2.4 海水貯留堰(6号機設備)の強度計算書に関する補足説明

1. 概要 · · · · · · · · · · · · · · · · · ·
2. 基本方針 ······ 2
2.1 位置
2.2 構造概要 ······ 3
2.3 評価方針 ····· 6
2.3.1 概要
2.3.2 津波時及び重畳時の解析手法
2.4 適用基準
3. 強度評価方法 · · · · · · · · · · · · · · · · · · ·
3.1 記号の定義 ······ 12
3.2 評価対象断面及び部位 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2.1 評価対象断面 ···········14
3.2.2 評価対象部位 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.3 荷重及び荷重の組合せ ・・・・・ 18
3.3.1 荷重
3.3.2 荷重の組合せ ・・・・・・ 19
3.4 許容限界
3.4.1 鋼管矢板
3.4.2 止水ゴム取付部鋼材 ・・・・・ 28
3.4.3 止水ゴム ・・・・・ 29
3.5 評価方法
3.5.1 津波時
3.5.2 重畳時
4. 評価条件
5. 強度評価結果 · · · · · · · · · · · · · · · · · · ·
5.1 津波時
5.1.1 鋼管矢板
5.1.2 止水ゴム取付部鋼材 ・・・・・ 78
5.1.3 止水ゴム ・・・・・ 78
5.2 重畳時
5.2.1 1 次元有効応力解析結果 · · · · · · · · · · · · · · · · · · ·
5.2.2 鋼管矢板
5.2.3 止水ゴム取付部鋼材 ・・・・・ 97
5.2.4 止水ゴム ・・・・・ 100
5.3 まとめ ・・・・・ 101

参考資料

(参考資料1)	津波時及び重畳時における鋼管矢板継手部の健全性について ・・・・	(参考)1-1
(参考資料 2)	海水貯留堰(6号機設備)接続部の強度評価に用いる水平震度及び作	用荷重の
	算出について	(参考) 2-1
(参考資料3)	止水ゴム取付部鋼材に作用する分布荷重の算出方法について	(参考) 3-1

(参考資料4)荷重の組合せに対する止水ゴム変位量の算出方法について …… (参考)4-1

1. 概要

本資料は、V-3-別添 3-1-1「津波への配慮が必要な施設の強度計算の方針」に示すとおり、 海水貯留堰(6 号機設備)が地震後の繰返しの襲来を想定した津波荷重,余震及び漂流物の衝突 を考慮した荷重に対し,主要な構造部材の構造健全性を保持すること及び主要な構造体の境界部 に設置する部材が有意な漏えいを生じない変形に留まることを確認するものである。

強度計算に当たっては、基準津波による津波荷重を考慮した評価を実施する。

ここで、余震とは、津波と組み合わせる地震のことであり、V-3-別添 3-1-1「津波への配慮 が必要な施設の強度計算の方針」及び補足「浸水防護施設の耐震性に関する説明書の補足説明資 料 1.1 地震と津波の組合せで考慮する荷重について」に示すとおり、弾性設計用地震動Sd -1を用いる。(以下「Sd-1」という。)

2. 基本方針

2.1 位置

海水貯留堰(6号機設備)の位置図を図2.4-2-1に示す。

図 2.4-2-1(1) 海水貯留堰(6号機設備)の位置図(全体平面図)

2.2 構造概要

海水貯留堰(6号機設備)の平面図を図2.4-2-2,標準図を図2.4-2-3に示す。

海水貯留堰(6号機設備)は、その機能及び目的から海水貯留堰(6号機設備)本体及び取 水護岸(6号機設備)接続部に区分され、このうち海水貯留堰(6号機設備)本体は鋼管矢板 と鋼管矢板同士を接続する鋼管矢板継手、取水護岸(6号機設備)接続部は止水ゴム及び止水 ゴム取付部鋼材より構成される。また、鋼管矢板には、海水による腐食防止のため、電気防食 が施されている。取水護岸(6号機設備)は、海水貯留堰(6号機設備)の間接支持構造物で あり、前面鋼矢板より構成される。また、前面鋼矢板には、海水による腐食防止のため、電気 防食が施されている。

鋼管矢板は、 ϕ 1100mmの炭素鋼鋼管であり、全 125本の鋼管矢板を連続的に打設すること により堰形状を構成する。鋼管矢板は、下端を十分な支持性能を有する古安田層もしくは西山 層に支持される。天端は、原子炉補機冷却海水ポンプの取水に必要な水量を確保するため、海 底地盤レベル T. M. S. L. -5. 5m に対して天端高さを T. M. S. L. -3. 5m 及び T. M. S. L. -3. 0m とし ており、約 2m 及び約 2. 5m の堰高さを有する。海水貯留堰(6 号機設備)の寸法は、約 92m× 約 40m である。

海水貯留堰(6号機設備)は北側に隣接する5号機海水貯留堰と一体の構造となっている。 図 2.4-2-4 に示す5,6号機海水貯留堰中仕切り部の鋼管矢板は、天端高さがT.M.S.L.-3.0mであり、海水貯留堰(6号機設備)を構成する他の鋼管矢板(天端高さT.M.S.L.-3.5m) と堰高さが異なる。

図 2.4-2-2(1) 海水貯留堰(6号機設備)の平面図

前面鋼矢板 (SP-IV型 SY295)

図 2.4-2-2(2) 海水貯留堰(6号機設備)の平面図(A部拡大)

図 2.4-2-3(1) 海水貯留堰(6号機設備)の標準図)

b. P-T 継手

(単位:mm)

図 2.4-2-3(2) 海水貯留堰(6号機設備)の標準図)

図 2.4-2-4 海水貯留堰(6号機設備)の平面図

2.3 評価方針

2.3.1 概要

海水貯留堰(6号機設備)は、常設重大事故防止設備及び常設重大事故緩和設備に分類 される。

海水貯留堰(6 号機設備)の強度評価は、V-3-別添 3-1-1「津波への配慮が必要な施設 の強度計算の方針」の「4.1 荷重及び荷重の組合せ」及び「4.2 許容限界」において設 定している荷重及び荷重の組合せ、並びに許容限界を踏まえて実施する。強度評価では、

「3. 強度評価方法」に示す方法により,「4. 評価条件」に示す評価条件を用いて評価 し,「5. 強度評価結果」より,海水貯留堰(6号機設備)の評価対象部位に作用する応 力等が許容限界以下であることを確認する。

海水貯留堰(6号機設備)の強度評価においては、その構造を踏まえ、津波及び余震荷 重の作用方向や伝達過程を考慮し、評価対象部位を設定する。強度評価に用いる荷重及び 荷重の組合せは、津波に伴う荷重作用時(以下「津波時」という。)及び津波に伴う荷重 と余震に伴う荷重作用時(以下「重畳時」という。)について行う。

海水貯留堰(6号機設備)の耐津波設計における要求機能と設計評価方針を表 2.4-2-1 に,評価項目を表 2.4-2-2 に示す。

海水貯留堰(6号機設備)の強度評価は,表2.4-2-2の海水貯留堰(6号機設備)の評 価項目に示すとおり,構造部材の健全性評価及び構造物の変形性評価を行う。

構造部材の健全性評価及び構造物の変形性評価を実施することにより,構造強度を有す ること及び止水性を損なわないことを確認する。

構造部材の健全性評価については,構造部材の発生応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価については、海水貯留堰(6 号機設備)の鋼管矢板が 1 列に並 んでいる構造であることから、津波荷重による接地圧への影響がほぼないこと及び重畳時 の余震荷重よりも地震時の地震荷重の方が接地圧への影響が大きいことを考慮して、耐震 計算書において実施する。

構造物の変形性評価については、止水ゴムの変形量を算定し、有意な漏えいが生じない ことを確認した許容限界以下であることを確認する。

構造部材の健全性評価のうち津波時の検討では、2次元静的フレーム解析における地盤 ばねの剛性を考慮した検討を実施し、構造部材の発生応力が許容限界以下であることを確 認する。また、重畳時の検討では、1次元有効応力解析から地盤ばねの剛性を考慮した2次 元静的フレーム解析を実施し、構造部材の発生応力が許容限界以下であることを確認する とともに、地盤物性のばらつきの影響評価を実施する。

海水貯留堰(6号機設備)の強度評価フローを図2.4-2-5に示す。

なお,重畳時の評価における入力地震動は解放基盤表面で定義される余震(Sd-1) を1次元波動論により地震応答解析モデル底面位置で評価したものを用いる。

表 2.4-2-1 海水貯留堰(6号機設備)の耐津波設計における要求機能と設計評価方針

(津波防護施設)

資料	その他発電用原子炉の 付属設備(浸水防護施設)	V-1-1-3-2-5「津波防護に関する施設の設計方針」			の他発電用原子炉の ひー1-1-3-2-5「津波防護に関する施設の設計方針」 ひー3-別添 3-1-1「津波への配慮が必要な施設の強度計算の方針」 設備(浸水防護施設)						
			機	能設計		構造強	渡設計				
施設名	基本設計方針	要求機能	상는 수는 모 十面	+株会にまれまし, 十つ人	圣书日期	(那年七日)	河田社舟如店	;	幾能損傷モード	設計に用いる許容限界	
			111.111日 1宗	機能設計力並	11111111111111111111111111111111111111	構這独皮設計 (評価力計)	評個对象部位	応力等の状態	限界状態		
	【1.4.1 設計方針】	津波防護施設	海水貯留堰は, 地震	海水貯留堰は、 <mark>地震後の</mark>	海水貯留堰は、 <mark>地震後の</mark>	地震後の繰返しの襲来を想定した津				「道路橋示方書(I 共通編・IV下部	
	津波防護施設については,「1.2	は、繰返しの襲	後の繰返しの襲来を	繰返しの襲来を想定した	繰返しの襲来を想定した	波荷重、余震及び漂流物の衝突を考				構造編) ・同解説 (平成 14 年 3	
	入力津波の設定」で設定している	来を想定した入	想定した遡上波に対	遡上波に対し、余震、漂	遡上波の浸水に伴う津波	慮した荷重に対し、主要な構造部材				月)」に基づき、短期許容応力度と	
	繰返しの襲来を想定した入力津	力津波に対し,	し、余震、漂流物の	流物の衝突及び積雪を考	荷重並びに余震,漂流物	の構造健全性を保持する設計とする		曲ルギ		する。 【基準津波に対して, 適切	
	波に対して,津波防護対象設備	余震,漂流物の	衝突及び積雪を考慮	慮した場合においても,	の衝突及び積雪による荷	ため,構造部材である鋼管矢板が,	鋼管矢板	出り、		な裕度をもって弾性状態にとどまる	
	の要求される機能を損なうおそ	衝突及び積雪を	した場合において	原子炉補機冷却海水ポン	重に対し,古安田層中の	おおむね弾性状態に留まることを確		270191		ように設定する。】	
	れがないよう以下の機能を満足	考慮した場合に	も、津波による水位	プ等の取水に必要な高さ	粘性土もしくは西山層に	認する。					
	する設計とする。	おいても、津波	低下に対して原子炉	及び原子炉冷却に必要な	支持される鋼製の鋼管矢						
	【1.4.1(1) 津波防護施設】	防護対象設備	補機冷却海水ポンプ	貯留量を考慮した天端高	板で構成し,地震後,津						
	津波防護施設は、漏水を防止す	が、要求される	等が取水可能な高さ	さ T.M.S.L. — 3.5m と	波後の再使用性を考慮						
	る設計とする。	機能を損なうお	以上の施工により,	し、取水口前面の海中に	し、主要な構造部材の構	地震後の繰返しの襲来を想定した津				【基準津波に対して、漏水試験及び	
	【1.4.1(1) 津波防護施設】	それがないよ	原子炉補機冷却海水	設置する設計とする。	造健全性を保持する設計	波荷重,余震及び漂流物の衝突を考		止水ゴム 変形	有意な漏えいに至る変形	変形試験により、有意な漏えいが生	
	津波防護施設として設置する海	う、津波による	ポンプ等の機能が保	海水貯留堰は、鋼製の鋼	とし、ずれる又は浮き上	慮した荷重に対し、主要な構造体の				じないことを確認した変形量とす	
	水貯留堰については、津波によ	漏水を防止する	持でき,かつ,原子	管矢板を古安田層中の粘	がるおそれのない設計と	境界部に設置する部材が有意な漏え				る。】	
	る水位低下に対して,原子炉補	ことが要求され	炉冷却に必要な海水	性土もしくは西山層で支	するとともに,鋼管矢板	いを生じない変形に留める設計とす	止水ゴム				
海水	機冷却海水ポンプ等の取水可能	る。	を確保できることを	持し,海水を貯留する設	同士を接続する鋼管矢板	るため,境界部に設置する止水ゴム	止小コム				
貯留堰	水位を保持し、かつ、冷却に必		機能設計上の性能目	計とする。	継手を設置し,部材を有	が、有意な漏えいを生じない変形量					
	要な海水を確保する設計とす		標とする。	鋼管矢板同士の接続部に	意な漏えいを生じない変	以下であることを確認する。					
	る。			は,試験等により止水性	形にとどめる設計とす						
	主要な構造体の境界部には、想			を確認した鋼管矢板継手	る。また,取水護岸と海						
	定される荷重の作用及び相対変			を設置し、鋼管矢板の境	水貯留堰の接続部には,						
	位を考慮し、試験等にて止水性			界部の止水性を保持する	止水ゴムを設置し、部材	地震後の繰返しの襲来を想定した津				「道路橋示方書(I 共通編・IV下部	
	を確認した止水ゴム等を設置			設計とする。また、取水	を有意な漏えいを生じな	波荷重,余震及び漂流物の衝突を考				構造編) ・同解説(平成 14 年 3	
	し、止水処置を講じる設計とす			護岸と海水貯留堰の接続	い相対変位に留める設計	慮した荷重に対し、主要な構造部材				月)」に基づき、短期許容応力度と	
	る。			部には,試験等により止	とする。これらの設計に	の構造健全性を保持する設計とする	止水ゴム 曲に 取付部鋼材 せん	<u>در</u> 4.		する。 【基準津波に対して, 適切	
	【1.4.2 荷重の組合せ及び許容			水性を確認した止水ゴム	よって、主要な構造部材	ため、構造部材である止水ゴム取付			部材が弾性域に留まらす翌	な裕度をもって弾性状態にとどまる	
	限界】			を設置し、取水護岸と海	の構造健全性を保持する	部鋼材が、おおむね弾性状態に留ま		取付部鋼材	せん断 性域に入る状態 	1生域に入る状態 	ように設定する。】
	自然条件(積雪,風荷重)及び			水貯留堰の境界部の止水	 ことを構造強度設計上の	ることを確認する。					
	余震として考えられる地震に加			性を保持する設計とす	性能目標とする。						
	え,漂流物による荷重を考慮す			る。							
	る。										

赤字:荷重条件

緑字:要求機能

青字:対応方針

評価方針	評価項目	部位	評価方法	許容限界
構造強度 を有する こと	構造部材の	鋼管矢板	曲げ軸力, せん断力に対 する発生応力が許容限界 以下であることを確認	短期許容応力度
	健全性	健全性	止水ゴム取付部 鋼材	曲げ軸力, せん断力に対 する発生応力が許容限界 以下であることを確認
止水性を 損なわな いこと	構造物の 変形性	止水ゴム	発生変形量が許容限界以 下であることを確認	有意な漏えいが 生じないことを 確認した変形量

表 2.4-2-2 海水貯留堰(6号機設備)の評価項目

図 2.4-2-5 海水貯留堰(6号機設備)の強度評価フロー

2.3.2 津波時及び重畳時の解析手法

海水貯留堰(6号機設備)の津波時及び重畳時の解析手法は,鋼管矢板を線形はり要素, 地盤を1次元有効応力解析の応答値より設定した線形ばね要素でモデル化した2次元静的 フレーム解析とする。

津波時及び重畳時における解析手法の選定フローを図 2.4-2-6 に示す。

図 2.4-2-6 津波時及び重畳時における解析手法の選定フロー

2.4 適用基準

適用する規格,基準類を以下に示す。また,表2.4-2-3に各項目で適用する規格,基準類 を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)
- ・防波堤の耐津波設計ガイドライン(国土交通省港湾局,平成27年12月一部改訂)
- ・港湾鋼構造物防食・補修マニュアル(沿岸技術研究センター, 2009年版)
- Guidelines for Design of Structures for Vertical Evacuation from Tsunamis Second Edition (FEDERAL EMERGENCY MANAGEMENT AGENCY , 2012)

項目	適用する規格、基準類	備考
 使用材料及び材料定数	・コンクリート標準示方書 [構造	
	性能照查編](2002 年)	
	・港湾の施設の技術上の基準・同	・永久荷重+偶発荷重の適切
古重及び 古重の 知む へわ ナ	解説(2007版)	な組合せを検討
何里及し何里の加み日初と	 道路橋示方書(IV下部構造) 	
	編)・同解説(平成14年3月)	
	 ・道路橋示方書(IV下部構造) 	・曲げに対する照査は、発生
	編)・同解説(平成14年3月)	応力度が、短期許容応力度
新家四田	・港湾鋼構造物防食・補修マニュ	以下であることを確認
计符取外	アル(2009 年版)	・せん断に対する照査は、発
	・鋼矢板 設計から施工まで(平	生応力度が短期許容応力度
	成12年3月)	以下であることを確認
	・港湾の施設の技術上の基準・同	・腐食代の設定
	解説(2007版)	
計個力伝	・鋼矢板 設計から施工まで(平	
	成12年3月)	
	•原子力発電所耐震設計技術指針	・有限要素法による1次元モ
地震応答解析	JEAG4601-1987	デルを用いた時刻歴非線形
		解析

表 2.4-2-3 適用する規格,基準類

3. 強度評価方法

3.1 記号の定義

海水貯留堰(6号機設備)の強度評価に用いる記号を表 2.4-3-1 に示す。

記号	定義	単位			
g	重力加速度	m/s^2			
k h	水平震度	_			
k v	鉛直震度	_			
р 1	海水貯留堰(6号機設備)外側の底面における波圧強度	kN/m²			
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	kN/m^2			
рз	海水貯留堰(6号機設備)内側の底面における波圧強度	kN/m²			
η	海水貯留堰(6号機設備)外側の天端面からの津波高さ	m			
h 1	海水貯留堰(6号機設備)外側の底面における水深	m			
h 2	海水貯留堰(6号機設備)外側の天端面における水深	m			
h 3	海水貯留堰(6号機設備)内側の底面における水深	m			
Рс	衝突荷重	kN			
P _d	動水圧	kN/m^2			
P _t	遡上津波荷重	kN/m²			
P _{hy}	津波荷重 (静水圧)	kN/m²			
V	海水貯留堰(6号機設備)位置での津波最大流速	m/s			
W c	漂流物の重量	kN			
У	動水圧の作用高さ	m			
γw	海水の単位体積重量	kN/m ³			
ρ	海水の密度	kg/m ³			
G	固定荷重	kN			
K S d	余震荷重	kN			
σ	曲げモーメント及び軸力による応力				
σ _{sa}	短期許容曲げ応力度				
М	最大曲げモーメント ki				

表 2.4-3-1(1) 強度評価に用いる記号(1/2)

記号	定義	単位
Z	断面係数	m ³
Ν	軸力	kN
А	有効断面積	m ²
τ	せん断応力	N/mm^2
au a	短期許容せん断応力度	N/mm^2
S	せん断力	kN
κ	せん断応力の分布係数	

表 2.4-3-1(2) 強度評価に用いる記号(2/2)

- 3.2 評価対象断面及び部位
- 3.2.1 評価対象断面

評価対象断面は,海水貯留堰(6号機設備)鋼管矢板が縦断方向に対し一様な設備形状 であることを踏まえ,鋼管矢板の周辺の地質状況に基づき設定する。

海水貯留堰(6号機設備)は、取水口前面の海中に設置する鋼管矢板を連結した構造物 であり、取水護岸(6号機設備)に接続している。鋼管矢板の根入れは8mであり、西山層 もしくは古安田層中の粘性土に直接設置される。海水貯留堰(6号機設備)の平面図を図 2.4-3-1に、地質断面図を図 2.4-3-2に、地質断面図及び地層構成に着目した抽出箇 所に基づく地震応答解析モデルを図 2.4-3-3に示す。

海水貯留堰(6号機設備)設置位置では,南北方向では北に向かって岩盤上面標高が低くなり,東西方向では,西に向かって岩盤上面標高が深くなっている。岩盤上面標高が深い方が地震時における海水貯留堰(6号機設備)への応答が大きいと考えられるため,評価対象断面としてA-A断面(断面②)を,海水貯留堰(6号機設備)の応答の影響度合いを確認するため,評価対象断面としてA-A断面(断面①)をそれぞれ選定した。

断面①:海水貯留堰(6号機設備)の南側短手方向直線部の西側端部

(岩盤上面標高が最も高い断面)

断面②:海水貯留堰(6号機設備)の北側短手方向直線部の西側端部 (岩盤上面標高が最も低い断面)

図 2.4-3-1 海水貯留堰(6号機設備)の平面図

図 2.4-3-2(2) 地質断面図 (B-B断面図)

資料 8-2.4-15

資料 8-2.4-16

3.2.2 評価対象部位

評価対象部位は、海水貯留堰(6号機設備)の構造上の特徴を踏まえ設定する。

- (1) 鋼管矢板構造部材の健全性が要求される鋼管矢板を評価対象部位とする。
- (2) 止水ゴム取付部鋼材
 海水貯留堰(6号機設備)の取水護岸(6号機設備)接続部に設置する止水ゴム取付部
 鋼材を評価対象部位とする。
- (3) 止水ゴム

海水貯留堰(6号機設備)の取水護岸(6号機設備)接続部に設置する止水ゴムを評価 対象部位とする。 3.3 荷重及び荷重の組合せ

強度計算に用いる荷重及び荷重の組合せは、V-3-別添 3-1-1「津波への配慮が必要な施設 の強度計算の方針 4.1 荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを踏 まえて設定する。

3.3.1 荷重

海水貯留堰(6号機設備)の強度評価において、考慮する荷重を以下に示す。

- (1) 固定荷重(G)
 固定荷重として,構造物の自重を考慮する。
- (2) 遡上津波荷重(P_t)
 遡上津波荷重として,保守的に津波による最大荷重(越流直前の津波波力)を適用する。
- (3) 津波荷重(静水圧) (P_{hy}) 津波荷重(静水圧)として、津波により越流している状態で余震が発生することを想 定し、津波荷重は平面 2 次元モデルによる津波シミュレーション解析により得られる最 大内外水位差に応じた静水圧を算定し、越流時の津波波力(静水圧差)を適用する。
- (4) 衝突荷重(P_c)

衝突荷重は,表 2.4-3-2 に示すとおり,KK7 補足-019-2「津波への配慮に関する説明書に係る補足説明資料 4.7 漂流物衝突を考慮した津波防護施設の設計について」に示す漂流物衝突荷重一覧のうち,最も大きい荷重となる軽自動車の FEMA (2012)で示された算定式による衝突荷重を考慮する。

	流速 (m/s)	衝突荷重 (kN)
基準津波時	6	499

(5) 余震荷重(KS_d)

余震荷重として,構造物中心位置で実施した1次元有効応力解析の地表面最大加速度 から水平震度及び鉛直震度を算定し,躯体慣性力や動水圧を考慮する。

なお、動水圧については、余震(Sd-1)を入力地震動とした、1次元有効応力解 析の地表面加速度に基づき設定した水平震度及びWestergaardの式を用いて設定する。

3.3.2 荷重の組合せ

(1) 鋼管矢板

鋼管矢板の強度評価に用いる荷重の組合せは津波時及び重畳時に区分し、荷重の組合せ を表 2.4-3-3 から表 2.4-3-6 に、荷重作用図を図 2.4-3-4 から図 2.4-3-6 に示 す。

鋼管矢板の強度評価において、津波時の荷重は基準津波による津波波力を用いて算出している。重畳時の荷重は1次元有効応力解析から得られる結果を用いて余震荷重を算出している。これらの荷重は「2.3 評価方針」に示すとおり、津波時は2次元静的フレーム解析を用いた解析手法の中で、重畳時は2次元静的フレーム解析及び1次元有効応力解析を用いた解析手法の中で、それぞれ考慮されている。

ここで、重畳時における津波荷重と余震荷重の作用方向に関して、海水貯留堰(6号機 設備)は地盤深度方向に長尺の鋼管矢板で構成されているため、津波荷重により鋼管矢 板に発生する曲げモーメントによる影響が支配的であることから、津波荷重と余震荷重 は同じ方向に作用させることが最も厳しい条件となる。

慣性力及び動水圧については、「3.5.2 重畳時 (1) 鋼管矢板 b.2 次元静的フレー ム解析」に示す解析ケース及び「3.5.2 重畳時 (1) 鋼管矢板 c.1 次元有効応力解析 (c) 入力地震動」に示す余震(Sd-1)を考慮した 1 次元有効応力解析から得られる 最大加速度を用いて算出する。鋼管矢板の強度評価に用いる水平震度は、(参考資料 2) に示すとおり、断面①は水平震度 k_h=0.51(③地盤物性のばらつき(-1σ)を考慮した 解析ケース)、断面②は水平震度 k_h=0.58(③地盤物性のばらつき(-1σ)を考慮した 解析ケース)を用いる。

	区分	荷重の組合せ
	津波時	$G + P_t + P_c$
重畳時	重畳時1	$G + P_t + K S_d$
	重畳時2	$G+P_{hy}+KS_{d}+P_{c}$

表 2.4-3-3 荷重の組合せ (鋼管矢板)

G:固定荷重

P ₊ : 遡上津波荷重

P_{hv}:津波荷重(静水圧)

P。: 衝突荷重

KSd:余震荷重

種別		荷重		算定方法
固定		皈休白垂	\bigcirc	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
		田中	和仲日里	0
	山 に	機器・配管自重	—	・機器・配管設備はないことから、考慮しない
	11] 里	土被り荷重		・土被りはないため、考慮しない
永久		上載荷重		・地盤表面に恒常的に置かれる構造物はないため考慮しない
荷重	荷重	静止土圧		・静止土圧は考慮しない
	外水圧		_	・静水圧を考慮するが、津波波力との差分から鋼管矢板に荷 重を載荷しない
	内水圧			・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重			・土中及び水中の構造物であることから、考慮しない
		津波荷重	0	・基準津波による津波波力を考慮する
偶発荷重	荷重	衝突荷重	0	・1.0t 軽自動車の衝突荷重を考慮する
	里町	余震荷重		・津波時であることから余震荷重は考慮しない
		動水圧	_	・津波時であることから動水圧は考慮しない

表 2.4-3-4 荷重の組合せ (鋼管矢板 津波時)

(海水貯留堰内側)

図 2.4-3-4 荷重作用図(鋼管矢板 津波時 北側)

種別		荷重		算定方法
		皈体百壬	\bigcirc	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	田安	淞徑日里	0	じて設定
	自足	機器・配管自重		 ・機器・配管設備はないことから、考慮しない
	11] 里	土被り荷重		・土被りはないため、考慮しない
<i>⇒</i> ∠ <i>1</i>		上載荷重		・地盤表面に恒常的に置かれる構造物はないため考慮しない
水 八 古舌		静止土圧	_	・静止土圧は考慮しない
彻里	外水圧		_	・静水圧を考慮するが、津波波力との差分から鋼管矢板に荷
				重を載荷しない
	内水圧		_	 ・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重		—	・土中及び水中の構造物であることから、考慮しない
		津波荷重	\bigcirc	・基準津波による津波波力を考慮する
佃惑	齿舌	衝突荷重	_	・重畳時であることから漂流物の衝突は考慮しない
下用	阳里	余震荷重	0	・余震(Sd-1)による水平及び鉛直同時加振を考慮する
		動水圧	0	・重畳時であることから動水圧を考慮する

表 2.4-3-5 荷重の組合せ (鋼管矢板 重畳時 1)

(海水貯留堰内側)

図 2.4-3-5 荷重作用図(鋼管矢板 重畳時1 北側)

種別		荷重		算定方法
		皈休卢垂	\bigcirc	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	me	淞冲日里	0	じて設定
	自足	機器・配管自重	—	 ・機器・配管設備はないことから、考慮しない
	11] 里	土被り荷重	—	・土被りはないため、考慮しない
<i>ネル</i>		上載荷重	—	・地盤表面に恒常的に置かれる構造物はないため考慮しない
水 八 古香		静止土圧		・静止土圧は考慮しない
彻里	外水圧			・静水圧を考慮するが、津波波力との差分から鋼管矢板に荷
				重を載荷しない
	内水圧			 ・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重		_	・土中及び水中の構造物であることから、考慮しない
		津波荷重	0	・基準津波による越流時の津波波力(静水圧差)を考慮する
佃惑	齿舌	衝突荷重	\bigcirc	・1.0t 軽自動車の衝突荷重を考慮する
下光	阳里	余震荷重	0	・余震(Sd-1)による水平及び鉛直同時加振を考慮する
		動水圧	0	・重畳時であることから動水圧を考慮する

表 2.4-3-6 荷重の組合せ (鋼管矢板 重畳時 2)

(海水貯留堰内側)

図 2.4-3-6 荷重作用図(鋼管矢板 重畳時 2 北側)

(2) 止水ゴム取付部鋼材

止水ゴム取付部鋼材の強度評価に用いる荷重の組合せは津波時及び重畳時に区分し, 荷重の組合せを表2.4-3-7から表2.4-3-10に,荷重作用図を図2.4-3-7から図2.4 -3-9に示す。止水ゴム取付部鋼材への漂流物の衝突可能性については,鋼管矢板と前 面鋼矢板の離隔距離(6号機設備:南側0.738m北側0.826m,7号機設備:南側1.172m北 側0.839m)の関係から,7号機設備による検討が保守的であるため,7号機の検討で代表 できる。7号機の検討結果については,補足「2.3 海水貯留堰の強度計算書に関する補 足説明 (参考資料2)」に示す。

止水ゴム取付部鋼材の強度評価において、津波時の荷重は基準津波による津波波力を 用いて算出している。重畳時の荷重は1次元有効応力解析から得られる結果を用いて余震 荷重を算出している。なお、止水ゴムからの作用荷重を保守的に評価するために、止水 ゴム作用力を作用荷重として考慮する。評価方法の詳細は「3.5 評価方法」に示す。

慣性力及び動水圧については、「3.5.2 重畳時 (1) 鋼管矢板 b.2 次元静的フレー ム解析」に示す解析ケース及び「3.5.2 重畳時 (1) 鋼管矢板 c.1 次元有効応力解析 (c) 入力地震動」に示す余震(Sd-1)を考慮した 1 次元有効応力解析から得られる 最大加速度を用いて算出する。海水貯留堰(6 号機設備)接続部の強度評価に用いる水平 震度は、(参考資料 2)に示すとおり、断面①の水平震度はk_h=0.51 となり、断面②の 水平震度はk_h=0.58 となる。断面①及び断面②を比較して、水平震度が大きい断面② (k_h=0.58)を強度評価に用いることとし、作用荷重も水平震度k_h=0.58 を基に算出 する。

	区分	荷重の組合せ
	津波時	$G + P_{t}$
舌里吐	重畳時1	$\mathrm{G}+\mathrm{P}_{\mathrm{t}}+\mathrm{K}~\mathrm{S}_{\mathrm{d}}$
里宜时	重畳時2	$G + P_{hy} + KS_{d}$

表 2.4-3-7 荷重の組合せ(止水ゴム取付部鋼材)

G:固定荷重

P t: 遡上津波荷重

P_{hy}:津波荷重(静水圧)

KSd:余震荷重

種別		荷重		算定方法
		部材自重	_	・他の荷重と比較し非常に小さいため、考慮しない
	固定	機器・配管自重	_	・機器・配管設備はないことから、考慮しない
	荷重	土被り荷重	_	・土被りはないため、考慮しない
		上載荷重	_	・地盤表面に恒常的に置かれる構造物はないため考慮しない
永久		静止土圧	_	・静止土圧は考慮しない
荷重				・静水圧を考慮するが、津波波力との差分から止水ゴム取付
		211/11/土		部鋼材に荷重を載荷しない
	内水圧		_	・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重		_	・土中及び水中の構造物であることから、考慮しない
	津波荷重		0	・基準津波による津波波力を考慮する
		衝突荷重	_	・漂流物の衝突は考慮しない
偶発	荷重	余震荷重	_	・津波時であることから余震荷重は考慮しない
		動水圧		・津波時であることから動水圧は考慮しない
		止水ゴム作用力	0	・止水ゴムに作用する荷重を考慮する

表 2.4-3-8 荷重の組合せ(止水ゴム取付部鋼材 津波時)

図 2.4-3-7 荷重作用図(止水ゴム取付部鋼材 津波時 北側)

種別		荷重		算定方法
		如壮白舌	\cap	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	пњ	前州 日里	0	じて設定
	回 <i>止</i>	機器・配管自重	—	 ・機器・配管設備はないことから、考慮しない
	们里	土被り荷重	—	・土被りはないため、考慮しない
ネカ		上載荷重	_	・地盤表面に恒常的に置かれる構造物はないため考慮しない
赤八		静止土圧	—	・静止土圧は考慮しない
间里	外水圧		_	・静水圧を考慮するが、津波波力との差分から止水ゴム取付
				部鋼材に荷重を載荷しない
	内水圧		—	・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重		_	・土中及び水中の構造物であることから、考慮しない
		津波荷重	0	・基準津波による津波波力を考慮する
		衝突荷重		・漂流物の衝突は考慮しない
偶発	荷重	余震荷重	\bigcirc	・余震(Sd-1)による水平及び鉛直同時加振を考慮する
		動水圧	\bigcirc	・重畳時であることから動水圧を考慮する
		止水ゴム作用力	0	・止水ゴムに作用する荷重を考慮する

表 2.4-3-9 荷重の組合せ(止水ゴム取付部鋼材 重畳時 1)

図 2.4-3-8 荷重作用図(止水ゴム取付部鋼材 重畳時1 北側)

種別		荷重		算定方法
		却 壮白舌	\cap	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
	日今	中的4月 重	0	じて設定
	回足	機器・配管自重	—	 ・機器・配管設備はないことから、考慮しない
	彻里	土被り荷重	_	・土被りはないため、考慮しない
ネカ		上載荷重	—	・地盤表面に恒常的に置かれる構造物はないため考慮しない
赤八		静止土圧		・静止土圧は考慮しない
1번 포	外水圧			・静水圧を考慮するが、津波波力との差分から止水ゴム取付
				部鋼材に荷重を載荷しない
	内水圧			・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重		_	・土中及び水中の構造物であることから、考慮しない
		津波荷重	0	・基準津波による越流時の津波波力(静水圧差)を考慮する
		衝突荷重	_	・漂流物の衝突は考慮しない
偶発	何重	余震荷重	\bigcirc	・余震(Sd-1)による水平及び鉛直同時加振を考慮する
		動水圧	0	・重畳時であることから動水圧を考慮する
		止水ゴム作用力	0	・止水ゴムに作用する荷重を考慮する

表 2.4-3-10 荷重の組合せ(止水ゴム取付部鋼材 重畳時 2)

(海水貯留堰内側)

図 2.4-3-9 荷重作用図(止水ゴム取付部鋼材 重畳時2 北側)

3.4 許容限界

許容限界は、「3.2 評価対象断面及び部位」にて設定した評価対象部位の応力や変形の状態を考慮し、V-3-別添 3-1-1「津波への配慮が必要な施設の強度計算の方針」にて設定している許容限界を踏まえて設定する。

3.4.1 鋼管矢板

鋼管矢板の許容限界は、「道路橋示方書(I共通編・IV下部構造編)・同解説(日本 道路協会、平成14年3月)」に基づき、表2.4-3-11の鋼管矢板の許容限界に示すとお り、鋼管矢板の許容応力度に対して割増係数1.5を考慮した短期許容応力度とする。

立7 (寺	++*1	百日	許容限界
百四亚。	1/1 /r/ 	供日	(N/mm^2)
鋼管矢板	SKV 400	短期許容曲げ応力度 σ _{sa}	277
φ 1100	SK1490	短期許容せん断応力度 τ _а	157

表 2.4-3-11 鋼管矢板の許容限界

3.4.2 止水ゴム取付部鋼材

止水ゴム取付部鋼材の許容限界は、「道路橋示方書(I共通編・IV下部構造編)・同 解説(日本道路協会,平成14年3月)」に基づき,表2.4-3-12の止水ゴム取付部鋼材 の許容限界に示すとおり,鋼材の許容応力度に対して割増係数1.5を考慮した短期許容応 力度とする。

また、止水ゴム取付部鋼材は、鋼管矢板及び前面鋼矢板に水中溶接にて設置する。止 水ゴム取付部鋼材(水中溶接部)に対する許容限界は、「道路橋示方書(I共通編・IV 下部構造編)・同解説(日本道路協会、平成14年3月)」、「鋼矢板 設計から施工ま で(鋼管杭協会、平成12年3月)」及び「港湾鋼構造物防食・補修マニュアル(沿岸技 術研究センター、2009年版)」に基づき、鋼材の許容応力度に対して割増係数1.5を考 慮し、表2.4-3-13の止水ゴム取付部鋼材(水中溶接部)の許容限界に示す短期許容応 力度とする。ただし、水中溶接部の短期許容応力度は、「港湾鋼構造物防食・補修マニ ュアル(沿岸技術研究センター、2009年版)」に基づき、気中溶接部の短期許容応力度 から30%減じたものとする。

部位	材料	項目	許容限界 (N/mm ²)
止水ゴム	SM490	短期許容曲げ応力度 σ _{sa}	277
取付部鋼材		短期許容せん断応力度 τ _а	157

表 2.4-3-12 止水ゴム取付部鋼材の許容限界

表 2.4-3-13(1) 止水ゴム取付部鋼材(水中溶接部)の許容限界(接続:鋼管矢板)

部位	材料	項目	許容限界 (N/mm ²)
止水ゴム 取付部鋼材	止水ゴム取付部鋼材(SM490) /鋼管矢板(SKY490)	短期許容曲げ応力度 σ _{sa} 及び 短期許容せん断応力度 τ _a (水中溶接部)	110

表 2.4-3-13(2) 止水ゴム取付部鋼材(水中溶接部)の許容限界(接続:前面鋼矢板)

部位	材料	項目	許容限界 (N/mm ²)
止水ゴム 取付部鋼材	止水ゴム取付部鋼材(SM490) /前面鋼矢板(SY295)	短期許容曲げ応力度 σ _{sa} 及び 短期許容せん断応力度 τ _a (水中溶接部)	105

3.4.3 止水ゴム

止水ゴムの変形量の許容限界を表 2.4-3-14 に示す。止水ゴムの変形量の許容限界は, 漏水試験及び変形試験により,有意な漏えいが生じないことを確認した変形量とする。 なお,漏水試験及び変形試験については,補足「2.2 海水貯留堰(6号機設備)の耐

震計算書に関する補足説明 (参考資料 4)」に示す。

	部位	項目		許容限界
			δx	9.5cm以上*
	止水ゴム	変形量	δy	11.3cm以上*
			δz	12.2cm以上*
1	主記* :			

表 2.4-3-14 止水ゴムの変形量の許容限界

3.5 評価方法

評価方法は、「3.2 評価対象断面及び部位」にて設定した評価対象部位の応力や変形の状態を考慮し、V-3-別添 3-1-1「津波への配慮が必要な施設の強度計算の方針」に基づき設定する。

なお,津波時及び重畳時の評価においては,海水貯留堰(6号機設備)が設置されている地盤(古安田層及び西山層)のばらつきを考慮する。

- 3.5.1 津波時
 - (1) 鋼管矢板
 - a. 解析概要

津波時に発生する応答値は、固定荷重に加え、基準津波による津波荷重を作用させる とともに、衝突荷重を海水貯留堰(6号機設備)に作用させた2次元静的フレーム解析 より算定する。

2次元静的フレーム解析には,解析コード「FREMING Ver.14.1B」を使用する。 なお,解析コードの検証及び妥当性確認の概要については,別紙「計算機プログラム (解析コード)の概要」に示す。

b. 2次元静的フレーム解析

2次元静的フレーム解析では、鋼管矢板1本あたりの分担幅は、図2.4-3-10に示す とおり海水貯留堰(6号機設備)を構成する鋼管矢板に継手間隔を加えた長さとし、鋼 管矢板の断面積や断面二次モーメント等を単位奥行きあたりに換算した物性値を用いる。 鋼管矢板を線形はり要素、地盤を線形ばね要素でモデル化する。津波時の検討で用いる 解析モデルを図2.4-3-11に示す。

c. 解析ケース

津波時における地盤ばねの設定フローを図 2.4-3-12 に,解析ケースを表 2.4-3-15 に示す。

津波時の地盤ばねは、設定フローに示すとおり、地盤物性のばらつきを網羅的に考慮 するために、地盤剛性のばらつき及び地盤の変形係数の違いの影響を考慮した6ケース について、水平方向の地盤反力係数を算定し、地盤反力係数が小さくなるケースを決定 ケースとし、地盤ばねを設定する。初期せん断弾性係数から算定した地盤ばねを地盤ば ね1、静弾性係数から算定した地盤ばねを地盤ばね2とする。

地盤剛性のばらつきは,各地層の PS 検層の結果から得られるせん断波速度の標準偏 差σに基づいて設定する。

地盤の変形係数は、津波時における地盤が、地震後の状態であることから、初期せん 断弾性係数及び静弾性係数を用いる。初期せん断弾性係数及び静弾性係数は、KK 補足-024-1「地盤の支持性能(参考資料 4)」より設定する。

地盤ばねにおける水平方向の地盤反力係数は、「道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」に従って算出する。

(単位:mm)

(a) 鋼管矢板 一般部

(単位:mm)

(b) 鋼管矢板 端部図 2.4-3-10 鋼管矢板 1 本あたりの分担幅(平面図)

図 2.4-3-11 解析モデル

図 2.4-3-12 地盤ばねの設定フロー

	地盤反力使	系数		
ケース名	変形係数の	地盤剛性の	決定ケース	備考
	算定方法	ばらつき		
		平均值		地盤抵抗の ばらつきを考慮
地盤ばね1	初期せん断弾性係数	$+1 \sigma$	地盤剛性(-1σ)	
	G ₀	-1 σ		
		平均值		
地盤ばね 2	静弾性係数E ₀	$+1 \sigma$	地盤剛性(-1σ)	
		-1σ		

表 2.4-3-15 解析ケース(津波時)
- d. 地盤反力係数
- (a) 初期せん断剛性から設定した場合
 津波襲来前に発生する地震に起因する地盤剛性及び応力の上限値の低下が無いもの
 と仮定し、地盤反力係数を以下のように設定する。

水平方向地盤ばねに用いる地盤反力係数は以下のとおり設定する。

$$k_{H} = k_{H0} \times \left(\frac{B_{H}}{0.3}\right)^{\frac{3}{4}}$$

$$k_{H0} = \frac{1}{0.3} \alpha E_{0}$$

$$E_{0} = 2 \times (1 + \nu_{d}) \times G_{m}$$

$$B_{H} = \sqrt{D \neq \beta} \quad \left(\leq \sqrt{D L_{e}}\right)$$

$$\beta = \sqrt[4]{\frac{k_{H} \times D}{4 \times E I}}$$

ここに、

$$k_{H}$$
 : 水平方向地盤反力係数 (kN/m³)
 k_{H0} : 直径 0.3 m の剛体円板による平板載荷試験の値に相当する
水平方向地盤反力係数 (kN/m³)
 B_{H} : 荷重作用方向に直交する基礎の換算載荷幅 (m)
 α : 地盤反力係数の換算係数 (=1)
 E_{0} : 地盤の変形係数 (kN/m²)
 v_{d} : 動ポアソン比
 G_{m} : 初期せん断剛性 (kN/m²)
 $G_{m} = G_{ma} \times \left(\frac{\sigma' m}{\sigma' ma}\right)^{mg}$
 G_{ma} : 基準初期せん断弾性係数 (kN/m²)
 σ'_{ma} : 基準平均有効主応力 (kN/m²)
 σ'_{m} : 常時状態における平均有効主応力 (kN/m²)
mg : 拘束圧依存の係数
 β : 基礎の特性値 (m⁻¹)
D : 荷重作用方向に直交する基礎の載荷幅 (m)
E I : 基礎の有効根入れ深さ (m)

(b) 静弾性係数から設定した場合

津波襲来前に発生する地震に起因する地盤剛性及び応力の上限値の低下が大きいも のと考え,地盤反力係数を以下のように設定する。

水平方向地盤ばねに用いる地盤反力係数は以下のとおり設定する。

$$k_{H} = k_{H0} \times \left(\frac{B_{H}}{0.3}\right)^{\frac{3}{4}}$$
$$k_{H0} = \frac{1}{0.3} \alpha E_{0}$$
$$B_{H} = \sqrt{D \swarrow \beta} \quad \left(\leq \sqrt{D L_{e}}\right)$$
$$\beta = \sqrt[4]{\frac{k_{H} \times D}{4 \times E I}}$$

ここに,

- k_H :水平方向地盤反力係数(kN/m³)
- k_{H0}: 直径 0.3 m の剛体円板による平板載荷試験の値に相当する 水平方向地盤反力係数(kN/m³)
- B_H:荷重作用方向に直交する基礎の換算載荷幅(m)
- α :地盤反力係数の換算係数 (=4)
- E₀: 地盤の変形係数 (kN/m²)
- β : 基礎の特性値 (m⁻¹)
- D :荷重作用方向に直交する基礎の載荷幅(m)
- E I :基礎の曲げ剛性 (kN·m²)
- L。:基礎の有効根入れ深さ(m)

e. 使用材料及び材料の物性値

使用材料を表 2.4-3-16 に、材料の物性値を表 2.4-3-17 に示す。

諸元	諸元	腐食代
鋼管矢板	ϕ 1100mm, t=14mm, t=16mm (SKY490)	1. Omm*

表 2.4-3-16 使用材料

注記*:腐食代の算出過程は下記のとおりとする。なお、海底面以深の鋼管矢板の腐食代は、

保守的に海底面以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0−0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰(6号機設備)の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成 19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気防食実施のため)

表 2.4-3-17 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鋼管矢板	77.0	2. 00×10^5	0.3

f. 地盤の解析用物性値

地盤の解析用物性値一覧を表2.4-3-18に示す。地盤の物性値は、V-2-1-3「地盤の 支持性能に係る基本方針」にて設定している物性値を用いる。

表 2.4-3-18(1) 地盤の解析用物性値一覧(非液状化層)

パラメータ			古安田層			
			A3a1 層	A2c 層	A2a1 層	
物理	密度	ρ	(g/cm^3)	1.81	1.80	1.88
特性	間隙率	n		0.52	0.52	0.48
	動せん断弾性係数	G_{ma}	(kN/m^2)	9. 57 $ imes 10^4$	$1.39 imes 10^5$	1.61×10^{5}
変形	基準平均有効拘束圧	σ _{ma} '	(kN/m^2)	94.0	140. 0	170. 0
特 性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.162	0.110	0.147
強度	粘着力	с'	(kN/m^2)	29.2	113. 0	82.8
特性	内部摩擦角	φ'	(°)	34.2	27.9	28.7

衣2.4-3-18(2) 地盤の解析用物性胆一寬(四田暦

パラメーター		西山層			
		T.M.S.L33.Om 以浅	T.M.S.L.−33.Om∼−90.Om		
物理	密度	ρ	(g/cm^3)	1.73	1.69
特性	間隙率	n		0.56	0.56
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5
変形特性	基準平均有効拘束圧	σ _{ma} '	(kN/m^2)	98.0	98.0
	ポアソン比	ν		0.33	0.33
	減衰定数の上限値	h _{max}		0. 257	0.257
強度	粘着力	с	(kN/m^2)	1370-5.04 Z*	1370–5. 04 Z *
(特性	内部摩擦角	φ	(°)	0.0	0.0

注記*:Zは,標高(m)を示す

g. 評価方法

鋼管矢板の強度評価は,鋼管矢板の曲げモーメント及び軸力より算定した応力及びせん断力より算定したせん断応力が「3.4 許容限界」で設定した許容限界以下であることを確認する。

(a) 曲げモーメント及び軸力に対する照査

曲げモーメント及び軸力を用いて次式により算定した応力が許容限界以下であるこ とを確認する。

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$
ここで、
$$\sigma : 鋼管矢板の曲げモーメント及び軸力より算定した応力 (N/mm2)$$
M : 最大曲げモーメント (N·mm)
Z : 断面係数 (mm³)
N : 軸力 (N)

- A : 有効断面積 (mm²)
- (b) せん断力に対する照査

せん断力を用いて次式により算定したせん断応力がせん断強度に基づく許容限界以 下であることを確認する。

$$\tau = \kappa \cdot \frac{S}{A}$$

ここで、
 τ :鋼管矢板のせん断力より算定したせん断応力 (N/mm²)
S:せん断力 (N)
A:有効断面積 (mm²)

κ : せん断応力の分布係数(パイプ型断面の場合 *κ* = 2.0)

- (2) 止水ゴム取付部鋼材
 - a. 構造概要

止水ゴム取付部鋼材の照査対象部材は、構成部材であるスキンプレートとリブプレートに加えて、発生荷重を負担する鋼矢板及び鋼管矢板との接合部とする。なお、止水ゴム取付部鋼材は、鋼矢板及び鋼管矢板と水中溶接により接合されているため、適切に設定した許容限界に対して照査する(「3.4 許容限界」参照)。

止水ゴム取付部鋼材に関する使用材料を表 2.4-3-19 に,海水貯留堰(6号機設備) 接続部の鳥瞰図を図 2.4-3-13 に示す。また,止水ゴム取付部鋼材の詳細構造図を図 2.4-3-14 に示す。

止水ゴム取付部鋼材及び止水ゴムは、地震時の安定性を確保するとともに、堰外が引き波により海底地盤が露出した状態において、海水の貯留性及び安定性を確保している。 (補足「2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明」(参考資料 5))

部位	材料	諸元
	スキンプレート	$t = 9mm^*$ (SM490)
山水コム取竹前輌材	リブプレート	t=14mm* (SM490)

表 2.4-3-19 使用材料

注記*:断面照査においては海水と接する面に対して 1mm の腐食代を考慮する。

図 2.4-3-13 海水貯留堰(6号機設備)接続部の鳥瞰図

(単位:mm)

(b) A-A断面図

図 2.4-3-14(1) 止水ゴム取付部鋼材の詳細構造図(南側)

(a) 平面図

(b) A-A断面図

図 2.4-3-14(2) 止水ゴム取付部鋼材の詳細構造図(北側)

b. 解析概要

津波時に発生する応答値は、ゴム作用力及び基準津波による津波荷重を作用させて構 造物を線形はり構造として解析を行う。 c. 止水ゴム取付部鋼材の解析方法

解析方法は以下に示すとおりとする。また、(参考資料 3)に止水ゴム取付部鋼材に 作用する分布荷重の算出方法について示す。

(a) スキンプレート

スキンプレートは、取水護岸(6 号機設備)前面鋼矢板側と海水貯留堰(6 号機設備)鋼管矢板側に設置する。スキンプレートの照査については、設置間隔 300mm のリ ブプレートで支持された両端固定梁として行う。

イ. モデル化

スキンプレートに作用する荷重とモデル化の考え方を示した照査モデル図を図 2.4-3-15 に,照査断面を図 2.4-3-16 に示す。

資料 8-2.4-42

注:照査断面は腐食代を考慮した断面を示す。 図 2.4-3-16 照査断面(スキンプレート)

(単位:mm)

ロ. 断面照査方法

スキンプレートに発生する断面力算出式を以下に記す。

$$M_{max} = \frac{q \cdot 1 \cdot L^2}{12}$$
$$S_{max} = \frac{q \cdot 1 \cdot L}{2}$$

ここに,	
$\mathrm{M}_{\mathrm{max}}$:最大発生曲げモーメント (kN・m)
q	:分布荷重(kN/m ²)
L	:分布荷重載荷幅=リブプレート間隔 (m)
1	:スキンプレート奥行き (m)
S _{max}	:最大発生せん断力 (kN)

(b) リブプレート

リブプレートは、取水護岸(6号機設備)前面鋼矢板側と海水貯留堰(6号機設備) 鋼管矢板側に設置する。リブプレートの照査については、止水ゴム取付部鋼材のリブ プレート断面変化箇所に対して行う。

イ. モデル化

リブプレートに作用する荷重とモデル化の考え方を示した照査モデル図を図 2.4 -3-17 に,照査断面を図 2.4-3-18 に示す。

図 2.4-3-17 照査モデル図(リブプレートと鋼管矢板又は前面鋼矢板)

(単位:mm)

注:照査断面は腐食代を考慮した断面を示す。 図 2.4-3-18 照査断面(リブプレート)

ロ. 断面照査方法

リブプレートに発生する断面力算出式を以下に記す。

$$\begin{split} M_{max} &= \frac{q \cdot L^{2} \cdot 1}{2} + P \cdot L \cdot 1 \\ S_{max} &= q \cdot L \cdot 1 + P \cdot 1 \\ \\ \hline C = C C, \\ M_{max} &: 最大発生曲げモーメント (kN \cdot m) \\ q &: 分布荷重 (kN/m^{2}) \\ L &: 分布荷重載荷幅=検討箇所でのリブプレート張り出し長 (m) \\ 1 &: リブプレート間隔 (m) \\ P &: 集中荷重 (kN/m) \\ S_{max} &: 最大発生せん断力 (kN) \end{split}$$

(c) 鋼矢板及び鋼管矢板との接合部

止水ゴム取付部鋼材では、リブプレート部材と取水護岸(6 号機設備)前面鋼矢板及 び海水貯留堰(6 号機設備)鋼管矢板との接合部において発生荷重を負担している。接 合部の照査は、リブプレートと前面鋼矢板及びリブプレートと鋼管矢板との接合部に 対して行う。当該接合部は水中溶接により接合されるが、水中溶接部の許容限界につ いては、「3.4 許容限界」にまとめる。

イ. モデル化

前面鋼矢板及び鋼管矢板との接合部に作用する荷重とモデル化の考え方を示した 照査モデルを図 2.4-3-19 に,照査断面を図 2.4-3-20 に示す。

図 2.4-3-19 照査モデル図(前面鋼矢板及び鋼管矢板との接合部)

注記*:④部は鋼管矢板の外面形状に沿って溶接しているが、保守的にプレート幅を溶接長さとして扱う。 図 2.4-3-20 照査断面(前面鋼矢板及び鋼管矢板との接合部)(照査断面寸法(溶接長)は腐食代を考慮)

(単位:mm)

口. 断面照查方法

リブプレートと取水護岸(6 号機設備)前面鋼矢板の接合部及びリブプレートと 海水貯留堰(6 号機設備)鋼管矢板の接合部に発生する断面力算定式を以下に記す。 また,リブプレートと取水護岸(6 号機設備)前面鋼矢板の接合部は,発生せん断 力に対して角度を有していることから,図 2.4-3-21 に示すように角度補正を行 う。

$$\begin{split} M_{max} &= \frac{q \cdot L^2 \cdot 1}{2} + P \cdot L \cdot 1 \\ S_{max} &= q \cdot L \cdot 1 + P \cdot 1 \\ \\ J ブ プ レ - F と前面鋼矢板接合部 \\ S &= S_{max} \cdot c \circ s \theta \\ N &= S_{max} \cdot s i n \theta \\ \\ \\ cccc, \\ \\ M_{max} &: 最大発生曲げモーメンF (kN·m) \\ q &: 分布荷重 (kN/m^2) \\ L &: 分布荷重 (kN/m^2) \\ L &: 分布荷重載荷幅 = J ブ プ レ - F 張り出し長 (m) \\ 1 &: J ブ プ \nu - F 間隔 (m) \\ P &: 集中荷重 (kN/m) \\ S_{max} &: 最大発生せん断力 (kN) \\ S &: 最大発生せん断力に対する分力 (せん断力) (kN) \\ N &: 最大発生せん断力に対する分力 (引張力) (kN) \end{split}$$

図 2.4-3-21 リブプレートと前面鋼矢板接合部におけるせん断力の補正について

d. 評価方法

止水ゴム取付部鋼材の強度評価は、曲げモーメント及び軸力より算定した応力及びせん断力より算定したせん断応力が「3.4 許容限界」で設定した許容限界以下であることを確認する。

(a) 曲げモーメント及び軸力に対する照査

曲げモーメント及び軸力を用いて次式により算定した応力が許容限界以下であるこ とを確認する。

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$

ここで、
 σ : 鋼管矢板の曲げモーメント及び軸力より算定した応力 (N/mm²)
M : 最大曲げモーメント (N·mm)
Z : 断面係数 (mm³)
N : 軸力 (N)
A : 有効断面積 (mm²)

- (b) せん断力に対する照査

せん断力を用いて次式により算定したせん断応力がせん断強度に基づく許容限界以 下であることを確認する。

$$\tau = \kappa \cdot \frac{S}{A}$$

ここで、
 τ :鋼管矢板のせん断力より算定したせん断応力 (N/mm²)
S:せん断力 (N)
A:有効断面積 (mm²)

κ: せん断応力の分布係数(*κ*=1.5)

- (3) 止水ゴム
 - a. 構造概要

止水ゴムの仕様を表 2.4-3-20 に、止水ゴムの構造図を図 2.4-3-22 に示す。 海水貯留堰(6号機設備)接続部の鳥瞰図を図2.4-3-23(再掲)に示す。

表 2.4-3-20 止水ゴムの仕様

部位	材料	諸元
止水ゴム	クロロプレンゴム	t=10mm

図 2.4-3-22 止水ゴムの構造図

図 2.4-3-23 海水貯留堰(6号機設備)接続部の鳥瞰図 (再掲)

b. 止水ゴムの発生変形量の考え方

止水ゴムの変形性評価に用いる津波時の止水ゴムの発生変形量は,図 2.4-3-24 の 止水ゴムの発生変形量算出フローに示すとおり,地震後に津波が襲来することを想定し, 地震時における最大最終変位に,津波時の最大変位を加えることで,津波襲来時及び漂 流物衝突時に発生する変位量を評価する。

(a) 地震時の最大最終変位

地震時の止水ゴムの変位量は、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐 震性についての計算書」に示すとおり、2次元有効応力解析で算出する。

地震時の最大最終変位は、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐震性 についての計算書」に示す解析ケースのうち、地震時の2次元有効応力解析における 各方向(δ_x , δ_y , δ_z)の最終時刻の変位が最大となる解析ケースの値を示す。

(b) 津波時の最大変位

津波時の止水ゴムの変位量は、津波荷重及び衝突荷重を用いた2次元静的フレーム 解析で算出する。荷重の組合せに対する止水ゴムの変位量の算出方法について(参考 資料4)に示す。

津波時の最大変位は、津波時のうち、津波時の2次元静的フレーム解析における各 方向(δ_x , δ_y , δ_z)の変位が最大となる解析ケースの値を示す。

200変位が最大となる解析ケースの値である。 (参照: V-2-10-3-1-3-1「海水貯留堰(6号機設備)の耐震性 についての計算書」)

*2:()内は、変位の算出に用いる解析手法を示している。

図 2.4-3-24 止水ゴムの発生変形量算出フロー(津波時)

c. 評価方法

止水ゴムの変形性評価は、津波時の止水ゴムの発生変形量が「3.4 許容限界」で設 定した許容限界以下であることを確認する。

- 3.5.2 重畳時
 - (1) 鋼管矢板
 - a. 解析概要

鋼管矢板で津波荷重及び余震荷重に抵抗するため,鋼管矢板をモデル化した2次元静 的フレーム解析を行い,重畳時の鋼管矢板の構造健全性を確認する。2次元静的フレー ム解析で考慮する余震(Sd-1)に伴う地盤変位や静的震度は,構造物中心位置の地 盤モデルに対する1次元有効応力解析より設定する。

2次元静的フレーム解析については,解析コード「FREMING Ver.14.1B」を, 1次元有効応力解析については,解析コード「FLIP Ver.7.4.1」を使用する。解析 コードの検証及び妥当性確認の概要については,それぞれ,別紙「計算機プログラム (解析コード)の概要」に示す。

- b. 2次元静的フレーム解析
 2次元静的フレーム解析モデルは、「3.5.1 津波時」と同様とする。
- c. 解析ケース

重畳時における地盤ばねの設定フローを図 2.4-3-25 に,解析ケースを表 2.4-3-21 に示す。

重畳時の地盤ばねは、設定フローに示すとおり、地盤物性のばらつきを網羅的に考慮 するために、表 2.4-3-21の解析ケースについて、余震(Sd-1)を用いて1次元 有効応力解析を実施し、地盤剛性のばらつき及び1次元有効応力解析の着目時間の違い の影響を考慮した9ケースについて、水平方向の地盤反力係数を算定し、地盤反力係数 が小さくなるケースを決定ケースとし、地盤ばねを設定する。地表面加速度が最大とな る時刻の地盤剛性から設定した地盤ばねを地盤ばね3、地表面変位が最大となる時刻の 地盤剛性から設定した地盤ばねを地盤ばね4、せん断ひずみが最大となる時刻の地盤剛 性から設定した地盤ばねを地盤ばね5とする。

地盤剛性のばらつきは、各地層の PS 検層の結果から得られるせん断波速度の標準偏 差 σ に基づいて設定する。

地盤の変形係数は、1次元有効応力解析による地盤の応力ひずみ関係から算定する。

地盤ばねにおける水平方向の地盤反力係数は、「道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」に従って算出する。

図 2.4-3-25 地盤ばねの設定フロー

表 2.4-3-21 解析ケース (重畳時)

	地盤反力	係数		
ケース名	業日時初	地盤剛性の	決定ケース	備考
	有日时刻 	ばらつき		
		平均值		
地盤ばね3 地盤ばね4 地盤ばね5	地表面加速度最大	+1 σ	地盤剛性(-1σ)	地盤抵抗の ばらつきを考慮
		-1 σ		
	地表面変位最大	平均值	地盤剛性(-1σ)	
		+1 σ		
		-1 σ		
		平均值	 地盤剛性(-1σ)	
	せん断ひずみ最大	+1 σ		
		-1 σ		

- d. 1次元有効応力解析
 - (a) 解析モデル 解析モデルは,構造物設置位置の地層構成に基づきモデル化する。
 - (b) 地盤の物性値

地盤の物性値は、「3.5.1 津波時」と同様とする。

(c) 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される余震(Sd-1) を1次元波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力 地震動の設定においては,V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構 造モデル(入力地震動作成モデル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.4-3-26 に、入力地震動の加速度時刻歴波形及び 加速度応答スペクトルを図 2.4-3-27 に示す。入力地震動の算定には、解析コード 「SLOK Ver2.0」を使用する。

図 2.4-3-26 入力地震動算定の概念図

資料 8-2.4-53

MAX 5.93 m/s² (18.51 s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.4-3-27(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Sd-1)

MAX 3.69 m/s^2 (16.16 s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.4-3-27(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Sd-1)

(d) 減衰定数

減衰特性は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波 とした再現解析等を踏まえ、Rayleigh減衰として、 $\alpha = 0$ 、 $\beta = 0.005$ を設定する。

(e) 地盤ばね

重畳時の検討では,表 2.4-3-21 に示すとおり,1 次元有効応力解析における地 表面加速度最大発生時刻(地盤ばね 3),地表面変位最大発生時刻(地盤ばね 4)及 びせん断ひずみ最大発生時刻(地盤ばね 5)それぞれの時刻での割線せん断剛性Gs を用いて,以下の手順で地盤反力係数を設定する。

$$k_H = k_{H0} \times \left(\frac{B_H}{0.3}\right)^{-3/4}$$

$$k_{H0} = \frac{1}{0.3} \alpha E_s$$

 $E_s = 2 \times (1 + \nu_d) \times G_s$

$$G_{s} = \frac{\tau_{m}}{\gamma}$$

$$\tau_{s} = \frac{\gamma}{\frac{1}{G_{ma} \times \left(\sigma' \frac{m}{\sigma' ma}\right)^{mg}} + \left|\frac{\gamma}{C_{CD} \times \cos\varphi_{CD} + \sigma' \frac{m}{m} \times \sin\varphi_{CD}}\right|}$$

$$B_H = \sqrt{D/\beta} \quad \left(\leq \sqrt{DL_e} \right)$$

$$\beta = \sqrt[4]{\frac{k_H \times D}{4 \times EI}}$$

ここに,

k_H	:水平方向地盤反力係数(kN/m³)
k_{H0}	: 直径 0.3 m の剛体円板による平板載荷試験の値に相当する
	水平方向地盤反力係数(kN/m³)
B_H	:荷重作用方向に直交する基礎の換算載荷幅 (m)
α	:地盤反力係数の換算係数(=1)
Es	:割線剛性 (kN/m ²)
ν_d	:動ポアソン比
G _s	:割線せん断弾性係数(kN/m ²)
$ au_s$:骨格曲線上のせん断応力 (kN/m ²)
γ	: せん断ひずみ
	資料 8-2.4-56

G_{ma}	:基準初期せん断弾性係数 (kN/m ²)
σ'_{ma}	:基準平均有効主応力(kN/m ²)
σ'_{m}	:時刻 t _{max} における地盤の平均有効主応力(kN/m ²)
mg	: 拘束圧依存の係数
C _{CD}	: 地盤の粘着力 (kN/m ²)
φ_{CD}	:地盤の内部摩擦角(゜)
β	: 基礎の特性値 (m ⁻¹)
D	:荷重作用方向に直交する基礎の載荷幅 (m)
EI	: 基礎の曲げ剛性 (kN·m ²)
L_e	:基礎の有効根入れ深さ(m)

- e. 使用材料及び材料の物性値 使用材料及び材料の物性値は,「3.5.1 津波時」と同じである。
- f. 地盤の物性値地盤の物性値は、「3.5.1 津波時」と同じである。
- g. 評価方法 鋼管矢板の強度評価は、「3.5.1 津波時」と同じ方法により、許容限界以下である ことを確認する。
- (2) 止水ゴム取付部鋼材
 - a. 構造概要
 止水ゴム取付部鋼材の構造概要は、「3.5.1 津波時」と同じである。
 - b. 解析概要
 重畳時に発生する応答値は、ゴム作用力、余震(Sd-1)による慣性力及び動水圧、
 基準津波による津波荷重を作用させた線形はり構造として解析を行う。
 - c. 部材ごとの解析方法
 部材ごとの解析方法は、「3.5.1 津波時」と同じである。
 - d. 評価方法評価方法は、「3.5.1 津波時」と同じである。

- (3) 止水ゴム
 - a. 構造概要 止水ゴムの構造概要は, 「3.5.1 津波時」と同じである。
 - b. 止水ゴムの発生変形量の考え方

止水ゴムの変形性評価に用いる重畳時の止水ゴムの発生変形量は,図 2.4-3-28 の 止水ゴムの発生変形量算出フローに示すとおり,地震後に津波が襲来することを想定し, 地震時における最大最終変位に,重畳時の最大変位を加えることで,津波襲来時,余震 時及び漂流物衝突時に発生する変位量を評価する。

- (a) 地震時の最大最終変位地震時の最大最終変位は、「3.5.1 津波時」と同じである。
- (b) 重畳時の最大変位

重畳時の止水ゴムの変位量は、津波荷重、動水圧、余震荷重及び衝突荷重を用いた 2 次元静的フレーム解析で算出する。荷重の組合せに対する止水ゴムの変位量の算出 方法について(参考資料4)に示す。

重畳時の最大変位は、重畳時1及び重畳時2のうち、2次元静的フレーム解析に おける各方向(δ_x , δ_y , δ_z)の変位が最大となる解析ケースの値を示す。

注記*1 :最大最終変位とは、地震時の2次元有効応力解析における最終時 刻の変位が最大となる解析ケースの値である。 (参照:V-2-10-3-1-3-1「海水貯留堰(6号機設備)の耐震性 についての計算書」)

*2:()内は、変位の算出に用いる解析手法を示している。

図 2.4-3-28 止水ゴムの発生変形量算出フロー(重畳時)

d. 評価方法

評価方法は、「3.5.1 津波時」と同じである。

- 4. 評価条件
 - (1) 津波時

津波時において, 「3. 強度評価方法」に用いる強度評価条件を表 2.4-4-1 から表 2.4-4-4 に示す。

衝突荷重(P_o), 遡上津波荷重(P_t)及び津波荷重(静水圧)(P_{hy})の算出過程 は(参考資料2)に示す。

表 2.4-4-1 強度評価条件(津波時,断面①,鋼管矢板一般部)

記号	定義	数值	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度		
k v	鉛直震度		
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	60.6	kN/m ²
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	40.4	kN/m^2
рз	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	4.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	6.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	4.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
Рс	衝突荷重 (荷重分担延長考慮)	370.2	kN/m
P _d	動水圧合力 (荷重分担延長考慮)	—	kN
P _t	遡上津波荷重(荷重分担延長考慮)	40.4	kN/m
P _{hy}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W _c	漂流物の重量	10	kN
У	動水圧の作用高さ	_	m
γw	海水の単位体積重量	10.1	kN/m³
ρ	海水の密度	1030	kg/m ³
G	固定荷重	36.7	kN
VS	余震荷重 (水平方向慣性力)		kN
n S d	余震荷重(鉛直方向慣性力)		kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0119	m ³
А	有効断面積	0.0443	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	_
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度		
k v	鉛直震度		
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	75.8	kN/m ²
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	50.5	kN/m ²
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	5.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	7.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	5.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)	370.2	kN/m
P _d	動水圧合力 (荷重分担延長考慮)		kN
P _t	遡上津波荷重(荷重分担延長考慮)	55.6	kN/m
Р _{hу}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W _c	漂流物の重量	10	kN
У	動水圧の作用高さ		m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	42.1	kN
V.C	余震荷重 (水平方向慣性力)		kN
r S d	余震荷重 (鉛直方向慣性力)	-	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0136	m ³
А	有効断面積	0.0511	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

表 2.4-4-2 强度評価条件(津波時,断面②,鋼管矢板一般部)

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度		
k v	鉛直震度		
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	60.6	kN/m ²
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	40.4	kN/m²
рз	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	4.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	6.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	4.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
Рс	衝突荷重 (荷重分担延長考慮)	407.7	kN/m
P _d	動水圧合力 (荷重分担延長考慮)		kN
P _t	遡上津波荷重 (荷重分担延長考慮)	69.2	kN/m
Р _{hу}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W _c	漂流物の重量	10	kN
У	動水圧の作用高さ		m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m ³
G	固定荷重	62.8	kN
V.C	余震荷重 (水平方向慣性力)		kN
n S _d	余震荷重(鉛直方向慣性力)	-	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0108	m ³
А	有効断面積	0.0403	m ²
τα	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数(パイプ型断面の場合)	2.0	_
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	

表 2.4-4-3 強度評価条件(津波時,断面①,鋼管矢板端部)

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度		
k v	鉛直震度		
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	75.8	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	50.5	kN/m ²
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	5.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	7.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	5.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
Рс	衝突荷重 (荷重分担延長考慮)	419.3	kN/m
P _d	動水圧合力 (荷重分担延長考慮)		kN
P _t	遡上津波荷重 (荷重分担延長考慮)	86.9	kN/m
Р _{hу}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量	10	kN
У	動水圧の作用高さ		m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	66.6	kN
VS	余震荷重 (水平方向慣性力)	—	kN
r S d	余震荷重(鉛直方向慣性力)	-	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0127	m ³
А	有効断面積	0.0475	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	

表 2.4-4-4 强度評価条件(津波時,断面②,鋼管矢板端部)

(2) 重畳時

σ_{sa} 短期許容曲げ応力度

断面係数

有効断面積

短期許容せん断応力度

せん断応力の分布係数(パイプ型断面の場合)

せん断応力の分布係数(矩形断面の場合)

せん断応力の分布係数(接合部の場合)

Ζ

А

 $\tau_{\rm a}$

κ

重畳時において,「3. 強度評価方法」に用いる強度評価条件を表 2.4-4-5 から表 2.4-4-12 に示す。

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.51	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	60.6	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	40.4	kN/m ²
р ₃	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	4.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	6.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	4.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)		kN/m
P _d	動水圧合力 (荷重分担延長考慮)	23.2	kN
P_t	遡上津波荷重 (荷重分担延長考慮)	40.4	kN/m
${\rm P}_{\rm hy}$	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W _c	漂流物の重量		kN
У	動水圧の作用高さ	0.80	m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	36.7	kN
VO	余震荷重 (水平方向慣性力)	18.7	kN
η ο q	余震荷重 (鉛直方向慣性力)	11.0	kN
		1	1

表 2.4-4-5 強度評価条件(重畳時 1, 断面①, 鋼管矢板一般部)

277

0.0119

0.0443

157

2.0

1.5

1.5

 N/mm^2

 m^3

 m^2

 $\rm N/mm^2$

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.58	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	75.8	kN/m^2
р ₂	海水貯留堰(6号機設備)外側の天端面における波圧強度	50.5	kN/m^2
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	5.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	7.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	5.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
Рс	衝突荷重 (荷重分担延長考慮)	_	kN/m
P _d	動水圧合力 (荷重分担延長考慮)	34.0	kN
P _t	遡上津波荷重(荷重分担延長考慮)	55.6	kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量		kN
У	動水圧の作用高さ	0.90	m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m ³
G	固定荷重	42.1	kN
	余震荷重 (水平方向慣性力)	24.4	kN
K S d	余震荷重(鉛直方向慣性力)	12.6	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0136	m ³
А	有効断面積	0.0511	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	

表 2.4-4-6 強度評価条件(重畳時 1, 断面②, 鋼管矢板一般部)

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.51	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	60.6	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	40.4	kN/m^2
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	4.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	6.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	4.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)		kN/m
P _d	動水圧合力 (荷重分担延長考慮)	39.7	kN
P _t	遡上津波荷重(荷重分担延長考慮)	69.2	kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)		kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量		kN
У	動水圧の作用高さ	0.80	m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m ³
G	固定荷重	62.8	kN
VS	余震荷重 (水平方向慣性力)	32.0	kN
n S d	余震荷重(鉛直方向慣性力)	18.8	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0108	m ³
А	有効断面積	0. 0403	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	_
	せん断応力の分布係数(接合部の場合)	1.5	

表 2.4-4-7 強度評価条件(重畳時 1, 断面①, 鋼管矢板端部)

記号	定義	数值	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.58	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	75.8	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	50.5	kN/m^2
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	5.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	7.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	5.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)		kN/m
P _d	動水圧合力(荷重分担延長考慮)	53.2	kN
P _t	遡上津波荷重(荷重分担延長考慮)	86.9	kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)	_	kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量		kN
У	動水圧の作用高さ	0.90	m
γw	海水の単位体積重量	10.1	kN/m^3
ρ	海水の密度	1030	kg/m^3
G	固定荷重	66.6	kN
VS	余震荷重 (水平方向慣性力)	38.7	kN
n S _d	余震荷重(鉛直方向慣性力)	20.0	kN
σ _{sa}	短期許容曲げ応力度	277	$\rm N/mm^2$
Z	断面係数	0.0127	m ³
А	有効断面積	0.0475	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

表 2.4-4-8 強度評価条件(重畳時 1, 断面②, 鋼管矢板端部)

記号	定義	数値	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.51	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	40.4	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	20.2	kN/m^2
р 3	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	2.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	4.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	2.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)	370.2	kN/m
P _d	動水圧合力(荷重分担延長考慮)	42.7	kN
P _t	遡上津波荷重(荷重分担延長考慮)		kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)	20.2	kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量	10	kN
У	動水圧の作用高さ	0.91	m
γ_{w}	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	36.7	kN
VS	余震荷重 (水平方向慣性力)	18.7	kN
bcn	余震荷重(鉛直方向慣性力)	11.0	kN
<i>о</i> _{за}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0119	m ³
А	有効断面積	0. 0443	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	

表 2.4-4-9 強度評価条件(重畳時 2, 断面①, 鋼管矢板一般部)

記号	定義	数值	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.58	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	45.5	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	20.2	kN/m^2
р 3	海水貯留堰(6号機設備)内側の底面における波圧強度	25.3	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	2.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	4.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	2.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.50	m
P _c	衝突荷重 (荷重分担延長考慮)	370.2	kN/m
P _d	動水圧合力 (荷重分担延長考慮)	69.5	kN
P _t	遡上津波荷重(荷重分担延長考慮)		kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)	20.2	kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量	10	kN
У	動水圧の作用高さ	1.11	m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m ³
G	固定荷重	42.1	kN
VS	余震荷重 (水平方向慣性力)	24.4	kN
KSd	余震荷重 (鉛直方向慣性力)	12.6	kN
<i>о</i> _{за}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0136	m ³
А	有効断面積	0.0511	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	-
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

表 2.4-4-10 强度評価条件 (重畳時 2, 断面②, 鋼管矢板一般部)
記号	定義	数值	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.51	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	40.4	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	20.2	kN/m^2
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	20.2	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	2.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	4.00	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	2.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.00	m
P _c	衝突荷重 (荷重分担延長考慮)	407.7	kN/m
P _d	動水圧合力(荷重分担延長考慮)	73.0	kN
P _t	遡上津波荷重(荷重分担延長考慮)		kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)	34.6	kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量	10	kN
У	動水圧の作用高さ	0.91	m
γw	海水の単位体積重量	10.1	kN/m³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	62.8	kN
VS	余震荷重 (水平方向慣性力)	32.0	kN
L 2 g	余震荷重(鉛直方向慣性力)	18.8	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0108	m ³
А	有効断面積	0.0403	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

表 2.4-4-11 强度評価条件 (重畳時 2, 断面①, 鋼管矢板端部)

記号	定義	数值	単位
g	重力加速度	9.80665	m/s^2
k h	水平震度	0.58	
k v	鉛直震度	0.30	
р ₁	海水貯留堰(6号機設備)外側の底面における波圧強度	45.5	kN/m^2
p 2	海水貯留堰(6号機設備)外側の天端面における波圧強度	20.2	kN/m^2
р з	海水貯留堰(6号機設備)内側の底面における波圧強度	25.3	kN/m^2
η	海水貯留堰(6号機設備)外側の貯留堰天端面からの津波高さ	2.00	m
h 1	海水貯留堰(6号機設備)外側の底面における水深	4.50	m
h 2	海水貯留堰(6号機設備)外側の天端面における水深	2.00	m
h 3	海水貯留堰(6号機設備)内側の底面における水深	2.50	m
P _c	衝突荷重 (荷重分担延長考慮)	419.3	kN/m
P _d	動水圧合力(荷重分担延長考慮)	108.7	kN
P _t	遡上津波荷重(荷重分担延長考慮)		kN/m
Р _{h у}	津波荷重(静水圧)(荷重分担延長考慮)	31.6	kN/m
v	海水貯留堰(6号機設備)位置での津波最大流速	6.00	m/s
W c	漂流物の重量	10	kN
У	動水圧の作用高さ	1.11	m
γw	海水の単位体積重量	10.1	kN/m ³
ρ	海水の密度	1030	kg/m^3
G	固定荷重	66.6	kN
VS	余震荷重(水平方向慣性力)	38.7	kN
r S d	余震荷重 (鉛直方向慣性力)	20.0	kN
σ _{sa}	短期許容曲げ応力度	277	N/mm^2
Z	断面係数	0.0127	m ³
А	有効断面積	0.0475	m ²
τ _a	短期許容せん断応力度	157	N/mm^2
	せん断応力の分布係数 (パイプ型断面の場合)	2.0	
κ	せん断応力の分布係数(矩形断面の場合)	1.5	
	せん断応力の分布係数(接合部の場合)	1.5	_

表 2.4-4-12 强度評価条件 (重畳時 2, 断面②, 鋼管矢板端部)

- 5. 強度評価結果
- 5.1 津波時

評価対象部位ごとに津波時の評価結果を示す。

断面①及び断面②において,津波時の2次元静的フレーム解析に設定した水平方向地盤反力 係数を図2.4-5-1及び図2.4-5-2に示す。

図 2.4-5-1 水平方向地盤反力係数(断面①)

(a) 地盤ばね 1

(b) 地盤ばね2

(c) 地盤ばね1及び地盤ばね2の比較

図 2.4-5-2 水平方向地盤反力係数(断面②)

5.1.1 鋼管矢板

津波時における海水貯留堰(6号機設備)鋼管矢板の解析結果を示す。なお,海水貯留 堰(6号機設備)の取水護岸(6号機設備)側の端部の鋼管矢板は,止水ゴム等の付属物に よって受圧面積が大きくなるため作用外力が一般部と比較して大きくなる。鋼管矢板の強 度評価においては,その荷重増分を考慮しない鋼管矢板(一般部)と,その荷重増分を考 慮する鋼管矢板(端部)に対する評価結果をそれぞれ整理する。

(1) 鋼管矢板(一般部)

断面①及び断面②における発生断面力(曲げモーメント及びせん断力)を図 2.4-5-3 及び図 2.4-5-4 に示す。

資料 8-2.4-75

図 2.4-5-3 発生断面力(断面①)

(b) 地盤ばね2(津波時)

(a) 地盤ばね1(津波時)

(a) 地盤ばね1(津波時)

(b) 地盤ばね2(津波時)

図 2.4-5-4 発生断面力(断面②)

資料 8-2.4-76

a. 曲げ軸力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,曲げ軸応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。断面計算に用いた鋼管矢板 (SKY490)の断面諸元を表2.4-5-1に,曲げ軸力に対する照査結果を表2.4-5-2に 示す。なお,照査に用いた断面積及び断面係数は鋼管矢板延長1mあたりの値とする。

表 2.4-5-1 鋼管矢板 (SKY490)の断面諸元

医面	板厚	断面積	断面係数	借老
的阻	(mm)	(m^2/m)	(m^3/m)	加巧
断面①	14	3. 29×10^{-2}	8.81 $\times 10^{-3}$	鋼管矢板の外側に対して腐食
断面②	16	3. 79×10^{-2}	1.01×10^{-2}	代 1.0mm を考慮

表 2.4-5-2(1) 曲げ軸力に対する照査結果(断面①)

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね1	1325	37	152	277	0.55
地盤ばね2	1066	37	123	277	0.45

表 2.4-5-2(2) 曲げ軸力に対する照査結果(断面②)

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照査値
地盤ばね1	1528	43	153	277	0.56
地盤ばね2	1312	43	131	277	0.48

b. せん断力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,せん断応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。せん断力に対する照査結果を表 2.4-5-3に示す。

表 2.4-5-3(1) せん断力に対する照査結果(断面①)

解析ケース	せん断力 (kN)	せん断応力 (N/mm ²)	短期許容応力度 (N/mm ²)	照查値
地盤ばね 1	579	36	157	0.23
地盤ばね2	570	35	157	0.23

表 2.4-5-3(2) せん断力に対する照査結果(断面②)

解析ケース	せん断力 (kN)	せん断応力 (N/mm ²)	短期許容応力度 (N/mm ²)	照查値
地盤ばね1	508	27	157	0.18
地盤ばね2	508	27	157	0.18

(2) 鋼管矢板(端部)

津波時と重畳時(重畳時 2)を比較して,重畳時(重畳時 2)における作用外力が大き いため、津波時の検討を省略する。

5.1.2 止水ゴム取付部鋼材

津波時と重畳時(重畳時1)を比較して,重畳時(重畳時1)における作用外力が大きい ため、津波時の検討を省略する。

5.1.3 止水ゴム

津波時と重畳時(重畳時2)を比較して,重畳時(重畳時2)における相対変位が大きい ため、津波時の検討を省略する。

5.2 重畳時

評価対象部位ごとに重畳時の評価結果を示す。

- 5.2.1 1次元有効応力解析結果
 - (1) 断面①

断面①における 1 次元有効応力解析結果から地表面最大加速度,地表面最大変位,最大 せん断ひずみをまとめたものを表 2.4-5-4の1次元有効応力解析結果に示す。

表 2.4-5-4より、断面①における地盤ばねは、「③地盤物性のばらつきを考慮(-1σ) した解析ケース」に基づき設定する。地盤ばねはそれぞれ、地表面加速度最大発生時刻、 地表面変位最大発生時刻、せん断ひずみ最大発生時刻における平均有効主応力 $\sigma'm$ 及びせ ん断ひずみ γ の深度分布により求められる地盤剛性を用いて地盤ばねを設定する。

水平相対変位の最大値を示す地盤変位分布を図 2.4-5-5 に,水平方向地盤反力係数を 図 2.4-5-6 に示す。

		1	2	3	
			地盤物性のばらつ	地盤物性のばらつ	
,	カキルトン ン	基本ケース	き(+1σ)を考	き(-1σ)を考	
			慮した解析ケース	慮した解析ケース	
	地表面加速度が				
地盤ばね3	最大となるケース	4.55	4.25	4.95	
	(m/s^2)				
	地表面変位が				
地盤ばね4	最大となるケース	2.8	2.3	3.3	
	(cm)				
	せん断ひずみが				
地盤ばね 5	最大となるケース	7. 47×10^{-4}	4.99 $\times 10^{-4}$	1.21×10^{-3}	

表 2.4-5-4 1 次元有効応力解析結果(断面①)

図 2.4-5-5 地盤変位分布図 (断面①)

資料 8-2.4-79

(d) 地盤ばね3, 地盤ばね4及び地盤ばね5の比較

図 2.4-5-6 水平方向地盤反力係数(断面①)

各地盤ばねケースにおいて構造物に作用させる慣性力は,地表面最大加速度から設計震度を求め,構造物全体に適用する。各地盤ケースでの設計震度を表 2.4-5-5 に示す。

表 2.4-5-5 の水平震度を用いて,次式により算出した重畳時の海水貯留堰(6 号機設備) 天端及び設置地盤標高での動水圧を表 2.4-5-6 及び表 2.4-5-7 に示す。

 $P_{d}(z) = 7 \neq 8 \times \gamma_{w} \times k_{h} \times \sqrt{(h \cdot z)}$

ここで, γ_w : 水の単位体積重量(kN/m³)

- k_h :水平震度
- h :水深 (m)
- z :水面から動水圧を求める点までの深さ(m)

解析ケース	水平震度	鉛直震度
地盤ばね3		
地盤ばね4	0.51	0.30
地盤ばね 5		

表 2.4-5-5 各地盤ケースでの設計震度(断面①)

表 2.4-5-6(1) 動水圧(海水貯留堰(6号機設備)内:断面① 重畳時 1)

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	海水貯留堰 (6 号機設備) 内水位 (T. M. S. L.)	設計 海底面 (T.M.S.L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね 3					
地盤ばね4	-3.5	-3.5	-5.5	0.0	9.0
地盤ばね 5					

表 2.4-5-6(2) 動水圧(海水貯留堰(6号機設備)外:断面① 重畳時1)

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	入力津波高さ (T.M.S.L.)	設計 海底面 (T. M. S. L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3					
地盤ばね4	-3.5	0.5	-5.5	0.0	9.0
地盤ばね5					

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	海水貯留堰 (6 号機設備) 内水位 (T. M. S. L.)	設計 海底面 (T.M.S.L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね 3					
地盤ばね4	-3.5	-3.5	-5.5	0.0	9.0
地盤ばね 5					

表 2.4-5-7(1) 動水圧(海水貯留堰(6号機設備)内:断面① 重畳時 2)

	表 2.4-5-7 (2)	動水圧	(海水貯留堰	(6 号機設備)	外:	断面①	重畳時2
--	---------------	-----	--------	----------	----	-----	------

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	入力津波高さ (T. M. S. L.)	設計 海底面 (T.M.S.L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3 地盤ばね4 地盤ばね5	-3. 5	-1.5	-5. 5	12. 7	18.0

(2) 断面②

断面②における 1 次元有効応力解析結果から地表面最大加速度,地表面最大変位,最大 せん断ひずみをまとめたものを表 2.4-5-8の1次元有効応力解析結果に示す。

表 2.4-5-8 より,断面②における地盤ばねは,地表面加速度が最大,地表面変位が最大,せん断ひずみ最大が発生する「③地盤物性のばらつきを考慮(-1σ)した解析ケース」に基づき設定する。地盤ばねはそれぞれ,地表面加速度最大発生時刻,地表面変位最大発 生時刻,せん断ひずみ最大発生時刻における平均有効主応力σ'm及びせん断ひずみγの深 度分布により求められる地盤剛性を用いて地盤ばねを設定する。

各地盤ばねケースのうち,水平相対変位の最大値を示すケースでの地盤変位分布を図 2.4-5-7に,水平方向地盤反力係数を図 2.4-5-8に示す。

解析ケース		1	2	3
		基本ケース	地盤物性のばらつ き(+1σ)を考慮 した解析ケース	地盤物性のばらつ き(-1σ)を考慮 した解析ケース
地盤ばね3	地表面加速度が 最大となるケース (m/s ²)	5. 61	5.49	5.66
地盤ばね4	地表面変位が 最大となるケース (cm)	4.3	3. 3	5.5
地盤ばね 5	せん断ひずみが 最大となるケース	3. 08×10^{-3}	2. 57×10^{-3}	4. 46×10^{-3}

表 2.4-5-8 1 次元有効応力解析結果(断面②)

図 2.4-5-7 地盤変位分布図(断面②)

各地盤ばねケースにおいて構造物に作用させる慣性力は、地表面最大加速度から設計 震度を求め、構造物全体に適用する。各地盤ケースでの設計震度を表 2.4-5-9に示す。 表 2.4-5-9の水平震度を用いて、次式により算出した重畳時の海水貯留堰(6号機設 備)天端及び設置地盤標高での動水圧を表 2.4-5-10及び表 2.4-5-11に示す。

 $P_{d}(z) = 7 \neq 8 \times \gamma_{w} \times k_{h} \times \sqrt{(h \cdot z)}$

ここで, γ_w : 水の単位体積重量 (kN/m³)

- k_h :水平震度
- h :水深 (m)
- z :水面から動水圧を求める点までの深さ(m)

2011		
解析ケース	水平震度	鉛直震度
地盤ばね3		
地盤ばね4	0.58	0.30
地盤ばね 5		

表 2.4-5-9 各地盤ケースでの設計震度(断面②)

表 2.4-5-10(1) 動水圧(海水貯留堰(6号機設備)内:断面② 重畳時 1)

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	海水貯留堰 (6 号機設備) 内水位 (T. M. S. L.)	設計 海底面 (T. M. S. L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3					
地盤ばね4	-3.0	-3.5	-5.5	0.0	10.3
地盤ばね 5					

表 2.4-5-10(2) 動水圧(海水貯留堰(6号機設備)外:断面② 重畳時1)

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	入力津波高さ (T.M.S.L.)	設計 海底面 (T. M. S. L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3					
地盤ばね4	-3.0	2.0	-5.5	0.0	12.8
地盤ばね5					

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	海水貯留堰 (6 号機設備) 内水位 (T. M. S. L.)	設計 海底面 (T. M. S. L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3					
地盤ばね4	-3.0	-3.5	-5.5	0.0	12.8
地盤ばね 5					

表 2.4-5-11(1) 動水圧(海水貯留堰(6号機設備)内:断面② 重畳時 2)

表 2.4-5-11(2) 動水圧(海水貯留堰(6号機設備)外:断面② 重畳時 2)

解析ケース	海水貯留堰 (6 号機設備) 天端高 (T. M. S. L.)	入力津波高さ (T.M.S.L.)	設計 海底面 (T.M.S.L.)	海水貯留堰 (6 号機設備) 天端動水圧 (kN/m ²)	設計海底面 での動水圧 (kN/m ²)
地盤ばね3					
地盤ばね4	-3.0	-1.0	-5.5	15.4	23.1
地盤ばね5					

5.2.2 鋼管矢板

重畳時における鋼管矢板の解析結果を以下に示す。なお,重畳時1と重畳時2を比較し て,重畳時2における作用外力が大きいため,重畳時2における鋼管矢板の評価結果を示 す。海水貯留堰(6号機設備)の取水護岸(6号機設備)側端部の鋼管矢板は,止水ゴム 等の付属物によって受圧面積が大きくなるため作用外力が一般部と比較して大きくなる。 鋼管矢板の強度評価においては,その荷重増分を考慮しない鋼管矢板(一般部)と,その 荷重増分を考慮する鋼管矢板(端部)に対する評価結果をそれぞれ整理する。

(1) 鋼管矢板(一般部)

地盤ばねの設定に用いた地盤物性を表 2.4-5-12 に,断面①及び断面②における余震 (Sd-1)による発生断面力(曲げモーメント及びせん断力)を図 2.4-5-9 及び図 2.4-5-10に示す。

解析ケース	検討断面	地盤物性
地盤ばね 3	断面①	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース
	断面②	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース
地盤ばね4	断面①	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース
	断面②	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース
地盤ばね 5	断面①	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース
	断面②	解析ケース③ 地盤物性のばらつき(-1σ)を考慮した解析ケース

表 2.4-5-12 地盤ばねの設定に用いた地盤物性

資料 8-2.4-88

図 2.4-5-9 発生断面力 (断面①)

(a) 地盤ばね3(重畳時2)

(b) 地盤ばね4(重畳時2)

(c) 地盤ばね5(重畳時2)

図 2.4-5-10 発生断面力(断面②)

a. 曲げ軸力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,曲げ軸応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。曲げ軸力に対する照査結果を表 2.4-5-13に示す。

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸 応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	1437	48	165	277	0.60
地盤ばね4	1433	48	165	277	0.60
地盤ばね 5*	_	_	_	_	_

表 2.4-5-13(1) 曲げ軸力に対する照査結果(断面①)

表 2.4-5-13(2) 曲げ軸力に対する照査結果(断面②)

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸 応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	1476	55	148	277	0.54
地盤ばね4	1477	55	148	277	0.54
地盤ばね5*	_			_	_

注記*:地盤ばね3とは地盤ばね5は着目時刻がほぼ同じため、1次元有効応力解析による地盤の応力ひずみ関係から算定する地盤の変形係数が同値になるため照査を省略する。

b. せん断力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,せん断応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。せん断力に対する照査結果を表 2.4-5-14に示す。

解析ケース	せん断力 (kN)	せん断応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	633	39	157	0.25
地盤ばね4	631	39	157	0.25
地盤ばね5*	—	—	—	—

表 2.4-5-14(1) せん断力に対する照査結果(断面①)

表 2.4-5-14(2) せん断力に対する照査結果(断面②)

解析ケース	せん断力 (kN)	せん断応力 (N/mm²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	500	27	157	0.18
地盤ばね4	500	27	157	0.18
地盤ばね 5*	_	_	_	—

注記*:地盤ばね3とは地盤ばね5は着目時刻がほぼ同じため、1次元有効応力解析に よる地盤の応力ひずみ関係から算定する地盤の変形係数が同値になるため照査 を省略する。

(2) 鋼管矢板(端部)

海水貯留堰(6号機設備)の前面鋼矢板側端部は、止水ゴム取付部鋼材等の付属物によって作用外力が一般部と比較して大きくなる。ここでは、それらの荷重を考慮した前面鋼 管矢板端部の評価結果を示す。地盤ばねの設定に用いた地盤物性を表 2.4-5-15 に示す。 なお、地盤ばね及び地盤物性は、照査が最も厳しい条件とした。

断面①及び断面②における余震(Sd-1)による発生断面力(曲げモーメント及びせん断力)を図 2.4-5-11 に示す。

松計版五		解析ケース
便酌倒田	解析ケース	地盤物性
断面①	地盤ばね3	地盤物性のばらつき(-1σ)を考慮した解析ケース
断面②	地盤ばね3	地盤物性のばらつき(-1σ)を考慮した解析ケース

表 2.4-5-15 地盤ばねの設定に用いた地盤物性

資料 8-2.4-94

a. 曲げ軸力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,曲げ軸応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。曲げ軸力に対する照査結果を表 2.4-5-16に示す。

表 2.4-5-16(1) 曲げ軸力に対する照査結果(断面①:鋼管矢板端部)

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸 応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	1716	82	198	277	0.72

表 2.4-5-16(2) 曲げ軸力に対する照査結果(断面②:鋼管矢板端部)

解析ケース	曲げモーメント (kN・m)	軸力 (kN)	曲げ軸 応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
地盤ばね3	1803	87	172	277	0.63

b. せん断力に対する照査

鋼管矢板に対して許容応力度法による照査を行った結果,せん断応力が短期許容応力 度以下であり,照査結果が1を下回ることを確認した。せん断力に対する照査結果を表 2.4-5-17に示す。

表 2.4-5-17(1) せん断力に対する照査結果(断面①:鋼管矢板端部)

解析ケース	せん断力 (kN)	せん断応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	757	47	157	0.30

表 2.4-5-17(2) せん断力に対する照査結果(断面②:鋼管矢板端部)

解析ケース	せん断力 (kN)	せん断応力 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
地盤ばね3	622	32	157	0.21

5.2.3 止水ゴム取付部鋼材

止水ゴム取付部鋼材の作用断面力及び照査結果を表 2.4-5-18 から表 2.4-5-23 に示 す。照査に用いる断面力は,海水貯留堰(6 号機設備)の南側及び北側の止水ゴム取付部 鋼材のうち,卓越する断面力を用いる。なお,重畳時1と重畳時2を比較して,重畳時1 における作用外力が大きいため,重畳時1における止水ゴム取付部鋼材の評価結果を示す。 止水ゴム取付部鋼材の発生応力が許容限界以下であることを確認した。

(1) スキンプレート

衣 4.4	1-3-18 作用时间	<u></u>
曲げモーメント (kN・m)	軸力 (kN)	せん断力 (kN)
0. 598		12

表 2.4-5-18 作用断面力

評価項目	発生応力 (N/mm ²)	短期許容応力度 (N/mm ²)	照查値
曲げモーメント	74	277	0.27
せん断力	3	157	0. 02

表 2.4-5-19 照查結果

(2) リブプレート(海水貯留堰(6号機設備)北側 検討断面③) リブプレートの最大照査箇所は,海水貯留堰(6号機設備)北側の検討断面③である。

最大照	查箇所	曲げモーメント	軸力	せん断力
検討箇所	検討断面	$(kN \cdot m)$	(kN)	(kN)
北側	3	0.590		7

表 2.4-5-20 作用断面力

表 2.4-5-21	照査結果
------------	------

亚年百日	最大照	最大照查箇所 発生応力		短期許容応力度	昭木店
計価項目	検討箇所	検討断面	(N/mm ²)	(N/mm^2)	思理胆
曲げモーメント	北側	3	123	277	0.45
せん断力	北側	3	17	157	0.11

照查対象箇所

(3) 鋼矢板及び鋼管矢板との接合部

接合部における最大照査箇所は,海水貯留堰北側の検討断面⑤(リブプレートと前面 鋼矢板接合部)である。

最大照查箇所		曲げモーメント	軸力	せん断力
検討箇所	検討断面	(kN • m)	(kN)	(kN)
北側	5	2.75	8	10

表 2.4-5-22 作用断面力

表 2.4-5-23 照査結果

評価項目	最大照査箇所		発生応力	短期許容応力度	昭木店
	検討箇所	検討断面	(N/mm^2)	(N/mm^2)	思理但
曲げモーメント	北側	5	50	105	0.48
せん断力	北側	5	6	105	0.06

照查対象箇所

5.2.4 止水ゴム

本照査では、止水ゴムの発生変形量が許容限界以下であることを確認する。

止水ゴムの変形性照査結果を表 2.4-5-24 に示す。各変位方向の最大最終変位は、地 震時の 2 次元有効応力解析結果から算出し、 δ_x は解析ケース「(Os-7)」、 δ_y は解析ケ ース「(Os-7)」、 δ_z は解析ケース「(Os-7)」、 δ_y は解析ケース「(Os-7)」、 δ_y は解析ケース

また,各変位方向の最大変位は、2次元静的フレーム解析結果から算出する。海水貯留 堰(6号機設備)を構成する各鋼管矢板は、継手部を介して隣接鋼管矢板により鋼管矢板 の軸方向に沿って拘束されている。(参考資料 4)に示すように、δ_xは、強軸断面方向 (鋼管矢板の軸方向)の解析結果から、δ_zは、弱軸断面方向(鋼管矢板の軸方向に直交 する方向)の解析結果から算出した。

なお,重畳時1と重畳時2を比較して,重畳時2における作用外力が大きいため,重畳 時2における止水ゴムの評価結果を示す。

以上より、止水ゴムの発生変形量が許容限界以下であることを確認した。

<u>我也可以</u> 他们的一种,我们就是你们的问题,我们就能能能能能能。									
変位	最大最終変位*1		最大変位*2		合計	許容限界			
方向	解析ケース	変位 (cm)	解析ケース	変位 (cm)	(cm)	(cm)			
δ _x	(]Ss-7	1.6	重畳時2	0.2	1.8	9.5以上* ³			
δу	(1)Ss-7	4.6	重畳時2	0.0	4.6	11.3以上* ³			
δz	$3S_{s-1} + +$	2.0	重畳時2	7.0	9.0	12.2以上* ³			

表 2.4-5-24 止水ゴムの変形性照査結果

注記*1:2次元有効応力解析から算定した値。

*2:2次元静的フレーム解析から算定した値。

*3 :

5.3 まとめ

「5.1 津波時」及び「5.2 重畳時」による全ての評価項目において,海水貯留堰(6 号機設備) の評価対象部位の発生応力及び変形量が許容限界以下であることを確認した。 海水貯留堰(6号機設備)の強度計算書に関する参考資料

- (参考資料1) 津波時及び重畳時における鋼管矢板継手部の健全性について
- (参考資料 2) 海水貯留堰(6 号機設備) 接続部の強度評価に用いる水平震度及び作用荷重の 算出について
- (参考資料3)止水ゴム取付部鋼材に作用する分布荷重の算出方法について
- (参考資料4)荷重の組合せに対する止水ゴム変位量の算出方法について

(参考資料1)津波時及び重畳時における鋼管矢板継手部の健全性について

1. 検討概要

海水貯留堰を構成する鋼管矢板については,鋼管杭本体の健全性に加え,継手部の健全性も確 保する必要がある。

本検討では、余震荷重、津波波力及び衝突荷重に対して、継手部の健全性が確保されることを 確認する。継手部の健全性は、せん断応力、軸方向応力及び曲げ応力が許容限界以下であること を確認する。

- 2. せん断応力及び軸方向応力について
- 2.1 検討方法

継手部に対してせん断力及び軸方向力が保守的に作用するよう,荷重を作用させる鋼管の両 端の鋼管が固定された条件を仮定し,継手鋼材及び接合部に対してせん断応力度照査及び軸方 向応力度照査を実施する。検討イメージを図1に示す。

(単位:mm)

図1 検討イメージ (左:直線部,右:隅角部)

2.2 解析ケース

水中部については、①津波時に作用する津波波力及び衝突荷重、②重畳時に作用する津波波 力及び地震力(慣性力及び動水圧)もしくは、③静水圧、地震力(慣性力及び動水圧)及び衝 突荷重を作用荷重として考慮する。

解析ケース及び荷重作用図を表1に示す。表1に示す分布荷重(kN/m)は、継手を含む鋼管 1本あたりに作用する分布荷重である。この分布荷重のうち、最も発生せん断力及び発生軸力 が大きくなる位置での荷重の合計値を用いて照査を実施する。

本検討は作用荷重が大きい P-P 継手部を照査対象とする。なお照査に用いるのは、荷重の 合計値が最大となる「③水中部・重畳時 2」でありこの荷重の算出場所は 6 号機北側である。 また、評価は 0°~90°までの継手の取付角度を考慮する。

なお,土中部については,KK7 補足-028-08「浸水防護施設の耐震性に関する説明書の補 足説明資料」の「2.2 海水貯留堰(6号機設備)の耐震計算書に関する補足説明」(参考資 料1)において,健全性を確認している。

解析ケース	荷重作用図	荷重の合計値
①水中部·津波時	(海水貯留堰内側) (海水貯留堰内側) 津波高さT.M.S.L.2.0m 勝空荷重 准波波力 	573.9kN/m
②水中部・重畳時 1	(海水貯留堰外側) (海水貯留堰内側) 津波高さ1.4.S.L.2.0m 御菅矢板 (海水貯留堰天端高1.4.S.L. 3.0m) 一 一 動水圧 動水圧 (海水貯留堰内水位(1.4.S.L. 3.0m)	114. OkN/m
③水中部・重畳時 2	(海水貯留堰内側)	582.6kN/m

表1 解析ケース及び作用荷重
2.3 せん断力及び軸力の算定

継手に生じるせん断力及び軸力の算定方法を以下に示す。なお、鋼管矢板が受ける荷重は 2 か所の継手で分担するものとする。なお、継手鋼材に作用するせん断力は、接合部に対して軸 力、継手鋼材に作用する軸力は接合部に対して、せん断力となる。

(1) 継手鋼材に対するせん断力の算定方法

 $S = P_1 \swarrow 2$ $P_1 = P \times \cos \theta$

ここに,

- S : せん断力 (kN/m)
- P1 :継手軸方向の荷重成分 (kN/m)
- P :荷重の合計値 (kN/m)
- *θ* :継手の取付角度(°)
- (2) 継手鋼材に対する軸力(軸方向圧縮力及び軸方向引張力)の算定方法

 $N = P_2 \swarrow 2$ $P_2 = P \times \sin \theta$

ここに,

- N:軸力(軸方向圧縮力及び軸方向引張力)(kN/m)
- P2 :継手軸直角方向の荷重成分(kN/m)
- P : 荷重の合計値 (kN/m)
- θ :継手の取付角度(°)

(3) せん断力及び軸力の算定結果

荷重の合計値が最大となる「③水中部・重畳時 2」の荷重に対して、各継手に生じるせん断 力及び軸力を算定した。せん断力及び軸力の算定結果を表 2 に示す。隅角部の算定に用いた継 手の取付角度を図2に示す。

		作用荷重	作用荷重	継手軸方向 の荷重成分	継手軸直角方向 の荷重成分	継手鋼材 に対する せん断力	継手鋼材 に対する 軸力
		Р	θ	P_1	P_2	S	Ν
		kN/m	0	kN/m	kN/m	kN/m	kN/m
直線部	継手1	582.6	0	582.6	0.0	291.3	0.0
	継手2	582.6	5	580.4	50.8	290.2	25.4
	継手3	582.6	15	562.7	150.8	281.4	75.4
	継手4	582.6	25	528.0	246.2	264.0	123.1
	継手5	582.6	35	477.2	334.2	238.6	167.1
阳石寸	継手6	582.6	45	412.0	412.0	206.0	206.0
何 一 1	継手7	582.6	55	334.2	477.2	167.1	238.6
	継手8	582.6	65	246.2	528.0	123.1	264.0
	継手9	582.6	75	150.8	562.7	75.4	281.4
	継手10	582.6	85	50.8	580.4	25.4	290.2
	継手11	582.6	90	0.0	582.6	0.0	291.3

表2 せん断力及び軸力の算定結果

図2 継手の取付角度(隅角部)

- 2.4 継手部の断面諸元
- (1) 断面性能

継手部の仕様を図3に示す。また、継手鋼材及び接合部の断面積(単位高さあたり)は以下のとおり。なお、海水貯留堰には海水による腐食防止のため、電気防食を施すが、「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)」に基づき、片面1mm*の腐食代を考慮する。

注記*:耐用年数50年×腐食速度0.02mm/年=1mm

図3 継手部の仕様

- ・継手鋼材の断面積A(単位高さあたり) A = 継ぎ手部材の板厚 0.007 × 1.0 = $0.007 \text{m}^2/\text{m}$
- ・接合部の断面積 A_y (単位高さあたり) $A_y = 0.004 \times 1.0 \times 2$ 箇所= $0.008m^2/m$
- (2) 許容応力度

継手	鋼材	(STK400)材)	の許約	容応力度	€を以「	F6	こ示	す。	
	短期評	午容せん	断応	力度		:	τ	а	=	$120 \mathrm{N/mm^2}$
	短期評	午容せん	断応	力度	(接合部	3) :	τ	уа	=	$120 \mathrm{N/mm^2}$
	短期評	午容軸方	向庄	縮応フ	力度	:	σ	са	=	210N/mm^2
	短期評	午容軸方	向引	張応フ	力度	:	σ	ta	=	$210 \mathrm{N/mm^2}$

2.5 せん断応力度照査

継手鋼材及び接合部のせん断応力度照査を行った結果,下記に示すとおり,せん断応力度が 許容せん断応力度以下となることを確認した。なお,せん断応力度の照査は,せん断力が最大 となる「③ 水中部・重畳時 2」の継手鋼材:「継手 1」,接合部:「継手 11」のケースに対 して実施する。

(1) 継手鋼材

$$\begin{split} \tau &= S \swarrow A = 291.3 \text{kN/m} \swarrow 0.007 \text{m}^2/\text{m} = 41.6 \text{N/mm}^2 \\ \tau &= 41.6 \text{N/mm}^2 \leqq \tau_a = 120 \text{N/mm}^2 \cdot \cdot \cdot 0. \text{K}. \end{split}$$

(2) 接合部

$$\tau_{v} = S / A = 291.3 \text{ kN/m} / 0.008 \text{m}^2/\text{m} = 36.4 \text{N/mm}^2$$

- $\tau_{y} = 36.4 \text{N/mm}^{2} \leq \tau_{ya} = 120 \text{N/mm}^{2} \cdot \cdot \cdot 0. \text{K}.$
- 2.6 軸方向応力度照查

継手鋼材の軸方向応力度照査を行った結果,下記に示すとおり,軸方向圧縮応力度が短期許 容軸方向圧縮応力度以下となることを確認した。また,接合部の軸方向応力度照査を行った結 果,下記に示すとおり,せん断応力度が許容せん断応力度以下となることを確認した。なお, 軸方向応力度の照査は,軸力が最大となる「③ 水中部・重畳時 2」の継手鋼材:「継手 11」, 接合部:「継手 1」のケースに対して実施する。

- (1) 継手鋼材(軸方向圧縮力)
 - $\sigma = N / A = 291.3 \text{kN/m} / 0.007 \text{m}^2/\text{m} = 41.6 \text{N/mm}^2$
 - $\sigma ~=~ 41.~6\text{N/mm}^2 ~\leq \sigma_{\text{ c a}} ~~=~ 210\text{N/mm}^2~ \cdot \cdot \cdot 0.~\text{K}.$
- (2) 接合部(軸方向引張力) $\tau_{y} = S \diagup A = 291.3 \text{kN/m} \backsim 0.008 \text{m}^{2}/\text{m} = 36.4 \text{N/mm}^{2}$ $\tau_{y} = 36.4 \text{N/mm}^{2} \leq \tau_{ya} = 120 \text{N/mm}^{2} \cdot \cdot \cdot 0. \text{K}.$

2.7 せん断力及び軸方向力の合成応力度照査

継手鋼材に作用するせん断力及び軸方向力の合成応力度について次式により照査を行った結 果,表3に示すとおり,合成応力度比は基準値(1.2)以下となることを確認した。

$$(\sigma / \sigma_{ta})^{2} + (\tau / \tau_{a})^{2} \leq 1.2$$

なお,接合部に作用するせん断力及び軸方向力は,それぞれ独立してのど厚面にせん断力と して作用することから,合成応力度照査は実施していない。

		せん断力	軸力	せん断応力度	軸応力度	合成応力度比	
		s	Ν	τ (S/A)	σ (N/A)	() 2. () 2	判定
		kN/m	kN/m	N/mm^2	N/mm^2	$(\sigma / \sigma_{a}) + (\tau / \tau_{a})$	
直線部	継手1	291.3	0.0	41.6	0.0	0.12	0. K.
	継手2	290.2	25.4	41.5	3.6	0.12	0. K.
	継手3	281.4	75.4	40.2	10.8	0.11	0. K.
	継手4	264.0	123.1	37.7	17.6	0.11	0. K.
	継手5	238.6	167.1	34.1	23.9	0.09	0. K.
四日本立	継手6	206.0	206.0	29.4	29.4	0.08	0. K.
两 西 部	継手7	167.1	238.6	23.9	34.1	0.07	0. K.
	継手8	123.1	264.0	17.6	37.7	0.05	0. K.
	継手9	75.4	281.4	10.8	40.2	0.04	0. K.
	継手10	25.4	290. 2	3.6	41.5	0.04	0. K.
	継手11	0.0	291.3	0.0	41.6	0.04	0. K.

表3 せん断応力及び軸方向応力の合成応力度照査(継手鋼材)

3. 曲げ応力について

曲げ応力については,継手軸方向の曲げに対して照査する。曲げによって鋼管外縁が短期許容 応力度に達した場合を仮定しても,継手部に生じる曲げ応力度は短期許容応力度以下となる。図 4 に鋼管と継手部の応力分布を示す。

図4 鋼管及び継手鋼材の応力分布

鋼管外縁が短期許容応力度に達した場合の継手部の応力度を算出すると、以下のとおりとなる。

・鋼管外縁での応力度(SKY490の短期許容応力度)

 $\sigma_{a} = 277 \text{N/mm}^{2}$

・継手部に生じる応力度

 $\sigma_{\rm t} = 277 \times 82.6 / 550 = 41.6 \text{N/mm}^2 \leq 210 \text{N/mm}^2$ (STK400 の短期許容応力度)

- 4. 継手部の漏水量評価
- 4.1 評価方針

設置変更許可申請書同様に,海水貯留堰の継ぎ手部における漏水量については,文献¹⁾を参 考に,海水貯留堰接続部の仕様が Case1 の P-P 継手及び Case3 の P-T 継手であることから,図 5 に示す鋼管矢板継手部の遮水性能試験結果より,鋼管矢板継ぎ手部の換算透水係数を 1.0× 10⁻⁵ (cm/sec) と保守的に設定し評価を行う。

図5 鋼管矢板継手部の遮水性能試験結果1)

参考 ¹⁾斎藤ほか:鋼管矢板継手の遮水性能評価試験:土木学会第56回年次学術講演会 (平成13年10月) 4.2 評価結果

海水貯留堰(6号機設備)の構造を図6に示す。継手構造は,保守的に貯留堰全周にあると 仮定して計算を行う。評価時間は,基準津波による補機取水槽内の津波高さが海水貯留堰の天 端標高T.M.S.L.-3.5mを下回る継続時間を考慮して,16分とする。

継手部における漏水量は、下記の計算結果に示すとおり、貯留量(10,000m³)に対して、十 分に小さいことを確認した。

漏水量 Q=換算透水係数 ke (m/sec) ×動水勾配 i×全周 L(m)×高さ H(m)×時間 t (sec) = (1.0×10⁻⁵×10⁻²) × (2/0.5) ×171.7×2× (16×60) ≒ <u>0.14(m³)</u>

図6(2) 海水貯留堰の構造概要

5. まとめ

鋼管矢板継手部は,余震荷重,津波波力及び衝突荷重に対して,せん断応力,軸方向応力,合 成応力度,曲げ応力度が照査基準以下となるとともに,漏水量が貯留量に対して十分小さくなる ことから,海水貯留堰の止水性は確保されることを確認した。 (参考資料2)海水貯留堰(6号機設備)接続部の強度評価に用いる水平震度の算出について

1. 概要

本参考資料では,海水貯留堰(6号機設備)接続部の強度評価に用いる水平震度及び作用荷重 (止水ゴム取付部鋼材の地震時慣性力,動水圧,遡上津波荷重,津波荷重(静水圧)及び止水ゴ ム作用力)の算出結果を示す。

2. 水平震度

止水ゴム取付部鋼材の強度評価で、慣性力及び動水圧の算定に用いる水平震度k_hは、1次元 有効応力解析から抽出した地表面最大水平加速度 α より算出する。

抽出断面は補足「2.4 海水貯留堰(6 号機設備)の強度計算書に関する補足説明 3.2.1 評 価対象断面」に示す断面①及び断面②を選定する。

入力地震動は補足「2.4 海水貯留堰(6号機設備)の強度計算書に関する補足説明 3.5.2 重畳時(1)鋼管矢板 c.1 次元有効応力解析 (c) 入力地震動」に示す余震(Sd-1)とし、 解析ケースは表1に示す3通りとする。

		1	2	3		
解析ケ	ース	基本ケース 基本ケース 基本ケース 進した解析ケース		地盤物性のばらつ き (-1σ)を考 慮した解析ケース		
地盤剛 設定	性の E	地盤剛性 (平均値)	地盤剛性 地盤剛性 (平均値) (+1σ)			
液状化強度特性 の設定		液状化パラメー タを非適用	液状化パラメータ を非適用	液状化パラメータ を非適用		
地震波 Sd-1		1	1	1		
計		1	1	1		

表1 海水貯留堰(6号機設備)接続部の強度評価に用いる検討ケース

補足「2.4 海水貯留堰(6号機設備)の強度計算書に関する補足説明 5.2.1 1次元有効応 力解析結果」に示した断面①及び断面②の地表面加速度を表2及び表3に示す。

	1)	2	3
解析ケース	基本ケース	地盤物性のばらつ き(+1σ)を考慮 した解析ケース	地盤物性のばらつ き(-1σ)を考慮 した解析ケース
地表面 加速度最大 (m/s ²)	4. 55	4. 25	4.95

表 2 1 次元有効応力解析結果(断面①) (再揭)

表 3 1 次元有効応力解析結果(断面②)(再揭)

	1	2	3
解析ケース	基本ケース	地盤物性のばらつ き(+1σ)を考慮 した解析ケース	地盤物性のばらつ き(-1σ)を考慮 した解析ケース
地表面 加速度最大 (m/s ²)	5.61	5.49	5.66

表2及び表3より、断面①及び断面②の解析ケース③(地盤物性のばらつき(-1*g*)を考慮 した解析ケース)において、地表面最大加速度が発生する。

したがって, 強度評価に用いる水平震度 k h は, 表 4 に示すように算出する。

	地表面	重力加速度	水亚雪庄			
検討断面	加速度最大	g	水干辰反 k _h			
	lpha (m/s ²)	(m/s^2)				
断面①	4.95	9.80665	0.51			
断面②	5.66	9.80665	0.58			

表4 水平震度の算出

3. 慣性力

止水ゴム取付部鋼材の地震時慣性力は,「道路橋示方書(V耐震設計編)・同解説(日本道路 協会,平成14年3月)」に基づいて算出する。材料の単位体積重量は,「コンクリート標準示 方書[構造性能照査編](土木学会,2002年制定)」に基づいて設定する。なお,地震時慣性 力は検討対象である止水ゴム取付部鋼材リブプレート間隔300mm間の鋼材重量に対して算出する。 ここでは,断面②の水平震度k_h=0.58を用いた荷重条件を表5および表6に示す。

記号	定義	数値	単位	備考
γs	鋼の単位体積重量	77	kN/m ³	
B _{skin} 1	幅 (スキンプレート 1)	550	mm	
D _{skin} 1	長さ(スキンプレート 1)	300	mm	
t _{skin} 1	板厚(スキンプレート1)	9	mm	
n _{skin} 1	個数 (スキンプレート 1)	1	_	
G _{skin} 1	重量 (スキンプレート1)	0.115	kN	
B _{skin} 2	幅 (スキンプレート 2)	374	mm	
D _{skin} 2	長さ (スキンプレート 2)	300	mm	
t _{skin} 2	板厚 (スキンプレート 2)	9	mm	
n _{skin} 2	個数(スキンプレート 2)	1	_	
G _{skin} 2	重量(スキンプレート 2)	0.078	kN	
В _{гі b} 1	幅(リブプレート 1)	381	mm	
D r i b 1	長さ(リブプレート 1)	125	mm	
t _{rib} 1	板厚(リブプレート1)	14	mm	
n _{rib} 1	個数 (リブプレート1)	1	_	
G _{r i b} 1	重量 (リブプレート1)	0.051	kN	
В _{гі b} 2	幅(リブプレート 2)	391	mm	
D _{rib} 2	長さ(リブプレート 2)	125	mm	
t _{rib} 2	板厚(リブプレート 2)	14	mm	
n _{rib} 2	個数 (リブプレート 2)	1	_	
G r i b2	重量(リブプレート2)	0.053	kN	
В _{гі b} 3	幅(リブプレート 3)	285	mm	
D _{r i b} 3	長さ (リブプレート 3)	50	mm	
t _{rib} 3	板厚(リブプレート 3)	14	mm	
n _{rib} 3	個数(リブプレート3)	1		
G _{r i b} 3	重量(リブプレート3)	0.015	kN	

表5 強度評価に用いる条件(慣性力,止水ゴム取付部鋼材(1))

記号	定義	数値	単位	備考
B _{rib} 4	幅 (リブプレート 4)	367	mm	
D r i b4	長さ (リブプレート 4)	335	mm	
t _{rib} 4	板厚 (リブプレート 4)	14	mm	
n _{rib} 4	個数 (リブプレート 4)	1		
G _{r i b} 4	重量(リブプレート 4)	0.132	kN	
B _{rib} 5	幅(リブプレート 5)	146	mm	
D r i b 5	長さ(リブプレート 5)	374	mm	
t _{rib} 5	板厚(リブプレート 5)	14	mm	
n _{r i b} 5	個数(リブプレート 5)	1	_	
G _{r i b} 5	重量(リブプレート 5)	0.059	kN	
В _{гі b} 6	幅(リブプレート 6)	80	mm	
D _{rib} 6	長さ (リブプレート 6)	150	mm	
t _{rib} 6	板厚(リブプレート 6)	14	mm	
n _{rib} 6	個数(リブプレート 6)	1	_	
G _{rib} 6	重量(リブプレート 6)	0.013	kN	
C	※ 壬 旦	0 516	1-11	$= \Sigma \operatorname{G}_{skin} +$
G		0.510	KIN	$\Sigma~{ m G}$ r i b
Δ	西待(スキンプレート)	0.277	m^2	$= \Sigma (B_{s k i n} \cdot D_{s k i})$
Askin	面積(ハイングレート)	0.277	111	n) $/10^{6}$
C,	スキンプレート	1 863	$l_{\rm N}/m^2$	$= G / A_{s k i n}$
U U	単位面積あたりの重量	1.003	KIN/ III	
k h	水平震度	0.58	_	
K s d	慣性力	1.1	kN/m^2	$= \mathbf{k}_{\mathbf{h}} \cdot \mathbf{G}'$

表 6 強度評価に用いる条件(慣性力,止水ゴム取付部鋼材(2))

4. 動水圧

動水圧は、「港湾の施設の技術上の基準・同解説(日本港湾協会、平成 19 年 7 月)」に基づいて算出する。ここでは、断面②の水平震度 k_h=0.58 を用いた荷重条件を表 7 および表 8 に示す。

記号	定義	数値	単位	備考
ρ	海水の密度	1.03	g/cm ³	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m ³	$= ho \cdot g$
Н	海水貯留堰(6 号機設備)高さ	2.50	m	
	海水貯留堰(6号機設備)外側		m	
η	の海水貯留堰(6 号機設備)天	0.00		
	端面からの津波高さ			
h	海水貯留堰(6号機設備)外側	2 50	m	$=$ H $+\eta$
II 1	の底面における水深	2. 50		
h	海水貯留堰(6号機設備)外側	0.00	m	
11 2	の天端面における水深	0.00		
h	海水貯留堰(6号機設備)内側	2.00	m	
11 3	の底面における水深	2.00		
k h	水平震度	0.58	_	
р	海水貯留堰(6号機設備)外側	10.0	1-N /2	⁷ lr o b
P _{d1}	の底面における動水圧	12.0	KIN/ III ⁻	$= \frac{-\mathbf{K}}{8} \mathbf{K} \mathbf{h} \cdot \mathbf{\gamma} \mathbf{w} \cdot \mathbf{\Pi} 1$
D	海水貯留堰(6号機設備)内側	10.2	kN/m²	7 la su la
Р _{d3}	の底面における動水圧	10.3		$\begin{bmatrix} \mathbf{-} \cdot \mathbf{K} & \mathbf{h} \cdot \boldsymbol{\gamma} & \mathbf{w} \cdot \mathbf{\Pi} & 3 \\ 8 \end{bmatrix}$

表7 強度評価に用いる条件(動水圧 重畳時1 断面②)

記号	定義	数值	単位	備考
ρ	海水の密度	1.03	g/cm ³	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m ³	$= ho\cdot\mathrm{g}$
Н	海水貯留堰(6 号機設備)高さ	2.50	m	
	海水貯留堰(6号機設備)外側		m	
η	の海水貯留堰(6 号機設備)天	2.00		
	端面からの津波高さ			
h	海水貯留堰(6号機設備)外側	4 50	m	$=$ H+ η
11 1	の底面における水深	4.00		
h	海水貯留堰(6号機設備)外側	2.00	m	
11 2	の天端面における水深	2.00		
h	海水貯留堰(6号機設備)内側	2 50	m	
11 3	の底面における水深	2.30		
k h	水平震度	0.58	_	
р	海水貯留堰(6 号機設備)外側	0.2 1	1-N /m2	⁷ la v b
P _{d1}	の底面における動水圧	23.1	KIN/ III ⁻	$= \frac{-\mathbf{K}}{8} \mathbf{K} \mathbf{h} \cdot \mathbf{\gamma} \mathbf{w} \cdot \mathbf{\Pi} 1$
р	海水貯留堰(6号機設備)内側	10.0	1-N /m2	⁷ la v b
P _{d3}	の底面における動水圧	12.0	kN/m²	$= \frac{-\mathbf{\kappa}}{8} \mathbf{k} \mathbf{h} \cdot \mathbf{\gamma} \mathbf{w} \cdot \mathbf{\Pi} 3$

表8 強度評価に用いる条件(動水圧 重畳時2 断面②)

5. 遡上津波荷重

遡上津波荷重は,保守的に津波による最大荷重(越流直前の波力)を適用することとし,津波 波力は,「東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の構造上の要 件に係る暫定指針」の考え方に従って,津波高さの3倍の高さまでの静水圧荷重を考慮する。こ こでは,断面②に用いた荷重条件を表9及び表10に示す。

記号	定義	数値	単位	備考
Н	海水貯留堰(6号機設備)高さ	2.50	m	
	海水貯留堰(6 号機設備)外側の海			
η	水貯留堰(6号機設備)天端面から	5.00	m	
	の津波高さ			
h.	海水貯留堰(6 号機設備)外側の底	7 50	m	$=H + \eta$
11]	面における水深	1.00	111	
h	海水貯留堰(6 号機設備)外側の天	5 00	m	
11 2	端面における水深	5.00	111	
h	海水貯留堰(6 号機設備)内側の底	2 00	m	
11.3	面における水深	2.00	111	
ρ	海水の密度	1.03	g/cm^3	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m^3	$= ho\cdot\mathrm{g}$
5	海水貯留堰(6 号機設備)外側の底	75.9	$1 \text{-N}/\text{m}^2$	$= \gamma_{w} \cdot h_{1}$
р ₁	面における波圧強度	10.0	KIN/ III	
	海水貯留堰(6 号機設備)外側の天	EO E	1-N /2	$= \gamma_{w} \cdot h_{2}$
p 2	端面における波圧強度	50.5	KIN/ M ⁻	
	海水貯留堰(6 号機設備)内側の底	20. 2	1-N /2	$= \gamma_{w} \cdot h_{3}$
р ₃	面における波圧強度	20.2	KIN/ III-	
-	海水貯留堰(6号機設備)に作用す	55 6	1rN /m2	(遡上津波)
р	る波圧強度	55.6		$= p_1 - p_3$
l	荷重分担幅	1.00	m	
P _t	遡上津波荷重	55.6	kN/m	$= p \times \ell$

表9 強度評価に用いる条件(遡上津波荷重 一般部)

記号	定義	数値	単位	備考
Н	海水貯留堰(6号機設備)高さ	2.50	m	
	海水貯留堰(6 号機設備)外側の海			
η	水貯留堰(6号機設備)天端面から	5.00	m	
	の津波高さ			
h 1	海水貯留堰(6 号機設備)外側の底	7.50	m	$=$ H+ η
	面における水深			
h 2	海水貯留堰(6号機設備)外側の天	5.00	m	
2	端面における水深			
h ₃	海水貯留堰(6号機設備)内側の底	2, 00	m	
	面における水深			
ρ	海水の密度	1.03	g/cm ³	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m ³	$= ho \cdot g$
n	海水貯留堰(6号機設備)外側の底	75.8	l_{rN}/m^2	$= \gamma_{w} \cdot h_{1}$
р 1	面における波圧強度	10.0		
5	海水貯留堰(6 号機設備)外側の天	50 5	1 m^2	$= \gamma {}_{\mathrm{w}} \cdot \mathrm{h}_{2}$
р ₂	端面における波圧強度	50.5	KIN/ III	
	海水貯留堰(6 号機設備)内側の底	20. 2	1-N /m2	$= \gamma_{\rm w} \cdot h_{\rm 3}$
b 3	面における波圧強度	20.2	KIN/ III	
-	海水貯留堰(6 号機設備)に作用す	EE C	1-N /m2	(遡上津波)
р	る波圧強度	55. 6	KIN/ III ⁻	$= p_{1} - p_{3}$
				(鋼管矢板杭径 1.100m
				+継手長 0.180m/2+
Q	荷重分担幅	1.564	m	端部長 0.671m)/(鋼
				管矢板杭径 1.100m+
				継手長 0.180m/2)
P _t	遡上津波荷重	87.0	kN/m	$= p \times \ell$

表10 強度評価に用いる条件(遡上津波荷重 端部)

6. 津波荷重(静水圧)

津波荷重(静水圧)は、津波により浸水している状態での浸水深さに応じた静水圧を算定し、 保守的なものを適用することとし、「防波堤の耐津波設計ガイドライン(国土交通省港湾局、平 成 27 年 12 月一部改訂)」に基づき、静水圧差式を参考に算出する。ここでは、断面②に用いた 荷重条件を表 11 及び表 12 に示す。なお、設計に用いる津波高さは、津波シミュレーション結果 より T. M. S. L. -1. 0m とする。

記号	定義	数値	単位	備考
Н	海水貯留堰(6号機設備)高さ	2.50	m	
η	海水貯留堰(6号機設備)外側の海 水貯留堰(6号機設備)天端面から の津波高さ	2.00	m	
h 1	海水貯留堰(6号機設備)外側の底 面における水深	4.50	m	$=H + \eta$
h 2	海水貯留堰(6号機設備)外側の天 端面における水深	2.00	m	
h 3	海水貯留堰(6号機設備)内側の底 面における水深	2. 50	m	
ρ	海水の密度	1.03	g/cm^3	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m^3	$= ho\cdot\mathrm{g}$
р 1	海水貯留堰(6号機設備)外側の底 面における 波圧強度	45.5	kN/m^2	$= \gamma_{w} \cdot h_{1}$
p 2	海水貯留堰(6号機設備)外側の天 端面における 波圧強度	20. 2	kN/m²	$= \gamma_{w} \cdot h_{2}$
рз	海水貯留堰(6号機設備)内側の底 面における 波圧強度	25.3	kN/m^2	$= \gamma_{w} \cdot h_{3}$
р	海水貯留堰(6号機設備)に作用す る波圧強度	20.2	kN/m²	(静水圧) = p ₁ -p ₃
Q	荷重分担幅	1.00	m	
P _{hy}	津波荷重 (静水圧)	20.2	kN/m	$ = p \times \ell$

表 11 強度評価に用いる条件(津波荷重(静水圧)一般部)

記号	定義	数値	単位	備考
Н	海水貯留堰(6号機設備)高さ	2.50	m	
	海水貯留堰(6 号機設備)外側の海			
η	水貯留堰(6号機設備)天端面から	2.00	m	
	の律波局さ			
h 1	海水貯留堰(6 号機設備)外側の底	4.50	m	$=$ H+ η
	面における水深			
h 2	海水貯留堰(6号機設備)外側の天	2.00	m	
2	端面における水深			
h a	海水貯留堰(6 号機設備)内側の底	2 50	m	
	面における水深			
ρ	海水の密度	1.03	g/cm ³	
g	重力加速度	9.80665	m/s^2	
γw	海水の単位体積重量	10.1	kN/m^3	$= ho\cdot\mathrm{g}$
	海水貯留堰(6 号機設備)外側の底	45.5	kN/m^2	$= \gamma_{w} \cdot h_{1}$
р ₁	面における波圧強度			
	海水貯留堰(6 号機設備)外側の天	20.0	1-N /2	$= \gamma_{w} \cdot h_{2}$
p 2	端面における波圧強度	20.2	KIN/ M ²	
	海水貯留堰(6 号機設備)内側の底	05.0	1 N / 2	$= \gamma_{w} \cdot h_{3}$
р з	面における波圧強度	25.3	kN/m^2	
	海水貯留堰(6号機設備)に作用す	00.0	1 NT / 2	(静水圧)
р	る波圧強度	20.2	KN/m ²	$= p_{1} - p_{3}$
				(鋼管矢板杭径 1.100m
				+継手長 0.180m/2+
Q	荷重分担幅	1.564	m	端部長 0.671m)/(鋼
				管矢板杭径 1.100m+
				継手長 0.180m/2)
P _{hy}	津波荷重 (静水圧)	31.6	kN/m	$=\mathrm{p} imes \ell$

表 12 強度評価に用いる条件(津波荷重(静水圧)端部)

7. 止水ゴム作用力

止水ゴムに作用する荷重は、止水ゴムの荷重作用幅を考慮した値を、止水ゴム両側の止水ゴム 取付部鋼材スキンプレート先端が負担するものとして考慮する。ここでは、断面②に用いた荷重 条件を表 13 から表 15 に示す。

記号	定義	数值	単位	備考
B 1	止水ゴム幅	0.240	m	
				2次元有効応力解析お
B ₂	止水ゴム変形量	0.052	m	よび2次元静的フレー
		0.053		ム解析から算定した津
				波時変形量
В	止水ゴム荷重作用幅	0. 293	m	$= B_1 + B_2$
	海水貯留堰(6 号機設備)に作用す	55.6	kN/m^2	表9より
р	る波圧強度			
F _g	止水ゴム作用力	8.1	kN/m	$= B/2 \cdot p$

表13 強度評価に用いる条件(止水ゴム作用力 津波時)

記号	定義	数值	単位	備考
B_1	止水ゴム幅	0.240	m	
				2次元有効応力解析お
D	- ル オ ノ 亦 平 是	0.055		よび2次元静的フレー
B_2	正小コム変形里	0.055	m	ム解析から算定した重
				畳時1変形量
В	止水ゴム荷重作用幅	0.295	m	$= B_1 + B_2$
-	海水貯留堰(6号機設備)に作用す	FF G	1-N / m2	表9より
р	る波圧強度	55. 0	KIN/ III ⁻	
D	海水貯留堰(6 号機設備)外側の底	10.0	1-NI /2	表7より
P _{d1}	面における動水圧	12.8	KIN/ M ⁻	
р	海水貯留堰(6 号機設備)内側の底	10.0	1-NI /2	表7より
Р _{d3}	面における動水圧	10. 3	KIN/ M ⁻	
F _g	止水ゴム作用力	11.6	kN/m	$= B/2 \cdot (p + P_{d1} + P_{d3})$

表 14 強度評価に用いる条件(止水ゴム作用力 重畳時1)

記号	定義	数值	単位	備考
B 1	止水ゴム幅	0.240	m	
				2次元有効応力解析お
B.	小水ゴム変形量	0 086	m	よび2次元静的フレー
\mathbf{D}_2		0.000	111	ム解析から算定した重
				畳時2変形量
В	止水ゴム荷重作用幅	0.326	m	$= B_1 + B_2$
	海水貯留堰(6 号機設備)に作用す	00.0	1 N / 2	表 11 より
р	る波圧強度	20. 2	KIN/ m²	
D	海水貯留堰(6 号機設備)外側の底	0.0 1	1 N / 2	表8より
P _{d1}	面における動水圧	23.1	KIN/ m ²	
P _{d3}	海水貯留堰(6 号機設備)内側の底	10.0	1 N / 2	表8より
	面における動水圧	12.8	KIN/m ²	
F g	止水ゴム作用力	9.1	kN/m	$= B/2 \cdot (p + P_{d1} + P_{d3})$

表 15 強度評価に用いる条件(止水ゴム作用力 重畳時2)

8. 衝突荷重

衝突荷重は,KK7 補足-019-2「津波への配慮に関する説明書に係る補足説明資料」の「4.7 漂流物衝突を考慮した津波防護施設の設計について」に示す漂流物衝突荷重一覧のうち,最も大 きい荷重となる軽自動車の FEMA (2012) で示された算定式による衝突荷重を考慮する。ここで は、断面②に用いた荷重条件を表 16 及び表 17 に示す。

表 16 強度評価に用いる条件(衝突荷重 鋼管矢板一般部)

				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
記号	定義	数值	単位	備考
Р	衝突荷重	499	kN	
Q	荷重分担幅	1. 348	m	(鋼管矢板杭径 1.100m+継手長 0.2478m)
Рс	衝突荷重	370.2	kN/m	$= P / \ell$

記号	定義	数值	単位	備考	
Р	衝突荷重	499	kN		
				(鋼管矢板杭径	
l	荷重分担幅	1.190	m	1.100m+継手長	
				0.180m/2)	
Рс	衝突荷重	419.3	kN/m	$= P / \ell$	

表 17 強度評価に用いる条件(衝突荷重 鋼管矢板端部)

(参考資料3)止水ゴム取付部鋼材に作用する分布荷重の算出方法について

1. 概要

止水ゴム取付部鋼材(スキンプレート及びリブプレート)に作用する分布荷重の算出例を示 す。

海水貯留堰(6号機設備)の平面図を図1に,海水貯留堰(6号機設備)南側接続部の鳥瞰図 を図2に,止水ゴム取付部鋼材及び止水ゴムの詳細構造図を図3に示す。

図1 海水貯留堰(6号機設備)の平面図

図2 海水貯留堰(6号機設備)南側接続部の鳥瞰図

図 3 止水ゴム取付部鋼材の詳細構造図(南側)

2. 止水ゴム取付部鋼材に作用する荷重

スキンプレート及びリブプレートに作用する荷重図を図4に示す。作用する分布荷重は,慣性 力,動水圧,止水ゴム作用力を考慮する。

動水圧は、「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)」に基づ き、1次元有効応力解析から得られる最大加速度を用いて算出する。動水圧の算出にあたって は、水深が最も深い箇所が最も大きくなることから、海水貯留堰(6号機設備)底面位置にて算 出された動水圧に基づき、荷重を算定する。

慣性力は、1次元有効応力解析から得られる最大加速度を用いて算出する。海水貯留堰(6号機設備)接続部の強度評価に用いる水平震度は、(参考資料2)に示すとおり、断面②における水 平震度 k_h=0.58(③地盤物性のばらつき(-1σ)を考慮した解析ケース)を用いている。

止水ゴム作用力は、2次元有効応力解析結果と2次元静的フレーム解析結果に基づき、止水ゴ ムの作用幅に応じた荷重を用いて算出する。

図 4 荷重作用図 (重畳時 1)

3. スキンプレートに作用する分布荷重の算出例

スキンプレートに作用する荷重図を図5に,スキンプレートの照査モデルを図6に示す。作用 する分布荷重は,津波荷重,慣性力,動水圧を考慮する。スキンプレートは,荷重値一覧を表1に 示す。

図 6 スキンプレートの照査モデル(南側)

検討断面	津波荷重 p (kN/m ²)	動水圧 P _d (kN/m ²)	慣性力 K _{sd} (kN/m ²)	スキンプレー ト奥行き 1 (m)	分布荷重 q (kN/m)	分布荷重 載荷幅 L* (m)
断面① (南側)	40.4	20.5	1.05	1.0	62.0	0.3
断面②(北側)	55.6	23.1	1.08	1.0	79.7	0.3

表 1 荷重值一覧

注記*:分布荷重載荷幅=リブプレート間隔(m)

スキンプレートに作用する各荷重の算出を以下に示す。

【断面①】

分布荷重 q = (p + P_d + K_{sd}) × 1 = (40.4+20.504+1.049) × 1.0=61.953 (kN/m) p = p₁ - p₃=10.1×3×2.0-10.1×2.0=40.4 (kN/m²)

p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²)

p₁:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²)

p₃:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m²)

動水 $EP_d = P_{d1} + P_{d3} = 20.504$ (kN/m²)

 $P_{d1} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$

 $P_{d3} = 7/8. k_{h}. \gamma_{w}. h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$

P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²)

- P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²)
- k_h:水平震度(0.58)

γw:海水の単位体積重量(kN/m³)

慣性力 $K_{sd} = k_h \cdot G' = 0.58 \times 1.809 = 1.049$ (kN/m²)

G': 自重(止水ゴム取付部鋼材の単位面積当たり)

k_h:水平震度(0.58)

【断面②】

分布荷重 q = (p + P_d + K_{sd}) × l = (55.55+23.066+1.081) × 1.0=79.697 (kN/m) p = p₁ - p₃=10.1×3×2.5-10.1×2.0=55.55 (kN/m²)

p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²)

p1:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²)

```
p<sub>3</sub>:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m<sup>2</sup>)
```

動水圧 $P_d = P_{d_1} + P_{d_3} = 23.066$ (kN/m²)

 $P_{d1} = 7/8. k_{h}. \gamma_{w}. h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.5 = 12.814$

 $P_{d3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$

P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²)

P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²)

k_h:水平震度(0.58)

γ_w:海水の単位体積重量(kN/m³)

慣性力K_{sd}=k_h·G[']=0.58×1.863=1.081 (kN/m²)

G': 自重(止水ゴム取付部鋼材の単位面積当たり)

k_h:水平震度(0.58)

4. リブプレートに作用する分布荷重の算出例

リブプレートに作用する荷重図を図7に、止水ゴム取付部鋼材の詳細構造図を図8,照査モデル図を図9に示す。作用する分布荷重は、慣性力、動水圧、止水ゴム作用力を考慮する。荷重値一覧を表2及び表3に示す。

図 7 荷重作用図(重畳時1)

図 8 止水ゴム取付部鋼材の詳細構造図(南側)

(参考) 3-7

図 9 照査モデル図(リブプレートと鋼管矢板又は鋼矢板)(南側)

我 2 问 里他 · 見(刀仰问里)							
検討断面		津波荷重 p (kN/m²)	動水圧 P _d (kN/m²)	慣性力 K _{sd} (kN/m²)	リブプレ ート間隔 l (m)	分布荷重 q (kN/m)	分布荷重 載荷幅 L* (m)
断面① (南側)	1 2 3 4 5	40. 4	20. 5	1.05	0. 3	18.6	0.501 0.120 0.120 0.751 0.308
断面② (北側)	1) 2) 3) 4) 5)	55.6	23. 1	1.08	0.3	23.9	0.301 0.120 0.120 0.551 0.356

表 2 荷重值一覧(分布荷重)

注記*:分布荷重載荷幅=検討箇所でのリブプレート張り出し長(m)

リブプレートに作用する分布荷重の算出を以下に示す。

【断面①】

分布荷重 $q = (p + P_d + K_{sd}) \times 1 = (40.4 + 20.504 + 1.049) \times 0.3 = 18.586 (kN/m)$ $p = p_1 - p_3 = 10.1 \times 3 \times 2.0 - 10.1 \times 2.0 = 40.4$ (kN/m²) p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²) p1:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²) p₃:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m²) 動水圧 $P_d = P_{d1} + P_{d3} = 20.504$ (kN/m²) $P_{d,1} = 7/8 \cdot k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$ $P_{d3} = 7/8. k_{h}. \gamma_{w}. h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$ P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²) P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²) k_h:水平震度(0.58) γw:海水の単位体積重量(kN/m³) 慣性力K_{sd}=k_b·G[']=0.58×1.809=1.049 (kN/m^2) G': 自重(止水ゴム取付部鋼材の単位面積当たり) k_h:水平震度(0.58) 【断面②】 分布荷重 $q = (p + P_d + K_{sd}) \times l = (55.55 + 23.066 + 1.081) \times 0.3 = 23.909 (kN/m)$ $p = p_1 - p_3 = 10.1 \times 3 \times 2.5 - 10.1 \times 2.0 = 55.55$ (kN/m²) p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²) p1:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²) p₃:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m²) 動水圧 $P_d = P_{d,1} + P_{d,3} = 23.066$ (kN/m²) $P_{d,1} = 7/8 \cdot k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.5 = 12.814$ $P_{d,3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$ P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²) P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²) k_h:水平震度(0.58) γ_w:海水の単位体積重量(kN/m³) 慣性力 $K_{sd} = k_h \cdot G' = 0.58 \times 1.863 = 1.081$ (kN/m²) G':自重(止水ゴム取付部鋼材の単位面積当たり) k_h:水平震度(0.58)

検討断	面	止水ゴム作用力 Fg(kN/m²)	リブプレート間隔 1 (m)	集中荷重 P(kN/m)	分布荷重載荷幅 L* (m)
断面① (南側)		8. 1	0. 3	2.4	0.501 0.120 0.120
	(4) (5)	_			0.751
断面②	(<u>)</u> (<u>)</u>				0. 301
(北側)	(3) (4)	11.6	0. 3	3.5	0. 120

表 3 荷重值一覧(集中荷重)

注記*:分布荷重載荷幅=検討箇所でのリブプレート張り出し長(m)

スキンプレートに作用する集中荷重の算出を以下に示す。

【断面①】

集中荷重 $P = F_g \times 1 = 8.070 \times 0.3 = 2.421$ (kN/m)

止水ゴム作用力 F g= B /2・(p + P d 1 + P d 3)

 $=0.265/2 \cdot (40.4+20.504) = 8.070$ (kN/m)

B:止水ゴム荷重作用幅(=B₁+B₂) (m)

B₁:止水ゴム幅(0.24m)

B₂:止水ゴム変形量(0.025m)

 $p = p_1 - p_3 = 10.1 \times 3 \times 2.0 - 10.1 \times 2.0 = 40.4$ (kN/m²)

p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²)

p1:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²)

p₃:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m²)

 $P_{d1} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$

 $P_{d_3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$

P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²)

P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²)

k_h:水平震度(0.58)

γw:海水の単位体積重量(kN/m³)

【断面②】

集中荷重 P = F_g×1 = 11.596×0.3=3.479 (kN/m) 止水ゴム作用力 $F_g = B/2 \cdot (p + P_{d_1} + P_{d_3})$ $=0.295/2 \cdot (55.55+23.066) = 11.596$ (kN/m) B:止水ゴム荷重作用幅(=B₁+B₂) (m) B1:止水ゴム幅 (0.24m) B₂:止水ゴム変形量(0.055m) $p = p_1 - p_3 = 10.1 \times 3 \times 2.5 - 10.1 \times 2.0 = 55.55$ (kN/m²) p:海水貯留堰(6号機設備)に作用する波圧強度(kN/m²) p1:海水貯留堰(6号機設備)外側の底面における波圧強度(kN/m²) p₃:海水貯留堰(6号機設備)内側の底面における波圧強度(kN/m²) $P_{d1} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{1} = 7/8 \times 0.58 \times 10.1 \times 2.5 = 12.814$ $P_{d_3} = 7/8. k_{h} \cdot \gamma_{w} \cdot h_{3} = 7/8 \times 0.58 \times 10.1 \times 2.0 = 10.252$ P_{d1}:海水貯留堰(6号機設備)外側の底面における動水圧(kN/m²) P_{d3}:海水貯留堰(6号機設備)内側の底面における動水圧(kN/m²) k_h:水平震度(0.58) γw:海水の単位体積重量(kN/m³)

(参考資料4)荷重の組合せに対する止水ゴム変位量の算出方法について

1. 検討概要

補足「2.4 海水貯留堰(6号機設備)の強度計算書に関する補足説明 2.3 評価方針」に示す ように、止水ゴムの変形性を評価する場合、基準地震動に対して2次元有効応力解析から得られ る最大最終変位と荷重の組合せに対して2次元静的フレーム解析から得られる最大変位の合計が 許容限界以下となることを確認する。基準地震動に対して2次元有効応力解析から得られる最大 最終変位についてはV-3-別添 3-1-3「海水貯留堰(6号機設備)の強度計算書」に示す。ここで は、荷重の組合せに対する最大変位の算出方法を示す。

2. 検討条件

海水貯留堰(6号機設備)接続部における止水ゴムの変位量は,海水貯留堰(6号機設備)と 前面鋼矢板間の水平(δ_x)および鉛直方向(δ_y)と,海水貯留堰(6号機設備)下端と海水貯 留堰(6号機設備)天端間の水平方向(δ_z)の相対変位として算出する。変位方向の定義を図1 に示す。

本検討は、補足「2.4 海水貯留堰(6 号機設備)の強度計算書に関する補足説明 3.5 評価 方法」に示した2次元静的フレーム解析により実施し、荷重の組合せ(津波時、重畳時(重畳時 1、重畳時2))より、水平方向の作用外力が大きい重畳時2における止水ゴム変形量((δ_x) 及び(δ_z))を示す。重畳時2の荷重概念図を図2に示す。

図2 荷重図(重畳時2)

(δ_x)の方向は,鋼管矢板が軸方向に沿って拘束されているため断面剛性は大きく,作用荷 重(津波荷重および衝突荷重)に対して,強軸断面方向である。一方, (δ_z)の方向は,鋼管 矢板の断面剛性は小さく,作用荷重(津波荷重及び衝突荷重)に対して,弱軸断面方向である。 (δ_x)及び(δ_z)の作用荷重の考え方を図3にまとめる。

図3 各方向の作用荷重図
検討に用いた諸元を表 1, 各方向の作用荷重を表 2 に示す。

ここで、(δ_z)の弱軸断面の方向は、荷重分担幅の大きい鋼管矢板(端部)に対する荷重値 を示す。

佐田芭香士向		δ _x	δz
作用何里刀问		強軸方向	弱軸方向
鋼管矢板径	(mm)	1100	1100
鋼管矢板厚	(mm)	16	16
断面二次モーメント	(m^4/m)	1.67×10^{-1}	5.85 $\times 10^{-3}$

表1 構造諸元

表 2 荷重值一覧

作用荷重	強軸方向	弱軸方向	
荷重分担長(m)	1.000	1.564	
津波荷重(静水圧)	50.500	50.500	
動水圧(kN/m)		69.483	69.483
水平方向慣性力 鋼管矢板		640.766	20.517
(kN/m)	蓋コンクリート	126.000	4.200
衝突荷重(kN/m)		389.844	419.328

3. 検討結果

荷重の組合せのうち作用外力が大きい重畳時2に対して、2次元静的フレーム解析から得られる止水ゴムの最大変位量を表3に示す。

作用荷重方向	相対変位量 (cm)
δ _x 強軸方向	0. 2
δ _z 弱軸方向	7.0

表 3 変位量結果

2.5 取水護岸の耐震計算書に関する補足説明

1.	概要	·· 1
2.	基本方針	$\cdots 2$
2.	2.1 位置	$\cdots 2$
2.	2.2 構造概要 ·····	·· 3
2.	2.3 評価方針	·· 5
2.	2.4 適用基準 ······	·· 7
3.	耐震評価	•• 8
3.	3.1 評価対象断面 ·····	•• 8
3.	3.2 解析方法	· 10
	3.2.1 地震応答解析手法	· 11
	3.2.2 構造部材 ······	· 12
	3.2.3 耐震評価における解析ケース ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 12
3.	3.3 荷重及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 15
	3.3.1 耐震評価上考慮する状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 15
	3.3.2 荷重 ······	· 16
	3.3.3 荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 17
3.	3.4 入力地震動	· 18
3.	3.5 解析モデル及び諸元	· 35
	3.5.1 解析モデルの設定	· 35
	3.5.2 使用材料及び材料の物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 48
	3.5.3 地盤及び地盤改良体の解析用物性値	· 49
	3.5.4 地下水位	· 51
3.	3.6 評価対象部位	· 52
	3.6.1 構造部材の健全性評価	· 52
	3.6.2 構造物の変形性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 52
3.	3.7 許容限界	· 53
	3.7.1 構造部材の健全性に対する許容限界	· 53
	3.7.2 構造物の変形性に対する許容限界	· 54
3.	3.8 評価方法 ·····	· 55
	3.8.1 構造部材の健全性評価	· 55
	3.8.2 構造物の変形性評価	· 55
4.	評価結果	· 56
4.	A.1 地震応答解析結果 ······	· 56
4.	1.2 耐震評価結果 ······	· 61
	4.2.1 構造部材の健全性に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 61
	4.2.2 構造物の変形性に対する評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 63
4.	1.3 まとめ	· 64

参考資料

(参考資料1) 積雪荷重の影響評価		(参考) 1-1
-------------------	--	----------

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、取水護岸が基準地震動Ssに対して十分な構造強度及び止水性を有していることを 確認するものである。

取水護岸に要求される機能の維持を確認するにあたっては,地震応答解析に基づく構造部材の 健全性評価及び構造物の変形評価により行う。

2. 基本方針

2.1 位置

取水護岸の位置図を図 2.5-2-1 に示す。

図 2.5-2-1(1) 取水護岸の位置図(全体平面図)

図 2.5-2-1(2) 取水護岸の位置図(拡大図)

2.2 構造概要

取水護岸は、海水貯留堰の構成部材である取水護岸接続部のうち、止水ゴム取付部鋼材と接 続する前面鋼矢板で構成される。前面鋼矢板には、海水による腐食防止のため、電気防食が施 されている。

取水護岸の平面図を図 2.5-2-2,標準断面図を図 2.5-2-3 に示す。

図 2.5-2-3 取水護岸の標準断面図(A-A断面)

2.3 評価方針

取水護岸は,設計基準対象施設においては,Sクラス施設である浸水防護施設及び非常用取 水設備である屋外重要土木構造物の間接支持構造物に,重大事故等対処施設においては,常設 重大事故防止設備及び常設重大事故緩和設備の間接支持構造物に分類される。

取水護岸の耐震評価は、地震応答解析の結果に基づき、表 2.5-2-1の取水護岸の評価項目 に示すとおり、構造部材の健全性評価及び構造物の変形性評価を行う。

取水護岸の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮で きる有効応力解析を実施する。

有効応力解析に用いる地盤剛性及び液状化強度特性は,地盤の代表性及び網羅性を踏まえた 上で,ばらつき等を考慮して設定する。

構造部材の健全性評価及び構造物の変形性評価を実施することで,構造強度を有すること及 び止水性を損なわないことを確認する。

構造部材の健全性評価については,前面鋼矢板に発生する曲げモーメントが許容限界以下で あることを確認する。許容限界については,取水護岸がSクラス施設の間接支持構造物に分類 されることから,全塑性モーメントによる確認が基本であるが,設計上の配慮として,降伏モ ーメントとする。

構造物の変形性評価については、前面鋼矢板及び海水貯留堰の変形量を算定し、海水貯留堰 との離隔が確保されることを確認した許容限界以下であることを確認する。なお、海水貯留堰 の変形量を考慮した止水ゴムの変形量についての照査は、V-2-10-3-1-2-1「海水貯留堰の耐 震性についての計算書」及びV-3-別添 3-1-2「海水貯留堰の強度計算書」において実施する。

取水護岸の耐震評価フローを図 2.5-2-4 に示す。

なお、取水護岸は、断面変化が無く直線状に設置される矢板構造物であることから、強軸断 面方向の曲げの影響はほとんど受けない。したがって、KK7 補足-024-4「水平 2 方向及び鉛 直方向地震力の組合せに関する検討について」に示すように、従来設計手法における評価対象 断面以外の 3 次元的な応答特性が想定される箇所が無いことを確認した。

評価方針	評価項目	部位	評価方法	許容限界
構造強度を有 すること	構造部材の 健全性	前面鋼矢板	発生応力が許容 限界を以下であ ることを確認	降伏モーメント
止水性を損な わないこと	構造物の 変形性	前面鋼矢板	発生変形量が許 容限界以下であ ることを確認	海水貯留堰との離隔が確保 されることを確認した変形 量

表 2.5-2-1 取水護岸の評価項目

図 2.5-2-4 取水護岸の耐震評価フロー

2.4 適用基準

適用する規格,基準類を以下に示す。また,表2.5-2-2に各項目で適用する規格,基準類 を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)
- ・港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)
- ・鋼矢板Q&A(鋼管杭・鋼矢板技術協会 平成29年3月)
- ・鋼矢板 設計から施工まで(鋼管杭協会,平成12年3月)

項目	適用する規格、基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構造性能 照査編] (2002 年) 	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能 照査編] (2002 年)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	 ・鋼矢板Q&A(平成29年3月) ・鋼矢板 設計から施工まで(平成12年3月) 	・発生応力が,降伏モーメン ト以下であることを確認
評価方法	 ・港湾の施設の技術上の基準・同解 説(2007版) ・鋼矢板 設計から施工まで(平成 12年3月) 	・腐食代の設定
地震応答解析	・原子力発電所耐震設計技術指針 JEAG4601-1987	 ・有限要素法による2次元モデ ルを用いた時刻歴非線形解 析

表 2.5-2-2 各項目で適用する規格,基準類

3. 耐震評価

3.1 評価対象断面

評価対象断面は、取水護岸が海水貯留堰の間接支持構造物であることから、V-2-10-3-1-2-1「海水貯留堰の耐震性についての計算書」と同様とし、海水貯留堰との接続部を通る断面で あるA-A断面を選定し、基準地震動Ssによる耐震評価を実施する。

評価対象断面選定の詳細については補足「2.1 海水貯留堰の耐震計算書に関する補足説明」 に示す。

取水護岸の評価対象断面位置図を図 2.5-3-1 に示す。構造物の耐震設計における評価対象 断面は図 2.5-3-1のA-A断面とする。評価対象断面図を図 2.5-3-2 に示す。

図 2.5-3-1 取水護岸の評価対象断面位置図

図 2.5-3-2 取水護岸の評価対象断面図 (A-A断面)

3.2 解析方法

取水護岸の地震応答解析は、V-2-1-6「地震応答解析の基本方針 2.3 屋外重要土木構造 物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析では,地盤の有効応力の変化に応じた地震時挙動を考慮できる有効応力解析手 法を用いる。

有効応力解析には,解析コード「FLIP Ver.7.4.1」を使用する。なお,解析コードの検 証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示 す。

3.2.1 地震応答解析手法

取水護岸の地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有効応力解析 を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時 間積分の時刻歴応答解析にて行う。構造部材については、線形はり要素を用いることとす る。地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるモデル化と する。地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析~ 適用する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひ ずみ及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に,地盤は荷重を与えることによりせん断ひずみを増加させていくと,地盤のせん 断応力は上限値に達し,それ以上はせん断応力が増加しなくなる特徴がある。また,地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって,耐震評価における有効応力解析では,地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として,地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図2.5-3-3に示す。

図 2.5-3-3 地震応答解析手法の選定フロー

3.2.2 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.3 耐震評価における解析ケース

取水護岸の耐震評価における解析ケースを表2.5-3-1に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水位以深の飽 和土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断 波速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また、構造物への応答加速度に対する保守的な配慮として、地盤の非液状化の条件を仮 定した解析ケースを設定する(解析ケース④、⑤)。

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

最も厳しい地震動の選定は,照査値1.0に対して2倍の余裕となる照査値0.5以上を相対 的に厳しい地震動の選定の目安として実施する。

追加解析を実施する地震動の選定フローを図2.5-3-4に示す。

解析ケース		1	2	3	4	5	
		基本ケース	地盤物性のば らつき(+1 σ)を考慮し た解析ケース	地盤物性のば らつき(-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース	
地盤剛性の設定		地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)	
液	伏化強度特	性の設定	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用
		++	実施				
	C 1	-+	実施				
	Ss-1	+-	実施				
			実施				
	Ss-2		実施				
		++	実施				
地震		-+	実施	全ての基	準地震動Ssに	対して実施する	5①の解析ケ
動	55-3	+-	実施	-ス(基本)	ス(基本ケース)において、せん断力昭杳、曲げ軸		
位相			実施	力昭香及び	支持力昭香につ	いて、各昭杏価	「「「「」」「」」
(1	Ss-4		実施				地震動を用
	Ss-5		実施	+ 、 (町石底がに入りる示俗が取りから、) 地展期を用			
	Ss-6		実施	・・・、②~③より迫加麻研クースを実施する。 また、上記解析ケースの結果を踏まえ、さらに照査 値がまたくなる可能性がある場合は、追加解析な実施			さらに昭本
	Ss-7		実施				
	Ss-8	++	実施		よる "1 記 正 // * (2)	こ勿口は, 厄加	「竹で大肥」
		-+	実施		Γ	Γ	_

表 2.5-3-1 取水護岸の耐震評価における解析ケース

注:表中の符号+,-は地震動の位相(水平,鉛直)を示す。

図 2.5-3-4 追加解析を実施する地震動の選定フロー

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは、 V-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.3.1 耐震評価上考慮する状態 取水護岸の地震応答解析において,地震以外に考慮する状態を以下に示す。
 - (1) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の条件下におかれている状態。ただし,運転 時の異常な過渡変化時の影響を受けないことから考慮しない。

- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪及び風による影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。

- 3.3.2 荷重 取水護岸の地震応答解析において,考慮する荷重を以下に示す。
 - (1) 固定荷重(G)固定荷重として, 躯体自重を考慮する。
 - (2) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。

3.3.3 荷重の組合せ

取水護岸の耐震評価に用いる荷重の組合せを表2.5-3-2及び表2.5-3-3に示す。

なお,(参考資料1)に示すとおり,取水護岸の背面は地盤改良されており,前面鋼矢 板の変形抑制対策が講じられていること等を踏まえ,取水護岸部における地震時の荷重の 組合せとして積雪荷重を考慮しないこととしている。

表 2.5-3-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時 (S s)	G + S _S

G : 固定荷重

S_s : 地震荷重

種別		荷重		算定方法	
		如壮白手	(・設計図書に基づいて、対象構造物の体積に材料の密度を乗	
		前州日里	0	じて設定する	
	固定	機器・配管自重		・機器・配管設備はないことから、考慮しない	
	荷重	土被り荷重	_	・土被りはないため、考慮しない	
		上載荷重		・地盤表面に恒常的に置かれる設備等はないことから、考慮	
永久			_	しない	
荷重	静止土圧		0	・常時応力解析により算定する	
				・地下水位 (T.M.S.L.3.0m) 及び海水面 (T.M.S.L.1.0m*)	
		外水圧		に応じた静水圧として設定する。	
				・地下水及び海水の密度を考慮する	
	内水圧		_	・内水圧を考慮する構造形式ではないことから、考慮しない	
	積雪及び風荷重		_	・考慮しない	
偶発荷重		水平地震力	0	・基準地震動Ssによる水平及び鉛直同時加振を考慮する	
		鉛直地震力	0	・躯体の慣性力,動土圧を考慮する	
		動水圧	0	 ・水位条件、密度は、永久荷重と同様とする 	

表 2.5-3-3 荷重の組合せ(前面鋼矢板 地震時)

注記*:外水圧の水位は, 朔望平均満潮位 T. M. S. L. 0. 49m に対し, 保守性を考慮し T. M. S. L. 1. 0m とする。

3.4 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定におい ては, V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデル(入力地震動作成モ デル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.5-3-5 に、入力地震動の加速度時刻歴波形及び加速度応答 スペクトルを図 2.5-3-6 に示す。入力地震動の算定には解析コード「SLOK Ver.2.0」を 使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた 場合の影響も確認する。

図 2.5-3-5 入力地震動算定の概念図

MAX 11.9 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 2.5-3-6(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-1)

MAX 7.49 m/s^2 (5.88s)

(a) 加速度時刻歷波形

図 2.5-3-6(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-1)

MAX 13. $2m/s^2$ (20. 51s)

(a) 加速度時刻歷波形

図 2.5-3-6(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 2.5-3-6(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 7.18 m/s^2 (35.43s)

(a) 加速度時刻歷波形

図 2.5-3-6(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-3)

図 2.5-3-6(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-3)

図 2.5-3-6(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

図 2.5-3-6(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 7.51m/s² (46.29s)

(a) 加速度時刻歷波形

図 2.5-3-6(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 2.5-3-6(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 9.84 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 2.5-3-6(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 2.5-3-6(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

図 2.5-3-6(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

図 2.5-3-6(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7EW)
MAX 7.65 m/s^2 (7.74s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.5-3-6(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-8)

MAX 3.35 m/s^2 (7.64s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.5-3-6(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-8)

- 3.5 解析モデル及び諸元
 - 3.5.1 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針JEAG4 601-1987(日本電気協会)」を参考に、図2.5-3-7のモデル範囲の考え方に示すとお り、モデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数20Hz 及びせん断波速度Vsで算定される波長の5又は4分割、すなわちVs/100又はVs/80を考慮し、 要素高さを0.5~1m程度まで細分割して設定する。

構造物の要素分割については、構造物に接する地盤の要素分割に合わせて設定する。

図 2.5-3-7 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次 元有効応力解析における自由地盤の初期応力解析から不整形地盤(2次元FEM)の地震 応答解析までのフローを図2.5-3-8に示す。

図 2.5-3-8 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

- (2) 境界条件
 - a. 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初 期応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重 等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。初期応力解析に おける境界条件の概念図を図 2.5-3-9 に示す。

図 2.5-3-9 初期応力解析における境界条件の概念図

b. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 取水護岸の地震応答解析モデルを図 2.5-3-10 に示す。

図 2.5-3-10 取水護岸の地震応答解析モデル(A-A断面)

(3) 構造物のモデル化

構造部材は、線形はり要素によりモデル化する。

なお、A-A断面では2つの海水貯留堰をモデル化している。海水貯留堰(沖合側)は、 奥行き方向に連続する構造物としてモデル化している。一方、海水貯留堰(護岸近傍)は、 奥行き方向に1本の構造物としてモデル化している。図2.5-3-11に地震応答解析モデル を、図2.5-3-12に海水貯留堰のモデル化の概要を示す。

底面粘性境界

図 2.5-3-11 海水貯留堰の地震応答解析モデル(A-A断面)

図 2.5-3-12 海水貯留堰のモデル化の概要

(4) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水要素によりモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) 地盤改良体のモデル化 構造物周辺の地盤改良体は、マルチスプリング要素及び間隙水要素によりモデル化する。 (6) ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により、地震時の接合面における剥離及びすべりを考慮する。なお、既設地盤改良体と新 設地盤改良体との接合面については、既設地盤改良体に対し新設地盤改良体をラップさせ て設置し、接合させることから、ジョイント要素は設定しない。

ジョイント要素は、隣接する要素との接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時の圧縮荷重以上の引張荷重が生じた場合、剛性及び応力を 零とし、剥離を考慮する。せん断方向については、各要素間の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性を零とし、すべりを考慮する。

なお, せん断強度 τ_fは, 次式により規定される。

$$\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$$

σ':要素間の直応力

св :付着力

φ_B : 摩擦角

地盤と構造物間の接合面におけるジョイント要素の付着力 c Bと摩擦角 ϕ Bは,表2.5-3-4に示すとおりに設定する。付着力 c Bは,「道路橋示方書(I 共通編・IV下部構造 編)・同解説(日本道路協会,平成14年3月)」に基づき,表2.5-3-4に示す「地盤と構 造物」の条件から考慮しないものとする。摩擦角 ϕ Bは,「港湾の施設の技術上の基準・ 同解説(日本港湾協会,平成19年7月)」において,構造物と地盤間の壁面摩擦角を15° ~20°とする旨が記載されており,「港湾構造物設計事例集(上巻)(沿岸技術研究セン ター,平成19年3月)」において,鋼材と地盤間の摩擦角を15°と設定した事例があるこ とから,本解析における摩擦角 ϕ Bにも15°を適用する。

地盤と地盤改良体間の付着力 c B及び摩擦角 φ Bは,表2.5-3-5の道路橋示方書における摩擦角 φ Bと付着力 c Bに示す「道路橋示方書(I 共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」の設定を参考に,周辺地盤の粘着力 c,内部摩擦角 φ より設定する。

周辺地盤の粘着力 c と内部摩擦角 φ は, V-2-1-3「地盤の支持性能に係る基本方針」に 基づき, 表2.5-3-6のとおりに設定する。

条件	付着力 c B (kN/m²)	摩擦角¢B(°)		
地盤と構造物*1	0.0	15.0		
地盤と地盤改良体*2	С	φ		

表 2.5-3-4 ジョイント要素の付着力 c Bと摩擦角 φ B

注記*1:構造物は、鋼材とする。

*2 :地盤と地盤改良体の付着力と摩擦角は、地盤のc, φを適用する。

表2.5-3-5 道路橋示方書における摩擦角 Φ B と付着力 с B

条件	摩擦角 og (摩擦係数 tan og)	付着力 c _B
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ \tan \phi_B = 0.6 \phi_B = \phi $ の小さい方	$c_B = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_{B} = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

ただし、 φ: 支持地盤のせん断抵抗角 (°) c: 支持地盤の粘着力 (kN/m²)

(引用:道路橋示方書・同解説IV(下部構造編),社団法人日本道路協会,平成14年3月)

地質区分	粘着力c(kN/m²)	内部摩擦角 φ (°)
埋戻土	0.0	35.9
新期砂層	0.0	34.6
A3a1 層	29.2	34.2
A2c 層	113.0	27.9

表 2.5-3-6 周辺地盤の粘着力 c と内部摩擦角 φ

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分大きい 値として、「港湾構造物設計事例集(上巻)(沿岸技術研究センター、平成19年3月)」 に従い、表2.5-3-7の通り設定する。ジョイント要素の力学特性を図2.5-3-13に、ジ ョイント要素の配置を図2.5-3-14に示す。なお、海水貯留堰(沖合側)は奥行き方向に 連続する構造物としてモデル化するため、地盤と構造物の間にジョイント要素を設ける。 また、海水貯留堰(護岸近傍)は奥行き方向に1本の構造物であるため、地盤と構造物の 間には杭一地盤相互作用ばねを設ける。

表 2.5-3-7 ジョイント要素のばね定数

条件	対象	せん断剛性 ks (kN/m ³)	圧縮剛性 kn(kN/m ³)	
	海水貯留堰	$1.0 imes 10^{6}$	$1.0 imes 10^{6}$	
地盤と博垣物	護岸前面鋼矢板	$1.0 imes 10^5$	$1.0 imes 10^{6}$	
地盤と地盤改良体	側方及び底面	1.0×10^{6}	1.0×10^{6}	

図 2.5-3-14 ジョイント要素の配置 (A-A断面)

(7) 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地盤と杭の接合面にお ける,強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

図2.5-3-15に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは, 次式により規定される。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

τ_f: せん断強度

св:付着力

φ_B: 摩擦角

付着力 c B及び摩擦角 φ Bは,表2.5-3-4の地盤と構造物の条件から設定する。

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」に従い,表2.5-3-8のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

注記*:FLIP研究会14年間の検討結果のまとめ「理論編」(FLIPコンソーシアム)

(b) 杭-地盤相互作用ばね配置図(A-A断面)

図 2.5-3-15 杭-地盤相互作用ばねの考え方

表 2.5-3-8 杭-地盤相互作用ばねの杭軸方向のばね定数

	せん断剛性 k _s (kN/m³)
杭軸方向	$1.0 imes 10^{6}$

(8) 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図2.5-3-16に示すとおり、 双曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化す る観点から、杭先端と地盤間にHirayama (1990) *による杭先端抵抗と杭先端変位の双曲 線型の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、 杭先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り 扱うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力をゼロとし、 剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式及び図2.5-3-17に示す双曲線型の式で設定される。

Hirayama (1990) では、N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭 の鉛直載荷試験結果に対して、当杭先端ばねを用いた荷重変位関係の再現解析を実施し、 適用性を検証している。また、当杭先端ばねは「一般社団法人FLIPコンソーシアム平 成25年度研究成果報告書(FLIPコンソーシアム、2013年)」にて、解析コード「FL IP」に対して適用性を確認している。報告書では、砂層に対する杭の押込み実験結果の 杭先端抵抗-杭先端変位関係を、当杭先端ばねが概ね再現可能であることを確認している。 また、パラメータスタディとして支持層の相対密度を変化させた解析を実施し、当杭先端 ばねの適用性を検証している。検証の結果、支持層に液状化等による剛性低下が生じず、 所定の支持力を発揮できる場合、当杭先端ばねは解析コード「FLIP」に対し適用性を 有することが確認されている。

海水貯留堰については、杭の支持層はA2c層及びA2al層であり、地震時においても液状 化が生じず、所定の杭先端支持力が期待できることから、当杭先端ばねを適用できると判 断した。

注記*:Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils

and Foundations, Vol. 30, No. 1, pp55-64, H. Hirayama, 1990)

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z。 : 杭先端変位
- a e : 基準変位を杭先端における極限支持力で除した値(=0.25 D_e/q_{ult})
- **b**_e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- q_{ult}: 抗先端における極限支持力

図 2.5-3-16 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

Pile tip displacement : z_e

図 2.5-3-17 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係(Hirayama (1990))

(9) 減衰定数

減衰定数は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波とした再現解析等を踏まえ、Rayleigh減衰として、α=0、β=0.005を設定する。

3.5.2 使用材料及び材料の物性値

使用材料を表2.5-3-9に、材料の物性値を表2.5-3-10に示す。

材料	諸元	腐食代		
		海側(海底面以浅)	2. 0mm^{*1}	
前面鋼矢板	S P-IV型(SY295), t=15.5mm	海側(海底面以深)	0. $2mm^{*1}$	
		陸側	0.2mm^{*1}	
鋼管矢板	$\phi1100\text{mm}$ (SKY490) , t=14mm	1.0 mm *2		

表 2.5-3-9 使用材料

注記*1:腐食代の算出過程は下記のとおりとする。

海側(海底面以浅)	: 0.2 (mm/年) ×86 年× (1.0−0.9) =1.72mm≒2.0mm
海側(海底面以深)	: 0.02 (mm/年) ×86 年× (1.0-0.9) = 0.172mm \Rightarrow 0.2mm
陸側	: 0.02 (mm/年) ×86 年× (1.0-0.9) = 0.172mm = 0.2mm
ここで,	

運用期間:86年(取水護岸の竣工(1984年)からの経過年数と海水貯留堰の運用期間50年の合計) 腐食速度:0.2mm/年(海側(海底面以浅))

0.02mm/年(海側(海底面以深),陸側)

(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

*2:腐食代の算出過程は下記のとおりとする。なお、海底面以深の鋼管矢板の腐食代は、保守的に海底面 以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0-0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

表 2.5-3-10 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
前面鋼矢板	77.0	2. 0×10^{5}	0.3
鋼管矢板	77.0	2. 0×10^{5}	0.3

3.5.3 地盤及び地盤改良体の解析用物性値

地盤及び地盤改良体の諸定数は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤の解析用物性値一覧を表2.5-3-11に示す。

なお,海水貯留堰の地盤改良体については,KK7補足-024-1「地盤の支持性能について 4.2 設置変更許可申請書に記載されていない解析用物性値」に示す。

また,表2.5-3-11(4)に地盤改良体の配置に応じて設定した地盤改良体の物性値を示す。

地質区分物性値			新期砂層・沖積層			古安田層					
			埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部	A2s層	A3s層	A2g層 (砂質)	A1g層	
物 理	密度	ρ	(g/cm^3)	1.94 (1.79)*	2.05 (2.00)*	1.90	2.02	1.91	1.91	1.91	1.91
特性	間隙率	n		0.45	0.44	0.48	0.42	0.45	0.45	0.45	0.45
	動せん断弾性係数	G _{ma}	(kN/m^2)	1.04×10^{5}	1.26×10^{5}	1.25×10^{5}	$1.92\!\times\!10^5$	2. 14×10^5	2.14×10^{5}	2.14×10^{5}	2.14×10^{5}
変形	基準平均有効拘束圧	σ_{ma} '	(kN/m^2)	98.0	98.0	110.0	150.0	200.0	200.0	200.0	200.0
特性	ポアソン比	ν		0.33 (0.42)*	0.33 (0.44)*	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.225	0.234	0.247	0.211	0.157	0.157	0.157	0.157
強度	粘着力	с'	(kN/m^2)	0.0 (9.6)*	0.0 (94.4)*	0.0	0.0	0.0	0.0	0.0	0.0
特性	内部摩擦角	φ'	(°)	35.9 (34.8)*	34.6 (27.6)*	36.7	35.6	36.6	36.6	36.6	36.6
	変相角	$\phi_{\rm p}$	(°)	32.0	31.0	33.0	32.0	32.0	32.0	32.0	32.0
			S_1	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
液状化			w1	5.50	7.90	11.00	8.00	25.00	25.00	25.00	25.00
化特性	液状化パラメー	Я	p_1	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
			p_2	1.00	0.70	0.70	0.65	0.80	0.80	0.80	0.80
			c_1	1.69	2.13	2.41	2.00	8.75	8.75	8.75	8.75

表 2.5-3-11(1) 地盤の解析用物性値一覧(液状化検討対象層)

注記*:括弧内の数字は、地下水位以浅の数値を表す。

/	地質区分物性値			新期砂層·沖積層			古安	田層			
			埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層	
物理	密度	ρ	(g/cm^3)	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	G_{ma}	(kN/m^2)	7.33×10^{4}	5. 50×10^4	$1.09\!\times\!10^5$	$9.57\!\times\!10^4$	$1.39\!\times\!10^5$	$1.61\!\times\!10^5$	$1.39\!\times\!10^5$	1.39×10^{5}
変 形	基準平均有効拘束日	σ _{ma} ,	(kN/m^2)	41.0	170.0	60.0	94.0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.152	0.136	0.114	0.162	0.110	0.147	0.110	0.110
強度特性	粘着力	с'	(kN/m^2)	7.4	82.5	99.6	29.2	113.0	82.8	113.0	113.0
	内部摩擦角	φ'	(°)	31.7	19.6	26.8	34. 2	27.9	28.7	27.9	27.9

表 2.5-3-11(2) 地盤の解析用物性値一覧(非液状化層)

表 2.5-3-11(3) 地盤の解析用物性値一覧(西山層)

	パライータ			西山層			
	~/// -/			T.M.S.L33.Om 以浅	T.M.S.L33.0m∼-90.0m		
物理	密度	ρ	(g/cm^3)	1.73	1.69		
特性	間隙率	n		0.56	0.56		
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5		
変形	基準平均有効拘束圧	σ ma	(kN/m^2)	98.0	98.0		
特性	ポアソン比	ν		0. 33	0. 33		
	減衰定数の上限値	h_{max}		0.257	0.257		
強度	粘着力	с	(kN/m^2)	1370-5.04Z*	1370-5.04Z*		
特性	内部摩擦角	ϕ	(°)	0.0	0.0		

注記*:Zは,標高(m)を示す。

	既設/新認	L C		既設 地盤改良体	新設地盤改良体		
	種別 (地盤種別))		高圧噴射 (砂質土)	高圧噴射 (砂質土)	高圧噴射 (粘性土)	
物理	密度	ρ	(g/cm^3)	1.77	1.94~1.96*	1.81	
特性	間隙率	n		0.49	0.49	0.64	
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m^2)	1.78×10^{6}	5. 54×10^{5}	5. 18×10^{5}	
変形	基準平均有効拘束圧	σ "	(kN/m^2)	98.0	98.0	98.0	
特性	ポアソン比	ν		0.33	0.33	0.33	
	減衰定数の上限値	h_{max}		0.05	0.05	0.05	
強度特性	粘着力	с	(kN/m²)	815	397	397	

表 2.5-3-11(4) 地盤の解析用物性値一覧(地盤改良体の配置を考慮した物性値)

注記*:地盤改良体の配置に応じて設定。

3.5.4 地下水位

地下水位は、V-2-1-3「地盤の支持性能に係る基本方針」に基づき、地表面 (T.M.S.L.3.0m)として設定する。 3.6 評価対象部位

評価対象部位は、取水護岸の構造上の特徴を踏まえ設定する。

- 3.6.1 構造部材の健全性評価 構造部材の健全性評価に係る評価対象部位は,前面鋼矢板とする。
- 3.6.2 構造物の変形性評価 構造物の変形性評価に係る評価対象部位は,前面鋼矢板とする。

3.7 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

3.7.1 構造部材の健全性に対する許容限界

前面鋼矢板の許容限界は、「鋼矢板Q&A (鋼管杭・鋼矢板技術協会 平成29年3月)」 及び「鋼矢板 設計から施工まで (鋼管杭協会 平成12年3月)」に基づき設定する。前 面鋼矢板の許容限界を表2.5-3-12に示す。

項目	対象	許容限界(kN・m)
欧仕エーマントM	海底面以浅	555
降仏モーメントMy	海底面以深	649

表 2.5-3-12 前面鋼矢板の許容限界

3.7.2 構造物の変形性に対する許容限界

変形量の許容限界は、取水護岸と海水貯留堰との離隔が確保されることを確認した変形 量とする。取水護岸と海水貯留堰の離隔は、止水ゴム取付部鋼材の離隔とした。海水貯留 堰接続部の構造概念図を図2.5-3-18に、止水ゴムの構造図を図2.5-3-19に示す。前面 鋼矢板の変形量の許容限界を表2.5-3-13に示す。

図 2.5-3-18 海水貯留堰接続部の構造概念図

図 2.5-3-19 止水ゴムの構造図

表 2.5-3-13 前面鋼矢板の変形量の許容限界

項目	許容限界 (cm)
変形量(海水貯留堰との離隔を確保できる相対変位量)	24.0

3.8 評価方法

取水護岸の耐震評価は、地震応答解析により算定した全時刻歴の照査用応答値が、「3.7 許容限界」において設定した許容限界以下であることを確認する。

3.8.1 構造部材の健全性評価

前面鋼矢板の曲げモーメントに対する照査については,地震応答解析により算定した曲 げモーメントが許容限界以下であることを確認する。

- 3.8.2 構造物の変形性評価
 - (1) 相対変位の考え方構造物の変形性評価に用いる相対変位は、地震時における相対変位の最大値とする。
 - (2) 評価方法

変位方向の定義を示した図2.5-3-20のうち、取水護岸と海水貯留堰の水平方向の相対 変位 δ_x (+)が許容限界以下であることを確認する。

図 2.5-3-20 変位方向の定義

4. 評価結果

4.1 地震応答解析結果

地震応答解析結果として「断面力分布」,「最大せん断ひずみ分布」及び「最大過剰間隙水 圧比分布」を示す。

(1) 断面力分布

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

表2.5-4-1に前面鋼矢板の曲げモーメントに対する解析ケースと照査値を示す。

A-A断面における基準地震動Ssによる前面鋼矢板に発生する断面力(曲げモーメント)照査において,解析ケースのうち前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力分布を図2.5-4-1に示す。本図は前面鋼矢板の曲げモーメントに対する照査において照査値が最も厳しくなる時刻における断面力分布を示したものである。

	解析ケース	曲げモーメント照査				
地震動		1	2	3	4	5
	++	0.10				
Se-1	-+	0.09				
55 1	+-	0.09	0.08	0.12	0.08	0.08
		0.09				
Ss-2		0.08				
Ss-3	++	0.08				
	-+	0.08				
	+-	0.07				
		0.08				
S	s-4	0.08				
Ss-5		0.05				
Ss-6		0.09				
Ss-7		0.07				
S ~ 9	++	0.08				
5s-8	-+	0.08				

表 2.5-4-1(1) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

(A-A断面 海底面以浅)

表 2.5-4-1(2) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値 (A-A断面 海底面以深)

	解析ケース	曲げモーメント照査				
地震動		1	2	3	4	5
	++	0.17				
Se-1	-+	0.15				
55 1	+-	0.19	0.15	0.24	0.17	0.14
		0.16				
S	s-2	0.14				
Ss-3	++	0.12				
	-+	0.15				
	+-	0.13				
	_	0.13				
S	s-4	0.14				
S	s-5	0.13				
Ss-6		0.16				
Ss-7		0.16				
Ss-8	++	0.12				
	-+	0.17				

(2) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため、断面力の照査において、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大せん断ひずみ分布を図2.5-4-2に示す。

図 2.5-4-2 最大せん断ひずみ分布 (A-A断面,解析ケース③,地震動 Ss-1+-) (3) 最大過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため、断面力の照査において、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大過剰間隙水 圧比分布を図2.5-4-3に示す。

図 2.5-4-3 最大過剰間隙水圧比分布 (A-A断面,解析ケース③,地震動 Ss-1+-)

4.2 耐震評価結果

4.2.1 構造部材の健全性に対する評価結果

前面鋼矢板の曲げモーメントに対する照査結果を表2.5-4-2及び表2.5-4-3に示す。 前面鋼矢板に発生する曲げモーメントは許容限界以下であり,照査値に大きく余裕がある ことを確認した。なお,曲げモーメントは各地震動において最大となる値を示している。

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	50.0	555	0.10
	Sc-1	-+	44.5	555	0.09
	35-1	+-	49.1	555	0.09
			45.6	555	0.09
	Ss-	-2	42.8	555	0.08
	Ss-3	++	39.2	555	0.08
		-+	42.0	555	0.08
1		+-	38.7	555	0.07
			43.2	555	0.08
	Ss-4		43.0	555	0.08
	Ss-5		27.3	555	0.05
	Ss-6		44.6	555	0.09
	Ss-7		38.0	555	0.07
	5 . 9	++	39.8	555	0.08
	38-0	-+	41.4	555	0.08
2		+-	41.4	555	0.08
3	Ss-1	+-	61.5	555	0.12
4		+-	44.2	555	0.08
5		+-	41.4	555	0.08

表 2.5-4-2 曲げモーメントに対する照査結果(前面鋼矢板 海底面以浅)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	104	649	0.17
	Sc-1	-+	95.9	649	0.15
	55-1	+-	118	649	0.19
			102	649	0.16
	Ss-2		88.5	649	0.14
	Ss-3	++	77.1	649	0.12
1		-+	94.1	649	0.15
		+-	78.2	649	0.13
			84.0	649	0.13
	Ss-4		86.0	649	0.14
	Ss-5		81.1	649	0.13
	Ss-6		103	649	0.16
	Ss-7		103	649	0.16
	S9	++	73.1	649	0.12
5:	38-0	-+	107	649	0.17
2		+-	93.2	649	0.15
3	Ss-1	+-	152	649	0.24
4		+-	105	649	0.17
5		+-	87.7	649	0.14

表 2.5-4-3 曲げモーメントに対する照査結果(前面鋼矢板 海底面以深)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

4.2.2 構造物の変形性に対する評価結果

構造物の変形性評価に用いる地震時における構造物間の最大相対変位を表2.5-4-4に 示す。また、取水護岸と海水貯留堰との離隔に対する照査結果を表2.5-4-5に示す。

取水護岸と海水貯留堰との最大水平相対変位は許容限界以下であり,止水ゴム取付部鋼 材間の離隔が確保されることを確認した。

解析ケース*	地震動		最大相対変位 (cm)
	0 1	++	2.0
		-+	2.2
	38-1	+-	2.1
			2.1
	Ss-	2	1.7
	Ss-3	++	2.5
(I)		-+	2.5
		+-	3. 0
			2.3
	Ss-	4	1.9
	Ss-	5	2.2
	Ss-	6	2.6
	Ss-	7	3.6
	Ss-8	++	2.3
		-+	1.7
2		+-	1.8
3	Ss-1 -	+-	2.6
4		+-	2.0
5		+-	1.8

表 2.5-4-4 地震時における構造物間の最大相対変位量

注記*:解析ケースの番号は下記に対応する

:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

表 2.5-4-5 取水護岸と海水貯留堰との離隔に対する照査結果

破垢ケーフ	世堂史	最大水平相対変位	許容限界値	
解析クース	地展動	(cm)	(cm)	
1	Ss-7	3.6	24.0	

4.3 まとめ

取水護岸について,基準地震動Ssによる地震力に対し,構造部材に発生する曲げモーメント及び変形量が許容限界以下であることを確認した。

以上のことから、取水護岸は、基準地震動Ssによる地震力に対して、要求機能を維持できる。

取水護岸の耐震計算書に関する参考資料

(参考資料1) 取水護岸の耐震評価における積雪荷重の影響検討

(参考資料1) 取水護岸の耐震評価における積雪荷重の影響検討

1. 概要

取水護岸の耐震評価では,護岸を構成する前面鋼矢板と海水貯留堰との最大水平相対変位を算 出し,要求機能が確保されることを確認している。

取水護岸の背面は地盤改良されており,前面鋼矢板の変位抑制対策が講じられていること等を 踏まえ,取水護岸部における地震時の荷重の組合せとして積雪荷重を考慮しないこととしている。 そこで本資料では,取水護岸の耐震評価における荷重の組合せの妥当性を確認するため,取水 護岸の背面全域に積雪荷重を作用させた場合の影響について検討する。

2. 検討方針

本資料では,積雪荷重を考慮しない解析(以下「基本ケース」という。)の耐震評価結果と,積 雪荷重を考慮する解析(以下「積雪ケース」という。)の耐震評価結果を比較し,積雪荷重による 影響を確認する。

対象とするケースは,KK7 補足-028-08「浸水防護施設の耐震性に関する説明書の補足説明資料 2.5 取水護岸の耐震計算書に関する補足説明」に示す,構造物の変形性評価において照査値が最も厳しいA-A断面の「解析ケース①,基準地震動 Ss-7EW」とする。

積雪荷重の設定

積雪荷重の概念図を図1に示す。積雪荷重は、V-1-1-3-1-1「発電用原子炉施設に対する自然 現象等による損傷防止に関する基本方針」に従い、積雪厚さ115.4cm、積雪厚さ1cm あたりの荷 重を29.4N/cm/m²とし、積雪荷重3.39kN/m²を地表面に分布荷重として設定する。

注記*:水平方向にも同位置に載荷する

4. 耐震評価結果の比較

積雪荷重を考慮しない基本ケースと積雪荷重を考慮した積雪ケースについて,前面鋼矢板と海 水貯留堰間の最大相対変位を表1に示す。

地震時の荷重の組合せとして積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最 大水平相対変位は,積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり, 許容限界に対しても十分余裕のある値となっている。これは,取水護岸の背面に施工されている 地盤改良の効果によって変位抑制効果が発揮されたものと推察される。

検討ケース	積雪荷重	前面鋼矢板と 海水貯留堰間の 最大水平相対変位 (cm)	許容限界 (cm)
基本ケース	考慮しない	3.6	04.0
積雪ケース	考慮する	3. 5	24.0

表1 構造物の変形性評価結果

5. まとめ

本資料では、取水護岸の耐震評価における積雪荷重の影響について検討した。検討の結果,積 雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最大水平相対変位は,積雪荷重を考 慮していない基本ケースの最大水平相対変位と同程度であり,積雪荷重を考慮していない取水護 岸の耐震評価における地震時の荷重の組合せの妥当性を確認した。
2.6 取水護岸(6号機設備)の耐震計算書に関する補足説明

1.	概要	•••• 1
2.	基本方針	···· 2
2.	1 位置 ·····	···· 2
2.	2 構造概要	•••• 3
2.	3 評価方針	•••• 5
2.	4 適用基準	• • • • 7
3.	耐震評価	•••• 8
3.	1 評価対象断面	•••• 8
3.	2 解析方法	••• 10
	3.2.1 地震応答解析手法	··· 11
	3.2.2 構造部材	··· 12
	3.2.3 耐震評価における解析ケース	··· 12
3.	3 荷重及び荷重の組合せ ······	\cdots 15
	3.3.1 耐震評価上考慮する状態	··· 15
	3.3.2 荷重	••• 16
	3.3.3 荷重の組合せ	··· 17
3.	4 入力地震動	••• 18
3.	5 解析モデル及び諸元	••• 35
	3.5.1 解析モデルの設定	··· 35
	3.5.2 使用材料及び材料の物性値	••• 48
	3.5.3 地盤及び地盤改良体の解析用物性値	••• 49
	3.5.4 地下水位	··· 51
3.	6 評価対象部位	··· 52
	3.6.1 構造部材の健全性評価	··· 52
	3.6.2 構造物の変形性評価	··· 52
3.	7 許容限界	··· 53
	3.7.1 構造部材の健全性に対する許容限界	••• 53
	3.7.2 構造物の変形性に対する許容限界	··· 54
3.	8 評価方法	••• 55
	3.8.1 構造部材の健全性評価	••• 55
	3.8.2 構造物の変形性評価	••• 55
4.	評価結果	··· 56
4.	1 地震応答解析結果	··· 56
4.	2 耐震評価結果	••• 61
	4.2.1 構造部材の健全性に対する評価結果 ······	••• 61
	4.2.2 構造物の変形性に対する評価結果	••• 63
4.	.3 まとめ	••• 64
	目-1	

参考資料

(参考資料1) 積雪荷重の影響評価	 (参考) 1-1
	(- • /

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、取水護岸(6 号機設備)が基準地震動Ssに対して十分な構造強度及び止水性を有 していることを確認するものである。

取水護岸(6号機設備)に要求される機能の維持を確認するにあたっては、地震応答解析に基づく構造部材の健全性評価及び構造物の変形評価により行う。

2. 基本方針

2.1 位置

取水護岸(6号機設備)の位置図を図2.6-2-1に示す。

図 2.6-2-1(1) 取水護岸(6号機設備)の位置図(全体平面図)

資料 8-2.6-2

2.2 構造概要

取水護岸(6号機設備)は、海水貯留堰(6号機設備)の構成部材である取水護岸(6号 機設備)接続部のうち、止水ゴム取付部鋼材と接続する前面鋼矢板で構成される。前面鋼矢 板には、海水による腐食防止のため、電気防食が施されている。

取水護岸(6号機設備)の平面図を図2.6-2-2,標準断面図を図2.6-2-3に示す。

図 2.6-2-2(1) 取水護岸(6号機設備)の平面図

図 2.6-2-2(2) 取水護岸(6号機設備)の平面図(A部拡大)

2.3 評価方針

取水護岸(6 号機設備)は、常設重大事故防止設備及び常設重大事故緩和設備の間接支持 構造物に分類される。

取水護岸(6号機設備)の耐震評価は、地震応答解析の結果に基づき、表 2.6-2-1の取 水護岸(6号機設備)の評価項目に示すとおり、構造部材の健全性評価及び構造物の変形性 評価を行う。

取水護岸(6 号機設備)の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮できる有効応力解析を実施する。

有効応力解析に用いる地盤剛性及び液状化強度特性は,地盤の代表性及び網羅性を踏まえ た上で,ばらつき等を考慮して設定する。

構造部材の健全性評価及び構造物の変形性評価を実施することで,構造強度を有すること 及び止水性を損なわないことを確認する。

構造部材の健全性評価については,前面鋼矢板に発生する曲げモーメントが許容限界以下 であることを確認する。許容限界については,取水護岸(6 号機設備)が常設重大事故防止 設備及び常設重大事故緩和設備の間接支持構造物に分類されることから,全塑性モーメント による確認が基本であるが,設計上の配慮として,降伏モーメントとする。

構造物の変形性評価については、前面鋼矢板及び海水貯留堰(6 号機設備)の変形量を算 定し、海水貯留堰(6 号機設備)との離隔が確保されることを確認した許容限界以下である ことを確認する。なお、海水貯留堰(6 号機設備)の変形量を考慮した止水ゴムの変形量に ついての照査は、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐震性についての計算書」 及びV-3-別添 3-1-3「海水貯留堰(6 号機設備)の強度計算書」において実施する。取水護 岸(6 号機設備)の耐震評価フローを図 2.6-2-4 に示す。

なお、取水護岸(6号機設備)は、断面変化が無く直線状に設置される矢板構造物である ことから、強軸断面方向の曲げの影響はほとんど受けない。したがって、KK7 補足-024-4 「水平2方向及び鉛直方向地震力の組合せに関する検討について」に示すように、従来設計 手法における評価対象断面以外の3次元的な応答特性が想定される箇所が無いことを確認し た。

評価方針	評価項目	部位	評価方法	許容限界
構造強度を有 すること	構造部材の 健全性	前面鋼矢板	発生応力が許容 限界以下である ことを確認	降伏モーメント
止水性を損な わないこと	構造物の 変形性	前面鋼矢板	発生変形量が許 容限界以下であ ることを確認	海水貯留堰(6号機設備) との離隔が確保されること を確認した変形量

表 2.6-2-1 取水護岸(6号機設備)の評価項目

図 2.6-2-4 取水護岸(6号機設備)の耐震評価フロー

2.4 適用基準

適用する規格,基準類を以下に示す。また,表2.6-2-2に各項目で適用する規格,基準 類を示す。

- ・コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)
- ・道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- ・港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007版)
- ・港湾構造物設計事例集(沿岸技術研究センター,平成19年3月)
- ・鋼矢板Q&A(鋼管杭・鋼矢板技術協会 平成29年3月)
- ・鋼矢板 設計から施工まで(鋼管杭協会,平成12年3月)

		111 da
	適用する規格,基準類	偏考
使用材料及び材料定数	 ・コンクリート標準示方書 [構造性能 照査編] (2002 年) 	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能 照査編] (2002 年)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	 ・鋼矢板Q&A(平成29年3月) ・鋼矢板 設計から施工まで(平成12年3月) 	・発生応力が,降伏モーメン ト以下であることを確認
評価方法	 ・港湾の施設の技術上の基準・同解 説(2007版) ・鋼矢板 設計から施工まで(平成 12年3月) 	・腐食代の設定
地震応答解析	・原子力発電所耐震設計技術指針 JEAG4601-1987	 ・有限要素法による2次元モデ ルを用いた時刻歴非線形解 析

表 2.6-2-2 各項目で適用する規格,基準類

- 3. 耐震評価
 - 3.1 評価対象断面

評価対象断面は、取水護岸(6 号機設備)が海水貯留堰(6 号機設備)の間接支持構造物 であることから、V-2-10-3-1-3-1「海水貯留堰(6 号機設備)の耐震性についての計算書」 と同様とし、海水貯留堰(6 号機設備)との接続部を通る断面であるA-A断面を選定し、 基準地震動Ssによる耐震評価を実施する。

評価対象断面選定の詳細については補足「2.2 海水貯留堰(6 号機設備)の耐震計算書 に関する補足説明」に示す。

取水護岸(6号機設備)の評価対象断面位置図を図 2.6-3-1 に示す。構造物の耐震設計 における評価対象断面は図 2.6-3-1のA-A断面とする。評価対象断面図を図 2.6-3-2 に示す。

図 2.6-3-1 取水護岸(6号機設備)の評価対象断面位置図

図 2.6-3-2 取水護岸(6号機設備)の評価対象断面図(A-A断面)

3.2 解析方法

取水護岸(6号機設備)の地震応答解析は、V-2-1-6「地震応答解析の基本方針 2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析では,地盤の有効応力の変化に応じた地震時挙動を考慮できる有効応力解析 手法を用いる。

有効応力解析には,解析コード「FLIP Ver.7.4.1」を使用する。なお,解析コードの 検証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」 に示す。

3.2.1 地震応答解析手法

取水護岸(6号機設備)の地震応答解析は,地盤と構造物の相互作用を考慮できる2次元 有効応力解析を用いて,基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振 による逐次時間積分の時刻歴応答解析にて行う。構造部材については,線形はり要素を用 いることとする。地盤については,有効応力の変化に応じた地震時挙動を適切に考慮でき るモデル化とする。

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用 する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ 及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図2.6-3-3に示す。

図 2.6-3-3 地震応答解析手法の選定フロー

3.2.2 構造部材

構造部材は、線形はり要素によりモデル化する。

3.2.3 耐震評価における解析ケース

取水護岸(6号機設備)の耐震評価における解析ケースを表2.6-3-1に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水位以深の飽 和土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断 波速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また,構造物への応答加速度に対する保守的な配慮として,地盤の非液状化の条件を仮 定した解析ケースを設定する(解析ケース④,⑤)。

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

最も厳しい地震動の選定は,照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的 に厳しい地震動の選定の目安として実施する。

追加解析を実施する地震動の選定フローを図2.6-3-4に示す。

			1)	2	3	4	5	
解析ケース			基本ケース	地盤物性のば らつき (+1 σ)を考慮し た解析ケース	地盤物性のば らつき (-1 σ)を考慮し た解析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1 σ)を考慮し て非液状化の 条件を仮定し た解析ケース	
地盤剛性の設定			地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)	
液状化強度特性の設定		液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用		
	Ss-1	++	実施					
		-+	実施					
		+-	実施					
			実施					
	Ss-2		実施					
		++	実施					
地震	Ss-3	-+	実施	全ての基準	進地電動らっに	対して宝施する	①の解析ケ	
動		+-	実施		z (其太ケース) において せん断力昭本 曲げ軸			
位相			実施					
(<u>1</u>	Ss-4 実施							
	Ss-5		実施	い、(計谷阪外に対する宗裕が最も小さい) 地震動を用 い、②~⑤より追加解析ケースを実施する。				
	Ss-6		実施					
	Ss-7		実施	また、上記解析ケースの結果を踏まえ、さらに照金				
	S - 9	++	実施	10かてさくなる可能性がある場合は、追加解析を実施				
	Ss-8	-+	実施	する。	Г	F		

表 2.6-3-1 取水護岸(6号機設備)の耐震評価における解析ケース

注:表中の符号+,-は地震動の位相(水平,鉛直)を示す。

図 2.6-3-4 追加解析を実施する地震動の選定フロー

- 3.3 荷重及び荷重の組合せ 荷重及び荷重の組合せは、V-2-1-9「機能維持の基本方針」に基づき設定する。
- 3.3.1 耐震評価上考慮する状態 取水護岸(6号機設備)の地震応答解析において、地震以外に考慮する状態を以下に示す。
 - (1) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の条件下におかれている状態。ただし,運転 時の異常な過渡変化時の影響を受けないことから考慮しない。

- (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
- (3) 設計用自然条件 積雪及び風による影響は考慮しない。
- (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。

- 3.3.2 荷重 取水護岸(6号機設備)の地震応答解析において、考慮する荷重を以下に示す。
 - (1) 固定荷重(G)固定荷重として, 躯体自重を考慮する。
 - (2) 地震荷重(Ss)基準地震動Ssによる荷重を考慮する。

3.3.3 荷重の組合せ

取水護岸(6号機設備)の耐震評価に用いる荷重の組合せを表2.6-3-2及び表2.6-3-3 に示す。

なお, (参考資料1)に示すとおり, 取水護岸(6号機設備)の背面は地盤改良されており, 前面鋼矢板の変形抑制対策が講じられていること等を踏まえ, 取水護岸部における地 震時の荷重の組合せとして積雪荷重を考慮しないこととしている。

表 2.6-3-2 荷重の組合せ

外力の状態	荷重の組合せ
地震時 (Ss)	G + S _S

G : 固定荷重

S_s:地震荷重

種別		荷重		算定方法
		部材自重	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
				じて設定する
	固定	機器・配管自重 –		・機器・配管設備はないことから、考慮しない
	荷重	土被り荷重 ー		・土被りはないため、考慮しない
		上載荷重	_	・地盤表面に恒常的に置かれる設備等はないことから、考慮
永久				しない
荷重	静止土圧		0	・常時応力解析により算定する
	外水圧			・地下水位(T.M.S.L.3.0m)及び海水面(T.M.S.L.1.0m*)
			\bigcirc	に応じた静水圧として設定する。
				・地下水及び海水の密度を考慮する
	内水圧			・内水圧を考慮する構造形式ではないことから、考慮しない
	積雪及び風荷重			・考慮しない
		水平地震力	0	・基準地震動Ssによる水平及び鉛直同時加振を考慮する
偶発	荷重	鉛直地震力	0	・躯体の慣性力,動土圧を考慮する
		動水圧	\bigcirc	・水位条件,密度は,永久荷重と同様とする

表 2.6-3-3 荷重の組合せ(前面鋼矢板 地震時)

注記*:外水圧の水位は, 朔望平均満潮位 T.M.S.L. 0.49m に対し, 保守性を考慮し T.M.S.L. 1.0m とする。

3.4 入力地震動

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元 波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定に おいては, V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデル(入力地震動 作成モデル)とし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 2.6-3-5 に、入力地震動の加速度時刻歴波形及び加速度応 答スペクトルを図 2.6-3-6 に示す。入力地震動の算定には、解析コード「SLOK Ver.2.0」を使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた場合の影響も確認する。

図 2.6-3-5 入力地震動算定の概念図

MAX 11.9 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 2.6-3-6(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-1)

MAX 7.49 m/s^2 (5.88s)

(a) 加速度時刻歷波形

図 2.6-3-6(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-1)

MAX 13. $2m/s^2$ (20. 51s)

(a) 加速度時刻歷波形

図 2.6-3-6(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 2.6-3-6(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 7.18 m/s^2 (35.43s)

(a) 加速度時刻歷波形

図 2.6-3-6(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-3)

図 2.6-3-6(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-3)

図 2.6-3-6(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

(a) 加速度時刻歷波形

図 2.6-3-6(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 7.51m/s² (46.29s)

(a) 加速度時刻歷波形

図 2.6-3-6(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 2.6-3-6(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-5EW)

MAX 9.84 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 2.6-3-6(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 2.6-3-6(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-6EW)

図 2.6-3-6(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Ss-7EW)

図 2.6-3-6(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-7EW)

MAX 7.65 m/s^2 (7.74s)

(a) 加速度時刻歷波形

図 2.6-3-6(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-8)
MAX 3.35 m/s^2 (7.64s)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 2.6-3-6(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Ss-8)

- 3.5 解析モデル及び諸元
- 3.5.1 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、「原子力発電所耐震設計技術指針JEAG4 601-1987(日本電気協会)」を参考に、図2.6-3-7のモデル範囲の考え方に示すとお り、モデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数20Hz 及びせん断波速度Vsで算定される波長の5又は4分割、すなわちVs/100又はVs/80を考慮し、 要素高さを0.5~1m程度まで細分割して設定する。

構造物の要素分割については、構造物に接する地盤の要素分割に合わせて設定する。

図 2.6-3-7 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地 盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。こ の自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次 元有効応力解析における自由地盤の初期応力解析から不整形地盤(2次元FEM)の地震 応答解析までのフローを図2.6-3-8に示す。

図 2.6-3-8 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

- (2) 境界条件
 - a. 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初 期応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重 等による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。初期応力解析に おける境界条件の概念図を図 2.6-3-9 に示す。

図 2.6-3-9 初期応力解析における境界条件の概念図

b. 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬する ため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側 方の粘性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。 取水護岸(6号機設備)の地震応答解析モデルを図 2.6-3-10 に示す。

図 2.6-3-10 取水護岸(6号機設備)の地震応答解析モデル(A-A断面)

(3) 構造物のモデル化

構造部材は、線形はり要素によりモデル化する。

なお、A-A断面では2つの海水貯留堰(6号機設備)をモデル化している。海水貯留堰 (6号機設備) (沖合側)は、奥行き方向に連続する構造物としてモデル化している。一 方、海水貯留堰(6号機設備) (護岸近傍)は、奥行き方向に1本の構造物としてモデル化 している。図2.6-3-11に地震応答解析モデルを、図2.6-3-12に海水貯留堰(6号機設 備)のモデル化の概要を示す。

図 2.6-3-11 取水護岸(6号機設備)の地震応答解析モデル(A-A断面)

図 2.6-3-12 海水貯留堰(6号機設備)のモデル化の概要

(4) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水要素によりモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

(5) 地盤改良体のモデル化 構造物周辺の地盤改良体は、マルチスプリング要素及び間隙水要素によりモデル化する。 (6) ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により、地震時の接合面における剥離及びすべりを考慮する。なお、既設地盤改良体と新 設地盤改良体との接合面については、既設地盤改良体に対し新設地盤改良体をラップさせ て設置し、接合させることから、ジョイント要素は設定しない。

ジョイント要素は、隣接する要素との接合面で法線方向及びせん断方向に対して設定す る。法線方向については、常時の圧縮荷重以上の引張荷重が生じた場合、剛性及び応力を 零とし、剥離を考慮する。せん断方向については、各要素間の接合面におけるせん断抵抗 力以上のせん断荷重が生じた場合、せん断剛性を零とし、すべりを考慮する。

なお, せん断強度 τ_fは, 次式により規定される。

$$\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$$

ここで,

σ':要素間の直応力

св :付着力

φ_B : 摩擦角

地盤と構造物間の接合面におけるジョイント要素の付着力 c Bと摩擦角 ϕ Bは,表2.6-3-4に示すとおりに設定する。付着力 c Bは「道路橋示方書(I 共通編・IV 下部構造 編)・同解説(日本道路協会,平成14年3月)」に基づき,表2.6-3-4に示す「地盤と構 造物」の条件から考慮しないものとする。摩擦角 ϕ Bは,「港湾の施設の技術上の基準・ 同解説(日本港湾協会,平成19年7月)」において,構造物と地盤間の壁面摩擦角を15° ~20°とする旨が記載されており,「港湾構造物設計事例集(上巻)(沿岸技術研究セン ター,平成19年3月)」において,鋼材と地盤間の摩擦角を15°と設定した事例があるこ とから,本解析における摩擦角 ϕ Bにも15°を適用する。

地盤と地盤改良体間の付着力 c B及び摩擦角 φ Bは,表2.6-3-5の道路橋示方書における摩擦角 φ Bと付着力 c Bに示す「道路橋示方書(I 共通編・IV下部構造編)・同解説(日本道路協会,平成14年3月)」の設定を参考に,周辺地盤の粘着力 c,内部摩擦角 φ より設定する。

周辺地盤の粘着力 c と内部摩擦角 φ は, V-2-1-3「地盤の支持性能に係る基本方針」に 基づき, 表2.6-3-6のとおりに設定する。

条件	付着力 c B (kN/m²)	摩擦角φB(°)
地盤と構造物*1	0.0	15.0
地盤と地盤改良体*2	С	ϕ

表 2.6-3-4 ジョイント要素の付着力 c Bと摩擦角 φ B

注記*1:構造物は、鋼材とする。

*2 :地盤と地盤改良体の付着力と摩擦角は、地盤のc, φを適用する。

表2.6-3-5 道路橋示方書における摩擦角 Φ B と付着力 с B

条件	摩擦角 ϕ_B (摩擦係数 $tan \phi_B$)	付着力 c _B
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ \tan \phi_B = 0.6 \phi_B = \phi $ の小さい方	$c_B = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_{B} = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

ただし、 φ: 支持地盤のせん断抵抗角 (°) c: 支持地盤の粘着力 (kN/m²)

(引用:道路橋示方書・同解説IV(下部構造編),社団法人日本道路協会,平成14年3月)

地質区分	粘着力c(kN/m²)	内部摩擦角 φ (°)
埋戻土	0.0	35.9
新期砂層	0.0	34.6
A3a1 層	29.2	34.2
A2c 層	113.0	27.9

表 2.6-3-6 周辺地盤の粘着力 c と内部摩擦角 φ

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分大きい 値として、「港湾構造物設計事例集(上巻)(沿岸技術研究センター、平成19年3月)」 に従い、表2.6-3-7の通り設定する。ジョイント要素の力学特性を図2.6-3-13に、ジ ョイント要素の配置を図2.6-3-14に示す。なお、海水貯留堰(6号機設備)(沖合側) は奥行き方向に連続する構造物としてモデル化するため、地盤と構造物の間にジョイント 要素を設ける。また、海水貯留堰(6号機設備)(護岸近傍)は奥行き方向に1本の構造物 であるため、地盤と構造物の間には杭一地盤相互作用ばねを設ける。

表 2.6-3-7 ジョイント要素のばね定数

条件	対象	せん断剛性 k _s (kN/m ³)	圧縮剛性 k _n (kN/m ³)
地盤と構造物	海水貯留堰 (6号機設備)	1.0×10^{6}	1.0×10^{6}
	護岸前面鋼矢板	1.0×10^{5}	1.0×10^{6}
地盤と地盤改良体 側方及び底面		1.0×10^{6}	1.0×10^{6}

図 2.6-3-14 ジョイント要素の配置(A-A断面)

(7) 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地盤と杭の接合面にお ける,強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

図2.6-3-15に杭-地盤相互作用ばねの考え方を示す。

なお, せん断強度 τ_fは, 次式により規定される。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

τ_f: せん断強度

св:付着力

φ_B:摩擦角

付着力 c B及び摩擦角 φ Bは,表2.6-3-4の地盤と構造物の条件から設定する。

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,「港湾構造物設計事例集(上巻)(沿岸技術研究センター, 平成19年3月)」に従い,表2.6-3-8のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

注記*: FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

(b) 杭-地盤相互作用ばね配置図(A-A断面)

図 2.6-3-15 杭-地盤相互作用ばねの考え方

表 2.6-3-8 杭-地盤相互作用ばねの杭軸方向のばね定数

	せん断剛性 ks
	(kN/m^3)
杭軸方向	1.0×10^{6}

(8) 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図2.6-3-16に示すとおり、 双曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化す る観点から、杭先端と地盤間にHirayama (1990) *による杭先端抵抗と杭先端変位の双曲 線型の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、 杭先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り 扱うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力をゼロとし、 剥離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式及び図2.6-3-17に示す双曲線型の式で設定される。

Hirayama (1990)では、N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭 の鉛直載荷試験結果に対して、当杭先端ばねを用いた荷重変位関係の再現解析を実施し、 適用性を検証している。また、当杭先端ばねは「一般社団法人FLIPコンソーシアム平 成25年度研究成果報告書(FLIPコンソーシアム、2013年)」にて、解析コード「FL IP」に対して適用性を確認している。報告書では、砂層に対する杭の押込み実験結果の 杭先端抵抗-杭先端変位関係を、当杭先端ばねが概ね再現可能であることを確認している。 また、パラメータスタディとして支持層の相対密度を変化させた解析を実施し、当杭先端 ばねの適用性を検証している。検証の結果、支持層に液状化等による剛性低下が生じず、 所定の支持力を発揮できる場合、当杭先端ばねは解析コード「FLIP」に対し適用性を 有することが確認されている。

海水貯留堰(6号機設備)については、杭の支持層は西山層、A2c層及びA2al層であり、 地震時においても液状化が生じず、所定の杭先端支持力が期待できることから、当杭先端 ばねを適用できると判断した。

注記*:Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils and Foundations, Vol. 30, No. 1, pp55-64, H.Hirayama, 1990)

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z 。 : 杭先端変位
- a。 : 基準変位を杭先端における極限支持力で除した値(=0.25D。/qult)
- **b**_e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- q_{ult} : 杭先端における極限支持力

図 2.6-3-16 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

Pile tip displacement : z_e

図 2.6-3-17 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係(Hirayama (1990))

(9) 減衰定数

減衰定数は、柏崎刈羽原子力発電所における新潟県中越沖地震の地震記録を入力波とした再現解析等を踏まえ、Rayleigh減衰として、α=0、β=0.005を設定する。

3.5.2 使用材料及び材料の物性値

使用材料を表2.6-3-9に、材料の物性値を表2.6-3-10に示す。

材料	諸元	腐食代		
		海側(海底面以浅)	2. 0mm^{*1}	
前面鋼矢板	S P-IV型(SY295), t=15.5mm	海側(海底面以深)	0.2mm^{*1}	
		陸側	0.2mm^{*1}	
鋼管矢板	$\phi1100\text{mm}$ (SKY490) , t=14mm, 16mm	1.0mm^{*2}		

表 2.6-3-9 使用材料

注記*1:腐食代の算出過程は下記のとおりとする。

海側(海底面以浅)	: 0.2 (mm/年) ×86 年× (1.0−0.9) =1.72mm=2.0mm
海側(海底面以深)	: 0.02 (mm/年) ×86 年× (1.0-0.9) = 0.172mm = 0.2mm
陸側	: 0.02 (mm/年) ×86 年× (1.0-0.9) = 0.172mm = 0.2mm

ここで,

運用期間:86年(取水護岸(6号機設備)の竣工(1984年)からの経過年数と海水貯留堰(6号機設備)の運用期間50年の合計)

腐食速度:0.2mm/年(海側(海底面以浅))

0.02mm/年(海側(海底面以深),陸側)

(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」)

防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

*2:腐食代の算出過程は下記のとおりとする。なお、海底面以深の鋼管矢板の腐食代は、保守的に海底面 以浅と同値とした。

0.2 (mm/年) ×50 年× (1.0-0.9) =1.0mm

ここで,

運用期間:50年(海水貯留堰(6号機設備)の運用期間50年)

腐食速度:0.2mm/年(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」) 防食率:90%(「港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)」,電気 防食実施のため)

表 2.6-3-10 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
前面鋼矢板	77.0	2. 0×10^{5}	0.3
鋼管矢板	77.0	2. 0×10^5	0.3

3.5.3 地盤及び地盤改良体の解析用物性値

地盤及び地盤改良体の諸定数は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤の解析用物性値一覧を表2.6-3-11に示す。

なお,海水貯留堰(6号機設備)の地盤改良体については,KK7補足-024-1「地盤の支持 性能について 4.2 設置変更許可申請書に記載されていない解析用物性値」に示す。

また、表2.6-3-11(4)に地盤改良体の配置に応じて設定した地盤改良体の物性値を示す。

新期砂層・沖積層 古安田層 地質区分 埋戻土 A2g層 (砂質) 沖積層上部 新期砂層 沖積層下部 A2s層 A3s層 A1g層 (砂質) 物性値 物 1.94 2.05 密度 1.90 2.02 1.91 1.91 1.91 ρ (g/cm^3) 1.91 玾 $(1, 79)^{*}$ $(2,00)^*$ 特 間隙率 0.45 0.440.480.42 0.45 0.450.450.45 n 性 動せん断弾性係数 $G_{\,m\,a}$ (kN/m^2) $1.\,04\!\times\!10^5$ 1.26×10^{5} 1.25×10^{5} 1.92×10^{5} $2.\,14\!\times\!10^5$ $2.\,14\!\times\!10^5$ 2. 14×10^{5} $2.\,14\!\times\!10^5$ 変 基準平均有効拘束圧 σ ma' 98.0 98.0 110.0 150.0 200.0 200.0 200.0 200.0 (kN/m^2) 形 特 0.33 0.33 ポアソン比 0.33 0.33 0.33 0.33 0.33 0.33 ν 性 (0, 44) $(0, 42)^*$ 減衰定数の上限値 0.225 0.234 0.247 0.211 0.157 0.157 0.157 0.157 h_{max} 0.0 0.0 碖 с' 粘着力 (kN/m^2) 0.0 0.0 0.0 0.0 0.0 0.0 度 $(9.6)^*$ $(94.4)^*$ 特性 35.9 34.6 内部摩擦角 φ, (°) 36.7 35.6 36.6 36.6 36.6 36.6 (34.8)* $(27.6)^*$ (°) 変相角 32.0 31.0 33.0 32.0 32.0 32.0 32.0 32.0 φ_n S_1 0.005 0.0050.005 0.005 0.0050.005 0.005 0.005液 状化特 5.50 7.90 11.00 8.00 25.00 25.00 25.00 25.00 w1 液状化パラメータ 0.50 \mathbf{p}_1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 件 1.00 0.70 0.70 0.65 0.80 0.80 0.80 0.80 \mathbf{p}_2 1.69 2.13 2.41 2.00 8.75 8.75 8.75 8.75 c_1

表 2.6-3-11(1) 地盤の解析用物性値一覧(液状化検討対象層)

注記*:括弧内の数字は、地下水位以浅の数値を表す。

/	地質区分			新期砂層·沖積層	古安田層						
	物性値			埋戻土Ⅱ	沖積層上部 (シルト質)	A3c層	A3a1層	A2c層	A2a1層	A2g層 (シルト質)	A1c層
物 理	密度	ρ	(g/cm^3)	1.71	1.66	1.70	1.81	1.80	1.88	1.80	1.80
特性	間隙率	n		0.58	0.61	0.57	0.52	0.52	0.48	0.52	0.52
	動せん断弾性係数	G_{ma}	(kN/m^2)	7.33×10^{4}	5. 50×10^4	$1.09\!\times\!10^5$	$9.57\!\times\!10^4$	$1.39\!\times\!10^5$	$1.61\!\times\!10^5$	$1.39\!\times\!10^5$	1.39×10^{5}
変 形	基準平均有効拘束日	σ _{ma} ,	(kN/m^2)	41.0	170.0	60.0	94.0	140.0	170.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h _{max}		0.152	0.136	0.114	0.162	0.110	0.147	0.110	0.110
強度	粘着力	с'	(kN/m^2)	7.4	82.5	99.6	29.2	113.0	82.8	113.0	113.0
特性	内部摩擦角	φ'	(°)	31.7	19.6	26.8	34. 2	27.9	28.7	27.9	27.9

表 2.6-3-11(2) 地盤の解析用物性値一覧(非液状化層)

表 2.6-3-11(3) 地盤の解析用物性値一覧(西山層)

	パライータ			西山層			
	~///=/			T.M.S.L33.Om 以浅	T.M.S.L33.0m∼-90.0m		
物理	密度	ρ	(g/cm^3)	1.73	1.69		
特性	間隙率	n		0.56	0.56		
	動せん断弾性係数	G_{ma}	(kN/m^2)	4. 16×10^5	4. 75×10^5		
変形	基準平均有効拘束圧	σ ma'	(kN/m^2)	98.0	98.0		
特性	ポアソン比	ν		0. 33	0. 33		
	減衰定数の上限値	h_{max}		0.257	0.257		
強度	粘着力	с	(kN/m^2)	1370-5.04Z*	1370-5.04Z*		
特性	内部摩擦角	φ	(°)	0. 0	0.0		

注記*:Zは,標高(m)を示す

	既設/新調	Ъ Ż		既設 地盤改良体	新設地想	盤改良体
	種別 (地盤種別)		高圧噴射 (砂質土)	高圧噴射 (砂質土)	高圧噴射 (粘性土)
物理	密度	ρ	(g/cm^3)	1.77	1.94~1.96*	1.81
特性	間隙率	n		0.49	0.49	0.64
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	1.78×10^{6}	5. 54×10^{5}	5. 18×10^{5}
変形	基準平均有効拘束圧	σ "	(kN/m^2)	98.0	98.0	98.0
特性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.05	0.05	0.05
強度特性	粘着力	с	(kN/m²)	815	397	397

表 2.6-3-11(4) 地盤の解析用物性値一覧(地盤改良体の配置を考慮した物性値)

注記*:地盤改良体の配置に応じて設定。

3.5.4 地下水位

地下水位は, V-2-1-3「地盤の支持性能に係る基本方針」に基づき, 地表面 (T.M.S.L.3.0m) として設定する。

- 3.6 評価対象部位 評価対象部位は,取水護岸(6号機設備)の構造上の特徴を踏まえ設定する。
- 3.6.1 構造部材の健全性評価 構造部材の健全性評価に係る評価対象部位は,前面鋼矢板とする。
- 3.6.2 構造物の変形性評価 構造物の変形性評価に係る評価対象部位は,前面鋼矢板とする。

3.7 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

3.7.1 構造部材の健全性に対する許容限界

前面鋼矢板の許容限界は、「鋼矢板Q&A (鋼管杭・鋼矢板技術協会 平成29年3月)」 及び「鋼矢板 設計から施工まで (鋼管杭協会 平成12年3月)」に基づき設定する。前面 鋼矢板の許容限界を表2.6-3-12に示す。

項目	対象	許容限界(kN・m)
降伏モーメントMy	海底面以浅	555
	海底面以深	649

表 2.6-3-12 前面鋼矢板の許容限界

3.7.2 構造物の変形性に対する許容限界

変形量の許容限界は,取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔が確 保されることを確認した変形量とする。取水護岸(6号機設備)と海水貯留堰(6号機設備) の離隔は,止水ゴム取付部鋼材の離隔とした。海水貯留堰(6号機設備)接続部の構造概念 図を図2.6-3-18に,止水ゴムの構造図を図2.6-3-19に示す。前面鋼矢板の変形量の許 容限界を表2.6-3-13に示す。

図 2.6-3-18 海水貯留堰(6号機設備)接続部の構造概念図

図 2.6-3-19 止水ゴムの構造図

表 2.6-3-13 前面鋼矢板の3	変形量の許容限界
--------------------	----------

項目	許容限界(cm)
変形量(海水貯留堰(6 号機設備)との離隔を確保できる相対変位量)	24.0

3.8 評価方法

取水護岸(6号機設備)の耐震評価は、地震応答解析により算定した照査用応答値が、 「3.7 許容限界」において設定した許容限界以下であることを確認する。

3.8.1 構造部材の健全性評価

前面鋼矢板の曲げモーメントに対する照査については,地震応答解析により算定した曲 げモーメントが許容限界以下であることを確認する。

- 3.8.2 構造物の変形性評価
 - (1) 相対変位の考え方 構造物の変形性評価に用いる相対変位は、地震時における相対変位の最大値とする。
 - (2) 評価方法

変位方向の定義を示した図2.6-3-20のうち、取水護岸(6号機設備)と海水貯留堰(6 号機設備)の水平方向の相対変位 δ_x (+)が許容限界以下であることを確認する。

4. 評価結果

4.1 地震応答解析結果

地震応答解析結果として「断面力分布」,「最大せん断ひずみ分布」及び「最大過剰間隙 水圧比分布」を示す。

(1) 断面力分布

耐震評価においては、全ての基準地震動Ssに対し、①の解析ケース(基本ケース)を 実施する。

また,全ての基準地震動Ssに対し基本として実施した①の解析ケースにおいて,各照 査値が最も厳しい地震動を用い,②~⑤の解析ケースを実施する。

表2.6-4-1に前面鋼矢板の曲げモーメントに対する解析ケースと照査値を示す。

A-A断面における基準地震動Ssによる前面鋼矢板に発生する断面力(曲げモーメント)照査に対して,解析ケースのうち前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力分布を図2.6-4-1に示す。本図は前面鋼矢板の曲げモーメントに対する照査において照査値が最も厳しくなる時刻における断面力分布を示したものである。

(A-A断面,海底面以浅)						
	解析ケース	曲げモーメント照査				
地震動		\bigcirc	2	3	4	5
	++	0.11	0.10	0.12	0.10	0.10
Sc-1	-+	0.09				
55 1	+-	0.10				
		0.09				
Ss-2 0.10						
	++	0.09				
Sa-2	-+	0.09				
55-3	+-	0.10				
		0.09				
S	s-4	0.08				
Ss-5		0.07				
Ss-6		0.09				
Ss-7 0.08						
Sc-8	++	0.09				
5s-8	-+	0.09				

表 2.6-4-1(1) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

表 2.6-4-1(2) 前面鋼矢板の曲げモーメントに対する解析ケースと照査値

(A - A)	断面.	海底面以深)
	1	

	解析ケース	曲げモーメント照査				
地震動		\bigcirc	2	3	4	5
	++	0.29	0.26	0.30	0.26	0.24
Se-1	-+	0.25				
55 1	+-	0.27				
		0.24				
S	s-2	0.25				
	++	0.20				
Se-2	-+	0.21				
22-3	+-	0.19				
		0.21				
S	s-4	0.21				
S	s-5	0.27				
S	s-6	0.21				
S	s-7	0.27				
S9	++	0. 18				
5s-8	-+	0.27				

図 2.6-4-1 前面鋼矢板の曲げモーメント照査において最も厳しい照査値の地震時断面力 (A-A断面, Ss-1++) (解析ケース③:地盤物性のばらつき(-1σ)を考慮した解析ケース)

(2) 最大せん断ひずみ分布

各要素に発生した最大せん断ひずみを確認するため、断面力の照査に対し、解析ケースのうち最も厳しい照査値となったケースの地震応答解析の全時刻における最大せん断ひずみの分布を図2.6-4-2に示す。

図 2.6-4-2 最大せん断ひずみ分布 (A-A断面,解析ケース③,地震動 Ss-1++) (3) 最大過剰間隙水圧比分布

各要素に発生した過剰間隙水圧比を確認するため、断面力の照査に対し、解析ケースの うち最も厳しい照査値となったケースの地震応答解析の全時刻における最大過剰間隙水圧 比の最大値分布を図2.6-4-3に示す。

図 2.6-4-3 最大過剰間隙水圧比分布 (A-A断面,解析ケース③,地震動 Ss-1++)

4.2 耐震評価結果

4.2.1 構造部材の健全性に対する評価結果

前面鋼矢板の曲げモーメントに対する照査結果を表2.6-4-2及び表2.6-4-3に示す。 前面鋼矢板に発生する曲げモーメントは許容限界以下であり,照査値に大きく余裕がある ことを確認した。なお,曲げモーメントは各地震動において最大となる値を示している。

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照查値
		++	59.1	555	0.11
	S a 1	-+	47.5	555	0.09
	35-1	+-	50.8	555	0.10
			45.6	555	0.09
	Ss-	-2	51.6	555	0.10
		++	48.9	555	0.09
	Ss-3	-+	45.3	555	0.09
(\mathbb{D})		+-	50.2	555	0.10
			46.3	555	0.09
	Ss-4		41.9	555	0.08
	Ss-5		37.7	555	0.07
	Ss-	-6	44.9	555	0.09
	Ss-7		44.2	555	0.08
	S9	++	46.6	555	0.09
55-8	38-0	-+	49.8	555	0.09
2		++	55.3	555	0.10
3	- Ss-1	++	65.5	555	0.12
4		++	54.4	555	0.10
5		++	51.5	555	0.10

表 2.6-4-2 曲げモーメントに対する照査結果(前面鋼矢板 海底面以浅)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

解析ケース*	地震動		曲げ モーメント (kN・m)	許容限界 (kN・m)	照査値
		++	183	649	0.29
	S = 1	-+	160	649	0.25
	35-1	+-	171	649	0.27
			152	649	0.24
	Ss-	-2	157	649	0.25
	Ss-3	++	125	649	0.20
1		-+	130	649	0.21
		+-	122	649	0.19
			131	649	0.21
	Ss-4		132	649	0.21
	Ss-5		174	649	0.27
	Ss-	-6	130	649	0.21
	Ss-7		175	649	0.27
	5 . 9	++	113	649	0.18
	5s-8	-+	172	649	0.27
2		++	167	649	0.26
3	Ss-1	++	191	649	0.30
4		++	167	649	0.26
5		++	150	649	0.24

表 2.6-4-3 曲げモーメントに対する照査結果(前面鋼矢板 海底面以深)

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1σ)を考慮した解析ケース
 ③:地盤物性のばらつき(-1σ)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1σ)を考慮して非液状化の条件を仮定した解析ケ

4.2.2 構造物の変形性に対する評価結果

構造物の変形性評価に用いる地震時における構造物間の最大相対変位を表2.6-4-4に示 す。また、取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔に対する照査結果 を表2.6-4-5に示す。

取水護岸(6号機設備)と海水貯留堰(6号機設備)との最大水平相対変位は許容限界以 下であり、止水ゴム取付部鋼材間の離隔が確保されることを確認した。

解析ケース*	地震動		最大相対変位 (cm)
		++	3.1
	0 1	-+	3.2
	38-1	+-	3. 1
			3.2
	Ss-	2	2.4
		++	4.1
1)	Ss-3	-+	4.8
		+-	4.1
			4.8
	Ss-	4	3. 1
	Ss-	5	4.5
	Ss-	6	5.0
	Ss-	7	6.9
	C - 0	++	2.5
	35-0	-+	2.5
2		++	2.7
3	Ss-1	++	3. 5
4		++	3. 3
5		++	2.9

表 2.6-4-4 地震時における構造物間の最大相対変位量

注記*:解析ケースの番号は下記に対応する

①:基本ケース

②:地盤物性のばらつき(+1g)を考慮した解析ケース

③:地盤物性のばらつき(-1g)を考慮した解析ケース

④:非液状化の条件を仮定した解析ケース

⑤:地盤物性のばらつき(+1g)を考慮して非液状化の条件を仮定した解析ケ

表 2.6-4-5 取水護岸(6号機設備)と海水貯留堰(6号機設備)との離隔に対する照査結果

解析ケース	生産	最大水平相対変位	許容限界値
	地展期	(cm)	(cm)
1	Ss-7	6.9	2

4.3 まとめ

取水護岸(6号機設備)について,基準地震動Ssによる地震力に対し,構造部材に発生 する曲げモーメント及び変形量が許容限界以下であることを確認した。

以上のことから、取水護岸(6号機設備)は、基準地震動Ssによる地震力に対して、要 求機能を維持できる。 取水護岸(6号機設備)の耐震計算書に関する参考資料

(参考資料1) 取水護岸(6号機設備)の耐震評価における積雪荷重の影響検討

(参考資料1) 取水護岸(6号機設備)の耐震評価における積雪荷重の影響検討

1. 概要

取水護岸(6 号機設備)の耐震評価では,護岸を構成する前面鋼矢板と海水貯留堰との最大水 平相対変位を算出し,要求機能が確保されることを確認している。

取水護岸(6号機設備)の背面は地盤改良されており,前面鋼矢板の変位抑制対策が講じられ ていること等を踏まえ,取水護岸部における地震時の荷重の組合せとして積雪荷重を考慮しない こととしている。

そこで本資料では、取水護岸(6 号機設備)の耐震評価における荷重の組合せの妥当性を確認 するため、取水護岸(6 号機設備)の背面全域に積雪荷重を作用させた場合の影響について検討 する。

2. 検討方針

本資料では,積雪荷重を考慮しない解析(以下「基本ケース」という。)の耐震評価結果と,積 雪荷重を考慮する解析(以下「積雪ケース」という。)の耐震評価結果を比較し,積雪荷重による 影響を確認する。

対象とするケースは, KK7 補足-028-08「浸水防護施設の耐震性に関する説明書の補足説明資料 2.6 取水護岸(6号機設備)の耐震計算書に関する補足説明」に示す,構造物の変形性評価において照査値が最も厳しいA-A断面の「解析ケース①,基準地震動 Ss-7EW」とする。

3. 積雪荷重の設定

積雪荷重の概念図を図1に示す。積雪荷重は、V-1-1-3-1-1「発電用原子炉施設に対する自然 現象等による損傷防止に関する基本方針」に従い、積雪厚さ115.4cm、積雪厚さ1cm あたりの荷 重を29.4N/cm/m²とし、積雪荷重3.39kN/m²を地表面に分布荷重として設定する。

注記*:水平方向にも同位置に載荷する

4. 耐震評価結果の比較

積雪荷重を考慮しない基本ケースと積雪荷重を考慮した積雪ケースについて,前面鋼矢板と海 水貯留堰間の最大相対変位を表1に示す。

地震時の荷重の組合せとして積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最 大水平相対変位は、積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり、 許容限界に対しても十分余裕のある値となっている。これは、取水護岸(6号機設備)の背面に 施工されている地盤改良の効果によって変位抑制効果が発揮されたものと推察される。

検討ケース	積雪荷重	前面鋼矢板と 海水貯留堰間の 最大水平相対変位 (cm)	許容限界 (cm)
基本ケース	考慮しない	6.9	04.0
積雪ケース	考慮する	6.7	24.0

表1 構造物の変形性評価結果

5. まとめ

本資料では、取水護岸取水護岸(6号機設備)の耐震評価における積雪荷重の影響について検 討した。検討の結果、積雪荷重を考慮した積雪ケースの前面鋼矢板と海水貯留堰間の最大水平相 対変位は、積雪荷重を考慮していない基本ケースの最大水平相対変位と同程度であり、積雪荷重 を考慮していない取水護岸取水護岸(6号機設備)の耐震評価における地震時の荷重の組合せの 妥当性を確認した。
2.7 津波荷重(突き上げ)の強度評価における

鉛直方向荷重の考え方について

2.7 津波荷重(突き上げ)の強度評価における鉛直方向荷重の考え方について

(1) 概要

浸水防護施設である取水槽閉止板について,鉛直方向に作用する荷重の考え方について, 以下に示す。

(2) 余震の鉛直方向地震力の考え方について

取水槽閉止板の強度評価においては、その荷重の組み合わせとして、自重、余震荷重およ び突き上げ津波荷重を組み合わせて評価を行っている。ただし、この評価において、鉛直方 向については突き上げ津波荷重のみを考慮し、自重および鉛直方向の地震力については、保 守的な評価とするために、考慮しないこととしている。この鉛直方向についての評価上の扱 いが保守的な評価となる理由について説明する。

取水槽閉止板に作用する鉛直方向の荷重に表 2.7-1のとおりまとめる。また,各荷重に関 する概念図を図 2.7-1に示す。なお,鉛直上向きを正方向として整理する。

	荷重の種類	記号	荷重の向き	備考	
	白香(N)	m • ~	(小声下向き (二)	m _G :閉止板の全体質量(kg)	
Û	日里(11)	m _G •g	」」「「「」」」「「」」」「「」」」」	g:重力加速度(m/s ²)	
0	(水声士白の地震力(N)	m • • • • •	鉛直下向き又は	α v: 鉛直方向の震度	
2	<u> </u>	m _G · a _V · g	上向き(土)		
0	空き Luf 海波芸香(M)	D • A	(公古上向き (工)	P _t :突き上げ津波荷重(N/m ²)	
3	天さエリ伴似何里(1)	Γ _t • A	如臣上旧さ(〒)	A: 取水槽閉止板の面積(m ²)	

表 2.7-1 取水槽閉止板に作用する鉛直方向の荷重の一覧

図 2.7-1 取水槽閉止板に作用する荷重(鉛直方向)の概念図

この場合,取水槽閉止板の鉛直方向の全荷重Ftは,以下の式の通り表される

$F_{t} = P_{t} \cdot A - m_{G} \cdot g \cdot (1 \pm \alpha_{V})$

ここで、上式の第2項(自重、地震力のベクトル和)については当該評価箇所での余震に よる鉛直方向の震度 α_v が1(G)未満の場合、 $-m_G \cdot g \cdot (1 \pm \alpha_v) < 0$ が成立する。つまり、こ れらの荷重の合成力は下向きに作用し、突き上げ津波荷重を相殺するため、この項を考慮せ ず、突き上げ津波荷重のみを考慮するのが保守的な評価となる。

今回の浸水防止設備の強度評価のうち、余震に関する設計震度である 1.2ZPA(鉛直方向) は 0.45(G)であり、1(G)未満であることから、自重及び鉛直方向の地震力を考慮しないこと で、強度評価上、保守的な評価を実施している。 2.8 止水堰の設計に関する補足説明

1.	耐震計算	算 ••••••	1
1.	1 入力	7値 ••••••••••••••••••••••••••••••••••••	1
	1.1.1	L型鋼製堰 ••••••	1
	1.1.2	鋼製落とし込み型堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
	1.1.3	鉄筋コンクリート製堰 ・・・・・	10
	1.1.4	鋼板組合せ堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
1.	2 計算	章結果 ••••••••••••••••••••	48
	1.2.1	L型鋼製堰 •••••••	48
	1.2.2	鋼製落とし込み型堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	55
	1.2.3	鉄筋コンクリート製堰 ・・・・・	57
	1.2.4	鋼板組合せ堰 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
2.	強度計	算 •••••	94
2.	1 入力	7値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
	2.1.1	L型鋼製堰 •••••••	94
	2.1.2	鋼製落とし込み型堰 ・・・・・ 1	09
	2.1.3	鉄筋コンクリート製堰 ・・・・・ 1	11
	2.1.4	鋼板組合せ堰 ・・・・・・・ 1	35
2.	2 計算	章結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	78
	2.2.1	L型鋼製堰 ······ 1	78
	2.2.2	鋼製落とし込み型堰 ・・・・・ 1	93
	2.2.3	鉄筋コンクリート製堰 ・・・・・ 1	95
	2.2.4	鋼板組合せ堰 ・・・・・ 2	19

目 次

1. 耐震計算

- 1.1 入力値
 - 1.1.1 L型鋼製堰

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.		RB-3F-1	
記号	単位	定義	数値
W_{PL}	kN/m^2	H型鋼製堰の単位面積重量	3.66
Ζ	mm^3 /m	H型鋼ウェブの断面係数	7041
Н	mm	堰の高さ	314
b	mm	H型鋼フランジ幅	150
Е	mm	アンカーボルトの穴縁端距離	35
N	木	アンカーボルトの本数 () 内け引張有効本数	8
1	×+•		(4)
W 1	kN	堰の重量	1.69
Та	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8

堰 No.		TB-1F-2			
記号	単位	定義	数値		
W_{PL}	kN/m ²	鋼製板の単位面積重量	0.462		
Ζ	$\mathrm{mm}^{3}/\mathrm{m}$	鋼製板の断面係数	6. 000×10^3		
Н	mm	止水堰の高さ	430		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
W 1	kN	堰重量	0.755		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5. 74		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21		

(2) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

堰 No.		TB-1F-3		
記号	単位	定義	数値	
W_{PL}	kN/m^2	鋼製板の単位面積重量	0.462	
Ζ	$\mathrm{mm}^{3}/\mathrm{m}$	鋼製板の断面係数	6.000 $\times 10^3$	
Н	mm	止水堰の高さ	430	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
W 1	kN	堰重量	0.765	
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5.74	
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21	

(3) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰2

堰 No.		TB-1F-4			
記号	単位	定義	数值		
$W_{\rm PL}$	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$		
Н	mm	止水堰の高さ	430		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
W 1	kN	堰重量	0.755		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5. 74		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2. 21		

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.		TB-1F-11			
記号	単位	定義	数值		
W _{PL}	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm^3/m	鋼製板の断面係数	6.000 $\times 10^{3}$		
Н	mm	止水堰の高さ	309		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	4		
W 1	kN	堰重量	0.361		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	12.6		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97		

(5) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.		TB-2F-1		
記号	単位	定義	数值	
W_{PL}	kN/m^2	鋼製板の単位面積重量	0.462	
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^{3}$	
Н	mm	止水堰の高さ	330	
b	mm	鋼製板の折り曲げ部の幅	105	
е	mm	アンカーボルトの穴縁端距離	52	
Ν	本	アンカーボルトの本数	8	
W 1	kN	堰重量	0.549	
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	5.74	
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	2.21	

(6) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.		TB-2F-2			
記号	単位	定義	数值		
$W_{\rm PL}$	kN/m^2	鋼製板の単位面積重量	0.462		
Z	mm^3/m	鋼製板の断面係数	6. 000×10^3		
Н	mm	止水堰の高さ	309		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	6		
W 1	kN	堰重量	1.78		
Та	kN	アンカーボルトに生じる引張りに対する短期許容応力	12.6		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97		

(7) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

1.1.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.		RB-2F-8			
記号	単位	定義	数値		
Ζ	mm^3 /m	断面係数	6. 116×10^4		
Н	mm	鋼製板の高さ	710		
Ν	本	アンカーボルトの本数 ()内は引張有効本数	2 (1)		
W 1	kN	鋼製板の重量	0.0826		
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	12		

堰 No.		TB-1F-13		
記号	単位	定義	数值	
ρο	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	620	
Z	mm ³ /m	断面係数	$1.873 imes 10^5$	
Ν	本	アンカーボルトの本数	4	
W 1	kN	堰重量	1.53	
Q a	kN	アンカーボルトに生じるせん断に対する短期許容応力	4.97	
Та	kN	アンカーボルトに生じる引っ張りに対する短期許容応力	_	

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

1.1.3 鉄筋コンクリート製堰

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.		RB-B1F-1		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	7.78	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1350	
t	mm	堰厚さ	750	

堰 No.		RB-B1F-2		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	4	
W_1	kN	堰重量	5.04	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	875	
t	mm	堰厚さ	750	

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.		RB-B1F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	1.667×10^{6}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	50	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	0.444	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	100	

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.		RB-B1F-4		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	7.32	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1270	
t	mm	堰厚さ	750	

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.		RB-B1F-5		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	8	
W_1	kN	堰重量	9. 51	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1650	
t	mm	堰厚さ	750	

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.		RB-1F-2		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	5.13	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

(6) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰 No.		RB-1F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.12	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

(7) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰 No.		RB-1F-4		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	6. 017×10^8	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	950	
Ν	本	アンカーボルト,鉄筋の本数	7	
W_1	kN	堰重量	10.26	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1500	
t	mm	堰厚さ	1900	

(8) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

(9) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰 No.		RB-1F-7		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	5.22	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

堰 No.		RB-2F-3		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.32	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1150	
t	mm	堰厚さ	750	

(10) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.		RB-2F-4		
記号	単位	定義	数値	
Z	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	11	
W_1	kN	堰重量	1.82	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1650	
t	mm	堰厚さ	150	

(11) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰 No.		RB-2F-5		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	4. 167×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	430	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	3. 48	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	500	

(12) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No.		RB-3F-2		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
W_1	kN	堰重量	6.27	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1200	
t	mm	堰厚さ	750	

(13) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

(14)	原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室
	止水堰1

堰 No.		RB-3F-5		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.12	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1000	
t	mm	堰厚さ	750	

堰 No.		RB-3F-6		
記号	単位	定義	数值	
Z	mm^3 /m	断面係数	9. 375×10^7	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	70	
Ν	本	アンカーボルト,鉄筋の本数	8	
W_1	kN	堰重量	10.71	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	7.20	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	14.6	
L	mm	堰全長	1750	
t	mm	堰厚さ	750	

(15) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

堰 No.		TB-1F-1		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	10.8	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	6665	
t	mm	堰厚さ	150	

(16) タービン建屋地上1階(T2T3-TATB) レイダウンスペース 止水堰

		-		
堰 No.		TB-1F-5		
記号	単位	定義	数値	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	17.4	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	10720	
t	mm	堰厚さ	150	

(17) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-6		
記号	単位	定義	数値	
Z	mm^3 /m	断面係数	5. 227×10^{7}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	280	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	6.50	
Ta	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	1430	
t	mm	堰厚さ	560	

(18) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

堰 No.		TB-1F-7		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	3.750 $\times 10^{6}$	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	10.8	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	23.9	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	17.3	
L	mm	堰全長	6670	
t	mm	堰厚さ	150	

(19) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-12		
記号	単位	定義	数值	
Ζ	mm^3 /m	断面係数	1.500×10^{7}	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	150	
Ν	本	アンカーボルト,鉄筋の本数	5	
W_1	kN	堰重量	2.08	
Та	kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	15.5	
Qa	kN	アンカーボルト、鉄筋に生じるせん断に対する短期許容応力	11.7	
L	mm	堰全長	2400	
t	mm	堰厚さ	300	

(20) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

1.1.4 鋼板組合せ堰

鋼板組合せ堰は,構造又は固定タイプの違いにより使用する計算式が異なることから,対象 となる止水堰について表 1-1 の通り整理する。

なお、本資料記載以外の計算式については、V-2-10-2-3-3「止水堰の耐震性についての計 算書」に記載の計算式により計算を行う。

対象となる計算式は、V-2-10-2-3-3「止水堰の耐震性についての計算書」の下記対象ページ記載の計算式とする。

<対象計算式>

・P51 b.梁材 (a) 地震荷重による分布荷重
①ロ型タイプ
wf' = W₁・a' / H / (2・L + 2・B)・k_H
②L型タイプ
wf' = W₁・a' / H / (L + B)・k_H

表1-1 計算式整理表

堰 No.	名称	計算式
RB-B2F-1	原子炉建屋地下2階(R1R2-RDRE)通路 止水堰	1
RB-B2F-4	原子炉建屋地下 2 階(R4R5-RERF)通路 止水堰	2
RB-B2F-6	原子炉建屋地下 2 階(R6R7-RDRE)通路 止水堰	1
RB-1F-1	原子炉建屋地上1階(R1R2-RARB)通路 止水堰	1
RB-4F-1	原子炉建屋地上4階(R2R3-RARB)オペレーティングフロア 止水堰	2

堰 No.		RB-B2F-1	
記号	単位	定義	数値
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$
g	m/s^2	重力加速度	9.80665
k_{H}	—	水平方向の設計震度	0.856
kv	—	鉛直方向の設計震度	0.830
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000
L	mm	止水堰の正面全幅	1650
В	mm	止水堰の側面全幅	1300
W_1	Ν	止水堰の重量	3263
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の応力係数	0.75
Ľ,	mm	評価する梁材の長さ	1650
Ζ	mm ³	梁材の断面係数	12100
As	mm^2	梁材のせん断断面積	634.5
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
n_{t}	mm	引張を受ける床側アンカーボルトの本数	17
h	mm	止水堰の重心高さ	500
ℓ_1	mm	重心とボルト間の水平距離	690
ℓ_2	mm	重心とボルト間の水平距離	690
N _t	本	せん断を受ける床側アンカーボルト本数	60
Nw	本	せん断を受ける壁側アンカーボルト本数	0

(1) 原子炉建屋地下2階(R1R2-RDRE)通路 止水堰
垣	₹No.	RB-B2F-2		
記号	単位	定義	数值	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	_	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	970	
В	mm	止水堰の側面全幅	1475	
W_1	Ν	止水堰の重量	2180	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1475	
Ζ	mm ³	梁材の断面係数	12100	
As	mm^2	梁材のせん断断面積	634. 5	
a'	mm	梁材1本あたりが負担する止水板の幅	462.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm^3	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	15	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	525	
ℓ_2	mm	重心とボルト間の水平距離	525	
N _t	本	せん断を受ける床側アンカーボルト本数	41	
Nw	本	せん断を受ける壁側アンカーボルト本数	20	

(2) 原子炉建屋地下2階(R2R3-RERF)通路 止水堰

堌	₹No.	RB-B2F-3		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	_	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	4946	
В	mm	止水堰の側面全幅	0	
W_1	Ν	止水堰の重量	2708	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	450	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	2971	
Z	mm ³	梁材の断面係数	37600	
As	mm^2	梁材のせん断断面積	500	
a'	mm	梁材1本あたりが負担する止水板の幅	475	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	18	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	51.8	
ℓ_2	mm	重心とボルト間の水平距離	1723. 2	
N _t	本	せん断を受ける床側アンカーボルト本数	48	
Nw	本	せん断を受ける壁側アンカーボルト本数	40	

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

垣	夏 No.	RB-B2F-4		
記号	単位	定義	数值	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	2930	
В	mm	止水堰の側面全幅	700	
W_1	Ν	止水堰の重量	2822	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	402.5	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	2930	
Ζ	mm ³	梁材の断面係数	67800	
As	mm^2	梁材のせん断断面積	750	
a'	mm	梁材1本あたりが負担する止水板の幅	467.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	6	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	62.0	
ℓ_2	mm	重心とボルト間の水平距離	438.0	
N _t	本	せん断を受ける床側アンカーボルト本数	35	
Nw	本	せん断を受ける壁側アンカーボルト本数	22	

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

垣	夏 No.	RB-B2F-5		
記号	単位	定義	数値	
$ ho_{ m ss}$	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0. 823	
kv	—	鉛直方向の設計震度	0.834	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1000	
L	mm	止水堰の正面全幅	1490	
В	mm	止水堰の側面全幅	1475	
W_1	Ν	止水堰の重量	2680	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1490	
Z	mm ³	梁材の断面係数	12100	
As	mm^2	梁材のせん断断面積	634.5	
a'	mm	梁材1本あたりが負担する止水板の幅	462.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
A_{Y}	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	17	
h	mm	止水堰の重心高さ	500	
ℓ_1	mm	重心とボルト間の水平距離	582.2	
ℓ_2	mm	重心とボルト間の水平距離	817.8	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	46	
Nw	本	せん断を受ける壁側アンカーボルト本数	20	

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堌	₹No.	RB-B2F-6		
記号	単位	定義	数值	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.856	
kv	—	鉛直方向の設計震度	0.830	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	410	
L	mm	止水堰の正面全幅	898	
В	mm	止水堰の側面全幅	812	
W_1	Ν	止水堰の重量	836	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	510	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	640	
Z	mm ³	梁材の断面係数	6260	
As	mm^2	梁材のせん断断面積	752.7	
a'	mm	梁材1本あたりが負担する止水板の幅	112	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	320	
Zy	mm^3	柱材の断面係数	6260	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	752.7	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	2	
h	mm	止水堰の重心高さ	410	
ℓ_1	mm	重心とボルト間の水平距離	260	
ℓ_2	mm	重心とボルト間の水平距離	300	
N _t	本	せん断を受ける床側アンカーボルト本数	8	
Nw	本	せん断を受ける壁側アンカーボルト本数		

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

坦	₹No.	RB-1F-1		
記号	単位	定義	数值	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k _H	—	水平方向の設計震度	0.888	
kv	—	鉛直方向の設計震度	0.869	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1610	
В	mm	止水堰の側面全幅	1210	
W_1	Ν	止水堰の重量	1682	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ		
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅		
Zy	mm ³	柱材の断面係数		
Ay	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	5	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	633	
ℓ_2	mm	重心とボルト間の水平距離	633	
N _t	本	せん断を受ける床側アンカーボルト本数	18	
Nw	本	せん断を受ける壁側アンカーボルト本数	0	

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.		RB-1F-5		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1575	
В	mm	止水堰の側面全幅	1180	
W_1	Ν	止水堰の重量	1174	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	—	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
n_{t}	mm	引張を受ける床側アンカーボルトの本数	4	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	399.1	
ℓ_2	mm	重心とボルト間の水平距離	732.9	
N _t	本	せん断を受ける床側アンカーボルト本数	10	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堌	夏 No.	RB-1F-6		
記号	単位	定義	数値	
$ ho_{\rm ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k _H	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1760	
В	mm	止水堰の側面全幅	1205	
W_1	Ν	止水堰の重量	1509	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	248	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	—	
nt	mm	引張を受ける床側アンカーボルトの本数	4	
h	mm	止水堰の重心高さ	237.5	
ℓ_1	mm	重心とボルト間の水平距離	407.34	
ℓ_2	mm	重心とボルト間の水平距離	757.66	
N _t	本	せん断を受ける床側アンカーボルト本数	10	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堌	₹No.	RB-1F-8		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	0.941	
kv	—	鉛直方向の設計震度	0.901	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400	
L	mm	止水堰の正面全幅	1380	
В	mm	止水堰の側面全幅	1000	
W_1	Ν	止水堰の重量	1015	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	3	
h	mm	止水堰の重心高さ	225	
ℓ_1	mm	重心とボルト間の水平距離	340.76	
ℓ_2	mm	重心とボルト間の水平距離	541.24	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	9	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堌	₹No.	RB-2F-1		
記号	単位	定義	数値	
$ ho_{ m ss}$	kg/m^3	止水板の密度	7850	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0.927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1400	
L	mm	止水堰の正面全幅	2015	
В	mm	止水堰の側面全幅	1230	
W_1	Ν	止水堰の重量	6275	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	220	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	_	
Z	mm ³	梁材の断面係数	_	
As	mm^2	梁材のせん断断面積	_	
a'	mm	梁材1本あたりが負担する止水板の幅	_	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_	
nt	mm	引張を受ける床側アンカーボルトの本数	3	
h	mm	止水堰の重心高さ	710.87	
ℓ_1	mm	重心とボルト間の水平距離	833.43	
ℓ_2	mm	重心とボルト間の水平距離	1181.57	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	14	
Nw	本	せん断を受ける壁側アンカーボルト本数	8	

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

垣	₹No.	RB-2F-2		
記号	単位	定義	数值	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0.927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500	
L	mm	止水堰の正面全幅	1260	
В	mm	止水堰の側面全幅	980	
W_1	Ν	止水堰の重量	3172	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	1260	
Z	mm ³	梁材の断面係数	8470	
As	mm^2	梁材のせん断断面積	436.35	
a'	mm	梁材1本あたりが負担する止水板の幅	355	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	-	
$n_{\rm t}$	mm	引張を受ける床側アンカーボルトの本数	11	
h	mm	止水堰の重心高さ	750	
ℓ_1	mm	重心とボルト間の水平距離	169.6	
ℓ_2	mm	重心とボルト間の水平距離	750.4	
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	35	
Nw	本	せん断を受ける壁側アンカーボルト本数	34	

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堌	₹No.	RB-2F-9		
記号	単位	定義	数値	
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$	
g	m/s^2	重力加速度	9.80665	
k_{H}	—	水平方向の設計震度	1.01	
kv	—	鉛直方向の設計震度	0. 927	
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	303	
L	mm	止水堰の正面全幅	1275	
В	mm	止水堰の側面全幅	940	
W_1	Ν	止水堰の重量	655	
t	mm	止水板の板厚	3. 2	
а	mm	止水板の長辺方向の幅	810	
β	—	長方形板の応力係数	0.75	
Ľ,	mm	評価する梁材の長さ	940	
Ζ	mm ³	梁材の断面係数	6260	
As	mm^2	梁材のせん断断面積	752.7	
a'	mm	梁材1本あたりが負担する止水板の幅	151.5	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	405	
Zy	mm ³	柱材の断面係数	6260	
$A_{\rm Y}$	mm^2	柱材のせん断断面積	752.7	
$n_{\rm t}$	mm	引張を受ける床側アンカーボルトの本数	7	
h	mm	止水堰の重心高さ	151.5	
ℓ_1	mm	重心とボルト間の水平距離	282	
ℓ_2	mm	重心とボルト間の水平距離	598	
N _t	本	せん断を受ける床側アンカーボルト本数	15	
Nw	本	せん断を受ける壁側アンカーボルト本数	4	

(13) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堌	₹No.	RB-3F-3	RB-3F-3					
記号	単位	定義	数値					
ho ss	kg/m^3	止水板の密度	7.85×10^{3}					
g	m/s^2	重力加速度	9.80665					
k_{H}	—	水平方向の設計震度	1.16					
kv	—	鉛直方向の設計震度	0.952					
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400					
L	mm	止水堰の正面全幅	800					
В	mm	止水堰の側面全幅	1240					
W_1	Ν	止水堰の重量	737					
t	mm	止水板の板厚	3.2					
а	mm	止水板の長辺方向の幅	300					
β	—	長方形板の応力係数	0.75					
Ľ,	mm	評価する梁材の長さ	1240					
Z	mm ³	梁材の断面係数	3550					
As	mm^2	梁材のせん断断面積	282.2					
a'	mm	梁材1本あたりが負担する止水板の幅	200					
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_					
Zy	mm ³	柱材の断面係数	_					
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_					
$n_{\rm t}$	mm	引張を受ける床側アンカーボルトの本数	13					
h	mm	止水堰の重心高さ	200					
ℓ_1	mm	重心とボルト間の水平距離	430					
Q_2	mm	重心とボルト間の水平距離	430					
N $_{\rm t}$	本	せん断を受ける床側アンカーボルト本数	35					
Nw	本	せん断を受ける壁側アンカーボルト本数	7					

(14) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

堦	夏No.	RB-3F-4					
記号	単位	定義	数值				
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$				
g	m/s^2	重力加速度	9.80665				
k_{H}	—	水平方向の設計震度	1.16				
kv	—	鉛直方向の設計震度	0.952				
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	400				
L	mm	止水堰の正面全幅	800				
В	mm	止水堰の側面全幅	1250				
W_1	Ν	止水堰の重量	741				
t	mm	止水板の板厚	3.2				
а	mm	止水板の長辺方向の幅	300				
β	—	長方形板の応力係数	0.75				
Ľ,	mm	評価する梁材の長さ	1250				
Ζ	mm ³	梁材の断面係数	3550				
As	mm^2	梁材のせん断断面積	282.2				
a'	mm	梁材1本あたりが負担する止水板の幅	200				
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_				
Zy	mm ³	柱材の断面係数	_				
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_				
n_{t}	mm	引張を受ける床側アンカーボルトの本数	13				
h	mm	止水堰の重心高さ	200				
ℓ_1	mm	重心とボルト間の水平距離	430				
ℓ_2	mm	重心とボルト間の水平距離	430				
N _t	本	せん断を受ける床側アンカーボルト本数	34				
Nw	本	せん断を受ける壁側アンカーボルト本数	8				

(15) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

坦	夏No.	RB-4F-1					
記号	単位	定義	数値				
ho ss	kg/m ³	止水板の密度	7.85 $\times 10^{3}$				
g	m/s^2	重力加速度	9.80665				
k _H	—	水平方向の設計震度	1.36				
kv	—	鉛直方向の設計震度	0.984				
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500				
L	mm	止水堰の正面全幅	3130				
В	mm	止水堰の側面全幅	1865				
W_1	Ν	止水堰の重量	8646				
t	mm	止水板の板厚	3.2				
а	mm	止水板の長辺方向の幅	280				
β	—	長方形板の応力係数	0.75				
Ľ,	mm	評価する梁材の長さ	1865				
Z	mm ³	梁材の断面係数	67800				
As	mm^2	梁材のせん断断面積	750				
a'	mm	梁材1本あたりが負担する止水板の幅	352.5				
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅					
Zy	mm ³	柱材の断面係数					
Ay	mm^2	柱材のせん断断面積					
n_{t}	mm	引張を受ける床側アンカーボルトの本数	16				
h	mm	止水堰の重心高さ	750				
ℓ_1	mm	重心とボルト間の水平距離	61.9				
ℓ_2	mm	重心とボルト間の水平距離	1803.1				
N _t	本	せん断を受ける床側アンカーボルト本数	41				
Nw	本	せん断を受ける壁側アンカーボルト本数	24				

(16) 原子炉建屋地上4階(R2R3-RARB)オペレーティングフロア 止水堰

坦	夏No.	RB-4F-3					
記号	単位	定義	数値				
ho ss	kg/m^3	止水板の密度	7.85 $\times 10^{3}$				
g	m/s^2	重力加速度	9.80665				
k_{H}	—	水平方向の設計震度	1.36				
kv	—	鉛直方向の設計震度	0.984				
Н	mm	止水堰の高さ、または溢水評価水位を上回る水位	1500				
L	mm	止水堰の正面全幅	6835				
В	mm	止水堰の側面全幅	2405				
W_1	Ν	止水堰の重量	17007				
t	mm	止水板の板厚	3.2				
а	mm	止水板の長辺方向の幅	280				
β	—	長方形板の応力係数	0.75				
Ľ,	mm	評価する梁材の長さ	2697.5				
Z	mm ³	梁材の断面係数	67800				
As	mm^2	梁材のせん断断面積	750				
a'	mm	梁材1本あたりが負担する止水板の幅	352.5				
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—				
Zy	mm ³	柱材の断面係数	—				
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_				
n_{t}	mm	引張を受ける床側アンカーボルトの本数	20				
h	mm	止水堰の重心高さ	750				
ℓ_1	mm	重心とボルト間の水平距離	64.1				
ℓ_2	mm	重心とボルト間の水平距離	2215.9				
N _t	本	せん断を受ける床側アンカーボルト本数	97				
Nw	本	せん断を受ける壁側アンカーボルト本数	24				

(17) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

1.2 計算結果

1.2.1 L型鋼製堰

堰 No.	評価対象部位		発 (荷重また):	許容	限界	検定値		
RB-3F-1	鋼製版	曲げ	27.0	N/mm^2	235	N/mm^2	0.12	<1.0
	アンカー ボルト	引張	0.609	kN	7.90	kN	0.08	<1.0
		せん断	0.214	kN	13.8	kN	0.02	<1.0
		組合せ	_	_	_	_	0. 01	<1.0

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-1F-2	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
		せん断	9.63 $\times 10^{-2}$	kN	2.21	kN	0.05	<1.0
		組合せ	-		-	-	0.01	<1.0

(2) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

(3) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルク	タ室
---	----

堰 No.	評価対象部位		発生値		許容限界		検定値	
			(荷重又は発生応力度)					
	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
TD-1E-9	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
1D-1F-3		せん断	9. 76×10^{-2}	kN	2.21	kN	0.05	<1.0
		組合せ	_		-		0.01	<1.0

止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-1F-4	鋼製板	曲げ	8.34	N/mm^2	235	$\rm N/mm^2$	0.04	<1.0
	アンカー ボルト	引張	0.304	kN	5.74	kN	0.06	<1.0
		せん断	9.63 $\times 10^{-2}$	kN	2.21	kN	0.05	<1.0
		組合せ	_		-	_	0.01	<1.0

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
$TD_{-1}E_{-11}$	アンカー ボルト	引張	0.250	kN	12.6	kN	0.02	<1.0
1D-1F-11		せん断	9. 21×10^{-2}	kN	4.97	kN	0.02	<1.0
		組合せ	_		-		0.01	<1.0

(5) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
	鋼製板	曲げ	6.67	N/mm^2	235	N/mm^2	0.03	<1.0
TP - 9E - 1	アンカー ボルト	引張	0.310	kN	5.74	kN	0.06	<1.0
1B-2F-1		せん断	9. 75×10^{-2}	kN	2.21	kN	0.05	<1.0
		組合せ	_		_		0.01	<1.0

(6) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値	
TB-2F-2	鋼製板	曲げ	6.67	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	1.12	kN	12.6	kN	0.09	<1.0
		せん断	0. 423	kN	4.97	kN	0.09	<1.0
		組合せ	_		-		0.02	<1.0

(7) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

1.2.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.	評価対象	要部位	発: (荷重またに	許容	限界	検定値		
	鋼製板	曲げ	1.31	N/mm^2	110	N/mm^2	0.02	<1.0
RB-2F-8	アンカー ボルト	引張	0.260	kN	7.90	kN	0.04	<1.0
		せん断	4.50 $\times 10^{-2}$	kN	12.0	kN	0.01	<1.0
		組合せ	_	_	_	_	0.01	<1.0

堰 No.	評価対象部位		発生 (荷重又は多	許容	※限界	検定値		
	鋼製板	曲げ	2.83	N/mm^2	110	N/mm^2	0.03	<1.0
TB-1F-13	アンカー ボルト	せん断	0. 197	kN	4.97	kN	0.04	<1.0

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

1.2.3 鉄筋コンクリート堰

堰 No.	評価対象部	位	発 (荷重またに	発生値 (荷重または発生応力度)			検定値	
	アンカーボルト	引張	1.34	kN	7.20	kN	0.19	<1.0
	及び	せん断	1.07	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	-	-	-	-	0.05	<1.0
DD - D1 E - 1		引張	1.34	kN	20.9	kN	0.07	<1.0
ND-DIL-I	縦筋	せん断	1.07	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	4. 70×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)			検定値	
	アンカーボルト	引張	1.30	kN	7.20	kN	0.19	<1.0
	及び	せん断	1.04	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	_	-	_	-	0.05	<1.0
DD_D1E_Q	縦筋	引張	1.30	kN	20.9	kN	0.07	<1.0
KD-DIF-2		せん断	1.04	kN	20.9	kN	0.05	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	7.24 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.23 $\times 10^{-2}$	N/mm^2	14	N/mm^2	0.01	<1.0

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-Ⅱ)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)			検定値	
	アンカーボルト	引張	0.236	kN	7.20	kN	0.04	<1.0
	及び	せん断	7. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	_	-	_	-	0.01	<1.0
DD_D1E_2		引張	0.236	kN	20.9	kN	0.02	<1.0
KD-DII-3	縦筋	せん断	7. 40×10^{-2}	kN	20.9	kN	0.01	<1.0
		組合せ	_	-	I	-	0.01	<1.0
	堰底部の	せん断	3.70 \times 10 ⁻³	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	3. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(3)	原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室	止水堰
-----	----------------------------------	-----

(=) //		(
堰 No.	評価対象部	位	発: (荷重またに	生値 t発生応力度)	許容限界		検定値	
	アンカーボルト	引張	1.26	kN	7.20	kN	0.18	<1.0
	及び	せん断	1.01	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	_	_	0.04	<1.0
DD - D1E - 4		引張	1.26	kN	20.9	kN	0.07	<1.0
ND-DIF-4	縦筋	せん断	1.01	kN	20.9	kN	0.05	<1.0
		組合せ	_	_	I		0.01	<1.0
	堰底部の	せん断	4.99 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 23×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.	評価対象部	位	発生 (荷重またに	生値 \$発生応力度)	許容限界		検定値	
	アンカーボルト	引張	1.23	kN	7.20	kN	0.18	<1.0
	及び	せん断	0.980	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	-	-	0.04	<1.0
		引張	1.23	kN	20.9	kN	0.06	<1.0
VD-DIL-9	縦筋	せん断	0.980	kN	20.9	kN	0.05	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	3.84 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.22 \times 10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	生値 \$発生応力度)	許容限界		検定値	
	アンカーボルト	引張	2.75	kN	7.20	kN	0.39	<1.0
	及び	せん断	0.912	kN	14.6	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	_	_	0.16	<1.0
DD = 1E = 9		引張	2.75	kN	20.9	kN	0.14	<1.0
ND-11-2	縦筋	せん断	0.912	kN	20.9	kN	0.05	<1.0
		組合せ	_	-	I		0.03	<1.0
	堰底部の	せん断	6.08 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.98×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(6) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ,電気ペネ室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)			検定値	
	アンカーボルト	引張	3.73	kN	7.20	kN	0.52	<1.0
	及び	せん断	1.09	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	_	-	-	_	0.28	<1.0
DD_1E_2		引張	3.73	kN	20.9	kN	0.18	<1.0
ND-1L-2	縦筋	せん断	1.09	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.04	<1.0
	堰底部の	せん断	7.26 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.52 \times 10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0

(7) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

(=) //		(11110 14		医风风 前 [] [] []			· P	
堰 No.	評価対象部	位	発: (荷重またに	生値 t発生応力度)	許容限界		検定値	
	アンカーボルト	引張	1.38	kN	7.20	kN	0.2	<1.0
	及び	せん断	1.31	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	-	-	0.05	<1.0
DD - 1E - 4		引張	1.38	kN	20.9	kN	0.07	<1.0
ND-11-4	縦筋	せん断	1.31	kN	20.9	kN	0.07	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	2. 14×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	7.50 $\times 10^{-3}$	N/mm^2	14	N/mm^2	0.01	<1.0

(8) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

堰 No.	評価対象部位	<u>Г</u>	発 (荷重また)	発生値 (荷重または発生応力度)			検	定値
	アンカーボルト	引張	2.86	kN	7200	kN	0.4	<1.0
	及び	せん断	0.928	kN	14600	kN	0.07	<1.0
	アンカー筋	組合せ	_	-	-	_	0.17	<1.0
DD = 1E = 7		引張	2.86	kN	20940	kN	0.14	<1.0
KD-IF-/	縦筋	せん断	0.928	kN	20940	kN	0.05	<1.0
		組合せ	_	_	_	_	0.03	<1.0
	堰底部の	せん断	6. 19×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.03 \times 10 ⁻²	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(9) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
RB-2F-3	アンカーボルト	引張	3.74	kN	7.20	kN	0.52	<1.0
	及び	せん断	1.19	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	_	_	0.28	<1.0
		引張	3.74	kN	20.9	kN	0.18	<1.0
	縦筋	せん断	1.19	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.04	<1.0
	堰底部の	せん断	6.00 \times 10 ⁻³	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 24×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(10) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
RB-2F-4	アンカーボルト	引張	0.470	kN	7.20	kN	0.07	<1.0
	及び	せん断	0.156	kN	14.6	kN	0.02	<1.0
	アンカー筋	組合せ	_	-	_	_	0.01	<1.0
		引張	0.470	kN	20.9	kN	0.03	<1.0
	縦筋	せん断	0.156	kN	20.9	kN	0.01	<1.0
		組合せ	_	-			0.01	<1.0
	堰底部の	せん断	4. 21×10^{-3}	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5.67 $\times 10^{-2}$	N/mm^2	14	N/mm^2	0.01	<1.0

(11) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰
堰 No.	評価対象部	位	発: (荷重またに	生値 \$発生応力度)	許容	 限界	検知	定值
	アンカーボルト	引張	0.852	kN	7.20	kN	0.12	<1.0
	及び	せん断	0.656	kN	14.6	kN	0.05	<1.0
	アンカー筋	組合せ	_	-	_	_	0.02	<1.0
DD_9E_5		引張	0.852	kN	20.9	kN	0.05	<1.0
KD-2F-5	縦筋	せん断	0.656	kN	20.9	kN	0.04	<1.0
		組合せ	-	-	I		0.01	<1.0
	堰底部の	せん断	6.56 $\times 10^{-3}$	$\mathrm{N/mm^2}$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 48×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(12) 原子炉建屋地上2階(R5R6-RCRD) 電気ペネ室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	1.20	kN	7.20	kN	0.17	<1.0
	及び	せん断	1.06	kN	14.6	kN	0.08	<1.0
	アンカー筋	組合せ	_	-	-	_	0.04	<1.0
DD_9E_9		引張	1.20	kN	20.9	kN	0.06	<1.0
ND-91-7	縦筋	せん断	1.06	kN	20.9	kN	0.06	<1.0
		組合せ	_	-	-	-	0.01	<1.0
	堰底部の	せん断	5.87 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 17×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(13) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰 No.	評価対象部	位	発: (荷重またに	生値 \$発生応力度)	許容	ド限 界	検	定値
	アンカーボルト	引張	4.17	kN	7.20	kN	0.58	<1.0
	及び	せん断	1.24	kN	14.6	kN	0.09	<1.0
	アンカー筋	組合せ	_	-	-	_	0.35	<1.0
DD-9E-5		引張	4.17	kN	20.9	kN	0.20	<1.0
VD-9L-9	縦筋	せん断	1.24	kN	20.9	kN	0.06	<1.0
		組合せ	-	-	-	-	0.05	<1.0
	堰底部の	せん断	8.26 $\times 10^{-3}$	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2.71×10 ⁻²	N/mm^2	14	N/mm^2	0.01	<1.0

(14) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

			発生値					
堰 No.	評価対象部	位	(荷重または	は発生	許容	限界	検定値	
				応力度)				
	アンカーボルト	引張	4.56	kN	7.20	kN	0.64	<1.0
	及び	せん断	1.36	kN	14.6	kN	0.1	<1.0
	アンカー筋	組合せ	-	-	-	-	0.42	<1.0
$DD_{2}D_{-}C$		引張	4.56	kN	20.9	kN	0.22	<1.0
KD-9L-0	縦筋	せん断	1.36	kN	20.9	kN	0.07	<1.0
		組合せ	_	_	_	-	0.06	<1.0
	堰底部の	せん断	4. 72×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 71×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(15) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

(10)			1112/ 1/	· · · ·	, j ;			
堰 No.	評価対象部	位	発生値 (荷重又は発生応力度)		許容限界		検定値	
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	-	-	0.01	<1.0
TD = 1E = 1		引張	-	-	-		-	<1.0
1D-1F-1	縦筋	せん断	-	-	-	-	-	<1.0
		組合せ	-	-	-	-	-	<1.0
	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(16) タービン建屋地上1階(T2T3-TATB)レイダウンスペース 止水堰

(11)								
堰 No.	評価対象部	位	発生 (荷重又は多	E値 Ě生応力度)	許容	限界	検定値	
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	_	-	0.01	<1.0
		引張	-	-	_		_	<1.0
1D-1L-9	縦筋	せん断	-	-	_		-	<1.0
		組合せ	-	-	_		-	<1.0
	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(17) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

(/					-			
堰 No		位	允 合	E1但	許穴	限界	检查	它信
4× 110.	三人間に		(荷重又は発	隆生応力度)		PK 91	1天)	
	アンカーボルト	引張	1.47	kN	23.9	kN	0.07	<1.0
	又は	せん断	0.928	kN	17.3	kN	0.06	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
TP = 1F = 6		引張	1.48	kN	37.4	kN	0.04	<1.0
ID-II'-0	縦筋	せん断	0.928	kN	37.4	kN	0.03	<1.0
		組合せ	-	_	_	-	0.01	<1.0
	堰底部	せん断	1.66 $\times 10^{-2}$	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(18) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

(10)								
堰 No.	評価対象部	位	発生 (荷重又は多	E値 発生応力度)	許容	限界	検	定値
	アンカーボルト	引張	1.27	kN	23.9	kN	0.06	<1.0
	又は	せん断	0.332	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	-	-	-	-	0.01	<1.0
TD 1E 7		引張	_		-	-	-	<1.0
ID-IF-(縦筋	せん断	-	-	-	-	-	<1.0
		組合せ	-	-	-	-	-	<1.0
	堰底部	せん断	1.11×10^{-2}	N/mm^2	1.05	N/mm^2	0.02	<1.0
	のコンクリート	圧縮	0.121	N/mm^2	14.0	N/mm^2	0.01	<1.0

(19) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.	評価対象部	位	発: (荷重又は:	発生値 (荷重又は発生応力度)			検定値	
	アンカーボルト	引張	0.218	kN	15.5	kN	0.02	<1.0
	又は	せん断	0.178	kN	11.7	kN	0.02	<1.0
	アンカー筋	組合せ			-	0.01	<1.0	
TD = 1E = 19		引張		_		_	_	<1.0
1D-1F-12	縦筋	せん断	-		_		-	<1.0
		組合せ	_			-	-	<1.0
	堰底部	せん断	2.95 $\times 10^{-3}$	N/mm^2	1.23	N/mm^2	0.01	<1.0
	のコンクリート	圧縮	9. 20×10^{-3}	N/mm^2	22.0	N/mm^2	0.01	<1.0

(20) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

1.1.4 鋼板組合せ堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
		曲げ	_	N/mm²	_	N/mm²	-<1.0
RB-B2F-1	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	43.21	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	46.55	Ν	4010	Ν	0.02<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー ボルト (壁)	せん断	_	N	_	Ν	-<1.0

(1) 原子炉建屋地下2階(R1R2-RDRE)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
		曲げ		N/mm²	_	N/mm²	<1.0
RB-B2F-2	柱材	せん断	—	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	44.89	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	43.76	Ν	4010	Ν	0.01<1.0
_	(床)	組合せ	_			_	0.01<1.0
	アンカー ボルト (壁)	せん断	29.41	Ν	2900	Ν	0.01<1.0

(2) 原子炉建屋地下2階(R2R3-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は発	値 生応力度)	許容	限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
		曲げ	_	N/mm²	_	N/mm²	<1.0
RB-R2F-3	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	10.63	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	46.43	Ν	4010	Ν	0.02<1.0
-	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	25.33	N	2900	Ν	0.01<1.0

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-B2F-4		せん断	_	N/mm²		N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	—<1.0
	アンカー	引張り	318.7	Ν	2270	Ν	0.14<1.0
	ボルト	せん断	66.36	Ν	4010	Ν	0.02<1.0
	(床)	組合せ	_	_	_	_	0.02<1.0
	アンカー ボルト (壁)	せん断	40.75	N	2900	N	0.02<1.0

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	3	N/mm²	271	N/mm²	0.02<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	N/mm²	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-R2F-5	柱材	せん断	_	N/mm²		N/mm²	<1.0
ND D21 0		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	31.05	Ν	2270	Ν	0.02<1.0
	ボルト	せん断	47.95	Ν	4010	Ν	0.02<1.0
	(床)	組合せ				_	0.01<1.0
	 アンカー ボルト (壁)	せん断	33. 42	N	2900	Ν	0.02<1.0

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	4	N/mm²	271	N/mm²	0.02<1.0
		曲げ	1	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	2	N/mm²	235	N/mm²	0.01<1.0
		曲げ	3	N/mm²	235	N/mm²	0.02<1.0
RB-R2F-6	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	N/mm²	235	N/mm²	0.02<1.0
	アンカー	引張り	223. 9	Ν	19810	Ν	0.02<1.0
	ボルト	せん断	89.45	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー ボルト (壁)	せん断	_	Ν		Ν	<1.0

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10	N/mm²	235	N/mm²	0.05<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RB-1F-1		せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	31.06	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	82.98	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー					N.	
	ホルト (壁)	せん断		Ν		N	-<1.0

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	11	N/mm²	235	N/mm²	0.05<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RR-1F-5		せん断	—	N/mm²	—	N/mm²	<1.0
		組合せ	—	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	36.08	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	110.5	Ν	13190	Ν	0.01<1.0
	(床)	組合せ		_			0.01<1.0
	アンカー ボルト (壁)	せん断	78.91	Ν	13190	Ν	0.01<1.0

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		許容限界	
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6	N/mm²	235	N/mm²	0.03<1.0
		曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-1F-6	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	48.08	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	142.0	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_		_		0.01<1.0
	 アンカー ボルト (壁)	せん断	101. 4	N	13190	N	0.01<1.0

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	<1.0
RB-1F-8		せん断	_	N/mm²		N/mm²	<1.0
		組合せ		N/mm²		N/mm²	—<1.0
	アンカー	引張り	60.66	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	106. 1	Ν	13190	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカーボルト	せん断	73.47	Ν	13190	Ν	0.01<1.0
	(壁)						

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	1	N/mm²	271	N/mm²	0.01<1.0
		曲げ	3	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	N/mm²	235	N/mm²	0.02<1.0
	柱材	曲げ		N/mm²		N/mm²	<1.0
RB-2E-1		せん断	_	N/mm²	_	N/mm²	<1.0
ND 21 1		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	655.8	Ν	9312	Ν	0.07<1.0
	ボルト	せん断	452.7	Ν	13190	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカーボルト	せん断	288. 1	Ν	13190	Ν	0.03<1.0
	(壁)						

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	N/mm²	235	N/mm²	0.03<1.0
		曲げ		N/mm²		N/mm²	<1.0
RB-2F-2	柱材	せん断	_	N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²	_	N/mm²	-<1.0
	アンカー	引張り	220. 3	Ν	2270	Ν	0.10<1.0
	ボルト	せん断	91.53	Ν	4010	Ν	0.03<1.0
	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	46.43	N	2900	N	0.02<1.0

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	12	N/mm²	271	N/mm²	0.05<1.0
		曲げ	2	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	3	N/mm²	235	N/mm²	0.02<1.0
	柱材	曲げ	2	N/mm²	235	N/mm²	0.01<1.0
RB-2F-9		せん断	1	N/mm²	135	N/mm²	0.01<1.0
ND 21 5		組合せ	3	N/mm²	235	N/mm²	0.02<1.0
	アンカー	引張り	11.63	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	44.10	Ν	9541	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー ボルト (壁)	せん断	34. 82	N	9541	Ν	0.01<1.0

(13) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ		N/mm²	_	N/mm²	<1.0
RB-3F-3		せん断	_	N/mm²	—	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	13.93	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	24.43	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト (壁)	せん断	20.36	Ν	2900	Ν	0.01<1.0

(14) 原子炉建屋地上3階(R3R4-RARB) 通路 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	8	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	9	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ		N/mm²	_	N/mm²	<1.0
RB-3F-4		せん断	_	N/mm²	—	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	14.01	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	25.28	Ν	4010	Ν	0.01<1.0
	(床)	組合せ				_	0.01<1.0
	 アンカー ボルト (壁)	せん断	20.47	Ν	2900	Ν	0.01<1.0

(15) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(10)	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
堰 No.							
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	4	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	5	N/mm²	235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	<1.0
RB-4F-1		せん断		N/mm²	_	N/mm²	<1.0
		組合せ	_	N/mm²		N/mm²	-<1.0
	アンカー	引張り	287.2	Ν	4650	Ν	0.07<1.0
	ボルト	せん断	286.8	Ν	9240	Ν	0.04<1.0
	(床)	組合せ	—		_	_	0.01<1.0
	アンカー						
	ボルト	せん断	180.9	Ν	7000	Ν	0.03<1.0
	(壁)						

(16) 原子炉建屋地上4階 (R2R3-RARB) オペレーティングフロア 止水堰

			発生値		秋南四田		
堰 No.	評価対象	 家部位	(荷重又は発生応力度)		計谷限外		快止他
	止水板	曲げ	2	N/mm²	271	N/mm²	0.01<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
RB-4F-3		せん断	—	N/mm²	_	N/mm²	—<1.0
		組合せ		N/mm²		N/mm²	—<1.0
	アンカー	引張り	367.2	Ν	4650	Ν	0.08<1.0
	ボルト	せん断	238.4	Ν	9240	Ν	0.03<1.0
	(床)	組合せ	_		_	_	0.01<1.0
	アンカー						
	ボルト	せん断	191.2	Ν	7000	Ν	0.03<1.0
	(壁)						

(17) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

2. 強度計算

- 2.1 入力値
 - 2.1.1 L型鋼製堰

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.		RB-3F-1			
記号	単位	定義	数値		
ρ_0	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	314		
Z	mm ³ /m	H型鋼ウェブの断面係数	7.041 $\times 10^{3}$		
L	mm	堰全長	1460		
b	mm	H型鋼フランジ幅	150		
е	mm	アンカーボルトの穴縁端距離	35		
N	*	マンカーボルトの木粉())内け引進右効木粉	8		
IN	4	了之为 新加卡的本数 () Phildfligh 为本数	(4)		
Та	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8		

堰 No.		RB-3F-8			
記号	単位	定義	数値		
ρ_0	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	604		
Z	mm ³ /m	H型鋼ウェブの断面係数	1.667×10^{4}		
L	mm	堰全長	2502		
b	mm	H型鋼フランジ幅	200		
е	mm	アンカーボルトの穴縁端距離	55		
N	*	アンカーボルトの木粉()肉は引進友効木粉	4		
IN	4	アンガーがルトの本数 () Phは引張有効本数	(4)		
Ta	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8		

(2) 原子炉建屋地上3階(R6R7-RERF)非常用ディーゼル発電機(C)補機室 止水堰

(3) 原子炉建屋地上4階(R6R7-RFRG)非常用ディーゼル発電機(C)区域排風機室,

堰 No.		RB-4F-4			
記号	単位	定義	数値		
ρ_{0}	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	314		
Z	mm ³ /m	H型鋼ウェブの断面係数	7. 041×10^3		
L	mm	堰全長	1920		
b	mm	H型鋼フランジ幅	150		
е	mm	アンカーボルトの穴縁端距離	35		
N	*	アンカーボルトの木粉())内け引進右効木粉	6		
11	7	了之为 400 F 60 举致 () F 114 开放有别举致	(3)		
Та	kN	アンカーボルトに生じる引張に対する短期許容応力	7.90		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	13.8		

給気ルーバ室 止水堰

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室

止水堰	1
-----	---

堰 No.		TB-1F-2			
記号	単位	定義	数值		
$ ho$ $_{0}$	t/m^3	水の密度	1.03		
Н	mm	止水堰の高さ	430		
Z	mm^3 /m	鋼製板の断面係数	6. 000×10^3		
L	mm	堰全長	1245		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
Ta	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

(5) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室

堰 No.		TB-1F-3			
記号	単位	定義	数値		
$ ho$ $_{0}$	t/m^3	水の密度	1.03		
Н	mm	止水堰の高さ	430		
Ζ	mm^3 /m	鋼製板の断面係数	6. 000×10^3		
L	mm	堰全長	1255		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	30		
Ν	本	アンカーボルトの本数	8		
Ta	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

堰 No.		TB-1F-4		
記号	単位	定義	数值	
$ ho_0$	t/m^3	水の密度	1.03	
Н	mm	止水堰の高さ	430	
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	1250	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(6) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

. ,					
堰 No.		TB-1F-10			
記号	単位	定義	数值		
ρ_0	t/m^3	水の密度	1.03		
Н	mm	止水堰の高さ	409		
Z	${ m mm^3}$ /m	鋼製板の断面係数	6.000 $\times 10^3$		
L	mm	堰全長	1905		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	7		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97		

(7) タービン建屋地上1階(T1T2-TCTD)南西階段室 止水堰

. ,					
堰 No.		TB-1F-11			
記号	単位	定義	数值		
$ ho_0$	t/m^3	水の密度	1.03		
Н	mm	止水堰の高さ	309		
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$		
L	mm	堰全長	1000		
b	mm	鋼製板の折り曲げ部の幅	100		
е	mm	アンカーボルトの穴縁端距離	40		
Ν	本	アンカーボルトの本数	4		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97		

(8) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.		TB-2F-1			
記号	単位	定義	数值		
ρ_0	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	330		
Z	mm^3 /m	鋼製板の断面係数	6.000 $\times 10^3$		
L	mm	堰全長	1310		
b	mm	鋼製板の折り曲げ部の幅	105		
е	mm	アンカーボルトの穴縁端距離	52		
Ν	本	アンカーボルトの本数	8		
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21		

(9) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.		TB-2F-2				
記号	単位	定義	数值			
$ ho_0$	t/m^3	水の密度	1.00			
Н	mm	止水堰の高さ	309			
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$			
L	mm	堰全長	1465			
b	mm	鋼製板の折り曲げ部の幅	100			
е	mm	アンカーボルトの穴縁端距離	40			
Ν	本	アンカーボルトの本数	6			
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	12.6			
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	4.97			

(10) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰
堰 No.		CB-B2F-1		
記号	単位	定義	数値	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	430	
Z	mm^3 /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	1275	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	8	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(11) コントロール建屋地下2階(C1C2-CCCD)常用電気品室 止水堰

(,			
堰 No.		CB-B1F-3		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	230	
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	2430	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	14	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(12) コントロール建屋地下1階(C2C3-CCCD)区分I計測制御用電源盤室 止水堰

(= -	/			
堰 No.		CB-B1F-4		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	230	
Z	mm ³ /m	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	2435	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	14	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(13) コントロール建屋地下1階(C2C3-CDCE)区分IV計測制御用電源盤室 止水堰

(
堰 No.		CB-B1F-5		
記号	単位	定義	数值	
ρ_0	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	230	
Z	mm^3 $/m$	鋼製板の断面係数	6.000 $\times 10^3$	
L	mm	堰全長	2435	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	15	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(14) コントロール建屋地下1階(C2C3-CECF)区分Ⅱ計測制御用電源盤室 止水堰

	,			
堰 No.		CB-B1F-6		
記号	単位	定義	数値	
$ ho_0$	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	230	
Z	mm ³ /m	鋼製板の断面係数	6. 000×10^3	
L	mm	堰全長	2335	
b	mm	鋼製板の折り曲げ部の幅	100	
е	mm	アンカーボルトの穴縁端距離	30	
Ν	本	アンカーボルトの本数	14	
Та	kN	アンカーボルトに生じる引張りに対する短期許容荷重	5.74	
Qa	kN	アンカーボルトに生じるせん断に対する短期許容荷重	2.21	

(15) コントロール建屋地下1階(C2C3-CFCG)区分Ⅲ計測制御用電源盤室 止水堰

2.1.2 鋼製落とし込み型堰

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.		RB-2F-8			
記号	単位	定義	数値		
ρ_{0}	t/m^3	水の密度	1.00		
Н	mm	止水堰の高さ	710		
Z	mm ³ /m	断面係数	6. 116×10^4		
N	*	アンカーボルトの木粉())内け引張右効木粉	2		
1	4		(1)		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	12		

堰 No.		TB-1F-13			
記号	単位	定義	数値		
ρο	t/m^3	水の密度	1.03		
Н	Mm	止水堰の高さ	620		
Z	mm^3 /m	断面係数	1.873×10^{5}		
Ν	本	アンカーボルトの本数	4		
Qa	kN	アンカーボルトに生じるせん断に対する短期許容応力	1.97		

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

2.1.3 鉄筋コンクリート製堰

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.		RB-B1F-1			
記号	単位	定義		数値	
$ ho$ $_{0}$	t/m^3	水の密度		1.00	
Н	mm	止水堰の高さ		320	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680	
Ν	本	アンカーボルト,鉄筋の本数		6	
Ta kN	マンカーギルトの一体体に生じて引起に対チス信仰が安さも	アンカー	7.20		
	KIN	アンス ホルド, 欧肋に主じる力派に対する应溯計各応力	鉄筋	20.9	
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6	
ųа	KIN		鉄筋	20.9	
L	mm	堰全長		1350	
t	mm	堰厚さ		750	
w1	kN	堰重量		7.78	
Z	mm ³ /m	断面係数		9. 375×10^7	

r				
堰 No.		RB-B1F-2		
記号	単位	定義		数值
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		320
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		
Ν	本	アンカーボルト,鉄筋の本数		
	1-NI	N アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
Ta	KIN		鉄筋	20.9
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
Qa	KIN		鉄筋	20.9
L	mm	堰全長		875
t	mm	堰厚さ		750
w1	kN	堰重量		5. 04
Z	mm ³ /m	断面係数		9. 375×10^7

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.		RB-B1F-3		
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		185
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	50	
Ν	本	アンカーボルト,鉄筋の本数	5	
Ta kN	1-NI	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1 N	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1000
t	mm	堰厚さ		100
w1	kN	堰重量		0.444
Z	mm^3 /m	断面係数		1.667×10^{6}

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰	堰No. RB-B1F-4			
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		320
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	6	
Ta kN	1-N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1270
t	mm	堰厚さ		750
w1	kN	堰重量		7.32
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰	堰No. RB-B1F-5			
記号	単位			数値
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		320
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	680	
Ν	本	アンカーボルト,鉄筋の本数	8	
Ta kN	1 N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1 N	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1650
t	mm	堰厚さ		750
w1	kN	堰重量		9. 51
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.		RB-MB1F-1			
記号	単位	定義		数值	
ρ_0	t/m^3	水の密度		1.00	
Н	mm	止水堰の高さ		210	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		50	
Ν	本	アンカーボルト,鉄筋の本数		5	
T 1.N	1-NI	N アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20	
Ta	KIN		鉄筋	20.9	
0	1 N		アンカー	14.6	
Wa	KIN	ノンガーホルト, 鉄肋に生しるせん跡に対する起期計谷応力	鉄筋	20.9	
L	mm	堰全長		1000	
t	mm	堰厚さ		100	
w1	kN	堰重量		0.504	
Z	mm^3 /m	断面係数		1.667×10^{6}	

(6) 原子炉建屋地下中1階(R5R6-RBRC)残留熱除去系(A)配管室 止水堰

堰	堰 No. RB-1F-2			
記号	単位	定義		数值
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		285
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
Ta kN	1-NI	「マンカーギル」の際に仕じて引起に対すて信期許応され	アンカー	7.20
	アンス ホルド, 欧肋に主しる力液に対する应納計在応力	鉄筋	20.9	
0	1.11	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		5.13
Z	mm ³ /m	断面係数		9. 375×10^{7}

(7) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰	堰No. RB-1F-3			
記号	単位	定義		数值
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		340
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
Ta kN	1.11	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1.11	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
Qa	KN		鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		6.12
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(8) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰 No.		RB-1F-4				
記号	単位	定義		数值		
ρ	t/m^3	水の密度		1.00		
Н	mm	止水堰の高さ		150		
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		950		
Ν	本	アンカーボルト,鉄筋の本数		7		
Ta kN	1-NI	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20		
	KIN		鉄筋	20.9		
0	1 N	kN アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6		
Wa	KIN		鉄筋	20.9		
L	mm	堰全長		1500		
t	mm	堰厚さ		1900		
w1	kN	堰重量		10.26		
Z	mm ³ /m	断面係数		6. 017×10^8		

(9) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

(10) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰 No.		RB-1F-7		
記号	単位	定義		数值
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		290
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
Τ-	Ta kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
Ta			鉄筋	20.9
0.5	1-N		アンカー	14.6
Wa	KIN	ノンガーがルド,	鉄筋	20.9
L	mm	堰全長		1000
t	mm	堰厚さ		750
w1	kN	堰重量		5.22
Z	mm^3 /m	断面係数		9. 375×10^7

堰	堰 No. RB-2F-3			
記号	単位	定義		数值
ρ	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		305
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト、鉄筋の本数		5
Ta kN	1-NI	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1.11	N アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長	·	1150
t	mm	堰厚さ		750
w1	kN	堰重量		6.32
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(11) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.		RB-2F-4			
記号	単位	定義		数値	
ρ_{0}	t/m^3	水の密度		1.00	
Н	mm	止水堰の高さ		305	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		75	
Ν	本	アンカーボルト,鉄筋の本数		11	
Ta kN	1 N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20	
	KIN		鉄筋	20.9	
0	1 N	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6	
ųа	KIN		鉄筋	20.9	
L	mm	堰全長	·	1650	
t	mm	堰厚さ		150	
w1	kN	堰重量		1.82	
Z	mm ³ /m	断面係数		3.750 $\times 10^{6}$	

(12) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰	堰No. RB-2F-5			
記号	単位	定義		数値
ρ_0	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		290
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		430
Ν	本	アンカーボルト,鉄筋の本数		5
Ta kN	1.11	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1.11	kN アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6
Wa	KIN		鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		500
w1	kN	堰重量		3. 48
Z	${ m mm^3}~/{ m m}$	断面係数		4. 167×10^7

(13) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No. RB-3F-7				
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		420
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		2775
Ν	本	アンカーボルト,鉄筋の本数		6
Ta kN	1-NI	kN アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長		1200
Т	mm	堰厚さ		5550
w1	kN	堰重量		67.14
Z	mm^3 /m	断面係数		5. 134×10^{9}

(14) 原子炉建屋地上3階(R2R3-RARB)通路 止水堰

堰	堰No. RB-3F-2			
記号	単位	定義		数值
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	止水堰の高さ		290
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		680
Ν	本	アンカーボルト,鉄筋の本数		6
Ta kN	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20	
		鉄筋	20.9	
0	1.11	kN アンカーボルト,鉄筋に生じるせん断に対する短期許容応力	アンカー	14.6
Qa	KN		鉄筋	20.9
L	mm	堰全長		1200
t	mm	堰厚さ		750
w1	kN	堰重量		6.27
Z	mm ³ /m	断面係数		9.375 $\times 10^{7}$

(15) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰 No.		RB-3F-5		
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm 止水堰の高さ		340	
b'	mm	mm アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		5
Ta kN	1 N	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0	1 N	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
ųа	KIN		鉄筋	20.9
L	mm	堰全長	·	1000
t	mm	堰厚さ		750
w1	kN	堰重量		6.12
Z	mm^3 /m	断面係数		9. 375×10^7

(16) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

堰 No. RB-3F-6				
記号	単位	定義		数値
ρ_{0}	t/m^3	水の密度		1.00
Н	mm	mm 止水堰の高さ		340
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離		70
Ν	本	アンカーボルト,鉄筋の本数		8
Ta kN	1-NI	アンカーボルト,鉄筋に生じる引張に対する短期許容応力	アンカー	7.20
	KIN		鉄筋	20.9
0-	1-NI	アンカーボルト,鉄筋に生じるせん断に対する短期許容応力・	アンカー	14.6
Qа	KIN		鉄筋	20.9
L	mm	堰全長	·	1750
t	mm	堰厚さ		750
w1	kN	堰重量		10.71
Z	mm^3 /m	断面係数		9.375 $\times 10^{7}$

(17) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰

堰 No.		TB-1F-5	
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	10720
t	mm	堰厚さ	150
w1	kN	堰重量	17.4
Z	mm ³ /m	断面係数	3.750 $\times 10^{6}$

(18) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-6	
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	1010
t	mm	堰厚さ	150
w1	kN	堰重量	1.64
Z	mm ³ /m	断面係数	3. 750×10^{6}

(19) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

<u> </u>						
堰 No.		TB-1F-7				
記号	単位	定義	数値			
ρ_0	t/m^3	水の密度	1.03			
Н	mm	止水堰の高さ	450			
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75			
Ν	本	アンカーボルト,鉄筋の本数	5			
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9			
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3			
L	mm	堰全長	6670			
t	mm	堰厚さ	150			
w1	kN	堰重量	10.8			
Z	mm^3 /m	断面係数	3. 750×10^{6}			

(20) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.		TB-1F-9	
記号	単位	定義	数値
ρ_{0}	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	450
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	75
Ν	本	アンカーボルト,鉄筋の本数	5
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3
L	mm	堰全長	1200
t	mm	堰厚さ	150
w1	kN	堰重量	1.94
Z	mm ³ /m	断面係数	3. 750×10^{6}

(21) タービン建屋地上1階(T8T9-TATB)北階段室 止水堰

堰 No.		TB-1F-12	
記号	単位	定義	数値
ρ_{0}	t/m^3	水の密度	1.03
Н	mm	止水堰の高さ	120
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	150
Ν	本	アンカーボルト,鉄筋の本数	5
Та	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	15.5
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	11.7
L	mm	堰全長	2400
t	mm	堰厚さ	300
w1	kN	堰重量	2.08
Z	mm ³ /m	断面係数	1.500×10^{7}

(22) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

(23) コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室

堰 No.		CB-1F-2		
記号	単位	定義	数値	
ρ_{0}	t/m^3	水の密度	1.00	
Н	mm	止水堰の高さ	486	
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	125	
Ν	本	アンカーボルト,鉄筋の本数	5	
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	23.9	
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	17.3	
L	mm	堰全長	1300	
t	mm	堰厚さ	250	
w1	kN	堰重量	1.17	
Z	mm^3 /m	断面係数	1.042×10^{7}	

堰 No.		RWB-1F-1	
記号	単位	定義	数値
ρ_0	t/m^3	水の密度	1.00
Н	mm	止水堰の高さ	600
b'	mm	アンカーボルト及び鉄筋の重心位置から躯体端部までの距離	-
Ν	本	アンカーボルト,鉄筋の本数	-
Ta	kN	アンカーボルト,アンカー筋,及び縦筋に生じる引張に対する短期許容耐力	-
Qa	kN	アンカーボルト,アンカー筋,及び縦筋に生じるせん断に対する短期許容耐力	-
L	mm	堰全長	4000
t	mm	堰厚さ	380
w1	kN	堰重量	21.9
Z	mm^3 /m	断面係数	2. 407×10^7

(24) 廃棄物処理建屋1階トラック室出入口(6号機設備, 5,6,7号機共用)

2.1.4 鋼板組合せ堰

(1) 原子炉建屋地下 2 階(R1R2-RDRE) 通	路 止7	水堰
------------------------------	------	----

堰 No.		RB-B2F-1	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	75
h ₂	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
Ľ,	mm	評価する梁材の長さ	1650
Z	mm	梁材の断面係数	12100
As	mm	梁材のせん断断面積	634.5
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
n_1	本	引張りを受ける床側アンカーボルト本数	17
n_2	本	せん断を受ける床側アンカーボルト本数	60
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—
В	mm	止水堰の側面全幅	—
е	mm	床側アンカーボルト位置からの縁端距離	1380
L	mm	止水堰の全幅	1500
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
L_{PS}	mm	ベースプレートのレバー長さ	_
Z _{PS}	mm ³	ベースプレートの断面係数	

堰 No.		RB-B2F-2	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	425
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	75
h_2	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	462.5
Ľ,	mm	評価する梁材の長さ	1475
Z	mm	梁材の断面係数	12100
As	Mm	梁材のせん断断面積	634.5
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900
n_1	本	引張りを受ける床側アンカーボルト本数	15
n ₂	本	せん断を受ける床側アンカーボルト本数	41
Ν	本	せん断を受ける片側の壁アンカーボルト本数	10
В	mm	止水堰の側面全幅	1400
е	mm	床側アンカーボルト位置からの縁端距離	1050
L	mm	止水堰の全幅	1400
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
A _Y	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	_
Z_{PS}	mm ³	ベースプレートの断面係数	_

(2) 原子炉建屋地下 2 階(R2R3-RERF) 通路 止水堰

堰 No.		RB-B2F-3	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	450
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	50
h_2	mm	評価する梁材の最下端の高さ	500
a'	mm	梁材1本あたりが負担する止水板の幅	475
Ľ,	mm	評価する梁材の長さ	2971
Z	mm	梁材の断面係数	37600
As	mm	梁材のせん断断面積	500
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900
n_1	本	引張りを受ける床側アンカーボルト本数	18
n_2	本	せん断を受ける床側アンカーボルト本数	48
Ν	本	せん断を受ける片側の壁アンカーボルト本数	20
В	mm	止水堰の側面全幅	2971
е	mm	床側アンカーボルト位置からの縁端距離	1775
L	mm	止水堰の全幅	2971
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
L_{PS}	mm	ベースプレートのレバー長さ	_
Z_{PS}	mm ³	ベースプレートの断面係数	_

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.		RB-B2F-4		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	402.5	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	467.5	
a'	mm	梁材1本あたりが負担する止水板の幅	467.5	
Ľ,	mm	評価する梁材の長さ	2930	
Z	mm	梁材の断面係数	67800	
As	mm	梁材のせん断断面積	750	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	30	
n ₂	本	せん断を受ける床側アンカーボルト本数	35	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	11	
В	mm	止水堰の側面全幅	2930	
е	mm	床側アンカーボルト位置からの縁端距離	500	
L	mm	止水堰の全幅	2930	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
$A_{\rm Y}$	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.		RB-B2F-5		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	500	
a'	mm	梁材1本あたりが負担する止水板の幅	462.5	
Ľ,	mm	評価する梁材の長さ	1490	
Z	mm	梁材の断面係数	12100	
As	mm	梁材のせん断断面積	634.5	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	17	
n_2	本	せん断を受ける床側アンカーボルト本数	46	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	10	
В	mm	止水堰の側面全幅	1400	
е	mm	床側アンカーボルト位置からの縁端距離	1400	
L	mm	止水堰の全幅	1490	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰
塸	₹No.	RB-B2F-6	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	510
β	_	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	180
h_2	mm	評価する梁材の最下端の高さ	180
a'	mm	梁材1本あたりが負担する止水板の幅	99
Ľ,	mm	評価する梁材の長さ	640
Z	mm	梁材の断面係数	6260
As	mm	梁材のせん断断面積	752.7
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867
n_1	本	引張りを受ける床側アンカーボルト本数	2
n ₂	本	せん断を受ける床側アンカーボルト本数	8
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—
В	mm	止水堰の側面全幅	—
е	mm	床側アンカーボルト位置からの縁端距離	530
L	mm	止水堰の全幅	898
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	320
Zy	mm ³	柱材の断面係数	6260
Ay	mm^2	柱材のせん断断面積	752.7
L_{PS}	mm	ベースプレートのレバー長さ	
Z _{PS}	mm ³	ベースプレートの断面係数	

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

坦	룡 No.	RB-1F-1		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	52	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	149	
Ľ,	mm	評価する梁材の長さ	1610	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	5	
n_2	本	せん断を受ける床側アンカーボルト本数	18	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの緑端距離	1266	
L	mm	止水堰の全幅	1610	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	-	
Ay	mm^2	柱材のせん断断面積	-	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

垣	₹No.	RB-1F-5	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400
t	mm	止水板の板厚	6
а	mm	止水板の長辺方向の幅	298
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	52
h_2	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	149
Ľ,	mm	評価する梁材の長さ	1575
Z	mm	梁材の断面係数	3550
As	mm	梁材のせん断断面積	282.2
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190
n_1	本	引張りを受ける床側アンカーボルト本数	4
n_2	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2
В	mm	止水堰の側面全幅	1180
е	mm	床側アンカーボルト位置からの縁端距離	1132
L	mm	止水堰の全幅	1575
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
$A_{\rm Y}$	mm^2	柱材のせん断断面積	_
L_{PS}	mm	ベースプレートのレバー長さ	-
Z_{PS}	mm ³	ベースプレートの断面係数	_

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

塸	₹No.	RB-1F-6	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400
t	mm	止水板の板厚	6
а	mm	止水板の長辺方向の幅	248
β	—	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	77
h_2	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	124
Ľ,	mm	評価する梁材の長さ	1760
Z	mm	梁材の断面係数	8470
As	mm	梁材のせん断断面積	436.35
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312
V_0	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190
n_1	本	引張りを受ける床側アンカーボルト本数	4
n_2	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2
В	mm	止水堰の側面全幅	1205
е	mm	床側アンカーボルト位置からの縁端距離	1165
L	mm	止水堰の全幅	1760
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-
Zy	mm ³	柱材の断面係数	-
Ay	mm^2	柱材のせん断断面積	
L_{PS}	mm	ベースプレートのレバー長さ	
Z _{PS}	mm ³	ベースプレートの断面係数	_

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

坦	₹No.	RB-1F-8		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	298	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	52	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	149	
Ľ,	mm	評価する梁材の長さ	1380	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	3	
n_2	本	せん断を受ける床側アンカーボルト本数	9	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1000	
е	mm	床側アンカーボルト位置からの緑端距離	882	
L	mm	止水堰の全幅	1380	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm^3	柱材の断面係数		
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

坦	₹No.	RB-2F-1		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	1400	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	220	
β	_	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	125	
h_2	mm	評価する梁材の最下端の高さ	345	
a'	mm	梁材1本あたりが負担する止水板の幅	287.5	
Ľ,	mm	評価する梁材の長さ	816	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	7	
n ₂	本	せん断を受ける床側アンカーボルト本数	14	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1230	
е	mm	床側アンカーボルト位置からの縁端距離	1050	
L	mm	止水堰の全幅	2015	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
A _Y	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	-	

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

坦	₹No.	RB-2F-2		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	355	
a'	mm	梁材1本あたりが負担する止水板の幅	355	
Ľ,	mm	評価する梁材の長さ	1260	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	15	
n ₂	本	せん断を受ける床側アンカーボルト本数	35	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	17	
В	mm	止水堰の側面全幅	905	
е	mm	床側アンカーボルト位置からの縁端距離	920	
L	mm	止水堰の全幅	1260	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数		

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

坦	₹No.	RB-2F-6		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1090	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	425	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	500	
a'	mm	梁材1本あたりが負担する止水板の幅	507.5	
Ľ,	mm	評価する梁材の長さ	1277.5	
Ζ	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	25	
n_2	本	せん断を受ける床側アンカーボルト本数	51	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	11	
В	mm	止水堰の側面全幅	1277.5	
е	mm	床側アンカーボルト位置からの緑端距離	1230	
L	mm	止水堰の全幅	2360	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(13) 原子炉建屋地上2階(R6R7-RBRC)通路 止水堰

堰	No.	RB-2F-7		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1000	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	775	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	405	
a'	mm	梁材1本あたりが負担する止水板の幅	500	
Ľ,	mm	評価する梁材の長さ	775	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	10271	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
Vo	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	17	
n_2	本	せん断を受ける床側アンカーボルト本数	37	
n ₃	本	ベースプレートアンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1220	
L	mm	止水堰の全幅	2325	
L_1 _{EW}	mm	柱材1本あたりが負担する柱材及び止水板の幅	205	
L ₁ ' _{NS}	mm	柱材1本あたりが負担する柱材及び止水板の幅	212.50	
Zy	mm ³	柱材の断面係数	9857	
A _Y	mm^2	柱材のせん断断面積	698	
L_{PS}	mm	ベースプレートのレバー長さ	25	
Z_{PS}	mm ³	ベースプレートの断面係数	4800	

(14) 原子炉建屋地上2階(R6R7-RERF)通路 止水堰

坦	₹No.	RB-2F-9		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	303	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	810	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	135	
Ľ,	mm	評価する梁材の長さ	940	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	7	
n_2	本	せん断を受ける床側アンカーボルト本数	15	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	775	
е	mm	床側アンカーボルト位置からの縁端距離	524	
L	mm	止水堰の全幅	1275	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	405	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(15) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

坦	夏 No.	RB-3F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	50	
h_2	mm	評価する梁材の最下端の高さ	350	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1240	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	13	
n ₂	本	せん断を受ける床側アンカーボルト本数	35	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	3	
В	mm	止水堰の側面全幅	1190	
е	mm	床側アンカーボルト位置からの縁端距離	860	
L	mm	止水堰の全幅	1190	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
A _Y	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(16) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

坦	₹No.	RB-3F-4		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	50	
h_2	mm	評価する梁材の最下端の高さ	350	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1250	
Z	mm	梁材の断面係数	3550	
As	mm	梁材のせん断断面積	282.2	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	13	
n ₂	本	せん断を受ける床側アンカーボルト本数	34	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1200	
е	mm	床側アンカーボルト位置からの縁端距離	860	
L	mm	止水堰の全幅	1200	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
A _Y	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(17) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(18) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室

止水堰1

堰 No.		RB-M3F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	605.2	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	605.2	
β	_	長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	—	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
Ľ,	mm	評価する梁材の長さ	—	
Z	mm	梁材の断面係数	—	
As	mm	梁材のせん断断面積	-	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	5955	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9063	
n_1	本	引張りを受ける床側アンカーボルト本数	2	
n ₂	本	せん断を受ける床側アンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	115	
L	mm	止水堰の全幅	235	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm^3	ベースプレートの断面係数		

(19) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室

止水堰2

垣	₹No.	RB-M3F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	605.2	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	605.2	
β	—	長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	0	
h ₂	mm	評価する梁材の最下端の高さ	—	
a'	mm	梁材1本あたりが負担する止水板の幅	—	
Ľ,	mm	評価する梁材の長さ	—	
Z	mm	梁材の断面係数	—	
As	mm	梁材のせん断断面積	—	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	5955	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9063	
n ₁	本	引張りを受ける床側アンカーボルト本数	2	
n ₂	本	せん断を受ける床側アンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	115	
L	mm	止水堰の全幅	235	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積	-	
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z _{PS}	mm ³	ベースプレートの断面係数		

坦	₹No.	RB-4F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	280	
β	_	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	345	
a'	mm	梁材1本あたりが負担する止水板の幅	352.5	
Ľ,	mm	評価する梁材の長さ	1865	
Z	mm	梁材の断面係数	67800	
As	mm	梁材のせん断断面積	750	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000	
n ₁	本	引張りを受ける床側アンカーボルト本数	26	
n ₂	本	せん断を受ける床側アンカーボルト本数	41	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12	
В	mm	止水堰の側面全幅	3005	
е	mm	床側アンカーボルト位置からの縁端距離	1865	
L	mm	止水堰の全幅	3005	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	-	

(20) 原子炉建屋地上4階(R2R3-RARB) オペレーティングフロア 止水堰

坦	₹No.	RB-4F-2	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	_	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	65
h_2	mm	評価する梁材の最下端の高さ	345
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
Ľ,	mm	評価する梁材の長さ	2285
Z	mm	梁材の断面係数	67800
As	mm	梁材のせん断断面積	750
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000
n_1	本	引張りを受ける床側アンカーボルト本数	6
n_2	本	せん断を受ける床側アンカーボルト本数	42
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12
В	mm	止水堰の側面全幅	965
е	mm	床側アンカーボルト位置からの縁端距離	1200
L	mm	止水堰の全幅	2035
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	_
Ay	mm^2	柱材のせん断断面積	_
L _{PS}	mm	ベースプレートのレバー長さ	_
Z _{PS}	mm ³	ベースプレートの断面係数	

(21) 原子炉建屋地上4階(R2R3-RDRE) オペレーティングフロア 止水堰

坦	₹No.	RB-4F-3	
記号	単位	定義	数値
$ ho_0$	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1500
t	mm	止水板の板厚	3.2
а	mm	止水板の長辺方向の幅	280
β	_	長方形板の最大応力の係数	0.75
h_1	mm	評価する止水板の最下端の高さ	65
h_2	mm	評価する梁材の最下端の高さ	345
a'	mm	梁材1本あたりが負担する止水板の幅	352.5
Ľ,	mm	評価する梁材の長さ	2697.5
Z	mm	梁材の断面係数	67800
As	mm	梁材のせん断断面積	750
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	4650
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9240
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	7000
n_1	本	引張りを受ける床側アンカーボルト本数	59
n ₂	本	せん断を受ける床側アンカーボルト本数	97
Ν	本	せん断を受ける片側の壁アンカーボルト本数	12
В	mm	止水堰の側面全幅	2280
е	mm	床側アンカーボルト位置からの縁端距離	2280
L	mm	止水堰の全幅	6835
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	—
Zy	mm ³	柱材の断面係数	—
A _Y	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	
Z_{PS}	mm ³	ベースプレートの断面係数	

(22) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

坦	룡 No.	RB-4F-5		
記号	単位	定義	数値	
$ ho_{0}$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	603	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	570	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	285	
Ľ,	mm	評価する梁材の長さ	635	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	12	
n_2	本	せん断を受ける床側アンカーボルト本数	36	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの緑端距離	1200	
L	mm	止水堰の全幅	2229	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	285	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(23) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰1

坦	₹No.	RB-4F-6		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ,または溢水評価を上回る水位	703	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	670	
β		長方形板の最大応力の係数	0.4	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	335	
Ľ,	mm	評価する梁材の長さ	657	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n_1	本	引張りを受ける床側アンカーボルト本数	25	
n_2	本	せん断を受ける床側アンカーボルト本数	44	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	4	
В	mm	止水堰の側面全幅	1395	
е	mm	床側アンカーボルト位置からの縁端距離	1330	
L	mm	止水堰の全幅	5225	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	321	
Zy	mm^3	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(24) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰2

坦	夏 No.	RB-4F-7		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	_	
а	mm	止水板の長辺方向の幅	_	
β	—	長方形板の最大応力の係数	_	
h_1	mm	評価する止水板の最下端の高さ	_	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	1380	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n ₁	本	引張りを受ける床側アンカーボルト本数	4	
n_2	本	せん断を受ける床側アンカーボルト本数	13	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	_	
В	mm	止水堰の側面全幅	_	
е	mm	床側アンカーボルト位置からの縁端距離	1230	
L	mm	止水堰の全幅	1380	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L_{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(25) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰3

(26) タービン建屋地下1階(T7T8-TCTD)原子炉補機冷却系(A系)熱交換器・ポンプ室 止水堰

堰 No.		TB-B1F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1030	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	910	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	877	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	438.5	
Ľ,	mm	評価する梁材の長さ	770	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	8302	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	9541	
n ₁	本	引張りを受ける床側アンカーボルト本数	16	
n ₂	本	せん断を受ける床側アンカーボルト本数	29	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	5	
В	mm	止水堰の側面全幅	1180	
е	mm	床側アンカーボルト位置からの縁端距離	992	
L	mm	止水堰の全幅	2967	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	435	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(27) 7 号機コントロール建屋地下中 2 階 (C1C2-CACB) 常用電気品区域送・排風機室 止水堰 1

堰 No.		CB-MB2F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	325	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1590	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	16	
n_2	本	せん断を受ける床側アンカーボルト本数	29	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1515	
е	mm	床側アンカーボルト位置からの縁端距離	1285	
L	mm	止水堰の全幅	1515	
L1'	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
$A_{\rm Y}$	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(28) 7号機コントロール建屋地下中2階(C1C2-CBCC)常用電気品区域送・排風機室 止水堰

堰 No.		CB-MB2F-2		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	100	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	400	
Ľ,	mm	評価する梁材の長さ	1545	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	18	
n_2	本	せん断を受ける床側アンカーボルト本数	40	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1045	
е	mm	床側アンカーボルト位置からの縁端距離	1045	
L	mm	止水堰の全幅	1545	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(29) 7号機コントロール建屋地下中2階(C2C3-CACB)計測制御電源盤区域(A)送風機室 止水堰

堰 No.		CB-MB2F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	750	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	225	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	100	
h_2	mm	評価する梁材の最下端の高さ	325	
a'	mm	梁材1本あたりが負担する止水板の幅	325	
Ľ,	mm	評価する梁材の長さ	2490	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	26	
n_2	本	せん断を受ける床側アンカーボルト本数	31	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	7	
В	mm	止水堰の側面全幅	2490	
е	mm	床側アンカーボルト位置からの縁端距離	500	
L	mm	止水堰の全幅	2490	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(30) 7号機コントロール建屋地下中2階(C2C3-CBCC)計測制御電源盤区域(A)送風機室 止水堰

堰 No.		CB-MB2F-4		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	325	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1697.5	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	12	
n_2	本	せん断を受ける床側アンカーボルト本数	39	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1622.5	
е	mm	床側アンカーボルト位置からの縁端距離	1255	
L	mm	止水堰の全幅	1622.5	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(31) 7号機コントロール建屋地下1階(C1C2-CACB)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-1		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	337.5	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	75	
h_2	mm	評価する梁材の最下端の高さ	412.5	
a'	mm	梁材1本あたりが負担する止水板の幅	412.5	
Ľ,	mm	評価する梁材の長さ	1275	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	15	
n ₂	本	せん断を受ける床側アンカーボルト本数	39	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	1200	
е	mm	床側アンカーボルト位置からの縁端距離	1200	
L	mm	止水堰の全幅	1255	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数		
A _Y	mm^2	柱材のせん断断面積		
L _{PS}	mm	ベースプレートのレバー長さ	-	
Z_{PS}	mm ³	ベースプレートの断面係数		

(32) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰3

堰 No.		CB-B1F-10		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	1000	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	1015	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	10	
n_2	本	せん断を受ける床側アンカーボルト本数	32	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1453	
L	mm	止水堰の全幅	2163	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	500	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数		

(33) 7号機コントロール建屋地下1階(C1C2-CACB)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-12		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	600	
t	mm	止水板の板厚	-	
а	mm	止水板の長辺方向の幅	-	
β	—	長方形板の最大応力の係数	-	
h_1	mm	評価する止水板の最下端の高さ	-	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	870	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n ₁	本	引張りを受ける床側アンカーボルト本数	3	
n ₂	本	せん断を受ける床側アンカーボルト本数	10	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	-	
е	mm	床側アンカーボルト位置からの縁端距離	750	
L	mm	止水堰の全幅	1360	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	-	
Zy	mm ³	柱材の断面係数	-	
Ay	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数		

(34) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-13		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	600	
t	mm	止水板の板厚	_	
а	mm	止水板の長辺方向の幅	_	
β	—	長方形板の最大応力の係数	_	
h_1	mm	評価する止水板の最下端の高さ	—	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	200	
Ľ,	mm	評価する梁材の長さ	3000	
Z	mm	梁材の断面係数	29100	
As	mm	梁材のせん断断面積	1173	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860	
n_1	本	引張りを受ける床側アンカーボルト本数	10	
n ₂	本	せん断を受ける床側アンカーボルト本数	22	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—	
В	mm	止水堰の側面全幅	—	
е	mm	床側アンカーボルト位置からの縁端距離	1910	
L	mm	止水堰の全幅	3000	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	—	
Zy	mm ³	柱材の断面係数	—	
Ay	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm ³	ベースプレートの断面係数	_	

(35) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰3

堰 No.		CB-B1F-2		
記号	単位	定義	数値	
$ ho_0$	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	900	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	100	
h ₂	mm	評価する梁材の最下端の高さ	400	
a'	mm	梁材1本あたりが負担する止水板の幅	400	
Ľ,	mm	評価する梁材の長さ	2505	
Z	mm	梁材の断面係数	17700	
As	mm	梁材のせん断断面積	681	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	2270	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	4010	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	2900	
n_1	本	引張りを受ける床側アンカーボルト本数	28	
n_2	本	せん断を受ける床側アンカーボルト本数	73	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	9	
В	mm	止水堰の側面全幅	2695	
е	mm	床側アンカーボルト位置からの縁端距離	1070	
L	mm	止水堰の全幅	2695	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm ³	柱材の断面係数	_	
Ay	mm^2	柱材のせん断断面積	_	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(36) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-7		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	585	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	550	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n ₁	本	引張りを受ける床側アンカーボルト本数	6	
n_2	本	せん断を受ける床側アンカーボルト本数	16	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1245	
е	mm	床側アンカーボルト位置からの縁端距離	1185	
L	mm	止水堰の全幅	1321	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	292.5	
Zy	mm ³	柱材の断面係数	6260	
A _Y	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(37) 7 号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

堰 No.		CB-B1F-8		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	866	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	65	
h_2	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	816	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	4	
n ₂	本	せん断を受ける床側アンカーボルト本数	12	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	955	
е	mm	床側アンカーボルト位置からの縁端距離	935	
L	mm	止水堰の全幅	1077	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	433	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ		
Z_{PS}	mm ³	ベースプレートの断面係数		

(38) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰 No.		CB-B1F-9		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	922	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	937	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	11	
n_2	本	せん断を受ける床側アンカーボルト本数	26	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	1430	
е	mm	床側アンカーボルト位置からの縁端距離	1283	
L	mm	止水堰の全幅	2438	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	461	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	

(39) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰2

堰 No.		CB-1F-1		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	400	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	740	
β	—	長方形板の最大応力の係数	0.4	
h1	mm	評価する止水板の最下端の高さ	0	
h_2	mm	評価する梁材の最下端の高さ	125	
a'	mm	梁材1本あたりが負担する止水板の幅	337.5	
Ľ,	mm	評価する梁材の長さ	740	
Z	mm	梁材の断面係数	6340	
As	Mm	梁材のせん断断面積	212.6	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9144	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n ₁	本	引張りを受ける床側アンカーボルト本数	16	
n ₂	本	せん断を受ける床側アンカーボルト本数	38	
n ₃	本	ベースプレートのアンカーボルト本数	2	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	_	
В	mm	止水堰の側面全幅	_	
е	mm	床側アンカーボルト位置からの縁端距離	1785	
L	mm	止水堰の全幅	4178	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	682.5	
Zy	mm ³	柱材の断面係数	5007	
Ay	mm^2	柱材のせん断断面積	172.3	
L _{PS}	mm	ベースプレートのレバー長さ	25	
Z_{PS}	mm ³	ベースプレートの断面係数	2025	

坦	夏 No.	CB-1F-3		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	1200	
t	mm	止水板の板厚	6	
а	mm	止水板の長辺方向の幅	300	
β	—	長方形板の最大応力の係数	0.75	
h_1	mm	評価する止水板の最下端の高さ	450	
h_2	mm	評価する梁材の最下端の高さ	375	
a'	mm	梁材1本あたりが負担する止水板の幅	350	
Ľ,	mm	評価する梁材の長さ	1256	
Z	mm	梁材の断面係数	8470	
As	mm	梁材のせん断断面積	436.35	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	9312	
Vo	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13190	
n_1	本	引張りを受ける床側アンカーボルト本数	5	
n ₂	本	せん断を受ける床側アンカーボルト本数	13	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	3	
В	mm	止水堰の側面全幅	1340	
е	mm	床側アンカーボルト位置からの縁端距離	1260	
L	mm	止水堰の全幅	2460	
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_	
Zy	mm^3	柱材の断面係数	_	
A _Y	mm^2	柱材のせん断断面積		
L_{PS}	mm	ベースプレートのレバー長さ		
Z _{PS}	mm^3	ベースプレートの断面係数	-	

(40) 7号機コントロール建屋地上1階脇トレンチ(C1-CACB) 止水堰

(41) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰1

堰 No.		CB-1F-4		
記号	単位	定義	数値	
ρ_0	kg/m^3	溢水の密度	1000	
g	m/s^2	重力加速度	9.80665	
Н	mm	止水堰の高さ、または溢水評価を上回る水位	410	
t	mm	止水板の板厚	3.2	
а	mm	止水板の長辺方向の幅	749	
β	—	長方形板の最大応力の係数	0.75	
h1	mm	評価する止水板の最下端の高さ	65	
h ₂	mm	評価する梁材の最下端の高さ	0	
a'	mm	梁材1本あたりが負担する止水板の幅	188.5	
Ľ,	mm	評価する梁材の長さ	764	
Z	mm	梁材の断面係数	6260	
As	mm	梁材のせん断断面積	752.7	
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	19810	
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
V ₀	Ν	壁アンカーボルトに生じるせん断力に対する短期許容荷重	13867	
n_1	本	引張りを受ける床側アンカーボルト本数	9	
n_2	本	せん断を受ける床側アンカーボルト本数	19	
Ν	本	せん断を受ける片側の壁アンカーボルト本数	2	
В	mm	止水堰の側面全幅	960	
е	mm	床側アンカーボルト位置からの縁端距離	729	
L	mm	止水堰の全幅	1950	
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	374.5	
Zy	mm ³	柱材の断面係数	6260	
Ay	mm^2	柱材のせん断断面積	752.7	
L _{PS}	mm	ベースプレートのレバー長さ	_	
Z_{PS}	mm ³	ベースプレートの断面係数	_	
(42) 7号機コントロール建屋地上1階(C1C2-CACB)計測制御電源盤区域(B)送・排風機室 止水堰

垣	₹No.	CB-1F-5	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	700
t	mm	止水板の板厚	-
а	mm	止水板の長辺方向の幅	-
β	—	長方形板の最大応力の係数	-
h_1	mm	評価する止水板の最下端の高さ	-
h ₂	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	180
Ľ,	mm	評価する梁材の長さ	1670
Z	mm	梁材の断面係数	24300
As	mm	梁材のせん断断面積	1050
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720
V ₀	Ν	床アンカーボルトに生じるせん断力に対する短期許容荷重	13860
n ₁	本	引張りを受ける床側アンカーボルト本数	6
n ₂	本	せん断を受ける床側アンカーボルト本数	16
Ν	本	せん断を受ける片側の壁アンカーボルト本数	—
В	mm	止水堰の側面全幅	-
е	mm	床側アンカーボルト位置からの縁端距離	1250
L	mm	止水堰の全幅	1670
L1,	mm	柱材1本あたりが負担する柱材及び止水板の幅	-
Zy	mm ³	柱材の断面係数	-
Ay	mm^2	柱材のせん断断面積	-
L _{PS}	mm	ベースプレートのレバー長さ	-
Z _{PS}	mm ³	ベースプレートの断面係数	

(43) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰3

垣	₹No.	CB-1F-6	
記号	単位	定義	数値
ρ_0	kg/m^3	溢水の密度	1000
g	m/s^2	重力加速度	9.80665
Н	mm	止水堰の高さ、または溢水評価を上回る水位	700
t	mm	止水板の板厚	_
а	mm	止水板の長辺方向の幅	_
β	—	長方形板の最大応力の係数	_
h1	mm	評価する止水板の最下端の高さ	-
h ₂	mm	評価する梁材の最下端の高さ	0
a'	mm	梁材1本あたりが負担する止水板の幅	200
Ľ,	mm	評価する梁材の長さ	1790
Z	mm	梁材の断面係数	29100
As	mm	梁材のせん断断面積	1173
P ₀	Ν	床アンカーボルトに生じる引張りに対する短期許容荷重	11720
V ₀	Ν	床 N に生じるせん断力に対する短期許容荷重	13860
n ₁	本	引張りを受ける床側アンカーボルト本数	5
n ₂	本	せん断を受ける床側アンカーボルト本数	10
Ν	本	せん断を受ける片側の壁アンカーボルト本数	-
В	mm	止水堰の側面全幅	-
е	mm	床側アンカーボルト位置からの縁端距離	1600
L	mm	止水堰の全幅	1790
L ₁ '	mm	柱材1本あたりが負担する柱材及び止水板の幅	_
Zy	mm ³	柱材の断面係数	
Ay	mm^2	柱材のせん断断面積	
L _{PS}	mm	ベースプレートのレバー長さ	
Z _{PS}	mm ³	ベースプレートの断面係数	_

2.2 計算結果

2.2.1 L型鋼製堰

堰 No.	評価	対象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	8. 53	N/mm^2	235	N/mm^2	0.04	<1.0
	アンカー ボルト	引張	200	Ν	7900	Ν	0.03	<1.0
KD-3F-1		せん断	90	Ν	13800	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0

(1) 原子炉建屋地上3階(R2R3-RBRC)非常用ガス処理系室 止水堰

堰 No.	評価	対象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	22.3	N/mm^2	235	N/mm^2	0.10	<1.0
DD_9E_0		引張	1610	Ν	7900	Ν	0.21	<1.0
ND-3F-0	アンカー	せん断	1130	Ν	13800	Ν	0.09	<1.0
	ホルト	組合せ	_	_	_	_	0.06	<1.0

(2) 原子炉建屋地上3階(R6R7-RERF)非常用ディーゼル発電機(C)補機室 止水堰

(3) 原子炉建屋地上4階(R6R7-RFRG)非常用ディーゼル発電機(C)区域排風機室,給気ルーバ室 止水堰

堰 No.	評価対	讨象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	8.53	$\mathrm{N/mm^2}$	235	$\rm N/mm^2$	0.04	<1.0
	アンカー	引張	350	Ν	7900	Ν	0.05	<1.0
KD-4F-4		せん断	160	Ν	13800	Ν	0.02	<1.0
	N	組合せ	_	-	-	_	0.01	<1.0

堰 No.	評価を	讨象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_9	アンカー	引張	0.311	kN	5.74	kN	0.06	<1.0
1D-1r-2		せん断	0.146	kN	2.21	kN	0.07	<1.0
		組合せ	_	_	_	-	0.01	< 1.0

(4) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰1

堰 No.	評価	对象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_9	アンカー	引張	0.314	kN	5.74	kN	0.06	<1.0
10-11-2		せん断	0.147	kN	2.21	kN	0.07	<1.0
		組合せ	Ι	_	I	_	0.01	< 1.0

(5) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域給気エアフィルタ室 止水堰2

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	23.3	N/mm^2	235	N/mm^2	0.10	<1.0
TD_1E_4	アンカー	引張	0.31	kN	5.74	kN	0.06	<1.0
1D-1r-4		せん断	0.146	kN	2.21	kN	0.07	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(6) タービン建屋地上1階(T2T3-TBTC)海水熱交換器区域冷却加熱コイル室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	20.0	N/mm^2	235	N/mm^2	0.09	<1.0
TD_1E_10		引張	0. 544	kN	12.6	kN	0.05	<1.0
IB-IF-10	アンカー	せん断	0.230	kN	4.97	kN	0.05	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(7) タービン建屋地上1階(T1T2-TCTD)南西階段室 止水堰

堰 No.	評価۶	讨象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	11.7	N/mm^2	235	N/mm^2	0.05	<1.0
TD_1E_11	アンカー ボルト	引張	0. 292	kN	12.6	kN	0.03	<1.0
ID-IF-II		せん断	0.156	kN	4.97	kN	0.04	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(8) タービン建屋地上1階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	11.7	N/mm^2	235	N/mm^2	0.05	<1.0
TD_9E_1	アンカー	引張	0.218	kN	5.74	kN	0.04	<1.0
1 D -2 F -1		せん断	0.090	kN	2.21	kN	0.05	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(9) タービン建屋地上2階(T7T8-TDTE)北西階段室 止水堰

堰 No.	評価۶	対象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	8.34	N/mm^2	235	N/mm^2	0.04	<1.0
TD_9E_9	アンカー ボルト	引張	0.204	kN	12.6	kN	0.02	<1.0
1D-2F-2		せん断	0.118	kN	4.97	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(10) タービン建屋地上2階(T2T3-TCTD)南西階段室 止水堰

堰 No.	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	23.3	N/mm^2	235	$\rm N/mm^2$	0.10	<1.0
CD_DOE_1	アンカー ボルト	引張	0.319	kN	5.74	kN	0.06	<1.0
CB-B5H-1		せん断	0.149	kN	2.21	kN	0.07	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(11) コントロール建屋地下2階(C1C2-CCCD)常用電気品室 止水堰

堰 No.	評価対象部位		発 <u>行</u> (応力また	許容	限界	検定値		
	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
CD_D1E_9	アンカー ボルト	引張	0.0744	kN	5.74	kN	0.02	<1.0
CB-RIH-3		せん断	0.0465	kN	2.21	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(12) コントロール建屋地下1階(C2C3-CCCD)区分I計測制御用電源盤室 止水堰

堰 No.	評価	評価対象部位		発生値 (応力または応力度)			検定値	
CB-B1F-4	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
	アンカー ボルト	引張	0.0746	kN	5.74	kN	0.02	<1.0
		せん断	0.0466	kN	2.21	kN	0.03	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(13) コントロール建屋地下1階(C2C3-CDCE)区分IV計測制御用電源盤室 止水堰

堰 No.	評価対象部位		発 <u>生</u> (応力また	許容	限界	検定値		
	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0
CD_D1E_E	アンカー ボルト	引張	0.0696	kN	5.74	kN	0.02	<1.0
CR-R1E-2		せん断	0.0435	kN	2.21	kN	0.02	<1.0
		組合せ	_	_	_	_	0.01	<1.0

(14) コントロール建屋地下1階(C2C3-CECF)区分Ⅱ計測制御用電源盤室 止水堰

堰 No.	評価対	評価対象部位		発生値 (応力または応力度)		許容限界		検定値	
CB-B1F-6	鋼製板	曲げ	5.00	N/mm^2	235	N/mm^2	0.03	<1.0	
	アンカー ボルト	引張	0.0715	kN	5.74	kN	0.02	<1.0	
		せん断	0.0447	kN	2.21	kN	0.03	<1.0	
		組合せ	_	_	_	_	0.01	<1.0	

(15) コントロール建屋地下1階(C2C3-CFCG)区分Ⅲ計測制御用電源盤室 止水堰

2.2.2 鋼製落とし込み型堰

堰 No.	評価求	甘象部位	発生値 (応力または応力度)		許容限界		検定値	
	鋼製板	曲げ	9.65	$\mathrm{N/mm^2}$	110	N/mm^2	0.09	<1.0
DD_9E_0	アンカー ボルト	引張	1500	Ν	7900	Ν	0.19	<1.0
RB-2F-8		せん断	490	Ν	12000	Ν	0.05	<1.0
		組合せ	-	_	_	_	0.04	<1.0

(1) 原子炉建屋地上2階(R2R3-RARB)燃料プール冷却浄化系熱交換器室 止水堰

堰 No.	評価文	評価対象部位		発生値 (荷重又は発生応力度)		発生値 (荷重又は発生応力度)		限界	検定	値	
堰 No. TB-1F-13	鋼製板	曲げ	6.02	N/mm^2	110	N/mm^2	0.06	<1.0			
	アンカー ボルト	せん断	1.97	kN	4.97	kN	0. 40	<1.0			

(2) タービン建屋地上1階(T8T9-TBTC)レイダウンスペース 止水堰

2.2.3 鉄筋コンクリート堰

堰 No.	評価対象部位		発 (荷重また)	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	-	-	-	-	0.01	<1.0
DD_D1C_1		引張	20	Ν	20940	Ν	0.01	<1.0
ND-DIF-I	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	_	_	_	0.01	<1.0
	堰底部の	せん断	1. 00×10^{-2}	N/mm^2	1	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(1) 原子炉建屋地下1階(R1R2-RCRD)原子炉系(DIV-IV)計装ラック室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_D1E_9		引張	20	Ν	20940	Ν	0.01	<1.0
ND-DIF-2	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(2) 原子炉建屋地下1階(R1R2-RDRE)原子炉系(DIV-II)計装ラック室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
堰 No. RB-B1F-3	アンカーボルト	引張	8.00 × 10 ⁻²	kN	7.20	kN	0.02	<1.0
	及び	せん断	3. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
DD_D1E_2		引張	8.00 × 10 ⁻²	kN	20.94	kN	0.01	<1.0
VD-DIL-2	縦筋	せん断	3. 40×10^{-2}	kN	20.94	kN	0.01	<1.0
		組合せ	-	_	Ι	_	0.01	<1.0
	堰底部の	せん断	1. 70×10^{-3}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 65×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(3) 原子炉建屋地下1階(R6R7-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
		引張	20	Ν	20940	Ν	0.01	<1.0
KD-DIF-4	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(4) 原子炉建屋地下1階(R6R7-RCRD)原子炉系(DIV-I)計装ラック室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	-	_	_	-	0.01	<1.0
		引張	20	Ν	20940	Ν	0.01	<1.0
KD-DIF-5	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	Ι	Ι	_	0.01	<1.0
	堰底部の	せん断	1. 00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(5) 原子炉建屋地下1階(R6R7-RDRE)原子炉系(DIV-Ⅲ)計装ラック室 止水堰

堰 No.	評価対象部位		発 (荷重また)	発生値 5重または発生応力度)		限界	検定値	
	アンカーボルト	引張	8. 00×10^{-2}	kN	7.20	kN	0.02	<1.0
	及び	せん断	4. 40×10^{-2}	kN	14.6	kN	0.01	<1.0
	アンカー筋	組合せ	-	_	-	-	0.01	<1.0
DD-MD1E-1		引張	8.00 × 10 ⁻²	kN	20.94	kN	0.01	<1.0
KD MDII' I	縦筋	せん断	4. 40×10^{-2}	kN	20.94	kN	0.01	<1.0
		組合せ	-	_	-	-	0.01	<1.0
	堰底部の	せん断	2. 20×10^{-3}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.71×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(6) 原子炉建屋地下中1階(R5R6-RBRC)残留熱除去系(A)配管室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.02	<1.0
	及び	せん断	80.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_1E_9		引張	120	Ν	20940	Ν	0.01	<1.0
ND-11-2	縦筋	せん断	80.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	_	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(7) 原子炉建屋地上1階(R1R2-RBRC)ほう酸水注入系ペネ, 電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	200	Ν	7200	Ν	0.03	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_1E_9		引張	200	Ν	20940	Ν	0.01	<1.0
ND II ⁻ 3	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	Ι	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(8) 原子炉建屋地上1階(R3R4-RFRG)電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	10	Ν	7200	Ν	0.01	<1.0
	及び	せん断	30.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_1E_/		引張	10	Ν	20940	Ν	0.01	<1.0
ND II' 4	縦筋	せん断	30.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(9) 原子炉建屋地上1階(R4R5-RFRG)可燃性ガス濃度制御系再結合装置室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	120	Ν	7200	Ν	0.02	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	_	-	0.01	<1.0
$DD_{-1}E_{-7}$		引張	120	Ν	20940	Ν	0.01	<1.0
KD-1F-7	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	Ι	Ι	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(10) 原子炉建屋地上1階(R5R6-RBRC)原子炉補機冷却水系・不活性ガス系・電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	170	Ν	7200	Ν	0.03	<1.0
	及び	せん断	110.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD-9E-9		引張	170	Ν	20940	Ν	0.01	<1.0
ND 21 3	縦筋	せん断	110.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	_	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(11) 原子炉建屋地上2階(R5R6-RARB)主蒸気系トンネル室,配管ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	100	Ν	7200	Ν	0.02	<1.0
	及び	せん断	70.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_4		引張	100	Ν	20940	Ν	0.01	<1.0
ND-21-4	縦筋	せん断	70.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	_		-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	3. 00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(12) 原子炉建屋地上2階(R5R6-RARB)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_E		引張	20	Ν	20940	Ν	0.01	<1.0
ND 21 J	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	_	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(13) 原子炉建屋地上2階(R5R6-RCRD)電気ペネ室 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	10	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_7		引張	10	Ν	20940	Ν	0.01	<1.0
ND 31 7	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	_	-	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(14) 原子炉建屋地上3階(R2R3-RARB)通路 止水堰

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	20	Ν	7200	Ν	0.01	<1.0
	及び	せん断	90.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_2C_9		引張	20	Ν	20940	Ν	0.01	<1.0
ND 51° Z	縦筋	せん断	90.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	Ι	Ι	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(15) 原子炉建屋地上3階(R2R3-RCRD)非常用ガス処理系室 止水堰

堰 No.	評価対象部位		発: (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	200	Ν	7200	Ν	0.03	<1.0
	及び	せん断	120.0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	_	0.01	<1.0
DD_9E_E		引張	200	Ν	20940	Ν	0.01	<1.0
VD-9L-9	縦筋	せん断	120.0	Ν	20940	Ν	0.01	<1.0
		組合せ	-	-	-	-	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	N/mm^2	1	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	N/mm^2	14	N/mm^2	0.01	<1.0

(16) 原子炉建屋地上3階(R5R6-RBRC)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰1

堰 No.	評価対象部位		発生値 (荷重または発生応力度)		許容	許容限界		三値
	アンカーボルト	引張	220	Ν	7200	Ν	0.04	<1.0
	及び	せん断	130. 0	Ν	14600	Ν	0.01	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
DD_9E_6		引張	220	Ν	20940	Ν	0.02	<1.0
VD-9L-0	縦筋	せん断	130. 0	Ν	20940	Ν	0.01	<1.0
-		組合せ	_	Ι	Ι	_	0.01	<1.0
	堰底部の	せん断	1.00×10^{-2}	$\rm N/mm^2$	1	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1.00×10^{-2}	$\rm N/mm^2$	14	N/mm^2	0.01	<1.0

(17) 原子炉建屋地上3階(R5R6-RERF)主蒸気隔離弁・逃がし安全弁ラッピング室 止水堰
堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト		0.427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ		-	-	0.01	<1.0	
		引張		-	-	-	<1.0	
ID II [,] J	縦筋	せん断		-		_	<1.0	
		組合せ		_	-	-	_	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	N/mm^2	1.05	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	<1.0

(18) タービン建屋地上1階(T3T4-TATB)レイダウンスペース 止水堰

堰 No.	評価対象部	評価対象部位		発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ	_	_	-	-	0.01	<1.0
TD_1E_6		引張	2.86 $\times 10^{-2}$	kN	37.5	kN	0.01	<1.0
1D-11-0	縦筋	せん断	5. 20×10^{-2}	kN	37.5	kN	0.01	<1.0
		組合せ		_	Ι	-	0.01	<1.0
	堰底部の	せん断	6.87 $\times 10^{-3}$	$\rm N/mm^2$	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	<1.0

(19) タービン建屋地上1階(T3T4-TCTD)南階段室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト		0.427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ		-	-	0.01	<1.0	
TD - 1E - 7		引張		-	-	-	<1.0	
ID II [,] (縦筋	せん断		-		_	<1.0	
		組合せ		_	-	-	_	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	$\rm N/mm^2$	1.05	$\rm N/mm^2$	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	$\rm N/mm^2$	14.0	N/mm^2	0.01	<1.0

(20) タービン建屋地上1階(T7T8-TATB)レイダウンスペース 止水堰

堰 No.	評価対象部	位	発: (荷重またに	発生値 (荷重または発生応力度)		限界	検定値	
	アンカーボルト	引張	0. 427	kN	23.9	kN	0.02	<1.0
	及び	せん断	0.206	kN	17.3	kN	0.02	<1.0
	アンカー筋	組合せ		_		0.01	<1.0	
TP_1E_0		引張	4.00 \times 10 ⁻²	kN	37.5	kN	0.01	<1.0
ID II [,] 9	縦筋	せん断	9. 20×10^{-2}	kN	37.5	kN	0.01	<1.0
		組合せ		_	-	-	0.01	<1.0
	堰底部の	せん断	6.83 $\times 10^{-3}$	$\rm N/mm^2$	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	5. 35×10^{-2}	N/mm^2	14.0	N/mm^2	0.01	<1.0

(21) タービン建屋地上1階(T8T9-TATB)北階段室 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	引張 1.34×10 ⁻² kN		15.5	kN	0.01	<1.0
	及び	せん断	0.038	kN	11.7	kN	0.01	<1.0
	アンカー筋	組合せ		_		0.01	<1.0	
TD-1E-19		引張		-	-	-	<1.0	
1D-1F-12	縦筋	せん断		-		_	<1.0	
		組合せ		_	-	-	_	<1.0
	堰底部の	せん断	6. 12×10^{-4}	$\rm N/mm^2$	1.23	N/mm^2	0.01	<1.0
	コンクリート	圧縮	3. 56×10^{-3}	$\rm N/mm^2$	22.0	N/mm^2	0.01	<1.0

(22) タービン建屋地上1階(T1T2-TATB)大物搬出入口 止水堰

堰 No.	評価対象部	位	発生値 (荷重または発生応力度)		許容限界		検定値	
	アンカーボルト	引張	6. 67×10^{-2}	kN	23.9	kN	0.01	<1.0
	及び	せん断	0.108	kN	17.3	kN	0.01	<1.0
	アンカー筋	組合せ		-	-	-	0.01	<1.0
CP_1E_9		引張	-		-	-	-	<1.0
UD-1F-2	縦筋	せん断	-		-		_	<1.0
		組合せ		-	-	-	-	<1.0
	堰底部の	せん断	2. 19×10^{-3}	$\rm N/mm^2$	1.05	N/mm^2	0.01	<1.0
	コンクリート	圧縮	1. 38×10^{-2}	$\rm N/mm^2$	14.0	N/mm^2	0.01	<1.0

(23) コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰4

堰 No.	評価対象部	位	発 (荷重またに	生値 は発生応力度)	許容	限界	検定値	
	アンカーボルト	引張		_	-	_		<1.0
	及び	せん断		-		-	<1.0	
	アンカー筋	組合せ		_	-	-	_	<1.0
DWD_1E_1	縦筋	引張		-	-	_	<1.0	
KWD-1F-1		せん断	-		-	-	_	<1.0
		組合せ	-		-	-	-	<1.0
	堰底部の	せん断	4. 80×10^{-3}	N/mm^2	1.21	N/mm^2	0.01	<1.0
	コンクリート	圧縮	2. 98×10^{-2}	N/mm^2	21.5	N/mm^2	0.01	<1.0

(24) 廃棄物処理建屋1階トラック室出入口(6号機設備, 5,6,7号機共用)

2.2.4 鋼板組合せ堰

(1)	原子炉建屋地下2階	(R1R2-RDRE)	通路	止水堰
-----	-----------	-------------	----	-----

堰 No.	評価対象	象部位	発生 (荷重又は多	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	120	N/mm²	271	N/mm²	0.45<1.0
	梁材	曲げ	64	N/mm²	235	N/mm²	0.28<1.0
		せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	65	_	235	N/mm²	0.28<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
RB-2F-1	ベース	手でも		N /2		N/m ²	0
	プレート	田の		11/ 11111		IN/ IIIII	-~1.0
	アンカー	引張り	104.5	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	122.6	Ν	4010	Ν	0.03<1.0
_	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	_	Ν	—	Ν	—<1.0
	(壁)						

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
		11 . 33	(何里ズはタ	电土心力度)		/ 2	
	止水板	曲げ	120	N/mm	271	N/mmť	0.45<1.0
		曲げ	51	N/mm²	235	N/mm²	0.22<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	52		235	N/mm²	0.23<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-2	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	Ш	—	N/ mm	_	N/ mm	-< 1.0
	アンカー	引張り	145.3	N	2270	Ν	0.07<1.0
	ボルト	せん断	167.4	Ν	4010	Ν	0.05<1.0
-	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	343.2	Ν	2900	Ν	0.12<1.0
	(壁)						

(2) 原子炉建屋地下 2 階(R2R3-RERF) 通路 止水堰

堰 No.	評価対象	象部位	発生	発生値		限界	検定値
			(同重入は元工心/月及)				
	止水板	曲げ	139	N/mm²	271	N/mm²	0.52<1.0
		曲げ	69	N/mm²	235	N/mm²	0.30<1.0
	梁材	せん断	7	N/mm²	135	N/mm²	0.06<1.0
		組合せ	70		235	N/mm²	0.30<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	-<1.0
		組合せ	_	_		_	-<1.0
RB-2F-3	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	囲け		N/mm		N/ mm	-< 1.0
	アンカー	引張り	152.0	N	2270	Ν	0.07<1.0
	ボルト	せん断	303.5	Ν	4010	Ν	0.08<1.0
-	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	364.2	Ν	2900	Ν	0.13<1.0
	(壁)						

(3) 原子炉建屋地下2階(R3R4-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	109	N/mm ²	271	N/mm ²	0.41 < 1.0
		шт) 	100	NT / 2	005	N / 2	0.17 < 1.0
		囲け	39	N/mm	235	N/ mm	0.17<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	40	_	235	N/mm²	0.17<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-4	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	Ш	—	N/ mm		N/ mm	-<1.0
	アンカー	引張り	319.3	Ν	2270	Ν	0.14<1.0
	ボルト	せん断	410.5	Ν	4010	Ν	0.11<1.0
_	(床)	組合せ	_	_	—	_	0.03<1.0
	アンカー						
	ボルト	せん断	653.0	Ν	2900	Ν	0.23<1.0
	(壁)						

(4) 原子炉建屋地下2階(R4R5-RERF)通路 止水堰

堰 No.	評価対象部位		発生	発生値		限界	検定値
-				411年1月月1日日 1月1日日 1月1日 1月1日 1月1日日 1月1日 1月11日 1月111日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11111111			
	止水板	曲げ	120	N/mm ²	271	N/mm²	0.45<1.0
		曲げ	52	N/mm²	235	N/mm²	0.23<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	53	_	235	N/mm²	0.23<1.0
	柱材	曲げ	—	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-5	ベース	手をも		N/m^2		N/m^2	< 1.0
	プレート	囲け	—	N/ mm		N/ mm	-<1.0
	アンカー	引張り	102.3	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	158.8	Ν	4010	Ν	0.04<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	343.2	Ν	2900	Ν	0.12<1.0
	(壁)						

(5) 原子炉建屋地下2階(R5R6-RERF)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は3	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	43	N/mm²	271	N/mm²	0.16<1.0
		曲げ	2	N/mm²	235	N/mm²	0.01<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	3	_	235	N/mm²	0.02<1.0
	柱材	曲げ	6	N/mm²	235	N/mm²	0.03<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7		235		0.03<1.0
RB-B2F-6	ベース プレート	曲げ	_	N/mm²	_	N/mm²	—<1.0
	アンカー	引張り	95.43	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	92.52	N	13867	Ν	0.01<1.0
	(床)	組合せ	_			_	0.01<1.0
	アンカー ボルト	せん断		N		N	<1.0
	(壁)						

(6) 原子炉建屋地下2階(R6R7-RDRE)通路 止水堰

堰 No.	評価対象	象部位	発生 (荷重又は3	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	7	N/mm²	271	N/mm²	0.03<1.0
		曲げ	54	N/mm²	235	N/mm²	0.23<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	55		235	N/mm²	0.24<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
DD_1E_1		せん断	_	N/mm²		N/mm²	—<1.0
KD II' I		組合せ	_				—<1.0
	ベース	手でも		N /2		N/mr ²	_<1.0
	プレート	囲り		IN/ IIIII		IN/ IIIII	-<1.0
	アンカー	引張り	26.61	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	70.17	N	13190	Ν	0.01<1.0
	(床)	組合せ				_	0.01<1.0

(7) 原子炉建屋地上1階(R1R2-RARB)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生広力度)		限界	検定値
			(何里入は)	611加刀皮)			
	止水板	曲げ	7	N/mmť	271	N/mm²	0.03<1.0
		曲げ	51	N/mm²	235	N/mm²	0.22<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	52		235	N/mm²	0.23<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_		_	—<1.0
RB-1F-5	ベース	44. 1. 18		NT / 2		N / 2	< 1 0
	プレート	曲け	_	N/ mm̃		N/ mm̃	-<1.0
	アンカー	引張り	36.39	N	9312	Ν	0.01<1.0
	ボルト	せん断	123.6	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_	_	—	_	0.01<1.0
	アンカー						
	ボルト	せん断	231.4	Ν	13190	Ν	0.02<1.0
	(壁)						

(8) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰1

堰 No.	評価対象	象部位	発生	発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	4	N/mm ²	271	N/mm²	0.02<1.0
		曲げ	23	N/mm²	235	N/mm²	0.10<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	23		235	N/mm²	0.10<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ					—<1.0
RB-1F-6	ベース	曲げ	_	N/mm²	_	N/mm²	—<1.0
	プレート						
	アンカー	引張り	39.51	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	138.1	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	—	—	—		0.01<1.0
	アンカー						
	ボルト	せん断	236.3	Ν	13190	Ν	0.02<1.0
	(壁)						

(9) 原子炉建屋地上1階(R5R6-RARB)通路 止水堰2

堰 No.	評価対象	象部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	7	N/mm²	271	N/mm²	0.03<1.0
		曲げ	40	N/mm²	235	N/mm²	0.17<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	41	_	235	N/mm²	0.18<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ					—<1.0
RB-1F-8	ベース プレート	曲げ	_	N/mm²		N/mm²	—<1.0
	アンカー	引張り	54.56	Ν	9312	Ν	0.01<1.0
	ボルト	せん断	120.3	Ν	13190	Ν	0.01<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	196.1	Ν	13190	Ν	0.02<1.0
	(壁)						

(10) 原子炉建屋地上1階(R5R6-RFRG)通路 止水堰

堰 No.	評価対象	象部位	発生	発生値		限界	検定値
-		1	(何里又はタ	411年1月月1日日 1月1日日 1月1日 1月1日 1月1日日 1月1日 1月11日 1月111日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11日 1月11111111			
	止水板	曲げ	13	N/mm ²	271	N/mm²	0.05<1.0
		曲げ	30	N/mm²	235	N/mm²	0.13<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	31		235	N/mm²	0.14<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_			—<1.0
RB-2F-1	ベース	手をも		N/m^2		N/m^2	< 1.0
	プレート	囲け		N/ mm		IN/ MM	-<1.0
	アンカー	引張り	1230	Ν	9312	Ν	0.14<1.0
	ボルト	せん断	1383	Ν	13190	Ν	0.11<1.0
	(床)	組合せ	_	_	—		0.03<1.0
	アンカー						
	ボルト	せん断	1478	Ν	13190	Ν	0.12<1.0
	(壁)						

(11) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰1

堰 No.	評価対象部位		発生	発生値 (荷重又は発生広力度)		限界	検定値
			(11) 里人は9	11111月度)			
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	94	N/mm²	235	N/mm²	0.40<1.0
	梁材	せん断	6	N/mm²	135	N/mm²	0.05<1.0
		組合せ	95	_	235	N/mm²	0.41<1.0
	柱材	曲げ	—	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-2F-2	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	曲け	_	IN/ IIIII		N/ mm	-< 1.0
	アンカー	引張り	503.7	N	2270	Ν	0.23<1.0
	ボルト	せん断	397.2	Ν	4010	Ν	0.10<1.0
	(床)	組合せ	_				0.06<1.0
	アンカー						
	ボルト	せん断	293.7	Ν	2900	Ν	0.11<1.0
	(壁)						

(12) 原子炉建屋地上2階(R2R3-RFRG)通路 止水堰2

堰 No.	評価対象部位		発生	発生値 (共重力は改生広力座)		限界	検定値
			(何里又は多	全生心力度)			
	止水板	曲げ	132	N/mm²	271	N/mm²	0.49<1.0
		曲げ	71	N/mm²	235	N/mm²	0.31<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	72	_	235	N/mm²	0.31<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
RB-2F-6	ベース	<u>تلەر بالم</u>		NT / 2		N / 2	< 1.0
	プレート	曲け	_	N/ IIIII		N/ mm̃	-<1.0
	アンカー	引張り	162.4	Ν	2270	Ν	0.08<1.0
	ボルト	せん断	269.6	Ν	4010	Ν	0.07<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	338.3	Ν	2900	Ν	0.12<1.0
	(壁)						

(13) 原子炉建屋地上2階(R6R7-RBRC)通路 止水堰

堰 No.	評価対象部位		発生	発生値		限界	検定値
				全生心力度)			
	止水板	曲げ	230	N/mm²	271	N/mm²	0.85<1.0
		曲げ	62	N/mm²	235	N/mm²	0.27<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	63	_	235	N/mm²	0.27<1.0
	柱材	曲げ	49	N/mm²	135	N/mm²	0.37<1.0
		せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	50		135		0.37<1.0
RB-2F-7	ベース	-H-)-B	0	NT / 2	071	N / 2	0 01 < 1 0
	プレート	曲け	2	N/mm	271	N/ mm	0.01<1.0
	アンカー	引張り	183.2	N	10271	Ν	0.02<1.0
	ボルト	せん断	308.1	Ν	13867	Ν	0.03<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	-<1.0
	(壁)						

(14) 原子炉建屋地上2階(R6R7-RERF)通路 止水堰

堰 No.	評価対象部位		発生	発生値		限界	検定値
-				411年1月月1日日 (1997)			
	止水板	曲げ	113	N/mm ²	271	N/mm²	0.42<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	_	235	N/mm²	0.04<1.0
	柱材	曲げ	3	N/mm²	235	N/mm²	0.02<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	4	_	235		0.02<1.0
RB-2F-9	ベース	4L). 19		NT / 2		NI / 2	<1.0
	プレート	曲け	_	IN/ IIIII		N/ mm	-< 1.0
	アンカー	引張り	15.8	N	8302	Ν	0.01<1.0
	ボルト	せん断	38.26	N	9541	Ν	0.01<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	87.22	Ν	9541	Ν	0.01<1.0
	(壁)						

(15) 原子炉建屋地上2階(R5R6-RCRD)通路 止水堰

堰 No.	評価対象部位		発生	発生値 (荷重又は発生広力度)		限界	検定値
				11111月度)			
	止水板	曲げ	23	N/mm²	271	N/mm²	0.09<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7		235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	-<1.0
		組合せ	_	_		_	—<1.0
RB-3F-3	ベース	44. 1. 18		NT / 2		N / 2	< 1 0
	プレート	曲け	—	N/ mm̃		N/ mm̃	-<1.0
	アンカー	引張り	11.13	N	2270	Ν	0.01<1.0
	ボルト	せん断	26.67	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	155.6	Ν	2900	Ν	0.06<1.0
	(壁)						

(16) 原子炉建屋地上3階(R3R4-RARB)通路 止水堰

堰 No.	評価対象部位		発生値		許容限界		検定値
			(何重又は先生応力度)				
	止水板	曲げ	23	N/mm/	271	N/mmí	0.09<1.0
		曲げ	6	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	_	235	N/mm²	0.03<1.0
	柱材	曲げ	—	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_			—<1.0
RB-3F-4	ベース	44. 1. 18	—	N7 / 2		N / 2	< 1.0
	プレート	曲げ		N/ mm	_	N/mmĭ	—<1.0
	アンカー	引張り	11.23	Ν	2270	Ν	0.01<1.0
	ボルト	せん断	27.69	Ν	4010	Ν	0.01<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	117.7	Ν	2900	Ν	0.05<1.0
	(壁)						

(17) 原子炉建屋地上3階(R4R5-RARB)通路 止水堰

(18)	原子炉建屋地上中3階	(R6R7-RCRD)	北側改良型領	制御棒駆動機構制得	卸盤室
	止水堰1				
		発生	値		

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	25	N/mm²	271	N/mm²	0.10<1.0
		曲げ	_	N/mm²		N/mm²	—<1.0
	梁材	せん断		N/mm²		N/mm²	—<1.0
		組合せ				N/mm²	—<1.0
	柱材	曲げ		N/mm²		N/mm²	—<1.0
PR-M3F-1		せん断		N/mm²		N/mm²	—<1.0
ICD MOL 1		組合せ	_	_		_	—<1.0
	ベース	曲いず		N/m^2		N/mm ²	-<10
	プレート	田()		11/ 11111		11/ 11111	< 1. 0
	アンカー	引張り	370.2	Ν	5955	Ν	0.07<1.0
	ボルト	せん断	211.0	Ν	9063	Ν	0.03<1.0
	(床)	組合せ					0.01<1.0

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	25	N/mm²	271	N/mm²	0.10<1.0
		曲げ	—	N/mm²		N/mm²	—<1.0
	梁材	せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_			N/mm²	—<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
PB-M3E-9		せん断	—	N/mm²		N/mm²	—<1.0
ND MJI Z		組合せ	—	_			—<1.0
	ベース	曲ば		N/m^2		N/mm^2	-<10
	プレート	四()				117 11111	< 1. 0
	アンカー	引張り	370.2	Ν	5955	Ν	0.07<1.0
	ボルト	せん断	211.0	Ν	9063	Ν	0.03<1.0
	(床)	組合せ	_	_			0.01<1.0

(19) 原子炉建屋地上中3階(R6R7-RCRD)北側改良型制御棒駆動機構制御盤室 止水堰2

堰 No.	評価対象部位		発生値		許容限界		検定値
			(何里又はタ	81111111111111111111111111111111111111			
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	26	N/mm²	235	N/mm²	0.11<1.0
	梁材	せん断	5	N/mm²	135	N/mm²	0.04<1.0
		組合せ	28		235	N/mm²	0.12<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_	_	_		—<1.0
RB-4F-1	ベース	手をも	_	NI /		N/m^2	< 1.0
	プレート	曲げ		N/ IIIII		N/mm	-<1.0
	アンカー	引張り	341.8	Ν	4650	Ν	0.08<1.0
	ボルト	せん断	808.6	Ν	9240	Ν	0.09<1.0
	(床)	組合せ	_	_	_		0.02<1.0
	アンカー						
	ボルト	せん断	1381	Ν	7000	Ν	0.20<1.0
	(壁)						

(20) 原子炉建屋地上4階(R2R3-RARB) オペレーティングフロア 止水堰

堰 No.	評価対象部位		発生	発生値		限界	検定値
- <u>A</u> 110.			(荷重又は発生応力度)				
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	39	N/mm²	235	N/mm²	0.17<1.0
	梁材	せん断	6	N/mm²	135	N/mm²	0.05<1.0
		組合せ	41	_	235	N/mm²	0.18<1.0
	柱材	曲げ	—	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_	_	_		—<1.0
RB-4F-2	ベース	手を		N /2		N/m^2	< 1.0
	プレート	Ш	—	N/ IIIII		N/ mm	-<1.0
	アンカー	引張り	1559	Ν	4650	Ν	0.34<1.0
	ボルト	せん断	534.5	Ν	9240	Ν	0.06<1.0
	(床)	組合せ	_	_			0.12<1.0
	アンカー						
	ボルト	せん断	443.6	Ν	7000	Ν	0.07<1.0
	(壁)						

(21) 原子炉建屋地上4階(R2R3-RDRE) オペレーティングフロア 止水堰

堰 No.	星No. 評価対象部位		発生値		許容限界		検定値
- <u>A</u> 110.			(荷重又は発生応力度)				
	止水板	曲げ	81	N/mm²	271	N/mm²	0.30<1.0
		曲げ	54	N/mm²	235	N/mm²	0.23<1.0
	梁材	せん断	8	N/mm²	135	N/mm²	0.06<1.0
		組合せ	56	_	235	N/mm²	0.24<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_	_		_	—<1.0
RB-4F-3	ベース	手を	_	N/m^2		N/m^2	-<10
	プレート	曲け		18/ 11111		N/ mm	-<1.0
	アンカー	引張り	280.3	Ν	4650	Ν	0.06<1.0
	ボルト	せん断	777.4	Ν	9240	Ν	0.09<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	1048	Ν	7000	Ν	0.15<1.0
	(壁)						

(22) 原子炉建屋地上4階(R2R3-RFRG)オペレーティングフロア 止水堰

堰 No.	評価対象	評価対象部位		発生値 (共重고は惑生に力声)		限界	検定値
			(何里又はチ	411年1月月月月月月月月月月月月月月月月月月月月月月月月月日月月1日日日月月1日日日日日日	ļ		
	止水板	曲げ	126	N/mm²	271	N/mm²	0.47<1.0
		曲げ	14	N/mm²	235	N/mm²	0.06<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	15		235	N/mm²	0.07<1.0
		曲げ	17	N/mm²	235	N/mm²	0.08<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	17	_	235	_	0.08<1.0
RB-4F-5	ベース	手とも		N/m^2		N/m^2	< 1.0
	プレート	曲け	_	N/ IIIII		IN/ IIIII	-<1.0
	アンカー	引張り	55.47	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	110.4	Ν	9541	Ν	0.02<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	-<1.0
	(壁)						

(23) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰1

堰 No.	評価対象部位		発生値		許容限界		検定値
			(何里久はう				
	止水板	曲げ	110	N/mm	271	N/mmť	0.41<1.0
		曲げ	20	N/mm²	235	N/mm²	0.09<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	20		235	N/mm²	0.09<1.0
	柱材	曲げ	30	N/mm²	235	N/mm²	0.13<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	30	_	235	_	0.13<1.0
RB-4F-6	ベース	-H-)-B		NT / 2		N / 2	< 1.0
	プレート	曲げ	—	N/ IIIII		N/mm	-< 1.0
	アンカー	引張り	89.23	Ν	8302	Ν	0.01<1.0
	ボルト	せん断	287.8	Ν	9541	Ν	0.03<1.0
	(床)	組合せ	_	_	—		0.01<1.0
	アンカー						
	ボルト	せん断	422.6	Ν	9541	Ν	0.05<1.0
	(壁)						

(24) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰2

堰 No.	評価対象部位		発生	発生値		限界	検定値
			(荷重又は発生応力度)				
	止水板	曲げ	_	N/mm²		N/mm²	—<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8	_	235	N/mm²	0.04<1.0
	柱材	曲げ	_	N/mm²	—	N/mm²	—<1.0
		せん断	_	N/mm²	—	N/mm²	—<1.0
		組合せ	_	_	—		—<1.0
RB-4F-7	ベース	手を	_	N/m^2		N/m^2	-<1.0
	プレート	Ξ		N/ IIIII		N/ mm	-<1.0
	アンカー	引張り	29.34	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	83.28	Ν	13860	Ν	0.01<1.0
	(床)	組合せ	_	_	—	_	0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	-<1.0
	(壁)						

(25) 原子炉建屋地上4階(R6R7-RERF)通路 止水堰3

堰 No.	評価対象	東部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	257	N/mm²	271	N/mm²	0.95<1.0
		曲げ	48	N/mm²	235	N/mm²	0.21<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	49	_	235	N/mm²	0.21<1.0
		曲げ	89	N/mm²	235	N/mm²	0.38<1.0
	柱材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	90		235		0.39<1.0
TB-B1F-2	ベース	主任		N /mm²		N/mm ²	-<10
	プレート	囲け		11/ 1111		N/ IIIII	< 1. 0
	アンカー	引張り	237.1	Ν	8302	Ν	0.03<1.0
	ボルト	せん断	427.9	Ν	9541	Ν	0.05<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	493.5	Ν	9541	Ν	0.06<1.0
	(壁)						

(26) タービン建屋地下1階(T7T8-TCTD)原子炉補機冷却系(A系)熱交換器・ポンプ室 止水堰

(27)	7号機コントロール建屋地下中2階	(C1C2-CACB)	常用電気品区域送	・排風機室
	止水堰1			

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
CB-MB2F-1	止水板	曲げ	63	N/mm²	271	N/mm²	0.24<1.0
	梁材	曲げ	76	N/mm²	235	N/mm²	0.33<1.0
		せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	77	_	235	N/mm²	0.33<1.0
	柱材	曲げ		N/mm²		N/mm²	—<1.0
		せん断		N/mm²		N/mm²	—<1.0
		組合せ					—<1.0
	ベース	曲いず	_	N/mm ²		N/mm²	-<1.0
	プレート	田の					
	アンカー	引張り	87.80	Ν	2270	Ν	0.04<1.0
	ボルト	せん断	207.5	Ν	4010	Ν	0.06<1.0
	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	334.3	Ν	2900	Ν	0.12<1.0
	(壁)						

堰 No	評価対象部位		発生値		許容限界		検定値
- 2 110.			(荷重又は発生応力度)				
CB-MB2F-2	止水板	曲げ	52	N/mm²	271	N/mm²	0.20<1.0
	梁材	曲げ	33	N/mm²	235	N/mm²	0.14<1.0
		せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	34		235	N/mm²	0.15<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
	ベース	手にも	_	N/mm ²	_	N/mm²	<1.0
	プレート	Ξ					
	アンカー	引張り	97.87	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	153.4	Ν	4010	Ν	0.04<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	230.6	Ν	2900	Ν	0.08<1.0
	(壁)						

(28) 7号機コントロール建屋地下中2階(C1C2-CBCC)常用電気品区域送・排風機室 止水堰

堰 No.	評価対象部位		発生値		許容限界		検定値
	۲ (LL) ۱۹				0.71 N/ 2		0.00<1.0
CB-MB2F-3	止水板	囲り	24	N/ mm	271	N/ mm	0.09<1.0
	梁材	曲げ	60	N/mm²	235	N/mm²	0.26<1.0
		せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	61	_	235	N/mm²	0.26<1.0
	柱材	曲げ	_	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²		N/mm²	—<1.0
		組合せ	_				—<1.0
	ベース	曲げ	_	N/mm²		N/mm²	—<1.0
	プレート						
	アンカー	引張り	132.1	Ν	2270	Ν	0.06<1.0
	ボルト	せん断	221.5	Ν	4010	Ν	0.06<1.0
	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	490.6	Ν	2900	Ν	0.17<1.0
	(壁)						

(29) 7 号機コントロール建屋地下中2階(C2C3-CACB)計測制御電源盤区域(A)送風機室 止水堰
堰 No.	評価対象部位		発生値		許容限界		検定値
			(何里入はす	日王/心/7月夏7			
	止水板	曲げ	63	N/mḿ	271	N/mḿ	0.24<1.0
		曲げ	86	N/mm²	235	N/mm²	0.37<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	87		235	N/mm²	0.37<1.0
	柱材	曲げ	_	N/mm²		N/mm²	-<1.0
		せん断	_	N/mm²		N/mm²	-<1.0
		組合せ	_	—			-<1.0
CB-MB2F-4	ベース	手にも	—	NI /2		N/mm²	<1.0
	プレート	曲げ		N/mmĭ			
	アンカー	引張り	128.4	Ν	2270	Ν	0.06<1.0
	ボルト	せん断	165.2	Ν	4010	Ν	0.05<1.0
	(床)	組合せ	_	—			0.01<1.0
	アンカー						
	ボルト	せん断	358.0	Ν	2900	Ν	0.13<1.0
	(壁)						

(30) 7 号機コントロール建屋地下中2階(C2C3-CBCC)計測制御電源盤区域(A)送風機室 止水堰

(31)	7号機コントロール建屋地下1階	(C1C2-CACB)	計測制御電源盤区域(C)送・	排風機室
	止水堰2			

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	68	N/mm²	271	N/mm²	0.25<1.0
		曲げ	48	N/mm²	235	N/mm²	0.21<1.0
	梁材	せん断	3	N/mm²	135	N/mm²	0.03<1.0
		組合せ	49	_	235	N/mm²	0.21<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_		—<1.0
CB-B1F-1	ベース	曲げ	—	N/m^2		N/mm²	-<1.0
	プレート	田の		N/mmĭ			
	アンカー	引張り	83.07	Ν	2270	Ν	0.04<1.0
	ボルト	せん断	127.8	Ν	4010	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	264.8	Ν	2900	Ν	0.10<1.0
	(壁)						

資料 8-2.8-249

(32)	7 号機コントロー	・ル建屋地下1階	(C2C3-CBCC)	計測制御電源盤区均	或(C)送・	排風機室
	止水堰3				-	

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	248	N/mm²	271	N/mm²	0.92<1.0
		曲げ	16	N/mm²	235	N/mm²	0.07<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	16	_	235	N/mm²	0.07<1.0
	柱材	曲げ	9	N/mm²	235	N/mm²	0.04<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235		0.05<1.0
CB-B1F-10	ベース	手にも		N/m^2		N/m^2	-<1.0
	プレート	田の	—	N/ mm		IN/ IIIII	< 1. 0
	アンカー	引張り	16.77	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	55.71	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_				0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

(33)	7号機コントロール建屋地丁	F1階(C1C2-CACB)	計測制御電源盤区域	载(C)送・排原	虱機室
	止水堰1				

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ		N/mm²		N/mm²	-<1.0
		曲げ	4	N/mm²	235	N/mm²	0.02<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	5	_	235	N/mm²	0.03<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_		—<1.0
CB-B1F-12	ベース	曲げ	—	N /mm²		N/mm^2	<1.0
	プレート	Щ()		N/mmĭ		117 1111	
	アンカー	引張り	213.4	Ν	11720	Ν	0.02<1.0
	ボルト	せん断	240.1	Ν	13860	Ν	0.02<1.0
	(床)	組合せ		_			0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ		N/mm²		N/mm²	-<1.0
		曲げ	46	N/mm²	235	N/mm²	0.20<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	47	_	235	N/mm²	0.20<1.0
	柱材	曲げ	—	N/mm²		N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ	_		_	_	—<1.0
CB-B1F-13	ベース	手を	—	N /2		N/mm^2	—<1.0
	プレート	囲け		N/mm		11/ 1111	
	アンカー	引張り	55.45	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	240.7	Ν	13860	Ν	0.02<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	—<1.0
	(壁)						

(34) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

(35)	7号機コントロール建屋地下1階	(C1C2-CBCC)	計測制御電源盤区域(C)送・	排風機室
	止水堰3			

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	52	N/mm²	271	N/mm²	0.20<1.0
		曲げ	87	N/mm²	235	N/mm²	0.37<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	88	_	235	N/mm²	0.38<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
CB-B1F-2	ベース	曲げ	—	N/m^2		N/mm²	<1.0
	プレート	田の		N/mmĭ			
	アンカー	引張り	107.2	Ν	2270	Ν	0.05<1.0
	ボルト	せん断	146.6	Ν	4010	Ν	0.04<1.0
	(床)	組合せ	_	_			0.01<1.0
	アンカー						
	ボルト	せん断	594.7	Ν	2900	Ν	0.21<1.0
	(壁)						

堰 No.	評価対象部位		発生値 (#香豆は変生広力時)		許容限界		検定値
			(何里义は多	企生心力度)			
	止水板	曲げ	85	N/mm²	271	N/mm²	0.32<1.0
		曲げ	5	N/mm²	235	N/mm²	0.03<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	6		235	N/mm²	0.03<1.0
	柱材	曲げ	6	N/mm²	235	N/mm²	0.03<1.0
		せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	7	_	235		0.03<1.0
CB-B1F-7	ベース	曲パギ	—	N/mm²		N/mm²	—<1.0
	プレート	ш()					
	アンカー	引張り	20.93	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	68.05	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_	_	_		0.01<1.0
	アンカー						
	ボルト	せん断	256.5	Ν	13867	Ν	0.02<1.0
	(壁)						

(36) 7号機コントロール建屋地下1階(C1C2-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰1

(37)	7号機コントロール建屋地下1階	(C2C3-CBCC)	計測制御電源盤区域(C)送•	排風機室
	止水堰1			

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	186	N/mm²	271	N/mm²	0.69<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	11	_	235	N/mm²	0.05<1.0
		曲げ	8	N/mm²	235	N/mm²	0.04<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	9		235		0.04<1.0
CB-B1F-8	ベース	主任		N/m^2		N/m^2	-<1.0
	プレート	田()		11/ 11111		IN/ IIIII	< 1. 0
	アンカー	引張り	32.44	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	73.98	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	196.8	Ν	13867	Ν	0.02<1.0
	(壁)						

堰 No.	評価対象	東部位	発生(荷重又は多	上値 巻生応力度)	許容	限界	検定値
	止水板	曲げ	211	N/mm²	271	N/mm²	0.78<1.0
		曲げ	14	N/mm²	235	N/mm²	0.06<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	15	_	235	N/mm²	0.07<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235	_	0.05<1.0
CB-B1F-9	ベース	手を		N /m.2		N/m^2	1_0
	プレート	田の		18/ 11111		1\/ 11111	-<1.0
	アンカー	引張り	19.46	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	77.29	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	294. 7	Ν	13867	Ν	0.03<1.0
	(壁)						

(38) 7号機コントロール建屋地下1階(C2C3-CBCC)計測制御電源盤区域(C)送・排風機室 止水堰2

堰No.	評価対象部位		発生値		許容限界		検定値
			(何重义は多	è生心刀度)			
	止水板	曲げ	84	N/mm²	271	N/mm²	0.31<1.0
		曲げ	10	N/mm²	235	N/mm²	0.05<1.0
	梁材	せん断	2	N/mm²	135	N/mm²	0.02<1.0
		組合せ	11	_	235	N/mm²	0.05<1.0
		曲げ	15	N/mm²	135	N/mm²	0.12<1.0
	柱材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	17	_	135	_	0.13<1.0
CB-1F-1	ベース	まぼ	1	N /2	971	N/m^2	0.01<1.0
	プレート	囲け	1	IN/ IIIII	271	IN/ IIIII	0.01<1.0
	アンカー	引張り	15.30	Ν	9144	Ν	0.01<1.0
	ボルト	せん断	86.26	Ν	13867	Ν	0.01<1.0
	(床)	組合せ	_	_	_	_	0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

(39) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰2

堰 No.	評価対象部位		発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	14	N/mm²	271	N/mm²	0.06<1.0
		曲げ	66	N/mm²	235	N/mm²	0.28<1.0
	梁材	せん断	4	N/mm²	135	N/mm²	0.03<1.0
		組合せ	67	_	235	N/mm²	0.29<1.0
	柱材	曲げ	—	N/mm²	_	N/mm²	—<1.0
		せん断	—	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
CB-1F-3	ベース	手でも		N /2		N/m ²	1 0
	プレート	囲り		11/ 1111		IN/ IIIII	-<1.0
	アンカー	引張り	1103	Ν	9312	Ν	0.12<1.0
	ボルト	せん断	1336	Ν	13190	Ν	0.11<1.0
	(床)	組合せ	_	_	_	_	0.03<1.0
	アンカー						
	ボルト	せん断	1577	Ν	13190	Ν	0.12<1.0
	(壁)						

(40) 7号機コントロール建屋地上1階脇トレンチ(C1-CACB) 止水堰

堰 No.	評価対象	評価対象部位		発生値 (荷重又は発生応力度)		限界	検定値
	止水板	曲げ	139	N/mm²	271	N/mm²	0.52<1.0
		曲げ	9	N/mm²	235	N/mm²	0.04<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	10		235	N/mm²	0.05<1.0
		曲げ	7	N/mm²	235	N/mm²	0.03<1.0
	柱材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	8		235		0.04<1.0
CB-1F-4	ベース	曲げ		N/mm²	_	N/mm²	—<1.0
	プレート						
	アンカー	引張り	33.48	Ν	19810	Ν	0.01<1.0
	ボルト	せん断	84.59	Ν	13867	Ν	0.01<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	197.8	Ν	13867	Ν	0.02<1.0
	(壁)						

(41) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰1

堰 No.	評価対象	泉部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	_	N/mm²	_	N/mm²	—<1.0
		曲げ	18	N/mm²	235	N/mm²	0.08<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	18	_	235	N/mm²	0.08<1.0
	柱材	曲げ		N/mm²		N/mm²	—<1.0
		せん断		N/mm²		N/mm²	—<1.0
		組合せ					—<1.0
CB-1F-5	ベース	曲げ	_	N/m^2		N/mn^2	-<10
	プレート	囲り		1 v / mm		11/ 1111	-<1.0
	アンカー	引張り	124.8	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	250.8	Ν	13860	Ν	0.02<1.0
	(床)	組合せ	_	—			0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν	—	Ν	—<1.0
	(壁)						

(42) 7号機コントロール建屋地上1階(C1C2-CACB)計測制御電源盤区域(B)送・排風機室 止水堰

堰 No.	評価対象	象部位	発生値 (荷重又は発生応力度)		許容限界		検定値
	止水板	曲げ	—	N/mm²		N/mm²	-<1.0
		曲げ	19	N/mm²	235	N/mm²	0.08<1.0
	梁材	せん断	1	N/mm²	135	N/mm²	0.01<1.0
		組合せ	19	_	235	N/mm²	0.08<1.0
	柱材	曲げ	_	N/mm²	_	N/mm²	—<1.0
		せん断	_	N/mm²	_	N/mm²	—<1.0
		組合せ					—<1.0
CB-1F-6	ベース	曲げ	_	N/m^2		N/mn^2	-<10
	プレート	囲り				11/ 1111	< 1. 0
	アンカー	引張り	125.4	Ν	11720	Ν	0.01<1.0
	ボルト	せん断	430.1	Ν	13860	Ν	0.04<1.0
	(床)	組合せ					0.01<1.0
	アンカー						
	ボルト	せん断	—	Ν		Ν	—<1.0
	(壁)						

(43) 7号機コントロール建屋地上1階(C1C2-CBCC)計測制御電源盤区域(B)送・排風機室 止水堰3 2.9 床ドレンライン浸水防止治具を構成する各部材の評価及び

機能維持の確認方法について

目 次

2.9.1	フロート式治具を構成する各部材の評価及び機能保持の確認方法について	. 1
2.9.2	スプリング式治具を構成する各部材の評価及び機能保持の確認方法について	8
2.9.3	閉止キャップを構成する各部材の評価及び機能保持の確認方法について	16
2.9.4	閉止栓を構成する各部材の評価及び機能保持の確認方法について	24
2.9.5	配置概要	31

- 2.9.1 フロート式治具を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち、フロート式治具については、V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」、V-3-別添 3-1-6「床ド レンライン浸水防止治具の強度計算書」及びV-3-別添 3-2-5「床ドレンライン浸水防 止治具の強度計算書(溢水)」において、構成する各部材の弱部に対しての評価を示し ている。本資料では、フランジ取付型を代表とし、フロート式治具を構成する部材全 てを評価し、フロート式治具としての性能目標を満足することを確認する。

(2) 評価方針

フロート式治具の性能目標としては、地震後の浸水の作用を想定し、部材がおおむ ね弾性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す ることにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す る。

表 2.9.1-1 に止水機能保持確認方針として,フロート式治具の各部材の限界状態と 評価内容を示す。また,図 2.9.1-1 にフロート式治具の構造を示す。

部材	限界状態	評価内容
弁固定ボルト	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
弁本体	変形,損傷	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全 性を確認することにより、止水機能保持を確認 する。 ・弱部の評価対象部材
フロート	変形, 損傷 漏えい	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全 性を確認することにより、止水機能保持を確認 する。
弁座	変形,損傷 漏えい	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・加振試験後に水圧試験を実施し、構造強度健全 性を確認することにより、止水機能保持を確認 する。
弁座押え	変形,損傷	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
弁座押え 取付ボルト	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
	変形,損傷	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。 ・弱部の評価対象部材
フロートガイド	変形,損傷,緩み	 ・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。(本体 への取付ねじ部) ・弱部の評価対象部材
フロート保持板	変形,損傷	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。
フロート保持板 取付ナット	変形,損傷,緩み	・加振試験を実施し、構造強度健全性を確認する ことにより、止水機能保持を確認する。

表 2.9.1-1 フランジ取付型の止水機能保持確認方針

図 2.9.1-1 フランジ取付型の構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによるフロート式治具の設置箇所の設計震度を上回るものとして、「原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」 に示される一般弁の機能確認済加速度と同じ 6G (58.8m/s²) で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、フロート式治具 が剛構造として加振試験を実施できることを確認する。

表 2.9.1-2 に加振試験の条件,方法及び判定基準を示す。

表 2.9.1-3 に加振試験装置の主要仕様,図 2.9.1-2 に加振試験装置の外観を示す。 加振試験時の固定箇所は,図 2.9.1-1 に示す。

試験条件	試験方法	判定基準
 振動波形:正弦波 	加振した後に、外観目視に	機能に影響を及ぼす変
・最大加速度:水平 6G,鉛直 6G	より各部材を確認する。	形,損傷,緩みがないこ
・振動数:20Hz*	水平方向と鉛直方向毎に,	と。
・加振時間:5分	それぞれで加振する。	

表 2.9.1-2 加振試験の条件, 方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度(無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

表 2.9.1-3 加振試験装置主要仕様

図 2.9.1-2 加振試験装置外観図

b. 水圧試験

フロート式治具の設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深が大きい方の静水圧を考慮した圧力*を上回る圧力として,0.35Mpa以上の水圧とする。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.1-4 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.1-4 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	び保持時間で加圧する。	損傷がないこと。
・加振試験後に実施	加圧後に外観目視により	・有意な漏えいのないこと
	各部材を確認する。	

注記*:フロート式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし 以下のとおり。

静水圧:0.18MPa

c. 水圧+余震荷重での試験

表 2.9.1-5	水圧試験+余震荷重での条件.	方法及び判定基準
- <u>-</u>		

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:5分間	び加速度を与える。加圧	損傷がないこと。
 振動波形:正弦波 	及び加振後に外観目視に	・有意な漏えいのないこと
・最大加速度:水平 3G,鉛直 3G	より各部材を確認する。	
(余震は本震6G の半分を想定		
し36で加振)		
・振動数:20Hz		

注記*:フロート式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし 以下のとおり。

静水庄: 0.18MPa

(4) 評価結果

以下に、加振試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.1-6 にフロート式治具の加振試験結果を示す。

なお,掃引試験により,振動数 5~50Hz にフロート式治具の固有振動数がないことを 確認した。

部位	加振試験結果
弁固定ボルト	変形,損傷及び緩みなし
弁本体	変形及び損傷なし
フロート	変形及び損傷なし
弁座	変形及び損傷なし
弁座押え	変形及び損傷なし
弁座押え取付ボルト	変形,損傷及び緩みなし
フロートガイド	変形,損傷及び緩みなし
フロート保持板	変形及び損傷なし
フロート保持板取付ナット	変形,損傷及び緩みなし

表 2.9.1-6 フランジ取付型の加振試験結果

b. 水圧試験

表 2.9.1-7 にフロート式治具の水圧試験結果及び止水機能保持確認を示す。

表 2.9.1-7 フランジ取付型の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
弁本体	変形及び損傷なし	
フロート	変形及び損傷なし	漏えいなし
弁座	変形及び損傷なし	

c. 水圧+余震荷重での試験

表 2.9.1-8 にフロート式治具の水圧+余震荷重での試験結果及び止水機能保持確認 を示す

表 2.9.1-8 フランジ取付型の水圧+余震荷重での試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
弁本体	変形及び損傷なし	
フロート	変形及び損傷なし	漏えいなし
弁座	変形及び損傷なし	

- 2.9.2 スプリング式治具を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち、スプリング式治具については、V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」、V-3-別添 3-1-6「床ド レンライン浸水防止治具の強度計算書」及びV-3-別添 3-2-5「床ドレンライン浸水防 止治具の強度計算書(溢水)」において、構成する各部材の弱部に対しての評価を示し ている。本資料では、フランジ取付型を代表とし、スプリング式治具を構成する部材 全てを評価し、スプリング式治具としての性能目標を満足することを確認する。

(2) 評価方針

スプリング式治具の性能目標としては、地震後の浸水の作用を想定し、部材がおお むね弾性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す ることにより止水機能が保持されていることを確認する方針とする。

具体的には、地震後の浸水の作用を想定した止水機能保持確認として、次に示す試 験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及び弁座部の止水性を確認す る。

表 2.9.2-1 に止水機能保持確認方針として,スプリング式治具の各部材の限界状態 と評価内容を示す。また,図 2.9.2-1 にスプリング式治具の構造を示す。

 ■▶♥ (▶) (▶) (▶) (▶) (▶) (▶) (▶) (▶) (▶) (▶)	立7.4-4-	四周中能	ジェカ会
天板- フランジ 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 弁 変形,損傷 潮えい ・加振試験を実施し、構造強度健全性を確認する。 弁 変形,損傷 潮えい ・加振試験を実施し、構造強度健全性を確認する。 が加振試験を実施し、構造強度健全性を確認する。 ・加振試験を実施し、構造強度健全性を確認する。 アメンジ 変形,損傷 潮えい ・加振試験を実施し、構造強度健全性を確認する。 パイプ 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パルト 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプ 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー	小小日	やバル影	計測的谷
天板- フランジ 変形,損傷 により,止水機能保持を確認する。 アランジ 変形,損傷 ・加振試験後に水圧試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 弁 変形,損傷 漏えい ・加振試験を実施し,構造強度健全性を確認する。 水ボンジ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 スボンジ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パレト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプレー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー	天板- フランジ		・加振試験を実施し、構造強度健全性を確認すること
フランジ ・加振試験後に水圧試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 弁 変形,損傷 溜えい ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 水ンジ 変形,損傷 溜えい ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 スポンジ 変形,損傷 漏えい ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプ スペーサ 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプ 水中 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー 軸受け 変形,損傷		変形,損傷	により、止水機能保持を確認する。
弁 変形,損傷 漏えい ・加振試験を実施し、構造強度健全性を確認する。 ケ			・加振試験後に水圧試験を実施し、構造強度健全性を
弁 変形,損傷 漏えい ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ホンジ スポンジ スポンジ スポンジ アキン 変形,損傷 漏えい ・加振試験を実施し,構造強度健全性を確認する。 スポンジ スポンジ アキン 変形,損傷 漏えい ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 なん一軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 なん一軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 など,損傷 ・加振試験を実施し,構造強度健全性を確認する。 など,損傷 ・加振試験を実施し,構造強度健全性を確認する。 など,損傷 ・加振試験を実施し,構造強度健全性を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー ないパー <			確認することにより、止水機能保持を確認する。
弁 変形,損傷 漏えい により,止水機能保持を確認する。 ホンジ 海沢,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 スボンジ 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パッキン 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パイブ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パイブ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認すること 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 方角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認する。 アサ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 アサ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 スブリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 輸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 輸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 ない機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
弁 次人の、頃間 漏えい ・加振試験後に水圧試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 スポンジ バッキン 変形,損傷 ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を 確認することにより、止水機能保持を確認する。 バイブ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 成板-軸受け 変形,損傷,緩み ボルト ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 ケガロデー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認する。 パイプー も安形,損傷 ・加振試験を実施し、構造強度健全性を確認する。		亦形 指作	により、止水機能保持を確認する。
確認することにより,止水機能保持を確認する。 スボンジ 変形,損傷 パッキン 遊えい パイプ 変形,損傷 パーサー 変形,損傷 パイプ 変形,損傷 スペーサー 変形,損傷 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプ 変形,損傷 水ーサー 変形,損傷 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプ 変形,損傷 ボルト 変形,損傷 水検能保持を確認する。 ・加振試験を実施し,構造強度健全性を確認する。 ・加振試験を実施し、構造強度健全性を確認する。	弁	友心, 頂筋	・加振試験後に水圧試験を実施し、構造強度健全性を
・弱部の評価対象部材 スボンジ パッキン 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 廃板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 大角穴付き ボルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 大角穴付き ボルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ク素解,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 介護ないたちょうの ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度性を確認する。 介護なり、一人機能保持を確認する。 ・加振試験を実施し,構造強度健全性を確認する。 介護なり、行きないり、 ・加振試験を実施し、構造強度健全性を確認する。			確認することにより、止水機能保持を確認する。
スポンジ スポンジ パッキン 変形,損傷 漏えい ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること 広板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ボルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ボルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること デキ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること アキ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること アジリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 軸受け 変形,損傷,緩み			・弱部の評価対象部材
スポンジ パッキン 変形,損傷 漏えい により,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ※形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 介白汁 水ルト 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 アサング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 転しパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー もいパー など 変形,損傷,緩み パー 変形,損傷			・加振試験を実施し、構造強度健全性を確認すること
パッキン 漏えい ・加振試験後に水圧試験を実施し,構造強度健全性を 確認することにより,止水機能保持を確認する。 パイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 充角穴付き ボルト 変形,損傷,緩み が ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 作軸 変形,損傷,緩み 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 水 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 転気数の評価対象部材 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 転気力 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 転気力 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 転気力 変形,損傷 が振誘験を実施し,構造強度健全性を確認する	スポンジ	変形,損傷	により、止水機能保持を確認する。
ポイプ スペーサー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 成人一サー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 底板-軸受け 水小 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 アリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 が加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し、構造強度健全性を確認すること により,止水機能保持を確認する。	パッキン	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性を
バイプ スペーサー 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 底板-軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 分離 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 ア単型 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 が振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し、構造強度健全性を確認すること により、止水機能保持を確認する。			確認することにより、止水機能保持を確認する。
パイプ スペーサー 変形,損傷 により,止水機能保持を確認する。 ・弱部の評価対象部材 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 アサ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ボね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 作 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し、構造強度健全性を確認すること により,止水機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
スペーサー ・弱部の評価対象部材 底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 分離の評価対象部材 ・初振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 が加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 ・初振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。	パイプ	変形,損傷	により、止水機能保持を確認する。
底板-軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 六角穴付きボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 弁軸 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し、構造強度健全性を確認することにより,止水機能保持を確認する。 分離の評価対象部材 ・加振試験を実施し、構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し、構造強度健全性を確認することにより、止水機能保持を確認する。	スペーサー		・弱部の評価対象部材
底板-軸受け 変形,損傷 により,止水機能保持を確認する。 六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ボね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
六角穴付き ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ボね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。	底板−軸受け	変形,損傷	により、止水機能保持を確認する。
ボルト 変形,損傷,緩み により,止水機能保持を確認する。 弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること なプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ばね 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること なトッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること か加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。	六角穴付き		・加振試験を実施し、構造強度健全性を確認すること
弁軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること アキ軸 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること パイプー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ボロ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ばね 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること ストッパー 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること 作 な形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること	ボルト	変形,損傷,緩み	により、止水機能保持を確認する。
弁軸 変形,損傷 により,止水機能保持を確認する。 スプリング 変形,損傷 ・別部の評価対象部材 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 がれ 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 が期部の評価対象部材 ・別部の評価対象部材 びね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
・弱部の評価対象部材 スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 が加振試験を実施し,構造強度健全性を確認する。 ・弱部の評価対象部材 ばね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。	弁軸	変形,損傷	により、止水機能保持を確認する。
スプリング 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 が加振試験を実施し,構造強度健全性を確認する。 ・別部の評価対象部材 ばね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 が加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。 金形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認することにより,止水機能保持を確認する。			・弱部の評価対象部材
スプリング変形,損傷により,止水機能保持を確認する。パイプー 軸受け変形,損傷・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ・弱部の評価対象部材ばね ストッパー変形,損傷・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。弁固定ボルト 変形,損傷,緩み変形,損傷,緩み 変形,損傷,緩み・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
パイプー 軸受け 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 ばね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。	スプリング	変形,損傷	により、止水機能保持を確認する。
ハイワー 軸受け 変形,損傷 により,止水機能保持を確認する。 ・弱部の評価対象部材 ばね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み 変形,損傷,緩み 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。	パイプー 軸受け		・加振試験を実施し、構造強度健全性を確認すること
軸受け ・弱部の評価対象部材 ばね 変形,損傷 ストッパー 変形,損傷 弁固定ボルト 変形,損傷,緩み *加振試験を実施し,構造強度健全性を確認する。 ・加振試験を実施し,構造強度健全性を確認する。 ・加振試験を実施し,構造強度健全性を確認する。		変形,損傷	により、止水機能保持を確認する。
ばね ストッパー 変形,損傷 ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。			・弱部の評価対象部材
変形,損傷 により,止水機能保持を確認する。 弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により,止水機能保持を確認する。	ばね		・加振試験を実施し、構造強度健全性を確認すること
弁固定ボルト 変形,損傷,緩み ・加振試験を実施し,構造強度健全性を確認すること により、止水機能保持を確認する。	ストッパー	変形,損傷	により、止水機能保持を確認する。
开固正ホルト 変形,損傷,緩み により,止水機能保持を確認する。			・加振試験を実施し、構造強度健全性を確認すること
	弁固定ボルト	変形,損傷,緩み	により、止水機能保持を確認する。

表 2.9.2-1 フランジ取付型の止水機能保持確認方針

図 2.9.2-1 フランジ取付型構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによるスプリング式治具の設置箇所の設計震度を上回るものとして, 「原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気 協会)」に示される一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、スプリング式治 具が剛構造として加振試験を実施できることを確認する。

表 2.9.2-2 に加振試験の条件,方法及び判定基準を示す。

表 2.9.2-3 に加振試験装置の主要仕様,図 2.9.2-2 に加振試験装置の外観を示す。 加振試験時の固定箇所は,図 2.9.2-1 に示す。

試験条件	試験方法	判定基準
 振動波形:正弦波 	加振した後に、外観目視	機能に影響を及ぼす変
・最大加速度:水平6G,鉛直6G	により各部材を確認す	形,損傷,緩みがない
・振動数:20Hz*	る。	こと。
・弁本体のフランジ部を剛構造の	水平方向と鉛直方向毎	
治具を介して、加振試験装置に	に,それぞれで加振する。	
固定する。		
 加振時間:5分 		

表 2.9.2-2 加振試験の条件, 方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ 230 mm
最大搭載質量	200 kg

表 2.9.2-3 加振試験装置主要仕様

2060 1075.5 545 0.0 700οõ 電磁加振機 000 (889-7878) 125 (加振方向) 40-H108017 (451-1) **ヽ**ッド 600 (K89-7498) 100 (8646) 31++123.88 TODAT 2620 テーブル 27045 電磁加振機 (1)水平加振時平面図 \$570 9220 (加振方向) テーブル Z. 90 DS T20 (1-7488/) : : : 2 İ 1 2 (3)鉛直加振時側面図 (2)水平加振時側面図

図 2.9.2-2 加振試験装置外観図

b. 水圧試験

スプリング式治具の設置箇所の津波による溢水又は内部溢水の浸水によって生じる 浸水深が大きい方の静水圧を考慮した圧力*を上回る圧力として,0.35MPa以上の水圧と する。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.2-4 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.2-4 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	力及び保持時間で加	損傷がないこと。
・加振試験後に実施	圧する。加圧後に外観	・有意な漏えいのないこと
	目視により各部材を	
	確認する。	

注記*:スプリング式治具の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値と し以下のとおり。

静水圧: 0.18MPa

c. 水圧+余震荷重での試験

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧	・機能に影響を及ぼす変形,
 水圧保持時間:5分間 	力及び加速度を与え	損傷がないこと。
 ・振動波形:正弦波 	る。加圧及び加振後に	・有意な漏えいのないこと
・最大加速度:水平 36,鉛直 3G	外観目視により各部	
(余震は本震6G の半分を想定し	材を確認する。	
3Gで加振)		
・振動数:20Hz		

表 2.9.2-5 水圧+余震荷重での試験の条件,方法及び判定基準

(4) 評価結果

以下に、加振試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.2-6 にスプリング式治具の加振試験結果を示す。

なお, 掃引試験により, 振動数 5~50Hz にスプリング式治具の固有振動数がないこと を確認した。

部位	加振試験結果
天板-フランジ	変形及び損傷なし
弁	変形及び損傷なし
スポンジパッキン	変形及び損傷なし
パイプスペーサー	変形及び損傷なし
底板-軸受け	変形及び損傷なし
六角穴付きボルト	変形,損傷及び緩みなし
弁軸	変形及び損傷なし
スプリング	変形及び損傷なし
パイプー軸受け	変形及び損傷なし
ばねストッパー	変形及び損傷なし
弁固定ボルト	変形,損傷及び緩みなし

表 2.9.2-6 スプリング式治具の加振試験結果

b. 水圧試験

表 2.9.2-7 にスプリング式治具の水圧試験結果及び止水機能保持確認を示す。

表 2.9.2-7 スプリング式治具の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
天板-フランジ	変形及び損傷なし	
弁	変形及び損傷なし	漏えいなし
スポンジパッキン	変形及び損傷なし	

c. 水圧+余震荷重での試験

表 2.9.2-8 にスプリング式治具の水圧+余震荷重での試験結果及び止水機能保持 確認を示す。

部位	水圧試験結果	止水機能保持確認	
天板-フランジ	変形及び損傷なし	ジ及び損傷なし	
弁	変形及び損傷なし	漏えいなし	
スポンジパッキン	変形及び損傷なし		

表 2.9.2-8 スプリング式治具の水圧+余震荷重での試験結果及び止水機能保持確認

- 2.9.3 閉止キャップを構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち,閉止キャップについては, V-2-10-2-4-1「床 ドレンライン浸水防止治具の耐震性についての計算書」及び添付書類V-3-別添 3-1-6 「床ドレンライン浸水防止治具の強度計算書」において,構成する各部材の弱部に対 しての評価を示している。本資料では,内ねじ型及び外ねじ型の閉止キャップを構成 する部材全てを評価し,閉止キャップとしての性能目標を満足することを確認する。

(2) 評価方針

閉止キャップの性能目標としては、地震後の浸水の作用を想定し、部材がおおむね弾 性状態にとどまることとし、止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 することにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 する。

表 2.9.3-1 及び表 2.9.3-2 に止水機能保持確認方針として,閉止キャップの各部 材の限界状態と評価内容を示す。また,図 2.9.3-1 及び図 2.9.3-2 に各閉止キャッ プの構造を示す。

部材	限界状態	評価内容
		・加振試験を実施し、構造強度健全性を確認す
	変形,損傷	ることにより、止水機能保持を確認する。
		・加振試験後に水圧試験を実施し、構造強度健
		全性を確認することにより、止水機能保持を
A-14-		確認する。
	変形,損傷	・加振試験を実施し、構造強度健全性を確認す
		ることにより、止水機能保持を確認する。(配
		管への取付ねじ部)
	変形,損傷	・加振試験を実施し、構造強度健全性を確認す
0 9 2 2	漏えい	ることにより、止水機能保持を確認する。

表 2.9.3-1 閉止キャップ(内ねじ型)の止水機能保持確認方針

図 2.9.3-1 閉止キャップ (内ねじ型)

部材	限界状態	評価内容
	変形,損傷	・加振試験を実施し、構造強度健全性を確認する
-1		ことにより、止水機能保持を確認する。
		・加振試験後に水圧試験を実施し、構造強度健全
		性を確認することにより、止水機能保持を確認
<u> </u>		する。
	変形,損傷	・加振試験を実施し、構造強度健全性を確認する
		ことにより、止水機能保持を確認する。(配管へ
		の取付ねじ部)
N°+ V	変形,損傷	・加振試験を実施し、構造強度健全性を確認する
ハッキン	漏えい	ことにより、止水機能保持を確認する。

表 2.9.3-2 閉止キャップ(外ねじ型)止水機能保持確認方針

図 2.9.3-2 閉止キャップ(外ねじ型)構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによる閉止キャップの設置箇所の設計震度を上回るものとして、「原子 力発電所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」 に示される一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、閉止キャップが 剛構造として加振試験を実施できることを確認する。

表2.9.3-3に加振試験の条件、方法及び判定基準を示す。

表 2.9.3-4 に加振試験装置の主要仕様,図 2.9.3-3 に加振試験装置の外観を示す。

試験条件	試験方法	判定基準
 振動波形:正弦波 	加振した後に,外観目視に	機能に影響を及ぼす変
・最大加速度:水平 6G, 鉛直 6G	より各部材を確認する。	形,損傷,緩みがない
・振動数:20Hz*	水平方向と鉛直方向毎に,	こと。
・人力によって可能な締付トル	それぞれで加振する。	
クで加振装置に設置する。		
 加振時間:5分 		

表 2.9.3-3 加振試験の条件,方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

図 2.9.3-3 加振試験装置外観図
b. 水圧試験

閉止キャップの設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深 が大きい方の静水圧を考慮した圧力*を上回る圧力として、0.35MPa以上の水圧とする。 水圧の保持時間は、「発電用原子力設備規格 設計・建設規格(2005 年版(2007 年追 補版含む))(JSME S NC1-2005/2007)((社)日本機械学会)」に示される耐 圧試験に準じて、10分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表 2.9.3-5 に水圧試験の条件,方法及び判定基準を示す。

表 2.9.3-5 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧力及び	・機能に影響を及ぼす
・水圧保持時間:10分間以上	保持時間で加圧する。加圧	変形,損傷がないこと。
・加振試験後に実施	後に外観目視により各部材	・有意な漏えいのないこ
	を確認する。	と。

注記*:閉止キャップの設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以 下のとおり。

静水圧:0.18MPa

c. 水圧+余震荷重での試験

表 2.9.3-6 水圧+余震荷重での試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及び	・機能に影響を及ぼす
・水圧保持時間:5分間	加速度を与える。加圧及び	変形,損傷がないこと。
 振動波形:正弦波 	加振後に外観目視により各	・有意な漏えいのないこ
・最大加速度 : 水平 3G, 鉛直 3G	部材を確認する。	と。
(余震は本震6G の半分を想定		
し36で加振)		
・振動数:20Hz		

注記*:閉止キャップの設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以 下のとおり。

静水圧: 0.18MPa

(4) 評価結果

以下に、加圧試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.3-7 に閉止キャップ(内ねじ型)の加振試験結果,表 2.9.3-8 に閉止キャップ(外ねじ型)の加振試験結果を示す。

なお, 掃引試験により, 振動数 5~50Hz に閉止キャップの固有振動数がないことを確認した。

部位	加振試験結果	
/	変形,損傷及び	
<u>4</u> ~14>	緩みなし	
0リング	変形及び損傷なし	

表 2.9.3-7 閉止キャップ(内ねじ型)の加振試験結果

表 2.9.3-8 閉止キャップ(外ねじ型)の加振試験結果

部位	加振試験結果	
**	変形,損傷及び	
A+14+	緩みなし	
0リング	変形及び損傷なし	

b. 水圧試験

表 2.9.3-9 に閉止キャップ(内ねじ型)の水圧試験結果及び止水機能保持確認,表 2.9.3-10に閉止キャップ(外ねじ型)の水圧試験結果及び止水機能保持確認を示す。

表 2.9.3-9 閉止キャップ(内ねじ型)の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
本体	変形及び損傷なし	得らいない
0リング	変形及び損傷なし	御えていよし

表 2.9.3-10 閉止キャップ(外ねじ型)の水圧試験結果及び止水機能保持確認

	2.		
	部位	水圧試験結果	止水機能保持確認
	本体	変形及び損傷なし	
パッキン 変形及び損傷なし		変形及び損傷なし	(痛えいなし)

c. 水圧+余震荷重での試験

表 2.9.3-11 に閉止キャップ(内ねじ型)の水圧+余震荷重での試験結果及び止水機 能保持確認,表 2.9.3-12 に閉止キャップ(外ねじ型)の水圧+余震荷重での試験結果 及び止水機能保持確認を示す。

表 2.9.3-11 閉止キャップ(内ねじ型)の水圧+余震荷重での試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
本体	変形及び損傷なし	アンションナント
0リング	変形及び損傷なし	御えていよし

表 2.9.3-12 閉止キャップ(外ねじ型)の水圧+余震荷重での試験結果及び止水機能保持確認

部位 水圧試験結果		止水機能保持確認	
本体	変形及び損傷なし		
パッキン 変形及び損傷なし			

- 2.9.4 閉止栓を構成する各部材の評価及び機能保持の確認方法について
 - (1) 概要

床ドレンライン浸水防止治具のうち,閉止栓については,添付資料V-2-10-2-4-1 「床ドレンライン浸水防止治具の耐震性についての計算書」及び添付書類V-3-別添 3-1-6「床ドレンライン浸水防止治具の強度計算書」において,構成する各部材の弱部 に対しての評価を示している。本資料では,閉止栓を構成する部材全てを評価し,浸 水防止治具としての性能目標を満足することを確認する。

(2) 評価方針

閉止栓の性能目標としては,地震後の浸水の作用を想定し,部材がおおむね弾性状 態にとどまることとし,止水機能を喪失しない設計としている。

以上に示した性能目標を満足していることを確認する方法として,加振試験,水圧 試験及び漏えい試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 することにより止水機能が保持されていることを確認する方針とする。

具体的には,地震後の浸水の作用を想定した止水機能保持確認として,次に示す試験にて確認する方針とする。

地震を想定した加振試験を実施し,各部材の構造強度健全性を確認する。また,加 振試験後に水圧試験を実施し,各部材の構造強度健全性及びシール部の止水性を確認 する。

表 2.9.4-1 に止水機能保持確認方針として,閉止栓の種類毎に,各部材の限界状態 と評価内容を示す。また,図 2.9.4-1 に閉止栓の構造を示す。

部材	限界状態	評価内容
		・加振試験を実施し、構造強度健全性を確認するこ
ナット	変形,損傷,緩み	とにより、止水機能保持を確認する。
		・加振試験を実施し、構造強度健全性を確認するこ
	杰 亚 相传	とにより、止水機能保持を確認する。
	変形,損傷	・加振試験後に水圧試験を実施し、構造強度健全性
		を確認することにより、止水機能保持を確認する。
本体シャフト		・加振試験を実施し、構造強度健全性を確認するこ
		とにより、止水機能保持を確認する。
	変形,損傷	・加振試験後に水圧試験を実施し、構造強度健全性
		を確認することにより、止水機能保持を確認する。
		(ナットの取付ねじ部)
		・加振試験を実施し、構造強度健全性を確認するこ
	変形,損傷	とにより、止水機能保持を確認する。
コムリンク	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性
		を確認することにより、止水機能保持を確認する。
		・加振試験を実施し、構造強度健全性を確認するこ
	変形,損傷	とにより、止水機能保持を確認する。
0 9 2 2	漏えい	・加振試験後に水圧試験を実施し、構造強度健全性
		を確認することにより、止水機能保持を確認する。
中間リング	亦形 担准	・加振試験を実施し、構造強度健全性を確認するこ
中间リンク	変形, 損傷	とにより、止水機能保持を確認する。
山山立口コンノゲ	亦形 担准	・加振試験を実施し、構造強度健全性を確認するこ
「「「「「「」」」」「「」」」」」」」」」」」」」」」」」」」」」」」」」」	変形, 損傷	とにより、止水機能保持を確認する。
カニッシノア	亦形 担准	・加振試験を実施し、構造強度健全性を確認するこ
	とにより、止水機能保持を確認する。	
十刑ロッシント	亦形 担伤	・加振試験を実施し、構造強度健全性を確認するこ
人型ワツンヤ	変形, 損傷	とにより、止水機能保持を確認する。
生しいよう	本形 担侮	・加振試験を実施し、構造強度健全性を確認するこ
割りビン	<u> </u>	とにより、止水機能保持を確認する。

表 2.9.4-1 閉止栓止水機能保持確認方針

図 2.9.4-1 閉止栓構造図

(3) 評価方法

以下に示す条件にて試験を実施し、各試験毎に示す判定基準により評価する。

a. 基準地震動加振試験

基準地震動Ssによる閉止栓の設置箇所の設計震度を上回るものとして、「原子力発電 所耐震設計技術指針(JEAG 4601-1991 追補版)((社)日本電気協会)」に示さ れる一般弁の機能確認済加速度と同じ6G(58.8m/s²)で加振する。

なお、加振試験を実施する前に、水平、鉛直方向それぞれについて、振動数 5~50Hz の範囲で掃引試験を行い、振動数 5~50Hz の範囲に固有振動数がなく、閉止栓が剛構造 として加振試験を実施できることを確認する。

表2.9.4-2に加振試験の条件、方法及び判定基準を示す。

表 2.9.4-3 に加振試験装置の主要仕様、図 2.9.4-2 に加振試験装置の外観を示す。

試験条件	試験方法	判定基準
 ・振動波形:正弦波 	加振した後に,外観目視に	機能に影響を及ぼす変
・最大加速度:水平 6G, 鉛直 6G	より各部材を確認する。	形,損傷,緩みがない
・振動数:20Hz*	水平方向と鉛直方向毎に,	こと。
・締付トルク 50N・m で加振試験	それぞれで加振する。	
装置に固定する。		
 加振時間:5分 		

表 2.9.4-2 加振試験の条件,方法及び判定基準

注記*:掃引試験の結果、5~50Hz に共振する振動数がないことから、剛構造で想定される 最低の振動数 20Hz とした。

項目	諸元
型式	916-AW/SLS
最大加振力	16 kN
最大変位	1000 mm_{p-p}
最大加速度 (無負荷時)	640 m/s^2
可動部質量	25 kg
振動数範囲	(DC)~2000 Hz
加振台(ヘッド)寸法	φ230 mm
最大搭載質量	200 kg

表 2.9.4-3 加振試験装置主要仕様

図 2.9.4-2 加振試験装置外観図

b. 水圧試験

閉止栓の設置箇所の津波による溢水又は内部溢水の浸水によって生じる浸水深が大き い方の静水圧を考慮した圧力*を上回る圧力として,0.35MPa以上の水圧とする。

水圧の保持時間は、「発電用原子力設備規格 設計・建設規格 (2005 年版 (2007 年追 補版含む)) (JSME S NC1-2005/2007) ((社) 日本機械学会)」に示される耐 圧試験に準じて、10 分間以上とする。

また,水圧試験は,加振試験実施後に行うことを条件とする。 表2.9.4-4に水圧試験の条件,方法及び判定基準を示す。

表 2.9.4-4 水圧試験の条件,方法及び判定基準

試験条件	試験方法	判定基準
・試験圧力:0.35MPa 以上の水圧	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:10分間以上	び保持時間で加圧する。	損傷がないこと。
・加振試験後に実施	加圧後に外観目視により	・有意な漏えいのないこと。
	各部材を確認する。	

注記*:閉止栓の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以下のと おり。

静水圧: 0.18MPa

c. 水圧+余震荷重での試験

	表 2.9.4-5	水圧+余震荷重での試験の条件,	方法及び判定基準
--	-----------	-----------------	----------

試験条件	試験方法	判定基準
・試験圧力:0.35MPa	試験条件に示した圧力及	・機能に影響を及ぼす変形,
・水圧保持時間:5分間	び加速度を与える。加圧	損傷がないこと。
 振動波形:正弦波 	及び加振後に外観目視に	・有意な漏えいのないこと。
・最大加速度 : 水平 3G, 鉛直 3G	より各部材を確認する。	
(余震は本震6G の半分を想定し		
3Gで加振)		
・振動数:20Hz		

注記*:閉止栓の設置個所の静水圧は浸水防止治具を設置する箇所のうち最大値とし以下のと おり。

静水圧: 0.18MPa

(4) 評価結果

以下に、加圧試験及び水圧試験の結果と止水機能保持の確認を示す。

a. 加振試験

表 2.9.4-6 に閉止栓の加振試験結果を示す。

なお,掃引試験により,振動数 5~50Hz に閉止栓の固有振動数がないことを確認した。

部位	加振試験結果
ナット	変形,損傷及び緩みなし
本体シャフト	変形及び損傷なし
ゴムリング	変形及び損傷なし
0リング	変形及び損傷なし
中間リング	変形及び損傷なし
端部リング	変形及び損傷なし
カラーパイプ	変形及び損傷なし
大型ワッシャ	変形及び損傷なし
割りピン	変形及び損傷なし

表 2.9.4-6 閉止栓の加振試験結果

b. 水圧試験

表2.9.4-7に閉止栓の水圧試験結果及び止水機能保持確認を示す。

表 2.9.4-7 閉止栓の水圧試験結果及び止水機能保持確認

部位	水圧試験結果	止水機能保持確認
本体シャフト	変形及び損傷なし	
ゴムリング	変形及び損傷なし	漏えいなし
0リング	変形及び損傷なし	

c. 水圧+余震荷重での試験

表 2.9.4-8 に閉止栓の水圧+余震荷重での試験結果及び止水機能保持確認を示す。

÷• •		
部位	水圧試験結果	止水機能保持確認
本体シャフト	変形及び損傷なし	
ゴムリング	変形及び損傷なし	漏えいなし
0リング	変形及び損傷なし	

表 2.9.4-8 閉止栓の水圧+余震荷重での試験結果及び止水機能保持確認

2.9.5 配置概要

床ドレンライン浸水防止治具の設置位置を図2.9.5に示す。

図2.9.5 床ドレンライン浸水防止治具の設置位置図(1/15)

取佣石小		配置図					
	建民	設置個所	浸水防止治旦の種類				
		1 恒心流量(DIV-IV)計装ラック 咸電器(D)室	スプリング式治旦(外わじ)				
		2 水圧制御ユニット室	スプリング式治具(フランジ)				
		 「「小流量(DIV-IV)計装ラック、感震器(D)室 	スプリング式治具(外ねじ)				
		4 水圧制御ユニット室	閉止キャップ				
		5 炉心流量(DIV-I)計装ラック,感震器(A)室	スプリング式治具(外ねじ)				
		6 水圧制御ユニット室	フプリンガナ公目(フランパ)				
		7 水圧制御ユニット室	入りリンク丸伯兵(アフシン)				
		8 炉心流量(DIV-I)計装ラック, 感震器(A)室					
		9 残留熱除去系 ポンプ・熱交換器室					
		10残留熱除去系ポンプ・熱交換器室	スプリング式治旦(外ねじ)				
		11 残留熱除去系 ポンプ・熱交換器室					
	原子炉建屋	12 残留熱除去系 ポンプ・熱交換器室					
	T.M.S.L8200	13 炉心流量(DN-Ⅲ)計装ラック,感震器(C)室,制御棒駆動機構マスターコントロ	ール室				
		14 水圧制御ユニット室	スプリング式治具(フランジ)				
		15 水圧制御ユニット至 16 居と法見(NRI/ m) 計ガニック 武委留(の)会 制御技配製機構 コスターン・ション					
床		 第一心派重(DIV一Ⅲ)計表/ツ/、感展器(C)室、制御俸配期候傳マスクーゴントロ 「行心流車(DIV一Ⅲ) 註注示」/ 成雪型(C)室、制御俸取動修缮マスターマントロ 	ール室 スプリング式治具(外ねじ)				
F		1/)) 心伽里(DIV	ロール主 問止をおいプ				
	-	 10 /小江町崎中一/小王 10 /「小海島(DIV-Ⅲ)計述ラック 咸雪男(C)家 制御්を駆動機構マスターコントロ 	10-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1				
ショ		 10 // 「小量(DIV 面) 目気/)/, 広長田(0)主, 同時律規制成件(パ) コントロ 20 // 「小温音(DIV 面) 目気/)/, 成電器(C)室, 制御褄駆動機構マスターコントロ 					
1		20 「「21」「12」、112」、112、112、112、112、112、112、112、112	スプリング式治具(外ねじ)				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		22 炉心流量(DIV-II)計装ラック, 感震器(B)室					
浸		23 水圧制御ユニット室	スプリング式治具 (フランジ)				
水防		24         残留熱除去系         ポンプ・熱交換器室	スプルング式 没目(処わじ)				
止		25 残留熱除去系 ポンプ・熱交換器室	ハノ 92 9 以伯兵 ()下ねし)				
治具							



図2.9.5 床ドレンライン浸水防止治具の設置位置図(3/15)





図2.9.5 床ドレンライン浸水防止治具の設置位置図(5/15)

T.I	タービン建屋 	$     \begin{array}{r}       1 \\       2 \\       3 \\       4 \\       5 \\       6 \\       7 \\       8 \\       9 \\       9 \\       10 \\       11 \\       12 \\       13 \\       14 \\       15 \\       16 \\       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\     \end{array} $	TCW熱交換器・ポンプ室	閉止栓       フロート式治具(内ねじ)       フロート式治具(フランジ)       閉止栓       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       ワロート式治具(内ねじ)
T.I	タービン 建屋	$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	TCW熱交換器・ポンプ室           TCW熱交換器・ポンプ室	フロート式治具(内ねじ)         フロート式治具(フランジ)         閉止栓         フロート式治具(内ねじ)         ワロート式治具(内ねじ)         ワロート式治具(内ねじ)         ワロート式治具(内ねじ)         ワロート式治具(内ねじ)
T.I	タービン建屋 タービン建屋	$\begin{array}{c} 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	TCW熱交換器・ポンプ室	フロート式治具(フランジ)         閉止栓         フロート式治具(フランジ)         閉止栓         フロート式治具(内ねじ)         ワロート式治具(内ねじ)         日         フロート式治具(内ねじ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{r} 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	TCW熱交換器・ボンブ室	フロート式治具(フランジ)       閉止栓       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	ICW熱交換器・ボンブ室         TCW熱交換器・ポンプ室	労止栓       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(フランジ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       アロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(フランジ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\end{array}$	ICW熱交換器・ボンプ室         TCW熱交換器・ボンプ室	フロート式治具(ワランジ)       閉止栓       フロート式治具(内ねじ)       アロート式治具(フランジ)       閉止栓       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       日
T.]	タービン建屋 9	$\begin{array}{c} 8\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\end{array}$	TCW熱交換器・ボンプ室	フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 9\\ \hline 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	TCW熱交換器・ボンブ室	閉止栓       フロート式治具(内ねじ)       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(ウカンジ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	TCW熱交換器・ポンプ室	フロート式治具(内ねじ)       フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       開止栓       フロート式治具(内ねじ)       日
T.I	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{c} 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array} $	TCW熱交換器・ポンプ室	フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(フランジ)
T.1	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{r} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array} $	ICW熱交換器・ボンブ室         TCW熱交換器・ポンプ室	フロート式治具(フランジ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)
T.1	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array}$	ICW熱交換器・ポンプ室         TCW熱交換器・ポンプ室	フロート式治具(ワノンジ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(フランジ)
T.I	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array} $	TCW熱交換器・ポンプ室	閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓       フロート式治具(内ねじ)       閉止栓          フロート式治具(フランジ)
T.I	- - - - - - - - - - - - - - - - - - -	$ \begin{array}{r} 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array} $	TCW熱交換器・ボンブ室	フロート式治具(内ねじ)
T.I	- - - - - - - - - - - - - - - - - - -	$     \begin{array}{r}       17 \\       18 \\       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\     \end{array} $	TCW熱交換器・ポンプ室	フロート式治具(内ねじ) 閉止栓 フロート式治具(内ねじ) 閉止栓 フロート式治具(フランジ)
T.1	- - - - - - - - - - - - - - - - - - -	18           19           20           21           22           23           24           25           26           27           28	TCW熱交換器・ポンプ室	閉止栓            フロート式治具(内ねじ)           閉止栓           フロート式治具(フランジ)
T.I	- - - - - - - - - - - - - - - - - - -	$     \begin{array}{r}       19 \\       20 \\       21 \\       22 \\       23 \\       24 \\       25 \\       26 \\       27 \\       28 \\     \end{array} $	TCW熱交換器・ボンブ室         TCW熱交換器・ボンブ室         TCW熱交換器・ボンブ室         TCW熱交換器・ポンプ室	閉止栓       フロート式治具(内ねじ)       閉止栓          フロート式治具(フランジ)
T.1	タービン建屋	20 21 22 23 24 25 26 27 28	ICW熱交換器・ボンプ室       TCW熱交換器・ポンプ室	労止柱       フロート式治具(内ねじ)       閉止栓          フロート式治具(フランジ)
T.1	- - タービン建屋 -	$ \begin{array}{r} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ \end{array} $	TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室	アロード式治具(ア344C)       閉止栓       フロート式治具(フランジ)
T.1	- - タービン建屋 -	23 23 24 25 26 27 28	TCW熱交換器・ボンプ室 TCW熱交換器・ボンプ室 TCW熱交換器・ポンプ室 TCW熱交換器・ポンプ室 TCW熱交換器・ポンプ室 TCW熱交換器・ポンプ室	フロート式治具(フランジ)
T.1	- - - タービン建屋 -	24 25 26 27 28	TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室	フロート式治具(フランジ)
T.1	タービン建屋	25 26 27 28	TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室       TCW熱交換器・ポンプ室	
, , , , , , , , , , , , , , , , , , ,	タービン建屋	26 27 28	TCW熱交換器・ポンプ室 TCW熱交換器・ポンプ室	
, , , , , , , , , , , , , , , , , , ,	タービン建屋	27 28	TCW熱交換器・ボンブ室	
T.1	タービン建屋	28		フロート式治具(内ねじ)
T.1		20	ICW熱交換益・ホンノ至 TCW熱な摘要・ポンプ室	
	M.S.L5100	30	TCW熱交換器・ポンプ室	フロート式治县(フランジ)
Ĵ	F	31	TCW熱交換器・ポンプ室	閉止栓
Ĵ		32	TCW熱交換器・ポンプ室	フロート式治見(内わじ)
Ĵ.		33	TCW熱交換器 ・ポンプ室	
•		34	TCW熱交換器・ボンブ室 TCW熱交換器・ポンプ室	
-		30 36	TCW熱交換益・ホンノ主 TCW熱な摘要・ポンプ室	ノロート式冶具(内ねし)
î	-	37	TCW熱交換器・ポンプ室	閉止栓
÷		38	IA·SA室空調機室	
		39	IA·SA室空調機室	
	Ļ	40	IA·SA室空調機室	
		41	IA・SA室空調機室	
		42	バルブスペース	別止住 フロート式沿目(内わじ)
	F	44	バルブスペース	
	F	45	循環水配管, 電解鉄イオン供給装置室	
	Ę	46	循環水配管,電解鉄イオン供給装置室	
	F	47	循環水配管,電解鉄イオン供給装置室	
	F	48	個塚水配官,電解鉄イオン供給装置室	
		<u>49</u> 50	個界小配官, 电件妖14/ 円桁表直至 循環水配管 雪解鉄イオン供給装置室	
	-	51	循環水配管,電解鉄イオン供給装置室	
		52	循環水配管, 電解鉄イオン供給装置室	
		53	循環水配管, 電解鉄イオン供給装置室	
	Ļ	54	循環水配管, 電解鉄イオン供給装置室	<u> </u>
	F	55	循環水配管,電解鉄イオン供給装置室	
	F	57	個尿小配官,	スプルンガオ 没目(みわじ)
		ម		ハノフィノ 八旧六 (2144し)



図2.9.5 床ドレンライン浸水防止治具の設置位置図(7/15)



図2.9.5 床ドレンライン浸水防止治具の設置位置図 (8/15)

設備名称	配置図				
	建長		設置	個所	温水防止治胆の痲粕
		1	原子后雄楼冷却玄	<u>・回/</u> // 執	
		2	原子炉補機冷却系	<u>熱交換器・ポンプ室</u>	
		3	原子炉補機冷却系	熱交換器・ポンプ室	ーーフロート式治具(内ねじ)
		4	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		5	原子炉補機冷却系	熱交換器・ポンプ室	
		6	原子 伊 補 機 冷 却 系	<u>熱交換器・ポンプ室</u>	
		7	原子炉補機冷却系	<u>熱交換器・ポンプ室</u>	
		8	原子 后 補 機 沿 却 系	熱交換器・ポンプ室	閉止栓
		9	原子 后 補 機 冷 却 系	熱交換器・ポンプ室	フロート式治見(内わじ)
		10	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		11	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内わじ)
		12	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		13	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内ねじ)
		14	原子炉補機冷却系	熱交換器・ポンプ室	
		15	原子炉補機冷却系	熱交換器・ポンプ室	
		16	原子炉補機冷却系	熱交換器・ポンプ室	—————————————————————————————————————
		17	原子炉補機冷却系	熱交換器・ポンプ室	
		18	原子炉補機冷却系	熱交換器・ポンプ室	コールキ沙目(中わば)
		19	原子炉補機冷却系	熱交換器・ポンプ室	
		20	原子炉補機冷却系	熱交換器・ポンプ室	ファ 1 十公目 (フニ) (2)
		21	原子炉補機冷却系	熱交換器・ポンプ室	
床		22	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
F		23	原子炉補機冷却系	熱交換器・ポンプ室	フロートナ沙目(フランペジ)
レ		24	原子炉補機冷却系	熱交換器・ポンプ室	/1-「氏石英())//)
ン	25	原子炉補機冷却系	熱交換器・ポンプ室	問止払	
ラ		26	タービン補機冷却海力	(系ポンプ室	±١ ــــــــــــــــــــــــــــــــــــ
1		27	タービン補機冷却海オ	く系ポンプ室	
ン	タービン建屋	28	タービン補機冷却海オ	く系ポンプ室	
浸	T.M.S.L. +4900	29	タービン補機冷却海力	く系ポンプ室	
水		30	タービン補機冷却海力	く系ボンブ室	フロート式治具(フランジ)
197 15		31	タービン補機冷却海辺	く糸ボンブ室	
		32	タービン相機行却海辺	く糸ホンク室	
1日 目	-	33	タービン 相機 行 却 海 7	(糸ホン)至	
~	-	34	原子炉桶機停却杀	熱父換呑・ホンフ室	
	-	30	原于炉 補機 行 却 糸	熱父換命・ホンノ至	ノロート式 宿具 (ノフンン) 開止 45
	-	30	タービン 補機 行却 海川	<u>(糸</u> ホンノ至 勅六婚吧, ポンプ安	闭止住
		31	原于炉桶饭行动术	熱父換命・小ノノ主 勅六権思 ポンプ室	/////////////////////////////////////
		20	原于炉桶阀行动术 直乙后堵燃盗却玄	熱交換品・ホンノ主	フロート式治具(内ねじ)
	-	40	原了// · · · · · · · · · · · · · · · · · ·	熱交換器・ポンプ室	フロート式 没目 (フランバジ)
		40	原子 恒 補 機 沿 却 系	熱交換器・ポンプ室	フロート式治見(内わ))
		42	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(フランジ)
	-	43	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		44	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内ねじ)
		45	原子炉補機冷却系	熱交換器・ポンプ室	
		46	原子炉補機冷却系	熱交換器・ポンプ室	
		47	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内ねじ)
		48	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		49	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(フランジ)
		50	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内ねじ)
		51	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(フランジ)
		52	原子炉補機冷却系	熱交換器・ポンプ室	フローレポン目(中ちい)
		53	原子炉補機冷却系	熱交換器・ポンプ室	/ 1 - 1 元 石 具 ( 内 ね し )
	[	54	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(フランジ)
		55	原子炉補機冷却系	熱交換器・ポンプ室	フロート式治具(内ねじ)
		56	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓

図2.9.5 床ドレンライン浸水防止治具の設置位置図(9/15)

<b>政</b> 佣 石 你	配置図				
	建屋		設 <u>置</u> 個	所	浸水防止治具の種類
		57	原子炉補機冷却系	<u>執交</u> 換器・ポンプ室	フロート式治具(内ねじ)
		58	原子炉補機冷却海水系	ポンプ室	問止於
		59	原子炉補機冷却海水系	ポンプ室	闭止性
		60	原子炉補機冷却海水系	ポンプ室	フロート式沿目(内わじ)
		61	原子炉補機冷却海水系	ポンプ室	
		62	原子炉補機冷却海水系	ポンプ室	
		63	原子炉補機冷却海水系	ポンプ室	フロート式治县(フランジ)
		64	原子炉補機冷却海水系	ポンプ室	
		65	原子炉補機冷却海水系	ボンブ室	
		66	原子炉補機冷却糸	熱交換器・ホンプ室	閉止栓
		67	原子炉 補機 行 却 杀	熱父換話・ホンノ至	
		68	<u>原于炉桶機行却糸</u> 原乙烷雄燃ム却조	熱父換益・ホンノ至 勅六悔吧。ポンプ空	<u>  闭止性</u>
		69 70	尿于炉 佣 機 行 却 杀	熱父換奋・小ノノ 主 劫六海聖・ポンプ 安	
		70	原丁炉 補機 印 却 示 百 子 后 補 機 必 却 玄	- 熱文換品・ホノノ主 	
		72	原了炉桶饭币却求 百子后補機冷却系	執 応 換 昭 ・ ポンプ 宝	――スプリング式治具(フランジ)
		73	原子炉補機冷却系		
		74	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ね)ご)
		75	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
		76	原子炉補機冷却系	熱交換器・ポンプ室	
床		77	原子炉補機冷却系	熱交換器・ポンプ室	
ド		78	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ねじ)
レ		79	原子炉補機冷却系	熱交換器・ポンプ室	閉止栓
と	タービン建屋	80	原子炉補機冷却系	熱交換器・ポンプ室	フプリンガオ 沿目 (フランバジ)
フ	T.M.S.L. +4900	81	原子炉補機冷却系	熱交換器・ポンプ室	ハノリンク 氏伯兵(ノノンン)
1		82	原子炉補機冷却系	熱交換器・ポンプ室	
		83	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ねじ)
反水		84	原子炉補機冷却系	熱交換器・ポンプ室	
小店		85	原子炉補機冷却系	熱交換器・ポンプ室	
رم الا		86	原子炉補機冷却系	熱交換器・ボンブ室	閉止栓
治		87	原子炉 補機 行 却 杀	烈父 換益・ホンフ 至	
真		88	尿于炉 佣 機 行 却 杀	熱父換命・小ノノ主 劫六塩児・ポンプウ	フプルノガオ 沿目(内わじ)
		89	<u>原于炉桶機行却未</u> 百乙后届雌盗知玄	熱父換奋・小ノノ主	
		90	原丁炉 佣 機 印 却 示 百 乙 后 斌 継 必 却 豕	- 熱文換品・ホイノ主 	
		92	原子炉補機冷却系		――スプリング式治具(フランジ)
		93	原子炉補機冷却系	<u>熱交換器・ポンプ室</u> 動交換器・ポンプ室	
		94	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ねじ)
		95	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(フランジ)
		96	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ねじ)
		97	原子炉補機冷却系	熱交換器・ポンプ室	関止於
		98	原子炉補機冷却系	熱交換器・ポンプ室	10.111.111 10.111.111
	[	99	原子炉補機冷却系	熱交換器・ポンプ室	
		100	原子炉補機冷却系	熱交換器・ポンプ室	
		101	原子炉補機冷却系	熱交換器・ポンプ室	スプリング式治具(内ねじ)
	102	原子炉補機冷却系	熱交換器・ボンプ室		
		103	原子炉補機冷却糸	熱交換器・ボンブ室	間止私
		104	尿丁炉慵悈竹却术	ぶ 父 傑 奋 ・ 小 ノ ノ 主	肉止性

図2.9.5 床ドレンライン浸水防止治具の設置位置図(10/15)



QL         EXEMPL         ExeMple Control         ExeMple Contro         ExeMple Control <th< th=""><th>設備名称</th><th colspan="6">配置図</th></th<>	設備名称	配置図					
Deal         1         17日本地域の空間構成部には「おおいえい」で、お地域(300) 単、10日からアレブ         10日本アレブ         10日本         10日本アレブ         10日本         10日本 <td></td> <td>建長</td> <td></td> <td>設置個所</td> <td>温水防止込用の種類</td>		建長		設置個所	温水防止込用の種類		
マントロームの構成         マントの構成         マントの構成         マントの構成         マントの構成         マントの構成         マントの構成         マントのよう         マン		建座	1 7号相	機區回加 幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	していたい。 「別止キャップ		
コードを使きなご確認またのないで、用にキャップ           コードを使きなご確認またのはないで、用にキャップ           コードを使きなご確認またのはないで、ためを見いのうま、コントングにはしいに、コントングにはしいに、コントングにから見いのまた。           コードが良きなご認認またのはないで、ためを見いのうま、コントングにはしいし、コードングにはしいし、コードングになり、ころいたの「人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のために、人生」のたく、人生」のために、人生」のために、人生」のために、人生」のい、人生」のために、人生」のたく、人生」の、人生」の、人生」の、人生」の、			2 7号枝	幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	スプリング式治具(内ねじ)		
ボージー酸塩気を設置機構が正確なまたが、小麦酸(100)までは、「「マンジンズ治症(104c)」 <ul> <li>マンジンクシス治症(104c)</li> <li>マンジンクシス治症(104c)</li> <li>マンジンクシス治症(104c)</li> <li>マンジンクシスなどの構成が正確なまたが、小麦酸(100)までは、100 またいのので、100 またいのので、100 を見いたいので、100 を</li></ul>			3 7号根	幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	閉止キャップ		
・ アメ酸塩素は酸酸酸素は加速度なない、 ・ アメ酸塩素は酸酸酸素は加速度なない、 ・ アメ酸塩素は酸酸酸素は加速度なない、 ・ アメ酸塩素は酸酸酸素は加速度ない、 ・ アメ酸塩素は酸酸酸素は加速度ない、 ・ アメ酸塩素は酸酸酸素は加速度な、 ・ アメ酸塩素は酸酸素は、 ・ アメ酸塩素は、 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		-	4 7号根	幾換気空調補機非常用冷却水系ボンプ・冷凍機 (B)(D)室	スプリング式治具(内ねじ)		
マレサ機能な空間機能なごからないの()         #           0         12           10         12           11         72           12         72           13         72           14         72           15         72           15         72           12         72           13         72           14         72           15         72           15         72           15         72           15         72           15         72           15         72           16         72           17         72           16         72           17         72           16         72           17         72           18         72           19         72           10         72           10         72           10         72           11         72           12         72           12         72           13         72           14         72		-	<u>う 7号</u> 6 7号は	幾換気空調補機非常用行却水糸小ノノ・行凍機(B)(D)室 ※摘気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	—		
<td></td> <td></td> <td>7 7号相</td> <td>機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室</td> <td></td>			7 7号相	機換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
・         ・         7.54種類な空間構築が正用が出来まがこて・26種類(BD)室 10.754種類な空間構築が正用が出来まがこて・26種類(BD)室 12.754種類な空間構築が正用が出来まがこて・26種類(BD)室 12.754種類な空間構築が正用が出来まがこて・26種類(AD)室 14.754種類な空間構築が正用が出来まがこて・26種類(AD)室 14.754種類な空間構築が正用が出来まがこて・26種類(AD)室 14.754種類な空間構築が正用が出来まがこて・26種類(AD)室 13.754種類な空間構築が正用が出来まがこて・26種類(AD)室 13.754種類な空間構築が正用が出来まがこて・26種類(AD)室 13.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて・26種類(AD)C)室 23.754種類な空間構築が正用が出来まがこて、26種類(AD)C)室 23.754種類な空間(AD)のまたので、26種類(AD)C)室 23.754種類な空間(AD)のまたので、26種類(AD)C)室 23.754種類な空間(AD)のまたので、26種類(AD)C)室 23.754種類な空間(AD)のまたので、27.762 AD)(AD)C) 23.754種類な空間(AD)のまたので、27.762 AD)(AD)C) 23.754種類な空間(AD)のまたので、27.762 AD)(AD)C) 23.754 AD)(AD)(AD)(AD) 23.754 AD)(AD)(AD)(AD)(AD) 23.754 AD)(AD)(AD)(AD)(AD)(AD)(AD) 23.754 AD)(AD)(AD)(AD)(AD)(AD)(AD)(AD)(AD)(AD)(			8 7号校	幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
11         17.94883524888824711/6382/82/2-7-68848(00)1年           12         7.94883524888824711/6382/82/2-7-68848(00)1年           13         7.94883524888824711/6382/82/2-7-68848(0/C)1           13         7.9488524888882711/6382/82/2-7-68848(0/C)1           14         7.9488524888882711/6382/82/2-7-68848(0/C)1           15         7.9488524888882711/6382/82/2-7-6888(0/C)1           14         7.9488524888882711/6382/82/2-7-6888(0/C)1           15         7.9488524888882711/6382/82/2-7-68886(0/C)1           14         7.9488524888882711/6382/82/2-7-68886(0/C)1           15         7.9488524888882711/6382/82/2-7-68886(0/C)1           16         7.9488524888882711/6382/82/2-7-68886(0/C)1           17         7.9488524888882711/6382/82/2-7-68886(0/C)1           18         7.9488524888882711/6382/82/2-7-68886(0/C)1           19         7.9488522888882711/6382/82/2-7-68886(0/C)1           19         7.9488522888882711/6382/82/2-7-68886(0/C)1           19         7.9488522888882711/6382/82/2-7-68886(0/C)1           19         7.948852288882711/6382/82/2-7-68886(0/C)1           19         7.9488528827811/6382/82/2-7-68886(0/C)1           19         7.948852882781/6382/82/7-76888(0/C)1           10         7.948852882781/6382/82/7-76888(0/C)1           10         7.948865288288781/6382/82/7-76888(0			9 7号村	幾換気空調補機非常用冷却水系ポンプ・冷凍機 (B)(D)室			
IN SLI 2700     12     12     75488な空間推動空間か加えなジン・企業権(MOC)     1     1     7488な空間推動空間か加えなジン・企業権(MOC)     1     1     7488な空間推動空間か加えなジン・企業権(MOC)     1     1     75488な空間推動空間か加えなジン・企業権(MOC)     1     1     75488な空間推動空間が加えなジン・企業権(MOC)     1     1     75488な空間対策が用が加えなジン・企業権(MOC)     1     1     75488な空間対策が用が加えなジン・企業権(MOC)     1     1     75488な空間対策が用が加えなジン・企業権(MOC)     1     1     75488な空間対策が用が加えなジン・企業権(MOC)     1     1     75488な空間が振动なが用が加えなジン・企業権(MOC)     1     1     75488な空間が振动なが用が加えなジン・企業権(MOC)     1     1     1     75488な空間対策が用が加えなジン・企業権(MOC)     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1		-	<u>10</u> 7号位 11 7号体	幾換気空調補機非常用行却水糸ホンフ・行倮懱(B)(D)室 ※摘気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室	<u> </u>		
コントロール建築         13         75月後地気空業開催地学用作加速大ポレジ・冷康線(A)(C)室         (1)           14         15         75月後地気空業開催地学用作加速大ポレジ・冷康線(A)(C)室         (1)           15         75月後地気空業開催地学用作加速大ポレジ・冷康線(A)(C)室         (1)           17         75月後地気空業開催地学用作加速大ポレジ・冷康線(A)(C)室         (1)           19         75月後地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           19         75月後地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           19         75月後地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           10         75月後地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           12         75月地地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           12         75月地地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           12         75月地地気空業開催地学用作加大ポレジ・冷康線(A)(C)室         (1)           12         75月地地気空業開催地学用・加大ポレジ・冷康線(A)(C)室         (1)           12         75月地域気空機構体部学用・加大ポレジ・冷康線(A)(C)室         (1)           13         75月地域気空機構体部学用・加大ポルジ・冷康線(A)(C)室         (1)           14         75月地域気空機電         (1)         (1)           14         75月地気気空         (1)         (1)         (1)           14         75月地気気空         (1)         (1)         (1)           12         75月地気気空         (1)         (1)         (1)			12 7号相	幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
T.M.S.L 2700         1         775 保護気空管理機構が開催用水素がシンク発展(A)(O)等         アノシング大協具(内)(L)()           15         757 代援機気空管理機構が開催用水素がシンク発展(A)(O)等         PL:N+v-7           16         757 投機気空管理機構が開催用水素がシンク発展(A)(O)等         PL:N+v-7           18         717         754機気空管理機械が開催用水素がシンク発展(A)(O)等         PL:N+v-7           18         755 投機気空管理機械が開催用水素がシンク発展(A)(O)等         PL:N+v-7           19         755 投機気空管理機械が開催用水素がシンク発展(A)(O)等         PL:N+v-7           10         755 投機気空管理機械が開催用水素がシンク発展(A)(O)等         PL:N+v-7           10         75 投機気空管理機械が用用用水素がシンク発展(A)(O)等         PL:N+v-7           10         75 投機気空管理機械が用用用水素がシンク発展(A)(O)等         PL:N+v-7           10         75 投機気空管理機械が用用用用水素がシンク発展(A)(O)等         PL:N+v-7           12         75 投機気空管理機械が用用用用水素がシンク光構成(A)(O)等         PL:N+v-7           13         75 投機気空管理機械が用用用用水素がシンク光構成(A)(O)等         PL:N+v-7           14         75 投機気空管理機械が用用用加水素がシンク光構成(A)(O)等         PL:N+v-7           15         75		コントロール建屋	13 7号枝	幾換気空調補機非常用冷却水系ポンプ・冷凍機(B)(D)室			
中国         1278歳後期にお用う用や時水ホラン・小市活業機(ACC)         中国・ホッップ           日         17171         1718         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         17171         171711         171711         171711         171		T.M.S.L2700	14 7号村	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	マプリンガナル目(中わじ)		
ドレンライン浸水防止治見			15 7万位 16 7号和	幾換気空調補機非常用行却小ポホンク・行保機(A)(C)室 ※ 換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	入7929式宿兵(内ねし)		
18         79機構協支空間構構定符用の対応スポンジ・冷凍機(AUC)室 1-0         マンジングス出屋(内1.2U)           19         77機機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           20         79機機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           21         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           22         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           23         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           24         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室 2-0         10         10           25         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室         10         10           26         77増機協支空離構構定作用の対応スポンジ・冷凍機(AUC)室         10         10           26         77増機協支空離構成常用の対応スポンジ・冷凍機(AUC)室         10         10           26         77増機協支空離構成常用の対応スポンジ・冷凍機(AUC)室         10         10           25         77増機協支空離構成常用の対応スポンジ・冷凍機(AUC)室         10         10           26         77増機協支空         10         10         10           27         7増機協支空         10         10         10           28         7         10         10         10           29         10         10         10        10			17 7号相	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	閉止キャップ		
19         7考機機気空環構機が空間活動が入るホシア・冷凍機(ACC)室         スプレジス活見(内れど)           20         7考機機気空環構態が空間活動が入るホシア・冷凍機(ACC)室         日本           21         7考機機気空環構態が空間活動が入るホシア・冷凍機(ACC)室         日本           22         7考機機気空環構態が空間活動が入るホシア・冷凍機(ACC)室         日本           23         7考機機気空環構態が空間活動が入るホシア・冷凍機(ACC)室         日本           24         7分機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           25         7考機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空環菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空調菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           26         7分機機気空調菌機能空間活動が入るホシア・冷凍機(ACC)室         日本           27         24         7分機気気空調査         日本           26         7分機構気空調菌         日本         日本           27         24         7分機気気空調査         日本           28         7         7         日本           29         7         7         7           29         7         7         7           29			18 7号根	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
20         17 牙機酸 24.20mm         100 月         100 月           21         7 特機酸 22.20mm         100 月         100 月           22         7 特機酸 22.20mm         100 月         100 月           23         7 特機酸 22.20mm         100 月         100 月           24         7 特機酸 22.20mm         100 月         100 月           25         7 特機酸 22.20mm         100 月         100 月           26         7 労働酸 22.20mm         100 月         100 月           27         7 特徴酸 22.20mm         100 月         100 月           28         100 月         100 月         100 月           29         100 月         100 月         100 月           20         100 月         100 月         100 月           20         100 月         100 月         100 月           20         100 月         100 月         100 月			19 7号村	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	スプリング式治具(内ねじ)		
22         75機機気空酸補機非常用治動大系にシンテ治環境(A)(C)室 23         用止キャップ           23         75機機気空酸補機非常用治動大系にシンテ治環境(A)(C)室 2-75機械気空酸補機非常用治動大系にシンテ治環境(A)(C)室         用止キャップ           25         75機機気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本           26         75機機気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本           25         75機械気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本           26         75機械気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本           27         75機械気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本           28         75機械気空酸補機非常用治動大系にシンテ治環境(A)(C)室         日本		-	<u>20</u> 7号 217号	幾換気空調補機非常用行却水糸ホンフ・行倮懱(A)(C)室 ※摘気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	<u> </u>		
23<17号機換気空調補機非常用合切水系がンプ・冷凍機(A)(C)室			22 7号标	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室			
24       7.9%機械な空調補機定常用冷却水系ポンプ・冷凍機(A)(C)室         25       7.9%機械な空調補機定常用冷却水系ポンプ・冷凍機(A)(C)室         26       7.9%機械な空調補機定常用冷却水系ポンプ・冷凍機(A)(C)室         アンシンライン浸水防止       26			23 7号枝	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	閉止キャップ		
25     1/5/2機関な空調補機非常用合却水系ホング・合建酸(A)(C)室       26     7/5/機関な空調補機非常用合却水系ホング・合建酸(A)(C)室			<u>24 7号</u> 材	幾換気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	<u> </u>		
床 ドレン ライ ノ 浸 液 水 防 上 治 月			<u>25</u> 7号校 267号校	幾換気空調補機非常用伶坷水糸ホンフ・伶倮機(A)(C)室 ※摘気空調補機非常用冷却水系ポンプ・冷凍機(A)(C)室	<u> </u>		
	レンライン浸水防止治具						



図2.9.5 床ドレンライン浸水防止治具の設置位置図(13/15)

設備名称	配置図
床ドレンライン浸水防止治具	<image/> <text></text>
	設置個所浸水防止治具の種類
	<u>1</u>   / / / / / / / / / / / / / / / / / /
	3  建屋外周エリア スブリンク式治具(外ねじ)
	<u>4</u> 建屋外周エリア
	5 健屋外周エリア

図2.9.5 床ドレンライン浸水防止治具の設置位置図(14/15)



図2.9.5 床ドレンライン浸水防止治具の設置位置図(15/15)

2.10 津波監視カメラに関する補足説明

- 2.10 津波監視カメラの設計に関する補足説明
  - 2.10.1 概要

本資料は、津波監視設備のうち津波監視カメラの耐震計算の詳細について説明するも のである。津波監視カメラは、地震後の繰返しの襲来を想定した遡上波に対し、余震、漂 流物の衝突、風及び積雪を考慮した場合においても、波力及び漂流物の影響を受けない場 所として、7 号機主排気筒にカメラ本体を設置し、昼夜にわたり監視可能な設計とする。 また、カメラ本体からの映像信号を中央制御室に設置する津波監視カメラ制御架に伝送 し、中央制御室にて監視可能な設計とする。対象となる津波監視カメラの配置を図 2.10 -1「津波監視カメラ配置図」に示す。



#### 2.10.2 基本方針

津波監視カメラの耐震計算は、V-2-1-9「機能維持の基本方針」にて設定している構造 強度及び機能維持の設計方針に基づき、津波監視カメラが設計用地震力に対して十分な構 造強度及び電気的機能を有していることを確認する。

耐震計算に当たっては津波監視カメラの構成機器を踏まえ評価対象機器を以下の通り設 定する。

- (1) 津波監視カメラ
- (2) 津波監視カメラ制御架

(1) 津波監視カメラ

# 1. 評価方法

1.1 一般事項

図 2.10-1-1 に津波監視カメラの概略構造図を示す。



図 2.10-1-1 概略構造図(津波監視カメラ本体)

カメラ取付架台は鉄骨フレーム構造であり, K7 主排気筒鉄塔部の主柱材に支持されている。

# 1.2 固有周期

津波監視カメラの固有周期は、三次元はりモデルによる固有値解析により求める。固有値 解析の結果、固有周期が 0.05 秒以下であり、剛であることを確認している。



津波監視カメラの解析モデルを図 2.10-1-2 に示す。

図2.10-1-2 解析モデル

#### 1.3 構造強度評価

1.3.1 評価条件

評価に用いる設計用地震力を表 2.10-1-1 に示す。

「基準地震動Ss」による地震力は、V-2-7-2-1「主排気筒の耐震性についての計算書」に基づき設定する。

据付場所 弹性設計用地震動 S d 基準地震動S s 及び 又は静的震度 機器名称 床面高さ 水平方向 水平方向 鉛直方向 鉛直方向 (m) 設計震度 設計震度 設計震度 設計震度 主排気筒 津波監視カメラ T. M. S. L. 76. 660 (U51-ITV- $C_{\rm H} = 6.89$   $C_{\rm V} = 1.82$ (T. M. S. L. 80. 000*) No. STACK1) 主排気筒 津波監視カメラ (U51-ITV-T. M. S. L. 76. 660  $C_{\rm H} = 6.89$   $C_{\rm V} = 1.82$ ____ (T. M. S. L. 80. 000*) No. STACK2)

表 2.10-1-1 設計用地震力(設計基準対象施設)

注記*:基準床レベルを示す。

<雰囲気温度>

40℃ (屋外)

1.3.2 応力計算

津波監視カメラは屋外に設置されるため,耐震計算に考慮する荷重の組合せは以下の とおりとする。

- 固定荷重 + 基準地震動 (Ss) + 風荷重 + 積雪荷重
- ・ 固定荷重

津波監視カメラに作用する固定荷重を表 2.10-1-2に示す。

部位	荷重
津波監視カメラ架台(P ₁ )	0.25kN/m
津波監視カメラ(P₂)	0. 5kN

表 2.10-1-2 固定荷重

• 風荷重

津波監視カメラに作用する風荷重WwLは次式にて求める。

 $W_{WL} \!=\! C f \cdot q$ 

ここで

- W_{WL}: 風荷重(N/m²)
- C f^{*}: 風力係数 = 2.1
  - q : 風荷重の速度圧(N/m²)
- 注記*: 風力係数Cfは日本建築学会 建築物荷重指針・同解説(2004)の値 を使用する。

風荷重の速度圧 q は建築基準法施工令第 87条に基づき次式にて求める。

q =  $0.6 \cdot E \cdot V_0^2$ 

- ここで
  - Vo : 設計基準風速(m/s) = 40.1 m/s
  - E: 速度圧の高さ方向の分布を表す係数

風荷重の速度圧の高さ方向の分布を表す係数Eは次式にて求める。

E = E  $r^2 \cdot G r$ G  $r^*$ : ガスト影響係数 = 2.0 E r : 平均風速の高さ方向の分布を表す係数 E  $r = 1.7 \cdot \left(\frac{Z b}{Z G}\right)^{\alpha}$  (HがZ b以下の場合) E  $r = 1.7 \cdot \left(\frac{H}{Z G}\right)^{\alpha}$  (HがZ b以上の場合) ここで H : カメラ設置高さ = 地上 64.660 m (T.M.S.L.76.660)  $\alpha^*$  : 地表面粗度区分による係数 = 0.15 Z b* : 地表面粗度区分による係数 = 5 Z G* : 地表面粗度区分による係数 = 350 注記*: 当該地の地表面粗度区分 II として建設省告示第 1454 号の値を使用する。

以上より,風荷重の速度圧 q は

E r =1.7 
$$\cdot \left(\frac{64.66}{350}\right)^{0.15}$$
  
=1.319574972  
=1.32

 $=7060 \text{N/m}^2$ 

積雪荷重

津波監視カメラに作用する単位面積当たりの積雪荷重Wsnlは次式にて求める。

 $W_{SNL} = d s \cdot \rho s$ 

ここで

d s^{*1}: 積雪の垂直推積量(cm) = 115.4

 $\rho s^{*2}$ : 積雪の単位荷重  $(N/m^2/cm) = 29.4$ 

注記*1: V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止 に関する基本方針」に基づく積雪量。

*2:新潟県建築基準法施行細則に基づく積雪の単位荷重。

以上より,

 $W_{SNL} = 115.4 \cdot 29.4$ = 3392.76 = 3393N/m²

# 1.3.3 取付ボルトの計算方法

取付ボルトの応力は,三次元はりモデルによる個別解析から取付ボルト部の内力を 求めて,その結果を用いて手計算にて計算する。

ここで、N、Qhb及びQvbは基礎部に作用する力であり解析により求まる。作用 角度及び基礎部に作用する力を図 2.10-1-3 に示す。



図 2.10-1-3 計算モデル(取付ボルト)

(1) 引張応力

取付ボルトに作用する引張力 $F_b$ 

$$F = N \cdot \sin \theta + Q h \cdot \sin (90 - \theta)$$
  
= 108.3 \cdot \sin \theta + 3.62 \cdot \sin (90 - 35.2)  
= \frac{65.39kN}{2}

取付ボルトに作用する引張応力σь

$$\sigma b = \frac{F b}{n \cdot A b}$$
$$= \frac{65.39 \cdot 10^3}{4 \cdot 314}$$
$$= 52.06$$
$$= \frac{52N/mm^2}{4}$$

(2) せん断応力取付ボルトに作用するせん断力Q_b

$$Q_{b} = \sqrt{(N \cdot \cos \theta + Q_{h b} \cdot \cos (90 - \theta))^{2} + Q_{v b}^{2}}$$
$$= \sqrt{(108.3 \cdot \cos \theta + 3.62 \cdot \cos (90 - 35.2))^{2} + 2.11^{2}}$$
$$= 90.61 \text{kN}$$

取付ボルト1本あたりに生じるせん断応力τь

$$\tau_{b} = \frac{Qb}{n \cdot Ab}$$
  
=  $\frac{90.61 \cdot 10^{3}}{4 \cdot 314}$   
= 72.14  
=  $\frac{73N/mm^{2}}{2}$   
ここで  
n : 取付ボルトの本数 = 4本  
Ab: 取付ボルトの軸断面積 = 314mm²
1.3.4 応力の評価方法

取付ボルトの許容応力評価条件を表 2.10-1-3 に,許容応力の算出方法を表 2.10-1-4 に示す。

 評価部材
 村料
 許容限界 (N/mm²)

 取付ボルト
 F8T
 375*
 180*

表 2.10-1-3 使用材料の許容応力評価条件(設計基準対象施設)

*:鋼構造設計規準・同解説-許容応力度設計法-に基づく値。

 

 (マンドの「「「「「「」」」」」」」」」」

 許容限界*1,*2 (ボルト等) 

 許容応力状態

 一次応力

 引張り

 せん断

 IIIAS

 1.5・ft

表 2.10-1-4 許容応力 (その他の支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力 で代表可能である場合は評価を省略する。

- (1) 許容引張応力
   許容引張応力 f_{ts}
   f_{ts}=Min(1.4・f_{to}-1.6・τ_b, f_{to})
  - =Min(1.4 375-1.6 72.14,375) =Min(409,375) =<u>375N/mm²</u>
- (2) 許容せん断応力許容せん断応力 fst

$$f_{s t} = f_{s \circ} \cdot (1 - \frac{\sigma b \cdot A b}{T_{\circ}})$$
  
= 180 · (1 -  $\frac{52.06 \cdot 314}{133000}$ )  
= 157.87645  
= 157N/mm²  
注記*:ここで、T_oは高力ボルトの設計ボルト張力であり、鋼構造設計規準・同

解説-許容応力度設計法-に基づき算定する。

資料 8-2.10-12

1.3.5 カメラ架台の計算方法

カメラ架台は、三次元はりモデルによる個別解析から架台の内力を求めて、その結 果を用いて手計算にて計算する。

カメラ架台に作用する力は図2.10-1-4に示す通りである。



図 2.10-1-4 計算モデル (カメラ架台)

カメラ架台に作用する引張応力 $\sigma$ t,曲げ応力 $\sigma$ bv, $\sigma$ bh及びせん断応力 $\tau$ v,  $\tau$ hは次式より求める。

$$\sigma t = \frac{N t \cdot 10^{3}}{A e} = \frac{108.83 \cdot 10^{3}}{1652} = 65.87 = \underline{66}$$

$$\sigma b v = \frac{M v \cdot 10^{6}}{Z v} = \frac{0.83 \cdot 10^{6}}{134890} = 6.15 = \underline{7}$$

$$\sigma b h = \frac{M h \cdot 10^{6}}{Z h} = \frac{3.58 \cdot 10^{6}}{32006} = 111.85 = \underline{112}$$

$$\tau v = \frac{Q v w \cdot 10^{3}}{A v} = \frac{4.17 \cdot 10^{3}}{910} = 4.58 = \underline{5}$$

$$\tau h = \frac{Q h w \cdot 10^{3}}{A h} = \frac{10.09 \cdot 10^{3}}{1800} = 5.60 = \underline{6}$$

ここで、Nt, Mv, Mh, Qvw, Qhwはカメラ架台に作用する力であり解析 により求まる。

(1) 引張り
 カメラ架台の引張応力σtは鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma t}{f_t} \leq 1$$

(2) 曲げ

カメラ架台の曲げ応力σ b v, σ b h は鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma \mathbf{b} \mathbf{v}}{f \mathbf{b}} \leq 1$$
$$\frac{\sigma \mathbf{b} \mathbf{h}}{f \mathbf{b}} \leq 1$$

(3) せん断

カメラ架台のせん断応力τν, τhは鋼構造設計規準より基づく下式を満足すること。

$$\frac{\tau v}{f_{s}} \leq 1$$
$$\frac{\tau h}{f_{s}} \leq 1$$

(4) 組合わせ

カメラ架台の組合せ応力は鋼構造設計規準より基づく下式を満足すること。

$$\frac{\sigma_{\rm t}}{f_{\rm t}} + \frac{\sigma_{\rm b} + \sigma_{\rm b} v}{f_{\rm b}} \leq 1$$

1.3.6 応力の評価方法

カメラ架台の許容応力評価条件を表 2.10-1-5 に,許容応力の算出方法を表 2.10-1-6 に示す。

表 2.10-1-5 使用材料の許容応力評価条件(設計基準対象施設)

		許容限界 (N/mm ² )					
評価部材	材料	引張り	せん断	圧縮	曲げ		
カメラ架台	SN490B	325*	187*	325*	325*		

*:鋼構造設計規準・同解説-許容応力度設計法-に基づく値。

		許容限界* ^{1,*2} (ボルト等以外)		
許容応力状態	一次応力			
	引張り	せん断	曲げ	
III A S	1.5 • f t	1.5 • f s	1.5 • f b	

表 2.10-1-6 許容応力 (その他の支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力 で代表可能である場合は評価を省略する。

## 1.3.7 計算条件

評価に用いる数値を表 2.10-1-7 に示す。

項目	記号	単位	数值等
カメラ架台固定荷重	P1	kN/m	0.25
カメラ本体固定荷重	P2	kN	0.50
水平方向設計震度	Сн	-	6.89
鉛直方向設計震度	C v	-	1.82
風荷重の速度圧*	q	$N/m^2$	3360
風力係数	C f	-	2.1
積雪の垂直堆積量	d s	cm	115.4
積雪の単位荷重	ρs	N/m²/cm	29.4
取付ボルトの軸断面積	A b	$mm^2$	314
取付ボルトの本数	n	-	4
取付ボルトの短期許容引張応力度	f t o	$N/mm^2$	375
取付ボルトの短期許容せん断応力度	f _{so}	$N/mm^2$	180
取付ボルトの設計ボルト張力	Τo	kN	133
基礎部に作用する引張力	Ν	kN	108.3
基礎部に作用するせん断力 (Y 方向)	Q h b	kN	3.62
基礎部に作用するせん断力(Z方向)	Qvb	kN	2.11
作用力の角度	θ	0	35.2
鋼材の断面積	А	$\mathrm{mm}^2$	2710
鋼材の引張軸力時有効断面積	A e	$\mathrm{mm}^2$	1652
鋼材のせん断有効断面積(Z 方向)	Av	$\mathrm{mm}^2$	910
鋼材のせん断有効断面積(Y方向)	Ah	$\mathrm{mm}^2$	1800
鋼材の断面係数(Y 方向)	Zh	mm ³	32006
鋼材の断面係数(Z 方向)	Z v	mm ³	134890
鋼材に作用する最大引張軸力	N t	kN	108.83
鋼材に作用する最大曲げモーメント(Y 軸周り)	Mh	kN • m	3. 58
鋼材に作用する最大曲げモーメント(Z軸周り)	Mv	kN • m	0.83
鋼材に作用する最大せん断力 (Y 方向)	Q h w	kN	10.09
鋼材に作用する最大せん断力(Z方向)	Q v w	kN	4.17
鋼材の許容引張応力度	f t	$N/mm^2$	325
鋼材の許容曲げ断応力度	f _b	$N/mm^2$	325
鋼材の許容せん断応力度	fs	$N/mm^2$	187

表 2.10-1-7 計算条件

注記*:設計基準風速 40.1m/s から算出した値。

1.3.8 構造強度評価結果

取付ボルトの構造強度評価の結果を表 2.10-1-8 に示す。発生応力が許容応力以下 であることから,取付ボルトが構造健全性を有することを確認した。

部位	評価応力	算出応力 (N/mm ² )	許容応力 (N/mm ² )	検定比
西台书工具	引張り	σ b=52	ft s=375*	0.14
以小小ア	せん断	τь=73	$f_{ m s\ t}$ =157	0.47
		>> == .	C E	

表 2.10-1-8 カメラ取付ボルトの応力評価結果

注記* :  $f_{ts} = Min[1.4 \cdot f_{to} - 1.6 \cdot \tau_{b}, f_{to}]$ 

カメラ架台の構造強度評価の結果を表 2.10-1-9 に示す。発生応力が許容応力以下 であることから、カメラ架台が構造健全性を有することを確認した。

				• 11 H-110 1									
評価 部位	応力		応力		応力		応力		応力 発生		発生応力(N/mm ² )	許容応力(N/mm²)	検定比
	引張り		σ t=66	$f_{\rm t} = 325$	0.21								
	曲げ	Y方向	σ b h=112	$f_{\rm b} = 325$	0.35								
カノラ		Z方向	$\sigma$ b v = 7	$f_{\rm b} = 325$	0.02								
カメノ	よく医	Y方向	$\tau$ h=6	$f_{s} = 187$	0.03								
禾口	セん例	Z方向	$\tau v = 5$	$f_{s} = 187$	0.03								
	如厶	14 14	σ t =66	$f_{\rm t} = 325$	0.57*								
	組合せ		組合せ σ b h + σ b v =119 ft		0.97*								

表 2.10-1-9 基準地震動 Ss に対する評価結果

注記*:組合せの検定比= $\frac{\sigma t}{f t} + \frac{\sigma b h + \sigma b v}{f_b}$ 

(2) 津波監視カメラ制御架

## 1. 評価方法

1.1 一般事項



図 2.10-2-1 に津波監視カメラ制御架の概略構造図を示す。

(正面方向)

(側面方向)

図 2.10-2-1 概略構造図(津波監視カメラ制御架)

1.2 固有周期

津波監視カメラ制御架の固有周期は,構造が同等であり,同様な振動特性を持つ盤に対す る振動試験(自由振動試験)の結果確認された固有周期を使用する。

#### 1.3 構造強度評価

1.3.1 評価条件

評価に用いる設計用地震力を表 2.10-2-2 に示す。

津波監視カメラ制御架の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

機器名称	据付場所 及び	弾性設計用 又は静	弾性設計用地震動Sd 又は静的震度		基準地震動S s	
	床面高さ (m)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
津波監視カメラ 制御架 (H11-P905)	コントロール建屋 T.M.S.L. 173.00 (T.M.S.L. 24.100*)	_		Сн=2.38	Cv = 1.46	

表 2.10-2-2 設計用地震力

注記*:基準床レベルを示す。

<雰囲気温度>

26℃(中央制御室)

## 1.3.2 応力計算

(1) 引張応力

水平方向の引張力F_{b11} F_{b11}= $\frac{m_1 \cdot (1+Cv) \cdot h_2 \cdot g}{n_{fv1} \cdot \ell_{21}} + \frac{m_1 \cdot CH \cdot h_1 \cdot g}{n_{fH1} \cdot \ell_{11}}$ F_{b11}= $\frac{253 \cdot (1+1.46) \cdot 380 \cdot 9.80665}{2 \cdot 1120} + \frac{253 \cdot 2.38 \cdot 380 \cdot 9.80665}{4 \cdot 540}$ = $\frac{2.074 \times 10^{3}N}{2}$ 

鉛直方向の引張力F b21

$$F_{b 21} = \frac{m_1 \cdot (1 + C_v) \cdot h_1 \cdot g + m_1 \cdot C_H \cdot \ell_{11} \cdot g}{n_{f_v 1} \cdot \ell_{21}}$$

$$F_{b 21} = \frac{253 \cdot (1 + 1.46) \cdot 380 \cdot 9.80665 + 253 \cdot 2.38 \cdot 553 \cdot 9.80665}{2 \cdot 1120}$$

$$= \underline{2.493 \cdot 10^3 N}$$

ボルトに作用する引張応力σ b1

$$\sigma b_{1} = \frac{F b_{1}}{A b_{1}}$$
$$= 2.493 \cdot 10^{3}/201.061$$
$$= 12.40MPa$$

ボルトに作用するせん断力Q b1

$$Q_{b1} = \sqrt{(Q_{b11}^{2} + Q_{b21}^{2})}$$
$$= \sqrt{(5904.976^{2} + 6103.462^{2})}$$
$$= 8492.408N$$

ボルト1本あたりに作用するせん断応力τь

$$\tau_{b1} = \frac{Q b_1}{n_1 \cdot A b_1} = \frac{8492.408}{8 \cdot 201.601} = 5.279 = \frac{6MPa}{8}$$

1.3.3 応力の評価方法

基礎ボルトの許容応力評価条件を表 2.10-2-3 に示す。

表 2.10-2-3 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		Sy (MPa)	Su (MPa)	Sy(RT) (MPa)
基礎ボルト	SUS304	周囲環境温度	26	205	520	205

(1) F 値

設計温度における使用部材の設計降伏点Syと設計引張強さSuは2005 設計・建設 規格第I編 付録図表 Part5 表 8, 表 9 より 26℃におけるS_y=205MPa 26℃におけるS_u=520MPa F1=Min(S_y, 0.7S_u) =Min(205, 0.7 · 520) =Min(205, 364) =<u>205MPa</u>
(2) 許容引張応力

許容引張応力 
$$f_{t s 1}$$
  
 $f_{t s 1} = Min(1.4 \cdot f_{t o 1} - 1.6 \cdot \tau_{b1}, f_{t o 1}) \cdot 0.8$   
 $f_{t o 1} = \frac{F_1}{2} \cdot 1.5$   
 $= \frac{205}{2} \cdot 1.5$   
 $= \frac{153.75MPa}{2}$   
 $f_{t s 1} = Min(1.4 \cdot 123 - 1.6 \cdot 5.279) \cdot 0.8$ 

$$=$$
Min(206.8, 153.75)  $\cdot$  0.8

注: JEAG4601・補-1984 に基づき,後施工アンカの許容応力は20%低減を考慮する。

(3) 許容せん断応力許容せん断応力 f_{st1}

$$f_{s t 1} = \frac{F_1}{1.5 \cdot \sqrt{3}} \cdot 1.5 \cdot 0.8$$
$$= \frac{205}{1.5 \cdot \sqrt{3}} \cdot 1.5 \cdot 0.8$$
$$= 94.685444$$

=<u>94MPa</u>

注: JEAG4601・補-1984 に基づき,後施工アンカの許容応力は20%低減を考慮する。

### 1.3.4 構造強度評価結果

基礎ボルトの構造強度評価の結果を表 2.10-2-4 に示す。発生応力が許容応力以下 であることから、基礎ボルトが構造健全性を有することを確認した。

立て人士	<b>莎</b> (本) 古	算出応力	許容応力
<u></u> [14	計ゴロルロノノ	(MPa)	(MPa)
基礎ボルト	引張り	σ b 1 =13	$f_{t s 1} = 123^*$
(i = 1)	せん断	τ b 1 =6	<i>f</i> _{st1} =94

表 2.10-2-4 津波監視カメラ制御架の構造強度評価

注記*: $f_{tsi} = Min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$ 

2.11 加振試験の条件について

- 2.11 加振試験の条件について
  - (1) 概要

本資料は、津波に関連する浸水防止設備の床ドレンライン浸水防止治具及びフラップゲート、津波監視設備の津波監視カメラ及び取水槽水位計について、加振試験により止水性の機 能又は電気的機能の機能維持を確認した内容について説明するものである。

(2) 判定基準の設定

床ドレンライン浸水防止治具及びフラップゲートのように止水性の機能維持が必要とさ れる設備については、地震時の応答加速度が、漏えい試験によって止水性の機能維持を確認 した機能確認済加速度以下であることを確認する。

津波監視設備の津波監視カメラ及び取水槽水位計のように電気的機能維持が要求される 電気計装設備の機能維持については、原則として地震時の応答速度が各々の器具等に対する 加振試験により得られた加速度以下であることを確認する。

(3) 試験結果

判定基準を満足していることを確認した。機能確認済加速度は以下を参照。

- ・床ドレンライン浸水防止治具・・・本補足説明資料 2.9 章「床ドレンライン浸水防止治 具を構成する各部材の評価及び機能維持の確認方針について」
- ・フラップゲート・・・本補足説明資料 2.15 章「フラップゲートの加振試験に関する 補足説明」
- ・津波監視カメラ・・・工事計画に係る説明資料(機器・配管系の耐震性についての計算書) 資料7「加振試験について」
- ・取水槽水位計・・・・工事計画に係る説明資料(機器・配管系の耐震性についての計算書) 資料7「加振試験について」

2.12 水密扉の設計に関する補足説明

目 次

1. 耐	震評価 ······ 1
1.1	入力値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.2	耐震評価結果······ 13
2. 強	度評価 ····· 25
2.1	入力值······25
2.2	強度評価結果······ 28
3. 強	度評価(溢水) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 31
3.1	入力値 · · · · · · · · · · · · · · · · · · ·
3.2	強度評価結果······ 44

## 1. 耐震評価

V-2-10-2-3-1「水密扉の耐震性についての計算書」における検討対象水密扉について, 以下に耐震評価に必要な入力値と耐震評価結果を示す。

# 1.1 入力値

		20.11					水密扉No.		
对家部位		記号	単位	儿 我	1	2	3	4	5
		G	kN	扉重量	6.34	6.28	6.28	6.34	6.34
		k _H	-	水平震度	0.856	0.856	0.856	0.856	0.856
		k _{UD}	-	鉛直震度	0.835	0.835	0.835	0.835	0.835
ŧ	专通	L 1	mm	扉重心とヒンジ芯間距離	573	700	700	573	573
		L ₂	mm	ヒンジ芯間距離	1799	1799	1799	1799	1799
		W $_1$	kN	スラスト荷重	11.7	11.6	11.6	11.7	11.7
		F 1	kN	転倒力	6.45	7.21	7.21	6.45	6.45
		L ₃	mm	ヒンジ板の2軸間距離	220	220	220	220	220
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	68.8	68.3	68.3	68.8	68.8
		τ	$N/mm^2$	せん断応力度	3.90	3.87	3.87	3.90	3.90
H \ / 32		L ₄	mm	ヒンジ板と受板間距離	10	10	10	10	10
<i>ЕУУ</i>	ヒンジピン	σ	$N/mm^2$	曲げ応力度	27.0	31.0	31.0	27.0	27.0
		τ	$N/mm^2$	せん断応力度	12.3	13.8	13.8	12.3	12.3
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	53.0	54.3	54.3	53.0	53.0
	共通	n 2	本	締付装置の本数	2	2	2	2	2
		L 5	mm	締付装置の突出長さ	32	32	32	32	32
	締付装置	σ	$N/mm^2$	曲げ応力度	7.34	7.34	7.34	7.34	7.34
		τ	$N/mm^2$	せん断応力度	1.85	1.83	1.83	1.85	1.85
(本/+)壮果か		L p	mm	締付装置受けピンの軸支持間距離	77	77	77	77	77
柳门浓匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	34.0	34.0	34.6	34.6
		τ	$N/mm^2$	せん断応力度	3.71	3.68	3.68	3.71	3.71
	締付装置	n b	本	締付装置受けボルトの本数	2	2	2	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	8.07	7.98	7.98	8.07	8.07
		w _a	kN	扉枠の重量	2.65	2.85	2.85	2.65	2.65
		n ₃	本	ヒンジ側アンカーボルトの本数	6	6	6	6	6
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	2.36	2.64	2.64	2.36	2.36
, , , , ,	NU/K I	Q _d	kN	アンカーボルト1本当りのせん断力	2.36	2.64	2.64	2.36	2.36
		Та	kN	アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
			kN	アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1

+14	7	20.0	224 AL	والا والم			水密扉No.		
XT 3	泉部12	記号	単位	定義	6	7	8	9	10
		G	kN	扉重量	6.34	6.34	6.34	6.34	6.34
		k _H	-	水平震度	0.856	0.856	0.856	0.856	0.856
		k _{UD}	-	鉛直震度	0.835	0.835	0.835	0.835	0.835
ŧ	+ 通	L 1	mm	扉重心とヒンジ芯間距離	573	573	573	573	573
		L ₂	mm	ヒンジ芯間距離	1799	1799	1799	1799	1799
		W 1	kN	スラスト荷重	11.7	11.7	11.7	11.7	11.7
		F 1	kN	転倒力	6.45	6.45	6.45	6.45	6.45
		L ₃	mm	ヒンジ板の2軸間距離	220	220	220	220	220
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	68.8	68.8	68.8	68.8	68.8
		τ	$N/mm^2$	せん断応力度	3.90	3.90	3.90	3.90	3.90
6 1/32		L ₄	mm	ヒンジ板と受板間距離	10	10	10	10	10
L / /	ヒンジピン	σ	$N/mm^2$	曲げ応力度	27.0	27.0	27.0	27.0	27.0
		τ	$N/mm^2$	せん断応力度	12.3	12.3	12.3	12.3	12.3
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	53.0	53.0	53.0	53.0	53.0
	共通	n 2	本	締付装置の本数	2	2	2	2	2
		L 5	mm	締付装置の突出長さ	32	32	32	32	32
	締付装置	σ	$N/mm^2$	曲げ応力度	7.34	7.34	7.34	7.34	7.34
		τ	$N/mm^2$	せん断応力度	1.85	1.85	1.85	1.85	1.85
<u>统</u> , 井井里 加		L p	mm	締付装置受けピンの軸支持間距離	77	77	77	77	77
和竹 表直司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	_	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	34.6	34.6	34.6	34.6
		τ	$N/mm^2$	せん断応力度	3.71	3.71	3.71	3.71	3.71
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	2	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	8.07	8.07	8.07	8.07	8.07
		w a	kN	扉枠の重量	2.65	2.65	2.65	2.65	2.65
		n ₃	本	ヒンジ側アンカーボルトの本数	6	6	6	6	6
7.14	ーザルト	T _d	kN	アンカーボルト1本当りの引張力	2.36	2.36	2.36	2.36	2.36
120	- 407P P	Q _d	kN	アンカーボルト1本当りのせん断力	2.36	2.36	2.36	2.36	2.36
		Та	kN	アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1

対象部位		÷1 D	114 /-t-				水密扉No.		
X] 3	R 前小 <u>厂</u>	記方	単位	LE 戦	11	12	13	14	15
		G	kN	扉重量	75.4	79.5	281	13.8	13.8
		k _H	-	水平震度	0.856	0.856	3.47	0.941	0.941
		k _{UD}	-	鉛直震度	0.834	0.834	0.890	0.901	0.901
ŧ	专通	L 1	mm	扉重心とヒンジ芯間距離	1047	1365	3115	545	545
		L ₂	mm	ヒンジ芯間距離	1813	1920	4824	1606	1606
		W 1	kN	スラスト荷重	139	146	532	26.3	26.3
		F 1	kN	転倒力	113	138	831	15.5	15.5
		L ₃	mm	ヒンジ板の2軸間距離	410	410	577	190	190
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	145	153	65.7	53.0	53.0
		τ	$N/mm^2$	せん断応力度	9.40	9.92	7.59	4.18	4.18
F 1/32		L ₄	mm	ヒンジ板と受板間距離	50	50	107	35	35
L 7 9	ヒンジピン	σ	$N/mm^2$	曲げ応力度	79.0	97.0	156	134	134
		τ	$N/mm^2$	せん断応力度	23.6	28.9	43.6	21.5	21.5
	1. 1. 22-22 1. 1	n 1	本	ヒンジボルトの本数	6	6	8	4	4
	C > > 4/10 F	τ	$N/mm^2$	せん断応力度	113	127	169	64.9	64.9
	共通	n 2	本	締付装置の本数	4	4	12	4	4
		L 5	mm	締付装置の突出長さ	62	62	114	85	85
	締付装置	σ	$N/mm^2$	曲げ応力度	37.5	39.7	186	22.9	22.9
		τ	$N/mm^2$	せん断応力度	6.49	6.84	21.6	2.21	2.21
(会/+) 壮 墨 立/		L p	mm	締付装置受けピンの軸支持間距離	73	73	112	60	60
神竹 波直司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	35	35	54	33	33
	受けピン	σ	$N/mm^2$	曲げ応力度	7.18	7.58	55.3	17.9	17.9
		τ	$N/mm^2$	せん断応力度	5.49	5.79	27.6	6.93	6.93
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	4	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	16.5	34.8	- *1	5.18	5.18
		w _a	kN	扉枠の重量	28.5	21.6	128	10.8	10.8
			本	ヒンジ側アンカーボルトの本数	23	8	90	10	10
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	10.3	35.7	21.0	3.61	3.61
, , , , ,	MOVE 1	$Q_{\rm d}$	kN	アンカーボルト1本当りのせん断力	10.3	35.7	21.0	3.61	3.61
		Та	kN	アンカーボルト1本当りの短期許容引張力	44.6	70.0	50.2	38.8	45.6
			kN	アンカーボルト1本当りの短期許容せん断力	14.2	49.0	26.8	17.5	10.2

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

+14	z. +n /1.	20.11	W 44	ويلاد وبلير			水密扉No.		
对3	泉部位.	記号	単位	<b>正</b> 義	16	17	18	19	20
		G	kN	扉重量	122	13.8	151	107	91.0
		k _H	-	水平震度	0.941	0.941	0.941	0.941	0.941
		k _{UD}	-	鉛直震度	0.901	0.901	0.901	0.901	0.901
共通		L 1	mm	扉重心とヒンジ芯間距離	2160	545	2103	2160	2010
	-		mm	ヒンジ芯間距離	3810	1606	3067	4034	2198
		W 1	kN	スラスト荷重	232	26.3	288	204	173
		F 1	kN	転倒力	189	15.5	268	160	202
		L ₃	mm	ヒンジ板の2軸間距離	600	190	600	600	400
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	95.5	53.0	69.8	53.3	54.7
		τ	$N/mm^2$	せん断応力度	6.63	4.18	4.46	3.70	4.56
H \/32		L ₄	mm	ヒンジ板と受板間距離	30	35	59	30	54
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	80.0	134	94.0	67.0	131
ヒンジ		τ	$N/mm^2$	せん断応力度	39.6	21.5	31.6	33.4	37.9
	ヒンジザルト	n 1	本	ヒンジボルトの本数	6	4	4	6	4
	C > > 1/1/1/	τ	$N/mm^2$	せん断応力度	119	64.9	135	103	109
共通		n ₂	本	締付装置の本数	12	4	12	12	8
		L 5	mm	締付装置の突出長さ	115	85	90	97	92
	締付装置	σ	$N/mm^2$	曲げ応力度	52.4	22.9	87.2	38.7	80.7
		τ	$N/mm^2$	せん断応力度	4.52	2.21	8.05	3.97	7.28
接付装置刘		L p	mm	締付装置受けピンの軸支持間距離	98	60	67	98	63
ND 13 38 EL DD	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	96	33	30	-	30
	受けピン	σ	$N/mm^2$	曲げ応力度	38.3	17.9	40.5	198	33.3
		τ	$N/mm^2$	せん断応力度	16.8	6.93	16.2	14.8	14.6
	締付装置	n _b	本	締付装置受けボルトの本数	4	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	- *1	5.18	- *1	- *1	- *1
		W a	kN	扉枠の重量	124	10.8	148	93.2	78.5
		n 3	本	ヒンジ側アンカーボルトの本数	46	10	29	43	24
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	9.48	3.61	20.9	8.43	18.3
, , , , ,	WITE 1.	$Q_{d}$	kN	アンカーボルト1本当りのせん断力	9.48	3.61	20.9	8.43	18.3
		Та	kN	アンカーボルト1本当りの短期許容引張力	35.7	40.7	34.7	37.9	38.0
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	35.0	16.6	35.0	35.0	19.1

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

		⇒n ¤	334 J-t-				水密扉No.		
X] 3	K 司미 <u>177</u>	武巧	里1业	LL 非近	21	22	23	24	25
		G	kN	扉重量	141	7.85	6.87	5.89	6.87
		k _H	-	水平震度	0.941	1.01	1.36	0.814	0.814
		k _{UD}	-	鉛直震度	0.901	0.927	0.984	0.740	0.740
ŧ	共通 L ₁		mm	扉重心とヒンジ芯間距離	2115	517	440	558	636
	L ₂		mm	ヒンジ芯間距離	3482	1516	1697	1720	1068
		W 1	kN	スラスト荷重	269	15.2	13.7	10.3	12.0
		F 1	kN	転倒力	230	9.16	8.23	5.73	9.92
		L ₃	mm	ヒンジ板の2軸間距離	500	190	155	235	400
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	58.5	50.6	12.7	34.3	28.8
		τ	$N/mm^2$	せん断応力度	4.88	3.11	1.64	1.83	1.20
トンジ		L ₄	mm	ヒンジ板と受板間距離	59	35	36	20	33
2.7.7	ヒンジピン	σ	$N/mm^2$	曲げ応力度	80.0	79.0	50.0	19.1	38.1
-		τ	$N/mm^2$	せん断応力度	27.1	12.8	8.90	6.09	8.32
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	2004001	τ	$N/mm^2$	せん断応力度	121	37.8	34.1	25.0	33.1
	共通	n 2	本	締付装置の本数	12	4	2	4	6
		L 5	mm	締付装置の突出長さ	92	93	39	50	73
	締付装置	σ	$N/mm^2$	曲げ応力度	83.2	15.5	15.5	2.83	3.26
		τ	$N/mm^2$	せん断応力度	7.52	1.36	3.18	0.425	0.333
缔付装置部		L p	mm	締付装置受けピンの軸支持間距離	63	78	64	110	72
10113 20 E UP	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	30	33	33	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	34.6	16.6	28.1	1.65	3.19
		τ	$N/mm^2$	せん断応力度	15.1	4.25	9.94	0.480	0.375
	締付装置	n _b	本	締付装置受けボルトの本数	4	2	2	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	- *1	3.17	7.46	1.29	1.92
		w _a	kN	扉枠の重量	118	3. 93	3.54	5.40	14.7
		n 3	本	ヒンジ側アンカーボルトの本数	34	5	5	6	2
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	15.2	4.08	3.81	1.14	6.46
, , , ,	1977 F	Q _d	kN	アンカーボルト1本当りのせん断力	15.2	4.08	3.81	1.14	6.46
		Та	kN	アンカーボルト1本当りの短期許容引張力	37.9	34.9	57.5	34.1	57.5
		Q a	kN	アンカーボルト1本当りの短期許容せん断力	17.6	18.4	24.3	23.9	40.1

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。

	7. +n /L.	20.11	224 AL	وتحد جلح			水密扉No.		
刘鸿	R 部位	記号	単位	正義	26	27	28	29	30
		G	kN	扉重量	6.87	6.88	6.62	6.38	7.51
		k _H	-	水平震度	0.814	0.814	0.814	0.814	0.814
		k _{UD}	-	鉛直震度	0.740	0.740	0.740	0.740	0.740
共通		L 1	mm	扉重心とヒンジ芯間距離	636	580	580	558	457
		L ₂	mm	ヒンジ芯間距離	1273	1760	1760	1720	1674
		W 1	kN	スラスト荷重	12.0	12.0	11.6	11.2	13.1
		F 1	kN	転倒力	8.78	6.75	6.50	6.21	6.63
		L ₃	mm	ヒンジ板の2軸間距離	400	250	250	235	245
	ヒンジ板		$N/mm^2$	曲げ応力度	28.8	80.0	76.8	37.3	45.7
		τ	$N/mm^2$	せん断応力度	1.20	4.00	3.84	1.98	2.33
F 1/32		L ₄	mm	ヒンジ板と受板間距離	33	15	15	20	21
E	ヒンジピン	σ	$N/mm^2$	曲げ応力度	33.6	71.8	65.3	20.7	23.9
		τ	$N/mm^2$	せん断応力度	7.37	18.4	17.7	6.60	7.04
	ヒンジザルト	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	2224701	τ	$N/mm^2$	せん断応力度	31.6	54.5	52.4	27.1	31.2
共通		n 2	本	締付装置の本数	6	2	2	4	4
		L 5	mm	締付装置の突出長さ	73	50	50	50	52
	締付装置	σ	$N/mm^2$	曲げ応力度	3.26	11.5	11.1	3.07	3.79
		τ	$N/mm^2$	せん断応力度	0.333	1.44	1.38	0.460	0.542
(弦/+)壮界が		L p	mm	締付装置受けピンの軸支持間距離	72	77	77	110	112
柳门波但印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	3.19	39.2	39.2	1.79	2.16
		τ	$N/mm^2$	せん断応力度	0.375	2.87	2.76	0.520	0.610
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	2	4	4
	受けボルト	$\sigma_{\rm t}$	$N/mm^2$	引張応力度	1.92	24.4	23.3	1.42	1.67
		w _a	kN	扉枠の重量	13.7	3.05	3.05	4.42	4.42
		n ₃	本	ヒンジ側アンカーボルトの本数	2	3	3	6	6
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	5.79	2.46	2.38	1.19	1.26
, , , , ,	NU/P I	Q d	kN	アンカーボルト1本当りのせん断力	5.79	2.46	2.38	1.19	1.26
		Та	kN	アンカーボルト1本当りの短期許容引張力	57.5	32.1	32.1	34.1	34.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	40.1	11.7	11.7	23.9	23.9

<del>21</del> 6	有如应	히브	用任	定美			水密扉No.		
X] 3	9C DDJ7	16.75	单位	人亡 非论	31	32	33	34	35
		G	kN	扉重量	6.38	6.38	6.81	9.32	6.87
		k _H	-	水平震度	0.814	0.941	0.941	0.941	0.941
		k _{UD}	-	鉛直震度	0.740	0.747	0.747	0.747	0.747
ŧ	共通	L 1	mm	扉重心とヒンジ芯間距離	558	558	558	558	636
		L ₂	mm	ヒンジ芯間距離	1720	1720	1720	1720	1105
		W 1	kN	スラスト荷重	11.2	11.2	11.9	16.3	12.1
		F 1	kN	転倒力	6.21	6.62	7.07	9.67	10.2
		L ₃	mm	ヒンジ板の2軸間距離	235	235	235	235	400
	ヒンジ板		$N/mm^2$	曲げ応力度	37.3	37.5	39.9	54.5	28.9
		τ	$N/mm^2$	せん断応力度	1.98	1.99	2.12	2.90	1.21
トンジ		L 4	mm	ヒンジ板と受板間距離	20	20	20	20	33
ヒンジ ヒンジピン	ヒンジピン	: ンジピン σ	$N/mm^2$	曲げ応力度	20.7	22.3	23.9	31.9	39.2
		τ	$N/mm^2$	せん断応力度	6.60	7.03	7.51	10.3	8.52
	ヒンジボルト・	n 1	本	ヒンジボルトの本数	4	4	4	4	4
		τ	$N/mm^2$	せん断応力度	27.1	27.7	29.5	40.3	33.5
	共通	n 2	本	締付装置の本数	4	4	4	4	6
		L 5	mm	締付装置の突出長さ	50	50	50	65	73
	締付装置	σ	$N/mm^2$	曲げ応力度	3.07	3.57	3.80	4.25	3.75
		τ	$N/mm^2$	せん断応力度	0.460	0.535	0.570	0.572	0.383
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	110	110	110	110	72
柳竹漆匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	_	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	1.79	2.08	2.21	3.02	3.19
		τ	$N/mm^2$	せん断応力度	0.520	0.610	0.650	0.880	0.430
	締付装置	n _b	本	締付装置受けボルトの本数	4	4	4	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	1.42	1.63	1.76	2.36	2.21
		w _a	kN	扉枠の重量	4.91	4.91	4.42	15.2	16.7
		n ₃	本	ヒンジ側アンカーボルトの本数	5	6	6	14	4
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	1.45	1.30	1.36	0.947	3.52
, , ,	M-24 1.	Q d	kN	アンカーボルト1本当りのせん断力	1.45	1.30	1.36	0.947	3.52
		Та	kN	アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	29.7	57.5
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	22.3	23.9	23.9	13.3	40.1

	z. +n /1.	20.0	W 61-	والحد وسلم			水密扉No.		
×T3	泉部位.	記号	単位	正義	36	37	38	39	40
		G	kN	扉重量	6.87	6.38	6.38	6.34	5.40
		k _H	-	水平震度	0.941	1.02	1.02	1.02	1.02
		k _{UD}	-	鉛直震度	0.747	0.786	0.786	0.786	0.786
ŧ	共通         L ₁ mm         屏重心とヒンジ芯		扉重心とヒンジ芯間距離	636	558	558	580	580	
	L 1 L 2		mm	ヒンジ芯間距離	1244	1720	1720	1760	1760
		W 1	kN	スラスト荷重	12.1	11.4	11.4	11.4	9.65
		F 1	kN	転倒力	9.38	6.96	6.96	6.97	5.94
		L ₃	mm	ヒンジ板の2軸間距離	400	235	235	250	250
	ヒンジ板		$N/mm^2$	曲げ応力度	28.9	38.2	38.2	75.8	64.6
		τ	$N/mm^2$	せん断応力度	1.21	2.03	2.03	3.78	3.22
H 1/37		L 4	mm	ヒンジ板と受板間距離	33	20	20	15	15
E 2 2 2 E	ヒンジピン	σ	$N/mm^2$	曲げ応力度	35.8	23.9	23.9	71.8	58.8
		τ	$N/mm^2$	せん断応力度	7.87	7.39	7.39	19.0	16.2
	le Valiette n. l.	n 1	本	ヒンジボルトの本数	4	4	4	4	4
	C 2 2 470 F	τ	$N/mm^2$	せん断応力度	32.4	28.4	28.4	52.7	45.0
	共通		本	締付装置の本数	6	4	4	2	2
		L 5	mm	締付装置の突出長さ	73	50	50	50	50
	締付装置	σ	$N/mm^2$	曲げ応力度	3.75	3.85	3.85	13.3	11.3
		τ	$N/mm^2$	せん断応力度	0.383	0.577	0.577	1.66	1.41
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	72	110	110	77	77
에다 그의 20일 (11 대)에	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	_	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	3.19	2.24	2.24	45.7	39.2
		τ	$N/mm^2$	せん断応力度	0.430	0.650	0.650	3.31	2.82
	締付装置	n _b	本	締付装置受けボルトの本数	2	4	4	2	2
	受けボルト	σt	$N/mm^2$	引張応力度	2.21	1.76	1.76	28.0	23.8
		W a	kN	扉枠の重量	16.7	4.42	4.42	3.05	3.05
		n ₃	本	ヒンジ側アンカーボルトの本数	4	5	6	3	3
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	3.33	1.62	1.35	2.59	2.24
, , , ,	MANE 1.	$Q_{d}$	kN	アンカーボルト1本当りのせん断力	3.33	1.62	1.35	2.59	2.24
		Та	kN	アンカーボルト1本当りの短期許容引張力	57.5	33.5	34.1	32.1	32.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	40.1	22.3	23.9	11.7	11.7

-	み <i>さの は</i> -	⇒n ¤	334 /	<i></i>			水密扉No.		
X] 3	R 前1 <u>1</u>	武方	甲位	LE 戦	41	42	43	44	45
		G	kN	扉重量	31.9	5.89	13.2	6.38	51.4
		k _H	-	水平震度	1.02	1.42	1.42	1.42	1.79
		k _{UD}	-	鉛直震度	0.786	0.821	0.821	0.821	0.821
ŧ	专通	L1         mm         扉重心とヒンジ芯間距離         1625         475         9		915	558	1530			
		L ₂	mm	ヒンジ芯間距離	2185	1577	2055	1720	2228
		W 1	kN	スラスト荷重	57.0	10.8	24.2	11.7	93.6
		F 1	kN	転倒力	58.7	7.42	20.2	8.30	111
		L ₃	mm	ヒンジ板の2軸間距離	340	235	340	235	315
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	73.8	36.0	31.3	39.0	103
		τ	$N/mm^2$	せん断応力度	5.43	1.91	2.30	2.07	6.50
H \ / 37		L 4	mm	ヒンジ板と受板間距離	30	20	30	20	43
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	83.0	25.5	28.8	28.7	116
		τ	$N/mm^2$	せん断応力度	27.7	7.88	9.50	8.82	33. 3
	le Valid Hand	n 1	本	ヒンジボルトの本数	6	4	6	4	4
	C > S AVER	τ	$N/mm^2$	せん断応力度	60.0	27.8	23.1	30.4	86.0
共通		n ₂	本	締付装置の本数	4	4	2	4	4
		L 5	mm	締付装置の突出長さ	100	50	100	50	43
	締付装置	σ	$N/mm^2$	曲げ応力度	11.4	4.96	13.2	5.36	80.7
		τ	$N/mm^2$	せん断応力度	1.28	0.743	1.48	0.803	15.7
碎什妆墨如		L p	mm	締付装置受けピンの軸支持間距離	- *2	110	- *2	110	58
<b>神</b> 门 表直 司	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	_	30
	受けピン	σ	$N/mm^2$	曲げ応力度	- *2	2.89	- *2	3.12	123
		τ	$N/mm^2$	せん断応力度	19.3	0.840	22.4	0.910	48.9
	締付装置	n _b	本	締付装置受けボルトの本数	2	4	2	4	2
	受けボルト	σt	$N/mm^2$	引張応力度	27.1	2.27	31.4	2.44	36.7
		w a	kN	扉枠の重量	8.34	5.40	5.89	5.40	11.8
		n ₃	本	ヒンジ側アンカーボルトの本数	6	8	5	6	26
7.74	ーギルト	T d	kN	アンカーボルト1本当りの引張力	10.2	1.17	4.45	1.71	8.89
120	- 4074 P	Q d	kN	アンカーボルト1本当りのせん断力	10.2	1.17	4.45	1.71	8.89
		Та	kN	アンカーボルト1本当りの短期許容引張力	51.5	34.1	30.0	33.5	16.1
		Q a	kN	アンカーボルト1本当りの短期許容せん断力	10.3	23.9	13.9	22.3	10.1

注記*2:締付装置受けピンが無いことを示す。

	7. to 14	ən 11	114 FL				水密扉No.		
X) 3	R 前112	記方	甲位	上 戦	46	47	48	49	50
		G	kN	扉重量	10.3	10.8	91.0	48.0	5.89
		k _H	-	水平震度	1.79	1.27	1.37	1.37	0.947
		k _{UD}	-	鉛直震度	0.821	0.901	0.927	0.927	0.986
共通		L 1	mm	扉重心とヒンジ芯間距離	527	840	2900	1420	525
		L ₂	mm	ヒンジ芯間距離	1496	1525	2800	2221	1279
		W 1	kN	スラスト荷重	18.8	20.6	176	92.5	11.7
		F 1	kN	転倒力	15.9	18.2	245	92.0	7.60
		L ₃	mm	ヒンジ板の2軸間距離	190	340	600	500	245
	ヒンジ板		$N/mm^2$	曲げ応力度	62.7	26.6	72.2	49.6	40.9
		τ	$N/mm^2$	せん断応力度	3.84	1.96	5.02	3.31	2.08
トンジ		L ₄	mm	ヒンジ板と受板間距離	35	30	32	30	21
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	136	26.0	110	82.0	27.1
		τ	$N/mm^2$	せん断応力度	22.1	8.57	51.2	31.9	8.07
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	6	6	6	4
	C 9 9 400 P	τ	$N/mm^2$	せん断応力度	52.4	20.2	124	124	29.7
	共通	n 2	本	締付装置の本数	4	2	6	4	4
		L ₅	mm	締付装置の突出長さ	93	100	99	100	52
	締付装置	σ	$N/mm^2$	曲げ応力度	35.9	9.59	36.5	38.8	3.47
		τ	$N/mm^2$	せん断応力度	3.14	1.08	2.76	2.91	0.496
接付店置如		L p	mm	締付装置受けピンの軸支持間距離	58	- *2	98	98	112
에이 13 355 년 이어	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	33	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	24.3	_ *2	192	201	1.98
		τ	$N/mm^2$	せん断応力度	9.81	16.3	10.3	10.9	0.560
	締付装置	n _b	本	締付装置受けボルトの本数	2	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	7.35	22.9	23.2	24.5	1.50
		w a	kN	扉枠の重量	-	5.40	76.5	48.1	4.91
		n ₃	本	ヒンジ側アンカーボルトの本数	-	3	10	7	3
アンカ	ーボルト	T _d	kN	アンカーボルト1本当りの引張力	-	6.63	27.1	15.5	2.93
, , ,	MANE 1.	Q _d	kN	アンカーボルト1本当りのせん断力	-	6.63	27.1	15.5	2.93
		Та	kN	アンカーボルト1本当りの短期許容引張力	-	30.5	27.9	50.2	34.1
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	_	14.9	29.8	35.0	23.9

注記*2:締付装置受けピンが無いことを示す。

		ən 11	¥4 /	<b>亡</b>			水密扉No.		
X] 3	R 前112	記方	甲位	LE 戦	51	52	53	54	55
		G	kN	扉重量	6.33	5.89	12.8	6.81	10.8
		k _H	-	水平震度	0.947	1.03	1.10	1.10	2.48
		k _{UD}	-	鉛直震度	0.986	1.07	1.10	1.10	0.838
共通		L 1	mm	扉重心とヒンジ芯間距離	455	455	915	558	740
		L ₂	mm	ヒンジ芯間距離	1459	1450	1855	1720	1550
		W 1	kN	スラスト荷重	12.6	12.2	26.8	14.4	19.9
		F 1	kN	転倒力	6.93	6.87	20.3	8.39	22.9
		L ₃	mm	ヒンジ板の2軸間距離	245	245	340	235	105
	ヒンジ板		$N/mm^2$	曲げ応力度	44.0	42.6	34.8	48.0	17.3
		τ	$N/mm^2$	せん断応力度	2.24	2.17	2.56	2.55	2.46
H 1/32		L ₄	mm	ヒンジ板と受板間距離	21	21	30	20	5
	ヒンジピン	σ	$N/mm^2$	曲げ応力度	23.9	23.9	28.8	28.7	29.0
		τ	$N/mm^2$	せん断応力度	7.36	7.30	9.55	8.91	31.8
	ヒンジボルト	n 1	本	ヒンジボルトの本数	4	4	6	4	8
	C 9 9 400 P	τ	$N/mm^2$	せん断応力度	30.6	29.9	24.7	35.3	60.2
	共通	n 2	本	締付装置の本数	4	4	2	4	6
		L ₅	mm	締付装置の突出長さ	52	52	100	50	30
	締付装置	σ	$N/mm^2$	曲げ応力度	3.72	3.77	9.81	4.44	33.3
		τ	$N/mm^2$	せん断応力度	0.531	0.538	1.11	0.666	6.20
接付店置郊		L p	mm	締付装置受けピンの軸支持間距離	112	112	- *2	110	-
에다 그리 것이는 다니 아까	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	2.12	2.15	- *2	2.59	-
		τ	$N/mm^2$	せん断応力度	0.600	0.610	16.7	0.750	-
	締付装置	n _b	本	締付装置受けボルトの本数	4	4	2	4	-
	受けボルト	σt	$N/mm^2$	引張応力度	1.63	1.63	23.4	2.01	- *1
		w _a	kN	扉枠の重量	4.91	3.44	5.40	4.91	17.7
		n 3	本	ヒンジ側アンカーボルトの本数	4	3	3	6	31
アンカ	ーボルト	T d	kN	アンカーボルト1本当りの引張力	2.03	2.59	7.24	1.63	2.19
, , , ,	MORE L.	Q d	kN	アンカーボルト1本当りのせん断力	2.03	2.59	7.24	1.63	2.19
		Та	kN	アンカーボルト1本当りの短期許容引張力	34.1	34.1	29.0	34.1	27.6
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	23.9	23.9	11.7	23.9	22.5

注記*1:締付装置受けボルトにが引張力が作用しないことを示す。 注記*2:締付装置受けピンが無いことを示す。

+1.4	2. <i>-&gt;n (</i>	20.11	W (L	يتحد يبلير		水密扉No.	
灯》	R部位	記号	単位	<b>正</b> 義	56	57	58
		G	kN	扉重量	12.74	12.74	12.74
		k _H	-	水平震度	1.300	1.300	1.300
		k _{UD}	-	鉛直震度	1.000	1.000	1.000
共通		L 1	mm	扉重心とヒンジ芯間距離	732	732	732
		L ₂	mm	ヒンジ芯間距離	1382	1382	1382
		W 1	kN	スラスト荷重	12.74	12.74	12.74
		F 1	kN	転倒力	15.03	15.03	15.03
		L ₃	mm	ヒンジ板の2軸間距離	250	250	250
	ヒンジ板	σ	$N/mm^2$	曲げ応力度	33.18	33.18	33.18
		τ	$N/mm^2$	せん断応力度	2.65	2.65	2.65
14.3.4.2.5		L ₄	mm	ヒンジ板と受板間距離	25	25	25
ヒンシ	ヒンジピン	σ	$N/mm^2$	曲げ応力度	44.63	44.63	44.63
		τ	$N/mm^2$	せん断応力度	7.81	7.81	7.81
	14 X 2 ⁵ 4 ² 4 . 1	n 1	本	ヒンジボルトの本数	8	8	8
	C > S AND F	τ	$N/mm^2$	せん断応力度	22.39	22.39	22.39
	共通	n ₂	本	締付装置の本数	2	2	2
		L ₅	mm	締付装置の突出長さ	18	18	18
	締付装置	σ	$N/mm^2$	曲げ応力度	56.25	56.25	56.25
		τ	$N/mm^2$	せん断応力度	11.73	11.73	11.73
绘件壮界如		L p	mm	締付装置受けピンの軸支持間距離	51	51	51
<b>神</b> 门 表直司)	締付装置	b'	mm	締付装置と締付装置受けピンが接する部分の長さ	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	116	116	116
		τ	$N/mm^2$	せん断応力度	26.4	26.4	26.4
	締付装置	n b	本	締付装置受けボルトの本数	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	54.5	54.5	54.5
		w _a	kN	扉枠の重量	9.70	9.70	9.70
		n ₃	本	ヒンジ側アンカーボルトの本数	3	3	3
マンカ	ーザルト	T d	kN	アンカーボルト1本当りの引張力	7.12	7.12	7.12
120	- 4174 P	Q d	kN	アンカーボルト1本当りのせん断力	10.33	10.33	10.33
		Та	kN	アンカーボルト1本当りの短期許容引張力	49.35	49.35	49.35
		Qa	kN	アンカーボルト1本当りの短期許容せん断力	28.43	28.43	28.43

## 1.2 耐震評価結果

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板*2	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
1		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	68.7	235	0.30
	ヒンジ	ヒンジピン*2	39.2	345	0.12
		ヒンジボルト	54.3	375	0.15
2		締付装置*2	8.00	205	0.04
	締付装置部	締付装置受けピン ^{*2}	34.6	205	0.17
		締付装置受けボルト	7.98	651	0.02
	アン	カーボルト*1	2.64	16.1	0.17
		ヒンジ板 ^{*2}	68.7	235	0.30
	ヒンジ	ヒンジピン*2	39.2	345	0.12
		ヒンジボルト	54.3	375	0.15
3		締付装置*2	8.00	205	0.04
	締付装置部	締付装置受けピン ^{*2}	34.6	205	0.17
		締付装置受けボルト	7.98	651	0.02
	アン	カーボルト*1	2.64	16.1	0.17
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
4		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
5		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
6		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
7		締付装置*2	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン*2	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
8		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン ^{*2}	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
9		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト*1	2.36	16.1	0.15
		ヒンジ板 ^{*2}	69.2	235	0.30
	ヒンジ	ヒンジピン ^{*2}	34.4	345	0.10
		ヒンジボルト	53.0	375	0.15
10		締付装置 ^{*2}	8.01	205	0.04
	締付装置部	締付装置受けピン ^{*2}	35.2	205	0.18
		締付装置受けボルト	8.07	651	0.02
	アン	カーボルト ^{*1}	2.36	16.1	0.15

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	146	215	0.68
	ヒンジ	ヒンジピン*2	89.0	345	0.26
		ヒンジボルト	113	404	0.28
11		締付装置*2	39.2	205	0.20
	締付装置部	締付装置受けピン ^{*2}	12.0	345	0.04
		締付装置受けボルト	16.5	651	0.03
	アン	カーボルト*1	10.3	14.2	0.73
		ヒンジ板 ^{*2}	154	215	0.72
	ヒンジ	ヒンジピン*2	110	345	0.32
		ヒンジボルト	127	404	0.32
12		締付装置*2	41.5	205	0.21
	締付装置部	締付装置受けピン ^{*2}	12.6	345	0.04
		締付装置受けボルト	34.8	700	0.05
	アン	カーボルト*1	35.7	49.0	0.73
		ヒンジ板 ^{*2}	67.1	205	0.33
	ヒンジ	ヒンジピン*2	174	345	0.51
		ヒンジボルト	169	236	0.72
13		締付装置*2	190	345	0.56
	締付装置部	締付装置受けピン ^{*2}	73.1	345	0.22
		締付装置受けボルト	- *3	- * ³	- *3
	アン	カーボルト*1	21.0	26.8	0.79
		ヒンジ板 ^{*2}	53.5	205	0.27
	ヒンジ	ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
14		締付装置 ^{*2}	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アン	カーボルト*1	3.61	17.5	0.21
		ヒンジ板 ^{*2}	53.5	205	0.27
	ヒンジ	ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
15		締付装置*2	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アン	カーボルト*1	3.61	10.2	0.36

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。

注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
16	ヒンジ	ヒンジ板 ^{*2}	96.2	205	0.47
		ヒンジピン*2	106	345	0.31
		ヒンジボルト	119	375	0.32
	締付装置部	締付装置*2	53.0	205	0.26
		締付装置受けピン ^{*2}	48.2	205	0.24
		締付装置受けボルト	- * ³	— * ³	— * ³
	アンカーボルト*1		9.48	35.0	0.28
	ヒンジ	ヒンジ板 ^{*2}	53.5	205	0.27
		ヒンジピン*2	140	345	0.41
		ヒンジボルト	64.9	259	0.26
17		締付装置 ^{*2}	23.3	205	0.12
	締付装置部	締付装置受けピン ^{*2}	21.6	345	0.07
		締付装置受けボルト	5.18	450	0.02
	アンカーボルト*1		3.61	16.6	0.22
	ヒンジ	ヒンジ板 ^{*2}	70.3	205	0.35
		ヒンジピン*2	109	686	0.16
		ヒンジボルト	135	404	0.34
18	締付装置部	締付装置 ^{*2}	88.4	205	0.44
		締付装置受けピン ^{*2}	49.3	345	0.15
		締付装置受けボルト	- *3	- * ³	- * ³
	アンカーボルト*1		20.9	34.7	0.61
	ヒンジ	ヒンジ板 ^{*2}	53.7	205	0.27
		ヒンジピン*2	88.6	205	0.44
		ヒンジボルト	103	375	0.28
19	締付装置部	締付装置 ^{*2}	39.4	205	0.20
		締付装置受けピン ^{*2}	199	205	0.97
		締付装置受けボルト	- *3	_ *3	- * ³
	アンカーボルト*1		8.43	35.0	0.25
20	ヒンジ	ヒンジ板*2	55.3	205	0.27
		ヒンジピン*2	147	345	0.43
		ヒンジボルト	109	236	0.46
	締付装置部	締付装置*2	81.7	205	0.40
		締付装置受けピン ^{*2}	41.9	345	0.13
		締付装置受けボルト	- *3	*3	_ *3
	アンカーボルト*1		18.3	19.1	0.96

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	59.2	205	0.29
	ヒンジ	ヒンジピン*2	92.8	345	0.27
		ヒンジボルト	121	236	0.52
21	締付装置部	締付装置*2	84.3	205	0.42
		締付装置受けピン ^{*2}	43.4	345	0.13
		締付装置受けボルト	_ * ³	— * ³	— * ³
	アンカーボルト*1		15.2	17.6	0.87
	ヒンジ	ヒンジ板 ^{*2}	50.9	215	0.24
		ヒンジピン*2	82.1	686	0.12
		ヒンジボルト	37.8	404	0.10
22		締付装置 ^{*2}	15.7	205	0.08
	締付装置部	締付装置受けピン ^{*2}	18.2	345	0.06
		締付装置受けボルト	3.17	651	0.01
	アンカーボルト*1		4.08	18.4	0.23
	ヒンジ	ヒンジ板 ^{*2}	13.1	215	0.07
		ヒンジピン*2	52.4	686	0.08
		ヒンジボルト	34.1	404	0.09
23	締付装置部	締付装置*2	16.5	205	0.09
		締付装置受けピン ^{*2}	33.0	345	0.10
		締付装置受けボルト	7.46	651	0.02
	アンカーボルト*1		3.81	24.3	0.16
	ヒンジ	ヒンジ板 ^{*2}	34.5	215	0.17
		ヒンジピン*2	21.9	205	0.11
		ヒンジボルト	25.0	135	0.19
24	締付装置部	締付装置*2	2.93	390	0.01
		締付装置受けピン ^{*2}	1.65	205	0.01
		締付装置受けボルト	1.29	651	0.01
	アンカーボルト*1		1.14	23.9	0.05
25		ヒンジ板 ^{*2}	28.9	215	0.14
	ヒンジ	ヒンジピン*2	40.7	345	0.12
		ヒンジボルト	33.1	375	0.09
	締付装置部	締付装置*2	3. 32	345	0.01
		締付装置受けピン ^{*2}	0.375	199	0.01
		締付装置受けボルト	1.92	651	0.01
	アンカーボルト*1		6.46	40.1	0.17

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

注記*3:締付装置受けボルトに引張力が作用しないことを示す。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
26	ヒンジ	ヒンジ板 ^{*2}	28.9	215	0.14
		ヒンジピン*2	35.9	345	0.11
		ヒンジボルト	31.6	375	0.09
	締付装置部	締付装置*2	3.32	345	0.01
		締付装置受けピン ^{*2}	0.375	199	0.01
		締付装置受けボルト	1.92	651	0.01
	アンカーボルト*1		5.79	40.1	0.15
	ヒンジ	ヒンジ板 ^{*2}	80.3	215	0.38
		ヒンジピン*2	78.5	345	0.23
		ヒンジボルト	54.5	375	0.15
27		締付装置*2	11.8	205	0.06
	締付装置部	締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	24.4	651	0.04
	アンカーボルト*1		2.46	11.7	0.22
	ヒンジ	ヒンジ板 ^{*2}	77.1	215	0.36
		ヒンジピン*2	72.1	345	0.21
		ヒンジボルト	52.4	375	0.14
28	締付装置部	締付装置*2	11.3	205	0.06
		締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	23.3	651	0.04
	アンカーボルト*1		2.38	11.7	0.21
	ヒンジ	ヒンジ板 ^{*2}	37.5	215	0.18
		ヒンジピン*2	23.7	205	0.12
		ヒンジボルト	27.1	135	0.21
29	締付装置部	締付装置*2	3.18	390	0.01
		締付装置受けピン ^{*2}	1.79	205	0.01
		締付装置受けボルト	1.42	651	0.01
	アンカーボルト*1		1.19	23.9	0.05
		ヒンジ板 ^{*2}	45.9	215	0.22
30	ヒンジ	ヒンジピン*2	26.9	205	0.14
		ヒンジボルト	31.2	135	0.24
	締付装置部	締付装置*2	3.91	390	0. 02
		締付装置受けピン ^{*2}	2.16	205	0.02
		締付装置受けボルト	1.67	651	0.01
	アンカーボルト*1		1.26	23.9	0.06

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対象評価部材		発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
31		ヒンジ板 ^{*2}	37.5	215	0.18
	ヒンジ	ヒンジピン*2	23.7	205	0.12
		ヒンジボルト	27.1	135	0.21
	締付装置部	締付装置*2	3.18	390	0.01
		締付装置受けピン ^{*2}	1.79	205	0.01
		締付装置受けボルト	1.42	651	0.01
	アンカーボルト*1		1.45	22.3	0.07
	ヒンジ	ヒンジ板 ^{*2}	37.6	215	0.18
		ヒンジピン*2	25.4	205	0.13
		ヒンジボルト	27.7	135	0.21
32		締付装置*2	3.69	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.08	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アンカーボルト*1		1.30	23.9	0.06
	ヒンジ	ヒンジ板 ^{*2}	40.0	215	0.19
		ヒンジピン*2	27.2	205	0.14
		ヒンジボルト	29.5	135	0.22
33	締付装置部	締付装置*2	3.93	390	0.02
		締付装置受けピン ^{*2}	2.21	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アンカーボルト*1		1.36	23.9	0.06
	ヒンジ	ヒンジ板 ^{*2}	54.8	215	0.26
		ヒンジピン*2	36.5	205	0.18
		ヒンジボルト	40.3	135	0.30
34	締付装置部	締付装置 ^{*2}	4.37	390	0.02
		締付装置受けピン*2	3.02	205	0.02
		締付装置受けボルト	2.36	651	0.01
	アンカーボルト*1		0.947	13.3	0.08
	ヒンジ	ヒンジ板 ^{*2}	29.0	215	0.14
		ヒンジピン*2	41.9	345	0.13
		ヒンジボルト	33.5	375	0.09
35	締付装置部	締付装置*2	3.81	345	0.02
		締付装置受けピン ^{*2}	0.430	199	0.01
		締付装置受けボルト	2.21	651	0.01
	アンカーボルト*1		3.52	40.1	0.09

注記*1:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。 なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。
水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	29.0	215	0.14
	ヒンジ	ヒンジピン*2	38.3	345	0.12
		ヒンジボルト	32.4	375	0.09
36		締付装置*2	3.81	345	0.02
	締付装置部	締付装置受けピン*2	0.430	199	0.01
		締付装置受けボルト	2.21	651	0.01
	アン	カーボルト*1	3.33	40.1	0.09
		ヒンジ板 ^{*2}	38.3	215	0.18
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	28.4	135	0.22
37		締付装置 ^{*2}	3.98	390	0.02
	締付装置部	締付装置受けピン*2	2.24	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アン	カーボルト*1	1.62	22.3	0.08
		ヒンジ板 ^{*2}	38.3	215	0.18
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	28.4	135	0.22
38		締付装置*2	3.98	390	0.02
	締付装置部	締付装置受けピン*2	2.24	205	0.02
		締付装置受けボルト	1.76	651	0.01
	アン	カーボルト*1	1.35	23.9	0.06
		ヒンジ板 ^{*2}	76.1	215	0.36
	ヒンジ	ヒンジピン*2	79.0	345	0.23
		ヒンジボルト	52.7	375	0.15
39		締付装置*2	13.6	205	0.07
	締付装置部	締付装置受けピン ^{*2}	45.7	205	0.23
		締付装置受けボルト	28.0	651	0.05
	アン	カーボルト*1	2.59	11.7	0.23
		ヒンジ板 ^{*2}	64.8	215	0.31
	ヒンジ	ヒンジピン*2	65.1	345	0.19
		ヒンジボルト	45.0	375	0.12
40		締付装置 ^{*2}	11.6	205	0.06
	締付装置部	締付装置受けピン ^{*2}	39.2	205	0.20
		締付装置受けボルト	23.8	651	0.04
	アン	カーボルト*1	2.24	11.7	0.20

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	74.4	205	0.37
	ヒンジ	ヒンジピン*2	96. 0	345	0.28
		ヒンジボルト	60.0	375	0.16
41		締付装置 ^{*2}	11.6	215	0.06
	締付装置部	締付装置受けピン ^{*2}	19.3	225	0.09
		締付装置受けボルト	27.1	651	0.05
	アン	カーボルト*1	10.2	10.3	0.99
		ヒンジ板 ^{*2}	36.2	215	0.17
	ヒンジ	ヒンジピン*2	28.9	205	0.15
		ヒンジボルト	27.8	135	0.21
42		締付装置*2	5.13	390	0.02
	締付装置部	締付装置受けピン ^{*2}	2.89	205	0.02
		締付装置受けボルト	2.27	651	0.01
	アン	カーボルト ^{*1}	1.17	23.9	0.05
		ヒンジ板 ^{*2}	31.6	205	0.16
	ヒンジ	ヒンジピン*2	33. 2	345	0.10
		ヒンジボルト	23.1	375	0.07
43		締付装置*2	13.4	215	0.07
	締付装置部	締付装置受けピン ^{*2}	22.4	225	0.10
		締付装置受けボルト	31.4	651	0.05
	アン	カーボルト*1	4.45	13.9	0.33
		ヒンジ板*2	39.2	215	0.19
	ヒンジ	ヒンジピン*2	32.5	205	0.16
		ヒンジボルト	30. 4	135	0.23
44		締付装置 ^{*2}	5.54	390	0.02
	締付装置部	締付装置受けピン ^{*2}	3.12	205	0.02
		締付装置受けボルト	2.44	651	0.01
	アン	カーボルト*1	1.71	22.3	0.08
		ヒンジ板 ^{*2}	104	205	0.51
	ヒンジ	ヒンジピン*2	130	686	0.19
		ヒンジボルト	86.0	404	0.22
45		締付装置*2	85.2	205	0.42
	締付装置部	締付装置受けピン*2	149	686	0.22
		締付装置受けボルト	36.7	651	0.06
	アン	カーボルト ^{*1}	8.89	10.1	0.89

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板*2	63.1	215	0.30
	ヒンジ	ヒンジピン*2	142	686	0.21
		ヒンジボルト	52.4	404	0.13
46		締付装置 ^{*2}	36.4	205	0.18
	締付装置部	締付装置受けピン ^{*2}	29.7	686	0.05
		締付装置受けボルト	7.35	651	0.02
	アン	カーボルト ^{*1}	—	_	_
		ヒンジ板 ^{*2}	26.9	205	0.14
	ヒンジ	ヒンジピン ^{*2}	29.9	345	0.09
		ヒンジボルト	20. 2	375	0.06
47		締付装置*2	9.78	215	0.05
	締付装置部	締付装置受けピン ^{*2}	16.3	225	0.08
		締付装置受けボルト	22.9	651	0.04
	アン	カーボルト ^{*1}	6.63	14.9	0.45
		ヒンジ板 ^{*2}	72.8	205	0.36
	ヒンジ	ヒンジピン*2	141	345	0.41
		ヒンジボルト	124	375	0.34
48		締付装置*2	36.8	205	0.18
	締付装置部	締付装置受けピン ^{*2}	192	205	0.94
		締付装置受けボルト	23. 2	205	0.12
	アン	カーボルト ^{*1}	27.1	27.9	0.98
		ヒンジ板 ^{*2}	49.9	205	0.25
	ヒンジ	ヒンジピン ^{*2}	98.9	345	0.29
		ヒンジボルト	124	520	0.24
49		締付装置*2	39.1	205	0.20
	締付装置部	締付装置受けピン ^{*2}	201	205	0.99
		締付装置受けボルト	24.5	205	0.12
	アン	カーボルト*1	15.5	35.0	0.45
		ヒンジ板 ^{*2}	41.0	215	0.20
	ヒンジ	ヒンジピン*2	30. 5	205	0.15
		ヒンジボルト	29.7	135	0.22
50		締付装置*2	3.58	390	0.01
	締付装置部	締付装置受けピン ^{*2}	1.98	205	0.01
		締付装置受けボルト	1.50	651	0.01
	アン	カーボルト ^{*1}	2.93	23.9	0.13

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	44.2	215	0.21
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	30.6	135	0.23
51		締付装置 ^{*2}	3.84	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.12	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アン	カーボルト*1	2.03	23.9	0.09
		ヒンジ板 ^{*2}	42.7	215	0.20
	ヒンジ	ヒンジピン*2	27.1	205	0.14
		ヒンジボルト	29.9	135	0.23
52		締付装置 ^{*2}	3.89	390	0.01
	締付装置部	締付装置受けピン ^{*2}	2.15	205	0.02
		締付装置受けボルト	1.63	651	0.01
	アン	カーボルト*1	2.59	23.9	0.11
		ヒンジ板 ^{*2}	35.0	205	0.18
	ヒンジ	ヒンジピン*2	33.2	345	0.10
		ヒンジボルト	24.7	375	0.07
53		締付装置 ^{*2}	10.0	215	0.05
	締付装置部	締付装置受けピン ^{*2}	16.7	225	0.08
		締付装置受けボルト	23.4	651	0.04
	アン	カーボルト*1	7.24	11.7	0.62
		ヒンジ板 ^{*2}	48.2	215	0.23
	ヒンジ	ヒンジピン*2	32.6	205	0.16
		ヒンジボルト	35.3	135	0.27
54		締付装置 ^{*2}	4.59	390	0.02
	締付装置部	締付装置受けピン ^{*2}	2.59	205	0.02
		締付装置受けボルト	2.01	651	0.01
	アン	カーボルト*1	1.63	23.9	0.07
		ヒンジ板 ^{*2}	17.9	205	0.09
	ヒンジ	ヒンジピン*2	62.3	205	0.31
		ヒンジボルト	60.2	205	0.30
55		締付装置*2	35.0	205	0.18
	締付装置部	締付装置受けピン ^{*2}	_	_	_
		締付装置受けボルト	_		_
	アン	カーボルト ^{*1}	2.19	22.5	0.10

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
56		締付装置 ^{*2}	59.9	235	0.25
	締付装置部	締付装置受けピン ^{*2}	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト ^{*1}	10.3	28.4	0.36
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
57	締付装置部	締付装置 ^{*2}	59.9	235	0.25
		締付装置受けピン ^{*2}	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト*1	10.3	28.4	0.36
		ヒンジ板 ^{*2}	33.5	235	0.14
	ヒンジ	ヒンジピン*2	46.7	235	0.20
		ヒンジボルト	22.4	121	0.19
58		締付装置 ^{*2}	59.9	235	0.25
	締付装置部	締付装置受けピン*2	124.6	235	0.53
		締付装置受けボルト	54.5	205	0.27
	アン	カーボルト ^{*1}	10.3	28.4	0.36

注記*1:アンカーボルトについては単位をkNとし,引張及びせん断のうち評価結果が厳しい値を記載する。 なお,引張とせん断が同時に作用しないことから組合せの評価は行わない。 注記*2:組合せ荷重を記載。

### 2. 強度評価

V-3-別添3-1-5「水密扉の強度計算書」における検討対象水密扉について,以下に強度 評価に必要な入力値と強度評価結果を示す。

# 2.1 入力値

	- +n /-+-	÷1 0	14 (H-				水密扉No.		
对马	8部位	記号	単位	正義	1	2	3	4	5
		h	mm	当該扉の浸水深さ	8600	17100	8600	17100	8600
ŧ	;通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		LPL	mm	扉板の短辺長さ	432	432	416	450	416
		Н	mm	浸水深さ	8600	17100	8600	17100	8600
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
司七		$\alpha_{\rm H}$	-	余震震度(水平方向)	0.421	0.421	0.421	0.421	0.421
131	= 1(X	t	mm	扉板の厚さ	9	9	12	12	12
		ρ _s	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		$W_{\rm D}$	kN	扉重量	6.88	6.62	6.38	7.51	6.38
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$2.\ 400 \times 10^4$	$2.400\!\times\!10^4$	2.400 $\times 10^{4}$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	86.9	173	86.9	173	86.9
		b	mm	芯材に作用する荷重の負担幅	432	432	421	438	421
龙	材	L	mm	芯材の支持スパン	1060	1060	995	995	995
		Z 2	mm ³	芯材の断面係数	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$	$1.\ 530 \times 10^5$	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260  imes 10^3$	$1.260\!\times\!10^3$	$1.260{\times}10^3$	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	-	2	4	4	4
		L 5	mm	締付装置の突出長さ	-	50	50	52	50
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	9.78	136	296	136
		τ	$\rm N/mm^2$	せん断応力度	-	1.19	20.4	42.3	20.4
Andre ( 1 Martin Martin alaren		L _P	mm	締付装置受けピンの軸支持間距離	-	77	110	112	110
栉勺装直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	0	48	48	48
	受けピン	σ	$\mathrm{N}/\mathrm{mm}^2$	曲げ応力度	-	29.3	79.0	169	79.0
		τ	$N/mm^2$	せん断応力度	-	2.38	22.9	47.5	22.9
	締付装置	n b	本	締付装置受けボルトの本数	-	2	4	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	-	20.1	61.5	128	61.5
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	6	6	0	0	0
			-+-	0° 方向 開閉側/下側 アンカーボルト本数	6	6	0	0	0
		n	*	90°方向 ヒンジ側/上側 アンカーボルト本数	6	6	11	12	10
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	6	6	11	12	11
, , ,	NOP 1		ĿN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	11.7	-	-	-
		νια	111/ 144	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	11.7	-	-	-
		Та	ĿN/木	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	32.1	-	34.1	33.5
		I a ki	A11/ 24	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	32.1	-	34.1	33.5

対位	- 如 (古	*0 P.	展時	<b>空</b> 单			水密扉No.		
刘豸	この立	記方	甲位	上 莪	6	7	8	9	10
		h	mm	当該扉の浸水深さ	8600	17400	17400	4600	4600
¥	通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		L _{PL}	mm	扉板の短辺長さ	376	420	475	416	416
		Н	mm	浸水深さ	8600	17400	17400	4600	4600
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
E	f +c:	$\alpha_{\rm H}$	-	余震震度(水平方向)	0.421	0.421	0.421	0.453	0.453
131	e tix	t	mm	扉板の厚さ	12	19	19	12	12
		ρs	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		$W_{\rm D}$	kN	扉重量	5.89	6.87	6.87	6.38	6.81
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400 \times 10^4$	$6.017\!\times\!10^4$	$6.017\!\times\!10^4$	$2.400\!\times\!10^4$	2.400 $\times$ 10 ⁴
		W 2	$kN/m^2$	扉下端に作用する津波荷重	86.9	176	176	46.5	46.5
		b	mm	芯材に作用する荷重の負担幅	381	500	582	421	421
芯	材	L	mm	芯材の支持スパン	995	850	850	995	995
		Ζ2	mm ³	芯材の断面係数	$1.\ 530 \times 10^5$	$1.950\!\times\!10^5$	$1.950\!\times\!10^5$	$1.530\!\times\!10^5$	$1.530\!\times\!10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260 \times 10^3$	$1.500\!\times\!10^3$	$1.500 \times 10^3$	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	4	6	6	4	4
		L ₅	mm	締付装置の突出長さ	50	73	73	50	50
	締付装置	σ	$\rm N/mm^2$	曲げ応力度	136	128	126	69.4	68.9
		τ	$N/mm^2$	せん断応力度	20.4	13.0	12.8	10.4	10.3
447 / L 1+ 100 40		L _P	mm	締付装置受けピンの軸支持間距離	110	72	72	110	110
柿勺装直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48	0	0	48	48
芯本 締付装置部 	受けピン	σ	$N/mm^2$	曲げ応力度	78.9	106	104	40.2	39.9
		τ	$N/mm^2$	せん断応力度	22.9	14.7	14.4	11.7	11.6
	締付装置	n b	本	締付装置受けボルトの本数	4	2	2	4	4
	受けボルト	σt	$N/mm^2$	引張応力度	61.4	75.0	73.8	31.3	31.1
		L 1	mm	躯体開口部の高さ	2100	2000	1975	2100	2080
		L ₂	mm	躯体開口部の幅	1000	1000	995	1000	1000
				0° 方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
				0°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
		n	4	90°方向 ヒンジ側/上側 アンカーボルト本数	11	4	4	11	11
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	9	4	7	11	11
1010	NOP 1		LN/*	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		∿y a	n10/ 44	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		Та	kN/木	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	57.5	57.5	34.1	34.1
		Ta		90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	57.5	57.5	34.1	34.1

対点	***	90 P.	展 侍	<b>今</b> 業			水密扉No.		
刈鸡	部业	記方	里包	上我	11	12	13	14	15
		h	mm	当該扉の浸水深さ	4800	13400	13400	8800	8800
¥	;通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		LPL	mm	扉板の短辺長さ	366	420	475	432	432
		Н	mm	浸水深さ	4800	13400	13400	8800	8800
		β	-	浸水エリアの幅と水深の比による補正係数	1	1	1	1	1
豆板		$\alpha_{\rm H}$	-	余震震度(水平方向)	0.453	0.453	0.453	0.551	0.551
191	- 10X	t	mm	扉板の厚さ	12	19	19	9	9
		ρ _s	$t/m^3$	扉板の密度	7.85	7.85	7.85	7.85	7.85
		$W_{D}$	kN	扉重量	9.32	6.87	6.87	6.34	5.40
		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400 \times 10^4$	$6.017\!\times\!10^4$	$6.017\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	48.5	136	136	88.9	88.9
		b	mm	芯材に作用する荷重の負担幅	358	500	582	432	432
芯	材	L	mm	芯材の支持スパン	1530	850	850	1060	1060
		Ζ2	mm ³	芯材の断面係数	$2.490 \times 10^{5}$	$1.950\!\times\!10^5$	$1.\ 950 \times 10^5$	$1.150{\times}10^5$	$1.150\!\times\!10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.\ 600 \times 10^3$	$1.500 \times 10^3$	$1.500 \times 10^3$	$9.750 \times 10^2$	9.750 $\times$ 10 ²
	共通	n ₂	本	締付装置の本数	4	6	6	2	-
		L ₅	mm	締付装置の突出長さ	65	73	73	50	-
	締付装置	σ	$N/mm^2$	曲げ応力度	121	64.7	64.7	41.6	-
		τ	$N/mm^2$	せん断応力度	16.2	6.59	6.57	5.15	-
647 / L 1+ 100 +0		L _P	mm	締付装置受けピンの軸支持間距離	110	72	72	77	-
柿勺装直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48	0	0	0	-
	受けピン	σ	$N/mm^2$	曲げ応力度	85.6	53.4	53.2	127	-
		τ	$N/mm^2$	せん断応力度	24.9	7.41	7.39	10.3	-
	締付装置	n b	本	締付装置受けボルトの本数	4	2	2	2	-
	受けボルト	σt	$N/mm^2$	引張応力度	66.6	38.0	37.9	87.0	-
		L 1	mm	躯体開口部の高さ	2300	1990	1980	2100	2100
		L ₂	mm	躯体開口部の幅	2000	995	995	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	27	7	8	6	6
				0°方向 開閉側/下側 アンカーボルト本数	27	3	4	6	6
		n	4	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	6	6
アンカ	ーギルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	6	6
1214	ALVE T	0.0	ĿN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	13. 3	40.1	40.1	11.7	-
		νyα	A11/ 744	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	13.3	40.1	40.1	11.7	-
		Та	kN/木	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	-	-	32.1	-
		1 a	AU/ 74	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	-	-	32.1	-

#### 2.2 強度評価結果

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	138	235	0.59
		芯材	48.5	235	0.21
1		締付装置	*3	_ *3	- * ³
1	締付装置部	締付装置受けピン ^{*1}	_ *3	_ *3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	カーボルト*4	_ *2	_ *2	_ *2
		扉板	222	235	0.95
		芯材	94.8	235	0.41
0		締付装置	10.0	205	0.05
2	締付装置部	締付装置受けピン ^{*1}	29.3	205	0.15
		締付装置受けボルト	20.1	651	0.04
	アン	カーボルト*4	0.389	11.7	0.04
		扉板	71.7	235	0.31
		芯材	40.8	235	0.18
J	締付装置部	締付装置	141	390	0.37
5		締付装置受けピン ^{*1}	79.0	205	0.39
		締付装置受けボルト	61.5	651	0.10
	アン	カーボルト*4	- *2	— *2	— *2
		扉板	167	235	0.72
		芯材	84.5	235	0.36
4		締付装置	305	390	0.79
Ŧ	締付装置部	締付装置受けピン*1	169	205	0.83
		締付装置受けボルト	128	651	0.20
	アン	カーボルト*4	19.9	34.1	0.59
		扉板	71.7	235	0.31
		芯材	40.8	235	0.18
5		締付装置	141	390	0.37
5	締付装置部	締付装置受けピン*1	79.0	205	0.39
		締付装置受けボルト	61.5	651	0.10
	アン	カーボルト*4	11.6	33.5	0.35

注記*1:曲げとせん断のうち、厳しい結果を記載。

注記*2:アンカーボルトに引張力が作用しないことを示す。

注記*3:逆圧が作用せず,当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

					-
水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	58.8	235	0.26
		芯材	36.9	235	0.16
C		締付装置	141	390	0.37
0	締付装置部	締付装置受けピン ^{*1}	78.9	205	0.39
		締付装置受けボルト	61.4	651	0.10
	アン	´カーボルト ^{*4}	12.8	34.1	0.38
		扉板	59.1	235	0.26
		芯材	34.2	135	0.26
7		締付装置	130	345	0.38
1	締付装置部	締付装置受けピン ^{*1}	106	345	0.31
		締付装置受けボルト	75.0	651	0.12
	アン	´カーボルト ^{*4}	27.6	57.5	0.48
		扉板	75.5	235	0.33
		芯材	39.9	135	0.30
0	締付装置部	締付装置	128	345	0.38
0		締付装置受けピン ^{*1}	104	345	0.31
		締付装置受けボルト	73.8	651	0.12
	アン	´カーボルト ^{*4}	27.2	57.5	0.48
		扉板	39.6	235	0.17
		芯材	22.4	235	0.10
0		締付装置	71.7	390	0.19
9	締付装置部	締付装置受けピン ^{*1}	40.2	205	0.20
		締付装置受けボルト	31.3	651	0.05
	アン	カーボルト*4	5.32	34.1	0.16
		扉板	39.6	235	0.17
		芯材	22.7	235	0.10
10		締付装置	71.2	390	0.19
10	締付装置部		39.9	205	0.20
		締付装置受けボルト	31.1	651	0.05
	アン	カーボルト*4	5.29	34.1	0.16

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	32.1	235	0.14
		芯材	28.9	235	0.13
11		締付装置	124	390	0.32
11	締付装置部	締付装置受けピン ^{*1}	85.6	205	0.42
		締付装置受けボルト	66.6	651	0.11
	アン	カーボルト*4	4.86	13.3	0.37
		扉板	46.4	235	0.20
		芯材	27.0	135	0.20
1.0		締付装置	65.7	345	0.20
12	締付装置部	締付装置受けピン ^{*1}	53.4	345	0.16
		締付装置受けボルト	38.0	651	0.06
	アン	カーボルト*4	18.7	40.1	0.47
		扉板	59.4	235	0.26
		芯材	31.4	135	0.24
1.0	締付装置部	締付装置	65.7	345	0.20
13		締付装置受けピン ^{*1}	53.2	345	0.16
		締付装置受けボルト	37.9	651	0.06
	アン	カーボルト*4	14.0	40.1	0.35
		扉板	153	235	0.66
		芯材	71.0	235	0.31
1.4		締付装置	42.6	205	0.21
14	締付装置部	締付装置受けピン ^{*1}	127	205	0.62
		締付装置受けボルト	87.0	651	0.14
	アン	´カーボルト ^{*4}	1.69	11.7	0.15
		扉板	153	235	0.66
		芯材	70.0	235	0.30
15		締付装置	_ *3	_ *3	_ *3
10	締付装置部	締付装置受けピン*1	_ *3	_ *3	_ *3
		締付装置受けボルト	_ *3	- *3	- *3
	アン	カーボルト*4	_ *2	_ *2	_ *2

注記*2:アンカーボルトに引張力が作用しないことを示す。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

### 3. 強度評価(溢水)

V-3-別添3-2-2「水密扉の強度計算書(溢水)」における検討対象水密扉について、以下に強度評価に必要な入力値と強度評価結果を示す。

## 3.1 入力値

414	- Jon 1.1.		114 Abs	وون مشر			水密扉No.		
对场	2部12	記方	単位	正義	1	2	3	4	5
		h	mm	当該扉の浸水深さ	13000	13000	13000	13000	13000
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
		L _{PL}	mm	扉板の短辺長さ	460	460	460	460	460
19	= 1)X	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350 \times 10^4$	$1.350  imes 10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	128	128	128	128	128
		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	445
芯	材	L	mm	芯材の支持スパン	1060	1310	1310	1060	1060
		Ζ2	mm ³	芯材の断面係数	$1.150 \times 10^{5}$	$1.150  imes 10^5$	$1.150\!\times\!10^5$	$1.150\!\times\!10^5$	$1.150 \times 10^{5}$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	8. $450 \times 10^{2}$	8.450 × $10^{2}$	8.450×10 ²	8.450 × $10^2$	8.450×10 ²
	共通	n 2	本	締付装置の本数	-		-	-	-
		L ₅	mm	締付装置の突出長さ	-		-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	I	-	-	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	-	-	-	-
☆ 仏 壮 卑 如		L _P	mm	締付装置受けピンの軸支持間距離	-		-	-	-
柳竹衣巨巾	締付装置 受けピン	b'	mm	締付装置と締付装置受けピンが接する長さ	-	I	I	-	-
		σ	$\mathrm{N/mm^2}$	曲げ応力度	-		-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-		-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-			-	-
	受けボルト	σ _t	$\mathrm{N/mm}^2$	引張応力度	-	I	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1250	1250	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	4
			*	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	4
		11	4	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Q a	a KN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Та	ĿN/★	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		la		90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5

	t	<i>i</i> c	N/ 11-				水密扉No.		
对题	R 部 位	記号	単位	正義	6	7	8	9	10
		h	mm	当該扉の浸水深さ	13000	13000	13000	13000	13000
ŧ	<b></b> <i> </i>	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	z +6	L _{PL}	mm	扉板の短辺長さ	460	460	460	460	460
ļ	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$	$1.350\!\times\!10^4$
		w 2	$kN/m^2$	扉下端に作用する津波荷重	128	128	128	128	128
芯材		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	445
		L	mm	芯材の支持スパン	1060	1060	1060	1060	1060
		Ζ2	mm ³	芯材の断面係数	$1.150{\times}10^5$	$1.150 \times 10^{5}$	$1.150\!\times\!10^5$	$1.150 \times 10^{5}$	$1.150  imes 10^5$
		A s	$mm^2$	芯材のせん断断面積	8.450×10 ²	8. $450 \times 10^{2}$	8.450×10 ²	8. $450 \times 10^{2}$	8.450×10 ²
		n 2	本	締付装置の本数	-	-	-	-	-
		L ₅	mm	締付装置の突出長さ	-	-	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	_	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	-	-	-	-
統付准置郊		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-
에너 13 35 년 네가	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	_	-	-
	受けピン	σ	$\mathrm{N/mm}^2$	曲げ応力度	_	-	_	-	-
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	_	-	_	-	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	2100
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1000
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	4
		n	本	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	4
				90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
)		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Qa	a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	16.1
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5
		Та	a kN/本	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	31.5

414	a store tala		114 AL-	واون مانر			水密扉No.		
对装	2部12	記方	単位.	正義	11	12	13	14	15
		h	mm	当該扉の浸水深さ	3800	3300	3300	3800	300
ŧ	卡通	ρ。	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	ē 15	L _{PL}	mm	扉板の短辺長さ	460	460	460	460	
ļ	巨竹风	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350\!\times\!10^4$	$1.350  imes 10^4$	$1.350\!\times\!10^4$	$1.350 \times 10^4$	Ι
		W 2	$kN/m^2$	扉下端に作用する津波荷重	37.3	32.4	32.4	37.3	I
		b	mm	芯材に作用する荷重の負担幅	445	445	445	445	-
龙	标材	L	mm	芯材の支持スパン	1060	1060	1060	1060	Ι
		Ζ2	$\mathrm{mm}^3$	芯材の断面係数	$1.150 \times 10^{5}$	$1.150 \times 10^{5}$	$1.150{\times}10^5$	$1.150 \times 10^{5}$	I
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$8.450 \times 10^{2}$	8. $450 \times 10^{2}$	8.450×10 ²	8.450×10 ²	Ι
	共通	n 2	本	締付装置の本数	-	-	-	-	-
		L ₅	mm	締付装置の突出長さ	_	-	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-
		τ	$N/mm^2$	せん断応力度	_		-	-	Ι
(金山) 中国 初		L _P	mm	締付装置受けピンの軸支持間距離	_	1	-	-	I
柳门漆匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	_	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	_		-	-	Ι
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-
	受けボルト	σt	$N/mm^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2100	2100	1900
		L ₂	mm	躯体開口部の幅	1000	1000	1000	1000	1450
				0°方向 ヒンジ側/上側 アンカーボルト本数	4	4	4	4	15
		2	*	0°方向 開閉側/下側 アンカーボルト本数	4	4	4	4	15
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
アンガーホルト		0.2	ĿN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	14.2
		Q a	kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.1	16.1	16.1	16.1	14.2
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	44.6
		Та	a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	31.5	31.5	31.5	31.5	44.6

							水密扉No.			
対象	8部位	記号	単位	定義	16	17	18	19	20	
		h	mm	当該扉の浸水深さ	300	1000	1000	900	900	
ŧ	+通	ρ。	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00	
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665	
-	₹+c	L _{PL}	mm	扉板の短辺長さ	-	349	300	349	300	
月		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	-	$6.017 \times 10^{4}$	2. $400 \times 10^4$	$6.017 \times 10^{4}$	2.400×10 ⁴	
		W 2	kN/m²	扉下端に作用する津波荷重	-	9.81	9.81	8.83	8.83	
芯材		b	mm	芯材に作用する荷重の負担幅	-	705	300	705	300	
		L	mm	芯材の支持スパン	-	2535	855	2535	855	
		Ζ2	mm ³	芯材の断面係数	-	$1.250 \times 10^{6}$	$6.330 \times 10^{4}$	$1.250 \times 10^{6}$	$6.330 \times 10^{4}$	
		A s	$mm^2$	芯材のせん断断面積	-	2.808 $\times 10^{3}$	$3.800 \times 10^{3}$	2. $808 \times 10^{3}$	$3.800 \times 10^{3}$	
	共通	n ₂	本	締付装置の本数	-	-	-	-	-	
		L ₅	mm	締付装置の突出長さ	-	-	-	-	-	
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-	
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-	
統付准置並		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-	
柳门漆匣마	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-	
	受けピン	σ	$N/mm^2$	曲げ応力度	_	-	-	-	-	
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-	
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-	
	受けボルト	σt	$N/mm^2$	引張応力度	_	-	-	-	-	
		L 1	mm	躯体開口部の高さ	1900	3200	-	3200	-	
		L ₂	mm	躯体開口部の幅	2100	2700	-	2700	-	
				0°方向 ヒンジ側/上側 アンカーボルト本数	16	8	-	8	-	
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	8	-	8	-	
		11	774	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	-	0	-	
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	8	0	—	0	-	
		Q a	kN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	16.6	18.4	-	18.4	-	
		Q a	kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	16.6	18.4	-	18.4	-	
		Та	Tak	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	44.6	41.1	-	41.1	_
		1 4	AU1/ 74	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	44.6	41.1	-	41.1	_	

			114 644	واون مبادر			水密扉No.		
对场	8 部112	記方	単位.	正義	21	22	23	24	25
		h	mm	当該扉の浸水深さ	1000	1000	500	500	2000
¥	;通	$\rho_{o}$	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665 9.80665 9.80665 9.8		9.80665	9.80665	
-	i +=	L _{PL}	mm	扉板の短辺長さ	240	300	472	300	650
(J)	= 1/X	Ζ ₁	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.400\!\times\!10^4$	2. $400 \times 10^4$	$6.017\!\times\!10^4$	2. $400 \times 10^4$	$8.067\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	9.81	9.81	4.91	4.91	19.7
		b	mm	芯材に作用する荷重の負担幅	240	300	876	300	994
芯材		L	mm	芯材の支持スパン	1360	880	2220	855	5230
		Ζ2	mm ³	芯材の断面係数	$6.330 \times 10^{4}$	3. $560 \times 10^4$	$1.250 \times 10^6$	$6.330 \times 10^4$	$1.399\!\times\!10^6$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$3.800 \times 10^{3}$	2.850×10 ³	$2.808 \times 10^{3}$	3.800 $\times 10^{3}$	2.680 $\times 10^{3}$
	共通	n ₂	本	締付装置の本数	-	-	-	-	12
		L 5	mm	締付装置の突出長さ	-	-	-	-	114
	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-	-	58.5
		τ	$N/mm^2$	せん断応力度	-	-	-	-	5.10
公共 / 나 가는 프로 한지		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	112
柿竹表直部	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	54
	受けピン	σ	$N/mm^2$	曲げ応力度	-	-	-	-	17.5
		τ	$N/mm^2$	せん断応力度	-	-	-	-	8.70
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-
	受けボルト	σ _t	$N/mm^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	3570	2100	2485	-	5745
		L ₂	mm	躯体開口部の幅	1550	1000	3300	-	5450
				0°方向 ヒンジ側/上側 アンカーボルト本数	15	0	9	-	39
			*	0°方向 開閉側/下側 アンカーボルト本数	15	0	9	-	39
		11	4	90°方向 ヒンジ側/上側 アンカーボルト本数	0	3	0	-	0
アンカ・	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	3	0	-	0
アンカーボルト		Qa	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	18.4	18.4	18.4	_	26.8
		Qak	kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	18.4	18.4	18.4	-	26.8
		ТаЦ	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	41.1	48.5	41.1	-	50.2
		Та	`a kN/本	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	41.1	48.5	41.1	-	50.2

	aler file	10 F					水密扉No.		
対象	2部位	記号	単位	定義	26	27	28	29	30
		h	mm	当該扉の浸水深さ	2000	2000	2000	2000	2000
ŧ	专通	ρο	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	i +c	L _{PL}	mm	扉板の短辺長さ	955	955	880	955	800
月	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	2. $042 \times 10^{5}$	$2.042 \times 10^{5}$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	19.7	19.7	19.7	19.7	19.7
芯材		b	mm	芯材に作用する荷重の負担幅	-	-	880	-	800
		L	mm	芯材の支持スパン	-	-	3580	-	3300
		Ζ2	$mm^3$	芯材の断面係数	-	-	$1.399 \times 10^{6}$	-	$1.399\!\times\!10^6$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	-	-	2. $680 \times 10^{3}$	-	$2.680 \times 10^{3}$
	共通	n ₂	本	締付装置の本数	-	-	-	-	-
		L ₅	mm	締付装置の突出長さ	-	-	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	-	-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-
統付准置部		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	-
和113% 巨 中	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-
	受けピン	σ	$\mathrm{N/mm^2}$	曲げ応力度	-	-	-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	_	-	-	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	_	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2160	4880	2160	4880
		L ₂	mm	躯体開口部の幅	1000	1000	4500	1000	4500
				0°方向 ヒンジ側/上側 アンカーボルト本数	6	6	32	6	18
		n	*	0°方向 開閉側/下側 アンカーボルト本数	5	5	20	5	20
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	0
アンカーホルト		0.2	ĿN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	17.5	10.2	35.0	16.6	35.0
		Q a	KIV/ 44	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	17.5	10.2	35.0	16.6	35.0
		T	kN/木	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	38.8	45.6	35.7	40.7	34.7
		ıα	1711/ 244	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	38.8	45.6	35. 7	40.7	34.7

	alar I.L.	<i>i</i> c 0					水密扉No.		
对象部位		記号	単位	正義	31	32	33	34	35
		h	mm	当該扉の浸水深さ	2000	2000	2000	700	1500
#	通	ρο	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	i+=	L _{PL}	mm	扉板の短辺長さ	750	406	400	348	730
月	三九又	Ζ1	mm ³ /m	扉板の断面係数	$6.017 \times 10^{4}$	$2.042 \times 10^{5}$	$2.042 \times 10^{5}$	$1.350 \times 10^4$	$1.\ 307\!\times\!10^5$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	19.7	19.7	19.7	6.87	14.8
芯材		b	mm	芯材に作用する荷重の負担幅	900	403	390	347	-
		L	mm	芯材の支持スパン	3620	3690	3880	900	-
		Ζ2	mm ³	芯材の断面係数	$1.399 \times 10^{6}$	2. $310 \times 10^5$	$2.310 \times 10^{5}$	9. $100 \times 10^{3}$	-
		A s	$mm^2$	芯材のせん断断面積	$2.680 \times 10^{3}$	$1.800 \times 10^{3}$	$1.800\!\times\!10^3$	$1.444 \times 10^{3}$	-
		n 2	本	締付装置の本数	-	-	-	-	-
		L 5	mm	締付装置の突出長さ	-	-	-	-	-
	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-	-	-
		τ	$N/mm^2$	せん断応力度	-	-	-	-	-
统计准置如		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-		-
和日本国の	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	-
	受けピン	σ	$N/mm^2$	曲げ応力度	-	-	-	-	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	-	-	-	-
		L 1	mm	躯体開口部の高さ	5090	3200	4880	2090	1800
		L ₂	mm	躯体開口部の幅	4000	3500	4800	995	600
				0°方向 ヒンジ側/上側 アンカーボルト本数	25	14	27	5	0
		n	*	0°方向 開閉側/下側 アンカーボルト本数	25	8	14	5	0
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	5
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0	0	6
アンカーボルト		Q a	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	35.0	19.1	17.6	18.4	24. 3
		Qal	KIV/ 244	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	35.0	19.1	17.6	18.4	24.3
		Ta	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	37.9	38.0	37.9	34.8	57.5
		Та		90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	37.9	38.0	37.9	34.8	57.5

4 ا ب	te + 17 ( - La		777 (12	وید جنے			水密扉No.		
对意	老部11公	記方	单位.	正 義	36	37	38	39	40
		h	mm	当該扉の浸水深さ	400	800	400	400	800
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	38         39           400         400           1.03         1.03           9.80665         9.80665           416         755           421         755           995         2520           5         1.530 × 10 ⁵ 1.260 × 10 ³ 1.600 × 10 ³ 4         -           50         -           2.83         -           0.379         -           110         -           48         -           1.47         -           0.430         -		9.80665
F	7 H5	L _{PL}	mm	扉板の短辺長さ	416	450	416	755	360
ļ	巨机风	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	2. $400 \times 10^4$	2.400 $\times$ 10 ⁴	2. $400 \times 10^4$	2. $400 \times 10^4$	$2.400 \times 10^{4}$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	4.05	8.09	4.05	4.05	8.09
		b	mm	芯材に作用する荷重の負担幅	421	438	421	755	393
芯材		L	mm	芯材の支持スパン	995	995	995	2520	925
		Ζ2	mm ³	芯材の断面係数	$1.530 \times 10^{5}$	$1.530 \times 10^{5}$	$1.530 \times 10^{5}$	4. $720 \times 10^{5}$	$1.530 \times 10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260 \times 10^{3}$	$1.260 \times 10^{3}$	$1.260 \times 10^{3}$	$1.600 \times 10^3$	$1.260\!\times\!10^3$
	共通	n 2	本	締付装置の本数	4	-	4	-	4
		L 5	mm	締付装置の突出長さ	50	-	50	-	52
	締付装置	σ	$N/mm^2$	曲げ応力度	2.83	-	2.83	-	5.19
		τ	$N/mm^2$	せん断応力度	0.379	-	0.379	-	0.740
统计准置如		L _P	mm	締付装置受けピンの軸支持間距離	110	-	110	-	112
<b>种</b> 门 表 匡 印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48	-	48	-	48
	受けピン	σ	$\mathrm{N/mm}^2$	曲げ応力度	1.47	-	1.47	-	2.95
		τ	$N/mm^2$	せん断応力度	0.430	-	0.430	-	0.840
	締付装置	n b	本	締付装置受けボルトの本数	4	-	4	-	4
	受けボルト	σt	$N/mm^2$	引張応力度	1.15	-	1.15	-	2.24
		L ₁	mm	躯体開口部の高さ	2100	2110	2100	2500	2090
		L ₂	mm	躯体開口部の幅	1000	1000	1000	3300	985
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	12	0
			*	0°方向 開閉側/下側 アンカーボルト本数	0	0	0	4	10
		11	44	90°方向 ヒンジ側/上側 アンカーボルト本数	10	8	11	0	6
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	11	8	11	0	0
アジガーホルト		0.2	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	_	_	_	10.3	-
		Qa	a kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	23.9	23.9
		Tal	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	-	34.1
			ſa kN/本	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	33.5	34.1	34.1	-	-

	t. dare f.l.	ác					水密扉No.		
对制	<b>R</b> 部位	記号	単位	正義	41	42	43	44	45
		h	mm	当該扉の浸水深さ	800	400	300	400	700
ŧ	<b></b> <i> </i>	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.03	1.03	1.03	1.03
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	z +6	L _{PL}	mm	扉板の短辺長さ	450	392	533	416	728
ļ	巨权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	2. $400 \times 10^4$	2.400 $\times 10^{4}$	2. $400 \times 10^4$	$2.\ 400\!\times\!10^4$	$2.042 \times 10^5$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	8.09	4.05	3.04	4.05	7.08
		b	mm	芯材に作用する荷重の負担幅	438	398	533	421	894
芯材		L	mm	芯材の支持スパン	995	995	2390	995	2630
		Ζ2	$mm^3$	芯材の断面係数	$1.530 \times 10^{5}$	$1.530 imes10^5$	4.720 $\times 10^{5}$	$1.\ 530\!\times\!10^5$	$8.560 \times 10^{5}$
		A s	$mm^2$	芯材のせん断断面積	$1.260\!\times\!10^3$	$1.260\!\times\!10^3$	$1.\ 600\!\times\!10^3$	$1.\ 260 \times 10^3$	$1.998\!\times\!10^3$
	共通	n 2	本	締付装置の本数	4	-	-	-	-
		L ₅	mm	締付装置の突出長さ	52	1	-	-	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	2.36	1	-	-	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	0.283	-	-	-	-
統付准置如		L _P	mm	締付装置受けピンの軸支持間距離	112	-	-	-	-
柳门豕巨印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	48		-	-	-
	受けピン	σ	$\mathrm{N/mm}^2$	曲げ応力度	1.13	-	-	-	-
		τ	$N/mm^2$	せん断応力度	0.320	-	-	-	-
	締付装置	n _b	本	締付装置受けボルトの本数	4	-	-	-	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	0.855	-	-	-	-
		L 1	mm	躯体開口部の高さ	2100	2100	2510	2100	3100
		L ₂	mm	躯体開口部の幅	990	1000	2490	1150	2800
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	15	10	0	15
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	15	10	0	15
			744	90°方向 ヒンジ側/上側 アンカーボルト本数	11	0	0	11	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	10	0	0	11	0
アンガーホルト		ポルト Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	23.9	13.9	-	10.1
			kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	23.9	13.9	-	10.1
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	-	_	33.5	16.1
				90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	-	_	33.5	16.1

	- der Lie	10 F			水密扉No.				
对复	老部位	記号	単位	正義	46	47	48	49	50
		h	mm	当該扉の浸水深さ	700	1400	400	200	2400
ŧ	+通	$\rho_{o}$	$t/m^3$	水の密度	1.03	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
F	ē 15	L _{PL}	mm	扉板の短辺長さ	920	250	275	531	483
/非 权		Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$2.042 \times 10^5$	$6.017\!\times\!10^4$	$6.017 \times 10^4$	2. $400 \times 10^4$	$2.400\!\times\!10^4$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	7.08	14.2	4.05	2.03	24.3
		b	mm	芯材に作用する荷重の負担幅	-	352	370	531	483
芯材		L		芯材の支持スパン	-	1808	1310	2565	1860
		$Z_2$	mm ³	芯材の断面係数	-	$3.340 \times 10^{5}$	$3.340 \times 10^{5}$	4.720 $\times 10^{5}$	$4.\ 720 \times 10^5$
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	-	$2.250 \times 10^{3}$	2. $250 \times 10^{3}$	$1.600 \times 10^3$	$1.600\!\times\!10^3$
	共通	n 2	本	締付装置の本数	-	4	4	2	-
		L ₅	mm	締付装置の突出長さ	-	96	96	65	-
	締付装置	σ	$N/mm^2$	曲げ応力度	-	10.1	2.24	1.40	-
		τ	$\mathrm{N}/\mathrm{mm}^2$	せん断応力度	-	1.17	0.252	0.230	-
缔付法置郊		L _P	mm	締付装置受けピンの軸支持間距離	-	110	110	_	-
에디 3호 데그 마이	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	0	0	0	-
	受けピン	σ	$\rm N/mm^2$	曲げ応力度	-	16.6	3.59	0	-
		τ	$N/mm^2$	せん断応力度	-	1.89	0.408	3.47	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	4	4	2	-
	受けボルト	σt	$N/mm^2$	引張応力度	-	7.56	1.64	4.86	-
		L 1	mm	躯体開口部の高さ	-	2100	2100	2600	2100
		L ₂	mm	躯体開口部の幅	-	1990	1500	2200	2000
				0°方向 ヒンジ側/上側 アンカーボルト本数	-	0	0	8	6
		n	*	0°方向 開閉側/下側 アンカーボルト本数	-	0	7	7	12
		11	~~~	90°方向 ヒンジ側/上側 アンカーボルト本数	-	7	7	0	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	-	8	0	0	0
ノンガーホルト		Qa	kN/本	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	10.3	14.9
		Qa	kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	23.9	10.3	14.9
			kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	-	34.1	57.5	_	-
				90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	34.1	-	-	-

	i lan di	-					水密扉No.		
対象	<b></b> 守 部 位	記号	単位	定義	51	52	53	54	55
		h	mm	当該扉の浸水深さ	200	2000	2000	300	13000
ŧ	;通	ρ.	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
	g m/s ² 重力加速度		9.80665	9.80665	9.80665	9.80665	9.80665		
-		L _{PL}	mm	扉板の短辺長さ	443	802	720	540	365
<b>扉</b> 权		Ζ1	mm ³ /m	扉板の断面係数	$1.350 \times 10^{4}$	6. $017 \times 10^{4}$	$2.042 \times 10^{5}$	2. $400 \times 10^4$	2.400×10 ⁴
		W 2	$kN/m^2$	扉下端に作用する津波荷重	2.03	20.3	20.3	3.04	132
		b	mm	芯材に作用する荷重の負担幅	443	802	720	540	365
芯材		L		芯材の支持スパン	1020	883	2420	2240	760
		Ζ2	mm ³	芯材の断面係数	$1.150 \times 10^{5}$	$4.810 \times 10^{5}$	$8.600 \times 10^{5}$	4.720 $\times 10^{5}$	$1.530 \times 10^{5}$
		A s	$\text{mm}^2$	芯材のせん断断面積	9.750 $\times$ 10 ²	2. $100 \times 10^{3}$	$2.250 \times 10^{3}$	$1.600 \times 10^{3}$	$1.260 \times 10^{3}$
	共通	n 2	本	締付装置の本数	-	-	-	-	4
		L 5	mm	締付装置の突出長さ	-	-	-	-	52
	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-	-	108
		τ	$N/mm^2$	せん断応力度	-	-	-	-	15.4
统计准要如		L _P	mm	締付装置受けピンの軸支持間距離	-	-	-	-	112
和竹 表 匡 印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	-	-	-	48
	受けピン	σ	$N/mm^2$	曲げ応力度	-	-	-	-	61.3
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	-	-	-	17.4
	締付装置	n _b	本	締付装置受けボルトの本数	-	-	-	-	4
	受けボルト	σt	$N/mm^2$	引張応力度	-	_	-	-	46.5
		L ₁	mm	躯体開口部の高さ	2100	3340	2950	2100	1800
		L ₂	mm	躯体開口部の幅	1000	5500	2500	2000	790
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	0
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	0	0	7	0
				90°方向 ヒンジ側/上側 アンカーボルト本数	6	13	13	7	7
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	6	8	8	0	6
)		0.2	kN/木	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-	-	-
		Q a	kN/本	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	-	23.9	-
			kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	30.5	33.3	50.2	34.1	34.1
		1 4	AU1/ 74	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	30.5	33.3	50.2	-	34.1

	t der t.t.	<i>i</i> c					水密扉No.		
对题	2部位	記号	単位	正義	56	57	58	59	60
		h	mm	当該扉の浸水深さ	13000	10000	400	800	2000
ŧ	+通	ρο	$t/m^3$	水の密度	1.00	1.00	1.00	1.00	1.00
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665	9.80665	9.80665
-	₹+c	L _{PL}	mm	扉板の短辺長さ	300	390	533	416	1360
月	<b>卢</b> 权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	2.400×10 ⁴	2. $400 \times 10^4$	2. $400 \times 10^4$	2. $400 \times 10^4$	$2.042 \times 10^{5}$
		W 2	$kN/m^2$	扉下端に作用する津波荷重	132	102	4.05	8.09	19.7
芯材		b	mm	芯材に作用する荷重の負担幅	293	343	533	421	-
		L	mm	芯材の支持スパン	900	760	2187	995	-
		Ζ2	mm ³	芯材の断面係数	$1.530\!\times\!10^5$	$1.530 \times 10^{5}$	$4.720 \times 10^{5}$	$1.\ 530\!\times\!10^5$	-
		A s	$\mathrm{mm}^2$	芯材のせん断断面積	$1.260\!\times\!10^3$	$1.\ 260 \times 10^3$	$1.600\!\times\!10^3$	$1.\ 260\!\times\!10^3$	-
	共通	n ₂	本	締付装置の本数	-	4	-	4	-
		L ₅	mm	締付装置の突出長さ	-	52	-	50	-
	締付装置	σ	$\mathrm{N/mm}^2$	曲げ応力度	-	103	-	5.19	-
		τ	$N/mm^2$	せん断応力度	-	14.7	-	0.740	-
統付准置並		L _P	mm	締付装置受けピンの軸支持間距離	-	112	-	110	-
柳门漆匣印	締付装置	b'	mm	締付装置と締付装置受けピンが接する長さ	-	48	-	48	-
	受けピン	σ	$\rm N/mm^2$	曲げ応力度	-	58.4	-	2.87	-
		τ	$\mathrm{N/mm}^2$	せん断応力度	-	16.5	-	0.840	-
	締付装置	n _b	本	締付装置受けボルトの本数	-	4	-	4	-
	受けボルト	σt	$\mathrm{N/mm}^2$	引張応力度	-	44.2	-	2.24	-
		L 1	mm	躯体開口部の高さ	1490	1800	2100	2100	2300
		L ₂	mm	躯体開口部の幅	800	1000	2000	980	1500
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0	0	20
		n	*	0°方向 開閉側/下側 アンカーボルト本数	0	0	6	0	20
		11		90°方向 ヒンジ側/上側 アンカーボルト本数	6	6	6	11	0
アンカ	ーボルト			90°方向 開閉側/下側 アンカーボルト本数	6	6	0	11	0
) > ) =		Q a	kN/木	0°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	_	_	-	22.5
		Qa	kN/本	0°方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	-	-	23.9	-	22.5
		Та	kN/本	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	34.1	34.1	29.0	34.1	27.6
		Та	ſa kN/本	90°方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	34.1	34.1	-	34.1	27.6

	- +17 /++	en H	)14 (-4-			水密扉No.			
X] 3	部业	武方	里12	上戦	61	62	63		
		h	mm	当該扉の浸水深さ	1700	1700	1700		
ŧ	;通	ρ.	$t/m^3$	水の密度	1.00	1.00	1.00		
		g	$m/s^2$	重力加速度	9.80665	9.80665	9.80665		
_	i +=	L _{PL}	mm	扉板の短辺長さ	375	375	375		
周	主权	Ζ1	$\mathrm{mm}^3/\mathrm{m}$	扉板の断面係数	$1.350 \times 10^{4}$	$1.350 \times 10^{4}$	$1.350 \times 10^{4}$		
		w 2	$kN/m^2$	扉下端に作用する津波荷重	16.67	16.67	16.67		
		b	mm	芯材に作用する荷重の負担幅	450	450	450		
芯	材	L	mm	芯材の支持スパン	1917	1917	1917		
		Ζ2	mm ³	芯材の断面係数	$8.120 \times 10^{4}$	$8.120 \times 10^{4}$	8. $120 \times 10^4$		
		A s	$\text{mm}^2$	芯材のせん断断面積	$1.752 \times 10^{3}$	$1.752 \times 10^{3}$	$1.752 \times 10^{3}$		
共通		n 2	本	締付装置の本数	-	_	—		
		L ₅	mm	締付装置の突出長さ	_	-	_		
	締付装置	σ	$N/mm^2$	曲げ応力度	-	-	-		
		τ	$N/mm^2$	せん断応力度	-	-	-		
(守 / L 나는 四 슈/		L _P	mm	締付装置受けピンの軸支持間距離	-	-	_		
褅付装置部	締付装置	装置 b'		締付装置と締付装置受けピンが接する長さ	-	-	_		
	神内表直 受けピン	受けピン	締付装置 受けピン	σ	$N/mm^2$	曲げ応力度	-	_	_
		τ	$N/mm^2$	せん断応力度	-	-	_		
	締付装置	n _b	本	締付装置受けボルトの本数	-	_	—		
	受けボルト	σt	$N/mm^2$	引張応力度	-	-	-		
		L 1	mm	躯体開口部の高さ	1917	1917	1917		
		L ₂	mm	躯体開口部の幅	1056	1056	1056		
				0°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0		
			*	0°方向 開閉側/下側 アンカーボルト本数	5	5	5		
		n	*	90°方向 ヒンジ側/上側 アンカーボルト本数	0	0	0		
アンカ	アンカーザルト			90°方向 開閉側/下側 アンカーボルト本数	0	0	0		
アンカーボルト		0	LN / +	0° 方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容せん断力	-	-	-		
		Qa	KN/ 4	0° 方向 開閉側/下側 アンカーボルト1本当りの短期許容せん断力	22.4	22.4	22.4		
	Τa	kN/★	90°方向 ヒンジ側/上側 アンカーボルト1本当りの短期許容引張力	_	_	_			
		1 4	n10/ 44	90° 方向 開閉側/下側 アンカーボルト1本当りの短期許容引張力	-	_	_		

### 3.2 強度評価結果

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
1		締付装置	_ *3	*3	_ * ³
	締付装置部	締付装置受けピン	_ *3	*3	- * ³
		締付装置受けボルト	<u> </u>	*3	- * ³
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	167	235	0.72
2		芯材*1	106	235	0.46
0		締付装置	_ *3	_ *3	_ * ³
2	締付装置部	締付装置受けピン	_ *3	*3	- * ³
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	- *2	_ *2	- *2
			167	235	0.72
	芯材*1		106	235	0.46
0	締付装置部	締付装置	- * ³	_ *3	- * ³
3		締付装置受けピン	- * ³	_ *3	— * ³
		締付装置受けボルト	_ *3	_ *3	- * ³
	アン	レカーボルト	_ *2	許容限界值 (N/mm ² )         235         235	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	許容限界値 (N/mm ² ) 235 235 *3 *3 *2 235 235 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *3 *2	0.30
4	登扉 う.         対象評価部材 $\frac{252}{(K) \oplus Z \chi (L \oplus g \chi)}$ (N/mm ² )         許容限界値 (N/mm ² )           1 $\overline{K} \overline{W} \chi^{+1}$ $\overline{G} \overline{G} \chi^{-1} \chi^{-1}$ $\overline{K} \overline{G} \chi^{-1} \chi^{-1} \chi^{-1}$ $\overline{K} \overline{K} \chi^{-1} \chi^{-1} \chi^{-1}$ $\overline{K} \overline{K} \chi^{-1} \chi^{-1$	— * ³	- * ³		
水密扉 No.         対象評価部材         発生値 (応力度又は荷重) (N/m ² )         許容陋 (N/m ² )           1         扉板         167         23           1         縮付装置         -*3         -           縮付装置受けピン         -*3         -           縮付装置受けピン         -*3         -           縮付装置受けピン         -*3         -           縮付装置受けピン         -*3         -           アンカーボルト         -*2         -           7         一         -         -           7         ボイ         106         23           ボイ装置受けビン         -*3         -           第 行装置受けビン         -*3         -           第 行装置受けビン         -*3         -           第 術付装置受けボルト         -*3         -           第 縮付装置受けボルト         -*3         -           第 縮付装置受けボルト         -*3         -           第 縮付装置受けビン         -*3         -           第 縮付装置受けボルト         -*3         -           第 術技業置	締付装置部	締付装置受けピン	- *3	_ *3	- *3
	*3	- *3			
	アン	レカーボルト	_ *2	_ *2	_ *2
	扉板		167	235	0.72
		芯材*1	69.4	235	0.30
5			_ *3	*3	_ *3
0	締付装置部	締付装置受けピン	- *3	*3	- *3
		締付装置受けボルト	- *3	_ *3	- *3
1 2 3 4 5	アン	レカーボルト	_ *2	- *2	- * ²

注記*1:曲げとせん断のうち,厳しい結果を記載。

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
水密扉 No. 6 7 8 8 9 9		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
6		縮付装置	_ *3	_ *3	_ *3
	縮付装置部	締付装置受けピン	_ *3	_ *3	_ *3
		縮付装置受けボルト	_ *3	_ *3	_ *3
	アンカーボルト		*2	*2	_ *2
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
		<i>締付装置</i>	- * ³	- *3	- *3
7	締付装置部	締付装置受けピン	- *3	- * ³	- *3
		締付装置受けボルト	— * ³	_ *3	_ * ³
	アン	ンカーボルト	_ *2	_ *2	_ *2
	扉板		167	235	0.72
	芯材*1		69.4	235	0.30
	締付装置部	締付装置	- * ³	- *3	- * ³
8		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	レカーボルト	_ *2	_ *2	_ *2
		扉板	167	235	0.72
	芯材*1		69.4	235	0.30
Ref         Ref<	- * ³	- *3	- *3		
9	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
		締付装置受けボルト	- *3	- * ³	- *3
	アン	ンカーボルト	発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²)16723569.4235 $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ $-*3$ </td <td>- *2</td>	- *2	
		扉板	167	235	0.72
		芯材*1	69.4	235	0.30
		締付装置	_ *3	_ *3	_ *3
10	締付装置部	締付装置受けピン	- * ³	*3	- *3
		締付装置受けボルト	- * ³	_ *3	_ *3
	アン	ンカーボルト	_ *2	_ *2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	48.9	235	0.21
		芯材*1	20.4	235	0.09
11		締付装置	_ *3	*3	- * ³
	締付装置部	締付装置受けピン	- * ³	*3	- * ³
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	*2	*2	_ *2
		扉板	43.0	235	0.19
		芯材*1	17.7	235	0.08
12		締付装置	- * ³	_ *3	- * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- *3
		締付装置受けボルト	- *3	- *3	- *3
	アン	ンカーボルト	_ *2	*2	- *2
	扉板		43.0	235	0.19
	芯材*1		17.7	235	0.08
1.0	締付装置部	締付装置	_ * ³	_ *3	- * ³
13		締付装置受けピン	- * ³	_ *3	- *3
		締付装置受けボルト	- *3	- * ³	- *3
	アン	ンカーボルト	_*2	許容限界値 (N/mm ² ) 235 235 *3 *3 *2 235 235 235 *3 *3 *3 *3 *3 *3 *3 	- *2
		扉板	48.9	235	0.21
		芯材*1	20.4	235	0.09
1.4		締付装置	_ *3	f) 許容限界値 (N/mm ² ) 235 235 235 - * ³ - * ³ - * ³ - * ² 235 235 235 - * ³ - * ³	- * ³
12 13 14 15	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
	密扉 io.         対象評価部材         発生値 (応力度又は荷重) (N/mm ² )         許容限界 (N/mm ² )           111	_ *3	- *3		
	アン	レカーボルト	- *2	許容限界値 (N/mm ² ) 235 235 235 - *3 - *3 - *2 235 235 235 - *3 - *3 - *3 - *3 - *3 - *3 - *3 - *3	- *2
11 12 13 14 15	扉板		—	_	—
		芯材*1	_	_	_
15			- * ³	_ *3	- *3
10	締付装置部	締付装置受けピン	_ * ³	_ * ³	— * ³
11 12 13 14 15		締付装置受けボルト	- *3	_ * ³	- *3
	アン	ンカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	_	_	_
		芯材*1	—	_	—
16			_ *3	*3	_ *3
	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	1.67	235	0.01
17	芯材*1		3.14	135	0.03
		<i>締</i> 付装置	- * ³	*3	- * ³
17	締付装置部	締付装置受けピン	- *3	*3	- *3
		締付装置受けボルト	— * ³	*3	- * ³
	アン	· カーボルト*4	2.65	許容限界値 (N/mm ² )       発 評	0.15
	扉板		3.34	235	0.02
	芯材*1		4.27	235	0.02
	締付装置部	締付装置	- *3	_ *3	- *3
18		締付装置受けピン	- * ³	*3	- * ³
		締付装置受けボルト	- *3	*3	- *3
	アン	レカーボルト	形材発生値 (応力度又は荷重) (N/mm²)許容限界 (N/mm²) $                                              -$ -<	*2	- *2
小石庫 No. 16 条 17 条 17 条 18 条 19 条 20 条	扉板		1.50	235	0.01
		対象評価部材発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²) </td <td>135</td> <td>0.03</td>	135	0.03	
10			- * ³		
19	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- * ³	*3	- * ³
	アン	· カーボルト ^{*4}	発生値 (応力度又は荷重) (N/mm ² )         許容限界値 (N/mm ² )         発 許           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -           -	0.13	
		扉板	2.92	235	0.02
		芯材*1	3.95	235	0.02
			- * ³	_ *3	_ *3
20	締付装置部	締付装置受けピン	- * ³	*3	- *3
		締付装置受けボルト	- * ³	_ *3	- *3
1	アン	ンカーボルト	_ *2	*2	*2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	·象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	2.09	235	0.01
		芯材*1	8.69	235	0.04
21		締付装置	_ *3	*3	_ * ³
	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	*3	_ *3
	アン	· カーボルト ^{*4}	0.905	18.4	0.05
		扉板	3.34	235	0.02
		芯材*1	8.15	235	0.04
21 22 23 24		締付装置	- * ³	_ * ³	- *3
	締付装置部	締付装置受けピン	_ *3	_ *3	- *3
		締付装置受けボルト	- *3	_ *3	- * ³
	アン	ンカーボルト	- *2	_ *2	- * ²
	扉板		1.67	235	0.01
	芯材*1		1.71	135	0.02
0.0		締付装置	- * ³	_ *3	— * ³
23	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	_ *3	_ *3	- *3
	アン	、カーボルト ^{*4}	1.12	18.4	0.07
		扉板	1.67	235	0.01
		芯材 ^{*1}	2.22	235	0.01
94	水密席 No.         対象評価部材         (応力度又は荷重) (N/nm ² )         計谷政界町 (N/nm ² )           21         扉板         2.09         235           縮付装置 $-^{*3}$ $-^{*3}$ $-^{*3}$ 縮付装置 $-^{*3}$ $-^{*3}$ $-^{*3}$ 縮付装置受けビン $-^{*3}$ $-^{*3}$ $-^{*3}$ アンカーボルト ^{*4} 0.905         18.4           運板         3.34         235           窓村*1         8.15         235           縮付装置受けビン $-^{*3}$ $-^{*3}$ 第谷技工 $-^{*3}$ $-^{*3}$ 第谷技工 $-^{*3}$ $-^{*3}$ 第位装置受けビン $-^{*3}$ $-^{*3}$ 第位装置受けビン $-^{*3}$ $-^{*3}$ 第位装置受けビン $-^{*3}$ $-^{*3}$ 第位装置受けビン $-^{*3}$ $-^{*3}$ 第         縮付装置受けビン $-^{*3}$ $-^{*3}$ 23         縮付装置 $-^{*3}$ $-^{*3}$ $-^{*3}$ 23         縮付装置 $-^{*3}$ $-^{*3}$ $-^{*3}$ 23         縮付装置 $-^{*3}$ $-^{*3}$	_ *3	- * ³		
24	締付装置部	締付装置受けピン	- *3	- *3	- *3
		対象評価部材発生値 (応力度又は荷重) ( $N/mn^2$ )許容限界値 ( $N/mn^2$ )扉板2.09235芯材*18.69235蒸行装置縮付装置受けビン $-*^3$ 第行装置受けビン $-*^3$ $-*^3$ 第行装置受けビン $-*^3$ $-*^3$ アンカーボルト*40.90518.4厚板3.34235芯材*18.15235縮付装置受けビン $-*^3$ $-*^3$ 海行装置受けビン $-*^3$ $-*^3$ 第行装置受けビン $23.1$ $345$ 第付装置受けビン $23.1$ $345$ 第付装置受けビン $23.1$ $345$ 第第 $26.8$	_ *3	- * ³	
	アン	ンカーボルト	- *2	許容限界値 (N/mm ² ) 235 235 * ³ * ³ * ³ 18.4 235 235 * ³ * ² 205 205 345 345  26.8	_ *2
	扉板		8.68	205	0.05
24		芯材*1	47.7	205	0.24
25		<u> </u>	59.2	345	0.18
20	締付装置部	締付装置受けピン	23.1	345	0.07
		締付装置受けボルト	—		
21 22 23 24 25	アン	·カーボルト*4	3.94	26.8	0.15

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/nm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	7.35	205	0.04
		芯材*1	—	_	_
22		縮付装置	_ *3	*3	_ *3
26	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アンカーボルト		_ *2	_ *2	_ *2
		扉板	7.35	205	0.04
		芯材*1	-	_	_
		締付装置	_ *3	_ *3	- * ³
27	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- *3	- *3	- *3
	アン	ンカーボルト	- *2	*2	- *2
	扉板		6.23	205	0.04
	芯材*1		11.6	118	0.10
	締付装置部	締付装置	- * ³	- * ³	- *3
28		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- *3	_ *3	- *3
	アン	ンカーボルト	- *2	値 (1)許容限界値 $(N/mm^2)$ 55205 $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ - $(3)$ -<	- *2
		扉板	7.35	205	0.04
		芯材*1	-	-	-
No.         対象計価節州         (0.5 万度又は何里) (N/mm ² )           扉板         7.35           縮付装置部	_ *3	- * ³			
29	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- *3	- *3	- *3
	アン	ンカーボルト	- *2	発生値 応力度又は荷重) $(N/mm^2)$ 許容限界値 $(N/mm^2)$ 7.35205*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3 <td>- *2</td>	- *2
		扉板	5.15	205	0.03
		芯材*1	9.67	118	0.09
0.0		締付装置	- *3	- *3	- *3
30	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- * ³	*3	- * ³
	アン	ンカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して,扉板を躯体に押し付ける向きに静水圧荷重が作用するため,

当該部材に荷重が作用しないことから評価対象外とした。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	15.3	205	0.08
31	芯材*1		12.0	118	0.11
			_ *3	*3	_ *3
31	締付装置部	締付装置受けピン	_ *3	*3	_ *3
		締付装置受けボルト	_ *3	*3	_ *3
	アン	レカーボルト	_ *2	*2	_ *2
		扉板	1.33	205	0.01
		芯材*1	58.4	205	0.29
			- * ³	*3	- * ³
32	締付装置部	締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	レカーボルト	*2	*2	_ *2
	扉板		1.33	205	0.01
	芯材*1		62.5	205	0.31
0.0	締付装置部	締付装置	- * ³	_ *3	- *3
33		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	- * ³	*3	- * ³
31 32 33 33 34 35	アンカーボルト		_ *2	*2	_ *2
		扉板	5.19	235	0.03
		芯材*1	27.5	235	0.12
0.4		締付装置	_ *3	_ *3	- * ³
34	締付装置部	締付装置受けピン	- *3	_ *3	- *3
33		締付装置受けボルト	_ *3	_ *3	- *3
	アンカーボルト*4		0.715	18.4	0.04
		扉板	5.06	235	0.03
		芯材*1			
25		締付装置	- *3	_ * ³	- *3
55	締付装置部	締付装置受けピン	- *3	— * ³	- *3
		締付装置受けボルト	- *3	_ *3	- *3
	アン	レカーボルト	*2	*2	_ *2

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	2.50	235	0.02
36		芯材*1	1.44	235	0.01
			2.91	390	0.01
36	締付装置部	締付装置受けピン	1.47	205	0.01
		締付装置受けボルト	1.15	651	0.01
	アン	·カーボルト*4	0.213	33.5	0.01
		扉板	5.84	235	0.03
		芯材*1	2.88	235	0.02
		締付装置	- * ³	- *3	- *3
37	締付装置部	締付装置受けピン	_ *3	_ *3	- * ³
		締付装置受けボルト	- * ³	_ *3	- *3
	アン	ンカーボルト	_ *2	_ *2	_ *2
	扉板		2.50	235	0.02
	芯材*1		1.44	235	0.01
	締付装置部	締付装置	2.91	390	0.01
38		締付装置受けピン	1.47	205	0.01
		締付装置受けボルト	1.15	651	0.01
	アン	、カーボルト ^{*4}	0.194	許容限界値 $(N/mn^2)$ 235 235 235 390 205 651 33.5 235 235 235 * ³ * ³ * ³ * ³ * ³ 235 235 235 235 390 205 651 34.1 235 235 * ³ * ³ 235 235 235 235 235 235 235 235 235 235	0.01
		扉板	8.34	235	0.04
		芯材*1	完全地 (応力度又は荷重) (N/mm²)許容 (N2.501.44装置2.91受けピン1.47さけボルト1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(4 - 0.213)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(5 - 84)$ 1.15 $(6 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 $(7 - 84)$ 1.15 </td <td>235</td> <td>0.03</td>	235	0.03
38     添付装置       38     締付装置の       縮付装置の     締付装置受けピン       締付装置受けボルト     アンカーボルト*4       万     扉板       ぶ材*1     福付装置       39     締(1)は用の	_ *3	_ *3	- * ³		
39	締付装置部	締付装置受けピン	- * ³	_ *3	- *3
		締付装置受けボルト	- * ³	_ *3	- *3
	アン	·カーボルト*4	2.09	23.9	0.09
		扉板	3.75	235	0.02
		芯材*1	2.29	235	0.01
10		締付装置	5.35	390	0.02
40	締付装置部	締付装置受けピン	2.95	205	0.02
		締付装置受けボルト	2.24	651	0.01
	アン	·カーボルト*4	0.695	34.1	0.03

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) _(N/mm²)	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	5.84	235	0.03
		芯材*1	2.88	235	0.02
41		締付装置	2.41	390	0.01
	締付装置部	締付装置受けピン	1.13	205	0.01
		締付装置受けボルト	0.855	651	0.01
	アンカーボルト*4		0.421	34.1	0.02
-		扉板	2.50	235	0.02
		芯材*1	1.38	235	0.01
10			- *3	- * ³	- *3
42	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
		締付装置受けボルト	- * ³	_ * ³	- * ³
	アン	ンカーボルト	0.142	許容限界値 $(N/mm^2)$ 235 235 235 390 205 651 34.1 235 235 235 - *3 - *3 - *3 23.9 235 235 235 235 - *3 - *3 - *3 - *3 13.9 235 235 235 235 235 - *3 - *3 - *3 - *3 - *3 - *3 - *3 - *3	0.01
	扉板		3.34	235	0.02
	芯材*1		2.48	235	0.02
4.0	締付装置部	締付装置	- * ³	_ * ³	- * ³
43		締付装置受けピン	- * ³	- * ³	- * ³
		締付装置受けボルト	- *3	- * ³	- *3
	アンカーボルト*4		0.475	13.9	0.04
		扉板	2.50	235	0.02
		芯材*1	1.44	235	0.01
4.4		締付装置	_ * ³	_ *3	- * ³
44	締付装置部	締付装置受けピン	- * ³	- * ³	- * ³
No.         41         42         43         44         45		締付装置受けボルト	- * ³	- * ³	- *3
	アン	ンカーボルト	発生値 (応力度又は荷重) $(N/mn^2)$ 許容限界値 $(N/mn^2)$ 5.842352.882352.413901.132050.8556510.42134.12.502351.38235 $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$	_ *2	
		扉板	1.57	205	0.01
		芯材*1	4.17	135	0.04
45			_ *3	*3	_ *3
40	締付装置部	締付装置受けピン	- *3	*3	— * ³
		締付装置受けボルト	- *3	- *3	- *3
	アン	·カーボルト*4	1.03	10.1	0.11

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず,当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	2.45	205	0.02
		芯材*1	_	_	-
水密扉 No. 46 47 47 48 48 49 50		締付装置	- * ³	_ *3	- * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	— * ³	_ *3	- * ³
	アンカーボルト		- *2	*2	- *2
		扉板	1.33	235	0.01
水密扉 No. 46 47 48 48 49		芯材 ^{*1}	6.11	235	0.03
47		締付装置	10.3	205	0.06
47	締付装置部	締付装置受けピン	16.6	345	0.05
		締付装置受けボルト	7.56	651	0.02
	アン	·カーボルト*4	2.12	34.1	0.07
46 47 48 49	扉板		0.499	235	0.01
	芯材*1		0.989	235	0.01
	締付装置部	締付装置	2.28	205	0.02
48		締付装置受けピン	3.59	345	0.02
		締付装置受けボルト	1.64	651	0.01
	アン	·カーボルト*4	0.456	23.9	0.02
		扉板	2.09	許容限界值 (N/mm ² ) 205 — — * ³ — * ³ — * ³ — * ² 235 205 345 651 34. 1 235 205 345 651 235 205 345 651 235 205 345 651 235 205 225 651 10. 3 235 205 225 651 10. 3 235 205 225 651 10. 3 235 205 245 25 651 235 205 245 25 25 651 205 245 25 25 25 205 245 245 25 25 25 25 25 245 245 25 245 25 25 245 25 25 245 25 25 25 245 25 25 25 25 25 25 25 25 25 25 25 25 25	0.01
		芯材 ^{*1}	1.89		0.01
10		締付装置	1.46		0.01
水密扉 No.     対       46     綿付装置部       7     第       47     綿付装置部       47     綿付装置部       48     綿付装置部       72     72       48     綿付装置部       72     72       48     窓       75     アン       49     綿付装置部       50     綿付装置部       アン     アン	締付装置受けピン	3.47	225	0.02	
	(密扉 No.         対象評価部材         発生値 (応力度又は荷重) (N/nm ² )         許容限界値 (N/nm ² )           46 $             \overline{k} + 1         $	651	0.01		
	アン	·カーボルト*4	0.415	10.3	0.05
		扉板	20.0	235	0.09
水密扉 No. 46 47 47 48 48 49 50	芯材*1		6.82	135	0.06
50		締付装置	- *3	_ *3	- *3
50	締付装置部	締付装置受けピン	_ *3	_ *3	_ *3
46 47 48 49 50		締付装置受けボルト	— * ³	_ *3	_ *3
	アン	·カーボルト*4	4.78	14.9	0.33

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	2.97	235	0.02
		芯材*1	1.05	235	0.01
51		締付装置	— * ³	_ *3	_ * ³
	締付装置部	締付装置受けピン	_ *3	_ *3	_ *3
		締付装置受けボルト	- * ³	*3	- * ³
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	18.2	205	0.09
		芯材*1	3.42	118	0.03
52		締付装置	_ *3	_ *3	_ *3
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	_ *3	*3	- * ³
	アン	ンカーボルト	<b>—</b> *2	*2	_ *2
	扉板		4.32	205	0.03
	芯材*1		12.4	205	0.07
50	締付装置部	締付装置	_ *3	_ *3	- * ³
53		締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- *3	_ *3	- * ³
	アン	ンカーボルト	_ *2	_ *2	- *2
		扉板	3.34	235	0.02
		芯材*1	2.21	235	0.01
5.4		締付装置	_ * ³	荷重)許容限界值 $(N/mm^2)$ 235235235-*3-*3-*2205118-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*3-*4-*4-*5-*5-*5<	- * ³
水密啡 No. 51 52 53 53 54 55	対象評価部材発生値 (応力度又は荷重) (N/nm2)許容限界 (N/nm2)	締付装置受けピン	- * ³	_ * ³	- *3
		_ *3	- * ³		
	アン	レカーボルト	_ *2	_ *2	_ *2
52 53 54 55		扉板	60.9	235	0.26
		芯材*1	14.5	135	0.11
55			112	390	0.29
00	締付装置部	締付装置受けピン	61.3	205	0.30
52 53 54 55		締付装置受けボルト	46.5	651	0.08
	アン	カーボルト*4	14.5	34.1	0.43

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	41.3	235	0.18
		芯材*1	25.5	235	0.11
56		締付装置	- * ³	- * ³	- *3
	締付装置部	締付装置受けピン	- * ³	- *3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	ンカーボルト	_ *2	*2	_ *2
		扉板	53.8	235	0.23
水密扉 No. 56 57 58 58 59 60		芯材*1	10.5	135	0.08
		締付装置	106	390	0.28
57	締付装置部	締付装置受けピン	58.4	205	0.29
水密扉 No. 56 57 58 59 60		締付装置受けボルト	44.2	651	0.07
	アン	·カーボルト*4	13.8	34.1	0.41
58	扉板		4.17	235	0.02
	芯材*1		2.76	235	0.02
	新尿     対象       6     縮付装置部       アンガ       7       縮付装置部       アンガ       8       縮付装置部       アンガ       9       縮付装置部       アンガ       0       縮付装置部       アンガ	締付装置	- * ³	- * ³	- *3
58		締付装置受けピン	- *3	_ *3	- *3
		締付装置受けボルト	<b>—</b> *3	_ *3	- *3
		ンカーボルト	_ *2	*2	_ *2
		扉板	5.00	235	0.03
		芯材*1	2.82	235	0.02
50		締付装置	発生値 (応力度又は荷重) (N/mm²)許容限界値 (N/mm²)41.323525.5235 $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $-*^2$ $53.8$ 235 $10.5$ 135 $106$ 390 $\mathfrak{L} \mathcal{V}$ $58.4$ $205$ $2.76$ $?\mathcal{N} h$ $44.2$ $651$ $13.8$ $34.1$ $4.17$ $235$ $2.76$ $235$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^2$ $-*^2$ $5.00$ $235$ $2.82$ $235$ $5.35$ $390$ $\mathfrak{L} \mathcal{V}$ $2.87$ $205$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$ $-*^3$	0.02	
水密扉 No.	締付装置部	締付装置受けピン	2.87	205	0.02
	締付装置受けボルト	2.24	651	0.01	
	アン	·カーボルト*4	0.379	許容限界值 (N/nm ² ) $3$ 235       235         235       -         -       * ³ 205       651         34.1       235         235       -         -       * ³	0.02
		扉板	14.9	205	0.08
		芯材*1	_	_	_
		締付装置	_ *3	*3	- * ³
60	締付装置部	締付装置受けピン	_ *3	*3	- *3
		締付装置受けボルト	_ *3	_ *3	_ *3
	アン	カーボルト ^{*4}	0.847	22.5	0.04

注記*2:水密扉の開方向に対して,扉板を躯体に押し付ける向きに静水圧荷重が作用するため,

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。
水密扉 No.	対	象評価部材	発生値 (応力度又は荷重) (N/mm ² )	許容限界値 (N/mm ² )	発生応力度/ 許容限界値
		扉板	14.5	205	0.08
		芯材*1	42.5	205	0.21
61		締付装置	- * ³	_ *3	- * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- * ³	_ * ³	- * ³
	アンカ-ボルト ^{*4}		3.00	22.4	0.14
62	扉板		14.5	205	0.08
	芯材*1		42.5	205	0.21
	締付装置		- * ³	_ *3	— * ³
	締付装置部	締付装置受けピン	- * ³	_ *3	- * ³
		締付装置受けボルト	- * ³	_ *3	- * ³
	アンカ-ボルト*4		3.00	22.4	0.14
	扉板		14.5	205	0.08
	芯材*1		42.5	205	0.21
20		締付装置	- * ³	_ *3	- * ³
03	締付装置部	締付装置受けピン	- * ³	— * ³	— * ³
		締付装置受けボルト	- *3	_ *3	_ *3
	アンカ-ボルト*4		3.00	22.4	0.14

注記*1:曲げとせん断のうち、厳しい結果を記載。

注記*2:水密扉の開方向に対して、扉板を躯体に押し付ける向きに静水圧荷重が作用するため、

当該部材に荷重が作用しないことから評価対象外とした。

注記*3:逆圧が作用せず、当該部位に荷重が生じないことを示す。

注記*4:アンカーボルトについては単位をkNとし、引張及びせん断のうち評価結果が厳しい値を記載する。

なお、引張とせん断が同時に作用しないことから組合せの評価は行わない。

2.13 浸水防護施設の耐震計算における「土木構築物,建物・構築

物,機器・配管系」の分類について

1. 浸水防護施設の耐震計算における「土木構築物, 建物・構築物, 機器・配管系」の分類について

浸水防護施設の耐震計算にて,設置床の最大応答加速度(ZPA)を適用する場合は,土木構築物及び建物・構築物は1.0ZPA,機器・配管系は1.2ZPA とする。

世界 マン 心言 切井		計ゆ我	耐震重要	専度分類	Z P A を適用	目する場合
		以 中 二 一 二 一	S	С	(1.0倍/	1.2倍)
浸水防護施設	海水貯留堰		$\bigcirc$ * 1	I	土木構築物	
	取水槽閉止板		0*1			
	水密扉		$\bigcirc$ * 1	$\bigcirc$ *2	<u> 1</u> → hhm - 十 → 4 → 4 → 1	1. 0ZPA
	水密扉付止水堰		I	0*2	<b>建物•</b> 桶 梁 彻	
	止水堰		I	$\bigcirc$ *2		
	床ドレンライン浸水	<防止治具	0*1	0*2		
	貫通部止水処置	モルタル	$\bigcirc * 1$	0*2		
		閉止板 (鉄板)	0*1	0*2		
		閉止板 (フラップゲート)	0*1	1	<b>矮菇• 監官</b> 杀	1. 22FA
	津波監視カメラ		0*1			
	取水槽水位計		$\bigcirc^{* 1}$	I		
注記*1・2クルス格	「診のらた 過水店正言	北京電子に大井浦を開始	スまですという	更 歩 よ と 凝 売 か 何	日本 オイト の 子子	

*2:Cクラス施設のうち,溢水の伝播を防止する設備として基準地震動による地震力に対して,要求される機能を保持されるものを示す。 G 11 7 0 S S ) K うと見てていて 6 + い開い コンショ с С シスロヨン

2.14 地下水排水設備 サブドレンポンプの加振試験に関する補足説明

 1. 試験概要
 1

 2. 振動特性把握試験
 3

 3. 加振試験
 9

# 目 次

5号機/7号機 地下水排水設備 サブドレンポンプの加振試験について

#### 1. 試験概要

地下水排水設備 サブドレンポンプは、ポンプと電動機が一体構造となった没水式ポンプのた め、JEAG4601における適用形式と異なることから、機能確認済加速度を用いた評価とす ることができない。そのため、機能確認済加速度を設定することを目的とし、株式会社 MTI所有 の加振設備を用いて柏崎刈羽原子力発電所第5号機及び第7号機に設置する同型式のポンプを加 振した。ポンプはポンプ架台により補強しており、加振試験ではポンプとポンプ架台を一体で評 価した。ポンプおよび架台の外形図を図1-1に示す。試験方法としては振動特性把握試験を実施 し、固有振動数を求め、剛構造であることを確認した後、機器の据付位置における評価用加速度 を包絡する加振波で加振試験を実施した。また、加振試験に加え、加振試験後の性能試験及び性 能試験後の分解点検を実施することで健全性を確認している。振動試験装置外観を図1-2、加振 台仕様を表1-1に示す。また、試験体と実機の主な仕様の比較を表1-2に示す。





図 1-1 サブドレンポンプおよび架台外形図



図 1-2 振動試験装置外観

表 1-1 加振台仕様

寸法	2600 [mm]×6200 [mm]
最大積載量	20 [t]
運転周波数帯域	0 - 100 [Hz]
目上的生产	水平 2 [G]
取入加速度 	鉛直 3 [G]

表 1-2 サブドレンポンプの主な仕様の比較

仕様		試験体	実機
外形寸法		400 [mm] (縦) 425 [mm] (横)	同左
		916 [mm] (高さ)	
質量		167 [kg] 🔆	同左
ポンプ	種類	うず巻形	同左
	容量	0.75 [m ³ /min]	同左
雪乱继	種類	誘導電動機	同左
電動機	出力	15 [kW]	同左

注記※: ケーブルを除くポンプ単体概算乾燥質量

### 2. 振動特性把握試験

2.1 ポンプに加速度計を取り付け,加振波として 5Hz から 100Hz までの範囲でランダム波を使用した各軸単独加振を実施し,応答加速度から周波数応答関数を得て,固有周期について求める。計測センサ取付位置を図 2-1 に示す。また,ポンプに取り付けた加速度計の設置箇所を表 2-1 に示す。



図 2-1(a) 加速度センサ取付位置



図 2-1(b) 加速度センサ取付位置

表 2-1	加速度設置箇所
-------	---------

部位	X 方向	Y 方向	Z 方向
架台ベース	1X, 2X, 3X, 4X	1Y, 2Y, 3Y, 4Y	1Z, 2Z, 3Z, 4Z
架台上部	5X, 6X, 7X, 8X	5Y, 6Y, 7Y, 8Y	5Z, 6Z, 7Z, 8Z
ポンプベース	9Х	9Y	9Z
ポンプ重心	10X	10Y	10Z
ポンプ上部(ケーブル側)	11X	11Y	11Z
ポンプ上部(吐出側)	12X	12Y	12Z

## 2.2 試験結果

試験により得られた周波数応答関数を図 2-2 に,各軸方向の最大応答共振点を表 2-2,各軸方向の固有周期を表 2-3 に示す。各軸方向について剛構造と見なせる固有周期 0.05 秒を 十分に下回る結果が得られた。



図 2-2(1) X 方向 周波数応答関数

資料 8-2.14-6



図 2-2(2) Y 方向 周波数応答関数

資料 8-2.14-7



図 2-2(3) Z 方向 周波数応答関数

資料 8-2.14-8

方向	共振点(Hz)	応答倍率
X 方向	27.588	9.213
Y 方向	41.504	21.898
Z方向	41.138	31.608

表 2-2 各軸方向の最大応答共振点

表 2-3 各軸方向での固有周期

方向	固有周期(s)	固有振動数(Hz)
X 方向	0.036	27
Y 方向	0.024	41
Z 方向	0.024	41

- 3. 加振試験
- 3.1 試験方法

「2.2 試験結果」で示しているように、機器の固有周期は0.05秒を下回っており、剛構造 と見なせることから、機器据付位置における評価用加速度を包絡するような加振波を生成し、 加振試験を実施する。加振波は水平(前後)+水平(左右)+鉛直方向を加振方向として、次 のように生成される。

- ・ 機器据付位置における設計用床応答曲線と等価な試験用床応答曲線を設定し、ランダム波を 作成する。
- 作成されたランダム波を入力とした加振台の時刻歴加速度波形から床応答曲線に変換し、試験用床応答曲線と比較する。
- ここで加振台での床応答曲線が設計用床応答曲線を満足する場合、これを最終的な入力加振 波とする。満足していない場合、ランダム波を補正し、再度確認するプロセスを繰返して試 験用床応答曲線を満足する入力加振波を作成する。

加振試験における試験条件を表 3-1 に、加振波を図 3-1 に示す。

項目	試験条件
加振地震波	ランダム波
加振方向	水平2方向と鉛直方向の3軸同時加振
運転状態	停止中加振
取付状態	加振台にボルトにて取り付け

表 3-1 加振試験条件



図 3-1 加振試験に用いた加振波(加振台上での計測データ)の加速度時刻歴波形

3.2 試験結果

以下について機器に異常がないことを確認し、本試験において加振台での最大加速度を小数 点以下第2位で切り捨てた値を機能確認済加速度とした。

図 3-2 に設計用床応答曲線及び加振台床応答曲線を示す。また,加振試験後の性能試験結 果を図 3-3 に示す。

- (1) 加振台への時刻歴入力の最大加速度が機器据付位置における評価用加速度以上であること。 (表 3-2,表 3-3 参照)
- (2) 加振試験後にポンプ架台等のボルトに緩み・脱落が無いこと。
- (3) 加振試験後にポンプ取付ボルトの緩みが無いこと。
- (4) 加振試験後の性能試験において、ポンプの健全性並びに動作性に異常のないこと。 ・性能試験時の吐出流量 0.75 m³/min で、全揚程が 44 m 以上であること。
- (5) 性能試験後の分解点検において、内部構造物に割れ等の異常がないこと。

方向		$[m/s^2]$	[G]
水平	Х	9.924	1.01
	Y	8. 435	0.86
鉛直	Z	9. 795	0.99

表 3-2 機能確認済加速度

表 3-3 機能維持評価用加速度と試験時の機能確認済加速度との比較

 $(\times 9.8 \text{m/s}^2)$ 

	第5号機	第7号機	_
方向	機能維持評価用加速度	機能維持評価用加速度	機能確認済加速度 ※
水平	0.68	0.85	0.86
鉛直	0.63	0.62	0.99

注記※:機能確認済加速度は設計用床応答曲線を上回る加振波を作成し、それによる試験の 結果、性能が維持されていることを確認できた加速度を示す。(ポンプの限界値を 示したものではない)

図 3-2 設計用床応答曲線と加振台床応答曲線との比較

図 3-3 加振試験後の性能試験結果

2.15 フラップゲートの加振試験に関する補足説明

# 目 次

1.	試験概要	1
2.	振動特性把握試験	2
3.	加振試験	6

### 1. 試験概要

1.1 概要

フラップゲートは空調ダクトに設置し、内部の扉体が閉止することで水流を止水する構造となっている。JEAG4601に記載のない機器であることから、機能確認済加速度を設定することを目的とし、加振設備を用いて柏崎刈羽原子力発電所第7号機向けのフラップゲートと開口部寸法は異なるが、同構造のフラップゲートを加振した。フラップゲートの断面図を図1-1に示す。試験方法としては振動特性把握試験を実施し、固有振動数を求め、剛構造であることを確認した後、機器の据付位置における機能維持評価用加速度を包絡する加振波で加振試験を実施した。また、加振試験後に水を流し、フラップゲートの閉動作を確認した。加振試験設備の概略図を図1-2に、流水試験設備の概略図を図1-3に示す。また、加振台仕様を表1-1に、試験体と実機の主な仕様の比較を表1-2に示す。



図 1-1 フラップゲート断面図(開状態)



図 1-2 加振試験設備の概略図



図1-3 流水試験設備の概略図

表 1-1 加振台仕様

項目	諸元	
積載質量	最大60t, 定格20t	
振動数範囲	$(DC) \sim 50 \text{ Hz}$	
最大加速度	X方向 30m/s ² Y方向 30m/s ² Z方向 30m/s ²	

表 1-2 フラップゲートの主な仕様の比較

対象	眼口如小沙	質量
	用口即门伍	[kg]
試験体	600mm $ imes 600$ mm	1132
実機	500 mm $ imes 500$ mm	994

### 2. 振動特性把握試験

2.1 試験方法

フラップゲートに加速度計を取付け,通常状態である内部の扉体が開状態において加振 波として 1Hz から 30Hz までの範囲でランダム波を使用した各軸単独加振を実施し,応答加 速度から周波数応答関数を得て,固有周期について求める。計測センサー取付位置を図 2 -1に示す。



2.2 試験結果

試験により得られた振動伝達特性を図 2−2~図 2−3 に示す。振動台(A1)の入力加 速度に対するケーシング(A4)の振動伝達特性は、X方向、Y方向、Z方向加振において 高振動数域で若干の応答増幅があるものの、応答倍率はほぼ1倍のフラットな特性を示す。 表 2−1 に示すとおり、各軸方向について剛構造と見なせる固有周期 0.05 秒を十分に下 回る結果が得られた。



卓越振動数		
振動数	応答倍率	
_	—	



卓越振動数		
振動数	応答倍率	
—	—	

注記 *: 30Hz での応答倍率の降下は、位相に大きな変化は見られずノイズと判断。



卓越振動数		
振動数	応答倍率	
	_	

図 2---3 振動伝達特性

方向	固有周期(s)	固有振動数(Hz)
Х	0.034 以下	30Hz 以上
Y	0.034以下	30Hz 以上
Z	0.034以下	30Hz 以上

表 2-1 各軸方向での固有周期

- 3. 加振試験
- 3.1 試験方法

電力会社3社による共同委託で,幅広く BWR プラントに適用できるよう加振波を生成し, 加振試験を実施した。

- ・建屋の地震応答解析に用いる模擬地震波は,原子力発電所耐震設計技術基準 (JEAG4601-2008)を参考に作成
- ・建屋モデルには MARK-1 建屋および MARK-2 建屋を適用 加振試験は浸水前の地震を想定しフラップゲート開の条件で健全性を確認するため実 施した。

加振試験後に水を流しフラップゲートの閉動作を確認するため,流水試験を実施した。 加振試験における試験条件を表 3-1 に,加振波を図 3-1,図 3-2 に示す。

項目	試験条件	
加振地震波	ランダム波	
加振方向	水平1方向及鉛直方向の2軸加振	
試験状態	フラップゲート開,水なし	

表 3—1 加振試験条件

最大加速度: 2.8410(×9.8m/s²)



水平X方向





最大加速度: 2.2097(×9.8m/s²)



鉛直 Z 方向 図 3-2 加振試験に用いた加振波の加速度時刻歴(試験体) (フラップゲート開,水なし)

資料 8-2.15-7

### 3.2 試験結果

以下のとおり,フラップゲート開,水なしの状態での加振試験後において機器に異常が ないことを確認した。

・加振試験後にフラップゲート設置状態に異常なし

・加振試験後にボルト締付状態に異常なし

その後の流水試験において,フラップゲートの閉動作が良好であることを確認した。な お,加振試験時の加振台での最大加速度を少数点以下第2位で切り捨てた値を機能確認済 加速度とした。

加振台の床応答曲線が、0.05s 以下の領域で柏崎刈羽原子力発電所第7号機フラップゲートの据付位置における設計用床応答曲線以上であることを確認した。また、機能確認済加速度が据付位置における機能維持評価用加速度以上であることを確認した。表 3-2,に 機能維持評価用加速度と試験時の機能確認済加速度との比較を示す。表 3-3 に流水試験結 果を示す。図 3-3 に設計用床応答曲線と加振台床応答曲線との比較を示す。

> 表 3-2 評価用加速度と試験時の機能確認済加速度との比較 (フラップゲート開,水なし)

> > $(\times 9.8 \text{m/s}^2)$

方向	機能維持評価用	機能確認済加速度	加振台加振試験時
	加速度		最大加速度
Х	0.82	2.8	2.8410
Y	0.82	2.9	2.9427
Z	0.74	2.2	2.2097

試験流量	越流量	閉動作
3∼3.5 ℓ/s	0.1 l	良好
16∼20 ℓ/s	16.3 l	良好
32∼39 ℓ/s	26.2 l	良好

表 3-3 流水試験結果







注記 *: V-2-1-7「設計用床応答曲線の作成方針」の設計用床応答曲線 I を元に作成した減 衰定数 1.0%の評価用床応答曲線。

図 3-3 設計用床応答曲線と加振台床応答曲線との比較 (フラップゲート開,水なし)