V-3-3-2-2-2-4 管の強度計算書

V-3-3-2-2-2-4-1 管の基本板厚計算書

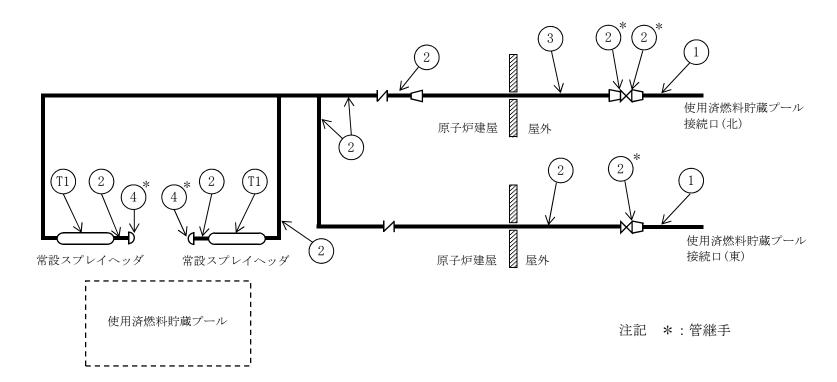
まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

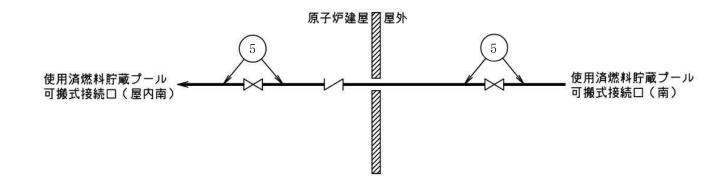
· 評価条件整理表

一一一一十一	TE-175-4															
		施設時の		クラスア	ップするか	\		条件	アップす	るか		PF - 370 -				
NO.	既設 or 新設	技術基準 に対象と する施設 の規定が	クラス アップ	施設時 機器	DВ	SA	条件 アップ	DB	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価クラス
		あるか	の有無	クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	A) H VIII				
1	新設	_	_		_	SA-2				2.00	40	_		設計・建設規格		SA-2
2	新設	_	_		_	SA-2			_	2.00	40	_	_	設計・建設規格	_	SA-2
3	新設	_	_	_	_	SA-2	_	_	_	2.00	40	_	_	設計・建設規格	_	SA-2
4	新設	_	_	_	_	SA-2	_	_	_	2.00	40	_	_	設計・建設規格	_	SA-2
5	新設	_	_	_	_	SA-2	_	_	_	2. 00	40	_	_	設計・建設規格	_	SA-2
T1	新設		_	_	_	SA-2	_	_	_	2.00	40	_	_	設計・建設規格	_	SA-2


・適用規格の選定

NO.	評価項目	評価区分	判定基準	適用規格
1	管の強度計算	設計・建設規格		設計・建設規格
2	管の強度計算	設計・建設規格	I	設計・建設規格
3	管の強度計算	設計・建設規格		設計・建設規格
4	管の強度計算	設計・建設規格		設計・建設規格
5	管の強度計算	設計・建設規格	=	設計・建設規格
T1	管の穴と補強計算	設計・建設規格	_	設計・建設規格

目 次


1.	概略系統図 ·····	1
2.	管の強度計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	管の穴と補強計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4

1. 概略系統図

燃料プール代替注水系概略系統図(その1)

_

燃料プール代替注水系概略系統図(その2)

2. 管の強度計算書 (重大事故等クラス2管)

設計・建設規格 PPC-3411 準用

	最高使用圧力	最高使用	外 径	公称厚さ	材料	製	ク						算	
NO.	P	温度	Dо				ラ	S	η	Q	t s	t		t r
	(MPa)	(℃)	(mm)	(mm)		法	ス	(MPa)			(mm)	(mm)	式	(mm)
1	2.00	40	76. 30	5. 20	SUS304TP	S	2	129	1.00	12.5 %	4. 55	0.59	A	0. 59
2	2.00	40	89. 10	5. 50	SUS304TP	S	2	129	1.00	12.5 %	4. 81	0. 69	A	0. 69
3	2.00	40	114. 30	6.00	SUS304TP	S	2	129	1.00	12.5 %	5. 25	0.88	A	0.88
4	2.00	40	89. 10	5. 50	SUS304	S	2	129	1.00	12.5 %	4.81	0. 69	A	0. 69
5	2.00	40	76. 30	5. 20	STPT410	S	2	103	1.00	12.5 %	4. 55	0.74	С	2. 70

評価: t s ≧ t r, よって十分である。

3. 管の穴と補強計算書(重大事故等クラス2管)

補強を要しない穴の最大径

設計·建設規格 PPC-3422 準用

N	٧٥.			T1
形	式			A
最高信		Р	(MPa)	2.00
最高6	 走用温度		(℃)	40
主管と	と管台の角度	α	(°)	
	材料			SUS304TP
	許容引張応力	S _r	(MPa)	129
主	外 径	Dor	(mm)	89. 10
	内 径	Dir	(mm)	79.48
	公称厚さ	tro	(mm)	5. 50
管	厚さの負の許容差	Q r		12.5%
	最小厚さ	t r	(mm)	4.81
	継手効率	η	(mm)	1.00
管	材料			SUS304
Ħ	外 径	D _{ob}	(mm)	46.00
/>	内 径	D _{ib}	(mm)	
台	公称厚さ	t b n	(mm)	9. 40
		,		
穴の径		d	(mm)	
d _{r 1} =	D _{ir} /4		(mm)	19.87
61, d	rı の小さい値		(mm)	19.87
穴の補	強計算の係数	K		0. 1577
200, 0	1 r2 の小さい値		(mm)	57. 33
補強不	要な穴の最大径	d f r	(mm)	57. 33

評価: $d \leq d_{fr}$

よって管の穴の補強計算は必要ない。

V-3-3-2-2-2-4-2 管の応力計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

	司等性 評価	平 区分 区分		— SA-2	SA-2 SA-2	SA-2 SA-2 SA-2	SA-2 SA-2 SA-2	SA-2 SA-2 SA-2 SA-2
	率佈区分			設計・建設規格	設計·建設規格 設計·建設規格	設計·建設規格 設計·建設規格 設計·建設規格	設計・建設規格 設計・建設規格 設計・建設規格 設計・建設規格	設計・建設規格 設計・建設規格 設計・建設規格 設計・建設規格
	施設時の	適用規格						
既工絜	17477	評価結果 の有無						
	SA条件	温度 (°C)	40		100	100	100 40 100	100 40 100 40
-24>	SA	圧力 (MPa)	2.00		2.00	2.00	2. 00 2. 00 2. 00	2. 00 2. 00 2. 00 2. 00 2. 00
条件アップするか	DB条件	温度 (°C)						
条件フ		圧力 (MPa)					1 1 1	
	条件	アップ の有無						
123		SA 257	SA-2		SA-2	SA-2 SA-2	SA-2 SA-2 SA-2	SA-2 SA-2 SA-2 SA-2
クラスアップするか	ָר	DB クラス						
ラスアッ	施設時	機器クラス						
7	クラス	アップ の有無						1 1 1
施設時の	技術基準に対象シャス	************************************						
1	対談に	新設	新設		新設	新設 新設	推 推 推 罚 罚 罚	推 推 推 類 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 5 7 5 5 8 5 5 9 5 5 9 5 5 9 5 5 9 5 5 9 5 5 10 5 <t< td=""></t<>
	応力計算	モデルNo.	MUWC-R-4B 新設		SFP-R-2	SFP-R-2 SFP-R-3	SFP-R-2 SFP-R-3 SFP-R-3	SFP-R-2 SFP-R-3 SFP-R-3 SFP-R-4
				ı				

1.	概	要	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系統	図及	びノ	急睴	效図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2.	1	概略系	統国	X		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	2
2.	2	鳥瞰図				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
3.	計	算条件		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	6
3.	1	計算条	锋		•	•	•		•	•	•			•	•	•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	6
3.	2	材料及	えび言	午容	応	力			•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
4.	計	算結果		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	•	•	13
5.	代	表モデ	ルの	選別	定約	吉果	及	び	全	七	デ	ル	の	評	価	結	果						•	•		•			•	•	•	•	•	•	•	14

1. 概要

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づき、管の応力計算を実施した結果を示したものである。

評価結果記載方法は,以下に示すとおりである。

(1) 管


工事計画記載範囲の管のうち、設計条件あるいは管クラスに変更がある管における最大応力評価点の評価結果を解析モデル単位に記載する。また、全4モデルのうち、最大応力評価点の許容値/発生値(裕度)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。代表モデルの選定及び全モデルの評価結果を5. に記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
$oldsymbol{\Theta}$	アンカ

3

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
][スナッバ
∄₩-	ハンガ
] = 	リジットハンガ
	注1:鳥瞰図中の寸法の単位はmmである。

3. 計算条件

3.1 計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 SFP-R-4

配管の付加質量

鳥瞰図 SFP-R-4

質	量		対応する評価点
		52~53	
		51~52	

フランジ部の質量

鳥瞰図 SFP-R-4

質量		対応する評価点
	1	

弁部の寸法

鳥瞰図 SFP-R-4

評価点	外径(mm)		厚さ(mm)	長さ(mm)	
5 ∼ 7					

弁部の質量

鳥瞰図 SFP-R-4

質量	対応する評価点	
	6	

支持点及び貫通部ばね定数

鳥瞰図 SFP-R-4

本体占平 月		方向ばね定数	(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
支持点番号	X	Y	Z	X	Y	Z
8						
12						
19						
22						
26						
30						
34						
38						
42						
46						
49						
51						
54						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計・建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度	許容応力(MPa)			
171 177	(°C)	S _m	S y	S u	S _h
SUS304TP	40				129
SUS304TP	100	_	_	<u> </u>	122

4. 計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管設計・建設規格 PPC-3520の規定に基づく評価

一次応力評価 (MPa)	許容応力 1.5・S _h 1.8・S _h	193	232
一次応力	計算応力 Sprm Sprm	40	40
	最大応力区分区分	$S_{ m prm}^{*1}$	S p r m
	最大応力評価点	91	16
	鳥瞰図	SFP-R-4	SFP-R-4

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

K7 ① V-3-3-2-2-4-2 R1E

代表モデルの選定結果及び全モデルの評価結果 5.

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、計算条件及び 評価結果を記載している。下表に,代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

		丰士	¥ ¥				0	
-2		裕度		13.21	8. 11	5.91	5.80	
重大事故等時*2	一次応力	許容応力	(MPa)	185	219	219	232	
			計算応力	(MPa)	14	27	37	40
		郵価片	Ķ <u>a</u>	13	82	1	16	
	一枚応力	4年	Ž Ž				0	
-1		井然	Ę Ķ	11.84	7.03	5.08	4.82	
重大事故等時*1		許容応力	(MPa)	154	183	183	193	
重			計算応力	(MPa)	13	26	36	40
		郵価片	Ę E	13	82	1	16	
	配管モデル			MUWC-R-4B	SFP-R-2	SFP-R-3	SFP-R-4	
	Ÿ	ON		1	2	3	4	

PPC-3520(1)に基づき計算した一次応力を示す。 PPC-3520(2)に基づき計算した一次応力を示す。 注記*1:設計・建設規格

*2:設計・建設規格

V-3-3-2-2-2-4-3 管の強度計算書 (可搬型)

一般産業品の規格及び基準への適合性確認結果(メーカ規格及び基準) (可搬型代替注水ポンプ屋外用 20m ホース)

I. 重大事故等クラス3機器の使用目的及び使用環境,材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)
ホース	可搬型代替注水ポンプ (A-1 級) 又は可搬型代替注水ポンプ (A-2 級) により原子炉圧力容器等へ送水するためのホースとして使用することを目的とする。使用環境として,屋外で淡水又は海水を送水する。	ポリエステル	2.0*	40*

注記 *: 重大事故等時における使用時の値を示す。

Ⅱ. メーカ規格及び基準に規定されている事項(メーカ仕様)

機器名	使用目的及び想定している使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)	規格及び基準に基づく試験
	消防用ホースであり、火災等の災害時に被害を軽減するための送水用ホースとして使用することを目的とする。使用環境として、 屋内外で淡水又は海水を送水することを想定している。	ポリエステル	2.0	40	耐圧試験(試験圧力:まっすぐに した状態で 4.0 MPa, 折り曲げ た状態で 2.8 MPa, 試験保持時 間:5 分間) を実施

Ⅲ. 確認項目

(a) : 規格及び基準が妥当であることの確認 (IとIIの使用目的及び使用環境の比較)

当該ホースは、重大事故等時に屋内外で淡水又は海水を送水するためのホースである。一方、本メーカ規格及び基準は、消防用として使用することを目的とした 一般産業品に対する規格であり、屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は、本規格の使用目的 及び想定している使用環境の範囲内である。

(b-2): 材料が適切であること及び使用条件に対する強度の確認 (Ⅱと公的な規格等の材料及び試験条件の比較, IとⅡの使用条件の比較)

当該ホースの型式については、「消防法」に基づくものとして承認又は届出されており、「消防法」に従った適切な材料が使用されていることを型式承認の結果又は届出番号により確認できる。

当該ホースの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり、「消防法」に基づく「消防用ホースの技術上の規格を定める省令」で規定されている耐圧試験(試験圧力:まっすぐにした状態で 4.0MPa、折り曲げた状態で 2.8MPa、試験保持時間:5分間)と同等の試験に合格していることを検査成績書等で確認できることから、当該ホースは要求される強度を有している。

IV. 評価結果

K7 (1) V-3-3-2-2-2-4-3 R1

一般産業品の規格及び基準への適合性確認結果(メーカ規格及び基準) (可搬型代替注水ポンプ燃料プール代替注水用屋外 20m ホース)

I. 重大事故等クラス3機器の使用目的及び使用環境、材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)
ホース	可搬型代替注水ポンプ(A-1級)と使用済燃料貯蔵プール接続口(北側, 東側)を接続し,使用済燃料貯蔵プールへスプレイするためのホースとして使用することを目的とする。使用環境として,屋外で淡水又は海水を送水する。		2.0*	40*

注記 *: 重大事故等時における使用時の値を示す。

Ⅱ. メーカ規格及び基準に規定されている事項 (メーカ仕様)

機器名	使用目的及び想定している使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)	規格及び基準に基づく試験
	消防用ホースであり、火災等の災害時に被害を軽減するための送水用ホースとして使用することを目的とする。使用環境として、 屋内外で淡水又は海水を送水することを想定している。	ポリエステル	2. 0		耐圧試験(試験圧力:まっすぐに した状態 4.0 MPa, 折り曲げた 状態で2.8 MPa, 試験保持時間: 5 分間)を実施

Ⅲ. 確認項目

(a) : 規格及び基準が妥当であることの確認 (IとIIの使用目的及び使用環境の比較)

当該ホースは、重大事故等時に屋内外で淡水又は海水を送水するためのホースである。一方、本メーカ規格及び基準は、消防用として使用することを目的とした 一般産業品に対する規格であり、屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は、本規格の使用目的 及び想定している使用環境の範囲内である。

(b-2): 材料が適切であること及び使用条件に対する強度の確認 (Ⅱと公的な規格等の材料及び試験条件の比較, IとⅡの使用条件の比較)

当該ホースの型式については、「消防法」に基づくものとして承認又は届出されており、「消防法」に従った適切な材料が使用されていることを型式承認の結果又は 届出番号により確認できる。

当該ホースの最高使用温度 40℃は常温として著しく高い温度ではなく、最高使用圧力はメーカ仕様の範囲内であり、「消防法」に基づく「消防用ホースの技術上の 規格を定める省令」で規定されている耐圧試験(試験圧力:まっすぐにした状態で 4.0MPa、折り曲げた状態で 2.8MPa、試験保持時間:5 分間)と同等の試験に合格 していることを検査成績書等で確認できることから、当該ホースは要求される強度を有している。

IV. 評価結果

K7 (1) V-3-3-2-2-2-4-3 R1

一般産業品の規格及び基準への適合性確認結果(メーカ規格及び基準) (可搬型代替注水ポンプ屋内用 20m ホース)

I. 重大事故等クラス3機器の使用目的及び使用環境、材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)
ホース	使用済燃料貯蔵プール可搬式接続口(南)又は可搬型代替注水ポンプ屋外用 20m ホースと可搬型スプレイヘッダ,復水補給水系可搬式接続口(東)と復水補給水系可搬式接続口(屋内)を接続し,原子炉圧力容器等へ送水するためのホースとして使用することを目的とする。使用環境として,屋内で淡水又は海水を送水する。	ポリエステル	2.0*	40*

注記 *: 重大事故等時における使用時の値を示す。

Ⅱ. メーカ規格及び基準に規定されている事項(メーカ仕様)

機器名	使用目的及び想定している使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)	規格及び基準に基づく試験
75 スーパーライン S	消防用ホースであり、火災等の災害時に被害を軽減するための送水 用ホースとして使用することを目的とする。使用環境として、屋内 外で淡水又は海水を送水することを想定している。	ポリエステル	2.0	50	耐圧試験(試験圧力:まっすぐに した状態で 4.0 MPa, 折り曲げ た状態で 2.8MPa,試験保持時間: 5 分間)を実施

Ⅲ. 確認項目

(a) : 規格及び基準が妥当であることの確認 (IとⅡの使用目的及び使用環境の比較)

当該ホースは、重大事故等時に屋内外で淡水又は海水を送水するためのホースである。一方、本メーカ規格及び基準は、消防用として使用することを目的とした 一般産業品に対する規格であり、屋内外での淡水又は海水の送水を想定している。重大事故等時における当該ホースの使用目的及び使用環境は、本規格の使用目的 及び想定している使用環境の範囲内である。

(b-2): 材料が適切であること及び使用条件に対する強度の確認(Ⅱと公的な規格等の材料及び試験条件の比較, IとⅡの使用条件の比較)

当該ホースの型式については、「消防法」に基づくものとして承認又は届出されており、「消防法」に従った適切な材料が使用されていることを型式承認の結果又は 届出番号により確認できる。

当該ホースの最高使用温度の 40℃は、当該ポンプが消防用ポンプであることから想定内である。また、当該ホースの最高使用圧力はメーカ仕様の範囲内であり、「消防法」に基づく「消防用ホースの技術上の規格を定める省令」で規定されている耐圧試験(試験圧力:まっすぐにした状態で 4.0MPa、折り曲げた状態で 2.8MPa、試験保持時間:5分間)と同等の試験に合格していることを検査成績書等で確認できることから、当該ホースは要求される強度を有している。

Ⅳ. 評価結果

K7 (1) V-3-3-2-2-2-4-3 R1E

一般産業品の規格及び基準への適合性確認結果(メーカ規格及び基準) (可搬型スプレイヘッダ)

I. 重大事故等クラス3機器の使用目的及び使用環境、材料及び使用条件

種類	使用目的及び使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)
放水銃	可搬型代替注水ポンプ屋内用 20m ホースと接続し、使用済燃料貯蔵プールに注水又はスプレイするための可搬型配管として使用することを目的とする。使用環境として、屋内で淡水又は海水を送水する。	AC4CH*1	1.6*2	40*2

注記 *1:可搬型スプレイノズル本体の材料を示す。

*2: 重大事故等時における使用時の値を示す。

Ⅱ. メーカ規格及び基準に規定されている事項(メーカ仕様)

機器名	使用目的及び想定している使用環境	材料	最高使用圧力 (MPa)	最高使用温度 (℃)	規格及び基準に基づく試験
ブリッツファイヤー 放水銃 (ZM-2 1/2-OS 改)	消防用の放水銃であり、火災等の災害時に防護対象範囲へ放水することを目的とする。使用環境として、屋内外での火災発生時等に淡水又は海水を放水することを想定している。	AC4CH	1.6	80	耐圧試験 (試験圧力:2.4 MPa, 試験保持 時間:3 分間)を実施

Ⅲ. 確認項目

(a) : 規格及び基準が妥当であることの確認 (IとIIの使用目的及び使用環境の比較)

当該スプレイヘッダは、 重大事故等時に屋内で淡水又は海水をスプレイするための可搬型配管である。一方、本メーカ規格及び基準は、可搬型消火機器として使用することを目的とした一般産業品に対する規格であり、屋内外で淡水又は海水を送水することを想定している。重大事故等時における当該スプレイヘッダの使用目的及び使用環境は、本規格の使用目的及び想定している使用環境の範囲内である。

(b-2): 材料が適切であること及び使用条件に対する強度の確認 (Ⅱと公的な規格等の材料及び試験条件の比較, IとⅡの使用条件の比較)

当該スプレイヘッダに使用されている材料は、「消防用ホースに使用する差込式またはねじ式の結合金具及び消防用吸管に使用するねじ式の結合金具の技術上の規格を定める省令」にて使用可能な材料とされているアルミニウム合金鋳物と同種類の材料である。

当該スプレイへッダの最高使用温度及び最高使用圧力はメーカ仕様の範囲内であり、設計・建設規格 PHT-2311 で規定されている耐圧試験(試験圧力:最高使用圧力×1.5 倍)と同様の試験条件の耐圧試験に合格していることを検査成績書等により確認できる。耐圧試験による機器の健全性は、耐圧部全体に圧力が負荷される適切な試験保持時間(設計・建設規格 解説 PHT-4000)により確認している。なお、設計・建設規格のクラス 3 機器の最高許容耐圧試験圧力は機器の応力制限(降伏点)を基に定められており、耐圧試験の規定では、耐圧試験圧力は最高使用圧力の 1.5 倍の 106 %を超えないこととしている。一方、設計・建設規格のクラス 3 機器の設計許容応力は降伏点に対して 5/8 を基準にしており、この許容応力以下となる必要板厚は、最高使用圧力を条件として評価式により求めている。よって、設計・建設規格 PHT-2311 で規定されている耐圧試験と同等の試験条件の耐圧試験に合格することで、メーカ規格及び基準の設計が設計・建設規格と同等の裕度を持っているとみなせるため、当該スプレイへッダは要求される強度を有している。

IV. 評価結果

V-3-3-2-3 その他の核燃料物質の取扱施設及び貯蔵施設の 強度についての説明書

V-3-3-2-3-1 弁の強度計算書 (燃料プール冷却浄化系)

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-11「重大事故等クラス2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

• 評価条件整理表

機器名		施設時の 技術基準 に対象と	クラスアップするか			条件アップするか										
	既設		クラス	施設時		S A クラス	条件 アップ の有無	DB条件		SA条件		既工認における	施設時の		同等性	評価
	or 新設	する施設 の規定が あるか	ァッパ アップ の有無	機器クラス	DB クラス			圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格	評価区分	区分	クラス
G41-F017	既設	有	有	DB-3	DB-3	SA-2	有	1. 57	66	1. 57	77	_	S55告示	設計・建設規格 又は告示	_	SA-2

目 次

1.	重大事故等クラス2弁	 	 1
1.	1 設計仕様	 	 2
1. 2	2 強度計算書 ·····	 	 3

1. 重大事故等クラス2弁

1.1 設計仕様

系 統 : 燃料プール冷却浄化系

機器の区分			重大事故等クラス2弁										
公平 日	毛松	呼び径		材料									
弁番号	種類	(A)	弁箱	弁ふた	ボルト								
F017	止め弁	250	SCS13A	SCS13A									

1.2 強度計算書

系 統 : 燃料プール冷却浄化系

	設計•建設規格	告示第501号]		設計·建設規格	告示第501号				
設計条件	ļ		ネック部の厚	厚さ	!	•				
最高使用圧力P(MPa) 1	57	dn	dn (mm)						
最高使用温度Tm (℃	最高使用温度Tm (℃) 77									
弁箱又は弁ふたの厚さ			Q	(mm)						
弁箱材料	SCS	13A	tm1	(mm)	8.4	_				
弁ふた材料	弁ふた材料 SCS13A			(mm)	6.6	_				
P1 (MPa) –	_	tma1	(mm)						
P2 (MPa) –	_	tma2	(mm)						
dm (mm										
t1 (mm) –	_	評価 :	評価 : tmal ≧ tml tma2 ≧ tm2						
t2 (mm) –	_								
t (mm	8.4			よって-						
tab (mm										
taf (mm)									
評価 : tab ≧ t taf ≧ t	よって十分	である。								

系 統 : 燃料プール冷却浄化系

設計条件				モーメントの	カ計符		
以可未行 PFD	(MPa)	2	.03	HD	<u>クロ 昇</u> (N)		1.203×10^{-5}
Peq	(MPa)		.46	hD	(mm)		37.5
Tm	(°C)	77		MD	(N·mm)		$\frac{37.3}{4.513 \times 10^{-6}}$
Me	(N·mm)	11		H _G	(N)		$\frac{4.513 \times 10^{-4}}{6.532 \times 10^{-4}}$
Fe	(N)			hG	(mm)		29.5
フランジのチ		JIS B8243図	11(g)	MG	(N·mm)		1.927×10^{-6}
フランジ	1724	JIO 1002431 <u>A</u>	11(8)	HT	(N)		3.357×10^{-4}
<u>- / / / / / / / </u> 材料		SCS	13A	hT	(mm)		38.5
σ fa	(MPa)	500	10/1	MT	(N·mm)		1.292×10^{-6}
ず温(ガスケット締ん	, ,	120		Mo	(N·mm)		7.732×10^{-6}
σ fb	(MPa)	120		Mg	(N·mm)		1.503×10^{-7}
・ 0 10 最高使用温度(値		110		フランジの			1.000 × 10
X同厌用弧反() A	(mm)	110	_	t	子CC示数 (mm)		
B	(mm)		+	K	(IIIIII)		1.51
C	(mm)		+	ho	(mm)		1.01
	(mm)		+	f	(111111)		1.00
g0 g1	(mm)		+	F			0.791
h	(mm)			V			0.731
ボルト	(111111)			e	(mm ⁻¹)		0.01322
材料	<u> </u>		_	d d	(mm)		224231
	(MPa)	_		L	(mm)		1.31
σ a 常温(ガスケット締イ	, ,	173		T			1.71
	(MPa)	110		U			5.37
σь 最高使用温度(仮		172		Y			4.89
	史用 (八忠)	173	_	Z			2.57
n db	(mm)		-+	応力の計算			2.57
ガスケット	(111111)			1	(MPa)		59
<u>カスケット</u> 材料			_	σнο	(MPa)		20
ガスケット厚	ヹゟ (mm)			σRo	(MPa)		21
スペクシド字 G	(mm)			σтο	(MPa)		98
	(111111)			σHg	(MPa)		39
m	(NI /2)			σRg	(MPa)		40
y b	(N/mm²)			σтg	(MF a)		40
bo b	(mm)				⊞ : σ но ≦	1 F. ma	
	(mm)			かいフJVファギ1 			
N	(mm)					1.5•σfb	
Gs ボルトの計算	(mm)				O To ≦	1. 5 · σ fb	
		1.539 >	10.5			1 5	
H H	(N)	6.532 >				≦ 1.5•σfa	
Hp W1		2.192 >				1.5•σfa	
Wm1	(N)	3.702 >			O Tg ≦	1. 5 · σ fa	
Wm2	(N)	1.270 >				F	十分である。
Am1	(mm ²)	2.145 >				よつし	「刀でめる。
Am2	(mm ²)	2.145 >					
Am	(mm ²)	2.145 >	/ 10 s				
Ab	(mm ²)	0.100	4 10 5				
$\frac{ m W_{o}}{ m W_{g}}$	(N)	2.192 >					
	(N)	5.094 >	< 10 s	l			

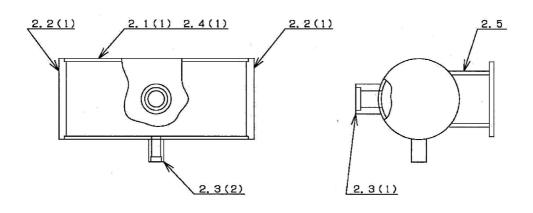
V-3-3-3 原子炉冷却系統施設の強度に関する説明書

V-3-3-3-1 原子炉冷却材の循環設備の強度計算書

V-3-3-3-1-1 主蒸気系の強度計算書

V-3-3-3-1-1-1 主蒸気逃がし安全弁逃がし弁機能用 アキュムレータの強度計算書

ナシがキ


本計算書は, V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-8「重大事故等クラス2 容器の強度計算方法」に基づいて計算を行う。 評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,V-3-2-1「強度計算方法の概要」に定義し たものを使用する。

評価条件整理表

	2		
53	評価クルス	SA-2	
i i	四等江畔鱼	Ĩ	
	評価区分		設計・建設規格 又は告示
3	施設時の海田苗数	S55告示	
既工器に	おけるが任任用	1	
	条件	温度 (°C.)	171
5 22	SA条	压力 (MPa)	2.00
条件アップするか	条件	温度 (°C)	171
条件	DB	压力 (MPa)	1.77
	条件	アップ の有無	柜
	۷	クラス	SA-2
17451	t,	DB クラス	DB-3
クラスアップす	施設時	機器クラス	DB-3
	クラス	アップ の有無	柜
施設時の 技術基準	い対象とする	9 の尾取 の規定が あるか	有
Ne Zie	SOF OF	新設	既設
z	機器名		主蒸気逃がし安全弁 逃がし弁機能用アキュムレータ
L			L

1. 青	算条件 •	٠	•	•		٠	٠	•	•	•	•	•	•	•	٠	٠	•	٠	•	•	٠	•	•	•	٠		•	•	٠	٠	٠	•	•	•]
1.1	計算部位	•	•	•		•	٠	•	•	٠	٠	•	•	•	٠	٠	•	•	•	•	٠	•	•	•	٠	٠		•	٠	٠	•	٠	٠	•	1
1.2	設計条件	٠	•	•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	•	٠	•	٠	•		•	•	•	٠	•	1
2.	食計算・	•	•	•		•	•	•	•	•	•	٠		•	•	•	٠	•	•	•	•	٠	•			٠	•	•	•	•	•	•	•	•	2
2.1	容器の胴の	厚	さ	の言	計算			•		•	•	•	•		•	•	•	•		•	•	•	•	•	i	•	•	•	•		•	•	•	•	2
2.2	容器の平板	の	厚	さ	の計	算		٠		•	•	•	٠	•	•	•	•	•		٠	٠	•	•	٠	٠	•	•	٠	•	٠	•	•	٠	•	3
2.3	容器の管台	の	厚	さ	の計	算		•	•	•	•	•	•	٠	•	•	•		•	•	•	•	•	٠	٠	•	٠	•	٠	•	•	•	٠	•	4
2.4	容器の補強	を	要	レガ	ない	穴	の	最	大	径	の	計	算		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	٠	٠	•	6
2.5	設計・建設	規	格	には	おけ	る	材	料	の	規	定	に	ょ	6	な	Į٠,	場	合	の	評	価			•		•	•	•	•	•	•	•	•	• 1	7

計算条件
 計算部位 概要図に強度計算箇所を示す。

図中の番号は次頁以降の 計算項目番号を示す。

図1-1 概要図

1.2 設計条件

最高使用圧力	(MPa)	2.00
最高使用温度	(℃)	171

2. 強度計算

2.1 容器の胴の厚さの計算 設計・建設規格 PVC-3120

胴板名称	,		(1) 胴板
材料	*	×	SUS304TP-S
最高使用圧力	Р	(MPa)	2.00
最高使用温度		(℃)	171
胴の内径	Dі	(mm)	199. 90
許容引張応力	S	(MPa)	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無	O.		_
必要厚さ	t ı	(mm)	1.50
必要厚さ	t 2	(mm)	1.79
t 1, t 2の大きい値	t	(mm)	1.79
呼び厚さ	tso	(mm)	8.20
最小厚さ	t s	(mm)	
評価: t s≧ t, よって+	一分である。		

2.2 容器の平板の厚さの計算

(イ) 告示第501号第34条第1項

取付け方法及び穴の有無

平板名称			(1) 平板
平板の取付け方法			(i)
平板の穴の有無			無し
溶接部の寸法	t i	(mm)	
胴又は管の計算上必要な厚さ	tsr	(mm)	1.79
胴又は管の最小厚さ	t s	(mm)	e e
2 · tsr		(mm)	3. 58
1.25 · t s		(mm)	
評価: t i ≧2 · t s r, t i ≧	1.25 · t s	, よって	十分である。

(口) 告示第501号第34条第1項

平板の厚さ

平板名称			(1) 平板
材料			SUS304
最高使用圧力	Р	(MPa)	2.00
最高使用温度		(℃)	171
許容引張応力	S	(MPa)	113
取付け方法による係数	K		0.50
平板の径	d	(mm)	199. 90
必要厚さ	t	(mm)	18. 81
呼び厚さ	tpo	(mm)	20.00
最小厚さ	tр	(mm)	
評価: t p ≧ t , よって十分	分である。		

2.3 容器の管台の厚さの計算 設計・建設規格 PVC-3610

r			
管台名称		10	(1) 流体出入口
材料			SUS304
最高使用圧力	P	(MPa)	2.00
最高使用温度		(℃)	171
管台の外径	Dо	(mm)	80.00
許容引張応力	S	(MPa)	113
継手効率	η		1.00
継手の種類	â		継手無し
放射線検査の有無			
必要厚さ	t 1	(mm)	0.71
必要厚さ	tз	(mm)	_
t 1, t 3の大きい値	t	(mm)	0.71
呼び厚さ	tno	(mm)	9. 50
最小厚さ	t n	(mm)	
評価: t n ≧ t, よって-	上分である。		

容器の管台の厚さの計算 設計・建設規格 PVC-3610

3.00	
	(2) ドレン
	SUS304
P (MPa)	2.00
(℃)	171
Do (mm)	40.00
S (MPa)	113
η	1.00
	継手無し
	-
t 1 (mm)	0.36
ts (mm)	_
t (mm)	0.36
tno (mm)	6. 15
tn (mm)	
一分である。	
	P (MPa) (°C) D ο (mm) S (MPa) η t 1 (mm) t 3 (mm) t (mm) t n ο (mm)

2.4 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称	5		(1) 胴板
材料	an and a second		SUS304TP-S
最高使用圧力	P	(MPa)	2.00
最高使用温度		(℃)	171
胴の外径	D _.	(mm)	216. 30
許容引張応力	S	(MPa)	113
胴板の最小厚さ	t s	(mm)	4
継手効率	η		1. 00
継手の種類	je.		継手無し
放射線検査の有無			· -
$d_{r_1} = (D-2 \cdot t_s) /$	' 4	(mm)	
61, drュの小さい値	15	(mm)	
K			
D·ts		(mm ²)	
200, dr2の小さい値		(mm)	
補強を要しない穴の最大径	\$	(mm)	
評価:補強の計算を要する	穴の名称		無し

2.5 設計・建設規格における材料の規定によらない場合の評価

脚(使用材料規格: JIS G 3101 SS400 (板厚 16mm 以下))の評価結果

(比較材料: JIS G 3106 SM400A (板厚 16mm 以下))

脚に使用している SS400 は、クラス 2 容器の使用可能な材料として設計・建設規格に記載されていないことから、クラス 2 容器の使用可能な材料として設計・建設規格に記載されている材料と機械的強度及び化学成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点又は耐力	比較結果
	$400\mathrm{N/mm^2}$		
使用材料	~	245N/mm²以上	
	$510\mathrm{N/mm^2}$		引張強さ及び降伏点は同等であ
	$400\mathrm{N/mm^2}$		る。
比較材料	~	245N/mm²以上	
	$510\mathrm{N/mm^2}$		

(2) 化学的成分

				化	之学成分(°	%)				
	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V
使用				0.050	0.050					
材料	$(0.17)^{*1}$			以下	以下	_			_	
比較	0. 23		2.5×C	0.035	0.035					
材料	以下		以上*2	以下	以下					

C, Mn, P, Sの成分規定に差異があるが、以下により、本機器の環境下での使用は問題ないと考える。

C:溶接性に影響を与える成分であるが、溶接規格において溶接の制限を受けない含有量であること。また、脆性に影響を与える成分であるが、本機器において使用される材料は、薄肉 (16mm 未満の 10mm 及び 7mm) であるため、脆性破壊が発生しがたい寸法の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性試験が要求されない範囲であること。

比較 結果

Mn:一般的に機械的強度に影響を与える成分であるが、(1)の評価結果からも機械強度は同等であること。また、脆性に影響を与える成分であるが、本機器において使用される材料は、薄肉(16mm 未満の10mm 及び7mm)であるため、脆性破壊が発生しがたい寸法の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性試験が要求されない範囲であること。

P: 冷間脆性に影響を与える成分であるが、本機器において使用される材料は、 薄肉 (16mm 未満の 10mm 及び 7mm) であるため、脆性破壊が発生しがたい寸法 の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性試 験が要求されない範囲であること。

比較

結果

S: 熱間脆性に影響を与える成分であるが、本機器において使用される材料は、 薄肉 (16mm 未満の 10mm 及び 7mm) であるため、脆性破壊が発生しがたい寸法 の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性試 験が要求されない範囲であること。

注記*1:ミルシートの値を示す。

*2:Cの値は、溶鋼分析値を適用する。

(3) 評価結果

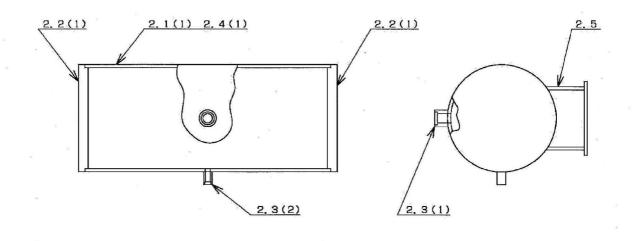
(1)(2)の評価により、機械的強度、化学成分、いずれにおいても比較材料と同等であることを確認したため、本機器において J I S G 3 1 0 1 SS400 (板厚 16mm 以下)を重大事故等クラス 2 材料として使用することに問題ないと考える。

V-3-3-3-1-1-2 主蒸気逃がし安全弁自動減圧機能用 アキュムレータの強度計算書

まえがき

本計算書は, V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-8「重大事故等クラス2 容器の強度計算方法」に基づいて計算を行う。 評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号及び略語については,V-3-2-1「強度計算方法の概要」に定義し

·評価条件整理表


たものを使用する。

	HIT. ⇒FL	施設時の 技術基準		クラスアッ	ラスアップするか		10%	条件ア、	アップするか	5 4>		既工器に			######################################		
機器名	ST.EX.	い対象と	IN	施設時	ţ		条件	DB条件	条件	SA条件	条件	おける調味用	施設時の海田相数	評価区分	四十二四十二二十二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	評価ケルプ	
	新設	9 の の 規 定 か るか	アップの有無	機器クラス	クラス	754	アップの有無	压力 (MPa)	温度(30)	压力 (MPa)	温度 (°C.)	で言語来の有無	11 次日	•	区分		
蒸気逃がし安全弁 王機能用アキュムレータ	親談	柜	柜	DB-3	DB-3	SA-2	仲	1.77	171	2.00	171	Ţ	S55告示	設計・建設規格 又は告示 同等性*	b.(a)	SA-2	

注記*:平板の応力評価について同等性を示す手法による評価を実施

1.	計算条件 •	• •	•		•	٠	•	٠	•	٠	•	•	•	•	•	•	•			٠	•	٠	٠	•	•	٠	٠	٠	•	٠	•	٠	٠	1
1. 1	計算部位	٠.	•		٠	•	•	•	•	٠	•	•	•		•	•	•		•	•	•	•	•	•	•	•	٠		•	•	٠	•	•	1
1.2	設計条件				•	•	•	•	•	٠	٠		•	•		•			•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	٠	1
2. 5	強度計算 ·				٠	•	•	٠	•	•	•	•	•	•	•	•	•			•	•	٠	•	•	•	•	•	•	•	•	•	•	•	2
2. 1	容器の胴の)厚さ	の	計算	Ĺ	•	•		٠		•	٠	•	•	•	•	•		•	•		.•	٠	•	٠	٠	•		•	•	•	•		2
2.2	容器の平板	夏の厚	こさ	の計	算		•	•		•	•	•	•		•	•				•	•	•	•	•	٠	•	•		•	•	•	•	٠	3
2.3	容器の管台	か厚	こさ	の計	算		•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	٠	•	•		•	•	•	•	٠	4
2.4	容器の補強	を要	きし	ない	穴	の	最	大	径	の	計	算		•	•	•	•		•	•	•	•	٠	•		•	٠	•	•	•	•	•	٠	6
2.5	設計・建設	设規格	引こ:	おけ	る	材	料	の	規	定	に	よ	6 ;	ない	い草	易台	今0	言C	平征	5	•	٠	•	•	٠	•	•		٠	•	•	•		7
			2																															
別紙	主蒸気逃か	ミしち	全全	弁自	動	減	圧	機	能	用	ア	丰	ユ	4	レー	_ /	Þ	7	区材	京点	力	評	価	詳	細		•			•	•			9

計算条件 計算部位 概要図に強度計算箇所を示す。

図中の番号は次頁以降の 計算項目番号を示す。

図1-1 概要図

1.2_ 設計条件

队刊木厂	
最高使用圧力 (MPa)	2.00
最高使用温度 (℃)	171

2. 強度計算

2.1 容器の胴の厚さの計算 設計・建設規格 PVC-3120

胴板名称	0_	18	(1) 胴板
材料			SUS304TP-A
最高使用圧力	Р	(MPa)	2.00
最高使用温度	0.2	(°C)	171
胴の内径	Dі	(mm)	477.80
許容引張応力	S	(MPa)	101*
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			
必要厚さ	t ı	(mm)	1.50
必要厚さ	t 2	(mm)	4. 79
t 1, t 2の大きい値	t	(mm)	4. 79
呼び厚さ	tso	(mm)	15. 10
最小厚さ	t s	(mm)	
評価: t s ≧ t, よって-	一分である。		

注記*:設計・建設規格 付録材料図表 Part 5 表 5(備考)1. ロ. (ロ)に基づき0.9倍した値を用いた。

2.2 容器の平板の厚さの計算 設計・建設規格 PVB-3110

		(1) 平板
		SUS304
P	(MPa)	2.00
CONTRACTOR DESCRIPTION	(℃)	171
S	(MPa)	113
	(MPa)	67 *1
	(MPa)	169 *2
	P	P (MPa) (°C) S (MPa) (MPa)

注記*1: PVB-3110の条件中, 最も厳しい値を記載する。計算結果の詳細は,

「別紙 主蒸気逃がし安全弁自動減圧機能用アキュムレータ 平板応力評価詳細」に示す。

*2: 許容応力は、S値に1.5を乗じた値とする。

2.3 容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称		d	(1) 流体出入口
材料		- *	SUS304
最高使用圧力	Ρ.	(MPa)	2.00
最高使用温度		(℃)	171
管台の外径	Do	(mm)	80.00
許容引張応力	S	(MPa)	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無		*	
必要厚さ	t ı	(mm)	0.71
必要厚さ	tз	(mm)	—
t 1, t 3の大きい値	t	(mm)	0.71
呼び厚さ	tno	(mm)	9. 50
最小厚さ	t n	(mm)	
評価: t n ≧ t , よって-	十分である。		2

容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称		27	(2) ドレン
材料			SUS304
最高使用圧力	P	(MPa)	2. 00
最高使用温度		(°C)	171
管台の外径	Do	(mm)	40.00
許容引張応力	S	(MPa)	113
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			
必要厚さ	t 1	(mm)	0.36
必要厚さ	tз	(mm)	—
t ₁ , t ₃ の大きい値	t	(mm)	0. 36
呼び厚さ	tno	(mm)	6. 15
最小厚さ	tn	(mm)	
評価: t n ≧ t, よって-	上分である。		

2.4 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(1) 胴板				
材料			SUS304TP-A				
最高使用圧力	P	(MPa)	2.00				
最高使用温度	2	(℃)	171				
胴の外径	D	(mm)	508.00				
許容引張応力	S	(MPa)	101 *				
胴板の最小厚さ	t s	(mm)					
継手効率	η		1.00				
継手の種類			継手無し				
放射線検査の有無	8						
$dr_1 = (D-2 \cdot t_s) /$	4	(mm)					
61, drュの小さい値		(mm)					
K							
D·ts		(mm^2)					
200, dr₂の小さい値	*	(mm)					
補強を要しない穴の最大径		(mm)					
評価:補強の計算を要する穴の名称			無し				

注記*:設計・建設規格 付録材料図表 Part 5 表 5(備考)1. ロ. (ロ)に基づき0.9倍した値を用いた。

2.5 設計・建設規格における材料の規定によらない場合の評価

脚(使用材料規格: JIS G 3101 SS400 (板厚 16mm 以下)) の評価結果

(比較材料: JIS G 3 1 0 6 SM400A (板厚 16mm 以下))

脚に使用している SS400 は、クラス 2 容器の使用可能な材料として設計・建設規格に記載されていないことから、クラス 2 容器の使用可能な材料として設計・建設規格に記載されている材料と機械的強度及び化学成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点又は耐力	比較結果
	$400\mathrm{N/mm^2}$		
使用材料	\sim	245N/mm ² 以上	
	$510\mathrm{N/mm^2}$		引張強さ及び降伏点は同等であ
	$400\mathrm{N/mm^2}$		る。
比較材料	\sim	245N/mm ² 以上	
	$510\mathrm{N/mm^2}$		

(2) 化学的成分

	化学成分(%)									
	С	Si	Mn	Р	S	Cu	Ni	Cr	Мо	V
使用				0.050	0.050					
材料	$(0.10)^{*1}$			以下	以下				_	
比較	0. 23		2.5×C	0.035	0.035					
材料	以下		以上*2	以下	以下					

C, Mn, P, Sの成分規定に差異があるが、以下により、本機器の環境下での使用は問題ないと考える。

C:溶接性に影響を与える成分であるが、溶接規格において溶接の制限を受けない含有量であること。また、脆性に影響を与える成分であるが、本機器において使用される材料は、薄肉(16mm 未満の15mm 及び10mm)であるため、脆性破壊が発生しがたい寸法の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性試験が要求されない範囲であること。

比較 結果

Mn:一般的に機械的強度に影響を与える成分であるが、(1)の評価結果から も機械強度は同等であること。また、脆性に影響を与える成分であるが、本 機器において使用される材料は、薄肉(16mm 未満の15mm 及び10mm)である ため、脆性破壊が発生しがたい寸法の材料であること、さらには設計・建設 規格クラス2の規定でも破壊靱性試験が要求されない範囲であること。 P:冷間脆性に影響を与える成分であるが、本機器において使用される材料は、 薄肉 (16mm 未満の 15mm 及び 10mm) であるため、脆性破壊が発生しがたい寸 法の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性 試験が要求されない範囲であること。

比較

結果

S:熱間脆性に影響を与える成分であるが、本機器において使用される材料は、 薄肉 (16mm 未満の 15mm 及び 10mm) であるため、脆性破壊が発生しがたい寸 法の材料であること、さらには設計・建設規格クラス2の規定でも破壊靱性 試験が要求されない範囲であること。

注記*1:ミルシートの値を示す。

*2:Cの値は、溶鋼分析値を適用する。

(3) 評価結果

別紙 主蒸気逃がし安全弁自動減圧機能用アキュムレータ 平板応力評価詳細

下記「1. クラス1容器の規定を準用した強度計算方法」に従い、主蒸気逃がし安全弁自動減圧機能用アキュムレータの平板についての評価を実施する。

平板の応力評価の詳細を2項以降に示す。

1. クラス1容器の規定を準用した強度計算方法

重大事故等クラス2機器の評価において、公式による評価を満足しない部位については、より精 緻な評価を実施する必要があるため、設計・建設規格にて規定されている準用規定に基づき、クラ ス1容器の規定を準用し、解析による評価を実施する。

(1) 記号の説明

設計・建設規格 の記号	強度計算書の 表示	表示内容	単位
Рь	Рь	一次曲げ応力強さ	MPa
P_L	${\rm P}_{ { m L}}$	一次局部膜応力強さ	MPa
P _m	P _m	一次一般膜応力強さ	MPa
S _m	S _m	設計応力強さ	MPa

(2) 強度計算方法

a. 平板の応力計算(設計・建設規格 PVB-3110 準用)

設計・建設規格に基づく評価を実施する場合

クラス1容器の応力評価の規定である設計・建設規格 PVB-3110を準用して応力解析を 実施し、その一次応力強さは次の規定を満足することを確認する。*

- (a) 一次一般膜応力強さがSmを超えないこと。
- (b) 一次局部膜応力強さが1.5Smを超えないこと。
- (c) 一次膜応力と一次曲げ応力を加えて求めた応力強さが1.5Smを超えないこと。

注記*:以下の規定から,重大事故等クラス2容器の平板について,クラス1容器の応力評価の規定 設計・建設規格 PVB-3110を準用することとする。

・クラス 2 容器の材料及び構造の特例 設計・建設規格 PVC-1210では,「PVC-2000 からPVC-2400, PVC-3100からPVC-3800及びPVC-4100までの規定にかかわらず,クラス 2 容器の材料及び構造の規格は、PVB-2000からPVB-2400及びPVB-3100から PVB-4100までの規定に準ずることができる。」と記載されていることから、重大事故等クラス 2 容器の平板は、クラス 1 容器の応力評価の規定 設計・建設規格 PVB-3110を準用する。

2. 応力計算

解析対象部位は平板とし、内圧を付加した場合の発生応力を解析により求め、応力強さが表2-1の規定を満足することを確認する。

表2-1 応力の分類及び許容値

公 1					
応力の分類	許容応力*				
一次一般膜応力強さ: P m	S				
一次局部膜応力強さ: P L	1.5S				
一次膜+一次曲げ応力強さ: P L + P b	1.5S				

注記*: PVB-3110 では許容応力として設計応力強さ S_m を用いているが,クラス2機器のため 許容引張応力Sを用いる。なお, S_m 値に対してS値が保守的である。

3. 評価対象部位

アキュムレータの断面図を図3-1に示す。応力解析による評価対象箇所は、図3-1のとおりとする。

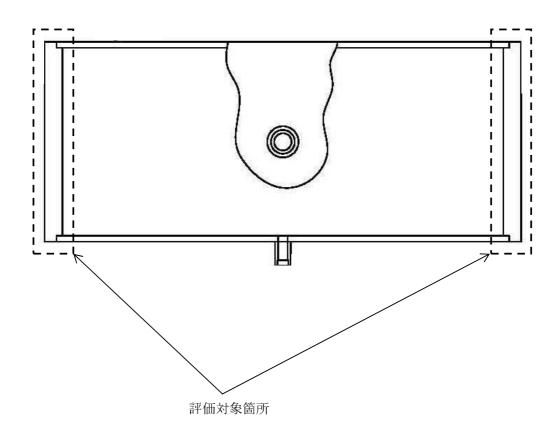


図3-1 評価対象部位

4. 解析条件及び解析モデル

評価対象部位の仕様を表4-1に、応力解析を行うための解析モデルを図4-1に、圧力範囲及び拘束条件の解析条件を図4-2に示す。

解析モデルは、平板が軸対称の円板構造になっていることから、平板を二次元軸対称モデルとする。また、平板と接合している胴板も二次元軸対称モデルとする。

応力計算には、有限要素解析手法を適用する。解析コードは、「ABAQUS」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

項目	単位	平板
材料	_	SUS304
最高使用温度	$^{\circ}\!\mathbb{C}$	171
最高使用圧力	MPa	2.00
許容引張応力:S	MPa	113

表4-1 評価対象部位の仕様

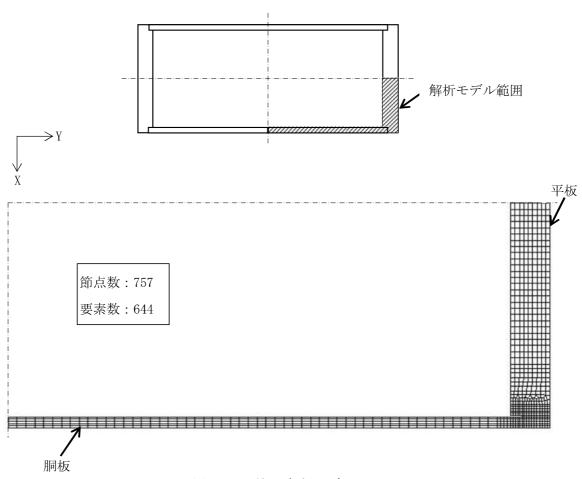


図4-1 平板の解析モデル

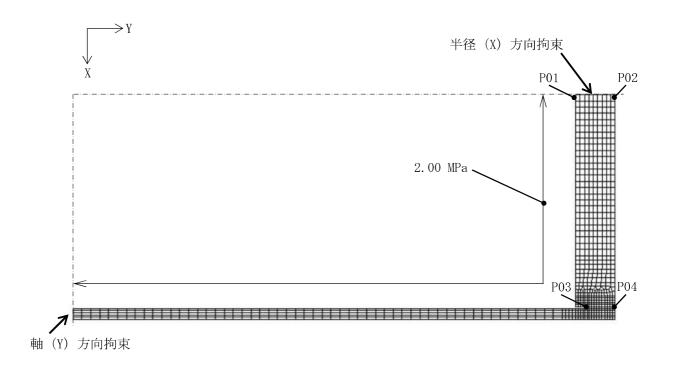


図4-2 解析条件

5. 計算結果

平板の計算結果を表5-1に示す。

一次応力強さは、許容値を下回っており、平板の強度は十分である。

表5-1 一次応力強さ

応力評価点		P01-P02		P03-P04			
応力分類	P _m (MPa)	Р _L (MPa)	P _L +P _b (MPa)	P _m (MPa)	P _L (MPa)	Р _L +Р _b (MPa)	
応力強さ	3	3	67	*1	21	21	
許容値	113	169	169		101*2	101*2	

注記*1:一次一般膜応力は発生しない。

*2:継手効率0.60を考慮した値。

V-3-3-3-1-1-3 管の強度計算書

V-3-3-3-1-1-3-1 管の基本板厚計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

* 計個米件	TECTAL															
		施設時の		クラスアミ	ップするか	,		条件	ニアップす	るか						
NO.	既設 or 新設	技術基準に対象とする施設の規定が	クラス アップ	施設時	DB	S A	条件 アップ	DВ	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価 クラス
		あるか	の有無	機器クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	0.7.H 3/H				
1	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	_	SA-2
2	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示		SA-2
3	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	1	SA-2
4	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	1	SA-2
5	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	1	SA-2
6	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	İ	SA-2
7	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250		S55告示	設計・建設規格 又は告示		SA-2
8	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	ĺ	SA-2
9	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171	_	S55告示	設計・建設規格 又は告示		SA-2
10	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171	_	S55告示	設計・建設規格 又は告示	_	SA-2

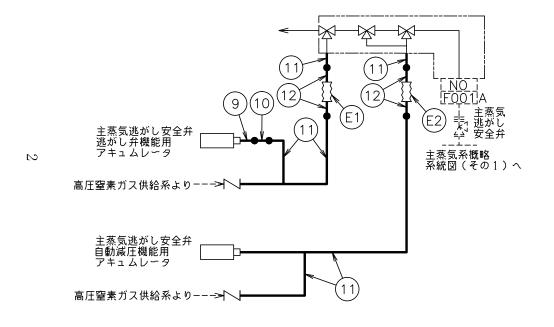
		施設時の		クラスアッ	ップするか	,		条件	ニアップす	るか						
NO.	既設 or 新設	技術基準に対象とする施設の規定が	クラス アップ	施設時 機器	DВ	S A	条件 アップ	DВ	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価 クラス
		あるか	の有無	クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	-> 11 ////				
11	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2. 00	171	_	S55告示	設計・建設規格 又は告示	_	SA-2
12	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2. 00	171	_	設計・建設規格	設計・建設規格	_	SA-2
C1	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	_	SA-2
C2	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	_	SA-2
R1	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示	_	SA-2
T1	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250	_	S55告示	設計・建設規格 又は告示		SA-2
SP1	既設	有	有	DB-3	DB-3	SA-2	無	3. 73	250	3. 73	250		S55告示	設計・建設規格 又は告示		SA-2
E1	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171		設計・建設規格	設計・建設規格	_	SA-2
E2	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2. 00	171		設計・建設規格	設計・建設規格	_	SA-2
ЕЗ	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2. 00	171	_	設計・建設規格	設計・建設規格	_	SA-2

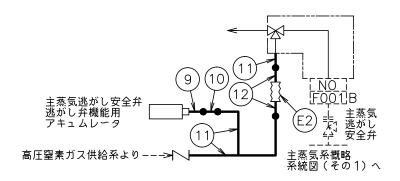
K7 ① V-3-3-3-1-1-3-1 R1

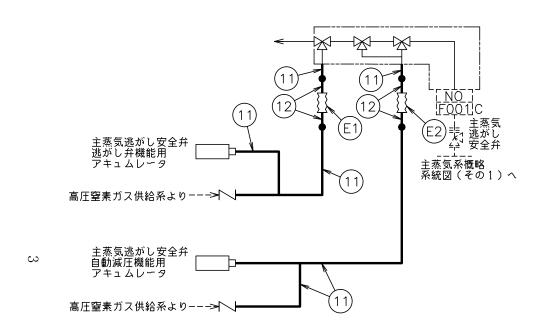
	版設 施設時 技術基 に対象 する旅 の規定 ある か			クラスアッ	ップするか	.		条件	アップす	るか						
NO.			クラス アップ	施設時 機器	DВ	SA	条件 アップ	DВ	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価 クラス
		あるか	の有無	クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	4).H.W.				
E4	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171		設計・建設規格	設計・建設規格		SA-2
E5	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171		設計・建設規格	設計・建設規格		SA-2
E6	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171	_	設計・建設規格	設計・建設規格		SA-2
E7	既設	有	有	DB-3	DB-3	SA-2	有	1. 77	171	2.00	171	_	設計・建設規格	設計・建設規格		SA-2
その他1	既設	有	無	DB-1	DB-1	SA-2	無	8. 62	302	8. 62	302	有	S55告示	既工認	_	SA-2

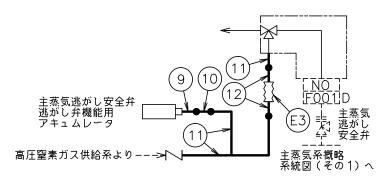
・適用規格の選定

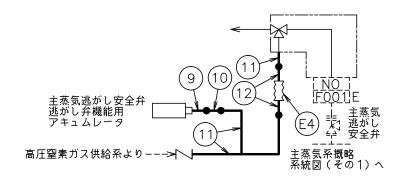
NO.	アスティア	評価区分	判定基準	適用規格
1	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
2	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
3	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
4	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
5	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
6	管の強度計算	設計・建設規格 又は告示	許容値	S55告示
7	管の強度計算	設計・建設規格 又は告示	許容値	S55告示
8	管の強度計算	設計・建設規格 又は告示	許容値	S55告示
9	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
10	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
11	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
12	管の強度計算	設計・建設規格	_	設計・建設規格
C1	鏡板の強度計算	設計・建設規格 又は告示	許容値	S55告示
C2	鏡板の強度計算	設計・建設規格 又は告示	許容値	S55告示
R1	レジューサの強度計算	設計・建設規格 又は告示	許容値	S55告示
T1	管の穴と補強計算	設計・建設規格 又は告示	許容値	S55告示
SP1	管の穴と補強計算	設計・建設規格 又は告示	許容値	S55告示
E1	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
E2	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
ЕЗ	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格

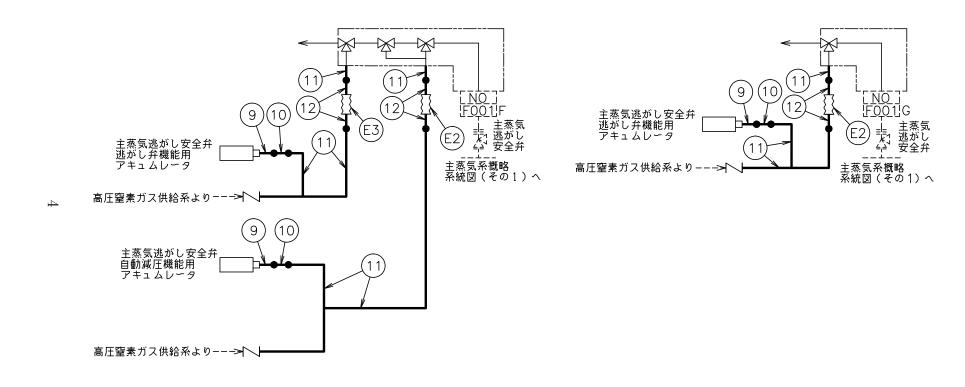

NO.	評価項目	評価区分	判定基準	適用規格
E4	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
E5	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
E6	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格
E7	伸縮継手の強度計算	設計・建設規格	_	設計・建設規格

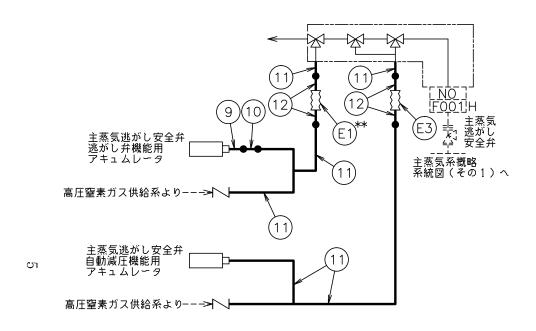

目 次

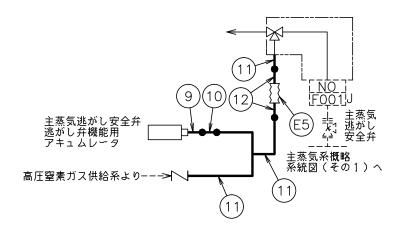

1.	概略系統図			 •	1
2.	管の強度計算	書		 	9
3.	鏡板の強度計	算書 …		 	11
4.	レジューサの	強度計算書	事 • • •	 	12
5.	管の穴と補強	計算書 •		 	13
6	伸縮継手の強	度計算書		 	16

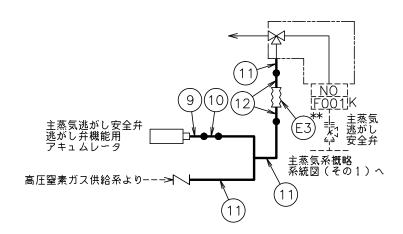

→ < 本範囲の強度計算は,平成4年3月27日付け 3資庁第13034号にて認可された

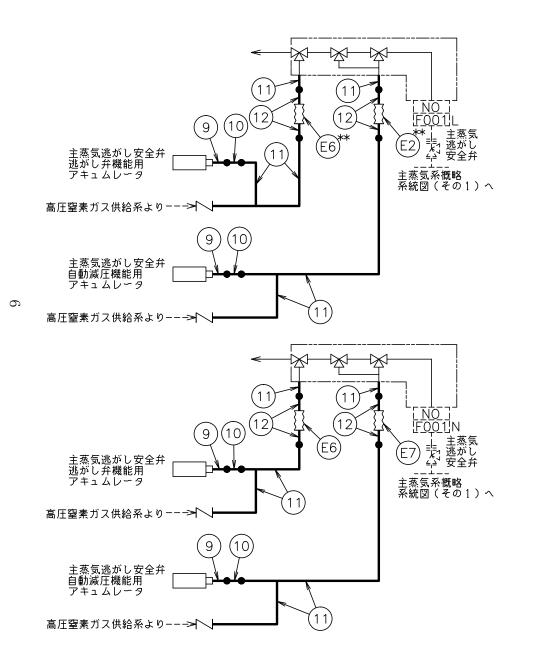

_ 工事計画の IV − 3 − 1 − 1 − 1 − 1 「管の基本板厚計算書」による。

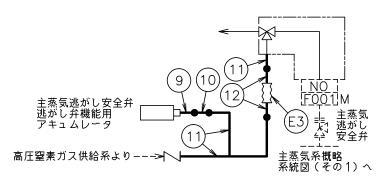




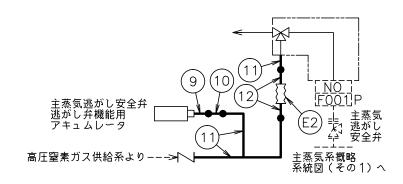


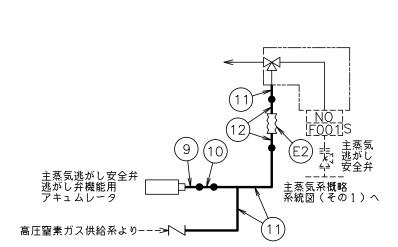


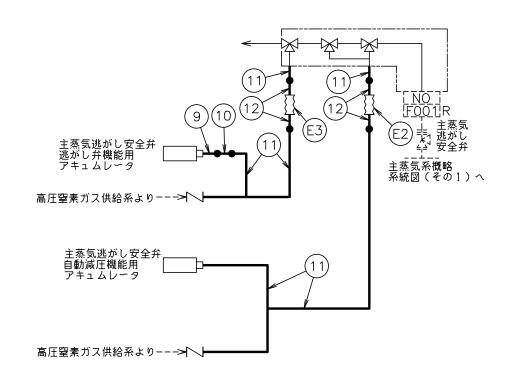


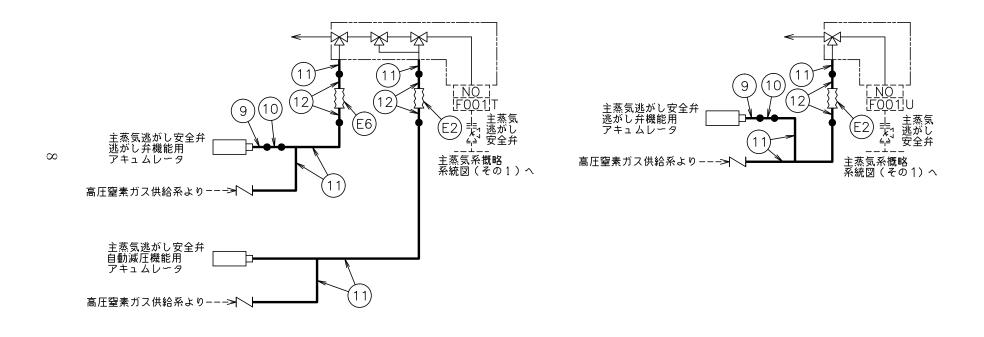


注記**:伸縮継手形状は同一であるため, 強度計算においては,全伸縮量 が最大となる本伸縮継手を評価 した。


主蒸気系概略系統図(その5)




注記**:伸縮継手形状は同一であるため, 強度計算においては,全伸縮量 が最大となる本伸縮継手を評価 した。


主蒸気系概略系統図(その6)

~

K7 ① V-3-3-3-1-1-3-1 R1

2. 管の強度計算書(重大事故等クラス2管)

告示第501号第58条第1項 準用

	最高使用圧力	最高使用	外 径	公称厚さ	材料	製	ク						算	
NO.	Р	温度	D o				ラ	S	η	Q	t s	t		t r
	(MPa)	(\mathcal{C})	(mm)	(mm)		法	ス	(MPa)			(mm)	(mm)	式	(mm)
6	3. 73	250	318. 50	17. 40	SCS16A	S	2	84*	1.00			6. 95	A	6. 95
						_								
7	3. 73	250	563.00	31.80	SCS16A	S	2	84*	1.00			12. 29	A	12. 29
8	3. 73	250	609.60	55. 10	SCS16A	S	2	84*	1. 00			13. 30	A	13. 30

評価: $ts \ge tr$, よって十分である。

注記*:告示第501号 別表第6(備考)3 ハに基づき0.8倍した値を用いた。

K7 ① V-3-3-3-1-1-3-1 R1

管の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3411 準用

	最高使用圧力	最高使用	外 径	公称厚さ	材料	製	ク						算	
NO.	Р	温度	D o				ラ	S	η	Q	t s	t		t r
	(MPa)	(℃)	(mm)	(mm)		法	ス	(MPa)			(mm)	(mm)	式	(mm)
1	3. 73	250	267. 40	15. 10	STS410	S	2	103	1.00	12.5 %	13. 21	4. 78	A	4. 78
2	3. 73	250	267. 40	15. 10	SUS316TP	S	2	125	1.00	12.5 %	13. 21	3. 95	A	3. 95
3	3. 73	250	267. 40	12. 70	SUS316TP	S	2	125	1.00	12.5 %	11.11	3. 95	A	3. 95
4	3. 73	250	318. 50	17. 40	SUS316TP	S	2	125	1.00	12.5 %	15. 22	4. 70	A	4. 70
5	3. 73	250	318. 50	14. 30	SUS316TP	S	2	125	1.00	12.5 %	12. 51	4. 70	A	4. 70
9	2. 00	171	80.00	13. 60	SUS304	S	2	113	1.00			0.71	A	0. 71
10	2. 00	171	60. 50	3. 90	SUS304	S	2	113	1.00			0. 54	A	0. 54
11	2. 00	171	60. 50	3. 90	SUS304TP	S	2	113	1.00	0.50mm	3. 40	0. 54	A	0.54
12	2.00	171	60.50	6. 70	SUS304	S	2	113	1.00			0. 54	A	0. 54

評価: $ts \ge tr$, よって十分である。

3. 鏡板の強度計算書(重大事故等クラス2管)

告示第501号第58条第1項及び第2項 準用

	最高使用圧力	最高使用	形 式	外 径	公称厚さ	材料										算	
NO.	Р	温度		Dо			S	R	r	D	2 • h	W, K	η	Q	t c		t
	(MPa)	(℃)		(mm)	(mm)		(MPa)	(mm)	(mm)	(mm)	(mm)				(mm)	式	(mm)
C1	3. 73	250	全半球形	609. 60	55. 10	SCS16A	84 *				_		1. 00			В	5. 65
			フランジ部	609. 60	55. 10	SCS16A	84 *						1. 00			D	13. 30
C2	3. 73	250	半だ円形	318. 50	17. 40	SCS16A	84 *					1.00	1. 00			С	6. 40
			フランジ部	318, 50	17. 40	SCS16A	84 *				_		1. 00			D	6. 95

評価: t c ≧ t, よって十分である。

注記*:告示第501号 別表第6(備考)3 ハに基づき0.8倍した値を用いた。

4. レジューサの強度計算書(重大事故等クラス2管)

告示第501号第61条第1項(告示第501号第32条第3項)及びJIS B 8243 準用

	最高使用圧力	最高使用		端部記号	外 径	公称厚さ	材料										算	
NO.	Р	温 度	θ		Dο			s	η	Q	Dі	r	W, K	t s	t 1	t 2		t
	(MPa)	(℃)	(°)		(mm)	(mm)		(MPa)			(mm)	(mm)		(mm)	(mm)	(mm)	式	(mm)
R1	3. 73	250	10.8	大径端	563. 00	31. 80	SCS16A	84 *	1.00	mm		_			11.60		A	11.60
				フランジ部			<u>—</u>										_	_
				小径端	318. 50	17. 40	SCS16A	84 *	1.00	mm			1. 2		6. 59	8. 34	В	8. 34
				フランジ部													_	

評価: t s ≧ t, よって十分である。

注記*:告示第501号 別表第6(備考)3 ハに基づき0.8倍した値を用いた。

5. 管の穴と補強計算書(重大事故等クラス2管)

告示第501号 第60条 準用

NO.		T1	A r	(mm ²)	4.037×10^3
形式		С	A 0	(mm²)	8.737×10^3
最高使用圧力 P	(MPa)	3. 73	A 1	(mm ²)	7.787×10^3
最高使用温度	(℃)	250	A 2	(mm²)	9.500×10^{2}
主管と管台の角度 α	(°)		A 3	(mm²)	0
	•		A 4	(mm²)	
主管材料		SCS16A			
S r	(MPa)	84*1	評価: Ao	> A r	
D o r	(mm)	609. 60	よって十分で	ごある。	
D i r	(mm)				
t r o	(mm)	55. 10	dfrD	(mm)	
Q r			LAD	(mm)	
t r	(mm)		LND	(mm)	
trr	(mm)	13. 30	A r D	(mm^2)	2.691×10^3
η		1.00	A 0 D	(mm^2)	6.880×10^3
			A 1 D	(mm^2)	5.930×10^3
管台材料		SCS16A	A 2 D	(mm^2)	9.500×10^{2}
S b	(MPa)	84 ^{* 1}	A 3 D	(mm^2)	0
D o b	(mm)	318. 50	A 4 D	(mm^2)	
D i b	(mm)				
t b n	(mm)	17. 40	評価: Ao	$D \ge A r D$	
Q b			以上より十分)である。	
t b	(mm)				
tbr	(mm)	6. 48			
強め材材料					
S e	(MPa)				
D o e	(mm)				
t e	(mm)				
	, , 1		_		
穴の径 d	(mm)				
K			_		
d f r	(mm)		_		
L A	(mm)				
LN	(mm)		_		
L 1	(mm)		\dashv		
L 2	(mm)		_		

注記*1:告示第501号 別表第6(備考)3 ハに基づき0.8倍した値を用いた。

*2:LAは構造上取り得る範囲とした。

クエンチャの穴の強度計算書(重大事故等クラス2管) 記号 SP1

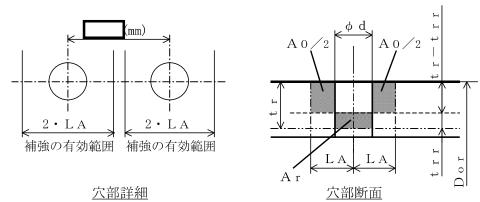


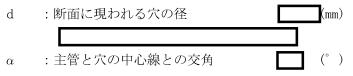
図 5-1 穴部詳細と穴部断面

- (1) 告示第501号第60条第2項第1号により、穴の補強計算を行う。
 - a. 主管の計算上必要な厚さtrr

$$t_{rr} = \frac{P \cdot D_{or}}{2 \cdot S_{r} \cdot \eta + 0.8 \cdot P}$$

$$= \frac{3.73 \times 318.50}{2 \times 84 \times 1.00 + 0.8 \times 3.73}$$

$$= 6.95 \text{ mm}$$


ここで,

Р	: 最高使用圧力	3. 73	(MPa)
	最高使用温度	250	(°C)
D o r	: 主管の外径	318.50	(mm)
Sr	: 主管の材料の許容引張応力	84	(MPa)
	主管材料	SCS16A	-
η	: 長手継手の効率	1.00	

b. 補強に必要な面積Ar

A_{r=1.07} · d · t_{rr} ·
$$(2-\sin \alpha)$$

=1.07× ×6.95× $(2-$)
=75.11 mm²

ここで,

c. 補強に有効な面積A0

$$A_{0} = (\eta \cdot t_{r} - F \cdot t_{rr}) \cdot (2 \cdot L_{A} - d)$$

$$= (1.00 \times 1.0 \times 6.95) \times (2 \times 1.0 \times 6.95)$$

$$= 363.7 \text{ mm}^{2}$$

ここで,

 tro: 主管の公称厚さ
 17.40 (mm)

 Qr: 主管の厚さの負の許容差
 (mm)

 tr: 主管の最小厚さ
 (mm)

t r = t r o - Q r

F =告示第501号第60条第2項第1号ロより求めた値 1.0

LA =補強に有効な範囲(次の2つの式より計算したいずれか大きい方の値)

$$LA = d = mm$$
 $LA = d/2 + t + t = mm$
 t

d. 評価

Ao>Ar, よって穴の補強は十分である。

- (2) 告示第501号第60条第2項第4号により、大穴の補強の要否の検討を行う。
 - a. 大穴の補強を要しない限界径
 - b. 評価

$$d f r D = \frac{D \circ r - 2 \cdot t r}{2}$$

$$= \frac{318.50 - 2 \times 2}{2}$$

$$= \frac{2}{2}$$

$$= \frac{2}{2}$$

 $d \le d$ f r D, よって大穴の補強計算は必要ない。 以上より十分である。

K7 ① V-3-3-3-1-1-3-1 R1E

6. 伸縮継手の強度計算書 (重大事故等クラス2管)

設計・建設規格 PPC-3416 準用

HX	司 * 建议观俗 .	PFC=3410 华用														
	最高使用圧力	最高使用温度			縦弾性係数		全伸縮量					算	継手部応力			
NO.	P		材	料	E	t	δ	b	h	n	С		σ	N	Νr	U
	(MPa)	(℃)			(MPa)	(mm)	(mm)	(mm)	(mm)			式	(MPa)	$\times 10^3$	$\times 10^3$	
E1	2.00	171	SUS30)4	184000		40.00					A	905	6.3	0.56	0.0886
E2	2.00	171	SUS30	04	184000		44.00					A	1065	3. 6	0.56	0. 1566
ЕЗ	2.00	171	SUS30)4	184000		45.00					A	1069	3. 5	0.56	0. 1587
E4	2.00	171	SUS30)4	184000		48.00					A	1506	1.1	0.56	0.5266
E5	2.00	171	SUS30)4	184000		35. 00					A	948	5. 4	0.56	0.1042
E6	2.00	171	SUS30)4	184000		44.00					A	1005	4.4	0.56	0. 1279
E7	2.00	171	SUS30)4	184000		40.00					A	948	5. 4	0.56	0.1042
						-		=								

評価: U≦1,よって十分である。

注:E1, E2, E3, E4, E5, E6, E7の外径は,

V-3-3-3-1-1-3-2 管の応力計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

K7 (I) V-3-3-3-1-1-3-2 R1

· 評価条件整理表

	ᄕ	K	C1	~1	~1	C1	67	67	67	67	87	67	©1	67	~i
		クブス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
回等件 評価 区分															
	郭俑区分		設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格	設計・建設規格 又は告示	設計・建設規格	設計・建設規格 又は告示	設計・建設規格	設計・建設規格 又は告示	設計・建設規格
	施設時の	適用規格	S55告示	S55告示	S55告示	S55告示	S55告示	S55告示	設計· 建設規格	S55告示	設計· 建設規格	S55告示	設計· 建設規格	S55告示	設計· 建設相格
展工 器	における	評価結果 の有無									_				
	A条件	温度 (°C)	250	306	250	250	250	171	171	171	171	171	171	171	171
523	SA	压力 (MPa)	3. 73	9. 22	3. 73	3. 73	3. 73	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
条件アップするか	条件	温度 (°C)	250	302	250	250	250	171	171	171	171	171	171	171	171
条件ア	DB条件	压力 (MPa)	3. 73	8.62	3. 73	3. 73	3. 73	1.77	1.77	1.77	1.77	1.77	1.77	1.77	1.77
	条件	アップ の有無	無	争	巣	巣	熊	有	有	有	有	有	有	有	有
ζÇ		SA クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
1742	קת	UD クラス	DB-3	DB-1	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3
クラスアップするか	_	機器クラス	DB-3	DB-1	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3
7	クラス	アップ の有無	有	熊	争	丰	单	有	有	单	有	有	有	有	有
施設時の	技術基準に対象アース	が 施設の規定 があるか	有	年	棰	有	有	有	有	有	有	有	有	有	有
	関談の	77	既設	既設	既設	既設	宪設	既設	既設	既設	既設	既設	既設	既設	既設
	応力計算	モデルNo.	MS-PD-1	MS-PD-2	MS-PD-2	MS-PD-3	MS-PD-4	MS-PD-27	MS-PD-27	MS-PD-28	MS-PD-28	MS-PD-29	MS-PD-29	MS-PD-30	MS-PD-30

K7 ① V-3-3-3-1-1-3-2 R1

評価条件整理表

									1	1	1		1		
	評価	クラス	SA-2												
1	司等性評価	I S S S S S S S S S S S S S S S S S S S									_				
	評価区分		設計・建設規格 又は告示												
	施設時の	適用規格	S55告示	S55告示	855告示	S55告示	S55告示	S55告示	855告示	S55告示	S55告示	S55告示	S55告示	S55告示	S55告示
野工 絜	における	評価結果 の有無													
	条件	温度 (°C)	250	250	250	250	250	250	250	250	250	250	250	250	250
-543	SA	压力 (MPa)	3. 73	3.73	3.73	3. 73	3. 73	3.73	3.73	3.73	3.73	3. 73	3.73	3. 73	3. 73
条件アップするか	条件	篇 (°C) 250		250	250	250	250	250	250	250	250	250	250	250	250
条件ア	DB	压力 (MPa)	3. 73	3. 73		3. 73	3. 73	3. 73	3. 73	3.73	3.73	3. 73	3.73	3.73	3. 73
	条件	アップ の有無	無	無	無	無	無	無	無	無	無	無	無	無	無
¢β	0		SA-2												
ラスアップするか	מת	UD クラス	DB-3												
ラスアッ	施設時	機器 クラス	DB-3												
7	クラス	アップ の有無	有	有	有	有	有	有	有	有	有	有	有	有	有
施設時の	技術基準に対象アール	施設の規定 があるか	有	有	有	有	有	有	有	有	有	有	有	有	有
_	現別のよ	レン	既設												
	応力計算	モデルNo.	G-WA-SM	MS-PW-6	MS-PW-7	MS-PW-8	6-MA-SW	MS-PW-10	MS-PW-11	MS-PW-12	MS-PW-13	MS-PW-14	MS-PW-15	MS-PW-16	MS-PW-17

評価条件整理表

		~					
	評価	クラス	SA-2	SA-2	SA-2	SA-2	SA-2
<u> </u>	同等住料	I S S S S S S S S S S S S S S S S S S S					
	評価区分		設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又付告示
	1 ~ /	適用規格	产 号 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	字号53S	555告示	天子55S	S55告示
既工絜	における	評価結果 の有無			_		
	SA条件	温度 (°C)	250	250	250	250	250
-543	SA	压力 (MPa)	250 3.73	250 3.73	250 3.73	3.73	3. 73
条件アップするか	DB条件	温度 (°C)				250	250
条件ア	ВΩ	压力 (MPa)	3. 73	3. 73	3. 73	3.73	3. 73
	条件	アップの有無	無	無	無	無	無
τQ	0	カラス クラス	SA-2	SA-2	SA-2	SA-2	SA-2
1745	ם	UD クラス	DB-3 DB-3	DB-3 DB-3	DB-3	DB-3	DB-3
クラスアップするか	施設時	機器 クラス	DB-3	DB-3	DB-3	DB-3	DB-3
7	カラス	アップ の有無	单	单	丿	单	丿
施設時の	技術基準に クラス 対象レする	がまるか。 があるか。 の有無	阜	阜	单	阜	单
1 1 1	別別	7. /	既設	既設	既設	既設	既設
	応力計算	4天1/No.	MS-PW-18 既設	MS-PW-19 既設	MS-PW-20 既設	MS-PW-21	MS-PW-22

目 次

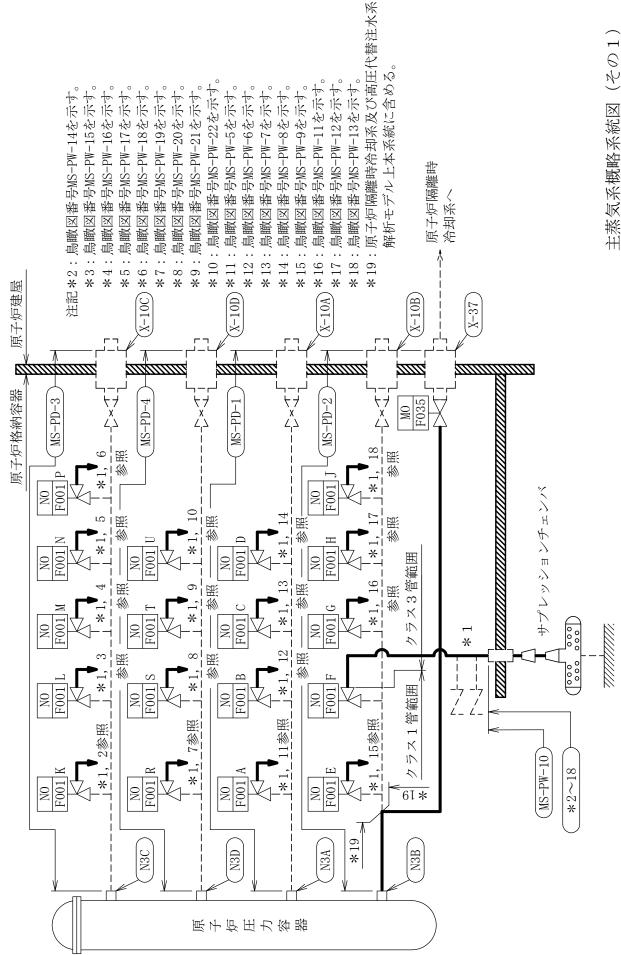
1.		概	要	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.		概	略系統	図及	支び.	鳥	敢區	X			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 1		概略	系統	図		,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 2	}	鳥瞰	図		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
3.		計:	算条件	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
	3. 1		計算	条件			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
	3. 2	;	材料。	及び	許容		力				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
4.		計	算結果	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
5.		代	表モデ	シルの)選	定	洁身	果	支て	バ	全	モ	デ	ル	0	評	価	結	果			•	•										•				•	46

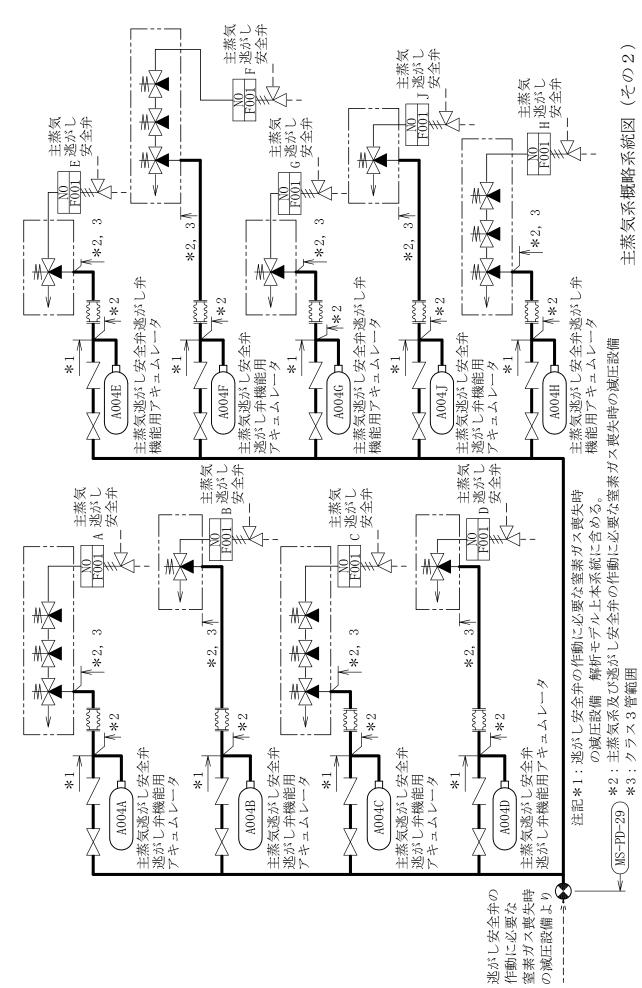
1. 概要

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の 強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づき、 管の応力計算を実施した結果を示したものである。

評価結果記載方法は,以下に示すとおりである。

(1) 管

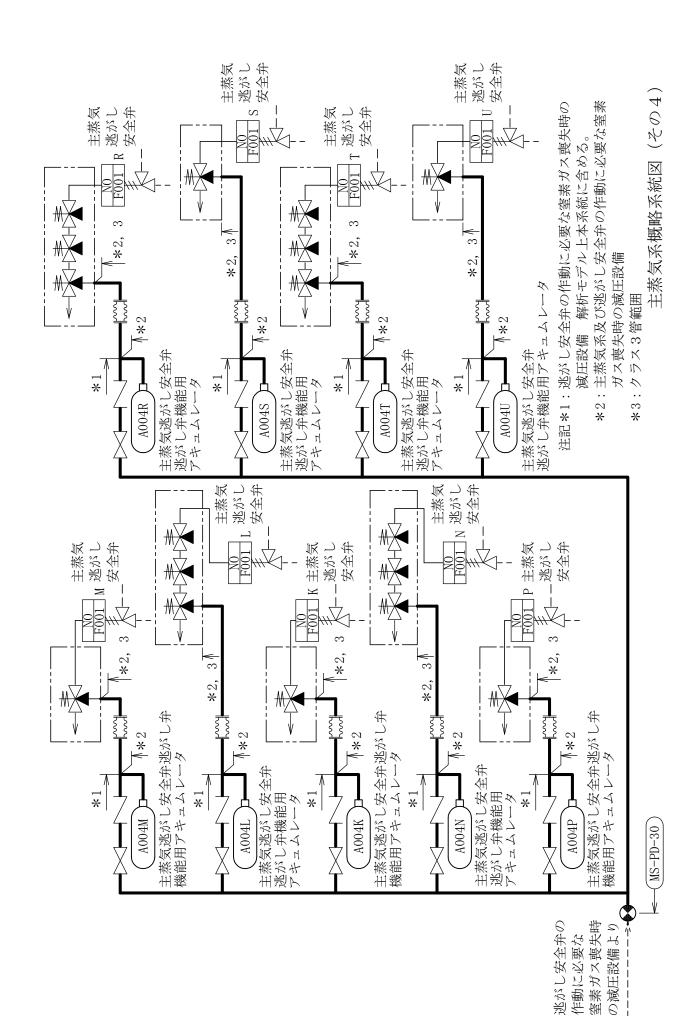

工事計画記載範囲の管のうち、設計条件あるいは管クラスに変更がある管における最大応力評価点の評価結果を解析モデル単位に記載する。また、全26モデルのうち、最大応力評価点の許容値/発生値(裕度)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。代表モデルの選定及び全モデルの評価結果を5.に記載する。


2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
$oldsymbol{\Theta}$	アンカ



時の減圧設備 *3:クラス3管範囲

K7 ① V-3-3-3-1-1-3-2 R1

5

6

7

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∄///	ハンガ
] = 	リジットハンガ
	注1:鳥瞰図中の寸法の単位はmmである。

MS-PD-2(1/7)

鳥瞰図

1
MS-PD-2 (4/7)
鳥瞰図

MS-PD-2(5/7)

鳥瞰図

MS-PD-3(3/6)

鳥瞰図

MS-PD-3(4/6)

鳥瞰図

		MS-PW-6
		鳥瞰図

X

3. 計算条件

3.1 計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 MS-PD-2

STS410	14.3	165.2	908	9. 22	$601 \sim 623$	2
SFVC2B	14.3	165.2	306	9. 22	5~601	4
					$525\sim526N$	
SUS316TP	15.1	267.4	250	3. 73	$329\sim330N,433\sim434N$	33
					$133 \sim 134$ N, $235 \sim 236$ N	
					$507 \sim 525$	
STS410	15.1	267.4	250	3. 73	$307 \sim 329, 407 \sim 433$	2
					$107 \sim 133, 207 \sim 235$	
SFVC2B	35.7	711.2	306	9. 22	$1N\sim5$	1
12 X Z	(mm)	(mm)	(°C)	(MPa)		# 7
**************************************	世	外径	最高使用压力最高使用温度	最高使用压力	本下 子 と 製 併 上	称

計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 MS-PD-3

郊料口	华下十名對伍占	最高使用压力	最高使用压力最高使用温度	外径	世]\\\\+\ \
世 年 ク		(MPa)	(°C)	(mm)	(mm)	Z/ +++
	$107 \sim 128, 207 \sim 232$					
\vdash	$307 \sim 325, 407 \sim 431$	3. 73	250	267.4	15.1	STS410
	507~523					
	128~129N, 232~233N					
2	$325\sim326N,431\sim432N$	3.73	250	267.4	15.1	SUS316TP
	$523\sim524N$					

計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 MS-PW-6

科口	华万十八部	最高使用压力 最高使用温	最高使用温度	外径	世	\ \tilde{\pi} \frac{\pi}{4}	
日毎ク		(МРа)	(S _o)	(mm)	(mm)	Z	
1	1N~3	3, 73	250	267.4	267.4 15.1	SUS316TP	
2	$3 \sim 11$	3. 73	250	267.4	267.4 12.7	SUS316TP	
8	15~401	3, 73	250	318.5	318.5 14.3	SUS316TP	

配管の付加質量

質量	対応する評価点			
	1N~1001, 3001~5			
	1001~3001			
	$5\sim603,608\sim611,613\sim6151,6171\sim6182,6211\sim623$			
	$603\sim608,611\sim613,6151\sim6171,6182\sim6211$			

フランジ部の質量

質量	対応する評価点					
	102, 202, 302, 402, 502					
	107, 207, 307, 407, 507					

フランジ部の質量

	質量		対応する評価点					
			102, 202, 302, 402, 502					
			107, 207, 307, 407, 507					

弁部の寸法

鳥瞰図 MS-PD-2

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
102~103				103~104			
104~105				105~106			
103~107				202~203			
203~204				204~205			
205~206				203~207			
302~303				303~304			
304~305				305~306			
303~307				402~403			
403~404				404~405			
405~406				403~407			
502~503				503~504			
504~505				505~506			
503~507				623~624			
624~625				625~626			
624~627							

弁部の寸法

鳥瞰図 MS-PD-3

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
102~103				103~104			
104~105				105~106			
103~107				202~203			
203~204				204~205			
205~206				203~207			
302~303				303~304			
304~305				305~306			
303~307				402~403			
403~404				404~405			
405~406				403~407			
502~503				503~504			
504~505				505~506			
503~507							

弁部の質量

質量	対応する評価点	質量	対応する評価点
	103, 203, 303, 403, 503		105, 205, 305, 405, 505
	106, 206, 306, 406, 506		625
	626		

弁部の質量

質量	対応する評価点	質量	対応する評価点
	103, 203, 303, 403, 503		105, 205, 305, 405, 505
	106, 206, 306, 406, 506		

鳥瞰図 MS-PD-2

局 脚			N/mm)	各軸回り	回転ばね定数()	N•mm/rad)
支持点番号	Х	Y	Z	Х	Y	Z
** 1071 **						
110						
** 110 **						
111						
** 116 **						
123						
126						
1261						
** 1262 **						
134N						
** 2071 **						
** 2011 **						
210						
** 211 **						
212						
214						
221						
** 222 **						
** 225 * *						
236N						
3070						

鳥瞰図 MS-PD-2

为		テ向ばね定数(N/mm)	各軸回り	回転ばね定数(N·mm/rad)
支持点番号 -	X	Y	Z	X	Y	Z
** 3071 **						
310						
** 311 **						
314						
** 314 ** -						
315						
** 3231 **						
1.1. 0.001						
** 3231 ** •						
330N						
4071						
** 408 **						
100						
411						
412						
** 4121 **						
-						
416						
** 416 **						
** 4211 **						
423						
** 427 **						

鳥瞰図 MS-PD-2

局瞅		 5向ばね定数(N/mm)	各軸回りに	 回転ばね定数(N·mm/rad)
支持点番号	X	Y	Z	X	Y	Z
** 4291 **						
434N						
5071						
** 5091 **						
510						
** 5151 **						
** 516 **						
** 516 **						
526N						
** 607 **						
612						
612						
618						
621						
** 621 **						
** 625 * *						

鳥瞰図 MS-PD-3

士体 占 至 口	各軸力	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
支持点番号	X	Y	Z	X	Y	Z
** 1070 **						
** 1071 **						
** 110 **						
110	1					
111	1					
** 1141 **						
** 115 **						
122						
125						
1251						
129N						
** 2071 **						
2091						
210 ** 211 **						
ጥጥ Z11 ጥጥ	1					
** 213 * *						
** 2181 **						
220						
221 ** 221 **	+					
ጥጥ ረረ1 ጥጥ	+					
				<u> </u>		

鳥瞰図 MS-PD-3

一十七十五日		方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
支持点番号	X	Y	Z	X	Y	Z
** 2231 **						
233N						
** 308 **						
311						
** 312 **						
state 0.1.4 state						
** 314 **						
3161						
3191						
326N						
** 4071 **						
** 408 **						
** 411 **						
4111						
412						
** 413 **						
** 419 **						
100 17						
** 420 **						
421						
432N						
404N						

支持点及び貫通部ばね定数

鳥瞰図 MS-PD-3

支持点番号	各軸之	ち向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
文打小笛力	X	Y	Z	X	Y	Z
** 5071 **						
508						
** 5101 **						
5102						
** 511 **						
5122						
** 5123 * *						
5181						
524N						

支持点及び貫通部ばね定数

鳥瞰図 MS-PW-6

支持点番号	各軸	方向ばね定数(N/mm)	各軸回り	回転ばね定数(N·mm/rad)
文 付 小 留 ク	X	Y	Z	X	Y	Z
1N						
** 4 **						
7						
** 7 **						
** 18 **						
** 18 **						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計・建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	力(MPa)	
17) 147	$({}^{\circ}\!\mathbb{C})$	S _m	S y	S u	S _h
SFVC2B	306	125	186		_
STS410	250				103
SUS316TP	250	_	_	_	125
STS410	306	122	181	_	_

材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	力(MPa)	
171 177	$({}_{\circ}\!\mathbb{C})$	S _m	Sy	S u	S _h
SFVC2B	306	122	_	_	
SUS316TP	250				125
STS410	306	122	_	_	_

4. 計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 設計・建設規格 PPB-3562の規定に基づく評価

372	84	S _{prm}	2	MS-PD-2
$Min(3 \cdot S_m, 2 \cdot S_y)$	S_{prm}			
許容応力	計算応力	公公区	評価点	鳥藪図
一次応力評価 (MPa)			14 14 14 14 14 14 14 14 14 14 14 14 14 1	1

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 告示第501号第46条第3号の規定に基づく評価

一次応力評価 (MPa)	許容応力	$3 \cdot S_{m}$	366							
₹	計算応力	$S_{\mathrm{p\ r\ m}}$	84							
最大於力	** 区分区分		S prm							
最大下十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	最大応力最評価点									
1										

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管設計・建設規格 PPC-3520の規定に基づく評価

一次応力評価 (MPa)	許容応力	$1.5 \cdot S_{\rm h}$	1.8 • S _h	154	185
一次応力	計算応力	$S_{p rm}^{*1}$	$_{\mathrm{p\ r\ m}}^{*2}$	45	109
	最大応力	区分		S_{prm}^{*1}	$_{\mathrm{p\ r\ m}}^{*2}$
	最大応力	評価点		423	428
	自勝図			MS-PD-3	MS-PD-3

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管告示第501号第26条第1号の規定に基づく評価

	1 S h S h S h S h S h	1.4 U h	125	150
—— 	計算応力 S p r m	$_{ m p\ r\ m}$	107	107
	最大応力 区分		$_{ m p\ r\ m}^{*1}$	S p r m
	最大応力 評価点		2	2
	鳥瞰図		9-MA-SW	MS-PW-6

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。

なお,保守的な評価となる告示第501号第56条第1号ロに基づき計算した一次応力を 記載してもよいものとする。

*2: 告示第501号第56条第1号ロに基づき計算した一次応力を示す。

5. 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、計算条件及び 評価結果を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

		# 47	X 2	0
*		 	松	4.42
重大事故等時*	一次応力	許容応力	(MPa)	372
垂		計算応力	(MPa)	84
		寸 型 延	5 三 上	9
	開発した。			MS-PD-2
	N		T	

注記*:設計・建設規格 PPB-3562に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

		军业	X -	\bigcirc
V^*		 	がが	4, 35
許容応力狀態V	一次応力	許容応力	(MPa)	998
許容		計算応力	(MPa)	84
		美国上	9	
	国籍を記述し		MS-PD-2	
	N		П	

注記*:告示第501号第46条第3号に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

				1								1								1
		苯 47	K Z			0														
53		松市	中文	2.43	2.17	1.69	2.64	7.80	99.66	7.25	9.22	2.00	1.71	2.10	2.47	2.34	2.12	1.82	2.10	
重大事故等時*2	一次応力	許容応力	(MPa)	185	185	185	185	203	203	203	203	225	225	225	225	225	225	225	225	
重大	-	計算応力	(MPa)	92	85	109	20	26	21	28	22	112	131	107	91	96	106	123	107	
		三亚 年	10世	312	424	428	315	267	132	328	69	26	9	27	401	18	23	17	6	
		羊针	× >			\circ														
د1		松市	名	3.85	4.40	3.42	3.75	6.76	8.45	6.25	8.45	6.67	6.44	6.03	6.03	6.03	6.67	4.56	6.44	
重大事故等時*1	一狹応力	許容応力	(MPa)	154	154	154	154	169	169	169	169	187	187	187	187	187	187	187	187	
重/		計算応力	(MPa)	40	35	45	41	25	20	27	20	28	29	31	31	31	28	41	29	
		当业(年)	10世	209	327	423	208	267	132	328	69	22	20	2	21	21	19	9	2	
	日のドルド	HL H L		MS-PD-1	MS-PD-2	MS-PD-3	MS-PD-4	MS-PD-27	MS-PD-28	MS-PD-29	MS-PD-30	MS-PW-5	MS-PW-6	WS-PW-7	MS-PW-8	6-Md-SW	MS-PW-10	MS-PW-11	MS-PW-12	
	No. 配管モデル			1	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16	

PPC-3520(1)に基づき計算した一次応力を示す。 PPC-3520(2)に基づき計算した一次応力を示す。 注記*1:設計・建設規格 *2:設計・建設規格

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

				_	_	_	_	_	_	_	_	_	_				
		#	K)														
2		世外	安区	1.73	2.34	2.36	2.20	2.25	2.44	2.12	1.71	2.16	2.64				
c事故等時*	一次応力	許容応力	(MPa)	225	225	225	225	225	225	225	225	225	225				
重力		計算応力	(MPa)	130	96	66	102	100	92	106	131	104	85				
		计进件	三二三	22	25	24	25	18	Q01	23	20	24	21				
		4	K Z														
۲ <u>ا</u>		世外	名	6.03	6.03	6.67	6.03	6.03	5.84	6.67	6.44	6.67	6.03				
7事故等時,	一次応力	計容応力	(MPa)	281	281	181	281	181	281	181	181	181	281				
重力		計算応力	(MPa)	31	31	28	31	31	32	28	29	28	31				
		当 田 江	三三	22	21	24	21	2	21	19	9	20	21				
	日年一月年			MS-PW-13	MS-PW-14	MS-PW-15	MS-PW-16	MS-PW-17	MS-PW-18	MS-PW-19	MS-PW-20	MS-PW-21	MS-PW-22				
	N	NO.		17	18	19	20	21	22	23	24	25	56				
	重大事故等時*1 重大事故等時*2	重大事故等時*1 一次応力	重大事故等時*1 重大事故等時*2 一次応力 一次応力 計算応力 許容応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	配管モデル 一次応力 一次応力 計算応力 (MPa) (M	配管モデル 重大事故等時** 配管モデル 事権等等 事業 事業	配管モデル 主人方式 (MPa) 指導応力 非価点 計算応力 非確応力 排降応力 排降応力 排降応力 排降応力 排降応力 排降応力 排降応力 排降応力 排除応力 排除応力 排除応力 排除定力 187 6.03 一 255 1.73 MS-PW-14 21 31 187 6.03 一 25 96 225 1.73	配別 重大事故等時** 配管モデル 本水応力 本水応力 配管モデル 計算応力 非容応力 体度 代表 評価力 計算応力 特定応力 財産 財産	配管モデル 事件等時等計畫 配管モデル 事件等的等等 事件等的等 事件等的等 事件等的 第二 第二 <th rowspa<="" td=""><td>配別 重大事故等時** 配管モデル 一次応力 一次応力 配管モデル 計算応力 許容応力 不差応力 不全応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 96 225 2.34 MS-PW-15 24 28 187 6.67 一 24 95 225 2.34 MS-PW-16 21 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 25 102 2.25 2.25 2.25 2.25 2.25 2.25 <td< td=""><td>配告中分析 主人方式力 一次式力 一次式力 配告中分析 計算広力 許算広力 并算应力 并定的 <th row<="" td=""><td>配別</td><td>配子中小丁 一次応力 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th></td></th></td></td<></td></th>	<td>配別 重大事故等時** 配管モデル 一次応力 一次応力 配管モデル 計算応力 許容応力 不差応力 不全応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 96 225 2.34 MS-PW-15 24 28 187 6.67 一 24 95 225 2.34 MS-PW-16 21 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 25 102 2.25 2.25 2.25 2.25 2.25 2.25 <td< td=""><td>配告中分析 主人方式力 一次式力 一次式力 配告中分析 計算広力 許算広力 并算应力 并定的 <th row<="" td=""><td>配別</td><td>配子中小丁 一次応力 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th></td></th></td></td<></td>	配別 重大事故等時** 配管モデル 一次応力 一次応力 配管モデル 計算応力 許容応力 不差応力 不全応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 96 225 2.34 MS-PW-15 24 28 187 6.67 一 24 95 225 2.34 MS-PW-16 21 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 24 95 225 2.36 MS-PW-17 7 31 187 6.03 一 25 102 2.25 2.25 2.25 2.25 2.25 2.25 <td< td=""><td>配告中分析 主人方式力 一次式力 一次式力 配告中分析 計算広力 許算広力 并算应力 并定的 <th row<="" td=""><td>配別</td><td>配子中小丁 一次応力 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th></td></th></td></td<>	配告中分析 主人方式力 一次式力 一次式力 配告中分析 計算広力 許算広力 并算应力 并定的 并定的 <th row<="" td=""><td>配別</td><td>配子中小丁 一次応力 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th></td></th>	<td>配別</td> <td>配子中小丁 一次応力 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th></td>	配別	配子中小丁 一次応力 中級 中級 <th r<="" td=""><td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td><td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td></th>	<td>配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<</td> <td>配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<></td>	配合 —— 水丸丸子 一个水丸力 配管モデル 部価点 計算応力 作表応力 一水応力 一水応力 MS-PW-13 22 31 187 6.03 一人、方 22 1.73 将度 MS-PW-14 21 31 187 6.03 一 22 1.73 8/8 MS-PW-15 24 28 187 6.03 一 24 95 2.25 2.34 MS-PW-16 21 31 187 6.03 一 25 96 225 2.34 MS-PW-17 7 31 187 6.03 一 25 225 2.25 2.25 MS-PW-18 21 32 187 6.03 一 25 100 225 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.44 MS-PW-21 29 187 6.67 一 23 106 225 2.12 MS-PW-21 29 28 187 6.67 一<	配替 事所等等*** 事件等等*** 配管モデル 評価点 事業故等等*** 一次応力 一次応力 一次応力 MS-PW-13 22 31 187 6.03 一 22 130 225 1.73 MS-PW-14 21 31 187 6.03 一 25 180 225 2.34 MS-PW-15 24 28 187 6.03 一 24 95 225 2.34 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-17 7 31 187 6.03 一 25 102 225 2.44 MS-PW-18 19 28 187 6.03 一 25 102 2.25 2.44 MS-PW-19 19 28 187 6.67 一 23 106 225 2.12 MS-PW-20 29 29 131 225 2.12 2.12 MS-PW-21 20 20 <th< td=""></th<>

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

49

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

		# 47	K)										0						
*2		松	4	2.01	2.11	2.17	2.08	7.10	6.13	6.42	7.10	1.50	1.40	1.45	1.66	2.02	1.87	1.53	1 50
許容応力狀態V*2	一次応力	許容応力	(MPa)	123	150	150	150	135	135	135	135	150	150	150	150	150	150	150	150
許容)	'	計算応力	(MPa)	61	71	69	72	19	22	21	19	100	107	103	06	74	80	86	100
ī		当 土/ 工	1 三	317	134N	129N	329N	282N	132	220	481	1N	2	7	Q01	1N	Q01	Q01	001
		# 4 /	× -										\circ						
*1		松库	中文	1.68	1.76	1.81	1.73	5.94	5.13	5.38	5.94	1.25	1.16	1.21	1.38	1.68	1.56	1.27	1 95
許容応力狀態 \(V^*1 \)	一次応力	許容応力	(MPa)	103	125	125	125	113	113	113	113	125	125	125	125	125	125	125	195
計容	'	計算応力	(MPa)	61	71	69	72	19	22	21	19	100	107	103	06	74	80	86	100
		証(年上	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	317	134N	129N	329N	282N	132	220	481	1N	7	7	001	1N	001	001	001
	西郷ドルコ	HI H ' / / /		MS-PD-1	MS-PD-2	MS-PD-3	MS-PD-4	MS-PD-27	MS-PD-28	MS-PD-29	MS-PD-30	G-WG-SM	MS-PW-6	MS-PW-7	MS-PW-8	MS-PW-9	MS-PW-10	MS-PW-11	MS-DW-19
	No. 配管モデル			1	2	3	4	2	9	2	8	6	10	11	12	13	14	15	16

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。 *2:告示第501号第56条第1号ロに基づき計算した一次応力を示す。

50

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

			#	K)											
Ì	*2		世然	安区	1.66	1.94	1.68	1.82	1.74	1.63	1.66	1.80	1.72	2.00	
	許容応力狀態 V^{*2}	一次応力	許容応力	(MPa)	150	150	150	150	150	150	150	150	150	150	
	許容)	-	計算応力	(MPa)	06	22	68	82	98	92	06	83	28	22	
I			岩田/延	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	Q01	Q01	Q01	2	Q01	Q01	Q01	1N	Q01	
			# 47	X Z								_	_		
	*1		#%	安安	1.38	1.62	1.40	1.52	1.45	1.35	1.38	1.50	1.43	1.66	
	許容応力狀態 V^{*1}	一狹応力	許容応力	許容応力 (MPa)		125	125	125	125	125	125	125	125	125	
	許容		計算応力	(MPa)	06	22	88	82	98	92	06	83	87	22	
) ,			当 土/ 江	10世	20	Q01	Q01	Q01	2	Q01	Q01	Q01	1N	Q01	
, (i.i.)		日郷上川川			MS-PW-13	MS-PW-14	MS-PW-15	MS-PW-16	MS-PW-17	MS-PW-18	MS-PW-19	MS-PW-20	MS-PW-21	MS-PW-22	
		N	NO		17	18	19	20	21	22	23	24	25	26	

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。 *2:告示第501号第56条第1号ロに基づき計算した一次応力を示す。

V-3-3-3-1-2 復水給水系の強度計算書

V-3-3-3-1-2-1 管の強度計算書

-3-3-3-1-2-1-1 管の基本板厚計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

		施設時の		クラスア	ップするか	.		条件	ニアップす	るか						
NO.	既設 or 新設	技術基準 に対象と する施設 の規定が	クラス アップ	施設時 機器	DB	SA	条件	DВ	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価 クラス
		あるか	の有無	クラス	クラス	クラス	アップ		温度 (℃)	圧力 (MPa)	温度 (℃)	, 11 VIII				
その他1	既設	有	無	DB-2	DB-2	SA-2	無	8. 62	302	8. 62	302	有	S55告示	既工認	_	SA-2
その他2	既設	有	無	DB-1	DB-1	SA-2	無	8. 62	302	8. 62	302	有	S55告示	既工認	_	SA-2

1. 概要

本計算書については,重大事故等対処設備としての評価結果を示すものであるが,設計基準対象施設としての使用条件を超えないことから,評価結果については平成4年3月27日付け3資庁第13034号にて認可された工事計画の -3-1-6-7-1「管の基本板厚計算書」による。

V-3-3-3-1-2-1-2 管の応力計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

K7 ① V-3-3-3-1-2-1-2 R1

·評価条件整理表

		クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
3 1	可等性率不可能	I S S S S S S S S S S S S S S S S S S S						
	葬佈区分		設計・建設規格 又は告示	設計・建設規格 又は告示	耀工錙	設計・建設規格 又は告示	耀工猫	設計・建設規格
	施設時の	評価結果 適用規格 の有無 	S55告示	S55告示	S55告示	S55告示	S55告示	
既工製	における	評価結果 の有無			有	無	有	
	SA条件	温度 (°C)	306	306	302	182	182	302
-242	SA	圧力 (MPa)	9. 22	9. 22	8.62	3.43	3.43	8.62
条件アップするか	条件	温度 (°C)	302	302	302	182	182	
条件ア	DB条件	圧力 (MPa)	8.62	8.62	8.62	3. 43	3, 43	
	条件	アップの有無	有	有	無	無	無	
か	٧٥	DB SA クラス クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
ップするか	ק	UD クラス	DB-1	DB-1	DB-2	DB-2	DB-2	
クラスアッ	施設時	機器クラス	DB-1	DB-1	DB-2	DB-2	DB-2	
7	クラス	アップ め有無 クラス	熊	無	澌	#	無	
_	技術基準に対象アース	施設の規定があるかの	有	有	有	有	有	
1 1 1	路で	新設	既設	既設	既設	既設	既設	新設
	応力計算	モデルNo.	FDW-PD-1 既設	FDW-PD-2	FDW-T-1 既設	FDW-T-1	FDW-T-1	FDW-T-1

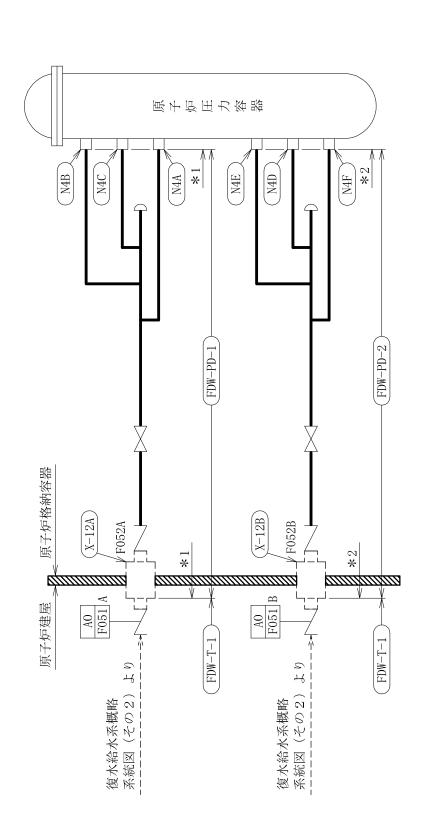
1.	概	要		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系統	図及	び』	- 計師	烟			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2.	1	概略系	系統図	<u>Z</u>		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
2.	2	鳥瞰図	<u> </u>			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
3.	計:	算条件		•		•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
3.	1	計算象	条件		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
3.	2	材料及	をび言	午容	応	力				•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
4.	計;	算結果					•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	25
5.	代	表モデ	ルの	選別	官編	宇果	及	び	全	モ	デ	ル	の	評	価	結	果							•					•		•	•	•	•		29

1. 概要

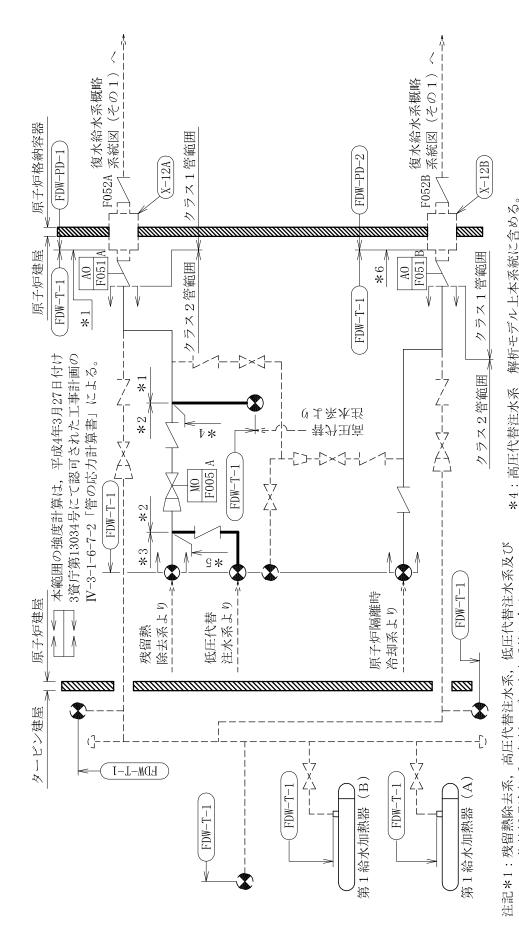
本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づき、管の応力計算を実施した結果を示したものである。

評価結果記載方法は,以下に示すとおりである。

(1) 管


工事計画記載範囲の管のうち、設計条件あるいは管クラスに変更がある管における最大応力評価点の評価結果を解析モデル単位に記載する。また、全3モデルのうち、最大応力評価点の許容値/発生値(裕度)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。代表モデルの選定及び全モデルの評価結果を5. に記載する。

2. 概略系統図及び鳥瞰図


2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

注記*1:残留熱除去系,高圧代替注水系,低圧代替注水系及び代表記*1:残循環冷却系 解析モデル上本系統に含める。*2:原子炉隔離時冷却系 解析モデル上本系統に含める。

*2: 残留熱除去系, 低圧代替注水系及び代替循環冷却系解析モデル上本系統に含める。

*3:残留熱除去系 解析モデル上本系統に含める。

*5:低圧代替注水系及び代替循環冷却系 解析モデル上本系統に含める。

*6:原子炉隔離時冷却系 解析モデル上本系統に含める。

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∄///~	ハンガ
=	リジットハンガ
	注1:鳥瞰図中の寸法の単位はmmである。

FDW-PD-2

鳥瞰図

K7 ① V-3-3-3-1-2-1-2 R1

FDW-T-1(1/5)

鳥瞰図

K7 ① V-3-3-3-1-2-1-2 R1

K7 ① V-3-3-3-1-2-1-2 R1

FDW-T-1(4/5)

鳥瞰図

3. 計算条件

3.1 計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 FDW-PD-2

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	最高使用压力	最高使用压力最高使用温度	外径	厚さ	<u> </u>	
Ŕ	Mで9 0評価点	(MPa)	(°C)	(mm)	(mm)	Ź Ż	
13~30	30	9.22	306	558.8	34.9	SFVC2B	
~4	4~6,7~13	9.22	306	558.8	34.9	STS480	
17~	$17 \sim 31, 22 \sim 45$	00 0	<i>9</i> 00	010	0.10	GOZMIO	
27~55	55	77 .6	906	510. 5	21.4	SFVCZB	
31~	$31\sim$ 44N, $45\sim$ 54N	00 0	900	0	0.1	2 2 2 3	
$25\sim68N$	98N	37. F6	anc	510.0	21.4	313410	

計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 FDW-T-1

# [五十七十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	最高使用圧力	最高使用压力最高使用温度	外径	を重	XX	
日金り		(MPa)	(S _o)	(mm)	(mm)	<u>\$</u>	
П	$109 \sim 110, 164 \sim 165$	8.62	302	558.8	34.9	STPA23	
2	109~178	8.62	302	267.4	18.2	SFVAF11A	
3	178~186	8.62	302	267. 4	18.2	STS410	
4	187~189	8.62	302	267. 4	18.2	STS410	
5	194~198A	3, 43	182	318.5	14.3	STPT410	
9	$268 \sim 269, 268 \sim 281$ $284 \sim 164$	8.62	302	165.2	14.3	SFVAF11A	
7	269~271, 281~284	8.62	302	165.2	14.3	STPT410	

計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 FDW-T-1

** 中	华万十八四年	最高使用圧力	最高使用压力最高使用温度	外径	と世]\ \(\frac{1}{2}\)	
毎 0 <u>-</u>		(MPa)	(S)	(mm)	(mm)	Ž Į	
8	350~365A	8.62	302	165.2	14.3	STPT410	
6	272~275	8.62	302	165.2	14.3	STPT410	
10	777S~280A	8.62	302	165.2	14.3	STPT410	
11	195~1951	3.43	182	114.3	6.0	SFVC2B	
12	$1951 \sim 287, 288 \sim 297A$	3, 43	182	114.3	6.0	STPT410	
13	182~350	8.62	302	165.2	14.3	SFVC2B	

配管の付加質量

鳥瞰図 FDW-PD-2

質量	対応する評価点
	$4\sim6, 7\sim8, 1201\sim1301, 1501\sim1801, 2001\sim2301$
	2501~30
	8~1201, 1301~1501, 1801~2001, 2301~2501
	$17\sim33,3601\sim3701,4001\sim4101,4301\sim44N,22\sim47$
	5001~5101, 5301~54N, 27~57, 6001~6101, 6401~6501
	6701~68N
	$33\sim3601, 3701\sim4001, 4101\sim4301, 47\sim5001, 5101\sim5301$
	$57\sim6001,6101\sim6401,6501\sim6701$

配管の付加質量

鳥瞰図 FDW-T-1

質量	対応する評価点
	109~110, 164~165
	109~181K, 2811~2831
	181K∼183K
	183K∼185
	185~186, 187~189, 290~297A
	194∼198∧
	2841~164
	268~2691, 2721~277, 2771~2791
	268~2811, 2831~2841
	2691~271, 272~2721, 277~2771
	2791~280A
	195~287, 288~290
	182∼350K, 351K∼355K, 356K∼358K, 362K∼364K
	350K~351K, 355K~356K, 358K~359K, 361S~362K, 364K~365A
	359K~361S

弁部の寸法

鳥瞰図 FDW-PD-2

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				6~7			

弁部の寸法

鳥瞰図 FDW-T-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
110~111				165~166			
186~187				189~190			
190~191				191~1911			
1911~192				190~193			
271~272				287~288			

弁部の質量

鳥瞰図 FDW-PD-2

質量	対応する評価点	質量	対応する評価点
	3~4		6~7

弁部の質量

鳥瞰図 FDW-T-1

質量	対応する評価点	質量	対応する評価点
	110~111, 165~166		186~187
	189, 193		190
	191		192
	271~272		287~288

支持点及び貫通部ばね定数

鳥瞰図 FDW-PD-2

支持点番号	各軸	方向ばね定数(1	N/mm)	各軸回り回	転ばね定数(N	·mm/rad)
文付 付 付 付 十 	X	Y	Z	X	Y	Z
5						
** 12 **						
** 19 **						
** 19 **						
20						
** 24 **						
** 25 **						

支持点及び貫通部ばね定数

鳥瞰図 FDW-T-1

支持点番号	各軸	方向ばね定数(N/mm)	各軸回り回	転ばね定数()	N·mm/rad)
文付 小田 ケ	X	Y	Z	X	Y	Z
188						
1911						
198A						
2041						
270						
275						
280A						
293						
297A						
356						
365A						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計・建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	カ(MPa)	
17) 177 	(℃)	S _m	S y	S u	S _h
SFVC2B	306	125	186		
STS480	306	138	208		
STS410	306	122	181		
STPA23	302	_			101
SFVAF11A	302	_			120
STS410	302				103
STPT410	182				103
STPT410	302				103
SFVC2B	182				120
SFVC2B	302	_	_	<u> </u>	120

材料及び許容応力 使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	カ(MPa)	
17) 147	$({}_{\circ}\!\mathbb{C})$	S _m	S y	S u	S _h
SFVC2B	306	122	_		_
STS480	306	138	_		_
STS410	306	122			_
STPA23	302		_		103
SFVAF11A	302	_	_		119
STS410	302		_		103
STPT410	182				103
STPT410	302	_	_	_	103
SFVC2B	182	_	_	_	120
SFVC2B	302	_	_		120

4. 計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 設計・建設規格 PPB-3562の規定に基づく評価

	計容応力	$Min(3 \cdot S_m, 2 \cdot S_y)$	372
	計算応力	S_{prm}	12
最大於力	スポンド区分区分		В ргт
	評価点		22
]	鳥瞰図		FDW-PD-2

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 告示第501号第46条第3号の規定に基づく評価

366	0.2	S prm	22
3 • S _m	S_{prm}		
許容応力	計算応力	(公区)	評価点
一次応力評価 (MPa)	<i></i> \$←	最大於力	最大吃力

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管設計・建設規格 PPC-3520の規定に基づく評価

			一次応力評価 (MPa)	平価 (MPa)
最大応力 評価点		最大応力区分	計算応力 S p r m *2	許容応力 1.5・S _h 1.8・S _h
	\top		O L II	=
109		S p r m	82	151
109		S _{p r m}	88	181

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管 告示第501号第56条第1号の規定に基づく評価

最大応力評価点	最大応力区分区分	計算応力 S p r m S p r m	許容応力 S _h 1.2・S _h
109	$_{ m p\ r\ m}^{*1}$	45	103
109	S p r m	45	123

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。

なお,保守的な評価となる告示第501号第56条第1号ロに基づき計算した一次応力を 記載してもよいものとする。

*2: 告示第501号第56条第1号ロに基づき計算した一次応力を示す。

K7 ① V-3-3-3-1-2-1-2 R1

5. 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、計算条件及び 評価結果を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

	_	_		_	_
		丰	¥ -		\circ
*		松库	Ŕ Ķ	5.39	5.23
重大事故等時*	一次応力	計容応力	(MPa)	372	372
重	計算応力	(MPa)	69	7.1	
	早型延	美国士	22	22	
	馬称ドルデ	FDW-PD-1	FDW-PD-2		
	Ž	OZ		1	2

注記*:設計・建設規格 PPB-3562に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

		军 47	X >		\bigcirc
√*		 	松	5.30	5.22
許容応力狀態 V^*	一次応力	許容応力	(MPa)	998	998
許容		計算応力	(MPa)	69	02
		三亚(用 片	美里士	22	22
	国籍を利用			FDW-PD-1	FDW-PD-2
	N	ONI		1	2

注記*:告示第501号第46条第3号に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

1					
			举业	4	0
	2		松库	X E	2.05
	重大事故等時*2	一次応力	計算応力 許容応力	(MPa)	181 2.05
	重力		計算応力	(MPa)	88
]			早 野延	H H	109
			作 素		0
	<1		松库	X X	1.84
	重大事故等時*1	一狹応力	許容応力	(MPa)	151 1.84 \bigcirc 109
	重力		計算応力	(MPa)	82
			早	\	601
		開発した。			FDW-T-1
			1		

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

					ı
		年刊	× × × × × × × × × × × × × × × × × × ×	0	
z*2		松库	足区	2.73	
許容応力狀態V	一狹応力	許容応力	(MPa)	123	
許容)	'	計算応力	(MPa)	45	
		並 年	i i	109	
		10年十	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	
.*1		松库	臣 文	2.28	
許容応力狀態V*1	一次応力	許容応力	(MPa)	103	
許容,	'	計算応力	(MPa)	45	
		並無片	Į E	109	
	其所			FDW-T-1	
	\(\frac{1}{2}\)	OVI		1	

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。 *2:告示第501号第56条第1号ロに基づき計算した一次応力を示す。

V-3-3-3-2 残留熱除去設備の強度計算書

V-3-3-3-2-1 残留熱除去系の強度計算書

V-3-3-3-2-1-1 残留熱除去系熱交換器の強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-8「重大事故等クラス2 容器の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

• 評価条件整理表

		施設時の 技術基準		2	ラスアップす	アップするか		条件アップするか					既工認に			TO ANY LIL	
機器名 成器 成器	既設 or	に対象と	7	ラス	施設時	DB	SA	条件	DB	条件	SA	条件	おける	施設時の 適用規格	評価区分	同等性 評価 区分	評価クラス
\$0000 A	新設	する施設 の規定が あるか		ップ 有無	機器クラス	クラス	クラス	アップ の有無	アップ 圧力 温度 圧力	温度 (℃)	- 評価結果 の有無	超用規倍	20050 a 900 s 6 m m m m m m	区分	222		
			管側	無	DB-2	DB-2	SA-2	無	3.43	182	3, 43	182	有	S55告示	既工認	_	SA-2
残留熱除去系熱交換器	既設	有	胴側	有	DB-3	DB-3	SA-2	有	1. 37	70	1. 37	90	-	S55告示	設計・建設規格 又は告示		SA-2

目 次

1.	根	死要・				• •	• •	• •		181 5	٠		• •		• •	٠.	 ٠.		•	٠.	٠.		٠.	 ٠	 	 ٠.		 	٠		•	٠.	1
2.	計	算条件	· ·			• •		• •				• :•:					 	• •							 	 	 	 ٠.	•	٠.			2
2.	1	計算部	3位	•											٠.		 			٠.				 ٠	 • •	 	 	 	٠				2
2. 2	2	設計条	:件														 	•					٠,		 	 		 ٠.	٠		* 1		2
3.	弱	食計算	[.				٠.								٠.		 								 	 		 	٠				3
3.	1	容器の)胴(の厚	厚さ	の	計	算			•				٠.		 ٠.	•				٠.			 	 		 	•		•		3
		容器の																															5
3. 3	3	容器の	管台	台0)厚	さ	の	計算									 	• •		٠.	٠.	٠.	٠.		 	 		 ٠.	٠				6
3. 4	4	容器の	補引	強を	字要	し	なり	115	穴の	り長	是し	大行	圣(D	計	算		• •					٠.	 •	 	 ٠.	 	 			• 0		10
3. 5	5	容器の	穴の	刀有	前強	計:	算										 								 	 	 	 	1.0				12

1. 概要

本計算書については、重大事故等対処設備としての評価結果を示すものであるが、残留熱除去系熱交換器の管側は設計基準対象施設としての使用条件を超えないことから、管側の評価結果については平成4年3月27日付け3資庁第13034号にて認可された工事計画のIV-3-1-3-1「残留熱除去系熱交換器の強度計算書」による。

2. 計算条件

2.1 計算部位

概要図に強度計算箇所を示す。

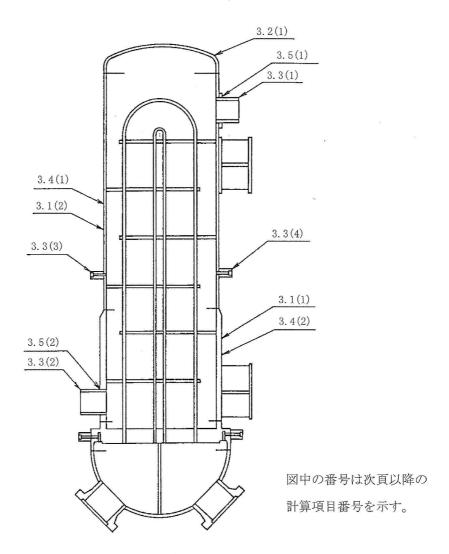


図2-1 概要図

2.2 設計条件

最高使用圧力(MPa)	胴側	1. 37
最高使用温度(℃)	胴側	90

3. 強度計算

3.1 容器の胴の厚さの計算 設計・建設規格 PVC-3120

胴板名称			(1)胴側胴板
材料			SGV480
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(℃)	90
胴の内径	Dі	(mm)	1600.00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t ı	(mm)	3. 00
必要厚さ	t 2	(mm)	9. 20
tı, t2の大きい値	t	(mm)	9. 20
呼び厚さ	tso	(mm)	32. 00
最小厚さ	t s	(mm)	
評価: t s ≧ t , よって-	一分である。		

容器の胴の厚さの計算 設計・建設規格 PVC-3120

胴板名称			(2) 胴側胴板
材料			SGV480
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(℃)	90
胴の内径	Dі	(mm)	1600. 00
許容引張応力	S	(MPa)	120
継手効率	η		1. 00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t 1	(mm)	3. 00
必要厚さ	t 2	(mm)	9. 20
t 1, t 2の大きい値	t	(mm)	9. 20
呼び厚さ	tso	(mm)	16. 00
最小厚さ	t s	(mm)	
評価: t s≥ t, よって+	分である。		

3.2 容器の鏡板の厚さの計算

(イ) 設計・建設規格 PVC-3210

鏡板の形状

鏡板名称			(1) 胴側鏡板	
鏡板の内面における長径	DiL	(mm)	1600.00	
鏡板の内面における短径の1/2	h	(mm)	400.00	
長径と短径の比	DiL/	(2 · h)	2.00	
評価:Dil/ (2・h) ≦2, よ	って半だ	円形鏡板で	ある。	

(ロ) 設計・建設規格 PVC-3220

鏡板の厚さ

現(X V)子 C			
鏡板名称			(1) 胴側鏡板
材料			SGV480
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(°C)	90
胴の内径	Dі	(mm)	1600.00
半だ円形鏡板の形状による係数	K		1.00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			-
必要厚さ	t ı	(mm)	9. 20
必要厚さ	t 2	(mm)	9. 15
t 1, t 2の大きい値	t	(mm)	9, 20
呼び厚さ	tco	(mm)	16.00
最小厚さ	tc	(mm)	
評価:tc≧t,よって十分であ	る。		

3.3 容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称			(1) 胴側入口
材料			STS410-S
最高使用圧力	Р	(MPa)	1. 37
最高使用温度	,	(℃)	90
管台の外径	Dο	(mm)	406. 40
許容引張応力	S	(MPa)	103
継手効率	η		1. 00
継手の種類			継手無し
放射線検査の有無			
必要厚さ	t 1	(mm)	2. 69
必要厚さ	tз	(mm)	3. 80
t 1, t 3の大きい値	t	(mm)	3. 80
呼び厚さ	tno	(mm)	12. 70
最小厚さ	t n	(mm)	
評価: tn≧t, よって+	分である。		

容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称			(2) 胴側出口
材料			STS410-S
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(℃)	90
管台の外径	Dο	(mm)	406. 40
許容引張応力	S	(MPa)	103
継手効率	η		1. 00
継手の種類			継手無し
放射線検査の有無			-
必要厚さ	t ı	(mm)	2. 69
必要厚さ	tз	(mm)	3. 80
t 1, t 3の大きい値	t	(mm)	3, 80
呼び厚さ	tno	(mm)	12. 70
最小厚さ	tn	(mm)	
評価: t n ≧ t , よって+	一分である。		в

容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称			(3) 胴側ベント
材料			SFVC2B
最高使用圧力	Р	(MPa)	1.37
最高使用温度		(℃)	90
管台の外径	Dο	(mm)	65. 00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			
必要厚さ	t ı	(mm)	0.37
必要厚さ	tз	(mm)	2. 70
t 1, t 3の大きい値	t	(mm)	2. 70
呼び厚さ	tno	(mm)	15. 25
最小厚さ	tn	(mm)	
評価:tn≧t,よって+	一分である。		

容器の管台の厚さの計算 設計・建設規格 PVC-3610

管台名称			(4) 胴側ドレン
材料			SFVC2B
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(℃)	90
管台の外径	Do	(mm)	65. 00
許容引張応力	S	(MPa)	120
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			
必要厚さ	t ı	(mm)	0. 37
必要厚さ	tз	(mm)	2.70
t 1, t 3の大きい値	t	(mm)	2.70
呼び厚さ	tno	(mm)	7. 95
最小厚さ	tn	(mm)	
評価: t n ≧ t, よって+	分である。		

3.4 容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称			(1)胴側胴板	
材料			SGV480	
最高使用圧力	Р	(MPa)	1. 37	
最高使用温度		(℃)	90	
胴の外径	D	(mm)	1632.00	
許容引張応力	S	(MPa)	120	
胴板の最小厚さ	t s	(mm)		
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無				
$d_{r_1} = (D - 2 \cdot t_s)$	/4	(mm)		
61, drュの小さい値		(mm)		
K				
D·ts		(mm^2)		
200, d r 2の小さい値 (mm)		(mm)	148. 62	
補強を要しない穴の最大	径	(mm)	148. 62	
評価:補強の計算を要する穴の名称			胴側入口(3.5(1))	

容器の補強を要しない穴の最大径の計算 設計・建設規格 PVC-3150(2)

胴板名称	A 4 100 TO 10 TO 1		(2) 胴側胴板	
材料			SGV480	
最高使用圧力	P	(MPa)	1.37	
最高使用温度		(℃)	90	
胴の外径	D	(mm)	1664.00	
許容引張応力	S	(MPa)	120	
胴板の最小厚さ	t s	(mm)		
継手効率	η		1.00	
継手の種類			継手無し	
放射線検査の有無				
$d r_1 = (D-2 \cdot t_s) / 4$		(mm)		
61, drュの小さい値		(mm)		
K	1.50 0.00			
D·ts		(mm^2)		
200, dr₂の小さい値	0	(mm)	200.00	
補強を要しない穴の最大径		(mm)	200. 00	
評価:補強の計算を要する穴の名称			胴側出口(3.5(2))	

3.5 容器の穴の補強計算 設計・建設規格 PVC-3160

			参照附図 WELD-1
部材名称			(1) 胴側入口
同板材料			SGV480
曾台材料	mentalement to the second		STS410-S
強め板材料 ニューニー			SGV480
最高使用圧力	P	(MPa)	1. 37
最高使用温度		(℃)	90
同板の許容引張応力	S s	(MPa)	120
管台の許容引張応力	Sn	(MPa)	103
歯め板の許容引張応力	S e	(MPa)	120
穴の径	d	(mm)	
普台が取り付く穴の径	d w	(mm)	416. 40
同板の最小厚さ	t s	(mm)	
管台の最小厚さ	t n	(mm)	
同板の継手効率	η		1.00
系数	F		1.00
同の内径	Dі	(mm)	1600.00
同板の計算上必要な厚さ	tsr	(mm)	9. 20
舎台の計算上必要な厚さ	tnr	(mm)	
たの補強に必要な面積	Ar	(mm ²)	
甫強の有効範囲	X 1	(mm)	
甫強の有効範囲	X 2	(mm)	
浦強の有効範囲	X	(mm)	
浦強の有効範囲	Y 1	(mm)	
強め板の最小厚さ	te	(mm)	
歯め板の外径	Ве	(mm)	525. 00
管台の外径	Don	(mm)	406. 40
容接寸法	L 1	(mm)	9. 00
容接寸法	L 2	(mm)	9.00
同板の有効補強面積	A 1	(mm^2)	
萱台の有効補強面積	A 2	(mm ²)	
すみ肉溶接部の有効補強面		(mm^2)	162.0
強め板の有効補強面積	A 4	(mm ²)	
浦強に有効な総面積	Αο	(mm ²)	
評価: Ao>Ar, よって+	···	(imi /]	3
	F		
X1=X2でない場合の確	認	· · · · · · · · · · · · · · · · · · ·	
たの補強に必要な面積	ArD	(mm ²)	
同板の有効補強面積	Aid	(mm ²)	
管台の有効補強面積	A2D	(mm ²)	
すみ肉溶接部の有効補強面		(mm ²)	81. 00
強め板の有効補強面積	A _{4D}	(mm ²)	01.00
補強に有効な総面積	Aod	(mm ²)	
冊低に有効な心面積 評価:AoD≧ArD, よっ	~		

注記*:X2は構造上取り得る範囲とした。

部材名称			(1) 胴側入口
大きい穴の補強		31	(27 AIAN) VII
補強を要する穴の限界径	d i	(mm)	533. 33
評価: d ≦ d j, よって大きし			
	2 - 2 1114-12		
溶接部にかかる荷重	W 1	(N)	
溶接部にかかる荷重	W 2	(N)	
溶接部の負うべき荷重	W	(N)	
すみ肉溶接の許容せん断応力	Swı	(MPa)	55
突合せ溶接の許容せん断応力	S w 2	(MPa)	67
突合せ溶接の許容引張応力	Sw3	(MPa)	. 84
管台壁の許容せん断応力	Sw4	(MPa)	72
応力除去の有無			無し
すみ肉溶接の許容せん断応力を		F 1	0.46
突合せ溶接の許容せん断応力を		F 2	0. 56
突合せ溶接の許容引張応力係		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	3.171×10^{5}
すみ肉溶接部のせん断力	W e 3	(N)	4.097×10^{5}
突合せ溶接部のせん断力	W e 4	(N)	2. 145×10 ⁵
突合せ溶接部の引張力	W e 6	(N)	
突合せ溶接部の引張力	W e 7	(N)	
突合せ溶接部の引張力	W e 8	(N)	
突合せ溶接部の引張力	W e 9	(N)	
管台のせん断力	W e 1 0	(N)	4.320×10^{5}
予想される破断箇所の強さ	Webpı	(N)	1.829×10^6
予想される破断箇所の強さ	Webp2	(N)	1.184×10^6
予想される破断箇所の強さ	Wеррз	(N)	1.380×10^{6}
予想される破断箇所の強さ	Webp4	(N)	1.056×10^6
予想される破断箇所の強さ	Webp5	(N)	1.549×10^6
予想される破断箇所の強さ	Webp6	(N)	7.491×10^5
Manager and the contract of th	$p \ge W$, W	е b рз≧1	W, Webp4 \geq W, Webp5 \geq W, Webp6 \geq W
以上より十分である。			

容器の穴の補強計算 設計・建設規格 PVC-3160

参照附図	TATET	D-3
SON FIELDING SALE	VV 11. 1.	11 - 0

部材名称			(2) 胴側出口
胴板材料			SGV480
管台材料			STS410-S
最高使用圧力	Р	(MPa)	1. 37
最高使用温度		(℃)	90 .
胴板の許容引張応力	S s	(MPa)	120
管台の許容引張応力	Sn	(MPa)	103
穴の径	d	(mm)	
管台が取り付く穴の径	d w	(mm)	406. 40
胴板の最小厚さ	t s	(mm)	
管台の最小厚さ	tn	(mm)	
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(mm)	1600.00
胴板の計算上必要な厚さ	tsr	(mm)	9. 20
管台の計算上必要な厚さ	tnr	(mm)	
穴の補強に必要な面積	Αr	(mm^2)	
補強の有効範囲	X 1	(mm)	
補強の有効範囲	X 2	(mm)	
補強の有効範囲	X	(mm)	
補強の有効範囲	Υı	(mm)	
管台の外径	Don	(mm)	406. 40
溶接寸法	Lı	(mm)	11. 00
2			
胴板の有効補強面積	A 1	(mm ²)	
管台の有効補強面積	A 2	(mm^2)	
すみ肉溶接部の有効補強面	積 A ₃	(mm^2)	121.0
補強に有効な総面積	Αo	(mm^2)	
評価:Ao>Ar, よって+	一分である。		

部材名称			(2) 胴側出口		
大きい穴の補強					
補強を要する穴の限界径 dj (mm)			533. 33		
評価: d ≦ d j , よって大	きい穴の補強	計算は必要ない。			
溶接部にかかる荷重	W ı	(N)			
溶接部にかかる荷重	W 2	(N)			
溶接部の負うべき荷重	W	(N)			
評価:W<0,よって溶接	部の強度計算	は必要ない。			
以上より十分である					

V-3-3-3-2-1-2 残留熱除去系ポンプの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-10「重大事故等クラス2ポンプの強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

既設 機器名 or 新設	施設時の技術基準	は は は は は は は は は は は は は は は は は は は			条件アップするか			既工認に									
	成設 or に対象と	クラス	施設時		条件	DB	条件	SA	条件	おける	施設時の	評価区分	同等性 評価	評価			
	新設	新設する施設の規定があるか	が設 の規定が	新設 の規定が	アップ の有無	機器 クラス	DB クラス	S A クラス		圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分
残留熱除去系ポンプ	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	無	S55告示	設計・建設規格 又は告示		SA-2	

目 次

1. 言	計算条件	1
1. 1	ポンプ形式	1
1.2	計算部位	1
1.3	設計条件	2
2. 剪	魚度計算	2
2. 1	ケーシングの厚さ	2
2.2	ケーシングの吸込み及び吐出口部分の厚さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.3	ケーシングカバーの厚さ	3
2.4	ボルトの平均引張応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.5	耐圧部分等のうち管台に係るものの厚さ	5

1. 計算条件

1.1 ポンプ形式

ターボポンプであって、ケーシングが軸垂直割りで軸対称であるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

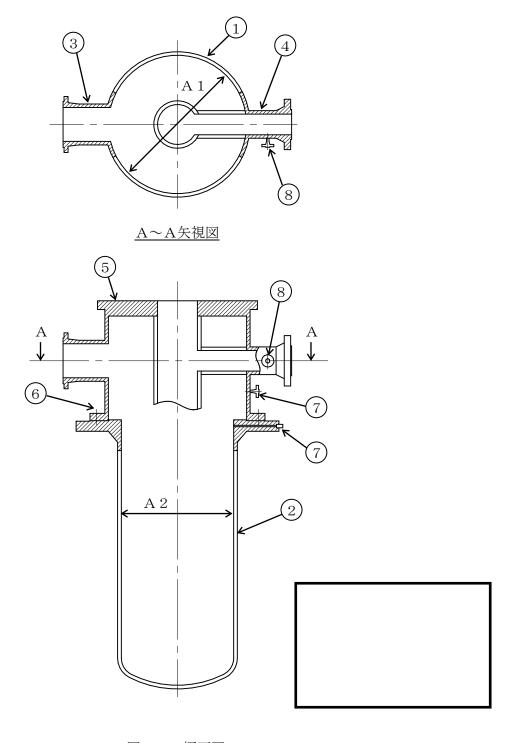


図1-1 概要図

1.3 設計条件

設計条件	吐出側	吸込側
最高使用圧力(MPa)	3. 43	1. 37
最高使用温度(℃)	182	182

2. 強度計算

2.1 ケーシングの厚さ

設計・建設規格 PMC-3320

HX FI AL	px/ye/pa Time 002				
計算部位	材料	P (MPa)	S (MPa)	A 1 (mm)	A_2 (mm)
①		1. 37			
2		1. 37			

t	t _{so}	t _s	注記*:	
(mm)	(mm)	(mm)		
10. 0	38. 0			
8. 4				

評価: $ts \ge t$, よって十分である。

2.2 ケーシングの吸込み及び吐出口部分の厚さ

設計·建設規格 PMC-3330

(単位:mm))
---------	---

計算部位	r i	r m	ℓ	t	tℓo	tℓ
3	219. 1	224. 1	23. 7	10. 0		
4	145. 0	150. 0	19. 4	10. 0		

評価: $t_{\ell} \ge t$, よって十分である。

2.3 ケーシングカバーの厚さ

告示第501号第77条第5項第1号

計算部位 材料		Р	S	平板形		
	(MPa)	(MPa)	d (mm)	K		
5		1. 37				

t	t_{so}	t _s
(mm)	(mm)	(mm)
138.8		

評価: $ts \ge t$, よって十分である。

2.4 ボルトの平均引張応力

設計·建設規格 PMC-3510

計算部位	材料	P (MPa)	S b (MPa)	dь (mm)	n	А b (mm²)
6		1. 37				

ガスケット材料	ガスケット厚さ (mm)	ガスケット 座 面 形 状	G s (mm)	G (mm)	D g (mm)
セルフシールガスケット(ゴム)	_	_			

H (N)	Нр (N)	W _{m 1} (N)	W _{m 2} (N)	W (N)	σ (MPa)
	_		0		51

評価: $\sigma \leq S_b$, よって十分である。

2.5 耐圧部分等のうち管台に係るものの厚さ

設計·建設規格 PMC-3610

	2.11.								
計算部位	材料	P (MPa)	S (MPa)	D o (mm)					
7		1. 37							
8		3. 43							

継手の種類	放射線透過試験の有無	η
継手無し		1.00
継手無し		1.00

t (mm)	tso	ts (mm)
0.2		
0.4		

評価: $t s \ge t$, よって十分である。

V-3-3-3-2-1-3 残留熱除去系ストレーナの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

施設時の			クラスアップするか			条件アップするか										
機器名	既設 or 新設	技術基準に対象とする施設の規定があるか	クラス アップの 有無	施設時 機器 クラス	DB クラス	S A クラス	条件 アップ の有無	DB条 圧力 (MPa)	件 温度 (℃)	S A 条作 圧力 (MPa)	生 温度 (°C)	既工認における評価結果の有無	施設時の適用規格	評価区分	同等性 評価 区分	評価クラス
残留熱除去系ストレーナ	既設	有	無	DB-2	DB-2	SA-2	有	[0. 310]*1	104*2	[0. 620]*1	166	_	設計·建設規格*3	設計・建設規格		SA-2

注記*1:残留熱除去系ストレーナは、その機能及び構造上の耐圧機能を必要としないため、最高使用圧力を設定しないが、ここでは、原子炉格納容器(内圧)の最高使用圧力を[]内に示す。

*2:サプレッションチェンバの最高使用温度を示す。

*3:「沸騰水型原子力発電設備における非常用炉心冷却設備及び格納容器熱除去設備に係るろ過装置の性能評価及び構造強度評価について」(平成 17・10・13 原院第 4 号 (平成 17 年 10 月 25 日)) に従い、大型化改造工事時に大型化改造工認を提出。

目 次

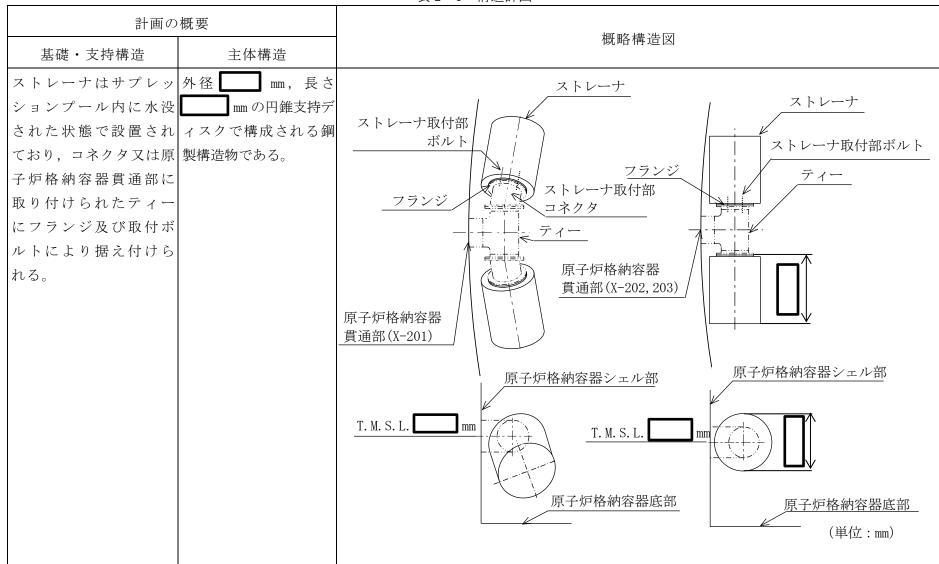
1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
2.2 評価方針	3
2.3 適用規格・基準等	4
2.4 記号の説明	5
2.5 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 評価部位	7
4. 構造強度評価 ·····	10
4.1 構造強度評価方法	10
4.2 荷重の組合せ及び許容応力	10
4.2.1 荷重の組合せ及び供用状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
4.2.2 許容応力	10
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
4.2.4 設計荷重	14
4.3 解析モデル及び諸元	17
4.4 計算方法 ·····	19
4.4.1 応力評価点	19
4.4.2 応力計算方法 ······	21
4.5 計算条件 ·····	27
4.6 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
5. 評価結果	27
5.1 重大事故等対処設備としての評価結果	27
C 引用女科	20

1. 概要

本計算書は、重大事故等クラス2機器として兼用される残留熱除去系ストレーナについて、 V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」 に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びそ の附属施設の技術基準に関する規則」(平成25年6月28日 原子力規制委員会規則第六号)(以 下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及 びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日 原規技発第1306194号) (以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、残留熱除去系ストレーナがこれらの要求事項に対して十分な強度を有することを 確認するための強度評価について示すものである。


以下, 重大事故等クラス2管としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

残留熱除去系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

 \sim

2.2 評価方針

残留熱除去系ストレーナの応力評価は、「2.1 構造計画」にて示す残留熱除去系ストレーナの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

残留熱除去系ストレーナの応力評価フローを図 2-1 に示す。

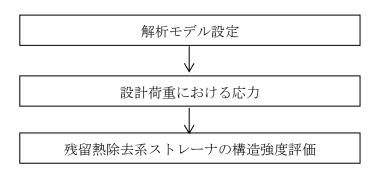


図 2-1 残留熱除去系ストレーナの応力評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12 原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
A	断面積	mm^2
a	ボルト穴中心円半径	mm
b	フランジ内半径	mm
D i	各部位の直径 (i =1, 2, 3…)	mm
d	孔径, ボルトの直径	mm
F	軸力	N
f t	ボルトの発生応力	MPa
L i	各部位の長さ (i =1, 2, 3…)	mm
ℓ	ディスク間ギャップ、ボルトのZ軸からの距離	mm
M	モーメント	N•mm
n	ボルトの本数	_
Р	孔の間隔 (中心間)	mm
t	板厚	mm
W	ストレーナ重心に作用する荷重	N
X	軸直角方向(水平)	_
Y	軸方向	_ _ _
Z	軸直角方向(鉛直)	_
β	形状係数	_
σr	曲げ応力	MPa

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

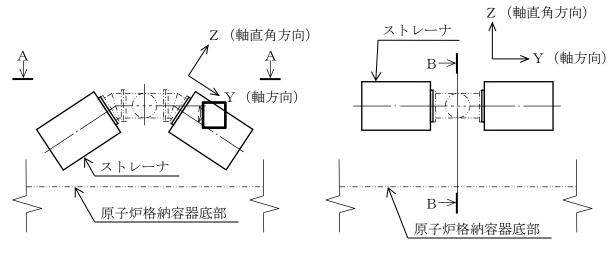
表 2-2 表示する数値の丸め方

	以口口 以(1) / 0							
数値の種類	単位	処理桁	処理方法	表示桁				
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1				
温度	$^{\circ}\!$	小数点以下第1位	四捨五入	整数位				
質量	kg	小数点以下第1位	四捨五入	整数位				
長さ	mm	_	_	整数位*2				
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*3				
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3				
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*3				
計算応力	MPa	小数点以下第1位	切上げ	整数位				
許容応力*4	MPa	小数点以下第1位	切捨て	整数位				

注記*1:必要に応じて小数点以下第3位表示とする。

*2: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。


*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は, 比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

3. 評価部位

残留熱除去系ストレーナの応力評価は、「4.1 構造強度評価方法」に示す条件に基づき、主要 部品であるディスク、スペーサ、リブ、コンプレッションプレート、フィンガ、ストラップ、フ ランジ及びストレーナ取付部ボルトについて実施する。

残留熱除去系ストレーナの取付け状況,形状及び主要寸法を図 3-1 及び図 3-2 に示し,ディスクセット幅及びスペーサ内径を表 3-1 に示す。

なお、残留熱除去系ストレーナは、ストレーナ取付部ボルトにて、残留熱除去系ストレーナ部 ティーに直接接続されるもの(貫通部番号: X-202、X-203)及びコネクタを介してストレーナ部 ティーに接続されるもの(貫通部番号: X-201)があり、本計算書においては評価上厳しくなるコ ネクタを介してストレーナ部ティーに接続されるもの(貫通部番号: X-201)を評価する。

貫通部番号: X-201

貫通部番号: X-202, X-203

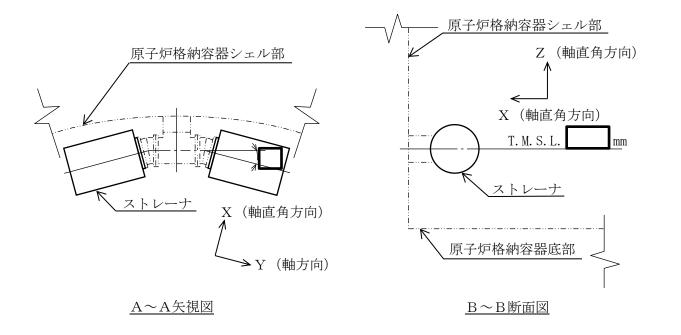


図 3-1 残留熱除去系ストレーナの取付け状況

	nm)
⑩フランジ,ストレーナ取付部ボルト (①~④及び⑩は多孔プレート形状であり,多孔プレートの厚さは mm である。)	

図 3-2 残留熱除去系ストレーナの形状及び主要寸法(単位:mm)

表 3-1 ディスクセット幅及びスペーサ内径

(単位:mm)

ディスクセット番号	ディスクセット幅	スペーサ内径
/ イハ/ L / L 面 ク		ハ 、 カド1庄

注:各部品寸法はインチから換算した値であるため、桁処理の影響で合計値が公 称値と一致しない場合がある。

4. 構造強度評価

4.1 構造強度評価方法

残留熱除去系ストレーナの質量には、ストレーナに付着する異物量を考慮し、荷重の算出に おいて組み合わせるものとする。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

残留熱除去系ストレーナの荷重の組合せ及び供用状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

残留熱除去系ストレーナの許容応力を表 4-3 に示す。なお、評価対象は、構造又は形状の不連続性を有する部分であることから、発生する一次一般膜応力は十分小さいため、一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

残留熱除去系ストレーナの許容応力評価条件を表 4-4 に示す。

なお、各評価部位の使用材料については以下のとおり。

多孔プレート	
リブ	
コンプレッションプレート	
フィンガ	
ストラップ	
フランジ	
ストレーナ取付部ボルト	

K7 ① V-3-3-3-2-1-3 R1

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

	施設区分	機器名称	機器等の区分	荷重の組合せ	供用状態
原子炉 冷却系統 施設	残留熱除去設備	残留熱除去系 ストレーナ	重大事故等クラス2	$D+P_{SAD}+M_{SAD}$	重大事故等時*
原子炉 冷却系統 施設	非常用炉心冷却設備その他原子炉注水設備	残留熱除去系 ストレーナ	重大事故等クラス2	$D+P_{SAD}+M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備格納容器スプレイ冷却系	残留熱除去系 ストレーナ	重大事故等クラス2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 サプレッションチェンバ プール水冷却系	残留熱除去系 ストレーナ	重大事故等クラス2	$D+P_{SAD}+M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備代替循環冷却系	残留熱除去系 ストレーナ	重大事故等クラス2	$D + P_{SAD} + M_{SAD}$	重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

					SRV荷重					
組合せ No.	運転状態	死荷重	異物 荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	供用状態
SA-1	運転状態V(L)	\circ	0	0						重大事故等時*
SA-2	運転状態V(S)	0	0	0				0		重大事故等時*
SA-3	運転状態V(S)	0	0	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0			重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-3 許容応力

(重大事故等クラス2管)

	許容限界				
供用状態	》	一次応力			
	一次一般膜応力	(曲げ応力含む)			
子上中北郊叶*		長期荷重 1.5・S			
重大事故等時*	S	短期荷重 1.8・S			

(重大事故等クラス2耐圧部テンションボルト)

供用状態	許容限界
重大事故等時*	2 · S

注記*:重大事故等時として運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-4 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件		S		Sу	S u	Sy (RT)
아이라 때를 구대	17) 14	(℃)		(MPa)		(MPa)	(MPa)	(MPa)
多孔プレート		最高使用温度	166			_		_
リブ,フランジ等		最高使用温度	166			_		_
ストレーナ取付部ボルト		最高使用温度	166			_		_

4.2.4 設計荷重
(1) 死荷重
残留熱除去系ストレーナの自重による荷重及び残留熱除去系ストレーナに付着する異物の
自重による異物荷重の2つの死荷重を考慮する。
残留熱除去系ストレーナの自重= N
異物荷重= N
(2) 差圧
差圧による荷重は、異物付着時の残留熱除去系ストレーナを通しての最大設計差圧より認
定し、以下のとおりとする。
また,差圧による荷重の作用方向を図 4-1 に示す。
差圧荷重 P dif = MPa

図 4-1 差圧荷重の作用方向

(3) 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

逃がし安全弁作動時及び原子炉冷却材喪失時には、サプレッションチェンバ内の水中構造物に様々な荷重が水力学的動荷重として作用する。これらの荷重については、原子力安全委員会が策定した評価指針(BWR, MARK-Ⅱ型格納容器圧力抑制系に加わる動荷重の評価指針(以下「MARK-Ⅱ動荷重指針」という。))に準じて荷重の評価を実施する。

MARK-Ⅱ動荷重指針に基づき、残留熱除去系ストレーナに加わる水力学的動荷重を算出した結果を表 4-5 に示す。表 4-5 に示した荷重は、考慮すべき水力学的動荷重が最大となる位置を選定して算出した値である。

なお、プールスウェル荷重のうち、ベントクリアリングは作用範囲外であるため評価対象 としない。また、残留熱除去系ストレーナは、水平ベント管から遠方かつ下方に設置されて いるため、プールスウェル及びフォールバック荷重は十分小さく評価対象としない。

また,逃がし安全弁作動時荷重のうち,水ジェット及び蒸気凝縮過程による荷重は十分小 さいため評価対象としない。

水力学的動荷重の作用方向を図4-2に示す。

軸方向の荷重は、引用文献(1)の考え方に基づき、最前列のディスクと最後列のディスクで 軸方向荷重の 1/2 ずつを受け持つとし、この荷重を最前列と最後列のディスクの投影面積で 除算し、軸方向の圧力荷重として作用させる。

軸直角方向の荷重は、ストレーナの片面のみで荷重を受け持つとし、ストレーナの片面の 投影面積で軸直角方向荷重を除算し、軸直角方向の圧力荷重として作用させる。

表4-5 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

(単位:N)

荷重名称		軸方向荷重	軸直角方向荷重	
	プールスウェル(気泡形成)*1			
LOCA後の荷重	蒸気凝縮 (CO) *1			
	チャギング (CH) *2			
SRV荷重(中小破断時)*3				

注:方向は図3-1参照。ただし、軸直角方向の荷重については、二乗和平方根としている。

注記*1:加速度ドラッグ荷重と定常ドラッグ荷重との代数和とする。

*2: 圧力パルス荷重とそのリングアウト荷重の代数和とする。

*3: 定常ドラッグ荷重と圧力荷重の二乗和平方根とする。

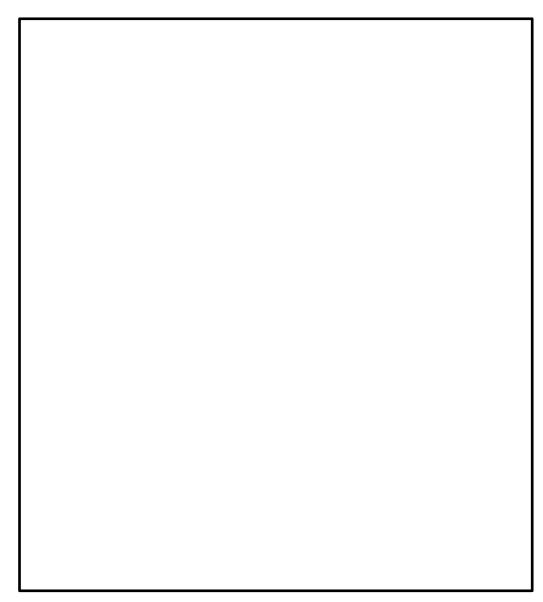


図 4-2 水力学的動荷重の作用方向

4.3 解析モデル及び諸元

残留熱除去系ストレーナの応答解析及び応力評価は、はりモデル及び三次元シェルモデルによる有限要素解析手法を適用する。なお、ストレーナ本体の応力計算に用いた三次元シェルモデル(以下「応力解析用モデル」という。)については、「4.4 計算方法」で説明する。本項においては、ストレーナから原子炉格納容器貫通部までをモデル化したはりモデル(以下「応答解析用モデル」という。)について説明する。解析モデルはV-2-5-3-1-3「残留熱除去系ストレーナの耐震性についての計算書」に示す応答解析用モデル及び応力解析用モデルと同じモデルである。

残留熱除去系ストレーナの応答解析用モデルを図 4-3 に、解析モデルの概要を以下に示す。 また、機器の諸元を表 4-6 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた 有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナに ついてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル 化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-3の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水 及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析に おいて考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム (解析コード)の概要」に示す。



図 4-3 応答解析用モデル

表 4-6 機器諸元

27 - 1/24 11 12 13 14 15 15 15 15 15 15 15					
項目	単位	入力値			
残留熱除去系ストレーナの材質					
残留熱除去系ストレーナの質量	kg/個				
残留熱除去系ストレーナの 内包水及び排除水の質量	kg/個				
ストレーナ1個あたりの異物の質量	kg/個				
温度	$_{\mathcal{C}}$	104			
縦弾性係数	MPa				
ポアソン比	_				
要素数	個				
節点数	個				

4.4 計算方法

4.4.1 応力評価点

残留熱除去系ストレーナは、図 3-2 に示すとおり、リブ及びフィンガが主強度部材となり各ディスクを支える構造になっている。各ディスクの表面は多孔プレートとなっており、ろ過装置としての機能を果たしている。作用する荷重の大部分は、フィンガにより支えられた各ディスクの多孔プレート表面に加わり、負荷された荷重は最終的にはリブに伝達される。したがって、ここではストレーナの主要構成部材である多孔プレート、リブ、コンプレッションプレート、フィンガ、ストラップ、フランジ及びストレーナ取付部ボルトの構造、形状を考慮した応力評価点を選定し、評価を実施する。

応力評価点を表 4-7 及び図 4-4 に示す。

表 4-7 応力評価点

名称		応力評価点番号	応力評価点
多孔	ディスク	P1	全ディスクセットの多孔プレート
プレート	スペーサ*	P2	ディスクセット間の円筒形多孔プレート
y	ブ	Р3	リブ
コンプレッシ	/ョンプレート	P4	コンプレッションプレート
フィンガ		P5	フィンガ
ストラップ		P6	ストラップ
フランジ		P7	フランジ
ストレーナ!	取付部ボルト	P8	ボルト

注記*:ボトムスペーサを含む。

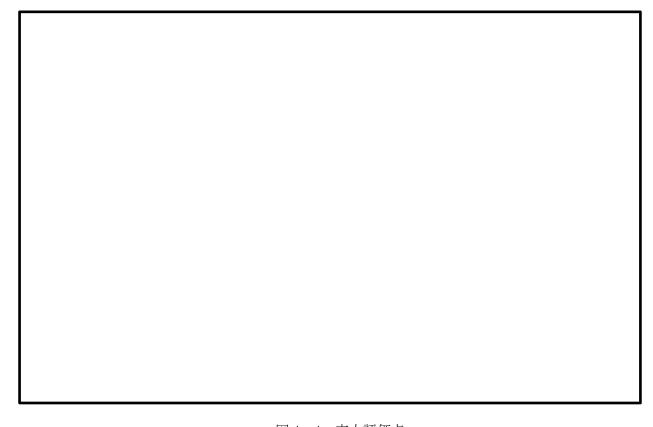


図 4-4 応力評価点

4.4.2 応力計算方法

応力計算方法について,以下に示す。なお,フランジ及びボルトについては作用する荷重 についても本項目で記載する。

(1) ストレーナ(応力評価点 P1~P6)

ストレーナの応力計算は応力解析用モデルにより行う。ストレーナの応力解析用モデル を図 4-5 に、解析モデルの概要を以下に示す。また、機器の諸元を表 4-8 に示す。

- a. 応力解析用モデルではストレーナをシェル要素を用いた有限要素モデルとしてモデル化して解析を行う。
- b. 計算モデルの各部材は溶接により接合されており、溶接部は健全性が確保されるよう 設計する。
- c. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力増倍率は,引用文献(2)の考え方に基づき設定する。
- d. 各部の質量は、各シェル要素に密度を与える。
- e. 4.2.4 で設定した設計荷重により残留熱除去系ストレーナに生じる応力は、解析コード「MSC NASTRAN」を使用して計算する。

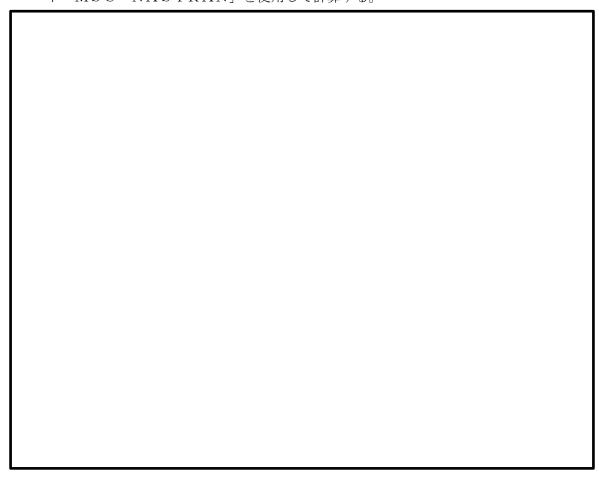


図 4-5 残留熱除去系ストレーナの計算モデル

表 4-8 機器諸元

	/ // // // // // // // // // // // // /	
項目	単位	入力値
残留熱除去系ストレーナの材質	_	
残留熱除去系ストレーナの質量	kg/個	
温度	$^{\circ}\!\mathbb{C}$	104
多孔プレートの等価縦弾性係数	MPa	
多孔プレートの等価ポアソン比	_	
多孔プレートの応力増倍率	_	
要素数	個	
節点数	個	

(2) フランジ (応力評価点 P7)

以下に示す計算方法により応力評価を行う。

ストレーナ取付部フランジは、一般的なフランジとは異なりガスケットを使用しない。 そこで、フランジを以下のようにモデル化する。

フランジを外周(ボルト穴中心円直径)が固定された平板と考え、表 4-9 に示すモーメントが中心部に作用すると考える。この場合の発生応力は、引用文献(3) より、図 4-6 に示す計算モデルで下記の計算式より求める。

$$\sigma r = \frac{\beta \cdot M_{\text{fmax}}}{a \cdot t^2}$$

ここに,

σ_r : 曲げ応力(MPa)

Mfmax:表4-9に示すモーメント(N·mm)

a : ボルト穴中心円半径= (mm)

b : フランジ内半径= (mm)

t : フランジ板厚= (mm)

β : b / a (=) から決まる計算上の係数=

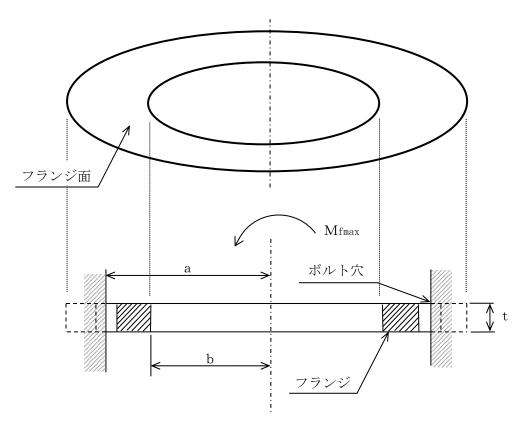


図 4-6 フランジ断面の計算モデル

ストレーナ取付部フランジの設計荷重は、ストレーナに作用する荷重から算出したフランジ部のモーメントを用いる。ここでのモーメントとは、図 4-7 に示すように、ストレーナ重心に作用する荷重とその作用点からフランジまでのモーメントアームから計算したモーメントであり、フランジに対して面外方向の曲げモーメント(2 方向ある面外方向曲げモーメントの二乗和平方根の合成値)とする。なお、プールスウェル荷重、蒸気凝縮荷重及びチャキング荷重については、応答解析より得られた、フランジに対する面外方向の曲げモーメントを用いる。

ストレーナ重心がフランジ中心軸上に位置することから,フランジ面内方向のモーメント (ねじりモーメント) は発生しないため,ここでは評価対象としない。

フランジの設計荷重を表 4-9 に示す。

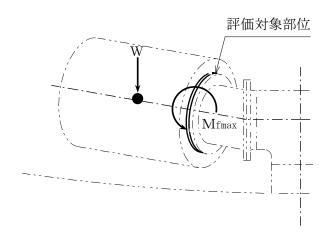


図 4-7 フランジに作用するモーメント

表 4-9 フランジの設計荷重

(単位:N·mm)

	荷重		モーメント		
1	死荷重	ſ			
2	異物荷重				
3	差圧				
4	SRV荷重				
5	プールスウェル(気泡形成)				
6	蒸気凝縮(CO)				
7	チャギング(CH)				

(3) ストレーナ取付部ボルト(応力評価点 P8)

ボルトには、表 4-9 に示すモーメントに加え、ストレーナの軸方向に発生する荷重によりボルトの軸方向荷重が発生する。

フランジに作用するモーメントにより,ボルトに生じる軸力は,以下のように算出する。

図 4-8 に示すフランジの中心を通る中立軸(Z軸)まわりのモーメントを考える。このとき、Z軸まわりのモーメントは、各ボルトに発生する軸力とボルトのZ軸からの距離の積から得られるモーメントとつりあっていると考えることができる。ここで、軸方向荷重によって中立軸が移動するが、軸方向荷重のボルトへの影響が小さいため、軸方向荷重による中立軸の移動は無視する。

したがって、Z軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

$$Mz = \sum_{k=1}^{n} F tk \cdot \ell k$$

ここに,

Mz : Z軸まわりのモーメント (N·mm)

Ftk : 各ボルトに発生する軸力(N)

ℓk : 任意のボルトkにおける Z 軸からの距離(mm)

n :ボルトの本数=

なお,ストレーナ重心がフランジ中心軸上に位置することから,フランジ面内方向のモーメント(ねじりモーメント)は発生しないため,ここでは評価対象としない。

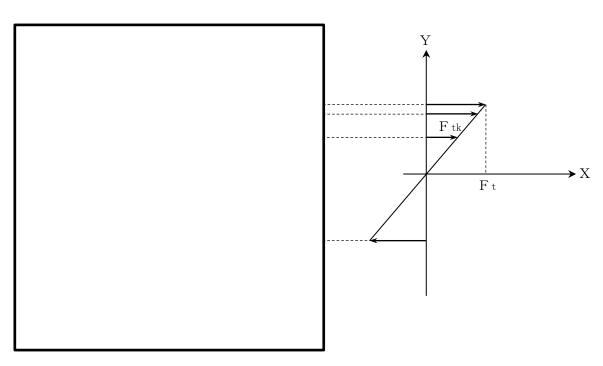


図 4-8 各ボルトに発生する軸力とモーメントアームの関係

また、ボルト軸力のZ軸まわりのモーメント寄与分は中立軸上ではゼロであり、図 4-8 に示すように、曲げモーメントを伝えるボルトの軸力は回転中心からの距離に比例して変化するとして算定する。この場合、ボルトに発生する最大の軸力をFtとすると、各ボルトに発生する軸力Ftは下記となる。

$$F_{tk} = F_t \cdot \frac{\ell_k}{D_5/2}$$

ここに, Ft : 最大の軸力が発生するボルトの軸力(N)

Ftk : 各ボルトに発生する軸力(N)

D₅ : ボルト孔中心円直径= (mm)

以上より、nが偶数の場合、Z軸まわりのモーメントは下記となる。

$$Mz = \frac{2 \cdot F_t}{D_5} \cdot \sum_{k=1}^{n} \ell_k^2 = \frac{F_t \cdot D_5 \cdot n}{4}$$

ただし、
$$\ell k = \frac{D_5}{2} \cdot \sin\{\frac{2 \cdot \pi}{n} \cdot (k-1)\}$$

よって、表4-9に示すモーメントから、ボルトの軸力は以下のように算出できる。

$$F_t = \frac{4 \cdot M_{\text{fmax}}}{D_5 \cdot n}$$

したがって, ボルトに発生する応力は下記となる。

$$f t = \frac{F t}{A s} + \frac{F ax1}{A s \cdot n}$$

ここに.

f t : ボルトの発生応力(MPa)

As : ボルトの有効断面積= $\frac{\pi \cdot d b^2}{4}$ (mm²)

d b : ボルトのねじ部谷径= (mm)

Faxl :表 4-10 に示す軸方向荷重(N)

ストレーナ取付部ボルトの設計荷重は、4.4.2項(2)に示すフランジに作用する最大モーメントに加え、ストレーナの軸方向に発生する荷重によりボルトの軸方向荷重を考慮した引張力を合算して応力評価を行う。フランジとボルトは摩擦接合であるため、ボルトに対するせん断力は作用しないものとする。

ボルトの設計荷重を表 4-10 に示す。

表 4-10 ボルトの設計荷重

(単位:N)

			(事)(上, N)				
	荷重	軸方向荷重					
1	死荷重						
2	異物荷重						
3	差圧						
4	SRV荷重						
5	プールスウェル(気泡形成)						
6	蒸気凝縮(CO)						
7	チャギング (CH)						

4.5 計算条件

応力解析に用いる自重及び荷重は、本計算書の「4.2 荷重の組合せ及び許容応力」及び「4.4 計算方法」に示す。

4.6 応力の評価

「4.4 計算方法」で求めた応力が表 4-3 及び表 4-4 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

残留熱除去系ストレーナの重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。 発生値は許容限界を満足している。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1 に示す。

なお、各評価点における計算応力は表 4-2 に示す荷重の組合せのうち、発生値が最も高い評価を記載している。

表 5-1 重大事故等時に対する応力評価結果 (D+Psad+Msad)

					重大事故等時		
評価対象設備		評価部位	応力分類	計算応力	許容応力	北手如人 丸	
				(MPa)	(MPa)	荷重組合せ	
	D1	全ディスクセットの	一次膜応力+	1.40	107	CA 9	
	P1	多孔プレート	一次曲げ応力	149	187	SA-3	
	DO	ディスクセット間の	一次膜応力+	0.1	107	CA O	
	P2	円筒形多孔プレート	一次曲げ応力	91	187	SA-3	
	Р3	11 -8	一次膜応力+	0.1	204	CA 0	
		リブ	一次曲げ応力	81		SA-3	
残留熱除去系	P4	コンプレッションプレート	一次膜応力+	0.1	004	SA-3	
ストレーナ			一次曲げ応力	31	204		
	P5		一次膜応力+	100	004	GA 0	
		フィンガ	一次曲げ応力	103	204	SA-3	
	P6		一次膜応力+		20.4	GA 0	
		ストラップ	一次曲げ応力	44	204	SA-3	
	P7	フランジ	曲げ応力	175	204	SA-3	
	P8	ボルト	引張応力	46	187	SA-3	

6. 引用文献

- (1) NEDO-32721, "Application Methodology for the General Electric Stacked Disk ECCS Suction Strainer" Licensing Topical Report, General Electric, March 2003.
- (2) ASME B&PV CODE, Section Ⅲ, Division 1, Appendices, Article A-8000, "Stresses in Perforated Flat Plates," 1989 Edition, No Addenda.
- (3) WARREN C. YOUNG
 - "ROARK'S FORMULAS for Stress and Strain"7th Edition

V-3-3-3-2-1-4 残留熱除去系ストレーナ部ティーの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。 評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

		施設時の		クラスアッ	プするか			条件	アップす	るか						
	既設	技術基準						DB条	件	SA条作	牛	既工認に			同等性	
機器名	or	に対象と	クラス	施設時	DB	S A	条件					おける	施設時の	評価区分	評価	評価
	新設	する施設	アップ	機器	クラス	クラス	アップ	圧力	温度	圧力	温度	評価結果	適用規格		区分	クラス
		の規定が	の有無	クラス			の有無	(MPa)	(\mathcal{C})	(MPa)	(℃)	の有無				
		あるか														
残留熱除去系 ストレーナ (ティー)	既設	有	無	DB-2	DB-2	SA-2	有		104*2	— [0. 620]* ¹	166	_	S55告示	設計・建設規格 又は告示	۱	SA-2

注記*1:残留熱除去系ストレーナ (ティー) は、その機能及び構造上の耐圧機能を必要としないため、最高使用圧力を設定しないが、ここでは、原子炉格納容器 (内圧) の最高使用圧力を [] 内に示す。

*2:サプレッションチェンバの最高使用温度を示す。

目 次

1.	概要	1
2.	一般事項	1
2.	1 構造計画	1
2.	2 評価方針	3
2.	3 適用規格・基準等	4
2.	4 記号の説明	5
2.	5 計算精度と数値の丸め方	6
3.	評価部位	7
4.	構造強度評価	8
4.	1 構造強度評価方法	8
4.	2 荷重の組合せ及び許容応力	8
4	4.2.1 荷重の組合せ及び供用状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4	4.2.2 許容応力	8
4	4.2.3 使用材料の許容応力評価条件	8
4	4.2.4 設計荷重	12
4.	3 解析モデル及び諸元	13
4.	4 計算方法	14
4	4.4.1 ティーの計算方法	14
4.	5 計算条件	15
4	4.5.1 応力解析に用いるモーメント	15
4.	6 応力の評価	16
5.	評価結果	16
5.	1 重大事故等対処設備としての評価結果	16

1. 概要

本計算書は、重大事故等クラス2機器として兼用される残留熱除去系ストレーナ部ティーについて、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(平成25年6月28日 原子力規制委員会規則第六号)(以下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日 原規技発第1306194号)(以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、残留熱除去系ストレーナ部ティーがこれらの要求事項に対して十分な強度を有することを確認するための強度評価について示すものである。

以下, 重大事故等クラス2管としての応力評価を示す。

2. 一般事項

2.1 構造計画

残留熱除去系ストレーナ部ティーの構造計画を表 2-1 に示す。

表 2-1 構造計画

		次 2 1 情足可圖
計画の概要		概略構造図
基礎・支持構造	主体構造	Wind III VEE
ストレーナ部ティーは、サプレッションプール内に水没された状態で設置されており、原子炉格納容器貫通部に取り付けられている。	ティー形の管継手	原子炉格納容器貫通部 (X-201) 残留熱除去系ストレーナ部ティー (貫通部: X-201) 原子炉格納容器貫通部 (X-202, 203) 残留熱除去系ストレーナ部ティー (貫通部: X-202, 203)

 \sim

2.2 評価方針

残留熱除去系ストレーナ部ティーの応力評価は、「2.1 構造計画」にて示すストレーナ部 ティーの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び 諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

残留熱除去系ストレーナ部ティーの応力評価フローを図 2-1 に示す。

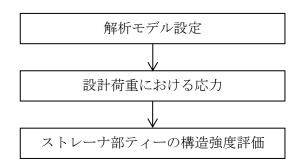


図 2-1 残留熱除去系ストレーナ部ティーの応力評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・建設規格」という。)
- ・発電用原子力設備に関する構造等の技術基準(昭和55年通商産業省告示第501号)(以下「告示第501号」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
$S_{ exttt{prm}}$	発生応力	MPa
P	最高使用圧力(設計圧力)	MPa
Do	管の外径	mm
t	管の厚さ	mm
B 1 *1	設計・建設規格 表 PPB-3812.1-1 で規定する応力係数(=)	_
B 2 b *1	設計・建設規格 式 PPB-4.29 により計算した分岐管の応力係数	_
	$= 0.4 \cdot \left(\frac{R_{m}}{T_{r}}\right)^{\frac{2}{3}} (= 1)$	
R m *1	主管の平均半径	mm
T r *1	主管の厚さ	mm
B 2 r *1	設計・建設規格 式 PPB-4.30 により計算した主管の応力係数	_
	$= 0.5 \cdot \left(\frac{R_{m}}{T_{r}}\right)^{\frac{2}{3}} (= 1)$	
M b *1	表 4-9 に示す分岐管に作用する最大モーメント	N•mm
M r *1	表 4-9 に示す主管に作用する最大モーメント	N•mm
Z b *1	分岐管の断面係数	mm^3
Z r *1	主管の断面係数	mm^3
Pm*2	内面に受ける最高の圧力	MPa
i1*2	告示第501号第57条に規定する応力係数又は1.33のいずれか	_
	大きい方の値	
	$=\frac{0.9}{h^{2/3}} (= $	
h*2	i1算出に必要な値	_
	$=4.4 \cdot \frac{t}{r}$	
r*2	h 算出に必要な値,管断面の平均半径 $= \frac{Do-t}{2}$	mm
Ma*2	での機械的荷重(自重その他の長期的荷重に限る)により生じる	N•mm
	モーメント	
Mb*2	管の機械的荷重(逃し弁又は安全弁の吹出し反力その他の短期的	N•mm
	荷重に限る)により生じるモーメント	
Z*2	管の断面係数= $\pi \cdot (r)^2 t_n$	mm^3
tn*2	管の厚さ	mm

注:ここで定義されない記号については、各計算の項目において説明する。

注記*1:設計・建設規格に規定の応力計算に用いる記号

*2:告示第501号に規定の応力計算に用いる記号

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	$^{\circ}\!\mathbb{C}$	小数点以下第1位	四捨五入	整数位
質量	kg	小数点以下第1位	四捨五入	整数位
長さ	mm	_	_	整数位*2
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*3
計算応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

注記*1:必要に応じて小数点以下第3位表示とする。

*2: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。

*4: 設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力 は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値と する。また、告示第501号別表に記載された許容引張応力は、各温度の値を SI単位に換算し、SI単位に換算した値の小数点以下第1位を四捨五入して、整 数位までの値とする。その後、設計・建設規格と同様の換算と桁処理を行う。

3. 評価部位

残留熱除去系ストレーナ部ティーの応力評価は,「4.1 構造強度評価方法」に示す条件に基づき,ストレーナ部ティーについて実施する。なお,残留熱除去系ストレーナ部ティーのフランジの評価は,コネクタ側フランジより板厚を大きく設計しており(ティー側フランジ厚さ mm),ティー側フランジにかかる荷重はコネクタ側フランジと同じであるため,V-3-3-3-2-1-5「残留熱除去系ストレーナ取付部コネクタの強度計算書」に示すコネクタ側フランジの評価に包含されるため,ここでは記載を省略する。

残留熱除去系ストレーナ部ティーの形状及び主要寸法を図3-1,図3-2及び表3-1に示す。

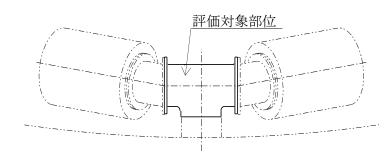


図 3-1 残留熱除去系ストレーナ部ティーの形状(貫通部番号: X-201)

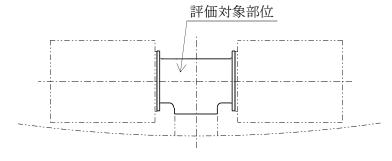


図 3-2 残留熱除去系ストレーナ部ティーの形状(貫通部番号: X-202, 203)

表 3-1 残留熱除去系ストレーナ部ティーの主要寸法

(単位:mm)

貫通部番号	外径	板厚	フランジ間距離		
X-201~203					

4. 構造強度評価

4.1 構造強度評価方法

ストレーナ部ティーは,ストレーナ部を含む一体モデルでの応答解析から得られたモーメントとストレーナ部から作用する荷重を用いて構造強度評価を行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

荷重の組合せ及び供用状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

残留熱除去系ストレーナ部ティーの許容応力を表 4-3 及び表 4-4 に示す。なお、評価対象は、基本板厚計算書で膜応力を考慮した最小板厚の評価を実施していることから、一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

残留熱除去系ストレーナ部ティーの許容応力評価条件を表 4-5 及び表 4-6 に示す。 なお、各評価部位の使用材料については以下のとおり。

K7 ① V-3-3-3-2-1-4 R1

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

	施設区分	機器名称	機器等の区分	荷重の組合せ	供用状態 (許容応力状態)
原子炉冷却系統施設	残留熱 除去設備	残留熱除去系 ストレーナ部ティー	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉冷却系統施設	非常用炉心冷却 設備その他 原子炉注水設備	残留熱除去系 ストレーナ部ティー	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 格納容器スプレイ冷却系	残留熱除去系 ストレーナ部ティー	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 サプレッションチェンバ プール水冷却系	残留熱除去系 ストレーナ部ティー	重大事故等クラス2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 代替循環冷却系	残留熱除去系 ストレーナ部ティー	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*

注記*: 重大事故等時として設計・建設規格に規定の応力計算では運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用い、告示第501号に規定の応力計算では運転状態V(L)は許容応力状態IA,運転状態V(S)は許容応力状態IVAの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

					SRV	/荷重		LOCA荷	重	
組合せ No.	運転状態	死荷重	異物 荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	供用状態 (許容応力状態)
SA-1	運転状態V(L)	0	0	0						重大事故等時*
SA-2	運転状態V(S)	0	0	0				0		重大事故等時*
SA-3	運転状態V(S)	0	\circ	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0			重大事故等時*

注記*: 重大事故等時として設計・建設規格に規定の応力計算では運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用い、告示第501号に規定の応力計算では運転状態V(L)は許容応力状態IA,運転状態V(S)は許容応力状態IVAの許容限界を用いる。

表 4-3 設計・建設規格に規定の応力計算に用いる許容応力(重大事故等クラス2管(クラス2,3管))

状態	一次一般膜応力	一次応力 (曲げ応力を含む)
重大事故等時*	S	長期荷重 1.5・S 短期荷重 1.8・S

注記*: 重大事故等時として運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-4 告示第501号に規定の応力計算に用いる許容応力(重大事故等クラス2管(第3種管))

状態	一次一般膜応力	一次応力 (曲げ応力を含む)
許容応力状態 V*	S	長期荷重 S 短期荷重 1.2・S

注記*: 重大事故等時として運転状態V(L)は許容応力状態IA, 運転状態V(S)は許容応力状態NAの許容限界を用いる。

表 4-5 使用材料の設計・建設規格に規定の応力計算に用いる許容応力評価条件(重大事故等対処設備)

評価部材	材料	温	S		
計加可炒	1/1 1/1	(°C)		(MPa)	
ティー		最高使用温度	166		

表 4-6 使用材料の告示第501号に規定の応力計算に用いる許容応力評価条件(重大事故等対処設備)

評価部材	材料		温度条件			S		
(1,044 mil 14			$(^{\circ}\!\mathbb{C})$			(MPa)	_	
ティー				最高使用温度	166			

4.2.4 設計荷重

ストレーナ部に作用する荷重(死荷重,水力学的動荷重等)はフランジを介してティーに伝達され、最終的に貫通部に伝達される。このため、ティーの設計荷重としては、ティー自身に作用する荷重に加え、先の伝達荷重を考慮する。

(1) 死荷重

ティーの死荷重を表 4-7 に示す。

表 4-7 死荷重

(単位:N)

		_
部位	残留熱除去系	
ティー		

(2) 差圧

ティーの設計圧力は MPa を考慮する。

4.3 解析モデル及び諸元

残留熱除去系ストレーナ部ティーの応答解析用モデルを図 4-1 に、解析モデルの概要を以下に示す。解析モデルはV-2-5-3-1-3「残留熱除去系ストレーナの耐震性についての計算書」に示す応答解析用モデルと同じモデルである。また、機器の諸元を表 4-8 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナについてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-1の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析において考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に 用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラ ム (解析コード)の概要」に示す。

図 4-1 応答解析用モデル

入力值 項目 単位 残留熱除去系 ストレーナ部ティーの材質 残留熱除去系 kg ストレーナ部ティーの質量 残留熱除去系ストレーナ部ティーの kg 内包水及び排除水の質量 ストレーナ1個あたりの異物の質量 kg/個 $^{\circ}$ C 温度 104 縦弾性係数 MPa ポアソン比 要素数 個 節点数 個

表 4-8 機器諸元

4.4 計算方法

4.4.1 ティーの計算方法

ティーに発生する応力は、設計・建設規格 PPC-3520 及び告示第501号第56条に従い算出する。なお、ティーの溶接継手は管の板厚の強度と同等以上となるように設計しているため、ここでは管について評価を行う。

設計・建設規格 PPC-3520 に基づく応力算出は以下の式に従う。

$$\mathbf{S}_{\text{prm}} \, = \, \frac{\mathbf{B}_{1} \, \cdot \mathbf{P} \cdot \mathbf{D}_{\text{o}}}{2 \cdot \mathbf{t}} \, + \, \frac{\mathbf{B}_{2 \, \text{b}} \, \cdot \mathbf{M}_{\text{b}}}{Z_{\text{b}}} \, + \, \frac{\mathbf{B}_{2 \, \text{r}} \, \cdot \mathbf{M}_{\text{r}}}{Z_{\text{r}}}$$

また、告示第501号第56条に基づく応力算出は以下の式に従う。

$$S_{prm} = \frac{P_{m} \cdot D_{o}}{4 \cdot t} + \frac{0.75 \cdot i_{1} \cdot \left(M_{a} + M_{b}\right)}{Z}$$

4.5 計算条件

4.5.1 応力解析に用いるモーメント

応力解析に用いるモーメントは、図 4-2 に示す主管と分岐管に作用するモーメントを用いる。主管のモーメントは「4.2.4 設計荷重」に示したようにストレーナからの伝達荷重を考慮し、分岐管のモーメントは先の伝達荷重に加え、ティー自身に作用する荷重から算出したモーメントを考慮する。

算出したモーメントを表 4-9 に示す。ここでのモーメントとは、設計・建設規格 解説 PPC-3520 の考え方に基づいて設定した 3 方向のモーメントを二乗和平方根で合成したものである。

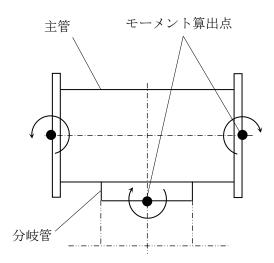


図 4-2 ティーのモーメント算出点

表 4-9 ティーの設計荷重

(単位:N·mm)

	荷重	モーメント				
	19. 里	主管	分岐管			
1	死荷重					
2	異物荷重					
3	差圧					
4	SRV荷重					
5	プールスウェル(気泡形成)					
6	蒸気凝縮(CO)					
7	チャギング (CH)					

4.6 応力の評価

「4.5 計算条件」で求めた応力が表 4-3,表 4-4,表 4-5 及び表 4-6 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

ティーの重大事故等時の状態を考慮した場合の評価結果を以下に示す。発生値は許容限界 を満足していることを確認した。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1,表 5-2 に示す。

なお、各評価点における計算応力は表 4-2 に示す荷重の組合せのうち、発生値が最も高い評価を記載している。

表 5-1 設計・建設規格に基づく重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

					重大事故等時		
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	共壬卯 人 1.	
				(MPa)	(MPa)	荷重組合せ	
残留熱除去系		V (C)	V/m	117	004	CA 0	
ストレーナ部ティー	ティー	V(S)	一次応力	117	204	SA-3	

表 5-2 告示第501号に基づく重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

					許容応力状態	V	
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	北壬卯人 1.	
				(MPa)	(MPa)	荷重組合せ	
残留熱除去系		V (C)	V/m	4.1	100	CA 0	
ストレーナ部ティー	ティー	V(S)	一次応力	41	136	SA-3	

V-3-3-3-2-1-5 残留熱除去系ストレーナ取付部コネクタ の強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

		施設時の		クラスアッ	プするか			条件	アップする	ッカッ						
	既設	技術基準						DB条何	‡	SA条作	+	既工認に			同等性	
機器名	or	に対象と	クラス	施設時	DВ	S A	条件					おける	施設時の	評価区分	評価	評価
	新設	する施設	アップの	機器	クラス	クラス	アップ	圧力	温度	圧力	温度	評価結果	適用規格		区分	クラス
		の規定が	有無	クラス	, , , ,	,,,,	の有無	(MPa)	(\mathcal{C})	(MPa)	(℃)	の有無				
		あるか														
残留熱除去系 ストレーナ	既設	有	無	DB-2	DB-2	SA-2	有	_	104*2	_	166	_	設計・建設 規格* ³	設計・建設 規格	_	SA-2
(コネクタ)								[0.310]*1		$[0.620]^{*1}$			A元1行	が、竹		

注記*1: 残留熱除去系ストレーナ (コネクタ) は,その機能及び構造上の耐圧機能を必要としないため,最高使用圧力を設定しないが,ここでは,原子炉格納容器(内圧)の最高使用圧力を [] 内に示す。

*2:サプレッションチェンバの最高使用温度を示す。

*3:「沸騰水型原子力発電設備における非常用炉心冷却設備及び格納容器熱除去設備に係るろ過装置の性能評価及び構造強度評価について」(平成 17・10・13 原院第4号(平成 17年 10月 25 日))に従い、大型化改造工事時に大型化改造工認を提出。

目 次

1. 概要	1
2. 一般事項	1
2.1 構造計画 ······	1
2.2 評価方針	3
2.3 適用規格・基準等	4
2.4 記号の説明	5
2.5 計算精度と数値の丸め方	6
3. 評価部位	7
4. 構造強度評価	8
4.1 構造強度評価方法	8
4.2 荷重の組合せ及び許容応力	8
4.2.1 荷重の組合せ及び供用状態	8
4.2.2 許容応力	8
4.2.3 使用材料の許容応力評価条件	8
4.2.4 設計荷重	12
4.3 解析モデル及び諸元	13
4.4 計算方法 ·····	14
4.4.1 コネクタの計算方法	14
4.4.2 フランジの計算方法	16
4.5 計算条件	18
4.6 応力の評価	18
5. 評価結果	19
5.1 重大事故等対処設備としての評価結果	19
6. 引用文献 ······	19

1. 概要

本計算書は、重大事故等クラス2機器として兼用される残留熱除去系ストレーナ取付部コネクタについて、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(平成25年6月28日原子力規制委員会規則第六号)(以下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日原規技発第1306194号)(以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号 (平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、残留熱除去系ストレーナ取付部コネクタがこれらの要求事項に対して十分な強度 を有することを確認するための強度評価について示すものである。

以下、重大事故等クラス2管としての応力評価を示す。

2. 一般事項

2.1 構造計画

残留熱除去系ストレーナ取付部コネクタの構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の	押 更	XII IIIZHE
		概略構造図
基礎・支持構造	主体構造	
ストレーナ取付部コネク	コネクタ	
タは,サプレッションプ		居 7 层板 4h 空 甲 毋 1 子 如
ール内に水没された状態		原子炉格納容器貫通部 ストレーナ (X-201)
で設置されており,ティ		
一及びストレーナの間に		ストレーナ取付部コネクタ
取り付けられる。		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		ディー ティー
		フランジ
		フランジ
		ティー側
		ストレーナ側
		(単位:mm)

 \sim

2.2 評価方針

残留熱除去系ストレーナ取付部コネクタの応力評価は、「2.1 構造計画」にて示すストレーナ取付部コネクタの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

残留熱除去系ストレーナ取付部コネクタの応力評価フローを図2-1に示す。

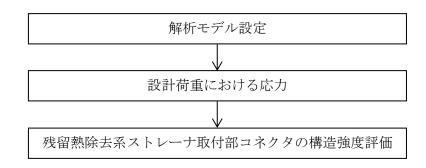


図 2-1 残留熱除去系ストレーナ取付部コネクタの応力評価フロー

2.3 適用規格・基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12 原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
В	応力係数	_
D	外径	mm
L	長さ	mm
M	モーメント	N•mm
Р	圧力	MPa
t	厚さ	mm
Z	断面係数	mm^3
σ	応力	MPa

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

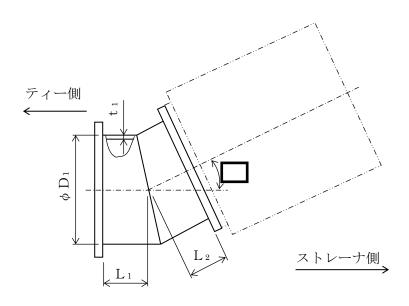
数値の種類	単位	処理桁	処理方法	表示桁
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	$^{\circ}\! \mathbb{C}$	小数点以下第1位	四捨五入	整数位
質量	kg	小数点以下第1位	四捨五入	整数位
長さ	mm	_	_	整数位*2
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*3
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*3
計算応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

注記*1:必要に応じて小数点以下第3位表示とする。

*2:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。

*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は、 比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。


3. 評価部位

残留熱除去系ストレーナ取付部コネクタの応力評価は、「4.1 構造強度評価方法」に示す条件に基づき、ストレーナ取付部コネクタ及びフランジについて実施する。

なお、V-3-3-3-2-1-3「残留熱除去系ストレーナの強度計算書」に示すストレーナ取付部ボルトの評価は、ストレーナ取付部で発生する荷重及びモーメントよりティーとコネクタ間で発生する荷重及びモーメントの方が大きいため、ティーとコネクタ間で発生する荷重及びモーメントを用いており、残留熱除去系ストレーナ取付部コネクタをストレーナ部ティーに取り付けるためのボルトの評価は、V-3-3-3-2-1-3「残留熱除去系ストレーナの強度計算書」に示すストレーナ取付部ボルトの評価に包含されるため、ここでは記載を省略する。

また、残留熱除去系ストレーナ取付部コネクタのフランジのうちストレーナと取り付けるフランジの評価は、ストレーナ側フランジより板厚を大きく設計しており(コネクタ側フランジ厚さ mm,ストレーナ側 mm)、V-3-3-3-2-1-3「残留熱除去系ストレーナの強度計算書」に示すストレーナ側フランジの評価に包含されるため、ここでは記載を省略する。

残留熱除去系ストレーナ取付部コネクタの形状及び主要寸法を図3-1に示す。

残留熱除去系ストレーナ取付部コネクタ(貫通部番号: X-201)

図 3-1 残留熱除去系ストレーナ取付部コネクタの形状及び主要寸法(単位:mm)

4. 構造強度評価

4.1 構造強度評価方法

ストレーナ取付部コネクタは、ストレーナ部を含む一体モデルでの応答解析から得られたモーメントとストレーナから作用する荷重を用いて構造強度評価を行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

残留熱除去系ストレーナ取付部コネクタの荷重の組合せ及び供用状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

残留熱除去系ストレーナ取付部コネクタの許容応力を表 4-3 に示す。なお、評価対象は、構造又は形状の不連続性を有する部分であることから、発生する一次一般膜応力は十分小さいため、一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

残留熱除去系ストレーナ取付部コネクタの許容応力評価条件を表 4-4 に示す。 なお、各評価部位の使用材料については以下のとおり。

コネクタ	
フランジ	

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

K7 ① V-3-3-3-2-1-5 R1

	施設区分	機器名称	機器等の区分	荷重の組合せ	供用状態
原子炉 冷却系統 施設	残留熱除去設備	残留熱除去系ストレーナ 取付部コネクタ	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉 冷却系統 施設	非常用炉心冷却設備 その他原子炉注水設備	残留熱除去系ストレーナ 取付部コネクタ	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 格納容器スプレイ冷却系	残留熱除去系ストレーナ 取付部コネクタ	重大事故等クラス 2	$D+P_{SAD}+M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 サプレッションチェンバ プール水冷却系	残留熱除去系ストレーナ 取付部コネクタ	重大事故等クラス 2	$D+P_{SAD}+M_{SAD}$	重大事故等時*
原子炉格納施設	原子炉格納容器安全設備 代替循環冷却系	残留熱除去系ストレーナ 取付部コネクタ	重大事故等クラス 2	$D+P_{SAD}+M_{SAD}$	重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

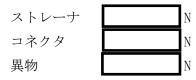
					SR	V荷重		LOCA荷	重	
組合せ No.	運転状態	死荷重	異物荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	供用状態
SA-1	運転状態V(L)	0	0	0						重大事故等時*
SA-2	運転状態V(S)	0	0	0				0		重大事故等時*
SA-3	運転状態V(S)	0	0	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0	-		重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-3 許容応力 (重大事故等クラス2管(クラス2, 3管))

供用状態	一次一般膜応力	一次応力 (曲げ応力を含む)
重大事故等時*	S	長期荷重 1.5・S 短期荷重 1.8・S

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。


表 4-4 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温	S (MPa)		
コネクタ		最高使用温度	166		
フランジ		最高使用温度	166		

4.2.4 設計荷重

(1) 死荷重

残留熱除去系ストレーナとコネクタの自重による荷重及び残留熱除去系ストレーナに付着する異物の自重による異物荷重の2つの死荷重を考慮する。

(2) 差圧

コネクタの設計圧力は	MPa	を考慮する

4.3 解析モデル及び諸元

残留熱除去系ストレーナ取付部コネクタの応答解析用モデルを図 4-1 に、解析モデルの概要を以下に示す。解析モデルはV-2-5-3-1-3「残留熱除去系ストレーナの耐震性についての計算書」に示す応答解析用モデルと同じモデルである。また、機器の諸元を表 4-5 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた 有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナに ついてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル 化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-1の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水 及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析に おいて考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム (解析コード)の概要」に示す。

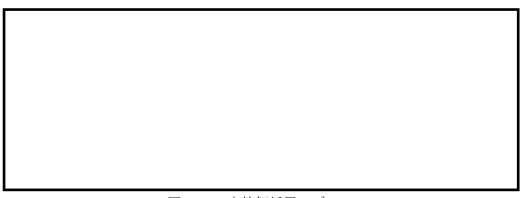


図 4-1 応答解析用モデル

表 4-5 機器諸元

	党石合語 ノレ	
項目	単位	入力値
残留熱除去系ストレーナ取付部コネクタの 材質	_	
残留熱除去系ストレーナ取付部コネクタの 質量	kg/個	
残留熱除去系ストレーナ取付部コネクタの 内包水及び排除水の質量	kg/個	
ストレーナ 1 個あたりの異物の質量	kg/個	
温度	$^{\circ}\!\mathbb{C}$	104
縦弾性係数	MPa	
ポアソン比	_	
要素数	個	
節点数	個	

4.4 計算方法

4.4.1 コネクタの計算方法

(1) 応力の計算方法

コネクタに発生する応力は、設計・建設規格 PPC-3520 に従い算出する。なお、コネクタの溶接継手は管の板厚の強度と同等以上となるように設計するため、ここでは管について評価を行う。

応力算出は以下の式に従う。

$$S_{_{prm}}\,=\,\frac{B_{_{1}}\,\cdot\,P\,\cdot\,D_{_{o}}}{2\,\cdot\,t}\,+\,\frac{B_{_{2}}\,\cdot\,M_{_{m\,a\ x}}}{Z}$$

ここに,

Sprm : 発生応力(MPa)

P : 最高使用圧力(設計圧力)(MPa)

D。 : 管の外径(mm) t : 管の厚さ(mm)

B₁ : 設計・建設規格 表 PPB-3812.1-1 で規定する応力係数 (=

B₂ : 設計・建設規格 式 PPB-4.20 により算出した応力係数 (= _______

$$=\frac{1.30}{h^{\frac{2}{3}}}$$

h : 設計・建設規格 式 PPB-4.21 により計算した値

$$=\frac{\mathbf{t}\cdot\mathbf{R}}{\mathbf{r}^2}$$

R :コネクタ中心線の曲率半径= (mm)

r : 設計・建設規格 式 PPB-4.19 により計算した値(mm)

 $= \frac{D_o - t}{2}$

M_{max} :表 4-6 に示す最大モーメント(N·mm)

Z : 管の断面係数(mm³)

(2) 応力解析に用いるモーメント

コネクタの設計荷重は、ストレーナからの伝達荷重とコネクタ自身に作用する荷重から 算出した、図 4-2 に示すコネクタのストレーナ及びティーとの取合い部における最大モ ーメントを用いる。なお、ここでの最大モーメントとは、コネクタのティーとの取合い部 における3方向のモーメントを二乗和平方根で合成したものである。

算出した最大モーメントを表4-6に示す。

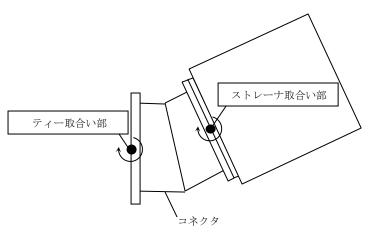


図 4-2 コネクタのモーメント算出点

表 4-6 コネクタの設計荷重

(単位:N·mm)

		(+ ±.11 11111)
	荷重	最大モーメント M _{max}
1	死荷重	
2	異物荷重	
3	差圧	
4	SRV荷重	
5	プールスウェル(気泡形成)	
6	蒸気凝縮(CO)	
7	チャギング(CH)	

4.4.2 フランジの計算方法

(1) 応力の計算方法

ストレーナ取付部コネクタのストレーナ部ティーと取り付けるフランジは,一般的なフランジとは異なりガスケットを使用しない。そこで取付フランジを以下のようにモデル化し,応力評価を行う。

取付フランジを外周(ボルト穴中心円直径)が固定された平板と考え、表 4-7 に示すモーメントが中心部に作用すると考える。この場合の発生応力は、引用文献(1)より、図 4-3 に示す計算モデルで下記の計算式より求める。

$$\sigma r = \frac{\beta \cdot M_{\text{fmax}}}{a \cdot t^2}$$

ここに,

σ_r : 曲げ応力(MPa)

Mfmax : 表 4-7 に示す最大モーメント(N·mm)

a : ボルト穴中心円半径= (mm)

b : フランジ内半径= (mm)

t : フランジ板厚= (mm)

β : b/a (=) から決まる計算上の係数=

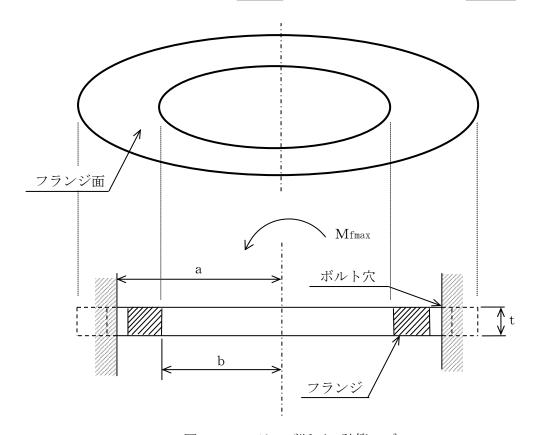


図 4-3 フランジ断面の計算モデル

(2) 応力解析に用いるモーメント

フランジの設計荷重は、図 4-2 に示すコネクタのストレーナ及びティーとの取合い部における最大モーメントを用いる。算出した最大モーメントを表 4-7 に示す。ここでの最大モーメントとは、コネクタのティーとの取合い部におけるフランジに対して面外方向の曲げモーメントとする。フランジの面内方向のモーメント(ねじりモーメント)は、フランジの面内剛性が大きいため、ここでは評価対象としない。

表 4-7 フランジの設計荷重

(単位:N·mm)

		(+ 1. · N IIIII)
	荷重	最大モーメント Mfmax
1	死荷重	
2	異物荷重	
3	差圧	
4	SRV荷重	
5	プールスウェル (気泡形成)	
6	蒸気凝縮(CO)	
7	チャギング(CH)	

4.5 計算条件

応力解析に用いる自重及び荷重は、本計算書の「4.2 荷重の組合せ及び許容応力」及び「4.4 計算方法」に示す。

4.6 応力の評価

「4.4 計算方法」で求めた応力が、表 4-3 及び表 4-4 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

残留熱除去系ストレーナ取付部コネクタの重大事故等時の状態を考慮した場合の評価結果 を以下に示す。発生値は許容限界を満足していることを確認した。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1 に示す。

なお、各評価点における計算応力は表 4-2 に示す荷重の組合せのうち、発生値が最も高い評価を記載している。

表 5-1 重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

				重	[大事故等時	
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	荷重
				(MPa)	(MPa)	組合せ
残留熱除去系ストレーナ	コネクタ	V(S)	一次応力	155	204	SA-3
取付部コネクタ	フランジ	V(S)	一次応力	131	204	SA-3

6. 引用文献

(1) WARREN C. YOUNG

"ROARK'S FORMULAS for Stress and Strain"7th Edition

V-3-3-3-2-1-6 弁の強度計算書

まえがき

本計算書は、V-3-1-2「クラス1機器の強度計算の基本方針」及びV-3-2-3「クラス1弁の強度計算方法」に基づいて計算を行う。 評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義 したものを使用する。

· 評価条件整理表

		施設時の	クラスアップするか			条件アップするか				HIT TO SET 1 A						
	既設	技術基準に対象と	4	#/=n, e-4-			AT 1sts	DB	条件	S A	条件	既工認に おける	施設時の		同等性	評価
機器名	or 新設	する施設 の規定が あるか	クラス アップ の有無	施設時 機器 クラス	DB クラス	S A クラス	条件 アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度	評価結果の有無	適用規格	評価区分	評価 区分	クラス
E11-F011A, B, C	既設	有	有*	DB-2	DB-1	_	無	8. 62	302	_	_	_	S55告示	設計・建設規格 又は告示	_	DB-1

注記*:原子炉冷却材圧力バウンダリ範囲の拡大によるクラスアップ。

目 次

1.	クラス1弁		1
1.	1 設計仕様		2
1. 2	2 強度計算書	<u> </u>	3

1. クラス1弁

1.1 設計仕様

系 統 : 残留熱除去系

機器の区分				クラス1弁		
会亚 日	1年 4元	呼び径		 材		
弁番号	番号 種類		弁箱	弁ふた	弁体	ボルト
F011A,B,C	止め弁	(A) 350	SCPL1	SCPL1	SCPL1	

1.2 強度計算書

系 統 : 残留熱除去系

弁番号	F011A,B,C	シート	1
-----	-----------	-----	---

		設計•建設規格	告示第501号]		設計·建設規格	告示第501号
設計条件				弁箱の一次+	二次応力記	 平価	<u> </u>
最高使用圧力	bР (MPa)		8.62	te	(mm)	1 Ibed	ſ
最高使用温度			302	Te1	(mm)		
弁箱材料			SCPL1	Te2	(mm)		
接続管材料				ri	(mm)		
接続管外径	(mm)			θ	(°)		
接続管内径	(mm)			K			1.00
2002	図3-1		(5)	Pe	(MPa)	99	96
添付図番号	⊠3-2		(2)	$\alpha \times 10^{-6}$ (s	mm/mm°C)	12.69	12.63
	⊠3-3		(1),(2)	E	(MPa)	188000	181619
内圧による弁		力並供	. , , , ,	C2			0.49
り圧による弁	相りが外心	/J 計画		ΔΤ	(\mathcal{C})		
P1	(MPa)	6.38	6.37	C4			
P2	(MPa)	9.57	9.57	$\Delta\mathrm{Pfm}$	(MPa)		
Pr1	(MPa)	6.38	6.37	$\Delta\mathrm{Tfm}$	(℃)		
Pr2	(MPa)	9.58	9.58	Sn(1)	(MPa)		192
Ps	(MPa)	8.62	8.62	Sn(2)	(MPa)		137
d	(mm)			3∙Sm	(MPa)		388
Tb	(mm)						
Tr	(mm)			評価 :	$S_n(1) \leq 3$	·Sm	
LA	(mm)			1	$S_n(2) \leq 3$	·Sm	
Ln	(mm)			1		よって十分	分である。
Af	(mm^2)			ム体の日如	V		
Am	(mm ²)			弁箱の局部一	伙心刀評価	П	
r1	(mm)			S	(MPa)		164
S	(MPa)		41	2.25 · Sm	(MPa)		291
Sm	(MPa)		129	評価 :	S≦2.25•	Sm	
評価 :	S≦Sm			1		よって十分	分である。
		よって十分で	ある。	起動時及び停	手止時の繰り	返しピーク応力強さ	
配管反力による	5弁箱の二次に			C3			
A-A断面のヂ	弁外径 (mm)			QТ	(MPa)		
A1	(mm^2)			SQ(1)	(MPa)	_	119
A ₂	(mm ²)			SQ(2)	(MPa)	_	135
Сь		1.00	1.00	Em	(MPa)	_	178324
Z ₁	(mm^3)	Γ		N(1)		_	98767
Z2	(mm ³)			N(2)		_	51970
Zp	(mm ³)						
Sy	(MPa)	200	194	評価 :	$N(1) \ge 20$	00	
Pd	(MPa)	48	47	+	$N(2) \ge 20$		
Pb	(MPa)	99	96	Ī		よって十分	分である。
Pt	(MPa)	99	96	Ī			
1.5 · Sm	(MPa)		194	Ī			
評価 :	Pd ≦1.5 · S Pb ≦1.5 · S Pt ≦1.5 · S	m	 -				

弁番号 F011A,B,C 2

m	n	Ao	C_5	Sn	3.	Sm	3•m•Sm
				(MPa)		IPa)	(MPa)
3.0	0.2	0.66	1.01	153	3	89	1167
$\Delta\mathrm{Tf}$	Sp		Ke	SØ	Ni	Nri	Ni/Nri
(℃)	(MPa)			(MPa)			
		830	1.00	415			0.070
		786	1.00	394			0.004
		313	1.00	157			0.004
		229	1.00	114			0.001
_	<u> </u>	_	_	_			
		_	_	_	_		_
_		_	_	_	_	_	
_		_	_	_	_		_
		_	_	_	_		
			_	_	_		
			_	_	_		
		_					_
_		_	_				
						_	
_		_		_		_	
						_	
							-
		_	_	_	_		

評価 : 疲労累積係数 $I_t = \Sigma$ $\frac{N_i}{N_{ri}} = 0.0799 \le 1$ よって十分である。

弁箱の形状規定 設計・建設規	見格	弁体の一次応力	〕 設計•建設規格	
r1 (mm)		材料		SCPL1
r2 (mm)		形式		W2
0.3 • t (mm)		P	(MPa)	8.62
0.05 • t (mm)		Pc(P1, P2)	(N)	
0.1 • h (mm)		h	(mm)	
dn/dm		a	(mm)	
		b	(mm)	
評価 : r1 ≧ 0.3•t		σD	(MPa)	49
$r_2 \ge Max(0.05 \cdot t)$, 0.1•h)	1.5 · Sm	(MPa)	184

dn

dn / c 2 よって十分である。

評価 : σD ≦ 1.5·Sm

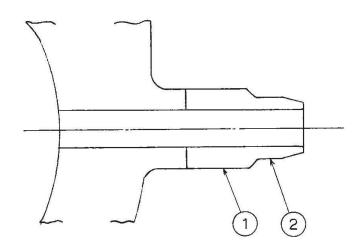
よって十分である。

弁番号 F011A,B,C シート 3

弁箱又は	弁ふたの厚さ及	びネック部の)厚さ				
弁箱材料	· 斗	SCPL1					
弁ふたホ	才料	SCPL1					
dm	(mm)						
t1	(mm)		19.0				
t2	(mm)		23.0				
t	(mm)		21.9				
dn	(mm)						
dn/dm							
tm	(mm)	-	21.9				
tab	(mm)						
taf	(mm)						
tma	(mm)						
評価:	$\begin{array}{ccc} tab & \geqq & t \\ taf & \geqq & t \\ tma & \geqq & tm \end{array}$	よって	十分である	్			

弁番号 F011A,B,C シート 4

三几三 「夕 /山				~ N.3	の到際		
設計条件	(10)			モーメント			
PFD	(MPa)		11.83	HD	(N)		1.341 × 10 ⁶
Peq	(MPa)		3.21	hD	(mm)		42.5
Tm	(℃)		302	MD	(N·mm)		5.701 × 10 ⁷
Me	(N·mm)			HG	(N)		7.534×10^{-5}
Fe	(N)			hG	(mm)		53.0
フランジの)形式	JIS	B8265図2(b)(7)	MG	(N·mm)		3.991 × 10 ⁻⁷
フランジ			CODI 1	HT	(N)		3.291 × 10 ⁵
材料	(MD.)		SCPL1	hT	(mm)		64.0
σ fa 当はなた 1分	(MPa)		150	MT	(N·mm)		2.106×10^{-7}
常温(ガスケット締			150	Mo	(N·mm)		1.180×10^{-8}
σfb 見支は田温度	(MPa)		100	Mg	(N·mm)		2.377×10^{-8}
最高使用温度			122	1	厚さと係数		
A	(mm)		 	t	(mm)		1.00
В	(mm)		 	K	()		1.63
C	(mm)		├──┤	ho	(mm)		1.00
g0	(mm)			f			1.00
g1	(mm)			F			0.796
h 	(mm)			V	/ -1\		0.246
ボルト	Ī			e	(mm ⁻¹)		0.00630
材料	() (D.)			d	(mm ³)		4146818
の a 当時はいっとした	(MPa)		0.40	L			1.23
常温(ガスケット締			242	T			1.66
σb 見言は田沢田田	(MPa)		107	U			4.58
最高使用温度	(使用状態)		197	Y			4.17
n db	()			Z chall	<u>~</u>		2.22
ガスケット	(mm)			応力の計算			74
<u>ガヘクッド</u> 材料	T			σ но	(MPa) (MPa)		47
ガスケット	厚さ (mm)			σRo	(MPa)		27
カ <i>ヘ</i> クット) G	, ,			σ το	(MPa)		104
	(mm)			σHg	(MPa)		
m	(N/mm^2)			σRg	(MPa)		94 53
bo	(N/mm) (mm)			σTg	(MFa)		00
<u>во</u>				┪ ☆カの証	価 : σ Ho i	- 1 F	
N	(mm) (mm)			かいフリックロナ			
Gs	(mm)			+		$\leq 1.5 \cdot \sigma$ fb $\leq 1.5 \cdot \sigma$ fb	
ボルトの計算				1	O 10 =	≥ 1.0 ° O fb	
H	ff (N)		1.670×10^{-6}	1	<i>σ.</i> μ. 5	15.00	
<u>П</u> Нр	(N)		7.534×10^{-5}	1		≦ 1.5 · σ fa	
Wm1	(N)		2.424×10^{-6}	†		\leq 1.5 · σ fa \leq 1.5 · σ fa	
Wm2	(N)		7.315×10^{-5}	†	O Ig	≘ 1.0°0 fa	
Am1	(mm ²)		$\frac{7.313 \times 10^{-4}}{1.226 \times 10^{-4}}$	1		トヘフ	一十分である。
Am1 Am2	(mm ²)		$\frac{1.220 \times 10^{-3}}{3.023 \times 10^{-3}}$	†		٨٠) (· 1 /1 < α/ン0°
Am2 Am	(mm ²)		1.226×10^{-4}	†			
Am	(mm ²)	Г	1.220 \(\) 10	H			
Wo	(mm) (N)	L	2.424×10^{-6}	4			
Wg	(N)		$\frac{2.424 \times 10^{-6}}{4.488 \times 10^{-6}}$	1			
VV D	(11)		7.700 /\ 1U				


弁番号	F011A,B,C	シート	5
-----	-----------	-----	---

管	台の厚さ								
	最高使用圧力	最高使用温度	外径	公称厚さ					
No.	Р	Tm	Do	tno	材料	S	η	t	tbr
	(MPa)	(℃)	(mm)	(mm)		(MPa)		(mm)	(mm)
1	8.62	302						1.7	
2	8.62	302						1.4	
3				_			1		
4				_					
5	_			_				_	

評価 : tbr ≧ t

よって十分である。

注記*:

管台の形状

V-3-3-3-2-1-7 管の強度計算書

V-3-3-3-2-1-7-1 管の基本板厚計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

- 計価未件	1	ı	1				1					1		ı		
		施設時の	:	クラスアゞ	ップするカ	7		条件	アップす	るか		明了一部)。				
NO.	既設 or 新設	技術基準 に対象と する施設 の規定が	クラス アップ	施設時 機器	DВ	S A	条件 アップ	DВ	条件	S A	条件	既工認における施設時の評価結果適用規格		評価 区分	同等性 評価区分	評価クラス
		あるか	の有無	クラス	クラス	クラス	/ グラク の有無 	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	^>/B >//				
1	既設	有	無	DB-2	DB-2	SA-2	有	0.31	104	0. 62	166	_	S55告示	設計・建設規格 又は告示	_	SA-2
2	既設	有	無	DB-2	DB-2	SA-2	有	0.31	104	0. 62	166	_	S55告示	設計・建設規格 又は告示		SA-2
3	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	無	S55告示	設計・建設規格 又は告示		SA-2
4	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	無	S55告示	設計・建設規格 又は告示	1	SA-2
5	新設	_	_	_		SA-2	_		_	8. 62	302	_	_	設計・建設規格		SA-2
6	新設		_	_		SA-2		_	_	8. 62	302	_	_	設計・建設規格	1	SA-2
7	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	104	3. 43	166	_	S55告示	設計・建設規格 又は告示		SA-2
8	既設	有	無	DB-2	DB-2	SA-2	有	0.31	104	0. 62	166	_	S55告示	設計・建設規格 又は告示		SA-2
9	既設	有	無	DB-2	DB-2	SA-2	有	0.31	104	0. 62	166	_	S55告示	設計・建設規格 又は告示		SA-2
10	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	無	S55告示	設計・建設規格 又は告示	_	SA-2

		施設時の	:	クラスアッ	ップするカ	7		条件	ニアップす	るか						
NO.	既設 or 新設	技術基準に対象を設めている。	クラス アップ	施設時 機器	DВ	S A	条件 アップ	DВ	条件	S A	条件	既工認に おける 評価結果 の有無 施設時の 適用規格		評価 区分	同等性 評価区分	評価 クラス
		あるか	の有無	クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	-> 113///				
11	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	無	S55告示	設計・建設規格 又は告示		SA-2
11	新設	_	_	_	_	SA-2	_	_	_	3. 43	182	_	_	設計・建設規格	_	SA-2
12	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	104	3. 43	200	_	S55告示	設計・建設規格 又は告示		SA-2
13	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	171	3. 43	200	_	S55告示	設計・建設規格 又は告示		SA-2
14	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	171	3. 43	200	_	S55告示	設計・建設規格 又は告示		SA-2
15	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	171	3. 43	200	_	S55告示	設計・建設規格 又は告示		SA-2
16	既設	有	無	DB-2	DB-2	SA-2	有	3. 43	171	3. 43	200	_	S55告示	設計・建設規格 又は告示		SA-2
Т1	新設	_	_	_	_	SA-2	_	_	_	8. 62	302	_	_	設計・建設規格	_	SA-2
その他1	既設	有	無	DB-2	DB-2	SA-2	無	1. 37	182	1. 37	182	有	S55告示	既工認	_	SA-2
その他2	既設	有	無	DB-1	DB-1	SA-2	無	8. 62	302	8. 62	302	有	S55告示	既工認	_	SA-2

K7 ① V-3-3-3-2-1-7-1 R1

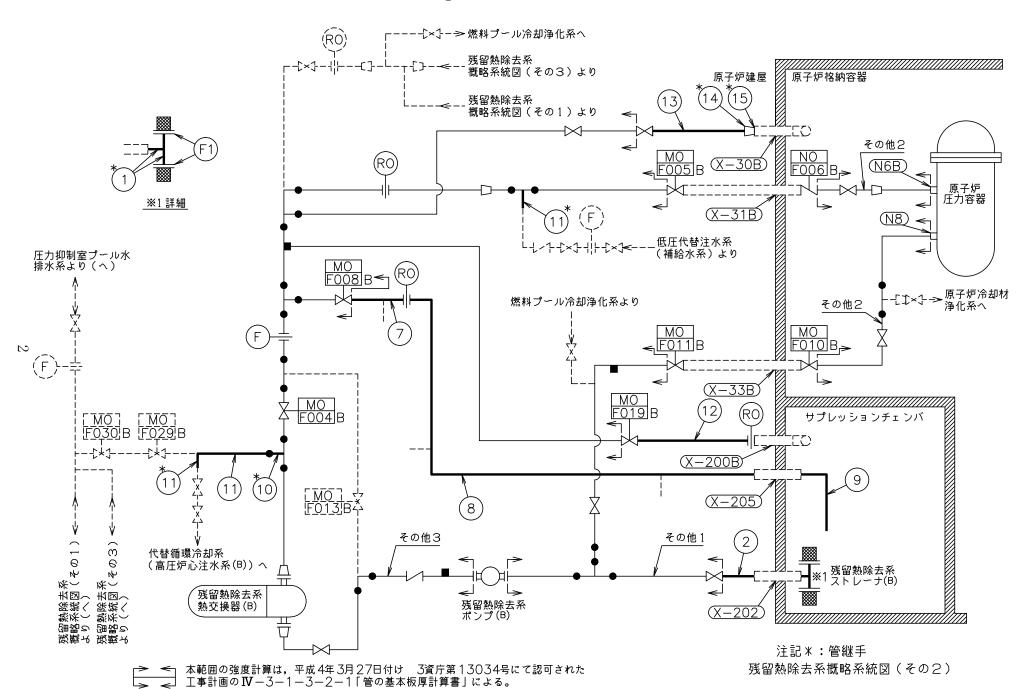
	施設時の世界の		クラスアップするか				条件アップするか									
NO.	既設 or 新設	技術基準 に対象と する施設 の規定が	クラス アップ	施設時 機器	DВ	S A	条件 アップ	DB	条件	S A	条件	既工認に おける 評価結果 の有無	施設時の 適用規格	評価 区分	同等性 評価区分	評価クラス
		あるか	の有無	クラス	クラス	クラス	の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	A > 13 YW				
その他3	既設	有	無	DB-2	DB-2	SA-2	無	3. 43	182	3. 43	182	有	S55告示	既工認	_	SA-2
その他4	既設	有	無	DB-2	DB-2	SA-2	無	8. 62	302	8. 62	302	有	S55告示	既工認	_	SA-2

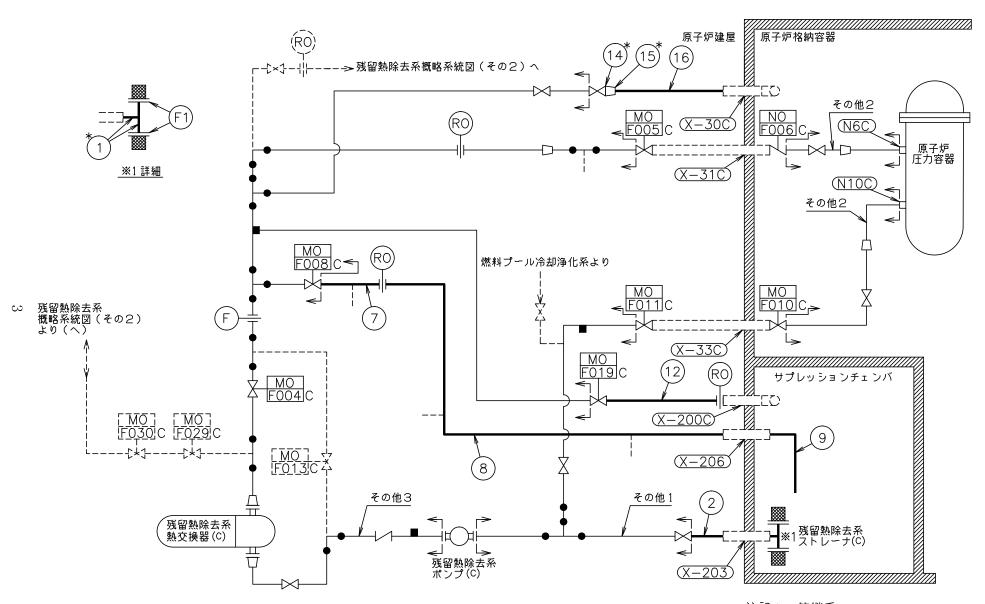
・適用規格の選定

NO.	評価項目	評価区分	判定基準	適用規格
1	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
2	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
3	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
4	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
5	管の強度計算	設計・建設規格	_	設計・建設規格
6	管の強度計算	設計・建設規格	_	設計・建設規格
7	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
8	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
9	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
10	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
11	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
11	管の強度計算	設計・建設規格	_	設計・建設規格
12	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
13	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
14	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
15	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
16	管の強度計算	設計・建設規格 又は告示	同等	設計・建設規格
Т1	管の穴と補強計算	設計・建設規格	_	設計・建設規格

目 次

1.	概略系統図	-
2.	管の強度計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.	管の穴と補強計算書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	(
4	フランジの強度計算	,


1. 概略系統図 (F)高圧代替注水系 ₋ より 原子炉建屋 原子炉格納容器 (RO) 残留熱除去系 概略系統図(その2)<< (RO 6 <u> √F005</u> A 復水給水系へ 原子炉 圧力容器 その他4 (N10A) MO F008 A ← その他2 燃料プール冷却浄化系より MO MO 残留熱除去系 F010 A 概略系統図 (その2)より(へ) MO F004 A MŌ. F029A サプレッションチェンバ 8 [MO] 寸 [FO13]A 卆 (X - 204)※1 詳細 残留熱除去系 熱交換器(A) その他3 その他1 残留熱除去系


残留熱除去系 ポンプ(A)

本範囲の強度計算は、平成4年3月27日付け 3資庁第13034号にて認可された 工事計画のIV-3-1-3-2-1「管の基本板厚計算書」及び 平成5年8月19日付け 5資庁第8685号にて認可された工事計画変更認可申請書の Ⅳ-3-1-3-2-1「管の基本板厚計算書」による。

注記*:管継手 残留熱除去系概略系統図(その1)

ストレーナ(A)

- ★範囲の強度計算は,平成4年3月27日付け 3資庁第13034号にて認可された 工事計画のIV-3-1-3-2-1「管の基本板厚計算書」による。

注記*:管継手 残留熱除去系概略系統図(その3)

K7 ① V-3-3-3-2-1-7-1 R1

2. 管の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3411 準用

	最高使用圧力	最高使用	外 径	公称厚さ	材料	製	ク						算	
NO.	Р	温 度	Dο				ラ	S	η	Q	t s	t		t r
	(MPa)	(℃)	(mm)	(mm)		法	ス	(MPa)			(mm)	(mm)	式	(mm)
1	0. 62	166	457. 20	14. 30	SUS304TP	S	2	113	1.00	12.5 %	12. 51	1. 26	A	1. 26
2	0. 62	166	457. 20	9. 50	SM400C	W	2	100	1. 00			1. 42	С	3. 80
3	3. 43	182	114. 30	6.00	SFVC2B	S	2	120	1.00			1.62	С	3. 40
4	3. 43	182	125. 50	11.60	SFVC2B	S	2	120	1. 00			1. 78	С	3. 40
5	8. 62	302	165. 20	14. 30	SFVC2B	S	2	120	1.00			5. 77	A	5. 77
6	8. 62	302	194. 00	28. 70	SFVC2B	S	2	120	1.00			6. 78	A	6. 78
7	3. 43	166	267. 40	9. 30	STPT410	S	2	103	1.00	12.5 %	8. 13	4. 40	A	4. 40
8	0.62	166	267. 40	9. 30	STPT410	S	2	103	1. 00	12.5 %	8. 13	0.81	С	3. 80
9	0. 62	166	267. 40	9. 30	SUS304TP	S	2	113	1.00	12.5 %	8. 13	0.74	A	0. 74
10	3. 43	182	165. 20	11.00	STS410	S	2	103	1.00	12.5 %	9. 62	2. 72	С	3. 80

評価: t s ≧ t r, よって十分である。

K7 ① V-3-3-3-2-1-7-1 R1

管の強度計算書(重大事故等クラス2管)

設計・建設規格 PPC-3411 準用

	最高使用圧力	最高使用	外 径	公称厚さ	材料	製	ク						算	
NO.	P	温 度	Dο				ラ	S	η	Q	t s	t		t r
	(MPa)	(℃)	(mm)	(mm)		法	ス	(MPa)			(mm)	(mm)	式	(mm)
11	3. 43	182	165. 20	7. 10	STPT410	S	2	103	1.00	12.5 %	6. 21	2. 72	С	3. 80
12	3. 43	200	114. 30	6.00	STPT410	S	2	103	1.00	12.5 %	5. 25	1. 88	С	3. 40
13	3. 43	200	267. 40	12. 70	STPT410	S	2	103	1.00	12.5 %	11.11	4. 40	A	4. 40
14	3. 43	200	267. 40	15. 10	STPT410	S	2	103	1.00	12.5 %	13. 21	4. 40	A	4. 40
15	3. 43	200	216. 30	12. 70	STPT410	S	2	103	1.00	12.5 %	11. 11	3. 56	С	3. 80
16	3. 43	200	216. 30	10. 30	STPT410	S	2	103	1.00	12.5 %	9. 01	3. 56	С	3. 80

評価: t s ≧ t r, よって十分である。

3. 管の穴と補強計算書 (重大事故等クラス2管)

設計・建設規格 PPC-3420 準用

NO.		T1	A r	(mm^2)	1.620×10^3
形式		A	A 0	(mm^2)	2.532×10^3
最高使用圧力	(MPa)	8. 62	A 1	(mm^2)	711.6
最高使用温度	(℃)	302	A 2	(mm^2)	1.739×10^3
主管と管台の角度	(°)		А з	(mm^2)	81.00
			A 4	(mm ²)	
主管材料		STS410			
S r	(MPa)	103	評価: Ao	> A r	
Dог	(mm)	267. 40	よって十分であ	うる 。	
D i r	(mm)	235. 56			
t r o	(mm)	18. 20	d f r D	(mm)	117. 78
Q r		12.5 %	LAD	(mm)	
t r	(mm)	15. 92	LND	(mm)	
trr	(mm)	10.83	A r D	(mm^2)	1.080×10^3
η		1.00	A 0 D	(mm^2)	2.095×10^{3}
			A 1 D	(mm ²)	355.8
管台材料		SFVC2B	A 2 D	(mm ²)	1.739×10^3
Sь	(MPa)	120	A 3 D	(mm^2)	0
Dоb	(mm)	194. 00	A 4 D	(mm^2)	
D i b	(mm)				
t b n	(mm)	28. 70	評価: Aob	≧ ArD	
Qь			よって十分であ	うる 。	
t b	(mm)		W	(N)	8.265×10^4
t b r	(mm)	5. 25	F 1		0.46
			F 2		
強め材材料			F 3		0.56
S e	(MPa)		Sw1	(MPa)	47
D o e	(mm)		S W 2	(MPa)	
t e	(mm)		Sw3	(MPa)	57
			We 1	(N)	1.289×10^5
穴の径 d	(mm)		W e 2	(N)	3.392×10^5
K		0. 7724	W e 3	(N)	3.392×10^5
d f r	(mm)	79. 66	W e 4	(N)	
LA	(mm)		W e 5	(N)	
Ln	(mm)		Webp1	(N)	3.392×10^5
L 1	(mm)		W e b p 2	(N)	4.681×10^5
L 2	(mm)		W e b p 3	(N)	
			評価:W≦We W≦We 以上より十分で	b p 2	

4. フランジの強度計算書

(残留熱除去系ストレーナ取付部ティー側フランジ: NO. F1)

ティー側フランジの強度計算はV-3-3-3-2-1-4「残留熱除去系ストレーナ部ティーの強度計算書」で説明するため、ここでは記載を省略する。

V-3-3-3-2-1-7-2 管の応力計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

K7 ① V-3-3-3-2-1-7-2 R1

評価条件整理表

				ı		i	ı								
		クラス	SA-2	SA-2	SA-2	SA-2	SA-2								
3 3	可等性率不可能	区分									1	-		1	
	評価区分	2\H	設計・建設規格 又は告示	既工認	設計・建設規格 又は告示	設計・建設規格 又は告示	既工認								
	施設時の	適用規格	S55告示	S55告示	S55告示	S55告示	S55告示								
上三三二三十二三十二二十二二十二二十二二十二二十二二十二二十二二十二二十二二十二二	における	評価結果 の有無	有	有	有	有	有				_	有			有
	A条件	温度 (°C)	908	306	306	306	306	166	166	166	166	182	166	166	182
-54	SA	压力 (MPa)	9. 22	9. 22	9. 22	9. 22	9. 22	0.62	0.62	0.62	0.62	1.37	3, 43	0.62	3, 43
条件アップするか	DB条件	温度 (°C)	302	302	302	302	302	104	104	104	104	182	104	104	182
条件ア	DB	圧力 (MPa)	8.62	8.62	8.62	8.62	8.62	0.31	0.31	0.31	0.31	1.37	3. 43	0.31	3.43
	条件	アップ の有無	有	有	争	有	有	有	有	有	有	無	有	有	無
Δ>	۷	SA クラス	SA-2	SA-2	SA-2	SA-2	SA-2								
クラスアップする	ם ת	DD クラス	DB-1	DB-1	DB-1	DB-1	DB-1	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2
ラスアッ	施設時	機器 クラス	DB-1	DB-1	DB-1	DB-1	DB-1	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2
7	クラス	アップ の有無	澌	熊	熊	熊	熊	澌	無	無	無	兼	無	無	澌
	技術基準に対象アース		卓	丰	丰	有	有	单	有	有	有	有	有	有	有
	対別で	コン	既設	既殼	既設	既設	既設								
	応力計算	モデルNo.	RHR-PD-1	RHR-PD-2	RHR-PD-3	RHR-PD-4	RHR-PD-5	RHR-PW-6	RHR-PW-7	RHR-PW-8	RHR-R-1	RHR-R-1	RHR-R-2	RHR-R-2	RHR-R-2

K7 ① V-3-3-3-2-1-7-2 R1

評価条件整理表

		~													I
		クブス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
	可等性	I S S S S S S S S S S S S S S S S S S S													
	評価区分	?\ !	設計・建設規格 又は告示	既工認	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	既工認	設計・建設規格	設計・建設規格	設計・建設規格 又は告示	設計・建設規格 又は告示	設計・建設規格 又は告示	既工認	設計・建設規格 又は告示
		適用規格	S55告示	S55告示	S55告示	S55告示	S55告示	S55告示			S55告示	S55告示	S55告示	S55告示	S55告示
上點	における	評価結果 の有無		有			澌	争			巣			有	
	A条件	温度 (°C)	166	182	166	166	182	182	182	98	182	200	200	182	166
·543	SA	圧力 (MPa)	0.62	1.37	3.43	0.62	3. 43	3.43	3. 43	1.37	3.43	3.43	3.43	3.43	0.62
条件アップするか	DB条件	温度(%C)	104	182	104	104	182	182			182	104	171	182	104
条件ア	DB	圧力 (MPa)	0.31	1.37	3.43	0.31	3.43	3.43			3.43	3.43	3.43	3.43	0.31
	条件	アップ の有無	有	₩	争	#	無	獣			獣	有	有	熊	丰
γŞ	< ن	SA クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
1745	מת	UB クラス	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2			DB-2	DB-2	DB-2	DB-2	DB-2
クラスアップするか	_	機器クラス	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2			DB-2	DB-2	DB-2	DB-2	DB-2
7	クラス	アップ の有無	無	無	巣	巣	無	巣			無	無	無	無	巣
施設時の	技術基準に対象アーク		有	有	世	#	有	有			有	有	有	有	丰
	対談	a マ	既設	既設	既設	宪談	既設	既殼	新設	新設	既設	既殼	既設	既設	既設
	応力計算	キデルNo.	RHR-R-3	RHR-R-3	RHR-R-4	RHR-R-4	RHR-R-4	RHR-R-4	RHR-R-4	RHR-R-4	RHR-R-5	RHR-R-5	RHR-R-5	RHR-R-5	RHR-R-6

K7 ① V-3-3-3-2-1-7-2 R1

· 評価条件整理表

		~		l					
		クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	司等性率任	I 文 I							
	率佈区分		既工認	設計・建設規格 又は告示	設計・建設規格 又は告示	路工點	設計・建設規格 又は告示	設計・建設規格 又は告示	既工認
		適用規格	S55告示	S55告示	S55告示	S55告示	S55告示	S55告示	S55告示
五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五 五	における	評価結果 の有無	有			有			有
	SA条件	温度 (°C)	182	166	166	182	200	200	182
-8 th	SA	圧力 (MPa)	1.37	3.43	0.62	3, 43	3.43	3.43	3, 43
条件アップするか	DB条件	温度(%C)	182	104	104	182	104	171	182
条件ア	DB	圧力 (MPa)	1.37	3, 43	0.31	3, 43	3.43	3.43	3, 43
	条件	アップ の有無	熊	一	有	澌	争	有	無
573	0	SA クラス	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
	מת	11	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2
クラスアップす	施設時	アップ め有無 クラス	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2	DB-2
4	クラス	アップ の有無	半	巣	羰	羰	無	無	無
施設時の	技術基準に対象アートス	が 施設の規定 があるか の有無	有	有	有	有	有	有	有
1 1 1	関談ら		既設	宪談	既設	既設	既設	既設	既設
	応力計算 モデルNo.			RHR-R-7	RHR-R-7	RHR-R-7	RHR-R-8	RHR-R-8	RHR-R-8

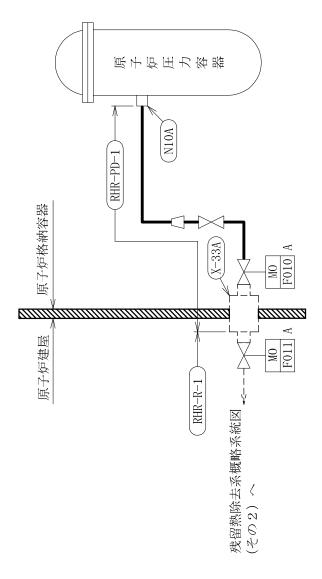
1.		概	要 •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.		概	略系統図	及び	鳥睴	效区			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2.	1	概略系統	統図		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•		•	•	•	2
	2. 2	2	鳥瞰図			•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•	•		•	•	11
3.		計;	算条件	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•	•		•	•	19
	3.	1	計算条件	'牛	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•			•	•	19
	3. 2	2	材料及	び許容	応	力			•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•		•		•	•	•	36
4.		計;	算結果	•		•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•		•	•		•	•	38
5.		代	表モデル	~の選'	定統	丰果	及.	てド	全	干	デ	ル	D	誣	価	結	果																			42

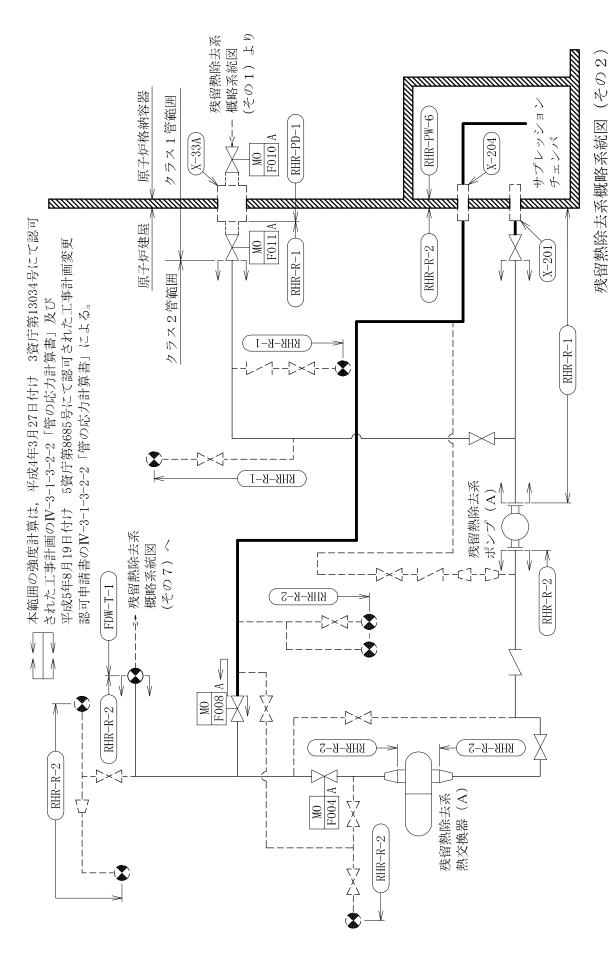
1. 概要

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づき、管の応力計算を実施した結果を示したものである。

評価結果記載方法は,以下に示すとおりである。

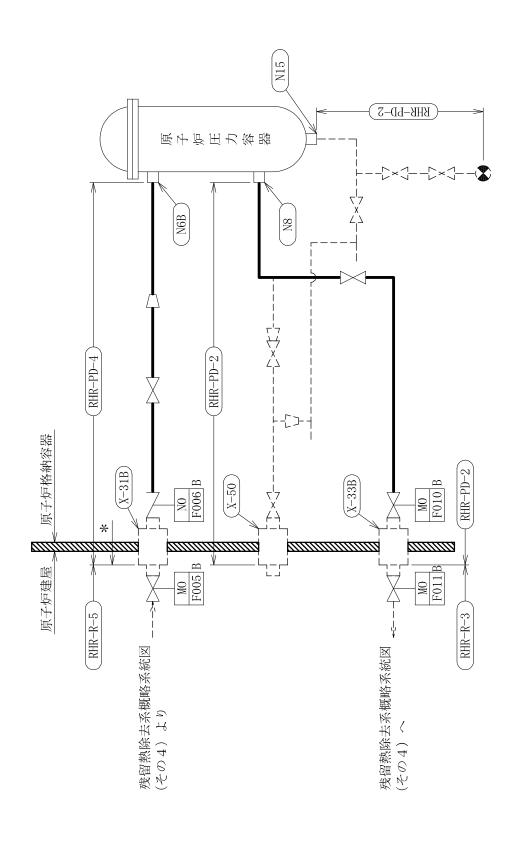
(1) 管

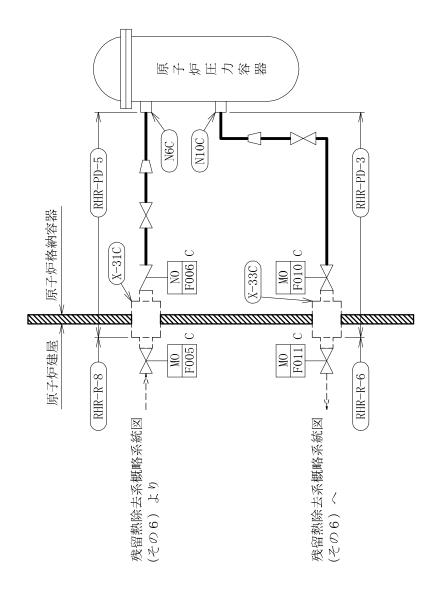

工事計画記載範囲の管のうち、設計条件あるいは管クラスに変更がある管における最大応力評価点の評価結果を解析モデル単位に記載する。また、全16モデルのうち、最大応力評価点の許容値/発生値(裕度)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。代表モデルの選定及び全モデルの評価結果を5.に記載する。

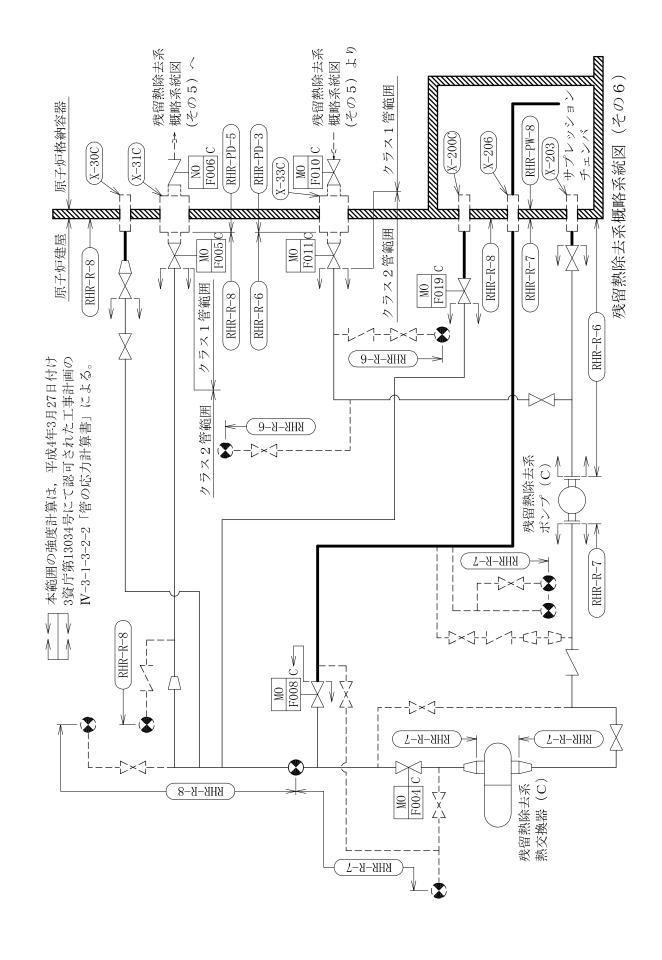

2. 概略系統図及び鳥瞰図

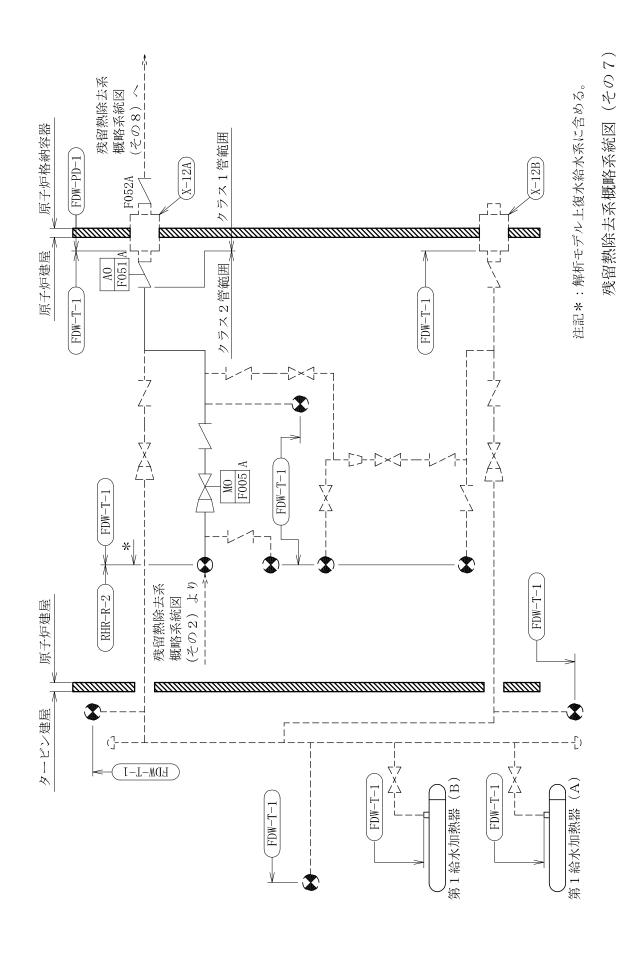
2.1 概略系統図

概略系統図記号凡例

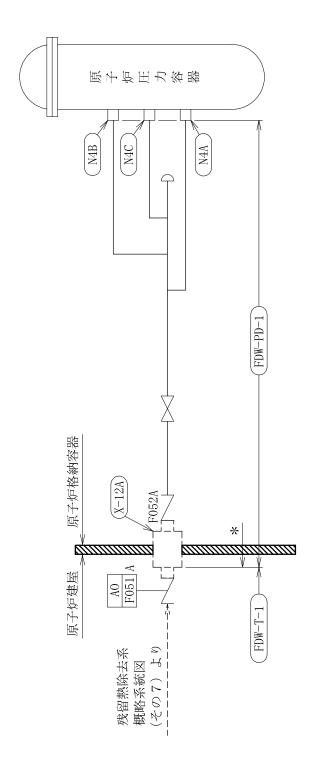

記号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ


4


注記*:残留熱除去系及び低圧代替注水系



5



9

注記*:解析モデル上復水給水系に含める。

残留熱除去系概略系統図 (その8)

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
————(細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃	ハンガ
] = 	リジットハンガ
	注1:鳥瞰図中の寸法の単位はmmである。

RHR-PD-1

鳥瞰図

K7 ① V-3-3-3-2-1-7-2 R1

RHR-R-2(4/4)

鳥瞰図

3. 計算条件

3.1 計算条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 RHR-PD-1

90分子	学 で 子 ろ 影 角 丘	最高使用压力	最高使用压力最高使用温度	外径	かし	****
H H		(МРа)	(S)	(mm)	(mm)	<u>7</u>
П	$1N\sim3$	9.22	306	318. 5	318.5 21.4	STS410
2	3~9	9.22	306	318.5	21.4	STS410
3	$10 \sim 15, 19 \sim 23$	9. 22	908	355.6	23.8	STS410

計算条件自帰の来せずしい記事条件に対応した終来せば反公し、終来中

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

次 口	1 世紀 2 十七本	最高使用压力最高使用温度	最高使用温度	外径	と世	ST + 4
田田の		(MPa)	(S _o)	(mm)	(mm)	<u>}</u>
	$3\sim\!20,22\sim\!33S$					
	$265 \sim 269, 270 \sim 277$	3, 43	182	318.5	14.3	STPT410
	$278\sim$ 281, $265\sim$ 339N					
2	33S~57, 57~336A	3, 43	182	318. 5	318. 5 14. 3	STPT410
3	$164 \sim 168, 164 \sim 183$	3, 43	166	267. 4	9.3	STPT410
4	172~36	3, 43	182	267.4	267.4 12.7	STPT410
2	183~196	0.62	166	267.4	9.3	STPT410

計算条件 鳥瞰図番号ごとに設計条件に対応した管番号で区分し,管番号と対応する評価点番号を示す。

SM400C SM400C SM400C STPT410 STPT410 林林 9.5 9.5 11.1 11.1 11.1 とし (mm)457.2 355.6 355.6 355.6 457.2 外径 (mm)最高使用压力最高使用温度 \mathbb{Q} 166 182 182 182 182 (MPa) 0.62 1.37 1.37 1.37 1.37 対応する評価点 $27 \sim 30,34 \sim 50S$ 鳥瞰図 RHR-R-3 $6\sim26N$ $11\sim27$ $50S \sim 83$ $1\sim 2$ 管番号 2 \vdash 0 ಣ 4

配管の付加質量

鳥瞰図 RHR-PD-1

質量	対応する評価点
	1N~1
	1~301, 6~6002, 6003~8
	301~6,6002~6003,8~9
	10~12
	12~1401
	1401~15, 19~23

配管の付加質量

質量	対応する評価点
	$3\sim600, 1001\sim11, 1401\sim1801, 1802\sim20, 22\sim2201$
	$2202\sim29,3001\sim3101,4401\sim4501,4801\sim4802,5102\sim52$
	$55\sim57, 57\sim3231, 3261\sim3271, 3291\sim3292, 3331\sim3332$
	$600\sim1001, 11\sim1401, 1801\sim1802, 2201\sim2202, 29\sim3001$
	$3101\sim33$ S, 43 S ~440 1, $4501\sim480$ 1, $4802\sim510$ 2, $52\sim55$
	$3231 \sim 3261, 3271 \sim 3291, 3292 \sim 3331, 3332 \sim 335S$
	33S~43S
	$265\sim269, 270\sim277, 278\sim281, 265\sim339N$
	$164 \sim 168, 172 \sim 36, 164 \sim 196$
	335S~336A

配管の付加質量

質量	対応する評価点
	1~2, 6~9001, 9002~2301, 2302~26N
	9001~9002, 2301~2302
	11~2701
	$2701\sim2901, 3401\sim3901, 40\sim4201, 44\sim4601, 4801\sim50S$
	$55\sim5601, 5602\sim5901, 5902\sim6401, 65\sim6701, 6702\sim7101$
	7901~8201
	2901~30, 34~3401, 3901~40, 4201~44, 4601~4801
	$5601 \sim 5602, 5901 \sim 5902, 6401 \sim 65, 6701 \sim 6702, 7101 \sim 7901$
	50S~55
	8201~83

フランジ部の質量

質量	対応する評価点
	1N, 282N
	501, 327, 2781
	34
	182, 183
	339N

フランジ部の質量

質量		対応する評価点
	23	
	26N	

弁部の寸法

鳥瞰図 RHR-PD-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
15~16				16~17				
17~18				16~19				
23~24				24~2401				
2401~25				25~26				
24~27					-			

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
20~21				21~2101			
2101~2102				21~22			
168~169				169~170			
170~171				169~172			
269~270				277~278			

弁部の寸法

鳥瞰図 RHR-R-3

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
2~3				3~4			
4~5				3~6			
30~31				31~32			
32~33				31~34			
83~84				84~85			
85~86				84~87			

弁部の質量

鳥瞰図 RHR-PD-1

質量	対応する評価点	質量	対応する評価点		
	17		18		
	2401		26		

弁部の質量

鳥瞰図 RHR-R-2

質量	対応する評価点	質量	対応する評価点
	2101		2102
	170		171
	269~270		277~278

弁部の質量

鳥瞰図 RHR-R-3

質量	対応する評価点	質量	対応する評価点
	4		5
	32		33
	85		86

支持点及び貫通部ばね定数

鳥瞰図 RHR-PD-1

支持点番号		各軸方向ばね定数(N/mm)			各軸回り回転ばね定数(N·mm/rad)		
又打	「屈留り	X	Y	Z	X	Y	Z
	7						
**	13 **						
	14						
	22						
**	22 **						
**	25 **						

鳥瞰図 RHR-R-2

一十十十五日 一十十十五日			(N/mm)	各軸回り回	 回転ばね定数(]	N·mm/rad)
支持点番号	X	Y	Z	X	Y	Z
1N						
** 1N **						
** 1N **						
6						
18						
31						
3701						
45						
51						
5103						
5401						
** 5401 **						
1650						
181						
184						
276						
282N						
** 282N **						
** 282N **						
324						
** 324 **						
329						
336A						
339N						

支持点及び貫通部ばね定数

鳥瞰図 RHR-R-3

支持点番号	各軸	各軸方向ばね定数(N/mm) 各軸回り回転ばね定数]転ばね定数(N	√mm/rad)
义付总备与	X	Y	Z	X	Y	Z
16						
26N						
360						
** 361 **						
43						
** 43 **						
51						
56						
62						
75						

3.2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

設計・建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	力(MPa)	
17) 17	(°C)	S _m	S y	S u	S _h
STS410	306	122	181	_	_
STPT410	182	_	_	_	103
STPT410	166	_	_	_	103

材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度		許容応	カ(MPa)	
171 177	(°C)	S _m	S y	S u	S _h
STS410	306	122			
SM400C	166				100
SM400C	182	_	_	_	100
STPT410	182	_	_	_	103

4. 計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 設計・建設規格 PPB-3562の規定に基づく評価

(MPa)	許容応力	$Min(3 \cdot S_m, 2 \cdot S_y)$	362
	計算応力	S_{prm}	91
最大店力	スがス区区		$^{ m m}$ 1 d $^{ m S}$
最大成力	評価点		4
[鳥爾図		RHR-PD-1

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス1管 告示第501号第46条第3号の規定に基づく評価

IIII	一次応力評価 (MPa)	許容応力 3·S _m	998
ここ金~~町	₹ —	計算応力 S _{prm}	76
ロバガりしょりがもの木がりないがたに坐って町皿	4 沙半 骨	区分	Sprm
COTTROL	11年11年11年11年11年11年11年11年11年11年11年11年11年	評価点	4
ロ 47.27.0 C		鳥瞰凶	RHR-PD-1

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管

	一次応力評価 (MPa)	許容応力 1.5·S _h 1.8·S _h	154	185
•価	一个你忘力	計算応力 S p r m S p r m	98	28
設計・建設規格 PPC-3520の規定に基づく評価		最大応力 区分	S p r m	S p r m
見格 PPC-3		最大応力評価点	36	36
設計•建設法		烏瞰区	RHR-R-2	RHR-R-2

PPC-3520(1)に基づき計算した一次応力を示す。 PPC-3520(2)に基づき計算した一次応力を示す。 *2:設計·建設規格 注記*1:設計・建設規格

計算結果

下表に示すとおり最大応力はすべて許容応力以下である。

重大事故等クラス2管であってクラス2以下の管

	一次応力評価 (MPa)	許容応力 S _h 1.2·S _h	100	120
评価	一次応力	計算応力 S p r m S p r m	56	99
告示第501号第56条第1号の規定に基づく評価		最大応力区分	S p r m	S p r m
l 号第56条第		最大応力評価点	111	11
告示第50		鳥瞰図	RHR-R-3	RHR-R-3

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。

なお,保守的な評価となる告示第501号第56条第1号ロに基づき計算した一次応力を 記載してもよいものとする。 *2:告示第501号第56条第1号ロに基づき計算した一次応力を示す。

K7 ① V-3-3-3-2-1-7-2 R1

5. 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、計算条件及び 評価結果を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

		∓ 4/	<u> </u>	0				
*		松库	Ŕ Ķ	3.97	5.74	4.82	6.46	7.38
重大事故等時*	一狹応力	許容応力	(MPa)	362	362	362	362	362
重-		計算応力	(MPa)	91	63	22	99	49
		早型些	美国士	4	1N	4	NEZ	23N
	国海子デジ			RHR-PD-1	RHR-PD-2	RHR-PD-3	RHR-PD-4	RHR-PD-5
	Þ	ON		1	2	3	4	2

注記*:設計・建設規格 PPB-3562に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス1管)

		作事	\	\circ				
<i>7</i> *		- 本外	Ħ Ķ	3.89	5.71	4.81	5.22	5.08
許容応力狀態 V^*	一次応力	許容応力	(MPa)	366	366	366	366	366
許容	-	計算応力	(MPa)	94	64	92	70	72
		早型延	美国上	4	NI	4	14	15
	日郷サルデー			RHR-PD-1	RHR-PD-2	RHR-PD-3	RHR-PD-4	RHR-PD-5
	Ņ	NO.		1	2	3	4	2

注記*:告示第501号第46条第3号に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

	111	V											
	= 47	₩ > —					0						
	中外	全区	22.55	10.15	25.37	2.84	2.12	2.64	2.60	4.74	2.68	2.76	2.68
一次応力	許容応力	(MPa)	203	203	203	185	185	180	185	185	180	185	185
'	計算応力	(MPa)	6	20	8	65	87	89	71	39	29	29	69
	当地無	三年	3	3	11	71	36	11	125	780	12	244	3
	半	K)					0						
	地 外	左 反	21.12	8.45	21.12	2.40	1.81	2.23	2.26	4.05	2.27	2.36	2.29
一次応力	計容応力	(MPa)	169	691	691	154	154	091	154	154	150	154	154
	計算応力	(MPa)	8	20	8	64	85	29	89	38	99	9	29
	当地經	三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三三	3	3	11	71	36	11	125	780	12	244	3
見を対し、これには、これには、これには、これには、これには、これには、これには、これには			RHR-PW-6	RHR-PW-7	RHR-PW-8	RHR-R-1	RHR-R-2	RHR-R-3	RHR-R-4	RHR-R-5	RHR-R-6	RHR-R-7	RHR-R-8
N	ON		П	2	3	4	2	9	7	8	6	10	11
	- 一次応力 - 一次応力	一次応力 一次応力 計算応力 許容応力 ※ ※ ※ 計算応力 許容応力 ※ <td>配管モデル 評価点 計算応力 許審応力 新算応 評価点 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)</td> <td>配管モデル 計算応力 (MPa) <th ro<="" td=""><td>配管モデル 評価点 計算応力 許成方 許成方 計算応力 許算応力 許算応力 許確応力 所Pac (MPa) (MPa)</td><td>配管モデル 評価点 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 (MPa) (MPa)</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 非確応力 非確応力 所配力 <th row<="" td=""><td>配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 </td></th></td></th></td>	配管モデル 評価点 計算応力 許審応力 新算応 評価点 (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa)	配管モデル 計算応力 (MPa) (MPa) <th ro<="" td=""><td>配管モデル 評価点 計算応力 許成方 許成方 計算応力 許算応力 許算応力 許確応力 所Pac (MPa) (MPa)</td><td>配管モデル 評価点 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 (MPa) (MPa)</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 非確応力 非確応力 所配力 <th row<="" td=""><td>配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 </td></th></td></th>	<td>配管モデル 評価点 計算応力 許成方 許成方 計算応力 許算応力 許算応力 許確応力 所Pac (MPa) (MPa)</td> <td>配管モデル 評価点 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 (MPa) (MPa)</td> <td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 非確応力 非確応力 所配力 <th row<="" td=""><td>配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 </td></th></td>	配管モデル 評価点 計算応力 許成方 許成方 計算応力 許算応力 許算応力 許確応力 所Pac (MPa) (MPa)	配管モデル 評価点 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 計算応力 (MPa) (MPa)	配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 非確応力 非確応力 所配力 所配力 <th row<="" td=""><td>配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12</td><td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 </td></th>	<td>配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12</td> <td>配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 </td>	配管モデル 評価点 計算応力 報度 RHR-PW-R 3 20 169 8.45 3 20 20.3 10.15 RHR-PW-R 71 64 154 2.40 71 65 185 2.84 RHR-R-C 36 85 154 1.81 71 65 185 2.12	配管モデル 評価点 計算応力 非確応力 非確応力 非確応力 中華応力 中華の方 中華の方		

注記*1:設計・建設規格 PPC-3520(1)に基づき計算した一次応力を示す。 *2:設計・建設規格 PPC-3520(2)に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果 (重大事故等クラス2管であってクラス2以下の管)

_														
		卡	X Z						\circ					
*2		松库	内区	19.28	10.38	19.28	2.85	2.27	2.14	3.00	3.15	2.14	2.51	2.79
許容応力狀態V ^{*2}	一次応力	許容応力	(MPa)	135	135	135	120	123	120	123	123	120	123	123
許容/	-	計算応力	(MPa)	7	13	7	42	54	99	41	39	99	49	44
		並 年	美量	2	2	11	6	167	11	137	780	12	246	31
		10年	X 2						\circ					
*1		松市	长	16.14	8.69	16.14	2.38	1.90	1.78	2.51	2.64	1.78	2.10	2.34
許容応力狀態V*1	一次応力	計容応力	(MPa)	113	113	113	100	103	100	103	103	100	103	103
許容,	-	計算応力	(MPa)	7	13	7	42	54	99	41	39	99	49	44
		並 年	· 三 上	2	2	11	6	167	11	137	780	12	246	31
	日年が上げる。			RHR-PW-6	RHR-PW-7	RHR-PW-8	RHR-R-1	RHR-R-2	RHR-R-3	RHR-R-4	RHR-R-5	RHR-R-6	RHR-R-7	RHR-R-8
	Ņ	OVI		1	2	3	4	2	9	2	8	6	10	11

注記*1:告示第501号第56条第1号イに基づき計算した一次応力を示す。 *2:告示第501号第56条第1号ロに基づき計算した一次応力を示す。

V-3-3-3-3 非常用炉心冷却設備その他原子炉注水設備の強度計算書

V-3-3-3-3-1 高圧炉心注水系の強度計算書

V-3-3-3-3-1-1 高圧炉心注水系ポンプの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-10「重大事故等クラス2ポンプの強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

	施設時の技術基準		クラスアップするか				条件アップするか			既工認に						
機器名	成設 に対象と ク する施設 ア ア ア ア ア ア ア ア ア	に対象と	クラス	施設時	D.B.	S A	条件	THE DB条件 SA条件		おける 施設時の		評価区分	同等性 評価	評価		
		アップ の有無	機器 クラス	DB クラス	S A クラス	アップ	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格		区分	クラス	
高圧炉心注水系ポンプ	既設	有	無	DB-2	DB-2	SA-2	有	11. 77	100	11.77	120	_	S55告示	設計・建設規格 又は告示	_	SA-2

目 次

1. 言	計算条件	1
1. 1	ポンプ形式	1
1.2	計算部位	1
1.3	設計条件	2
2. 剪	魚度計算	2
2. 1	ケーシングの厚さ	2
2.2	ケーシングの吸込み及び吐出口部分の厚さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.3	ケーシングカバーの厚さ	3
2.4	ボルトの平均引張応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
2.5	耐圧部分等のうち管台に係るものの厚さ	5

1. 計算条件

1.1 ポンプ形式

ターボポンプであって、ケーシングが軸垂直割りで軸対称であるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

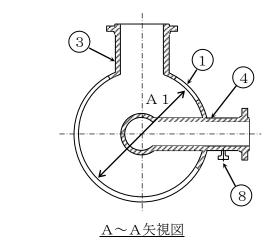


図1-1 概要図

1.3 設計条件

設計条件	吐出側	吸込側
最高使用圧力(MPa)	11. 77	1. 37
最高使用温度(℃)	120	120

2. 強度計算

2.1 ケーシングの厚さ

設計·建設規格 PMC-3320

EX III	DATE THE COLO				
計算部位	材料	P (vm-)	S	A 1	A 2
		(MPa)	(MPa)	(mm)	(mm)
(1)		1. 37			
2		1. 37			

t (mm)	tso	ts (mm)	注記*:	
10. 0	38. 0			
8. 4				

評価: $ts \ge t$, よって十分である。

2.2 ケーシングの吸込み及び吐出口部分の厚さ

設計・建設規格 PMC-3330

(単位:mm)

計算部位	r i	r m	ℓ	t	tℓo	tℓ
3	190. 5	195. 5	22. 1	10. 0		
4	112. 0	117. 0	17. 1	11. 0		

評価: $t_{\ell \ge t}$, よって十分である。

2.3 ケーシングカバーの厚さ

告示第501号第77条第5項第1号

-1 bb 1-11		Р	S	平林	坂形
計算部位	材料	(MPa)	(MPa)	d (mm)	K
(5)		1. 37			

t	tso	t _s
(mm)	(mm)	(mm)
138. 8		

評価: $t_s \ge t$, よって十分である。

2.4 ボルトの平均引張応力

設計·建設規格 PMC-3510

計算部位	材料	P (MPa)	S b (MPa)	dь (mm)	n	$ m A$ b $ m (mm^2)$
6		1. 37				

ガスケット材料	ガスケット厚さ (mm)	ガスケット 座 面 形 状	G s (mm)	G (mm)	D g (mm)
セ ル フ シ ー ル ガスケット (ゴム)	_	_	_	_	

H (N)	Нр (N)	W _{m 1} (N)	W _{m 2} (N)	W (N)	σ (MPa)
	_		0		51

評価: $\sigma \leq S_b$, よって十分である。

2.5 耐圧部分等のうち管台に係るものの厚さ

設計•建設規格 PMC-3610

計算部位	材料	P (MPa)	S (MPa)	D o (mm)
7		1. 37		
8		11.77		

継手の種類	放射線透過試験の有無	η
継手無し	_	1.00
継手無し	_	1. 00

t (mm)	tso	ts (mm)
0.2		
1.2		

評価: $t s \ge t$, よって十分である。

V-3-3-3-3-1-2 高圧炉心注水系ストレーナの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

		施設時の		クラスアッ	プするか			条件で	アップする	ら か。						
	既設	技術基準						DB条	件	SA条	件	既工認に			同等性	
機器名	or	に対象と	クラス	施設時	DB	SA	条件					おける	施設時の	評価区分	評価	評価
	新設	する施設	アップの	機器	クラス	クラス	アップ	圧力	温度	圧力	温度	評価結果	適用規格		区分	クラス
		の規定が	有無	クラス	975	998	の有無	(MPa)	(°C)	(MPa)	(℃)	の有無				
		あるか														
高圧炉心注水系 ストレーナ	既設	有	無	DB-2	DB-2	SA-2	有	[0. 310]*1	104*2	[0. 310]*1	120	_	設計·建設規格*3	設計・建設規格	_	SA-2

注記*1: 高圧炉心注水系ストレーナは、その機能及び構造上の耐圧機能を必要としないため、最高使用圧力を設定しないが、ここでは、原子炉格納容器(内圧)の最高使用圧力を[] 内に示す。 *2: サプレッションチェンバの最高使用温度を示す。

*3:「沸騰水型原子力発電設備における非常用炉心冷却設備及び格納容器熱除去設備に係るろ過装置の性能評価及び構造強度評価について」(平成17・10・13 原院第4号(平成17年10月 25日))に従い、大型化改造工事時に大型化改造工認を提出。

目 次

1. 概要 ·····	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
2.2 評価方針	3
2.3 適用規格·基準等 ···································	4
2.4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5 計算精度と数値の丸め方	6
3. 評価部位	7
4. 構造強度評価	10
4.1 構造強度評価方法	10
4.2 荷重の組合せ及び許容応力	10
4.2.1 荷重の組合せ及び供用状態	10
4.2.2 許容応力	10
4.2.3 使用材料の許容応力評価条件	10
4.2.4 設計荷重	14
4.3 解析モデル及び諸元	17
4.4 計算方法 ······	19
4.4.1 応力評価点	19
4.4.2 応力計算方法	21
4.5 計算条件	27
4.6 応力の評価	27
5. 評価結果	27
5.1 重大事故等対処設備としての評価結果	27
6. 引用文献 ······	29

1. 概要

本計算書は、重大事故等クラス2機器として兼用される高圧炉心注水系ストレーナについて、 V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」 に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びそ の附属施設の技術基準に関する規則」(平成25年6月28日 原子力規制委員会規則第六号)(以 下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及 びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日 原規技発第1306194号) (以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、高圧炉心注水系ストレーナがこれらの要求事項に対して十分な強度を有すること を確認するための強度評価について示すものである。

以下, 重大事故等クラス2管としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

高圧炉心注水系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

		衣 2-1 (特厄司 回				
計画の	概要	概略構造図				
基礎・支持構造	主体構造					
ストレーナはサプレッションプール内に水没された状態で設置されており、原子炉格納容器貫通部に取り付けられたティーに、コネクタを介して、フランジ及び取付ボルトにより据え付けられる。	mmの円錐支持ディスクで構成される鋼 製構造物である。	原子炉格納容器シェル部				
		原子炉格納容器シェル部				

2

2.2 評価方針

高圧炉心注水系ストレーナの応力評価は、「2.1 構造計画」にて示す高圧炉心注水系ストレーナの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。高圧炉心注水系ストレーナの応力評価フローを図 2-1 に示す。

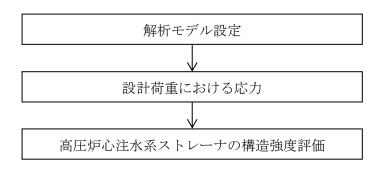


図 2-1 高圧炉心注水系ストレーナの応力評価フロー

2.3 適用規格・基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12 原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
A	断面積	mm^2
a	ボルト穴中心円半径	mm
b	フランジ内半径	mm
D i	各部位の直径 (i =1, 2, 3…)	mm
d	孔径、ボルトの直径	mm
F	軸力	N
f t	ボルトの発生応力	MPa
L i	各部位の長さ (i =1, 2, 3…)	mm
ℓ	ディスク間ギャップ、ボルトのZ軸からの距離	mm
M	モーメント	N•mm
n	ボルトの本数	_
Р	孔の間隔 (中心間)	mm
t	板厚	mm
W	ストレーナ重心に作用する荷重	N
X	軸直角方向(水平)	_
Y	軸方向	_
Z	軸直角方向(鉛直)	_
β	形状係数	_
σr	曲げ応力	MPa

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	$^{\circ}\!\mathbb{C}$	小数点以下第1位	四捨五入	整数位
質量	kg	小数点以下第1位	四捨五入	整数位
長さ	mm	_	_	整数位*2
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*3
計算応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

注記*1:必要に応じて小数点以下第3位表示とする。

*2: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。

*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

高圧炉心注水系ストレーナの応力評価は、「4.1 構造強度評価方法」に示す条件に基づき、主要部品であるディスク、スペーサ、リブ、コンプレッションプレート、フィンガ、ストラップ、フランジ及びストレーナ取付部ボルトについて実施する。

高圧炉心注水系ストレーナの取付け状況,形状及び主要寸法を図 3-1 及び図 3-2 に示し,ディスクセット幅及びスペーサ内径を表 3-1 に示す。

なお、高圧炉心注水系ストレーナは、高圧炉心注水系ストレーナ部ティーに据付部材を介して ストレーナ取付部ボルトにて接続されるものとする。

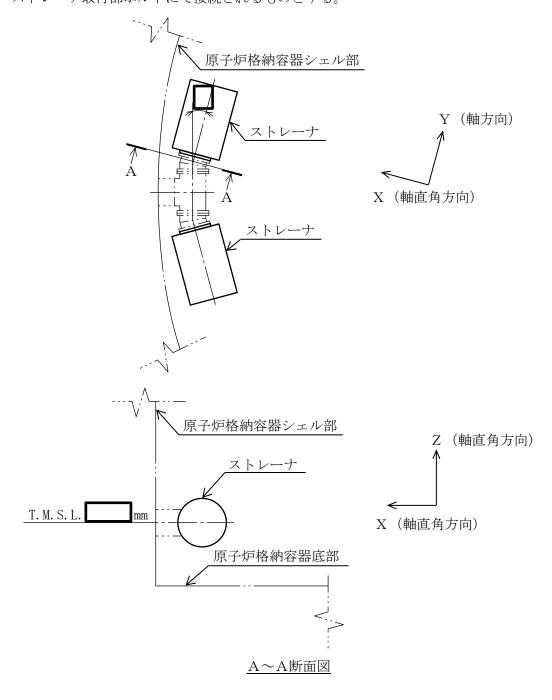


図 3-1 高圧炉心注水系ストレーナの取付け状況

D_1 D_2 D_3 D_4	
①ディスクセット1 ②中間ディスクセット(2~17) ③ディスクセット18 ④スペーサ(1~17) ⑤リブ (厚さ mm) ⑥コンプレッションプレート (厚さ mm)	mm) mm)

図 3-2 高圧炉心注水系ストレーナの形状及び主要寸法(単位:mm)

表 3-1 ディスクセット幅及びスペーサ内径

(単位:mm)

一		(年世.11111)
ディスクセット番号	ディスクセット幅	スペーサ内径

注:各部品寸法はインチから換算した値であるため、桁処理の影響で合計値が公 称値と一致しない場合がある。

4. 構造強度評価

4.1 構造強度評価方法

高圧炉心注水系ストレーナの質量には、ストレーナに付着する異物量を考慮し、荷重の算出 において組み合わせるものとする。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

高圧炉心注水系ストレーナの荷重の組合せ及び供用状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

高圧炉心注水系ストレーナの許容応力を表 4-3 に示す。なお、評価対象は、構造又は形状の不連続性を有する部分であることから、発生する一次一般膜応力は十分小さいため、 一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

高圧炉心注水系ストレーナの許容応力評価条件を表 4-4 に示す。 なお、各評価部位の使用材料については以下のとおり。

多孔プレート リブ コンプレッションプレート フィンガ ストラップ フランジ ストレーナ取付部ボルト

K7 ① V-3-3-3-1-2 R1

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

施設区分		機器名称	機器等の区分	荷重の組合せ	供用状態
原子炉 冷却系統 施設	非常用炉心冷却 設備その他 原子炉注水設備	高圧炉心注水系 ストレーナ	重大事故等クラス 2	$D + P_{SAD} + M_{SAD}$	重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

					SRV	′荷重		LOCA荷	重	
組合せ No.	運転状態	死荷重	異物 荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	供用状態
SA-1	運転状態V(L)	0	\circ	0						重大事故等時*
SA-2	運転状態V(S)	0	\circ	0				0		重大事故等時*
SA-3	運転状態V(S)	0	0	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0			重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-3 許容応力

(重大事故等クラス2管)

供用状態	許容限界			
		一次応力		
	一次一般膜応力	(曲げ応力含む)		
重大事故等時*	C	長期荷重 1.5・S		
	S	短期荷重 1.8・S		

(重大事故等クラス2耐圧部テンションボルト)

供用状態	許容限界
重大事故等時*	2 · S

注記*:重大事故等時として運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用いる。

表4-4 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件	‡	S	S y	S u	Sy (RT)
計1四百1247		(℃)		(MPa)	(MPa)	(MPa)	(MPa)
多孔プレート		最高使用温度	120			_	_
リブ,フランジ等		最高使用温度	120		_	_	_
ストレーナ取付部ボルト		最高使用温度	120		_	_	_

(1)	設計荷重 死荷重 高圧炉心注水系ストレーナの自重による荷重及び高圧炉心注水系ストレーナに付着する 異物の自重による異物荷重の2つの死荷重を考慮する。 高圧炉心注水系ストレーナの自重= 累物荷重= N
(2)	差圧 差圧による荷重は,異物付着時の高圧炉心注水系ストレーナを通しての最大設計差圧よ 設定し,以下のとおりとする。 また,差圧による荷重の作用方向を図 4-1 に示す。 差圧荷重 P dif = MPa

図 4-1 差圧荷重の作用方向

(3) 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

逃がし安全弁作動時及び原子炉冷却材喪失時には、サプレッションチェンバ内の水中構造物に様々な荷重が水力学的動荷重として作用する。これらの荷重については、原子力安全委員会が策定した評価指針(BWR、MARK-II型格納容器圧力抑制系に加わる動荷重の評価指針(以下「MARK-II動荷重指針」という。))に準じて荷重の評価を実施する。

MARK-Ⅱ動荷重指針に基づき、高圧炉心注水系ストレーナに加わる水力学的動荷重を算出した結果を表 4-5 に示す。表 4-5 に示した荷重は、考慮すべき水力学的動荷重が最大となる位置を選定して算出した値である。

なお、プールスウェル荷重のうち、ベントクリアリングは作用範囲外であるため評価対象としない。また、高圧炉心注水系ストレーナは、水平ベント管から遠方かつ下方に設置されているため、プールスウェル及びフォールバック荷重は十分小さく評価対象としない。また、逃がし安全弁作動時荷重のうち、水ジェット及び蒸気凝縮過程による荷重は十分小さいため評価対象としない。

水力学的動荷重の作用方向を図4-2に示す。

軸方向の荷重は、引用文献(1)の考え方に基づき、最前列のディスクと最後列のディスクで軸方向荷重の 1/2 ずつを受け持つとし、この荷重を最前列と最後列のディスクの投影面積で除算し、軸方向の圧力荷重として作用させる。

軸直角方向の荷重は、ストレーナの片面のみで荷重を受け持つとし、ストレーナの片面 の投影面積で軸直角方向荷重を除算し、軸直角方向の圧力荷重として作用させる。

表4-5 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

(単位:N)

	荷重名称	軸方向荷重	軸直角方向荷重
	プールスウェル(気泡形成)*1		
LOCA後の荷重	蒸気凝縮 (CO) *1		
	チャギング (CH) *2		
SRV荷重(中小破)		

注:方向は図3-1参照。ただし、軸直角方向の荷重については、二乗和平方根としている。 注記*1:加速度ドラッグ荷重と定常ドラッグ荷重との代数和とする。

*2: 圧力パルス荷重とそのリングアウト荷重の代数和とする。

*3:定常ドラッグ荷重と圧力荷重の二乗和平方根とする。

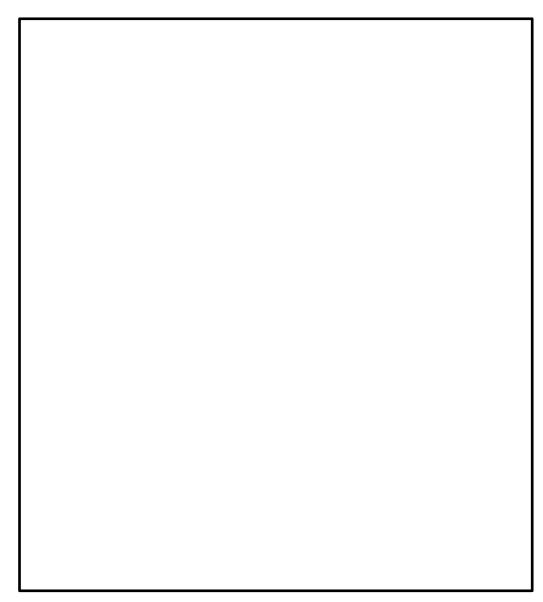


図 4-2 水力学的動荷重の作用方向

4.3 解析モデル及び諸元

高圧炉心注水系ストレーナの応答解析及び応力評価は、はりモデル及び三次元シェルモデルによる有限要素解析手法を適用する。なお、ストレーナ本体の応力計算に用いた三次元シェルモデル(以下「応力解析用モデル」という。)については、「4.4 計算方法」で説明する。本項においては、ストレーナから原子炉格納容器貫通部までをモデル化したはりモデル(以下「応答解析用モデル」という。)について説明する。解析モデルはV-2-5-4-1-2「高圧炉心注水系ストレーナの耐震性についての計算書」に示す応答解析用モデル及び応力解析用モデルと同じモデルである。

高圧炉心注水系ストレーナの応答解析用モデルを図 4-3 に、解析モデルの概要を以下に示す。また、機器の諸元を表 4-6 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた 有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナに ついてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル 化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-3の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水 及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析に おいて考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム (解析コード)の概要」に示す。

図 4-3 応答解析用モデル

表 4-6 機器諸元

項目	単位	入力値
高圧炉心注水系ストレーナの材質		
高圧炉心注水系ストレーナの質量	kg/個	
高圧炉心注水系ストレーナの 内包水及び排除水の質量	kg/個	
ストレーナ1個あたりの異物の質量	kg/個	
温度	$^{\circ}\!\mathbb{C}$	104
縦弾性係数	MPa	
ポアソン比		
要素数	個	
節点数	個	

4.4 計算方法

4.4.1 応力評価点

高圧炉心注水系ストレーナは、図 3-2 に示すとおり、リブ及びフィンガが主強度部材となり各ディスクを支える構造になっている。各ディスクの表面は多孔プレートとなっており、ろ過装置としての機能を果たしている。作用する荷重の大部分は、フィンガにより支えられた各ディスクの多孔プレート表面に加わり、負荷された荷重は最終的にはリブに伝達される。したがって、ここではストレーナの主要構成部材である多孔プレート、リブ、コンプレッションプレート、フィンガ、ストラップ、フランジ及びストレーナ取付部ボルトの構造、形状を考慮した応力評価点を選定し、評価を実施する。

応力評価点を表 4-7 及び図 4-4 に示す。

表 4-7 応力評価点

名称		応力評価点番号	応力評価点
多孔	ディスク	P1	全ディスクセットの多孔プレート
プレート	スペーサ*	P2	ディスクセット間の円筒形多孔プレート
y	ブ	Р3	リブ
コンプレッションプレート		P4	コンプレッションプレート
フィンガ		P5	フィンガ
ストラップ		P6	ストラップ
フランジ		P7	フランジ
ストレーナ	取付部ボルト	P8	ボルト

注記*:ボトムスペーサを含む。

図 4-4 応力評価点

4.4.2 応力計算方法

応力計算方法について,以下に示す。なお,フランジ及びボルトについては作用する荷 重についても本項目で記載する。

(1) ストレーナ (応力評価点 P1~P6)

ストレーナの応力計算は応力解析用モデルにより行う。ストレーナの応力解析用モデル を図 4-5 に、解析モデルの概要を以下に示す。また、機器の諸元を表 4-8 に示す。

- a. 応力解析用モデルではストレーナをシェル要素を用いた有限要素モデルとしてモデル化して解析を行う。
- b. 計算モデルの各部材は溶接により接合されており、溶接部は健全性が確保されるよう 設計する。
- c. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力増倍率は,引用文献(2)の考え方に基づき設定する。
- d. 各部の質量は、各シェル要素に密度を与える。
- e. 4.2.4 で設定した設計荷重により高圧炉心注水系ストレーナに生じる応力は、解析コード「MSCNASTRAN」を使用して計算する。

図 4-5 高圧炉心注水系ストレーナの計算モデル

表 4-8 機器諸元

	D74 HH 11 H 2 -		
項目	単位	入力値	
高圧炉心注水系ストレーナの材質	_		
高圧炉心注水系ストレーナの質量	kg/個		
温度	$^{\circ}\!\mathbb{C}$	104	
多孔プレートの等価縦弾性係数	MPa		
多孔プレートの等価ポアソン比	_		
多孔プレートの応力増倍率	_		
要素数	個		
節点数	個		

(2) フランジ (応力評価点 P7)

以下に示す計算方法により応力評価を行う。

ストレーナ取付部フランジは、一般的なフランジとは異なりガスケットを使用しない。 そこで、フランジを以下のようにモデル化する。

フランジを外周(ボルト穴中心円直径)が固定された平板と考え、表 4-9 に示すモーメントが中心部に作用すると考える。この場合の発生応力は、引用文献(3) より、図 4-6 に示す計算モデルで下記の計算式より求める。

$$\sigma r = \frac{\beta \cdot M_{\text{fmax}}}{a \cdot t^2}$$

ここに,

σ_r : 曲げ応力(MPa)

Mfmax:表4-9に示すモーメント(N·mm)

a : ボルト穴中心円半径= (mm)

b : フランジ内半径= (mm)

t : フランジ板厚= (mm)

β : b / a (= _____) から決まる計算上の係数=

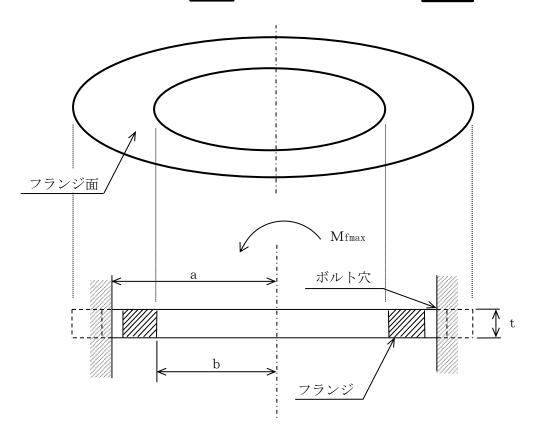


図4-6 フランジ断面の計算モデル

ストレーナ取付部フランジの設計荷重は、ストレーナに作用する荷重から算出したフランジ部のモーメントを用いる。ここでのモーメントとは、図 4-7 に示すように、ストレーナ重心に作用する荷重とその作用点からフランジまでのモーメントアームから計算したモーメントであり、フランジに対して面外方向の曲げモーメント(2 方向ある面外方向曲げモーメントの二乗和平方根の合成値)とする。なお、プールスウェル荷重、蒸気凝縮荷重及びチャキング荷重については、応答解析より得られた、フランジに対する面外方向の曲げモーメントを用いる。

ストレーナ重心がフランジ中心軸上に位置することから,フランジ面内方向のモーメント (ねじりモーメント) は発生しないため,ここでは評価対象としない。

フランジの設計荷重を表 4-9 に示す。

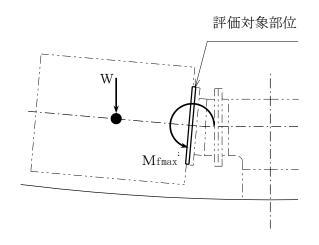


図 4-7 フランジに作用するモーメント

表 4-9 フランジの設計荷重

(単位:N·mm)

	荷重	モーメント
1	死荷重	
2	異物荷重	
3	差圧	
4	SRV荷重	
5	プールスウェル(気泡形成)	
6	蒸気凝縮(CO)	
7	チャギング (CH)	

(3) ストレーナ取付部ボルト(応力評価点 P8)

ボルトには、表 4-9 に示すモーメントに加え、ストレーナの軸方向に発生する荷重によりボルトの軸方向荷重が発生する。

フランジに作用するモーメントにより,ボルトに生じる軸力は,以下のように算出する。

図 4-8 に示すフランジの中心を通る中立軸(Z軸)まわりのモーメントを考える。このとき、Z軸まわりのモーメントは、各ボルトに発生する軸力とボルトのZ軸からの距離の積から得られるモーメントとつりあっていると考えることができる。ここで、軸方向荷重によって中立軸が移動するが、軸方向荷重のボルトへの影響が小さいため、軸方向荷重による中立軸の移動は無視する。

したがって、Z軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

$$MZ = \sum_{k=1}^{n} F tk \cdot \ell k$$

ここに,

MZ : Z軸まわりのモーメント (N·mm)

Ftk : 各ボルトに発生する軸力(N)

ℓk : 任意のボルトkにおける Z 軸からの距離 (mm)

n : ボルトの本数=

なお,ストレーナ重心がフランジ中心軸上に位置することから,フランジ面内方向のモーメント(ねじりモーメント)は発生しないため,ここでは評価対象としない。

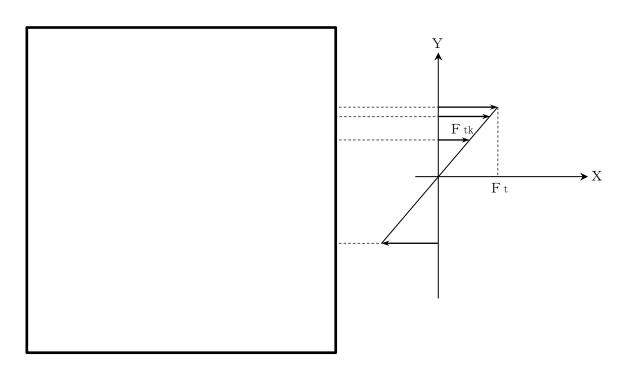


図4-8 各ボルトに発生する軸力とモーメントアームの関係

また、ボルト軸力のZ軸まわりのモーメント寄与分は中立軸上ではゼロであり、図 4-8 に示すように、曲げモーメントを伝えるボルトの軸力は回転中心からの距離に比例して変化するとして算定する。この場合、ボルトに発生する最大の軸力をFtとすると、各ボルトに発生する軸力Ftは下記となる。

$$F_{tk} = F_t \cdot \frac{\ell_k}{D_5/2}$$

ここに、 Ft : 最大の軸力が発生するボルトの軸力(N)

Ftk : 各ボルトに発生する軸力(N)

D₅ : ボルト孔中心円直径= (mm)

以上より、nが偶数の場合、Z軸まわりのモーメントは下記となる。

$$M_Z = \frac{2 \cdot F_t}{D_5} \cdot \sum_{k=1}^n \ell_k^2 = \frac{F_t \cdot D_5 \cdot n}{4}$$

ただし、
$$\ell_k = \frac{D_5}{2} \cdot \sin\{\frac{2 \cdot \pi}{n} \cdot (k-1)\}$$

よって、表4-9に示すモーメントから、ボルトの軸力は以下のように算出できる。

$$F_t = \frac{4 \cdot M_{\text{fmax}}}{D_5 \cdot n}$$

したがって, ボルトに発生する応力は下記となる。

$$f t = \frac{Ft}{As} + \frac{Fax1}{As \cdot n}$$

ここに,

f t : ボルトの発生応力(MPa)

As : ボルトの有効断面積= $\frac{\pi \cdot d b^2}{4}$ (mm²)

db : ボルトのねじ部谷径= (mm)

Faxl :表 4-10 に示す軸方向荷重(N)

ストレーナ取付部ボルトの設計荷重は、4.4.2項(2)に示すフランジに作用する最大モーメントに加え、ストレーナの軸方向に発生する荷重によりボルトの軸方向荷重を考慮した引張力を合算して応力評価を行う。フランジとボルトは摩擦接合であるため、ボルトに対するせん断力は作用しないものとする。

ボルトの設計荷重を表 4-10 に示す。

表 4-10 ボルトの設計荷重

(単位:N)

			(千江	• 11/		
	荷重	軸方向荷重				
1	死荷重					
2	異物荷重					
3	差圧					
4	SRV荷重					
5	プールスウェル(気泡形成)					
6	蒸気凝縮(CO)					
7	チャギング(CH)					

4.5 計算条件

応力解析に用いる自重及び荷重は、本計算書の「4.2 荷重の組合せ及び許容応力」及び「4.4 計算方法」に示す。

4.6 応力の評価

「4.4 計算方法」で求めた応力が表 4-3 及び表 4-4 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

高圧炉心注水系ストレーナの重大事故等時の状態を考慮した場合の強度評価結果を以下に示す。発生値は許容限界を満足している。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1 に示す。

なお,各評価点における計算応力は表 4-2 に示す荷重の組合せのうち,発生値が最も高い評価を記載している。

表 5-1 重大事故等時に対する応力評価結果 $(D+P_{SAD}+M_{SAD})$

					重大事故等時	Ê	
評価対象設備		評価部位	応力分類	計算応力	許容応力	荷重組合せ	
				(MPa)	(MPa)	1月里が1日 と	
	P1	全ディスクセットの	一次膜応力+	111	100	CA 9	
	PI	多孔プレート	一次曲げ応力	111	192	SA-3	
	DO	ディスクセット間の	一次膜応力+	100	100	CA 9	
	P2	円筒形多孔プレート	一次曲げ応力	103	192	SA-3	
	Р3	リブ	一次膜応力+	89	01.4	SA-3	
		9 2	一次曲げ応力	89	214	SA 3	
高圧炉心注水系	P4	コンプレッションプレート	一次膜応力+	33	914	CA 9	
ストレーナ			一次曲げ応力	33	214	SA-3	
	P5	フィンガ	一次膜応力+	100	01.4	CA 9	
	Po		一次曲げ応力	103	214	SA-3	
	DC	715	一次膜応力+	20	014	CA 9	
	P6	ストラップ	一次曲げ応力	39	214	SA-3	
	P7	フランジ	曲げ応力	137	214	SA-3	
	P8	ボルト	引張応力	42	204	SA-3	

6. 引用文献

- (1) NEDO-32721, "Application Methodology for the General Electric Stacked Disk ECCS Suction Strainer" Licensing Topical Report, General Electric, March 2003.
- (2) ASME B&PV CODE, Section Ⅲ, Division 1, Appendices, Article A-8000, "Stresses in Perforated Flat Plates," 1989 Edition, No Addenda.
- (3) WARREN C. YOUNG "ROARK'S FORMULAS for Stress and Strain" 7th Edition

V-3-3-3-3-1-3 高圧炉心注水系ストレーナ部ティーの強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。 評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

		施設時の		クラスアッ	プするか			条件	ニアップす	るか						
機器名	既設 or 新設	技術基準に対象とする施設の規定があるか	クラス アップ の有無	施設時 機器 クラス	DB クラス	SA	条件 アップ の有無	DB条 压力 (MPa)	件 温度 (℃)	S A条作 圧力 (MPa)	准 温度 (℃)	既工認における評価結果の有無	施設時の適用規格	評価区分	同等性 評価 区分	評価クラス
高圧炉心注水系 ストレーナ (ティー)	既設	有	無	DB-2	DB-2	SA-2	有	[0.310]*1	104*2	 [0. 310]* ¹	120	_	S55告示	設計・建設規格 又は告示	l	SA-2

注記*1:高圧炉心注水系ストレーナ(ティー)は、その機能及び構造上の耐圧機能を必要としないため、最高使用圧力を設定しないが、ここでは、原子炉格納容器(内圧)の最高使用圧力を[] 内に示す。

*2:サプレッションチェンバの最高使用温度を示す。

目 次

1.	概要	1
2.	一般事項	1
2	2.1 構造計画 ······	1
2	2.2 評価方針	3
2	2.3 適用規格・基準等	4
2	2.4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2	2.5 計算精度と数値の丸め方	6
3.	評価部位	7
4.	構造強度評価	8
4	4.1 構造強度評価方法	8
4	4.2 荷重の組合せ及び許容応力	8
	4.2.1 荷重の組合せ及び供用状態	8
	4.2.2 許容応力	8
	4.2.3 使用材料の許容応力評価条件	8
	4.2.4 設計荷重	12
4	4.3 解析モデル及び諸元 ····································	13
4	4.4 計算方法 ·····	14
	4.4.1 ティーの計算方法	14
4	4.5 計算条件 ·····	15
	4.5.1 応力解析に用いるモーメント	15
4	4.6 応力の評価	16
5.	評価結果	16
5	5.1 重大事故等対処設備としての評価結果	16

1. 概要

本計算書は、重大事故等クラス2機器として兼用される高圧炉心注水系ストレーナ部ティーについて、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(平成25年6月28日 原子力規制委員会規則第六号)(以下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日 原規技発第1306194号)(以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、高圧炉心注水系ストレーナ部ティーがこれらの要求事項に対して十分な強度を 有することを確認するための強度評価について示すものである。

以下, 重大事故等クラス2管としての応力評価を示す。

2. 一般事項

2.1 構造計画

高圧炉心注水系ストレーナ部ティーの構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の	概要	## m女 +# ントト 157
基礎・支持構造	主体構造	概略構造図
ストレーナ部ティーは、サプレッションプール内に水没された状態で設置されており、原子炉格納容器貫通部に取り付けられている。	ティー形の管継手	原子炉格納容器貫通部 (X-210B, 210C) (単位:mm)

N

2.2 評価方針

高圧炉心注水系ストレーナ部ティーの応力評価は、「2.1 構造計画」にて示すストレーナ部ティーの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

高圧炉心注水系ストレーナ部ティーの応力評価フローを図2-1に示す。

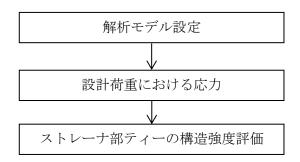


図 2-1 高圧炉心注水系ストレーナ部ティーの応力評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・建設規格」という。)
- ・発電用原子力設備に関する構造等の技術基準(昭和55年通商産業省告示第501号)(以下「告示第501号」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
S _{prm}	発生応力	MPa
Р	最高使用圧力(設計圧力)	MPa
D_{\circ}	管の外径	mm
t	管の厚さ	mm
B 1 *1	設計・建設規格 表 PPB-3812.1-1 で規定する応力係数(=)	_
B 2 b *1	設計・建設規格 式 PPB-4.29 により計算した分岐管の応力係数	
	$=0.4 \cdot \left(\frac{R_{m}}{T_{r}}\right)^{\frac{2}{3}} (= $	
R m *1	主管の平均半径	mm
T r *1	主管の厚さ	mm
B 2 r *1	設計・建設規格 式 PPB-4.30 により計算した主管の応力係数	_
	$=0.5 \cdot \left(\frac{R_{m}}{T_{r}}\right)^{\frac{2}{3}} (= $	
M b *1	表 4-9 に示す分岐管に作用する最大モーメント	N•mm
M r *1	表 4-9 に示す主管に作用する最大モーメント	N•mm
Z b *1	分岐管の断面係数	mm^3
Z r *1	主管の断面係数	mm^3
Pm^{*2}	内面に受ける最高の圧力	MPa
i1*2	告示第501号第57条に規定する応力係数又は1.33のいずれか	_
	大きい方の値 $= \frac{0.9}{h^{2/3}} (= $	
	11	
h*2	i ₁ 算出に必要な値 *	_
	$=4.4 \cdot \frac{t}{r}$	
r*2	h 算出に必要な値,管断面の平均半径	mm
	$=\frac{\text{Do}-\text{t}}{2}$	
ν ψ ⁰	2	NT.
Ma*2	管の機械的荷重(自重その他の長期的荷重に限る)により生じる モーメント	N•mm
Mb*2	で	N•mm
MIO	荷重に限る)により生じるモーメント	14 111111
Z*2	管の断面係数 $=\pi \cdot (r)^2 t_n$	mm^3
tn*2	() ¹ 管の厚さ	mm
Ü11		111111

注:ここで定義されない記号については、各計算の項目において説明する。

注記*1:設計・建設規格に規定の応力計算に用いる記号

*2:告示第501号に規定の応力計算に用いる記号

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	$^{\circ}\! \mathbb{C}$	小数点以下第1位	四捨五入	整数位
質量	kg	小数点以下第1位	四捨五入	整数位
長さ	mm	_	_	整数位*2
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*3
計算応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4 MPa		小数点以下第1位	切捨て	整数位

注記*1:必要に応じて小数点以下第3位表示とする。

*2:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。

*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。また、告示第501号別表に記載された許容引張応力は、各温度の値をSI単位に換算し、SI単位に換算した値の小数点以下第1位を四捨五入して、整数位までの値とする。その後、設計・建設規格と同様の換算と桁処理を行う。

3. 評価部位

高圧炉心注水系ストレーナ部ティーの形状及び主要寸法を図3-1及び表3-1に示す。

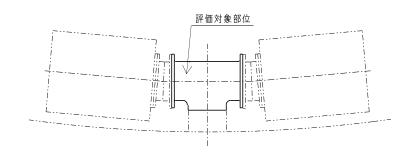


図 3-1 高圧炉心注水系ストレーナ部ティーの形状(貫通部番号: X-210B, 210C)

表 3-1 高圧炉心注水系ストレーナ部ティーの主要寸法

(単位:mm)

貫通部番号	外径	板厚	フランジ間距離		
X-210B, 210C					

4. 構造強度評価

4.1 構造強度評価方法

ストレーナ部ティーは,ストレーナ部を含む一体モデルでの応答解析から得られたモーメントとストレーナ部から作用する荷重を用いて構造強度評価を行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

荷重の組合せ及び供用状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

高圧炉心注水系ストレーナ部ティーの許容応力を表 4-3 及び表 4-4 に示す。なお、評価対象は、基本板厚計算書で膜応力を考慮した最小板厚の評価を実施していることから、一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

高圧炉心注水系ストレーナ部ティーの許容応力評価条件を表 4-5 及び表 4-6 に示す。 なお、各評価部位の使用材料については以下のとおり。

ティー

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

	施設区分	機器名称	機器等の区分	荷重の組合せ	供用状態 (許容応力状態)
原子炉冷却系統施設	非常用炉心冷却 設備その他 原子炉注水設備	高圧炉心注水系 ストレーナ部ティー	重大事故等クラス 2	$D+P_{SAD}+M_{SAD}$	重大事故等時*

注記*: 重大事故等時として設計・建設規格に規定の応力計算では運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用い、告示第501号に規定の応力計算では運転状態V(L)は許容応力状態IA,運転状態V(S)は許容応力状態IVAの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

					SRV	√荷重		LOCA荷	重	
組合せ No.	運転状態	死荷重	異物 荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	供用状態 (許容応力状態)
SA-1	運転状態V(L)	0	0	0						重大事故等時*
SA-2	運転状態V(S)	0	0	0				0		重大事故等時*
SA-3	運転状態V(S)	0	0	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0			重大事故等時*

注記*: 重大事故等時として設計・建設規格に規定の応力計算では運転状態 V(L)は供用状態 A, 運転状態 V(S)は供用状態 Dの許容限界を用い、告示第501号に規定の応力計算では運転状態 V(L)は許容応力状態 I A, 運転状態 V(S)は許容応力状態 IVAの許容限界を用いる。

表 4-3 設計・建設規格に規定の応力計算に用いる許容応力 (重大事故等クラス2管(クラス2,3管))

状態	一次一般膜応力	一次応力 (曲げ応力を含む)
重大事故等時*	S	長期荷重 1.5・S 短期荷重 1.8・S

注記*: 重大事故等時として運転状態 V(L) は供用状態A,運転状態 V(S) は供用状態Dの許容限界を用いる。

表 4-4 告示第501号に規定の応力計算に用いる許容応力 (重大事故等クラス2管(第3種管))

状態	一次一般膜応力	一次応力 (曲げ応力を含む)
許容応力状態V*	S	長期荷重 S 短期荷重 1.2・S

注記*: 重大事故等時として運転状態V(L)は許容応力状態IA、運転状態V(S)は許容応力状態IVAの許容限界を用いる。

表 4-5 使用材料の設計・建設規格に規定の応力計算に用いる許容応力評価条件(重大事故等対処設備)

評価部材	材料	温	S (MPa)		
ティー		最高使用温度	120		

表 4-6 使用材料の告示第501号に規定の応力計算に用いる許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (°C)			S (MPa)	
ティー		最高使用温度	120			

4.2.4 設計荷重

ストレーナに作用する荷重(死荷重,水力学的動荷重等)はフランジを介してティーに 伝達され、最終的に貫通部に伝達される。このため、ティーの設計荷重としては、ティー 自身に作用する荷重に加え、先の伝達荷重を考慮する。

(1) 死荷重

ティーの死荷重を表 4-7 に示す。

表 4-7 死荷重

(単位:N)

部位	高圧炉心注水系
ティー	

(2) 差圧

ティーの設計圧力は MPa を考慮する。

4.3 解析モデル及び諸元

高圧炉心注水系ストレーナ部ティーの応答解析用モデルを図 4-1 に、解析モデルの概要を以下に示す。解析モデルはV-2-5-4-1-2「高圧炉心注水系ストレーナの耐震性についての計算書」に示す応答解析用モデルと同じモデルである。また、機器の諸元を表 4-8 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた 有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナに ついてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル 化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-1の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水 及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析に おいて考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム (解析コード)の概要」に示す。

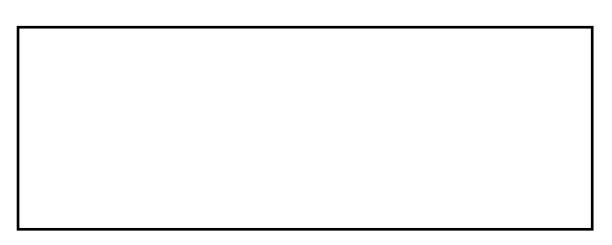


図 4-1 応答解析用モデル

項目 単位 入力值 高圧炉心注水系 ストレーナ部ティーの材質 高圧炉心注水系 kg ストレーナ部ティーの質量 高圧炉心注水系ストレーナ部ティーの kg 内包水及び排除水の質量 ストレーナ1個あたりの異物の質量 kg/個 $^{\circ}$ C 温度 104 縦弾性係数 MPa ポアソン比 要素数 個 節点数 個

表 4-8 機器諸元

4.4 計算方法

4.4.1 ティーの計算方法

ティーに発生する応力は、設計・建設規格 PPC-3520 及び告示第501号第56条に従い算出する。なお、ティーの溶接継手は管の板厚の強度と同等以上となるように設計しているため、ここでは管について評価を行う。

設計・建設規格 PPC-3520 に基づく応力算出は以下の式に従う。

$$S_{prm} = \frac{B_1 \cdot P \cdot D_o}{2 \cdot t} + \frac{B_{2b} \cdot M_b}{Z_b} + \frac{B_{2r} \cdot M_r}{Z_r}$$

また、告示第501号第56条に基づく応力算出は以下の式に従う。

$$S_{prm} = \frac{P_{m} \cdot D_{o}}{4 \cdot t} + \frac{0.75 \cdot i_{1} \cdot (M_{a} + M_{b})}{Z}$$

4.5 計算条件

4.5.1 応力解析に用いるモーメント

応力解析に用いるモーメントは、図 4-2 に示す主管と分岐管に作用するモーメントを 用いる。主管のモーメントは「4.2.4 設計荷重」に示したようにストレーナからの伝達 荷重を考慮し、分岐管のモーメントは先の伝達荷重に加え、ティー自身に作用する荷重か ら算出したモーメントを考慮する。

算出したモーメントを表 4-9 に示す。ここでのモーメントとは、設計・建設規格 解説 PPC-3520 の考え方に基づいて設定した 3 方向のモーメントを二乗和平方根で合成したものである。

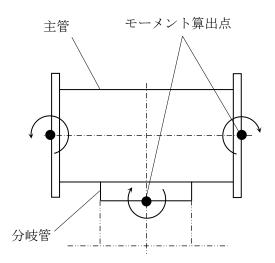


図 4-2 ティーのモーメント算出点

表 4-9 ティーの設計荷重

(単位:N·mm)

	荷重	モーメント					
	19 里	主管	分岐管				
1	死荷重						
2	異物荷重						
3	差圧						
4	SRV荷重						
5	プールスウェル(気泡形成)						
6	蒸気凝縮(CO)						
7	チャギング (CH)						

4.6 応力の評価

「4.5 計算条件」で求めた応力が表 4-3,表 4-4,表 4-5 及び表 4-6 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

ティーの重大事故等時の状態を考慮した場合の評価結果を以下に示す。発生値は許容限界を 満足していることを確認した。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1,表 5-2 に示す。

なお、各評価点における計算応力は表 4-2 に示す荷重の組合せのうち、発生値が最も高い評価を記載している。

表 5-1 設計・建設規格に基づく重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

					重大事故等時	Ē	
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	荷重組合せ	
				(MPa)	(MPa)		
高圧炉心注水系	<u> </u>	M(C)	VL	114	01.4	GA 0	
ストレーナ部ティー	ティー	V(S)	一次応力	114	214	SA-3	

表 5-2 告示第501号に基づく重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

					許容応力状態	V	
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	荷重組合せ	
				(MPa)	(MPa)		
高圧炉心注水系	1	M(C)	VL	40	1.40	GA 9	
ストレーナ部ティー	ティー	V(S)	一次応力	42	143	SA-3	

V-3-3-3-1-4 高圧炉心注水系ストレーナ取付部コネクタ の強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-9「重大事故等クラス2管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

評価条件整理表

		施設時の		クラスアッ	プするか			条件	‡アップ?	^ト るか						
lik pp. 6	既設	技術基準 に対象と	クラス	施設時			条件	DB条	件	SA条何	(牛	既工認に おける	施設時の		同等性	評価
新設	する施設の規定が	アップの 有無	機器クラス	DB クラス	S A クラス	アップ の有無	压力 (MPa)	温度 (℃)	压力 (MPa)	温度	評価結果の有無	適用規格	評価区分	評価 区分	クラス	
		あるか														
高圧炉心注水系 ストレーナ (コネクタ)	既設	有	無	DB-2	DB-2	SA-2	有	 [0. 310]*1	104*2		120	-	設計·建設規格* ³	設計・建設 規格	_	SA-2

注記*1: 高圧炉心注水系ストレーナ (コネクタ) は、その機能及び構造上の耐圧機能を必要としないため、最高使用圧力を設定しないが、ここでは、原子炉格納容器 (内圧) の最高使用圧力を [] 内に示す。

*2:サプレッションチェンバの最高使用温度を示す。

*3:「沸騰水型原子力発電設備における非常用炉心冷却設備及び格納容器熱除去設備に係るろ過装置の性能評価及び構造強度評価について」(平成17・10・13 原院第4号(平成17年10月 25日))に従い、大型化改造工事時に大型化改造工認を提出。

目 次

1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画 ·····	1
2.2 評価方針	3
2.3 適用規格・基準等	4
2.4 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 評価部位	7
4. 構造強度評価 ·····	8
4.1 構造強度評価方法	8
4.2 荷重の組合せ及び許容応力	8
4.2.1 荷重の組合せ及び供用状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.2.2 許容応力	8
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.2.4 設計荷重	11
4.3 解析モデル及び諸元	12
4.4 計算方法 ·····	13
4.4.1 コネクタの計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
4.4.2 フランジの計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4.5 計算条件	17
4.6 応力の評価	17
5. 評価結果	18
5.1 重大事故等対処設備としての評価結果	18
6. 引用文献 ······	18

1. 概要

本計算書は、重大事故等クラス2機器として兼用される高圧炉心注水系ストレーナ取付部コネクタについて、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」に基づき、材料及び構造について評価を実施する。当該設備の評価は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(平成25年6月28日原子力規制委員会規則第六号)(以下「技術基準規則」という。)第55条(材料及び構造)に規定されており、「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(平成25年6月19日原規技発第1306194号)(以下「技術基準規則の解釈」という。)に従い、設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第 17 条 4 において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号 (平成 20 年 2 月 27 日原子力安全・保安院制定))に適合することと規定されている。

本計算書は、高圧炉心注水系ストレーナ取付部コネクタがこれらの要求事項に対して十分な強度を有することを確認するための強度評価について示すものである。

以下, 重大事故等クラス2管としての応力評価を示す。

2. 一般事項

2.1 構造計画

高圧炉心注水系ストレーナ取付部コネクタの構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の	概要	+Ⅲ m々 +無 ×牛 ▽□
基礎・支持構造	主体構造	概略構造図
ストレーナ取付部コネク タは、サプレッションプ ール内に水没された状態 で設置されており、ティ ー及びストレーナの間に 取り付けられる。	コネクタ	原子炉格納容器貫通部 (X-210B, 210C) ストレーナ取付部コネクタ ティー 原子炉格納容器シェル部 フランジ ティー側 ストレーナ側 (単位: mm)

2

2.2 評価方針

高圧炉心注水系ストレーナ取付部コネクタの応力評価は、「2.1 構造計画」にて示すストレーナ取付部コネクタの部位を踏まえ、「3. 評価部位」にて設定する箇所において、「4.3 解析モデル及び諸元」に示す解析モデルを用いて、設計荷重による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

高圧炉心注水系ストレーナ取付部コネクタの応力評価フローを図 2-1 に示す。

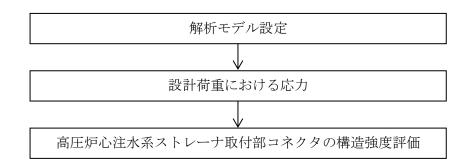


図 2-1 高圧炉心注水系ストレーナ取付部コネクタの応力評価フロー

2.3 適用規格・基準等

本評価において適用する規格・基準等を以下に示す。

- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成20・02・12原院第5号(平成20年2月27日原子力安全・保安院制定))

2.4 記号の説明

記号	記号の説明	単位
В	応力係数	_
D	外径	mm
L	長さ	mm
M	モーメント	N•mm
Р	圧力	MPa
t	厚さ	mm
Z	断面係数	mm^3
σ	応力	MPa

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
圧力	MPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	$^{\circ}\!\mathbb{C}$	小数点以下第1位	四捨五入	整数位
質量	kg	小数点以下第1位	四捨五入	整数位
長さ	mm	_	_	整数位*2
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*3
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*3
計算応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

注記*1:必要に応じて小数点以下第3位表示とする。

*2: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*3:絶対値が1000以上のときは、べき数表示とする。

*4: 設計・建設規格 付録材料図表に記載された温度の中間における許容引張応力は, 比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。


3. 評価部位

高圧炉心注水系ストレーナ取付部コネクタの応力評価は、「4.1 構造強度評価方法」に示す条件に基づき、ストレーナ取付部コネクタ及びフランジについて実施する。

なお、V-3-3-3-3-1-2「高圧炉心注水系ストレーナの強度計算書」に示すストレーナ取付部ボルトの評価は、ストレーナ取付部で発生する荷重及びモーメントよりティーとコネクタ間で発生する荷重及びモーメントの方が大きいため、ティーとコネクタ間で発生する荷重及びモーメントを用いており、高圧炉心注水系ストレーナ取付部コネクタをストレーナ部ティーに取り付けるためのボルトの評価は、V-3-3-3-3-1-2「高圧炉心注水系ストレーナの強度計算書」に示すストレーナ取付部ボルトの評価に包含されるため、ここでは記載を省略する。

また、高圧炉心注水系ストレーナ取付部コネクタのフランジのうちストレーナと取り付けるフランジの評価は、ストレーナ側フランジより板厚を大きく設計しており(コネクタ側フランジ厚さmm, ストレーナ側mm)、V-3-3-3-3-1-2「高圧炉心注水系ストレーナの強度計算書」に示すストレーナ側フランジの評価に包含されるため、ここでは記載を省略する。

高圧炉心注水系ストレーナ取付部コネクタの形状及び主要寸法を図3-1に示す。

高圧炉心注水系ストレーナ取付部コネクタ (貫通部番号: X-210B, 210C)

 $D_1 =$ $L_2 =$ $t_1 =$

図3-1 高圧炉心注水系ストレーナ取付部コネクタの形状及び主要寸法(単位:mm)

4. 構造強度評価

4.1 構造強度評価方法

ストレーナ取付部コネクタは、ストレーナ部を含む一体モデルでの応答解析から得られたモーメントとストレーナから作用する荷重を用いて構造強度評価を行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び供用状態

高圧炉心注水系ストレーナ取付部コネクタの荷重の組合せ及び供用状態に用いるものを表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。

4.2.2 許容応力

高圧炉心注水系ストレーナ取付部コネクタの許容応力を表 4-3 に示す。なお、評価対象は、構造又は形状の不連続性を有する部分であることから、発生する一次一般膜応力は十分小さいため、一次一般膜応力の評価結果の記載については省略する。

4.2.3 使用材料の許容応力評価条件

高圧炉心注水系ストレーナ取付部コネクタの許容応力評価条件を表 4-4 に示す。 なお、各評価部位の使用材料については以下のとおり。

コネクタ	ſ	
フランジ	L	

K7 ① V-3-3-3-1-4 R1

表 4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

	施設区分	機器名称	機器等の区分	荷重の組合せ	供用状態
原子炉 冷却系統 施設	非常用炉心冷却設備 その他原子炉注水設備	高圧炉心注水系ストレーナ 取付部コネクタ	重大事故等クラス2	D+P _{SAD} +M _{SAD}	重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A,運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-2 荷重の組合せ整理表 (重大事故等対処設備)

	数1.2 内里少周日已正在数(里八字版刊八尺版画)									
					SRV	√荷重		LOCA荷	重	
組合せ No.	運転状態	死荷重	異物 荷重	差圧	運転時	中小破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (C H)	供用状態
SA-1	運転状態V(L)	0	0	0						重大事故等時*
SA-2	運転状態V(S)	0	\circ	0				0		重大事故等時*
SA-3	運転状態V(S)	0	0	0		0			0	重大事故等時*
SA-4	運転状態V(S)	0					0			重大事故等時*

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-3 許容応力 (重大事故等クラス2管(クラス2,3管))

供用状態	一次一般膜応力	一次応力 (曲げ応力を含む)
重大事故等時*	C	長期荷重 1.5・S
里八爭以守时	3	短期荷重 1.8・S

注記*: 重大事故等時として運転状態V(L)は供用状態A, 運転状態V(S)は供用状態Dの許容限界を用いる。

表 4-4 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温	S		
計1川市177	17) 141		$(^{\circ}\!\mathbb{C})$	(MPa)	
コネクタ		最高使用温度	120		
フランジ		最高使用温度 120			

4.2.4 設計荷重

(1) 死荷重

高圧炉心注水系ストレーナとコネクタの自重による荷重及び高圧炉心注水系ストレーナ に付着する異物の自重による異物荷重の2つの死荷重を考慮する。

ストレーナ	N
コネクタ	N
異物	N

(2) 差圧

コネクタの設計圧力は MPa を考慮する。

4.3 解析モデル及び諸元

高圧炉心注水系ストレーナ取付部コネクタの応答解析用モデルを図 4-1 に,解析モデルの概要を以下に示す。解析モデルはV-2-5-4-1-2「高圧炉心注水系ストレーナの耐震性についての計算書」に示す応答解析用モデルと同じモデルである。また,機器の諸元を表 4-5 に示す。

- (1) 応答解析用モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた 有限要素モデルとしてモデル化して解析を行い、荷重を算出する。なお、ストレーナに ついてはリブ等の補強材を有しており、構造上十分に剛であるため、剛体としてモデル 化する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は完全拘束とする。
- (3) 各部の質量は、各部の重心位置(図4-1の△の節点)に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水 及び排除水の影響を加味し、ストレーナ質量に含める。また、異物の質量も応答解析に おいて考慮する。
- (5) 解析コードは「MSC NASTRAN」を使用し、荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム (解析コード)の概要」に示す。

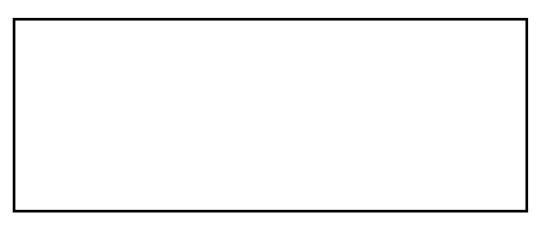


図 4-1 応答解析用モデル

表 4-5	機器諸元		
項目	単位	入力値	
高圧炉心注水系ストレーナ 取付部コネクタの材質	_		
高圧炉心注水系ストレーナ 取付部コネクタの質量	kg/個		
高圧炉心注水系ストレーナ	1 //77		
取付部コネクタの 内包水及び排除水の質量	kg/個		
ストレーナ1個あたりの異物の質量	kg/個		
温度	$^{\circ}\!\mathbb{C}$	104	
縦弾性係数	MPa		
ポアソン比	_		
要素数	個		

4.4 計算方法

4.4.1 コネクタの計算方法

(1) 応力の計算方法

コネクタに発生する応力は、設計・建設規格 PPC-3520 に従い算出する。なお、コネク タの溶接継手は管の板厚の強度と同等以上となるように設計するため、ここでは管につい て評価を行う。

個

応力算出は以下の式に従う。

$$S_{prm} = \frac{B_1 \cdot P \cdot D_o}{2 \cdot t} + \frac{B_2 \cdot M_{max}}{7}$$

ここに,

: 発生応力(MPa) $S_{ ext{prm}}$

節点数

:最高使用圧力(設計圧力)(MPa)

 D_{o} : 管の外径(mm) : 管の厚さ(mm) t

: 設計・建設規格 表 PPB-3812. 1-1 で規定する応力係数 (= B_1

: 設計・建設規格 式 PPB-4.20 により算出した応力係数 (= B_2

$$=\frac{1.30}{h^{\frac{2}{3}}}$$

: 設計・建設規格 式 PPB-4.21 により計算した値 h

$$=\frac{\mathbf{t}\cdot\mathbf{R}}{\mathbf{r}^2}$$

R :コネクタ中心線の曲率半径= (mm)

r : 設計・建設規格 式 PPB-4.19 により計算した値(mm)

 $= \frac{\mathrm{D_o} \! - \, \mathrm{t}}{2}$

M_{max} :表 4-6 に示す最大モーメント(N·mm)

Z : 管の断面係数(mm³)

(2) 応力解析に用いるモーメント

コネクタの設計荷重は、ストレーナからの伝達荷重とコネクタ自身に作用する荷重から 算出した、図 4-2 に示すコネクタのストレーナ及びティーとの取合い部における最大モ ーメントを用いる。なお、ここでの最大モーメントとは、コネクタのティーとの取合い部 における3方向のモーメントを二乗和平方根で合成したものである。

算出した最大モーメントを表4-6に示す。

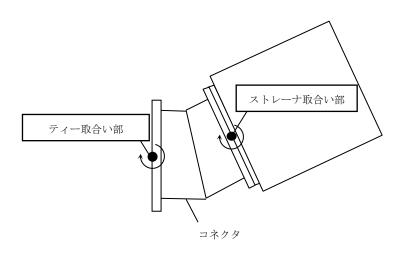


図 4-2 コネクタのモーメント算出点

表 4-6 コネクタの設計荷重

(単位:N·mm)

		(— <u></u> . 11 mm	/
	荷重	最大モーメント M _{max}	
1	死荷重		
2	異物荷重		
3	差圧		
4	SRV荷重		
5	プールスウェル(気泡形成)		
6	蒸気凝縮(CO)		
7	チャギング(CH)		

4.4.2 フランジの計算方法

(1) 応力の計算方法

ストレーナ取付部コネクタのストレーナ部ティーと取り付けるフランジは,一般的なフランジとは異なりガスケットを使用しない。そこで取付フランジを以下のようにモデル化し,応力評価を行う。

取付フランジを外周(ボルト穴中心円直径)が固定された平板と考え、表 4-7 に示すモーメントが中心部に作用すると考える。この場合の発生応力は、引用文献(1)より、図 4-3 に示す計算モデルで下記の計算式より求める。

$$\sigma r = \frac{\beta \cdot M_{\text{fmax}}}{a \cdot t^2}$$

ここに,

σ_r : 曲げ応力(MPa)

Mfmax : 表 4-7 に示す最大モーメント(N·mm)

a : ボルト穴中心円半径= (mm)

b : フランジ内半径= (mm)

t : フランジ板厚= (mm)

β : b/a (=) から決まる計算上の係数=

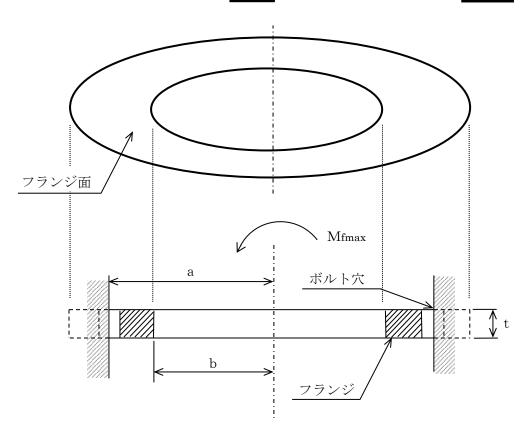


図4-3 フランジ断面の計算モデル

(2) 応力解析に用いるモーメント

フランジの設計荷重は、図 4-2 に示すコネクタのストレーナ及びティーとの取合い部における最大モーメントを用いる。算出した最大モーメントを表 4-7 に示す。ここでの最大モーメントとは、コネクタのティーとの取合い部におけるフランジに対して面外方向の曲げモーメントとする。フランジの面内方向のモーメント(ねじりモーメント)は、フランジの面内剛性が大きいため、ここでは評価対象としない。

表 4-7 フランジの設計荷重

(単位:N·mm)

			(十三:11 11111)
	荷重	J	最大モーメント Mfmax
1	死荷重		
2	異物荷重		
3	差圧		
4	SRV荷重		
5	プールスウェル (気泡形成)		
6	蒸気凝縮(CO)		
7	チャギング(CH)		

4.5 計算条件

応力解析に用いる自重及び荷重は、本計算書の「4.2 荷重の組合せ及び許容応力」及び「4.4 計算方法」に示す。

4.6 応力の評価

「4.4 計算方法」で求めた応力が、表 4-3 及び表 4-4 を用いて算出される許容応力以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

高圧炉心注水系ストレーナ取付部コネクタの重大事故等時の状態を考慮した場合の評価結果を以下に示す。発生値は許容限界を満足していることを確認した。

(1) 重大事故等時に対する評価

重大事故等時に対する応力評価結果を表 5-1 に示す。

なお、各評価点における計算応力は表 4-2 に示す荷重の組合せのうち、発生値が最も高い評価を記載している。

表 5-1 重大事故等時に対する評価結果 (D+P_{SAD}+M_{SAD})

				重大事	故等時	#4	
評価対象設備	評価部位	運転状態	応力分類	計算応力	許容応力	荷重	
				(MPa)	(MPa)	組合せ	
高圧炉心注水系ストレーナ	コネクタ	V(S)	一次応力	63	214	SA-3	
取付部コネクタ	フランジ	V(S)	一次応力	103	214	SA-3	

6. 引用文献

(1) WARREN C. YOUNG

"ROARK'S FORMULAS for Stress and Strain" 7th Edition

V-3-3-3-3-1-5 弁の強度計算書

まえがき

本計算書は、V-3-1-5「重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及びV-3-2-11「重大事故等クラス2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお、評価条件の整理に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

• 評価条件整理表

	技術		施設時の		クラスア	ップするか			条件で	アップする	るか		nr 371)						
		既設		既設	1	技術基準に対象と	クラス	Marian net			条件	DB条件		SA条件		既工認における	施設時の		同等性
機器名	or 新設	する施設 の規定が あるか	クラス アップ の有無	施設時 機器 クラス	DB クラス	SA クラス	アップの有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	評価結果 の有無	適用規格	評価区分	区分	クラス			
E22-F003B, C	既設	有	無	DB-1	DB-1	SA-2	無	11.77	302	11.77	302	無	S55告示	設計・建設規格 又は告示	_	SA-2			

目 次

1.	重大事故等クラス2弁	 	 1
1.	1 設計仕様	 	 2
1. 2	2 強度計算書 ·····	 	 3

1. 重大事故等クラス2弁

1.1 設計仕様

系統: 高圧炉心注水系

機器の区分			重大事	故等クラス2弁	
公平 日	毛籽	呼び径		材料	
弁番号	種類	(A)	弁箱	弁ふた	ボルト
F003B,C	止め弁	(A) 200	SCPL1	SCPL1	

1.2 強度計算書

系 統 : 高圧炉心注水系

	弁番号	F003B,C	シート	1
ı				1

	[設計•建設規格	告示第501号			設計•建設規格	告示第501号	
設計条件				ネック部の原	厚さ			
最高使用圧力P (MPa)		11.77		dn	(mm)			
最高使用温度Tm (℃)		30)2	dn/dm				
弁箱又は弁ふたの厚さ 弁箱材料 弁ふた材料				Q	(mm)			
		SCPL1		tm1	(mm)	17.6	_	
		SCPL1		tm2	(mm)	15.8	_	
P1	(MPa)	9.57	_	tma1	(mm)			
P2	(MPa)	14.37		tma2	(mm)			
dm	(mm)					-		
t1	(mm)	14.5		評価 :	tmal ≧	tm1		
t2	(mm)	21.1			tma2 ≧	tm2		
t	(mm)	17.6				よって十	一分である。	
tab	(mm)							
taf	(mm)							
評価 :	$tab \ge t$ $taf \ge t$	よって十分	である。					

系 統 : 高圧炉心注水系

弁番号 F003B,C	シート 2
-------------	-------

		1			
設計条件		モーメント	の計算		
PFD (MPa)	16.51	Hd	(N)		7.468 \times 10 ⁵
Peq (MPa)	4.74	hD	(mm)		43.5
Tm (°C)	302	Md	(N·mm)		3.249×10^{-7}
Me (N·mm)		HG	(N)		6.160×10^{-5}
Fe (N)		hG	(mm)		46.1
フランジの形式	JIS B8265図2(b)(7)	MG	(N·mm)		2.842×10^{-7}
フランジ		Нт	(N)		2.534×10^{-5}
材料	SCPL1	hΤ	(mm)		55.6
σ fa (MPa)		MT	(N·mm)		1.408×10^{-7}
常温(ガスケット締付時)(20℃)	113	Mo	(N∙mm)		7.498×10^{-7}
σ fb (MPa)		Mg	(N∙mm)		8.467×10^{-7}
最高使用温度(使用状態)	112	フランジの)厚さと係数		
A (mm)		t	(mm)		
B (mm)		K			1.83
C (mm)		ho	(mm)		
g0 (mm)		f			1.00
g1 (mm)		F			0.798
h (mm)		V			0.249
ボルト		е	(mm^{-1})		0.00973
材料		d	(mm^3)		956337
σa (MPa)		L			1.57
常温(ガスケット締付時)(20℃)	173	Т			1.57
σь (MPa)		U			3.71
最高使用温度(使用状態)	173	Y			3.37
n		Z			1.85
db (mm)		応力の計			
ガスケット	-	σнο	(MPa)		122
材料		σRo	(MPa)		69
ガスケット厚さ (mm)		σто	(MPa)		56
G (mm)		o Hg	(MPa)		104
m		σRg	(MPa)		78
y (N/mm²)		σтд	(MPa)		64
bo (mm)		\$ -8	<u>. </u>		
b (mm)	1	応力の評	插 : σ Ho ≦	≤ 1.5• σ fb	
N (mm)	1	1		1.5 · σ fb	
Gs (mm)		1		1.5 · σ fb	
ボルトの計算		1	0 10 =	_ 1.0 0 10	
H (N)	1.000 $ imes$ 10 6	1	σ Hσ <	≦ 1.5 • σ fa	
Hp (N)	6.160×10^{-5}	1		1.5 · σ fa	
W_{m1} (N)	1.616×10^{-6}	1		1.5 · σ fa	
Wm2 (N)	4.285×10^{-5}	1	O 18 =	= 1.0 U Id	
$Am1$ (mm^2)	$\frac{4.263 \times 10^{-3}}{9.342 \times 10^{-3}}$	1		よって	て十分である。
Am2 $(mm2)$	$\frac{3.342 \times 10^{-3}}{2.477 \times 10^{-3}}$	1		A) (- 1 /3 Ca/So
Am (mm^2)	$\frac{2.477 \times 10^{-3}}{9.342 \times 10^{-3}}$	†			
Ab (mm^2)	J.J12 / 10	†			
7 7 ((((((((((((((((((1.010. \(\) 10.6	1			
W_0 (N)	I hih X III o				
Wo (N) Wg (N)	$\frac{1.616 \times 10^{-6}}{1.836 \times 10^{-6}}$				