本資料のうち、枠囲みの内容	柏崎刈羽原子力発電所第7号機 工事計画審查資料				
は,機密事項に属しますので公	資料番号	KK7 補足-027-2 改 8			
開できません。	提出年月日	2020年8月31日			

資料2 軽油タンク基礎の耐震安全性評価

2020年8月

東京電力ホールディングス株式会社

1.	軽油タンク基礎の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 - 1
2.	軽油タンク基礎(6号機設備)の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・	2 - 1

1. 軽油タンク基礎の耐震安全性評価

1. 評価方法	1
2. 評価条件	1
2.1 構造概要	1
2.2 評価対象構造物 1	.0
2.3 評価対象断面の方向 1	.0
2.4 評価対象断面の選定 1	.0
2.5 使用材料及び材料定数 1	.1
2.6 地盤, マンメイドロック及び地盤改良体の物性値1	.1
2.7 評価構造物諸元 1	5
2.8 地下水位	7
2.9 耐震評価フロー 1	.7
2.10 適用規格 1	.9
3. 地震応答解析 2	21
3.1 地震応答解析手法 2	21
3.2 地震応答解析モデルの設定 2	22
3.2.1 解析モデル領域 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
3.2.2 境界条件	26
3.2.3 解析奥行幅 ······ 2	29
3.2.4 構造物のモデル化 ・・・・・・ 3	30
3.2.5 隣接構造物のモデル化 ・・・・・ 3	31
3.2.6 地盤及びマンメイドロックのモデル化・・・・・・3	31
3.2.7 地盤改良体のモデル化 ・・・・・ 3	31
3.2.8 ジョイント要素の設定 ・・・・・・ 3	32
3.2.9 杭-地盤相互作用ばねの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
3.2.10 杭先端ばねの設定 ・・・・・・ 3	37
3.2.11 材料特性の設定 ・・・・・・ 3	39
3.3 減衰定数	1
3.4 荷重の組合せ	1
3.4.1 機器・配管荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
3.4.2 外水圧	ł6
3.4.3 雪荷重4	ł6
3.5 地震応答解析の解析ケース 4	ł7
3.5.1 耐震評価における解析ケース・・・・・ 4	ł7
3.5.2 機器・配管系に対する応答加速度及び応答変位抽出のための解析ケース・・・・・・5	50
4. 基礎版の解析	51

4	4.1 解析手法	. 51
4	4.2 解析モデルの設定	. 52
	4.2.1 基礎版のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 52
	4.2.2 材料の非線形特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 53
	4.2.3 杭頭ばね要素の設定 ・・・・・・	· 57
4	4.3 照査時刻の選定	. 59
4	4.4 入力荷重	. 60
	4.4.1 軽油タンクによる荷重 ・・・・・	· 62
	4.4.2 張出しダクト及び張出し基礎による荷重・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 66
	4.4.3 油分離槽の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 69
	4.4.4 防油堤の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 70
	4.4.5 基礎版の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 71
	4.4.6 リングコンクリート及び乾燥砂の慣性力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 72
	4.4.7 積雪の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 73
	4.4.8 土圧及び水圧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 74
5.	評価内容	. 75
Ę	5.1 入力地震動の設定	. 75
Ę	5.2 許容限界の設定	128
	5.2.1 曲げ軸力に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
	5.2.2 せん断力に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	130
	5.2.3 基礎地盤の支持性能に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	136
6.	評価結果	142
6	6.1 地震応答解析結果	142
	6.1.1 解析ケースと照査値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
	6.1.2 ひずみ分布図(鉄筋コンクリート部材の曲げ軸力照査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	149
	6.1.3 断面力分布(鉄筋コンクリート部材のせん断力照査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	151
	6.1.4 曲率分布 (鋼管杭の曲げ軸力照査)	154
	6.1.5 せん断力分布 (鋼管杭のせん断力照査)	158
	6.1.6 最大せん断ひずみ分布 ・・・・・	162
	6.1.7 過剰間隙水圧比分布 ······	170
6	6.2 鉄筋コンクリート部材の耐震評価	178
	6.2.1 鉄筋コンクリート部材の曲げ軸力に対する評価結果・・・・・・・・・・・・・・・・・・・	178
	6.2.2 鉄筋コンクリート部材のせん断力に対する評価結果・・・・・・・・・・・・・・・・・・・	179
6	6.3 鋼管杭の耐震評価	180
	6.3.1 鋼管杭の曲げ軸力に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	180
	6.3.2 鋼管杭のせん断力に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	183

6.4 基礎地盤の支持性能に対する支持力評価	. 186
6.4.1 基礎地盤の押込みに対する支持性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 186
6.4.2 基礎地盤の引抜きに対する支持性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 189
7. まとめ	. 192

参考資料

(参考資料 1-1) 付帯設備の耐震評価	(参考)1-1-1
(参考資料 1-2)杭頭部の耐震評価	(参考)1-2-1
(参考資料1-3)3次元構造解析における照査時刻の選定について	(参考)1-3-1
(参考資料1-4)3次元構造解析における地下水位設定の影響について	(参考)1-4-1
(参考資料1-5)静的地震力に対する耐震評価	(参考)1-5-1
(参考資料1-6) 評価対象断面の代表性について	(参考)1-6-1
(参考資料1-7) 地盤改良体の安定性について	(参考)1-7-1
(参考資料1-8) 杭先端ばねの設定による影響評価	(参考)1-8-1

1. 評価方法

軽油タンク基礎は、Sクラス施設である軽油タンクを間接支持する機能を求められる土木構造物である。軽油タンク基礎について基準地震動Ssによる耐震評価として、構造部材の曲げ、せん断評価及び地盤の支持性能評価を実施する。

軽油タンク基礎の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考 慮できる有効応力解析を実施する。有効応力解析に用いる液状化強度特性は、代表性及び網羅性 を踏まえた上で、保守性を考慮して設定する。

屋外重要土木構造物及び機器・配管系への応答加速度に対する保守的な配慮として、地盤の非 液状化の影響を考慮した解析ケースを設定する。

軽油タンク基礎の構造部材のうち,鉄筋コンクリート部材の健全性評価については,水平2方 向及び鉛直方向の荷重に対する評価を行い,部材に生じる圧縮縁コンクリートひずみ及びせん断 力が要求性能に応じた許容限界以下であることを確認する。

鋼管杭の健全性評価については、部材に生じる曲率及びせん断力が要求性能に応じた許容限界 以下であることを確認する。

基礎地盤の支持性能評価については、杭頭に生じる鉛直力が極限支持力及び極限引抜き力に基づく許容限界以下であることを確認する。

- 2. 評価条件
- 2.1 構造概要

軽油タンク基礎の位置図を図 2-1 に、平面図を図 2-2 に、断面図を図 2-3 及び図 2-4 に、概略配筋図を図 2-5 に、鋼管杭配置図を図 2-6 に示す。軽油タンク基礎は、幅約 35m (東西方向) ×約 18m (南北方向)、高さ約 1.4m の、鉄筋コンクリート造の地中構造物であり、等間隔に配置した杭を介して十分な支持性能を有する西山層に支持される。また、基礎版及び杭の周辺には地盤改良を実施している。

図 2-1 軽油タンク基礎の位置図

(単位:mm)

既設/新設	凡例	地盤改良工法			
既設地盤改良体		置換(CD掘削)			
新設地盤改良体		置換(CD掘削)			

注 :置換工法(CD 掘削)の施工範囲の内,地上 構造物及び埋設構造物がある箇所では, 高圧噴射または置換(開削)を適用

図 2-2 軽油タンク基礎の平面図

(単位:mm)

図 2-3 軽油タンク基礎の断面図 (A-A断面)

図 2-4 軽油タンク基礎の断面図 (B-B断面)

(a) A-A断面

図 2-5 軽油タンク基礎の概略配筋図

注記* : 杭頭から 2m までの範囲

図 2-6 鋼管杭配置図

PN

7

1 - 6

軽油タンク基礎には、基礎版と剛結された付帯設備が設置されている。付帯設備の配置図を図 2-7 に、各付帯設備の概要を表 2-1 及び表 2-2 に示す。

図 2-7 付帯設備の配置図

表 2-1 付帯設備の概要(1/2)

表 2-2 付帯設備の概要(2/2)

2.2 評価対象構造物

「2.1 構造概要」で示した軽油タンク基礎本体及び付帯設備のうち、Sクラス施設を間接支 持する機能を有する軽油タンク基礎本体及び付帯設備(張出しダクト,張出し基礎,防油堤) を評価対象構造物とする。評価対象構造物を図 2-8 に示す。なお、付帯設備の耐震評価につ いては(参考資料 1-1)に示す。

凡例	評価対象構造物	要求機能
	軽油タンク基礎本体	
	張出しダクト	Sクラス施設の
	張出し基礎	間接支持機能
	防油堤	

図 2-8 評価対象構造物

2.3 評価対象断面の方向

軽油タンク基礎は、「2.1 構造概要」で示したとおり、基礎版を等間隔に配置した杭で支持 する比較的単純な構造物であり、東西方向及び南北方向に一様な構造となっている。また、基 礎版及び杭の周辺には地盤改良を実施しているため、周辺の地盤が構造物に与える影響はどの 断面も大きな差はないと考えられることから、軽油タンク基礎の耐震評価では東西方向、南北 方向の2断面を評価対象断面とする。

2.4 評価対象断面の選定

評価対象断面は,KK7 補足-027-1「資料1 屋外重要土木構造物の耐震安全性評価について」 の「4.5 軽油タンク基礎の断面選定の考え方」で記載したとおり,構造物の中心を通るA-A 断面及びB-B断面を代表として耐震評価を実施する。

2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。構造物の使用材料を表 2 -3に,材料物性値を表 2-4に示す。

	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35(SD345 相当)
鋼管杭	SKK400(SKK41 相当)

表 2-3 構造物の使用材料

表 2-4 構造物の材料物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5*	2. $45 \times 10^{4*}$	0.2*
鋼管杭	77*	2. $06 \times 10^{5*}$	0.3*

注記*:建設時の設計値に基づく

2.6 地盤、マンメイドロック及び地盤改良体の物性値

地盤,マンメイドロックの物性値は, V-2-1-3「地盤の支持性能に係る基本方針」にて設定 している物性値を用いる。地盤改良体の物性値は, V-2-1-3「地盤の支持性能に係る基本方針」 にて設定している物性値に基づき,地盤改良体の配置を考慮した物性値を設定する。地盤の物 性値を表 2-5~表 2-7に,マンメイドロックの物性値を表 2-8に,地盤改良体の配置を考 慮した物性値を表 2-9に示す。

物性值		ŧ	也質区分		新期砂層・沖積層		
				埋戻土	新期砂層	沖積層上部 (砂質)	沖積層下部
物理	密度	ρ	(g/cm^3)	1.94	2.05	1.90	2.02
特性	間隙率	n		0.45	0.44	0.48	0.42
	動せん断弾性係数	G_{ma}	(kN/m²)	1. 04×10 ⁵	1.26×10^{5}	1.25×10^{5}	1.92×10^{5}
変形	基準平均有効拘束圧	σ,	(kN/m²)	98.0	98.0	110.0	150.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.225	0.234	0.247	0.211
強度	粘着力	c'	(kN/m²)	0.0	0.0	0.0	0.0
特性	内部摩擦角	φ'	(°)	35.9	34.6	36.7	35.6
	変相角	$\phi_{\rm p}$	(°)	32.0	31.0	33.0	32.0
			S_1	0.005	0.005	0.005	0.005
液状化特性			\mathbf{W}_1	5.50	7.90	11.0	8.0
	液状化パラメー	9	p_1	0.50	0.50	0.50	0.50
			p_2	1.00	0.70	0.70	0.65
			C1	1.69	2.13	2.41	2.00

表 2-5 地盤の解析用物性値一覧(液状化検討対象層)

表 2-6 地盤の解析用物性値一覧(非液状化層)

		地質区分		古安田層		
物性	生値			A3c 層	A2g 層 (シルト質)	Alc 層
物理	密度	ρ	(g/cm^3)	1.70	1.80	1.80
特性	間隙率	n		0.57	0.52	0.52
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m^2)	1.09×10^{5}	1.39×10^{5}	1.39×10^{5}
変形	基準平均有効拘束圧	σ "	(kN/m²)	60.0	140.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	$h_{{\rm max}}$		0.114	0.110	0.110
強度	粘着力	с'	(kN/m²)	99.6	113.0	113.0
特性	内部摩擦角	φ'	(°)	26.8	27.9	27.9

/		ł	地質区分	西山層	
物	生値			T.M.S.L. — 33.Om 以浅	T. M. S. L. −33. 0m~−90. 0m
物理	密度	ρ	(g/cm^3)	1.73	1.69
特性	間隙率	n		0.56	0.56
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	4. 16×10 ⁵	4.75×10 ⁵
変形	基準平均有効拘束圧	σ,	(kN/m²)	98.0	98.0
特性	ポアソン比	ν		0. 33	0. 33
	減衰定数の上限値	h_{max}		0. 257	0.257
強度	粘着力	с	(kN/m²)	1370–5. 04 Z *	1370–5. 04 Z *
(特性	内部摩擦角	φ	(°)	0. 0	0. 0

表 2-7 地盤の解析用物性値(西山層)

注記* :Zは,標高(m)を示す

	名称			マンメイドロック	マンメイドロック (原子炉建屋下)
物理	密度	ρ	(g/cm^3)	1.75	1.75
特性	間隙率	n		0.56	0.56
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	1.91×10^{6}	2. 11×10^{6}
変形	基準平均有効拘束圧	σ "	(kN/m^2)	98.0	98.0
が特性	ポアソン比	ν		0.36	0.36
	減衰定数の上限値	h_{max}		0. 190	0. 190
強度	粘着力	с	(kN/m²)	1840	1840
特性	内部摩擦角	φ	(°)	0. 0	0. 0

表 2-8 マンメイドロックの解析用物性値

	既設/新設		既設地盤改良体		新設 地盤改良体	
	種別 (地盤種別)			置換	高圧噴射 (砂質土)	置換
物理	密度	ρ	(g/cm^3)	1.87	1.76	1.87
特性	間隙率	n		0.49	0.51	0.48
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	2.87 $\times 10^{6}$	1.20×10^{6}	1.19×10^{6}
変形	基準平均有効拘束圧	σ_{ma} ,	(kN/m²)	98.0	98.0	98.0
特性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.060	0.100	0.050
強度特性	粘着力	с	(kN/m²)	2117	1580	3640

表 2-9 地盤改良体の配置を考慮した解析用物性値

2.7 評価構造物諸元

照査を行う軽油タンク基礎の基礎版に関する諸元を表 2-10 に, 鋼管杭に関する諸元を表 2-11 に, 鋼管杭の配置図を図 2-9 に示す。

部位	如壮音	材		
部位	部材局 (m)	コンクリート f' _{ck} (N/mm²)	鉄筋	機能要求
基礎版	1.4	23.5	SD35 (SD345 相当)	間接支持

表 2-10 構造物の評価部位とその仕様(その1:基礎版(鉄筋コンクリート部材))

枯位罟		仕様	++*	楼台田北	
们立直	杭径 (mm)	肉厚 (mm)	杭長(m)	村 村	
1	800	14	23.0		間接支持
2		12	23.0	SKK400 (SKK41 相当)	
3		14 (杭頭部*18)	21.0		
4		14 (杭頭部*16)	21.0		
5		14	26.5		
6		12	26.5		

表 2-11 構造物の評価部位とその仕様(その2:鋼管杭)

注:道路橋示方書(IV下部構造編)・同解説(日本道路協会,平成14年3月)では,杭中心間隔 が杭径の2.5倍以上の場合,単杭で評価する旨が記載されている。軽油タンク基礎の杭中心 間隔は基礎版長辺方向が2500mm,基礎版短辺方向が2200mmであり,ともに杭径の2.5倍と なる2000mm以上のため,単杭として評価する。

注記* : 杭頭から 2m までの範囲

図 2-9 鋼管杭配置図

1 - 16

2.8 地下水位

地下水位はV-2-1-3「地盤の支持性能に係る基本方針」より,地表面(T.M.S.L.12.0m)に設 定する。

2.9 耐震評価フロー

図 2-10 に軽油タンク基礎の地震応答解析フローを,図 2-11 に軽油タンク基礎の耐震評価 フローを示す。

基礎版の耐震評価については,軽油タンク及び付帯設備の荷重の平面的な偏りを考慮するた め、3次元非線形積層シェル要素による水平2方向及び鉛直方向の荷重を踏まえた3次元静的 有限要素法解析(以下,「3次元構造解析」という。)に基づき,耐震評価を実施する。3次元構 造解析にあたっては、2次元動的有限要素法解析により得られた応答値から、3次元構造解析モ デルへ入力する水平2方向及び鉛直方向の荷重を算出する。付帯設備のうち3次元的な構造を 示す張出しダクト及び張出し基礎については、別途作成する荷重算定用のモデルを使用して3 次元構造解析モデルに入力する荷重を算出する。なお、Sクラス施設を間接支持する機能を有 する付帯設備の耐震評価は、(参考資料1-1)に示す。

鋼管杭及び基礎地盤の支持性能については,2次元動的有限要素法解析より得られた応答値 を用いて耐震評価を行う。

図 2-10 軽油タンク基礎の地震応答解析フロー

図 2-11 軽油タンク基礎の耐震評価フロー

2.10 適用規格

軽油タンク基礎の耐震評価に当たっては、コンクリート標準示方書 [構造性能照査編](土木 学会、2002年)(以下「コンクリート標準示方書」という。),原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)を適用するが、鉄筋コンクリート部材の曲げ及びせ ん断の許容限界については、原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュア ル(土木学会、2005年)(以下「土木学会マニュアル」という。)を適用する。鋼管杭の曲げ及 びせん断の許容限界は、乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関 する技術規程JEAC4616-2009(日本電気協会)(以下「キャスク指針」という。),鋼・ 合成構造標準示方書 [耐震設計編](土木学会、2008年)(以下「鋼・合成構造標準示方書」と いう。)を適用する。また、基礎地盤の支持性能の許容限界は、道路橋示方書(I共通編・IV下 部構造編)・同解説(日本道路協会、平成14年3月)(以下「道路橋示方書」という。)を適用 する。

表 2-12 に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及び材料定数	・コンクリート標準示方書 [構造性	_
	能照查編](2002年)	
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性	 備考 - ・永久荷重+偶発荷重+従たる変動荷の適切な組合せを検討 ・曲げに対する照査は、限界ひずみを定した上で、発生ひずみが限界ひずを下回ることを確認* ・せん断に対する照査は、発生せん断がせん断耐力を下回ることを確認* ・曲げに対する照査は、終局曲率を設した上で、発生曲率が終局曲率を下ることを確認* ・せん断に対する照査は、発生せん断が終局せん断強度を下回ることを認* ・基礎地盤の支持性能に対する照査に抗頭に発生する鉛直力が終局鉛直持力及び終局引抜き力を下回ることを確認* ・有限要素法による2次元モデルを用た時刻歴非線形解析
	能照查編] (2002年)	
	【鉄筋コンクリート部材】	・曲げに対する照査は,限界ひずみを設
	項目 適用する規格,基準類 備考 使用材料及び材料定数 ・コンクリート標準示方書[構造性 能照查編](2002年) - 守重及び荷重の組合せ ・コンクリート標準示方書[構造性 能照查編](2002年) ・泳久倚重+偶発倚重+従たる の適切な組合せを検討 「「コンクリート標準示方書[構造性 能照查編](2002年) ・ホス人倚重+偶発倚重+従たる の適切な組合せを検討 「「原子力発電所屋外重要土木構造物 の耐震性能照査指針・マニュアル (2005年) ・曲げに対する照査は,限力 定した上で,発生ひずみが関 を下回ることを確認* 「「親管杭」 ・世ん断に対する照査は,終局曲 した上で,発生曲率が終局曲 いたしで,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で,発生曲率が終局曲 した上で、発生曲率が終局曲 した上で、発生曲率が終局曲 した上で、発生曲率が終局曲 した上で、発生曲率が終局曲 のゴとを確認* 「調管抗】 ・自用貯蔵建屋の基礎構造の設計 に関する技術規程JEAC46 ・せん断に対する照査は,発生 が終局せん断強度を下回る 認* 「調や奇成構造標準示方書[耐震設 計編](2008年) ・基礎地盤の支持性能に対す 抗頭に発生する鉛直力が終 構造編)・同解説(平成14年3月) 地震応答解析 ・原子力発電所耐震設計技術指針 JEAG4601-1987 ・有限要素法による2次元モラ た時刻歴非線形解析	定した上で,発生ひずみが限界ひずみ
	の耐震性能照査指針・マニュアル	を下回ることを確認*
	適用する規格,基準類 備考 ア材料定数 ・コンクリート標準示方書[構造性 能照查編](2002年) - ①の組合せ ・コンクリート標準示方書[構造性 能照查編](2002年) ・水久荷重+偶発荷重+従たる変重 の適切な組合せを検討 「 ・コンクリート標準示方書[構造性 能照查編](2002年) ・油げに対する照査は,限界のずみ 定した上で,発生のずみが限界の を下回ることを確認* 「原子力発電所屋外重要土木構造物 の耐震性能照查指針・マニュアル (2005年) ・曲げに対する照査は,発生せん がせん断に対する照査は,発生せん がせん断耐力を下回ることを確 【鋼管杭】 ・曲げに対する照査は,終局曲率を した上で,発生曲率が終局曲率を した上で,発生曲率が終局曲率を した上で,発生曲率が終局曲率を した上で,発生曲率が終局曲率を したして,発生曲率が終局曲率を した上で,発生曲率が終局曲率を したして,発生曲率が終局曲率を したして,発生曲率が終局面率を したとで,発生曲率が終局曲率を したとで,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を の ることを確認* 「 ・範式キャスクを用いる使用済燃料 した上で,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を い したしで,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を い したしで,発生曲率が終局面率を したこで,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生曲率が終局面本を したして,発生曲率が終局面率を したして,発生曲率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面本を したして,発生面率が終局面本を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面本を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面本を したして,発生面率が終局面本を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が終局面率を したして,発生面率が たちのでの 、	 ・せん断に対する照査は、発生せん断力
 ・原子力発電所屋外重要土木構造物 の耐震性能照査指針・マニュアル (2005年) ・せん断に対する照査は、発 がせん断耐力を下回ることを確認* ・せん断に対する照査は、発 がせん断耐力を下回るこへ 【鋼管杭】 ・歯げに対する照査は、終局 した上で、発生曲率が終局 ・電話式キャスクを用いる使用済燃料 中間貯蔵建屋の基礎構造の設計 に関する技術規程JEAC46 ・せん断に対する照査は、発 が終局せん断強度を下回 	がせん断耐力を下回ることを確認*	
	【鋼管杭】	・曲げに対する照査は,終局曲率を設定
	・乾式キャスクを用いる使用済燃料	した上で,発生曲率が終局曲率を下回
<u></u>	中間貯蔵建屋の基礎構造の設計	備考 構造性 - 事造性 ・永久荷重+偶発荷重+従たる変動荷 の適切な組合せを検討 ・曲げに対する照査は,限界ひずみを 定した上で,発生ひずみが限界ひずみを 定した上で,発生ひずみが限界ひずみを がせん断に対する照査は,発生せん断 がせん断耐力を下回ることを確認* ・世ん断に対する照査は,終局曲率を設 した上で,発生曲率が終局曲率を下 ることを確認* ・世ん断に対する照査は,発生せん断 が終局せん断強度を下回ることを 認* が終局せん断強度を下回ることを 認* ・基礎地盤の支持性能に対する照査は 抗勇 特力及び終局引抜き力を下回るこ を確認* 指針 ・有限要素法による 2 次元モデルを用 た時刻歴非線形解析
日日本でありて	に関する技術規程JEAC46	 ・せん断に対する照査は、発生せん断力
	1 6 - 2009	が終局せん断強度を下回ることを確
	・鋼・合成構造標準示方書[耐震設	認*
	計編] (2008 年)	
	【基礎地盤の支持性能】	・基礎地盤の支持性能に対する照査は、
	・道路橋示方書(I共通編・IV下部	杭頭に発生する鉛直力が終局鉛直支
	構造編)·同解説(平成 14 年 3 月)	持力及び終局引抜き力を下回ること
		 - 永久荷重+偶発荷重+従たる変動荷の適切な組合せを検討 ・曲げに対する照査は,限界ひずみを定した上で,発生ひずみが限界ひずを下回ることを確認* ・せん断に対する照査は,発生せん断がせん断耐力を下回ることを確認* ・曲げに対する照査は,終局曲率を設した上で,発生曲率が終局曲率を下ることを確認* ・せん断に対する照査は,発生せん断が終局せん断強度を下回ることを認* ・基礎地盤の支持性能に対する照査に 杭頭に発生する鉛直力が終局鉛直持力及び終局引抜き力を下回ることを確認* ・有限要素法による2次元モデルを用た時刻歴非線形解析
地雷亡效初托	・原子力発電所耐震設計技術指針	 ・有限要素法による2次元モデルを用い
	JEAG4601-1987	た時刻歴非線形解析

表 2-12 適用する規格,基準類

注記*:妥当な安全余裕を考慮する。

- 3. 地震応答解析
- 3.1 地震応答解析手法

軽油タンク基礎の地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法 を用いて、基準地震動Ss及び弾性設計用地震動Sdに基づき設定した水平地震動と鉛直地震 動の同時加振による逐次時間積分の時刻歴応答解析にて行う。軽油タンク基礎を構成する部材 のうち、基礎版(鉄筋コンクリート部材)については線形平面ひずみ要素で、鋼管杭について は非線形はり要素でモデル化する。非線形はり要素の非線形特性については鋼管杭のM-o関 係を適切にモデル化する。また、地盤については、有効応力の変化に応じた地震時挙動を適切 に考慮できるようにモデル化する。地震応答解析については、解析コード「FLIP ver.7.4.1」 を使用する。

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する 際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効 応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。一般に、地盤は荷重 を与えることによりせん断ひずみを増加させていくと、地盤のせん断応力は上限値に達し、そ れ以上はせん断応力が増加しなくなる特徴がある。また、地盤のせん断応力の上限値は有効応 力に応じて変化する特徴がある。よって、耐震評価における有効応力解析では、地盤の繰返し せん断応力~せん断ひずみ関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を 表現できる双曲線モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図 3-1に示す。

図 3-1 地震応答解析手法の選定フロー

- 3.2 地震応答解析モデルの設定
 - 3.2.1 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、原子力発電所耐震設計技術指針JEAG46 01-1987(日本電気協会)を参考に、図 3-2に示すとおりモデル幅を構造物基礎幅の5 倍程度、モデル高さを構造物幅の2倍程度とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数 20Hz 及びせん断波速度 V_s で算定される波長の 5 又は 4 分割、すなわち $V_s/100$ 又は $V_s/80$ を 考慮し、要素高さを 0.5m~1m 程度まで細分割して設定する。

構造物の要素分割については、土木学会マニュアルに、線材モデルの要素分割について は、要素長さを部材の断面厚さ又は有効高さの2.0倍以下とし、1.0倍程度とするのが良 い旨が示されていることを考慮し、部材の断面厚さ又は有効高さの1.0倍程度まで細分割 して設定する。なお、杭の要素分割については、杭に接する地盤の要素分割に合わせて設 定する。

図 3-2 モデル範囲の考え方

2 次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地盤 に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。この自 由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次元有 効応力解析における自由地盤の初期応力解析から不整形地盤の地震応答解析までのフローを 図 3-3に示す。また、軽油タンク基礎周辺の地質断面図を図 3-4~図 3-5に示す。

図 3-3 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

既設/新設	凡例	地盤改良工法
既設地盤改良体		置換(CD掘削)
新設地盤改良体		置換(CD掘削)

注 :置換工法(CD 掘削)の施工範囲の内,地上 構造物及び埋設構造物がある箇所では, 高圧噴射または置換(開削)を適用

図 3-4 軽油タンク基礎周辺地質断面図(A-A断面)

(単位:m)

既設/新設	凡例	地盤改良工法	
既設地盤改良体		置換(CD掘削)	
新設地盤改良体		置換(CD掘削)	

注:置換工法(CD 掘削)の施工範囲の内,地上 構造物及び埋設構造物がある箇所では, 高圧噴射または置換(開削)を適用

図 3-5 軽油タンク基礎周辺地質断面図(B-B断面)

3.2.2 境界条件

(1) 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初期 応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重等に よる地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を図 3-6に示す。

図 3-6 初期応力解析における境界条件の概念図

(2) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬するため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側方の粘 性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側方を通過 していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。軽油タンク 基礎の地震応答解析モデルを図 3-7 及び図 3-8 に示す。

図 3-7 軽油タンク基礎の地震応答解析モデル(A-A断面)

図 3-8 軽油タンク基礎の地震応答解析モデル(B-B断面)

3.2.3 解析奥行幅

A-A断面及びB-B断面の解析奥行幅は,各断面の軽油タンク基礎幅として設定する。 解析奥行幅の考え方を図 3-9 に示す。

3.2.4 構造物のモデル化

軽油タンク基礎の解析モデルにおける構造物部分の拡大図を図 3-10 に示す。
 基礎版(鉄筋コンクリート部材)は、線形平面ひずみ要素でモデル化する。
 鋼管杭は、非線形はり要素でモデル化する。モデル化する杭の杭長は、解析断面位置の
 杭長とし、杭頭部は基礎版と剛結する。

図 3-10 軽油タンク基礎の解析モデル(A-A断面,構造物部分拡大部)
- 3.2.5 隣接構造物のモデル化
 - (1) 7号機原子炉建屋

軽油タンク基礎の評価対象断面のうちB-B断面には,隣接構造物である7号機原子炉 建屋をモデル化している。7号機原子炉建屋のモデル化手法概念図を図 3-11 に示す。7 号機原子炉建屋は,設置変更許可申請書の基礎地盤安定性評価におけるモデル化と同様に, 質点系建屋モデルから建屋各層の水平剛性K_H,鉛直剛性K_v及び曲げ剛性K_oを用いて, せん断剛性G_i,ポアソン比_{vi}及びヤング係数E_iを求め,等価な有限要素モデルを作成す る。

図 3-11 7号機原子炉建屋のモデル化手法概念図

3.2.6 地盤及びマンメイドロックのモデル化

地盤及びマンメイドロックはマルチスプリング要素及び間隙水要素でモデル化し,地盤 については地震時の有効応力の変化に応じた非線形せん断応力~せん断ひずみ関係を考慮 する。

3.2.7 地盤改良体のモデル化

構造物周辺の地盤改良体の効果を考慮するため,改良率及び解析奥行幅に応じた等価剛 性を設定し、マルチスプリング要素及び間隙水要素でモデル化する。 3.2.8 ジョイント要素の設定

「地盤と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けること により、地震時の接合面における剥離及びすべりを考慮する。なお、既設地盤改良体と新 設地盤改良体との接合面については、既設地盤改良体に対し新設地盤改良体をラップさせ て設置し、接合させることから、ジョイント要素は設定しない。

ジョイント要素は,隣接する要素の接合面で法線方向及びせん断方向に対して設定する。 法線方向については,常時の圧縮荷重以上の引張荷重が生じた場合,剛性及び応力を零と し,剥離を考慮する。せん断方向については,各要素間の接合面におけるせん断抵抗力以 上のせん断荷重が生じた場合,せん断剛性を零とし,すべりを考慮する。

なお, せん断強度 τ_fは, 次式により設定する。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

σ':要素間の直応力

- св:付着力
- φ_B:摩擦角

要素間の付着力 c_B,摩擦角 ϕ_B は,表 3-1 に示す道路橋示方書の設定を参考に,表 3 -2 のとおり設定する。周辺地盤の粘着力 c,内部摩擦角 ϕ は, V-2-1-3「地盤の支持性能に係る基本方針」に基づき,表 3-3 のとおり設定する。

表 3-1	道路橋示方書におけ	る摩擦力φェ	と付着力cェ

条件	摩擦角 ϕ_B (摩擦係数 $\tan \phi_B$)	付着力 c _B
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合		$c_B = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_B = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

ただし、 ø: 支持地盤のせん断抵抗角(°) c: 支持地盤の粘着力(kN/m²)

(道路橋示方書より引用)

条件	付着力 cB	摩擦角φB(°)			
地盤と構造物	0	2/3 <i>φ</i>			
地盤と地盤改良体*	С	φ			

表 3-2 要素間の付着力 cBと摩擦角 ØB

注記* :地盤と地盤改良体の付着力と摩擦角は、地盤のc、 φを適用する。

地層区分	粘着力c(kN/m²)	内部摩擦角 ϕ (°)
埋戻土	0.0	35.9
新期砂層	0.0	34.6
沖積層上部(砂質土)	0.0	36. 7
沖積層下部	0.0	35.6
西山層	1370-5.04Z*	0.0

表 3-3 周辺地盤の粘着力 c と内部摩擦角 φ

注記* : Zは,標高(m)を示す

また,ジョイント要素のばね定数は,数値解析上不安定な挙動を起こさない程度に十分 大きい値として,港湾構造物設計事例集(上巻)(沿岸技術研究センター,平成19年3月) に従い,表 3-4の通り設定する。ジョイント要素の力学特性を図 3-12に,ジョイント 要素の配置を図 3-13に示す。

せん断剛性 ks	圧縮剛性 kn
(kN/m^3)	(kN/m^3)
1.0×10^{6}	1.0×10^{6}

表 3-4 ジョイント要素のばね定数

図 3-12 ジョイント要素の力学特性

図 3-13 ジョイント要素の配置

3.2.9 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地震時の地盤と杭の接 合面における相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

せん断強度 τ_fは, 次式により設定する。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

- σ':要素間の直応力
- с_B:付着力
- φ_B:摩擦角

付着力 c B及び摩擦角 ϕ Bは,軽油タンク基礎の杭が鋼管杭であることを踏まえ,鋼材と 地盤間の条件であることを考慮し設定する。付着力 c Bは道路橋示方書に基づき,表 3-2 に示す「地盤と構造物」の条件から考慮しないものとする。摩擦角 ϕ Bは,港湾の施設の 技術上の基準・同解説(日本港湾協会,平成19年7月)において,構造物と地盤間の壁面 摩擦角を 15~20°とする旨が記載されるとともに,港湾構造物設計事例集(上巻)(沿岸 技術研究センター,平成19年3月)において,鋼材と地盤間の摩擦角を15°と設定して いることから,本解析における摩擦角 ϕ Bは15°と設定する。

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,港湾構造物設計事例集(上巻)(沿岸技術研究センター,平成 19年3月)に従い,表 3-5のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

杭-地盤相互作用ばねの力学特性を図 3-14 に, 杭-地盤相互作用ばねの配置を図 3-15 に示す。

注記* : FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

	せん断剛性 ks
	(kN/m^3)
杭軸方向	1.0×10^{6}

表 3-5 杭-地盤相互作用ばねのばね定数

図 3-15 杭-地盤相互作用ばねの配置

3.2.10 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図 3-16に示すとおり、双 曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化する 観点から、杭先端と地盤間にHirayama (1990)*による杭先端抵抗と杭先端変位の双曲線型 の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、杭 先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り扱 うため、杭先端と地盤間の変位差が引張状態となった場合、剛性及び応力を零とし、剥離 を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式および図 3-17に示す双曲 線型の式で設定される。

Hirayama (1990) では, N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭の 鉛直載荷試験結果に対して,当杭先端ばねを用いた荷重変位関係の再現解析を実施し,適 用性を検証している。また,当杭先端ばねは「一般社団法人FLIPコンソーシアム平成 25年度研究成果報告書(FLIPコンソーシアム,2013年)」にて,解析コードFLIP に対して適用性を確認している。報告書では,砂層に対する杭の押込み実験結果の杭先端 抵抗-杭先端変位関係を,当杭先端ばねが概ね再現可能であることを確認している。また, パラメータスタディとして支持層の相対密度を変化させた解析を実施し,当杭先端ばねの 適用性を検証している。検証の結果,支持層に液状化等による剛性低下が生じず,所定の 支持力を発揮できる場合,当杭先端ばねは解析コードFLIPに対し適用性を有すること が確認されている。

軽油タンク基礎については、杭の支持層は西山層であり、地震時においても液状化が生 じず、所定の杭先端支持力が期待できる岩盤であることから、当杭先端ばねを適用できる と判断した。

注記* :Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils and Foundations, Vol. 30, No. 1, pp55-64, H.Hirayama, 1990)

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z e : 杭先端変位
- a e : 基準変位を杭先端における極限支持力で除した値(=0.25D_e/q_{ult})
- **b** e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- q_{ult}: 杭先端における極限支持力

図 3-16 杭の鉛直載荷試験における一般的な荷重-変位関係 (道路橋示方書より引用)

図 3-17 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係 (Hirayama (1990))

3.2.11 材料特性の設定

基礎版(鉄筋コンクリート部材)は、線形平面ひずみ要素を用いてモデル化する。鋼管 杭は、非線形はり要素でモデル化し、非線形性を考慮する。材料の非線形特性は、コンク リート標準示方書に基づき設定する。

図 3-18 に, 鋼管杭におけるM- φ関係のバイリニアモデルを示す。また, 鋼管杭の応 カーひずみ関係を図 3-19 に示す。

なお,解析コードFLIPにおいては,鋼管杭の軸力変動に応じて非線形特性を自動的 に設定し,応答を算定している。

M_p:終局曲げ強度(全塑性モーメント)
 φ'_y:全塑性モーメントに至る時の曲率
 φ_u:局部座屈が発生する時の曲率

図 3-18 鋼管杭のM-φ関係

f_{yd}:鋼材の降伏応力*E_s*:鋼材のヤング係数

図 3-19 鋼管杭の応力-ひずみ関係

3.3 減衰定数

減衰定数は,KK7 補足-027-1「資料 1 屋外重要土木構造物の耐震安全性評価について」 に基づき設定する。

3.4 荷重の組合せ

耐震評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出し,それ ぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反力による荷重 が含まれるものとする。

なお,軽油タンク基礎は,地中に埋設されている構造物であることから運転時の異常な過度 変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるため,当該状態につい ての組合せは考慮しないものとする。また,重大事故等対処時においても,地中で設計基準事 故時の条件を上回るような事象は発生しないため,設計基準事故時の条件を上回る荷重はない。

荷重の組合せを表 3-6 に示す。

地震時に軽油タンク基礎に作用する機器・配管系の荷重については,軽油タンクは一質点で モデル化し,その他機器・配管系は解析モデルに付加質量として与えることで考慮する。

種別		荷重		算定方法
永久		躯体自重	0	・設計図書に基づいて,対象構造物の体積に材料の密度を乗 じて設定する
	固定	機器・配管自重	0	・機器・配管の重さに基づいて設定する
	荷重	土被り荷重	_	・構造物に土被りはないため考慮しない
		永久上載荷重	_	・地盤表面に恒常的に置かれる構造物はないため考慮しない
荷重	静止土圧		0	・常時応力解析により算定する
	外水圧		0	 ・地下水位に応じた静水圧として設定する ・地下水の密度を考慮する
	雪荷重		0	・積雪を考慮する
偶発荷重		水平地震動		・基準地震動Ssによる水平・鉛直同時加振を考慮する
(地震荷重)		鉛直地震動	0	・躯体,機器・配管の慣性力,動土圧を考慮する

表 3-6 荷重の組合せ

- 3.4.1 機器·配管荷重
- (1) 軽油タンク荷重 図 3-20 に示すとおり,軽油タンクを一質点でモデル化することにより,軽油タンクによる荷重を考慮する。質点要素の質量及びはり要素の物性値は,V-2-10-1-2-1-6「軽油タンクの耐震性についての計算書」及び設計値に基づき,表 3-7のとおり設定する。

図 3-20 軽油タンク質点モデル

名称	所具*	タンク基礎から	ヤング	ポマソン	此工主	せん断	断面二次
	頁重 m(kg)	重心までの距離	係数	ホノッン 比	时间柄 (mm ²)	断面積	モーメント
		h (mm)	(MPa)			(mm^2)	(mm^4)
A系タンク	647500	4419	200000	0.3	1.112×10^{6}	7. 416×10^5	1.345×10^{13}
B系タンク	632900	4248	200000	0.3	1.112×10^{6}	7. 416×10^5	1.345×10^{13}

表 3-7 各タンクの諸元

注記* : 内包液(軽油)及び積雪荷重を含む

(2) 付帯設備荷重

荷重を考慮する付帯設備を図 3-21 及び表 3-8 に示す。各付帯設備の荷重は図 3-22 に示すとおり、地震応答解析モデルへ入力する。

図 3-21 荷重を考慮する付帯設備

付帯	設備	質量	考慮する質量
①張出しダクト		457t	 ・ダクト躯体 ・非常用ディーゼル発電設備燃料油系配管 ・燃料移送ポンプ(A) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(AC) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(B) ・埋戻土 ・積雪
②張出し基礎(J	AC系)	96t	 ・張出し基礎躯体 ・燃料移送ポンプ(C) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(AC) ・積雪
③張出し基礎(B系)		52t	 ・張出し基礎躯体 ・燃料移送ポンプ(B) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(B) ・積雪
④油分離槽		36t	 ・油分離層躯体 ・積雪
⑤防油堤	5油堤 1.50t/m 1.50t/m (1.54t/m)*		・防油堤躯体 ・非常用ディーゼル発電設備燃料油系配管(一部)
	南北方向中央	1.66t/m	・防油堤躯体

表 3-8 荷重を考慮する付帯設備

注記* :非常用ディーゼル発電設備燃料油系配管を含めた質量

図 3-22 地震応答解析における付帯設備荷重(鉛直方向*)

注記*:水平方向にも同位置に載荷する。

3.4.2 外水圧

地下水位は地表面(T.M.S.L. 12.0m)として設定する。地下水の密度は, 1.00g/cm³とする。

3.4.3 雪荷重

雪荷重については、V-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関す る説明書」のうち、V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷防止 に関する基本方針」に従い、積雪厚さ115.4cm、積雪厚さ1cmあたりの荷重を29.4N/cm・m² とし、積雪荷重を3.39kN/m²として設定する。

- 3.5 地震応答解析の解析ケース
 - 3.5.1 耐震評価における解析ケース

軽油タンク基礎は,軽油タンクの間接支持機能が要求される杭基礎構造物であり,地震 時における上位クラス機器の応答加速度及び構造物の変形は,地盤のせん断弾性係数に大 きく依存する。したがって,耐震評価においてばらつきを考慮する物性値は,地盤のせん 断変形を定義する初期せん断弾性係数G₀とする。

耐震評価における解析ケースを表 3-9に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水以深の飽和 土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断波 速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また、構造物及び機器・配管系への応答加速度に対する保守的な配慮として、地盤の非 液状化の条件を仮定した解析ケースを設定する(解析ケース④,⑤)。

上記の地盤剛性及び液状化強度特性の設定を組み合わせた解析ケース(①~⑤)を実施 することにより、地盤物性のばらつきの影響を網羅的に考慮する。

耐震評価においては、全ての基準地震動Ssに対して解析ケース①(基本ケース)で地 震応答解析を実施し、鋼管杭及び基礎地盤の支持性能については得られた応答値から、基 礎版(鉄筋コンクリート部材)については「4. 基礎版の解析」に示す3次元構造解析か ら照査値を算定する。また、解析ケース①において、曲げ軸力照査及びせん断力照査をは じめとした全ての評価項目について、各照査値が最も厳しい(許容限界に対する余裕が最 も小さい)地震動を用い、追加解析ケースとして解析ケース②~⑤で地震応答解析を実施 し、解析ケース①(基本ケース)と同様に照査値を算定する。最も厳しい地震動の選定は、 照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的に厳しい地震動の選定の目 安として実施する。また、上記解析ケースの結果を踏まえ、さらに照査値が大きくなる可 能性がある場合は、追加解析を実施する。

追加解析ケースを実施する地震動の選定フローを図 3-23 に示す。

			1		2	3	4	5	
解析ケース		基本ケース	地つ考一	盤物性のばら き(+ 1 σ)を 慮した解析ケ <	地盤物性のばら つき (-1σ)を 考慮した解析ケ ース	非液状化の条件 を仮定した解析 ケース	地盤物性のばら つき (+1 σ)を 考慮して非液状 化の条件を仮定 した解析ケース		
地盤剛性の設定		地盤剛性 (平均値)	地盤剛性 (+1g)		地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)		
	液状化強度物	特性の設定	液状化強度特性 (-1σ)	Ä	坂状化強度特性 (-1σ)	液状化強度特性 (-1σ)	液状化パラメータ を非適用	液状化パラメー タを非適用	
		++*	実施						
		+-*	実施						
	5s-1	-+*	実施						
-		*	実施		全ての基準	地震動 S _s に対し	て実施する①の	解析ケース	
	Ss-2		実施		(基本ケース)において、せん断力照査及び曲げ軸力照				
		++*	実施		査をはじめ	とした全ての照査	至項目について,	各照査値が	
地震	S - 9	+-*	実施	最も厳しい(許容限界に対する余裕が最も小さい)地震					
動	55-5	-+*	実施		動を用い,	②~⑤より追加解	析ケースを実施す	13.	
11111111111111111111111111111111111111		*	実施		また,上記	解析ケースの結果	- を踏まえ, さら	に照査値が	
	Ss-4		実施		大きくなる	可能性がある場合	・は, 追加解析を家	ミ施する。	
	Ss-5		実施						
	Ss-6		実施						
	Ss-7		実施						
		++*	実施						
	55-8	-+*	実施						

表 3-9 耐震評価における解析ケース

注記* :表中の符号+,一は地震動の位相(水平,鉛直)を示す。

図 3-23 追加解析ケースを実施する地震動の選定フロー

3.5.2 機器・配管系に対する応答加速度及び応答変位抽出のための解析ケース

機器・配管系に対する応答加速度及び応答変位の抽出における解析ケースを表 3-10 に 示す。

全ての基準地震動Ss及び弾性設計用地震動Sdに対して,解析ケース③,④,⑤を実施する。機器・配管系に対する応答加速度及び応答変位抽出の基本ケースである解析ケース④に対し,応答加速度については,最も地盤が軟らかい条件となる解析ケース③及び最も地盤が固い条件となる解析ケース⑤を実施することで,地盤剛性のばらつき及び液状化の有無を網羅的に考慮する。

応答変位については,最も地盤が軟らかい条件となる解析ケース③を含んでいることか ら,変位を保守的に見込むことができる。

解析ケース 地盤剛性の設定 液状化強度特性の設定		3	4	5	
		地盤物性のばら つき (-1σ)を 考慮した解析ケ ース	非液状化の条件 を仮定した解析 ケース	地盤物性のばら つき (+1 σ)を 考慮して非液状 化の条件を仮定 した解析ケース	
		地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)	
		液状化強度特性 (-1σ)	液状化パラメータ を非適用	液状化パラメー タを非適用	
		++*	実施	実施	実施
	Ss-1 Sd-1	+-*	実施	実施	実施
		-+*	実施	実施	実施
		*	実施	実施	実施
	Ss-2 Sd-2		実施	実施	実施
		++*	実施	実施	実施
地震	Ss-3	+-*	実施	実施	実施
勤 (位	Sd-3	-+*	実施	実施	実施
相)		*	実施	実施	実施
	Ss-4 Sd-4		実施	実施	実施
	Ss-5 Sd-5		実施	実施	実施
	Ss-6 Sd-6		実施	実施	実施
	Ss-7 Sd-7		実施	実施	実施
	Ss-8	++*	実施	実施	実施
	Sd-8	-+*	実施	実施	実施

表 3-10 機器・配管系に対する応答加速度及び応答変位抽出のための解析ケース

注記* :表中の符号+,一は地震動の位相(水平,鉛直)を示す。

- 4. 基礎版の解析
- 4.1 解析手法

基礎版の評価は,軽油タンク及び附帯設備の荷重の平面的な偏りを考慮するため,基礎版を 非線形積層シェル要素でモデル化し,水平2方向及び鉛直方向の荷重に対する評価を,3次元 構造解析を用いて行う。

基礎版に作用する荷重は、地震応答解析(2次元動的有限要素法解析)において基礎版の評価に支配的な荷重が最大となる時刻を選定し、当該時刻における地震時応答から設定する。3次元構造解析には、解析コード「Engineer's Studio Ver. 8.0.1」を用いる。

本検討で扱う非線形積層シェル要素は、断面高さ方向に分割された鉄筋コンクリート部材の 各層に対し、前川モデルに基づく非線形性を考慮しており、これを断面高さ方向に積分するこ とで、面内変形だけではなく面外変形の非線形挙動も考慮しているものである。

なお,前川モデルは新規制基準適合性審査において使用実績のある解析コード「WCOMD」 に適用されている構成則であり、「コンクリート標準示方書[設計編](土木学会,2012年)」 にも規定されている。

解析コードの検証及び妥当性確認の概要については、V-2別紙「計算機プログラム(解析コ ード)の概要」に示す。

4.2 解析モデルの設定

4.2.1 基礎版のモデル化

基礎版は材料の非線形特性を考慮した非線形積層シェル要素で、杭は杭頭バネ要素でモ デル化する。モデル概念図を図 4-1 に、要素分割図を図 4-2 に示す。非線形積層シェル 要素は8層とし、主鉄筋の位置が層の中心となるよう上側、下側の鉄筋コンクリート要素 を設定する。鉄筋コンクリート要素を除く範囲は、無筋コンクリート要素としてモデル化 する。

(単位:mm)

図 4-2 要素分割図

- 4.2.2 材料の非線形特性
 - (1) コンクリート
 - a. 圧縮応力下における応力-ひずみ関係

図 4-3 に一軸圧縮応力下における応力-ひずみ関係を示す。

圧縮応力下の応力-ひずみの骨格曲線は,最大応力点までの硬化域と,最大応力点を 超えた軟化域で表され,残留塑性ひずみと除荷再載荷時の剛性低下を考慮している。

また,ひび割れ発生後のコンクリートの圧縮強度については,図 4-4 に示す低減係 数を破壊パラメータに乗じることで,ひび割れ発生後の圧縮強度の低下を考慮する。

$$\sigma'_{c} = E_{0}K(\varepsilon'_{c} - \varepsilon'_{p}) \ge 0$$
$$E_{0} = \frac{2 \cdot f'_{cd}}{\varepsilon'_{peak}}$$

$$K = exp\left\{-0.73\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\left(1 - exp\left(-1.25\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\right)\right)\right\}$$
$$c' = c' - 2.86 \cdot c' - \left\{1 - exp\left(-0.25\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\right)\right\}$$

$$\varepsilon_{p}' = \varepsilon_{max}' - 2.86 \cdot \varepsilon_{peak}' \left\{ 1 - exp\left(-0.35 \frac{e_{max}}{\varepsilon_{peak}'} \right) \right\}$$

 $\sub \sub k$, $f'_{cd} = f'_{ck}/\gamma_c$

$$\epsilon'_{peak}$$
: 圧縮強度に対応するひずみ(一般に, 0.002 としてもよい)

- ε'max :過去に受けた圧縮ひずみの最大値
- *ε*'_p : 塑性ひずみ
- *K* : 弹性剛性残存率

図 4-4 弾性剛性残存率の低減係数(コンクリート標準示方書 [設計編](土木学会, 2012年)より引用)

b. 引張応力下における応力-ひずみ関係

引張応力下における応力-ひずみ関係は、ひび割れ発生までは線形弾性とし、ひび割 れ強度以降は、鉄筋とコンクリートの付着の影響等を考慮し、図 4-5 に示す骨格曲線 を用いて、ひび割れ間のコンクリートに引張応力分担を考慮する。

図 4-5 引張応力下における応力-ひずみ関係 (コンクリート標準示方書[設計編](土木学会,2012年)より引用)

c. ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割れ角度を固定する固定ひび割れモデルでは, ひび割れ面のずれによるせん断応力伝達特性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は、斜めひび割れの発生に伴う剛性低下や破壊を評価 するため、図 4-6 に示すとおり、ひび割れ面におけるせん断ひずみγとひび割れ開口 ひずみ εの比をパラメータとし、コンクリートの剛性低下を考慮するモデルを用いる。

- β : ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ ε の比($\gamma / ε$)
- τ : ひび割れ面でのせん断応力
- τmax :除荷開始時せん断応力

 β_{max} :除荷開始時せん断ひずみ γ とひび割れ開口ひずみ ε の比

図 4-6 ひび割れ面でのせん断伝達モデル

(コンクリート標準示方書 [設計編](土木学会, 2012年)より引用)

(2) 鉄筋

ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均応力-平均ひずみ関係は, 単体鉄筋の応力-ひずみ関係と異なり、図 4-7に示すひずみ硬化特性を考慮する。

図 4-7 ひずみ硬化域までモデル化した鉄筋の平均応力-平均ひずみ関係 (コンクリート標準示方書[設計編](土木学会,2012年)より引用)

(3) 鉄筋コンクリートとしてのモデル化 コンクリートと鉄筋の界面の付着特性をテンションスティフニング効果(引張特性が硬 化する現象)として,鉄筋コンクリート要素の中に取り込むことにより,鉄筋コンクリートの構成則を直接与える。

鉄筋コンクリートの引張応力下の平均応力は、以下の式*で表される。

$$\bar{\sigma}_{RC} = \frac{A_s}{A_{RC}} \bar{\sigma}_S + \frac{A_c}{A_{RC}} \bar{\sigma}_C$$

ここに, $\bar{\sigma}_s$, $\bar{\sigma}_c$:それぞれ鉄筋とコンクリートの平均応力

 A_s , A_c : それぞれ鉄筋とコンクリートの断面積, $A_{RC} = A_s + A_c$

注記* :土木学会マニュアルより引用

4.2.3 杭頭ばね要素の設定

杭頭ばね要素の剛性は,道路橋示方書に基づき設定する。杭頭ばね要素の区分を表 4-1に,概念図を図 4-8に示す。

名称	記号	区分	単位
軸方向ばね	Kv	杭軸方向のばね	kN/m
	K_1	杭の法線方向ばね	kN/m
	K_2	杭の回転ばね	kN/rad
軸古舟十向げも	17	杭の法線方向ばね	1-Ni /
11日月月日は74	κ_3	(モーメント)	KNM/M
		杭の回転ばね	1-N / 1
	κ_4	(モーメント)	kNm/rad

表 4-1 杭頭ばね要素の区分

(杭基礎設計便覧(日本道路協会,平成19年1月)より引用)

各杭頭ばね要素のばね定数は、以下のとおり算出する。

$$K_v = a \frac{A_p E_p}{L}$$

ここで、 K_v : 杭の軸方向ばね定数(kN/m)
a : 適用する杭工法に応じて設定
a=0.010 (L/D) +0.36 (中掘り杭)
 A_p : 杭の純断面積(mm²)
 E_p : 杭のヤング係数(kN/mm²)
L : 杭長(m)
D : 杭径(m)

$$K_{1} = \frac{12 \text{E I } \beta^{3}}{(1 + \beta \text{ h})^{3} + 2}$$

$$K_{2} = K_{3} = K_{1} \frac{\lambda}{2}$$

$$K_{4} = \frac{4 \text{E I } \beta}{1 + \beta \text{ h}} \frac{(1 + \beta \text{ h})^{3} + 0.5}{(1 + \beta \text{ h})^{3} + 2}$$

$$\text{CCC}, \beta : \overline{h} \circ \overline{$$

h :設計上の地盤面から上の杭の杭軸方向の長さ(m)

4.3 照査時刻の選定

軽油タンク基礎は軽油タンクを間接支持する構造物であり、その健全性評価には軽油タンク からの外力が大きく影響する。

基礎版の照査時刻は,地震応答解析において軽油タンクの圧縮軸力及びモーメントがそれぞ れ最大となる時刻とする。

なお、照査時刻選定の妥当性については(参考資料1-3)に示す。

4.4 入力荷重

3 次元構造解析の入力荷重は、「4.3 照査時刻の選定」にて選定した照査時刻に対し、地震 応答解析から同時刻における水平2方向及び鉛直方向の地震時応答を抽出し、算定する。NS 方向の地震時応答はA-A断面から、EW方向の地震時応答はB-B断面から抽出する。鉛直 方向の地震時応答は、A-A断面及びB-B断面からそれぞれ抽出される地震時応答のうち、 より大きい方を使用する。

入力荷重の一覧を表 4-2 に、入力荷重の算定フローを図 4-9 に示す。

入力荷重のうち、「軽油タンクによる荷重」及び「張出しダクト及び張出し基礎による荷重」 については、基礎版に対する3次元的な荷重を適切に考慮するため、抽出した地震時応答に対 し、別途作成した荷重算定モデルを介して入力荷重を算定する。

「慣性力」及び「土圧及び水圧」については,抽出した地震時応答を用いて入力荷重を算定 する。

入力荷重		地震応答解析から 抽出する地震時応答	載荷位置
軽油タンクによる荷重		断面力	設置位置
張出しダクト及び張出し基礎による荷重		応答加速度	設置位置
慣性力	油分離槽	応答加速度	設置位置
	防油提	応答加速度	設置位置
	基礎版	応答加速度	基礎版全体
	リングコンクリート及び乾燥砂	応答加速度	設置位置
	積雪	応答加速度	基礎版上面
土圧及び水圧		土圧・水圧	基礎版側面

表 4-2 入力荷重一覧

1 - 61

- 4.4.1 軽油タンクによる荷重
 - (1) 算定方法

軽油タンクによる荷重は,軽油タンク下面での荷重分布を考慮するため,地震応答解析の照査時刻における軽油タンクの地震時応答を,別途作成した3次元の軽油タンク荷重算 定モデルに作用させ,算定する。

(2) 軽油タンクの地震時応答の抽出

軽油タンクの地震時応答は、地震応答解析モデルにおける軽油タンクをモデル化したは り要素の、照査時刻における断面力とする。軽油タンクの断面力のうち、NS方向の曲げ 及びせん断はA-A断面から、EW方向の曲げ及びせん断はB-B断面から抽出する。軸 力は、A-A断面及びB-B断面からそれぞれ抽出される軸力のうち、より大きい方を使 用する。断面力抽出位置を図 4-10 に示す。

図 4-10 軽油タンクの地震時応答抽出位置

(3) 基礎版モデルに作用させる荷重の算定

軽油タンク荷重算定モデルを図 4-11 に示す。軽油タンクはボルトによって基礎版に固 定されており、引張力及びせん断力はボルトを介して、圧縮力はタンク底面を介して基礎 版に作用するため、表 4-3 に示す荷重の伝達方法を考慮する。軽油タンク荷重算定モデ ルは、ボルト位置である外縁部を水平・鉛直ともに固定境界とし、底面には圧縮力のみを 分担するバネ要素を配置する。底面のばね要素の特性を図 4-12 に示す。

「(2) 軽油タンクの地震時応答の抽出」より抽出した軽油タンクの地震時応答を軽油タンク荷重算定モデルに載荷することで基礎版モデルに作用させる荷重を算定し,図 4-13の概略図に示すとおり基礎版モデルに作用させる。

図 4-12 底面のばね要素の特性

表 4-3 軽油タンクの荷重の伝達方法

注記* :地震応答解析におけるタンクモデルのはり要素の軸力は、常に圧縮側である。

(せん断)

図 4-13 軽油タンクによる荷重の概略図

- 4.4.2 張出しダクト及び張出し基礎による荷重
 - (1) 算定方法

張出しダクト及び張出し基礎から基礎版に作用する荷重は,地震応答解析の照査時刻に おける張出しダクト及び張出し基礎の地震時応答及び土水圧を,図 4-14 に示す張出しダ クト及び張出し基礎の荷重算定モデルに作用させ,算定する。

荷重算定モデルは、慣性力や土水圧が、張出しダクト及び張出し基礎を介して軽油タン ク基礎版との接続部に伝達する荷重を算定することを目的とする。躯体は線形シェル要素 でモデル化し、軽油タンク基礎版との接続部は完全固定とする。

図 4-14 張出しダクト及び張出し基礎の荷重算定モデル
(2) 張出しダクト及び張出し基礎の地震時応答の抽出

張出しダクト及び張出し基礎の地震時応答は、地震応答解析モデルにおける基礎版の張
出しダクト及び張出し基礎設置位置にあたる各節点の、照査時刻における応答加速度の平
均値から算定される各設備の慣性力とする。NS方向の応答加速度はA-A断面から、E
W方向の応答加速度はB-B断面から抽出する。鉛直方向の応答加速度は、A-A断面及
びB-B断面からそれぞれ抽出される応答加速度のうち、より大きい方を使用する。張出
しダクト及び張出し基礎の応答加速度抽出位置を図 4-15 に示す。

図 4-15 張出しダクト及び張出し基礎の地震時応答抽出位置

(3) 土圧及び水圧の抽出

張出しダクトの側壁に作用する土圧及び水圧は,地震応答解析モデルにおける軽油タン ク基礎版の側面に接する地盤要素及び間隙水要素の,照査時刻における要素応力から抽出 する。また,張出しダクト底板には,常時の水圧を作用させる。 (4) 基礎版モデルに作用させる荷重の算定 基礎版モデルに作用させる荷重算定の概要を図 4-16 に示す。「4.4.2 (2) 張出しダク ト及び張出し基礎の地震時応答の抽出」及び「4.4.2 (3) 土圧及び水圧の抽出」より抽出 した荷重を、荷重算定モデルに載荷する。荷重算定モデルにおける軽油タンク基礎版との 接続部の節点は完全固定とし、当該箇所の節点から得られた鉛直、水平、回転方向の反力 を基礎版モデルに作用させる荷重とする。

算定した荷重は図 4-17の概略図に示すとおり、基礎版モデルに入力する。

図 4-16 基礎版モデルに作用させる荷重算定の概要図

図 4-17 張出しダクト及び張出し基礎による荷重の概略図

4.4.3 油分離槽の慣性力

油分離槽の慣性力は、地震応答解析モデルにおける基礎版の油分離槽設置位置にあた る各節点の、照査時刻における応答加速度の平均値から算定する。油分離槽の応答加速 度抽出位置を図 4-18 に示す。NS方向の加速度についてはA-A断面の油分離槽設置 位置にあたる節点を、EW方向の加速度についてはB-B断面の油分離槽設置位置にあ たる各節点を加速度抽出位置とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は、図 4-19の概略図に示すとおり、基礎版モデルに入力する。

1 - 69

4.4.4 防油堤の慣性力

防油堤の慣性力は、地震応答解析モデルにおける基礎版の防油堤位置にあたる各節点の、照査時刻における応答加速度の平均値から算定する。防油堤の応答加速度抽出位置を図 4-20 に示す。NS方向の加速度についてはA-A断面の防油堤位置にあたる各節点を, EW方向の加速度についてはB-B断面の防油堤位置にあたる各節点を加速度抽 出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-21の概略図に示すとおり、基礎版モデルに入力する。

4.4.5 基礎版の慣性力

基礎版の慣性力は、地震応答解析モデルにおける基礎版位置にあたる全節点の、照査 時刻における応答加速度の平均値から算定する。基礎版の応答加速度抽出位置を図 4-22 に示す。NS方向の加速度についてはA-A断面の基礎版位置にあたる全節点を、E W方向の加速度についてはB-B断面の基礎版位置にあたる全節点を加速度抽出範囲と する。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-23の概略図に示すとおり、基礎版モデルに入力する。

図 4-22 基礎版の応答加速度抽出位置

4.4.6 リングコンクリート及び乾燥砂の慣性力

リングコンクリート及び乾燥砂の慣性力は,地震応答解析の基礎版のリングコンクリート及び乾燥砂位置にあたる各節点の,照査時刻における応答加速度の平均値から算定する。応答加速度抽出位置を図4-24に示す。NS方向の加速度についてはA-A断面のリングコンクリート及び乾燥砂位置にあたる各節点を,EW方向の加速度についてはB-B断面のリングコンクリート及び乾燥砂位置にあたる全節点を加速度抽出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-25の概略図に示すとおり、基礎版モデルに入力する。

図 4-24 リングコンクリート及び乾燥砂の応答加速度抽出位置

図 4-25 リングコンクリート及び乾燥砂の慣性力の概略図

4.4.7 積雪の慣性力

積雪の慣性力は、地震応答解析モデルにおけるリングコンクリート及び乾燥砂位置を 除く基礎版上面の全節点の、照査時刻における応答加速度の平均値から算定する。応答 加速度抽出位置を図 4-26 に示す。NS方向の加速度についてはA-A断面の軽油タン ク位置を除く基礎版上面の全節点を、EW方向の加速度についてはB-B断面の軽油タ ンク位置を除く基礎版上面の全節点を加速度抽出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-27の概略図に示すとおり、基礎版モデルに入力する。

4.4.8 土圧及び水圧

基礎版の側面に作用する水平方向の土圧及び水圧は、地震応答解析モデルにおける基礎 版の側面に接する地盤要素及び間隙水要素の、照査時刻における要素応力から算定する。 また、基礎版モデル底面には常時分の水圧を作用させる。土圧及び水圧の抽出位置を図 4 -28に示す。

算定した土圧及び水圧は図 4-29の概略図に示すとおり、基礎版モデルに入力する。

図 4-28 基礎版側面の土圧及び水圧の抽出位置

(B-B断面)

図 4-29 基礎版の土圧及び水圧の概略図

- 5. 評価内容
- 5.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ss又は弾性設計用地震動Sdを1次元波動論により地震応答解析モデルの底面位置で評価したものを用いる。 入力地震動の設定においては, V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデルとし,原子炉建屋と同様のものを用いる。

入力地震動算定の概念図を図 5-1 に、入力地震動の加速度時刻歴波形と加速度応答スペクトルを図 5-2~図 5-53 に示す。入力地震動の算定には解析コード「SLOK Ver.2.0」を 使用する。

なお,基準地震動Ss及び弾性設計用地震動Sdのうち特定の方向性を有しない地震動については,位相を反転させた場合の影響も確認する。

MAX 11.88 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 5-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-1)

MAX 7.49 m/s^2 (5.88s)

(a) 加速度時刻歷波形

図 5-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-1)

MAX 13.24 m/s^2 (20.51s)

(a) 加速度時刻歷波形

図 5-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

図 5-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 8.40 m/s^2 (21.92s)

(a) 加速度時刻歷波形

図 5-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2NS)

MAX 5.04 m/s^2 (20.58s)

図 5-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2NS)

図 5-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-3)

図 5-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-3)

(a) 加速度時刻歷波形

図 5-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 5-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 4.92 m/s^2 (51.62s)

図 5-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4NS)

(a) 加速度時刻歷波形

図 5-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4NS)

図 5-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 5-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 4.64 m/s^2 (51.64s)

(a) 加速度時刻歷波形

図 5-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5NS)

図 5-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5NS)

図 5-18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 5-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

MAX 5.01m/s² (51.61s)

図 5-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6NS)

図 5-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6NS)

(a) 加速度時刻歷波形

図 5-22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

図 5-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7EW)

図 5-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7NS)

図 5-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7NS)

MAX 7.65 m/s^2 (7.74s)

図 5-26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-8)

MAX 3.35 m/s^2 (7.64s)

図 5-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-8)

MAX 5.93 m/s^2 (18.51s)

図 5-28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-1)
MAX 3.69 m/s^2 (16.16s)

図 5-29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Sd-1)

MAX 6.47 m/s^2 (20.50s)

図 5-30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-2EW)

MAX 2.52 m/s^2 (20.58s)

図 5-31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-2EW)

MAX 4.20 m/s^2 (21.92s)

(a) 加速度時刻歷波形

図 5-32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-2NS)

MAX 2.52 m/s^2 (20.58s)

図 5-33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-2NS)

図 5-34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: Sd-3)

図 5-35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: Sd-3)

MAX 4.63 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 5-36 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-4EW)

MAX 1.78 m/s^2 (46.29s)

図 5-37 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-4EW)

MAX 2.46 m/s^2 (51.62s)

図 5-38 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-4NS)

MAX 1.78 m/s^2 (46.29s)

(a) 加速度時刻歷波形

図 5-39 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-4NS)

MAX 3.75 m/s^2 (46.29s)

(a) 加速度時刻歷波形

図 5-40 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-5EW)

MAX 1.84m/s^2 (52.06s)

(a) 加速度時刻歷波形

図 5-41 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-5EW)

MAX 2.32 m/s^2 (51.64s)

(a) 加速度時刻歷波形

図 5-42 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-5NS)

MAX 1.84m/s^2 (52.06s)

(a) 加速度時刻歷波形

図 5-43 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-5NS)

MAX 4.80 m/s^2 (51.71s)

(a) 加速度時刻歷波形

図 5-44 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-6EW)

MAX 1.95 m/s^2 (52.87s)

(a) 加速度時刻歷波形

図 5-45 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-6EW)

MAX 2.51m/s² (51.61s)

図 5-46 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-6NS)

(a) 加速度時刻歷波形

図 5-47 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-6NS)

図 5-48 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-7EW)

MAX 1.89 m/s^2 (53.65s)

図 5-49 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-7EW)

MAX 2.17 m/s^2 (52.75s)

図 5-50 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-7NS)

MAX 1.89 m/s^2 (53.65s)

図 5-51 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-7NS)

MAX 3.76m/s² (7.74s)

(a) 加速度時刻歷波形

図 5-52 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Sd-8)

MAX 1.71m/s^2 (7.64s)

図 5-53 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Sd-8)

- 5.2 許容限界の設定
 - 5.2.1 曲げ軸力に対する許容限界
 - (1) 鉄筋コンクリート部材

鉄筋コンクリート部材の曲げ軸力に対する照査は、土木学会マニュアルに基づき、限界 ひずみ(圧縮縁コンクリートひずみ 1%)を許容限界とし、照査用コンクリートひずみが 限界ひずみを下回ることを確認する。

鉄筋コンクリート部材の曲げ軸力照査に用いるコンクリートの照査用圧縮ひずみは,3 次元構造解析より得られたコンクリートの圧縮縁の発生ひずみに安全係数(構造解析係数) 1.2を乗じることにより,曲げ破壊に対して安全余裕を見込んだ評価を実施する。

$$\gamma_{i} \frac{\epsilon_{d}}{\epsilon_{r}} < 1.0$$

ここで,

- γ_i :構造物係数 (γ_i=1.0)
- ε_r:限界ひずみ
- ϵ_{d} :照査用圧縮ひずみ($\epsilon_{d} = \gamma_{a} \cdot \epsilon$)
- γ_{a} :構造解析係数 ($\gamma_{a} = 1.2$)
- ε : 圧縮縁の発生ひずみ

(2) 鋼管杭

鋼管杭の曲げ軸力に対する照査は、キャスク指針及び鋼・合成構造標準示方書に基づき、 鋼管杭の終局曲率を許容限界とし、照査用曲率が終局曲率を下回ることを確認する。

鋼管杭の曲げ軸力照査に用いる照査用曲率は、地震応答解析により得られた曲率に安全 係数(構造解析係数)1.05を乗じることにより、曲げ破壊に対して安全余裕を見込んだ評 価を実施する。

$$\gamma_{i} \frac{\phi_{d}}{\phi_{u}} < 1.0$$

ここで、 γ_{i} :構造物係数 (=1.0)
 $\phi_{d} = \gamma_{a} \cdot \phi$
 γ_{a} :構造解析係数 (=1.05)
 ϕ :応答計算による最大曲率
 ϕ_{u} :鋼管杭の終局曲率

$$\phi_{u}(N) = \epsilon_{max} / [r \cdot \{1 + \sin(\pi N/2N_{y})\}] / \gamma_{b} \quad (N < 0: 引張, N > 0: 圧縮)$$

$$N : 発生軸力$$

$$\epsilon_{max} = 0.22 t / r : 局部座屈発生時ひずみ$$

$$r : 杭の半径$$

$$t : 腐食しろを除いた鋼材の厚さ$$

$$N_{y} = 2\pi \cdot r \cdot t \cdot \sigma_{y} : 鋼材降伏時の軸力$$

$$\sigma_{y}: 鋼材の降伏点応力$$

$$\gamma_{b} : 部材係数 (=1.1)$$

- 5.2.2 せん断力に対する許容限界
 - (1) 鉄筋コンクリート部材
 鉄筋コンクリート部材のせん断力に対する許容限界は、土木学会マニュアルに基づき、
 a. 棒部材式又は b. ディープビーム式で求まるせん断耐力のうち、いずれか大きい方を許容
 限界とし、照査用せん断力がせん断耐力を下回ることを確認する。

鉄筋コンクリート部材のせん断力照査に用いる照査用せん断力は,地震応答解析により 得られたせん断力に安全係数(構造解析係数)1.05を乗じることにより,せん断破壊に対 して安全余裕を見込んだ評価を実施する。

$$\gamma_{i} \frac{V_{d}}{V_{vd}} < 1.0$$

$$\gamma_{i}$$
:構造物係数 ($\gamma_{i} = 1.0$)
 V_{yd} : せん断耐力
 V_{d} :照査用せん断力 ($V_{d} = \gamma_{a} \cdot V$)
 γ_{a} :構造解析係数 ($\gamma_{a} = 1.05$)
 V :応答計算によるせん断力

a. 棒部材式 $\mathbf{V}_{\mathbf{v}\mathbf{d}} = \mathbf{V}_{\mathbf{c}\mathbf{d}} + \mathbf{V}_{\mathbf{s}\mathbf{d}}$ ここで. V_{cd}: コンクリートが分担するせん断耐力 V_{sd}: せん断補強筋が分担するせん断耐力 $V_{cd} = \beta_{d} \cdot \beta_{p} \cdot \beta_{n} \cdot \beta_{a} \cdot f_{vcd} \cdot b_{w} \cdot d / \gamma_{bc}$ $f_{vcd} = 0.20 \sqrt[3]{f_{cd}}$ ただし, $f_{vcd} > 0.72 (N/mm^2) となる場合は <math>f_{vcd} = 0.72 (N/mm^2)$ $\beta_{\rm d} = \sqrt[4]{1/\rm d}$ ただし, $\beta_d > 1.5$ となる場合は $\beta_d = 1.5$ $\beta_{p} = \sqrt[3]{100 p_{v}} (d[m])$ ただし、 $\beta_{p} > 1.5 \ basel{eq:baseline}$ たる場合は $\beta_{p} = 1.5$ $\beta_n = 1 + 2 M_0 / M_u (N_d \ge 0)$ ただし, $\beta_n > 2.0$ となる場合は $\beta_n = 2.0$ $=1+4M_0/M_u$ (N_d<0) ただし, $\beta_n < 0$ となる場合は $\beta_n = 0$ ただし, $\beta_a < 1.0$ となる場合は $\beta_a = 1.0$ $\beta_{a} = 0.75 + \frac{1.4}{a/d}$ f['].cd: コンクリート圧縮強度の設計用値(N/mm²)で設計基準強度 f['].kを 材料係数 γ mc (=1.3) で除したもの $p_x = A_s / (b_x \cdot d)$: 引張鉄筋比 A 。: 引張側鋼材の断面積 b w: 部材の有効幅 d : 部材の有効高さ N'd:設計軸圧縮力 M₁:曲げモーメント耐力 M₀=N'_d・D/6: M_dに対する引張縁において、軸方向力によって発生する応力を打 ち消すのに必要なモーメント(デコンプレッションモーメント) D:断面高さ a/d: せん断スパン比 γ_{bc}:部材係数(=1.56)

 $V_{sd} = \{A_{w} \cdot f_{wyd} \cdot (\sin \alpha + \cos \alpha) / s\} \cdot z / \gamma_{bs}$ $\subset \subset \mathcal{C},$

A_w: 区間 s におけるせん断補強筋の総断面積

- f wyd : せん断補強筋の降伏強度を材料係数γms(1.0)で除したもので, 400N/mm²以下とする。ただし,コンクリートの圧縮強度の特性値f' _{ck}が 60N/mm²以上の時は,800N/mm²以下とする。
 - α: せん断補強筋と部材軸のなす角
 - s : せん断補強筋の配置間隔
 - Z : 圧縮応力の合力の作用位置から引張鋼材図心までの距離で d /1.15 とする。
 - γ_{bs}: 部材係数 (=1.32)

$$\begin{aligned} \mathbf{V}_{cdd} &= \beta_{d} \cdot \beta_{p} \cdot \beta_{a} \cdot \mathbf{f}_{dd} \cdot \mathbf{b}_{w} \cdot \mathbf{d} / \gamma_{bc} \\ \mathbf{f}_{dd} &= 0.19 \sqrt{\mathbf{f}_{cd}} \\ \beta_{d} &= \sqrt[4]{1/d} \quad (\mathbf{d} [\mathbf{m}]) \\ \beta_{p} &= \sqrt[3]{100 \, \mathbf{p}_{v}} \\ \beta_{p} &= \sqrt[3]{100 \, \mathbf{p}_{v}} \\ \beta_{a} &= \frac{5}{1 + (\mathbf{a}/\mathbf{d})^{2}} \\ \gamma_{bc} : \\ \mathbf{n} & \mathbf{k} \\ \mathbf{k$$

土木学会マニュアルでは、コンクリート標準示方書におけるせん断耐力式のうち棒部 材式において等価せん断スパンにより設定可能な係数 β aを考慮している。これは、地 中に埋設されたラーメン構造で、分布荷重が卓越、スパン内に曲げモーメントの反曲点 が存在する等の載荷形態にある条件下では、せん断耐力が増大するという実験的知見を 踏まえ、より合理的なせん断耐力を与えるよう、コンクリート標準示方書のせん断耐力 式を精緻化したものである。

土木学会マニュアルにおけるせん断耐力式による評価においては,表 5-1 に示すと おり,複数の安全係数が見込まれていることから,せん断破壊に対して安全余裕を見込 んだ評価を実施することが可能である。

表 5-1 せん断耐力式において考慮している安全係数

安全係数				内容				
材料係数	コンクリート	γ_{mc}	1.30	コンクリートの特性値(圧縮強度)を低減				
部材係数*	コンクリート	γ _{bc}	1.56	コンクリートが負担するせん断力を低減				
	鉄筋	γ _{bs}	1.32	せん断補強筋が負担するせん断力を低減				
構造解析係数 γ _a			1.05	応答値(断面力)を割り増し				

注記* : 土木学会マニュアルでは、部材係数 γ b = γ b1 × γ b2

$$\gamma_{b1} = \begin{cases} 1.3 (コンクリート) \\ 1.1 (鉄筋) \end{cases}$$
$$\gamma_{b2} = \begin{cases} 1.0 (R \le 0.01) \\ \frac{100R+2}{3} (0.01 < R \le 0.025) \\ 1.5 (R > 0.025) \end{cases}$$
ここで、R:層間変形角

とされている。

 γ_{b2} は層間変形角の値によらず、部材が降伏していない状態であれば $\gamma_{b2}=1.0$ としてよい とされているが、解析結果から軽油タンク基礎の基礎版については一部の部材に降伏が認めら れたため、コンクリート標準示方書を参考とし、 $\gamma_{b2}=1.2$ とする。

以上より、 y_{bc}=1.3×1.2=1.56、 y_{bs}=1.1×1.2=1.32 となる。

(2) 鋼管杭

鋼管杭のせん断力に対する許容限界は,キャスク指針及び鋼・合成構造標準示方書に基 づき,以下の式で求まる終局せん断強度とする。

鋼管杭のせん断力照査に用いる照査用せん断力は、地震応答解析により得られたせん断 力に安全係数(構造解析係数)1.05を乗じることにより、せん断破壊に対して安全余裕を 見込んだ評価を実施する。

$$\gamma_{i} \frac{Q_{d}}{Q_{u}} < 1.0$$

ここで、 γ_{i} :構造物係数 (=1.0)
 $Q_{d} = \gamma_{a} \cdot Q$
 γ_{a} :構造解析係数 (=1.05)
 Q :応答計算による最大せん断力
 Q_{u} :鋼管杭の終局せん断強度

$$Q_{u} = A_{e} \cdot f_{s} / \kappa / \gamma_{b}$$

$$A_{e} : 腐食代を除いた杭の断面積$$

$$f_{s} : 鋼材の短期許容せん断応力度$$

$$\kappa : せん断応力度の分布係数で 2.0 とする。$$

$$\gamma_{b} : 部材係数 (=1.1)$$

- 5.2.3 基礎地盤の支持性能に対する許容限界
 - (1) 基礎地盤の押込みに対する支持性能評価

基礎地盤の押込みに対する許容限界は、V-2-1-3「地盤の支持性能に係る基本方針」に 基づき,道路橋示方書の杭基礎(中掘り杭工法)より設定する極限支持力に、キャスク指 針に基づく安全率1.2を考慮した終局鉛直支持力とする。杭周面の地盤が液状化層である 場合,有効応力解析により過剰間隙水圧比が95%以上と判定された地盤については液状化 するものとし、周面摩擦力を考慮しない。地盤改良体や非液状化層については、周面摩擦 力を支持力として考慮する。

終局鉛直支持力の算定条件を表 5-2及び表 5-3に示す。

$$R_{ua} = \frac{\gamma}{n} R_{u}$$

ここで, R : 終局鉛直支持力

- γ :極限支持力推定法の相違による安全率の補正係数
 (極限支持力を支持力推定式で算定するため、γ=1.0とする)
 - n :安全率(キャスク指針に基づき, n=1.2とする)
- R : 地盤から決まる杭の極限支持力(kN)

 $\mathbf{R}_{u} = \mathbf{q}_{d} \cdot \mathbf{A} + \mathbf{U} \cdot \mathbf{\Sigma} \mathbf{L}_{i} \cdot \mathbf{f}_{i}$

q_d: 杭先端における単位面積当たりの極限支持力度(kN/m²)

適用する杭工法及び杭先端の地盤種別に応じて設定

- q 」= 200 · N (≦10000) (セメントミルク噴出撹拌方式)
- A : 杭先端面積(m²)
- N: 杭先端地盤における標準貫入試験のN値
- U : 杭の周長(m)
- L::周面摩擦力を考慮する層の層厚(m)
- f::周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

125 日	算定結果								
現日	1	2	3	4	5	6	7	8	
q _d A (kN)	5001	5001	5001	5001	5001	5001	5001	5001	
杭先端の極限支持力度 q d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000	10000	
杭先端面積A(m²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2.507	2.507	2.507	

表 5-2 地盤の支持性能に対する許容限界の算定条件(押込み, A-A断面)

注記* : 腐食代 1mm 考慮

評価位置

百日	算定結果								
境日	1	2	3	4	5	6	7		
q _d A (kN)	5001	5001	5001	5001	5001	5001	5001		
杭先端の極限支持力度 q d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000		
杭先端面積A(m²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500		
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2. 507	2.507		

表 5-3(1) 地盤の支持性能に対する許容限界の算定条件(押込み, B-B断面)

注記* : 腐食代 1mm 考慮

表	5-	3	(2)	地般の支持性能に対する許容	容限界の管定条件	(押込み	B-B/新面)
11	0	0	(Δ)	地倫ツス団住船に刈りる町4		$(1T_{V})$	

百日	算定結果								
境日	8	9	10	11	12	13	14		
$q_{d} A$ (kN)	5001	5001	5001	5001	5001	5001	5001		
杭先端の極限支持力度 q d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000		
杭先端面積A(m ²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500		
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2.507	2.507		

注記* : 腐食代 1mm 考慮

図 5-54 に押込み力に対する支持力評価の概要を示す。杭基礎の押込み力に対する支持 力は、杭頭の発生軸力により評価を行う。

地震応答解析における杭周面摩擦は,「3.2.8 杭ー地盤相互作用ばねの設定」に示すと おり杭ー地盤相互作用ばねの抵抗として考慮している。この結果,図 5-55の軸力分布の 概念図に示すとおり,杭頭から杭先端へ伝達していく軸力は摩擦によって低減されていく が,杭頭の発生軸力自体は変化しない。

図 5-54 押込み力に対する支持力評価の概要

摩擦考慮時

(2) 基礎地盤の引抜きに対する評価

基礎地盤の引抜きに対する許容限界は,道路橋示方書の杭基礎(中掘り杭工法)より設 定する極限引抜き力に,キャスク指針に基づく安全率1.2を考慮した終局引抜き力とする。 杭周面の地盤が液状化層である場合,有効応力解析により過剰間隙水圧比が95%以上と判 定された地盤については液状化するものとし,周面摩擦力を考慮しない。地盤改良体や非 液状化層については,周面摩擦力を支持力として考慮する。

$$P_{a} = \frac{1}{n} P_{u}$$
ここで、 P_{a} : 終局引抜き力
n : 安全率(キャスク指針に基づき、 n =1.2 とする)
 P_{u} : 地盤から決まる杭の極限引抜き力(kN)
 $P_{u} = U \cdot \Sigma L_{i} \cdot f_{i}$

- U :杭の周長(m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- f::周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

図 5-56 に引抜きに対する支持力評価の概要を示す。杭基礎の引抜き力に対する支持力 は、杭頭の発生軸力により評価を行う。

地震応答解析における杭周面摩擦は,「3.2.8 杭ー地盤相互作用ばねの設定」に示すと おり杭ー地盤相互作用ばねの抵抗として考慮している。この結果,図 5-57 の軸力分布の 概念図に示すとおり,杭頭から杭先端へ伝達していく軸力は摩擦によって低減されていく が,杭頭の発生軸力自体は低減されない。

杭基礎全体が支持機能を保持していることを確認する。

図 5-56 引抜きに対する支持力評価の概要

図 5-57 上部工から伝達される杭の軸力分布の概念図(引抜き)

6. 評価結果

6.1 地震応答解析結果

地震応答解析結果として、「ひずみ分布」、「断面力分布」、「曲率分布」、「最大せん断ひずみ分 布」及び「過剰間隙水圧比分布」を記載する。なお、断面力分布は単位奥行きあたりの断面力 を図示する。

耐震評価においては,KK7 補足-027-1「資料1 屋外重要土木構造物の耐震安全性評価につ いて」の「9. 屋外重要土木構造物の耐震評価における追加解析ケースの選定について」に基 づき,全ての基準地震動Ssに対し解析ケース①(基本ケース)で地震応答解析を実施し,鋼 管杭及び基礎地盤の支持性能については得られた応答値から,基礎版(鉄筋コンクリート部材) については「4. 基礎版の解析」に示す3次元構造解析から照査値を算定する。また,曲げ軸 力照査,せん断力照査及び基礎地盤の支持性能照査の各評価項目について,照査値が最も厳し い(許容限界に対する余裕が最も小さい)地震動を用い,追加解析ケースとして解析ケース② ~⑤で地震応答解析を実施し,解析ケース①(基本ケース)と同様に照査値を算定する。上記 解析ケースの結果を踏まえ,さらに照査値が大きくなる可能性がある場合は,追加解析を実施 する。

- 6.1.1 解析ケースと照査値
 - 曲げ軸力照査
 - a. 鉄筋コンクリート部材

表 6-1 に,3 次元構造解析に基づく鉄筋コンクリート部材の曲げ軸力照査の実施ケースと照査値を示す。

解林	斤ケース	鉄筋コンクリートの曲げ軸力照査					
地震動		1	2	3	(4)	(5)	
	++	0.11					
$S_{\alpha-1}$	-+	0.14					
55-1	+-	0.03					
		0.03					
Ss-2		0.03					
	++	0.03					
Sa_2	-+	0.03					
38-3	+-	0.03					
		0.03					
Ss-4		0.02					
Ss-5		0.02					
Ss-6		0.02					
Ss-7		0.02	0.02	0.03	0.01	0.01	
C 0	++	0.06	0.03	0.14	0.01	0.01	
55-0	-+	0.04					

表 6-1 鉄筋コンクリート部材の曲げ軸力照査の実施ケースと照査値

b. 鋼管杭

表 6-2に、鋼管杭の曲げ軸力照査の実施ケースと照査値を示す。

表 6-2 鋼管杭の曲げ軸力照査の実施ケースと照査値

А	—	А	断	面	
_			- 7 I		

解析	斤ケース	鋼管杭の曲げ軸力照査					
地震動		1	2	3	4	(5)	
	++	0.17					
$S_{\alpha-1}$	-+	0.19					
55-1	+-	0.17					
		0.19					
Ss-2		0.09					
	++	0.22					
So-2	-+	0.21					
52 0	+-	0.22					
		0.20					
Ss-4		0.08					
Ss-5		0.11					
Ss-6		0.11					
Ss-7		0.13					
Sc-8	++	0.16	0.14	0.19	0.14	0.06	
SS−ð	-+	0.17					

B-B断面

解析	斤ケース	鋼管杭の曲げ軸力照査						
地震動		1	2	3	(4)	(5)		
	++	0.20						
S_{c-1}	-+	0.20						
55-1	+-	0.19						
		0.20						
Ss-2		0.18						
	++	0.24						
Sa_2	-+	0.22						
38-3	+-	0.24						
		0.21						
Ss-4		0.17						
Ss-5		0.27						
Ss-6		0.25						
Ss-7		0.26	0.24	0.30	0.13	0.12		
S9	++	0.18	0.17	0.19	0.16	0.15		
SS−ð	-+	0.18						

- (2) せん断力照査
 - a. 鉄筋コンクリート部材

表 6-3 に、3 次元構造解析に基づく鉄筋コンクリート部材のせん断力照査の実施ケースと照査値を示す。

解林	斤ケース	豑	「筋コンク」	リートのせ	ん断力照査	Ě
地震動		1	2	3	(4)	5
	++	0.61				
$S_{\alpha-1}$	-+	0.62				
55-1	+-	0.57				
		0.54				
Ss-2		0.45				
	++	0.55				
So-2	-+	0.51				
52 0	+-	0.52				
		0.51				
Ss-4		0.39				
Ss-5		0.41				
Ss-6		0.42				
Ss-7		0.39	0.37	0.47	0.24	0.26
Ss-8	++	0.73	0.58	0.75	0.27	0.23
	-+	0.55				

表 6-3 鉄筋コンクリート部材のせん断力照査の実施ケースと照査値

注: □は,前述3.5.1のフローに基づき,解析ケース②~⑤を実施す る地震動の基本ケース①の照査値を示す。 b. 鋼管杭

表 6-4に、鋼管杭のせん断力照査の実施ケースと照査値を示す。

表 6-4 鋼管杭のせん断力照査の実施ケースと照査値

А	—	А	断	面
$\boldsymbol{\Pi}$		$\boldsymbol{\Pi}$	쁘게	LEL

解材	斤ケース	鋼管杭のせん断力照査				
地震動		1	2	3	4	(5)
	++	0.42				
S ~ 1	-+	0.38				
55-1	+-	0.42				
		0.38				
Ss-2		0.16				
	++	0.44				
So-2	-+	0.45				
52 0	+-	0.44				
		0.45				
Ss-4		0.18				
Ss-5		0.26				
Ss-6		0.28				
Ss-7		0.31				
Sc-8	++	0.30	0.30	0.30	0. 25	0.13
0- 20	-+	0.25				

B-B断面

解析	斤ケース	鋼管杭のせん断力照査					
地震動		1	2	3	4	(5)	
	++	0.38					
$S_{\alpha-1}$	-+	0.37					
55-1	+-	0.36					
		0.37					
Ss-2		0.34					
	++	0.42					
So-2	-+	0.40					
52 0	+-	0.42					
		0.40					
Ss-4		0.38					
Ss-5		0.53		0.59			
Ss-6		0.47					
Ss-7		0.56	0.50	0.64	0.24	0.22	
S ~ 9	++	0.32	0.31	0.33	0.32	0.30	
SS-8	-+	0.32					

注: □は,前述 3.5.1 のフローに基づき,解析ケース②~⑤を実施す る地震動の基本ケース①の照査値を示す。 (3) 基礎地盤の支持性能照査

表 6-5 に基礎地盤の押込みに対する支持性能照査の実施ケースと照査値,表 6-6 に基礎地盤の引抜きに対する支持性能照査の実施ケースと照査値を示す。

表 6-5 基礎地盤の押込みに対する支持性能照査の実施ケースと照査値

A-A断面

|--|

解析	斤ケース	基礎	基礎地盤の押込みに対する支持性能照査				
地震動		1	2	3	(4)	(5)	
	++	0.30					
$S_{\alpha-1}$	-+	0.28					
55-1	+-	0.28					
		0.27					
Ss-2		0.32					
	++	0.30					
Sa_2	-+	0.28					
38-3	+-	0.31					
		0.30					
Ss-4		0.25					
Ss-5		0.21					
Ss-6		0.30					
Ss-7		0.22	0.24	0.20	0.15	0.14	
C 0	++	0.22	0.23	0.21	0.19	0.18	
55-0	-+	0.23					

解析ケース 基礎地盤の押込みに対する支持性能照査 地震動 (1)2 3 4 (5)++0.24 -+0.21 Ss-1 +-0.22 ___ 0.21 Ss-2 0.16 0.20 ++-+0.22 Ss-3 +-0.21 ___ 0.23 Ss-4 0.11 Ss-5 0.13 Ss-6 0.15 Ss-7 0.12 0.15 0.14 0.16 0.12 0.07 ++Ss-8 -+0.17

表 6-6 基礎地盤の引抜きに対する支持性能照査の実施ケースと照査値

A-A断面

解析	斤ケース	鋼管杭の引抜きに対する支持性能照査					
地震動		1)	2	3	(4)	(5)	
	++	0.21					
S ~ 1	-+	0.22					
55-1	+-	0.24					
		0.25					
Ss-2		0.09					
	++	0.30					
S 2	-+	0.26					
38-3	+-	0.30					
		0.24					
Ss-4		0.07					
Ss-5		0.10					
Ss-6		0.08					
Ss-7		0.10					
Ss-8	++	0.24	0.27	0.20	0.17	0.10	
	-+	0.11					

B-B断面

解植	斤ケース	鋼管	杭の引抜る	きに対する	支持性能照	査
地震動		1)	2	3	4	(5)
	++	0.53				
S ~ 1	-+	0.56				
55-1	+-	0.54				
		0.58				
Ss-2		0.57				
	++	0.47				
S2	-+	0.59				
58-5	+-	0.50				
		0.69				
Ss-4		0.31				
Ss-5		0.25				
Ss-6		0.46				
Ss-7		0.44	0.49	0.39	0.28	0.28
S ~ 9	++	0.29	0.28	0.30	0.30	0.28
55-0	-+	0.49				

6.1.2 ひずみ分布図(鉄筋コンクリート部材の曲げ軸力照査)

軽油タンク基礎の鉄筋コンクリート部材の曲げ軸力照査において,各解析ケースのうち最も厳しい照査値となる結果を表 6-7 に示す。また,該当する解析ケースのひずみ分布図を図 6-1 に示す。なお,図 6-1 は,表 6-7 に示す解析ケースの照査値最大時における最大ひずみと同方向のひずみ分布を示している。

表 6-7 鉄筋コンクリート部材の曲げ軸力照査結果

解析 ケース	地震動	照査用圧縮ひずみ* ε _d (μ)	限界ひずみ ε _r (μ)	照査値
1)	Ss-1-+	1381	10000	0.14

(最も厳しい照査値とその地震動)

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε ×構造解析係数 γ a

図 6-1 鉄筋コンクリート部材の曲げ軸力照査が最も厳しくなるケースでのひずみ分布図 (解析ケース①, 地震動 Ss-1-+, t=5.83s)

6.1.3 断面力分布(鉄筋コンクリート部材のせん断力照査)

軽油タンク基礎の鉄筋コンクリート部材のせん断力照査において,最も厳しい照査値と なる解析ケースを表 6-8に示す。また,該当する解析ケースの断面力分布図(曲げモー メント,軸力,せん断力)を図 6-2に示す。なお,図 6-2は,表 6-8に示す解析ケー スの照査値最大時における各断面力最大値と同方向の断面力分布を示している。

表 6-8 鉄筋コンクリート部材のせん断力照査結果

解析	地電動	照査用せん断力*	せん断耐力	照查值
ケース	地展勤	V_{d} (kN)	V_{yd} (kN)	$V_{d} / V_{y d}$
3	Ss-8++	1641	2195	0.75

(最も厳しい照査値とその地震動)

注記* :照査用せん断力Va=発生せん断力×構造解析係数ya

図 6-2 (1) 鉄筋コンクリート部材のせん断力照査が最も厳しくなるケースでの断面力分布図 (解析ケース③, 地震動 Ss-8++, t=8.12s)

図 6-2 (2) 鉄筋コンクリート部材のせん断力照査が最も厳しくなるケースでの断面力分布図 (解析ケース③, 地震動 Ss-8++, t=8.12s)

6.1.4 曲率分布(鋼管杭の曲げ軸力照査)

鋼管杭の曲げ軸力照査について,各解析ケースのうち最も厳しい照査値となる解析ケースを表 6-9 及び表 6-10 に示す。また,該当する解析ケースにおいて最も厳しい照査値 となる時刻における曲率分布図を図 6-3 及び図 6-4 に示す。

表 6-9 鋼管杭の曲げ軸力照査結果(A-A断面)

(最も厳しい照査値とその地震動)

河伍位署*1	御作を一フ	地電動	照查用曲率*2	終局曲率	照査値
計111112101	所知り	地辰朝	$\phi_{ m d}$ (1/m)	$\phi_{\rm u}$ (1/m)	φ _d ∕φ _u
8					
(肉厚 14mm [杭頭	(1)	Ss-3+-	2. 71×10^{-3}	1.24×10^{-2}	0.22
部 16mm]の杭)					

注記*1:評価位置は下図に示す。

*2 : 照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

評価位置

表 6-10 鋼管杭の曲げ軸力照査結果(B-B断面)

亚	御たケーフ	生命書	照查用曲率*2	終局曲率	照查值
計判則位直	所知り	地展到	$\phi_{\rm d}$ (1/m)	$\phi_{\rm u}$ (1/m)	ϕ d $\swarrow \phi$ u
12	0	C . 7EW	$2,27 \times 10^{-3}$	1.16×10^{-2}	0.20
(肉厚 12mm の杭)	3	SS-7EW	3.37×10^{-5}	1. 10 × 10 -	0.30

(各部材において最も厳しい照査値とその地震動)

注記*1 :評価位置は下図に示す。

*2 :照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

曲率 (×10⁻³ 1/m) 照査値が最大となる肉厚 14mm(杭頭部 16mm)の杭

評価位置(赤字:評価対象)

図 6-3 鋼管杭において最も厳しい照査値の曲率分布(A-A断面) (解析ケース①, 地震動 Ss-3+-, t=36.64s)

曲率 (×10⁻³ 1/m) 照査値が最大となる肉厚 12mm の杭

図 6-4 鋼管杭において最も厳しい照査値の曲率分布(B-B断面) (解析ケース③, 地震動 Ss-7EW, t=60.07s)

6.1.5 せん断力分布(鋼管杭のせん断力照査)

鋼管杭のせん断力照査について,解析ケースのうち最も厳しい照査値となる解析ケース を表 6-11 及び表 6-12 に示す。また,該当する解析ケースにおいて最も厳しい照査値と なる時刻におけるせん断力分布図を図 6-5 及び図 6-6 に示す。

表 6-11 鋼管杭のせん断力照査結果 (A-A断面)

			· · · ·	··· · · ·	
亚	破垢ケーフ	生きま	照査用せん断力*2	終局せん断強度	照查值
計加工具	所知りてへ	地展到	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$Q_{d} \swarrow Q_{u}$
1		$S_{c-3} - +$	880	1977	0.45
(肉厚 14mm の杭)	(I)	1 6 20	009	1977	0.45

(各部材において最も厳しい照査値とその地震動)

注記*1:評価位置は下図に示す。

*2 : 照査用せん断力Q_d=発生せん断力×構造解析係数 y_a

表 6-12 鋼管杭のせん断力照査結果(B-B断面)

亚 価位置*1	解析ケーマ	世堂朝	照査用せん断力*2	終局せん断強度	照查値
矿间位直	用中心トクーン	地辰勤	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$Q_{d} \swarrow Q_{u}$
8	0	Sa-7FW	1957	1077	0.64
(肉厚 14mm の杭)	0	38-7EW	1257	1977	0.04

(各部材において最も厳しい照査値とその地震動)

注記*1 :評価位置は下図に示す。

*2 :照査用せん断力Q_d=発生せん断力×構造解析係数γ_a

せん断力(kN) 照査値が最大となる肉厚14mmの杭

評価位置(赤字:評価対象)

図 6-5 鋼管杭において最も厳しい照査値の地震時せん断力分布(A-A断面) (解析ケース①, 地震動 Ss-3-+, t=36.62s)

せん断力(kN) 照査値が最大となる肉厚14mmの杭

図 6-6 鋼管杭において最も厳しい照査値の地震時せん断力分布(B-B断面) (解析ケース③, 地震動 Ss-7EW, t=58.33s)

6.1.6 最大せん断ひずみ分布

地盤に発生した最大せん断ひずみを確認するため、曲げ軸力照査及びせん断力照査において最大照査値を示した地震動について、地震応答解析の全時刻における各地盤要素の最大せん断ひずみの分布を示す。表 6-13 に最大照査値を示す解析ケース一覧を示す。A-A断面における最大せん断ひずみ分布図を図 6-7~図 6-10 に、B-B断面における最大せん断ひずみ分布図を図 6-13 に示す。

討研究		評価項目			
計加部小工	断围	曲げ軸力照査	せん断力照査		
鉄筋コンクリート部材		Ss-1-+ (解析ケース①)	Ss-8++(解析ケース③)		
四次大士	A-A断面	Ss-3+- (解析ケース①)	Ss-3-+ (解析ケース①)		
鲥官 伔	B-B断面	Ss-7EW(解析ケース③)	Ss-7EW(解析ケース③)		

表 6-13 最大照査値を示す解析ケース一覧

Γ		1	2	3	4	5
	解析ケース	基本ケース	地盤物性のば らつき(+1σ) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1σ) を考慮して非 液状化の条件 を仮定した解 析ケース
	地盤剛性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性	地盤剛性
	設定	(平均値)	(+1σ)	(-1σ)	(平均値)	(+1σ)
	液状化強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
	特性の設定	特性(-1σ)	特性(-1σ)	特性(-1σ)	ータを非適用	ータを非適用

鋼管杭の曲げ軸力照査で照査値が最も厳しい解析ケース

図 6-11 B-B断面の地盤の最大せん断ひずみ分布図

(解析ケース①, 地震動 Ss-1-+)

鉄筋コンクリート部材の曲げ軸力照査が最も厳しい解析ケース

構造物周辺拡大図

(解析ケース③,地震動 Ss-8++)

鉄筋コンクリート部材のせん断力照査が最も厳しい解析ケース

最大せん断ひずみ (γ_{max})

(解析ケース③, 地震動 Ss-7EW)

鋼管杭の曲げ軸力照査及びせん断力照査が最も厳しい解析ケース

6.1.7 過剰間隙水圧比分布

地盤に発生した過剰間隙水圧比を確認するため、曲げ軸力照査及びせん断力照査におい て最大照査値を示した地震動について、地震応答解析の全時刻における各地盤要素の過剰 間隙水圧比の最大値分布を示す。表 6-14 に最大照査値を示す解析ケース一覧を示す。A -A断面における過剰間隙水圧比分布図を図 6-14~図 6-17 に、B-B断面における過 剰間隙水圧比分布図を図 6-18~図 6-20 に示す。

討体がた		評価項目			
計加部小工	断围	曲げ軸力照査	せん断力照査		
鉄筋コンクリート部材	_	Ss-1-+ (解析ケース①)	Ss-8++ (解析ケース③)		
	A-A断面	Ss-3+- (解析ケース①)	Ss-3-+ (解析ケース①)		
婀官'饥	B-B断面	Ss-7EW(解析ケース③)	Ss-7EW(解析ケース③)		

表 6-14 最大照査値を示す解析ケース一覧

Γ		1	2	3	4	5
	解析ケース	基本ケース	地盤物性のば らつき(+1σ) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき (+1σ) を考慮して非 液状化の条件 を仮定した解 析ケース
	地盤剛性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性	地盤剛性
	設定	(平均値)	(+1 g)	(-1σ)	(平均値)	(+1σ)
	液状化強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
	特性の設定	特性(-1σ)	特性(-1σ)	特性(-1σ)	ータを非適用	ータを非適用

(解析ケース①, 地震動 Ss-1-+)

鉄筋コンクリート部材の曲げ軸力照査で照査値が最も厳しい解析ケース

(解析ケース③,地震動 Ss-8++)

鉄筋コンクリート部材のせん断力照査で照査値が最も厳しい解析ケース

図 6-16 A-A断面の最大過剰間隙水圧比分布図

(解析ケース①, 地震動 Ss-3+-)

鋼管杭の曲げ軸力照査で照査値が最も厳しい解析ケース

(解析ケース①,地震動 Ss−3−+)

鋼管杭のせん断力照査で照査値が最も厳しい解析ケース

構造物周辺拡大図

図 6-18 B-B断面の最大過剰間隙水圧比分布図

(解析ケース①, 地震動 Ss-1-+)

鉄筋コンクリート部材の曲げ軸力照査が最も厳しい解析ケース

構造物周辺拡大図

図 6-19 B-B断面の最大過剰間隙水圧比分布図

(解析ケース③, 地震動 Ss-8++)

鉄筋コンクリート部材のせん断力照査が最も厳しい解析ケース

図 6-20 B-B断面の最大過剰間隙水圧比分布図

(解析ケース③, 地震動 Ss-7EW)

鋼管杭の曲げ軸力照査及びせん断力照査が最も厳しい解析ケース

6.2 鉄筋コンクリート部材の耐震評価

6.2.1 鉄筋コンクリート部材の曲げ軸力に対する評価結果
 3次元構造解析に基づく鉄筋コンクリート部材の曲げ軸力照査結果を表 6-15に示す。
 各表には、「4.3 照査時刻の選定」に基づき選定した各照査時刻における評価結果のうち、
 解析ケース及び地震動ごとに照査値が最大となる結果を示している。

照査結果より、照査用圧縮ひずみが限界ひずみを下回ることを確認した。

解析		照査用圧縮ひずみ*	限界ひずみ		
ケース	地震動	ε _d (μ)	ε _r (μ)	照 金 値	
	Ss-1++	1061		0.11	
	Ss-1-+	1381		0.14	
	Ss-1+-	233		0.03	
	Ss-1	216		0.03	
	Ss-2	202		0.03	
	$S_{S}-3++$	240		0.03	
	Ss-3-+	212		0.03	
\bigcirc	$S_{S}-3+-$	227		0.03	
	Ss-3	204		0.03	
	Ss-4	134	_	0.02	
	Ss-5	152		0.02	
	Ss-6	176	10000	0.02	
	Ss-7	167		0.02	
	$S_{S}-8++$	578		0.06	
	Ss-8-+	338		0.04	
0	Ss-7	150		0.02	
2	$S_{S}-8++$	227		0.03	
3	Ss-7	235		0.03	
0	Ss-8++	1375		0.14	
	Ss-7	68		0.01	
(4)	Ss-8++	88		0.01	
6	Ss-7	79		0. 01	
0	Ss-8++	73		0. 01	

表 6-15 鉄筋コンクリート部材の曲げ軸力照査結果

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε × 構造解析係数 γ a

6.2.2 鉄筋コンクリート部材のせん断力に対する評価結果

3次元構造解析に基づく鉄筋コンクリート部材のせん断力照査結果を表 6-16 に示す。 各表には、「4.3 照査時刻の選定」に基づき選定した各照査時刻における評価結果のうち、 解析ケース及び地震動ごとに照査値が最大となる結果を示している。

照査結果より、照査用せん断力がせん断耐力を下回ることを確認した。

解析	山香毛	照査用せん断力*	せん断耐力	照査値
ケース	地晨期	V_{d} (kN)	V_{yd} (kN)	$V_{d} \swarrow V_{y d}$
	Ss-1++	1046	1717	0.61
	Ss-1-+	1289	2081	0.62
	Ss-1+-	974	1732	0.57
	Ss-1	929	1749	0.54
	Ss-2	798	1788	0.45
	$S_{S}-3++$	945	1743	0.55
	Ss-3-+	890	1774	0.51
(1)	$S_{S}-3+-$	908	1765	0.52
	Ss-3	884	1741	0.51
	Ss-4	685	1785	0.39
	Ss-5	735	1828	0. 41
	Ss-6	689	1651	0. 42
	Ss-7	625	1622	0.39
	$S_{S}-8++$	1533	2127	0.73
	Ss-8-+	964	1780	0.55
0	Ss-7	587	1610	0.37
4	$S_{S}-8++$	995	1721	0.58
0	Ss-7	765	1645	0.47
3	$S_{S}-8++$	1641	2195	0.75
\bigcirc	Ss-7	312	1354	0.24
(4)	Ss-8++	475	1817	0. 27
Ē	Ss-7	360	1408	0.26
U	Ss-8++	321	1422	0.23

表 6-16 鉄筋コンクリート部材のせん断力照査結果

注記* :照査用せん断力Va=発生せん断力×構造解析係数 ya

- 6.3 鋼管杭の耐震評価
 - 6.3.1 鋼管杭の曲げ軸力に対する評価結果
 鋼管杭の曲げ軸力照査結果を表 6-17 及び表 6-18 に示す。
 照査結果より,照査用曲率が終局曲率を下回ることを確認した。

解析	□河伍位罢*1	地雪動	照查用曲率*2	終局曲率	照查値
ケース	計111111月	旦	ϕ d (1/m)	$\phi_{\rm u}$ (1/m)	ϕ d $\swarrow \phi$ u
	3	Ss-1++	2.08 $\times 10^{-3}$	1.26×10^{-2}	0.17
	8	Ss-1-+	2. 33×10^{-3}	1.27×10^{-2}	0.19
	8	Ss-1+-	2. 42×10^{-3}	1. 48×10^{-2}	0.17
	8	Ss-1	2.35 $\times 10^{-3}$	1.29×10^{-2}	0.19
	3	Ss-2	1.11×10^{-3}	1.37×10^{-2}	0.09
	8	$S_{S}-3++$	2.70×10 ⁻³	1.26×10^{-2}	0.22
	8	Ss-3-+	2.60 $\times 10^{-3}$	1.27×10^{-2}	0.21
1)	8	Ss-3+-	2. 71×10^{-3}	1.24×10^{-2}	0.22
	8	Ss-3	2. 61×10^{-3}	1.31×10^{-2}	0.20
	3 Ss	Ss-4	1.00×10^{-3}	1.41×10^{-2}	0.08
	8	Ss-5	1.45×10^{-3}	1.42×10^{-2}	0.11
3	3	Ss-6	1.52×10^{-3}	1.44×10^{-2}	0.11
	8	Ss-7	1.79×10^{-3}	1. 46×10^{-2}	0.13
	3	Ss-8++	2. 29×10^{-3}	1. 49×10^{-2}	0.16
	3	Ss-8-+	2. 11×10^{-3}	1.27×10^{-2}	0.17
2	3	Ss-8++	1.98×10^{-3}	1.50×10^{-2}	0.14
3	3	Ss-8++	2.69×10^{-3}	1.48×10^{-2}	0.19
4	3	Ss-8++	1.97×10^{-3}	1.48×10^{-2}	0.14
5	3	Ss-8++	8. 04×10^{-4}	1.36×10^{-2}	0.06

表 6-17 鋼管杭の曲げ軸力照査結果(A-A断面)

*2 :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

評価位置

解析			照查用曲率*2	終局曲率	照査値
ケース	評価位置*1	地震動	ϕ d (1/m)	$\phi_{\rm u}$ (1/m)	ϕ d $\swarrow \phi$ u
	14	Ss-1++	2.94×10^{-3}	1.50×10^{-2}	0.20
	14	Ss-1-+	3. 00×10^{-3}	1.54×10^{-2}	0.20
	14	Ss-1+-	2.85 $\times 10^{-3}$	1.54×10^{-2}	0.19
	14	Ss-1	2.90×10^{-3}	1.52×10^{-2}	0.20
	14	Ss-2	2.69 $\times 10^{-3}$	1.50×10^{-2}	0.18
	12	$S_{S}-3++$	2.65 $\times 10^{-3}$	1.14×10^{-2}	0.24
	12	Ss-3-+	2. 39×10^{-3}	1.13×10^{-2}	0.22
1)	12	Ss-3+-	2.68 $\times 10^{-3}$	1.16×10^{-2}	0.24
	12	Ss-3	2. 36×10^{-3}	1.14×10^{-2}	0.21
	12	Ss-4	1.98×10^{-3}	1.18×10^{-2}	0.17
	12	Ss-5	3. 04×10^{-3}	1.15×10^{-2}	0.27
	12	Ss-6	2.78 $\times 10^{-3}$	1.13×10^{-2}	0.25
	12	Ss-7	2.96 $\times 10^{-3}$	1.15×10^{-2}	0.26
	12	$S_{S}-8++$	1.90×10^{-3}	1.10×10^{-2}	0.18
	12	Ss-8-+	2. 40×10^{-3}	1.34×10^{-2}	0.18
0	12	Ss-7	2.69 $\times 10^{-3}$	1.15×10^{-2}	0.24
2	12	$S_{S}-8++$	1.86×10^{-3}	1.10×10^{-2}	0.17
0	12	Ss-7	3.37×10^{-3}	1.16×10^{-2}	0.30
0	12	$S_{S}-8++$	2.62 $\times 10^{-3}$	1.43×10^{-2}	0.19
	12	Ss-7	1.65×10^{-3}	1.32×10^{-2}	0.13
(4)	14	Ss-8++	2. 51 \times 10 ⁻³	1.64×10^{-2}	0.16
Ē	12	Ss-7	1.34×10^{-3}	1.17×10^{-2}	0.12
\odot	12	$S_{s-8}++$	1.60×10^{-3}	1.12×10^{-2}	0.15

表 6-18 鋼管杭の曲げ軸力照査結果(B-B断面)

*2 :照查用曲率 ϕ_{d} = 発生曲率×構造解析係数 γ_{a}

評価位置

6.3.2 鋼管杭のせん断力に対する評価結果
 鋼管杭のせん断力照査結果を表 6-19及び表 6-20に示す。
 照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

	-				
解析	⇒(五)(二)(二)(二)	生産	照査用せん断力*2	終局せん断強度	照查値
ケース	計1111 <u>11</u> 1	地展到	\mathbf{Q}_{d} (kN)	Q_u (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
	1	Ss-1++	822	1977	0.42
	8	Ss-1-+	734	1977	0.38
	1	Ss-1+-	822	1977	0.42
	8	Ss-1	736	1977	0.38
	1	Ss-2	310	1977	0.16
	8	$S_{S}-3++$	852	1977	0.44
	1	Ss-3-+	889	1977	0.45
1)	8	Ss-3+-	852	1977	0.44
	1	Ss-3	888	1977	0.45
	1	Ss-4	351	1977	0.18
	1	Ss-5	498	1977	0.26
	1	Ss-6	543	1977	0.28
	1	Ss-7	611	1977	0.31
	8	Ss-8++	591	1977	0.30
	1	Ss-8-+	492	1977	0.25
2	8	Ss-8++	581	1977	0.30
3	8	$S_{S-8}++$	587	1977	0.30
4	1	Ss-8++	487	1977	0.25
5	8	Ss-8++	289	2275	0.13

表 6-19 鋼管杭のせん断力照査結果(A-A断面)

*2 :照査用せん断力Qd=発生せん断力×構造解析係数 ya

評価位置

解析		山西利	照査用せん断力*2	終局せん断強度	照査値
ケース	評価位置*1	地展動	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
	14	Ss-1++	740	1977	0.38
	8	Ss-1-+	720	1977	0.37
	14	Ss-1+-	710	1977	0.36
	8	Ss-1	712	1977	0.37
	14	Ss-2	850	2572	0.34
	14	$S_{S}-3++$	826	1977	0.42
	14	Ss-3-+	779	1977	0.40
1	11	Ss-3+-	703	1677	0.42
	14	Ss-3	780	1977	0.40
	8	Ss-4	735	1977	0.38
	8	Ss-5	1039	1977	0.53
	8	Ss-6	927	1977	0.47
	8	Ss-7	1104	1977	0.56
	14	Ss-8++	815	2572	0.32
	14	Ss-8-+	813	2572	0.32
0	8	Ss-7	983	1977	0.50
2	14	Ss-8++	776	2572	0.31
	8	Ss-5	1155	1977	0.59
3	8	Ss-7	1257	1977	0.64
	14	Ss-8++	839	2572	0.33
	8	Ss-7	457	1977	0.24
(4)	14	$S_{s-8}++$	808	2572	0. 32
Ē	8	Ss-7	423	1977	0. 22
0	14	Ss-8++	762	2572	0.30

表 6-20 鋼管杭のせん断力照査結果(B-B断面)

*2 :照査用せん断力Q_d=発生せん断力×構造解析係数 y_a

- 6.4 基礎地盤の支持性能に対する支持力評価
 - 6.4.1 基礎地盤の押込みに対する支持性能評価
 基礎地盤の押込みに対する支持性能照査結果を表 6-21 及び表 6-22 に示す。
 照査結果より、全時刻歴において発生した杭頭の鉛直力が終局鉛直支持力を下回ること
 を確認した。

	× • ==				
解析	⇒在告要*1	評価位置*1 地震動	鉛直力	終局鉛直支持力*2	照查値
ケース	F₩1Щ1 <u>U</u> , 直, 1		R _a (kN)	R_{ua} (kN)	R $_{a}$ / R $_{u a}$
	8	Ss-1++	1499	6426	0.24
	8	Ss-1-+	1301	6372	0.21
	8	Ss-1+-	1389	6372	0.22
	8	Ss-1	1330	6372	0.21
	8	Ss-2	994	6533	0.16
	8	Ss-3++	1284	6586	0.20
	7	Ss-3-+	1398	6371	0.22
1	8	Ss-3+-	1289	6318	0.21
	8	Ss-3	1479	6480	0.23
	8	Ss-4	685	6480	0.11
	8	Ss-5	807	6533	0.13
	8	Ss-6	936	6533	0.15
	8	Ss-7	768	6533	0.12
	8	Ss-8++	946	6691	0.15
	7	Ss-8-+	1153	6823	0.17
2	8	Ss-8++	876	6586	0.14
3	8	Ss-8++	1032	6753	0.16
4	8	Ss-8++	809	7032	0.12
5	1	Ss-8++	475	6967	0.07

表 6-21 基礎地盤の押込みに対する支持性能照査結果(A-A断面)

*2 :終局鉛直支持力Rua=極限支持力Ru÷安全率

評価位置

解析			鉛直力	終局鉛直支持力*2	照查值
ケース	評価位置*1	地震動	R _a (kN)	R _{ua} (kN)	R a / R u a
	1	Ss-1++	1904	6472	0.30
	1	Ss-1-+	1708	6299	0.28
	1	Ss-1+-	1685	6183	0.28
	2	Ss-1	1711	6402	0.27
	1	Ss-2	1991	6356	0.32
	1	$S_{S}-3++$	1735	5839	0.30
	2	$S_{S}-3-+$	1707	6134	0.28
1	1	Ss-3+-	1781	5839	0.31
	1	Ss-3	1747	5981	0.30
	1	Ss-4	1548	6241	0.25
	1	Ss-5	1305	6414	0.21
	1	Ss-6	1824	6183	0.30
	2	Ss-7	1341	6134	0.22
	2	Ss-8++	1516	6959	0.22
	1	Ss-8-+	1480	6530	0.23
0	2	Ss-7	1361	5682	0.24
2	1	$S_{S}-8++$	1459	6414	0.23
0	1	Ss-7	1232	6299	0.20
3	2	Ss-8++	1458	6959	0.21
	1	Ss-7	954	6797	0.15
(4)	2	$S_{S}-8++$	1276	7001	0.19
Ē	1	Ss-7	903	6797	0.14
\odot	2	$S_{s-8}++$	1251	7001	0.18

表 6-22 基礎地盤の押込みに対する支持性能照査結果(B-B断面)

*2 :終局鉛直支持力R_u_a=極限支持力R_u÷安全率

評価位置

6.4.2 基礎地盤の引抜きに対する支持性能評価

基礎地盤の引抜きに対する支持性能照査結果を表 6-23 及び表 6-24 に示す。 照査結果より,全時刻歴において発生した引抜き力が終局引抜き力を下回ることを確認 した。

	X 0 1 0				
解析	河伍位要*1	地震動	引抜き力	終局引抜き力*2	照查值
ケース	計測工具		P _a (kN)	P _{ua} (kN)	P a / P u a
	6	Ss-1++	550	2692	0.21
	7	Ss-1-+	603	2758	0.22
	7	Ss-1+-	657	2758	0.24
	7	Ss-1	689	2758	0.25
	7	Ss-2	235	2758	0.09
	6	$S_{S}-3++$	797	2692	0.30
	6	Ss-3-+	674	2692	0.26
1)	6	Ss-3+-	782	2692	0.30
	6 Ss-3 8 Ss	Ss-3	630	2692	0.24
		Ss-4	175	2865	0.07
-	4	Ss-5	281	2979	0.10
	7	Ss-6	216	2758	0.08
	4	Ss-7	291	2979	0.10
	7	Ss-8++	647	2758	0.24
	7	Ss-8-+	292	2758	0.11
2	7	Ss-8++	739	2758	0.27
3	7	$S_{S-8}++$	548	2758	0.20
4	7	$S_{s-8}++$	462	2758	0.17
5	1	Ss-8++	261	2800	0.10

表 6-23 基礎地盤の引抜きに対する支持性能照査結果(A-A断面)

*2 :終局引抜き力Pua=極限引抜き力Pu÷安全率

評価位置

解析			引抜き力	終局引抜き力*2	照查值
ケース	評価位置 ^{*1}	地震動	P_{a} (kN)	P _{ua} (kN)	P _a /P _{ua}
	2	Ss-1++	1474	2834	0.53
	2	Ss-1-+	1560	2834	0.56
	2	Ss-1+-	1525	2834	0.54
	2	Ss-1	1643	2834	0.58
	2	Ss-2	1597	2834	0.57
	2	$S_{S}-3++$	1315	2834	0.47
	2	Ss-3-+	1666	2834	0.59
1	2	Ss-3+-	1412	2834	0.50
	2	Ss-3	1937	2834	0.69
	1	Ss-4	791	2630	0.31
	13	Ss-5	689	2804	0.25
	2	Ss-6	1283	2834	0.46
	1	Ss-7	1146	2630	0.44
	1	Ss-8++	749	2630	0.29
	2	Ss-8-+	1371	2834	0.49
0	1	Ss-7	1287	2630	0.49
2	1	Ss-8++	726	2630	0.28
0	1	Ss-7	1021	2630	0.39
0	1	Ss-8++	777	2630	0.30
	2	Ss-7	789	2834	0.28
(4)	13	Ss-8++	814	2804	0. 30
ß	2	Ss-7	781	2834	0. 28
J	13	Ss-8++	784	2804	0. 28

表 6-24 基礎地盤の引抜きに対する支持性能照査結果(B-B断面)

*2 :終局引抜き力Pua=極限引抜き力Pu÷安全率

評価位置

7. まとめ

軽油タンク基礎は,基準地震動Ssに対して,構造物の地震応答解析に基づく曲げ軸力に伴う 圧縮縁コンクリートひずみ,曲率及びせん断力が各部材の要求性能に応じた許容限界以下である ことを確認した。基礎地盤の支持性能評価については,地震応答解析に基づく杭頭に発生する鉛 直力が終局鉛直支持力及び終局引抜き力を下回ることを確認した。

以上のことから,軽油タンク基礎は,基準地震動Ssによる地震力に対して,間接支持機能を 維持できる。 軽油タンク基礎の耐震安全性評価に関する参考資料

(参考資料1-1)付帯設備の耐震評価 (参考)1-1-1
(参考資料1-2)杭頭部の耐震評価 (参考)1-2-1
(参考資料1-3)3次元構造解析における照査時刻の選定について (参考)1-2-1
(参考資料1-4)3次元構造解析における地下水位設定の影響について (参考)1-3-1
(参考資料1-5)静的地震力に対する耐震評価 (参考)1-5-1
(参考資料1-6)評価対象断面の代表性について (参考)1-6-1
(参考資料1-7)地盤改良体の安定性について (参考)1-7-1
(参考資料1-8)杭先端ばねの設定による影響評価 (参考)1-8-1

1. 概要

本項では、軽油タンク基礎の付帯設備のうち、Sクラス施設を間接支持する機能を有する張出 しダクト、張出し基礎及び防油堤が、基準地震動Ssに対して十分な構造強度を有していること を確認する。評価対象とする付帯設備を図 1-1に、各付帯設備の断面図を図 1-2~図 1-4に 示す。

図 1-1 評価対象とする付帯設備

図 1-2 張出しダクト断面図 (a-a 断面)

図 1-3 張出し基礎断面図

図 1-4 防油堤断面図

2. 評価方針

軽油タンク基礎の付帯設備の耐震評価は、本文「3. 地震応答解析」より得られた応答値を用いて、2次元静的応力解析に基づく構造部材の健全性評価により行う。耐震評価フローを図 2-1に示す。2次元静的応力解析には解析コード「TDAPⅢ (Ver.3.11)」を用いる。

各付帯設備の評価項目を表 2-1 に示す。

図 2-1 耐震評価フロー

付帯設備	評価項目	適用規格	評価内容
張出しダクト	曲げ軸力	原子力発電所屋外重要土木構 造物の耐震性能照査指針・マニ ュアル(2005年)	限界層間変形角を設定した上 で,発生層間変形角が限界層間 変形角以下であることを確認 する*。
	せん断力	コンクリート標準示方書 [構造 性能照査編](2002 年)	発生せん断力が終局せん断強 度以下であることを確認する *。
張出し基礎	曲げ軸力	コンクリート標準示方書 [構造	発生曲げモーメントが終局曲 げ耐力以下であることを確認 する*。
	せん断力	性能照查編](2002年)	発生せん断力が終局せん断強 度以下であることを確認する *。
7+ \4 II	曲げ軸力	コンクリート標準示方書 [構造	発生曲げモーメントが終局曲 げ耐力以下であることを確認 する*。
· · · · · · · · · · · · · · · · · · ·	せん断力	性能照查編](2002年)	発生せん断力が終局せん断強 度以下であることを確認する *。

表 2-1 付帯設備の評価項目

注記 *:妥当な安全余裕を考慮する。

3. 耐震評価

- 3.1 張出しダクト
 - 3.1.1 構造概要

張出しダクトは、非常用ディーゼル発電設備燃料油系配管を間接支持する構造物である。
張出しダクトは、耐震補強工事として頂版と軽油タンク基礎版との間の増厚を実施している。
また、側壁のうち上部の範囲は、後施エプレート定着型せん断補強鉄筋(Post-Head-bar)工法(以下「PHb工法」という。)によるせん断補強を実施している。
張出しダクトの構造図を図 3-1に、概略配筋図を図 3-2に、PHb工法による補強仕様を図 3-3に示す。

図 3-1 張出しダクトの構造図

図 3-2 張出しダクトの概略配筋図

図 3-3 張出しダクトのPHb工法による補強仕様

(参考) 1-1-6

3.1.2 解析モデル

図 3-1に示す構造図に基づき,張出しダクトの解析モデルを図 3-4に示すとおり設定 する。ダクト躯体を非線形はり要素でモデル化し,隅角部にはコンクリート標準示方書に 基づき剛域を設定する。モデルは各部材の軸線でモデル化することを基本とするが,頂版 については,増厚部のみの軸線でモデル化する。頂版の剛性及び強度は保守的に増厚部の みで算定し,既設の範囲については質量のみを考慮する。また,軽油タンク基礎版と結合 している範囲は剛域とし,上端部は固定とする。解析奥行幅は単位奥行幅(1m)として設 定する。

図 3-4 張出しダクトの解析モデル

注: 頂版右端部については、コンクリート標準示方書に基づき右端から 5mm の範囲を剛域と設定しているが、 範囲が狭いため記載を省略。

3.1.3 材料特性

(1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-1 に、材料物性値を表 3-2 に示す。

表 3-1 使用材料

材料	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35 (SD345 相当)

表 3-2 材料物性值

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5	2. 45×10^4	0.2

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は、図 3-5~図 3-7 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-5 鉄筋コンクリート部材のM-φ関係

(1) コンクリートの応力-ひずみ関係

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆)
 図 3-7 鉄筋コンクリート部材の履歴特性

3.1.4 照查用震度

張出しダクトの照査用震度は,軽油タンク基礎の地震応答解析(A-A断面)より得られる応答加速度から設定する。加速度の抽出位置は,張出しダクト頂版が軽油タンク基礎版の北面と剛結していることから,図 3-8に示す各節点を加速度抽出位置とする。

照査用震度設定のための解析ケースは,地中構造物である張出しダクトに対して支配的 な荷重である土圧及び水圧に着目し,軽油タンク基礎で照査を実施した全解析ケースのう ち,土圧及び水圧の合力が最大となる解析ケースとする。

当該解析ケースにおいて,全時刻歴における加速度抽出節点の平均加速度の最大値から, 水平及び鉛直方向それぞれの照査用震度を設定する。設定した照査用震度を表 3-3 に示 す。

図 3-8 照査用震度を設定するための加速度抽出位置

表 3-3 照査用震度の設定

加振方向	解析ケース	地震動	照査用震度
水平	5	Ss-8++	0.71
鉛直	5	Ss-8++	0.25

- 3.1.5 考慮する荷重
 - (1) 荷重の種類
 張出しダクトの耐震評価において考慮する荷重を表 3-4 に示す。

区分	種別	考慮する荷重	
	固定荷重	自重	
<u> </u>	積載荷重	配管荷重	
土何里	常時土圧	ダクト側壁に作用する常時土圧	
	常時水圧	ダクト側壁、底版に作用する常時水圧	
山口	地震荷重	ダクト躯体,配管に作用する慣性力	
地震時の影響	地震時土圧	ダクト側壁に作用する地震時土圧	
の影響	地震時水圧	ダクト側壁に作用する地震時水圧	

表 3-4 考慮する荷重

- (2) 荷重の設定
 - a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

配管荷重は設計図書に基づき 0.28kN/m²とし,図 3-9 に示すとおりダクト南側壁に分 布荷重として作用させる。

図 3-9 積載荷重の作用位置

c. 土圧及び水圧

張出しダクト側壁に作用する土圧及び水圧は,鉄筋コンクリート部材に作用する土圧 及び水圧として,地震応答解析モデルにおける基礎版側面に接する地盤要素及び間隙水 要素の要素応力から算定する。土圧及び水圧の抽出位置を図 3-10 に示す。

要素応力を抽出するための解析ケースは、「3.1.4 照査用震度」に示す選定ケースと 同様とし、軽油タンク基礎の照査を実施した全解析ケースのうち、土圧及び水圧の合力 が最大となる解析ケースから、全時刻歴における最大値をモデルに作用させる。土圧及 び水圧の算定結果を表 3-5 に示す。また、張出しダクト底面には常時分の水圧を作用 させる。

算定した土圧及び水圧は「3.1.6 載荷方向」に示すとおり作用させる。

図 3-10 張出しダクト側壁に作用する土圧及び水圧の抽出位置

表 3-5 土圧及び水圧の算定結果

解析ケース	地震動	地震時土圧	地震時水圧	計
所中化して		(kN/m^2)	(kN/m^2)	(kN/m^2)
5	Ss-8++	28.6	44.4	73.0

なお,図 3-11 に土圧及び水圧を抽出した解析ケースにおける鉛直方向及び水平方向 の最大圧縮応力の分布図を示す。図 3-11 に示すとおり,基礎版底面に対して地震に伴 う極端な地盤反力は生じていない。

また,張出しダクト底版からの土圧は,張出しダクト全体の変形を抑制するように作 用するため,耐震評価上の保守的な配慮として,基礎版本体と同様に張出しダクト底版 に土圧は考慮しない。

水平方向

図 3-11 最大圧縮応力分布図 (A-A断面,解析ケース⑤,地震動 Ss-8++)

(参考) 1-1-13

d. 地震荷重

ダクト躯体及び配管の自重に照査用震度を乗じた慣性力とする。

3.1.6 載荷方向

水平方向については,保守的に躯体の変形を大きく算定するため,慣性力,土圧及び水 圧を同一方向に載荷する。鉛直方向については,慣性力が上向き,または下向きに作用す る場合を考慮し,水平及び鉛直方向の組合せを踏まえた計4ケースを実施する。なお,各 ケースともに底版に作用する常時水圧を考慮する。載荷ケース一覧を表 3-6,各ケースの 概念図を図 3-12に示す。

載荷ケース	慣性力の向き (水平)	慣性力の向き (鉛直)	土圧及び水圧の方向
ケース1	右向き	下向き	右向き(南側壁)
ケース2	右向き	上向き	右向き(南側壁)
ケース3	左向き	下向き	左向き(北側壁)
ケース4	左向き	上向き	左向き(北側壁)

表 3-6 載荷ケース一覧

⁽参考) 1-1-15

- 3.1.7 許容限界
 - (1) 曲げに対する許容限界
 曲げに対する許容限界は、土木学会マニュアルに基づき限界層間変形角(層間変形角)/100)とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。
- 3.1.8 評価結果
 - (1) 曲げ軸力に対する評価結果

曲げ軸力に対する照査結果を表 3-7 に示す。照査結果より,照査用層間変形角が限界 層間変形角を下回ることを確認した。

載芸ケーフ	照查用層間変形角*	限界層間変形角	照査値
戦何クニス	R _d	R u	R_{d}/R_{u}
ケース3	8.40×10^{-4}	1.0×10^{-2}	0. 09

表 3-7 曲げ軸力照査結果

注記* :照查用層間変形角R_d=最大層間変形角R×構造解析係数γ_a

(2) せん断力に対する評価結果

せん断力に対する照査結果のうち, 頂版, 底版及び側壁の各部材の最大照査値を表 3-8, 評価位置を図 3-13に示す。側壁上部(評価位置 2, 4)については, PHb工法によ る耐震補強を実施しているため, 建設技術審査証明報告書*に基づき, 終局せん断強度を 算定した。なお, 張出しダクトに対するPHb工法の適用性を別紙2に示す。

照査結果より、照査用せん断力が終局せん断強度を下回ることを確認した。

注記* :建設技術審査証明報告書 技術名称 後施工プレート定着型せん断補強鉄筋「Post-Head-bar」

志 (年	荻 (石) (古) (古) (古) (古) (古) (古) (古) (古) (古) (古		照査用せん断力*	終局せん断強度	照査値
印代	11.00.00.00000000000000000000000000000	戦何クース	V_{d} (kN)	V_{yd} (kN)	$V_{d} \swarrow V_{y d}$
頂版	1	ケース3	164	803	0.21
側壁上部	2	ケース2	222	801	0.28
側壁下部	3	ケース3	130	419	0.32
底版	6	ケース4	99	421	0.24

表 3-8 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数γ_a

3.2 張出し基礎

3.2.1 構造概要

張出し基礎は、燃料移送ポンプを間接支持する構造物である。張出し基礎の構造図を図 3 −14、概略配筋図を図 3−15 に示す。張出し基礎は軽油タンク基礎西面にAC系、北面に B系が設置されている。張出し基礎は、耐震補強工事としてAC系及びB系ともに増厚を 実施している。

図 3-15 張出し基礎の概略配筋図*

注記*: 増厚部の配筋の仕様はa-a断面とb-b断面で同様である。

(参考) 1-1-18

3.2.2 解析モデル

張出し基礎の解析モデルを図 3-16 に示す。張出し基礎は,非線形はり要素を用いた片 持ちばりでモデル化する。部材の剛性及び強度は保守的に増厚部のみで算定し,既設の範 囲については質量のみを考慮する。

解析奥行幅は張出し基礎の幅とし、AC系は6.5m、B系は4.3mとする。

図 3-16 張出し基礎の解析モデル

- 3.2.3 材料特性
 - (1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-9 に,材料物性値を表 3-10 に示す。

表	3 - 9	使用材料
-	• •	

材料	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35(SD345 相当)

表 3-10 材料物性值

材料	単位体積重量	ヤング係数	ポアソン比
	(kN/m^3)	(N/mm^2)	
鉄筋コンクリート	23.5	2. 45×10^4	0.2

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は、図 3-17~図 3-19 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用)

図 3-17 張出し基礎のM-φ関係

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-18 構造部材の非線形特性

(参考) 1-1-20

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆)
 図 3-19 鉄筋コンクリート部材の履歴特性

3.2.4 照查用震度

張出し基礎の照査用震度は,軽油タンク基礎の地震応答解析より得られる応答加速度から設定する。加速度の抽出位置は,AC系は軽油タンク基礎の西側面,B系は軽油タンク 基礎の北側面にそれぞれ剛結していることから,図 3-20 に示すとおり,AC系はB-B 断面,B系はA-A断面の各節点を加速度抽出位置とする。

照査用震度を設定するための解析ケースは,地表面に設置された張出し基礎に対して支 配的な荷重である慣性力に着目し,軽油タンク基礎の照査を実施した全解析ケースのうち, 抽出節点の加速度の平均値が最大となる解析ケースをA-A断面,B-B断面それぞれで 選定する。

選定したそれぞれの解析ケースにおいて,全時刻歴における抽出節点の平均加速度の最 大値から,AC系用及びB系用の照査用震度を,水平及び鉛直方向にそれぞれ設定する。 設定した照査用震度を表 3-11 に示す。

図 3-20 照査用震度を設定するための加速度抽出位置

位置	加振方向	解析ケース	地震動	照査用震度		
107	水平	5	Ss-8++	0.68		
AC糸	鉛直	1	Ss-1++	0.82		
D Ť	水平	5	Ss-8++	0.71		
B系	鉛直	1	Ss-1++	0.76		

表 3-11 照查用震度

- 3.2.5 考慮する荷重
 - (1) 荷重の種類
 張出し基礎の耐震評価において考慮する荷重を表 3-12 に示す。

表 3-12 考慮する荷重

区分	種別	考慮する荷重
	固定荷重	自重
		非常用ディーゼル発電設備燃料移送ポンプ,
- 十 世 手	積載荷重	非常用ディーゼル発電設備燃料移送ポンプ防護板(積雪
土何里		荷重を含む)
	常時土圧	躯体側面に作用する常時土圧
	常時水圧	躯体側面、底面に作用する常時水圧
	山骨井子	躯体,燃料移送ポンプ,燃料移送ポンプ防護板に作用す
地震時	地晨何里	る慣性力
の影響	地震時土圧	躯体側面に作用する地震時土圧
	地震時水圧	躯体側面に作用する地震時水圧

(2) 荷重の設定

a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

積載荷重は図 3-21 に示すように,張出し基礎上の燃料移送ポンプ,燃料移送ポンプ 防護板の設置位置を考慮して集中荷重または分布荷重として作用させる。

図 3-21 積載荷重の作用箇位置

c. 土圧及び水圧

張出し基礎側面に作用する土圧及び水圧は、地震応答解析モデルにおける基礎版側面 に接する地盤要素及び間隙水要素の要素応力から算定する。

土圧及び水圧の抽出位置を図 3-22 に示す。「3.2.4 照査用震度」に示したとおり, AC系, B系それぞれの張出し基礎設置位置を考慮し, AC系はB-B断面から, B系 はA-A断面から土圧及び水圧を抽出する。

要素応力を抽出するための解析ケースは、各断面ともに「3.2.4 照査用震度」におい て水平方向の照査用震度を算定したケースとし、AC系、B系それぞれに各断面の全時 刻歴における最大値をモデルに作用させる。土圧及び水圧の算定結果を表 3-13 に示す。 また、張出し基礎底面には常時分の水圧を作用させる。

算定した土圧及び水圧は図 3-23 に示すとおり作用させる。

· 承 · · · · · · · · · · · · · · · · · ·	表 3-	-13	土水及	び水圧	の算定結果
---	------	-----	-----	-----	-------

	解析ケース	地電動	地震時土圧	地震時水圧	計
		地展動	(kN/m^2)	(kN/m^2)	(kN/m^2)
AC系	5	Ss-8++	4.9	18.3	23.2
B系	5	Ss-8++	28.6	44.4	73.0

図 3-23 土圧及び水圧の作用位置

なお,図 3-24 及び図 3-25 に土圧及び水圧を抽出した解析ケースにおける鉛直方向 及び水平方向の最大圧縮応力分布図を示す。図 3-24 及び図 3-25 に示すとおり,基礎 版底面に対して地震に伴う極端な地盤反力は生じていない。

また,張出し基礎底面からの土圧は,張出し基礎の変形を抑制するように作用するため,耐震評価上の保守的な配慮として,基礎版本体と同様に張出し基礎底面に土圧は考 慮しない。

水平方向

図 3-24 最大圧縮応力分布図 (A-A断面,解析ケース⑤,地震動 Ss-8++)

(参考) 1-1-26

鉛直方向

最大圧縮応力(kN/m²) 500 200

100

最大圧縮応力(kN/m²)

水平方向

図 3-25 最大圧縮応力分布図 (B-B断面,解析ケース⑤,地震動 Ss-8++)

(参考) 1-1-27

d. 地震荷重

躯体,燃料移送ポンプ及び燃料移送ポンプ防護板の自重に照査用震度を乗じた慣性力 とする。

3.2.6 載荷方向

載荷方向については,水平方向は曲げ耐力が小さくなる引張方向,鉛直方向は上向き, 下向きの両方を考慮する。載荷ケース一覧を表 3-14 に示す。

		20
世世な フ	慣性力の向き	慣性力の向き
載何ケース	(水平)	(鉛直)
ケース1	引張方向	下向き
ケース2	引張方向	上向き

表 3-14 載荷ケース一覧

- 3.2.7 許容限界
 - (1) 曲げに対する許容限界曲げに対する許容限界は、コンクリート標準示方書に基づき終局曲げ耐力とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。
- 3.2.8 評価結果
 - (1) 曲げ軸力に対する評価結果
 曲げ軸力に対する照査結果を表 3-15 に示す。照査結果より,照査用曲げモーメントが
 終局曲げ耐力を下回ることを確認した。

位墨	#世ケーフ	照査用曲げモーメント*	終局曲げ耐力	照査値
	戦何クース	\mathbf{M}_{d} (kNm)	$M_{u d}$ (kNm)	$M_{d} \swarrow M_{u d}$
AC系	ケース1	312	696	0.45
B系	ケース1	253	731	0.35

表 3-15 曲げ軸力照査結果

注記* :照査用曲げモーメントM_d=発生曲げモーメント×構造解析係数γ。

(2) せん断力に対する評価結果

せん断力に対する照査結果を表 3-16 に示す。照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

位墨	載荷ケーフ	照査用せん断力*	終局せん断強度	照査値
1立直	戦何クース	V_{d} (kN)	V_{yd} (kN)	$V_{d} / V_{y d}$
AC系	ケース1	223	646	0.35
B系	ケース1	176	662	0.27

表 3-16 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

3.3 防油堤の耐震評価

3.3.1 構造概要

防油堤は,非常用ディーゼル発電設備燃料油系配管を間接支持する構造物である。防油 堤の構造図を図 3-26,概略配筋図を図 3-27 に示す。防油堤は軽油タンク基礎の周囲(a - a 断面)及び中央(b-b断面)に設置されている。

b-b断面

(単位:mm)

(単位 : mm)

図 3-27 防油堤の概略配筋図

3.3.2 解析モデル

図 3-26 に示す構造図に基づき,防油堤の解析モデルを図 3-28 に示すとおり設定する。 防油堤は,非線形はり要素を用いた片持ちばりでモデル化し,解析奥行幅は単位奥行幅(1m) として設定する。

図 3-28 防油堤の解析モデル

3.3.3 材料特性

(1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-17 に、材料物性値を表 3-18 に示す。

表 3-17 使用材料

材料	諸元	
コンクリート	設計基準強度 23.5 N/mm ²	
鉄筋	SD35(SD345 相当)	

表 3-18 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5	2. 45×10^4	0.2

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は,図 3-29~図 3-31 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用)
 図 3-29 防油堤のM-φ関係

(1) コンクリートの応力-ひずみ関係

(2) 鉄筋の応力-ひずみ関係

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-30 構造部材の非線形特性

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆)
 図 3-31 鉄筋コンクリート部材の履歴特性

3.3.4 照查用震度

防油堤の照査用震度は、軽油タンク基礎の地震応答解析より得られる応答加速度から設 定する。加速度の抽出位置は、防油堤の設置位置を考慮し、図 3-32 に示すとおり、基礎 版周囲の防油堤についてはA-A断面及びB-B断面の各節点を、基礎版中央の防油堤に ついてはB-B断面中央の節点を加速度抽出位置とする。

照査用震度を設定するための解析ケースは,基礎版上に設置された防油堤に対して支配 的な荷重である慣性力に着目し,軽油タンク基礎の照査を実施した全解析ケースのうち, 抽出節点の加速度の平均値が最大となる解析ケースをA-A断面及びB-B断面それぞれ で選定する。

選定した各解析ケースにおいて,全時刻歴における抽出節点の平均加速度の最大値から, 基礎版周囲の防油堤用及び基礎版中央の防油堤用の照査用震度を,水平及び鉛直方向にそ れぞれ設定する。なお,基礎版周囲の防油堤の照査用震度については,A-A断面及びB -B断面の平均加速度最大値のうち,より大きいものから設定する。設定した照査用震度 を表 3-19に示す。

位置	加振方向	解析ケース	地震動	照査用震度	
++	水平	⑤ (A-A断面)	Ss-8++	0.70	
基礎版周囲	鉛直	① (B-B断面)	Ss-1	0.84	
基礎版中央	水平	5	Ss-8++	0.67	
	鉛直	1	Ss-1++	0.81	

表 3-19 照査用震度の設定

3.3.5 考慮する荷重

(1) 荷重の種類

防油堤の耐震評価において考慮する荷重を表 3-20 に示す。

表 3-20 考慮する荷重

区分	 種別 考慮する荷重				
十井壬	固定荷重	自重			
土何里	積載荷重	配管荷重(基礎版周囲のみ)			
地震時の影響	地震荷重	躯体、配管に作用する慣性力			

(2) 荷重の設定

a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

基礎版周囲のモデルについては、図 3-33 に示すとおり配管荷重を防油堤上端に作用 させる。

図 3-33 積載荷重の作用箇所

c. 地震荷重

躯体及び配管の自重に照査用震度を乗じた慣性力とする。

3.3.6 載荷方向

基礎版周囲に設置する防油堤については内側と外側で主筋の仕様が異なるため、水平方 向の慣性力については表 3-21 に示すとおり、2 方向の載荷ケースを考慮する。鉛直方向 については、曲げ耐力が小さくなる上向き方向とする。

X 0 21	戰雨 / 見 (圣诞版尚团/	
##な フ	慣性力の向き	慣性力の向き	
載何クース	(水平)	(鉛直)	
ケース1	内側→外側	上向き	
ケース2 外側→内側		上向き	

表 3-21 載荷ケース一覧(基礎版周囲)

- 3.3.7 許容限界
 - (1) 曲げに対する許容限界曲げに対する許容限界は、コンクリート標準示方書に基づき終局曲げ耐力とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。

3.3.8 評価結果

(1) 曲げ軸力に対する評価結果

曲げ軸力に対する照査結果を表 3-22 に示す。照査結果より,照査用曲げモーメントが 終局曲げ耐力を下回ることを確認した。

は 学校 ス		照査用曲げモーメント*	終局曲げ耐力	照査値
11/10月	戦何クース	\mathbf{M}_{d} (kNm)	$M_{u\ d}$ (kNm)	$M_{d} \swarrow M_{u d}$
基礎版周囲	ケース2	13	62	0.21
基礎版中央	_	12	94	0.13

表 3-22 曲げ軸力照査結果

注記* :照査用曲げモーメントM_d=発生曲げモーメント×構造解析係数γ。

(2) せん断力に対する評価結果

せん断力に対する照査結果を表 3-23 に示す。照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

位墨	<u> </u> 書 本 を 一 フ	照査用せん断力*	終局せん断強度	照査値
114. 匡.	戦何クース	V_{d} (kN)	V_{yd} (kN)	$V_d \swarrow V_{yd}$
基礎版周囲	ケース2	11	250	0.05
基礎版中央	—	11	267	0.05

表 3-23 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数γ_a

4. まとめ

本項では,軽油タンク基礎の付帯設備のうち,Sクラス施設を間接支持する機能を有する張出 しダクト,張出し基礎及び防油堤に関して耐震評価を行った。評価の結果,各付帯設備は基準地 震動Ssに対して十分な耐震性を有していることを確認した。 (参考資料1-1 別紙1) 張出しダクトと基礎版接続部の耐震評価

1. 概要

張出しダクトと基礎版は、後施工による鉄筋(以下、「アンカー筋」という。)を介して接続されている。アンカー筋の位置を図 1-1 に示す。アンカー筋の基礎版に対する埋込長は、上側が 1.1m、下側が 0.6m である。

本項では、アンカー筋の引張及び引抜きに対する耐震性について確認する。

図 1-1 張出しダクトと基礎版接続部のアンカー筋位置

2. 許容限界の設定

アンカー筋は、ケミカルアンカーによって基礎版との定着を確保している。アンカー筋の引張 及び引抜きに対する許容限界は、「あと施工アンカー【接着系】 ケミカルアンカーRタイプ(-N) -技術資料-(日本デコラックス株式会社、平成24年11月)」に基づき設定する。

2.1 引張に対する許容限界

アンカー筋の引張に対する許容限界は,アンカー筋鋼材の降伏により決まる許容引張力とする。許容引張力の算定方法を以下に示す。また,許容引張力の算定結果を表 2-1 に示す。

 $P_1 = \phi \cdot_s \sigma_u \cdot_{s c} a$

P₁ : アンカー筋鋼材の降伏により決まる許容引張力 (N)

φ :低減定数(短期荷重として、φ=1.5とする)

s σ_u: アンカー筋鋼材の許容引張応力度(N/mm²)

(SD345 相当:_sσ_u=200N/mm²とする。)

_sa:アンカー筋の軸部断面積とねじ部有効断面積のうち小さな値(mm²)

アンカー筋 位置	低減定数 <i>ф</i>	許容引張 応力度 sσu (N/mm ²)	アンカー筋の 軸部断面積 _{s c} a (mm ²)	鋼材の降伏に対する 許容引張力 P ₁ (kN/本)
上側	1.5	200	794.2	238
下側	1.5	200	642.4	192

表 2-1 引張に対する許容限界

2.2 引抜きに対する許容限界

アンカー筋の引抜きに対する許容限界は、コンクリートとケミカルアンカーの樹脂の付着強度から算定される許容引張力とする。許容引張力の算定方法を以下に示す。また、許容引張力の算定結果を表 2-2 に示す。

アンカー筋 位置	低減定数 ϕ	許容付着 応力度τ _。 (N/mm ²)	穿孔径D (mm)	有効埋込 深さ1 _e (mm)	付着に対する 許容引張力 P ₂ (kN/本)
上側	0.5	10.58	40	1068.2	709
下側	0.5	10.58	38	571.4	360

表 2-2 引抜きに対する許容限界

3. アンカー筋の引張軸力の算定

アンカー筋に生じる引張軸力は、「(参考資料1-1) 付帯設備の耐震評価」にて実施した、静 的解析による張出しダクトの耐震評価において、張出しダクト頂版の要素のうち、曲げモーメン トが最大となる要素の断面力から算定する。なお、上側アンカー筋に生じる引張軸力は上側引張 の曲げモーメントが最大になる要素から、下側アンカー筋に生じる引張軸力は下側引張の曲げモ ーメントが最大になる要素から、それぞれ断面力を抽出する。表 3-1 に算定したアンカー筋の 引張軸力を示す。

アンカー筋 位置	頂版要素の軸力*1 (kN/m)	頂版要素の 最大曲げモーメント* ² (kNm/m)	アンカー筋の 引張軸力* ³ (kN/本)
上側	-274	410	120
下側	72	-165	54

表 3-1 アンカー筋の引張軸力の算定結果

注記*1:引張側を正とする。

*2:上側引張の曲げモーメントを正とする。

*3:構造解析係数 γ_a=1.05 を考慮。

4. 評価結果

引張に対する照査結果を表 4-1 に,引抜きに対する照査結果を表 4-2 に示す。アンカー筋に 生じる引張軸力は,アンカー筋鋼材の降伏により決まる許容引張力及びコンクリートとアンカー 樹脂の付着強度から算定される許容引張力を下回ることを確認した。

アンカー筋 位置	アンカーの 引張軸力* (kN/本)	鋼材の降伏に対する 許容引張力 P ₁ (kN/本)	照查値
上側	120	238	0.51
下側	54	192	0.29

表 4-1 引張に対する照査結果

注記* :構造解析係数ya=1.05を考慮。

表 4-2 引抜きに対する照査結果

アンカー筋 位置	アンカーの 引張軸力* (kN/本)	付着に対する 許容引張力 P ₂ (kN/本)	照查値
上側	120	709	0.17
下側	54	360	0.15

注記* :構造解析係数y_a=1.05を考慮。

(参考資料1-1 別紙2) 後施工プレート定着型せん断補強鉄筋工法の適用性について

1. 概要

軽油タンク基礎の付帯設備である張出しダクトについては、後施工プレート定着型せん断補強 鉄筋(Post-Head-bar)(以下「PHb」という。)工法によるせん断補強を実施している。 本項では、張出しダクトに対して、PHb工法の適用性を確認する。

- 2. PHb工法について
- 2.1 PHb工法の適用範囲

張出しダクトのPHb工法の適用範囲を図 2-1に示す。図 2-1に示すとおり, 張出しダ クト側壁上部の範囲でPHb工法によるせん断補強を実施している。

図 2-1 張出しダクトにおける PHb 工法の適用範囲

(参考1-1 別紙2-1)

2.2 PHb工法の概要

1980年以前の土木学会コンクリート標準示方書に従って設計した構造物は, せん断補強鉄筋 量が相当に少なく設計されていることから, 現在の耐震設計法において部材のせん断耐力が不 足することが想定される。そのような共用中の鉄筋コンクリート構造物にせん断補強を行うた めの工法が後施工タイプのプレート定着型せん断補強鉄筋(PHb)工法である。PHb工法 は, 既設構造物の表面からドリルで削孔を行い, その孔内にプレート定着型せん断補強鉄筋を 差込み, 充てん材で固定することにより, 構造躯体と一体化をはかり, 部材のせん断耐力を向 上させる工法である(図 2-2 参照)。

図 2-2 PHb工法の模式図

- 3. 建設技術審査証明報告書の概要
- 3.1 PHb工法の建設技術審査証明報告書の位置付け

PHb工法については、「建設技術審査証明報告書 技術名称 後施工プレート定着型せん断 補強鉄筋「Post-Head-bar」」(以下「建設技術審査証明報告書」という。)に適用範囲及び設計 方法が示されている。

本工法は、添付資料「建設技術審査証明書」のとおり、高度な技術を有する第三者機関であ る一般財団法人土木研究センター(以下「PWRC*」という。)により審査証明を受けており、 試験データを用いて、PHbが受け持つせん断耐力の算定方法において、PHbの規格降伏強 度を使用して求めた値に対し、適用部材の軸方向鉄筋間隔及びPHbの埋込側の必要定着長か ら評価される有効係数を乗じたものとして評価できることが確認されている。ただし、有効係 数の上限値は0.9としている。なお、建設技術審査証明報告書では、片側からしか補強施工で きない部材について、PHbを設置する手順を設定し、この工事に必要な施工要素(補強設計 に基づくPHbの配置、PHb配置位置での削孔方法、削孔内へのPHbの固定方法、PHb 設置後の仕上げ等施工性)を確認しており、それぞれの要素に対して施工上の考慮を示すなど 施工性に関しても審査対象となっている。

また,建設技術審査証明報告書では,「設計・施工マニュアル」が添付され,材料及び施工に 関する事項が示されている。

- 注記 *: PWRCは、国土交通大臣認可の公益法人として国土建設技術の発展向上に寄与 することを目的に設立された公益法人組織であり、土木に関して、河川、道路、 土質・地盤、施工、橋梁等、幅広い分野にまたがる研究開発と調査研究の受託、 さらに開発された技術の普及及び技術支援に取り組んでいる。PWRCでは、建 設技術審査証明事業を行っており、当該審査証明技術について学識経験者及び当 センターの専門技術者による「審査証明委員会」を設け、開発の趣旨、開発目標 および技術内容、既存の技術との対比、実績等について審査を行っており、高度 な技術を有し、十分な信頼性を有した第三者機関である。
- 3.2 建設技術審査証明報告書における PHb 工法の適用範囲

本工法は、地震時の変形量が限定される地中構造物等、背面に地盤などがあり片側からしか 施工できない制限を有する既設コンクリート構造物に対して、後施工によるせん断補強の目的 で用いる。PHbが受け持つせん断耐力は鉄筋の材質(SD295, SD345, SD390),径(D13~D32) 毎に定め、その値は、先施工のせん断補強鉄筋の最大 0.9 倍で評価可能である。

堰、水門、橋台や橋脚等の既設の半地下及び地上構造物に適用する場合には、地中構造物の 場合と同様にせん断補強の目的で用いるものとし、現状で曲げ破壊モードにある構造物の変形 性能の更なる改善を目的とする補強に用いてはならない。その適用に際しては変形の応答値を 評価して使用する必要がある。

- 3.3 建設技術審査証明報告書における PHb 工法の設計方法
 - 3.3.1 後施工によるせん断耐力

本工法では実験により性能を確かめることで,設計方法等を設定している。張出しダクトに適用されている片端矩形プレート型のせん断補強効果の確認に関するもので,仕様等が比較的類似している実験について,概要を次にまとめた。

(1) 実験方法

本工法を用いた設計でPHbのせん断耐力への寄与分を確認するために,はり試験体の 正負交番繰返し静的加力試験(せん断破壊モード試験体)を実施することによりPHbを 用いて補強することによるせん断耐力の向上の確認が行われている。

試験に用いられた試験体の諸元一覧を表 3-1 に示す。

シリーズ1の実験では、せん断補強筋のないはり試験体(CASE1)及び異なる量のP Hbによりせん断補強を行ったはり試験体(CASE2,3)に対して正負交番繰返し加力 試験を行った。

シリーズ2の実験では、シリーズ1のCASE2と同じ補強条件の試験体(CASE4)、
 CASE4のPHb先端の埋込み深さを埋込側の主鉄筋前面から5mm手前に留めた試験体
 (CASE5)、CASE5のPHbの鉄筋量を1.5倍(3列補強)とした試験体(CASE

6) に対して、各々交番繰返し加力試験を行った。

シリーズ3の実験では、PHbを配置しないはり試験体1体(CASE3-1),太径(D29・ SD345)のPHbを設置したはり試験体2体(CASE3-2, CASE3-3),せん断スパ ン比が小さいはり試験体1体(CASE3-4),及びPHbを千鳥配置した試験体(CAS E3-5)に対して正負交番繰返し加力試験を行った。

シリーズ4の実験では、高強度(D25・SD390)のPHbを設置したはり試験体(CAS E4-1)に対して、正負交番繰返し加力試験を行った。シリーズ3と4では、PHbの径 及び強度以外の配筋条件は同じである。

試験体及び補強方法を図 3-1に、載荷要領を図 3-2に示す。

表 3-1 各ケースの試験体の諸元 (建設技術審査証明報告書より引用)

図 3-1 せん断耐力向上性能試験の試験体の種類と補強方法(抜粋) (建設技術審査証明報告書より引用)

図 3-2 せん断耐力向上性能試験の載荷要領 (建設技術審査証明報告書より引用) (2) 実験結果

(1)の実験結果を図 3-3に示す。PHbの有効係数は、PHbを通常のせん断補強鉄筋 とみなして求められるせん断耐力 (V_s)に対してPHbが分担できるせん断耐力の比率で ある。有効係数の算定において、コンクリートが分担するせん断力 (V_s)はコンクリート 標準示方書(安全係数 1.0)に基づく場合と、実験での斜めひび割れ発生時のせん断力を 用いた場合について算定した。CASE2については、載荷装置の制御が不十分で大変位 時に偏荷重が作用した実験条件上の理由により、検討ケースから除外した。これは、本来 は 2 点の載荷点に均等に荷重がかかることで実験せん断耐力を(左右の合計荷重)/2よ り算出していたが、CASE2については、左右で作用荷重が異なっていたため、他の実 験データと比較することが不適切と判断したことによる。

図 3-3 実験結果一覧 (建設技術審査証明報告書より引用)
(3) PHbのせん断補強の考え方

せん断補強鉄筋の降伏時におけるせん断抵抗力 V_s は、トラス理論(斜めひび割れの発生角度 θ =45°)によると式(1)で与えられる。

 $V_{s} = A_{w} \cdot f_{wv} \cdot (\sin \alpha + \cos \alpha) \cdot z / s \quad \cdots \quad \cdots \quad \cdots \quad (1)$

ここに、A_w:1組のせん断補強鉄筋の断面積

- f ww : せん断補強鉄筋の降伏強度
- α : せん断補強鉄筋が部材軸となす角度
- z :曲げモーメントによって生じるコンクリート圧縮応力の合力作用位置か ら引張鋼材図心までの距離(一般に z = d /1.15 としてよい)
- d : 有効高さ
- s : せん断補強鉄筋間隔

ただし、PHbは通常の方法とは異なり、既設構造物を後からせん断補強するため、主 鉄筋を取り囲んだ定着が不十分であり、コンクリート標準示方書のせん断耐力式における せん断補強鉄筋が負担するせん断力V。を全て見込むことは困難であると考えられる。そ こで、PHbの主鉄筋に対する定着の不十分性を、通常のせん断補強筋が主鉄筋位置で破 断したものと仮定し、アルカリ骨材反応を受けて破断したせん断補強鉄筋のせん断耐力評 価に用いるのと同じ方法(参考文献:土木学会アルカリ骨材反応対策小委員会報告書、 2005.9)により検討する。

せん断補強鉄筋が破断した場合は、定着不良が生じ斜めひび割れに交差する鉄筋がすべ りなどの影響で定着区間において全強度を発揮できないために、せん断補強効果が低下す ると考えられる。この効果を以下のように考慮し、定着不良が生じた場合のせん断耐力を トラス理論により評価する。

斜めひび割れに交差するせん断補強鉄筋を考えたとき,斜めひび割れが破断位置にある 場合は,そのせん断補強鉄筋はせん断力を負担することができず,一方,破断位置から定 着長さ1_y以上離れた位置に斜めひび割れがあるせん断補強鉄筋では,付着作用により十 分な定着性能が確保されていると判断され,降伏強度相当のせん断力を負担できると仮定 した。また,破断位置から定着長さ1_y以下の範囲に斜めひび割れがあるせん断補強鉄筋 は,ある程度のせん断力は負担できるが定着性能が低下しているため,一部のせん断力の みが負担できると仮定した。

このとき、斜めひび割れからのせん断補強鉄筋の定着長さに従って伝達できる応力を線 形で仮定したのが、図 3-4 に示す概念図である。縦軸はせん断補強鉄筋の降伏応力に対 する伝達応力の比率を示し、横軸は主鉄筋間隔距離(斜めひび割れの発生角度が 45°のと き c = d - d')に対する斜めひび割れに交差するせん断補強鉄筋までの距離(x)の比率 を示す。斜めひび割れに交差するせん断補強鉄筋の平均化した負担応力($\beta_{aw} \cdot f_{wy}$)は 伝達応力分布の面積として求められ、応力低下率を β_{aw} として式(2)で表すことができる。 図 3-4 斜めひび割れ内の破断したせん断補強鉄筋応力 (建設技術審査証明報告書より引用)

この考え方をPHbに適用し、PHbが分担できるせん断力の有効係数を算定する。P Hbの矩形プレート側においては、矩形プレートによりせん断補強鉄筋材端まで定着が確 保されており、PHbの円形プレート側では、斜めひび割れからせん断補強鉄筋材端まで の長さと所定の定着長の関係により伝達可能な応力が変化するため、PHbが伝達できる 応力分布は図 3-5に示すような分布となる。よって、圧縮鉄筋と引張鉄筋間距離(dd')が定着長さ1_yより大きいとき、有効係数 β_{aw} は図 3-5に示す伝達応力分布の面積 として、式(2)により算出することができる。なお、圧縮鉄筋と引張鉄筋の距離(d-d ')がPHbの定着長さ1_y以下となるとき、せん断補強鉄筋の伝達応力分布は図 3-5と 異なるため式(2)は適用できないが、そのような部材厚への適用は除外し、ここでの定式 化は省略する。図 3-4及び図 3-5を比較した図を図 3-6に示す。

$$\beta_{aw} = 1 - \frac{l_y}{2(d-d')} \quad \text{ttil} \quad (d-d') > l_y \quad \cdots \quad \cdots \quad (2)$$

図 3-5 斜めひび割れ内の後施工せん断補強鉄筋応力(片端矩形プレートの場合) (建設技術審査証明報告書より引用)

図 3-6 PHbと寸切り鉄筋の有効係数の比較

(4) 実験結果に基づくPHbによるせん断補強効果の評価

前述までの考え方及び適用範囲を検討するため、PHbによるせん断耐力の有効係数 β awを実験結果に基づいて評価する。

式(2)にPHb埋込側の必要定着長及び補強対象部材の圧縮鉄筋と引張鉄筋の間隔を代入して得られるせん断補強鉄筋の有効係数 β_{aw} と,はり試験体による正負交番載荷試験の実験結果に基づき算出したせん断補強鉄筋の有効係数 β_{exp} を図 3-7に比較して示す。ここで、太径鉄筋(SD345・D29)のPHbを並行配置したCASE3-2、3-3については、試験体仕様及び載荷条件が同一であることから平均した有効係数を示している。

これより、載荷装置の制御が不十分だったCASE2 を除き、実験より得られた有効係 数 β_{exp} は、いずれのケースも式(2)により算定される有効係数 β_{aw} の値と同等以上であ る。補強設計におけるせん断耐力の算定においては、コンクリート標準示方書に準じてコ ンクリート及びせん断補強鉄筋に関する部材係数 γ_{b} をそれぞれ1.3,1.1とすることから、 PHbにより後施工された部材のせん断耐力をPHbの円形プレート側の定着長から算出 される有効係数を用いて安全側に評価することができる。

図 3-8には式(2)より得られる圧縮鉄筋と引張鉄筋との間隔と有効係数β_{aw}の関係を 示す。この図を用いることで,既設構造物の配筋に基づきPHbの有効係数を求めること ができる。ただし,この算定方法では壁厚が大きくなるにつれて有効係数が1.0に近づい ていくが,今回の実験では大きな壁厚部材に関して確認ができていないことから,有効係 数の上限値は0.9とする。

図 3-7 PHbの有効係数の比較_CASE2~CASE4-1のみ(建設技術審査証明報告書より引用)

図 3-8 圧縮鉄筋と引張鉄筋との間隔と有効係数の関係(片端矩形プレートの場合) (建設技術審査証明報告書より引用) 3.3.2 使用材料·許容応力度·強度

実験を元にした本設計法では、図 3-9 に示すとおり使用材料を定めている。今回の設計でも、これらに適合する使用材料・許容応力度・強度を用いて設計する。

図 3-9(1) 使用材料・許容応力度・強度 (建設技術審査証明報告書より引用)(1/3)

図 3-9(2) 使用材料・許容応力度・強度【片側矩形プレート型】 (建設技術審査証明報告書より引用)(2/3)

(参考1-1 別紙2-16)

図 3-9(3) 使用材料・許容応力度・強度 (建設技術審査証明報告書より引用)(3/3)

3.3.3 構造部材の評価

3.3.1 で示した基本的考え方に基づき,図 3-10 で示すコンクリート標準示方書の考え 方を準用した設計式を用いてせん断耐力を定めている。

図 3-10 補強された RC 部材のせん断耐力算定式(棒部材式が適用される部材) (建設技術審査証明報告書より引用)

3.3.4 構造細目

本設計方法では、想定外の破壊形式をとらない様に、図 3-11 で示す構造細目を定めている。

図 3-11 構造細目(建設技術審査証明報告書より引用)

3.4 建設技術審査証明報告書における施工性の確認

建設技術審査証明報告書では、施工性に関して、片側からしか補強施工できない部材に対し てもせん断補強できることを、試験施工等に基づき確認している。確認にあたっては、図 3-12 に示すとおり PHbを設置する手順を設定し、この工事に必要な施工要素に対して施工性 を確認している。各施工要素に対する施工性の確認内容について、概要を下記に示す。

図 3-12 PHbの施工手順(建設技術審査証明報告書より引用)

3.4.1 補強設計に基づくPHbの配置

PHbを挿入するためには、補強対象部材の手前側に設置されている主鉄筋・配力鉄筋 を避けた場所に削孔位置を定める必要がある。例えば、電磁波レーダ法を使用すれば、部 材手前側の配筋の探査は容易であるので、当該主鉄筋、配力鉄筋を避けての削孔位置の決 定が可能である。

3.4.2 PHb 配置位置での削孔方法

削孔はPHbドリルなどにより行う。PHbドリルによる削孔は、以下のような特徴がある。

- ・切削ではないので、鉄筋を切断することがない(鉄筋に当たった時点で停止可能)。
- ・ロッドの向きと貫入深さが作業中に分かるので、削孔方向と削孔深さの精度が確保で きる。
- ・削孔内部が凸凹のある仕上がりとなる。高圧空気で清掃すれば異物の付着もない。
- ・コンプレッサによる空気圧で駆動するので、削孔部・制御部が軽量小型であり、人力による取り扱いが容易(1人で運搬、運転が可能で、かつ削孔位置の移動が容易)。
 駆動源であるコンプレッサは比較的大きいが、100m程度以上離れた位置に設置できる。
- ・ロッド長を短くすれば、さらに狭い空間で施工可能である。
- ・掘削速度が比較的速い。
- ・掘削に水を使用しない。
- ・削孔径および拡幅削孔径に対応した削孔ビットにより削孔が容易である。
- ・掘削屑を回収することができる。
- ・掘削反力が小さい(水平 50kgf)ので、架台などの支保が軽微。

したがって、駆動源が入らない狭い空間で、水が流せないような環境においても、最小 の作業員数で、比較的軽微な仮設により(あるいは仮設なしでも)効率の良い削孔が可能 である。そして、既設の鉄筋を切断することなく精度の良い位置・方向に、所定の深さに 削孔が可能で、かつ削孔内を凸凹で清浄に仕上げられる。すなわち、施工性とPHbを定 着固定する性能の双方の観点からPHbドリル削孔は適した方法であると確認された。

3.4.3 削孔内へのPHbの固定方法

先充てん後挿入の場合,削孔内に先に充てん材を充てんした後にPHbを差し込むだけ で,PHbの固定を完了する。削孔内面は,モルタル充てん直前に湿潤状態にするかある いはドライアウト防止剤を散布し,充てん材が吸湿されないようにする。先充てん後挿入 用の充てん材は,PHbモルタルを標準とするが,下向きの場合にはPHbグラウトを使 用してもよい。

PHbモルタルの可塑性によって、削孔内からモルタルが垂れないので、この方法によって容易にPHbの削孔内への固定が可能であることを確認した。

充てん材がPHbモルタルであれば、削孔内に設置したPHbの先端定着部までグラウトが密実に充てんされ、PHbとコンクリート躯体が、一体となっていることを確認した。

PHbモルタルはプレミックス材料であり,施工現場では,所定量の水を混ぜてハンド ミキサで混合するだけで所定の性質のものが使用できる。所要のモルタル量も少量で,手 押しのポンプで充てん可能であるので,最小限の設備と人員でのPHbの設置が可能であ る。

3.4.4 PHb設置後の仕上げ等施工性

先充てん後挿入については,充てん材をパッカー等で抑えて養生した後に,断面修復に よって削孔部分の充てん復旧を行う。

また,先挿入後充てんにおいては,グラウト栓を取り除いた後に,断面修復材によって, 削孔部分の充てん復旧を行う。

断面修復材もプレミックス品であり,施工現場において必要な量を即時に練り混ぜて作 ることができる。施工も左官仕上げによるので容易である。断面修復の専用材料であるの で,品質の信頼性は高い。なお,上向き施工においてはく落防止を考慮することが必要な 場合には,材料の選定や補助工法について検討する。

- 4. 張出しダクトにおけるPHbの適用性確認
- 4.1 方針

PHb工法は建設技術審査証明報告書により後施工せん断補強方法としての有効性が証明さ れており、また、これまでに数多くの施工実績がある。PHb工法を張出しダクトに適用する にあたり、建築技術審査証明報告書、施工実績及び研究事例等から適用範囲を整理し、同施設 の構造形式・諸元、地盤条件、使用環境、補強内容等が適用範囲に該当することを確認する。 確認フローを図 4-1に示す。

適用性確認項目の抽出

後施工によるせん断補強において, せん断補強効果に影響を与えると考えられる項目を抽 出する。その際, 建設技術審査証明報告書に記載されている審査証明の範囲及び各種実験等 から適用性確認項目を抽出する。

② 建設技術審査証明報告書の適用範囲の確認

張出しダクトに採用する補強仕様がPHb工法の建設技術審査証明報告書において規定されている適用範囲に収まっているかを確認する。

- ③ ②以外の項目に対するせん断補強効果の確認
 ①で挙げた適用性確認項目のうち②で確認できていない項目について、適用性の確認を実施する。適用性確認の際は、せん断補強効果が期待できるかという点について検討する。
- 施工実績・研究事例の確認

後施工せん断補強筋に関する施工実績・研究事例について,目的,試験体諸元等を整理し, 張出しダクトに対する施工への反映事項を確認する。

⑤ PHbの施工精度に影響を与える項目の確認

PHb工法の施工をする際に,施工精度の観点から考慮すべき項目がないか確認を行う。 考慮すべき項目がある場合は,施工上または設計上どのように考慮するかを決定した上で考 慮方法によっては再設計を実施するか適宜判断を行う。

図 4-1 確認フロー図

4.2 耐震評価に基づく補強仕様の設定

耐震評価を実施し,各部材において不足するせん断耐力を満足するように設定した補強仕様 を図 4-2 に示す。

図 4-2 張出しダクトのPHbによる補強仕様

4.3 ①適用性確認項目の抽出

PHb工法の特徴及び張出しダクト固有の条件等の観点から,適用性を確認するために必要 な検討項目を抽出する。以下に確認項目を挙げる。

I. 使用目的

建設技術審査証明報告書に明記されている使用目的に該当しているか。

Ⅱ. 構造形式

建設技術審査証明報告書で想定している構造形式に該当しているか。

Ⅲ. 構造細目

建設技術審査証明報告書において規定している構造細目に該当しているか。

IV. 部材諸元

建設技術審査証明報告書の適用性確認実験で適用性が確認された部材,あるいは実績の ある部材厚であるか。

せん断スパン比,主鉄筋比,コンクリート設計基準強度について,建設技術審査証明報告 書の適用性確認実験で適用性が確認された範囲内であるか,または,範囲内でなくともせん 断補強効果が期待できるか。

V. 載荷方法

建設技術審査証明報告書の適用性確認実験で適用性が確認された範囲内であるか,また は,範囲内でなくともせん断補強効果が期待できるか。

- VI. 使用材料(せん断補強鉄筋)建設技術審査証明報告書で規定されている材料か。
- Ⅶ. 使用材料 (プレート)建設技術審査証明報告書で規定されている材料か。
- ₩. 使用材料(充てん材)建設技術審査証明報告書で規定されている材料か。
- IX. 使用材料(断面修復材)建設技術審査証明報告書で規定されている材料か。
- X. せん断補強筋の定着長建設技術審査証明報告書において設定している定着長を考慮して設計しているか。

- XI. せん断ひび割れ抑制効果の確認 建設技術審査証明報告書の適用性確認実験にて確認していない緒元において、せん断 ひび割れ抑制効果が確認できるか。
- XⅡ. 構造部材の曲げモーメントと曲率の関係

PHbは端部の定着プレートが有効に機能する必要があるが,そのために構造物がお おむね弾性範囲内に納まっているか。

XⅢ. 変形量

変形に伴うかぶりコンクリートの剥落によってPHb定着部の定着機能を阻害する恐 れがあることから,建設技術審査証明報告書の適用性確認実験の変形量を超えていない か。

XIV. 使用環境

建設技術審査証明報告書で想定している使用環境下であるか。

4.4 ②建設技術審査証明報告書の適用範囲の確認

PHb工法を適用するにあたり、「4.3 ①適用性確認項目の抽出」で抽出した項目について 建設技術審査証明報告書から適用範囲を確認する。確認結果を以下に示す。

I. 使用目的

張出しダクトは地中構造物であり,既設コンクリート部材に対して後施工によるせん 断補強の目的でPHb工法を適用していることから,建設技術審査証明報告書に合致し ている(表 4-1参照)。

表 4-1	PHb工法の適用範囲と	使用状況
-------	-------------	------

建設技術審査証明報告書の適用範囲	使用箇所及び状況
	地中構造物であり、片側からしか施工できない制
	限を有する既設コンクリート構造物に対して、後
	施工によるせん断補強の目的で用いる。
	地中構造物に適用し、せん断補強の目的で用いる。
	(曲げ破壊モードにある構造物の変形性能の更な
	る改善を目的としていない。)

Ⅱ. 構造形式

建設技術審査証明報告書に,使用目的として「地震時の変形量が限定される地中構造物 など」という記載があり,張出しダクトのような地中に埋設されたボックスカルバート構 造を想定していると考えられるため,適用可能である。

Ⅲ. 構造細目

建設技術審査証明報告書に、以下のとおり構造細目として記載されている。

- PHbによって補強された壁部材においては、補強前に配置されていたスター ラップとPHbを加えたせん断補強鉄筋の断面積比*が 0.15%以上になるよう に、PHbを配置する。
- 2) PHbを配置するせん断スパン方向の最大間隔は、補強対象部材の有効高さの 1/2以下で、かつ 300mm以下としなければならない。また、計算上PHbによ る補強を必要とする区間の外側の有効高さに等しい区間にも、これと同量のP Hbを配置するものとする。
- 3) PHbの配置は図 4-3 に示す標準配置によるものとする。ただし、定着する PHbがかぶりを確保できない場合には、かぶりを侵す部分のPHbの手前側 プレートあるいは鉄筋に防食塗装を行うものとする。
- 4) PHbの埋込先端は、軸方向鉄筋の位置まで配置することを原則とする。ただし、埋込先端のかぶりは、必要なかぶりを確保しかつ 50mm 以上とする。

注記* : せん断補強筋の断面積比は以下の式により算定する。

せん断補強筋の断面積(1本分)

せん断スパン方向ピッチ×せん断スパン直角方向ピッチ

各項目の張出しダクトにおける適用性は,表 4-2に示すとおり,建設技術審査証明報 告書と合致している。

なお、2)においては、収縮ひび割れに対する用心鉄筋としての配慮であることがコン クリート標準示方書に記述されているので、収縮が収束していると考えられる部材の補 強ではこの規定(せん断スパン方向の最大間隔 300 mm 以下)を外すことができる。

	80.00 (2000)			
	Ⅲ.構造細目			
	せん断補強筋の 断面積比	せん断スパン方向 の最大間隔	PHbの配置	PHbの埋込先端
建設技術審査証明報告書で 規定されている適用範囲				
				以上とする。
PHb適用部材 (張出しダクト側壁上部)	0.65%*	150mm*(計算上PHbが必要な区間の外側の有効高さに等しい区間にも、これと同量のPHbを配置する)	図 4-3のとおり配 置し,かぶりも確 保する。	軸方向鉄筋の位置 まで配置し,埋込 先端のかぶりは113 mmとする。
注記* :補強前に配置されていたせん断補強筋とPHbによる補強筋の両方を考慮				

表 4-2 構造細目に関する適用性確認結果

図 4-3 PHbの標準配置*

(建設技術審査証明報告書より引用)

注記* :片側矩形プレート型の標準的な配置図を示す。張出しダクトにおいても、図のとおり配置する。

IV. 部材諸元, V. 載荷方法

構造細目,部材諸元及び載荷方法について,張出しダクトへの適用範囲及び整理結果を 表 4-3 に示す。

PHbによる補強効果については,建設技術審査証明報告書の各種実験にて検証している。部材諸元に関して,部材厚,せん断スパン比,PHbの鉄筋径,鉄筋種別についてはPHb適用部材と実験モデルが同程度である。主鉄筋比及びコンクリート強度については,先行の審査実績において,張出しダクトと同程度の部材に対する適用性が実証されている。以上より,部材諸元については適用範囲内であると考えられる。

載荷方法についても,先行の審査実績において,分布荷重が作用する側壁に対する適用 性が実証されていること,適用部材のせん断スパン比が実験の範囲内であることから,適 用範囲内であると考えられる。

	IV. 部材諸元 V				V. 載荷方法		
	部材厚 (mm)	せん断 スパン比	PHbの 鉄筋径 (mm)	PHbの 鉄筋種別	主鉄筋比	コンクリート 強度(N/mm ²)	荷重形態
建設技術審査証明報告書で 規定されている適用範囲*1							
建設技術審査証明報告書の							
実験から確認した範囲*1							
先行原子力発電所における							
審査実績*2							
PHb適用部材 (張出しダクト側壁上部)	500	2. 29* ³	D22	SD345	0.48% (D19@150) 0.85% (D25@150)	23. 5	分布荷重

表 4-3 適用範囲の整理結果

注記*1:片端矩形プレート型のせん断補強効果の確認に関する実験について整理した結果を示す。

*2 :

*3:「(参考資料3)付帯設備の耐震評価」における張出しダクトの評価におけるせん断照査で,照査値最大 となるケースの曲げモーメント分布から得られるせん断スパンと,部材の有効高さから算定した。 VI~IX 使用材料,X せん断補強筋の定着長 建設技術審査証明報告書に記載されている使用材料と合致している(図 4-4 参照)。

	建設技術審査証明報告書の材料範囲等	実使用材料
せん断補強筋		左記範囲内の材料を使用する。
		(D22, SD345)
プレート		材質は, SM490 相当を用い, 品質証明書でその品質を確認 する。
充てん材*1		躯体コンクリート以上の強度
断面修復材*2		躯体コンクリート以上の強度
定着長		左記に基づき定着長を 111mm と設定

注記 *1: 充てん材はPHbモルタル(可塑性グラウト)を標準とする。

*2:断面修復材はポリマーセメントモルタルとする。

図 4-4 張出しダクトのPHbの使用材料

(参考1-1 別紙2-33)

XI. せん断ひび割れ抑制効果の確認

張出しダクトのPHb適用部材のせん断力に対する照査のうち,最も厳しい照査値は 0.28 となっている。終局限界(せん断耐力)に対して十分な余裕があることから,特異なせん断ひび割れが発生するような状態ではないと判断した。

XⅡ. 構造部材の曲げモーメントと曲率の関係

部材の応力状態について、鉄筋コンクリートが健全であることを $M-\phi$ 曲線により 確認する。図 4-5 は、PHbの適用部位のうち、曲げモーメントが最も大きくなる部 材の $M-\phi$ 曲線を示すものである。最大応答は、 $M-\phi$ 曲線の第2折点(鉄筋の降伏) 以下であり、弾性範囲内にあることから、PHbの定着プレートの機能に影響はないと 判断した。

図 4-5 張出しダクトのPHb適用部材のM-φ曲線

(参考1-1 別紙2-34)

XⅢ. 変形量

変形量が適用確認実験の変形量と同程度以下であることを確認する。適用確認実験 における層間変形角が 0.4%程度以上であるが、張出しダクトにおいては最大で層間変 形角 0.084%であり、適用確認実験の変形量以下であることを確認した。なお、適用実 験における層間変形角は、実験において発生している変位量及びせん断スパン比から 算出した。

XIV. 使用環境

張出しダクトにおけるPHb工法による耐震補強では、地中の部材に対してPHb 工法を適用する。PHbそのものはすべて構造物内に埋設され、かぶり部分にて腐食に 対する抵抗性が確保される。また、「4.6 ④施工実績・研究事例等の確認」に記載のと おり、地中構造物で数多くの施工実績があることが確認できている。

4.5 ③せん断補強効果の確認

「4.3 ①適用性確認項目の抽出」で抽出した適用性確認項目に対し,「4.4 ②建設技術審 査証明報告書の適用範囲の確認」で,張出しダクトのPHbは全項目において,適用範囲内で あることを確認した。よって張出しダクトのPHbは,建設技術審査証明報告書に記載のとお り,せん断補強効果が期待できると判断する。

- 4.6 ④施工実績・研究事例等の確認
 - 4.6.1 施工実績の整理

PHbの施工実績としては,2019年4月1までに,道路,浄化センター,ポンプ場,鉄道, 浄水場,水門,配水路,発電所・プラントなど施工中案件を含めて766件の工事に適用され, 127.9万本以上が施工されている。(表 4-4参照)

表 4-4 PHbの施工実績

PHbの施工実績を部材厚,鉄筋径毎に整理する。部材厚毎に整理した結果を表 4-5に, 鉄筋径毎に整理した結果を表 4-6に,使用環境毎に整理した表を表 4-7に示す。なお,カ ウントする際は,1件の工事のうち複数にまたがって該当する場合には,各項目でそれぞれ カウントしている(例同一工事内で D13~D22の鉄筋を用いている場合は D13, D16, D19, D22の全てにカウント)。表中のハッチングは,張出しダクトの適用箇所の概要項目であり, +分な実績があることが確認できる。

また,張出しダクトの建設以前に施工された構造物に対しての施工実績があることも確認 している。先にも述べたとおり,後施工せん断補強鉄筋工法は,1980年以前の土木学会コン クリート標準示方書に従って設計された構造物に対してせん断補強を行うことを想定した工 法である。 表 4-5 PHbの施工実績(部材厚)

表 4-6 PHbの施工実績(鉄筋の種類)

表 4-7 PHbの施工実績(使用環境)

4.6.2 過去の地震の経験事例

PHb施工実績のうち、東北地方太平洋沖地震及び熊本地震において、震度5強以上が 観測された地域にある、地震発生前に施工された実績を抽出した。

東北地方太平洋沖地震及び熊本地震においてK-NETまたはKIK-NETで観測された加速度及びPHbを施工した箇所の位置関係を図 4-6及び図 4-7に示す。東北地方太平洋沖地震においては、最大震度6強、熊本地震においては、最大震度6弱の地震を受けた事例があることを確認した。PHb工法研究会に確認したところ、いずれの地点においても、現時点では、被害・不具合が発生したという報告はない。

図 4-6 東北地方太平洋沖地震の強震域にある施工実績

図 4-7 熊本地震の強震域にある施工実績

- 4.6.3 レベル2地震動を対象とした設計事例
 - 広島空港直下を通る用倉トンネルにおいて、レベル2地震動を対象として耐震補強に鉄 筋差込工法(後施工せん断補強鉄筋工法 RMA工法)を適用したせん断補強事例が報告さ れている*。本事例においては、広島空港が大都市拠点空港として空港輸送上重要な空港に 位置づけられたため、耐震性能照査を行った結果、せん断耐力が不足していることが判明 したものによる。用倉トンネルは現場打ちのアーチカルバートの上に20m弱の盛土をおこ なった構造物である。構造形式等の詳細については、「4.6.5 後施工せん断補強鉄筋に関 する研究事例」に記載する。
 - 注記 *: 岡崎大宜 後施工型せん断補強工法を活用した広島空港地下トンネル耐震補強 工事について
- 4.6.4 後施工せん断補強鉄筋工法の比較

PHb工法以外にも土木研究センターにおいては、類似する後施工せん断補強鉄筋工法 の建設技術審査証明が実施されている。後施工せん断補強鉄筋工法の比較結果を表 4-8 及び表 4-9に示す。工法に差異はあるものの、コンクリート部分に付着を期待してせん 断耐力の向上を期待する点は共通している。また、せん断耐力の算出方法については、工 法により多少の差異は存在するものの概ねトラス理論を基にせん断耐力の算出を行ってい る。 表 4-8 後施工せん断補強鉄筋工法の比較(1/2)

表 4-9 後施工せん断補強鉄筋工法の比較(2/2)

注記 *:土木研究センター 建設技術審査証明関係資料に基づき作成

4.6.5 後施工せん断補強鉄筋に関する研究事例

後施工せん断補強鉄筋に関する施工実績・研究事例について,目的,試験体諸元等を整 理し,張出しダクトへの適用において考慮・反映すべき事項を検討する。

- ①コンクリート構造物の後施工せん断補強技術(大田孝二, 2012年)
- ・目的

挿入された鉄筋やグラウトが既存のコンクリートと一体化し、挿入鉄筋の定着長を考 慮したせん断鉄筋の補強効果により、所要の地下壁構造のせん断耐力が得られることを 確認する。

- 試験体諸元
 - 部材厚:685 mm

せん断補強鉄筋径:D22

荷重条件:正負交番載荷

• 特記事項

実験により得られたせん断耐力は,有効係数を用いて算出される設計せん断耐力以上 であることはもちろん,標準フック筋での補強に比べ,そん色のないせん断補強効果が 得られていることを示している。

•影響確認

張出しダクトでは試験例として記載されているPHb工法を採用している。

②耐震補強等に用いるあと施工型せん断補強技術:RMA工法(竹本幸弘,佐竹辰州,羽 馬徹,2012年)

・目的

RMA工法の概要及び性能確認実験、設計方法を示す。

· 試験体諸元

部材厚:600 mm (せん断スパン比 a / D = 約 2.25) せん断補強鉄筋径:D19 (SD345)

荷重条件:正負交番載荷

·特記事項

定着性能試験の結果,定着長が 4D 以上で SD345 の規格降伏強度相当の定着力を確保 できる。宮城県沿岸地域で採用されたRMA工法による補強構造物は,東北地方太平洋 沖地震においても損傷がなかった。

影響確認

PHbも同様の定着性能試験を実施し、定着長を設定している。

- ③論文 異形鉄筋の埋込みによる後施工せん断補強効果に関するはりの載荷実験(小林靖 典,小林亨,清宮理,2002年)
- ・目的

既設構造物であるボックスカルバートやU型擁壁などの連続壁に対して,異形鉄筋を 埋込むことでせん断補強部材とする方法を提案し,補強方法の有効性を確認することを 目的として,はり供試体を用いたせん断実験を行った。

·試験体諸元

部材厚:460 mm (せん断スパン比a/D=約2.25)

せん断補強鉄筋径:D10 (SD295)

荷重条件: 単調載荷

• 特記事項

実験結果より後施工は先施工と同等のせん断耐力を有することを確認した。

・影響確認

張出しダクトの側壁上部のせん断補強においては,建設技術審査証明報告書にて規定 されている有効係数(上限値 0.9)を用いて低減したせん断耐力を算出し,保守的な設 計をしている。

④後施工型のせん断補強工法を活用した広島空港地下トンネル耐震補強工事について(岡 崎大宜,2011年)

·目的,概要

広島空港の基本施設直下を通る地下構造物(用倉トンネル)において、レベル2地震 動に対してせん断耐力が不足していた。用倉トンネルはアーチカルバートの上に20m弱 の盛土を行った構造物であるため、この盛土部分とアーチカルバートを対象に耐震対策 が必要な範囲と耐震補強工法の選定・検討を行い、RMA工法で現地施工を行った。

・構造体諸元

構造形式:アーチカルバート 補強対象部位:側壁 部材厚:1,600 mm

• 特記事項

重要施設に対して後施工型せん断補強工法(RMA法)による耐震補強を実施した。

·影響確認

レベル2地震動を対象とした重要構造物に対しての施工実績があることを確認した。
⑤地下駅舎RC壁のせん断力評価と耐震補強対策(三ツ屋薫,清宮理,山村賢輔, 2004 年)

·目的,概要

地中構造物の側壁隅角部を対象に載荷試験を行い,せん断スパンが正載荷・負載荷で 異なることを考慮したせん断耐力算定方法を提案した。また,前施工補強と後施工補強 との耐力比較,ならびに後施工せん断補強鉄筋の埋込長の違いによる耐力比較を行った。

・試験体諸元

部材厚: 側壁 460 mm, 底版 800 mm

(せん断スパン比 正側 a /D=約 2.25, 負側 a /D=約 3.25)

せん断補強鉄筋径:D10 (SD295)

荷重条件:正負交番載荷

• 特記事項

後施工によるせん断補強の場合,設計耐力に対して最低でも80%程度のせん断耐力が 実験で得られた。

・影響確認

実験で用いた補強鉄筋は端部を45°にカットした直鉄筋であり、端部に定着プレート を有するPHbよりもせん断耐力が小さくなる。PHbでは、実験により低減係数に相 当する有効係数を設定し、せん断耐力を算定している。

⑥地下道におけるPHb(ポストヘッドバー)工法の採用と積雪寒冷地の施工について(加藤幸輝,佐々木卓哉,佐藤明彦,2010年)

·目的,概要

既設地下道を耐震補強する目的で採用したPHb工法の実施内容及び積雪寒冷地での 施工方法について報告する。充填材の温度と強度の関係を把握するための試験施工を実 施した。

・試験体諸元

350 mm imes 350 mm imes 650 mm

• 特記事項

充填材料が0℃以下の履歴を受けた場合では,強度発現が低下することが確認された。

・影響確認

充填材料が0℃以下とならないように,施工上の管理基準(5℃以上)を設けて適切に 施工する。 ⑦せん断補強鉄筋埋込工法(後施工)による東京湾第二航路海底トンネルの側壁補強(奥平 幸男,岩下正美,小林亨,清宮理,2003年)

•目的,概要

東京都港湾局が同工法における補強効果を確認するために行った室内せん断実験の概 要と結果,設計条件と施工基準設定の考え方および適用工事に関する施工結果について 考察。

·試験体諸元

部材厚:460 mm (せん断スパン比a/D=2.25)

・特記事項

施工上予想される不具合を設計上考慮し, せん断耐力に対して低減係数 0.75 を乗じる。

影響確認

低減係数 0.75 は 2002 年の「③論文 異形鉄筋の埋込みによるあと施工せん断補強効 果に関するはりの載荷実験」でも提案されているが、その後 P H b 工法等の後施工せん 断補強工法について第三者機関による審査証明が行われており、その中では施工性につ いても審査対象となっていたことから、本研究事例の低減係数をそのまま設計に適用す る必要はないと考えられる。

後施工せん断補強筋に関する各研究事例を踏まえて, 張出しダクトへの反映事項を下記に 示す。

- ・建設技術審査証明報告書にて規定されている有効係数(上限値 0.9)を用いて, PHb のせん断耐力を算定する。
- ・充填材の施工管理基準(5℃以上)を設ける。
- ・施工上予測される不具合の考慮については、施工精度の向上方策を講じるとともに、設 計上の配慮についても検討する。

4.7 ⑤ P H b の施工上の確認

PHb工法によるせん断補強にあたっては,既設鉄筋配置のずれ等施工のばらつきにより計 画どおり施工できなかった場合,期待するせん断補強効果に影響を及ぼす可能性がある。そこ で施工上せん断補強効果に影響を及ぼす可能性がある施工のばらつきに関する項目を抽出し, 適切な施工管理によりばらつきを生じさせない,もしくはせん断補強効果に大きな影響を及ぼ さないことを確認する。

4.7.1 削孔角度

PHb挿入計画位置をドリルにより削孔するが,削孔角度に誤差が生じた場合,PHb のせん断補強効果に影響が及ぶ可能性がある。そこで施工用架台にドリルを設置し,ドリ ルの鉛直方向,水平方向が削孔面に対して垂直となるようスラントルール,金尺等で確認 し削孔する。図 4-8に削孔状況を示す。以上より,削孔時に施工用架台を使用すること で削孔角度のばらつきは生じない。

また、「建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプ セルおよびせん断補強筋「RMA」(建技審証 第1203 号)」では、コンクリートコアドリ ル長尺削孔精度確認試験を実施している(図 4-9)。コンクリートコアドリル長尺削孔精 度確認試験では、幅1,200 m×高さ 600 mm×長さ 1,200 mm のコンクリートブロック 4 体 を削孔し、削孔位置のずれを確認した。コンクリートコアドリル長尺削孔精度の計測結果 を表 4-10 に示す。削孔角度誤差は最大でも約 0.9°程度となり、十分な精度があること が示されている。

さらに、論文「⑦せん断補強鉄筋埋込工法(後施工)による東京湾第二航路海底トンネルの側壁補強」において、削孔角度誤差について記載されているが、そこではドリルによる削孔時に2方向より定規を添えて初期削孔を行い、途中2~3回確認することで施工用架台を使用せず誤差2°以内を確保している。今回は、施工用架台を使用し、より精度良く削孔することが可能である。

図 4-8 削孔状況

図 4-9 試験概要図

(建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプセルおよびせん断補強筋「R MA」より引用)

表 4-10 コンクリートコアドリル長尺削孔精度の計測結果

(建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプセルおよびせん断補強筋「R MA」より引用)

4.7.2 削孔位置

PHb挿入計画位置をドリルにより削孔するが,部材内部に障害物があり計画位置で削 孔できずPHbを計画どおり配置できない可能性がある。その場合は,付近を再削孔しP Hbを挿入することで設計上必要な補強鉄筋量を確保する。ただし,再削孔しPHbを配 置する際は「4.4 ②建設技術審査証明報告書の適用範囲の確認」に示す建設技術審査証明 報告書に記載の構造細目を満足するものとする。

なお、図 4-10 に示すせん断補強筋正面配置図及び部材断面配置図のとおり、再削孔す る際は削孔計画位置(赤丸)から位置をずらし、せん断補強効果に影響のない位置に削孔 することが可能である。なお、孔と鉄筋の干渉を避けて再削孔を行う際、削岩機ベースの PHbドリルでは孔をラップさせることができないため再削孔位置の選定が制限され、再 削孔しても新たに別の鉄筋に干渉してしまう可能性がある。そこで、孔のラップが可能な PHb工法指定の特殊コアドリルを必要に応じて併用することとし、再削孔時の精度向上 を図る。

以上より,削孔位置にばらつきが生じても必要鉄筋量を確保するためせん断補強効果に 影響を及ぼさない。

図 4-10 張出しダクト(側壁)のせん断補強筋正面配置図及び部材断面配置図

4.7.3 定着効果

充填材の定着効果については,建設技術審査証明報告書にて充填確認試験を実施しており,削孔内に設置したPHbの先端定着部までグラウトが密実に充填され,PHbとコンクリート躯体が一体となっていることを確認している。

4.7.1~4.7.3 に示したとおり,施工上の配慮により,せん断補強効果に大きな影響を及 ぼすような施工のばらつきは生じないと考えられる。しかし,現時点では後施工による施 工のばらつきに対して施工実績に基づく十分な統計がとれていないため,施工のばらつき による影響が生じる可能性を完全に否定することはできない。

しかし,張出しダクトのPHb適用部材のうち,せん断力照査で最も厳しい照査値は 0.25であり,十分な裕度があることから,安全上問題ないことを確認している。 5. PHbの適用性確認結果

「4.1 方針」に沿って、「4.2 耐震評価に基づく補強仕様の設定」で設定したPHbによる補 強仕様が、張出しダクトの耐震補強に適用できることを検討した結果、建設技術審査証明報告書 のとおりせん断補強効果を期待できることを確認した。

(参考資料1-2) 杭頭部の耐震評価

1. 概要

杭頭と鉄筋コンクリート部材との結合部に対して,耐震評価を実施する。照査項目は「道路橋 示方書・同解説(IV下部構造編)(日本道路協会,平成14年3月)」(以下「道路橋示方書(H14)」 という。),「道路橋示方書・同解説(IV下部構造編)(日本道路協会,平成24年3月)」(以下「道 路橋示方書(H24)」という。)及び「道路橋示方書・同解説(IV下部構造編)(日本道路協会,平 成29年11月)」(以下「道路橋示方書(H29)」という。)に基づき,杭頭部の結合方法(方法Aま たは方法B)に応じて選定する。

2. 杭頭部の結合方法による分類

柏崎刈羽原子力発電所7号機の屋外重要土木構造物のうち,杭基礎構造物として軽油タンク基礎,燃料移送系配管ダクト,常設代替交流電源設備基礎及び軽油タンク基礎(6号機設備)が該当し,いずれも杭とフーチングの結合部は剛結合として設計されている。杭頭部の結合方法の模式図を図 2-1 に示す。上に挙げた杭基礎構造物のうち,常設代替交流電源設備基礎は,杭をフーチングの中に杭径以上埋込み,埋め込んだ部分によって杭頭曲げモーメントに抵抗する方法Aで結合されている。軽油タンク基礎,燃料移送系配管ダクト及び軽油タンク基礎(6号機設備)は、フーチング内の埋込み長を最小限度の100mmに留め、主として鉄筋で補強することにより杭頭曲げモーメントに抵抗する方法Bで結合されている。

表 2-1 杭頭部の結合方法による分類	表 2-1	項部の結合方法による分類
---------------------	-------	--------------

杭頭部の結合方法	方法A	方法B
該当する構造物	• 常設代替交流電源設備基礎	 ・軽油タンク基礎 ・燃料移送系配管ダクト ・軽油タンク基礎(6号機設備)

(道路橋示方書(H24)より引用)図 2-1 杭頭部の結合方法の模式図

(参考) 1-2-1

- 3. 照査項目の選定
- 3.1 方法Aの構造物に対する杭頭部の照査項目

方法Aに対する杭頭部の照査項目について,道路橋示方書(H14),道路橋示方書(H24)及び 道路橋示方書(H29)の比較を表 3-1に示す。方法Aに関する杭頭部に必要な照査項目の記載 は,道路橋示方書(H24)以降では削除されているため,道路橋示方書(H14)に基づき,フー チングコンクリートの垂直支圧応力度,押抜きせん断応力度,水平支圧応力度及び水平方向の 押抜きせん断応力度を照査項目とする。

四大百日	道路橋示方書			
炽宜項日	H14	H24	H29	
フーチングコンクリートの垂直支圧応力度	必要			
フーチングコンクリートの押抜きせん断応力度	必要	記載	記載	
フーチングコンクリートの水平支圧応力度	必要	なし	なし	
フーチングコンクリートの水平方向の押抜きせん断応力度	必要			

表 3-1 方法Aに対する杭頭部の照査項目の比較

3.2 方法Bの構造物に対する杭頭部の照査項目

方法Bに対する杭頭部の照査項目について,道路橋示方書(H14),道路橋示方書(H24)及び 道路橋示方書(H29)の比較を表 3-2 に示す。道路橋示方書(H14)では、フーチングコンク リートの垂直支圧応力度,押抜きせん断応力度,水平支圧応力度,水平方向の押抜きせん断応 力度及び仮想鉄筋コンクリート断面に対する検討が必要とされている。

一方,道路橋示方書(H24)及び道路橋示方書(H29)では,図 3-1 に示す標準的な縁端距離を確保すれば,これらの照査を省略できるとされている。これは,杭基礎フーチング縁端部の載荷実験や解析の結果から,図 3-1 に示す条件を満たしていれば鉛直方向及び水平方向の押抜きせん断に対して所要の性能が確保されるとともに,水平,鉛直の双方とも支圧による損傷・変状が確認されなかったためである*。

本検討の対象構造物については,道路橋示方書(H24,H29)に基づくと表 3-3 に示すとお り所定の縁端距離及び杭の中心間隔を満足しているため,垂直支圧応力度,押抜きせん断応力 度,水平支圧応力度及び水平方向の押抜きせん断応力度に対する照査は省略できる。ただし, 既往の実験*では杭基礎が支持力を失う最終的な破壊形態が,押抜きせん断による破壊である ことが確認されているため,押抜きせん断応力度については照査を実施する。

また,既製杭の場合には上記の照査項目に加えて,フーチング内部に鉄筋コンクリート断面 を仮定し,道路橋示方書(H24)では補強鉄筋の応力度照査,道路橋示方書(H29)では限界状 態3(部材等の挙動が可逆性を失うものの,耐荷力を完全には失わない限界の状態)に対する 耐荷性能の照査が必要とされている。

以上の検討より,方法Bに対する杭頭部の照査項目は,押抜きせん断応力度照査及び道路橋 示方書(H29)に基づく仮想鉄筋コンクリート断面による曲げ軸力照査とする。

注記*:杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究)(2012 年,独立行政法人独立行政法人 土木研究所,一般社団法人 鋼管杭・鋼矢板技術協力会社)

昭本百日	道路橋示方書			
	H14	H24	H29	
フーチングコンクリートの垂直支圧応力度	必要	図 3-1の	図 3-1の	
フーチングコンクリートの押抜きせん断応力度	必要	構造細目を	構造細目を	
フーチングコンクリートの水平支圧応力度	必要	満足すれば	満足すれば	
フーチングコンクリートの水平方向の押抜きせん断応力度	必要	省略可	省略可	
仮想鉄筋コンクリート断面	必要*1	必要*2	必要*3	

表 3-2 方法Bに対する杭頭部の照査項目の比較

注記*1:コンクリート及び補強鉄筋の応力度照査を行う。

- *2:補強鉄筋の応力度照査を行う。コンクリートの応力度については、杭頭部の挙動に支 配的な影響を及ぼさないことが実験により確認されているため省略してよい。
- *3:限界状態3(部材等の挙動が可逆性を失うものの,耐荷力を完全には失わない限界の 状態)に対する耐荷性能の照査を行う。

(道路橋示方書(H24)より引用) 図 3-1 杭の最小中心間隔及びフーチング縁端距離

	表 3-	-3	杭の中心間隔及びフ	ーチング	グ縁端距離∉)必要量と方法B	を採用して	こいそ	う構造物の諸	元
--	------	----	-----------	------	--------	----------	-------	-----	--------	---

	杭径	(a)縁端距離		(b)杭の中心間隔		
構造物	D	必要量	構造物の諸元	必要量	構造物の諸元	
	(mm)	(1.0D以上)	(mm)	(2.5D以上)	(mm)	
	800	800mm 以上	長辺方向:1200	2000mm 以上	長辺方向:2500	
軽加タンク基礎			短辺方向:1100		短辺方向:2200	
燃料移送系配管	000		1105		横断方向:2250	
ダクト	800	800 800mm 以上	1125	2000mm 以上	軸方向:4100	
軽油タンク基礎	000		長辺方向:1350		長辺方向:2300	
(6 号機設備)	800	800 800mm 以上	短辺方向:1100	2000mm 以上	短辺方向:2200	

3.3 杭頭部照査項目のまとめ

「3.1 方法Aの構造物に対する杭頭部の照査項目」及び「3.2 方法Bの構造物に対する杭 頭部の照査項目」より、柏崎刈羽原子力発電所7号機の屋外重要土木構造物に対する杭頭部の 照査は、表 3-4のとおり実施する。

軽油タンク基礎の杭頭部の耐震評価においては、フーチングコンクリートの押抜きせん断応 力度断照査及び仮想鉄筋コンクリート断面による杭頭部の曲げ軸力に対する耐荷性能の照査を 実施する。

A 3 - 1 倍位初的机械时的派量项目						
	方法A	方法B				
四大百日		・軽油タンク基礎				
照宜項日	 常設代替交流電源設備基礎 	・燃料移送系配管ダクト				
		・軽油タンク基礎(6 号機設備)				
フーチングコンクリートの垂直支圧応力度	実施	省略				
フーチングコンクリートの押抜きせん断応力度	実施	実施				
フーチングコンクリートの水平支圧応力度	実施					
フーチングコンクリートの水平方向の	宇佐	省略				
押抜きせん断応力度	天旭					
仮想鉄筋コンクリート断面	_	実施*				

表 3-4 各構造物の杭頭部の照査項目

注記* : 限界状態 3(部材等の挙動が可逆性を失うものの,耐荷力を完全には失わない限界の 状態)に対する耐荷性能の照査。

- 4. 押抜きせん断応力度照査
- 4.1 照查方法

道路橋示方書・同解説(I共通編・IV下部構造編)(日本道路協会,平成14年3月)」に基づき,基礎版に生じる押抜きせん断応力度が,許容押抜きせん断応力度以下であることを確認する。基礎版に生じる押抜きせん断応力度は,「道路橋示方書・同解説(I共通編・IIIコンクリート橋編)(日本道路協会,平成14年3月)」に基づき下式により算定し,許容押抜きせん断応力度以下となることを確認する。

$$\tau_{p} = \frac{P}{\pi (D+h) h} \leq \tau_{a}$$

ここで,

- τ_p: 押抜きせん断応力度(N/mm²)
- P :荷重(N)
- D : 杭径(mm)
- h : 基礎版の有効高さ(mm)
- τ_a:許容押抜きせん断応力度(N/mm²)

4.2 照查結果

照査結果を表 4-1 及び表 4-2 に示す。各解析ケースにおいて基礎版に生じる押抜きせん断 応力度が,許容押抜きせん断応力度以下であることを確認した。

解析 ケース	地震動	照査位置	圧縮 軸力 (kN)	押し抜き せん断応力度* (N/mm ²)	許容 押抜きせん断 応力度 (N/mm ²)	照查値
	Ss-1++	8	1500	0.19	0.89	0.22
	Ss-1-+	8	1303	0.16	0.89	0.18
	Ss-1+-	8	1389	0.18	0.89	0.21
	Ss-1	8	1330	0.17	0.89	0.20
	Ss-2	8	997	0.13	0.89	0.15
1)	$S_{S}-3++$	8	1290	0.16	0.89	0.18
	$S_{S}-3-+$	7	1400	0.18	0.89	0.21
	$S_{S}-3+-$	8	1290	0.16	0.89	0.18
	Ss-3	8	1493	0.19	0.89	0.22
	Ss-4	8	715	0.09	0.89	0.11
	Ss-5	8	806	0.10	0.89	0.12
	Ss-6	8	937	0.12	0.89	0.14
	Ss-7	8	791	0.10	0.89	0.12
	Ss-8++	8	950	0.12	0.89	0.14
	Ss-8-+	7	1153	0.15	0.89	0.17
2	Ss-1++	8	1426	0.18	0.89	0.21
3	Ss-1++	8	1607	0. 20	0. 89	0.23
4	Ss-1++	8	1181	0.15	0.89	0.17
(5)	Ss-1++	8	1116	0.14	0. 89	0.16

表 4-1 押抜きせん断応力度照査結果(A-A断面)

注記* :押し抜きせん断応力度=発生押し抜きせん断応力度×構造解析係数γ。

図 4-1 照査位置

解析 ケース	地震動	照査位置	圧縮 軸力 (kN)	押し抜き せん断応力度* (N/mm ²)	許容 押抜きせん断 応力度 (N/mm ²)	照查値
	Ss-1++	1	1905	0.24	0.89	0.27
	Ss-1-+	2	1762	0.22	0.89	0.25
	Ss-1+-	1	1698	0.21	0.89	0.24
	Ss-1	2	1711	0.21	0.89	0.24
	Ss-2	1	1995	0.25	0.89	0.29
1)	$S_{S}-3++$	2	1792	0.22	0.89	0.25
	Ss-3-+	2	1706	0.21	0.89	0.24
	Ss-3+-	1	1782	0.22	0.89	0.25
	Ss-3	2	1806	0.23	0.89	0.26
	Ss-4	1	1548	0.19	0.89	0.22
	Ss-5	2	1341	0.17	0.89	0.20
	Ss-6	1	1825	0.23	0.89	0.26
	Ss-7	2	1336	0.17	0.89	0.20
	Ss-8++	2	1516	0.19	0.89	0.22
	Ss-8-+	1	1480	0.19	0.89	0.22
2	Ss-2	1	1986	0.25	0.89	0.29
3	Ss-2	1	1983	0.25	0.89	0.29
4	Ss-2	2	1584	0.20	0.89	0.23
5	Ss-2	2	1535	0.19	0.89	0.22

表 4-2 押抜きせん断応力度照査結果(B-B断面)

注記* :押し抜きせん断応力度=発生押し抜きせん断応力度×構造解析係数 γ 。

- 5. 曲げ軸力に対する評価
- 5.1 仮想鉄筋コンクリート断面による照査
 - 5.1.1 照查方法

曲げ軸力に対する照査は道路橋示方書(H29)に基づき,表 5-1及び図 5-1に示す仮 想鉄筋コンクリート断面を設定し,仮想鉄筋コンクリート断面に生じるモーメントが「コ ンクリート標準示方書[構造性能照査編](2002年)」に示す終局曲げ耐力以下であること を確認する。

	諸元	
仮相 DC 账声	杭径 D(mm)	798
汉志 [10] 两面	仮想 RC 断面の径 (mm)	1098
コンクリート	設計基準強度(N/mm ²)	23.5
	材質	SD35(SD345 相当)
	鉄筋径	D32
机與佣蚀跃肋	鉄筋の本数(本)	18
	配置半径(mm)	330

表 5-1 仮想鉄筋コンクリート断面諸元*

(単位:mm)

図 5-1 概略補強配筋図(杭頭補強鉄筋)* 注記* :「道路橋示方書(H29)」に基づき設定

5.1.2 照查結果

解析ケース①(基本ケース)について全地震動に対して照査を実施し、最も照査値が厳 しい地震動に対し、ばらつきを考慮した解析ケース(解析ケース②~⑤)について照査を 実施した。

各断面について杭頭部の曲げ照査値が最大となる解析ケース,地震動における照査結果 を表 5-2及び表 5-3に,照査値が 1.0を上回る杭及び照査値が最大となる杭の配置図を 図 5-4に示す。表 5-2,表 5-3及び図 5-4に示すとおり,一部の杭で照査値が 1.0 を上回り,軽油タンク基礎全体の合計 112本の杭のうち,照査値が 1.0を上回る杭はA-A断面において 56本, B-B断面において 35本となる。

	每日十日			照査用	終局	
	一月中 ク	地震動	照査位置	曲げモーメント*	曲げ耐力	照査値
	クース			(kNm)	(kNm)	
		1	1518	-	1.01	
		2	1453		0.97	
	3	Ss-3-+	3	1453	1511	0.97
			4	1405		0.93
			5	1378	1511	0.92
		6	1709		1.14	
			7	1754		1.17
			8	1824		1.21

表 5-2 杭頭部の曲げ照査結果(A-A断面)

注記* :照査用曲げモーメント=発生曲げモーメント×構造解析係数 γ 。

図 5-2 照査位置

御北			照查用	終局	
月年121	地震動	照査位置	曲げモーメント*	曲げ耐力	照查值
ケース			(kNm)	(kNm)	
		1	1840		1.22
		2	1787		1.19
		3	1551		1.03
		4	1480		0.98
	Ss-3+-	5	1445		0.96
		6	1421	1511 -	0.95
		7	1384		0.92
(3)		8	1365		0.91
		9	1383		0.92
		10	1448		0.96
		11	1577		1.05
		12	1743		1.16
		13	2145		1.42
		14	2479		1.65

表 5-3 杭頭部の曲げ照査結果(B-B断面)

注記* :照査用曲げモーメント=発生曲げモーメント×構造解析係数 γ a

図 5-3 照査位置

図 5-4 照査値が 1.0 を上回る杭及び照査値が最大となる杭の配置図

长齿里		仕様	
们们们自	杭径 (mm)	肉厚 (mm)	杭長(m)
1		14	23.0
2		12	23.0
3	800	14 (杭頭部*18)	21.0
4		14 (杭頭部*16)	21.0
5		14	26.5
6		12	26.5
注記*			

:照査値が1を上回る杭 :照査値が最大となる杭

(a) A-A断面 (解析ケース③, Ss-3-+地震動)

 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^4 \bigcirc^3 \bigcirc ³ O^4 O^3 01 \bigcirc^3 \bigcirc ³ \bigcirc^4 \bigcirc ³ \bigcirc ³ O^{4}_{-} -04_ _O⁴ \bigcirc^4 \bigcirc^4 \bigcirc^4 $O_{-}^{4} - \Theta_{-}^{4} O_{-}^{4}$ \bigcirc^4 \bigcirc^4 04 O^3 $0^{3'/0^4}$ \bigcirc^4 $\mathcal{A}^{4} \mathcal{A}^{4}$ \bigcirc^4 $\sqrt{0^3}$ 0^3 04.04 A1 ۲ ۵ 61 \bigcirc^1 \bigcirc^1 \bigcirc^1 \bigcirc^1 O^1 \bigcirc^1 ϕ^{\prime_1} \bigcirc^1 O^1 61 O^1 \bigcirc^1 O^1 O^1 O^1 $O^6 O^{6/05}$ O^{2}/O^{2} \bigcirc^5 O^1 \bigcirc^1 O^2 O^2 $\hat{O}^{+} = \bar{\Theta}^{-} = \bar{O}^{-}$ \bigcirc^1 O^1 O^1 O^1 O^{5} O^{5} \bigcirc^5 \bigcirc^5 \bigcirc^1 \bigcirc^5 O^1 O^1 O^1 O^1 O^5

5.1.3 杭頭部の健全性について

杭頭部の評価のうち,押抜きせん断応力度照査では,全ての杭頭部で照査を満足する結 果となった。一方,曲げ軸力に対する評価では,一部の杭頭部で発生曲げモーメントが終 局曲げ耐力を上回るため,軽油タンク基礎に要求される支持機能の観点で,その影響につ いて検討を行う。

杭基礎の支持力特性に関する既往の研究*では、図 5-5 に示すとおり、杭頭結合部の破壊形態を確認することを目的とした、繰り返し水平載荷試験を実施している。当研究結果によると、図 5-5 (c)荷重-変位関係に示すとおり、鉄筋降伏時の変位 1dy に対して 20 倍の変位 20dy においても急激な荷重低下は見られず、安定した挙動を示している。

上記の実験結果で示された変形性能,及び杭頭部が押込み力に対して照査を満足するこ とを考慮すると,一部の杭頭部で発生曲げモーメントが終局曲げ耐力を上回った場合にお いても,軽油タンク基礎の支持機能は確保されると考えられる。

注記* : 杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究) (2012 年独立行政法人 土木研究所,一般社団法人 鋼管杭・鋼矢板技術協力会社)

(c) 荷重-変位関係

図 5-5 単杭に対する鋼管杭の杭頭結合部の水平載荷実験*

注記* : 杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究)(2012 年 独立行政法人 土木研究所,一般社団法人 鋼管杭・鋼矢板技術協力会社)より引用

(参考) 1-2-13

また,表 5-4 及び表 5-5 に示すとおり,杭頭の発生曲げモーメントが終局曲げ耐力を 上回る一部の杭の支持力に期待しないと仮定した場合においても,軽油タンク基礎全体と しての支持力は確保されることからも,支持機能に問題は無いと判断出来る。

鉛直力*1 解析 終局鉛直支持力*2 照查值 解析断面 地震動 ケース R_{a} (kN) R_{ua} (kN) R_a / R_{ua} 385073 A-A断面 3 $S_{S}-3-+$ 96238 0.25 B-B断面 3 $S_{S}-3+-$ 77595 509588 0.16

表 5-4 基礎全体として評価した場合の押込みに対する支持性能照査結果

注記*1:全ての杭頭に生じる鉛直力の総和を示す。

*2:杭頭の発生曲げモーメントが終局曲げ耐力を上回る一部の杭を除いた杭の終局鉛直支 持力の総和を示す。また、「終局鉛直支持力Rua=極限支持力Ru÷安全率」とする。

表 5-5 基礎全体として評価した場合の引抜きに対する支持性能照査結果

解析断面	解析 ケース	地震動	引抜き力*1 P a (kN)	終局引抜き力 ^{*2} Pua(kN)	照査値 P a / P u a
A-A断面	3	$S_{S}-3-+$	46499	164367	0.29
B-B断面	3	Ss-3+-	42770	225449	0.19

注記*1:全ての杭頭に生じる引抜き力の総和を示す。

*2:杭頭の発生曲げモーメントが終局曲げ耐力を上回る一部の杭を除いた杭の終局引抜き 力の総和を示す。また「終局引抜き力Pua=極限引抜き力Pu÷安全率」とする。

ただし,軽油タンク基礎の地震応答解析においては,杭頭部を鉄筋コンクリートの基礎 版と剛結した解析モデルとしていることから,杭頭部の鉄筋降伏後における非線形性を考 慮した場合の,軽油タンク基礎の耐震評価に対する影響について検討する。 5.2 杭頭部の非線形性を考慮した影響検討

杭頭部の非線形性を考慮した地震応答解析を実施し,軽油タンク基礎の耐震評価に対する影響について検討する。

5.2.1 検討方法

軽油タンク基礎の地震応答解析は、杭頭部を剛結としたモデル(以下「基本モデル」という。)を用いている。本検討では、基本モデルの解析結果と杭頭部に曲げ変形に対する非線形性を考慮した回転ばね要素を配置した解析モデル(以下「杭頭回転ばねモデル」という。)の解析結果を比較することで、杭頭部の非線形性を考慮した場合の影響検討を行う。 杭頭回転ばねモデルの回転ばね要素は、表 5-1及び図 5-1に示す仮想鉄筋コンクリート断面に基づき設定する。また、杭頭回転ばねモデルについて、回転ばね要素の応答を確認し、モデル化の妥当性について確認する。

検討フローを図 5-6 に示す。

図 5-6 検討フロー

5.2.2 検討ケースの選定

基本モデルでの地震応答解析結果のうち,杭頭部の発生曲げモーメントが最も大きい解 析ケースを検討ケースとする。

基本モデルにおける杭頭部の発生曲げモーメント一覧を表 5-6 及び表 5-7 に示す。杭 頭部の発生曲げモーメントが最も大きい解析ケースは、A-A断面で解析ケース③,地震動 Ss-3-+, B-B断面で解析ケース③,地震動 Ss-3+-となる。

解析ケース		杭頭部の発生曲げモーメント (kN/本)				本)
地震動		1	2	3	4	(5)
	++	1336				
$S_{\alpha-1}$	-+	1209				
38-1	+-	1314				
		1177				
Ss-2		598				
	++	1319				
5 ~ 3	-+	1491	1358	1737	992	454
38-3	+-	1342				
		1484				
Ss-4		548				
Ss-5		778				
Ss-6		768				
Ss-7		882				
C O	++	1200				
55-0	-+	1227				

表 5-6 杭頭部の発生曲げモーメント(A-A断面)

表 5-7 杭頭部の発生曲げモーメント(B-B断面)

解析ケース		杭頭部の発生曲げモーメント(kN/本)				
地震動		1	2	3	4	5
	++	1850				
$S_{\alpha-1}$	-+	1873				
55-1	+-	1780				
		1810				
Ss-2		1675				
	++	2052				
C - 1	-+	1992				
55-3	+-	2055	1740	2361	1618	1306
		2009				
Ss-4		1578				
Ss-5		1623				
Ss-6		1797				
Ss-7		1705				
Ss-8	++	1720				
	-+	1723				

(参考) 1-2-17

5.2.3 回転ばね要素の設定

基本モデルの解析結果では、杭頭部の発生曲げモーメントが終局曲げ耐力を上回る杭は 一部であるが、杭頭回転ばねモデルを用いた解析では、全ての杭頭位置に回転ばね要素を 配置し、杭頭部の曲げ変形に対する非線形挙動を考慮する。回転ばね要素の配置位置を図 5 -7 に、回転ばね要素のM- θ 特性を図 5-8 に、回転ばね要素のばね定数を表 5-8 に示 す。

回転ばね要素の一次勾配は,数値解析上不安定な挙動を起こさない程度に十分大きな値, 二次勾配は,仮想鉄筋コンクリート断面の非線形特性に基づき,塑性化領域を10φ*(φ: 補強鉄筋の直径)として設定した値とし,三次勾配は十分小さな値とする。

注記*:「杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究) (独立行政法人 土木研究所 一般社団法人 鋼管杭・鋼矢板技術協会社,平成24年3月)」を参 考に、塑性化領域を10 o と設定。

図 5-7 回転ばね要素の配置位置

勾配	ばね定数 (kNm/rad)
一次勾配 k1	1.00×10^{6}
二次勾配 k ₂	9. 10×10^4
三次勾配 k ₃	$1.00 imes 10^{-6}$

表 5-8 回転ばね要素のばね定数*

注記*:杭一本あたりの値を示す。

5.2.4 照査値の比較

基本モデルと杭頭回転ばねモデルにおける鋼管杭の曲げ軸力照査, せん断力照査及び基 礎地盤の支持性能照査の照査値を比較する。

照査値の比較結果を表 5-9~表 5-16 に示す。表 5-9~表 5-16 に示すとおり,基本 モデルと杭頭回転ばねモデルで発生力に若干の差は生じるが,照査値の差は最大で 0.01 程度であり,許容限界に対して十分余裕があることを確認した。

表 5-9 鋼管杭の曲げ軸力照査の比較(A-A断面)

解析モデル	照查用曲率*	終局曲率	照查值
	$\phi_{ m d}$ (1/m)	$\phi_{\rm u}$ (1/m)	ϕ d \checkmark ϕ u
①基本モデル	3. 25×10^{-3}	1.30×10^{-2}	0.25
②杭頭回転ばねモデル	3.25×10^{-3}	1.30×10^{-2}	0.25

注記* : 照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

表 5-10 鋼管杭のせん断照査の比較(A-A断面)

解析モデル	照査用せん断力*	終局せん断耐力	照查值
	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
①基本モデル	1018	1977	0.52
②杭頭回転ばねモデル	1016	1977	0.52

注記* :照査用せん断力Qd=発生せん断力×構造解析係数 ya

表 5-11 基礎地盤の押込みに対する支持性能照査の比較(A-A断面)

解析モデル	鉛直力	終局鉛直支持力*	照查値
	R_{a} (kN)	R _{ua} (kN)	R a / R u a
①基本モデル	1397	6480	0.22
②杭頭回転ばねモデル	1402	6480	0.22

注記* :終局鉛直支持力Rua=極限支持力Ru÷安全率

表 5-12 基礎地盤の引抜きに対する支持性能照査の比較(A-A断面)

解析モデル	引抜き力	終局引抜き力*	照查值
	P_a (kN)	P _{ua} (kN)	P a∕P u a
①基本モデル	635	2692	0.24
②杭頭回転ばねモデル	641	2692	0.24

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

	照查用曲率*	終局曲率	照查值
脾がモナル	$\phi_{\rm d}$ (1/m)	$\phi_{\rm u}$ (1/m)	ϕ d / ϕ u
①基本モデル	3. 77×10^{-3}	1.49×10^{-2}	0.26
②杭頭回転ばねモデル	2.87 $\times 10^{-3}$	1.16×10^{-2}	0.25

表 5-13 鋼管杭の曲げ軸力照査の比較(B-B断面)

注記* : 照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

表 5-14 鋼管杭のせん断照査の比較(B-B断面)

解析モデル	照査用せん断力*	終局せん断耐力	照査値
	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
①基本モデル	911	1977	0.47
②杭頭回転ばねモデル	898	1977	0.46

注記* :照査用せん断力Q_d=発生せん断力×構造解析係数 γ_a

表 5-15 基礎地盤の押込みに対する支持性能照査の比較(B-B断面)

解析モデル	鉛直力	終局鉛直支持力*	照査値
	R_{a} (kN)	R _{ua} (kN)	R_a / R_{ua}
①基本モデル	1819	5964	0.31
②杭頭回転ばねモデル	1820	5936	0.31

注記* :終局鉛直支持力Rua=極限支持力Ru÷安全率

表 5-16 基礎地盤の引抜きに対する支持性能照査の比較(B-B断面)

解析モデル	引抜き力 P (W)	終局引抜き力* P (LN)	照査値 P /P
	\mathbf{I}_{a} (KN)	Γua (KN)	I a/I u a
①基本モデル	1277	2834	0.46
②杭頭回転ばねモデル	1266	2834	0.45

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

5.2.5 回転ばね要素の応答値確認

土木学会マニュアルを参考とし、回転ばね要素の限界値を圧縮縁コンクリートのひずみ 1%に相当する回転角とし、応答が限界値を下回ることを確認することで、回転ばね要素が モデル化の適用範囲内であるかを確認する。限界値は、仮想鉄筋コンクリート断面をモデ ル化したファイバーのはりモデルによるプッシュオーバー解析により算出する。

表 5-17 及び表 5-18 に回転ばね要素の回転角の確認結果を示す。表 5-17 及び表 5-18 より,発生回転角は仮想鉄筋コンクリート断面の限界値を下回るため,回転ばね要素 はモデル化の適用範囲内であると判断できる。

検討	地震動 四本/	四本位平	発生回転角*	限界值	発生回転角
ケース	地展期	照省位直	(rad)	(rad)	限界值
	Ss-1++	8	6. 20×10^{-4}		0.06
	Ss-1-+	1	$7.80 imes 10^{-4}$		0.07
	Ss-1+-	1	5.70 $\times 10^{-4}$		0.06
	Ss-1	1	6. 20×10^{-4}		0.06
	Ss-2	1	3.20×10^{-4}		0.03
	$S_{S}-3++$	1	1.11×10^{-3}		0.10
	Ss-3-+	8	1.21×10^{-3}	1.12×10^{-2}	0.11
1	$S_{S}-3+-$	1	1.22×10^{-3}		0.11
	Ss-3	8	1.19×10^{-3}		0.11
	Ss-4	1	2.70 $\times 10^{-4}$		0.03
	Ss-5	1	3. 40×10^{-4}		0.04
	Ss-6	2	3. 10×10^{-4}		0.03
	Ss-7	2	3.70 $\times 10^{-4}$		0.04
	$S_{S}-8++$	1	6.00 $\times 10^{-4}$		0.06
	Ss-8-+	1	5.70 $\times 10^{-4}$	1	0.06
2	Ss-3+-	1	5.80 $\times 10^{-4}$		0.06
3	Ss-3+-	1	2. 46 $\times 10^{-3}$		0. 22
4	$S_{s-3} + -$	1	5.10×10^{-4}		0.05
5	$S_{s-3} + -$	1	4.20×10^{-4}		0.04

表 5-17 回転ばね要素の回転角の確認結果(A-A断面)

注記* :構造解析係数γ aを考慮する。

図 5-9 照査位置

検討	山亭毛	四大片里	発生回転角*	限界値	発生回転角
ケース	ケース	照省位直	(rad)	(rad)	限界值
	Ss-1++	14	3. 16×10^{-3}		0.29
	Ss-1-+	14	3. 14×10^{-3}	_	0.29
	Ss-1+-	14	2.90 $\times 10^{-3}$		0.26
	Ss-1	14	2.84 $\times 10^{-3}$		0.26
	Ss-2	14	2. 28×10^{-3}		0.21
	$S_{S}-3++$	14	4. 21×10^{-3}		0.38
	Ss-3-+	14	3. 76 $\times 10^{-3}$		0.34
1	Ss-3+-	14	4. 25×10^{-3}	$1.12 imes 10^{-2}$	0.38
	Ss-3	14	3.89 $\times 10^{-3}$		0.35
	Ss-4	14	$1.67 imes 10^{-3}$		0.15
	Ss-5	14	1.92×10^{-3}		0.18
	Ss-6	14	2.60×10 ⁻³		0.24
	Ss-7	14	2. 27×10^{-3}		0.21
	$S_{S}-8++$	14	2. 43×10^{-3}		0.22
	Ss-8-+	14	2. 46×10^{-3}		0.22
2	Ss-3+-	14	2.57 $\times 10^{-3}$		0.23
3	Ss-3+-	14	6. 14×10^{-3}		0. 55
4	Ss-3+-	14	1.97×10^{-3}		0.18
5	Ss-3+-	14	8. 20×10^{-4}		0.08

表 5-18 回転ばね要素の回転角の確認結果(B-B断面)

注記* :構造解析係数 y a を考慮する。

図 5-10 照査位置

6. まとめ

杭頭部の評価のうち,押抜きせん断応力度照査では,全ての杭頭部で照査を満足する結果となった。一方,曲げ軸力に対する評価では,一部の杭頭部で発生曲げモーメントが終局曲げ耐力を 上回るため,杭頭部に非線形性を考慮した場合の軽油タンク基礎の耐震評価に対する影響につい て検討した。検討の結果,軽油タンク基礎は耐震安全性を有することを確認した。 1. 概要

基礎版の耐震評価では、基礎版の評価に支配的な荷重が発生する時刻として、軽油タンクの圧 縮軸力及びモーメントがそれぞれ最大となる時刻を照査時刻として選定している。表 1-1 に基 礎版の耐震評価における照査時刻の一覧を示す。

本項では,軽油タンクの圧縮軸力及びモーメントがそれぞれ最大となる時刻を基礎版の照査時 刻とすることの妥当性を確認する。

軽油タンク	加振方向	着目事象	
		モーメント最大時(北)	
	N S	モーメント最大時 (南)	
A T		圧縮軸力最大時	
A杀	EW	モーメント最大時 (東)	
		モーメント最大時 (西)	
		圧縮軸力最大時	
B系	N S	モーメント最大時(北)	
		モーメント最大時(南)	
		圧縮軸力最大時	
	EW	モーメント最大時 (東)	
		モーメント最大時(西)	
		圧縮軸力最大時	

表 1-1 基礎版の照査時刻

2. 外力として作用する設備の比較

軽油タンク基礎が支持する設備には,軽油タンク,張出しダクト,張出し基礎等の設備があり, 地震時にはこれらの設備の荷重が基礎版へ作用する。

表 2-1 に各設備の質量を示す。これらの設備の中で,軽油タンクは質量が最も大きく,地上 部に突出した設備であることから,基礎版の耐震評価における支配的な荷重は軽油タンクからの 荷重であると考えられる。

設備名称		質量	
軽油タンク (A)		648t	
軽油タンク (B)		633t	
張出しダクト		457t	
張出し基礎(AC)		96t	
張出し基礎(B)		52t	
油分離槽		36t	
防油堤	基礎端部 南北方向中央	1.50t/m	
		(1.54t/m)*	
		1.66t/m	

表 2-1 各設備の質量

3. 耐震評価による検証

軽油タンクの圧縮軸力及びモーメントがそれぞれ最大となる時刻を基礎版の照査時刻とするこ とに対する妥当性確認として、上記の照査時刻以外で基礎版に対して大きな外力が生じると想定 される事象を抽出し、各事象の発生時刻における基礎版の照査値を比較する。照査時刻の検証フ ローを図 3-1に、抽出した事象一覧を表 3-1に示す。

なお、検討を行う解析ケースは基礎版の照査値が最大(せん断力照査値:0.75)となる解析ケース(解析ケース③, Ss-8++)とする。

注記* : 燃料移送系配管を含めた質量

図 3-1 照査時刻の検証フロー

表 3-1 抽出する事象一覧

	抽出事象	卓越すると想定される荷重	
採用事象	軽油タンクの断面力最大時	・軽油タンクからの荷重	
	(モーメント,圧縮軸力)		
	軽油タンクの断面力最大時	収油ないなようの共手	
検証用 抽出事象	(引張軸力)	 ・ 軽油タンクからの何里 	
	基礎端部(北西端)の加速度最大時	・張出しダクト及び張出し基礎からの荷重	
	基礎版全体の平均的な加速度最大時	・基礎版の慣性力	
	側方の土水圧最大時	・土水圧	
	杭頭部の断面力最大時	・杭の反力	
	基礎版中央の変位最大時	・基礎版の慣性力	
各抽出事象の時刻に対する照査結果一覧を表 3-2 に示す。曲げ軸力照査及びせん断力照査と もに、A-A断面の軽油タンク(A系)のモーメントが最大となる時刻で、照査値が最大となるこ とを確認した。

	抽出事象	解析 断面	事象	照査時刻 (s)	曲げ 照査値	せん断力 照査値	
			A系タンクの圧縮軸力最大時	7.75	0.01	0.24	
			B系タンクの圧縮軸力最大時	7.75	0.01	0.24	
		A - A	A系タンクのモーメント北向き最大時	8.12	0.14	0.75	
		断面	A系タンクのモーメント南向き最大時	7.86	0.02	0.43	
	軽油タンクの		B系タンクのモーメント北向き最大時	8.13	0.14	0.74	
松田古舟	断面力最大時		B系タンクのモーメント南向き最大時	7.86	0.02	0.43	
採用爭家	(モーメント,		A系タンクの圧縮軸力最大時	7.76	0.02	0.28	
	圧縮軸力)		B系タンクの圧縮軸力最大時	7.76	0.01	0.11	
		B - B	A系タンクのモーメント東向き最大時	8.11	0.14	0.73	
		断面	A系タンクのモーメント西向き最大時	7.86	0.02	0.43	
			B系タンクのモーメント東向き最大時	8.13	0.14	0.74	
			B系タンクのモーメント西向き最大時	7.84	0.02	0.40	
		A - A	A系タンクの引張軸力最大時	7.93	0.01	0.16	
	軽油タンクの	断面	B系タンクの引張軸力最大時	7.93	0.01	0.16	
	(引張軸力)	B - B	A系タンクの引張軸力最大時	7.94	0.01	0.11	
		断面	B系タンクの引張軸力最大時	7.95	0.01	0.11	
		A - A	基礎版北端の加速度上向き最大時	7.75	0.01	0.24	
	基礎端部 (北西端)の 加速度最大時	断面	基礎版北端の加速度下向き最大時	7.93	0.01	0.16	
		B - B	基礎版西端の加速度上向き最大時	7.77	0.02	0.32	
		断面	基礎版西端の加速度下向き最大時	7.95	0.01	0.11	
		A-A 断面 基礎版全体の	鉛直加速度上向き最大時	7.75	0.01	0.24	
			鉛直加速度下向き最大時	7.93	0.01	0.16	
			水平加速度北向き最大時	7.86	0.02	0.43	
	基礎版全体の		水平加速度南向き最大時	8.11	0.14	0.73	
	平均的 <i>公</i> 加速度最大時	平均的な 加速度最大時 B-B	鉛直加速度上向き最大時	7.76	0.02	0.28	
			B - B	鉛直加速度下向き最大時	7.95	0.01	0.11
		断面	水平加速度東向き最大時	7.84	0.02	0.40	
			水平加速度西向き最大時	8.12	0.14	0.75	
検証用		A - A	北側の土水圧の合力最大時	8.06	0.09	0.60	
抽出事象	側方の	断面	南側の土水圧の合力最大時	8.35	0.01	0.26	
	土水圧最大時	B - B	東側の土水圧の合力最大時	8.08	0.12	0.66	
		断面	西側の土水圧の合力最大時	7.81	0.02	0.37	
			せん断力最大時	8.14	0.13	0.74	
		A-A 断面	引張軸力最大時	8.11	0.14	0.73	
	杭頭部の	EALERI	圧縮軸力最大時	7.79	0.02	0.36	
	断面力最大時	р р	せん断力最大時	8.13	0.14	0.74	
		Б -Б 新面	引張軸力最大時	8.32	0.01	0.18	
		ыш	圧縮軸力最大時	8.06	0.09	0.60	
			相対変位上向き最大時	8.20	0.03	0.57	
		A - A	相対変位下向き最大時	7.80	0.02	0.37	
		断面	相対変位北向き最大時	8.17	0.08	0.69	
	基礎版中央の		相対変位南向き最大時	7.85	0.02	0.42	
	変位最大時		相対変位上向き最大時	8.45	0.02	0.31	
		B - B	相対変位下向き最大時	8.12	0.14	0.75	
		断面	相対変位東向き最大時	8.19	0.03	0.62	
				相対変位西向き最大時	7.86	0.02	0. 43

表 3-2 照查結果一覧*

注記* : 灰色で着色したケースは「軽油タンクの断面力最大時」の時刻に包絡された重複するケースを示す。

4. まとめ

軽油タンクの圧縮軸力及びモーメントがそれぞれ最大となる時刻を基礎版の照査時刻とするこ とに対する妥当性の確認として,基礎版に対して大きな外力が生じると想定される事象を抽出し, 各事象の発生時刻における基礎版の照査値の比較を行った。その結果,表 3-2 に示すとおり, 基礎版の照査値が最大となる時刻は軽油タンクのモーメント最大時であることを確認した。また, 検証用に抽出した各事象で選定された照査時刻は,軽油タンクの圧縮軸力及びモーメントがそれ ぞれ最大となる時刻に包絡されているものが多く,軽油タンクの圧縮軸力及びモーメントが,3 次元構造解析において支配的な荷重であることを確認した。

以上の結果より,軽油タンクの圧縮軸力及びモーメントがそれぞれ最大となる時刻を基礎版の 照査時刻とすることは妥当である。 (参考資料1-4) 3次元構造解析に対する地下水位設定の影響について

1. 概要

軽油タンク基礎の耐震評価における地下水位は、地震応答解析における保守的な設定として地 表面(T.M.S.L.12.0m)に設定している。また、3次元構造解析においても同様に、地下水位を地 表面(T.M.S.L.12.0m)に設定し、基礎版底面に地下水による揚圧力を考慮している。一方、軽油 タンク基礎近傍の地下水位の実測値は、年間平均でT.M.S.L.8.56m*で、基礎版の厚さが1.4mで あるため、年間平均の実測値に基づく地下水位を考慮した場合、基礎版底面に揚圧力は作用しな い。

そこで本項では、3次元構造解析における設計条件としての地下水位設定(T.M.S.L.12.0m)と、 年間平均の実測値に基づく地下水位設定(T.M.S.L.8.56m)に基づく揚圧力の違いが3次元構造解 析に与える影響について確認する。

注記* :補足説明資料「KK7 補足-024-1 地盤の支持性能について」を参照。

2. 検討方針

地下水位を地表面 (T.M.S.L. 12.0m) に設定した 3 次元構造解析 (以下「基本ケース」という。) の結果と,年間平均の実測値に基づき地下水位を T.M.S.L. 8.56m に設定し,揚圧力の条件を変更 した 3 次元構造解析 (以下「地下水位実測値ケース」という。)の結果を比較し,揚圧力の影響を 確認する。なお,3 次元構造解析における入力荷重は,揚圧力の違いが3次元構造解析に与える 影響を確認する観点から,両ケースともに地下水位を地表面 (T.M.S.L. 12.0m) に設定した地震応 答解析から算定する。

影響確認は、基本ケースにおいて照査値がより厳しくなるせん断力照査を対象とし、解析ケース及び地震動は、せん断力照査の照査値が最大となる「解析ケース③、基準地震動 Ss-8++」とする。

3. 地下水位実測値ケースの揚圧力の設定

基本ケースにおいて揚圧力が作用する構造部位は,基礎版本体,張出し基礎及び張出しダクト である。

地下水位実測値ケースでは、構造部位のうち、基礎版本体及び張出し基礎は、ともに構造物下 端標高が T. M. S. L. 10. 6m であり、地下水位実測値(T. M. S. L. 8. 56m)以浅であるため、揚圧力及び 水圧が作用しない。一方、図 3-1 に示すとおり、張出しダクトの構造物下端標高は、地下水位 実測値以深となるため揚圧力が作用し、作用する揚圧力は基本ケースの 42. 2kN/m² に対し、地下 水位実測値ケースでは 8. 4kN/m²となる。

以上を踏まえた,基本ケースと地下水位実測値ケースそれぞれの揚圧力の設定方法を表 3-1 に示す。

図 3-1 地下水位実測値と張出しダクト下端標高の比較

表 3-1 揚圧力の設定方法

(参考) 1-4-2

4. 解析結果の比較

基本ケースと地下水位実測値ケースのせん断力照査結果の比較を表 4-1 に示す。地下水位実 測値ケースの照査用せん断力は、基本ケースの照査用せん断力を若干上回るものの、許容限界の せん断耐力に対して十分余裕があることを確認した。

検討をつる	照査用せん断力*	せん断耐力	照査値
検討クース	V_{d} (kN)	V_{yd} (kN)	$V_{d} / V_{y d}$
基本ケース	1641	2105	0.75
地下水位実測値ケース	1687	2195	0.77

表 4-1 せん断力照査結果の比較

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

5. まとめ

軽油タンク基礎の3次元構造解析において,地下水位を地表面(T.M.S.L.12.0m)に設定した解 析結果と,年間平均の実測値に基づき地下水位をT.M.S.L.8.56mに設定し,揚圧力の条件を変更 した解析結果を比較し,揚圧力の影響を確認した。確認の結果,実測値に基づく地下水位を考慮 した場合,地下水位を地表面(T.M.S.L.12.0m)に設定した場合よりも発生せん断力が若干大きく なるものの,許容限界に対して十分余裕があることから,耐震安全性を確保できることを確認し た。

なお本検討は、3 次元構造解析における揚圧力の影響を確認することを目的とするため、地下 水位設定を実測値に基づき変更しているのは、3 次元構造解析における揚圧力の条件のみである。 その他の入力荷重を抽出する地震応答解析の地下水位設定は、両ケースともに地表面 (T.M.S.L. 12.0m)としている。 (参考資料1-5)静的地震力に対する耐震評価

軽油タンク基礎については,既工認において,Cクラス施設に求められる静的地震力(kh=0.16) を上回る,Asクラス用設計地震(最大水平加速度450cm/s²)による地震力に対して,許容応力度 法による耐震評価を実施していることから,今回工認では,静的地震力による評価は省略する。 (参考資料1-6) 評価対象断面の代表性について

1. 概要

軽油タンク基礎の耐震評価は、構造物全体の平均的な挙動を評価する観点から、東西方向、南 北方向ともに図 1-1 に示す基礎中心位置(A-A断面及びB-B断面)を通る地質断面図に基 づき解析モデルを作成し、地震応答解析を実施している。

一方,軽油タンク基礎の支持層である西山層は,軽油タンク基礎付近において,東西方向は基礎中央付近で西山層上限面が最も高くなり,南北方向は南へ向かって西山層が沈み込む形状となっている。図 1-1 に基礎端部に相当するA-A_E断面, A-A_W断面, B-B_N断面及びB-B_S断面における西山層上限面を合わせて示す。図 1-1 に示すとおり,西山層上限面は,基礎中心位置(A-A断面及びB-B断面)での標高に対し解析奥行き幅の範囲で不陸が発生している。以上のことから,本項では,西山層の不陸が軽油タンク基礎の耐震評価に与える影響について検討する。

(単位:m)

東西方向断面

図 1-1 解析断面及び西山層上限面の比較

2. 検討方針

図 1-1 に示すとおり,南北方向断面の解析奥行方向の西山層上限面は,現状の評価対象断面 であるA-A断面で最も標高が高くなり,基礎端部のA-A_E断面及びA-A_S断面位置に 対して下方へ傾斜する形状となっている。そのため,解析奥行幅全体での平均的な西山層標高は, A-A断面における標高よりも低くなり,現状の地震応答解析が平均的な挙動を捉えていない可 能性がある。

一方,東西方向断面の解析奥行方向の西山層上限面は,基礎北端のB-B_N断面で最も標高 が高く,基礎南端のB-B_S断面で最も標高が低くなり,一様に傾斜していることから,基礎 中央に位置する現状の評価対象断面であるB-B断面は,解析奥行幅全体の平均的な西山層標高 をモデル化していると判断できる。

以上の整理により、本検討では南北方向断面において、A-A断面における評価結果(以下「基本ケース」という。)と、西山層の解析奥行幅全体での平均的な標高を仮定した断面における評価 結果(以下「追加検討ケース」という。)を比較し、西山層の不陸が軽油タンク基礎の耐震評価に 与える影響を確認する。

3. 追加検討ケースの解析モデルの設定

追加検討ケースにおける西山層上限面の標高を設定する。

まず、南北方向断面の基礎北端、中心及び南端における西山層の平均的な標高を、B-B_N断 面、B-B断面、B-B_S断面を用いて算定する。算定方法の概念図を図 3-1に示す。B-B _N断面、B-B断面、B-B_S断面の各断面にて、基礎中心位置以外の各計測点における標高 の平均値を算定し、基礎中心位置における西山層標高との差異を計算する。

ここで, B-B断面の各計測点は,図 3-2に示すとおり基礎東西方向を約 1m 間隔で分割した 36 点とし,B-B_N断面,B-B_S断面の各計測点は,B-B断面の計測点を各断面における 西山層上限位置まで移動させた点とする。

各断面の基礎中心位置での西山層標高と基礎全体の西山層標高の平均値との差異の算定結果を 表 3-1 に示す。

図 3-1 西山層の平均的な標高の算出方法概念図

西山層

図 3-2 B-B断面(基礎版中心)における計測点

位墨	西山層の標高				
	①基礎中心	②基礎全体の平均値	差異		
基礎版北端(B-B_N)	T.M.S.L.−2.75m	T.M.S.L4.11m	-1.36m		
基礎版中心 (B-B)	T.M.S.L.−5.09m	T. M. S. L6. 25m	-1.16m		
基礎版南端(B-B_S)	T.M.S.L.−7.51m	T.M.S.L.−8.53m	-1.02m		
平均值	T. M. S. L5. 12m	T. M. S. L6. 30m	-1.18m		

表 3-1 西山層の平均的な標高及び基礎中心での西山層標高との比較

表 3-1 に示すとおり、①基礎中心と②基礎全体の平均値の差異が、平均-1.18m となることか ら、追加検討ケースの解析モデルは、基本ケースの西山層上限面を一律1.18m 下方へ移動させた モデルとする。解析モデル領域は基本ケースと同一とする。西山層以浅の地盤については、基本 ケースにおける各地層の層厚の割合を保持した上で、地層境界を下方へ移動させる。また、鋼管 杭及び地盤改良体についても西山層上限面の移動量に応じて要素高さを調整するが、西山層に対 する鋼管杭の根入れ長さは、拘束状態の違いによって応答の差異が生じないよう、基本ケースと 同一とする。

解析結果の比較項目は、西山層標高の差異による影響が大きいと想定される鋼管杭の曲げ軸力 評価及びせん断力評価とし、解析ケース及び地震動は、基本ケースの鋼管杭の全照査項目のうち 照査値が最大となる「解析ケース①、地震動 Ss-3-+ (せん断力照査)」とする。

基本ケースと追加検討ケースの解析断面の比較を図 3-3 に,解析メッシュ図の比較を図 3-4 に示す。

図 3-3 基本ケースと追加検討ケースの解析断面の比較

4. 解析結果の比較

鋼管杭の曲げ軸力照査結果の比較を表 4-1 に, せん断力照査結果の比較を表 4-2 に示す。曲 げ軸力照査では, 追加検討ケースの照査用曲率が基本ケースを若干下回り, せん断力照査では, 追加検討ケースの照査用せん断力が基本ケースを若干上回る結果となったが, いずれの照査値に ついても両ケースの差は最大で 0.01 程度であることを確認した。

検討ケース	評価位置	照査用曲率* φ _d (1/m)	終局曲率 ф u (1/m)	照査値 φ a∕φu
①基本ケース	8 (肉厚 14mm [杭頭部 16mm] の杭)	2. 60×10^{-3}	1.27×10^{-2}	0.21
②追加検討ケース	8 (肉厚 14mm [杭頭部 16mm] の杭)	2. 53×10^{-3}	1.25×10^{-2}	0.21

表 4-1 鋼管杭の曲げ軸力照査結果

注記* :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

表 4-2 鋼管杭のせん断力照査結果

検討ケース	評価位置	照査用 せん断力* Qd(kN)	終局 せん断強度 Qu(kN)	照査値 Q d/Q u
①基本ケース	1 (肉厚 14mm の杭)	889	1977	0.45
②追加検討ケース	1 (肉厚 14mm の杭)	905	1977	0.46

注記* :照査用せん断力Q_d=発生せん断力×構造解析係数 γ_a

5. まとめ

軽油タンク基礎の耐震評価において,基礎中心位置(A-A断面及びB-B断面)を通る地質 断面図に基づき実施している現状の解析に対し,A-A断面については,西山層上限面を解析奥 行幅全体の平均値に基づき設定した断面での解析を行い,西山層の不陸が鋼管杭の耐震評価に与 える影響を確認した。その結果,曲げ軸力照査及びせん断力照査のいずれにおいても基本ケース と追加検討ケースの照査値の差は最大 0.01 程度であり,許容限界に対して十分余裕があることか ら,現状の評価対象断面で耐震評価を行うことは妥当であると判断した。 (参考資料1-7) 地盤改良体の安定性について

1. 概要

軽油タンク基礎の地盤改良体の配置図を図 1-1 に示す。軽油タンク基礎の周囲には、変形抑 制対策として地盤改良を実施しており、支持層である西山層が南北方向に傾斜しているとともに、 西山層以浅の原地盤において液状化が発生していることから、側方流動に伴う地盤改良体の滑動 や転倒により安定性が損なわれる可能性が考えられる。

一方,基礎周辺の地盤改良体は,基礎を取り囲むようにして配置されることから,実際の3次 元的な形状を考慮すると,滑動及び転倒により安定性を損なう可能性は低いと考えられるが,本 項では念の為,地盤改良体の地震時における安定性について検討を実施する。

(c) B-B断面図

既設/新設	凡例	地盤改良工法		
既設地盤改良体		置換(CD掘削)		
新設地盤改良体		置換(CD掘削)		

注:置換工法(CD 掘削)の施工範囲の内,地上構造物及び埋設構造物がある箇所では,高圧噴射または置換(開削)を適用

図 1-1 軽油タンク基礎の地盤改良体の配置図

2. 地震応答解析における変形図による安定性の評価

軽油タンク基礎の地震応答解析に用いる2次元動的有限要素法解析モデルでは、図2-1に示 すとおり、地盤改良体と地盤の間にジョイント要素を配置することで、地震時における地盤改良 体の滑動や剛体回転等の挙動を考慮している。また、地震応答解析においては、地盤の剛性低下 及び地質の不整形に起因する地盤ひずみも考慮されていることから、当該モデルの地震応答解析 における変形状態を確認することで、地盤改良体の安定性を判断する。

変形状態は、地盤改良体の滑動、転倒等の水平方向の挙動に着目する観点から、西山層に対す る基礎版の水平相対変位が最大となるケース、時刻で確認する。

図 2-2 に各断面の変形図を示す。変形図より,地盤改良体の滑動,転倒等は確認されず,地 震時においても改良体は安定した挙動を示していると判断できる。

図 2-1 ジョイント要素の配置

(解析ケース③, 地震動 Ss-7, t=58.04s)

図 2-2 変形図

注: 変形スケールは構造スケールと同様

3. 転倒モーメントによる照査

地盤改良体の安定性を定量的に評価するため,道路橋示方書における直接基礎の転倒モーメントに対する安定性の照査方法を参考に,転倒モーメントによる照査を実施する。地盤改良体に作用する合力の作用位置は,地盤改良体の重心位置と見なし,図 2-2の変形図を確認した解析ケースの全時刻歴における地盤改良体の回転角の最大値と,改良体高さから合力の作用位置を算定する。合力の作用位置が底面の中心から底面幅の 1/3 以内であれば,照査を満足すると判定する。地盤改良体の合力の作用位置の概念図を図 3-1 に,地盤改良体の名称を図 3-2 に示す。なお,地盤改良体のうち西側改良体については,改良体幅と高さが同程度であり,他の地盤改良体と比較して転倒の可能性が低いことから,転倒モーメントによる照査は省略する。

照査結果を表 3-1 に示す。各地盤改良体について、転倒モーメントによる照査を満足し、許 容限界に対して十分余裕があることから、転倒は生じないと判断できる。

図 3-2 地盤改良体の名称

改良体名称	回転角	合力の作用位置と	底面幅の 1/3	照查值
	θ (rad)	底面中心の距離δ*(mm)	B/3 (mm)	δ / (B/3)
南側改良体	8. 18×10^{-3}	96	2667	0.04
北側改良体	5.06 $\times 10^{-3}$	51	2667	0.02
東側改良体	6. 08×10^{-3}	89	5333	0.02

表 3-1 照査結果

注記*: 構造解析係数1.2を考慮

4. 滑動に対する確認

地盤改良体の滑動の程度を確認するため、地震応答解析における地盤と改良体の接合面におけ るジョイント要素の最大水平変位を確認する。地盤改良体の名称を図 4-1 に示す。確認するケ ース及び地震動は「2. 地震応答解析における変形図による安定性の評価」と同様とする。

地盤と改良体の接合面におけるジョイント要素の最大水平変位を表 4-1に示す。表 4-1より, 地盤改良体の水平変位は最大で 2cm 程度であった。地盤改良体に上記の水平変位が生じた場合に おいても,構造物の耐震評価では当該変位量も考慮した解析により,耐震安全性が確保されてい ることを確認している。

以上より,地盤改良体の地震時の滑動は構造物の耐震安全性に影響を与えるものでなく,地盤 改良体は安定性を確保できていることを確認した。

図 4-1 地盤改良体の名称

步自体友步	すべり量 (cm)				
以及仲石怀	左下端	下面中央	右下端		
南側改良体	1.21	0.75	0.74		
北側改良体	1.72	0.50	0.45		
西側改良体	0.18	0.04	0.56		
東側改良体	1.05	0.85	0. 60		

表 4-1 地盤と改良体の接合面におけるジョイント要素の最大水平変位

5. まとめ

軽油タンク基礎周囲の地盤改良体の安定性について,変形図による評価,転倒モーメントによる照査及び滑動量の確認を実施したところ,地震時に滑動及び転倒により安定性を失うことは無いと判断した。

以上より,軽油タンク基礎の地盤改良体は,地震時においても安定性を保ち,変形抑制として の機能を維持できることを確認した。 (参考資料1-8) 杭先端ばねの設定による影響評価

1. 概要

軽油タンク基礎の地震応答解析モデルでは,杭先端の荷重変位関係を精緻にモデル化するため, 補足説明資料本文「3.2.8 杭先端ばねの設定」に示すとおり,双曲線型の杭先端ばねを設定して いる。

一方,KK7 補足-025-5「格納容器圧力逃がし装置基礎の地震応答計算書に関する補足説明資料」に示すとおり,杭先端の荷重変位関係を線形とするモデル化も考えられる。本項では,杭先端ばねの設定の違いが耐震評価に及ぼす影響を確認する。

2. 検討方針

双曲線型の杭先端ばねを用いた解析ケース(以下「基本ケース」という。)と線形の杭先端ばね を用いた解析ケース(以下「線形ばねケース」という。)の耐震評価の結果を比較し、杭先端ばね の設定の違いが耐震評価に及ぼす影響を確認する。

解析ケース及び地震動は、杭先端ばねの設定の違いによる影響が大きいと想定される鋼管杭の 照査において、照査値が最大となる「B-B断面,解析ケース③,地震動Ss-7」とし、鋼管杭の 曲げ軸力照査及びせん断力照査に与える影響を確認する。

3. 杭先端ばねの設定

基本ケースの杭先端ばねの設定を図 3-1 に,線形ばねケースの杭先端ばねの設定を図 3-2 に示す。

 $q = z_e \swarrow (a_e + b_e \cdot z_e)$

- q : 杭先端抵抗
- z e : 杭先端変位
- a e : 基準変位を杭先端における極限支持力で除した値(=0.25D e/q u l t)
- **b** e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e : 杭径
- q_{ult} : 杭先端における極限支持力

図 3-1 基本ケースの杭先端ばねの設定 (Hirayama(1990))

図 3-2 線形ばねケースの杭先端ばねの設定

4. 解析結果の比較

基本ケースと線形ばねケースの鋼管杭の曲げ軸力照査結果を表 4-1 に、せん断力照査結果を 表 4-2 に示す。曲げ軸力照査, せん断力照査共に②線形ばねケースの発生力は①基本ケースと 比較して若干小さくなったが, 照査値の差は 0.01 であった。

検討ケース	評価位置	照査用曲率* φ _d (1/m)	終局曲率 ф u (1/m)	照査値 φ d/φ u
①基本ケース	12 (肉厚 12mm の杭)	3.37×10^{-3}	1.16×10^{-2}	0.30
②線形ばねケース	12 (肉厚 12mm の杭)	3. 38×10^{-3}	1.19×10^{-2}	0.29

表 4-1 鋼管杭の曲げ軸力照査の比較

注記* : 照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

衣 · · · · · · · · · · · · · · · · · · ·					
検討ケース	評価位置	照査用 せん断力* Qょ(kN)	終局 せん断強度 Qu(kN)	照査値 Q d/Q u	
①基本ケース	8 (肉厚 14mm の杭)	1257	1977	0.64	
②線形ばねケース	8 (肉厚 14mm の杭)	1243	1977	0.63	

表 4-2 鋼管杭のせん断力照査結果の比較

注記* :照査用せん断力Q_d=発生せん断力×構造解析係数 γ_a

5. まとめ

本項では、地震応答解析モデルにおける双曲線型の杭先端ばねと線形の杭先端ばねの設定の違いが耐震評価に及ぼす影響について確認した。鋼管杭の曲げ軸力照査及びせん断力照査の結果を 比較した結果,照査値の差は0.01であり、許容限界に対し十分余裕があることから、地震応答解 析モデルに双曲線型の杭先端ばねを設定することは妥当である。 2. 軽油タンク基礎(6号機設備)の耐震安全性評価

1.	評価方法	. 1
2.	評価条件	. 1
	2.1 構造概要	. 1
	2.2 評価対象構造物	10
	2.3 評価対象断面の方向	10
	2.4 評価対象断面の選定	10
	2.5 使用材料及び材料定数	11
	2.6 地盤及び地盤改良体 <mark>の物</mark> 性値	11
	2.7 評価構造物諸元	14
	2.8 地下水位	16
	2.9 耐震評価フロー	16
	2.10 適用規格	18
3.	地震応答解析	20
	3.1 地震応答解析手法	20
	3.2 地震応答解析モデルの設定	21
	3.2.1 解析モデル領域 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
	3.2.2 境界条件	25
	3.2.3 解析奥行幅	28
	3.2.4 構造物のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	3.2.5 地盤のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	3.2.6 地盤改良体のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
	3.2.7 ジョイント要素の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	3.2.8 杭-地盤相互作用ばねの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	3.2.9 杭先端ばねの設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
	3.2.10 材料特性の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
	3.3 減衰定数	40
	3.4 荷重の組合せ	40
	3.4.1 機器・配管荷重	41
	3.4.2 外水庄	45
	3.4.3 雪荷重	45
	3.5 地震応答解析の解析ケース	46
	3.5.1 耐震評価における解析ケース・・・・・	46
	3.5.2 機器・配管系に対する応答加速度抽出のための解析ケース・・・・・・・・・・・・・・	49
4.	基礎版の解析	50
	4.1 解析手法	50

4.2 解析モデルの設定	51
4.2.1 基礎版のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdots 51$
4.2.2 材料の非線形特性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdots 52$
4.2.3 杭頭ばね要素の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 56
4.3 照査時刻の選定	58
4.4 入力荷重	59
4.4.1 軽油タンクによる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 61
4.4.2 張出しダクト及び張出し基礎による荷重・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 65
4.4.3 油分離槽の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 68
4.4.4 防油堤の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 69
4.4.5 基礎版の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • 70
4.4.6 リングコンクリート及び乾燥砂の慣性力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdots 71$
4.4.7 積雪の慣性力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdots 72$
4.4.8 土圧及び水圧 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · · 73
5. 評価内容	74
5.1 入力地震動の設定	74
5.2 許容限界の設定	101
5.2.1 曲げ <mark>軸力</mark> に対する許容限界·····	· · 101
5.2.2 せん断 <mark>力</mark> に対する許容限界·····	·· 105
5.2.3 基礎地盤の支持性能に対する許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 111
6. 評価結果	115
6.1 地震応答解析結果	115
6.1.1 解析ケースと照査値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·· 116
6.1.2 ひずみ分布図(鉄筋コンクリート部材の曲げ軸力照査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 122
6.1.3 断面力分布(鉄筋コンクリート部材のせん断力照査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 124
6.1.4 曲率分布 (鋼管杭の曲げ軸力照査)	· · 127
6.1.5 せん断力分布(鋼管杭のせん断力照査)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 131
6.1.6 最大せん断ひずみ分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·· 135
6.1.7 過剰間隙水圧比分布	·· 143
6.2 鉄筋コンクリート部材の耐震評価	151
6.2.1 鉄筋コンクリート部材の曲げ軸力に対する評価結果・・・・・・・・・・・・・・・・・・	·· 151
6.2.2 鉄筋コンクリート部材のせん断力に対する評価結果・・・・・・・・・・・・・・・・	·• 153
6.3 鋼管杭の耐震評価	155
6.3.1 鋼管杭の曲げ軸力に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 155
6.3.2 鋼管杭のせん断力に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 159$
6.4 基礎地盤の支持性能に対する支持力評価	162

	6.4.1 基礎地盤の押込みに対する支持性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	162
	6.4.2 基礎地盤の引抜きに対する支持性能評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	165
7.	まとめ	168

参考資料

(参考資料 2-1)	杭頭部の耐震評価		 (参考)2-1-1
(参考資料 2-2)	地盤改良体の安定性	Eについて	 (参考)2-2-1

1. 評価方法

軽油タンク基礎(6号機設備)は、常設耐震重要重大事故事故防止設備及び常設重大事故緩和 設備である軽油タンク(6号機設備)を間接支持する機能を求められる土木構造物である。軽油 タンク基礎(6号機設備)について基準地震動Ssによる耐震評価として、構造部材の曲げ、せ ん断評価及び地盤の支持性能評価を実施する。

軽油タンク基礎(6号機設備)の地震応答解析においては、地震時の地盤の有効応力の変化に 応じた影響を考慮できる有効応力解析を実施する。

有効応力解析に用いる液状化強度特性は,代表性及び網羅性を踏まえた上で,保守性を考慮し て設定する。

屋外重要土木構造物及び機器・配管系への応答加速度に対する保守的な配慮として、地盤の非 液状化の影響を考慮した解析ケースを設定する。

軽油タンク基礎(6号機設備)の構造部材のうち,鉄筋コンクリート部材の健全性評価については水平2方向及び鉛直方向の荷重に対する評価を行い,部材に生じる圧縮縁コンクリートひずみ及びせん断力が要求性能に応じた許容限界以下であることを確認する。

鋼管杭の健全性評価については,部材に生じる曲率及びせん断力が要求性能に応じた許容限界 以下であることを確認する。

基礎地盤の支持性能評価については、杭頭に生じる鉛直力が極限支持力及び極限引抜き力に基づく許容限界以下であることを確認する。

- 2. 評価条件
- 2.1 構造概要

軽油タンク基礎(6号機設備)の位置図を図 2-1に、平面図を図 2-2に、断面図を図 2-3及び図 2-4に、概略配筋図を図 2-5に、鋼管杭配置図を図 2-6に示す。軽油タンク基礎 (6号機設備)は、幅約 35m(東西方向)×約 18m(南北方向)、高さ約 1.4mの、鉄筋コンク リート造の地中構造物であり、等間隔に配置した杭を介して十分な支持性能を有する西山層に 支持される。また、基礎版及び杭の周辺には地盤改良を実施している。

図 2-1 軽油タンク基礎(6号機設備)の位置図

泊	Ē	:	置換工法(CD 掘削)の施工範囲の内,	地上構
			造物及び埋設構造物がある箇所では	,高圧噴
			射を適用	

図 2-2 軽油タンク基礎(6号機設備)の平面図

置換(CD掘削) 置換(開削)

高圧噴射

既設地盤改良体

新設地盤改良体

図 2-3 軽油タンク基礎(6号機設備)の断面図(A-A断面)

図 2-4 軽油タンク基礎(6号機設備)の断面図(B-B断面)

(単位:mm)

(a) A-A断面

図 2-5 軽油タンク基礎(6号機設備)の概略配筋図

拉位墨	仕様				
机业里	杭径 (mm)	肉厚 (mm)	杭長(m)		
1	800	14	24.0		
2		9	24.0		
3 4		14	22.0		
		9	22.0		
5		14	20.0		
6		9	20.0		
7 8		14	18.0		
		9	18.0		
9		14	15.0		
10		9	15.0		
11		14	13.0		

図 2-6 鋼管杭配置図

軽油タンク基礎(6号機設備)には、基礎版と剛結された付帯設備が設置されている。付帯設備の配置図を図 2-7 に、各付帯設備の概要を表 2-1及び表 2-2 に示す。

(単位:mm)

図 2-7 付帯設備の配置図

表 2-1 付帯設備の概要(1/2)

表 2-2 付帯設備の概要 (2/2)
2.2 評価対象構造物

軽油タンク基礎(6号機設備)の付帯設備は、7号機申請にて間接支持するSA施設が無いこ とから、軽油タンク基礎(6号機設備)本体のみを評価対象構造物とする。

2.3 評価対象断面の方向

軽油タンク基礎(6号機設備)は、「2.1 構造概要」で示したとおり、基礎版を等間隔に配 置した杭で支持する比較的単純な構造物であり、東西方向及び南北方向に一様な構造となって いる。また、基礎版及び杭の周辺には地盤改良を実施しているため、周辺の地盤が構造物に与 える影響はどの断面も大きな差はないと考えられることから、軽油タンク基礎(6号機設備) の耐震評価では東西方向、南北方向の2断面を評価対象断面とする。

2.4 評価対象断面の選定

評価対象断面は,KK7 補足-027-1「資料1 屋外重要土木構造物の耐震安全性評価について」 の「4.10 軽油タンク基礎(6 号機設備)の断面選定の考え方」で記載したとおり、構造物の 中心を通るA-A断面及びB-B断面を代表として耐震評価を実施する。

2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。構造物の使用材料を表 2 -3に、材料物性値を表 2-4に示す。

	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35(SD345 相当)
鋼管杭	SKK400(SKK41 相当)

表 2-3 構造物の使用材料

表 2-4 構造物の材料物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5*	2. $45 \times 10^{4*}$	0.2*
鋼管杭	77*	2.06×10 ⁵ *	0.3*

注記*:建設時の設計値に基づく

2.6 地盤及び地盤改良体<mark>の物</mark>性値

地盤の物性値は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。 地盤改良体の物性値は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している 物性値に基づき、地盤改良体の配置を考慮した物性値を設定する。 地盤の物性値を表 2-5~表 2-7 に、地盤改良体の配置を考慮した物性値を表 2-8 に示す。

/	<	ł	他暂区分			
				埋屋十	口女口層	
<mark>物</mark> 忄	物性值			-1/12	A2s 層	A3s 層
物理	密度	ρ	(g/cm^3)	1.94	1.91	1.91
特性	間隙率	n		0.45	0.45	0.45
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m^2)	1.04×10 ⁵	2. 14×10^{5}	2. 14×10^{5}
変形	基準平均有効拘束圧	σ_{ma}	(kN/m^2)	98.0	200.0	200.0
特性	ポアソン比	ν		0.33	0.33	0.33
	減衰定数の上限値	$h_{{\rm max}}$		0.225	0.157	0.157
強度	粘着力	с'	(kN/m^2)	0.0	0.0	0.0
特性	内部摩擦角	φ'	(°)	35.9	36.6	36.6
	変相角	$\phi_{\rm p}$	(°)	32.0	32.0	32.0
			S_1	0.005	0.005	0.005
液状化			\mathbf{W}_1	5.50	25.00	25.0
化特性	液状化パラメー	Я	p_1	0.50	0.50	0.50
			p_2	1.00	0.80	0.80
				1.69	8.75	8.75

表 2-5 地盤の解析用物性値一覧(液状化検討対象層)

地質区分			古安田層						
<mark>物</mark>	物性值			埋戻工Ⅱ	A3c 層	A3al 層	A2c 層	A2al 層	A2g 層 (シルト質)
物理	密度	ρ	(g/cm^3)	1.71	1.70	1.81	1.80	1.88	1.80
特 性	間隙率	n		0.58	0.57	0.52	0.52	0.48	0.52
	動せん断弾性係数	G_{ma}	(kN/m^2)	7.33×10^{4}	1.09×10^{5}	9. 57×10^4	1.39×10^{5}	1.61×10^{5}	1.39×10^{5}
変形	基準平均有効拘束圧	σ_{ma}	(kN/m^2)	41.0	60.0	94.0	140.0	170.0	140.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.152	0.114	0.162	0.110	0.147	0.110
強度	粘着力	с'	(kN/m^2)	7.4	99.6	29.2	113.0	82.8	113.0
特性	内部摩擦角	φ'	(°)	31.7	26.8	34.2	27.9	28.7	27.9

表 2-6 <mark>地盤の解析用物性値一覧(非液状化層)</mark>

地質区分		也質区分	西山層		
物	上 值			T. M. S. L. -33. Om 以浅	T. M. S. L. −33. 0m~−90. 0m
物理	密度	ρ	(g/cm^3)	1.73	1.69
特性	間隙率	n		0.56	0.56
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	4. 16×10^5	4. 75×10^5
変形	基準平均有効拘束圧	σ "	(kN/m²)	98.0	98.0
特性	ポアソン比	ν		0.33	0.33
	減衰定数の上限値	h_{max}		0.257	0. 257
強度	粘着力	с	(kN/m²)	1370-5.04Z*	1370-5.04Z*
特性	内部摩擦角	ϕ	(°)	0.0	0.0

表 2-7 <mark>地盤の解析用物性値(西山層)</mark>

注記* :Zは,標高 (m) を示す

	既設/新設		既設地盤改良体			<mark>新設地盤改良体</mark>		
	<mark>種別</mark> (地盤種別)			<mark>置換</mark>	高圧噴射 (砂質土)	高圧噴射 (粘性土)	<mark>置換</mark>	<mark>高圧噴射</mark> (粘性土)
物理	密度	ρ	(g/cm^3)	<mark>1. 84∼1. 86*</mark>	<mark>1. 88</mark>	<mark>1. 58∼1. 59*</mark>	1.85	1.91
特性	間隙率	n		0.47	0.47	0.64	0.48	0.64
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	3.09×10^{6}	2.20×10^{6}	8. 16×10^{5}	1.31×10^{6}	9.64×10^{5}
変形	基準平均有効拘束圧	σ_{ma}	(kN/m^2)	98.0	98.0	98.0	98.0	98.0
特性	ポアソン比	ν		0.33	0.33	0.33	0.33	0.33
	減衰定数の上限値	h_{max}		0.050	0.070	0.120	0.050	0.050
強度特性	粘着力	с	(kN/m²)	3218	<mark>4454</mark>	1268	4000.0	1975

表 2-8 地盤改良体(セメント改良)の配置を考慮した解析用物性値

注記* :密度は未改良部(原地盤)に応じて設定する

2.7 評価構造物諸元

照査を行う軽油タンク基礎(6号機設備)の基礎版に関する諸元を表 2-9に, 鋼管杭に関する諸元を表 2-10に, 鋼管杭の配置図を図 2-8に示す。

	如壮吉	材		
部位	司 (M) (可	コンクリート	谷谷	機能要求
	(III)	f' _{ck} (N/mm ²)	业八方刀	
基礎版	1.4	23.5	SD35 (SD345 相当)	間接支持

表 2-9 構造物の評価部位とその仕様(その1:基礎版(鉄筋コンクリート部材))

拉位墨		仕様	++*	操作目	
们立直	杭径 (mm)	肉厚 (mm)	杭長(m)	1/1 1/1	陇肥安水
1		14	24.0		
2		9	24.0		
3		14	22.0		
4		9	22.0		
5		14	20.0	CVV 400	
6	800	9	20.0	SKK400 (SKKA1 招坐)	間接支持
7		14	18.0	(30041 1日日)	
8		9	18.0		
9		14	15.0		
10		9	15.0		
11		14	13.0]	

表 2-10 構造物の評価部位とその仕様(その2:鋼管杭)

注:道路橋示方書(IV下部構造編)・同解説(日本道路協会,平成14年3月)では,杭中心間 隔が杭径の2.5倍以上の場合,単杭で評価する旨が記載されている。軽油タンク基礎(6号 機設備)の杭中心間隔は基礎版長辺方向が2300mm,基礎版短辺方向が2200mmであり,とも に杭径の2.5倍となる2000mm以上のため,単杭として評価する。

 O^{11} \bigcirc^{11} \bigcirc^{11} 0^{11} \bigcirc^{11} \bigcirc^{11} \bigcirc^{11} O^{11} PN 0^9 O^{11} O^{11} \bigcirc^{11} റീ O^{11} ീ \bigcirc^{11} \bigcirc റ് \bigcap^{9} റ് Ő റ് Ó ീ 0 റീ Ő dd'റീ റീ Q \bigcirc \circ \cap \bigcirc^{10} ಿ റീ \bigcirc റ് റ് \cap \cap റ് Ó Õ Ő Ó \bigcirc^{8} Ó റ് 08 \bigcirc \bigcirc o \bigcap^{8} \bigcirc Ć \circ^{6} \bigcirc^7 Ő \bigcirc റ് $\int_{-\infty}^{2}$ \circ

図 2-8 鋼管杭配置図

2.8 地下水位

地下水位はV-2-1-3「地盤の支持性能に係る基本方針」より,地表面(T.M.S.L.12.0m)に設 定する。

2.9 耐震評価フロー

図 2-9 に軽油タンク基礎(6号機設備)の地震応答解析フローを,図 2-10 に軽油タンク 基礎(6号機設備)の耐震評価フローを示す。

基礎版の耐震評価については,軽油タンク(6号機設備)及び付帯設備の荷重の平面的な偏 りを考慮するため、3次元非線形積層シェル要素による水平2方向及び鉛直方向の荷重を踏ま えた3次元静的有限要素法解析(以下「3次元構造解析」という。)に基づき,耐震評価を実 施する。3次元構造解析にあたっては、2次元動的有限要素法解析により得られた応答値から、 3次元構造解析モデルへ入力する水平2方向及び鉛直方向の荷重を算出する。付帯設備のうち3 次元的な構造を示す張出しダクト及び張出し基礎については、別途作成する荷重算定用のモデ ルを使用して3次元構造解析モデルに入力する荷重を算出する。

鋼管杭及び基礎地盤の支持性能については、2次元動的有限要素法解析より得られた応答値 を用いて耐震評価を行う。

図 2-9 軽油タンク基礎(6号機設備)の地震応答解析フロー

図 2-10 軽油タンク基礎(6号機設備)の耐震評価フロー

2.10 適用規格

軽油タンク基礎(6号機設備)の耐震評価に当たっては、コンクリート標準示方書[構造性 能照査編](土木学会、2002年)(以下「コンクリート標準示方書」という。),原子力発 電所耐震設計技術指針JEAG4601-1987(日本電気協会)を適用するが、鉄筋コンクリ ート部材の曲げ及びせん断の許容限界については、原子力発電所屋外重要土木構造物の耐震性 能照査指針・マニュアル(土木学会、2005年)(以下「土木学会マニュアル」という。)を 適用する。鋼管杭の曲げ及びせん断の許容限界は、乾式キャスクを用いる使用済燃料中間貯蔵 建屋の基礎構造の設計に関する技術規程JEAC4616-2009(日本電気協会)(以下「キ ャスク指針」という。),鋼・合成構造標準示方書[耐震設計編](土木学会、2008年)(以 下「鋼・合成構造標準示方書」という。)を適用する。また、基礎地盤の支持性能の許容限界 は、道路橋示方書(I共通編・IV下部構造編)・同解説(日本道路協会、平成14年3月)(以 下「道路橋示方書」という。)を適用する。

表 2-11 に適用する規格,基準類を示す。

項目	適用する規格、基準類	備考
使用材料及び材料定数	・コンクリート標準示方書 [構造性	_
	能照査編](2002年)	
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性	・永久荷重+偶発荷重+従たる変動荷重
	能照査編](2002年)	の適切な組合せを検討
	【鉄筋コンクリート部材】	 ・曲げに対する照査は、限界ひずみを設
	·原子力発電所屋外重要土木構造物	定した上で,発生ひずみが限界ひずみ
	の耐震性能照査指針・マニュアル	を下回ることを確認*
	(2005 年)	・せん断に対する照査は,発生せん断力
		がせん断耐力を下回ることを確認*
	【鋼管杭】	 ・曲げに対する照査は、限界値として終
	・乾式キャスクを用いる使用済燃料	局曲率及び降伏モーメントに対する
<u></u>	中間貯蔵建屋の基礎構造の設計	曲率を設定した上で,発生曲率が限界
	に関する技術規程JEAC46	値を下回ることを確認*
	1 6 - 2009	・せん断に対する照査は,発生せん断力
	・鋼・合成構造標準示方書 [耐震設	が終局せん断強度を下回ることを確
	計編](2008 年)	認*
	【基礎地盤の支持性能】	・基礎地盤の支持性能に対する照査は,
	・道路橋示方書(I共通編・IV下部	杭頭に発生する鉛直力が終局鉛直支
	構造編)・同解説(平成 14 年 3	持力及び終局引抜き力を下回ること
	月)	を確認*
地震広茨敏折	・原子力発電所耐震設計技術指針	 ・有限要素法による2次元モデルを用い
2011年1月1日	JEAG4601-1987	た時刻歴非線形解析

表 2-11 適用する規格,基準類

注記*:妥当な安全余裕を考慮する。

- 3. 地震応答解析
- 3.1 地震応答解析手法

軽油タンク基礎(6 号機設備)の地震応答解析は,地盤と構造物の相互作用を考慮できる 2 次元有限要素法を用いて,基準地震動Ss及び弾性設計用地震動Sdに基づき設定した水平地 震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析にて行う。軽油タンク基礎 を(6 号機設備)構成する部材のうち,基礎版(鉄筋コンクリート部材)については線形平面 ひずみ要素で,鋼管杭については非線形はり要素でモデル化する。非線形はり要素の非線形特 性については鋼管杭のM-φ関係を適切にモデル化する。また,地盤については,有効応力の 変化に応じた地震時挙動を適切に考慮できるようにモデル化する。地震応答解析については, 解析コード「FLIP ver. 7.4.1」を使用する。

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する 際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効 応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。一般に、地盤は荷重 を与えることによりせん断ひずみを増加させていくと、地盤のせん断応力は上限値に達し、そ れ以上はせん断応力が増加しなくなる特徴がある。また、地盤のせん断応力の上限値は有効応 力に応じて変化する特徴がある。よって、耐震評価における有効応力解析では、地盤の繰返し せん断応力~せん断ひずみ関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を 表現できる双曲線モデル(H-Dモデル)を選定する。

地震応答解析手法の選定フローを図 3-1に示す。

図 3-1 地震応答解析手法の選定フロー

- 3.2 地震応答解析モデルの設定
 - 3.2.1 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、原子力発電所耐震設計技術指針JEAG46 01-1987(日本電気協会)を参考に、図 3-2に示すとおりモデル幅を構造物基礎幅の5 倍程度、モデル高さを構造物幅の2倍程度とする。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数 20Hz 及びせん断波速度 V_s で算定される波長の 5 又は 4 分割、すなわち $V_s/100$ 又は $V_s/80$ を 考慮し、要素高さを 0.5m~1m 程度まで細分割して設定する。

構造物の要素分割については、土木学会マニュアルに、線材モデルの要素分割について は、要素長さを部材の断面厚さ又は有効高さの2.0倍以下とし、1.0倍程度とするのが良 い旨が示されていることを考慮し、部材の断面厚さ又は有効高さの1.0倍程度まで細分割 して設定する。なお、杭の要素分割については、杭に接する地盤の要素分割に合わせて設 定する。

図 3-2 モデル範囲の考え方

2 次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地盤 に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。この自 由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデルである。2次元有 効応力解析における自由地盤の初期応力解析から不整形地盤の地震応答解析までのフローを 図 3-3に示す。また、軽油タンク基礎(6号機設備)周辺の地質断面図を図 3-4及び図 3 -5に示す。

図 3-3 自由地盤の初期応力解析から不整形地盤(2次元FEM)の 地震応答解析までのフロー

(単位:m)

既設/新設	凡例	地盤改良工法
既設地盤改良体		置換(CD掘削)
空后意见 北山 舟空司左 白 (太		置換(開削)
利苡地盛以及平		高圧噴射

注 :置換工法(CD 掘削)の施工範囲の内,地上 構造物及び埋設構造物がある箇所では, 高圧噴射を適用

図 3-4 軽油タンク基礎(6号機設備)周辺地質断面図(A-A断面)

(単位:m)

既設/新設	凡例	地盤改良工法	注 :
既設地盤改良体		置換(CD掘削)	
站动的		置換(開削)	
新砇地盛以艮体	\otimes	高圧噴射	

主 :置換工法(CD 掘削)の施工範囲の内,地上構 造物及び埋設構造物がある箇所では,高圧噴 射を適用

図 3-5 軽油タンク基礎(6号機設備)周辺地質断面図(B-B断面)

3.2.2 境界条件

(1) 初期応力解析時

初期応力解析は、地盤や構造物の自重等の静的な荷重を載荷することによる常時の初期 応力を算定するために行う。初期応力解析時の境界条件は底面固定とし、側方は自重等に よる地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を図 3-6に示す。

図 3-6 初期応力解析における境界条件の概念図

(2) 地震応答解析時

地震応答解析時の境界条件については,有限要素解析における半無限地盤を模擬するため,粘性境界を設ける。底面の粘性境界については,地震動の下降波がモデル底面境界から半無限地盤へ通過していく状態を模擬するため,ダッシュポットを設定する。側方の粘 性境界については,自由地盤の地盤振動と不整形地盤側方の地盤振動の差分が側方を通過 していく状態を模擬するため,自由地盤の側方にダッシュポットを設定する。軽油タンク 基礎(6号機設備)の地震応答解析モデルを図 3-7及び図 3-8に示す。

図 3-7 軽油タンク基礎(6号機設備)の地震応答解析モデル(A-A断面)

図 3-8 軽油タンク基礎(6号機設備)の地震応答解析モデル(B-B断面)

3.2.3 解析奥行幅

A-A断面及びB-B断面の解析奥行幅は,各断面の軽油タンク基礎幅として設定する。 解析奥行幅の考え方を図 3-9 に示す。

3.2.4 構造物のモデル化

基礎版(鉄筋コンクリート部材)は、線形平面ひずみ要素でモデル化する。鋼管杭は、 非線形はり要素でモデル化する。モデル化する杭の杭長は、解析断面位置の杭長とし、杭 頭部は基礎版と剛結する。

軽油タンク基礎(6号機設備)の解析モデルにおける構造物部分の拡大図を図 3-10 に 示す。

図 3-10 軽油タンク基礎(6号機設備)の解析モデル(A-A断面,構造物部分拡大部)

3.2.5 地盤のモデル化

地盤はマルチスプリング要素及び間隙水要素でモデル化し,地震時の有効応力の変化に 応じた非線形せん断応力~せん断ひずみ関係を考慮する。

3.2.6 地盤改良体のモデル化

構造物周辺の地盤改良体の効果を考慮するため,改良率及び解析奥行幅に応じた等価剛 性を設定し、マルチスプリング要素及び間隙水要素でモデル化する。 3.2.7 ジョイント要素の設定

「地盤と構造物」,「地盤改良体と構造物」及び「地盤と地盤改良体」との接合面にジョイント要素を設けることにより,地震時の接合面における剥離及びすべりを考慮する。 なお,既設地盤改良体と新設地盤改良体との接合面については,既設地盤改良体に対し新 設地盤改良体をラップさせて設置し,接合させることから,ジョイント要素は設定しない。

ジョイント要素は,隣接する要素の接合面で法線方向及びせん断方向に対して設定する。 法線方向については,常時の圧縮荷重以上の引張荷重が生じた場合,剛性及び応力を零と し,剥離を考慮する。せん断方向については,各要素間の接合面におけるせん断抵抗力以 上のせん断荷重が生じた場合,せん断剛性を零とし,すべりを考慮する。

なお, せん断強度 τ_fは, 次式により設定する。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

σ':要素間の直応力

с в: 付着力

φ_B:摩擦角

要素間の付着力 c B, 摩擦角 ϕ B は,表 3-1 に示す道路橋示方書の設定を参考に,表 3 -2 のとおり設定する。周辺地盤の粘着力 c,内部摩擦角 ϕ は, V-2-1-3「地盤の支持性 能に係る基本方針」に基づき,表 3-3のとおり設定する。

条件	摩擦角 👧 (摩擦係数 tan 🖣)	付着力 c _B
土とコンクリート	$\phi_B = \frac{2}{3} \phi$	$c_B = 0$
土とコンクリートの間に栗石を敷く場合	$ \tan \phi_B = 0.6 \phi_B = \phi $ の小さい方	$c_B = 0$
岩とコンクリート	$\tan \phi_B = 0.6$	$c_B = 0$
土と土又は岩と岩	$\phi_B = \phi$	$c_B = c$

表 3-1 道路橋示方書における摩擦力 φ B と付着力 с B

ただし、φ:支持地盤のせん断抵抗角(°) c:支持地盤の粘着力(kN/m²)

(道路橋示方書より引用)

条件	付着力 c _B	摩擦角φB(°)			
地盤と構造物	0	$2/3 \phi$			
地盤改良体と構造物	0	31.0			
地盤と地盤改良体*	С	φ			

表 3-2 要素間の付着力 c_Bと摩擦角 φ_B

注記* :地盤と地盤改良体の付着力と摩擦角は、地盤のc、 φを適用する。

地盤	粘着力 c (kN/m²)	内部摩擦角 φ (°)
埋戻土	0.0	35.9
A2s 層	0.0	36.6
A3s 層	0.0	36.6
埋戻土Ⅱ	7.4	31.7
A3a1 層	29.2	34.2
A2c 層	113.0	27.9
A2a1 層	82.8	28.7
A2g 層 (シルト質)	113.0	27.9
西山層	1370-5.04Z*	0.0

表 3-3 周辺地盤の粘着力 c と内部摩擦角 φ

注記* : Zは,標高(m)を示す

また,ジョイント要素のばね定数は,数値解析上不安定な挙動を起こさない程度に十分 大きい値として,港湾構造物設計事例集(上巻)(沿岸技術研究センター,平成19年3 月)に従い,表 3-4の通り設定する。ジョイント要素の力学特性を図 3-11に,ジョイ ント要素の配置を図 3-12に示す。

表 3-4 ジョイント要素のばね定数

せん断剛性 ks	圧縮剛性 kn
(kN/m^3)	(kN/m^3)
1.0×10^{6}	1.0×10^{6}

図 3-11 ジョイント要素の力学特性

図 3-12 ジョイント要素の配置

3.2.8 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地震時の地盤と杭の接 合面における相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については,地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合,せん断剛性を零とし,すべりを考慮する。

せん断強度 τ_fは, 次式により設定する。

 $\tau_{\rm f} = c_{\rm B} + \sigma' \tan \phi_{\rm B}$

ここで,

- σ':要素間の直応力
- с_B:付着力
- φ_B:摩擦角

付着力 $c_B Q U 摩擦角 \phi_B d$, 軽油タンク基礎(6号機設備)の杭が鋼管杭であることを 踏まえ,鋼材と地盤間の条件であることを考慮し設定する。付着力 $c_B d d B$ 橋示方書に 基づき,表 3-2 に示す「地盤と構造物」の条件から考慮しないものとする。摩擦角 ϕ_B は,港湾の施設の技術上の基準・同解説(日本港湾協会,平成19年7月)において,構造 物と地盤間の壁面摩擦角を15~20°とする旨が記載されるとともに,港湾構造物設計事例 集(上巻)(沿岸技術研究センター,平成19年3月)において,鋼材と地盤間の摩擦角を 15°と設定していることから,本解析における摩擦角 $\phi_B d d 15°$ と設定する。

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,港湾構造物設計事例集(上巻)(沿岸技術研究センター,平 成19年3月)に従い,表 3-5のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定する*。

杭-地盤相互作用ばねの力学特性を図 3-13 に, 杭-地盤相互作用ばねの配置を図 3-14 に示す。

注記* : FLIP 研究会 14 年間の検討結果のまとめ「理論編」(FLIP コンソーシアム)

	せん断剛性 ks
	(kN/m^3)
杭軸方向	1.0×10^{6}

表 3-5 杭ー地盤相互作用ばねのばね定数

図 3-13 杭-地盤相互作用ばねの力学特性

図 3-14 杭-地盤相互作用ばねの配置

3.2.9 杭先端ばねの設定

杭軸方向の荷重変位関係は、杭の鉛直載荷試験の結果等から図 3-15に示すとおり、双 曲線型の関係を示すことが知られている。本解析においても実現象を精緻にモデル化する 観点から、杭先端と地盤間にHirayama (1990)*による杭先端抵抗と杭先端変位の双曲線型 の関係を杭軸方向のばねの抵抗力と変位差関係に置き換えたばねを設けることにより、杭 先端における地盤と杭の相互作用を適切に考慮する。このばねは、圧縮側の関係を取り扱 うため、杭先端と地盤間の変位差が引張り状態となった場合、剛性及び応力を零とし、剥 離を考慮する。

杭先端ばねの杭軸方向のばねの抵抗力と変位差関係は、次式および図 3-16に示す双曲 線型の式で設定される。

Hirayama (1990) では, N値が30または50程度の硬質な砂層地盤における橋梁建設時の杭の 鉛直載荷試験結果に対して,当杭先端ばねを用いた荷重変位関係の再現解析を実施し,適 用性を検証している。また,当杭先端ばねは「一般社団法人FLIPコンソーシアム平成 25年度研究成果報告書(FLIPコンソーシアム,2013年)」にて,解析コードFLIP に対して適用性を確認している。報告書では,砂層に対する杭の押込み実験結果の杭先端 抵抗-杭先端変位関係を,当杭先端ばねが概ね再現可能であることを確認している。また, パラメータスタディとして支持層の相対密度を変化させた解析を実施し,当杭先端ばねの 適用性を検証している。検証の結果,支持層に液状化等による剛性低下が生じず,所定の 支持力を発揮できる場合,当杭先端ばねは解析コードFLIPに対し適用性を有すること が確認されている。

軽油タンク基礎(6号機設備)については、杭の支持層は西山層であり、地震時においても液状化が生じず、所定の杭先端支持力が期待できる岩盤であることから、当杭先端ば ねを適用できると判断した。

注記* :Load-settlement analysis for bored piles using hyperbolic transfer functions (Soils and Foundations, Vol. 30, No. 1, pp55-64, H. Hirayama, 1990)

$$q = z_e \swarrow (a_e + b_e \cdot z_e)$$

- q : 杭先端抵抗
- z e : 杭先端変位
- a e : 基準変位を杭先端における極限支持力で除した値(=0.25D_e/q_{ult})
- **b** e : 杭先端における極限支持力の逆数(=1/q_{ult})
- D_e :杭径
- qult : 杭先端における極限支持力

(道路橋示方書より引用) 図 3-15 杭の鉛直載荷試験における一般的な荷重-変位関係

図 3-16 杭先端ばねの杭軸方向のばねの抵抗力と変位差関係 (Hirayama (1990))

3.2.10 材料特性の設定

基礎版(鉄筋コンクリート部材)は、線形平面ひずみ要素を用いてモデル化する。鋼管 杭は、非線形はり要素でモデル化し、非線形性を考慮する。材料の非線形特性は、コンク リート標準示方書に基づき設定する。

図 3-17 に, 鋼管杭におけるM- φ関係のバイリニアモデルを示す。また, 鋼管杭の応 カーひずみ関係を図 3-18 に示す。

なお,解析コードFLIPにおいては,鋼管杭の軸力変動に応じて非線形特性を自動的 に設定し,応答を算定している。

M_p:終局曲げ強度(全塑性モーメント)
 φ'_y:全塑性モーメントに至る時の曲率
 φ_u:局部座屈が発生する時の曲率

図 3-17 鋼管杭のM-φ関係

f_{yd}:鋼材の降伏応力*E_s*:鋼材のヤング係数

図 3-18 鋼管杭の応力-ひずみ関係

3.3 減衰定数

減衰定数は,KK7 補足-027-1「資料 1 屋外重要土木構造物の耐震安全性評価について」 に基づき設定する。

3.4 荷重の組合せ

耐震評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出し,それ ぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反力による荷重 が含まれるものとする。

なお,軽油タンク基礎(6号機設備)は,地中に埋設されている構造物であることから運転 時の異常な過度変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるため, 当該状態についての組合せは考慮しないものとする。また,重大事故等対処時においても,地 中で設計基準事故時の条件を上回るような事象は発生しないため,設計基準事故時の条件を上 回る荷重はない。

荷重の組合せを表 3-6 に示す。

地震時に軽油タンク基礎(6号機設備)に作用する機器・配管系の荷重について,軽油タンク(6号機設備)は一質点でモデル化し,その他機器・配管系は解析モデルに付加質量として 与えることで考慮する。

種	重別	荷重		算定方法		
		躯体自重	0	 ・設計図書に基づいて、対象構造物の体積に材料の密度を乗じて設定する 		
固定		機器・配管自重	0	・機器・配管の重さに基づいて設定する		
N 1.	荷重	土被り荷重		・構造物に土被りはないため考慮しない		
永久		永久上載荷重		・地盤表面に恒常的に置かれる構造物はないため考慮しない		
荷重		静止土圧		・常時応力解析により算定する		
		外水圧 〇		・地下水位に応じた静水圧として設定する・地下水の密度を考慮する		
		雪荷重C		・積雪を考慮する		
偶列	偶発荷重 水平地		0	・基準地震動Ssによる水平・鉛直同時加振を考慮する		
(地震荷重) 鉛直地震動		0	・躯体,機器・配管の慣性力,動土圧を考慮する			

表 3-6 荷重の組合せ

- 3.4.1 機器·配管荷重
 - (1) 軽油タンク(6号機設備)荷重

図 3-19 に示すとおり, 軽油タンク(6号機設備)を一質点でモデル化することにより, 軽油タンク(6号機設備)による荷重を考慮する。質点要素の質量及びはり要素の物性値 は, V-2-10-1-2-2-5「軽油タンク(6号機設備)の耐震性についての計算書」及び設計値 に基づき,表 3-7 のとおり設定する。

図 3-19 軽油タンク(6号機設備)質点モデル

名称	質量* m(kg)	タンク基礎から	ヤング	ポアソン 比	断面積 (mm ²)	せん断	断面二次
		重心までの距離	係数			断面積	モーメント
		h(mm)	(MPa)			(mm^2)	(mm^4)
A系タンク	622000	49.49	200000	0.2	1 119 × 106	7 416 × 105	1.945×10^{13}
(6 号機設備)	632900	4248	200000	0.3	1. 112 × 10-	7.410×10 ⁻	1. 343 × 10-
B系タンク	647100	4410	200000	0.2	1 119 × 106	7 416 × 105	1.945×10^{13}
(6 号機設備)	047100	4418	200000	0.3	1. $112 \times 10^{\circ}$	$1.410 \times 10^{\circ}$	1. 343 × 1018

表 3-7 各タンクの諸元

注記* : 内包液(軽油)及び積雪荷重を含む

(2) 付帯設備荷重

荷重を考慮する付帯設備を図 3-20 及び表 3-8 に示す。各付帯設備の荷重は図 3-21 に示すとおり、地震応答解析モデルへ入力する。

図 3-20 荷重を考慮する付帯設備

付帯設備		質量	考慮する質量	
①張出しダクト		300+	・ダクト躯体 ・非常用ディーゼル発電設備燃料油系配管 ・非常用ディーゼル発電設備燃料路送ポンプ防護板(AC)	
		2991	 ・非常用ディーゼル発電設備燃料移送ポンプ防護板(B) ・積雪 	
②張出し基礎(AC系)		151t	 ・張出し基礎躯体 ・燃料移送ポンプ(A) ・燃料移送ポンプ(C) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(AC) ・積雪 	
③張出し基礎(B系)		69t	 ・張出し基礎躯体 ・燃料移送ポンプ(B) ・非常用ディーゼル発電設備燃料移送ポンプ防護板(B) ・積雪 	
④油分離槽		40t	 ・油分離層躯体 ・積雪 	
⑤防油堤	基礎端部	1.50t/m	・防油堤躯体	
		(1.85~2.10t/m)*	・非常用ディーゼル発電設備燃料油系配管(一部)	
	南北方向中央	1.66t/m	·防油堤躯体	

表 3-8 荷重を考慮する付帯設備

注記* :非常用ディーゼル発電設備燃料油系配管(6号機設備)を含めた質量

- ↓:①張出しダクト荷重
- ↓:②張出し基礎(AC系)荷重
- : ③張出し基礎(B系)荷重
- : ④油分離槽荷重
- : ⑤防油堤荷重

図 3-21 地震応答解析における付帯設備荷重(鉛直方向*)

注記* :水平方向にも同位置に載荷する。

3.4.2 外水圧

地下水位は地表面(T.M.S.L. 12.0m)として設定する。地下水の密度は, 1.00g/cm³とする。

3.4.3 雪荷重

雪荷重については、V-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関す る説明書」のうち、V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷防止 に関する基本方針」に従い、積雪厚さ115.4cm、積雪厚さ1cmあたりの荷重を29.4N/cm・m² とし、積雪荷重を3.39kN/m²として設定する。
- 3.5 地震応答解析の解析ケース
 - 3.5.1 耐震評価における解析ケース

軽油タンク基礎(6号機設備)は、軽油タンク(6号機設備)の間接支持機能が要求され る杭基礎構造物であり、地震時における上位クラス機器の応答加速度及び構造物の変形は、 地盤のせん断弾性係数に大きく依存する。したがって、軽油タンク基礎(6号機設備)の 耐震評価においてばらつきを考慮する物性値は、地盤の初期せん断弾性係数G₀とする。

耐震評価における解析ケースを表 3-9 に示す。

地盤剛性のばらつきの影響を考慮するため,地表付近で地下水面をまたぐ地層(埋戻土 及び新期砂層)のばらつきは,初期せん断弾性係数と有効拘束圧の関係から初期せん断弾 性係数の標準偏差σを用いてせん断波速度のばらつきとして設定する。地下水以深の飽和 土層(沖積層及び古安田層)のばらつきは,各地層のPS検層の結果から得られるせん断波 速度の標準偏差σを求め,せん断波速度のばらつきとして設定する(解析ケース②,③, ⑤)。

地盤の液状化強度特性は、代表性及び網羅性を踏まえた上で保守性を考慮し、液状化強 度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散 に基づく標準偏差σを用いて、液状化強度特性を(-1σ)にて設定する(解析ケース①, ②,③)。

また、構造物及び機器・配管系への応答加速度に対する保守的な配慮として、地盤の非 液状化の条件を仮定した解析ケースを設定する(解析ケース④,⑤)。

上記の地盤剛性及び液状化強度特性の設定を組み合わせた解析ケース(①~⑤)を実施 することにより、地盤物性のばらつきの影響を網羅的に考慮する。

耐震評価においては、全ての基準地震動Ssに対して解析ケース①(基本ケース)で地 震応答解析を実施し、鋼管杭及び基礎地盤の支持性能については得られた応答値から、基 礎版(鉄筋コンクリート部材)については「4. 基礎版の解析」に示す3次元構造解析か ら照査値を算定する。また、解析ケース①において、曲げ軸力照査及びせん断力照査をは じめとした全ての評価項目について、各照査値が最も厳しい(許容限界に対する余裕が最 も小さい)地震動を用い、追加解析ケースとして解析ケース②~⑤で地震応答解析を実施 し、解析ケース①(基本ケース)と同様に照査値を算定する。最も厳しい地震動の選定は、 照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的に厳しい地震動の選定の目 安として実施する。また、上記解析ケースの結果を踏まえ、さらに照査値が大きくなる可 能性がある場合は、追加解析を実施する。

追加解析ケースを実施する地震動の選定フローを図 3-22 に示す。

		1		2	3	4	5	
解析ケース			基本ケース	地つ考」	盛物性のばら き(+ 1 σ)を 憲した解析ケ <	地盤物性のばら つき (-1σ)を 考慮した解析ケ ース	非液状化の条件 を仮定した解析 ケース	地盤物性のばら つき (+1 σ)を 考慮して非液状 化の条件を仮定 した解析ケース
地盤剛性の設定			地盤剛性 (平均値)		地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)
液状化強度特性の設定		液状化強度特性 (-1σ)	Ŕ	坂状化強度特性 (-1σ)	液状化強度特性 (-1σ)	液状化パラメータ を非適用	液状化パラメー タを非適用	
		++*	実施					
	Ss-1	+-*	実施					
		-+*	実施					
		*	実施	全ての基準地震動 Ss に対して実施する①の解析ケース			解析ケース	
	Ss-2		実施	(基本ケース)において、せん断力照査及び曲げ軸力照				
	Ss-3	++*	実施	査をはじめとした全ての照査項目について,各照査値が				各照査値が
地震		+-*	実施	── 最も厳しい(許容限界に対する余裕が最も小さい)地震				さい)地震
動		-+*	実施	動を用い, ②~⑤より追加解析ケースを実施する。 また, 上記解析ケースの結果を踏まえ, さらに照査値が			トる。	
直相)		*	実施				に照査値が	
	Ss-4		実施	大きくなる可能性がある場合は、追加解析を実施する。			毛施する。	
	Ss-5		実施					
	Ss-6		実施					
	Ss-7		実施					
	Ss-8	++*	実施					
		-+*	実施					

表 3-9 耐震評価における解析ケース

注記* :表中の符号+,一は地震動の位相(水平,鉛直)を示す。

図 3-22 追加解析ケースを実施する地震動の選定フロー

3.5.2 機器・配管系に対する応答加速度抽出のための解析ケース

機器・配管系に対する応答加速度及び応答変位の抽出における解析ケースを表 3-10 に 示す。

全ての基準地震動Ssに対して,解析ケース③,④,⑤を実施する。機器・配管系に対 する応答加速度及び応答変位抽出の基本ケースである解析ケース④に対し,応答加速度に ついては,最も地盤が軟らかい条件となる解析ケース③及び最も地盤が固い条件となる解 析ケース⑤を実施することで,地盤剛性のばらつき及び液状化の有無を網羅的に考慮する。 応答変位については,最も地盤が軟らかい条件となる解析ケース③を含んでいることか

ら,変位を保守的に見込むことができる。

			3	4	5
解析ケース			地盤物性のばら つき (-1 σ) を 考慮した解析ケ -ス	非液状化の条件 を仮定した解析 ケース	地盤物性のばら つき(+1g)を 考慮して非液状 化の条件を仮定 した解析ケース
地盤剛性の設定			地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)
液状化強度特性の設定			液状化強度特性 (-1σ)	液状化パラメータ を非適用	液状化パラメー タを非適用
	Ss-1	++*	実施	実施	実施
		+-*	実施	実施	実施
		-+*	実施	実施	実施
		*	実施	実施	実施
	Ss-2		実施	実施	実施
	Ss-3	++*	実施	実施	実施
地震		+-*	実施	実施	実施
動 (位		-+*	実施	実施	実施
相		*	実施	実施	実施
	Ss-4		実施	実施	実施
	Ss-5		実施	実施	実施
	Ss-6		実施	実施	実施
	Ss-7		実施	実施	実施
	Se-8	++*	実施	実施	実施
	38 0	-+*	実施	実施	実施

表 3-10 機器・配管系に対する応答加速度抽出のための解析ケース

注記* :表中の符号+,一は地震動の位相(水平,鉛直)を示す。

- 4. 基礎版の解析
- 4.1 解析手法

基礎版の評価は,軽油タンク(6号機設備)及び附帯設備の荷重の平面的な偏りを考慮する ため,基礎版を非線形積層シェル要素でモデル化し,水平2方向及び鉛直方向の荷重に対する 評価を,3次元構造解析を用いて行う。

基礎版に作用する荷重は、地震応答解析(2次元動的有限要素法解析)において基礎版の評価に支配的な荷重が最大となる時刻を選定し、当該時刻における地震時応答から設定する。3次元構造解析には、解析コード「Engineer's Studio Ver. 8.0.1」を用いる。

本検討で扱う非線形積層シェル要素は、断面高さ方向に分割された鉄筋コンクリート部材の 各層に対し、前川モデルに基づく非線形性を考慮しており、これを断面高さ方向に積分するこ とで、面内変形だけではなく面外変形の非線形挙動も考慮しているものである。

なお,前川モデルは新規制基準適合性審査において使用実績のある解析コード「WCOMD」 に適用されている構成則であり、「コンクリート標準示方書[設計編](土木学会,2012年)」 にも規定されている。

解析コードの検証及び妥当性確認の概要については、V-2別紙「計算機プログラム(解析コ ード)の概要」に示す。

- 4.2 解析モデルの設定
 - 4.2.1 基礎版のモデル化

基礎版は材料の非線形特性を考慮した非線形積層シェル要素で、杭は杭頭バネ要素でモ デル化する。モデル概念図を図 4-1 に、要素分割図を図 4-2 に示す。非線形積層シェル 要素は8層とし、主鉄筋の位置が層の中心となるよう上側、下側の鉄筋コンクリート要素 を設定する。鉄筋コンクリート要素を除く範囲は、無筋コンクリート要素としてモデル化 する。

図 4-2 要素分割図

- 4.2.2 材料の非線形特性
 - (1) コンクリート
 - a. 圧縮応力下における応力--ひずみ関係

図 4-3 に一軸圧縮応力下における応力--ひずみ関係を示す。

圧縮応力下の応力-ひずみの骨格曲線は、最大応力点までの硬化域と、最大応力点を 超えた軟化域で表され、残留塑性ひずみと除荷再載荷時の剛性低下を考慮している。

また、ひび割れ発生後のコンクリートの圧縮強度については、図 4-4 に示す低減係 数を破壊パラメータに乗じることで、ひび割れ発生後の圧縮強度の低下を考慮する。

$$\sigma'_{c} = E_{0}K(\varepsilon'_{c} - \varepsilon'_{p}) \ge 0$$
$$E_{0} = \frac{2 \cdot f'_{cd}}{\varepsilon'_{peak}}$$

$$\begin{split} & K = exp\left\{-0.73\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\left(1 - exp\left(-1.25\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\right)\right)\right\}\\ & \varepsilon'_p = \varepsilon'_{max} - 2.86 \cdot \varepsilon'_{peak}\left\{1 - exp\left(-0.35\frac{\varepsilon'_{max}}{\varepsilon'_{peak}}\right)\right\} \end{split}$$

$$\varepsilon_{p}' = \varepsilon_{max}' - 2.86 \cdot \varepsilon_{peak}' \left\{ 1 - exp\left(-0.35 \frac{\varepsilon_{max}}{\varepsilon_{peak}'} \right) \right\}$$

 $\sub \sub k$, $f'_{cd} = f'_{ck}/\gamma_c$

$$\epsilon'_{peak}$$
: 圧縮強度に対応するひずみ(一般に, 0.002 としてもよい)

- ε'max :過去に受けた圧縮ひずみの最大値
- *ε'p* : 塑性ひずみ
- *K* : 弹性剛性残存率

図 4-4 弾性剛性残存率の低減係数

b. 引張応力下における応力-ひずみ関係

引張応力下における応力--ひずみ関係は、ひび割れ発生までは線形弾性とし、ひび割 れ強度以降は、鉄筋とコンクリートの付着の影響等を考慮し、図 4-5 に示す骨格曲線 を用いて、ひび割れ間のコンクリートに引張応力分担を考慮する。

(コンクリート標準示方書[設計編] (土木学会,2012年)より引用)
 図 4-5 引張応力下における応力-ひずみ関係

c. ひび割れ面でのせん断伝達関係

コンクリートのひび割れ発生後にひび割れ角度を固定する固定ひび割れモデルでは, ひび割れ面のずれによるせん断応力伝達特性を考慮する必要がある。

ひび割れ面でのせん断伝達挙動は、斜めひび割れの発生に伴う剛性低下や破壊を評価 するため、図 4-6 に示すとおり、ひび割れ面におけるせん断ひずみγとひび割れ開口 ひずみ εの比をパラメータとし、コンクリートの剛性低下を考慮するモデルを用いる。

- β : ひび割れ面におけるせん断ひずみ γ とひび割れ開口ひずみ ε の比(γ / ϵ)
- τ : ひび割れ面でのせん断応力
- τmax :除荷開始時せん断応力

 β_{max} :除荷開始時せん断ひずみ γ とひび割れ開口ひずみ ϵ の比

(コンクリート標準示方書[設計編] (土木学会,2012年)より引用)図 4-6 ひび割れ面でのせん断伝達モデル

(2) 鉄筋

ひび割れを複数含む領域におけるコンクリート中の鉄筋の平均応力-平均ひずみ関係は, 単体鉄筋の応力-ひずみ関係と異なり、図 4-7に示すひずみ硬化特性を考慮する。

(コンクリート標準示方書[設計編] (土木学会, 2012年)より引用)図 4-7 ひずみ硬化域までモデル化した鉄筋の平均応力-平均ひずみ関係

(3) 鉄筋コンクリートとしてのモデル化

コンクリートと鉄筋の界面の付着特性をテンションスティフニング効果(引張特性が硬 化する現象)として,鉄筋コンクリート要素の中に取り込むことにより,鉄筋コンクリー トの構成則を直接与える。

鉄筋コンクリートの引張応力下の平均応力は、以下の式*で表される。

$$\bar{\sigma}_{RC} = \frac{A_s}{A_{RC}} \bar{\sigma}_S + \frac{A_c}{A_{RC}} \bar{\sigma}_C$$

ここに、 $\bar{\sigma}_s$, $\bar{\sigma}_c$: それぞれ鉄筋とコンクリートの平均応力

 A_s , A_c : それぞれ鉄筋とコンクリートの断面積, $A_{RC} = A_s + A_c$

注記* :土木学会マニュアルより引用

4.2.3 杭頭ばね要素の設定

杭頭ばね要素の剛性は,道路橋示方書に基づき設定する。杭頭ばね要素の区分を表 4-1に,概念図を図 4-8に示す。

名称	記号	区分	単位
軸方向ばね	Kv	杭軸方向のばね	kN/m
	K_1	杭の法線方向ばね	kN/m
	K_2	杭の回転ばね	kN/rad
軸古舟十向げも	${ m K}_3$	杭の法線方向ばね	1-Ni /
軸 直角力回はね		(モーメント)	KINM/ M
	K_4	杭の回転ばね	1 N. /. 1
		(モーメント)	KINM/rad

表 4-1 杭頭ばね要素の区分

(注記*:杭基礎設計便覧(日本道路協会,平成19年1月)より引用)図 4-8 杭頭ばね要素の概念図

各杭頭ばね要素のばね定数は、以下のとおり算出する。

$$K_v = a \frac{A_p E_p}{L}$$

ここで、 K_v : 杭の軸方向ばね定数(kN/m)
a : 適用する杭工法に応じて設定
a=0.010 (L/D) +0.36 (中掘り杭)
 A_p : 杭の純断面積(mm²)
 E_p : 杭のヤング係数(kN/mm²)
L : 杭長(m)
D : 杭径(m)

h :設計上の地盤面から上の杭の杭軸方向の長さ(m)

4.3 照査時刻の選定

軽油タンク基礎(6号機設備)は軽油タンクを間接支持する構造物であり、その健全性評価 には軽油タンクからの外力が大きく影響する。

表 4-2 に軽油タンク基礎(6号機設備)が支持する設備の質量を示す。軽油タンク基礎(6 号機設備)が支持する設備の中で,軽油タンクの質量が最大であり,地上部に突出した設備で あること,及び軽油タンク基礎(6号機設備)は7号機軽油タンク基礎と構造形式が同一であ ることを踏まえ,基礎版の照査時刻は7号機軽油タンク基礎と同様に,地震応答解析において 軽油タンクの圧縮軸力及びモーメントがそれぞれ最大となる時刻とする。

設備	名称	質量		
軽油タン	ク (A)	633t		
軽油タン	ク (B)	647t		
張出し	ダクト	399t		
張出し基礎	整 (AC)	151t		
張出し基	礎(B)	69t		
油分	離槽	40t		
	甘花林山山立四	1.50t/m		
防油堤	基礎师部	(1.85∼2.10t/m)*		
	南北方向中央	1.66t/m		

表 4-2 軽油タンク基礎(6号機設備)が支持する設備の質量

注記* :燃料移送配管を含めた質量

4.4 入力荷重

3次元構造解析の入力荷重は、「4.3 照査時刻の選定」にて選定した照査時刻に対し、地震 応答解析から同時刻における水平2方向及び鉛直方向の地震時応答を抽出し、算定する。NS 方向の地震時応答はA-A断面から、EW方向の地震時応答はB-B断面から抽出する。鉛直 方向の地震時応答は、A-A断面及びB-B断面からそれぞれ抽出される地震時応答のうち、 より大きい方を使用する。

入力荷重の一覧を表 4-3 に、入力荷重の算定フローを図 4-9 に示す。

入力荷重のうち、「軽油タンクによる荷重」及び「張出しダクト及び張出し基礎による荷重」 については、基礎版に対する3次元的な荷重を適切に考慮するため、抽出した地震時応答に対 し、別途作成した荷重算定モデルを介して入力荷重を算定する。

「慣性力」及び「土圧及び水圧」については,抽出した地震時応答を用いて入力荷重を算定 する。

	入力荷重	地震応答解析から 抽出する地震時応答	載荷位置
軽油タン	クによる荷重	断面力 設置位置	
張出しダ	クト及び張出し基礎による荷重	応答加速度	設置位置
慣性力	油分離槽	応答加速度	設置位置
	防油提	応答加速度	設置位置
	基礎版	応答加速度	基礎版全体
	リングコンクリート及び乾燥砂	応答加速度	設置位置
	積雪	応答加速度	基礎版上面
土圧及び	水圧	土圧・水圧	基礎版側面

表 4-3 入力荷重一覧

- 4.4.1 軽油タンクによる荷重
 - (1) 算定方法

軽油タンクによる荷重は,軽油タンク下面での荷重分布を考慮するため,地震応答解析の照査時刻における軽油タンクの地震時応答を,別途作成した3次元の軽油タンク荷重算 定モデルに作用させ,算定する。

(2) 軽油タンクの地震時応答の抽出

軽油タンクの地震時応答は、地震応答解析モデルにおける軽油タンクをモデル化したは り要素の、照査時刻における断面力とする。軽油タンクの断面力のうち、NS方向の曲げ 及びせん断はA-A断面から、EW方向の曲げ及びせん断はB-B断面から抽出する。軸 力は、A-A断面及びB-B断面からそれぞれ抽出される軸力のうち、より大きい方を使 用する。断面力抽出位置を図 4-10 に示す。

図 4-10 軽油タンクの地震時応答抽出位置

(3) 基礎版モデルに作用させる荷重の算定

軽油タンク荷重算定モデルを図 4-11 に示す。軽油タンクはボルトによって基礎版に固 定されており、引張力及びせん断力はボルトを介して、圧縮力はタンク底面を介して基礎 版に作用するため、表 4-4 に示す荷重の伝達方法を考慮する。軽油タンク荷重算定モデ ルは、ボルト位置である外縁部を水平・鉛直ともに固定境界とし、底面には圧縮力のみを 分担するバネ要素を配置する。底面のばね要素の特性を図 4-12 に示す。

「(2) 軽油タンクの地震時応答の抽出」より抽出した軽油タンクの地震時応答を軽油タンク荷重算定モデルに載荷することで基礎版モデルに作用させる荷重を算定し,図 4-13の概略図に示すとおり基礎版モデルに作用させる。

図 4-12 底面のばね要素の特性

表 4-4 軽油タンクの荷重の伝達方法

注記* :地震応答解析におけるタンクモデルのはり要素の軸力は、常に圧縮側である。

(曲げ)

(せん断)

図 4-13 軽油タンクによる荷重の概略図

- 4.4.2 張出しダクト及び張出し基礎による荷重
 - (1) 算定方法

張出しダクト及び張出し基礎から基礎版に作用する荷重は,地震応答解析の照査時刻に おける張出しダクト及び張出し基礎の地震時応答及び土水圧を,図 4-14 に示す張出しダ クト及び張出し基礎の荷重算定モデルに作用させ,算定する。

荷重算定モデルは,慣性力や土水圧が,張出しダクト及び張出し基礎を介して軽油タン ク基礎版との接続部に伝達する荷重を算定することを目的とする。躯体は線形シェル要素 でモデル化し,軽油タンク基礎版との接続部は完全固定とする。

図 4-14 張出しダクト及び張出し基礎の荷重算定モデル

(2) 張出しダクト及び張出し基礎の地震時応答の抽出

張出しダクト及び張出し基礎の地震時応答は、地震応答解析モデルにおける基礎版の張
出しダクト及び張出し基礎設置位置にあたる各節点の、照査時刻における応答加速度の平
均値から算定される各設備の慣性力とする。NS方向の応答加速度はA-A断面から、E
W方向の応答加速度はB-B断面から抽出する。鉛直方向の応答加速度は、A-A断面及
びB-B断面からそれぞれ抽出される応答加速度のうち、より大きい方を使用する。張出
しダクト及び張出し基礎の応答加速度抽出位置を図 4-15 に示す。

図 4-15 張出しダクト及び張出し基礎の地震時応答抽出位置

(3) 土圧及び水圧の抽出

張出しダクトの側壁に作用する土圧及び水圧は,地震応答解析モデルにおける軽油タン ク基礎版の側面に接する地盤要素及び間隙水要素の,照査時刻における要素応力から抽出 する。また,張出しダクト底板には,常時の水圧を作用させる。 (4) 基礎版モデルに作用させる荷重の算定

基礎版モデルに作用させる荷重算定の概要を図 4-16 に示す。「4.4.2 (2) 張出しダ クト及び張出し基礎の地震時応答の抽出」及び「4.4.2 (3) 土圧及び水圧の抽出」より抽 出した荷重を、荷重算定モデルに載荷する。荷重算定モデルにおける軽油タンク基礎版と の接続部の節点は完全固定とし、当該箇所の節点から得られた鉛直、水平、回転方向の反 力を基礎版モデルに作用させる荷重とする。

算定した荷重は図 4-17の概略図に示すとおり、基礎版モデルに入力する。

図 4-16 基礎版モデルに作用させる荷重算定の概要図

図 4-17 張出しダクト及び張出し基礎による荷重の概略図

4.4.3 油分離槽の慣性力

油分離槽の慣性力は、地震応答解析モデルにおける基礎版の油分離槽設置位置にあた る各節点の、照査時刻における応答加速度の平均値から算定する。油分離槽の応答加速 度抽出位置を図 4-18 に示す。NS方向の加速度についてはA-A断面の油分離槽設置 位置にあたる節点を、EW方向の加速度についてはB-B断面の各油分離槽設置位置に あたる各節点を加速度抽出位置とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は、図 4-19の概略図に示すとおり、基礎版モデルに入力する。

図 4-18 油分離槽の応答加速度抽出位置

図 4-19 油分離槽の慣性力の概略図

4.4.4 防油堤の慣性力

防油堤の慣性力は、地震応答解析モデルにおける基礎版の防油堤位置にあたる各節点の、照査時刻における応答加速度の平均値から算定する。防油堤の応答加速度抽出位置 を図 4-20 に示す。NS方向の加速度についてはA-A断面の防油堤位置にあたる各節 点を、EW方向の加速度についてはB-B断面の防油堤位置にあたる各節点を加速度抽 出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-21の概略図に示すとおり、基礎版モデルに入力する。

4.4.5 基礎版の慣性力

基礎版の慣性力は、地震応答解析モデルにおける基礎版位置にあたる全節点の、照査 時刻における応答加速度の平均値から算定する。基礎版の応答加速度抽出位置を図 4-22 に示す。NS方向の加速度についてはA-A断面の基礎版位置にあたる全節点を、E W方向の加速度についてはB-B断面の基礎版位置にあたる全節点を加速度抽出範囲と する。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-23の概略図に示すとおり、基礎版モデルに入力する。

図 4-22 基礎版の応答加速度抽出位置

図 4-23 基礎版の慣性力の概略図

4.4.6 リングコンクリート及び乾燥砂の慣性力

リングコンクリート及び乾燥砂の慣性力は,地震応答解析の基礎版のリングコンクリート及び乾燥砂位置にあたる各節点の,照査時刻における応答加速度の平均値から算定する。応答加速度抽出位置を図4-24に示す。NS方向の加速度についてはA-A断面のリングコンクリート及び乾燥砂位置にあたる各節点を,EW方向の加速度についてはB-B断面のリングコンクリート及び乾燥砂位置にあたる全節点を加速度抽出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-25の概略図に示すとおり、基礎版モデルに入力する。

図 4-24 リングコンクリート及び乾燥砂の応答加速度抽出位置

図 4-25 リングコンクリート及び乾燥砂の慣性力の概略図

4.4.7 積雪の慣性力

積雪の慣性力は、地震応答解析モデルにおけるリングコンクリート及び乾燥砂位置を 除く基礎版上面の全節点の、照査時刻における応答加速度の平均値から算定する。応答 加速度抽出位置を図 4-26 に示す。NS方向の加速度についてはA-A断面の軽油タン ク位置を除く基礎版上面の全節点を、EW方向の加速度についてはB-B断面の軽油タ ンク位置を除く基礎版上面の全節点を加速度抽出範囲とする。

鉛直方向については、A-A断面及びB-B断面それぞれの加速度抽出範囲の平均加 速度のうち、より大きい方を使用して慣性力を算定する。

算定した慣性力は図 4-27の概略図に示すとおり、基礎版モデルに入力する。

図 4-27 積雪の慣性力の概略図

4.4.8 土圧及び水圧

基礎版の側面に作用する水平方向の土圧及び水圧は、地震応答解析モデルにおける基礎版の側面に接する地盤要素及び間隙水要素の、照査時刻における要素応力から算定する。 また、基礎版モデル底面には常時分の水圧を作用させる。土圧及び水圧の抽出位置を図 4 -28 に示す。

算定した土圧及び水圧は図 4-29の概略図に示すとおり、基礎版モデルに入力する。

図 4-28 基礎版側面の土圧及び水圧の抽出位置

図 4-29 基礎版の土圧及び水圧の概略図

5. 評価内容

5.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動Ssを1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動の設定におい ては, V-2-1-3「地盤の支持性能に係る基本方針」に示す地下構造モデルを用いる。

入力地震動算定の概念図を図 5-1 に、入力地震動の加速度時刻歴波形と加速度応答スペクトルを図 5-2~図 5-27 に示す。入力地震動の算定には解析コード「SLOK Ver.2.0」を 使用する。

なお,基準地震動Ssのうち特定の方向性を有しない地震動については,位相を反転させた 場合の影響も確認する。

図 5-1 入力地震動算定の概念図

MAX 11.88 m/s^2 (18.51s)

(a) 加速度時刻歷波形

図 5-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-1)

MAX 7.49 m/s^2 (5.88s)

(a) 加速度時刻歷波形

図 5-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-1)

MAX 13.24 m/s^2 (20.51s)

(a) 加速度時刻歷波形

図 5-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2EW)

MAX 5.02 m/s^2 (20.46s)

(a) 加速度時刻歷波形

図 5-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2EW)

MAX 8.40 m/s^2 (21.92s)

(a) 加速度時刻歷波形

図 5-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-2NS)

MAX 5.04 m/s^2 (20.58s)

図 5-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-2NS)

図 5-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-3)

図 5-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-3)

(a) 加速度時刻歷波形

図 5-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4EW)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 5-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4EW)

MAX 4.92 m/s^2 (51.62s)

図 5-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-4NS)

(a) 加速度時刻歷波形

図 5-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-4NS)

(a) 加速度時刻歷波形

図 5-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5EW)

図 5-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5EW)

MAX 4.64 m/s^2 (51.64s)

(a) 加速度時刻歷波形

図 5-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-5NS)

(a) 加速度時刻歷波形

(b) 加速度応答スペクトル

図 5-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-5NS)

図 5-18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6EW)

図 5-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6EW)

MAX 5.01m/s² (51.61s)

図 5-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-6NS)

図 5-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-6NS)

(a) 加速度時刻歷波形

図 5-22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7EW)

図 5-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7EW)

(a) 加速度時刻歷波形

図 5-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-7NS)

図 5-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-7NS)

MAX 7.65 m/s^2 (7.74s)

図 5-26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:Ss-8)

MAX 3.35 m/s^2 (7.64s)

図 5-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:Ss-8)

- 5.2 許容限界の設定
 - 5.2.1 曲げ<mark>軸力</mark>に対する許容限界
 - (1) 鉄筋コンクリート部材

鉄筋コンクリート部材の曲げ軸力に対する照査は、土木学会マニュアルに基づき、限界 ひずみ(圧縮縁コンクリートひずみ 1%)を許容限界とし、照査用コンクリートひずみが 限界ひずみを下回ることを確認する。

鉄筋コンクリート部材の曲げ軸力照査に用いるコンクリートの照査用圧縮ひずみは,3 次元構造解析より得られたコンクリートの圧縮縁の発生ひずみに安全係数(構造解析係数) 1.2を乗じることにより,曲げ破壊に対して安全余裕を見込んだ評価を実施する。

$$\gamma_{i} \frac{\epsilon_{d}}{\epsilon_{r}} < 1.0$$

ここで,

- γ_i :構造物係数 (γ_i=1.0)
- ε_r:限界ひずみ
- ϵ_{d} :照査用圧縮ひずみ($\epsilon_{d} = \gamma_{a} \cdot \epsilon$)
- γ_{a} :構造解析係数 ($\gamma_{a} = 1.2$)
- ε : 圧縮縁の発生ひずみ

(2) 鋼管杭

キャスク指針では、鋼管杭の曲げ<mark>軸力</mark>に対する許容限界を、部材の終局強度に基づき設 定する場合、図 5-28 に示す径厚比の条件を満たすことが前提とされている。

鋼管杭の終局強度は、鋼材の材料強度に基づいて評価する。JIS 適合品を用いるの で、鋼材の材料強度は基準強度Fの1.1倍以下に基づく数値とする。この場合、鋼管 杭の弾性局部座屈を防止するため、「鋼構造限界状態設計指針・同解説(1998年)」(日 本建築学会)^(附2.3-1)に示される冷間成形円形中空断面柱の板要素の幅厚比区分の考え 方を適用して、鋼管杭の径厚比は $\frac{2r}{t} \leq 90$ を満たすことを前提とする。

- (r:杭の半径(板厚中心線の半径),t:腐食しろを除いた杭材の厚さ)
 - 図 5-28 キャスク指針における鋼管杭の構造細目

(キャスク指針より引用)

軽油タンク基礎(6号機設備)の鋼管杭については、肉厚14mm及び9mmの鋼管杭がある が、このうち肉厚9mmの鋼管杭については上記の径厚比の条件を満たさないため、鋼管杭 の肉厚に応じて以下のとおり許容限界を設定する。

a. 肉厚 14mm の鋼管杭

キャスク指針に基づき,鋼管杭の終局曲率を許容限界とし,照査用曲率が終局曲率 を下回ることを確認する。

b. 肉厚 9mm の鋼管杭

鋼管杭の降伏モーメントに対する曲率を許容限界とし,照査用曲率が降伏モーメントに対する曲率を下回ることを確認する。

なお、鋼管杭の曲げ軸力照査に用いる照査用曲率は、地震応答解析により得られた曲率 に安全係数(構造解析係数)1.05を乗じることにより、曲げ破壊に対して安全余裕を見込 んだ評価を実施する。 a. 肉厚 14mm の鋼管杭

$$\gamma_{i} \frac{\phi_{d}}{\phi_{u}} < 1.0$$

ここで、 γ_{i} :構造物係数 (=1.0)
 $\phi_{d} = \gamma_{a} \cdot \phi$
 γ_{a} :構造解析係数 (=1.05)
 ϕ :応答計算による最大曲率
 ϕ_{u} :鋼管杭の終局曲率
 ϕ_{u} :鋼管杭の終局曲率
 N :発生軸力
 $\epsilon_{max} = 0.22 t / r$:局部座屈発生時ひずみ

N>0: 圧縮)

- r : 杭の半径 t : 腐食しろを除いた鋼材の厚さ
- $N_y = 2\pi \cdot r \cdot t \cdot \sigma_y$:鋼材降伏時の軸力
- σ_y:鋼材の降伏点応力
- γ_b:部材係数(=1.1)

b. 肉厚 9mm の鋼管杭

$$\gamma_{i} \frac{\phi_{d}}{\phi_{y}} < 1.0$$

ここで、 γ_{i} :構造物係数 (=1.0)
 $\phi_{d} = \gamma_{a} \cdot \phi$
 γ_{a} :構造解析係数 (=1.05)
 ϕ :応答計算による最大曲率
 ϕ_{y} :鋼管杭の降伏モーメントに対する曲率

$$\phi_{y}(N) = M_{y}/E I / \gamma_{b} \qquad (N < 0: 引張, N > 0: 圧縮)$$

$$N : 発生軸力$$

$$M_{y} = M_{y0} \cdot (1 - N/N_{y})$$

$$M_{y0} = \frac{\pi}{32D} \cdot \left\{ D^{4} - (D - 2t)^{4} \right\} f_{yd}$$

$$M_{y} : 降伏モーメン \land$$

$$M_{y0} : 軸力 0 に対する降伏モーメン \land$$

$$N_{y} = 2\pi r t \sigma_{y} \qquad : 鋼材降伏時の軸力$$

$$D : 腐食しろを除いた鋼管杭の外周径$$

$$t : 腐食しろを除いた鋼材の厚さ$$

$$f_{yd} : 鋼材の設計降伏強度$$

$$\gamma_{b} : 部材係数 (=1, 1)$$

- 5.2.2 せん断<mark>力</mark>に対する許容限界
 - (1) 鉄筋コンクリート部材
 鉄筋コンクリート部材のせん断力に対する許容限界は、土木学会マニュアルに基づき、
 a. 棒部材式又は b. ディープビーム式で求まるせん断耐力のうち、いずれか大きい方を許容
 限界とし、照査用せん断力がせん断耐力を下回ることを確認する。

鉄筋コンクリート部材のせん断力照査に用いる照査用せん断力は、地震応答解析により 得られたせん断力に安全係数(構造解析係数)1.05を乗じることにより、せん断破壊に対 して安全余裕を見込んだ評価を実施する。

$$\gamma_{i} \frac{V_{d}}{V_{yd}} < 1.0$$

ここで,

$$\gamma_{i}$$
 :構造物係数 ($\gamma_{i} = 1.0$)
 V_{yd} : せん断耐力
 V_{d} :照査用せん断力 ($V_{d} = \gamma_{a} \cdot V$)
 γ_{a} :構造解析係数 ($\gamma_{a} = 1.05$)
 V :応答計算によるせん断力

a. 棒部材式 $\mathbf{V}_{\mathbf{v}\mathbf{d}} = \mathbf{V}_{\mathbf{c}\mathbf{d}} + \mathbf{V}_{\mathbf{s}\mathbf{d}}$ ここで. V_{cd}: コンクリートが分担するせん断耐力 V_{sd}: せん断補強筋が分担するせん断耐力 $V_{cd} = \beta_{d} \cdot \beta_{p} \cdot \beta_{n} \cdot \beta_{a} \cdot f_{vcd} \cdot b_{w} \cdot d / \gamma_{bc}$ $f_{vcd} = 0.20 \sqrt[3]{f_{cd}}$ ただし, $f_{vcd} > 0.72 (N/mm^2) となる場合は <math>f_{vcd} = 0.72 (N/mm^2)$ $\beta_{\rm d} = \sqrt[4]{1/\rm d}$ ただし, $\beta_d > 1.5$ となる場合は $\beta_d = 1.5$ $\beta_{p} = \sqrt[3]{100 p_{v}} (d[m])$ ただし、 $\beta_{p} > 1.5 \ basel{eq:baseline}$ たる場合は $\beta_{p} = 1.5$ $\beta_n = 1 + 2 M_0 / M_u (N_d \ge 0)$ ただし, $\beta_n > 2.0$ となる場合は $\beta_n = 2.0$ $=1+4M_0/M_u$ (N_d<0) ただし, $\beta_n < 0$ となる場合は $\beta_n = 0$ ただし, $\beta_a < 1.0$ となる場合は $\beta_a = 1.0$ $\beta_{a} = 0.75 + \frac{1.4}{a/d}$ f['].cd: コンクリート圧縮強度の設計用値(N/mm²)で設計基準強度 f['].kを 材料係数 γ mc (=1.3) で除したもの $p_x = A_s / (b_x \cdot d)$: 引張鉄筋比 A 。: 引張側鋼材の断面積 b w: 部材の有効幅 d : 部材の有効高さ N'd:設計軸圧縮力 M₁:曲げモーメント耐力 M₀=N'_d・D/6: M_dに対する引張縁において、軸方向力によって発生する応力を打 ち消すのに必要なモーメント(デコンプレッションモーメント) D:断面高さ a/d: せん断スパン比

γ_{bc}:部材係数(=1.3)

 $V_{sd} = \{A_{w} \cdot f_{wyd} \cdot (\sin \alpha + \cos \alpha) / s\} \cdot z / \gamma_{bs}$ $\sum \sum \widetilde{C},$

A_w: 区間 s におけるせん断補強筋の総断面積

- f wyd : せん断補強筋の降伏強度を材料係数γms(1.0)で除したもので, 400N/mm²以下とする。ただし,コンクリートの圧縮強度の特性値f' _{ck}が 60N/mm²以上の時は,800N/mm²以下とする。
 - α : せん断補強筋と部材軸のなす角
 - s : せん断補強筋の配置間隔
 - ²: 圧縮応力の合力の作用位置から引張鋼材図心までの距離で d /1.15 とする。

γ_{bs}: 部材係数 (=1.1)

$$V_{cdd} = \beta_{d} \cdot \beta_{p} \cdot \beta_{a} \cdot f_{dd} \cdot b_{w} \cdot d/\gamma_{bc}$$

$$f_{dd} = 0.19 \sqrt{f_{cd}}$$

$$\beta_{d} = \sqrt[4]{1/d} (d[m])$$

$$\beta_{p} = \sqrt[3]{100 p_{v}}$$

$$\beta_{a} = \frac{5}{1 + (a/d)^{2}}$$

$$\gamma_{bc} : 部材係数 (=1.3)$$

$$V_{sdd} = \phi \cdot V_{sd}$$

$$\phi = -0.17 + 0.3 a/d + 0.33/p_{wb}$$
ただし, $0 \le \phi \le 1$

$$p_{wb} : ぜん断補強鉄筋比 (%)$$

土木学会マニュアルでは、コンクリート標準示方書におけるせん断耐力式のうち棒部 材式において等価せん断スパンにより設定可能な係数 β aを考慮している。これは、地 中に埋設されたラーメン構造で、分布荷重が卓越、スパン内に曲げモーメントの反曲点 が存在する等の載荷形態にある条件下では、せん断耐力が増大するという実験的知見を 踏まえ、より合理的なせん断耐力を与えるよう、コンクリート標準示方書のせん断耐力 式を精緻化したものである。

土木学会マニュアルにおけるせん断耐力式による評価においては,表 5-1 に示すと おり,複数の安全係数が見込まれていることから,せん断破壊に対して安全余裕を見込 んだ評価を実施することが可能である。

表 5-1 せん断耐力式において考慮している安全係数

安全係数			値	内容			
材料係数	コンクリート	γ_{mc}	1.30	コンクリートの特性値(圧縮強度)を低減			
部材係数	コンクリート	γ _{bc}	1.30) コンクリートが負担するせん断力を低減			
	鉄筋	γ _{bs}	1.10	せん断補強筋が負担するせん断力を低減			
構造解析係数 γ _a		1.05	応答値(断面力)を割り増し				

注記* : 土木学会マニュアルでは, 部材係数 y b = y b1 × y b2

$$\gamma_{b1} = \begin{cases} 1.3 (コンクリート) \\ 1.1 (鉄筋) \end{cases}$$
$$\gamma_{b2} = \begin{cases} 1.0 (R \le 0.01) \\ \frac{100R+2}{3} (0.01 < R \le 0.025) \\ 1.5 (R > 0.025) \end{cases}$$
ここで, R:層間変形角

とされている。

 γ_{b2} は層間変形角の値によらず,部材が降伏していない状態であれば γ_{b2} =1.0としてよい とされている。解析結果から軽油タンク基礎(6号機設備)の基礎版については降伏が認めら れなかったため, γ_{b2} =1.0とする。 (2) 鋼管杭

鋼管杭のせん断<mark>力</mark>に対する許容限界は、キャスク指針及び鋼・合成構造標準示方書に基づき、以下の式で求まる終局せん断強度とする。

鋼管杭のせん断照査に用いる照査用せん断力は,地震応答解析により得られたせん断力 に安全係数(構造解析係数)1.05を乗じることにより,せん断破壊に対して安全余裕を見 込んだ評価を実施する。

$$\gamma_{i} \frac{Q_{d}}{Q_{u}} < 1.0$$

ここで、 γ_{i} :構造物係数 (=1.0)
 $Q_{d} = \gamma_{a} \cdot Q$
 γ_{a} :構造解析係数 (=1.05)
 Q :応答計算による最大せん断力
 Q_{u} :鋼管杭の終局せん断強度

$$Q_{u} = A_{e} \cdot f_{s} / \kappa / \gamma_{b}$$

$$A_{e} : 腐食代を除いた杭の断面積$$

$$f_{s} : 鋼材の短期許容せん断応力度$$

$$\kappa : せん断応力度の分布係数で 2.0 とする。$$

$$\gamma_{b} : 部材係数 (=1.1)$$

- 5.2.3 基礎地盤の支持性能に対する許容限界
 - (1) 基礎地盤の押込みに対する支持性能評価

基礎地盤の押込みに対する許容限界は、V-2-1-3「地盤の支持性能に係る基本方針」に 基づき,道路橋示方書の杭基礎(中掘り杭工法)より設定する極限支持力に、キャスク指 針に基づく安全率1.2を考慮した終局鉛直支持力とする。杭周面の地盤が液状化層である 場合,有効応力解析により過剰間隙水圧比が95%以上と判定された地盤については液状化 するものとし、周面摩擦力を考慮しない。地盤改良体や非液状化層については、周面摩擦 力を支持力として考慮する。

終局鉛直支持力の算定条件を表 5-2及び表 5-3に示す。

$$R_{ua} = \frac{\gamma}{n} R_{u}$$

ここで, R : 終局鉛直支持力

- γ :極限支持力推定法の相違による安全率の補正係数
 (極限支持力を支持力推定式で算定するため、γ=1.0とする)
 - n :安全率(キャスク指針に基づき, n=1.2とする)
- R : 地盤から決まる杭の極限支持力(kN)

 $\mathbf{R}_{u} = \mathbf{q}_{d} \cdot \mathbf{A} + \mathbf{U} \cdot \mathbf{\Sigma} \mathbf{L}_{i} \cdot \mathbf{f}_{i}$

q_d: 杭先端における単位面積当たりの極限支持力度(kN/m²)

適用する杭工法及び杭先端の地盤種別に応じて設定

- q 」= 200・N (≦10000) (セメントミルク噴出撹拌方式)
- A : 杭先端面積(m²)
- N : 杭先端地盤における標準貫入試験のN値
- U : 杭の周長(m)
- L::周面摩擦力を考慮する層の層厚(m)
- f::周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

125 日	算定結果								
現日	1	2	3	4	5	6	7	8	
q _d A (kN)	5001	5001	5001	5001	5001	5001	5001	5001	
杭先端の極限支持力度 q d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000	10000	
杭先端面積A(m²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2.507	2.507	2.507	

表 5-2 地盤の支持性能に対する許容限界の算定条件(押込み, A-A断面)

注記* : 腐食代 1mm 考慮

評価位置

百日	算定結果								
現日	1	2	3	4	5	6	7	8	
$q_{d} A$ (kN)	5001	5001	5001	5001	5001	5001	5001	5001	
杭先端の極限支持力度 q _d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000	10000	
杭先端面積A(m²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2.507	2.507	2.507	

表 5-3(1) 地盤の支持性能に対する許容限界の算定条件(押込み, B-B断面)

注記* : 腐食代 1mm 考慮

表	5-	3	(2)	地般の支持性能に対する許容	容限界の管定条件	(押込み	B-B/新面)
11	0	0	(Δ)	地倫ツス団住船に刈りる町4		$(1T_{V})$	

百日	算定結果								
境日	9	10	11	12	13	14	15		
$q_{d} A$ (kN)	5001	5001	5001	5001	5001	5001	5001		
杭先端の極限支持力度 q d (kN/m ²)	10000	10000	10000	10000	10000	10000	10000		
杭先端面積A(m ²)*	0.500	0.500	0.500	0.500	0.500	0.500	0.500		
杭の周長U (m) *	2.507	2.507	2.507	2.507	2.507	2.507	2.507		

注記* : 腐食代 1mm 考慮

評価位置

(2) 基礎地盤の引抜きに対する評価

基礎地盤の引抜きに対する許容限界は,道路橋示方書の杭基礎(中掘り杭工法)より設 定する極限引抜き力に,キャスク指針に基づく安全率1.2を考慮した終局引抜き力とする。 杭周面の地盤が液状化層である場合,有効応力解析により過剰間隙水圧比が95%以上と判 定された地盤については液状化するものとし,周面摩擦力を考慮しない。地盤改良体や非 液状化層については,周面摩擦力を支持力として考慮する。

$$P_{a} = \frac{1}{n} P_{u}$$
ここで、 P_{a} : 終局引抜き力
n : 安全率(キャスク指針に基づき、 n = 1.2 とする)
 P_{u} : 地盤から決まる杭の極限引抜き力(kN)
 $P_{u} = U \cdot \Sigma L_{i} \cdot f_{i}$

- U :杭の周長(m)
- L_;:周面摩擦力を考慮する層の層厚(m)
- f::周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

6. 評価結果

6.1 地震応答解析結果

地震応答解析結果として、「ひずみ分布」、「断面力分布」、「曲率分布」、「最大せん断 ひずみ分布」及び「過剰間隙水圧比分布」を記載する。なお、断面力分布は単位奥行きあたり の断面力を図示する。

耐震評価においては、KK7 補足-027-1「資料1 屋外重要土木構造物の耐震安全性評価につ いて」の「9. 屋外重要土木構造物の耐震評価における追加解析ケースの選定について」に基 づき、全ての基準地震動Ssに対して実施する解析ケース①(基本ケース)で地震応答解析を 実施し、鋼管杭及び基礎地盤の支持性能については得られた応答値から、基礎版(鉄筋コンク リート部材)については「4. 基礎版の解析」に示す3次元構造解析から照査値を算定する。 また、曲げ軸力照査、せん断力照査及び基礎地盤の支持性能照査の各評価項目について、照査 値が最も厳しい(許容限界に対する余裕が最も小さい)地震動を用い、追加解析ケースとして 解析ケース②~⑤で地震応答解析を実施し、解析ケース①(基本ケース)と同様に照査値を算 定する。上記解析ケースの結果を踏まえ、さらに照査値が大きくなる可能性がある場合は、追 加解析を実施する。

- 6.1.1 解析ケースと照査値
 - 曲げ軸力照査
 - a. 鉄筋コンクリート部材

表 6-1 に,3 次元構造解析に基づく鉄筋コンクリート部材の曲げ軸力照査の実施ケースと照査値を示す。

解枝	斤ケース	鉄筋コンクリートの曲げ軸力照査						
地震動		1	2	3	(4)	5		
	++	0.01	0.01	0.01	0.01	0.01		
$S_{\alpha-1}$	-+	0.02	0.01	0.01	0.01	0.01		
55-1	+-	0.01						
		0.02						
Ss-2		0.01						
	++	0.01	0.01	0.01	0.01	0.01		
5 - 1	-+	0.01						
55-5	+-	0.01						
		0.01						
Ss-4		0.01						
Ss-5		0.01						
Ss-6		0.01						
Ss-7		0.01						
S ~ 9	++	0.01						
55-0	-+	0.01						

表 6-1 鉄筋コンクリート部材の曲げ軸力照査の実施ケースと照査値

b. 鋼管杭

表 6-2に、鋼管杭の曲げ軸力照査の実施ケースと照査値を示す。

☆ 0 ⁻ 2 <mark>興官加以田() 昭/J照宜() 夫旭() * へて照査 </mark>	表 6-2
---	-------

А	 А	断	而
1	1	H-7	

解材	斤ケース	鋼管杭の曲げ軸力照査						
地震動		(1)	2	3	4	(5)		
	++	0.73						
Sc_1	-+	0.74						
55-1	+-	0.72						
	s-2 0.48							
Ss-2		0.48						
	++	0.79	0.71	0.87	0.66	0.58		
Sa_2	-+	0.66						
58-5	+-	0.78		0.87				
		0.73						
Ss-4		0.16						
Ss-5		0.25						
Ss-6		0.27						
Ss-7		0.20						
Sc-8	++	0.69						
55 0	-+	0.73						

B-B断面

解析	斤ケース		鋼管杭	の曲げ軸フ	力照査	
地震動		1	2	3	(4)	5
	++	0.73	0.66	0.82	0.67	0.62
S ~ 1	-+	0.81	0.75	0.91	0.82	0.76
55-1	+-	0.74				
		0.72				
Ss-2		0.58				
	++	0.66				
Sa_2	-+	0.81		0.90		
38-3	+-	0.65				
		0.81				
Ss-4		<mark>0. 47</mark>				
Ss-5		0.53				
Ss-6		0.66				
Ss-7		0.52				
Sc-8	++	0.61				
0 60	-+	0.53				

注: □は,前述 3.5.1 のフローに基づき,解析ケース②~⑤を実施す る地震動の基本ケース①の照査値を示す。
- (2) せん断力照査
 - a. 鉄筋コンクリート部材

表 6-3 に、3 次元構造解析に基づく鉄筋コンクリート部材のせん断力照査の実施ケースと照査値を示す。

解材	斤ケース	鉜	「筋コンク」	リートのせ	ん断力照査	È
地震動		1)	2	3	(4)	5
	++	0.23	0.20	0.23	0.21	0.21
$S_{\alpha-1}$	-+	0.26	0.26	0.26	0.26	0.26
55-1	+-	0.27				
		0.24				
Ss-2		0.27				
	++	0.23	0.20	0.21	0.20	0.20
5	-+	0.21				
55-5	+-	0.20				
		0.20				
Ss-4		0.18				
Ss-5		0.18				
Ss-6		0.21				
Ss-7		0.17				
Ss-8	++	0.19				
	-+	0.21				

表 6-3 鉄筋コンクリート部材のせん断力照査の実施ケースと照査値

b. 鋼管杭

表 6-4に、鋼管杭のせん断力照査の実施ケースと照査値を示す。

表 6-4 鋼管杭のせん断力照査の実施ケースと照査値

A-A断面

解材	斤ケース	鋼管杭のせん断力照査					
地震動		1)	2	3	4	5	
	++	0.45					
$S_{\alpha-1}$	-+	0.45					
55-1	+-	0.44					
		0.44					
Ss-2		0.32					
	++	0.47	0.44	0.49	0.42	0.39	
So-2	-+	0.41					
52 0	+-	0.46					
		0.49					
Ss-4		0.12					
Ss-5		0.20					
Ss-6		0.21					
Ss-7		0.17					
Ss-8	++	0.48					
	-+	0.47					

B-B断面

解析ケース		鋼管杭のせん断力照査					
地震動		1)	2	3	4	(5)	
	++	0.65	0.60	0.75	0.65	0.60	
S _c _1	-+	0.56	0.53	0.62	0.56	0.53	
55-1	+-	0.62		0.73			
		0.56					
Ss-2		0.55					
	++	0.55					
Sa_2	-+	0.52					
58-5	+-	0.55					
		0.52					
Ss-4		0.44					
Ss-5		0.38					
Ss-6		0.52					
Ss-7		0.43					
Sc-8	++	0.48					
5S-8	-+	0.52					

注: □は,前述 3.5.1 のフローに基づき,解析ケース②~⑤を実施す る地震動の基本ケース①の照査値を示す。 (3) 基礎地盤の支持性能照査

表 6-5 に基礎地盤の押込みに対する支持性能照査の実施ケースと照査値,表 6-6 に基礎地盤の引抜きに対する支持性能照査の実施ケースと照査値を示す。

表 6-5 基礎地盤の押込みに対する支持性能照査の実施ケースと照査値

A-A断面

解林	斤ケース	基礎地盤の押込みに対する支持性能照査					
地震動		1	2	3	4	5	
	++	0.19					
S _c _1	-+	0.22					
55-1	+-	0.19					
		0.19					
Ss-2		0.13					
	++	0.15	0.13	0.17	0.13	0.12	
Sa_2	-+	0.17					
58-5	+-	0.14					
		0.19					
Ss-4		0.12					
Ss-5		0.12					
Ss-6		0.09					
Ss-7		0.11					
S ₆ _9	++	0.28					
SS-8	-+	0.16					

解析ケース		基礎地盤の押込みに対する支持性能照査				
地震動		1	2	3	(4)	5
	++	0.27	0.27	0.26	0.28	0.27
$S_{\alpha-1}$	-+	0.27	0.26	0.26	0.26	0.25
55-1	+-	0.25				
		0.28				
Ss-2		0.27				
	++	0.23				
Sa_2	-+	0.24				
38-3	+-	0.25				
		0.22				
Ss-4		0.21				
Ss-5		0.16				
Ss-6		0.21				
Ss-7		0.16				
S9	++	0.21				
55-0	-+	0.16				

解析	斤ケース	鋼管杭の引抜きに対する支持性能照査				
地震動		1	2	3	4	(5)
	++	0.86				
$S_{\alpha-1}$	-+	0.91		0.96		
55-1	+-	0.84				
		0.89				
Ss-2		0.61				
	++	0.90	0.83	0.97	0.80	0.74
5 ~ 2	-+	0.82				
38-3	+-	0.91		<mark>0. 98</mark>		
		0.86				
Ss-4		0.05				
Ss-5		0.26				
Ss-6		0.22				
Ss-7		0.15				
S 9	++	0.57				
55-0 	-+	0.74				

B-B断面

解枯	斤ケース	鋼管杭の引抜きに対する支持性能照査					
地震動		\bigcirc	2	3	4	5	
	++	0.72	0.73	0.71	0.68	0.67	
S ~ 1	-+	0.66	0.65	0.66	0.65	0.63	
55-1	+-	0.81					
		0.69					
Ss-2		0.58					
	++	0.56					
5	-+	0.49					
55-5	+-	0.57					
		0.50					
Ss-4		0.43					
Ss-5		0.29					
Ss-6		0.61					
Ss-7		0.46					
S ~ 9	++	0.35					
5s-8	-+	0.62					

6.1.2 ひずみ分布図(鉄筋コンクリート部材の曲げ軸力照査)

軽油タンク基礎(6号機設備)の鉄筋コンクリート部材の曲げ軸力照査において,各 解析ケースのうち最も厳しい照査値となる結果を表 6-7に示す。また,該当する解析 ケースのひずみ分布図を図 6-1に示す。なお,図 6-1は,表 6-7に示す解析ケース の照査値最大時における最大ひずみと同方向のひずみ分布を示している。

表 6-7 鉄筋コンクリート部材の曲げ軸力照査結果

解析 ケース	地震動	照査用圧縮ひずみ* ε _d (μ)	限界ひずみ ε _r (μ)	照查値
1	Ss-1-+	107	10000	0.02

(最も厳しい照査値とその地震動)

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε ×構造解析係数 γ a

図 6-1 鉄筋コンクリート部材の曲げ軸力照査が最も厳しくなるケースでのひずみ分布図 (解析ケース①, 地震動 Ss-1-+, t=5.72s)

6.1.3 断面力分布(鉄筋コンクリート部材のせん断力照査)

軽油タンク基礎(6号機設備)の鉄筋コンクリート部材のせん断力照査において,各解 析ケースのうち最も厳しい照査値となる結果を表 6-8に示す。また,該当する解析ケー スの断面力分布図(曲げモーメント,軸力,せん断力)を図 6-2に示す。なお,図 6-2は,表 6-8に示す解析ケースの照査値最大時における各断面力最大値と同方向の断面力 分布を示している。

表 6-8 鉄筋コンクリート部材のせん断力照査結果

Ē					
	解析	地電動	照査用せん断力*	せん断耐力	照査値
	ケース	地辰勤	V_{d} (kN)	V_{yd} (kN)	$V_{d} / V_{y d}$
	\bigcirc	Ss-1+-	511	1920	0.27

(最も厳しい照査値とその地震動)

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

図 6-2 (2) 鉄筋コンクリート部材のせん断力照査が最も厳しくなるケースでの断面力分布図 (解析ケース①, 地震動 Ss-1+-, t=5.93s)

6.1.4 曲率分布(鋼管杭の曲げ軸力照査)

鋼管杭の曲げ軸力照査について,各解析ケースのうち最も厳しい照査値となる解析ケースを表 6-9 及び表 6-10 に示す。また,該当する解析ケースにおいて最も厳しい照査値となる時刻における曲率分布図を図 6-3 及び図 6-4 に示す。

表 6-9 鋼管杭の曲げ軸力照査結果(A-A断面)

(最も厳しい照査値とその地震動)

評価位置*1	解析ケース	地震動	照査用曲率*² φ _d (1/m)	降伏モーメント My に対する曲率 _{φy} (1/m)	照査値 φ a∕φy
2 (肉厚 9mm の杭)	3	Ss-3++	1.78×10^{-3}	2.05×10^{-3}	0.87

注記*1:評価位置は下図に示す。

*2 :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

評価位置

表 6-10 鋼管杭の曲げ軸力照査結果(B-B断面)

評価位置*1	解析ケース	地震動	照査用曲率*² φ _d (1/m)	降伏モーメント My に対する曲率 _{φy} (1/m)	照査値 φ a∕φy
9 (肉厚 9mm の杭)	3	Ss-1-+	1.58×10^{-3}	1.75×10^{-3}	0. 91

(各部材において最も厳しい照査値とその地震動)

注記*1 :評価位置は下図に示す。

*2 :照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

曲率 (×10⁻³ 1/m) 照査値が最大となる肉厚 9mm の杭

図 6-3 鋼管杭において最も厳しい照査値の曲率分布(A-A断面) (解析ケース③, 地震動 Ss-3++, t=35.68s)

曲率 (×10⁻³ 1/m) 照査値が最大となる肉厚 9mm の杭

図 6-4 鋼管杭において最も厳しい照査値の曲率分布(B-B断面) (解析ケース③, 地震動 Ss-1-+, t=5.79s)

6.1.5 せん断力分布(鋼管杭のせん断力照査)

鋼管杭のせん断力照査について,解析ケースのうち最も厳しい照査値となる解析ケース を表 6-11 及び表 6-12 に示す。また,該当する解析ケースにおいて最も厳しい照査値と なる時刻におけるせん断力分布図を図 6-5 及び図 6-6 に示す。

表 6-11 鋼管杭のせん断力照査結果 (A-A断面)

河伍位置*1	解析ケース 地	生きま	照査用せん断力*2	終局せん断 <mark>強度</mark>	照査値	
〒11山120月		地辰勤	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$Q_{d} \swarrow Q_{u}$	
1	3	$S_{c-3} + +$	967	1977	0.49	
(肉厚 14mm の杭)		110 60	307	1911	0.49	

(各部材において最も厳しい照査値とその地震動)

注記*1:評価位置は下図に示す。

*2 : 照査用せん断力Q_d=発生せん断力×構造解析係数 y_a

評価位置

表 6-12 鋼管杭のせん断力照査結果(B-B断面)

河伍位要*1	御托をニュー地電電	地雪動	照査用せん断力*2	終局せん断 <mark>強度</mark>	照査値
計11山1 <u>1</u> 」目	単位直 解析クース 地島		Q_{d} (kN)	\mathbf{Q}_{u} (kN)	$Q_d \swarrow Q_u$
15	0	Sa 1	1467	1077	0.75
(肉厚 14mm の杭)	3	55-1++	1407	1977	0.75

(各部材において最も厳しい照査値とその地震動)

注記*1 :評価位置は下図に示す。

*2 :照査用せん断力Q_d=発生せん断力×構造解析係数γ_a

評価位置

せん断力(kN) 照査値が最大となる肉厚 14mm の杭

図 6-5 鋼管杭において最も厳しい照査値の地震時せん断力分布(A-A断面) (解析ケース③, 地震動 Ss-3++, t=35.68s)

せん断力 (kN) 照査値が最大となる肉厚 14mm の杭

図 6-6 鋼管杭において最も厳しい照査値の地震時せん断力分布(B-B断面) (解析ケース③, 地震動 Ss-1++, t=5.77s)

6.1.6 最大せん断ひずみ分布

地盤に発生した最大せん断ひずみを確認するため、曲げ軸力照査及びせん断力照査において最大照査値を示した地震動について、地震応答解析の全時刻における各地盤要素の最大せん断ひずみの分布を示す。表 6-13 に最大照査値を示す解析ケース一覧を示す。A-A断面における最大せん断ひずみ分布図を図 6-7~図 6-9 に、B-B断面における最大 せん断ひずみ分布図を図 6-10~図 6-13 に示す。

討研究		評価項目			
計加部小工	即阻	曲げ軸力照査	せん断力照査		
鉄筋コンクリート部材		Ss-1-+ (解析ケース①)	Ss-1+- (解析ケース①)		
四次大士	A-A断面	Ss-3++ (解析ケース③)	Ss-3++ (解析ケース③)		
鲥官 伔	B-B断面	Ss-1-+ (解析ケース③)	Ss-1++ (解析ケース③)		

表 6-13 最大照査値を示す解析ケース一覧

	1	2	3	4	5
解析ケース	基本ケース	地盤物性のば らつき(+1σ) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のは らつき (+1 g) を考慮して非 液状化の条件 を仮定した解 析ケース
地盤剛性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性	地盤剛性
設定	(平均値)	(+1 σ)	(-1σ)	(平均値)	(+1σ)
液状化強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
特性の設定	特性(-1σ)	特性(-1σ)	特性(-1σ)	ータを非適用	ータを非適用

(解析ケース①,地震動 Ss−1-+)

鉄筋コンクリート部材の曲げ軸力照査が最も厳しい解析ケース

0.00

構造物周辺拡大図

鉄筋コンクリート部材のせん断力照査が最も厳しい解析ケース

構造物周辺拡大図

図 6-12 B-B断面の地盤の最大せん断ひずみ分布図 (解析ケース③, 地震動 Ss-1-+)

鋼管杭の曲げ軸力照査が最も厳しい解析ケース

構造物周辺拡大図

図 6-13 B-B断面の地盤の最大せん断ひずみ分布図 (解析ケース③,地震動 Ss-1++)

鋼管杭のせん断力照査が最も厳しい解析ケース

6.1.7 過剰間隙水圧比分布

地盤に発生した過剰間隙水圧比を確認するため、曲げ軸力照査及びせん断力照査におい て最大照査値を示した地震動について、地震応答解析の全時刻における各地盤要素の過剰 間隙水圧比の最大値分布を示す。表 6-14 に最大照査値を示す解析ケース一覧を示す。A -A断面における過剰間隙水圧比分布図を図 6-14~図 6-16 に、B-B断面における過 剰間隙水圧比分布図を図 6-17~図 6-20 に示す。

討百名		評価項目			
計1四首的立.	即阻	曲げ軸力照査	せん断力照査		
鉄筋コンクリート部材		Ss-1-+ (解析ケース①)	Ss-1+- (解析ケース①)		
公司入外・十十	A-A断面	Ss-3++ (解析ケース③)	Ss-3++ (解析ケース③)		
婀倌忛	B-B断面	Ss-1-+ (解析ケース③)	Ss-1++ (解析ケース③)		

表 6-14 最大照査値を示す解析ケース一覧

	1	2	3	4	5
解析ケース	基本ケース	地盤物性のば らつき(+1σ) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のは らつき (+1 g) を考慮して非 液状化の条件 を仮定した解 析ケース
地盤剛性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性	地盤剛性
設定	(平均値)	(+1 σ)	(-1 g)	(平均値)	(+1σ)
液状化強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
特性の設定	特性(-1σ)	特性(-1σ)	特性(-1σ)	ータを非適用	ータを非適用

(解析ケース①, 地震動 Ss-1-+)

鉄筋コンクリート部材の曲げ軸力照査で照査値が最も厳しい解析ケース

(解析ケース①, 地震動 Ss-1+-)

鉄筋コンクリート部材のせん断力照査で照査値が最も厳しい解析ケース

鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい解析ケース

図 6-17 B-B断面の最大過剰間隙水圧比分布図

(解析ケース①, 地震動 Ss-1-+)

鉄筋コンクリート部材の曲げ軸力照査が最も厳しい解析ケース

全体図

構造物周辺拡大図

図 6-19 B-B断面の最大過剰間隙水圧比分布図

(解析ケース③, 地震動 Ss-1-+)

鋼管杭の曲げ軸力照査が最も厳しい解析ケース

構造物周辺拡大図

図 6-20 B-B断面の最大過剰間隙水圧比分布図

(解析ケース③,地震動 Ss-1++)

鋼管杭のせん断照査が最も厳しい解析ケース

- 6.2 鉄筋コンクリート部材の耐震評価
 - 6.2.1 鉄筋コンクリート部材の曲げ軸力に対する評価結果
 3次元構造解析に基づく鉄筋コンクリート部材の曲げ軸力照査結果を表 6-15に示す。
 各表には、「4.3 照査時刻の選定」に基づき選定した各照査時刻における評価結果のうち、
 解析ケース及び地震動ごとに照査値が最大となる結果を示している。

照査結果より、照査用圧縮ひずみが限界ひずみを下回ることを確認した。

解析	山亭乱	照査用圧縮ひずみ*	限界ひずみ	四本体
ケース	地晨期	ε _d (μ)	ε _г (μ)	照宜旭
	Ss-1++	89		0.01
	Ss-1-+	107		0.02
	Ss-1+-	91		0.01
	Ss-1	103		0.02
	Ss-2	98		0.01
	$S_{S}-3++$	79		0.01
	Ss-3-+	85		0.01
\bigcirc	Ss-3+-	86		0.01
	Ss-3	87		0.01
	Ss-4	73		0.01
	Ss-5	65		0.01
	Ss-6	72		0.01
	Ss-7	60		0.01
	$S_{S}-8++$	97	10000	0.01
	Ss-8-+	76		0.01
	Ss-1++	81		0.01
2	Ss-1-+	87		0.01
	$S_{S}-3++$	81		0.01
	Ss-1++	88		0.01
3	Ss-1-+	91		0.01
	$S_{S}-3++$	85		0.01
	Ss-1++	87		0.01
4	Ss-1-+	91		0.01
	Ss-3++	83		0.01
	Ss-1++	84		0.01
5	Ss-1-+	89		0.01
	$S_{S}-3++$	80		0.01

表 6-15 鉄筋コンクリート部材の曲げ軸力照査結果

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε ×構造解析係数 γ a

6.2.2 鉄筋コンクリート部材のせん断力に対する評価結果

3次元構造解析に基づく鉄筋コンクリート部材のせん断力照査結果を表 6-16 に示す。 各表には、「4.3 照査時刻の選定」に基づき選定した各照査時刻における評価結果のうち、 解析ケース及び地震動ごとに照査値が最大となる結果を示している。

照査結果より、照査用せん断耐力がせん断耐力を下回ることを確認した。
解析	地電動	照査用せん断力*	せん断耐力	照查值
ケース	地展到	V_{d} (kN)	V_{yd} (kN)	$V_{d} \swarrow V_{y d}$
	Ss-1++	591	2602	0. 23
	Ss-1-+	486	1921	0.26
	Ss-1+-	511	1920	0.27
	Ss-1	448	1918	0.24
	Ss-2	504	1937	0.27
	$S_{S}-3++$	586	2662	0.23
	Ss-3-+	398	1907	0.21
	Ss-3+-	538	2695	0.20
	Ss-3	378	1906	0.20
	Ss-4	327	1919	0.18
	Ss-5	336	1941	0.18
	Ss-6	398	1921	0.21
	Ss-7	321	1890	0.17
	$S_{S}-8++$	483	2596	0.19
	Ss-8-+	545	2697	0.21
	Ss-1++	326	1696	0.20
2	Ss-1-+	488	1926	0.26
	$S_{S}-3++$	330	1687	0.20
	Ss-1++	436	1914	0.23
3	Ss-1-+	488	1927	0.26
	$S_{S}-3++$	356	1745	0.21
	Ss-1++	358	1728	0.21
4	Ss-1-+	487	1926	0.26
	$S_{S}-3++$	341	1720	0.20
	Ss-1++	402	1989	0. 21
5	Ss-1-+	485	1925	0.26
	Ss - 3 + +	322	1679	0. 20

表 6-16 鉄筋コンクリート部材のせん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 γ_a

6.3 鋼管杭の耐震評価

6.3.1 鋼管杭の曲げ軸力に対する評価結果 鋼管杭の曲げ軸力照査結果を表 6-17 及び表 6-18 に示す。

照査結果より, 照査用曲率が終局曲率または降伏モーメントに対する曲率を下回ること を確認した。

	F					
解析 ケース	評価位置*1	地震動	照査用曲率*² ф d (1/m)	限界曲率* ³ ϕ_u (1/m) または ϕ_v (1/m)	照査値 ϕ_d / ϕ_u または ϕ_d / ϕ_u	
	2(肉厚 9mm)	Ss-1++	1.54×10^{-3}	2.11×10^{-3}	0.73	
	2(肉厚 9mm)	Ss-1-+	1.55×10^{-3}	2. 10×10^{-3}	0.74	
	2(肉厚 9mm)	Ss-1+-	1.52×10^{-3}	2. 12×10^{-3}	0.72	
	2(肉厚 9mm)	Ss-1	1.52×10^{-3}	2. 09×10^{-3}	0.73	
	2(肉厚 9mm)	Ss-2	1.08×10^{-3}	2. 29×10^{-3}	0.48	
	2(肉厚 9mm)	Ss-3++	1.64×10^{-3}	2. 09×10^{-3}	0.79	
	2(肉厚 9mm)	Ss-3-+	1.42×10^{-3}	2. 17×10^{-3}	0.66	
1	2(肉厚 9mm)	Ss-3+-	1.60×10^{-3}	2. 07×10^{-3}	0.78	
	7(肉厚 9mm)	Ss-3	1.79×10^{-3}	2. 48×10^{-3}	0.73	
	6(肉厚 9mm)	Ss-4	3.65×10^{-4}	2. 35×10^{-3}	0.16	
	2(肉厚 9mm)	Ss-5	6. 18×10^{-4}	2. 49×10^{-3}	0.25	
	2(肉厚 9mm)	Ss-6	6.51×10^{-4}	2. 47×10^{-3}	0.27	
	2(肉厚 9mm)	Ss-7	4.97×10^{-4}	2. 54×10^{-3}	0.20	
	7(肉厚 9mm)	Ss-8++	1.73×10^{-3}	2. 53 $\times 10^{-3}$	0.69	
	2(肉厚 9mm)	Ss-8-+	1.48×10^{-3}	2. 05×10^{-3}	0.73	
2	2(肉厚 9mm)	Ss-3++	1.51×10^{-3}	2. 14×10^{-3}	0.71	
	2(肉厚 9mm)	Ss-3++	1.78×10^{-3}	2. 05×10^{-3}	0.87	
3	2(肉厚 9mm)	Ss-3+-	1.74×10^{-3}	2. 02×10^{-3}	0.87	
4	2(肉厚 9mm)	Ss-3++	1.44×10^{-3}	2. 19×10^{-3}	0.66	
5	2(肉厚 9mm)	Ss-3++	1.29×10^{-3}	2. 24×10^{-3}	0.58	

表 6-17 鋼管杭の曲げ軸力照査結果(A-A断面)

- *2 : 照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a
- *3:径厚比が 2r/t≤90 を満たす鋼管杭(肉厚 14mm の鋼管杭)については終局曲率φ_u, 満たさない鋼管杭(肉厚 9mm の鋼管杭)については降伏モーメントに対する曲率φ_y とする。

解析			昭香用曲率*2	限界曲率*3	照查值
ケース	評価位置*1	地震動	مر (1/m)	φ _u (1/m) または	φ d∕φuまたは
			ψ d (1/m)	ϕ_{y} (1/m)	ф d / ф у
	9(肉厚 9mm)	Ss-1++	1.56×10^{-3}	2. 15×10^{-3}	0.73
	9(肉厚 9mm)	Ss-1-+	1.46×10^{-3}	1.81×10^{-3}	0.81
	9(肉厚 9mm)	Ss-1+-	1.53×10^{-3}	2. 08×10^{-3}	0.74
	9(肉厚 9mm)	Ss-1	1.33×10^{-3}	1.86×10^{-3}	0.72
	9(肉厚 9mm)	Ss-2	$1.06 imes 10^{-3}$	1.85×10^{-3}	0.58
	9(肉厚 9mm)	$S_{S}-3++$	1.47×10^{-3}	2. 26×10^{-3}	0.66
	9(肉厚 9mm)	Ss-3-+	1.54×10^{-3}	1.92×10^{-3}	0.81
1	9(肉厚 9mm)	Ss-3+-	1.45×10^{-3}	2. 26×10^{-3}	0.65
	9(肉厚 9mm)	Ss-3	1.55×10^{-3}	1.93×10^{-3}	0.81
	9(肉厚 9mm)	Ss-4	9. 47×10^{-4}	2. 02×10^{-3}	<mark>0. 47</mark>
	9(肉厚 9mm)	Ss-5	1.23×10^{-3}	2. 36×10^{-3}	0.53
	9(肉厚 9mm)	Ss-6	1.49×10^{-3}	2. 29×10^{-3}	0.66
	9(肉厚 9mm)	Ss-7	1.22×10^{-3}	2. 36×10^{-3}	0.52
	9(肉厚 9mm)	Ss-8++	1.18×10^{-3}	1.96×10^{-3}	0.61
	9(肉厚 9mm)	Ss-8-+	1.16×10^{-3}	2. 23×10^{-3}	0.53
	9(肉厚 9mm)	Ss-1++	1.44×10^{-3}	2. 19×10^{-3}	0.66
2	9(肉厚 9mm)	Ss-1-+	1.37×10^{-3}	1.85×10^{-3}	0.75
	9(肉厚 9mm)	Ss-1++	1.71×10^{-3}	2. 09×10^{-3}	0.82
3	9(肉厚 9mm)	Ss-1-+	1.58×10^{-3}	1.75×10^{-3}	0.91
	9(肉厚 9mm)	Ss-3-+	1.70×10^{-3}	1.89×10^{-3}	0.90
	9(肉厚 9mm)	Ss-1++	1.25×10^{-3}	1.87×10^{-3}	0.67
(4)	9(肉厚 9mm)	Ss-1-+	1.49×10^{-3}	1.82×10^{-3}	0.82
	9(肉厚 9mm)	Ss-1++	1.17×10^{-3}	1.90×10^{-3}	0.62
5	9(肉厚 9mm)	Ss-1-+	1.39×10^{-3}	1.84×10^{-3}	0.76

表 6-18 鋼管杭の曲げ軸力照査結果(B-B断面)

*2 :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

*3 :径厚比が $2r/t \leq 90$ を満たす鋼管杭(肉厚 14mm の鋼管杭) については終局曲率 ϕ_u , 満たさない鋼管杭(肉厚 9mm の鋼管杭) については降伏モーメントに対する曲率 ϕ_y とする。

評価位置

6.3.2 鋼管杭のせん断力に対する評価結果
 鋼管杭のせん断力照査結果を表 6-19及び表 6-20に示す。
 照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

	÷				
解析	⇒(五)(二)(二)(二)	业重新	照査用せん断力*2	終局せん断 <mark>強度</mark>	照查值
ケース	計111111月	地展到	\mathbf{Q}_{d} (kN)	Q_u (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
	1	Ss-1++	876	1977	0.45
	1	Ss-1-+	870	1977	0.45
	1	Ss-1+-	864	1977	0.44
	1	Ss-1	864	1977	0.44
	1	Ss-2	626	1977	0.32
	1	$S_{S}-3++$	916	1977	0.47
	1	Ss-3-+	795	1977	0.41
1	1	Ss-3+-	903	1977	0.46
	7	Ss-3	598	1224	0.49
	6	Ss-4	145	1224	0.12
	1	Ss-5	380	1977	0.20
	1	Ss-6	401	1977	0.21
	1	Ss-7	330	1977	0.17
	7	Ss-8++	581	1224	0.48
	1	Ss-8-+	928	1977	0.47
2	1	$S_{S}-3++$	865	1977	0.44
3	1	$S_{S}-3++$	967	1977	0. 49
4	1	$S_{S}-3++$	814	1977	0. 42
5	1	$S_{S}-3++$	757	1977	0.39

表 6-19 鋼管杭のせん断力照査結果(A-A断面)

*2 : 照査用せん断力 Q_d =発生せん断力×構造解析係数 γ_a

解析		山西利	照査用せん断力*2	終局せん断 <mark>強度</mark>	照査値
ケース	評価位置**	地震動	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
	15	Ss-1++	784	1224	0.65
	15	Ss-1-+	675	1224	0.56
	15	Ss-1+-	1224	1977	0.62
	15	Ss-1	675	1224	0.56
	15	Ss-2	661	1224	0.55
	14	$S_{S}-3++$	665	1224	0.55
	14	Ss-3-+	631	1224	0.52
1	14	Ss-3+-	667	1224	0.55
	14	Ss-3	632	1224	0.52
	15	Ss-4	537	1224	0.44
	15	Ss-5	460	1224	0.38
	15	Ss-6	1009	1977	0.52
	14	Ss-7	525	1224	0.43
	15	Ss-8++	577	1224	0.48
	15	Ss-8-+	1020	1977	0.52
0	15	Ss-1++	726	1224	0.60
2	15	Ss-1-+	642	1224	0.53
	15	Ss-1++	1467	1977	0.75
3	15	Ss-1-+	1216	1977	0.62
	15	Ss-1+-	888	1224	0.73
	15	Ss-1++	791	1224	0.65
(4)	15	Ss-1-+	1094	1977	0.56
	15	Ss-1++	734	1224	0.60
(5)	15	Ss-1-+	1030	1977	0.53

表 6-20 鋼管杭のせん断力照査結果(B-B断面)

*2 : 照査用せん断力Q_d=発生せん断力×構造解析係数γ_a

評価位置

- 6.4 基礎地盤の支持性能に対する支持力評価
 - 6.4.1 基礎地盤の押込みに対する支持性能評価
 基礎地盤の押込みに対する支持性能照査結果を表 6-21 及び表 6-22 に示す。
 照査結果より、全時刻歴において発生した杭頭の鉛直力が終局鉛直支持力を下回ること
 を確認した。

	× • ==				
解析	⇒在告要*1	地雷乱	鉛直力	終局鉛直支持力*2	照查値
ケース	F平1Ⅲ1 <u>┘</u> 」目、	地展到	R _a (kN)	R_{ua} (kN)	R a / R u a
	7	Ss-1++	1373	7530	0.19
	7	Ss-1-+	1586	7530	0.22
	7	Ss-1+-	1384	7530	0.19
	7	Ss-1	1383	7530	0.19
	7	Ss-2	905	7530	0.13
	7	Ss-3++	1068	7530	0.15
	7	Ss-3-+	1213	7530	0.17
1	7	Ss-3+-	1044	1044 7530	
	7	Ss-3	1377	7530	0.19
	7	Ss-4	875	7530	0.12
	7	Ss-5	899	7530	0.12
	7	Ss-6	665	7530	0.09
	7	Ss-7	780	7530	0.11
	7	Ss-8++	2082	7530	0.28
	7	Ss-8-+	1169	7530	0.16
2	7	$S_{s-3}++$	947	7530	0.13
3	7	$S_{s-3}++$	1222	7530	0.17
4	7	$S_{S-3}++$	955	7530	0.13
5	7	$S_{s-3}++$	866	7530	0.12

表 6-21 基礎地盤の押込みに対する支持性能照査結果(A-A断面)

*2 :終局鉛直支持力Rua=極限支持力Ru÷安全率

解析			鉛直力	終局鉛直支持力*2	照查値
ケース	評価位置*1	地震動	R _a (kN)	R _{ua} (kN)	R a / R u a
	1	Ss-1++	1784	6617	0.27
	1	Ss-1-+	1734	6617	0.27
	1	Ss-1+-	1637	6617	0.25
	1	Ss-1	1818	6617	0.28
	1	Ss-2	1776	6617	0.27
	1	$S_{S}-3++$	1484	6617	0.23
	1	Ss-3-+	1541	6617	0.24
1	1	Ss-3+-	1652	6617	0.25
	1	Ss-3	1438	6617	0.22
	1	Ss-4	1360	6617	0.21
	1	Ss-5	1043	6617	0.16
	1	Ss-6	1359	6617	0.21
	1	Ss-7	1058	6617	0.16
	1	Ss-8++	1332	6617	0.21
	1	Ss-8-+	1045	6617	0.16
0	1	Ss-1++	1754	6617	0.27
2	1	Ss-1-+	1717	6617	0.26
3	1	Ss-1++	1705	6617	0.26
0	1	Ss-1-+	1667	6617	0.26
	1	Ss-1++	1797	6617	0.28
4	1	Ss-1-+	1656	6617	0.26
6	1	Ss-1++	1743	6617	0.27
(5)	1	Ss-1-+	1606	6617	0.25

表 6-22 基礎地盤の押込みに対する支持性能照査結果(B-B断面)

6.4.2 基礎地盤の引抜きに対する支持性能評価

基礎地盤の引抜きに対する支持性能照査結果を表 6-23 及び表 6-24 に示す。 照査結果より,全時刻歴において発生した引抜き力が終局引抜き力を下回ることを確認 した。

	12 0 20	<u> 密硬地盈 / / / / / / / / / / / / / / / / / / /</u>			
解析	亚 価位置*1	世高朝	引抜き力	終局引抜き力*2	照査値
ケース	可叫些區	地皮到	P_{a} (kN)	P _{ua} (kN)	P a / P u a
	7	Ss-1++	2890	3363	0.86
	7	Ss-1-+	3030	3363	0.91
	7	Ss-1+-	2816	3363	0.84
	7	Ss-1	2989	3363	0.89
	7	Ss-2	2024	3363	0.61
	7	$S_{S}-3++$	3007	3363	0.90
	7	Ss-3-+	2754	3363	0.82
1)	7	Ss-3+-	3060	3363	0.91
	7	Ss-3	2862	3363	0.86
	7	Ss-4	141	3363	0.05
	7	Ss-5	850	3363	0.26
	7	Ss-6	735	3363	0.22
	7	Ss-7	504	3363	0.15
	7	Ss-8++	1884	3363	0.57
	7	Ss-8-+	2481	3363	0.74
2	7	Ss-3++	2787	3363	0.83
	7	Ss-1-+	3205	3363	0.96
3	7	Ss-3++	3239	3363	0.97
	7	Ss-3+-	<mark>3278</mark>	<mark>3363</mark>	<mark>0. 98</mark>
4	7	Ss-3++	2674	3363	0.80
5	7	$S_{S}-3++$	2458	3363	0.74

表 6-23 <mark>基礎地盤の引抜きに対する支持性能照査結果(A-A断面)</mark>

注記*1:評価位置は下図に示す。

*2 :終局引抜き力Pua=極限引抜き力Pu÷安全率

-					2
解析	評価位置 ^{*1}		引抜き力	終局引抜き力*2	照查值
ケース		地放动	P _a (kN)	P _{ua} (kN)	P _a /P _{ua}
	1	Ss-1++	1749	2450	0.72
	1	Ss-1-+	1617	2450	0.66
	1	Ss-1+-	1973	2450	0.81
	1	Ss-1	1670	2450	0.69
	1	Ss-2	1402	2450	0.58
	1	$S_{S}-3++$	1358	2450	0.56
	1	Ss-3-+	1178	2450	0.49
1	1	Ss-3+-	1395	2450	0.57
	1	Ss-3	1220	2450	0.50
	5	Ss-4	1218	2868	0.43
	15	Ss-5	1048	3666	0.29
	1	Ss-6	1477	2450	0.61
	1	Ss-7	1127	2450	0.46
	1	Ss-8++	854	2450	0.35
	1	Ss-8-+	1502	2450	0.62
0	1	Ss-1++	1778	2450	0.73
2	1	Ss-1-+	1579	2450	0.65
0	1	Ss-1++	1727	2450	0.71
0	1	Ss-1-+	1599	2450	0.66
	1	Ss-1++	1644	2450	0. 68
4	1	Ss-1-+	1591	2450	0.65
Ē	1	Ss-1++	1636	2450	0.67
(5)	1	Ss-1-+	1540	2450	0.63

表 6-24 基礎地盤の引抜きに対する支持性能照査結果(B-B断面)

7. まとめ

軽油タンク基礎(6号機設備)は、基準地震動Ssに対して、構造物の地震応答解析に基づく 曲げ軸力に伴う圧縮縁コンクリートひずみ、曲率及びせん断力が各部材の要求性能に応じた許容 限界以下であることを確認した。基礎地盤の支持性能評価については、地震応答解析に基づく杭 頭に発生する鉛直力が終局鉛直支持力及び終局引抜き力を下回ることを確認した。

以上のことから,軽油タンク基礎(6号機設備)は,基準地震動Ssによる地震力に対して, 間接支持機能を維持できる。 軽油タンク基礎(6号機設備)の耐震安全性評価に関する参考資料

(参考資料 2-1)	杭頭部の耐震評価		 (参考)	2 - 1 - 1
(参考資料 2-2)	地盤改良体の安定性	自について	 (参考)	2 - 2 - 1

(参考資料 2-1) 杭頭部の耐震評価

1. 概要

軽油タンク基礎(6号機設備)の杭と鉄筋コンクリート部材は、「道路橋示方書・同解説(IV下 部構造編)(日本道路協会,平成14年3月)」(以下「道路橋示方書」という。)に示される方法B により結合している。軽油タンク基礎(6号機設備)の杭頭部の耐震評価として、(参考資料1-2) に示す方法Bに対する照査項目に則り、押抜きせん断応力度照査及び仮想鉄筋コンクリート断面 による杭頭部の曲げ軸力照査を実施する。

- 2. 押抜きせん断応力度照査
- 2.1 照查方法

道路橋示方書・同解説(I共通編・IV下部構造編)(日本道路協会,平成14年3月)」に基づき,基礎版に生じる押抜きせん断応力度が,許容押抜きせん断応力度以下であることを確認する。基礎版に生じる押抜きせん断応力度は,「道路橋示方書・同解説(I共通編・IIIコンクリート橋編)(日本道路協会,平成14年3月)」に基づき下式により算定し,許容押抜きせん断応力度以下となることを確認する。

$$\tau_{p} {=} \frac{P}{\pi (D {+} h) h} {\leq} \tau_{a}$$

ここで,

- τ_p: 押抜きせん断応力度(N/mm²)
- P :荷重(N)
- D : 杭径(mm)
- h : 基礎版の有効高さ(mm)
- τ_a:許容押抜きせん断応力度(N/mm²)

2.2 照查結果

照査結果を表 2-1 及び表 2-2 に示す。各解析ケースにおいて基礎版に生じる押抜きせん断応力度が,許容押抜きせん断応力度以下であることを確認した。

解析 ケース	地震動	照査位置	圧縮 軸力 (kN)	押し抜き せん断応力度* (N/mm ²)	許容 押抜きせん断 応力度 (N/mm ²)	照查値
	Ss-1++	7	1375	0.17	0.89	0.20
	Ss-1-+	7	1588	0.20	0.89	0.23
	Ss-1+-	7	1385	0.17	0.89	0.20
	Ss-1	7	1385	0.17	0.89	0.20
	Ss-2	7	907	0.12	0.89	0.14
	$S_{S}-3++$	7	1069	0.14	0.89	0.16
	$S_{S}-3-+$	7	1214	0.15	0.89	0.17
\bigcirc	Ss-3+-	7	1045	0.13	0.89	0.15
	Ss-3	7	1379	0.17	0.89	0.20
	Ss-4	7	876	0.11	0.89	0.13
	Ss-5	7	900	0.12	0.89	0.14
	Ss-6	7	666	0.09	0.89	0.11
	Ss-7	7	781	0.10	0.89	0.12
	$S_{S}-8++$	7	2085	0.26	0.89	0.30
	Ss-8-+	7	1170	0.15	0.89	0.17
2	$S_{S}-8++$	7	1979	0.25	0.89	0.29
3	Ss-8++	7	2207	0. 28	0. 89	0.32
4	$S_{s-8}++$	7	2097	0. 26	0.89	0.30
5	Ss-8++	7	2013	0. 25	0. 89	0.29

表 2-1 押抜きせん断応力度照査結果(A-A断面)

注記* :押し抜きせん断応力度=発生押し抜きせん断応力度×構造解析係数γ。

図 2-1 照查位置

(参考) 2-1-2

解析 ケース	地震動	照査位置	圧縮 軸力 (kN)	押し抜き せん断応力度* (N/mm ²)	許容 押抜きせん断 応力度 (N/mm ²)	照查値
	$S_{n-1} \perp \perp$	1	1789	0.92		0.25
		1	1702	0.22	0.89	0.25
	5s-1-+	1	1732	0.22	0.89	0.25
	Ss-1+-	1	1635	0.21	0.89	0.24
	Ss-1	1	1816	0.23	0.89	0.26
	Ss-2	1	1773	0.22	0.89	0.25
	$S_{S}-3++$	1	1482	0.19	0.89	0.22
	$S_{S}-3-+$	1	1539	0.19	0.89	0.22
\bigcirc	Ss-3+-	1	1650	0.21	0.89	0.24
	Ss-3	1	1436	0.18	0.89	0.21
	Ss-4	1	1358	0.17	0.89	0.20
	Ss-5	5	1091	0.14	0.89	0.16
	Ss-6	1	1357	0.17	0.89	0.20
	Ss-7	1	1056	0.13	0.89	0.15
	Ss-8++	5	1341	0.17	0.89	0.20
	Ss-8-+	1	1043	0.13	0.89	0.15
2	Ss-1	1	1792	0.22	0.89	0.25
3	Ss-1	1	1740	0.22	0.89	0.25
4	Ss-1	1	1762	0.22	0.89	0.25
5	Ss-1	1	1735	0.22	0.89	0.25

表 2-2 押抜きせん断応力度照査結果(B-B断面)

注記* :押し抜きせん断応力度=発生押し抜きせん断応力度×構造解析係数 γ 。

図 2-2 照査位置

(参考) 2-1-3

- 3. 曲げ軸力に対する評価
- 3.1 仮想鉄筋コンクリート断面による照査
 - 3.1.1 照查方法

曲げ軸力に対する照査は「道路橋示方書(H29)」に基づき,表 3-1 及び図 3-1 に示す 仮想鉄筋コンクリート断面を設定し,仮想鉄筋コンクリート断面に生じるモーメントが「コ ンクリート標準示方書[構造性能照査編](2002 年)」に示す終局曲げ耐力以下であること を確認する。

	諸元	
伝相 PC 账页	杭径 D(mm)	798
	仮想 RC 断面の径 (mm)	1098
コンクリート 設計基準強度(N/mm ²)		23.5
	材質	SD35(SD345 相当)
	鉄筋径	D22
机实袖短数肋	鉄筋の本数(本)	18
	配置半径(mm)	330

表 3-1 仮想鉄筋コンクリート断面諸元*

図 3-1 概略補強配筋図(杭頭補強鉄筋)* 注記* :「道路橋示方書(H29)」に基づき設定 3.1.2 照查結果

解析ケース①(基本ケース)について全地震動に対して照査を実施し、最も照査値が厳 しい地震動に対し、ばらつきを考慮した解析ケース(解析ケース②~⑤)について照査を 実施した。

各断面について杭頭部の曲げ照査値が最大となる解析ケース,地震動における照査結果 を表 3-2 及び表 3-3 に,照査値が 1.0 を上回る杭及び照査値が最大となる杭の配置図を 図 3-4 に示す。表 3-2,表 3-3 及び図 3-4 に示すとおり, B-B断面において,一 部の杭で照査値が 1.0 を上回り,軽油タンク基礎(6号機設備)全体の合計 120本の杭の うち,照査値が 1.0 を上回る杭は 24 本となる。

	备召北后			照査用	終局	
	四年101	地震動	照査位置	曲げモーメント*	曲げ耐力	照査値
	クース			(kNm)	(kNm)	
			1	368		0.43
	3 Ss-3++	2		292		0.34
			3	244		0.29
		S~ 2	4	222	964	0.26
		38-3	5	220	804	0.26
			6	226		0.27
			7	141		0.17
			8	68		0.08

表 3-2 杭頭部の曲げ照査結果(A-A断面)

注記* :照査用曲げモーメント=発生曲げモーメント×構造解析係数 γ 。

図 3-2 照査位置

命刀十二			照查用	終局	
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	地震動	照查位置	曲げモーメント*	曲げ耐力	照查值
ケース			(kNm)	(kNm)	
		1	1320		1.53
		2	1053		1.22
		3	876		1.02
		4	710		0.83
3	Ss-1+-	5	561		0.65
		6	428		0.50
		7	361		0.42
		Ss-1+-	8	344	864
		9	161		0.19
	_	10	212		0.25
		11	211		0.25
		12	195		0.23
		13	160		0.19
		14	160		0.19
		15	299		0.35

表 3-3 杭頭部の曲げ照査結果(B-B断面)

注記* :照査用曲げモーメント=発生曲げモーメント×構造解析係数 γ a

図 3-3 照査位置

拉齿墨		仕様				
机亚直	杭径(mm)	肉厚 (mm)	杭長(m)			
1		14	24.0			
2		9	24.0			
3		14	22.0			
4		9	22.0			
5		14	20.0			
6	800	9	20.0			
7		14	18.0			
8		9	18.0			
9		14	15.0			
10		9	15.0			
11		14	13 0			

: 照査値が1を上回る杭
 : 照査値が最大となる杭

 \bigcirc^1

 $\bigcirc^2 \bigcirc^2$

 $Q^{6} - Q^{4} = Q^{4}$

(a) A-A断面(解析ケース③, Ss-3++地震動)

 $O^{9} - O^{9} O^{7} O^{7} O^{7} O^{8} O^{6}$

 $\bigcirc^{9} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{5} \bigcirc^{5} \bigcirc^{3} \bigcirc^{3} \bigcirc^{1} \bigcirc^{1}$

 $\bigcirc 1^{1/2} \bigcirc 1^{11} \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 7 \bigcirc 7 \bigcirc 8 \oslash 8 \bigcirc 6 \bigcirc 6 \bigcirc 6 \bigcirc 4 \bigcirc 4 \bigcirc 2$ $\bigcirc 1^{1/2} \bigcirc 1^{11} \bigcirc 1^{11} \bigcirc 9 \bigcirc 9 \bigcirc 9 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 5 \bigcirc 5 \bigcirc 3 \bigcirc 3$ $\bigcirc 1^{11} \bigcirc 1^{11} \bigcirc 1^{11} \bigcirc 9 \bigcirc 9 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 5 \bigcirc 5 \bigcirc 3$ $\bigcirc 1^{11} \bigcirc 1^{11} \bigcirc 1^{11} \bigcirc 9 \bigcirc 9 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 7 \bigcirc 5 \bigcirc 5 \bigcirc 3$

 O^{1} O^{1} O^{1} O^{1} O^{1} O^{2} O^{2

 O^{11} O^{11} $\overline{O^{1}}$ $\overline{O^{1}}$ $\overline{O^{1}}$ O^{9} O^{9} O^{9} O^{10} O^{8} $\overline{O^{8}}$ $\overline{O^{8}}$ $\overline{O^{8}}$ $\overline{O^{8}}$ O^{8} O^{8}

 $O^{11} O^{11} O^{11} O^{11} O^{9} O^{9} O^{9} O^{9} O^{7} O^{7} O^{7} O^{7} O^{7} O^{7}$

(b) B-B断面(解析ケース③, Ss-1+-地震動)

 \bigcirc^9

С

О

0

0

 \bigcirc

PN

 \bigcirc^9

 $\bigcirc^{11} \bigcirc^{9} \bigcirc^{9} \bigcirc^{9} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{5} \bigcirc^{5} \bigcirc^{3} \bigcirc^{3} \bigcirc^{1}$ \bigcirc^1 \bigcirc^1 $\bigcirc^{11} \bigcirc^{11} \bigcirc^{9} - \bigoplus^{9} - \bigcirc^{9} \bigcirc^{7} \bigcirc^{7} \bigcirc^{7} \bigcirc^{8} \bigcirc^{6} \bigcirc^{6} - \bigoplus^{4} \bigcirc^{4} \bigcirc^{4}$ $O^2 O^2$ $O^{11} O^{11} O^{11} O^{9} O^{9} O^{7} O^{7} O^{8} O^{8} O^{6} O^{6} O^{4} O^{4}$ $O^{11} O^{11} O^{11} O^{11} O^{9} O^{9} O^{7} O^{7} O^{7} O^{7} O^{7} O^{5} O^{5} O^{3}$ O^2 \bigcirc^3 $O^{11} \stackrel{[1]}{O}_{1}^{11} O^{11} O^{11} O^{11} O^{11} O^{9}_{1} O^{9} O^{7} O^{7} O^{7} O^{7} O^{7} O^{7} O^{5} D^{5}$ O^3 O^{11} O^{11} O^{11} O^{11} O^{11} O^{2} O^{9} O^{9} O^{8} O^{8} O^{8} O^{8} O^{8} O^{6} O^{11} O^{11} O^{11} O^{11} O^{11} O^{2} $O^8 O^8$ $\cap^{11} \cap^{11} \cap^{11} \cap^{11} \cap^{11} \cap^{9} \cap^{9} \cap^{9} \cap^{9} \cap^{7} \cap^{7}$ $\cap' \cap'$ \bigcirc' \bigcirc'

図 3-4 照査値が 1.0 を上回る杭及び照査値が最大となる杭の配置図

3.1.3 杭頭部の健全性について

杭頭部の評価のうち,押抜きせん断応力度照査では,全ての杭頭部で照査を満足する結 果となった。一方,杭頭部の曲げ軸力に対する評価において,B-B断面では一部の杭頭 部で発生曲げモーメントが終局曲げ耐力を上回るため,軽油タンク基礎(6号機設備)に 要求される支持機能の観点で,その影響について検討を行う。

杭基礎の支持力特性に関する既往の研究*では、図 3-5 に示すとおり、杭頭結合部の破壊形態を確認することを目的とした、繰り返し水平載荷試験を実施している。当研究結果によると、図 3-5 (c)荷重-変位関係に示すとおり、鉄筋降伏時の変位 1dy に対して 20倍の変位 20dy においても急激な荷重低下は見られず、安定した挙動を示している。

上記の実験結果で示された変形性能,及び杭頭部が押込み力に対して照査を満足することを考慮すると,一部の杭頭部で発生曲げモーメントが終局曲げ耐力を上回った場合においても,軽油タンク基礎(6号機設備)の支持機能は確保されると考えられる。

注記* : 杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究) (2012 年独立行政法人 土木研究所,一般社団法人 鋼管杭・鋼矢板技術協力会社)

(c) 荷重-変位関係

図 3-5 単杭に対する鋼管杭の杭頭結合部の水平載荷実験*

注記* : 杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究)(2012 年 独立行政法人 土木研究所,一般社団法人 鋼管杭・鋼矢板技術協力会社)より引用

(参考) 2-1-9

また,表 3-4 及び表 3-5 に示すとおり,杭頭の発生曲げモーメントが終局曲げ耐力を 上回る一部の杭の支持力に期待しないと仮定した場合においても,軽油タンク基礎(6 号 機設備)全体としての支持力は確保されることからも,支持機能に問題は無いと判断出来 る。

表 3-4 基礎全体として評価した場合の押込みに対する支持性能照査結果

每245世纪五	解析	世堂史	鉛直力*1	終局鉛直支持力*2	照査値
解 が 断 面 ケース		地展期	R_{a} (kN)	R_{ua} (kN)	R_a / R_{ua}
B-B断面	3	Ss-1+-	101769	708093	0.15

注記*1:全ての杭頭に生じる鉛直力の総和を示す。

表 3-5 基礎全体として評価した場合の引抜きに対する支持性能照査結果

破垢胺毒	解析	生きま	引抜き力*1	終局引抜き力*2	照査値
胜竹断面	ケース	地晨動	P_{a} (kN)	P_{ua} (kN)	P _a / P _{u a}
B-B断面	3	Ss-1+-	147830	308013	0.48

注記*1:全ての杭頭に生じる引抜き力の総和を示す。

*2:杭頭の発生曲げモーメントが終局曲げ耐力を上回る一部の杭を除いた杭の終局引抜き 力の総和を示す。また「終局引抜き力Pua=極限引抜き力Pu÷安全率」とする。

ただし,軽油タンク基礎(6号機設備)の地震応答解析においては,杭頭部を鉄筋コン クリートの基礎版と剛結した解析モデルとしていることから,杭頭部の鉄筋降伏後におけ る非線形性を考慮した場合の,軽油タンク基礎(6号機設備)の耐震評価に対する影響に ついて検討する。

^{*2:}杭頭の発生曲げモーメントが終局曲げ耐力を上回る一部の杭を除いた杭の終局鉛直支 持力の総和を示す。また、「終局鉛直支持力Rua=極限支持力Ru÷安全率」とする。

3.2 杭頭部の非線形性を考慮した影響検討

杭頭部の非線形性を考慮した地震応答解析を実施し、軽油タンク基礎(6 号機設備)の耐震 評価に対する影響について検討する。

3.2.1 検討方法

軽油タンク基礎(6号機設備)の地震応答解析は、杭頭部を剛結としたモデル(以下「基本モデル」という。)を用いている。本検討では、B-B断面について、基本モデルの解析結果と杭頭部に曲げ変形に対する非線形性を考慮した回転ばね要素を配置した解析モデル(以下「杭頭回転ばねモデル」という。)の解析結果を比較することで、杭頭部の非線形性を考慮した場合の影響検討を行う。

杭頭回転ばねモデルの回転ばね要素は,表 3-1及び図 3-1に示す仮想鉄筋コンクリート断面に基づき設定する。また,杭頭回転ばねモデルについて,回転ばね要素の応答を確認し,モデル化の妥当性について確認する。

検討フローを図 3-6 に示す。

図 3-6 検討フロー

3.2.2 検討ケースの選定

基本モデルでの地震応答解析結果のうち,杭頭部の発生曲げモーメントが最も大きい解 析ケースを検討ケースとする。

基本モデルにおける杭頭部の発生曲げモーメント一覧を表 3-6 に示す。杭頭部の発生 曲げモーメントが最も大きい解析ケースは,解析ケース③,地震動 Ss-1+-となる。

	- 1/4		1	=	= 1/1 = /	
解林	斤ケース	杭頭	部の発生曲	自げモーメ	ント (kN/ネ	本)
地震動		1	2	3	(4)	5
	++	1186				
C 1	-+	1126				
5s-1	+-	1203	1163	1258	1131	1094
		1131				
Ss-2		1034				
	++	1179				
S2	-+	1075				
58-5	+-	1182				
		1036				
Ss-4		912				
Ss-5		795				
Ss-6		1000				
Ss-7		825				
Sc-8	++	905				
0- 20	-+	852				

表 3-6 杭頭部の発生曲げモーメント(B-B断面)

3.2.3 回転ばね要素の設定

基本モデルの解析結果では、杭頭部の発生曲げモーメントが終局曲げ耐力を上回る杭は 一部であるが、杭頭回転ばねモデルを用いた解析では、全ての杭頭位置に回転ばね要素を 配置し、杭頭部の曲げ変形に対する非線形挙動を考慮する。回転ばね要素の配置位置を図 3 -7 に、回転ばね要素のM-θ特性を図 3-8 に、回転ばね要素のばね定数を表 3-7 に示 す。

回転ばね要素の一次勾配は,数値解析上不安定な挙動を起こさない程度に十分大きな値, 二次勾配は,仮想鉄筋コンクリート断面の非線形特性に基づき,塑性化領域を10φ*(φ: 補強鉄筋の直径)として設定した値とし,三次勾配は十分小さな値とする。

注記*:「杭基礎の大変形挙動後における支持力特性に関する共同研究報告書(杭頭結合部に関する研究) (独立行政法人 土木研究所 一般社団法人 鋼管杭・鋼矢板技術協会社,平成24年3月)」を参 考に,塑性化領域を10 o と設定。

○:回転ばね要素の配置位置

図 3-7 回転ばね要素の配置位置

注記* : 杭一本あたりの特性を示す。

表 3-7 回転ばね要素のばね定数*

勾配	ばね定数 (kNm/rad)
一次勾配 k1	$1.00 imes 10^{6}$
二次勾配 k ₂	6. 26×10^4
三次勾配 k ₃	1.00×10^{-6}

注記*:杭一本あたりの値を示す。

3.2.4 照査値の比較

基本モデルと杭頭回転ばねモデルにおける鋼管杭の曲げ軸力照査, せん断力照査及び基 礎地盤の支持性能照査の照査値を比較する。

照査値の比較結果を表 3-8~表 3-11 に示す。表 3-8~表 3-11 に示すとおり,基本 モデルと杭頭回転ばねモデルの照査値の差は軽微であることを確認した。

	照查用曲率*	終局曲率	照查值	
一時初モリル	$\phi_{\rm d}$ (1/m)	ϕ u (1/m)	ϕ d $\swarrow \phi$ u	
①基本モデル	1.67×10^{-3}	2.00 $\times 10^{-3}$	0.84	
②杭頭回転ばねモデル	1.71×10^{-3}	2.00 $\times 10^{-3}$	0.86	

表 3-8 鋼管杭の曲げ軸力照査の比較

注記* :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

表 3-9 鋼管杭のせん断照査の比較

御折てデル	照査用せん断力*	終局せん断耐力	照査値
月年101 モノブレ	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	${ m Q}_{ m d}$ / ${ m Q}_{ m u}$
①基本モデル	888	1224	0.73
②杭頭回転ばねモデル	908	1224	0. 75

注記* :照査用せん断力Q d=発生せん断力×構造解析係数 y a

表 3-10 基礎地盤の押込みに対する支持性能照査の比較

留作エデル	鉛直力	終局鉛直支持力*	照查值
川牛小「ニノノレ	R_{a} (kN)	R_{ua} (kN)	R_a / R_{ua}
①基本モデル	1679	7035	0.24
②杭頭回転ばねモデル	1575	6617	0. 24

注記* :終局鉛直支持力Rua=極限支持力Ru÷安全率

表 3-	-11	基礎地盤の引抜きに対する支持性能照査の比較
~ ~		

解析モデル	引抜き力	終局引抜き力*	照查値
	P_{a} (kN)	P _{ua} (kN)	P a∕P u a
①基本モデル	1956	2450	0.80
②杭頭回転ばねモデル 2056		2450	0.84

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

3.2.5 回転ばね要素の応答値確認

土木学会マニュアルを参考とし、回転ばね要素の限界値を圧縮縁コンクリートのひずみ 1%に相当する回転角とし、応答が限界値を下回ることを確認することで、回転ばね要素が モデル化の適用範囲内であるかを確認する。限界値は、仮想鉄筋コンクリート断面をモデ ル化したファイバーのはりモデルによるプッシュオーバー解析により算出する。

表 3-12 に回転ばね要素の回転角の確認結果を示す。表 3-12 より,発生回転角は仮想 鉄筋コンクリート断面の限界値を下回るため,回転ばね要素はモデル化の適用範囲内であ ると判断できる。

検討	山市社	四大仕里	発生回転角*	限界值	発生回転角
ケース	地宸虭	照省位直	(rad)	(rad)	限界值
1	Ss-1++	1	3. 17×10^{-3}		0.32
	Ss-1-+	1	2.92×10^{-3}		0.29
	Ss-1+-	1	3.23×10^{-3}		0.32
	Ss-1	1	2.95 $\times 10^{-3}$		0.29
	Ss-2	1	2. 38×10^{-3}		0.24
	$S_{S}-3++$	1	3.22×10^{-3}		0.32
	Ss-3-+	1	2.58 $\times10^{-3}$		0.26
	Ss-3+-	1	3. 18×10^{-3}		0.32
	Ss-3	1	2.32 $\times 10^{-3}$		0.23
	Ss-4	1	1.71×10^{-3}	$1.02 imes 10^{-2}$	0.17
	Ss-5	1	1.12×10^{-3}		0.11
	Ss-6	1	2.25 $\times 10^{-3}$		0.23
	Ss-7	1	1.31×10^{-3}		0.13
	Ss-8++	1	1.67×10^{-3}		0.17
	Ss-8-+	1	1.42×10^{-3}		0.14
2	Ss-1+-	1	3. 08×10^{-3}		0.31
3	Ss-1+-	1	3. 44×10^{-3}		0.34
4	Ss-1+-	1	2.88 $\times 10^{-3}$		0.29
5	Ss-1+-	1	2.71 \times 10 ⁻³		0.27

表 3-12 回転ばね要素の回転角の確認結果(B-B断面)

注記*:構造解析係数γ。を考慮する。

図 3-9 照査位置

4. まとめ

「2.1 仮想鉄筋コンクリート断面による照査」より, 杭頭部の評価のうち, 押抜きせん断応 力度照査では, 全ての杭頭部で照査を満足する結果となった。一方, 曲げ軸力に対する評価に おいて, 一部の杭頭部で発生曲げモーメントが終局曲げ耐力を上回るため, 杭頭部に非線形性 を考慮した場合の軽油タンク基礎(6 号機設備)の耐震評価に対する影響について検討した。 検討の結果, 軽油タンク基礎(6 号機設備)の耐震評価に対する影響は軽微であることを確認 した。 (参考資料 2-2) 地盤改良体の安定性について

1. 概要

軽油タンク基礎(6号機設備)の地盤改良体の配置図を図 1-1に示す。軽油タンク基礎(6号 機設備)の周囲には、変形抑制対策として地盤改良を実施しており、基礎直下の原地盤において 液状化は認められないが、支持層である西山層が南北方向及び東西方向に傾斜しているとともに、 地盤改良体の周囲に液状化検討対象層が分布することから、側方流動に伴う地盤改良体の滑動や 転倒により安定性が損なわれる可能性が考えられる。

一方,基礎周辺の地盤改良体は,基礎を取り囲むようにして配置されることから,実際の3次 元的な形状を考慮すると,滑動及び転倒により安定性を損なう可能性は低いと考えられるが,本 項では念の為,地盤改良体の地震時における安定性について検討を実施する。

(c) B-B断面図

既設/新設	凡例	地盤改良工法	
既設地盤改良体		置換(CD掘削)	
新設地盤改良体		置換(開削)	
		高圧噴射	

注 :置換工法(CD 掘削)の施工範囲の内,地上構 造物及び埋設構造物がある箇所では,高圧噴 射を適用

図 1-1 軽油タンク基礎(6号機設備)の地盤改良体の配置図

2. 地震応答解析における変形図による安定性の評価

西山屬

軽油タンク基礎(6号機設備)の地震応答解析に用いる2次元動的有限要素法解析モデルでは, 図 2-1に示すとおり,地盤改良体と地盤の間にジョイント要素を配置することで,地震時にお ける地盤改良体の滑動や剛体回転等の挙動を考慮している。また,地震応答解析においては,地 盤の剛性低下及び地質の不整形に起因する地盤ひずみも考慮されていることから,当該モデルの 地震応答解析における変形状態を確認することで,地盤改良体の安定性を判断する。

変形状態は、地盤改良体の滑動、転倒等の水平方向の挙動に着目する観点から、西山層に対す る基礎版の水平相対変位が最大となるケース、時刻で確認する。

図 2-2 に各断面の変形図を示す。変形図より,地盤改良体の滑動,転倒等は確認されず,地 震時においても改良体は安定した挙動を示していると判断できる。

: ジョイント要素

(B-B断面)

注: 変形スケールは構造スケールと同様

3. 転倒モーメントによる照査

地盤改良体の安定性を定量的に評価するため,道路橋示方書における直接基礎の転倒モーメントに対する安定性の照査方法を参考に,転倒モーメントによる照査を実施する。地盤改良体に作用する合力の作用位置は,地盤改良体の重心位置と見なし,図 2-2の変形図を確認した解析ケースの全時刻歴における地盤改良体の回転角の最大値と,改良体高さから合力の作用位置を算定する。合力の作用位置が底面の中心から底面幅の 1/3 以内であれば,照査を満足すると判定する。地盤改良体の合力の作用位置の概念図を図 3-1 に,地盤改良体の名称を図 3-2 に示す。なお,地盤改良体のうち西側改良体については,改良体幅が高さより大きく,他の地盤改良体と比較して転倒の可能性が低いことから,転倒モーメントによる照査は省略する。

照査結果を表 3-1 に示す。各地盤改良体について、転倒モーメントによる照査を満足し、許 容限界に対して十分余裕があることから、転倒は生じないと判断できる。

図 3-2 地盤改良体の名称

改良体名称	回転角	合力の作用位置と	底面幅の 1/3	照查值		
	θ (rad)	底面中心の距離δ*(mm)	B/3 (mm)	δ / (B/3)		
南側改良体	1.97×10^{-3}	13	3853	0.004		
中央改良体	2.78 $\times 10^{-3}$	25	1866	0.014		
北側改良体	2. 41×10^{-3}	31	3191	0.010		
東側改良体	3. 69×10^{-3}	45	2998	0.016		

表 3-1 照查結果

注記*: 構造解析係数1.2を考慮

4. 滑動に対する確認

地盤改良体の滑動の程度を確認するため、地震応答解析における地盤と改良体の接合面におけ るジョイント要素の最大水平変位を確認する。地盤改良体の名称を図 4-1 に示す。確認するケ ース及び地震動は「2. 地震応答解析における変形図による安定性の評価」と同様とする。

地盤と改良体の接合面におけるジョイント要素の最大水平変位を表 4-1に示す。表 4-1より, 地盤改良体の水平変位は最大で 1.5cm 程度であった。地盤改良体に上記の水平変位が生じた場合 においても、構造物の耐震評価では当該変位量も考慮した解析により、耐震安全性が確保されて いることを確認している。

以上より,地盤改良体の地震時の滑動は構造物の耐震安全性に影響を与えるものでなく,地盤 改良体は安定性を確保できていることを確認した。

図 4-1 地盤改良体の名称

改良体名称	すべり量 (cm)				
	左下端	下面中央	右下端		
南側改良体	0.67	0.44	0.24		
中央改良体	0.44	0.36	0.16		
北側改良体	0.21	0.22	0.27		
西側改良体	1.42	1.27	0.86		
東側改良体	0.79	0.41	0.22		

表 4-1 地盤と改良体の接合面におけるジョイント要素の最大水平変位

5. まとめ

軽油タンク基礎(6号機設備)周囲の地盤改良体の安定性について、変形図による評価及び転 倒モーメントによる照査及び滑動量の確認を実施したところ、地震時に滑動及び転倒により安定 性を失うことは無いと判断した。

以上より,軽油タンク基礎(6号機設備)の地盤改良体は,地震時においても安定性を保ち, 変形抑制としての機能を維持できることを確認した。