25100	25500	26400
	-2.100	27300	26800	28400	26800	27300	27300	27000	27300	28400
	-4.700	28900	28300	30100	28400	29000	28000	28700	28900	30100
	-8.200	20900	20300	30100	20400	23000	20900	20100	20900	30100

表 2-4 (3) 設計用地震力 I (軸力, Sd) (1/3)

	1年1年					軸力(kN))			
名称	標咼 T. M. S. L. (m)	ケース 1 (基本)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7	ケース 8	設計用 地震力 I
	14. 433	. 88.9	88.1	89.1	86.9	87.5	88.9	86.0	88.9	89.1
	13.721	267	264	268	261	263	267	258	267	268
燃料集合体	13.009	444	439	445	435	437	444	429	444	445
	12.297	621	614	623	609	612	621	599	621	623
	11. 585	798	789	800	782	785	798	767	798	800
	10.873	973	963	977	955	959	973	936	973	977
	0.645	1200	1190	1210	1180	1180	1200	1150	1200	1210
	9.040	1210	1200	1220	1190	1200	1210	1170	1210	1220
	9.402	1240	1220	1240	1210	1220	1240	1190	1240	1240
制御棒案内管	0. 393 7 388	1270	1260	1280	1250	1250	1270	1230	1270	1280
	6 705	1300	1290	1310	1280	1280	1300	1250	1300	1310
	6. 347	1320	1310	1330	1300	1300	1320	1270	1320	1330
制御棒駆動機構	6.347	1350	1340	1360	1330	1330	1350	1300	1350	1360
ハウジング	5.817	1380	1360	1390	1350	1360	1380	1330	1380	1390
	5.066	354	350	360	346	349	354	344	354	360
	4. 213	335	331	341	327	331	335	325	335	341
制御棒駆動機構	3.361	315	312	321	308	311	315	306	315	321
ハウジング	2.508	296	293	302	289	293	296	288	296	302
(内側)	1.655	65.3	64.6	66.5	63.8	64.5	65.3	63.4	65.3	66.5
	0. 934	9. 52	9.40	9.69	9.30	9.40	9. 52	9.24	9.52	9.69
	5.817	. 363	358	372	355	359	363	355	363	372
	5.066	346	342	355	338	342	346	338	346	355
生化和提取新找进	4.213	328	323	336	320	324	328	320	328	336
制御棒駆動機構 ハウジング (外側)	3. 361	309	304	316	301	305	309	301	309	316
	2.508	290	286	297	283	286	290	283	290	297
	1.655	63.9	63.0	65.5	62.4	63.1	63.9	62.4	63 9	65.5
	0.934 0.184	9.31	9.18	9.54	9.09	9.20	9. 31	9.09	9. 31	9.54

表 2-4 (3) 設計用地震力 I (軸力, Sd) (2/3)

						軸力(kN)				
夕称	信 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	⇒∿⇒⊾田
1111	(m)	1 (基本)	2	3	4	5	6	7	8	設訂用 地震力 I
気水分離器及び	19.472	34.6	34.4	34.5	33.9	34.0	34.6	33.6	34.6	34.6
スタンドパイプ	17 170	106	105	105	104	104	106	103	106	106
	16 506	203	202	203	200	200	203	197	203	203
	15.641	287	286	287	282	282	287	279	287	287
	15.041	475	470	478	465	468	475	458	475	478
	14 422	524	518	527	513	516	524	504	524	527
	14.400	655	648	660	640	645	655	630	655	660
	13.721	676	669	681	661	666	676	651	676	681
	12 207	697	690	703	682	687	697	672	697	703
	11 585	719	711	725	703	708	719	693	719	725
	10.873	740	732	746	724	729	740	713	740	746
炉心シュフワド	10.075	761	753	768	745	751	761	734	761	768
	0.645	780	772	787	763	769	780	752	780	787
	9.045	1080	1070	1100	1060	1070	1080	1050	1080	1100
	9.402 8.305	1110	1100	1130	1090	1100	1110	1080	1110	1130
	7 388	1150	1140	1170	1130	1140	1150	1120	1150	1170
	6 795	1190	1170	1200	1160	1170	1190	1150	1190	1200
	6 347	1230	1220	1250	1210	1210	1230	1190	1230	1250
	5. 783	1260	1240	1270	1230	1240	1260	1220	1260	1270
百之后公共共	6.253	275	271	282	270	272	275	268	275	282
尿子炉 行却 材 再 毎 冊 ポンプ	5.376	248	244	254	244	245	248	242	248	254
母個界小ノノ	4. 523 3. 671	213	210	219	210	211	213	208	213	219

表 2-4 (3) 設計用地震力 I (軸力, Sd) (3/3)

表 2-4 (4) 設計用地震力 I	(ばね反力, Sd)
----------	------------	------------

				ľ	ばね反力(l	KN)			
名称	ケース 1 (基本)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7	ケース 8	設計用 地震力 I
原子炉圧力容器 スタビライザ	1240	1330	1180	1240	1250	1290	1230	1120	1330
ダイヤフラムフロア	14500	16300	12400	15400	14300	14800	13600	10900	16300
制御棒駆動機構ハウジング レストレントビーム	502	489	458	514	502	505	494	494	514

	重支		相対変位(mm)										
名称	悰尚 T. M. S. L. (m)	ケース 1 (基本)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7	ケース 8	設計用 地震力 I			
	14.433	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
	13.721	3.8	3.5	10.6	3.6	3.9	3.9	3.8	3.8	10.6			
	13.009	6.5	6.0	18.3	6.2	6.7	6.7	6.5	6.5	18.3			
燃料集合体	12.297	7.5	6.9	21.2	7.2	7.7	7.7	7.5	7.5	21.2			
	11.585	6.5	5.9	18.3	6.2	6.7	6.7	6.5	6.5	18.3			
	10.873	3.8	3.5	10.6	3.6	3.9	3.9	3.7	3.8	10.6			
	10.161	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			

表 2-4(5) 設計用地震力 I (相対変位, Sd)

					セ	し ん断力(k	N)			
夕称	信向	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	⇒∿⇒[□
	1. M. S. L. (m)	1*	2	3	4	5	6	7	8	設訂用 抽雪力Ⅰ
	(III)	(基本)								地展力口
	26.013	425	453	388	422	419	434	420	414	453
	23. 553	1830	1970	1630	1800	1800	1870	1810	1790	1970
	22.163	2580	2980	2980	2670	2850	2660	2550	2670	2980
	20. 494	4980	5360	5130	4940	4860	5090	4930	4930	5360
医乙烷医五应明	18.716	3790	4150	3750	3720	3820	3830	3800	3850	4150
原于炉庄刀谷畚	16.563	5990	6520	5640	5900	5780	6060	5960	6020	6520
	15.262	8040	8720	7360	7950	7730	8140	7990	8050	8720
	12. 332	12200	12900	11200	12000	11700	12300	12100	12200	12900
	9.402	4620	4460	4290	4420	4430	4550	4470	4710	4710
	6. 904 4. 950	2150	2030	2010	2020	2110	2120	2080	2210	2210
原子炉圧力容器	9.402	10200	20000	17800	19000	19400	10400	10000	10200	20000
スカート	8.200	19200	20000	17800	18900	10400	19400	19000	19200	20000
	21.200	1010	1090	921	996	954	1030	1010	990	1090
	18.440	8000	8520	7370	7940	7620	8170	7860	7760	8520
原子炉遮蔽壁	17.020	9090	9670	8350	9010	8650	9270	8940	8830	9670
	15.600	13300	14200	12200	13200	12700	13500	13100	13100	14200
	13.950	14400	15300	13200	14300	13800	14600	14200	14100	15300
	12.300	17400	20500	20000	12900	20000	18800	19800	20300	20500
	8.200	29400	29900	35300	24300	33600	30200	32000	32300	35300
	7.000	31600	31600	37600	26600	36200	32200	34300	34600	37600
	4.500	33600	32900	39300	28400	38000	33800	36100	36600	39300
原子炉本体基礎	3.500	34900	33700	40300	29600	39300	35000	37400	37900	40300
	1.700	38000	35400	43000	32600	42500	37900	40200	41600	43000
	-2.100	41400	36700	45300	35500	45400	41200	43500	44900	45400
	-4.700	44400	39100	47700	38400	48000	44100	46500	47500	48000
	-8.200	44400	29100	41100	36400	40000	44100	40000	47500	40000

表 2-5(1) 設計用地震力 I (せん断力, Ss) (1/3)

					신	-ん断力(k	N)	,		
to the	標高	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	
名你	1. M. S. L.	1*	2	3	4	5	6	7	8	設計用 地電力 I
	(111)	(基本)								地展力 I
	14. 433	1770	1520	3310	1630	1840	1880	1760	1760	3310
	13. 721	1270	997	2390	1180	1330	1350	1270	1270	2390
	13.009	457	371	866	427	484	486	455	455	866
燃料集合体	12.297	472	365	873	434	492	503	470	471	873
	11. 585	1280	1000	2390	1180	1340	1360	1270	1270	2390
	10.873	1750	1470	2200	1690	1020	1960	1740	1740	2200
	10.161	1750	1470	3300	1620	1830	1860	1740	1740	3300
	10.161	312	317	274	312	300	313	305	313	317
	9.645	243	248	213	243	233	244	237	245	248
	9.402	130	137	116	137	125	131	130	135	137
制御俸柔内官	8.395	72.0	72.1	72.1	71.2	69.8	71.6	69.2	71.5	72.1
	7.388	224	235	198	233	216	224	222	231	235
	6. 795	328	343	294	342	317	330	325	336	343
	6. 347	020	010	201	012	011		020	000	010
制御棒駆動機構	0. 347 5. 817	459	476	421	474	449	464	454	466	476
ハワシシク	5.066	598	608	544	601	584	606	588	602	608
	<i>J</i> . 000 <i>A</i> . 213	155	144	167	166	168	157	149	172	172
	3 361	94.9	84.2	103	107	120	93.2	85.3	104	120
制御棒駆動機構	2 508	48.8	44.7	57.2	51.4	62.1	47.9	46.2	54.2	62.1
ハウジング	1 655	133	131	114	133	135	134	132	128	135
(四則)	0.93/	186	183	165	196	186	188	186	191	196
	0. 334	35.7	34.5	39.9	39.2	44.8	34.3	33.6	39.3	44.8
	5.817	183	186	177	186	187	189	180	198	198
	5.066	119	112	191	114	120	110	110	195	195
	4.213	47.0	46.4	51 9	114	54.0	50 4	42 7	52 6	54 0
制御棒駆動機構	3. 361	47.0	40.4 68.7	50.8	43.7	70.2	60.5	42. 1 68 0	52.0 66.5	70.2
ハウジング (外側) -	2.508	166	167	144	165	10.3	167	164	161	167
	1.655	100	107	144	100	100	107	104	101	107
	0.934	188	100	102	107	109	107	100	100	109
	0.184	35.1	30.2	29.7	32.1	32.5	34.5	34.3	33.9	35.1

表 2-5(1) 設計用地震力 I (せん断力, Ss) (2/3)

					セ	ん断力(k	N)			
夕敌	標局	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	⇒∿,⇒[□
	1. M. S. L. (m)	1*	2	3	4	5	6	7	8	設計用 地雪力 I
	(111)	(基本)								地辰月1
気水分離哭及び	19.472	225	236	242	207	241	231	218	220	242
スタンドパイプ	18. (16	634	658	692	585	675	642	619	619	692
	17.179	851	868	955	787	889	898	843	838	955
	16. 506	909	921	1020	842	961	982	907	898	1020
	15. 641	1020	990	1130	920	1050	1070	1010	1010	1130
	15.266	1220	1140	1350	1090	1260	1220	1210	1210	1350
	14. 433	3260	3020	4600	3020	3220	3270	3230	3240	4600
	13.721	3290	3030	4570	3030	3230	3310	3260	3270	4570
	13.009	3270	2990	4410	2990	3180	3280	3240	3250	4410
	12. 297	3230	2950	4180	2930	3110	3230	3200	3220	4180
	11.585	3190	2920	3970	2890	3070	3190	3170	3180	3970
炉心シュラウド	10.873	3190	2910	3880	2880	3050	3180	3170	3170	3880
	10.161	3220	2920	3940	2890	3070	3210	3200	3200	3940
	10. 161	1960	1880	3410	1950	1970	1970	1960	1960	3410
	9.645	5000	1000	7940	4000			5000		7940
	9.402	5290	4940	7240	4990	5150	5290	5260	5260	7240
	8.395	5340	4990	7300	5030	5190	5330	5310	5310	7300
	7.388	5390	5030	7350	5080	5250	5380	5360	5370	7350
	6. 795	5420	5060	7370	5100	5270	5400	5390	5390	7370
	6.253	1080	1080	977	1080	1070	1080	1050	1060	1080
原子炉冷却材	5.376	793	807	724	791	784	799	780	790	807
再循境ホンプ	4. 523	641	648	580	638	620	647	628	630	648
	3.671	041	040	560	038	029	047	028	039	040

表 2-5(1) 設計用地震力 I (せん断力, Ss) (3/3)

			モーメント(kN・m)										
夕折	一 標 局	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	⇒∿⇒∣ ⊞			
石小	1. M. S. L. (m)	1*	2	3	4	5	6	7	8	設計用 抽雲力 I			
	(111)	(基本)								地辰// 1			
	26.013	0	0	0	0	0	0	0	0	0			
	23. 553	1050	1120	954	1040	1030	1070	1040	1020	1120			
	22.163	3590	3850	3220	3520	3530	3660	3540	3500	3850			
	20.494	7680	8490	8190	7930	7650	7870	7610	7600	8490			
	18.716	16600	18000	17300	16700	16300	17000	16400	16400	18000			
百乙后口力应思	16.563	24700	27000	25400	24400	24400	25200	24600	24700	27000			
尿丁炉压刀谷硷	15.262	32500	35000	32500	32100	31600	33100	32300	32500	35000			
	12.332	56000	60500	53800	55300	54200	56900	55700	56000	60500			
	0 409	91600	98300	84400	90200	88400	92900	91100	91500	98300			
	9.402	15800	15100	14700	15000	15200	15500	15200	16100	16100			
	6.904	4190	3970	3930	3940	4130	4140	4050	4310	4310			
	4.950	0	0	0	0	0	0	0	0	0			
原子炉圧力容器	9.402	77000	83700	76700	75800	74600	78000	76600	76900	83700			
スカート	8.200	100000	108000	94100	98500	96700	102000	99400	99900	108000			
	21.200	0	0	0	0	0	0	0	0	0			
	18.440	2790	3010	2540	2750	2640	2840	2770	2740	3010			
原子炉遮蔽壁	17.020	14200	15100	13000	14000	13500	14500	13900	13800	15100			
	15.600	27100	28900	24900	26800	25700	27600	26600	26300	28900			
	13.950	49000	52200	45000	48600	46700	49900	48200	47800	52200			
	12.300	72700	77300	66800	72200	69400	73900	71600	71000	77300			
	0 000	110000	110000	131000	84600	125000	114000	118000	119000	131000			
	8.200	185000	183000	212000	156000	206000	192000	194000	198000	212000			
	7.000	218000	210000	254000	183000	246000	227000	230000	235000	254000			
	4.500	294000	282000	347000	245000	333000	307000	311000	318000	347000			
原子炉本体基礎	3. 500	326000	313000	386000	271000	370000	340000	346000	353000	386000			
	1.700	385000	371000	457000	320000	437000	401000	410000	418000	457000			
	-2.100	519000	504000	617000	432000	588000	539000	555000	563000	617000			
-	-4.700	618000	599000	731000	516000	697000	638000	662000	669000	731000			
	-8.200	763000	731000	892000	642000	853000	778000	815000	823000	892000			

表 2-5 (2) 設計用地震力 I (モーメント, Ss) (1/3)

					モー	·メント(k	N • m)			
名称	標高 T. M. S. L.	ケース 1*	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7	ケース 8	設計用
	(111)	(基本)								地震力 I
	14. 433	0	0	0	0	0	0	0	0	0
	13.721	1260	1080	2360	1160	1310	1340	1260	1260	2360
	13.009	2160	1780	4050	2000	2260	2300	2150	2160	4050
燃料集合体	12.297	2490	2010	4670	2310	2600	2650	2480	2480	4670
	11.585	2150	1760	4050	2000	2250	2290	2140	2150	4050
	10.873	1250	1050	2350	1160	1300	1320	1240	1240	2350
	10.161	0	0	0	0	0	0	0	0	0
	10.161	0	0	0	0	0	0	0	0	0
	9.645	161	164	142	161	155	162	157	162	164
	9.402	220	224	193	220	211	221	215	221	224
制御棒案内管	8.395	345	358	304	351	332	346	339	351	358
	7.388	280	293	249	292	270	280	277	288	293
	6.795	147	154	132	153	142	148	146	150	154
	6.347	0	0	0	0	0	0	0	0	0
生山谷山土土 町口 手上 400 土井	6.347	0	0	0	0	0	0	0	0	0
前御倅駆動機構 い ウジング	5.817	244	253	223	251	238	246	241	247	253
		692	708	632	701	676	701	680	697	708
	5.066	187	191	178	186	187	188	184	174	191
	4.213	69.4	69.0	56.2	70.9	69.6	69.5	69.2	63.0	70.9
制御棒駆動機構	3. 361	77.0	79.1	99.3	74.7	99.7	83.6	73.4	84.1	99.7
ハウジング	2.508	105	87.3	132	98.9	135	113	96.5	115	135
(内側)	1.655	156	153	146	165	162	158	156	161	165
	0.934	26.8	25.9	29.9	29.4	33.6	25.7	25.2	29.5	33.6
	0.184	0	0	0	0	0	0	0	0	0
	5.817	211	215	184	215	210	213	208	204	215
	5.066	74.2	75.0	62.3	76.4	74.2	74.5	73.3	70.2	76.4
and the later second to be take	4.213	63.7	57.9	65.0	61.5	61.6	65.4	61.6	58.5	65.4
制御棒駆動機構	3.361	97.3	95.2	108	96.9	106	104	95.5	102	108
ハワンシク (友祖)	2.508	74.3	79.5	82.3	78.1	84.1	81.8	72.1	85.4	85.4
(フド限)	1.655	160	157	136	157	159	158	157	155	160
	0.934	26.4	22.7	22.3	24.1	24.4	25.9	25.8	25.5	26.4
	0.184	0	0	0	0	0	0	0	0	0

表 2-5 (2) 設計用地震力 I (モーメント, Ss) (2/3)

					モー	·メント(k	N • m)			
夕折	一 標 局	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	⇒∿,⇒1, □□
石小	1. M. S. L. (m)	1*	2	3	4	5	6	7	8	設計用 地雪力 I
	(111)	(基本)								地展力工
	19.472	0	0	0	0	0	0	0	0	0
気水分離器及び	18.716	170	179	183	157	183	174	165	166	183
スタンドバイブ	17.179	1150	1190	1250	1060	1220	1160	1120	1120	1250
	16.506	1700	1770	1890	1570	1800	1720	1680	1670	1890
	15.641	2480	2560	2770	2290	2580	2520	2450	2430	2770
	15.266	2850	2920	3190	2630	2950	2910	2820	2800	3190
	14. 433	3830	3870	4310	3520	4000	3900	3780	3760	4310
	13.721	6040	5790	7210	5540	6250	6010	5990	5970	7210
	13.009	8370	7820	10200	7670	8540	8360	8310	8300	10200
	12.297	10700	9860	13200	9780	10800	10700	10700	10600	13200
	11.585	13000	12000	16100	11900	13100	13000	12900	12900	16100
	10.873	15300	14000	19000	13900	15200	15300	15200	15200	19000
炉心シュラウド	10.161	17600	16100	21700	16000	17400	17500	17400	17400	21700
	9.645	19200	17500	23700	17500	19000	19200	19100	19100	23700
	10.161	0	0	0	0	0	0	0	0	0
	0.645	1020	971	1760	1010	1020	1020	1010	1010	1760
	9.040	20200	18500	25400	18500	19900	20200	20100	20100	25400
	9.402	21500	19700	27100	19700	21200	21400	21300	21300	27100
	8.395	26800	24700	34500	24700	26400	26800	26700	26700	34500
	7.388	32300	29800	41900	29800	31600	32200	32100	32100	41900
	6. 795	35500	32800	46300	32800	34700	35400	35200	35300	46300
	6.253	2130	2180	1960	2140	2120	2140	2100	2120	2180
原子炉冷却材	5.376	1230	1240	1110	1220	1210	1240	1200	1220	1240
再循環ポンプ	4.523	546	552	494	544	536	552	536	544	552
	3.671	0	0	0	0	0	0	0	0	0

表 2-5 (2) 設計用地震力 I (モーメント, Ss) (3/3)
	重中					軸力(kN)				
夕称	一 標 局	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	动러.田
石小	1. M. S. L. (m)	1	2	3	4	5	6	7	8	設計用 地震力Ⅰ
	(111)	(基本)								
	26.013	183	183	189	180	182	186	182	183	189
	23.553	852	850	879	835	846	867	845	852	879
	22.163	1570	1560	1610	1530	1550	1590	1550	1570	1610
	20. 494	2950	2940	3040	2890	2930	3000	2930	2950	3040
	18.716	3480	3470	3600	3410	3460	3540	3460	3480	3600
	17.179	3780	3770	3910	3700	3760	3850	3760	3780	3910
	15.641	4200	4190	4350	4110	4180	4270	4180	4200	4350
	15.041	4390	4370	4540	4300	4360	4460	4370	4390	4540
	10.200	4650	4630	4810	4550	4620	4730	4630	4650	4810
	13 721	4860	4840	5030	4750	4830	4940	4840	4860	5030
	13,009	5050	5030	5230	4940	5020	5140	5030	5050	5230
原子恒压力容器	12 297	5240	5220	5430	5130	5210	5330	5220	5240	5430
小1 // /工/J石-田	11 585	5430	5410	5630	5320	5410	5530	5410	5430	5630
	10.873	5620	5600	5830	5500	5600	5720	5600	5620	5830
	10.161	5810	5790	6030	5690	5790	5910	5790	5810	6030
	9 645	5970	5950	6200	5850	5950	6080	5960	5970	6200
	9 402	6090	6070	6330	5970	6070	6200	6080	6090	6330
	8, 395	10500	10500	10800	10300	10400	10600	10500	10500	10800
	7, 388	10200	10200	10600	9970	10100	10400	10200	10200	10600
	6, 795	9970	9950	10300	9760	9900	10100	9940	9970	10300
	6.253	8870	8850	9140	8680	8790	8990	8830	8870	9140
	5. 783	8000	7990	8240	7830	7920	8110	7960	8000	8240
	5.817 5.066	4380	4380	4500	4280	4330	4440	4350	4380	4500
原子炉圧力容器	9.402	16000	16000	17500	16500	16900	17200	16000	16000	17500
スカート	8.200	16900	10900	17500	10500	10800	17200	10900	10900	17500
	21.200	604	604	623	593	597	615	596	604	623
	17 020	3390	3390	3500	3330	3350	3450	3350	3390	3500
原子炉遮敝壁	15.600	4130	4130	4260	4050	4090	4210	4080	4130	4260
	13,950	7270	7260	7520	7130	7220	7410	7210	7270	7520
	12 300	8160	8150	8450	8000	8110	8320	8100	8160	8450
	8 200	19200	19100	20100	18800	19200	19600	19200	19200	20100
	7,000	40200	40000	41900	39400	40200	40900	40200	40200	41900
	4 500	43200	43100	45200	42400	43300	44000	43300	43200	45200
広てに+ +++***	3, 500	45700	45500	47800	44800	45800	46500	45800	45700	47800
尿丁炉平伴基礎	1.700	47300	47000	49500	46400	47400	48100	47400	47300	49500
	-2.100	50900	50600	53500	50000	51100	51800	51200	50900	53500
	-4.700	54500	54100	57500	53700	54800	55500	55000	54500	57500
	-8.200	57900	57200	61100	57000	58200	58800	58400	57900	61100

表 2-5(3) 設計用地震力 I (軸力, Ss) (1/3)

		軸力(kN)								
名称	悰尚 T. M. S. L.	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	設計用
	(m)	1 (基本)	2	3	4	5	6	7	8	地震力 I
	14. 433	178	178	182	173	176	180	175	178	182
	13.721	532	533	544	519	526	539	525	532	544
燃料集合体	13.009	886	887	906	864	876	897	873	886	906
	12.297	1240	1240	1270	1210	1230	1260	1230	1240	1270
	11. 585	1600	1600	1630	1560	1580	1610	1570	1600	1630
	10.873	1950	1950	1990	1900	1920	1970	1920	1950	1990
	10.161	2390	2390	2440	2340	2360	2420	2360	2390	2440
	9.645	2420	2420	2470	2360	2390	2450	2390	2420	2470
	9.402	2460	2460	2520	2410	2430	2490	2430	2460	2520
制御棒案内管	8.395	2540	2540	2600	2480	2510	2570	2500	2540	2600
	7.388	2600	2600	2660	2540	2560	2630	2560	2600	2660
	6. 795 6. 347	2630	2630	2700	2580	2600	2670	2600	2630	2700
制御棒駆動機構	6. 347	2690	2690	2760	2630	2660	2730	2660	2690	2760
ハウジング	5.817	2750	2750	2810	2690	2710	2780	2710	2750	2810
	5.066	703	702	725	689	698	715	702	703	725
	4.213	666	665	686	653	661	677	665	666	686
制御棒駆動機構	3. 361	626	625	645	614	621	637	625	626	645
ハウジング	2.508	588	587	606	577	584	598	587	588	606
(内側)	1.655	130	130	134	128	129	132	130	130	134
	0.934	10.0	10.0	10 5	10.0	10.0	10.0	10.0	10.0	10 5
	0.184	18. 9	18.9	19.5	18.0	10.0	19.5	18.9	18.9	19. 5
	5.817	721	719	749	707	719	734	724	721	749
	5.066	688	686	714	674	686	701	690	688	714
制御棒駆動機構	4.213	651	649	676	639	649	664	654	651	676
ハウジング	3.361	613	611	636	601	611	624	615	613	636
(外側)	2.508	576	574	597	564	574	587	578	576	597
	1.655	127	127	132	125	127	130	128	127	132
	0. 934	18.5	18.5	19.2	18.2	18.5	18.9	18.6	18.5	19.2

表 2-5 (3) 設計用地震力 I (軸力, S s) (2/3)

	重重	軸力(kN)								
名称	信 「MSI	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	設計田
хн. (v).	(m)	1 (基本)	2	3	4	5	6	7	8	地震力 I
気水分離器及び	19.472	68.8	69.1	70.3	67.3	68.0	69.6	67.8	68.8	70.3
スタンドパイプ	10.710	210	211	215	205	208	212	207	210	215
	17.179	405	406	414	396	400	410	399	405	414
	16. 506	572	573	584	559	565	578	564	572	584
	15.041	948	948	970	926	936	959	936	948	970
	10.200	1050	1050	1070	1020	1030	1060	1040	1050	1070
	14.433	1310	1310	1340	1280	1290	1320	1300	1310	1340
	13.721	1350	1350	1380	1320	1330	1370	1340	1350	1380
	13.009	1390	1390	1430	1360	1380	1410	1380	1390	1430
	12.297	1440	1440	1470	1400	1420	1450	1420	1440	1470
	11.000	1480	1480	1510	1440	1460	1500	1460	1480	1510
炉心シュラウド	10.073	1520	1520	1560	1490	1500	1540	1510	1520	1560
	0.645	1560	1560	1600	1520	1540	1580	1540	1560	1600
	9.040	2160	2160	2220	2110	2130	2190	2140	2160	2220
	9.402	2210	2210	2280	2170	2190	2240	2200	2210	2280
	8.395 7.200	2300	2300	2360	2250	2270	2330	2280	2300	2360
	6.70E	2360	2360	2430	2310	2340	2390	2350	2360	2430
	6 247	2450	2450	2520	2400	2420	2480	2430	2450	2520
	5. 783	2500	2500	2570	2450	2470	2530	2480	2500	2570
	6.253	546	544	570	537	548	555	549	546	570
原子炉冷却材	5.376	492	490	514	484	494	500	495	492	514
再循 「 ホンプ	4. 523	193	491	442	416	425	430	426	423	449
	3.671	423	421	442	410	420	430	420	420	442

表 2-5 (3) 設計用地震力 I (軸力, S s) (3/3)

表 2-5 (4)	設計用地震力 I	(ばね反力,	Ss)
-----------	----------	--------	-----

	ばね反力(kN)								
名称	ケース 1 [*] (基本)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7	ケース 8	設計用 地震力 I
原子炉圧力容器 スタビライザ	2650	2810	2610	2670	2580	2750	2570	2510	2810
ダイヤフラムフロア	34200	37500	29400	36300	31400	34500	32000	29800	37500
制御棒駆動機構ハウジング レストレントビーム	1030	1020	890	1040	1030	1030	1020	1010	1040

注: 上記表のハッチングはケース 1~8 の最大値を示す。

注記*: 地震動及び地殻変動による基礎地盤の傾斜の影響を考慮した値を示す。

	1 		相対変位(mm)							
夕称	「「「「「「」」」	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース	∋ru∌i, FE
	1. M. S. L. (m)	1*	2	3	4	5	6	7	8	□ 武 町 用 地 震 力 1
		(基本)								
	14.433	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	13.721	8.5	7.0	15.8	7.8	8.8	9.0	8.4	8.4	15.8
	13.009	14.6	12.0	27.4	13.5	15.3	15.5	14.5	14.6	27.4
燃料集合体	12.297	16.8	13.8	31.6	15.6	17.6	17.9	16.8	16.8	31.6
	11. 585	14.6	12.0	27.4	13.5	15.3	15.5	14.5	14.5	27.4
	10.873	8.4	6.9	15.8	7.8	8.8	9.0	8.4	8.4	15.8
	10.161	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 2-5(5) 設計用地震力 I (相対変位, Ss)

注記*: 地震動及び地殻変動による基礎地盤の傾斜の影響を考慮した値を示す。

to the	標高	せん断力(kN)			
石桥	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ		
	26.013	. 229	270		
	23.553	986	1180		
	22.163	1480	1760		
	20.494	2700	3330		
	18.716	2160	2750		
原子炉圧力容器	16.563	3340	4220		
	15.262	4430	5580		
	12.332	6560	8200		
	9.402	2270	2970		
	6.904	2210	2910		
	4.950	1050	1340		
原子炉圧力容器	9.402	10100	12200		
スカート	8.200	10100	13200		
	21.200	540	663		
	18.440	4180	5070		
原子炉遮蔽壁	17.020	4760	5790		
	15.600	7010	8580		
	13.950	7580	9310		
	12.300	13600	16800		
	8.200	18200	23600		
	7.000	19500	25400		
	4.500	20400	26700		
原子炉本体基礎	3. 500	20400	20100		
	1.700	21000	21000		
	-2.100	22400	31500		
	-4.700	23900	51500		
	-8.200	25300	33300		

表 2-6(1) 設計用地震力Ⅱ(せん断力, Sd)(1/3)

友 the	標高	せん断力(kN)			
石松	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ		
	14.433	2210	2210		
	13.721	1600	1600		
	13.009	577	577		
燃料集合体	12.297	505	505		
	11.585	1610	1610		
	10.873	1010	1010		
	10.161	2190	2190		
	10.161	169	176		
	9.645	133	136		
	9.402	72.2	72.6		
制御棒案内管	8.395	39.5	39.5		
	7.388	194	194		
	6.795	124	124		
	6.347	178	181		
制御棒駆動機構	6.347	246	254		
ハウジング	5.817	313	337		
	5.066	68.0	85 1		
	4.213	28.1	35.9		
制御棒駆動機構	3.361	20.1	24.9		
ハウジング	2.508	65.7	83.9		
(内側)	1.655	99.3	122		
	0.934	17.1	10.4		
	0.184	17.1	19.4		
	5.817	95.4	119		
	5.066	58.9	70.9		
	4.213	16.7	28 1		
 前仰徑 秘 期 機 博 ハウジング	3.361	34 0	44 8		
(外側)	2.508	83.5	105		
	1.655	89.8	124		
	0.934	14 -	121		
	0.184	14.5	20.2		

表 2-6(1) 設計用地震力Ⅱ(せん断力, Sd)(2/3)

to the	標高	せん断力(kN)			
名仦	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ		
	19.472	. 115	136		
気水分離器及び	18.716	323	387		
	17.179	458	517		
	16.506	430 500	517		
	15.641	500	530		
	15.266	557	602		
	14.433	671	/18		
	13.721	2520	2520		
	13.009	2430	2430		
	12, 297	2310	2310		
	11 585	2220	2220		
	10.873	2130	2130		
炉心シュフワド	10.010	2090	2090		
	9. 645	2110	2110		
	10.161	2190	2190		
	9.645	3850	3850		
	9.402	2000	2000		
	8.395	2010	2010		
	7.388	3910	3910		
	6. 795	3920	3920		
	6.253	548	743		
原子炉冷却材	5.376	408	566		
月 月 指 	4. 523	0.07			
	3.671	327	454		

表 2-6(1) 設計用地震力Ⅱ(せん断力, Sd)(3/3)

to the	標高	モーメン	⊦ (kN • m)
名孙	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	26.013	0	0
	23.553	563	662
	22.163	1940	2290
	20.494	4140	5070
	18.716	8920	11000
原子炉圧力容器	16.563	13600	16900
	15.262	17900	22400
	12.332	30900	38800
	9.402	50100	63000
	6.904	2040	2600
	4.950	0	0
原子炉圧力容器	9.402	43000	53000
スカート	8.200	55000	68700
	21.200	0	0
	18.440	1490	1840
原子炉遮蔽壁	17.020	7420	9030
	15.600	14200	17300
	13.950	25800	31500
	12.300	38300	46800
	8.200	107000	138000
	7.000	127000	164000
	4.500	173000	221000
原子炉本体基礎	3.500	192000	247000
	1.700	227000	296000
	-2.100	309000	406000
	-4.700	370000	487000
	-8.200	456000	602000

表 2-6(2) 設計用地震力Ⅱ(モーメント, Sd)(1/3)

反称	標高	モーメント(kN・m)			
石松	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ		
	14.433	0	0		
	13.721	1580	1580		
	13.009	2720	2720		
燃料集合体	12.297	3130	3130		
	11.585	2710	2710		
	10.873	1560	1560		
	10.161	0	0		
	10.161	0	0		
	9.645	87.2	90.3		
	9.402	120	123		
制御棒案内管	8.395	191	193		
	7.388	154	154		
	6.795	79.6	80.6		
	6.347	0	0		
制御棒駆動機構	6.347	0	0		
ハウジング	5.817	130	136		
	5.066	365	387		
	4.213	32.6	38.0		
制御梼馭動機構	3.361	24.7	34. 5		
いウジング	2.508	31.2	46.1		
(内側)	1.655	84.2	102		
	0.934	12.9	14.6		
	0.184	0	0		
	5.817	109	133		
	5.066	37.6	42.6		
	4.213	23.9	30.6		
制御棒駆動機構	3.361	36.7	51.5		
(外側)	2.508	29.0	41.1		
	1.655	75.0	105		
	0.934	10.9	15.1		
	0.184	0	0		

表 2-6(2) 設計用地震力Ⅱ(モーメント, Sd)(2/3)

	標高	モーメン	ト (kN・m)
名称	T. M. S. L. (m)	設計用地震力 I	設計用地震力Ⅱ
	19.472	0	0
気水分離器及び	18.716	87.0	103
スタンドパイプ	17.179	582	695
	16.506	869	1050
	15.641	1290	1530
	15.266	1490	1750
	14. 433	2050	2340
	13.721	3730	3730
	13.009	5420	5420
	12.297	7050	7050
	11.585	8610	8610
炉心シュラウド	10.873	10100	10100
	10.161	11600	11600
	9.645	12700	12700
	10.161	0	0
	9.645	13600	13600
	9.402	14500	14500
	8.395	18400	18400
	7.388	22300	22300
	6. 795	24700	24700
	6.253	1110	1530
原子炉冷却材	5.376	626	869
再循環ポンプ	4.523	279	387
	3.671	0	0

表 2-6(2) 設計用地震力Ⅱ(モーメント, Sd)(3/3)

长候 旦旦	標高	軸力	(kN)
17文石计	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	26.013	93.4	127
	23. 553	/35	589
	22.163	433	1080
	20. 494	1510	2050
	18. 716	1780	2000
	17.179	1940	2620
	16.506	2150	2920
	15.641	2250	3050
	15.266	2380	3230
	14. 433	2490	3370
	13.721	2590	3500
	13.009	2690	3630
原子炉圧力容器	12.297	2790	3760
	11. 585	2890	3900
	10.873	2980	4030
	10. 161	3070	4150
	9.645	3130	4230
	9.402	5350	7350
	8. 395	5210	7170
	7.388	5100	7010
	6. 795	4520	6240
	6. 253	4080	5630
	5. 783	1000	
	5.817	2230	3100
	5.066		
原子炉圧刀谷器 スカート	9.402	8640	11800
	21 200		401
	18.440	306	431
百乙后海燕辟	17.020	1720	2420
坏 」 // 些 献 室	15.600	2100	2940
	13.950	3700	5170
	12.300	4160	5800
	8.200	9880	13600
	7.000	20700	28300
	4. 500	22300	30300
原子炉本体基礎	3. 500	23600	32200
	1.700	24400	33200
	-2.100	26400	35700
	-4.700	28400	38100
	-8.200	30100	40200

表 2-6(3) 設計用地震力Ⅱ(軸力, Sd)(1/3)

十分後 日日	標高	軸力(kN)	
機奋	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	14. 433	89.1	125
	13.721	260	276
	13.009	208	626
燃料集合体	12.297	440	020
	11.585	023	070
	10.873	800	1130
	10.161	1977	1500
	9.645	1210	1690
	9.402	1220	1720
制御棒案内管	8.395	1240	1750
	7.388	1280	1800
	6. 795	1310	1840
	6.347	1330	1860
制御棒駆動機構	6. 347	1360	1920
ハウジング	5.817	1390	1950
	5.066	360	494
	4. 213	341	468
制御棒駆動機構	3. 361	321	440
ハウジング	2.508	302	414
(内側)	1.655	66.5	91.2
	0.934	0.00	10.0
	0.184	9. 69	13.3
	5.817	372	507
	5.066	355	484
	4.213	336	458
前仰 傑 船 期 機 博 ハウジング	3. 361	316	431
(外側)	2.508	297	405
	1.655	65.5	89.2
	0.934	00.0	00.2
	0.184	9.54	13.0

表 2-6(3) 設計用地震力Ⅱ(軸力, Sd)(2/3)

+4% 日日	標高	軸力(kN)	
行交石合	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	19.472	34.6	48.7
気水分離器及び	18. 716	106	1/19
X92FM1J	17.179	203	286
	16.506	203	403
	15.641	479	403
	15.266	478	729
	14.433	527	738
	13.721	660	921
	13.009	681	951
	12.297	703	981
	11.585	725	1010
「「小シュラウド」	10.873	746	1040
アルシュノット	10.161	768	1070
	9,645	787	1100
	9 402	1100	1530
	8 395	1130	1560
	7 388	1170	1620
	6 795	1200	1670
	6 347	1250	1730
	5 782	1270	1760
	6 252		
原子炉冷却材 再循環ポンプ	5 276	282	385
	5. 376	254	348
	4. 523	219	299
	3.671	210	200

表 2-6 (3) 設計用地震力 II (軸力, Sd) (3/3)

表 2-6(4) 設計用地震力Ⅱ(ばね反力, Sd)

\$7.5h-	ばね反力(kN)	
泊	設計用地震力 I	設計用地震力Ⅱ
原子炉圧力容器 スタビライザ	1330	1560
ダイヤフラムフロア	16300	16300
制御棒駆動機構ハウジング レストレントビーム	514	658

名称	標高	相対変位(mm)	
	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
燃料集合体	14.433	0	0
	13.721	10.6	10.6
	13.009	18.3	18.3
	12.297	21.2	21.2
	11.585	18.3	18.3
	10.873	10.6	10.6
	10.161	0	0

表 2-6(5) 設計用地震力Ⅱ(相対変位, Sd)

to the	標高	標高 せん断力(kN)	
石桥	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	26.013	453	523
	23.553	1970	2270
	22.163	2980	3410
	20.494	5360	6310
	18.716	4150	4880
原子炉圧力容器	16.563	6520	7710
	15.262	8720	10400
	12.332	12000	15900
	9.402	4710	5800
	6.904	4710	5800
	4.950	2210	2640
原子炉圧力容器	9.402	20000	25000
スカート	8.200	20000	25000
	21.200	1090	1270
	18.440	8520	10100
原子炉遮蔽壁	17.020	9670	11400
	15.600	14200	16800
	13.950	15300	18200
	12.300	20500	25500
	8.200	35300	41100
	7.000	37600	44100
	4.500	39300	46700
原子炉本体基礎	3.500	40300	48300
	1.700	43000	51800
	-2.100	45400	55700
	-4.700	10400	50100
	-8.200	48000	59300

表 2-7(1) 設計用地震力Ⅱ(せん断力, Ss)(1/3)

友 the	標高	せん断力(kN)	
石松	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	14. 433	3310	3650
	13.721	2300	2630
	13.009	2390	2030
燃料集合体	12.297	000	955
	11.585	2200	901
	10.873	2390	2030
	10.161	3300	3630
	10.161	317	405
	9.645	248	215
	9.402	127	181
制御棒案内管	8.395	72.1	101
	7.388	(2.1	93.0
	6.795	233	503
	6.347	343	441
制御棒駆動機構	6.347	476	617
ハウジング	5.817	608	788
	5.066	172	208
	4.213	112	127
制御棒駆動機構	3.361	62 1	64.5
ハウジング	2.508	135	171
(内側)	1.655	196	245
	0.934	130	210
	0.184	44.8	45.8
	5.817	. 198	236
	5.066	125	149
	4.213	54.0	61.3
制御棒駆動機構	3.361	70.3	89.5
(外側)	2.508	167	
(21.0237	1.655	107	210
	0.934	109	242
	0.184	35.1	40.9

表 2-7(1) 設計用地震力Ⅱ(せん断力, Ss)(2/3)

to the	標高	せん断	力(kN)
名仦	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	19.472	242	267
気水分離器及び	18.716	692	753
X92FM1J	17.179	955	1050
	16.506	1020	1140
	15.641	1120	1940
	15.266	1250	1240
	14.433	1550	1400 5000
	13.721	4600	5060
	13.009	4570	5040
	12.297	4410	4860
	11.585	4180	4600
「「「小シュラウド」	10.873	3970	4380
	10.161	3880	4270
	9.645	3940	4340
	10.161	. 3410	3760
	9.645	7240	7970
	9.402	7300	8030
	8.395	7350	8090
	7.388	7970	0110
	6.795	7370	8110
原子炉冷却材 再循環ポンプ	6. 253	1080	1400
	5.376	807	1030
	4. 523	618	R31
	3.671	040	034

表 2-7(1) 設計用地震力Ⅱ(せん断力, Ss)(3/3)

to the	標高	モーメン	⊦ (kN • m)
名孙	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	26.013	0	0
	23.553	1120	1290
	22.163	3850	4440
	20.494	8490	9770
	18.716	18000	21000
原子炉圧力容器	16.563	27000	31500
	15.262	35000	41400
	12.332	60500	71700
	9.402	98300	118000
	6.904	4310	5170
	4.950	0	0
原子炉圧力容器	9.402	83700	98100
スカート	8.200	108000	128000
	21.200	0	0
	18.440	3010	3500
原子炉遮蔽壁	17.020	15100	17900
	15.600	28900	34000
	13.950	52200	61700
	12.300	77300	91700
	8.200	212000	253000
	7.000	254000	301000
	4.500	347000	410000
原子炉本体基礎	3.500	386000	455000
	1.700	457000	537000
	-2.100	617000	719000
	-4.700	731000	849000
	-8.200	892000	1040000

表 2-7(2) 設計用地震力Ⅱ(モーメント, Ss)(1/3)

to the	標高	モーメン	ト(kN・m)
石松	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	14.433	0	0
	13.721	2360	2600
	13.009	4050	4470
燃料集合体	12.297	4670	5140
	11.585	4050	4460
	10.873	2350	2590
	10.161	0	0
	10.161	0	0
	9.645	164	210
	9.402	224	285
制御棒案内管	8.395	358	455
	7.388	293	377
	6.795	154	198
	6.347	0	0
制御棒駆動機構	6.347	0	0
ハウジング	5.817	253	327
	5.066	708	914
	4.213	70.9	84.8
圳御梼取動機構	3.361	99. 7	125
いゆ や かゆ ジング	2.508	135	168
(内側)	1.655	165	206
	0.934	33.6	34.4
	0.184	0	0
	5.817	215	268
	5.066	76.4	92.5
	4.213	65.4	87.7
制御棒駆動機構 ハウジング (外側)	3.361	108	138
	2.508	85.4	109
	1.655	160	205
	0.934	26.4	30.7
	0.184	0	0

表 2-7(2) 設計用地震力Ⅱ(モーメント, Ss)(2/3)

h 14	標高	モーメン	ト (kN・m)
名称 	T. M. S. L. (m)	設計用地震力 I	設計用地震力Ⅱ
	19.472	0	0
気水分離器及び	18.716	183	202
スタンドパイプ	17.179	1250	1360
	16.506	1890	2050
	15.641	2770	3010
	15.266	3190	3480
	14. 433	4310	4680
	13.721	7210	7400
	13.009	10200	10200
	12.297	13200	14600
	11.585	16100	17800
炉心シュラウド	10.873	19000	20900
	10.161	21700	23900
	9.645	23700	26100
	10.161	0	0
	9.645	25400	28000
	9.402	27100	30000
	8.395	34500	38000
	7.388	41900	46100
	6.795	46300	51000
	6.253	2180	2770
原子炉冷却材	5.376	1240	1590
再循環ポンプ	4.523	552	710
	3.671	0	0

表 2-7 (2) 設計用地震力Ⅱ (モーメント, S s) (3/3)

长候电	標高	軸力	(kN)
小水泊中	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	26.013	189	253
	23. 553	879	1180
	22.163	1610	2150
	20.494	3040	4060
	18.716	3600	4790
	17.179	3910	5200
	16. 506	4350	5780
	15.641	4540	6020
	15.266	4810	6390
	14. 433	5030	6670
	13.721	5230	6930
	13.009	5430	7190
原子炉圧力容器	12.297	5630	7450
	11.585	5830	7710
	10.873	6030	7970
	10. 161	6200	8210
	9.645	6330	8380
	9.402	10800	14600
	8.395	10600	14200
	7.388 6.705	10300	14000
	6,252	9140	12400
	0. 200 5. 783	8240	11200
	5. 817		
	5.066	4500	6100
原子炉圧力容器	9.402	15500	
スカート	8.200	17500	23400
	21.200	623	851
	18.440	3500	4780
原子炉遮蔽壁	17.020	4260	5820
	15.600	7520	10200
	13.950	8450	11500
	12.300	20100	26800
	8.200	41900	55900
	7.000	45200	60100
	4. 500	47800	63500
原子炉本体基礎	3. 500	49500	65600
	1.700	53500	70600
	-2.100	57500	75400
	-4. 700	61100	79700
	-8.200	01100	13100

表 2-7 (3) 設計用地震力Ⅱ(軸力, S s) (1/3)

	· 一 一 一	■ 曲 十	(1-N)
機器		11月日14歳上す	
	1. M. S. L. (M)	設計用地震刀 1	設計用地震刀Ⅱ
	14. 433		246
	13. 721	544	736
胁 到	13.009	906	1230
<u> 然</u> 科集合体	12.297	1270	1720
	11.585	1630	2210
	10.873	1990	2710
	10.161	2440	3330
	9.645	2470	3370
	9.402	2520	3440
制御棒案内管	8. 395	2620	3540
	7. 388	2660	3620
	6. 795	2000	0020
	6. 347	2700	3670
制御棒駆動機構	6. 347	2760	3760
ハウジング	5.817	2810	3840
	5.066	725	979
	4. 213	686	927
制御棒駆動機構	3. 361	645	873
ハウジング	2.508	606	819
制御棒駆動機構 ハウジング (内側)	1.655	134	181
	0.934	10.5	00.4
	0.184	19. 5	20.4
	5. 817	749	1010
	5.066	714	960
圳和基取新挑拌	4. 213	676	909
前仰 傑 船 期 機 博 ハウジング	3. 361	636	856
(外側)	2.508	507	804
	1.655	129	170
	0.934	132	119
	0.184	19.2	25.9

表 2-7 (3) 設計用地震力Ⅱ(軸力, S s) (2/3)

+	標高	軸力	(kN)
機奋	T.M.S.L. (m)	設計用地震力 I	設計用地震力Ⅱ
	19.472	70.3	95.7
気水分離器及び	18.716	215	293
	17.179	414	563
	16.506	58/	795
	15.641	970	1330
	15.266	1070	1460
	14. 433	1070	1400
	13.721	1340	1820
	13.009	1380	1880
炉心シュラウド	12.297	1430	1940
	11.585	1470	1990
	10.873	1510	2060
	10. 161	1560	2120
	9,645	1600	2180
	9 402	2220	3010
	8 395	2280	3090
	7 388	2360	3200
	6 705	2430	3290
	6.247	2520	3410
	5 783	2570	3490
	6 253		
百乙后公却社	5 376	570	765
尿丁州 行却 再循環 ポンプ	0.070	514	689
市地域ハイノ	4. 523	442	593
	3.671	112	000

表 2-7(3) 設計用地震力 II (軸力, Ss) (3/3)

表 2-7(4) 設計用地震力Ⅱ(ばね反力, Ss)

\$7 Fh-	ばね反	力(kN)
名你 ————————————————————————————————————	設計用地震力 I	設計用地震力Ⅱ
原子炉圧力容器 スタビライザ	2810	3280
ダイヤフラムフロア	37500	40300
制御棒駆動機構ハウジング レストレントビーム	1040	1330

	 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	相対変	付 (mm)
名称	^{1示同} T. M. S. L. (m)	設計用地震力 I	設計用地震力Ⅱ
	14. 433	0	0
	13.721	15.8	17.5
	13.009	27.4	30.2
燃料集合体	12.297	31.6	34.8
	11.585	27.4	30.2
	10.873	15.8	17.4
	10.161	0	0

表 2-7(5) 設計用地震力Ⅱ(相対変位, Ss)

3. 耐震計算に用いる鉛直方向荷重について

本章では、耐震計算に用いる鉛直方向荷重について説明する。

3.1 耐震計算に用いる鉛直方向荷重

耐震計算には、以下①、②のいずれかの鉛直方向荷重、もしくは①、②を上回ることを確認 した値を用いる。

- ① 前章にて設定した設計用地震力(軸力)
- ② 自重に鉛直方向設計震度を乗じて算定される鉛直方向荷重

ここで、「② 自重に鉛直方向設計震度を乗じて算定される鉛直方向荷重」を用いる設備に は、既工認の耐震計算と同様に鉛直方向設計震度より鉛直方向荷重を算定し、軸力と比較した 上で大きな荷重を使用する設備(原子炉圧力容器関係)と通常運転時自重と異なる燃料交換時 自重を耐震計算に考慮する設備(原子炉圧力容器支持構造物関係)がある。

3.2 耐震計算に用いる鉛直方向荷重の整理結果

設計用地震力(軸力)の使用有無を整理するとともに,設計用地震力(軸力)とは異なる耐 震計算に用いる鉛直方向荷重と設計用地震力I(軸力)との大小関係を比較した結果を表 7-

1(設計用地震力Ss)及び表 7-2(弾性設計用地震動Sd)に示す。 耐震計算に用いる鉛直方向荷重が設計用地震力I(軸力)を以上となっていることを確認した。

台舉發目	目録名称	鉛直方向荷重に軸力を用いているか 〇:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	孝聯
V - 1 - 2 - 1	原子炉本体の基礎に関する説明書	×	67650	61100	0	
V-2-3-2-1(C含む	燃料集合体の耐震性についての計算書	× 大学がしたが、 本のではの計算書においては 本のが一方の一方の一方の一方では 本の一方の一方の一方の一方では 本の一方の一方の一方の一方では 本の一方の一方の一方の一方では 本の一方の一方の一方の	、燃料棒単体に対して弥 に作用する軸力ではなく ますものとして設計し	亀度評価を実施しており く、鉛直方向設計震度に ノている。	, 燃料集合 燃料棒自重	
V-2-3-2-3に含む	炉心シュラウドの応力計算	0	Ι	Ι	Ι	
V-2-3-2-3に含む	シュラウドサポートの応力計算	×	V1:3910 V2:30580	V1 : 2570 V2 : 21880	0	A1:シュラウドサポートシリンダ上端 A2:下鏡内面
V-2-3-2-3に含む	上部格子板の応力計算	0	I	I	I	
V-2-3-2-3に含む	炉心支持板の応力計算	Ι	I	I	I	
V-2-3-2-3に含む	燃料支持金具の応力計算	-	-	I	Ι	
V-2-3-2-3に含む	制御棒案内管の応力計算	0	I	I	Í	
V-2-3-3-1-2に含む	プラケット類の応力計算 (蒸気乾燥器支持プラケット)	-	I	Ι	Ι	
V-2-3-3-1-2に含む	プラケット類の応力計算 (給水スパージャプラケット)	I	I	I	Í	
V-2-3-3-1-2に含む	プラケット類の応力計算 (低圧注水スパージャプラケット)	I	I	I	I	
V-2-3-3-1-2に含む	原子炉圧力容器スカートの応力計算	×	V1 : 32900 V2 : 15710	V1 : 10800 V2 : 6330	0	V1:スカート付根下側 V2:スカート付根上側
V-2-3-3-1-2に含む	原子炉圧力容器基礎ボルトの応力計算	×	41784	17500	0	
V-2-3-3-1-3(こ含む	下部鏡板の応力計算	×	V1:3910 V2:30580	V1 : 2570 V2 : 21880	0	A1:シュラウドサポートシリンダ上端 A2:下鏡内面
V-2-3-3-1-3亿含む	給水ノズル(N4)の応力計算	Ι	Ι	Ι	I	
V-2-3-3-1-3(こ含む	胴板の応力計算	×	V1 : 32900 V2 : 15710	V1 : 10800 V2 : 6330	0	V1:スカート付根下側 V2:スカート付根上側
V-2-3-3-1-3に含む	制御棒駆動機構ハウジング貫通孔の応力計算	×	V1 : 19.8 V2 : 21.2	V1 : 13.7 V2 : 7.4	0	V1:炉内側から作用する荷重 V2:炉外側から作用する荷重
V-2-3-3-1-3(こ含む	原子炉冷却材再循環ポンプ貫通孔 (N1) の応力計算	$V1: \times V2: -$	V1:84.6 V2:-	V1 : 57.0 V2 :	V1 : () V2 : -	V1:ケーシング側より作用する荷重 V2:ディフューザ側より作用する荷重
V-2-3-3-1-3に含む	主蒸気ノズル (N3) の応力計算	-	-	Ι	Ι	
V-2-3-3-1-3に含む	低圧注水ノズル(N6)の応力計算	-		Ι	Ι	
V-2-3-3-1-3に含む	上蓋スプレイ・ベントノズル(N7)の応力計算	-	Ι	I	Ι	
V-2-3-3-1-3に含む	原子炉停止時冷却材出ロノズル(N8, N10)の応力計算	Ι	Ι	Ι		

表 3-1(1) 耐震評価に適用する鉛直方向荷重の整理結果(基準地震動 S s)

		>王间回/기/11/11/11/11/11/11/11/11/11/11	~ 玉 在 加 不 (金 -			
日録番号	目觎名称	鉛直方向荷重に軸力を用いているか 〇:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	備考
V-2-3-3-1-3に含む	原子炉冷却材再循環ボンプ差圧検出ノズル(N9)の応力計算	Ι	-		Ι	
V-2-3-3-1-3に含む	炉心支持板差圧検出ノズル(N11)の応力計算	Ι		I	I	
V-2-3-3-1-3に含む	計装ノズル (N12, N13, N14) の応力計算	Ι	I	Ι	I	
V-2-3-3-1-3に含む	ドレンノズル(N15)の応力計算	1	I	I	I	
V-2-3-3-1-3に含む	高圧炉心注水ノズル(N16)の応力計算	1	I	Ι	I	
V-2-3-3-2-1に含む	原子炉冷却材再循環ボンプモータケーシングの応力計算	×	84.6	57.0	0	
V - 2 - 3 - 3 - 2 - 3	制御捧駆動機構ハウジングレストレントビームの応力計算	-		Ι	Ι	
V-2-3-3-3-2に含む	蒸気乾燥器の応力計算	1	I	Ι	I	
V-2-3-3-3-2)こ含む	気水分離器及びスタンドパイプの応力計算	0			Ι	
V-2-3-3-3-2心含む	シュラウドヘッドの応力計算	0	-	Ι	Ι	
V-2-3-3-3ご合む	中性子束計測案内管の応力計算	-		-	Ι	
V-2-3-3-3(乙含む	給水スパージャの応力計算	I	I	I	I	
V-2-3-3-3(乙含む	高圧炉心注水スパージャの応力計算	I	I	I	I	
V-2-3-3-3-3(乙含む	低圧注水スパージャの応力計算	Ι	Ι	I	I	
V-2-3-3-3(ご含む	高圧炉心注水系配管(原子炉圧力容器内部)の応力計算	Ι	I	Ι	I	
V-2-5-1に含む	原子炉冷却材再循環ボンプの耐震性についての計算書(原子炉 冷却系統施設 原子炉冷却材再循環設備)	Ι	I	I	I	
V-2-5-2-1-1	アキュムレータの耐震性についての計算書	Ι	Ι	Ι	-	
$V^{-2-6-3-1}$	制御棒駆動機構の耐震性についての計算書	×	9.425	5. 89	0	
$V^{-2-6-5-1}$	起動領域モニタの耐震性についての計算書	-		-	Ι	
V - 2 - 6 - 5 - 2	出力領域モニタの耐震性についての計算書	Ι	-		Ι	
V - 2 - 6 - 5 - 22	サプレッションチェンバ気体温度の耐震性についての計算書	—	I	I	Ι	
V - 2 - 6 - 5 - 30	格納容器下部水位の耐震性についての計算書	—	I	I	Ι	
$V^{-2-9-4-1}$	真空破壊弁の耐震性についての計算書	Ι	Ι	Ι	I	

表 3-1(2) 耐震評価に適用する鉛直方向荷重の整理結果(基準地震動 S s)

日錄番号	目録名称	鉛直方向荷重に軸力を用いているか 〇:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	備坊
V-2-9-4-2	ダイヤフラムフロアの耐酸性についての計算書	1	I	I	I	
V-2-9-4-3	ベント管の耐震性についての計算書	1	Ι	I	I	
V - 2 - 9 - 4 - 4 - 1 - 2	暈真相のこいのい類種の具アイズメバイェチイェベベインチ	Ι	-	-	Ι	
$V^{-2-9-4-8-1}$	北部ドライウェルアクセストンネルの耐酸性についての計算書	Ι	-	-	Ι	
$V^{-2-9-5-1}$	コリウムシール ドの耐震性についての計算書	Ι	-	-	Ι	
$V^{-2-11-2-6}$	原子炉遮蔽壁の耐震性についての計算書	×	12700	8450	0	

表 3-1(3) 耐震評価に適用する鉛直方向荷重の整理結果(基準地震動 S s)

	火り 4 (1/ m1)反け ()()()()()()()()()()()()()()()()()()	画加する如同の世生で走		「二」「三方」	(n	
目録番号	目録名称	鉛直方向荷重に軸力を用いているか 〇:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	備考
V - 1 - 2 - 1	原子炉本体の基礎に関する説明書	×	33440	30100	0	
V-2-3-2-1に含む	靠 黄椙の入いへい知道陣のお守黄は淡	× 燃料集合体の耐震性の計算書においては 体の剛性を支配するチャンネルボックス え乗じた船直方向荷重が燃料破覆管に作	, 燃料棒単体に対して動 に作用する軸力ではなく 用するものとして設計し	■度評価を実施しており ● 始直方向設計震度に している。	, 燃料集合 燃料棒自重	
V-2-3-2-3に含む	炉心シュラウドの応力計算	0			I	
V-2-3-2-3に含む	シュラウドサポートの応力計算	×	V1:2970 V2:23520	V1 : 1270 V2 : 10830	0	A1:シュラウドサポートシリンダ上端 A2:下鏡内面
V-2-3-2-3に含む	上部格子板の応力計算	0	I	Ι	I	
V-2-3-2-3に含む	炉心支持板の応力計算	-	-	Ι	Ι	
V-2-3-2-3に含む	燃料支持金具の応力計算	-		Ι	Ι	
V-2-3-2-3に含む	制御棒案内管の応力計算	0	I	I	I	
V-2-3-3-1-2に含む	ブラケット類の応力計算 (蒸気乾燥器支持プラケット)	-	I	Ι	I	
V-2-3-1-2に含む	プラケット類の応力計算 (給水スパージャブラケット)	-		Ι	Ι	
V-2-3-3-1-2に含む	プラケット類の応力計算 (低圧注水スパージャプラケット)	Ι	I	Ι	I	
V-2-3-3-1-2に含む	原子炉圧力容器スカートの応力計算	×	V1 : 25260 V2 : 12070	V1 : 5350 V2 : 3130	0	V1:スカート付根下側 V2:スカート付根上側
V-2-3-3-1-2に含む	原子炉圧力容器基礎ボルトの応力計算	×	21044	8640	0	
V-2-3-3-1-3に含む	下部鏡板の応力計算	×	V1:2970 V2:23520	V1 : 1270 V2 : 10830	0	V1:シュラウドサポートシリンダ上端 V2:下鏡内面
V-2-3-3-1-3に含む	給水ノズル(N4)の応力計算	Ι	1	Ι	Ι	
V-2-3-3-1-3に含む	胴板の応力計算	×	V1 : 25260 V2 : 12070	V1 : 5350 V2 : 3130	0	V1:スカート付根下側 V2:スカート付根上側
V-2-3-3-1-3に含む	制御棒駆動機構ハウジング貫通孔の応力計算	×	V1: 15.2 V2: 16.2	V1:6.8 V2:3.7	0	V1:炉内側から作用する荷重 V2:炉外側から作用する荷重
V-2-3-3-1-3に含む	原子炉冷却材再循環ボンブ貫通孔(N1)の応力計算	$V1: \times V2: -$	V1:41.9 V2:-	V1:28.2 V2:-	V1 : () V2 : -	V1:ケーシング側より作用する荷重 V2:ディフューザ側より作用する荷重
V-2-3-1-3に含む	主蒸気ノズル(N3)の応力計算	Ι	I	Ι	Ι	
V-2-3-3-1-3に含む	低圧注水ノズル(N6)の応力計算	I	I	Ι	I	
V-2-3-3-1-3に含む	上蓋スプレイ・ベントノズル(N7)の応力計算	Ι	I	Ι	Ι	
V-2-3-3-1-3に含む	原子炉停止時冷却材出ロノズル(N8, N10)の応力計算	Ι	Ι	Ι	Ι	

表 3-2(1) 耐震評価に適用する鉛直方向荷重の整理結果(弾性設計用地震動 S d)

		西~4日回1011~1日116~~11回	白信く(ナヨウ		۲)	
目録番号	目録名称	給直方向荷重に軸力を用いているか ○:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	備考
V-2-3-3-1-3に含む	原子炉冷却材再循環ポンプ差圧検出ノズル(N9)の応力計算	I	I	Ι	I	
V-2-3-3-1-3に含む	炉心支持板差圧検出ノズル(N11)の応力計算	1	1	I	I	
V-2-3-3-1-3に含む	計装ノズル(N12, N13, N14)の応力計算	I	I	Ι	I	
V-2-3-3-1-3に含む	ドレンノズル (N15) の応力計算	1	I	Ι	I	
V-2-3-3-1-3に含む	高圧炉心注水ノズル(N16)の応力計算	1	I	Ι	I	
V-2-3-3-2-1に含む	原子炉冷却材再循環ポンプモータケーシングの応力計算	×	41.9	28.2	0	
V - 2 - 3 - 3 - 2 - 3	制御棒駆動機構ハウジングレストレントビームの応力計算	1	_	Ι	Ι	
V-2-3-3-3-2に含む	蒸気乾燥器の応力計算	1	-	I	I	
V-2-3-3-3-2に含む	気水分離器及びスタンドパイプの応力計算	0	_		Ι	
Ⅴ-2-3-3-3-2に含む	シュラウドヘッドの応力計算	0	-	Ι	Ι	
V-2-3-3-3に含む	中性子束計測案内管の応力計算	1		-	Ι	
V-2-3-3-3-3に含む	給水スパージャの応力計算	1	I	I	I	
V-2-3-3-3に含む	高圧炉心注水スパージャの応力計算	I	I	I	I	
V-2-3-3-3-3に含む	低圧注水スパージャの応力計算	Ι	I	I	I	
V-2-3-3-3に含む	高圧炉心注水系配管(原子炉圧力容器内部)の応力計算	I	I	Ι	I	
Ⅴ-2-5-1に含む	原子炉冷却材再循環ボンブの耐震性についての計算書(原子炉 冷却系統施設 原子炉冷却材再循環設備)	Ι	I	Ι	Ι	
V - 2 - 5 - 2 - 1 - 1	アキュムレータの耐震性についての計算書	Ι	I			
$V^{-2-6-3-1}$	制御棒駆動機構の耐震性についての計算書	×	4.680	2. 94	0	
$V^{-2-6-5-1}$	起動領域モニタの耐震性についての計算書	-		-	Ι	
$V^{-2-6-5-2}$	出力領域モニタの耐震性についての計算書	1	-	Ι	Ι	
$V^{-2-9-4-1}$	真空破壊弁の耐震性についての計算書	Ι	I	Ι	I	
$V^{-2-9-4-2}$	ダイヤフラムフロアの耐震性についての計算書	-	I	I	Ι	
$V^{-2-9-4-3}$	ベント管の耐震性についての計算書	Ι	-	Ι	I	

表 3-2(2) 耐震評価に適用する鉛直方向荷重の整理結果(弾性設計用地震動 S d)

目録番号	目録名称	鉛直方向荷重に軸力を用いているか 〇:軸力を用いている ×:用いていない	耐震計算に用いる 鉛直方向荷重[kN] (A)	軸力[kN] (設計用地震力 I) (B)	A>B	備考	
-4-4-1-2	サプレッションチェンバスプレイ管の耐震性についての計算書	Ι	1	-			
)-4-8-1	下部 ドライ ウェルアクセストンネルの耐震性についての計算書	Ι	Ι		I		

表 3-2(3) 耐震評価に適用する鉛直方向荷重の整理結果(弾性設計用地震動 S d)

4. 静的地震力について

V-2-2-4「原子炉本体の基礎の地震応答計算書」及びV-2-3-1「炉心,原子炉圧力容器及び圧 力容器内部構造物の地震応答計算書」に示す静的解析において,大型機器系及び炉内構造物系の 水平方向静的地震力は,平成3年8月23日付け3資庁第6675号にて認可された工事計画(以 下「既工認」という。)の添付資料Ⅳ-2-3「原子炉建屋の地震応答計算書」に示す地震層せん断力 係数及び地下部分の水平震度を用いて算出している。

本章では、今回工認モデルに基づく地震層せん断力係数及び地下部分の水平震度を踏まえた、 水平方向静的地震力への影響について説明する。

4.1 地震層せん断力係数及び地下部分の水平震度の算定方法

水平方向の基準面は地表面(T.M.S.L.12.0m)とし、基準面より上の部分(地上部分)の地震 層せん断力係数は次式により算定する。

 $C_i = Z \cdot R_t \cdot A_t \cdot C_0$

ここで,

- C_i:第i層の地震層せん断力係数
- Z : 地震地域係数 (1.0)
- R_t:振動特性係数(0.8)
- A_i: : 第 i 層のせん断力係数の高さ方向の分布係数
- C₀ :標準せん断力係数(0.2)

また, A_iは, 地震応答解析モデル (埋込み考慮のスウェイ・ロッキングモデル) により SRSS 法にて求める。

 $A_{i} = q_{i} / q_{B}$ ここで, $q_{i} = \frac{\sqrt{\sum_{j=1}^{m} \left\{ \sum_{s=1}^{n} \sum_{k=1}^{\lambda} w_{sk} \cdot \beta_{j} \cdot u_{skj} \cdot R_{tj} \right\}^{2}}}{\sum_{s=1}^{n} \sum_{j=1}^{\lambda} w_{sk}}$ $w_{sk} \qquad : s \text{ BBO k 番目の質点重量}$ $\beta_{j} \qquad : j 次の刺激係数$ $u_{skj} \qquad : s \text{ BO k 番目の質点の j 次の固有モード}$ $R_{tj} \qquad : j 次の固有周期に対応するR_{t} の値$

 $T_{j} < T_{c} \mathcal{O}$ 場合 $R_{tj} = 1$ $T_{c} \leq T_{j} < 2T_{c} \mathcal{O}$ 場合 $R_{tj} = 1 - 0.2 \left(\frac{T_{j}}{T_{c}} - 1\right)$ $2T_{c} \leq T_{j} \mathcal{O}$ 場合 $R_{tj} = \frac{1.6T_{c}}{T_{j}}$ $T_{j} : 建屋 \mathcal{O}$ 設計用j次固有周期(単位:秒) $T_{c} : 支持地盤種別に応じた地盤卓越周期(0.4)(単位:秒)$

- m :考慮する次数の総数
- n :総階数
- λ : s 階の質点数
- q_i:: i 層の基準化前の等価層せん断力係数
- q_B:基準階レベルの等価層せん断力係数

基準面より下の部分(地下部分)の水平震度は次式により算定する。

 $\mathbf{K} = 0.1 \cdot \mathbf{n} \cdot (1 - \mathbf{H} \neq 40) \cdot \mathbf{Z} \cdot \alpha$

ここで,

- K :地下部分の水平震度
- n : 施設の重要度分類に応じた係数(3.0)
- H :地下の各部分の基準面からの深さ
- Z : 地震地域係数 (1.0)
- α : 建屋側方地盤の影響を考慮した水平震度の補正係数(1.2)

4.2 今回工認モデルに基づく地震層せん断力係数及び地下部分の水平震度の算定結果 今回工認モデルに基づく地震層せん断力係数(3.0ci)及び地下部分の水平震度(K)の算定 結果と既工認の値の比較を表4-1及び表4-2に示す。全ての標高において、今回工認モデル に基づく地震層せん断力係数(3.0ci)及び地下部分の水平震度(K)が既工認の値以下である ことから、既工認の値により算定した静的地震力を用いても安全上支障がないと考えられる。

		11 部分 11 液反 (n) *9 拍	
標高	地震層せん断力係数	・地下部分の水平震度	比率
T.M.S.L. (m)	①既工認	②今回工認モデル	(2/1)
49. 7	0.76	0.74	0.98
38.2	0.65	0.64	0.99
31. 7	0. 58	0.57	0.99
23. 5	0.51	0.51	1.00
18. 1	0. 48	0. 48	1.00
12. 3	0.36	0. 36	1.00
4.8	0.30	0. 30	1.00
-1.7	0.24	0. 24	1.00
-8.2	0. 18	0. 18	1.00

表 4-1 地震層せん断力係数(3.0Ci)及び地下部分の水平震度(K)の比較結果(NS方向)

表 4-2 地震層せん断力係数(3.0Ci)及び地下部分の水平震度(K)の比較結果(EW方向)

標高	地震層せん断力係数	・地下部分の水平震度	比率
T.M.S.L. (m)	①既工認	②今回工認モデル	(2/1)
49.7	0.72	0.71	0.99
38.2	0.64	0. 63	0.99
31.7	0.57	0. 56	0.99
23. 5	0.51	0. 51	1.00
18.1	0. 48	0. 48	1.00
12. 3	0.36	0.36	1.00
4.8	0.30	0. 30	1.00
-1.7	0.24	0. 24	1.00
-8.2	0.18	0.18	1.00

2. 建屋-機器連成地震応答解析の補足について

目 次

1. 地震応答解析モデルの設定について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1 はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 既工認同様の地震応答解析モデルの設定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.2.1 質点位置 ·····	7
1.2.2 質点質量 ·····	7
1.2.3 断面剛性(有効せん断断面積及び断面二次モーメント) ・・・・・・・・・・・	7
1.2.4 構造物間ばね定数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.2.5 材料物性値(縦弾性係数,ポアソン比) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
1.2.6 原子炉内部構造物の水中での振動の影響を考慮するための付加質量について ・・・	40
1.2.7 原子炉冷却材再循環ポンプの減衰定数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
1.2.8 RPVスタビライザの減衰定数 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
1.3 新たに採用する地震応答解析モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
1.3.1 原子炉本体基礎のスケルトン曲線の設定方法 ・・・・・・・・・・・・・・・・・・・・・・	45
1.3.2 鉛直方向解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	74
2. 誘発上下動の考慮方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	79
3. 建屋-機器連成解析固有の材料物性の不確かさ等の検討ケースについて ・・・・・・・	93
4. 燃料交換ベローズの耐震性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	113
5. 地震応答解析及び静的解析における最大応答加速度と最大応答変位の関係について ・・・	120
6. ケース3の燃料集合体の相対変位が大きい要因について ・・・・・・・・・・・・・・・・	121
- 1. 地震応答解析モデルの設定について
- 1.1 はじめに

地震応答解析モデルの設定については、V-2-1-6「地震応答解析の基本方針」に記載の解析 モデルの設定方針に基づいており、設定内容については、V-2-2-2「原子炉本体の基礎の地震 応答計算書」及びV-2-3-2「炉心、原子炉圧力容器及び原子炉内部構造物の地震応答計算書」 で説明している。

ここで、今回工認の地震応答解析モデルは、既工認のモデル諸元を適用することを基本とす るが、適正な地震応答解析を実施する観点及び鉛直方向応答を適切に評価する観点から、新た に原子炉本体基礎(以下「RPVペデスタル」という。)への非線形復元力特性の考慮と鉛直方向 地震応答解析モデルの追加を行っている。今回工認での水平方向の地震応答解析モデルを図 1.1-1に、鉛直方向の地震応答解析モデルを図1.1-2に示す。

本章では,地震応答解析モデルに関して,既工認での設定内容及び今回工認での設定内容等 について説明する。

図 1.1-1(1/4) 水平方向地震応答解析モデル(大型機器系, NS 方向)

図 1.1-1(4/4) 水平方向地震応答解析モデル(炉内構造物系, EW 方向)

図 1.1-2 鉛直方向地震応答解析モデル

- 1.2 既工認同様の地震応答解析モデルの設定方法
 - 1.2.1 質点位置

解析モデルの質点位置は、各構造物の振動性状を適切に評価できるよう配慮するととも に、部材の剛性が変化する点、構造的に不連続となる位置、応力評価点等を考慮して設定 する。なお、炉内構造物系の解析モデルの原子炉圧力容器胴板の質点位置は、大型機器系 の質点位置をベースとして炉水の付加質量効果の反映を簡便に算定するため、原子炉圧力 容器内部構造物の質点位置と同一標高となるように設定する。

1.2.2 質点質量

質点質量は、各構造物の連続する2質点間の質量の1/2を各質点に加え、2質点間の付 加物等の質量も考慮する。なお、質量は定格運転時質量を使用する。

1.2.3 断面剛性(断面二次モーメント及び有効せん断断面積)

各構造物の連続する質点間のはりは、等価な曲げ及びせん断剛性を有するようモデル 化している。円筒形またはそれに準ずる構造物について、断面二次モーメント及び有効 せん断断面積は下式により算定している。なお、算定に際しては、公称寸法を使用し、 原則として部材中央の断面で評価する。

断面二次モーメント:
$$I = \frac{\pi}{64} \left(D \circ^4 - D i^4 \right)$$

有効せん断断面積:As =
$$\frac{1}{2} \times \frac{\pi}{4} \left(\text{Do}^2 - \text{Di}^2 \right)$$

ここで, Do:外径(m) Di:内径(m)

断面剛性(断面二次モーメント及び有効せん断断面積)の算定例を以下に示す。

(1) 原子炉圧力容器胴板(質点番号:47-48)
 原子炉圧力容器胴板の断面剛性は,部材の諸元を用いて,以下の通り算定する。原子炉
 圧力容器胴板の構造概要を図1.2.3-1に示す。

よって,

図 1.2.3-1 原子炉圧力容器胴板(質点:47-48)の構造概要

1.2.4 構造物間ばね定数

各構造物間を接続する各機器を等価なばねでモデル化する。ばね定数の設定に際しては、 ばねとしてモデル化する部材の形状を考慮して、材料力学の梁の公式、文献等による理論 式又は FEM 解析によりばね定数を算定する。ばね定数の数値一覧を表 1.2.4-1 に、ばね 定数の算定方法の詳細を以下に示す。

No.	名称	ばね定数		
K_1	シュラウドサポート			
K_2	制御棒駆動機構ハウジング ラテラルレストレント			
K ₃	制御棒駆動機構ハウジング レストレントビーム			
K_4	燃料取替用ベローズ			
K_5	原子炉圧力容器スタビライザ			
K ₆	ダイヤフラムフロア			

表 1.2.4-1 各機器のばね定数

- (1) シュラウドサポート: K₁
 - a. シュラウドサポートの構造

シュラウドサポートは、シュラウドサポートシリンダ、シュラウドサポートプレート 及びシュラウドサポートレグからなる溶接構造物である。シュラウドサポートレグ下端 及びシュラウドサポートプレート外周が原子炉圧力容器に溶接固定されており、シュラ ウドサポートシリンダを介して炉心シュラウドを支持する。

シュラウドサポートの構造概要を図 1.2.4-1 に示す。

図 1.2.4-1 シュラウドサポートの構造概要

- b. シュラウドサポートのばね定数算定方法
- (a) 全体でのばね定数算定方法

シュラウドサポート全体でのばね定数K₁は,シュラウドサポートシリンダ,シュラ ウドサポートレグ及びシュラウドサポートプレートの回転ばね定数を算出し,以下の 通り組み合わせて算定する。図 1.2.4-2 にばね全体の模式図を示す。

$$K_{1} = \frac{1}{\frac{1}{K_{MA1}} + \frac{1}{K_{MA2}}} + K_{MB}$$

図 1.2.4-2 全体ばねの模式図

ここで,

- K_{MA1} : シュラウドサポートシリンダのばね定数
- K_{MA2} :シュラウドサポートレグのばね定数
- K_{MB} : シュラウドサポートプレートのばね定数
- (b) 構成部材のばね定数算定方法
- イ.シュラウドサポートシリンダ K_{MA1}
 シュラウドサポートシリンダのばね定数K_{MA1}は、以下の式に基づき算定する。

$$K_{MA1} = \frac{R_m^2 \cdot A_1 \cdot E}{2L_1}$$

ロ.シュラウドサポートレグ K_{MA2}
 シュラウドサポートレグのばね定数K_{MA2}は、以下の式に基づき算定する。

$$\mathbf{K}_{\mathrm{MA2}} = \frac{\mathbf{R}_{\mathrm{m}}^{2} \cdot \mathbf{A}_{2} \cdot \mathbf{E}}{2 \mathbf{L}_{2}}$$

(c) シュラウドサポートプレート K_{MB}
 シュラウドサポートプレートのばね定数K_{MB}は、以下の式^[1]に基づき算定する。

$$K_{MB} = \frac{\pi \cdot R_{m}^{2} \cdot E \cdot t_{3}^{3}}{3C_{2} \cdot D_{o}^{2} \cdot (1 - \nu^{2})}$$

ここで、以下の各記号は図1.2.4-3に示す原子炉圧力容器断面図による。

$$R_{m} := \frac{1}{2} \left(D_{i} - t_{1} \right) = \boxed{m}$$

A1 : シュラウドサポートシリンダ断面積

$$= \pi \cdot t_1 \left(\mathbf{D}_{\mathbf{i}} - \mathbf{t}_{\mathbf{1}} \right) = \mathbf{m}^2$$

A2 : シュラウドサポートレグ断面積 = N · B · t $_{1}$ = m^{2} L₁ : シュラウドサポートシリンダ長さ = _____(m) L₂ : シュラウドサポートレグ長さ = (m) tı :シュラウドサポートシリンダ厚さ = ____(m) t₂ :シュラウドサポートレグ厚さ (m) = t₃ :シュラウドサポートプレート厚さ = (m) D。:原子炉圧力容器内径 (m) D_i : 炉心シュラウド外径 (m) $C_1 := \frac{D_i - t_1}{D_o} = (-)$ $C_{2} := \frac{1}{8} \left\{ 1 - C_{1}^{2} - \frac{4C_{1}^{2}}{1 - C_{1}^{2}} \left(\ln \frac{1}{C_{1}} \right)^{2} \right\} = (-)$

(3) シュラウドサポートのばね定数算定結果 以上より算定した構成部材及び全体のばね定数の算定結果を表 1.2.4-2 に示す。

	記号	ばね定数
シュラウドサポートシリンダのばね定数	K _{MA1}	
シュラウドサポートレグのばね定数	K _{MA2}	
シュラウドサポートプレートのばね定数	K_{MB}	
シュラウドサポートのばね定数	K_1	

表 1.2.4-2 シュラウドサポートのばね定数

(2) 制御棒駆動機構ハウジングラテラルレストレント:K2

a. 制御棒駆動機構ハウジングラテラルレストレントの構造

制御棒駆動機構ハウジングラテラルレストレントは、制御棒駆動機構ハウジングの下 端フランジにボルト締結にて設置された構造物であり、ヘッドボルト、ベース(ヘッドボ ルト有とボルト無の2種類)からなる。

制御棒駆動機構ハウジングラテラルレストレントは地震時に制御棒駆動機構ハウジン グを水平方向に支持し,制御棒駆動機構ハウジングレストレントビームへ荷重を伝達す る。隣り合う制御棒駆動機構ハウジングは制御棒駆動機構ハウジングラテラルレストレ ントを介して互いに接触により取り合うため,圧縮方向の荷重は伝達するが,引張方向 の荷重は伝達しない構造である。

制御棒駆動機構ハウジングラテラルレストレントの構造概要を図 1.2.4-4 に示す。

図 1.2.4-4 制御棒駆動機構ハウジングラテラルレストレントの構造概要

- b. 制御棒駆動機構ハウジングラテラルレストレントのばね定数算定方法
- (a) 全体でのばね定数算定方法

制御棒駆動機構ハウジング(内側)と制御棒駆動機構ハウジング(外側)は、それ ぞれ最短部材の中心部と最長部材の最外部の制御棒駆動機構ハウジングを代表させて モデル化している。ラテラルレストレントを介した荷重伝達をモデル化するため、制 御棒駆動機構ハウジング(内側)と制御棒駆動機構ハウジング(外側)間は、ラテラ ルレストレントの剛性を考慮したばねで接続している。ここで、ばね定数の設定で考 慮するラテラルレストレントについては、もっとも設置個数が多く、ばね定数が小さ くなるよう、中心部と最外部間のラテラルレストレントを考慮することとする。(図 1.2.4-4 中の_______で囲んだ範囲)

また、制御棒駆動機構ハウジング(内側)は、 本分の制御棒駆動機構ハウジン グの重量、断面剛性をモデル化しているため、制御棒駆動機構ハウジングラテラルレ ストレント全体のばね定数K₂は、図1.2.4-5に示すとおり中央1列の直列ばねが103 個あるものとし、直列ばねのばね定数を 倍することで算定する。

図 1.2.4-5 全体のばね定数算定イメージ

図 1.2.4-4 中の で囲んだ中央1列には、制御棒駆動機構ハウジング間の ラテラルレストレント 個と制御棒駆動機構ハウジング/レストレントビーム間のラ テラルレストレント 個が直列に接続されているため、中央1列の直列ばねのばね定 数K及び全体のばね定数K2は以下の式に基づき算定する。

ここで,

- K_A:制御棒駆動機構ハウジング間のラテラルレストレントのばね定数 K_B:制御棒駆動機構ハウジング/レストレントビーム間のラテラルレストレン トのばね定数
- (b) 構成部材のばね定数算定方法
 - イ. 制御棒駆動機構ハウジング間のラテラルレストレント 制御棒駆動機構ハウジング間のラテラルレストレントのばね定数K_Aは,以下の 式に基づき算定する。

$$K_{A} = \frac{1}{\left(\frac{1}{K_{P1}}\right) + \left(\frac{1}{K_{P2}}\right) + \left(\frac{1}{K_{P3}}\right) + \left(\frac{1}{K_{P4}}\right) + \left(\frac{1}{K_{P5}}\right) + \left(\frac{1}{K_{P6}}\right)}$$
$$K_{Pi} = \frac{A_{i} \cdot E_{i}}{l_{i}} , \quad i = 1 \sim 6$$

ロ. 制御棒駆動機構ハウジング/レストレントビーム間のラテラルレストレント 制御棒駆動機構ハウジング/レストレントビーム間のラテラルレストレントのば ね定数K_Bは,以下の式に基づき算定する。

$$K_{B} = \frac{1}{\left(\frac{1}{K_{P1}}\right) + \left(\frac{1}{K_{P2}}\right) + \left(\frac{1}{K_{P3}}\right) + \left(\frac{1}{K_{P4}}\right)}$$
$$K_{Pi} = \frac{A_{i} \cdot E_{i}}{1} , \quad i = 1 \sim 4$$

1

ここで、各記号は図 1.2.4-6 に示す制御棒駆動機構ハウジング間及び制御棒駆 動機構ハウジング/レストレントビーム間のラテラルレストレントの構成部材構造 図による。

図 1.2.4-6 制御棒駆動機構ハウジング間及び制御棒駆動機構ハウジング/ レストレントビーム間のラテラルレストレントの構成部材構造図

c. 制御棒駆動機構ハウジングラテラルレストレントのばね定数算定結果 以上より算定した構成部材及び全体のばね定数の算定結果を表 1.2.4-3 に示す。

	記号	ばね定数
制御棒駆動機構ハウジング間のラテラルレス		
トレントのばね定数	Κ _A	
制御棒駆動機構ハウジング/レストレントビ	17	
ーム間のラテラルレストレントのばね定数	Κ _B	
制御棒駆動機構ハウジングラテラルレストレ	17	
ントのばね定数	κ_2	

表 1.2.4-3 制御棒駆動機構ハウジングラテラルレストレントのばね定数

(3) 制御棒駆動機構ハウジングレストレントビーム:K₃

a. 制御棒駆動機構ハウジングレストレントビームの構造

制御棒駆動機構ハウジングレストレントビーム(以下「CRDHレストレントビー ム」という。)は、原子炉本体基礎に対し、サポートビームを介して設置され、サポー トビームは原子炉本体基礎に溶接接続された構造物である。構成部材としてはCRDH レストレントビーム、サポートビームからなる。

CRDHレストレントビームは、制御棒駆動機構ハウジングの水平方向地震荷重を受けるが、CRDHレストレントビームは制御棒駆動機構ハウジングを接触のみで支持しているため、圧縮方向の荷重は伝達するが引張方向の荷重は伝達しない構造である。 CRDHレストレントビームの構造概要を図1.2.4-7に示す。

図 1.2.4-7 CRDHレストレントビームの構造概要

b. CRDHレストレントビームのばね定数算定方法

CRDHレストレントビームのばね定数K₃は,FEM 解析により算定する。具体的に は、制御棒駆動機構ハウジングの列ごとに設定した水平荷重を静的に付加した際の最大 変位量を全水平荷重で除することにより算定する。

c. 計算方法

計算機コード「NASTRAN」により,各部材に断面積,断面二次モーメント,重 量等を与えるビーム要素モデルで解析する。

- d. 計算条件
- (a) 解析モデル

CRDHレストレントビームの解析モデルを図 1.2.4-8 に示す。

図1.2.4-8 CRDHレストレントビーム解析モデル

- (b) 各構成部材の材料物性
 解析に用いる材料物性を以下に示す。
 縦弾性係数 E=19570 kg/mm², ポアソン比 v=0.3
- (c) 荷重条件

CRDH全水平荷重Wを,制御棒駆動機構ハウジングの列ごとの本数に応じて分配 した荷重Wiを付加する。荷重の分配は以下に示すとおりである。

(d) 境界条件

サポートビーム端部は原子炉本体基礎に溶接されていることから境界条件は固定と する。

e. CRDHレストレントビームのばね定数算定結果

水平荷重を負荷した際の変形図を図 1.2.4-9 に, ばね定数の算定結果を表 1.2.4-4 に示す。

(1.2.1 1	ORDITENTEE	PIONANAL 3A
全水平荷重 W	最大変位量 δ	ばね定数 K ₃

表1.2.4-4 CRDHレストレントビームのばね定数

- (4) 燃料取替用ベローズ: K4
 - a. 燃料取替用ベローズの構造

燃料取替用ベローズは,燃料取替時にバルクヘッド上部へ水張りを行なう際に,原子 炉圧力容器と原子炉格納容器トップスラブの間を接続するためのステンレス製の構造物 であり,運転時の原子炉圧力容器と原子炉格納容器との熱移動量を吸収できるよう蛇腹 構造としている。

燃料取替用ベローズの構造概要を図 1.2.4-10 に示す。

図 1.2.4-10 燃料取替用ベローズの構造概要

b. 燃料取替用ベローズのばね定数算定方法

燃料取替用ベローズのばね定数K₄は,文献より導出される計算式の組合せでばね定数を算定する。

(a) 1山あたりの鉛直方向ばね定数^[2]:K_V

$$K_{V} = \frac{E \cdot \pi \cdot D_{m} \cdot t^{3}}{24 \cdot \left\{ \frac{a^{3}}{12} + \frac{\pi}{4} \cdot a^{2} \cdot r + 2 \cdot a \cdot r^{2} + \frac{\pi}{2} \cdot r^{3} \right\}}$$

(b) 水平方向変位 1mm (単位長さ)に対する鉛直方向変位^[3]:δy

$$\delta_{y} = \frac{3 \cdot D_{m}}{2 \cdot N \cdot \left\{ L + 1 \cdot \left(\frac{1}{L} + 1\right) \right\}}$$

(c) 径方向ばね定数^[4]:K₄
K₄=
$$\frac{K_V \cdot D_m \cdot \delta_y}{2 \cdot L}$$

c. 燃料取替用ベローズのばね定数算定結果 燃料取替用ベローズのばね定数の算定結果を表 1.2.4-5 に示す。

部位	記号	ばね定数
燃料取替用ベローズ	K_4	

表 1.2.4-5 燃料取替用ベローズのばね定数

- (5) 原子炉圧力容器スタビライザ:K₅
 - a. 原子炉圧力容器スタビライザの構造

原子炉圧力容器スタビライザ(以下「RPVスタビライザ」という。)は、原子炉遮蔽 壁頂部に円周状に8箇所設置され、原子炉圧力容器付属構造物であるスタビライザブラ ケットを、あらかじめ初期締付荷重を与えた2組のさらばねを介して両側から挟み込む 構造であり、原子炉圧力容器と原子炉遮蔽壁との水平方向地震荷重を伝達する。

図 1.2.4-11 RPVスタビライザの構造概要

b. RPVスタビライザのばね定数算定方法

(a) 全体でのばね定数算定方法

RPVスタビライザのばね定数K₅は、RPVスタビライザの構成部材のうち、スタ ビライザブラケットからの水平方向荷重に対して寄与する部材を対象とし、これらの 構成要素のばね定数を並列及び直列に組み合わせて算定する。なお、RPVスタビラ イザの構成部材のうち、ヨークは、引張側と圧縮側でそれぞれの値を考慮する。 図1.2.4-12に全体ばねの模式図を示す。

RPVスタビライザ1基あたりのばね定数をKとすると、Kは次式により算定される。

R P V スタビライザ 8 基分の全体でのばね定数K₅は、1 基あたりのばね定数Kより、荷重-変位の関係から算定する。図 1.2.4-12 に示すとおりR P V スタビライザ に強制変位 x を負荷した場合に強制変位と同じ方向に生じる全体荷重Wを算出する。 90°及び 270°の位置に設置されたR P V スタビライザに生じる荷重をW₁,45°, 135°,225°及び 315°の位置に設置されたR P V スタビライザに生じる荷重をW₂' とし、荷重W₂'の強制変位 x と同じ方向の分力をW₂ とする。強制変位 x を負荷した ときの 45°,135°,225°及び 315°の位置に設置されたR P V スタビライザに生じ る接線方向の変位は x · cos α であることから、荷重W₂'は以下のとおりとなる。

 $W_{2}' = K \cdot x \cdot \cos \alpha$

図 1.2.4-13 内の拡大図の関係から強制変位 x と同じ方向の分力W₂ は以下のとお りとなる。

 $W_2 = W_2' \cdot \cos \alpha = K \cdot x \cdot \cos^2 \alpha$

したがって、 F PVスタビライザ8基(全体)のばね定数Kは以下の通りとなる。 W=2・W₁+4・W₂=2・(K・x)+4・(K・x・cos² α)=4・K・x

W

$$K_{5} = \frac{V_{\cdot}}{x} = 4 \cdot K$$

ここで,

図 1.2.4-13 水平荷重の分配

W1 = K · x

- (b) 評価部材のばね定数算定方法
 - イ. さらばね K_s さらばねのばね定数は、以下の式に基づき算定する。 K_s=n・K_{s1} ここで、 K_{s1}: 一枚あたりのばね定数=1(t/mm) n : さらばねの積層枚数=1(-)
 - ロ. ワッシャ Kw ワッシャの軸方向ばね定数は、以下の式に基づき算定する。

ハ. 六角ナット
$$K_{II}$$

六角ナット O ばね定数は,以下の式に基づき算定する。
 $K_{H} = \frac{A_{H} \cdot G_{H}}{R_{H}}$
ここで,
 $A_{H} : ねじ穴側面積=2\pi \cdot R_{H} \cdot L = (mm^{2})$
 $R_{H} : 穴の半径=(mm)$
 $G_{H} : せん断弾性係数=(mm)^{2}$

ロッドのばね定数は、以下の式に基づき算定する。

へ. シム K_{SM} シムのばね定数は、以下の式に基づき算定する。 $K_{SM} = \frac{A_{SM} \cdot E}{t_{SM}}$ ここで、 $A_{SM} : 断面積$ $= \bullet h_{SM} = \bullet mm^{2}$

t_{SM}:厚さ=【(mm) E :縦弾性係数=【(kg/mm²)

ト. ヨーク(引張方向)
$$K_{YT}$$

ヨーク(引張方向)のばね定数は、以下の式に基づき算定する。
 $K_{YT} = \frac{1}{\frac{1}{K_{YS1} + \frac{1}{K_{YTE}} + \frac{1}{K_{YB}} + \frac{1}{K_{YS2}}}$

図 1.2-14 ヨークのばね定数算定のための計算モデル

Kys1:①及び②ねじ部のせん断によるばね定数

$$= \frac{A_{YS1} \cdot G_Y}{R_Y} = (kg/mm)$$

A_{YS1}:①及び②のねじ穴側面積

 $= 2 \pi \cdot R_{Y} \cdot Y_{R} = (mm^{2})$

R_Y:ねじ穴半径

 $=\frac{A_{\rm YTE} \cdot E}{L_{\rm YTE}} = \frac{1}{(kg/mm)}$

A_{YTE}: ③及び④の断面積

 $= 2 \cdot h_{Y1} \cdot B_{Y} = (mm^2)$

L_{YTE}:③及び④の長さ=__(mm)

Кув: ①及び②の曲げによるばね定数

なお,以下の各記号は図 1.2.4-15 に示す①及び②の曲げによるばね定数計算モ デルによる。

a : 支持端から分布荷重作用範囲の内, 支持端から近い端点の距離
 (mm)

b :支持端から分布荷重作用範囲の内,支持端から遠い端点の距離

- =___(mm)
- c :分布荷重作用範囲= (mm)
- d :分布荷重作用範囲中央から支持端(他端)の距離= (mm)

e :支持端(他端)から分布荷重作用範囲の内,支持端(他端)から 近い端点の距離=____(mm)

- 1':支持端間の距離=___(mm)
- t :①及び②板部の厚さ=___(mm)
- $R_1: 支持端に作用する反力= \frac{d \cdot W \cdot C}{1}$

w:ヨークに作用する分布荷重

図 1.2.4-15 ①及び②の曲げによるばね定数計算モデル

- チ. ヨーク(圧縮方向) K_{YC}
 ヨーク(圧縮方向)ばね定数は、以下の式に基づき算定する。
 K_{YC}=K_{YS1}
- リ. ブラケット K_B
 ブラケットばね定数K_Bは,GEの先行プラント共通の実績値を用いる。

c. RPVスタビライザのばね定数算定結果

以上より算定した構成部材, RPVスタビライザ1基及び全体のばね定数の算定結果 を表 1.2.4-6 に示す。

	記号	ばね定数
さらばねのばね定数	K s	
ワッシャのばね定数	Kw	
六角ナットのばね定数	K _H	
スリーブのばね定数	K_{SL}	
ロッドのばね定数	K _R	
シムのばね定数	Кѕм	
ヨークの引張方向ばね定数	Кут	
ヨークの圧縮方向ばね定数	K _{YC}	
ブラケットのばね定数	К _в	
RPVスタビライザ1基分のばね定数	K	
R P V スタビライザ全体のばね定数	K_5	

表1.2.4-6 RPVスタビライザのばね定数

- (6) ダイヤフラムフロア: K₆
 - a. ダイヤフラムフロアの構造

ダイヤフラムフロアは、軸対称形状の円環平板の鉄筋コンクリートスラブ構造物であ る。円環内周端は原子炉本体基礎にシアプレート及び頭付きスタッドを介して結合支持 され、円環外周端はシアプレートを介して原子炉格納容器に荷重を伝える構造になって いる。なお、円環外周端にはカプラーが設けられ、ダイヤフラムフロアと原子炉格納容 器の鉄筋が接続されている。

ダイヤフラムフロアの構造概要を図 1.2.4-16 に示す。

図 1.2.4-16(2) ダイヤフラムフロアの構造概要

- b. ダイヤフラムフロアのばね定数算定方法 ダイヤフラムフロアのばね定数K₆は,FEM解析により算定する。具体的には,原子 炉本体基礎側に一様の強制変位を与えた際の反力の合計を最大変位量で除することによ り算定する。
- c. 計算方法

計算機コード「NASTRAN」により、各部材ごとに断面積、断面二次モーメント、重量等を与えるシェル要素モデルで解析する。

- d. 計算条件
- (a) 解析モデル

ダイヤフラムフロアの解析モデルは対称性を考慮した 180°対称モデルとしている。ダイヤフラムフロアの解析モデルを図 1.2.4-17 に示す。

図 1.2.4-17 ダイヤフラムフロア解析モデル図

- (b) 各構成部材の材料物性
 解析に用いる材料物性を以下に示す。
 縦弾性係数 E = kg/mm², ポアソン比 ν =
- (c) 条件 ダイヤフラムフロア内面である原子炉本体基礎側に一様の強制変位を与える。
- (d) 境界条件 ダイヤフラムフロア外面である原子炉格納容器側を固定とする。
- e. ダイヤフラムフロアのばね定数算定結果
 強制変位を負荷した際の変形図を図 1.2.4-18 に,ばね定数の算定結果を表 1.2.4 7 に示す。

図 1.2.4-18 ダイヤフラムフロアの変形図

表1.2.4-7 ダイヤフラムフロアのばね定数

反力の合計	ΣRx	最大変位量	δ	ばね定数	${ m K}_6$
参考文献

- [1] : Roark $\lceil \text{FORMURAS}\ \text{OF}\ \text{STRESS}\ \text{AND}\ \text{STRAIN},\ 4\text{th}\ \text{edition}\ \text{Table}\ \text{X}\ \text{No.}\ 20$
- [2]:配管技術(1967)
- [3] : The M.W.Kellogg Co. [Design of Piping System]
- [4]: Expansion Joint Manufacturers Association 「STANDARD OF THE EXPANSION JOINT MANUFACTURERS ASSOCIATION, 5th edition」 Table III

1.2.5 材料物性値(縦弾性係数,ポアソン比)

大型機器, 炉内構造物系の材料物性値(縦弾性係数, ポアソン比)は, 適用する規格・ 基準に基づき, 表 1.2.6-1~表 1.2.6-2 に示す値を使用する。また, 原子炉建屋の材料物 性値(縦弾性係数, ポアソン比)は, V-2-2-1「原子炉建屋の地震応答計算書」に基づき, 表 1.2.6-3 に示す値を使用する。

表 1.2.6−1 大型機器系の物↑	生值
--------------------	----

名称		縦弾性係数E (MPa)	ポアソン比 v	出典
原子炉遮蔽壁			0.30	
原子炉本体基礎			0.30	(縦弾性係数)
百乙后正力宏思	質点 34~39		0.30	昭和 55 平 吉小 501 万 (ポアソンド)
「「「「「」」「「」」「「」」「「」」「」」「「」」「」」「」」「」」「」」	質点 39~44		0.30	1973年 鋼構造設計規準
原子炉圧力容器スカート			0.30	

名称		縦弾性係数E (MPa)	ポアソン比 v	出典
原子炉遮蔽壁	原子炉遮蔽壁		0.30	(縦弾性係数)
原子炉本体基礎			0.30	昭和 55 年 告示 501 号
原子炉圧力容器			0.30	(ポアソン比)
原子炉圧力容器ス	カート		0.30	1 1973 年 鋼構造設計規準
燃料集合体			0. 41	試験, 文献に基づくメー カ採用値
制御棒案内管			0.30	
制御棒駆動機構	質点 82~84		0.30	
ハウジング	質点 84~88		0.30	
(外側)	質点 88~89		0.30	
	質点 104~106		0.30	(縦硝性係数)
制御棒駆動機構 ハウジング	質点 106~107		0.30	昭和 55 年 告示 501 号
(内側)	質点 107~111		0.30	(ポアソン比)
	質点 111~112		0.30	1973年 鋼構造設計規準
気水分離器及びスタンドパイプ			0.30	
炉心シュラウド			0.30	
原子炉冷却材	質点 58~59		0.30	
再循環ポンプ	質点 59~61		0.30	

表1.2.6-2 炉内構造物系の物性値

名称	縦弾性係数E (MPa)	ポアソン比 <i>v</i>	出典
原子炉建屋(外壁・シェル壁部)	2.88 $\times 10^{4}$	0.20	1999 年 鉄筋コンクリー
原子炉建屋(基礎スラブ部)	2. 79×10^4	0.20	ト構造計算規準

表 1.2.6-3 原子炉建屋の物性値

- 1.2.6 原子炉内部構造物の水中での振動の影響を考慮するための付加質量について
 - (1) 水の付加質量

構造物が流体中で振動する場合,流体-構造物間の相互作用により水中構造物は,複雑 な振動特性を示し,固有振動数及び応答が低下することが知られている。一般に,このよ うな現象を評価するため,「付加質量」の概念が用いられている。

付加質量の概念としては、流体中にある構造物が加速度 α を受けて運動する場合、構造物は流体を押しのけて進むことになり、構造物には流体を排除するのに必要な力 F_w が作用する。 F_w は、 α に比例することが知られており、

$$F_{W} = m_{V} \cdot \alpha$$
 (式 1)

で表される。ここで、 m_v は構造物の形状等によって決定される質量である。また、周囲に 流体が存在しないとした場合に、質量Mの物体に α の加速度を与えるために必要な力 F_s は、

$$F_{S} = M \cdot \alpha \qquad (\exists 2)$$

で表される。したがって,流体中の場合,同一の加速度を与えるために必要な力Fは,上 述の力の和として下記にて表される。

$$\mathbf{F} = \mathbf{F}_{\mathrm{S}} + \mathbf{F}_{\mathrm{W}} = \left(\mathbf{M} + \mathbf{m}_{\mathrm{V}}\right) \cdot \boldsymbol{\alpha} \qquad (\vec{\mathbf{x}} 3)$$

(式3)は、同一の加速度を与えるために流体中においてはあたかも質量がmvだけ増加 したような傾向を示すことを意味している。このような現象を付加質量効果と呼び、mvを 付加質量(又は仮想質量)と呼んでいる。地震応答解析モデルにおいては、流体-構造物 間の相互作用の影響のある水平方向について、この付加質量を考慮している。

(2) 地震応答解析モデルにおける水の付加質量等の効果

地震応答解析モデルにおける水の付加質量等の効果については、燃料集合体と炉心シュ ラウドとの関係や、炉心シュラウドと原子炉圧力容器との関係など等価な2重円筒と考え、 水の付加質量等を考慮した質量マトリックスを構造重量による質量マトリックスに足し合 わせ、全体の運動方程式を、下式を用いて構築している。(出典:JEAG4601-1987)

$$\begin{bmatrix} M^{V} & -M^{V} - M^{D} \\ -M^{V} - M^{D} & M^{V} + 2M^{D} + M^{F} \end{bmatrix} \begin{pmatrix} \ddot{y}_{1} \\ \ddot{y}_{2} \end{pmatrix} \quad (式 4)$$

ここで,
$$M^{V} : 仮想質量$$
$$M^{D} : 排除質量$$
$$M^{F} : 円筒間の水の質量$$
$$y_{1} : 内筒の変位$$
$$y_{2} : 外筒の変位$$

d₁:内筒外径 d₂:外筒内径
 2 重円筒モデル概念図

1.2.7 原子炉冷却材再循環ポンプの減衰定数

原子炉冷却材再循環ポンプ(Reactor Internal Pump)(以下「RIP」という。)について は、水平方向の設計用減衰定数として 3.0%を適用している。この設計用減衰定数は、実機 同等の試験体を用いた振動試験により得られた減衰定数の下限値を下回るよう設定されて いる。

本項において, RIP の水平方向に適用する設計用減衰定数 3.0%とした振動試験の概要 及びその結果を示す。

図 1.2.6-1 RIP 概要図

- (1) RIPの減衰定数確認試験
 - a. 振動試験の方法及び試験装置

原子炉圧力容器及び RIP1 台を実規模大で模擬し,実機運転状態と同様の高温・高圧 状態にて試験を実施した。試験装置の概要を図1.2.6-2 に示す。

b. 試験結果

本試験においては、ケーシング下端変位が約1.5mm相当までの試験を実施している。 試験により得られたモータケーシング下端応答変位に対する1次固有振動数及び減衰比 の関係を図1.2.6-3に示す。

図 1.2.6-3 ケーシング下端変位と固有振動数及び減衰比との関係[1]

モータケーシング下端応答変位が約 1mm 以下の領域では,ほぼ一定の値を示している。 モータケーシング下端応答変位が約 1mm を超えると,固有振動数も減衰定数も上昇する 傾向があり,パッドが RIP ノズル外側スリーブに接触していると考えられる。減衰定数 は,パッド接触前でも 3.0%以上であり,パッドが接触するような大きな変位では減衰 定数はさらに大きくなる。

c. 設計用減衰定数

振動試験結果より、パッドが RIP ノズル外側スリーブに接しない低変位振幅領域において、水平方向の減衰定数は約3.5%、また、パッドが接するような大変位振幅領域においては、さらに減衰定数が大きくなることが確認された。

設計用減衰定数は、この試験で取得された減衰定数の下限値を下回るよう 3.0%に設定 した。

参考文献

[1]:高島他,原子炉内蔵型再循環ポンプとポンプシステムの開発,日本機械学会(1987年)

1.2.8 RPVスタビライザの減衰定数

RPVスタビライザについては、水平方向の設計用減衰定数として 2.0%を適用している。 RPVスタビライザは図 1.2.7-1 に示すとおり複数の構成部材があり、さらばね、ロッド、六角ナット等の部材に生じる摩擦により減衰が生じることから、JEAG4601-1991 追補版で規定する、「ボルト及びリベット構造物」の減衰定数 2.0%を適用している。 構成部材と各部材間の荷重伝達形態を整理したものを表 1.2.7-1 に示す。

図 1.2.7-1 R P V スタビライザの構造概要

部材名称	荷重伝達形態
-	
	-
-	-
-	
_	_
_	-
	-
-	-
-	
-	
	-

表1.2.7-1 RPVスタビライザの構成部材と荷重伝達形態

- 1.3 新たに採用する地震応答解析モデルの設定
 - 1.3.1 原子炉本体基礎のスケルトン曲線の設定方法

既工認では、建屋-機器連成地震応答解析モデルにおけるRPVペデスタルのモデル化は、 剛性一定の線形仮定としていた。

今回工認では、基準地震動の増大に伴いより適正な地震応答解析を実施する観点から、 RPV ペデスタルも原子炉建屋と同様にコンクリートの剛性変化を考慮した非線形解析モデ ルを採用する。非線形解析モデルの設定に当たっては、【設置変更許可申請書 まとめ資料 4条別紙1-4】に記載の通り、鉄筋コンクリートの評価手法として実績のある手法に加え、 鋼板とコンクリートの複合構造としての特徴に留意した既往の知見を参考にして行う。 本項は、RPV ペデスタルのスケルトン曲線の設定について説明するものである。

- (1) RPV ペデスタルのスケルトン曲線の設定方法
 - a. せん断力-せん断ひずみ関係(Q-γ関係)

せん断カーせん断ひずみ関係 (Q-γ関係)は、コンクリートのひび割れを表す第1 折点と鋼板の降伏を表す第2折点までを設定する。RPV ペデスタルのせん断カーせん断 ひずみ関係を図1.3.1-1に示す。

Q₁:第1折点のせん断力
 Q₂:第2折点のせん断力
 y₁:第1折点のせん断ひずみ
 y₂:第2折点のせん断ひずみ

図 1.3.1-1 RPV ペデスタルのせん断力-せん断ひずみ関係

(a) 第1折れ点の設定

RPV ペデスタルにおけるせん断力のスケルトン曲線の第1折点は,以下の式より算 出している。

【下部ペデスタル】

$$Q_{1} = \left(A_{C} + \left(\frac{G_{S}}{G_{C}}\right) \cdot A_{S}\right) \cdot \tau_{cr}$$

$$\gamma_{1} = \tau_{cr} \neq G_{C}$$

$$\hbar \pi \ell , \quad \tau_{cr} = 0.5 \cdot \sqrt{0.31 \sqrt{\sigma_{B}} \cdot \left(0.31 \sqrt{\sigma_{B}} + \sigma_{v}\right)}$$

【上部ペデスタル】

$$\mathbf{Q}_{1} = \left(\mathbf{A}_{\mathrm{C}} + \left(\frac{\mathbf{G}_{\mathrm{S}}}{\mathbf{G}_{\mathrm{C}}}\right) \cdot \mathbf{A}_{\mathrm{S}}\right) \cdot \boldsymbol{\tau}_{\mathrm{cr}}$$

$$\gamma_1 = \tau_{cr} / G_C$$

ただし、
$$\tau_{\rm cr} = \sqrt{0.31\sqrt{\sigma_{\rm B}} \cdot \left(0.31\sqrt{\sigma_{\rm B}} + \sigma_{\rm v}\right)}$$

ここで,

A_s : 鋼板のせん断断面積 (mm²)

G_c : コンクリートのせん断弾性係数 (N/mm²)

G_s : 鋼板のせん断弾性係数 (N/mm²)

σ_B : コンクリートの圧縮強度 (N/mm²)

σ_v :鋼板を考慮した鉛直方向軸応力度(圧縮を正, N/mm²)

(b) 第2折れ点の設定

RPV ペデスタルにおけるせん断力のスケルトン曲線の第2折点は,以下の式より算 出している。

【下部ペデスタル】

$$Q_{2} = \frac{\left(K_{\alpha} + K_{\beta}\right)}{\sqrt{\left(3 \cdot K_{\alpha}^{2} + K_{\beta}^{2}\right)}} \cdot A_{s} \cdot \sigma_{y}$$

$$\gamma_{2} = \frac{Q_{2}}{\left(K_{\alpha} + K_{\beta}\right)}$$
ただし、 $K_{\alpha} = A_{s} \cdot G_{s}$

$$K_{\beta} = \frac{\left(\cos\theta\right)^{2} \cdot H}{2\left[\frac{1 - v_{c}^{2}}{E_{c}^{'} \cdot t_{c} \cdot \sin 2\theta} + \frac{1}{2 \cdot E_{s}}\left(C1 + C2\right)\right]}$$

【上部ペデスタル】

下部ペデスタルと同様

ここで,

- A_s :鋼板のせん断断面積(mm²)
- G_s :鋼板のせん断弾性係数(N/mm²)
- E_c':ひび割れを考慮したコンクリートのヤング係数(N/mm²)
- E_s : 鋼板のヤング係数(N/mm²)
- K_α:鋼板のせん断剛性(N)
- Κ_β: ひび割れ後の鋼板による拘束効果を考慮したコンクリートの
 有効せん断剛性(N)
- σ_v : 鋼板の降伏点強度(N/mm²)
- vc : コンクリートのポアソン比
- H : コンクリートの高さ (mm)
- t_c : コンクリート板厚 (mm)
- θ : せん断ひび割れ角度
- C1, C2 : 寸法とせん断ひび割れ角度のから定まる係数

b. 原子炉本体基礎のせん断力-せん断ひずみ関係の履歴特性

原子炉本体基礎のせん断力-せん断ひずみ関係の履歴特性は、最大点指向型モデルと する。原子炉本体基礎のせん断力-せん断ひずみ関係の履歴特性を図1.3.1-2に示す。

- a. 0-A 間:弾性範囲
- b. A-B間:負側スケルトンが経験した最大点に向かう。ただし,負側最大点が 第1折点を超えていなければ,負側第1折点に向かう。
- c. 各最大点は、スケルトン上を移動することにより更新される。
- d. 安定ループは面積を持たない。

図 1.3.1-2 原子炉本体基礎のせん断力-せん断ひずみ関係の履歴特性

 c. 曲げモーメントー曲率関係(M−φ関係) 曲げモーメントー曲率関係(M−φ関係)は、コンクリートのひび割れを表す第1折 点と鋼板の降伏を表す第2折点までを設定する。RPVペデスタルの曲げモーメントー曲 率関係を図1.3.1-3に示す。

- M1 : 第1折点の曲げモーメント
- M₂ : 第2折点の曲げモーメント
- φ₁ : 第1折点の曲率
- φ₂ : 第2折点の曲率

図 1.3.1-3 RPV ペデスタルの曲げモーメントー曲率関係

(a) 第1折れ点の設定

RPV ペデスタルにおける曲げモーメントのスケルトン曲線の第1折点は,以下の式より算出している。

【下部ペデスタル】 $M_1 = Z_e (f_t + \sigma_v)$ $\phi_1 = / (E_c \cdot I_e)$ ただし、 $f_t = 0$

【上部ペデスタル】

 $M_{1} = Z_{e} \left(0.5 f_{t} + \sigma_{v} \right)$ $\phi_{1} = M_{1} \swarrow \left(E_{C} \cdot I_{e} \right)$

ここで,

- Z_e:鋼板を考慮した断面係数(mm³)
- f_t : コンクリートの曲げ引張強度 (N/mm²)
- σ_v :鋼板を考慮した鉛直方向軸応力度(圧縮を正, N/mm²)
- E_c : コンクリートのヤング係数 (N/mm²)
- I。:鋼板を考慮した断面二次モーメント (mm⁴)

(b) 第2折れ点の設定

RPV ペデスタルにおける曲げモーメントのスケルトン曲線の第2折点は,以下の式より算出している。

【下部ペデスタル】

 $M_{2}^{}=M_{y}^{}$

 $\phi_2 = \phi_y$

【上部ペデスタル】

下部ペデスタルと同様

ここで,

- M_y :鋼板降伏時モーメント (N・mm)
- φ_y : 鋼板降伏時曲率 (1/mm)

d. 原子炉本体基礎の曲げモーメントー曲率関係の履歴特性

原子炉本体基礎の曲げモーメントー曲率関係の履歴特性は、最大点指向型モデルとする。原子炉本体基礎の曲げモーメントー曲率関係の履歴特性を図1.3.1-4に示す。

- a. 0-A 間: 弾性範囲
- b. A-B間:負側スケルトンが経験した最大点に向かう。ただし、負側最大点が 第1折点を超えていなければ、負側第1折点に向かう。
- c. 各最大点は、スケルトン上を移動することにより更新される。
- d. 安定ループは面積を持たない。

図 1.3.1-4 原子炉本体基礎の曲げモーメントー曲率関係の履歴特性

- (2) RPV ペデスタルのスケルトン曲線
 - a. 水平方向モデル

水平方向は、RPV ペデスタルの各質点間を等価な曲げ、せん断剛性を評価した多質点 系モデルとしている。

代表として、「原子炉本体基礎の地震応答解析モデル」のモデル図を図 1.3.1-5 及び 図 1.3.1-6 に、基本ケースの RPV ペデスタルの諸元を表 1.3.1-2 及び表 1.3.1-3 に 示す。

図 1.3.1-5 原子炉圧力容器,原子炉遮蔽壁及び原子炉本体基礎地震応答解析モデル (NS 方向 誘発上下動を考慮しない場合)

図 1.3.1-6 原子炉圧力容器,原子炉遮蔽壁及び原子炉本体基礎地震応答解析モデル (EW 方向 誘発上下動を考慮しない場合)

質点番号	分類	要素番号	質量 (t)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
23		21	1369	213.0	6.09
24	上部	22	521	255.9	8.85
25	ペデスタル	23	384	193. 2	5.46
26		24	315	136.9	3.85
27		25	206	185.8	5.29
20	下部	26	400 517	185.5	4.17
30	ペデスタル	27	486	183. 8	5.26
31		28		181.9	5.19

表 1.3.1-2 地震応答解析モデル諸元(NS 方向)

表 1.3.1-3 地震応答解析モデル諸元(EW 方向)

質点番号	分類	要素番号	質量 (t)	断面二次 モーメント (m ⁴)	有効せん断 断面積 (m ²)
23		21	1369	214.4	5.99
24	ورماني ا		521		
	上部	22		255.9	8.85
25	ペデスタル	0.0	384	100 5	F 40
26	1	23	215	193. 5	5.43
20		24	515	136.9	3 85
27		21	206	100.0	0.00
	-	25	200	185.8	5.29
28			480		
	下立7	26		143.0	5.30
29	(百一)	07	517	100.0	F 00
20	ペデスタル	27	196	183.8	5.26
			480		
31		28	_	181.9	5.19
51					

b. 使用材料の物性値

基本ケースの地震応答解析に用いる RPV ペデスタルの使用材料の物性値を表 1.3.1-4 及び表 1.3.1-5 に示す。

使用材料	ヤング係数 E _C (N/mm ²)	せん断弾性係数 G _C (N/mm ²)
コンクリート*: $\sigma_B = 29.4 (N/mm^2)$	2. 55 $\times 10^4$	1.09×10^4

表 1.3.1-4 使用材料の物性値(コンクリート)

注記*:設計基準強度に基づくコンクリート強度

表 1.3.1-5 使用材料の物性値(鋼板)

使用材料	ヤング係数 E _s (N/mm ²)	せん断弾性係数 G _s (N/mm²)
鋼板:SPV490	1.92×10^{5}	7.39×10^4

c. せん断力のスケルトン曲線

基本ケースの RPV ペデスタルの各要素におけるせん断力のスケルトン曲線の諸数値を 表 1.3.1-6 及び表 1.3.1-7 に,スケルトン曲線を図 1.3.1-7 及び図 1.3.1-8 に示 す。

質点番号	要素番号	\mathbf{Q}_{1} (×10 ³ kN)	γ_{1} (×10 ⁻⁵ rad)	\mathbf{Q}_{2} (×10 ³ kN)	γ_2 (×10 ⁻⁵ rad)
23	21	74.8	16.6	814	325
24	22	112	17.1	1090	325
25	23	73.6	18.2	745	326
20	24	55.4	19.5	474	331
21	25	36.4	9.30	394	333
28	26	29.6	9.60	330	333
29	27	37.2	9.60	389	333
30 31	28	37.2	9.70	379	333

表 1.3.1-6 せん断力のスケルトン曲線 (NS 方向)

質点番号	要素番号	\mathbf{Q}_{1} (×10 ³ kN)	γ_{1} (×10 ⁻⁵ rad)	\mathbf{Q}_{2} (×10 ³ kN)	γ_2 (×10 ⁻⁵ rad)
23	21	73.5	16.6	804	324
24	22	112	17.1	1090	325
25	23	73.2	18.2	737	325
20	24	55.4	19.5	474	331
21	25	36.4	9.30	394	333
20	26	37.6	9.60	394	333
29	27	37.2	9.60	389	333
31	28	37.2	9.70	379	333

表1.3.1-7 せん断力のスケルトン曲線(EW方向)

注記*:各図上に記載の要素番号は表1.3.1-6に対応。

図 1.3.1-7(1) せん断力のスケルトン曲線 (NS 方向)

注記*:各図上に記載の要素番号は表 1.3.1-6 に対応。

図 1.3.1-7(2) せん断力のスケルトン曲線 (NS 方向)

図 1.3.1-8(1) せん断力のスケルトン曲線(EW 方向)

注記*:各図上に記載の要素番号は表 1.3.1-7 に対応。

図 1.3.1-8(2) せん断力のスケルトン曲線(EW 方向)

d. 曲げモーメントのスケルトン曲線

基本ケースの RPV ペデスタルの各要素における曲げモーメントのスケルトン曲線の諸 数値を表 1.3.1-8 及び表 1.3.1-9 に,スケルトン曲線を図 1.3.1-9 及び図 1.3.1-10 に示す。

質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} \cdot { m m})$	ϕ_{1} (×10 ⁻⁶ 1/m)	${ m M}_2 \ (imes 10^6 { m kN} ullet { m m})$	$\phi_2 \ (imes 10^{-6} 1/m)$
23	21	0. 298	7.28	5.57	263
24	22	0.388	7.90	6.42	263
25 26	23	0.353	9.52	4.39	262
20	24	0. 299	11.4	3.43	269
21	25	0.154	4.31	3.63	249
28	26	0.186	5.21	3.63	249
29	27	0.180	5.10	3.34	248
30	28	0. 192	5. 49	3, 36	249
31	28	0.192	5.49	3. 36	249

表1.3.1-8 曲げモーメントのスケルトン曲線 (NS 方向)

表1.3.1-9 曲げモーメントのスケルトン曲線(EW方向)

質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} \cdot { m m})$	ϕ_{1} (×10 ⁻⁶ 1/m)	M_2 (×10 ⁶ kN • m)	$\phi_2 \ (imes 10^{-6} 1/m)$
23	21	0.300	7.28	5.64	263
24	22	0.388	7.90	6.42	263
25	23	0.354	9.52	4.42	262
20	24	0.299	11.4	3. 43	269
21	25	0.154	4.31	3.63	249
28	26	0.143	5.21	2.66	249
29	27	0.180	5.10	3.34	248
30	28	0. 192	5.49	3.36	249

図 1.3.1-9(1) 曲げモーメントのスケルトン曲線 (NS 方向)

図 1.3.1-9 (2) 曲げモーメントのスケルトン曲線 (NS 方向)

注記*:各図上に記載の要素番号は表1.3.1-9に対応。

図 1.3.1-10 (1) 曲げモーメントのスケルトン曲線 (EW 方向)

注記*:各図上に記載の要素番号は表1.3.1-9に対応。

図 1.3.1-10 (2) 曲げモーメントのスケルトン曲線 (EW 方向)

- 1.3.2 鉛直方向解析モデル
 - (1) 鉛直方向解析モデルの扱い

既工認においては、動的地震動を水平方向に対してのみ考慮すればよく、設計の進捗に あわせて、段階的に以下の大型機器系と炉内構造物系の2種類の水平方向解析モデルを用 いて分割申請を行っていた。

- 大型機器系: 原子炉建屋~原子炉格納容器~原子炉遮蔽壁・原子炉本体基礎~ 原子炉圧力容器
- 炉内構造物系: 原子炉建屋~原子炉格納容器~原子炉遮蔽壁・原子炉本体基礎~ 原子炉圧力容器~炉内構造物(気水分離器・炉心シュラウド,燃料集合 体,制御棒案内管)~制御棒駆動機構ハウジング・原子炉冷却材再循環 ポンプ

これに対して、今回工認では、鉛直動的地震動が導入されたことから、原子炉本体及び 炉内構造物について、鉛直方向応答を適切に評価する観点で、水平方向応答解析モデルと は別に鉛直方向応答解析モデル(図1.3.2-1参照)を新たに採用し、鉛直地震動に対する 評価を実施している。

ここで、水平方向解析モデルについては、既工認との連続性から、既工認と同様に大型 機器系と炉内構造物系の2種類の解析モデルを使用するが、鉛直方向については、実機に 合わせて構造物をモデル化できることから、建設工認のように設計進捗に応じたモデルの 使い分けの必要がないため、炉内構造物等も含めてモデル化した炉内構造物系のみを使用 している(表 1.3.2-1参照)。

	既工認	今回工認	
水平方向	大型機器系	大型機器系	
	(⊠ 1.3.2−2, ⊠ 1.3.2−3)	(図 1.3.2−6, 図 1.3.2−7)	
	炉内構造物系	炉内構造物系	
	(⊠ 1.3.2−4, ⊠ 1.3.2−5)	(図 1.3.2−8, 図 1.3.2−9)	
创造十百		炉内構造物系	
<u> </u>		(図 1.3.2-1)	

表1.3.2-1 既工認と今回工認において使用している解析モデル

68

図 1.3.2-1 鉛直方向解析モデル:炉内構造物系

(2) 鉛直方向解析モデルの設定について

新たに作成する鉛直方向解析モデルは、水平方向解析モデルとの整合を図ることを基本 とし、上下方向の自由度のみを有する、集中質量質点と軸圧縮ばねで構成されるモデルと して作成している。ここで、水平方向解析モデルでばねとして考慮している設備は、表 1.3.2-2に示す理由により鉛直方向の振動特性には影響を与えないことから、鉛直方向解 析モデルではばねとしてモデル化していない。なお、燃料集合体は、下部を燃料支持金具 に、上部を上部格子板に支持され、鉛直方向には拘束されていないが、【KK7 補足-024-2 耐 震評価対象の網羅性、既工認との手法の相違点の整理について】に記載の通り、鉛直方向 最大応答震度が 0.88 と 16 以下であり、浮き上りが生じないことを確認している。

ばねとしてモデル化しない理由 No. 名称 水平方向解析モデルでは、水平方向の荷重を受けたシュ ラウドサポートプレート, レグ及びシリンダによる回転 振動を考慮するために回転ばねに置換していたが, 鉛直 方向ではシュラウドの荷重はシリンダ及びレグを介して シュラウドサポート K_1 原子炉圧力容器下部鏡板に伝達されることから、鉛直方 向解析モデルでは回転ばねではなく, シュラウドサポー トレグ及びシリンダを軸圧縮ばねとしてモデル化してい る。 制御棒駆動機構ハウジング 鉛直方向荷重を受け持たない構造であるため、鉛直方向 K_2 ラテラルレストレント 解析モデルではモデル化していない。 制御棒駆動機構ハウジング 鉛直方向荷重を受け持たない構造であるため、鉛直方向 K_3 レストレントビーム 解析モデルではモデル化していない。 鉛直方向解析モデルにてモデル化しているその他構造物 燃料取替用ベローズ の剛性に対して無視できる程度に小さい値であるため, K_4 鉛直方向解析モデルではモデル化していない。 原子炉圧力容器 鉛直方向荷重を受け持たない構造であるため、鉛直方向 K_5 スタビライザ 解析モデルではモデル化していない。 鉛直方向解析モデルにてモデル化しているその他構造物 の剛性に対して 2 桁程度小さく, 振動特性に有意な影響 ダイヤフラムフロア K_6 を与えないと考えられるため、鉛直方向解析モデルでは モデル化していない。

表 1.3.2-2 鉛直方向解析モデルではばねとしてモデル化していない設備

鉛直方向解析モデルの質点質量算定の基本方針は、水平方向解析モデルと同様とし、炉 水の質量は炉水を支持する部位の面積に対応して配分する等、荷重伝達経路を考慮して振 り分けを行う。なお、ダイヤフラムフロアについては、水平方向解析モデルと同様、質量 の1/2をRPVペデスタルと原子炉格納容器のそれぞれに配分している。

鉛直方向解析モデルの断面剛性算定の基本方針は,円筒形又はそれに準ずる構造物について,下式により全断面を用いてばね定数を算定している。

K = A E / L

ここで,

- A:断面積 (m²)
- E:縦弾性係数(t/m²)
- L : 部材長 (m)

質点質量及びばね定数の算定例を以下に示す。

a. 質点質量

(a) 原子炉圧力容器上部鏡板(質点番号:55)

鉛直方向解析モデル質点質量=水平方向解析モデル質点質量 – 炉水質量

	衣 1.5.2-5 原	丁炉圧刀谷硷_	L印蜺似VJ貝尽	員里异足和木
		水平方向	鉛直方向	/世 ≠
		解析モデル	解析モデル	加方
	質点番号	34	55	
標高	T.M.S.L. (m)	26.	013	
才	x体質量(t)			
付加物	ベント及び			
質量	上蓋スプレイノズル			
(t)	上蓋吊り金具			
Jr.				
۶۷ الا	「小貝里(い)		1	
向見	質点質量(t)	22.62	22.10	

表1.3.2-3 原子炉圧力容器上部鏡板の質点質量算定結果

b. ばね定数

(a) 原子炉圧力容器胴板(質点番号:68-69)
 原子炉圧力容器胴板の断面剛性は、部材の諸元を用いて、全断面によるばね定数を
 以下の通り算定する。

(b) シュラウドヘッド (質点番号:34-35)

シュラウドヘッドは形状が円筒ではなく水平方向の広がりを持つことから,理論式 ^[1]を用いて,以下の通り算定する。なお,シュラウドヘッドはスタンドパイプ貫通孔 を有することから,スタンドパイプ貫通孔による剛性低下の効果を,物性値を補正す ることにより模擬する(リガメント効率:0'Donnellの方法^[2])。シュラウドヘッドの 構造概要を図 1.3.2-10 に示す。

$$\Delta y = \frac{\rho \cdot R^2}{E^*} \left\{ \sin^2 \theta + (1 + \nu^*) \cdot \ln \frac{2}{1 + \cos \theta} \right\}^{[1]}$$

$$P = 2\pi \cdot R^2 (1 - \cos \theta) \cdot t \cdot \rho$$

$$K = \frac{P}{\Delta y} = \frac{2\pi (1 - \cos \theta) \cdot t \cdot E^*}{\sin^2 \theta + (1 + \nu^*) \cdot \ln \frac{2}{1 + \cos \theta}}$$

$$= \frac{2\pi \times (1 - \cos \varphi) \times \varphi}{\sin^2 \varphi + (1 + 0.334) \cdot \ln \frac{2}{1 + \cos \varphi}} = (kN/m)$$
ここで
$$y : 高さ$$

$$\Delta y : 高さ y に対する変形量$$

$$P : 自重$$

$$R : 面内半径$$

$$\rho : 単位体積重量$$

表1.3.2-4 三角配列の貫通孔を有す多孔板の有効断面定数^[2]

η	0. 333	0.5	0.7	1.0
E*∕E	0.311	0.529	0.79	1.0
ν *	0. 363	0.319	0. 308	0.3

図 1.3.2-10 シュラウドヘッド (質点: 34-35)の構造概要

(c) 原子炉圧力容器下部鏡板(質点番号:16-23)

原子炉圧力容器下部鏡板はシュラウドヘッドと同様に形状が円筒ではなく水平方向 の広がりを持つことから,原子炉圧力容器下部鏡板の断面剛性は理論式^[1]を用いて, 以下の通り算定する。なお,原子炉圧力容器下部鏡板は制御棒駆動機構ハウジング貫 通孔を有するが,制御棒駆動機構ハウジング貫通孔には制御棒駆動機構ハウジング貫 通孔スタブチューブが取りついており,貫通孔による剛性低下を補強する効果がある ことから,貫通孔なしとしてばね定数を算定する。原子炉圧力容器下部鏡板の構造概 要を図 1.3.2-11に示す。

$$\Delta \mathbf{y} = \frac{\rho \cdot \mathbf{R}^2}{\mathbf{E}} \left\{ \sin^2 \theta + (1 + \nu) \cdot \ln \frac{2}{1 + \cos \theta} \right\}^{[1]}$$

図 1.3.2-11 原子炉圧力容器下部鏡板(質点:16-23)の構造概要

参考文献

[1] : Roark [FORMURAS OF STRESS AND STRAIN, 6th edition] Table 28 No.3c

[2]: T. SLOT 他「Effective Elastic Constants for Thick Perforated Plates With Square and Triangular Penetration Patterns」Journal of Engineering for Industry('71/11) 2. 誘発上下動の考慮方法

本章は,建屋応答解析における各入力地震動が接地率に与える影響を踏まえた誘発上下動の考 慮方法を以下に示す。

2.1 考慮方針

V-2-1-6「地震応答解析の基本方針」のうち,「2. 地震応答解析の基本方針」に基づき誘発 上下動を考慮する場合には,鉛直方向地震力に対する鉛直方向の応答時刻歴に,以下の通り誘 発上下動の応答時刻歴を時々刻々加算及び減算をする。

- $\cdot V + X_V$
- $\bullet \,\, V + Y_{\,V}$
- $V X_V$
- $V Y_V$
- ここで,
 - V : 鉛直方向地震力に対する鉛直方向の応答時刻歴
 - X_v : X方向地震力に対する誘発上下動の応答時刻歴
 - Yv : Y方向地震力に対する誘発上下動の応答時刻歴
- 2.2 考慮方法

誘発上下動の考慮フローを図 2-1 に,図 2-1 中の各手順の詳細を 2.2.1~2.2.3 に示す。

図 2-1 誘発上下動の考慮フロー

2.2.1 地震応答解析

誘発上下動を考慮した地震応答解析を実施する場合,水平加振により励起される上下応 答を評価するため,水平方向と鉛直方向の地震応答解析モデルを,基礎底面で回転・鉛直連 成ばねを用いて連成した解析モデルを用い,水平方向の地震力を入力とした浮き上がり非 線形地震応答解析を行う。地震応答解析モデルを図 2-2 及び図 2-3 に示す。

また,誘発上下動を考慮した地震応答解析は,工事計画に係る補足説明資料【KK7 補足-025-1 原子炉建屋の原子炉建屋の地震応答計算書に関する補足説明資料】に記載の接地率 を踏まえて実施し,ケース7及び8の接地率は基本ケースの接地率に準ずる。基準地震動 Ssについて,誘発上下動を考慮した地震応答解析を実施する解析ケース及び入力地震動 を表2-1に示す。なお,弾性設計用地震動Sdによる地震応答解析においては,全ての解 析ケース及び入力地震動に対して接地率が65%を上回るため,誘発上下動を考慮しない。

以降は、X方向をNS方向、Y方向をEW方向に置き換えて示す。

図 2-2 地震応答解析モデル(鉛直方向)

X

			表 2-]	誘発	ヒ下動を	考慮する	5ケース	及び地見	夏動 (基)	準地震動 -	JSs)					
	Ss	-1	Ss	-2	Ss	-3	Ss	-4	Ss ⁻	-5	Ss	-6	Ss	2-2	Ss-	<u>8</u>
	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW
①ケース1 (工認モデル)				考慮												
②ケース 2 (建屋剛性+ σ , 地盤剛性+ σ)																
③ $ 7 - X 3$ (建屋剛性 $ - \sigma$) 地盤剛性 $ - \sigma$)				考慮											考慮	
④ケース 4(建屋剛性コア平均)				考慮												
⑤ケース 5 (建屋剛性-2σ)				考慮												
⑥ケース 6 (回転ばね低減)	考慮	考慮		考慮											考慮	考慮
⑦ケース 7 (実強度)				考慮												
⑧ケース 8 (曲線近似包絡)				考慮												
注: 上記表のハッチ	ングは、	基本ケ	ースの担	」震力等 ³	を踏まえ	, 材料楼	動性の不	確かさ気	手を考慮	したケー	-スでは	検討に月	いない 1目	地震動。		

2.2.2 応答時刻歴の加算及び減算

誘発上下動を考慮した応答値を算定する場合は,鉛直方向の地震力に対する地震応答解 析結果(解析モデルは図2-2を使用)と,NS及びEW方向の地震力に対する地震応答解析 結果(解析モデルは図2-3を使用)で,以下の通り応答時刻歴の時々刻々加算と減算を行 う。

- $V + NS_V$
- $V + EW_V$
- $V NS_V$
- $V EW_V$

2.2.3 最大値の選定

誘発上下動を考慮した応答値として、2.2.2 で作成した以下の加算及び減算した応答時 刻歴に加え、鉛直方向の地震力に対する応答時刻歴(V)より、最大値を選定する。

- $\boldsymbol{\cdot} \mathbf{V}$
- $\bullet \,\, V + \text{NS}_V$
- $V + EW_V$
- $V NS_V$
- $V EW_V$

2.3 各耐震条件の作成方法

耐震評価に適用する耐震条件のうち,誘発上下動を考慮する以下の各耐震条件の作成手順を 2.3.1~2.3.3 に示す。

- ・最大応答加速度
- ・床応答スペクトル
- ・軸力

2.3.1 最大応答加速度

地震応答解析~最大応答加速度算定までの手順を図 2-4 に示す。

2.3.2 床応答スペクトル

地震応答解析~床応答スペクトル作成までの手順を図 2-5 に示す。

3 2-5 誘死上下動を考慮した耐晨朱件作成子順(床応谷スペクドル) (炉心シュラウド T.M.S.L. 9.645(m) 基本ケース, Ss-2の例)

2.3.3 軸力

地震応答解析~軸力算定までの手順を図 2-6 に示す。

(炉心シュラウド 質点 43-44 間要素 基本ケース, Ss-2の例)

3. 建屋-機器連成解析固有の材料物性の不確かさ等の検討ケースについて

本章は,建屋-機器連成解析固有の材料物性の不確かさ等の検討ケースについて説明するもの である。

3.1 検討方針

建屋一機器連成解析モデルでは、原子炉建屋(以下「R/B」という。)の地震応答解析にてモ デル化している地盤、鉄筋コンクリート構造物等に加え、原子炉圧力容器等の機器等もモデル 化し、連成している。そのため、建屋一機器連成解析においては、R/Bの地震応答解析にて考 慮するコンクリート剛性及び地盤剛性の材料物性の不確かさに加えて、連成している「原子炉 本体基礎の地震応答解析モデル」及び「炉心、原子炉圧力容器および圧力容器内部構造物の地 震応答解析モデル」における RPV ペデスタルとダイヤフラムフロアのコンクリート剛性の材料 物性の不確かさについて R/B と同様に検討する。更に、今回工認にて新たに採用する RPV ペデ スタルの復元力特性の設定手法特有の配慮について検討する。

- 3.2 材料物性の不確かさ等
- 3.2.1 RPV ペデスタルとダイヤフラムフロアのコンクリート剛性 原子炉本体基礎とダイヤフラムフロアのコンクリートについては, R/B 等のような施工

時の「91 日強度データ」がなく、プラント運転開始後にもコア採取を実施していないが、 R/B等と同様に現実のコンクリート強度は設計基準強度を上回ると考えられる。

3.2.2 手法特有の配慮

今回工認では、RPV ペデスタルの復元力特性について、より現実に近い地震応答解析を 実施するため、内部に充てんされたコンクリートのひび割れに伴う剛性変化を考慮したス ケルトン曲線を採用している。このスケルトン曲線は、第1折点を内部コンクリーのひび 割れが生じる点、第2折点を鋼板が降伏する点として2直線で近似しており、第1折点を 超えた範囲では剛性が一定との仮定に基づいている。しかしながら、実現象としての RPV ペデスタルの挙動は、第1折点で初期ひび割れが生じた後も、荷重の増加に伴い内部コン クリートのひび割れは徐々に増加していくこととなる。ひび割れの増加はコンクリートの 剛性低下を意味することから、第1折点から第2折点の間の区間は直線で近似するより も、徐々に剛性すなわちスケルトン曲線の勾配が低下する曲線で近似する方が実現象に近 いと考えられる。

3.3 材料物性の不確かさ等の設定

建屋-機器連成解析にて考慮する不確かさ等の設定を 3.3.1 及び 3.3.2 に,解析ケースを表 3-1 に示す。

不可	伸ろ	王本ケース	地盤鋼性の変化にて 伴い、 回転式は定 数の変化	地盤調州生の変化にて 作い、 回転ごおっ定 数の3変化				建屋-機器 連成解析固有の ケース	建屋-機器 連成解析固有の ケース
かいたい ちょう ちゅう 親	のスタルトン曲線の設定方法	创乎谢驻	折線近似	闭近線近似	闭近線社	创乎谢驻	护稳近似	护稳近似	(明治) (山線近似を (山線近似)
구성 반전 작품 신다	迅猛啊听生	標準地盤	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	標準地盤一σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	標準地盤	標準地盤	標準地盤	標準地盤	標準地盤
回転	におる	100%	100%	100%	100%	100%	50%	100%	100%
	ダイヤフラム フロア	設計基準強度 32.3N/mm ²	設計基準強度 32.3N/mm ²	設計基準強度 32. 3N/mm ²	設計基準強度 32. 3N/mm ²	設計基準強度 32.3N/mm ²	設計基準強度 32. 3N/mm ²	実強度 43. 1N/mm ²	設計基準強度 32.3N/mm ²
コンクリート剛性	原子炉本体 基礎	設計基準強度 29.4N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 29.4N/mm ²	設計基準強度 29.4N/mm ²	実強度 39. 2N/mm ²	設計基準強度 29.4 ^{N/mm²}
,,	原子炉建屋	実強度 43.1N/mm ²	実強度+ σ 46. $0N/mm^2$	実強度一 σ 40. 2N/mm ²	実強度 (コア平均) 55.7N/mm ²	実強度-2 σ 37. 2N/mm ²	実強度 43.1N/mm ²	実強度 43.1N/mm ²	実強度 43.1N/mm ²
	傾討グース	①ケース1 (工認モデル)	②ケース 2 (建屋剛性+ σ) 地盤剛性+ σ)	③ケース 3 (建屋剛性- σ) 地盤剛性- σ)	④ケース4(建屋剛性 コア平均)	⑤ケース 5 (建屋剛性-2 σ)	⑥ケース 6 (回転ばね低減)	⑦ケース7 (原子炉本体基礎 ダイヤ フラムフロア 実強度)	⑧ケース 8 (原子炉本体基礎 スケルトン曲線 曲線包給)

表3-1 建屋-機器連成解析における材料物性の不確かさ等を考慮する解析ケース

3.3.1 RPV ペデスタルとダイヤフラムフロアのコンクリート剛性 (ケース7)

RPV ペデスタルとダイヤフラムフロアのコンクリート強度には,既工認と同様に設計基準強度を用いることを基本としているが, R/B 等と同様の検討として実強度相当を考慮する。

なお、ダイヤフラムフロアの実強度は、ダイヤフラムフロアの設計基準強度が R/B と同 じ値であることから、R/B と同じ値(43.1N/mm²)を用いることとし、RPV ペデスタルは設 計基準強度が同じ値である基礎スラブと同様に、R/B 等で実測値をもとに設定したコンク リート強度を参照した実強度を用いる。

具体的には,以下の通り R/B のコンクリート実強度(43.1N/mm²)に, RPV ペデスタルの 設計基準強度(29.4N/mm²)と R/B の設計基準強度(32.3N/mm²)の比率を乗じることによ り,影響評価に用いる RPV ペデスタルの実強度は 39.2N/mm²を用いる。

RPV ペデスタルの実強度 = R/B の実強度 × $\frac{RPV ペデスタルの設計基準強度}{R/B の設計基準強度}$ = 43.1 (N/mm²) × $\frac{29.4 (N/mm²)}{32.3 (N/mm²)}$ = 39.2 (N/mm²)

RPV ペデスタルとダイヤフラムフロアのコンクリート強度に実強度を用いることを踏ま えて設定した RPV ペデスタルのスケルトン曲線及びダイヤフラムフロアのばね定数を以下 に示す。

- (1) RPV ペデスタルのスケルトン曲線
 - a. せん断力のスケルトン曲線

ケース7の RPV ペデスタルの各要素におけるせん断力のスケルトン曲線の諸数値を表 3-2 及び表 3-3 に, スケルトン曲線を図 3-1 及び図 3-2 に示す。

質点番号	要素番号	Q_1 (×10 ³ kN)	γ_{1} (×10 ⁻⁵ rad)	\mathbf{Q}_{2} (×10 ³ kN)	γ_2 (×10 ⁻⁵ rad)
23	21	81.3	16.5	830	323
24	22	122	17.0	1110	323
20	23	79.3	18.0	760	324
20	24	59.5	19.2	479	330
21	25	39.7	9.20	395	333
28	26	32.2	9.40	331	333
29	27	40.5	9.40	390	333
30	28	40.6	9.50	380	333

表 3-2 せん断力のスケルトン曲線(NS 方向)

表 3-3 せん断力のスケルトン曲線(EW 方向)

質点番号	要素番号	\mathbf{Q}_{1} (×10 ³ kN)	γ_1 (×10 ⁻⁵ rad)	\mathbf{Q}_2 (×10 ³ kN)	γ_2 (×10 ⁻⁵ rad)
23	21	79.9	16.5	820	323
24	22	122	17.0	1110	323
25	23	78.9	18.0	753	324
20	24	59.5	19.2	479	330
21	25	39.7	9.20	395	333
20	26	41.0	9.40	395	333
29	27	40.5	9.40	390	333
30	28	40.6	9.50	380	333

注記*:各図上に記載の要素番号は表 3-6 に対応。

図 3-1 (1) せん断力のスケルトン曲線 (NS 方向)

注記*:各図上に記載の要素番号は表 3-6 に対応。

図 3-1 (2) せん断力のスケルトン曲線 (NS 方向)

図 3-2(1) せん断力のスケルトン曲線(EW 方向)

図 3-2 (2) せん断力のスケルトン曲線 (EW 方向)

b. 曲げモーメントのスケルトン曲線

基本ケースの RPV ペデスタルの各要素における曲げモーメントのスケルトン曲線の諸 数値を表 3-4 及び表 3-5 に,スケルトン曲線を図 3-3 及び図 3-4 に示す。

質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} \cdot { m m})$	ϕ_1 (×10 ⁻⁶ 1/m)	M_2 (×10 ⁶ kN • m)	$\phi_2 \ (imes 10^{-6} 1/m)$
23	21	0.321	7.19	5.74	253
24	22	0.417	7.78	6.64	253
25	23	0.372	9.23	4.52	250
20	24	0.313	11.0	3.53	257
21	25	0.153	3.89	3.75	238
28	26	0.185	4.71	3.75	238
29	27	0.180	4.62	3.46	236
30 31	28	0.193	5.01	3. 48	237

表 3-4 曲げモーメントのスケルトン曲線 (NS 方向)

質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} \cdot { m m})$	$\phi_1 \\ (\times 10^{-6} 1/\text{m})$	M_2 (×10 ⁶ kN • m)	ϕ_2 (×10 ⁻⁶ 1/m)
23	21	0.323	7.19	5.82	253
24	22	0.417	7.78	6.64	253
25	23	0.373	9.23	4.55	251
20	24	0.313	11.0	3.53	257
21	25	0.153	3.89	3.75	238
28	26	0.143	4.71	2.74	238
29	27	0.180	4.62	3.46	236
31	28	0.193	5.01	3. 48	237

表 3-5 曲げモーメントのスケルトン曲線(EW 方向)

注記*:各図上に記載の要素番号は表 3-8 に対応。

図 3-3 (1) 曲げモーメントのスケルトン曲線 (NS 方向)

注記*:各図上に記載の要素番号は表 3-8 に対応。

図 3-3 (2) 曲げモーメントのスケルトン曲線 (NS 方向)

注記*:各図上に記載の要素番号は表 3-9 に対応。

図 3-4 (1) 曲げモーメントのスケルトン曲線 (EW 方向)

注記*:各図上に記載の要素番号は表 3-9 に対応。

図 3-4 (2) 曲げモーメントのスケルトン曲線 (EW 方向)

(2) ダイヤフラムフロアのばね定数

ダイヤフラムフロアのばね定数は、コンクリート強度に実強度を考慮したダイヤフラム フロアのモデルを用いて、基本ケースと同様に FEM 解析により算定する。 算定したばね定数を表 3-6 に示す。

 基本ケース
 ケース 7

 コンクリート強度
 32.3N/mm²

 ばね定数

表 3-6 ダイヤフラムフロアのコンクリート強度及びばね定数

3.3.2 手法特有の配慮(ケース8)

RPV ペデスタルのスケルトン曲線の設定は折線近似を基本としているが,現実には上に 凸な曲線になると考えられることから,各要素,各方向(NS,EW方向)の曲げモーメント のスケルトン曲線について,曲線近似を包絡するように,基本ケースの折線近似のスケル トン曲線の第二勾配の領域を一律同じ値だけ嵩上げした曲線近似包絡のスケルトン曲線を 考慮する(図 3-1)。

なお,スケルトン曲線の曲線近似は,第1折点以降に対して第2折点の算出と同様の手 法で曲げモーメントと曲率の関係を求め,プロットすることにより行う。

曲線近似包絡により設定したスケルトン曲線の諸数値を表 3-2 及び表 3-3 に,スケルトン曲線を図 3-2 及び図 3-3 に示す。

図 3-1 曲線近似を包絡したスケルトン曲線 概要図

質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} { m \cdot m})$	ϕ_1 (×10 ⁻⁶ 1/m)	M_2 (×10 ⁶ kN • m)	$\phi_2 \ (imes 10^{-6} 1/m)$
23	21	0.405	9.90	5.62	263
24	22	0.512	10.4	6.48	263
25	23	0.421	11.3	4. 43	262
97	24	0.374	14.2	3. 47	269
21	25	0.288	8.07	3.71	249
28	26	0.312	8.76	3.71	249
29	27	0.308	8.74	3.43	248
30					
31	28	0. 327	9.36	3. 45	249

表 3-2 曲げモーメントのスケルトン曲線 (NS 方向)

	2000				
質点番号	要素番号	${ m M_1} \ (imes 10^6 { m kN} \cdot { m m})$	ϕ_{1} (×10 ⁻⁶ 1/m)	${ m M}_2$ (×10 ⁶ kN • m)	$ \substack{ \phi_2 \\ (\times 10^{-6} 1/\text{m}) } $
23	21	0.411	9.97	5.70	263
24	22	0.512	10.4	6.48	263
25	23	0.423	11.4	4.46	262
20	24	0.374	14.2	3.47	269
28	25	0.288	8.06	3.71	249
29	26	0.270	9.84	2.74	249
30	27	0.308	8.74	3. 43	248
31	28	0.327	9.36	3.45	249

表 3-3 曲げモーメントのスケルトン曲線(EW 方向)

図 3-2(1) 曲げモーメントのスケルトン曲線 (NS 方向)

図 3-2 (2) 曲げモーメントのスケルトン曲線 (NS 方向)

*: 各図上に記載の要素番号は表 3-3 に対応。

図 3-3 (1) 曲げモーメントのスケルトン曲線 (EW 方向)

*: 各図上に記載の要素番号は表 3-3 に対応。

図 3-3 (2) 曲げモーメントのスケルトン曲線 (EW 方向)

- 4. 燃料取替用ベローズの耐震性について
- 4.1 概要

燃料取替用ベローズは地震時の要求機能はないが,大型機器系及び炉内構造物系の 地震応答解析モデルでばねとして考慮していることから,モデル上期待できることを 確認した。確認結果を本章に示す。

- 4.2 一般事項
- 4.2.1 構造概要

燃料取替用ベローズは,燃料取替時にバルクヘッド上部へ水張りを行なう際に, 原子炉圧力容器と原子炉格納容器トップスラブの間を接続するためのステンレス 製の構造物であり,運転時の原子炉圧力容器と原子炉格納容器との熱移動量を吸 収できるよう蛇腹構造としている。

燃料取替用ベローズの概略図を図 4-1 に示す。

図 4-1 燃料取替用ベローズの概略図

4.2.2 評価方針

燃料取替用ベローズの健全性評価については,プラントの状態に応じベローズ が変形する変位量及び繰返し回数に対して疲労評価を行うこととする。ここでい うプラントの状態とは,起動・停止時,燃料交換時,地震時である。

4.2.3 適用規格

燃料取替用ベローズの適用規格としては,設計時においては告示501第43条 8項を準用していたため、今回評価ではJSME設計・建設規格^[1]「PVD-3410 伸 縮継手の疲労評価」を準用する。

4.3 評価条件

燃料取替用ベローズの評価条件として,各状態の変位量と設計繰返し回数を表 4-1 に示す。本評価においては,設計時に想定していた各状態の条件(ケース 1~3)に加え, 今回工認における基準地震動 Ss に対する条件(ケース 4)を考慮し,保守的な評価条件 とした。

ケース4の地震時変位量は,基準地震動Ssによる基本ケース及び材料物性の不確か さ等を考慮した条件での,燃料取替用ベローズ両端に作用する相対変位量の最大値で ある。

後			是高体田温度	島高伸用 正力		変位量(mm)		角亦位	11011111111111111111111111111111111111	
討段階	ケース	法		(kg/mm ²)	軸 <i>方</i> 向 Δ x	軸直方向 Y1	半径方向 Y2	θ (°)	致(回) 数(回)	
	П	起動・停止	302	0			-			
(計時評)	2	燃料交换時	66	0.99						
龟	3	地震時*1	302	0						I
今回評価	4	地震時*2	302	0			-			
] 1	11411		4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()					-	1

表4-1 燃料取替用ベローズの評価条件

*1:設計時は、地震時に想定する荷重の組合せを考慮した変位の最大値を設定。

*2:今回評価においては,基準地震動 Ss を用いた大型機器系地震応答解析(V-2-2-4 原子炉本体の基礎の地震応答計算書)における,水平方向 のばね反力より求めた変位量を軸直方向変位量、鉛直方向のベローズ設置位置近傍の質点での相対変位を軸方向変位量として用いる。

図4-2 燃料取替用ベローズ変形図(左:軸直角方向,右:半径方向)

4.4 評価方法

燃料取替用ベローズの耐震性評価においては,表4-1に示す各方向の変位量よりベローズ軸方向の変位量(全伸縮量)を算定し,算定した全伸縮量より求めた繰返しピーク応力強さに対する許容繰返し回数と設計繰返し回数より,疲労累積係数を算出する。

- 4.4.1 軸方向変位量の算定方法
- (1) 軸直方向変位を軸方向変位に換算^[2]

(2) 角変位を半径方向変位に換算

$$\Delta \theta = L3 \cdot \theta \cdot \frac{\pi}{180}$$

$$L3 : 下端部管長(mm)$$

$$\theta : 角変位(°)$$

$$\Delta \theta : 半径方向変位(mm)$$

(3) 半径方向変位を軸方向変位に換算

$$\Delta L2 = \sqrt{L^2 + (Y2 + \Delta\theta)^2} - L$$

- Y2 : 半径方向変位量(mm)
- Δθ : (2) で求めた半径方向変位(mm)
- ΔL2 : 軸方向変位量(mm)
- (4) 軸方向変位量の合計(全伸縮量)

 $\delta = 2\Delta L 1 + 2\Delta L 2 + 2\Delta x$

4.4.2 疲労累積係数の算定方法(JSME設計・建設規格^[1]PVD-3410より)

JSME設計・建設規格^[1]PVD-3410より,下式(PVD-8.1)(PVD-8.2)にて算定 した繰返し応力を繰返しピーク応力強さとし,付録材料図表 Part8図2において, これに対応する許容繰返し回数が設計繰返し回数以上であることを確認する。本 評価においては,考慮する4ケースについて設計繰返し回数と許容繰返し回数と の比を求め,その和が1以下であることを確認する。

$$\sigma_{p} = \frac{\sigma}{2}$$
(PVD-8.1)
$$\sigma = \frac{1.5Et\delta}{n\sqrt{b h^{a}}} + \frac{Ph^{2}}{2 t^{2} c}$$
(PVD-8.2)

σ_p :繰返し応力(MPa)

σ : (PVD-8.2) 式により計算した値(MPa)

- E:付録図表 Part6 に規定する材料の縦弾性係数(MPa)
- *t* : 継手部の板の厚さ(mm)
- δ : 全伸縮量(mm)
- **n** : 継手部の波数の2倍の値
- *b* : 継手部の波のピッチの 1/2(mm)
- *h* : 継手部の波の高さ(mm)
- *c* : 継手部の層数(-)
- P : PVD-3310 に定めるところによる。(最高使用圧力(MPa))

4.4.3 機器諸元

本評価に用いる寸法等の諸元について表 4-2 に示す。

	,,,,,,	11 0 1 1 1 1 1		-
項目	記号	単位	数值	備考
ベローズの縦弾性係数	Ε	MPa		ベローズの材料は である。一例と して 302℃の値を示す。
ベローズの平均半径	Dm	mm		
中間長さ	l	Mm		
ベローズ長さ	L	Mm		
下端部管長	L3	Mm		
ベローズ板厚	t	mm		
山の個数	N	-		
山数の2倍の値	n	-		$N \times 2$
山のピッチ	p	mm		
山のピッチの 1/2	b	mm		<i>p</i> /2
山の高さ	h	mm		

表 4-2 燃料取替用ベローズ諸元

4.5 評価結果

4.3 評価条件及び 4.4 評価方法に基づき,疲労評価を実施した。各ケースの設計繰返し回数と許容繰返し回数との比 (N_b/Nc)及び各ケースの比の総和より求めた疲労累積係数を表 4-3 に示す。

評価結果より、燃料交換用ベローズの疲労累積係数が以下であることを確認した。

検討段階			設計時評価		今回評価	
ケース		1	2	3	4	
状態		起動・停止	燃料交换時	地震時	地震時	
繰返し応力(MPa)	σ _p					
設計繰返し回数(回)	ND					
許容繰返し回数(回)	Nc					
N_D/Nc						
疲労累積係数		0. 430				
評価基準値			Ě	≦1		
判定			(0		

表 4-3 燃料取替用ベローズ疲労評価結果

参考文献

- [1]:財団法人 機械学会「発電用原子力設備規格 設計・建設規格(2005 年版)<第 I 編軽水炉規格> JSME S NC1-2005」及び 2007 年補正版(本資料では「JSM E設計・建設規格」と称す)
- [2] : The M.W.Kellogg Co. [Design of Piping System]

5. 地震応答解析及び静的解析における最大応答加速度と最大応答変位の関係について

地震応答計算書中の応答分布図における,地震応答解析及び静的解析の結果に関して,最大応 答加速度では概ね同等の傾向であるが,最大応答変位では静的解析結果が比較的小さい傾向を示 している(図 5-1 参照)。

本章では、応答分布図に記載する地震応答解析及び静的解析の最大応答加速度と最大応答変位 について説明するとともに、この関係が表れる要因について説明する。

応答分布図中の最大応答加速度は、地震応答解析により算出される最大応答加速度を記載し、 静的解析では地震層せん断力係数又は地下部分の水平震度を加速度に変換した値を記載してい る。

また,最大応答変位については,地震応答解析では基礎下端の変位も算定されているのに対し て,静的解析では基礎下端固定としている。この差により,静的解析の最大応答加速度に対し, 最大応答変位が地震応答解析と比較して小さな値となると考えられる。 6. ケース3の燃料集合体の相対変位が大きい要因について

本章では、表 6-1 に示す材料物性の不確かさ等を考慮した各解析ケースのうち、ケース3の 燃料集合体の相対変位が大きい要因について説明する。

	重步				相対変	位(mm)			
夕敌	信 信 一 信 一 信 一 信 一 信 日 一 一 信 日 一 一 一 一 一	ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース
石小	1. M. S. L. (m)	1*	2	3	4	5	6	7	8
	(111)	(基本)							
	14.433	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	13.721	8.5	7.0	15.8	7.8	8.8	9.0	8.4	8.4
	13.009	14.6	12.0	27.4	13.5	15.3	15.5	14.5	14.6
燃料集合体	12.297	16.8	13.8	31.6	15.6	17.6	17.9	16.8	16.8
	11.585	14.6	12.0	27.4	13.5	15.3	15.5	14.5	14.5
	10.873	8.4	6.9	15.8	7.8	8.8	9.0	8.4	8.4
	10.161	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 6-1 各解析ケースにおける燃料集合体の相対変位(基準地震動 S s)

注: 上記表のハッチングはケース 1~8 の最大値を示す。

注記*: 地震動及び地殻変動による基礎地盤の傾斜の影響を考慮した値を示す。

ケース1及びケース3において、燃料集合体の相対変位が最も大きくなる地震動はSs-2のNS 方向である。ケース1及びケース3のSs-2のNS方向についての固有値解析結果を表 6-2に示 す。

ケース3では原子炉建屋の固有周期がケース1に比べ長周期化し、燃料集合体1次固有周期と 原子炉建屋2次固有周期が近接していることから、ケース3における燃料集合体の相対変位が大 きいものと考えられる。

			Ss-2 NS方向	
\/ \/ */\/	固有周]期(s)	卓越	部位
八奴	ケース3	ケース1 (基本)	ケース3	ケース1 (基本)
1	0.486	0.437	原子炉建屋	原子炉建屋
2	0.213	0.209	原子炉建屋	燃料集合体
3	0.208	0.192	燃料集合体	原子炉建屋
4	0.141	0.141	炉心シュラウド	炉心シュラウド
5	0.103	0.103	原子炉冷却材再循環ポンプ	原子炉冷却材再循環ポンプ
6	0.092	0.091	原子炉建屋	炉心シュラウド
7	0.090	0.090	炉心シュラウド	制御棒駆動機構ハウジング
8	0.089	0.089	制御棒駆動機構ハウジング	原子炉建屋
9	0.080	0.079	原子炉建屋	原子炉建屋
10	0.079	0.077	原子炉建屋	原子炉建屋
11	0.069	0.068	原子炉圧力容器	原子炉圧力容器
12	0.065	0.065	制御棒案内管	制御棒案内管
13	0.057	0.056	原子炉建屋	原子炉建屋
14	0.055	0.055	制御棒駆動機構ハウジング	制御棒駆動機構ハウジング
15	0.052	0.052	燃料集合体	燃料集合体

表 6-2 固有値解析結果 (ケース 3, Ss-2, NS 方向)

資料3

耐震評価における等価繰返し回数について

柏崎刈羽7号機 耐震評価における等価繰返し回数について

(Vhr)
	曰	1X	J

1.	はじめに	1
2.	柏崎刈羽7号機の耐震評価における疲労評価と等価繰返し回数	2
3.	一律に設定する地震等価繰返し回数の設定について	
(1)	算出方法	
(2)	一律に設定する等価繰返し回数の算出パラメータの設定の考え方	11
(3)	算出結果	
(4)	弾性設計用地震動Sdの等価繰返し回数について	
(5)	結果まとめ	19
4.	個別に設定する等価繰返し回数の設定について	
(1)	対象設備	
(2)	個別に設定する等価繰返し回数設定方針	
(3)	算出結果	
5.	まとめ	
DUM		
別紙		
別紙 I.	等価繰返し回数の算出結果(基本ケース)	
別紙 Ⅰ. Ⅱ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件	27 79
50紙 Ⅰ. Ⅱ. Ⅲ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ.	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ. (補足	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置	
別紙 Ⅰ. Ⅱ. Ⅲ. Ⅳ. (補足1	等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 2) ピーク応力法における各ピークのサイクル数の求め方	
別紙 Ⅰ. Ⅱ. Ⅳ. (補足1 4足2	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 等価繰返し回数算出プログラムについて 	
別紙 Ⅰ. Ⅱ. Ⅳ. 補 足 2 3	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 等価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 	27
別 I. Ⅱ. Ⅲ. Ⅲ. 桶 程 足 足 足 足 2 3 4	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ピーク応力の算出方法について 	
別 Ⅰ. Ⅲ. (補 補 補 補 補 補 補 相 相 相 相 相 相 相 相 日 足 足 足 足 足 足 足 足 足 足 足	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ジーク応力の算出方法について 多方向入力を対象とした等価繰返し回数算定方法について 	27
別Ⅰ.Ⅱ.Ⅳ.(補補補補補補補	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ェーク応力の算出方法について 多方向入力を対象とした等価繰返し回数算定方法について 柏崎刈羽7号機等価繰返し回数の保守性について 	27 79 86 93 108 108 109 128 130 133 147
別ⅠⅡⅢⅣ(補補補補補補補補補 ⅢⅠⅢⅣ.補足足足足足足足 足234567	 等価繰返し回数の算出結果(基本ケース) 材料物性の不確かさ等を考慮する場合の条件 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮) 等価繰返し回数の算出位置 ピーク応力法における各ピークのサイクル数の求め方 ピーク応力法における各ピークのサイクル数の求め方 第価繰返し回数算出プログラムについて 疲労評価の対象設備及び部位毎のピーク応力 ょ労評価の対象設備及び部位毎のピーク応力 多方向入力を対象とした等価繰返し回数算定方法について 柏崎刈羽7号機 等価繰返し回数の関係について 	27 79 86 93 108 109 128 130 133 147 165

1. はじめに

柏崎刈羽7号機の今回工認における耐震評価の疲労評価は、JEAG460 1-1987(以下「JEAG4601」という。)の記載手順*に従い、等価繰返 し回数を用いた評価を行っている。疲労評価は、応力振幅と繰返し回数の情報 が必要となるため、本来は設備の応力時刻歴が必要となるが、最大応力値のみ を用いて保守側に疲れ累積係数UFを評価できるよう設定した等価繰返し回 数を設定することで、評価の簡便化を図っている。V-2-1-9「機能維持の基本 方針」で記載しているとおり、柏崎刈羽7号機の疲労評価に用いる等価繰返し 回数は、個別に設定する値又は一律に設定する値(Ss:200回,Sd:200 回)を用いている。

なお,建設時は,S1,S2地震動による検討を行い,等価繰返し回数(S1:60回,S2:60回)を設定している。

本図書では疲労評価に用いる等価繰返し回数の設定について説明する。

※ JEAG4601 p574 より抜粋

疲れ解析は、1次+2次+ピーク応力より疲れ累積係数を求めて評価す るが、この手法には、地震動の等価繰返し回数を用いる方法あるいは機器の 時刻歴応答から応力振幅の大きさの頻度分布を直接求める方法がある。

なお,地震動の等価繰返し数を求める場合にはピーク応力法あるいはエネ ルギー換算法が用いられている。

ここで「疲れ累積係数」とは、各応力サイクルにおける実際の繰返し回数 と繰返しピーク応力強さに対応する許容繰返し回数との比をすべての応力 サイクルについて加えたものをいう。 2. 柏崎刈羽7号機の耐震評価における疲労評価と等価繰返し回数

柏崎刈羽7号機の耐震評価における疲労評価は,JEAG4601記載の手順のうち,等価繰返し回数を用いた評価を採用している。等価繰返し回数は建設時と同じピーク応力法による算出結果に基づき,一律に設定する値又は個別に設定する値を用いている。

ー律に設定する値と、個別に設定する値の使い分けフローを図2-1 に示 す。ここで、フロー中の疲労評価対象設備は、工認耐震計算書対象とする設備・ 部位のうち、疲労評価を実施するものとしている。

一律に設定する値又は個別に設定する値の使い分けは以下3点がある。

- ・一律に設定する等価繰返し回数を用いるのは原子炉建屋,タービン建屋, コントロール建屋及び廃棄物処理建屋内の疲労評価対象設備とする。これらの建屋以外に設置される疲労評価対象設備は、個別に設定する等価繰返し回数を用いる(図2-1の(A))。
- ・一律に設定する等価繰返し回数は、疲労評価対象設備に発生するピーク 応力が 1471MPa 以下となる疲労評価対象設備に用いる。1471MPa を 超える疲労評価対象設備は個別に設定する値を用いる(図2-1の (B))。
- ・一律に設定する等価繰返し回数を用いた疲労評価が許容値(疲れ累積係数が1以下)を満足しない疲労評価対象設備については,個別に設定する等価繰返し回数を用いる(図2-1の(C))。

※1 疲労評価対象設備のピーク応力は、補足3参照。

※2 該当する疲労評価対象設備は4.参照。

図2-1 適用する等価繰返し回数の使い分け

- 3. 一律に設定する地震等価繰返し回数の設定について
- (1) 算出方法

柏崎刈羽7号機のピーク応力法による等価繰返し回数算出方法の手順を,JE AG4601に記載されたピーク応力法による算出フロー(図3.(1)-1,以 下「フロー」という。)との対比で説明する。また,柏崎刈羽7号機の建設時と 今回工認の算出条件の比較を表3.(1)-1に示す。

次頁以降に具体的な手順を示す。①~⑤の手順はフロー中の番号に対応している。

図3.(1)-1 ピーク応力法による算出フロー

① 地震動の設定

柏崎刈羽7号機の一律に設定する等価繰返し回数の設定に用いる地震動として,基準地震動Ssに以下の考慮を行う(3.(2)参照)。

- ○柏崎刈羽原子力発電所は2007年に発生した新潟県中越沖地震(以下「N CO」という。)を被災していることから、本地震動を考慮する。
- ○米国の知見(SRP3.7.3Rev.4)を参考に、弾性設計用地震動Sdの1/3倍の地震動5回分を考慮する。
- 時刻歴波形の設定

等価繰返し回数の算出に用いる時刻歴波形は,地震荷重を時刻歴より求める 機器系の場合(左側のフロー(以下「時刻歴フロー」という。))と,地震荷重 を応答スペクトルより求める機器系の場合(右側のフロー(以下「応答スペク トルフロー」という。))の2種類の方法で設定する。

時刻歴フローでは、大型機器系及び炉内構造物系の地震応答解析(フローで は「時刻歴地震応答解析」と記載)から求めた時刻歴モーメント応答波形,時 刻歴せん断力応答波形及び時刻歴軸力応答波形を用いる。

応答スペクトルフローでは、各建屋の地震応答解析、大型機器系及び炉内構造物系の地震応答解析から求めた時刻歴加速度応答波形を入力とした固有振動数fの1質点系モデルの時刻歴変位応答波形を用いる。この時刻歴変位応答 波形は、固有振動数全て(1~20Hz)に対して算出する。

③ 時刻歴ピーク応力値の設定

疲労評価対象設備に発生するピーク応力の最大値をフロー②で求めた時刻 歴波形の最大値とすることで、応力の時刻歴波形を作成する。フロー③の「時 刻歴応答波形の最大値に対するピーク応力を仮定」とは、疲労評価対象設備の ピーク応力ではなく、疲労評価対象設備全てのピーク応力の最大値を時刻歴波 形の最大値とすることに対応している。また、実際の多質点系モデルの場合、 ピーク応力は各モードの重ね合わせの結果として算出されるものであり、必ず しも波形の最大値がピーク応力になるとは限らないが、フロー③では多質点系 モデルの場合においても波形の最大値がピーク応力であることを指している。

ここで,柏崎刈羽7号機における等価繰返し回数の設定に用いるピーク応力 は,1471MPa^{**}を用いており,疲労評価対象設備のピーク応力が1471MPa を 超える場合は個別に設定を行う。

※:「昭和 55 年度 耐震設計の標準化に関する調査報告書」にて十分と されている値(150kg/mm²)を単位換算した値。 ④ 疲れ累積係数UF (Usage Factor)の算出

図3.(1)-2に示すJSME設計・建設規格に記載される設計疲労線図を 用い,応力時刻歴波形に対して各時刻歴振幅に対する許容繰返し回数を算出す る。なお,時刻歴振幅とそれが何回繰返されるか(ピークのサイクル数)の算 出方法はレインフロー法を用いる(補足1参照)。

(JSME設計・建設規格より抜粋)

図3.(1)-2 炭素鋼,低合金鋼及び高張力鋼の設計疲労線図

各応力時刻歴波の振幅に対する許容繰返し回数と、ピークのサイクル数から UFを算出する(図3.(1)-3参照)。

UF= $\frac{n_0}{N_0} + \frac{n_1}{N_1} + \frac{n_2}{N_2} \cdots$ n_i:各ピークのサイクル数 N_i:各ピークに対する許容繰返し回数

図3.(1)-3 UF算出方法

注記:上式では、片振りのピーク点を 0.5 サイクル、両振りのピーク点を 1 サ イクルとしてUFを算出可能な式であることに対して、図 3.(1) - 1 フロー におけるUFの積算式 (2 $F = \sum_{i=1}^{l} \frac{1}{N_i}$) は各ピーク点を 0.5 サイクルとしてサ イクル数をカウントすることを前提とした式であるため、係数に相違がある (図 3.(1) - 4参照)。

(※) : ⑤⇒④' でのσiおよびNiは ④⇒⑤でのσiおよびNiと等しい。
 (※※) : ⑦⇒⑥' でのσiおよびNiは ⑥⇒⑦でのσiおよびNiと等しい。

図3.(1)-4 疲れ累積係数UFの積算方法の違いの概念図

⑤ 等価繰返し回数N。の算出

フロー④で算出したUFとフロー③より求められる最大ピーク応力に対す る許容繰返し回数N₀から,下式により,等価繰返し回数N₀を求める。

 $N_e = UF \times N_0$

以上を踏まえ、柏崎刈羽7号機の等価繰返し回数の算出方法を図3.(1)-5に示す。

図3.(1)-5 等価繰返し回数の算出方法

表3.((1)	-1	柏崎刈羽7	号機における-	一律に設定す	る等価繰返し[回数の建設時と	今回工認の算	出条件の比較
------	-----	----	-------	---------	--------	---------	---------	--------	--------

		建	設時	今回	工認
		耐震評価に地震応答解析から 算出されるモーメントを用い る設備	耐震評価に床応答を入力とした1 質点系モデルによる応答を用い る設備	耐震評価に地震応答解析から算出 されるせん断力,モーメント,軸力 を用いる設備	耐震評価に床応答を入力とした1 質点系モデルによる応答を用い る設備
算出方法 (JEAG4 左右どちらか	601 のフローの い)	時刻歴解析より算出される時 刻歴モーメントを用いた算出 方法(時刻歴フロー)	建屋床応答を入力とした 1 質点 系モデルによる応答時刻歴を用 いた算出方法 (応答スペクトルフ ロー)	建設時と同様	建設時と同様
	波形	時刻歴モーメント波形	変位応答時刻歷波形	時刻歴波形 (せん断力波形, モーメ ント波形, 軸力波形)	建設時と同様
回数算出に 用いる応答 時刻歴波	時刻歴最大値 (設備の最大 ピーク応力)	150kg/mm ² 「昭和 55 年度 耐震設計の標 準化に関する調査報告書」の検 討にて十分とされている値	同左	1471MPa (150kg/mm²)	同左
対象建屋・房	R	代表設備の質点	代表設備の設置床面(質点)	全ての質点	全ての床面(質点)
固有周期		時刻歴解析結果より直接算出	設備の固有周期ではなく, 全固有 周期帯	建設時と同様	建設時と同様
減衰定数		時刻歴解析結果より直接算出	0.5%, 1.0%	建設時と同様	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
設計用疲労総	泉図	炭素鋼	同左	建設時と同様	同左
各方向の算出	出結果の組合せ	なし (NS・EW の 2 方向のうち最大と なる値)	同左	なし (NS・EW・UD の 3 方向のうち最大 となる値)	同左
材料物性のオ	「確かさ等の考慮	なし	同左	あり ^{**1} (コンクリート剛性,回転ばね定 数,地盤剛性他)	あり (コンクリート剛性, 回転ばね定 数, 地盤剛性他)

※1 今回工認における等価繰返し回数の算出結果は,時刻歴フローの算出結果に対し,応答スペクトルフローの回数が大きい。 このため,材料物性の不確かさ等の考慮のための影響検討は応答スペクトルフローにて検討している。

10

(2) 一律に設定する等価繰返し回数の算出パラメータの設定の考え方 等価繰返し回数の設定におけるパラメータとしては以下の項目があり、各項目 の妥当性を検討し、一律に設定する等価繰返し回数が適切であることを確認する。

①ピーク応力
 ②固有周期
 ③対象床面(質点)
 ④地震動
 ⑤減衰定数
 ⑥設計疲労線図
 ⑦材料物性の不確かさ等の考慮

ピーク応力

「昭和 55 年度 耐震設計の標準化に関する調査報告書」にてピーク応力の 設定値が高くなるほど等価繰返し回数が大きくなる傾向となることが確認さ れている(補足 7 でその傾向の計算例を示す。)。当該報告書の中でピーク応力 の設定値として十分とされている値(150kg/mm²)*を参考に,当該の値を単 位換算した 1471MPa を柏崎刈羽 7 号機の等価繰返し回数の算出に用いる。

また,ピーク応力の設定の適切性の確認は,各疲労評価対象設備のピーク応 力が1471MPaに包絡されることを確認する必要がある。この場合の各疲労評 価対象設備のピーク応力は,水平2方向と鉛直方向の地震力の組合せを考慮し たものとする。

なお,疲労評価対象設備のピーク応力が1471MPaを超える場合は個別に等 価繰返し回数の設定を行う。

※「昭和 55 年度耐震設計の標準化に関する報告書」での整理。

現在用いられている材料においてRPV本体材料であるSQV2A及 びSFVV3の一次+二次応力に対する許容値が最も高く、その値は3 Sm=56.4kg/mm²となる。

応力係数の極大値 5 とすればピーク応力の値としては片振幅に対して, 56.4×5÷2=141kg/mm² となることから,最大ピーク応力としては, 150kg/mm²まで考慮すれば十分としている。 ② 固有周期

今回工認では、全周期帯(0.05s~1.00s)で算出した最大の等価繰返し回数を 包絡できるように設定する。実際の設備は、特定の固有周期を有していること から、当該疲労評価対象設備の等価繰返し回数は確実にそれ以下の回数となり、 保守側の設定となる。

固有周期[s]

③ 対象床面 (質点)

等価繰返し回数を設定する床面(質点)はV-2-1-7「設計用床応答曲線の作 成方針」で設備設計に用いる床応答曲線を算出する全ての床面と、V-2-2-4「原 子炉本体の基礎の地震応答計算書」及びV-2-3-1「炉心,原子炉圧力容器及び 圧力容器内部構造物の地震応答計算書」で設備設計に用いる荷重を算出する全 ての質点(柏崎刈羽7号機において実際に疲労評価を実施する設備が有る床面 以外も含む。)とする。 4 地震動

柏崎刈羽原子力発電所における基準地震動は、Ss-1~8の8波がある。 今回の等価繰返し回数の算出には全ての基準地震動を用いる。

また,基準地震動に加えて以下の2点を考慮する。

- ・柏崎刈羽7号機設備はNCOを被災していることから,NCOの地震動の影響を考慮する。
- ・米国 SRP3.7.3Rev.4 の考え方を参考に、弾性設計用地震動Sdの1/3倍の地震動5回分を考慮する(補足8参照)。

上記より今回の算出に用いる地震動は、基準地震動Ss、弾性設計用地震動 Sdの1/3倍の地震動5回分及びNCOを組み合わせることとし、表3.(2) -1に示す8波とする。また、図3.(2)-1に算出に用いた地震動の一例を 示す。

表3.(2)-1 柏崎刈羽7号機 今回工認の等価繰返し回数算出用の地震動

今	·回工	認の算出用地震動		
S s - 1 ×1 回	+	$1/3$ Sd -1 $ imes$ 5 \square	+	NCO
S s - 2×1回	+	$1/3$ Sd -2×5 🗉	+	NCO
S s - 3×1回	+	$1/3$ Sd -3×5 🗉	+	NCO
S s - 4×1回	+	$1/3$ Sd -4×5 🗉	+	NCO
S s - 5×1回	+	$1/3$ Sd -5×5 🗉	+	NCO
S s - 6 ×1 回	+	$1/3$ Sd -6×5 🗉	+	NCO
S s - 7 ×1 回	+	$1/3$ Sd -7×5 🗉	+	NCO
S s - 8×1回	+	$1/3$ Sd -8×5 🗉	+	NCO

⑤ 減衰定数

応答スペクトルフローでの算出に用いる1 質点系の時刻歴応答解析の減衰 定数は、網羅性を確保する観点から機器・配管系の評価用の減衰定数としてよ く用いられる8ケース^(※)とする。

 (\bigstar) : 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 4.0%, 5.0%

⑥ 設計疲労線図

今回の算出に用いる設計疲労線図は J SME設計・建設規格に記載される「炭素 鋼,低合金鋼及び高張力鋼」の設計用疲労線図とする。「炭素鋼,低合金鋼および 高張力鋼」の設計用疲労線図を用いるほうが同じピーク応力とした場合に J SM E設計・建設規格に記載される「オーステナイト系ステンレス鋼および高ニッケル 合金」よりも許容繰返し回数が小さくなり,等価繰返し回数が大きく算出されるた め,今回の算出においては「炭素鋼,低合金鋼及び高張力鋼」を用いる。 ⑦ 材料物性の不確かさ等の考慮

V-2-1-1「耐震設計の基本方針」にて材料物性のばらつき等を適切に考慮する方 針としていることから、今回工認の等価繰返し回数についても、算出に用いる地震 応答解析モデルの材料物性の不確かさ等による影響を考慮する。

考慮にあたっては、基本ケースの地震応答解析による結果から等価繰返し回数 の算出に支配的となる地震動・減衰定数を特定し、特定した地震動・減衰定数を用 いて材料物性の不確かさ等を考慮した検討ケースでの等価繰返し回数を算出した 後、算出結果を踏まえて安全側に設定を行う。具体的なフローを図3.(2)-2 に示す。

図3.(2)-2 一律に設定する等価繰返し回数 設定フロー

(3) 算出結果

基本ケースの地震応答解析モデルにて算出した等価繰返し回数を表3.(3) -1に,詳細内訳を別紙に示す。また基本ケースの結果で最大となる減衰定数, 地震動にて算出した材料物性の不確かさ等を考慮した結果を表3.(3)-2に 示す。また,この算出条件及び詳細内訳は別紙に示す。

表3.(3)-1 地震応答解析モデル毎の最大等価繰返し回数(基本ケース)

	回数が最	大となる条件			里 十
地震応答解析モデル	減衰定数	世堂町	T.M.S.L.(m)	方向	取八回粉
	(%)	地展到			回奴
両フに冲見の			10 700	NS	
原于炉建全の 地震亡ダ破垢エデル	0.5	S s−3系 [*]	49.700	UD	
地展応合胜例てアル			-8.200	UD	
大型機器系の	2.0	○ _ 2 조※	21 200	UD	
地震応答解析モデル	2.0	38-3米	21.200	UD	
炉内構造物系の	25	S。— 3 조※	14 499	UD	
地震応答解析モデル	2.0	55 0 M	14.433	UD	
タービン建屋の	0.5	S。— 3 조※	30 900	FW	
地震応答解析モデル	0.5	03 038	30.300	EW	
コントロール建屋の	0.5	S。— 3 丞※	24 100	UD	
地震応答解析モデル	0.5	55 0 M	24.100	OD	
廃棄物処理建屋の	2.0	S。— 3 조※	44 200	UD	
地震応答解析モデル	2.0	55 5 7	44.500	υD	

 $\label{eq:second} \And \ \mathrm{S} \ \mathrm{s} - 3 \times 1 \ \square \ + \ 1/3 \ \mathrm{S} \ \mathrm{d} - 3 \times 5 \ \square \ + \ \mathrm{NCO}$

	星	氧出条件			最	大回数	比率
地震応答 解析モデル	減衰 定数 (%)	地震動	T.M.S.L. (m)	方 向	基本 ケース	不確かさ等 考慮	(不確かさ 等考慮/基 本ケース)
百二后建長の	0.5	S s − 3 系 ^{*1}	49.700	NS			
ホテが定定り	0.5	S s - 3 系 ^{*1}	49.700	UD			
地辰心合胜切てノル	0.5	S s − 3 系 ^{*1}	-8.200	UD			
大型機器系の 地震応答解析モデル	2.0	S s - 3 系 ^{*1}	21.200	UD			
炉内構造物系の 地震応答解析モデル	2.5	S s - 3 系 ^{*1}	14.433	UD			
タービン建屋の 地震応答解析モデル	0.5	S s - 3 系 ^{*1}	30.900	EW			
コントロール建屋の 地震応答解析モデル	0.5	S s − 1 系 ^{*2}	$\begin{array}{c} 24.100 \\ 17.300 \\ 12.300 \\ 6.500 \\ 1.000 \end{array}$	UD			
	0.5	S s -3 系 ^{*1}	24.100	UD			
廃棄物処理建屋の 地震応答解析モデル	2.0	S s − 3 系 ^{**1}	44.300	UD			

表3.(3)-2 地震応答解析モデル毎の最大等価繰返し回数 (材料物性の不確かさ等を考慮)

 $\%1 \quad S \ s - 3 \times 1 \ \square + 1/3 \ S \ d - 3 \times 5 \ \square + N \ C \ O$

 $2 S s - 1 \times 1 \square + 1/3 S d - 1 \times 5 \square + N C O$

※3 Ss-1系における不確かさ等考慮ケースの最大回数とSs-1系における基本ケースの最大回数の比率を算出し、その比率をSs-3系における基本ケースの最大回数に掛け合わせてSs-3系における不確かさ等考慮ケースの最大回数を算出した。

17

(4) 弾性設計用地震動Sdの等価繰返し回数について

柏崎刈羽原子力発電所の弾性設計用地震動Sdは基準地震動Ssに係数0.5 を乗じて設定しており、建屋の各床面(質点)における弾性設計用地震動S dによる応答波形は、基準地震動Ssによる応答波形にほぼ等しくなる。また、弾性設計用地震動Sdにより発生するピーク応力は、基準地震動Ssに より発生するピーク応力よりも小さくなる。

ピーク応力法においては,波形が等しい2つの地震動で等価繰返し回数を 算出する場合,ピーク応力が高くなるほど等価繰返し回数の算出が保守的と なる(「3.(2)①ピーク応力」参照)。

したがって,基準地震動Ssの地震動及びピーク応力に基づき算出した等 価繰返し回数を弾性設計用地震動Sdの等価繰返し回数に用いることは保守 側の設定となる。

以上の理由から、今回工認における弾性設計用地震動Sdの等価繰返し回数は、弾性設計用地震動Sdを用いた等価繰返し回数の算出は行わず、基準 地震動Ssの等価繰返し回数と同じ回数とする。

- (5) 結果まとめ
 - ・基本ケースでの算出結果は廃棄物処理建屋の地震応答解析モデルでの 回が最大であった。
 - ・材料物性の不確かさ等を考慮した算出結果は廃棄物処理建屋の地震応答解 析モデルでの 回が最大であった。

上記は,等価繰返し回数が保守的になるよう算出パラメータを設定して等価繰返し回数を算出した結果である(3.(2)参照)。また,今回工認の疲労評価手法は,柏崎刈羽7号機の地震動の特徴により保守側の結果を与える(補足6.4参照)。

以上より, 柏崎刈羽7号機の一律に設定する等価繰返し回数は200回とする。

- 個別に設定する等価繰返し回数の設定について 柏崎刈羽7号機の今回工認において一律に設定する等価繰返し回数を適用せず, 個別に設定する等価繰返し回数を適用する場合について説明する。
- (1) 対象設備

個別に設定する等価繰返し回数を設定する必要がある疲労評価対象設備は図 2-1のフローに従って抽出される以下の疲労評価対象設備となる。

- (A) 原子炉建屋,タービン建屋,コントロール建屋及び廃棄物処理建屋以 外に設置される疲労評価対象設備
- (B) 発生するピーク応力が 1471MPa を超える疲労評価対象設備
- (C) 一律に設定する等価繰返し回数を用いた疲労評価が許容値を満足しな い疲労評価対象設備
- (2) 個別に設定する等価繰返し回数設定方針

個別に設定する場合の算出条件を一律に設定する等価繰返し回数と併せ表4. (2) -1に示す。

算出条件の一部(設置場所,固有周期,減衰定数,ピーク応力,設計用疲労線 図)に疲労評価対象設備固有の条件を用いた上で算出することで,各疲労評価対 象設備に対して個別に設定する等価繰返し回数とする。

また,一律に設定する等価繰返し回数と同様に,材料物性の不確かさ等の影響 を考慮する。

表4.(2)-1 一律に設定する等価繰返し回数と個別に設定する等価繰返し回数の条件

条件の項目	ー律に設定する 等価繰返し回数	個別に設定する 等価繰返し回数	備考
対象建屋・床	全床面(質点)	疲労評価対象設備 の設置位置	
ピーク応力	1471MPa	$1471 \mathrm{MPa}^{\divideontimes_1}$	※1 必要に応じて疲労評価対象 設備のピーク応力を用いる。
固有周期	全固有周期	全固有周期*2	※2 必要に応じて疲労評価対象 設備の固有周期を用いる。
減衰定数	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	設備の減衰定数	
設計用疲労線図	炭素鋼	炭素鋼 ^{※3}	※3 必要に応じて疲労評価対象 設備の使用材料の設計用疲 労線図を用いる。

(3) 算出結果

(2)項の方針に基づき算出した個別に設定する等価繰返し回数を以下に示す。

- (A) 原子炉建屋、タービン建屋、コントロール建屋及び廃棄物処理建屋以 外に設置される疲労評価対象設備
 原子炉建屋、タービン建屋、コントロール建屋及び廃棄物処理建屋以
 外に設置される設備で疲労評価対象設備は無し。
- (B) 発生するピーク応力が1471MPaを超える疲労評価対象設備 該当する設備として原子炉補機冷却水系配管(RCW-T-3, RCW-T-4)が ある。算出条件,算出結果及び個別に設定する等価繰返し回数を表4.
 (3) -1及び2に示す。
- (C) 一律に設定する等価繰返し回数を用いた疲労評価が許容値を満足しな い疲労評価対象設備

該当する設備として消火系配管(FP-025R2),非放射性ドレン移送系配 管(MSC-002R2),雑用水系配管(DW-006R2)及びタービン補機冷却 水系配管(TCW-001R2)がある。算出条件,算出結果及び個別に設定する 等価繰返し回数を表4.(3)-3及び4に示す。
		算出	∃条件				算出約	吉果			個別に設定する
冲尼, 港筑版	「 屋・構築物 T.M.S.L. 減衰定数 ピーク応力				設計用	等価繰	返し回	数 ^{※3}		最大	他別に取足りる
建産・博衆初	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	寺画線返し回数
百乙后冲导	1 700		1001			基本ケース*1					
原于炉建座	-1.700	2.0	1631	人田士田畑	巴主纲	ケース 2~6*1					70
カービン建民	1 100	2.0	1005	王间有同别	灰茶婀	基本ケース*2					70
クーレン建全	-1.100		1625			ケース 2~5 ^{※2}					

表4.(3)-1 原子炉補機冷却水系配管(RCW-T-3) 個別に設定する等価繰返し回数

※1:別紙 表Ⅱ.2参照

※2:別紙 表Ⅱ.8参照

※3:下線部:算出結果が最大の等価繰返し回数

22

表4.(3)-2 原子炉補機冷却水系配管(RCW-T-4) 個別に設定する等価繰返し回数

		算出	出条件				算出約	吉果			個山に記会ナフ
建民,携筑物	量・構築物 T.M.S.L. 減衰定数 ピーク応力				設計用	等価繰	返し回	数 ^{※3}		最大	個別に取止9つ
建産・博築初	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	寺恤磔返し回剱
百乙后冲导	1 500		1500			基本ケース*1					
原于炉建屋	-1.700		1536	人口大用地	巴主匈	ケース 2~6 ^{※1}					-
カードン母目	1 100	2.0	1001	王间有同别	灰茶婀	基本ケース ^{*2}					70
クーレン建産	-1.100		1631			ケース 2~5*2					

※1:別紙 表Ⅱ. 2参照

※2:別紙 表Ⅱ. 8参照

※3:下線部:算出結果が最大の等価繰返し回数

算出条件 オ民・構築物 T.M.S.L. 減衰定数 ピーク応力 1 質点系の 設計							算出	結果			個別に設定す
冲导,推筑版	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価約	繰返し回	数**3		最大	る等価繰返し
建産・ 博築物	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	回数
	24,100					基本ケース ^{*1}					
	24.100					ケース 2~6*1					
コントロール	17 200					基本ケース*1					
建屋	17.300					ケース 2~6*1					
	19 200	2.0	1471	今田右周 邯	出表 綱	基本ケース*1					80
	12.300	2.0	1471	土凹行内旁	灰希婀	ケース 2~6 ^{※1}					80
	20.400					基本ケース*2					
廃棄物処理	20.400					ケース 2~5 ^{**2}					
建屋	12 300					基本ケース*2					
	12.000					ケース 2~5 ^{※2}					

表4.(3)-3 消火系配管(FP-025R2) 等価繰返し回数算出結果

※1:別紙 表Ⅱ.10参照

※2:別紙 表Ⅱ.12参照

※3:下線部:算出結果が最大の等価繰返し回数

※4:一律に設定する等価繰返し回数の算出結果より,材料物性の不確かさ等による影響を考慮した個別に設定する等価繰返し回数を算出する。例えばコントロール建屋 NS 方向(T.M.S.L.24.100(m))では別紙 表I(5)-1より,Ss-1系の地震動による減衰定数0.5%で回回,Ss-3系の減衰定数2.0%で回回とその比率回が得られる。この比率を別紙 表Ⅲ(5)の不確かさ等考慮ケースで最大となるケース2又は3の回回に掛け合わせ回回となる。更に比率を用いた算出に保守性を考慮するため,回を加算し,不確かさ等考慮した等価繰返し回数として回を設定している。

 23

表4.(3)-4 非放射性ドレン移送系配管(MSC-002R2), 雑用水系配管(配管モデル:DW-006R2),

タービン補機冷却水系配管(TCW-001R2) 等価繰返し回数算出結果

		算出	1条件				算出	結果			個別に設定す
冲导, 建筑版	T.M.S.L.	減衰定数	ピーク応力	1 質点系の	設計用	等価	繰返し回	数 ^{※3}		最大	る等価繰返し
建産・博築物	(m)	(%)	(MPa)	固有周期(s)	疲労線図	検討ケース	NS	EW	UD	回数	回数
	17 200					基本ケース*1					
コントロール	17.300					ケース 2~6 ^{*1}					
建屋	19 200					基本ケース*1					
	12.300	2.0	1471	今田右国 邯	出表细	ケース 2~6 ^{**1}					80
	20 400	2.0	1471	土凹竹内旁	灰赤婀	基本ケース ^{**2}					80
廃棄物処理	20.400					ケース 2~5 ^{※2}					
建屋	12 300					基本ケース*2					
	12.000					ケース 2~5 ^{※2}					

※1:別紙 表Ⅱ.10参照

※2:別紙 表Ⅱ.12参照

※3:下線部:算出結果が最大の等価繰返し回数

※4:一律に設定する等価繰返し回数の算出結果より,材料物性の不確かさ等による影響を考慮した個別に設定する等価繰返し回数を算出する。例えばコントロール建屋 NS 方向(T.M.S.L.17.300(m))では別紙 表I(5)-1より,Ss-1系の地震動による減衰定数 0.5%で回回,Ss-3系の減衰定数 2.0%で回回とその比率回が得られる。この比率を別紙 表Ⅲ(5)の不確かさ等考慮ケースで最大となるケース3の回回に掛け合わせ回となる。更に比率を用いた算出に保守性を考慮するため,回を加算し,不確かさ等考慮した等価繰返し回数として回を設定している。

 $\mathbf{24}$

5. まとめ

今回の柏崎刈羽7号機における等価繰返し回数は,等価繰返し回数算出に影響するパラメータ(ピーク応力,固有周期,対象床面(質点),地震動,減衰定数,設計 疲労線図及び材料物性の不確かさ等)を保守的に設定した算出を行い,算出結果を 包絡することで一律に設定する値(Ss:200回,Sd:200回)を設定している。

個別に設定する等価繰返し回数についてもパラメータ(ピーク応力,固有周期, 対象床面(質点),減衰定数及び設計疲労線図)を疲労評価対象設備固有の条件を 用いた上で算出し,設定している。 別紙

- I. 基本ケースでの等価繰返し回数の算出結果
 - (1) 原子炉建屋の地震応答解析モデル
 - (2) 大型機器系の地震応答解析モデル
 - (3) 炉内構造物系の地震応答解析モデル
 - (4) タービン建屋の地震応答解析モデル
 - (5) コントロール建屋の地震応答解析モデル
 - (6) 廃棄物処理建屋の地震応答解析モデル
- Ⅱ. 材料物性の不確かさ等を考慮する場合の条件
- Ⅲ. 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)
 - (1) 原子炉建屋の地震応答解析モデル
 - (2) 大型機器系の地震応答解析モデル
 - (3) 炉内構造物系の地震応答解析モデル
 - (4) タービン建屋の地震応答解析モデル
 - (5) コントロール建屋の地震応答解析モデル
 - (6) 廃棄物処理建屋の地震応答解析モデル

IV. 等価繰返し回数の算出位置

I. 等価繰返し回数の算出結果(基本ケース)

(1) 原子炉建屋の地震応答解析モデル

表 I (1) - 1 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	49.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
原子炉 建屋	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	18.100	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	12.300	$\begin{array}{c} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
原子炉	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
_産 産 (続き)	-1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-8.200	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								

表 I (1) - 1 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	49.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
原子炉 建屋	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	18.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(1)-2 原子炉建屋の地震応答解析モデル(応答スペクトルフロー)EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${ Ss \cdot 1 imes 1 \ + \ 1/3 Sd \cdot 1 \ imes 5 \ + NCO }$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss} \cdot 3 imes 1} + { m 1/3Sd} \cdot 3 { m imes 5} + { m NCO}$	$Ss-4 \times 1$ + 1/3Sd-4 $\times 5$ + NCO	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO \ }$	${ Ss-6 imes 1 \ + \ 1/3Sd-6 \ imes 5 \ + NCO }$	${ Ss-7 imes 1 \ + \ 1/3Sd-7 \ imes 5 \ + NCO }$	${{ m Ss} \cdot 8 imes 1} \ + 1/3 { m Sd} \cdot 8 \ imes 5 \ + { m NCO}$
	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
原子炉	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
^建 産 (続き)	-1.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-8.200	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(1)-2 原子炉建屋の地震応答解析モデル(応答スペクトルフロー)EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \mathrm{Ss}\text{-}2\times1\\+\\1/3\mathrm{Sd}\text{-}2\\\times5\\+\mathrm{NCO}\end{array}$	${{ m Ss}}{ m -}3 imes 1\ +\ 1/3{ m Sd}{ m -}3\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	${{ m Ss-6} imes1}\ +\ 1/3{ m Sd-6}\ imes5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss-8 imes 1} \atop { m +} \over { m 1/3Sd-8} \atop { m imes 5} \ { m +NCO}$
	49.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	38.200	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
原子炉 建屋	31.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	23.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	18.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								

表I(1)-3 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${ Ss \cdot 1 imes 1 \ + \ 1/3 Sd \cdot 1 \ imes 5 \ + NCO }$	${ Ss-2 imes 1 \ + \ 1/3Sd-2 \ imes 5 \ + NCO }$	${ Ss \cdot 3 imes 1 \ + \ 1/3 Sd \cdot 3 \ imes 5 \ + NCO }$	$Ss-4 \times 1$ + 1/3Sd-4 $\times 5$ +NCO	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO \ }$	${ Ss-6 imes 1 \ + \ 1/3Sd-6 \ imes 5 \ + NCO }$	${ Ss-7 imes 1 \ + \ 1/3Sd-7 \ imes 5 \ + NCO }$	${Ss-8 imes 1} + {1/3Sd-8} imes 5 + NCO$
	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
原子炉	4.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
^建 座 (続き)	-1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-8.200	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(1)-3 原子炉建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(2) 大型機器系の地震応答解析モデル

表I(2)-1.1 大型機器系の地震応答解析モデル(時刻歴フロー) せん断力 NS 方向

		Se-1×1	$S_{c}-9\times 1$	Se-3x1	Se-4×1	Se-5×1	Se-6×1	$S_{e}-7\times 1$	Sc-8×1
	mmat	+	+	+	+	+	+	+	+
機器	T.M.S.L. (m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
	(111)	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO	+ NCO
	26.013	Neo	Neo	NOO	1100	100	Neo	Neo	Neo
	20.015								
	20.000								
	22.103								
原子炉	18 716								
圧力	16 563								
容器	15.262								
н нн	12.332								
	9.402								
	6.904								
	4.950								
原子炉	9.402								
圧力容									
器スカ	8.200								
ート									
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
医乙烷	4.500								
原于炉 木休	3.500								
其礎	1.700								
	-2.100								
	-4.700								
	-8.200								

					T 11 >2 01				· · · · · · · · · · · · · · · · · · ·
	TRACT	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	T.M.S.L. (m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1	+ NCO×1
	26.013								
	23.553								
	22.163								
	20.494								
原子炉	18.716								
圧力	16.563								
容器	15.262								
	12.332								
	9.402								
	6.904								
	4.950								
原子炉	9.402								
圧力容									
器スカ	8.200								
ート									
	21.200								
	18.440								
原子炉	17.020								
遮敝壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
	4.500								
原子炉	3.500								
本体	1.700								
基礎	-2 100								
	-4.700								
	1.100								
	-8.200								

表I(2)-1.2 大型機器系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向

表I(2)-1.3	大型機器系の地震応答解析モデル	(時刻歴フロー)
-----------	-----------------	----------

モーメント	NS 方向

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	Ss-6×1	Ss-7×1	Ss-8×1
部位	T.M.S.L.	+ 1/3Sd-1×5	+ 1/3Sd-2×5	+ 1/3Sd-3×5	+ 1/3Sd-4×5	+ 1/3Sd-5×5	+ 1/3Sd-6×5	+ 1/3Sd-7×5	+ 1/3Sd-8×5
	(m)	+	+	+	+	+	+	+	+
	96.019	NCO							
	20.015								
	20.000								
	20.494								
百乙后	18.716								
床 J 炉 下力	16.563								
二 刀	15.262								
行伯	12.332								
	9.402								
	6.904								
	4.950								
原子炉 圧力容	9.402								
器スカ ート	8.200								
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
原子炉	4.500								
本体	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

表 I	(2)	-1.	4	大型機器系の地震応答解析モデル(時刻歴フロー	•)

モーメ	ン	Ь	EW	方向
	~	1.		기민

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	$Ss-6\times 1$	Ss-7×1	Ss-8×1
部位	T.M.S.L.	+ 1/3Sd-1×5	+ 1/3Sd-2×5	+ 1/3Sd-3×5	+ 1/3Sd-4×5	+ 1/3Sd-5×5	+ 1/3Sd-6×5	+ 1/3Sd-7×5	+ 1/3Sd-8×5
	(m)	+	+	+	+	+	+	+	+
	96.019	NCO							
	20.013								
	22.163								
	20.494								
「「」「「」」「」」「」」「」」」	18.716								
原于炉	16.563								
<u> 圧力</u> 家聖	15.262								
谷奋	12.332								
	9.402								
	6.904								
	4.950								
原子炉 圧力容	9.402								
ニノパゴ 器スカ	8.200								
	21.200								
	18.440								
原子炉	17.020								
遮蔽壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
原子炉	4.500								
本体	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	26.013								
	23.553								
	22.163								
	20.494								
	18.716								
	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
原子炉	13.009								
品加格	12.297								
	11.585								
	10.873								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
	6.253								
	5.783 5.817								
	5.066								
原子炉 正力应	9.402								
圧力容 器スカ ート	8.200								

表I(2)-1.5 大型機器系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	21.200								
	18.440								
原子炉	17.020								
遮敝壁	15.600								
	13.950								
	12.300								
	8.200								
	7.000								
	4.500								
原子炉	3.500								
基礎	1.700								
	-2.100								
	-4.700								
	-8.200								

表I(2)-1.5 大型機器系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
	21.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ \overline{1.5} \\ 1.0 \\ 0.5 \\ \end{array} $		1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $				
	18.440	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$			8.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$		原 炉 体 礎	-2.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原子 炉遮 蔽壁	17.020	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$		原炉体 礎	7.000	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			-4.700	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$	
	15.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			4.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原子	26.013	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$	
	13.950	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 $			3.500	5.0 4.0 $3.0 2.5 2.0 1.5 1.0 0.5 $; 力容 器	20.494	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

表 I (2) - 2.1 大型機器系の地震応答解析モデル(応答スペクトルフロー) NS 方向

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

		派幸	$S_{c} - 2 \times 1$
	T.M.S.L.	侧衣	+
部位	(m)	定数	$\frac{1}{3}$ Sd- 3×5
	(111)	(%)	+NCO
		5.0	
		4.0	
		3.0	
	16 563	2.5	
	10.000	2.0	
		1.5	
		1.0	
		0.5	
原子		5.0	
炉庄	15.262	4.0	
力		3.0	
容器		2.5	
(続		2.0	
き)		1.5	
		1.0	
		0.5	
		5.0	
		4.0	
		3.0	
	4 950	2.5	
	4.000	2.0	
		1.5	
		1.0	
		0.5	

表 I (2) - 2.1 大型機器系の地震応答解析モデル(応答スペクトルフロー) NS 方向

(大型機器系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を代表して記載。)

部位	T.M.S.L. (m)	減衰 定数 (%)	$Ss-3 \times 1 \\ + \\ 1/3Sd-3 \times \\ 5 \\ + NCO$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-3} \times 1 \\ + \\ 1/3 \text{Sd-3} \\ \times 5 \\ + \text{NCO} \end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$
	21.200	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $			12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			1.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $	
	18.440	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$			8.200	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原子本 基 礎	-2.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原子 炉 遮 蔽壁	17.020	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原 定 本 基 礎	7.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			-4.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	15.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			4.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		原点	26.013	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	13.950	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			3.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $		力容器	20.494	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

表 I (2) - 2.2 大型機器系の地震応答解析モデル(応答スペクトルフロー) EW 方向

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

表 I	(2)	-2.	2	大型機器系の地震応答解析モデル	(応答スペクトルフロー)

EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\times\\5\\+\text{NCO}\end{array}$
	16.563	$ 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 $	
		$\frac{1.0}{0.5}$	
原炉力容(き	15.262	$ 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 $	
	4.950	$\begin{array}{r} 0.5 \\ \hline 5.0 \\ 4.0 \\ \hline 3.0 \\ \hline 2.5 \\ \hline 2.0 \\ \hline 1.5 \\ \hline 1.0 \\ \hline 0.5 \\ \end{array}$	

(大型機器系の地震応答解析モデルでの算出結果から、Ss-3系による地震動を代表して記載。)

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-3} \times 1 \\ + \\ 1/3 \text{Sd-3} \\ \times 5 \\ + \text{NCO} \end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\times\\5\\+\text{NCO}\end{array}$	部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
		5.0				5.0				5.0	
		3.0				3.0		1		4.0	
		2.5			15.000	2.5		1		2.5	
	21.200	2.0			12.300	2.0		1	1.700	2.0	
		1.5]			1.5		1		1.5	
		1.0				1.0		1		1.0	
	ļ!	0.5			ļ!	0.5		1		0.5	4
		5.0				5.0		1		5.0	
		4.0				4.0		F= →		4.0	
		$\frac{3.0}{2.5}$				3.0 2.5		原子		$\frac{3.0}{2.5}$	
	18.440	$\frac{2.0}{2.0}$			8.200	2.0		<i>沪平</i> 休其	-2.100	$\frac{2.0}{2.0}$	
		1.5				1.5		礎		1.5	
	!	1.0				1.0		., _		1.0	
	!	0.5				0.5		1		0.5	
		5.0				5.0		1		5.0	
	!	4.0	_			4.0		1		4.0	
原子	!	3.0		原子	7.000	3.0		1		3.0	
「「」」「」「」」「」」「」」」	17020	2.5		炉本		2.5		1	-4.700	2.5	
	11.040	2.0		体基		2.0				2.0	4
敝壁	!	1.5		碇		1.5		1		1.5	
	!	1.0				1.0		1		1.0	
	ļ!	<u> </u>	·		ļļ	0.0 5.0		l		0.0	
	!	1.0				<u> </u>		1		<u> </u>	
	!	3.0				3.0		1		3.0	
	1 - 000	2.5				2.5		1		2.5	
	15.600	2.0			4.500	2.0		1	26.013	2.0	
	!	1.5				1.5		1		1.5	
	!	1.0			ļ	1.0		原子		1.0	
		0.5				0.5		炉圧		0.5	
	!	5.0				5.0		力容		5.0	1
	!	4.0				4.0		器		4.0	1
	!	3.0				3.0		1		3.0	1
	13.950	$\frac{2.5}{2.0}$			3.500	2.5		1	20.494	2.5	
	!	2.0				2.0		1		2.0	
		1.0				1.0		1		1.0	
	!	0.5				0.5		1		0.5	

表I(2)-2.3 大型機器系の地震応答解析モデル(応答スペクトルフロー) UD 方向

(大型機器系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を代表して記載。)

表I(2)-2.3 大型機器系の地震応答解析モデル(応答スペクトルフロー)

UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$
	16.506	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
原炉力器続き	15.266	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	
	5.066	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $	

(大型機器系の地震応答解析モデルでの算出結果から,Ss-3系による地震動を代表して記載。)

(3) 炉内構造物系の地震応答解析モデル

表I(3)-1.1 炉内構造物系の地震応答解析モデル(時刻歴フロー)

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
燃料 集合体	$\begin{array}{r} 14.433 \\ 13.721 \\ 13.009 \\ 12.297 \\ 11.585 \\ 10.873 \\ 10.161 \end{array}$								
制御棒 案内管	$ \begin{array}{r} 10.161 \\ 9.645 \\ 9.402 \\ 8.395 \\ 7.388 \\ 6.795 \\ 6.347 \\ \end{array} $								
制 御 様 ハ ウ グ	6.347 5.817 5.066								
制 御 動 構 ジ ン グ (内 側)	$ \begin{array}{r} 4.213 \\ 3.361 \\ 2.508 \\ 1.655 \\ 0.934 \\ \end{array} $								
制 御 動 構 ジ ン グ (外 側)	$\begin{array}{r} 0.184\\ \hline 5.817\\ \hline 5.066\\ \hline 4.213\\ \hline 3.361\\ \hline 2.508\\ \hline 1.655\\ \hline 0.934\\ \hline 0.184\\ \end{array}$								

せん断力 NS 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器, スタンド	18.716								
パイプ	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
-	13.009								
	12.297								
「「」、	11.585								
シュラ	10.873								
ウド	10.161								
	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
百乙后	6.253								
原于)/- 冷却材	5.376								
再循環	4.523								
ポンプ	3.671								

表 I (3) -1.1 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 NS 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
燃料 集合体	$\begin{array}{r} 14.433 \\ 13.721 \\ 13.009 \\ 12.297 \\ 11.585 \\ 10.873 \\ 10.161 \end{array}$								
制御棒 案内管	$ \begin{array}{r} 10.161 \\ 9.645 \\ 9.402 \\ 8.395 \\ 7.388 \\ 6.795 \\ 6.347 \\ \end{array} $								
制御 棒 動 機 、 ウ グ	6.347 5.817								
ン 御 動 構 ジ ン の (内)	5.066 4.213 3.361 2.508 1.655 0.934								
(F1) 制御棒 駆動機 構 ハウジ	$\begin{array}{r} 0.184 \\ \hline 0.184 \\ \hline 5.817 \\ \hline 5.066 \\ \hline 4.213 \\ \hline 3.361 \\ \hline 2.508 \end{array}$								
ング (外側)	$ \begin{array}{r} 1.655 \\ 0.934 \\ 0.184 \end{array} $								

表I(3)-1.2 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器,	18 716								
スタント・ ハ゜イフ゜	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
が シュラ	10.873								
ウド	10.161								
	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
百子后	6.253								
冷却材	5.376								
再循環	4.523								
	3.671								

表I(3)-1.2 炉内構造物系の地震応答解析モデル(時刻歴フロー) せん断力 EW 方向

	TMSL	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	(m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+ NCO							
	14.433								
	13.721								
除 来]	13.009								
<u>旅</u> 和 崔合休	12.297								
未口件	11.585								
	10.873								
	10.161								
	10.161								
制御棒	9.645								
	9.402								
案内管	8.395								
	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機 構	5.817								
ハウジ ング	5.066								
	4.213								
制御棒	3.361								
構	2.508								
ハウジ	1.655								
ンク (内側)	0.934								
	0.184								

表I(3)-1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

	T MOI	Ss-1×1 +	Ss-2×1 +	Ss-3×1 +	Ss-4×1 +	Ss-5×1 +	Ss-6×1 +	Ss-7×1 +	Ss-8×1 +
部位	T.M.S.L.	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
	(111)	+	+	+	+	+	+	+	+
	× 017	NCO							
	5.817								
制御棒	5.066								
駆動機	4.213								
構 ハウジ	3.361								
ング	2.508								
(外側)	1.655								
	0.934								
	0.184								
気水分	19.472								
離器, スタント゛ パイフ゜	10.710								
	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
炉心シ	10.873								
ュラウ	10.161								
ド	9.645								
	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								

表I(3)-1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

		Ss-1×1	Ss-2×1	Ss-3×1	Ss-4×1	$Ss-5\times1$	Ss-6×1	Ss-7×1	Ss-8×1
	тист	+	+	+	+	+	+	+	+
部位	(m)	1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+	+	+	+	+	+	+	+
		NCO	NCO	NCO	NCO	NCO	NCO	NCO	NCO
原子炉	6.253								
冷却材	5.376								
再循環ポンプ	4.523								
	3.671								

表 I (3) -1.3 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント NS 方向

				モーノノ	ト LW 刀口	нÌ			
部位	T.M.S.L .(m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	14.433								
	13.721								
	13.009								
燃料	12.297								
集合体	11.585								
	10.873								
	10.161								
	10.161								
	9.645								
	9.402								
制御棒	8.395								
案内官	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機	5.817								
部 駆 動 構 ハ ウジ ング	5.066								
d . I d an I I .	4.213								
制御棒 馭動継	3.361								
構	2.508								
ハウジ	1.655								
ング (内和1)	0.934								
(内側)	0.184								

表I(3)-1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

						⊨]			
部位	T.M.S.L .(m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	5.817								
	5.066								
制御棒	4.213								
構	3.361								
ハウジ	2.508								
ンク (外側)	1.655								
01040	0.934								
	0.184								
気水分	19.472								
離器,	18.716								
スタント ハ゜イフ゜	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
	11.585								
炉心シ	10.873								
ュラウ	10.161								
ド	9.645								
	10.161								
	9.645								
	9.402								
	8.395								

表I(3)-1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

7.388

6.795

モーノント EW 万円									
		Ss-1×1	$Ss-2 \times 1$	Ss-3×1	$Ss-4 \times 1$	$Ss-5 \times 1$	$Ss-6\times 1$	$Ss-7 \times 1$	Ss-8×1
部位	T.M.S.L .(m)	+	+	+	+	+	+	+	+
		1/3Sd-1×5	1/3Sd-2×5	1/3Sd-3×5	1/3Sd-4×5	1/3Sd-5×5	1/3Sd-6×5	1/3Sd-7×5	1/3Sd-8×5
		+	+	+	+	+	+	+	+
		NCO	NCO	NCO	NCO	NCO	NCO	NCO	NCO
原子炉冷 却材 再循環ポ ンプ	6.253								
	5.376								
	4.523								
	3.671								

表 I (3) -1.4 炉内構造物系の地震応答解析モデル(時刻歴フロー) モーメント EW 方向

				18/0 01	- / • •				
部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
	14 499								
	14.433								
	13.721								
燃料	13.009								
集合体	12.297								
	11.585								
	10.873								
	10.161								
	9.645								
	9.402								
制御棒	8.395								
案内管	7.388								
	6.795								
	6.347								
制御棒	6.347								
駆動機	5.817								
構 ハウジ ング	5.066								
制御梼	4.213								
駆動機	3.361								
構	2.508								
ハウジ	1.655								
ンク (内側)	0.934								
	0.184								
	5.817								
制御棒	5.066								
	4.213								
駆動機	3.361								
ドロシン	2.508								
ング	1.655								
(外側)	0.934								
	0.184								

表 I (3) -1.5 炉内構造物系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	Ss-1×1 + 1/3Sd-1×5 + NCO	Ss-2×1 + 1/3Sd-2×5 + NCO	Ss-3×1 + 1/3Sd-3×5 + NCO	Ss-4×1 + 1/3Sd-4×5 + NCO	Ss-5×1 + 1/3Sd-5×5 + NCO	Ss-6×1 + 1/3Sd-6×5 + NCO	Ss-7×1 + 1/3Sd-7×5 + NCO	Ss-8×1 + 1/3Sd-8×5 + NCO
気水分	19.472								
離器,	18.716								
スタント ハ イフ°	17.179								
	16.506								
	15.641								
	15.266								
	14.433								
	13.721								
	13.009								
	12.297								
炉心シ	11.585								
ュラウ	10.873								
ĸ	10.161								
	9.645								
	9.402								
	8.395								
	7.388								
	6.795								
	6.347								
	5.783								
原子炉冷 却材 再循環ポ	6.253								
	5.376								
	4.523								
ンブ	3.671								

表I(3)-1.5 炉内構造物系の地震応答解析モデル(時刻歴フロー) 軸力 UD 方向

部位	T.M.S.L. (m)	減衰定数 (%)	NS	Ss-3×1 + 1/3Sd-3×5 + NCO EW	UD
	14.433	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			
炉心ンユフリト	NS • EW 10.161 UD 9.645	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $			
原子炉圧力容器	5.066	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $			
原子炉冷却材再 循環ポンプ	6.253	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $			

表I(3)-2.1 炉内構造物系の地震応答解析モデル(応答スペクトルフロー)

(炉内構造物系の地震応答解析モデルでの算出結果から, Ss-3系による地震動を 代表して記載。)
(4) タービン建屋の地震応答解析モデル

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\ \mathrm{1/3Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	25.800	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ + NCO	$Ss-4 \times 1 \\ + \\ 1/3Sd-4 \\ \times 5 \\ + NCO$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8 \times 1$ + 1/3Sd-8 $\times 5$ +NCO
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
ン理座 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	18.350	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減 衰 (%)	${{ m Ss} \cdot 1 imes 1} + {{ m 1/3Sd} \cdot 1} + {{ m NCO}}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}\cdot 3 imes 1\ +\ 1/3{ m Sd}\cdot 3\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
蒸気タ ービン の基礎 (続き)	10.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-1 タービン建屋の地震応答解析モデル(応答スペクトルフロー)NS方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss} \cdot 3 imes 1} + { m 1/3Sd} \cdot 3 \ imes 5 \ + m NCO$	$Ss-4 \times 1$ + 1/3Sd-4 ×5 +NCO	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	25.800	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	20.400	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$Ss-2 \times 1$ + 1/3Sd-2 $\times 5$ +NCO	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ +NCO	$Ss-4 \times 1 + 1/3Sd-4 \times 5 + NCO$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss*8 \times 1 \\ + \\ 1/3Sd*8 \\ \times 5 \\ + NCO$
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
ン ^建 座 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	18.350	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-3\times1 \\ + \\ 1/3Sd-3 \\ \times5 \\ +NCO$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
蒸気タ ービン の基礎 (続 き)	10.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-2 タービン建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	${{ m Ss} \cdot 1 imes 1} + {{ m 1/3Sd} \cdot 1} onumber \times 5 onumber + { m NCO}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}{ m -}3 imes 1\ +\ 1/3{ m Sd}{ m -}3\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	${Ss-7 imes 1} + {1/3Sd-7} imes 5 + NCO$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	38.600	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービ ン建屋	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	25.800	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	${{ m Ss} \cdot 2 imes 1} + {{ m 1/3Sd} \cdot 2} {{ m \times 5}} + { m NCO}$	${{ m Ss}}$ -3×1 + 1/3Sd-3 ×5 +NCO	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
タービン建長	4.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
ノ建産 (続き)	-1.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	-5.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
蒸気タ ービン の基礎	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss} \cdot 3 imes 1} + { m 1/3Sd} \cdot 3 imes 5 + { m NCO}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${ Ss-6 imes 1 \ + \ 1/3Sd-6 \ imes 5 \ + NCO }$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	${Ss-8 imes 1} + {1/3Sd-8} imes 5 + NCO$
蒸気タ ービン の基礎 (続 き)	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(4)-3 タービン建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(5) コントロール建屋の地震応答解析モデル

表 I	(5) - 1	コントロール建屋の地震応答解析モデル	(応答スペクトルフロー)
		NS 方向	

部位	T.M.S.L. (m)	減衰 定数 (%)	${{ m Ss}}^{-1 imes 1}_{+}$ 1/3Sd-1 imes 5 +NCO	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss \cdot 3 \times 1$ + $1/3Sd \cdot 3$ $\times 5$ + NCO	$Ss^{-}4 \times 1$ + 1/3Sd^{-}4 ×5 + NCO	${{ m Ss}} ext{-}5 imes1$ + 1/3Sd-5 imes5 +NCO	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8\times1 \\ + \\ 1/3Sd-8 \\ \times5 \\ + NCO$
	24.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	17.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
コント ロール 建屋	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	6.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	1.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${{ m Ss}-6 imes1}\ +\ 1/3{ m Sd}-6\ imes5\ + m NCO$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}^{{ m Ss}}^{{ m 8} imes 1}_{+}$ 1/3Sd-8 imes 5 +NCO
コント ロール 建屋 (続き)	-2.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表 I (5) -1 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	24.100	$\begin{array}{c} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	17.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
コント ロール 建屋	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	6.500	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	1.000	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								

表I(5)-2 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \mathrm{Ss}\text{-}3\times1\\+\\1/3\mathrm{Sd}\text{-}3\\\times5\\+\mathrm{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
コント ロール 建屋 (続き)	-2.700	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

表 I (5) - 2 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) EW 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	24.100	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
	17.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
コント ロール 建屋	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	1.000	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表 I (5) - 3 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss \cdot 5 imes 1 \ + \ 1/3 Sd \cdot 5 \ imes 5 \ imes 5 \ + NCO }$	${{ m Ss-6} imes 1}\ +\ 1/3{ m Sd-6}\ imes 5\ +{ m NCO}$	${ Ss-7 imes 1 \ + \ 1/3 Sd-7 \ imes 5 \ + NCO }$	${{ m Ss}}^{{ m Ss}}^{{ m 8} imes 1}_{+}$ 1/3Sd-8 imes 5 +NCO
コント ロール 建 屋 (続き)	-2.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表 I (5) - 3 コントロール建屋の地震応答解析モデル(応答スペクトルフロー) UD 方向

(6) 廃棄物処理建屋の地震応答解析モデル

表 I (6) -1 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-} 3 \times 1 \\ + \\ 1/3 \text{Sd-} 3 \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}5\times1\\+\\1/3\text{Sd-}5\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$Ss-8 \times 1 \\ + \\ 1/3Sd-8 \\ \times 5 \\ + NCO$
	44.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	36.700	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
廃棄物 処理建 屋	30.900	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5$								
	30.400	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
	20.400	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3 \text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}}$ -3×1 + 1/3Sd-3 ×5 +NCO	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	${ Ss-5 imes 1 \ + \ 1/3 Sd-5 \ imes 5 \ + NCO }$	${{ m Ss-6} imes 1}\ +\ 1/3{ m Sd-6}\ imes 5\ +{ m NCO}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	${{ m Ss}-8 imes1}\ +\ 1/3{ m Sd}-8\ imes5\ + m NCO$
	12.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \hline 7.0 \\ \hline $								
廃棄物 処理建	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
屋 (続 き)	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100	5.0 4.0 3.0 2.5 2.0 1.5 1.0 0.5 $ $								

表 I (6) -1 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) NS 方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	36.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
廃棄物 処理建 屋	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.400	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(6)-2 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	12.300	$\begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \end{array}$								
廃棄物 処理建	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
屋 (続 き)	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100 1	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								

表I(6)-2 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) EW方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1}\times1\\+\\1/3\text{Sd-1}\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	44.300	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	36.700	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
廃棄物 処理建 屋	30.900	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	30.400	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	20.400	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								

表I(6)-3 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) UD方向

部位	T.M.S.L. (m)	減衰 定数 (%)	$\begin{array}{c} \text{Ss-1} \times 1 \\ + \\ 1/3 \text{Sd-1} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-2} \times 1 \\ + \\ 1/3\text{Sd-2} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-}3\times1\\+\\1/3\text{Sd-}3\\\times5\\+\text{NCO}\end{array}$	$\begin{array}{c} \text{Ss-4} \times 1 \\ + \\ 1/3 \text{Sd-4} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-5} \times 1 \\ + \\ 1/3 \text{Sd-5} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-6} \times 1 \\ + \\ 1/3 \text{Sd-6} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-7} \times 1 \\ + \\ 1/3 \text{Sd-7} \\ \times 5 \\ + \text{NCO} \end{array}$	$\begin{array}{c} \text{Ss-8} \times 1 \\ + \\ 1/3 \text{Sd-8} \\ \times 5 \\ + \text{NCO} \end{array}$
	12.300	$5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ $								
廃棄物 処理建	6.500	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
屋 (続 き)	-1.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								
	-6.100	$ \begin{array}{r} 5.0 \\ 4.0 \\ 3.0 \\ 2.5 \\ 2.0 \\ 1.5 \\ 1.0 \\ 0.5 \\ \end{array} $								

表I(6)-3 廃棄物処理建屋の地震応答解析モデル(応答スペクトルフロー) UD方向

Ⅱ. 材料物性の不確かさ等を考慮する場合の条件

基本ケースの結果を踏まえ、等価繰返し回数が最大となる地震動、減衰定数に 基づいて材料物性の不確かさ等の考慮を実施する。基本ケースでの結果として支 配的な地震動であった「 $Ss - 3 \times 1$ 回+ $1/3Sd - 3 \times 5$ 回+NCO」とその回 数が最大となった減衰定数を用いて算出条件を設定する。具体的には次頁以降の 表の通りの条件で算出を行う。

なお、コントロール建屋は、材料物性の不確かさ等の検討に用いる地震動として S_s-1 、2、 S_d-1 、2を選定していること、またI.の結果より等価繰返し回数の算出において全ての床面で S_s-1 系での算出結果が S_s-2 系の算出結果を上回っていることから、「 $S_s-1 \times 1$ 回+1/3 $S_d-1 \times 5$ 回+NCO」を用いて基本ケースと材料物性の不確かさ等を考慮した場合の比率を算出し、その比率を S_s-3 系の基本ケースの結果に掛け合わせて検討を行う。

また,算出を行うフローは基本ケースの結果より,応答スペクトルフローの回数が大きくなることから,時刻歴フロー及び応答スペクトルフローの両フローでの算出が可能な炉内構造物系及び大型機器系の地震応答解析モデルは,応答スペクトルフローにて検討を行う。

項目	条件	備考
検討ケース	ケース 2~6	表Ⅱ.2 参照
		時刻歴フローより応答スペ
JEAG フロー	応答スペクトルフロー	クトルフローの回数が大き
		いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
生きま	$\lceil S _{s} - 3 \times 1 \square + 1/3 S d - 3 \times$	基本ケースで最大となる地
地辰期	$5 \Box + N C O \rfloor$	震動
演事字粉(04)	0.5	基本ケースで最大となる減
佩农足致(70)	0.5	衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.1 算出条件(原子炉建屋の地震応答解析モデル)

表Ⅱ.2 検討ケース(原子炉建屋の地震応答解析モデル)

検討ケース	コンクリート岡川性	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース (I.で算出 済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	100%	標準地盤-σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4(建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm²)	100%	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	100%	標準地盤	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	50%	標準地盤	

V-2-2-1「原子炉建屋の地震応答計算書」 P99 に加筆

項目	条件	備考
検討ケース	ケース 2~8	表Ⅱ. 4参照
		時刻歴フローより応答ス
JEAG フロー	応答スペクトルフロー	ペクトルフローの回数が
		大きいため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面(質点)	基本ケースと同じ。
地電動	「Ss-3×1回+1/3Sd-3×5	基本ケースで最大となる
地辰朝	回+NCO」	地震動
演事空粉(%)	2.0	基本ケースで最大となる
侧衣足数(70)	2.0	減衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ. 3 算出条件(大型機器系の地震応答解析モデル)

表Ⅱ. 4 検討ケース(大型機器系の地震応答解析モデル)

		コンクリート剛性		回転			
検討ケース	百乙烷建民	原子炉本体	ダイヤフラム	ばね	地盤剛性	スケルトン曲線の	備考
	原于炉建屋	基礎	フロア	定数		設定方法	
①ケース 1 (工認モデル)	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	基本ケース (I. で 算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤+ σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	折線近似	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤- σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	折線近似	
④ケース4(建屋剛性 コア平均)	実強度 (コア平均) (55.7N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑥ケース 6 (回転ばね低減)	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	50%	標準地盤	折線近似	
 ⑦ケース 7 (原子炉本体基礎 ダイヤフラムフロア 実強度) 	実強度 (43.1N/mm ²)	実強度 (39.2N/mm ²)	実強度 (43.1N/mm ²)	100%	標準地盤	折線近似	
 ⑧ケース8 (原子炉本体基礎 スケルトン曲線 曲線包絡) 	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似 (曲線近似を包絡)	

(V-2-2-4「原子炉本体の基礎の地震応答計算書」P32に加筆)

項目	条件	備考
検討ケース	ケース 2~8	表Ⅱ. 6参照
		時刻歴フローより応答ス
JEAG フロー	応答スペクトルフロー	ペクトルフローの回数が
		大きいため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面(質点)	基本ケースと同じ
地電動	「Ss-3×1回+1/3Sd-3×5	基本ケースで最大となる
地辰朝	$\square + N C O \rfloor$	地震動
演事空粉(%)	2.5	基本ケースで最大となる
侧衣足数(70)	2.0	減衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.5 算出条件(炉内構造物系の地震応答解析モデル)

表Ⅱ. 6 検討ケース(炉内構造物系の地震応答解析モデル)

		コンクリート剛性	*	回転	回転 原子炉本体基礎の		
検討ケース	百乙后建民	原子炉本体	ダイヤフラム	ばね	地盤剛性	スケルトン曲線の	備考
	原于炉建屋	基礎	フロア	定数		設定方法	
①ケース 1 (工認モデル)	実強度 (43.1N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	基本ケー ス (I.で 算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	折線近似	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤- σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	折線近似	
④ケース4(建屋剛性 コア平均)	実強度 (コア平均) (55.7N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	50%	標準地盤	折線近似	
 ⑦ケース 7 (原子炉本体基礎 ダイヤフラムフロア 実強度) 	実強度 (43.1N/mm ²)	実強度 (39.2N/mm ²)	実強度 (43.1N/mm ²)	100%	標準地盤	折線近似	
 ⑧ケース8 (原子炉本体基礎 スケルトン曲線 曲線包絡) 	実強度 (43.1N/mm²)	設計基準強度 (29.4N/mm ²)	設計基準強度 (32.3N/mm ²)	100%	標準地盤	折線近似 (曲線近似を包絡)	

(V-2-3-1「炉心, 原子炉圧力容器及び圧力容器内部構造物の

地震応答計算書」P46 に加筆)

項目	条件	備考
検討ケース	ケース 2~5	表Ⅱ. 8参照
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
地震動	「Ss-3×1回+1/3Sd-3× 5回+NCO」	基本ケースで最大となる地 震動
減衰定数(%)	0.5	基本ケースで最大となる減 衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.7 算出条件(タービン建屋の地震応答解析モデル)

表Ⅱ. 8 検討ケース(タービン建屋の地震応答解析モデル)

検討ケース	コンクリート剛性	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	標準地盤+σ (新期砂層+13%,古安田層 +25%,西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	標準地盤-σ (新期砂層-13%,古安田層- 25%,西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	標準地盤	

(V-2-2-5「タービン建屋の地震応答計算書」P91に加筆)

項目	条件	備考
検討ケース	ケース 2~6	表Ⅱ. 10参照
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き いため
ピーク応力	1471MPa	基本ケースと同じ
固有周期	全固有周期帯(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
地震動	「Ss-1×1回+1/3Sd-1× 5回+NCO」	
減衰定数(%)	0.5	基本ケースで最大となる減 衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ. 9 算出条件(コントロール建屋の地震応答解析モデル)

表Ⅱ.10 検討ケース(コントロール建屋の地震応答解析モデル)

検討ケース	コンクリート岡川生	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	100%	標準地盤+σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度-σ (40.2N/mm ²)	100%	標準地盤一σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	100%	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2 σ (37.2N/mm ²)	100%	標準地盤	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	50%	標準地盤	

(V-2-2-9「コントロール建屋の地震応答計算書」P95 に加筆)

<u></u>		
項目	条件	備考
検討ケース	ケース 2~5	表Ⅱ. 12参照
JEAG フロー	応答スペクトルフロー	時刻歴フローより応答スペ クトルフローの回数が大き
ピーク広力	1471MPa	いため 基本ケースと同じ
固有周期	全固有周期带(0.05s~1.0s)	基本ケースと同じ
対象床面	全床面	基本ケースと同じ
地震動	「Ss-3×1回+1/3Sd-3× 5回+NCO」	基本ケースで最大となる地 震動
減衰定数(%)	2.0	基本ケースで最大となる減 衰定数
設計疲労線図	炭素鋼	基本ケースと同じ

表Ⅱ.11 算出条件(廃棄物処理建屋の地震応答解析モデル)

表Ⅱ.	$1 \ 2$	検討ケース	(廃棄物処理建屋の地震応答解析モデル)

検討ケース	コンクリート剛性	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	標準地盤	基本ケース (I. で算出済)
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	標準地盤+ σ (新期砂層+13%, 古安田層+25%, 西山層+10%)	
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	標準地盤-σ (新期砂層-13%, 古安田層-25%, 西山層-10%)	
④ケース4 (建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	標準地盤	

(V-2-2-11「廃棄物処理建屋の地震応答計算書」P63 に加筆)

Ⅲ. 等価繰返し回数の算出結果(材料物性の不確かさ等の考慮)

(1) 原子炉建屋の地震応答解析モデル

表Ⅲ(1) 原子炉建屋の地震応答解析モデル(材料物性の不確かさ等の考慮)

		減幸		$Ss:3 + 1/3Sd:3 \times 5 + NCO$					
部位	T.M.S.L. (m)	减表 定数 (%)	方向	ケース 1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 - σ 地盤剛性 - σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ	ケース6 回転ばね 低減
	49.700		NS EW UD						
	38.200		NS EW UD						
	31.700	00	NS EW UD						
	23.500		NS EW UD						
原子炉 建屋	乳子炉建屋18.1000	0.5	NS EW UD						
	12.300		NS EW UD						
	4.800		NS EW UD						
	-1.700		NS EW UD						
	-8.200		NS EW UD						

表Ⅲ(2) 大型機器連成系の地震応答解析モデル(材料物性の不確かさ等考慮)

						S	s-3 +	1/3Sd-3×5	+ NCO		
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性+ σ 地盤剛 性+ σ)	ケース3 (建屋剛 性 $-\sigma$ 地盤剛 性 $-\sigma$)	ケース 4 壁コン均 平均	ケース5 (建屋剛 性-2 σ)	ケース 6 (地盤回 転ばね 低減)	ケース 7 (原子炉本体 基礎 ダイヤ フラムフロア 実強度)	ケース8 (原子炉本体 基礎 スケ ルトン曲線 曲線包絡)
	21.200		NS EW UD								
	18.440		NS EW UD								
原子炉 遮蔽壁	17.020		NS EW UD								
	15.600		NS EW UD								
	13.950		NS EW UD								
	12.300		NS EW UD								
	8.200		NS EW UD								
	7.000	2.0	NS EW UD								
原子炉	4.500		NS EW UD								
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	3.500		NS EW UD								
	1.700		NS EW UD								
	-2.100		NS EW UD								
	-4.700		NS EW UD								
原子炉 圧力容 器	26.013		NS EW UD								

				$Ss-3 + 1/3Sd-3 \times 5 + NCO$								
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性+ σ 地盤剛 性+ σ)	ケース3 (建屋の 地盤 地盤 性-σ)	ケース 4	ケース5 (建屋剛 性-2 σ)	ケース 6 (地盤回 転ばね 低減)	ケース 7 (原子炉本体 基礎 ダイヤ フラムフロア 実強度)	ケース8 (原子炉本体 基礎 スケ ルトン曲線 曲線包絡)	
	20.494		NS EW UD									
	NS• EW		NS									
百乙后	16.563		EW									
	UD 16.506	2.0	UD									
原 」 <i>F</i> 圧力容	NS •		NS									
器 (続き)	EW 15.262		EW									
	UD 15.266		UD									
	NS ·		NS									
	EW		EW									
	4.950											
	UD 5.066		UD									

表Ⅲ(2) 大型機器連成系の地震応答解析モデル(材料物性の不確かさ等考慮)

(3) 炉内愽宣物糸の地震応谷解析モアル	(3)	内構造物系の地震応答解析モデル
----------------------	-----	-----------------

表Ⅲ(3)	炉内構造物系の地震応答解析モデル	(材料物性の不確かさ等考慮)

		241年			$Ss-3 + 1/3Sd-3 \times 5 + NCO$							
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース 1 (基本ケ ース)	ケース 2 (建屋剛 性+ 地盤剛 性+ ィ) 性+ $ $	ケース3 (建屋剛 性-σ 地盤剛 性-σ)	ケス建剛コ平	ケース 5 (建屋 剛性- 2 g)	ケス(地回ば低)	ケース 7 (原子炉本体基 礎 ダイヤフ ラムフロア 実強度)	ケース8 (原子炉本体基 礎 スケルト ン曲線 曲線 包絡)	
			NS									
	14.433		EW									
炉心シ			UD									
ュラウ	$NS \cdot EW$		NS									
ド	10.161		EW									
	UD		UD									
	9.645	2.5	UD									
原子炉		2.0	NS									
圧力容	5.066		EW									
器			UD									
原子炉			NS									
冷却材	6.253		EW									
再循環												
ポンプ			UD									

(4) タービン建屋の地震応答解析モデル

表Ⅲ(4) タービン	・建屋の地震応答解析モデル	(材料物性の不確か	さ等考慮)
------	--------	---------------	-----------	-------

		消草			$S_{s-3} +$	1/3Sd-3×5	+ NCO	
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 ー σ 地盤剛性 ー σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ
	44.300		NS EW UD					
	38.600		NS EW UD					
	30.900		NS EW UD					
タービ	25.800		NS EW UD					
タービ ン 建屋	20.400	0.5	NS EW UD					
	12.300		NS EW UD					
	4.900		NS EW UD					
	-1.100		NS EW UD					
	-5.100		NS EW UD					
	$NS \cdot EW$		NS					
蒸気タ ービン の其 弾	18.350		EW					
	20.400		UD					
	NS • EW		NS					
	10.700 UD		EW					
	12.300		UD					

(5) コントロール建屋の地震応答解析モデル

表Ⅲ(5) コントロール建屋の地震応答解析モデル(材料物性の不確かさ等考慮)

	T.M.S.L. (m)	減衰 定数 (%)		$Ss-1 + 1/3Sd-1 \times 5 + NCO$								
部位			方向	ケース1 基本 ケース	ケース2 建屋剛性 + σ 地盤剛性 + σ	ケース3 建屋剛性 - σ 地盤剛性 - σ	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ	ケース6 回転ばね 低減			
コント ロール 建屋	24.100		NS EW UD									
	17.300		NS EW UD									
	12.300	0.5	NS EW UD									
	6.500		NS EW UD									
	1.000		NS EW UD									
	-2.700		NS EW UD									

(6) 廃棄物処理建屋の地震応答解析モデル

表Ⅲ	(6)	廃棄物処理建屋の地震応答解析モデル	(材料物性の不確かさ等考慮)
ДШ	(0)	庑来彻之 过 定注。2. 适度心音开闭 5. / /	

		~~~			Ss-3 +	- 1/3Sd-3×5 +	NCO	
部位	T.M.S.L. (m)	减衰 定数 (%)	方向	ケース1 基本 ケース	ケース2 建屋剛性 + $\sigma$ 地盤剛性 + $\sigma$	ケース3 建屋剛性 $-\sigma$ 地盤剛性 $-\sigma$	ケース4 建屋剛性 コア平均	ケース5 建屋剛性 -2 σ
	44.300		NS EW UD					
	36.700		NS EW UD					
	30.900		NS EW UD					
	30.400	2.0	NS EW UD					
廃乗物 処理 建屋	20.400		NS EW UD					
	12.300		NS EW UD					
	6.500		NS EW UD					
	-1.100		NS EW UD					
	-6.100		NS EW UD					



EW方向

注記*:RCCV回転ばね

11

12

13

14

16

15 **Φ** K_{θ1}*

→ :算出床面(応答スペクトルフロー) (V-2-1-7「設計用床応答曲線の作成方針」P13 に加筆)

図IV(1)-1 原子炉建屋地震の応答解析モデルでの算出位置(水平方向)


図IV(1)-2 原子炉建屋の地震応答解析モデルでの算出位置(鉛直方向)



:算出床面(応答スペクトルフロー)
 :算出質点(時刻歴フロー)
 (V-2-1-7「設計用床応答曲線の作成方針」P15に加筆)

図IV(2)-1 大型機器系の地震応答解析モデルでの算出位置(NS 方向)



図IV(2)-2 大型機器系の地震応答解析モデルでの算出位置(EW 方向)



図IV(2)-3 大型機器系の地震応答解析モデルでの算出位置(UD 方向)



→ : 算出床面(応答スペクトルフロー)

: 算出質点(時刻歴フロー)

(V-2-1-7「設計用床応答曲線の作成方針」P18 に加筆)

図Ⅳ(3) -1 炉内構造物系の地震応答解析モデルでの算出位置(NS方向)



図IV(3)-2 炉内構造物系の地震応答解析モデルでの算出位置(EW 方向)











EW 方向

──→ : 算出床面(応答スペクトルフロー)

(V-2-1-7「設計用床応答曲線の作成方針」P20に加筆)

図IV(4)-1 タービン建屋の地震応答解析モデルでの算出位置(水平方向)



→ : 算出床面(応答スペクトルフロー) (V-2-1-7「設計用床応答曲線の作成方針」P21に加筆)

図IV(4)-2 タービン建屋の地震応答解析モデルでの算出位置(鉛直方向)



→ : 算出床面(応答スペクトルフロー)

(V-2-1-7「設計用床応答曲線の作成方針」P22 に加筆)

図IV(5)-1 コントロール建屋の地震応答解析モデルでの算出位置(水平方向)

____



→ :算出床面(応答スペクトルフロー)
 (V-2-1-7「設計用床応答曲線の作成方針」P23 に加筆)

図IV(5)-2 コントロール建屋の地震応答解析モデルでの算出位置(鉛直方向)



図IV(6)-1 廃棄物処理建屋の地震応答解析モデルでの算出位置(水平方向)



(V-2-1-7「設計用床応答曲線の作成方針」P35 に加筆)

図IV(6)-2 廃棄物処理建屋の地震応答解析モデルでの算出位置(鉛直方向)

(補足)

- 補足1 ピーク応力法における各ピークのサイクル数の求め方
- 補足2 等価繰返し回数算出プログラムについて
- 補足3 疲労評価の対象設備及び部位毎のピーク応力
- 補足4 ピーク応力の算出方法について
- 補足5 他方向入力を対象とした等価繰返し回数算定方法について
- 補足6 柏崎刈羽7号機の等価繰返し回数の保守性について
- 補足7 ピーク応力の大きさと等価繰返し回数の関係について
- 補足8 等価繰返し回数の算出に用いる地震動の考え方について

補足1 ピーク応力法における各ピークのサイクル数の求め方

柏崎刈羽7号機のピーク応力法における各ピーク点におけるサイクル数については レインフロー法を用いて求める。図補1.1に示す通り,実際の材料挙動に着目し, 片振りとなるピーク点については0.5,両振りとなるピーク点については1と割り当て ている。なお,このサイクル数のカウント方法は疲労設計において,材料の応力-ひず み挙動との対応が良いことから,一般的に用いられている手法である。



図 補1.1 レインフロー法の概要

また、本カウント法に関する文献は以下がある。

・遠藤達雄ら他、「「Rain Flow Method」の提案とその応用」、九州工業大学研究報告(工学) No.28,1974

1. はじめに

今回工認における等価繰返し回数算出において使用した計算機プログラム(解析 コード)について説明する。

柏崎刈羽 7 号機に等価繰返し回数の算出において地震応答解析モデルごとに 2 つの算出プログラム(表 補2.1)を使用しており,使用状況,解析コードの概要 を以降に記載する。

衣 柵 2: 1 桁両内羽 7 5 機の地長応各府街で 7 ル 加の鼻面 7 ログ 7 ム		
別紙 No.	算出に用いた算出プログラム	地震応答解析モデル
別紙1		原子炉建屋の地震応答解析モデル
	PLTCOM2	大型機器系の地震応答解析モデル
		炉内構造物系の地震応答解析モデル
別紙2	HERO	タービン建屋の地震応答解析モデル
		コントロール建屋の地震応答解析モデル
		廃棄物処理建屋の地震応答解析モデル

表 補2.1 柏崎刈羽7号機の地震応答解析モデル別の算出プログラム

#### 別紙1 PLTCOM2

1. 解析コードの概要

ユード名 項目	等価繰返し回数算出プログラム (PLTCOM2)
使用目的	等価繰返し回数の算出
開発機関	日立GEニュークリア・エナジー株式会社
開発時期	2017 年
使用したバージョン	Ver1.00
コードの概要	等価繰返し回数算出プログラム(PLTCOM2)(以下,「本解析コード」という。)は,耐震設計に使用する条件を作成することを目的に,レインフロー法等を用いた方法で等価繰返し回数を算出する機能を統合したシステムである。
検証 (Verification) 及び 妥当性確認 (Validation)	【検証(Verification)】 本解析コードの検証の内容は以下のとおりである。 ・本解析コードでレインフロー法によって算出した等 価繰返し回数の値と,手計算で計算した値が一致す ることを確認している。 ・本解析コードの運用環境について,動作環境を満足 する計算機にインストールして用いていることを確 認している。 【妥当性確認(Validation)】 本解析コードの妥当性確認内容は以下のとおりであ る。 ・算出方法はJEAG4601記載の設計用繰返し回 数の設定(ピーク応力法)のフローに従っており,妥 当性に問題はない。

- 2. 解析コード(PLTCOM2)における等価繰返し回数算出機能の検証
- 2.1. 概要

本工事計画認可申請書において使用した解析コード(PLTCOM2)(以下, 「本解析コード」という。)を用いて得られた計算結果の妥当性を確認し,本解析 コードの検証を行うものである。本解析コードを用いた,等価繰返し回数算出フ ロー(ピーク応力法)を図補2別1.2.1-1に示す。



図 補2別1.2.1-1 等価繰返し回数算出フロー(ピーク応力法)

- 2.2. 解析コードの検証
  - (1) 検証の概要

本解析コードによる計算結果の妥当性の確認には,手計算により算出した等 価繰返し回数を用いる。

本解析コードと手計算により算出した等価繰返し回数の比較をすることに より,解析コードの検証を行った。

(2) 検証ケース

図 補2別1.2.2-1に示す時刻歴データを入力地震動として、本解析コ ードを用いて計算する。等価繰返し回数算出において、図 補2別1.2.1-1に示す等価繰返し回数算出フロー(ピーク応力法)の①と②で計算を行って いるが、①の時刻歴加速度応答波形による1質点系の時刻歴応答解析は、 「Seismic Analysis System (SAS)」の設計用床応答スペクトル作成機能と

同モジュールを使用している。 時刻歴加速度内気波形による1 度点系の時刻

時刻歴加速度応答波形による1 質点系の時刻歴応答解析後の処理は②と同 じであるため、本検証では、②の計算結果と手計算により算出した等価繰返し 回数の比較をする。



(3) 算出条件

JEAG4601記載の等価繰返し回数算出フロー(ピーク応力法)のうち 時刻歴波形に対する等価繰返し回数を算出する。算出条件を表 補2別1.2. 2-1に,使用する設計疲労線図の材料データを表 補2別1.2.2-2に示 す。

表 補 2 別 1. 2. 2-1 算出条件

設定項目	算出条件
設計疲労線図	炭素鋼,低合金鋼及び高張力鋼 (Su≦ 550MPa)
最大ピーク応力	1471MPa

裸返しビーク応力強さ(MIPa)
3999
2827
1896
1413
1069
724
572
441
331
262
248
214
159
138
114
93
86

表 補2別1.2.2-2 設計疲労線図 材料データ

(4) 計算結果の比較

本解析コード及び手計算で計算した等価繰返し回数 Ne を表2. 2-3 に 示す。そのうち、応力に対する許容繰返し回数 Ni は J SME設計・建設規格に 記載の補間方法を用いて算出した。また、 $N_0$ は Ni における最大ピーク応力で ある。

手計算によるσi に対する許容繰返し回数 Ni の計算結果を表 補2別1.2. 2-4,手計算による疲れ累積係数UFの計算結果を表 補2別1.2.2-5 に示す。

(5) 検証結果

表 補2別1.2.2-3に示す等価繰返し回数の比較結果のとおり,両者は 一致しており,本解析コードを用いて得られた計算結果の妥当性を確認した。

No.	項目	本解析コードによる 計算結果	手計算による計算結果

## 表 補2別1.2.2-3 本解析コード及び手計算による等価繰返し回数の計算結果

E°	ク点 END	ピーク応力 (MPa)	最大ピーク応力に対する 時刻歴応答波形の ピーク応力 σ i(MPa)	σ i に対する 許容繰返し回数 N _i (回)

表補2別1.2.2-4 手計算による σi に対する許容繰返し回数 Ni の計算結果

表 補2別1.2.2-5 手計算による疲れ累積係数UFの計算結果

疲れ累積係数UF		

## 別紙2 HERO

1. 解析コードの概要

コード名 項目	等価繰返し回数の計算プログラム(HERO)
使用目的	等価繰返し回数の算出
開発機関	東芝エネルギーシステムズ 株式会社
開発時期	2017年~2018年
使用したバージョン	Ver.1.00, 2.00 及び 4.00
コードの概要	等価繰返し回数算出プログラム(HERO)(以下,「本解析コ ード」という。)は,耐震設計に使用する条件を作成することを 目的に,レインフロー法等を用いた方法で等価繰返し回数を算出 する機能を有するシステムである。
検証 (Verification) 及び 妥当性確認 (Validation)	<ul> <li>【検証(Verification)】</li> <li>本解析コードの検証内容は、以下のとおりである。</li> <li>本解析コードで算出した1質点系の応答計算の値と手計算の値が一致していることを確認している。</li> <li>本解析コードでレインフロー法によって算出した等価繰返し回数の値と、手計算で計算した値が一致することを確認している。</li> <li>本解析コードの運用環境について、動作環境を満足する計算機にインストールして用いていることを確認している。</li> <li>【妥当性確認(Validation)】</li> <li>本解析コードの妥当性確認内容は、以下のとおりである。</li> <li>1質点系の応答計算機能は、理論モデルをそのままコード化したものであり、妥当性は確認されている。</li> <li>床応答曲線を作成する際、入力とする時刻歴データの時間刻み幅、データの形式は、妥当性を確認している範囲内での使用であることを確認している。</li> <li>時刻歴波の時間刻み、固有周期計算間隔はJEAG4601 に従っており、妥当性は確認されている。</li> <li>算出方法はJEAG4601記載の設計用繰返し回数の設定(ピーク応力法)のフローに従っており、妥当性に問題はない。</li> </ul>

- 2. 解析コード(HERO)における等価繰返し回数算出機能の検証
- 2.1 概要

本工事計画認可申請書において使用した解析コード(HERO)(以下,「本解析 コード」とする。)を用いて得られた計算結果の妥当性を確認し,本解析コード の検証を行うものである。本解析コードを用いた,等価繰返し回数算出フロー(ピ ーク応力法)を図補2別2.2.1-1に示す。



図 補2別2.2.1-1 等価繰返し回数の算出フロー(ピーク応力法)

- 2.2 解析コードの検証
- 2.2.1 直接積分法
  - (1) 検証の概要

本解析コードに実装されている1質点系応答計算のうち,直接積分法(Nigam 法)の関数部の検証を行った。なお、本解析コードによる算出結果の妥当性確認 には、手計算により算出した各固有周期での絶対応答加速度(理論解)を用いて、 本解析コードにより算出した各固有周期での絶対応答加速度を比較し検証を行った。

(2) 検証ケース

検証ケースを表 補2別2.2.2.1-1に示す。

入力波	正弦波
減衰定数	5 [%]
固有周期	0.01 ~ 10 [s] (0.01 [s] 刻み全1000 点)
入力振動数	1, 2, 5, 10, 20 [Hz]
入力時間間隔	0.005 [s]
入力継続時間	10 [s]
入力振幅	0.20394 [G]

表 補2別2.2.2.1-1 直接積分法の検証ケース

(3) 算出条件

1 質点系応答計算における検証ケースのモデルを表 補2別2.2.2.1-2,図 補2別2.2.2.1-1に示す。

m	50000 [kg]
k	0.01 ~ 10.0 [s]の固有周期による変数
α	0.20394 [G]
ω	$2\pi f$ (f = 1.0, 2.0, 5.0, 10.0 and 20.0 [Hz])
h	0.05(減衰定数)
с	0.01 ~ 10.0 [s]の固有周期による変数

表 補2別2.2.2.1-2 各変数の値



図 補2別2.2.2.1-1 1質点系の検証例題

(4) 理論式

図 補2別2.2.2.1-1に対し,正弦波の時刻歴を入力条件とした場 合の絶対応答加速度の理論式は,下式より計算される。

1 質点系の固有振動数は次式となる。

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

図 補2別2.2.2.1-1に示す1質点系の振動方程式は、以下となる。

$$\ddot{x} + 2h\omega_0 \dot{x} + \omega_0^2 x = -\ddot{y} = -\alpha sin\omega t$$
$$2h\omega_0 = \frac{c}{m}, \quad \omega_0 = \sqrt{\frac{k}{m}}, \qquad \ddot{y} = \alpha sin\omega t$$

上式を解くことで相対応答変位は下式より計算される。

$$x = e^{-h\omega_0 t} (A\cos\omega_d t + B\sin\omega_d t) + \frac{2h\omega\omega_0 \alpha}{S^2} \cos\omega t + \frac{(\omega^2 - \omega_0^2)\alpha}{S^2} \sin\omega t$$

ここで、用いる定数は以下の通り。
$$S = \sqrt{(\omega^2 - \omega_0^2)^2 + 4h^2\omega^2\omega_0^2}$$
$$A = x_0 - \frac{2h\omega\omega_0\alpha}{S^2}$$

$$B = \frac{1}{\sqrt{1 - h^2}} \left\{ hx_0 + \frac{v_0}{\omega_0} - \frac{(\omega^2 - \omega_0^2 + 2h^2\omega_0^2)\omega\alpha}{\omega_0 S^2} \right\}$$
$$\omega_d = \sqrt{1 - h^2}\omega_0$$

また、上式より相対応答加速度を求める理論式は下式となる。  

$$\ddot{x} = h^2 \omega_0^2 e^{-h\omega_0 t} (Acos\omega_d t + Bsin\omega_d t) - 2h\omega_0 e^{-h\omega_0 t} (-A\omega_d sin\omega_d t + B\omega_d cos\omega_d t)$$
  
 $+ e^{-h\omega_0 t} (-A\omega_d^2 cos\omega_d t - B\omega_d^2 sin\omega_d t) + D\{2h\omega\omega_0 cos\omega t + (\omega^2 - \omega_0^2)sin\omega t\}$ 

ここで,  $x(0) = x_0 = 0, \quad \dot{x}(0) = v_0 = 0$   $D = -\frac{\omega^2 \alpha}{S^2}$ よって,絶対応答加速度の理論式は下式となる。

$$\ddot{\zeta} = \ddot{x} + \ddot{y}$$

(5) 計算結果

理論解と Nigam 法の計算結果の比較を図 補2別2.2.2.1-2に示す。



図 補2別2.2.2.1-2 理論解と Nigam 法の計算結果の比較

図 補2別2.2.2.1-2より理論解と Nigam 法の計算結果はよく一 致しており, HERO による1質点系応答計算の妥当性を確認した。

- 2.2.2 サイクルカウント法
  - (1) 検証の概要

本解析コードによる計算結果の妥当性の確認には,手計算により算出した 等価繰返し回数を用いる。

本解析コードと手計算により算出した等価繰返し回数を比較することに より,解析コードの検証を行った。

(2) 検証ケース

図 補2別2.2.2.2-1に示す時刻歴データを入力として、本解析 コードを用いて計算する。等価繰返し回数の算出において、図 補2別2. 2.2.2-1に示す等価繰返し回数の算出フロー(地震荷重を時刻歴より 求める機器系の算出フローと地震荷重を応答スペクトルより機器系の算出 フロー)で計算を行っているが、本検証では「地震荷重を時刻歴より求める 機器系の算出フローを用い、本解析コードによる算出結果と手計算による算 出結果を比較し検証する。



(3) 算出条件

JEAG4601記載の等価繰返し回数の算出フロー(ピーク応力法)のう ち,時刻歴波形に対する等価繰返し回数を算出する。算出条件を表 補2別2. 2.2.2-1,算出に使用する設計疲労線図の材料データを表 補2別2. 2.2.-2に示す。

表 補2別2.2.2.2-1 算出条件

設定項目	算出条件
設計疲労線図	炭素鋼,低合金鋼及び高張力鋼 (Su≦550MPa)
最大ピーク応力	1471MPa

表 補2別2.2.2.2-2 設計疲労線図 材料データ

許容繰返し回数(回)	繰返しピーク応力強さ(MPa)
$1.00 \times 10^{1}$	3999
$2.00 \times 10^{1}$	2827
$5.00 \times 10^{1}$	1896
$1.00 \times 10^{2}$	1413
$2.00 \times 10^{2}$	1069
$5.00 \times 10^{2}$	724
$1.00 \times 10^{3}$	572
$2.00 \times 10^{3}$	441
$5.00 \times 10^{3}$	331
$1.00 \times 10^{4}$	262
$1.20 \times 10^4$	248
$2.00  imes 10^4$	214
$5.00  imes 10^4$	159
$1.00 \times 10^{5}$	138
$2.00 \times 10^{5}$	114
5.00×10 ⁵	93
$1.00 \times 10^{6}$	86

(炭素鋼,低合金鋼および高張力鋼 (Su≦550MPa))

(4) 計算結果の比較

レインフロー法の算出フロー①~⑥を図 補2別2.2.2.2-2示す。
本解析コード及び手計算で計算した等価繰返し回数 N_eを表 補2別2.2.
2.2-3に示す。そのうち、応力に対する許容繰返し回数 N_iはJSME設計・建設規格に記載の補間方法を用いて算出した。また、N₀は N_iにおける最大ピーク応力である。

手計算によるピーク応力強さ {S_p} iに対する許容繰返し回数 N_iの計算結果 を表 補2別2.2.2.2-4,手計算による疲れ累積係数UFの算出結果 を表 補2別2.2.2.2-5に示す。

(5) 検証結果

表 補2別2.2.2.2-3に示す等価繰返し回数の比較結果のとおり, 両者は一致しており,本解析コードを用いて得られた計算結果の妥当性を確認 した。

図 補2別2.2.2-2 レインフロー法の算出フロー

## 表 補2別2.2.2.2-3 本解析及び手計算による等価繰返し回数の計算結果

No.	項目	本解析コードによる 計算結果	手計算による 計算結果

表	補2別2.	2.	2.	2 - 4	手計算による {S _p } iに対する許容繰返し回数 Niの算出総	吉果
---	-------	----	----	-------	----------------------------------------------	----

No.	サイクル数	ピーク応力 {S _p } i (MPa)	{S _p } _i に対す る 繰返し応力強さ (MPa)	{S _p } iに対する 許容繰返し回数 Ni (回)

表 補2別2.2.2-5 手計算による疲れ累積係数UFの算出結果



# 補足3 疲労評価の対象設備及び部位毎のピーク応力

		ピーク応力(MPa)	ピーク応力(MPa)			
設佩名称	言乎1曲音以1 <u>7</u> .	(水平2方向考慮なし)	(水平2方向考慮あり)			
一律に設定する等価繰返し回数を用いる疲労評価対象設備						
	原子炉圧力容器支持 スカート	230	325			
	下部鏡板	77	108			
	<u>給水ノズル(N4)</u>	_	278			
	<u> </u>	130	184			
	<ul> <li>制御棒駆動機構ハウ</li> <li>ジング貫通孔</li> </ul>	298	421			
	原子炉冷却材再循環 ポンプ貫通孔 (N1)	515	894			
	主蒸気ノズル (N3)	—	330			
	低圧注水ノズル (N6)	—	721			
	上蓋スプレイ・ベン トノズル(N7)	_	337			
原子炉圧力容器	原子炉停止時冷却材 出口ノズル(N8)	—	262			
	原子炉停止時冷却材 出口ノズル(N10)	—	339			
	原子炉冷却材再循環 ポンプ差圧検出ノズ ル (N9)	257	373			
	炉心支持板差圧検出 ノズル(N11)	257	373			
	計装ノズル(N12)	—	140			
	計装ノズル(N13)	—	140			
	計装ノズル (N14)	—	327			
	ドレンノスル (N15)	—	326			
	高圧炉心注水ノズル (N16)	_	245			
	原子炉冷却材再循環 ポンプモータケーシ ング	390	592			
制御棒駆動機構	スプールピースの最 小断面	15	_*1			
原子炉冷却材再循環	モータカバー	12	%2			
ポンプ	補助カバー	1	_			
燃料集合体	燃料被覆管	58	$7\overline{4}$			

		ピーク応力(MPa)	ピーク応力(MPa)
設備名称	計》 評1111 部112	(水平2方向考慮なし)	(水平2方向考慮あり)
原子炉補機冷却水系 熱交換器(A), (B), (D), (E)	胴板		*3
下部ドライウェルア クセストンネルスリ	鏡板のスリーブとの 結合部	_	605
ーブ及び鏡板(所員 用エアロック付)	スリーブのフランジ プレートとの結合部	_	630
下部ドライウェル所 員用エアロック	<ul> <li>下部ドライウェル所 員用エアロック</li> <li>円筒胴と鏡板との結 合部</li> </ul>	_	704
配管(最大ピーク応 力発生箇所:純水補 給水系配管(MUWP- C3B-1))	配管本体	_	1039
個別に設定する等価線	返し回数を用いる疲労	評価対象設備	
原子炉補機冷却水系 配管(RCW-T-3)	配管本体	_	1631
原子炉補機冷却水系 配管(RCW-T-4)	配管本体	_	1631
消火系配管(FP- 025R2)	配管本体	_	1443
非放射性ドレン移送 系配管(MSC- 002R2)	配管本体	_	1407
雜用水系配管(DW- 006R2)	配管本体	_	1319
タービン補機冷却水 系配管(TCW- 001R2)	配管本体	_	1245

評価部位は円形の一様断面であることから,水平地震動の方向ごとに最大応力点が異なる。したがって,水平2方向の地震力を組み合わせた場合でも水平2方向入力の影響は軽微である。  $\times 1$ 

入力の影響は軽微である。
※2 鉛直方向荷重の影響が支配的であるため、水平方向地震動は荷重条件として考慮していない。したがって、水平2方向入力の影響はない。
※3 水平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、最大応力発生部位は変わらない。したがって水平2方向入力の影響は軽微である。
(詳細はKK7補足-024「工事計画に係る説明資料(耐震性に関する説明書)資料4 水平2方向及び鉛直方向地震力の組合せに関する検討について」参照。)
補足4 ピーク応力の算出方法について

ここでは、代表設備(クラス1配管のうち地震+地震以外の疲れ累積係数UFが最 大となる配管モデル RHR-PD-2)のピーク応力算出方法について説明する。 地震時のピーク応力算出フローを図 補4.1に、算出方法を以下に示す。



① 地震応答解析によるモーメント算出

RHR-PD-2の地震応答解析(3次元はりモデルを用いたスペクトルモーダル解 析)を実施し, RHR-PD-2に生じるモーメントを算出する。この地震応答解析か ら得られたモーメントを表 補4.1に示す。

表 補4.1 地震応答解析から得られたモーメント (N・mm)

	Mx	My	Mz
慣性力			
相対変位			

② 一次+二次応力およびピーク応力の算出

表 補4.1に示すモーメントにより算出した一次+二次応力 S_n及びピーク 応力 S_pは以下による。(JEAG4601-1987 (6.6.2-22), (6.6.2-25))



一次+二次応力及びピーク応力の算出で用いている記号は以下の通り。

$\mathbf{S}_{n}$	:一次+二次応力	(MPa)

S_p : ピーク応力(MPa)

## K₂, C₂ : 応力係数(JSME設計・建設規格(2005/2007) PPB-3812.3)

- M_{is}
   :表 補4.1より生じるモーメントの全振幅(モーメントの各 方向を SRSS) (N・mm)
- Z : 管の断面係数(mm³)

③ 割増し係数 Ke の算出

②にて求めた一次+二次応力 S_nが3S_m以上となるため、割増し係数 Ke を算出する。当該配管はJSME設計・建設規格(2005/2007)PVB-3315(2) a.(b)の場合に該当するため、割増し係数 Ke は以下の通りとなる(JSME設計・建設規格(2005/2007)PVB-84)。

$$Ke = Ke^{s} = 1 + (q - 1)\left(1 - \frac{3S_m}{S_n}\right)$$
$$=$$

割増し係数 Ke の算出で用いている記号は以下の通り。

$\mathbf{S}_{m}$	: 最高使用温度(302℃)における設計応力強さ(MPa)
q	:JSME設計・建設規格(2005/2007)表 PVB-3315-1 のう
	ち RHR-PD-2 の材料である炭素鋼の値

④ 繰返しピーク応力強さの算出

ピーク応力 S_p及び割増し係数 Ke を用い,繰返しピーク応力強さ Sl は以下の通りになる。(J S M E 設計・建設規格(2005/2007)PVB-82)



繰返しピーク応力強さの算出で用いている記号は以下の通り。

Sl:繰返しピーク応力(温度補正前)(MPa)

Sl':繰返しピーク応力(温度補正後)(MPa)

E:最高使用温度(302℃)における縦弾性係数(MPa)

補足5 多方向入力を対象とした等価繰返し回数算定方法について

1. はじめに

本資料は多方向入力を対象とした等価繰返し回数算定方法についてまとめたものである。

本内容は電共研「新規制基準対応を踏まえた機器・配管系評価方法に関する研究」 (平成29年3月)にて検討されており、2項にて電共研における成果を示し、3 項にて柏崎刈羽7号機において多方向入力時に各方向の等価繰返し回数の最大値 を用いることは妥当であることを示すものである。

3. 柏崎刈羽7号機における多方向入力を対象とした等価繰返し回数算定方法に ついて

2.2.2項において2方向同時入力の結果について纏めているが、下記理 由により3方向同時入力に対しても同様に各方向の等価繰返し回数の最大値を 用いることは妥当であることが言える。

補足6 柏崎刈羽7号機 等価繰返し回数の保守性について

1. はじめに

柏崎刈羽7号機の今回工認では一律に設定する等価繰返し回数(Ss:200回, Sd:200回)の設定を行っている。この設定の保守性について説明する。

2. 検討事項

本資料では以下項目を検討し、柏崎刈羽7号機の一律に設定する等価繰返し回数の設定の保守性を示す。

(1) 等価繰返し回数算出パラメータの比較(3.参照)

(2) 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理(4.参照)

(3) 柏崎刈羽7号機の疲労評価に含まれる保守性の整理(5.参照)

3. 等価繰返し回数算出パラメータの比較

本文3.(2)にて説明している等価繰返し回数の算出に用いるパラメータについて先行プラントと比較した結果を表 補6.1に示す。

表 補6.1より,先行と同等か,又は保守的に設定していることを確認した。 ④-3は先行プラントと比較し差異があることを確認したが,柏崎刈羽7号機が 有する地震動の特性を踏まえた保守性を4.にて検討する。

パラメータ	柏崎刈羽7号機	先行プラント (東海第二)	差異理由
①ピーク応力	1471MPa	1471MPa	差異なし。
②固有周期	全固有周期	全固有周期	差異なし。
③対象床面 (質点)	全床面 (質点)	【原子炉建屋に設置された機 器・配管系】 全床面(質点) 【原子炉格納容器,原子炉圧力 容器等大型機器】 代表設備の設置床面	先行の代表性を持たせた床面 (質点)を対象とする代わり に,柏崎刈羽 7 号機は工認添付にて耐震条件を作成する 全床面 (質点)を対象としている。
<ul> <li>④-1</li> <li>地震動</li> <li>(基準地震動 S s</li> <li>の種類)</li> </ul>	基準地震動Ss(Ss-1,2, 3,4,5,6,7,8)の全 8波を考慮。	基準地震動Ss(Ss-D, 1 1, 12, 13, 14, 21, 22, 31)の全8波を考慮。	差異なし。
<ul> <li>④-2</li> <li>地震動</li> <li>(基準地震動Ss</li> <li>の等価繰返し回数</li> <li>の算出用)</li> </ul>	基準地震動Ss1回分に加えて NCO及び弾性設計用地震動 Sdの1/3倍した地震動5回分 考慮。	基準地震動S s 1 回分を考慮。	柏崎刈羽7号機は米国の知見を参考に,弾性設計用地震動Sdの1/3倍した地震動5回分を,本来考慮すべき基準地震動Ss1回分に対して追加している。また,過去に経験したNCOも追加する。

表 補6.1 柏崎刈羽7号機 一律に設定する等価繰返し回数算出パラメータの整理

パラメータ	柏崎刈羽7号機	先行 (東海第二)	差異理由
<ul> <li>④-3</li> <li>地震動</li> <li>(弾性設計用地震</li> <li>動Sdの設定)</li> </ul>	基準地震動Ssの等価繰返し 回数と同じ等価繰返し回数を 用いる。	弾性設計用地震動Sdの発生 回数は基準地震動Ssより発 生頻度が高いため弾性設計用 地震動Sd2回分を考慮。	柏崎刈羽7号機では,基準地震動Ssの等価繰返し回数 を用いることで,ピーク応力,算出用地震動(Ss×1回 +(1/3)Sd×5回+NCO)で保守性を持たせている。 なお,基準地震動Ssによる疲れ累積係数UFが大きい 設備に対し,個別に設定する等価繰返し回数を設定する ことで疲れ累積係数UFが0.5程度となることを確認し ている(補足6.5参照)。このため,弾性設計用地震動 Sdによる疲れ累積係数UFは,基準地震動Ssによる 疲れ累積係数UFより小さくなることを考えると,先行 プラントと同様に概ね弾性設計用地震動Sd2回分の耐 震性を有していると考えられる。
⑤減衰定数	0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0(%)	0.5,1.0(%)	等価繰返し回数の算出を網羅的に実施するため,機器・配 管系の設備評価によく用いられる8減衰を用いる。
⑥設計疲労線図	炭素鋼,低合金鋼および高張力 鋼	炭素鋼,低合金鋼および高張力 鋼	差異なし。
⑦材料物性の不確 かさ等の考慮	地震応答解析モデルの材料物 性の不確かさ等による影響を 考慮。	建屋剛性及び地盤物性の影響 検討を実施。	柏崎刈羽 7 号機では不確かさ等のケースを含めて設定している。

表 補6.1 柏崎刈羽7号機 一律に設定する等価繰返し回数算出パラメータの整理(続き)

4. 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理

等価繰返し回数を用いた疲労評価において,疲れ累積係数UFは以下の式にて算 出される。

$$UF = \frac{N_e}{N_o}$$

N_e: 地震による等価繰返し回数

N₀:疲労評価対象設備に発生するピーク応力での許容繰返し回数

本来であれば、等価繰返し回数 N_eと許容繰返し回数 N₀は同一の地震動を基に算 出した値を用いて疲労評価を行えば良いが、柏崎刈羽 7 号機では基準地震動が複数 (Ss-1~Ss-8)存在するため、基準地震動Ss-1~Ss-8の等価繰返し 回数を包絡した上で、一律に設定する等価繰返し回数を 200 回と定めている。

また,許容繰返し回数を算出するためのピーク応力を求める際にも,基準地震動 Ss-1~Ss-8の耐震条件(床応答スペクトル,最大応答加速度)を包絡させ た上で,応力計算を実施している。

したがって,疲れ累積係数UFは基準地震動ごとの組合せを考慮せず,全ての基 準地震動において最も厳しい(等価繰返し回数は大きい,許容繰返し回数は小さい) 値を用いて求めているため,疲れ累積係数UFは保守的な値となる。

そこで,柏崎刈羽7号機において許容繰返し回数及び等価繰返し回数が厳しくな る地震動を整理し,疲労評価における地震動の特性を踏まえた保守性を整理する。

## (1) 許容繰返し回数が厳しくなる(小さくなる)地震動

許容繰返し回数は各疲労評価対象設備のピーク応力により定まる値であり, ピーク応力が大きくなるほど,許容繰返し回数は小さくなる。設備評価におけ るピーク応力の大小は,その評価条件である地震力と比例することから,加速 度の大きい地震動を確認する。疲労評価対象設備が多く設置されている原子炉 建屋の最大応答加速度及び一部の床応答スペクトルを表 補6.2及び図 補 6.1に示す。その結果,いずれも基準地震動Ss-1及びSs-2が支配的 であることが確認できた。

また、本文3.(3)に記載の通り等価繰返し回数に対して支配的な地震動は Ss-3系であるが、基準地震動Ss-3の最大応答加速度は、基準地震動S s-1及びSs-2より1~4割程度小さくなっている。仮にこの割合をピーク 応力1471MPaに対して適用し、設計疲労線図より許容繰返し回数を求めると、 基準地震動Ss-1及びSs-2に対し基準地震動Ss-3の許容繰返し回 数は1.2~3.4倍になる。

			最大応答加速度(×9.80665m/s ² )×1.0																
構造物名	質点 番号	標咼 T. M. S. L. (m)	Ss	-1	Ss	-2	Ss-3		Ss	Ss-4		Ss-5		-6	Ss-7		Ss-8		包絡値
		(11)	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	NS	EW	
	1	49.700	1.81	1.69	1.12	1.48	1.11	1.04	0.81	0.93	0.69	1.04	0.83	0.95	0.69	1.20	1.48	1.38	1.81
	2	38.200	1.25	1. 29	0.88	1.18	0.91	0.86	0.63	0.71	0.53	0.87	0.65	0.73	0.51	0.92	1.15	1.10	1.29
	3	31.700	1.12	1.05	0. 79	1.12	0.80	0.77	0.54	0.63	0.49	0. 79	0.56	0.65	0.45	0.82	1.03	0.97	1.12
	4	23. 500	0.95	0. 92	0.69	1.00	0. 70	0. 70	0.44	0.63	0.44	0. 70	0.46	0.67	0.40	0.71	0.94	0.92	1.00
	5	18.100	0.85	0.83	0.61	0.94	0.65	0.63	0.38	0.63	0.40	0.65	0.39	0.67	0.35	0.65	0.84	0.84	0.94
亦1 /P 建崖	6	12.300	0.76	0.79	0.54	0.86	0.61	0.61	0.33	0.62	0.36	0.60	0.33	0.66	0.30	0.61	0.74	0.76	0.86
	7	4.800	0.67	0. 70	0. 51	0.81	0. 58	0. 58	0.28	0.56	0.32	0. 53	0.28	0.60	0.29	0. 58	0.64	0.66	0.81
	8	-1.700	0.71	0.71	0.47	0.85	0.60	0. 58	0.26	0.50	0.30	0.51	0.29	0.54	0.27	0.57	0.57	0.58	0.85
	9	-8.200	0.60	0.60	0.46	0.74	0.64	0.63	0.28	0.45	0.27	0.51	0.31	0.48	0.26	0. 57	0.51	0.52	0.74
	10	-13.700	0.65	0.63	0.47	0.71	0.68	0.67	0.28	0.44	0.27	0.51	0.32	0.46	0.26	0.59	0.48	0.49	0.71

表 補6.2(1)基準地震動Ssごとの最大応答加速度(原子炉建屋の地震応答解析モデル:水平方向)

_____: 当該質点で最大となる地震動

(V-2-1-7「設計用床応答曲線の作成方針」p3-2に加筆)

						最大応答加速度(×	9.80665m/s ² )×1.0				
構造物名	質点 番号	標局 T. M. S. L. (m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss=6	Ss-7	Ss-8	包絡値
		(11)	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	鉛直	
	1	49.700	0. 98	0.63	0.67	0. 49	0. 48	0.51	0. 49	0.37	0. 98
	2	38.200	0.95	0.61	0.63	0.46	0. 47	0. 48	0. 48	0.32	0.95
网子标准品	3	31.700 0.91		0.60	0.62	0. 44	0.46	0.46	0.46	0.29	0.91
	4	23. 500	0.89	0. 59	0.61	0. 43	0. 45	0. 45	0. 45	0.28	0.89
	5	18.100	0.87	0. 58	0.61	0. 42	0. 44	0. 43	0. 43	0.27	0.87
亦于 <i>州</i> "建屋	6	12.300	0.85	0. 57	0.60	0. 40	0. 43	0. 43	0. 42	0.25	0.85
	7	4.800	0.83	0.54	0.60	0.39	0.42	0.42	0.39	0.24	0.83
	8	-1.700	0.80	0. 52	0.60	0. 39	0. 41	0. 41	0.37	0.25	0.80
	9	-8.200	0. 79	0.50	0.60	0. 38	0. 40	0. 39	0.35	0.26	0.79
	10	-13.700	0. 79	0.50	0.60	0. 38	0. 40	0. 39	0.35	0.26	0.79

表 補6.2(2) 基準地震動Ssごとの最大応答加速度(原子炉建屋の地震応答解析モデル:鉛直方向)

: 当該質点で最大となる地震動

(V-2-1-7「設計用床応答曲線の作成方針」p3-3に加筆)



図 補6.1(1)原子炉建屋の床応答スペクトル

1.0

0.5

4.0

2.0

0.0

0.1

(c)

0.2

^{固有周期[s]} 鉛直方向

(T.M.S.L.49.700m, 減衰 1.0%)



(2) 等価繰返し回数が厳しくなる(大きくなる)地震動

基準地震動Ss-1~3の解放基盤表面における加速度時刻歴波形を図 補 6.2に示す。また,基準地震動Ss-1~Ss-8の継続時間を表 補6.3 に示す。

今回工認の等価繰返し回数の算出に用いるピーク応力法は,時刻歴波形の最 大値に対応するピーク応力を仮定して,等価繰返し回数の算出を行う手法であ る。この手法の特徴から,地震動波形の加速度振幅の最大値は等価繰返し回数 の算出に大きな影響を与えないと考えられる。一方で,最大加速度振幅に近い 加速度振幅が多く,加えて,継続時間が長い地震動が等価繰返し回数を大きく 算出すると考えられる。

図 補6.2より,基準地震動Ss-3の最大加速度振幅は基準地震動Ss -1及びSs-2と比べて小さいものの,最大加速度振幅に近い加速度振幅が 多く続く波形である。更に,地震動のうち等価繰返し回数算出に有意な影響を 与える主要な地震動が続く時間は基準地震動Ss-3が基準地震動Ss-1 及びSs-2と比べて長い波形となっている。

全 8 波の地震動の等価繰返し回数の最大値を地震応答解析モデル毎に整理 した結果を表 補6.4に示す。表よりSs-3系の地震動が最大の回数とな っており、この回数を基に一律に設定する等価繰返し回数を 200 回としてい る。

ここで、(1)の結果から、許容繰返し回数が厳しくなる地震動は基準地震動 Ss-1及びSs-2であるため、それらの地震動の等価繰返し回数を一律に 設定する等価繰返し回数 200 回と比較すると、 $0.2 \sim 0.8$  倍ほどの小さい値とな る。このため、地震動毎に見れば一律に設定する等価繰返し回数は十分に保守 的に設定されている。





(b) Ss-1V

(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p157より抜粋)
 図 補6.2(1) 基準地震動Ss-1の加速度時刻歴波形(大湊側)







時間(秒)





時間(秒)

(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p159より抜粋)
 図補6.2(2) 基準地震動Ss-2の加速度時刻歴波形(大湊側)





(V-2-1-2「基準地震動Ss及び弾性設計用地震動Sdの策定概要」p160より抜粋)
 図補6.2(3) 基準地震動Ss-3の加速度時刻歴波形
 (荒浜側と大湊側で共通)

	継続時間 (sec)
S s - 1	32
S s - 2	108
S s - 3	74
S s - 4	127
S s - 5	127
S s - 6	149
S s - 7	148
S s - 8	20

表 補6.3 解放基盤表面における基準地震動Ssの継続時間

表 補6.4 地震応答解析モデルの地震動ごとの等価繰返し回数の最大値(基本ケース)

	(地震応答解析モデル毎に減衰定数・方向・	・算出点を包絡した最大の回数)
--	----------------------	-----------------

	Ss-1×1	$Ss-2 \times 1$	Ss-3×1	$Ss-4 \times 1$	$Ss-5 \times 1$	$Ss-6 \times 1$	$Ss-7 \times 1$	$Ss-8 \times 1$	一律に
	+	+	+	+	+	+	+	+	設定する
地震応答解析モデル	$1/3$ Sd- $1 \times 5$	$1/3$ Sd- $2 \times 5$	$1/3$ Sd- $3 \times 5$	$1/3$ Sd- $4 \times 5$	$1/3$ Sd- $5 \times 5$	$1/3$ Sd- $6 \times 5$	$1/3$ Sd- $7 \times 5$	$1/3$ Sd- $8 \times 5$	等価繰返
	+	+	+	+	+	+	+	+	し回数
	NCO								
原子炉建屋の									
地震応答解析モデル									
大型機器系の									
地震応答解析モデル									
炉内構造物系の									
地震応答解析モデル									200
タービン建屋の									200
地震応答解析モデル									
コントロール建屋の									
地震応答解析モデル									
廃棄物処理建屋の									
地震応答解析モデル									

(3) 柏崎刈羽7号機の地震動の特性を踏まえた保守性の整理

(1)(2)より確認した基準地震動Ss-1,Ss-2及びSs-3におけ る等価繰返し回数及び許容繰返し回数の大小関係と、疲れ累積係数UF(= $N_e$  $/N_0$ )の算出における今回工認の疲労評価手法を表 補6.5に示す。

許容繰返し回数を小さくする地震動が $S_s - 1$ 及び $S_s - 2$ であり,等価繰返し回数を大きくする地震動が $S_s - 3$ である。

		· • • • • • • • • • • • • • •	
	今回工認における 疲労評価手法	S s - 1 及び S s - 2 を用いて 疲労評価	S s – 3を用い て疲労評価
等価繰返し	大: S s - 3 が支配的 (一律に設定する等価繰返し回数 200 回)	小	大
等価繰返し 回数(N _e )	$1^{st}$	$0.2{\sim}0.8^{*}$	1*
許容繰返し	小: S s - 1 及び S s - 2 が支配的 (設計用地震力 I 又は II に基づき算出)	小	大
凹剱(IN0)	1**	1*	$1.2 \sim 3.4^{*}$
疲れ累積係数	1*	$0.2 \sim 0.8^{*}$	$0.3 \sim 0.9^{*}$
$(UF = N_e / N_0)$	(=1/1)	(= 0.2~0.8 / 1)	(= 1/ 1.2~3.4)

表 補6.5 各基準地震動と今回工認における繰返し回数の整理

※:今回工認における各値を1とした場合の基準地震動Ss-1, Ss-2及びSs-3における割合

基準地震動Ss-3にて疲労評価を実施した場合,(1)より疲れ累積係数 UFの分母である許容繰返し回数が 1.2 倍~3.4 倍ほどになり疲れ累積係数U Fが小さく算出される。

基準地震動Ss-1及びSs-2にて疲労評価を実施した場合,(2)より 疲れ累積係数UFの分子である等価繰返し回数が 0.2~0.8 倍ほどになり疲れ 累積係数UFが小さく算出される。また,この保守性の概要を図 補6.3に 示す。

以上より、今回工認においては、許容繰返し回数が厳しくなる地震動は基準 地震動Ss - 1及びSs - 2であるが、一律に設定する等価繰返し回数は、等 価繰返し回数の観点で支配的となるSs - 3系による回数を基に定めている ことから保守的な設定と言える。



- 一律に設定する等価繰返し回数を用いる疲労評価に含まれる保守性について 一律に設定する等価繰返し回数を用いる疲労評価対象設備のうち疲れ累積係数 UFが大きく疲労評価が厳しい設備について,個別に設定する等価繰返し回数を設 定することにより、十分な裕度を有しているか確認する。
  - 5.1 検討対象設備の抽出

今回工認の疲労評価対象設備のうち,熱+地震及び地震による疲れ累積 係数UFが最も大きくなる疲労評価対象設備を代表として抽出する。表 補6.6のとおり,熱+地震による疲れ累積係数では残留熱除去系配管 (RHR-PD-2),及び地震による疲れ累積係数では所内温水系配管(HWH-R2F-5)が最大となる。

表 補6.6 疲れ累積係数が最大となる疲労評価対象設備

ケース	設備名称	ー律に設定する 等価繰返し回数	疲れ累積係数UF	
<ol> <li>1.熱+地震で</li> <li>最大のケース</li> </ol>	残留熱除去系配管 (RHR-PD-2)	200 回	U+US s 0.6413 (US s 0.6350)	
<ol> <li>2. 地震で</li> <li>最大のケース</li> </ol>	所内温水系配管 (HWH-R2F-5)	200 回	USs 0.9091	

5.2 個別に設定する等価繰返し回数の設定による疲れ累積係数UFの再計算 抽出した疲労評価対象設備について,個別に設定する等価繰返し回数を 設定し,疲れ累積係数UFの再計算を行った結果を表 補6.7に示す。

表	補6.	7	疲れ累積係数UFの再計算結果
1	im O.		

ケース	設備名称	個別に設定する 等価繰返し回数	疲れ累積係数UF**
1. 熱+地震で	残留熱除去系配管	160 回	U+US s 0.5143
最大のケース	(RHR-PD-2)	100 凹	(USs 0.5080)
2. 地震で	所内温水系配管	00 回	USs 0.3637
最大のケース	(HWH-R2F-5)	00 巴	

※ 疲れ累積係数UFの再計算は,再計算前の疲れ累積係数UFと一律 に設定する等価繰返し回数200回と個別に設定する回数の比率を用 いて算出した。 表 補6.7に示す通り、代表として抽出した疲労評価対象設備の工認 耐震計算書に記載される疲れ累積係数UFは許容値1に対して余裕が少 ないが、等価繰返し回数を個別に設定して疲れ累積係数UFを再計算する と許容値1に対して十分な裕度を有していることを確認した。

6. まとめ

柏崎刈羽 7 号機の等価繰返し回数算出パラメータについて先行プラントと比較し,弾性設計用地震動Sdの回数を除きほぼ同等であることを確認した。

また,柏崎刈羽7号機の地震動の特性を踏まえた保守性を整理し,疲労評価の観 点から許容繰返し回数及び等価繰返し回数が保守的な設定となっていることを確 認した。

加えて,今回工認において疲れ累積係数UFが最大となる疲労評価対象設備について十分な裕度を有していることを確認した。

以上より, 柏崎刈羽7号機における等価繰返し回数の設定は, 十分な保守性を有 していると考えられる。 補足7 ピーク応力の大きさと等価繰返し回数の関係について

「昭和 55 年度 耐震設計の標準化に関する調査報告書」にてピーク応力の設定値 が高くなるほど回数が大きくなる傾向となることが確認されている。本資料ではピー ク応力を大きく設定することで、等価繰返し回数が大きく算出され、保守的な設定に なることを簡単な例により説明する。

例として、図 補7.1 に示す応答波形を仮定する。



図 補7.1 1質点系の時刻歴応答

また,大小2つの応答波は同じ波形であるが,応答振幅が2対1の関係であると仮 定し,以下に示す最大ピーク応力を仮定し,それぞれの等価繰返し回数を算出する。 なお,図 補7.1の各ピーク応力は1質点系の応答波形に線形比例で設定した。

・A波 : 地震動に対する最大ピーク応力 1000MPa

・B波 : 地震動に対する最大ピーク応力 500MPa

各ピークにおける許容繰返し回数は,図 補7.2に示す炭素鋼の設計疲労線図に 算出し,その結果を図 補7.1に併せて示す。


(JSME設計・建設規格より抜粋)図 補7.2 設計疲労線図

これにより算出した等価繰返し回数は以下の関係となる。

A波の地震動の等価繰返し回数:  $\left[\frac{1}{230} + \frac{1}{390} + \frac{1}{860}\right] \times 230 = 1.86$ 

B波の地震動の等価繰返し回数:  $\left[\frac{1}{1430} + \frac{1}{2730} + \frac{1}{6990}\right] \times 1430 = 1.74$ 

上記の結果を比較すると、各ピーク応力における許容繰返し回数の差が等価繰返 し回数に影響するため、A波の等価繰返し回数が大きくなることが分かる。その許 容繰返し回数の差は、図 補7.2に示すとおり、ピーク応力が小さくなるにつれ て、設計疲労線図の勾配が緩やかになっているため、ピーク応力が低減するほど許 容繰返し回数の増加の割合が大きくなっていることによるものである。

以上より,ピーク応力を大きく設定することは,等価繰返し回数が大きく算出さ れるため,保守的な設定であると言える。 補足8 等価繰返し回数の算出に用いる地震動の考え方について

1. はじめに

今回工認の等価繰返し回数の算出に用いる地震動は,基準地震動SsとNCOに加え,弾性設計用地震動Sdを1/3倍した地震動5回分を追加している。本資料ではこの考え方を示す。

2. 米国における等価繰返し回数の考え方について

米国における等価繰返し回数設定に係る基準要求を補足8 別紙1に示す。補足 8 別紙1に示すとおり、NUREG-0800に定められた Standard Review Plan 3.7.3 Rev.4 では、プラント供用期間中にSSE^{*1}地震1回+OBE^{*2}地震5 回を想定した疲労評価を行うよう要求がある。地震1回あたりの繰返し回数として は、最低10回を考慮するよう要求がある(OBE地震がSSE地震の1/3以下に 設定される場合は、OBE地震による設計評価は不要となる。この場合、疲労評価 ではSSE地震1回+OBE地震5回の代わりにプラント供用期間中に想定され る地震としてSSE地震2回としてもよい。ここでの疲労評価におけるSSE地震 2回は、SSE地震1回+OBE地震5回と疲れ累積係数が等価であると考えられ る。SSE地震1回で最大振幅が10回繰り返すものとする。)。

- ※1 SSE(Safe-shutdown earthquake ground motion)は、その事象の発生時ならび発生後において、原子力プラントが安全停止状態を達成し、維持することが可能とする地震レベル。安全設計に係るSSC(建屋、システム、機器)はSSEにより機能喪失が生じないよう設計することが求められる。
- ※2 OBE (Operating basis earthquake ground motion) は、プラント運転中に起こりうる地震レベル。OBE地震を超過する地震発生時には、 プラント停止要求がある。
- 3. 今回工認の等価繰返し回数の算出に用いる地震動について

今回工認における等価繰返し回数の保守性の確保にあたり,基準地震動Ssに対して地震動を追加する。ここで追加する地震動として,2.の考え方を参考にOBE地震相当の地震動5回分を考える。

OBE地震に相当する地震動は、JEAG4601・補−1984 にある地震動 S0(地震動が発生した後の運転継続の観点から決められた地震動)が相当すると 考えられる(補足8 別紙2参照)。JEAG4601・補−1984 においては、こ の地震動S0はS1地震動の1/3 倍程度の大きさとされていることから、S1地震 動を弾性設計用地震動Sdに読替え弾性設計用地震動Sdを1/3倍した地震動を用いる。なお、表8.2-1のとおり弾性設計用地震動Sdの1/3倍は、原子炉非常停止信号である地震加速度大の設定値とほぼ同等となっている。

T.M.S.L. (m)	地震加 設定値	速度大 卣(gal)	(1/3)×S d 最大応答加速度 (gal)			
	水平	鉛直	水平	鉛直		
23.500	$185^{*}$		177	151		
-8.200	$120^{*}$	$100^{*}$	112	135		

表 補8.2-1 地震加速度大設定値及び弾性設計用地震動Sdの1/3倍の比較

※:「柏崎刈羽第7号機工事計画認可申請書 4. 計測制御系統施設

6 原子炉非常停止信号,原子炉非常停止に要する信号及び原子炉非常 停止信号を発信させない条件」より引用

以上より、米国SRPの考え方(SSE地震:1回分+OBE地震5回分を考慮 して疲労評価)を参考として、基準地震動Ssを1回分と既に経験したNCO地震 動に対し、弾性設計用地震動Sdの1/3倍の地震動を5回分考慮した地震動を用い て、今回工認の等価繰返し回数を設定する。

# 補足8 別紙1

# 等価繰返し回数に係る米国基準の整理

业民甘淮	地震発生回数及び応力振幅回数に関する考え方								
不回差毕	要求	解釈							
1 0 C F R 5 0	①SSE地震は、その事象の発生時なら	・SSE地震, OBE地震が							
Appendix S	びに発生後において,原子力プラン	定義されているが,その発							
米国連邦法であり、行政	トが安全停止に係るSSCs (建屋,	生回数の規定はない。							
法の一つ。	システム, 機器) はSSEにより機能	・OBE地震では, プラント							
10CFRは,エネルギ	喪失が生じないよう設計すること。	は運転継続する。(②)							
ー行政に係る事項を定め									
ている。	②OBE地震は、プラント運転中に起こ								
	りうる地震レベル。OBE地震を超								
	過する地震事象の発生時には, プラ								
	ント停止要求がある。								
SRP3.7.3	①プラント供用期間中, 少なくとも"S	・地震事象としてSSE地							
NUREG-0800に	SE地震1回+OBE地震5回"の発生	震時1回と、OBE地震5							
よって定められるNRC	を想定する規定がある。地震1回あたり	回を考慮した疲労評価の							
許認可活動における審査	の繰返し回数としては,最低 10 回を考	実施要求がある。(①)							
方針を示したもの。	慮する。								
当該章は、機器設計につ									
いて定める章。									
ASME	①ASMEは Desigin Specification で	・ O B E 地震は Service							
	与えられた設計条件に従い, 設計・評	Level Bに区分される(S							
	価を行う手法を定めた民間規定であ	RP3.9.3) ことから, 他							
	ることから, 地震回数, 地震強度に対	の過渡事象と同列に並べ							
	する要求は無い。	て,疲労評価を実施する。							
	②一方, Service Level A,B の過渡事象								
	に対する疲労評価を実施し,疲れ累								
	積係数UFが 1 以下となることを								
	求めている。								

補足8 別紙2

÷

電気技術指針 原 子 **力** 編

# 原子力発電所耐震設計技術指針

重要度分類・許容応力編

JEAG 4601.捕-1984

# Ⅳ 地震動Soに対する耐震評価

#### 1. 概 要

発電用原子力設備の耐震A。及びAクラスの機器, 配管の耐震設計においては, 耐震設計審 查指針に規定された基準地震動S₁, S₂に加え, 地震動が発生した後の運転継続の観点から決め られた地震動S₀の導入が原子力安全評価特別委員会許容応力分科会にて提案された。なお,本 件に関しては, 今後とも検討が必要と考えられる。

ここで、地震動Soの大きさとしては、これを上回らない地震動が発生した場合であっても検 査することなく運転継続できる値を設定するとしている。

また,地震動S。に対する耐震評価が必要な場合の許容限界としては、これ以下の地震動が発 生しても原子炉を停止することなく運転を継続してゆくこととなるので、告示で規定された運 転状態Ⅰ、Ⅱに対する許容応力を限度とすることを原則としている。

本資料は、この地震動Soについての考え方をまとめたものであり、その大きさを適切な大き さに決めることにより、地震動Soと他の厳しい運転状態の荷重の組合わさった事象が、実際に 発生した場合のみに限り評価を行うことをあらかじめ決めておけば、設計段階においての地震 動Soに対する評価は原則として不要であることを述べている。 次の2項以降にその詳細を示す。

#### 地震動S。に対する耐震評価の考え方

地震動S₀については図IV-1に示すとおりその大きさが次のように決められる場合には設計 段階においては耐震評価は原則として不要となる。

171



(1) 地震動Soの大きさ

地震動S₀の加速度値は,建築基準法施行令(昭和34年政令第344号)に示された水平震度 (水平震度 C_Hと略記する)に相当する基準地震動の加速度値と設計に用いる同一地点におけ る複数の基準地震動S₁のうち最も大きい最大加速度の1/nの値の小さい方の値とする。 n は今後とも検討が必要であるが, 3.に示すように現在の耐震設件上の余裕から考えて, n = 3とする。

- 206 -

- (2) 理由
  - a、地震動Soの加速度値を水平震度CHに相当する基準地震動の加速度値以下と決めれば従 属事象として外部電源喪失,負荷喪失等は一応起りえないと考えられる。 (添付1参照)
  - b. 地震動Soを上記の値より大きい値に決めても水平震度Cn相当の地震の発生時には、プ ラントの安全機能の確認を要求される可能性が大きい。
  - c.また、地震動S₀の加速度値を基準地震動S₁の最大加速度値の1/n以下としなければ、地 震動S₀による応力が最高使用圧力と運転状態(圧力上昇の激しい運転状態を除く)の圧力 による応力状態の差の裕度の中に入り、かつ疲労についても余裕があるという3.の説明が 成り立たない。
- (3) 実際の地震動Soの加速度値の決め方に関する考え方 サイトにおける水平震度C_H相当の基準地震動は、50~60gal 程度と考えられる。 また、 最大加速度値が比較的小さいサイトでは基準地震動S₁として180galとなるが、n=3の場 合でもS₀ = 180/3=60galとなる。 これから地震動S₀の加速度値として全国一律に基

#### 3. 耐震A、及びAクラス機器の地震動S。に対する強度の検討

準地震動として60gal 等を決めておくことが望ましい。

(1) 序

本章では、耐震A。及びAクラス機器に地震動S。による荷重が加わる場合に発生する応 力を基準地震動S1、S2による荷重が加わった場合のものと比較検討することにより、地震動 S。を基準地震動S1の何分の1かのある程度以下に適切に設定すれば、基準地震動S1、S2 に対し耐震設計を行っている機器では地震動S。については設計段階における評価は不要で あることを示している。

- (2) 1次応力について
  - a. 耐圧部の場合

地震動S。は、基準地震動S:若しくは基準地震動S。と異なり、 プラント寿命中に、獲 度か生じると考えられる地震動であり、したがって、通常運転時に地震動S。が生じた場合 の応力は、設計条件の許容応力以下であることが望ましいわけであるが、それでも、地震 動S。による応力が常に加わっているわけではない。

一方,最高使用圧力は,耐圧部材にとって,まず第一に考慮しなければならない荷重で あり,これによって生じる応力は設計条件の許容応力以下であることが要求される。しか しながら,最高使用圧力が生ずるのは短時間の過渡状態などのごく一時期のみであり,通 常運転時の圧力は,最高使用圧力より低い値となっているのがふつうである。

したがって、地震動S。による応力、 最高使用圧力による応力、及び通常運転圧力によ る応力について、次のような二つの組合せを検討すればよいと考えられる。

(ケース1) 最高使用圧力による応力 ≦ 設計条件の許容応力

-207-

(ケース2) 通常運転圧力による応力

+ 地震動S。による応力 ≦ 設計条件の許容応力

したがって、次式が満されるならば、地震動Soは考慮しなくてもよいということができる。

最高使用圧力による応力 ≥ 通常運転圧力による応力

+地震動S。による応力 ……… ①

以下の検討においては、1次一般膜応力によって1次応力を代表させ、また、板厚方向 の応力は無視し、円周方向応力σ_t、軸方向応力σ_lのみを考え、以下の記号を用いる。

 $P_{D} =$ 最高使用圧力(kg/md)
 R = 容器の半径(mm)

  $P^* =$ 通常運転時圧力(kg/md)
 t = 容器の板厚(mm)

  $\sigma_{t1} = P_{D}$ による円周方向応力(kg/md)
  $\sigma_{t2} = P^*$ による円周方向応力(kg/md)

  $\sigma_{t2} = P^*$ による軸方向応力(kg/md)
  $\sigma_{l2} = P^*$ による軸方向応力(kg/md)

  $\sigma_{l3} =$ 地震動Soによる軸方向応力(kg/md)
 (a) 円筒形の耐圧部

 ①式を②の記号を用いて書き直すと,
  $\sigma_{t1} \ge \sigma_{l2} + \sigma_{l3}$ 

当該容器の1次一般膜応力について③式が満されていれば地震動S。の考慮は不要と なる。

さらに、 $P_D = P^*$ と仮定しても③式において $\sigma_{l\,2} = 0.5 \sigma_{11}$ となるので、③式は  $\sigma_{11} \ge 2 \sigma_{l3}$  ④

④式を図IV-2に示す。

図IV-2 円筒形の耐圧部について地震動S。考慮の要否を検討する図



-208 -

図Ⅳ-2には、実際の原子力発電用機器のいくつかの例が示されている。

この例から明らかなように実際には、④式は、十分な余裕をもって満されている。また、薄肉の(t/Rの小さな)機器ほど④式に対する制限が厳しい傾向がある。

したがって、あるプラントの耐震A。及びAクラス機器について地震動S。を設計上考 慮しなくてもよいことを示すには、そのプラントの耐震A。及びAクラス機器のうち、 t/Rの小さな順に2,3の機器について、図W-2の斜線部にあることを確認すれば十 分であると考えられる。

(b) 球形の耐圧部

①式を②の記号を用いて書き直すと,

原子力発電所において,球形の耐圧部に大きな地震荷重が加わる場合は極めてまれで ある。したがって,球形の耐圧部に大きな地震荷重が加わる場合には,その機器につい て,⑥式の成立をチェックすればよい。

b. 非耐圧部の場合

非耐圧部においては耐震設計によって板厚が決定される場合が多い。この場合には、IA と IIASの1次応力の許容値の比率を考えてみる必要がある。 表IV-1はいくつかの機器 の代表的な材料について、この比率を検討したものである。

表Ⅳ-1 地震動S。に対する許容値(設計条件・IA)と 基準地震動S1に対する許容値(ⅢAS)の比較

	材 質	Ⅰ _▲ の1次応力の 許容値 ①	■ _A Sの1次応力の許容値 ②	比 率 ②/①	
第1種容器	SQV2A	Pm:Sm = 18.8	$Pm: Min (Sy, \frac{2}{3}Su) = 35.0$	1.86	
第2種容器	S G V 49	Pm:S = 13.4	Pm:Min(Sy, 0.6Su)=27.0	2.01	
第3種容器	STPL 39	Pm:S = 9.8	Pm:Min(Sy. 0.6 Su)=21.0	2.14	
第1種支持 構 造 物	-	ft	1.5 ft	1.5	

表Ⅳ-1から明らかなように、基準地震動S,に対する1次応力の許容値は、地震動S。 に対する許容値のせいぜい2倍強であるため、基準地震動S」の大きさが地震動S。の大き さの3倍以上であるとすると基準地震動S,が設計に対して支配的である。

(3) 疲労について

a. 疲労については、応力値の違いによる許容繰り返し回数の差と共に、地震動そのものの 回数の差も考えなければならない。

表W-2は、告示の設計疲労線図をもとに作成したものであるが、地震動 $S_0$ が、基準 地震動 $S_1$ の $\frac{1}{2}$ 程度であれば、基準地震動 $S_1$ による応力(これは、1次+2次+ビーク応

- 209 -

力値で片振幅40kg/mlにも達するのは極めてまれなケースである。)に対する許容繰り返し 回数は、地震動Soに対する許容繰り返し回数に対し、はるかに支配的なことがわかる。

<b>基</b> 準	^且 地震動S ₁	地震	動 So	
応 プ (kg/mal	<ul> <li>         か容繰返し         )         回数, N₁ </li> </ul>	応力 (kg/md)	許容繰返し 回数,N。	$\frac{N_0}{N_1}$
1 100	$2 \times 10^{2}$	33.3	$5 \times 10^3$	25
2 80	$4  imes 10^2$	36,7	$9  imes 10^3$	23
3 60	$9 \times 10^2$	20	$2.8 \times 10^4$	31
4 40	$2.5 \times 10^{3}$	13.3	105	40
5 100	$4 \times 10^{2}$	33.3	$2.8  imes 10^4$	70
6 80	$8.5 \times 10^{2}$	26.7	$8 \times 10^4$	94
7 60	$2.2  imes 10^3$	20	$5 \times 10^{5}$	227
8 40	$1.3 \times 10^{4}$	13.3	00	00
	基準 応 7 (kg / ml 2 80 3 60 4 40 5 100 6 80 7 60 8 40	基準地震動S1           応力 (kg/ml)         許容繰返し 回数,N1           1         100         2×10 ² 2         80         4×10 ³ 3         60         9×10 ² 4         40         2.5×10 ³ 5         100         4×10 ² 6         80         8.5×10 ² 7         60         2.2×10 ³ 8         40         1.3×10 ⁴	基準地震動S ₁ 地震           応力 (kg/ml)         許容繰返し 回数,N ₁ 応力 (kg/ml)           1         100         2×10 ² 33.3           2         80         4×10 ³ 36.7           3         60         9×10 ² 20           4         40         2.5×10 ³ 13.3           5         100         4×10 ² 33.3           6         80         8.5×10 ² 26.7           7         60         2.2×10 ³ 20           8         40         1.3×10 ⁴ 13.3	基準地震動S ₁ 地震動S ₀ 応力 (kg/ml)         許容繰返し 回数,N ₁ 応力 (kg/ml)         許容繰返し 回数,N ₀ 1         100 $2 \times 10^2$ 33.3 $5 \times 10^3$ 2         80 $4 \times 10^2$ 36.7 $9 \times 10^3$ 3         60 $9 \times 10^2$ 20 $2.8 \times 10^4$ 4         40 $2.5 \times 10^3$ $13.3$ $10^5$ 5         100 $4 \times 10^2$ $33.3$ $2.8 \times 10^4$ 6         80 $8.5 \times 10^2$ $26.7$ $8 \times 10^4$ 7         60 $2.2 \times 10^3$ $20$ $5 \times 10^5$ 8         40 $1.3 \times 10^4$ $13.3$ $\infty$

表Ⅳ-2 基準地震動S₁地震動S₀による応力の許容繰り返し回数の比較 (基準地震動S₁:地震動S₀=3:1のとき)

参考(基準地震動S₁:地震動S₀=5:1のとき)

		基準地	a 震動 S ₁	地震	動 So	N
ケース		応 力 (kg/ma1)	許容繰返し 回数, N ₁	応力 (kg/mal)	許容繰返し 回数,N。	<u>N₀</u> N ₁
	1	100	$2 \times 10^2$	20	$2.8 \times 10^4$	140
炭素鋼	2	80	$4 \times 10^2$	16	$7 \times 10^4$	175
低合金鋼	3	60	$9 \times 10^{2}$	12	$2  imes 10^{5}$	222
	4	40	$2.5  imes 10^3$	8	106	400
	5	100	$4  imes 10^2$	20	$5 \times 10^5$	1250
オーステナイト系	6	80	$8.5  imes 10^2$	16	00	00
ステンレス 鋼	7	60	$2.2 \times 10^3$	12	00	00
	8	40	$1.3 \times 10^{4}$	8	00	00

注: "∞"は、告示の設計疲労線図では算定できないことを示す。

b. 地震動Soによる荷重と過渡状態の応力との重ね合わせの影響

aにおいては、地震動 S。を単独に考慮した場合について述べたが、 ここでは過激状態 と組合せる場合について述べる。

代表例として,原子炉圧力容器スカート部を考える。

-210-

図Ⅳ-3にスカート部の図を,図Ⅳ-4に考慮した過渡状態を示す。



図IV-3 支持スカート及び下鏡

図IV-4 熱サイクル(T1,T2:熱応力計算をする時間)



- 211 -

表W-3に応力計算結果を示す。ただし、表W-3の中の③項は、基準地震動 $S_1$ による応力である。表W-3から、過渡状態における応力は、熱応力が支配的であることがわかる。

今,表Ⅳ-3を参考にして,次のようなケースを考える。

(a) 地震を除いた応力変動値………0~30kg/md………120回

(b) (a)に地震動 S₀を加えた応力変動値 …… 0~31 kg/dd …… 120 回

ケース(a)に対する許容くり返し回数とケース(b)に対する許容くり返し回数にはほとんど 差はなく、共に5×10⁴回程度である。

したがって、過渡状態と地震動 S₀を重ね合わせた場合にも、一般には地震動 S₀の影響 は小さいと考えられる。

1				機	械的	荷重による応	カ	熱荷 よる	重に 応力	(1次+2次応力) 合 計	
/	1	1	Р	w	м	合 하	平均	Т	T2	$C_1 = T_1$ + P+W+M	$\begin{array}{c} \mathrm{C}_2 = \mathrm{T}_2 \\ + \mathrm{W} + \mathrm{M} \end{array}$
応力 評価	1 10	Æ	() () () () () () () () () () () () () (		۲	۲	۲	٢ - (1) - (1)	@-@+@+@		
		o,	4.0	-0.2	-0.6	3,2		-0.8	-3.8	- 2.4	- 4.6
	内	$\sigma_{I}$	-4.3	-0.8	-5.0	- 10.1		-28.0	11.0	- 38.1	5.2
-	图 例 外-	a,	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
(4)		σι	6.0	-0.2	0.6	6,4	$\sigma_t = 4.5$	17.0	-9.8	23.4	- 9,4
		$\sigma_l$	4.3	-0.9	-1.0	2.4	$a_1 = -3.9$	28.0	-11.0	30.4	- 12.9
	倒	a,	0.0	0.0	0.0	0.0	$\sigma_{f} = 0.0$	0.0	0.0	0.0	0.0
		d ₁	12.1	-0.1	-0.2	11.8		-2.0	2.0	9.8	1.7
	内	σ,	12.1	-0.4	-0.5	11.2		-2.0	2.0	9.2	1.1
	側	a,	-0.9	0.0	0.0	- 0.9	$\sigma_{t} = 11.8$	0.0	0.0	- 0.9	0.0
B		a	12.0	-0.1	-0.2	11.7	$\sigma_l = 11.2$	2.0	-2.0	13.7	- 2.3
	外側	σι	12.0	-0.4	-0.5	11.1	$\sigma_{\rm r} = -0.5$	2.0	-2.0	13.1	- 2.9
		a,	0.0	0.0	0.0	0.0		0.0	0.0	0.1	0.0

表IV-3 応力計算結果

(単位:kg/mf)

注: σ_t:円周方向応力

σ₁:軸方向応力

 $a_r$ : 半径方向応力

- 212 -

資料4

動的機能維持の詳細評価について

(新たな検討又は詳細検討が必要な設備の機能維持評価について)

目 次

1.	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	動的機能維持のための新たな検討又は詳細検討が必要な設備の検討方針・・・・・・・・・・	2
3.	動的機能維持のための新たな検討又は詳細検討が必要な設備の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	1 検討対象設備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	2 新たな検討又は詳細検討が必要な設備の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	3 抽出結果 ·····	5
4.	新たな検討が必要となる設備の動的機能維持評価について・・・・・・・・・・・・・・・・	6

別紙1 新たに評価項目の検討が必要な設備における動的機能維持の検討方針

1. はじめに

本資料では,実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈等における動 的機能保持に関する評価に係る一部改正(以下「技術基準規則解釈等の改正」という。)を踏ま えて,動的機能維持についての検討方針,新たな検討又は詳細検討が必要な設備の抽出及び検討 結果を示す。

実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈(P18)

第5条(地震による損傷の防止)

3 動的機器に対する「施設の機能を維持していること」とは、基準地震動による応答に対して、当該機器に要求される機能を保持することをいう。具体的には、当該機器の構造、動作原理等を考慮した評価を行うこと、既往研究で機能維持の確認がなされた機能確認済加速度等を超えていないことを確認することをいう。

耐震設計に係る工認審査ガイド(P28, 29)

4.6.2 動的機能

【審査における確認事項】

Sクラスの施設を構成する主要設備又は補助設備に属する機器のうち、地震時又は地震後 に機能保持が要求される動的機器については、基準地震動Ssを用いた地震応答解析結果の 応答値が動的機能保持に関する評価基準値を超えていないことを確認する。

【確認内容】

動的機能については以下を確認する。

(1)水平方向の動的機能保持に関する評価については、規制基準の要求事項に留意して、機器の地震応答解析結果の応答値が JEAG4601の規定を参考に設定された機能確認済加速度、構造強度等の評価基準値を超えていないこと。(中略)また、適用条件、適用範囲に留意して、既往の研究等において試験等により妥当性が確認されている設定等を用いること。

(2) 鉛直方向の動的機能保持に関する評価については、規制基準の要求事項に留意して、機器 の地震応答解析結果の応答値が水平方向の動的機能保持に関する評価に係る JEAG4601 の規 定を参考に設定された機能確認済加速度、構造強度等の評価基準値を超えていないこと。(中 略)また、適用条件、適用範囲に留意して、既往の研究等において試験等により妥当性が確 認されている設定等を用いること。 (3) 上記(1) 及び(2) の評価に当たっては、当該機器が JEAG4601 に規定されている機種、形式、 適用範囲等と大きく異なる場合又は機器の地震応答解析結果の応答値が JEAG4601 の規定を 参考にして設定された機能確認済加速度を超える場合(評価方法が JEAG4601 に規定されて いる場合を除く。)については、既往の研究等を参考に異常要因分析を実施し、当該分析に 基づき抽出した評価項目毎に評価を行い、評価基準値を超えていないこと。また、当該分析 結果に基づき抽出した評価部位について、構造強度評価等の解析のみにより行うことが困難 な場合には、当該評価部位の地震応答解析結果の応答値が、加振試験(既往の研究等におい て実施されたものを含む。)により動的機能保持を確認した加速度を超えないこと。

2. 動的機能維持のための新たな検討又は詳細検討が必要な設備の検討方針

動的機器の耐震性評価法は原子力発電所耐震設計技術指針JEAG4601-1991(以下JEAG4601という。)に従い実施するものとするが、JEAG4601で定める機能確認済加 速度(JEAG4601に定められた既往研究で機能維持の確認がなされた入力又は応答レベル) と機能維持評価用加速度との比較による評価法には適用範囲が定められている。

本資料では、JEAG4601に定められた機種、型式及び適用範囲から外れ新たな検討が必要な設備について、設備の抽出を行うとともに、既往の研究等を参考に地震時異常要因分析を実施し、当該分析に基づき抽出した評価項目の評価を行い、評価基準値を超えていないことを確認する。また、機能維持評価用加速度が機能確認済加速度を超えるため詳細検討が必要な設備について、設備の抽出を行うとともに、JEAG4601の基本評価項目の評価を行い、評価基準値を超えていないことを確認する。

なお,上記にて抽出した設備,評価部位について,構造強度評価等の解析のみにより行うこと が困難な場合には,当該評価部位の地震応答解析結果の応答値が,新たな加振試験により動的機 能維持を確認した加速度を超えないことを確認している。

- 3. 動的機能維持のための新たな検討又は詳細検討が必要な設備の抽出
- 3.1 検討対象設備の整理

耐震Sクラス並びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備より、動的機器を整理し、動的機能が必要な設備を検討対象設備とする。

3.2 新たな検討又は詳細検討が必要な設備の抽出方法

図1にて設備の抽出及び検討のフローを示す。機能維持評価用加速度がJEAG4601及 び既往の研究等*により妥当性が確認されている機能確認済加速度(At)以内であることの確 認を行い,機能確認済加速度を超える設備については詳細検討(基本評価項目の評価)が必要 な設備として抽出する。なお,弁についてはJEAG4601にて機能維持評価用加速度が機 能確認済加速度を超えた場合の詳細検討の具体的手順が定められているため,本資料の対象外 とする。 また,検討対象設備について,JEAG4601で定められた適用範囲と大きく異なる場合 は,解析による評価を実施するか否かにより,新たな検討(地震時異常要因分析,基本評価項 目の抽出,評価)が必要な設備,又は加振試験を実施する設備として抽出する。

上記を整理するために検討対象設備及び,新たな検討又は詳細検討が必要な設備の抽出のための情報としてJEAG4601に該当する機種名等を別表1に整理した。

注記*:電力共同研究「鉛直地震動を受ける設備の耐震評価手法に関する研究(平成10年 度~平成13年度)」



注記*:At 機能確認済加速度

図1 動的機能維持評価フロー

3.3 抽出結果

別表1をもとに図1にて新たな検討,詳細検討及び加振試験を実施する設備を抽出した結果 を表1に示す。

①詳細検討(基本評価項目の評価)

機能維持評価用加速度が機能確認済加速度を超え詳細検討が必要となる設備がないことを 確認した。

②新たな検討(地震時異常要因分析,基本評価項目の抽出,評価)

新たな検討として,地震時異常要因分析,基本評価項目の抽出,評価が必要となる設備は, 横形スクリュー式ポンプ(以下「スクリュー式ポンプ」という。)であり,対象として燃料 移送ポンプ及び第一ガスタービン発電機用燃料移送ポンプが該当する。

スクリュー式ポンプは,原子力発電耐震設計特別調査委員会で地震時機能維持評価につい て検討^{*1}された機器のうち,遠心式横形ポンプと類似であり,遠心式横形ポンプの地震時異 常要因分析及び評価項目を参考とすることが可能である。また,電共研*²において,スクリ ュー式ポンプの地震時異常要因分析及び評価項目の抽出を行っており,それらの検討を用い ることが可能である。

そのため、スクリュー式ポンプは、新たな検討として、上記検討を参考に地震時異常要因 分析、基本評価項目の抽出、評価を実施する。

注記*1 :動的機器の地震時機能維持評価に関する調査報告書(昭和62年2月) 注記*2 :動的機器の地震時機能維持の耐震余裕に関する研究(平成25年3月) ③加振試験

加振試験を実施する設備として以下の設備を抽出した。

○高圧代替注水系ポンプ

ポンプ形式はタービン駆動の横形多段遠心式だが,ポンプとタービンが一体となった設備で あり(図2参照),JEAG4601の適用機種と構造が異なることから加振試験を実施。詳 細は下記資料参照。

・KK7-補足-028-10-11

【高圧代替注水系ポンプの耐震性についての計算書に関する補足説明資料】

○ドレン移送ポンプ

ポンプ形式は電動機駆動の単段遠心式だが、ポンプと電動機が一体となった設備であり(図3参照),JEAG4601の適用機種と構造が異なることから加振試験を実施。詳細は下記 資料参照。

・KK7-補足-028-10-15

【ドレン移送ポンプの耐震性についての計算書に関する補足説明資料】

○第一ガスタービン発電機用ガスタービン(6,7号機共用),第一ガスタービン発電機(6,7号 機共用)

車両型設備であり(図4,5参照)解析による評価が困難なことから加振試験を実施。詳細は 下記資料参照。

・KK7-補足-028-10-16

【第一ガスタービン発電機の耐震性についての計算書に関する補足説明資料】

4. 新たな検討が必要となる設備の動的機能維持評価について

JEAG4601に定められた機能確認済加速度との比較による評価方法が適用できる機種の 範囲から外れ,新たに評価項目の検討が必要となる設備の動的機能維持評価について別紙1にて 説明する。

・別紙1:燃料移送ポンプ,第一ガスタービン発電機用燃料移送ポンプ

図2 高圧代替注水系ポンプ 構造図



図3 ドレン移送ポンプ 構造図

図4 第一ガスタービン発電機用ガスタービン 構造図

図5 第一ガスタービン発電機 構造図

			1011
機種名	設備名称	JEAG460 1の機種,型式, 適用範囲に該当 するか ○:該当 ×:否(新たな 評価加振試験に よる確認が必 要)	機能確認済加速 度(At)以下か 〇:Yes ×:No(詳細検 討が必要)
立形ポンプ	残留熱除去系ポンプ	0	0
	高圧炉心注水系ポンプ	0	0
	原子炉補機冷却海水ポンプ	0	0
横形ポンプ	燃料プール冷却浄化系ポンプ	0	0
	ドレン移送ポンプ	× (加振試験によ る確認)	_
	原子炉隔離時冷却系ポンプ	0	0
	復水移送ポンプ	0	0
	高圧代替注水系ポンプ	× (加振試験によ る確認)	_
	原子炉補機冷却水ポンプ	0	0
	燃料移送ポンプ	× (別紙1参照)	_
	第一ガスタービン発電機用燃料移送ポンプ	× (別紙1参照)	_
ポンプ駆動用 タービン	原子炉隔離時冷却系ポンプ用駆動タービン	0	0
電動機	燃料プール冷却浄化系ポンプ用電動機	0	0
	残留熱除去系ポンプ用電動機	0	0
	高圧炉心注水系ポンプ用電動機	0	0
	復水移送ポンプ用電動機	0	0
	ほう酸水注入系ポンプ用電動機	0	0
	原子炉補機冷却水ポンプ用電動機	0	0
	原子炉補機冷却海水ポンプ用電動機	0	0
	中央制御室送風機用電動機	0	0
	中央制御室再循環送風機用電動機	0	0
	中央制御室排風機用電動機	0	0
	・「「「「「「」」」の「「」」の「「」」の「「」」の「「」」の「「」」の「「」	0	0
	非常用ガス処理系排風機用電動機	0	0
	燃料移送ポンプ用電動機	0	0
	第一ガスタービン発電機用燃料移送ポンプ   用電動機	0	0

表1(1) 新たな評価項目の検討又は詳細検討が必要な設備の抽出結果

機種名	設備名称	JEAG460 1の機種,型式, 適用範囲に該当 するか ○:該当 ×:否(新たな評 価項目の検討が 必要)	機能確認済加速 度(At)以下か 〇:Yes ×:No(詳細検 討が必要)
ファン	中央制御室送風機	0	0
	中央制御室再循環送風機	0	0
	中央制御室排風機	0	0
	可燃性ガス濃度制御系再結合装置ブロワ	0	0
非常用ディー	ディーゼル機関	0	0
ビル光电波	調速装置及び非常調速装置	0	0
	発電機	0	0
往復動式 ポンプ	ほう酸水注入系ポンプ	0	0
制御棒	ボロンカーバイド型制御棒	0	○*
ガスタービン 発電機	第一ガスタービン発電機用ガスタービン	× (加振試験によ る確認)	
	第一ガスタービン発電機	× (加振試験によ る確認)	

表1(2) 新たな評価項目の検討又は詳細検討が必要な設備の抽出結果

注記*:地震応答解析結果から求めた燃料集合体変位が加振試験により確認された制御棒挿入機能 に支障を与えない変位に対して下回ることを確認

# 別表1 動的機能維持評価の検討対象設備の整理結果(1/5)

	動的機能維持	推持 動的機能維持	検討対象設備としての 抽出結果		JEAG46 機種/型:	01 式		1	At 確認	At 超え時の評価方法が J E A G 4 6 0 1 に規定されている設備	備考
施設区分/設備名杯	要求の有無	の確認方法	<ul> <li>○:検討対象とする設備</li> <li>一:検討対象でない設備</li> </ul>	機種	型式	容量 ()内は当該設 備の容量	方向	機能維持 評価用 加速度*	機能確認済 加速度	○:規定されている ×:規定されていない —:対象外	
原子炉本体										•	
核燃料物質の取扱施設及び貯蔵施設											
使用済燃料貯蔵槽冷却浄化設備											
燃料プール冷却浄化系											
燃料プール冷却浄化系ポンプ	有	JEAG4601 によろ確認	0	横形ポンプ	単段遠心式	~2400m ³ /h (250m ³ /h)	水平 鉛直	0.94 0.90	3.2 (軸直角方向) 1.4 (軸方向) 1.0	×	
		しょうしょう		電動機	横形ころがり 軸受機	$\sim$ 950kW (110kW)	水平 鉛直	0.94	4.7		
原子炉冷却系統施設	•				1				1	•	
原子炉冷却材再循環設備											
原子炉冷却材再循環系											
原子炉冷却材再循環ボンプ (インターナルボンプ:RIP)	無	_	_	_	_	_	_	_	_	_	動的機能維持の要求はないが、地震により 軸固着を生じないことを確認する。
原子炉冷却材の循環設備											
残留熱除去設備											
残留熱除去系	•	r	1		1	r			•	r	1
単の刺除土をポンプ	5	JEAG4601 による確認	AG4601 よる確認	立形ポンプ	ピットバレル形	~1800m ³ /h (954m ³ /h)	水平 鉛直	0.74	10.0	~	
残留熱脉玄赤小シノ	伯			電動機	立形すべり 軸受機	$\sim 2700 kW$ (540kW)	水平 鉛直	0.74	2.5	~	
格納容器圧力逃がし装置							20102	0.01	1.0		
ドレン教法ポンプ	+	加振試験					水平	3.16	3.4		ボンプ形式は電動機駆動の単段遠心式だ が, ポンプと電動機が一体となった設備で
1.0019121000	'H	による確認					鉛直	1.42	2.2		あり、JEAG4601の適用機種と構造 が異なることから加振試験を実施。
非常用炉心冷却設備その他原子炉	注水設備									•	
高圧炉心注水系											
				立形ポンプ	ピットバレル形	~1800m ³ /h (727m ³ /h)	水平	0.74	10.0	-	
高圧炉心注水系ポンプ	有	JEAG4601 による確認	0	雪動機	立形すべり	~2700kW	<u></u> 如直 水平	0.84	2.5	×	
				FE 30/1/X	軸受機	(1500kW)	鉛直	0.84	1.0		
原子炉隔離時冷却系	1				1						
		JEAG4601 による確認		横形ポンプ	多段遠心式	$\sim 700 \text{m}^3/\text{h}$ (188 $\text{m}^3/\text{h}$ )	水平	0.76	3.2 (軸直角方向) 1.4 (軸方向)	×	
原子炉隔離時冷却系ポンプ	有		1 O				鉛直	0.84	1.0		
				ポンプ駆動	RCIC	ノノノ P 田 川 寺に よる構造, 寸法の	水平	0.76	2.4		
				用タービン	ボンブ用	違いはほとんどな い。(135~740kW)	鉛直	0.84	1.0		

	動的機能維持	動的機能維持 の確認方法	検討対象設備としての 抽出結果 〇:検討対象とする設備 一:検討対象でない設備		JEAG46 機種/型:	01 式		A	it 確認	At 超え時の評価方法が J E A G 4 6 0 1 に規定されている設備	
旭武区刀/武洲石竹	要求の有無			機種	型式	容量 ()内は当該設 備の容量	方向	機能維持 評価用 加速度*	機能確認済 加速度	○ : 規定されている × : 規定されていない — : 対象外	備考
低圧代替注水系											
<i>1日本 20</i> 24 - 32 、 一	+	IEAG4601		横形ポンプ 単段遠心式	単段遠心式	$\sim 2400 \text{m}^3/\text{h}}{(125 \text{m}^3/\text{h})}$	水平 鉛直	0.89	<ol> <li>3.2 (軸直角方向)</li> <li>1.4 (軸方向)</li> <li>1.0</li> </ol>	-	
腹小移述小シノ	伯	による確認	0	電動機	横形ころがり 軸受機	$\sim$ 950kW (55kW)	水平鉛直	0.89	4.7	*	
高圧代替注水系	<b>.</b>				<b>.</b>						
高圧代替注水系ポンプ	有	加振試験 による確認	_	_	_	_	水平 鉛直	1.08 1.06		_	ポンプ形式はタービン駆動の横形多段遠 心式だが,ポンプとタービンが一体となっ た設備であり,JEAG4601の適用機 種と構造が異なることから加振試験を実
ほう酸水注入系											が出。
		LEAC4601		往復動式 ポンプ	横形	流量, 吐出圧力等ほ ぼ同一 (11 dm ³ /b)	水平	1.01	1.6		
ほう酸水注入系ボンブ	有	による確認	0	電動機	横形ころがり 軸受機	~950kW (45kW)	水平鉛直	1.01	4.7	- *	
低圧注水系											
残留熱除去系ポンプ						— (前郎	で整理	里済)			
原子炉冷却材補給設備											
補給水系											
復水移送ポンプ						— (前段	で整理	里済)			
原子炉補機冷却設備											
原于炉桶機伶却水糸	<b></b>	1			<b></b>	- 9400-3/1					
百乙后诸機込却セポンプ	<i></i>	J E A G 4 6 0 1	0	横形ポンプ	単段遠心式	$\sim 2400 \text{m}/\text{h}$ (A, B, D, E:1300m ³ /h) (C, E:800m ³ /h)	水平	0.82	<ol> <li>3.2 (軸直角方向)</li> <li>1.4 (軸方向)</li> <li>1.0</li> </ol>	~	
尿丁が惟陵市却水ホンフ	Ή.	による確認	0	電動機	横形ころがり 軸受機	~950kW (A, B, D, E:370kW)	水平鉛直	0. 75	4.7	^	
		LEAC 4601		立形ポンプ	立形斜流式	~7600m ³ /h (1800m ³ /h)	水平鉛直	0. 13 3. 49 0. 75	10.0		
原子炉補機冷却海水ポンプ	有	JEAG4601 による確認	0	電動機	立形すべり 軸受機	~2700kW (280kW)	水平鉛直	0. 95	2.5	×	
原子炉冷却材浄化設備											
計測制御系統施設											
制御材											
制御棒駆動系											
ボロンカーバイド型制御棒	有				地震応知	答解析結果の相対変位	量と制	制御棒の挿	「入性試験結果の比較	による確認	

## 別表1 動的機能維持評価の検討対象設備の整理結果(2/5)

# 別表1 動的機能維持評価の検討対象設備の整理結果(3/5)

	動的機能維持	動的機能維持	検討対象設備としての 抽出結果		JEAG46 機種/型詞	01 t		At	確認	At 超え時の評価方法が J E A G 4 6 0 1 に規定されている設備	
他放 <b>公</b> 刀/ 成開石 你	要求の有無	の確認方法	<ul> <li>○:検討対象とする設備</li> <li>一:検討対象でない設備</li> </ul>	機種	型式	容量 () 内は当該設 備の容量	方向	機能維持 評価用 加速度*	機能確認済 加速度	○ : 規定されている × : 規定されていない — : 対象外	備考
ほう酸水注入設備											
ほう酸水注入系											
ほう酸水注入系ポンプ (前段で整理済)											
<b>な射性廃棄物の廃棄施設</b>											
放射線管理施設											
放射線管理用計測装置											
換気設備											
中央制御室送風機		IEAG4601		ファン	遠心直結式	~2900m³/min (約 1667m³/min)	水平 鉛直	1.37 0.93	2.3 1.0	-	
(6,7号機共用)	伯	による確認	0	電動機	横形ころがり 軸受機	~950kW	水平 鉛直	1.37 0.93	4.7 1.0	~	
中央制御室再循環送風機	有 JEAG4 による	I E A G 4 6 0 1	0	ファン	遠心直動式	~2500m³/min (約 133m³/min)	水平 鉛直	1.27 0.91	2.6 1.0	-	
(6,7号機共用)		による確認	0	電動機	横形ころがり 軸受機	~950kW	水平 鉛直	1.27 0.91	4.7 1.0		
中央制御室排風機	4-	IEAG4601	0	ファン	遠心直動式	~2500m ³ /min (約 83m ³ /min)	水平 鉛直	平 1.37 直 0.93	2.6 1.0	-	
(6,7号機共用)	有	による確認	0	電動機	横形ころがり 軸受機 (□□ kW) が か 分 がり よ W) か		水平 鉛直	1.37 0.93	4.7 1.0	×	
原子炉格納施設											
圧力低減設備その他の安全設備											
原子炉格納容器安全設備											
格納容器スプレイ冷却系											
残留熱除去系ポンプ						— (前創	とで整理	1済)			
格納容器下部注水系											
復水移送ポンプ						— (前創	とで整理	1)			
代替格納容器スプレイ冷却系											
復水移送ポンプ						— (前即	とで整理	1済)			
サプレッションチェンバプールフ	水冷却系										
残留熱除去系ポンプ						—(前即	とで整理	1済)			
代替循環冷却系											
残留熱除去系ポンプ						— (前即	とで整理	1済)			
復水移送ポンプ						— (前創	とで整理	1済)			
ほう酸水注入系											
ほう酸水注入系ポンプ						— (前即	とで整理	1済)			
低圧代替注水系											
復水移送ポンプ						—(前創	とで整理	<b></b> 「 「 」 「 」			

	動的機能維持 要求の有無	動的機能維持 の確認方法	検討対象設備としての 抽出結果 ○:検討対象とする設備 -:検討対象でない設備	J E A G 4 6 0 1 機種/型式			At 確認		確認	At 超え時の評価方法がJEAG 4601に規定されている設備	
施設区分/設備名称				機種	型式	容量 ()内は当該設 備の容量	方向	機能維持 評価用 加速度*	機能確認済 加速度	■○ : 規定されている × : 規定されていない — : 対象外	備考
高圧代替注水系											
高圧代替注水系ポンプ						— (前身	とで整	理済)			
格納容器圧力逃がし装置	1										
ドレン移送ポンプ	送ポンプ     (前段で整理済)										
可燃性ガス濃度制御系											
可燃性ガス濃度制御系 再結合装置プロワ	右	JEAG4601 による確認	0	ファン	遠心直動式	~2500m³/min (255m³/min)	水半 鉛直	0.90	2.6 1.0	×	
	H.			電動機	横形ころがり 軸受機	$\sim$ 950kW (11kW)	水平 鉛直	0.90	4.7		
非常用ガス処理系											
				771	造入古姓士	$\sim 2900 { m m}^3/{ m min}$	水平	1.03	2.3		
非常田ガス加理系排圖機	右	J E A G 4 6 0 1	0	142	递心但病式	(2000m ³ /min) 鉛	鉛直	0.93	1.0	7	
9月前7月747723里元3月240成	.H	による確認	0	雷動機	横形ころがり	$\sim$ 950kW	水平	1.03	4.7	~	
				电动机效	軸受機	( kW)	鉛直	0.93	1.0		
その他発電用原子炉の附属施設											
非常用電源設備											
非常用発電装置											
非常用ディーゼル発電設備		I		1	1		1				
ディーゼル推問	+	JEAG4601 による確認	0	非常用ディ ーゼル発電 機	機関本体	$\sim 15500 \text{kW}$ (5295kW)	水平 鉛直	0.90	1.1 1.0	- ×	
アイーセル機関 有	有				ガバナ	UG形	水平 鉛直	0.90	1.8		
機関付清水ポンプ						ー (ディーも	ブル機	関に含む)		I	
空気圧縮機	無	_	_	_	_	_	—	_	_	_	ディーゼル機関は空気だめに貯留された 空気により始動することから,空気圧縮機 に地震時の動的機能維持の要求けない
				100-04-00		/ <b>–</b>	水平	1.41	_		JEAG4601の適用対象外(スクリュ
100 101 776 336 1° 5	有	JEAG4601 による確認	0	横形ホンプ	_	( 🗖 m°)	鉛直	1.11	-		ー式ホンフ)であることから新たな検討を 実施。
燃料移送ボンブ				and all take	構形ころがり	$\sim$ 950kW	水平	0.85	4.7	*	
				電動機	軸受機	(2.2kW)	鉛直	0.85	1.0		
発電機	有	JEAG4601 による確認	0	電動機	横形すべり 軸受機	$\sim 1400 \mathrm{kW}$ (—)	水平 鉛直	0.89	2.6	- ×	
代替交流電源設備											
第一ガスタービン発電機用 ガスタービン(6,7号機共用)	有	加振試験 による確認	—	—	—	—	水平 鉛直	0.69			車両型設備であり解析による評価が困難 なことから加振試験を実施。
第一ガスタービン発電機用 燃料移送ポンプ(6,7号機共用)	有	JEAG4601 による確認	0	横形ポンプ	—	$(3m^3)$	水平 鉛直	0.72	_		JEAG4601の適用対象外(スクリュ ー式ポンプ)であることから新たな検討を 実施
				電動機	横形ころがり 軸受機	~950kW (1.5kW)	水平 鉛直	0.72 0.80	4.7		
第一ガスタービン発電機 (6,7号機共用)	有	加振試験 による確認	—	_	_	_	水平 鉛直	0.69 0.71			車両型設備であり解析による評価が困難 なことから加振試験を実施。

### 別表1 動的機能維持評価の検討対象設備の整理結果(4/5)

施設区分/設備名称	動的機能維持 要求の有無	動的機能維持 の確認方法	検討対象設備としての 抽出結果 ○:検討対象とする設備 -:検討対象でない設備	J E A G 4 6 0 1 機種/型式			At 確認			At 超え時の評価方法がJEAG 4601に規定されている設備	
				機種	型式	容量 ()内は当該設 備の容量	方向	機能維持 評価用 加速度	機能確認済 加速度	○ : 規定されている × : 規定されていない — : 対象外	偏考
弁											
一般弁											
グローブ弁	有	JEAG4601 による確認	—	-			—	—	_	0	
ゲート弁	有	JEAG4601 による確認	—	_	-	-	—	—	_	0	
バタフライ弁	有	JEAG4601 による確認	—	_	_		—	_	_	0	
逆止弁	有	JEAG4601 による確認	—	_	_		—		—	0	
特殊弁											
主蒸気隔離弁	有	JEAG4601 による確認	—	_	_		—	_	_	0	
安全弁	有	JEAG4601 による確認	_	_	_		—	_	_	0	
制御棒駆動系スクラム弁	有	JEAG4601 による確認	_	_	_		—	_	_	0	

# 別表1 動的機能維持評価の検討対象設備の整理結果(5/5)

新たに評価項目の検討が必要な設備における動的機能維持の検討方針

1. はじめに

非常用ディーゼル発電設備燃料移送ポンプ及び第一ガスタービン発電機用燃料移送ポ ンプ(以下「燃料移送ポンプ」という。)の動的機能維持評価については,JEAG46 01に定められた機能確認済加速度との比較による評価方法が適用できる機種の範囲か ら外れることから,新たに評価項目の検討が必要となる。本資料では,燃料移送ポンプ の動的機能維持の検討方針を示す。

2. 評価項目の抽出方針

JEAG4601に定められた機能確認済加速度との比較による評価方法が適用でき る機種の範囲から外れた設備における動的機能維持の検討は,技術基準規則解釈等の改 正を踏まえて,公知化された検討として(社)日本電気協会 電気技術基準調査委員会の 下に設置された原子力発電耐震設計特別調査委員会(以下「耐特委」という。)により取 り纏められた類似機器における検討に基づき実施する。

耐特委での動的機能の評価においては,対象機種ごとに現実的な地震応答レベルでの 異常のみならず,破壊に至るような過剰な状態を念頭に地震時に考え得る異常状態を抽 出し,その分析により動的機能上の評価点を検討し,動的機能維持を評価する際に確認 すべき事項として,基本評価項目を選定している。

燃料移送ポンプについては、基本的な構造が類似している機種/型式に対する耐特委 での検討を参考に、型式による構造の違いを踏まえた上で地震時異常要因分析を実施し、 基本評価項目を選定して動的機能維持評価を実施する。動的機能維持評価のフローを図 1 に示す。なお、JEAG4601においても、機能維持評価の基本方針にて、地震時 の異常要因分析を考慮し、動的機能の維持に必要な評価のポイントを明確にすることと なっている。



図1 動的機能維持評価のフロー

地震時異常要因分析を検討するに当たり,燃料移送ポンプ及び参考とする機種/型式 を表1に示すとともに,図2に燃料移送ポンプを,図3に耐特委で検討され新たな検討 において参考とする設備の構造概要図を示す。また,主要仕様を表2に示す。

燃料移送ポンプは、容積式の横形ポンプであり、一定容積の液をスクリューにて押し 出す構造のスクリュー式ポンプである。一方、遠心式横形ポンプ(以下「遠心式ポンプ」 という。)はインペラの高速回転により液を吸込み・吐出するポンプであり、内部流体の 吐出構造が異なるが、ケーシング内にて軸系が回転して内部流体を吐出する機構である こと、固定方法が、基礎ボルトで周囲を固定した架台の上に、駆動機器である横形ころ がり軸受の原動機とポンプが取付ボルトにより設置され、原動機からの動力を軸継手を 介してポンプ側に伝達する方式であること、主軸、軸受及びメカニカルシール部のクリ アランスにより地震荷重がメカニカルシール部には負荷されず、軸受を通してケーシン グに伝達される構造であることから、基本構造が同じといえる。前述より遠心式ポンプ を参考として、燃料移送ポンプの地震時異常要因分析を実施する。

なお,燃料移送ポンプについては,新規制基準により新たに動的機能要求が必要となり,評価する設備である。

新たな検討が必要な設備	機種/型式	参考とする 機種/型式
非常用ディーゼル発電設備燃料移送ポンプ	横形ポンプ <i>/</i> スクリュー式	横形ポンプ/ 単段遠心式
第一ガスタービン発電機用燃料移送ポンプ	横形ポンプ <i>/</i> スクリュー式	横形ポンプ/ 単段遠心式

表1 新たな検討が必要な設備において参考とする機種/型式



: 接液部

注記:スリーブ内に納められた主ねじと従ねじはかみ合って回転しており,ねじの1リー ドごとに作られる密閉される空間に入った流体は,ねじ面に沿って吐出側へ移動す る。

図2 燃料移送ポンプ構造概要図





図3 遠心式ポンプ構造概要図

		非常用ディーゼル発電設備	第一ガスタービン発電機用
		燃料移送ポンプ	燃料移送ポンプ
容量	m ³ /h/個	以上	3.0以上
吐出圧力	MPa	以上	_
揚   程	m	_	61.4以上
最高使用圧力	MPa	0.98	0.95
最高使用温度	°C	66	66
原動機出力	kw/個	2.2	1.5

表 2 スクリュー式ポンプの主要仕様
3. 動的機能維持評価の評価項目の抽出

燃料移送ポンプの動的機能維持評価の評価項目の抽出に当たっては,電力共通研究(以下「電共研」という。)で検討したスクリュー式ポンプに対する地震時異常要因分析を踏ま えて評価項目の抽出を行う。また,当該検討において参考とした耐特委での機種/型式に 対する評価項目を踏まえて検討する。動的機能維持評価のための評価項目の抽出フローを 図4に示す。



図4 動的機能維持評価のための評価項目の抽出フロー

3.1 スクリュー式ポンプの地震時異常要因分析による評価項目の抽出

電共研におけるスクリュー式ポンプの検討は,耐特委における遠心式ポンプ及び原子 力発電技術機構(以下「NUPEC」という。)における非常用DGの燃料供給ポンプに 対する異常要因分析結果(非常用ディーゼル発電機システム耐震実証試験(1992年3 月))を網羅するように,スクリュー式ポンプに対する地震時異常要因分析を行い,評価 項目を抽出している。図5に地震時異常要因分析の適用を示す。

電共研におけるスクリュー式ポンプの異常要因モード図を図6に,異常要因モード図 に基づき抽出される評価項目を表3に示す。



注記*:動的機器の地震時機能維持の耐震余裕に関する研究(平成25年3月)

図5 地震時異常要因分析の適用



図 6 スクリュー式ポンプの地震時異常要因モード図

	評価項目	異常要因
1	基礎ボルト (取付ボルト含む)	ポンプ全体系の応答が過大となることで,転倒モーメント により基礎ボルト(取付ボルトを含む)の応力が過大とな り損傷に至り,全体系が転倒することで機能喪失する。
2	支持脚	ポンプ全体系の応答が過大となることで,転倒モーメント により支持脚の応力が過大となり損傷に至り,全体系が転 倒することで機能喪失する。
3 4 5	摺動部 (③スリーブ④主ねじ ⑤従ねじのクリアラ ンス)	軸系(主)ねじの応答が過大となることで,軸変形が過大 となることによりスリーブと主ねじが接触し,摺動部が損 傷に至り回転機能及び移送機能が喪失する。
4	軸系(主ねじ)	軸応力が過大となり,軸が損傷することにより回転機能及 び移送機能が喪失する。
6	逃し弁	ケーシングの応答が過大となり,逃がし弁フランジ部が変 形し,油の外部漏えいに至る。 ただし,ポンプと逃し弁フランジ部が結合されており,剛 構造であることから変形は生じないこと,過度な地震慣性 力による誤作動が起こってもすぐに復旧し,ポンプを損傷 させないため,評価対象外とする。(添付1参照)
7	メカニカルシール	軸系(主)ねじの応答過大により軸変形に至りメカニカル シールが損傷することにより移送機能及び流体保持機能 が喪失する。
8	軸受	軸変形が過大となり,軸受が損傷することで回転機能及び 移送機能が喪失する。
9	原動機	原動機の応答が過大になり,原動機の機能が喪失することで,回転機能及び移送機能が喪失する。
10	軸継手	原動機の変形過大により軸受部の相対変位が過大となり, 軸継手が損傷することで回転機能が喪失する。
11)	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷す ることで移送機能及び流体保持機能が喪失する。

表3 スクリュー式ポンプ異常要因モード図から抽出した評価項目

3.2 耐特委で検討された遠心式ポンプの地震時異常要因分析による評価項目の抽出 燃料移送ポンプの評価項目の検討において、公知化された検討として参考とする耐特 委での遠心式ポンプの異常要因モード図を図7に、異常要因モード図から抽出される評 価項目を表4に示す。



* 駆動用タービンの場合も同様。また、増速機も含む。

図7 遠心式ポンプの地震時異常要因モード図

	評価項目	異常要因
1) 2	基礎ボルト(取付ボル ト含む),支持脚	ポンプ全体系の応答が過大となることで,転倒モーメント により基礎ボルト(取付ボルト含む)の応力が過大となり 損傷に至り,全体系が転倒することにより機能喪失する。 またポンプ全体系の応答が過大となることで,支持脚の応 力が過大となり損傷に至り,ポンプが転倒することにより 機能喪失する。
3	摺動部 (インペラとライナー リングのクリアラン ス)	軸変形が過大となり,インペラがライナーリングと接触す ることで損傷に至り,回転機能及び移送機能が喪失する。
4	軸	軸応力が過大となり,軸が損傷することにより回転機能及 び移送機能が喪失する。
5	メカニカルシール	軸変形が過大となり,メカニカルシールが損傷することに より流体保持機能が喪失する。
6	軸受	軸受荷重が過大となり,軸受が損傷することで回転機能及 び移送機能が喪失する。
7	原動機	原動機の応答が過大になり原動機の機能が喪失すること で,回転機能及び移送機能が喪失する。
8	軸継手	被駆動機軸と原動機軸の相対変位が過大となり, 軸継手が 損傷することで回転機能及び移送機能が喪失する。
9	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷することで移送機能及び流体保持機能が喪失する。
10	軸冷却水配管	冷却水配管の応答が過大となり,損傷することで軸冷却不 能に至り,回転機能が喪失する。

表4 遠心式ポンプ異常要因モード図から抽出した評価項目

3.3 燃料移送ポンプの評価項目

燃料移送ポンプの評価項目の抽出として,電共研におけるスクリュー式ポンプの要因 分析結果及び耐特委における遠心式ポンプの要因分析結果の整理結果を表5に示す。整 理の結果それぞれの評価項目は,スクリュー式ポンプの評価項目とほぼ同様であったが 構造の違いによる差異が見られた。構造の差異として抽出された評価項目は下記のとお りである。

- ・ 摺動部(スクリュー式ポンプ及び遠心式ポンプの両方で抽出された評価項目である が,構成部品が異なる。)
- ・軸冷却水配管*(スクリュー式ポンプの評価項目になく遠心式ポンプのみで抽出)
  - 注記*: 耐特委で検討された遠心式ポンプは,大型のポンプであり軸受としてすべ り軸受を採用していることから,軸受の冷却が必要となる。このため,地 震により軸冷却水配管の損傷に至ればポンプの機能維持に影響を及ぼすた め,軸冷却水配管を評価項目として抽出している。一方でスクリュー式ポ ンプは標準設計として,軸冷却水配管を有していない。軸冷却水配管は軸 受の冷却のため設置されるが,スクリュー式ポンプの軸受は内部流体で冷 却が可能であるため,軸冷却水配管は設置されていない。

	評価項目	異常要因
1)	基礎ボルト (取付ボルト含む)	ポンプ全体系の応答が過大となることで,転倒モーメント により基礎ボルト(取付ボルトを含む)の応力が過大とな り損傷に至り,全体系が転倒することで機能喪失する。
2	支持脚	ポンプ全体系の応答が過大となることで,転倒モーメント により支持脚の応力が過大となり損傷に至り,全体系が転 倒することで機能喪失する。
3 4 5	摺動部 (③スリーブ④主ねじ ⑤従ねじのクリアラ ンス)	軸系(主)ねじの応答が過大となることで,軸変形が過大 となることによりスリーブと主ねじが接触し,摺動部が損 傷に至り回転機能及び移送機能が喪失する。
4	軸系(主ねじ)	軸応力が過大となり,軸が損傷することにより回転機能及 び移送機能が喪失する。
6	メカニカルシール	軸系(主)ねじの応答過大により軸変形に至りメカニカル シールが損傷することにより移送機能及び流体保持機能 が喪失する。
7	軸受	軸変形が過大となり,軸受が損傷することで回転機能及び 移送機能が喪失する。
8	原動機	原動機の応答が過大になり,原動機の機能が喪失するこ とで,回転機能及び移送機能が喪失する。
9	軸継手	原動機の変形過大により軸受部の相対変位が過大となり, 軸継手が損傷することで回転機能が喪失する。
10	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷す ることで移送機能及び流体保持機能が喪失する。

表 5 燃料移送ポンプの評価項目

3.4 燃料移送ポンプの評価項目の検討及び評価結果

燃料移送ポンプの評価項目について,動的機能維持が必要な項目を下記の通り検討し, 選定結果及び各評価項目における選定基準値の設定を表6に,評価結果を表7及び表8 に示す。

また、評価の詳細はV-2-10-1-2-1-5「燃料移送ポンプの耐震性についての計算書」 及びV-2-10-1-2-2-2「第一ガスタービン発電機用燃料移送ポンプの耐震性についての 計算書」に示す。

① 基礎ボルト(取付ボルトを含む)の評価

スクリュー式ポンプは遠心式ポンプと同様に,基礎ボルトで固定された架台の上に, 駆動機器及び被駆動機器が取付ボルトにより設置されており,地震時に有意な荷重がか かることから動的機能維持の評価項目として選定する。

② 支持脚部の評価

支持脚部については、スクリュー式ポンプと遠心式ポンプとで構造に大きな違いはな く、高い剛性を有するためにケーシング定着部に荷重がかかる構造となっている。この ため、取付ボルト及び基礎ボルトが評価上厳しい部位であるため、取付ボルト及び基礎 ボルトの評価で代表できるため、計算書の対象外とする。

③④⑤ 摺動部の評価

摺動部の損傷の観点より、遠心式ポンプの検討におけるケーシングと接触して損傷す るライナーリング部の評価を行うのと同様に、スクリュー式ポンプにおける評価項目を 以下のとおり選定する。

スクリュー式ポンプのスクリュー部は,構造が非常に剛であり,地震応答増幅が小さ く動的機能評価上重要な部分の地震荷重が通常運転荷重に比べて十分小さいと考えら れる。また,スリーブ部については,ケーシング部に設置されている。

軸系(主ねじ)についてはラジアル軸受で支持されており、軸変形によりスリーブ部 と接触することで回転機能及び輸送機能が喪失に至ることが考えられるため、動的機能 維持の評価項目として選定する。

4 軸系の評価

スクリュー式ポンプは主ねじ及び従ねじを有する構造であり,一軸構造の遠心式ポン プとは軸の構造が異なるが,軸系の損傷によってポンプとしての機能を喪失することは 同様である。このため,スクリュー式ポンプにおいても,遠心式ポンプと同様に,軸応 力過大により軸損傷が発生しないことを確認するため,軸系の評価を動的機能維持の評 価項目として選定する。 ⑥ メカニカルシール

ポンプにおいてメカニカルシールの役割は流体の保持であり,その役割はスクリュー 式ポンプも遠心式ポンプも同じである。当該メカニカルシールが損傷することにより, ポンプの流体保持機能喪失につながるため,動的機能維持の評価項目として選定する。

⑦ 軸受の評価

ポンプにおいて、軸受の役割は回転機能の保持であり、その役割はスクリュー式ポン プも遠心式ポンプも同じである。当該軸受が損傷することにより、ポンプの機能喪失に つながるため、動的機能維持の評価項目として選定する。また、評価においては発生す る荷重としてスラスト方向及びラジアル方向の荷重を考慮して評価を行う。

⑧ 原動機の評価

スクリュー式ポンプの原動機は横向きに設置されるころがり軸受を使用する原動機 であり,耐特委で検討されている横型ころがり軸受電動機の適用範囲内であることから, 機能確認済加速度との比較により評価を行う。

⑨ 軸継手の評価

スクリュー式ポンプは、遠心式ポンプと同様に、軸受でスラスト荷重を受け持つこと から、軸継手にはスラスト荷重による有意な応力が発生しないため、計算書の評価対象 外とする。

⑩ ケーシングノズルの評価

柏崎刈羽原子力発電所第7号機で使用するスクリュー式ポンプの吸込,吐出部は直接 配管のフランジを接続する構造でありノズル形状を有さないため,計算書の対象外とす る。

評価項目	評価基準値(許容値)の設定
<ol> <li>基礎ボルト, ポンプ取付 ボルト,原動 機取付ボル ト</li> </ol>	支持機能の確保の観点から、運転状態Ⅳを基本として、通常材料の 実降伏点が設計値に対し余裕があることを考慮し、概ね降伏点以下 と同等とした値としてⅣASを許容値とした。
③④ 摺動部	主ねじとスリーブの接触により回転機能,移送機能が阻害されると いう観点から,主ねじとスリーブのクリアランスを許容値とした。
④ 軸	回転機能の確保の観点から,軸(主ねじ)の変形を弾性範囲内に留 めるようⅢ _A Sを許容値とした。
⑥ メカニカル シール	流体保持機能の確保の観点から,シール回転環の変位可能寸法を許 容値とした。
⑦軸受	回転機能の確保の観点から,メーカが推奨する許容面圧を許容値と した。
⑧ 原動機	回転機能,移送機能の確保の観点から,水平方向はJEAG460 1に記載の電動機(横型ころがり軸受機)の機能確認済加速度であ る4.7 [G],鉛直方向は1.0 [G]を許容値とした。

表6 評価基準値(許容値)の設定

評価部位	項目	応力分類	発生値	許容値	評価	
①-1 其碑式ルト	広力	引張 (MPa)			0	
	ر ب <u>ا</u> ر	せん断 (MPa)			0	
		引張 (MPa)	-		0	
①-2 ホンフ取付ホルト	応力	せん断 (MPa)			0	
①-2 百動機助付ボルト	亡士	引張 (MPa)			0	
①-3 原動機取刊 かルト	ルい /J	せん断 (MPa)			0	
④ 主ねじ	変位	— (mm)				
④ 軸	応力	せん断 (MPa)				
⑥ メカニカルシール	変位	— (mm)			0	
		⑦-1 ラジアル(原動機側) (MPa)			0	
⑦ 軸受*	面圧	⑦-1 ラジアル(負荷側) (MPa)			0	
		⑦-2 スラスト (MPa)			0	
② 百 動 继	加油座	水平 (×9.8m/s ² )	0.85	4.7	0	
	加坯皮	鉛直 (×9.8m/s ² )	0.85	1.0	0	

表7 非常用ディーゼル発電設備燃料移送ポンプ評価結果

注:①~⑦はV-2-1-7「設計用応答曲線の作成方針」に基づき,基準地震動Ssにより定 まる設計用最大応答加速度Ⅱ(1.0ZPA)[水平:1.41(×9.8m/s²),鉛直1.11

(×9.8m/s²)], ⑧は設計用最大応答加速度 I (1.0ZPA) で評価。

注記*:軸受が受ける荷重のうちラジアル荷重は原動機側及び負荷側の各軸質量,スラスト 荷重は軸系総質量を用いて算出

評価部位	項目	応力分類	発生値	許容値	評価
①-1 基礎ボルト	広力	引張 (MPa)			0
	ルレ <i>ン</i> J	せん断 (MPa)			0
		引張(MPa)			0
①-2 ホンク取付ホルト	応力	せん断 (MPa)			0
①-3 百動機取付ボルト	亡力	引張 (MPa)			0
	ル <u>い</u> ノJ	せん断 (MPa)			0
④ 主ねじ	変位	— (mm)			0
④ 軸	応力	せん断 (MPa)			0
⑥ メカニカルシール	変位	— (mm)			0
		⑦-1 ラジアル(原動機側) (MPa)			0
⑦ 軸受*	面圧	⑦-1 ラジアル(負荷側) (MPa)			0
		⑦-2 スラスト (MPa)			0
② 百動機	加油座	水平 (×9.8m/s ² )	0.72	4.7	0
◎ 示 對 / 茨	加坯皮	鉛直 (×9.8m/s ² )	0.80	1.0	0

表8 第一ガスタービン発電機用燃料移送ポンプ評価結果

注: V-2-1-7「設計用応答曲線の作成方針」に基づき,基準地震動Ssにより定まる設計 用最大応答加速度I(1.0ZPA)[水平:0.72(×9.8m/s²),鉛直0.80(×9.8m/s²)] で評価

注記*:軸受が受ける荷重のうちラジアル荷重は保守的に軸系総質量を用いて算出

## 逃がし弁における動的機能維持評価対象外の考え方について

1. 概要

非常用ディーゼル発電設備燃料移送ポンプ及び第一ガスタービン発電機用燃料移送ポン プの逃がし弁(以下「逃がし弁」という。)については,動的機能維持評価を不要として いる。以下に,逃がし弁が評価不要な理由を示す。

2. 逃がし弁の構造について

逃がし弁は、シート面に弁をばねで押付けており、ポンプの吐出圧力が逃がし弁のばね 荷重を上回った際に開き、吐出圧力が一定以上上昇しない構造となっている。また、逃が し弁はポンプ本体上部に横向きで取付けられている。

3. 動的機能維持評価項目について

逃がし弁における動的機能維持評価項目は,異常要因モード図から逃がし弁フランジ部 の変形による油の外部漏えいが上げられる。また,その他に地震慣性力により逃がし弁の 誤作動が考えられるが,誤作動により弁が開いても油が漏れないこと,一時的に油が吐出 側から吸込側へ流れるがポンプ内での循環であるためポンプへの損傷はないこと,地震慣 性力が無くなると弁が復旧し,通常運転状態へ戻ることから誤作動における動的機能維持 の評価は不要と考える。ただし,念のため地震慣性力による誤作動が起こり得るのか確認 する。

上記から逃がし弁の動的機能維持評価項目として対応となる以下の項目について,評価 対象外とする考え方を4項及び5項にて確認する。

- ・逃がし弁フランジ部の変形による油の外部漏えいについて
- ・逃がし弁の地震慣性力による誤作動について
- 4. 逃がし弁フランジ部の変形による油の外部漏えいについて

逃がし弁は、剛構造であるポンプのケーシングに一体となるようフランジで取り付けら れているため燃料移送ポンプと同様に剛構造となり、フランジ部の変形は生じないことか ら逃がし弁フランジ部の変形による油の外部漏えいは発生しないと考えられる。燃料移送 ポンプの構造概要を図1に示す。



図1 燃料移送ポンプ構造概要図

5. 逃がし弁の地震慣性力による誤作動について

弁の動的機能維持の評価においては、機能維持評価用加速度と機能確認済加速度との比較を行うが、JEAG4601に記載されている標準的な弁は縦向きに取付けられており、評価に使用する機能確認済加速度を横向きに取付けられている逃がし弁にそのまま適用することはできないと考える。そのため、逃がし弁においては水平方向の地震慣性力により作用する力と逃がし弁のばね力との比較により構造強度に問題が無いこと及び誤作動の有無を確認する。また、逃がし弁は燃料移送ポンプと同様に剛構造と考えられることから燃料移送ポンプの機能維持評価用加速度を使用する。

5.1 逃がし弁の動的機能維持について

逃し弁が開くのに必要な力が,地震により逃し弁に作用する水平方向の地震慣性力よ り大きいことを次式で確認する。

評価は,非常用ディーゼル発電設備燃料移送ポンプ及び第一ガスタービン発電機用 燃料移送ポンプのうち,水平方向地震力が大きい非常用ディーゼル発電設備燃料移送 ポンプについて確認する。逃がし弁の構造図を図2に示す。

$$\mathrm{K} \delta_{0} - \mathrm{P} \mathrm{A} > \mathrm{mg} \mathrm{C}_{\mathrm{H}}$$

式中の記号は以下のとおり。

記号	記号の説明	値	単位
K	ばね定数		N/mm
δ 0	ばね変位		mm
Р	運転時に逃し弁の開方向に作用する圧力		MPa
А	圧力 P の受圧部面積		$\mathrm{mm}^2$
m	逃し弁質量		kg
g	重力加速度		$m/s^2$
Сн	水平方向震度*	1.41	

注: V-2-1-7「設計用応答曲線の作成方針」に基づき,基準地震動Ssにより定まる設計 用最大応答加速度Ⅱ(1.0ZPA)[水平:1.41(×9.8m/s²),鉛直1.11(×9.8m/s²)]で評価



図2 逃がし弁の構造図

5.2 評価結果

評価結果を以下に示す。



よって, Kδ₀-PA>mgC_H であることから,逃し弁が開くのに必要な力は,逃し 弁に作用する地震慣性力より大きいため,逃がし弁の構造強度に問題ないこと及び誤 作動は起こらないと言える。

## 6. 結論

4項及び5項の結果から,逃し弁は動的機能維持評価の対象外とすることに問題ないと 考える。

以 上

弁の動的機能維持評価について

- 2. スペクトルモーダル解析において考慮する高振動数領域及び床応答曲線について……… 3 3.
- 4 4.
- 添付1 高振動数領域を考慮した弁の機能維持評価
- 添付2 弁の動的機能維持評価に用いる床応答曲線について
- 添付3 耐震計算書における機能維持評価対象弁の選定方法について
- 添付4 弁の動的機能維持評価における有意な応答増加に関する補足説明
- 添付 5 機能維持評価用加速度の応答増加が確認された弁に対する要因の推定
- 添付6 原子炉格納容器内に設置されている弁の動的機能維持評価に用いる床応答曲線について

1

1

. . . .

1. はじめに

本資料では,実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈等における動 的機能保持に関する評価に係る一部改正(以下「技術基準規則解釈等の改正」という。)及びそ れに伴い改正された耐震設計に係る工認審査ガイドの記載を踏まえて,弁の動的機能維持の検討 方針を示す。

耐震設計に係る工認審査ガイド(抜粋)

弁等の機器の地震応答解析結果の応答加速度が当該機器を支持する配管の地震応答によ り増加すると考えられるときは、当該機器については、当該配管の地震応答の影響を考 慮し、一定の余裕を見込むこと。

2. 弁の動的機能維持評価に用いる配管系の応答値について

技術基準規則解釈等の改正を踏まえて、柏崎刈羽原子力発電所第7号機の配管系に設置される 弁の動的機能維持評価に適用する加速度値の算定方針について、規格基準に基づく設計手順を整 理し、比較することにより示す。規格基準に基づく手法としてJEAG4601-1991の当該記 載部の抜粋を図1に示す。

(1) 規格基準に基づく設計手順の整理

JEAG4601-1991 において,弁の動的機能維持評価に用いる弁駆動部の応答加速度の 算定方針が示されている。

配管系が剛と判断される場合は最大加速度(以下「ZPA」という。)を用いること、また、柔の場合は設計用床応答曲線を入力とした配管系のスペクトルモーダル解析を行い算出された弁 駆動部での応答加速度を用いることにより、弁の動的機能維持評価を実施することとされている。

(2) 今回工認における柏崎刈羽原子力発電所第7号機の設計手順

今回工認における柏崎刈羽原子力発電所第7号機の弁駆動部での応答加速度値の設定は,耐 震設計に係る工認審査ガイドの記載を踏まえ,上記の規定に加えて一定の余裕を見込むととも に,配管解析に用いるスペクトルモーダル解析では各モードの応答をモード合成して最大応答 を算出していることに鑑みて,20Hzを超える振動数領域まで考慮した地震応答解析を実施する 方針とする。

- a. 剛の場合(配管系の1次固有周期が20Hz以上の場合) 配管系が剛な場合は,最大加速度に一定の余裕を考慮し1.2倍した値(1.2ZPA)を用いて 弁駆動部の応答加速度を算出し,機能維持評価を実施する。
- b. 柔の場合(配管系の1次固有周期が20Hz 未満の場合)

配管系が柔の場合は、JEAG4601-1991の手順と同様にスペクトルモーダル解析 を行い弁駆動部の応答加速度を算出した値に加えて、剛領域の振動モードの影響を考慮す る観点から1.2倍した最大加速度(1.2ZPA)による弁駆動部の応答加速度を算定し、何れ か大きい加速度を用いて機能維持評価を行う方針とする。

また、今回工認における弁駆動部の応答加速度の算定に用いる配管系のスペクトルモー ダル解析において、剛領域の振動モードの影響を踏まえて、20Hz を超える振動数領域まで 考慮した地震応答解析により、弁駆動部の応答加速度値の算定を行う。

弁の機能維持評価における規格基準に基づく耐震設計手順及び柏崎刈羽原子力発電所第7号 機の耐震設計手順の比較を表1に示す。表1に示すとおり、柏崎刈羽原子力発電所第7号機に おける弁の機能維持評価に用いる加速度値としては、規格基準に基づく設定方法に比べて一定 の裕度を見込んだ値としている。

(5) 地震応答解析

弁の地震応答を算出するに当たり、(4)項で作成した弁モデルを配管系モデルに組み込み、地震応答解析を実施する。この場合の解析方法は、配管系の固有値に応じて静的応 答解析法あるいはスペクトルモーダル応答解析法を用いる。

配管系の固有値が剛と判断される場合は,静的応答解析を行うが,この場合弁に加わる加速度は設計用床応答スペクトルのZPA(ゼロ周期加速度)であり,これを弁駆動部応答加速度と見なして評価を行う。また,剛の範囲にない場合には,原則として(3)項で定めた設計用床応答スペクトルを入力とする配管系のスペクトルモーダル解析を行い,算出された弁駆動部応答加速度を用いて弁の評価を実施する。更に,弁の詳細評価が必要となる場合には,弁各部の強度評価に必要な応答荷重を算出する。

なお、減衰定数については現在配管系の解析に使用されている0.5~2.5%の値を用い るものとする。

図1 JEAG4601-1991の抜粋 (P345)

配管系の 固有値	JEAG4601-1991	柏崎刈羽原子力発電所第7号機
剛の場合	最大加速度(1.0ZPA)を適用す	最大加速度を1.2倍した値(1.2ZPA)
	る。	を適用
柔の場合	スペクトルモーダル解析によ	スペクトルモーダル解析*から算定
	り算出した弁駆動部の応答を	される弁駆動部の応答加速度値又
	適用する。	は最大加速度を 1.2 倍した値
		(1.2ZPA) の何れか大きい方を適用
		する。

表1 弁の機能維持評価の耐震設計手順の比較

注記*:20Hz を超える振動数領域まで考慮した地震応答解析により算定する。

3. スペクトルモーダル解析において考慮する高振動数領域及び床応答曲線について

高振動数領域を考慮した弁の機能維持評価について,動的機能維持要求弁として原子炉格納容 器内に設置される主蒸気隔離弁及び原子炉格納容器外に設置される残留熱除去系の弁に対して検 討を行った。

柏崎刈羽原子力発電所第7号機における従来の弁の機能維持評価に用いる振動数領域は 20Hz までとしていたが,新たに 30Hz, 50Hz まで考慮したスペクトルモーダル解析を実施した。本検討 の詳細は添付1に示す。

解析結果として 30Hz まで振動数を考慮した場合については,20Hz に比べて応答加速度が増加 したものの,50Hz まで考慮した場合では,30Hz までの応答加速度に対して,弁駆動部の応答加速 度値に増加がないことから,柏崎刈羽原子力発電所第7号機における弁の機能維持評価に用いる 振動数領域については,30Hz までを基本として評価を実施することとする。

また,床応答曲線の作成方法の妥当性確認として,30Hz まで作成した床応答曲線と20Hz から 30Hz までの領域を最大加速度(1.0ZPA)とした床応答曲線を用いてスペクトルモーダル解析を実 施した。本検討の詳細は添付2に示す。

本検討より,20Hz 近傍にて卓越する応答を示す原子炉遮蔽壁及び原子炉本体基礎については,20Hz を超えた範囲を最大加速度(1.0ZPA)とした場合に対して,30Hz まで作成した床応答曲線を 用いた場合において応答加速度の増加が確認された。弁の動的機能維持評価に用いる評価条件は 以下のとおりとする。原子炉格納容器内は添付6 に記載している床応答曲線の50Hz 以上の領域 を最大加速度(1.0ZPA)として,原子炉格納容器外はV-2-1-7「設計用床応答曲線の作成方針」に 記載している設計用床応答曲線Iの20Hz 以上の領域を最大加速度(1.0ZPA)として評価に用い る。

3

評価対象弁の	弁の動的機能維持評価に用いる
設置箇所	評価条件
原子炉格納	床応答スペクトルの作成を 50Hz とし
容器内	50Hz を超えた範囲は最大加速度(1.0ZPA)とする
原子炉格納	床応答スペクトルの作成を 20Hz とし
容器外	20Hz を超えた範囲は最大加速度(1.0ZPA)とする

表1 弁の動的機能維持評価に用いる評価条件

なお、本評価は代表的な弁での検討であるため、その他の動的機能要求弁(添付3参照)についても、振動数領域を30Hz及び50Hzまで考慮した応答加速度の比較を行うこととし、有意な応答増加が確認された場合は有意な応答増加がなくなる範囲まで振動数領域を拡張することにより、機能維持の確認を行う(図2参照)。有意な応答増加の詳細については添付4に示す。

## 4. 高振動数領域を考慮した弁の動機機能維持評価結果

振動数領域を 30Hz 及び 50Hz まで考慮した場合の応答加速度を表 2 に示す。表 3 には 50Hz で 応答加速度に有意な増加が確認された弁について,更なる高振動数領域として 100Hz まで考慮し た場合の応答増加の影響確認結果を示す。表 3 に示すとおり,高振動数領域まで考慮した弁の応 答加速度値として,機能維持対象弁は,有意な応答増加がないこと及び機能確認済加速度に収ま ることを確認した。50Hz で応答加速度に有意な増加が確認された弁に対する要因推定は添付 5 に 示す。



- 注記*1:有意な増加とは、応答加速度の増加率が10%以上且つ、応答加速度の増加値が機 能確認済加速度の10%以上である場合を指す(例:機能確認済加速度が6.0Gの 弁の場合、応答加速度の増加率が10%以上且つ、応答加速度の増加値が0.6G以 上であれば有意な増加として扱う)
  - *2 : n の初期値は2とし、③の結果が Yes になるごとに1を加算していく

図2 高振動数領域を考慮した動的機能維持評価フロー

	r								1				1	r
						MAX (	30Hz, 1. 2ZP/	1)	MAX (	50Hz, 1. 2ZP/	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度 [*] (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/③)	備考
1	ме	P01 F0014	MS主蒸気逃がし安全		水平	8.17 ( 8.17 ) ( 1.72 )	9.6	1.18	8.17 (8.17) (1.72)	9.6	1.18	1.00	0.00%	
1	мэ	521-F001A	弁 (ADS)	女主并	鉛直	3.27 (3.27) (1.06)	6.1	1.87	3.27 (3.27) (1.06)	6. 1	1.87	1.00	0.00%	
	16	D01 D001D	MS主蒸気逃がし安全	<b></b>	水平	8.17 (8.17) (1.72)	9.6	1.18	8.17 (8.17) (1.72)	9.6	1.18	1.00	0.00%	
2	MS	B21-F001B	弁	女主开	鉛直	2.66 (2.66) (1.06)	6.1	2. 29	2.76 (2.76) (1.06)	6.1	2.21	1.04	1.64%	
	140		MS主蒸気逃がし安全	<b></b>	水平	5.72 (5.72) (1.72)	9.6	1.68	5.72 (5.72) (1.72)	9.6	1.68	1.00	0.00%	
3	MS	B21-F001C	弁 (ADS)	安全并	鉛直	1.84 ( 1.84 ) ( 1.06 )	6.1	3. 32	2.15 (2.15) (1.06)	6.1	2.84	1. 17	5. 09%	
			MS主蒸気逃がし安全	+ 4 5	水平	7.45 (7.45) (1.72)	9.6	1.29	7.45 (7.45) (1.72)	9.6	1.29	1.00	0.00%	
4	MS	B21-F001D	弁 弁	安至开	鉛直	1.74 ( 1.74 ) ( 1.06 )	6.1	3. 51	2.25 (2.25) (1.06)	6. 1	2.71	1.29	8. 37%	
			MS主蒸気逃がし安全	+ 4 6	水平	5.31 (5.31) (1.72)	9.6	1.81	5.31 (5.31) (1.72)	9.6	1.81	1.00	0.00%	
b	MS	B21-F001E	弁	安全开	鉛直	1.94 ( 1.94 ) ( 1.06 )	6.1	3.14	2.05 (2.05) (1.06)	6. 1	2.98	1.06	1.81%	
			MS主蒸気泳がし安全	安全弁	水平	6.13 (6.13) (1.72)	9.6	1.57	6.13 (6.13) (1.72)	9.6	1.57	1.00	0.00%	
6	MS	B21-F001F	弁 (ADS)		鉛直	2.25 (2.25) (1.06)	6.1	2.71	2.25 (2.25) (1.06)	6. 1	2.71	1.00	0.00%	
			MS主蒸気泳がし安全		水平	5.62 (5.62) (1.72)	9.6	1.71	5.62 (5.62) (1.72)	9.6	1.71	1.00	0.00%	
7	MS	B21-F001G	弁	安全弁	鉛直	2.05 (2.05) (1.06)	6. 1	2. 98	2.05 (2.05) (1.06)	6. 1	2.98	1.00	0.00%	
			MS主苏気迷が一安全		水平	6. 43 ( 6. 43 ) ( 1. 72 )	9.6	1.49	6.54 (6.54) (1.72)	9.6	1.47	1.02	1.15%	
8	MS	B21-F001H	弁 (ADS)	安全弁	鉛直	2.15 (2.15) (1.06)	6. 1	2.84	2.25 (2.25) (1.06)	6. 1	2.71	1.05	1.64%	
			MS主蒸気泳がし安全		水平	5.52 (5.52) (1.72)	9.6	1.74	5.72 (5.72) (1.72)	9.6	1.68	1.04	2. 09%	
9	MS	B21-F001J	J 弁 J	安全弁	鉛直	1.94 ( 1.94 ) ( 1.06 )	6.1	3.14	2.25 (2.25) (1.06)	6.1	2.71	1.16	5.09%	
			MS主蒸気泳が1 安全		水平	8.37 (8.37) (1.72)	9.6	1.15	8.47 (8.47) (1.72)	9.6	1.13	1.01	1.05%	
10	) MS B21-F001K MS主規 弁	MS主蒸気逃がし安全 弁	MS主蒸気逃がし安全 弁	安全弁	鉛直	1.84 ( 1.84 ) ( 1.06 )	6. 1	3. 32	1.94 ( 1.94 ) ( 1.06 )	6. 1	3.14	1.05	1.64%	

表2(1) 高振動数領域を考慮した弁の動的機能維持評価結果

注記*:上段が動的解析結果(30Hz 又は 50Hz)と最大加速度(1.2ZPA)における最大値,中段が 動的解析結果(30Hz 又は 50Hz)の値,下段が最大加速度(1.2ZPA)の値。配管系が剛な 場合は中段の動的解析結果に「一」を記載。

						MAX (	30Hz, 1. 2ZP/	I)	MAX (	50Hz,1.2ZP#	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((②-①)/③)	備考
11	MS	B21-F001L	MS主蒸気逃がし安全	安全弁	水平	7.15 (7.15) (1.72)	9.6	1.34	7.15 (7.15) (1.72)	9.6	1.34	1.00	0.00%	
			升 (ADS)		鉛直	2.25 (2.25) (1.06)	6. 1	2.71	2.25 (2.25) (1.06)	6. 1	2.71	1.00	0.00%	
10	1/2	<b>DOI DOO</b>	MS主蒸気逃がし安全	-	水平	6.13 (6.13) (1.72)	9.6	1.57	6.23 (6.23) (1.72)	9.6	1.54	1.02	1.05%	
12	MS	B21-F001M	弁	女主开	鉛直	1.94 ( 1.94 ) ( 1.06 )	6.1	3.14	1.94 ( 1.94 ) ( 1.06 )	6.1	3.14	1.00	0.00%	
			MS主蒸気逃がし安全		水平	6.74 (6.74) (1.72)	9.6	1.42	6.84 (6.84) (1.72)	9.6	1.40	1.01	1.05%	
13	MS	B21-F001N	弁 (ADS)	安全弁	鉛直	2.45 (2.45) (1.06)	6.1	2. 49	2.45 (2.45) (1.06)	6.1	2.49	1.00	0.00%	
			MS主要复述新日本会		水平	6.33 (6.33) (1.72)	9.6	1.52	6. 43 ( 6. 43 ) ( 1. 72 )	9.6	1.49	1.02	1.05%	
14	MS	B21-F001P	) 弁 (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1) - 1, (1)	安全弁	鉛直	2.86 (2.86) (1.06)	6.1	2.13	2.86 (2.86) (1.06)	6.1	2.13	1.00	0.00%	
			100 十世戸水ぶ 1 中ム		水平	8.17 (8.17) (1.72)	9.6	1.18	8.17 (8.17) (1.72)	9.6	1.18	1.00	0.00%	
15	MS	B21-F001R	弁 (ADS)	女主开	鉛直	3.47 (3.47) (1.06)	6. 1	1.76	(3.47) (3.47) (1.06)	6. 1	1.76	1.00	0.00%	
				安全安全并	水平	5.41 (5.41) (1.72)	9.6	1.77	5.41 (5.41)	9.6	1.77	1.00	0.00%	
16	MS	B21-F001S	MS 土然気逃かし女主 弁		鉛直	2.66 (2.66)	6.1	2. 29	2.86 (2.86)	6.1	2.13	1.08	3. 28%	
					水平	( 1.00 ) 5.52 ( 5.52 ) ( 1.70 )	9.6	1.74	5.62 (5.62)	9.6	1.71	1.02	1.05%	追加確認 対象
17	MS	B21-F001T	MS王蒸気逃がし安全 弁(ADS)	安全弁	鉛直	( 1.72 ) 1.64 ( 1.64 ) ( 1.62 )	6.1	3. 72	( 1.72 ) 2.35 ( 2.35 )	6.1	2.60	1.43	11.64%	
					水平	( 1.06 ) 6.74 ( 6.74 ) ( 1.70 )	9.6	1.42	( 1.06 ) 6.74 ( 6.74 ) ( 1.70 )	9.6	1.42	1.00	0.00%	追加確認 対象
18	MS	B21-F001U	MS主蒸気逃がし安全 弁	安全弁	鉛直	( 1. 72 ) 1. 33 ( 1. 33 ) ( 1. 33 )	6.1	4. 59	( 1.72 ) 2.25 ( 2.25 )	6.1	2.71	1.69	15.09%	
					水平	( 1.06 ) 3.88 ( 3.88 ) (	10.0	2. 58	( 1.06 ) 3.98 ( 3.98 ) (	10.0	2.51	1.03	1.00%	
19	MS	B21-F002A 主蒸気内側隔離弁	主蒸気内側隔離弁	空気作動 グローブ弁	鉛直	( 1.72 ) 2.66 ( 2.66 )	6.2	2. 33	( 1.72 ) 2.66 ( 2.66 )	6.2	2. 33	1.00	0.00%	
					水平	( 1.06 ) 4.49 ( 4.49 )	10.0	2. 23	( 1.06 ) 4.60 ( 4.60 )	10.0	2. 17	1.02	1.10%	
20	MS	B21-F002B	主蒸気内側隔離弁	空気作動 グローブ弁	鉛直	(1.72) 5.21 (5.21) (1.06)	6.2	1.19	(1.72) 5.21 (5.21) (1.06)	6.2	1.19	1.00	0.00%	

表2(2) 高振動数領域を考慮した弁の動的機能維持評価結果

		- 1			1			1							1	
ASE               FFF                              FFF </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>MAX (</td> <td>30Hz, 1. 2ZPA</td> <td>1)</td> <td>MAX (</td> <td>50Hz,1.2ZPA</td> <td>1)</td> <td></td> <td>30Hz→50Hzでの</td> <td></td>								MAX (	30Hz, 1. 2ZPA	1)	MAX (	50Hz,1.2ZPA	1)		30Hz→50Hzでの	
1         1         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5	N	io.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((②-①)/③)	備考
$ \left[ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$		01	MS	B21-F002C	主教复内側隔離金	空気作動	水平	5.72 (5.72) (1.72)	10.0	1.75	5.72 (5.72) (1.72)	10.0	1.75	1.00	0.00%	
2         36         32-900         2.52(4)(0.00.9) $$	-		mo	b21 10020		グローブ弁	鉛直	3.27 (3.27) (1.06)	6.2	1.90	3.27 ( 3.27 ) ( 1.06 )	6.2	1.90	1.00	0.00%	
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $		20	ме	P01 F000D	子菜ケカル喧楽み	空気作動	水平	5. 21 ( 5. 21 ) ( 1. 72 )	10.0	1.92	5.21 (5.21) (1.72)	10.0	1.92	1.00	0.00%	
1         2         8         101-903.         1550.948889.9         3         5         5         10.0         1.02         (5.30)         10.0         1.87         1.03         1.04         1.99           2         85         101-903.         1550.948899.9         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         1.88         <	4	54	mo	B21-F002D	王然又们则附触开	グローブ弁	鉛直	3.88 (3.88) (1.06)	6.2	1.60	3.88 (3.88) (1.06)	6.2	1.60	1.00	0.00%	
2)         50         611-10034         上型 (1-9)		20	10	DO1 50004	<b>主要有用面面做力</b>	空気作動	水平	5. 22 ( 5. 22 ) ( 3. 32 )	10.0	1.92	5.36 (5.36) (3.32)	10.0	1.87	1.03	1.41%	
$ \left[ 24 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2$	4	20	MS	621-F003A	土然 风7 时间隔睡开	グローブ弁	鉛直	1.81 ( 1.81 ) ( 1.09 )	6.2	3. 43	1.86 ( 1.86 ) ( 1.09 )	6.2	3. 33	1.03	0.81%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		T	ме	B01 F0005	→ボクル 周辺のから	空気作動	水平	4.16 (4.16) (3.32)	10.0	2.40	4.36 (4.36) (3.32)	10.0	2. 29	1.05	2.00%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	24	MЗ	B21-F003B	土盔风外侧鹬雕开	グローブ弁	鉛直	1.87 ( 1.87 ) ( 1.09 )	6.2	3. 32	1.93 ( 1.93 ) ( 1.09 )	6.2	3. 21	1.03	0.97%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	P01 - 20000	<b>主要有用面面做力</b>	空気作動	水平	5.39 (5.39) (3.32)	10.0	1.86	5.62 (5.62) (3.32)	10.0	1.78	1.04	2. 30%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	25	MЗ	B21-F003C	土盔风外侧鹬雕开	グローブ弁	鉛直	1.68 ( 1.68 ) ( 1.09 )	6.2	3. 69	1.75 ( 1.75 ) ( 1.09 )	6.2	3.54	1.04	1.13%	
$ \frac{26}{4} = \frac{1}{8} = \frac{1}{2} + 100.01 = \frac{2}{3} + \frac{3}{2} + \frac{3}{2} + \frac{1}{8} + 1$						空気作動	水平	5.08 (5.08) (3.32)	10.0	1.97	5.26 (5.26) (3.32)	10.0	1.90	1.04	1.80%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	26	MS	B21-F003D	王杰気外側隔離开	グローブ弁	鉛直	1.92 ( 1.92 ) ( 1.09 )	6.2	3. 23	2.01 (2.01) (1.09)	6.2	3.08	1.05	1.46%	
$ \frac{27}{10}  \frac{1}{10}  \frac{1}{10$				DO1 00511	原子炉給水ライン外側	空気作動	水平	1.71 ( 0.72 ) ( 1.71 )	6.0	3. 51	1.71 ( 0.72 ) ( 1.71 )	6.0	3. 51	1.00	0.00%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	27	FDW	B21-F051A	隔離弁	逆止弁	鉛直	0.99 ( 0.11 ) ( 0.99 )	6.0	6.06	0.99 ( 0.62 ) ( 0.99 )	6.0	6.06	1.00	0.00%	
$ \frac{28}{90} \text{ FW} = \frac{821-90518}{9} \text{ Rem h} + \frac{100}{9}  Rem$					原子炉給水ライン外側	空気作動	水平	1.71 ( 0.92 ) ( 1.71 )	6.0	3. 51	1.71 ( 0.92 ) ( 1.71 )	6.0	3. 51	1.00	0.00%	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	28	FDW	B21-F051B	隔離弁	逆止弁	鉛直	0.99 ( 0.11 ) ( 0.99 )	6.0	6.06	0.99 ( 0.62 ) ( 0.99 )	6.0	6.06	1.00	0.00%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					原子炉給水ライン内御		水平	1.45 ( 0.41 ) ( 1.45 )	6.0	4.14	1.74 ( 1.74 ) ( 1.45 )	6.0	3. 45	1.20	4.84%	
30         MS         B21-F052B         原子炉給水ライン内側         逆止弁         1.45         6.0         4.14         1.64         6.0         3.66         1.13         3.17%           30         MS         B21-F052B         原子炉給水ライン内側         逆止弁 $\frac{1.45}{(1.45)}$ 6.0         4.14         (1.64)         6.0         3.66         1.13         3.17%           9         一         1.05         -         -         1.43         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	4	29	MS	B21-F052A	隔離弁	逆止弁	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
30 MS     B21+F052B 隔離弁     逆止弁     1.05     1.43       約直     (0.31)     6.0     5.71     (1.43)     6.0     4.20     1.36     6.34%					原子炉給水ライン内御		水平	$ \begin{array}{c} 1.45 \\ (0.41) \\ (1.45) \end{array} $	6.0	4.14	1.64 ( 1.64 ) ( 1.45 )	6.0	3. 66	1.13	3. 17%	
		30	MS B21-F052B 原子炉給水ライン内側 隔離弁	逆止并	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.43 ( 1.43 ) ( 1.05 )	6.0	4.20	1.36	6.34%			

表2(3) 高振動数領域を考慮した弁の動的機能維持評価結果

_	1		1	r		1			1				1	
1						MAX (	30Hz, 1. 2ZP/	I)	MAX (	50Hz,1.2ZP/	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/③)	備考
91	DUD	E11 E0044	DIID数六体明山口会	電動	水平	3.07 ( 3.07 ) ( 0.99 )	6.0	1.95	3.07 ( 3.07 ) ( 0.99 )	6.0	1.95	1.00	0.00%	
51	KIIK	E11-F004A	KHK款文换益山口开	グローブ弁	鉛直	1.54 ( 1.54 ) ( 1.00 )	6.0	3. 90	1.54 ( 1.54 ) ( 1.00 )	6.0	3. 90	1.00	0.00%	
20	DUD	E11-E004P	DUD類な婚婴出口会	電動	水平	2.35 (2.35) (1.03)	6.0	2. 55	2.45 (2.45) (1.03)	6.0	2. 45	1.04	1.67%	
52	MIK	E11 1004D	KIIK _M Z <del>Jym</del> ulf	グローブ弁	鉛直	1.74 ( 1.74 ) ( 1.00 )	6.0	3. 45	1.74 ( 1.74 ) ( 1.00 )	6.0	3. 45	1.00	0.00%	
22	PHD	E11-E004C	DHD数次摘婴出口金	電動	水平	1.84 ( 1.84 ) ( 1.03 )	6.0	3.26	1.94 ( 1.94 ) ( 1.03 )	6.0	3. 09	1.05	1.67%	
55	MIK	111 10040	KIIK MQ Quad DT	グローブ弁	鉛直	1.23 ( 1.23 ) ( 1.00 )	6.0	4.88	1.23 ( 1.23 ) ( 1.00 )	6.0	4.88	1.00	0.00%	
34	RHR	F11-F0054	RHR注入弁(RHR	電動	水平	3.17 (3.17) (1.71)	6.0	1.89	3.27 (3.27) (1.71)	6.0	1.83	1.03	1.67%	
01			注入隔離弁)	ゲート弁	鉛直	0.99 ( 0.52 ) ( 0.99 )	6.0	6.06	0.99 ( 0.62 ) ( 0.99 )	6.0	6.06	1.00	0.00%	
35	RHR	E11-F005B	RHR注入弁(RHR	電動	水平	1.84 ( 1.84 ) ( 1.07 )	6.0	3.26	1.84 ( 1.84 ) ( 1.07 )	6.0	3. 26	1.00	0.00%	
			注入隔離 <u></u> 弁)	ゲート并	鉛直	1.05 ( 0.11 ) ( 1.05 )	6.0	5.71	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
36	RHR	F11-F005C	RHR注入弁(RHR	電動	水平	1.84 ( 1.84 ) ( 1.07 )	6.0	3. 26	1.84 ( 1.84 ) ( 1.07 )	6.0	3. 26	1.00	0.00%	
30	MIK	111110030	注入隔離弁)	ゲート弁	鉛直	1.05 ( 0.11 ) ( 1.05 )	6.0	5.71	1.05 ( 0.92 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
37	PHD	F11-F006R	RHR LPFL試験	溢止金	水平	1.45 ( 0.92 ) ( 1.45 )	6.0	4.14	1.74 ( 1.74 ) ( 1.45 )	6.0	3. 45	1.20	4.84%	
51	MIK	111110005	可能逆止弁	No. 1	鉛直	1.05 ( 0.41 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
20	DUD	F11_F006C	RHR LPFL試験	逆止会	水平	2.15 (2.15) (1.45)	6.0	2. 79	2.15 (2.15) (1.45)	6.0	2.79	1.00	0.00%	
30	KIIK	E11-F000C	可能逆止弁	Ш.T	鉛直	1.05 ( 0.72 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
20	рир	F11-F0094	BHB對醫田調業为	電動	水平	3.88 (3.88) (0.99)	6.0	1.55	3.98 (3.98) (0.99)	6.0	1.51	1.03	1.67%	
39	MIN	LII FUUDA	1、111、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、	グローブ弁	鉛直	1.84 ( 1.84 ) ( 1.00 )	6.0	3.26	1.84 ( 1.84 ) ( 1.00 )	6.0	3. 26	1.00	0.00%	
40	RHB	E11-F008P	RHR試驗田調筋シ	電動	水平	2.25 (2.25) (1.03)	6.0	2.67	2.45 (2.45) (1.03)	6.0	2.45	1.09	3. 34%	
10	MIN	211 10000	1111 HP02A/13 B03 EU 71"	グローブ弁	鉛直	1.00 ( 0.41 ) ( 1.00 )	6.0	6.00	1.00 ( 0.62 ) ( 1.00 )	6.0	6.00	1.00	0.00%	

表2(4) 高振動数領域を考慮した弁の動的機能維持評価結果

	1	1		1		1			1			1	1	1
1						MAX (	30Hz, 1. 2ZPA	1)	MAX (	50Hz,1.2ZP#	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/③)	備考
	DUD	E11 E0000	고 내고 카루소 따 팬셔~스	電動	水平	2.25 (2.25) (1.03)	6.0	2.67	2.35 (2.35) (1.03)	6.0	2. 55	1.04	1.67%	
41	кнк	E11-F008C	K H K 試験用調即开	グローブ弁	鉛直	1.00 ( 0.52 ) ( 1.00 )	6.0	6.00	1.00 ( 0.62 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
49	DUD	E11-E0104	RHR停止時冷却内側	電動	水平	3. 27 ( 3. 27 ) ( 1. 45 )	6.0	1.83	3.27 (3.27) (1.45)	6. 0	1.83	1.00	0.00%	
42	KIIK	EII-FOIDA	隔離弁	ゲート弁	鉛直	1.05 ( 0.62 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.82 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
43	DHD	E11-E010B	RHR停止時冷却内側	電動	水平	2.96 (2.96) (1.30)	6.0	2. 03	2.96 (2.96) (1.30)	6.0	2.03	1.00	0.00%	
10	MIR		隔離弁	ゲート弁	鉛直	1.05 ( 0.52 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.92 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
44	RHR	E11-F010C	RHR停止時冷却内側	電動	水平	2.66 (2.66) (1.45)	6.0	2.26	2.66 (2.66) (1.45)	6.0	2.26	1.00	0.00%	
			隔離弁	ゲート弁	鉛直	1.05 ( 0.41 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.82 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
45	RHR	E11-F011A	RHR停止時冷却外側	電動	水平	2.05 (2.05) (0.99)	6.0	2. 93	2.05 (2.05) (0.99)	6.0	2. 93	1.00	0.00%	
			隔離升	ゲート并	鉛直	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00 ( 0.41 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
46	RHR	F11-F011B	RHR停止時冷却外側	電動	水平	1.33 ( 1.33 ) ( 0.99 )	6.0	4. 51	1.33 ( 1.33 ) ( 0.99 )	6.0	4. 51	1.00	0.00%	
10	Aunc		隔離弁	ゲート弁	鉛直	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
47	RHR	F11-F011C	RHR停止時冷却外側	電動	水平	2.05 (2.05) (0.99)	6.0	2. 93	2.05 (2.05) (0.99)	6.0	2. 93	1.00	0.00%	
	MIR		隔離弁	ゲート弁	鉛直	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
48	RHR	F11-F0134	RHR熱交換器バイパ	電動	水平	3.78 (3.78) (0.99)	6.0	1. 59	3.78 (3.78) (0.99)	6.0	1.59	1.00	0.00%	
10	MIIC	LII I OTOM	ス <u>弁</u>	グローブ弁	鉛直	2.35 (2.35) (1.00)	6.0	2. 55	2.35 (2.35) (1.00)	6.0	2. 55	1.00	0.00%	
40	рир	F11-F012D	RHR熱交換器バイパ	電動	水平	1.64 ( 1.64 ) ( 1.03 )	6.0	3. 66	1.64 ( 1.64 ) ( 1.03 )	6.0	3.66	1.00	0.00%	
40	ATIA	L11 L019D	ス弁	グローブ弁	鉛直	1.00 ( 0.92 ) ( 1.00 )	6.0	6.00	1.03 ( 1.03 ) ( 1.00 )	6.0	5. 83	1.03	0. 50%	
50	ВНБ	E11-F013C	RHR熱交換器バイパ	電動	水平	1.84 ( 1.84 ) ( 1.03 )	6.0	3. 26	1.84 ( 1.84 ) ( 1.03 )	6.0	3. 26	1.00	0.00%	
50	AIIA	511 10130	ス弁	グローブ弁	鉛直	1.03 ( 1.03 ) ( 1.00 )	6.0	5.83	1.03 ( 1.03 ) ( 1.00 )	6.0	5. 83	1.00	0.00%	

表2(5) 高振動数領域を考慮した弁の動的機能維持評価結果

						MAX (	30Hz, 1. 2ZPA	.)	MAX (§	50Hz, 1.2ZPA	)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度 [*] (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/③)	備考
51	DUD	E11 E010B	RHR S/Pスプレイ	電動	水平	3.47 (3.47) (1.07)	6.0	1.73	3.47 (3.47) (1.07)	6.0	1.73	1.00	0.00%	
51	KIIK	E11-F019B	注入隔離弁	ゲート弁	鉛直	1.54 ( 1.54 ) ( 1.05 )	6.0	3. 90	1.54 ( 1.54 ) ( 1.05 )	6.0	3. 90	1.00	0.00%	
52	рир	F11-F019C	RHR S/Pスプレイ	電動	水平	3.37 (3.37) (1.07)	6.0	1.78	3.37 (3.37) (1.07)	6.0	1.78	1.00	0.00%	
52	Mik	11 10150	注入隔離弁	ゲート弁	鉛直	1.05 ( 1.03 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
53	HPCF	E22-F001B	HPCF CSP側吸	電動	水平	2.25 (2.25) (1.03)	6.0	2.67	2.66 (2.66) (1.03)	6.0	2.26	1. 18	6.84%	
00	III OI	122 10015	込弁	ゲート弁	鉛直	1.00 ( 0.72 ) ( 1.00 )	6.0	6.00	1.00 ( 0.72 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
54	HPCF	E22-F001C	HPCF CSP側吸	電動	水平	1.54 ( 1.54 ) ( 1.03 )	6.0	3. 90	1.74 ( 1.74 ) ( 1.03 )	6.0	3.45	1. 13	3. 34%	
			达并	ゲート并	鉛直	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00 ( 0.41 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
55	HPCF	E22-F003B	HPCF注入隔離弁	電動	水平	1.74 ( 1.74 ) ( 0.99 )	6.0	3. 45	1.74 ( 1.74 ) ( 0.99 )	6.0	3.45	1.00	0.00%	
				ゲート并	鉛直	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00 ( 0.72 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
56	HPCF	E22-F003C	HPCF注入隔離弁	電動	水平	1.94 ( 1.94 ) ( 0.99 )	6.0	3. 09	2.05 (2.05) (0.99)	6.0	2. 93	1.06	1.84%	
				ゲート开	鉛直	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00 ( 0.82 ) ( 1.00 )	6. 0	6.00	1.00	0.00%	
57	HPCF	E22-F004B	HPCF試験可能逆止	逆止弁	水平	1.94 ( 1.94 ) ( 1.45 )	6.0	3. 09	1.94 ( 1.94 ) ( 1.45 )	6. 0	3. 09	1.00	0.00%	
			<del>71</del>		鉛直	1.94 ( 1.94 ) ( 1.05 )	6.0	3. 09	2.05 (2.05) (1.05)	6. 0	2. 93	1.06	1.84%	
58	HPCF	E22-F004C	HPCF試驗可能逆止	逆止弁	水平	2.86 (2.86) (1.45)	6.0	2.10	2.86 (2.86) (1.45)	6.0	2.10	1.00	0.00%	
			71		鉛直	3.07 (3.07) (1.05)	6.0	1.95	3.07 (3.07) (1.05)	6.0	1.95	1.00	0.00%	
59	RCIC	E51-F001	RCIC CSP側吸	電動	水平	1.54 (1.54) (1.03)	6.0	3. 90	1.64 ( 1.64 ) ( 1.03 )	6.0	3.66	1.07	1.67%	
			147	クート开	鉛直	1.00 ( 0.11 ) ( 1.00 )	6.0	6.00	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
60	RCIC	E51-F004	RCIC注入弁	電動	水平	3.37 (3.37) (0.99)	6.0	1.78	3.37 (3.37) (0.99)	6.0	1.78	1.00	0.00%	
				シューノヂ	鉛直	1.00 ( 0.82 ) ( 1.00 )	6.0	6.00	1.00 ( 0.92 ) ( 1.00 )	6.0	6.00	1.00	0.00%	

表2(6) 高振動数領域を考慮した弁の動的機能維持評価結果

_														
						MAX (	30Hz, 1. 2ZPA	1)	MAX (	50Hz,1.2ZP/	1)		30Hz→50Hzでの	
N	o. 系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度 [*] (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度 [*] (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((②-①)/③)	備考
6	1 RCIC	E51-F006	RCIC S/P側吸	電動	水平	1.54 ( 1.54 ) ( 1.03 )	6.0	3. 90	1.54 ( 1.54 ) ( 1.03 )	6.0	3. 90	1.00	0.00%	
			1.公隔離开	グート开	鉛直	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
6	a pere	EE1 E02E	RCIC蒸気ライン内	電動	水平	4.70 ( 4.70 ) ( 1.72 )	6.0	1.28	4.70 ( 4.70 ) ( 1.72 )	6.0	1.28	1.00	0.00%	
0	Z RUIU	201-1035	側隔離弁	ゲート弁	鉛直	2.05 (2.05) (1.06)	6. 0	2. 93	2.05 (2.05) (1.06)	6. 0	2.93	1.00	0.00%	
			RCIC蒸気ライン外	電動	水平	1.94 ( 1.94 ) ( 0.99 )	6.0	3. 09	1.94 ( 1.94 ) ( 0.99 )	6.0	3.09	1.00	0.00%	
6	3 RCIC	E51-F036	側隔離弁	ゲート弁	鉛直	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00 ( 0.52 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
			RCICタービン止め	雷動	水平	2.45 (2.45) (0.99)	6.0	2. 45	2.56 (2.56) (0.99)	6.0	2.34	1.04	1.84%	
6	4 RCIC	E51-F037	弁	グローブ弁	鉛直	1.33 (1.33) (1.00)	6.0	4. 51	1.33 (1.33) (1.00)	6.0	4. 51	1.00	0.00%	
			CUW吸込ライン内側	雷動	水平	4.29 (4.29) (1.30)	6.0	1.40	4.29 (4.29) (1.30)	6.0	1.40	1.00	0.00%	
6	5 CUW	G31-F002	隔離弁	ゲート弁	鉛直	1.43 ( 1.43 ) ( 1.05 )	6.0	4.20	1.43 ( 1.43 ) ( 1.05 )	6.0	4. 20	1.00	0.00%	
			CUW吸込ライン外側	雷動	水平	1.94 ( 1.94 ) ( 1.13 )	6.0	3. 09	1.94 ( 1.94 ) ( 1.13 )	6.0	3. 09	1.00	0.00%	
6	6 CUW	G31-F003	隔離弁	ゲート弁	鉛直	1.08 (0.31) (1.08)	6.0	5. 56	1.08 (0.41) (1.08)	6.0	5. 56	1.00	0.00%	
			RCW数交換器冷却水	雷動バタフ	水平	1.84 ( 1.84 ) ( 1.23 )	6.0	3. 26	1.84 (1.84) (1.23)	6.0	3. 26	1.00	0.00%	
6	7 RCW	P21-F007A	出口弁	ライ弁	鉛直	0.95 ( 0.92 ) ( 0.95 )	6.0	6. 32	0.95 ( 0.92 ) ( 0.95 )	6.0	6. 32	1.00	0.00%	
			D C W 数次摘架 冷却水	雪動バタフ	水平	(1.84) (1.84) (1.23)	6.0	3. 26	(1.84) (1.84) (1.23)	6.0	3. 26	1.00	0.00%	
6	8 RCW	P21-F007B	出口弁	ライ弁	鉛直	1.33 (1.33) (0.95)	6.0	4. 51	1.43 ( $1.43$ ) ( $0.95$ )	6.0	4.20	1.08	1.67%	
			B C W 数容掩架运扫小	雪動バタマ	水平	3.07 (3.07) (0.98)	6.0	1.95	3.17 (3.17) (0.98)	6.0	1.89	1.03	1.67%	
6	9 RCW	P21-F007C	出口弁	ライ弁	鉛直	1.03 ( 1.03 ) ( 0.89 )	6.0	5. 83	1.13 (1.13) (0.89)	6.0	5. 31	1.10	1.67%	
			R C W 数 交 摘 哭 冷 却 水	雷動バタフ	水平	2.05 ( 2.05 ) ( 1.23 )	6.0	2. 93	2.15 ( 2.15 ) ( 1.23 )	6.0	2. 79	1.05	1.67%	
7	0 RCW	P21-F007D	出口弁	ライ弁	鉛直	0.95 ( 0.72 ) ( 0.95 )	6.0	6. 32	0.95 ( 0.82 ) ( 0.95 )	6.0	6.32	1.00	0.00%	
1	_	1			1							i		

表2(7) 高振動数領域を考慮した弁の動的機能維持評価結果

		1												
						MAX (	30Hz, 1. 2ZPA	l)	MAX (	50Hz,1.2ZPA	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/③)	備考
			RCW数交換器冷却水	雷動バタフ	水平	1.54 (1.54) (1.23)	6.0	3. 90	1.64 ( 1.64 ) ( 1.23 )	6.0	3. 66	1.07	1.67%	
71	RCW	P21-F007E	出口弁	ライ弁	鉛直	0.95 ( $0.82$ ) ( $0.95$ )	6.0	6. 32	0.95 ( $0.92$ ) ( $0.95$ )	6.0	6.32	1.00	0.00%	
			DC取動大体型盗却よ	命からカフ	水平	2.86 (2.86) (0.98)	6.0	2.10	2.96 (2.96) (0.98)	6.0	2.03	1.04	1.67%	
72	RCW	P21-F007F	出口弁	モリハワン	鉛直	(0.92) (0.92) (0.92)	6.0	6. 52	(0.92) (0.92) (0.89)	6.0	6.52	1.00	0.00%	
			DCW冷却水供於温度	空気作動バ	水平	(1.23) (0.11) (1.23)	6.0	4.88	(1.23) (1.23) (1.23)	6.0	4.88	1.00	0.00%	
73	RCW	P21-F011A	調節弁(熱交換器側)	タフライ弁	鉛直	(0.95) (0.41) (0.95)	6.0	6.32	0.95 ( 0.72 ) ( 0.95 )	6.0	6.32	1.00	0.00%	
			DCW运却水研经泪座	空気 た 動 ジ	水平	(1.23) (0.21) (1.23)	6.0	4.88	(1.54) (1.54) (1.23)	6.0	3.90	1.25	5. 17%	
74	RCW	P21-F011B	調節弁(熱交換器側)	タフライ弁	鉛直	0.95 (0.52) (0.95)	6.0	6. 32	0.95 ( 0.82 ) ( 0.95 )	6.0	6.32	1.00	0.00%	
			RCW冷却水供給温度	空気作動バ	水平	2.25 (2.25) (0.98)	6.0	2.67	2.25 (2.25) (0.98)	6.0	2.67	1.00	0.00%	
75	RCW	P21-F011C	調節弁(熱交換器側)	タフライ弁	鉛直	0.89 (0.31) (0.89)	6.0	6.74	0.89 (0.62) (0.89)	6.0	6.74	1.00	0.00%	
			RCW RHR 数交换	雷動	水平	2.76 (2.76) (0.99)	6.0	2. 17	2.86 (2.86) (0.99)	6.0	2.10	1.04	1.67%	
76	RCW	P21-F042A	器冷却水出口弁	グローブ弁	鉛直	1.64 ( 1.64 ) ( 1.00 )	6.0	3.66	1.84 ( 1.84 ) ( 1.00 )	6.0	3. 26	1.12	3. 34%	
	DOW		RCW RHR熱交換	電動	水平	2.86 (2.86) (0.99)	6.0	2.10	2.86 (2.86) (0.99)	6.0	2.10	1.00	0.00%	
11	RCW	P21-F042B	器冷却水出口弁	グローブ弁	鉛直	1.00 ( 0.52 ) ( 1.00 )	6.0	6.00	1.00 ( 0.52 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
70	DOW	D01 D0400	RCW RHR熱交換	電動	水平	2.66 (2.66) (0.99)	6.0	2.26	2.76 (2.76) (0.99)	6.0	2. 17	1.04	1.67%	
10	KUW	P21=P042C	器冷却水出口弁	グローブ弁	鉛直	1.00 ( 0.21 ) ( 1.00 )	6.0	6.00	1.00 ( 0.52 ) ( 1.00 )	6.0	6.00	1.00	0.00%	
70	DCW	D01 E0404	RCW非常用D/G冷	電動	水平	2.76 (2.76) (1.07)	6. 0	2. 17	2.96 (2.96) (1.07)	6.0	2. 03	1.07	3. 34%	
19	ĸĊ₩	r21-F048A	却水出口弁	ゲート弁	鉛直	1.74 ( 1.74 ) ( 1.05 )	6.0	3. 45	1.74 ( 1.74 ) ( 1.05 )	6.0	3. 45	1.00	0.00%	
80	RCW	P91-F0490	RCW非常用D/G冷	電動	水平	1.94 ( 1.94 ) ( 1.13 )	6.0	3. 09	2.05 (2.05) (1.13)	6.0	2. 93	1.06	1.84%	
00	AC#	221 FU40D	却水出口弁	ゲート弁	鉛直	1.08 ( 0.11 ) ( 1.08 )	6.0	5. 56	1.08 ( 0.21 ) ( 1.08 )	6. 0	5. 56	1.00	0.00%	

表2(8) 高振動数領域を考慮した弁の動的機能維持評価結果

													1	
1						MAX (	30Hz, 1. 2ZP/	I)	MAX (	50Hz, 1. 2ZP/	1)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((②-①)/③)	備考
			PCW非常用D/C冷	雪動	水平	1.84 (1.84) (1.07)	6.0	3. 26	1.94 ( 1.94 ) ( 1.07 )	6.0	3.09	1.05	1.67%	
81	RCW	P21-F048C	却水出口弁	ゲート弁	鉛直	1.05 (0.72) (1.05)	6.0	5.71	1.05 ( 0.92 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
			RCW非常用D/G冷	電動	水平	2.05 (2.05) (1.07)	6.0	2. 93	2.25 (2.25) (1.07)	6.0	2.67	1.10	3. 34%	
82	RCW	P21-F048D	却水出口弁	ゲート弁	鉛直	1.05 ( 0.52 ) ( 1.05 )	6.0	5.71	1.05 ( 0.52 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
0.2	DCW	D01 D040E	RCW非常用D/G冷	電動	水平	1.94 ( 1.94 ) ( 1.13 )	6.0	3. 09	2.45 (2.45) (1.13)	6. 0	2. 45	1.26	8.50%	
00	KUW	P21=F046E	却水出口弁	ゲート弁	鉛直	1.08 ( 0.62 ) ( 1.08 )	6.0	5. 56	1.08 ( 0.92 ) ( 1.08 )	6.0	5. 56	1.00	0.00%	
84	RCW	P21-F048F	RCW非常用D/G冷	電動	水平	1.84 ( 1.84 ) ( 1.07 )	6.0	3.26	1.94 ( 1.94 ) ( 1.07 )	6.0	3.09	1.05	1.67%	
01	10.	121 10401	却水出口弁	ゲート弁	鉛直	1.05 ( 0.41 ) ( 1.05 )	6.0	5.71	1.05 ( 0.72 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
85	RSW	P41-F0044	RSWストレーナ入口	電動バタフ	水平	2.25 (2.25) (1.23)	6.0	2.67	2.25 (2.25) (1.23)	6.0	2.67	1.00	0.00%	
	10.0		并	ライ弁	鉛直	1.43 ( 1.43 ) ( 0.95 )	6.0	4.20	1.43 ( 1.43 ) ( 0.95 )	6.0	4.20	1.00	0.00%	
86	RSW	P41-F004B	RSWストレーナ入口	電動バタフ	水平	1.64 ( 1.64 ) ( 1.23 )	6.0	3.66	1.64 ( 1.64 ) ( 1.23 )	6.0	3.66	1.00	0.00%	
00	10.	11110015	弁	ライ弁	鉛直	1.43 ( 1.43 ) ( 0.95 )	6.0	4.20	1.43 ( 1.43 ) ( 0.95 )	6.0	4.20	1.00	0.00%	
87	RSW	P41-F004C	R SWストレーナ入口	電動バタフ	水平	1.54 (1.54) (1.13)	6.0	3.90	1.54 ( 1.54 ) ( 1.13 )	6.0	3. 90	1.00	0.00%	
	10.0		弁	ライ弁	鉛直	1.54 ( 1.54 ) ( 0.90 )	6.0	3.90	1.54 ( 1.54 ) ( 0.90 )	6.0	3. 90	1.00	0.00%	
88	RSW	P41-F004D	R SWストレーナ入口	電動バタフ	水平	1.54 (1.54) (1.23)	6.0	3. 90	1.54 ( 1.54 ) ( 1.23 )	6.0	3. 90	1.00	0.00%	
			升	フイ并	鉛直	1.74 ( 1.74 ) ( 0.95 )	6.0	3. 45	1.74 ( 1.74 ) ( 0.95 )	6.0	3. 45	1.00	0.00%	
89	RSW	P41-F004F	R SWストレーナ入口	電動バタフ	水平	1.64 ( 1.64 ) ( 1.23 )	6.0	3.66	1.64 ( 1.64 ) ( 1.23 )	6.0	3. 66	1.00	0.00%	
			并	ライ弁	鉛直	1.64 ( 1.64 ) ( 0.95 )	6.0	3. 66	1.64 ( 1.64 ) ( 0.95 )	6.0	3. 66	1.00	0.00%	
90	RSW	P41-F004F	R SWストレーナ入口	電動バタフ	水平	1.54 ( 1.54 ) ( 1.13 )	6.0	3. 90	1.54 ( 1.54 ) ( 1.13 )	6.0	3. 90	1.00	0.00%	
			<del>//</del>	フイ并	鉛直	1.54 (1.54) (0.90)	6.0	3. 90	1.54 ( 1.54 ) ( 0.90 )	6.0	3.90	1.00	0.00%	

表2(9) 高振動数領域を考慮した弁の動的機能維持評価結果

注記*:上段が動的解析結果(30Hz 又は 50Hz)と最大加速度(1.2ZPA)における最大値,中段が 動的解析結果(30Hz 又は 50Hz)の値,下段が最大加速度(1.2ZPA)の値。配管系が剛な 場合は中段の動的解析結果に「一」を記載。

						MAX (	30Hz 1 97D	N)	MAX (	50Hz 1 27P/	0			
N.	亚体			会刊士	+	ллл (	JUIZ, 1. 2217	1/	ялл (	T		増加率	30Hz→50Hzでの 増加値の機能確認済加	1== ==
NO.	712 101	开留写	<b></b>	开空风	万回	機能維持評価 田加速度*	機能確認 済加速度	裕度	機能維持評価 用加速度*	機能確認 溶加速度	松庄	(2/1)	速度に対する比率 ((の-m)/(3))	1/11 -45
						(①)	(3)	шx	(2)	(3)	1112			
						2.15			2.35					
					水平	(2.15)	6.0	2.79	(2.35)	6.0	2.55	1.09	3.34%	
91	SGTS	T22-F001A	SGTS入口隔離弁	空気作動バ タフライ弁		(1.38)			(1.38)					
					鉛直	( 0.41 )	6.0	5.22	( 0.52 )	6.0	5.22	1.00	0.00%	
						( 1.15 )			( 1.15 )					
						1.64			1.94					
				nta ber (build) 🔹	水平	(1.64)	6.0	3.66	(1.94)	6.0	3.09	1.18	5.00%	
92	SGTS	T22-F001B	SGTS入口隔離弁	空気作動ハ タフライ弁		1. 15			1. 15					-
					鉛直	( 0.31 )	6.0	5.22	( 0.41 )	6.0	5.22	1.00	0.00%	
						( 1.15 )			( 1.15 )					
					-14 377	1.38	6.0	4.95	1.38		4.05	1 00	0.00%	
			8078乾燥壮震10	電動バクマ	水平	( 0.11 )	6.0	4.35	(0.41)	6.0	4.35	1.00	0.00%	
93	SGTS	T22-F002A	并 15115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月21日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115年2月11日 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 2515	電動パンシンライ弁		1. 15			1.15					
					鉛直	( 0.11 )	6.0	5.22	( 0.11 )	6.0	5.22	1.00	0.00%	
						( 1.15 )			( 1.15 )					
					जर घट	1.38	6.0	4 35	1.38	6.0	4 35	1.00	0.00%	
			SGTS乾燥装置入口	雷動バタフ	<u>ж</u> +	( 1.38 )	0.0	4.55	( 1.38 )	0.0	4.55	1.00	0.00/0	
94	SGTS	T22-F002B	弁	ライ弁		1.15			1.15					
					鉛直	( 0.11 )	6.0	5.22	( 0.21 )	6.0	5.22	1.00	0.00%	
						( 1.15 )			( 1.15 )					
					水平	2.89	6.0	2.08	3.27	6.0	1.83	1 13	6.34%	
			SGTSフィルタ装置	雷動バタフ		(2.27)	0.0	2.00	(2.27)	0.0	1100	1110	0101/0	
95	SGTS	T22-F004A	出口弁	ライ弁		1.23			1.31					
					鉛直	( 0.94 )	6.0	4.88	( 1.31 )	6.0	4.58	1.07	1.34%	
						(1.23)			( 1.23 )					
					水平	( 1.29 )	6.0	2.64	(2.48)	6.0	2.42	1.09	3. 50%	
0.0	COTC	700 E004D	SGTSフィルタ装置	電動バタフ		( 2.27 )			( 2.27 )					
90	3015	122-F004b	出口弁	ライ弁		1.23			1.23					
					鉛直	(0.22)	6.0	4.88	( 0.29 )	6.0	4.88	1.00	0.00%	
						(1.23)			(1.23)					
					水平	( 0.92 )	6.0	5.31	( 1.13 )	6.0	5.31	1.00	0.00%	
97	FCS	T49-F001A	FCS入口第一隔離弁	電動		( 1.13 )			( 1.13 )					
0.	100	110 100111		ゲート弁	the state	1.08			1.08					
					鉛癿	(0.11)	6.0	5.56	(0.11)	6.0	5.56	1.00	0.00%	
-						1.84			1.84					
					水平	( 1.84 )	6.0	3.26	( 1.84 )	6.0	3.26	1.00	0.00%	
98	FCS	T49-F001B	FCS入口第一隔離弁	電動		( 1.13 )			( 1.13 )					-
				クード井	松古	1.08	6.0	5 56	1.08	6.0	5 56	1.00	0.00%	
					에 다.	( 1.08 )	0.0	5.50	( 1.08 )	0.0	5.50	1.00	0.00/0	
						2. 15			2.25	1				
1	]				水平	( 2.15 )	6.0	2.79	( 2.25 )	6.0	2.67	1.05	1.67%	
99	FCS	T49-F003A	FCS入口第二隔離弁	電動 ゲート弁		( 1.13 )			( 1.13 )					
				2 120	鉛直	( 0.82 )	6.0	5.56	(1.13)	6.0	5.31	1.05	0.84%	
					2012	( 1.08 )			( 1.08 )					
						2.35			2.35					
					水平	(2.35)	6.0	2.55	(2.35)	6.0	2.55	1.00	0.00%	
100	FCS	T49-F003B	FCS入口第二隔離弁	電動 ゲート弁		1.08			1.08					-
					鉛直	( 0.62 )	6.0	5.56	( 0.82 )	6.0	5.56	1.00	0.00%	
						( 1.08 )			( 1.08 )					

表2(10) 高振動数領域を考慮した弁の動的機能維持評価結果

						MAX (	30Hz, 1. 2ZPA	l)	MAX (	50Hz,1.2ZPA	.)		30Hz→50Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済加 速度に対する比率 ((2-①)/3)	備考
101	Pag	T40 50054	下のの出口焼ご喧戦台	電動	水平	1.33 ( 1.33 ) ( 1.07 )	6.0	4. 51	1.43 ( 1.43 ) ( 1.07 )	6.0	4.20	1.08	1.67%	
101	FUS	149-F007A	FCS田口弗二 隔離井	ゲート弁	鉛直	1.05 ( 0.21 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.82 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
109	ECC	T40-E007P	下して日日海一回離や	電動	水平	2.35 (2.35) (1.07)	6.0	2. 55	2.35 (2.35) (1.07)	6.0	2. 55	1.00	0.00%	
102	rcs	149-10075	103山市第二階融开	ゲート弁	鉛直	1.05 ( 0.41 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.41 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
103	FCS	T40-F0084	下しる市口海一陸端寺	電動	水平	1.64 ( 1.64 ) ( 1.07 )	6.0	3. 66	1.64 ( 1.64 ) ( 1.07 )	6.0	3. 66	1.00	0.00%	
105	103	145 10004	гоздая марыя	ゲート弁	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.41 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
104	FCS	T40-F008R	下しる市口海一陸端寺	電動	水平	1.64 ( 1.64 ) ( 1.07 )	6.0	3. 66	1.74 ( 1.74 ) ( 1.07 )	6.0	3. 45	1.06	1.67%	
104	103	149 10000	PCSHIM MMPHET	ゲート弁	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.41 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
105	CRD	C19-196	マクラ人会	空気作動	水平	1.30 ( — ) ( 1.30 )	6.0	4.62	1.30 ( — ) ( 1.30 )	6.0	4.62	1.00	0.00%	
105	CAD	012-120	//// 4 <del>//</del>	グローブ弁	鉛直	1.27 ( — ) ( 1.27 )	6.0	4.72	1.27 ( — ) ( 1.27 )	6.0	4.72	1.00	0.00%	

表2(11) 高振動数領域を考慮した弁の動的機能維持評価結果

						MAX (	50Hz,1.2ZPA	.)	MAX (1	00Hz, 1.2ZP	A)	the law star	50Hz→100Hzでの	
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度 [*] (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済 加速度に対する比率 ((2-①)/③)	備考
					水平	5.62 (5.62)	9.6	1.71	5.62 (5.62)	9.6	1.71	1.00	0.00%	
1	MS	B21-F001T	MS主蒸気逃がし安全 弁 (ADS)	安全弁		(1.72)			( 1.72 )					
			,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		鉛直	( 2.35 ) ( 2.35 ) ( 1.06 )	6.1	2.60	( 2.35 ) ( 1.06 )	6.1	2.60	1.00	0.00%	
						6.74			6.84					
			MS主蒸気逃がし安全	+ 4 4	水平	( 6.74 ) ( 1.72 )	9.6	1.42	( 6.84 ) ( 1.72 )	9.6	1.40	1.01	1.05%	
2	MS	B21-F001U	弁 (ADS)	安全并	鉛直	2. 25 ( 2. 25 )	6. 1	2. 71	2.35 (2.35)	6.1	2, 60	1.04	1.64%	
						( 1.06 )			( 1.06 )				5 1/0	

表3 高振動数領域を考慮した弁の動的機能維持評価結果
### 高振動数領域を考慮した弁の機能維持評価

#### 1. はじめに

高振動数領域を考慮した弁の機能維持評価として、スペクトルモーダル解析にて考慮する範囲 を 20Hz, 30Hz 及び 50Hz までとし、弁駆動部の応答加速度を算定した。

2. 評価対象の選定

動的機能維持の評価対象弁が設置されている建物は原子炉建屋とタービン建屋であることから, 設計用床応答曲線のうち弁の動的機能維持評価に用いる原子炉遮蔽壁及び原子炉本体基礎,原子 炉建屋,タービン建屋の設計用床応答曲線の例を図1に示す。

原子炉遮蔽壁及び原子炉本体基礎の設計用床応答曲線は 20Hz 近傍で卓越しており,原子炉建 屋及びタービン建屋とは異なる傾向であることが確認できる。

この傾向を踏まえ,20Hz 近傍にて卓越する応答を示す原子炉遮蔽壁及び原子炉本体基礎の設計 用床応答曲線を用いる弁と,20Hz 近傍で応答が卓越しない原子炉建屋及びタービン建屋の設計用 床応答曲線を用いる弁から,20Hz まで考慮したスペクトルモーダル解析において裕度が最小とな る対象として、主蒸気隔離弁及び残留熱除去系弁を評価対象として選定した。

評価対象弁近傍の解析モデルを図2に示す。



図1(1) 原子炉遮蔽壁(T.M.S.L. 18.440m)の設計用床応答曲線(減衰定数2.0%)



水平方向

鉛直方向

図1(2) 原子炉建屋(T.M.S.L. 12.300m)の設計用床応答曲線(減衰定数2.0%)



水平方向 図 1(3) タービン建屋(T.M.S.L. 12.300m)の設計用床応答曲線(減衰定数 2.0%)

図2(1) 評価対象弁近傍の配管解析モデル図(主蒸気系配管)

図 2(2) 評価対象弁近傍の配管解析モデル図(残留熱除去系配管)

3. 入力条件

当該解析モデルは柔構造であることから,スペクトルモーダル解析から算定される弁駆動部の 応答加速度値又は最大加速度を1.2倍した値(1.2ZPA)の何れか大きい方を適用して機能維持評価 を行う。

スペクトルモーダル解析における入力条件としては,設計用床応答曲線 I を用いることとする。 なお設計用床応答曲線 I の作成を 20Hz としていることから, 20Hz を超えた範囲について,原子 炉格納容器外は最大加速度,原子炉格納容器内は床応答曲線の作成範囲を 50Hz までとした床応 答曲線を入力とする(詳細は添付 2 に示す)。入力条件となる検討用床応答曲線及び動的機能維持 評価用床応答曲線を図 3 に示す。各床応答曲線の適用性を添付 2 に示す。





図 3(1) 原子炉遮蔽壁(T.M.S.L. 18.440m)の検討用床応答曲線(減衰定数 2.0%) (床応答スペクトルの作成範囲を 50Hz として作成)



図 3(2) 原子炉建屋(T.M.S.L. 4.800m)の動的機能維持評価用床応答曲線(減衰定数 2.0%) (床応答スペクトルの作成を 20Hz とし, 20Hz を超えた範囲は最大加速度として作成)

### 4. 解析結果

解析モデルを用いた地震応答解析による弁駆動部における応答加速度の算定結果を表1に示す。 表1に示すとおり20Hzの応答加速度に対して,30Hzまで考慮した応答加速度は増加しているも のの,50Hzまで考慮した応答加速度は,30Hzに対して増加は認められなかった。

弁名称	方向	スペク 20Hz	トルモータ (G) 30Hz	ブル解析 50Hz	最大加速度 (1.2ZPA) (G)
主蒸気系	水平	5. 11	5.72	5.72	1.72
主蒸気内側隔離弁 (B21-F002C)	鉛直	0.72	3. 27	3. 27	1.06
残留熱除去系	水平	3. 78	3. 78	3. 78	0.99
熱交換器バイパス弁 (E11-F013A)	鉛直	2.35	2.35	2.35	1.00

表1 弁駆動部における応答加速度

参考として,固有値解析結果のうち固有振動数及び刺激係数を表2に,振動モード図を図4に 示す。

5. 応答加速度増加の要因推定

B21-F002C の鉛直方向の応答加速度が 20Hz から 30Hz で大きく増加している要因を以下のとおり推定した。

B21-F002Cの上流には水平1方向と鉛直方向を支持するレスレイント,下流側には原子炉格納 容器貫通部を有しており高い剛性を有している(図5参照)。

また,原子炉遮蔽壁の床応答曲線は鉛直方向が卓越しており,20Hz 以降の振動数領域においても震度が大きいこと及び当該弁が設置された配管系の振動モードとして,12次のモードが卓越していることから応答加速度が増加に至ったものと考えられる。

モード	田右転動粉	田右国期	<b></b>			設計震度		
	回有派動剱 (Hz)	回有同 <del>列</del> (S)		刺激体数		水平方向		鉛直方向
	(112)	(3)	X方向	Y方向	Z方向	X方向	Z方向	Y方向
1次								
2次								
3次								
4次								
5次								
6次								
7次	_							
8次								
9次								
10次								
11次								
12次								
13次	_							
14次								
15次								
16次								
17次								
18次								
19次								
20次								
21次								
22次	_							
23次	-							
24次	_							
25次	_							
26次	-							
27次								
28次								
29次								
30次								
31次								
32次								

表2(1) 主蒸気系配管の固有周期,刺激係数及び設計震度

	田士乍動粉	田本田畑	古山泊b /衣 米b		設計震度			
モード	回有振動级 (IIa)	回有向 <del>期</del>	州(放)(示女)			水平方向		鉛直方向
	(п2)	(3)	X方向	Y方向	Z方向	X方向	Z方向	Y方向
33次								
34次								
35次								
36次								
37次								
38次								
39次								
40次								
41次								
42次								
43次								
44次								
45次								
46次								
47次								
48次								
49次								
50次								
51次								
52次								

表2(2) 主蒸気系配管の固有周期,刺激係数及び設計震度

	田女拒執教田女田相		主い追いな来た			設計震度			
モード	回有扳動缀 (Uz)	回有向别 (c)		利放尔致			水平方向		
	(П2)	(3)	X方向	Y方向	Z方向	X方向	Z方向	Y方向	
1次									
2次									
3次									
4次									
5次									
6次									
7次									
8次									
9次									
10次									
113次									
114次									

表 2(3) 残留熱除去系配管の固有周期,刺激係数及び設計震度







図4(2) 振動モード図(主蒸気系配管)



図4(3) 振動モード図(残留熱除去系配管)



振動モード図(113次) 固有振動数:49.975Hz

図4(4) 振動モード図(残留熱除去系配管)

図5 主蒸気系配管の解析モデル図(モデル No. MS-PD-3)

弁の動的機能維持評価に用いる床応答曲線について

1. はじめに

本資料では弁の動的機能維持評価に用いる床応答曲線の作成方法として,設計用床応答曲線の 20Hz 以上を最大加速度とすることが妥当であることを確認するため,20Hz 近傍にて卓越する応 答を示す原子炉遮蔽壁及び原子炉本体基礎及び 20Hz 近傍で応答が卓越しない原子炉建屋の設計 用床応答曲線を弁の動的機能維持評価に用いる配管系を対象に妥当性を確認する。



図1 動的機能維持要求弁に用いる床応答曲線(イメージ図)

2. 配管系の地震応答解析

原子炉遮蔽壁及び原子炉本体基礎及び原子炉建屋の設計用床応答曲線を適用し、スペクトルモ ーダル解析を実施する解析モデルのうち、ここでは添付1と同一の主蒸気系主蒸気内側隔離弁 (B21-F002C)及び残留熱除去系熱交換器バイパス弁(E11-F013A)について確認を行う。評価対 象弁近傍の解析モデルを図2に示す。

図 2(1) 評価対象弁近傍の配管解析モデル図(主蒸気系配管)

図 2(2) 評価対象弁近傍の配管解析モデル図(残留熱除去系配管)

## 3. 確認内容

動的機能維持対象弁の応答加速度値の算出に用いる床応答曲線として,以下2種類を作成し, スペクトルモーダル解析により弁位置の応答加速度を算出することにより行う。

なお,各床応答曲線は50Hz まで作成するが,添付1にて地震応答解析において30Hz 以上で応 答加速度の増加が認められなかったことから,本確認においては30Hz までを考慮した地震応答 解析を実施する。

a. 動的機能維持評価用床応答曲線

柏崎刈羽原子力発電所第7号機の動的機能維持評価に用いる床応答曲線であり、床応答スペクトルの作成を20Hzとし、20Hzを超えた範囲は最大加速度として作成する(図3)。

### b. 検討用床応答曲線

動的機能維持確認用床応答曲線との応答比較のために用いる床応答曲線とし,床応答スペクトルの作成範囲を 50Hz とする (図 4)。



図 3(1) 動的機能維持評価用床応答曲線 (床応答スペクトルの作成を 20Hz とし, 20Hz を超えた範囲は最大加速度として作成) (原子炉遮蔽壁 T.M.S.L. 18.440m 減衰定数 2.0%)



図 3(2) 動的機能維持評価用床応答曲線 (床応答スペクトルの作成を 20Hz とし, 20Hz を超えた範囲は最大加速度として作成) (原子炉建屋 T.M.S.L.4.800m 減衰定数 2.0%)







図 4(2) 検討用床応答曲線 (床応答スペクトルの作成範囲を 50Hz として作成) (原子炉建屋 T.M.S.L.4.800m 減衰定数 2.0%)

- 4. 確認結果
  - (1) 確認結果

各床応答曲線を用いた地震応答解析による弁駆動部の応答加速度の算定結果を表1に示す。 主蒸気内側隔離弁については、今回評価に適用する動的機能維持評価用床応答曲線による 評価結果及び最大加速度 1.2ZPA の弁駆動部の応答加速度と比較して、検討用床応答曲線の 評価結果の鉛直方向が2倍以上増加することを確認した。

熱交換器バイパス弁については、今回評価に適用する動的機能維持評価用床応答曲線による評価結果及び最大加速度 1.2ZPA と検討用床応答曲線の評価結果で、弁駆動部の応答加速 度の差がないことを確認した。

なお、各弁共に評価結果が機能確認済加速度以下である。

		主蒸	気系	残留熱	除去系			
		主蒸気内	側隔離弁	熱交換器バイパス弁				
		(B21-H	F002C)	(E11-F013A)				
			弁駆動部の応	、答加速度(G)				
		水平方向	鉛直方向	水平方向	鉛直方向			
新山石松松石	動的機能維持確認用床応答 曲線 ^{*1} による結果	5. 41	1.43	3. 78	2.35			
維持	最大加速度 1.2ZPA	1.72	1.06	0.99	1.00			
	包絡値	5. 41	1. 43	3. 78	2.35			
検討用	検討用床応答曲線*2 による結果	5.72	3. 27	3. 78	2.35			
機能確認済加速度(G)		10.0	6.2	6.0				

表1 弁駆動部位置における応答加速度

注記*1 :床応答曲線の作成を 20Hz とし, 20Hz を超えた範囲は最大加速度として作成(図 3) *2 :床応答曲線の作成を 50Hz として作成(図 4) (2) 確認結果を踏まえた対応

前述の通り,20Hz 近傍にて卓越する応答を示す原子炉遮蔽壁及び原子炉本体基礎の床応答曲線を弁の動的機能維持評価に用いる配管系では,機能確認済加速度以下ではあるものの20Hz を超える範囲の作成方法による弁駆動部応答加速度への影響があることを確認した。

本解析結果を踏まえて,20Hz 近傍にて卓越する応答を示す原子炉遮蔽壁及び原子炉本体 基礎の床応答曲線を用いる,即ち原子炉格納容器内に設置されている弁の動的機能維持評価 には検討用床応答曲線を用いる。

一方で,20Hz 近傍で応答が卓越しない原子炉格納容器外に設置されている弁の動的機能 維持評価には動的機能維持評価用床応答曲線を用いる(表2参照)。

評価対象弁の 設置箇所	弁の動的機能維持評価に用いる 床応答曲線
原子炉格納 容器内	検討用床応答曲線 (床応答スペクトルの作成範囲を 50Hz として作成
原子炉格納 容器外	動的機能維持評価用床応答曲線 (床応答スペクトルの作成を 20Hz とし, 20Hz を超えた範囲は最大加速度として作成

表2 弁の動的機能維持評価に用いる床応答曲線の使用分類

参考として,固有値解析結果のうち固有振動数及び刺激係数を表3及び表4に,主要次数 のモード図を図5及び図6に示す。

5. 応答加速度増加の要因推定

B21-F002Cの鉛直方向の応答加速度が,動的機能維持確認用床応答曲線と比較して検討用床応 答曲線を用いて評価した場合に大きく増加している要因を以下のとおり推定した。

B21-F002Cの上流には水平1方向と鉛直方向を支持するレスレイント,下流側には原子炉格納 容器貫通部を有しており高い剛性を有している(図7参照)。

また,原子炉遮蔽壁の床応答曲線は鉛直方向が卓越しており,20Hz 以降の震度が最大加速度 (0.88G)と比較しても倍以上に大きいこと及び当該弁が設置された配管系の振動モードとし て,12 次のモードが卓越していることから,動的機能維持確認用床応答曲線と比較して検討用 床応答曲線を用いて評価した場合に応答加速度の増加に至ったものと考えられる。

			主心的 这 米4				吏	
モード	固有振動数 (Hz)	固有周期 (S)		刚激悕剱		水平方向		鉛直方向
	(112)	(5)	X方向	Y方向	Z方向	X方向	Z方向	Y方向
1次								
2次								
3次								
4次								
5次								
6次								
7次								
8次								
9次								
10次								
11次								
12次								
13次								
14次								
15次								
16次								
17次								
18次								
19次								
20次								
21次								
22次								
23次								
24次								
25次								
26次								
27次								
28次								
29次								
30次								
31次								

# 表3 主蒸気系配管の固有振動数及び刺激係数

			击山海 权 米在			設計震度		
モード	固有振動数 (Hz)	固有周期 (S)	和傲/杀剱			水平方向		鉛直方向
	(112)		X方向	Y方向	Z方向	X方向	Z方向	Y方向
1次								
2次								
3次								
4次								
5次								
6次								
7次								
8次								
9次								
10次								
11次								
12次								
13次								
14次								
15次								
16次								
17次								
18次								
19次								
20次								
21次								
22次								
23次								
24次								
25次								
26次								
27次								
28次								
29次								
30次								
31次								
32次								
33次								
34次								
35次								
36次								
37次								
38次								
39次								
40次								

表 4(1)	残留熱除去系配管の固有振動数及び刺激係数
~ ~ ~ (-/	

				市场权米		設計震度		
モード	固有振動数 (Hz)	固有周期 (S)		举引场 [示 安久			水平方向	
	(112)		X方向	Y方向	Z方向	X方向	Z方向	Y方向
41次								
42次								
43次								
44次								
45次								
46次								
47次								
48次								
49次								
50次								
51次								
52次								
53次								
54次								
55次								
56次								
57次								
58次								
59次								
60次								
61次								
62次								
63次								
64次								
65次								
66次								
67次								
68次								
69次								
70次								
71次								
72次								

表4(2) 残留熱除去系配管の固有振動数及び刺激係数



図 5(1) 主蒸気系配管の振動モード図



図 5(2) 主蒸気系配管の振動モード図



図 5(3) 主蒸気系配管の振動モード図



図 5(4) 主蒸気系配管の振動モード図



図 6(1) 残留熱除去系配管の振動モード図



図 6(2) 残留熱除去系配管の振動モード図



図 6(3) 残留熱除去系配管の振動モード図



図 6(4) 残留熱除去系配管の振動モード図



図 6(5) 残留熱除去系配管の振動モード図



図 6(6) 残留熱除去系配管の振動モード図



図 6(7) 残留熱除去系配管の振動モード図



図 6(8) 残留熱除去系配管の振動モード図



図 6(9) 残留熱除去系配管の振動モード図
図7 主蒸気系配管の解析モデル図(モデル No. MS-PD-3)

#### 耐震計算書における機能維持評価対象弁の選定方法について

#### 1. 概要

柏崎刈羽原子力発電所第7号機については,工認耐震計算書のうち各申請設備の「管の耐震性 についての計算書」において,弁の機能維持評価を実施している。「管の耐震性についての計算書」 においては,工認の要目表に記載のある弁のうち,動的機能維持が要求される弁を選定し,弁型 式ごとに「機能確認済加速度」に対する「評価用加速度」の裕度が最も小さい弁の評価結果を代 表として記載している。

本資料は「管の耐震性についての計算書」に記載している機能維持評価の対象弁の選定根拠を 説明するものである。

2. 機能維持評価対象弁の選定方法について

機能維持評価対象弁を選定するために,設計基準対象施設として,工認の要目表に記載のある 弁から,JEAG4601-1984 並びにJEAG4601-1991 に基づき動的機能維持評価の要 求の有無を整理した。(別添1参照)

また,重大事故等対象施設として工認の要目表及び基本設計方針に記載のある弁のうち,別添 1 で動的機能維持が要求される弁として整理している弁を除いて,動的機能維持評価の要求の有 無を整理した結果,重大事故等対象施設として動的機能維持が要求される弁が新たに追加されな いことを確認している。(動的機能維持要求が除外される理由については別添2参照)

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
1	MS	B21-F002A	主蒸気内側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
2	MS	B21-F002B	主蒸気内側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
3	MS	B21-F002C	主蒸気内側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
4	MS	B21-F002D	主蒸気内側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
5	MS	B21-F003A	主蒸気外側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
6	MS	B21-F003B	主蒸気外側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
7	MS	B21-F003C	主蒸気外側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
8	MS	B21-F003D	主蒸気外側隔離弁	空気作動 グローブ弁	•	As-(i)-①-①	
9	MS	B21-F051A	原子炉給水ライン外側隔離弁	空気作動 逆止弁	•	As-(i)-(3)-(1) As-(i)-(4) A-(i)-(1)-(3)	
10	MS	B21-F051B	原子炉給水ライン外側隔離弁	空気作動 逆止弁	•	As-(i)-3-1 As-(i)-2	
11	MS	B21-F052A	原子炉給水ライン内側隔離弁	逆止弁	•	As-(i)-3-① As-(i)-④ A-(i)-①-3)	
12	MS	B21-F052B	原子炉給水ライン内側隔離弁	逆止弁	•	As-(i)-3-1 As-(i)-2	
13	CRD	C12-126	スクラム弁	空気作動 グローブ弁	•	As-(iii)-①-②	
14	SLC	C41-F007	SLC PCV外側逆止弁	逆止弁	×	_	9
15	SLC	C41-F008	SLC PCV内側逆止弁	逆止弁	×	_	9
16	RHR	E11-F004A	RHR熱交換器出口弁	電動 グローブ弁	•	As-(ii)-④-①	
17	RHR	E11-F004B	RHR熱交換器出口弁	電動 グローブ弁	•	As-(ii)-④-①	
18	RHR	E11-F004C	RHR熱交換器出口弁	電動 グローブ弁	•	As-(ii)-④-①	
19	RHR	E11-F005A	RHR注入弁 (RHR注入隔離弁)	電動 ゲート弁	•	As-(ii)-④-① A-(i)-①-3)-①	
20	RHR	E11-F005B	RHR注入弁 (RHR注入隔離弁)	電動 ゲート弁	•	As-(ii)-④-① A-(i)-①-3)-①	
21	RHR	E11-F005C	RHR注入弁 (RHR注入隔離弁)	電動 ゲート弁	•	As-(ii)-④-① A-(i)-①-3)-①	
22	RHR	E11-F006B	RHR LPFL試験可能逆止弁	逆止弁	•	As-(ii)-④-① A-(i)-①-3)-①	
23	RHR	E11-F006C	RHR LPFL試験可能逆止弁	逆止弁	•	As-(ii)-④-① A-(i)-①-3)-①	
24	RHR	E11-F008A	RHR試験用調節弁	電動 グローブ弁	•	As-(iv) A-(ii)-①	
25	RHR	E11-F008B	RHR試験用調節弁	電動 グローブ弁	•	As-(iv) A-(ii)-①	
26	RHR	E11-F008C	RHR試験用調節弁	電動 グローブ弁	•	As-(iv) A-(ii)-①	

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
27	RHR	E11-F010A	RHR停止時冷却内側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
28	RHR	E11-F010B	RHR停止時冷却内側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
29	RHR	E11-F010C	RHR停止時冷却内側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
30	RHR	E11-F011A	RHR停止時冷却外側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
31	RHR	E11-F011B	RHR停止時冷却外側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
32	RHR	E11-F011C	RHR停止時冷却外側隔離弁	電動 ゲート弁	•	As-(ii)-④-①	
33	RHR	E11-F013A	RHR熱交換器バイパス弁	電動 グローブ弁	•	As-(ii)-④-①	
34	RHR	E11-F013B	RHR熱交換器バイパス弁	電動 グローブ弁	•	As-(ii)-④-①	
35	RHR	E11-F013C	RHR熱交換器バイパス弁	電動 グローブ弁	•	As-(ii)-④-①	
36	RHR	E11-F019B	RHR S/Pスプレイ注入隔離弁	電動 ゲート弁	•	A-(ii)-①-①	
37	RHR	E11-F019C	RHR S/Pスプレイ注入隔離弁	電動 ゲート弁	•	A-(ii)-①-①	
38	RHR	E11-F029A	RHR SPH第一止め弁	電動 ゲート弁	×		6
39	RHR	E11-F029B	RHR SPH第一止め弁	電動 ゲート弁	×		6
40	RHR	E11-F029C	RHR SPH第一止め弁	電動 ゲート弁	×		6
41	HPCF	E22-F001B	HPCF CSP側吸込弁	電動 ゲート弁	•	As-(ii)-③-① A-(i)-①-1)-①	
42	HPCF	E22-F001C	HPCF CSP側吸込弁	電動 ゲート弁	•	As-(ii)-③-① A-(i)-①-1)-①	
43	HPCF	E22-F003B	HPCF注入隔離弁	電動 ゲート弁	•	As-(ii)-③-① A-(i)-①-1)-①	
44	HPCF	E22-F003C	HPCF注入隔離弁	電動 ゲート弁	•	As-(ii)-③-① A-(i)-①-1)-①	
45	HPCF	E22-F004B	H P C F 試験可能逆止弁	逆止弁	•	As-(ii)-③-① A-(i)-①-1)-①	
46	HPCF	E22-F004C	H P C F 試験可能逆止弁	逆止弁	•	As-(ii)-③-① A-(i)-①-1)-①	
47	RCIC	E51-F001	RCIC CSP側吸込弁	電動 ゲート弁	•	As-(ii)-@-@ A-(i)-①	
48	RCIC	E51-F004	RCIC注入弁	電動 グローブ弁	•	As-(ii)-2)-2 A-(i)-1	
49	RCIC	E51-F006	RCIC S/P側吸込隔離弁	電動 ゲート弁	•	As-(i)-@-@ A-(i)-①	
50	RCIC	E51-F035	RCIC蒸気ライン内側隔離弁	電動 ゲート弁	•	As-(ii)-2-2 A-(i)-1 As-(iv)	
51	RCIC	E51-F036	R C I C 蒸気ライン外側隔離弁	電動 ゲート弁	•	As-(ii)-2-2 A-(i)-1 As-(iv)	
52	RCIC	E51-F037	RCICタービン止め弁	電動 グローブ弁	•	As-(ii)-2-2 A-(i)-1	

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
53	CUW	G31-F002	CUW吸込ライン内側隔離弁	電動 ゲート弁	•	As-(i)-④-①	
54	CUW	G31-F003	CUW吸込ライン外側隔離弁	電動 ゲート弁	•	As-(i)-④-①	
55	CUW	G31-F017	CUW RPVヘッドスプレイ隔離弁	電動 ゲート弁	×	_	Ō
56	CUW	G31-F018	CUW RPVヘッドスプレイ逆止弁	逆止弁	×	—	8
57	RD	K11-F003	RD ドライウェルLCWサンプ内側 隔離弁	電動 ゲート弁	×	_	2
58	RD	K11-F004	RD ドライウェルLCWサンプ外側 隔離弁	電動 ゲート弁	×		2
59	RD	K11-F103	RD ドライウェルHCWサンプ内側 隔離弁	電動 ゲート弁	×	_	3
60	RD	K11-F104	RD ドライウェルHCWサンプ外側 隔離弁	電動 ゲート弁	×	_	3
61	RCW	P21-F007A	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4-(1))	
62	RCW	P21-F007B	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5)-(1) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
63	RCW	P21-F007C	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5)-(1) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
64	RCW	P21-F007D	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5)-(1) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
65	RCW	P21-F007E	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
66	RCW	P21-F007F	RCW熱交換器冷却水出口弁	電動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
67	RCW	P21-F011A	RCW冷却水供給温度調節弁(熱交換 器側)	空気作動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
68	RCW	P21-F011B	RCW冷却水供給温度調節弁(熱交換 器側)	空気作動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
69	RCW	P21-F011C	RCW冷却水供給温度調節弁(熱交換 器側)	空気作動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4-(1))	
70	RCW	P21-F042A	RCW RHR熱交換器冷却水出口弁	電動 グローブ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4-(1))	
71	RCW	P21-F042B	RCW RHR熱交換器冷却水出口弁	電動 グローブ弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4-(1))	
72	RCW	P21-F042C	RCW RHR熱交換器冷却水出口弁	電動 グローブ弁	•	$ \frac{\bar{As-(ii)-(5)-(1)}}{\bar{A-(i)-(2)-(1)}} $	
73	RCW	P21-F048A	R CW非常用D/G冷却水出口弁	電動 ゲート弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
74	RCW	P21-F048B	R C W非常用D/G冷却水出口弁	電動 ゲート弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
75	RCW	P21-F048C	R C W 非常用D / G 冷却水出口弁	電動 ゲート弁	•	As-(ii)-5-1 A-(i)-2-1 A-(ii)-4-1	
76	RCW	P21-F048D	R C W 非常用D / G 冷却水出口弁	電動 ゲート弁	•	As-(ii)-5-1 A-(i)-2-1 A-(ii)-4-1	
77	RCW	P21-F048E	RCW非常用D/G冷却水出口弁	電動 ゲート弁	•	As-(ii)-(5-(1)) A-(i)-(2-(1)) A-(ii)-(4)-(1)	
78	RCW	P21-F048F	R C W 非常用D / G 冷却水出口弁	電動 ゲート弁	•	As-(i)-5-1 A-(i)-2-1 A-(i)-4-1	

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
79	RSW	P41-F004A	RSWストレーナ入口弁	電動 バタフライ弁	•	$A_{s-}(ii)-(5)-(1)$ $A_{-}(i)-(2)-(1)$ $A_{-}(ii)-(4)-(1)$	
80	RSW	P41-F004B	RSWストレーナ入口弁	電動 バタフライ弁	•	$\begin{array}{c} As-(ii)-\overline{5}-\overline{1} \\ A-(i)-\overline{2}-\overline{1} \\ A-(ii)-\overline{2}-\overline{1} \\ A-(ii)-\overline{4}-\overline{1} \end{array}$	
81	RSW	P41-F004C	RSWストレーナ入口弁	電動 バタフライ弁	•	As-(ii)-5-1 A-(i)-2-1 A-(ii)-4-1	
82	RSW	P41-F004D	RSWストレーナ入口弁	電動 バタフライ弁	•	As-(ii)-(5-(1)) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
83	RSW	P41-F004E	RSWストレーナ入口弁	電動 バタフライ弁	•	As-(ii)-(5)-(1) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
84	RSW	P41-F004F	RSWストレーナ入口弁	電動 バタフライ弁	•	As-(ii)-(5)-(1) A-(i)-(2)-(1) A-(ii)-(4)-(1)	
85	SGTS	T22-F001A	SGTS入口隔離弁	空気作動 バタフライ弁	•	A-(ii)-③	
86	SGTS	T22-F001B	SGTS入口隔離弁	電動 バタフライ弁	•	A-(ii)-③	
87	SGTS	T22-F002A	SGTS乾燥装置入口弁	電動 バタフライ弁	•	A-(ii)-③	
88	SGTS	T22-F002B	SGTS乾燥装置入口弁	電動 バタフライ弁	•	A-(ii)-③	
89	SGTS	T22-F004A	SGTSフィルタ装置出口弁	電動 バタフライ弁	•	A-(ii)-③	
90	SGTS	T22-F004B	SGTSフィルタ装置出口弁	電動 バタフライ弁	•	A-(ii)-③	
91	AC	T31-F001	AC PCVパージ用空気供給隔離弁	空気作動 バタフライ弁	×	_	5
92	AC	T31-F002	AC D/Wパージ用入口隔離弁	空気作動 バタフライ弁	×	—	5
93	AC	T31-F003	AC S/Cパージ用入口隔離弁	空気作動 バタフライ弁	×	—	5
94	AC	T31-F010	AC PCV窒素供給隔離弁	空気作動 グローブ弁	×	—	5
95	AC	T31-F011	AC D/W窒素入口隔離弁	空気作動 グローブ弁	×	_	5
96	AC	T31-F012	AC S/C窒素入口隔離弁	空気作動 グローブ弁	×	_	5
97	AC	T31-F016	AC PCVパージ用窒素供給隔離弁	空気作動 バタフライ弁	×	—	5
98	AC	T31-F019	AC D/Wベント用出口隔離弁	空気作動 バタフライ弁	×	—	4
99	AC	T31-F020	AC SGTS側PCVベント用隔離 弁	空気作動 バタフライ弁	×	—	4
100	AC	T31-F021	AC HVAC側PCVベント用隔離 弁	空気作動 バタフライ弁	×	—	4
101	AC	T31-F022	AC S/Cベント用出口隔離弁	空気作動 バタフライ弁	×	_	4
102	FCS	T49-F001A	F C S 入口第一隔離弁	電動 ゲート弁	•	A-(ii)-2	
103	FCS	T49-F001B	FCS入口第一隔離弁	電動 ゲート弁	•	A-(ii)-2	
104	FCS	T49-F003A	FCS入口第二隔離弁	電動 ゲート弁	•	A-(ii)-②	

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
105	FCS	T49-F003B	FCS入口第二隔離弁	電動 ゲート弁	● А-(іі)-②		
106	FCS	T49-F007A	FCS出口第二隔離弁	電動 ゲート弁	•	A-(ii)-②	
107	FCS	T49-F007B	FCS出口第二隔離弁	電動 ゲート弁	•	A-(ii)-②	
108	FCS	T49-F008A	FCS出口第一隔離弁	電動 ゲート弁	•	A-(ii)-②	
109	FCS	T49-F008B	FCS出口第一隔離弁	電動 ゲート弁	•	A-(ii)-②	
110	NB	B21-F001A	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
111	NB	B21-F001B	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
112	NB	B21-F001C	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
113	NB	B21-F001D	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(i)-①-①	
114	NB	B21-F001E	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
115	NB	B21-F001F	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
116	NB	B21-F001G	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
117	NB	B21-F001H	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
118	NB	B21-F001J	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
119	NB	B21-F001K	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
120	NB	B21-F001L	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
121	NB	B21-F001M	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
122	NB	B21-F001N	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
123	NB	B21-F001P	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(ii)-①-①	
124	NB	B21-F001R	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(ii)-①-①	
125	NB	B21-F001S	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(i)-①-①	
126	NB	B21-F001T	MS主蒸気逃がし安全弁(ADS)	安全弁	•	As-(i)-①-② As-(i)-①-①	
127	NB	B21-F001U	MS主蒸気逃がし安全弁	安全弁	•	As-(i)-①-② As-(i)-①-①	
128	SLC	C41-F003A	SLCポンプ出口逃がし弁	安全弁	×	_	Û
129	SLC	C41-F003B	SLCポンプ出口逃がし弁	安全弁	×	_	0
130	SLC	C41-F014	SLCポンプ入口逃がし弁	安全弁	×	_	1

No.	系統	弁番号	弁名称	弁型式	動的機能維持が 要求される弁 (●105個)	動的機能維持が 要求される理由 ^{*1} 表Ⅱ-1分類例	動的機能維持要求が 除外される理由 ^{*2}
131	RHR	E11-F039A	RHR停止時冷却ライン隔離弁逃がし 弁	安全弁	×	_	1
132	RHR	E11-F039B	RHR停止時冷却ライン隔離弁逃がし 弁	安全弁	×	_	1
133	RHR	E11-F039C	RHR停止時冷却ライン隔離弁逃がし 弁	安全弁	×	_	1
134	RHR	E11-F042A	RHR停止時冷却吸込側逃がし弁	安全弁	×	_	(I)
135	RHR	E11-F042B	RHR停止時冷却吸込側逃がし弁	安全弁	×	_	1
136	RHR	E11-F042C	RHR停止時冷却吸込側逃がし弁	安全弁	×	_	1
137	RHR	E11-F051A	RHRテストライン逃がし弁	安全弁	×		D
138	RHR	E11-F051B	RHRテストライン逃がし弁	安全弁	×	_	1
139	RHR	E11-F051C	RHRテストライン逃がし弁	安全弁	×	_	1
140	HPCF	E22-F020B	HPCFポンプ吸込側逃がし弁	安全弁	×		1
141	HPCF	E22-F020C	HPCFポンプ吸込側逃がし弁	安全弁	×		1
142	RCIC	E51-F017	RCICポンプ吸込側逃がし弁	安全弁	×		1
143	HPIN	P54-F011A	HPIN非常用窒素ガス安全弁	安全弁	×		1
144	HPIN	P54-F011B	HPIN非常用窒素ガス安全弁	安全弁	×	_	0
145	FCS	T49-F009	FCS出口ライン逃がし弁	安全弁	×	_	1
146	FCS	T49-F015	FCS出口ライン逃がし弁	安全弁	×	_	1

注記*1:別紙1参照

*2 : 別紙2参照

別添1 別紙1

動的機能維持の必要性の有無については,JEAG4601-1984に規定されている。「表Ⅱ-1 具体的な動的設備とその分類例(BWR)」(P52)において,動的機能が要求される機器例が示され ており,今回の別添1に記載の要目表対象弁に対して分類例番号を記載し,動的機能維持が要求さ れる弁を整理した。

(例:主蒸気逃がし安全弁 → As-(i) -①-②, As-(ii) -①-①)

耐震重要 度 分 類	動的機能の分類	系 統	動的機能が要求 される機器	要求機能	備考
	<ul> <li>(i) 原子炉冷却材圧</li> <li>カバウンダリを構</li> <li>成する金のった</li> </ul>	系	<ol> <li>主蒸気隔離弁</li> <li>逃がし安全弁 (安全弁機能)</li> </ol>	α(S ₂ )	図Ⅱ-1 参照 他の動的機能分 類で動的機能が要
	その健全性を維持	② 主蒸気ドレン系	<ol> <li>ドレンライン隔 離弁</li> </ol>	$\alpha(S_2)$	求される弁は除く。
	するために動的機	③ 給 水 系	① 給水逆止弁	$\alpha(S_2)$	a shekiya fa
	能が必要なもの	<ul><li>④ 原子炉冷却材净 化系</li></ul>	①隔離弁	$\alpha(S_2)$	
	(ii) 原子炉停止後, 炉心から崩壊熱を	采	<ol> <li>         ① 逃がし安全弁         (逃がし弁機能)     </li> </ol>	$\beta(S_2)$	図Ⅱ-1 参照
	除去するために必 要な動的設備	② 原子炉隔離時冷 却系	<ol> <li>タービン,② 弁</li> <li>ポンプ</li> </ol>	$\beta(S_2)$	図Ⅱ-2 参照
	国际特内 (地质略)	③ 高圧炉心スプレ イ系	① 弁, ② ポンプ	$\beta(S_2)$	図Ⅱ-3 参照
٨		<ul><li>④ 残留熱除去系</li><li>(停止時冷却モード)</li></ul>	① 弁, ② ポンプ	$\beta(S_2)$	図Ⅱ-4 参照
ns		⑤ 非常用補機冷却 系	① 弁, ② ポンプ	$\beta(S_2)$	1
	an an an an an An Ar An	⑥ 非常用電源設備	<ol> <li>ディーゼル</li> <li>弁, ③ ポンプ</li> </ol>	$\beta(S_2)$	ntrotoni e in Marken în
9-11	(III) 原子炉の緊急停	① 制御棒駆動系	① 駆動機構		A de asterio - S
	止のために、急激		② スクラム弁	n k m	
	に貝の反応反を竹		0 M	10620007	
	た動的設備 及び		的名词复数的问题	$\alpha(S_2)$	図Ⅱ-5 参照
	「百子后の信止比能			ENC	
	た維持するために				
	必要な動的設備	的機能加計算例	化算术咨和奇動	<b>东蜀州</b>	
設備HC-つ e TC TC No Q M e	(Ⅳ) 原子炉格納容器 バウンダリを構成	① 不活性ガス系	① PCV 隔離弁	$\beta(S_1)$	図II-6 参照 原子炉冷却材圧 カバウンダリ破損

表Ⅱ-1 具体的な動的設備とその分類例(BWR)

耐震重要 度 分 類	動的機能の分類	系統	動的機能が要求 される機器	要求機能	備考
As	する弁のうち,原 子炉冷却材圧力バ ウンダリ破損の一 定時間後に閉止が 必要なもの				(LOCA)後,一 般の隔離弁は直ち に閉となるため, 地震時の動的機能 維持の必要はない。 ただし,LOCA後, ECCS等の停止に 伴なう原子炉格納 容器バウンダリ閉 止に必要な弁は, S ₁ 地震後機能維持 を要す。 また,他の動的 機能分類で動的機 能が要求される弁
	<ul> <li>(1)原子炉冷却材圧</li> <li>カバウンダリ破損</li> <li>後,炉心から崩壊</li> <li>熱を除去するため</li> <li>に必要な動的設備</li> </ul>	<ol> <li>非常用炉心冷却 系</li> <li>1)高圧炉心スプレイ系</li> <li>2)低圧炉心スプレイ系</li> <li>3)残留熱除去系(低圧炉心注水モード)</li> <li>2 非常用補機冷却系</li> <li>3 非常用電源設備</li> </ol>	<ol> <li>① 弁, ② ポンプ</li> <li>① ディーゼル</li> <li>③ 弁 ③ ポンプ</li> </ol>	$\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$	は除く。 A _S クラスの(  )の③ で確認 図II-7 参照 図II-8 参照 A _S クラスの(  )の⑤ で確認 A _S クラスの(  )の⑥ で確認
A	<ul> <li>(ii) 放射性物質の放 出を伴なうような 事故の際にその外 部放散を抑制する ために必要な動的 設備で,上記耐震 A_sクラスの(iv)以外 の設備</li> </ul>	①       残留熱除去系 (PCVスプレイモ ード)         ②       可燃性ガス濃度 制御系         ③       非常用ガス処理 	<ul> <li>(1) 弁, (2) ポンプ</li> <li>(1) ブ ロ ア</li> <li>(1) ガ ロ ア</li> <li>(1) 排気ファン</li> <li>(1) 弁, (2) ポンプ</li> <li>(1) 弁, (2) ポンプ</li> <li>(1) ディーゼル</li> <li>(2) 弁, (3) ポンプ</li> </ul>	$\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$ $\beta(S_1)$	<ul> <li>○ Ⅲ – 9 参照</li> <li>◎ Ⅱ – 10 参照</li> <li>◎ Ⅱ – 11 参照</li> <li>A_s クラスの(ii)の⑤</li> <li>で確認</li> <li>A_s クラスの(ii)の⑥</li> <li>で確認</li> </ul>
	<ul> <li>(ⅲ) 使用済燃料プー</li> <li>ル水を捕給するた</li> <li>めに必要な動的設</li> <li>備</li> </ul>	<ol> <li>燃料プール水補 給設備 (非 常 用)</li> </ol>	<ul> <li>① 弁, ② ポンプ</li> </ul>	$\beta(S_1)$	て 11世 記込

別添1 別紙2

以下のリストは,動的機能維持要求が除外されるとしたものについて,その具体的な理由をまと めたものである。

番号	動的機能維持要求が除外される理由
1)	原子炉冷却材圧力バウンダリの健全性,原子炉停止後の崩壊熱除去等,プラントの事故対応や停止操作時において動作を必要としない安全弁であり,評価対象外。
2	ドライウェルLCWサンプ出ロラインに設置されている格納容器隔離弁であ り,冷却材喪失事故直後に動作(「開」→「閉」),その後動作要求がないた め(「閉」維持),評価対象外。
3	ドライウェルHCWサンプ出ロラインに設置されている格納容器隔離弁であ り,冷却材喪失事故直後に動作(「開」→「閉」),その後動作要求がないた め(「閉」維持),評価対象外。
4	原子炉格納容器の窒素排気ラインに設置されている格納容器隔離弁及び空気作 動弁であり、冷却材喪失事故直後に動作(「開」又は「閉」」→「閉」),そ の後動作要求がないため(「閉」維持),評価対象外。
5	原子炉格納容器への窒素供給ラインに設置されている格納容器隔離弁及び空気 作動弁であり、冷却材喪失事故直後に動作(「開」又は「閉」→「閉」),そ の後動作要求がないため(「閉」維持),評価対象外。
6	サプレッションプール水移送ラインに設置されている電動弁であり,冷却材喪 失事故直後に動作(「開」又は「閉」→「閉」),その後動作要求がないため (「閉」維持),評価対象外。
7	原子炉圧力容器ヘッドスプレイラインに設置されているプラント通常運転時 「閉」の電動弁であり,冷却材喪失事故直後の動作要求がないため(「閉」維 持),評価対象外。
8	原子炉圧力容器ヘッドスプレイラインに設置されている逆止弁であり,冷却材 喪失事故後の動作要求がないため(「閉」維持),評価対象外。
9	ほう酸水注入ラインに設置されているプラント通常運転時「閉」の逆止弁であ り,冷却材喪失事故後の動作要求がないため(「閉」維持),評価対象外。

No.	系統	弁番号	弁名称	弁型式	重大事故等対象施設として 動的機能維持要求が除外される理由	
1	RCIC	E51-F012	RCIC 冷却水ライン止め弁	電動 グローブ弁	原子炉隔離時冷却系ポンプの冷却水ラインに設置されてい る電動弁であり,重大事故直後に動作(「閉」→ 「開」),その後動作要求が無いため,評価対象外。	
2	RCIC	E51-F034	RCIC 過酷事故時蒸気止め弁	電動 ゲート弁	原子炉隔離時冷却系ポンプ駆動用蒸気タービンの蒸気ライ ンに設置されている電動弁であり,重大事故直後に動作 (「開」→「閉」),その後動作要求が無いため,評価対 象外。	
3	HPAC	E51-F065	RCIC HPACタービン止め弁	電動 グローブ弁	高圧代替注水系ポンプの蒸気ラインに設置されている電動 弁であり,重大事故直後に動作(「閉」→「閉」),その 後動作要求が無いため,評価対象外。	
4	HPAC	E61-F004	HPAC 注入弁	電動 グローブ弁	高圧代替注水系の原子炉注水ラインに設置されている電動 弁であり,重大事故直後に動作(「閉」→「開」),その 後動作要求が無いため,評価対象外。	
5	AC	T31-F019	AC D/Wベント用出口隔離弁	空気作動 バタフライ弁	格納容器圧力逃がし装置のベントラインに設置されている 空気作動弁であり、ベント操作実施時に手動操作(「閉」 →「開」)が可能であるため、評価対象外。	
6	AC	T31-F022	AC S/Cベント用出口隔離弁	空気作動 バタフライ弁	格納容器圧力逃がし装置のベントラインに設置されている 空気作動弁であり、ベント操作実施時に手動操作(「閉」 →「開」)が可能であるため、評価対象外。	
7	FV	T31-F070	AC PCV耐圧強化ペント用連絡配 管隔離弁	電動 バタフライ弁	格納容器圧力逃がし装置のベントラインに設置されている 電動弁であり、ベント操作実施時に手動操作(「閉」→ 「開」)が可能であるため,評価対象外。	
8	FV	T31-F072	AC PCV耐圧強化ベント用連絡配管隔離 弁バイパス弁	電動 バタフライ弁	格納容器圧力逃がし装置のベントラインに設置されている 電動弁であり,ベント操作実施時に手動操作(「閉」→ 「開」)が可能であるため,評価対象外。	
9	FV	T61-F001	耐圧強化ベント系PCVベントライン フィルタベント容器側隔離弁	空気作動 バタフライ弁	格納容器圧力逃がし装置のベントラインに設置されている 空気作動弁であり,ベント操作実施時に手動操作(「開」 →「閉」)が可能であるため,評価対象外。	
10	FV	T61-F002	耐圧強化ベント系PCVベントライン排 気筒側隔離弁	空気作動 バタフライ弁	耐圧強化ベント系のベントラインに設置されている空気作 動弁であり、ベント操作実施時に手動操作(「閉」→ 「開」)が可能であるため、評価対象外。	
11	HVAC	U41-F001A, B	MCR通常時外気取入れ隔離ダンパ	電動 バタフライ弁	中央制御室の通常時外気取入れラインに設置されている電 動弁であり,重大事故直後に動作(「開」→「閉」),そ の後動作要求が無いため,評価対象外。	
12	HVAC	U41-F002A, B	MCR排気隔離ダンパ	電動 バタフライ弁	中央制御室の排気ラインに設置されている電動弁であり, 重大事故直後に動作(「開」→「閉」),その後動作要求 が無いため,評価対象外。	
13	HVAC	U41-F003A, B	MCR非常時外気取入れ隔離ダンパ	電動 バタフライ弁	中央制御室の非常時外気取入れラインに設置されている電 動弁であり,重大事故直後に動作(「開」→「閉」),そ の後動作要求が無いため,評価対象外。	
14	HVAC	U41-DAM601A, B	MCR外気取入ダンパ(A),(B)(6号機設 備, 6,7号機共用)	電動 バタフライ弁	中央制御室の通常時外気取入れラインに設置されている電 動弁であり,重大事故直後に動作(「開」→「閉」),そ の後動作要求が無いため,評価対象外。	
15	HVAC	U41-DAM602A, B	MCR非常用外気取入ダンパ(A),(B)(6 号機設備,6,7号機共用)	電動 バタフライ弁	中央制御室の非常時外気取入れラインに設置されている電 動弁であり,重大事故直後に動作(「開」→「閉」),そ の後動作要求が無いため,評価対象外。	
16	HVAC	U41-DAM604A, B	MCR排気ダンパ(A),(B)(6号機設備, 6,7号機共用)	電動 バタフライ弁	中央制御室の排気ラインに設置されている電動弁であり, 重大事故直後に動作(「開」→「閉」),その後動作要求 が無いため,評価対象外。	

#### 1. 有意な応答増加の判断基準

先行BWRプラント(東海第二発電所)では,弁の動的機能維持評価におけるスペクトルモー ダル解析にて考慮する高振動数領域の判断基準として,機能維持評価用加速度の増加率が10%以 上となる場合を有意な応答増加としていた。

柏崎刈羽原子力発電所第7号機(以下「KK7」という。)では,先行BWRプラント(東海第二 発電所)と同様の判断基準に加え,機能維持評価用加速度の増加値が機能確認済加速度(以下「At」 という。)の10%以上となることを有意な応答増加の判断基準としている(表1参照)。

判断基準	先行BWRプラント	KK7
機能維持評価用加速度 の増加率	機能維持評価用加速度の 10%以上	機能維持評価用加速度の 10%以上
機能維持評価用加速度 の増加値		機能確認済加速度の 10%以上

- 美 1	右音かい	玄饮通加	レオス	<b>判新</b> 其淮
1X I	伯恩なぬ	心合炬加	ヒッシ	刊四左毕

2. 機能維持評価用加速度の増加値を判断基準に加える考え方

弁の動的機能維持評価は、機能維持評価用加速度がAt以下となることを確認するものである。 先行BWRプラントと同様に機能維持評価用加速度の増加率のみを有意な応答増加の判断基準 とする場合、機能維持評価用加速度が小さい弁については例え僅かな増加量であっても有意な増 加があると整理して、振動数領域を拡張した更なる評価を実施することとなる。

ここで、KK7 の弁の動的機能維持評価において、機能維持評価用加速度の増加率が10%以上となる対象を表2に示す。表2に示す対象のうちNo.9「P21-F007C」を例にすると、30Hzから50Hz で鉛直方向の機能維持評価用加速度が1.03から1.13へ10%増加しているものの、増加値は0.1 と僅かであり機能確認済加速度6.0と比較しても十分余裕があることが確認できる。このような ケースを踏まえると、機能維持評価用加速度の増加率のみが動的機能維持評価結果に有意な影響 を与える訳では無いと考えることから、KK7 では機能維持評価用加速度の増加率に加えて、機能 維持評価用加速度の増加値を有意な応答増加の判断基準に含めている。

また,機能維持評価用加速度の増加率や増加値だけでなく,機能維持評価用加速度が At 以下 になることも確認している。

_																	
						MAX (	30Hz, 1. 2ZP/	1)	MAX (	50Hz,1.2ZP#	1)		30Hz→50Hzでの				
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済 加速度に対する比率 ((②-①)/③)	備考			
1	ме	D01 E001C	MS主蒸気逃がし安全	~ <u>~</u> ~	水平	5.72 (5.72) (1.72)	9.6	1.68	5.72 (5.72) (1.72)	9.6	1.68	1.00	0.00%				
1	MS	521-F001C	弁(ADS)	女主井	鉛直	1.84 ( 1.84 ) ( 1.06 )	6.1	3. 32	2.15 (2.15) (1.06)	6. 1	2.84	1.17	5.09%				
9	MC	P21-E001D	MS主蒸気逃がし安全	空全台	水平	7.45 (7.45) (1.72)	9.6	1.29	7.45 (7.45) (1.72)	9.6	1.29	1.00	0.00%				
2	mo	B21-F001D	弁	女主开	鉛直	1.74 ( 1.74 ) ( 1.06 )	6.1	3. 51	2.25 (2.25) (1.06)	6. 1	2.71	1.29	8. 37%				
3	MS	B21-F001 I	MS主蒸気逃がし安全	安全金	水平	5.52 (5.52) (1.72)	9.6	1. 74	5.72 (5.72) (1.72)	9.6	1.68	1.04	2. 09%				
			并	XIA	鉛直	1.94 ( 1.94 ) ( 1.06 )	6.1	3. 14	2.25 (2.25) (1.06)	6.1	2.71	1.16	5.09%				
4	MS	B21-F052A	原子炉給水ライン内側	逆止弁	水平	1.45 ( 0.41 ) ( 1.45 )	6.0	4.14	1.74 ( 1.74 ) ( 1.45 )	6.0	3. 45	1.20	4.84%				
			隔離弁	1499時世升	1499 時世 尹1-	P的神开	12 IL T	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5. 71	1.00	0.00%	
5	MS	B21-F052B	原子炉給水ライン内側	逆止弁	水平	1.45 (0.41) (1.45)	6.0	4.14	1.64 ( 1.64 ) ( 1.45 )	6.0	3. 66	1.13	3. 17%				
			1499 PBE <del>기1</del>	21171	鉛直	1.05 ( 0.31 ) ( 1.05 )	6.0	5. 71	1.43 ( 1.43 ) ( 1.05 )	6.0	4. 20	1.36	6.34%				
6	RHR	E11-F006B	RHR LPFL試験	逆止弁	水平	1.45 ( 0.92 ) ( 1.45 )	6.0	4.14	1.74 ( 1.74 ) ( 1.45 )	6.0	3. 45	1.20	4.84%				
			<b>り能迎止</b> 开		鉛直	1.05 ( 0.41 ) ( 1.05 )	6.0	5. 71	1.05 ( 1.03 ) ( 1.05 )	6.0	5.71	1.00	0.00%				
7	HPCF	E22-F001B	HPCF CSP側吸	電動	水平	2. 25 ( 2. 25 ) ( 1. 03 )	6.0	2. 67	2.66 (2.66) (1.03)	6.0	2. 26	1.18	6.84%				
			16开	7-F#	鉛直	1.00 ( 0.72 ) ( 1.00 )	6.0	6.00	1.00 ( 0.72 ) ( 1.00 )	6.0	6.00	1.00	0.00%				
8	HPCF	E22-F001C	HPCF CSP側吸	電動	水平	1.54 ( 1.54 ) ( 1.03 )	6.0	3. 90	1.74 ( 1.74 ) ( 1.03 )	6.0	3. 45	1.13	3. 34%				
			1公开	7 - F#	鉛直	1.00 ( 0.31 ) ( 1.00 )	6.0	6.00	1.00 ( 0.41 ) ( 1.00 )	6.0	6.00	1.00	0.00%				
9	RCW	P21-F007C	R C W 熱交換器冷却水	電動バタフ	水平	3.07 (3.07) (0.98)	6.0	1.95	3.17 (3.17) (0.98)	6.0	1.89	1.03	1.67%				
			<b>四</b> 口开	71开	鉛直	1.03 ( 1.03 ) ( 0.89 )	6.0	5. 83	1.13 ( 1.13 ) ( 0.89 )	6.0	5. 31	1.10	1.67%				
10	RCW	P21-F011B	RCW冷却水供給温度 調筋 か (物 本 ⁴⁸ 90 / 101)	空気作動バ	水平	1.23 ( 0.21 ) ( 1.23 )	6.0	4.88	1.54 (1.54) (1.23)	6.0	3.90	1.25	5.17%				
			响动计 (窓父換審測)	ラノフイ 开	鉛直	0.95 ( 0.52 ) ( 0.95 )	6.0	6.32	0.95 (0.82) (0.95)	6.0	6.32	1.00	0.00%				

表2(1) 増加値により有意な増加が無いと判断した対象弁

注記*:上段が動的解析結果(30Hz 又は 50Hz)と最大加速度(1.2ZPA)における最大値,中段が動 的解析結果(30Hz 又は 50Hz)の値,下段が最大加速度(1.2ZPA)の値。配管系が剛な場合 は中段の動的解析結果に「一」を記載。

						MAX (	30Hz, 1. 2ZPA	l)	MAX (S	50Hz,1.2ZPA	.)		30Hz→50Hzでの				
No.	系統	弁番号	弁名称	弁型式	方向	機能維持評価 用加速度* (①)	機能確認 済加速度 (③)	裕度	機能維持評価 用加速度* (②)	機能確認 済加速度 (③)	裕度	増加率 (②/①)	増加値の機能確認済 加速度に対する比率 ((②-①)/③)	備考			
	DOW	D01 50404	RCW RHR熱交換	電動	水平	2.76 (2.76) (0.99)	6.0	2. 17	2.86 (2.86) (0.99)	6.0	2.10	1.04	1.67%				
11	KUW	P21-F042A	器冷却水出口弁	グローブ弁	鉛直	1.64 ( 1.64 ) ( 1.00 )	6.0	3.66	1.84 ( 1.84 ) ( 1.00 )	6.0	3. 26	1.12	3. 34%				
19	DCW	D91_E049D	RCW非常用D/G冷	電動	水平	2.05 (2.05) (1.07)	6.0	2. 93	2.25 (2.25) (1.07)	6.0	2.67	1.10	3.34%				
12	KC.W	121-10460	却水出口弁	却水出口弁	却水出口弁	叩水出口弁	ゲート弁	鉛直	1.05 ( 0.52 ) ( 1.05 )	6.0	5. 71	1.05 ( 0.52 ) ( 1.05 )	6.0	5.71	1.00	0.00%	
13	DCW	D21-F048F	RCW非常用D/G冷	電動	水平	1.94 ( 1.94 ) ( 1.13 )	6.0	3. 09	2.45 (2.45) (1.13)	6.0	2.45	1.26	8.50%				
15	KC.W	F21-F046E	却水出口弁	ゲート弁	ゲート弁	鉛直	1.08 ( 0.62 ) ( 1.08 )	6.0	5. 56	1.08 ( 0.92 ) ( 1.08 )	6.0	5. 56	1.00	0.00%			
14	SCTS	T22-F001R	全地回口下るエンス	空気作動バ	水平	1.64 ( 1.64 ) ( 1.38 )	6.0	3. 66	1.94 ( 1.94 ) ( 1.38 )	6.0	3. 09	1. 18	5.00%				
14	3013	122-F001B		タフライ弁	鉛直	1.15 ( 0.31 ) ( 1.15 )	6.0	5. 22	1.15 ( 0.41 ) ( 1.15 )	6.0	5. 22	1.00	0.00%				
15	SCTS	T22-E0044	SGTSフィルタ装置	電動バタフ	水平	2.89 (2.89) (2.27)	6.0	2.08	3.27 (3.27) (2.27)	6.0	1.83	1.13	6.34%				
10	3013	122-F004A	出口弁	ライ弁	鉛直	1.23 ( 0.94 ) ( 1.23 )	6.0	4.88	1.31 ( 1.31 ) ( 1.23 )	6.0	4.58	1.07	1.34%				

表 2(2) 増加値により有意な増加が無いと判断した対象弁

注記*:上段が動的解析結果(30Hz 又は 50Hz)と最大加速度(1.2ZPA)における最大値,中段が 動的解析結果(30Hz 又は 50Hz)の値,下段が最大加速度(1.2ZPA)の値。配管系が剛な 場合は中段の動的解析結果に「一」を記載。

- 3. 弁の動的機能維持評価における高振動領域の影響
  - (1) 配管解析におけるスペクトルモーダル解析について

配管解析におけるスペクトルモーダル解析では、質点を梁要素で連結した質点モデルを作成した上で、固有値解析により求めた振動モード毎の固有周期[T_N],揺れやすさを表す刺激係数[β_N]及び揺れる方向と大きさを表す固有ベクトル[φ_N]を用いて、各モードの応答をモード合成することによって最大応答を算出している。

具体的には、床応答曲線より固有周期[T_N]における応答加速度[α_N]を読み取り、以下の 式を用いてある質点に対する全モードを SRSS により合成し、機能維持評価用加速度[α]を 算出する。

$$\alpha = \sqrt{\left( \alpha_{1} \beta_{1} \phi_{1} \right)^{2} + \dots + \left( \alpha_{N} \beta_{N} \phi_{N} \right)^{2}}$$

(2) 高振動数領域の影響について

KK7 では弁の動的機能維持評価において考慮する振動数領域は 30Hz を基本としており, 50Hz とした場合の加速度に有意な応答増加が確認されない場合は 30Hz の機能維持評価用加 速度を採用することとしている。

これは、弁の動的機能維持評価に用いる床応答曲線が、20Hz 近傍で応答が卓越する原子炉 遮蔽壁・原子炉本体基礎の位置であっても 30Hz 近傍では概ね最大加速度(1.0ZPA) に収束し ていることから、前述したスペクトルモーダル解析の特性(各モードの応答加速度をモード 合成)により、これ以降の領域における応答加速度が小さく、動的機能維持評価の成立性に 影響するような機能維持評価用加速度の大きな増加は無いと考えられるためである。

具体的には、弁の機能維持評価用加速度に寄与する主要なモードが概ね 30Hz 未満にある 場合には、最大加速度(1.0ZPA)より大きな応答加速度を用いて機能維持評価用加速度が積 算されるため、30Hz までの機能維持評価用加速度が大きくなる(比較的裕度が小さくなる) 傾向になり、30Hz 以上の領域では機能維持評価用加速度の積算に用いる応答加速度が小さい ため、50Hz(若しくはそれ以降の振動数領域)まで計算しても機能維持評価用加速度の大き な増加は無い。

一方で,主要なモードが概ね 30Hz 未満の領域に無い場合については,30Hz までの機能維 持評価用加速度は小さくなる(比較的裕度が大きくなる)傾向になり,50Hz(若しくはそれ 以降の振動数領域)まで計算した場合に機能維持評価用加速度が若干増加する可能性はある が,この場合であっても各モードの応答加速度は最大加速度(1.0ZPA)程度と小さく,機能 維持評価用加速度の増加量は大きくないと考えられる。また,このケースでは最大加速度 (1.2ZPA)による評価を行うことも,評価の保守性に寄与するものと言える。

機能維持評価用加速度の値に差はあるものの,これらの傾向は弁の動的機能維持評価結果から確認できる。例として,動的機能維持評価対象弁が設置されている階層のうち,解析モデル数が多い階層として,原子炉遮蔽壁 T.M.S.L. 15.600m 及び原子炉建屋 T.M.S.L. 4.800mの 床応答曲線を評価に用いている弁の 20Hz, 30Hz, 50Hz での評価結果を図1に示す。



図1(1) 原子炉建屋 T.M.S.L.4.800m を用いた評価結果(水平方向)



図1(2) 原子炉建屋 T.M.S.L.4.800m を用いた評価結果(鉛直方向)



図1(3) 原子炉遮蔽壁 T.M.S.L. 15. 600m を用いた評価結果(水平方向)



#### 機能維持評価用加速度の応答増加が確認された弁に対する要因の推定

1. はじめに

弁の動的機能維持評価対象弁105台のうち表1に示す2台に振動数領域を30Hzまで考慮した 場合の加速度に対して50Hzまで考慮した場合の加速度に有意な増加が確認されたことから,当 該弁について増加要因に対する検討を以下に実施する。なお,対象弁はいずれも同一モデル(MS-PD-4)に属する弁である。

			機能維持評価	西用加速度*	松台にアカラス		30Hz→50Hzでの 増加値の機能確認済 加速度比 (((2-①)/(3))	
弁番号	弁名称	方向	最大値(①) (30Hz) (1.2ZPA)	最大値(②) (50Hz) (1.2ZPA)	機能確認 済加速度 (③)	応答増加率 (②/①)		
B21-F001T	主蒸気逃がし 安全弁T	鉛直	$ \begin{array}{c} 1.64\\(1.64)\\(1.06) \end{array} $	2.35 (2.35) (1.06)	6.1	1.43	11.64%	
B21-F001U	主蒸気逃がし 安全弁U	鉛直	$ \begin{array}{c} 1.33\\(1.33)\\(1.06)\end{array} $	$\begin{array}{c} 2.25 \\ (2.25) \\ (1.06) \end{array}$	6.1	1.69	15.08%	

表1 有意な応答増加が確認された弁(検討対象弁)

注記*:上段が動的解析結果(30Hz 又は 50Hz)と最大応答加速度(1.2ZPA)における最大値,中 段が動的解析結果(30Hz 又は 50Hz)による値,下段が最大応答加速度(1.2ZPA)による 値

#### 2. 評価加速度の増加率の検討

B21-F001T 及び B21-F001U の評価用加速度算出に用いた解析モデル図を図1に,当該配管系の 主要仕様を表2に,各振動モードにおける刺激係数等の整理結果を表3に示す。

図1に示すとおり、当該弁が設置された配管の支持構造として、B21-F001T及びB21-F001Uの 中間地点には鉛直方向を支持するスナッバが設置されている。これにより、鉛直方向に対して高 い剛性を有していることから、30Hz以上の高次のモードで励起することにより、50Hzまで考慮 した場合での加速度が増加に至ったものと考えられる。

また,当該弁が設置された配管系の振動モードとして24次のモードが卓越しており,特に当該モードが加速度増加に影響を与えたものと考えられる(図2参照)。

#### 3. まとめ

動的機能維持評価において、50Hz まで考慮した場合の加速度に増加が確認された弁につい て、その増加に至った要因を検討した。加速度に有意な増加が確認された B21-F001T(主蒸気逃 がし安全弁 T)及び B21-F001U(主蒸気逃がし安全弁 U)の解析モデル図を図1に示すが、弁近 傍に加速度増加に至った方向と同方向に支持構造物を有している。また、他の主蒸気逃がし安全 弁と比べて、弁近傍の主蒸気管には鉛直方向に対して垂直にスナッバが設置されており、B21-F001T 及び B21-F001U 近傍の配管系は、他の主蒸気逃がし安全弁近傍の配管系よりも高い剛性を 有していることにより、30Hz 以上の高次モードによる影響で加速度増加に至ったものと考えら れる。



図1 主蒸気系配管の解析モデル図(モデル No. MS-PD-4)

項目	主要仕様
最高使用圧力 (MPa)	8.62
最高使用温度 (℃)	302
外 径 (mm)	711.2
厚 さ (mm)	35.7
材料	STS480

表2 主蒸気系配管及び主要弁の主要仕様

					H W		設計震度				
モード	固有振動数 (Hz)	固有周期 (a)		刺 激	係数		水平	方向	鉛直方向		
	(HZ)	(8)	X方向	Y方	向	Z方向	X方向	Z方向	Y方向		
1次											
2 次											
3 次											
4 次											
5 次											
6次											
7次											
8次											
9次											
10 次											
11 次											
12 次											
13 次											
14 次											
15 次											
16 次											
17 次											
18 次											
19 次											
20 次											
21 伏											
22 代											
23 次											
24 次											
20 K											
20 次											
28 次											
29 次											
30 次											
31 次											
32 次											
33 次											
34 次											

## 表3 主蒸気系配管の刺激係数等

図2 主蒸気系配管の代表的な振動モード図(モデル No. MS-PD-4)

添付 6

原子炉格納容器内に設置されている弁の動的機能維持評価に用いる床応答曲線について

添付2の確認結果より,原子炉格納容器内に設置されている弁の動的機能維持評価には,床応 答スペクトルの作成範囲を50Hzとして作成した床応答曲線を用いることから,V-2-1-7「設計用 床応答曲線の作成方針」に記載している設計用床応答曲線Iの作成方法に準拠して床応答曲線を 作成した。作成した床応答曲線及び適用対象弁の内訳を表1に,床応答曲線を図1~図6に示す。

弁番号	標高 (m)	減衰定数 (%)	図番号
B21-F001A         B21-F001B         B21-F001C         B21-F001D         B21-F001E         B21-F001F         B21-F001G         B21-F001J         B21-F001J         B21-F001L         B21-F001K         B21-F001N         B21-F001N         B21-F001R         B21-F001S         B21-F001U         B21-F002A         B21-F002B         B21-F002D         E51-F035	18.44	2.0	⊠1
E22-F004C		0.5	図2
E11-F006B		1.5	図3
E11-F006C		2.0	叉4
E22-F004B	15.60		
BZ1-FU5ZA			
BZ1-FU5ZB F11_F010A		3.0	図5
E11-F010A F11-F010C			
F11-F010C			
G31-F002	13.95	2.0	図6
G91-L005			

表1 弁の評価に用いる床応答曲線の使用内訳







図1 原子炉遮蔽壁 T.M.S.L. 18.440m 減衰定数2.0%























図4 原子炉遮蔽壁 T.M.S.L.15.600m 減衰定数2.0%

















資料 6

ケミカルアンカの高温環境下での使用について

1.	概要	1
2.	適用範囲	1
3.	ケミカルアンカの許容引張荷重	2
4.	付着強度試験要領	3
5.	付着強度試験結果	5
6.	製品の品質管理	7
7.	施工時の品質管理	7
8.	高温環境下での経時変化について	8
9.	実荷重に基づく評価	10

# 目次

#### 1. 概要

重大事故等対処設備の基礎ボルトには、ケミカルアンカを使用するものもあるが、ケミカルア ンカの耐熱温度はカタログでは80℃以下とされていることが多い。一方で、重大事故等時の環境 温度が 100℃程度となる環境下で使用する設備もあることから、このような環境下を模擬した試 験を行うことにより、その温度条件下で使用可能であることを示す。

2. 適用範囲

重大事故等時に80℃を超える温度環境下で使用する以下の機器の基礎ボルトとして,以下の有 機系カプセル式のケミカルアンカを使用しており,これらに適用する。

No.	適用機器	温度	メーカ	型式
1	燃料プール代替注水系管	100°C		
2	使用済燃料貯蔵プール水位・温度 (SA)	100°C		
3	使用済燃料貯蔵プール水位・温度 (SA 広域)	100°C		
4	使用済燃料貯蔵プール放射線モ ニタ (低レンジ)	100°C		ĺ
5	使用済燃料貯蔵プール放射線モ ニタ (高レンジ)	100°C		
6	静的触媒式水素再結合器			

上記ケミカルアンカは、一般社団法人日本建築あと施工アンカ協会(以下「JCAA」という。)の 製品認証を受けたものであり、80℃までの使用は保証されている。 3. ケミカルアンカの許容引張荷重

ケミカルアンカの許容引張荷重は、日本建築学会「各種合成構造設計指針・同解説 第4編各 種アンカボルト設計指針・解説」(以下「AIJ指針」という。)に従う。

ケミカルアンカの許容引張荷重は、ボルトの降伏により決まる値又はボルトの付着力により決 まる値の小さい方とされており、ボルトの付着力により決まる許容引張荷重は、

 $P_{a3} = \varnothing_3 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \tau_{bavg} \cdot \pi \cdot d_a \cdot \ell_{ce} \quad (N)$ 

でなる	アメイ
$(\alpha) \circ_{\circ}$	$(,$

Ø ₃	:	低減係数(=2/3:短期荷重)
$\alpha_{1}$ , $\alpha_{2}$ , $\alpha_{3}$	:	ボルトの配置による付着強度の低減係数
au bavg	:	ボルトの基本平均付着強度 =試験により確認された強度
		とする。ただし,最大 10 $\sqrt{\text{Fc}/21}$ (N/mm ² ) とする。
Fc	:	コンクリートの設計基準強度 (N/mm ² )
da	:	アンカボルトの径 (mm)
$\ell_{\rm ce}$	:	アンカボルトの強度算定用埋込み長さで、 $\ell_{ce} = \ell_e - 2d_a$ (mm)
$\ell_{\rm e}$	:	アンカボルトの有効埋込み長さ(mm)

である。

まず,この式の先頭の係数^の3 が引張荷重に対する安全率となっており,地震のような短期荷重 に対しては,その値を 2/3 (安全率 1.5)とし,その後の式はボルトの付着強度の最低保証値であ り,全体として安全率が最小で 1.5 考慮されている。

ケミカルアンカの破壊モードにも、コンクリートのコーン状破壊があるが、AIJ 指針では、これに対する制限を設けていない。これは、付着力により決まる許容引張荷重を強度算定用埋込み 深さ( $\ell_{ce} = \ell_e - 2d_a$ )を用いて算定することによりコーン状破壊により決まる許容引張荷重が包括 できるためで、AIJ 指針の図 4.30 に示されている。

したがって、 $\tau_{\text{barg}} = 10 \sqrt{Fc/21}$ には、ボルトの平均付着強度の上限値としての意味が内包されている。

また,基本平均付着応力度  $\tau_{\text{barg}}$ は、へりあき及び群の影響がない条件下における付着強度であり、「試験により確認された強度とする。ただし、最大 10  $\sqrt{\text{Fc}/21}$  とする。」とされている。

また、 $\tau_{bavg}=10\sqrt{Fc/21}$ は、JCAA「あと施工アンカ設計指針(案)・同解説」(2005)(以下、「JCAA 指針」という。)によれば、「接着系アンカの接着剤の付着強度は、引張強度試験結果に基づいて定めるものとし、試験値のばらつきを考慮した 95%信頼強度とする」、「不良率 5%以下となる算定式」とされており、解図 3.1.16 (a) 及び解図 3.1.16 (b) に計算値と試験値の比較が示されているが、 $10\sqrt{Fc/21}$ で算定された値を下回る試験データが存在することは問題とされていない。

これらのことから、ボルトの付着強度。 $\tau_b$ を試験により求め、その 95%信頼付着強度が規格で 定められている  $\tau_{bayg} = 10\sqrt{Fc/21}$ 以上であることを確認する。 4. 付着強度試験要領

4. 1

JCAA 指針には、適切な引張強度試験方法として、JCAA「あと施工アンカ標準試験法・同解説」 (現在の版は、「あと施工アンカ試験方法」)があるとされていることから、この試験方法にした がう。以下に試験要領を示す。

(1) サンプル数

型式毎に3体とする。

(2) 供試体形状

供試体形状及び寸法を第4-1図に示す。コンクリートに孔を空け、ボルトを挿入し、ケミ カルアンカを施工・固着させたものとする。施工は技量認定を受けた施工者が施工要領に基 づき実施する。



(3) 試験温度

試験温度は150℃とする。

供試体を加熱炉に入れ、コンクリート内部の温度が 150℃となるまで加熱する。その後、 温度を安定させ、数時間加熱状態を保持する。

コンクリート内部の温度は、供試体と同形状の温度測定用のコンクリート供試体に埋め込 まれた熱電対により計測する。 (4) 評価要領

上記供試体を引張試験装置で引張応力の平均増加率が毎秒 19.6N/mm²以下の速度で引っ張った際の最大荷重( $F_b(N)$ )から,  $Fc=21N/mm^2$ 換算のケミカルアンカの付着強度_eτ_b (N/mm²) を次式により求める。

コンクリートのコーン状破壊を防ぎつつ付着強度を調べる為,コンクリート表面を鋼板で 拘束する。



(5) 判定基準

4. 2 は現在製造が中止されているが, 過去にケミカルアンカメーカである が実施した試験の情報により、使用する温度条件下での健全性を示す。 (1) サンプル数

型式毎に3体とする。

(2) 供試体形状

供試体形状及び寸法を第4-1表に示す。コンクリートに孔を空け、ボルトを挿入 し、ケミカルアンカを施工・固着させたものとする。

条件
M16(材料 SCM435)
$19 \phi  imes 130$ mm
10×20cm 鋼管補強

第4-1表 供試体形状

(3) 試験温度

試験温度は室温,50,60,70,80,90,100℃とする。 供試体を加熱炉に入れ,各温度について2日間加熱状態を保持する。

ケミカルアンカの付着強度。てbの95%信頼度が、10(N/mm²)以上であること。

(4) 評価要領

上記供試体を引っ張った際の最大荷重( $F_b(N)$ )から,  $Fc=21N/mm^2$ 換算のケミカルア ンカの付着強度  $_{e\tau b}$  (N/mm²)を次式により求める。

$$e \tau b = \frac{Fb \sqrt{Fc/21}}{\pi \cdot d a \cdot le}$$

(5) 判定基準

ケミカルアンカの付着強度_{e て b}の95%信頼度が,10(N/mm²)以上であること。

5. 付着強度試験結果

5. 1

前項の試験で得られた 150 Cにおける。 $\tau_b$ の 95%信頼強度は、下表のとおりである。 10 (N/mm²)以上であり、 150 Cで使用することは可能である。

	供試体1	14.03
$_{\rm e}$ $ au$ $_{\rm b}$ (N/mm 2 )	供試体 2	10. 41
	供試体 3	13. 24
平均值x	12. 56	
$\sigma^{2} = \frac{1}{3} \sum_{i=1}^{3} (2)$	1. 55	
95%信頼強度 	10. 01	
判定值	10	


第5-1図 引張強度と温度の関係

上記の試験結果のうち100℃における_{eτb}の95%信頼強度は、下表のとおりである。 10(N/mm²)以上であり、100℃で使用することは可能である。

	供試体1	15.91
$_{\rm e} \tau$ b (N/mm ² )	供試体 2	16. 08
	供試体 3	16. 42
平均值x (N/mm ² )		16.14
標準偏差 $\sigma$ $\sigma^2 = \frac{1}{3} \sum_{i=1}^{3} (X_i - \bar{X})^2$		0. 261
95%信頼強度 _{eτb95} (N/mm²) x — 1.64σ		15. 71
判定值(N/mm ² )		10

6. 製品の品質管理

アンカメーカが、型式毎、ロット毎に材料証明書を作成している。

プラントメーカがアンカを購入する際には,指定した型式であることを確認の上,購入している。

7. 施工時の品質管理

ケミカルアンカの施工は,技量認定対象工事とされており,施工者の資格,及び記録 を有していることから,アンカ施工によるバラツキは小さい。

- (1)後打ちアンカ作業(穿孔,アンカ打込み,支持母材取付けに関するすべての作業) 及び検査の技術講習を行い,技量認定した者
- (2) ケミカルアンカ打設に際して、チェック項目を決め、記録を残している。

8. 高温環境下での経時変化について

8.1 2項適用機器のうち, を使用する No. 1 から No. 5 は, 重大事故等時に、ピーク温度 100 ℃を7日間程度継続するモードがあることから、この 影響について考察する。ケミカルアンカに特有な劣化モードは樹脂の劣化で、高分子樹 脂が熱の影響で低分子化することで、揮発成分がガス化し、その結果、重量が減少する ことにより生じる。

なお,重量減少には酸化によるものも考えられるが,アンカはコンクリートに埋まっ ており,酸化による影響は無視できる。また,劣化が化学的反応によるものであること から,樹脂に生じている応力の影響はない。

したがって, に使用されている樹脂の熱分解挙 動を試験により確認した。

(1) 昇温試験

以下の条件により昇温試験を行い、この際の樹脂の重量減少を JIS K7120「プラス チックの熱重量測定方法」に基づき測定した結果を図 8-1 に示す。



150 ℃までの加熱では、重量減少は検出限界未満であり、樹脂の劣化はない。

(2) 加速試験

一定の昇温速度で240 ℃まで昇温した後,240 ℃で最長90分保持し,この際の樹 脂の重量減少をJIS K7120「プラスチックの熱重量測定方法」に基づき測定した結果 を図8-2 に示す。



樹脂の劣化に関して、アレニウス則に基づいた 10 ℃半減則が適用される。すなわち、化学的反応が劣化を支配している場合は、"温度が 10 ℃上昇すると、寿命が 1/2 になる"とされ、環境温度が変化した場合の、高分子材料のおおよその寿命の目安を得ることができる[1]。

10 ℃半減則に則って考えると、130 ℃×1 ヶ月保持は 240 ℃×21 分保持(加速倍 率 2048 倍)に、140 ℃×1 ヶ月保持は 240℃×42 分保持(加速倍率 1024 倍)に、150 ℃ ×1 ヶ月保持は 240 ℃×84 分保持(加速倍率 512 倍)に相当する。

重量減少は僅かであり、樹脂の劣化はほとんどないと言える。

[1] 渡辺茂隆, 日本ゴム協会誌, Vol. 46, No. 8, p96-103, 1973.

以上のことから,重大事故等時に想定される熱履歴を受けた場合も,熱劣化の影響は少ないと推定される。

2

2 項適用機器の	うち,	を使用する静的触媒式水素再結合器は、
重大事故等時に、	ピーク温度	℃を2時間程度継続するモードがある。

一方で,4 項試験要領に示すように過去に が実施した試験は, 各温度において2日間加熱していることから,重大事故等時に想定されるモードを上回 る熱履歴を受けたうえでの付着強度となっている。 9. 実荷重に基づく評価

基準地震動Ssによりアンカボルトに発生する引張荷重( $P_b(N)$ )が、付着力により決まるアンカボルトの許容引張荷重( $P_a_3(N)$ )以下であることを示す。

それぞれの荷重は次式で計算することができる。

 $P_{b} = \sigma_{t} \cdot \frac{\pi}{4} d_{a}^{2}$  $p_{a3} = \phi_{3} \cdot \alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \tau_{bavg} \cdot \pi \cdot d_{a} \cdot \ell_{ce}$ ここで, P_b :アンカボルト1本に発生する引張荷重 (N) : ボルトの引張応力 (N/mm²) σt :アンカボルト呼径 (mm) da : 低減係数=2/3  $\phi_3$ α1, α2, α3: へりあきおよびアンカボルトのピッチによる低減係数 :ボルトの基本平均付着強度 =試験により確認された強度とする。 au bavg ただし,最大 10 $\sqrt{Fc/21}$  (N/mm²)とする。 : コンクリートの設計基準強度 (N/mm²) Fc  $\ell_{\rm ce}$ : 強度算定用埋込み長さで、 $\ell_{ce} = \ell_e - 2d_a$  (mm) :アンカボルトの有効埋込み長さ(mm) le

評価結果を次ページ以降に示す。

全ての設備でアンカボルトに発生する引張荷重が,アンカボルトの許容引張荷重以下 であることを確認した。

(1)燃料プール代替注水系管

環境温度	$\sigma$ t	da	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{\rm e}$
(°C)	$(N/mm^2)$	(mm)		(N/mm ² )	(mm)
100	114	16	$\alpha_1 = 0.92$	32.3	114
			$\alpha_2 = 0.92$		
			$\alpha_3 = 0.92$		

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
22922	26536	0.86



(2)使用済燃料貯蔵プール水位・温度計(SA)

環境温度	$\sigma$ t	d _a	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{\rm e}$
(°C)	$(N/mm^2)$	(mm)		(N/mm ² )	(mm)
100	69	22	$\alpha_1 = 1.0$	32.3	228
			$\alpha_2 = 0.7$		
			$\alpha_3 = 1.0$		

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
26230	73601	0.35





(3)使用済燃料貯蔵プール水位・	温度計	(SA 広域)
------------------	-----	---------

環境温度	σ _t	d _a	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{\rm e}$
(°C)	$(N/mm^2)$	(mm)		(N/mm ² )	(mm)
100	72	16	$\alpha_1 = 1.0$	32.3	114
			$\alpha_2 = 1.0$		
			$\alpha_3 = 1.0$		

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
14477	34078	0. 42



(4)使用済燃料貯蔵プール放射線モニタ(低レンジ)

環境温度	$\sigma$ t	$d_{\mathrm{a}}$	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{ m e}$
(°C)	(N/mm ² )	(mm)		(N/mm ² )	(mm)
100	2	12	$\alpha_1 = 1.0$	32.3	88
			$\alpha_2 = 1.0$		
			$\alpha_3 = 1.0$		

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
227	19948	0.01





(5)使用済燃料貯蔵プール放射線モニタ(高レンジ)

環境温度	$\sigma$ t	$d_{\mathrm{a}}$	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{ m e}$
(°C)	$(N/mm^2)$	(mm)		(N/mm ² )	(mm)
100	2	12	$\alpha_1 = 1.0$	32.3	88
			$\alpha_2 = 1.0$		
			$\alpha_3 = 1.0$		

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
227	19948	0.01





環境温度	$\sigma$ t	d _a	$\alpha_1$ , $\alpha_2$ , $\alpha_3$	Fc	$\ell_{\rm e}$
(°C)	$(N/mm^2)$	(mm)		(N/mm ² )	(mm)
	27	12	$\alpha_1 = 1.0$	32.3	88
			$\alpha_2 = 1.0$		
			$\alpha_3 = 1.0$		

(6)静的触媒式水素再結合器*	
-----------------	--

$P_{b}(N)$	$P_{a3}(N)$	$P_b/P_{a3}$
3054	19948	0.15

注記*:静的触媒式水素再結合器は、ボルトに負荷される荷重が最も大きいものを記載







資料7

加振試験について

目 次

1.	概要	1
2.	加振試験の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	機能維持評価用加速度の設定について ・・・・・・・・・・・・・・・・・・・・・・・・ 1	105

1. 概要

耐震計算に用いる機能確認済加速度のうち、V-2-1-9「機能維持の基本方針」に示す動的機器の機能確認済加速度以外のものについては、メーカ等において確認している加振試験に基づく値を用いている。

本資料は,機能維持評価のうち,

- 動的機能維持評価
- ·電気的機能維持評価

・止水性の維持評価

に用いた機能確認済加速度を取得した,メーカ等において確認している加振試験の概要を補足 説明するものである。

「2. 加振試験の概要」に,機能維持評価に用いた機能確認済加速度を取得した加振試験の概要(加振方法,入力波,加振振動数等)について示す。

「3. 機能維持評価用加速度の設定について」に、機能維持評価に用いた機能維持評価用加速 度の、機能確認済加速度を取得した加振試験の体系を踏まえた設定方法について示す。

なお、本資料以外で加振試験に関する説明を行っている補足説明資料を以下の表 1-1 に整理 し、各補足説明資料にて説明を行っている加振試験の概要は本資料には含めない。

資料番号	資料名	備考
KK7 補足-028-4	動的機能維持の詳細評価について(新たな検討又は詳細	
	検討が必要な設備の機能維持評価について)	
KK7 補足-028-8	浸水防護施設の耐震性に関する説明書の補足説明資料	サブドレンポンプ
		フラップゲート
KK7 補足-028-9	可搬型重大事故等対処設備の耐震性に関する説明書に	車両型設備
	係る補足説明資料	その他設備
KK7 補足-028-10	高圧代替注水系ポンプの耐震性についての計算書に関	
-11	する補足説明資料	
KK7 補足-028-10	ドレン移送ポンプの耐震性についての計算書に関する	
-14	補足説明資料	
KK7 補足-028-10	第一ガスタービン発電機の耐震性についての計算書に	
-15	関する補足説明資料	
KK7 補足-028-10	燃料取替床ブローアウトパネル閉止装置の耐震性につ	
-21	いて	
KK7 補足-028-10	遠隔手動弁操作設備の耐震性についての計算書に関す	
-30	る補足説明資料	
KK7 補足-028-10	5号機原子炉建屋内緊急時対策所(対策本部)二酸化炭	
-31	素吸収装置の耐震性についての計算書に関する補足説	—
	明資料	
KK7 補足-028-11	電源盤・制御盤消火設備のうち配管の加振試験について	
-2		
KK7 補足-028-11	ケーブルトレイ消火設備のうち配管の加振試験につい	
-3	7	

表1-1 加振試験に関する補足説明資料リスト

## 加振試験の概要

∋n./#±	きまで	評価部位	用户委会		学歌中公常	機能確認済	业合甘游
₩ 1011 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	記載固別	【加振試験 No*1】	安水機肥	加振力问	<b>武</b> 映内谷	加速度 2, 20	刊止本华
						(~9.8 m/s)	
地下水排水設備水位	V-2-2-別添	電極式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	1-2-4	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
サブドレン動力制御盤	V-2-2-別添	サブドレン動力制	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	1-2-5	御盤	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		【В】			力し,応答波形から共振点が で		と
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
地下水排水設備水位	V-2-2-別添	電極式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	1-3-4	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
サブドレン動力制御盤	V-2-2-別添	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	1-3-5		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
		(A)			2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
使用済燃料貯蔵プール水位・温度	V-2-4-2-3	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(SA)		[C]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
使用済燃料貯蔵プール水位・温度	V-2-4-2-4	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(SA 広域)		[C]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
使用済燃料貯蔵プール監視カメ	V-2-4-2-5	赤外線カメラ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
ラ		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
使用済燃料貯蔵プール監視カメ	V-2-4-2-6	空冷装置	地震後の動的機	水平 2 方向と鉛	1. 共振点検索試験	水平:	加振後に正常
ラ用空冷装置	(1)	・冷却器	能	直の3方向同時	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		・コンプレッサ			カし,応答波形から共振点が (X		S
		<b>(</b> B <b>)</b>			方向), (Y方向), (Z		
					方向)であることを確認。		
					2. サインビート波加振試験		
					における加振試験を		
					行い,機能が維持されることを確認。		
使用済燃料貯蔵プール監視カメ	V-2-4-2-6	エアクーラ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
ラ用空冷装置	(2)	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
原子炉圧力	V-2-6-1(1)	弹性圧力検出器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		(A)	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
					力し,応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
原子炉水位(狭帯域)	V-2-6-1(2)	差圧式水位検出器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		[A]	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
					力し、応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
原子炉水位 (広帯域)	V-2-6-1(3)	差圧式水位検出器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		(A)	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
					力し、応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2,*3}	判定基準
						(×9.8 m/s ² )	
格納容器内圧力	V-2-6-1(4)	弾性圧力検出器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		(A)	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
					力し,応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
		弾性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
原子炉系炉心流量	V-2-6-1(5)	差圧式流量検出器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		[A]	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
					力し、応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
制御棒駆動機構充てん水圧力	V-2-6-1(6)	弾性圧力検出器 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         であることを確認。         こ.正弦波加振試験         における加振試験を行い,機能         が維持されることを確認。         </li> </ol>	水平: 鉛直:	加振中及び加 振後に正常に 動作すること
サプレッションチェンバプール 水位	V-2-6-1(7)	差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         であることを確認。         2. 正弦波加振試験         における加振試験を行い,機能         が維持されることを確認。         </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
		差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         <ol> <li>正弦波加振試験             における加振試験を行い,機能が維             持されることを確認。</li> </ol> </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と

 $\infty$ 

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
地震加速度	V-2-6-1(8)	地震加速度検出器 【A】	地震時の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験     の振動数領域を含む正弦波を入     カし,応答波形から共振点が     で     あることを確認。     こ     正弦波加振試験     における加振試験を行い,機能     が維持されることを確認。     </li> </ol>	水平: 鉛直:	加振中に正常 に動作するこ と
主蒸気管トンネル温度	V-2-6-1(9)	熱電対 【A】	地震時の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし、応答波形から共振点が (X 方         向), (Y 方向), (Z 方         向)であることを確認。         <ul> <li>正弦波加振試験                 (X 方向), (Y 方向), (Z 方向)</li>                 (Z 方向) における加振試験を行                 い,機能が維持されることを確認。</ul></li> </ol>	水平: 334 344 344 344 344 344 344 344 344 34	加振中に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
主蒸気管流量	V-2-6-1	差圧式流量検出器	地震時の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振中に正常
	(10)	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
高圧炉心注水系ポンプ吐出圧力	V-2-6-5-3	弾性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		ک
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
残留熱除去系ポンプ吐出圧力	V-2-6-5-4	弾性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
残留熱除去系熱交換器入口温度	V-2-6-5-5	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
残留熱除去系熱交換器出口温度	V-2-6-5-6	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点が で		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
復水補給水系温度(代替循環冷	V-2-6-5-7	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
却)		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
残留熱除去系系統流量	V-2-6-5-8	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		2
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
原子炉隔離時冷却系系統流量	V-2-6-5-9	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
高圧炉心注水系系統流量	V-2-6-5-10	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
高圧代替注水系系統流量	V-2-6-5-11	差圧式流量検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         であることを確認。         <ol> <li>正弦波加振試験             <li>における加振試験を行い,機能             が維持されることを確認。</li> </li></ol> </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
復水補給水系流量 (RHR A 系代替注水流量)	V-2-6-5-12	差圧式流量検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験     の振動数領域を含む正弦波を入     カレ,応答波形から共振点が     であることを確認。     こ     正弦波加振試験     における加振試験を行い,機能     が維持されることを確認。     </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
復水補給水系流量 (RHR B系代替注水流量)	V-2-6-5-13	差圧式流量検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 力し、応答波形から共振点が であることを確認。</li> <li>正弦波加振試験     における加振試験を行い、機能 が維持されることを確認。     </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
原子炉圧力	V-2-6-5-14	弾性圧力検出器 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 力し,応答波形から共振点が であることを確認。</li> <li>正弦波加振試験     における加振試験を行い,機能 が維持されることを確認。     </li> </ol>	水平: 鉛直:	加振中及び加 振後に正常に 動作すること
原子炉圧力(SA)	V-2-6-5-15	弾性圧力検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         であることを確認。         <ol> <li>正弦波加振試験               における加振試験を行い,機能               が維持されることを確認。</li> </ol> </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
原子炉水位(広帯域)	V-2-6-5-16	差圧式水位検出器 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし、応答波形から共振点が         であることを確認。         <ul> <li>正弦波加振試験             <ul> <li>における加振試験を行い、機能が維持されることを確認。</li> </ul> </li> </ul></li></ol>	水平: 鉛直:	加振中及び加 振後に正常に 動作すること

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
原子炉水位(燃料域)	V-2-6-5-17	差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験     の振動数領域を含む正弦波を入     カし,応答波形から共振点が     であることを確認。     こ     正弦波加振試験     における加振試験を行い,機能     が維持されることを確認。 </li> </ol>	水平: 34直:	加振後に正常 に動作するこ と
原子炉水位(SA)	V-2-6-5-18	差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 カし、応答波形から共振点が であることを確認。</li> <li>正弦波加振試験 における加振試験を行い、機能 が維持されることを確認。</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
格納容器内圧力(D/W)	V-2-6-5-19	弾性圧力検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 力し、応答波形から共振点が であることを確認。</li> <li>正弦波加振試験 における加振試験を行い、機能 が維持されることを確認。</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
格納容器内圧力(S/C)	V-2-6-5-20	弾性圧力検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 カし、応答波形から共振点が であることを確認。</li> <li>正弦波加振試験 における加振試験を行い、機能 (1) </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
ドライウェル雰囲気温度	V-2-6-5-21	熱電対 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ul> <li>か維持されることを確認。</li> <li>1. 共振点検索試験</li> <li>の振動数領域を含む正弦波を入</li> <li>力し,応答波形から共振点が</li> <li>で</li> <li>あることを確認。</li> <li>2. 正弦波加振試験</li> <li>における加振試験を行い,機能が維</li> <li>持されることを確認。</li> </ul>	水平: 34直:	加振後に正常 に動作するこ と
サプレッションチェンバ気体温 度	V-2-6-5-22	熱電対 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         <ol> <li>正弦波加振試験             <li>における加振試験を行い,機能が維</li></li></ol></li></ol>	水平: 鉛直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
サプレッションチェンバプール	V-2-6-5-23	測温抵抗体	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
水温度		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
格納容器内酸素濃度	V-2-6-5-24	熱磁気風式酸素検	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		出器	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		2
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
格納容器内水素濃度	V-2-6-5-25	熱伝導式水素検出	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		器	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		S
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
格納容器内水素濃度 (SA)	V-2-6-5-26	水素吸蔵材料式水素検出器	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験</li> <li>の振動数領域を含む正弦波を入</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ
		[A]			力し,応答波形から共振点がで あることを確認		Ł
					2. 正弦波加振試験		
					における加振試験を行い,機能が維持されることを確認。		
復水貯蔵槽水位 (SA)	V-2-6-5-27	差圧式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		ک
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
復水補給水系流量(格納容器下	V-2-6-5-28	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
部往水流重)		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		2
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
サプレッションチェンバプール	V-2-6-5-29	差圧式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
水位		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
格納容器下部水位	V-2-6-5-30	電極式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
原子炉建屋水素濃度	V-2-6-5-31	熱伝導式水素検出	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		器	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が (X,Y方		2
					向), (Z 方向) であることを確認。		
					2. サインビート波加振試験		
					(X,Y 方向), (Z 方向) にお		
					ける加振試験を行い,機能が維持される		
					ことを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
ATWS 緩和設備(代替制御棒挿入 機能) ・検出器	V-2-6-7-1 (1)	差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	1. 共振点検索試験           の振動数領域を含む正弦波を入	水平: 鉛直:	加振後に正常 に動作するこ
					力し,応答波形から共振点が         であることを確認。         2. 正弦波加振試験         における加振試験を行い,機能         が維持されることを確認。		Ł
		弾性圧力検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	1. 共振点検索試験         の振動数領域を含む正弦波を入力し,応答波形から共振点が         方し、応答波形から共振点が         であることを確認。         2. 正弦波加振試験         における加振試験を行い,機能         が維持されることを確認。	水平: 鉛直:	加振後に正常 に動作するこ と
ATWS 緩和設備(代替制御棒挿入 機能) ・ATWS 緩和設備制御盤	V-2-6-7-1 (2)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験     の振動数領域を含む正弦波を入     カレ,応答波形から共振点が     で     あることを確認。     こ     正弦波加振試験     における加振試験を行い,機能が維     持されることを確認。     </li> </ol>	水平:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
ATWS 緩和設備(代替制御棒挿入	V-2-6-7-1	電磁弁	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
機能) ・代替制御棒挿入機能用電磁弁	(3)	[A]	能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
ATWS 緩和設備(代替冷却材再循 環ポンプ・トリップ機能)	V-2-6-7-2	差圧式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・ 検出器	(1)	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
ATWS 緩和設備(代替冷却材再循	V-2-6-7-2	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
環ポンプ・トリップ機能)	(2)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
・原子炉冷却材再循環ポンプ可		(A)			力し,応答波形から共振点がで		Ł
変周波数電源装置主回路					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2, *3} (×9.8 m/s ² )	判定基準
<ul> <li>ATWS 緩和設備(代替冷却材再循環ポンプ・トリップ機能)</li> <li>・原子炉冷却材再循環ポンプ可変周波数電源装置制御盤</li> </ul>	V-2-6-7-2 (3)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験     の振動数領域を含む正弦波を入     カレ,応答波形から共振点が     で     あることを確認。     ・     サインビート波加振試験     ・     ・     にたいたる加振試験     ・     ・     にたいたる加振試験     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・      ・     ・      ・     ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・      ・     ・     ・      ・      ・      ・      ・      ・      ・     ・     ・      ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・</li></ol>	水平: 鉛直:	加振後に正常 に動作するこ と
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ul> <li>におりる加振試験を行い、機能が維持されることを確認。</li> <li>1. 共振点検索試験</li> <li>の振動数領域を含む正弦波を入力し、応答波形から共振点が であることを確認。</li> <li>2. 正弦波加振試験</li> <li>における加振試験を行い、機能が維持されることを確認。</li> </ul>	水平: 鉛直:	加振後に正常 に動作するこ と
代替自動減圧ロジック(代替自 動減圧機能) ・検出器	V-2-6-7-3 (1)	差圧式水位検出器 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験     の振動数領域を含む正弦波を入     カし,応答波形から共振点が     であることを確認。     こ     正弦波加振試験     における加振試験を行い,機能     が維持されることを確認。     </li> </ol>	水平: 3340 3440 3440 3440 3440 3440 3440 344	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		弹性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		と
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
代替自動減圧ロジック(代替自動減圧爆発)	V-2-6-7-3	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・安全系多重伝送盤	(2)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
		(A)			あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が		
					維持されることを確認。		
設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
-------------------------------	-----------	----------------------------------	---------------	-----------	---------------------------------------------------------	------------------------------------------------------------	---------
		盤内の器具	地震後の電気的 機能	水平単独 2 方向	<ol> <li>1. 共振点検索試験</li> <li>の転動粉領域を含む。正弦速を1</li> </ol>	水平:	加振後に正常
		(A)	1戏 旧上	及い如直半強	カし,応答波形から共振点が で	<u>^虹ビ</u> ※ <u>下線部</u> が工認記	に動作すること
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
代替自動減圧ロジック(代替自 動減圧機能)	V-2-6-7-3	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
<ul> <li>安全系補助継電器盤</li> </ul>	(3)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
(H11-P652)		(A)			力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
代替自動減圧ロジック(代替自動減圧機能)	V-2-6-7-3	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・安全系補助継電器盤	(3)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
(H11-P653)		<b>(</b> A <b>)</b>			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

		評価部位				機能確認済	
設備	記載箇所	That In the state of the state	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
						$(\times 9.8 \text{ m/s}^2)$	
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
ESF 盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
	(1)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記 載値	と
					あることを確認。	₽Ķ1世.	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験     の振動数領域を含む正弦波を入     カレ,応答波形から共振点が     で     あることを確認。     2. サインビート波加振試験     </li> </ol>	水平: <u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
		盤内の器具	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	における加振試験を行い,機能が維持されることを確認。         1. 共振点検索試験         の振動数領域を含む正弦波を入	水平: <u>鉛直</u> :	加振後に正常 に動作するこ
		<b>[</b> A <b>]</b>			カし,応答波形から共振点が       で         あることを確認。       2.         正弦波加振試験       における加振試験を行い,機能が維持されることを確認。	※ <u>下線部</u> が工認記 載値	کے
安全保護系盤	V-2-6-7-4 (2)	盤内の器具 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験     の振動数領域を含む正弦波を入     カレ,応答波形から共振点が     で     あることを確認。     こ     正弦波加振試験     における加振試験を行い,機能     が維持されることを確認。</li> </ol>	<u>水平:</u> 鉛直: ※ <u>下線部</u> が工認記 載値	加振中及び加 振後に正常に 動作すること

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 力し,応答波形から共振点が で あることを確認。</li> <li>サインビート波加振試験 における加振試験を行い,機能が維 持されることを確認。</li> </ol>	水平: <u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	加振中及び加 振後に正常に 動作すること
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         2. サインビート波加振試験         における加振試験を行い,機能が維         持されることを確認。         </li> </ol>	水平: <u>鉛直</u> : ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
		盤内の器具 【A】	地震時及び地震 後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カレ,応答波形から共振点が         で         あることを確認。         2. 正弦波加振試験         における加振試験を行い,機能が維         持されることを確認。         </li> </ol>	水平: <u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	加振中及び加 振後に正常に 動作すること

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
中央制御室外原子炉停止制御盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. メーカ試験(カタログ値)により,	<u>水平:</u>	加振後に正常
	(3)		機能	及び鉛直単独	機能が維持されることを確認。	鉛直:	に動作するこ
		(A)				※ <u>下線部</u> が工認記	ک
						載値	
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記 載値	と
					あることを確認。	戰和世	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2,*3}	判定基準
中央運転監視盤	V-2-6-7-4 (4)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         2. サインビート波加振試験         における加振試験を行い,機能が維         持されることを確認         </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
運転監視補助盤 (H11-P703)	V-2-6-7-4 (5)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         こ 正弦波加振試験         における加振試験を行い,機能         が維持されることを確認。         </li> </ol>	<u>水平:</u> 鉛直: ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         こ 正弦波加振試験         における加振試験を行い,機能が維         持されることを確認。         </li> </ol>	<u>水平</u> : 鉛直: ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的 ^{機能}	水平単独 2 方向	1. 共振点検索試験 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	水平: 公古·	加振後に正常
			1及112	及仍如直半弦	カし,応答波形から共振点が で	<u>知道:</u> ※ <u>下線部</u> が工認記 載値	に動作すること
		(A)			あることを確認。	戦	
					<ol> <li>サインビート波加振試験</li> <li>にたける加振試験を行い、継続が維</li> </ol>		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	<ol> <li>共振点検索試験</li> </ol>	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート波加振試験		
					[]における加振試験を行い,機能が維		
					持されることを確認。		

		評価部位				機能確認済	
設備	記載箇所	【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	加速度* ^{2,*3}	判定基準
						$(\times 9.8 \text{ m/s}^2)$	
運転監視補助盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(H11-P704)	(5)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	S
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が で	※ <u>下線部</u> が工認記 #値	F
					あることを確認。	戰们已	
					2. 正弦波加振試験		
					(X 方向), (Y 方向) における		
					加振試験を行い,機能が維持されること		
					を確認。		
					3. サインビート波加振試験		
					(Z 方向) における加振試験を行い,		
					機能が維持されることを確認。		
原子炉系記録計盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
	(6)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が で	※ <u>下線部</u> が工認記	2
					あることを確認。	戦他	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が		
					維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験</li> <li>の振動数領域を含む正弦波を入</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ
		<b>(</b> A <b>)</b>			力し,応答波形から共振点が で	* <u>下線部</u> が工認記	Ł
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	ک
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	ک
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで	* <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

		評価部位				機能確認済	
設備	記載箇所	【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
						$(\times 9.8 \text{ m/s}^2)$	
格納容器補助盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	(7)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が で		S
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
高圧代替注水系制御盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	(8)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
使用済燃料貯蔵プール水位・温	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
度(SA 仏域)監視制御盤	(9)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	Ł
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が	※ <u>下線部</u> が工認記	と
					(X,Y方向), (Z方向)であるこ	載値	
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向)にお		
					ける加振試験を行い,機能が維持される		
					ことを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
格納容器圧力逃がし装置制御盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	(10)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u> 鉛直:</u>	に動作するこ
		<b>(</b> A <b>)</b>			カし,応答波形から共振点が(X	※ <u>下線部</u> が工認記	と
					方向), (Y 方向), (Z 方	載値	
					向)であることを確認。		
					2. サインビート波加振試験		
					(X方向), (Y方向),		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験</li> <li>の振動数領域を含む正弦波を入 力し,応答波形から共振点がで あることを確認。</li> <li>サインビート波加振試験</li> </ol>	<u>水平</u> : <u>鉛直</u> : ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
		盤内の器具	地震後の電気的	水平単独 2 方向	<ul> <li>(X 方向), (Y 方向),</li> <li>(Z 方向)における加振試験を行い,機能が維持されることを確認。</li> <li>1. 共振点検索試験</li> </ul>	水平:	加振後に正常
		[A]	機能	及び鉛直単独	<ul> <li>の振動数領域を含む正弦波を入</li> <li>カし,応答波形から共振点が</li> <li>で</li> <li>あることを確認。</li> <li>2. 正弦波加振試験</li> </ul>	<u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	に動作するこ と
		盤内の器具	地震後の電気的	水平単独 2 方向	<ul> <li>における加振試験を行い,機能が維持されることを確認。</li> <li>1. 共振点検索試験</li> </ul>	水平:	加振後に正常
		[A]	機能	及び鉛直単独	<ul> <li>の振動数領域を含む正弦波を入</li> <li>カし,応答波形から共振点が</li> <li>で</li> <li>あることを確認。</li> <li>エオオオ 加拓学会会</li> </ul>	<u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	に動作するこ と
					<ol> <li>正 公政加振試験</li> <li>における加振試験を行い,機能</li> <li>が維持されることを確認。</li> </ol>		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2, *3}	判定基準
フィルタ装置出口放射線モニタ	V-2-6-7-4	前醫療問題	地震浴の雲気的	* 亚鼡狆 9 古向	1 卅炬占烩壶封殿	(へ9.0 m/s)	加拒後に正常
前置増幅器盤	V 2 0 7 4	月川回步目門田石合	地長後の电気的	水千单强 2 万间 开云的古说如		小十.	加減後に正市
	(11)		機肥	及び跖直单独	の振動数項域を含む正弦波を入	站但:	に動作するこ
					カし、応答波形から共振点が		ع
					(X,Z方向), (Y方向)であること		
					を確認。		
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		
起動領域モニタ前置増幅器盤	V-2-6-7-4	前置増幅器	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
	(12)	(A)	後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を	鉛直:	振後に正常に
					入力し、応答波形から共振点が		動作すること
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
核計装系盤	V-2-6-7-4	盤内の器具	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振中及び加
	(13)		後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
		(A)			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	動作すること
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い、機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
			後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
		[A]			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	動作すること
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
			後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
		[A]			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	動作すること
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
安全系プロセス放射線モニタ盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. メーカ試験(カタログ値)により,	水平:	加振後に正常
	(14)		機能	及び鉛直単独	機能が維持されることを確認。	鉛直:	に動作するこ
		[A]					と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
格納容器内雰囲気モニタ盤	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
	(15)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>[</b> A <b>]</b>			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	ک
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が (X	※ <u>下線部</u> が工認記	と
					方向), (Y方向), (Z	載値	
					方向)であることを確認。		
					2. 正弦波加振試験		
					(X 方向), (Y 方向),		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点が で	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震後の電気的機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         <ol> <li>正弦波加振試験             <li>における加振試験を行い,機能が維</li></li></ol></li></ol>	水平: <u>鉛直</u> : ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         2. 正弦波加振試験         における加振試験を行い,機能が維         持されることを確認。         </li> </ol>	水平: <u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
格納容器内水素モニタ盤	V-2-6-7-4 (16)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         で         あることを確認。         2. 正弦波加振試験         における加振試験を行い,機能が維         持されることを確認。         </li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試驗内容*2	機能確認済 加速度 ^{*2,*3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>[</b> A <b>]</b>			力し、応答波形から共振点が		2
					(X 方向), (Y,Z 方向) である		
					ことを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が		ک
					(X,Y方向), (Z方向)であるこ		
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向)にお		
					ける加振試験を行い,機能が維持される		
					ことを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点が (X方		Ł
					向), (Y,Z方向) であることを		
					確認。		
					2. 正弦波加振試験		
					(X 方向), (Y, Z 方向) におけ		
					る加振試験を行い,機能が維持されるこ		
					とを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試驗內容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
事故時放射線モニタ盤 (H11-P609-1)	V-2-6-7-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
	(17)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	S
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		(A)			力し,応答波形から共振点が で	※ <u>下線部</u> が工認記	2
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
事故時放射線モニタ盤 (H11-P609-2)	V-2-6-7-4 (17)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験</li> <li>の振動数領域を含む正弦波を入 力し,応答波形から共振点がで あることを確認。</li> </ol>	<u>水平:</u> <u>鉛直:</u> ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
					<ol> <li>正弦波加振試験</li> <li>における加振試験を行い,機能が維持されることを確認。</li> </ol>		
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>1. 共振点検索試験</li> <li>の振動数領域を含む正弦波を入 力し,応答波形から共振点がで あることを確認。</li> </ol>	<u>水平</u> : 鉛直: ※ <u>下線部</u> が工認記 載値	加振後に正常 に動作するこ と
					<ol> <li>正弦波加振試験</li> <li>における加振試験を行い、機能が維持されることを確認。</li> </ol>		
使用済燃料貯蔵プール監視カメ ラ制御架	V-2-6-7-4 (18)	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験 の振動数領域を含む正弦波を入 力し,応答波形から共振点が で あることを確認。</li> <li>正弦波加振試験 における加振試験を行い,機能が維 持されることを確認。</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2,*3}	判定基準
						$(\times 9.8 \text{ m/s}^2)$	
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし,応答波形から共振点がで		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
データ伝送装置	V-2-6-7-5	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	(1)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで	* <u>下線部</u> が工認記	S
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い、機能が維		
					持されることを確認		
		一般内の翌月	地震谷の重気的	* 亚鼡狆 0 キ向	1 井垣占絵寺計略	the TV .	加拒然に正告
		盈円の 品具	地层位少电风的	水平单强 2 万间 开71300克岜34		<u>小十</u> .	加減仮に正市
			校发用已	及び跖直単独	の振動数項域を含む正弦波を入		に動作するこ
					力し, 応答波形から共振点が で	※ <u>ト線部</u> が上認記	٢
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		[A]					

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点がで	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が (Y方	※ <u>下線部</u> が工認記	と
					向), (X,Z方向)であることを	載値	
					確認。		
					2. サインビート波加振試験		
					(X,Z方向), (Y方向)にお		
					ける加振試験を行い,機能が維持される		
					ことを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
安全パラメータ表示システム	V-2-6-7-6	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(SPDS) (6,7 号機共用)	(1)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
・緊急時対策支援システム伝送 株業		<b>(</b> A <b>)</b>			力し,応答波形から共振点が (Y方		と
<b></b> 表但					向), (X 方向), (Z 方		
					向)であることを確認。		
					2. 正弦波加振試験		
					(Y方向), (X方向),		
					(Z 方向) における加振試験を行い,機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			力し、応答波形から共振点が		と
					(X,Y方向), (Z方向)であるこ		
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向)に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が		と
					(X,Y方向), (Z方向) であるこ		
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向) に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし、応答波形から共振点が (X		と
					方向), (Y 方向), (Z 方		
					向)であることを確認。		
					2. 正弦波加振試験		
					(X 方向), (Y 方向),		
					(Z 方向) における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         (X,Y方向), (Z方向)であるこ         とを確認。         こ. 正弦波加振試験         における加振試験を行い,機能が         ####キャステムも ####</li> </ol>	水平: 鉛直:	加振後に正常 に動作するこ と
安全パラメータ表示システム (SPDS) (6,7号機共用) ・SPDS 表示装置	V-2-6-7-6 (2)	盤内の器具 【A】	地震後の電気的機能	水平単独 2 方向 及び鉛直単独	1. 共振点検索試験         の振動数領域を含む正弦波を入力し、応答波形から共振点が(Y方向),((Z方向)),((Z方向)),((Z方向))         であることを確認。         2. 正弦波加振試験         (X,Y方向),((Z方向)) における加振試験を行い,機能が維持されることを確認。	水平:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			カし,応答波形から共振点が(Y方		と
					向), (X 方向), (Z 方向)		
					であることを確認。		
					2. 正弦波加振試験		
					(Y 方向), (X, Z 方向) に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		
安全パラメータ表示システム	V-2-6-7-6	メッシュ型アンテ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.96	加振後に正常
(SPDS) (6,7 号機共用)	(3)	ナ	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.32	に動作するこ
<ul> <li>・メッシュ型アンテナ 1,2</li> </ul>		(アンテナ取付架			力し,応答波形から共振点が 32.88Hz(X		と
		台との取合部を含			方向),32.73Hz(Y 方向),33Hz 以上(Z		
		<b>む</b> )			方向)であることを確認。		
		<b>(</b> B <b>)</b>			2. サインビート波加振試験		
					32.88Hz (X 方向), 32.73Hz (Y 方向), 33Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
安全パラメータ表示システム	V-2-6-7-6	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:5.12	加振後に正常
(SPDS) (6,7 号機共用)	(4)	・L2スイッチ装	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.31	に動作するこ
・通信収容架1		置①			力し, 応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	2
		・L2スイッチ装			あることを確認。	載値	
		置②			2. サインビート加振試験		
		・ファイアウォー			33Hz における加振試験を行い,機能が維		
		ル装置			持されることを確認。		
		・配線用遮断器					
		[A]					
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平: 3.17	加振後に正常
		・メディアコンバ	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3.11	に動作するこ
		ータ			力し, 応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	S
		[A]			あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
安全パラメータ表示システム	V-2-6-7-6	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:5.12	加振後に正常
(SPDS) (6,7 号機共用)	(4)	・ファイアウォー	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.31	に動作するこ
・通信収容架 2		ル装置			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	2
		・L2スイッチ装			あることを確認。	載値	
		置			2. サインビート波加振試験		
		[A]			33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平: 3.17	加振後に正常
		・メディアコンバ	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3.11	に動作するこ
		ータ			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	ک
		[A]			あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
データ伝送設備	V-2-6-7-7	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			カし,応答波形から共振点が(Y 方		2
					向), (X 方向), (Z 方		
					向)であることを確認。		
					2. 正弦波加振試験		
					(Y方向), (X方向),		
					(Z 方向) における加振試験を行い,機能		
					が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が		2
					(X,Y方向), (Z方向) であるこ		
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向) に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		
設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
----	------	----------------------------------	---------	-----------	-----------------------	------------------------------------------------------------	--------
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が		と
					(X,Y方向), (Z方向) であるこ		
					とを確認。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向)に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			カし、応答波形から共振点が (X		S
					方向), (Y 方向), (Z 方		
					向)であることを確認。		
					2. 正弦波加振試験		
					(X 方向), (Y 方向),		
					(Z 方向) における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         (X,Y方向), (Z方向)であるこ         とを確認。         2. 正弦波加振試験         における加振試験を行い,機能が         維持されることを確認。         </li> </ol>	水平: 34直:	加振後に正常 に動作するこ と
データ表示装置(中央制御室待 避室)	V-2-6-7-8	盤内の器具 【A】	地震後の電気的 機能	水平単独 2 方向 及び鉛直単独	<ol> <li>共振点検索試験         の振動数領域を含む正弦波を入         カし,応答波形から共振点が         (Y 方         向), ((X 方向), ((Z 方向))         であることを確認。         2. 正弦波加振試験         (X,Y 方向), ((Z 方向))に         おける加振試験を行い,機能が維持され         ることを確認。         </li> </ol>	水平: 34直:	加振後に正常 に動作するこ と

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が (Y方		と
					向), (X 方向), (Z 方向)		
					であることを確認。		
					2. 正弦波加振試験		
					(Y 方向), (X, Z 方向) に		
					おける加振試験を行い,機能が維持され		
					ることを確認。		
衛星電話設備(常設)	V-2-6-7-9	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.35	加振後に正常
・アンテナ	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.24	に動作するこ
		台との取合部を含			力し, 応答波形から共振点が 33Hz 以上		と
		む)			(X,Z方向), 17.02Hz(Y方向)であること		
		<b>(</b> B <b>)</b>			を確認。		
					2. サインビート波加振試験		
					33Hz (X,Z 方向), 17.02Hz (Y 方向)におけ		
					る加振試験を行い,機能が維持されるこ		
					とを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
衛星電話設備(常設)	V-2-6-7-9	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.58	加振後に正常
・通信収容架1	(2)	・衛星電話端末	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.12	に動作するこ
		[A]			力し, 応答波形から共振点が 33Hz 以上で		F
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
衛星電話設備(常設)	V-2-6-7-9	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.58	加振後に正常
・通信収容架2	(2)	・アナログ電話機	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.19	に動作するこ
		[A]			力し, 応答波形から共振点が 33Hz 以上で		と
					あることを確認。		
					2. サインビート波加振試験		
					20Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
衛星電話設備(常設)(中央制御	V-2-6-7-10	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.35	加振後に正常
室待避室)	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.24	に動作するこ
・アンテナ		台との取合部を含			カし, 応答波形から共振点が 33Hz 以上		2
		む)			(X,Z 方向), 17.02Hz(Y 方向)であること		
		<b>(</b> B <b>)</b>			を確認。		
					2. サインビート波加振試験		
					33Hz (X,Z 方向), 17.02Hz (Y 方向)におけ		
					る加振試験を行い,機能が維持されるこ		
					とを確認。		
衛星電話設備(常設)(中央制御	V-2-6-7-10	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.58	加振後に正常
室待避室)	(2)	・衛星電話端末	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.12	に動作するこ
・通信収容架		(A)			力し, 応答波形から共振点が 33Hz 以上で		2
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
衛星電話設備(常設)(6,7号機共	V-2-6-7-11	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.38	加振後に正常
用)	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.16	に動作するこ
・アンテナ		台との取合部を含			力し,応答波形から共振点が 11.63Hz(X		2
		む)			方向), 22. 37Hz (Y 方向), 11. 21Hz (Z 方向)		
		<b>(</b> B <b>)</b>			であることを確認。		
					2. サインビート波加振試験		
					11.63Hz(X 方向), 22.37Hz(Y 方向),		
					11.21Hz(Z 方向)における加振試験を行		
					い,機能が維持されることを確認。		
衛星電話設備(常設)(6,7号機共	V-2-6-7-11	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.58	加振後に正常
用)	(2)	・衛星電話端末	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.12	に動作するこ
・通信収容架		(A)			力し, 応答波形から共振点が 33Hz 以上で		2
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
無線連絡設備 (常設)	V-2-6-7-12	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.54	加振後に正常
・アンテナ	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.15	に動作するこ
		台との取合部を含			力し,応答波形から共振点が 23.76Hz(X		S
		む)			方向),23.65Hz(Y 方向),33Hz 以上(Z		
		<b>(</b> B <b>)</b>			方向)であることを確認。		
					2. サインビート波加振試験		
					23.76Hz (X 方向), 23.65Hz (Y 方向), 33Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		
無線連絡設備 (常設)	V-2-6-7-12	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.63	加振後に正常
・通信収容架1	(2)	・デジタル簡易無	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.14	に動作するこ
		線機			力し, 応答波形から共振点が 33Hz 以上で		S
		(A)			あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されていることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
無線連絡設備 (常設)	V-2-6-7-12	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.58	加振後に正常
・通信収容架 2	(2)	・ハンドマイク	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.19	に動作するこ
		[A]			力し,応答波形から共振点が 33Hz 以上で		と
					あることを確認。		
					2. サインビート加振試験		
					20Hz における加振試験を行い,機能が維		
					持されることを確認。		
無線連絡設備(常設)(中央制御	V-2-6-7-13	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.54	加振後に正常
室待避室)	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.15	に動作するこ
・アンテナ		台との取合部を含			力し,応答波形から共振点が 23.76Hz(X		S
		む)			方向),23.65Hz(Y方向),33Hz以上(Z方		
		<b>(</b> B <b>)</b>			向)であることを確認。		
					2. サインビート加振試験		
					23.76Hz(X 方向), 23.65Hz(Y 方向),		
					33Hz(Z 方向)における加振試験を行い,		
					機能が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
無線連絡設備(常設)(中央制御	V-2-6-7-13	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.63	加振後に正常
室待避室)	(2)	・デジタル簡易無	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.14	に動作するこ
・通信収容架		線機			力し,応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	ک
		[A]			あることを確認。	載値	
					2. サインビート加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.67	加振後に正常
		・ハンドマイク	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	<u>鉛直:2.14</u>	に動作するこ
		(A)			力し,応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
無線連絡設備(常設)通信収容架	V-2-6-7-14	アンテナ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.20	加振後に正常
(6,7号機共用)	(1)	(アンテナ取付架	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.07	に動作するこ
・アンテナ		台との取合部を含			力し,応答波形から共振点が 33Hz 以上で		2
		む)			あることを確認。		
		<b>(</b> B <b>)</b>			2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

		亚体动力				機能確認済	
設備	記載箇所	計11四司21立	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
		MIK 武被 NO				$(\times 9.8 \text{ m/s}^2)$	
無線連絡設備(常設)通信収容架	V-2-6-7-14	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.63	加振後に正常
(6,7号機共用)	(2)	・デジタル簡易無	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.14	に動作するこ
・通信収容架		線機			力し,応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	ک
		<b>[</b> A <b>]</b>			あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.08	加振後に正常
		・ハンドマイク	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.14	に動作するこ
		<b>[</b> A <b>]</b>			力し,応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	ک
					あることを確認。	載値	
					2. サインビート加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
統合原子力防災ネットワークを	V-2-6-7-15	ODU	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:8.02	加振後に正常
用いた通信連絡設備 (テレビ会議	(1)	<b>[</b> A <b>]</b>	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:9.95	に動作するこ
システム, IP-電話機及び IP-					力し,応答波形から共振点が 33Hz 以上で		2
FAX)					あることを確認。		
・衛星無線通信装置用アンテナ					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

		款任业公				機能確認済	
設備	記載箇所	計11四司21立 【カロ4回記】 No.*1】	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
		NH版 NO				$(\times 9.8 \text{ m/s}^2)$	
統合原子力防災ネットワークを	V-2-6-7-15	テレビ会議システ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.74	加振後に正常
用いた通信連絡設備(テレビ会議	(2)	ム用ディスプレイ	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.77	に動作するこ
システム, IP-電話機及び IP-		<b>(</b> B <b>)</b>			力し, 応答波形から共振点が 33Hz 以上で		と
FAX)					あることを確認。		
・テレビ会議システム用ディス					2. サインビート波加振試験		
プレイ					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
統合原子力防災ネットワークを	V-2-6-7-15	テレビ会議システ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.64	加振後に正常
用いた通信連絡設備(テレビ会議	(3)	ム用カメラ	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.16	に動作するこ
システム, IP-電話機及び IP-		<b>(</b> B <b>)</b>			力し, 応答波形から共振点が 33Hz 以上で		と
FAX)					あることを確認。		
・テレビ会議システム用カメラ					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
統合原子力防災ネットワークを	V-2-6-7-15	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.04	加振後に正常
用いた通信連絡設備(テレビ会議	(4)	• VOIP-GW	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.07	に動作するこ
システム, IP-電話機及び IP-		(A)			力し, 応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	2
FAX)					あることを確認。	載値	
・通信収容架 A					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平: 3.04	加振後に正常
		・合成分配器	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.06	に動作するこ
		(A)			力し,応答波形から共振点が 33Hz 以上で	※ <u>下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.04	加振後に正常
		• IP MODE	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.05	に動作するこ
		М			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	と
		·CSC MOD			あることを確認。	載値	
		EM			2. サインビート波加振試験		
		(A)			33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.05	加振後に正常
		・ L 3 スイッチ装	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	<u>鉛直:2.03</u>	に動作するこ
		置			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	と
		[A]			あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
統合原子力防災ネットワークを	V-2-6-7-15	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.05	加振後に正常
用いた通信連絡設備(テレビ会議	(4)	・ L 3 スイッチ装	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.03	に動作するこ
システム, IP-電話機及び IP-		置			力し, 応答波形から共振点が 33Hz 以上で		Ł
FAX)		[A]			あることを確認。		
・通信収容架 B					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
統合原子力防災ネットワークを	V-2-6-7-15	I P – F A X	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平: 3.01	加振後に正常
用いた通信連絡設備(テレビ会議	(5)	[A]	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.31	に動作するこ
システム, IP-電話機及び IP-					力し,応答波形から共振点が 12.6Hz (X 方	<u>※下線部</u> が工認記	ک
FAX)					向), 15.4Hz (Y 方向), 33Hz 以上 (Z 方	載値	
<ul> <li>通信端末収容台①</li> </ul>					向)であることを確認。		
					2. サインビート波加振試験		
					12.6Hz(X 方向),15.4Hz(Y 方向),33Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.05	加振後に正常
		・アナログ電話機	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.10	に動作するこ
		[A]			力し, 応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	2
					あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.07	加振後に正常
		・テレビ会議端末	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.10	に動作するこ
		[A]			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	ک
					あることを確認。	載値	
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
統合原子力防災ネットワークを	V-2-6-7-15	I P – F A X	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3.01	加振後に正常
用いた通信連絡設備(テレビ会議	(5)	[A]	機能維持	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.31	に動作するこ
システム, IP-電話機及び IP-					力し,応答波形から共振点が 12.6Hz (X 方		ک
FAX)					向), 15.4Hz(Y 方向), 33Hz 以上(Z 方		
<ul> <li>通信端末収容台②</li> </ul>					向)であることを確認。		
					2. サインビート加振試験		
					12.6Hz(X 方向),15.4Hz(Y 方向),33Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		
TSC屋外緊急連絡用インター	V-2-6-7-16	T S C 屋外緊急連	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
フォン		絡用インターフォ	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		ン			力し,応答波形から共振点がで		ک
		<b>(</b> B <b>)</b>			あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
5 号機TSC屋外緊急連絡用イ	V-2-6-7-16	5 号機TSC屋外	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
ンターフォン子機		緊急連絡用インタ	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		ーフォン子機			力し,応答波形から共振点が で		S
		<b>(</b> B <b>)</b>			あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
原子炉圧力容器温度	V-2-6-7-17	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
フィルタ装置水位	V-2-6-7-18	差圧式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		【A】	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
フィルタ装置入口圧力	V-2-6-7-19	弾性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		2
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
フィルタ装置水素濃度	V-2-6-7-20	熱伝導式水素検出	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		器	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			力し,応答波形から共振点がで		S
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認		
フィルタ装置金属フィルタ差圧	V-2-6-7-21	差圧式圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		<b>(</b> A <b>)</b>	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		F
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
フィルタ装置スクラバ水 pH	V-2-6-7-22	pH 検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
原子炉補機冷却水系系統流量	V-2-6-7-23	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し, 応答波形から共振点が		S
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
残留熱除去系熱交換器入口冷却 水	V-2-6-7-24	差圧式流量検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
小伽里		(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		S
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
復水移送ポンプ吐出圧力	V-2-6-7-25	弾性圧力検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が		2
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
静的触媒式水素再結合器動作監	V-2-6-7-26	熱電対	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
[		[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		S
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
格納容器内ガスサンプリングポ	V-2-6-7-27	サンプリングポン	地震後の動的機	水平 2 方向と鉛	1. 共振点検索試験	水平:	加振後に正常
		プ	能	直の3方向同時	の振動数領域を含むランダム波	鉛直:	に動作するこ
		[A]			を入力し、応答波形から共振点が		F
					であることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認		

記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2, *3} (×9.8 m/s ² )	判定基準
V-2-8-1(1)	電離箱	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
		<b>仮</b> の 単気 的 機 能	及び鉛直単独	の振動数領域を含む正弦波を入 力し,応答波形から共振点がで	<b>站</b> 但:	振 使に 正常 に 動作すること
				あることを確認。 2. 正弦波加振試験		
				における加振試験を行い,機能が維 持されることを確認。		
V-2-8-1(2)	半導体式	地震後の電気的 機能	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		17交 月上	及び如直半述	つ 版動 数 頃 吸 を 日 む 正 弦 彼 そ 八 方 し, 応 答 波 形 から 共振 点 が で	山 ഥ	に動作りること
				あることを確認。 2. 正弦波加振試験		
				における加振試験を行い,機能が維持されることを確認。		
V-2-8-1(3)	半導体式	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	<b>(</b> A <b>)</b>	機能	及び鉛直単独	の振動数領域を含む正弦波を入 カレー広答波形から共振らがで	鉛直:	に動作するこ と
				あることを確認。		2
				2. 正弦波加振試験		
				における加振試験を行い,機能が維 持されることを確認		
	記載箇所 V-2-8-1(1) V-2-8-1(2) V-2-8-1(3)	記載箇所       評価部位         V-2-8-1(1)       電離箱         【A]         V-2-8-1(2)       半導体式         【A]         V-2-8-1(3)       半導体式         【A]	記載箇所       評価部位 【加振試験 No*1】       要求機能         V-2-8-1(1)       電離箱 【A】       地震時及び地震 後の電気的機能         V-2-8-1(2)       半導体式 【A】       地震後の電気的 機能         V-2-8-1(3)       半導体式 【A】       地震後の電気的 機能	記載箇所       評価部位 【加振試験 No*1】       要求機能       加振方向         V-2-8-1(1)       電離箱 【A】       地震時及び地震 後の電気的機能       水平単独 2 方向 及び鉛直単独         V-2-8-1(2)       半導体式 【A】       地震後の電気的 機能       水平単独 2 方向 及び鉛直単独         V-2-8-1(3)       半導体式 【A】       地震後の電気的 機能       水平単独 2 方向 及び鉛直単独         V-2-8-1(3)       半導体式 【A】       地震後の電気的 機能       水平単独 2 方向 及び鉛直単独	記載箇所         評価部位 【加振試験 No*1】         要求機能         加振方向         試験内容**           V-2-8-1(1)         電離箱         地震時及び地震 後の電気的機能         水平単独 2 方向 及び鉛直単独         1. 共振点検索試験           【A]         後の電気的機能         及び鉛直単独         1. 共振点検索試験           【A]         推震後の電気的         水平単独 2 方向           V-2-8-1(2)         半導体式         地震後の電気的         水平単独 2 方向           【A]         機能         及び鉛直単独         1. 共振点検索試験           V-2-8-1(2)         半導体式         地震後の電気的         水平単独 2 方向           【A]         機能         及び鉛直単独         1. 共振点検索試験           V-2-8-1(3)         半導体式         地震後の電気的         水平単独 2 方向           【A]         機能         水平単独 2 方向         1. 共振点検索試験           V-2-8-1(3)         半導体式         地震後の電気的         水平単独 2 方向           【A]         機能         水平単独 2 方向         1. 共振点検索試験           【A]         機能         及び鉛直単独         1. 共振点検索試験           ○日         の振動数傾域を含む正弦波を入 力し、応答波形から共振点が         うし、転参波形が能           「A]         機能         人工業会社         二           「A]         地震後の電気的         小平単独 2 方向         1. 共振点検索試験           「A]         一         一         の振動数戦戦域を含む正弦波を入 力し、応容波形がの振動点 <t< td=""><td>記載商所         評価部位 [J加複改験 No*)         要求機能         加振力向         武験内容**         機能能認済 加速度**.**           V-2-8-1(1)         電離箱 [A]         地度時及び地度 後の電気的機能         水平単進 2 方向 人で学識でいる。         1. 共振点検索試験 及び釣直単独         1. 共振点検索試験 の振動数領域を含む正弦波を入 力し,応答波形から共振点が あることを確認。         水平 ・ の振動数領域を含む正弦波を入 力し,応答波形から共振点が あることを確認。         水平           V-2-8-1(2)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 同における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 同における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 二における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 操能         水平単独 2 方向 人び鉛直単独         1. 共振点検索試験 二における加振試験を行い,機能が維         水平</td></t<>	記載商所         評価部位 [J加複改験 No*)         要求機能         加振力向         武験内容**         機能能認済 加速度**.**           V-2-8-1(1)         電離箱 [A]         地度時及び地度 後の電気的機能         水平単進 2 方向 人で学識でいる。         1. 共振点検索試験 及び釣直単独         1. 共振点検索試験 の振動数領域を含む正弦波を入 力し,応答波形から共振点が あることを確認。         水平 ・ の振動数領域を含む正弦波を入 力し,応答波形から共振点が あることを確認。         水平           V-2-8-1(2)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 同における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 同における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 機能         水平単独 2 方向 人で鉛直単独         1. 共振点検索試験 及び鉛直単独         1. 共振点検索試験 二における加振試験を行い,機能が維         水平           V-2-8-1(3)         半導体式 [A]         地震後の電気的 操能         水平単独 2 方向 人び鉛直単独         1. 共振点検索試験 二における加振試験を行い,機能が維         水平

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
格納容器内雰囲気放射線モニタ	V-2-8-2-1	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(D/W)	-1	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
格納容器内雰囲気放射線モニタ	V-2-8-2-1	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(3/0)	-2	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
フィルタ装置出口放射線モニタ	V-2-8-2-1	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-3	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が		
					維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ² ,* ³	判定基準
耐圧強化ベント系放射線モニタ	V-2-8-2-1	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-4	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
使用済燃料貯蔵プール放射線モ	V-2-8-2-2	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-1	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		S
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
使用済燃料貯蔵プール放射線モ	V-2-8-2-2	電離箱	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
ーク(向レンン)	-2	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		S
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
バイタル交流電源装置	V-2-10-1-1	盤内の器具	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
			後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
		(A)			力し,応答波形から共振点がで		動作すること
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
非常用ディーゼル発電機制御盤	V-2-10-1-2	盤内の器具	地震後の電気的	水平単独 2 方向	1. メーカ試験 (カタログ値) により,機	<u>水平:</u>	加振後に正常
(1)	-1-8		機能	及び鉛直単独	能が維持されることを確認。	鉛直:	に動作するこ
		(A)				<u>※下線部</u> が工認記	と
						載値	
		盤内の器具(鉛直	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		は盤1面に実装し	機能	及び鉛直単独	(X,Y方向), (Z方向)	<u> 鉛直:</u>	に動作するこ
		加振試験を実施)			の振動数領域を含む正弦波を入力し、応	<u>※下線部</u> が工認記	と
					答波形から共振点が (X, Y 方	載値	
		【水平:A】			向), (Z 方向) であることを確		
		【鉛直:B】			弦 。		
					2. 正弦波加振試験		
					(X,Y方向), (Z方向)		
					における加振試験を行い、機能が維持さ		
					れることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
AM 用直流 125V 充電器	V-2-10-1-3	盤内の器具	地震後の電気的	水平単独 2 方向	1. メーカ試験 (カタログ値) により,機	水平:	加振後に正常
	-1		機能	及び鉛直単独	能が維持されることを確認。	鉛直:	に動作するこ
							と
		(A)					
AM 用動力変圧器	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-4		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
AM 用 MCC	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-5		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					カし,応答波形から共振点がで	<u>※下線部</u> が工認記	Ł
		(A)			あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

		亚研动位				機能確認済	
設備	記載箇所	[加振試驗 №*1]	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
						$(\times 9.8 \text{ m/s}^2)$	
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
					力し,応答波形から共振点がで	<u>※下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
		【A】			における加振試験を行い,機能が維		
					持されることを確認。		
AM 用切替盤	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-6		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		<b>(</b> A <b>)</b>			カし,応答波形から共振点が で		F
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
AM 用操作盤	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(7A)	-7		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで	<u>※下線部</u> が工認記	2
		(A)			あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		[A]			力し,応答波形から共振点が で	<u>※下線部</u> が工認記	と
					あることを確認。	載値	
					2. サインビート波加振試験		
					における加振試験を行い、		
					機能が維持されることを確認。		
AM 用操作盤	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(7B, 7C)	-7		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で		S
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,		
					機能が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
メタルクラッド開閉装置	V-2-10-1-4	盤内の器具(盤1	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
	-8	面に実装し加振試	後の電気的機能	及び鉛直単独	の振動数領域を含むランダム波	鉛直:	振後に正常に
		験を実施)			を入力し,応答波形から共振点が(X		動作すること
					方向), (Y,Z方向)であること		
					を確認。		
		<b>(</b> B <b>)</b>			2. 正弦波加振試験		
					(X 方向),		
					(Y,Z方向) における加振試験を行い, 機		
					能が維持されることを確認。		
パワーセンタ	V-2-10-1-4	盤内の器具(盤1	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
(7C-1, 7D-1, 7E-1)	-9	面に実装し加振試	後の電気的機能	及び鉛直単独	の振動数領域を含むランダム波	鉛直:	振後に正常に
		験を実施)			を入力し、応答波形から共振点が		動作すること
					(X 方向), (Y,Z 方向) である		
					ことを確認。		
		(в)			2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

		亚伊尔尔				機能確認済	
設備	記載箇所	計111日約122	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
		【刀印报 武利東 NO 】				$(\times 9.8 \text{ m/s}^2)$	
パワーセンタ	V-2-10-1-4	盤内の器具(盤1	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(7C-2, 7D-2, 7E-2)	-9	面に実装し加振試	機能	及び鉛直単独	の振動数領域を含むランダム波	鉛直:	に動作するこ
		験を実施)			を入力し、応答波形から共振点が		と
					(X 方向), (Y,Z 方向) である		
					ことを確認。		
		<b>(</b> B <b>)</b>			2. サインビート波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
モータコントロールセンタ	V-2-10-1-4	盤内の器具	地震時及び地震	水平単独 2 方向	1. 共振点検索試験	水平:	加振中及び加
(7C-1-1, 7C-1-6, 7C-1-7,	-10		後の電気的機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	振後に正常に
7D-1-1, 7D-1-6, 7D-1-7,					カし,応答波形から共振点がで		動作すること
7E-1-1A, 7E-1-3)					あることを確認。		
		(A)			2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
モータコントロールセンタ	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(7C-1-2, 7C-1-3, 7C-1-4,	-10		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
7D-1-2, 7D-1-3, 7D-1-4,					カし,応答波形から共振点がで		ę
7E-1-1B, 7E-1-2)					あることを確認。		
		(A)			2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
モータコントロールセンタ	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
(7C-2-1, 7D-2-1, 7E-2-1)	-10	・電磁接触器	機能	及び鉛直単独	4~33Hz の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し, 応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	と
					あることを確認。	載値	
					2. 正弦波加振試験		
					4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,		
					30, 32, 33Hz における加振試験を行い,機		
					能が維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		・配線用遮断器	機能	及び鉛直単独	4~33Hz の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		・過負荷リレー			力し,応答波形から共振点が 33Hz 以上で	<u>※下線部</u> が工認記	2
		<b>[</b> A <b>]</b>			あることを確認。	載値	
					2. 正弦波加振試験		
					4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,		
					30, 32, 33Hz における加振試験を行い,機		
					能が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
		・補助リレー	機能	及び鉛直単独	4~33Hz の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し, 応答波形から共振点が 33Hz 以上で	※下線部が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,		
					30, 32, 33Hz における加振試験を行い,機		
					能が維持されることを確認。		
5 号機原子炉建屋内緊急時対策	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
所用電源盤	-12		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点がで		Ł
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
5 号機原子炉建屋内緊急時対策	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
所用交流 110V 分電盤	-13		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で		S
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い,		
					機能が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
直流 125V 充電器	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. メーカ試験 (カタログ値) により,機	水平:	加振後に正常
	-14		機能	及び鉛直単独	能が維持されることを確認	鉛直:	に動作するこ
							S
		(A)					
直流 125V 主母線盤	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-15		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で		S
		[A]			あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い、		
					機能が維持されることを確認。		
125V 同時投入防止用切替盤	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-16		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点がで		と
					あることを確認。		
					2. サインビート波加振試験		
					における加振試験を行い、		
					機能が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
直流 125V HPAC MCC	V-2-10-1-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	<u>水平:</u>	加振後に正常
	-17		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点が で	<u>※下線部</u> が工認記	ک
		(A)			あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	<u>鉛直:</u>	に動作するこ
		(A)			力し,応答波形から共振点が で	<u>※下線部</u> が工認記	2
					あることを確認。	載値	
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

		言葉 (正 女) (七				機能確認済	
設備	記載箇所	6半1四音以业.	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
		【加振訊缺 NO				$(\times 9.8 \text{ m/s}^2)$	
床ドレンライン浸水防止治具	V-2-10-2-4	フロート, ねじ取	地震後の機能(止	水平単独 1 方向	1. 共振点検索試験	水平:6.0	加振後に止水
(フロート式治具)	-1	付部	水性能)	及び鉛直単独	5~50Hz の振動数領域を含む正弦波を入	鉛直:6.0	性能を維持す
		(A)			力し,応答波形から共振点が 50Hz 以上で		ること
					あることを確認。		
					2. 正弦波加振試験		
					20Hz における加振試験を行い,機能が維		
					持されることを確認。		
床ドレンライン浸水防止治具	V-2-10-2-4	弁体, ねじ取付部	地震後の機能(止	水平単独 1 方向	1. 共振点検索試験	水平:6.0	加振後に止水
(スプリング式治具)	-1	(A)	水性能)	及び鉛直単独	5~50Hz の振動数領域を含む正弦波を入	鉛直:6.0	性能を維持す
					力し、応答波形から共振点が 50Hz 以上で		ること
					あることを確認。		
					2. 正弦波加振試験		
					20Hz における加振試験を行い、機能が維		
					持されることを確認。		
床ドレンライン浸水防止治具	V-2-10-2-4	閉止栓	地震後の機能(止	水平単独 1 方向	1. 共振点検索試験	水平:6.0	加振後に止水
(閉止栓)	-1	(A)	水性能)	及び鉛直単独	5~50Hz の振動数領域を含む正弦波を入	鉛直:6.0	性能を維持す
					力し,応答波形から共振点が 50Hz 以上で		ること
					あることを確認。		
					2. 正弦波加振試験		
					20Hz における加振試験を行い,機能が維		
					持されることを確認。		

		評価部位				機能確認済	
設備	記載箇所	【加振試驗 No ^{*1} 】	要求機能	加振方向	試験内容*2	加速度*2,*3	判定基準
		NH BACH VOX 110				$(\times 9.8 \text{ m/s}^2)$	
床ドレンライン浸水防止治具	V-2-10-2-4	閉止キャップ	地震後の機能(止	水平単独 1 方向	1. 共振点検索試験	水平:6.0	加振後に止水
(閉止キャップ)	-1	[A]	水性能)	及び鉛直単独	5~50Hz の振動数領域を含む正弦波を入	鉛直:6.0	性能を維持す
					力し、応答波形から共振点が 20Hz 以上で		ること
					あることを確認。		
					2. 正弦波加振試験		
					20Hz における加振試験を行い、機能が維		
					持されることを確認。		
取水槽水位計	V-2-10-2-4	差圧式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・検出器	-3(1)	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し、応答波形から共振点が		2
					であることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能		
					が維持されることを確認。		
津波監視カメラ	V-2-10-2-4	監視カメラ	地震後の電気的	水平 2 方向と鉛	1. 共振点検索試験	水平:	加振後に正常
	-4(1)	[A]	機能	直の3方向同時	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
津波監視カメラ制御架	V-2-10-2-4	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
	-4(2)		機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		[A]			力し,応答波形から共振点が で		ک
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
			機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
		(A)			力し,応答波形から共振点が で		2
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
火災感知器	V-2-別添1	熱感知器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4	加振後に正常
	-2	[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3	に動作するこ
					力し, 応答波形から共振点が 33Hz 以上で		F
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		煙感知器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4	加振後に正常
		<b>(</b> A <b>)</b>	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3	に動作するこ
					力し, 応答波形から共振点が 33Hz 以上で		と
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い、機能が維		
					持されることを確認。		
		煙感知器(防爆型)	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:10.00	加振後に正常
		(A)	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:5.00	に動作するこ
					力し, 応答波形から共振点が 33Hz 以上で		Ł
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
設備	記載箇所	評価部位	[;] 価部位 要求機能	加振方向	加振方向 試験内容*2		判定基準
-------	------	-------------	--------------------------	-----------	-------------------------	------------------------------	--------
2.114		【加振試験 No*1】	A 1104112			$(\times 9.8 \text{ m/s}^2)$	1.722
		熱感知器 (防爆型)	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:10	加振後に正常
		[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:10	に動作するこ
					力し, 応答波形から共振点が 33Hz 以上で		Ł
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		煙感知器(光電分	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:10.00	加振後に正常
		離型)	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:5.00	に動作するこ
		【В】			力し,応答波形から共振点が 33Hz 以上で		ک
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		煙吸引式検出設備	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:4.00	加振後に正常
		[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3.00	に動作するこ
					力し, 応答波形から共振点が 30.4Hz (X 方		と
					向), 33Hz 以上 (Y 方向), 33Hz 以上 (Z 方		
					向)であることを確認。		
					2. サインビート波加振試験		
					30.4Hz (X 方向), 33.0Hz (Y 方向), 33.0Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		
		煙吸引式検出設備	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:5.0	加振後に正常
		(防湿型)	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:5.0	に動作するこ
		(A)			力し, 応答波形から共振点が 33Hz 以上で		2
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		炎感知器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:12.00	加振後に正常
		[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:6.00	に動作するこ
					力し,応答波形から共振点が 33Hz 以上で		ک
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		熱感知力メラ	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:12.00	加振後に正常
		[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:6.00	に動作するこ
					力し,応答波形から共振点が 23.76Hz(X		2
					方向),21.76Hz(Y 方向),33Hz 以上(Z		
					方向)以上であることを確認。		
					2. サインビート波加振試験		
					23.76Hz (X 方向), 21.76Hz (Y 方向), 33Hz		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
火災受信機盤	V-2-別添1	盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3	加振後に正常
	-3	・パソコンパネル	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2	に動作するこ
		(A)			力し,応答波形から共振点が 33Hz 以上(X		と
					方向), 26.3Hz(Y 方向), 33Hz 以上(Z 方		
					向)以上であることを確認。		
					2. サインビート波加振試験		
					33Hz(X 方向),26.3Hz(Y 方向),33Hz(Z		
					方向)における加振試験を行い,機能が		
					維持されることを確認。		
		盤内の器具	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:3	加振後に正常
		・パソコンパネル	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2	に動作するこ
		以外のもの			力し, 応答波形から共振点が 33Hz 以上で		ک
		(A)			あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
ボンベラック	V-2-別添1	二酸化炭素消火設	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:4.0	加振後に正常
	-4	備容器弁	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3.0	に動作するこ
		(A)			力し, 応答波形から共振点が 33Hz 以上で		ک
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
		小空間固定式消火	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:10.0	加振後に正常
		設備容器弁	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:10.0	に動作するこ
		<b>(</b> A <b>)</b>			力し, 応答波形から共振点が 33Hz 以上で		ک
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い、機能が維		
					持されることを確認。		
		SLC ポンプ・CRD ポ	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:10.0	加振後に正常
		ンプ局所消火設備	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:10.0	に動作するこ
		容器弁			力し, 応答波形から共振点が 33Hz 以上で		と
		(A)			あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No*1】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		電源盤·制御盤消	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:3.10	加振後に正常
		火設備容器弁	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.30	に動作するこ
		<b>(</b> B <b>)</b>			力し, 応答波形から共振点が 32. 0Hz (X 方		ک
					向), 32.6Hz(Y 方向), 33Hz 以上(Z 方		
					向)であることを確認。		
					2. サインビート波加振試験		
					32.0Hz(X 方向), 32.6Hz (Y 方向), 33.0		
					(Z 方向) における加振試験を行い, 機能		
					が維持されることを確認。		
		ケーブルトレイ消	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:3.10	加振後に正常
		火設備容器弁	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.30	に動作するこ
		<b>(</b> B <b>)</b>			力し,応答波形から共振点が 33Hz 以上で		と
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
		中央制御室床下フ	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:3.10	加振後に正常
		リーアクセスフロ	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:2.30	に動作するこ
		ア消火設備容器弁			力し,応答波形から共振点が 29.4Hz (X 方		と
		【В】			向), 29.8Hz(Y 方向), 33Hz 以上(Z 方		
					向)であることを確認。		
					2. サインビート波加振試験		
					29.4Hz(X 方向), 29.8Hz (Y 方向), 33.0		
					Hz (Z 方向) における加振試験を行い,機		
					能が維持されることを確認。		
		5 号機原子炉建屋	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:3	加振後に正常
		内緊急時対策所消	能	及び鉛直単独	1~40Hz の振動数領域を含む正弦波を入	鉛直:2	に動作するこ
		火設備容器弁			力し, 応答波形から共振点が 40Hz 以上で		2
		(A)			あることを確認。		
					2. 正弦波加振試験		
					40Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度 ^{*2, *3} (×9.8 m/s ² )	判定基準
	V-2-別添1	二酸化炭素消火設	地震後の動的機	水平単独 2 方向	1. 共振点検索試験	水平:4.0	加振後に正常
	-5	備選択弁	能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:3.0	に動作するこ
		[A]			力し, 応答波形から共振点が 33Hz 以上で		と
					あることを確認。		
					2. サインビート波加振試験		
					33Hz における加振試験を行い,機能が維		
					持されることを確認。		
制御盤	V-2-別添1	制御盤	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:6.00	加振後に正常
	-7	[A]	機能	及び鉛直単独	5~33Hz の振動数領域を含む正弦波を入	鉛直:4.00	に動作するこ
					力し, 応答波形から共振点が 20Hz 以上で		2
					あることを確認。		
					2. サインビート波加振試験		
					20Hz における加振試験を行い,機能が維		
					持されることを確認。		

設備	記載箇所	評価部位 【加振試験 No ^{*1} 】	要求機能	加振方向	試験内容*2	機能確認済 加速度* ^{2,} * ³	判定基準
循環水系隔離システム	V-2-別添 2	電極式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・漏えい検知	-4	(A)	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		S
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		
タービン補機冷却海水系隔離シ	V-2-別添 2	電極式水位検出器	地震後の電気的	水平単独 2 方向	1. 共振点検索試験	水平:	加振後に正常
・漏えい検知	-6	[A]	機能	及び鉛直単独	の振動数領域を含む正弦波を入	鉛直:	に動作するこ
					力し,応答波形から共振点がで		と
					あることを確認。		
					2. 正弦波加振試験		
					における加振試験を行い,機能が維		
					持されることを確認。		

注記*1 :加振試験 No は,表 3-1の No との紐付けを示す。

*2 :記載の数値については、加振試験報告書等の記録に基づいている。

*3:機能確認済加速度が異なる器具が取り付いている盤については、各器具の水平と鉛直の最小値を盤の機能確認済加速度として用いること から、盤の機能確認済加速度として耐震計算書に記載する数値を下線にて示す。

104

## 3. 機能維持評価用加速度の設定について

機能維持評価に用いる機能維持評価用加速度は、機能維持評価を要する器具を取り付ける支持 構造物(盤,計装ラック,スタンション等)の構造と、加振試験の体系を踏まえ、以下の表 3-1 の考えに基づき設定する。

No		<ul><li>支持構造物</li><li>の加振試験</li><li>有無</li></ul>	機能維持 評価用加速度	機能確認済加速度	図解 番号	具体例
A	支持構造物 が剛な設備	無	1.0ZPA(設置床の 最大応答加速度)	器具単体の加振試 験により確認した 加速度	図 3-1	AM 用 MCC 等
В	支持構造物 が剛な設備	有	1.0ZPA(設置床の 最大応答加速度)	支持構造物含めた 加振試験により 確認した加速度	図 3-2	サブドレン動 力制御盤等
С	支持構造物 が柔な設備	無	器具の取付位置に 生じる応答加速度	器具単体の加振試 験により確認した 加速度	図 3-3	使用済燃料貯 蔵 プ ー ル 水 位・温度(SA 広 域)等

表 3-1 機能維持評価用加速度の設定について



図 3-1 支持構造物が剛な設備かつ器具単体の加振試験を実施した場合



図 3-2 支持構造物が剛な設備かつ支持構造物含めた加振試験を実施した場合



図 3-3 支持構造物が柔な設備かつ器具単体の加振試験を実施した場合