2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明

目 次

1. 概要		1
2. 基本方案	針 · · · · · · · · · · · · · · · · · · ·	2
2.1 位置		2
2.2 構造	概要	3
2.3 評価	方針	6
2.4 適用	基準	9
3. 耐震評	価 ·····	11
3.1 評価:	対象断面	11
3.2 解析	方法	14
3.2.1	地震応答解析手法	15
3.2.2 7	構造部材	16
3.2.3 j	耐震評価における解析ケース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3.3 荷重	及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
3.3.1 j	耐震評価上考慮する状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
3.3.2	荷重	20
3.3.3 🦻	荷重の組合せ	20
3.4 入力:	地震動	24
3.5 解析	モデル及び諸元	51
3.5.1	解析モデルの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
3.5.2	使用材料及び材料の物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
3.5.3	地盤及び地盤改良体の解析用物性値	67
3.5.4	地下水位	69
3.6 評価注	対象部位	70
3.6.1	構造部材の健全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
3.6.2	基礎地盤の支持性能評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
3.6.3 7	構造物の変形性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
3.7 許容	限界 ·····	71
3.7.1	構造部材の健全性に対する許容限界 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71
3.7.2	基礎地盤の支持性能に対する許容限界 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
3.7.3 7	構造物の変形性に対する許容限界 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	75
3.8 評価	方法	76
3.8.1	構造部材の健全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
3.8.2	基礎地盤の支持性能評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
3.8.3	構造物の変形性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
4. 評価結	果	92
4.1 地震	応答解析結果	92

4.2 耐震評価結果	103
4.2.1 構造部材の健全性に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	103
4.2.2 基礎地盤の支持力に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	112
4.2.3 構造物の変形性に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	115
4.3 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	118

参考資料

(参考資料1)	地震時における鋼管矢板継手部の健全性について ・・・・・・・・・	(参考)	1 - 1
(参考資料2)	鋼管矢板継手の根入れ長について	(参考)	2 - 1
(参考資料3)	海水貯留堰(6号機設備)接続部の耐震評価に用いる水平震度及び作		
	用荷重の算出について ・・・・・	(参考)	3 - 1
(参考資料4)	漏水試験及び変形試験について	(参考)	4 - 1
(参考資料 5)	止水ゴム取付部鋼材及び止水ゴムの根入れ部について	(参考)	5 - 1
(参考資料 6)	止水ゴム取付部鋼材に作用する分布荷重の算出方法について ・・・・	(参考)	6 - 1

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、海水貯留堰(6号機設備)が基準地震動Ssに対して十分な構造強度及び止水性を 有していることを確認するものである。

海水貯留堰(6号機設備)に要求される機能の維持を確認するにあたっては、地震応答解析に 基づく構造部材の健全性評価、基礎地盤の支持性能評価及び構造物の変形評価により行う。

なお,海水貯留堰(6号機設備)の間接支持構造物である取水護岸(6号機設備)と海水貯留 堰(6号機設備)との取付け部(以下「取水護岸(6号機設備)」という。)の耐震性について は, V-2-10-3-1-3-2「取水護岸(6号機設備)の耐震性についての計算書」に示す。

2. 基本方針

2.1 位置

海水貯留堰(6号機設備)の位置図を図2.2-2-1に示す。

図 2.2-2-1(1) 海水貯留堰(6号機設備)の位置図(全体平面図)

2.2 構造概要

海水貯留堰(6号機設備)の平面図を図2.2-2-2,標準図を図2.2-2-3に示す。

海水貯留堰(6号機設備)は、その機能及び目的から海水貯留堰(6号機設備)本体及び取 水護岸(6号機設備)接続部に区分され、このうち海水貯留堰(6号機設備)本体は鋼管矢板 と鋼管矢板同士を接続する鋼管矢板継手、取水護岸(6号機設備)接続部は止水ゴム及び止水 ゴム取付部鋼材より構成される。また、鋼管矢板には、海水による腐食防止のため、電気防食 が施されている。取水護岸(6号機設備)は、海水貯留堰(6号機設備)の間接支持構造物で あり、前面鋼矢板より構成される。また、前面鋼矢板には、海水による腐食防止のため、電気 防食が施されている。

鋼管矢板は、 ϕ 1100mmの炭素鋼鋼管であり、全 125本の鋼管矢板を連続的に打設すること により堰形状を構成する。鋼管矢板は、下端を十分な支持性能を有する古安田層もしくは西山 層に支持される。天端は、原子炉補機冷却海水ポンプの取水に必要な水量を確保するため、海 底地盤レベル T. M. S. L. -5.5m に対して天端高さを T. M. S. L. -3.5m 及び T. M. S. L. -3.0m とし ており、約 2m 及び約 2.5m の堰高さを有する。海水貯留堰(6 号機設備)の寸法は、約 92m× 約 40m である。

海水貯留堰(6号機設備)は北側に隣接する5号機海水貯留堰と一体の構造となっている。 図 2.2-2-4 に示す5,6号機海水貯留堰中仕切り部の鋼管矢板は,天端高さがT.M.S.L.-3.0mであり,海水貯留堰(6号機設備)を構成する他の鋼管矢板(天端高さT.M.S.L.-3.5m) と堰高さが異なる。

図 2.2-2-2(1) 海水貯留堰(6号機設備)の平面図

前面鋼矢板 (SP-Ⅳ型 SY295)

図 2.2-2-2(2) 海水貯留堰(6号機設備)の平面図(A部拡大)

図 2.2-2-3(1) 海水貯留堰(6号機設備)の標準図

b. P-T 継手

(単位:mm)

図 2.2-2-3(2) 海水貯留堰(6号機設備)の標準図

図 2.2-2-4 海水貯留堰(6号機設備)の平面図

2.3 評価方針

海水貯留堰(6号機設備)は,常設重大事故防止設備及び常設重大事故緩和設備に分類される。

海水貯留堰(6号機設備)の耐震評価は、地震応答解析の結果に基づき、重大事故等対処施 設の評価として、表 2.2-2-1の海水貯留堰(6号機設備)の評価項目に示すとおり、構造部 材の健全性評価、基礎地盤の支持性能評価及び構造物の変形性評価を行う。

海水貯留堰(6号機設備)の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮できる有効応力解析を実施する。

有効応力解析に用いる地盤剛性及び液状化強度特性は,地盤の代表性及び網羅性を踏まえた 上で,ばらつき等を考慮して設定する。

構造部材の健全性評価,基礎地盤の支持性能評価及び構造物の変形性評価を実施することで, 構造強度を有すること及び止水性を損なわないことを確認する。

構造部材の健全性評価については,構造部材の発生応力が許容限界以下であることを確認す る。

基礎地盤の支持性能評価においては、杭頭に発生する鉛直力が終局鉛直支持力に基づく許容 限界以下であることを確認する。

構造物の変形性評価については、止水ゴムの変形量を算定し、有意な漏えいが生じないこと を確認した許容限界以下であることを確認する。海水貯留堰(6 号機設備)の耐震評価フロー を図 2.2-2-5 に示す。

なお,海水貯留堰(6号機設備)を構成する各鋼管矢板は,継手部を介して隣接鋼管矢板に より鋼管矢板の軸方向に沿って拘束されており,軸方向の断面係数は,法線直角方向と比べて 大きいことから,明確な強軸断面方向である。したがって,強軸断面方向の水平力により鋼管 矢板に発生する曲げモーメントは比較的小さく,強軸断面方向の曲げの影響はほとんど受けな いことから,KK7 補足-024-4「水平 2 方向及び鉛直方向地震力の組合せに関する検討につい て」に示すように,従来設計手法における評価対象断面以外の 3 次元的な応答特性が想定され る箇所が無いことを確認した。

評価方針	評価項目	部位	評価方法	許容限界
構造強度 を有する こと	構造部材の	鋼管矢板	曲げ軸力, せん断力に対 する発生応力が許容限界 以下であることを確認	短期許容応力度
	健全性	止水ゴム取付部鋼材	曲げ軸力, せん断力に対 する発生応力が許容限界 以下であることを確認	短期許容応力度
	基礎地盤の 支持性能	基礎地盤	杭頭に発生する鉛直力が 許容限界以下であること を確認	終局鉛直支持力*
止水性を 損なわな いこと	構造物の 変形性	止水ゴム	発生変形量が許容限界以 下であることを確認	有意な漏えいが生 じないことを確認 した変形量

表 2.2-2-1 海水貯留堰(6号機設備)の評価項目

注記*:妥当な安全余裕を考慮する。

2.4 適用基準

適用する規格,基準類を以下に示す。また,表 2.2-2-2 に各項目で適用する規格,基準類 を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局, 2007版)
- ・乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関する技術規程 JEAC4616-2009(日本電気協会)
- ・港湾鋼構造物防食・補修マニュアル(沿岸技術研究センター, 2009年版)
- ・港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)
- ・鋼矢板 設計から施工まで(鋼管杭協会,平成12年3月)

項目	適用する規格、基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構造性能 照査編] (2002 年) 	
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能 照査編] (2002 年)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
 二 二 二 二 二 二 二 二 二 二 二 二 二	 【鋼管矢板・止水ゴム取付部鋼材】 ・道路橋示方書(IV下部構造編)・ 同解説(平成14年3月) ・港湾鋼構造物防食・補修マニュアル(2009年版) ・鋼矢板 設計から施工まで(平成12年3月) 	 ・曲げに対する照査は,発生 応力度が,短期許容応力度 以下であることを確認 ・せん断に対する照査は,発 生応力度が短期許容応力度 以下であることを確認
п	 【基礎地盤の支持性能】 ・道路橋示方書(IV下部構造編)・ 同解説(平成14年3月) ・乾式キャスクを用いる使用済燃料 中間貯蔵建屋の基礎構造の設計に 関する技術規程JEAC4616-2009 	 ・基礎地盤の支持性能に対する照査は、杭頭に発生する 鉛直力が終局鉛直支持力を 下回ることを確認*
評価方法	 ・港湾の施設の技術上の基準・同解 説(2007版) ・鋼矢板 設計から施工まで(平成 12年3月) 	・腐食代の設定
地震応答解析	・原子力発電所耐震設計技術指針 JEAG4601-1987	 ・有限要素法による2次元モデルを用いた時刻歴非線形解析

表 2.2-2-2 各項目で適用する規格,基準類

注記*:妥当な安全余裕を考慮する。

- 3. 耐震評価
- 3.1 評価対象断面

海水貯留堰(6 号機設備)は、取水口前面の海中に設置する鋼管矢板を連結した構造物であり、取水護岸(6 号機設備)に接続している。鋼管矢板の根入れは 8m であり、西山層若しくは古安田層に直接設置される。

海水貯留堰(6号機設備)の評価対象断面位置図を図 2.2-3-1 に示す。構造物の耐震設計 における評価対象断面は図 2.2-3-1のA-A断面及びB-B断面とする。海水貯留堰(6号 機設備)の評価対象断面図を図 2.2-3-2 に示す。

図 2.2-3-3 に古安田層基底面図を示す。図 2.2-3-3より、南北方向では北に向かって古 安田層の基底面が深くなり、東西方向では西に向かって古安田層の基底面は深くなる。古安田 層の基底面が深いほうが地震時の応答が大きくなると考えられるため、海水貯留堰(6 号機設 備)本体及び接続部に着目した評価対象断面としてA-A断面及びB-B断面を選定し、基準 地震動Ssによる耐震評価を実施する。

図 2.2-3-1 海水貯留堰(6号機設備)の評価対象断面位置図

図 2.2-3-2(1) 海水貯留堰(6号機設備)の評価対象断面図(A-A断面)

(単位:m)

図2.2-3-2(2) 海水貯留堰(6号機設備)の評価対象断面図(B-B断面)

図 2.2-3-3 古安田層基底面図

3.2 解析方法

海水貯留堰(6号機設備)の地震応答解析は、V-2-1-6「地震応答解析の基本方針 2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析では,地盤の有効応力の変化に応じた地震時挙動を考慮できる有効応力解析手 法を用いる。

有効応力解析には,解析コード「FLIP Ver.7.4.1」を使用する。なお,解析コードの検 証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示 す。

3.2.1 地震応答解析手法

海水貯留堰(6号機設備)の地震応答解析は,地盤と構造物の相互作用を考慮できる2次 元有効応力解析を用いて,基準地震動に基づき設定した水平地震動と鉛直地震動の同時加 振による逐次時間積分の時刻歴応答解析にて行う。海水貯留堰(6号機設備)を構成する 鋼管矢板は,線形はり要素でモデル化する。地盤については,有効応力の変化に応じた地 震時挙動を適切に考慮できるモデル化とする。

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用 する際は,地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ 及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図2.2-3-4に示す。

図 2.2-3-4 地震応答解析手法の選定フロー

3.2.2 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.3 耐震評価における解析ケース

海水貯留堰(6号機設備)の耐震評価における解析ケースを表2.2-3-1に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水位以深の飽 和土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断 波速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また、構造物への応答加速度に対する保守的な配慮として、地盤の非液状化の条件を仮 定した解析ケースを設定する(解析ケース④、⑤)。

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

最も厳しい地震動の選定は,照査値1.0に対して2倍の余裕となる照査値0.5以上を相対 的に厳しい地震動の選定の目安として実施する。

追加解析を実施する地震動の選定フローを図2.2-3-5に示す。

解析ケース		0	2	3	4	5		
		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき (-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース		
地盤剛性の設定		地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)		
液状化強度特性の設定		液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用		
		++	実施					
	0 1	-+	実施					
	Ss-1	+-	実施					
			実施					
	Ss-2		実施					
		++	実施					
地震	8- 9	-+	実施	全ての基準	- 隼地震動Ssに	対して実施する	①の解析ケ	
動	55-5	+-	実施	ス (基本/	ース(基本ケース)において,せん断力照査,曲げ軸 カ昭本及び支持力昭本について、各昭本値が最も厳し			
位相			実施	力昭香及び				
5	Ss-4		実施					
	Ss-5		実施					
	Ss-6		実施					
	Ss-7		実施					
	C 0	++	実施		ょるり18日11月	②勿口は,但川	所们を大旭	
	55-8	-+	実施	<u>ا با می</u>				

表 2.2-3-1 海水貯留堰(6号機設備)の耐震評価における解析ケース

注:表中の符号+,-は地震動の位相(水平,鉛直)を示す。

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、V-2-1-9「機能維持の基本方針」に基づき設定する。
 - 3.3.1 耐震評価上考慮する状態

海水貯留堰(6号機設備)の地震応答解析において、地震以外に考慮する状態を以下に 示す。

- (1) 運転時の状態 発電用原子炉施設が運転状態にあり、通常の条件下におかれている状態。ただし、運転 時の異常な過渡変化時の影響を受けないことから考慮しない。
- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 海中構造物であるため,積雪及び風による影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。

3.3.2 荷重

海水貯留堰(6号機設備)の地震応答解析において、考慮する荷重を以下に示す。

- (1) 固定荷重(G)
 固定荷重として, 躯体自重を考慮する。
- (2) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。
- 3.3.3 荷重の組合せ
 - (1) 鋼管矢板

鋼管矢板の耐震評価に用いる荷重の組合せを表2.2-3-2及び表2.2-3-3に,荷重作用 図を図2.2-3-6及び図2.2-3-7に示す。

なお,鋼管矢板の耐震評価における荷重は,「3.2 解析方法」に示すとおり2次元有効 応力解析を用いた解析手法の中で,考慮されている。

表 2.2-3-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時 (Ss)	G + S _s

G : 固定荷重

S_s : 地震荷重

種別		荷重		算定方法
		部材自重	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	田安			じて設定
	间止 古重	機器・配管自重	_	・機器・配管設備はないことから、考慮しない
	彻里	土被り荷重	—	・土被りはないため、考慮しない
永久		上載荷重	_	・地盤表面に恒常的に置かれる構造物はないため考慮しない
荷重	重 静止土圧		\bigcirc	・常時応力解析により算定する
		外水圧		・静水圧を考慮するが、堰内外で水位差がないため鋼管矢板
				に荷重は載荷しない
	内水圧		_	 ・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪	積雪及び風荷重		・土中及び水中の構造物であることから、考慮しない
		水平地震力	\bigcirc	・基準地震動Ssによる水平及び鉛直同時加振を考慮する
偶発花	荷重	鉛直地震力	\bigcirc	・躯体の慣性力,動土圧を考慮する
		動水圧	0	・水位条件,密度は,永久荷重と同様とする

表 2.2-3-3 荷重の組合せ(鋼管矢板 地震時)

(海水貯留堰内側)

(海水貯留堰外側)

(海水貯留堰内側)

図 2.2-3-7 荷重作用図 (鋼管矢板 地震時)

(2) 止水ゴム取付部鋼材

止水ゴム取付部鋼材の耐震評価に用いる荷重の組合せを表2.2-3-4及び表2.2-3-5に, 荷重作用図を図2.2-3-8に示す。

なお、止水ゴム取付部鋼材の耐震評価における荷重は、「3.2 解析方法」に示す2次元 有効応力解析から得られる結果を用いて算出されており、構成部材を適切にモデル化した 解析の中で、考慮されている。評価方法の詳細は、「3.8 評価方法 (2)止水ゴム取付部 鋼材」に示す。

止水ゴムからの作用荷重を保守的に評価するために,止水ゴム作用力を作用荷重として 考慮する。

慣性力及び動水圧については、「3.2.3 耐震評価における解析ケース」に示す解析ケース及び「3.4 入力地震動」に示す基準地震動Ssを考慮した2次元有効応力解析から得られる最大加速度を用いて算出する。加速度抽出断面は、動水圧及び止水ゴム作用力等の荷重作用方向と、NS方向(B-B断面)により得られる最大加速度方向が、同一の方向であることを考慮し、B-B断面を選定する。(参考資料3)に示すとおり、海水貯留堰(6号機設備)(南側)は水平震度k_h=1.12(Ss-1++,解析ケース③:地盤物性のばらつき(-1 σ)を考慮した解析ケース),海水貯留堰(6号機設備)(北側)は水平震度k_h=1.08(Ss-1++,解析ケース③:地盤物性のばらつき(-1 σ)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した解析ケース)を考慮した。

表 2.2-3-4 荷重の組合せ

外力の状態	荷重の組合せ
地震時(S s)	G + S s

G : 固定荷重

Ss:地震荷重

種	種別 荷重			算定方法
固定 荷重 荷重 一 荷重 一 荷重 一 荷重 一 荷重		部材自重	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	田安		0	じて設定
	自止	機器・配管自重	—	・機器・配管設備はないことから、考慮しない
	何里	土被り荷重	_	・土被りはないため、考慮しない
		上載荷重	_	・地盤表面に恒常的に置かれる構造物はないため考慮しない
	静止土圧		—	・静止土圧は考慮しない
	外水圧		—	・堰内外で水位差がないため、考慮しない
	内水圧		—	 ・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重			・土中及び水中の構造物であることから、考慮しない
水平		水平地震力	\bigcirc	・基準地震動Ssによる水平及び鉛直同時加振を考慮する
偶発荷重	齿毛	鉛直地震力	—	・躯体の慣性力,動土圧を考慮する
	们里	動水圧	\bigcirc	 ・水位条件,密度は、永久荷重と同様とする
		止水ゴム作用力	0	・止水ゴムに作用する動水圧による荷重を考慮する

表 2.2-3-5 荷重の組合せ(止水ゴム取付部鋼材 地震時)

図 2.2-3-8 荷重作用図(止水ゴム取付部鋼材 地震時)

3.4 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定におい ては, V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデル(入力地震動作成モ デル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.2-3-9 に、入力地震動の加速度時刻歴波形及び加速度応答 スペクトルを図 2.2-3-10 に示す。入力地震動の算定には、解析コード「SLOK Ver.2.0」を使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた 場合の影響も確認する。

図 2.2-3-9 入力地震動算定の概念図

MAX 11.9 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 2.2-3-10(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-1)

MAX 7.49 m/s^2 (5.88s)

(a) 加速度時刻歷波形

図 2.2-3-10(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-1)

MAX 13. $2m/s^2$ (20.51s)

(a) 加速度時刻歷波形

図 2.2-3-10(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 2.2-3-10(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 8.40 m/s^2 (21.92s)

(a) 加速度時刻歷波形

図 2.2-3-10(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-2NS)

MAX 5.04 m/s^2 (20.58s)

(a) 加速度時刻歷波形

図 2.2-3-10(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-2NS)

MAX 7. $18m/s^2$ (35. 43s)

(a) 加速度時刻歷波形

図 2.2-3-10(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-3)

MAX 4.78 m/s^2 (38.80s)

(a) 加速度時刻歷波形

図 2.2-3-10(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-3)

MAX 9. $42m/s^2$ (51. 71s)

(a) 加速度時刻歷波形

図 2.2-3-10 (9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-4EW)
MAX 3.60 m/s^2 (52.87s)

⁽a) 加速度時刻歷波形

図 2.2-3-10(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 4.92 m/s^2 (51.62s)

(a) 加速度時刻歷波形

図 2.2-3-10(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4NS)

MAX 3.57 m/s^2 (46.29s)

(a) 加速度時刻歷波形

図 2.2-3-10(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4NS)

(a) 加速度時刻歷波形

図 2.2-3-10(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

MAX 3.74 m/s^2 (52.06s)

(a) 加速度時刻歷波形

図 2.2-3-10(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 4.64 m/s^2 (51.64s)

(a) 加速度時刻歷波形

図 2.2-3-10(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5NS)

(a) 加速度時刻歷波形

図 2.2-3-10(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5NS)

MAX 9.84 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 2.2-3-10(17) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

MAX 3.95 m/s^2 (52.87s)

(a) 加速度時刻歷波形

図 2.2-3-10(18) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

MAX 5.01m/s² (51.61s)

(a) 加速度時刻歷波形

図 2.2-3-10(19) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6NS)

MAX 3.89 m/s^2 (52.87s)

(a) 加速度時刻歷波形

図 2.2-3-10(20) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6NS)

MAX 8.58 m/s^2 (46.68s)

(a) 加速度時刻歷波形

図 2.2-3-10(21) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

MAX 3.76 m/s^2 (53.65s)

(a) 加速度時刻歷波形

図 2.2-3-10(22) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7EW)

(a) 加速度時刻歷波形

図 2.2-3-10(23) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7NS)

MAX 3.77 m/s^2 (53.65s)

(a) 加速度時刻歷波形

図 2.2-3-10(24) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7NS)

MAX 7.65 m/s^2 (7.74s)

(a) 加速度時刻歷波形

図 2.2-3-10(25) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-8)

MAX 3.35 m/s^2 (7.64s)

(a) 加速度時刻歷波形

図 2.2-3-10(26) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-8)

- 3.5 解析モデル及び諸元
 - 3.5.1 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針JEAG4 601-1987(日本電気協会)」を参考に、図2.2-3-11のモデル範囲の考え方に示すと おりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数20Hz 及びせん断波速度Vsで算定される波長の5又は4分割、すなわちVs/100又はVs/80を考慮し、 要素高さを0.5~1m程度まで細分割して設定する。

構造物の要素分割については、構造物に接する地盤の要素分割に合わせて設定する。

図 2.2-3-11 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次 元有効応力解析における自由地盤の初期応力解析から不整形地盤(2次元FEM)の地震 応答解析までのフローを図2.2-3-12に示す。

図 2.2-3-12 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

- (2) 境界条件
 - a. 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初 期応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重 等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。初期応力解析に おける境界条件の概念図を図 2.2-3-13 に示す。

図 2.2-3-13 初期応力解析における境界条件の概念図

b. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 海水貯留堰(6号機設備)の地震応答解析モデルを図2.2-3-14に示す。

図 2.2-3-14(1) 海水貯留堰(6号機設備)の地震応答解析モデル(A-A断面)

(3) 構造物のモデル化

構造部材は、線形はり要素によりモデル化する。

なお、A-A断面では2つの海水貯留堰(6号機設備)をモデル化している。海水貯留堰 (6号機設備) (沖合側)は、奥行き方向に連続する構造物としてモデル化している。一 方、海水貯留堰(6号機設備) (護岸近傍)は、奥行き方向に1本の構造物としてモデル化 している。図2.2-3-15に地震応答解析モデル(A-A断面)を、図2.2-3-16に海水貯 留堰(6号機設備)のモデル化の概要を示す。

図 2.2-3-15 海水貯留堰(6号機設備)の地震応答解析モデル(A-A断面)

図 2.2-3-16 海水貯留堰(6号機設備)のモデル化の概要

(4) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水要素によりモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) 地盤改良体のモデル化 構造物周辺の地盤改良体は、マルチスプリング要素及び間隙水要素によりモデル化する。 (6) ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により,地震時の接合面における剥離及びすべりを考慮する。なお,既設地盤改良体と新 設地盤改良体との接合面については,既設地盤改良体に対し新設地盤改良体をラップさせ て設置し,接合させることから,ジョイント要素は設定しない。

ジョイント要素は、隣接する要素との接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時の圧縮荷重以上の引張荷重が生じた場合、剛性及び応力を 零とし、剥離を考慮する。せん断方向については、各要素間の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性を零とし、すべりを考慮する。

なお, せん断強度 τ_fは, 次式により規定される。

$$\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$$

ここで,

σ':要素間の直応力

- св :付着力
- φ_B :摩擦角

地盤と構造物間の接合面におけるジョイント要素の付着力c_Bと摩擦角φ_Bは,表2.2-3-6に示す通り設定する。付着力c_Bは,「道路橋示方書(I共通編・W下部構造編)・ 同解説(日本道路協会,平成14年3月)」に基づき,表2.2-3-6に示す「地盤と構造物」 の条件から考慮しないものとする。摩擦角φ_Bは,「港湾の施設の技術上の基準・同解説

(日本港湾協会,平成19年7月)」において,構造物と地盤間の壁面摩擦角を15°~20° とする旨が記載されており,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」において,鋼材と地盤間の摩擦角を15°と設定した事例があることから, 本解析における摩擦角 φ Bにも15°を適用する。

地盤と地盤改良体間の付着力 c B及び摩擦角 φ Bは,表2.2-3-7の道路橋示方書における摩擦角 φ Bと付着力 c Eに示す「道路橋示方書(I 共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」の設定を参考に,周辺地盤の粘着力 c,内部摩擦角 φ より設定する。

周辺地盤の粘着力 c と内部摩擦角 φ は, V-2-1-3「地盤の支持性能に係る基本方針」に 基づき, 表2.2-3-8のとおり設定する。

· · · · · · · ·		B C (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
条件	付着力c _B (kN/m²)	摩擦角∮B(°)
地盤と構造物*1	0.0	15.0
地盤と地盤改良体*2	С	φ

表 2.2-3-6 ジョイント要素の付着力 c B と摩擦角 φ B

注記*1:構造物は、鋼材とする。

*2:地盤と地盤改良体の付着力と摩擦角は、地盤の c, φを適用する。

条件	摩擦角 øB(摩擦係数 tan øB)	付着力 CB
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ tan \phi_B = 0.6 \phi_B = \phi $	$c_B = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_{B} = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

表2.2-3-7 道路橋示方書における摩擦角 Φ β と付着力 с β

ただし、 ø: 支持地盤のせん断抵抗角(°) c: 支持地盤の粘着力(kN/m²)

(引用:道路橋示方書・同解説IV(下部構造編),社団法人日本道路協会,平成14年3月)

地質区分	粘着力 c (kN/m²)	内部摩擦角 φ (°)
埋戻土	0.0	35.9
新期砂層	0.0	34.6
A3a1 層	29.2	34.2
A2c 層	113.0	27.9

表 2.2-3-8 周辺地盤の粘着力 c と内部摩擦角 φ

また、ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分 大きい値として、「港湾構造物設計事例集(上巻)(沿岸技術研究センター、平成19年3 月)」に従い、表2.2-3-9の通り設定する。ジョイント要素の力学特性を図2.2-3-17 に、ジョイント要素の配置を図2.2-3-18に示す。なお、海水貯留堰(6号機設備)(沖 合側)は奥行き方向に連続する構造物としてモデル化するため、地盤と構造物の間にジョ イント要素を設ける。また、海水貯留堰(6号機設備)(護岸近傍)は奥行き方向に1本の 構造物であるため、地盤と構造物の間には杭一地盤相互作用ばねを設ける。

表 2.2-3-9 ジョイント要素のばね定数

条件	対象	せん断剛性 k _s (kN/m ³)	圧縮剛性 kn(kN/m³)	
地盤と構造物	海水貯留堰 (6 号機設備)	1.0×10^{6}	1.0×10^{6}	
	護岸前面鋼矢板	$1.0 imes 10^5$	$1.0 imes 10^{6}$	
地盤と地盤改良体	側方及び底面	1.0×10^{6}	1.0×10^{6}	

図 2.2-3-18(1) ジョイント要素の配置(A-A断面)

(7) 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭一地盤相互作用ばねを設けることにより、地盤と杭の接合面にお ける、強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については、地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合、せん断剛性を零とし、すべりを考慮する。図2.2-3-19に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは, 次式により規定される。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

σ':要素間の直応力

св : 付着力

φ_B :摩擦角

付着力 c B及び摩擦角 ø Bは,表2.2-3-6の地盤と構造物の条件から設定する。

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」に従い,表2.2-3-10のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

注記*: FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

(b) 杭-地盤相互作用ばね配置図(A-A断面)

図 2.2-3-19 杭-地盤相互作用ばねの考え方

表 2.2-3-10	杭一地盤相互伯	作用ばねの杭軸	方向のばね定数
12.2 0 10		「Fノ」」(みずめ。>小「「+川」	

	せん断剛性 ks
	(kN/m^3)
杭軸方向	$1.0 imes 10^{6}$

(8) 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図2.2-3-20の杭の鉛直載 荷試験における一般的な荷重-変位関係に示すとおり、双曲線型の関係を示すことが知ら れている。本解析においても実現象を精緻にモデル化する観点から、杭先端と地盤間に Hirayama (1990) *による杭先端抵抗と杭先端変位の双曲線型の関係を杭軸方向のばねの 抵抗力と変位差関係に置き換えたばねを設けることにより、杭先端における地盤と杭の相 互作用を適切に考慮する。このばねは、圧縮側の関係を取り扱うため、杭先端と地盤間の 変位差が引張り状態となった場合、剛性及び応力を零とし、剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式及び図2.2-3-21に示す双 曲線型の式で設定される。

Hirayama (1990) では、N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭 の鉛直載荷試験結果に対して、当杭先端ばねを用いた荷重変位関係の再現解析を実施し、 適用性を検証している。また、当杭先端ばねは「一般社団法人FLIPコンソーシアム平 成25年度研究成果報告書(FLIPコンソーシアム、2013年)」にて、解析コード「FL IP」に対して適用性を確認している。報告書では、砂層に対する杭の押込み実験結果の 杭先端抵抗一杭先端変位関係を、当杭先端ばねが概ね再現可能であることを確認している。 また、パラメータスタディとして支持層の相対密度を変化させた解析を実施し、当杭先端 ばねの適用性を検証している。検証の結果、支持層に液状化等による剛性低下が生じず、 所定の支持力を発揮できる場合、当杭先端ばねは解析コード「FLIP」に対し適用性を 有することが確認されている。

海水貯留堰(6号機設備)については、杭の支持層は西山層、A2 c 層及びA2a1層であり、 地震時においても液状化が生じず、所定の杭先端支持力が期待できることから、当杭先端 ばねを適用できると判断した。

注記*:Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils

and Foundations, Vol. 30, No. 1, pp55-64, H. Hirayama, 1990)

$$q = z_e \swarrow (a_e + b_e \cdot z_e)$$

- q : 杭先端抵抗
- z。 : 杭先端変位
- a。 : 基準変位を杭先端における極限支持力で除した値(=0.25D。/qult)
- **b**_e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- q_{ult} : 杭先端における極限支持力

図 2.2-3-20 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

File tip displacement. Z_{e}

図 2.2-3-21 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係(Hirayama(1990))

(9) 減衰定数

減衰定数は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波とした再現解析等を踏まえ、Rayleigh減衰として、 $\alpha = 0$ 、 $\beta = 0.005$ を設定する。

3.5.2 使用材料及び材料の物性値

使用材料を表2.2-3-11に、材料の物性値を表2.2-3-12に示す。

材料	諸元	腐食代			
鋼管矢板	$\phi1100\text{mm}$ (SKY490) , t=14mm, 16mm	1. 0mm^{*1}			
		海側(海底面以浅)	2. 0 mm ^{*2}		
前面鋼矢板	S $P-IV$ 型(SY295),t=15.5mm	海側(海底面以深)	0. $2mm^{*2}$		
		陸側	0. $2mm^{*2}$		

表 2.2-3-11 使用材料

注記*1 : 腐食代の算出過程は下記のとおりとする。なお,海底面以深の鋼管矢板の腐食代は,保守的に海底面 以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0-0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰(6号機設備)の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」) 防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

*2:腐食代の算出過程は下記のとおりとする。

海側(海底面以浅): $0.2 (mm/年) \times 86 \ F \times (1.0-0.9) = 1.72 mm \doteq 2.0 mm$ 海側(海底面以深): $0.02 (mm/年) \times 86 \ F \times (1.0-0.9) = 0.172 mm \doteq 0.2 mm$ 陸側: $0.02 (mm/年) \times 86 \ F \times (1.0-0.9) = 0.172 mm \doteq 0.2 mm$

ここで,

運用期間:86年(取水護岸(6号機設備)の竣工(1984年)からの経過年数と海水貯留堰(6号機 設備)の運用期間50年の合計)

腐食速度:0.2mm/年(海側(海底面以浅))

0.02mm/年(海側(海底面以深),陸側)

(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

表 2.2-3-12 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鋼管矢板	77.0	2. 0×10^{5}	0.3
前面鋼矢板	77.0	2. 0×10^{5}	0.3

3.5.3 地盤及び地盤改良体の解析用物性値

地盤及び地盤改良体の諸定数は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤の解析用物性値一覧を表2.2-3-13に示す。

なお,海水貯留堰(6号機設備)の地盤改良体については,KK7補足-024-1「地盤の支持 性能について 4.2 設置変更許可申請書に記載されていない解析用物性値」に示す。

また,表2.2-3-13(4)に地盤改良体の配置に応じて設定した地盤改良体の物性値を示す。

地質区分			新期砂層・沖積層			古安田層					
	物性値	<u> </u>		埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層
物理	密度	ρ	(g/cm ³)	1.94 (1.79)*	2.05 (2.00)*	1.90	2.02	1.91	1.91	1.91	1.91
特性	間隙率	n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数	G _{m a}	(kN/m^2)	1.04×10^{5}	1.26×10^{5}	1.25×10^{5}	1.92×10^{5}	2. 14×10^5			
変形	基準平均有効拘束圧	σ _{ma} '	(kN/m^2)	98.0	98.0	110.0	150.0	200.0	200.0	200.0	200.0
特性	ポアソン比	ν		0.33 (0.42)*	0.33 (0.44)*	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.225	0.234	0.247	0.211	0.157	0.157	0.157	0.157
強度	粘着力	с'	$(\mathrm{kN}/\mathrm{m}^2)$	0.0 (9.6)*	0.0 (94.4)*	0.0	0.0	0.0	0.0	0.0	0.0
特性	内部摩擦角	φ'	(°)	35.9 (34.8)*	34.6 (27.6)*	36.7	35.6	36.6	36.6	36.6	36.6
	変相角	$\phi_{\rm p}$	(°)	32.0	31.0	33.0	32.0	32.0	32.0	32.0	32.0
			S_{1}	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化			w1	5.50	7.90	11.00	8.00	25.00	25.00	25.00	25.00
特件	液状化パラメー	<i>A</i>	p1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
			p ₂	1.00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
			c1	1.69	2.13	2.41	2.00	8.75	8.75	8.75	8.75

表 2.2-3-13(1) 地盤の解析用物性値一覧(液状化検討対象層)

注記*:括弧内の数字は、地下水位以浅の数値を表す。

	地質区分			新期砂層・沖積層	古安田層						
	物性值	<u> </u>		埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物理	密度	ρ	(g/cm^3)	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	${ m G}_{ma}$	(kN/m^2)	7.33×10^{4}	5.50 $\times 10^{4}$	1.09×10^{5}	9. 57×10^4	1.39×10^{5}	1.61×10^{5}	1.39×10^{5}	1.39×10^{5}
変形	基準平均有効拘束圧	σ _{ma} '	(kN/m^2)	41.0	170.0	60.0	94.0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.152	0.136	0.114	0.162	0.110	0.147	0.110	0.110
強度	粘着力	с'	(kN/m^2)	7.4	82.5	99.6	29.2	113.0	82.8	113.0	113.0
特性	内部摩擦角	φ'	(°)	31.7	19.6	26.8	34.2	27.9	28.7	27.9	27.9

表 2.2-3-13(2) 地盤の解析用物性値一覧(非液状化層)

表 2.2-3-13(3) 地盤の解析用物性値一覧(西山層)

	N ⁰ ラ ノ ク			西山層			
				T.M.S.L33.Om 以浅	T. M. S. L. −33. Om∼−90. Om		
物理	密度	ρ	(g/cm^3)	1.73	1.69		
特性	間隙率	n		0.56	0.56		
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5		
変形	基準平均有効拘束圧	σ_{ma}	(kN/m^2)	98.0	98.0		
特 性	ポアソン比	ν		0.33	0.33		
	減衰定数の上限値	h _{max}		0. 257	0. 257		
強度	粘着力	с	(kN/m^2)	1370-5.04Z*	1370-5. 04 Z *		
特性	内部摩擦角	ϕ	(°)	0.0	0.0		

注記*:Zは,標高(m)を示す

既設/新設				既設 地盤改良体	新設地盤改良体	
	種別 (地盤種別)		高圧噴射 (砂質土)	高圧噴射 (砂質土)	高圧噴射 (粘性土)	
物理特性	密度	ρ	(g/cm^3)	1.77	1.94~1.96*	1.81
	間隙率	n		0.49	0.49	0.64
	動せん断弾性係数	G_{na}	(kN/m^2)	1.78×10^{6}	5. 54×10^{5}	5. 18×10^{5}
変形特性	基準平均有効拘束圧	σ ",	(kN/m^2)	98.0	98.0	98.0
	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.05	0.05	0.05
強度特性	粘着力	с	(kN/m²)	815	397	397

表 2.2-3-13(4) 地盤の解析用物性値一覧(地盤改良体の配置を考慮した物性値)

注記*:地盤改良体の配置に応じて設定。

3.5.4 地下水位

地下水位は、 V-2-1-3「地盤の支持性能に係る基本方針」に基づき、地表面 (T. M. S. L. 3. 0m) として設定する。
3.6 評価対象部位

評価対象部位は、海水貯留堰(6号機設備)の構造上の特徴を踏まえ設定する。

- 3.6.1 構造部材の健全性評価 構造部材の健全性評価に係る評価対象部位は,鋼管矢板,止水ゴム取付部鋼材とする。
- 3.6.2 基礎地盤の支持性能評価 基礎地盤の支持性能評価に係る評価対象部位は,鋼管矢板を支持する基礎地盤とする。
- 3.6.3 構造物の変形性評価 構造物の変形性評価に係る評価対象部位は、止水ゴムとする。

3.7 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.7.1 構造部材の健全性に対する許容限界
 - (1) 鋼管矢板

鋼管矢板の許容限界は、「道路橋示方書(I共通編・IN下部構造編)・同解説(日本道路協会、平成14年3月)」に基づき、鋼管矢板の許容応力度に対して割増係数1.5を考慮し、 表2.2-3-14に示す短期許容応力度とする。

部位	材料	項目	許容限界 (N/mm ²)
鋼管矢板 φ1100	SKN 400	短期許容曲げ応力度 o _{sa}	277
	581490	短期許容せん断応力度 τ а	157

表 2.2-3-14 鋼管矢板の許容限界

(2) 止水ゴム取付部鋼材

止水ゴム取付部鋼材の許容限界は、「道路橋示方書(I共通編・IV下部構造編)・同解 説(日本道路協会,平成14年3月)」に基づき,鋼材の許容応力度に対して割増係数1.5を 考慮し,表2.2-3-15に示す短期許容応力度とする。

また、止水ゴム取付部鋼材は、鋼管矢板及び前面鋼矢板に水中溶接にて設置する。止水 ゴム取付部鋼材(水中溶接部)に対する許容限界は、「道路橋示方書(I共通編・IV下部 構造編)・同解説(日本道路協会、平成14年3月)」、「鋼矢板 設計から施工まで(鋼 管杭協会、平成12年3月)」及び「港湾鋼構造物防食・補修マニュアル(沿岸技術研究セ ンター、2009年版)」に基づき、鋼材の許容応力度に対して割増係数1.5を考慮し、表2.2 -3-16に示す短期許容応力度とする。ただし、「港湾鋼構造物防食・補修マニュアル (沿岸技術研究センター、2009年版)」に基づき、水中溶接部の短期許容応力度は、気中 溶接部の短期許容応力度から30%減じたものとする。

部位	材料	項目	許容限界 (N/mm ²)
止水ゴム 取付部鋼材	SM400	 短期許容曲げ応力度 σ _{sa}	277
	SM490	短期許容せん断応力度 τ。	157

表 2.2-3-15 止水ゴム取付部鋼材の許容限界

表 2.2-3-16(1) 止水ゴム取付部鋼材(水中溶接部)の許容限界(接続:鋼管矢板)

部位	材料	項目	許容限界 (N/mm ²)
止水ゴム 取付部鋼材	止水ゴム取付部鋼材(SM490) /鋼管矢板(SKY490)	短期許容曲げ応力度 σ _{sa} 及び 短期許容せん断応力度 τ _a (水中溶接部)	110

表 2.2-3-16(2) 止水ゴム取付部鋼材(水中溶接部)の許容限界(接続:前面鋼矢板)

部位	材料	項目	許容限界
			(N/mm^2)
		短期許容曲げ応力度 σ _{sa}	
止水ゴム	止水ゴム取付部鋼材(SM490)	及び	105
取付部鋼材	/前面鋼矢板(SY295)	短期許容せん断応力度 τ 。	105
		(水中溶接部)	

3.7.2 基礎地盤の支持性能に対する許容限界

基礎地盤に発生する鉛直力に対する許容限界は、V-2-1-3「地盤の支持性能に係る基本 方針」に基づき、「道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会、 平成14年3月)」より設定する極限支持力に、「乾式キャスクを用いる使用済燃料中間貯 蔵建屋の基礎構造の設計に関する技術規程 JEAC4616-2009(日本電気協会)」 に基づく安全率1.2を考慮した終局鉛直支持力とする。

基礎地盤の支持性能に対する許容限界を表2.2-3-17に示す。

道路橋示方書による群杭としての軸方向許容押込み支持力算定式を以下に示す。

なお,支持性能評価における保守的な配慮として,杭先端の極限支持力を考慮せず終局 鉛直支持力を算定する。

$$\boldsymbol{Q}_{a} \!=\! \frac{1}{n} \Big(\boldsymbol{Q}_{p} \!+\! \boldsymbol{Q}_{f} \Big)$$

ここで,

Qa : 終局鉛直支持力(群杭としての軸方向許容押込み支持力(杭頭での許容荷重)) (kN)

n :安全率

Q_p:詳杭としての杭先端の極限支持力(kN)(保守的に考慮しない)

Q_f : 群杭としての周面摩擦力 (kN)

$\begin{array}{c} \mathbf{Q}_{\mathrm{f}} \!=\! \mathbf{U}_{\mathrm{g}} \boldsymbol{\Sigma} \; \mathbf{L}_{\mathrm{i}} \; \boldsymbol{\tau}_{\mathrm{i}} \\ \boldsymbol{\Xi} \; \boldsymbol{\Xi} \; \boldsymbol{\tilde{\tau}}, \end{array}$

- U₆ :鋼管矢板1本あたりの両側側面幅(図2.2-3-22の矢印部(=2D)) (m)
- D:鋼管矢板1本あたりの片側側面幅(m)
- L_i: : 海底面から先端支持層までの各層の層厚(m)
- τ_i :各層の土の非排水せん断強度(kN/m²)

	算定結果			
項目		B-B断面		備考
	А-Арды	南側	北側	
鋼管矢板1本当たりの	2 606	2 606	2 606	⊠ 2.2-3-
側面幅U _G (m)	2.090	2.090	2.090	22 を参照
A3a1層の層厚 (m)	3. 420	1.926	3.436	
A2c 層の層厚 (m)	4.580	—	4.564	
西山層の層厚 (m)	_	6.074		
A3a1層の非排水せん断強度 (kN/m ²)	104	104	104	
A2c 層の非排水せん断強度(kN/m ²)	251	—	251	
西山層の非排水せん断強度(kN/m ²)	_	1423		
群杭としての周面摩擦力Q _f (kN)	4058	23834	4051	
群坊としての				保守的な
	0	0	0	配慮として
小儿端の極限又行力Qp (KN)				考慮しない
安全率n	1.2	1.2	1.2	
群杭としての	2280	10800	2270	終局鉛直
軸方向許容押込み支持力Qa(kN)	0000	19800	5570	支持力

表 2.2-3-17 基礎地盤の支持性能に対する許容限界

図 2.2-3-22 仮想ケーソン基礎の側面幅U_G

3.7.3 構造物の変形性に対する許容限界

止水ゴムに対する許容限界は、漏水試験及び変形試験により、有意な漏えいが生じない ことを確認した変形量とする。

止水ゴムの変形量の許容限界を表2.2-3-18に示す。

なお、漏水試験及び変形試験については、(参考資料4)に示す。

項目	許容限界		
	δx	9.5cm以上*	
変形量	δ,	11.3cm以上*	
	δz	12.2cm以上*	
注記*:			

表 2.2-3-18 止水ゴムの変形量の許容限界

3.8 評価方法

海水貯留堰(6号機設備)の耐震評価は、地震応答解析により算定した照査用応答値が、 「3.7 許容限界」において設定した許容限界以下であることを確認する。

- 3.8.1 構造部材の健全性評価
 - (1) 鋼管矢板

鋼管矢板の曲げ軸力照査及びせん断力照査に対して,地震応答解析により算定した応力 が許容限界以下であることを確認する。

a. 曲げモーメント及び軸力に対する照査

鋼管矢板に発生する曲げモーメント及び軸力を用いて次式により算定した応力が許容 限界以下であることを確認する。

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$

ここで,

- σ :鋼管矢板の曲げモーメント及び軸力より算定した応力 (N/mm²)
- M :最大曲げモーメント (N・mm)
- Z : 断面係数 (mm³)
- N : 軸力 (N)
- A : 有効断面積 (mm²)
- b. せん断力に対する照査

鋼管矢板に発生するせん断力を用いて次式により算定したせん断応力がせん断強度に 基づく許容限界以下であることを確認する。

$$\tau = \kappa \cdot \frac{S}{A}$$

ここで,

- τ :鋼管矢板のせん断力より算定したせん断応力 (N/mm²)
- S : せん断力 (N)
- A : 有効断面積 (mm²)
- *κ* : せん断応力の分布係数 (*κ* = 2.0)

- (2) 止水ゴム取付部鋼材
 - a. 構造概要

止水ゴム取付部鋼材の照査対象は、構成部材であるスキンプレートとリブプレートに 加えて、発生荷重を負担する前面鋼矢板及び鋼管矢板との接合部とする。なお、止水ゴ ム取付部鋼材は、前面鋼矢板及び鋼管矢板と水中溶接により接合されているため、適切 に設定した許容限界に対して照査する(「3.7 許容限界」参照)。

止水ゴム取付部鋼材に関する使用材料を表2.2-3-19に,海水貯留堰(6号機設備) 接続部の鳥瞰図を図 2.2-3-23 に示す。また,止水ゴム取付部鋼材の詳細構造図を図 2.2-3-24,図2.2-3-25 に,止水ゴムの仕様を表2.2-3-20 に,止水ゴムの構造図 を図 2.2-3-26 にそれぞれ示す。

止水ゴム取付部鋼材及び止水ゴムは、地震時の安定性を確保するとともに、堰外が引 き波により海底地盤が露出した状態において、海水の貯留性及び安定性を確保している (参考資料 5)。

なお,海水貯留堰(6号機設備)と取水護岸(6号機設備)との間に生じる相対変位 は,海水貯留堰(6号機設備)接続部を構成する止水ゴムの変形性能により吸収される。 止水ゴムの変形性評価結果は,「4.2.3 構造物の変形性に対する評価結果」に示す。 止水ゴム取付部鋼材間の離隔は,補足「2.6 取水護岸(6号機設備)の耐震計算書に 関する補足説明」において適切に確保されていることを確認している。

表 2.2-3-19 使用材料(止水ゴム取付部鋼材)

部位	材料	諸元
止水ゴム取付部鋼材	スキンプレート	t=9mm* (SM490)
	リブプレート	t=14mm* (SM490)

注記*:断面照査においては海水と接する面に対して1mmの腐食代を考慮する。

図 2.2-3-23 海水貯留堰(6号機設備)接続部の鳥瞰図

(a) 平面図

(単位:mm)

(b) A-A断面図

図 2.2-3-24 止水ゴム取付部鋼材の詳細構造図(南側)

(a) 平面図

(b) A-A断面図図 2.2-3-25 止水ゴム取付部鋼材の詳細構造図(北側)

部位	材料	諸元
止水ゴム	クロロプレンゴム	t=10mm

図 2.2-3-26 止水ゴムの構造図

b. 解析概要

地震時に発生する応答値は、ゴム作用力、基準地震動Ssによる慣性力及び動水圧を 作用させた線形はり構造として解析を行う。 c. 止水ゴム取付部鋼材の解析方法

解析方法は以下に示すとおりとする。また、(参考資料 6)に止水ゴム取付部鋼材に 作用する分布荷重の算出方法について示す。

(a) スキンプレート

スキンプレートは、取水護岸(6 号機設備)前面鋼矢板側と海水貯留堰(6 号機設備)鋼管矢板側に設置する。スキンプレートの照査については、設置間隔 300mm のリ ブプレートで支持された両端固定梁として行う。

イ. モデル化

スキンプレートに作用する荷重とモデル化の考え方を示した照査モデル図を図 2.2-3-27,照査断面を図 2.2-3-28 に示す。

資料 8-2.2-82

ロ. 断面照査方法

スキンプレートに発生する断面力算出式、部材の断面性能算出式を以下に記す。

$$M_{max} = \frac{q \cdot 1 \cdot L^2}{12}$$
$$S_{max} = \frac{q \cdot 1 \cdot L}{2}$$

ここに,

M_{max}	:最大発生曲げモーメント(kN・m)
q	:分布荷重 (kN/m²)
L	:分布荷重載荷幅=リブプレート間隔 (m)
1	: スキンプレート奥行き (m)
S_{max}	:最大発生せん断力 (kN)

(b) リブプレート

リブプレートは、取水護岸(6号機設備)前面鋼矢板側と海水貯留堰(6号機設備) 鋼管矢板側に設置する。リブプレートの照査については、止水ゴム取付部鋼材のリブ プレート断面変化箇所に対して行う。

イ. モデル化

リブプレートに作用する荷重とモデル化の考え方を示した照査モデルを図 2.2-3-29 に示す。また,照査断面を図 2.2-3-30 に示す。

図 2.2-3-29 照査モデル図(リブプレートと鋼管矢板又は前面鋼矢板)

口. 断面照查方法

リブプレートに発生する断面力算出式、部材の断面性能算出式を以下に記す。

$$M_{max} = \frac{\mathbf{q} \cdot \mathbf{L}^2 \cdot \mathbf{l}}{2} + \mathbf{P} \cdot \mathbf{L} \cdot \mathbf{l}$$
$$S_{max} = \mathbf{q} \cdot \mathbf{L} \cdot \mathbf{l} + \mathbf{P} \cdot \mathbf{l}$$

ここに,

- M_{max} :最大発生曲げモーメント (kN・m)
- q : 分布荷重 (kN/m²)
- L:分布荷重載荷幅=検討箇所でのリブプレート張り出し長(m)
- 1 : リブプレート間隔 (m)
- P :集中荷重(kN/m)
- S_{max} :最大発生せん断力 (kN)

(c) 前面鋼矢板及び鋼管矢板との接合部

止水ゴム取付部鋼材では、リブプレート部材と取水護岸(6 号機設備)前面鋼矢板 及び海水貯留堰(6 号機設備)鋼管矢板との接合部において発生荷重を負担している。 当該接合部は水中溶接により接合されるが、水中溶接部の許容限界については、 「3.7 許容限界」にまとめる。

イ. モデル化

リブプレートに作用する荷重とモデル化の考え方を示した照査モデルを図 2.2-3-31 に示す。また,照査断面を図 2.2-3-32 示す。

図 2.2-3-31 照査モデル図(リブプレートと鋼管矢板又は前面鋼矢板接合部)

(単位:mm)

注記*:④部は鋼管矢板の外面形状に沿って溶接しているが、保守的にプレート幅を溶接長さとして扱う。 図 2.2-3-32 接合部の照査断面(照査断面寸法(溶接長)は腐食代を考慮)

口. 断面照查方法

リブプレートと取水護岸(6 号機設備)前面鋼矢板の接合部及びリブプレートと 海水貯留堰(6 号機設備)鋼管矢板の接合部に発生する断面力算定式,部材の断面 性能算出式を以下に記す。また,リブプレートと取水護岸(6 号機設備)前面鋼矢 板の接合部は,発生せん断力に対して角度を有していることから,図 2.2-3-33 に示すように角度補正を行う。

図 2.2-3-33 リブプレートと前面鋼矢板接合部におけるせん断力の補正について

d. 評価方法

止水ゴム取付部鋼材の耐震評価は、曲げモーメント及び軸力より算定した応力及びせん断力より算定したせん断応力が「3.7 許容限界」で設定した許容限界以下であることを確認する。

(a) 曲げモーメント及び軸力に対する照査

曲げモーメント及び軸力を用いて次式により算定した応力が許容限界以下であるこ とを確認する。

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$
ここで、
 σ :曲げモーメント及び軸力より算定した応力 (N/mm²)
M :最大曲げモーメント (N·mm)
Z :断面係数 (mm³)
N :軸力 (N)
A :有効断面積 (mm²)

(b) せん断力に対する照査

せん断力を用いて次式により算定したせん断応力がせん断強度に基づく許容限界以 下であることを確認する。

$$\tau = \kappa \cdot \frac{S}{A}$$

ここで,

- τ : せん断力より算定したせん断応力 (N/mm²)
- S : せん断力 (N)
- A : 有効断面積 (mm²)
- *κ* : せん断応力の分布係数 (*κ* = 1.5)

3.8.2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては,杭頭に発生する鉛直力が終局鉛直支持力に基づく 許容限界以下であることを確認する。

- 3.8.3 構造物の変形性評価
 - (1) 相対変位の考え方

止水ゴムの変形性評価に用いる地震時の構造物間の相対変位は,地震時の解析ケースで 求められる最大変位の最大値とする。

なお、津波時及び重畳時の構造物間の相対変位に対する止水ゴムの変形性評価は、V-3-別添3-1-3「海水貯留堰(6号機設備)の強度計算書」において実施するものとする。

(2) 評価方法

止水ゴムの変位量は、海水貯留堰(6号機設備)(護岸近傍)と取水護岸(6号機設備) 間の水平(δ_x)及び鉛直方向(δ_y)と、海水貯留堰(6号機設備)下端と海水貯留堰(6 号機設備)天端間の水平方向(δ_z)の相対変位とする。地震応答解析モデル(A-A断 面)を図2.2-3-34に、変位方向の定義を図2.2-3-35から図2.2-3-37に示す。これら 3方向の変位量が許容限界以下であることを確認する。地震時における変位量の評価は、 各変位方向の最大値を用いて評価する。

- δ_x : X方向の水平変位 (cm)
- δ_v : Y方向の鉛直変位 (cm)
- δ_z : Z方向の水平変位 (cm)

4. 評価結果

4.1 地震応答解析結果

地震応答解析結果として「断面力分布」,「最大せん断ひずみ分布」及び「最大過剰間隙水 圧比分布」を示す。

(1) 断面力分布

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

表2.2-4-1から表2.2-4-6に2次元有効応力解析で実施した鋼管矢板の曲げ軸力また はせん断力に対する解析ケースと照査値を示す。

A-A断面及びB-B断面における基準地震動Ssによる鋼管矢板に発生する断面力 (曲げモーメント,軸力,せん断力)照査に対して,解析ケースのうち鋼管矢板において 最も厳しい照査値の地震時断面力を図2.2-4-1及び図2.2-4-2に示す。本図は鋼管矢板 の曲げ軸力照査及びせん断力照査において全時刻歴中照査値が最も厳しくなる時刻におけ る断面力分布を示したものである。

	解析ケース	曲げ軸力照査				
地震動		1	2	3	4	5
C - 1	++	0.14				
	-+	0.14				
55 1	+-	0.14				
		0.14				
S	s-2	0.15	0.13	0.17	0.15	0.13
C	++	0.11				
	-+	0.11				
58.5	+-	0.11				
		0.10				
S	s-4	0.12				
S	s-5	0.10				
Ss-6		0.11				
Ss-7		0.10				
S9	++	0.12				
55 0	-+	0.11				

表 2.2-4-1 鋼管矢板の曲げ軸力に対する解析ケースと照査値(A-A断面)

表 2.2-4-2 鋼管矢板のせん断力に対する解析ケースと照査値(A-A断面)

解析ケース				せん断力照査		
地震動		1)	2	3	4	5
	++	0.05				
Se-1	-+	0.05				
58-1	+-	0.05				
		0.05				
S	s-2	0.05	0.04	0.06	0.05	0.04
	++	0.04				
5 2	-+	0.04				
58-9	+-	0.04				
		0.04				
S	s-4	0.04				
Ss-5		0.04				
Ss-6		0.04				
Ss-7		0.04				
Sa-9	++	0.04				
58-0	-+	0. 04				

	解析ケース			曲げ軸力照査		
地震動		1)	2	3	4	5
	++	0.14	0.13	0.15	0.14	0.13
Se-1	-+	0.13				
58 1	+-	0.14				
		0.14				
S	s-2	0.11				
	++	0.09				
5 . 2	-+	0.10				
58-5	+-	0.09				
		0.10				
S	s-4	0.06				
S	s-5	0.06				
Ss-6		0.06				
Ss-7		0.06				
5 . 0	++	0.09				
55-0	-+	0.09				

表 2.2-4-3 鋼管矢板の曲げ軸力に対する解析ケースと照査値(B-B断面(南側))

表 2.2-4-4 鋼管矢板のせん断力に対する解析ケースと照査値(B-B断面(南側))

	解析ケース	せん断力照査							
地震動		1)	2	3	4	5			
	++	0.08	0.07	0.09	0.08	0.07			
Sa-1	-+	0.07							
58-1	+-	0.08							
		0.08							
S	s-2	0.06							
	++	0.05							
S ~ 2	-+	0.06							
58-9	+-	0.05							
		0.06							
S	s-4	0.03							
S	s-5	0.03							
Ss-6		0.04							
Ss-7		0.03							
Ss-8	++	0.05							
	-+	0.04							

	解析ケース		曲げ軸力照査						
地震動		1)	2	3	4	5			
	++	0.20	0.17	0.22	0.20	0.17			
Sc-1	-+	0.18							
55 1	+-	0.18							
		0.18							
S	s-2	0.13							
	++	0.13							
Se-2	-+	0.13							
02.0	+-	0.12							
		0.13							
S	s-4	0.08							
S	s-5	0.10							
Ss-6		0.09							
Ss-7		0.08							
Ss-8	++	0.14							
	-+	0.16							

表 2.2-4-5 鋼管矢板の曲げ軸力に対する解析ケースと照査値(B-B断面(北側))

表2.2-4-6 鋼管矢板のせん断力に対する解析ケースと照査値(B-B断面(北側))

	解析ケース	せん断力照査							
地震動		1)	2	3	4	5			
	++	0.08	0.08	0.08	0.08	0.08			
Sa 1	-+	0.07							
58-1	+-	0.07							
		0.07							
S	s-2	0.05							
	++	0.06							
C - 9	-+	0.06							
58-5	+-	0.06							
		0.05							
S	s-4	0.03							
S	s-5	0.04							
Ss-6		0.04							
Ss-7		0.03							
Ss-8	++	0.05							
	-+	0.06							

-35

-200

0

軸力 (kN/本)

200

400

0

-2

-4

-6

-10

-12

-14

-400

t=22.61s

図 2.2-4-1 鋼管矢板において最も厳しい照査値の地震時断面力 (A-A断面 Ss-2) (解析ケース③:地盤物性のばらつき(-1)を考慮した解析ケース)

○:最大照査値が発生する箇所

t=18.67s

200

400

500

0

曲げモーメント (kN・m/本)

t=18.67s

0

-2

-4

(<u>∎</u> ^{−6}

輕 -8

-10

-12

-14

-469

-1000 -500

図 2.2-4-2(1) 鋼管矢板において最も厳しい照査値の地震時断面力 (B-B断面 海水貯留堰(6号機設備) (南側) Ss-1++) (解析ケース③:地盤物性のばらつき(-1g)を考慮した解析ケース)

資料 8-2.2-97

○:最大照査値が発生する箇所

t=5.87s

t=5.86s

 図 2.2-4-2(2) 鋼管矢板において最も厳しい照査値の地震時断面力 (B-B断面 海水貯留堰(6号機設備)(北側) Ss-1++)
 (解析ケース③:地盤物性のばらつき(-1σ)を考慮した解析ケース)

(2) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため、断面力の照査に対し、解析ケース のうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大せん断ひず みの分布を図2.2-4-3及び図2.2-4-4に示す。

図 2.2-4-3 最大せん断ひずみ分布 (A-A断面,解析ケース③,地震動 Ss-2)

最大せん断ひずみ(γmax)

図 2.2-4-4 最大せん断ひずみ分布 (B-B断面,解析ケース③,地震動 Ss-1++) (3) 最大過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため、断面力の照査において、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大過剰間隙水 圧比分布を図2.2-4-5及び図2.2-4-6に示す。

図 2.2-4-5 最大過剰間隙水圧比分布 (A-A断面,解析ケース③,地震動 Ss-2)

図 2.2-4-6 最大過剰間隙水圧比分布 (B-B断面,解析ケース③,地震動 Ss-1++)

- 4.2 耐震評価結果
 - 4.2.1 構造部材の健全性に対する評価結果
 - (1) 鋼管矢板の評価結果
 - a. 曲げ軸力に対する照査

曲げ軸力に対する照査結果を表 2.2-4-7 から表 2.2-4-9 に示す。なお、曲げ軸応 力は各地震動において最大となる値を示している。

鋼管矢板に対して許容応力度法による照査を行った結果,曲げ軸応力が短期許容応力 度以下であることを確認した。

解析ケース*	地震動		曲げ	軸力	曲げ軸	短期許容	
			モーメント		応力	応力度	照査値
			$(kN \cdot m)$	(kN)	(N/mm^2)	(N/mm^2)	
		++	420	56	36.6	277	0.14
		-+	426	30	36.5	277	0.14
	58-1	+-	414	58	36.1	277	0.14
			443	30	38.0	277	0.14
	Ss-2		449	85	39.7	277	0.15
		++	339	43	29.5	277	0.11
1	Ss-3	-+	324	36	28.1	277	0.11
		+-	335	35	29.0	277	0.11
			316	31	27.3	277	0.10
	Ss-4		337	102	30.7	277	0.12
	Ss-5		302	67	26.9	277	0.10
	Ss-6		308	92	28.0	277	0.11
	Ss-7		297	22	25.5	277	0.10
	Ss-8	++	366	77	32.5	277	0.12
		-+	318	94	28.9	277	0.11
2	2 3 4 5 Ss ⁻ 2		383	105	34.6	277	0.13
3			524	35	44.9	277	0.17
4			446	85	39.4	277	0.15
5			375	102	33.9	277	0.13

表 2.2-4-7 曲げ軸力に対する照査結果(A-A断面 鋼管矢板)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④: 非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケース

解析ケース*	地震動		曲げ モーメント	軸力	曲げ軸 応力	短期許容 応力度	照查値
			$(kN \cdot m)$	(kN)	(N/mm^2)	(N/mm^2)	
	S - 1	++	428	54	37.2	277	0.14
		-+	416	26	35.6	277	0.13
	55 1	+-	426	61	37.2	277	0.14
			421	64	36.9	277	0.14
	Ss-2		321	37	27.9	277	0.11
		++	265	47	23.4	277	0.09
	Ss-3	-+	308	4	26.0	277	0.10
1		+-	275	31	23.9	277	0.09
			300	9	25.5	277	0.10
	Ss-4		160	41	14.4	277	0.06
	Ss-5		175	35	15.5	277	0.06
	Ss-6		182	6	15.5	277	0.06
	Ss-7		164	5	13.9	277	0.06
	S9	++	273	35	23.8	277	0.09
	5s-8	-+	269	18	23.1	277	0.09
2		++	391	55	34.1	277	0.13
3	Q 1	++	469	49	40.6	277	0.15
4	38-1	++	430	54	37.4	277	0.14
5		++	393	55	34.3	277	0.13

表 2.2-4-8 曲げ軸力に対する照査結果(B-B断面 鋼管矢板(南側))

注記*:解析ケースの番号は下記に対応する

:基本ケース

①: 墨本/ (
 ②: 地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③: 地盤物性のばらつき(-1σ)を考慮した解析ケース
 ④: 非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケース

解析ケース*	地震動		曲げ モーメント	軸力	曲げ軸 広力	短期許容 応力度	昭杏値	
11 1 1 1 1			(kN • m)	(kN)	(N/mm ²)	(N/mm^2)	加工匠	
	C 1	++	734	17	54.4	277	0.20	
		-+	665	46	49.8	277	0.18	
	58 1	+-	651	57	49.0	277	0.18	
			644	66	48.7	277	0.18	
	Ss-2		454	25	33.9	277	0.13	
		++	452	78	34.8	277	0.13	
	Ss-3	-+	474	19	35.3	277	0.13	
1		+-	441	31	33.1	277	0.12	
			458	24	34.2	277	0.13	
	Ss-4		267	41	20.5	277	0.08	
	Ss-5		344	10	25.5	277	0.10	
	Ss-6		326	16	24.3	277	0.09	
	Ss-7		263	45	20.3	277	0.08	
	Ss-8	++	499	29	37.3	277	0.14	
		-+	565	9	41.8	277	0.16	
2		++	608	40	45.5	277	0.17	
3	Q. 1	C . 1	++	801	2	59.0	277	0.22
4	55 1	++	739	16	54.7	277	0.20	
5		++	619	38	46.3	277	0.17	

表 2.2-4-9 曲げ軸力に対する照査結果(B-B断面 鋼管矢板(北側))

注記*:解析ケースの番号は下記に対応する

:基本ケース

①: 墨本/ (
 ②: 地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③: 地盤物性のばらつき(-1σ)を考慮した解析ケース
 ④: 非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケース
b. せん断力に対する照査

せん断力に対する照査結果を表 2.2-4-10 から表 2.2-4-12 に示す。なお, せん断 応力は各地震動において最大となる値を示している。

鋼管矢板に対して許容応力度法による照査を行った結果,せん断応力が短期許容応力 度以下であることを確認した。

			せん断力	せん断	短期許容	
解析ケース*	地震	勆	.,	応力	応力度	照查値
			(kN)	(N/mm^2)	(N/mm^2)	
		++	140	7	157	0.05
	C ~ 1	-+	146	7	157	0.05
	55-1	+-	136	7	157	0.05
			146	7	157	0.05
	Ss-	2	149	7	157	0.05
		++	122	6	157	0.04
1)	Ss-3	-+	120	6	157	0.04
		+-	115	6	157	0.04
			115	6	157	0.04
	Ss-4		111	6	157	0.04
	Ss-5		103	5	157	0.04
	Ss-6		101	5	157	0.04
	Ss-	7	105	5	157	0.04
	S9	++	131	6	157	0.04
	38-8	-+	108	5	157	0.04
2			129	6	157	0.04
3	S~ ()	175	8	157	0.06
4	SS=2	2	149	7	157	0.05
5			129	6	157	0.04

表 2.2-4-10 せん断力に対する照査結果(A-A断面 鋼管矢板)

注記*:解析ケースの番号は下記に対応する

:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース

③:地盤物性のばらつき (-1 g) を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

			せん断力	せん断	短期許容	
解析ケース*	地震	勆		応力	応力度	照査値
		1	(kN)	(N/mm ²)	(N/mm ²)	
		++	234	11	157	0.08
	Se-1	-+	221	10	157	0.07
	55 1	+-	230	11	157	0.08
			237	11	157	0.08
	Ss-2	2	159	8	157	0.06
		++	139	7	157	0.05
	Ss-3	-+	169	8	157	0.06
1		+-	154	7	157	0.05
			160	8	157	0.06
	Ss-4		82	4	157	0.03
	Ss-5		81	4	157	0.03
	Ss-6		89	5	157	0.04
	Ss-	7	75	4	157	0.03
	S9	++	143	7	157	0.05
	35 0	-+	131	6	157	0.04
2		++	202	10	157	0.07
3	S a 1	++	266	13	157	0.09
(4)	55-1	++	233	11	157	0.08
5		++	204	10	157	0.07

表2.2-4-11 せん断力に対する照査結果(B-B断面 鋼管矢板(南側))

注記*:解析ケースの番号は下記に対応する

:基本ケース

①: 墨本/ (
 ②: 地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③: 地盤物性のばらつき(-1σ)を考慮した解析ケース
 ④: 非液状化の条件を仮定した解析ケース

			せん断力	せん断	短期許容	
解析ケース*	地震	動		応力	応力度	照查值
			(kN)	(N/mm^2)	(N/mm^2)	
		++	275	11	157	0.08
	Sa-1	-+	250	10	157	0.07
	55 1	+-	231	10	157	0.07
			238	10	157	0.07
	Ss-2	2	154	7	157	0.05
		++	185	8	157	0.06
	Ss-3	-+	182	8	157	0.06
1		+-	180	8	157	0.06
			174	7	157	0.05
	Ss-4		96	4	157	0.03
	Ss-5		124	5	157	0.04
	Ss-6		118	5	157	0.04
	Ss-	7	88	4	157	0.03
	Sc-8	++	177	7	157	0.05
	55 0	-+	222	9	157	0.06
2		++	258	11	157	0.08
3	Se-1	++	276	11	157	0.08
4	38-1	++	276	11	157	0.08
5		++	263	11	157	0.08

表 2.2-4-12 せん断力に対する照査結果(B-B断面 鋼管矢板(北側))

注記*:解析ケースの番号は下記に対応する

:基本ケース

①: 墨本/ (
 ②: 地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③: 地盤物性のばらつき(-1σ)を考慮した解析ケース
 ④: 非液状化の条件を仮定した解析ケース

(2) 止水ゴム取付部鋼材

止水ゴム取付部鋼材の作用断面力及び断面照査結果を表2.2-4-13から表2.2-4-18に 示す。止水ゴム取付部鋼材の発生応力が短期許容応力度以下であることを確認した。

a. スキンプレート

表 2.2-4-13 作用断面力

	20 11 / 131 / III	5
曲げモーメント	軸力	せん断力
$(kN \cdot m)$	(kN)	(kN)
0.981		20

評価項目	発生応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照査値
曲げモーメント	121	277	0.44
せん断力	5	157	0.04

表 2.2-4-14 断面照查結果

b. リブプレート(海水貯留堰(6 号機設備)(南側) 検討断面③)

リブプレートの最大照査箇所は、海水貯留堰(6号機設備)(南側)の検討断面③である。

最大照査箇所		曲げモーメント	軸力	せん断力
検討箇所	検討断面	(kN • m)	(kN)	(kN)
南側	3	0.998		11

表 2.2-4-15 作用断面力

表 2.2-4-16 断面照查結果

亚在百日	最大照	查箇所	発生応力	短期許容	昭本荷	
評価項日	検討箇所	検討断面	(N/mm ²)	ルンフラ支 (N/mm ²)	思宜胆	
曲げモーメント	南側	3	208	277	0.76	
せん断力	南側	3	29	157	0.19	

照查対象箇所

c. 前面鋼矢板及び鋼管矢板との接合部

接合部における最大照査箇所は、曲げモーメント及び軸力に対する照査は海水貯留堰 (6 号機設備) (北側)の検討断面⑤(リブプレートと前面鋼矢板接合部),せん断力 に対する照査は海水貯留堰(6 号機設備) (南側)の検討断面④(リブプレートと鋼管 矢板接合部)である。

最大照査箇所 曲げモーメント 軸力 せん断力 $(kN \cdot m)$ (kN)(kN)検討箇所 検討断面 北側 5 4.45 13 15 ____ 南側 (4)15.6 36

表 2.2-4-17 作用断面力

表 2.2-4-18 断面照查結果

⇒≖ /≖酉 日	最大照	査箇所	発生応力	短期許容	照查値
許恤項日	検討箇所	検討断面	(N/mm ²)	心刀度 (N/mm ²)	
曲げモーメント,軸力	北側	5	79.7	105	0.76
せん断力	南側	4	12	110	0.11

4.2.2 基礎地盤の支持力に対する評価結果

基礎地盤の支持力に対する最大鉛直力と終局鉛直支持力の比較結果を表2.2-4-19から 表2.2-4-21に示す。

海水貯留堰(6号機設備)鋼管矢板の杭頭に発生する最大鉛直力が終局鉛直支持力以下 であることを確認した。

表 2.2-4-19 基礎地盤の支持力に対する最大鉛直力と終局鉛直支持力の比較結果 (A-A断面 海水貯留堰(6号機設備) 鋼管矢板)

		11-3-7-4-7/13		
解析ケース*	地震	帥	最大鉛直力	終局鉛直支持力
			(kN)	(kN)
		++	20	3380
	C 1	-+	20	3380
	55-1	+-	20	3380
			20	3380
	Ss-2	2	17	3380
		++	18	3380
	C~ 2	-+	17	3380
1	22-3	+	18	3380
			18	3380
	Ss-4		16	3380
	Ss-5		15	3380
	Ss-6		15	3380
	Ss-7		15	3380
	C . 0	++	14	3380
	55-0	-+	14	3380
2			17	3380
3			17	3380
(4)] 35-2	2	17	3380
5			17	3380

注記*:解析ケースの番号は下記に対応する

:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④: 非液状化の条件を仮定した解析ケース

解析ケース*	地震動		最大鉛直力 (kN)	終局鉛直支持力 (kN)
		++	18	19800
	C 1	-+	18	19800
	5s-1	+-	18	19800
			19	19800
	Ss-	2	15	19800
		++	16	19800
	5~ 2	-+	16	19800
	55-3	+-	16	19800
			16	19800
	Ss-4		14	19800
	Ss-5		14	19800
	Ss-6		15	19800
	Ss-7		14	19800
	C - 0	++	13	19800
	55-0	-+	13	19800
2		++	18	19800
3	Ss-1	++	18	19800
(4)		++	18	19800
5		++	18	19800

表 2.2-4-20 基礎地盤の支持力に対する最大鉛直力と終局鉛直支持力の比較結果 B-B断面 海水貯留堰(6号機設備)鋼管矢板(南側))

注記*:解析ケースの番号は下記に対応する

① : 基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき (-1σ) を考慮した解析ケース

④: 非液状化の条件を仮定した解析ケース

解析ケース*	地震	動	最大鉛直力 (kN)	終局鉛直支持力 (kN)
		++	22	3370
	C - 1	-+	22	3370
	5S-1	+-	21	3370
			23	3370
	Ss-	2	19	3370
		++	19	3370
	Ss-3	-+	19	3370
		+-	20	3370
			20	3370
	Ss-4		17	3370
	Ss-5		17	3370
	Ss-6		18	3370
	Ss-7		17	3370
	C _ 0	++	16	3370
	55-0	-+	15	3370
2		++	22	3370
3	Ss-1	++	22	3370
(4)		++	22	3370
5		++	22	3370

表 2.2-4-21 基礎地盤の支持力に対する最大鉛直力と終局鉛直支持力の比較結果 (B-B断面 海水貯留堰(6号機設備)鋼管矢板(北側))

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④: 非液状化の条件を仮定した解析ケース

4.2.3 構造物の変形性に対する評価結果

止水ゴムの変形性評価に用いる地震時の構造物間の最大相対変位を表2.2-4-22及び表 2.2-4-23に示す。また、止水ゴムに対する発生変形量(最大相対変位)と許容限界の比 較結果を表2.2-4-24に示す。なお、最大相対変位は絶対値である。

止水ゴムの発生変形量が許容限界以下であることを確認した。

最大相対変位 (cm)解析ケース* 地震動 δ_x δ_{y} ++3.1 4.2 -+3.2 4.9 Ss-1+-3.1 4.2 ____ 3.2 4.9 Ss-2 2.4 2.6 ++4.1 7.1 -+4.8 5.1 Ss-3 (1)+-4.1 7.2 ____ 4.8 5.0 Ss-4 3.1 5.3 Ss-54.5 8.1 Ss-6 5.0 7.0 Ss-76.9 6.6 ++2.5 1.3 Ss-8-+2.5 2.8 2 1.9 2.7 3 3.0 2.9 Ss-2 4 2.3 2.5 5 1.9 2.8

表 2. 2-4-22 最大相対変位量(δ_x, δ_y) (A-A断面)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

			最大相対変位		
			(cm)		
解析ケース*		勈	3	z	
		E9J	海水貯留堰	海水貯留堰	
			(6 号機設備)	(6 号機設備)	
			(南側)	(北側)	
		++	0.9	7.4	
	Sc-1	-+	0.8	7.3	
	55 1	+-	0. 9	7.3	
			0.8	7.3	
	Ss-	2	0.6	3.5	
	Ss-3	++	0.6	5.4	
		-+	0.6	5.5	
1		+-	0.6	5.3	
			0.5	5.4	
	Ss-	4	0.3	2.2	
	Ss-	5	0. 3	2.4	
	Ss-	6	0.3	2.4	
	Ss-	7	0.3	2.0	
	S9	++	0.5	6.3	
	080	-+	0.6	6.4	
2		++	0.8	5.4	
3	Sc-1	++	1.0	10.7	
4	1 22	++	0. 9	7.4	
5		++	0.8	5.5	

表 2.2-4-23 最大相対変位量(δ_z)(B-B断面)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース
 ④:非液状化の条件を仮定した解析ケース

変位	解析ケース	地震動	発生変形量 (最大相対変位) (cm)	許容限界* (cm)
δ _x	1	Ss-7	6. 9	9.5以上
δ _y	1	Ss-5	8.1	11.3以上
δz	3	Ss-1++	10.7	12.2以上
注記*:				

表 2.2-4-24 止水ゴムの発生変形量(最大相対変位)と許容限界の比較結果

4.3 まとめ

海水貯留堰(6号機設備)について,基準地震動Ssに対して,構造部材の発生応力及び鉛 直力,並びに変形量が許容限界以下であることを確認した。

以上のことから、海水貯留堰(6 号機設備)は、基準地震動Ssによる地震力に対して、要 求機能を維持できる。 海水貯留堰(6号機設備)の耐震計算書に関する参考資料

- (参考資料1) 地震時における鋼管矢板継手部の健全性について
- (参考資料2)鋼管矢板継手の根入れ長について
- (参考資料 3) 海水貯留堰(6号機設備) 接続部の耐震評価に用いる水平震度及び作用荷重の 算出について
- (参考資料4)漏水試験及び変形試験について
- (参考資料5)止水ゴム取付部鋼材及び止水ゴムの根入れ部について
- (参考資料6)止水ゴム取付部鋼材に作用する分布荷重の算出方法について

(参考資料1) 地震時における鋼管矢板継手部の健全性について

1. 検討概要

海水貯留堰(6号機設備)を構成する鋼管矢板については,鋼管杭本体の健全性に加え,継手 部の健全性も確保する必要がある。

本検討では、基準地震動Ssによる地震力及び動土圧に対して、継手部の健全性が確保される ことを確認する。継手部の健全性は、せん断応力、軸方向応力及び曲げ応力が許容限界以下であ ることを確認する。

- 2. せん断応力及び軸方向応力について
- 2.1 検討方法

継手部に対してせん断力及び軸方向力が保守的に作用するよう,荷重を作用させる鋼管の両 端の鋼管が固定された条件を仮定し,継手鋼材及び接合部に対してせん断応力度照査及び軸方 向応力度照査を実施する。検討イメージを図1に示す。

(単位:mm)

図1 検討イメージ(左:直線部,右:隅角部)

2.2 解析ケース

海水貯留堰(6号機設備)の地震応答解析は,地盤と構造物の相互作用を考慮できる解析コ ード「FLIP」を用いている。そこで,地震時の鋼管矢板継手部に作用する荷重は解析コー ド「FLIP」から求めることとした。水中部については,①本震時に作用する地震力(慣性 力及び動水圧)を作用荷重として考慮する。慣性力及び動水圧は,(参考資料 3)に示す最大 加速度を用いて算出する。土中部については,②地震時の構造物側方に作用する動土圧を作用 荷重として考慮する。

解析ケース及び荷重作用図を表1に示す。表1に示す分布荷重(kN/m)は、継手を含む鋼管 1本あたりに作用する分布荷重である。この分布荷重のうち、最も発生せん断力及び発生軸力 が大きくなる位置での荷重の合計値を用いて照査を実施する。

本検討は作用荷重が大きい P-P 継手部を照査対象とする。なお,照査に用いるのは,荷重の 合計値が最大となる「①水中部・地震時」であり,この荷重の算出場所は6号機北側である。 また,評価は0°~90°までの継手の取付角度を考慮する。

解析ケース	荷重作用図	荷重の合計値
①水中部·地震時	(海水貯留堰外側) (海水貯留堰内側) (海水貯留堰内側) (海水貯留堰内側) (海水貯留堰内側) (海水貯留堰内側) (海水貯留堰内側) (海水貯留堰内側)	182.1kN/m
②土中部・地震時	(海水貯留堰外側) (海水貯留堰内側) (海水貯留堰内側) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98. 3kN/m

表1 解析ケース及び作用荷重

2.3 せん断力及び軸力の算定

継手に生じるせん断力及び軸力の算定方法を以下に示す。なお、鋼管矢板が受ける荷重は 2 か所の継手で分担するものとする。なお、継手鋼材に作用するせん断力は、接合部に対して軸 力、継手鋼材に作用する軸力は接合部に対して、せん断力となる。

(1) 継手鋼材に対するせん断力の算定方法

 $S = P_1 \swarrow 2$ $P_1 = P \times \cos \theta$

ここに,

- S : せん断力 (kN/m)
- P1 :継手軸方向の荷重成分 (kN/m)
- P :荷重の合計値 (kN/m)
- *θ* :継手の取付角度(°)
- (2) 継手鋼材に対する軸力(軸方向圧縮力及び軸方向引張力)の算定方法

 $N = P_2 \swarrow 2$ $P_2 = P \times \sin \theta$

ここに,

- N:軸力(軸方向圧縮力及び軸方向引張力)(kN/m)
- P2 :継手軸直角方向の荷重成分(kN/m)
- P : 荷重の合計値 (kN/m)
- θ :継手の取付角度(°)

(3) せん断力及び軸力の算定結果

荷重の合計値が最大となる「①水中部・地震時」の荷重に対して,各継手に生じるせん断力 及び軸力を算定した。せん断力及び軸力の算定結果を表 2 に示す。隅角部の算定に用いた継手 の取付角度を図 2 に示す。

		作用荷重	作用荷重	継手軸方向 の荷重成分	継手軸直角方向 の荷重成分	継手鋼材 に対する せん断力	継手鋼材 に対する 軸力
		Р	θ	\mathbf{P}_{1}	P_2	S	Ν
		kN/m	o	kN/m	kN/m	kN/m	kN/m
直線部	継手 1	182.1	0	182.1	0.0	91.1	0.0
	継手 2	182.1	5	181.4	15.9	90. 7	8.0
	継手 3	182.1	15	175.9	47.1	88.0	23.6
	継手 4	182.1	25	165.0	77.0	82.5	38.5
	継手 5	182.1	35	149.2	104. 4	74.6	52.2
阳岛立	継手 6	182.1	45	128.8	128. 8	64.4	64.4
両 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	継手 7	182.1	55	104.4	149.2	52.2	74.6
	継手 8	182.1	65	77.0	165.0	38.5	82.5
	継手 9	182.1	75	47.1	175.9	23.6	88.0
	継手 10	182.1	85	15.9	181.4	8.0	90.7
	継手 11	182.1	90	0.0	182.1	0.0	91.1

表2 せん断力及び軸力の算定結果

- 2.4 継手部の断面諸元
- (1) 断面性能

継手部の仕様を図3に示す。また、継手鋼材及び接合部の断面積(単位高さあたり)は以下のとおり。なお、海水貯留堰(6号機設備)には海水による腐食防止のため、電気防食を施すが、「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)」に基づき、片面1mm*の腐食代を考慮する。

注記*:耐用年数50年×腐食速度0.02mm/年=1mm

図3 継手部の仕様

- ・継手鋼材の断面積A(単位高さあたり) A = 継ぎ手部材の板厚 0.007 × 1.0 = $0.007 \text{m}^2/\text{m}$
- ・接合部の断面積 A_y (単位高さあたり) $A_y = 0.004 \times 1.0 \times 2$ 箇所= $0.008m^2/m$
- (2) 許容応力度

継手	鋼材	(STK400)材)	の許約	容応力度	€を以「	F6	こ示	す。	
	短期評	午容せん	断応	力度		:	τ	а	=	$120 \mathrm{N/mm^2}$
	短期評	午容せん	断応	力度	(接合部	3) :	τ	уа	=	$120 \mathrm{N/mm^2}$
	短期評	午容軸方	向庄	縮応フ	力度	:	σ	са	=	210N/mm^2
	短期評	午容軸方	向引	張応フ	力度	:	σ	ta	=	$210 \mathrm{N/mm^2}$

2.5 せん断応力度照査

継手鋼材及び接合部のせん断応力度照査を行った結果,下記に示すとおり,せん断応力度が 許容せん断応力度以下となることを確認した。なお,せん断応力度の照査は,せん断力が最大 となる「① 水中部・地震時」の継手鋼材:「継手1」,接合部:「継手11」のケースに対して 実施する。

(1) 継手鋼材

$$\begin{split} \tau &= S \swarrow A = 91.1 \text{kN/m} \swarrow 0.007 \text{m}^2/\text{m} = 13.1 \text{N/mm}^2 \\ \tau &= 13.1 \text{N/mm}^2 \leq \tau_a = 120 \text{N/mm}^2 \cdot \cdot \cdot 0.\text{K}. \end{split}$$

(2) 接合部

 τ $_y$ = S/A = 91.1kN/m / 0.008m²/m = 11.4N/mm²

 $\tau_{y} = 11.4 \text{N/mm}^2 \leq \tau_{ya} = 120 \text{N/mm}^2 \cdot \cdot \cdot 0. \text{K}.$

2.6 軸方向応力度照查

継手鋼材の軸方向応力度照査を行った結果,下記に示すとおり,軸方向圧縮応力度が短期許 容軸方向圧縮応力度以下となることを確認した。また,接合部の軸方向応力度照査を行った結 果,下記に示すとおり,せん断応力度が;許容せん断応力度以下となることを確認した。なお, 軸方向応力度の照査は,軸力が最大となる「① 水中部・地震時」の継手鋼材:「継手 11」, 接合部:「継手 1」のケースに対して実施する。

- (1) 継手鋼材(軸方向圧縮力)
 - $$\begin{split} \sigma &= N \swarrow A = 91.1 \, \text{kN/m} \swarrow 0.007 \, \text{m}^2/\text{m} = 13.1 \, \text{N/mm}^2 \\ \sigma &= 13.1 \, \text{N/mm}^2 \leq \sigma_{\text{ca}} = 210 \, \text{N/mm}^2 \cdot \cdot \cdot 0. \, \text{K}. \end{split}$$
- (2) 接合部(軸方向引張力)

 $\tau_{y} = S \swarrow A = 91.1 \text{ kN/m} \swarrow 0.008 \text{ m}^{2}/\text{m} = 11.4 \text{ N/mm}^{2}$ $\tau_{y} = 11.4 \text{ N/mm}^{2} \leq \tau_{ya} = 120 \text{ N/mm}^{2} \cdot \cdot \cdot 0. \text{ K}.$ 2.7 せん断力及び軸方向力の合成応力度照査

継手鋼材に作用するせん断力及び軸方向力の合成応力度について次式により照査を行った結 果,表3に示すとおり、合成応力度比は基準値(1.2)以下となることを確認した。

$$(\sigma / \sigma_{ta})^{-2} + (\tau / \tau_{a})^{-2} \leq 1.2$$

なお,接合部に作用するせん断力及び軸方向力は,それぞれ独立してのど厚面にせん断力と して作用することから,合成応力度照査は実施していない。

		= • • • • • • • •	•	, a , a , a , a , a , a , b		() = • • • • • • • •	
		せん断力	軸力	せん断応力度	軸応力度	合成応力度比	
		S	Ν	τ (S/A)	σ (N/A)	$(1)^2 (1)^2$	判定
		kN/m	kN/m	N/mm ²	$\rm N/mm^2$	$(\sigma / \sigma_{a})^{2} + (\tau / \tau_{a})^{2}$	
直線部	継手1	91.1	0.0	13.1	0.0	0.01	0. K.
	継手 2	90. 7	8.0	13. 0	1.2	0.01	0. K.
	継手 3	88.0	23.6	12.6	3.4	0.01	0. K.
	継手 4	82.5	38.5	11.8	5.5	0.01	0. K.
	継手 5	74.6	52.2	10.7	7.5	0.01	0. K.
四点页	継手 6	64.4	64.4	9.2	9.2	0.01	0. K.
	継手 7	52. 2	74.6	7.5	10.7	0.01	0. K.
	継手 8	38.5	82.5	5.5	11.8	0.01	0. K.
	継手 9	23.6	88.0	3.4	12.6	0.00	0. K.
	継手 10	8.0	90. 7	1.2	13.0	0.00	0. K.
	継手 11	0.0	91.1	0.0	13.1	0.00	0. K.

表3 せん断応力及び軸方向応力の合成応力度照査(継手鋼材)

3. 曲げ応力について

曲げ応力については,継手軸方向の曲げに対して照査する。曲げによって鋼管外縁が短期許容 応力度に達した場合を仮定しても,継手部に生じる曲げ応力度は短期許容応力度以下となる。図 4 に鋼管と継手部の応力分布を示す。

図4 鋼管及び継手鋼材の応力分布

鋼管外縁が短期許容応力度に達した場合の継手部の応力度を算出すると、以下のとおりとなる。

・鋼管外縁での応力度(SKY490の短期許容応力度)

 $\sigma_{a} = 277 \text{N/mm}^{2}$

・継手部に生じる応力度

 $\sigma_{\rm t} = 277 \times 82.6 / 550 = 41.6 \text{N/mm}^2 \leq 210 \text{N/mm}^2$ (STK400 の短期許容応力度)

- 4. 継手部の漏水量評価
- 4.1 評価方針

設置変更許可申請書同様に,海水貯留堰(6号機設備)の継手部における漏水量について は,文献¹⁾を参考に,海水貯留堰(6号機設備)の継手部の仕様が Case1 の P-P 継手及び Case3 の P-T 継手であることから,図5 に示す鋼管矢板継手部の遮水性能試験結果より,鋼管 矢板継手部の換算透水係数を 1.0×10⁻⁵ (cm/sec)と保守的に設定し評価を行う。

図5 鋼管矢板継手部の遮水性能試験結果1)

参考 ¹⁾斎藤ほか:鋼管矢板継手の遮水性能評価試験:土木学会第56回年次学術講演会 (平成13年10月) 4.2 評価結果

海水貯留堰(6号機設備)の構造を図6に示す。継手構造は,保守的に海水貯留堰全周にあると仮定して計算を行う。評価時間は基準津波による補機取水槽内の津波高さが海水貯留堰(6号機設備)の天端標高T.M.S.L. -3.5mを下回る継続時間を考慮して,16分とする。 継手部における漏水量は,下記の計算結果に示すとおり,貯留量(10,000m³)に対して,十

分に小さいことを確認した。

漏水量 Q=換算透水係数 ke (m/sec) ×動水勾配 i×全周 L(m)×高さ H(m)×時間 t (sec) = (1.0×10⁻⁵×10⁻²) × (2/0.5) ×171.7×2× (16×60) ≒ <u>0.14(m³)</u>

(参考) 1-10

(単位:mm)

図6(2) 海水貯留堰(6号機設備)の構造概要

5. まとめ

鋼管矢板継手部は、基準地震動Ssによる地震力及び土圧に対して、せん断応力、軸方向応力、 合成応力度、曲げ応力度が照査基準以下となるとともに、漏水量が貯留量に対して十分小さくな ることから、海水貯留堰(6号機設備)の止水性は確保されることを確認した。 (参考資料2)鋼管矢板継手の根入れ長について

1. 概要

海水貯留堰(6号機設備)の遮水性を確保するために,海水貯留堰(6号機設備)を構成する 鋼管矢板の継手を海底面に根入れする必要がある。本参考資料では,鋼管矢板継手の根入れ長が 遮水性を確保しているかの確認を行う。

2. 鋼管矢板の根入れ長の確認

設計海底面への鋼管矢板継手の根入れ長が遮水性を確保しているかの確認は、以下の算定式の とおりとする。

遮水性を確保するための根入れ長L'として,遮水のために必要な根入れ長L₁,地震により 生じる周辺地盤の沈下量L₂を見込んだ1.612mを鋼管矢板継手部根入れ長L:3.0mが上回ること を確認した。図1に鋼管矢板継手の根入れ長を示す。また,次項でL₁及びL₂の設定についての 詳細を示す。

 $L \geq L' = 3.0m \geq 1.612m$ O.K.

L' = $L_1 + L_2$ = 1.60m + 0.012m = 1.612m

ここで,

- L:鋼管矢板継手部根入れ長(=3.0m)
- L': : 遮水性を確保するための根入れ長 (m)
- L₁ : 遮水のために必要な根入れ長(=1.60m)
- L₂ : 地震により生じる周辺地盤の沈下量(=0.012m)

図1 鋼管矢板継手の根入れ長の考え方

3. 遮水のために必要な根入れ長: L₁

遮水のために必要な根入れ長については、「管理型廃棄物埋立護岸設計・施工・管理マニュア ル(改訂版)(財団法人 港湾空間高度化環境研究センター,2008)」を参考に設定する。本マ ニュアルは管理型廃棄物処分場の護岸設計を対象としており、漏水量を厳しく規定していること から、本マニュアルを参考とすることで海水貯留堰(6号機設備)の止水性に対する機能要求を 満足できる。

海水貯留堰(6号機設備)の周辺地盤は三軸透水試験結果より,透水係数 1×10⁻⁶ cm/s 以下の 粘性土層の地盤である*。本マニュアルによれば,海水貯留堰(6号機設備)の鉛直遮水工の根 入れ長としては,透水係数 1×10⁻⁶ cm/s の粘性土の場合,透水距離(層厚)を 1.6m 以上確保す ることとなっている。

遮水のために必要な根入れ長の設定においては、保守的な設定として、海水貯留堰(6号機設備)が水平変位した場合に海水貯留堰(6号機設備)片側のみが地盤と接する状態を仮定する。 したがって、遮水のために必要な根入れ長は海水貯留堰(6号機設備)の片面分のみ考慮するも のとし、L₁=1.6mとする。図2に地盤の透水係数と遮水のために必要な層厚の関係を示す。 注記*:次項「三軸透水試験結果について」参照

図2 地盤の透水係数と遮水のために必要な層厚の関係

(管理型廃棄物埋立護岸設計・施工・管理マニュアル(改訂版) p. 43 より抜粋)

(参考) 2-2

<三軸透水試験結果について>

A3a1層およびA2c層の三軸透水試験結果を整理する。図3および図4に土質調査位置図を、図5から図9に土質調査を行った各ボーリング孔の柱状図の抜粋をそれぞれ示す。また、表1に三軸透水試験結果の抜粋を示す。

図3 土質調査位置図(A3al 層)

図4 土質調査位置図(A2c層)

度 両 厚 図 名 相 水 60 51 51 2.05 10.01 2.08 10.01 2.00 </th <th>深</th> <th>標</th> <th>層</th> <th>柱</th> <th>地</th> <th>色</th> <th>孔</th> <th></th>	深	標	層	柱	地	色	孔	
2.06 10.0 2.08 10.0 <	度	高	厚	状 図	層 名	相	内 水	記事
5 - 2 2 0 - (0, 0) Asile: 282-3 m 5 5 5 - 10 10 10 10 10 10 10 10 - 10	2, 06 -	10. 01	2, 06		盛土 • 埋め戻 し土	オリ ー ブ褐		0.00~2.06 盛土・埋戻し土: 0.00~2.06 酸・シルト混じり粗粒砂、碳は径5~15mm、最大径30 mm、安山岩・砂岩・頁岩の角線。 2.06~27.10 古安田層。
10- 10- 10- 15-						オリーブ灰		2.06~10.20 A3a1間 2.06~3.75 中梨砂賀シルト、 2.92~3.75 ラミナがみられる。 3.75~5.63 相粒砂混じりシルト、3.75~3.97に暗褐色の廣植シ ルトを幅1.5~5cmで挟み続状となる。 5.59~5.631に関厚3.5cmの砂礫層を挟む。確は径2~10mmの泥岩 の亜円~亜身健主体、確間は粗粒砂。 5.63~7.66 シルト、薄層状~彼片状の腐植湿じる。
15 13.82~13.90::周環30m, 灰色のシルト質細粒砂を純約12~でけ た、ラミナが9られる。 15 15.73~24.71 15 15.73~24.71 15 15.73~24.71 16.73~24.71 細粒砂湿にリシルト. 15.82~15.80に間になりリーブ色のノジュール。 17 17.52~17.58に細粒砂が不規則に混じる。 20 17.52~17.58に細粒砂が不規則に混じる。 21.20に置厚20a, レンズ状に灰色の細粒砂を挟む。 25 21.20に置厚20a, レンズ状に灰色の細粒砂を挟む。 25 21.20に置厚20a, レンズ状に灰色の細粒砂を挟む。 25 21.20に置厚20a, レンズ状に灰色の細粒砂を挟む。 26 21.20に置厚20a, レンズ状に灰色の細粒砂を挟む。 27.10 -15.03 25.00 アフー 度 ア 16 ア 17.174.85 ア 7.10 25.00 ア ア 15.92~10.00 ア 7.10 15.00 25.00 ア 18 ア 19.00 ア 10 10 10.00 11.00 10.00 11.00 10.00 12.01 10.00 13.02 10.00 10.00 10.00 11.00 10.00 11.00 10.00 11.00 10.00 11.00 10.00 11.00 10.00 11.00						暗オリーブ灰		 7.66~10.20 細~中粒砂湿じリシルト、 7.66~10.20 細~中粒砂湿じリシルト、 第厚2-7-mでだり、7.83~7.92 & 2.80~2.62(ニシルト質細~中粒砂を 第厚2-7-mでだり、7.81よ高種美 8.79~8.94, 9.51~9.85(二幅0.5~30mのレンズ状に細~中粒砂 を挟む。 10.20~25.40 A2c展 10.20~25.40 A2c展 10.20~15.73 シルト、均質・焼状、 10.55~10.95(二等資書色のソジュールが強く混じり回くなる。 11.10~1140(二編~中如砂理にる。
25 - 27. 10 -15. 03 25. 04 研究部部部 27. 10 -15. 03 25. 04 研究部部部 30. 00 -17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 17. 93 2. 90 - 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.					古安田層	オリーブ灰		 13.82~13.90に層厚8cm, 灰色のシルト質細粒砂を傾斜12°で検む、ラミナがみられる。 15.73~24.71 細粒砂湿じりシルト 15.82~15.89に幅7cmオリーブ色のノジュール。 17.52~17.58に細粒砂が不規則に混じる。 21.20に層厚2cm, レンズ状に灰色の細粒砂を挟む。
	25 - 27. 10- - - - - - - - - - - - - - - - - - -	<u>-15. 03</u> 17, 93	<u>25.04</u> 2,90		西山層			22.89~23.00 層厚10cmのシルト質細粒砂を挟む. 24.71~24.85 シルト質細粒砂. 24.85~25.40 細粒砂泥じりシルト. 25.40~25.8 A25個 シルトト質細粒砂からなる. 25.63~27.10 A2個、現は経5~30mの泥冶の亜円様及び砂冶・ 夏省・チャートの亜角~亜円機、酸は25~30mの泥冶の亜円様及び砂冶・ 夏省・5×~トの亜角~亜円機、酸は25~30mの泥冶の亜円 優~ブロック及び得2~20mのが岩も、夏者・チャートの亜角~亜円酸. 、酸間は粗粒砂、原体1度じる. 27.10 植砂、原体1度じる. 27.10 植砂、原体1度じる. 27.10 植砂、原体1度じる. 27.10 植砂、原体5.25 のたち、25.55 (http://doi.org/10.10000/10.1000/10.1000/10.1000/10.1000

図 5 H5-S1 孔柱状図(孔口標高: T.M.S.L. +12.07m)

深	標	層	柱状	地層	色	孔内	記事
度	高	厚	×	名	相	水	
2, 00	11. 27	2.00		盛土 • 埋め戻 し土	に刻晴福		0.00~2.00 盛土 埋戻し土. 0.00~0.75 礫混じりシルト質中粒砂、主に径10m程度の硬質鍵を 含む. 0.75~2.00 礫混じりシルト、主に径5mm程度の硬質及び軟質鍵を 含む.
-					暗緑		2.00~28.20 古安田蘭. 2.00~3.84 品の暦.シルトを主体とし、細粒砂の薄層を挟む. 2.24~2.38 径10~20mm程度の発石を含む.
5 -					反色		3.84~10.23 A3a1篇、砂質シルト、シルト及び細粒砂からなる。 3.84~4.65 砂質シルト、 4.65~4.84 シルト混じり細粒砂、ラミナがみられる、下端に腐 相片を含む。 4.94~4.95 シルト、細粒砂を含む。 4.95~5.36 砂質シルト、下端に腐菌片を含む。 5.36~5.51 シルト混じり細粒沙、ラミナがみられる、腐栖を含
					灰		む、 5.51~5.61 細胞砂、上方細胞化がかられる。 5.61~7.84 シルト、細粒砂、腐種片を挟む。
-					色		 1.84~8.00 細胞砂,シルト薄層を挟む。 8.00~8.11 シルト,腐栖ち含む。 8.71~8.82 細粒砂。 8.82~9.50 シルト。 9.50~9.84 砂質シルト。 9.84~00.00 シルト。
-					^{裁渔} 褐灰色		10.00~10.23 砂質シルト. 10.23~16.0 M38篇 細胞や 細胞砂 ~ 細胞砂 を狭む. 10.53~10.50 中和砂 細胞砂を狭む. 10.55~10.55 シルト. 程2~5mm程度の弾を含む. 細胞砂を挟 む. 10.95~11.62 砂質シルト.
-				古			11.62~11.88 細転砂,粗粒砂を挟む。 11.88~12.00 シルト. 12.80~12.45 硬退じり粗粒砂,径10~20mr程度のシルト偽硬を 含む。 12.45~12.90 砂螺,径10~20mr程度のシルト偽確及び径5~10 m程度の硬度面内微からな。 12.90~13.67 シルト、 13.67~13.78 砂質シルト、 13.67~13.78 砂質シルト、 14.60~14.88 シルト長。
15 -				安田層	<u></u> 灰 黄 褐色		14.98~15.60 砂質シルト、細粒砂を含む. 15.60~18.63 A2c層、シルトからなる。
20—					オリーブ灰色		18.63~21.56 A2a1層、シルト及び砂質シルトからなる。 18.63~18.86 砂質シルト。 18.86~20.00 シルト、砂を含む。 20.00~20.32 砂質シルト。 20.32~20.98 シルト。 20.98~21.56 砂質シルト、ラミナがみられる。
-			000000000000000000000000000000000000000		灰色		21.56~27.40 A2s層、細粒砂、中粒砂、粗粒砂及び砂礫を主体と する。 21.56~21.63 細粒砂。 21.63~21.83 細粒砂。 単角様を含む。 21.80~22.00 砂塊、径10m程度の古期岩類の亜円~ 単角様を含む。 21.80~22.00 砂塊、径5m程度の古期岩類の亜円~亜角様及び 径10m程度のジルト 偽雑を含む。
- 25 -					暗オリーブ灰色		22.00~22.60 確定じり年粒砂。後3~25mm程度の古期岩類の亜 円様を含む。 22.69~23.00 確定じり組粒砂。後10~15mm程度の古期岩類の亜 角~亜円機を含む。 50.00~23.40 確定じり細粒砂。後2~50m相度の古期岩類の亜 角~亜円機を含む。 23.53~23.64 シルトを含む。 23.65~25.64 シルトト。 25.64~25.64 シルトト。 25.64~25.64 シルトト。 26.69~26.44 シルトト。 26.69~26.44 シルトト。
- 28. 20-	-14. 93	26. 20	<u>/-</u>	西	暗灰色 暗		26:84-27.00 実験的、細様薄層を挟む. 27:00-27.00 接線20: 27:40-20:20 接線20: 27:40-20:20 第2:20:20:20:20:20:20:20:20:20:20:20:20:20
30, 00	-16, 73	1.80		1山層	緑灰色		28.20~30.00 西山層.泥岩を主体とし、凝灰岩を挟む. 28.92~29.00 灰白色凝灰岩(細粒砂サイズ) (Nt-6上部)

図 6 6L0T-S1 孔柱状図(孔口標高: T.M.S.L. +13.27m)

深	標	層	柱状	地層	色	孔内	記事
度	高	厚	図	名	相	水	
				盛土・埋め	にぶい黄褐		0.00~9.62 望土・理良上土. 0.00~0.55 砂綿. 径5~20mm程度の砕石からなる。基質は中粒妙 0.55~3.00 健児じり中粒砂. 径5~10mm程度の粘板岩. チャート の角硬を含む. 3.00~7.45 中粒砂. 少量のンルト. 径2~3mm程度の泥岩の円~亜 円機を含む.
				戻 し 土	灰黄褐 黒褐 弱い	-	7.45~7.80 細軸砂、シルトの薄原を挟み、不明瞭なラミナがみら れる。 7.80~8.35 広緒混じり細粒砂質シルト、 8.35~9.07 細粒砂、中粒砂を含む。 9.07~9.54 シルト、細胞砂を挟む。 9.54~0.65 細胞粉、され、とた得え」ニミナがおこれる。
<u>9.62</u> 10-	2, 33	9.62		新	ブ灰褐灰		
				期嚴	黒褐		3.02~00.40 ma400 ジンドを含む。 10.40~11.40 中粒砂、径5~20mm程度の亜円~円のシルト偽礫を 含む。
				古安田層	灰オリーブ		11.40~28.78 古安田菁。 11.40~15.78 K31畳、シルトを主体とし、細粒沙及び中粒沙を決 11.40~15.78 K31畳、シルトを主体とし、細粒沙及び中粒沙を決 11.40~11.88 シルト、線粒沙を含む. 12.00~12.04 シルト、原植片を抜け. 12.00~12.04 シルト、原植片を大け. 12.44~12.89 細粒沙、上部は下羽時なラミナがみられる。下部 は濃粒片を含み、細粒沙の薄層を挟む. 14.60 断層、積料07の正断層、変位量20mm. 14.77 断層、積料07の正断層、変位量20mm. 14.77 断層、積料07の正断層、変位量20mm. 14.78 大変、数化20億、シルト、後知時度のシルト偽操を含む. 15.78~12.58 化変通シルト、低知時度のシルト偽操を含む. 15.78~12.58 化変通シルトを注体とし、細粒砂を挟む. 15.78~12.58 化変通シルトを注意. 15.78~12.58 化金属 シルトを主体とし、細粒砂を挟む. 15.78~12.58 化金属 シルトを主体し. 16.50 断層、積料20 回移用。変位量15mm. 15.96 新層、積料20 回移用。変位量12mm. 18.05 断層、積料20 逆形用。変位量12mm. 18.05 断層、積料20 逆形用。変位量12mm. 19.61~20.26 廣植湿じリシルト. 20.62 断層、積料32°.
- - - - - - - - - - - - - - - - - - -		17.39		西山	オリーブ灰 灰 暗緑		21.95~27.05 シルト. 26.45~26.58 不規則に細粒砂を含む. 27.05~27.66 細粒砂、ラミナがみられる. <u>27.66~27.98 確選じりシルト、後3~00m程度のシルト偽速.</u> 27.98~28.79 A25原、細粒砂を主体とし、砂質シルト、シルトを 快む. 28.79~31.00 西山居、泥岩を主体とし、細粒砂岩の薄層を快む.
				層	灰		
1			1	1	1	1	1

図7 GTG-S2 孔柱状図 (孔口標高: T.M.S.L. +11.95m)

-									
	深 度	標高	層厚	柱状図	地層名	色相	孔内水	記事	
	-					灰黄褐		0,00~13,83 硬土・埋戻し土. 0,00~0,24 存在. 0,24~4.63 確混じり中粒砂.改良により硬化している.	
	5 - -					盛土 = 埋め戻し土	オリーブ灰		 4. 63~4.95 確買シルト. 径5~90m程度の記岩礎を含む. 4. 95~5.63 シルト質細粒砂. 5.63~5.90 種. 径5~80m程度のシルト礎を主体とする. 5.90~6.45 中枢砂. 6.45~10.35 硬賀シルト.径5~50m程度の泥岩の角礁.径2~5m 42の泥岩の細線を含む.
	10					にぶい黄褐		10.35~12.15 礎混じり中竝砂, 径5~60me程度のシルト磔を含む	
	- 1 <u>3. 83</u>	1. 75	13. 83			灰		12.15~12.00 中北線、径5~10m程度のシルト環を含む. 12.60~13.00 シルト・中位的互節、シルト使勢。 13.00~13.51 シルト混じり種粒砂。 13.51~13.83 細粒砂。	
	15 -	0.00			新期砂層	黒褐		13.83~18.26 新期砂磨、中粒砂を主体とし、細粒砂及びシルトを挟む。 13.83~16.46 中粒砂、細粒砂を挟む。 16.46~17.56 細粒砂混じり腐植質シルト。 17.56~18.26 細粒砂.上部に腐植片を含む。	
	18.26 - 20 - - - - - - - - - - - - - - - -	63	4.43		古安田層	灰オリーブ			
								29,82~29.93 細粒砂と15℃、 29,82~29.93 細粒砂、上部に径3~6mm程度のチャートの亜円礫 を含む、中粒砂を挟む、 29,93~30、33 シルト、	

図 8 GTG-S4 孔柱状図 (孔口標高: T.M.S.L. +15.58m)

深度	標高	層厚	柱状図	地層名	色相	孔内水	記事
							30.20~30.35 康補混じり中粒砂、 30.35~30.91 廣植混じり中粒砂、 30.91~31.20 麻槌混じり中粒砂、 31.20~31.57 細粒砂混じり中粒砂、 31.84~33.57 細粒砂混じり中粒砂。 31.84~33.1 M20層、 31.84~34.51 皮加層・細粒砂混じりシルト、
- 35 -					灰		24.51~37.30 A22間 34.51~34.82 偽破混じり中~相対砂. 35.45~35.77 廣極混じり中健設しり中趋砂. 35.77~35.10 展植・シルト港じり中粒砂. 36.10~36.30 中粒砂. 55.30~38.53 シルト. 36.53~38.75 シント. 36.53~38.75 シント. 36.53~38.75 シント.
				古安田層	暗 灰 黄		37,15~37,30 線混じり中和数. 37,30~39,25 AIC府 37,30~38,50 展和起じりシルト. 38,80~39,25 廣植混じりシルト.
40— - -					オリーブ黒		39.25~45.82 At 2欄 39.25~45.82 At 7 粗粒砂造じり中粒砂. 39.47~39.60 確認しりシルト, 39.60~39.90 砂砂健. 41.05~41.25 砂健. 41.05~41.25 砂健. 41.25~41.42 粗粒砂造じり中粒砂. 41.25~41.42 粗粒砂造じり中粒砂. 41.25~41.42 細粒砂. 41.56~41.76 細粒砂. 42.49~43.42 砂健.
- 45 <u>45, 82</u>	-33, 76	15, 82			オリーブ灰		43.93~44.05 砂礫. 43.93~44.05 砂礫. 44.05~45.40 偽襟足じりシルト. 45.40~45.82 西山層泥岩ブロック.
- - - 48. 00	-35, 94	2. 18		西山層	暗オリーブ灰		45.82~48.00 西山屋。 45.82~48.00 塊状泥岩。

図 9 GTG-S5 孔柱状図(孔口標高: T.M.S.L. + 12.06m)

	幾何平均透水係数
地質	k 15
	(cm/s)
A3a1	1.74×10^{-8}
A2c	1.90×10^{-8}

表1 三軸透水試験結果

遮水のために必要な根入れ長の設定において、周辺地盤である A3a1 および A2c 層の透水係数 は 1×10^{-6} cm/s 以下となる。保守的に不透水性地層と同等の粘性土層として透水係数 1×10^{-6} cm/s として検討する。

なお,透水係数k=1×10⁻⁶ cm/s,透水距離(根入れ長)L=3.0m,水位差h=2.0m*とした 場合の浸透時間tは,t=L²/kh=3.0²/(1×10⁻⁶×10⁻²×2.0)=4.5×10⁸sとなる。この 値は,海水貯留堰(6号機設備)外側の海水位が海水貯留堰(6号機設備)天端を下回る時間約 16分と比較して十分に長い時間であり,設定した根入れ長は十分な遮水性を確保している。 注記*:水位差h=海水貯留堰(6号機設備)天端高(T.M.S.L.-3.5m)-設計海底面(T.M.S.L.-5.5m)

=2.0 m

4. 地震により生じる周辺地盤の沈下量:L₂

海水貯留堰の周辺地盤が沈下すると根入れ長が減少するため、地震により生じる周辺地盤の沈 下量を考慮する。地震により生じる周辺地盤の沈下量L₂は、以下の算定式のとおり、L₂= 0.012m とする。なお、海水貯留堰直下地盤には液状化層が存在しないため、地盤の過剰間隙水 圧の消散に伴う沈下量は発生しないものとする。

L₂ = S₁ + S₂ = 0.012m + 0.00m = 0.012m ここで, L₂ : 地震により生じる地盤の沈下量 S₁ : 地盤の変形による最終沈下量 (=0.012m) (2次元有効応力解析結果より)

S₂ : 地盤の過剰間隙水圧の消散に伴う沈下量(=0.00m)

4.1 地盤の変形による最終沈下量:S₁

2次元有効応力解析結果から得られる,海水貯留堰周辺地盤における最終沈下量の最大値 (B-B断面,解析ケース①:基本ケース,Ss-3-+)を用いて,地盤の変形による最終沈下 量S₁を設定する。図10に示すとおり,地盤の変形による最終沈下量S₁を0.012mとする。

図 10 地盤の変形による最終沈下量 S₁の設定位置と値 (B-B断面,解析ケース①:基本ケース,Ss-3-+)
4.2 地盤の過剰間隙水圧の消散に伴う沈下量:S₂

海水貯留堰直下地盤には液状化層が存在しないため,地盤の過剰間隙水圧の消散に伴う沈下 量は発生しないものとする。

5. まとめ

海水貯留堰の遮水性を確保するため、鋼管矢板継手の根入れ長が遮水性を確保しているかの確認を行った。地震時に発生する鋼管板周辺地盤の最終沈下量及び地盤の過剰間隙水圧の消散に伴う沈下量を考慮し、遮水性を確保するために必要な根入れ長を算出した。実際の鋼管矢板継手部の根入れ長は、遮水性の確保に必要な根入れ長を上回っていることから、鋼管矢板継手部の根入れ長は遮水性を確保していることを確認した。

(参考資料 3) 海水貯留堰(6号機設備) 接続部の耐震評価に用いる水平震度及び作用荷重の算出 について

1. 概要

本参考資料では,海水貯留堰(6号機設備)接続部の耐震評価に用いる水平震度及び作用荷重 の算出結果を示す。海水貯留堰(6号機設備)接続部に作用する荷重は,止水ゴム取付部鋼材の 地震時慣性力,動水圧及び止水ゴムに作用する荷重である。止水ゴム取付部鋼材の耐震評価にあ たり,水平震度を用いて算出される地震時慣性力及び動水圧による荷重は,止水ゴム作用力と比 較して大きく支配的な荷重である。したがって,追加解析を実施する地震動は,最大水平加速度 が最も大きいものに着目して選定することを基本とする。

2. 水平震度

止水ゴム取付部鋼材の耐震設計で、慣性力及び動水圧の算定に用いる水平震度k_hは,2次元 有効応力解析から抽出した最大水平加速度αより算出する。加速度抽出位置は、海水貯留堰(6 号機設備)の海中部(海水貯留堰(6 号機設備)(南側)は T.M.S.L.-5.5~-3.5m,海水貯留堰 (6 号機設備)(北側)は T.M.S.L.-5.5~-3.0m)とする。

抽出断面は補足「2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明 3.1 評価 対象断面」に示す断面のうち,加速度抽出断面は,動水圧及び止水ゴム作用力等の荷重作用方向 と,NS 方向(B-B断面)により得られる最大加速度方向が,同一の方向であることを考慮し, B-B断面を選定する。抽出する加速度は対象構造物である海水貯留堰(6号機設備)とし,南 側及び北側の2箇所とする。

入力地震動は補足「2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明 3.4 入 力地震動」に示す基準地震動Ssの計15波とし,解析ケースは表1に示すとおりとする。

各断面の加速度抽出位置における,2次元有効応力解析から抽出した最大水平加速度を表2及 び表3に示す。

			1	2	3	4	5		
解析ケース		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき(-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	 地盤物性のば らつき(+1) σ)を考慮し て非液状化の 条件を仮定し た解析ケース 			
	地盤剛性の	の設定	地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)		
液状化強度特性の設定		液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用			
		++	実施						
	Ss-1	-+	実施						
		+-	実施						
			実施						
	Ss-2		実施						
		++	実施						
地震	S - 9	-+	実施	令ての其	進地雲動らった		ち①の解析ケ		
動	58-5	+-	実施						
位相			実施		クーへ)にわい	ケース)において、せん断力照査、曲け軸			
Ľ)	Ş	Ss-4	実施		又村刀照査にこ	いて、谷忠宜1	□ 小取も厳し □		
	ç	Ss-5	実施		介に対する余裕	か策も小さい)	地震動を用「		
	S	Ss-6	実施	□ \`, ②~5	より追加解析グ	ースを実施する			
	ç	Ss-7	実施		記解 ケースの)結果を踏まえ,	さらに照金		
	C - 0	++	実施	□ 値が大きく	なる可能性があ	っる場合は, 追加	µ解朳を実施 │		
	Ss−8	-+	実施	する。					

表1 海水貯留堰(6号機設備)接続部の耐震設計における解析ケース

注:表中の符号+,-は地震動の位相(水平,鉛直)を示す。

		((B-B断面,	海水貯留堰	(6 号機設備)(南側))	i i	
			1	2	3	4	5	
解析ケース		-ス	基本ケース	地盤物性の ばらつき (+1g) を考慮した 解析ケース	地盤物性の ばらつき (-1g) を考慮した 解析ケース	非液状化 の条件を 仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース	最大値
	地盤剛性の)設定	地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)	
液状化強度特性の設定		性の設定	液状化強度 特性 (-1σ)	液状化強度 特性 (-1σ)	液状化強度 特性 (-1σ)	液状化パラ メータを 非適用	液状化パラメ ータを非適用	
		++	10.62	10.35	10.91	10.67	10.39	10.91
	Ss-1	-+	10.38					10.38
		+-	10.58					10.58
			10.46					10.46
	Ss	-2	8.55					8.55
		++	7.36					7.36
地震	Se-3	_+	7.72					7.72
動	03 0	+-	7.10					7.10
位相			7.63					7.63
	Ss	-4	4.48					4.48
	Ss	;-5	4.96					4.96
	Ss	5-6	5.20					5.20
	Ss	5-7	4.62					4.62
	Sc-8	++	7.16					7.16
	0 60	-+	7.25					7.25
最大値		Ī	10.62	10.35	10.91	10.67	10.39	10.91

表2 2次元有効応力解析から抽出した最大水平加速度

(参考) 3-3

(単位:m/s²)

		((B-B断面,	海水貯留堰	(6 号機設備)(北側))		
		1	2	3	4	5		
解析ケース		-ス	基本ケース	地盤物性の ばらつき (+1g) を考慮した 解析ケース	地盤物性の ばらつき (-1σ) を考慮した 解析ケース	非液状化 の条件を 仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース	最大値
	地盤剛性の)設定	地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)	
液状化強度特性の設定		性の設定	液状化強度 特性 (-1σ)	液状化強度 特性 (-1σ)	液状化強度 特性 (-1σ)	液状化パラ メータを 非適用	液状化パラメ ータを非適用	
		++	10.37	9.66	10.59	10.36	9.72	10.59
	Ss-1	-+	10.19					10.19
		+-	10.00					10.00
			9.89					9.89
	Ss	-2	8.23					8.23
		++	8.09					8.09
地震	Se-3	-+	8.03					8.03
動	05 0	+-	7.90					7.90
位相			7.88					7.88
	Ss	-4	5.98					5.98
	Ss	;-5	6.65					6.65
	Ss	5-6	6.51					6.51
	Ss	s-7	6.14					6.14
	Sc-8	++	9.27					9.27
	0 20	-+	9.16					9.16
最大値		10.37	9.66	10.59	10.36	9.72	10.59	

表3 2次元有効応力解析から抽出した最大水平加速度

(参考) 3-4

(単位:m/s²)

表2及び表3より,海水貯留堰(6号機設備)(南側)のSs-1++,解析ケース③:地盤物性のばらつき(-1 σ)を考慮した解析ケースにおいて,最大加速度10.91m/s²が発生する。また,海水貯留堰(6号機設備)(北側)のSs-1++,解析ケース③:地盤物性のばらつき(-1 σ)を考慮した解析ケースにおいて,最大加速度10.59m/s²が発生する。

したがって、耐震設計に用いる水平震度 k h は、表 4 に示すように算出する。

対象	最大加速度 α (m/s ²)	重力加速度 g (m/s²)	水平震度 k _h
海水貯留堰(6 号機設備) (南側)	10. 91	9.80665	1.12
海水貯留堰(6 号機設備) (北側)	10. 59	9.80665	1.08

表4 水平震度の算出

3. 慣性力

止水ゴム取付部鋼材の地震時慣性力は、「道路橋示方書(V耐震設計編)・同解説(日本道路 協会,平成14年3月)」に基づいて算出する。止水ゴム取付部鋼材(南側)については水平震 度k_h=1.12,止水ゴム取付部鋼材(北側)については水平震度k_h=1.08を用いる。材料の単 位体積重量は、「道路橋示方書(I共通編)・同解説(日本道路協会,平成14年3月)」に基 づいて設定する。なお、地震時慣性力は検討対象である止水ゴム取付部鋼材リブプレート間隔 300mm 間の鋼材重量に対して算出する。荷重条件表を表5から表8に示す。

記号	定義	数值	単位	備考
γs	鋼の単位体積重量	77	kN/m ³	
B _{skin} 1	幅 (スキンプレート 1)	751	mm	
D _{skin} 1	長さ (スキンプレート 1)	300	mm	
t _{skin} 1	板厚(スキンプレート1)	9	mm	
n _{skin} 1	個数 (スキンプレート 1)	1	_	
G _{skin} 1	重量(スキンプレート1)	0.156	kN	
B _{skin} 2	幅 (スキンプレート 2)	314	mm	
D _{skin} 2	長さ (スキンプレート 2)	300	mm	
t _{skin} 2	板厚 (スキンプレート 2)	9	mm	
n _{skin} 2	個数(スキンプレート 2)	1	_	
G _{skin} 2	重量(スキンプレート 2)	0.065	kN	
B _{r i b} 1	幅(リブプレート 1)	581	mm	
D r i b 1	長さ(リブプレート 1)	125	mm	
t _{rib} 1	板厚(リブプレート 1)	14	mm	
n _{r i b} 1	個数(リブプレート 1)	1	_	
G r i b 1	重量(リブプレート 1)	0.079	kN	
B _{r i b} 2	幅(リブプレート 2)	591	mm	
D _{rib} 2	長さ(リブプレート 2)	125	mm	
t _{rib} 2	板厚(リブプレート 2)	14	mm	
n _{r i b} 2	個数(リブプレート 2)	1	_	
G _{r i b} 2	重量(リブプレート 2)	0.079	kN	
В _{гі b} 3	幅(リブプレート 3)	247	mm	
D _{rib} 3	長さ (リブプレート 3)	50	mm	
t _{rib} 3	板厚 (リブプレート3)	14	mm	
n _{rib} 3	個数(リブプレート3)	1		
G _{r i b} 3	重量(リブプレート 3)	0.013	kN	

表5 耐震評価に用いる条件(慣性力,止水ゴム取付部鋼材(南側)(1))

記号	定義	数値	単位	備考
B _{r i b} 4	幅(リブプレート 4)	367	mm	
D r i b4	長さ (リブプレート 4)	335	mm	
t _{rib} 4	板厚 (リブプレート4)	14	mm	
n _{rib} 4	個数 (リブプレート4)	1		
G _{rib} 4	重量 (リブプレート 4)	0.132	kN	
В _{гі b} 5	幅(リブプレート 5)	111	mm	
D _{r i b} 5	長さ(リブプレート 5)	376	mm	
t _{r i b} 5	板厚(リブプレート 5)	14	mm	
n _{rib} 5	個数(リブプレート5)	1		
G _{rib} 5	重量(リブプレート 5)	0.045	kN	
B _{r i b} 6	幅(リブプレート 6)	60	mm	
D _{rib} 6	長さ (リブプレート 6)	150	mm	
t _{rib} 6	板厚(リブプレート6)	14	mm	
n _{rib} 6	個数(リブプレート6)	1		
G _{rib} 6	重量(リブプレート 6)	0.010	kN	
C	※ 壬 旦	0 570	1-N	$= \Sigma G_{s k i n} +$
G		0.579	KIN	$\Sigma~{ m G}$ r i b
Δ	西待 (フキンプレート)	0.220	m ²	$= \Sigma (B_{s k i n} \cdot D_{s k i})$
Askin	山根(ハインノレート)	0. 320	m ⁻	n) $/10^{6}$
C,	スキンプレート	1 800	l_{rN}/m^{2}	$=G \overline{/A_{skin}}$
G	単位面積あたりの重量	1.009	K1N/ III ⁻	
k h	水平震度	1.12		
K s d	慣性力	2.0	kN/m^2	$= k_{h} \cdot G'$

表6 耐震評価に用いる条件(慣性力,止水ゴム取付部鋼材(南側)(2))

記号	定義	数值	単位	備考
γs	鋼の単位体積重量	77	kN/m^3	
B _{skin} 1	幅 (スキンプレート 1)	550	mm	
D _{skin} 1	長さ(スキンプレート 1)	300	mm	
t _{skin} 1	板厚(スキンプレート 1)	9	mm	
n _{skin} 1	個数(スキンプレート 1)	1	_	
G _{skin} 1	重量(スキンプレート 1)	0.115	kN	
B _{skin} 2	幅(スキンプレート 2)	374	mm	
D _{skin} 2	長さ (スキンプレート 2)	300	mm	
t _{skin} 2	板厚(スキンプレート 2)	9	mm	
n _{skin} 2	個数 (スキンプレート 2)	1		
G _{skin} 2	重量(スキンプレート 2)	0.078	kN	
B _{r i b} 1	幅(リブプレート 1)	381	mm	
D r i b 1	長さ(リブプレート 1)	125	mm	
t _{rib} 1	板厚(リブプレート1)	14	mm	
n _{rib} l	個数 (リブプレート 1)	1	_	
G _{r i b} 1	重量(リブプレート 1)	0.051	kN	
В _{гі b} 2	幅(リブプレート 2)	391	mm	
D r i b2	長さ(リブプレート 2)	125	mm	
t _{rib} 2	板厚(リブプレート 2)	14	mm	
n _{rib} 2	個数 (リブプレート 2)	1	_	
G _{r i b} 2	重量(リブプレート 2)	0.053	kN	
В _{гі b} 3	幅(リブプレート 3)	285	mm	
D _{rib} 3	長さ(リブプレート 3)	50	mm	
t _{rib} 3	板厚(リブプレート 3)	14	mm	
n _{rib} 3	個数(リブプレート 3)	1		
G _{rib} 3	重量(リブプレート 3)	0.015	kN	

表 7 耐震評価に用いる条件(慣性力,止水ゴム取付部鋼材(北側)(1))

記号	定義	数值	単位	備考
B _{r i b} 4	幅(リブプレート 4)	367	mm	
D r i b4	長さ (リブプレート 4)	335	mm	
t _{rib} 4	板厚 (リブプレート4)	14	mm	
n _{rib} 4	個数 (リブプレート 4)	1	_	
G _{rib} 4	重量 (リブプレート 4)	0.132	kN	
В _{гі b} 5	幅(リブプレート 5)	146	mm	
D _{r i b} 5	長さ(リブプレート 5)	374	mm	
t _{rib} 5	板厚(リブプレート5)	14	mm	
n _{rib} 5	個数(リブプレート 5)	1		
G _{r i b} 5	重量(リブプレート 5)	0.059	kN	
В _{гі b} 6	幅(リブプレート 6)	80	mm	
D _{r i b} 6	長さ (リブプレート 6)	150	mm	
t _{rib} 6	板厚 (リブプレート 6)	14	mm	
n _{rib} 6	個数 (リブプレート 6)	1	_	
G _{rib} 6	重量(リブプレート 6)	0.013	kN	
C	※ 壬 旦	0 516	1- N	$= \Sigma G_{s k i n} +$
G		0.510	KIN	$\Sigma~{ m G}$ r i b
Δ	西待 (フキンプレート)	0.977	m ²	$= \Sigma (B_{s k i n} \cdot D_{s k i})$
A s k i n	国根(ヘイングレード)	0.277	III [_]	n) $/10^{6}$
C,	スキンプレート	1 862	lrN/m^2	$=G \overline{/A_{skin}}$
G	単位面積あたりの重量	1.003	KIN/ III ⁻	
k h	水平震度	1.08	_	
K _{s d}	[慣性力]	2.0	kN/m^2	$= k_{h} \cdot G'$

表8 耐震評価に用いる条件(慣性力、止水ゴム取付部鋼材(北側)(2))

4. 動水圧

動水圧は、「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)」に基づい て算出する。止水ゴム取付部鋼材(南側)については水平震度k_h=1.12,止水ゴム取付部鋼材 (北側)については水平震度k_h=1.08を用いる。荷重条件表を表9および表10に示す。

	記号	定義	数值	単位	備考
					「理科年表 2015(国立天
	ρ	海水の密度	1.03	g/cm^3	文台, 2015 版)」より平
					均的な値を用いた。
	g	重力加速度	9.80665	m/s^2	
	γw	海水の単位体積重量	10.1	kN/m ³	$= ho \cdot \mathbf{g}$
	Н	海水貯留堰(6 号機設備)高さ	2.00	m	
		海水貯留堰(6号機設備)外側			
	η	の海水貯留堰(6 号機設備)天	4.50	m	
		端面における水深			
	1	海水貯留堰(6号機設備)外側	C F0		TT
	n 1	の底面における水深	6.50	III	$= \Pi + \eta$
		海水貯留堰(6号機設備)外側			
	h 2	の海水貯留堰(6 号機設備)天	4.50	m	$=\eta$
		端面における水深			
	1	海水貯留堰(6号機設備)内側	6 50		1
	h ₃	の底面における水深	6.50	m	= n ₁
	k h	水平震度	1.12	_	
		海水貯留堰(6号機設備)外側			
	${ m P}_{ m d\ 1}$	の底面における	64.3	kN/m^2	$=\frac{7}{4} \cdot k_{\rm h} \cdot \gamma_{\rm w} \cdot h_{\rm l}$
		動水圧			8
		海水貯留堰(6号機設備)内側			
I	Р _{d3}	の底面における	64.3	kN/m²	$=\frac{7}{2} \cdot k_{\rm h} \cdot \gamma_{\rm w} \cdot h_{\rm 3}$
		動水圧			8
					1

表9 耐震評価に用いる条件(動水圧,止水ゴム取付部鋼材(南側))

記号	定義	数値	単位	備考
				「理科年表 2015(国立天
ρ	海水の密度	1.03	g/cm^3	文台, 2015 版)」より平
				均的な値を用いた。
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m ³	$= ho \cdot \mathrm{g}$
Н	海水貯留堰(6 号機設備)高さ	2.50	m	
	海水貯留堰(6 号機設備)外側			
η	の海水貯留堰(6 号機設備)天	4.00	m	
	端面における水深			
h	海水貯留堰(6 号機設備)外側	6 50	m	
11 1	の底面における水深	0.00	III	$-11 \pm \eta$
	海水貯留堰(6 号機設備)外側			
h 2	の海水貯留堰(6 号機設備)天	4.00	m	$=\eta$
	端面における水深			
h	海水貯留堰(6 号機設備)内側	6 50		— h
11 3	の底面における水深	6.50		- 11 1
k h	水平震度	1.08		
	海水貯留堰(6 号機設備)外側			
P _{d1}	の底面における	62.0	kN/m²	$=\frac{7}{2} \cdot \mathbf{k}_{\mathrm{h}} \cdot \boldsymbol{\gamma}_{\mathrm{w}} \cdot \mathbf{h}_{\mathrm{l}}$
	動水圧			8
	海水貯留堰(6 号機設備)内側			
P _{d3}	の底面における	62.0	kN/m²	$=\frac{7}{2} \cdot \mathbf{k}_{\rm h} \cdot \gamma_{\rm w} \cdot \mathbf{h}_{\rm B}$
	動水圧			0

表 10 耐震評価に用いる条件(動水圧,止水ゴム取付部鋼材(北側))

5. 止水ゴム作用力

止水ゴムに作用する荷重に対して、止水ゴムの荷重作用幅を考慮した値を、止水ゴム両側の止 水ゴム取付部鋼材スキンプレート先端が負担するものとして考慮する。荷重条件表を表 11 およ び表 12 に示す。

記号	定義	数値	単位	備考
B 1	止水ゴム幅	0.240	m	
B_2	止水ゴム変形量	0.069	m	最大相対変位
В	止水ゴム荷重作用幅	0.309	m	$= B_1 + B_2$
	海水貯留堰(6 号機設備)外側の底			表9より
P _{d1}	面における	64.3	kN/m^2	
	動水圧			
	海水貯留堰(6 号機設備)内側の底			表9より
P _{d3}	面における	64.3	kN/m^2	
	動水圧			
F _g	止水ゴム作用力	19.9	kN/m	$=\mathrm{B}/2\cdot(\mathrm{P}_{\mathrm{d1}}+\mathrm{P}_{\mathrm{d3}})$

表 11 耐震評価に用いる条件(ゴム作用力,止水ゴム取付部鋼材(南側))

表 12 耐震評価に用いる条件(ゴム作用力,止水ゴム取付部鋼材(北側))

記号	定義	数值	単位	備考
B_1	止水ゴム幅	0.240	m	
B_2	止水ゴム変形量	0.069	m	最大相対変位
В	止水ゴム荷重作用幅	0.309	m	$= B_1 + B_2$
P _{d1}	海水貯留堰(6 号機設備)外側の底			表 10 より
	面における	62.0	kN/m^2	
	動水圧			
Р _{d3}	海水貯留堰(6 号機設備)内側の底			表 10 より
	面における	62.0	kN/m^2	
	動水圧			
F _g	止水ゴム作用力	19.2	kN/m	$=\mathrm{B}/2\cdot(\mathrm{P}_{\mathrm{d1}}+\mathrm{P}_{\mathrm{d3}})$

6. 止水ゴム取付部鋼材の作用荷重

止水ゴム取付部鋼材に対する荷重作用図を図1に,「2.水平震度」から「5.止水ゴム作用 力」にて算出した作用荷重を表13に示す。なお,作用荷重の算出過程は,補足「2.2海水貯留堰 (6号機設備)の耐震計算書に関する補足説明 3.8.1 構造部材の健全性評価」に示す。

動水圧及び慣性力は、いずれも水平震度(水平加速度)に応じて算出するものであり、止水ゴム 作用力は、前述の動水圧の他に、止水ゴムの変形量(海水貯留堰(6号機設備)(護岸近傍)と前 面鋼矢板間の水平方向(δ_x)の相対変位)に応じた荷重作用幅を考慮して算出されるものであ る。

止水ゴム取付部の作用荷重は、表13のとおり、水平震度から求まる動水圧及び慣性力と、水平 震度と止水ゴムの変形量から求まる止水ゴム作用力からなり、止水ゴム作用力と比べて動水圧及び 慣性力が支配的な作用荷重となっている。

図 1 荷重作用図

検討断面	動水圧 P _d (kN/m²)	慣性力 K _{sd} (kN/m²)	止水ゴム作用力 F _g (kN)
南側	128.7	2.03	19.9
北側	124.1	2.01	19.2

表 13 耐震評価に用いる荷重値

(参考資料4)漏水試験及び変形試験について

1. 概要

構造境界からの有意な漏えいを生じさせないために,海水貯留堰(6号機設備)と取水護岸 (6号機設備)の接続部に止水ゴムを設置する設計としている。

止水ゴムの設置位置図を図1に、止水ゴムの詳細平面図を図2及び図3に示す。また、海水 貯留堰(6号機設備)接続部の鳥瞰図を図4に示す。

止水ゴムは、構造物の変位に対して追随し、止水機能を維持する構造であることから、止水 ゴムの仕様や形状を考慮し、止水ゴムが所要の強度を確保できる変形量に対し、止水ゴムを設 置する構造物の設計水圧(津波の波圧)を上回る水圧を作用させ、止水ゴム本体及び取付け部 が損傷しないこと及び有意な漏水量が生じないことを確認する性能確認試験により、変形量の 許容限界を設定する。性能確認評価フローを図5に示す。

また,クロロプレンゴム(以下,「CRゴム」という。)を原材料として製造された止水ゴ ムの耐久性能についても確認する。

図1 止水ゴム設置位置図

図3 止水ゴム詳細平面図(6号機北側)

図4 海水貯留堰(6号機設備)接続部の鳥瞰図

図5 性能確認評価フロー

2. 性能確認試験について

(1) 試験条件

止水ゴムにおいては、地震時及び津波時・重畳時において、図6に示す3方向の変形が複合 的に生じることが想定されている。実際の止水ゴムを再現した試験装置に対し、試験機により 止水ゴムに強制的な変形を与えた状態で、津波の波圧に相当する荷重を作用させる(加圧する) ことにより、止水ゴム本体及び取付け部が損傷することなく、止水機能を保持することを確認 する。

止水ゴムに与える変形量は最大値として, である変形量を作用させた。 また試験水圧は補足「1.2 海水貯留堰における津波波力の設定方針について」に基づき設定した。同方針では, "越流直前の津波波力"及び "越流時の静水圧差"について検討しており,前者が後者を上回る結果となったことから,保守的に "越流直前の津波波力"を考慮するとしている。 "越流直前の津波波力"は津波高さの3倍の高さまでの静水圧荷重 0.06MPa としているが,本試験ではさらに保守的な配慮として,試験水圧を0.1MPa とした。

性能確認試験は、止水ゴムに単一的な変形を与える限界変形試験、及び止水ゴムに3方向の 複合的な変形を与える複合変形試験の2ケースを実施した。試験条件を表1及び表2に、性能 確認試験フローを図7に示す。また使用した試験機を写真1に、試験装置を写真2に示す。実 施した各試験における変形の概念図を図8及び図9に示す。

止水ゴムの着目部は,限界変形試験において面外せん断,あるいは面内せん断の単一変形を 与える2箇所,複合変形試験において面外せん断,面内せん断及び伸縮の複合変形を与える1 箇所とした。

図6 止水ゴムに生じると想定される変形

	試験機変	を位量(mm)	試験				
変位ステップ	$\delta_{\rm v}$	$\delta_{ m h}$	$\delta_{\rm x}$	δ_{y}	δ_{z}	試験水圧	
No.			北側・東側	北側	東側		
	伸縮*1	面外・面内	伸縮*1	面内	面外	(MPa)	
1	0	0	0	0	0	0.1	
2	0	20	0	20	20	0.1	
3	0	40	0	40	40	0.1	
4	0	60	0	60	60	0.1	
5	0	80	0	80	80	0.1	
6	0	100	0	100	100	0.1	
7	0	120	0	120	120	0.1	
8	0	140	0	140	140	0.1	
9	0	160	0	160	160	0.1	
10	0	180	0	180	180	0.1	
11	0	200	0	200	200	0.1	
12	0	220	0	220	220	0.1	
13	0	240	0	240	240	0.1	
14	0	260	0	260	260	0.1	
15	0	280	0	280	280	0.1	
16*2	15	280	15	280	280	0.1	
17	0	40	0	40	40	0.1	
18	0	80	0	80	80	0.1	
注記*1 :伸縮変形は伸びが(+),縮みが(-)							

表1 止水ゴムの試験条件(限界変形試験:数値は目標値)

*2 :

	試験機変	变位量(mm)	試験体着目部変位量(mm)			
変位ステップ	δ_{v}	$\delta_{ m h}$	$\delta_{\rm x}$	δ_y	δ_{z}	試験水圧
No.			$= \delta_v$	= $\delta_h * \sin \theta$	= $\delta_h * \cos \theta$	
	伸縮*1	面外·面内	伸縮*1	面内	面外	(MPa)
1	0	0	0	0	0	0.1
2	20	20	20	13	15	0.1
3	30	40	30	27	30	0.1
4	40	60	40	40	45	0.1
5	50	80	50	54	59	0.1
6	60	100	60	67	74	0.1
7	70	120	70	80	89	0.1
8	80	140	80	94	104	0.1
9	85	150	85	100	111	0.1
10	90	155	90	104	115	0.1
11*2	94	164	94	110	122	0.1
12	65	145	65	97	108	0.1

表2 止水ゴムの試験条件(複合変形試験:数値は目標値)

注記*1: 仲縮変形は仲びが(+), 縮みが(-)

*2 :

図7 性能確認試験フロー

試験体に与えた変形及び水圧を計測するため、計測器を設置した。試験装置下盤には変位計 及び水圧配管経路に圧力計を設置した。これらより1秒間に1レコードの頻度でデータを取得 し、ロガーに記録した。複合変形試験における変位計及び圧力計の設置状況を写真3及び写真 4にそれぞれ示す。

写真3 変位計設置状況

写真4 圧力計設置状況

(2) 試験結果

(a) 限界変形試験

限界変形試験に関する性能確認試験結果を表 3 に示す。また試験状況を写真 5~写真 22 に 示す。

全ての変位ステップにおいて,止水ゴムの損傷やナットの緩みは認められない。また,止 水ゴム試験体着目部から漏水も認められない。

	試験機変	忆位量(mm)	試験体	本着目部変位:	量(mm)				
変位	δ_{v}	$\delta_{ m h}$	$\delta_{\rm x}$	δ _y	$\delta_{\rm z}$	試験水圧	保持	漏水	損傷
ステップ			北側 ・東側	北側	東側		时间	有無	有無
No.	伸縮*1	面外 • 面内	伸縮*1	面内	面外	(MPa)	(min)		
1	1.4	0.0	1.4	0.0	0.0	0.1081	3	無	無
2	1.4	21.9	1.4	21.9	21.9	0.1058	3	無	無
3	1.3	41.5	1.3	41.5	41.5	0.1036	3	無	無
4	1.3	61.2	1.3	61.2	61.2	0.1032	3	無	無
5	1.2	81.1	1.2	81.1	81.1	0.1032	3	無	無
6	1.2	101.2	1.2	101.2	101.2	0.1028	3	無	無
7	1.5	122.4	1.5	122.4	122.4	0.1027	3	無	無
8	1.5	141.7	1.5	141.7	141.7	0.1029	3	無	無
9	1.4	163.1	1.4	163.1	163.1	0.1029	3	無	無
10	1.4	181.6	1.4	181.6	181.6	0.1030	3	無	無
11	1.3	201.6	1.3	201.6	201.6	0.1029	3	無	無
12	1.3	221.0	1.3	221.0	221.0	0.1030	3	無	無
13	1.1	242.5	1.1	242.5	242.5	0.1029	3	無	無
14	1.1	261.9	1.1	261.9	261.9	0.1028	3	無	無
15	0.8	280.6	0.8	280.6	280.6	0.1026	3	無	無
16*2	15.7	281.0	15.7	281.0	281.0	0.1023	3	無	無
17	2.1	41.2	2.1	41.2	41.2	0.1029	3	無	無
18	2.2	80.9	2.2	80.9	80.9	0.1030	3	無	無

(参考) 4-9

表3 性能確認試験結果(限界変形試験:数値は実績値)

注記*1:伸縮変形は伸びが(+),縮みが(-)

*2

写真5 試験状況(変位ステップ No.1)

写真6 試験状況(変位ステップ No. 2)

写真7 試験状況(変位ステップ No.3)

写真8 試験状況(変位ステップ No.4)

写真9 試験状況(変位ステップ No.5)

写真 10 試験状況(変位ステップ No. 6)

写真 11 試験状況 (変位ステップ No. 7)

写真 12 試験状況(変位ステップ No. 8)

写真 13 試験状況(変位ステップ No. 9)

写真 14 試験状況 (変位ステップ No. 10)

写真 15 試験状況(変位ステップ No. 11)

写真 16 試験状況(変位ステップ No. 12)

写真 17 試験状況 (変位ステップ No. 13)

写真 18 試験状況 (変位ステップ No. 14)

写真 19 試験状況(変位ステップ No. 15)

写真 20 試験状況 (変位ステップ No. 16)

写真 21 試験状況 (変位ステップ No. 17)

写真 22 試験状況(変位ステップ No. 18)

(b) 複合変形試験

複合変形試験に関する性能確認試験結果を表 4 に示す。また試験状況を写真 23~写真 34 に示す。

全ての変位ステップにおいて、止水ゴムの損傷やナットの緩みは認められない。また、止 水ゴム試験体着目部から漏水も認められない。

止水ゴム試験体に与えた変形量が最大,かつ 位ステップ No. 11 における計測時刻歴図を図 10 に示す。

	試験機到	变位量(mm)	試験化	x着目部変位量	量 (mm)		旧社		
发位	$\delta_{\rm v}$	δ_{h}	δ_x	$\delta_{\mathtt{y}}$	δ_z	試験水圧	保持時間	漏水	損傷
No			$=\delta_{\rm v}$	$= \delta_h * \sin \theta$	= $\delta_h * \cos \theta$		н Л [61	有無	有無
110.	伸縮*1	面外・面内	伸縮*1	面内	面外	(MPa)	(min)		
1	1.3	0.0	1.3	0.1	0.4	0.1066	3	無	無
2	23.0	21.2	23.0	14.1	15.7	0.1047	3	無	無
3	33.7	41.4	33.7	27.8	30.6	0.1069	3	無	無
4	42.2	61.7	42.2	41.5	45.5	0, 1063	3	無	無
5	53.3	81.0	53, 3	54.4	59.5	0.1068	3	無	無
6	62.1	101.1	62.1	67.9	74.1	0.1063	3	無	無
7	71.8	122.1	71.8	81.7	88.9	0.1055	3	無	無
8	80.8	144.2	80.8	96.4	104.6	0.1051	3	無	無
9	87.0	153.9	87.0	102.8	111.4	0.1058	3	無	無
10	91.0	159.8	91.0	106.7	115.6	0.1065	3	無	無
11*2	95.6	170.1	95.6	113.3	122.8	0. 1066	3	無	無
12	66.7	148.5	66.7	99.8	108.6	0.1070	3	無	無

表4 性能確認試験結果(複合変形試験:数値は実績値)

注記*1:伸縮変形は伸びが(+),縮みが(-)

図 10 計測時刻歴図(複合変形試験;変位ステップ No. 11)

3. 変形量の許容限界の設定

止水ゴムに対する許容限界は性能確認試験結果により,損傷及び漏水が生じないことを確認 した変形量とする。止水ゴムにおいては3方向の複合的な変形が生じることが現実的であるた め,許容限界は複合変形試験の結果より設定した。変形量の許容限界を表5に示す。

5						
止水ゴム変形量の許容限界						
伸縮変形(伸び)	伸縮変形(伸び) 面内せん断変形 面外せん断変形					
δ_{x}	δ_y	δ_{z}				
95mm 以上*	113mm 以上*	122mm 以上*				
注記*:						

表5 変形量の許容限界

4. 耐久性について

CRゴムを原材料として製造された止水ゴムの耐久性能について評価する。

(1) 評価項目

一般的に,ゴムの耐久性能に関する評価項目としては,耐熱性(耐熱老化性),耐海水性, 耐寒性及び耐候性が考えられる。

(a) 耐熱性(耐熱老化性)

熱によって老化(酸化・分解)が促進されることに抵抗する性質。

(b) 耐海水性

海水の浸せきによって老化(酸化・分解)が促進されることに抵抗する性質。

(c) 耐寒性

低温環境下にさらされ,硬化することによって弾性が失われることに抵抗する性質。なお, 耐寒性については,温度が上がれば機能が回復するという点で,耐熱性(耐熱老化性)とは 性質が異なる。

(d) 耐候性

屋外曝露状態で受ける、日光(紫外線)や雨雪などの作用に抵抗する性質。

- (2) 評価結果
 - (a) 耐熱性(耐熱老化性)

止水ゴムの伸縮部材に用いている原材料のCRゴムについて、メーカーにて熱老化試験が 実施されている。熱老化試験では、70℃、100℃、120℃の3種類の異なる加熱温度下におい て、加熱前に切断時伸び480%のゴムが、ゴム伸び残存率50%に相当する切断時伸び240%に至 るまで、気中において加熱を与え続けた試験を実施している。ここでゴム伸び残存率は、経 年劣化後の切断時伸びを初期の切断時伸びで除した値と定義される劣化指標で、ゴム伸び残 存率50%となる時間を基に予測寿命が算定される。図11に熱老化試験結果を示す。

熱老化試験結果をもとに、ゴム伸び残存率が 50%、60%、70%、80%、90%となる時間と温度の関係をグラフ化したものを図 12 に示す。図 12 より温度 20℃、30℃、40℃におけるゴム伸び残存率と時間の値を読み取り、作成した時間-ゴム伸び残存率の推定線を図 13 に示す。

なお,図13にはメーカーにて調査された実際に長期間使用されていたCRゴム製品のゴム 伸び残存率をプロットしているが,ほぼ推定線上に散布しており調和的である。とりわけ, 海水中より劣化環境にある気中下にて(次項(b)耐海水性にて後述)約46年間屋外で使用 されていたCRゴム製品のゴム伸び残存率は50%以上であることが確認されている。

気象庁の公開データによると柏崎地点における旬平均海面水温は,図14に示すように通年 で約7℃~29℃の範囲で変化し,その平均値は約17.4℃である。止水ゴム使用環境の海面温 度20℃とすると,図13よりゴム伸び残存率50%を確保できる耐用年数は127年と推定される。
なお、柏崎地点における旬平均海面水温が最高水温に達するのは、年間を通して8月の長 くても1ヶ月間程度であるものの、保守的に止水ゴム使用環境の海面水温を30℃として評価 しても、ゴム伸び残存率50%を確保できる耐用年数は38年と推定され、十分な耐熱性を有し ている。

長期にわたり供用されたCRゴムの耐久性について調査された事例は少ないが、宇佐美ら (1981, 1982) は約17年間使用された鉄道橋梁の支承に用いられたCRゴムを対象に、熱老 化試験等を通じて耐用年数の推定を試みている。橋梁支承に用いられたCRゴムは、海水中 より劣化環境にある気中下で使用されていること(次項(b)耐海水性にて後述),また列車 の通過に起因する大きな荷重を受けている点で、貯留堰接続部に用いられたCRゴムとは使 用された条件に相違がある。このように貯留堰接続部のCRゴムよりも厳しい条件下で使用 されたにもかかわらず、ゴム伸び残存率 50%を確保できる耐用年数は 85年以上と推定されて おり、CRゴムは十分な耐久性能を有していることを示している。

貯留堰接続部のCRゴムは伸びが生じていない状態(ゴム伸び 0%)における可撓長は図 15 に示すように 360mm である。CRゴムの伸びの試験値は 440%であるため,可撓長 1584mm に 至るまでは止水ゴムの破断は生じない。ゴム伸び残存率 50%に至るとCRゴムの伸びは 220% に半減し,破断が生じる可撓長は 792mm となるが,地震時において想定される止水ゴムの発 生変形量の最大値 107mm を大きく上回る。経年劣化によるCRゴムの伸び率の半減を考慮し ても、十分大きな変形性能を有していると考えられる。

図11 CRゴムの熱老化試験結果

図12 CRゴムのゴム伸び残存率に応じた温度と時間の関係

図13 熱老化試験より推定される時間-ゴム伸び残存率の関係

図14 柏崎地点における旬平均海面水温(気象庁公開データを基に作図)

図 15 止水ゴム構造図

(b) 耐海水性

CRゴムについて、海水浸せき試験がメーカーにて実施されている。貯留堰接続部のCR ゴムは常時において海水中に没しているため、海水浸せき試験は実際の環境下に近い状況に おける試験であるといえる。海水温度70℃,90℃におけるCRゴムの海水浸せき試験をもと に、熱老化試験と同様の整理を経て得られた時間-ゴム伸び残存率の推定線を図16に示す。 図16より、止水ゴム使用環境の海面水温を30℃としても、保守的に評価されるゴム伸び残 存率50%を確保できる耐用年数は131年と推定され、十分な耐海水性を有している。

なお,海水浸せき試験がCRゴムの劣化に与える影響を図13に示す熱老化試験結果と比べると,熱老化試験でゴム伸び残存率が50%になる年数が30℃において38年かかるのに対し, 海水浸せき試験では同じ条件で131年かかるため,海水浸せき試験がCRゴムの劣化に与える影響は熱老化試験に比べて小さいことを確認した。これは,海水環境下は前項(a)で述べた気中環境下よりも劣化環境にないためだと考えられる。

図 16 海水浸せき試験より推定される時間-ゴム伸び残存率の関係

(c) 耐寒性

図 17 に各種加硫ゴムの低温特性値を示す。一般的に、CRゴムのガラス転移温度(ゴムが 温度の低下とともに硬くなり、最後には弾性を失ってもろくなるガラス転移現象が生じる温 度で、ガラス転移温度以下ではゴムとしての特性を喪失する)は-40℃程度とされている。

CRゴムを対象にメーカーにて実施された低温下における引張試験について,図18に各試 験温度におけるCRゴムの切断時伸びの結果を示す。比較のため,同図には常温における結 果も併記した。温度の低下に伴ってCRゴムの切断時伸びも低下するが,その変化量は僅か である。また,低温下においても切断時伸びは製品規格値を上回っており,十分な耐寒性を 有している。

気象庁の公開データより柏崎地点における旬平均海面水温は,通年で約7℃~29℃の範囲 で変化し,その平均値は約17.4℃であることを踏まえると,柏崎地点の海水中に設置される CRゴムを原材料とする止水ゴムの使用に関して影響はほとんどないと考えられる。

· · · · · · · · · · · · · · · · · · · ·	カーボンブ	ンブ 低温特性値(単位℃)				
コムの権親	フック重 phr	T _g	Tø	T_{10}	T_{50}	T ₇₀
BR	SRF50	-70以	下-70以	下 —		_
NR	"	-62	-59	-59	- 53	- 48
SBR	"	- 51	- 58	- 47	-41	- 38
IIR	"	-61	- 46	- 56	- 46	- 42
CR (W)	"	-41		-38	-25	- 6
CR (WRT)	"	- 40	- 37	- 37	-28	-19
NBR (ハイカー1041)	"	-15	-20	- 14	-10	- 7
NBR (ハイカー1042)	"	- 27	- 36		·	
CIIR						
(Esso Butyl HT-1066)	FEF 30	- 56	-45	- 45	-32	-23
CO (ハイドリン100)	FEF 30	-25	- 19	-18	-12	- 9
ECO (ハイドリン200)	FEF 30	- 46	-40	- 36	- 30	- 29
CSM (ハイパロン40)	FEF40	- 27	- 43	- 6	+ 6	+ 7
ACM(チアクリル76)	FEF45		- 18	-18	- 8	- 2
FKM (G-501.)	FT 25	—	-36	- 14	+ 9	+ 15
T(チオコールFA)	FEF 30	- 49		-42	-30	- 18
U(エラストサン 455)	FEF25	-32	- 36	-22	- 13	- 7

各種加硫ゴムの低温特性値

.

Tg : ゲーマンねじり試験より (ガラス転移温度:ゴムがガラス状に変化し、弾性を失う現象が生じる温度)

T. : ぜい化試験より (ぜい化温度: 弾性回復の目安となる温度)

T10, T50, T70: T-R試験より(ゴムを伸ばした状態でガラス転移温度以下で凍結させたのち,温度を上昇させながら 自由に収縮させ,収縮率が10%, 50%, 70%となった時の温度) 出典 丹野博実:日ゴム協誌, 46, 644 (1973)

図 17 ゴムの低温特性値

(非金属材料データブック(日本規格協会),一部加筆)

図18 低温下におけるCRゴムの切断時伸び

(参考) 4-26

(d) 耐候性

CRゴムを対象とした耐候性試験(ウェザーメーター試験)がメーカーにて実施されてい る。耐候性試験は、屋外に長期曝露された状況を想定し、主に日光や雨雪に対する耐性を評 価するための試験である。試験体に対し、太陽光に近い人工光源の照射や断続した水の噴霧 を与え、自然環境に起因する劣化促進を図っている。耐候性試験をもとに、熱老化試験と同 様の整理を経て得られた時間-ゴム伸び残存率の推定線を図19に示す。比較のため図19に は、熱老化試験より得られた推定線も併記した。熱老化による影響と比較するとゴム伸び残 存率の低下は緩やかであり、熱老化よりも影響は少なく十分な耐候性を有している。

なお,止水ゴムは海水中に設置されることから,日光(紫外線)や雨雪などの影響を受け にくいと考えられ,劣化速度は耐候性試験結果よりさらに緩やかになると考えられる。

図 19 耐候性試験より推定される時間 – ゴム伸び残存率の関係

(3) まとめ

止水ゴムの耐久性能に関し、一般的にCRゴムの耐久性に大きな影響を与えると考えられる 耐熱性(耐熱老化性)、耐海水性、耐寒性及び耐候性について検討した。その結果、CRゴム の耐久性に最も大きな影響を与える項目は耐熱性(耐熱老化性)であると考えられる。耐熱性 (耐熱老化性)について、柏崎地点における旬平均海面水温が平均値で約17.4℃であることを 踏まえるとゴム伸び残存率50%を確保できる年数は127年と推定される。

なお、柏崎地点における旬平均海面水温が最高水温に達するのは、通年で長くても1か月程 度であるものの、保守的に評価してもゴム伸び残存率 50%を確保できる耐用年数は 38 年と推定 され、十分な耐熱性を有している。また、海水中より劣化環境にある気中下において約 46 年間 屋外で使用されていたCRゴム製品のゴム伸び残存率は 50%以上であることが確認されている。 以上により,柏崎地点の海水中に設置されるCRゴムを原材料とする止水ゴムは,耐熱性 (耐熱老化性),耐海水性,耐寒性及び耐候性に関する耐久性能を有していることを確認した。

【参考文献】

日本規格協会(1983):非金属材料データブック, pp. 192~193 宇佐美民雄,渡邊正夫,橘田敏之,米浜光郎,林邦明,長野悦子(1981):ゴム支承の経年 変化と静的特性,日本ゴム協会誌,54巻,3号, pp. 174-184 宇佐美民雄,渡邊正夫,橘田敏之,米浜光郎,林邦明,長野悦子(1982):ゴム支承の経年 変化と活荷重の影響,日本ゴム協会誌,55巻,12号, pp. 777-783 (参考資料5)止水ゴム取付部鋼材及び止水ゴムの根入れ部について

1. 検討概要

海水貯留堰(6号機設備)を構成する止水ゴム取付部鋼材及び止水ゴムには、地震時の安定性 を確保するとともに、堰外が引き波により海底地盤が露出した状態において、海水の貯留性及び 安定性を確保する必要がある。

地震時の安定性は、耐震性を有する鋼管矢板と前面鋼矢板に止水ゴム取付部鋼材を水中溶接で 固定することによって確保する。鋼管矢板と前面鋼矢板については、補足「2.2 海水貯留堰(6 号機設備)の耐震計算書に関する補足説明 4.2 耐震評価結果」に示すとおり、基準地震動Ss に対する耐震性、支持性を確認している。

また,海水の貯留性は,透水性が十分に小さい海底面の粘性土(A3al 層)に止水ゴム取付部 鋼材及び止水ゴムを根入れすることによって確保する。止水ゴム取付部鋼材及び止水ゴムの根入 れ部は,海底面の掘削箇所に対し根固めコンクリートによる置き換えを行っている。

そこで本資料では、海水貯留堰(6号機設備)内が満水、堰外が引き波により海底地盤が露出 した状態において、根入れされた止水ゴム取付部鋼材及び止水ゴムについて、海水の貯留性及び 安定性を確認する。

2. 根入れ部の構造概要

止水ゴム取付部鋼材及び止水ゴムの根入れ部の平面図を図1に、断面図を図2,設置地盤の物 性値を表1に示す。

止水ゴム取付部鋼材及び止水ゴムの根入れ深さは 50cm であり,鋼管矢板や前面鋼矢板の形状, 配置等を考慮して,根固めコンクリートによる置き換えを行っている。

図1 根固めコンクリートの形状(平面図)

図2 根固めコンクリートの形状(断面図)

表 1 地盤の物性値

地質区分	幾何平均透水係数 k 15 (cm/s)	土粒子密度 _{ρs} (g/cm ³)	間隙比 e
A3a1 層	1. 74×10^{-8} *1	2.681^{*2}	1.084^{*2}

注記*1:補足「2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明 (参考資料2)」より設定する。

*2 : KK 補足-024-1「地盤の支持性能 資料集」より設定する。

3. 根入れ部における海水の貯留性検討

根入れ部における海水の貯留性については,「管理型廃棄物埋立護岸設計・施工・管理マニュ アル(改訂版)(財団法人 港湾空間高度化環境研究センター,2008)」に基づき,海水貯留堰 (6 号機設備)外側の海水位が海水貯留堰(6 号機設備)天端(T.M.S.L.-3.5m)を下回る継続 時間約 16 分と,根固めコンクリートと設置地盤間がみずみちとなると仮定した場合の浸透時間 tを比較し,浸透時間 t が十分大きいことを確認する。

浸透時間 t は以下の式(1)より確認する。

$$t = \frac{L^2}{kh}$$
(1)

ここに,

t :浸透時間 (s) L :透水距離 (m) (図2より, L=3.618m)

k : 透水係数 (m/s) (表1より, k=1.74×10⁻¹⁰m/s)

h : 堰内外の水位差(m) (堰内外の最大水位差より, h=2.0m)

以下の式(2)及び(3)より,海水貯留堰(6号機設備)外側の海水位が海水貯留堰(6号機設備) 天端(T.M.S.L.-3.5m)を下回る継続時間約16分と,根固めコンクリートと設置地盤間がみずみ ちとなると仮定した場合の浸透時間 tを比較し,浸透時間 tが十分大きいことから,根入れ部の海 水の貯留性を確認した。

t =
$$\frac{L^2}{kh}$$
 = $\frac{3.618^2}{1.74 \times 10^{-10} \times 2.0}$ = 3.8×10^{10} (2)

$$t = 3.8 \times 10^{10} (s) = 6.3 \times 10^8 (min) > 16 (min)$$
 0. K. (3)

4. 根入れ部の安定性検討

根入れ部の安定性については、「河川堤防の構造検討の手引き(改訂版)(財団法人 国土技 術研究センター,2012)」に基づき、動水勾配iと限界動水勾配i。を比較し、動水勾配iが限界 動水勾配i。を下回ることを確認する。なお、「河川堤防の構造検討の手引き(改訂版)(財団 法人 国土技術研究センター,2012)」に示される動水勾配iと限界動水勾配i。による検討は、 砂質土層に対して適用されるものであるが、保守的に粘性土層(A3al 層)に設置された根固め 部の検討にも適用することとする。

動水勾配 i 及び限界動水勾配 i。は以下の式(4)及び(5)を用いて確認する。

$$i = \frac{h}{L}$$

$$i_{c} = \frac{(\rho_{s} - 1)}{(1+e)}$$
(4)
(5)

ここに、
i :動水勾配
h :堰内外の水位差(m) (堰内外の最大水位差より, h=2.0m)
L :透水距離(m) (図2より, L=3.618m)
i_c :限界動水勾配
ρ_s :土粒子密度(g/cm³)
e :間隙比

以下の式(6)から(8)より、動水勾配iが限界動水勾配i。を下回ることから、根入れ部の安定 性を確認した。

$$i = \frac{h}{L} = \frac{2.0}{3.618} = 0.55$$
(6)
$$\left(\rho_{-} - 1\right) = 2.681 - 1$$
(7)

$$i_c = \frac{(\mu_s - 1)}{(1+e)} = \frac{2.001}{1+1.084} = 0.81$$
 (7)

$$i = 0.55 < 0.81 = i_c \quad 0.K.$$
 (8)

5. まとめ

本検討では、海水貯留堰(6号機設備)内が満水、堰外が引き波により海底地盤が露出した状態において、根入れされた止水ゴム取付部鋼材及び止水ゴムについて、海水の貯留性及び安定性を確認した。

(参考資料 6) 止水ゴム取付部鋼材に作用する分布荷重の算出方法について

1. 概要

止水ゴム取付部鋼材(スキンプレート及びリブプレート)に作用する分布荷重の算出方法を示 す。

海水貯留堰(6号機設備)の平面図を図1に,海水貯留堰(6号機設備)南側接続部の鳥瞰図 を図2に,止水ゴム取付部鋼材及び止水ゴムの詳細構造図を図3に示す。

図1 海水貯留堰(6号機設備)の平面図

図2 海水貯留堰(6号機設備)南側接続部の鳥瞰図

(b) A-A断面図

図3 止水ゴム取付部鋼材の詳細構造図(南側)

2. 止水ゴム取付部鋼材に作用する荷重

スキンプレート及びリブプレートに作用する荷重図を図4に示す。作用する分布荷重は,慣性 力,動水圧,止水ゴム作用力を考慮する。

動水圧は、「港湾の施設の技術上の基準・同解説(国土交通省港湾局、2007版)」に基づき、 2 次元有効応力解析から得られる最大加速度を用いて算出する。動水圧の算出にあたっては、水 深が最も深い箇所が最も大きくなることから、海水貯留堰底面位置にて算出された動水圧に基づ き、荷重を算定する。

慣性力は、2次元有効応力解析から得られる最大加速度を用いて算出する。加速度抽出断面は、 動水圧及び止水ゴム作用力等の荷重作用方向と、NS方向(B-B断面)により得られる最大加 速度方向が、同一の方向であることを考慮し、B-B断面を選定する。補足「2.2海水貯留堰

(6 号機設備)の耐震計算書に関する補足説明 (参考資料 3)」に示すとおり、海水貯留堰 (南側)は水平震度 k_h =1.12 (Ss-1++,解析ケース③:地盤物性のばらつき(-1 σ)を考 慮した解析ケース),海水貯留堰(北側)は水平震度 k_h =1.08 (Ss-1++,解析ケース③:地 盤物性のばらつき(-1 σ)を考慮した解析ケース)を用いている。

止水ゴム作用力は、2次元有効応力解析に基づき、止水ゴムの作用幅に応じた荷重と上述した 動水圧を用いて算出する。

図4 荷重作用図

3. スキンプレートに作用する分布荷重の算出例

スキンプレートに作用する荷重図を図 5,スキンプレートの照査モデルを図 6 に示す。作用す る分布荷重は,慣性力,動水圧を考慮する。スキンプレートは,荷重値一覧を表 1 に示す。

図6 スキンプレートの照査モデル(南側)

(参考) 6-4

検討断面	動水圧 P _d (kN/m²)	慣性力 K _{sd} (kN/m²)	スキンプレート 奥行き 1 (m)	分布荷重 q (kN/m)	分布荷重 載荷幅* L (m)
南側	128.7	2.03	1.0	130. 7	0.3
北側	124.1	2.01	1.0	126.1	0.3

表1 荷重值一覧

注記*:分布荷重載荷幅=リブプレート間隔(m)

スキンプレートに作用する各荷重の算出を以下に示す。

【南側】

分布荷重 q = (P_d+K_{sd}) × 1 = (128.674+2.026) ×1.0=130.700 (kN/m) 動水圧 P_d = P_{d1} + P_{d3} = 128.674 (kN/m²)

 $P_{d 1} = 7/8. k_h. \gamma_w. h_1 = 7/8 \times 1.12 \times 10.1 \times 6.5 = 64.337$

 $P_{d 3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 1.12 \times 10.1 \times 6.5 = 64.337$

P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²)

- P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²)
- k_h:水平震度(1.12)
- γw:海水の単位体積重量(kN/m³)

慣性力 $K_{sd} = k_h \cdot G' = 1.12 \times 1.809 = 2.026$ (kN/m²)

G':自重(止水ゴム取付部鋼材の単位面積当たり)

- k_h:水平震度(1.12)
- 【北側】

分布荷重 q = (P_d+K_{sd}) × 1 = (124.078+2.012) ×1.0=126.090 (kN/m) 動水圧 P_d=P_{d1}+P_{d3}=124.078 (kN/m²) P_{d1}=7/8.k_h. γ w.h₁=7/8×1.08×10.1×6.5=62.039 P_{d3}=7/8.k_h. γ w.h₁=7/8×1.08×10.1×6.5=62.039 P_{d1}:海水貯留堰 (6 号機設備)外側の底面における動水圧 (kN/m²) P_{d3}:海水貯留堰 (6 号機設備) 内側の底面における動水圧 (kN/m²) k_h:水平震度 (1.08) γ w:海水の単位体積重量 (kN/m³) 慣性力K_{sd}=k_h·G[']=1.08×1.863=2.012 (kN/m²) G[']:自重 (止水ゴム取付部鋼材の単位面積当たり) k_h:水平震度 (1.08) 4. リブプレートに作用する分布荷重の算出例

リブプレートに作用する荷重図を図 7,止水ゴム取付部鋼材の詳細構造図を図 8,照査モデル 図を図9に示す。作用する分布荷重は,慣性力,動水圧,止水ゴム作用力を考慮する。荷重値一覧 を表2及び表3に示す。

図8 止水ゴム取付部鋼材の詳細構造図(南側)


```
図9 照査モデル図(リブプレートと鋼管矢板又は前面鋼矢板)(南側)
```

検討断面		動水圧 P _d (kN/m²)	慣性力 K _{sd} (kN/m²)	リブプレー ト間隔 1 (m)	分布荷重 q (kN/m)	分布荷重 載荷幅* L (m)
南側	1) 2 3 4 5	128.7	2. 03	0. 3	39. 2	0.501 0.120 0.120 0.751 0.308
北側	① ② ③ ④ ⑤	124. 1	2.01	0.3	37.8	0.301 0.120 0.120 0.551 0.356

表 2 荷重值一覧(分布荷重)

注記*:分布荷重載荷幅=検討箇所でのリブプレート張り出し長(m)

リブプレートに作用する分布荷重の算出を以下に示す。

【南側】

分布荷重 q = (P_d+K_{sd}) × 1 = (128.674+2.026) ×0.3=39.210 (kN/m) 動水圧 P_d = P_{d1} + P_{d3}=128.674 (kN/m²) P_{d1}=7/8.k_h. γ _w.h₁=7/8×1.12×10.1×6.5=64.337 P_{d3}=7/8.k_h. γ _w.h₁=7/8×1.12×10.1×6.5=64.337 P_{d1}:海水貯留堰 (6 号機設備) 外側の底面における動水圧 (kN/m²) P_{d3}:海水貯留堰 (6 号機設備) 内側の底面における動水圧 (kN/m²) k_h:水平震度 (1.12) γ _w:海水の単位体積重量 (kN/m³) 慣性力K_{sd}=k_h·G[']=1.12×1.809=2.026 (kN/m²) G[']:自重 (止水ゴム取付部鋼材の単位面積当たり) k_h:水平震度 (1.12)

【北側】

分布荷重 q = (P_d+K_{sd}) × l = (124.078+2.012) ×0.3=37.827 (kN/m) 動水圧 P_d=P_{d1}+P_{d3}=124.078 (kN/m²) P_{d1}=7/8.k_h. γ_{w} .h₁=7/8×1.08×10.1×6.5=62.039 P_{d3}=7/8.k_h. γ_{w} .h₁=7/8×1.08×10.1×6.5=62.039 P_{d1}:海水貯留堰 (6 号機設備) 外側の底面における動水圧 (kN/m²) P_{d3}:海水貯留堰 (6 号機設備) 内側の底面における動水圧 (kN/m²) k_h:水平震度 (1.08) γ_{w} :海水の単位体積重量 (kN/m³)

慣性力 $K_{sd} = k_h \cdot G' = 1.08 \times 1.863 = 2.012$ (kN/m²)

G':自重(止水ゴム取付部鋼材の単位面積当たり)

k_h:水平震度(1.08)

検言	讨断面	止水ゴム作用力 Fg(kN/m ²)	リブプレート間隔 1 (m)	集中荷重 P(kN/m)	分布荷重載荷幅* L (m)
南側	1		0. 3	6. 0	0.501
	2	19.9			0.120
	3				0.120
	(4)				0.751
	5				0.308
北側	1	D D D 19. 2 D D	0. 3	5.8	0.301
	2				0.120
	3				0.120
	(4)				0.551
	5				0.356

表 3 荷重值一覧(集中荷重)

注記*:分布荷重載荷幅=検討箇所でのリブプレート張り出し長(m)

スキンプレートに作用する集中荷重の算出を以下に示す。

【南側】

集中荷重 P = F_o×1 = 19.880×0.3=5.964 (kN/m) 止水ゴム作用力F_g=B/2·(P_{d1}+P_{d3}) =0.309/2×128.674=19.880 (kN/m) B:止水ゴム荷重作用幅(= $B_1 + B_2$) (m) B1:止水ゴム幅(0.24m) B₂:止水ゴム変形量(0.069m) $P_{d_1} = 7/8. k_h. \gamma_w. h_1 = 7/8 \times 1.12 \times 10.1 \times 6.5 = 64.337$ $P_{d,3} = 7/8 \cdot k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 1.12 \times 10.1 \times 6.5 = 64.337$ P_{d1}:海水貯留堰外側の底面における動水圧(kN/m²) P_{d3}:海水貯留堰内側の底面における動水圧(kN/m²) k_h:水平震度(1.12) γw:海水の単位体積重量(kN/m³) 【北側】 集中荷重 P = F_g×1 = 19.170×0.3=5.751 (kN/m) 止水ゴム作用力F_g=B/2·(P_{d1}+P_{d3}) =0.309/2×124.078=19.170 (kN/m) B:止水ゴム荷重作用幅(= B_1 + B_2) (m) B₁:止水ゴム幅(0.24m) B₂:止水ゴム変形量(0.069m) $P_{d1} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 1.08 \times 10.1 \times 6.5 = 62.039$ $P_{d,3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 1.08 \times 10.1 \times 6.5 = 62.039$ P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²) P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²) k_h:水平震度(1.08) γw:海水の単位体積重量(kN/m³)