V-2-4-3 使用済燃料貯蔵槽冷却浄化設備の耐震性についての計算書

V-2-4-3-1 燃料プール冷却浄化系の耐震性についての計算書

V-2-4-3-1-1 燃料プール冷却浄化系熱交換器の 耐震性についての計算書

目 次

1.	村	既要	* • • •			• • • •	• • •		• • •	• • •	• •	• • •	• •	• •	• •			• •	 • •	• •	 • •	 	•		• :		• •	*	1
2.		一般事	項								٠.		٠.	٠.	٠.				 		 							•	1
2	. 1	構造	計画										٠.	٠.					 		 	 				٠.		٠	1
3.	Ē	国有居	期																 		 	 	•					•	3
3	. 1	固有	同期の	の算出	1 .								٠.	٠.					 		 	 						٠	3
4.	木	構造強	度評価	H .									٠.	٠.					 	• •	 	 						٠	4
4	. 1	構造	強度詞	平価力	方法								• •	٠.					 		 	 		• •				٠	4
4	. 2	荷重	の組合	合せ及	なび割	午容后	5力						٠.	٠.		٠.			 		 	 				٠.		٠	4
	4.	2.1	荷重の																										4
	4.		許容师																										4
	4.	2.3	使用标																										4
4	. 3	計算	条件								• •		٠.	٠.					 		 	 				٠.	٠.	٠	4
5.	Ē	平価紀	手果		• • • •		• • •						٠.	٠.			• •		 		 	 ٠.				• •		٠	9
5	. 1	重大	事故等	车对如	L設備	計上し	,7	O) }	平価	F結	果								 		 	 							9

1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、 燃料プール冷却浄化系熱交換器が設計用地震力に対して十分な構造強度を有していることを説明 するものである。

燃料プール冷却浄化系熱交換器は、重大事故等対処設備においては常設耐震重要重大事故防止 設備に分類される。以下、重大事故等対処設備としての構造強度評価を示す。

なお、燃料プール冷却浄化系熱交換器は、V-2-1-14「計算書作成の方法」に記載の横置一胴円 筒形容器であるため、V-2-1-14「計算書作成の方法 添付資料-4 横置一胴円筒形容器の耐震性 についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

燃料プール冷却浄化系熱交換器の構造計画を表 2-1 に示す。

表 2-1 構造計画

<u> </u>		衣 2-1
計画の	概要	神(血な)性(か)
基礎・支持構造	主体構造	機略構造図
胴を2個の脚で支持し,	水室側及び胴側に, 鏡	
脚をそれぞれ基礎ボルト	板を有する横置一胴円	
で基礎に据え付ける。	筒形容器	
		5400
		(単位:mm)

3. 固有周期

3.1 固有周期の算出

理論式により固有周期を計算する。固有周期の計算に用いる計算条件は、本計算書の【燃料 プール冷却浄化系熱交換器の耐震性についての計算結果】の機器要目に示す。

計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。固有周期の計算結果を表 3-1 に示す。

表 3-1 固有	周期 (単位:s)
水平	
鉛直	

4. 構造強度評価

4.1 構造強度評価方法

燃料プール冷却浄化系熱交換器の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-4 横置一胴円筒形容器の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

燃料プール冷却浄化系熱交換器の荷重の組合せ及び許容応力状態のうち重大事故等対処 設備の評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

燃料プール冷却浄化系熱交換器の許容応力は、V-2-1-9「機能維持の基本方針」に基づき表 4-2 及び表 4-3 のとおりとする。

4.2.3 使用材料の許容応力評価条件

燃料プール冷却浄化系熱交換器の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-4 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	区分	機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料 貯蔵槽冷却 浄化設備	燃料プール 冷却浄化系 熱交換器	常設耐震/防止	*2 重大事故等 クラス 2 容器	D+PD+MD+S s *3 D+PSAD+MSAD+S s	IVAS VAS (VASとして IVASの許容限 界を用いる。)

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*2: 重大事故等クラス2容器の支持構造物を含む。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

5

K7 (1) V-2-4-3-1-1 R1

表 4-2 許容応力(重大事故等クラス 2 容器)

		111日/11/3 (主)(1)							
		部	容限界*1, *2						
許容応力状態	》	一次膜応力+	, // ₄ = // ₄ = +	一次十二次十					
	一次一般膜応力	一次曲げ応力	一次十二次応力	ピーク応力					
IV _A S	0.6 · S u	左欄の 1.5 倍の値	基準地震動Ssのみによる疲労解析を行い、疲労累積係数が1.0以下であること。						
V _A S			ただし、地震動のみによる一次+二次応力の変動値が 2・S 以下であれば、疲労解析は不要。						
(VASとしてIVASの									
許容限界を用いる。)									

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	IV
	V
~	(VASEL

	許容限界* ^{1,*2} (ボルト等以外)	許容限界* ^{1,*2} (ボルト等)				
許容応力状態	一次応力	一次応力				
	引張り	引張り	せん断			
IV A S						
V A S	1.5 · f t *	1.5 • f t *	1.5 • f s *			
(VASとしてIVASの許容						
限界を用いる。)						

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

K7 ① V-2-4-3-1-1 R1

表 4-4 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件		S (MPa)	S y (MPa)	S u (MPa)	Sy (RT) (MPa)
胴板	SB410	最高使用温度	70	_	210	398	_
脚	SM400A (厚さ≦16mm)	周囲環境温度	100	_	221	373	_
基礎ボルト	SS400 (16mm<径≦40mm)	周囲環境温度	100	_	212	373	_

5. 評価結果

5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系熱交換器の重大事故等時の状態を考慮した場合の耐震評価結果を以下 に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有してい ることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【燃料プール冷却浄化系熱交換器の耐震性についての計算結果】

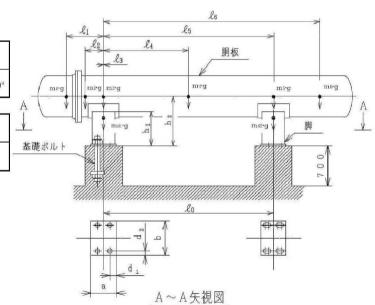
1. 重大事故等対処設備

1.1 設計条件

446 88 27 74-	設備分類	据付場所及び床面高さ	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用圧力	最高使用温度	周囲環境温度
機器名称		(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
燃料プール冷却浄化系 熱交換器	常設耐震/防止	原子炉建屋 T. M. S. L. 18. 8 (T. M. S. L. 18. 1*)			_	-	Сн=1.46	Cv = 1.34	1. 37	70	100

注記*:基準床レベルを示す。

1.2 機器要目


10

m 1	m 2	т 3	m 4	m 5	m є	m 7
(kg)						
						-

ℓ₁ (mm)	ℓ 2 (mm)	ℓз (mm)	ℓ4 (mm)	ℓ 5 (mm)	ℓs (mm)	ℓ 7 (mm)	М 1 (N•mm)	M ₂ (N·mm)	R 1 (N)	R 2 (N)
-748	-403	-1	1406	2803	3450	9—1	6. 546×10 ⁶	5.816×10 ⁶	2. 591×10 ⁴	2.341×10 ⁴

m o	m s 1	m s 2	D i	t	t e	ℓo	hı	h 2	θw	ℓw
(kg)	(kg)	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(rad)	(mm)
			700	12. 0	24. 0*1	2800	347	600	0.396	150

С ₁	C 2	I s x	Isy	Z s x	Z s y	θ ο	θ
(mm)	(mm)	(mm')	(mm ⁴)	(mm³)	(mm³)	(rad)	(rad)
275	200	6. 398×10 ⁸	9. 603×10 ⁷	2. 327×10 ⁶	4.802×10 ⁵	2. 315	1. 212

A s (mm²)	Es (MPa)	G s (MPa)	A s 1 (mm ²)	A s 2 (mm ²)	A s 3 (mm ²)	A s 4 (mm ²)
1. 199×10 ⁴	198000*2	76200*2	6. 259×10^3	4. 890×10 ³	4.804×10 ³	4. 456×10^3

K 11 *3	K ₁₂ *3	K 2 1 *3	K 2 2 *3	Kei	K12	K e 1	K e 2	C£1	C £2	Ссі	C c 2
		_	_								
		_	I	<u> </u>							

S	n	n 1	n 2	a (mm)	b (mm)	d (mm)	Аь (mm²)	d 1 (mm)	d ջ (mm)
15	4	2	2	450	600	20 (M20)	314. 2	115	75

11	Sy(胴板)	Su (胴板)	S(胴板)	Sy (脚)	Su (脚)	F (脚)	F*(脚)	Sy (基礎ボルト)	Su (基礎ボルト)	F (基礎ボルト)	F*(基礎ボルト)
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
	210*4	398*4	1	221*2 (厚さ≦16mm)	373*2	-	261	212*2 (16mm<&≤≤40mm)	373*2	_	254

注記*1:本計算においては当板を有効とした。

*2:周囲環境温度で算出

*3: 表中で上段は一次応力,下段は二次応力の係数とする。

*4:最高使用温度で算出

1.3 計算数值

12

1.3.1 胴に生じる応力

(1) 一次一般膜応力

(単位: MPa)

地震の種類		婵性設計用地震動	Sd又は静的震度			基準地震	夏動Ss	
地震の方向	長手	方向	横之	方向	長手	方向	横っ	5向
応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力	_	_	_	-	σ φ 1 = 41	σ x 1=21	σ φ 1=41	σ x 1=21
内圧による応力 (鉛直方向地震時)	_	_	_	_	-	_		_
運転時質量による長手方向曲げ モーメントにより生じる応力	_	_	_	_	-	σ x 2=10	_	σ x 2=10
鉛直方向地震による長手方向曲げ モーメントにより生じる応力	_	-	-	_	_	σ x 6=13	_	σ x 6=13
長手方向地震により胴軸断面 全面に生じる引張応力	-	_	_	_	:	σ _{x413} =3	_	_
組合せ応力	-		-	_	0 04	=45	σοσ	=43

(2) 一次応力 (単位: MPa)

(4) ひくがい / 3									(+ 12. m a)
	地震の種類		弹性設計用地震動	Sd又は静的震度			基準地震	夏動 S s	
	地震の方向	長手	方向	横三	方向	長手	方向	横之	方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧によるル	心力	_	_	-	_	σ φ 1=41	σ x 1=21	σ φ 1=41	σ x 1=21
内圧による。 (鉛直方向地)		_	_	_	_	_	_	_	_
運転時質量による長 モーメントによりな		_	-	_	-	_	σ x 2=10	_	σ x 2=10
鉛直方向地震による」 モーメントによりな		-	_	-	-	-	σ x 6=13	_	σ _{x 6} =13
運転時質量による により生じる		-	_		_	σ φ s=5	σ x 3=5	σ φз=5	σ x 3=5
鉛直方向地震によ により生じる		-	_	_	_	σ φ 7 1 = 7	σ x 71=7	σ & 71=7	σ x 71=7
水平方向地震	引張り	_		_	_	$\sigma_{\phi 411} = 9$ $\sigma_{\phi 412} = 3$	$\sigma \times 411 = 5$ $\sigma \times 412 = 3$	σ ψ 5 1 = 7	σ x 5 1 = 17
による応力			-			σ φαι=11	$\sigma_{x41} = 9$		
	せん断	_		-		τι	=8	το	= 3
組合せ応え	組合せ応力			_		σ 1 ℓ=71		σ _{1 c} =71	

(3) 地震動のみによる一次応力と二次応力の和の変動値

(単位: MPa)

	地震の種類		弾性設計用地震動	S d 又は静的震度			基準地別	震動Ss	
	地震の方向	長手	方向	横之	5向	長日	三方向	横力	向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応力 (鉛直方向地震時)			_		_	_	_	_	
鉛直方向地震による長手方向 曲げモーメントにより生じる応力		_	_			-	σ x 6=13		σ _{x6} =13
鉛直方向地震によ	る脚反力	_	_	_	_	σ φ 7 1 = 7	σ x 7 1 = 7	σ φ 7 1 = 7	σ x 7 1 = 7
により生じる	応力	-	_	()	_	σ φ 7 2=21	σ x 7 2=13	σ φ 7 2=21	σ _{x72} =13
		—	_	_	_	σ φ 4 1 = 11	σ x 4 1 = 9	$\sigma_{-\phi} = 7$	σ x 5 1 = 17
水平方向地震	引張り	-	_			σ φ 4 2 1 = 10	σ x 4 2 1 = 18		
による応力	JIM	_	_	·	<u></u>	σ φ 4 2 2 = 7	σ x 4 2 2 = 4	σ φ 5 2=56	$\sigma_{x 52} = 26$
(-2.2/0/)		_	_			σ φ 4 2=17	σ x 4 2 = 22		
せん断			_			τ ε=8		τ c=3	
組合せ応力					_	σ ₂ ℓ=134		σ 2 c = 180	

1.3.2 脚に生じる応力

(単位:MPa)

	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地景	長動Ss
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	圧縮	_	·	σ s 1 = 3	σ s 1 = 3
鉛直方向地震による応力	圧縮	_	_	σ s 4 = 3	σ s 4 = 3
水平方向地震による応力	曲げ	_	_	σ s 2 = 28	σ s 3=11
小半万円地展による応力	せん断	_	—	τ s 2=16	τ s 3=9
組合せ応力	J	_	_	σ s $\ell = 43$	σ s c = 22

1.3.3 基礎ボルトに生じる応力

(単位:WPa)

1.3.3 本版パルトルニエし	1.5.5 金龍がた「他主しる心力									
	地震の種類	地震の種類 弾性設計用地震動 S d		基準地震	夏動Ss					
	地震の方向	長手方向	横方向	長手方向	横方向					
鉛直方向地震及び水 平方向地震による応力	引張り	_		σь1=88	σь2=86					
水平方向地震による 応力	せん断	_		τ ы 1 = 60	τь 2=32					

0.0

1.4 結論

1.4.1 固有周期

(単位:s)

方向	固有周期	
長手方向		
横方向		
鉛直方向		

1.4.2 応力

(単位:MPa)

			70			X 1 pmg 1 100 10	
			弹性設計用地震動	Sd又は静的震度	基準地震動 S s		
部材	材料	応力	算出応力	許容応力	算出応力	許容応力	
		一次一般膜	_		σ 0=45	$S_a = 239$	
胴板	SB410	一次	_	_	$\sigma_{1} = 71$	$S_{a} = 358$	
		·次十二次	_	_	σ ₂ =180	$S_a = 420$	
脚	SM400A	組合せ	_	_	$\sigma_s = 43$	$f_{ m t} = 261$	
基礎ボルト	66400	引張り	_	_	σ b =88	f t s = 171*	
査姫ホルト	SS400	せん断	_	_	τь=60	f s b = 146	

すべて許容応力以下である。

注記*: f ts=Min[1.4 · f to-1.6 · τ b, f to]

V-2-4-3-1-2 燃料プール冷却浄化系ポンプの耐震性についての計算書

目 次

1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
3. 構造強度評価	3
3.1 構造強度評価方法	3
3.2 荷重の組合せ及び許容応力	S
3.2.1 荷重の組合せ及び許容応力状態	S
3. 2. 2 許容応力	S
3.2.3 使用材料の許容応力評価条件	3
3.3 計算条件	S
4. 機能維持評価	7
4.1 動的機能維持評価方法	7
5. 評価結果	8
5.1 重大事故等対処設備としての評価結果	8

1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、燃料プール冷却浄化系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

燃料プール冷却浄化系ポンプは、重大事故等対処設備においては常設耐震重要重大事故防止設備に分類される。以下、重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお、燃料プール冷却浄化系ポンプは、V-2-1-14「計算書作成の方法」に記載の横軸ポンプであるため、V-2-1-14「計算書作成の方法 添付資料-1 横軸ポンプの耐震性についての計算書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

燃料プール冷却浄化系ポンプの構造計画を表 2-1 に示す。

表 2-1 構造計画

		X 1 THENE
計画	の概要	#Ⅲ·□攵 +集 `华、□Ⅵ
基礎・支持構造	主体構造	概略構造図
ポンプはポンプベース	ターボ形	
に固定され, ポンプベ	(ターボ形横軸ポンプ)	1020
ースは基礎ボルトで基		\longrightarrow
礎に据え付ける。		原動機取付ボルト
		ポンプ
		LE ポンプベース
		15g ポンプベース
		基礎ボルト
		(単位:mm)

3. 構造強度評価

3.1 構造強度評価方法

燃料プール冷却浄化系ポンプの構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-1 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

3.2 荷重の組合せ及び許容応力

3.2.1 荷重の組合せ及び許容応力状態

燃料プール冷却浄化系ポンプの荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いるものを表 3-1 に示す。

3.2.2 許容応力

燃料プール冷却浄化系ポンプの許容応力は、V-2-1-9「機能維持の基本方針」に基づき表 3-2 のとおりとする。

3.2.3 使用材料の許容応力評価条件

燃料プール冷却浄化系ポンプの使用材料の許容応力評価条件のうち重大事故等対処設備 の評価に用いるものを表 3-3 に示す。

3.3 計算条件

応力計算に用いる計算条件は、本計算書の【燃料プール冷却浄化系ポンプの耐震性についての計算結果】の設計条件及び機器要目に示す。

表 3-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態			
核燃料物質					$D + P_D + M_D + S_{s}^{*3}$	IV A S			
の取扱施設 及び貯蔵施 設 使用済燃料 貯蔵槽冷却 浄化設備	貯蔵槽冷却	- 燃料プール冷却浄化系 	常設耐震/防止	重大事故等 クラス2ポンプ* ²		VAS (VASとして			
			7 7 7 2 10 10 2	D+Psad+Msad+Ss	IVASの許容限 界を用いる。)				

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*2: 重大事故等クラス2ポンプの支持構造物を含む。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 3-2 許容応力(重大事故等クラス2支持構造物)

	許容限界* ^{1,*2} (ボルト等)			
許容応力状態	一次応力			
	引張り	せん断		
IV A S				
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*	1.5 · f s*		

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件 (℃)		S y (MPa)	S u (MPa)	Sy(RT) (MPa)
基礎ボルト		周囲環境温度	100			_
ポンプ取付ボルト		周囲環境温度	100			_
原動機取付ボルト		周囲環境温度	100			_

4. 機能維持評価

4.1 動的機能維持評価方法

燃料プール冷却浄化系ポンプの動的機能維持評価は、V-2-1-14「計算書作成の方法 添付資料-1 横軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。 燃料プール冷却浄化系ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため、V-2-1-9「機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表 4-1 に示す。

表 4-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

評価部位	形式	方向	機能確認済加速度
ポンプ	横形単段遠心式	水平	1. 4
	ポンプ	鉛直	1.0
	横形ころがり	水平	4. 7
原動機	軸受電動機	鉛直	1.0

5. 評価結果

5.1 重大事故等対処設備としての評価結果

燃料プール冷却浄化系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果 動的機能維持評価の結果を次頁以降の表に示す。

【燃料プール冷却浄化系ポンプの耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

	1971年では、1971年である。 1971年では、1971年である。 1971年では、1971年である。		固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動 S s		より、一名七三年リア ト	見方法田坦英	田田福佐沢田
機器名称	設備分類	据付場所及び床面高さ (m)		鉛直方向	水平方向 設計震度	鉛直方向 設計震度		鉛直方向 設計震度	ス雲座	最高使用温度 (℃)	向囲垜児温及 (℃)
燃料プール冷却 浄化系ポンプ	常設耐震/防止	原子炉建屋 T. M. S. L. 18. 1*1	*2	*2	_	_	Сн=1.45	Cv = 1.34		_	100

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

1.2 機器要目

9

部材	m i (kg)	h i (mm)	ℓ _{1 i} *1 (mm)	ℓ _{2 i} *1 (mm)	d i (mm)	Аьі (mm²)	n i	n f i *1
基礎ボルト							6	3
(i =1)								2
ポンプ取付ボルト (i=2)							4	2
(i = 2)							4	2
原動機取付ボルト							4	2
(i = 3)							4	2

	Syi Sui Fi		Fi*	転倒方	Мр		
部材	(MPa)	(MPa)	(MPa)	(MPa)	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	(N • mm)
基礎ボルト (i=1)			_		_	軸	_
ポンプ取付ボルト (i=2)			_		_	軸	_
原動機取付ボルト (i=3)			_		_	軸	_

Η p N (rpm)

注記*1:各ボルトの機器要目における上段は軸直角方向転倒に対す

る評価時の要目を示し、下段は軸方向転倒に対する評価時

の要目を示す。

*2:周囲環境温度で算出

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	Fı	F b i		i
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト (i=1)	_		_	
ポンプ取付ボルト (i=2)			_	
原動機取付ボルト (i =3)	_		_	

1.4 結論

1.4.1 ボルトの応力

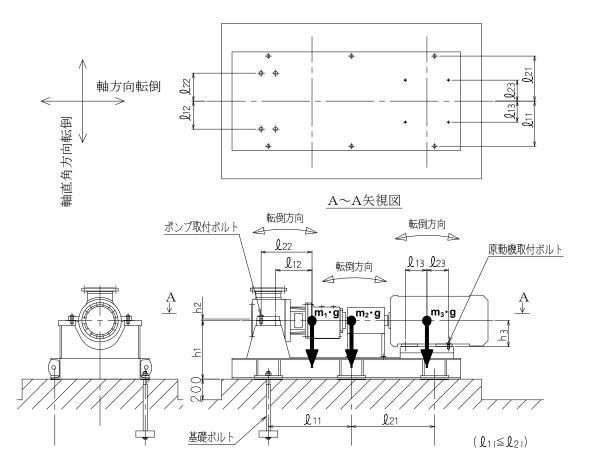
(単位:MPa)

部材	材料	応力	弹性設計用地震動	動Sd又は静的震度	基準地震動 S s	
部科	M M	ルロンフ	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	—	_	σ b1=17	f t s 1 = 444*
(i = 1)		せん断	_	_	$\tau_{b1} = 12$	f s b 1 = 342
ポンプ取付ボルト		引張り	_	_	σ b2=19	f t s 2 = 444*
(i = 2)		せん断	_	_	τ b2 = 5	f s b 2=342
原動機取付ボルト		引張り	_	_	σыз=18	f t s 3=174*
(i = 3)		せん断	_	_	τ ыз=11	f s b 3 = 134

すべて許容応力以下である。

注記 $*:f_{tsi} = \min[1.4 \cdot f_{toi} - 1.6 \cdot \tau_{bi}, f_{toi}]$

1.4.2 動的機能の評価結果


 $(\times 9.8 \text{m/s}^2)$

1.1.2 到时,从10.011								
		機能維持評価用加速度*	機能確認済加速度					
ポンプ	水平方向	0.94	1.4					
W > 7	鉛直方向	0.90	1.0					
原動機	水平方向	0.94	4. 7					
	鉛直方向	0.90	1.0					

注記*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

1

V-2-4-3-1-3 管の耐震性についての計算書

設計基準対象施設

目 次

1.		概	要	• • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.		概	格系統	統図及ひ	鳥瞰	(図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 1	L	概略	系統図		•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	2
	2. 2	2	鳥瞰	図		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
3.		計算	算条值	牛 •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	3. 1	l	計算	方法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	3. 2	2	荷重	の組合	せ及び	ぎ	午名	字后	こう	り北	犬負	ോ			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	3. 3	3	設計	条件	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	3. 4	1	材料	及び許額	容応え	力			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	3. 5	5	設計	·用地震》	力		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
4.		解材	沂結 县	果及び評	価		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	16
	4. 1	l	固有	-周期及で	び設言	計寫	夏月	Ę			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	16
	4. 2	2	評価	i結果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	22
	4	1. 2.	1	管の応え	力評化	西糸	吉男	艮			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	22
	4	1. 2.	2	支持構造	告物言	评值	田糸	吉月	艮			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	23
	4	1. 2.	3	弁の動的	内機能	能約	住才	宇部	平信	田糸	吉与	艮			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24
	4	1. 2.	4	代表モ	デル(の	異分	営糸	吉与	艮及	支て	バゴ	È4	ヒラ	デノ	レの)言	平信	田糸	吉月	艮							•	•		•	•				25

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

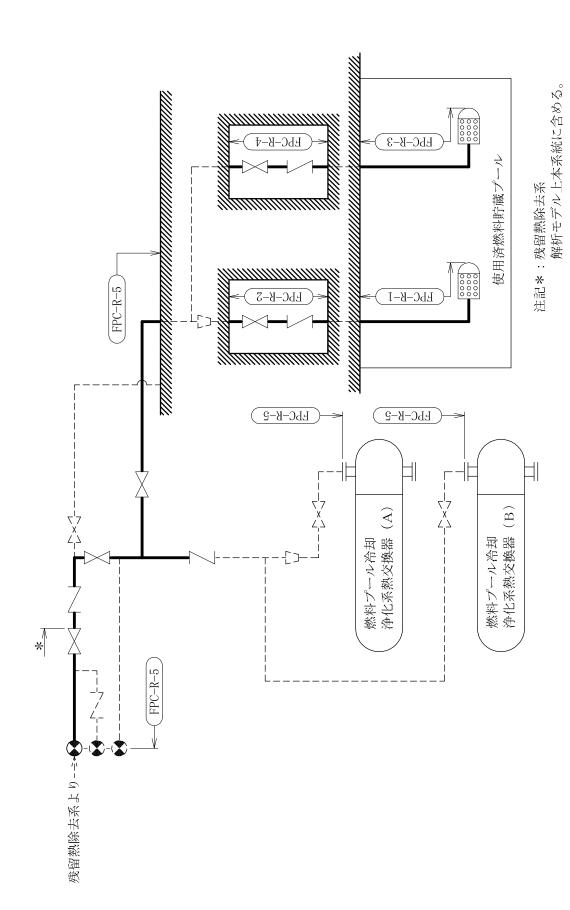
(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全5モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

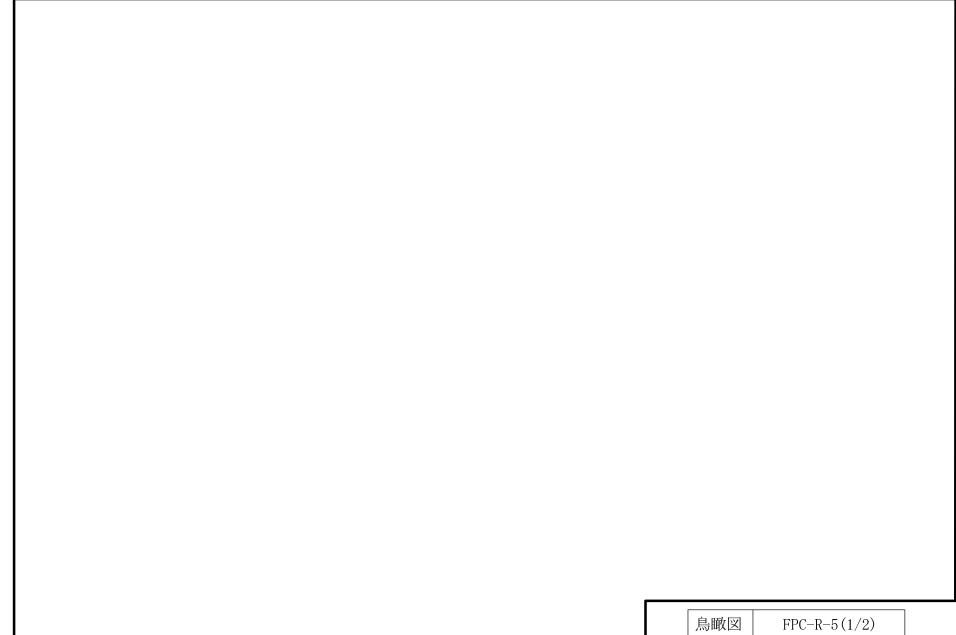
(3) 弁


機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例


記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号, 矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。

5

6			
	鳥瞰図	FPC-R-5(2/2)	

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

K7 ① V-2-4-3-1-3(設) R1

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類* ¹	設備 分類	機器等 の区分	耐震 重要度分類	荷重の組合せ* ^{2,3}	許容応力 状態
核燃料物質の	使用済燃料貯蔵槽	使用済燃料貯蔵槽 燃料プール冷却 DB ー クラス3管 S	I L + S d II L + S d	III A S				
取扱施設及び 貯蔵施設			рв	_	クフス3官	5	I L + S s II L + S s	IV A S
			DB		クラス2管	S	I L+S d	III A S
原子炉冷却	 残留熱除去設備	 残留熱除去系					II L+S d	m A O
系統施設	/X田杰/M A D M	/X田州(M) 4/1				5	I L + S s	IV. S
							II L + S s	IV A S

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:運転状態の添字Lは荷重が作用している状態を示す。

*3:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 FPC-R-5

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ材料		耐震	縦弾性係数
百分	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 /t-f	重要度分類	(MPa)
4	36~41, 42~44	1 57		0.057 4	0.2	CUCQOATD	S	100040
1	37~77, 78~93	1. 57	66	267. 4	9. 3	SUS304TP	5	192840
2	44~113, 120~121	1. 57	66	406. 4	12. 7	SUS304TP	S	192840
3	125~134A	3. 43	182	406. 4	16. 7	STS410	S	201667

配管の付加質量

鳥瞰図 FPC-R-5

質量	対応する評価点	
	125~134A	

弁部の寸法

鳥瞰図 FPC-R-5

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
35~36		-		41~42			
77~78				113~120			
121~122				122~123			
123~124				122~125			

弁部の質量

鳥瞰図 FPC-R-5

質量	対応する評価点	質量	対応する評価点
	35~36		41~42
	77~78		113~120
	123		124

支持点及び貫通部ばね定数

鳥瞰図 FPC-R-5

支持点番号 -	各軸ス	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)			
X村県留り	X	Y	Z	X	Y	Z	
** 84 **							
** 84 **							
84							
93							
112							
134A							

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度		許容応	力(MPa)	
17) 177	(℃)	Sm	Sу	S u	S h
SUS304TP	66		188	479	126
STS410	182	_	209	404	_

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
FPC-R-5	原子炉建屋		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 FPC-R-5

	る地震動等			夏 度		Ss	
T 10	固有周期	応答水平	平震度*1	応答鉛直震度*1	応答水	平震度*1	応答鉛直震度*1
モード	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次				1			
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
9 次							
10 次							
動白	 勺震度 ^{*2}						
静白	勺震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C V より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 FPC-R-5

モード	固有周期	刺激係数*					
	(s)	X方向	Y方向	Z方向			
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
9 次							

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次)					
	•				
•					
			阜瞮図	F P C - R - 5	

	代表的振動モード図(2次)					
		I				
,						
				鳥瞰図	F P C – R – 5	

ſ	代表的振動モード図(3次)				
21					
			鳥瞰図	F P C – R – 5	

K7 ① V-2-4-3-1-3(設) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

				一次応力記	泙価(MPa)	一次+二次応	力評価(MPa)	疲労評価
鳥瞰図	許容応力	最大応力	最大応力	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	大態 	評価点	区分	Sprm (Sd)	Sy*			
				Sprm (Ss)	0.9S u	Sn (Ss)	2 S y	USs
FPC-R-5	III a S	40	Sprm (Sd)	69	188	_	_	_
FPC-R-5	IV A S	40	Sprm (Ss)	110	431	<u>—</u>		_
FPC-R-5	IV A S	41	Sn(Ss)			168	376	_

注記*: オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2Shのうち大きい方の値とする。

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価	結果
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
_	ļ		_			

支持構造物評価結果 (応力評価)

							支持,	点荷重				評価結果	1.
支持構造物 番号	種類	型式	材質	温度 (℃)	Б	灵力(kN	I)	モーメ	ント (kN·m)	応力	計算 応力	許容 応力
					F _X	F _Y	F _Z	M_X	M_{Y}	M_Z	分類	ルレクリ (MPa)	ルレフリ (MPa)
RE-FPC-R010	レストレイント	架構	STKR400	50	94	91	0				組合せ	96	157

K7 ① V-2-4-3-1-3(設) R1

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評 (×9.8	価用加速度 8m/s²)	機能確認 (×9.8	済加速度 8m/s ²)		評価結果 Pa)
			水平	鉛直	水平	鉛直	計算応力	許容応力
_	_	_	_	_	_	_	_	_

K7 ① V-2-4-3-1-3(設) R1E

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (クラス2以下の管)

			許容応	力状態	III a S						i	許容応	力状態	IV a S					
			-	一次応力	1			-	一次応力				一次	+二次応	力*)	疲労評価	
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	FPC-R-1	1	50	188	3. 76		1	65	431	6.63		1	63	376	5. 96	_			
2	FPC-R-2	1	20	188	9.40		1	24	431	17. 95		1	15	376	25.06	_			
3	FPC-R-3	1	50	188	3. 76		1	65	431	6.63		1	63	376	5. 96				
4	FPC-R-4	1	20	188	9.40		1	24	431	17. 95		1	15	376	25.06	_			
5	FPC-R-5	40	69	188	2. 72	0	40	110	431	3. 91	0	41	168	376	2. 23	0		_	

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

重大事故等対処設備

目 次

1.	•	概:		• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2	•	概	咯系統	統図及	をびり	鳥瞰	(図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 3	1	概略	系統	図		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 2	2	鳥瞰	図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	5
3.		計:	算条值	'牛	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	10
	3. 3	1	計算	方法		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	10
	3. 2	2	荷重	の組	合せ	. 及で	ご言	午名	字点	シナ	力壮	犬負	汽			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	11
	3. 3	3	設計	条件		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	12
	3. 4	4	材料	及び	許容	応	力			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	18
	3. 8	5	設計	·用地	震力	J		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	19
4	•	解	折結り	果及て	が評イ	洒		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	20
	4.	1	固有	周期	及ひ	設調	計算	長月	芝			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	20
	4. 2	2	評価	結果		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	4	4. 2.	1	管の	応力	評化	西糸	吉与	艮			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	4	4. 2.	2	支持	構造	物	評值	 新	吉月	艮			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
	4	4. 2.	3	弁の	動的	機能	能約	佳扌	寺評	平伯	田糸	吉馬	艮			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	28
	4	4. 2.	4	代表	モデ	シル	のi	異気	巨糸	吉月	艮及	をて	バゴ	È٦	トラ	デノ	レク	つ言	平信	田糸	吉月	艮							•		•					•	29

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

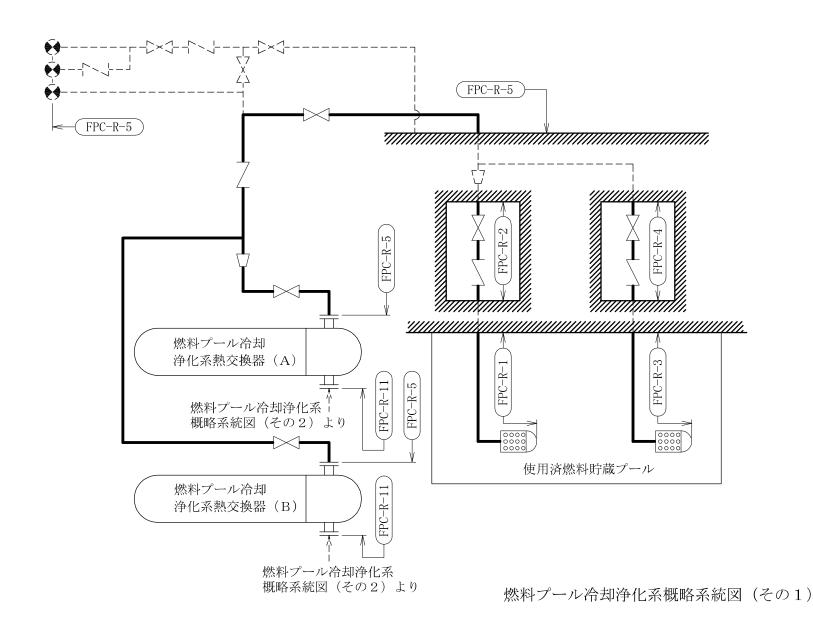
(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全8モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁


機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

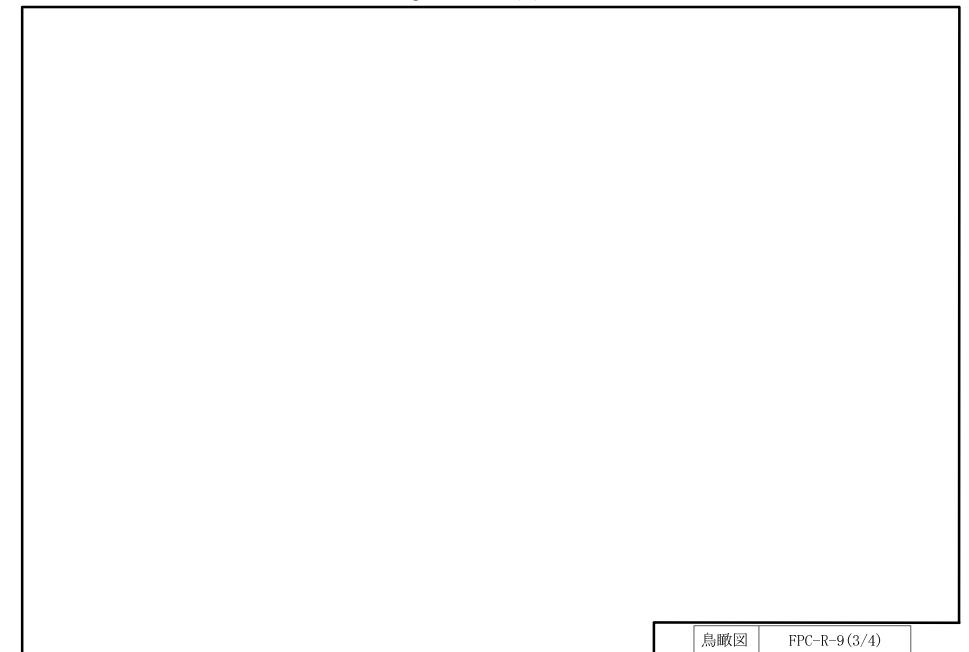
2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

4


2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [_	スナッバ
	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号, 矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。

			7
	真 脚 図	FPC-R-9 (1 /4)	
	鳥瞰図	FPC-R-9(1/4)	

1			
1			
1			
1			
1			
1			
	·		
	阜脇図	EDC-P-Q(9/4)	
	鳥瞰図	FPC-R-9 (2/4)	

 ∞

1				
1				
1				
1				
1				
I				
I				
I				
I				
I				
I				
I				
I				
I				
I				
I				
I				
I				
I	_			
I				
I		鳥瞰図	FPC-R-9 (4/4)	
I		\mathcal{m} \mat		

9

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類*1	設備 分類 ^{*2}	機器等 の区分	耐震 重要度分類	荷重の組合せ*3	許容応力 状態 ^{*4}
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料貯蔵槽 冷却浄化設備	燃料プール冷却 浄化系	S A	常設耐震/防止	重大事故等 クラス2管		V _L +S _s	VAS

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

*3:運転状態の添字しは荷重を示す。

*4:許容応力状態VASは許容応力状態IVASの許容限界を使用し、許容応力状態IVASとして評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 FPC-R-9

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 /t ⁻ f	重要度分類	(MPa)
1	42~106, 42~46A	静水頭	77	318. 5	10.3	SUS304TP		192840
2	108~122	1. 57	77	318. 5	10.3	STPT410	_	200920
3	123~126S, 121~161S	1. 57	77	216. 3	8. 2	STPT410	_	200920
	126S~132, 134~135							
4	179~187N, 161S~167	1. 57	77	216. 3	8. 2	STPT410	_	200360
	169~177N							
5	135~178	1. 57	77	267. 4	9. 3	STPT410		200360

配管の付加質量

	質量		対応する評価点			
			42~106, 108~112S, 42~46A			
			113S~122			
			123~126S, 121~161S			
			127S~132, 134~135, 179~187N, 162S~167, 169~177N			
			135~178			

フランジ部の質量

質量	対応する評価点
	183, 173
	187N, 177N

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
106~108				132~134			
167~169							

弁部の質量

質量	対応する評価点	質量	対応する評価点
	106~108		132~134, 167~169

支持点及び貫通部ばね定数

鳥瞰図 FPC-R-9

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
文付点留 f	X	Y	Z	X	Y	Z
1041						
111						
1191						
182						
187N						
172						
177N						
46A						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度		許容応	力(MPa)	
17) 177	(°C)	Sm	Sу	S u	S h
SUS304TP	77		182	464	_
STPT410	77	_	226	406	_

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
FPC-R-9	原子炉建屋		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 FPC-R-9

	2 H4V 123						
適用する地震動等			S s				
モード	固有周期		応答水	応答鉛直震度*1			
4-1	(2	3)	X方向	Z方向	Y方向		
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
37 次							
38 次							
動的	内震度*2						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

7

各モードに対応する刺激係数

鳥瞰図 FPC-R-9

モード	固有周期		刺激係数*					
, C , I,	(s)	X方向	Y方向	Z方向				
1 次								
2 次								
3 次								
4 次								
5 次								
6 次								
7 次								
8 次								
37 次								

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次)					
		Г	鳥瞰図	F P C – R – 9	

代表的振動モード図(2次)					
	_				
			鳥瞰図	F P C – R – 9	

24

鳥瞰図 FPC-R-9	

K7 ① V-2-4-3-1-3(重) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

				一次応力	評価(MPa)	一次+二次応	力評価(MPa)	疲労評価
鳥瞰図	許容応力 状態	最大応力 評価点	最大応力 区分	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	•			Sprm (Ss)	0.9S u	Sn (Ss)	2 S y	USs
FPC-R-9	VAS	175	Sprm (Ss)	116	365	_	_	_
FPC-R-9	VaS	175	Sn(Ss)	_	_	206	452	_

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価	結果
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
_	_			_	_	_

支持構造物評価結果(応力評価)

							支持,			評価結果	1		
支持構造物 番号	種類	型式	材質	温度 (℃)	E	反力 (kN)		モーメ	マント ()	kN·m)	応力	計算 応力	許容 応力
					F _X	F _Y	F _Z	M_{X}	M_{Y}	M_Z	分類	ルロフリ (MPa)	ルロフリ (MPa)
AN-FPC-R512	アンカ	ラグ	SUS304	100	40	17	52	10	22	19	曲げ	30	52
RE-FPC-R027-1	レストレイント	架構	STKR400	100	61	74	0				曲げ	77	112

K7 ① V-2-4-3-1-3(重) R1

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評 (×9.8	_	機能確認 (×9.8	済加速度 8m/s ²)		評価結果 Pa)
			水平	鉛直	水平	鉛直	計算応力	許容応力
_	_	_	_	_	_	_	_	_

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

						Ī	許容応	力状態	VAS					
			-	一次応力				一次	(十二次)	芯力			疲労評価	
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	FPC-R-1	1	65	417	6. 41	_	1	63	364	5. 77		_	_	
2	FPC-R-2	1	24	417	17. 37	_	1	15	364	24. 26	_	_		
3	FPC-R-3	1	65	417	6.41		1	63	364	5. 77	_			
4	FPC-R-4	1	24	417	17. 37	_	1	15	364	24. 26	_	_		
5	FPC-R-5	2	77	417	5. 41	_	2	105	364	3. 46				
6	FPC-R-9	175	116	365	3. 14	0	175	206	452	2. 19	0			
7	FPC-R-10	135	72	365	5.06		135	94	452	4.80	_		_	
8	FPC-R-11	54	79	417	5. 27	_	36	112	364	3. 25				

V-2-4-3-2 燃料プール代替注水系の耐震性についての計算書

V-2-4-3-2-1 管の耐震性についての計算書

重大事故等対処設備

目 次

1.	概	要	• • •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系;	統図及び	鳥瞰[図		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
	2.1	概略	各系統図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	2
	2.2	鳥睴	女図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
3.	計	算条	件 •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	3. 1	計算	章方法	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	3. 2	荷重	重の組合せ	t及び	許須	容师	5プ	力北	犬食	13. 13.			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
	3. 3	設計	十条件	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	3. 4	材彩	及び許容	ぶた た	J		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	3. 5	設計	十用地震力	J	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	21
4.	解	析結	果及び評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
	4. 1	固有	7周期及び	彩設計	震	吏			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
	4.2	評価	話結果	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
	4. 2	. 1	管の応力]評価	結点	果			•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	32
	4. 2	. 2	支持構造	造物 評	插網	洁月	艮			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	4. 2	. 3	弁の動的	力機能	維	寺訓	平信	田糸	吉月	艮			•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	34
	4. 2	. 4	代表モラ	ジルの	選(主糸	吉亨	艮及	をて	バイ	È٦	E ラ	デノ	レク	O言	平伯	田糸	吉昇	₹															35

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全4モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2. 概略系統図及び鳥瞰図

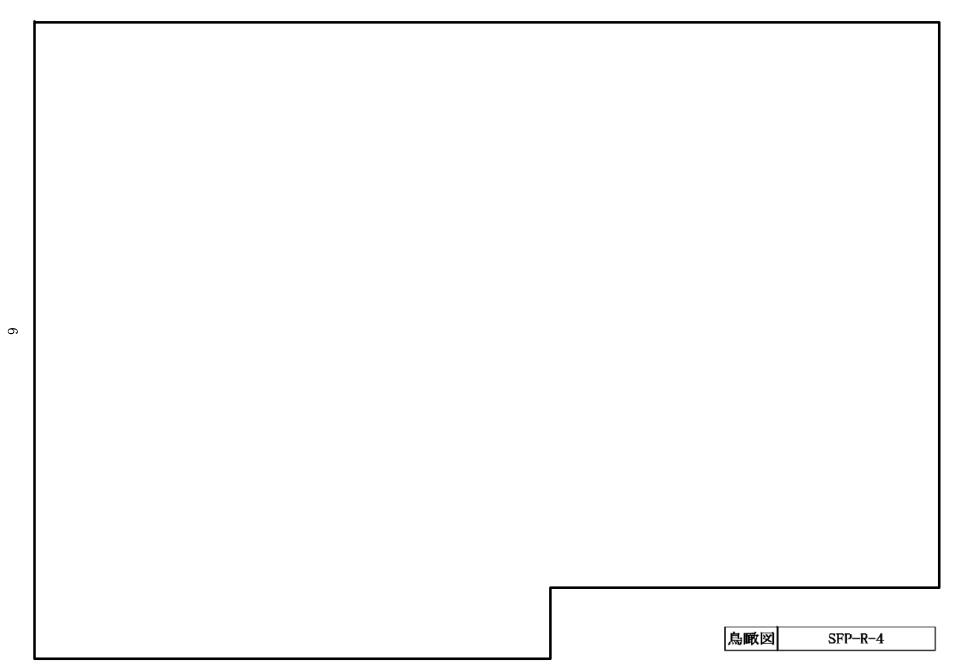
2.1 概略系統図

概略系統図記号凡例


記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

燃料プール代替注水系概略系統図

2.2 鳥瞰図


鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
—————————————————————————————————————	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∄	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。

鳥瞰図

MUWC-R-4B

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」及び「NuPIAS」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類*1	設備 分類 ^{*2}	機器等 の区分	耐震 重要度分類	荷重の組合せ*3	許容応力 状態 ^{*4}
核燃料物質の 取扱施設及び 貯蔵施設	使用済燃料貯蔵槽 冷却浄化設備	燃料プール 代替注水系	S A	常設耐震/防止常設/緩和	重大事故等 クラス2管	_	$V_L + S_S$	V A S

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*3:運転状態の添字Lは荷重を示す。

*4:許容応力状態VASは許容応力状態IVASの許容限界を使用し、許容応力状態IVASとして評価を実施する。

K7 ① V-2-4-3-2-1(重) R1

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 MUWC-R-4B

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
目留方	対心する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 1/1 ⁴	重要度分類	(MPa)
1	1F~3, 4~14	2.00	40	76. 3	5. 2	STPT410		201667
	16∼17, 18∼22F	2.00	40	70.5	9. 2	311 1410		201007

設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 SFP-R-4

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
官留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 /t ⁻ f	重要度分類	(MPa)
1	49~51, 53~54	2.00	100	89. 1	5. 5	SUS304TP		190000
2	7~49	2.00	40	89. 1	5. 5	SUS304TP	_	193667
3	1~3	2.00	40	76. 3	5. 2	SUS304TP		193667
4	52~53	2.00	100	89. 1	5. 5	SUS304TP		190000
5	51~52	2.00	100	89. 1	5. 5	SUS304TP	_	190000

配管の付加質量

鳥瞰図 SFP-R-4

質量		対応する評価点
		52~53
		51~52

フランジ部の質量

鳥瞰図 MUWC-R-4B

質量	対応する評価点
	1F, 22F

フランジ部の質量

鳥瞰図 SFP-R-4

質量	対応する評価点				
	1				

弁部の寸法

鳥瞰図 MUWC-R-4B

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				14~16		•	
17~18							

弁部の寸法

鳥瞰図 SFP-R-4

評価点	外径(mm)	厚さ(mm)	長さ(mm)
5~7			

弁部の質量

鳥瞰図 MUWC-R-4B

質量	対応する評価点	質量	対応する評価点
	3~4, 17~18		14~16

弁部の質量

鳥瞰図 SFP-R-4

質量		対応する評価点
	6	

支持点及び貫通部ばね定数

鳥瞰図 MUWC-R-4B

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)			
文付 点 留 方	X	Y	Z	X	Y	Z	
2							
81							
12							
19							

支持点及び貫通部ばね定数

鳥瞰図 SFP-R-4

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
文付 点 留 方	X	Y	Z	X	Y	Z
8						
12						
19						
22						
26						
30						
34						
38						
42						
46						
49						
51						
54						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力(MPa)				
17) 177	(℃)	S m	Sу	S u	S h	
STPT410	40	_	245	410	_	
SUS304TP	40	_	205	520	_	
SUS304TP	100	_	171	441	_	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
MUWC-R-4B	原子炉建屋		
SFP-R-4	原子炉建屋		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 MUWC-R-4B

適用する地震動等			S s			
モード	固有周期 (s)		応答水	平震度*1	応答鉛直震度*1	
			X方向	Z方向	Y方向	
1 次						
2 次						
動自	内震度*2					

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 MUWC-R-4B

モード	固有周期	刺激係数*			
	(s)	X方向	Y方向	Z方向	
1 次					

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、1次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

表的振動モード図(1次)		

鳥瞰図 MUWC-R-4B

固有周期及び設計震度

鳥瞰図 SFP-R-4

適用す	る地震動等	S s			
モード	固有周期		応答水	平震度*1	応答鉛直震度*1
r	(_S)		X方向	Z方向	Y方向
1 次				•	
2 次					
3 次					
4 次					
5 次					
6 次					
7 次					
8 次					
9 次					
動的	的震度*2				

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

Ν.

鳥瞰図 SFP-R-4

モード	固有周期		刺激係数*	
	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

(4) 宇的提動工。 N図 (1%)	
代表的振動モード図(1次)	
•	
90	

鳥瞰図 SFP-R-4

代表的振動モード図(2次)	
30	

鳥瞰図 SFP-R-4

代表的振動モード図(3次)	
2	

鳥瞰図 SFP-R-4

K7 ① V-2-4-3-2-1(重) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

				一次応力	評価(MPa)	一次+二次応	疲労評価	
鳥瞰図	鳥瞰図 許容応力 最大 状態 割		最大応力 区分	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	, ,,_			Sprm (Ss)	0.9S u	Sn (Ss)	2 S у	US s
MUWC-R-4B	VAS	13	Sprm (Ss)	102	369	_	_	_
SFP-R-4	V A S	32	S n (S s)		_	226	410	_

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価結果		
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)	
_	_	_	_	_		_	

支持構造物評価結果(応力評価)

			材質			支持点荷重						評価結果		
支持構造物 番号	種類	型式		温度 (℃)	反力(kN)		モーメント(kN·m)			応力	計算 応力	許容応力		
					F _X	Fy	F _Z	M_X	$M_{ m Y}$	M_Z	分類	ルロフリ (MPa)	がいり (MPa)	
SFPOP-43R	レストレイント	Uプレート	SUS304	50	1	22	0				座屈	130	205	
SFPOP-67R	アンカ	ラグ	SUS304	100	6	5	5	1	2	2	座屈	161	205	

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評 (×9.8	価用加速度 8m/s ²)		済加速度 8m/s ²)	構造強度評価結果 (MPa)	
			水平	鉛直	水平	鉛直	計算応力	許容応力
_							_	_

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

		許容応力状態 VAS												
		一次応力						一次+二次応力				疲労評価		
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	 裕度 	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	MUWC-R-4B	13	102	369	3.61	0	13	182	490	2.69		_		_
2	SFP-R-2	29	67	396	5. 91	_	29	114	342	3.00				
3	SFP-R-3	90	121	468	3.86	_	90	218	410	1.88			_	
4	SFP-R-4	32	126	468	3. 71	_	32	226	410	1.81	0	_	_	

V-2-5 原子炉冷却系統施設の耐震性に関する説明書

V-2-5-1 原子炉冷却系統施設の耐震計算結果

目 次

1.	概要	1
2.	耐震評価条件整理]
3.	技術基準規則第5条の要求事項の変更に伴う評価対象設備の耐震計算	29
3.	1 耐震計算の概要	29

1. 概要

本資料は,原子炉冷却系統施設の耐震計算の手法及び条件の整理について説明するものである。

2. 耐震評価条件整理

原子炉冷却系統施設に対して、設計基準対象施設の耐震クラス、重大事故等対処設備の設備分類を整理した。既設の設計基準対象施設については、耐震評価における手法及び条件について、既に認可を受けた実績との差異の有無を整理した。また、重大事故等対処設備のうち、設計基準対象施設であるものについては、重大事故等対処設備の評価条件と設計基準対象施設の評価条件の差異の有無を整理した。結果を表1に示す。

原子炉冷却系統施設の耐震計算は表1に示す計算書に記載することとする。

表 1 耐震評価条件整理一覧表 (1/27)

					設計基準対象	施設	重大事故等対処設備			
評価対象設備				耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所	
原子炉冷	原子炉冷却材再循環設備	原子炉冷却材再循環系	原子炉冷却材再 循環ポンプ (イン ターナルポン プ: RIP)	S	無	V-2-5-1	_	_	_	
原子炉冷却系統施設	原子炉冷却材	主蒸	主蒸気逃がし安 全弁逃がし弁機 能用アキュムレ ータ	S	無	V-2-5-2-1-1	常設耐震/防止常設/緩和	有	V-2-5-2-1-1	
	で却材の循環設備 主蒸気系		主蒸気逃がし安 全弁自動減圧機 能用アキュムレ ータ	S	無	V-2-5-2-1-1	常設耐震/防止常設/緩和	有	V-2-5-2-1-1	

表 1 耐震評価条件整理一覧表 (2/27)

				部	设計基準対象施	設	重大	事故等対処設	備
	評価対象設備			耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
			安全弁	S	無	V-2-5-2-1-2	常設耐震/防止常設/緩和	無	V-2-5-2-1-2
	原子炉冷却材		主要弁	S	無	V-2-5-2-1-2	_	_	_
原子	冷却材の短点を		主配管	S	有	V-2-5-2-1-2	常設耐震/防止常設/緩和	有	V-2-5-2-1-2
原子炉冷却系統施設	の循環設備	復水給水系	主要弁	S	無	V-2-5-1	_	_	_
統施設		水系	主配管	S	有	V-2-5-1	_	_	_
	残留熱除去設備	残留熱除去系	残留熱除去系熱 交換器	S	無	V-2-5-3-1-1	常設/防止 (DB 拡張)	有	V-2-5-3-1-1
	除去設備 	除去系	残留熱除去系ポンプ	S	無	V-2-5-3-1-2	常設/防止 (DB 拡張)	有	V-2-5-3-1-2

表 1 耐震評価条件整理一覧表 (3/27)

				彭	设計基準対象施	設	重大事故等対処設備			
					新規制基準			設計基準対		
	音	平価対象	設備	耐震重要度	施行前に認	耐震計算の	設備分類* ¹	象施設との	耐震計算の	
			分類 可された実 記載		記載箇所	双闸刀短	評価条件の	記載箇所		
					績との差異			差異		
			残留熱除去系ス			V-2-5-3-1-3	登 記 / 陆山		V-2-5-3-1-3	
				S	無	V-2-5-3-1-4	常設/防止	有	V-2-5-3-1-4	
						V-2-5-3-1-5	(DB 拡張)		V-2-5-3-1-5	
			主要弁	S	無	V-2-5-3-1-6	_	_	_	
原子炉冷却系統施設	残	残					常設/防止			
炉冷	残留熱除去設備	残留熱除去系	主配管	S	有	V-2-5-3-1-6	(DB 拡張)	有	V-2-5-3-1-6	
却系	除去	除土					(DD I)AJA)			
統施	設備	云 系	主配管 (核燃料物							
設	VĦ		質の取扱施設及	S	有	V-2-4-3-1-3		_	_	
	び則		び貯蔵施設に記	3	, H	v 2 + 3 1 3				
			載)							
			主配管(原子炉冷							
			却材の循環設備	S	有	V-2-5-1	常設/防止	有	V-2-5-1	
		復水給水系に記	5) H	v 2 0 1	(DB 拡張)	, H	V 2 0 1		
			載)							

表 1 耐震評価条件整理一覧表 (4/27)

			設計基準対象施設			重大事故等対処設備			
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	=几 /共 /*五*1	象施設との	耐震計算の
				分類	可された実	記載箇所	設備分類*1	評価条件の	記載箇所
					績との差異			差異	
			炉心支持構造物 (炉心支持構造 物に記載)		* 2	_	常設耐震/防止	_	V-2-3-2-3
原子炉冷却	残留熱於	残留	原子炉圧力容器 (原子炉圧力容 器に記載)		<u>*</u> *2		常設耐震/防止		V-2-3-3-1-3
炉冷却系統施設	残留熱除去設備	残留熱除去系	給水スパージャ (原子炉圧力容 器内部構造物に 記載)	_	* 2	_	常設耐震/防止	_	V-2-3-3-3-3
			低圧注水スパー ジャ (原子炉圧力 容器内部構造物 に記載)	_	*2	_	常設耐震/防止	_	V-2-3-3-3-3

表 1 耐震評価条件整理一覧表 (5/27)

					設計基準対象	施設	重大事故等対処設備		
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	5几/共八平石*1	象施設との	耐震計算の
				分類	可された実	記載箇所	設備分類*1	評価条件の	記載箇所
					績との差異			差異	
									V-2-9-2-1 V-2-9-2-2
									V -2-9-2-3
									V-2-9-2-4
			 原子炉格納容器(原子炉						V-2-9-2-5
			格納施設に記載)	_	* 2	_	常設耐震/防止	_	V-2-9-2-6
			(全部)/他议(C 記取)						V-2-9-2-7
									V-2-9-2-8
原	硅								V-2-9-2-9
炉	留	残留							V-2-9-2-10
冷却	熱除	熱除	原子炉格納容器配管貫						V-2-9-2-11
原子炉冷却系統施設	残留熱除去設備	除去系	原子炉格納谷器配管員 通部 (原子炉格納施設に 記載)	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-9-2-12
設			原子炉格納容器スプレ						
			イ管(ドライウェル側)		* 2		常設耐震/防止		V-2-9-4-4-1-1
			(原子炉格納施設に記				市政 删 辰/ 例 止		v -2-9-4-4-1-1
			載)						
			原子炉格納容器スプレ						
			イ管 (サプレッションチ	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-9-4-4-1-2
			ェンバ側)(原子炉格納				田区川江区/ 四年		, 2 J T T 1 Z
			施設に記載)						

表 1 耐震評価条件整理一覧表 (6/27)

			設計基準対象施設			重大事故等対処設備			
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	】 設備分類* ¹	象施設との	耐震計算の
				分類	可された実	記載箇所	FX IM /J 75	評価条件の	記載箇所
					績との差異			差異	
			主配管 (原子炉格 納施設に記載)	_	*2	_	常設耐震/防止	_	V-2-9-4-5-1-2 V-2-9-4-6-1-1 V-2-9-4-5-4-1
原子炉冷	残留熱	耐圧強化	主排気筒(内筒) (放射性廃棄物 の廃棄施設に記載)	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-7-2-1
原子炉冷却系統施設	残留熱除去設備	- ベント系	原子炉格納容器 (原子炉格納施 設に記載)		* 2		常設耐震/防止		V-2-9-2-1 V-2-9-2-2 V-2-9-2-3 V-2-9-2-4 V-2-9-2-5 V-2-9-2-6 V-2-9-2-7 V-2-9-2-7 V-2-9-2-9 V-2-9-2-10 V-2-9-2-11

表 1 耐震評価条件整理一覧表 (7/27)

			設計基準対象施設			重大事故等対処設備			
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	設備分類*1	象施設との	耐震計算の
				分類	可された実	記載箇所	以胂刀類	評価条件の	記載箇所
					績との差異			差異	
		· · · · · · · · · · · · · · · · · · ·	原子炉格納容器 配管貫通部 (原子 炉格納施設に記 載)	Ι	<u></u> *2	_	常設耐震/防止	_	V-2-9-2-12
原子	残留熱除去設備		T31-F019 (原子炉 格納施設に記載)	I	<u>*</u> *2		常設耐震/防止		V-2-9-4-6-1-1
原子炉冷却系統施設		耐圧強化ベント	T31-F022 (原子炉 格納施設に記載)		*2		常設耐震/防止		V-2-9-4-6-1-1
施 設		卜 系	T31-F070 (原子炉 格納施設に記載)	_	*2	_	常設耐震/防止	_	V-2-9-4-6-1-1
			T31-F072 (原子炉 格納施設に記載)	_	* 2	_	常設耐震/防止	_	V-2-9-4-6-1-1

表 1 耐震評価条件整理一覧表 (8/27)

				設計基準対象施設			重大事故等対処設備		
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	設備分類* ¹	象施設との	耐震計算の
				分類	可された実	記載箇所	文	評価条件の	記載箇所
					績との差異			差異	
原	格納		ドレン移送ポンプ (原子炉格納施設に記載)	_	<u>*</u> *2	_	常設耐震/防止		V-2-9-4-5-5-1
原子炉冷却系統施設	残留熱除去設備	納容器圧力逃がしな	主要弁 (原子炉格 納施設に記載)	_	*2	_	常設耐震/防止	_	V-2-9-4-6-1-1
設		し装置	主配管(原子炉格 納施設に記載)	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-9-4-5-2-1 V-2-9-4-5-4-1 V-2-9-4-6-1-1 V-2-9-4-7-1-2

表 1 耐震評価条件整理一覧表 (9/27)

					設計基準対象	产施 設	重大事故等対処設備		
	評価対象設備			耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
原子炉冷却系統施設	残留熱除去設備	格納容器圧力逃がし装置	原子炉格納容器 (原子炉格納施設に記載)		*2	_	常設耐震/防止		V-2-9-2-1 V-2-9-2-2 V-2-9-2-3 V-2-9-2-4 V-2-9-2-5 V-2-9-2-6 V-2-9-2-7 V-2-9-2-7 V-2-9-2-9 V-2-9-2-10 V-2-9-2-11
fix.		管貫通部	原子炉格納容器配 管貫通部 (原子炉 格納施設に記載)		*2	_	常設耐震/防止	_	V-2-9-2-12
			ドレンタンク (原 子炉格納施設に記 載)	_	*2	_	常設耐震/防止	_	V-2-9-4-7-1-1

表 1 耐震評価条件整理一覧表 (10/27)

			設計基準対象施設			重大事故等対処設備			
	評価対象設備			耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
			フィルタ装置(原子炉格納施設に記載)	_	<u></u> *2	_	常設耐震/防止	_	V-2-9-4-7-1-3
原子	残	格納容	よう素フィルタ (原子炉格納施 設に記載)		*2	_	常設耐震/防止	_	V-2-9-4-7-1-4
原子炉冷却系統施設	残留熱除去設備	格納容器圧力逃がし装置	ラプチャーディ スク (フィルタ装 置出口側) (原子 炉格納施設に記 載)		*2		常設耐震/防止		V-2-9-4-7-1-2
			ラプチャーディ スク(よう素フィ ルタ出口側) (原 子炉格納施設に 記載)	_	<u></u> *2	_	常設耐震/防止	_	V-2-9-4-7-1-2

表 1 耐震評価条件整理一覧表 (11/27)

				訂	设計基準対象施	設	重大事故等対処設備		
					新規制基準			設計基準対	
	評価対象設備			耐震重要度	施行前に認	耐震計算の	 設備分類* ¹	象施設との	耐震計算の
				分類	可された実	記載箇所	双闸刀短	評価条件の	記載箇所
					績との差異			差異	
			高圧炉心注水系	S	無	V-2-5-4-1-1	常設/防止	有	V-2-5-4-1-1
			ポンプ	2	////	v -2-5-4-1-1	(DB 拡張)	有	V -2-3-4-1-1
	非常		復水貯蔵槽 (原子						
	用		炉冷却材補給設	_	* 2	_	常設耐震/防止	_	V-2-5-5-1-2
	心		備補給水系に			_			V -2-9-9-1-2
原子炉冷却系統施設	非常用炉心冷却設備そ	高	記載)						
炉冷	設備	高圧炉心注水系	高圧炉心注水系		無	V-2-5-4-1-2	常設/防止 (DB 拡張)	有	V-2-5-4-1-2
却			同上が心径水系	S		V-2-5-4-1-3			V-2-5-4-1-3
糸統	の 他					V-2-5-4-1-4			V-2-5-4-1-4
施設	原 子		主要弁	S	無	V-2-5-4-1-5	_	_	_
	他原子炉注水設備		主配管	S	有	V-2-5-4-1-5	常設/防止	有	V-2-5-4-1-5
							(DB 拡張)		
	備		炉心支持構造物		* 2		450 71 F5 / 174 1		V
			(炉心支持構造	_	*2	_	常設耐震/防止	_	V-2-3-2-3
			物に記載)						

表 1 耐震評価条件整理一覧表 (12/27)

					設計基準対象	象施設	重	大事故等対処	設備			
					新規制基準			設計基準対				
		評価	が象設備	耐震重要度	施行前に認	耐震計算の	 設備分類*1	象施設との	耐震計算の			
				分類	可された実	記載箇所	1X VIII / J 75	評価条件の	記載箇所			
					績との差異			差異				
	原子炉圧力容器(原子炉圧力容器に記載)			_	<u>*</u> *2	ĺ	常設耐震/防止	_	V-2-3-3-1-3			
	非常用炉	非常常 に記載) 高圧炉心注水スパーシャ (原子炉圧力容器内部 構造物に記載)		_	*2	_	常設耐震/防止		V-2-3-3-3-3			
原子炉冷却系統施設	心		高圧炉心注水系配管(原 子炉圧力容器内部)(原 子炉圧力容器内部構造 物に記載)	_	*2	_	常設耐震/防止	_	V-2-3-3-3-3			
糸統施設	の他原子	注水系	注水	注水	注 水	E22-F003B, C	_	*2	-	常設/防止 (DB 拡張)	_	V-2-5-4-1-5
			原子炉格納容器 (原子炉 格納施設に記載)	_	<u></u> *2	_	常設耐震/防止	_	V-2-9-2-1 V-2-9-2-2			
			_	*2	_	常設耐震/防止	_	V-2-9-2-12				

表 1 耐震評価条件整理一覧表 (13/27)

				討	设計基準対象施	設	重大事故等対処設備		
		平価対象	設備	耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
	原子炉隔離時間却系ポンプ			S	無	V-2-5-4-2-1 V-2-5-4-2-2	常設/防止 (DB 拡張)	有	V-2-5-4-2-1 V-2-5-4-2-2
原	非常用炉心冷却設備そ	原	復水貯蔵槽 (原子 炉冷却材補給設 備 補給水系に 記載)	_	*2	_	常設耐震/防止	_	V-2-5-5-1-2
原子炉冷却系統施設	却設備る	原子炉隔離時冷却系	原子炉隔離時冷 却系ストレーナ	S	*2	V-2-5-4-2-3 V-2-5-4-2-4	常設/防止 (DB 拡張)	有	V-2-5-4-2-3 V-2-5-4-2-4
· · · · · · · · · · · · · · · · · · ·	\mathcal{O}	離時冷却	主要弁	S	無	V-2-5-4-2-5	_	_	_
設	他原子炉注水設備	系	主配管	S	有	V-2-5-4-2-5	常設/防止 (DB 拡張)	有	V-2-5-4-1-5 V-2-5-4-2-5
	A		S	有	V-2-5-1 V-2-5-2-1-2	常設/防止 (DB 拡張)	有	V-2-5-1 V-2-5-2-1-2	

表 1 耐震評価条件整理一覧表 (14/27)

					設計基準対象	施設	重大事故等対処設備			
					新規制基準			設計基準対		
		評価対象	象設備	耐震重要度	施行前に認	耐震計算の	】 設備分類* ¹	象施設との	耐震計算の	
				分類	可された実	記載箇所	双闸刀架	評価条件の	記載箇所	
					績との差異			差異		
			炉心支持構造物							
			(炉心支持構造物	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-3-2-3	
			に記載)							
	크는	原子炉圧力容器(原子炉圧力容器に記								
	常常	子炉圧力容器に記		_	—* 2	_	常設耐震/防止	_	V-2-3-3-1-3	
	非常用炉心冷却設備 福 そ 第 1		載)							
盾	心冷	百	給水スパージャ(原							
子	却	子	子炉圧力容器内部	-	* 2	_	常設耐震/防止	_	V-2-3-3-3-3	
原子炉冷却系統施設	設備	原子炉隔離時冷却系	構造物に記載)							
却系	その	離時	E51-F004	_	* 2	_	常設/防止		V-2-5-4-2-5	
統統		冷	B01 1 00 1				(DB 拡張)			
他 設	原 子	河 系	E51-F037	_	* 2	_	常設/防止		V-2-5-4-2-5	
	炉油		L01 1001				(DB 拡張)			
	水	他原子炉注水設備	原子炉格納容器(原						V-2-9-2-1	
	P114	子炉格納施設に記	_	*2	_	常設耐震/防止	_	V-2-9-2-2		
			載)						. 2 0 2 2	
			原子炉格納容器配							
			管貫通部 (原子炉格		* 2	_	常設耐震/防止		V-2-9-2-12	
			納施設に記載)							

表 1 耐震評価条件整理一覧表 (15/27)

					設計基準対象	施設	重	大事故等対処詞	設備
	######################################	平価対象	設備	耐震重要度	新規制基準 施行前に認 可された実	耐震計算の	設備分類*1	設計基準対 象施設との 評価条件の	耐震計算の 記載箇所
				分類	積との差異	記載箇所		差異	記製道別
			高圧代替注水系 ポンプ	_	*2	_	常設耐震/防止	_	V-2-5-4-3-1
眉	非常用炉心冷却設備そ		復水貯蔵槽(原子 炉冷却材補給設 備 補給水系に 記載)	_	*2	_	常設耐震/防止	_	V-2-5-5-1-2
原子炉冷却系統施設	却設備その	高圧代替注水系	主配管	_	<u>*</u> *2	_	常設耐震/防止	_	V-2-5-4-1-5 V-2-5-4-2-5 V-2-5-4-3-2
統施設	他原子炉注水設備	水系系	主配管(原子炉冷 却材の循環設備 主蒸気系,復水給 水系に記載)	_	*2	_	常設耐震/防止	_	V-2-5-1 V-2-5-2-1-2
	備		炉心支持構造物 (炉心支持構造 物に記載)	_	<u></u> *2	_	常設耐震/防止	_	V-2-3-2-3

表 1 耐震評価条件整理一覧表 (16/27)

				訂	計基準対象施	設	重大	事故等対処設	備
					新規制基準			設計基準対	
	音	平価対象	設備	耐震重要度	施行前に認	耐震計算の	設備分類* ¹	象施設との	耐震計算の
				分類	可された実	記載箇所	以湘刀類	評価条件の	記載箇所
					績との差異			差異	
			原子炉圧力容器						
			(原子炉圧力容	_	* 2	_	常設耐震/防止	_	V-2-3-3-1-3
			器に記載)						
	-11-	高	給水スパージャ						
	非常	圧代	(原子炉圧力容	_	* 2		常設耐震/防止	_	V-2-3-3-3-3
			器内部構造物に			_	市	_	V -2-3-3-3-3
i ci	ゲース 注	水	記載)						
原子炉冷却系統施設	却	糸	原子炉格納容器		*2	_	常設耐震/防止		
炉冷	設備		配管貫通部(原子	_				_	V-2-9-2-12
却	その		炉格納施設に記						
統	他		載)						
施設	原 子		残留熱除去系ポ						
	炉注		ンプ(残留熱除去	_	* 2	_	常設/防止	_	V-2-5-3-1-2
	·	設備 残留熱除				(DB 拡張)		, 2 0 0 1 2	
		圧注	去系に記載)						
		水	残留熱除去系ス						V-2-5-3-1-3
	系	系	トレーナ (残留熱		* 2	_	常設/防止	_	V-2-5-3-1-4
			除去設備 残留				(DB 拡張)		V -2-5-3-1-5
			熱除去系に記載)						v 20010

表 1 耐震評価条件整理一覧表 (17/27)

				記	设計基準対象施	設	重大事故等対処設備		
					新規制基準			設計基準対	
	膏	平価対象	設備	耐震重要度	施行前に認	耐震計算の	設備分類*1	象施設との	耐震計算の
				分類	可された実	記載箇所	以順刀規	評価条件の	記載箇所
					績との差異			差異	
	主配管(原子炉)								
					* 2		常設/防止	_	V-2-5-1
	用して複水給水系に記						(DB 拡張)		V 2 0 1
iet.	心 載)		載)						
原子炉	・						常設/防止		
炉沿	注 注 注 注 注 注 注 注 注 注			—	<u>*</u> *2	_	(DB 拡張)	_	V-2-5-3-1-6
冷却系統施設	その	低圧注水系	除去系に記載)				(DD 1)A JR)		
統		· 系	炉心支持構造物						
施設	原子		(炉心支持構造	—	—* 2	_	常設耐震/防止	_	V-2-3-2-3
	炉注		物に記載)						
	統 他 系 炉心文持構造物原子炉 物に記載)原子炉圧力容物原子炉圧力容物原子炉圧力容物								
	備		(原子炉圧力容	_	—* 2	_	常設耐震/防止	_	V-2-3-3-1-3
			器に記載)						

表 1 耐震評価条件整理一覧表 (18/27)

				記	设計基準対象施	設	重大事故等対処設備		
					新規制基準			設計基準対	
	膏	平価対象	設備	耐震重要度	施行前に認	耐震計算の	 設備分類* ¹	象施設との	耐震計算の
				分類	可された実	記載箇所	以加力规	評価条件の	記載箇所
					績との差異			差異	
			給水スパージャ						
			(原子炉圧力容	_	* 2	_	常設耐震/防止	_	V-2-3-3-3-3
			器内部構造物に				市以删戾/ 刿止		v 2 3 3 3 3
			記載)						
	非常		低圧注水スパー						
	崩 炉		ジャ(原子炉圧力		* 2		常設耐震/防止		V-2-3-3-3-3
E	原子炉冷却系統施設 原子炉冷却系統施設 原子炉冷却設備その他原子		容器内部構造物	_		_	吊取删展/	_	V -2-3-3-3-3
原 子			に記載)						
炉冷	設備	低圧注水系	残留熱除去系熱						
却	その	注	交換器 (残留熱除		* 2		常設/防止		V-2-5-3-1-1
統		· 不	去設備 残留熱	_		_	(DB 拡張)	_	V -2-5-3-1-1
施設	原子		除去系に記載)						
	他原子炉注水設備		原子炉格納容器						V 2021
	水		(原子炉格納施	_	—* 2	_	常設耐震/防止	_	V-2-9-2-1
	横		設に記載)						V-2-9-2-2
			原子炉格納容器						
			配管貫通部(原子		* 2	_	常設耐震/防止		V-2-9-2-12
			炉格納施設に記				市以間浸/炒工		v 2 3 2 12
			載)						

表 1 耐震評価条件整理一覧表 (19/27)

					設計基準対象	施設	重大事故等対処設備		
					新規制基準			設計基準対	
	信	平価対象	設備	耐震重要度	施行前に認	耐震計算の	=几/共/\朱石*1	象施設との	耐震計算の
				分類	可された実	記載箇所	設備分類*1	評価条件の	記載箇所
					績との差異			差異	
			復水移送ポンプ						
	非		(原子炉冷却材		* 2		常設耐震/防止		W o e e 1 1
	非常用炉		補給設備 補給	_		_	常設/緩和	_	V-2-5-5-1-1
	炉、		水系に記載)						
原	心冷却設備そ		復水貯蔵槽 (原子						
子炉	却設	低圧	炉冷却材補給設		* 2		常設耐震/防止		V O F F 1 O
冷	備	代	備補給水系に	_		_	常設/緩和 一	_	V-2-5-5-1-2
原子炉冷却系統施設	\mathcal{O}	低圧代替注水	記載)						
統施	他原	水系	主配管		* 2		常設耐震/防止		V-2-5-4-1-5
設	西 조			_		_	常設/緩和	_	V-2-5-4-4-1
	注 主配管(原子		主配管(原子炉冷						
	水 却材の循環設備			* 2		常設耐震/防止		V 0 F 1	
	備		復水給水系に記	_		_	常設/緩和	_	V-2-5-1
			載)						

表 1 耐震評価条件整理一覧表 (20/27)

					設計基準対象	施設	重大事故等対処設備		
	ffi ir	平価対象	設備	耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
	主配管 (残留熱限 去設備 残留熱 除去系に記載)			_	*2	_	常設耐震/防止常設/緩和	_	V-2-5-3-1-6
原	非常用炉心冷却設備そ	let.	主配管 (原子炉冷 却 材 補 給 設 備 補給水系に記載)		<u>*</u> *2	_	常設耐震/防止常設/緩和	_	V-2-5-5-1-3
原子炉冷却系統施設	の	低圧代替注水系	炉心支持構造物 (炉心支持構造 物に記載)	_	<u>*</u> *2	_	常設耐震/防止常設/緩和	_	V-2-3-2-3
施設	他原子炉注水設備	· 系	原子炉圧力容器 (原子炉圧力容 器に記載)	l	<u>*</u> *2	_	常設耐震/防止常設/緩和	_	V-2-3-3-1-3
	器内部構造物に		(原子炉圧力容	_	*2	_	常設耐震/防止常設/緩和		V-2-3-3-3-3

表 1 耐震評価条件整理一覧表 (21/27)

					設計基準対象	施設	重大事故等対処設備			
	i.	平価対象	設備	耐震重要度 分類	新規制基準 施行前に認 可された実	耐震計算の 記載箇所	設備分類*1 評価条件の 記載館		耐震計算の 記載箇所	
	T	1			績との差異			差異		
	低圧注水スパージャ (原子炉圧力容器内部構造物に記載) 非常用 原子炉格納容易配管貫通部 (原子原子原格)		_	<u></u> *2		常設耐震/防止常設/緩和	_	V-2-3-3-3-3		
原子	心心		原子炉格納容器 配管貫通部 (原子 炉格納施設に記 載)	_	*2	_	常設耐震/防止常設/緩和	_	V-2-9-2-12	
原子炉冷却系統施設	設備その他原子炉注水設備	水の	ほう酸水注入系 貯蔵タンク(計測 制御系統施設に 記載)		*2		常設耐震/防止常設/緩和		V-2-6-4-1-2	
	注水設備	供給設備	復水貯蔵槽 (原子 炉冷却材補給設 備 補給水系に 記載)	_	*2	_	常設耐震/防止常設/緩和	_	V-2-5-5-1-2	
			主配管	_	*2	_	常設耐震/防止 常設/緩和	_	V-2-5-4-5-1	

表 1 耐震評価条件整理一覧表 (22/27)

					設計基準対象	施設	重大事故等対処設備			
					新規制基準			設計基準対		
	TE CONTRACT	平価対象	設備	耐震重要度	施行前に認	耐震計算の	設備分類*1	象施設との	耐震計算の	
				分類	可された実	記載箇所	以加力效	評価条件の	記載箇所	
	1	T			績との差異			差異		
原	非常用炉心冷却設備そ	水の供給設備	原子炉格納容器 (原子炉格納施 設に記載)		*2	_	常設耐震/防止常設/緩和	_	V-2-9-2-1 V-2-9-2-2	
原子炉冷却系統施設	\mathcal{O}		ほう酸水注入系 ポンプ (計測制御 系統施設に記載)	_	*2		常設耐震/防止	_	V-2-6-4-1-1	
 	他原子炉注水設備	ほう酸水注入系	ほう酸水注入系 貯蔵タンク(計測 制御系統施設に 記載)	_	*2		常設耐震/防止	_	V-2-6-4-1-2	
	主配管		_	*2	_	常設耐震/防止	_	V-2-5-4-1-5		
			主配管(計測制御 系統施設に記載)	_	*2	_	常設耐震/防止	_	V-2-6-4-1-3	

表 1 耐震評価条件整理一覧表 (23/27)

					設計基準対象	施設	重大事故等対処設備			
					新規制基準			設計基準対		
	言	平価対象	設備	耐震重要度	施行前に認	耐震計算の	】 設備分類* ¹	象施設との	耐震計算の	
				分類	可された実	記載箇所	以加力類	評価条件の	記載箇所	
					績との差異			差異		
			炉心支持構造物							
			(炉心支持構造	_	* 2	_	常設耐震/防止	_	V-2-3-2-3	
			物に記載)							
			原子炉圧力容器							
	非常常		(原子炉圧力容	_	* 2	_	常設耐震/防止	_	V-2-3-3-1-3	
	非常用炉心冷却設備それのおりのである。		器に記載)							
田		7	高圧炉心注水ス							
原 子	却	ほ	パージャ(原子炉	_	* 2		常設耐震/防止		V-2-3-3-3-3	
炉 冷	設備	う 酸	圧力容器内部構			_	市政顺長/ 別止		v -2-3-3-3-3	
原子炉冷却系統施設	その	ほう酸水注入系	造物に記載)							
統		入	高圧炉心注水系							
他 設	原 子	糸	配管(原子炉圧力							
	炉注		容器内部)(原子	_	—* 2	_	常設耐震/防止	_	V-2-3-3-3-3	
	統施設 他原子炉注水設備		炉圧力容器内部							
	備		構造物体に記載)							
			原子炉格納容器							
			配管貫通部(原子	_	* 2	_	常設耐震/防止	_	V-2-9-2-12	
			炉格納施設に記				17 17 11 17 17 17 17 17 17 17 17 17 17 1		v 2 3 2 12	
			載)							

表 1 耐震評価条件整理一覧表(24/27)

				記	设計基準対象施	設	重大	事故等対処設	備
	評価対象設備		設備	耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
			復水移送ポンプ	В	*2	_	_	_	_
	原 子		復水貯蔵槽	В	*2	_	_	_	_
	炉冷	補	主配管	В	*2	_	_	_	_
原子炉冷	原子炉冷却材補給設備		主配管(非常用炉 心冷却設備その 他原子炉注水設 備 高圧炉心注 水系に記載)	В	<u>*</u> *2	_	_		_
原子炉冷却系統施設	原子	原子炉	原子炉補機冷却 水系熱交換器	S	有	V-2-5-6-1-1	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	無	V-2-5-6-1-1
	原子炉補機冷却海水系原子炉補機冷却海水系原子炉補機冷却海水系		原子炉補機冷却水ポンプ	S	無	V-2-5-6-1-2	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	無	V-2-5-6-1-2
	設 備	水系系及び	原子炉補機冷却海水ポンプ	S	無	V-2-5-6-1-3	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	無	V-2-5-6-1-3

表 1 耐震評価条件整理一覧表 (25/27)

				彭	设計基準対象施	設	重大事故等対処設備			
					新規制基準			設計基準対		
	Ē	平価対象	設備	耐震重要度	施行前に認	耐震計算の	設備分類* ¹	象施設との	耐震計算の	
				分類	可された実	記載箇所	以加力规	評価条件の	記載箇所	
					績との差異			差異		
			原子炉補機冷却 水系サージタン	S	<u>*</u> *2	V-2-5-6-1-4	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	無	V-2-5-6-1-4	
原子炉冷却系統施設	原子炉補機冷却設備	原子炉補機冷却海水系原子炉補機冷却水系及び	原子炉補機冷却海水系ストレーナ	S	無	V-2-5-6-1-5	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	無	V-2-5-6-1-5	
設	備	小系 ひび	主要弁	S	無	V-2-5-6-1-6	_	_	_	
			主配管	S	有	V-2-5-6-1-6	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	有	V-2-5-6-1-6	

表 1 耐震評価条件整理一覧表 (26/27)

					設計基準対象	施設	重	大事故等対処	設備
	評価対象設備			耐震重要度 分類	新規制基準 施行前に認 可された実 績との差異	耐震計算の 記載箇所	設備分類*1	設計基準対 象施設との 評価条件の 差異	耐震計算の 記載箇所
	原子	代替原	原子炉補機冷却 水系熱交換器	_	<u>*</u> *2	I	常設耐震/防止常設/緩和	_	V-2-5-6-1-1
原子	原子炉補機冷却設備	代替原子炉補機冷却系	原子炉補機冷却 水系サージタン ク	_	<u>*</u> *2	1	常設耐震/防止常設/緩和	_	V-2-5-6-1-4
原子炉冷却系統施設	一		主配管	_	<u>*</u> *2	-	常設耐震/防止常設/緩和	_	V-2-5-6-1-6 V-2-5-6-2-1
施設	原子后	原子	主要弁	S	無	V-2-5-1	_	_	_
	冷却	炉冷却	主配管	S	有	V-2-5-1	_		_
	炉冷却材浄化設備	原子炉冷却材浄化系	主配管 (残留熱除 去設備 残留熱 除去系に記載)	S	有	V-2-5-3-1-6	_	_	_

表 1 耐震評価条件整理一覧表 (27/27)

				設計基準対象	上施設	重	大事故等対処	設備
	į	評価対象設備	耐震重要度	新規制基準 施行前に認	耐震計算の		設計基準対象施設との	耐震計算の
			分類	可された実績との差異	記載箇所	設備分類*1	評価条件の 差異	記載箇所
原子		燃料取替床ブローアウト パネル (原子炉格納施設に 記載)	_	順との左共 —*2	_	常設耐震/防止	<u> </u>	V-2-9-3-1-1
	その他	遠隔空気駆動弁操作設備 (原子炉格納施設に記載)	_	 *2	_	常設耐震/防止	_	V-2-9-5-2
		遠隔手動弁操作設備(原子 炉格納施設に記載)	_	*2	_	常設耐震/防止	_	V-2-9-5-3

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備,「常設/防止 (DB 拡張)」は常設重大事故 防止設備(設計基準拡張),「常設/緩和 (DB 拡張)」は常設重大事故緩和設備(設計基準拡張)を示す。

*2:本工事計画で新規に申請する設備であることから、差異比較の対象外。

3. 技術基準規則第5条の要求事項の変更に伴う評価対象設備の耐震計算

3.1 耐震計算の概要

本章は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、原子炉冷却系統施設のうち、技術基準規則第5条の要求事項の変更に伴う評価対象設備である原子炉冷却材再循環ポンプ、原子炉冷却材浄化系(主配管及び主要弁)及び復水給水系(主配管及び主要弁)が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。原子炉冷却材再循環ポンプ、原子炉冷却材浄化系(主配管及び主要弁)及び復水給水系(主配管及び主要弁)の計算結果を次ページ以降に示す。

(1) 原子炉冷却材再循環ポンプの耐震性についての計算書 (原子炉冷却系統施設 原子炉冷却材再循環設備)

目 次

1.		概要		• • • •																							_
2.		一般	事	項	••	• •	• • •	• • •	• •	• • •	• •			• •		• •	• •	• • •	• • •	• •	• • •	• • •	• •	 • •	• • •		1
2.	1	構	造	計画	i	• • •		• • •	• •	• • •	• •			• •			• •		• • •	• •		• • •	• •	 	• • •		1
2.	2	評	価	方針	-				• •		• •			• • •			• •			• •			• •	 			3
2.	3	適	用	規格	. • ;	基	准等	争	• •		• •			• •			• •							 			4
2.	4	記	号	の説	明				• •		• •			• • •			• •			• •				 			5
2.	5	計	算	精度	ا ح	数1	値の	り丸	め	方	•						• •							 			7
3.	i	評価	部	位		• • •			• •		• •			• •			• •							 • •			8
4.	7	構造	強	度評	価	,			• •		• •			• •			• •							 • •			8
4.	1			強度																							
4.	2	荷	重	の組	合.	せ	及て	が許	容	応力	þ					• •	• •							 			8
	4.	2.1		荷重	(の)	組~	合せ	と及	びi	許忽	字応	力	状	態	•	• •	• •							 			8
	4.	2.2)	許容	応	力	•				• •						• •							 			8
	4.	2.3	;	使用	材	料(の割	午容	応	力割	平佃	6条	件				• •							 			8
4.	3	固	有	周期		• • •			• •		• •			• •			• •			• •				 			13
4.	4	設	計	用地	震	力	•		• •		• •			• • •			• •			• • •				 		• • •	13
4.	5	解	析	モデ	ル	及	び請	者元			• •			• •		• •	• •						• •	 			13
4.	6	計	算	方法		• • •		• • •	• •	• • •	• •			• •			• •	• • •	• • •	• •			• •	 • •	• • •	• • •	14
	4.			応力																							14
4.	7	計	算	条件	:				• •		• •			• • •			• •			• • •			• •	 • •			17
4.	8	応	力	の評	価				• •		• •			• • •			• •			• •				 			19
5.	i	評価	結	果		• •			• •		• •			• •			• •			• •			• •	 			20
5.	1	設	計	基準	対	象	施討	定と	L.	T 0.	了 I	[[]	i結	果	•		• •							 			20
6.	i	引用	文	献		• • •					• • •			• • •			• • •			• • •			• •	 • •		• • •	20
_		/> H77																									

1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、原子炉冷却材再循環ポンプが設計用地震力に対して十分な構造強度を有していることを説明するものである。

原子炉冷却材再循環ポンプは,設計基準対象施設においてSクラス施設に分類される。 以下,設計基準対象施設としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

原子炉冷却材再循環ポンプの構造計画を表 2-1 に示す。

原子炉冷却材再循環ポンプは、ターボポンプであって、固定子浸水形モータで駆動 される密封式ポンプであって、モータケーシングが軸垂直割りで軸対称であるものに 相当する。 2

表 2-1 構造計画

		表 2-1 構造計画
計画の	概要	概略構造図
基礎・支持構造	主体構造	では、 では、 では、 では、 では、 では、 では、 では、
モータカバーはアプスを データ で は ポケール で で は ポーシャ で で は ポーツ で で で で で で で で で で で で で で で で で で で	ターボ形ポンプ	羽根車 ディフューザ 車 上部ジャーナル軸受 原子炉冷却材再循環 ポンプモータケーシング 下部ジャーナル軸受 スラスト軸受 モータカバー 補助カバー取付ポルト 補助カバー取付ポルト

2.2 評価方針

原子炉冷却材再循環ポンプの応力評価は、V-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す原子炉冷却材再循環ポンプの部位を踏まえ「3. 評価部位」にて設定する箇所において、設計用地震力による応力等が許容限界内に収まることを、「4. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

原子炉冷却材再循環ポンプの耐震評価フローを図 2-1 に示す。なお、本書においては、設計用地震力に対する評価について記載するものとし、設計用地震力を除く荷重による応力評価は、平成 5 年 6 月 17 日付け 4 資庁第 14562 号にて認可された第 5 回工事計画認可申請 IV-3-2-1「原子炉冷却材再循環ポンプの応力計算書」(以下「既工認」という。)による。

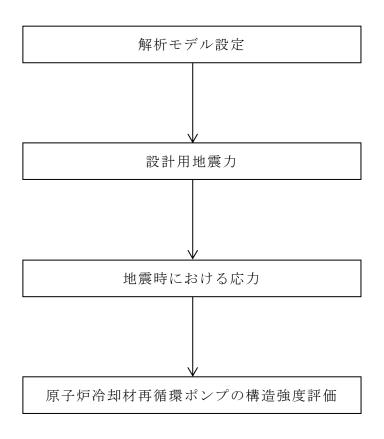


図 2-1 原子炉冷却材再循環ポンプの耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 -1984((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007)(以下 「設計・建設規格」という。)
- ・日本工業規格 JIS B 8265(2003) 「圧力容器の構造-一般事項」附 属書3(規定)「圧力容器のボルト締めフランジ」

2.4 記号の説明

記号	記号の説明	単位
C v	鉛直方向設計震度	_
Е	縦弾性係数	MPa
E 0	設計疲労線図に使用されている縦弾性係数	MPa
F	ピーク応力	MPa
F 1	外荷重 (ポンプ固定側)	N
F 2	外荷重 (ポンプ回転側)	N
F 3	外荷重 (補助カバー)	N
F _G	ガスケット反力	N
F_{G1}	ガスケット反力	N
F_{G2}	ガスケット反力	N
g	重力加速度	m/s^2
N a	$S\ell'$ に対応する許容繰返し回数	□
N с	実際の繰返し回数	□
Рь	一次曲げ応力	MPa
Pι	一次局部膜応力	MPa
Рm	一次一般膜応力	MPa
S 12	主応力差	MPa
S 23	主応力差	MPa
S 31	主応力差	MPa
S ℓ	繰返しピーク応力強さ	MPa
Sℓ′	補正繰返しピーク応力強さ	MPa
S p	一次+二次+ピーク応力の応力差範囲	MPa
U f	疲労累積係数(Usd又はUss)	_
Usd	地震荷重 S d* のみによる疲労累積係数	_
U S s	地震荷重Ssのみによる疲労累積係数	_
W S d	地震時 (Sd*) のボルトに作用する引張荷重	N
W S s	地震時 (Ss) のボルトに作用する引張荷重	N
σ_{1}	主応力	MPa
σ 2	主応力	MPa
σ 3	主応力	MPa
σ ℓ	軸方向応力	MPa
σ г	半径方向応力	MPa
σsd	地震時 (Sd*) のボルト平均引張応力	MPa
σ s s	地震時 (Ss) のボルト平均引張応力	MPa

記号	記号の説明	単位
σt	周方向応力	MPa
τ е г	せん断応力	MPa
τrt	せん断応力	MPa
τtℓ	せん断応力	MPa

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
震度	_	小数点以下第3位	切上げ	小数点以下第2位
圧力	MPa	_	_	小数点以下第2位
温度	$^{\circ}$	_	_	整数位
荷重	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*1
縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
疲労累積係数	_	小数点以下第5位	切上げ	小数点以下第4位
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*2	MPa	小数点以下第1位	切捨て	整数位

注記*1:絶対値が1000以上のときはべき数表示とする。

*2:設計・建設規格 付録材料図表に記載された温度の中間における許容応力は、 比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

3. 評価部位

原子炉冷却材再循環ポンプの耐震評価は、「4.1 構造強度評価方法」に示す条件に基づき、原子炉冷却材圧力バウンダリを構成するモータカバー、補助カバー、スタッドボルト及び補助カバー取付ボルトについて実施する。原子炉冷却材再循環ポンプの耐震評価部位については、表 2-1 の概略構造図に示す。

4. 構造強度評価

4.1 構造強度評価方法

- (1) 原子炉冷却材再循環ポンプのモータカバーは、原子炉冷却材再循環ポンプモータ ケーシングにスタッドボルトにより固定されるものとする。補助カバーは、モータ カバーに補助カバー取付ボルトにより固定されるものとする。
- (2) モータカバー及び補助カバーの設計用地震力による応力評価は、既工認における 死荷重での応力を用いて、荷重条件の比により(比倍して)計算する。また、設計 用地震力を除く荷重による応力評価は、既工認における有限要素法による応力計算 から変更はなく、図 4-1 及び図 4-2 に示す評価点について実施する。
- (3) モータカバー及び補助カバーは図 4-1 及び図 4-2 に示す水平の円板状の構造物であり、発生する応力は鉛直方向荷重によるものが支配的であるため、鉛直方向設計震度のみ設計用地震力として考慮し、水平方向設計震度は設計用地震力として考慮しない。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

原子炉冷却材再循環ポンプの設計基準対象施設としての評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

原子炉冷却材再循環ポンプの許容応力は, V-2-1-9「機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

原子炉冷却材再循環ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 4-3 に示す。

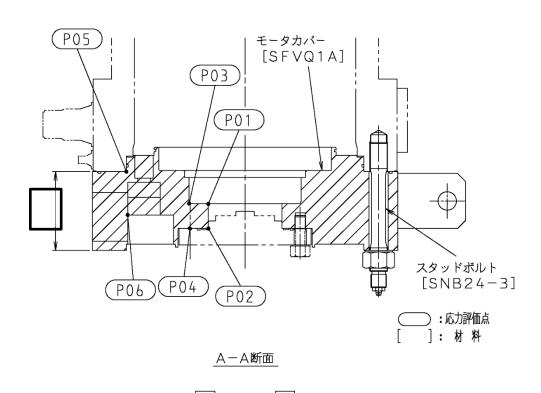


図 4-1 モータカバーの形状・寸法・材料・応力評価点(単位:mm)

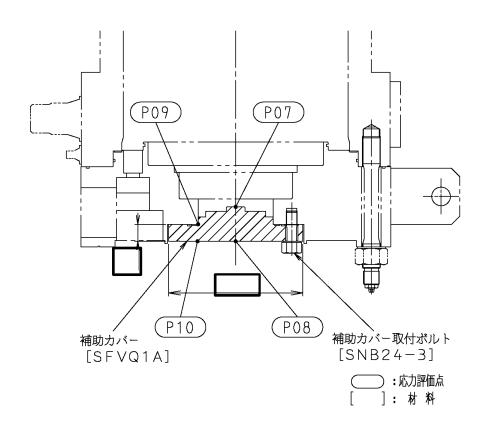


図 4-2 補助カバーの形状・寸法・材料・応力評価点(単位:mm)

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	战区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
					$D + P + M + S d^*$	III _A S
原子炉冷却 系統施設	原子炉冷却材 再循環設備	原子炉冷却材 再循環ポンプ	S	クラス 1 ポンプ	D + P L + M L + S d* *	W S
					D+P+M+Ss	IV A S

注記*:「D+P+M+Ss」の評価に包絡されるため、評価結果の記載を省略する。

表 4-2(1) 許容応力 (クラス 1 ポンプ)

許容応力状態	許容限界* (ボルトを除く)							
计谷应力认思	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ ピーク応力				
III _A S	Syと2/3・Suの小さい方。 ただし、オーステナイト系ス テンレス鋼及び高ニッケル合 金については1.2・Smとす る。	左欄の 1.5 倍の値	3・Sm 弾性設計用地震 動Sd又は基準 地震動Ssのみ	弾性設計用地震動Sd 又は基準地震動Ssの みによる疲労解析を行				
IV A S	2/3・Su。ただし、オーステナイト系ステンレス鋼及び高ニッケル合金については 2/3・Suと 2.4・Smの小さい方。	左欄の 1.5 倍の値	による応力振幅 について評価する。	い,疲労累積係数が 1.0以下であること。				

注記*: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

1

表 4-2(2) 許容応力 (クラス 1 耐圧部テンションボルト (容器以外))

許容応力状態	許容限界* (ボルト)
T 台 心 刀 扒 麽	平均引張応力
III _A S	1.5 · S
IV A S	2 · S

注記*:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		S (MPa)	S m (MPa)	S y (MPa)	S u (MPa)
モータカバー	SFVQ1A	最高使用温度	302	_	184	302	480
補助カバー	SFVQ1A	最高使用温度	302	_	184	302	480
スタッドボルト	SNB24-3	最高使用温度	302	200	_	_	_
補助カバー取付ボルト	SNB24-3	最高使用温度	302	200	_	_	_

4.3 固有周期

原子炉冷却材再循環ポンプの評価部位であるモータカバー及び補助カバーは,厚板の円板状の構造物で剛体と見なせるため,固有周期は十分に小さく,固有周期の計算は省略する。

4.4 設計用地震力

評価に用いる設計用地震力を表 4-4 に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、 V-2-1-7「設計用床応答曲線の作成方針」に基づき設定する。

弹性設計用地震動 S d 据付場所 固有周期(s) 基準地震動 S s 及び 又は静的震度 床面高さ 水平 鉛直 水平方向 鉛直方向 水平方向 鉛直方向 (m)設計震度 設計震度 設計震度 方向 方向 設計震度 原子炉圧力容器 ___* 2 ___ * 2 **___ *** 3 ___ ***** 3 $C_{V} = 0.72$ $C_{V} = 1.43$ T.M.S.L. 5.066*1

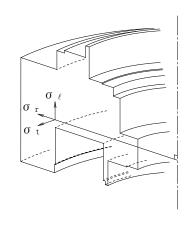
表 4-4 設計用地震力(設計基準対象施設)

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

*3:モータカバー及び補助カバーは図 4-1 及び図 4-2 に示す水平の円板状の構造物であり、発生する応力は鉛直方向荷重によるものが支配的であるため、 鉛直方向設計震度のみ設計用地震力として考慮し、水平方向設計震度は設計 用地震力として考慮しない。

4.5 解析モデル及び諸元


原子炉冷却材再循環ポンプの解析モデル及び諸元は既工認に示すとおりである。

4.6 計算方法

4.6.1 応力の計算方法

既工認の評価結果を用いて、「4.4 設計用地震力」を考慮して応力計算を実施 するものとする。

- 4.6.1.1 モータカバー及び補助カバーの応力
 - (1) 応力解析は、既工認の評価結果を用いる。モータカバー及び補助カバーの周方向応力 $\sigma_{\rm t}$ 、軸方向応力 σ_{ℓ} 及び半径方向応力 $\sigma_{\rm r}$ の方向を図 4-3 及び図 4-4 に示す。

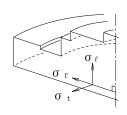


図 4-3 モータカバーの応力方向

図 4-4 補助カバーの応力方向

- (2) 応力の分類は、表 4-5 の応力の分類方法に従って分類する。
- (3) 計算した応力は、応力の分類ごとに重ね合わせ、組合せ応力を求める。 組合せ応力は、一般に σ_{t} 、 σ_{ℓ} , σ_{r} , $\tau_{t\ell}$, $\tau_{\ell r}$, τ_{rt} の 6 成分を持つが、主応力 σ は、引用文献(1)の 1·3·6 項により、次式を満足する 3 根 σ_{1} , σ_{2} , σ_{3} として計算する。

$$\sigma^{3} - (\sigma_{t} + \sigma_{\ell} + \sigma_{r}) \cdot \sigma^{2} + (\sigma_{t} \cdot \sigma_{\ell} + \sigma_{\ell} \cdot \sigma_{r} + \sigma_{r} \cdot \sigma_{t}$$

$$- \tau_{t\ell^{2}} - \tau_{\ell r}^{2} - \tau_{rt^{2}}) \cdot \sigma - \sigma_{t} \cdot \sigma_{\ell} \cdot \sigma_{r} + \sigma_{t} \cdot \tau_{\ell r}^{2}$$

$$+ \sigma_{\ell} \cdot \tau_{rt^{2}} + \sigma_{r} \cdot \tau_{t\ell^{2}} - 2 \cdot \tau_{t\ell} \cdot \tau_{\ell r} \cdot \tau_{rt} = 0$$
上式により主応力を求める。

(4) 応力強さは、以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$S_{12} = \sigma_1 - \sigma_2$$

 $S_{23} = \sigma_2 - \sigma_3$
 $S_{31} = \sigma_3 - \sigma_1$

(5) 応力集中を生じる応力評価点には、ピーク応力の計算に応力集中係数を 考慮する。応力集中係数は、設計・建設規格 PVB-3130 表 PVB-3130-1(局 部的な構造上の不連続部)に掲げられた値を用いる。

表 4-5 応力の分類方法

評価部材	荷重の種類	応力の分類		
	死荷重 +			
	最高使用圧力	膜応力(板厚平均応力)	P m *	
モータカバー 及び	機械的荷重	曲げ応力	Рb	
補助カバー	+ 地震荷重			
		膜応力 (板厚平均応力)	P L	
	地震荷重のみ	曲げ応力	Рb	
		応力集中による応力増加分	F	
	死荷重 +			
スタッドボルト	最高使用圧力			
及び	+	断面平均応力	平均引張応力	
補助カバー取付ボルト	機械的荷重			
	+			
	地震荷重			

注記*:応力評価点は、局部的な構造上の不連続部であるため膜応力はPLに分類されるが、これをPmとしてPmの許容応力を適用し、安全側に評価する。

4.6.1.2 モータカバー及び補助カバーの疲労累積係数

- (1) 地震荷重により生じる一次+二次+ピーク応力の応力差の変動の繰返し 回数として,200回を考慮する。この繰返し回数を疲労累積係数を求める際 の実際の繰返し回数とする。
- (2) 繰返しピーク応力強さは、次式により求める。

$$S \ell = \frac{S p}{2}$$

設計・建設規格に記載の設計疲労線図に使用されている縦弾性係数(E₀) と最高使用温度における縦弾性係数(E)との比を考慮し、繰返しピーク応 力強さを次式で補正する。

$$S \ell' = S \ell \cdot \frac{E_0}{E}$$

4.6.1.3 スタッドボルト及び補助カバー取付ボルトの応力

- (1) ボルトの応力評価は、設計・建設規格 PMB-3510 に基づき、ボルトの軸 方向に垂直な断面の平均引張応力について行う。
- (2) 平均引張応力の計算は, J I S B 8 2 6 5 (2003) 「圧力容器の構造ーー般事項」附属書 3 (規定) 「圧力容器のボルト締めフランジ」のフランジの計算のうち, ボルト荷重の計算方法による。
- (3) 設計圧力及び使用温度は,設計・建設規格における最高使用圧力及び最高使用温度とする。

4.7 計算条件

最高使用圧力, 死荷重及び機械的荷重の条件は, 既工認による。地震荷重の条件は, 「4.4 設計用地震力」に基づいて設定する。応力計算に用いる荷重条件を表 4-6 及び表 4-7 にまとめて示す。

表 4-6 モータカバーの荷重 (ボルトを除く。)

			Ť	かんして を かく。)	7		
記号		荷重名称		荷重値			
				地震時 (S d*)	地震時(Ss)		
Р		最高使用圧力 (MPa)		8.62	8.62		
死	F 1	外荷重(ポンプ固定側)(N)					
荷 D 重	F 2	外荷重(ポンプ回転側) (N)					
及 び	F 3	外荷重(補助カバー) (N)					
機 F G 1 械 的 M F G 2 荷 重 —	F _{G 1}	ガスケット反力 (N)					
	F _{G 2}	ガスケット反力 (N)					
	_	自重		1.00 • g	1.00 • g		
地	F 1	外荷重(ポンプ固定側) (N)					
	F 2	外荷重(ポンプ回転側) (N)					
		自重		0.72 • g			
地震荷Sѕ重	F 1	外荷重(ポンプ固定側) (N)					
	F 2	外荷重(ポンプ回転側) (N)		_			
	_	自重		_	1.43 • g		

表 4-7 補助カバーの荷重 (ボルトを除く。)

		T			
	-	llion to at		荷重	直 値
記号	号	荷重名称		地震時 (S d*)	地震時(Ss)
Р	,	最高使用圧力	(MPa)	8. 62	8.62
死 荷 D 重 及び	F _G	ガスケット反力	(N)		
機 械 的 M	_	自重		1.00 • g	1.00 • g
地 震 荷 S d* 重	_	自重		0.72 • g	
地 震 荷 S s 重	_	自重		_	1.43 • g

4.8 応力の評価

モータカバー,補助カバー,スタッドボルト及び補助カバー取付ボルトについて4.6.1 項で求めた各応力等が,原子炉冷却材再循環ポンプの最高使用温度における許容限界以下であること。許容限界を表 4-2 に示す。

5. 評価結果

5.1 設計基準対象施設としての評価結果

原子炉冷却材再循環ポンプの設計基準対象施設としての耐震評価結果を以下に示す。 発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有してい ることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

6. 引用文献

(1) 機械工学便覧 基礎編 α3(日本機械学会)

7. 参照図書

柏崎刈羽原子力発電所第7号機 第5回工事計画認可申請書

(1) Ⅳ-3-2-1「原子炉冷却材再循環ポンプの応力計算書」

【原子炉冷却材再循環ポンプの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

+0% PD /2 +3/-	耐震重要度	据付場所 及び	固有周	期(s)	弾性設計用 又は静	地震動Sd 的震度	基準地加	통動Ss	最高使用	最高使用	周囲環境
機器名称	分類	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	圧力 (MPa)	温度 (℃)	温度 (℃)
原子炉冷却材 再循環ポンプ	S	原子炉圧力容器 T.M.S.L. 5.066*1	*2	*2	*3	$C_{V} = 0.72$	*3	$C_{V} = 1.43$	8.62	302	_

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく、計算は省略する。

*3:モータカバー及び補助カバーは水平の円板状の構造物であり、発生する応力は鉛直方向荷重によるものが支配的であるため、鉛直方向設計震度のみ設計用地震力として考慮し、水平方向設計震度は設計用地震力として考慮しない。

1.2 機器要目

部材	材料	E o (MPa)	E (MPa)	S m (MPa)	S y (MPa)	S u (MPa)
モータカバー 及び 補助カバー	SFVQ1A			184*	302*	480*

部材	材料	S (MPa)
スタッドボルト 及び 補助カバー取付ボルト	SNB24-3	200*

注記*:最高使用温度で算出

N

(単位:MPa)

1.3.1 モータカバーの応力強さ

K7 ① V-2-5-1(1) R1

		弾性	設計用地震	動Sd又に	は静的震度			基準地震動Ss											
一次一	般膜	一次膜+	一次曲げ	一次+	- 二次	一次+二次・	一次+二次+ピーク 一次一般膜 一次膜+		一次膜+	一次曲げ	一次-	⊦二次	一次+二次・	+ ピーク					
応力 評価面	応力 強さ	応力 評価面	応力 強さ	応力 評価点	応力 強さ*	応力 評価点	応力 強さ*	応力 評価面	応力 強さ	応力 評価面	応力 強さ	応力 評価点	応力 強さ*	応力 評価点	応力 強さ*				
P01-P02	67	P01-P02	82	P01	1	P01	3	P01-P02	68	P01-P02	82	P01	1	P01	6				
F01-F02	07	F01-F02	02	P02	2	P02	8	FU1-FU2	00	F01-F02	02	P02	3	P02	15				
P03-P04	39	P03-P04	56	P03	1	P03	5	P03-P04	40	P03-P04	57	P03	2	P03	9				
P03-P04	39	P03-P04	90	P04	2	P04	6	P03-P04	40	P03-P04	91	P04	3	P04	11				
DOE DOC	61	DOE DOC	0.4	P05	1	P05	3	DOE DOC	6.1	DOE DOC	95	P05	2	P05	6				
P05-P06	01	P05-P06	94	P06	2	P06	10	P05-P06	61	P05-P06	95	P06	4	P06	20				

注記*:全振幅の値を示す。

1.3.2 補助カバーの応力強さ

弾性設計用地震動Sd又は静的震度 基準地震動 S s 一次一般膜 一次膜+一次曲げ 一次十二次 一次+二次+ピーク 一次一般膜 一次膜+一次曲げ 一次十二次 一次+二次+ピーク 応力 強さ* 強さ* 評価点 強さ* 強さ* 評価面 強さ 評価面 強さ 評価点 評価点 評価面 強さ 評価面 強さ 評価点 P07 0 P07 1 P07 0 P07 1 P07-P08 P07-P08 P07-P08 10 57 10 P07-P08 0 P08 0 P08 1 P08 P08 1 P09 0 P09 0 P09 0 P09 1 P09-P10 P09-P10 P09-P10 42 129 42 P09-P10 129 0 P10 1 1 1 P10 P10 P10

注記*:全振幅の値を示す。

22

K7 ① V-2-5-1(1) R1

1.3.3 モータカバーの疲労累積係数

(単位:MPa)

		弾性記	设計用地震	動Sd又ィ	は静的震度	ŧ	基準地震動 S s									
応力評価点	Sp	Sℓ	S ℓ′	N a	N c	Uf (Usd)	Sp	Sℓ	S ℓ′	N a	N c	Uf (Uss)				
P01	3	2	2	10^{6}	200	0.0002*	6	3	4	10^{6}	200	0.0002*				
P02	8	4	5	10^{6}	200	0.0002*	15	8	9	10^{6}	200	0.0002*				
P03	5	2	3	10^{6}	200	0.0002*	9	4	5	10^{6}	200	0.0002*				
P04	6	3	3	10^{6}	200	0.0002*	11	6	6	10^{6}	200	0.0002*				
P05	3	2	2	10^{6}	200	0.0002*	6	3	4	10^{6}	200	0.0002*				
P06	10	5	6	10^{6}	200	0.0002*	20	10	12	10^{6}	200	0.0002*				

注記*:単位無し

1.3.4 補助カバーの疲労累積係数

(単位:MPa)

		弾性部	设計用地震	動Sd又ィ	は静的震度	# \$	基準地震動 S s								
応力評価点	Sp	Sℓ	S ℓ′	N a	N c	Uf (Usd)	Sp	Sℓ	S ℓ′	N a	Nс	U f (U s s)			
P07	1	0	0	10^{6}	200	0.0002*	1	1	1	10^{6}	200	0.0002*			
P08	1	0	0	10^{6}	200	0.0002*	1	1	1	10^{6}	200	0.0002*			
P09	0	0	0	10^{6}	200	0.0002*	1	0	1	10^{6}	200	0.0002*			
P10	1	1	1	10^{6}	200	0.0002*	1	1	1	10^{6}	200	0.0002*			

注記*:単位無し

1.3.5 スタッドボルト及び補助カバー取付ボルトの平均引張応力

	弾性設計用地震動	りS d 又は静的震度	基準地震動 S s						
部材	Wsd (N)	σ _{sd} (MPa)	W s s (N)	σ _{ss} (MPa)					
スタッドボルト		175		177					
補助カバー取付ボルト		150		151					

1.4 結論

1.4.1 応力 (単位: MPa)

l= 11	Lital		弾性設計用地震動S	d 又は静的震	基準地震動 S s							
部材	材料	応力	応力評価面又は応力評価点	算出応力	許容応力	応力評価面又は応力評価点	算出応力	許容応力				
		一次一般膜	P01-P02	67	302	P01-P02	68	320				
モータカバー	CEVO14	一次膜+一次曲げ	P05-P06	94	454	P05-P06	95	480				
モータカハー	SFVQ1A	一次+二次	P06	2	552	P06	4	552				
		疲労評価	P06	0.0002*	1.0*	P06	0.0002*	1.0*				
		一次一般膜	P09-P10	42	302	P09-P10	42	320				
補助カバー	SFVQ1A	一次膜+一次曲げ	P09-P10	129	454	P09-P10	129	480				
冊切刀八一	SEVVIA	一次+二次	P10	0	552	P10	1	552				
		疲労評価	P10	0.0002*	1.0*	P10	0.0002*	1.0*				
スタッドボルト	SNB24-3	平均引張		175	300	_	177	400				
補助カバー取付 ボルト	SNB24-3	平均引張	_	150	300	_	151	400				

注記*:単位無し

すべて許容応力以下である。

25

(2) 管の耐震性についての計算書(原子炉冷却材の 循環設備 復水給水系)

設計基準対象施設

目 次

1.	概	要	• • •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系統	統図及び	鳥瞰図	X]		•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
	2. 1	概略	F 系統図			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•				•	•	2
	2.2	鳥瞰	区区	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
3.	計	算条位	件 •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	3. 1	計算	万法	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	3. 2	荷重	直の組合せ	及び	許名	字応	った	小	館	1117			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	3. 3	設計	十条件	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
	3. 4	材料	及び許容	応力			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	31
	3. 5	設計	十用地震力	J	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
4.	解	析結	果及び評値	活	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	4. 1	固有	可周期及ひ	設計	震馬	至			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	4.2	評価	話果	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51
	4. 2	. 1	管の応力	評価	結男	艮			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	51
	4. 2	. 2	支持構造	物評	価糸	吉果	Ę			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53
	4. 2	. 3	弁の動的	機能	維持	寺評	F征	Fi 彩	非	₹.			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	54
	4. 2	. 4	代表モデ	シルの	選兌	官紹	非	き及	とし	が全	ÈŦ.	- -	デノ	レク) 함	平伯	田糸	吉月	艮				•	•		•						•		55

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全3モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

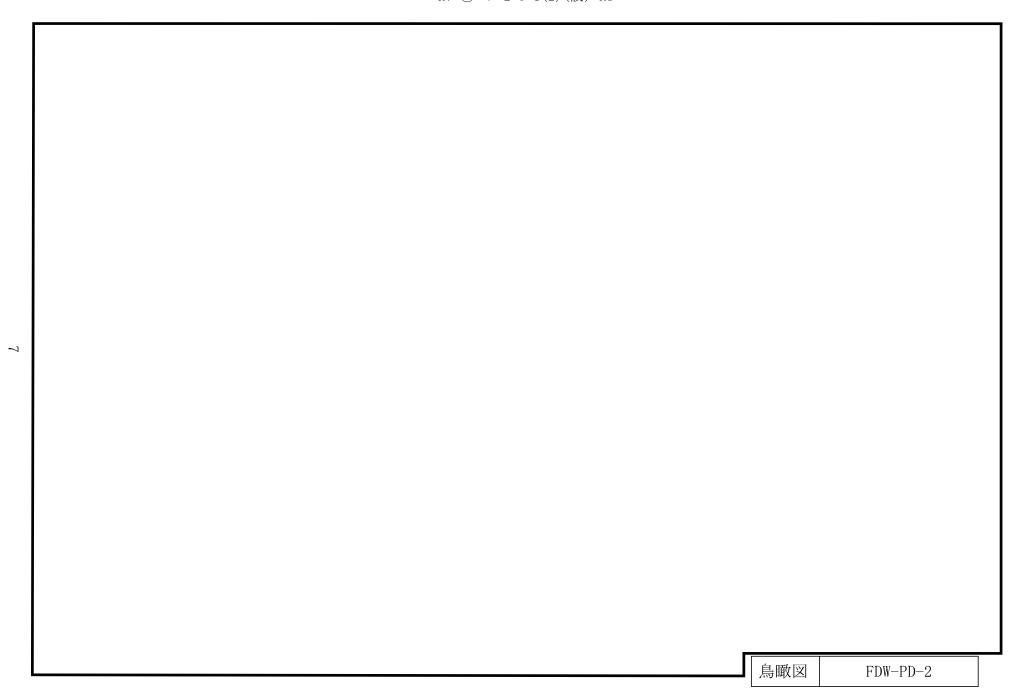
2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

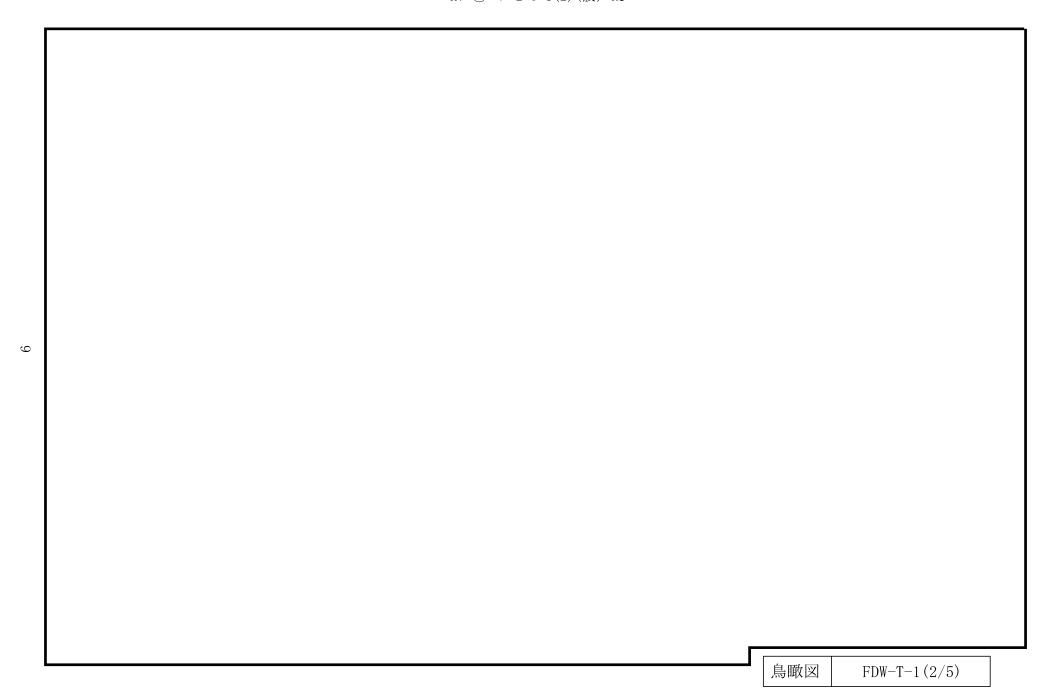
記号	内容
- (太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

*2:原子炉隔離時冷却系 解析モデル上本系統に含める。


復水給水系概略系統図(その2)

2.2 鳥瞰図

鳥瞰図記号凡例


記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃ -√√-	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。

6			
	鳥瞰図	FDW-PD-1	

自納(2)		
島藤砂 GDW-T-1(1/5)		
○. 版例 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		
●.勝図 じ取-T-1 (1/5)		
良藤		
○上勝回		
上 柳/汊		
自勝図 PDW-T-1(1/5)		
上下 (1/5)		
自廠図 PDW-T-1(1/5)		
良廠図 FNW-T-1 (1/5)		
自版図 FDW_T=1 (1/5)		
自勝図 FDW-T-1 (1/5)		
良版(図 ENW-T-1 (1/5)		
息廠図 FDW_T=1 (1/5)		
自版区 FDW-T-1 (1/5)		
自. 脚 図		
自. 脚 図 RDW-T-1 (1/5)		
自 版 図 RDW-T-1 (1/5)		
息廠図 FDW-T-1 (1/5)		
自脇図 FDW-T-1 (1/5)		
自廠図 FDW-T-1(1/5)		
自		
皀瞰図 FDW-T-1 (1/5)		
自廠図 FDW-T-1(1/5)		
皀瞰図 FDW-T-1(1/5)		
皀瞰図 FDW-T-1(1/5)		
皀瞰図 FDW-T-1(1/5)	Γ	
皀瞰図 FDW-T-1(1/5)		
		鳥瞰図 FDW-T-1(1/5)

 ∞

10			
	鳥瞰図	FDW-T-1(3/5)	

I	
I	
I	
1	
1	
1	
1	
1	
1	

鳥瞰図

FDW-T-1(4/5)

12

鳥瞰図 | FDW-T-1(5/5)

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類 ^{*1}	設備 分類	機器等 の区分	耐震 重要度分類	荷重の組合せ ^{*2,3}	許容応力 状態	
							I L + S d II L + S d	III a S	
原子炉冷却 系統施設	原子炉冷却材の 循環設備	復水給水系	DΒ	_	クラス1管 クラス2管	S	I L+S s		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,						$II_L + S_S$ $IV_L (L) + S_d^{*4}$	IV A S	
							$I_L + S_d$		
原子炉冷却							Ⅱ L+S d	III ∧ S	
系統施設	残留熱除去設備	残留熱除去系	DΒ	_	クラス2管	S	$IV_L (L) + S d$		
								I L + S S $II L + S S$	IV A S
							I L+S d		
原子炉冷却	非常用炉心冷却	原子炉隔離時					II L + S d	III ∧ S	
系統施設	設備その他原子炉 注水設備	原子炉隔離時 冷却系	DΒ	_	クラス 2 管	S	$IV_L (L) + S d$		
	(土/八成7/開						I L+S s	IV A S	
							II L + S S		

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:運転状態の添字Lは荷重, (L)は荷重が長期間作用している状態を示す。 *3:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

*4:クラス1管においてのみ考慮する。

3.3 設計条件

鳥瞰図 FDW-PD-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
日留力	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1/14	重要度分類	(MPa)
1	13~30	8. 62	302	558.8	34. 9	SFVC2B	S	190360
2	4~6, 7~13	8. 62	302	558.8	34. 9	STS480	S	188720
3	17~31, 22~46	8. 62	302	318. 5	21. 4	SFVC2B	S	190360
J	27~56	0.02	302	310. 9	21.4	01 (020		190300
1	31~45N, 46~55N	8. 62	302	318. 5	21. 4	STS410	S	190360
4	56∼70N	0.02	302	518. 5	21.4	313410	2	190300

設計条件

鳥瞰図 FDW-PD-2

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数	
目留与	対応する計画点	(MPa)	(℃)	(mm)	(mm)	12) 127	重要度分類	(MPa)	
1	13~30	8. 62	302	558.8	34. 9	SFVC2B	S	190360	
2	4~6, 7~13	8. 62	302	558.8	34. 9	STS480	S	188720	
3	17~31, 22~45	8. 62	302	318.5	21. 4	SFVC2B	S	190360	
J	27~55	0.02	302	310. 5	21.4	31.4620	2	190300	
4	31~44N, 45~54N	8. 62	302	318.5	21. 4	STS410	S	190360	
4	55~68N	0.02	302	310. 0	41. 4	313410	S	190500	

設計条件

鳥瞰図 FDW-T-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百留方	刈心りる計画点	(MPa)	(℃)	(mm)	(mm)	1/1 /t ⁻ f	重要度分類	(MPa)
1	107~108, 162~163	8. 62	302	558.8	28.6	STS480	S	188720
2	108~1081, 163~1631	8. 62	302	558.8	34. 9	SFVAF11A	S	191360
3	1081~110, 1631~165	8.62	302	558.8	34. 9	STPA23	S	191360
4	109~178	8. 62	302	267. 4	18. 2	SFVAF11A	S	191000
5	178~186	8. 62	302	267. 4	18. 2	STS410	S	190000
6	187~189	8. 62	302	267. 4	18. 2	STS410	S	200600
7	194~198A	3. 43	182	318. 5	14. 3	STPT410	S	200600
8	180~198	8. 62	302	165. 2	14. 3	STS410	S	190000

設計条件

鳥瞰図 FDW-T-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数	
百分	刈心する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 frf	重要度分類	(MPa)	
9	198~219, 249~267	0 60	302	165. 2	1.4.9	CTDT 410	S	190000	
9	269~271, 281~284	8. 62	302	100. 2	14. 3	STPT410	3	190000	
10	267~269, 268~281	8. 62	302	165 . 2	14. 3	SFVAF11A	S	191000	
10	284~164	8.02		100.2	14. 5	SIMALITA	2	191000	
11	272~277S	8. 62	302	165. 2	14. 3	STPT410	S	200600	
12	277S~280A	8. 62	302	165. 2	14. 3	STPT410	S	201667	

配管の付加質量

鳥瞰図 FDW-PD-1

質量	対応する評価点
	$4\sim6, 7\sim8, 1201\sim1301, 1501\sim1801, 2001\sim2301$
	2501~30
	$8\sim1201, 1301\sim1501, 1801\sim2001, 2301\sim2501$
	$17\sim33,3601\sim3701,4101\sim4201,4401\sim45N,22\sim48$
	5101~5201, 5401~55N, 27~58, 6101~6201, 6601~6701
	6901~70N
	$33\sim3601, 3701\sim4101, 4201\sim4401, 48\sim5101, 5201\sim5401$
	$58\sim6101,6201\sim6601,6701\sim6901$

配管の付加質量

鳥瞰図 FDW-PD-2

	質量		対応する評価点					
			$4\sim6, 7\sim8, 1201\sim1301, 1501\sim1801, 2001\sim2301$					
			2501~30					
			8~1201, 1301~1501, 1801~2001, 2301~2501					
			$17\sim33,3601\sim3701,4001\sim4101,4301\sim44N,22\sim47$					
			$5001\sim5101, 5301\sim54N, 27\sim57, 6001\sim6101, 6401\sim6501$					
			6701~68N					
			$33\sim3601, 3701\sim4001, 4101\sim4301, 47\sim5001, 5101\sim5301$					
			$57\sim6001,6101\sim6401,6501\sim6701$					

配管の付加質量

鳥瞰図 FDW-T-1

質量		対応する評価点				
		1082~1083, 1632~1633				
		$107 \sim 1082, 1083 \sim 110, 162 \sim 1632, 1633 \sim 165$				
		109~181K, 1981~2001, 2002~2004, 2040~2042, 206~2071				
		$2072 \sim 212, 2121 \sim 2122, 2131 \sim 2181, 2491 \sim 2541, 2542 \sim 2591$				
		2601~2602, 2603~2621, 2622~267, 2811~2831				
		181K∼183K				
		183K∼185				
		185~186, 187~189				
		194~198A				
		$180 \sim 1981, 2841 \sim 164$				
		2001~2002, 2004~2040, 2042~206, 2071~2072, 212~2121				
		$2122\sim2131, 2181\sim219, 249\sim2491, 2541\sim2542, 2591\sim2601$				
		$2602 \sim 2603, 2621 \sim 2622, 267 \sim 2691, 2721 \sim 277, 2771 \sim 2791$				
		268~2811, 2831~2841				
		2691~271, 272~2721, 277~2771				
		2791~280A				

弁部の寸法

鳥瞰図 FDW-PD-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				6~7			

弁部の寸法

鳥瞰図 FDW-PD-2

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				6~7			

弁部の寸法

鳥瞰図 FDW-T-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
106~107				110~111			
161~162				165~166			
186~187				189~190			
190~191				191~1911			
1911~192				190~193			
219~220				248~249			
271~272							

弁部の質量

鳥瞰図 FDW-PD-1

質量	対応する評価点	質量	対応する評価点
	3~4		6~7

弁部の質量

質量	対応する評価点	質量	対応する評価点
	3~4		6~7

弁部の質量

質量	対応する評価点	質量	対応する評価点
	106~107, 161~162		110~111, 165~166
	186~187		189, 193
	190		191
	192		219~220, 248~249
	271~272		

支持点及び貫通部ばね定数

鳥瞰図 FDW-PD-1

	5 2 **	X	Y	Z	X	Y	Z
** 12	2 **						
** 19			1				
	9 **						
** 19	9 **						
20	0						
** 24	4 **						
** 25	5 **						

支持点及び貫通部ばね定数

鳥瞰図 FDW-PD-2

支持点番号		各軸	方向ばね定数((N/mm)	各軸回り回転ばね定数(N·mm/rad)		
又作	がは	X	Y	Z	X	Y	Z
	5						
**	12 **						
**	19 **						
**	19 **						
	20						
**	24 **						
**	25 **						

支持点及び貫通部ばね定数

鳥瞰図 FDW-T-1

支持点番号	各軸	方向ばね定数((N/mm)	各軸回り回	転ばね定数(N·mm/rad)
文 村总留方	X	Y	Z	X	Y	Z
1071						
1621						
188						
1911						
198A						
2041						
205						
213						
254						
260						
270						
275						
280A						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度		許容応	許容応力(MPa)		
171 174	(℃)	S m	Sу	S u	Sh	
STS480	302	138	209	423	_	
SFVC2B	302	125	_		_	
STS410	302	122	182	404	_	
SFVAF11A	302		218	427	_	
STPA23	302		163	400	_	
STPT410	182		209	404	_	
STPT410	302	_	182	404	_	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)	
FDW-PD-1	原子炉遮蔽壁			
FDW-PD-2	原子炉遮蔽壁			
FDW-T-1	タービン建屋			

دے

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 FDW-PD-1

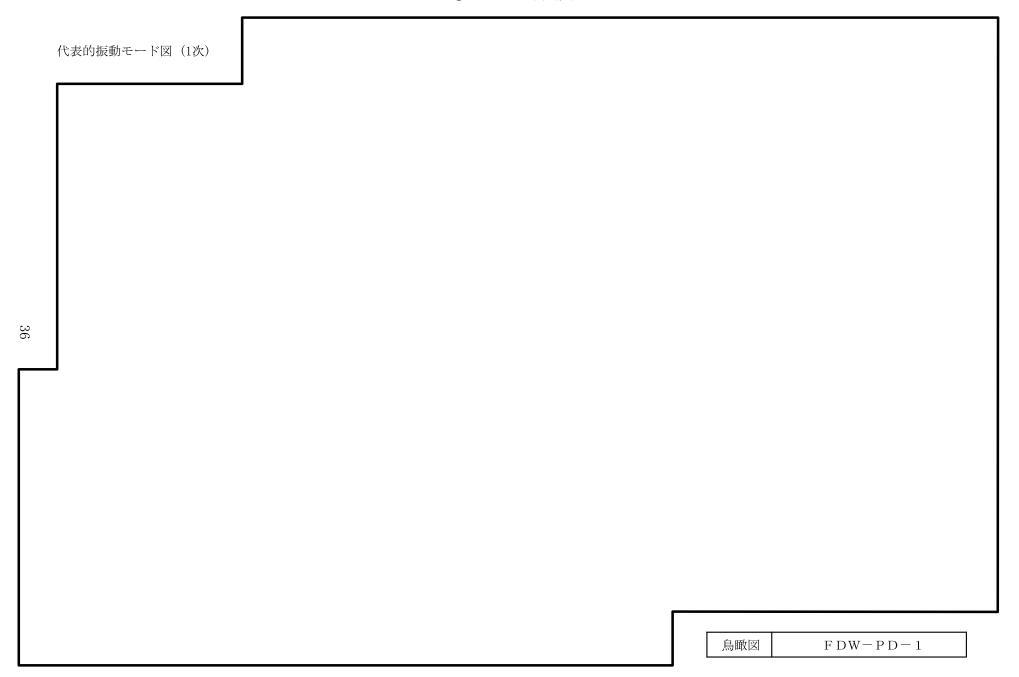
適用す	適用する地震動等			Sd及び静的震度		S s					
モード	固有周期		 固有周期			応答水	平震度*1	応答鉛直震度*1	応答水-	平震度*1	応答鉛直震度*1
	((s)		X方向	Z方向	Y方向	X方向	Z方向	Y方向		
1 次					•						
2 次				_							
3 次											
4 次											
5 次											
6 次											
7 次				7							
8 次											
9 次				7							
動的震度*2		7									
静白	勺震度**	3									

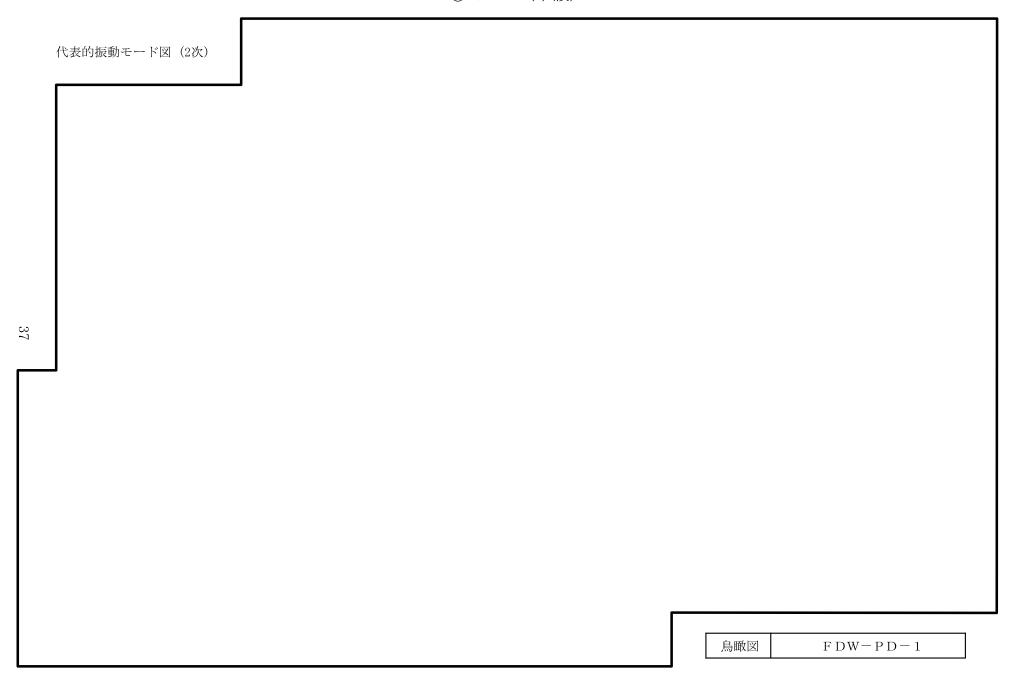
注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C vより定めた震度を示す。

各モードに対応する刺激係数


鳥瞰図 FDW-PD-1


モード	固有周期		刺激係数*	
r	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(3次)	
38	
	鳥瞰図 FDW-PD-1

K7 ① V-2-5-1(2)(設) R1

固有周期及び設計震度

鳥瞰図 FDW-PD-2

適用す	適用する地震動等			Sd及び静的震度			S s		
モード	固有周期	jj	応答水平	平震度*1	応答鉛直震度*1	応答水-	平震度*1	応答鉛直震度*1	
	(s)		X方向	Z方向	Y方向	X方向	Z方向	Y方向	
1 次									
2 次									
3 次									
4 次									
5 次									
6 次]						
7 次									
8 次									
9 次			1						
動的震度*2			1						
静白	勺震度*3								

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C1及び1.2Cvより定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 FDW-PD-2

モード	固有周期		刺激係数*	
	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

	代表的振動モード図(1次)	
42		
2		

	代表的振動モード図(2次)
43	

K7 ① V-2-5-1(2)(設) R1

固有周期及び設計震度

鳥瞰図 FDW-T-1

適用す	る地震重	功等		Sd及び静的震	度		Ss	
モード	固有。	周期	応答:	水平震度*1	応答鉛直震度*1	応答水	平震度*1	応答鉛直震度*1
	(s	·)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次					•			•
2 次								
3 次								
4 次								
5 次								
6 次								
7 次								
8 次								
51 次								
52 次								
動的	· 力震度 ^{*2}	<u> </u>						
静白	勺震度*3							

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C vより定めた震度を示す。

45

各モードに対応する刺激係数

鳥瞰図 FDW-T-1

モード	固有周期		刺激係数*	
+C	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
51 次				

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

1	代表的振動モード図(3次)			
		I		

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス1管

						一次応) (MP			一次+二次点 (MPa)		疲労評価
鳥瞰図	許容 応力	最大 応力	配管 要素	最大応力 区分	一次応力	許容応力		許容	一次+二次	許容	疲労累積
	状態	評価点	名称				応力	応力	応力	応力	係数
					Sprm (Sd)	2. 25 S m	St (Sd)	0. 55 S m			
					Sprm (Ss)	3 S m	St(Ss)	0. 73 S m	$S_n (S_s)$	3 S m	U+USs
FDW-PD-2	III A S	22	TEE	Sprm (Sd)	119	281		_	_		_
FDW-PD-2	III A S	33	ELBOW	St (Sd)		_	28	67	_	_	_
FDW-PD-2	IV A S	22	TEE	Sprm (Ss)	159	375	_	_	_	_	_
FDW-PD-2	IV A S	67	ELBOW	S t (S s)	_	_	50	89	_	_	_
FDW-PD-1	IV A S	17	TEE	Sn (Ss)	_	_	_	_	323	375	
FDW-PD-1	IV a S	22	TEE	U+USs	_				_		0. 1763

K7 ① V-2-5-1(2)(設) R1

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

				一次応力記	平価(MPa)	一次+二次応	疲労評価	
鳥瞰図	許容応力 最大応力 最大応力		計算応力	許容応力	計算応力	許容応力	疲労累積係数	
	状態 	評価点 区分	区分	Sprm (Sd)	Sy*			
			Sprm (Ss)	0.9S u	Sn (Ss)	2Ѕу	US s	
FDW-T-1	III a S	107	Sprm (Sd)	77	209	_	_	_
FDW-T-1	IV a S	107	Sprm (Ss)	86	380	_	<u>—</u>	_
FDW-T-1	IV a S	109	S n (S s)	_	<u>—</u>	249	326	_

注記*: オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2Shのうち大きい方の値とする。

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価	結果
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
SNM-FDW-P011-1	メカニカルスナッバ	SMS-25A-100	V-2-1-12「 持構造物のii	配管及び支	266	375
SH-FDW-P004	スプリングハンガ	VSL2D-22	ついて」参		106	170

支持構造物評価結果(応力評価)

			材質				支持,			Ę			
支持構造物 番号	種類	型式		温度 (℃)	反力 (kN)			モーメ	ント(kN·m)	応力	計算	許容 応力
H 🗸					F _X	F _Y	F _Z	M_{X}	M_{Y}	M_Z	分類	応力 (MPa)	がいり (MPa)
AN-RHR-R504	アンカ	ラグ	SGV410	182	41	54	103	71	29	88	曲げ	100	109
RE-FDW-P009	レストレイント	パイプバンド	STPT370 SS400	302	503	384	0	_	_	_	引張 圧縮	81	90

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評价(×9.	西用加速度 [*] 8m/s ²)	機能確認 (×9.	済加速度 8m/s ²)		評価結果 Pa)
			水平	鉛直	水平	鉛直	計算応力	許容応力
E11-F005A	止め弁	β (Ss)	3. 2	1.0	6.0	6.0	_	
B21-F051A	逆止め弁	α (Ss)	1.8	1.0	6.0	6.0	_	
B21-F052A	B21-F052A 逆止め弁		1.5	1. 1	6.0	6.0	_	_

注記*:機能維持評価用加速度は、打ち切り振動数を30Hzとして計算した結果を示す。

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (クラス1管)

			許容応	力状態	III A S			許容応力状態 IVAS											
			-	一次応力	ı		一次応力				一次十二次応力*					疲労評価			
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点		代表
1	FDW-PD-1	22	104	281	2.70	_	17	150	375	2.50	_	17	323	375	1.16	0	22	0. 1763	0
2	FDW-PD-2	22	119	281	2. 36	0	22	159	375	2.35	0	22	286	375	1.31		22	0.0978	

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

K7 ① V-2-5-1(2)(設) R1E

代表モデルの選定結果及び全モデルの評価結果 (クラス2以下の管)

			許容応	力状態	III A S						į	許容応	力状態	IV a S					
			=	一次応力			一次応力						一次	+二次応	5力*		疲労評価		
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	FDW-T-1	107	77	209	2.71	0	107	86	380	4. 41	0	109	249	326	1.30	0	_		

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

重大事故等対処設備

目 次

1.	概	要	• • •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系統	統図及び月	鳥瞰図	X]		•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
	2. 1	概略	F 系統図			•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•			•	•	2
	2.2	鳥瞰	区区			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
3.	計	·算条	件 •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	3. 1	計算	五方法	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
	3.2	荷重	直の組合せ	及び	許多	字応	ラナ	刀状	尺息	202			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
	3.3	設計	十条件	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
	3.4	材料	及び許容	応力			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	32
	3.5	設計	用地震力	J	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
4.	解	析結	果及び評値	洒	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
	4. 1	固有	「周期及び	設計	震馬	吏			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
	4.2	評価	 話果	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
	4. 2	2. 1	管の応力	評価	結身	艮			•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	52
	4. 2	2. 2	支持構造	物評	価糸	吉果	=			•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	54
	4. 2	2. 3	弁の動的	機能	維持	寺評	平征	五糸	吉昇	Ę			•	•	•				•	•	•	•	•	•	•	•	•		•			•	•	55
	4. 2	2. 4	代表モデ	シルの	選行	官紀	非	見及	とて	が全	는 구	<u>-</u> 5	デノ	レク	O言	平伯	田糸	吉月	Ę				•											56

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

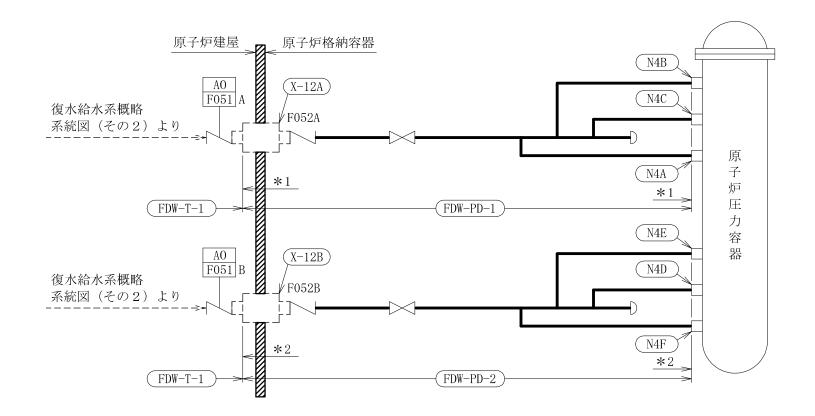
(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全3モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

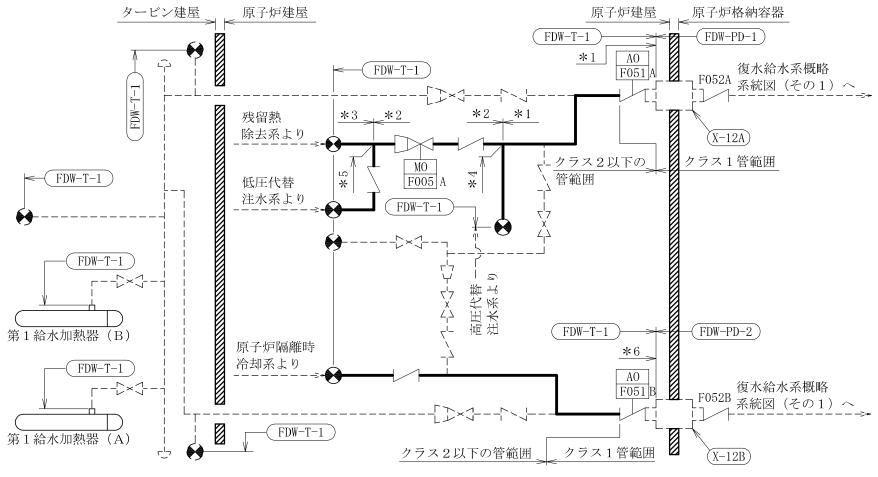
(3) 弁


機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例


記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

注記*1:残留熱除去系,高圧代替注水系,低圧代替注水系及び

代替循環冷却系 解析モデル上本系統に含める。

*2:原子炉隔離時冷却系 解析モデル上本系統に含める。

注記*1:残留熱除去系,高圧代替注水系,低圧代替注水系及び 代替循環冷却系 解析モデル上本系統に含める。

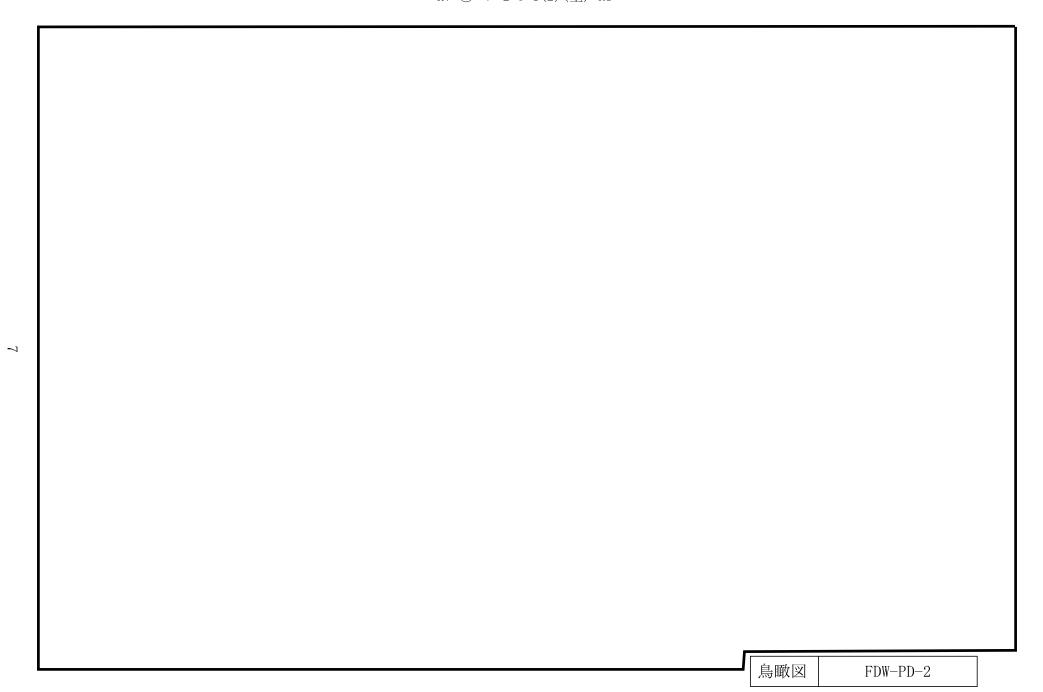
*2: 残留熱除去系, 低圧代替注水系及び代替循環冷却系 解析モデル上本系統に含める。

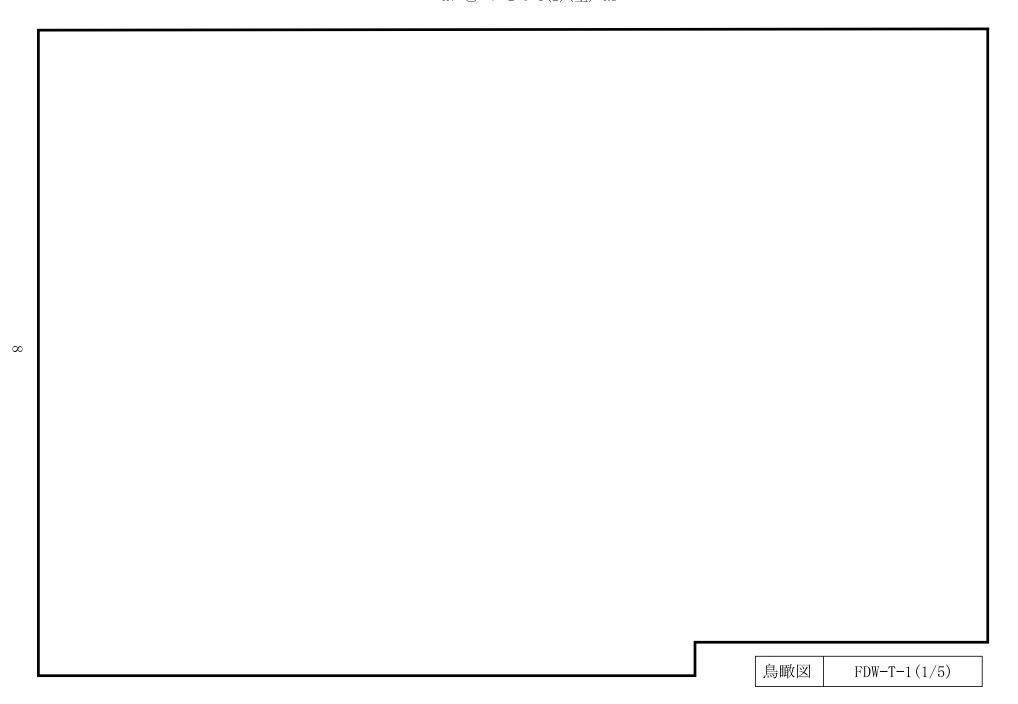
*3:残留熱除去系 解析モデル上本系統に含める。

*4: 高圧代替注水系 解析モデル上本系統に含める。

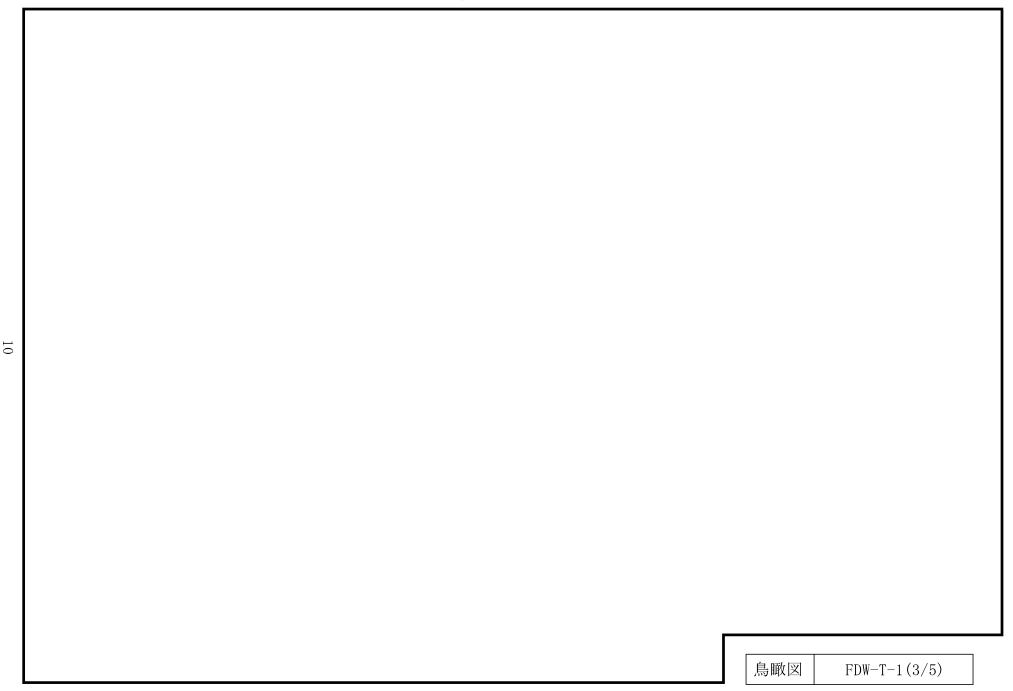
*5: 低圧代替注水系及び代替循環冷却系 解析モデル上

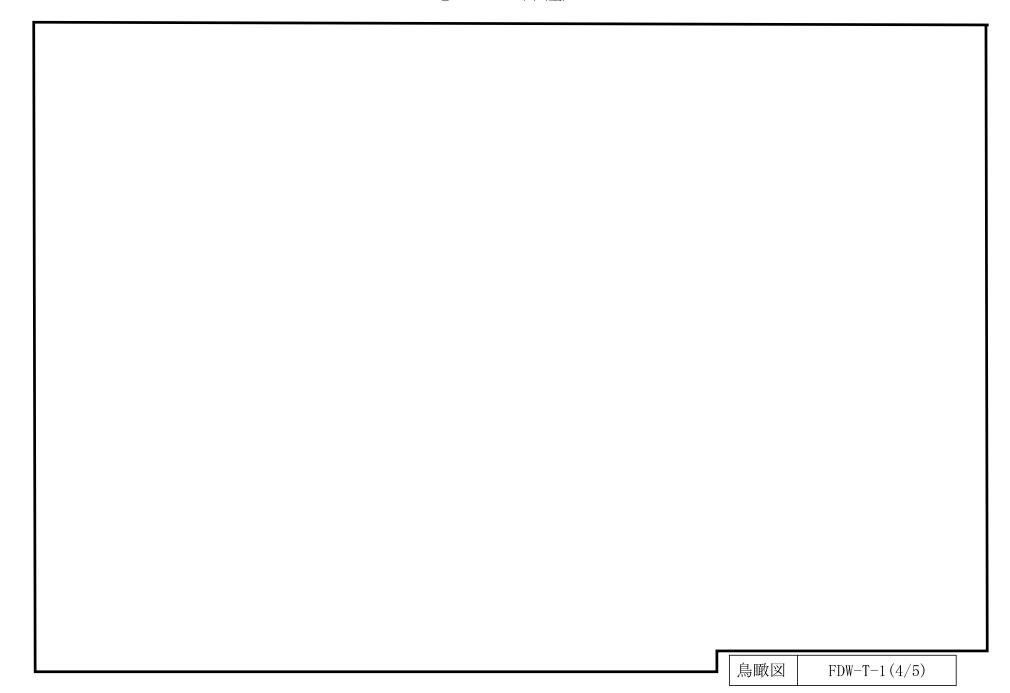
本系統に含める。


*6:原子炉隔離時冷却系 解析モデル上本系統に含める。


2.2 鳥瞰図

鳥瞰図記号凡例


記号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
———— (破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
€	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃ -√√-	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。


o			
	鳥瞰図	FDW-PD-1]

12

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類* ¹	設備 分類 ^{*2}	機器等 の区分	耐震 重要度分類	荷重の組合せ*3,4	許容応力 状態 ^{*5}
原子炉冷却 系統施設	残留熱除去設備	残留熱除去系	S A	常設/防止 (DB拡張)	重大事故等 クラス2管	_	$ \begin{array}{c} V_L (L) + S_d \\ \hline V_L (LL) + S_S \\ \hline V_L + S_S \end{array} $	V a S
原子炉冷却 系統施設	非常用炉心冷却 設備その他原子炉 注水設備	原子炉隔離時 冷却系	S A	常設/防止 (DB拡張)	重大事故等 クラス2管	_	$ \begin{array}{c} V_L (L) + S_d \\ \hline V_L (LL) + S_S \\ \hline V_L + S_S \end{array} $	VAS
原子炉冷却 系統施設	非常用炉心冷却 設備その他原子炉 注水設備	高圧代替注水系	S A	常設耐震/防止	重大事故等 クラス2管	_	$ \begin{array}{c} V_L \ (L) \ + S \ d \\ \hline V_L \ (L \ L) \ + S \ s \\ \hline V_L + S \ s \\ \end{array} $	V a S
原子炉格納施設	圧力低減設備 その他の安全設備	高圧代替注水系	S A	常設/緩和	重大事故等 クラス2管	_	$ \begin{array}{c} V_L (L) + S_d \\ \hline V_L (LL) + S_S \\ \hline V_L + S_S \end{array} $	V a S
原子炉冷却 系統施設	非常用炉心冷却 設備その他原子炉 注水設備	低圧代替注水系	S A	常設耐震/防止常設/緩和	重大事故等 クラス2管	_	$\begin{array}{c} V_L (L) + S_d \\ \hline V_L (LL) + S_S \\ \hline V_L + S_S \end{array}$	V a S
原子炉格納施設	圧力低減設備 その他の安全設備	低圧代替注水系	S A	常設/緩和	重大事故等 クラス2管	_	$ \begin{array}{c} V_L \ (L) \ + S d \\ \hline V_L \ (L L) \ + S s \\ \hline V_L + S s \\ \end{array} $	V A S

施設名称	設備名称	系統名称	施設 分類 ^{*1}	設備 分類 ^{*2}	機器等 の区分	耐震 重要度分類	荷重の組合せ* ^{3,4}	許容応力 状態 ^{*5}
原子炉格納施設	圧力低減設備 その他の安全設備	代替循環冷却系	S A	常設/緩和	重大事故等 クラス2管		$\begin{array}{c} V_L (L) + S d \\ V_L (LL) + S s \\ \hline V_L + S s \end{array}$	V a S
原子炉冷却 系統施設	非常用炉心冷却 設備その他原子炉 注水設備	低圧注水系	S A	常設/防止 (DB拡張)	重大事故等 クラス2管	_	$\begin{array}{c} V_L (L) + S d \\ \hline V_L (LL) + S s \\ \hline V_L + S s \end{array}$	V a S

K7 ① V-2-5-1(2)(重) R1

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張), 「常設/緩和」は常設重大事故緩和設備を示す。

*3:運転状態の添字Lは荷重, (L)は荷重が長期間作用している状態, (LL)は(L)より更に長期間荷重が作用している状態を示す。

*4: 許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

*5:許容応力状態VASは許容応力状態NASの許容限界を使用し、許容応力状態NASとして評価を実施する。

15

3.3 設計条件

鳥瞰図 FDW-PD-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
官留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 /t-f	重要度分類	(MPa)
1	13~30	8. 62	302	558.8	34. 9	SFVC2B		190360
2	4~6, 7~13	8. 62	302	558.8	34. 9	STS480		188720
3	17~31, 22~46	8. 62	302	318. 5	21. 4	SFVC2B		190360
J	27~56	0.02	302	316. 5	21.4	31.4620		190300
4	31~45N, 46~55N	8. 62	302	318. 5	21. 4	STS410		190360
4	56~70N	0.02	302	310. 0	<i>4</i> 1. 4	313410	_	190500

設計条件

鳥瞰図 FDW-PD-2

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 A-Y	重要度分類	(MPa)
1	13~30	8.62	302	558.8	34. 9	SFVC2B		190360
2	4 ∼ 6, 7 ∼ 13	8. 62	302	558.8	34. 9	STS480	_	188720
3	17~31, 22~45	8. 62	302	318. 5	21. 4	SFVC2B		190360
3	27~55	0.02	302	310. 9	21.4	31. (CZD		190300
4	31~44N, 45~54N	8. 62	302	318. 5	21. 4	STS410		190360
4	55~68N	0.02	302	310. 0	41. 4	313410		190300

設計条件

鳥瞰図 FDW-T-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数	
官留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 A-Y	重要度分類	(MPa)	
1	$109\sim110, 164\sim165$	8.62	302	558.8	34. 9	STPA23		191360	
2	109~178	8. 62	302	267. 4	18. 2	SFVAF11A		191000	
3	178~186	8. 62	302	267. 4	18. 2	STS410	_	190000	
4	187~189	8. 62	302	267. 4	18. 2	STS410		200600	
5	194~198A	3. 43	182	318. 5	14. 3	STPT410	_	200600	
6	268~269, 268~281	9 69	302	165. 2	1.4.9	SFVAF11A		191000	
	284~164	8. 62	302	100. 2	14. 3	STVAFIIA		191000	
7	269~271, 281~284	8. 62	302	165. 2	14. 3	STPT410		190000	

設計条件

鳥瞰図 FDW-T-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
官留方	対応する計画点	(MPa)	(℃)	(mm)	(mm)	1/1 f-f	重要度分類	(MPa)
7	350∼365A	8.62	302	165. 2	14. 3	STPT410		190000
8	272~277S	8. 62	302	165. 2	14. 3	STPT410		200600
9	277S~280A	8. 62	302	165. 2	14. 3	STPT410		201667
10	195~1951	3. 43	182	114. 3	6. 0	SFVC2B		200600
11	1951~287, 288~297A	3. 43	182	114. 3	6. 0	STPT410		200600
12	182~350	8. 62	302	165. 2	14. 3	SFVC2B	_	190000

配管の付加質量

質量	対応する評価点
	$4\sim6, 7\sim8, 1201\sim1301, 1501\sim1801, 2001\sim2301$
	2501~30
	$8\sim1201, 1301\sim1501, 1801\sim2001, 2301\sim2501$
	$17\sim33,3601\sim3701,4101\sim4201,4401\sim45N,22\sim48$
	$5101\sim5201$, $5401\sim55$ N, $27\sim58$, $6101\sim6201$, $6601\sim6701$
	6901~70N
	$33\sim3601, 3701\sim4101, 4201\sim4401, 48\sim5101, 5201\sim5401$
	58~6101, 6201~6601, 6701~6901

配管の付加質量

質量	対応する評価点
	$4\sim6, 7\sim8, 1201\sim1301, 1501\sim1801, 2001\sim2301$
	2501~30
	8~1201, 1301~1501, 1801~2001, 2301~2501
	$17\sim33,3601\sim3701,4001\sim4101,4301\sim44N,22\sim47$
	$5001\sim5101, 5301\sim54$ N, $27\sim57, 6001\sim6101, 6401\sim6501$
	6701~68N
	$33\sim3601, 3701\sim4001, 4101\sim4301, 47\sim5001, 5101\sim5301$
	$57\sim6001,6101\sim6401,6501\sim6701$

配管の付加質量

鳥瞰図 FDW-T-1

質量	対応する評価点
	109~110, 164~165
	109∼181K
	181K∼183K
	183K∼185
	185∼186, 187∼189, 290∼297A
	194~198A
	2841~164
	268~2691, 2721~277, 2771~2791
	268~2811, 2831~2841
	2691~271, 272~2721, 277~2771
	2791~280A
	195~287, 288~290
	182∼350K, 351K∼355K, 356K∼358K, 362K∼364K
	350K~351K, 355K~356K, 358K~359K, 361S~362K, 364K~365A
	359K~361S

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				6~7			

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
3~4				6~7			

弁部の寸法

鳥瞰図 FDW-T-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
110~111				165~166			
186~187				189~190]		
190~191				191~1911]		
1911~192				190~193]		
271~272				287~288			

弁部の質量

質量	対応する評価点	質量	対応する評価点
	3~4		6~7

弁部の質量

質量	対応する評価点	質量	対応する評価点
	3~4		6~7

弁部の質量

鳥瞰図 FDW-T-1

質量	対応する評価点	質量	対応する評価点
	110~111, 165~166		186~187
	189, 193		190
	191		192
	271~272		287~288

支持点及び貫通部ばね定数

鳥瞰図 FDW-PD-1

支持点番号	各軸	方向ばね定数(各軸方向ばね定数(N/mm)			V·mm/rad)
文付点留方	X	Y	Z	X	Y	Z
5						
** 12 **						
** 19 **						
** 19 **						
20						
** 24 **						
** 25 **						

支持点及び貫通部ばね定数

鳥瞰図 FDW-PD-2

支持点番号	各軸	各軸方向ばね定数(N/mm)			各軸回り回転ばね定数(N·mm/rad)		
文 付 点 留 ケ	X	Y	Z	X	Y	Z	
5							
** 12 **							
** 19 **							
** 19 **							
20							
** 24 **							
** 25 **							

支持点及び貫通部ばね定数

鳥瞰図 FDW-T-1

支持点番号	各軸	各軸方向ばね定数(N/mm)			各軸回り回転ばね定数(N·mm/rad)		
义村总留方	X	Y	Z	X	Y	Z	
188							
1911							
198A							
2041							
270							
275							
280A							
293							
297A							
356							
365A							

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度		許容応力(MPa)				
17) 177	(℃)	Sm	Sу	S u	S h		
STS480	302	138			_		
SFVC2B	302	125	187	438	_		
STS410	302	122	182	404	_		
SFVAF11A	302		218	427	_		
STPA23	302		163	400	_		
STPT410	182		209	404	_		
STPT410	302		182	404			
SFVC2B	182	_	215	438	_		

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
FDW-PD-1	原子炉遮蔽壁		
FDW-PD-2	原子炉遮蔽壁		
FDW-T-1	タービン建屋		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 FDW-PD-1

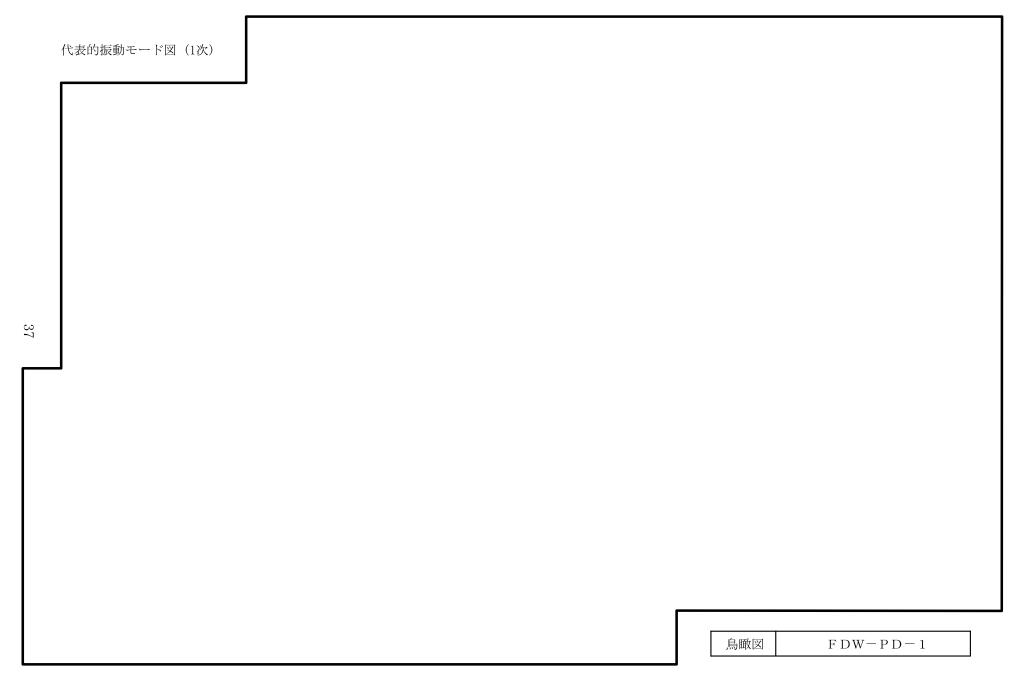
適用す	適用する地震動等		S s				
モード	固有周期		応答水平	平震度*1	応答鉛直震度*1		
	(s)		X方向	Z方向	Y方向		
1 次				•			
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
9 次							
動自	内震度*2						

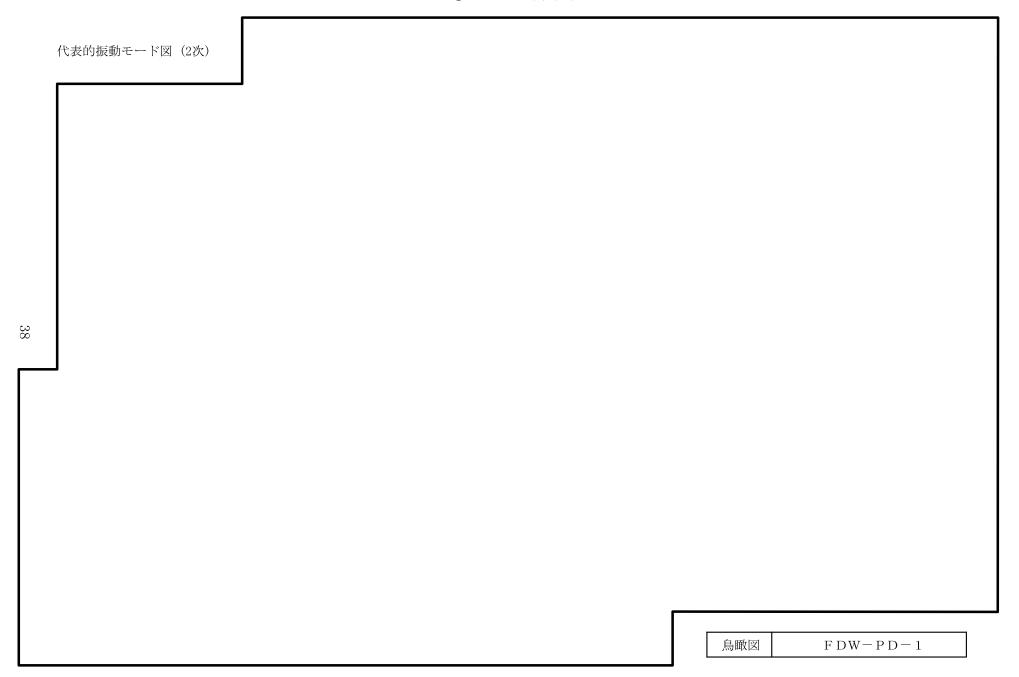
注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

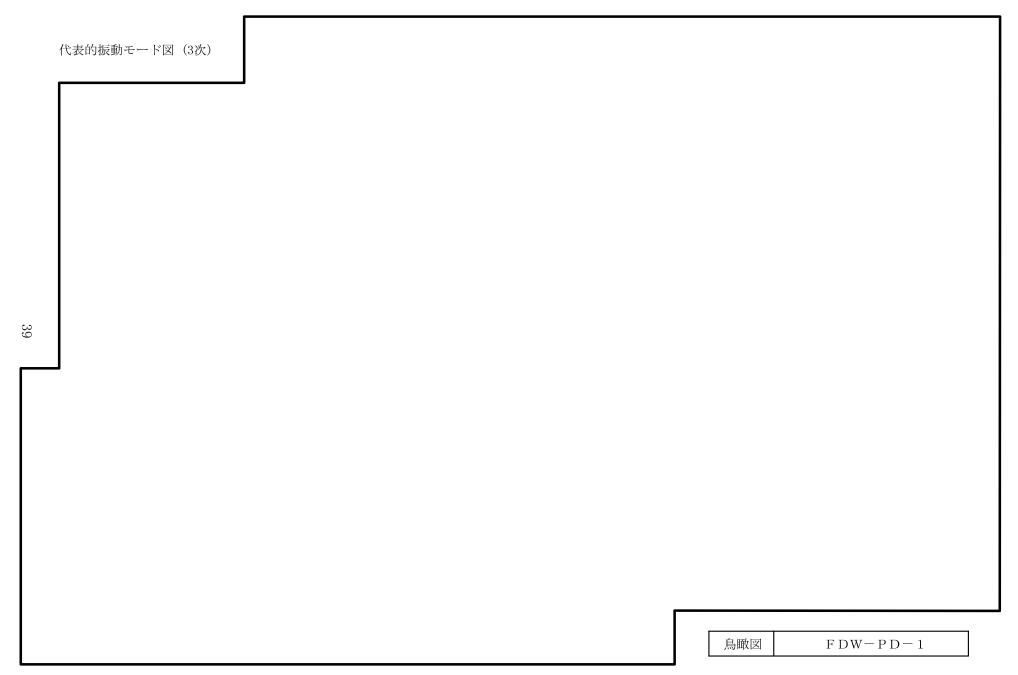
*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

بن

各モードに対応する刺激係数


鳥瞰図 FDW-PD-1


モード	固有周期		刺激係数*	
	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				


注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

固有周期及び設計震度

鳥瞰図 FDW-PD-2

適用する地震動等			S s				
モード		固有周期			応答水-	平震度*1	応答鉛直震度*1
·		(s)			X方向	Z方向	Y方向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
9 次							
動的	—— 内ટ						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 FDW-PD-2

モード	固有周期		刺激係数*					
	(s)	X方向	Y方向	Z方向				
1 次								
2 次								
3 次								
4 次								
5 次								
6 次								
7 次								
8 次								

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

	代表的振動モード図(1次)	
43		

鳥瞰図 FDW-PD-2

鳥瞰図 FDW-PD-2

代表的	的振動モード図(3次)			
i				

鳥瞰図 FDW-PD-2

固有周期及び設計震度

鳥瞰図 FDW-T-1

適用する地震動等		S s				
モード	固有周期	応答水	平震度*1	応答鉛直震度*1		
	(s)	X方向	Z方向	Y方向		
1 次						
2 次						
3 次						
4 次						
5 次						
6 次						
7 次						
8 次						
51 次						
52 次						
動自	内震度*2					

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd又はSs地震動に基づく設計用最大応答加速度より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 FDW-T-1

モード	固有周期		刺激係数*						
	(s)	X方向	Y方向	Z方向					
1 次									
2 次									
3 次									
4 次									
5 次									
6 次									
7 次									
8 次									
51 次									

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次)

鳥瞰図 FDW-T-1

	代表的振動モード図(2次)		
50			

鳥瞰図 FDW-T-1

	代表的振動モード図(3次)
1	

鳥瞰図 FDW-T-1

K7 ① V-2-5-1(2)(重) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス1管

				一次応力評価 (MPa)					一次+二次点 (MPa)	疲労評価	
鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	最大応力 区分	一次応力	許容応力	ねじり 応力	許容	一次+二次 応力	許容	疲労累積 係数
					Sprm (Ss)	3 S m	S t (S s)	0.73 S m	Sn (Ss)	3 S m	U+USs
FDW-PD-2	VAS	22	TEE	Sprm (Ss)	159	375	_	_			_
FDW-PD-2	VAS	67	ELBOW	S t (S s)	_	_	50	89	_	_	_
FDW-PD-1	VAS	17	TEE	S n (S s)		_	—	_	323	375	
FDW-PD-1	VaS	22	TEE	U+US s		_			_	_	0. 1763

K7 ① V-2-5-1(2)(重) R1

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

				一次応力	評価(MPa)	一次+二次応力評価(MPa)		疲労評価
鳥瞰図	許容応力 状態	最大応力 評価点	最大応力 区分	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	, (,)			Sprm (Ss)	0.9S u	Sn (Ss)	2 Ѕу	US s
FDW-T-1	V a S	182	Sprm (Ss)	73	363	_	_	_
FDW-T-1	VAS	109	S n (S s)		<u> </u>	249	326	_

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果 (荷重評価)

					評価結果	
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
SNM-FDW-P011-1	メカニカルスナッバ	SMS-25A-100	V-2-1-12「 持構造物のご	配管及び支	266	375
SH-FDW-P004	スプリングハンガ	VSL2D-22	ついて」参		106	170

支持構造物評価結果(応力評価)

							支持,	点荷重				評価結果	=
支持構造物 番号	種類	型式	材質	温度 (℃)	反力 (kN)			モーメ	マント (kN·m)	応力	計算	許容 応力
					F _X	F _Y	F _Z	M_{X}	M_{Y}	M_Z	分類	応力 (MPa)	がいり (MPa)
AN-RHR-R504	アンカ	ラグ	SGV410	182	41	54	103	71	29	88	曲げ	100	109
RE-FDW-P009	レストレイント	パイプバンド	STPT370 SS400	302	503	384	0	_	_	_	引張 圧縮	81	90

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評 (×9.8	価用加速度 8m/s ²)		済加速度 8m/s ²)		評価結果 Pa)	
			水平	鉛直	水平	鉛直	計算応力	許容応力	
_							_	_	

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス1管)

			許容応力状態 VaS													
		一次応力						一次	:十二次/		疲労評価					
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表		
1	FDW-PD-1	17	150	375	2.50	_	17	323	375	1.16	0	22	0. 1763	0		
2	FDW-PD-2	22 159 375 2.35 O 22 286 375 1.31 —							_	22	0.0978					

K7 ① V-2-5-1(2)(重) R1E

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

						Î	許容応	力状態	VAS						
		一次応力						一次	十二次厂	芯力		疲労評価			
No.	配管モデル	評価点	計算 応力 (MPa)	応力 応力 裕度 ¹ 、 価			計算 応力 (MPa)	許容 応力 (MPa)	応力 裕度 八 素			疲労 累積 係数	代表		
1	FDW-T-1	182 73 363 4.97 ○ 1					109	249	326	1.30	0				

(3) 管の耐震性についての計算書(原子炉冷却材 浄化設備 原子炉冷却材浄化系)

設計基準対象施設

目 次

1.	概	要	• • •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	概	略系統	統図及び	鳥瞰	図		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	2
	2. 1	概略	系統図			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	• •	•	•	•	•	•	•	•	•	•	•	2
	2.2	鳥瞰	図			•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
3.	計	算条位	牛 •			•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	3. 1	計算	方法	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6
	3.2	荷重	で組合せ	せ及て	が許さ	容师	むス	力壮	犬食	坑			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
	3.3	設計	条件	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	8
	3.4	材彩	及び許額	家応力	J		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	11
	3.5	設計	用地震力	ל	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
4.	解	析結	果及び評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	13
	4. 1	固有	「周期及で	が設計	震	叓			•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		13
	4.2	評価	話果	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
	4. 2	. 1	管の応力	り評 征	話結	果			•	•	•	•	•	•	•	•	•	•		•	•	• •	•	•	•	•	•	•	•	•	•	•	19
	4. 2	. 2	支持構造	造物 評	平価額	洁乡	果			•	•	•	•	•	•	•	•	•		•	•	• •	•	•	•	•	•	•	•	•	•	•	21
	4. 2	. 3	弁の動的	勺機能	2維	寺言	平有	田糸	吉見	艮			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	22
	4. 2	. 4	代表モラ	デルの)選	定約	吉見	艮及	支て	バヨ	F٦	ヒラ	デノ	V0	含く	平伯	五糸	丰丰	1						•		•	•	•	•			23

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

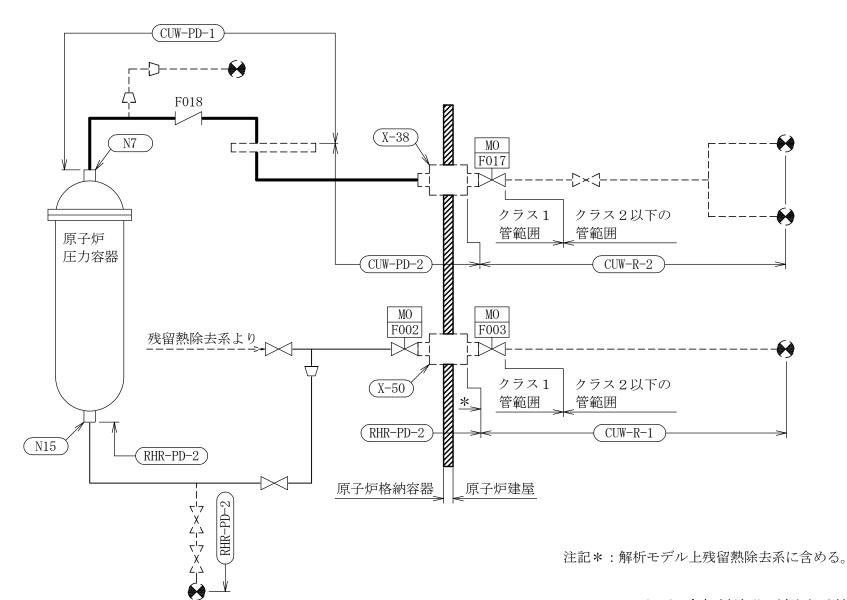
(1) 管

工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全2モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁


機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
$oldsymbol{\Theta}$	アンカ

原子炉冷却材浄化系概略系統図

2.2 鳥瞰図

鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃ -√√-	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。

5 鳥瞰図 CUW-PD-2

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

K7 ① V-2-5-1(3)(設) R1

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類* ¹	設備 分類	機器等 の区分	耐震 重要度分類	荷重の組合せ*2,3	許容応力 状態
							I L + S d	III A S
原子炉冷却	 原子炉冷却材	 原子炉冷却材					II L + S d	
系統施設		净化系	DΒ		クラス1管	S	I L+S s	
	,, , =	., ,=.,					II L + S s	IV a S
							$IV_L (L) + S d$	

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:運転状態の添字Lは荷重, (L)は荷重が長期間作用している状態を示す。

*3:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

鳥瞰図 CUW-PD-2

答来早	管番号 対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百亩万	刈心する計画点	(MPa)	(℃)	(mm)	(mm)		重要度分類	(MPa)
1	4∼34A	8. 62	302	165. 2	14. 3	STS410	S	200400

配管の付加質量

鳥瞰図 CUW-PD-2

質量	対応する評価点
	$4\sim5,8001\sim9001,1301\sim15,1701\sim1801,2101\sim2201$ $27\sim31$
	5~8001, 9001~1301, 15~1701, 1801~2101, 2201~27
	31~34A

支持点及び貫通部ばね定数

鳥瞰図 CUW-PD-2

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)						
文付点留 ケ	X	Y	Z	X	Y	Z				
6										
** 6 **										
18										
25										
34A										

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力(MPa)									
17) 177	(°C)	Sm	Sу	S u	S h						
STS410	302	122	_	_	_						

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
CUW-PD-2	原子炉遮蔽壁		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 CUW-PD-2

適用する地震動等			Sd及び静的震度		S s			
モード	固有周期 (s)		応答水平震度*1		応答鉛直震度*1	応答水平震度*1 応答鉛		応答鉛直震度*1
			X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次								
2 次								
3 次								
4 次								
5 次								
6 次								
7 次								
8 次								
動的震度*2								
静的震度*3								

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C1及び1.2Cvより定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 CUW-PD-2

モード	固有周期 (s)		刺激係数*				
			X方向	Y方向	Z方向		
1 次							
2 次							
3 次							
4 次							
5 次							
6 次				_			
7 次							

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次) 鳥瞰図 CUW-PD-2

,	代表的振動モード図(2次)					
17						
			_			
				鳥瞰図	CUW-PD-	2

代表的振動モード図(3次) 鳥瞰図 CUW-PD-2

K7 ① V-2-5-1(3)(設) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス1管

						一次応) (MP			一次+二次点 (MPa)		疲労評価
鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	 最大応力 区分	一次応力	許容応力	ねじり* 応力	許容応力	一次+二次 応力	許容	疲労累積 係数
					Sprm (Sd)	2. 25 S m		0. 55 S m	//L1/J	μ _α ν ₂ σ	JN 35
					Sprm (Ss)	3 S m	S t (S s)	0.73 S m	S n (S s)	3 S m	U+USs
CUW-PD-2	III a S	20	ELBOW	Sprm (Sd)	150	274	<u>—</u>	_	_		_
CUW-PD-2	III A S	21	ELBOW	St (Sd)	_	_	84	67	_	_	_
CUW-PD-2	IV a S	20	ELBOW	Sprm (Ss)	243	366	<u>—</u>	_	_	_	_
CUW-PD-2	IV a S	21	ELBOW	S t (S s)	_	_	146	89	_	_	_
CUW-PD-2	IV a S	20	ELBOW	Sn (Ss)	_	_		_	623	366	0. 3097
CUW-PD-2	IV a S	20	ELBOW	U+USs					_	<u>—</u>	0. 3097

注記*: ねじり応力が許容応力状態IIIASのとき0.55Sm, 又は許容応力状態IVASのとき0.73Smを超える場合は、曲げ+ねじり応力評価を実施する。

K7 ① V-2-5-1(3)(設) R1

下表に示すとおりねじりによる応力が許容応力状態ⅢASのとき0.55Sm, 又は許容応力状態ⅣASのとき0.73Smを超える評価点のうち曲げとねじりによる応力は許容値を満足している。

			一次几	芯力評価	
			()	MPa)	
鳥瞰図	評価点	ねじり応力	許容応力	曲げとねじり応力	許容応力
		St(Sd)	0.55 S m	S t + S b (S d)	1.8S m
		S t (S s)	0.73 S m	S t + S b (S S)	2.4 S m
CUW-PD-2	21	84	67	108	219
CUW-PD-2	21	146	89	191	292

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果 (荷重評価)

					評価	i結果	
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)	
SNM-CUW-P002	メカニカルスナッバ		V-2-1-12「 持構造物のご		12	45	
CH-CUW-P003	コンスタントハンガ				3. 3	2×1.7	

支持構造物評価結果(応力評価)

							支持,	点荷重			;	評価結果	1
支持構造物 番号	種類	型式	材質	温度 (℃)	反力 (kN)		モーメント (kN·m)			応力	計算 応力	許容 応力	
					F _X	F _Y	F _Z	M_X	$M_{ m Y}$	M_Z	分類	ルレファ (MPa)	MPa)
RE-CUW-P004	レストレイント	パイプバンド	STK400 SM400B	302	0	19	21				引張圧縮	38	79

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評((×9.3	西用加速度 [*] 8m/s ²)	機能確認 (×9.3	済加速度 8m/s ²)	構造強度評価結果 (MPa)		
			水平	鉛直	水平	鉛直	計算応力	許容応力	
G31-F003	止め弁	α (Ss)	2.0	1. 1	6.0	6.0			

注記*:機能維持評価用加速度は、打ち切り振動数を30Hzとして計算した結果を示す。

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果 (クラス1管)

			許容応	力状態	III a S						Ī	許容応	力状態	IV a S					
		一次応力				一次応力				一次+二次応力*				疲労評価					
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	CUW-PD-1	53	86	274	3. 18	_	53	112	366	3. 26		53	417	366	0.87	_	48	0.0359	_
2	CUW-PD-2	20	150	274	1.82		20	243	366	1.50	0	20	623	366	0.58		20	0.3097	0

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

代表モデルの選定結果及び全モデルの評価結果 (クラス2以下の管)

		許容応力状態 ⅢAS						許容応力状態 IVAS											
		一次応力				一次応力				一次十二次応力*				疲労評価					
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	CUW-R-1	16	89	182	2.04		16	121	363	3.00		16	135	364	2.69	_			
2	CUW-R-2	22	71	182	2. 56		22	91	363	3. 98		34	103	364	3. 53		_		

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

V-2-5-2 原子炉冷却材の循環設備の耐震性についての計算書

V-2-5-2-1 主蒸気系の耐震性についての計算書

V-2-5-2-1-1 アキュムレータの耐震性についての計算書

目 次

1.	櫻	要		1
2.	_	般事	事項	1
2.	. 1	構造	告計画	1
2.	. 2	評価	五方針	3
2.	. 3	適用	月規格・基準等	4
2.	. 4	記号	テの説明	5
2.	. 5	計算	賃精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ç
3.	죔	左 価剖	『位	10
4.	固	有周	引期	11
4.	. 1	固有	f周期の計算方法 · · · · · · · · · · · · · · · · · · ·	11
4.	. 2	固有	f周期の計算条件 ·····	12
4.	. 3	固有	f周期の計算結果 ·····	12
5.	椲	造強	角度評価	13
5.	. 1	構造	造強度評価方法 ·····	13
5.	. 2	荷重	重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	5. 2	2. 1	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
	5. 2	2. 2	許容応力	13
	5. 2	2. 3	使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
5.	. 3	設計	†用地震力 ·····	19
5.	. 4	計算	章方法 ·····	20
	5. 4	1. 1	応力の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
5.	. 5	計算	草条件	27
5.	. 6	応力	つの評価	27
	5.6	5. 1	胴の応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	5.6	5. 2	脚の応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
6.	幇	価組	告果	28
6.	. 1	設計	 基準対象施設としての評価結果	28
	6. 1	l. 1	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
	6. 1			28
6.	. 2	重大	て事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
	6. 2	2. 1	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
	6. 2	2.2	主蒸気逃がし安全弁自動減圧機能用アキュムレータ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
7	己	田中	r 献· ··································	41

1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、アキュムレータが設計用地震力に対して十分な構造強度を有していることを説明するものである。

アキュムレータは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

対象機器は下記の二種あるが、共通の項目については単にアキュムレータと呼ぶ。

- ・主蒸気逃がし安全弁逃がし弁機能用アキュムレータ
- ・主蒸気逃がし安全弁自動減圧機能用アキュムレータ

2. 一般事項

2.1 構造計画

アキュムレータの構造計画を表2-1に示す。

表 2-1 構造計画

		表 2-1 構造計画	
計画の	概要	概略構造図	
基礎・支持構造	主体構造		
アキュムレータは、胴を 1個の脚で支持し、脚を 溶接で架台に据え付け る。	横置円筒形 (両端に平板を有する 横置円筒形容器)	【主蒸気逃がし安全弁逃がし弁機能用アキュムレータ】	
		【主蒸気逃がし安全弁自動減圧機能用アキュムレータ】	
		(.	単位:mm)

2.2 評価方針

アキュムレータの応力評価は、V-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示すアキュムレータの部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6. 評価結果」に示す。

アキュムレータの耐震評価フローを図2-1に示す。

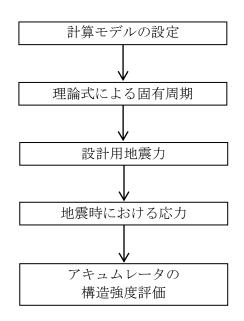


図 2-1 アキュムレータの耐震評価フロー

2.3 適用規格・基準等

本評価において適用する適用規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG 4 6 0 1・補-1984 ((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格 ((社)日本機械学会,2005/2007) (以下「設計・建設規格」という。)

2.4 記号の説明

記号	記号の説明	単位
A s	脚の断面積	mm^2
A s 1	脚の長手方向に対する有効せん断断面積	mm^2
A s 2	脚の鉛直方向に対する有効せん断断面積	mm^2
A s 3	脚の長手方向に対するせん断断面積	mm^2
A s 4	脚の鉛直方向に対するせん断断面積	mm^2
Ссј	周方向モーメントによる応力の補正係数(引用文献(2)より得	_
	られる値)(j=1:周方向応力, j=2:軸方向応力)	
Сн	水平方向設計震度	_
$C\ell\mathrm{j}$	軸方向モーメントによる応力の補正係数(引用文献(2)より得	_
	られる値)(j=1:周方向応力, j=2:軸方向応力)	
Сv	鉛直方向設計震度	_
C_1	脚の鉛直方向幅の2分の1	mm
C_2	脚の長手方向幅の2分の1	mm
D i	胴の内径	mm
E s	脚の縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1 (1) に定める値	MPa
F*	設計・建設規格 SSB-3121.3に定める値	MPa
f t	脚の許容引張応力	MPa
G s	脚のせん断弾性係数	MPa
g	重力加速度(=9.80665)	m/s^2
h 1	架台から脚の胴付け根部までの長さ	mm
h 2	架台から胴の中心までの長さ	mm
Isx	脚の長手方向軸に対する断面二次モーメント	mm^4
Isy	脚の鉛直方向軸に対する断面二次モーメント	mm^4
K_1 j, K_2 j	引用文献(2)によるアタッチメントパラメータの補正係数	_
	(j=1:周方向応力,j=2:軸方向応力)	
К а	ばね定数 (胴の長手方向に水平力が作用する場合)	N/m
Кь	ばね定数 (胴の鉛直方向に鉛直力が作用する場合)	N/m
Kcj, Kℓj	引用文献(2)によるアタッチメントパラメータの補正係数	_
	(j=1:周方向応力,j=2:軸方向応力)	
M	運転時質量により胴の脚付け根部に作用する曲げモーメント	N•mm
M e	鉛直方向地震により胴の脚付け根部に作用する曲げモーメント	N•mm
$M\ell$	長手方向地震により胴の脚付け根部に作用する曲げモーメント	N•mm
M_{x}	胴に生じる軸方向の曲げモーメント	N·mm/mm
$M \phi$	胴に生じる周方向の曲げモーメント	N·mm/mm
m 0	容器の運転時質量	kg

記号	記号の説明	単位
N x	胴に生じる軸方向の膜力	N/mm
Nφ	胴に生じる周方向の膜力	N/mm
Рс	横方向地震により胴の脚付け根部に作用する反力	N
Рr	最高使用圧力	MPa
r m	脚付け根部における胴の平均半径	mm
го	脚付け根部における胴の外半径	mm
S	設計・建設規格 付録材料図表 Part5 表5に定める値	MPa
S a	胴の許容応力	MPa
Su	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
Т 1	水平方向固有周期	S
Т 2	鉛直方向固有周期	S
t	胴板の厚さ	mm
Zsx	脚の長手方向軸に対する断面係数	mm^3
Zsy	脚の鉛直方向軸に対する断面係数	mm^3
β , β 1, β 2	引用文献(2)によるアタッチメントパラメータ	_
γ	引用文献(2)によるシェルパラメータ	_
π	円周率	_
σ ο	胴の組合せ一次一般膜応力の最大値	MPa
O о х	胴の軸方向一次一般膜応力の和	MPa
σοφ	胴の周方向一次一般膜応力の和	MPa
σ 1	胴の組合せ一次応力の最大値	MPa
σ 1 с	鉛直方向と横方向地震が作用した場合の胴の組合せ一次応力	MPa
O 1 C X	鉛直方向と横方向地震が作用した場合の胴の軸方向一次応力の和	MPa
σ 1 c $φ$	鉛直方向と横方向地震が作用した場合の胴の周方向一次応力の和	MPa
σ 10	鉛直方向と長手方向地震が作用した場合の胴の組合せ一次応力	MPa
$\sigma_{1\ell}$ x	鉛直方向と長手方向地震が作用した場合の胴の軸方向一次応力の	MPa
	和	
Ο 10 φ	鉛直方向と長手方向地震が作用した場合の胴の周方向一次応力の	MPa
	和	
σ 2	地震動のみによる胴の組合せ一次応力と二次応力の和の変動値の	MPa
	最大値	
О 2 с	鉛直方向と横方向地震のみによる胴の組合せ一次応力と二次応力	MPa
	の和	

記号	記号の説明	単位
О 2 С х	鉛直方向と横方向地震のみによる胴の軸方向一次応力と二次応力	MPa
	の和	
σ 2 с φ	鉛直方向と横方向地震のみによる胴の周方向一次応力と二次応力	MPa
	の和	
σ 20	鉛直方向と長手方向地震のみによる胴の組合せ一次応力と二次応	MPa
	力の和	
σ 20 x	鉛直方向と長手方向地震のみによる胴の軸方向一次応力と二次応	MPa
	力の和	
σ 20 φ	鉛直方向と長手方向地震のみによる胴の周方向一次応力と二次応	MPa
	力の和	
о в	脚の組合せ応力の最大値	MPa
о в с	鉛直方向と横方向地震が作用した場合の脚の組合せ応力	MPa
σsℓ	鉛直方向と長手方向地震が作用した場合の脚の組合せ応力	MPa
σ s 1	運転時質量により脚に生じる曲げ応力	MPa
σ s 2	鉛直方向地震により脚に生じる曲げ応力	MPa
σ s з	長手方向地震により脚に生じる曲げ応力	MPa
σ s 4	横方向地震により脚に生じる圧縮応力	MPa
σ φ 1, σ х 1	内圧により胴に生じる周方向及び軸方向応力	MPa
σ φ 2, σ х 2	運転時質量により胴の脚付け根部に生じる周方向及び軸方向一次	MPa
	応力	
σ φз, σ x з	鉛直方向地震により胴の脚付け根部に生じる周方向及び軸方向一	MPa
	次応力	
О ф 4, О х 4	長手方向地震により胴の脚付け根部に生じる周方向及び軸方向一	MPa
	次応力	
σ φ 5, σ x 5	横方向地震により胴の脚付け根部に生じる周方向及び軸方向一次	MPa
	応力	
σ 2 φ 3, σ 2 х 3	鉛直方向地震により胴の脚付け根部に生じる周方向及び軸方向二	MPa
	次応力	
σ 2 φ 4, σ 2 х 4	長手方向地震により胴の脚付け根部に生じる周方向及び軸方向二	MPa
	次応力	
$\sigma_{2\phi5}$, σ_{2x5}	横方向地震により胴の脚付け根部に生じる周方向及び軸方向二次	MPa
	応力	

記号	記号の説明	単位
$ au_{ m d}$	運転時質量により胴の脚付け根部に生じるせん断応力	MPa
$ au_{ m d}$ e	鉛直方向地震により胴の脚付け根部に生じるせん断応力	MPa
τ ℓ	長手方向地震により胴の脚付け根部に生じるせん断応力	MPa
τ s 1	運転時質量により脚に生じるせん断応力	MPa
τ s 2	鉛直方向地震により脚に生じるせん断応力	MPa
τѕз	長手方向地震により脚に生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数位の 括叛		第 <i>位</i> 加理校		In an I.M.	±- → 1/-	
数値の種類 数値の種類		単位	処理桁	処理方法	表示桁	
固不	有周期	S	小数点以下第4位	四捨五入	小数点以下第3位	
震馬	度		小数点以下第3位	切上げ	小数点以下第2位	
最高	高使用圧力	MPa	_		小数点以下第2位	
温月	度	$^{\circ}$	_	_	整数位	
質量		kg	_		整数位	
長	下記以外の長さ	mm	_	_	整数位*1	
さ	胴板の厚さ	mm	_		小数点以下第1位	
面和	責	mm² 有効数字 5 桁目 四捨五入		四捨五入	有効数字4桁*2	
モー	ーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2	
カ		N	有効数字 5 桁目	四捨五入	有効数字4桁*2	
算出応力		MPa	小数点以下第1位	切上げ	整数位	
許名	卒応力* ³	MPa	小数点以下第1位	切捨て	整数位	

注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は、比例法により補間した値の小数点以下第1位を切捨て、整数位までの値とする。

3. 評価部位

アキュムレータの耐震評価は、「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる胴板及び脚について評価を実施する。アキュムレータの耐震評価部位については、表2-1の概略構造図に示す。

4. 固有周期

4.1 固有周期の計算方法

アキュムレータの固有周期の計算方法を以下に示す。

(1) 計算モデル

- a. アキュムレータの質量は重心に集中するものとする。
- b. アキュムレータは胴を1個の脚で支持し、脚は溶接で架台に据え付けているため、固 定端とする。
- c. 耐震計算に用いる寸法は,公称値を使用する。
- d. アキュムレータの荷重状態及び胴板に生じるモーメントを図 4-1 及び図 4-2 に示す。

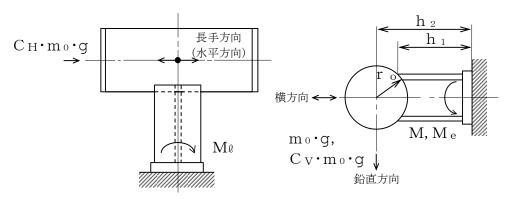


図 4-1 長手方向荷重による胴板の脚付け根部のモーメント

図 4-2 鉛直方向荷重による胴板の脚付け根部のモーメント

e. アキュムレータは、図4-3に示す一端固定の1質点系振動モデルとして考える。

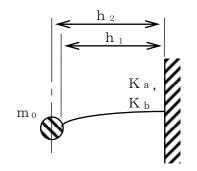


図 4-3 固有周期の計算モデル

(2) 水平方向固有周期

図4-3における水平方向のばね定数は次式で求める。

水平方向固有周期は次式で求める。

$$T_{1}=2 \cdot \pi \cdot \sqrt{\frac{m_{0}}{K_{a}}} \qquad \cdots \qquad (4.1.2)$$

(3) 鉛直方向固有周期

図4-3における鉛直方向のばね定数は次式で求める。

鉛直方向固有周期は次式で求める。

$$T_2=2 \cdot \pi \cdot \sqrt{\frac{m_0}{K_b}} \qquad \cdots \qquad (4.1.4)$$

4.2 固有周期の計算条件

固有周期の計算に用いる計算条件は、本計算書の【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】及び【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】の機器要目に示す。

4.3 固有周期の計算結果

固有周期の評価結果を表4-1に示す。計算の結果,固有周期は0.05秒以下であり,剛であることを確認した。

表4-1 固有周期 (単位:s)

	主蒸気逃がし安全弁逃がし弁 機能用アキュムレータ	主蒸気逃がし安全弁自動減圧 機能用アキュムレータ
水平		
鉛直		

5. 構造強度評価

5.1 構造強度評価方法

4.1項 a.~e.のほか,次の条件で計算する。

地震力はアキュムレータに対して水平方向及び鉛直方向から作用するものとする。

5.2 荷重の組合せ及び許容応力

5.2.1 荷重の組合せ及び許容応力状態

アキュムレータの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表5-1に、重大事故等対処設備に用いるものを表5-2に示す。

5.2.2 許容応力

アキュムレータの許容応力は、V-2-1-9「機能維持の基本方針」に基づき表5-3及び表5-4のとおりとする。

5.2.3 使用材料の許容応力評価条件

アキュムレータの使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表5-5に、重大事故等対処設備の評価に用いるものを表5-6に示す。

表 5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉冷却	原子炉冷却材	・主蒸気逃がし安全弁逃がし弁機能用アキュムレータ	0	クラス3容器 [*]	$D+P_D+M_D+S d^*$	III A S
系統施設	の循環設備	・主蒸気逃がし安全弁自動減圧 機能用アキュムレータ	5	クノへ3谷쯉	$D+P_D+M_D+S$ s	IV A S

注記*:クラス3容器の支持構造物を含む。

表 5-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設[区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態						
					$D + P_D + M_D + S_s^{*3}$	IV A S						
原子炉冷却 系統施設	原子炉冷却材 の循環設備	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ	常設耐震/防止常設/緩和	重大事故等 ^{*2} クラス2容器	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)						
章1.湖山东山谷田	生 经 田	→茅戸 Ψボトセム会		*2	$D + P_D + M_D + S_s^{*3}$	IV A S						
計測制御 系統施設	制御用 空気設備	主蒸気逃がし安全弁逃がし弁機能用アキュムレータ	常設耐震/防止 単八争収等 クラス2容器		市成顺辰/炒业	设耐震/防止 <u>重大事故等</u>		☆ / 1971 11.	6 成 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	市成顺展/炒井.	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)
		ナギ戸 W おし か 人 ム		*2	$D + P_D + M_D + S_{s}^{*3}$	IV A S						
原子炉冷却系統施設	原子炉冷却材 の循環設備	主蒸気逃がし安全弁 自動減圧機能用アキュムレータ	常設耐震/防止常設/緩和	重大事故等クラス2容器	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)						
⇒1 Nul that //on	that then ITT			*2	$D + P_D + M_D + S_s^{*3}$	IV A S						
計測制御系統施設	制御用 空気設備	主蒸気逃がし安全弁自動減圧機能用アキュムレータ	常設耐震/防止	重大事故等 ^{・・・} クラス2容器	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)						

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2: 重大事故等クラス2容器の支持構造物を含む。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 5-3 許容応力 (クラス2, 3容器及び重大事故等クラス2容器)

=tr d= 11 H *1, *2								
	許容限界* ^{1,*2}							
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ ピーク応力				
III A S	Syと 0.6・Suの小さい方。 ただし、オーステナイト系 ステンレス鋼及び高ニッケ ル合金については上記値と 1.2・Sとの大きい方。	左欄の 1.5 倍の値		【は基準地震動Ssのみに 労累積係数が 1.0 以下で				
IV A S			ただし、地震動のみによ 値が 2・Sy以下であれ	る一次+二次応力の変動 ば疲労解析は不要。				
VAS (VASとしてIVASの 許容限界を用いる。)	0.6 · S u	左欄の 1.5 倍の値	積係数が 1.0 以下であるこ	る一次+二次応力の変動値				

注記*1:座屈による評価は、クラスMC容器の座屈に対する評価式による。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5-4 許容応力 (クラス2, 3支持構造物及び重大事故等クラス2支持構造物)

許容応力状態	許容限界* (脚) 一次応力		
	組合せ		
III A S	1.5 • f t		
IV A S	v		
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*		

注記*:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で 代表可能である場合は評価を省略する。

表 5-6 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件(℃)		S (MPa)	S _y (MPa)	S u (MPa)	Sy(RT) (MPa)
胴板	SUS304TP	最高使用温度	171	113	150	413	_
脚	SS400 (厚さ≦16mm)	周囲環境温度	171	_	201	373	_

5.3 設計用地震力

評価に用いる設計用地震力を表 5-7 及び表 5-8 に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、V-2-1-7 「設計用床応答曲線の作成方針」に基づき設定する。

表 5-7 設計用地震力(設計基準対象施設)

据付場所 及び	固有周]期(s) ^{*2}	弾性設計用 又は静		基準地別	통動Ss
床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度

注記*1:基準床レベルを示す。

*2:上段は主蒸気逃がし安全弁逃がし弁機能用アキュムレータの値を示す。 下段は主蒸気逃がし安全弁自動減圧機能用アキュムレータの値を示す。

表 5-8 設計用地震力(重大事故等対処設備)

据付場所 及び	固有周]期(s) ^{*2}	弾性設計用 又は静	地震動Sd 的震度	基準地原	§動Ss
床面高さ (m)	水平方向 鉛直方向		水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
			_	_		

注記*1:基準床レベルを示す。

*2:上段は主蒸気逃がし安全弁逃がし弁機能用アキュムレータの値を示す。 下段は主蒸気逃がし安全弁自動減圧機能用アキュムレータの値を示す。

5.4 計算方法

5.4.1 応力の計算方法

応力計算は,絶対値和を用いて行う。

- 5.4.1.1 胴の応力
 - (1) 内圧による応力

$$\sigma_{\phi 1} = \frac{P_{r} \cdot (D_{i} + 1.2 \cdot t)}{2 \cdot t} \qquad (5.4.1.1.1)$$

$$\sigma_{x 1} = \frac{P_r \cdot (D_i + 1.2 \cdot t)}{4 \cdot t} \qquad (5.4.1.1.2)$$

(2) 運転時質量による脚付け根部の応力

運転時質量により脚付け根部に生じる曲げモーメントは次式で求める。

$$r_{0} = \frac{D_{i}}{2} + t$$
 (5.4.1.1.4)

この曲げモーメントMにより生じる胴の周方向応力及び軸方向応力は引用文献(2) より次のように求める。

脚が胴に及ぼす力の関係を図5-1に示す。

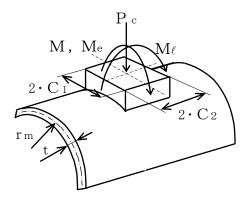


図5-1 脚が胴に及ぼす力の関係

ここで、シェルパラメータ γ 及びアタッチメントパラメータ β は以下のように定義する。

$$\gamma = r \text{ m/t}$$
 (5. 4. 1. 1. 5)

$$\beta_1 = C_1 / r m$$
 (5. 4. 1. 1. 6)

$$\beta_2 = C_2 / r m$$
 (5. 4. 1. 1. 7)

$$r m = (D i + t) / 2$$
 (5.4.1.1.8)

$$\beta = \sqrt[3]{\beta_1^2 \cdot \beta_2} \qquad (5.4.1.1.9)$$

ただし、 $\beta \leq 0.5$

シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより応力は次式で求める。

$$\sigma_{\phi 2} = \left\{ \frac{N_{\phi}}{M/(r_{m^2 \cdot \beta})} \right\}^* \cdot \left(\frac{M}{r_{m^2 \cdot \beta} \cdot t} \right) \cdot C_{c_1} \quad \cdots \qquad (5.4.1.1.10)$$

$$\sigma_{x2} = \left\{ \frac{Nx}{M/(r m^2 \cdot \beta)} \right\}^* \cdot \left(\frac{M}{r m^2 \cdot \beta \cdot t} \right) \cdot Cc_2 \qquad (5.4.1.1.11)$$

また、運転時質量が作用した場合、脚付け根部に生じるせん断応力は次式で求める。

$$\tau d = \frac{m_0 \cdot g}{4 \cdot C_1 \cdot t} \qquad (5.4.1.1.12)$$

(3) 鉛直方向地震による脚付け根部の応力

鉛直方向地震により脚付け根部に生じる曲げモーメントは次式で求める。

$$M e = C_{v} \cdot m_{0} \cdot g \cdot r_{0} \qquad (5.4.1.1.13)$$

曲げモーメントMe により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図により値(以下*を付記するもの)を求めることにより(5.4.1.1.14)式~(5.4.1.1.17)式で求める。

一次応力

$$\sigma_{\phi 3} = \left\{ \frac{N_{\phi}}{M e / (r_{m^{2 \cdot \phi}} \beta)} \right\}^{*} \cdot \left(\frac{M e}{r_{m^{2 \cdot \phi}} \beta \cdot t} \right) \cdot C_{c 1} \qquad (5. 4. 1. 1. 14)$$

$$\sigma_{x3} = \left\{ \frac{N x}{M e / (r m^{2 \cdot \beta})} \right\}^* \cdot \left(\frac{M e}{r m^{2 \cdot \beta} \cdot \beta \cdot t} \right) \cdot C c_2 \qquad (5.4.1.1.15)$$

二次応力

$$\sigma_{2\phi3} = \left\{ \frac{M\phi}{Me/(rm \cdot \beta)} \right\}^* \cdot \left(\frac{6 \cdot Me}{rm \cdot \beta \cdot t^2} \right) \quad \cdots \qquad (5.4.1.1.16)$$

$$\sigma_{2 \times 3} = \left\{ \frac{M \times \left(r + \frac{6 \cdot M e}{r + \beta}\right)^{*} \cdot \left(\frac{6 \cdot M e}{r + \beta \cdot t^{2}}\right) \right\}$$
(5. 4. 1. 1. 17)

ここで、アタッチメントパラメータ β は、(5.4.1.1.9) 式と同様である。

ただし、二次応力を求める場合は、更にKcjを乗じた値とする。

また、鉛直方向地震が作用した場合、脚付け根部に生じるせん断応力は次式で求める。

$$\tau d e = \frac{C v \cdot m_0 \cdot g}{4 \cdot C_1 \cdot t} \qquad (5.4.1.1.18)$$

(4) 長手方向地震による脚付け根部の応力

長手方向地震により脚付け根部に生じる曲げモーメントは次式で求める。

$$M\ell = C_H \cdot m_0 \cdot g \cdot r_0 \quad \cdots \quad (5.4.1.1.19)$$

曲げモーメント $M\ell$ により生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより(5.4.1.1.20)式~(5.4.1.1.23)式で求める。

一次応力

$$\sigma_{\phi 4} = \left\{ \frac{N_{\phi}}{M\ell / (r_{m^{2\bullet} \beta})} \right\}^{\bullet} \cdot \left(\frac{M\ell}{r_{m^{2\bullet} \beta} \cdot t} \right) \cdot C_{\ell 1} \quad \cdots \qquad (5. 4. 1. 1. 20)$$

$$\sigma_{x4} = \left\{ \frac{N_x}{M\ell/(r_{m^2 \bullet \beta})} \right\}^* \cdot \left(\frac{M\ell}{r_{m^2 \bullet \beta} \bullet t} \right) \cdot C_{\ell 2} \quad \cdots \qquad (5.4.1.1.21)$$

二次応力

$$\sigma_{2 \phi 4} = \left\{ \frac{M_{\phi}}{M\ell / (r_{m} \cdot \beta)} \right\}^{*} \cdot \left(\frac{6 \cdot M\ell}{r_{m} \cdot \beta \cdot t^{2}} \right) \qquad (5.4.1.1.22)$$

$$\sigma_{2 \times 4} = \left\{ \frac{M \times M}{M\ell / (r + \beta)} \right\}^* \cdot \left(\frac{6 \cdot M\ell}{r + \beta \cdot \beta} \right) \qquad (5.4.1.1.23)$$

ここで,アタッチメントパラメータβは,

$$\beta = \sqrt[3]{\beta_1 \cdot \beta_2^2} \qquad (5.4.1.1.24)$$

ただし、 $\beta \leq 0.5$

また、二次応力を求める場合は、更にKℓiを乗じた値とする。

長手方向地震が作用した場合、脚付け根部に生じるせん断応力は次式で求める。

$$\tau \ell = \frac{\text{C H} \cdot \text{m o} \cdot \text{g}}{4 \cdot \text{C 2} \cdot \text{t}} \tag{5.4.1.1.25}$$

(5) 横方向地震による脚付け根部の応力

横方向地震により脚付け根部に生じる反力は次式で求める。

$$P c = C_H \cdot m_0 \cdot q$$
 (5. 4. 1. 1. 26)

半径方向荷重Pcにより生じる胴の周方向応力及び軸方向応力は、シェルパラメータ γ 及びアタッチメントパラメータ β によって引用文献(2)の図より値(以下*を付記するもの)を求めることにより(5.4.1.1.27)式~(5.4.1.1.30)式で求める。

一次応力

$$\sigma_{\phi 5} = \left(\frac{N_{\phi}}{P_{c} / r_{m}}\right)^{*} \cdot \left(\frac{P_{c}}{r_{m} \cdot t}\right) \qquad (5.4.1.1.27)$$

$$\sigma_{x 5} = \left(\frac{N_{x}}{P_{c} / r_{m}}\right)^{*} \cdot \left(\frac{P_{c}}{r_{m} \cdot t}\right) \qquad \cdots \qquad (5.4.1.1.28)$$

二次応力

$$\sigma_{2 \phi 5} = \left(\frac{M_{\phi}}{P_{c}}\right)^{*} \cdot \left(\frac{6 \cdot P_{c}}{t^{2}}\right) \qquad (5. 4. 1. 1. 29)$$

$$\sigma_{2 \times 5} = \left(\frac{M_{x}}{P_{c}}\right)^{*} \cdot \left(\frac{6 \cdot P_{c}}{t^{2}}\right) \qquad (5.4.1.1.30)$$

ここで、シェルパラメータ γ は(5.4.1.1.5)式と同じであるが、アタッチメントパラメータ β は次式による。

 $4 \ge \beta_1 / \beta_2 \ge 1$ のとき

$$\beta = \left(1 - \frac{1}{3} \cdot \left(\frac{\beta_{1}}{\beta_{2}} - 1\right) \cdot \left(1 - K_{1j}\right)\right) \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \quad \dots \quad (5.4.1.1.31)$$

ただし、 $\beta \leq 0.5$

 $1/4 \le \beta_1 / \beta_2 < 1$ のとき

$$\beta = \left(1 - \frac{4}{3} \cdot \left(1 - \frac{\beta_{1}}{\beta_{2}}\right) \cdot \left(1 - K_{2j}\right)\right) \cdot \sqrt{\beta_{1} \cdot \beta_{2}} \quad \dots \quad (5.4.1.1.32)$$

ただし、 $\beta \leq 0.5$

(0)	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(6)	組合せ応力
(0)	

(1)~(5)によって算出される脚付け根部に生じる胴の応力を以下のように組み合わせる。

a. 一次一般膜応力

$$\sigma_0 = \text{Max}$$
 {周方向応力($\sigma_0 \phi$), 軸方向応力($\sigma_0 x$)} (5.4.1.1.33) ここで,

$$\sigma \circ \phi = \sigma \phi \circ 1 \qquad \cdots \qquad (5. 4. 1. 1. 34)$$

$$\sigma_{0} = \sigma_{x} = 0$$
 (5. 4. 1. 1. 35)

b. 一次応力

長手方向地震が作用した場合

$$\sigma_{1\ell} = \frac{1}{2} \cdot \left\{ \left(\sigma_{1\ell\phi} + \sigma_{1\ell x} \right) + \sqrt{\left(\sigma_{1\ell\phi} - \sigma_{1\ell x} \right)^2 + 4 \cdot \left(\tau_{d} + \tau_{de} + \tau_{\ell} \right)^2} \right\}$$
(5.4.1.1.36)

ここで,

$$\sigma_{1\ell\phi} = \sigma_{\phi 1} + \sigma_{\phi 2} + \sigma_{\phi 3} + \sigma_{\phi 4} \qquad \cdots \qquad (5.4.1.1.37)$$

$$\sigma_{1} \ell_{x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x3} + \sigma_{x4}$$
 (5. 4. 1. 1. 38)

横方向地震が作用した場合

$$\sigma_{1c} = \frac{1}{2} \cdot \left\{ \left(\sigma_{1c\phi} + \sigma_{1cx} \right) + \sqrt{\left(\sigma_{1c\phi} - \sigma_{1cx} \right)^{2} + 4 \cdot \left(\tau_{d} + \tau_{de} \right)^{2}} \right\}$$

(5.4.1.1.39)

ここで,

$$\sigma \ 1 \ c \ \phi = \sigma \ \phi \ 1 + \sigma \ \phi \ 2 + \sigma \ \phi \ 3 + \sigma \ \phi \ 5 \qquad \cdots \qquad (5. \ 4. \ 1. \ 1. \ 40)$$

したがって, 胴に生じる一次応力の最大値は,

 $\sigma_1 = \text{Max} \{ 長手方向地震時応力(\sigma_1 \ell), 横方向地震時応力(\sigma_1 c) \}$

とする。

c. 地震動のみによる一次応力と二次応力の和の変動値 長手方向地震が作用した場合

$$\sigma_{2\ell} = \left(\sigma_{2\ell\phi} + \sigma_{2\ell x}\right) + \sqrt{\left(\sigma_{2\ell\phi} - \sigma_{2\ell x}\right)^2 + 4 \cdot \left(\tau_{de} + \tau_{\ell}\right)^2}$$

..... (5. 4. 1. 1. 43)

ここで,

$$\sigma \ 2\ell \phi = \sigma \ \phi \ 3 + \sigma \ \phi \ 4 + \sigma \ 2 \phi \ 3 + \sigma \ 2 \phi \ 4 \qquad \cdots \qquad (5. \ 4. \ 1. \ 1. \ 44)$$

$$\sigma \ 2\ell x = \sigma \ x \ 3 + \sigma \ x \ 4 + \sigma \ 2 \ x \ 3 + \sigma \ 2 \ x \ 4 \qquad \cdots \qquad (5.4.1.1.45)$$

横方向地震が作用した場合 $\sigma_{2c} = (\sigma_{2c\phi} + \sigma_{2cx}) + \sqrt{(\sigma_{2c\phi} - \sigma_{2cx})^2 + 4 \cdot \sigma_{de}^2}$ (5.4.1.1.46)ここで, $\sigma \ 2 \ c \ \phi = \sigma \ \phi \ 3 + \sigma \ \phi \ 5 + \sigma \ 2 \ \phi \ 3 + \sigma \ 2 \ \phi \ 5$ (5.4.1.1.47) $\sigma \ 2 \ c \ x = \sigma \ x \ 3 + \sigma \ x \ 5 + \sigma \ 2 \ x \ 3 + \sigma \ 2 \ x \ 5 \qquad \cdots \qquad (5.4.1.1.48)$ したがって、胴に生じる地震動のみによる一次応力と二次応力の和の変動値の最大値は、 (5, 4, 1, 1, 49)とする。 5.4.1.2 脚の応力 (1) 運転時質量による応力 曲げ応力は, $\sigma_{s1} = \frac{m_0 \cdot g \cdot h_2}{Z_{sx}}$ (5. 4. 1. 2. 1) せん断応力は, $\tau_{s1} = \frac{m \cdot g}{A_{s4}}$ (2) 鉛直方向地震による応力 曲げ応力は, $\sigma_{s2} = \frac{C \cdot v \cdot m \cdot g \cdot h_2}{Z_{sx}}$ (5.4.1.2.3) せん断応力は, $\tau s_2 = \frac{C v \cdot m_0 \cdot g}{A_{s_4}}$ 曲げ応力は,

(3) 長手方向地震による応力

$$\sigma_{s3} = \frac{C_{H^*m_0 \cdot g^*h_2}}{Z_{sv}} \qquad (5.4.1.2.5)$$

せん断応力は,

$$\tau_{s3} = \frac{C_{H} \cdot m_{0} \cdot g}{A_{s3}} \qquad (5.4.1.2.6)$$

(4) 横方向地震による圧縮応力

$$\sigma_{s4} = \frac{C_{H^*m_0^*g}}{A_s} \qquad (5.4.1.2.7)$$

(5) 組合せ応力

長手方向地震が作用した場合

横方向地震が作用した場合

したがって、脚に生じる最大応力は、

とする。

5.5 計算条件

応力計算に用いる計算条件は、本計算書の【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】及び【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5.6.1 胴の応力評価

5.4.1.1項で求めた組合せ応力が胴の最高使用温度における許容応力Sa以下であること。ただし、Saは下表による。

TCTCO, Data XTCA 30									
	許容応力Sa								
応力の種類	弾性設計用地震動Sd又は静的震度	基準地震動Ssによる荷重							
	による荷重との組合せの場合	との組合せの場合							
	設計降伏点Syと設計引張強さSu	設計引張強さSuの0.6倍							
	の0.6倍のいずれか小さい方の値								
 一次一般膜応力	ただし、オーステナイト系ステンレ								
	ス鋼及び高ニッケル合金にあっては								
	許容引張応力Sの1.2倍の方が大き								
	い場合はこの大きい方の値とする。								
一次応力	上記の1.5倍の値	上記の1.5倍の値							
一次応力と二次	地震動のみによる一次応力と二次応力の和の変動値が設計降伏点								
応力の和	Syの2倍以下であれば、疲労解析は不	で要とする。							

5.6.2 脚の応力評価

5.4.1.2項で求めた脚の組合せ応力が許容応力 f_t 以下であること。 ただし、 f_t は下表による。

	弾性設計用地震動Sd又は静的震度	基準地震動Ssによる荷重
	による荷重との組合せの場合	との組合せの場合
許容引張応力	F .15	F * 1.5
f _t	$\frac{1.5}{1.5}$	1.5

6. 評価結果

- 6.1 設計基準対象施設としての評価結果
 - 6.1.1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ

主蒸気逃がし安全弁逃がし弁機能用アキュムレータの設計基準対象施設としての耐震 評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分 な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

6.1.2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ

主蒸気逃がし安全弁自動減圧機能用アキュムレータの設計基準対象施設としての耐震 評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分 な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

- 6.2 重大事故等対処設備としての評価結果
 - 6.2.1 主蒸気逃がし安全弁逃がし弁機能用アキュムレータ

主蒸気逃がし安全弁逃がし弁機能用アキュムレータの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

6.2.2 主蒸気逃がし安全弁自動減圧機能用アキュムレータ

主蒸気逃がし安全弁自動減圧機能用アキュムレータの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

	機器名称	耐震重要度分類	据付場所及び床面高さ	固有周期(s)		固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用圧力	最高使用温度	周囲環境温度
	1፠ ነው 11 ሃነ	则成至交及力無	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)		
•	主蒸気逃がし安全弁 逃がし弁機能用 アキュムレータ	S								1.77	171	171		

注記*:基準床レベルを示す。

1.2 機器要目

	DANIE X III															
	m o	Dі	t	h 1	h 2	C 1	C 2	Isx	I sy	Zsx	Zsy	A s	Еs	G s	A s 1	A s 2
	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^4)	(mm^4)	(mm^3)	(mm^3)	(mm^2)	(MPa)	(MPa)	(mm^2)	(mm^2)
													*2	*2		
		199. 9	8. 2	122	200	75	75	1.601×10^{7}	5. 629×10^6	2.135×10^5	7.505×10^4	3.910×10^{3}	193000	74200	2.708×10^3	1.042×10^3
1																

A s 3	A s 4	*3	*3	*3	*3					胴板	
(mm ²)	(mm ²)	K11 *3	K 1 2	K 2 1	K 2 2 * 3 K	ℓ1 Kℓ2	K c 1	K c 2	<u>=</u>		
2.006×10^3	935. 5			_	_					 	₩ Sig half
<u> </u>				-		<u> </u>			水平	→ 方向	
C (1	C \(\ell_2 \)	C c 1	C c 2	Sy(胴板) (MPa)	Su (胴板) (MPa)	S(胴板) (MPa)	Sy(脚) (MPa)	Su(脚) (MPa)	F (脚) (MPa)	F* (脚) (MPa)	
				150 * 1	413 *1	113 *1	201 *2 (厚さ≦16mm)	*2 373	* 201	*2 241	
注記*1: 最高	使用温度で算る	出									

<u>A — A</u>

生記*1:最高使用温度で算出 *2:周囲環境温度で算出

*3: 表中で上段は一次応力,下段は二次応力の係数とする。

7

1.3 計算数值

1.3.1 胴に生じる応力

1.	0.1 MMC	טייניטייו ט					
(1) 一次一般膜	応力				(単位:MPa)	
		地震の種類	弾性設計用地震動	Sd又は静的震度	基準地震動S s		
		応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	
	内圧による応	力	$\sigma_{\phi} = 23$	$\sigma_{X} = 12$	$\sigma_{\phi 1} = 23$	σ x 1 = 12	
	運転時質量に	よる応力	_		_	_	
	鉛直方向地震	による応力	_	_	_	_	
	水平方向地震	による応力	_	_	_	_	
	組合	せ応力	σ 0=	23	$\sigma_0 = 23$		

 (2) 一次応力
 単位: MPa)

 単性設計用地震動Sd 又は静的震度
 基準地震動Ss

	地震の種類		弾性設計用地震動	Sd又は静的震度		基準地震動S s				
	地震の方向	長手	方向	横方向		長手方向		横方向		
	応力の方向	周方向応力 軸方向応力		周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力		$\sigma_{\phi} = 23$	σ x 1 = 12	$\sigma_{\phi 1} = 23$	σ x 1 = 12	$\sigma_{\phi 1} = 23$	σ x 1 = 12	$\sigma_{\phi 1} = 23$	$\sigma_{X1} = 12$	
運転時質量による応力	引張り	$\sigma_{\phi} = 1$	$\sigma_{x} = 2$	$\sigma \phi = 1$	$\sigma_{x} = 2$	$\sigma \phi = 1$	$\sigma x_2 = 2$	$\sigma_{\phi} = 1$	$\sigma x_2 = 2$	
建物所負重による心力	せん断	$\tau d = 1$		$\tau d = 1$		τ d =	1	τ d =	1	
鉛直方向地震による応力	引張り	$\sigma_{\phi 3} = 1$	σ x 3 = 1	σ φ 3 = 1	σ x 3 = 1	σ φ 3 = 1	$\sigma_{x3} = 3$	$\sigma \phi 3 = 1$	$\sigma x 3 = 3$	
如色の円地及による心の	せん断	τ d $e=$	1	τ d e =	$e = 1$ $\tau d e = 1$		1	τ d e =	1	
水平方向地震による応力	引張り	$\sigma_{\phi} = 2$	σ x 4 = 1	$\sigma \phi = 1$	σ x 5 = 1	$\sigma_{\phi 4} = 3$	$\sigma_{x4} = 2$	σ φ 5 = 2	$\sigma_{x 5} = 2$	
ハ十カ Pi 地域による心力	せん断	τ ℓ=	$\tau \ell = 1$		<u> </u>		τ <i>ℓ</i> = 1		_	
組合せ応力		σ 1 <i>ℓ</i> =	25	σ 1 c =	25	σ 1 ℓ= 27		σ _{1 c} = 26		

(3) 地震動のみによる一次応力と二次応力の和の変動値

1221	14		100
(===	411	•	MPa
(++	14		MII CI

<u>(0)</u> 地展期VV/による 以		グルグ友到胆				, , , , , , , , , , , , , , , , , , ,					
	地震の種類		弾性設計用地震動	カS d 又は静的震度			基準地震動 S s				
	地震の方向	長手	方向	横	横方向		長手方向		方向		
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力		
	引張り	σ φ 3 = 1	σ x 3 = 1	σ φ 3 = 1	σ x 3 = 1	σ φ 3 = 1	σ x 3 = 3	σ φ 3 = 1	σ x 3 = 3		
鉛直方向地震による応力		$\sigma_{2 \phi 3} = 5$	$\sigma_{2 \times 3} = 2$	$\sigma_{2 \phi 3} = 5$	$\sigma_{2 \times 3} = 2$	$\sigma_{2 \phi_3} = 9$	$\sigma_{2 \times 3} = 4$	$\sigma_{2 \phi_3} = 9$	$\sigma_{2 \times 3} = 4$		
	せん断	τ d e $=$	τ d e = 1		τ d e = 1		τ d e = 1		1		
	引張り	σ φ 4 = 2	$\sigma_{x} = 1$	$\sigma \phi s = 1$	σ x 5 = 1	$\sigma_{\phi} = 3$	$\sigma_{x4} = 2$	σ φ 5 = 2	$\sigma_{x 5} = 2$		
水平方向地震による応力	JI JK J	$\sigma_{2 \phi 4} = 2$	$\sigma_{2 \times 4} = 3$	$\sigma_{2 \phi 5} = 3$	$\sigma_{2 \times 5} = 2$	$\sigma_{2 \phi_{4}} = 3$	$\sigma_{2 X 4} = 5$	$\sigma_{2 \phi 5} = 5$	$\sigma_{2 \times 5} = 3$		
	せん断	τ ℓ=	1	-	<u> </u>		$\tau \ell = 1$		<u> </u>		
組合せ応力		σ 2ℓ=	15	σ 2 c =	16	σ 2 <i>ℓ</i> =	29	σ 2 c =	31		

1.3.2 脚に生じる応力

(単位:MPa)

711-11-0 072-7	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地震動 S s			
	地震の方向	長手方向	横方向	長手方向	横方向		
運転時質量による応力	曲げ	σ s 1 = 1	σ s 1 = 1	σ s 1 = 1	σ s 1 = 1		
建松村貝里による心力	せん断	τ s 1 = 1	$\tau s_1 = 1$	τ s 1 = 1	τ s 1 = 1		
鉛直方向地震による応力	曲げ	$\sigma_{s2} = 1$	σ s $_2$ = 1	σ s $_2$ = 1	$\sigma_{s2} = 1$		
如但の円地長による心力	せん断	$\tau s_2 = 1$	τ s $_2$ = 1	τ s $_2$ = 1	$\tau s_2 = 1$		
	曲げ	$\sigma s = 2$	_	$\sigma s = 3$	_		
水平方向地震による応力	圧縮	_	σ s 4 = 1	_	σ s 4 = 1		
	せん断	τ s 3 = 1	_	τ s 3 = 1	_		
組合せ応力		σ s ℓ= 3	σ s c = 2	σ s ℓ= 5	σ s c = 3		

1.4 結論

1.4.1 固有周期

方向

水平方向 鉛直方向 (単位:s)

固有周期

1.4.2 応力

(単位:MPa)

1.4.2 /1.77						(平位·mia)
部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地類	長動S s
			算出応力	許容応力	算出応力	許容応力
		一次一般膜	$\sigma = 23$	$S_a = 150$	σ 0 = 23	$S_a = 248$
胴板	SUS304TP	一次	σ 1 = 25	S a = 225	$\sigma_{1} = 27$	S a = 372
		一次+二次	$\sigma_2 = 16$	$S_a = 300$	$\sigma_2 = 31$	$S_a = 300$
脚	SS400	組合せ	$\sigma s = 3$	$f_{\rm t} = 201$	$\sigma s = 5$	$f_{\rm t} = 241$

すべて許容応力以下である。

【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】

2. 設計基準対象施設


2.1 設計条件

機器名称	耐震重要度分類	据付場所及び床面高さ	固有周期(s)			弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用温度	周囲環境温度
13ጲብታ 11 (ሃ)፣	间及里女反刀粮	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
主蒸気逃がし安全弁 自動減圧機能用 アキュムレータ	S								1. 77	171	171

注記*:基準床レベルを示す。

2.2 機器要目

2.2	以和广久日																_
	m o	Dі	t	h 1	h 2	C 1	C 2	Isx	Isy	Zsx	Zsy	A s	E s	G s	A s 1	A s 2	
	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^4)	(mm^4)	(mm ³)	(mm^3)	(mm^2)	(MPa)	(MPa)	(mm^2)	(mm^2)	
ŀ													*2	*2			
L		477.8	15. 1	195	400	150	150	1.993×10^{8}	6. 752×10^7	1. 329×10^6	4.501×10^5	1.170×10^4	193000	74200	7. 494×10^3	2.977×10^3	
I																	İ

生記*1:最高使用温度で算出 *2:周囲環境温度で算出

*3: 表中で上段は一次応力,下段は二次応力の係数とする。

32

2.3 計算数值

2.3.1 胴に生じる応力 (1) 一次一般膜応力

(1) 一次一般膜					(単位:MPa)
	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地類	震動Ss
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応	力	$\sigma_{\phi 1} = 29$	σ x 1 = 15	$\sigma_{\phi} = 29$	σ x 1 = 15
運転時質量に	よる応力	_	_	_	_
鉛直方向地震	による応力	_	_	_	_
水平方向地震	による応力	_	_	_	_
組合	せ応力	σ 0=	29	σ 0=	29

(単位:MPa) (2) 一次応力

	地震の種類		弾性設計用地震動	Sd 又は静的震度		基準地震動S s				
	地震の方向	長手	方向	横	方向	長手	方向	横	方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力		$\sigma_{\phi 1} = 29$	σ x 1 = 15	$\sigma_{\phi 1} = 29$	σ x 1 = 15	$\sigma_{\phi 1} = 29$	σ x 1 = 15	$\sigma_{\phi 1} = 29$	σ x 1 = 15	
運転時質量による応力	引張り	$\sigma_{\phi} = 2$	$\sigma_{x} = 4$	$\sigma_{\phi} = 2$	$\sigma_{x} = 4$	$\sigma \phi = 2$	$\sigma_{x} = 4$	$\sigma_{\phi} = 2$	$\sigma_{x} = 4$	
建物可負重による心力	せん断	τ d =	1	τ d =	1	τ d =	1	τ d =	1	
鉛直方向地震による応力	引張り	σ φ 3 = 1	$\sigma_{x3} = 3$	$\sigma_{\phi 3} = 1$	$\sigma_{x3} = 3$	$\sigma_{\phi 3} = 2$	σ x 3 = 6	$\sigma \phi 3 = 2$	σ x 3 = 6	
	せん断	τ d e =	1	τ d e =	1	τ d e =	1	τ d e =	1	
水平方向地震による応力	引張り	$\sigma_{\phi} = 3$	$\sigma_{x4} = 2$	$\sigma \phi 5 = 2$	$\sigma_{x 5} = 2$	$\sigma_{\phi} = 6$	$\sigma_{x4} = 3$	$\sigma \phi 5 = 4$	$\sigma x = 4$	
ハ十万円 地域による心力	せん断	τ ℓ=	1	-	_	τ ℓ=	1	-	_	
組合せ応力		σ 1ℓ=	35	σ 1 c =	34	σ 1 ℓ=	38	σ 1 c =	36	

(3) 地震動のみによる一次応力と二次応力の和の変動値 (単位:MPa)

	地震の種類		弾性設計用地震動	hSd 又は静的震度		基準地震動 S s			
	地震の方向	長手	方向	横	方向	長手	方向	横	方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
	引張り	$\sigma \phi 3 = 1$	σ x 3 = 3	σ φ 3 = 1	σ x 3 = 3	$\sigma \phi 3 = 2$	σ x 3 = 6	$\sigma_{\phi 3} = 2$	σ x 3 = 6
鉛直方向地震による応力		$\sigma_{2 \phi 3} = 11$	$\sigma_{2 \times 3} = 5$	$\sigma_{2 \phi 3} = 11$	$\sigma_{2 \times 3} = 5$	$\sigma_{2 \phi_{3}} = 21$	$\sigma_{2 \times 3} = 10$	$\sigma_{2 \phi 3} = 21$	$\sigma_{2 \times 3} = 10$
	せん断	τ d e =	1	τ d e =	1	τ d e	1	τ d e $=$	1
	引張り	$\sigma_{\phi} = 3$	$\sigma_{x4} = 2$	$\sigma \phi 5 = 2$	$\sigma_{x 5} = 2$	$\sigma \phi = 6$	$\sigma_{x4} = 3$	$\sigma \phi 5 = 4$	σ x 5 = 4
水平方向地震による応力	JI JK J	$\sigma_{2 \phi 4} = 3$	$\sigma_{2 X 4} = 6$	$\sigma_{2 \phi 5} = 7$	$\sigma_{2 \times 5} = 4$	$\sigma_{2\phi} = 6$	$\sigma_{2 \times 4} = 11$	$\sigma_{2 \phi} = 13$	$\sigma_{2 \times 5} = 7$
	せん断	τ ℓ=	1	-	<u> </u>	τ ℓ=	1	-	_
組合せ応力		σ 2 ℓ=	35	σ 2 c =	40	σ 2ℓ=	68	σ 2 c =	78

2.3.2 脚に生じる応力

(単位:MPa)

	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地別	震動Ss
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	曲げ	$\sigma_{s1} = 2$	$\sigma_{s1} = 2$	$\sigma_{s1} = 2$	$\sigma_{s1} = 2$
建松村貝里による心力	せん断	$\tau s_1 = 2$	$\tau s_1 = 2$	$\tau s_1 = 2$	$\tau s_1 = 2$
鉛直方向地震による応力	曲げ	$\sigma_{s2} = 1$	σ s $_2$ = 1	σ s $_2$ = 2	σ s $_2$ = 2
如巨刀 円地長による心力	せん断	$\tau s_2 = 1$	$\tau s_2 = 1$	$\tau s_2 = 3$	$\tau s_2 = 3$
	曲げ	σ s 3 = 4	_	σ s 3 = 7	
水平方向地震による応力	圧縮	_	σ s 4 = 1	_	σ s $_4$ = 1
	せん断	τ s 3 = 1	_	τ s 3 = 2	_
組合せ応力		σ s ℓ= 8	σ s c = 5	σ s ℓ= 13	σ s c = 8

2.4 結論

2.4.1 固有周期

(単位: s)

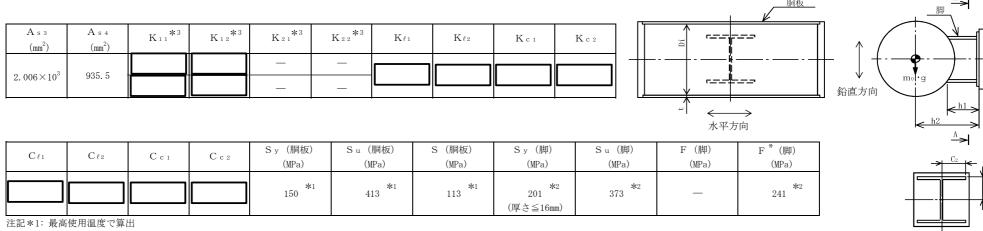
2.4.2 応力 (単位: MPa)

	2. 1. 2 /6.75						(平位: m 4)
	部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地類	雲動Ss
				算出応力	許容応力	算出応力	許容応力
Ī			一次一般膜	σ 0 = 29	$S_a = 150$	$\sigma = 29$	$S_a = 248$
	胴板	SUS304TP	一次	$\sigma_{1} = 35$	S a = 225	$\sigma_1 = 38$	S a = 372
			一次+二次	$\sigma_2 = 40$	$S_a = 300$	$\sigma_2 = 78$	$S_a = 300$
	脚	SS400	組合せ	$\sigma s = 8$	$f_{\rm t} = 201$	σ s = 13	$f_{\rm t} = 241$

すべて許容応力以下である。

【主蒸気逃がし安全弁逃がし弁機能用アキュムレータの耐震性についての計算結果】

3. 重大事故等対処設備


3.1 設計条件

機器名称	設備分類	据付場所及び床面高さ		固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動Ss		最高使用温度	周囲環境温度
15X-fit -/-1 -/-1	以加力按	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(\mathcal{C})
主蒸気逃がし安全弁 逃がし弁機能用 アキュムレータ	常設耐震/防止常設/緩和				_				2. 00	171	171

注記*:基準床レベルを示す。

3.2 機器要目

0. 2	10人口 久口																_
	m 0	Dі	t	h 1	h 2	C 1	C 2	Isx	I sy	Zsx	Zsy	A s	E s	G s	A s 1	A s 2	
	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^4)	(mm^4)	(mm^3)	(mm^3)	(mm^2)	(MPa)	(MPa)	(mm^2)	(mm^2)	
Į													*2	*2			
		199. 9	8. 2	122	200	75	75	1.601×10^{7}	5.629×10^6	2.135×10^5	7.505×10^4	3.910×10^{3}	193000	74200	2.708×10^3	1.042×10^3	
Ī	•																l

*2: 周囲環境温度で算出

*3: 表中で上段は一次応力,下段は二次応力の係数とする。

35

3.3 計算数值

3.3.1 胴に生じる応力 (1) 一次一般聴応力

(1) 一次一般膜					(単位:MPa)
	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地類	震動Ss
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力
内圧による応	力	_		$\sigma_{\phi} = 26$	σ x 1 = 13
運転時質量に	よる応力	_		_	_
鉛直方向地震	による応力	_		_	_
水平方向地震	による応力	_		_	_
組合	せ応力	-		σ 0=	26

(2) 一次応力

	地震の種類		弾性設計用地震動	Sd又は静的震度		基準地震動S s				
	地震の方向	長手	:方向	横力	5向	長手	方向	横	方向	
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力		_	_	_	1	$\sigma_{\phi 1} = 26$	σ x 1 = 13	σ φ 1 = 26	$\sigma_{X1} = 13$	
運転時質量による応力	引張り	_	_	_	1	$\sigma_{\phi} = 1$	$\sigma_{x} = 2$	$\sigma_{\phi} = 1$	$\sigma_{x} = 2$	
建物时負重による心力	せん断	-	_	_	_	τ d =	1	τ d =	1	
鉛直方向地震による応力	引張り	_	_	_	1	σ φ 3 = 1	$\sigma_{X3} = 3$	σ φ 3 = 1	σ x 3 = 3	
如色の円地展による心の	せん断	-	_	=	_	τ d e =	1	τ d e =	1	
水平方向地震による応力	引張り	_	_	_		$\sigma_{\phi 4} = 3$	$\sigma_{x4} = 2$	$\sigma \phi 5 = 2$	$\sigma_{x5} = 2$	
ハ十万円地域による心力	せん断	-	_	-	_	τ ℓ=	1	-	_	
組合せ応力			_	_		σ 1 ℓ=	30	σ 1 c =	29	

(3) 地震動のみによる一次応力と二次応力の和の変動値

<u>(3) 地展期がかによる (A)</u>		フロジ及動胆							(==/
	地震の種類		弾性設計用地震動	ISd 又は静的震度			基準地	震動Ss	
	地震の方向	長手	:方向	横之		長手	三方向	横	方向
	応力の方向	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力	周方向応力	軸方向応力
	引張り	_	_	_	_	σ φ 3 = 1	σ x 3 = 3	σ φ 3 = 1	σ x 3 = 3
鉛直方向地震による応力	91000		_	_		$\sigma_{2 \phi_{3}} = 9$	$\sigma_{2 \times 3} = 4$	$\sigma_{2 \phi_3} = 9$	$\sigma_{2 \times 3} = 4$
	せん断	-	_	-	_	τ d e =	1	τ d e =	1
	引張り	_	_	_	_	$\sigma_{\phi} = 3$	$\sigma_{x4} = 2$	$\sigma \phi 5 = 2$	$\sigma x = 2$
水平方向地震による応力	5132 9		_	_	_	$\sigma_{2 \phi_{4}} = 3$	$\sigma_{2 x 4} = 5$	$\sigma_{2 \phi 5} = 5$	$\sigma_{2 \times 5} = 3$
	せん断		_	-	_	τ ℓ=	1		<u>.</u>
組合せ応力			_	-	_	σ 2ℓ=	29	σ 2 c =	31

3.3.2 脚に生じる応力 (単位:MPa)

	地震の種類	弾性設計用地震動	Sd又は静的震度	基準地類	震動Ss
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	曲げ	ı	ı	σ s 1 = 1	σ s 1 = 1
建物所負重による心力	せん断	1	1	$\tau_{s1} = 1$	τ s 1 = 1
鉛直方向地震による応力	曲げ	1	1	σ s $_2$ = 1	σ s $_2$ = 1
如但の円地長による心力	せん断	1	1	$\tau s_2 = 1$	$\tau s_2 = 1$
	曲げ	1	1	$\sigma s = 3$	
水平方向地震による応力	圧縮	_	_		σ s $_4$ = 1
	せん断	_	_	τ s 3 = 1	_
組合せ応力				σ s ℓ= 5	σ s c = 3

3.4 結論

3.4.1 固有周期 (単位: s)

•	11 1 11/1/1/91	(112.0)
	方向	固有周期
	水平方向	
	鉛直方向	

3.4.2 応力 (単位: MPa)

(単位:MPa)

0. 1. 2 /6.77						(+ L.ma)
部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地類	§動S s
			算出応力	許容応力	算出応力	許容応力
		一次一般膜	l	l	$\sigma \circ = 26$	$S_a = 248$
胴板	SUS304TP	一次	Ī	ĺ	$\sigma_{1} = 30$	$S_a = 372$
		一次+二次	Ī	Ī	$\sigma_2 = 31$	$S_a = 300$
脚	SS400	組合せ			$\sigma s = 5$	$f_{\rm t} = 241$

すべて許容応力以下である。

【主蒸気逃がし安全弁自動減圧機能用アキュムレータの耐震性についての計算結果】

4. 重大事故等対処設備

4.1 設計条件

1後55 夕 45	設備分類	据付場所及び床面高さ	固有周期	朝 (s)	弾性設計用 又は静	地震動Sd 的震度	基準地別	§動S s	最高使用圧力	最高使用温度	周囲環境温度 (℃)
機器名称	設焩分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
主蒸気逃がし安全弁 自動減圧機能用 アキュムレータ	常設耐震/防止常設/緩和				_	_			2. 00	171	171

注記*:基準床レベルを示す。

4.2 機器要目

1																	
	m o	D i	t	h 1	h 2	C 1	C 2	Isx	Isy	Zsx	Zsy	A s	E s	G s	A s 1	A s 2	
	(kg)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm^4)	(mm^4)	(mm^3)	(mm ³)	(mm^2)	(MPa)	(MPa)	(mm^2)	(mm^2)	İ
I													*2	*2			
		477.8	15. 1	195	400	150	150	1.993×10^{8}	6. 752×10^7	1.329×10^6	4.501×10^5	1.170×10^4	193000	74200	7.494×10^3	2.977×10^3	Ì
ľ	,																Ï

A s 3	A s 4	*3	*3	*3	*3					胴板	<u>m</u> A→
(mm^2)	(mm^2)	K 1 1	K 1 2	K 2 1	K 2 2 K ℓ	1 K \(\ell 2	K c 1	K c 2	<u> </u>		
6. 010×10^3	2.721×10^3			_	_						鉛直方向
					·				→ → → → → → → → → → → → → → → → → → →	→ i向	<u>h1</u> → <u>A</u>
C \(\ell_1 \)	C \(\ell_2 \)	Сс1	C c 2	Sy(胴板) (MPa)	Su (胴板) (MPa)	S(胴板) (MPa)	Sy(脚) (MPa)	Su(脚) (MPa)	F (脚) (MPa)	F * (脚) (MPa)	-
				150 * 1	* 1 4 13	113 *1	*2 201 (厚さ≦16mm)	373 * 2	_	*2 241	
注記*1: 最高	使用温度で算出	Ц	•								

<u>A — A</u>

生記*1: 最高使用温度で算出 *2: 周囲環境温度で算出

*3: 表中で上段は一次応力,下段は二次応力の係数とする。

3

4.3 計算数値

4.3.1 胴に生じる応力

(単位:MPa) (1) 一次一般膜応力 弾性設計用地震動 S d 又は静的震度 基準地震動 S s 地震の種類 応力の方向 軸方向応力 周方向応力 周方向応力 軸方向応力 内圧による応力 _ _ $\sigma_{\phi} = 33$ $\sigma_{X} = 17$ 運転時質量による応力 鉛直方向地震による応力 _ 水平方向地震による応力 組合せ応力 σ 0 = 33

(2) 一次応力

	地震の種類		弾性設計用地震動	Sd又は静的震度			基準地震動S s			
	地震の方向	長手	:方向	横力	5向	長手	方向	横	方向	
	応力の方向	周方向応力	軸方向応力			周方向応力	軸方向応力	周方向応力	軸方向応力	
内圧による応力		_	_	_	1	$\sigma_{\phi 1} = 33$	σ x 1 = 17	$\sigma_{\phi 1} = 33$	σ x 1 = 17	
運転時質量による応力	引張り	_	_	_	1	$\sigma_{\phi} = 2$	$\sigma_{X2} = 4$	$\sigma \phi = 2$	σ x 2 = 4	
建物时負重による心力	せん断	<u>-</u>		_	_	τ d =	1	τ d =	1	
鉛直方向地震による応力	引張り	_	_	_	1	σ φ 3 = 2	σ x 3 = 6	$\sigma \phi 3 = 2$	σ x 3 = 6	
如色の円地展による心の	せん断	-	_	=	_	τ d e =	1	τ d e =	1	
水平方向地震による応力	引張り	_	_	_	I	σ φ 4 = 6	$\sigma_{X4} = 3$	$\sigma \phi 5 = 4$	σ x 5 = 4	
ハ十万円地域によるND/J	せん断	-	_	-	_	τ ℓ=	1	-	_	
組合せ応力			_	_		σ 1 ℓ=	42	σ 1 c = 40		

(3) 地震動のみによる一次応力と二次応力の和の変動値

()	C 14.		100	
(🖯	单位	•	ME	,,
(-1	- 14		1711	а

<u>、いた野ツかによる いた</u>	$U/I \subseteq U/U/U/I$	77年77を到底							(==/		
	地震の種類		弾性設計用地震動	Sd 又は静的震度			基準地	震動Ss			
	地震の方向	長手	:方向	横之	方向	長手	方向		横方向		
	応力の方向	周方向応力	軸方向応力	周方向応力 軸方向応力		周方向応力	軸方向応力	周方向応力	軸方向応力		
·	引張り	_	_	_	_	σ φз= 2	σ x 3 = 6	σ φ 3 = 2	σ x 3 = 6		
鉛直方向地震による応力	7100 9	_	_	_	_	$\sigma_{2 \phi 3} = 21$	$\sigma_{2 \times 3} = 10$	$\sigma_{2 \phi 3} = 21$	$\sigma_{2 \times 3} = 10$		
	せん断	-	_	_	_	τ d e =	1	τ d e =	軸方向応力		
	引張り	_	_	_	_	$\sigma_{\phi} = 6$	$\sigma_{x 4} = 3$	$\sigma_{\phi} = 4$	σ x 5 = 4		
水平方向地震による応力	JI JK J	_	_	_	_	$\sigma_{2\phi} = 6$	$\sigma_{2 \times 4} = 11$	$\sigma_{2 \phi 5} = 13$	$\sigma_{2 \times 5} = 7$		
	せん断	-	_	-	_	τ ϵ=	$\tau \ell = 1$		<u> </u>		
組合せ応力		-	_	_	_	σ ₂ ℓ=	68	σ 2 c =	78		

4.3.2 脚に生じる応力

(単位:MPa)

. 3.2 *****					
	地震の種類	弾性設計用地震動	IS d 又は静的震度	基準地質	震動Ss
	地震の方向	長手方向	横方向	長手方向	横方向
運転時質量による応力	曲げ	_	_	$\sigma_{s1} = 2$	$\sigma_{s1} = 2$
建料时貝里による心力	せん断	_	_	τ s 1 = 2	τ s 1 = 2
鉛直方向地震による応力	曲げ	_	_	σ s 2 = 2	σ s 2 = 2
	せん断	_	_	τ s 2 = 3	τ s 2 = 3
	曲げ	_	_	σ s 3 = 7	_
水平方向地震による応力	圧縮	_	_	_	σ s 4 = 1
	せん断	_	_	τ s 3 = 2	_
組合せ応力		_	_	σ s ℓ= 13	σ s c = 8

4.4 結論

4.4.1 固有周期

方向

水平方向 鉛直方向 (単位: s) 固有周期

(単位: s)

4.	4.	2	応力

(単位:MPa)

4.4.4 ルレノノ						(手匹・Ma)					
部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地類	長動Ss					
			算出応力	許容応力	算出応力	許容応力					
		一次一般膜	l	l	$\sigma \circ = 33$	S a = 248					
胴板	SUS304TP	SUS304TP	SUS304TP	SUS304TP	SUS304TP	SUS304TP	一次	ĺ	ĺ	$\sigma_1 = 42$	S a = 372
		一次+二次			$\sigma_2 = 78$	$S_a = 300$					
脚	SS400	組合せ			σ s = 13	$f_{\rm t} = 241$					

すべて許容応力以下である。

7. 引用文献

- (1) Bijlaard, P.P.: Stresses from Radial Loads and External Moments in Cylindrical Pressure Vessels, The Welding Journal, 34(12), Research Supplment, 1955.
- (2) Wichman, K.R. et al.: Local Stresses in Spherical and Cylindrical Shells due to External Loadings, Welding Research Council bulletin, March 1979 revision of WRC bulletin 107 / August 1965.

V-2-5-2-1-2 管の耐震性についての計算書

設計基準対象施設

目 次

1.	櫻	接要	• • •	• • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	楒	E 略系統	統図及び』	急瞰区	X]		•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•	•	•		•	•	2
	2. 1	概略	F 系統図	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	2
	2. 2	鳥瞰	烟	• •		•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	9
3.	計	算条	件 •	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	3. 1	計算	五方法	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	33
	3.2	荷重	直の組合せ	及び	許多	字応	ラナ	刀状	尺息	202			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	34
	3.3	設計	十条件	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	35
	3.4	材料	及び許容	応力			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60
	3.5	設計	·用地震力	ı	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
4.	解	科 結	果及び評値	西	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	62
	4.1	固有	「周期及び	設計	震馬	芝			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	62
	4.2	評価	 話果	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	92
	4. 2	2. 1	管の応力	評価	結男	艮			•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	92
	4. 2	2.2	支持構造	物評	価糸	吉果	=			•	•	•	•	•	•				•	•	•		•		•	•	•	•	•	•	•	•	•	95
	4. 2	2. 3	弁の動的	機能	維持	寺評	平征	五糸	吉昇	Ę			•	•	•				•	•	•	•	•		•	•	•		•			•	•	96
	4. 2	2.4	代表モデ	シルの	選兌	官紀	手果	見及	とて	が全	È-Ŧ	ララ	デノ	レク	つ言	平伯	田糸	吉月	Ę						•				•					97

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

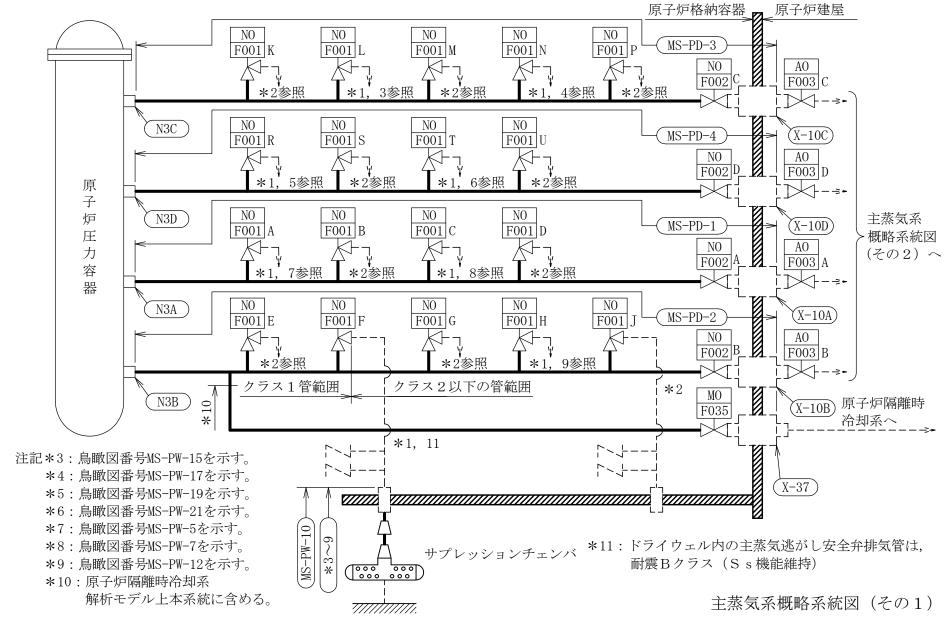
(1) 管

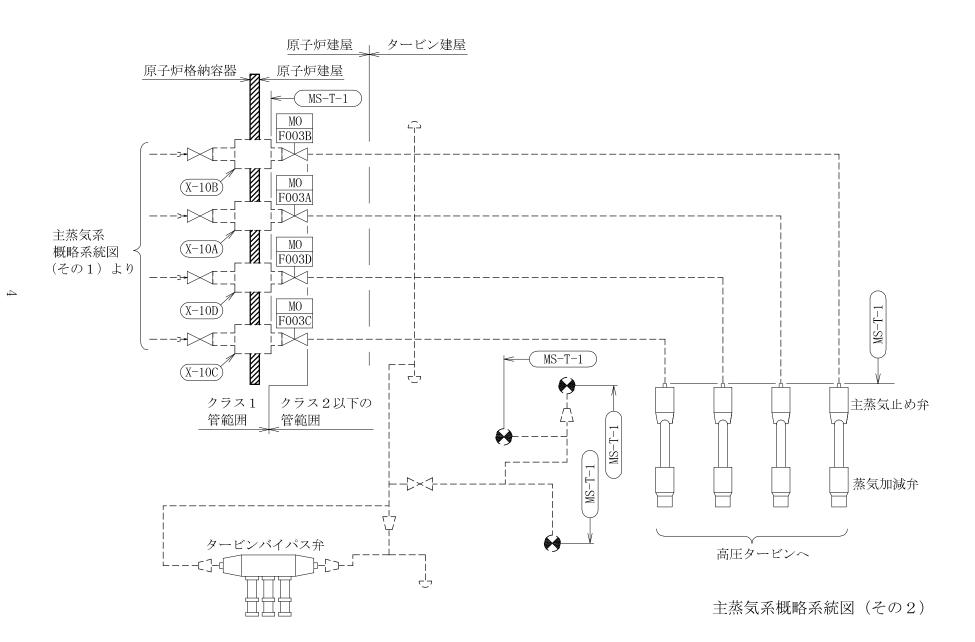
工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全16モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

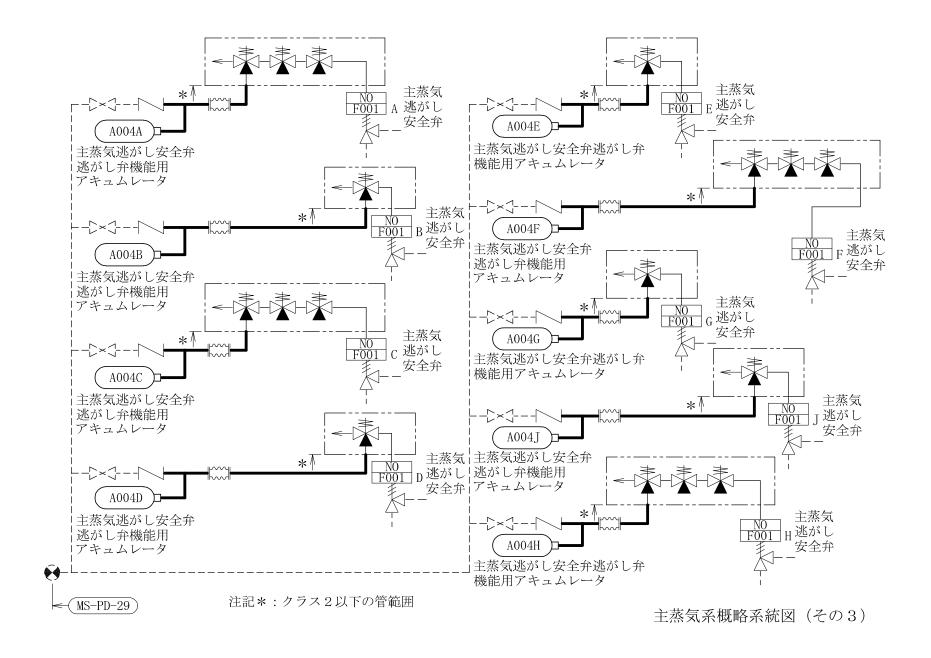
(2) 支持構造物

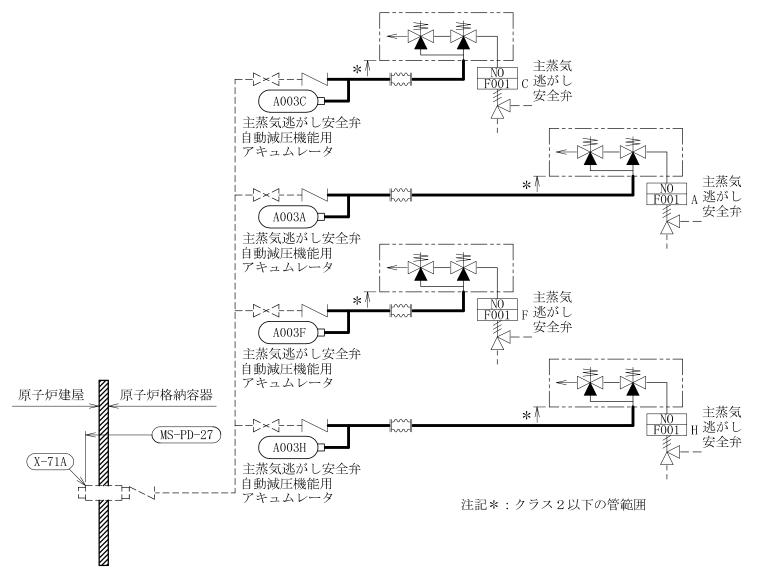
工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁

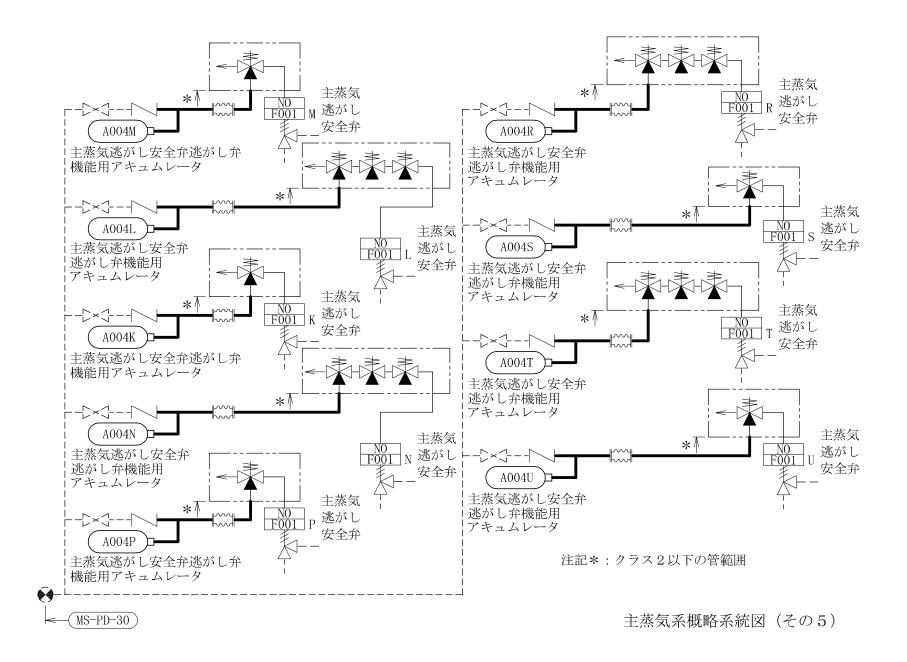

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

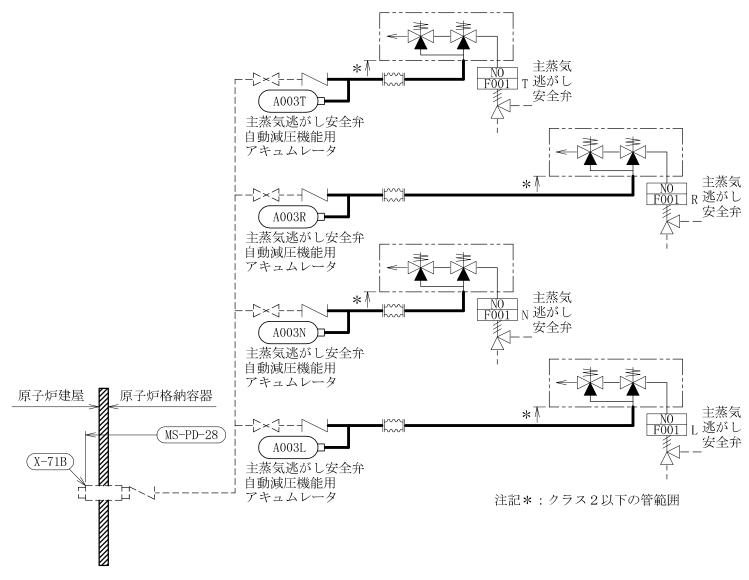

2. 概略系統図及び鳥瞰図


2.1 概略系統図


概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ



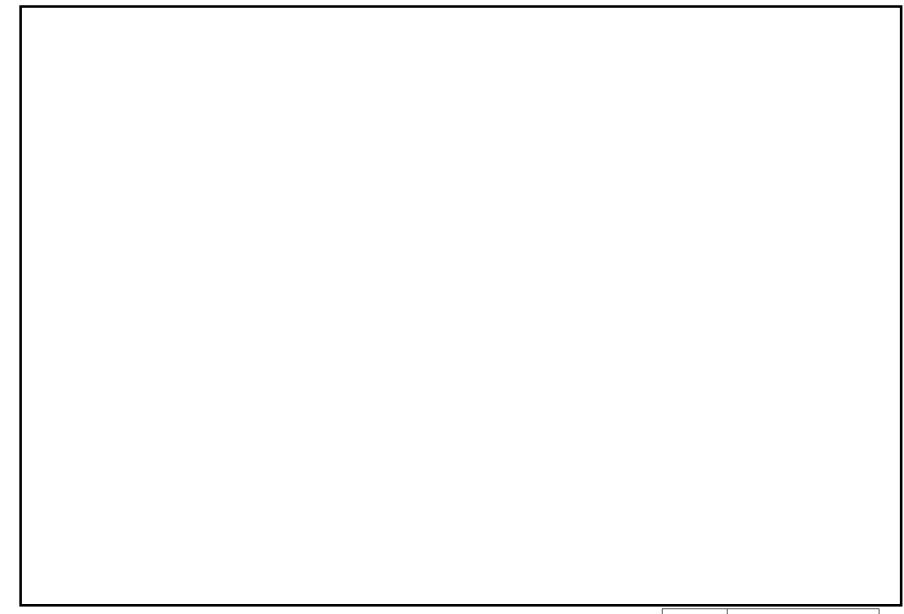


主蒸気系概略系統図 (その4)

 \sim

主蒸気系概略系統図 (その6)

2.2 鳥瞰図


鳥瞰図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)
] [スナッバ
∃ -√√-	ハンガ
] = 	リジットハンガ
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また,

ſ			
Į			
<u> </u>			
10			
- 1			
- 1			
- 1			
- 1			
ı			
- 1			
ı	鳥瞰図	MS-PD-1(1/5)	
	1 1 局賊凶 1	MO LD I(I/0)	

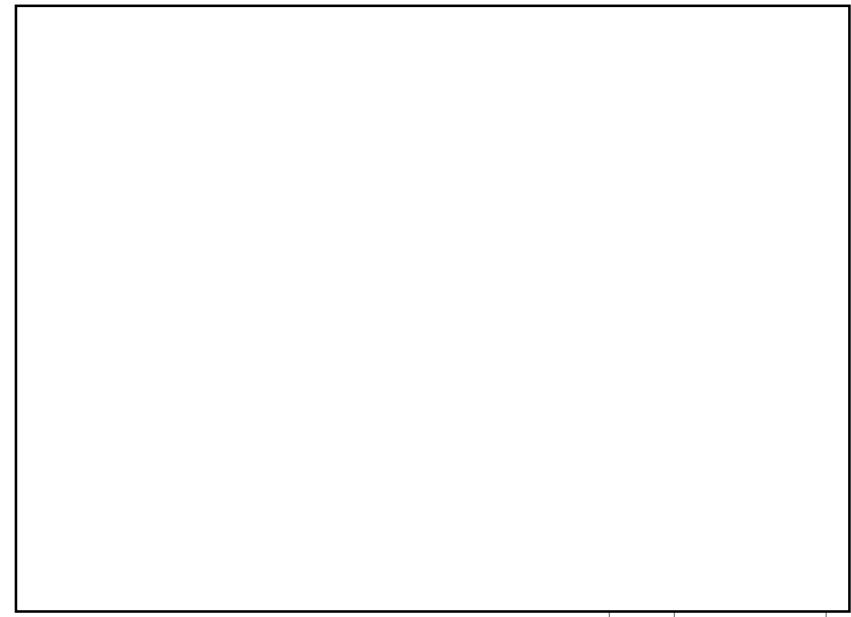
鳥瞰図 MS-PD-1(2/5)

12

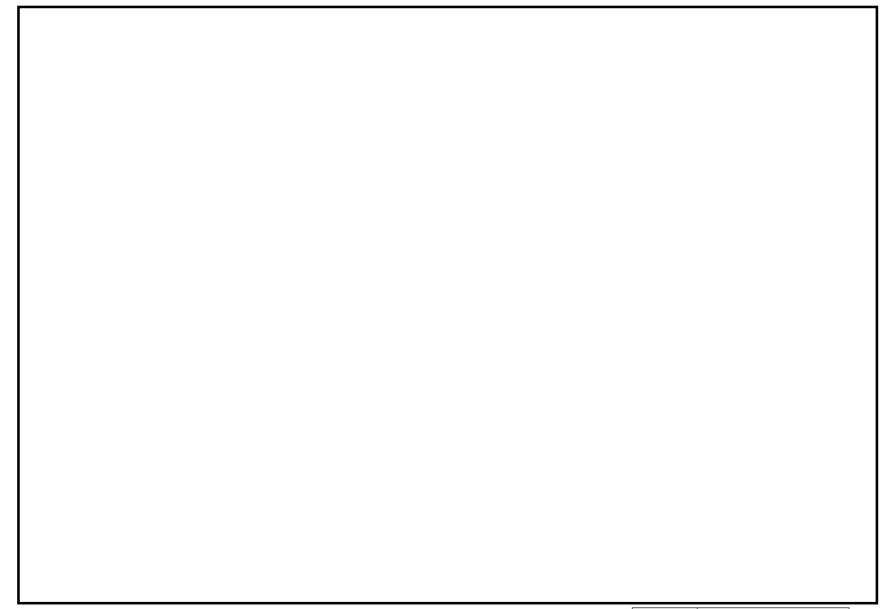
鳥瞰図 MS-PD-1(3/5)

13

鳥瞰図 MS-PD-1(4/5)

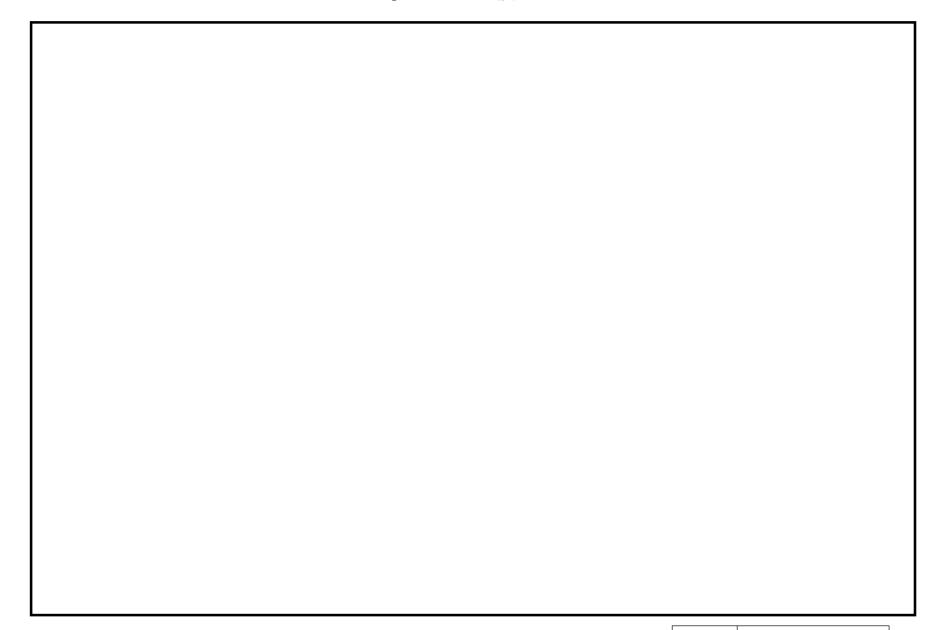

	自服网	MC DD 1 (E /E)	1
	鳥瞰図	MS-PD-1(5/5)	

<u>'</u>

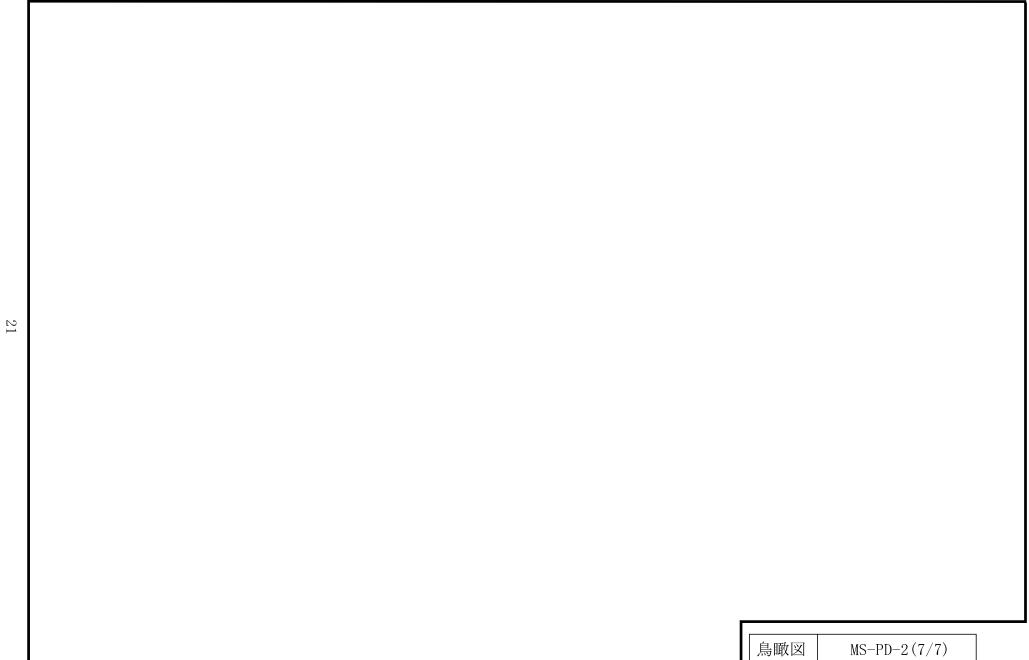

鳥瞰図 MS-PD-2(1/7)

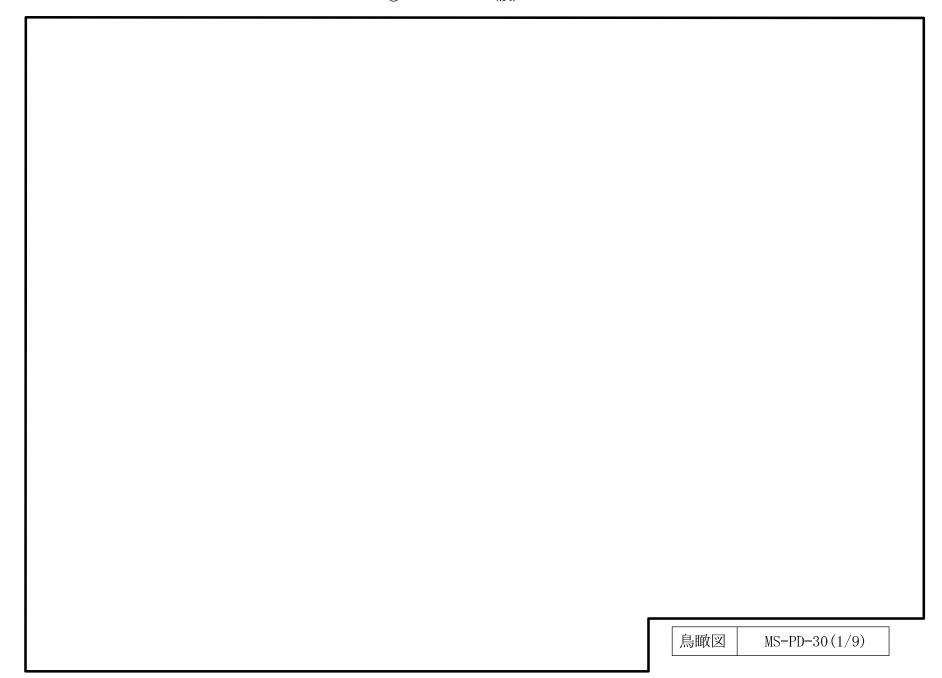
鳥瞰図 MS-PD-2(2/7)

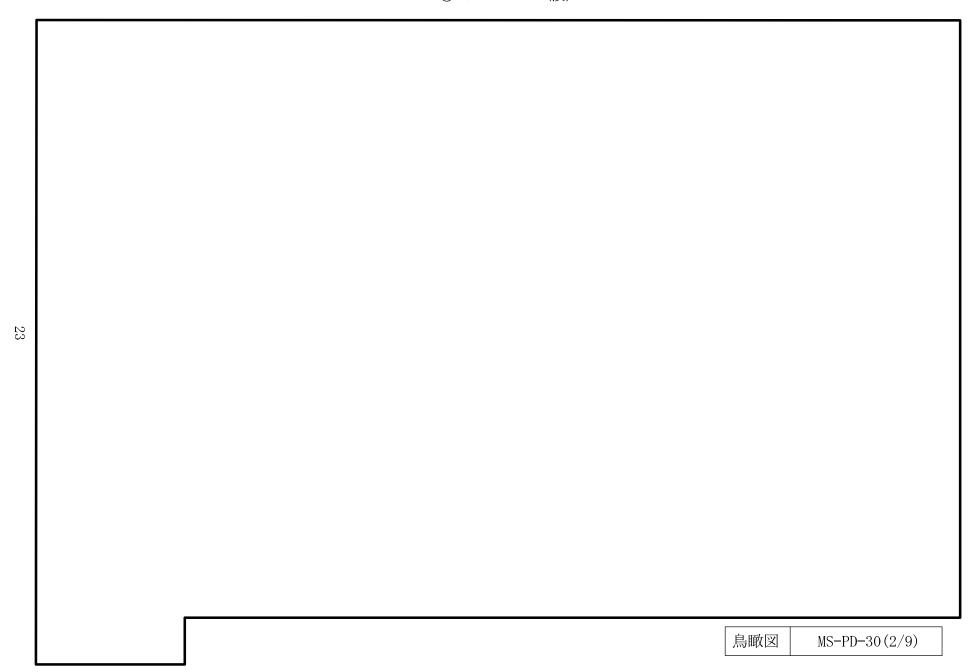
鳥瞰図 MS-PD-2(3/7)

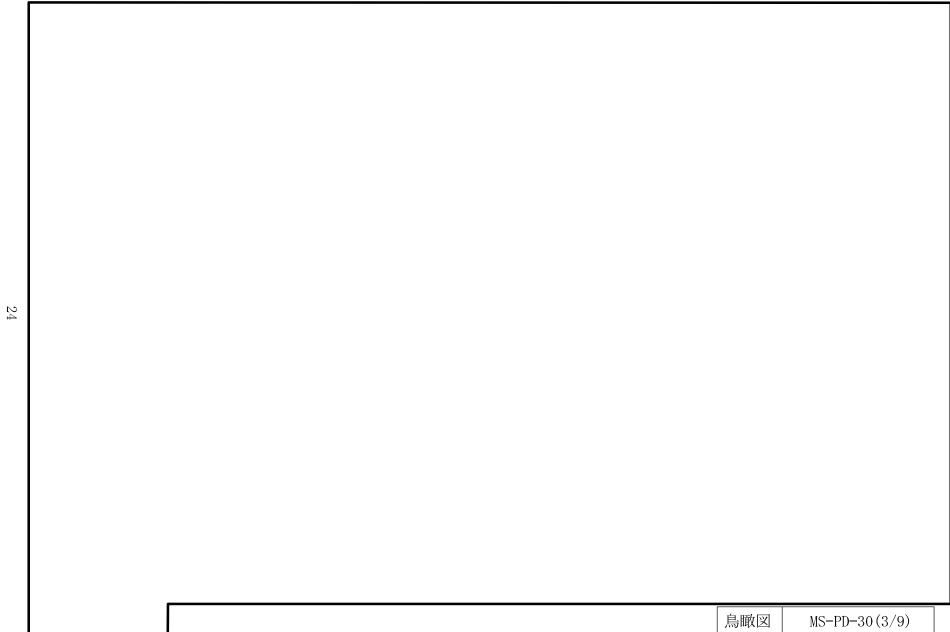


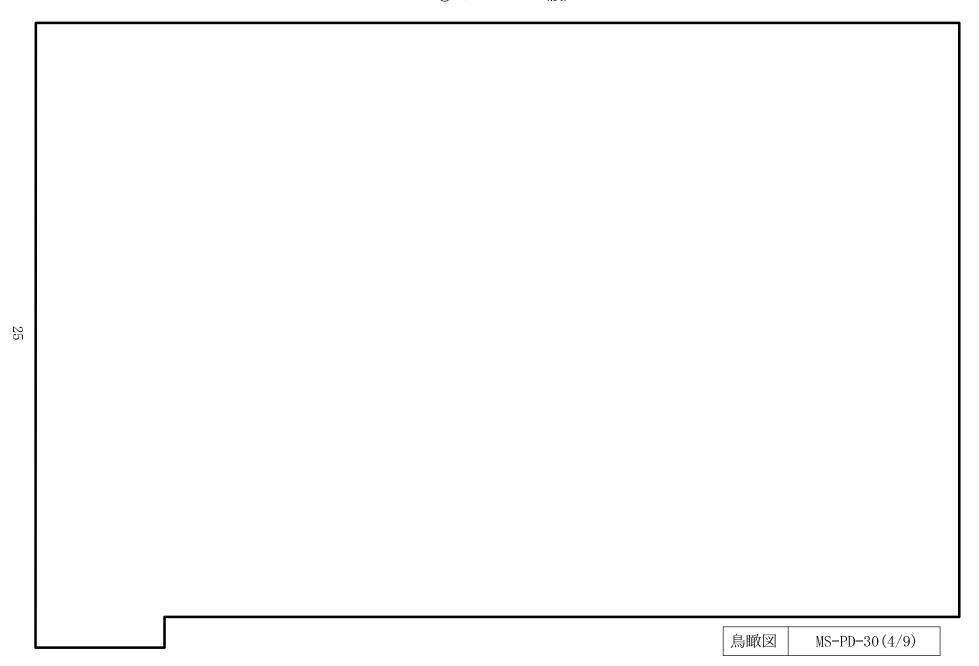
鳥瞰図 MS-PD-2(4/7)

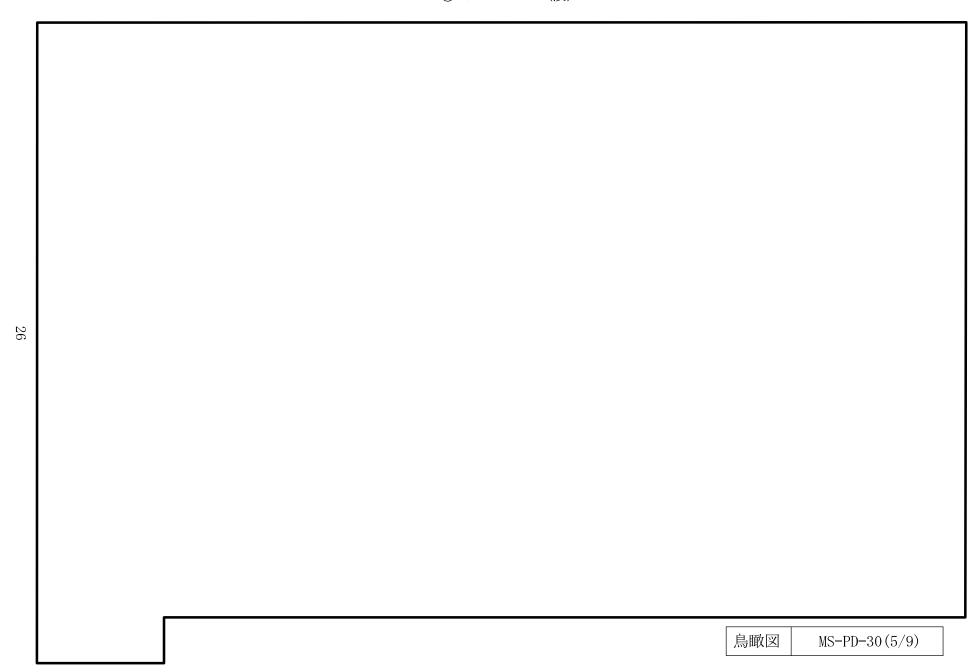


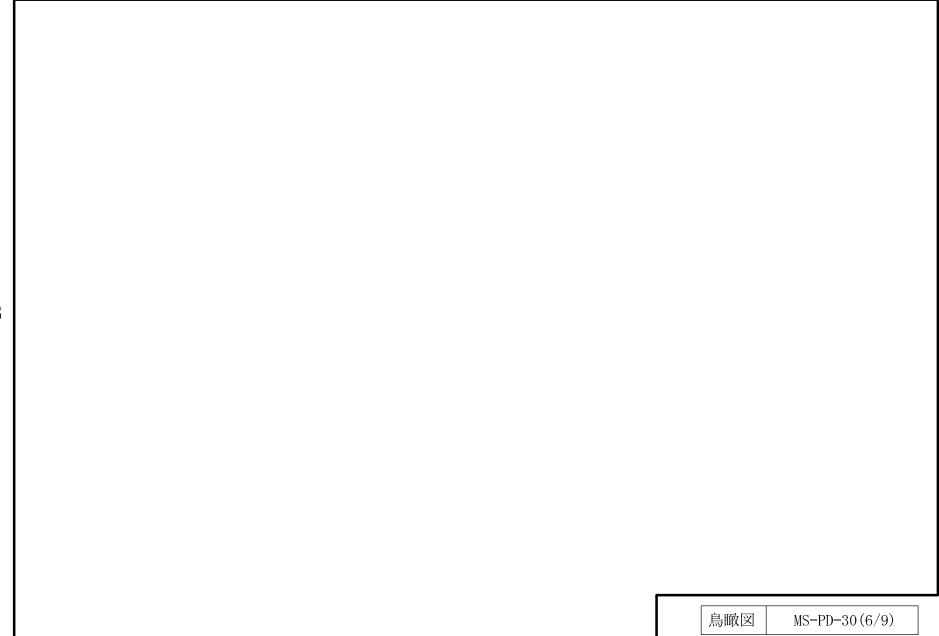

 \mathcal{G}

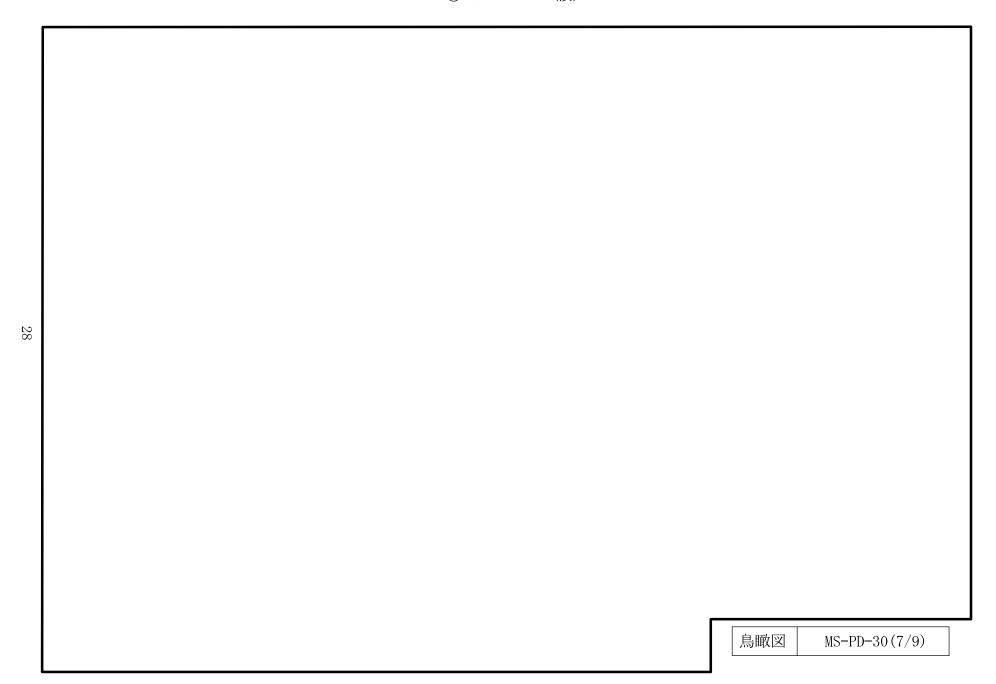

鳥瞰図 MS-PD-2(5/7)

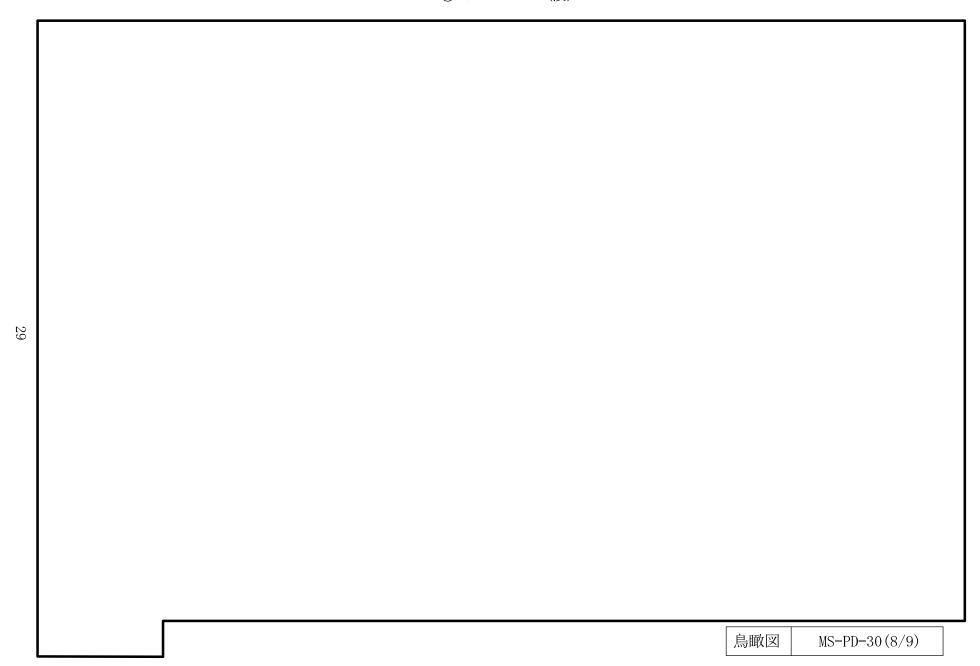


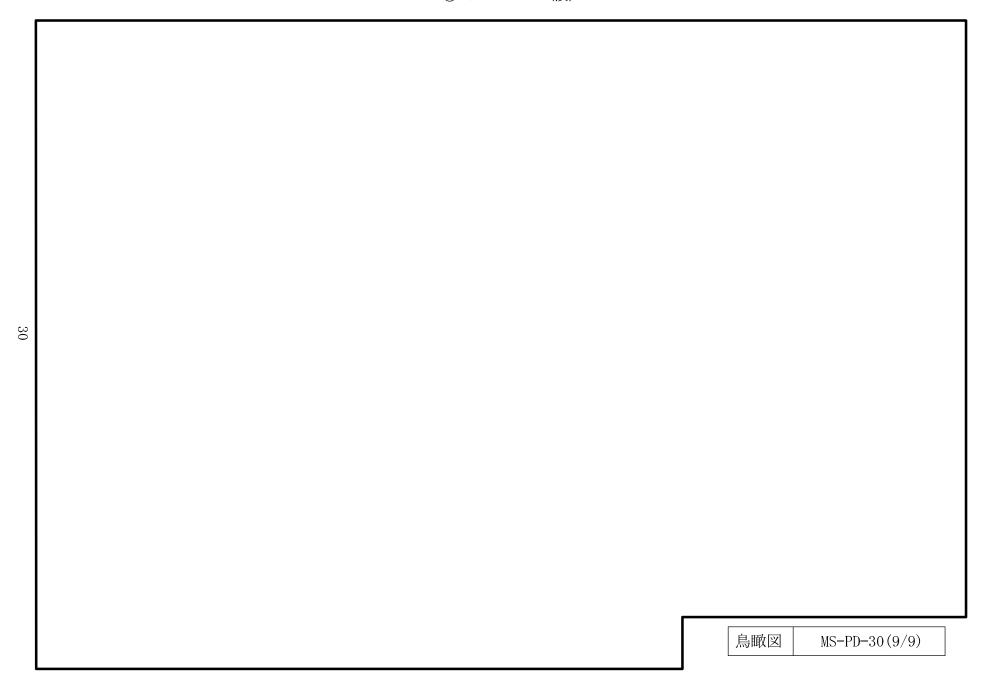

鳥瞰図 MS-PD-2(6/7)

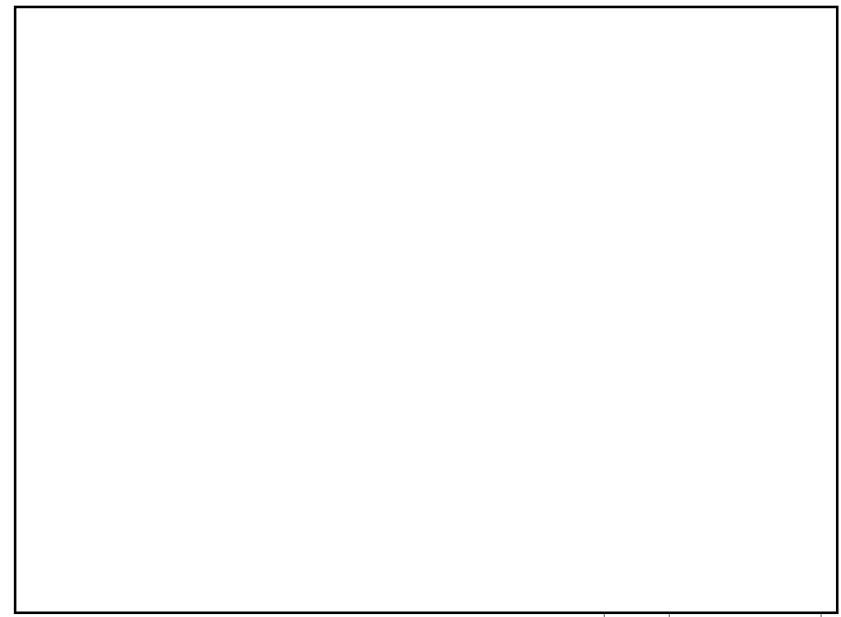












鳥瞰図 MS-PW-17

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

K7 ① V-2-5-2-1-2(設) R1

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類 ^{*1}	設備 分類	機器等 の区分	耐震 重要度分類	荷重の組合せ* ^{2,3}	許容応力 状態
原子炉冷却系統施設	原子炉冷却材の 循環設備	主蒸気系	DВ	_	クラス1管 クラス3管	S	I L+S d II L+S d IVL (L) +S d	III A S
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,7.7.10.2.10.10				I L+S s II L+S s	IV A S		
原子炉冷却系統施設	非常用炉心冷却 設備その他原子炉	原子炉隔離時 冷却系	DΒ	_	クラス1管	S	I L+S d II L+S d IV L (L) +S d	III A S
クドルがしが回り又	注水設備	ን የአሳሌ ተነ					I L + S s II L + S s	IV A S

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:運転状態の添字しは荷重, (L)は荷重が長期間作用している状態を示す。 *3:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

3.3 設計条件

鳥瞰図 MS-PD-1

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
日留与	対応する計画点	(MPa)	(℃)	(mm)	(mm)	重要度分		(MPa)
1	1N∼23	8.62	302	711. 2	35. 7	STS480	S	183880
0	10~102, 12~202	0.60	200	000 6	0.4.0	CEVCOD	C	105000
2	15~302, 17~402	8. 62	302	228.6	34. 3	SFVC2B	S	185880

設計条件

鳥瞰図 MS-PD-2

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百分	対応する計画点	(MPa)	(℃)	(mm)	(mm)	111 111 	重要度分類	(MPa)
1	1N~7	8.62	302	711. 2	35. 7	SFVC2B	S	185880
2	7~40	8.62	302	711. 2	35. 7	STS480	S	183880
	13~102, 17~202							
3	22~302, 26~402	8. 62	302	228. 6	34.3	SFVC2B	S	185880
	30~502							
4	5~601	8. 62	302	165. 2	14.3	SFVC2B	S	185880
5	601~623	8. 62	302	165. 2	14. 3	STS410	S	185880

設計条件

鳥瞰図 MS-PD-30

管番号	対ウナス部体内	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百亩万	対応する評価点	(MPa)	(℃)	(mm)	(mm)	1/1 1/1	重要度分類	(MPa)
	22~37, 40~42N							
	28~58N, 66~87							
	90~94N, 76~109N							
	117~147, 150~152N							
	127~158N, 166~189							
1	192~196N, 182~202N	1 77	1. 77	S	191800			
1	232~250, 253~257N	1.77	171	60.5	3.9	50530411	5	191800
	236~283N, 291~309							
	312~314N, 295~341N							
	349~383N, 356~390							
	393~397N, 405~421N							
	410~441, 444~446N							

設計条件

鳥瞰図 MS-PD-30

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
日田ク	対心する計画点	(MPa)	(℃)	(mm)	(mm)		重要度分類	(MPa)
1	454~485, 488~492N	1 77	171	CO F	2.0	CUCOOATD	S	101000
1	471~496N	1. 77	171	60. 5	3. 9	SUS304TP	3	191800
	37~3701, 3900~40							
	87~8701,8901~90							
	$147 \sim 1471, 1491 \sim 150$							
	$189 \sim 1891, 1911 \sim 192$							
2	250~2501, 2521~253	1.77	171	60. 5	6. 7	SUS304	S	191800
	309~3091, 3111~312							
	$390\sim3901,3921\sim393$							
	441~4411, 4431~444							
	485~4851, 4871~488							

設計条件

鳥瞰図 MS-PW-7

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
	対応する計画点	(MPa)	(℃)	(mm)	(mm)	重要度分		(MPa)
1	1N~3	3. 73	250	267. 4	15. 1	SUS316TP	S	194000
2	3 ∼ 13	3. 73	250	267. 4	12. 7	SUS316TP	S	194000
3	14~Q01	3. 73	250	318. 5	14.3	SUS316TP	S	194000

設計条件

鳥瞰図 MS-PW-17

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	外径 厚さ		耐震	縦弾性係数
日田万	対応する計画点	(MPa)	(℃)	(mm)	(mm)	材料 重要度分類		(MPa)
1	1N∼3	3. 73	250	267. 4	15. 1	SUS316TP	S	194000
2	3~13	3. 73	250	267. 4	12. 7	SUS316TP	S	194000
3	14~Q01	3. 73	250	318. 5	14. 3	SUS316TP	S	194000

配管の付加質量

質	量	対応する評価点
		$1N\sim 3, 4\sim 1800, 22\sim 23$
		3~4, 1800~22
		$10\sim102, 12\sim202, 15\sim302, 17\sim402$

配管の付加質量

質量		対応する評価点
		$1N\sim1001,3001\sim34,3401\sim3501,3901\sim40$
		$1001\sim3001, 34\sim3401, 3501\sim3901$
		$13\sim102, 17\sim202, 22\sim302, 26\sim402, 30\sim502$
		$5\sim603,608\sim611,613\sim6151,6171\sim6182,6211\sim623$
		$603\sim608,611\sim613,6151\sim6171,6182\sim6211$

フランジ部の質量

質量		対応する評価点
		102, 202, 302, 402
		107, 207, 307, 407

フランジ部の質量

質量		対応する評価点
		102, 202, 302, 402, 502
		107, 207, 307, 407, 507

フランジ部の質量

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
質量	対応する評価点
	37, 42N, 87, 94N, 147, 152N, 189, 196N, 250, 257N, 309, 314N
	390, 397N, 441, 446N, 485, 492N

弁部の寸法

鳥瞰図 MS-PD-1

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
23~24		-		24~25		-	
25~26				24~27			
102~103				103~104			
104~105				105~106			
103~107				202~203			
203~204				204~205			
205~206				203~207			
302~303				303~304			
304~305				305~306			
303~307				402~403			
403~404				404~405			
405~406				403~407			

弁部の寸法

鳥瞰図 MS-PD-2

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
40~41				41~42		•	
42~43				41~44			
102~103				103~104			
104~105	[]			105~106			
103~107				202~203			
203~204				204~205			
205~206				203~207			
302~303				303~304			
304~305				305~306			
303~307				402~403			
403~404				404~405			
405~406				403~407			
502~503				503~504			
504~505				505~506			
503~507				623~624			
624~625				625~626			
624~627							

弁部の寸法

鳥瞰図 MS-PD-30

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
21~22				65~66			
116~117				165~166			
231~232				290~291			
348~349				404~405			
453~454							

弁部の質量

質量	対応する評価点	質量	対応する評価点
	23, 27		24
	25		26
	103, 203, 303, 403		105, 205, 305, 405
	106, 206, 306, 406		

弁部の質量

質量	対応する評価点	質量	対応する評価点
	40, 44		41
	42		43
	103, 203, 303, 403, 503		105, 205, 305, 405, 505
	106, 206, 306, 406, 506		625
	626		

弁部の質量

質量	対応する評価点	質量	対応する評価点
	21~22, 65~66		116~117, 165~166
	231~232, 290~291		348~349, 404~405
	453~454		_

鳥瞰図 MS-PD-1

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
人 付 点 留 ケ	X	Y	Z	X	Y	Z
** 14 **						
** 16 **						
** 1801 **						
21						

鳥瞰図 MS-PD-2

古华占桑 旦	各軸之	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(回り回転ばね定数(N·mm/rad)		
支持点番号	X	Y	Z	X	Y	Z		
** 15 **				_				
20								
** 2301 **								
** 36 **								
39								
** 607 **								
610								
612								
612								
618								
621								
** 621 **								
** 625 **								
** 625 **								
				<u> </u>				

鳥瞰図 MS-PD-30

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
义村总备方	X	Y	Z	X	Y	Z
30				•		
42N						
51						
58N						
82						
86						
** 86 **						
94N						
103						
109N						
** 109N **						
** 109N **						
129						
136						
140						
** 140 **						
144						
** 144 **						
152N						
158N						
** 158N **						
** 158N **						

鳥瞰図 MS-PD-30

鳥瞰	図 MS-PD-30)				
支持点番号	各軸	方向ばね定数((N/mm)	各軸回り回	転ばね定数(N·mm/rad)
文 14 W.田.立	X	Y	Z	X	Y	Z
177				<u> </u>		
184						
** 184 **						
188						
** 188 **						
196N						
202N						
** 202N **						
** 202N **						
240						
247						
** 247 **						
257N						
265						
269						
277						
** 277 **						
283N						
** 283N **						
** 283N **						
301						
<u> </u>						

鳥瞰図 MS-PD-30

古齿上来旦	<u>MS-PD-30</u> 各軸	方向ばね定数(N/mm)	各軸回り回	転ばね定数(N·mm/rad)
支持点番号	X	Y	Z	X	Y	Z
308						
** 308 **						
314N						
322						
326						
334						
** 334 **						
341N						
** 341N **						
dut. O.4.1Ni dut.						
** 341N **						
359						
365						
373						
** 373 **						
383N						
** 383N **						
** 383N **						
385						
397N						
421N						
** 421N **						

鳥瞰図 MS-PD-30

古体占来早	各軸方	向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
支持点番号 —	X	Y	Z	X	Y	Z
** 421N **					·	
425						
432						
** 432 **						
420						
438						
446N						
463						
475						
481						
492N						
496N						
** 496N **						
** 496N **						
 						

鳥瞰図 MS-PW-7

支持点番号	各軸	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
文付小留 ケ	X	Y	Z	X	Y	Z
1N						
** 301 **						
7						
** 7 **						
** 21 **						
** 21 **						
	-					_

鳥瞰図 MS-PW-17

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り回転ばね定数(N·mm/rad)		
人的小田子	X	Y	Z	X	Y	Z
1N						
** 301 **						
7						
** 7 **						
** 21 **						
** 21 **						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力(MPa)				
171 177	(°C)	S m	Sу	S u	S h	
STS480	302	138	_	_	_	
SFVC2B	302	125	_	_	_	
STS410	302	122	_	_	_	
SUS304TP	171	_	150	413	113	
SUS304	171	_	150	413	113	
SUS316TP	250	_	139	432	125	

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
MS-PD-1	原子炉遮蔽壁		
MS-PD-2	原子炉遮蔽壁		
MS-PD-30	原子炉遮蔽壁		
MS-PW-7	原子炉本体基礎		
MS-PW-17	原子炉本体基礎		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 MS-PD-1

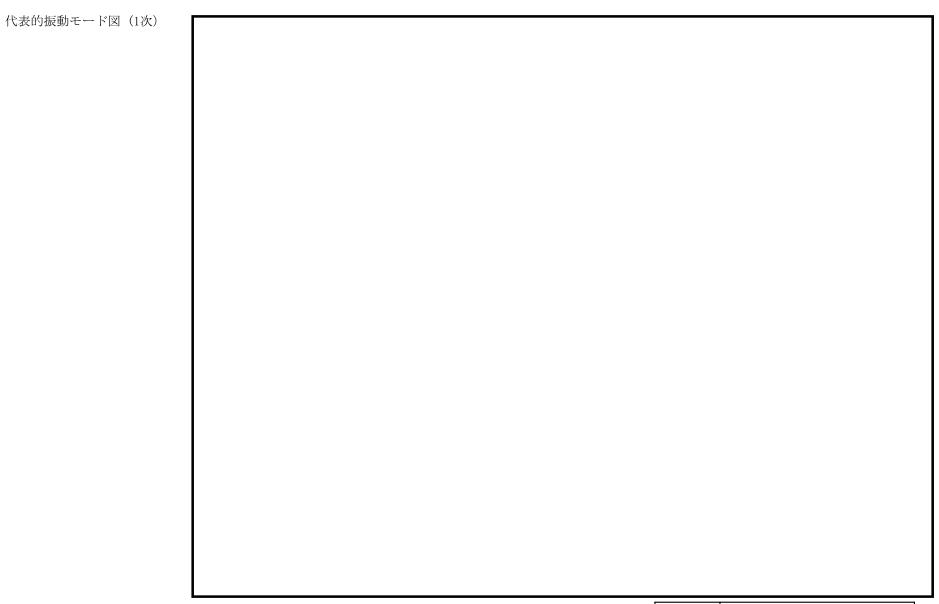
適用す	る地震動等	5	Sd及び静的震	度		Ss	
モード	固有周期	応答水 ^ュ	平震度*1	応答鉛直震度*1	応答水	平震度*1	応答鉛直震度*1
IV	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
9 次							
動白	勺震度*2]					
静白	的震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

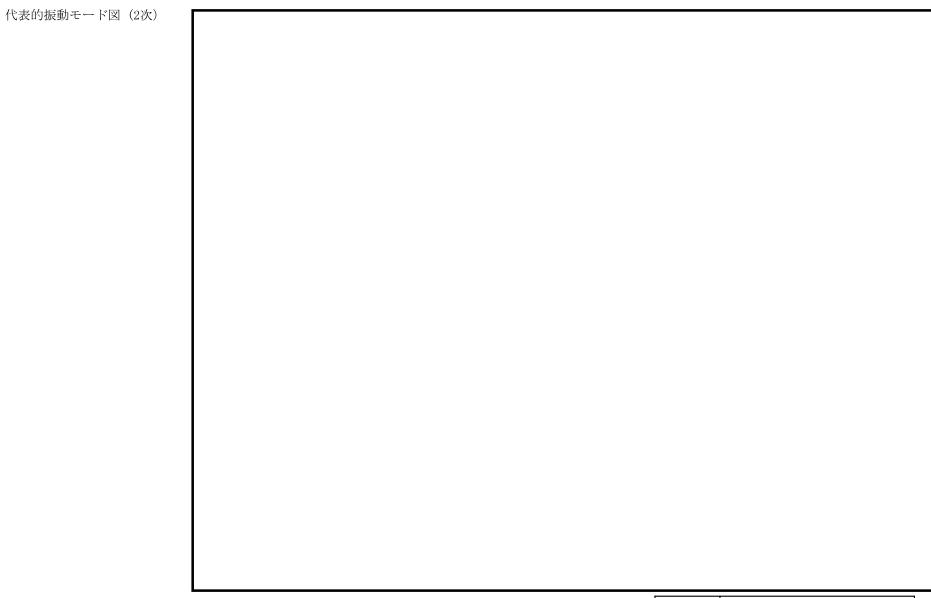
*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C V より定めた震度を示す。

各モードに対応する刺激係数


鳥瞰図 MS-PD-1

モード	固有周期		刺激係数*	
	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				


注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

39

<u>6</u>

代表的振動モード図 (3次)	
[(XII)][(XII)][(V)]	

9

固有周期及び設計震度

鳥瞰図 MS-PD-2

適用すん	る地震動等	Sd及び静的震度		S s			
モード	」 固有周期	応答水平	平震度*1	応答鉛直震度*1	応答水-	平震度*1	応答鉛直震度*1
	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
17 次							
18 次							
動的	的震度*2						
静的	为震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

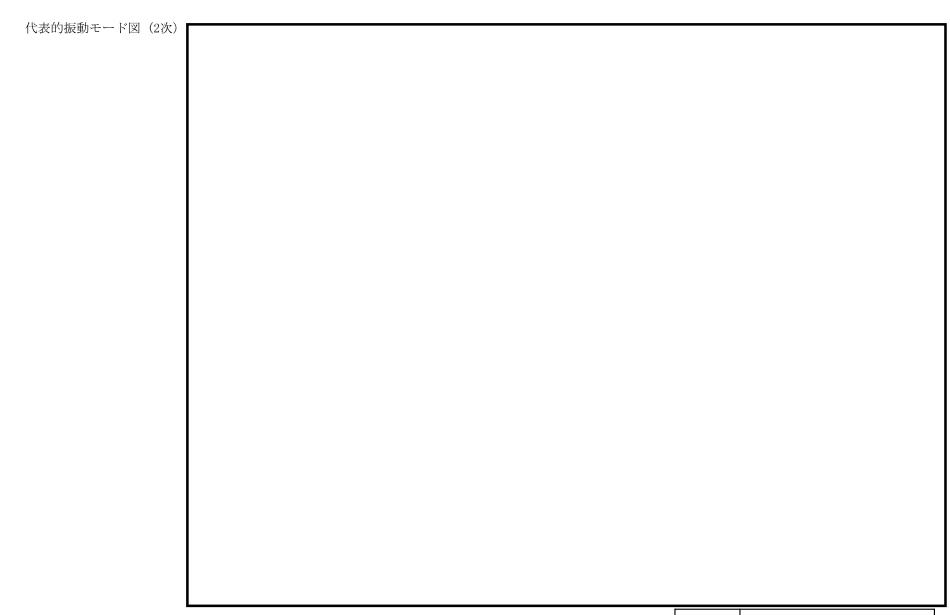
*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C vより定めた震度を示す。

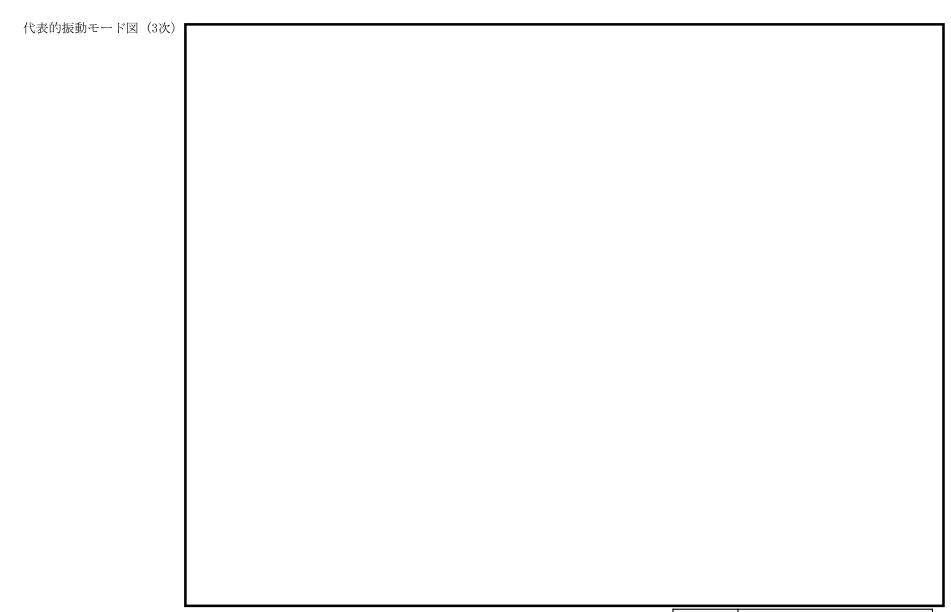
5

鳥瞰図 MS-PD-2

モード	固有周期	刺激係数*				
4-1	(s)	X方向	Y方向	Z方向		
1 次						
2 次						
3 次						
4 次						
5 次						
6 次						
7 次						
8 次						
17 次						


注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図


振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次)		

2

 $\frac{7}{2}$

73

鳥瞰図 MS−PD−2

固有周期及び設計震度

鳥瞰図 MS-PD-30

適用すん	る地震動等	S	Sd及び静的震度		S s		
モード	固有周期	応答水平	平震度*1	応答鉛直震度*1	応答水-	平震度*1	応答鉛直震度*1
بر ــــــــــــــــــــــــــــــــــــ	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次				·			
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
39 次							
40 次							
動的	为震度*2						
静的	的震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C vより定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 MS-PD-30

モード	固有周期		刺激係数*				
	(s)	X方向	Y方向	Z 方向			
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
8 次							
39 次							

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

鳥瞰図]

MS - PD - 30

 $\hat{\alpha}$

K7 ① V-2-5-2-1-2(設) R1

固有周期及び設計震度

鳥瞰図 MS-PW-7

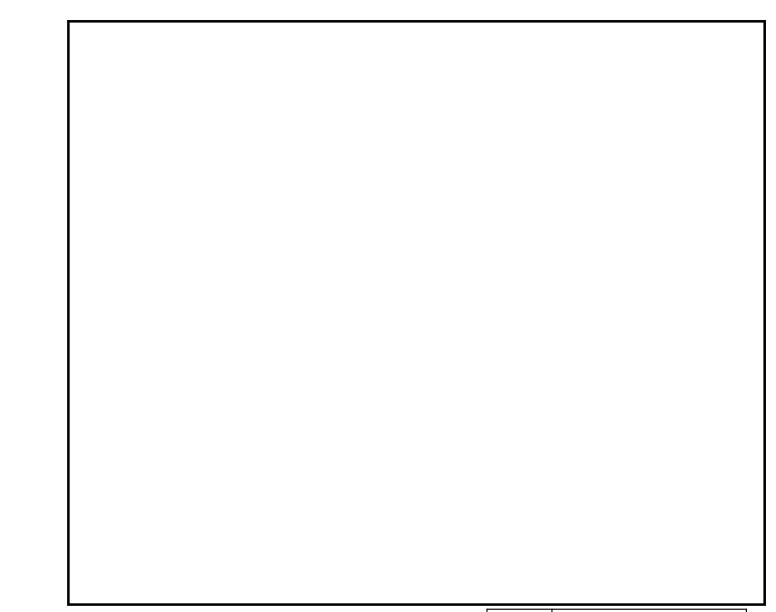
適用す	る地震動等	Sd及び静的震度		S s			
モード	固有周期	応答水≦	平震度*1	応答鉛直震度*1	応答水	平震度*1	応答鉛直震度*1
-[,],	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次							
2 次							
3 次							
4 次							
5 次							
6 次							
動白	为震度*2						
静白	为震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又はSs 地震動に基づく設計用最大応答加速度より定めた震度を示す。

*3:3.6C I 及び1.2C vより定めた震度を示す。

各モードに対応する刺激係数


鳥瞰図 MS-PW-7

モード	[固有周期	刺激係数*				
		(_S)	X方向	Y方向	Z方向		
1 次							
2 次							
3 次							
4 次							
5 次							

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

 ∞

代表的振動モード図(1次)

鳥瞰図 MS−PW−7

 ∞

代表的振動モード図(2次)

鳥瞰図 MS−PW−7

代表的振動モード図(3次)	1

 ∞

鳥瞰図 MS−PW−7

K7 ① V-2-5-2-1-2(設) R1

固有周期及び設計震度

鳥瞰図 MS-PW-17

適用す	る地震動等	Sd及び静的震度		S s			
モード 固有周期	応答水学	平震度*1	応答鉛直震度*1	応答水	平震度*1	応答鉛直震度*1	
	(s)	X方向	Z方向	Y方向	X方向	Z方向	Y方向
1 次						-	
2 次							
3 次							
4 次							
5 次							
6 次							
7 次							
動的	内震度*2						
静白	为震度*3						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

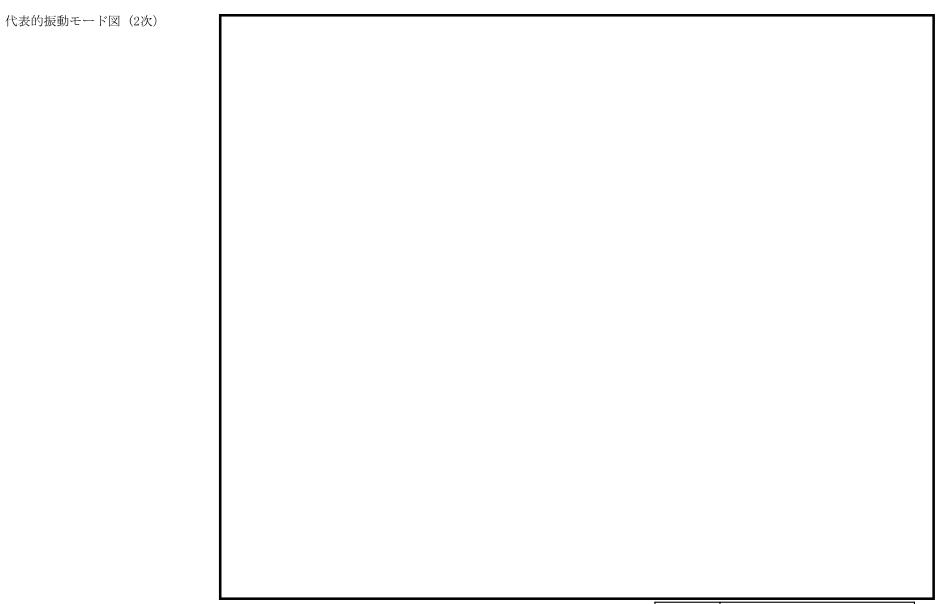
*3:3.6C I 及び1.2C vより定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 MS-PW-17

モード	固有周期		刺激係数*		
	(_S)	X方向	Y方向	Z方向	
1 次					
2 次					
3 次					
4 次					
5 次					
6 次					

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。


代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

代表的振動モード図(1次)	

 ∞

鳥瞰図 MS-PW-17

9

鳥瞰図 MS-PW-17

代表的振動モード図(3次)	
人农的旅勤工工下区(3次)	

9

鳥瞰図 MS-PW-17

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス1管

						一次応 (MF			一次+二次点 (MPa)		疲労評価
鳥瞰図	許容	最大応力	配管要素	 最大応力 区分	一次応力	許容応力	ねじり [*] 応力	許容	一次+二次 応力	許容応力	疲労累積
	状態	評価点	名称		Sprm (Sd)	2. 25 S m		ルムノノ 0.55 S m	かいノノ	かいノナ	係数
					Sprm (Ss)	3 S m	S t (S s)	0.73 S m	Sn (Ss)	3 S m	U+USs
MS-PD-1	III a S	15	TEE	Sprm (Sd)	240	281	_	_	_	_	_
MS-PD-1	III A S	12	TEE	St (Sd)	_	_	62	68	_	_	_
MS-PD-1	IV A S	15	TEE	Sprm (Ss)	311	375	_		_	—	_
MS-PD-1	IV A S	12	TEE	S t (S s)		_	93	91	_	_	_
MS-PD-2	IV a S	30	TEE	Sn(Ss)	_	_		_	598	375	0. 4557
MS-PD-2	IV A S	30	TEE	U+USs	_	_		_	_	_	0. 4557

注記*: ねじり応力が許容応力状態IIIASのとき0.55Sm, 又は許容応力状態IVASのとき0.73Smを超える場合は、曲げ+ねじり応力評価を実施する。

下表に示すとおりねじりによる応力が許容応力状態ⅢASのとき0.55Sm, 又は許容応力状態ⅣASのとき0.73Smを超える評価点のうち曲げとねじりによる応力は許容値を満足している。

			一次见	芯力評価	
			(MPa)	
鳥瞰図	評価点	ねじり応力	許容応力	曲げとねじり応力	許容応力
		St (Sd)	0.55 S m	$S_t + S_b (S_d)$	1.8S m
		St(Ss)	0.73 S m	$S_t + S_b (S_S)$	2.4 S m
MS-PD-1	12	_	_	_	_
MO LD I	12	93	91	224	300

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

クラス2以下の管

				一次応力記	平価(MPa)	一次+二次応	力評価(MPa)	疲労評価
鳥瞰図	許容応力	最大応力	最大応力	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	状態	評価点 	区分	Sprm (Sd)	Sy*			
				Sprm (Ss)	0.9S u	Sn (Ss)	2 S у	US s
MS-PW-7	III A S	7	Sprm (Sd)	133	150	_		_
MS-PW-17	IV A S	7	Sprm (Ss)	178	388		<u>—</u>	_
MS-PD-30	IV A S	30	S n (S s)	_	_	289	300	_

注記*: オーステナイト系ステンレス鋼及び高ニッケル合金については、Syと1.2Shのうち大きい方の値とする。

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価	結果
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
SNM-MS-P019	メカニカルスナッバ	SMS-40A-100	V-2-1-12 「	配答 ひが去	431	600
RO-RCIC-P002-1	ロッドレストレイント	RSA 3	V =2=1=12 持構造物の ついて 参則	耐震計算に	20	52
SH-MS-P005	スプリングハンガ	VSL2F-21X(A)(B)	アンマ・C」 参り	lt.	193	2×128

支持構造物評価結果(応力評価)

							支持,	点荷重				評価結果	1
支持構造物 番号	種類	型式	材質	温度 (℃)	D	 支力(kN	·)	モーノ	メント (kN·m)	応力	計算応力	許容 応力
					F _X	F _Y	F _Z	M_X	$M_{ m Y}$	M_Z	分類	ルレノノ (MPa)	ルレフリ (MPa)
RE-MS-P010	レストレイント	パイプバンド	STPT370 SS400	302	655	425	0				引張圧縮	82	90

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能		西用加速度 [*] 8m/s ²)	機能確認 (×9.3	済加速度 8m/s ²)		評価結果 Pa)
			水平	鉛直	水平	鉛直	計算応力	許容応力
B21-F002B	主蒸気隔離弁	α (Ss)	4.5	5. 3	10. 0	6. 2	_	
B21-F002C	主蒸気隔離弁	α (Ss)	5.8	3. 3	10. 0	6. 2	_	
B21-F001K	主蒸気逃がし安全弁	α (Ss)	8. 4	1.9	9. 6	6. 1	_	_
B21-F001R	主蒸気逃がし安全弁	弁 α (Ss)	8.2	3. 5	9. 6	6. 1	_	_
E51-F035	止め弁	β (Ss)	4. 7	2. 1	6. 0	6.0	_	

注記*:機能維持評価用加速度は、打ち切り振動数を30Hzとして計算した結果を示す。

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(クラス1管)

			許容応	力状態	III a S						i	許容応	力状態	IV a S					
			-	一次応力	ı			-	一次応力	ı			一次	+二次応	:力*			疲労評価	
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	- 疲労 - 累積 - 係数	代表
1	MS-PD-1	15	240	281	1. 17	0	15	15 311 375 1			0	15	510	375	0. 73	_	12	0.3094	
2	MS-PD-2	30	203	 		30	294	375	1.27	_	30	598	375	0.62	0	30	0. 4557	0	
3	MS-PD-3	11	177	281	1.58	_	11	255	375	1.47	_	11	479	375	0. 78	_	11	0. 2578	
4	MS-PD-4	10	199	281	1.41	_	10	269	375	1.39	_	10	540	375	0.69	_	14	0. 2835	

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

代表モデルの選定結果及び全モデルの評価結果 (クラス2以下の管)

			許容応	力状態	III a S						Ī	許容応	力状態	IV a S					
			_	一次応力	·			-	一次応力				一次	+二次応	力*			疲労評価	
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	MS-PD-27	114N	54	150	2.77		114N	84	371	4.41	_	114N	143	300	2.09	_			_
2	MS-PD-28	114N	81	150	1.85		114N	142	371	2.61		114N	269	300	1.11	_			_
3	MS-PD-29	328	73	150	2.05		327	121	371	3.06		467	229	300	1.31	_			_
4	MS-PD-30	30	97	150	1.54		30	157	371	2.36		30	289	300	1.03	\circ			_
5	MS-PW-5	1N	111	150	1. 35		1N	122	388	3. 18		7	89	278	3. 12	_			_
6	MS-PW-7	7	133	150	1. 12	\circ	7	166	388	2.33		7	128	278	2. 17	_			_
7	MS-PW-10	Q01	89	150	1.68		6	108	388	3. 59		6	86	278	3. 23	—			_
8	MS-PW-12	7	120	150	1. 25		7	149	388	2.60	_	7	116	278	2.39	_	1		_
9	MS-PW-15	Q01	98	150	1.53		7	116	388	3. 34		7	88	278	3. 15	_			_
10	MS-PW-17	7	131	150	1. 14		7	178	388	2. 17	\circ	7	184	278	1.51	—			_
11	MS-PW-19	Q01	99	150	1.51	_	Q01	108	388	3. 59	_	6	91	278	3.05				_
12	MS-PW-21	1N	104	150	1.44		7	121	388	3. 20		7	89	278	3. 12	_			_
13	MS-T-1	5	71	198	2. 78	_	5	82	377	4. 59	_	140	314	396	1. 26	—	_	_	_

注記*:ⅢASの一次+二次応力の許容値はIVASと同様であることから、地震荷重が大きいIVASの一次+二次応力裕度最小を代表とする。

重大事故等対処設備

目 次

1.		概	要	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.		概	烙系 統	統図及	ぎに	脚	図			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2
	2. 1	l	概略	系統図]		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	2
	2. 2	2	鳥瞰	図	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•					•	8
3.		計算	算条值	'牛		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•		•	26
	3. 1	l	計算	方法		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	26
	3. 2	2	荷重	この組合	せ	及て	が許	容	応	ナ	力制	广息	757			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
	3. 3	3	設計	条件		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	28
	3. 4	1	材料	及び許	容	芯力	J			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	48
	3. 5	5	設計	用地震	力			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	49
4.		解材	折結り	果及び記	評価	í		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•		•	50
	4. 1	l	固有	周期及	び	設計	震	度	Ē			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•		•	50
	4. 2	2	評価	結果		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•			•		•	68
	4	1. 2.	1	管の応	力	評価	T結	果				•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	68
	4	1. 2.	2	支持構	造	物評	平価	i結	ī果	ļ			•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	71
	4	1. 2.	3	弁の動	的	幾쉮	皀維	持	評	祖	后糸	吉見	艮			•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	72
	4	1. 2.	4	代表モ	デ	レの)選	定	注 結	ī果	と及	とて	バタ	È4	ニラ	デカ	V0	つ言	平信	田糸	吉与	艮								•	•					•	73

1. 概要

本計算書は、V-2-1-14 「計算書作成の方法 添付資料-6 管の耐震性についての計算書作成の基本方針」(以下「基本方針」という。)に基づき、管、支持構造物及び弁が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

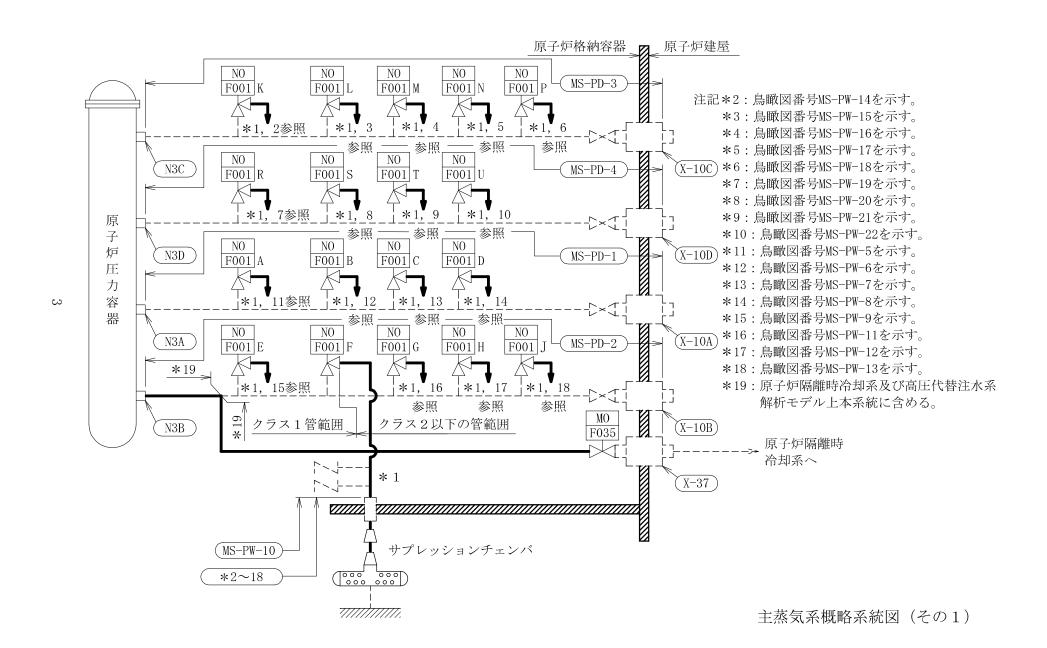
(1) 管

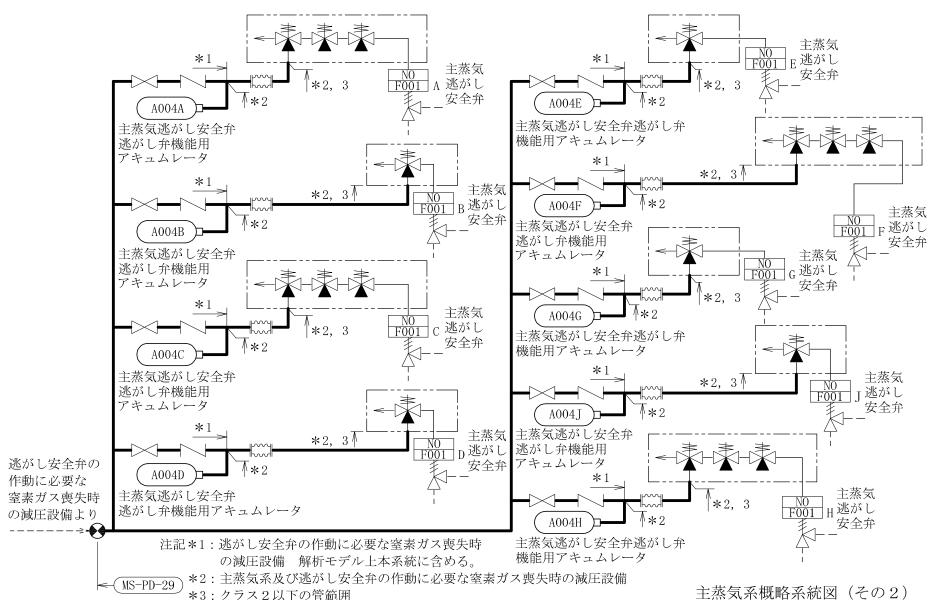
工事計画記載範囲の管のうち、各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また、全26モデルのうち、各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図、計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4に記載する。

(2) 支持構造物

工事計画記載範囲の支持点のうち,種類及び型式単位に反力が最大となる支持点の評価結果を代表として記載する。

(3) 弁


機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要求弁を代表として評価結果を記載する。

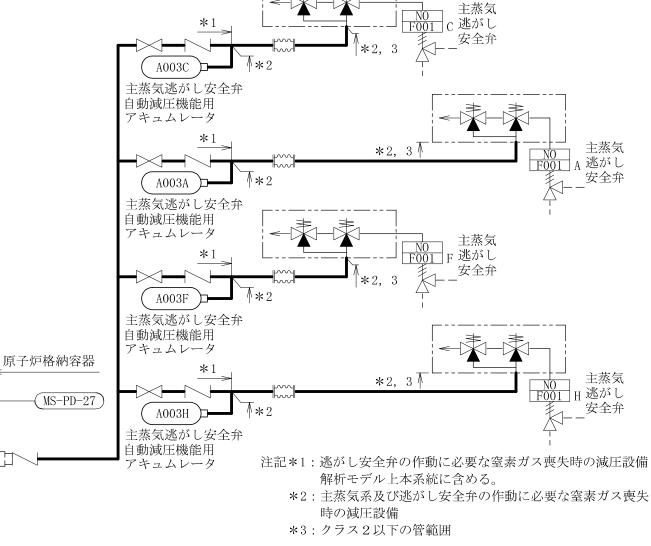

2. 概略系統図及び鳥瞰図

2.1 概略系統図

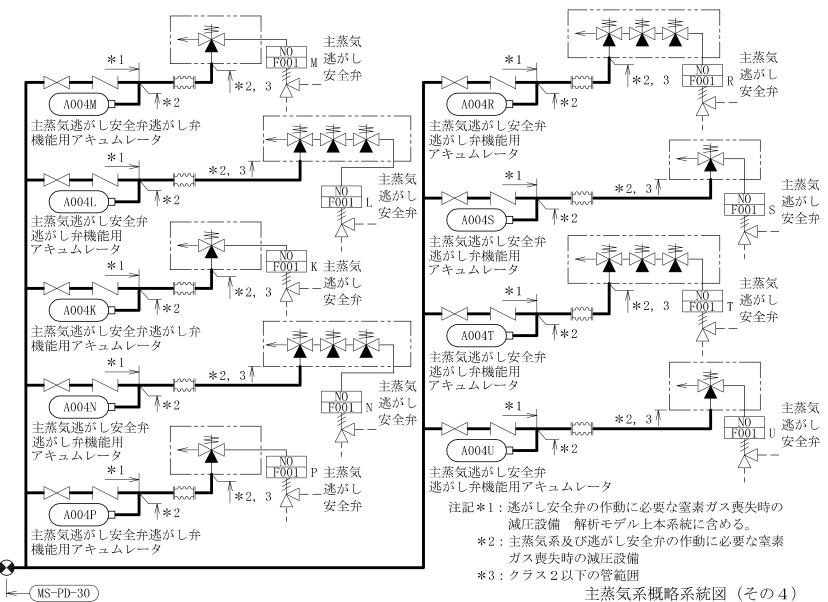
概略系統図記号凡例

記号	内容
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管
(細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号
•	アンカ

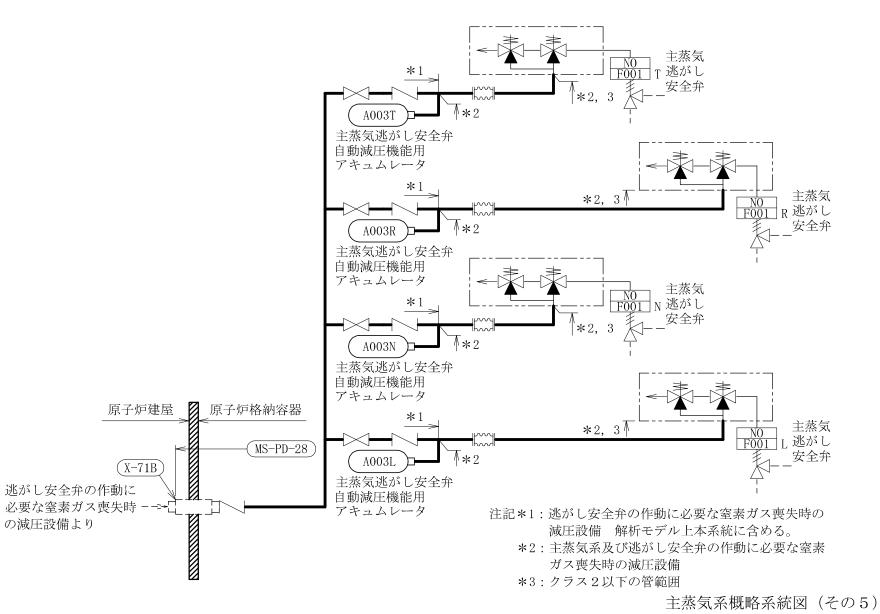
4


原子炉建屋

(X-71A)

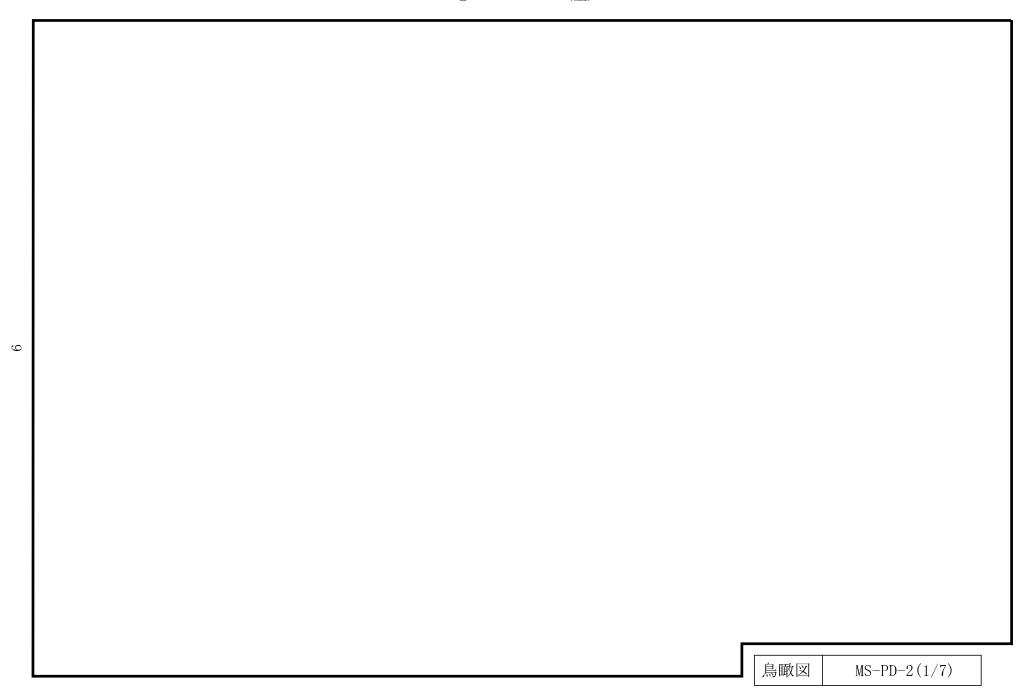

逃がし安全弁の作動に

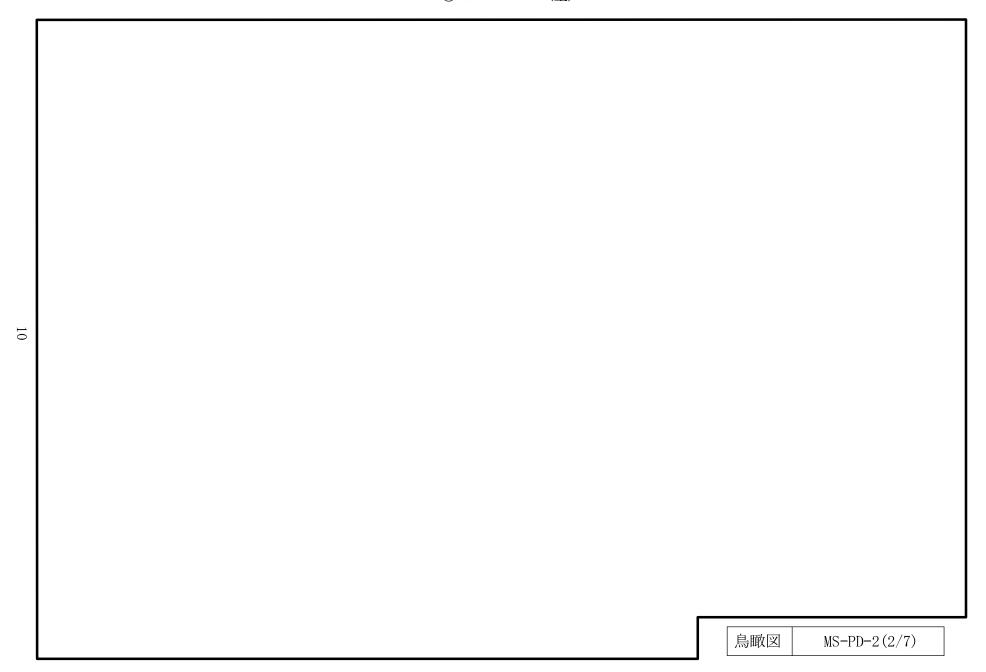
の減圧設備より

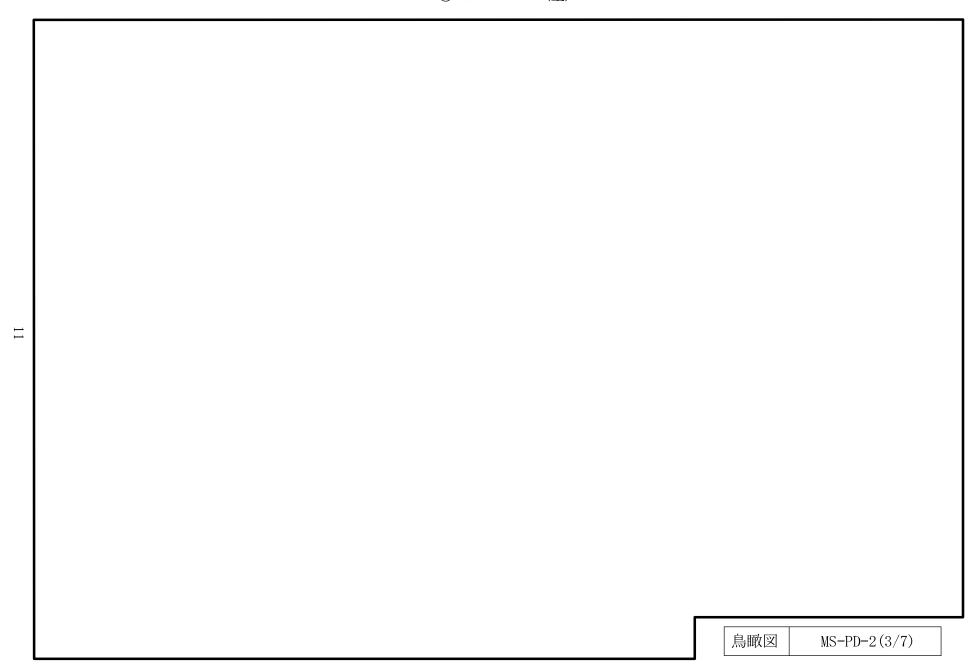

必要な窒素ガス喪失時 -->-

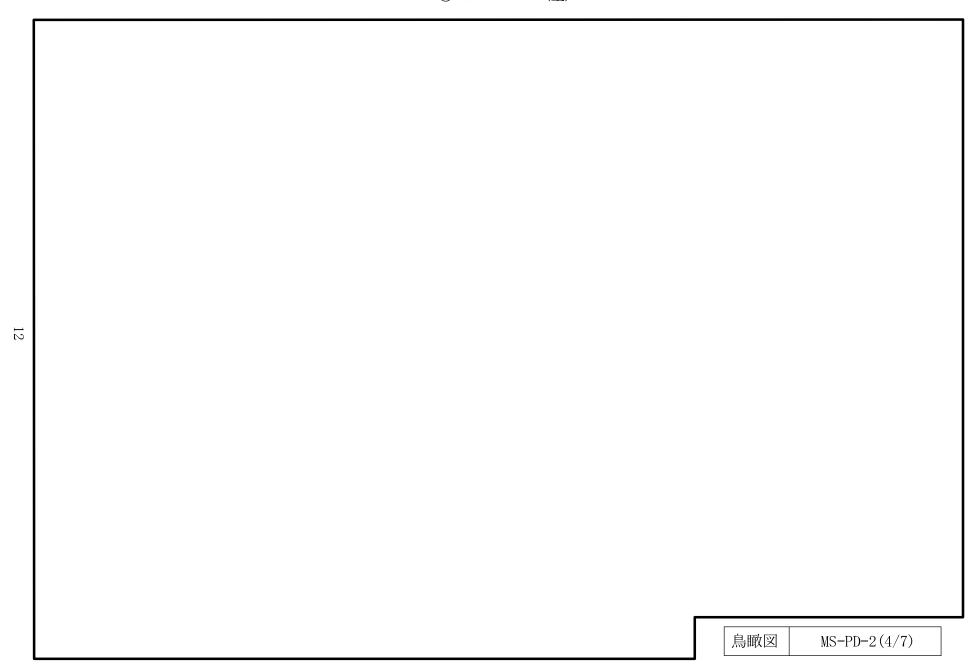
主蒸気系概略系統図(その3)

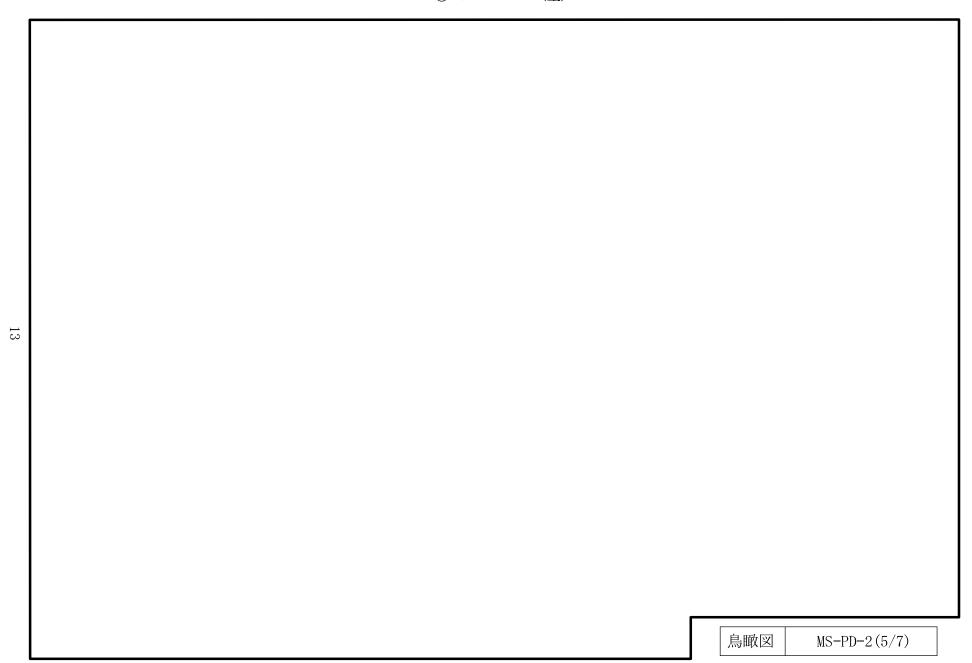
逃がし安全弁の 作動に必要な 窒素ガス喪失時 の減圧設備より

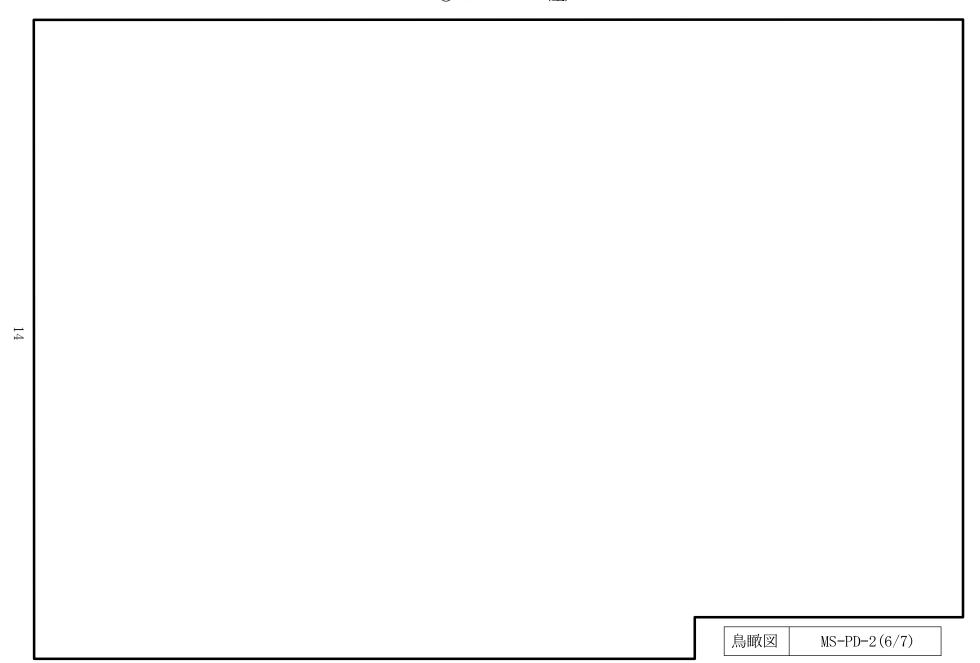


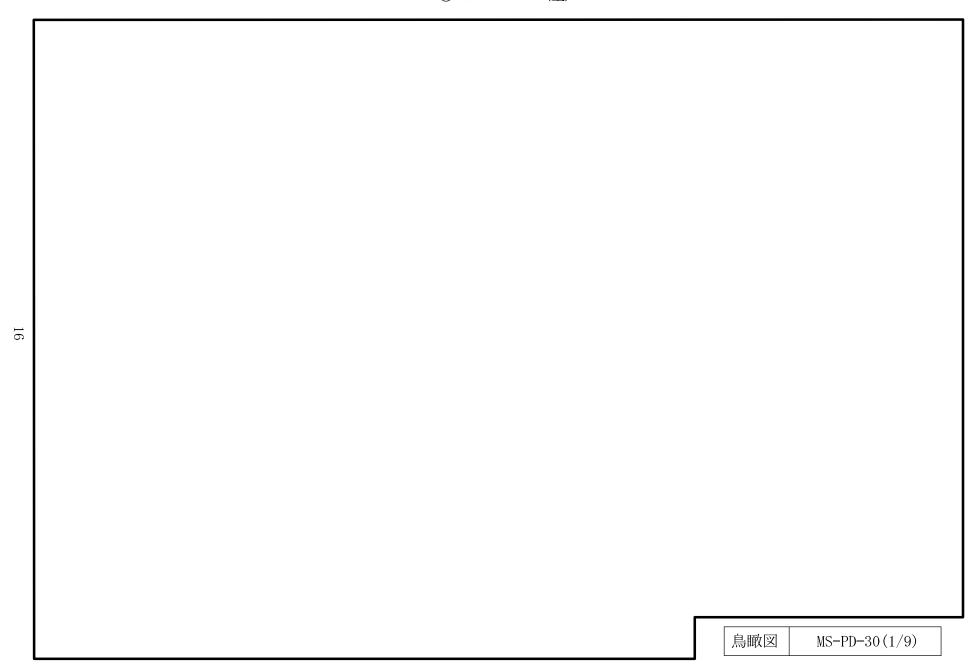

 \neg

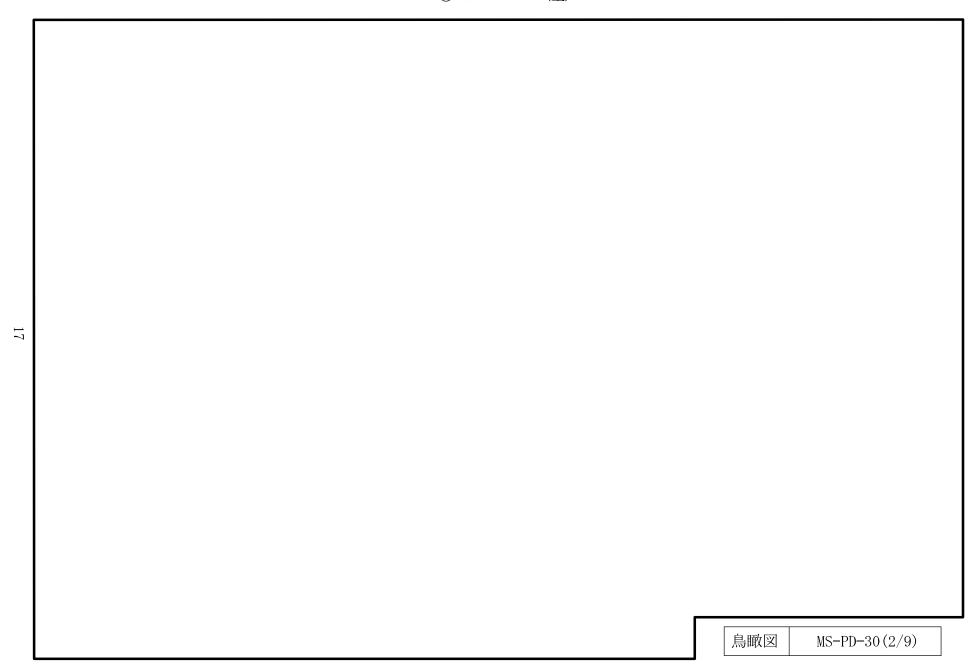

2.2 鳥瞰図

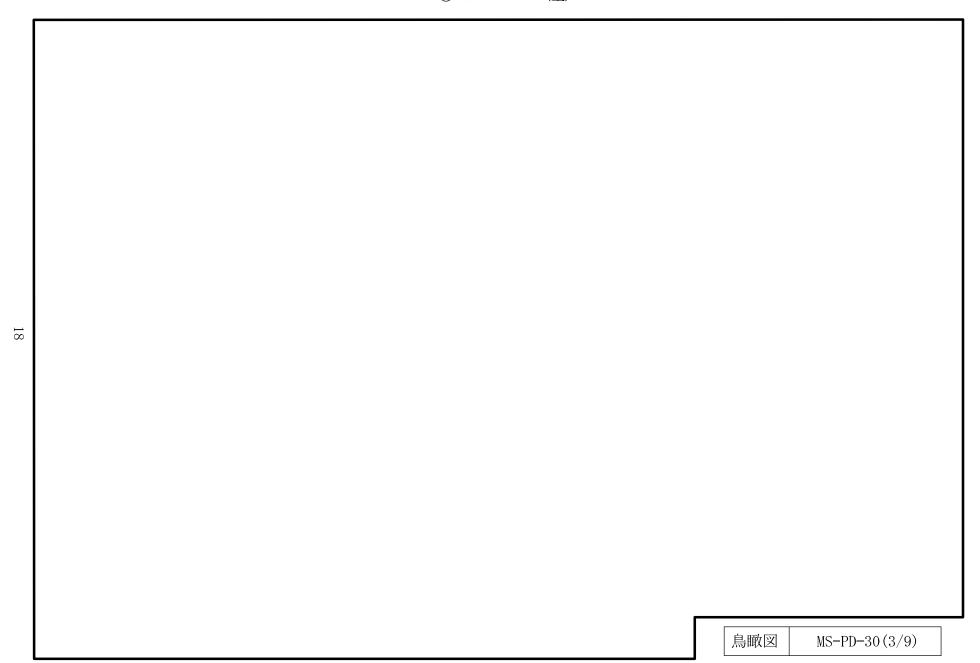

鳥瞰図記号凡例

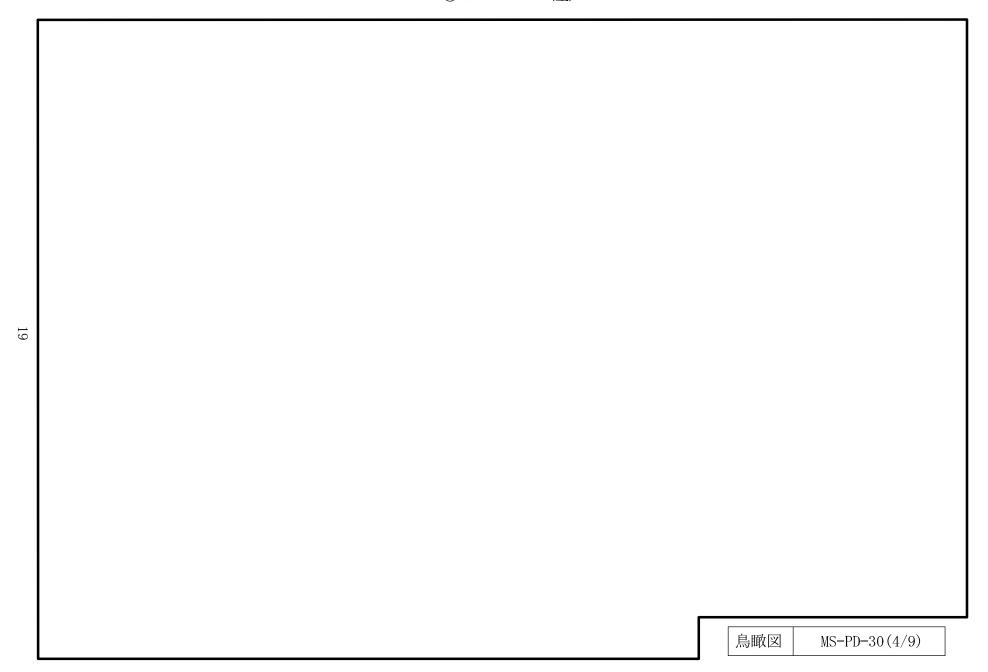

記号	内容	
(太線)	工事計画記載範囲の管のうち、本計算書記載範囲の管	
———— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管	
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管	
•	質点	
•	アンカ	
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分 を示す。スナッバについても同様とする。)	
1	スナッバ	
∃ -√√-	ハンガ	
] = 	リジットハンガ	
*	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また, 内に変位量を記載する。) 注1:鳥瞰図中の寸法の単位はmmである。	

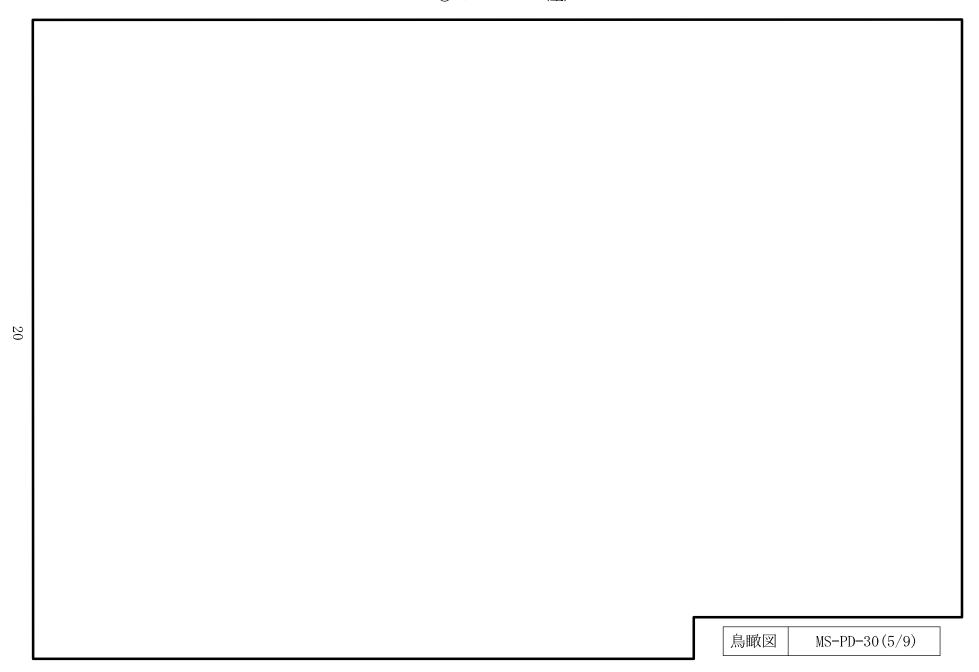


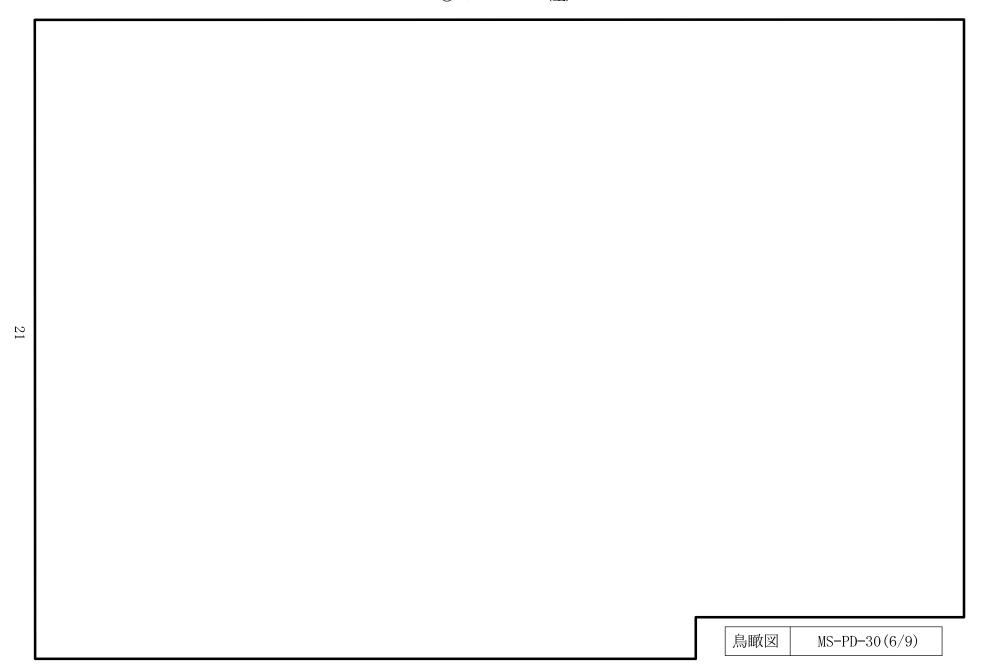


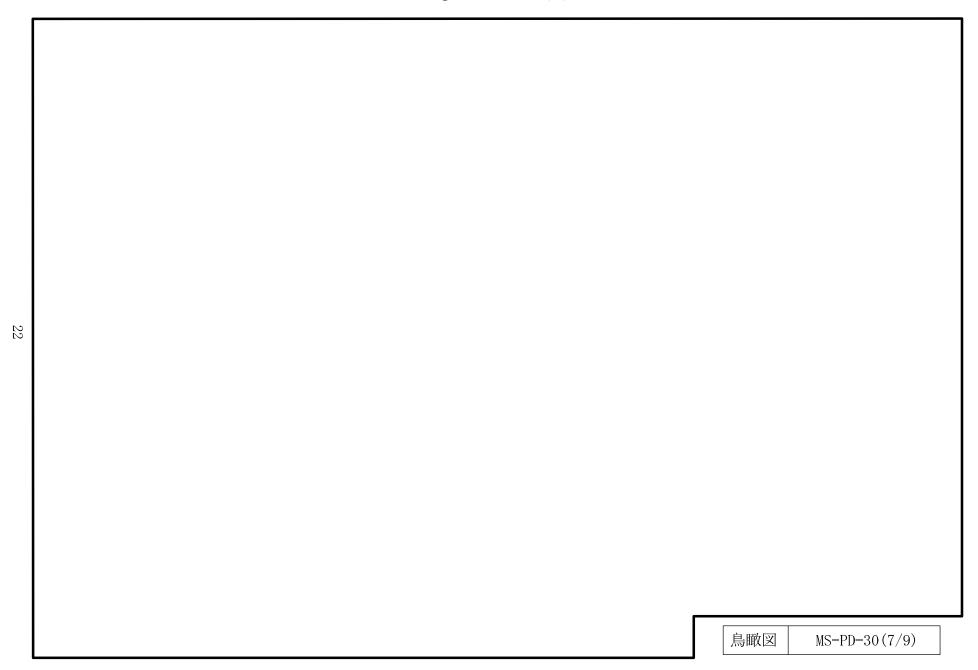


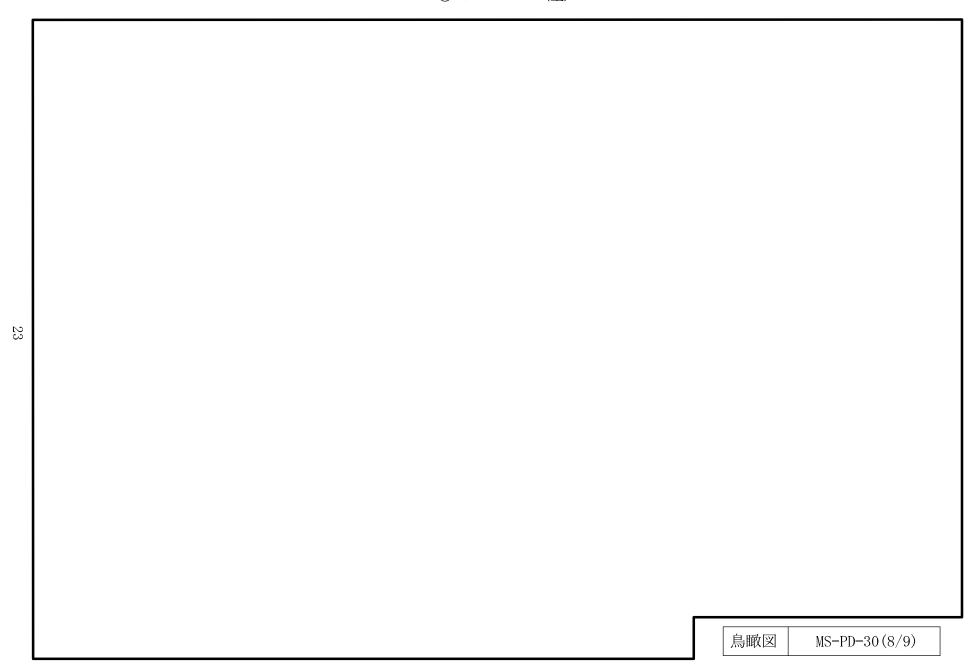


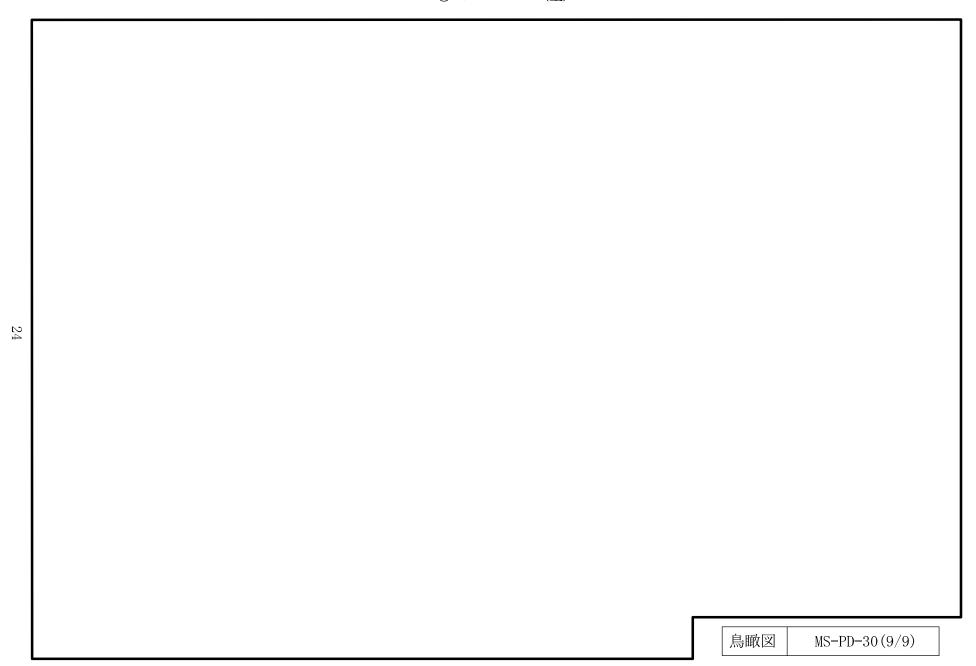


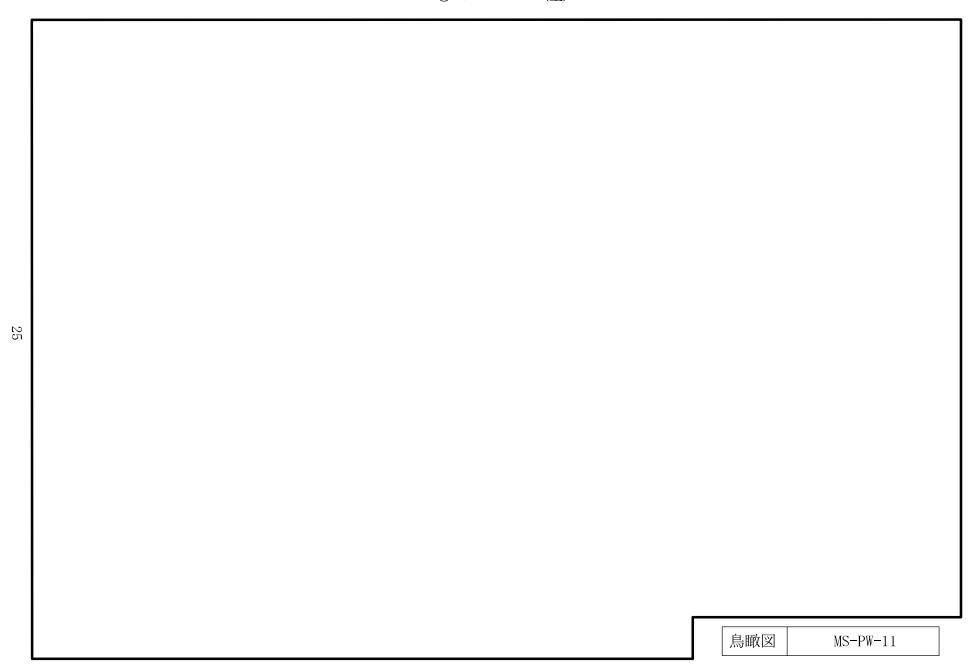

15		
	鳥瞰図	MS-PD-2(7/7)











3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「HISAP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類*1	設備 分類 ^{*2}	機器等 の区分	耐震 重要度分類	荷重の組合せ*3,4	許容応力 状態 ^{*5}
原子炉冷却 系統施設	原子炉冷却材の 循環設備	主蒸気系	S A	常設耐震/防止常設/緩和	重大事故等 クラス2管		V L + S s	V A S
原子炉冷却 系統施設	非常用炉心冷却 設備その他原子炉	原子炉隔離時 冷却系	SA	常設/防止 (DB拡張)	重大事故等		$V_L (L) + S_d$	V A S
开机旭 政	注水設備	자나CI11			ラ ノハ Z 目		$V_L (LL) + S_S$	
原子炉冷却	非常用炉心冷却 設備その他原子炉	高圧代替注水系	S A	常設耐震/防止	重大事故等		V_L (L) + S d	V a S
系統施設	注水設備		571		クラス2管		V _L (LL) +Ss	
原子炉格納施設	圧力低減設備	高圧代替注水系	SA	常設/緩和	重大事故等		$V_L (L) + S d$	VaS
	その他の安全設備	同压气管任小尔	SA	市政/ 核和 	クラス2管		$V_L (LL) + S_S$	VAS
計測制御系統施設	制御用空気設備	逃がし安全弁の 作動に必要な 窒素ガス喪失時の 減圧設備	S A	常設耐震/防止	重大事故等 クラス2管	_	V L + S s	V A S

注記*1: DBは設計基準対象施設, SAは重大事故等対処設備を示す。

*2:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張), 「常設/緩和」は常設重大事故緩和設備を示す。

*3:運転状態の添字Lは荷重, (L)は荷重が長期間作用している状態, (LL)は(L)より更に長期間荷重が作用している状態を示す。

*4: 許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。

*5: 許容応力状態VASは許容応力状態IVASの許容限界を使用し、許容応力状態IVASとして評価を実施する。

3.3 設計条件

鳥瞰図 MS-PD-2

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百分	対応する許価点	(MPa)	(℃)	(mm)	(mm)	1/1 1/1	重要度分類	(MPa)
1	1N∼5	8.62	302	711. 2	35. 7	SFVC2B		185880
	107~133, 207~235							
2	307~329, 407~433	3. 73	250	267. 4	15. 1	STS410	_	200400
	507~525							
	133∼134N, 235∼236N							
3	329~330N, 433~434N	3. 73	250	267. 4	15. 1	SUS316TP	_	191800
	525~526N							
4	5~601	8. 62	302	165. 2	14. 3	SFVC2B		185880
5	601~623	8. 62	302	165. 2	14. 3	STS410		185880

設計条件

鳥瞰図 MS-PD-30

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百亩万	刈応する許価点	(MPa)	(℃)	(mm)	(mm)	1/1 1/1	重要度分類	(MPa)
	1A∼16, 17∼21							
	22~37, 40~42N			60. 5	3. 9			
	28~58N, 12~60							
	61~65, 66~87		171			SUS304TP		191800
	90~94N, 76~109N	2.00						
1	9∼111, 112∼116							
	117∼147, 150∼152N							
	127∼158N, 6∼160							
	161~165, 166~189							
	192∼196N, 182∼202N							
	1008~226, 227~231							
	232~250, 253~257N							

設計条件

鳥瞰図 MS-PD-30

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
日留力	刈心する計画点	(MPa)	(℃)	(mm)	(mm)	17) 127	重要度分類	(MPa)
	236~283N, 222~285							
	286~290, 291~309							
	312~314N, 295~341N							
	219~343, 344~348							
	349~383N, 356~390							
1	393~397N, 216~399	2.00	171	60. 5	3. 9	SUS304TP	_	191800
	400~404, 405~421N							
	410~441, 444~446N							
	213~448, 449~453							
	454~485, 488~492N							
	471~496N							

設計条件

鳥瞰図 MS-PD-30

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
日留力	対応する計画点	(MPa)	(℃)	(mm)	(mm)	17) 127	重要度分類	(MPa)
	37~3701, 3900~40							
	87~8701,8901~90							
	$147 \sim 1471, 1491 \sim 150$							
	189~1891, 1911~192							
2	250~2501, 2521~253	2.00	171	60. 5	6. 7	SUS304	_	191800
	309~3091, 3111~312							
	390~3901, 3921~393							
	441~4411, 4431~444							
	485~4851, 4871~488							

K7 ① V-2-5-2-1-2(重) R1

設計条件

鳥瞰図 MS-PW-11

管番号	対応する評価点	最高使用圧力	最高使用温度	外径	厚さ	材料	耐震	縦弾性係数
百分	対応する評価点	(MPa)	(℃)	(mm)	(mm)	1/1 1/1	重要度分類	(MPa)
1	1N~3	3. 73	250	267. 4	15. 1	SUS316TP	_	194000
2	3 ~ 12	3. 73	250	267. 4	12. 7	SUS316TP	_	194000
3	13∼Q01	3. 73	250	318. 5	14.3	SUS316TP		194000

配管の付加質量

質量対応する評価点			対応する評価点
			1N~1001, 3001~5
			1001~3001
			$5\sim$ 603, $608\sim$ 611, $613\sim$ 6151, $6171\sim$ 6182, $6211\sim$ 623
			$603\sim608,611\sim613,6151\sim6171,6182\sim6211$

フランジ部の質量

質量			対応する評価点					
			102, 202, 302, 402, 502					
			107, 207, 307, 407, 507					

フランジ部の質量

質量	対応する評価点
	37, 42N, 87, 94N, 147, 152N, 189, 196N, 250, 257N, 309, 314N
	390, 397N, 441, 446N, 485, 492N

弁部の寸法

鳥瞰図 MS-PD-2

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
102~103				103~104			
104~105				105~106			
103~107				202~203			
203~204				204~205			
205~206				203~207			
302~303				303~304			
304~305				305~306			
303~307				402~403			
403~404				404~405			
405~406				403~407			
502~503				503~504			
504~505				505~506			
503~507				623~624			
624~625				625~626			
624~627							

弁部の寸法

鳥瞰図 MS-PD-30

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
16~17				21~22			
60~61				65~66			
111~112				116~117			
160~161				165~166			
226~227				231~232			
285~286				290~291			
343~344				348~349			
399~400				404~405			
448~449				453~454			

弁部の質量

質量	対応する評価点	質量	対応する評価点
	103, 203, 303, 403, 503		105, 205, 305, 405, 505
	106, 206, 306, 406, 506		625
	626		_

弁部の質量

質量	対応する評価点	質量	対応する評価点
	16~17,60~61		111~112, 160~161
	226~227, 285~286		343~344, 399~400
	448~449		21~22,65~66
	116~117, 165~166		231~232, 290~291
	348~349, 404~405		453~454

鳥瞰図 MS-PD-2

	⊠ MS-PD-2			•		
 支持点番号	各軸	方向ばね定数	(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
文14 版图 73	X	Y	Z	X	Y	Z
** 1071 **						
110						
** 110 **						
111						
** 116 **						
123						
126						
1261						
** 1262 **						
134N						
** 2071 **						
210						
** 211 **						
212						
214						
221						
** 222 **						
** 225 **						
236N						
3070						

鳥瞰図 MS-PD-2

			NT /	友 土に コ 10 に	コまコ) で 1 - 戸 **/ /	NT / 1\
支持点番号		方向ばね定数(谷軸回り回	回転ばね定数(N·mm/rad)
) (1 1 M E	X	Y	Z	X	Y	Z
** 3071 **				•		
310						
** 311 **						
314						
** 314 **						
315						
** 3231 **						
3231 344						
** 3231 **						
330N						
4071						
** 408 **						
411						
411						
412						
** 4121 **						
416						
** 416 **						
** 4211 **						
4211 77						
423						
** 427 **						

K7

鳥瞰図 MS-PD-2

	(図 MS-PD-2			•		
 支持点番号	各軸ス	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N	·mm/rad)
人11 小田 7	X	Y	Z	X	Y	Z
** 4291 **						
434N						
5071						
** 5091 **						
510						
** 5151 **						
** 516 **						
** 516 **	!					
526N	•					
** 607 **	†					
612	† 					
612	!					
618	†					
621						
** 621 **						
** 625 **						

鳥瞰図 MS-PD-30

古姓占来早	各軸	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
支持点番号 -	X	Y	Z	X	Y	Z
1A						
1002						
2001						
20						
30						
42N						
51						
58N						
64						
82						
86						
** 86 **						
94N						
103						
109N						
** 109N **						
** 109N **						
115						
129						
136						
140						
** 140 **						
144						
** 144 **						
						

K7 ① V-2-5-2-1-2(重) R1

鳥瞰図 MS-PD-30

丰 	各軸	方向ばね定数(N/mm)	各軸回り回	回転ばね定数(N·mm/rad)
支持点番号 -	X	Y	Z	X	Y	Z
152N						
158N						
** 158N **						
** 158N **						
164						
177						
184						
** 184 ** 						
188						
** 188 **						
196N						
202N						
** 202N **						
** 202N **						
230						
240						
247						
** 247 **						
257N						
265						
269						

鳥瞰図 MS-PD-30

			N/mm)	各軸回り回	転ばね定数(N·mm/rad)
支持点番号 -	X	Y	Z	X	Y	Z
277				-		
** 277 **						
283N						
** 283N **						
** 283N **						
289						
301						
308						
** 308 **						
314N						
322						
326						
334						
** 334 **						
341N						
** 341N **						
** 341N **						
347						
359						
365						
373						

鳥瞰図 MS-PD-30

	わ 士 ユ –	-PD-30 各軸方向ばね定数(N/mm) 各軸回り回転ばね定数(N				N·mm/rad)	
支持点番号		ı		1			
** 373 **	X	Y	Z	X	Y	Z	
., 010							
383N							
** 383N **							
** 383N **							
** JOJIV **							
385							
397N							
403							
421N							
** 421N **							
** 421N **							
425							
432							
** 432 **							
438							
446N							
452							
463							
475							
481							
492N							
496N							
** 496N **							
** 496N **							

鳥瞰図 MS-PW-11

支持点番号	各軸之	方向ばね定数(N/mm)	各軸回り	回転ばね定数(N·mm/rad)
人打点留力	X	Y	Z	X	Y	Z
1N						
** 4 **						
7						
** 7 **						
** 19 **						
** 19 **						

3.4 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

材料	最高使用温度	許容応力(MPa)					
17) 177	(°C)	S m	Sу	S u	S h		
SFVC2B	302	125	_	_	_		
STS410	250	_	197	404	_		
SUS316TP	250	_	139	432	_		
STS410	302	122	_	_	_		
SUS304TP	171		150	413	_		
SUS304	171	_	150	413	_		

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお、設計用床応答曲線はV-2-1-7「設計用床応答曲線の作成方針」に基づき策定したものを 用いる。また、減衰定数はV-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高	減衰定数(%)
MS-PD-2	原子炉遮蔽壁		
MS-PD-30	原子炉遮蔽壁		
MS-PW-11	原子炉本体基礎		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥瞰図 MS-PD-2

適用す	適用する地震動等			S s		
モード	固有周期		応答水平剽		震度*1 応答鉛直震原	
IV	(s)	X	方向	Z方向	ij	Y方向
1 次						
2 次						
3 次						
4 次						
5 次						
6 次						
7 次						
8 次						
17 次						
18 次						
動自						

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd又はSs地震動に基づく設計用最大応答加速度より定めた震度を示す。

5

各モードに対応する刺激係数

鳥瞰図 MS-PD-2

モード	固有周期	刺激係数*		
	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
7 次				
8 次				
17 次				

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

# 1-11 I I I I I I I I I I I I I I I I I			
代表的振動モード図(1次)			
	1		
	1		
	1		

53

15 11 P.		
代表的振動モード図(2次)		

54

代表的振動モード図(3次)		

55

鳥瞰図 MS−PD−2

鳥瞰図 MS-PD-30

適用する地震動等		S s			
モード	固有周期	応答水平震度*1		応答鉛直震度*1	
	(s)	X方向	Z方向	Y方向	
1 次					
2 次					
3 次					
4 次					
5 次					
6 次					
7 次					
8 次					
39 次					
40 次					
動自	的震度*2				

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd又はSs地震動に基づく設計用最大応答加速度より定めた震度を示す。

5

各モードに対応する刺激係数

鳥瞰図 MS-PD-30

モード	固有周期 (s)	刺激係数*				
		X方向	Y方向	Z方向		
1 次						
2 次						
3 次						
4 次						
5 次						
6 次						
7 次						
8 次						
39 次						

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

鳥瞰図 MS - PD - 30

鳥瞰図 MS-PD-30

固有周期及び設計震度

鳥瞰図 MS-PW-11

適用す	る地震動等		S s	
モード	固有周期	応答水-	平震度*1	応答鉛直震度*1
	(s)	X方向	Z方向	Y方向
1 次				
2 次				
3 次				
4 次				
5 次				
6 次				
動自	· 的震度 ^{*2}			

注記*1:各モードの固有周期に対し、設計用床応答曲線より得られる震度を示す。

*2: Sd 又は Ss 地震動に基づく設計用最大応答加速度より定めた震度を示す。

各モードに対応する刺激係数

鳥瞰図 MS-PW-11

	モード	固有周期		刺激係数*		
	-L	(_S)	X方向	Y方向	Z方向	
	1 次					
	2 次					
	3 次					
	4 次					
ſ	5 次					

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から 算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、次ページ以降に示す。

g

代表的振動モード図(1次)

鳥瞰図 MS-PW-11

<u>6</u>

代表的振動モード図(2次)

鳥瞰図 MS-PW-11

_

代表的振動モード図 (3次)

鳥瞰図 MS-PW-11

K7 ① V-2-5-2-1-2(重) R1

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス1管

						一次応 (MP			一次+二次点 (MPa)		疲労評価
鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	最大応力 区分	一次応力	許容応力	ねじり [*] 応力	許容応力	一次+二次 応力	許容	疲労累積 係数
					Sprm (Ss)	3 S m	S t (S s)	0. 73 S m	Sn (Ss)	3 S m	U+USs
MS-PD-2	VAS	5	TEE	Sprm (Ss)	220	375	_	_		_	
MS-PD-2	VAS	602	ELBOW	S t (S s)	_	_	115	89	_	_	
MS-PD-2	VAS	606	ELBOW	Sn(Ss)	_	_	_	_	406	366	0. 0239
MS-PD-2	VAS	5	TEE	U+US s	_	_	_	_	_	_	0. 0732

注記*: ねじり応力が許容応力状態 V_AS のとき $0.73S_m$ を超える場合は、曲げ+ねじり応力評価を実施する。

K7 ① V-2-5-2-1-2(重) R1

下表に示すごとくねじりによる応力が許容応力状態 VASのとき0.73 Smを超える評価点のうち曲 がとねじりによる応力は許容値を満足している。

			一次几	芯力評価								
 鳥瞰図	 評価点		(MPa)									
原 原		ねじり応力	許容応力	曲げとねじり応力	許容応力							
		S t (S s)	0.73 S m	S t + S b (S S)	2.4 S m							
MS-PD-2	602	115	89	149	292							

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

				一次応力	評価(MPa)	一次+二次応	力評価(MPa)	疲労評価
鳥瞰図	許容応力 状態	最大応力 評価点	最大応力 区分	計算応力	許容応力	計算応力	許容応力	疲労累積係数
	, ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Sprm (Ss)	0.9S u	S n (S s)	2 S у	US s
MS-PW-11	V a S	7	Sprm (Ss)	215	388	_		_
MS-PD-30	V a S	30	Sn(Ss)			289	300	_

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価	結果
支持構造物 番号	番号 ^{俚類} S-P044T-1 メカニカルスナッバ		材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)
SNM-MS-P044T-1	メカニカルスナッバ	SMS-16A-160	V-2-1-12 「	配答 ひが去	127	240
RO-RCIC-P002-1	ロッドレストレイント	RSA 3	V =2=1=12 持構造物の ついて 参則	耐震計算に	20	52
SH-MS-P104	スプリングハンガ	VS2G-16 (A) (B)	アンマ・C」 参り	lt.	46	2×30

支持構造物評価結果(応力評価)

							支持。	点荷重			評価結果		1
支持構造物 番号	種類	型式	材質	温度 (℃)	D	支力(kN	[)	モーメント (kN·m)		応力	計算 応力	許容 応力	
					F _X	F _Y	F _Z	M_X	$M_{ m Y}$	M_Z	分類	がいり (MPa)	(MPa)
AN-HPIN-24-1-207	アンカ	ラグ	SUS304	171	3	2	1	1	1	1	曲げ	27	115
RE-MS-P153	レストレイント	パイプバンド	SUS304 SUS304TP	100	87	0	113				せん断	47	117

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持評 (×9.8	価用加速度 8m/s²)		済加速度 8m/s ²)	構造強度評価結果 (MPa)		
			水平	鉛直	水平	鉛直	計算応力	許容応力	
_					_		_	_	

K7 ① V-2-5-2-1-2(重) R1

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し、応力分類毎に裕度最小のモデルを選定して鳥瞰図、設計条件及び評価結果 を記載している。下表に、代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス1管)

						Ī	許容応	力状態	VAS					
			-	一次応力	示力 一次-			欠十二次応力			疲労評価			
No.	配管モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	MS-PD-2	5	220 375 1.70 O 606 406 366 0.90 O 5 0.0732 C									0		

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

	配管モデル	許容応力状態 VAS												
No.		一次応力						一次	:十二次/	疲労評価				
		評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
1	MS-PD-1	207	119	363	3.05	_	207	158	394	2.49	_	_		
2	MS-PD-2	408	116	363	3. 12		227	158	394	2.49	_	_		_
3	MS-PD-3	129N	121	388	3. 20	_	507	147	394	2.68	_			_
4	MS-PD-4	407	121	363	3.00	_	4071	173	394	2. 27	_	_		_
5	MS-PD-27	57	89	371	4. 16	_	902	168	300	1.78	_			_
6	MS-PD-28	114N	143	371	2.59	_	114N	269	300	1.11	_			_
7	MS-PD-29	327	122	371	3.04	_	467	229	300	1.31	_			_
8	MS-PD-30	30	158	371	2.34	_	30	289	300	1.03	0	_		_
9	MS-PW-5	1N	122	388	3. 18	_	7	89	278	3. 12	_	_		_
10	MS-PW-6	7	164	388	2.36		7	116	278	2.39	_	_		_
11	MS-PW-7	7	166	388	2.33		7	128	278	2.17	_	_		_
12	MS-PW-8	8	138	388	2.81		8	114	278	2.43				_
13	MS-PW-9	1N	119	388	3. 26		8	93	278	2.98				_
14	MS-PW-10	6	108	388	3. 59		6	86	278	3. 23				_
15	MS-PW-11	7	215	388	1.80	0	7	261	278	1.06				_
16	MS-PW-12	7	149	388	2.60		7	116	278	2.39		_		_

K7 ① V-2-5-2-1-2(重) R1E

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

No.	配管モデル	許容応力状態 VAS												
		一次応力						一次	十二次几	疲労評価				
		評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労 累積 係数	代表
17	MS-PW-13	7	164	388	2.36	-	7	201	278	1. 38				
18	MS-PW-14	8	134	388	2.89		8	114	278	2.43				_
19	MS-PW-15	7	116	388	3.34	_	7	88	278	3. 15	_			_
20	MS-PW-16	8	121	388	3. 20	_	8	93	278	2. 98	_			_
21	MS-PW-17	7	178	388	2. 17		7	184	278	1.51				
22	MS-PW-18	8	145	388	2.67		8	122	278	2. 27				
23	MS-PW-19	Q01	108	388	3. 59		6	91	278	3.05				_
24	MS-PW-20	7	129	388	3.00		7	98	278	2.83				
25	MS-PW-21	7	121	388	3. 20	_	7	89	278	3. 12				
26	MS-PW-22	8	120	388	3. 23		8	93	278	2. 98				