本資料のうち、枠囲みの内容	柏崎刈羽原子力発電	所第7号機 工事計画審査資料
は、機密事項に属しますので	資料番号	KK7添-2-035-2 改3
公開できません。	提出年月日	2020年8月28日

V-2-4-2-1 使用済燃料貯蔵プール及びキャスクピットの耐震性に ついての計算書

2020年8月 東京電力ホールディングス株式会社

V-2-4-2-1 使用済燃料貯蔵プール及びキャスクピットの耐震性に ついての計算書

1. 概要	·· 1
2. 基本方針	$\cdots 2$
2.1 位置	·· 2
2.2 構造概要	·· 3
2.3 評価方針	· · 7
2.4 適用規格·基準等 ······	· 10
3. 応力解析による評価方法	· 11
3.1 評価対象部位及び評価方針	· 11
3.2 荷重及び荷重の組合せ	· 13
3.2.1 荷重	· 13
3.2.2 荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 25
3.3 許容限界	· 26
3.4 解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
3.4.1 モデル化の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 28
3.4.2 解析諸元	• 33
3.4.3 材料構成則	· 34
3.5 評価方法	· 36
3.5.1 応力解析方法	· 36
3.5.2 断面の評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 43
4. 評価結果	• 51
4.1 Sd地震時 ····································	· 51
4.2 S s 地震時, (異常+S d 地震) 時及び (異常+S s 地震) 時 ······	· 51
5. 引用文献 ······	· 70

別紙 鉄筋コンクリート構造物の重大事故等時の高温による影響(使用済燃料貯蔵プール 及びキャスクピット)

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」に基づき、使用済燃料貯蔵プール及びキ ャスクピットの地震時の構造強度及び機能維持の確認について説明するものであり、そ の評価は、応力解析による評価により行う。

使用済燃料貯蔵プール及びキャスクピットは,設計基準対象施設においては「Sクラ スの施設」に,重大事故等対処施設においては「常設耐震重要重大事故防止設備」及び 「常設重大事故緩和設備」に分類される。

以下、それぞれの分類に応じた耐震評価を示す。

- 2. 基本方針
- 2.1 位置

使用済燃料貯蔵プール及びキャスクピットは原子炉建屋の一部を構成している。使 用済燃料貯蔵プール及びキャスクピットを含む原子炉建屋の設置位置を図 2-1 に示す。

図 2-1 使用済燃料貯蔵プール及びキャスクピットを含む原子炉建屋の設置位置

2.2 構造概要

使用済燃料貯蔵プール及びキャスクピットは原子炉建屋の燃料取替床(T.M.S.L.* 31.7m)付近に位置する鉄筋コンクリート構造物で,使用済燃料,制御棒及び使用済燃 料輸送容器が収容される。

使用済燃料貯蔵プール内には, 収容される機器の遮蔽及び冷却のため常時水が張ら れている。

使用済燃料貯蔵プール内面はステンレス鋼でライニングされており,漏水を防ぐと ともに,保守,点検についても考慮されている。なお,原子力発電所耐震設計技術指 針JEAG4601-1987((社)日本電気協会)に基づき,鋼製ライナは耐漏洩機 能を,鉄筋コンクリート部分は支持機能を有する。

また,原子炉ウェルをはさんで使用済燃料貯蔵プールの反対側には,燃料交換時に 蒸気乾燥器と気水分離器を仮置きする蒸気乾燥器・気水分離器ピットがある。(以下, 使用済燃料貯蔵プール,キャスクピット,原子炉ウェル及び蒸気乾燥器・気水分離器 ピットのすべてを示す場合は,これを「プール部」という。)

プール部は,鉄筋コンクリート製原子炉格納容器(以下「RCCV」という。)及び外壁に支持された一体構造物である。なお,プール部の床面及び壁面の一部はRCCVと共有するが,当該部分については,V-2-9-2-1「原子炉格納容器コンクリート部の耐震性についての計算書」に示す。

使用済燃料貯蔵プールの大きさは、内面寸法で平面 17.9m×14.0m, 深さ 11.82m, 壁 厚 2.0m, 底面スラブ厚 2.3m であり、キャスクピットの平面寸法は 3.2m×3.2m, 壁厚 0.6m で、底面スラブ及び壁の一面はそれぞれ使用済燃料貯蔵プール底面及び壁面と共 有する。

使用済燃料貯蔵プール及びキャスクピットを含む原子炉建屋の概略平面図及び概略 断面図を図 2-2 及び図 2-3 に,使用済燃料貯蔵プール及びキャスクピット周りの概 略平面図及び概略断面図を図 2-4 及び図 2-5 に示す。

注記*:東京湾平均海面(以下「T.M.S.L.」という。)

図 2-2 使用済燃料貯蔵プール及びキャスクピットを含む原子炉建屋の概略平面図 (T.M.S.L.31.7m) (単位:m)

- 注記*:原子炉圧力容器(以下「RPV」という。)
- 図 2-3 使用済燃料貯蔵プール及びキャスクピットを含む原子炉建屋の概略断面図 (A-A 断面) (単位:m)

図 2-4 使用済燃料貯蔵プール及びキャスクピット周りの概略平面図(単位:m)

図 2-5 使用済燃料貯蔵プール及びキャスクピット周りの概略断面図 (B-B 断面) (単位:m)

2.3 評価方針

使用済燃料貯蔵プール及びキャスクピットは,設計基準対象施設においては「Sク ラスの施設」に,重大事故等対処施設においては「常設耐震重要重大事故防止設備」 及び「常設重大事故緩和設備」に分類される。

使用済燃料貯蔵プール及びキャスクピットの設計基準対象施設としての評価においては、弾性設計用地震動Sdによる地震力又は静的地震力のいずれか大きい方の地震力(以下「Sd地震時」という。)に対する評価及び基準地震動Ssによる地震力(以下「Ss地震時」という。)に対する評価を行うこととし、それぞれの評価は、V-2-2-1「原子炉建屋の地震応答計算書」の結果を踏まえたものとする。

使用済燃料貯蔵プール及びキャスクピットの評価は、V-2-1-9「機能維持の基本方 針」に基づき、以下の3つの荷重の組合せに分類し、応力解析による評価において断 面の評価を行うことで、使用済燃料貯蔵プール及びキャスクピットの地震時の構造強 度の確認を行う。

(1) S d 地震時

(2) S s 地震時

(3) (異常+Sd地震) 時

なお、使用済燃料貯蔵プール及びキャスクピットの地震時の構造強度の確認には、 地震応答解析による評価においてせん断ひずみ及び保有水平耐力の評価が必要である が、使用済燃料貯蔵プール及びキャスクピットが原子炉建屋の一部であることを踏ま え、原子炉建屋全体としての評価結果をV-2-2-2「原子炉建屋の耐震性についての計 算書」に示すこととする。評価にあたっては、V-2-2-1「原子炉建屋の地震応答計算 書」による材料物性の不確かさを考慮する。表 2-1 に材料物性の不確かさを考慮する 解析ケースを示す。

また,重大事故等対処施設としての評価においては, V-2-1-9「機能維持の基本方 針」に基づき,上記の(2)及び(3)に以下の(4)を加えた3つの荷重の組合せに分類し, 応力解析による評価において断面の評価を行うことで,使用済燃料貯蔵プール及びキ ャスクピットの地震時の構造強度の確認を行う。

(4) (異常+Ss地震)時

ここで、使用済燃料貯蔵プール及びキャスクピットにおける(2)及び(3)の荷重の組 合せでは、運転時、設計基準事故時の状態において、温度の条件が異なるが、コンク リートの温度が上昇した場合においても、コンクリートの圧縮強度の低下は認められ ず、剛性低下は認められるがその影響は小さいと考えられる(別紙「鉄筋コンクリー ト構造物の重大事故等時の高温による影響(使用済燃料貯蔵プール及びキャスクピッ ト)」参照)こと、また、「発電用原子力設備規格 コンクリート製原子炉格納容器 規格」では部材内の温度差及び拘束力により発生する熱応力は自己拘束的な応力であ り十分な塑性変形能力がある場合は終局耐力に影響しないこととされていることから、

7

重大事故等対処施設としての評価は,設計基準対象施設としての評価と同一となる。 使用済燃料貯蔵プール及びキャスクピットの評価フローを図 2-6 に示す。

検討ケース	コンクリート 剛性	回転ばね 定数	地盤剛性	備考
①ケース1 (工認モデル)	実強度 (43.1N/mm ²)	100%	標準地盤	基本ケース
 ②ケース2 (建屋剛性+σ, 地盤剛性+σ) 	実強度+σ (46.0N/mm ²)	100%	標準地盤+σ (<mark>新期砂層</mark> +13%, 古安田層+25%, 西山層+10%)	地盤剛性の変化 に伴い,回転ば ね定数が変化
 ③ケース3 (建屋剛性-σ, 地盤剛性-σ) 	実強度一σ (40.2N/mm ²)	100%	標準地盤-σ (<mark>新期砂層</mark> -13%, 古安田層-25%, 西山層-10%)	地盤剛性の変化 に伴い,回転ば ね定数が変化
④ケース4(建屋剛性コア平均)	実強度 (コア平均) (55.7N/mm ²)	100%	標準地盤	
⑤ケース5 (建屋剛性-2σ)	実強度-2σ (37.2N/mm ²)	100%	標準地盤	
⑥ケース6 (回転ばね低減)	実強度 (43.1N/mm ²)	50%	標準地盤	

表 2-1 材料物性の不確かさを考慮する解析ケース

注記*: V-2-2-1「原子炉建屋の地震応答計算書」の結果を踏まえた評価を行う。

図 2-6 使用済燃料貯蔵プール及びキャスクピットの評価フロー

2.4 適用規格·基準等

本評価において、適用する規格・基準等を以下に示す。

- ・建築基準法・同施行令
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-((社)日本 建築学会,1999改定)(以下「RC規準」という。)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005 制定)(以下「RC-N規準」という。)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編JEAG4601・ 補-1984((社)日本電気協会)
- ・原子力発電所耐震設計技術指針JEAG4601-1987((社)日本電気協会)
 (以下「JEAG4601-1987」という。)
- ・原子力発電所耐震設計技術指針JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 コンクリート製原子炉格納容器規格((社)日本機械 学会,2003)(以下「CCV規格」という。)

- 3. 応力解析による評価方法
- 3.1 評価対象部位及び評価方針

使用済燃料貯蔵プール及びキャスクピットの応力解析による評価対象部位は、使用 済燃料貯蔵プール及びキャスクピットを構成する壁及び底面スラブとし、3次元FEMモ デルを用いた応力解析により評価を行う。3次元 FEM モデルを用いた応力解析にあた っては、V-2-2-1「原子炉建屋の地震応答計算書」及び平成5年6月17日付け4資庁 第14562 号にて認可された工事計画の添付資料IV-2-4-2-1「使用済燃料貯蔵プール (キャスクピットを含む。)の耐震性についての計算書」(以下「既工認」という。) による荷重を用いて、荷重の組合せを行う。

「2.3 評価方針」に示した 4 つの荷重の組合せに対しては,以下の(1)~(3)の方針 に基づき断面の評価を行う。また,応力解析による評価フローを図 3-1 に示す。

S d 地震時に対する評価

Sd地震時に対する評価は、使用済燃料貯蔵プール及びキャスクピットについて、地震力と地震力以外の荷重の組合せの結果、発生する応力が、CCV規格に基づき設定した許容限界を超えないことを確認する。

(2) S s 地震時及び(異常+S d 地震)時に対する評価

Ss地震時及び(異常+Sd地震)時に対する評価は,使用済燃料貯蔵プール 及びキャスクピットについて,地震力と地震力以外の荷重の組合せの結果,発生 する応力又はひずみが,CCV規格に基づき設定した許容限界を超えないことを確 認する。

(3) (異常+Ss地震)時に対する評価

(異常+Ss地震)時に対する評価は、使用済燃料貯蔵プール及びキャスクピットについて、地震力と地震力以外の荷重の組合せの結果、発生する応力又はひずみが、(2)と同じものとして設定した許容限界を超えないことを確認する。

注記*:材料物性の不確かさについては, V-2-2-1「原子炉建屋の地震応答計算 書」に基づき設定する。

図 3-1 応力解析による評価フロー

3.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは、V-2-1-9「機能維持の基本方針」にて設定している荷重 及び荷重の組合せを用いる。

- 3.2.1 荷重
 - (1) 固定荷重
 固定荷重として次のものを考慮する。
 - a. 死荷重及び活荷重(DL) 死荷重及び活荷重は,既工認に基づき,次のものを考慮する。
 - ・鉄筋コンクリート構造体の自重・・・・23.5kN/m³
 - ・使用済燃料貯蔵プールに格納される使用済燃料及びその他の機器重
 ・・・153kN/m²
 - ・使用済燃料貯蔵プールの内容水による静水圧(水面を T.M.S.L. 31.7m より 0.31m 下りとする。)・・・・113kN/m²
 - (2) 運転時荷重

運転時の状態で作用する荷重として次のものを考慮する。各荷重については, 既工認に基づき設定する。(既工認時の温度分布解析については, V-2-9-2-1 「原子炉格納容器コンクリート部の耐震性についての計算書」の別紙 2「温度分 布解析」参照)

a. 運転時圧力(P₁)

運転時において, RCCV の内部と外部の圧力差によって生じる荷重で, 次の値 とする。

 $P_1 = 13.7 kPa$

b. 運転時温度荷重(T₁)

運転時において、プール部に生じる温度変化による荷重及びプール部の内部 と外部との温度差によって生じる荷重で、内外表面の温度を表 3-1 のとおり設 定する。

表 3-1 運転時内外表面温度

(単位:℃)

		使用済燃料貯蔵プール			
	<i>学</i> 節	位置	壁	底面 スラブ	原子炉 ウェル壁
	百	内面	52.0	52.0	52.0
医起味	反	外面	42.3	42.0	54.8
連転时	Þ	内面	52.0	52.0	52.0
冬	外面	18.0	17.1	54.6	

使用済燃料貯蔵プール

c. 逃がし安全弁作動時荷重(H₁)

逃がし安全弁作動時において,サプレッションプールに考慮する水力学的動 荷重は,次の値とする。

• / /	· ·	II— —	- 0	_
r				1
TT				L
$\Pi_1 -$				L
-				

(3) 異常時荷重

異常発生後,長時間継続する状態における荷重で,次のものとする。各荷重に ついては,既工認に基づき設定する。

a. 異常時圧力(P₂)

異常時において, RCCV の内部と外部との圧力差によって生じる荷重で,表 3 -2 に示す値とする。

表 3-2 異常時圧力 (P₂)

(単位:kPa)

異常発生後の 経過時間	記号	ドライウェル	サプレッション チェンバ
直後	P _{2 1}	248	177

(4) 重大事故等時荷重

重大事故等時の状態で施設に作用する荷重のうち長期的な荷重として次のもの を考慮する。

a. 重大事故等時圧力(P_{SALL})

重大事故等時において, RCCV の内部と外部の圧力差によって長期的に生じる 荷重で, V-1-8-1「原子炉格納施設の設計条件に関する説明書」の「5.2 荷重の組合せ」より, 次の値とする。

 $P_{SALL} = 150 \text{kPa}$

- (5) 地震荷重
 - a. S d 地震荷重(K_d)

水平地震力は,弾性設計用地震動Sdに対する地震応答解析より算定される 動的地震力及び静的地震力より設定する。動的地震力のうちせん断力について は, V-2-2-1「原子炉建屋の地震応答計算書」における最大応答せん断力から 補助壁が負担するせん断力を減じて算定する。静的地震力については,既工認 時に基準地震動S1による動的地震力及び静的地震力に余裕を考慮して設定し たS1地震荷重を適用する。

鉛直地震力は,鉛直震度として設定する。鉛直震度は,弾性設計用地震動S dに対する地震応答解析より算定される鉛直震度及び震度 0.3 を基準とし,建 物・構築物の振動特性,地盤の種類等を考慮した高さ一定方向の鉛直震度より 設定する。

Sd地震荷重を表 3-3~表 3-5 に示す。

b. S s 地震荷重(K s)

水平地震力及び鉛直地震力は、基準地震動Ssに対する地震応答解析より算 定される動的地震力及び鉛直震度より設定する。動的地震力のうちせん断力に ついては、V-2-2-1「原子炉建屋の地震応答計算書」における最大応答せん断 力から補助壁が負担するせん断力を減じて算定する。

Ss地震荷重を表 3-6~表 3-8 に示す。

T. M. S. L.	せん断力 (×10 ³ kN)		
(m)	S d	静的地震力	
31.7	20.9	66.2	
23.5	81.8	119	
18.1	86.6	152	
12.3	111	164	
4.8	137	169	
-1. 7	137	183	

表 3-3 地震荷重(K_d)(せん断力)

(a) NS 方向

(b) EW 方向

T. M. S. L.	せん断力 (×10 ³ kN)		
(m)	S d	静的地震力	
31.7	44.4	77.1	
23. 5	129	148	
10.1	97.8	161	
12.3	113	167	
-1.7	124	188	
-8.2	138	195	

T.M.S.L.	曲げモーメント (×10 ⁴ kN・m)		
(m)	S d	静的地震力	
31.7	7.20 21.3	4.90 54.3	
23.5	100 145	77.2 118	
18.1	204 263	138 207	
12.3	328 416	218 330	
4.8	459 527	330 439	
-1.7	527 608	439 558	

表 3-4 地震荷重(K_d) (曲げモーメント) (a) NS 方向

(b) EW方向

T. M. S. L.	曲げモーメント (×10 ⁴ kN・m)		
(m)	S d	静的地震力	
31.7	61. 6 90. 6	44. 9 63. 3	
18.1	-116 -58.3	-95.1 -31.2	
12.3	-79.7 128	-56.3 78.6	
4 8	197 293	126 204	
-1.7	348 449	213 327	
-8.2	484 578	327 453	
回転ばね*	240	158	

注記*:プール壁が RCCV の曲げ変形を拘束する影響を考慮した回転ばね。

T. M. S. L. (m)	鉛直震度		
	S d	静的地震力	
31.7	0.47	0.24	
23.5	0.46	0.24	
18.1	0.45	0.24	
12.3	0.43	0.24	
4.8	0.42	0.24	
-1.7	0. 41	0.24	
-8.2	0. 41	0.24	

表 3-5 地震荷重(K_d)(鉛直震度)

	(a) NS 方向
T.M.S.L.	せん断力 (×10 ³ kN)
(m)	S s
31.7	77.7
23. 5	161
10.1	182
12.3	254
-1 7	279
-8.2	246

表 3-6 地震荷重(K_s)(せん断力)

(b) EW 方向

T.M.S.L.	せん断力 (×10 ³ kN)
(m)	S s
31.7	73.4
23.5	223
18.1	194
12.3	268
4.8	299
-1.7	268
-8.2	200

(4)	116 万 同
T. M. S. L. (m)	曲げモーメント (×10 ⁴ kN・m) S s
31.7	13.7
23.5	153
18.1	217 313
12.3	419
4.8	679
	786 911
-8.2	911 1069

表 3-7 地震荷重(K_s) (曲げモーメント) (a) NS 方向

31.7	13.7
23.5	153
18.1	217
10.0	313 419
12.3	510
4.8	679
-1.7	786 911
-8.2	911 1069

(b) EW 方向

	,	
T.M.S.L.	曲げモーメント (×10 ⁴ kN・m)	
(m)	S s	
31.7	126	
23. 5	163	
	-349	
18.1 12_3	-219	
	-158	
	181	
	301	
4.8	466	
	573	
-1.7	746	
	806	
-8.2	960	
回転ばね*	518	

注記*:プール壁が RCCV の曲げ変形を拘束する影響を考慮した回転ばね。

双50 地展	$m \equiv (\mathbf{\Pi}_{s})$ (如色辰反	
T.M.S.L.	鉛直震度	
(m)	S s	
31.7	0.95	
23.5	0.93	
18.1	0.90	
12.3	0.87	
4.8	0.83	
-1.7	0.83	
-8.2	0.84	

表 3-8 地震荷重(K_s)(鉛直震度)

c. 地震時配管荷重(R_d, R_s)

地震時において,配管貫通部には,表 3-9 に示す地震時配管荷重を同時に考 慮する。

記号	配管	N (kN)	Q(kN)	${ m M}$ t (kN·m)	M (kN•m)
D	主蒸気配管	2950	940	1320	2990
K d	給水配管	1100	446	590	1510
D	主蒸気配管	3900	1340	1810	4150
R s	給水配管	1470	606	749	2060

表 3-9 地震時配管荷重(R_d, R_s)

注1:N,Q,M_t,Mは,下図に示すとおりである。

注2:数値は、1本当たりの絶対値を示す。

注3:開口部の位置,開口径はV-2-9-2-1「原子炉格納容器コンクリート 部の耐震性についての計算書」による。

注4: R_dは, S d 地震荷重と同時に作用するものとする。

注5: R_sは, S s 地震荷重と同時に作用するものとする。

注 6: M(曲げモーメント)については、せん断力による効果も併せて考 慮した。

d. 地震時動水圧荷重(KH)

使用済燃料貯蔵プールに作用する地震時動水圧荷重は、JEAG4601-1987 における Housner 理論に基づき、V-2-2-1「原子炉建屋の地震応答計算書」 に示す弾性設計用地震動Sd及び基準地震動Ssによる応答解析結果から衝撃 圧及び揺動圧を算定する。地震時動水圧荷重を表 3-10に示す。

表 3-10 地震時動水圧荷重(KH)

(単位: kN/m²)

注記*1:KH_dは,Sd地震荷重と同時に作用するものとする。

*2: KH_sは, S s 地震荷重と同時に作用するものとする。

3.2.2 荷重の組合せ

荷重の組合せを表 3-11 に示す。

外力の状態	荷重 番号	荷重の組合せ		
S d 地震時*	1	D L + P $_1$ + T $_1$ + H $_1$ + K $_d$ + R $_d$ + K H $_d$		
S s 地震時	2	$D L + P_1 + H_1 + K_s + R_s + K H_s$		
(異常+Sd地震)時	3	D L + P $_{2 1}$ + K $_{d}$ + R $_{d}$ + K H $_{d}$		
(異常+Ss地震)時	4	$D L + P_{S A L L} + K_s + R_s + K H_s$		

表 3-11 荷重の組合せ

注記*:温度荷重がない場合も考慮する。

DL	: 死荷重及び活荷重		
P 1	: 運転時圧力		
Τ 1	: 運転時温度荷重		
H 1	: 逃がし安全弁作動時荷重		
P _{2 1}	: 異常時圧力(直後)		
P _{SALL}	: 重大事故等時圧力		
K_{d} , K_{s}	: 地震荷重		
R_{d} , R_{s}	: 地震時配管荷重		
KH _d , KH _s	: 地震時動水圧荷重		

3.3 許容限界

応力解析による評価における使用済燃料貯蔵プール及びキャスクピットの許容限界 は、V-2-1-9「機能維持の基本方針」に記載の構造強度上の制限の方針に基づき、表 3-12及び表 3-13のとおり設定する。

また,コンクリート及び鉄筋の許容応力度を表 3-14 及び表 3-15 に,コンクリート及び鉄筋の許容ひずみを表 3-16 に示す。

(設計基準対象施設としての評価)						
要求 機能	要求 機能設計上の 幾能 性能目標 外力の状態		部位	機能維持のための 考え方	許容限界 (評価基準値)	
構造強度を 有すること	S d 地震時	壁及び 底面 スラブ	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	CCV規格に基づ く荷重状態Ⅲ の許容値		
	S s 地震時	壁及び 底面 スラブ	部材に生じる応力	CCV 坦格に 基づ		
	(異) 地見	(異常+Sd 地震)時	壁及び 底面 スラブ	強度を確保するた めの許容限界を超 えないことを確認	く荷重状態IV の許容値	

表 3-12 応力解析による評価における許容限界

表 3-13 応力解析による評価におけ

要求 機能	機能設計上の 性能目標	外力の状態	部位	機能維持のための 考え方	許容限界 (評価基準値)
	【 S s 地震時 (異常+S d 有すること (異常+S s 地震)時	S s 地震時	壁及び 底面 スラブ	部材に生じる応力 及びひずみが構造 強度を確保するた	CCV規格に基づ く荷重状態IV の許容値
		(異常+Sd 地震)時	壁及び 底面 スラブ		
		(異常+S s 地震)時	壁及び 底面 スラブ	めの許容限界を超 えないことを確認	(異常+Ss 地震)時 の許容値*

(重大事故等対処施設としての評価)

注記*: S s 地震時及び(異常+S d 地震)時の許容限界と同じ許容限界を適用する。

表 3-14 コンクリートの許容応力度

(単位:N/mm²)

	設計基準強度 F 。= 32.3			
外力の状態	応力状態1*1		応力状態2*2	
	圧縮	せん断	圧縮	せん断
S d 地震時	21.4	1.21	24.2	1.21
S s 地震時 (異常 + S d 地震) 時 (異常 + S s 地震) 時	21. 4^{*3}	1.21	—	_

注記*1:「応力状態1」とは、各荷重状態において温度荷重により生じる応力を除い た応力が生じている状態をいう。

- *2:「応力状態2」とは、各荷重状態において温度荷重による応力が生じている 状態をいう。
- *3:軸力の検討に用いる許容圧縮応力度を示す。

表 3-15 鉄筋の許容応力度

(単位:N/mm²)

外力の状態	引張及び圧縮	面外せん断補強
S d 地震時	SD35(SD345 相当)	SD35(SD345 相当)
	345	345

表 3-16 コンクリート及び鉄筋の許容ひずみ

外力の状態	コンクリート (圧縮ひずみ)	鉄筋 (圧縮ひずみ及び引張ひずみ)
S s 地震時 (異常+S d 地震)時 (異常+S s 地震)時	0.003	0.005

- 3.4 解析モデル及び諸元
 - 3.4.1 モデル化の基本方針
 - (1) 基本方針

Sd地震時における応力解析は、3次元 FEM モデルを用いた弾性応力解析を実施する。解析には、解析コード「MSC NASTRAN」を用いる。Ss地震時、(異常+Sd地震)時及び(異常+Ss地震)時における応力解析は、3次元 FEM モデルを用いた弾塑性応力解析を実施する。解析には、解析コード「ABA QUS」を用いる。また、解析コードの検証及び妥当性確認等の概要については、 別紙「計算機プログラム(解析コード)の概要」に示す。

応力解析モデルは、プール部のほか、RCCV、ダイヤフラムフロア及び基礎スラ ブを一体としたモデルである。応力解析における評価対象部位は、使用済燃料貯 蔵プール及びキャスクピットの壁及び底面スラブであるが、各部の荷重伝達を考 慮するために周辺部を含むモデルを用いることとした。なお、本解析モデルは、 V-2-9-2-1「原子炉格納容器コンクリート部の耐震性についての計算書」と同一 である。解析モデル概要図を図 3-2 に示す。

Sd 地震時における熱応力の解析に用いるコンクリートの弾性係数は, 1/3 に 低減した値を用いる。

(2) 使用要素

Sd地震時における解析モデルに使用する FEM 要素は、シェル要素とする。使用する要素は四辺形及び三角形で、この要素は均質等方性材料によるシェル要素である。

S s 地震時,(異常+S d 地震)時及び(異常+S s 地震)時における解析モデ ルに使用する FEM 要素は,積層シェル要素とする。使用する要素は四辺形及び三 角形で,この要素は鉄筋層をモデル化した異方性材料による積層シェル要素であ る。

各要素には,板の曲げと軸力を同時に考えるが,板の曲げには面外せん断変形 の影響も考慮する。

解析モデルの節点数は 7805, 要素数は 11024 である。

(3) 境界条件

3 次元 FEM モデルの基礎スラブ底面及び側面に, V-2-2-1「原子炉建屋の地震 応答計算書」に示す地盤ばねを離散化して,水平方向及び鉛直方向のばねを設け る。3 次元 FEM モデルの水平方向のばねについては,地震応答解析モデルのスウ ェイばね及び側面水平ばねを,鉛直方向のばねについては,地震応答解析モデル のロッキングばね及び側面回転ばねを基に設定を行う。なお,基礎スラブ底面の 地盤ばねについては,引張力が発生したときに浮上りを考慮する。

また、3 次元 FEM モデルの上部構造物に対する周辺床及び外壁の剛性並びに基礎スラブに対する上部構造物の剛性を考慮する。RCCV と外壁の間の耐震壁の脚部位置については、はり要素を設ける。

図 3-2 解析モデル(3/4)

32

3.4.2 解析諸元

使用材料の物性値を表 3-17 及び表 3-18 に示す。

諸元	物性値	
	上部構造物	基礎スラブ
ヤング係数 (N/mm ²)	2.88×10 ⁴ *1	2. $79 \times 10^{4} * {}^{2}$
ポアソン比	0.2	0.2

表 3-17 コンクリートの物性値

注記*1:剛性はコンクリートの実強度(43.1N/mm²)に基づく。

*2:剛性はコンクリートの実強度(39.2N/mm²)に基づく。

表 3-18 鉄筋の物性値

諸元	物性値	
鉄筋の種類	SD40(SD390 相当) SD35(SD345 相当)	
ヤング係数 (N/mm ²)	2. 05×10^5	
3.4.3 材料構成則

S s 地震時, (異常+S d 地震)時及び(異常+S s 地震)時に対する評価で 用いる材料構成則を図 3-3 に示す。

なお,ヤング係数は実強度に基づく値とし,コンクリートの圧縮強度は設計基 準強度に基づく値とする。

F。: コンクリートの設計基準強度

項目	設定			
圧縮強度	-0.85F。(CCV 規格)			
終局圧縮ひずみ	-3000×10 ⁻⁶ (CCV 規格)			
圧縮側のコンクリート構成則	CEB-FIP Model code に基づき設 定 (引用文献(1)参照)			
ひび割れ発生後の引張軟化曲線	出雲ほか(1987)による式 (c=0.4)(引用文献(2)参照)			
引張強度	$\sigma_{\rm t} = 0.38 \sqrt{F_{\rm c}}$ (RC 規準)			

注:引張方向の符号を正とする。

(a) コンクリートの応力-ひずみ関係

図 3-3 材料構成則 (1/2)

・鉄筋の構成則:バイリニア型

σ_y:鉄筋の降伏強度

注:引張方向の符号を正とする。

(b) 鉄筋の応力-ひずみ関係

図 3-3 材料構成則 (2/2)

3.5 評価方法

3.5.1 応力解析方法

使用済燃料貯蔵プール及びキャスクピットについて、Sd地震時に対して3次 元 FEM モデルを用いた弾性応力解析を実施し、Ss地震時、(異常+Sd地震)時 及び(異常+Ss地震)時に対して3次元 FEM モデルを用いた弾塑性応力解析を 実施する。

(1) 荷重ケース

それぞれの外力の状態の応力は,次の荷重ケースによる応力を組み合わせて求 める。

DL	: 死荷重及び活荷重
P 1	:運転時圧力
Τ 1	:運転時温度荷重
H ₁	:逃がし安全弁作動時荷重
P _{2 1}	: 異常時圧力(直後)
P _{SALL}	:重大事故等時圧力
$K_{d\ 1\ S\ N}$ *	: S→N 方向 S d 地震荷重(動的地震力)
$K_{d 1 W E}$ *	: W→E 方向 S d 地震荷重 (動的地震力)
K d 1 D U *	: 鉛直方向 S d 地震荷重(動的地震力)
K d 2 S N *	: S→N 方向 S d 地震荷重(静的地震力)
$K_{d 2 W E}$ *	: W→E 方向 S d 地震荷重(静的地震力)
$\mathrm{K}_{\mathrm{d}\ 2\mathrm{D}\mathrm{U}}*$: 鉛直方向 S d 地震荷重(静的地震力)
K $_{\rm s~S~N}$ *	:S→N方向 Ss地震荷重
K_{sWE} *	:W→E方向 Ss地震荷重
K s d u *	: 鉛直方向 S s 地震荷重
R_{d}	: S d 地震時配管荷重
R s	: S s 地震時配管荷重
$\mathrm{K}\mathrm{H}_{\mathrm{d}\mathrm{W}\mathrm{E}}^{*}$: W→E 方向 S d 地震時動水圧荷重
$\mathrm{K}\mathrm{H}_{\mathrm{~d}\mathrm{S}\mathrm{N}}^{*}$:S→N方向 Sd地震時動水圧荷重
$\mathrm{K}\mathrm{H}_{\mathrm{s}\mathrm{W}\mathrm{E}}^{*}$: W→E 方向 S s 地震時動水圧荷重
$\mathrm{K}\mathrm{H}$ s s n *	:S→N方向 Ss地震時動水圧荷重

注記*:計算上の座標軸を基準として, EW 方向は W→E 方向の加力, NS 方向は S→N 方向の加力, 鉛直方向は上向きの加力を記載している。

(2) 荷重の組合せケース

荷重の組合せケースを表 3-19 に示す。

水平地震力と鉛直地震力による応力の組合せは、「原子力発電所耐震設計技術規 程JEAC4601-2008((社)日本電気協会)」を参考に、組合せ係数法(組 合せ係数は1.0と0.4)を用いるものとする。

外力の状態	ケース	荷重の組合せ
S d 地震時	1-1	D L + P 1 + [T 1] + H 1 + 1.0K d 1 S N + 0.4K d 1 D U + R d + 1.0K H d S N
	1-2	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d \ 1 \ WE}$ + 0. 4 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 1. 0 K H $_{d \ WE}$
	1-3	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 1 S N}$ + 0. 4 K $_{d 1 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	1-4	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d \ 1 \ WE}$ + 0. 4 K $_{d \ 1 \ D \ U}$ + R $_{d}$ - 1. 0 K H $_{d \ WE}$
	1-5	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d 1 S N}$ - 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
	1-6	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d \ 1 \ WE}$ - 0. 4 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 1. 0 K H $_{d \ WE}$
	1 - 7	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 1 S N}$ - 0. 4 K $_{d 1 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	1-8	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d \ 1 \ WE}$ - 0. 4 K $_{d \ 1 \ D \ U}$ + R $_{d}$ - 1. 0 K H $_{d \ WE}$
	1-9	D L + P 1 + [T 1] + H 1 + 0.4 K d 1 S N + 1.0 K d 1 D U + R d + 0.4 K H d S N
	1-10	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d \ 1 \ WE}$ + 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 0. 4 K H $_{d \ WE}$
	1-11	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d 1 S N}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d S N}$
	1-12	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d \ 1 \ WE}$ + 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ - 0. 4 K H $_{d \ WE}$
	1-13	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d 1 S N}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 K H $_{d S N}$
	1-14	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 0. 4 K $_{d \ 1 \ WE}$ - 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ + 0. 4 K H $_{d \ WE}$
	1-15	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d 1 S N}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d S N}$
	1-16	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 0. 4 K $_{d \ 1 \ W E}$ - 1. 0 K $_{d \ 1 \ D \ U}$ + R $_{d}$ - 0. 4 K H $_{d \ W E}$
	1-17	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d \ 2 \ S \ N}$ + 1. 0 K $_{d \ 2 \ D \ U}$ + R $_{d}$ + 1. 0 K H $_{d \ S \ N}$
	1-18	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d \ 2 \ W E}$ + 1. 0 K $_{d \ 2 \ D \ U}$ + R $_{d}$ + 1. 0 K H $_{d \ W E}$
	1-19	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 2 S N}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	1-20	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 2 WE}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d WE}$
	1-21	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d 2 S N}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
	1-22	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ + 1. 0 K $_{d 2 WE}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d WE}$
	1-23	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 2 S N}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	1-24	D L + P $_{1}$ + [T $_{1}$] + H $_{1}$ - 1. 0 K $_{d 2 WE}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d WE}$

表 3-19 荷重の組合せケース (1/4)

注:[]は応力状態2に対する荷重を表す。

外力の状態	ケース No.	荷重の組合せ
S s 地震時	2-1	D L + P $_{1}$ + H $_{1}$ + 1. 0 K $_{s S N}$ + 0. 4 K $_{s D U}$ + R $_{s}$ + 1. 0 K H $_{s S N}$
	2-2	D L + P $_{1}$ + H $_{1}$ + 1. 0 K $_{s WE}$ + 0. 4 K $_{s DU}$ + R $_{s}$ + 1. 0 K H $_{s WE}$
	2-3	D L + P $_{1}$ + H $_{1}$ - 1. 0 K $_{s S N}$ + 0. 4 K $_{s D U}$ + R $_{s}$ - 1. 0 K H $_{s S N}$
	2-4	D L + P $_{1}$ + H $_{1}$ - 1. 0 K $_{s WE}$ + 0. 4 K $_{s DU}$ + R $_{s}$ - 1. 0 K H $_{s WE}$
	2-5	D L + P $_{1}$ + H $_{1}$ + 1. 0 K $_{s S N}$ - 0. 4 K $_{s D U}$ + R $_{s}$ + 1. 0 K H $_{s S N}$
	2-6	D L + P $_{1}$ + H $_{1}$ + 1.0 K $_{s WE}$ - 0.4 K $_{s DU}$ + R $_{s}$ + 1.0 K H $_{s WE}$
	2-7	D L + P $_{1}$ + H $_{1}$ - 1. 0 K $_{s S N}$ - 0. 4 K $_{s D U}$ + R $_{s}$ - 1. 0 K H $_{s S N}$
	2-8	D L + P $_{1}$ + H $_{1}$ - 1. 0 K $_{s WE}$ - 0. 4 K $_{s DU}$ + R $_{s}$ - 1. 0 K H $_{s WE}$
	2-9	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s S N}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 K H $_{s S N}$
	2-10	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s WE}$ + 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 K H $_{s WE}$
	2-11	D L + P $_{1}$ + H $_{1}$ - 0. 4 K $_{s S N}$ + 1. 0 K $_{s D U}$ + R $_{s}$ - 0. 4 K H $_{s S N}$
	2-12	D L + P $_{1}$ + H $_{1}$ - 0. 4 K $_{s WE}$ + 1. 0 K $_{s D U}$ + R $_{s}$ - 0. 4 K H $_{s WE}$
	2-13	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s S N}$ - 1. 0 K $_{s D U}$ + R $_{s}$ + 0. 4 K H $_{s S N}$
	2-14	D L + P $_{1}$ + H $_{1}$ + 0. 4 K $_{s WE}$ - 1. 0 K $_{s DU}$ + R $_{s}$ + 0. 4 K H $_{s WE}$
	2-15	D L + P $_{1}$ + H $_{1}$ - 0. 4K $_{s S N}$ - 1. 0K $_{s D U}$ + R $_{s}$ - 0. 4K H $_{s S N}$
	2-16	D L + P $_{1}$ + H $_{1}$ - 0. 4 K $_{s WE}$ - 1. 0 K $_{s D U}$ + R $_{s}$ - 0. 4 K H $_{s WE}$

表 3-19 荷重の組合せケース (2/4)

外力の状態	ケース No.	荷重の組合せ
(異常+ (本山)	3-1	D L + P $_{2 1}$ + 1. 0 K $_{d 1 S N}$ + 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
時	3-2	D L + P $_{2 1}$ + 1. 0 K $_{d 1 WE}$ + 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 K H $_{d WE}$
	3-3	D L + P $_{21}$ - 1. 0 K $_{d1SN}$ + 0. 4 K $_{d1DU}$ + R $_{d}$ - 1. 0 K H $_{dSN}$
	3-4	D L + P $_{2 1}$ - 1.0 K $_{d 1 WE}$ + 0.4 K $_{d 1 D U}$ + R $_{d}$ - 1.0 K H $_{d WE}$
	3-5	D L + P $_{2 1}$ + 1. 0 K $_{d 1 S N}$ - 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
	3-6	D L + P $_{2 1}$ + 1. 0 K $_{d 1 WE}$ - 0. 4 K $_{d 1 D U}$ + R $_{d}$ + 1. 0 K H $_{d WE}$
	3-7	D L + P $_{2 1}$ - 1. 0 K $_{d 1 S N}$ - 0. 4 K $_{d 1 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	3-8	D L + P $_{2 1}$ - 1.0 K $_{d 1 WE}$ - 0.4 K $_{d 1 D U}$ + R $_{d}$ - 1.0 K H $_{d WE}$
	3-9	D L + P $_{2 1}$ + 0. 4 K $_{d 1 S N}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 K H $_{d S N}$
	3-10	D L + P $_{2 1}$ + 0. 4 K $_{d 1 W E}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 K H $_{d W E}$
	3-11	D L + P $_{2 1}$ - 0. 4 K $_{d 1 S N}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d S N}$
	3-12	D L + P $_{2 1}$ - 0. 4 K $_{d 1 W E}$ + 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d W E}$
	3-13	D L + P $_{2 1}$ + 0. 4 K $_{d 1 S N}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ + 0. 4 K H $_{d S N}$
	3-14	D L + P $_{2 1}$ + 0. 4 K $_{d 1 WE}$ - 1. 0 K $_{d 1 DU}$ + R $_{d}$ + 0. 4 K H $_{d WE}$
	3-15	D L + P $_{2 1}$ - 0. 4 K $_{d 1 S N}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d S N}$
	3-16	D L + P $_{2 1}$ - 0. 4 K $_{d 1 WE}$ - 1. 0 K $_{d 1 D U}$ + R $_{d}$ - 0. 4 K H $_{d WE}$
	3-17	D L + P $_{2 1}$ + 1. 0 K $_{d 2 S N}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
	3-18	D L + P $_{2 1}$ + 1. 0 K $_{d 2 WE}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d WE}$
	3-19	D L + P $_{2 1}$ - 1. 0 K $_{d 2 S N}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	3-20	D L + P $_{2 1}$ - 1. 0 K $_{d 2 WE}$ + 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d WE}$
	3-21	D L + P $_{2 1}$ + 1. 0 K $_{d 2 S N}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d S N}$
	3-22	D L + P $_{2 1}$ + 1. 0 K $_{d 2 WE}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ + 1. 0 K H $_{d WE}$
	3-23	D L + P $_{2 1}$ - 1. 0 K $_{d 2 S N}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d S N}$
	3-24	D L + P $_{2 1}$ - 1. 0 K $_{d 2 WE}$ - 1. 0 K $_{d 2 D U}$ + R $_{d}$ - 1. 0 K H $_{d WE}$

表 3-19 荷重の組合せケース (3/4)

外力の状態	ケース No.	荷重の組合せ
(異常+ S s 地震)	4-1	D L + P _{S A L L} + 1.0 K _{s S N} + 0.4 K _{s D U} + R _s + 1.0 K H _{s S N}
時	4-2	D L + P $_{S A L L}$ + 1.0 K $_{s W E}$ + 0.4 K $_{s D U}$ + R $_{s}$ + 1.0 K H $_{s W E}$
	4-3	D L + P _{S A L L} - 1.0 K _{s S N} + 0.4 K _{s D U} + R _s - 1.0 K H _{s S N}
	4-4	D L + P _{S A L L} -1.0 K _{s W E} $+0.4$ K _{s D U} $+$ R _s -1.0 K H _{s W E}
	4-5	D L + P _{S A L L} + 1.0 K _{s S N} - 0.4 K _{s D U} + R _s + 1.0 K H _{s S N}
	4-6	D L + P _{S A L L} + 1.0 K _{s W E} $- 0.4$ K _{s D U} + R _s + 1.0 K H _{s W E}
	4-7	D L + P _{S A L L} -1.0 K _{s S N} -0.4 K _{s D U} $+$ R _s -1.0 K H _{s S N}
	4-8	D L + P _{S A L L} -1.0 K _{s W E} -0.4 K _{s D U} + R _s -1.0 K H _{s W E}
	4-9	D L + P _{S A L L} + 0. 4 K _{s S N} + 1. 0 K _{s D U} + R _s + 0. 4 K H _{s S N}
	4-10	D L + P _{S A L L} + 0. 4 K _{s W E} + 1. 0 K _{s D U} + R _s + 0. 4 K H _{s W E}
	4-11	D L + P _{S A L L} - 0. 4 K _{s S N} + 1. 0 K _{s D U} + R _s - 0. 4 K H _{s S N}
	4-12	D L + P _{S A L L} $- 0.4$ K _{s W E} $+ 1.0$ K _{s D U} $+$ R _s $- 0.4$ K H _{s W E}
	4-13	D L + P _{S A L L} + 0. 4 K _{s S N} - 1. 0 K _{s D U} + R _s + 0. 4 K H _{s S N}
	4-14	D L + P _{S A L L} + 0. 4 K _{s W E} - 1. 0 K _{s D U} + R _s + 0. 4 K H _{s W E}
	4-15	D L + P _{S A L L} $- 0.4$ K _{s S N} $- 1.0$ K _{s D U} $+$ R _s $- 0.4$ K H _{s S N}
	4-16	D L + P _{S A L L} $- 0.4$ K _{s W E} $- 1.0$ K _{s D U} $+$ R _s $- 0.4$ K H _{s W E}

表 3-19 荷重の組合せケース (4/4)

- (3) 荷重の入力方法
 - a. 地震荷重

水平地震力については,各階のせん断力及び曲げモーメントを各床レベルの 節点に離散化して節点荷重として入力する。

鉛直地震力については,モデル上の各節点における鉛直震度により支配面積 に応じた節点力として入力する。

b. 温度荷重

Sd地震時における熱応力については、CCV規格に基づき、部材の剛性を一 律に低減する一律低減法により評価する。

c. 地震荷重及び温度荷重以外の荷重

地震荷重及び温度荷重以外の荷重については,FEM モデルの各節点又は各要素に,集中荷重又は分布荷重として入力する。

3.5.2 断面の評価方法

使用済燃料貯蔵プール及びキャスクピットの断面の評価に用いる応力は,3 次 元 FEM モデルを用いた応力解析により得られた各荷重による応力(軸力,曲げモ ーメント及びせん断力)とする。壁及び底面スラブの断面力成分を図 3-4 に示す。

M_{x}, M_{y} Q_{x}, Q_{y} N_{x}, N_{y} N_{xy} τ_{xy}	:曲げモーメント :面外せん断力 :軸 力 :面内せん断力 :N _{xy} /D	kN • m/m kN/m kN/m kN/m N/mm ²
D	:断面の全せい	m
τ_{xy} D	:N _{xy} /D :断面の全せい	N/mm^2 m

注:矢印の方向を正とする。

 Mx, My :
 曲げモーメント
 kN・m/m

 Qx, Qy :
 せん断力
 kN/m

 Nx, Ny :
 軸力
 水/m

注:矢印の方向を正とする。

図 3-4 壁及び底面スラブの断面力成分

- (1) Sd 地震時
 - a. 壁

軸力及び曲げモーメントによる引張応力度及び圧縮応力度,面内せん断力並びに面外せん断力を算定し,CCV 規格に準拠して設定した各許容値を超えないことを確認する。

(a) 軸力及び曲げモーメントに対する断面の評価方法

各断面は、子午線方向及び円周方向各々について、膜力及び曲げモーメントを受ける鉄筋コンクリート造長方形仮想柱として算定する。この場合、膜力は同時に作用する面内せん断力の影響を考慮して、CCV 規格の CVE-3511-1及び CVE-3511-2 に示す等価膜力として評価する。

膜力と面内せん断力の関係図を図 3-5 に示す。

等価膜力及び曲げモーメントによる引張応力度及び圧縮応力度については, 表 3-14 及び表 3-15 に示す許容応力度を超えないことを確認する。

 $N_{\phi}^{*} = N_{\phi} \pm |N_{\phi}| + |N_{$

 $N_{\phi}^{*}, N_{\theta}^{*}$: ϕ , θ 方向の等価膜力

- N_{ϕ}, N_{θ} : ϕ, θ 方向の膜力
- Ν_{φθ}:面内せん断力

(φ方向は子午線方向, θ方向は円周方向とする)

上記のうち,「膜力」は「軸力」に読み替えることとする。また,「子午 線方向」は「縦方向」に,「円周方向」は「横方向」にそれぞれ読み替える こととする。

図3-5 膜力と面内せん断力の関係図

(b) 面内せん断力に対する断面の評価方法

断面の評価は, CCV 規格の CVE-3512.1 に準拠して行う。 面内せん断応力度が, CVE-3512.2-1 及び CVE-3512.2-2 より計算した終局面

内せん断応力度のいずれか小さい方の値の 0.75 倍の値を超えないことを確認 する。

- τ_u:終局面内せん断応力度(N/mm²)
- p_{t φ}:子午線方向主筋の鉄筋比
- p_{tθ}:円周方向主筋の鉄筋比
- σ₀
 :外力により生じる子午線方向の膜応力度(N/mm²)(引張の場合のみを考慮し,符号を正とする)
- σ ο θ : 外力により生じる円周方向の膜応力度(N/mm²)(引張の場合
 のみを考慮し、符号を正とする)
- f y :鉄筋の許容引張応力度及び許容圧縮応力度であり,表3-15 に示す値(N/mm²)
- F_c : コンクリートの設計基準強度(N/mm²)

上記のうち,「子午線方向主筋」は「縦方向主筋」に,「円周方向主筋」 は「横方向主筋」にそれぞれ読み替えることとする。また,「子午線方向の 膜応力度」は「縦方向の軸応力度」に,「円周方向の膜応力度」は「横方向 の軸応力度」にそれぞれ読み替えることとする。 (c) 面外せん断力に対する断面の評価方法

断面の評価は, CCV 規格の CVE-3513.1 に準拠して行う。

面外せん断応力度が, CVE-3513.2-1及び CVE-3513.2-2より計算した終局面 外せん断応力度のいずれか小さい方の値の 0.75 倍の値を超えないことを確認 する。

f y :鉄筋の許容引張応力度及び許容圧縮応力度であり、表3-15に示す値(N/mm²)

F_c : コンクリートの設計基準強度(N/mm²)

上記のうち,「外力による膜応力度」は「外力による軸応力度」に読み替 えることとする。 b. 底面スラブ

軸力及び曲げモーメントによる引張応力度及び圧縮応力度並びに面外せん断 力を算定し、CCV 規格に準拠して設定した各許容値を超えないことを確認する。

(a) 軸力及び曲げモーメントに対する断面の評価方法

各断面は,軸力及び曲げモーメントを受ける鉄筋コンクリート造長方形仮 想柱として算定する。

軸力及び曲げモーメントによる引張応力度及び圧縮応力度については、表 3-14 及び表 3-15 に示す許容応力度を超えないことを確認する。 (b) 面外せん断力に対する断面の評価方法

断面の評価は、CCV 規格の CVE-3522 に準拠して行う。

面外せん断力が、CVE-3522-1又はCVE-3522-2より計算した許容面外せん断 力を超えないことを確認する。

 $Q_A = b \cdot j \cdot c f_s$ (CVE-3522-1) $z \in \mathcal{C}$,

- Q_A : 許容面外せん断力(N)
- b : 断面の幅(mm)
- j : 断面の応力中心間距離で,断面の有効せいの7/8倍の値(mm)
- 。f s : コンクリートの許容せん断応力度で,表3-14に示すSd地震時 の値(N/mm²)

 $Q_A = b \cdot j \cdot \{ \alpha \cdot_c f_s + 0.5 \cdot_w f_t (p_w - 0.002) \} \cdot (CVE-3522-2)$ $\Xi \subseteq \mathfrak{C},$

- pw: ご面外せん断力に対する補強筋の鉄筋比であり、次の計算式により計算した値(0.002以上とし、0.012を超える場合は0.012として計算する)
 - $p_w = a_w / (b \cdot x) \cdots (CVE-3522-3)$
 - a_w:面外せん断力に対する補強筋の断面積(mm²)
 - x : 面外せん断力に対する補強筋の間隔(mm)
- wft : 面外せん断力に対する補強筋の許容引張応力度であり、表3-15
 に示す値(N/mm²)
- α :割増し係数であり、次の計算式により計算した値(2を超える場合は2,1未満の場合は1とする。また、引張軸力が2N/mm²を超える場合は1とする。)

 - Q : せん断力(N)
 - d : 断面の有効せい(mm)

- (2) S s 地震時, (異常+S d 地震)時及び(異常+S s 地震)時
 - a. 壁

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ,軸力による 圧縮応力度,面内せん断力並びに面外せん断力を算定し,CCV 規格に準拠して 設定した各許容値を超えないことを確認する。

(a) 軸力及び曲げモーメントに対する断面の評価方法

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみは,縦方向 及び横方向各々について算定し, CCV 規格の CVE-3511.2 に基づき,表 3-16 に示す許容ひずみを超えないことを確認する。

- (b) 軸力に対する断面の評価方法 軸力による圧縮応力度については、CVE-3511.3 に準拠してコンクリートの 設計基準強度の 2/3 倍を超えないことを確認する。
- (c) 面内せん断力に対する断面の評価方法 断面の評価は、CCV 規格の CVE-3512.2 に準拠して行う。 面内せん断応力度が、CVE-3512.2-1 及び CVE-3512.2-2 より計算した終局面 内せん断応力度のいずれか小さい方の値を超えないことを確認する。このと き、鉄筋の許容引張応力度及び許容圧縮応力度 f_yは、表 3-15 に示す S d 地 震時の値とする。
- (d) 面外せん断力に対する断面の評価方法
 断面の評価は、CCV 規格の CVE-3513.2 に準拠して行う。
 面外せん断応力度が、CVE-3513.2-1 及び CVE-3513.2-2 より計算した終局面
 外せん断応力度のいずれか小さい方の値を超えないことを確認する。このと
 き、鉄筋の許容引張応力度及び許容圧縮応力度 f y は、表 3-15 に示す S d 地
 震時の値とする。

b. 底面スラブ

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみ並びに面外せん断力を算定し、CCV 規格に準拠して設定した各許容値を超えないことを確認する。

(a) 軸力及び曲げモーメントに対する断面の評価方法

軸力及び曲げモーメントによる鉄筋及びコンクリートのひずみが、CCV 規格の CVE-3521.2 に準拠して、表 3-16 に示す許容ひずみを超えないことを確認する。

(b) 面外せん断力に対する断面の評価方法 断面の評価は、CCV 規格の CVE-3522 に準拠して行う。 面外せん断力が、CVE-3522-1 又は CVE-3522-2 より計算した許容面外せん断 力を超えないことを確認する。

3次元 FEM モデルを用いた応力の算定において,FEM 要素に応力集中等が見られ る場合については,RC-N 規準に基づき,応力の再配分等を考慮してある一定の領 域の応力を平均化したうえで断面の評価を行う。

4. 評価結果

「3.5.2 断面の評価方法」に基づいた断面の評価結果を以下に示す。また,3次元 FEM モデルの配筋領域図を図 4-1に,配筋一覧を表 4-1に示す。

4.1 Sd地震時

断面の評価結果を記載する要素を以下のとおり選定する。

壁については,軸力,曲げモーメント及び面内せん断力による引張応力度及び圧縮 応力度,面内せん断応力度並びに面外せん断応力度に対する評価において,発生値に 対する許容値の割合が最小となる要素をそれぞれ選定する。

底面スラブについては、軸力及び曲げモーメントによる引張応力度及び圧縮応力度 並びに面外せん断応力度に対する評価において、発生値に対する許容値の割合が最小 となる要素をそれぞれ選定する。

選定した要素の位置を図 4-2 に,評価結果を表 4-2 に示す。

Sd地震時において,壁について,軸力,曲げモーメント及び面内せん断力による 引張応力度及び圧縮応力度,面内せん断応力度並びに面外せん断応力度が,各許容値 を超えないことを確認した。また,底面スラブについて,軸力及び曲げモーメントに よる引張応力度及び圧縮応力度並びに面外せん断応力度が,各許容値を超えないこと を確認した。

4.2 S s 地震時,(異常+S d 地震)時及び(異常+S s 地震)時
 断面の評価結果を記載する要素を以下のとおり選定する。

壁については、軸力、曲げモーメント及び面内せん断力による鉄筋及びコンクリートのひずみ、軸力による圧縮応力度、面内せん断応力度並びに面外せん応力度に対する評価において、発生値に対する許容値の割合が最小となる要素をそれぞれ選定する。

底面スラブについては、軸力及び曲げモーメントによる鉄筋及びコンクリートのひ ずみ並びに面外せん断応力度に対する評価において,発生値に対する許容値の割合が 最小となる要素をそれぞれ選定する。

選定した要素の位置を図 4-3~図 4-5 に,評価結果を表 4-3~表 4-5 に示す。

Ss地震時,(異常+Sd地震)時及び(異常+Ss地震)時において,壁について, 軸力,曲げモーメント及び面内せん断力による鉄筋及びコンクリートのひずみ,軸力 による圧縮応力度,面内せん断応力度並びに面外せん応力度が,各許容値を超えない ことを確認した。また,底面スラブについて,軸力及び曲げモーメントによる鉄筋及 びコンクリートのひずみ並びに面外せん断応力度が,各許容値を超えないことを確認 した。

表 4-1 使用済燃料貯蔵プール及びキャスクピットの配筋一覧 (a) 北側及び南側壁

区分	タテ方向	ヨコ方向
А	0 000000	5-D38@200
В	2-038@200	2 12200200
С	3-D38@200	3-738@200

(b) 東側壁

区分 タテ方向		ヨコ方向
D	2-D38@200	2-D38@200

(c) 西側壁

区分	タテ方向	ヨコ方向
E	2-D38@200	2-D38@200
F	4-D38@200	
G	2-D38@200 +D38@400	3-D38@200

(d) 底面スラブ

区分 EW 方向		NS 方向
Н	4-D38@200	3-D38@200

注:配筋は片側を示す。

(b) 南側壁

図 4-2 選定した要素の位置 Sd 地震時 (1/3)

(c) 東側壁

(d) 西側壁

図 4-2 選定した要素の位置 Sd 地震時 (2/3)

図 4-2 選定した要素の位置 Sd 地震時 (3/3)

部位		評価項目	方向	要素番号	組合せ ケース	発生値	許容値
	軸力 + +	コンクリート圧縮応力度 (N/mm ²)	鉛直	2146	1-8	9.17	24.2
	 曲けモーメント + 面内せん断力 	鉄筋引張応力度 (N/mm ²)	水平	2286	1-8	223	345
北側堂	面内せん断力	面内せん断応力度 (N/mm ²)	-	2146	1-8	2.24	3.68
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2145	1-19	0.586	0.960
	軸力 + +	コンクリート圧縮応力度 (N/mm ²)	鉛直	102146	1-8	9.20	24.2
齿侧膀	曲りモーメント + 面内せん断力	鉄筋引張応力度 (N/mm ²)	水平	102286	1-8	228	345
用则型	面内せん断力	面内せん断応力度 (N/mm ²)	-	102146	1-8	2.28	3.68
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102145	1-17	0.579	0.960
	軸力 + 曲げエーメント	コンクリート圧縮応力度 (N/mm ²)	鉛直	2379	1-6	8.54	21.4
声 侧	曲り モーノント + 面内せん断力	鉄筋引張応力度 (N/mm ²)	鉛直	2379	1-6	227	345
术则至	面内せん断力	面内せん断応力度 (N/mm ²)	-	2382	1-21	1.01	2.94
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2383	1-6	0. 508	1.18
	軸力 + 曲ばチーメント	コンクリート圧縮応力度 (N/mm ²)	鉛直	2469	1-23	5.63	21.4
西側辟		鉄筋引張応力度 (N/mm ²)	水平	102493	1-23	258	345
LNI	面内せん断力	面内せん断応力度 (N/mm ²)	-	102489	1-23	0.808	1.42
	面外せん断力	面外せん断応力度 (N/mm ²)	水平	102493	1-8	0.161	1.15
底面 スラブ	軸力	コンクリート圧縮応力度 (N/mm ²)	EW	101549	1-14	8.59	24.2
	曲げモーメント	鉄筋引張応力度 (N/mm ²)	NS	1546	1-2	236	345
	面外せん断力	面外せん断応力度 (N/mm ²)	NS	1606	1-14	1.05	1.21

表 4-2 評価結果 Sd 地震時

(a) 北側壁

(b) 南側壁

図 4-3 選定した要素の位置 Ss地震時 (1/3)

(d) 西側壁

図 4-3 選定した要素の位置 Ss地震時(2/3)

(e) 底面スラブ

図 4-3 選定した要素の位置 Ss地震時 (3/3)

(a) 北側壁

(b) 南側壁

図 4-4 選定した要素の位置 (異常+Sd地震)時(1/3)

(c) 東側壁

(d) 西側壁

図 4-4 選定した要素の位置 (異常+Sd地震)時 (2/3)

(e) 底面スラブ

図 4-4 選定した要素の位置 (異常+Sd地震)時 (3/3)

(b) 南側壁

図 4-5 選定した要素の位置 (異常+S s 地震)時(1/3)

(d) 西側壁

図 4-5 選定した要素の位置 (異常+S s 地震)時(2/3)

(e) 底面スラブ

図 4-5 選定した要素の位置 (異常+S s 地震)時(3/3)

部位		評価項目	方向	要素番号	組合せ ケース	発生値	許容値
北側壁	軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	2145	2-5	0.282	3.00
	曲げモーメント + 	(×10 ⁻³)	水平	2320	2-8	0.506	5.00
	<u>面内せん断力</u> 軸力	(×10) 圧縮応力度	水平	2320	2-2	7.37	21.4
	面内せん断力	(N/mm ²) 面内せん断応力度	_	2092	2-16	2.76	4.91
	面外せん断力	<u>(N/mm²)</u> 面外せん断応力度	鉛直	2145	2-5	0 914	2.08
	軸力	(N/mm ²) コンクリート圧縮ひずみ	如直	100145	0.7	0.000	2.00
	+ 曲げモーメント	(×10 ⁻³) 鉄筋引張ひずみ		102145	2-1	0. 282	3.00
	+ 面内せん断力	(×10 ⁻³)	水平	102320	2-8	0.504	5.00
南側壁	軸力	圧縮応力度 (N/mm ²)	水平	102320	2-2	7.37	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	102092	2-16	2.74	4.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102145	2-7	0.912	2.08
	軸力 +	コンクリート圧縮ひずみ (× 10 ⁻³)	鉛直	102379	2-6	0.391	3.00
	曲げモーメント +	(×10) 鉄筋引張ひずみ	鉛直	102379	2-6	0.742	5.00
東側壁	<u>面内せん断力</u> 軸力	(×10°) 圧縮応力度	水平	102414	2-5	1.13	21.4
ANT	面内せん断力	<u>(N/mm²)</u> 面内せん断応力度	_	2390	2-5	1 00	3 87
		(N/mm ²) 面外せん断応力度	M +	100000	2.0	0.000	1.75
	面外せん町力 軸力	(N/mm ²)	鉛旦	102386	2-6	0.926	1.75
	+ 曲げモーメント	(×10 ⁻³)	鉛直	102469	2-5	0.207	3.00
	+ 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	鉛直	102469	2-3	0.500	5.00
西側壁	軸力	圧縮応力度 (N/mm ²)	鉛直	2469	2-7	5.90	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	2485	2-5	0.974	2.33
	面外せん断力	面外せん断応力度 (N/mm ²)	水平	102493	2-8	0.291	1.54
底面 スラブ	軸力	コンクリート圧縮ひずみ (× 10 ⁻³)	EW	1601	2-8	0.475	3.00
	+ 曲げモーメント	(<10) 鉄筋引張ひずみ (×10 ⁻³)	EW	101548	2-6	0.436	5.00
	面外せん断力	(<u>^10</u>) 面外せん断応力度 (N/mm ²)	NS	1607	2-14	1.03*	1.21

表 4-3 評価結果 Ss 地震時

注記*:応力の再分配等を考慮して、応力平均化を行った結果。

部位		評価項目	方向	要素番号	組合せ ケース	発生値	許容値
北側壁	軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	2145	3-21	0.177	3.00
	曲けモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	水平	2318	3-4	0.185	5.00
	軸力	E縮応力度 (N/mm ²)	鉛直	2145	3-8	2.24	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	_	2092	3-8	1.67	4.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2145	3-21	0.748	1.87
南側壁	軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	102145	3-23	0.176	3.00
	曲げモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	水平	102318	3-4	0.184	5.00
	軸力	E縮応力度 (N/mm ²)	鉛直	102145	3-8	2.24	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	102092	3-8	1.66	4.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102145	3-23	0.745	1.87
東側壁	軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	102379	3-6	0.159	3.00
	曲げモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	鉛直	102379	3-6	0.173	5.00
	軸力	压縮応力度 (N/mm ²)	鉛直	2398	3-6	0.257	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	2414	3-17	0.611	3.27
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2383	3-6	0.426	1.71
西側壁	軸力 +	コンクリート圧縮ひずみ (×10 ⁻³)	鉛直	2469	3-19	0.198	3.00
	曲けモーメント + 面内せん断力	鉄筋引張ひずみ (×10 ⁻³)	鉛直	2469	3-17	0.395	5.00
	軸力	圧縮応力度 (N/mm ²)	鉛直	102469	3-21	5.04	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	102489	3-17	0.756	2.26
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2469	3-20	0.391	2.04
底面 スラブ	軸力	コンクリート圧縮ひずみ (×10 ⁻³)	EW	1601	3-8	0.221	3.00
	+ 曲げモーメント	鉄筋圧縮ひずみ (×10 ⁻³)	EW	1601	3-8	0.152	5.00
	面外せん断力	面外せん断応力度 (N/mm ²)	NS	1606	3-14	0.934	1.21

表 4-4 評価結果 (異常+Sd地震)時

部位		評価項目	方向	要素悉号	組合せ	発生値	許容値
241914	軸力	コンカルート圧縮ひずみ	20.1.0	文示曲 7	ケース	JI L K	
北側壁		$(\times 10^{-3})$	鉛直	2145	4-5	0.248	3.00
	曲げモーメント +	鉄筋引張ひずみ	松古	2145	4-2	0.720	5.00
	面内せん断力	$(\times 10^{-3})$	如臣	2140	42	0.120	5.00
	軸力	圧縮応力度 (N/mm ²)	水平	2320	4-2	7.42	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	2092	4-8	2.61	4.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	2145	4-1	0.892	1.82
	軸力 +	コンクリート圧縮ひずみ	鉛直	102145	4-7	0.248	3.00
	曲げモーメント +	(×10) 鉄筋引張ひずみ	鉛直	102145	4-2	0.721	5.00
	面内せん断力	(×10°) ————————————————————————————————————	水平 102		4-2	7.42	
南側壁	軸力)上和m ²)		102320			21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	102092	4-8	2.60	4.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102145	4-3	0.890	1.82
	軸力 +	コンクリート圧縮ひずみ	鉛直	102379	4-6	0.384	3.00
	曲げモーメント +	(×10 ⁻⁵) 鉄筋引張ひずみ	鉛直	102379	4-6	0.736	5.00
	面内せん断力	(×10°) 					
東側壁	軸力	(N/mm^2)	鉛直	2382	4-6	0.763	21.4
	面内せん断力	面内せん断応力度 (N/mm ²)	-	2390	4-5	0.966	3.87
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102386	4-6	0.905	1.76
西側壁	軸力 +	ニンクリート圧縮ひずみ (×10 ⁻³)	鉛直	2469	4-3	0.207	3.00
	曲げモーメント + 	鉄筋引張ひずみ (×10 ⁻³)	鉛直	102469	4-3	0.488	5.00
	軸力	(×10)) (×10)) E縮応力度 (×10))	鉛直	102469	4-5	6.03	21.4
	面内せん断力	(N/mm)) 面内せん断応力度 (N/mm ²)	_	2489	4-5	0.736	1.91
	面外せん断力	面外せん断応力度 (N/mm ²)	鉛直	102469	4-4	0.407	2.17
底面 スラブ	軸力 + 曲げモーメント	コンクリート圧縮ひずみ (×10 ⁻³)	EW	1601	4-8	0.441	3.00
		(×10) 鉄筋引張ひずみ (×10 ⁻³)	EW	1548	4-6	0.420	5.00
	面外せん断力	面外せん断応力度 (N/mm ²)	NS	1607	4-14	1.02*	1.21

表 4-5 評価結果 (異常+Ss地震)時

注記*:応力の再分配等を考慮して、応力平均化を行った結果。
- 5. 引用文献
 - Comite Euro-International du Beton : CEB-FIP MODEL CODE 1990 (DESIGN CODE), 1993
 - (2) 出雲淳一, 島弘, 岡村甫: 面内力を受ける鉄筋コンクリート板要素の解析モデル, コンクリート工学, Vol. 25, No. 9, 1987.9

別紙 鉄筋コンクリート構造物の重大事故等時の高温による影響

(使用済燃料貯蔵プール及びキャスクピット)

1. 概要 ······	別紙-1
2. コンクリート及び鉄筋の温度の影響に関する調査 ・・・・・	別紙-1
2.1 鉄筋コンクリートの高温時の特性 ・・・・・・・・・・・・・・・・・・・・・・	別紙-1
2.2 既往の文献による高温時のコンクリートの特性 ・・・・・・・・・・・・	別紙-2
 施設を構成する部材の構造特性	別紙-4
4. まとめ ・・・・・	別紙-4

1. 概要

原子炉建屋の燃料貯蔵設備である使用済燃料貯蔵プール及びキャスクピットは,主要 構造体を鉄筋コンクリート造の壁と床で構成する。使用済燃料貯蔵プール及びキャスク ピットの冷却機能や注水機能を喪失する重大事故等時において,使用済燃料貯蔵プール 及びキャスクピットの水温は高温状態が一定期間継続すると推定される。

よって,使用済燃料貯蔵プール及びキャスクピットについて,既往の文献・規格等に 基づき,高温時の健全性を確認する。

- 2. コンクリート及び鉄筋の温度の影響に関する調査
- 2.1 鉄筋コンクリートの高温時の特性

鉄筋コンクリートは、コンクリートと鉄筋で構成され、日本建築学会「構造材料の 耐火性ガイドブック((社)日本建築学会、2009)」によると、一般に、コンクリー ト・鉄筋は、温度の上昇と共に強度・剛性は劣化し、ひずみが大きくなる傾向にある とされている。

コンクリートについては、セメント水和物及びその吸着水、水和物で構成される細 孔内に存在する毛管水、毛管より大きな空隙に存在する自由水から成る多孔体である。 一般的にコンクリートの温度が 70℃程度では、コンクリートの基本特性に大きな影響 を及ぼすような自由水の逸散は生じず、100℃以下では圧縮強度の低下は小さいとされ る。また、コンクリートの温度が大気圧において 100℃を超すと自由水が脱水し始め、 その温度作用時間が長期間になると結晶水も脱水し始める。コンクリート温度が 190℃付近では結晶水が解放され始め、更に高温になると脱水現象が著しくなるため、 コンクリートの特性に影響が出始めるとされる。

鉄筋については、「構造材料の耐火性ガイドブック((社)日本建築学会、2009)」 によると、強度及び剛性は、概ね 200℃から 300℃までは常温時の特性を保持するとさ れている。 2.2 既往の文献による高温時のコンクリートの特性

使用済燃料貯蔵プール及びキャスクピットは、ステンレス鋼によりライニングされ ており、また、重大事故等時には、代替注水設備によりプールへの注水が行われるた め、高温によるコンクリートからの水分逸散のないシール状態にある。それを踏まえ、 シール状態で高温加熱を受けたコンクリートの文献収集を行った。高温を受けたコン クリートの圧縮強度に関する文献を表 2-1 に示す。

文献 No.1 及び No.2 では、加熱温度 175℃のコンクリートへの影響について検討され ている。文献 No.1 では、シール状態において強度は熱水反応により一様な変化は示さ ないとされており、加熱期間 91 日までは、概ね加熱前と強度は同等と考えられる。ア ンシール状態では加熱期間 28 日までの低下率は 10%以内に収まるとされている。文 献 No.2 では、シール状態においては、加熱期間 91 日まで強度の低下は認められない。

また,文献 No.3~No.7 は,加熱温度 110℃のコンクリートへの影響について検討さ れている。No.4 は加熱期間 50 日について検討されており,強度低下は認められない。 また,No.3 は加熱期間 3.5 年間,No.5~No.7 は加熱期間 2 年間について検討され,い ずれも強度の低下傾向は認められないとされている。

それぞれの加熱温度における剛性に着目すると、加熱温度 175℃において、アンシ ールの条件下では、加熱期間 1 日でも急激に低下する場合があるとされており、水分 の逸散と高い相関があると考えられる。一方、シール状態では大きな低下はなく、加 熱温度 110℃では加熱後ごく初期に剛性の変化は収束するとされている。

以上より、175℃程度までの高温環境ではコンクリート強度への影響は小さい。また、 コンクリートの剛性については、高温環境による水分逸散の影響が大きく、シール状 態においても剛性の低下の傾向は認められるが、加熱後ごく初期に収束するため影響 はない。

No.	文献名 (出典)	著者	試験条件		
			温度	加熱期間	水分
1	高温 (175 ℃) を受けたコンクリートの強度性状 (セメント・コンクリートNo.449, July 1984)	川口 徹,高橋久雄	175℃	1~91日	シール アンシール
2	高温履歴を受けるコンクリートの物性に関する実験的研究 (日本建築学会構造系論文集 第457号,1994年3月)	長尾覚博,中根 淳	$40 \sim 175$, 300 , 600° C	1~91日(~175℃) 7日(300, 600℃)	シール アンシール
3	熱影響場におけるコンクリートの劣化に関する研究 (第48回セメント技術大会講演集,1994)	長尾覚博,鈴木智巳, 田渕正昭	 ①65,90,110℃の 一定加熱 ②20~110℃のサイクル加熱 	1日~3.5年間	シール アンシール
4	長期高温加熱がコンクリートの力学特性に及ぼす影響の検 討 (日本建築学会大会学術講演梗概集(北陸),2010年9月)	木場将雄,山本知弘, 久野通也,島本 龍, 一瀨賢一,佐藤 立	 ①20℃の一定加熱 ②110℃のサイクル 加熱 	①50日 ②1~50サイクル (1サイクル:1日) 注:110℃の期間:9h	シール アンシール
5	長期間加熱を受けたコンクリートの物性変化に関する実験 的研究 (その1 実験計画と結果概要) (日本建築学会大会学術講演梗概集(中国),1999年9月)	薗田 敏,長尾覚博, 北野剛人,守屋正裕, 池内俊之,大池 武			
6	長期間加熱を受けたコンクリートの物性変化に関する実験 的研究 (その2 普通コンクリートの力学特性試験結果) (日本建築学会大会学術講演梗概集(中国),1999年9月)	池内俊之,長尾覚博, 北野剛人,守屋正裕, 薗田 敏,大池 武	 ①20, 110, 180, 325℃の一定加熱 ②~110℃, ~180℃ ~325℃のサイク ル加熱 	 ①1日~24か月 ②1~180サイクル (1サイクル:72時間) 注: 高温保持時間:24時間 	シール アンシール
7	長期間加熱を受けたコンクリートの物性変化に関する実験 的研究 (その3 耐熱コンクリートの力学特性試験結果) (日本建築学会大会学術講演梗概集(中国),1999年9月)	大池 武,池内俊之, 北野剛人,長尾覚博, 薗田 敏,守屋正裕			

表 2-1 高温を受けたコンクリートの圧縮強度に関する文献一覧

別紙-3

3. 施設を構成する部材の構造特性

部材内の温度差及び拘束により発生する熱応力は,使用済燃料貯蔵プール及びキャス クピットの壁が周囲の壁,床に比べて厚く,更に取り付く床が少ないため,拘束応力の レベルが低いことに加え,「発電用原子力設備規格 コンクリート製原子炉格納容器規 格((社)日本機械学会,2003)」では,自己拘束的な応力であることから,十分な塑 性変形能力がある場合,終局耐力に影響しないこととされている。

以上を踏まえ,施設を構成する部材の構造特性については,高温時においても設計基 準状態との相違は小さい。

4. まとめ

鉄筋コンクリート構造物の高温時の健全性について,既往の文献・規格等に基づき評価を行い,使用済燃料貯蔵プール及びキャスクピットの重大事故等時における高温状態 に対しても,鉄筋コンクリート構造物の強度及び剛性への影響は小さいことを確認した。