本資料のうち, 枠囲みの内容は,	柏崎刈羽原子力発電	所第7号機 工事計画審査資料
機密事項に属しますので公開で	資料番号	KK7添-1-052-1 改4
きません。	提出年月日	2020年8月28日

V-1-8-1 原子炉格納施設の設計条件に関する説明書

2020年8月

東京電力ホールディングス株式会社

V-1-8-1 原子炉格納施設の設計条件に関する説明書

1.	概要		1
2.	基本方	·金十 · · · · · · · · · · · · · · · · · ·	1
2.	1 設計	・基準事故時における基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	2 重大	事故等時における基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	構造及	で機能	5
3.	1 原子	・炉格納容器の構造の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3.	2 原子	- 炉格納容器の機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
4.	原子炉	5格納施設の設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4.	1 設計	- 上考慮すべき状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
	4.1.1	鋼製耐圧部	7
	4.1.2	コンクリート ・・・・・	9
4.	2 設計	·基準事故時における設計条件	10
	4.2.1	圧力及び温度に関する設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
	4.2.2	漏えい率に対する設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
	4.2.3	最低使用温度	14
	4.2.4	使用材料	15
	4.2.5	耐圧試験圧力	18
	4.2.6	開口部	18
	4.2.7	配管貫通部	19
	4.2.8	電気配線貫通部	19
	4.2.9	原子炉格納容器隔離弁 ·····	19
	4.2.10	原子炉格納容器体積 ·····	29
	4.2.11	原子炉格納容器安全設備 ·····	29
	4.2.12	圧力抑制効果を得るために必要な構造及び寸法	29
	4.2.13	真空破壊装置	30
	4.2.14	原子炉建屋原子炉区域 ·····	32
	4.2.15	可燃性ガス濃度制御設備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
	4.2.16	放射性物質濃度制御設備	32
	4.2.17	原子炉格納容器調気設備 ••••••	32
	4.2.18	冷却材喪失事故時の荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
	4.2.19	逃がし安全弁作動時の荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
	4.2.20	地震荷重	42
4.	3 重大	事故等時における設計条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	4.3.1	原子炉格納容器の評価温度,評価圧力 ・・・・・・・・・・・・・・・・・・・・・・・	43
	4.3.2	重大事故等時における原子炉格納容器の熱輸送機能 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
	4.3.3	重大事故等時における原子炉格納容器冷却機能 ・・・・・・・・・・・・・	53

目-1

	4.3.4	重大事故等時における原子炉格納容器の過圧破損防止機能 ・・・・・・・・・	54
	4.3.5	重大事故等時における原子炉格納容器下部の溶融炉心冷却機能 ・・・・・・・	56
	4.3.6	重大事故等時における水素爆発による原子炉格納容器の破損防止機能 ・・・・	57
	4.3.7	重大事故等時における水素爆発による原子炉建屋等の損傷防止機能 ・・・・・	58
	4.3.8	重大事故等時における放射性物質拡散抑制機能 ・・・・・・・・・・・・・	58
	4.3.9	重大事故等時に加わる動荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
5.	原子烷	戸格納施設の荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
5	.1 荷重	٤ の種類 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
5	.2 荷重	重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
5	.3 繰り	豆し荷重に対する解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
	5.3.1	告示第501号に基づく繰返し荷重に対する解析 ・・・・・・・・・・・・・	66
	5.3.2	設計・建設規格に基づく繰返し荷重に対する解析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
6.	重大事	事故等時における原子炉格納容器の放射性物質の閉じ込め機能評価及び	
	その他	也影響確認 ••••••••••••••••••••••••••••••••••••	72
6	.1 重力	大事故等時における原子炉格納容器の放射性物質の閉じ込め機能 ・・・・・・・・	72
	6.1.1	評価方針	72
	6.1.2	評価対象部位及び評価対象部位における機能喪失要因 ・・・・・・・・・・	72
	6.1.3	評価方法	74
	6.1.4	評価結果	79
6	.2 その	D他原子炉格納容器限界温度, 圧力に対する影響確認 ・・・・・・・・・・・・	87
	6.2.1	確認内容	87
	6.2.2	確認結果	87
7.	引用コ	た献 ·····	88

別添1 重大事故等時における原子炉格納容器の放射性物質閉じ込め機能健全性について 別添2 コリウムシールドの設計 別添3 格納容器圧力逃がし装置の設計

別紙1 計算機プログラム (解析コード)の概要(ABAQUS) 別紙2 計算機プログラム (解析コード)の概要(ANISN) 別紙3 計算機プログラム (解析コード)の概要(G33-GP2R) 別紙4 計算機プログラム (解析コード)の概要(HISAP) 別紙5 計算機プログラム (解析コード)の概要(MAAP) 別紙6 計算機プログラム (解析コード)の概要(ORIGEN) 別紙7 計算機プログラム (解析コード)の概要(QAD-CGGP2R) 別紙8 計算機プログラム (解析コード)の概要(STAR-CCM+)

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)第44条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規 則の解釈」(以下「解釈」という。)の要求に対する原子炉格納施設の設計基準事故時の設計条 件について記載したものであり、最高使用圧力、最高使用温度、外圧、ダイアフラムフロアの 設計差圧及び設計温度差、設計漏えい率、最低使用温度、使用材料(原子炉格納容器バウンダ リの脆性破壊防止含む)、耐圧試験圧力、開口部、配管貫通部、電気配線貫通部、原子炉格納容 器隔離弁、原子炉格納容器体積、原子炉格納容器安全設備、圧力抑制効果を得るために必要な 構造及び寸法、真空破壊装置、原子炉建屋原子炉区域、可燃性ガス濃度制御設備、放射性物質 濃度制御設備、原子炉格納容器調気設備、原子炉冷却材喪失時の荷重、主蒸気逃がし安全弁作 動時の荷重、地震荷重、荷重の組合せ、繰り返し荷重に対する解析について説明する資料であ る。また、技術基準規則第63,64,65,66,67,68,70及び71条並びにそれらの解釈の要求に対す る重大事故等対処設備として原子炉格納施設の破損防止に係る機能、重大事故等時の動荷重、 荷重の組合せについても説明するとともに、重大事故等時における原子炉格納容器の放射性物 質閉じ込め機能評価についても説明する。

2. 基本方針

原子炉格納施設は,原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいす る放射性物質が公衆に放射線障害を及ぼすおそれがない設計とする。

2.1 設計基準事故時における基本方針

原子炉格納容器は,鋼製ライナを内張りした鉄筋コンクリート造とし,円筒形のドライウ エル及びサプレッションチェンバからなる圧力抑制形であり,残留熱除去系(格納容器スプ レイ冷却モード)と相まって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定し, これにより放出される原子炉冷却材のエネルギによる原子炉冷却材喪失(以下「冷却材喪失」 という。)時の最大の圧力,最高の温度及び設計上想定された地震荷重に耐えるように設計す る。

原子炉格納容器は、冷却材喪失時及び主蒸気逃がし安全弁(以下「逃がし安全弁」という。) の作動時において原子炉格納容器に生じる動荷重に対して健全性を損なわない構造強度を有 するように設計する。なお、原子炉格納容器に生じる動荷重に対する設計は、「BWR. MARK II 型格納容器圧力抑制系に加わる動荷重の評価指針」を準用し実施する。

原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率 を許容値以下に保ち,冷却材喪失時及び逃がし安全弁作動時において想定される原子炉格納 容器内の圧力,温度,放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つように設計するとともに,漏えい試験ができる設計とする。

原子炉格納容器バウンダリを構成する機器は,通常運転時,運転時の異常な過渡変化時及 び設計基準事故時において,原子炉格納容器バウンダリの非延性破壊(脆性破壊)及び破断 を防止する設計とする。

原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器隔離弁は、安全保護装

 \mathbb{R}^{1}

置からの信号により、自動的に閉鎖する動力駆動弁、チェーンロックが可能な手動弁、キー ロックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし、原子炉格納容器の隔離機能の 確保が可能な設計とする。

原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の 圧力及び温度の上昇により原子炉格納容器の安全性を損なうことを防止するとともに,原子 炉格納容器内から漏えいする放射性物質の濃度を低減する設備として,残留熱除去系(格納 容器スプレイ冷却モード)を設置する設計とする。

冷却材喪失時に原子炉格納容器内で発生するおそれのある水素及び酸素の燃焼反応を防止 するため、可燃性ガス濃度制御系を設ける。可燃性ガス濃度制御系は、不活性ガス系により 原子炉格納容器内に窒素を充填することと相まって、事故後の原子炉格納容器内の可燃性ガ ス濃度を可燃限界未満に抑制できる設計とする。

サプレッションチェンバと下部ドライウェル間に設置された真空破壊弁は、ドライウェル 圧力がサプレッションチェンバ圧力より低下した場合に、圧力差により自動的に働き、サプ レッションチェンバのプール水の逆流並びにドライウェルとサプレッションチェンバの差圧 によるダイヤフラムフロア及び原子炉本体の基礎の破損を防止できる設計とする。

原子炉建屋原子炉区域(二次格納施設)は,原子炉格納容器を完全に取り囲む構造となっ ており,非常用ガス処理系により内部の負圧を確保し,原子炉格納容器から放射性物質の漏 えいがあっても発電所周辺に直接放出されることを防止する設計とする。

2.2 重大事故等時における基本方針

原子炉格納容器は,重大事故等時の条件下においても放射性物質の閉じ込め機能を有する 設計とする。

重大事故等時の原子炉格納容器内の熱を輸送するために用いる格納容器圧力逃がし装置は, 原子炉格納容器内雰囲気ガスをフィルタ装置及びよう素フィルタにより放射性物質を低減さ せた後に原子炉建屋屋上に設ける放出口から放出することで,排気中に含まれる放射性物質 の環境への放出量を抑制しつつ,原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場で ある大気へ輸送できる設計とする。また,耐圧強化ベント系は,原子炉格納容器内雰囲気ガ スを主排気筒(内筒)を通して原子炉建屋外に放出することで,原子炉格納容器内に蓄積し た熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。

重大事故等時の原子炉格納容器内の冷却のために用いる代替格納容器スプレイ冷却系(常 設)及び代替格納容器スプレイ冷却系(可搬型)は,復水移送ポンプ又は可搬型代替注水ポ ンプ(A-2級)によりドライウェル内及びサプレッションチェンバ内にスプレイすることで, 原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることができる設計と する。また,残留熱除去系(格納容器スプレイ冷却モード)及び残留熱除去系(サプレッシ ョンプール水冷却モード)は,常設代替交流電源設備からの給電により機能を復旧し,残留 熱除去系ポンプによりサプレッションチェンバのプール水をドライウェル内及びサプレッシ ョンチェンバ内にスプレイ並びに残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプ レッションチェンバのプール水を冷却することで原子炉格納容器を冷却できる設計とする。

2

重大事故等時の原子炉格納容器の過圧破損防止のために用いる代替循環冷却系は,復水移 送ポンプによりサプレッションチェンバのプール水を残留熱除去系熱交換器にて冷却し,原 子炉圧力容器又は原子炉格納容器下部へ注水するとともに,原子炉格納容器内へスプレイす ることで,原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低 下できる設計とする。また,格納容器圧力逃がし装置は、フィルタ装置及びよう素フィルタ により放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出することで,排 気中に含まれる放射性物質の環境への放出量を低減しつつ,原子炉格納容器内の圧力及び温 度を低下できる設計とする。

また,格納容器圧力逃がし装置は,排気中に含まれる可燃性ガスによる水素爆発を防止す るため,系統内を不活性ガス(窒素ガス)で置換した状態で待機させ,使用後においても不 活性ガスで置換できる設計とする。

重大事故等時の原子炉格納容器下部の溶融炉心冷却のために用いる格納容器下部注水系 (常設)及び格納容器下部注水系(可搬型)は,復水移送ポンプ及び可搬型代替注水ポンプ (A-2級)により,原子炉格納容器下部へ注水し,溶融炉心が落下するまでに原子炉格納容器 下部にあらかじめ十分な水位を確保するとともに,落下した溶融炉心を冷却できる設計とす る。また,溶融炉心が原子炉圧力容器から原子炉格納容器下部へ落下する場合に,ドライウ ェル高電導度廃液サンプ及びドライウェル低電導度廃液サンプへの溶融炉心の流入を抑制す るため,コリウムシールドを設ける。

溶融炉心の原子炉格納容器下部への落下を遅延・防止するために用いる低圧代替注水系 (常設),低圧代替注水系(可搬型),高圧代替注水系及びほう酸水注入系は,低圧代替注水 系(常設),低圧代替注水系(可搬型)及び高圧代替注水系のいずれかと並行してほう酸水注 入系による原子炉圧力容器への注水を行うことで溶融炉心を冷却できる設計とする。

重大事故等時の原子炉格納容器内における水素爆発による破損防止のために用いる耐圧強 化ベント系は、原子炉格納容器内雰囲気ガスを不活性ガス系を経由して、主排気筒(内筒) を通して原子炉建屋外に放出することで、ジルコニウムー水反応、水の放射線分解等により 発生する原子炉格納容器内の水素ガス及び酸素ガスを大気に排出できる設計とし、排気中に 含まれる水素ガス及び酸素ガスによる水素爆発を防止するため、系統待機中に原子炉格納容 器から耐圧強化ベント弁までの配管について、系統内を不活性ガス(窒素ガス)で置換して おく運用を保安規定に定めて管理するとともに、耐圧強化ベント系の使用前に可搬型窒素供 給装置により外部から不活性ガス(窒素ガス)を供給できる設計とし、排出経路に水素ガス 及び酸素ガスが蓄積する可能性のある箇所についてはバイパスラインを設け、水素ガス及び 酸素ガスを連続して排出できる設計とすることで、系統内で水素濃度及び酸素濃度が可燃領 域に達することを防止できる設計とする。耐圧強化ベント系はサプレッションチェンバ及び ドライウェルのいずれにも接続するが、炉心の著しい損傷が発生した場合において、原子炉 格納容器内の水素ガス及び酸素ガスを排出するために使用する場合は、サプレッションチェ ンバのプール水によるスクラビング効果が期待できるサプレッションチェンバ側からの排出 経路のみを使用する設計とする。 また,格納容器圧力逃がし装置は,原子炉格納容器内雰囲気ガスをフィルタ装置及びよう 素フィルタにより放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出する ことで,排気中に含まれる放射性物質の環境への排出を低減しつつ,ジルコニウムー水反応, 水の放射線分解等により発生する原子炉格納容器内の水素ガス及び酸素ガスを大気に排出で きる設計とし,排気中に含まれる水素ガス及び酸素ガスによる水素爆発を防止するため,系 統内を不活性ガス(窒素ガス)で置換した状態で待機させ,使用後においても不活性ガスで 置換できる設計とし,排出経路に水素ガス及び酸素ガスが蓄積する可能性のある箇所にはバ イパスラインを設け,水素ガス及び酸素ガスを連続して排出できる設計とすることで,系統 内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。

原子炉建屋等の水素爆発による損傷を防止するために用いる静的触媒式水素再結合器は, 原子炉格納容器から原子炉建屋原子炉区域(二次格納施設)内に漏えいした水素と酸素を触 媒反応によって再結合させることで,原子炉建屋原子炉区域(二次格納施設)内の水素濃度 の上昇を抑制し,原子炉建屋原子炉区域(二次格納施設)の水素爆発を防止できる設計とす る。

炉心の著しい損傷及び原子炉格納容器の破損に至った場合において,発電所外への放射性 物質の拡散を抑制するために用いる原子炉建屋放水設備は,大容量送水車(原子炉建屋放水 設備用)により海水を取水し,放水砲から原子炉建屋へ放水することで発電所外への放射性 物質の拡散を抑制する設計とし,原子炉建屋周辺における航空機衝突による航空機燃料火災 に対応するため,大容量送水車(原子炉建屋放水設備用)により泡原液混合装置を通して, 海水を泡消火薬剤と混合しながらホースを経由して放水砲から原子炉建屋周辺へ放水できる 設計とする。また,海洋拡散抑制設備は,汚濁防止膜を汚染水が発電所から海洋に流出する 放水口及び取水口に設置し,放射性物質吸着材を汚染水が通過する雨水排水路集水桝並びに フラップゲート入口に設置することで発電所外への放射性物質の拡散を抑制する設計とする。

原子炉格納容器は、想定される重大事故等時において、設計基準対象施設としての最高使 用圧力及び最高使用温度を超える可能性があるが、設計基準対象施設としての最高使用圧力 (設計圧力)の2倍である限界圧力及び200℃の限界温度で閉じ込め機能を損なわない設計と する。

3. 構造及び機能

3.1 原子炉格納容器の構造の概要

柏崎刈羽原子力発電所第7号機の一次格納施設は圧力抑制形格納容器で、鋼製ライナを内 張りした鉄筋コンクリート造であり、原子炉圧力容器を取り囲む円筒形ドライウェル及びプ ール水を内蔵する円筒形サプレッションチェンバで構成する。内部には、ドライウェルとサ プレッションチェンバを仕切る鉄筋コンクリート造ダイヤフラムフロア及びドライウェルと サプレッションチェンバを連絡する鋼製ベント管がある。

原子炉格納容器は原子炉建屋と一体となっており,原子炉建屋基礎スラブにより支持され ている。

3.2 原子炉格納容器の機能

原子炉格納容器は冷却材喪失事故時に放射性物質が漏えいするのを防ぐ機能を有しており, 原子炉格納容器のドライウェル内で原子炉冷却材圧力バウンダリ系配管が破断した場合,蒸 気や炉水がドライウェル空間に放出される。その結果ドライウェル圧力が上昇し,空気又は 窒素,蒸気,水の混合物はベント管を通してサプレッションチェンバ内のプール水中へ押し 出される。

ここで蒸気はプール水によって冷却されて凝縮し、その結果としてドライウェル内圧力の 上昇は抑制される。この圧力抑制効果を得るために必要な構造及び寸法についての記述を 「4.2.12 圧力抑制効果を得るために必要な構造及び寸法」に示す。サプレッションチェン バに押し出された非凝縮性ガスはサプレッションチェンバ自由空間に貯えられる。また、サ プレッションチェンバは逃がし安全弁から放出する蒸気を凝縮する機能も有している。

非常用炉心冷却設備の作動により,原子炉圧力容器の水位が破断口の高さまで回復した後 の余剰水の溢水や残留熱除去系(格納容器スプレイ冷却モード)の起動によりドライウェル が負圧になった場合において,その負圧を解消し,原子炉格納容器の健全性を維持するため に真空破壊弁を設けているが,この設備については「4.2.13 真空破壊装置」に記述する。

圧力抑制形格納容器の機能を十分に発揮するためにこれらを補助する設備を設けているが, この設備については「4.2.11 原子炉格納容器安全設備」,「4.2.15 可燃性ガス濃度制御設 備」,「4.2.16 放射性物質濃度制御設備」及び「4.2.17 原子炉格納容器調気設備」に記述 する。

原子炉格納容器は搬出入を行うために開口部を設けているが、この設備については「4.2.6 開口部」に記述する。

原子炉格納容器は各種配管,電気配線を貫通させるために貫通部を設けているが,この設備については「4.2.7 配管貫通部」及び「4.2.8 電気配線貫通部」に記述する。

原子炉格納容器を貫通して取り付ける管には原子炉格納容器バウンダリを構成するために 原子炉格納容器隔離弁を設けているが、この設備については「4.2.9 原子炉格納容器隔離弁」 に記述する。

原子炉格納容器バウンダリは,通常運転時,運転時の異常な過渡変化時及び設計基準事故 時において,非延性破壊(脆性破壊)及び破断を防止する設計とする。これを実現する材料

RI

については「4.2.4 使用材料」に記述する。

4. 原子炉格納施設の設計条件

原子炉格納施設の設計条件として,各運転状態の定義について述べ,設計基準事故時におけ る設計条件と,重大事故等時における設計条件に分類し,項目ごとに説明する。

- 4.1 設計上考慮すべき状態
 - 4.1.1 鋼製耐圧部
 - 4.1.1.1 各運転状態の定義

各状態を次のように定義する。

- (1) 「運転状態 I」とは,発電用原子炉施設の通常運転時の状態をいう。
- (2) 「運転状態Ⅱ」とは、設計基準事故時及び設計基準事故に至るまでの間に想定される環境条件において、運転状態Ⅰ、運転状態Ⅲ、運転状態Ⅳ、運転状態Ⅴ及び 試験状態以外の状態をいう。
- (3) 「運転状態Ⅲ」とは、設計基準事故時及び設計基準事故に至るまでの間に想定される環境条件において、発電用原子炉施設の故障、異常な作動等により発電用原子炉の運転の停止が緊急に必要とされる状態をいう。
- (4) 「運転状態IV」とは、設計基準事故時及び設計基準事故に至るまでの間に想定される環境条件において、発電用原子炉施設の安全設計上想定される異常な事態が 生じている状態をいう。
- (5)「運転状態V」とは、運転時の異常な過渡変化及び設計基準事故に対して原子炉の安全性を損なうことがないよう設計することを求められる構築物、系統及び機器がその安全機能を喪失した場合であって、炉心の著しい損傷に至るおそれがあると想定する運転状態及び運転停止中の原子炉において燃料の著しい損傷に至るおそれがあると想定する運転状態及び運転停止中の原子炉において燃料の著しい損傷に至るおそれがあると想定する運転状態、並びに原子炉格納容器が損傷し、放射性物質が異常な水準で工場等外へ放出されるおそれのある状態をいう。
- (6) 「運転状態V(S)」とは、運転状態Vのうち、事象発生直後の短期的に荷重が作用 している状態をいう。
- (7) 「運転状態V(L)」とは、運転状態Vのうち、長期的(過渡状態を除く一連の期間) に荷重が作用している状態をいう。
- (8) 「運転状態V(LL)」とは,運転状態Vのうち,運転状態V(L)より更に長期的に荷 重が作用している状態をいう。
- (9) 「試験状態」とは、耐圧試験により発電用原子炉施設に最高使用圧力を超える圧 力が加えられている状態をいう。

4.1.1.2 原子炉格納施設における運転状態

各状態には次の事象がある。

- (1) 運転状態 I
 - a. 起動
 - b. 停止
 - c. 出力運転
 - d. 高温待機
 - e. 燃料交换
- (2) 運転状態Ⅱ
 - a. 外部電源喪失
 - b. 負荷の喪失
 - c. 主蒸気隔離弁の閉鎖
 - d. 給水制御系の故障
 - e. 圧力抑制装置の故障
 - f. 全給水流量喪失
 - g. タービントリップ
 - h. 逃がし安全弁誤作動
- (3) 運転状態Ⅲ
 - a. 原子炉圧力容器の過大圧力
- (4) 運転状態IV
 - a. 冷却材喪失事故
- (5) 運転状態V
 - a. 重大事故等時
- (6) 試験状態
 - a. 耐圧試験

運転状態 I のうち, a. 起動, b. 停止, c. 出力運転については, 起動, 停止, 出力運転サイクルの温度変動による荷重を考慮する。e. 燃料交換については燃料 交換時の水荷重を考慮する。

運転状態Ⅱの各事象,及び運転状態Ⅲのa. 原子炉圧力容器の過大圧力の事象は 逃がし安全弁の作動が考えられるが,原子炉格納施設の設計に当たっては,最も 厳しい逃がし安全弁作動時の荷重を考慮する。

運転状態Vの事象は、重大事故等時のうち原子炉格納容器内圧力及び温度が厳 しくなる事象を考慮する。

- 4.1.2 コンクリート
 - 4.1.2.1 各荷重状態の定義

各状態を次のように定義する。

- (1) 「荷重状態 I」とは、通常運転時の状態をいう。
- (2) 「荷重状態Ⅱ」とは、逃がし安全弁作動時、試験時又は積雪時の状態をいう。
- (3) 「荷重状態Ⅲ」とは,荷重状態Ⅰ,荷重状態Ⅱ,荷重状態Ⅳ及び荷重状態Ⅴ以外の状態をいう。
- (4) 「荷重状態IV」とは、コンクリート製原子炉格納容器の安全設計上想定される異常な事態が生じている状態をいう。
- (5) 「荷重状態V」とは、運転状態Vにおいてコンクリート製格納容器に異常な事態 が生じている状態をいう。
- 4.1.2.2 原子炉格納施設における荷重状態

各状態で考慮する荷重には次の荷重がある。

- (1) 荷重状態 I
 - a. 通常運転時
- (2) 荷重状態Ⅱ
 - a. 逃がし安全弁作動時
 - b. 試験時
 - c. 積雪時
- (3) 荷重状態Ⅲ
 - a. 暴風時
 - b. 地震時
 - c. 異常時
 - d. (異常+地震) 時
- (4) 荷重状態IV
 - a. 地震時
 - b. 異常時
 - c. ジェット力作用時
 - d. (異常+地震) 時
 - e. (異常+積雪)時
 - f. (異常+暴風)時
- (5) 荷重状態V
 - a. 重大事故等時

4.2 設計基準事故時における設計条件

原子炉格納容器の設計基準事故時の設計条件として,施設時に適用した「発電用原子力設備に関する技術基準を定める省令」(昭和40年通商産業省令第62号,以下「省令第62号」という。),告示第501号「発電用原子力設備に関する構造等の技術基準」(昭和55年10月30日 通商産業省告示第501号)(以下「告示第501号」という。)及び告示第452号「コンクリート製原子炉格納容器に関する構造等の技術基準」(平成2年10月22日 通商産業省告示第452号)(以下「告示第452号」という。)に基づき最高使用圧力,最高使用 温度,最低使用温度等を設定し,原子炉格納容器の強度評価等も含めた設計条件として使用する。以下に設計条件として使用する項目について示す。

- 4.2.1 圧力及び温度に関する設計条件
- (1) 最高使用圧力及び最高使用温度

原子炉格納容器は冷却材喪失事故直後の圧力上昇に耐えうるものでなくてはならない。 冷却材喪失事故時の原子炉格納容器の過渡解析では保守的なモデルを使用している。 柏崎刈羽原子力発電所第7号機もこの解析モデルを使って解析を行ったが、その際の インプットデータとしてはドライウェル空間容積(7350m³)、サプレッションチェンバ空 間容積(5960m³)、サプレッションチェンバ水量(3580m³)などを用いている。 解析の際の初期条件は、表4-1に示す通常運転中の圧力及び温度である。

表 4-1 解析に用いた初期条件

	ドライウェル	サプレッションチェンバ	ダイヤフラムフロア*
圧力	5kPa	5kPa	0kPa
温度	57°C	35℃	22°C

注記* :ドライウェル内雰囲気とサプレッションチェンバ内雰囲気の圧力及び温度の差を示 す。

解析結果による最高圧力及び最高温度は表 4-2 に示す値となる。 また,解析結果による圧力変化及び温度変化を図 4-1,図 4-2 に示す。

表 4-2 解析結果による最高圧力及び最高温度*1

\bigcirc	ドライウェル	サプレッションチェンバ	ダイヤフラムフロア*2
圧力	248kPa	177kPa	144kPa
温度	138°C	97°C	97°C

注記*1 : 平成 29 年 12 月 27 日付け「原規規発第 1712272 号」をもって許可を受けた「柏崎刈 羽原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3. 事故解析 3.5.1 原子炉冷却材喪失 (3)解析結果

^{*2:}ドライウェル内雰囲気とサプレッションチェンバ内雰囲気の圧力及び温度の差を示す。

図 4-1 ドライウェル及びサプレッションチェンバの圧力変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3. 事故解析 3.5.1 原子炉冷却材喪失 (3)解析結果における第3.5.1-1 図 給水配管完全破断事故時にお けるドライウェル及びサプレッション・チェンバの圧力変化

図 4-2 ドライウェル及びサプレッションチェンバの温度変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3. 事故解析 3.5.1 原子炉冷却材喪失 (3)解析結果における第 3.5.1-2 図 給水配管完全破断事故時にお けるドライウェル温度及びサプレッション・チェンバのプール水温度変化

上記の解析結果に余裕をもたせて最高使用圧力及び最高使用温度を表 4-3 に示す値とする。

表 4-3 最高使用圧力及び最高使用温度

\square	ドライウェル	サプレッションチェンバ	ダイヤフラムフロア
圧力	310kPa	310kPa	173kPa
温度	171°C	104°C	上面 171℃ 下面 104℃

なお,原子炉格納容器コンクリート部及びダイヤフラムフロアについては,温度荷重 として,冷却材喪失事故時の原子炉格納容器コンクリート部内温度及びダイヤフラムフ ロア内温度の時間的変化の解析結果から設計上最も厳しいものを採用する。

(2) 外圧

原子炉格納容器の外面にうける最高の圧力については通常運転中の格納容器スプレイ (ドライウェル)の誤起動,冷却材喪失事故後の格納容器スプレイ作動及び逃し安全弁 開固着後の格納容器スプレイ作動を想定した評価においても,最大で約 12kPa である。 これを上回る圧力として,ドライウェル及びサプレッションチェンバの外面にうける最 高の圧力は 14kPa とする。 4.2.2 漏えい率に対する設計条件

安全評価では,原子炉格納容器の設計漏えい率は,常温,最高使用圧力 0.9 倍の圧力 の空気において,原子炉格納容器内空間容積の 0.4%/day 以下としており,この設計漏 えい率に基づき設計基準事故時の原子炉格納容器内圧力に対応する漏えい率を下回らな い値を使用して解析し,安全評価の結果,設計基準事故時の実効線量は,「発電用軽水型 原子炉施設の安全評価に関する審査指針」の基準を満足している*¹。

また,重大事故等時及び仮想事故時の線量は,事故発生後1時間は,0.6%/day,その後1時間以降は0.3%/dayの漏えいが発生すると仮定した場合,「原子炉立地審査指針及びその適用に関する判断のめやすについて」のめやす線量を下回っている*2。

以上より,原子炉格納容器の設計漏えい率は,常温,最高使用圧力の 0.9 倍の圧力の 空気において,原子炉格納容器内空気重量の 0.4%/day 以下とする。

- 注記*1:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた「柏崎刈 羽原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3. 事故解析 3.4.4 原子炉冷却材喪失3.4.4.3.2 線量当量の評価 (3)評価結果
 - *2:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた「柏崎刈 羽原子力発電所発電用原子炉設置変更許可申請書」添付書類十4.重大事故及び 仮想事故
- 4.2.3 最低使用温度

原子炉格納容器の最低使用温度を表 4-4 に示す。

表	4 - 4	原子炉	市格納容器	の最低使用温度	叓
---	-------	-----	-------	---------	---

	ドライウェル	サプレッションチェンバ
最低使用温度	0°C	0°C

最低使用温度はドライウェル,サプレッションチェンバとも同じ値とする。この最低 使用温度は建設時の耐圧試験時(試験状態)を考慮して決めたものであり,これを除け ば,原子炉建屋内にあるので10℃としても十分である。 4.2.4 使用材料

原子炉格納容器バウンダリに使用するフェライト系材料は原子炉格納容器の最低使用 温度に対して脆性破壊を防止するため、告示第501号の規定により衝撃試験又は落重 試験を行い、これに合格したものを使用する。

原子炉格納容器の脆性破壊防止に関する確認事項を以下に示す。

- (1) 原子炉格納容器の脆性破壊防止
 - a. 概要

原子炉格納容器は、施設時に適用された「告示第501号」及び「電気工作物の溶 接に関する技術基準を定める省令」(昭和45年通商産業省令第81号,昭和60年10月 改正)(以下「省令第81号」という。)に基づき,材料,設計及び製作において,次の 試験を実施し、脆性破壊に対し十分安全であることを確認されたものを使用する。

- (a) 原子炉格納容器の材料は,告示第501号 第20条第3項に規定する衝撃試験を 行い,同条第4項に規定する合格基準に適合するものを使用する。
- (b) 原子炉格納容器の溶接部は、省令第81号 第28条の規定に基づき、衝撃試験 を行い、同条に規定する合格基準及び技術仕様に示す合格基準に適合することを 確認されたものを使用する。
- b. 脆性破壊防止のための確認事項実施要領
 - (a) 原子炉格納容器の材料に関する確認 材料に関する衝撃試験の実施要領は次のとおりである。
 - イ. 対象材料

第2種容器に使用する材料を対象とする。ただし、次に掲げる材料は試験を行

- うことを要しない。
 - 厚さが16mm 未満の材料
 - ② 断面積が 625mm²未満の棒の材料
 - ③ 呼び径が 25mm 未満のボルト等の材料
 - ④ 外径が 169mm 未満の管の材料
 - ⑤ 厚さが 16mm 又は外径が 169mm 未満の管に接続されるフランジの材料 及び管継手の材料
 - ⑥ オーステナイト系ステンレス鋼及び高ニッケル合金
- 口. 材料

原子炉格納容器において、該当する材料は次のとおりである。

ハ. 試験温度

試験温度は,-17℃以下とする。これは最低使用温度(0℃)より 17℃以上低い 温度である。

ニ. 試験片
 試験片は、3個採取する。

ホ. 合格基準

試験片の吸収エネルギが次の表の値以上であるものを合格とする。なお,再試験は告示第501号 第20条の規定による。

吸	吸収エネルギ		
3 個の平均[J]	最小值[J]		
表 4-6 衝撃試験	における合格基準:		

表 4-5 衝撃試験における合格基準:

吸収エネルギ		
3個の平均[J] 最小値[J]		

表 4-7 衝撃試験における合格基準:

吸収エネルギ		
3 個の平均[J] 最小値[J]		

表 4-8 衝撃試験における合格基準:

吸収エネルギ		
3個の平均[J] 最小値[J]		

表 4-9 衝撃試験における合格基準:

吸収エネルギ		
3 個の平均[J]	最小值[J]	

(b) 原子炉格納容器の溶接部に関する確認

溶接に関する衝撃試験の実施要領は次のとおりである。

- イ. 対象溶接部
 - 第2種容器の突合せ溶接による溶接部を対象とする。ただし次に掲げる材料は

試験を行うことを要しない。

①外形又は厚さが小さい場合の溶接部

- a. 厚さが 16mm 未満の溶接部
- b. 外径が 169mm 未満の管の溶接部
- c. 厚さが 16mm 又は外径が 169mm 未満の管に接続されるフランジ又は管継手の溶接部
- ② オーステナイト系ステンレス合金、ニッケルクロム鉄合金及び非鉄金属の 溶接部
- ロ. 母材の材料

原子炉格納容器において、該当する材料は下記の通りである。

ハ. 試験温度

試験温度は,-17℃以下とする。これは最低使用温度(0℃)より 17℃以上低い 温度である。

二. 試験片

試験片は溶接金属部及び熱影響部からそれぞれ3個採取する。

ホ. 合格基準

試験片の吸収エネルギが次の表の値以上であるものを合格とする。なお,再試験は省令第81号 第28条の規定による。

表 4-10 本体溶接部に対する衝撃試験における合格基準:

吸収エネルギ		
3 個の平均[J]	最小值[J]	

表 4-11 本体溶接部に対する衝撃試験における合格基準:

吸収エネルギ			
3 個の平均[J]	最小值[J]		

表 4-12 本体溶接部に対する衝撃試験における合格基準:

吸収エネルギ		
3 個の平均[J]	最小值[J]	

表 4-13 本体溶接部に対する衝撃試験における合格基準

吸収エネルギ		
3 個の平均[J]	最小值[J]	

4.2.5 耐圧試験圧力

原子炉格納容器の耐圧試験圧力は、施設時に適用された告示第501号 第104条に 基づき、最高使用圧力310kPaの1.125倍である353kPaで気圧試験を行い原子炉格納容器 の健全性を確認する。

以上より、原子炉格納容器の耐圧試験圧力を353kPaとする。

4.2.6 開口部

開口部となるドライウェル上鏡,上部ドライウェル機器搬入用ハッチ,下部ドライウ ェル機器搬入用ハッチ,サプレッションチェンバ出入口,(以下「ハッチ類」という。) 上部ドライウェル所員用エアロック及び下部ドライウェル所員用エアロック(以下「所 員用エアロック」という。)は十分な気密性を保つ設計とし,想定される漏えい量その他 の漏えい試験に影響を与える環境条件として,判定基準に適切な余裕係数を見込み,日 本電気協会「原子炉格納容器の漏えい率試験規程」(JEAC4203)に定める漏えい 試験のうちB種試験ができる設計とする。

所員用エアロックは,扉の開閉状態を管理するため,所員用エアロックの扉が開いた 場合には、中央制御室に警報を発信する。また,所員用エアロックの扉は、両方の扉が 同時に開かないようにインターロックを設ける設計とする。

ハッチ類は,原子炉格納容器の貫通部にフランジ付きの胴板が溶接固定されており, ハッチ類の外周側から蓋フランジをガスケットとボルトで固定し,気密性を保つ設計と する。 4.2.7 配管貫通部

原子炉格納容器配管貫通部は,冷却材喪失時において想定される原子炉格納容器内の 圧力を考慮した最高使用圧力,温度を考慮した最高使用温度,湿度,放射線等の環境条 件の下でも機能を発揮できる設計とする。

4.2.8 電気配線貫通部

原子炉格納容器電気配線貫通部は,冷却材喪失時において想定される原子炉格納容器 内の圧力を考慮した最高使用圧力,温度を考慮した最高使用温度,湿度,放射線等の環 境条件の下でも機能を発揮できるよう,それらの試験条件を考慮した試験により健全性 が確認されたものを使用する設計とする。

4.2.9 原子炉格納容器隔離弁

原子炉格納容器隔離弁(以下「隔離弁」という。)は、施設時に適用された省令第 62 号第 32 条第 3 項に基づくとともに以下に示す設計方針及び設計仕様に基づき設置する。

(1) 設計方針

原子炉格納容器を貫通する各施設の配管系に設ける隔離弁は,安全保護装置からの信 号により,自動的に閉鎖する動力駆動弁,チェーンロックが可能な手動弁,キーロック が可能な遠隔操作弁又は隔離機能を有する逆止弁とし,原子炉格納容器の隔離機能の確 保が可能な設計とする。

原子炉冷却材圧力バウンダリに接続するか,又は原子炉格納容器内に開口し,原子炉 格納容器を貫通している各配管は,冷却材喪失事故時に必要とする配管及び計測制御系 統施設に関連する小口径配管を除いて,原則として原子炉格納容器の内側に1個,外側 に1個の自動隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。

ただし、原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部が なく、かつ、原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがな い管又は原子炉格納容器外側で閉じた系を構成した管で、原子炉冷却系統に係る発電用 原子炉施設の損壊その他の異常の際に、原子炉格納容器内で水封が維持され、かつ、原 子炉格納容器外へ導かれた漏えい水による放射性物質の放出量が、冷却材喪失事故時の 格納容器内気相部からの漏えいによる放出量に比べ十分小さい配管については、原子炉 格納容器の内側又は外側に少なくとも1 個の隔離弁を原子炉格納容器に近接した箇所に 設置する設計とする。

また,原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は,遠隔操作 にて閉止可能な弁を設置することも可能とする。

貫通箇所の内側又は外側に設置する隔離弁は、一方の側の設置箇所における管であっ て、湿気や水滴等により駆動機構等の機能が著しく低下するおそれがある箇所、配管が 狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機 能が著しく低下するような箇所には、貫通箇所の外側であって近接した箇所に2個の隔 離弁を設ける設計とする。 原子炉格納容器を貫通する配管には、圧力開放板を設けない設計とする。

設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及び残留熱除去系 (格納容器スプレイ冷却モード)で原子炉格納容器を貫通する配管,その他隔離弁を設 けることにより安全性を損なうおそれがあり,かつ,当該系統の配管により原子炉格納 容器の隔離機能が失われない場合は,自動隔離弁を設けない設計とする。

ただし,原則遠隔操作が可能であり,設計基準事故時及び重大事故等時に容易に閉鎖 可能な隔離機能を有する弁を設置する設計とする。

また,重大事故等時に使用する不活性ガス系及び復水補給水系の隔離弁については, 設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし,重大事故等時に容易に開弁 が可能な設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配 管であって特に隔離弁を設けない場合には,隔離弁を設置したものと同等の隔離機能を 有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通する計測系配管に隔 離弁を設けない場合には、オリフィス又は過流量防止逆止弁を設置し流出量抑制対策を 講じる設計とする。

隔離弁は,閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機 能を喪失しない設計とする。また,隔離弁のうち,隔離信号で自動閉止するものは,隔 離信号が除去されても自動開とはならない設計とする。

隔離弁は、想定される漏えい量その他の漏えい試験に影響を与える環境条件として、 判定基準に適切な余裕係数を見込み、日本電気協会「原子炉格納容器の漏えい率試験規 程」(JEAC4203)に定める漏えい試験のうちC種試験ができる設計とする。また、 隔離弁は動作試験ができる設計とする。

(2) 設備仕様

原子炉格納容器を貫通する配管系に設ける隔離弁は、以下の項目を満足し、原子炉格 納容器バウンダリを構成する。

- a. 設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及び残留熱除去系 (格納容器スプレイ冷却モード)に係る配管の隔離弁は,隔離信号により自動的に 閉止しないが,必要に応じて遠隔操作により閉止できる弁又は逆止弁動作により閉 止する弁であり,原子炉格納容器の隔離機能を確保できる。
- b. 2 個の隔離弁を必要とする配管の弁駆動は、駆動動力源の単一故障によって両方の 弁を閉止する能力を損なわない。さらに、閉止後駆動動力源の喪失によっても閉止 状態が維持され、隔離機能は喪失しない。
- c. 隔離信号で自動閉止するものは,隔離信号が除去されても自動開とはならない。自動隔離弁への隔離信号は,原子炉水位低,ドライウェル圧力高あるいは,放射能レベル高及び手動である。

原子炉格納容器バウンダリ及び隔離弁の全体概要図を図 4-3 に示す。また、記号及び

略号を図 4-4 に示す。

図 4-3 原子炉格納容器バウンダリ及び隔離弁 全体概要図(1/4)

図 4-3 原子炉格納容器バウンダリ及び隔離弁 全体概要図(2/4)

図 4-3 原子炉格納容器バウンダリ及び隔離弁 全体概要図(3/4)

図 4-3 原子炉格納容器バウンダリ及び隔離弁 全体概要図(4/4)

(注)

- 原子炉格納容器に取り付ける管の貫通箇所の内側及び外側であって近接した箇所に1 個の隔離弁を設置する。
- ②:原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容器内に開口部がなく、 かつ、原子炉冷却系統に係る発電用原子炉施設の損壊の際に損壊するおそれがない 管又は原子炉冷却系統に係る発電用原子炉施設の損壊その他の異常の際に構造上内 部に滞留する液体により原子炉格納容器内の放射性物質が外部へ漏えいするおそれ がない管にあっては、貫通箇所の内側又は外側の近接した箇所に1個の隔離弁を設 置する。
- ③:貫通箇所の内側又は外側に隔離弁を設ける場合には、一方の側の設置箇所における 管であって、湿気その他の隔離弁の機能に影響を与える環境条件によりその隔離弁 の機能が著しく低下するおそれがあると認められるもの(湿気や水滴等により隔離 弁の駆動機構等の機能が著しく低下するおそれがある管、配管が狭隘部を貫通する 場合であって貫通部に近接した箇所に設置できないことにより隔離弁の機能が著し く低下するおそれがある管)にあっては、貫通箇所の外側であって近接した箇所に2 個の隔離弁を設置する。
- ④:隔離弁を設けることを要しない箇所。
 設計基準事故及び重大事故等の収束に必要な系統の配管に隔離弁を設けることにより安全性を損なうおそれがあり、かつ、当該系統の配管により原子炉格納容器の隔離機能が失われない場合。
- ⑤:隔離弁を設けることを要しない箇所。 計測制御系統施設又は制御棒駆動装置に関連する配管であって、当該配管を通じての漏えい量が十分許容される程度に抑制されているもの。

(略語一覧)	
AC	不活性ガス系
ADS	自動減圧系
CRD	制御棒駆動機構
CUW	原子炉冷却材浄化系
FCS	可燃性ガス濃度制御系
FCVS	原子炉格納容器フィルタベント系
HNCW	換気空調補機常用冷却水系
HPCF	高圧炉心注水系
HVAC	換気空調系(原子炉区域・タービン区域換気空調系ダクト)
MSIV	主蒸気隔離弁
MUWP	純水補給水系
PCV	原子炉格納容器
RCIC	原子炉隔離時冷却系
RCW	原子炉補機冷却水系
RHR	残留熱除去系
RIP	原子炉冷却材再循環ポンプ
RPV	原子炉圧力容器
S/P	サプレッションプール
SGTS	非常用ガス処理系
SPCU	サプレッションプール浄化系
SRV	主蒸気逃がし安全弁
TIP	移動式炉心内計測装置

1.機器の表示記号		
		原子炉格納容器貫通部
2.機器等の略号表示		
X		貫通部番号
3.バウンダリの表示記	号	
		格納容器バウンダリ
4.弁の表示記号		
\bowtie		弁開放状態
M		弁閉止状態
		仕切弁
		玉形弁
—×>—		ボール弁
		バタフライ弁
—l/1—		逆止弁
		電動弁
AO 		空気作動弁
 又		窒素作動弁
₹		電磁弁
		過流量阻止弁
 		安全弁 または 逃がし弁

図 4-4 原子炉格納容器バウンダリ及び隔離弁 全体概要図の記号及び略号

4.2.10 原子炉格納容器体積

設計基準事故時における冷却材喪失事故後の圧力上昇に耐えうるよう,ドライウェル 空間容積(約 7350m³),サプレッションチェンバ空間容積(約 6000m³,サプレッション プール水量が約 3600m³の場合において)の自由体積を有している。

4.2.11 原子炉格納容器安全設備

設計基準対象施設としての残留熱除去系(格納容器スプレイ冷却モード)は、サプレ ッションチェンバのプール水を原子炉格納容器内にスプレイすることにより、原子炉格 納容器内の圧力及び温度を原子炉格納容器の最高使用圧力及び最高使用温度以下に維持 できる設計とする。

サプレッションチェンバのプール水を水源とする残留熱除去系ポンプは、予想される もっとも小さい有効吸込水頭においても、正常に機能する能力を有する設計とする。サ プレッションチェンバは、設計基準事故及び重大事故等時に必要な水源として容量約 3600m³、個数1個を有する設計とする^{*1}。

残留熱除去系(格納容器スプレイ冷却モード)は、テストラインを構成することによ り、発電用原子炉の運転中に試験ができる設計とする。また、設計基準事故時に動作す る弁については、残留熱除去系ポンプが停止中に開閉試験ができる設計とする。残留熱 除去系(格納容器スプレイ冷却モード)は、冷却材喪失事故後、サプレッションチェン バ内のプール水をドライウェル内及びサプレッションチェンバ内にスプレイすることに よって、原子炉格納容器内の温度、圧力を低減し、原子炉格納容器内に浮遊している放 射性物質が漏えいするのを抑えるよう設計する。

注記 *1:詳細は、V-1-8-4「圧力低減設備のポンプの有効吸込水頭に関する説明書」 に示す。

4.2.12 圧力抑制効果を得るために必要な構造及び寸法

蒸気凝縮による圧力抑制効果については、パシフィック・ガス・アンド・エレクトリ ック社と GE 社が米国モスランディング発電所において、フンボルトベイ及びボデガベ イ原子力発電所用として行った実験結果及び水平ベント管型原子炉格納容器を模擬した GE 社の PSTF 実験結果等に基づいており、これらの実験により圧力抑制効果を得るため の必要な構造、寸法等を定めている。

柏崎刈羽原子力発電所第7号機における構造,寸法等と上記実験によって求められた 構造及び寸法等を比較すると表4-14のとおりとなっており,圧力抑制効果を得るため に必要な条件は満足されている。

表 4-14 柏崎刈羽原子力発電所第7号機・圧力抑制機能の構造, 寸法等

- 4.2.13 真空破壊装置
 - (1) 原子炉格納容器の外圧

ドライウェルは,事故時に過大な外圧を作用させないように真空破壊弁によって保護 されている。

すなわち,ドライウェル内に負圧を生じる場合は,真空破壊弁が自動的に作動して非 凝縮性ガスをサプレッションチェンバから引くことにより負圧による過大な外圧が作用 しない設計とする。 (2) 真空破壊弁の機能

ドライウェル内の冷却材喪失事故後,ドライウェル内の蒸気の凝縮が進み,ドライウ ェル内圧力がサプレッションチェンバ内圧力より下がるとサプレッションプール水がド ライウェルに逆流し,また負圧によってドライウェル,原子炉本体の基礎及びダイヤフ ラムフロアの破壊の原因となる。真空破壊弁はその作動によって両者の差圧を 14kPa 以 下とする。

(3) 真空破壊弁の容量

ドライウェルの真空破壊弁の容量は、ドライウェルとサプレッションチェンバの差圧 を 14kPa 以下に抑えるように設定する。真空破壊弁の必要流路面積は、流路面積をパラ メータとして解析を行った結果 m²以上となる。真空破壊弁の内径は m であ るから1個当たりの流路面積は

したがって,真空破壊弁の必要個数は,

となる。よって、実際の個数は1個余裕を持たせて8個とする。

なお,この真空破壊弁には,常時その開閉状態をチェックできる試験開閉装置を設置 する。 4.2.14 原子炉建屋原子炉区域

原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気 体状の放射性物質が漏えいした場合,放射性物質の濃度を低減する設備として,原子炉 建屋原子炉区域(二次格納施設)を設置する。

原子炉建屋原子炉区域(二次格納施設)は,原子炉格納容器を完全に取り囲む構造と なっており,非常用ガス処理系により,内部の負圧を確保し,原子炉格納容器から放射 性物質の漏えいがあっても発電所周辺に直接放出されることを防止する設計とする。

原子炉建屋原子炉区域(二次格納施設)に開口部を設ける場合には,気密性を確保す る設計とする。

4.2.15 可燃性ガス濃度制御設備

可燃性ガス濃度制御系は,通常運転中,不活性ガス系により原子炉格納容器内に窒素 を充填することとあいまって,冷却材喪失時事故後の原子炉格納容器内の水素濃度又は 酸素濃度を,可燃限界に達しないための制限値である水素濃度を 4vol%未満又は酸素濃 度を 5vol%未満に維持できる設計とする。

4.2.16 放射性物質濃度制御設備

原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気 体状の放射性物質が漏えいした場合,放射性物質の濃度を低減する設備として非常用ガ ス処理系を設置する設計とする。

非常用ガス処理系は,原子炉冷却材喪失時に原子炉格納容器内から原子炉建屋原子炉 棟に漏えいした放射性よう素・粒子状核分裂生成物を除去できるように設計する。

フィルタ装置のよう素除去効率は99.99%以上となる設計とする*1。

- 注記*1:平成 29 年 12 月 27 日付け「原規規発第 1712272 号」をもって許可を受けた 「柏崎刈羽原子力発電所発電用原子炉設置変更許可申請書」添付書類十 3. 事故解析 3.4.4 原子炉冷却材喪失における解析条件
- 4.2.17 原子炉格納容器調気設備

不活性ガス系は,水素及び酸素の反応を防止するため,あらかじめ原子炉格納容器内 に窒素を充填することにより,水素濃度及び酸素濃度を水素との可燃限界未満に保つ設 計とする。

炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による 破損を防止できるよう,発電用原子炉の運転中は,原子炉格納容器内を不活性ガス系に より常時不活性化する運用を保安規定に定めて管理する。
- 4.2.18 冷却材喪失事故時の荷重
 - (1) ドライウェル内の配管破断によるジェット力

原子炉格納容器の上部ドライウェル内で原子炉冷却材圧力バウンダリ配管が破断し た場合,ドライウェル壁面は高温・高圧の飽和及び二相流の噴出流によるジェット力 を受ける。

なお,下部ドライウェル内には口径の大きな原子炉冷却材圧力バウンダリ配管は配 置しない設計とする。

以下に F.J.MOODY の理論(引用文献(1)参照)によるジェット流の拡がりを考慮した ジェット力を示す。(図 4-5 参照)

- a 計算上の仮定
 - ・配管破断は完全破断を考え、破断面は直接壁面方向を向いているものとする。
 - ・破断時の原子炉内圧力は定常運転圧力 MPa[gage]に等しいものとする。
 - ・蒸気は理想気体とする。
 - ・破断口の状態は臨界状態とする。
 - ・破断配管の流路及び出口での摩擦損失は無視する。
- b 対象とする配管の種類

対象とする配管は、原子炉圧力容器上蓋スプレイ配管及び主蒸気配管とする。

- c ジェット力
 - イ. ジェットカの計算
 破断口でのジェット力は引用文献(1)の(15)式より次のように計算される。
 F j = (1.26・Po-P∞)・AE
 ここに,
 F j : ジェットカ
 Po: 原子炉内圧力
 = ____MPa[abs]
 P∞: 破断口より十分離れた点での圧力

ロ. ジェット流の拡がり面積の計算

ジェット流の拡がり面積は、引用文献(1)の(7)、(15)、(16)式より次のように導かれる。

$$A_{\infty} = \frac{V_{M\infty}}{V_{ME}} \cdot \left(1 - \frac{P_{E} - P_{\infty}}{1.26 \cdot P_{O} - P_{\infty}}\right) \cdot A_{E}$$

ここに, A∞:ジェット流の拡がり面積 V_{M∞}:破断口より十分離れた点でのジェット流の比容積 V_{ME}:破断口でのジェット流の比容積 P E: 破断口での圧力

ここで、РЕ、 Vме及びVм∞は次のように求められる。 PEは,引用文献(1)の(14)式より, $P_{E} = P_{O} \cdot \left(\frac{2}{k+1}\right)^{\frac{k}{k-1}}$ ここに, k:断熱指数 一方, VMEは引用文献(1)の(9)式より, $\mathbf{V}_{\mathrm{ME}} = \left\{ \mathbf{x} \cdot \mathbf{V}_{\mathrm{g}\,\mathrm{E}} + (1 - \mathbf{x}) \cdot \mathbf{K} \cdot \mathbf{V}_{\mathrm{f}\,\mathrm{E}} \right\} \cdot \left(\mathbf{x} + \frac{1 - \mathbf{x}}{\mathrm{K}} \right)$ n³ / kg ここに, x:乾き度 _ VgE:破断口での蒸気の比容積 = m³/kg VfE:破断口での飽和水の比容積 = m³/kg K:速度比 $= (V_g E / V_f E)^{1/3}$ = $\pm c$, $V_{M\infty} = m^3/kg$

注記*:L∞はジェット洗が十分拡がる距離で2・DE以上である。

図 4-5 ジェット流の拡がり

ハ. ジェット流の衝撃面での圧力及び作用半径の算出

拡がったジェット流は壁面に当たって更に拡大する。また,その壁面での圧力 も中心部が高く,周辺部へ行くに従って低くなる分布となる。

この圧力分布は二次曲線と仮定する。(引用文献(2)参照)

以上より作用壁面における中心圧力及び作用半径は次式により計算される。

$$P_{c} = \frac{F_{j}}{A_{\infty}}$$
$$R_{c} = \sqrt{\frac{2 \cdot F_{j}}{\pi \cdot P_{c}}} = \sqrt{\frac{2 \cdot A_{\infty}}{\pi}}$$

ここに,

Pc:ジェット流の作用壁面における中心圧力

Rc:ジェット流の作用壁面における作用半径

d ジェット力の計算結果

ジェット力は対象とする配管それぞれに対して表4-15のように求まる。

	矿彩型建	ジェットセ	せぶり	世がり声待	ジェット流作用面での値				
破断 配管	和区内田相相	シェット力	加かり	加かり国傾	中心圧力	作用半径			
	$(\times 10^6 \text{mm}^2)$	$(\times 10^4 \text{N})$	山但儿	A^{∞} ($\times 10^{6}$ mm ²)	Рс	Rс			
			$A \infty / A E$		(MPa)	$(imes 10^3 { m mm})$			
原子炉									
圧力容器									
上蓋スプ									
レイ配管									
主蒸気									
配管			l						

表 4-15 ジェット力

(2) サプレッションチェンバ内に生じる荷重

冷却材喪失事故時には、まずドライウェル内の非凝縮性ガスがベント管を経てサプ レッションプール水中に押し出されるが、この非凝縮性ガスによって、サプレッショ ンプール水がスラグ流となって上昇し、急速な水面の上昇(プールスウェル)が起こ り、サプレッションチェンバ内部構造物に種々の荷重が加わる。

また,その後サプレッションプール水中に蒸気が放出され,サプレッションプール 水中で凝縮する。これらにより,サプレッションチェンバ及び内部構造物に表 4-16 に示すような荷重が加わる。

図 4-6 に冷却材喪失事故時荷重の時間履歴を,表 4-16 にこれらの荷重について現象と設計評価荷重を示す。

図 4-6 冷却材喪失事故時荷重の時間履歴

表 4-	-16	冷却材喪失事故時の荷重について	(その1)
------	-----	-----------------	-------

荷重	現象	設計評価荷重
a. ベントクリア時	ドライウェル圧力の急激な上昇に	・ドラッグ力*
の水ジェットによ	よりベント管内のサプレッション	$\mathbf{F} = \mathbf{C} \cdot \mathbf{A} \cdot \mathbf{\gamma} \cdot \mathbf{V}^2$
る荷重	プール水がプール内に放出される	$\mathbf{F} = \mathbf{C} + \mathbf{A} \cdot \frac{1}{2}$
	ため水ジェット流が形成され、ジ	C D:ドラッグ係数
	ェットによる衝撃力及びドラッグ	A:ジェットの作用する実効面積
	力がベント管の前方にある内部構	γ : 水の密度
	造物及び原子炉格納容器に作用す	V:ジェット水速度
	る。	・衝撃力
		P j = kPa
		プール底面とプール壁面に
		kPa の圧力荷重が加わる。

注記* :構造物がジェット流中に含まれる場合に用いる。

荷重	現象	設計評価荷重
 b. 気泡形成によ るサプレッショ ンプール水中の 圧力上昇 	ドライウェルの空気がベント 管から放出される際,気泡が サプレッションプール側壁, 内部構造物及び原子炉格納容 器底部に圧力波として作用す る。	・気泡形成によるサプレッションプール水 中の圧力上昇 : kPa
c. 水面上昇によ る衝撃力	プールスウェルに伴う水面上 昇の際,水面より上方にある 機器,配管,内部構造物にサ プレッションプール水が衝突 し,それらに衝撃力が作用す る。	・衝撃力 F I = A · P I (t) A : 衝撃の作用する実効面積 P I : 衝撃圧力 P I (t) = $\frac{1}{2}$ · P I max · $\left\{1 - \cos\left(2 \cdot \pi \cdot \frac{t}{T}\right)\right\}$ T : 衝撃継続時間 P I max = $2 \cdot \frac{I P}{T}$ I P = $\frac{M_{H}}{A} \cdot V$ MH : 水力学的重量 V : $\mathcal{T} - \mu \times \eta \times \mu$ 速度
d. 上昇水流によ る荷重	サプレッションプール水が上 昇する際,上昇水流によりド ラッグ力が,機器,配管及び 内部構造物に作用する。	・ドラッグ力* F _D = C _D ・A・ $\frac{\gamma \cdot V^2}{2}$ C _D :ドラッグ係数 A:ドラッグの作用する実効面積 γ :水の密度 V:ドラッグ速度 (m/s)

表 4-16 冷却材喪失事故時の荷重について(その2)

注記* :構造物がジェット流中に含まれる場合に用いる。

荷重	現象	設計評価荷重
e. サプレッション チェンバ空間部圧 縮荷重	サプレッションプール水面の上昇 によりサプレッションプール上部 の空間部が圧縮されることによ り,サプレッションチェンバ空間 部圧縮荷重が作用する。	・サプレッションチェンバ空間部 圧縮荷重 : kPa ・ダイヤフラムフロア上向き差圧 : kPa
f. フォールバック 荷重	上昇した水面の上昇が停止し,水 が落下するとき,落下水により, 機器,配管及び内部構造物にドラ ッグ力が作用する。	フォールバック荷重 ・ドラッグ力 F $_{D} = C_{D} \cdot A \cdot \frac{\gamma \cdot V^{2}}{2}$ C $_{D} : ドラッグ係数$ A:フォールバック荷重の作用す る実効面積 $\gamma : 水の密度$ V:フォールバック速度 (m/s)
g. 蒸気凝縮振動荷 重	中高流量蒸気が凝縮する際,サプ レッションプール水に凝縮振動波 が伝播し,サプレッションプール 側壁,原子炉格納容器底部,原子 炉本体基礎及び内部構造物に作用 する。	・プールバウンダリに加わる荷重 kPa kPa
h. チャギング荷重	低流量蒸気が凝縮する際,ベント 管出口で不均一な凝縮によりプー ルバウンダリに荷重が加わる。	・プールバウンダリに加わる荷重 kPa kPa
i.水平吐出管に加 わる上下荷重	低流量蒸気が凝縮する際,ベント 管出口で不均一な凝縮により上段 の水平吐出管に上向き力が作用す る。	 ・水平吐出管に加わる上下荷重 N

- 4.2.19 逃がし安全弁作動時の荷重
 - (1) 逃がし安全弁作動時には排気管内の水がクエンチャノズルよりサプレッションプール 水中に排出される。排気管内の水が排出された後,管内の非凝縮性ガスが圧縮され, これがサプレッションプール水中に放出される際,気泡を形成し,この気泡が過膨張, 収縮を繰り返しながら浮力で上昇する。このとき、サプレッションチェンバ内部構造 物には、表4-17に示すような水ジェットと気泡の圧力振動による荷重が加わる。
 - (2) (1)の圧力振動に起因してサプレッションプール水中の内部構造物に作用する差圧及び ドラッグ荷重は応力評価すべき構造物によって異なるため、個々の場合については計 算書で述べる。

荷重	現象	設計評価荷重
a.水ジェットによ	逃がし安全弁作動時,排気管内の	・衝撃力
る荷重	水がクエンチャノズルよりサプレ	$F_j = A \cdot P_j$
	ッションプール水中に放出される	A:ジェットの当たる面積
	際,ジェット流が形成され,サプ	P j : ジェットの圧力
	レッションプール水中の内部構造	
	物に衝撃力及びドラッグ力が作用	・ドラッグ力
	する。	$F_{D} = C_{D} \cdot A \cdot \frac{\gamma \cdot V^{2}}{2}$
		Сь: ドラッグ係数
		A:ジェットの作用する実効面積
		γ:水の密度
		V:ジェット水速度
b. 空気泡圧力の振	逃がし安全弁作動時、排気管内の	・圧力波による荷重
動による荷重	空気が圧縮され、これがサプレッ	kPa
	ションプール水中に放出される	kPa
	際,気泡を形成し、この気泡が過	
	膨張,収縮を繰返し圧力振動が,	
	機器,配管,内部構造物,サプレ	
	ッションプール側壁及び原子炉格	
	納容器底部に作用する。	

表 4-17 逃がし安全弁作動時の荷重について

4.2.20 地震荷重

原子炉格納施設の設計に用いる地震荷重としては、V-2-2-1「原子炉建屋の地震応答計算書」及びV-2-2-4「原子炉本体の基礎の地震応答計算書」の解析結果を用いる。

4.3 重大事故等時における設計条件

重大事故等時については,原子炉格納容器の放射性物質閉じ込め機能の確認を行うために, 原子炉格納容器の評価温度,評価圧力を設定し,構造健全性評価,又は機能維持評価を行い, その環境下での原子炉格納容器の放射性物質閉じ込め機能が損なわれることがないことを確 認する。

また,重大事故等時に加わる荷重を設定し,原子炉格納容器の強度評価等も含めた設計条件として使用する。

- 4.3.1 原子炉格納容器の評価温度,評価圧力
 - (1) 原子炉格納容器の限界温度,限界圧力

重大事故等時の原子炉格納容器の破損の防止において想定する評価事故シーケンスの うち雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)について原子炉格納 容器の温度,圧力を評価した結果,原子炉格納容器温度の最高値は,約 207℃(壁面最 高温度約165℃),原子炉格納容器圧力の最高値は,620kPaとなる。図4-7に原子炉格 納容器温度の変化,図4-8に原子炉格納容器圧力の変化を示す。

重大事故等時の原子炉格納容器内の最高温度・最高圧力は,設計基準事故時における 最高使用温度(171℃),最高使用圧力(1Pd:310kPa)を上回ることから,重大事故等時 の最高温度・最高圧力を上回り,かつ,産業界でシビアアクシデント時の原子炉格納容 器の耐性の指標*として用いられている200℃及び2Pd(620kPa)を原子炉格納容器の限 界圧力,限界温度として設定し,その環境下での原子炉格納容器の放射性物質の閉じ込 め機能について評価対象部位ごとに評価することにより,その機能が損なわれることが ないことを確認する。また,これにより,原子炉格納容器を重大事故等時において使用 する場合の設計漏えい率は,設計基準対象施設として使用する設計漏えい率と同じ 0.4%/day(最高使用圧力の0.9倍の圧力において)以下を維持できる。なお,重大事故 等時の漏えい率は,原子炉格納容器圧力が設計基準対象施設としての最高使用圧力の 0.9倍より大きい場合においても原子炉格納容器の環境条件を考慮し,適切に割増しし て評価に使用しており,その設定値において被ばく評価上の基準に適合することを確認 している。

注記*:(財)原子力安全研究協会「次世代型軽水炉の原子炉格納容器設計におけるシビ アアクシデントの考慮に関するガイドライン」,(財)原子力発電技術機構「重 要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書」

図 4-7 重大事故等時の原子炉格納容器温度の変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた 「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.2.2 格納容器破損防止対策の 有効性評価(4) 有効性評価の結果における第7.2.1.2-12 図 格納容器気相部温度の 推移

図 4-8 重大事故等時の原子炉格納容器圧力の変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた 「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.3.2 格納容器破損防止対策の 有効性評価(4)有効性評価の結果における第7.2.1.3-10図 格納容器圧力の推移 (2) 地震力と組み合わせる原子炉格納容器の評価温度,評価圧力

重大事故等と地震力の組合せについては、V-2-1-1「耐震設計の基本方針」において、 「原子炉格納容器バウンダリを構成する設備(原子炉格納容器内の圧力,温度条件を用 いて評価を行うその他の施設を含む。)については、いったん事故が発生した場合、長時 間継続する事象による荷重と弾性設計用地震動Sdによる地震力とを組み合わせ、その 状態からさらに長期的に継続する事象による荷重と基準地震動Ssによる地震力を組み 合わせる」としている。

a. 弾性設計用地震動Sdと組み合わせる原子炉格納容器の評価温度,評価圧力

弾性設計用地震動Sdと組み合わせる,原子炉格納容器の評価温度,評価圧力は事 象発生後10⁻²年(約3日(72時間))後の状態として,保守的に事象発生後以降の最高 となる原子炉格納容器温度,圧力とする。

重大事故等時の原子炉格納容器の破損の防止において想定する評価事故シーケンス のうち雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系 を使用しない場合)について原子炉格納容器の温度,圧力を評価した結果,原子炉格 納容器温度の最高値は約 207℃(壁面最高温度 約 165℃),原子炉格納容器圧力の最高 値は 620kPa となる。図 4-7 に原子炉格納容器温度の変化,図 4-8 に原子炉格納容器 圧力の変化を示す。原子炉格納容器の強度評価等に用いる温度条件としては,原子炉 格納容器気相温度ではなく,原子炉格納容器壁面温度に着目するため,壁面最高温度 の約 165℃を考慮する。

以上より,弾性設計用地震動Sdと組み合わせる,原子炉格納容器の評価温度は, 壁面最高温度及び 620kPa における飽和蒸気温度を包絡する値として 168℃とする。評 価圧力は 620kPa とする。

b. 基準地震動Ssと組み合わせる原子炉格納容器の評価温度,評価圧力

基準地震動Ssと組み合わせる,原子炉格納容器の評価温度,評価圧力は事象発生後2×10⁻¹年(約73日)後の状態を有効性評価結果に対して保守的に包絡する状態として,事象発生60日(1440時間)後の原子炉格納容器温度,圧力とする。

基準地震動Ssとの組合せにおいて想定する評価事故シーケンスである雰囲気圧 カ・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却を使用する場合) について原子炉格納容器の温度,圧力を評価した結果,事象発生 60日後時点において は,原子炉格納容器温度は約74℃,原子炉格納容器圧力は約150kPaとなる。図4-9 に原子炉格納容器温度の変化,図4-10に原子炉格納容器圧力の変化を示す。

以上より,基準地震動Ssと組み合わせる原子炉格納容器の評価温度,評価圧力は, 上記を包絡する値として,100℃,150kPaとする。

図 4-9 重大事故等時の原子炉格納容器温度の変化(長期解析)*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた 「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.2 代替循環冷却系を使用する 場合と同条件で実施した原子炉格納容器温度の長期解析結果

図 4-10 重大事故等時の原子炉格納容器圧力の変化(長期解析)*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた 「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.2 代替循環冷却系を使用する 場合と同条件で実施した原子炉格納容器圧力の長期解析結果

(3) 重大事故等時の原子炉格納容器の評価水位

重大事故等時は原子炉格納容器外部を水源とする代替格納容器スプレイにより、サプ レッションプール水位が上昇し、これに伴うベント管リターンラインからの水の流入に より下部ドライウェルに水位が形成される。

重大事故等時の原子炉格納容器の破損の防止において想定する評価事故シーケンスの うち原子炉格納容器水位が最大となる,雰囲気圧力・温度による静的負荷(格納容器過 圧・過温破損)についてサプレッションプール水位及び下部ドライウェル水位を評価し た結果,最高値はそれぞれ約 16.3m 及び約 13.5m となる。図 4-11 にサプレッションプ ール水位の変化,図 4-12 に下部ドライウェル水位の変化を示す。

重大事故対応上は、サプレッションプールの水位が原子炉格納容器圧力逃がし装置配管(以下「ベントライン」という。)から-1m となるまでに代替格納容器スプレイを停止するが、保守的にこれを上回る水位として、ベントライン下端である 17.15m(T.M.S.L. 8950mm)を重大事故等時の原子炉格納容器の評価に用いるサプレッションプール水位とする。

下部ドライウェル水位については,解析上の最高値約 13.5m を包絡する値として, 14.0m(T.M.S.L. 7400mm)を重大事故等時の原子炉格納容器の評価に用いる下部ドライウ ェル水位とする。

図 4-11 重大事故等時のサプレッションプールの水位の変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.3 代替循環冷却系を使用しな い場合 7.2.1.3.2 格納容器破損防止対策の有効性評価 (4) 有効性評価の結果にお ける第7.2.1.3-12 図 サプレッション・チェンバ・プール水位の推移

図 4-12 重大事故等時の下部ドライウェル水位の変化*

注記*:平成29年12月27日付け「原規規発第1712272号」をもって許可を受けた 「柏崎刈羽 原子力発電所発電用原子炉設置変更許可申請書」添付書類十 7.2.1 雰囲気圧力・温 度による静的負荷(格納容器過圧・過温破損) 7.2.1.3 代替循環冷却系を使用しな い場合と同条件の解析結果に基づく下部ドライウェル水位の変化 4.3.2 重大事故等時における原子炉格納容器の熱輸送機能

設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合 において原子炉格納容器の破損(炉心の著しい損傷が発生する前に生ずるものに限る。) を防止するため,最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備と して,耐圧強化ベント系及び格納容器圧力逃がし装置を設ける。

格納容器圧力逃がし装置は、フィルタ装置(フィルタ容器、スクラバ水、金属フィル タ)、よう素フィルタ、ドレンタンク、ラプチャーディスク、配管・弁類、計測制御装 置等で構成し、原子炉格納容器内雰囲気ガスを不活性ガス系を経由して、フィルタ装置 及びよう素フィルタへ導き、放射性物質を低減させた後に原子炉建屋屋上に設ける放出 口から放出(系統設計流量 31.6kg/s(2Pd において))することで、排気中に含まれる 放射性物質の環境への放出量を抑制しつつ、原子炉格納容器内に蓄積した熱を最終的な 熱の逃がし場である大気へ輸送できる設計とする。

格納容器圧力逃がし装置を使用した場合に放出される放射性物質の放出量に対して, 設置(変更)許可において敷地境界での線量評価を行い,実効線量が5mSv以下であるこ とを確認しており,格納容器圧力逃がし装置はこの評価条件を満足する設計とする。

詳細は、「4.3.4 重大事故等時における原子炉格納容器の過圧破損防止機能」に示す。 耐圧強化ベント系は、原子炉格納容器内雰囲気ガスを不活性ガス系を経由して、主排 気筒(内筒)を通して原子炉建屋外に放出(系統設計流量 15.8kg/s(1Pd において))す ることで、原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送で きる設計とする。

最終ヒートシンクへ熱を輸送するための設備として使用する場合の耐圧強化ベント系 は、炉心損傷前に使用するため、排気中に含まれる放射性物質及び可燃性ガスは微量で ある。

耐圧強化ベント系を使用する際に流路となる不活性ガス系等の配管は,他の発電用原 子炉とは共用しない設計とする。また,弁により他の系統・機器と隔離することにより, 悪影響を及ぼさない設計とする。

耐圧強化ベント系の使用後に再度,代替格納容器スプレイ冷却系等により原子炉格納 容器内にスプレイする場合には,原子炉格納容器が負圧とならないよう,原子炉格納容 器が規定の圧力に達した場合には,原子炉格納容器内へのスプレイを停止する運用を保 安規定に定めて管理する。

耐圧強化ベント系使用時の排出経路に設置される隔離弁は,遠隔手動弁操作設備によ って人力により容易かつ確実に操作が可能な設計とする。

また,排出経路に設置される隔離弁のうち空気作動弁については,遠隔空気駆動弁操 作用ボンベから遠隔空気駆動弁操作設備の配管を経由し,高圧窒素ガスを供給すること による操作も可能な設計とし,排出経路に設置される隔離弁のうち電動弁については常 設代替交流電源設備又は可搬型代替交流電源設備からの給電により,中央制御室から操 作が可能な設計とする。これらにより,隔離弁の操作における駆動源の多様性を有する 設計とする。 耐圧強化ベント系はサプレッションチェンバ及びドライウェルと接続し,いずれから も排気できる設計とする。サプレッションチェンバ側からの排気ではサプレッションチ ェンバの水面からの高さを確保し,ドライウェル側からの排気では,ダイヤフラムフロ ア面からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設ける ことで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。

耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して,設置 (変更)許可において敷地境界での線量評価を行い,実効線量が 5mSv 以下であることを 確認しており,耐圧強化ベント系はこの評価条件を満足する設計とする。

4.3.3 重大事故等時における原子炉格納容器冷却機能

設計基準事故対処設備が有する原子炉格納容器内の冷却機能が喪失した場合において 炉心の著しい損傷を防止するために原子炉格納容器内の圧力及び温度を低下させるため、 また、炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため に原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるための重大事 故等対処設備として、代替格納容器スプレイ冷却系(常設)及び代替格納容器スプレイ 冷却系(可搬型)を設ける。また、想定される重大事故等時において、設計基準事故対 処設備である残留熱除去系(格納容器スプレイ冷却モード)及び残留熱除去系(サプレ ッションチェンバプール水冷却モード)が使用できる場合は重大事故等対処設備(設計 基準拡張)として使用できる設計とする。

代替格納容器スプレイ冷却系(常設)は,復水移送ポンプにより,復水貯蔵槽の水を 残留熱除去系等を経由して原子炉格納容器スプレイ管からドライウェル内及びサプレッ ションチェンバ内にスプレイすることで,原子炉格納容器内の圧力及び温度並びに放射 性物質の濃度を低下させることができる設計とする。

代替格納容器スプレイ冷却系(常設)の水源である復水貯蔵槽は,複数の代替淡水源 から淡水を供給できる設計とし,淡水が枯渇した場合に,海を利用できる設計とする。

代替格納容器スプレイ冷却系(常設)は,非常用ディーゼル発電設備に加えて,代替 所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電 が可能な設計とする。

代替格納容器スプレイ冷却系(常設)は、炉心の著しい損傷及び原子炉格納容器の破 損を防止するための設備として兼用する設計とする。

代替格納容器スプレイ冷却系(可搬型)は,可搬型代替注水ポンプ(A-2級)により, 代替淡水源の水を残留熱除去系等を経由して原子炉格納容器スプレイ管からドライウェ ル内及びサプレッションチェンバ内にスプレイすることで,原子炉格納容器内の圧力及 び温度並びに放射性物質の濃度を低下させることができる設計とする。

代替格納容器スプレイ冷却系(可搬型)の水源は,淡水が枯渇した場合に,海を利用 できる設計とする。

代替格納容器スプレイ冷却系(可搬型)は,非常用ディーゼル発電設備に加えて,代 替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給 電が可能な設計とする。また,可搬型代替注水ポンプ(A-2級)は,ディーゼルエンジン により駆動できる設計とする。

代替格納容器スプレイ冷却系(可搬型)は、炉心の著しい損傷及び原子炉格納容器の 破損を防止するための設備として兼用する設計とする。

残留熱除去系(格納容器スプレイ冷却モード)は、常設代替交流電源設備からの給電 により機能を復旧し、残留熱除去系ポンプによりサプレッションチェンバのプール水を ドライウェル内及びサプレッションチェンバ内にスプレイすることで原子炉格納容器を 冷却できる設計とする。

残留熱除去系(サプレッションチェンバプール水冷却モード)は、常設代替交流電源 設備からの給電により機能を復旧し、残留熱除去系ポンプ及び熱交換器により、サプレ ッションチェンバのプール水を冷却することで原子炉格納容器を冷却できる設計とする。

4.3.4 重大事故等時における原子炉格納容器の過圧破損防止機能

炉心の著しい損傷が発生した場合において,原子炉格納容器の過圧による破損を防止 するために必要な重大事故等対処設備として,原子炉格納容器バウンダリを維持しなが ら原子炉格納容器内の圧力及び温度を低下させるための設備である代替循環冷却系及び 原子炉格納容器内の圧力を大気中に逃がすための設備である格納容器圧力逃がし装置を 設ける。

代替循環冷却系は,復水移送ポンプによりサプレッションチェンバのプール水を残留 熱除去系熱交換器にて冷却し,残留熱除去系等を経由して原子炉圧力容器又は原子炉格 納容器下部へ注水するとともに,原子炉格納容器内へスプレイすることで,原子炉格納 容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とす る。

原子炉圧力容器に注水された水は,原子炉圧力容器又は原子炉格納容器内配管の破断 口等から流出し,原子炉格納容器内へスプレイされた水とともに,格納容器ベント管に 設けられている連通孔を経て,サプレッションチェンバに戻ることで循環できる設計と する。

代替循環冷却系は,代替所内電気設備を経由した常設代替交流電源設備又は可搬型代 替交流電源設備からの給電が可能な設計とする。

格納容器圧力逃がし装置は、フィルタ装置(フィルタ容器、スクラバ水、金属フィル タ)、よう素フィルタ、ドレンタンク、ラプチャーディスク、配管・弁類、計測制御装置 等で構成し、原子炉格納容器内雰囲気ガスを不活性ガス系を経由して、フィルタ装置及 びよう素フィルタへ導き、放射性物質を低減させた後に原子炉建屋屋上に設ける放出口 から排出(系統設計流量 31.6kg/s (2Pd において))することで、排気中に含まれる放射 性物質の環境への放出量を低減しつつ、原子炉格納容器内の圧力及び温度を低下できる 設計とする。

フィルタ装置は,排気中に含まれる粒子状放射性物質及びガス状の無機よう素を除去 し,よう素フィルタは,排気中に含まれる有機よう素を除去できる設計とする。また, 無機よう素をスクラバ水中に捕集・保持するために,アルカリ性の状態(**し**以上)に 維持する設計とする。

格納容器圧力逃がし装置はサプレッションチェンバ及びドライウェルと接続し,いず れからも排気できる設計とする。サプレッションチェンバ側からの排気ではサプレッシ ョンチェンバの水面からの高さを確保し,ドライウェル側からの排気では,ダイヤフラ ムフロア面からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を 設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。

格納容器圧力逃がし装置は,排気中に含まれる可燃性ガスによる水素爆発を防止する ため,系統内を不活性ガス(窒素ガス)で置換した状態で待機させ,使用後においても 不活性ガスで置換できる設計とする。また,系統内に可燃性ガスが蓄積する可能性のあ る箇所にはバイパスラインを設け,可燃性ガスを連続して排出できる設計とすることで, 系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。

格納容器圧力逃がし装置は、他の発電用原子炉施設とは共用しない設計とする。また、 格納容器圧力逃がし装置と他の系統・機器を隔離する弁は直列で2 個設置し、格納容器 圧力逃がし装置と他の系統・機器を確実に隔離することで、悪影響を及ぼさない設計と する。

格納容器圧力逃がし装置の使用後に再度,代替格納容器スプレイ冷却系等により原子 炉格納容器内にスプレイする場合は,原子炉格納容器が負圧とならないよう,原子炉格 納容器が規定の圧力に達した場合には,スプレイを停止する運用を保安規定に定めて管 理する。

格納容器圧力逃がし装置使用時の排出経路に設置される隔離弁は、遠隔手動弁操作設備(個数5)によって人力により容易かつ確実に操作が可能な設計とする。

また,排出経路に設置される隔離弁のうち空気作動弁については,原子炉建屋内の原 子炉区域外に遠隔空気駆動弁操作用ボンベを設置することで,離れた場所から遠隔空気 駆動弁操作設備の配管を経由して高圧窒素ガスを供給することにより,容易かつ確実に 操作が可能な設計とし,排出経路に設置される隔離弁のうち電動弁については,常設代 替交流電源設備又は可搬型代替交流電源設備からの給電により,中央制御室から操作が 可能な設計とする。

系統内に設けるラプチャーディスクは,格納容器圧力逃がし装置の使用の妨げになら ないよう,原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計と する。

格納容器圧力逃がし装置は,格納容器圧力逃がし装置使用時にフィルタ装置の水位が 上昇した場合の水位調整のため,又は格納容器圧力逃がし装置使用後に水の放射線分解 により発生する水素が系統内に蓄積することを防止するため,フィルタ装置内のスクラ バ水をドレン移送ポンプによりサプレッションチェンバへ移送できる設計とする。

格納容器圧力逃がし装置は、代替淡水源から、可搬型代替注水ポンプ(A-2 級)、可搬型Y型ストレーナ等によりフィルタ装置にスクラバ水を補給できる設計とする。

スクラバ水 pH 制御設備用ポンプは、可搬型窒素供給装置により駆動し、水酸化ナトリ

ウム水溶液をフィルタ装置に注入し、フィルタ装置内のスクラバ水の pH を 以上に維持できる設計とする。

4.3.5 重大事故等時における原子炉格納容器下部の溶融炉心冷却機能

炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため,溶 融し,原子炉格納容器下部に落下した炉心を冷却するために必要な重大事故等対処設備 として,格納容器下部注水系(常設)及び格納容器下部注水系(可搬型)を設ける。ま た,溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保する とともに,落下した溶融炉心を冷却できる設計とする。なお,溶融炉心が原子炉格納容 器下部へと落下した場合に,ドライウェル高電導度廃液サンプ及びドライウェル低電導 度廃液サンプへの溶融炉心の流入を抑制するため,コリウムシールドを設ける。

格納容器下部注水系(常設)は、復水移送ポンプにより、復水貯蔵槽の水を補給水系 等を経由して原子炉格納容器下部へ注水し、溶融炉心が落下するまでに原子炉格納容器 下部にあらかじめ十分な水位を確保するとともに、落下した溶融炉心を冷却できる設計 とする。

格納容器下部注水系(常設)の水源である復水貯蔵槽は、複数の代替淡水源から淡水 を供給できる設計とし、淡水が枯渇した場合に、海を利用できる設計とする。

格納容器下部注水系(常設)は、代替所内電気設備を経由した常設代替交流電源設備 又は可搬型代替交流電源設備からの給電が可能な設計とする。

格納容器下部注水系(可搬型)は、可搬型代替注水ポンプ(A-2級)により、代替淡水 源の水を補給水系を経由して原子炉格納容器下部へ注水し、溶融炉心が落下するまでに 原子炉格納容器下部にあらかじめ十分な水位を確保するとともに、落下した溶融炉心を 冷却できる設計とする。

格納容器下部注水系(可搬型)の水源は,淡水が枯渇した場合に,海を利用できる設 計とする。

格納容器下部注水系(可搬型)は、代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。また、可搬型代替注水 ポンプ(A-2級)は、ディーゼルエンジンにより駆動できる設計とする。

コリウムシールドは、溶融炉心が原子炉格納容器下部へと落下した場合において、ド ライウェル高電導度廃液サンプ及びドライウェル低電導度廃液サンプへの溶融炉心の流 入を抑制する設計とする。さらに格納容器下部注水系を使用することにより、ドライウ ェル高電導度廃液サンプ及びドライウェル低電導度廃液サンプのコンクリートの侵食を 抑制し、溶融炉心が原子炉格納容器バウンダリに接触することを防止できる設計とする。 コリウムシールドは、寸法が高さ 0.65m、厚さ 0.13m、材料がジルコニア (ZrO₂)、個数が 1 個の設計とする。

炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器下部への落下を遅延・ 防止するための重大事故等対処設備として,低圧代替注水系(常設),低圧代替注水系 (可搬型),高圧代替注水系及びほう酸水注入系を設ける。

低圧代替注水系(常設),低圧代替注水系(可搬型),高圧代替注水系及びほう酸水注

入系は,低圧代替注水系(常設),低圧代替注水系(可搬型)及び高圧代替注水系のいず れかによる原子炉圧力容器への注水と並行してほう酸水注入系による原子炉圧力容器へ のほう酸水注入を行うことで溶融炉心を冷却できる設計とする。

低圧代替注水系(常設)は、復水移送ポンプにより、復水貯蔵槽の水を残留熱除去系 等を経由して原子炉圧力容器へ注水することで溶融炉心の原子炉格納容器下部への落下 を遅延・防止できる設計とする。

低圧代替注水系(常設)の水源である復水貯蔵槽は,複数の代替淡水源から淡水を供 給できる設計とし,淡水が枯渇した場合に,海を利用できる設計とする。

低圧代替注水系(可搬型)は、可搬型代替注水ポンプ(A-2級)により、代替淡水源の 水を残留熱除去系等を経由して原子炉圧力容器に注水することで溶融炉心を冷却できる 設計とする。

低圧代替注水系(可搬型)の水源は,淡水が枯渇した場合に,海を利用できる設計と する。

高圧代替注水系は、蒸気タービン駆動ポンプにより復水貯蔵槽の水を高圧炉心注水系 等を経由して、原子炉圧力容器へ注水することで溶融炉心を冷却できる設計とする。

ほう酸水注入系は,ほう酸水注入系ポンプにより,ほう酸水を原子炉圧力容器へ注入 することで,溶融炉心の原子炉格納容器下部への落下を遅延・防止する設計とする。

4.3.6 重大事故等時における水素爆発による原子炉格納容器の破損防止機能

炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発による 破損を防止するための重大事故等対処設備として,原子炉格納容器内に滞留する水素ガ ス及び酸素ガスを大気へ排出するための設備である耐圧強化ベント系及び格納容器圧力 逃がし装置を設ける。

また, 炉心の著しい損傷が発生した場合において原子炉格納容器内における水素爆発 による破損を防止できるよう,発電用原子炉の運転中は,原子炉格納容器内を不活性ガ ス系により常時不活性化する運用を保安規定に定めて管理する。

耐圧強化ベント系は、炉心の著しい損傷が発生した場合であって、代替循環冷却系を 長期使用した場合において、原子炉格納容器内雰囲気ガスを不活性ガス系を経由して主 排気筒(内筒)を通して大気に放出(系統設計流量 15.8kg/s(1Pd において))すること で、ジルコニウムー水反応、水の放射線分解等により発生する原子炉格納容器内の水素 ガス及び酸素ガスを大気に排出できる設計とする。

耐圧強化ベント系はサプレッションチェンバ及びドライウェルのいずれにも接続する が、炉心の著しい損傷が発生した場合において、原子炉格納容器内の水素ガス及び酸素 ガスを排出するために使用する場合は、サプレッションチェンバのプール水によるスク ラビング効果が期待できるサプレッションチェンバ側からの排出経路のみを使用する設 計とする。

耐圧強化ベント系は,排気中に含まれる水素ガス及び酸素ガスによる水素爆発を防止 するため,系統待機中に原子炉格納容器から耐圧強化ベント弁までの配管について,系

R1

統内を不活性ガス(窒素ガス)で置換しておく運用を保安規定に定めて管理するととも に,耐圧強化ベント系の使用前に可搬型窒素供給装置により外部より排出経路の配管へ 不活性ガス(窒素ガス)を供給できる設計とする。また,排出経路に水素ガス及び酸素 ガスが蓄積する可能性のある箇所についてはバイパスラインを設け,水素ガス及び酸素 ガスを連続して排出できる設計とすることで,系統内で水素濃度及び酸素濃度が可燃領 域に達することを防止できる設計とする。

可搬型窒素供給装置は,可搬型窒素供給装置用電源設備により給電できる設計とする。 格納容器圧力逃がし装置は,炉心の著しい損傷が発生した場合において,原子炉格納 容器内雰囲気ガスを不活性ガス系を経由して,フィルタ装置及びよう素フィルタへ導き, 放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出(系統設計流量 31.6kg/s(2Pdにおいて))することで,排気中に含まれる放射性物質の環境への排出を 低減しつつ,ジルコニウムー水反応,水の放射線分解等により発生する原子炉格納容器 内の水素ガス及び酸素ガスを大気に排出できる設計とする。

格納容器圧力逃がし装置は,排気中に含まれる水素ガス及び酸素ガスによる水素爆発 を防止するため,系統内を不活性ガス(窒素ガス)で置換した状態で待機させ,使用後 においても不活性ガスで置換できる設計とする。また,排出経路に水素ガス及び酸素ガ スが蓄積する可能性のある箇所にはバイパスラインを設け,水素ガス及び酸素ガスを連 続して排出できる設計とすることで,系統内で水素濃度及び酸素濃度が可燃領域に達す ることを防止できる設計とする。

可搬型窒素供給装置は,可搬型窒素供給装置用電源設備により給電できる設計とする。 なお,詳細はV-1-8-2「原子炉格納施設の水素濃度低減性能に関する説明書」に示す。

4.3.7 重大事故等時における水素爆発による原子炉建屋等の損傷防止機能

炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止 するために原子炉建屋原子炉区域(二次格納施設)内の水素濃度上昇を抑制し,水素濃 度を可燃限界未満に制御するための重大事故等対処設備として,水素濃度抑制系である 静的触媒式水素再結合器を設ける設計とする。

水素濃度抑制系である静的触媒式水素再結合器は,運転員の起動操作を必要とせずに, 原子炉格納容器から原子炉建屋原子炉区域(二次格納施設)内に漏えいした水素ガスと 酸素ガスを触媒反応によって再結合させることで,原子炉建屋原子炉区域(二次格納施 設)内の水素濃度の上昇を抑制し,原子炉建屋原子炉区域(二次格納施設)の水素爆発 を防止できる設計とする。

なお、詳細はV-1-8-2「原子炉格納施設の水素濃度低減性能に関する説明書」に示す。

4.3.8 重大事故等時における放射性物質拡散抑制機能

炉心の著しい損傷及び原子炉格納容器の破損に至った場合において,発電所外への放 射性物質の拡散を抑制するための重大事故等対処設備として,原子炉建屋放水設備及び 海洋拡散抑制設備を設ける。また,原子炉建屋周辺における航空機衝突による航空機燃 料火災に対応できる設備として、原子炉建屋放水設備を設ける設計とする。

大気への放射性物質の拡散を抑制するための重大事故等対処設備として使用する原子 炉建屋放水設備は、大容量送水車(原子炉建屋放水設備用)により海水を取水し、ホー スを経由して放水砲から原子炉建屋へ放水できる設計とする。大容量送水車(原子炉建 屋放水設備用)及び放水砲は、設置場所を任意に設定し、複数の方向から原子炉建屋に 向けて放水できる設計とする。また、原子炉建屋周辺における航空機衝突による航空機 燃料火災に対応するため、大容量送水車(原子炉建屋放水設備用)により泡原液混合装 置を通して、海水を泡消火薬剤と混合しながらホースを経由して放水砲から原子炉建屋 周辺へ放水できる設計とする。

海洋への放射性物質の拡散を抑制するための重大事故等対処設備として使用する海洋 拡散抑制設備は,汚濁防止膜,放射性物質吸着材等で構成し,汚濁防止膜は,汚染水が 発電所から海洋に流出する放水口及び取水口に可搬型である小型船舶(汚濁防止膜設置 用)により設置できる設計とする。

汚濁防止膜は,海洋への放射性物質の拡散を抑制するため,設置場所に応じた高さ及 び幅を有する設計とする。また,予備については,各設置場所に保管する。

放射性物質吸着材は、雨水排水路等に流入した汚染水が通過する際に放射性物質を吸 着できるよう、6号機及び7号機の雨水排水路集水桝に加え、6号機又は7号機雨水排水 路集水桝の損傷等により汚染水が敷地に溢れた場合のバックアップとして5号機雨水排 水路集水桝とフラップゲート入口に、網目状の袋に布状の放射性物質吸着材を詰めたも のを使用時に設置できる設計とする。放射性物質吸着材は、各設置場所に必要となる保 有量に加え、6号機又は7号機雨水排水路集水桝用の放射性物質吸着材の予備を保管する 設計とする。

4.3.9 重大事故等時に加わる動荷重

重大事故等時においても,原子炉冷却材圧力バウンダリ配管の破断を起因とする事象, 逃がし安全弁の作動を伴う事象において動荷重が発生する。また,重大事故等時は,設 計基準事故時と事故進展が異なるため,設計基準事故時に生じる原子炉冷却材喪失時の 動荷重及び逃がし安全弁作動時以外の動荷重が加わる。

そこで、炉心損傷防止対策の有効性評価における重要事故シーケンス及び格納容器破 損防止対策の有効性評価における評価事故シーケンス(以下「重要事故シーケンス等」 という。)ごとの事故進展を考慮し、重大事故等時の動荷重を抽出した。

その結果,設計基準事故時の動荷重である原子炉冷却材喪失時及び逃がし安全弁作動 時以外に,以下の重要事故シーケンス等における動荷重を新たに抽出した。

・原子炉圧力容器外の溶融燃料ー冷却材相互作用時の蒸気発生に伴う圧力上昇

・格納容器ベントによる減圧

これらの動荷重については,影響を評価した結果,原子炉冷却材喪失時の動荷重に対 して同等以下であり,設計基準事故時の動荷重に包絡されることを確認した。

一方で,以下の重要事故シーケンス等の状態は設計基準事故時の範囲を逸脱しており,

この際に生じる逃がし安全弁作動時の動荷重は設計基準事故時より大きくなる可能性が考えられる。

- ・全交流動力電源喪失のプール水の温度上昇時
- ・原子炉停止機能喪失時の逃がし安全弁18弁作動時
- ・原子炉停止機能喪失時の原子炉圧力容器圧力上昇時
- ・高圧溶融物放出/格納容器雰囲気直接加熱の発生防止のための逃がし安全弁作動に 伴う過熱蒸気発生時

これらの状態については、影響を評価した結果、原子炉停止機能喪失時の原子炉圧力 容器圧力上昇時を除き、設計基準事故時の逃がし安全弁の動荷重に対して設計基準事故 時の範囲を逸脱する領域であっても同等若しくはそれ以下であり、設計基準事故時の動 荷重に包絡される。また、原子炉停止機能喪失時の原子炉圧力容器圧力上昇時について も機器の構造健全性に対して影響が小さいことを確認した。

以上より,重大事故等時の動荷重については,表 4-17 に記載の設計基準事故時の荷 重と同等のものを用いる。

- 5. 原子炉格納施設の荷重の組合せ
- 5.1 荷重の種類

強度に関する説明書及び耐震性に関する説明書においては、以下に示す荷重の中から、計算を行う場所と条件に合わせて荷重を選びその組合せに対して計算を行う。

- (1) 自重及び機器支持荷重
- (2) サプレッションプール水重量
- (3) 燃料交换時水重量
- (4) 機器に加わる活荷重
- (5) 逃がし安全弁作動時空気泡圧力による荷重
- (6) 圧力
- (7) 温度
- (8) 冷却材喪失事故時の蒸気ブローダウンによる荷重
- (9) ドライウェル内の配管破断によるジェット力
- (10) ジェット反力
- (11) パイプホイップ荷重
- (12) 冷却材喪失事故時のサプレッションプール水揺動による荷重
- (13) 地震荷重

5.2 荷重の組合せ

原子炉格納施設の荷重の組合せと許容応力状態及び荷重状態を表 5-1 に示す。

なお,応力計算はそれぞれの荷重の組合せの中で最も厳しい条件について行う。また,圧 力,温度及び冷却材喪失事故時の蒸気ブローダウンによる荷重等において,荷重の発生する 時間が明らかに異なる場合は時間のずれを考慮する。

荷重の組合	t	苏宏广力业能	共 壬化能*1
運転状態*2	地震荷重	计谷心力状態	何里认思
設計条件*3	—	設計条件*8	IV (異常時)
運転状態 I	—	I A*9	I (通常運転時)
運転状態Ⅱ	—	II A ^{*10}	Ⅱ (逃がし安全弁作動時)
運転状態IV*4	—	IV A * 11	IV(ジェット力作用時)
運転状態IV*5	—	設計条件*11	Ⅲ (異常時)
運転状態V(S)	—	V A *12	V (重大事故等時)
試験状態	—	試験状態*13	Ⅱ (試験時)
運転状態 I	S d *	III A S	Ⅲ(地震時)
運転状態 I	S s	IV A S	IV(地震時)
運転状態Ⅱ	S d *	III ∧ S	Ⅲ(地震時)
運転状態Ⅱ	S s	IV A S	IV(地震時)
運転状態IV*6	S d *	III ∧ S	Ⅲ((異常+地震)時)
運転状態IV ^{*5}	S d *	IV A S *7	IV((異常+地震)時)
運転状態V(L)	S d	V A S	V ((重大事故等+地震) 時)
運転状態V(LL)	S s	V A S	V ((重大事故等+地震) 時)

表 5-1 荷重の組合せと許容応力状態及び荷重状態

注記*1:各荷重状態における荷重の組合せの詳細を表 5-2 に示す。

*2:各運転状態における荷重の組合せの詳細を表 5-3 及び表 5-4 に示す。

- *3:設計条件による荷重では、最高使用圧力等による荷重を考慮する。
- *4 : 冷却材喪失事故時のジェット力,冷却材喪失事故時のサプレッションプール水揺動に よる荷重を考慮する。
- *5 : 冷却材喪失事故後の最大内圧を考慮する。またクラス2配管については最高使用圧力 を考慮する。
- *6 : 冷却材喪失事故後 10⁻¹年程度以降の最大内圧を考慮する。
- *7 : クラス2配管については、ⅢASで評価する。
- *8:設計条件における許容応力状態を表す。
- *9:運転状態Iにおける許容応力状態を表す。
- *10:運転状態Ⅱにおける許容応力状態を表す。
- *11:運転状態IVにおける許容応力状態を表す。
- *12 : 運転状態V(S)における許容応力状態を表す。
- *13 : 試験状態における許容応力状態を表す。
- 注:記号
 - Sd : 弾性設計用地震動 Sd により定まる地震力
 - Sd*:弾性設計用地震動Sdにより定まる地震力又は静的地震力
 - Ss: 基準地震動 Ssにより定まる地震力

K7 ① V-1-8-1 R1

表 5-2 荷重状態における荷重の組合せ*1

							荷重係	系数*2					
荷重状態	荷重時	死荷重	活荷重	"運転時圧力	運転時配管荷重	運転時温度荷重	異常時圧力	異常時配管荷重	異常時温度荷重	ジェット力	S d * 地震荷重	S s 地震荷重	試験圧力
Ι	通常運転時	1.0	1.0	1.0	1.0	1.0							
п	逃がし安全弁作動時	1.0	1.0	1.0	1.0	1.0							
ш	試験時	1.0	1.0										1.0
	地震時	1.0	1.0	1.0	1.0	1.0					1.0		
Ш	異常時	1.0	1.0				1.0	1.0	1.0				
	(異常+地震)時	1.0	1.0				1.0	1.0	1.0		1.0		
	地震時	1.0	1.0	1.0	1.0							1.0	
w	異常時	1.0	1.0				1.5	1.0					
11	ジェット力作用時	1.0	1.0							1.0			
	(異常+地震)時	1.0	1.0				1.0	1.0			1.0		
	重大事故等時	1.0	1.0				1.0	1.0					
V	((重大事故等+地震)時)	1.0	1.0				1.0	1.0			1.0		
	((重大事故等+地震)時)	1.0	1.0				1.0	1.0				1.0	

注記*1 :設計に用いる荷重の組合せは、荷重状態の荷重時に応じ、荷重に表中の荷重係数を乗じ、それぞれ加えたものとする。

*2 : ライナプレート及びライナアンカの設計においては、荷重係数を1.0とする。

*3: 貫通部アンカの設計においては、運転時圧力(内圧)は運転時圧力(外圧)と同一であるため、運転時圧力(外圧)で代表させる。

K7 ① V-1-8-1 R1

	荷重の組合せ					活荷		圧	力* ²		温	度	事故時 荷重		動荷	ī重	
No.	各運転状態による荷重	地震	許容応力 状態	荷重状態	死荷重	重(燃料交換時)	最高使用圧力	通常運転圧力	事故時最大圧力	試験圧力	通常運転温度	事故時最大温度	ジェット力	作動時	プールスウェル	蒸気凝縮振動	チャギング
1	設計条件による荷重	_	設計条件	Ⅳ(異常時)	0	—	0		—	—		*6	_	*5	—	—	
2	運転状態Iによる荷重	—	I A	I (通常運転時)	0	_		0		—	0	_	—		—	—	—
3	運転状態Iによる荷重	—	I A	I (通常運転時)	0	0		_	_	-	—	—	—		_	_	—
4	運転状態Ⅱによる荷重	—	II A	Ⅱ(逃がし安全弁作動時)	0	_	_	0	_	_	0	_	—	0	_		—
5	運転状態IVによる荷重	—	IVA	Ⅳ(ジェット力作用時)	0	_				—	*6	_	0		0	—	—
6	運転状態IVによる荷重	—	設計条件	Ⅲ(異常時)	0	—	—	_	0	—		0			—	0	—
7	運転状態IVによる荷重	_	設計条件	Ⅲ(異常時)	0	—	—	_	0	—		0			—	_	0
8	運転状態IVによる荷重	_	設計条件*4	Ⅲ(異常時)	0	—	—		0	—	_	0		0	—		0
9	試験状態による荷重		試験状態	Ⅱ(試験時)	0	—	—			0					—	_	—
10	運転状態Iによる荷重	S d *	${\rm I\!I\!I}_{\rm A}{\rm S}$	Ⅲ(地震時)	0	—	—	\circ		—	0	_			—		<u> </u>
11	運転状態Iによる荷重	S d *	${\rm I\!I\!I}_{\rm A} S$	Ⅲ(地震時)	0	0	—			—	_	_			—		<u> </u>
12	運転状態Iによる荷重	S s	$IV_A S$	Ⅳ(地震時)	0	—	—	0	—	—	*6	_			—	—	—
13	運転状態Iによる荷重	S s	$IV_A S$	Ⅳ(地震時)	0	0	—	—	—	—	_	_	_	—	—	—	—
14	運転状態Ⅱによる荷重	S d *	${\rm I\!I\!I}_{\rm A} S$	Ⅲ(地震時)	0	—	—	\circ		—	0	_		0	—		<u> </u>
15	運転状態Ⅱによる荷重	S s	IV _A S	IV(地震時)	0	_	_	0	_	_	*6	_		0	_		
16	運転状態IVによる荷重	S d *	III _A S	Ⅲ(異常+地震時)	0	—	_	_	\bigcirc^{*1}	_		*6			_		
17	運転状態IVによる荷重	S d *	IV A S *3	Ⅳ(異常+地震時)	0	—	—	—	0	—							I —

表 5-3 設計基準対象施設の荷重の組合せ

注記*1:冷却材喪失事故後10⁻¹年程度以降の最大内圧を考慮する。

*2 : クラス2配管については最高使用圧力を考慮する。

*3 : クラス2配管については、ⅢASで評価する。

*4 : クラス2配管については、IVASで評価する。

*5 : クラス2配管については、機械的荷重(逃がし安全弁の吹出し反力により生じる荷重)を考慮する。

*6 :鋼構造設計規準に基づき評価する場合,熱を保守的に考慮する。

表 5-4	重大事故等時の	荷重の組合せ
- <u>-</u>		

荷重の組合せ									圧力				事故時 荷重*6		動荷重	
No.	各運転状態による荷重	地震	許容応力 状態	荷重 状態	死荷重	活荷重(燃料交换時)	限界圧力 *1	FCI時圧力	設計圧力 *2	SA後長期圧力 *3	SA後長々期圧力 *4	SA温度 *5	ジェット力	逃がし安全弁作動時	チャギング	F C I
V(S)-1	SA短期における荷重	_	V A	V (S)	0	_	0	_	_	_	_	_	_	—	0	_
V(S)-2	SA短期における荷重	_	V A	V (S)	0	_	—	_	0	_	_	_	—	0	0	—
V(S)-3	SA短期における荷重		V A	V (S)	0	_	—	○*7	_	—		_	_	_	—	○*8
V(L)-1	S A長期(L)における荷重	S d	VAS	V (L)	0					0				_	0	
V (LL) -1	SA長期(LL)における荷重	S s	VAS	V (LL)	0	_	_		_		0	_	_	_	_	_

注記*1 :評価対象設備に応じて,内圧 620kPa(限界圧力),差圧 173kPa,逆差圧-100kPa を適用する。

*2 :評価対象設備に応じて、内圧 310kPa (最高使用圧力),差圧 173kPa を適用する。

*3 :評価対象設備に応じて、内圧 620kPa(限界圧力)、差圧 173kPa を適用する。

*4 :評価対象設備に応じて、内圧 150kPa (SA後長々期圧力)、差圧 100kPa を適用する。

*5: 重大事故等の最大温度による影響は発生する回数が1回であり,疲労破壊には顕著な影響を与えないため,組み合わせない。 疲労評価は不要であるため、一次+二次応力評価は不要とする。

*6 : 重大事故等の事象発生直後に生じる荷重であり、設計基準事故時に考慮されているため、組み合わせない。

*7: FCI発生時のピーク圧力(ドライウェル 504kPa, サプレッションチェンバ 391kPa)又はこれを包絡する値として限界圧力のいずれかを適用する。

*8 : 蒸気凝縮振動荷重で代用する。

注: FCI:原子炉圧力容器外の溶融燃料-冷却材相互作用。

差圧:ドライウェル圧力がサプレッションチェンバ圧力よりも高い場合の圧力差を差圧として表す。

逆差圧 :ドライウェル圧力がサプレッションチェンバ圧力よりも低い場合の圧力差を逆差圧として表す。

5.3 繰返し荷重に対する解析

繰返し荷重に対する解析については、告示第501号を適用する機器においては第13条第 1項第3号に示される条件を5.3.1に示すようにいずれも満足しているので疲れ解析を必要と しない。また、「発電用原子力設備規格(設計・建設規格(2005年版(2007年追補版含む。)) JSME S NC1-2005/2007)」(以下「設計・建設規格」という。)を適用する機器にお いては、PVB-3140に示される疲労解析不要の条件を5.3.2に示すようにいずれも満足してい るため、疲労解析を必要としない。

なお、疲れ及び疲労解析不要の条件のうち、第3号へ及び PVB-3140(6)については、施設後の機械的荷重及び地震動による応力の変更により、疲れ及び疲労解析不要の条件を満足できなくなる可能性が考えられることから、満足できなくなった場合においては疲れ及び疲労解析を実施する。

なお、本書では鋼製耐圧部についてのみ検討し、ライナ部についてはV-3-3-6-1-1-2「原 子炉格納容器ライナ部の強度計算書」において検討するものとする。

ここで、繰返し荷重としてかかるサイクル数は便宜上、下記のように定める。

- (1) 原子炉格納容器に全体的に加わる荷重のサイクル数
 - 圧力:原子炉格納容器に全体的に内圧が加わるのは、運転開始前試験時、定検時の漏えい い試験時及び事故時である。ここで、運転開始前試験時は □ 回、定検時の漏えい 試験時は高々 □ 回、事故時は □ 回である。
 - 温度:原子炉格納容器が全体的に最高使用温度程度まで温度が上昇するのは事故時 □ の である。

以上より原子炉格納容器が全体的に負荷される場合の回数は余裕を見て 回とする。

(2) 原子炉格納容器に局部的に加わる荷重のサイクル数

原子炉格納容器に局部的に負荷されるのは原子炉の起動停止,燃料交換及び地震時である。ここで原子炉の起動停止及び燃料交換のサイクルは高々
回,地震荷重が加わるのは高々200回(サイクル数)である。

以上より原子炉格納容器が局部的に負荷される場合の回数は余裕を見て ____ 回とする。

- 5.3.1 告示第501号に基づく繰返し荷重に対する解析
 - (1) 大気圧から運転圧になり、再び大気圧に戻るサイクル数 (告示第501号 第13条第1項第3号イ) 告示に定められる許容引張応力Sの3倍の値は3× MPaであり、これに対応 する許容繰返し回数Nは である。ここで告示に示される運転圧力を原子炉格納容器 の最高使用圧力と対応させてみると、その回数は 回でNより小さいので本条項を満足 している。

(2) 負荷運転時における圧力変動の全振幅の検討

(告示第501号 第13条第1項第3号ロ)

疲れ解析の対象となる圧力変動の全振幅は(イ)より、次のように求める。

$$A_{m} = \frac{1}{3} \cdot P \cdot \frac{S'}{S} = MPa$$

ここに,

P :最高使用圧力

- =310kPa
- S':炭素鋼の10⁶回の繰返しに対する許容ピーク応力強さ

S :許容引張応力 ■ MPa

したがって,疲れ解析が不要となる圧力変動の全振幅は負荷運転時における圧力変動 の全振幅(_______MPa)より大きくなるので本条項を満足している。

(3) 起動,運転,停止サイクル中の任意の2点間の温度差の検討

(告示第501号 第13条第1項第3号ハ)

解析の対象となる任意の2点間の距離は(イ)より、次のように求める。

$$p = 2 \cdot \sqrt{R \cdot t} = mm$$

ここに,

R:原子炉格納容器の最大半径

t:原子炉格納容器の板厚

= mm

はpの値が最大となるように選ぶ。

疲れ解析が不要となる任意の2点間の最大温度差は(ロ)より、次のように求める。

$$T = \frac{S a}{2 \cdot E \cdot \alpha} = \Box C$$

ここに,

- Sa:炭素鋼の 回の繰返しに対する許容ピーク応力強さ ■ MPa
- E :炭素鋼の縦弾性係数

- - = mm/mm·℃ (____℃における値)

ここで, Tは設計上の最大温度差 161℃(171℃-10℃) より大きい。したがって, 任 意の2点間の最大温度差はTの値を超えることはないので本条項を満足している。

(4) 負荷運転中の任意の2点の温度差の変動の全振幅の検討

(告示第501号 第13条第1項第3号ニ)

負荷運転中の温度変動の数を 回とすると、疲れ解析が不要となる最大温度差は(3) 項に示すTと全く同じになる。

したがって、負荷運転時の任意の2点間の最大温度差の変動の全振幅は、(3)項に示す Tを超えることはないので本条項を満足している。

(5) 負荷運転時の異種材結合部の温度差の検討

(告示第501号 第13条第1項第3号ホ)

疲れ解析の対象となる異種材結合部の最小温度差は(イ)より、次のように求める。

$$T = \frac{S'}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$$

ここに,

S':炭素鋼の10⁶回の繰返しに対する許容ピーク応力強さ

- E1:ステンレス鋼の縦弾性係数
 - MPa (Cにおける値) =
- α1:ステンレス鋼の瞬時熱膨張係数 mm∕mm∙°C (℃における値)
- E2:炭素鋼の縦弾性係数

= MPa (℃における値)

α₂:炭素鋼の瞬時熱膨張係数

上記Tを超える異種材結合部温度差の変動回数を 回とすると、疲れ解析が不要と なる異種材結合部の最大温度差は(ロ)より、次のように求める。

$$T = \frac{S a}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$$

ここに,

Sa:炭素鋼の 回の繰返しに対する許容ピーク応力強さ

したがって、疲れ解析が不要となる異種材結合部の許容最大温度差は温度差(161℃) より大きくなるので本条項を満足している。

(6) 容器に接続される管からの反力その他機械的荷重及び地震動による 応力の全振幅の検討(告示第501号 第13条第1項第3号へ)
荷重の繰返し回数 回に対応する許容ピーク応力強さは MPa となる。ここで, 原子炉格納容器の機械的荷重及び地震動による応力の全振幅はいかなる場所でも MPa を超えることのないよう設計しているので本条項を満足している。

- 5.3.2 設計・建設規格に基づく繰返し荷重に対する解析
 - (1) 大気圧から運転圧力になり、再び大気圧に戻るサイクル数
 (設計・建設規格 PVB-3140(1))
 設計・建設規格に定められる許容引張応力Sの3倍の値は3× MPaであり、
 これに対応する許容繰返し回数Nは である。ここで設計・建設規格に示される運転圧力を原子炉格納容器の最高使用圧力と対応させてみると、その回数は 0 回でNより小さいので本条項を満足している。
 - (2) 負荷運転時における圧力変動の全振幅の検討

(設計・建設規格 PVB-3140(2))

疲労解析の対象となる圧力変動の全振幅は PVB-3140(2)a. より、次のように求める。

$$A_{m} = \frac{1}{3} \cdot P \cdot \frac{S}{S} = \square MPa$$
ここに、
$$P : 最高使用圧力$$

$$= 310kPa$$

$$S': 炭素鋼の 10^{6} 回の繰返しに対する許容ピーク応力強さ$$

$$= \square MPa$$

$$S : 許容引張応力$$

$$= \square MPa$$
したがって、疲労解析が不要となる圧力変動の全振幅は負荷運転時における圧力変動
の全振幅(□ MPa)より大きくなるので本条項を満足している。

(3) 起動,運転,停止サイクル中の任意の2点間の温度差の検討

(設計・建設規格 PVB-3140(3))

解析の対象となる任意の2点間の距離はPVB-3140(3)より、次のように求める。

$$p = 2 \cdot \sqrt{R \cdot t} = mm$$

ここに,

R: 原子炉格納容器の最大半径

t : 原子炉格納容器の板厚

= mm

はpの値が最大となるように選ぶ。

疲労解析が不要となる任意の2点間の最大温度差はPVB-3140(3)より、次のように求め

る。

(4) 負荷運転中の任意の2点の温度差の変動の全振幅の検討

(設計・建設規格 PVB-3140(4))

負荷運転中の温度変動の数を 回とすると、疲労解析が不要となる最大温度差は (3)項に示すTと全く同じになる。

したがって,負荷運転時の任意の2点間の最大温度差の変動の全振幅は,(3)項に示す Tを超えることはないので本条項を満足している。

(5) 負荷運転時の異種材結合部の温度差の検討

(設計・建設規格 PVB-3140(5))

疲労解析の対象となる異種材結合部の最小温度差はPVB-3140(5)a.より、次のように求める。

$$T = \frac{S'}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$$
$$= \Box C$$

ここに,

S':炭素鋼の10⁶回の繰返しに対する許容ピーク応力強さ

E₁:ステンレス鋼の縦弾性係数 = \square MPa (\square ℃における値) α_1 :ステンレス鋼の瞬時熱膨張係数 = \square mm/mm·℃ (\square ℃における値) E₂:炭素鋼の縦弾性係数 = \square MPa (\square ℃における値) α_2 :炭素鋼の瞬時熱膨張係数 = \boxed mm/mm·℃ \square ℃における値) 上記Tを超える異種材結合部温度差の変動回数を □ 回とすると、疲労解析が不要と なる異種材結合部の最大温度差は PVB-3140(5)b. より、次のように求める。

$$T = \frac{Sa}{2 \cdot (E_1 \cdot \alpha_1 - E_2 \cdot \alpha_2)}$$
$$= C$$

ここに,

Sa:炭素鋼の 回の繰返しに対する許容ピーク応力強さ

したがって,疲労解析が不要となる異種材結合部の許容最大温度差は温度差(161℃) より大きくなるので本条項を満足している。

(6) 容器に接続される管からの反力その他機械的荷重及び地震動による

応力の全振幅の検討(設計・建設規格 PVB-3140(6))

荷重の繰返し回数 回に対応する許容ピーク応力強さは設計基準対象施設としては MPa,重大事故等対処設備としては MPaとなる。ここで,原子炉格納容器の機械 的荷重及び地震動による応力の全振幅はいかなる場所でも設計基準対象施設としては MPa,重大事故等対処設備としては MPaを超えることのないよう設計しているの で本条項を満足している。

- 6. 重大事故等時における原子炉格納容器の放射性物質の閉じ込め機能評価及びその他影響確認 重大事故等時の評価温度,評価圧力に対して原子炉格納容器の構造健全性及び機能維持について評価する。
- 6.1 重大事故等時における原子炉格納容器の放射性物質の閉じ込め機能
 - 6.1.1 評価方針

「4.3.1 重大事故等時の評価温度,評価圧力」に示す限界温度(200℃),限界圧力 (2Pd)を用いて,その環境下での原子炉格納容器の放射性物質閉じ込め機能について評 価部位ごとに評価することにより,その機能が損なわれることがないことを確認する。

原子炉格納容器の放射性物質の閉じ込め機能を確認するため,200℃,2Pd の環境下で 原子炉格納容器本体及び開口部等のリークパスとなる可能性のある部位を抽出し,規格 を用いた構造健全性評価にて原子炉格納容器の放射性物質閉じ込め機能について確認す る。

さらに,福島第一原子力発電所での事故において,原子炉格納容器からの漏えい要因 の一つとして指摘されている原子炉格納容器に設置されるフランジ部等のシール部につ いても評価部位として抽出し,試験結果を用いた機能維持評価により原子炉格納容器の 放射性物質閉じ込め機能について確認する。

6.1.2 評価対象部位及び評価対象部位における機能喪失要因

図 4-3「原子炉格納容器バウンダリ及び隔離弁 全体概要図」に示す原子炉格納容器 バウンダリを構成する機器から、以下のとおり評価対象部位を抽出し、評価部位ごとに 放射性物質の閉じ込め機能喪失の要因(以下「機能喪失要因」という。)を抽出する。

評価対象部位として 200℃, 2Pd の環境下で原子炉格納容器の放射性物質の閉じ込め機 能が損なわれることがないよう原子炉格納容器本体についてはコンクリート部の構造健 全性を評価する。

また,原子炉格納容器の開口部及び貫通部については,構造上原子炉格納容器の内圧 等の影響によりリークパスになる可能性があるため評価対象部位として抽出する。開口 部のシール部についても,ガスケットの劣化及びシール部の変形に伴いリークパスにな る可能性があるため評価対象部位とする。

原子炉格納容器の機能喪失要因としては脆性破壊,疲労破壊,座屈及び延性破壊が考 えられるため,これらの破損モードの中から原子炉格納容器内の環境条件等を考慮し, 評価対象ごとに想定される機能喪失要因を抽出する。機能喪失要因の詳細な抽出内容に ついては別添1において,評価対象ごとに説明する。

以下に原子炉格納容器バウンダリ構成部である評価対象部位及び評価対象ごとに想定 される機能喪失要因を以下に示す。また,原子炉格納容器バウンダリ構成部の概要を図6 -1に示す。

- 原子炉格納容器本体(コンクリート部) 曲げせん断破壊
- 原子炉格納容器本体(ライナ部) 延性破壊
- ③ ドライウェル主フランジ
 延性破壊,開口,高温劣化(シール部)
- ④ ハッチ類(機器搬入用ハッチ等)延性破壊,開口,高温劣化(シール部)
- 5 エアロック延性破壊,開口,高温劣化(シール部)
- ⑥ 配管貫通部
 - ・貫通配管
 - 延性破壊
 - ・スリーブ
 延性破壊
 - ・端板
 - 延性破壊

 - ・閉止板
 - 延性破壊
 - ・閉止フランジ
 延性破壊,開口,高温劣化(シール部)
- ⑦ 電気配線貫通部延性破壊,高温劣化(シール部)
- ⑧ 原子炉格納容器隔離弁延性破壊,高温劣化(シール部)

*赤線は原子炉格納容器のバウンダリを示す

- ハッチ類(1) 上部ドライウェル機器搬入用ハッチ
- ハッチ類(2) 下部ドライウェル機器搬入用ハッチ
- ハッチ類(3) サプレッションチェンバ出入口
- エアロック(1) 上部ドライウェル所員用エアロック
- エアロック(2) 下部ドライウェル所員用エアロック

```
図 6-1 原子炉格納容器バウンダリ構成部の概要図
```

6.1.3 評価方法

構造健全性及びシール部の機能維持について,各設備に対し放射性物質の閉じ込め機 能を確保できる判断基準を設定し,以下のいずれかの方法により評価することで,200℃, 2Pd の環境下での健全性及び機能維持を確認する。

- (a) 設計・建設規格等に準拠した評価
- (b) 設計・建設規格の準用等による評価
- (c) 既往研究又は解析結果等を活用した評価

各評価対象機器の評価方法の分類を図 6-2 に,各評価対象機器の詳細な評価方法を 表 6-1 に示す。

図 6-2 評価方法による評価対象の分類

表 6-1 評価項目まとめ (その 1)

評価対象		想定される 機能喪失要因	評価 方法	評価方法の概要	判定基準				
原子炉格納容 器本体	原子炉格納容 器本体(コン 曲げせん断破壊 (a) V-3-3-6-1-1-1「原子炉格納容器コンクリート部の強度計算書」に記載。 クリート部)								
	原子炉格納容 器本体(ライ ナ部)	延性破壊	(a)	(a) V-3-3-6-1-1-2「原子炉格納容器ライナ部の強度計算書」に記載。					
ハッチ類	ドライウェル 主フランジ	延性破壊	(a)	V-3-3-6-1-1-5「ドライウェル主フランジの強度計算書」に記載。					
		開 ロ , 高 温 劣 化 (シール部)	(c)	有限要素法を用いた弾塑性解析結果による開口量評価及びガスケットの試験結果に基づき評 価。	シール部が健全であること (許容開口量以下であること)				
	ハッチ類(機 器搬入用ハッ チ等)	延性破壊	(a)	V-3-3-6-1-1-7「下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付)の強度計算書」, V-3-3-6-1 2-2「上部ドライウェル機器搬入用ハッチの強度計算書」, V-3-3-6-1-2-3「下部ドライウェル機器搬入用ハッチの強度計 書」及びV-3-3-6-1-2-4「サプレッションチェンバ出入口の強度計算書」に記載。					
		開口, 高温劣化 (シール部)	(c)	有限要素法を用いた弾塑性解析結果による開口量評価及びガスケットの試験結果に基づき評価。	シール部が健全であること (許容開口量以下であること)				
	所員用エアロ ック	延性破壊	(a)	V-3-3-6-1-1-6「下部ドライウェルアクセストンネルスリーブ及び鏡板(所員用エアロック付)の強度計算書」, V-3-3-6- 3-2「上部ドライウェル所員用エアロックの強度計算書」及びV-3-3-6-1-3-3「下部ドライウェル所員用エアロックの強度計 書」に記載。					
		開口, 高温劣化 (扉板シール部)	(c)	機械工学便覧のはりのたわみ計算式を用いた開口量評価及びガスケットの試験結果に基づき 評価を実施。	シール部が健全であること (許容開口量以下であること)				
		高温劣化(その他 シール部)	(c)	ガスケットの試験結果に基づき評価。	シール部が健全であること				

表 6-1 評価項目まとめ (その 2)

評価対象		想定される 機能喪失要因	評価 方法	評価方法の概要	判定基準		
配管貫通部	配 管 貫 通 部 (貫通配管)	延性破壞	(a)	代表配管について,内圧による強度評価を,設計・建設規格 PPC-3530 に準拠し,既工事計 画認可申請書で実績ある手法で評価を実施。	設計・建設規格 PPC-3530 に 規定される 1 次応力の制限値 を満足すること		
	 配管貫通部 (スリーブ, 端板,閉止 板) 	延性破壊	(a)	V-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」及びV-3-3-6-1-4-2「原子炉格納容器配 管貫通部の強度計算書」に記載。			
	配 管 貫 通 部 (閉止フラン ジ)	延性破壊	(a)	V-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」及びV-3-3-6-1-4-2「原子炉格納容器配 管貫通部の強度計算書」に記載。			
		開口 ・ 高 温 劣 化 (シール部)	(c)	文献の理論式を用いた開口量評価及びガスケットの試験結果に基づき評価。	シール部が健全であること (許容開口量以下であること)		
電気配線貫通 部	電気配線貫通 部 (アダプ タ,ヘッダ)	延性破壊	性破壊 (a) V-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」に記載。				
	電気配線貫通 部 (スリー ブ)	延性破壞	(a)				
	モジュール	高温劣化(シール 部)	(c)	電共研,NUPECで実施された電気配線貫通部のモデル試験体を用いた気密性能確認結果 に基づき限界圧力・温度における耐漏えい性能を評価。	設計漏えい量以下であること		
原子炉格納容 器隔離弁	同左	延性破壞	(a)	設計・建設規格(弁の圧力温度基準に基づく評価)に基づき、弁箱の耐圧機能を評価。	200℃において許容圧力が 0.62 MPa[gage] (2Pd) 以上 であること		
		高温劣化 (シール部)	(c)	シール部について試験結果に基づき評価。	シール部が健全であること		

6.1.4 評価結果

原子炉格納容器本体,原子炉格納容器に設置されている開口部(ドライウェル主フランジ,ハッチ類,エアロック),原子炉格納容器貫通部(配管貫通部,電気配線貫通部) 及び原子炉格納容器隔離弁については,規格の規格式による応力評価等を行い,判定値 を満足することにより200℃,2Pdの環境下での構造健全性を確認した。

ドライウェル主フランジ,ハッチ類,エアロック等の開口部のシール部,原子炉格納 容器隔離弁等については電共研等での試験結果に基に評価を行い,200℃,2Pd の環境下 での機能維持が可能であることを確認した。

評価対象部位ごとの詳細な評価方法及び評価結果を表 6-2 及び別添1 に示す。

表 6-2 評価結果まとめ (1/2)

評価対象		評価点	評価方法	評価条件	評価値*1	判定基準	評価結果			
原子炉格納容器本体		原子炉格納容器本体 (コンクリート部)	V-3-3-6-1-1-1「原子炉格納容器コンクリート部の強度計算書」に記載。							
		原子炉格納容器本体 (ライナ部)	V-3-3-6-1-1-2「原子炉格納容器ライナ部の強度計算書」に記載。							
ハッチ類	ドライウェル 主フランジ	構造部 (フランジ, ボルト)	V-3-3-6-1-1-5「ドライウェル主フランジの強度計算書」に記載。							
		シール部 (フランジ,ガスケット)	有限要素法 (FEM) ガスケット試験	200 °C 2 Pd	開口量 1.11 mm(内側), 0.87 mm(外側)	許容開口量 (mm) 以下	シール機能維持*2			
	ハッチ類 (機器搬入用 ハッチ等)	構造部(円筒胴, 鏡板, フランジ, ボルト)	V-3-3-6-1-1-7「下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付)の強度計算書」, V-3-3-6-1-2- 2「上部ドライウェル機器搬入用ハッチの強度計算書」, V-3-3-6-1-2-3「下部ドライウェル機器搬入用ハッチの強度計算書」及 びV-3-3-6-1-2-4「サプレッションチェンバ出入口の強度計算書」に記載。							
		シール部 (フランジ, ガスケット)	有限要素法 (FEM) ガスケット試験	200 °C 2 Pd	開口量 1.59 mm(内側), 1.21 mm(外側)	許容開口量 (mm) 以下	シール機能維持*2			
	所員用 エアロック	構造部 (円筒胴,隔壁)	V-3-3-6-1-1-6「下部ドライウェルアクセストンネルスリーブ及び鏡板(所員用エアロック付)の強度計算書」, V-3-3-6-1-3- 2「上部ドライウェル所員用エアロックの強度計算書」及びV-3-3-6-1-3-3「下部ドライウェル所員用エアロックの強度計算 書」に記載。							
		シール部 (扉板シール部)	機械工学便覧 ガスケット試験	200 ℃ 2 Pd	開口量umm	許容開口量(㎜)以下	シール機能維持*2			
		シール部 (その他シール部)	ガスケット試験 材料仕様	200 °C	250 °C	200 ℃以上	シール機能維持*3			

注記*1:複数評価している項目はもっとも厳しい値を記載

*2 : フランジ部の形状・寸法に基づき解析等により算出した開口量が圧縮永久ひずみ試験結果及び実機フランジ模擬試験の漏えい試験結果に 基づき設定した許容開口量以下であることを確認

*3 :シール材の試験結果又は材料仕様により高温環境下における耐性を確認

08

表 6-2 評価結果まとめ (2/2)

評価対象		評価点	評価方法	評価条件	評価値*1	判定基準	評価結果		
配管 貫通部	配管貫通部 (貫通配管)	同左	設計・建設規格を準用	200 ℃ 2 Pd	発生応力()23 MPa	許容応力 (154 MPa) 以下	破断せず		
	配管貫通部 (スリーブ, 端板,閉止板)	同左							
	配管貫通部 (閉止フランジ)	構造部 (フランジ,ボルト)	V-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」及びV-3-3-6-1-4-2「原子炉格納容器 配管貫通部の強度計算書」に記載。						
		シール部 (フランジ, ガスケット)	文献理論式 ガスケット試験	200 °C 2 Pd	開口量mm	許容開口量 (mm) 以下	シール機能維持*2		
電気配線 貫通部	電気配線貫通部 (アダプタ, ヘッダ)	同左	∇-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」に記載。						
	電気配線貫通部 (スリーブ)	同左	V-3-3-6-1-4-1「原子炉格納容器配管貫通部及び電気配線貫通部の基本板厚計算書」及びV-3-3-6-1-4-3「原子炉格納容器 電気配線貫通部の強度計算書」に記載。						
	モジュール	シール部(モジュール)	電共研, NUPEC 試験	200 ℃ 2 Pd以上	評価条件において漏えいなし	設計漏えい量以下	シール機能維持*3		
原子炉格納容器隔離弁		耐圧部(弁箱)	設計・建設規格を準用 (弁の圧力温度基準 に基づく評価)	200 ℃ 2 Pd	許容圧力:1.32 MPa[gage]	0.62 MPa[gage] (2 Pd)以上	破断せず		
		シール部		200 °C	200 ℃以上	200 ℃以上	 シール機能維持* ³		

注記*1:複数評価している項目はもっとも厳しい値を記載

*3 :シール材の試験結果又は材料仕様により高温環境下における耐性を確認

^{*2 :}フランジ部の形状・寸法に基づき解析等により算出した開口量が圧縮永久ひずみ試験結果及び実機フランジ模擬試験の漏えい試験結果に 基づき設定した許容開口量以下であることを確認

原子炉格納容器本体

ドライウェル主フランジ

図 6-3 原子炉格納容器バウンダリ構造部概要図(1/5)

上部ドライウェル機器搬入用ハッチ

下部ドライウェル機器搬入用ハッチ

サプレッションチェンバ出入口

図 6-3 原子炉格納容器バウンダリ構造部概要図(2/5)

上部ドライウェル所員用エアロック

下部ドライウェル所員用エアロック

図 6-3 原子炉格納容器バウンダリ構造部概要図(3/5)

配管貫通部 (二重管型)

配管貫通部 (直結型)

A部詳細

閉止フランジ

図 6-3 原子炉格納容器バウンダリ構造部概要図(4/5)

電気配線貫通部 (低電圧用)

電気配線貫通部 (高電圧用)

原子炉格納容器隔離弁

図 6-3 原子炉格納容器バウンダリ構造部概要図(5/5)

6.2 その他原子炉格納容器限界温度,圧力に対する影響確認

原子炉格納容器の限界温度,圧力における評価に対して影響を及ぼす可能性のある設備の 経年劣化,限界温度,圧力が負荷された後の耐震性,貫通部の核分裂生成物(以下「FP」と いう。)沈着について影響を確認する。

6.2.1 確認内容

原子炉格納容器の放射性物質の閉じ込め機能の評価に対して,影響を及ぼす可能性の ある対象機器の経年劣化,限界温度,圧力負荷後の耐震性への影響等以下の内容につい て影響を確認する。

経年劣化の影響

原子炉格納容器限界温度・圧力(200℃, 2Pd)時の放射性物質の閉じ込め機能の健全性が,経年劣化により低下していないことを確認する。確認方法及び確認結果の詳細は別添1別紙1に示す。

- (2) 限界温度, 圧力負荷後の耐震性への影響 原子炉格納容器が限界温度, 圧力(200℃, 2Pd)が負荷された後の耐震性への影響に ついて確認する。確認方法及び確認結果の詳細は別添1別紙2に示す。
- (3) 貫通部の FP 沈着による影響 炉心溶融時,原子炉格納容器のリークパスに FP が沈着した場合の温度上昇について確 認する。確認方法及び確認結果の詳細は別添1別紙3に示す。
- 6.2.2 確認結果
 - (1) 原子炉格納容器の閉じ込め機能を有する箇所における経年劣化の対策について確認し、 原子炉格納容器の限界温度,圧力における閉じ込め機能への影響はないことを確認した。
 - (2) 重大事故時の温度, 圧力を超える限界温度, 圧力(200℃, 2Pd)が負荷された後の耐 震性の影響評価を実施した。格納容器バウンダリの構成機器について, 限界温度, 圧 力の条件において一次応力による残留ひずみが発生するが十分小さく, 耐震評価にて 考慮する許容応力は今回の評価で考慮した許容応力の制限内であり, さらに限界温度, 圧力負荷前と同様の挙動を示すことから, 耐震性への影響はないことを確認した。
 - (3) 炉心溶融時の原子炉格納容器内の FP の沈着による温度上昇について、格納容器破損防止対策の有効性評価における評価事故シーケンスのうち雰囲気圧力・温度による静的 負荷(格納容器過圧・過温破損)を想定した条件にて、原子炉格納容器のリークパス へFP が飛散し、リークパス内が FP で満たされ目詰まりしたと保守的に仮定し、FEM 解 析により熱解析を実施した。評価結果としては、原子炉格納容器の貫通部リークパス 箇所の最高温度は約 195℃となり原子炉格納容器限界温度である 200℃を下回ることか ら原子炉格納容器限界温度・圧力に影響ないことを確認した。

- 7. 引用文献
 - (1) F. J. MOODY"PREDICTION OF BLOWDOWN THRUST AND JET FORCES"ASME PAPER 69-HT-31
 - (2) 岩波講座 現代応用数学 「粘性流体の理論」