

眼の水晶体等価線量評価に用いる線量計の試験校正手法の開発

産業技術総合研究所 放射線標準研究グループ 加藤昌弘

背景と目的

2011年に国際放射線防護委員会(ICRP)は、水晶体の職業被ばくの等価線量限度値を引き下げる声明を出した。国内規制に取り入れるための検討が急務である。

信頼性の高い水晶体等価線量の管理を行うには 国内の線量計の試験・校正システムの確立が欠かせない。

> X線及びβ線の標準場を開発することにより、 国内の水晶体被ばく線量評価に用いる 線量計の試験・校正システムの確立に寄与

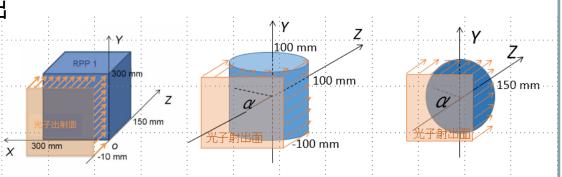
水晶体被ばく線量評価用線量計による測定の信頼性の向上

複数の線量計で測定された水晶体被ばくに関わる研究・調査データの斉一性を担保

放射線作業従事者の安心と安全

水晶体の被ばくの恐れのある作業

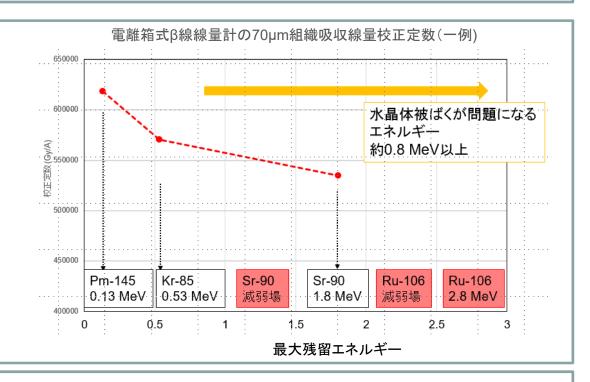
放射線で位置を確認 しながら治療



放射線施設での作業

本研究の主な内容

◎3mm線量当量換算係数の導出

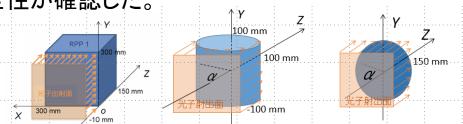

X線・β線の標準場について、 3種類のファントムに対する 3mm線量当量換算係数を求める

◎ β線のエネルギー拡大

現状では1点のエネルギーでしか評価できない

新規にβ線源を導入し、アクリル板との組み合わせにより最大残留エネルギー0.8MeV~2.8MeVの場を生成する

◎設定した標準場において3mm線量当量測定器の試験・校正を行う


ロードマップ

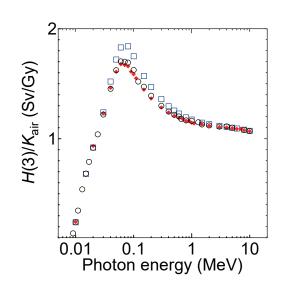
		平成29年度			平成30年度				
実施項目	担当者*	第1四半 期	第2四 半期	第3四 半期	第4四半期	第1四半 期	第2四 半期	第3四半期	第4四 半期
目標:					!	!	!	!	
β 線標準場のエネルギーの拡大	加藤昌弘 (産総研)	•	線源の選		原発注	納 • ◆		→ 場の設定	
X線・β線標準場の 水晶体等価線量評 価に関わる実用量 の導出	加藤昌弘 黒澤忠弘 (産総研)	換算係数の計算 ◆ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
線量計の試験・校 正の実証実験	加藤·黒澤·山口 (産総研)					X線場 ▼	における§ β 約 ◆	実施 → 泉場におけ [。]	る実施

→ AIST 3mm線量当量換算算係数に関する進捗状況

X線 産総研における標準場(Nシリーズ、QI線質、RQR線質)の換算係数を導出し 3mm線量当量の単位での試験・校正が可能となった

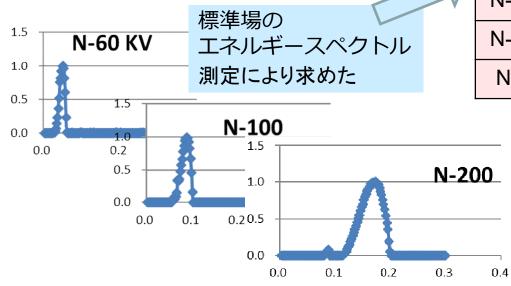
β線 単色エネルギーの換算係数を計算で導出した ICRU57の値と比較し、計算コードの健全性が確認した。

標準場の種類


Nシリーズ QI線質 ROR線質 ISO4037に規定 JIS Z4511に規定 IEC61267に規定 線量計のエネルギー特性の試験などに用いられる 日本で従来より使われているQuality Indexによる線質 診断用X線の特性を記述する線質

求めた換算係数の一例

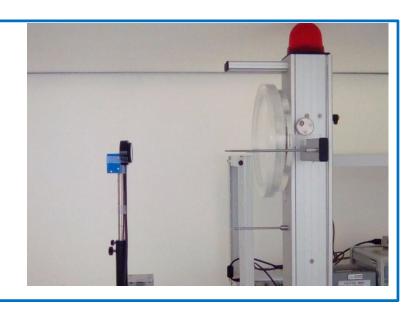
線質	管電圧	方向性線量当量 換算係数(0度)	=	量換算係数 小ム、0 度)	付加フィルタ (単位:mmAl)		
		本研究	本研究	EURADOS	本研究	EURADOS	
RQR4	60	1.222	1.218	1.239	2.67	2.72	
RQR7	80	1.358	1.348	1.376	3.22	3.0	
RQR9	120	1.450	1.435	1.461	3.84	3.39	


3mm線量当量換算係数の導出

空気カーマ-3mm線量当量換算係数単色エネルギーの値を EGS5コードによるシミュレーションで求めた

産総研X線場における換算係数 ISO4037 Nシリーズの値(抜粋)

	管電圧 (keV)	スラブ ファントム	円柱 ファントム	ICRU球
N-200	200	1.532	1.415	1.441
N-100	100	1.814	1.639	1.675
N-60	60	1.678	1.567	1.584



その他の進捗状況

β線エネルギーの拡大

- 既存の線源と簡易的なアクリルフィルタによる場 を設定
- 予備実験として線量率分布の測定を実施
 - -校正した薄膜電離箱を利用 測定のばらつきは±0.5%程度

校正・試験の実証実験

VISION線量計*(個人線量当量) DOSIRIS(個人線量当量) 電離箱式サーベイメータ(方向性線量当量) 平行平板電離箱(β線のワーキングスタンダード)

*照射済み。 今年度は空気カーマ·70µm線量当量を提供

成果

- 産総研X線照射場の3mm線量当量換算係数を導出した。ISO 規格などで規定されている代表的なX線場における校正および 試験が可能となった。
- β線の換算係数の導出のため、計算コードの妥当性を確認した。 エネルギー拡大β線場の設定のため、既存の設備を用いて線 量率分布の測定を予備実験として実施した。
- 試験校正用の検出器を選定。一部の線量計には照射試験を実施した。

自己評価

評価の視点	自己評価	コメント
評価時点までの研究の実 施が研究計画に沿って行 c われているか	1計画を上回る2概ね計画どおり3計画を達成できない4計画を達成できないが代替手段に よって今年度の目標を達成した	X線標準場の線量当量換算係数を導出した。β線については既存の設備による予備実験及び計算を行い、来年度の準備を整えた。
今年度の進捗や達成度を 踏まえて、次年度の研究計 ^く 画に変更が必要か ^{※1}	1 必要ない 2 軽微な変更が必要*2 3 大幅な変更が必要*2	放射線源の調達手続きの影響でβ線源を使用する研究の開始時期が 当初計画より遅くなるが、来年度の計画としては当初の計画通りの内容 を遂行できる予定である。

成果概要

- ・X線の空気カーマを3mm線量当量に換算する換算係数を導出した。モンテカルロシミュレーションにより求めたICRUスラブファントム・ICRU組織の円柱ファントム・ICRU球についての単色エネルギーの換算係数と、産総研標準場のX線フルエンスのエネルギー分布から、Nシリーズ(ISO4037に規定)、QIシリーズ(JIS Z4511に規定)、RQRシリーズ(IEC61267に規定)の各標準場の換算係数を得た。この成果により、産総研X線場において3mm線量当量の単位での校正および試験が可能になった。
- ・ β 線の換算係数については、電子フルエンスを3mm線量当量に換算する換算係数の計算を行い、ICRU57の値との比較を行うことで計算コードの健全性を確認した。
- ・その他の進捗状況としては30年度に β 線拡大エネルギー標準場を設定するため、既存のストロンチウム線源と簡易的なアクリルフィルタを用いて、予備実験として線量率分布の測定を行った。また試験校正の実証実験の対象線量計として、VISION線量計、DOSIRIS線量計、電離箱式サーベイメータ及び β 線用薄膜電離箱を採用することにし、関係者と調整を行った。

次年度計画

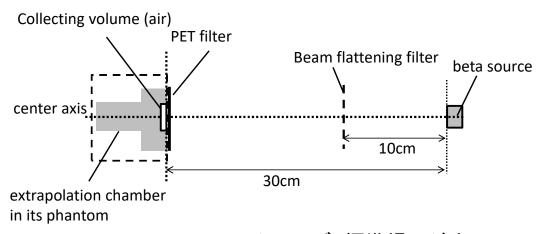
- 拡大エネルギーβ線場の設定 高放射能線源の導入
 - -検出器までの距離を取り、大きな照射野を実現する
 - -より低エネルギーの場を生成する

フィルタの改良

-中央部を厚くし線量率分布のフラット化

線量率分布測定

-薄膜電離箱の測定結果をフィルム線量計及びシミュレーション計算と比較


3mm組織吸収線量の絶対値測定 -外挿電離箱による測定

次年度計画

- β線の換算係数を計算
 - ①Sr-90/Y-90のISO6980-1 シリーズ1標準場の計算
 - -文献値と比較
 - ②中間エネルギーβ線場の計算
- X線、β線場における試験・校正の実施

Sr-90/Y-90のISO6980-1 シリーズ1標準場のジオメトリ