(添付書類三)

添付書類三 変更に係る加工施設の場所における気象, 地盤, 水理, 地 震, 社会環境等の状況に関する説明書を以下のとおり補 正する。

ページ	行	補正前	補正後
-	-	添付書類三を右記のとおり	別紙-1のとおり変更する。
		変更する。	

別紙-1

別添-3

添付書類三

変更に係る加工施設の場所における気象,地盤,水理,地震, 社会環境等の状況に関する説明書

イ.	気象	$3 - \cancel{-} 1$
(\checkmark)	青森県の気象・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$3 - \cancel{1} - 1$
(ロ)	最寄りの気象官署の資料による一般気象	$3 - \cancel{-} 3$
(ᠵᡪ)	敷地における気象観測 ・・・・・・・・・・・・・・・・	$3 - \cancel{1} - 6$
(二)	敷地における気象観測結果 ・・・・・・・・・・・・・	$3 - \cancel{-} - 8$
(ホ)	安全解析に使用する気象条件 ・・・・・・・・・・・	3-1-11
口. ;	地盤	$3 - \Box - 1$
(\checkmark)	調査の経緯 ・・・・・	$3 - \Box - 1$
(ロ)	敷地周辺の地質・地質構造	$3 - \Box - 3$
(>`)	敷地近傍の地質・地質構造 ・・・・・・・・・・・・	$3 - \Box - 89$
(二)	敷地内の地質・地質構造	$3 - \Box - 125$
(ホ)	MOX燃料加工施設の耐震重要施設等及び	
	常設重大事故等対処施設設置位置付近の	
	地質・地質構造及び地盤 ・・・・・・・・・・・・・・・	$3 - \Box - 148$
(\frown)	基礎地盤及び周辺斜面の安定性評価・・・・・	$3 - \Box - 164$
(ト)	地質調査に関する実証性 ・・・・・・・・・・・・・・・	$3 - \Box - 172$
ハ. フ	水理 ·····	3-ハ-1
(\checkmark)	陸水 · · · · · · · · · · · · · · · · · · ·	3-ハ-1
(ロ)	潮位 · · · · · · · · · · · · · · · · · · ·	3-ハ-2
二.	地震 · · · · · · · · · · · · · · · · · · ·	3 - z - 1
(\checkmark)	概要 • • • • • • • • • • • • • • • • • • •	3 - z - 1
(ロ)	敷地周辺の地震発生状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$3 - \Xi - 2$
(৴৲)	活断層の分布状況 ・・・・・・・・・・・・・・・・・・・・・・	3 - z - 9

(二)	地震の分類 ・・・・・	3-=-10
(ホ)	敷地地盤の振動特性 ・・・・・	3 - = -13
(\frown)	基準地震動S s	3-=-19
朩. 社	会環境 ·····	$3 - \pi - 1$
(イ)	人口	$3 - \pi - 1$
(口)	付近の集落及び公共施設 ・・・・・・・・・・・・・・	$3 - \pi - 2$
(>>)	産業活動	$3 - \pi - 3$
(二)	交通運輸 · · · · · · · · · · · · · · · · · · ·	$3 - \pi - 5$
(ホ)	水の利用状況 ・・・・・	$3 - \pi - 7$
へ. 津	は波 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3 1
(イ)	評価概要 · · · · · · · · · · · · · · · · · · ·	3 1
(口)	既往津波に関する検討 ・・・・・	3 3
(৴৲)	既往知見を踏まえた津波の評価 ・・・・・・・・・・	3 8
(二)	施設の安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-~-19
ト. 火	;山	3 - ert - 1
(イ)	検討の基本方針 ・・・・・	3 - ert - 1
(口)	調査及び検討内容	3 - b - 2
(৴৲)	施設に影響を及ぼし得る火山の抽出・・・・・	3 - ert - 4
(二)	施設に影響を及ぼし得る火山の	
	火山活動に関する個別評価 ・・・・・・・・・・・・	3 - arepsilon - 6
(ホ)	火山活動のモニタリング ・・・・・・・・・・・・	3 31
(\frown)	施設の安全性に影響を与える	
	可能性のある火山事象の影響評価 ・・・・・・・・・	3 33

チ. i	竜巻 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-チ-1
(\checkmark)	竜巻検討地域の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-チ-1
(ロ)	基準竜巻の最大風速の設定 ・・・・・・・・・・・	3-チ-6
(25)	設計竜巻の最大風速の設定 ・・・・・・・・・・・・	3ーチー13
빗. /	生物 ••••••••••••••••••••••••••••••••••••	3 - y - 1
(イ)	生物の生息状況 ・・・・・・・・・・・・・・・・・・・・・・・・	3 - y - 1
(口)	生物学的事象で考慮する対象生物 ・・・・・・・・・	3 - y - 2
ヌ. 著	落雷 ·····	3 - z - 1
(\checkmark)	日本における雷日数の地理的分布 ・・・・・・・・	$3 - \varkappa - 1$
(ロ)	MOX燃料加工施設周辺における	
	落雷の観測データ ・・・・・	$3 - \mathbf{x} - 2$

添3-イ第1表	気象官署の所在地及び観測項目・・・ 3-イ-21
添3-イ第2表	気候表 [概要]
	(八戸特別地域気象観測所)・・・・ 3-イ-22
添3-イ第3表	気候表 [概要]
	(むつ特別地域気象観測所)・・・・ 3-イー23
添3-イ第4表	日最高・最低気温の順位
	(八戸特別地域気象観測所)・・・・ 3-イ-24
添3-イ第5表	日最高・最低気温の順位
	(むつ特別地域気象観測所)・・・・ 3-イ-25
添3-イ第6表	日最高・最低気温の順位
	(六ヶ所地域気象観測所)・・・・・・ 3-イ-26
添3-イ第7表	日最小相対湿度の順位
	(八戸特別地域気象観測所)・・・・ 3-イ-27
添3-イ第8表	日最小相対湿度の順位
	(むつ特別地域気象観測所)・・・・・ 3-イー28
添3-イ第9表	日降水量の最大値の順位
	(八戸特別地域気象観測所)・・・・ 3-イ-29
添3-イ第10表	日降水量の最大値の順位
	(むつ特別地域気象観測所)・・・・・ 3 -イ-30
添3-イ第11表	日降水量の最大値の順位
	(六ヶ所地域気象観測所)・・・・・・ 3-イー31
添3-イ第12表	日最大1時間降水量の最大値の順位
	(八戸特別地域気象観測所)・・・・ 3-イ-32
添3-イ第13表	日最大1時間降水量の最大値の順位
	(むつ特別地域気象観測所)・・・・ 3-イ-33

添3-イ第14表	日最大1時間降水量の順位	
	(六ヶ所地域気象観測所)・・・・・・	$3 - \cancel{-} - 34$
添3-イ第15表	積雪の深さの月最大値の順位	
	(八戸特別地域気象観測所) · · · ·	$3 - \cancel{-} 35$
添3-イ第16表	積雪の深さの月最大値の順位	
	(むつ特別地域気象観測所)・・・・	$3 - \cancel{-} - 36$
添3-イ第17表	積雪の深さの月最大値の順位	
	(六ヶ所村) ・・・・・	$3 - \cancel{-} - 37$
添3-イ第18表	日最大瞬間風速の順位	
	(八戸特別地域気象観測所) ·····	$3 - \cancel{-} - 38$
添3-イ第19表	日最大瞬間風速の順位	
	(むつ特別地域気象観測所)・・・・	$3 - \cancel{-} - 39$
添3-イ第20表	日最大瞬間風速の順位	
	(六ヶ所地域気象観測所) ・・・・・	$3 - \cancel{-} 40$
添3-イ第21表	台風歴	
	(八戸特別地域気象観測所) ·····	$3 - \cancel{-} 41$
添3-イ第22表	台風歴	
	(むつ特別地域気象観測所) ・・・・	$3 - \cancel{-} 42$
添3-イ第23表	青森県の森林火災発生状況及び	
	気象データ(最高気温,最小湿度,	
	最大風速)(2003年から2012年)・・	$3 - \cancel{-} 43$
添3-イ第24表	気象データ(卓越風向)	
	(2003 年から 2012 年における	
	3月から8月の期間) ・・・・・	$3 - \cancel{-} - 44$
添3-イ第25表	観測項目一覧表 ·····	$3 - \cancel{-} 45$
添3-イ第26表	同一風向の継続時間別出現回数・・・	$3 - \cancel{-}46$

- 添3-イ第27表 大気安定度の継続時間別出現回数・3-イ-47
- 添3-イ第29表 棄却検定表(風速分布)・・・・・・・3-イー49
- 添3-イ第30表 大気拡散の評価条件の

居住性評価審査ガイドとの関係・・・ 3-イ-50

- 添3-ロ(ロ)第1表 敷地周辺陸域の地質層序表・・・・・ 3-ロ-181
- 添3-ロ(ロ)第2表 段丘堆積層と
 - 示標テフラの層位関係・・・・・ 3-ロ-182
- 添3-ロ(ロ)第3表 リニアメント・変動地形
 - の判読基準 ・・・・・・・・・・・・・ 3-ロ-183
- 添3-ロ(ロ)第4表 敷地周辺海域の地層区分・・・・・・ 3-ロ-184
- 添3-ロ(ロ)第5表 敷地周辺陸域と
 - 海域との地層対比表・・・・・ 3-ロ-185
- 添3-ロ(ロ)第6表 敷地周辺海域の主要断層一覧表・・・ 3-ロ-186
 添3-ロ(ハ)第1表 敷地近傍の地質層序表・・・・・・ 3-ロ-187
- 添3-ロ(ハ)第2表 出戸西方断層南端付近

の針貫入試験結果一覧・・・・・ 3-ロ-188 敷地内地質層序表 ・・・・ 3-ロ-189

- 添3-ロ(ニ)第1表 敷地内地質層序表 ・・・・・ 3-ロ-189
 添3-ロ(ニ)第2表 敷地内の断層性状一覧表 ・・・・ 3-ロ-190
- 添3-ロ(ニ)第3表 岩盤変形試験結果 ……… 3-ロ-191
- 添3-ロ(ニ)第6表 岩盤クリープ試験結果・・・・・ 3-ロ-192

添3-ロ(ニ)第7表 平均速度法による弾性波速度

測定結果 ・・・・・・・・・・・・・・・・・ 3-ロ-193

浜り(~) 竺の主	シーミットロックハンマの	
☆ 3 − □ (ー) 弗 8 衣	ンユミットロックハンマの	
	反発度測定結果 ·····	$3 - \Box - 193$
添3-ロ(ニ)第9表	孔内載荷試験結果 · · · · · · · · · · ·	$3 - \Box - 194$
添3-ロ(ニ)第10表	透水試験結果 · · · · · · · · · · · · · · ·	$3 - \Box - 195$
添3-ロ(ホ)第1表	繰返し三軸試験	
	(強度特性)の試験条件・・・・・・	$3 - \Box - 196$
添3-ロ(ホ)第2表	岩石試験結果及び土質試験結果・・・	$3 - \Box - 197$
添3-ロ(ホ)第3表	物理試験結果(鷹架層)・・・・・・	$3 - \Box - 202$
添3-ロ(ホ)第4表	引張強度試験結果 · · · · · · · · · · ·	$3 - \Box - 203$
添3-ロ(ホ)第5表	圧密試験結果(基礎底面付近)	$3 - \Box - 204$
添3-ロ(ホ)第6表	三軸クリープ試験結果	
	(基礎底面付近)	$3 - \Box - 205$
添3-ロ(ホ)第7表	PS検層結果 ·····	$3 - \Box - 206$
添3-ロ(ホ)第8表	物理試験結果	
	(断層部及び表層部)・・・・・・・・・	$3 - \Box - 207$
添3-ロ(ホ)第9表	f -1 断層及び f -2 断層	
	の超音波速度測定結果・・・・・・・・	$3 - \Box - 208$
添3-ロ(へ)第1表	解析用物性值 ·····	$3 - \Box - 209$
添3-ロ(へ)第2表	評価対象施設一覧表	$3 - \Box - 214$
添3-ロ(へ)第3表	各断面における最小すべり	
	安全率一覧表(基準地震動) · · · ·	$3 - \Box - 215$
添3-ロ(へ)第4表	すべり安全率一覧表・・・・・	$3 - \Box - 216$
添3-ロ(へ)第5表	各断面における最小すべり	
	安全率一覧表(Ss-C4(水平)	
	及び一関東評価用地震動(鉛直))	$3 - \Box - 219$

添3-ロ(へ)第6表 基礎底面の支持力に対する解析結果

(基準地震動) ・・・・・・・・・ 3-ロ-220

添3-ロ(へ)第7表 基礎底面の支持力に対する解析結果

(Ss-С4 (水平)及び一関東

評価用地震動(鉛直)) ……… 3-ロ-220

- 添3-ロ(へ)第8表 基礎底面の相対変位と傾斜
 - に対する解析結果(基準地震動)・3-ロ-221
- 添3-ロ(へ)第9表 基礎底面の傾斜に対する

解析結果(Ss-C4(水平)及び

- 一関東評価用地震動(鉛直))・・・・ 3-ロ-221
- 添3-ロ(へ)第10表 地殻変動による影響評価
- に用いる断層パラメータ・・・・・ 3-ロ-222

添3-ロ(へ)第11表 地殻変動による基礎底面

- の傾斜に対する解析・・・・・・・・・ 3-ロ-222
- 添3-ロ(ト)第1表 地質調査会社一覧表・・・・・ 3-ロ-223
- 添3-二第1表 敷地周辺の被害地震……… 3-ニ-58 添3-二第2表 地震カタログ間の比較・・・・・・ 3-ニ-62 添3-二第3表 敷地周辺の主な活断層の諸元・・・・ 3-ニ-63 添3-二第4表 はぎとり地盤モデル・・・・・ 3-ニ-64 添3-二第5表 観測地震・・・・・・・・・・・・・・・・ 3-ニ-67 添3-二第6表 地震波の到来方向の 検討に用いた地震 ……… 3-ニ-69 添3-二第7表 地震動評価に用いる 添3-二第8表 震源パラメータの比較・・・・・・ 3-ニ-74

添3-ニ第9表	原子力安全基盤機構(2	2004)による	
	東北東部の領域の地震	発生層	
	上下限深さ		3-=-75
添3-ニ第10表	気象庁カタログによる		
	敷地周辺の地震発生層	上下限深さ・	3-=-75
添3-ニ第11表	「2011年東北地方太平	洋沖地震を	
	踏まえた地震」検討ケ	ース一覧・・・	3 - = -76
添3-ニ第12表	「2011年東北地方太平	洋沖地震を	
	踏まえた地震」の断層	パラメータ・	3 - = -77
添3-ニ第13表	2011年東北地方太平洋	沖地震の	
	各種震源モデルと「20)11年東北	
	地方太平洋沖地震を踏	ぼえた	
	地震」(基本モデル)。	との	
	パラメータの比較		3-=-79
添3-ニ第14表	要素地震の震源パラメ	ータ	
	(プレート間地震)		3-=-80
添3-ニ第15表	「想定海洋プレート内	」地震」	
	検討ケース一覧		3-=-81
添3-ニ第16表	「想定海洋プレート内	地震]	
	の断層パラメータ(基	本モデル)・	3-=-82
添3-ニ第17表	「想定海洋プレート内	」地震」	
	の断層パラメータ(不	確かさ	
	ケース)		3-=-83
添3-ニ第18表	「出戸西方断層による	地震」	
	検討ケース一覧		3

添3-ニ第19表	「出戸西方断層による地震」
	の断層パラメータ(基本モデル)・3-ニ-87
添3-ニ第20表	「出戸西方断層による地震」
	の断層パラメータ(不確かさ
	ケース) ······ 3-ニ-88
添3-ニ第21表	各距離減衰式の概要・・・・・・ 3-ニ-91
添3-ニ第22表	要素地震の震源パラメータ
	(内陸地殻内地震) ・・・・・・・ 3-ニ-92
添3-ニ第23表	検討対象地震 ・・・・・ 3-ニ-93
添3-ニ第24表	$S s - A_H$, $S s - A_V O$
	設計用応答スペクトルの
	コントロールポイント・・・・・・ 3-ニ-94
添3-ニ第25表	設計用模擬地震波
	$S s - A_H$, $S s - A_V$
	の振幅包絡線の経時的変化・・・・・ 3-ニ-95
添3-ニ第26表	設計用模擬地震波 S s - A _H ,
	S s - A _v の作成結果 · · · · · · · · 3 - ニ - 96
添3-ニ第27表	基準地震動
	$S s - B 1 \sim B 5$ $\cdots 3 - \Xi - 97$
添3-ニ第28表	基準地震動
	$S s - C 1 \sim C 4$ $\cdots 3 - \Xi - 98$
添3-ニ第29表	ロジックツリーに反映する活断層
	の諸元(特定震源)出戸西方断層
	以外の断層による地震)・・・・・・ 3-ニ-99
添3-ニ第30表	各領域における最大地震規模・・・・ 3-ニ-100

添3-ニ第31表 解放基盤表面以浅の地盤モデル(燃料加工建屋(東側地盤))・・・・3-ニ-103

添3-ホ第1表 青森県及び周辺地域の市町村別 の世帯数、人口及び人口密度・・・・ 3-ホ-10 添3-ホ第2表 青森県及び周辺地域の 市町村別の人口推移…………3-ホ-11 添3-ホ第3表 MOX燃料加工施設付近の 集落の人口及び世帯数・・・・・ 3-ホ-12 添3-ホ第4表 MOX燃料加工施設付近の学校, 認定こども園及び医療機関並びに その生徒数, 園児数及び病床数… 3-ホ-13 添3-ホ第5表 添3-赤第6表 三沢基地の主な配備機種・・・・・ 3-ホ-15 添3-~第1表 主な既往の近地津波・・・・・ 3-へ-29 添3-へ第2表 主な既往の近地津波の津波高・・・・ 3-へ-31 添3-へ第3表 主な既往の遠地津波・・・・・ 3-へ-32 添3-へ第4表 主な既往の遠地津波の津波高・・・・ 3-へ-34 主な計算条件 ・・・・・ 3-~-35 添3-へ第5表 添3-へ第6表 海域の活断層による地殻内地震 に起因する津波の推定津波高・・・・ 3-へ-36 添3-へ第7表 二層流モデルの主な計算条件・・・・ 3-へ-37 添3-へ第8表 既往知見と「すべり量3倍モデル」 及び「全域超大すべり域モデル」

のすべり量の比較 ………… 3-~-38

添3-ト第1表 地理的領域内の第四紀火山····· 3-ト-47

添3-ト第2表 地理的領域内の

第四紀火山における活動可能性・・・ 3-ト-48

- 添3-ト第3表 設計対応不可能な火山事象とその
- 噴出物の敷地への到達可能性評価・3-ト-49添3-ト第4表 評価対象とする
- 降下火砕物の選定及び諸元····· 3-ト-50 添3-ト第5表 降下火砕物シミュレーション

の主な入力パラメータ・・・・・ 3-ト-51

- 添3-チ第3表 竜巻発生数の分析結果・・・・・・・・3-チー17
- 添3-チ第4表 竜巻風速,被害幅
 - 及び被害長さの相関係数・・・・・・ 3-チ-18
- 添3-リ第1表 MOX燃料加工施設が立地する地域の周辺における生物の生息状況について・3-リ-4

添3-イ第1図	気象官署及び六ヶ所	
	地域気象観測所の位置図・・・・・	$3 - \cancel{-} 52$
添3-イ第2図	気象観測設備配置図・・・・・	$3 - \cancel{-} 53$
添3-イ第3図	敷地の風配図(年間)・・・・・・・・	$3 - \cancel{-} 54$
添3-イ第4図	敷地の風配図	
	(2013年4月から2013年9月)・・・	$3 - \cancel{-} 55$
添3-イ第5図	敷地の風配図	
	(2013年10月から2014年3月)・・・	$3 - \cancel{-} - 56$
添3-イ第6図	低風速(0.5m/sから2.0m/s)	
	時の風配図(年間)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$3 - \cancel{-} 57$
添3-イ第7図	年間風速別出現頻度	
	及び風速別出現頻度累積	
	(地上高10m, 標高69m)・・・・・	$3 - \cancel{-}58$
添3-イ第8図	月別風速別出現頻度	
	(2013年4月から2013年9月)・・・	$3 - \cancel{-} 59$
添3-イ第9図	月別風速別出現頻度	
	(2013年10月から2014年3月)・・・	3-イ-60
添3-イ第10図	年間及び月別大気安定度出現頻度・	$3 - \cancel{-} 61$
添3-イ第11図	年間大気安定度別風配図	
	(地上高10m, 標高69m)	$3 - \cancel{-} 62$
添3-イ第12図	方位別相対濃度の累積出現頻度・・・	$3 - \cancel{-} 63$
添3-イ第13図	方位別相対線量の累積出現頻度・・・	$3 - \cancel{-} 65$
添3-イ第14図	緊急時対策所の居住性に係る	
	被ばく評価における着目方位・・・・	$3 - \cancel{-} 67$

添3-ロ(ロ)第1図	敷地周辺陸域の地形図・・・・・	$3 - \Box - 224$
添3-ロ(ロ)第2図	敷地周辺陸域の地形区分図・・・・・	$3 - \Box - 225$
添3-ロ(ロ)第3図	敷地周辺陸域の地質平面図・・・・・	$3 - \Box - 226$
添3-ロ(ロ)第4図	敷地周辺陸域の地質断面図・・・・・	$3 - \Box - 227$
添3-ロ(ロ)第5図	六ケ所層及び砂子又層の	
	地質年代測定結果図	$3 - \Box - 228$
添3-ロ(ロ)第6図	敷地周辺陸域の地形面区分図・・・・	$3 - \Box - 229$
添3-ロ(ロ)第7図	敷地周辺陸域のリニアメント・	
	変動地形の分布図 ・・・・・	$3 - \Box - 230$
添3-ロ(ロ)第8図	敷地周辺の重力異常図	
	(ブーゲー異常図)・・・・・・・・・・	$3 - \Box - 231$
添3-ロ(ロ)第9図	敷地周辺の磁気異常図・・・・・	$3 - \Box - 232$
添3-ロ(ロ)第10図	敷地周辺の小・微小地震分布図・・・	$3 - \Box - 233$
添3-ロ(ロ)第11図	敷地周辺陸域の	
	活断層分布図(半径30km範囲)・・・	$3 - \Box - 235$
添3-ロ(ロ)第12図	横浜断層周辺の空中写真判読図・・・	$3 - \Box - 236$
添3-ロ(ロ)第13図	横浜断層周辺の地質平面図・・・・・	$3 - \Box - 237$
添3-ロ(ロ)第14図	横浜断層周辺の地質断面図・・・・・	$3 - \Box - 238$
添3-ロ(ロ)第15図	横浜断層沿いの地形断面図・・・・・	$3 - \Box - 240$
添3-ロ(ロ)第16図	横浜町林崎川の	
	断層露頭周辺ルートマップ・・・・・・	$3 - \Box - 241$
添3-ロ(ロ)第17図	横浜町林崎川左岸の断層露頭	
	スケッチ図(Y-1 露頭)・・・・・	$3 - \Box - 242$
添3-ロ(ロ)第18図	横浜町林崎川右岸の断層露頭	
	スケッチ図(Y-2 露頭)・・・・・	$3 - \Box - 243$

添3-ロ(ロ)第19図	横浜町林崎川の断層露頭
	周辺A-A'断面図3-ロ-244
添3-ロ(ロ)第20図	横浜町林崎川右岸の
	M2面調査断面図 ····· 3-ロ-245
添3-ロ(ロ)第21図	横浜町桧木川右岸の
	ボーリング調査結果図・・・・・ 3-ロー246
添3-ロ(ロ)第22図	鶏沢の反射法地震探査
	結果図(深度断面)・・・・・・・・・ 3-ロ-247
添3-ロ(ロ)第23図	鶏沢川東方のボーリング
	調査結果図 ・・・・・ 3-ロ-248
添3-ロ(ロ)第24図	鶏沢川東方のトレンチ調査結果図
	(南側法面断層付近のスケッチ)・3-ロー249
添3-ロ(ロ)第25図	向平の反射法地震探査
	結果図(深度断面) · · · · · · · · · 3-ロ-250
添3-ロ(ロ)第26図	松栄の反射法地震探査
	結果図(深度断面) · · · · · · · · · · 3 - ロ - 251
添3-ロ(ロ)第27図	横浜断層北端部の
	ルートマップ・地質断面図 3-ロー252
添3-ロ(ロ)第28図	むつ市蜆沢中流付近の
	ルートマップ $(SH-1)$ レート) · 3-ロ-253
添3-ロ(ロ)第29図	野辺地断層周辺の
	空中写真判読図 ・・・・・ 3-ロ-254
添3-ロ(ロ)第30図	野辺地断層北方延長位置の
	旧汀線高度分布図 ・・・・・・ 3-ロ-255
添3-ロ(ロ)第31図	野辺地断層北方の地形断面図・・・・ 3-ロ-256
添3-ロ(ロ)第32図	野辺地断層周辺の地質平面図・・・・ 3-ロ-257

添3-ロ(ロ)第33図	野辺地断層周辺の地質断面図・・・・	$3 - \Box - 258$
添3-ロ(ロ)第34図	東北町添ノ沢付近のルートマップ・	$3 - \Box - 259$
添3-ロ(ロ)第35図	野辺地断層北方の	
	ボーリング調査結果図・・・・・	$3 - \Box - 260$
添3-ロ(ロ)第36図	上原子断層周辺の	
	空中写真判読図 ·····	$3 - \Box - 261$
添3-ロ(ロ)第37図	上原子断層周辺の	
	地形面高度検討図	$3 - \Box - 262$
添3-ロ(ロ)第38図	上原子断層周辺の地質平面図・・・・	$3 - \Box - 263$
添3-ロ(ロ)第39図	上原子断層周辺の地質断面図・・・・	$3 - \Box - 264$
添3-ロ(ロ)第40図	東北町赤川右岸の	
	断層露頭スケッチ図	
	(K−1 露頭)	$3 - \Box - 265$
添3-ロ(ロ)第41図	東北町清水目川右岸の	
	断層露頭スケッチ図	
	(K−2露頭) ·····	$3 - \Box - 266$
添3-ロ(ロ)第42図	東北町添ノ沢東方の	
	断層露頭スケッチ図	
	(K-3露頭) ·····	$3 - \Box - 267$
添3-ロ(ロ)第43図	七戸西方断層周辺の	
	空中写真判読図 ·····	$3 - \Box - 268$
添3-ロ(ロ)第44図	七戸西方断層周辺の地質平面図・・・	$3 - \Box - 269$
添3-ロ(ロ)第45図	七戸西方断層周辺の地質断面図・・・	$3 - \Box - 270$
添3-ロ(ロ)第46図	野辺地断層から七戸西方断層	
	にかけての地質構造図・・・・・	$3 - \Box - 272$

添3-ロ(ロ)第47図	野辺地断層から七戸西方断層	
	にかけての地質構造詳細図・・・・・	$3 - \Box - 273$
添3-ロ(ロ)第48図	七戸町市ノ渡北方の	
	露頭スケッチ図(S-2露頭)・・・	$3 - \Box - 275$
添3-ロ(ロ)第49図	七戸町市ノ渡川右岸の	
	柱状対比図(S−1ルート)・・・・・	$3 - \Box - 276$
添3-ロ(ロ)第50図	後川-土場川断層周辺の	
	空中写真判読図	$3 - \Box - 278$
添3-ロ(ロ)第51図	後川-土場川断層周辺の	
	地形断面図 ·····	$3 - \Box - 279$
添3-ロ(ロ)第52図	後川-土場川断層周辺の	
	地質平面図	$3 - \Box - 282$
添3-ロ(ロ)第53図	後川-土場川断層周辺の	
	地質断面図 ·····	$3 - \Box - 283$
添3-ロ(ロ)第54図	東北町柵東方の後川流域の	
	露頭スケッチ図 ・・・・・	$3 - \Box - 284$
添3-ロ(ロ)第55図	敷地周辺陸域の活断層及び	
	リニアメント・変動地形の分布図・	$3 - \Box - 286$
添3-ロ(ロ)第56図	一切山東方断層周辺の	
	空中写真判読図 ·····	$3 - \Box - 287$
添3-ロ(ロ)第57図	一切山東方断層及び小老部川上流	
	付近の断層周辺の地質平面図・・・・	$3 - \Box - 288$
添3-ロ(ロ)第58図	一切山東方断層及び小老部川上流	
	付近の断層周辺の地質断面図・・・・	$3 - \Box - 289$
添3-ロ(ロ)第59図	東通村李沢右岸の断層露頭	
	スケッチ図(H-1 露頭)・・・・・	$3 - \Box - 290$

添3-ロ(ロ)第60図 東通村小老部川右岸の断層露頭 スケッチ図 (H-2 露頭) ····· 3-ロ-291 東通村老部川(北)右岸の断層露頭 スケッチ図(OB-1 露頭) ····· 3-ロ-292 添3-ロ(ロ)第62図 御宿山周辺の空中写真判読図・・・・・ 3-ロ-293 添3-ロ(ロ)第63図 御宿山周辺の地質平面図・・・・・ 3-ロ-294 添3-ロ(ロ)第64図 御宿山周辺の地質断面図・・・・・ 3-ロ-295 御宿山北方の断層露頭スケッチ図・3-ロ-296 添3-ロ(ロ)第66図 御宿山周辺の水系図及び接峰面図・3-ロー298 御宿山北方断層南西延長部に 分布する高位段丘面図 · · · · · · · 3 - ロ - 299 添3-ロ(ロ)第68図 東北町淋代東方周辺の 空中写真判読図 ………… 3-ロ-300 添3-ロ(ロ)第69図 東北町淋代東方周辺の地質平面図・3-ロ-301 添3-ロ(ロ)第70図 |東北町美須々周辺の柱状対比図・・・ 3-ロ-302 添3-ロ(ロ)第71図 東北町豊畑南方の柱状対比図・・・・ 3-ロ-303 東北町淋代東方の露頭柱状対比図・3-ロ-304 添3-ロ(ロ)第73図 東通村一里小屋周辺の 地質平面図及び地質断面図・・・・・ 3-ロ-305 添3-ロ(ロ)第74図 東通村小田野沢西方周辺の 地質平面図及び地質断面図・・・・・ 3-ロ-306 添3-ロ(ロ)第75図 横浜町向沢周辺の 地質平面図及び地質断面図・・・・・ 3-ロ-307 添3-ロ(ロ)第76図 横浜町向平の ボーリング調査結果……… 3-ロ-308

添3-ロ(ロ)第77図	横浜町向沢北方の	
	ボーリング調査結果・・・・・	$3 - \Box - 309$
添3-ロ(ロ)第78図	横浜町向沢の地質断面図・・・・・	3-2-310
添3-ロ(ロ)第79図	横浜町武ノ川右岸の	
	ボーリング調査結果・・・・・	3-2-311
添3-ロ(ロ)第80図	横浜町豊栄平周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 312$
添3-ロ(ロ)第81図	横浜町豊栄平東方の	
	ピット調査結果図 ・・・・・	$3 - \Box - 313$
添3-ロ(ロ)第82図	東北町豊前周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 314$
添3-ロ(ロ)第83図	六ヶ所村倉内西方の露頭対比図・・・	$3 - \Box - 315$
添3-ロ(ロ)第84図	六ヶ所村内沼周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 316$
添3-ロ(ロ)第85図	六ヶ所村六原南方の	
	露頭柱状対比図 ·····	$3 - \Box - 317$
添3-ロ(ロ)第86図	東北町乙部周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 318$
添3-ロ(ロ)第87図	東北町乙部南方の	
	岩渡沢右岸の露頭柱状対比図	$3 - \Box - 319$
添3-ロ(ロ)第88図	東北町緑町付近の露頭スケッチ図・	$3 - \Box - 320$
添3-ロ(ロ)第89図	東北町清水目川周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 321$
添3-ロ(ロ)第90図	東北町下清水目の	
	清水目川沿いのルートマップ・・・・	$3 - \Box - 322$

添3-ロ(ロ)第91図	野辺地町敦平付近の露頭スケッチ図	
	(SM-1露頭) ····· 3-ロ-32	23
添3-ロ(ロ)第92図	東北町石坂付近の露頭対比図・・・・ 3-ロ-32	24
添3-ロ(ロ)第93図	野辺地町有戸南方周辺の	
	地質平面図及び地質断面図・・・・・ 3-ロ-32	25
添3-ロ(ロ)第94図	野辺地町干草橋南東の	
	地質調査位置図 ・・・・・ 3-ロ-32	26
添3-ロ(ロ)第95図	野辺地町干草橋南東の	
	地質調査結果図 ・・・・・ 3-ロ-32	27
添3-ロ(ロ)第96図	平内町口広周辺の	
	地質平面図及び地質断面図・・・・・ 3-ロ-32	28
添3-ロ(ロ)第97図	平内町大萢西方の柱状対比図・・・・ 3-ロ-32	29
添3-ロ(ロ)第98図	平内町口広南方の	
	口広川右岸の露頭柱状対比図・・・・ 3-ロ-33	30
添3-ロ(ロ)第99図	月山東方の断層周辺の	
	地質平面図及び地質断面図・・・・・ 3-ロ-33	31
添3-ロ(ロ)第100図	東通村白糠南方の	
	物見崎付近の地質断面図・・・・・ 3-ロ-3	32
添3-ロ(ロ)第101図	東通村白糠南方の	
	物見崎付近の地形断面図・・・・・ 3-ロ-3	33
添3-ロ(ロ)第102図	金津山周辺の地質平面図・・・・・ 3-ロ-3	34
添3-ロ(ロ)第103図	金津山周辺の地質断面図・・・・・ 3-ロ-3	35
添3-ロ(ロ)第104図	金津山周辺の水系図及び接峰面図・3-ロ-33	36
添3-ロ(ロ)第105図	六ヶ所村千歳平の	
	河床ルートマップ ・・・・・ 3-ロ-33	37

添3-ロ(ロ)第106図 東北町十二里南方周辺の

地形図及び地すべり地形分布図・・・ 3-ロ-338 添3-ロ(ロ)第107図 朝比奈平周辺の 地質平面図及び地質断面図・・・・・ 3-ロ-339 添3-ロ(ロ)第108図 むつ市蜆沢上流付近の断層露頭 スケッチ図 (A-1 露頭) ······ 3-ロ-340 添3-ロ(ロ)第109図 桧木川周辺の地質平面図・・・・・・ 3-ロ-341 添3-ロ(ロ)第110図 桧木川周辺の地質断面図・・・・・ 3-ロ-342 添3-ロ(ロ)第111図 敷地を中心とする半径100km 範囲の陸域の活断層分布図・・・・・ 3-ロ-343 添3-ロ(ロ)第112図 折爪断層周辺の 空中写真判読図 ………… 3-ロ-344 添3-ロ(ロ)第113図 折爪断層北部の 段丘面高度分布図 ・・・・・ 3-ロ-345 添3-ロ(ロ)第114図 折爪断層周辺の地質平面図・・・・・ 3-ロ-346 添3-ロ(ロ)第115図 折爪断層周辺の地質断面図・・・・・ 3-ロ-347 添3-ロ(ロ)第116図 敷地周辺海域の地形図・・・・・ 3-ロ-349 添3-ロ(ロ)第117図 敷地周辺海域の海底地質図・・・・・ 3-ロ-350 添3-ロ(ロ)第118図 敷地周辺海域の海底地質断面図・・・ 3-ロ-351 添3-ロ(ロ)第119図 敷地周辺海域の音波探査記録・・・・ 3-ロ-356 添3-ロ(ロ)第120図 「ちきゅう」 s i t e C9001の概要図・・・・・ 3-ロ-375 添3-ロ(ロ)第121図 尻屋崎沖及び東通村老部川沖の 海上ボーリング調査結果図・・・・・ 3-ロ-377 添3-ロ(ロ)第122図 津軽海峡沿岸部における B層の状況図 ····· 3-ロ-378 添3-ロ(ロ)第123図 敷地周辺海域の地層区分と

IPOD site 438との対比図 3-ロ-379 添3-ロ(ロ)第124図 尻屋崎沖の急斜面基底部 付近のE層の分布図・・・・・ 3-ロ-380 添3-ロ(ロ)第125図 敷地周辺海域における |試料採取結果図 ・・・・・・・・・・・ 3-ロ-381 添3-ロ(ロ)第126図 文献による敷地周辺海域の 断層分布図 ………………… 3-ロ-382 添3-ロ(ロ)第127図 大陸棚外縁断層周辺の 地形陰影図 ……………… 3-ロ-383 添3-ロ(ロ)第128図 大陸棚外縁断層位置図・・・・・ 3-ロ-384 添3-ロ(ロ)第129図 大陸棚外縁断層周辺の 音波探査記録及び解釈図・・・・・ 3-ロ-385 添3-ロ(ロ)第130図 F-d断層位置図 ・・・・・ 3-ロ-400 添3-ロ(ロ)第131図 F-d断層周辺の 音波探査記録及び解釈図・・・・・ 3-ロ-401 添3-ロ(ロ)第132図 F-c断層位置図 ・・・・・ 3-ロ-406 添3-ロ(ロ)第133図 F-c断層周辺の 音波探査記録及び解釈図・・・・・ 3-ロ-407 添3-ロ(ロ)第134図 F-a 断層位置図 ・・・・・ 3-ロ-415 添3-ロ(ロ)第135図 F-a 断層周辺の 音波探査記録及び解釈図・・・・・ 3-ロ-416 添3-ロ(ロ)第136図 F-b 断層位置図 ・・・・・ 3-ロ-422 添3-ロ(ロ)第137図 F-b断層周辺の 音波探査記録及び解釈図・・・・・ 3-ロ-423

添3-ロ(ハ)第1図	敷地近傍の地形図 ・・・・・ 3 -	- 12 - 431
添3-ロ(ハ)第2図	敷地近傍の地形面区分図3-	- 12 - 432
添3-ロ(ハ)第3図	敷地近傍の地質平面図3-	- 12 - 433
添3-ロ(ハ)第4図	敷地近傍の地質断面図3-	- 12 - 434
添3-ロ(ハ)第5図	敷地近傍のリニアメント・	
	変動地形の分布図 ・・・・・ 3 -	- 12-435
添3-ロ(ハ)第6図	敷地近傍の重力異常図	
	(ブーゲー異常図) ・・・・・ 3 -	- 12-436
添3-ロ(ハ)第7図	敷地近傍の反射法	
	地震探查結果図 ····· 3-	-12-437
添3-ロ(ハ)第8図	出戸西方断層及び南方の	
	向斜構造の地質構造図・・・・・ 3 -	- 12 - 442
添3-ロ(ハ)第9図	敷地近傍の活断層分布図	
	(半径約5 k m範囲) · · · · · · · · · 3 -	- 12 - 443
添3-ロ(ハ)第10図	出戸西方断層周辺の	
	空中写真判読図 ····· 3-	- 12 - 444
添3-ロ(ハ)第11図	出戸西方断層周辺の	
	空中写真判読図(鳥瞰図) · · · · · 3 -	- 12 - 447
添3-ロ(ハ)第12図	出戸西方断層周辺の地形断面図・・・ 3-	- 12 - 448
添3-ロ(ハ)第13図	六ヶ所村棚沢川以北の平野部	
	におけるボーリング調査結果図・・・ 3-	- 12 - 449
添3-ロ(ハ)第14図	出戸西方断層周辺の	
	旧汀線高度分布図 ····· 3 -	- 12-450
添3-ロ(ハ)第15図	出戸西方断層周辺の	
	残差重力分布図 ····· 3 -	- 12 - 451
添3-ロ(ハ)第16図	出戸西方断層周辺の地質平面図・・・ 3-	- 12 - 452

3一目-23

添3-ロ(ハ)第17図	出戸西方断層周辺の地質断面図・・・ 3-ロ-453
添3-ロ(ハ)第18図	出戸川沿いの断層露頭
	周辺のルートマップ・・・・・・・・ 3-ロー454
添3-ロ(ハ)第19図	出戸川沿いの断層露頭スケッチ図・3-ロー455
添3-ロ(ハ)第20図	D-1 露頭全体の調査位置図····· 3-□-457
添3-ロ(ハ)第21図	六ヶ所村老部川(南)左岸の
	断層露頭スケッチ図
	(D-1 露頭(H16)) ······ 3-ロ-458
添3-ロ(ハ)第22図	六ヶ所村老部川(南)左岸の
	トレンチ調査結果図(D-1 露頭前
	トレンチ (H26)) ・・・・・・・ 3-ロ-459
添3-ロ(ハ)第23図	六ヶ所村老部川(南)左岸の
	断層露頭及び底盤スケッチ図・・・・ 3-ロ-460
添3-ロ(ハ)第24図	六ヶ所村老部川(南)左岸の
	露頭スケッチ図
	(D-1 露頭西側法面(H26)) · · 3-ロ-462
添3-ロ(ハ)第25図	出戸西方断層の
	平均変位速度検討図・・・・・ 3-ロ-463
添3-ロ(ハ)第26図	出戸西方断層南方の
	地質平面図(鷹架層上限面図)・・・ 3-ロ-464
添3-ロ(ハ)第27図	出戸西方断層南方の
	地質断面図 ・・・・・ 3-ロ-465
添3-ロ(ハ)第28図	出戸西方断層南方の
	反射法地震探査結果図・・・・・ 3-ロ-469
添3-ロ(ハ)第29図	出戸西方断層南方の
	トレンチ調査結果図・・・・・ 3-ロー472

添3-ロ(ハ)第30図	断層南方延長トレンチ内の
	地質層序図 ・・・・・・・・・・ 3-ロ-474
添3-ロ(ハ)第31図	断層南方延長トレンチ内に
	認められる断層の整理結果図・・・・ 3-ロ-475
添3-ロ(ハ)第32図	出戸西方断層南方の
	断層性状分類図 ・・・・・ 3-ロ-476
添3-ロ(ハ)第33図	尾駮沼南岸及び鷹架沼南岸の
	地質断面図 ・・・・・ 3-ロ-478
添3-ロ(ハ)第34図	尾駮沼南岸の向斜構造西縁部の
	地質断面図 ・・・・・ 3-ロ-479
添3-ロ(ハ)第35図	鷹架沼南岸の地質平面図
	及び地質断面図 3-ロ-480
添3-ロ(ハ)第36図	鷹架沼南岸の向斜構造西翼部の
	地質平面図 ・・・・・ 3-ロ-481
添3-ロ(ハ)第37図	鷹架沼南岸の向斜構造西翼部の
	地質断面図 ・・・・・ 3-ロ-482
添3-ロ(ハ)第38図	鷹架沼南岸の露頭スケッチ図・・・・ 3-ロ-483
添3-ロ(ハ)第39図	御宿山東方の断層中央部における
	高位段丘面周辺の地質図・・・・・ 3-ロ-489
添3-ロ(ハ)第40図	御宿山東方の
	断層露頭スケッチ図・・・・・ 3-ロ-490
添3-ロ(ハ)第41図	断層岩の研磨片観察結果図・・・・・ 3-ロ-492
添3-ロ(ハ)第42図	断層岩の薄片観察結果図・・・・・ 3-ロ-494
添3-ロ(ハ)第43図	六ヶ所村棚沢川以北の平野部
	における新第三系の分布状況図
	(東京電力株式会社の調査結果)・3-ロ-496

 $3 - \blacksquare - 25$

添3-ロ(ハ)第44図	六ヶ所村馬門川周辺の
	地質断面図 ・・・・・ 3-ロ-497
添3-ロ(ハ)第45図	御宿山北方断層北東延長部及び
	文献が指摘する出戸西方断層帯
	北端付近に分布する中位段丘面図・3-ロー499
添3-ロ(ハ)第46図	六ヶ所村中山崎周辺の
	地質断面図 ・・・・・ 3-ロ-500
添3-ロ(ハ)第47図	出戸西方断層南端
	周辺の総合検討図 ・・・・・ 3-ロ-503
添3-ロ(ハ)第48図	六ヶ所村二又周辺の
	空中写真判読図 ・・・・・ 3-ロ-504
添3-ロ(ハ)第49図	六ヶ所村二又周辺の地質平面図・・・ 3-ロ-505
添3-ロ(ハ)第50図	六ヶ所村雲雀平のボーリング結果図
	(二又西方リニアメント)・・・・・・ 3-ロ-506
添3-ロ(ハ)第51図	六ヶ所村第三二又東方の露頭対比図
	(二又北方リニアメント)・・・・・・ 3-ロ-507
添3-ロ(ハ)第52図	六ヶ所村第三二又南方の
	露頭対比図 ・・・・・ 3-ロ-508
添3-ロ(ハ)第53図	六ヶ所村戸鎖周辺の
	空中写真判読図 ・・・・・ 3-ロ-509
添3-ロ(ハ)第54図	六ヶ所村戸鎖周辺の地質平面図・・・ 3-ロ-510
添3-ロ(ハ)第55図	六ヶ所村戸鎖南方の露頭スケッチ図
	(戸鎖南方リニアメント)・・・・・ 3-ロ-511
添3-ロ(ハ)第56図	六ヶ所村戸鎖南方の露頭対比図
	(戸鎖南方リニアメント)・・・・・ 3-ロ-512
添3-ロ(ハ)第57図	六ヶ所村戸鎖南方の露頭対比図・・・ 3-ロ-513

添3-ロ(ハ)第58図	六ヶ所村老部川(南)上流周辺の	
	地質平面図及び地質断面図・・・・・	$3 - \Box - 514$
添3-ロ(ハ)第59図	六ヶ所村老部川(南)上流部の	
	露頭状況図 ·····	$3 - \Box - 515$
添3-ロ(ニ)第1図	敷地内地質調査位置図	$3 - \Box - 517$
添3-ロ(ニ)第2図	試掘坑調査位置図(東部試掘坑)·	$3 - \Box - 518$
添3-ロ(ニ)第3図	岩盤変形試験及び	
	岩盤支持力試験装置図	$3 - \Box - 519$
添3-ロ(ニ)第4図	岩盤変形試験及び	
	岩盤支持力試験載荷パターン図・・・	$3 - \Box - 520$
添3-ロ(ニ)第5図	岩盤せん断試験装置図・・・・・	$3 - \Box - 521$
添3-ロ(ニ)第6図	岩盤せん断試験載荷パターン図・・・	$3 - \Box - 522$
添3-ロ(ニ)第7図	岩盤クリープ試験装置図・・・・・	$3 - \Box - 523$
添3-ロ(ニ)第8図	孔内載荷試験概略図······	$3 - \Box - 524$
添3-ロ(ニ)第9図	敷地内の空中写真判読図・・・・・・	$3 - \Box - 525$
添3-ロ(ニ)第10図	敷地内地質平面図 ·····	$3 - \Box - 526$
添3-ロ(ニ)第11図	敷地内地質断面図 ·····	$3 - \Box - 527$
添3-ロ(ニ)第12図	鷹架層の地質構造	
	及び上限面等高線図・・・・・	$3 - \Box - 528$
添3-ロ(ニ)第13図	f-1断層, f-2断層及び	
	これらの派生断層確認地点位置図・	$3 - \Box - 529$
添3-ロ(ニ)第14図	s f 系断層確認地点位置図······	$3 - \Box - 530$
添3-ロ(ニ)第15図	f-1断層トレンチ	
	調査スケッチ図 ・・・・・	$3 - \Box - 531$
添3-ロ(ニ)第16図	f-1断層	
	敷地切取面調査結果図	$3 - \Box - 533$

3一目-27

添3-ロ(ニ)第17図	f-2断層トレンチ
	調査スケッチ図 ・・・・・ 3-ロ-535
添3-ロ(ニ)第18図	f - 2 断層
	敷地切取面調査結果図・・・・・ 3-ロ-537
添3-ロ(ニ)第19図	f - 1 a 断層
	追跡坑切羽スケッチ図
	(東部試掘坑追跡坑) ・・・・・・・ 3-ロ-539
添3-ロ(ニ)第20図	f - 1 b 断層
	敷地切取面調査結果図・・・・・ 3-ロ-540
添3-ロ(ニ)第21図	f - 2 a 断層
	トレンチ調査スケッチ図・・・・・ 3-ロ-541
添3-ロ(ニ)第22図	f - 2 a 断層トレンチ(南)
	調査スケッチ図 ・・・・・ 3-ロ-543
添3-ロ(ニ)第23図	f - 2 a 断層トレンチ(南)
	で確認された高位段丘堆積層中の
	小断層分布範囲図 ・・・・・ 3-ロ-546
添3-ロ(ニ)第24図	s f - 3 断層トレンチ
	調査スケッチ図・・・・・・・・・・3-ロ-547
添3-ロ(ニ)第25図	s f - 4 断層トレンチ
	調査スケッチ図 ・・・・・ 3-ロ-549
添3-ロ(ニ)第26図	s f - 6 断層ボーリングコア
	詳細観察結果図 (G-3孔)・・・・・ 3-ロ-550
添3-ロ(ニ)第27図	敷地南東部の地すべり地形付近
	地質構造検討結果図・・・・・ 3-ロ-551
添3-ロ(ニ)第28図	試掘坑地質展開図 ・・・・・ 3-ロ-553
添3-ロ(ニ)第29図	岩盤変形試験結果 ・・・・・ 3-ロ-556

添3-ロ(ニ)第30図	岩盤支持力試験結果・・・・・ 3-ロ-560
添3-ロ(ニ)第31図	岩盤せん断試験による
	せん断応力ー変位曲線・・・・・ 3-ロ-564
添3-ロ(ニ)第32図	岩盤せん断強度及び破壊包絡線・・・ 3-ロ-566
添3-ロ(ニ)第33図	岩盤クリープ試験結果・・・・・ 3-ロ-567
添3-ロ(ニ)第34図	弾性波試験結果 ・・・・・ 3-ロ-568
添3-ロ(ニ)第35図	平均速度法による
	弾性波速度測定結果・・・・・ 3-ロ-569
添3-ロ(ホ)第1図	岩石試験及び土質試験試料採取
	位置図並びにPS検層位置図・・・・ 3-ロ-570
添3-ロ(ホ)第2図	繰返し三軸試験(強度特性)の
	載荷パターン例 ・・・・・ 3-ロ-571
添3-ロ(ホ)第3図	PS検層概略図 ······ 3-ロ-572
添3-ロ(ホ)第4図	耐震重要施設等及び
	常設重大事故等対処施設
	設置位置付近の地質図・・・・・ 3-ロ-573
添3-ロ(ホ)第5図	地質柱状図 ・・・・・ 3-ロ-581
添3-ロ(ホ)第6図	耐震重要施設等及び
	常設重大事故等対処施設
	設置位置付近の岩盤分類図・・・・・ 3-ロ-589
添3-ロ(ホ)第7図	湿潤密度と標高の関係 3-ロ-597
添3-ロ(ホ)第8図	引張強度と標高の関係 3-ロ-600
添3-ロ(ホ)第9図	強度特性 ・・・・・ 3-ロ-601
添3-ロ(ホ)第10図	静的変形特性 ・・・・・ 3-ロ-608
添3-ロ(ホ)第11図	圧密試験による
	間隙比-圧密圧力曲線3-ロ-615

添3-ロ(ホ)第12図	三軸クリープ試験による
	ひずみー時間曲線 ・・・・・ 3-ロ-617
添3-ロ(ホ)第13図	変形特性のひずみ依存性・・・・・ 3-ロ-619
添3-ロ(ホ)第14図	繰返し三軸試験による
	動的強度と静的強度の比較・・・・・ 3-ロ-642
添3-ロ(ホ)第15図	PS検層結果 ······ 3-ロ-643
添3-ロ(ホ)第16図	動的変形特性 3-0-651
添3-ロ(へ)第1図	耐震重要施設等及び
	常設重大事故等対処施設の
	配置図及び解析対象断面位置図・・・ 3-ロ-659
添3-ロ(へ)第2図	解析用要素分割図 3-0-660
添3-ロ(へ)第3図	解析モデルの境界条件・・・・・ 3-ロ-664
添3-ロ(へ)第4図	入力地震動の考え方・・・・・ 3-ロ-665
添3-ロ(へ)第5図	各断面における入力地震動毎の
	すべり安全率の比較・・・・・・ 3-ロ-666
添3-ニ第1図	敷地周辺の被害地震の震央分布・・・ 3-ニ-104
添3-ニ第2図	敷地周辺の被害地震の
	マグニチュード-震央距離・・・・・ 3-ニ-106
添3-ニ第3図	地震カタログ間で
	差異のみられる地震の震央分布・・・ 3-ニ-107
添3-ニ第4図	地震カタログ間の差異による
	敷地への影響度の比較・・・・・ 3-ニ-108
添3-ニ第5図	敷地周辺におけるM5.0以上の
	中地震の震央分布
	(1923年~2015年7月) ・・・・・ 3-ニ-109

添3-ニ第6図	敷地周辺におけるM5.0以上の
	中地震の震源鉛直分布
	(1923年~2015年7月) ・・・・・・ 3-ニ-110
添3-二第7図	深発地震面の等深線・・・・・・ 3-ニ-111
添3-ニ第8図	敷地周辺におけるM5.0以下の
	小・微小地震の震央分布・・・・・・ 3-ニ-112
添3-ニ第9図	敷地周辺におけるM5.0以下の
	小・微小地震の震源鉛直分布・・・・ 3-ニー116
添3-ニ第10図	敷地周辺における活断層分布・・・・ 3-ニ-120
添3-ニ第11図	活断層分布と
	過去の被害地震の震央分布・・・・・ 3-ニ-121
添3-ニ第12図	活断層分布と
	小・微小地震の震央分布・・・・・ 3-ニ-122
添3-ニ第13図	1766年津軽の地震の震度分布・・・・ 3-ニー123
添3-ニ第14図	PS検層結果 ・・・・・・・・・・・・ 3-ニ-124
添3-ニ第15図	屈折法地震探査による
	敷地及び敷地周辺の速度構造・・・・ 3-ニー129
添3-ニ第16図	地震観測点 ・・・・・ 3-ニ-130
添3-ニ第17図	観測記録に基づく伝達関数と
	はぎとり地盤モデルによる
	伝達関数の比較 ・・・・・・・・・・ 3-ニ-131
添3-二第18図	2011年東北地方太平洋沖地震
	3地盤のはぎとり波の
	応答スペクトル(標高-70m,
	減衰定数(h)=0.05)・・・・・・ 3-ニー134
添3-ニ第19図	微動アレー観測点位置・・・・・ 3-ニ-135

3一目-31

添3-ニ第20図	各微動アレー観測点のS波速度構造
	及び地震基盤~開放基盤表面の
	増幅比の比較 ・・・・・・・・・・ 3-ニ-136
添3-ニ第21図	観測地震の震央分布・・・・・・・・・ 3-ニー137
添3-ニ第22図	地震発生様式別応答スペクトル・・・ 3-ニー138
添3-ニ第23図	地震別応答スペクトル
	(観測深度の比較) ・・・・・ 3-ニ-141
添3-ニ第24図	地震波の到来方向別の
	検討に用いた地震の分布・・・・・ 3-ニ-144
添3-ニ第25図	地盤観測点の
	到来方向別の応答スペクトル比・・・ 3-ニー145
添3-ニ第26図	深部地盤モデルによる増幅特性と
	スペクトルインバージョン解析の
	増幅特性の比較 ・・・・・・・・・・ 3-ニー149
添3-ニ第27図	深部地盤モデルによる増幅特性と
	経験的サイト増幅特性の比較・・・・ 3-ニー150
添3-ニ第28図	解放基盤表面 (G.L125m)
	における3次元地盤モデルと深部
	地盤モデルの最大振幅値の比較・・・ 3-ニー151
添3-ニ第29図	「想定三陸沖北部の地震」及び
	「2011年東北地方太平洋沖地震を
	踏まえた地震」の断層面比較・・・・ 3-ニ-152
添3-ニ第30図	「2011年東北地方太平洋沖地震を
----------	------------------------------------
	踏まえた地震(三陸沖北部〜根室
	沖の連動)」の断層面及び「超巨大
	地震(17世紀型)」の評価対象領域
	の比較 ・・・・・・・・・・・・・・・・・・・・・・ 3-ニ-153
添3-ニ第31図	「2011年東北地方太平洋沖地震を
	踏まえた地震」の断層面の位置・・・ 3-ニ-154
添3-ニ第32図	検討用地震の選定
	(Noda et al. (2002) による比較)
	(海洋プレート内地震) ・・・・・・ 3-ニ-156
添3-ニ第33図	「想定海洋プレート内地震」
	の断層面の位置 ・・・・・・・・・・ 3-ニ-157
添3-ニ第34図	原子力安全基盤機構(2004)
	による地震域区分毎の地震発生
	上下限層分布図 ・・・・・・・・・ 3-ニ-158
添3-ニ第35図	敷地周辺の小・微小地震の
	震央分布及び震源の鉛直分布
	(1997年10月~2011年12月) ・・・・ 3-ニ-159
添3-ニ第36図	敷地周辺における
	地震波トモグラフィ解析結果・・・・ 3-ニー160
添3-ニ第37図	敷地周辺の主な活断層から
	想定される地震の
	マグニチュード-震央距離・・・・・・ 3-ニ-161
添3-ニ第38図	選定した内陸地殻内地震の
	断層面の位置 ・・・・・・・・・・・ 3-ニ-162

添3-ニ第39図	敷地に影響を与えるおそれがあると
	考えられる地震の応答スペクトル・3-ニ-163
添3-二第40図	短周期レベルと
	既往スケーリング則の比較・・・・・ 3-ニー164
添3-二第41図	「2011年東北地方太平洋沖地震
	を踏まえた地震」の断層モデル・・・ 3-ニ-165
添3-ニ第42図	断層モデル パラメータ
	設定フロー(プレート間地震)・・・ 3-ニー167
添3-ニ第43図	「2011年東北地方太平洋沖地震
	を踏まえた地震」の断層モデル・・・ 3-ニ-168
添3-ニ第44図	要素地震の震央位置及び観測記録の
	波形(プレート間地震)・・・・・・ 3-ニー170
添3-ニ第45図	「2011年東北地方太平洋沖地震
	を踏まえた地震」の応答スペクトル
	(断層モデルを用いた手法)・・・・ 3-ニ-172
添3-ニ第46図	「想定海洋プレート内地震」の断層
	モデル(基本モデル・短周期レベル
	の不確かさケース) ・・・・・ 3-ニ-180
添3-ニ第47図	断層モデル パラメータ設定フロー
	(想定海洋プレート内地震)・・・・ 3-ニー181
添3-ニ第48図	「想定海洋プレート内地震」
	の断層モデル・・・・・・・・・・・・・・・・3-ニー183
添3-ニ第49図	海洋プレート内地震の観測記録
	に基づく補正に関する検討・・・・・ 3-ニー185

添3-二第50図 「想定海洋プレート内地震」 の応答スペクトル (応答スペクトルに基づく手法)・3-ニ-186 添3-二第51図 「想定海洋プレート内地震」 の応答スペクトル (断層モデルを用いた手法) ・・・・ 3-ニ-188 添3-二第52図 「出戸西方断層による地震」 の断層モデル(基本モデル・ 短周期レベルの不確かさケース)・3-ニ-196 断層モデル パラメータ 添3-二第53図 設定フロー(内陸地殻内地震)・・・3-ニ-197 添3-二第54図 「出戸西方断層による地震」の 断層モデル(断層傾斜角の不確かさ ケース・断層傾斜角と短周期レベル の不確かさを重畳させたケース)・3-ニ-198 添3-二第55図 「出戸西方断層による地震」 の応答スペクトル (応答スペクトルに基づく手法)・3-ニ-199 添3-二第56図 要素地震の震央位置及び観測記録の 波形(内陸地殻内地震)・・・・・ 3-ニ-201 添3-二第57図 「出戸西方断層による地震」 の応答スペクトル (断層モデルを用いた手法) ・・・・ 3-ニ-202 添3-二第58図 加藤ほか(2004)による 応答スペクトル ・・・・・ 3-ニ-210

添3-ニ第59図	震源を特定せず策定する
	地震動の応答スペクトル・・・・・ 3-ニー212
添3-ニ第60図	応答スペクトルに基づく地震動評価
	結果と基準地震動Ss-Aの比較・3-ニー214
添3-ニ第61図	継続時間及び振幅包絡線
	の経時的変化 ・・・・・・・・・・・ 3-ニ-216
添3-ニ第62図	設計用応答スペクトルに対する設計用
	模擬地震波の応答スペクトルの比・・・ 3-ニー217
添3-ニ第63図	S s-A _H , S s-A _V の設計用
	模擬地震波の加速度時刻歴波形・・・ 3-ニー218
添3-ニ第64図	基準地震動Ss-B(B1~B5)
	の応答スペクトル ・・・・・・ 3-ニ-219
添3-ニ第65図	基準地震動Ss-B1~B5の
	加速度時刻歴波形 ・・・・・ 3-ニ-222
添3-ニ第66図	基準地震動 S s - C (C 1 ~ C 4)
	の応答スペクトル ・・・・・ 3-ニ-227
添3-ニ第67図	基準地震動Ss-C1~C4の
	加速度時刻歴波形 ・・・・・ 3-ニ-229
添3-ニ第68図	ロジックツリー ・・・・・ 3-ニ-223
添3-ニ第69図	基準地震動Ss-A及び
	S s−B (B1~B5) と
	一様ハザードスペクトルの比較・・・ 3-ニ-236
添3-ニ第70図	基準地震動Ss-C(C1~C4)と
	一様ハザードスペクトル(領域震源
	(内陸地殻内地震))の比較・・・・・ 3-ニ-238
添3-ニ第71図	建屋底面位置における地震動・・・・ 3-ニ-240

添3-赤第1図	MOX燃料加工施設付近の集落,
	学校,認定こども園及び医療機関
	の位置図・・・・・ 3-ホ-16
添3-赤第2図	MOX燃料加工施設付近の
	土地利用状況図 ・・・・・・・ 3-ホ-17
添3-赤第3図	MOX燃料加工施設周辺の
	漁業権等状況図 ・・・・・・・ 3-ホ-18
添3-赤第4図	MOX燃料加工施設周辺の
	主要な道路,鉄道及び港湾・・・・・ 3-ホ-19
添3-赤第5図	MOX燃料加工施設周辺の
	航空路等図 ・・・・・・・ 3-ホー20
添3-へ第1図	敷地の概況図 ・・・・・ 3-~-39
添3-へ第2図	主な既往津波高とその位置・・・・・ 3-へ-40
添3-へ第3図	青森県東方沖から三陸沖で
	発生した津波の推定波源域・・・・・ 3-へ-41
添3-へ第4図	既往津波の波高分布比較・・・・・・ 3-ヘ-42
添3-へ第5図	既往津波の再現性の確認に用いた
	波源モデルの位置及び諸元・・・・・ 3-ヘー43
添3-へ第6図	計算領域とその水深及び格子分割・3-ヘ-45
添3-へ第7図	敷地近傍の計算領域と
	その水深及び格子分割・・・・・ 3-へ-46
添3-へ第8図	既往津波高と数値シミュレーション
	による津波高の比較・・・・・・ 3-ヘ-47
添3-へ第9図	津波高の評価位置 ・・・・・・・・・ 3 - ~ - 50

添3-ヘ第10図	三陸沖北部のプレート間地震の
	波源モデルの位置及び諸元・・・・・・ 3-ヘ-51
添3-ヘ第11図	津波地震の波源モデル
	の位置及び諸元 ・・・・・ 3-~-52
添3-へ第12図	北方への連動型地震の波源モデル
	の位置及び諸元(基本モデル)・・・ 3-ヘ-53
添3-へ第13図	北方への連動型地震の波源モデル
	の位置及び諸元 ・・・・・ 3-~-54
添3-へ第14図	破壊開始点の位置 ・・・・・ 3-~-56
添3-へ第15図	北方への連動型地震に起因する
	津波の最大ケースの津波高分布・・・ 3-ヘ-57
添3-へ第16図	青森県海岸津波対策
	検討会(2012)の検討結果
	(海岸線上の津波の水位)・・・・・・ 3-ヘ-58
添3-へ第17図	青森県海岸津波対策
	検討会(2012)の検討結果
	(浸水予測図) ・・・・・・・・・ 3-ヘ-59
添3-へ第18図	正弦波入力による検討結果・・・・・ 3-へ-60
添3-ヘ第19図	周波数分析結果 ・・・・・ 3-~-61
添3-へ第20図	格子間隔の妥当性に係る検討結果・3-へ-62
添3-へ第21図	海洋プレート内地震の波源モデルの
	位置及び諸元(正断層型の地震)・3-へ-63
添3-へ第22図	敷地周辺海域の活断層分布・・・・・ 3-へ-64
添3-へ第23図	海底地すべり地形 ・・・・・・・・・ 3-へ-65
添3-へ第24図	海底地すべり地形の断面・・・・・ 3-へ-66
添3-へ第25図	計算領域とその水深及び格子分割・3-へ-67

添3-へ第26図	すべり量3倍モデルの位置及び諸元 3-へ-68
添3-へ第27図	すべり量3倍モデルによる検討結果 3-ヘ-70
添3-ト第1図	地理的領域内の第四紀火山・・・・・ 3-ト-52
添3-卜第2図	地理的領域内の火山地質図・・・・・ 3-ト-53
添3-卜第3図	十和田における過去最大規模の
	噴火による火砕流堆積物の分布と
	到達可能性範囲 ・・・・・ 3-ト-54
添3-卜第4図	八甲田カルデラにおける過去最大
	規模の噴火による火砕流堆積物の
	分布と到達可能性範囲・・・・・ 3-ト-55
添3-卜第5図	十和田の階段ダイアグラム及び
	噴火前休止期間の時間変化・・・・・ 3-ト-56
添3-卜第6図	十和田の階段ダイアグラム・・・・・ 3-ト-57
添3-卜第7図	巨大噴火に伴う火砕流堆積物
	に着目した地質柱状図・・・・・ 3-ト-58
添3-卜第8図	十和田大不動火砕流堆積物
	の分布及び十和田切田テフラの
	等層厚線図 ・・・・・ 3-ト-60
添3-ト第9図	敷地内(Loc.26)における十和田
	八戸火砕流堆積物及び十和田大不動
	火砕流堆積物の状況・・・・・ 3-ト-61
添3-ト第10図	十和田八戸火砕流堆積物の分布及び
	十和田八戸テフラの等層厚線図・・・ 3-ト-62
添3-ト第11図	Nakajima et al. (2001) の
	地震波トモグラフィ解析結果・・・・ 3-ト-63

3-目-39

添3-ト第12図 中島 (2017) の 地震波トモグラフィ解析結果・・・・ 3-ト-64 添3-ト第13図 防災科学技術研究所HP上の「日本 列島下の三次元地震波速度構造 (海域拡大2019年版)」の 地震波トモグラフィ解析結果・・・・ 3-ト-65 添3-ト第14図 Hi-netや東北大学等の 観測点の観測データを用いた 地震波トモグラフィ解析結果・・・・ 3-ト-67 北東北における観測及びモデル化 添3-ト第15図 されたインダクションベクトル・・・ 3-ト-69 添3-ト第16図 北東北の三次元比抵抗構造・・・・・ 3-ト-70 添3-ト第17図 +和田付近における地震活動・・・・ 3-ト-72 添3-ト第18図 十和田を囲む電子基準点間の |基線長の時間変化(斜距離成分)・3-ト-73 添3-ト第19図 十和田付近の一等水準路線の 上下変動の期間内変動量・・・・・・ 3-ト-74 添3-ト第20図 十和田の後カルデラ期の 階段ダイアグラム ・・・・・ 3-ト-75 添3-ト第21図 十和田毛馬内火砕流堆積物の 分布及び十和田一a テフラの 等層厚線図 ・・・・・・・・・・・・・・ 3-ト-76 八甲田山の噴出物の分布と 添3-ト第22図 階段ダイアグラム ・・・・・ 3-ト-77 添3-ト第23図 北八甲田火山群の噴出率の時間変化 及び噴火中心の時空間分布・・・・・ 3-ト-78

添3-ト第24図	八甲田第2期火砕流堆積物
	に着目した地質柱状図・・・・・ 3-ト-79
添3-ト第25図	Loc. В01における八甲田カルデラ
	の噴出物に着目した地質柱状図等・3-ト-80
添3-ト第26図	八甲田山におけるインダクション
	ベクトルの実部の分布・・・・・ 3-ト-81
添3-ト第27図	八甲田山の比抵抗構造・・・・・ 3-ト-82
	八甲田山付近における地震活動・・・ 3-ト-83
添3-ト第29図	八甲田山を囲む電子基準点間の
	基線長の時間変化(斜距離成分)・3-ト-84
添3-卜第30図	八甲田山付近の一等水準路線の
	上下変動の期間内変動量・・・・・ 3-ト-85
添3-卜第31図	北八甲田火山群起源の設計対応
	不可能な火山事象の分布 3-ト-86
	南八甲田火山群起源の設計対応
	不可能な火山事象の分布・・・・・・ 3-ト-87
	地理的領域内の第四紀火山起源の
	主な降下火砕物の分布・・・・・ 3-ト-88
	地理的領域外の第四紀火山起源の
	主な降下火砕物の分布・・・・・ 3-ト-89
	洞爺カルデラの階段ダイアグラム・3-ト-90
	甲地軽石に着目した地質調査結果・3-ト-91
添3-卜第37図	再堆積を含む甲地軽石の層厚が
	最大であるKP-1 孔のボーリング
	コア写真とCT画像 3-ト-92
添3-ト第38図	再現解析における

 $3 - \blacksquare - 41$

	最も再現性が良い解析結果	$3 - rac{-}{-}93$
添3-ト第39図	降下火砕物シミュレーションの	
	解析結果	$3 - rac{-}{-}94$
添3-ト第40図	降下火砕物シミュレーションの解析	f
	結果(風向の不確かさの考慮)・・・	$3 - rac{-}{-}96$
添3-ト第41図	甲地軽石の密度試験結果・・・・・	3 97
添3-チ第1図	吉野正敏(1967年)	
	による東北地方の気候区分	3ーチー19
添3-チ第2図	竜巻の発生地点と	
	竜巻が集中する19個の地域・・・・・・	3ーチー20
添3-チ第3図	竜巻の発生要因別地域分布・・・・・・	3ーチー21
添3-チ第4図	竜巻検討地域 ·····	3ーチー22
添3-チ第5図	竜巻検討地域等における	
	竜巻の発生要因の出現比率・・・・・・	3ーチー23
添3-チ第6図	CAPEの概念 ·····	3ーチー24
添3-チ第7図	SReHの概念 ・・・・・	$3 - \mathcal{F} - 24$
添3-チ第8図	同時超過頻度分布の算出結果・・・・	$3 - \mathcal{F} - 25$
添3-チ第9図	竜巻年別発生確認数·····	3ーチー25
添3-チ第10図	竜巻検討地域における	
	竜巻発生数の確率分布と累積確率·	3-チ-26
添3-チ第11図	風速の確率密度分布 (左)	
	と超過確率(右) ・・・・・・・・・・・	3ーチー27
添3-チ第12図	被害幅の確率密度分布(左)	
	と超過確率(右) ・・・・・	3ーチー27
添3-チ第13図	被害長さの確率密度分布(左)	
	と超過確率(右) ・・・・・・・・・・	3ーチー27

添3-チ第14図	竜巻影響エリア ・・・・・ 3-チ-28
添3-チ第15図	竜巻最大風速のハザード曲線
	(竜巻地域検討) ・・・・・・・・・ 3-チ-29
添3-チ第16図	竜巻最大風速のハザード曲線
	(1 km範囲)(参考) ・・・・・・・ 3 -チ-29
添3-ヌ第1図	(a)平均年間雷日数及び
	(b)年平均雷日数等値線 3-ヌ-5
添3-ヌ第2図	青森県の落雷密度マップ・・・・・ 3-ヌ-6
添3-ヌ第3図	再処理事業所及びその周辺で観測
	された落雷の雷撃電流の分布・・・・ 3-ヌ-6

3-目-43

イ. 気象

- (イ) 青森県の気象⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾⁽⁶⁾⁽⁷⁾
 - (1) 地勢と気象

敷地は、青森県下北半島の南部の太平洋側の開けたところに位置し 、かっこしえぼし ており、北側約8kmに吹越烏帽子山(標高508m)があり、南側はほ ぼ平坦である。また、東側は約5kmで太平洋、西側は約9kmで陸奥湾 があり、それぞれの海岸線の向きは、ほぼ南北である。

青森県の気候区分は,日本海側東北・北海道型の気候区に属してい る。

青森県東部の降水量の平年値は、年間約1000mmから1400mm、気温の 平年値は、約10℃であり、風向は、夏は東寄りの風が多く、その他の 季節では西寄りの風が多い。

(2) 四季の気候

① 春

3月は、冬の季節風は弱まるが、初旬はまだ気温は低く、雪も降り やすく積雪も多い。4月には平地の雪は消え、下旬から高気圧と低気 圧が交互に現れ、天気は、周期的に変化するようになる。降水量は、

全般に少なく、湿度は年間を通して最も低い。

② 夏

6月中旬から本州南岸沿いに梅雨前線が停滞し、ぐずついた天気が 続く。平年の梅雨入りは、6月中旬であり、7月下旬に明ける。この 期間は、当地方で「やませ」と呼ばれているオホーツク海高気圧から 吹き出してくる寒冷な風により低温の日が多くなる。梅雨明け後は、 盛夏期を迎え、安定した夏型の天気となり、8月は1年間の最高の気 温が現れる。 ③ 秋

9月下旬から気温は、急に下がり始め、天気は再び周期変化する。 また、9月は、^{しゅうりん} 報案^{*}期と台風シーズンに当たり、太平洋側では降水 量の最も多い月である。10月は、好天の日が多くなる。11月に入ると 平地でも初雪が降り、しぐれ模様の天気の日が多く、下旬には積雪と なることが多い。

④ 冬

12月は、大陸の高気圧が強まって西寄りの季節風が卓越し、本格的な冬を迎える。1月及び2月は、日本海側では連日降雪が続くが、太平洋側では八甲田山系の影響で降雪は比較的少ない。また、この時期は、発達した低気圧により風の強い日が多い。一方、2月下旬には季節風は弱まるが、低気圧が本州の南岸沿いに北上し、太平洋側でも大雪になることがある。

- (ロ) 最寄りの気象官署の資料による一般気象
 - (1) 気象官署所在地の状況

対象とした気象官署は、八戸特別地域気象観測所(旧八戸測候所) 及びむつ特別地域気象観測所(旧むつ測候所)の2箇所であり、各気 象官署の位置及び観測項目を添3-イ第1図及び添3-イ第1表に示 す。

八戸特別地域気象観測所は太平洋に,むつ特別地域気象観測所は陸 奥湾にそれぞれ面している。

(2) 八戸及びむつ気象官署を選んだ理由

この地方の一般気象を知るため、長期間通年観測が行われている気象官署の資料が必要である。

青森県には、気象官署として青森地方気象台、深浦特別地域気象観 測所(旧深浦測候所)、八戸特別地域気象観測所及びむつ特別地域気 象観測所がある。これらの気象官署は、よく管理された長期間の観測 資料を得ているが、気候的に敷地に比較的類似している最寄りの気象 官署は、八戸特別地域気象観測所及びむつ特別地域気象観測所であ る。

したがって、敷地の局地的気象を推定し、MOX燃料加工施設の一般的設計条件として必要なデータを得るために、八戸特別地域気象観 測所及びむつ特別地域気象観測所の資料を用いることとした。

なお、MOX燃料加工施設から近く気象条件が似ていることから、 気象庁の六ヶ所地域気象観測所の資料も考慮することとした。

- (3) 最寄りの気象官署における一般気象⁽³⁾⁽⁴⁾⁽⁵⁾⁽⁶⁾⁽⁷⁾⁽⁸⁾⁽⁹⁾
 - ① 一般気象

八戸特別地域気象観測所及びむつ特別地域気象観測所における一般

気象に関する統計をそれぞれ添3-イ第2表及び添3-イ第3表に示 す。

この地方に影響を与えた主な台風を添3-イ第21表及び添3-イ第 22表に示す。

年平均気温,最高気温及び最低気温は,両気象官署でほぼ等しい値 を示すが,八戸特別地域気象観測所でやや高い。両気象官署とも湿度 は夏が高く,風向は年間を通じて西寄りの風が多い。

2 極値

添3-イ第4表から添3-イ第20表に示す最寄りの気象官署の観測 記録からみれば、八戸及びむつの両気象官署では冬の積雪に差が現れ るが、この最深積雪を除けば両気象官署ともほぼ同程度の極値を示し ている。

八戸特別地域気象観測所の観測記録によれば、日最高気温37.0℃(1978年8月3日)、日最低気温-15.7℃(1953年1月3日)、日最大降水量160.0mm(1982年5月21日)、日最大1時間降水量67.0mm(1969年8月5日)、日最大瞬間風速41.7m/s(西南西 2017年9月18日)及び積雪の深さの月最大値92cm(1977年2月16日)である。

むつ特別地域気象観測所の観測記録によれば、日最高気温34.7℃ (2012年7月31日),日最低気温-22.4℃(1984年2月18日),日最 大降水量162.5mm(1981年8月22日及び2016年8月17日),日最大1 時間降水量51.5mm(1973年9月24日),日最大瞬間風速38.9m/s(西 南西 1961年5月29日)及び積雪の深さの月最大値170cm(1977年2 月15日)である。

なお、六ヶ所地域気象観測所の観測記録によれば、日最高気温 34.2℃(2004年7月31日、1994年8月13日及び2011年8月10日)、

 $3 - \cancel{-} 4$

日最低気温-14.6℃(1981年2月27日),日最大降水量208mm (1990年10月26日),日最大1時間降水量46mm(1990年10月26 日),日最大瞬間風速27.4m/s(2009年2月21日)である。六ヶ所 村統計書における記録(統計期間:1973年~2002年)によれば,積 雪の深さの月最大値190cm(1977年2月17日)である。

- (4) その他の一般気象(7)(10)(12)(13)
 - ① 森林火災

気象条件については、「原子力発電所の外部火災影響評価ガイド」 (平成25年6月19日 原規技発第13061912号 原子力規制委員会決 定)を参考とし、過去10年間を調査し、森林火災の発生頻度が年間を 通じて比較的高い3月から8月の最高気温、最小湿度及び最大風速の 組合せを考慮し、風向は卓越方向を考慮する。MOX燃料加工施設の 最寄りの気象官署としては、気候的に敷地に比較的類似している八戸 特別地域気象観測所及びむつ特別地域気象観測所があり、敷地近傍に は六ヶ所地域気象観測所がある。最高気温、最小湿度及び最大風速に ついては、気象条件が最も厳しい値となる八戸特別地域気象観測所の 過去10年間の気象データから設定する。風向については、MOX燃料 加工施設の風上に発火点を設定する必要があることから、敷地近傍に ある六ヶ所地域気象観測所の過去10年間の気象データから、最大風速 時の風向の出現回数及び風向の出現回数を調査し、卓越方向を設定する。

青森県の森林火災発生状況(2003年から2012年)及び気象データ (最高気温,最小湿度及び最大風速)(2003年から2012年)につい て,添3-イ第23表に示す。

気象データ(卓越風向) (2003年から2012年における3月から8月 の期間) について, 添3-イ第24表に示す。 (ハ) 敷地における気象観測

敷地の気象資料を得るため,敷地内で,1985年12月から風向,風速, 日射量,放射収支量等の観測を行っている。

以上の観測に使用した気象測器の種類,観測位置及び観測期間を添 3-イ第25表に,気象観測設備配置を添3-イ第2図(1)及び添3-イ第2図(2)に示す。

- (1) 気象観測点の状況
 - 地上風を代表する観測点
 - 敷地を代表する地上風の資料を得るため,敷地内の露場(標高59m)に観測柱を設置し,地上高10m(標高69m)で風向風速の観測を 行った。この観測点は,周囲の障害物の影響を受けることがなく平坦 地で開けており,敷地の地上風を十分に代表している。
 - ② 大気安定度を求めるための風速,日射量及び放射収支量の観測点 大気安定度を求めるため、風速については、地上風を代表する観測 点で測定した値を使用する。日射量及び放射収支量については、露場 の観測点で測定した値を使用する。
- (2) 気象観測項目

敷地における気象観測項目は、下記のとおりである。

- 風向風速
- 日射量

放射収支量

- 降水量
- 気 温
- 湿 度

(観測点の位置については添3-イ第2図(1)及び添3-イ第2図

(2)参照)

(3) 気象測器

気象測器は、添3-イ第25表に示しているが、「気象業務法」に基づく 気象庁検定を受けたものである。

なお,放射収支計及び温度差計は,気象庁の検定項目にないため, 定期的に検査を行った。 (ニ) 敷地における気象観測結果

2013年4月から2014年3月までの1年間の敷地における観測結果を以下に示す。

(1) 敷地を代表する風

敷地の地上風を代表する露場(添3-イ第2図(1)及び添3-イ第 2図(2))の地上高10m(標高69m)における1年間の観測結果を以 下に示す。

① 風向

年間及び月別の風配図を添3-イ第3図から添3-イ第5図に示す。

これらによれば、風向は、5月から10月にかけて東寄りの風が多いが、その他の月は年間を通じて西寄りの風が多くなっている。

年間の低風速(0.5m/sから2.0m/s)時の風配図を添3-イ第6 図に示す。

これによれば、際立って出現している風向はない。

2 風速

年間及び月別の風速別出現頻度,風速別出現頻度累積を添3-イ第 7図から添3-イ第9図に示す。

これらによれば、年平均風速が4.3m/sで、各風速階級の出現頻度 に大きな差はない。

また,静穏状態(風速0.5m/s未満)の年間出現頻度は,1.1%である。

③ 同一風向継続時間

同一風向の継続時間別出現回数を添3-イ第26表に示す。

比較的継続時間の長いことの多い風向は、東寄り及び西寄りの風で

ある。各風向とも7時間以内がほとんどであり、その出現回数は 97.9%を占めている。

また,静穏の継続時間は,1時間以内がほとんどであり,その出現 回数は85.7%である。

(2) 大気安定度

日射量,放射収支量及び地上高10m(標高69m)の風速の観測資料 から「発電用原子炉施設の安全解析に関する気象指針」(昭和57年1 月28日原子力安全委員会決定)(以下「気象指針」という。)に基づ き大気安定度の分類を行った。

年間及び月別の大気安定度出現頻度を添3-イ第10図に,年間大気安 定度別の地上高10m(標高69m)の風配図を添3-イ第11図に示す。

年間の出現頻度は、A型からC型は15.6%、D型(C-D型も含む。)は68.2%、E型からG型は16.2%となっている。D型は年間を通じて出現頻度が多く、A型からC型は5月から9月に比較的多くなっており、E型からG型は8月から11月に多くなっている。

安定度別の風向分布は、A型からC型は西から西北西及び東から東 南東、D型は西から西北西及び東から東南東、E型からG型は西南 西から北西の風が多くなっている。

大気安定度の継続時間別出現回数を添3-イ第27表に示す。比較的継続時間が長いことの多い大気安定度型はD型である。他の大気安定度型では6時間以内がほとんどであり、その出現回数は96.4%を占めている。

(3) 観測結果からみた敷地の気象特性

敷地における気象観測資料を解析した結果によると,敷地の気象特 性として次の点が挙げられる。

① 風向出現頻度は、西寄り及び東寄りの風が多い。

 $3 - \cancel{-} - 9$

② 年平均風速は、4.3m/sである。

また,静穏の年間出現頻度は1.1%であり,かつ,継続時間は1時 間以内がほとんどである。

③ 大気安定度は、D型の出現が多い。

A+B+C型及びD型時は,西寄り及び東寄りの風がほぼ同程度 出現している。E+F+G型時は,西南西から北西の風がやや多く 出現している。 (ホ) 安全解析に使用する気象条件

安全解析に使用する気象条件は、「(ハ) 敷地における気象観測」に 述べた気象資料を使用し、気象指針により求めた。

(1) 観測期間の気象条件の代表性の検討

敷地において観測した2013年4月から2014年3月までの1年間の気 象資料により安全解析を行うに当たり、観測を行った1年間の気象が 長期間の気象と比較して特に異常な年でないかどうかの検討を行っ た。

風向出現頻度及び風速階級別出現頻度について,敷地内露場における10年間(2003年4月から2013年3月)の資料により検定を行った。 検定法は,不良標本の棄却検定に関するF分布検定の手順に従った。

その結果を添3-イ第28表及び添3-イ第29表に示す。これによる と、有意水準5%で棄却された項目はない。これは、安全解析に使用 する平成25年4月から平成26年3月までの1年間が異常年でないこと を示している。したがって、この期間の気象資料を用いて平常時の拡 散評価及び設計最大評価事故の評価を行った。

- (2) 大気拡散の計算に使用する放出源の有効高さ
 - 放出される放射性物質の敷地境界外の一般公衆に及ぼす影響を評価 するに当たって、大気拡散の計算に使用する放出源の有効高さは、排 気口の地上高さ及び排気口からの吹上げを考慮せずに厳しい評価とな るよう地上放出とし、0mとする。
- (3) 大気拡散の計算に使用する気象条件
 - 平常時

MOX燃料加工施設の平常運転時に放出される放射性物質の敷地境 界外の一般公衆に及ぼす影響については、添付書類六「ニ.放射性廃 棄物の廃棄に関する管理」の(イ)(3)に記載のとおり,排気口におけ る排気中の放射性物質の濃度は,「平成27年度原子力規制委員会告示 第8号」に定められた周辺監視区域外の空気中の濃度限度に比べて十 分に小さく,十分な安全裕度のある拡散条件を考慮しても一般公衆の 線量は極めて小さいことから,一般公衆の線量の評価は要しないた め,気象指針に基づく平常運転時の拡散式については記載しない。

② 設計基準事故時等

a. 相対濃度

設計基準事故時等に放出される放射性物質の敷地境界外の一般公 衆に及ぼす影響を評価するに当たって,放射性物質の大気拡散状 態を推定するのに必要な気象状態については,現地における出現 頻度からみて,これより悪い条件がほとんど現れないと言えるもの を選ばなければならない。

そこで、設計基準事故時等における影響評価に用いる放射性物質 の相対濃度(以下、「 χ/Q 」という。)を、地上高10m(標高69 m)における2013年4月から2014年3月までの1年間の観測資料 を使用して求めた。すなわち、(3.1)式に示すように風向、風 速、大気安定度及び実効放出継続時間を考慮した χ/Q を求め、方 位別にその値の小さい方からの累積度数を年間のデータ数に対す る出現頻度(%)として表すことにする。横軸に χ/Q を、縦軸に 累積出現頻度をとり、着目方位ごとに χ/Q の累積出現頻度分布を 書き、この分布から、累積出現頻度が97%に当たる χ/Q を方位別 に求め、そのうち最大のものを設計基準事故時等における影響評 価に使用する χ/Q とする。

ただし, χ/Qの計算の着目地点は,各方位とも敷地境界とし,

着目地点以遠で χ/Q が最大になる場合は、その χ/Q を着目地点に おける当該時刻の χ/Q とする。

$$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_{i} \cdot \delta_{i} \dots (3.1)$$
ここで,
 χ/Q : 実効放出継続時間中の相対濃度 (s/m³)
T : 実効放出継続時間 (h)
 $(\chi/Q)_{i}$: 時刻 i における相対濃度 (s/m³)
 δ_{i} : 時刻 i において風向が当該方位にあるとき
 $\delta_{i} = 1$
時刻 i において風向が他の方位にあるとき
 $\delta_{i} = 0$

(χ/Q)_iの計算に当たっては,短時間放出のため,方位内で 風向軸が一定と仮定して(3.2)式で計算する。

$$(\chi/\mathbf{Q})_{i} = \frac{1}{\pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_{i}} \exp\left(-\frac{\mathbf{H}^{2}}{2 \sigma_{zi}^{2}}\right) \cdots (3.2)$$

ここで,

σ_{yi}: 時刻 i における濃度分布の水平方向の拡がりの
 パラメータ(m)

σ_{zi}:時刻 i における濃度分布の高さ方向の拡がりの パラメータ (m)

U_i :時刻 i における風速(m/s)

H : 放出源の有効高さ(m)

方位別 χ/Qの累積出現頻度の計算に使用する風向風速は、地表 付近の風を代表する地上高10m(標高69m)の風向風速とする。

$$3 - \cancel{-13}$$

静穏の場合には風速を0.5m/sとして計算し、その風向は静穏出現前の風向を使用する。

また, 放出源の有効高さは0 mとする。

以上により求めた方位別 χ/Qの累積出現頻度を添 3 - イ第12図 (1)及び添 3 - イ第12図(2)に示す。

これらの図から,設計基準事故時等における影響評価に使用する χ /Qの値は, 8.1×10⁻⁵s/m³とする。

b. 相対線量

放射性雲からのガンマ線による空気カーマについては, χ/Qの 代わりに空間濃度分布とガンマ線による空気カーマ計算モデルを 組み合わせたD/Q(以下,「D/Q」という。)を使用する。た だし,空間濃度分布の計算に当たっては,実効放出継続時間の長 短に係らず,方位内で風向軸が一定と仮定する。ガンマ線による 空気カーマの計算には以下の式を使用し,ガンマ線の実効エネル ギーは,0.5MeV/disとする。

$$D_{\gamma} = K_{1} \cdot E_{\gamma} \cdot \mu_{en} \int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{e^{-\mu r}}{4\pi r^{2}} \cdot B(\mu r) \cdot \chi(x, y, z) dx dy dz$$

ここで,

D_v:計算地点(x', y', 0)におけるガンマ線による

空気カーマ率 [µGy/h]

K1:空気カーマ率への換算係数⁽¹¹⁾

$$4.46 \times 10^{-4} \frac{\text{dis} \cdot \text{m}^3 \cdot \mu \text{Gy}}{\text{MeV} \cdot \text{Bg} \cdot \text{h}}$$

 E_{γ} :ガンマ線の実効エネルギー [MeV/dis] μ_{en} :空気に対するガンマ線の線エネルギー吸収係数 $[m^{-1}]$

$$3 - \cancel{-} - 14$$

r:放射性雲中の点(x, y, z)から計算地点(x', y', 0)までの 距離[m]

$$r = \sqrt{(x' - x)^2 + (y' - y)^2 + (0 - z)^2}$$

$$\mu : 空気に対するガンマ線の線減衰係数 [m-1]$$

$$B(\mu r) : 空気に対するガンマ線の再生係数$$

$$B(\mu r) = 1 + \alpha_B \cdot (\mu r) + \beta_B \cdot (\mu r)^2 + \gamma_B \cdot (\mu r)^3$$

χ(x, y, z): 放射性雲中の点(x, y, z) における放射性物質の濃 度[Bq/m³]

空気カーマ率の計算に当たっては,評価対象核種から放出される ガンマ線エネルギーの相違を考慮し,評価対象核種のガンマ線の 代表エネルギーとして 0.5MeVに対する線エネルギー吸収係数, 線減衰係数及び再生係数を用い,ガンマ線の実効エネルギーを 0.5 MeV/disとして計算した値に,0.5MeV/disに対する各評価対象 核種のガンマ線実効エネルギーの比を乗じて,空気カーマ率を求 める。

このため、 μ_{en} 、 μ 、 α_B 、 β_B 、 γ_B については、0.5MeVのガンマ 線に対する値を以下のとおりとする。

 μ_{en} : 3. 84 × 10⁻³m⁻¹

- $\mu : 1.05 \times 10^{-2} \mathrm{m}^{-1}$
- α_B : 1.000
- β_B : 0. 4492
- $\gamma_{\rm B}$: 0.0038

以上により求めた方位別D/Qの累積出現頻度を添3-イ第13図 (1)及び添3-イ第13図(2)に示す。

$$3 - \cancel{-} 15$$

これらの図から,設計基準事故時等における影響評価に使用する D/Qの値は, 6.5×10⁻¹⁹Gy/Bqとする。

① 重大事故等の発生時

重大事故等が発生した場合の緊急時対策所の居住性に係る被ばく評価に用いる χ/Q及びD/Qは,「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査 ガイド」(平成25年6月19日 原規技発第13061918号 原子力規制委員会決定)(以下,「居住性評価審査ガイド」という。)に準拠した大気拡散の評価より,以下に示す方法及び条件で算出する。

a. 評価方法

(a) χ/Q

 $(\chi/Q)_i$ の計算に当たっては、MOX燃料加工施設で想定される重大事故は短時間放出であることから、方位内で風向軸が一定であるとして (3.3) 式で計算する。

$$\begin{aligned} (\chi/Q)i &= \frac{1}{\pi \cdot \Sigma yi \cdot \Sigma zi \cdot Ui} \cdot exp \ (-\frac{H^2}{2\Sigma zi^2}) \ \cdots \ (3.3) \\ \Sigma yi &= \sqrt{\sigma yi^2 + \frac{c \cdot A}{\pi}} \\ \Sigma zi &= \sqrt{\sigma zi^2 + \frac{c \cdot A}{\pi}} \\ \Xi \subset \mathcal{C}, \end{aligned}$$

A:建屋等の風向方向の投影面積(m²)

c:形状係数

建屋等の風向方向の投影面積は、厳しい評価となるよう最小投 影面積を使用し、形状係数は0.5を用いる。

(b) D/Q

前項 ② 設計基準事故時等 b. 相対線量と同様の方法で計算

する。

b. 評価条件

大気拡散の評価条件の居住性評価審査ガイドとの関係を添3-イ 第30表に示す。

- (a) 気象資料には、地上高10m(標高69m)における2013年4月 から2014年3月までの1年間の観測資料を用いる。
- (b) 風向風速は、地表付近の風を代表する地上高10m(標高69m) の風向風速とする。静穏の場合には風速を0.5m/sとして計算 し、その風向は静穏出現前の風向を使用する。
- (c) χ/Q及びD/Qを方位別に求め、そのうち累積出現頻度97%
 の値が最大のものを用いる。
- (d) 実効放出継続時間は、MOX燃料加工施設で想定される重大事 故は短時間放出であることから、1時間とする。
- (e) 放出源は排気筒とし、放出源高さは厳しい評価となるよう0m とする。
- (f) 建屋による巻き込みの影響は、放出点から最も近く、巻き込みの影響が最も大きい建屋として燃料加工建屋を代表建屋として考慮する。
- (g) 建屋投影面積は、最小投影面積を使用し1547m²とする。
- (h) 放射性物質の濃度の評価点は,緊急時対策所換気設備の外気との連絡口から外気を取り込むことを前提とするため緊急時対策所換気設備の外気との連絡口となるが,評価においては,緊急時対策所の給気口設置位置に関わらず,厳しい評価となるよう燃料加工建屋に最も近い緊急時対策所の外壁とする。
- (i) 評価距離は、放出源から評価点までの距離とし、厳しい評価と

なるよう水平距離とし、170mとする。

- (j) 着目方位は,建屋による巻き込みを考慮し,添3-イ第14図に 示すとおり,建屋の後流側の拡がりの影響が評価点である緊急時 対策所に及ぶ可能性のあるWSW,SW,SSWとする。
- c. 評価結果

緊急時対策所における被ばく評価に使用する χ /Q及びD/Qは、添 3-イ第12図(1)、添3-イ第12図(2)、添3-イ第13図(1)及び添 3-イ第13図(2)に示す χ /Q並びにD/Qの累積出現頻度97%の値を 使用し、 χ /Qの値は7.4×10⁻⁴s/m³、D/Qの値は2.8×10⁻¹⁸Gy/Bqで ある。

参考文献

- (1) 和達清夫. 日本の気候. 東京堂, 1958.
- (2) 日本気象協会青森支部. 青森の気象百年. 1986.
- (3) 気象庁編. 日本気候表. 1991.
- (4) 気象庁編. 日本気候表. 2001.
- (5) 気象業務支援センター. 気象官署履歴. 2005-12-31.
 http://data.sokki.jmbsc.or.jp/cdrom/jma_restat_data/station/hi
 story/, (参照 2014-01-23).
- (6) 気象庁編. 平年値 統計期間1981~2010年 第3版. 気象業務支援センター, 2012, (CD-ROM).
- (7) 気象庁. "過去の気象データ検索".気象庁ホームページ.
 http://www.data.jma.go.jp/obd/stats/etrn/index.php, (参照 2016-10-03).
- (8) 気象庁. "台風経路図".気象庁ホームページ.
 http://www.data.jma.go.jp/fcd/yoho/typhoon/route_map/index.htm
 1, (参照 2014-09-22, 2016-10-03).
- (9) 気象庁編. 気象観測委託積雪資料 1977~2002年. 2006, (CD-ROM).
- (10) 青森県庁農林水産部林政課. "山火事発生状況". 青森県庁ホーム ページ.

http://www.pref.aomori.lg.jp/sangyo/agri/yamakaji.html, (参照 2014-12-12).

- (11) 原子力委員会.発電用軽水型原子炉施設周辺の線量目標値に対する 評価指針. 1976.
- (12) 北部上北広域事務組合消防本部. "林野火災の発生状況につい

て". (入手 2013-06-10)

(13) 北部上北広域事務組合消防本部. "平成23年の山火事発生状況".(入手 2013-06-10)

添3-イ第1表 気象官署の所在地及び観測項目

気象官署名	所在地	創立年月日	露湯の漂高 (m)	観測項目	風速計の高さ (地上高)(m)
(戸特別地域 気象観測所	^{あなとまちたではな} 八戸市 湊町館鼻 67 (敷地の南南東約48km)	昭和11年7月1日 (1936年)	27. 1	気象全般	27.3
いっ特別地域 気象観測所	^{かなまがり} むつ市 金曲 1-8-3 (敷地の北北西約40km)	昭和10年1月1日 (1935年)	2.9	気象全般	10.6

注)昭和45年4月17日から田名部をむつに改称 平成10年3月1日からむつ測候所をむつ特別地域気象観測所に改称 平成19年10月1日から八戸測候所を八戸特別地域気象観測所に改称

			2	-								∑年値 20	10 統書	十期間 19	81~2010年による)
要素	Щ	1	2	3	4	2	9	2	8	6	10	11	12	年	統計期間
平均気温	(D _o)	-0.9	-0.5	2.7	8.5	13.1	16.2	20.1	22.5	18.9	13.0	6.9	1.8	10.2	1981 年~2010 年
最高気温(の平均 (°C)	2.6	3. 2	7.0	13.7	18.3	20.6	24.3	26.5	23.1	17.9	11.6	5.5	14.5	1981 年~2010 年
最低気温(の平均 (°C)	-4.2	-4.0	-1.3	3.8	8.7	12.8	17.1	19.3	15.2	8.5	2.6	-1.6	6.4	1981 年~2010 年
相対湿度	(%)	70	20	67	65	71	81	83	82	62	73	70	70	73	1981 年~2010 年
蒙里		6.3	6.6	6.4	6.3	6.7	7.7	7.7	7.3	7.3	6.0	6.0	6.2	6. 7	1971年~2000年
日照時間	(H)	130.8	129.6	168.1	188.9	197.0	167.7	148.5	167.1	143.6	161.3	133. 3	124.5	1860.4	1981 年~2010 年
全天日射1	量 (MJ/m ²)	7.1	9.5	13.0	16.2	18.1	17.7	17.1	15.8	12.3	10.3	7.3	6.1	12.5	1973年~2000年
平均風	速 (m/s)	5.1	5.0	5.1	4.7	4.0	3.1	3.0	3.0	3.4	3.8	4.5	4.8	4.1	1981 年~2010 年
最多風向		WSW	MSW	MSW	MSW	MSW	NE	ESE	MSS	SSW	SW	SW	WSW	MSW	1990年~2010年
降水量 (n	um)	42.8	40.1	52.0	64.3	89.3	105.8	136.1	128.8	167.6	87.2	62.0	49.1	1025.1	1981 年~2010 年
降雪の深さ	:の合計 (cm)	77	75	47	3							9	40	248	1981 年~2010 年
	不照	2.5	2.4	3.4	3.3	4.7	5.2	6.3	4.7	5.6	3.4	2.7	2.5	46.7	1981年~2010年
大気現象	₩	24.0	22.4	17.2	3.3	0.0	0.0	0.0	0.0	0.0	0.1	6.1	17.8	91.0	1971 年~2000 年
(日)	霧	0.1	0.3	0.4	2.0	4.0	9.1	8.7	6.0	2.2	0.7	0.1	0.2	33.8	1971年~2000年
	搬田	0.1	0.0	0.1	0.2	1.1	1.4	2.0	1.9	1.4	0.5	0.3	0.1	9.1	1971年~2000年
注)	1. 露場の標 2. 風速計の 20日) 2	画 27. 画さ(地 7 3m (9	1m (上高) 1: 1007年3	2.9m (∽ ∃29日~	~1993年,)	5月12日)), 13.8n	ı (1993 [≰]	手5月12	$\exists \sim 1994$	年2月5	日), 16.	0m (199	94年 2 月	5日~2007年3月
·	3.2007年(平成19年	に 10月1 10月1		【戸測候月	新は八戸	特別地域	気象観測	所に改称	いたと無ノ	化となく	っている。	1 1 1		
	4. 本観測所 5. 本観測所	においての無人化	は、 (2年V)、	マロ野重な 雲量とう	52007年 大気現象	9月30日((雪, 霧,	に観測を書いて、	参」したしことに	ため, If 、1971年)73~200 ≤~2000年	0年の観測	判による> とよる平4	卡年値を言	記載した。 載した。	

添3-イ第2表 気候表 [概要] (八戸特別地域気象観測所)

			添	3 - 4	第3表	気候	表 [機	要」(むつ特	別地域	(兵象観) (平)	[測所) 年値 201	0 統計	期間 198	1~2010 年による)
要素	E	1	5	က	4	2	9	7	×	6	10	11	12	年	統 計 期 間
平均気温	(D _o)	-1.4	-1.2	1.8	7.4	12.1	15.7	19.5	21.7	18.3	12.4	6.5	1.3	9.5	1981年~2010年
最高気温の	(J) (AL)	1.6	2.0	5.6	12.5	17.4	20.3	23.5	25.7	22.7	17.3	10.6	4.5	13.7	1981年~2010年
最低気温の	(J) (AL)	-5.2	-5.3	-2.5	2.6	7.5	11.8	16.3	18.4	13.8	7.0	1.9	-2.3	5.3	1981年~2010年
相対湿度	(%)	75	74	71	71	76	83	86	85	81	75	73	74	77	1981年~2010年
康		8.3	8.3	7.4	6.6	6.9	7.5	8.0	7.4	7.8	6.2	7.1	8.2	7.5	1982年~1990年
日照時間	(H)	71.6	91.3	146.4	188.5	195.0	162.5	132.0	144.0	144.7	159.0	102.9	71.2	1608.9	1981年~2010年
全天日射量	昰 (MJ/m ²)	I		Ι		I		Ι		I	I		I	I	
平均風	速 (m/s)	2.7	2.7	3.0	3.0	2.7	2.5	2.3	2.2	2.2	2.6	2.6	2.7	2.6	1981年~2010年
最多風向		WNW	WNW	MS	SW	SSW	NNE	MSS	NNE	NNE	NNE	SW	MNW	SW	1990年~2010年
降水量(m	m)	103.1	82.9	82.0	80.7	98.7	99.3	151.6	142.7	170.1	109.8	117.4	103.7	1342.0	1981年~2010年
降雪の深さ	の 合計 (cm)	168	143	89	5		I		I	I	I	18	91	514	1981年~2010年
	不照	4.5	3.1	3.3	3. 7	5.0	6.4	7.7	6.2	5.5	2.9	3.3	4.0	55.5	1981年~2010年
大気現象	₩ III	27.9	23. 3	18.3	3.0	0.2	0.1	0.0	0.0	0.0	0.0	7.5	23.0	104.5	1998 年~2010 年
(日)	霧	1.4	0.8	1.2	2.2	3.1	4.2	3.1	2.7	1.5	0.8	0.4	0.5	21.9	1998 年~2010 年
	₩Ⅲ	I		0.1		0.2	0.2	0.8	0.7	0.7	0.8	0.4	0.1	4.0	1982 年~1990 年
注)	1. 露場の 2. 風速計 3. 1998年) 補 hの 高さ 注 (平成,	2.9m (地上高 10年) 3	() 15.0m 月1日(2	ュ(~1990 こ、むつ測	9年3月1 9候所はむ	8日), 10 ふつ特別抄	6m (19 也域気象(999年 3 月 観測所に1	∃18日~) 改称され	無人化と	いてい	ې ک		
	4. 本観測	所にお	いては、	全天日外	す量の観測	山は行われ	っていない	\sim		• • •		1	2 1		
	5. 本観測 6. 木舗弾	同の無言の無	人化に伴ょかに伴	きょう、 課量	■と大気 雪ね (重	見象(雷) 言 霧) (にしい	では,19(+ 白動(82年~19 観測速署	90年の観 ビトス10	測による108年~31	・平年値を	記載した	」。 1載1 た	
	0. 子第55		ヒノコノ	くく・こう	いため、「	ヨ, <i>水</i> 务 / (トノ・ハーノ	ч, <u>п</u>	見られる	VLD OLO	120-1-06		1 1 1 1 1 1 1	「長くし」。	

 $3 - \cancel{-} 23$

日最高・最低気温の順位(八戸特別地域気象観測所) ※3-イ第4表

(八戸特別地域気象観測所の資料による)

統計期間:1937年~2020年8月

$\tilde{\zeta}_{0}$	

																		-	
(~)	中	37.0	1978	8月3日	36.7	2010	8月6日	36.5	1942	7月26日	-15.7	1953	1月3日	-15.5	1945	2月20日	-15.0	1978	2月17日
	12	19.7	1990	1	18.9	2018	4	17.6	1963	8	-13.4	1952	24	-12.0	1984	25	-12.0	1952	23
	11	24.9	2003	S	24.1	1940	7	23.1	2014	2	-6.3	1998	23	-6.1	1971	29	-5.9	1971	30
	10	30.4	1946	က	29.6	1945	က	28.2	1998	18	-2.6	1950	26	-1.4	1970	28	-1.3	1938	18
	6	35.4	2010	1	34.8	2012	17	34.7	1985	1	4.8	2001	22	5.5	1976	26	2.5	1957	24
	8	37.0	1978	S	36.7	2010	9	36.1	2015	5	9.4	1953	31	9.6	2001	19	6.7	1993	S
	7	36.5	1942	26	36. 3	1943	29	35.9	2004	31	5.0	1976	1	6.8	1945	24	7.1	1951	က
	9	34.5	1987	7	33.1	2009	26	32.8	1987	6	0.4	1954	6	1.9	1941	19	2.3	1985	15
	21	34.3	2019	26	32. 3	1988	20	31.9	1969	10	-2.6	1955	2	-0.7	1955	3	-0.6	1946	4
	4	29.7	1942	27	29.4	1998	21	29.1	1972	30	-5.5	1984	2	-5.5	1984	1	-4.9	1947	1
	33	22.1	2018	28	21.2	1969	26	21.2	1968	30	-12.3	1986	4	-12.0	1946	13	-11.0	1977	7
	2	19.0	2010	25	18.6	2004	22	17.0	2016	14	-15.5	1945	20	-15.0	1978	17	-14.1	1978	15
	1	15.0	1988	22	13.9	1964	13	13.0	2014	30	-15.7	1953	c,	-14.1	1954	28	-14.1	1945	24
	E	直	<u>111</u>		直	<u>111</u>		直	<u>ш</u>		直	<u>111</u>		直	<u>111</u>		直	<u>ш</u>	
		極(起1	Ш	極1	起4	Ш	極1	起4	Ш	極	起4	Ш	極	起4	Ш	極(起4	Ш
	(μ			0			က			Η			0			က	
	⑨					画气	《這							最)	썹気	《這			

日最高・最低気温の順位(むつ特別地域気象観測所) 添3-イ第5表

(むつ特別地域気象観測所の資料による)

統計期間:1935年~2020年8月

0	2

/													_	
	E	1	2	3	4	2	9	2	8	6	10	11	12	年
	極値	10.9	13.8	19.2	26.8	31.0	30.3	34.7	34.5	33. 3	26.2	21.3	17.2	34.7
μ	起年	1988	2010	2018	1998	2019	1987	2012	2010	2012	2019	2003	2004	2012
	Ш	22	25	28	21	26	7	31	9	18	1	3	4	7月31日
	極値	10.6	12.2	18.3	25.6	28.6	30.1	33. 5	34.2	32.7	25.5	21.2	16.6	34.5
0	起年	1979	2016	1998	2018	2019	1991	2000	1994	2010	2012	2003	1990	2010
	ш	∞	14	29	30	27	26	30	12	Ч	щ	2	Ч	8月6日
	極値	10.1	11.9	17.6	25.3	28.5	29.4	33.4	34.1	32.3	25.2	21.1	15.7	34.2
က	起年	1937	1990	1997	2015	2019	2010	1997	1985	2011	1998	1962	1953	1994
	ш	വ	22	29	27	25	26	27	6	က	18	4	1	8月12日
	極値	-22.1	-22.4	-18.8	-9.6	-2.8	1.8	6. 1	9.0	1.9	-2.9	-9.6	-17.9	-22.4
Η	起年	1938	1984	1957	1941	1955	1954	1976	1993	1969	1950	1998	1946	1984
	ш	4	18	7	∞	2	6	Ч	က	30	26	22	19	$2 \exists 18 \exists$
	極値	-20.2	-19.2	-17.8	-9.5	-1.8	2.2	6.8	9.3	2.6	-2.4	-7.7	-17.2	-22.1
0	起年	1940	1986	1936	1984	1947	1985	1993	2018	2001	1975	1969	1938	1938
	Ш	22	7	5	1	3	15	1	18	22	31	29	28	1月4日
	極値	-19.9	-18.7	-17.3	-9.3	-1.4	2.8	7.1	9.4	3.4	-2.0	-7.5	-17.1	-20.2
က	起年	1954	1977	1957	1936	1991	1937	1968	1953	2017	1950	1949	1935	1940
	ш	28	18	2	Ч	4	12	0	31	29	25	21	28	1月22日
(六ヶ所地域気象観測所)
(六ヶ所地域気象観測所の資料による)
統計期間:1976年11月~2020年8月

高・最低気温の順位 最 Ш 6 炭 箫 杀 3

 \sim

(₀)	年	34.2	2004	7月31日	34.2	1994	8月13日	34.2	2011	8月10日	-14.6	1981	2月27日	-13.3	1978	2月17日	-12.6	1980	2月9日
	12	18.2	1990	1	17.6	2018	4	16.0	1989	4	-11.8	1984	25	-9.3	2002	27	-8.8	1987	17
	11	23.7	2003	3	20.7	2009	8	20.3	2006	6	-7.8	1998	23	-6.3	1982	25	-6.3	1992	27
	10	26.8	1998	18	25.5	2019	2	25.3	2002	S	-0.8	2016	31	0.1	1977	21	1.3	1983	31
	6	33. 7	2012	18	32.5	2011	3	31.6	2002	2	4.8	2017	29	5.1	2001	22	6.0	2013	28
	8	34.2	1994	13	34.2	2011	10	34.0	2006	17	9.8	2018	18	10.4	2001	19	11.0	1980	6
	7	34.2	2004	31	33.9	1986	31	33.9	1994	15	8.9	2008	1	9.0	1986	6	9.0	1993	1
	9	34.1	1987	7	31.3	2009	26	30.2	2002	8	3.7	1981	4	3.7	2011	1	4.6	1985	15
	5	30. 3	1988	20	30. 3	2019	27	29.5	2019	26	0.4	1980	7	0.5	2013	8	0.8	1987	6
	4	29.1	1998	21	27.4	2015	27	26.9	2018	30	-5.3	1984	1	-4.4	2012	9	-4.3	2019	1
	3	20.6	2018	28	19.5	2004	30	18.7	2015	31	-10.9	1986	4	-10.8	2005	4	-10.1	1984	10
	2	16.6	2016	14	15.0	2010	25	14.2	2011	24	-14.6	1981	27	-13.3	1978	17	-12.6	1980	6
	1	10.9	2014	30	9.9	1983	29	9.6	1979	8	-12.5	1982	17	-12.1	1990	24	-12.0	1986	24
	E /	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш
	1~1		Ц			0			လ			П			0			S	
	順位				最立	画 16	《赙						1	東に	広気	《则			

日最小相対湿度の順位 (八戸特別地域気象観測所) 添3-イ第7表 (八戸特別地域気象観測所の資料による)

1950年~2020年8月

統計期間

∞
₩
020
Ñ
2
Ĥ.
Ó
ц С
••
Ē

(%)	年	6	1966	5月7日	11	2005	5月2日	11	1998	4月21日
	12	28	2004	11	29	2016	က	30	1971	വ
	11	21	1988	6	23	1987	18	24	1994	7
	10	22	2017	μ	24	1987	29	27	2005	26
	6	19	2009	26	24	2018	17	27	2004	6
	8	29	2015	2	30	2009	30	31	2009	23
	2	27	1971	Н	30	2004	Н	30	1973	25
	9	13	2015	H	17	2004	18	19	1961	4
	2	6	1966	7	11	2005	2	11	1969	12
	4	11	1998	21	12	2010	11	12	2004	16
	3	14	1971	31	15	2001	22	16	2015	17
	2	21	2007	22	22	2001	22	23	2010	25
	1	23	2014	30	26	1983	28	27	1989	7
	Ħ	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш
	順位		Η			0			က	

日最小相対湿度の順位(むつ特別地域気象観測所) 添3-イ第8表 (むつ特別地域気象観測所の資料による)

統計期間

Щ	
∞	
Ш	
0	
02	
2	
(
₩.	
20	
61	
••	
Ē	

1950年~2020年8月	(0)
••	
† 期間	

1011	年	11	2016	5月9日	11	2002	4月20日	12	1987	4月30日
	12	29	1978	20	30	1996	12	33	1955	13
	11	26	1994	6	72	1989	17	28	2019	3
	10	23	2011	14	23	2007	28	23	2004	16
	6	23	2018	17	25	2014	26	25	2001	29
	8	28	1979	24	28	1976	က	29	1996	25
	L	26	1976	7	27	1993	2	31	2015	10
	9	19	2004	4	21	2015	2	22	2004	ß
	2	11	2016	6	14	2015	7	15	2009	19
	4	11	2002	20	12	1987	30	13	2018	28
	3	15	1991	25	17	2004	28	17	1998	30
	2	23	2001	22	25	2001	23	26	2007	24
	1	23	1979	6	29	2017	24	30	2003	2
	H	極値	起年	ш	極値	起年	Ш	極値	起年	Ш
	順位					2			က	

日降水量の最大値の順位(八戸特別地域気象観測所) 添3-イ第9表

(八戸特別地域気象観測所の資料による)

2020年8日

щ
``
∞
+1
++-
4
~
\sim
~
-V-
)
/
(
+1
++-
<u>ч</u>

∞
Ш
0
02
ζī
(
Ŧ
Ň
63
Γ
••
ΠŢ

∞	́ш
⊞	Ē
ö	
07	
\sim	
(
Ϯ	
37	
19	
••	
Ē	
Ē	
東	
1111-	
衒	

														()
順位	Ħ	1	2	3	4	2	9	7	8	6	10	11	12	年
	極値	84.5	66.0	105.8	109.5	160.0	120.5	114.5	127.0	148.0	151.4	103.5	125.5	160.0
1	起年	1972	1991	1952	2009	1982	2008	2002	1986	2001	1943	1990	2006	1982
	Ш	16	16	23	26	21	24	11	5	11	3	4	27	5月21日
	極値	69.5	56.5	87.1	85. 5	114.0	113.8	112.5	121.5	139.0	115.5	90.0	89.0	151.4
2	起年	2009	1972	1952	1984	1968	1953	2000	1969	2004	2019	2002	2004	1943
	Ш	10	27	24	20	14	8	8	5	30	13	25	5	10月3日
	極値	62.0	54.0	62.5	76.4	79.0	81.5	102.0	92.5	132.1	111.6	82.0	73.7	148.0
က	起年	1963	1937	2019	1954	2018	2012	1993	1991	1958	1945	2007	1958	2001
	Ш	9	2	11	12	18	20	28	31	26	11	11	26	9月11日

日降水量の最大値の順位(むつ特別地域気象観測所) 添3-イ第10表

(むつ特別地域気象観測所の資料による)

統計期間:1935年~2020年8月

Ц'	
χ	
11	
Ĥ.	
\supset	
\sim	
\supset	
\sim	
)	
(
11	
म	
Ω	
-	

<u>۱</u>	
	n)
	्च्
	\sim
,	
·	
1	

順位	Ħ	1	5	S	4	2	9	2	8	6	10	11	12	年
	極値	79.0	89.5	86.7	100.0	79.0	160.5	110.5	162.5	158.0	113.1	109.0	91.5	162.5
H	起年	1981	1972	1935	2009	2018	1988	1985	2016	2001	1955	2007	2006	2016
	Ш	2	27	25	26	18	6	1	17	11	7	12	27	8月17日
	極値	75.5	63.5	76.5	75.1	68.0	88. 5	90.8	162.5	148.0	97.5	93.9	87.3	162.5
2	起年	2010	1991	1975	1948	1997	1966	1941	1981	1973	2006	1951	1946	1981
	Ш	5	16	21	24	8	29	23	22	24	7	3	3	8月22日
	極値	71.3	57.0	73.5	69.7	65.0	87.5	90.5	118.4	143.0	94.5	71.5	67.5	160.5
က	起年	1949	1977	1947	1951	1998	1983	2002	1937	1998	1979	2007	1993	1988
	Ш	Н	15	21	12	2	21	11	30	16	1	11	11	6月9日

(mm)

(六ヶ所地域気象観測所) (六ヶ所地域気象観測所の資料による) 統計期間:1976年4月~2020年8月

日降水量の最大値の順位

第 11 表

 \sim

然 3

年	208	1990	10 月 26 日	171	2016	8月17日	149	2001	9月11日
12	74	2006	27	68	2004	5	54	1993	11
11	115	2007	12	81	2002	25	61	1990	4
10	208	1990	26	112	2006	7	110	1998	8
6	149	2001	11	112	2013	16	100	1994	15
8	171	2016	17	122	1981	22	118.5	2013	31
2	117	2002	11	103	1980	3	81.5	2012	16
9	62	1996	18	73	1983	21	71	1991	28
2	103	1996	6	62	2004	21	L L	1982	21
4	64.5	2009	26	59	1982	$1 \ 0$	49	1977	28
3	37	1988	22	35	1992	30	35	2019	11
2	42	2003	20	41	1993	7	35	1997	က
1	0.2	1980	30	70	2000	4	51.5	2009	10
Ħ	極値	起年	ш	極値	起年	ш	極値	起年	ш
順位		1			2			က	

1

日最大1時間降水量の最大値の順位(八戸特別地域気象観測所) 添3-イ第12表

(八戸特別地域気象観測所の資料による)

統計期間:1937年~2020年8月

(mm)

 $3 - \cancel{-} 32$

中	67.0	1969	8月5日	46.2	1947	7月22日	46.0	1961	9月6日
12	38.0	2006	27	20.7	1953	10	10.4	1954	12
11	38.5	1990	4	38.0	1990	5	19.3	1937	10
10	45.2	1960	8	29.5	2018	Ц	25.5	1999	28
6	46.0	1961	9	44.5	2001	11	33.5	2014	12
8	67.0	1969	വ	44.5	1991	31	41.6	1950	0
2	46.2	1947	22	33.5	1961	23	29.5	1967	28
9	25.8	1939	6	24.5	1984	28	23.0	2010	20
Q	32.0	1982	21	24.5	1968	14	16.5	2002	31
4	14.5	1981	20	13.0	2016	29	13.0	1982	16
က	18.1	1952	23	14.4	1941	27	13.0	1979	30
2	17.0	1972	27	16.9	1949	9	11.5	1972	14
1	13.5	2007	9	12.4	1948	14	11.9	1967	0
E	極値	起年	ш	極値	起年	Ш	極値	起年	Ш
順位		1			0			က	

日最大1時間降水量の最大値の順位(むつ特別地域気象観測所) 添3-イ第13表

(むつ特別地域気象観測所の資料による)

統計期間:1937年~2020年8月

,		
		
		_
)	<i>`</i>	F
		古
-	~	5
)		
)		
_		
-		
、		
<u> </u>		
<u>۱</u>		

12 年	.0 51.5	06 1973	7 9月24日	7 43.3	53 1960	0 8月2日	5 41.5	90 1977	
11	7.0 12	012 20	7 2	4.5 9.	990 19	5 1	7.5 9.	007 19	11
10	35.9 3	1955 2	7	32.0 2	1990 1	18	28.0 1	1979 2	-
6	51.5	1973	24	41.0	1998	16	30.0	1974	76
8	43.3	1960	2	38.5	2016	17	38.5	1975	
2	41.5	1977	2	40.5	1977	က	38.5	2000	17
9	25.4	1967	26	25.0	1988	6	24.7	1964	77
2	14.5	1997	8	14.0	2011	13	13.0	1947	18
4	14.0	2017	18	13.0	1983	29	12.5	1998	13
ç	16.0	1975	21	10.0	1979	30	8.9	1966	90
2	16.0	1972	27	8.5	1979	H	8.5	1977	5
H,	12.0	1970	31	11.5	2014	19	11.5	2007	7
E	極値	起年	ш	極値	起年	ш	極値	起年	Π
順位		1			5			c,	

(mm)

10月26日

27

ഹ

26

11

23

26

 $^{2}_{28}$

6

11

27

9

24

Ш

起年

圁

懣

1990

2006

1990

46

13

42

₩

12

11

11月12日

ഹ

⊳

16

ഹ

27

22

21

0

ഹ

21

30

Ш

2007

2004

1979

2013

1977

1983

2004

1982

2005

1997

1994

 $2\,0\,2\,0$

毌

围

က

42

10

18.5 2012

35

27

34

24

18

11

6

 \sim

9

8.5

圁

懣

11月5日

29

12

22

6

11

6

18

26

11

ഹ

 \sim

Ш

1990

 $2\,0\,1\,0$

2007

2005

199416

1978

2011

20099.5

1978

 $1\,99\,1$

2007

併

起

 \sim

42

ഹ

12.

42

40

27

38.5 2013

26

20

11.52018

⊳

⊳

6

圁

懣

020年8月 裭

(六ヶ所地域気象観測所の資料による) 総計 曲問・1026年7日~3030年8日

(六ヶ所地域気象観測所)

最大1時間降水量の順位

Ш

14 表

箫

∕~ |

က 添

\sim	
\sim	
2	
Щ	
4	
₩	
\sim	
ີ ລ	
-	
••	
Ē	
野	
1 11111	
£	

10	46	1990
6	39	2001
8	39	2016
7	40	2004
6	88	1991
5	16	1996
4	6.5	2020
3	8.5	2017
2	7	1979
1	11	2008

Щ

臼

悥

積雪の深さの月最大値の順位(八戸特別地域気象観測所) 添3-イ第15表

(八戸特別地域気象観測所の資料による)

- 2020年 ≈ 日 1037年~ 統計期間:

Щ	
$\dot{\mathbf{x}}$	
11	
Н Н	
N	
2	
2	
ì	
<u>н</u>	
ñ	
-	
••	
Ξ	
F	

	\frown
	Ш
	0
•	Ú
•	
•	
< - I	
,	

年	92	1977	$2 \exists 16 \exists$	78	1963	2月4日	74	1978	2 \exists 13 \exists
12	32	1945	15	31	1938	10	30	1976	23
11	16	1985	27	12	1962	21	10	1947	27
10	0	1964	25						
4	21	1979	က	19	1941	9	15	1968	20
3	61	2010	10	22	1984	1	54	1983	က
2	92	1977	16	82	1963	4	74	1978	13
I	99	1963	27	22	1994	29	52	1945	13
E	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш
順位		1			0			က	

派3-イ第16表 積雪の深さの月最大値の順位(むつ特別地域気象観測所)

(むつ特別地域気象観測所の資料による)

~2020年8日 統計期間:1935年~

Ľ	
0 + N7N7	(cm)
)	
1900+1	
•	
Ē	

舟	170	1977	$2 \ \exists \ 15 \ \exists$	148	1936	3月4日	145	1968	2月2日
12	89	1947	24	82	1946	20	66	2011	25
11	23	1939	28	20	2017	20	20	1970	30
10									
4	92	1984	1	58	1957	1	57	1947	1
က	148	1936	4	122	1984	1	113	1947	22
0	170	1977	15	145	1968	2	113	1985	14
1	26	1936	30	91	1968	31	86	1963	28
E									
	極値	起年	ш	極値	起年	ш	極値	起年	Ш
順位		1			2			S	

添3-イ第17表 積雪の深さの月最大値の順位 (六ヶ所村)

(六ヶ所村統計書による) 統計期間:1973年~1983年(農林水産省北馬鈴薯原々種農場)及び1984年~2002年(六ヶ所地域気象観測所)

起年月日	1977. 2.17	1982. 2.10	1984. 2.29	1978. 2.24	1981. 1.30
積雪深さ(c m)	190	159	157	138	138
順位	1	5	3	4	ß

日最大瞬間風速の順位(八戸特別地域気象観測所) (八戸特別地域気象観測所の資料による) 添3-イ第18表

統計期間:1951年~2020年8月

(m/s)

年	43.4	SW	2020	3月20日	41.7	WSW	2017	9月18日	41.3	SW	1955	2月20日
12	35.6	WSW	2010	4	34.9	NNE	1957	13	34. 3	NNW	2006	27
11	38.7	W	2004	27	35.9	MSW	1995	8	34.7	NE	2007	12
10	40.1	WSW	2002	2	35.0	Ν	1999	28	35.0	WSW	1955	1
6	41.7	WSW	2017	18	38.8	MSS	1991	28	38.7	W	1961	17
8	39.2	MS	2004	20	35.5	MS	1981	23	35.0	ш	2016	30
2	36.1	SW	2009	13	29.8	WSW	2014	27	29.4	NNE	2000	∞
9	28.6	MSW	1971	Q	27.7	MSW	1998	20	27.3	M	2009	23
വ	37.4	MSW	1961	29	36.0	WSW	2019	2	35.2	SW	2005	19
4	37.5	SW	2012	4	35.9	WSW	1987	22	34. 2	SW	2016	17
က	43.4	SW	2020	20	35.7	MNW	2006	20	34.9	MSW	2015	11
5	41.3	SW	1955	20	36.4	SW	2016	14	35.3	Μ	2004	23
1	34.2	NNW	2007	7	33.4	SE	1970	31	33. 3	NNE	2002	27
E	極値	風向	起年	Ш	極値	風向	起年	Ш	極値	風向	起年	Ш
順位		Η				2				က		

派3-イ第19表 日最大瞬間風速の順位(むつ特別地域気象観測所)

(むつ特別地域気象観測所の資料による)

統計期間:1946年~2020年8月

(m/s)

順位	Ę J	1	2	3	4	2	9	7	8	6	10	11	12	年
	極値	31.8	35.9	36.9	34.8	38.9	27.4	23.1	32.1	34.7	32.7	31.8	33. 5	38.9
Ч	風向	NE	MSW	M	M	WSW	SE	MSW	SE	SW	WSW	WSW	M	WSW
	起年	1962	1962	1973	1974	1961	1964	1964	2016	1991	1982	2004	1987	1961
	Ш	5	11	25	29	29	4	23	30	28	25	27	17	5月29日
	極値	31.5	35.0	34.2	34.0	31.5	27.2	22.3	32.0	33.8	32. 3	31.6	33.4	36.9
2	風向	SW	SW	WSW	SW	WSW	WSW	NW	MSW	Ы	WSW	WSW	WNW	W
	起年	1948	1955	1979	1975	1965	1965	1961	1981	1959	1976	1972	1958	1973
	Ш	9	20	31	9	22	6	22	23	27	21	17	10	3月25日
	極値	30. 7	30.8	33. 3	32.0	30. 3	26.6	21.6	27.4	33.4	31.6	31.2	31.9	35.9
က	風向	WSW	WSW	WNW	WSW	M	WSW	SE	Ν	ENE	SW	SW	M	WSW
	起年	1966	1973	1970	1987	1956	2001	1958	1975	1958	2002	1966	2001	1962
	Ш	29	7	17	22	9	Ч	2	24	27	2	21	15	$2 \exists 11 \exists$

日最大瞬間風速の順位

20 表

-イ第

က 添

(六ヶ所地域気象観測所)
 (六ヶ所地域気象観測所の資料による)
 (六ヶ所地域気象観測所の資料による)
 統計期間:2008年10月~2020年8月
 (m/s)

0
\sim
2
Щ
0
Ē
併
∞
0
õ
\sim
••
F
郪

舟	27.4	M	2009	2月21日	23.9	W	2009	5月18日	22.9	SE	2018	3月1日
12	22.4	ENE	2010	31	22.4	Μ	2014	21	22.3	ΜNΜ	2008	27
11	21.4	ΜNΜ	2019	17	20.7	M	2014	4	20.5	WSW	2012	27
10	19.9	Μ	2015	2	19.2	M	2017	30	19.1	WNW	2018	7
6	20.4	NE	2011	22	18.8	NNW	2013	16	18.5	WSW	2017	18
8	22.4	ESE	2016	30	17.1	SE	2014	11	14.3	NW	2019	6
2	19.9	W	2009	13	17.6	W	2010	12	11.8	ESE	2011	21
9	16.8	S	2017	6	15.5	WSW	2009	23	15.4	NE	2015	27
21	23.9	M	2009	18	18.6	WSW	2019	2	18.4	M	2011	2
4	21.6	WNW	2012	4	20.9	ы	2009	26	19.5	W	2010	14
က	22.9	SE	2018	1	21.6	M	2009	7	20.6	M	2013	2
2	27.4	W	2009	21	17.4	NNW	2010	9	16.8	WNW	2011	10
1	21.4	ENE	2016	18	20.2	M	2009	11	20.1	W	2018	6
順位	極値	1 風向	起年	Ш	極値	2 風向	起年	Ш	極値	3 風向	起年	Ш

添3-イ第21表 台風歴(八戸特別地域気象観測所)

(八戸特別地域気象観測所の資料による) 統計期間:1949年~2020年8月

龍		台風番号7920	台風番号8115	台風番号9805	台風番号6118 (第2室戸台風)	台風番号1610
		0.0 (10月20日)	23.5 (8月23日)	0.5 (9月17日)	1.1 (9月17日)	0.0 (8月31日)
隆水量(mm) 13メルチョー1)	啄 さ え し ご 力 ・ 日 ノ	24.0 (10 月 19 日)	49.5 (8月22日)	64.5 (9月16日)	1.7 (9月16日)	91.5 (8月 30 日)
E F		0.5 (10 月 18 日)	27.5 (8月21日)	8.0 (9月15日)	18.9 (9月15日)	14.0 (8月29日)
最大瞬間風速(m/s)		30.3 (10月20日 2時)	35.5 (8月23日 14時)	28.3 (9月16日 12時)	38.7 (9月17日 2時)	35.0 (8月30日 19時30分)
起年月日		1979. 10. 19	1981. 8.23	1998.9.16	1961.9.16	2016.8.30
最低気圧 (4.1.1.)	(排山) (IIFa)	966. 9	967. 1	972. 0	972.8	974. 4
順位		1	0	က	4	Ŋ

添3-イ第22表 台風歴(むつ特別地域気象観測所)

(むつ特別地域気象観測所の資料による) 統計期間:1949年~2020年8月

順位	最低気圧 (海面)(hPa)	起年月日	最大瞬間風速 (m/s) (記録された月・日・時刻)	日降-(11)(11)(11)(11)(11)(11)(11)(11)(11)(11	水量 (mm) ミれた月・日)		備考
Н	967. 1	1979. 10. 19	27.4 (10月20日3時)	2.5 (10 月 18 日) (1	75.5 10月19日)	0.0 (10月20日)	台風番号7920
5	967. 5	1981. 8.23	32. 0 (8 月 23 日 16時)	162.5 (8月22日)(88.0 8月23日)	0.0 (8月24日)	台風番号8115
က	972. 5	1961.9.16	25.8 (9月17日2時)	14.3 (9月15日) (4.1 9月16日)	0.4 (9月17日)	台風番号6118 (第2室戸台風)
4	975. 3	1991.9.28	34.7 (9月28日 8時)	14.0 (9月27日) (7.0 9月28日)	0.0 (9月29日)	台風番号9118
IJ	975.9	1998.9.16	24.0 (9月16日14時)	3.5 (9月15日) (143.0 9月16日)	0.0 (9月17日)	台風番号9805

 $3 - \cancel{-} 42$

	青森県月別	八戸	時別地域気象観	則所
月	森林火災	最高気温	最小湿度	最大風速
	発生件数	(°C)	(%)	(m/s)
1月	1	10. 2	32	20.3
2月	1	19.0	21	23.6
3月	25	20.8	16	23.2
4月	133	25.7	12	25.9
5月	123	31.5	11	24.0
6月	22	33.1	17	19.6
7月	4	35.9	30	24.0
8月	21	36.7	30	21.7
9月	7	35.4	19	20.4
10月	1	26.3	27	20.4
11月	7	24.9	25	21.4
12月	6	16.9	28	23.5

添3-イ第23表 青森県の森林火災発生状況及び気象データ(最高気温, 最小湿度,最大風速)(2003年から2012年)

添3-イ第24表 気象データ(卓越風向)(2003年から2012年における 3月から8月の期間)

	六ヶ所地域気象観測所	
風向	最大風速における風向 の出現回数	最多風向の出現回数
Ν	17	6
NNE	15	1
NE	18	2
ENE	149	100
E	77	357
ESE	534	384
SE	177	96
SSE	16	21
S	27	29
SSW	0	6
SW	5	4
WSW	39	31
W	231	208
WNW	343	363
NW	152	216
NNW	40	15

添3-イ第25表 観測項目一覧表

安日	्रमा	тŦ		备	睍	測	位		置		気		象	涯	則	器	観測	期間
氞	側	垻	Η	場	所	地上高	(m)	標	高((m)	Z	は	、観	測	方	法	年	月
国	占	国	油	邮中	白電相.	10			60		却	<u></u>	上国	山	国计	₽⊒⊥	19854	手12月
)迅	ΙΗĴ)EL	Æ	苏UUP	1路	10			09		臾	日イ	反風	4HJ)	LLD	571	から	継続
	自	. +	伸	前午中午	小電坦	9			69		嵣	厚	: =+		癿	≣∔	19854	手12月
н	オ	J	里	苏ULLY	山路切	5			02		电	X		Н	刘	μļ	から	継続
± 4	h.∔.ıl	- - -	Ē	前在中国	山雪相	1 5 (9	0)	60	F (61	0)	国	7七3	重山土石	⊷ ∐. ∔ı	lty ±	≓⊒L	19854	手12月
JJX	វ] 4	XX	里	苏UUP	1路	1.0(2	. 0)	00.	0 (01	. 0)		912	至双	.វា)	1X>	く戸し	から	継続
欧	-	h	山	献中	白雪相.	0 6 (2	4)	50	6 (61	4)	市二人	(石山)	たす	开山	T, E	<u>구</u> 크는	19854	手12月
中	1.		里	方X L L L	山路切	0.0(2	. 4)	59.	0(01	. 4)	甲ム	転倒よう型雨重計		から	継続			
与			汩	前午中午	小電坦	1 5 (9	(0)	60	5 (61	0)	ŕ	\Diamond	t#-t	牛兆	ヨー店	∶⊒⊥	19854	手12月
X			1111.	苏ULLY	山路切	1.0(2	. 0)	00.	0 (01	. 0)	Π	①	141,	/L {I	皿/交	5 P	から	継続
											重	<u>ل</u>	도 ୬	日	库	≣∔	19854	手12月
洄			库	前午中午	小電坦	1 5 (9	(0)	60	5 (61	0)	路	72	7, 11	ш.	皮	μl	から200	4年8月
切吹			皮	苏科巴科	」路勿	1.0(2	• 0)	00.	0(01	. 0)	雪	厚	·	泊	宦	카	20044	丰8月
											甩	X		包胶	戊	μl	から	継続

注)地上高、標高欄の())内は積雪期の高さ

同一風向の継続時間別出現回数 添3-イ第26表

Ē 観測場所:敷地内露場(地上高10m,標高69m)

$ \begin{bmatrix} 84 & 6 & 2 & 2 & 0 & 0 \\ 1E & 74 & 5 & 0 & 0 & 2 & 0 \\ 1E & 62 & 7 & 4 & 0 & 0 & 2 & 0 \\ 1E & 180 & 46 & 13 & 7 & 6 & 2 \\ 196 & 97 & 53 & 27 & 11 & 12 \\ 196 & 66 & 39 & 21 & 10 & 8 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 1 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 127 & 13 & 2 & 0 & 0 & 0 & 0 \\ E & 2 & 127 & 13 & 2 & 0 & 0 & 0 \\ E & 2 & 127 & 14 & 0 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 14 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 & 0 \\ E & 2 & 2 & 0 & 0 $	12 6 3 0 0 0	0 0		
IE 74 5 0 0 2 0 E 62 7 4 0 0 0 0 IE 180 46 13 7 66 2 0 IE 180 46 13 7 66 2 2 IE 196 97 53 27 11 12 12 IE 126 13 23 27 11 12 12 IE 127 13 2 0 1 12 13 27 11 12 IE 127 13 2 0 1 0 0 0 IE 127 13 2 0 1 0 0 IE 128 13 2 0 1 0 0 0 0 IE 126 11 0 0 0 0 0 0 0	0 0 0 112 6 3 3 0 0	0	0 0	
E 62 7 44 13 7 66 2 IE 180 46 13 7 6 2 E 196 97 53 27 11 12 E 196 66 39 21 10 8 E 127 13 2 0 1 0 E 127 13 2 0 1 0 E 81 5 33 0 0 0 E 81 5 33 0 0 0 E 127 113 22 0 11 0 E 81 5 33 0 0 0 E 126 10 26 10 22 1 W 190 266 15 6 0 1 W 281 76 33 12 6 22 M 281 76 33 12 6 22	0 6 12 12		0 0	
IE1804613762 (12) 1969753271112 (12) 196663921108 (12) 1320108 (12) 1320010 (12) 1320010 (12) 1323000 (14) 2610221 (14) 2610221 (12) 4119610 (12) 2615601 (12) 28176331262 (12) 38712574492214	3 6 12	0	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 12	0	3	
(E)196663921108 E 127132010 (E) 81530000 (E) 81530000 (E) 14826102210 (S) 14826102210 (S) 12641196101 (S) 19026156010 (S) 2817633126214 (S) 38712574492214	12	9	5 9	22 12 26 10 10 10 12 17 16 (5.5)
E 127 13 2 0 1 0 0 81 5 3 0 0 0 0 148 26 10 2 2 1 0 126 41 19 6 1 0 0 126 41 19 6 1 0 0 126 41 19 6 1 0 0 281 76 33 12 6 2 0 387 125 74 49 22 14		က	4 15	26 20 11 29 13 13 29 12 16 11 13 10 47 19 11 (4.5)
(E) 81 5 3 0 0 0 (v) 148 26 10 2 2 1 (W) 126 41 19 6 1 0 (W) 190 26 15 6 0 1 (W) 281 76 33 12 6 2 (W) 281 76 33 12 6 2	0	0	0	
W 148 26 10 2 2 1 W 126 41 19 6 1 0 W 190 26 15 6 0 1 W 281 76 33 12 6 2 W 281 76 33 12 6 2	0	0	0	
W 126 41 19 6 1 0 W 190 26 15 6 0 1 SW 281 76 33 12 6 2 V 387 125 74 49 22 14	1	0	0	
W 190 26 15 6 0 1 SW 281 76 33 12 6 2 7 J 387 125 74 49 22 14	1	1	0 0	
W 281 76 33 12 6 2 J 387 125 74 49 22 14	0	0	0	
<i>I</i> 387 125 74 49 22 14	0	2	1 2	11 10 (5.8)
	8	2	8 12	13 14 11 13 11 16 23 10 11 10 21 14 (9.0) (9.0) (9.0) (9.0) (9.0)
IW 397 134 64 50 26 14	9	3	6 6	10 15 13 13 11 10 (7.8)
W 269 75 35 14 5 4	1	0	3	
IW 131 27 1 4 0 1	0	0	0 0	
LM 66 7 3 1 0 0	0	0	0 0	

										(回)
継続時間 (h) 大気安定度	1	2	8	7	2	9	2	8	6	10 以上
Α	13 (61.9)	7 (33.3)	1 (4.8)	0 (0.0) 0	0 (0.0)	(0.0)	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	0 (0.0)	$\begin{pmatrix} 0 \\ 0.0 \end{pmatrix}$	0 (0.0)
В	113 (48.5)	46 (19.7)	26 (11.2)	19 (8.2)	$\begin{array}{c} 16 \\ (6.9) \end{array}$	8 (3.4)	0 (0.0)	4 (1.7)	$\begin{pmatrix} 1 \\ (0.4) \end{pmatrix}$	0 (0.0)
C	230 (58.1)	65 (16.4)	41 (10.4)	22 (5.6)	17 (4.3)	14 (3.5)	4 (1.0)	2 (0.5)	0 (0.0)	$\begin{pmatrix} 1 \\ 0.3 \end{pmatrix}$
D	242 (32.1)	113 (15.0)	65 (8.6)	(2.6) 77	29 (3.9)	26 (3.5)	19 (2.5)	23 (3.1)	17 (2.3)	162 (21.5)
Ъ	159 (71.3)	41 (18.4)	14 (6.3)	5 (2.2)	3 (1.3)	0 (0.0)	0 (0.0)	$\begin{array}{c} 1 \\ (\ 0.4 \end{array}) \end{array}$	0 (0.0)	0 (0.0)
ц	133 (75.1)	32 (18.1)	8 (4.5)	4 (2.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
G	118 (43.4)	48 (17.6)	24 (8.8)	21 (7.7)	11 (4.0)	15 (5.5)	11 (4.0)	7 (2.6)	2 (0.7)	15 (5.5)
A+B+C	139 (36.6)	54 (14.2)	40 (10.5)	31 (8.2)	24 (6.3)	26 (6.8)	20 (5.3)	$\begin{array}{c} 10 \\ (\ 2.6 \end{array}) \end{array}$	12 (3.2)	24 (6.3)
E + F + G	142 (39.1)	67 (18.5)	25 (6.9)	15 (4.1)	16 (4.4)	17 (4.7)	$\begin{array}{c} 13 \\ (3.6) \end{array}$	11 (3.0)	10 (2.8)	47 (12.9)

派3-イ第27表 大気安定度の継続時間別出現回数

欠測率:1.0%

注) () 内の数値は出現頻度(%)

10/1	判定	○ 来 秋 × 兼 却	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
,	限界	上限	0.79	0.48	0.57	4.65	6.00	10.15	1.48	0.75	2.41	2.55	2.52	4.97	11.63	15.01	4.65	1.67	0.47
	棄却	到丁	2.03	1.29	1.31	8.40	15.26	15.40	3.51	1.57	4.49	4.67	4.77	10.59	18.75	22.29	9.58	3.41	1.91
	検定年	2013	1.27	1.08	1.01	4.95	12.15	12.12	1.89	1.15	3.01	3.56	3.65	7.70	18.45	16.87	7.64	2.42	1.07
	史代书		1.41	0.89	0.94	6.53	10.63	12.77	2.49	1.16	3.45	3.61	3.65	7.78	15.19	18.65	7.12	2.54	1.19
	0110	7107	1.19	1.08	0.76	6.53	11.86	14.37	2.04	1.19	3.57	3.80	3.57	7.50	15.64	16.94	6.50	2.29	1.15
	1100	1107	1.15	0.71	0.81	5.85	10.78	12.30	1.81	1.01	3.05	3.77	4.07	8.96	15.65	18.47	7.27	2.31	2.01
	0100	0102	1.79	0.75	1.10	4.93	9.91	10.74	2.65	1.14	3.68	4.21	4.36	9.40	16.21	18.23	7.06	2.70	1.12
	0006	6002	1.72	1.16	1.05	5.77	10.48	13.44	2.22	1.00	3.17	4.16	4.19	8.72	14.89	17.45	6.78	2.79	1.01
	0006	9007	1.34	0.93	0.79	7.25	10.89	13.44	2.87	1.32	4.37	3.73	3.72	6. 23	14.09	17.94	7.24	2.68	1.17
	2000	7007	1. 53	0.94	0.84	6.51	8. 71	13.73	2.61	1.15	2.97	3.51	3. 76	7.03	14.18	20.11	8.28	2.87	1.28
	2000	0007	1.69	1.01	0.87	7.28	11.73	12.65	2.91	0.94	3.06	3.08	3.46	6.01	11.86	19.94	9.18	3.23	1.10
	2000	CUU2	1.06	0.61	0.89	6.94	10.09	13.23	3.19	1.16	3.27	3.12	3.10	7.26	16.67	19.98	6.39	2.13	0.91
	1000	2004	1.40	0.83	1.16	7.36	7.26	11.36	2.37	1.19	3.87	3.81	3. 33	7.78	16.82	21.02	7.08	2.24	1.13
	GUUG	2002	1.22	0.83	1.16	6.83	14.58	12.47	2.26	1.54	3.51	2.91	2.89	8.90	15.91	16.42	5.37	2.17	1.04
	統計年	風向	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM

注) 統計年2003は、2003年4月~2004年3月を示す。(以下同じ)

添3-イ第28表 棄却検定表(風向)

-*19月里 観測唱話・ 齢'地内蒙培 (地 トゴ10, 添3-イ第29表 棄却検定表 (風速分布)

観測場所:敷地内露場(地上高10m,標高69m)(%)

利用して	○ 来 業 払	0	0	0	0	0	0	0	0	0	0	\bigcirc
限界	上限	0.47	11.57	12.75	12.97	12.27	9.14	7.24	5.45	3.87	2.67	2.70
棄却	到丁	1.91	16.61	17.58	17.57	15.42	12.99	10.08	7.91	6.21	4.57	8.05
検定年	2013	1.07	14.38	14.83	15.24	14.26	10.85	8.58	6.73	5.20	3.90	4.97
亚树储	<u>+</u>	1.19	14.09	15.16	15.27	13.85	11.06	8.66	6.68	5.04	3.62	5.37
0100	7107	1.15	14.28	15.86	16.03	13.62	11.12	7.92	6.30	5.01	3.25	5.45
1100	71107	2.01	14.72	14.80	14.54	13.79	10.69	9.12	6.69	5.51	3.91	4.22
0106	0107	1.12	16.14	17.49	16.01	12.91	9.61	7.88	5.92	4.34	3.40	5.17
0006	5003	1.01	13.15	15.27	16.63	15.10	10.65	8.37	6.52	5.07	3.21	5.01
0006	20002	1.17	13.87	15.77	15.79	13.97	10.74	8.43	6.30	4.51	3.21	6.24
2006	1002	1.28	14.79	14.52	14.82	14.64	11.93	9.31	6.95	4.84	3. 53	3. 39
5006	0007	1.10	14.18	14.42	15.28	13.86	11. 78	9.35	6.67	5.40	3.45	4.50
2006	CUU2	0.91	12.20	13.96	15.88	14.03	10.59	8. 23	7.73	5.68	4.23	6.57
1000	2004	1.13	14.16	14.46	13.71	13.01	11.08	8.54	7.25	5.60	4.27	6.81
GUUG	2002	1.04	13.41	15.06	13.97	13.55	12.45	9.45	6.48	4.48	3. 73	6. 38
統計年	風速 (m/s)	$0.0 \sim 0.4$	$0.5 \sim 1.4$	$1.5 \sim 2.4$	$2.5 \sim 3.4$	$3.5 \sim 4.4$	$4.5 \sim 5.4$	$5.5 \sim 6.4$	$6.5 \sim 7.4$	$7.5 \sim 8.4$	$8.5 \sim 9.4$	$9.5 \sim$

注)統計年2003は、2003年4月~2004年3月を示す。(以下同じ)

		濃度分布 イムモ	さ1年間	しと実効的	せとなるよ	:年間につ 重とする。	波出点 え考慮し	補助建屋、 、て放出源 たも大きい
主性評価審査ガイドとの関係(1/2)	居住性評価審査ガイドでの記載	4.2(2)a. 放射性物質の空気中濃度は、放出源高さ及び気象条件に応じて、空間 が水平方向及び鉛直方向ともに正規分布になると仮定したガウスプ/ デルを適用して計算する。	4.2(2)a. 風向,風速大気安定度及び降雨の観測項目を,現地において少なく ? 観測して得られた気象資料を大気拡散式に用いる。	4.2(2) c. 相対濃度は、短時間放出又は長時間放出に応じて、毎時刻の気象項E な放出継続時間を基に評価点ごとに計算する。	4.4(4)b. 放出源高さは地上放出を仮定する。放出エネルギーは、保守的な結5 うに考慮しないと仮定する。	4.2(2) c. 評価点の相対濃度又は相対線量は、毎時刻の相対濃度又は相対線量を いて小さい方から累積した場合、その累積出現頻度が97%に当たる	4.2(2)a. 原子炉制御室/緊急時制御室/緊急時対策所の居住性評価で特徴的 から近距離の建屋の影響を受ける場合には、建屋による巻き込み現象 た大気拡散による拡散パラメータを用いる。	 2 (2) b. 巻き込みを生じる建屋として、原子炉格納容器、原子炉建屋、原子炉 タービン建屋、コントロール建屋及び燃料取り扱い建屋等、原則とし の近隣に存在するすべての建屋が対象となるが、巻き込みの影響が と考えられる一つの建屋を代表建屋とすることは、保守的な結果を生
大気拡散の評価条件の居住	邊 定 理 由	居住性評価審査ガイ ドに示さ れたとおり設定する。	居住性評価審査ガイドに示さ れたとおり, 1年間観測して得 られた気象資料を使用する。	火災及び爆発により気相に移 行した粉末の放出が1時間継 続すると仮定。	居住性評価審査ガイ ドに示さ れたとおり設定する。	居住性評価審査ガイ ドに示さ れたとおり設定する。	居住性評価審査ガイ ドに示さ れたとおり設定する。	放出源から最も近く,巻き込み の影響が最も大きい建屋とし で選定する。
:3ーイ第30表(1)]	使用条件	ガウスプルームモデル	再処理施設の敷地内によが る地上高10mにおける平成 25年4月から平成26年3月 までの1年間の観測資料	1 時間	0 m	97%	考慮する	放出点となる建屋 (然料加工建屋)
災	評価条件	大気拡散評価モデル	気象資料	実効放出継続時間	放出源及び放出源高さ	界積出現頻度	建屋の影響	巻き込みを生じる 代表建屋

土 土計	居住性評価審査ガイドでの記載	4.2(2) a. 原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ばく評価では、 建屋の風下後流側での広範囲に及ぶ乱流混合域が顕著であることから、放射性 物質濃度を計算する当該着目方位としては、放出源と評価点とを結ぶラインが 含まれる1方位のみを対象とするのではなく、図5に示すように、建屋の後流 側の拡がりの影響が評価点に及ぶ可能性のある複数の方位を対象とする。	4.2(2)b. 風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を求めるために大 気拡散式の入力とする。	4.2(2)a. ガウスプルームモデルを適用して計算する場合には、水平及び垂直方向の拡散 パラメータは、風下距離及び大気安定度に応じて、気象指針における相関式を 用いて計算する。
人又似么敗。少許個米什の方	選 定 理 由	居住性評価審査ガイ ドに示された評価方法に基づき。 れた評価方法に基づき設定する。	居住性評価審査ガイドに示されたとおり設定する。 れたとおり設定する。 全ての方位に対して保守的に 最小面積を適用する。	保守的な評価となるよう水平 距離を設定する。
3	使用条件	WSW SW	$1547\mathrm{m}^2$	170m
你	評価条件	着目方位	建屋投影面積	制制田田

×第30 ま(9) + 与け勘の誕価条件の日住は地部価報本ガメドレの関係 (9 / 9) 浜 3 -

添3-イ第1図 気象官署及び六ヶ所地域気象観測所の位置図

添3-イ第2図(1) 気象観測設備配置図

添3-イ第4図 敷地の風配図(2013年4月から2013年9月)

添3-イ第5図 敷地の風配図(2013年10月から2014年3月)

低風速(0.5m/sから	2.0m/s)の出現頻度
観測点	出現頻度(%)
標高 69m	23. 2

添3-イ第6図 低風速(0.5m/sから2.0m/s)時の風配図(年間)

	凡		例
階級	風速(m/s)	階級	風速(m/s)
0	$0.0 \sim 0.4$	6	5.5 \sim 6.4
1	$0.5 \sim 1.4$	7	6.5 \sim 7.4
2	$1.5 \sim 2.4$	8	7.5 \sim 8.4
3	2.5 ~ 3.4	9	8.5 ~ 9.4
4	$3.5 \sim 4.4$	10	9.5 以上
5	$4.5 \sim 5.4$		

添3-イ第7図 年間風速別出現頻度及び風速別出現頻度累積 (地上高10m,標高69m)

添3-イ第8図 月別風速別出現頻度(2013年4月から2013年9月)

2	凡		例
階級	風速(m/s)	階級	風速(m/s)
0	$0.0 \sim 0.4$	6	5.5 \sim 6.4
1	$0.5 \sim 1.4$	7	$6.5 \sim 7.4$
2	$1.5 \sim 2.4$	8	$7.5 \sim 8.4$
3	2.5 ~ 3.4	9	$8.5 \sim 9.4$
4	$3.5 \sim 4.4$	10	9.5 以上
5	4.5 ~ 5.4		

添3-イ第9図 月別風速別出現頻度(2013年10月から2014年3月)

添3-イ第10図 年間及び月別大気安定度出現頻度

 $3 - \cancel{-} - 62$

※3-イ第13図(1) 方位別相対線量の累積出現頻度(NからSSE)

添3-イ第14図 緊急時対策所の居住性に係る被ばく評価における着目方位

口. 地盤

- (イ) 調査の経緯
 - (1) 敷地周辺の調査

敷地周辺の地形及び地質・地質構造を把握するため、陸域につい ては、まず文献調査を行い、次いで変動地形学的調査、地表地質調 査、物理探査、ボーリング調査等を実施した。

また,海域については,文献調査のほか海上音波探査,海上音波探査記録解析,海底地形面調査,海上ボーリング調査等を実施した。

(2) 敷地近傍の調査

敷地近傍の地形及び地質・地質構造を把握するため,敷地を中心 とする半径約5kmの範囲について,文献調査,変動地形学的調査, 地表地質調査,物理探査,ボーリング調査,トレンチ調査等を実施し た。

(3) 敷地内の調査

敷地内の地質・地質構造を把握するため,敷地内全域について地 表地質調査,地表弾性波探査,ボーリング調査,トレンチ調査,試 掘坑調査等を実施した。

(4) MOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設設置位置付近の調査

安全機能を有する施設のうち,地震の発生によって生ずるおそれ があるその安全機能の喪失に起因する放射線による公衆への影響の 程度が特に大きい施設及びそれらを支持する建物・構築物(以下,

「耐震重要施設等」という。)並びに常設重大事故等対処設備を支持する建物・構築物(以下,「常設重大事故等対処施設」という。) 設置位置付近の基礎地盤の性状及び地質・地質構造を把握するため, ボーリング調査、試掘坑調査等を実施した。

また,基礎地盤の物理特性及び力学特性を把握するため,岩石試験,岩盤試験及び土質試験を実施した。

- (ロ) 敷地周辺の地質・地質構造
 - (1) 調査内容
 - ① 文献調査

敷地周辺の地形及び地質・地質構造に関する主要な文献としては、工 業技術院地質調査所(現 国立研究開発法人産業技術総合研究所地質調 査総合センター)発行の5万分の1地質図幅及び説明書のうち、今井 (1961)⁽¹⁾の「近前」,上村(1983)⁽²⁾の「浅虹」,山崎ほか(1986)⁽³⁾ の「50万分の1活構造図,青森」,北村ほか(1972)⁽⁴⁾の「20万分の1 青森県地質図及び地質説明書」,箕浦ほか(1998)⁽⁵⁾の「20万分の1 青森県地質図及び地質説明書」,活断層研究会編(1980)⁽⁶⁾の「日本 の活断層-分布図と資料」,同(1991)⁽⁷⁾の「新編 日本の活断層-分布図と資料」,今泉ほか編(2018)⁽⁸⁾の「活断層詳細デジタルマッ プ[新編]」,北村編(1986)⁽⁹⁾の「新生代東北本州弧地質資料集」, 日本地質学会編(2017)⁽¹⁰⁾の「日本地方地質誌2 東北地方」,工業技術 院地質調査所発行の20万分の1海底地質図及び説明書のうち、玉木

(1978) (11)の「20万分の1八戸沖海底地質図及び説明書」,奥田

(1993)⁽¹²⁾の「20万分の1下北半島沖海底地質図及び説明書」,国土 地理院(1982)⁽¹³⁾の「10万分の1沿岸域広域地形図及び土地条件図, 陸奥湾」,海上保安庁水路部(現 海洋情報部)(1973a)⁽¹⁴⁾の「20 万分の1海底地形図,八戸沖」,同(1973b)⁽¹⁵⁾の「20万分の1海 底地質構造図,八戸沖」,同(1974)⁽¹⁶⁾の「20万分の1海底地形図, 下北半島沖」,同(1975)⁽¹⁷⁾の「20万分の1海底地町構造図,下北半 島沖」,同(1982)⁽¹⁸⁾の「5万分の1海底地形図,5万分の1海底地 質構造図及び調査報告,むつ小川原」,同(1996)⁽¹⁹⁾の「5万分の1 海底地形図,5万分の1海底地質構造図及び調査報告,八戸」,同 (1998)⁽²⁰⁾の「5万分の1海底地形図,5万分の1海底地質構造図及 び調査報告,尻屋崎」,徳山ほか(2001)⁽²¹⁾の「日本周辺海域中新世 最末期以降の構造発達史」等がある。

また,重力異常に関する文献としては独立行政法人産業技術総合研究所 地質調査総合センター編(2013)⁽²²⁾の「日本重力データベース DVD版」 が,磁気異常に関する文献としては中塚・大熊(2009)⁽²³⁾の「日本空中 磁気DBによる対地1500m平滑面での磁気異常分布データの編集」等が, 微小地震に関する文献としては総理府地震研究推進本部地震調査委員会

(以下,「地震調査委員会」という。)(1999)⁽²⁴⁾の「日本の地震活動」, 気象庁⁽²⁵⁾の「気象庁地震カタログ」等がある。

これらの文献により敷地周辺の地形及び地質・地質構造の概要を把握した。

② 陸域の地質調査

文献調査の結果を踏まえて、敷地を中心とする半径30kmの範囲及び その周辺の陸域について、変動地形学的調査及び地質・地質構造に関 する各種調査を実施した。

変動地形学的調査としては、主に国土地理院で撮影された縮尺4万 分の1の空中写真に加え、必要に応じて縮尺2万分の1及び縮尺1万 分の1の空中写真並びに同院発行の縮尺2万5千分の1の地形図を使 用して、空中写真判読等を行い、その結果に基づいて敷地周辺陸域の 地形面区分図、リニアメント・変動地形の分布図等を作成した。

地質・地質構造に関する調査としては、地形調査に使用した空中写 真及び地形図を使用して地表踏査等を行ったほか、必要に応じてボー リング調査、トレンチ調査を組み合わせた調査を行い、それらの結果 に基づいて敷地周辺陸域の地質平面図、地質断面図等を作成した。

海域の地質調査

敷地を中心とする半径30kmの範囲及びその周辺海域において,国土 地理院,工業技術院地質調査所(現 国立研究開発法人産業技術総合 研究所地質調査総合センター),海上保安庁水路部(現 海洋情報部), 石油公団(現 独立行政法人石油天然ガス・金属鉱物資源機構),東 北電力株式会社,東京電力株式会社(現 東京電力ホールディングス 株式会社)等によって実施されている音波探査記録の解析を行った。

敷地前面海域において,海底地形,地質・地質構造に関する資料を 得るため,ウォーターガンを音源としたシングルチャンネル方式の音 波探査を約240km,マルチチャンネル方式(48チャンネル)の音波探査 を約300km実施した。さらに,深部地質構造に関する資料を得るため, エアガンを音源としたマルチチャンネル方式(156チャンネル,一部48 チャンネル)の音波探査を約400km実施した。なお,大陸棚外縁部付近 において,マルチビームによる海底地形面調査を約830km²実施した。

また、海域と陸域との地質の対比を行うため、尾駮沖で孔数4孔、 総延長約400mの海上ボーリング調査(微化石分析を含む。)を、尻屋 崎沖及び東通村老部川沖で地球深部探査船「ちきゅう」による孔数6 孔、総延長約1820mの海上ボーリング調査(微化石分析、火山灰分析 等を含む。)を、そして数mのスパーカーによる海上音波探査を実施 した。

これらの調査結果に基づいて、敷地周辺海域の海底地形図、海底地質図及び海底地質断面図を作成した。

音波探査記録から地質構造を解釈する際には、断層関連褶曲(岡村 (2000)⁽²⁶⁾)についても考慮して、断層の評価を行った。 (2) 調査結果

敷地周辺陸域の地形

敷地周辺陸域の地形図を添3-ロ(ロ)第1図に,地形区分図を添3-ロ(ロ)第2図に示す。

敷地周辺陸域は、地形の特徴から、主に山地からなる吹越地域、台 地からなるデケ所地域及び山地からなる。東岳・八幡岳地域に大きく 区分される。敷地は、六ヶ所地域の北東部の台地に位置する。

a. 吹越地域

吹越地域は、主に山地からなり、山麓部には丘陵地、山麓部から 海岸にかけては台地、河川下流部には低地、海岸沿いには砂丘地が みられる。山地は、比較的緩やかな起伏を示し、吹越烏帽子、金津山 等がほぼNNE-SSW方向に連なる。丘陵地は、特に吹越地域北 部に広くみられる。台地は、主に段丘からなる地形であり、段丘面 は、高位面、中位面及び低位面の3面に区分される。低地は、^{いまいずみがわ} 桧木川、小老部川等の河川下流部にみられる。砂丘地は、海岸沿い にみられる。

b. 六ヶ所地域

六ヶ所地域は、主に台地からなり、河川下流部及び湖沼周辺には 低地、海岸沿いには砂丘地がみられる。台地は、主に段丘からなる 地形であり、段丘面は、高位面、中位面及び低位面の3面に区分さ れる。低地は、野辺地川、土場川等の河川下流部及び太平洋側の ^{2000の1000}尾駮沼、小川原湖等の湖沼周辺にみられる。砂丘地は、海岸沿いに みられる。

c. 東岳·八幡岳地域

東岳・八幡岳地域は、主に山地からなり、山麓部には丘陵地、山麓

部から海岸にかけては台地,河川下流部には低地がみられる。山地は, 比較的緩やかな起伏を示し,烏帽子岳,松倉山等からなる。丘陵地 は,陸奥湾側の山麓部にみられる。台地は,主に段丘からなる地形 であり,段丘面は,高位面,中位面及び低位面の3面に区分される。 低地は,小湊川,清水川等の河川下流部及び海岸沿いにみられる。 なお,段丘面の高度分布と隆起の関連性については,「ロ.(ロ)(2) ⑦ 敷地周辺海域の地質構造」に後述するとおり,大陸棚外縁断層 は第四紀後期更新世以降の活動性はないものと判断したことから, 敷地周辺の地形の隆起に対して,第四紀後期更新世以降,この断層 は関与していない。第四紀後期更新世以降の隆起の要因は,大陸棚 外縁断層以外の海洋プレートの沈み込み等による他の要因によるも のと考えられる。

敷地周辺陸域の地質

敷地周辺陸域の地質層序表を添3-ロ(ロ)第1表に,地質平面図 及び地質断面図を,それぞれ添3-ロ(ロ)第3図及び添3-ロ(ロ) 第4図に示す。

敷地周辺陸域の地質層序は、以下のとおりである。

a. 先新第三系

敷地周辺陸域の先新第三系は,東岳・八幡岳地域北部の 夏泊 半 島付近に分布する立石層からなる。

立石層は, 上村 (1983)⁽²⁾の立石層に相当し, 石灰岩, チャート 等からなり, 三畳紀後期~ジュラ紀前期の地層とされている。

b. 新第三系中新統

敷地周辺陸域の新第三系中新統は、吹越地域では、猿ヶ森層、泊 がまのさや 層及び蒲野沢層、六ヶ所地域では、泊層及び鷹架層、東岳・八幡岳 地域では、和田川層、小坪川層、松倉山層及び市ノ渡層からなる。

猿ヶ森層は、吹越地域北部に分布し、北村編(1986)⁽⁹⁾の猿ヶ森 層に相当し、泥岩、砂岩等からなる。

泊層は, 吹越地域及び六ヶ所地域北東部に分布し, 北村編 (1986)⁽⁹⁾ の泊安山岩に相当し, 安山岩溶岩, 凝灰角礫岩, 軽石凝灰岩等から なる。

^{ひがしどおり}東通^{*なごまた} 東通^{*}村砂子又南東部における猿ヶ森層と泊層の地質構造及び累 重関係から、猿ヶ森層と泊層とは整合関係であり、一部指交関係に あるものと判断した。

蒲野沢層は、吹越地域の老部川(北)中流付近等に分布し、北村 編(1986)⁽⁹⁾の蒲野沢層及び多田ほか(1988)⁽²⁷⁾の蒲野沢層に相当 し、泥岩、砂岩、凝灰質シルト岩、軽石凝灰岩等からなる。芳賀・ 山口(1990)⁽²⁸⁾によると、蒲野沢層と下位の泊層が不整合関係にあ るとされている。

鷹架層は、六ヶ所地域の老部川(南)中流から二又川下流にかけての台地斜面、敷地近傍の尾駮沼及び鷹架沼湖岸の台地斜面、 さらに、後川流域の台地斜面等に分布する。鷹架層は、柴崎ほか(1958)⁽²⁹⁾の鷹架層、青森県(1970a)⁽³⁰⁾、同(1970b)⁽³¹⁾及び 箕浦ほか(1998)⁽⁵⁾の鷹架層並びに北村編(1986)⁽⁹⁾の鷹架層 に相当し、泥岩、砂岩、軽石凝灰岩、軽石質砂岩等からなる。六ヶ 所村出戸西方及び老部川(南)中流付近における泊層と鷹架層の地 質構造及び累重関係から、鷹架層と泊層は指交関係にあるものと判 断した。

和田川層は,東岳・八幡岳地域の夏泊半島,清水川流域,坪川上 ^{てんま} 流の天間ダム周辺等に分布し,北村ほか(1972)⁽⁴⁾及び箕浦ほか

小坪川層は,東岳・八幡岳地域に広く分布し,主に北村ほか (1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾の小坪川安山岩類にほぼ相 当し,安山岩溶岩,凝灰岩等からなる。北村ほか(1972)⁽⁴⁾及 び箕浦ほか(1998)⁽⁵⁾では,小坪川層が下位の和田川層を整合 に覆うとされている。

松倉山層は,東岳・八幡岳地域の松倉山周辺,枇杷野川上流等に 分布し,北村ほか(1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾の小坪川安 山岩類の一部に相当し,安山岩溶岩,凝灰角礫岩等からなる。本層 が小坪川安山岩類の下部を不整合に覆うことから,小坪川層から分 離して松倉山層と命名した。

市ノ渡層は、東岳・八幡岳地域東部に分布し、北村ほか(1972)⁽⁴⁾ 及び箕浦ほか(1998)⁽⁵⁾の市ノ渡層並びに北村編(1986)⁽⁹⁾の市 ノ渡層に相当し、シルト岩、凝灰岩、凝灰質砂岩等からなる。市ノ 渡川付近における小坪川層と市ノ渡層の地質構造及び累重関係から、 市ノ渡層は下位の小坪川層を不整合に覆うものと判断した。また、 市ノ渡層は、松倉山層とは接しないが、分布状況から松倉山層と不 整合関係にあると推定した。

c. 新第三系鮮新統~第四系下部更新統

敷地周辺陸域の新第三系鮮新統~第四系下部更新統は,砂子又層 からなる。

砂子又層は, 吹越地域から六ヶ所地域にかけての丘陵地及び台地に

広く分布し,今井(1961)⁽¹⁾の砂子又累層,青森県(1970a)⁽³⁰⁾,同 (1970b)⁽³¹⁾,箕浦ほか(1998)⁽⁵⁾の浜田層,北村ほか(1972)⁽⁴⁾ 及び箕浦ほか(1998)⁽⁵⁾の砂子又層及び甲地層,北村編(1986)⁽⁹⁾ の砂子又層及び甲地層並びに日本地質学会編(2017)⁽¹⁰⁾の砂子又層 及び浜田層に相当する。砂子又層は、砂岩、凝灰質砂岩、シルト岩、 軽石凝灰岩等からなり、下位の泊層、小坪川層、蒲野沢層、鷹架層 及び市ノ渡層を不整合に覆う。

吹越地域の今泉川周辺に分布する砂子又層の地質年代については、 芳賀・山口(1990)⁽²⁸⁾, Kanazawa(1990)⁽³²⁾等によると、微化石分 析結果から、新第三紀鮮新世~第四紀前期更新世とされている。ま た、六ヶ所地域の土場川沿いにおいて、本層上部に挟まれる凝灰岩 を対象に、フィッション・トラック法による年代測定を実施したと ころ、1.6±0.3Maが得られたほか、敷地周辺陸域の各地点から採 取された試料の年代測定結果によると、0.88±0.16Ma~4.3±0.5 Maの年代値が得られており(添3-ロ(ロ)第5図参照),これら の測定結果は珪藻化石による生層序地質年代と矛盾しない。これら から、砂子又層は、新第三紀鮮新世~第四紀前期更新世の地層と判 断した。

d. 第四系下部~中部更新統

敷地周辺陸域の第四系下部~中部更新統は,六ヶ所層(仮称:「ロ. (ハ) 敷地近傍の地質・地質構造」で後述)及び田代平溶結凝灰岩 からなる。

六ヶ所層は、敷地近傍に分布しており、北村ほか(1972)⁽⁴⁾及び 箕浦ほか(1998)⁽⁵⁾が野辺地町周辺に図示する野辺地層、北村編 (1986)⁽⁹⁾が下北半島の基部から八戸市周辺にかけて図示する三沢 層に相当し,主に細粒砂,シルト等からなる。六ヶ所層は,その上 下位層との累重関係や年代測定結果から,砂子又層の主部を不整合 に覆い,上部とは指交関係にあり,古期低地堆積層とは指交関係に あり,高位段丘堆積層に不整合に覆われ,その一部とは指交関係に あるものと判断した。

田代平溶結凝灰岩は,東岳・八幡岳地域の天間ダム付近に分布し, 北村ほか(1972)⁽⁴⁾の田代平溶結凝灰岩及び箕浦ほか(1998)⁽⁵⁾ の八甲田凝灰岩に相当し,主に溶結凝灰岩からなり,開析が進ん だ火砕流堆積面を形成する。田代平溶結凝灰岩は,村岡・高倉 (1988)⁽³³⁾,工藤ほか(2011)⁽³⁴⁾等によって,下位より熊ノ沢火砕 流堆積物,高峠火砕流堆積物,八甲田中里川火砕流堆積物,黄瀬川 火砕流堆積物,八甲田黄瀬火砕流堆積物,八甲田第1期火砕流堆積 物及び八甲田第2期火砕流堆積物に区分されている。このうち最上 位である八甲田第2期火砕流堆積物の地質年代は,村岡・高倉

(1988)⁽³³⁾によるカリウムーアルゴン法で約40万年前,高島ほか

(1990)⁽³⁵⁾による熱ルミネッセンス法で約25万年前とされている。

e. 第四系中部~上部更新統

敷地周辺陸域の第四系中部〜上部更新統は、古期低地堆積層、段 ^{とわだ} 丘堆積層、十和田火山軽石流堆積物、火山灰層等からなる。

古期低地堆積層は、六ヶ所地域及び東岳・八幡岳地域の台地斜面 に小規模に分布し、岩井(1951)⁽³⁶⁾の野辺地層並びに北村ほか

(1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾の野辺地層にほぼ相当し,主 にシルト,砂及び礫からなる。古期低地堆積層の地質年代は、下位 の砂子又層を不整合に覆い、上位の高位段丘堆積層に不整合に覆わ れることから、第四紀中期更新世と判断した。 段丘堆積層は,北村ほか(1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾の 段丘堆積物に相当し,主に砂及び礫からなる。段丘堆積層は,分布 標高から高位段丘堆積層,中位段丘堆積層及び低位段丘堆積層に3 区分され,それぞれ高位面,中位面及び低位面を形成する。空中写 真判読及び地表地質調査による段丘面の分布高度,分布形態及び火 山灰層との累重関係等から,高位面はH₁面,H₂面,H₃面,H₄面, H₅面及びH₆面に,中位面はM₁面,M₂面及びM₃面に,低位面は L₁面,L₂面及びL₃面にそれぞれ細区分される。

敷地周辺陸域の地形面区分図を添3-ロ(ロ)第6図に示し,段丘 堆積層と示標テフラの層位関係を添3-ロ(ロ)第2表に示す。

H₁面は、東岳・八幡岳地域の尾根部にごく狭い範囲に分布し、H₂ 面は、吹越地域及び東岳・八幡岳地域の尾根部に分布する。H₃面、 H₄面及びH₅面は、吹越地域及び東岳・八幡岳地域では山地を取り巻 いて狭い範囲に分布し、六ヶ所地域では広く平坦な面を形成する。 また、H₆面は、主に陸奥湾側の河川沿いに狭小に分布する。

H₃面及びH₄面は,各面の分布標高と堆積物を覆う火山灰層との累 重関係から,それぞれ宮内(1988)⁽³⁷⁾の高位面及び^{しちひゃく} 石「面に相当する。 H₅面は,その堆積物を覆う火山灰層の下部に宮内(1988)⁽³⁷⁾によるヌ カミン軽石及び甲地軽石が挟まれることから,宮内(1988)⁽³⁷⁾の天狗岱 面に相当し,酸素同位体ステージ(以下,「MIS」という。)7に 対比される。

M₁面, M₂面及びM₃面は, 吹越地域及び六ヶ所地域では, 太平 洋及び陸奥湾の沿岸部に, 東岳・八幡岳地域では, 陸奥湾の沿岸部 に比較的広く分布する。

M₁面は、その堆積物を覆う火山灰層の下部に町田・新井(2011)⁽³⁸⁾

による洞爺火山灰(11.2~11.5万年前)が挟まれることから,宮内 (1988)⁽³⁷⁾の高舘面に相当し,MIS5eに対比される。M₂面は,そ の堆積物の最上部に洞爺火山灰が挟まれることから,宮内(1988)⁽³⁷⁾ の多賀台面に相当し,MIS5e末ないし直後の海面安定期に対比 される。M₃面は,その堆積物を覆う火山灰層の下部に町田・新井

(2011)⁽³⁸⁾による阿蘇4火山灰(8.5~9万年前)が挟まれることから,宮内(1988)⁽³⁷⁾の根城面に相当し,MIS5cに対比される。

L₁面及びL₂面は, 吹越地域及び六ヶ所地域の比較的大きな河川 沿いにおいて, 比較的狭小な分布を示す。L₃面は, 東岳・八幡岳 地域の坪川, 清水目川等の比較的大きな河川沿いにみられる。

L₁面は、その堆積物を覆う火山灰層の最下部に十和田レッド 火山灰が挟まれることから、宮内(1988)⁽³⁷⁾の柴山面に相当す る。また、十和田レッド火山灰は町田・新井(2011)⁽³⁸⁾によっ て「MIS5a?」とされており、層位関係も考慮し、十和田レッ ド火山灰の年代は約8万年前と判断した。L₂面は、その堆積物を 覆う火山灰層の下部に町田・新井(2011)⁽³⁸⁾による十和田大不動火 山灰(約3.2万年前)が挟まれることから、宮内(1988)⁽³⁷⁾の七戸面 に相当し、MIS3に対比される。L₃面は、その堆積物を覆う火 山灰層の下部に町田・新井(2011)⁽³⁸⁾による十和田八戸火山灰(約 1.5万年前)が挟まれることから、宮内(1988)⁽³⁷⁾の三本木面に相 当する。

+和田火山軽石流堆積物は、六ヶ所地域南西部の坪川流域等に分 布し、東北地方第四紀研究グループ(1969)⁽³⁹⁾の十和田火山軽石流 堆積物に相当し、軽石凝灰岩等からなる。十和田火山軽石流堆積物 は、町田・新井(2011)⁽³⁸⁾による大不動火砕流堆積物(約3.2万年 前)及び八戸火砕流堆積物(約1.5万年前)に相当する。

火山灰層は,丘陵地及び台地上に広く分布し,主に褐色の粘土質 火山灰からなる。火山灰層中には,主な示標テフラとしてBoP軽 石,甲地軽石,ヌカミン軽石,オレンジ軽石,洞爺火山灰,阿蘇4 火山灰,十和田レッド火山灰,十和田大不動火山灰,十和田八戸火 山灰等が認められる。

f. 第四系完新統

敷地周辺陸域の第四系完新統は、沖積低地堆積層、砂丘砂層及び 崖錐堆積層からなる。

沖積低地堆積層は,河川及び海岸沿いの低地等に分布し,主に礫, 砂及び粘土からなる。

砂丘砂層は, 吹越地域及び六ヶ所地域の太平洋側及び陸奥湾側の 海岸部に帯状に分布し, 主に砂からなる。

崖錐堆積層は、山地及び丘陵地の斜面の裾部等に分布し、主に礫、 砂及び粘土からなる。

g. 貫入岩

敷地周辺陸域の貫入岩は、吹越地域では、泊層に貫入する安山岩、 ^{せんりょくひんがん} デイサイト、 閃緑玢岩 等からなり、東岳・八幡岳地域では、和田 川層及び小坪川層に貫入する安山岩、デイサイト、流紋岩等からな る。

③ 敷地周辺陸域のリニアメント・変動地形

空中写真判読によるリニアメント・変動地形の判読基準を添3-ロ (ロ)第3表に,敷地周辺陸域のリニアメント・変動地形の分布図を添 3-ロ(ロ)第7図に示す。

敷地周辺陸域のリニアメント・変動地形の判読基準については、土

木学会(1999)⁽⁴⁰⁾,井上ほか(2002)⁽⁴¹⁾等を参考にして,地域特性を 考慮して設定した。これをもとに,敷地周辺のリニアメント・変動地 形を,変動地形である可能性が高いL_A,変動地形である可能性があ るL_B,変動地形である可能性が低いL_c及び変動地形である可能性が 非常に低いL_Dの4ランクに区分した(以下,これらのリニアメント・ 変動地形を,それぞれ「L_Aリニアメント」,「L_Bリニアメント」, 「L_cリニアメント」及び「L_Dリニアメント」という。)。

敷地周辺陸域のリニアメント・変動地形は、N-S方向~NNE-SSW方向のものが卓越し、一部でNE-SW方向、NW-SE方向あ るいはE-W方向のものが認められる。これらのリニアメント・変動地 形は、主にランクが低いL_Dリニアメントからなり、一部にL_B及びL_C リニアメントが判読される。

敷地周辺陸域の地質構造

a. 敷地周辺陸域の地質構造

敷地周辺陸域の地質構造として,主に新第三系中新統に褶曲構造 が認められる。新第三系鮮新統~第四系下部更新統については、横浜 町桧木川中流部等において,一部に褶曲構造が認められるものの, 大局的には同斜構造を示す。(添3-ロ(ロ)第3図及び添3-ロ(ロ) 第4図参照)

吹越地域では、老部川(南)上流部にNE-SW方向の軸をもつ 長さ約3kmの背斜及び長さ約4kmの向斜が認められる。また、桧木 川中流部にもNNE-SSW方向の軸をもつ長さ約11kmの背斜及び 向斜がそれぞれ認められ、その背斜の東翼部に、一部、撓曲構造が 認められる。

六ヶ所地域では、棚沢川から老部川(南)に至る間及び土場川上

流部に,ほぼN-S方向の軸をもつ長さ約5kmの背斜がそれぞれ認 められる。また,尾駮沼及び鷹架沼付近から内沼西方にかけて,N E-SW方向の軸をもつ長さ約10kmの向斜が認められる。

東岳・八幡岳地域では、烏帽子岳周辺にNW-SE方向の軸をもつ 長さ約6kmの背斜及び長さ4km~6kmの向斜が認められる。また、山 地の東縁部には、ほぼN-S方向に延びる撓曲構造が認められる。

重力異常に関しては、独立行政法人産業技術総合研究所地質調査 総合センター編(2013)⁽²²⁾による重力データ等を用いて、重力異常 図を作成した。敷地周辺陸域においては、吹越地域及び東岳・八幡 岳地域の山地が高重力異常を示すのに対し、六ヶ所地域の台地が低 重力異常を示す。このうち、東岳・八幡岳地域と六ヶ所地域の境界 部には、概ねN-S方向に延びる重力異常の急変部が認められるが、 その他の地域では、延長が長い線状の重力異常の急変部は認められ ず、地下深部に大きな地質構造の変化は推定されない。(添3-ロ(ロ) 第8図参照)

磁気異常に関しては、中塚・大熊(2009)⁽²³⁾によると、敷地周辺 陸域においては、顕著な磁気異常は認められないものの、敷地周辺 海域においては、北海道苫小牧から三陸沖にかけて概ねN-S方向 に延びる正の磁気異常が認められ、長崎(1997)⁽⁴²⁾が示す苫小牧リ ッジに対応している。長崎(1997)⁽⁴²⁾においては、苫小牧リッジは 主に花崗岩等によって構成されており、この花崗岩はコア分析の結 果から前期白亜紀を示唆する年代が得られ、前期~後期白亜紀に連 続していた正磁極期に熱残留磁化を獲得した可能性が高いとされて いる。以上のことから、敷地周辺海域に認められる正の磁気異常は、 海底下に強い磁気を帯びた岩体等が分布する地質構造を反映してい るものと考えられる。(添3-ロ(ロ)第9図参照)

微小地震に関しては、気象庁⁽²⁵⁾に基づき小・微小地震分布図を作成した。敷地周辺においては、断層の存在を示唆するような微小地 震分布の面状の配列は認められない。(添3-ロ(ロ)第10図参照)

b. 敷地を中心とする半径30km範囲の断層

文献調査結果に基づく,敷地周辺陸域の活断層分布図(半径30km範囲)を添3-ロ(ロ)第11図に示す。

敷地周辺陸域の主な断層及び撓曲構造として、山崎ほか(1986)⁽³⁾, 活断層研究会編(1991)⁽⁷⁾及び今泉ほか編(2018)⁽⁸⁾が示す横浜断層, 野辺地断層, 上原子断層, 天間林断層及び十和田市西方断層があり, 十和田市奥入瀬川以南には、Chinzei(1966)⁽⁴³⁾及び工藤(2005)⁽⁴⁴⁾ が示す猿辺撓曲及び底田撓曲がある(以下,天間林断層,十和田市 西方断層,猿辺撓曲及び底田撓曲を一括して「七戸西方断層」とい う。)。さらに、藤田ほか(1980)⁽⁴⁵⁾が示す後川-土場川沿いの断 層(以下,「後川-土場川断層」という。)がある。なお、敷地を 中心とする半径約5kmの範囲の敷地近傍には、活断層研究会編(1991) ⁽⁷⁾及び今泉ほか編(2018)⁽⁸⁾が示す出戸西方断層がある。

(a) 横浜断層

i. 文献調查結果

活断層研究会編(1991)⁽⁷⁾は、横浜町省焼東方から同町横浜東 方にかけて、NNE-SSW方向、長さ4km、活動度C、「活断 層であると推定されるもの(確実度II)」の横浜断層を図示・記 載し、開析扇状地に西側隆起20mの逆むき低断層崖がみられると している。

今泉ほか編(2018)⁽⁸⁾は、むつ市中野沢付近から横浜町向平付

近に、長さ約10km(図読では約13km),ほぼ南北方向に延びる西 側隆起の逆断層帯として横浜断層帯を図示・記載し、「後期更新 世の段丘面に明瞭な変位を与え、断層変位の累積が確認されてい る。平均上下変位速度や活動履歴は不明である。」としている。

山崎ほか(1986)⁽³⁾は、当該断層を図示していない。

ii. 変動地形学的調査結果

横浜断層周辺の空中写真判読図を添3-ロ(ロ)第12図に示す。

むつ市中野沢東方の畑沢川左岸から横浜町有畑東方の蕩 派前 を経て、同町横浜南東の荒防前右岸に至る約13km間に、NNE-SSW~N-S方向のL_B、L_c及びL_Dリニアメントが断続的に 判読される。これらは、主に高位面(H₃面、H₄面、H₅面及び H₆面)の山側向きの崖、鞍部からなり、このうち鶏沢川付近か ら横浜町北東の笛グ沢川付近に至る約4km間が活断層研究会編 (1991)⁽⁷⁾の横浜断層に、林崎川付近から荒内川付近に至る約10km 間が今泉ほか編(2018)⁽⁸⁾の横浜断層帯にほぼ対応する。しかし、 鶏沢川及び横浜東方の三保川の低位面(L₁面及びL₂面)に、リ ニアメント・変動地形は判読されない。また、北方延長の林崎川 右岸の中位面(M₂面)及び南方延長の荒内川左岸の中位面(M₁ 面)に、リニアメント・変動地形は判読されない。

ⅲ. 地表地質調査結果

横浜断層周辺の地質平面図を添3-ロ(ロ)第13図に,地質断面 図を添3-ロ(ロ)第14図に示す。

横浜断層周辺には,新第三系中新統の泊層及び蒲野沢層,新第 三系鮮新統~第四系下部更新統の砂子又層,第四系中部更新統の 高位段丘堆積層,第四系上部更新統の中位段丘堆積層及び低位段 丘堆積層等が分布する。

泊層は、主に凝灰角礫岩からなる。蒲野沢層は、主に泥岩及び 砂岩からなる。両層は、桧木川以北の山地から丘陵地にかけて分 布しており、走向はほぼNNE-SSW方向であり、概ね20°~ 50°の西傾斜を示す。砂子又層は主に砂岩からなり、横浜断層周 辺に広く分布する。本層は、ほぼNNE-SSW方向の走向で、 概ね20°以下の西傾斜を示し、下位の新第三系中新統を不整合に 覆う。高位段丘堆積層は、主に砂及び礫からなり、高位面(H₃ 面、H₄面、H₅面及びH₆面)を形成する。中位段丘堆積層は、 主に砂及び礫からなり、中位面(M₁面、M₂面及びM₃面)を形 成する。このうち、横浜町の林崎川河口付近では、中位段丘堆積 層(M₂面堆積物)の最上部に洞爺火山灰(11.2~11.5万年前) が挟まれることを確認している(Y-3露頭)。低位段丘堆積層 は、主に砂及び礫からなり、低位面(L₁面及びL₂面)を形成す る。

中野沢東方の南川代沢付近から三保川付近にかけての砂子又層 には、背斜軸と向斜軸が近接して認められ、背斜軸の東翼部には 傾斜30°~60°の東急傾斜を示す撓曲構造が認められる。リニア メント・変動地形はこの撓曲構造に対応して判読され、林崎川付 近から桧木南東に至る間においては、リニアメント両側において 複数の段丘面にいずれも西側が高い高度差が認められ、高位の段 丘面ほど高度差が大きくなっている。(添3-ロ(ロ)第15図参照)

林崎川左岸において、ほぼN-S走向で、約40°西傾斜の逆断 層が認められ、砂子又層が高位段丘堆積層(H₅面堆積物)へ衝上 している(Y-1 露頭、添3-ロ(ロ)第16図及び添3-ロ(ロ)第 17図参照)。この北側延長部にあたる林崎川右岸では、本断層は 砂子又層中で2条に分岐している。このうち、西側の断層は、さ らに北側の露頭において、高位段丘堆積物(H₅面堆積物)を変位 させているものの、これを覆う中位段丘堆積層(M₂面堆積物)の 下面に変位を与えていない(Y-2露頭、添3- α (α)第18図参 照)。一方、東側の断層は、Y-2露頭とその東側の露頭との間 に延長すると考えられるが、両露頭で確認されるM₂面堆積物の下 面に標高差が認められず(添3- α (α)第19図参照)、また、こ れより北側に広く分布する中位段丘堆積層(M₂面堆積物)の上面 は、断層推定位置を挟んで連続する(添3- α (α)第20図参照) ことから、中位段丘堆積層(M₂面堆積物)に変位を与えていない と判断される。

さらに、桧木川右岸において、L_B及びL_cリニアメント通過位 置を挟むようにボーリング調査を実施した結果、砂子又層に明瞭 な撓曲構造が認められたが、これを不整合に覆う中位段丘堆積層 (M_3 面堆積物)の下面には変位・変形が認められない(添3- $\mu(\mu)$ 第21図参照)。

一方,鶏沢川東方のL_cリニアメント通過位置付近において, 東京電力株式会社(現 東京電力ホールディングス株式会社), 東北電力株式会社及びリサイクル燃料貯蔵株式会社が実施した反 射法地震探査並びに東京電力株式会社(現 東京電力ホールディ ングス株式会社)が実施したボーリング調査により,砂子又層の 撓曲部に西上がりの逆断層が確認され,その変位が段丘礫層にも 及んでいることが認められた(添3-ロ(ロ)第22図及び添3-ロ (ロ)第23図参照)。また,確認された逆断層付近において東京電 カ株式会社(現 東京電力ホールディングス株式会社),東北電 カ株式会社及びリサイクル燃料貯蔵株式会社が実施したトレンチ 調査の結果,洞爺火山灰(11.2~11.5万年前)に断層変位が及ん でおり,その上位の阿蘇4火山灰(8.5~9万年前)にも断層に よる変形が及んでいる可能性を否定できない(添3-ロ(ロ)第24 図参照)。

荒内川右岸に判読される L_D リニアメント南方の横浜町向平付 近において、東京電力株式会社(現 東京電力ホールディングス 株式会社)、東北電力株式会社及びリサイクル燃料貯蔵株式会社 が反射法地震探査(向平測線)を実施した結果、リニアメント・ 変動地形の延長位置に断層及び撓曲構造は認められない(添3-ロ(ロ)第25図参照)。なお、リニアメント・変動地形の延長位置 の東方に1条の断層が推定され、さらに向平より南方の横浜町松 栄付近で東京電力株式会社(現 東京電力ホールディングス株式 会社)、東北電力株式会社及びリサイクル燃料貯蔵株式会社が実 施した反射法地震探査(松栄測線)でも3条の断層が推定される ものの、これらの断層上に分布する H_5 面~ M_2 面に東側の低い高 度不連続は認められない(添3- $\mu(\mu)$ 第26図参照)。

なお、向平測線より南には、横浜町向沢付近に、東側低下のL_D リニアメントが断続的に判読される(「ロ.(ロ)(2)④b.(f) vii.向沢付近のリニアメント・変動地形」参照)。向平測線上にお いて、向沢付近のL_Dリニアメント北方延長にあたる位置で実施し たボーリング調査結果によると、砂子又層の上部は西緩傾斜の同 斜構造を示し、H₅面堆積物の上面にも有意な不連続は認められ ない。L_Dリニアメントが判読される北端付近の向沢北方におい

て実施したボーリング調査結果によると、Lヮリニアメントを挟 んで砂子又層は西緩傾斜の同斜構造を示す。この南の向沢周辺に おいて、LDリニアメントを挟んで実施したオーガーボーリング 調査等の結果によると、H6面堆積物上面に不連続は認められな い。さらに、Lヮリニアメントが判読される南端付近の武ノ川右 岸付近において,東京電力株式会社(現 東京電力ホールディン グス株式会社)、東北電力株式会社及びリサイクル燃料貯蔵株式 会社が実施したボーリング調査結果によると、砂子又層は西緩傾 斜の同斜構造を示す。向沢北方においては、LDリニアメントが 判読される位置付近のみH4面堆積物の礫層が分布せず,砂子又 層を削り込んだ谷が認められる。また、向沢周辺及び武ノ川右岸 付近においては、LDリニアメントが判読される位置付近にHG面 堆積物を覆って風成層・ローム層互層が分布している。これらの ことから、向沢付近のLDリニアメント付近には、第四紀後期更 新世以降に活動した断層は存在しないものと判断した。Lpリニ アメントは,砂子又層を浸食する谷地形及び風成砂・ローム互層 よりなる砂丘の上面形態を反映したものであると判断される。

なお、横浜断層の北方に位置する朝比奈平周辺には、西側低下 のL_Dリニアメントが判読される(添3-ロ(ロ)第12図参照)。 地表地質調査の結果, L_Dリニアメントの東側では, 新第三系が 西へ急傾斜する撓曲構造を示す(添3-ロ(ロ)第13図参照)。こ の撓曲構造は、西側低下の変位形態を示し、NNE-SSW方向 に連続することから、地下に断層が存在するものと推定され、北 村・藤井(1962)⁽⁴⁶⁾の下北断層に対応すると考えられる。たつ市 近川北東の蜆沢中流部の露頭では、砂子又層内の不整合面を境に、 それより下位の軽石凝灰岩、泥質砂岩等に急傾斜構造が認められ るが、それより上位の主に砂岩からなる地層には、撓曲による変 形は認められない(SH-1露頭, 添3-ロ(ロ)第28図参照)。 また、この撓曲構造は、近川東方では確認できない。以上のよう に、この撓曲構造は、横浜断層の変位形態及び活動性と異なるこ とから、横浜断層とは連続しないものと判断した。また、Lpリ ニアメントは、中新統の撓曲構造に沿って判読されるが、猿ヶ森 層と泊層、あるいは泊層と蒲野沢層等の地層境界にほぼ対応して おり、リニアメント・変動地形の位置には断層は認められないこ とから、岩質の差を反映した浸食地形であると判断した。

iv. 総合評価

横浜断層周辺には、約13km間にL_B、L_c及びL_Dリニアメントが判読される。

南川代沢付近から三保川付近にかけての砂子又層には,ほぼ NNE-SSW方向に延びる1背斜・1向斜からなる褶曲構造が認 められる。背斜の東翼部には,東急傾斜の撓曲構造が認められ,判 読されるL_B, L_c及びL_Dリニアメントにほぼ対応する。この撓曲 構造上の林崎川左岸において,砂子又層と高位段丘堆積層(H₅面 堆積物)とを境する西上がりの逆断層が認められるものの,中位 段丘堆積層(M₂面堆積物)に変位を与えていないことを確認した。 また,桧木川右岸におけるボーリング調査結果により,砂子又層 の撓曲構造からリニアメントに対応する断層が存在するものと考 えられるが,この位置を挟んで分布する中位段丘堆積層(M₃面堆 積物)に変位・変形が認められないことを確認した。

一方,東京電力株式会社(現 東京電力ホールディングス株式 会社),東北電力株式会社及びリサイクル燃料貯蔵株式会社が, 鶏沢川東方において実施したトレンチ調査結果によると,段丘堆 積層に西上がりの逆断層が認められ,洞爺火山灰(11.2~11.5万 年前)に断層変位が及んでおり,その上位の阿蘇4火山灰(8.5~9 万年前)にも断層による変形が及んでいる可能性を否定できない。

南川代沢より北方の北川代沢においては、横浜断層に対応する 砂子又層の撓曲構造は認められない。また、向平においては、反 射法地震探査結果により、砂子又層相当層に横浜断層に対応する 断層及び撓曲構造は認められない。

以上のように、横浜断層は、第四紀後期更新世に形成された中 位段丘堆積層に変位・変形を与えていることが否定できないこと から、第四紀後期更新世以降の活動性を考慮することとし、その長 さを北川代沢付近から向平付近までの約15kmと評価した。

(b) 野辺地断層

i. 文献調査結果

山崎ほか(1986)⁽³⁾は,野辺地町まかど温泉南方の近沢川付近 かみいたばし から東北町上板橋西方の赤川付近にかけて,長さ約7kmの推定活 断層(主として第四紀後期に活動したもの)を図示し,東側落下, 平均変位速度1m/10³年未満としている。

活断層研究会編(1991)⁽⁷⁾は、山崎ほか(1986)⁽³⁾とほぼ同じ 位置に、NNW-SSE方向、長さ7km、活動度B、「活断層で あると推定されるもの(確実度II)」の野辺地断層を図示・記 載し、西側隆起100mを超える山地高度差がみられるとし、本断 層付近の山地と平野の分化が第三紀末から第四紀にかけての西側 隆起の変動により生じたとしている。

今泉ほか編(2018)⁽⁸⁾は,野辺地町まかど温泉付近から同町 ^{かみこなかのかいたく} 上小中野開拓西方の枇杷野川付近まで,長さ約4kmの推定活断層 を図示している。

青森県(1996)⁽⁴⁷⁾の調査結果によると、文献が指摘する野辺地 断層沿いに判読されるリニアメント周辺には、第四紀層に断層の 存在を示すような地層の乱れは認められず、リニアメントは組織 地形によるものである可能性が高いとしている。

ii. 変動地形学的調查結果

野辺地断層周辺の空中写真判読図を添3-ロ(ロ)第29図に示 す。

野辺地町狩場沢西方付近から同町上小中野開拓西方を経て、七戸町上原子西方の坪川左岸付近に至る約10km間に、NNW-SSE~N-S方向のL_Dリニアメントが断続的又は一部平行して判読される。これらのL_Dリニアメントは、主に西側の山地と東側の台地との境界付近の傾斜変換部又は鞍部からなり、一部は山地斜面に認められる東側低下の崖及び鞍部からなる。このうち、近沢川付近から赤川付近に至る約7km間が、活断

層研究会編(1991)⁽⁷⁾の野辺地断層にほぼ対応する。しかし, 北方延長の狩場沢西方付近にみられる高位面(H₄面)に,リ ニアメント・変動地形は判読されない。また,南方延長の坪川 沿いにみられる田代平溶結凝灰岩の火砕流堆積面に,リニアメン ト・変動地形は判読されない。

野辺地断層北方延長位置において段丘面の旧汀線高度分布を検 討した結果, M_3 面, M_2 面, M_1 面及び H_5 面に,西側隆起の変形 は認められない。また,地形断面図における中位段丘面の勾配は 現在の海底勾配と概ね調和的であり,その平面形態も併せて考え ると,これらの中位段丘面は小池・町田編(2001)⁽⁴⁸⁾が指摘する ような海成段丘であると考えられる。これらの背後に分布する高 位段丘面群は,海底勾配よりやや急な傾斜を示すものの,段丘構 成層が河成層(砂礫)を示すことから,小池・町田編(2001)⁽⁴⁸⁾ が指摘するような扇状地性段丘群であると考えられる。(添3-ロ(ロ)第30図及び添3-ロ(ロ)第31図参照)

ⅲ. 地表地質調査結果

野辺地断層周辺の地質平面図を添3-ロ(ロ)第32図に,地質断 面図を添3-ロ(ロ)第33図に示す。

野辺地断層周辺には,新第三系中新統の小坪川層,松倉山層及 び市ノ渡層,第四系中部更新統の古期低地堆積層及び高位段丘堆 積層,第四系完新統の崖錐堆積層等が分布する。

まかど温泉付近以北の L_D リニアメント周辺には、高位段丘堆 積層(H₃面堆積物及びH₄面堆積物)が分布し、 L_D リニアメン トはこれらが形成する高位面(H₃面)と高位面(H₄面)との境 界あるいは高位面(H₄面)を刻む沢部に位置している。 まかど温泉付近から上小中野開拓西方付近にかけて,主に小坪 川層,古期低地堆積層,高位段丘堆積層及び崖錐堆積層が分布す る。この間に判読されるL_Dリニアメントは,主に西側の山地を形 成する小坪川層と,東側の台地を形成する高位段丘堆積層(H₃面 堆積物)との地層境界にほぼ対応する。この付近の高位段丘堆積 層(H₃面堆積物)の傾斜は水平から5[°]前後と緩い。また,こ れと平行して山側に判読されるL_Dリニアメントは,主に小坪川 層と松倉山層との地層境界にほぼ対応する。

上小中野開拓西方付近から坪川左岸にかけて、主に小坪川層、 市ノ渡層、古期低地堆積層及び高位段丘堆積層が分布する。この 間に判読されるLpリニアメントは、主に西側の山地を形成する 相対的に硬質な火山岩類からなる小坪川層と,東側の丘陵地から 台地を形成する相対的に軟質な堆積岩からなる市ノ渡層あるいは 未固結堆積物からなる高位段丘堆積層(H2面堆積物及びH3面 堆積物)との地層境界にほぼ対応する。市ノ渡層は、主に凝灰質 ·砂岩からなり、NNE-SSW~NNW-SSE走向で、東に約 30°傾斜する同斜構造を示し、下位の小坪川層を不整合に覆う。 この付近では、枇杷野川や添ノ沢西方などの谷に沿って、主にシ ルト、砂及び礫からなる古期低地堆積層が分布し、下位の小坪川 層及び市ノ渡層を不整合に覆う。特に、添ノ沢付近では、活断層 研究会編(1991)⁽⁷⁾の「活断層であると推定されるもの(確実) 度Ⅱ) | 及び判読されるLpリニアメントの位置を挟んで、古期 低地堆積層が5°~8°で東傾斜して分布している(添3-ロ (ロ)第34図参照)。なお、倉岡川において実施した古期低地堆積 層中に挟まれる軽石層のフィッション・トラック法による年代測

定値は0.4±0.1Maを示す。また、高位段丘堆積層は、下位の小 坪川層及び市ノ渡層を不整合に覆い、ほぼ水平に堆積している。

まかど温泉付近の L_D リニアメント沿いで実施したボーリング調 査の結果,高位段丘堆積層(H_4 面堆積物)の上面及びオレンジ軽 石に高度不連続は認められない(添3- μ (μ)第35図参照)。

野辺地断層の北方延長には、高位面(H₄面)が分布しており、 断層運動に起因する変位・変形は認められない。また、南方延長 に当たる坪川沿いには、田代平溶結凝灰岩が分布している。

iv. 総合評価

野辺地断層周辺には、約10km間にLpリニアメントが判読され る。いずれも変動地形としてのランクが低いLpリニアメントで あり、北方延長の高位面(H₄面)及び南方延長の田代平溶結凝 灰岩の火砕流堆積面には、リニアメント・変動地形は認められな い。また、判読されるLDリニアメントのうち、北部のLDリニアメ ントは、小坪川層と高位段丘堆積層(H3面堆積物)あるいは松倉 山層との地層境界にほぼ対応し、南部のLDリニアメントは、主に 小坪川層と市ノ渡層あるいは高位段丘堆積層(H2面堆積物及びH3 面堆積物)との地層境界にほぼ対応することから、相対的な岩質の 硬軟の差を反映した浸食地形であると判断した。さらに、判読され るLヮリニアメント付近には断層露頭は認められず,市ノ渡層は東 に約30°傾斜する同斜構造を示し、上位の古期低地堆積層は、添ノ 沢付近において、活断層研究会編(1991)(7)の確実度Ⅱの断層及び 判読されるL_Dリニアメントの位置を挟んで5°~8°東傾斜して 分布しており、まかど温泉付近のLpリニアメント沿いで実施し たボーリング調査の結果,高位段丘堆積層(H₄面堆積物)の上

面及びオレンジ軽石に高度不連続は認められず,断層運動に起因 する変位・変形は認められない。また,南方延長の田代平溶結凝 灰岩の火砕流堆積面に断層運動に起因する変位・変形は認められ ない。野辺地断層北方延長位置において段丘面の旧汀線高度分布 を検討した結果,H₅面以降の段丘面に,西側隆起の変形は認め られない。

以上のことから,野辺地断層付近には,第四紀後期更新世以降 に活動した断層は存在しないものと判断した。

(c) 上原子断層

i. 文献調査結果

山崎ほか(1986)⁽³⁾は、東北町宇道坂南方の清水目川右岸付近 から七戸町上原子北西の坪川左岸付近にかけて、推定活断層(主 として第四紀後期に活動したもの)を図示し、西側落下、平均変 位速度1m/10³年未満としている。

活断層研究会編(1991)⁽⁷⁾は、山崎ほか(1986)⁽³⁾とほぼ同じ 位置に、N-S方向、長さ2km、活動度C、「活断層であると推 定されるもの(確実度II)」の上原子断層を図示・記載し、開析 扇状地に東側隆起20mの逆むき低断層崖がみられるとしている。

今泉ほか編(2018)⁽⁸⁾は、宇道坂南方付近から上原子北西付近 にかけて長さ約3kmの推定活断層を図示している。

ii. 変動地形学的調査結果

上原子断層周辺の空中写真判読図を添3-ロ(ロ)第36図に示 す。

野辺地町上小中野開拓南西の尾根から七戸町上原子北西までの約5km間に、NNW-SSE~N-S方向のL_B及びL_Cリニアメ

ントが断続的に判読される。これらは、いずれも西側低下の低崖, 鞍部等からなり、活断層研究会編(1991)⁽⁷⁾の上原子断層にほぼ 対応する。しかし、北方延長の上小中野開拓西方の高位面(H₄ 面)に、リニアメント・変動地形は判読されない。また、南方延 長の上原子付近の坪川沿いにみられる田代平溶結凝灰岩の火砕流 堆積面の分布標高には、リニアメント・変動地形の延長位置を挟 んで不連続は認められない(添3-ロ(ロ)第37図参照)。

iii. 地表地質調査結果

上原子断層周辺の地質平面図を添3-ロ(ロ)第38図に,地質断 面図を添3-ロ(ロ)第39図に示す。

上原子断層周辺には,新第三系中新統の市ノ渡層,新第三系鮮 新統~第四系下部更新統の砂子又層,第四系中部更新統の古期低 地堆積層及び高位段丘堆積層,第四系上部更新統の十和田火山軽 石流堆積物等が分布する。

市ノ渡層は主に凝灰質砂岩からなり,ほぼNNW-SSE走向 で、東に30°~70°急傾斜する。砂子又層は主に砂岩からなり, 走向はほぼNNW-SSE方向で、東に約30°傾斜する。古期低 地堆積層は主にシルト,砂及び礫からなり、台地斜面のごく狭い 範囲に分布する。本層は下位の市ノ渡層及び砂子又層を不整合に 覆い、傾斜は5°前後と緩い。高位段丘堆積層は主に砂及び礫か らなり、台地に広く分布し、高位面(H₂面、H₃面及びH₄面) を形成する。十和田火山軽石流堆積物は軽石凝灰岩からなり、狭 小な平坦面を形成する。

東北町赤川右岸で,高位段丘堆積層(H₃面堆積物)を変位さ せる断層露頭(K-1露頭)が認められる。さらに,この北方の
宇道坂の清水目川右岸及び添ノ沢東方にも断層露頭(K-2露頭 及びK-3露頭)が認められる。

K-1露頭の断層は,走向がほぼNNW-SSE方向で約30° 東傾斜し,高位段丘堆積層(H₃面堆積物)を変位させている。 断層下盤側の高位段丘堆積層(H₃面堆積物)に挟在する溶結凝 灰岩が上方へ引きずられていることから,本断層は東上がりの 逆断層と判断した。この断層を挟んで分布する高位面(H₃面) には,約20mの高度不連続がみられる。(添3-ロ(ロ)第40図 参照)

K-2露頭の断層は,走向がほぼN-S方向で約30°東傾斜し, 市ノ渡層を変位させている。同一層準の層厚約30mの軽石凝灰岩 が,断層の両側で認められることから,本断層は東上がりの逆断 層と判断した。(添3-ロ(ロ)第41図参照)

K-3露頭の断層は、走向がほぼN-S方向で約20°東傾斜し、 高位段丘堆積層(H₃面堆積物)に東上がりの変位が認められる。 この露頭の周辺では、断層上盤側の高位段丘堆積層(H₃面堆積物) が、断層運動に伴う変形により最大約60°西に傾動している。(添 3-ロ(ロ)第42図参照)

上原子断層の北方延長に位置する枇杷野川右岸の高位面(H₄ 面)における露頭調査及びボーリング調査の結果によると、L_c リニアメントの北方延長位置を挟んでオレンジ軽石に高度不連続 は認められないことから、枇杷野川右岸の高位面(H₄面)には 断層運動に起因する変位・変形は認められない。また、南方延長 に位置する坪川沿いの田代平溶結凝灰岩の火砕流堆積面に、断層 運動に起因する変位・変形は認められない。(添3-u(u)第37 図参照)

iv. 総合評価

上原子断層周辺には、約5km間にL_B及びL_cリニアメントが判読される。

地表地質調査結果によると、東北町赤川右岸、宇道坂の清水目 川右岸及び添ノ沢東方に断層露頭が認められ、L_Bリニアメント に対応する東上がりの逆断層が存在し、赤川右岸では、高位段丘 堆積層(H₃面堆積物)に約20mの変位が想定される。

上原子断層の北方延長に位置する枇杷野川右岸の高位面(H₄ 面)に、断層運動に起因する変位・変形は認められず、南方延長 に位置する坪川沿いの田代平溶結凝灰岩の火砕流堆積面に、断層 運動に起因する変位・変形は認められない。

以上のように、上原子断層は、高位段丘堆積層(H₃面堆積物) に変位を与えており、断層と第四系上部更新統との関係が確認さ れないことから、第四紀後期更新世以降の活動性が否定できない。 したがって、その活動性を考慮することとし、その長さを枇杷野 川右岸から坪川付近までの約5kmと評価した。

(d) 七戸西方断層

i. 文献調查結果

山崎ほか(1986)⁽³⁾は、七戸町百石西方の坪川右岸から同町 ^{かみぼくじょう} 上牧場を経て十和田市奥入瀬川左岸にかけて、長さ約22kmの推 定活断層(主として第四紀後期に活動したもの)を図示し、東側 落下、平均変位速度1m/10³年未満としており、奥入瀬川の南方 に断層や撓曲を図示していない。

活断層研究会編(1991)⁽⁷⁾は、七戸町栗ノ木沢から同町上牧場を

経て十和田市奥入瀬川左岸にかけて,天間林断層及び十和田市西方 断層を図示・記載しており,奥入瀬川の南方に断層や撓曲を図示し ていない。天間林断層は,NNE-SSW~NNW-SSE方向, 長さ9km,活動度B,「活断層であると推定されるもの(確実度 II)」であり,西側隆起100mを超える山地高度差がみられ,本地 域の山地と平野の分化が第三紀末から第四紀にかけての西側隆起 の変動により生じたとしている。また,十和田市西方断層は,N NW-SSE方向,長さ6km,「活断層の疑のあるリニアメント (確実度III)」であり,西側隆起60mの山地高度差がみられると している。

工藤(2005)⁽⁴⁾は、図幅の表示範囲全体にわたる道地川以北から小林川以南にかけて、長さ20km以上の底田撓曲を図示し、同撓曲は第四系下部更新統(高森山層)より上位の地層に伏在されるとしている。また、底田撓曲の活動時期については、撓曲崖の不明瞭さと青森県(1996)⁽⁴⁷⁾の調査結果から第四紀後半にはほとんど活動していないとしており、その活動時期を鮮新世以降から中期更新世であるとしている。

青森県(1996)⁽⁴⁷⁾は,道地川以北における撓曲構造の活動性について,高位段丘堆積層(44~46万年前)の変位が70mであるとし,平均変位速度を0.18~0.19m/千年以上と見積もり,最新活動時期を「約8万年前以前」としている一方で,それ以南についての記載はない。

Chinzei(1966)⁽⁴³⁾は、浅水川付近から猿辺川付近にかけて、 長さ8km以上の猿辺撓曲を図示しており、同撓曲は第四系更新統 に伏在されるとしている。 今泉ほか編(2018)⁽⁸⁾は、当該断層を図示していない。

ii. 変動地形学的調査結果

七戸西方断層周辺の空中写真判読図を添3-ロ(ロ)第43図に示 す。

七戸町白石の坪川右岸から十和田市奥入瀬川を経て二戸市金田 ー川までの約55km間に、NNE-SSW~NNW-SSE方向の L_c及びL_Dリニアメントが、平行又は断続的に判読される。

奥入瀬川以北については、七戸町白石の坪川右岸から同町上 牧場を経て十和田市奥入瀬川左岸までの約22km間に、NNE-SSW~NNW-SSE方向のL_c及びL_Dリニアメントが、平行 又は断続的に判読される。L_cリニアメントは、主に西側の山地と 東側の台地との境界付近に当たる地形の傾斜変換部又は鞍部の断 続として判読される。L_Dリニアメントは、主に山地斜面に認めら れる谷、崖及び鞍部の断続として判読される。このうち、山地と 台地との境界付近に判読されるL_cリニアメントが、活断層研究会 編(1991)⁽⁷⁾の天間林断層及び十和田市西方断層にほぼ対応する。 また、北方延長の上原子付近の坪川沿いにみられる田代平溶結凝 灰岩の火砕流堆積面の分布標高には、リニアメント・変動地形を 挟んで不連続は認められない。

奥入瀬川以南については、十和田市奥入瀬川右岸から二戸市金 田一川までの約33km間に、概ね文献が指摘する撓曲軸に沿って、 NNW-SSE方向のL_Dリニアメントが断続的に判読される。 これらのL_Dリニアメントは、丘陵地内における直線状の沢や尾 根筋の傾斜変換部からなり、奥入瀬川以北に比べてリニアメント の東西の大局的な地形面高度の差が認められない。なお、二戸市 金田一川より南方にリニアメント・変動地形は判読されない。 iii. 地表地質調査結果

七戸西方断層周辺の地質平面図を添3-ロ(ロ)第44図に,地質 断面図を添3-ロ(ロ)第45図に示す。

奥入瀬川以北の七戸西方断層周辺には,新第三系中新統の和田 川層,小坪川層及び市ノ渡層,新第三系鮮新統〜第四系下部更新 統の砂子又層,第四系中部更新統の古期低地堆積層,田代平溶結 凝灰岩及び高位段丘堆積層,第四系上部更新統の低位段丘堆積層 及び十和田火山軽石流堆積物等が分布する。

奥入瀬川以南の七戸西方断層周辺には,新第三系中新統の ^{†えのまつやま}、^{とめざき} 末ノ松山層,留崎層,和田川層,久保層及び市ノ渡層,新第三系 鮮新統の御返地デイサイト及び高堂デイサイト,新第三系鮮新統 ~第四系下部更新統の砂子又層,第四系中部更新統の古期低地堆 積層,田代平溶結凝灰岩及び高位段丘堆積層,第四系上部更新統 の中位段丘堆積層,低位段丘堆積層及び十和田火山軽石流堆積物 等が分布する。

野辺地断層から七戸西方断層にかけての地質構造図を添3-ロ(ロ)第46図に示し、地質構造詳細図を添3-ロ(ロ)第47図に 示す。

これらの調査結果によると、奥入瀬川以北の七戸町坪川付近から同町道地川付近に至る区間では、砂子又層及びその下位層に明瞭な撓曲構造が認められる。この付近の砂子又層は、走向がNNE-SSW~NNW-SSE方向であり、東に50°~80°傾斜している。 このうち、七戸町倉岡川付近から同町高瀬川付近にかけて分布する市ノ渡層及び和田川層については、一部地層が逆転している。七戸 町市ノ渡北方の栗ノ木沢川支流では、高位段丘堆積層(H₄面堆積物)が、撓曲する砂子又層を不整合に覆い、かつ東に約15°傾動している(S-2露頭、添3- α (α)第48図参照)。なお、この南方の七戸町市ノ渡川右岸では、撓曲する砂子又層とこれを不整合に覆う低位段丘堆積層(L₁面堆積物)が認められ、L₁面堆積物は、L_cリニアメントの位置を横断してほぼ水平かつ連続的に分布しており、同堆積物には変位・変形は認められない(S-1 ルート、添3- α (α)第49図参照)。

坪川付近以北については、傾斜が緩くなりつつも撓曲構造が認 められ、この撓曲構造は東北町清水目川付近まで確認される。清 水目川付近より以北では、被覆層に覆われているため地質構造の 詳細は不明であるが、中部更新統の古期低地堆積層は5°~8° の緩く一様な傾斜で分布しており、高位段丘面に不自然な傾斜は 認められない。また、坪川右岸の田代平溶結凝灰岩の火砕流堆積 面に、断層運動に起因する変位・変形は認められない。

道地付近以南についても、傾斜が緩くなりつつも撓曲構造が認 められる。十和田市奥入瀬川左岸付近に至る間に断続的に判読さ れるL_c及びL_Dリニアメントは、主に砂子又層と十和田火山軽石 流堆積物若しくは高位段丘堆積層(H₄面堆積物)との地層境界 にほぼ対応しており、岩質の差を反映した浸食地形であると考え られるものの、七戸町道地以南に分布する第四系中部更新統の田 代平溶結凝灰岩(約25万年前、約40万年前)は、リニアメントの 西側にのみ分布が確認され、東側については十和田火山軽石流堆 積物に覆われているため分布が確認されない。

奥入瀬川以南では、中新統の市ノ渡層には撓曲構造が顕著であ

るが、これを不整合に覆って分布する砂子又層の傾斜は概ね20° 以下と緩く、撓曲構造は顕著でない。このうち、猿辺川付近にお いては、中新統の市ノ渡層が顕著な撓曲構造を示しているが、鮮 新統の高堂デイサイトに撓曲構造は認められず、撓曲軸を挟んで 概ね水平に分布している。さらに南方の熊原川付近においては、 中新統にみられる撓曲構造は不明瞭となる。

iv. 総合評価

七戸町白石の坪川右岸から十和田市奥入瀬川を経て二戸市金田 一川までの約55km間にL_c及びL_Dリニアメントが,平行又は断続 的に判読される。

地表地質調査結果によると、七戸町坪川付近から同町道地付近に かけて、新第三系中新統及び新第三系鮮新統~第四系下部更新統に 西上がりの撓曲構造が認められる。撓曲構造のほぼ中央に当たる七 戸町市ノ渡北方の栗ノ木沢川支流では、高位段丘堆積層(H₄面堆 積物)が、撓曲する砂子又層を不整合に覆い、かつ東に約15°傾動 している。

七戸西方断層の北方延長に位置する坪川右岸の田代平溶結凝灰 岩の火砕流堆積面に,変位・変形は認められず,南方延長位置の 猿辺川付近の鮮新統の高堂デイサイトに撓曲構造は認められない。

以上のように、七戸西方断層は、高位段丘堆積層(H₄面堆積物)を傾動させており、第四紀後期更新世以降の活動性が否定できない。したがって、その活動性を考慮することとし、その長さを七戸町坪川右岸から三戸町猿辺川付近までの約46kmと評価した。

なお,前述の上原子断層と七戸西方断層は変位センスが異なる ものの,相互の位置関係や活動時期の類似性から,地震動評価上 は一連のものとして考え、その長さを約51kmと評価した。

(e) 後川-土場川断層

i. 文献調査結果

藤田ほか(1980)⁽⁴⁵⁾は、鷹架沼に注ぐ後川と、その南方の土場 川をつなぐ細長い低地を一種の構造谷としてみなし、六ヶ所村千樽 付近の後川から東北町切左坂付近の土場川沿いにかけて、長さ約 14kmの南北方向の断層を図示している。さらに、東北町^{しがらみ}東方 の後川流域で断層露頭を確認したとし、露頭には5条の断層が存 在し、このうちの2条の断層は、新第三系中新統の鷹架層及び第 四系の野辺地層を切っていると記載している。

山崎ほか(1986)⁽³⁾,活断層研究会編(1991)⁽⁷⁾及び今泉ほか 編(2018)⁽⁸⁾は、当該断層を図示していない。

ii. 変動地形学的調查結果

後川-土場川断層周辺の空中写真判読図を添3-ロ(ロ)第50図 に示す。

地形調査結果によると、後川及び土場川の両岸に分布する高位 面(H₄面)には、ほとんど標高差が認められない(添3-ロ(ロ) 第51図参照)。また、後川及び土場川沿いの斜面には、微小な尾 根地形あるいは沢地形が認められるが、三角末端面等の断層変位 地形は認められない。さらに、本川は不規則に蛇行しており、こ れに流れ込む支流河川に系統的な屈曲は認められず、閉塞丘ある いは截頭谷等の横ずれに伴う断層変位地形も認められない。

以上のように,藤田ほか(1980)⁽⁴⁵⁾が後川-土場川断層を図示・ 記載している位置周辺に,断層運動に起因するようなリニアメン ト・変動地形は判読されない。 iii. 地表地質調查結果

後川-土場川断層周辺の地質平面図を添3-ロ(ロ)第52図に, 地質断面図を添3-ロ(ロ)第53図に示す。

後川-土場川断層周辺には,新第三系中新統の鷹架層,新第三 系鮮新統~第四系下部更新統の砂子又層,第四系中部更新統の高 位段丘堆積層,第四系完新統の沖積低地堆積層等が分布する。

鷹架層は、主に泥岩、シルト岩及び細粒砂岩からなり、後川下 流沿いに分布する。本層はNNE-SSW走向で東に10°~20° 傾斜しており、文献に示される後川-土場川断層の方向と斜交す る。

砂子又層は、主に砂岩及びシルト岩からなり、後川及び土場川 両岸の台地を形成する。本層は、主にN-S走向で、後川両岸で 5°~10°西傾斜を示し、土場川付近で両翼部の傾斜が10°~ 20°程度の緩い背斜構造を示す。

断層露頭周辺においては、砂子又層は、層相、分布、地質構造 及び地質年代により、下位から主に凝灰質粗粒砂岩からなる下部 及び主に細粒砂岩からなる上部の2つの地層に細区分され、鷹架 層を不整合に覆う。

高位段丘堆積層は、主に砂及び礫からなり、後川両岸及び土場 川両岸の台地を覆って分布し、高位面(H₃面及びH₄面)を形成 する。

東北町柵東方の後川流域において,藤田ほか(1980)⁽⁴⁵⁾が記載 した露頭には,鷹架層及び砂子又層下部が分布する(添3-ロ(ロ) 第54図(1)参照)。鷹架層は,軽石混りの凝灰質シルト岩〜細粒 砂岩からなり,貝化石片を含んでいる。砂子又層下部は,細粒砂 岩,軽石質凝灰岩~軽石質粗粒砂岩及び砂質凝灰岩からなり、下 位の鷹架層を不整合に覆う。藤田ほか(1980)⁽⁴⁵⁾はこれらのうち の細粒砂岩を第四系の野辺地層としているが、岩相の特徴及び周辺 地域を含む地質分布の連続性により、後川沿いに砂子又層の分布を 確認したことから、本露頭の細粒砂岩は、新第三系鮮新統の砂子又 層下部であると判断した。なお、北村ほか(1972)⁽⁴⁾及び箕浦ほか

(1998)⁽⁵⁾も、本露頭付近の後川沿いには、砂子又層相当層の甲地層を図示している。

また、藤田ほか(1980)⁽⁴⁵⁾は本露頭で2条の断層が野辺地層を 切っているとしているが、このうち東側の断層とされた地質境界 は、鷹架層と砂子又層下部との不整合面である(添3-ロ(ロ)第 54図(1)中の⑤参照)。鷹架層と砂子又層下部の不整合関係は、 同露頭の別の位置でも観察される。西側の地質境界は、砂子又層 下部の細粒砂岩と砂質凝灰岩を境する正断層であり、露頭下部で は断層面は明瞭で幅1cmの固結した褐鉄鉱が付着しているのに対 し、露頭上部では断層面は密着して不明瞭となっており、鏡肌及 び条線は認められない(添3-ロ(ロ)第54図(1)中の@参照)。 この断層以外にも9条の断層が認められるが、いずれも固結した 褐鉄鉱を伴い、断層面には鏡肌及び条線は認められず、落差が 1m以下の小規模なものである。

なお、藤田ほか(1980)⁽⁴⁵⁾が記載した露頭は、その後、掘削・ 改変されているが、改変後の露頭においても、掘削・改変前の露 頭に認められた地質状況を確認した(添3-ロ(ロ)第54図(2)参 照)。この露頭では、鷹架層と砂子又層下部は、不整合関係で 接しており、砂子又層下部の細粒砂岩には、堆積時又は堆積直 後の重力すべりによると考えられるせん断面を確認した。また, 砂子又層下部の細粒砂岩と砂質凝灰岩とを境する断層は,露頭 の南部では断層面が明瞭であるのに対し,露頭の北部では軽微 な不整合境界となり,断層面は認められない(添3-ロ(ロ) 第54図(2)中の⑧参照)。

この断層露頭周辺の地質構造を添3-ロ(ロ)第53図の地質断面 図に示す。断層露頭がある左岸側では,鷹架層を不整合に覆って 砂子又層下部が厚く分布しているのに対し,右岸側では主に鷹架 層が分布する。地表地質調査結果によると,左右両岸の標高50m 付近より上部には,砂子又層上部が一様に分布することから, 左岸側に分布する砂子又層下部が,右岸側の鷹架層を削り込ん で傾斜不整合で接しているものと判断した。また,高位段丘堆 積層(H4面堆積物)の下面にも,両岸でほとんど標高差は認め られない。

iv. 総合評価

文献が指摘する後川-土場川断層周辺には、リニアメント・変 動地形が判読されず、両岸に分布する高位面(H₄面)には、ほ とんど標高差が認められない。また、本川に流れ込む支流河川に 系統的な屈曲は認められず、閉塞丘あるいは截頭谷等の横ずれに 伴う断層変位地形も認められない。

藤田ほか(1980)⁽⁴⁵⁾が第四系の野辺地層を切ると指摘した2条 の断層は,鷹架層と砂子又層下部との不整合境界,若しくは砂子 又層下部の堆積時又は堆積直後に形成された重力すべりによる断 層であり,第四紀後期更新世以降に活動した断層ではないと判断 した。 地表地質調査結果によると、後川及び土場川両岸において、高 位段丘堆積層(H₄面堆積物)の下面及び砂子又層上部の下面に は、ほとんど標高差は認められない。

以上のことから, 文献が示す後川-土場川断層付近には, 第四 紀後期更新世以降に活動した断層は存在しないものと判断した。

(f) その他の断層及びリニアメント・変動地形

敷地を中心とする半径30km範囲の陸域においては、横浜断層、野 辺地断層、上原子断層、七戸西方断層及び出戸西方断層以外にも、 活断層研究会編(1991)⁽⁷⁾は、「活断層の疑のあるリニアメント(確 実度III)」を図示しているが、山崎ほか(1986)⁽³⁾は、これらの「活 断層の疑のあるリニアメント(確実度III)」付近に活断層又は推定 活断層を図示していない。

活断層研究会編(1991)⁽⁷⁾による「活断層の疑のあるリニアメント(確実度III)」及び今泉ほか編(2018)⁽⁸⁾による推定活断層のうち、一切山東方断層、御宿山北方断層及び淋代東方のリニアメント・変動地形並びに敷地を中心とする半径約5kmの範囲の敷地近傍に位置する二又付近のリニアメント・変動地形については、図示された位置に部分的に一致するL_Dリニアメントが判読される。

このほか,敷地を中心とする半径30km範囲の陸域においては,空 中写真判読によりL_Dリニアメントが判読されるものの,山崎ほか

(1986)⁽³⁾,活断層研究会編(1991)⁽⁷⁾,今泉ほか編(2018)⁽⁸⁾等 の文献に図示されていないリニアメント・変動地形として, 一望示屋付近, 赤笛弊流西方, 筒涼付近, 蘴菜举付近, 蘴箭付 近, 芮菬付近, 艺部付近, 清水削消付近, 着声南方及び首送付近 のリニアメント・変動地形がある。

活断層研究会編(1991)⁽⁷⁾が「活断層の疑のあるリニアメント (確実度III)」を図示しているものの,空中写真判読によりリニ アメント・変動地形が判読されないものとして,月山東方の断層, 登津山付近, 芊歳や付近及び^{に*2}ご覧南方のリニアメント・変動地 形がある(添3-ロ(ロ)第55図参照)。

さらに、上記以外に、地表地質調査により断層の存在が推定されるものとして、朝比奈平付近の断層、絵木川付近の断層及び 泳老部川上流付近の断層がある。

i. 一切山東方断層

活断層研究会編(1991)⁽⁷⁾は,東通村の小老部川から老部川(北) 支流の中ノ又沢南方にかけて,NNE-SSW方向,長さ7km, 活動度C,「活断層の疑のあるリニアメント(確実度III)」の一 切山東方断層を図示・記載し,山地斜面に西側隆起100mを超える 高度不連続が認められるとしている。

今泉ほか編(2018)⁽⁸⁾は、老部川(北)左岸付近に長さ約2kmの 推定活断層を図示している。

一切山東方断層周辺の空中写真判読図を添3-ロ(ロ)第56図に 示す。

東通村の小老部川から老部川(北)支流の中ノ又沢南方にかけ て、ほぼNNE-SSW方向に、長さ約4.5km間にL_Dリニアメン トが判読される。L_Dリニアメントは、丘陵東縁にみられる崖、 谷等の断続からなり、東側が低い高度差が認められ、活断層研究 会編(1991)⁽⁷⁾の一切山東方断層の一部に対応する。

一切山東方断層周辺の地質平面図を添3-ロ(ロ)第57図に、地

質断面図を添3-ロ(ロ)第58図に示す。

一切山東方断層周辺には,新第三系中新統の泊層及び蒲野沢層, 第四系中部更新統の高位段丘堆積層,第四系上部更新統の中位段 丘堆積層及び低位段丘堆積層等が分布する。

判読される L_D リニアメントの一部に対応した位置に, 泊層と 蒲野沢層とを境する東落ちの正断層が認められる。断層露頭には, 明瞭な断層面及び軟質な破砕帯は認められない(H-1露頭, 添 $3-\alpha(\alpha)$ 第59図参照)。また,小老部川右岸では,本断層が中 位段丘堆積層(M₁面堆積物)の下面に変位を与えていないこと を確認した(H-2露頭,添 $3-\alpha(\alpha)$ 第60図参照)。

本断層は,東北電力株式会社(1998)⁽⁴⁹⁾によれば, F-1断 層に連続するものとしており,同(1998)⁽⁴⁹⁾の調査結果によれ ば,F-1断層はMIS5eの堆積物に相当する中位段丘堆積物 の下面に変位を与えていないとしている。

以上のことから,一切山東方断層は,第四紀後期更新世以降の 活動はないものと判断した。

また、判読されるL_Dリニアメントと断層の位置が必ずしも一 致しておらず、本断層の中央部においては、L_Dリニアメントは 蒲野沢層の泥岩と砂岩の地層境界にほぼ対応していることから、 両側の岩質の差を反映した浸食地形であると判断した。

一切山東方断層の東方の老部川(北)右岸には,泊層と蒲野 沢層とを境する断層露頭が認められ(OB-1露頭,添3-ロ(ロ) 第61図参照),NNE-SSW走向の西落ちの正断層が推定さ れる。この断層沿いには,長さ約1.5km間に西側低下のL_Dリニア メントが判読されるが,推定される断層の北方延長に位置にする 中位面(M₁面)に、断層運動に起因する変位・変形は認められない。本断層は、東北電力株式会社(1998)⁽⁴⁹⁾に示されているF-9断層に連続するものと考えられるが、同(1998)⁽⁴⁹⁾の調査結果によれば、F-9断層はMIS5eの堆積物に相当する中位段丘堆積物の下面を変位させていないとしている。これらのことから、老部川(北)右岸の断層は、第四紀後期更新世以降の活動はないものと判断した。なお、仮の評価として、敷地から老部川

(北)右岸の断層までの距離を考慮し、応答スペクトルに基づく 手法を用いて出戸西方断層による影響と比較検討を行った結果、 敷地への影響は出戸西方断層による影響と比べ十分に小さい。

ii. 小老部川上流付近の断層

小老部川上流付近の断層周辺の地質平面図を添3-ロ(ロ)第57 図に、地質断面図を添3-ロ(ロ)第58図に示す。

地表地質調査結果によると,東通村の小老部川上流付近には, 新第三系中新統の泊層及び蒲野沢層の地質分布から,NNE-SSW走向の東落ちの正断層が推定され,東方に認められる一切 山東方断層及び老部川(北)右岸の断層と同様の変位形態を示す。

一切山東方断層及び老部川(北)右岸の断層は、中位段丘堆積層 (M₁面堆積物)を変位させていないことから、これら小老部川 上流付近の断層についても、第四紀後期更新世以降の活動はない ものと判断した。

ⅲ. 御宿山北方断層

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村泊西方の「明神川」付近 から御宿山北方にかけて、NE-SW方向、長さ約4km、「活断 層の疑のあるリニアメント(確実度III)」を図示しており、リニ アメントは直線状の谷, 鞍部, 傾斜変換部等にほぼ位置している。 御宿山周辺の空中写真判読図を添3-ロ(ロ)第62図に示す。

六ヶ所村泊西方の明神川付近から横浜町の武ノ川上流にかけて、 ほぼNE-SW方向に、長さ約7.5km間のL_Dリニアメントが判読 される。L_Dリニアメントは、山地内の鞍部、谷等の断続からな り、このうちの北東部が活断層研究会編(1991)⁽⁷⁾の「活断層の 疑のあるリニアメント(確実度III)」に対応する。

御宿山周辺の地質平面図を添3-ロ(ロ)第63図に,地質断面図 を添3-ロ(ロ)第64図に示す。

御宿山周辺には,新第三系中新統の泊層の安山岩溶岩,凝灰角 礫岩,砂質凝灰岩,軽石凝灰岩,凝灰質砂岩等が分布し,これら の地層が約30°以下の緩い傾斜を示しており,これらの地質分布 から南東落ちの高角度断層が推定される(以下,本断層を「御宿 山北方断層」という。)。

御宿山北方断層沿いには複数の断層露頭が認められる。いずれ の露頭においても、断層面には粘土状破砕部が認められるが、顕 著な破砕部は認められない。御宿山北方断層沿いに判読されるL_D リニアメントは、この泊層中の断層とほぼ対応し、断層と対応し ない部分においては、泊層の岩相境界等に対応している。(添3 - - - (-) 第65図参照)

御宿山周辺の水系図及び接峰面図によると、御宿山北方断層及 び判読されるL_Dリニアメントを挟んで、山地高度の不連続や水 系の系統的な屈曲等の変動地形は認められない(添3-ロ(ロ)第 66図参照)。

御宿山北方断層の北東延長部に分布する中位段丘面上には、撓

み等の地形は認められず,リニアメント・変動地形は判読されない。また、中位段丘面の旧汀線高度(泊層上限)は概ね標高26m 前後で一定であり、系統的な高度不連続は認められない(添3-ロ(ハ)第45図参照)。断層の南西延長部に分布する高位段丘面上 には、リニアメント・変動地形は判読されず、段丘面の高度不連 続も認められない(添3-ロ(ロ)第67図参照)。

以上のことから,御宿山北方断層は,水系図,接峰面図等によ る変動地形学的検討結果,地表地質調査結果に基づく全体の地質 分布,断層面の性状等を総合的に判断すると,第四紀後期更新世 以降の活動性はなく,L_Dリニアメントは泊層の岩質の差を反映 した浸食地形であると判断した。

なお、御宿山の東方には、泊層の地質分布から、ほぼN-S走 向及びNNE-SSW走向の2条の西落ちの正断層が推定される (添3-ロ(ロ)第63図参照)。これら断層については、後述する 出戸西方断層(ロ.(ハ)(2)④b.(a)参照)において、詳細を 記載する。

iv. 淋代東方のリニアメント・変動地形

活断層研究会編(1991)⁽⁷⁾は、東北町淋代東方に、N-S方向、 長さ約2km、「活断層の疑のあるリニアメント(確実度III)」を 図示しており、直線状の谷及び鞍部にほぼ位置している。

東北町淋代東方周辺の空中写真判読図を添3-ロ(ロ)第68図に 示す。

東北町美須々付近から同町豊畑付近を経て同町淋代東方にかけて、ほぼNNE-SSW方向に、長さ約2.1km及び約3.5kmの2条のL_Dリニアメントが判読される。これらのL_Dリニアメントは、

主に東側低下の高度不連続,低崖,谷等からなり,その一部が活 断層研究会編(1991)⁽⁷⁾による「活断層の疑のあるリニアメント (確実度Ⅲ)」に対応する。

淋代東方周辺の地質平面図を添3-ロ(ロ)第69図に示す。

淋代東方周辺には,新第三系鮮新統~第四系下部更新統の砂子 又層,第四系中部更新統の高位段丘堆積層等が分布する。

東北町美須々の高位面(H₃面)上から実施したハンドオーガ ーボーリング等の調査結果によると、判読される L_D リニアメン トを挟んで高位段丘堆積層(H₃面堆積物)上面は連続的に分布 しており、これを覆うオレンジ軽石(約17万年前)及び洞爺火山 灰(11.2~11.5万年前)もほぼ水平に分布する(添3- μ (μ)第 70図のA-A'断面参照)。

東北町豊畑南方の高位面(H₃面)上から実施したハンドオー ガーボーリング調査結果によると、判読されるL_Dリニアメント を挟んで高位段丘堆積層(H₃面堆積物)は連続的に分布してお り、これを覆う甲地軽石(18~28万年前)及びオレンジ軽石(約 17万年前)もほぼ水平に連続する(添3- μ (μ)第71図のD-D' 断面参照)。

淋代東方の調査結果によると、活断層研究会編(1991)⁽⁷⁾が図 示する確実度Ⅲのリニアメント及びL_Dリニアメントを挟んで、 砂子又層のシルト岩中に挟まれる軽石凝灰岩、砂岩及び凝灰岩の 構造に不連続は認められず、砂子又層中に断層は推定されない(添 3-□(□)第72図のE-E'断面参照)。

以上のことから、淋代東方のL_Dリニアメント及び活断層研究 会編(1991)⁽⁷⁾が図示するリニアメント付近には、第四紀後期更 新世以降に活動した断層は存在しないものと判断した。

また,東北町美須々及び豊畑南方の高位面(H₃面)には,風 成砂による砂丘状の高まりが認められることから,風成砂による 地形的な高まりが撓み状の崖と類似した地形形態を呈しているも のと判断される。

v. 一里小屋付近のリニアメント・変動地形

東通村一里小屋付近には、NNW-SSE方向に、ほぼ並走する2条のL_Dリニアメントが判読される(以下、西側のL_Dリニア メントを「一里小屋(西)リニアメント」、東側のL_Dリニアメ ントを「一里小屋(東)リニアメント」という。)。

ー里小屋(西)リニアメントは、東通村一里小屋東方からむつ 市岩蕨北方に至る約2.5km間に判読され、中位面(M_1 面)若しく は高位面(H_5 面)と背後の丘陵地との境界付近を開析する谷の 断続からなり、東側が低い高度差が認められる。

ー里小屋(東)リニアメントは、東通村一里小屋東方からむつ 市石蕨南方に至る約4.5km間に判読され、丘陵地斜面の鞍部、傾斜 変換部、谷等の断続からなり、東側が低い高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、一里小屋付近に判読されるL_D リニアメント付近に断層及びリニアメントを図示していない。

東通村一里小屋周辺の地質平面図及び地質断面図を添3-ロ (ロ)第73図に示す。

一里小屋周辺には,新第三系鮮新統~第四系下部更新統の砂子 又層,第四系中部更新統の高位段丘堆積層(H₅面堆積物),第 四系上部更新統の中位段丘堆積層(M₁面堆積物及びM₂面堆積物) 等が分布する。 ー里小屋(西)リニアメント沿いには、砂子又層の砂岩及び泥 岩が西傾斜の同斜構造をなして分布しており、両者の岩相境界は L_Dリニアメントの位置を挟んで連続することから、第四紀後期 更新世以降に活動した断層は存在しないものと判断した。中位面

(M₁面)上には、砂丘状の高まりが認められ、その背後の丘陵 地との境界付近が浸食され、相対的に低い地形が形成されている。 L_Dリニアメントは、この地形的な高まりの背後に位置しており、 風成砂による地形的な高まりの背後斜面が逆むき低崖と類似した 地形を呈しているものと判断した。

ー里小屋(東)リニアメント沿いには、砂子又層の砂岩及び泥 岩が西傾斜の同斜構造をなして分布しており、砂子又層はL_Dリ ニアメントの位置を挟んで一様な傾斜を示すことから、第四紀後 期更新世以降に活動した断層は存在しないものと判断した。砂子 又層の泥岩は、砂岩に比べ緻密かつ硬質であり、L_Dリニアメン トの西側で突出した丘状の地形を形成している。L_Dリニアメン トの位置は、相対的に硬質な泥岩と軟質な砂岩との岩相境界に一 致しており、岩質の差を反映した浸食地形であると判断した。

vi. 小田野沢西方のリニアメント・変動地形

東通村小田野沢西方には、N-S方向に、長さ約1.9kmのL_Dリニ アメントが判読される。L_Dリニアメントは、主に山地斜面の傾斜 変換部からなり、東側が低い高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、小田野沢西方に判読されるL_D リニアメント付近に断層及びリニアメントを図示していない。

東通村小田野沢西方周辺の地質平面図及び地質断面図を添3-ロ(ロ)第74図に示す。 小田野沢西方周辺には、新第三系中新統の猿ヶ森層及び消層, 第四系上部更新統の中位段丘堆積層(M₁面堆積物, M₂面堆積物 及びM₃面堆積物)等が分布する。猿ヶ森層は、主に泥岩及び砂 岩からなる。泊層は、凝灰質砂岩、凝灰角礫岩、安山岩溶岩等か らなり、猿ヶ森層に比べ相対的に硬質である。

L_Dリニアメント東側の緩斜面には猿ヶ森層が分布し,西側の 急峻な山地には泊層が分布している。両者の地層境界は,ほぼ水 平ないし西に緩く傾斜しており,第四紀後期更新世以降に活動し た断層は存在しないものと判断した。

また, L_Dリニアメントは, 相対的に軟質な猿ヶ森層と, 硬質 な泊層との地層境界にほぼ一致しており, 猿ヶ森層と泊層の岩質 の差を反映した浸食地形であると判断した。

vii. 向沢付近のリニアメント・変動地形

横浜町向沢付近には、ほぼN-S方向に、長さ約1.5kmのL_Dリ ニアメントが判読される。L_Dリニアメントは、H₄面及びH₆面 における鞍部、傾斜変換部等の連続からなり、リニアメントの両 側で段丘面に東側がやや低い高度差が認められる。段丘面は、リ ニアメントの西側では東側と比べ緩やかな傾斜を示す。

活断層研究会編(1991)⁽⁷⁾は、向沢付近に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

横浜町向沢付近の地質平面図及び地質断面図を添3-ロ(ロ)第 75図に示す。

向沢付近には,新第三系鮮新統~第四系下部更新統の砂子又層, 第四系中部更新統の高位段丘堆積層(H₃面堆積物,H₄面堆積物, H₅面堆積物及びH₆面堆積物),第四系上部更新統の低位段丘堆 積層(L₁面堆積物)等が分布する。

向平測線上において、向沢付近のリニアメントの北方延長にあ たる位置で実施したボーリング調査結果によると、砂子又層の下 部の傾斜はやや凹凸を示すものの、これを不整合に覆う砂子又層 の上部は西緩傾斜の同斜構造を示し、H₅面堆積物の上面にも有 意な不連続は認められない(添3- α (α)第76図参照)。

向沢北方において、 L_D リニアメントを挟んで実施したボーリ ング調査結果によると、砂子又層は西緩傾斜の同斜構造を示し、 L_D リニアメントが判読される位置付近のみ、 H_4 面堆積物である 礫層が分布せず、砂子又層を削り込んだ谷が認められる(添3- $\mu(\mu)$ 第77図参照)。

向沢周辺において、 L_D リニアメントを挟んで実施したオーガ ーボーリング調査等の結果によると、 H_6 面堆積物上面に不連続 は認められず、 L_D リニアメントが判読される位置付近では H_6 面 堆積物を覆って風成砂・ローム互層がやや厚く分布している(添 $3-\mu(\mu)$ 第78図参照)。

武ノ川右岸付近において、L_Dリニアメントを挟んで東京電力 株式会社(現 東京電力ホールディングス株式会社),東北電力 株式会社及びリサイクル燃料貯蔵株式会社が実施したボーリング 調査結果によると、砂子又層は西緩傾斜の同斜構造を示し、L_D リニアメントが判読される位置付近にH₆面堆積物を覆って風成 砂・ローム互層が分布している(添3-ロ(ロ)第79図参照)。

これらのことから、向沢付近のL_Dリニアメント付近には、第 四紀後期更新世以降に活動した断層は存在しないものと判断した。 L_Dリニアメントは、砂子又層を浸食する谷地形及び風成砂・ロ ーム互層よりなる砂丘の上面形態を反映したものであると判断し た。

viii. 豊栄平付近のリニアメント・変動地形

横浜町豊栄平東方には、ほぼN-S方向に長さ約0.6kmのL_Dリニ アメントが判読される。L_Dリニアメントは、丘陵地斜面の崖、 傾斜変換部等からなり、東側が低い高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、豊栄平付近に判読されるL_Dリ ニアメント付近に断層及びリニアメントを図示していない。

横浜町豊栄平周辺の地質平面図及び地質断面図を添3-ロ(ロ) 第80図に示す。

豊栄平周辺には,新第三系鮮新統~第四系下部更新統の砂子 又層,第四系中部更新統の高位段丘堆積層(H₄面堆積物及び H₅面堆積物),第四系上部更新統の中位段丘堆積層(M₁面堆 積物及びM₂面堆積物)等が分布する。

 L_D リニアメント沿いには、砂子又層の砂岩及びシルト岩が西 傾斜の同斜構造をなして分布しており、砂子又層は L_D リニアメ ントの位置を挟んで一様な傾斜を示す。また、 L_D リニアメント の両岸に分布する高位段丘堆積層(H_4 面堆積物)に高度差は認 められない。これらのことから、豊栄平付近の L_D リニアメント 付近には、第四紀後期更新世以降に活動した断層は存在しないも のと判断した。

また、L_Dリニアメントは、相対的に軟質な砂子又層の砂岩と、 硬質なシルト岩との岩相境界にほぼ対応しており(添3-ロ(ロ) 第81図参照)、砂子又層中の岩質の差を反映した浸食地形である と判断した。 ix. 豊前付近のリニアメント・変動地形

東北町豊前付近から六ヶ所村着内付近に至る間には、ENE-WSWないしE-W方向に長さ約6.0kmのL_Dリニアメントが判読 される。L_Dリニアメントは、高位面(H₄面)上の撓み状の崖、 谷、段丘面外縁をなす崖等の連続からなり、南側が低い高度差が 認められる。

活断層研究会編(1991)⁽⁷⁾は、豊前付近に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

東北町豊前周辺の地質平面図及び地質断面図を添3-ロ(ロ)第 82図に示す。

豊前周辺には,新第三系鮮新統~第四系下部更新統の砂子又層, 第四系中部更新統の高位段丘堆積層(H₃面堆積物,H₄面堆積物 及びH₅面堆積物),第四系上部更新統の中位段丘堆積層(M₁面 堆積物)等が分布する。

 L_D リニアメント沿いには、砂子又層の砂岩が西傾斜の同斜構 造をなして分布しており、砂子又層は L_D リニアメントの位置を 挟んで一様な傾斜を示す。六ヶ所村倉内西方では、 L_D リニアメ ントが判読される谷を横断して、砂子又層の露頭が複数認められ、 露頭にみられるシルト岩と中粒砂岩の岩相境界は、 L_D リニアメ ントの位置を挟んでほぼ連続的に分布しており、不連続は認めら れない。これらのことから、豊前付近の L_D リニアメント付近に は、第四紀後期更新世以降に活動した断層は存在しないものと判 断した。(添3- μ (μ)第83図参照)

また,L_Dリニアメントは,高位面(H₄面)上に認められる砂 丘状の高まりあるいは段丘崖にほぼ対応しており,風成砂による 地形的な高まりが撓み状の崖と類似した地形を呈しているもの, あるいは開析された段丘崖であると判断した。

x. 内沼付近のリニアメント・変動地形

六ヶ所村倉内北方から内沼付近を経て同村印志に至る間には、NNE-SSW方向に長さ約7.3kmのL_Dリニアメントが判読される。 L_Dリニアメントは、高位面(H₅面)及び中位面(M₁面)上の 撓み状の崖、谷等の連続からなり、南東側が低い高度差が認められ る。

活断層研究会編(1991)⁽⁷⁾は、内沼付近に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

六ヶ所村内沼周辺の地質平面図及び地質断面図を添3-ロ(ロ) 第84図に示す。

内沼周辺には,新第三系鮮新統〜第四系下部更新統の砂子又層, 第四系中部更新統の高位段丘堆積層(H₄面堆積物及びH₅面堆積 物),第四系上部更新統の中位段丘堆積層(M₁面堆積物及びM₂ 面堆積物)等が分布する。

内沼付近の L_D リニアメント沿いには、砂子又層の砂岩が東傾 斜の同斜構造をなして分布しており、砂子又層は L_D リニアメン トの位置を挟んで一様な傾斜を示す。六ヶ所村発焼南方の谷壁に 認められる砂子又層中の礫岩及び粗粒砂岩は、 L_D リニアメント の位置を挟んで連続的に分布し、これを覆う中位段丘堆積層(M_1 面堆積物)の下面に不連続は認められない。これらのことから、 内沼付近の L_D リニアメント付近には、第四紀後期更新世以降に 活動した断層は存在しないものと判断した。(添3-p(p)第85 図参照) また, L_Dリニアメントは, 中位面 (M₁面) 上に認められる砂 丘状の高まりにほぼ対応しており, 風成砂による地形的な高まり が撓み状の崖と類似した地形を呈しているものであると判断した。 xi. 乙部付近のリニアメント・変動地形

東北町乙部付近から同町内軽説付近に至る間には、NE-SW 方向に長さ約4.0kmのL_Dリニアメントが判読される。L_Dリニア メントは、高位面(H₄面)と中位面(M₁面)を境する撓み状の 崖、高位面(H₄面)上の撓み状の崖若しくは傾斜変換部等の連 続からなり、南東側が低い高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、乙部付近に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

東北町乙部周辺の地質平面図及び地質断面図を添3-ロ(ロ)第 86図に示す。

乙部周辺には,新第三系鮮新統~第四系下部更新統の砂子又層, 第四系中部更新統の高位段丘堆積層(H₄面堆積物及びH₅面堆積 物),第四系上部更新統の中位段丘堆積層(M₁面堆積物及びM₂ 面堆積物),低位段丘堆積層(L₃面堆積物),十和田火山軽石 流堆積物等が分布する。

東北町乙部南方の岩渡渋右岸では、砂子又層とこれを覆う高位段 丘堆積層(H₄面堆積物)の露頭が複数認められる。各露頭にお ける高位段丘堆積層(H₄面堆積物)下面は、L_Dリニアメントの 位置を挟んでほぼ水平に分布し、不連続は認められず、乙部付近 のL_Dリニアメント付近には、第四紀後期更新世以降に活動した 断層は存在しないものと判断した。(添3-ロ(ロ)第87図参照)

また、L_Dリニアメントは、高位面(H₄面)上に認められる砂

丘状の高まりにほぼ対応しており(添3-ロ(ロ)第88図参照), 風成砂による地形的な高まりが撓み状の崖と類似した地形を呈し ているものであると判断した。

xii. 清水目川付近のリニアメント・変動地形

野辺地町酸学付近から東北町下清永曽付近を経て同町子曵付近 に至る間には、ほぼN-S方向に長さ約4.5kmのL_Dリニアメント が判読される。L_Dリニアメントは、高位面(H₄面及びH₅面) 上の撓み状の崖若しくは急斜面、谷等の連続からなり、東側が低い 高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、清水目川付近に判読されるL_D リニアメント付近に断層及びリニアメントを図示していない。

東北町清水目川周辺の地質平面図及び地質断面図を添3-ロ (ロ)第89図に示す。

清水目川周辺には,新第三系鮮新統~第四系下部更新統の砂子 又層,第四系中部更新統の高位段丘堆積層(H₃面堆積物,H₄面 堆積物及びH₅面堆積物),第四系上部更新統の中位段丘堆積層

(M₁面堆積物及びM₂面堆積物),低位段丘堆積層(L₃面堆積物)等が分布する。

清水目川沿いでは、砂子又層の露頭が複数認められる。この付 近の砂子又層は、北東方向に緩く傾斜した同斜構造を示し、L_D リニアメントの位置を挟んで一様な傾斜を示すことから、清水目 川付近のL_Dリニアメント付近には、第四紀後期更新世以降に活 動した断層は存在しないものと判断した。(添3-ロ(ロ)第90図 参照)

野辺地町敦平付近では, 撓み状の崖が判読された位置に, 高位段

丘堆積層(H₅面堆積物)の露頭が認められ,高位段丘堆積層(H₅ 面堆積物)の砂礫及びシルトがほぼ水平に堆積しており,撓曲は 認められない(添3- α (α)第91図参照)。東北町若뜛から同町 千曳に至る間では, L_D リニアメントを挟んで,高位段丘堆積層 (H₄面堆積物)の下面に標高差は認められず, L_D リニアメント が判読される浅い谷には,旧河道に堆積したと考えられる円礫主 体の砂礫層が認められる(添3- α (α)第92図参照)。これらの ことから,清水目川付近の L_D リニアメントは、段丘崖が浸食に より丸みを帯び,撓み状の崖と類似した地形を呈しているもので あると判断した。

xiii. 有戸南方のリニアメント・変動地形

野辺地町有戸南方の朝前付近から同町野辺地付近に至る間には, NE-SWないしENE-WSW方向に長さ約5.1kmのL_Dリニア メントが判読される。L_Dリニアメントは、中位面(M₁面)上の 撓み状の低崖,谷,鞍部等の連続からなり,南東側が低い高度差が 認められる。

活断層研究会編(1991)⁽⁷⁾は、有戸南方に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

野辺地町有戸南方周辺の地質平面図及び地質断面図を添3-ロ (ロ)第93図に示す。

有戸南方周辺には、新第三系鮮新統~第四系下部更新統の砂子 又層、第四系中部更新統の高位段丘堆積層(H₃面堆積物及びH₅ 面堆積物)、第四系上部更新統の中位段丘堆積層(M₁面堆積物, M₂面堆積物及びM₃面堆積物)、低位段丘堆積層(L₁面堆積物) 等が分布する。 有戸南方付近のL_Dリニアメント沿いには、砂子又層の砂岩が 西傾斜の同斜構造をなして分布しており、砂子又層はL_Dリニア メントの位置を挟んで一様な傾斜を示す。

野辺地町半草橋南東の中位面(M₁面)におけるボーリング調 査結果によると、中位段丘堆積層(M₁面堆積物)の背後に、後 背湿地に堆積したと考えられるシルト層主体の軟質な地層が認め られ、両地層の下位には砂子又層が認められる。砂子又層中の鍵 層の分布から、同層は海側へ緩く一様に傾斜し、L_Dリニアメン トの位置を挟んで連続的に分布している。(添3-ロ(ロ)第94図 及び添3-ロ(ロ)第95図参照)

これらのことから,有戸南方付近のL_Dリニアメント沿いには, 第四紀後期更新世以降に活動した断層は存在しないものと判断した。

また, L_Dリニアメントは, 中位面(M₁面)上の砂丘状の高ま りの背後に位置しており, 風成砂による地形的な高まりの背後斜 面が逆むき低崖と類似した地形を呈しているものであると判断さ れる。

xiv. 口広付近のリニアメント・変動地形

平丙町口広付近には、WNW−ESE方向のL_Dリニアメント (以下、「口広西方リニアメント」という。)及びENE−WS W方向のL_Dリニアメント(以下、「口広南方リニアメント」と いう。)が判読される。

口広西方リニアメントは、高位面 (H₅面) 及び中位面 (M₂面) 上の溝状の凹地、小丘状の膨らみ、鞍部等の断続からなる。

口広南方リニアメントは、高位面(H₅面)上の崖、鞍部、溝

状の凹地等の断続からなり,北西側が低い高度差が認められる。

活断層研究会編(1991)⁽⁷⁾は、口広付近に判読されるL_Dリニ アメント付近に断層及びリニアメントを図示していない。

平内町口広周辺の地質平面図及び地質断面図を添3-ロ(ロ)第 96図に示す。

口広周辺には,新第三系中新統の和田川層,小坪川層及び松倉山 層,第四系中部更新統の古期低地堆積層及び高位段丘堆積層(H₄ 面堆積物及びH₅面堆積物),第四系上部更新統の中位段丘堆積層

(M₂面堆積物及びM₃面堆積物),低位段丘堆積層(L₃面堆積物)等が分布する。

平内町装着西方では、中位段丘堆積層(M2面堆積物)が口広 西方リニアメントを横断して連続的に分布し、その上面に変位は 認められない(添3-ロ(ロ)第97図参照)。平内町口広南方の口 広川右岸では、古期低地堆積層に属すると考えられる古期扇状地 堆積物が口広南方リニアメントを横断して連続的に分布し、礫と 凝灰質砂の層相境界及びこれを覆う火山灰層との地層境界に変位 は認められない(添3-ロ(ロ)第98図参照)。これらのことから、 口広付近のL_Dリニアメント付近には、第四紀後期更新世以降に 活動した断層は存在しないものと判断した。

また、 L_D リニアメントの位置では、中位段丘堆積層(M_2 面堆 積物)を覆う風成砂層が認められ、中位面(M_2 面)上で地形的 な高まりを形成しており、口広付近の L_D リニアメントは、中位 面(M_2 面)及び高位面(H_5 面)上の風成砂による地形的な高ま りが撓み状の崖や溝状の凹地等と類似した地形を呈しているもの であると判断した。 xv. 月山東方の断層

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村北部の月山東方に、ほぼ NNW-SSE方向、長さ約4.2kmの「活断層の疑のあるリニアメ ント(確実度III)」を図示しており、リニアメントは、鞍部の断続 や直線状の谷等にほぼ位置している。

活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニアメント 沿いには、空中写真判読により、リニアメント・変動地形は判読 されない。

リニアメント周辺の地質平面図及び地質断面図を添3-ロ(ロ)第 99図に示す。

リニアメント周辺には,主に新第三系中新統の泊層が分布する。

月山南東斜面において、活断層研究会編(1991)⁽⁷⁾が図示する 確実度IIIのリニアメントに対応する位置に断層露頭が認められ、 泊層の岩相分布から、この断層は東傾斜の正断層と判断した。本 断層の北東部に位置する東通村皆糠南方の物覚崎付近では、断層 推定位置を挟んで分布する中位面(M₁面)に高度差は認められ ず(添3-ロ(ロ)第100図参照),東通村白糠から物見崎にかけて の中位面(M₁面)の分布高度に高度差が認められない(添3-ロ(ロ)第101図参照)ことから、本断層は、第四紀後期更新世以降 の活動性はないものと判断した。

xvi. 金津山付近のリニアメント・変動地形

活断層研究会編(1991)⁽⁷⁾は、金津山付近の山地に、長さ1.0 ~4.2kmの6条の「活断層の疑のあるリニアメント(確実度III)」 (以下、北東部より「^滝²)^{*}沢中流リニアメント」、「滝ノ沢上流 リニアメント」、「金津山北方リニアメント」、「金津山西方リ ニアメント」,「金津山リニアメント」及び「金津山東方リニア メント」という。)を図示している。

滝ノ沢中流リニアメントは、横浜町着焼東方に、ほぼNE-S W方向で、長さ約1.8km間に図示されており、滝ノ沢中流域に沿っ た狭い低地と、その右岸の山麓斜面との境界付近にほぼ位置して いる。

滝ノ沢上流リニアメントは、横浜町有畑東方に、ほぼWNW-ESE方向で、長さ約2.4km間に図示されており、滝ノ沢上 流の比較的直線状の谷、若しくは滝ノ沢上流に沿った山地斜 面の傾斜変換部等にほぼ位置している。

金津山北方リニアメントは、横浜町東部の金津山北方に、 ほぼWNW-ESE方向で、長さ約1.5km間に図示されてお り、山地斜面の傾斜変換部等にほぼ位置している。

金津山西方リニアメントは、金津山西方に、ほぼNNW-SSE 方向で、長さ約3.0km間に図示されており、山地斜面の傾斜変換部 や鞍部の断続等にほぼ位置している。

金津山リニアメントは、金津山の東麓付近から南方にかけて、 ほぼNNW-SSE方向で、長さ約4.2km間に図示されており、鞍 部の断続や直線状の谷等にほぼ位置している。

金津山東方リニアメントは、六ヶ所村馬門川上流に、ほぼNNW -SSE方向で、長さ約1.0km間に図示されており、山地斜面の傾 斜変換部や直線状の谷等にほぼ位置している。

活断層研究会編(1991)⁽⁷⁾が図示する確実度IIIのリニアメント 沿いには、いずれも空中写真判読により、リニアメント・変動地 形は判読されない。 金津山周辺の地質平面図を添3-ロ(ロ)第102図に,地質断面図 を添3-ロ(ロ)第103図に示す。

金津山周辺には,新第三系中新統の泊層の凝灰角礫岩,安山岩 溶岩,凝灰質砂岩等が分布し,これに安山岩が貫入している。泊 層の安山岩溶岩の地層は,緻密な安山岩溶岩の岩相を示す部分と, 自破砕溶岩の岩相を示す部分に細区分され,確実度Ⅲのリニアメ ントが示されている位置では,泊層の各岩相境界に不連続は認め られない。

また,金津山周辺の水系図及び接峰面図によると、リニアメントを挟んで、山地高度の不連続や水系の系統的な屈曲等の変動地形は認められない(添3-ロ(ロ)第104図参照)。

以上のことから、金津山付近に活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニアメント付近には、第四紀後期更新世以降に活動した断層は存在しないものと判断した。

xvii. 千歳平付近のリニアメント・変動地形

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村千歳平北方に、ほぼE -W方向で長さ約1.8kmの「活断層の疑のあるリニアメント(確実 度III)」を図示しており、主に直線状の谷に位置している。

活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニアメント 沿いには、空中写真判読により、リニアメント・変動地形は判読 されない。

リニアメント周辺には,主に新第三系中新統の鷹架層が分布し, 六ヶ所村千歳平北方の直線状の谷では,リニアメントの位置を横 断して,鷹架層の連続露頭が認められる。露頭における鷹架層は, シルト岩を主体とし,細粒砂岩との岩相境界や粗粒砂岩の薄層(挟 み層)に不連続は認められず、断層は認められない(添3-□(□) 第105図参照)ことから、千歳平付近に活断層研究会編(1991)⁽⁷⁾ が図示する確実度Ⅲのリニアメント付近には、第四紀後期更新世 以降に活動した断層は存在しないものと判断した。

xviii. 十二里南方のリニアメント・変動地形

活断層研究会編(1991)⁽⁷⁾は、東北町十二里南方に、ほぼN-S 方向で長さ約0.8kmの「活断層の疑のあるリニアメント(確実度III)」 を図示しており、主に直線状の崖に位置している。

活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニアメント 沿いには、空中写真判読により、リニアメント・変動地形は判読 されない。

東北町十二里南方周辺の地形図及び地すべり地形分布図を添3 - ロ(ロ)第106図に示す。

+二里南方に活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲの リニアメント付近は、地すべり地形を呈しており、新第三系鮮新 統~第四系下部更新統の砂子又層からなる地すべり土塊が小規模 なブロックに分割されている。個々の地すべり土塊の頭部は尾根 頂部にまで達し、これらの滑落崖が見掛け上、直線状に配列して おり、この位置には断層は認められない。

xix. 朝比奈平付近の断層

朝比奈平周辺の地質平面図及び地質断面図を添3-ロ(ロ)第 107図に示す。

地表地質調査結果によると、むつ市朝比奈平西方の・蜆沢上流付 近において、新第三系中新統の猿ヶ森層と泊層を境する断層露頭 が認められる(添3-ロ(ロ)第108図参照)。断層露頭の性状及び 周辺地域の地質分布から、本断層は、NNE-SSW走向で東落 ちの正断層と判断した。本断層の南方延長部では、泊層が広く分 布しているが、泊層の岩相分布に顕著な不連続は認められないこ とから、本断層は泊層内の地層を変位させる連続性の乏しい小規 模な断層であると判断した。

xx. 桧木川付近の断層

桧木川周辺の地質平面図を添3-ロ(ロ)第109図に,地質断面図 を添3-ロ(ロ)第110図に示す。

地表地質調査結果によると、横浜町の桧木川及びその北方の滝 ノ沢において、N-SないしNNE-SSW走向で東落ちの断層 露頭が認められるが、周辺に分布する新第三系中新統の泊層と蒲 野沢層との地層境界や泊層の岩相境界に不連続は認められないこ とから、これらの断層は泊層内の地層を変位させる連続性の乏し い小規模な断層であると判断した。

c.敷地を中心とする半径30km以遠の断層

敷地を中心とする半径100km範囲の陸域の活断層分布図を添3-ロ(ロ)第111図に示す。

敷地を中心とする半径30km以遠100kmまでの範囲の陸域に は、山崎ほか(1986)⁽³⁾、活断層研究会編(1991)⁽⁷⁾、宮 内ほか(2001)⁽⁵⁰⁾、池田ほか編(2002)⁽⁵¹⁾、地震調査委員 会(2004a)⁽⁵²⁾、同(2004b)⁽⁵³⁾、同(2004c)⁽⁵⁴⁾及び今泉ほ か編(2018)⁽⁸⁾によると、主な活断層として、折爪断層、青 森湾西岸断層帯、津軽山地西縁断層帯(北部・南部)等がある。 これらの断層について文献調査を行い、敷地に与える影響が大 きいと考えられる折爪断層について、変動地形学的調査及び地 表地質調査を行った。

- (a) 折爪断層
 - i. 文献調查結果

山崎ほか(1986)⁽³⁾は,青森県南部町法光寺付近の馬淵川南 方から岩手県葛巻町葛巻北方にかけて,長さ約30kmの推定活断 層(主として第四紀後期に活動したもの)を図示し,東側落下, 平均変位速度1m/10³年未満としている。さらに,南部町の馬 淵川以北に長さ約15kmの第四紀後期層の撓曲を図示している。

活断層研究会編(1991)⁽⁷⁾は、南部町高瀬付近の馬淵川右岸から葛巻町葛巻付近にかけて、山崎ほか(1986)⁽³⁾とほぼ同じ位置に、NNW-SSE方向、長さ44km、活動度B、「活断層であると推定されるもの(確実度II)」、西側隆起300mの折爪断層を図示・記載し、西側隆起の断層変位があるとし、平均変位速度を0.1~0.2m/10³年としている。

今泉ほか編(2018)⁽⁸⁾は、山崎ほか(1986)⁽³⁾とほぼ同じ位 置に、長さ約30km(図読では約36km),北北西-南南東方向に延 びる高角な断層面を持つ逆断層帯として折爪断層帯を図示・記載 し、「この断層帯に沿っては、鮮新統の撓曲や高位段丘面上の溝 状凹地などが認められるが、後期更新世以降の断層変位地形が認 められないので、推定活断層とした。」としている。

地震調査委員会(2004a)⁽⁵²⁾は,青森県五戸町から岩手県葛巻 町北部にかけて,長さ最大47km程度の折爪断層を図示・記載し, 第四紀後期の活動の実態は不明としている。

大和(1989)⁽⁵⁵⁾及び青森県(1998)⁽⁵⁶⁾によると,折爪断層の北端については,五戸川と浅水川沿いの段丘面高度分布から,高位
面・高舘面の西側隆起の変形とその累積性が指摘されており,五 戸川以北では撓曲構造が消滅するとしている。

ii. 変動地形学的調查結果

折爪断層周辺の空中写真判読図を添3-ロ(ロ)第112図に示す。 ^{**いざくぼ} 青森県五戸町清三久保付近の五戸川左岸から,岩手県葛巻町茶屋場 付近に至る約57km間に,L_B,L_c及びL_Dリニアメントが断続的に判 読される。このうち,南部町高瀬付近の馬淵川右岸から南方の葛巻 町に至る間については,活断層研究会編(1991)⁽⁷⁾の折爪断層の位 置にほぼ対応する。

南部町和内付近の馬淵川左岸以北では、L_Dリニアメントが判 読される。このL_Dリニアメントは、山地内の鞍部、傾斜変換部、 谷等からなり、西側が高い地形を呈するものの、断続的であり不 明瞭である。

南部町高瀬付近から葛巻町馬場付近では、L_B、L_c及びL_Dリ ニアメントが判読される。これらは、西側の山地と東側の丘陵地 との境界付近に判読され、主に鞍部の断続及び斜面の傾斜変換部 からなり、西側が高い地形を呈する。このうち、名久井岳の東方、 がんてたけ 折爪岳の東方及び就志森の東方では、山地斜面は急崖を呈し、傾 斜変換部が比較的明瞭かつ連続的である。また、この東方には、 主に丘陵地内の傾斜変換部からなるL_Dリニアメントが名久井岳 南東から折爪岳南部にかけて、断続的に判読される。

折爪断層北部における段丘面高度分布の検討結果を添3-ロ (ロ)第113図に示す。

折爪断層北端付近の五戸川及び浅水川付近については、リニア メント通過位置を挟んで、H₅面で約20~25mの高度差が認められ ることから,西側隆起の撓曲変形が示唆される。これに対して, 五戸川以北の後藤川付近では、リニアメント延長位置を挟んだH₄ 面の分布高度に顕著な不連続が認められず,西側隆起の変形が示 唆されない。

iii. 地表地質調査結果

折爪断層周辺の地質平面図を添3-ロ(ロ)第114図に,地質断面 図を添3-ロ(ロ)第115図に示す。

折爪断層周辺の地質は、下位より、中・古生層、新第三系中新 ^{よっやく} 統の四ツ役層、門ノ沢層、末ノ松山層、留崎層、舌崎層及び久保 層、新第三系鮮新統の斗川層、第四系更新統の段丘堆積層、十和 田火山軽石流堆積物、第四系完新統の沖積低地堆積層等からなり、 南部の一部に年代不詳の安山岩及び貫入岩が分布する。

南部町相内付近の馬淵川左岸以北では、斗川層以下の新第三系 に東急傾斜の撓曲構造が認められる。馬淵川左岸付近では、留崎 層が東に向かって約30°~約70°急傾斜し、その東の留崎層と舌 崎層の境界付近から久保層にかけて東傾斜が最大約85°になり、 さらに東側の斗川層が約30°~10°以下の緩傾斜を示す。この撓 曲による東傾斜は、北部へ向かうにつれ緩く不明瞭となり、五戸 町歳みず の浅水川付近では最大約50°であり、その北方の五戸町 小渡の五戸川付近で最大約20°となる。さらに北方の五戸町清三 久保の後藤川付近においては、斗川層の傾斜は概して5°以下を 示し、同斜構造となる。以上のことから、馬淵川以北から五戸川 左岸付近にかけては、新第三系に撓曲構造が認められ、地下深部 に断層の存在が推定される。なお、撓曲構造がみられなくなる五 戸町清三久保以北では、リニアメント・変動地形は判読されない。 南部町高瀬付近の馬淵川右岸以南では,折爪岳南部にかけて, 山地と丘陵地の境界付近に分布する新第三系に,東急傾斜を示す 撓曲構造が認められる。このうち,南部町石和西方では,西側の 末ノ松山層と東側の留崎層を境する西上がりの逆断層が認められ る。さらに,この断層より東側の丘陵地側にも新第三系中に地層 の急傾斜構造が認められ,岩手県軽米町高清水西方では,西側の 留崎層と東側の斗川層とを境する西上がりの逆断層が認められる。 これらの平行する2条の断層は,判読されるリニアメント・変動 地形と概ね対応する。

折爪岳南部から南方においては,前述の2条の断層が1条に会 合し,西側の中・古生層と東側の新第三系がこの断層で接してい るものと推定される。この推定断層は,山地とその裾部に広がる 扇状地面との明瞭な地形境界に位置し,判読されるリニアメント・ 変動地形に概ね対応する。

西側の山地と東側の丘陵地を境する明瞭な急崖は、南方の葛巻町 馬場付近まで連続するが、馬場付近より南については、リニアメン ト・変動地形は山地内の鞍部の断続として判読され、変位の向きも 一定しない。リニアメント・変動地形付近には、主に中・古生層が 分布しており、葛巻町 十良沢 付近においては、リニアメント・変 動地形の判読位置に断層は確認されず、西側の中・古生層と東側の デイサイトが貫入関係で接していることを確認した。

iv. 総合評価

折爪断層周辺には、約57km間に L_B 、 L_c 及び L_D リニアメントが判読される。

地表地質調査結果によると、判読されるリニアメント・変動地

形にほぼ対応する位置に、断層の存在が推定される。

折爪断層北部にあたる五戸町の五戸川左岸から南部町の馬淵川 付近に至る間では、新第三系に撓曲構造が認められ、地下深部に 断層の存在が推定される。一方、五戸川以北の後藤川付近では、 リニアメント延長位置を挟んだH₄面の分布高度に顕著な不連続 が認められない。

折爪断層南部にあたる南部町の馬淵川付近から折爪岳南部に至 る間では,新第三系に東急傾斜の撓曲構造及び西上がりの逆断層 が認められる。折爪岳南部から葛巻町馬場付近に至る区間では, 中・古生層と新第三系の分布状況等から断層が推定される。葛巻 町馬場付近より以南については,リニアメント・変動地形は山地 内の鞍部の断続として判読され,変位の向きも一定しない。葛巻 町十良沢付近においては,リニアメント・変動地形の判読位置に 断層は確認されず,中・古生層とデイサイトが貫入関係で接して いることを確認した。

以上のように、折爪断層の存在が推定される位置において、断層と第四系上部更新統との関係が確認されないことから、その活動性を考慮することとし、その長さを後藤川左岸から馬場付近までの約53kmと評価した。

(b) 青森湾西岸断層帯

i. 文献調査結果

山崎ほか(1986)⁽³⁾は,青森県東津軽郡蓬笛村の蓬田川付近か ら青森県青森市新城の天田内川付近にかけて,長さ約16kmの推定 活断層(主として第四紀後期に活動したもの)及び青森県青森市 三内付近から青森県青森市入内付近にかけて,長さ約12kmの推 定活断層(主として第四紀後期に活動したもの)を図示し、いず れも東側落下、平均変位速度1m/10³年未満としている。

活断層研究会編(1991)⁽⁷⁾は、山崎ほか(1986)⁽³⁾とほぼ同 じ位置に、NNW-SSE方向~NE-SW方向、長さ16km,活 動度B,「活断層であると推定されるもの(確実度II)」,西側 隆起150mを超える青森湾西断層を図示・記載している。また、 山崎ほか(1986)⁽³⁾とほぼ同じ位置に、NE-SW方向、長さ 7.5km,活動度A-B,「活断層であることが確実なもの(確実度 I)」,西側隆起140mを超える入内断層を図示・記載している。 地震調査委員会(2004c)⁽⁵⁴⁾は、蓬田村付近から青森市入内付 近にかけて、青森湾西断層、野木和断層及び入内断層によって構 成される長さ約31kmの青森湾西岸断層帯を図示・記載し、西側隆 起の逆断層、平均的なずれの速度0.4~0.8m/10³年程度(上下成 分)としている。また、青森湾西岸断層帯の地震規模は、断層長

さからマグニチュード7.3程度としている。

今泉ほか編(2018)⁽⁸⁾は、地震調査委員会(2004c)⁽⁵⁴⁾の青 森湾西岸断層帯とほぼ同じ位置に、長さ約20km(図読では約16km) の津軽断層帯及び長さ約20km(図読では約16km)の入内断層帯 を図示・記載している。津軽断層帯は西傾斜の逆断層で、平均 上下変位速度は0.5m/千年程度としており、入内断層帯は西側 隆起の逆断層で、平均上下変位速度は0.5m/千年以下としてい る。また、津軽断層帯は南西に位置する長さ約5kmの浪岡断層 帯(逆断層、平均上下変位速度は約0.7m/千年)に連続する可 能性を示し、その場合の全長を約50kmとしているが、具体的な 図示はなく、津軽断層帯から浪岡断層帯の全長は、図読では約 31kmである。

以上のように、断層長さと敷地との位置関係から、地震調査委員会(2004c)⁽⁵⁴⁾による長期評価は、敷地に与える影響が大きい と考えられることから、同委員会の青森湾西岸断層帯の約31kmに ついて、第四紀後期更新世以降の活動性を考慮することとし、そ の長さを蓬田村付近から青森市入内付近までの約31kmと評価した。

(c) 津軽山地西縁断層帯(北部・南部)

i. 文献調査結果

山崎ほか(1986)⁽³⁾は、青森県五所川原市飯詰付近から青森県 青森市浪岡付近にかけて、NNW-SSE方向、長さ約12kmの推 定活断層(主として第四紀後期に活動したもの),第四紀後期層 の撓曲及びN-S方向、長さ約5kmの推定活断層(主として第四 紀後期に活動したもの)を図示し、東側若しくは西側落下、平均 変位速度1m/10³年未満としている。

活断層研究会編(1991)⁽⁷⁾は、青森県北津軽郡 中泊 町付近か ら青森市浪岡付近にかけて、NNW-SSE方向、長さ30km、活 動度B、「活断層であることが確実なもの(確実度I)」、東側 隆起の津軽山地西縁断層帯を図示・記載している。また、青森市 浪岡付近の津軽山地西縁断層帯の東側に、NNW-SSE方向、 長さ8km、活動度C、「活断層であることが確実なもの(確実度 I)」、西側隆起4~6mの大平断層を図示・記載し、平均変位 速度を0.04m/10³年とし、青森市浪岡付近には、N-S方向、長 さ8km、活動度B、「活断層であることが確実なもの(確実度I)」、 西側隆起80mの浪岡撓曲を図示・記載している。

地震調査委員会(2004b)⁽⁵³⁾は、五所川原市飯詰付近から青森

市浪岡付近にかけて,五所川原市-浪岡町付近の断層,大平断層, 山越断層及び浪岡撓曲によって構成される長さ約16kmの津軽山地 西縁断層帯北部を図示・記載している。津軽山地西縁断層帯北部 は東側隆起の逆断層,平均的なずれの速度0.2~0.3m/10³年程 度(上下成分),最新活動は1766年(明和3年)の地震としてい る。また,青森市西部から青森県南津軽郡平賀町(現在の平川市) にかけて,黒石断層から構成される長さ約23kmの津軽山地西縁断 層帯南部を図示・記載している。津軽山地西縁断層帯南部は東側 隆起の逆断層,平均的なずれの速度は不明であるが,最新活動は 1766年(明和3年)の地震としている。津軽山地西縁断層帯北部 及び南部の地震規模の最大は,1766年(明和3年)の地震から, いずれもマグニチュード7.3程度としている。

今泉ほか編(2018)⁽⁸⁾は、地震調査委員会(2004b)⁽⁵³⁾の津軽 山地西縁断層帯北部とほぼ同じ位置に、長さ約20km(図読では約 21km),北北西-南南東方向に断続的に延びる逆断層帯として津 軽山地西縁断層帯を図示・記載している。また、同委員会の津軽 山地西縁断層帯南部と一部同じ位置に、長さ約15km(図読では約 13km),南北方向に延びる東側隆起の逆断層帯として黒石断層帯 を図示・記載しており、いずれも平均上下変位速度は不明である としている。

以上のように、断層長さと敷地との位置関係並びに歴史地震に よる地震規模から、地震調査委員会(2004b)⁽⁵³⁾による長期評価 は、敷地に与える影響が大きいと考えられることから、同委員会 の津軽山地西縁断層帯北部の約16km (マグニチュード7.3) 及び津 軽山地西縁断層帯南部の約23km (マグニチュード7.3) について、 第四紀後期更新世以降の活動性を考慮することとし、その長さを 五所川原市飯詰付近から青森市浪岡付近までの約16km及び青森市 西部から平川市付近までの約23kmと評価した。

⑤ 敷地周辺海域の地形

敷地周辺海域は、太平洋、津軽海峡及び陸奥湾からなる。敷地周辺 海域の地形図を添3-ロ(ロ)第116図に示す。

a. 太平洋

太平洋側における調査海域の海底地形は,陸域から沖合に向かっ て大陸棚及び大陸斜面からなり,大陸斜面の沖合部は深海平坦面と なっている。

大陸棚は、水深100m~140m以浅に位置する。大陸棚の幅は、物 見崎沖付近で約3kmと最も狭く、それより北方及び南方に向かって 広くなり、北部の左京沼沖付近では約8km、南部の小川原湖沖では 約30km以上に達している。大陸棚の勾配は、沖合に向かって5/1000 ~40/1000程度と緩やかに傾斜している。また、東通村尻屋崎沖では 北北東~約30km突出する尻屋海脚がみられる。

深海平坦面は,水深300m~560m以深に位置する。深海平坦面の 勾配は,尻屋崎東方沖以北では25/1000~40/1000程度,尻屋崎東方 沖以南では10/1000~25/1000程度である。

大陸棚と深海平坦面とを繋ぐ急勾配の斜面は,水深100m~560m に位置し,その幅は物見崎沖以北では1km~7km,物見崎沖以南で は7km~22kmである。大陸斜面の勾配は,沖合に向かって物見崎沖 以北では50/1000~570/1000程度,物見崎沖以南では15/1000~ 50/1000程度である。また,尾駮沼の沖合では大陸斜面頂部に谷頭を 有するほぼSSW-NNE方向に刻まれた小川原海底谷及びその支 谷がみられる。

b. 津軽海峡

津軽海峡側における調査海域は、沿岸域に太平洋及び尻屋海脚から連続する大陸棚が分布し、水深は100m以浅で、その外縁は概ね海 岸線と平行に連続する。大陸棚の勾配は、10/1000程度を示し、その 幅は約10kmである。

大陸斜面は、大陸棚外縁とほぼ平行に延びる水深340mの海底水道へ 向かって傾斜する。大陸斜面の勾配は、大陸棚外縁から水深約200m~ 約250mまでが30/1000~60/1000程度、その沖合では水深約300mま でが15/1000程度、海底水道付近では40/1000程度を示す。

c. 陸奥湾

陸奥湾側における調査海域は、水深約50m以浅の内湾であり、その海底の勾配は湾の中央に向かって5/1000~20/1000程度である。

⑥ 敷地周辺海域の地質

敷地周辺海域の地層区分を添3-ロ(ロ)第4表に,海域の地層と陸 域の地層との対比結果を添3-ロ(ロ)第5表に示す。また,敷地周辺 海域の海底地質図を添3-ロ(ロ)第117図に,海底地質断面図を添3-ロ(ロ)第118図に,音波探査記録を添3-ロ(ロ)第119図に示す。

敷地周辺海域の地層は、反射パターン、不整合関係等から、太平洋側 では上位よりA層、B_P層、C_P層、D_P層、E層、F層及びG層に、津 軽海峡側では上位よりA層、B層、C層、D層、E層、F層及びG層に、 陸奥湾側では上位よりA層、B層、C層、D層及びE層に区分される。

A層は、太平洋側及び津軽海峡側では大陸棚上に、陸奥湾側では、ほぼ全域に分布する。本層は、大陸棚において顕著な浸食面を覆い、海底面と平行に堆積していること、尾駮沖の海上ボーリング調査でA層相当

層より採取した試料の¹⁴C法年代値が約6600年前~約11700年前を示すことから、最終氷期以降の第四系上部更新統最上部~完新統と判断され、陸域の沖積低地堆積層等に対比される。

B_P層は、太平洋側に分布する。主として大陸斜面に分布してお り、東通村老部川沖以南では大陸棚外縁部にも、さらに南方の市柳 沼沖以南では大陸棚全域にも分布する。B_P層の堆積年代は、「ち きゅう」の試験掘削(site C9001)により得られた年代 指標を基に作成された青池(2008)⁶⁷⁾の年代モデルとの対比結果(添 3-ロ(ロ)第120図参照),また、尻屋崎沖及び東通村老部川沖で実 施した「ちきゅう」による海上ボーリング調査において本層の下位 のC_P層との境界付近に恐山火山起源の降下火砕物(Os-2)を 確認していること(添3-ロ(ロ)第121図参照)から、中期更新世後 半~後期更新世と判断した。

B層は、津軽海峡側及び陸奥湾側に分布し、反射パターン及び軽微な不整合から、上位よりB₁部層、B₂部層及びB₃部層に細分される。

B₁部層は,津軽海峡側では,主として大陸斜面に分布し,沿岸部 では大陸棚外縁部まで分布する。陸奥湾側では,沿岸部を除く広い範 囲に分布する。

B₂部層は,津軽海峡側では,主として大陸斜面及び沿岸部の大陸 棚に分布し,尻屋海脚西側の大陸棚外縁部にも部分的に分布が認めら れる。沿岸部の大陸棚,尻屋海脚西側の大陸斜面最上部(部分的に大 陸棚外縁部も含む)及び尻屋海脚北側の海底谷付近では海底面直下あ るいはA層直下に分布する。陸奥湾側では,沿岸部を除く広い範囲に 分布し,分布域の周縁部ではA層直下に分布する。

B₃部層は、津軽海峡側では、大陸斜面及び沿岸部の大陸棚に分布

する。尻屋海脚北側の海底谷付近及び尻屋崎西方の大陸棚等では海底 面直下あるいはA層直下に分布する。陸奥湾側では、東部及び南部の 沿岸部の一部を除く広い範囲に分布し、分布域の周縁部ではA層直下 に分布する。

B層のうち、B₂部層は、津軽海峡に面した海岸付近まで分布し、 海食崖に分布する田名部層に連続することから(添3-ロ(ロ)第122 図参照)、その堆積年代は中期更新世の後半と判断した。B₁部層の 堆積年代は、完新世のA層に不整合で覆われ、B₂部層を不整合あ るいは整合に覆うこと、また、東北電力株式会社⁽⁴⁹⁾及び東京電力株 式会社⁽⁵⁸⁾により実施された採泥結果によると、陸奥湾では本部層中 に洞爺火山灰層(11.2~11.5万年前)が挟在することから、後期更新 世と判断した。B₃部層の堆積年代は、B₂部層に不整合あるいは整合 に覆われ、後述のC層(後期鮮新世~前期更新世)を不整合に覆うこ とから、中期更新世の前半と判断した。

C_P層は、太平洋側に分布する。主として大陸斜面に分布しており、 東通村老部川沖以南では大陸棚外縁部にも、さらに南方の市柳沼沖以 南では大陸棚全域にも分布する。C_P層の堆積年代は、上位のB_P層の 年代が中期更新世後半~後期更新世、後述するD_P層の年代が鮮新世 ~前期更新世前半とそれぞれ判断されることから、前期更新世後半~ 中期更新世後半と判断した。

C層は、津軽海峡側及び陸奥湾側に分布する。津軽海峡側では、 大陸斜面、尻屋海脚西側の大陸棚外縁部及び沿岸部の大陸棚に分布 する。尻屋海脚西側の大陸棚外縁部付近及び沿岸部の大陸棚では部 分的に海底面直下あるいはA層直下に分布する。陸奥湾側における C層は、夏泊半島北方の下位層の高まりが存在する地域を除いて、 ほぼ全域に分布する。東部及び南部の沿岸部の一部では海底面直下 あるいはA層直下に分布する。C層の堆積年代は、本層の分布が津 軽海峡側及び陸奥湾側で陸域の砂子又層に連続していること、奥田

(1993)⁽¹²⁾によると、尻屋海脚西側の本層分布域で採取された試料から*Neodenticula koizumii zone*に対比される珪藻化石群集が得られていること等から、後期鮮新世~前期更新世と判断した。

 D_P 層は、太平洋側に分布する。主として大陸斜面に分布し、市 柳沼沖以南では大陸棚にも分布が認められ、南部の大陸斜面では下 位層の高まりが存在し、比較的広く欠如している。 D_P 層の堆積年 代は、地球深部探査船「ちきゅう」の試験掘削(site C90 01)により D_P 層の最上部から前期更新世中頃を示す石灰質ナン ノ化石が得られていること(添3-ロ(ロ)第120図参照)、深海掘 削(IPOD site 438)の珪藻化石層序と対比すると ほぼ*Neodenticula koizumii zone*及び*Neodenticula kamtschatica zone* にあたること(添3-ロ(ロ)第122図参照)から、鮮新世〜前期更新世 前半と判断した。

D層は、津軽海峡側及び陸奥湾側に分布する。津軽海峡側では、主 として大陸斜面及び沿岸部の大陸棚に分布し、尻屋海脚西側の大陸棚 外縁部にも部分的に分布が認められる。尻屋海脚西側の大陸棚外縁部 及び沿岸部の大陸棚の一部では海底面直下あるいはA層直下に分布す る。陸奥湾側では、ほぼ全域に分布し、夏泊半島北方では下位層の高 まりが存在し、欠如している。D層の堆積年代は、上位のC層の年代 が後期鮮新世~前期更新世、後述するE層の年代が中期中新世~後期 中新世とそれぞれ判断したことから、前期鮮新世と判断した。

E層は、太平洋側、津軽海峡側及び陸奥湾側のほぼ全域に分布して

おり、太平洋側棚沢川沖以北の沿岸部及び尻屋海脚西縁部では下位層 の高まりが存在し、比較的広く欠如している。また、太平洋側の大陸 斜面においても下位層の高まりが存在し、部分的に欠如し、南部では 大陸棚東部から大陸斜面にかけて比較的広く欠如している。太平洋側 から尻屋海脚にかけての大陸棚では海底面直下あるいはA層直下に分 布する。E層の堆積年代は、尾駮沼沖の大陸棚で実施したボーリン グ調査結果によるとE層分布域において鷹架層上部層を確認したこ と、小老部川北東沖及び東通村老部川南東沖の大陸棚で東北電力株 式会社(49)及び東京電力株式会社(58)により実施されたボーリング調査 結果によるとE層分布域において蒲野沢層が確認されていること,尻 |屋崎沖及び東通村老部川沖で実施した「ちきゅう| による海上ボーリ ング調査結果によると細粒砂岩・泥質砂岩・珪質泥岩等から Denticulopsis lauta zoneに対比される珪藻化石群集,有孔虫化石の Globorotalia rikuchuensis及び放散虫化石のCytocapsella tetraperaや *Eucvrtidium inflatum*が産出すること(添3-ロ(ロ)第121図及び添3 -ロ(ロ)第124図参照),小老部川沖の大陸棚外縁部で実施したドレッ ジ調査結果によるとE層分布域から採取された砂岩・シルト岩から Denticulopsis lauta zone及びDenticulopsis hyaline zoneに対比され る珪藻化石群集が産出すること(添3-ロ(ロ)第125図参照),また、深 海掘削(IPOD site 438)の珪藻化石層序と対比すると本 層上限がほぼRouxia californica zoneにあたること(添3-ロ(ロ)第 123図参照)から、中期中新世初頭~後期中新世であると判断した。

F層は、太平洋側及び津軽海峡側に広く分布しており、尻屋海脚西 縁部の一部では下位層の高まりが存在し、欠如している。また、太平 洋側の大陸斜面においても下位層の高まりが存在し、部分的に欠如し、 南部では大陸棚東部から大陸斜面にかけて広く欠如している。太平洋 側棚沢川沖以北の沿岸部及び尻屋海脚西縁部では海底面直下あるいは A層直下に分布する。F層の堆積年代は、本層の分布が太平洋側で陸 域の泊層及び猿ヶ森層に連続すること、小老部川沖の大陸棚で東北電 カ株式会社⁽⁴⁹⁾及び東京電力株式会社⁽⁵⁸⁾により実施されたボーリング調 査結果によるとF層分布域において泊層が確認されていることから、 前期中新世〜中期中新世初頭であると判断した。

G層は、太平洋側の大陸斜面、尻屋海脚及び太平洋側南部の大陸 棚で確認され、その他では探査深度以深である。尻屋海脚西縁部で は部分的に海底面直下に分布する。本層は、周辺海域における最下 位層であり、一般に音響基盤をなし、尻屋崎では陸域の尻屋層群に 連続することから、先第三系と判断した。また、大陸斜面の沖合側 では音響基盤の上位に、傾斜した反射パターンを示し、F層に顕著 な傾斜不整合で覆われる地層が存在することから、古第三系を含む ものと判断した。

⑦

敷地周辺海域の地質構造

a. 概要

太平洋側の大陸棚外縁部より沖合及び市柳沼沖以南の大陸棚では、 B_P層~F層は海底面とほぼ平行に、北東方向にやや傾斜した緩や かな構造を示し、層厚も北東方向に増加する。太平洋側の南部には G層の高まりが存在し、上位層はG層上面の凹凸を埋めて堆積して いる。鷹架沼沖以北の大陸棚には主にE層及びF層が分布しており、 大陸棚外縁のNNE-SSW方向の急崖付近で、C_P層及びB_P層が E層あるいはF層にアバットしている。大陸棚は尻屋崎北方の尻屋 海脚まで連続しており、E層以下の地層がNNE-SSW方向の隆 起帯を形成している。

津軽海峡側では, D層以上の地層が尻屋海脚の隆起帯に分布するE 層以下の地層にアバットしている。津軽海峡側の大陸棚外縁部より 沖合では, B層~D層は海峡中央部の凹型の構造を埋めるように堆 積し, 尻屋海脚側, 下北半島側及び亀田半島側に向かって, 各層の 層厚は徐々に薄くなる。

陸奥湾側では、夏泊半島の北方延長部にE層の高まりが存在し、 この高まりにC層及びD層がアバットしており、C層以下の地層は 湾中央部に向かって傾斜した構造を示す。湾中央部では再びE層が 高まりを形成し、D層最上部以上の地層はこの高まりを被覆してい る。C層以下の地層は一部でやや急な傾斜を示すものの、これらを 不整合に覆うB層以上の地層は、陸奥湾の全域においてほぼ水平な 構造を示す。

b. 敷地を中心とする半径30km範囲の断層

奥田 (1993)⁽¹²⁾,海上保安庁水路部 (1975)⁽¹⁷⁾,同 (1973b)⁽¹⁵⁾,活 断層研究会編 (1991)⁽⁷⁾等による敷地周辺海域の断層分布図を添3-ロ(ロ)第126図に示す。

文献調査結果及び音波探査記録の解析結果に基づき,断層の長さ, 敷地からの距離等を考慮すると,敷地を中心とする半径30km範囲の 海域における主要な断層としては,尻屋海脚東縁の大陸棚外縁~下 北半島北部の大陸棚外縁~下北半島南部の大陸棚に示されている断 層(以下,「大陸棚外縁断層」という。)及び下北半島南端部の大 陸棚に示されている断層(以下,「F-d断層」という。)がある (添3-u(u)第6表参照)。 (a) 大陸棚外縁断層

i. 文献調查結果

海上保安庁水路部(1975)⁽¹⁷⁾は、六ヶ所村北部沖から東通村 沖の大陸棚外縁に沿ってNNE-SSW走向、長さ約37km、東 落ちの断層を示し、さらに、その北方の尻屋海脚東縁に沿って、 NNE-SSW走向、長さ約45kmの東落ちの断層を示している。

活断層研究会編(1991)⁽⁷⁾は,海上保安庁水路部(1975)⁽¹⁷⁾ とほぼ同位置に,崖高200m以上,長さ約84kmの東落ちの活断層を 示している。

奥田 (1993)⁽¹²⁾は, 尻屋海脚東縁に沿ってNNE-SSW走向, 長さ約23.5kmの東落ちの断層を示し,そのうち,北部の約19.5km 区間は伏在断層としている。また,その南方の物見崎沖にも,大 陸棚外縁に沿ってNNE-SSW走向,長さ約6kmの伏在断層を 示している。しかし,同文献は,エアガン記録の解析結果から, 活断層研究会編 (1991)⁽⁷⁾により活断層が示されている大陸棚外 縁部には,少なくとも長さ20kmを超える活断層は存在しないとし ている。

一方,海上保安庁水路部(1998)⁽²⁰⁾及び徳山ほか(2001)⁽²¹⁾に は大陸棚外縁に沿う断層は示されていない。

また,池田(2012)⁽⁵⁹⁾は,海上音波探査記録の解釈を提示し, 陸上の海岸段丘の発達状況から大陸棚外縁断層の動きは最近12 万年間も継続しているとしている。渡辺ほか(2008)⁽⁶⁰⁾及び渡 辺(2016)⁽⁶¹⁾は,陸域における海成段丘面との関連から,この 断層が第四紀後期にも活動を繰り返している可能性があるとし ている。 ii. 海底地形面調查結果

大陸棚外縁断層周辺の地形陰影図を添3-ロ(ロ)第127図に示す。 文献により断層が示されている位置付近には、急斜面が認めら れるものの、そのトレースは直線的ではなく、凹凸を繰り返して おり、多くの谷地形が認められる。また、東通村老部川沖以南で は斜面の傾斜が緩くなっている。

iii. 音波探查記録解析結果

大陸棚外縁断層の位置及び音波探査測線位置図を添3-ロ(ロ)第 128図に,音波探査記録及び解釈図を添3-ロ(ロ)第129図に示す。

文献により断層が示されている位置付近においては、F層及び E層は大陸棚に厚く分布し、大陸斜面では比較的薄くなっている。 また、D_P層以上の地層は大陸棚には分布せず、大陸斜面のみに分 布している。このように、大陸棚外縁部を境とする盆地反転構造 が認められる。(添3-ロ(ロ)第117図及び添3-ロ(ロ)第118図(1) ~添3-ロ(ロ)第118図(3)参照)

大陸棚外縁部の斜面が急傾斜を示す北部の海域においては、 急斜面基部付近の地下に西側隆起の逆断層が推定される(添3 - ロ(ロ)第129図(2)~添3-ロ(ロ)第129図(11)参照)。また、 No. 3測線の急斜面基部付近で実施した2孔の海上ボーリング 調査においても、両孔の間にE層の落差が確認されることから、 この間に逆断層が推定される(添3-ロ(ロ)第124図参照)。

大陸棚外縁部の斜面の傾斜が緩くなる海域のうち馬門川沖以南 においては、西側隆起の逆断層が推定されるものの、その位置は 急斜面基部付近ではなく、大陸棚の地下に位置する(添3-ロ(ロ) 第129図(12)~添3-ロ(ロ)第129図(15)参照)。 これらの逆断層は推定された全区間において C_P 層に変位を与えていると解釈されるものの、大陸棚外縁断層直上の B_P 層/ C_P 層境界に断層活動の影響による変位・変形は認められない(添3-u(u)第129図(2)~添3-u(u)第129図(15)参照)。

iv. 総合評価

尻屋海脚東縁部の大陸棚外縁部から東通村老部川沖の大陸棚外 縁部を経て鷹架沼沖の大陸棚に至る海域において,西側隆起の逆 断層が推定される。全区間においてC_P層下部に変位あるいは変 形が認められるものの,いずれの測線においても,大陸棚外縁断 層直上のB_P層/C_P層境界に断層活動の影響による変位・変形は 認められない。

以上のことから,大陸棚外縁断層は第四紀後期更新世以降の活 動性はないものと判断した。

- (b) F-d断層
 - i. 文献調查結果

海上保安庁水路部(1982)⁽¹⁸⁾及び同(1998)⁽²⁰⁾は物見崎南東沖 の大陸棚外縁部から小川原湖沖の大陸棚に至る約34km間に,N-S 方向に断続して雁行する延長の短い伏在断層を多数示している。こ の断層群のうち北部については,海上保安庁水路部(1975)⁽¹⁷⁾及び 活断層研究会編(1991)⁽⁷⁾に示されている大陸棚外縁断層に対応 しているものの,南部については,両文献ともに断層は示されて いない。

また,奥田(1993)⁽¹²⁾及び徳山ほか(2001)⁽²¹⁾には,同位置に 断層は示されていない。 ii. 音波探查記録解析結果

F-d断層の位置を添3-ロ(ロ)第130図に,断層周辺の音波探 査記録及び解釈図を添3-ロ(ロ)第131図に示す。

文献により伏在断層が示されている位置付近において、 $C_P = P$ 以下の地層に断層及び撓曲が推定され、一部区間において $B_P = P$ に変形が認められる(添3--u(u)第131 \otimes (2)~添3--u(u)第131 \otimes (4)参照)。同区間北側の07S8測線では、 $C_P = P$ であた 変位を与える断層が推定されるものの、 $C_P = P$ と部以上の地層に 変形は認められない(添3--u(u)第131 \otimes (1)参照)。また、同 区間南側の07S10測線では、E層下部に僅かに変位を与え、 $D_P = P$ 層まで変形を与える断層が推定されるものの、 $C_P = P$ 」の地層 に変形は認められない(添3--u(u)第131 \otimes (5)参照)。

iii. 総合評価

F-d断層については、文献により伏在断層が示されている位置付近において、 C_P 層以下の地層に断層及び撓曲が推定され、 B_P 層に変形が認められることから、第四紀後期更新世以降における活動性を考慮することとし、その長さを B_P 層に断層活動による変位・変形が認められない07S8測線から07S10測線までの約6kmと評価した。

(c) その他の断層

敷地を中心とする半径30km範囲には,前述の断層の他に,海上 保安庁水路部(1975)⁽¹⁷⁾により,小川原海底谷に沿う断層群が示 されているものの(添3-ロ(ロ)第126図参照),音波探査記録の 解析結果によると,当該位置に断層の存在を示唆する構造は認め られない。 c.敷地を中心とする半径30km以遠の断層

敷地を中心とする半径30km以遠の海域には、奥田(1993)⁽¹²⁾,活断 層研究会編(1991)⁽⁷⁾等の文献調査結果によると、添3--口(-D)第126 図に示すように、いくつかの断層及び撓曲が示されており、これらの うち、敷地に与える影響が比較的大きいと考えられるものについて、 音波探査記録の解析を行った。その結果によると、敷地を中心とする 半径30km以遠の海域における主要な断層としては、下北半島東方沖 に示されている伏在断層(以下、「F-c断層」という。)及び八 戸市北東沖に示されている2条の活断層(以下、「F-a断層」及 び「F-b断層」という。)がある(添3--口(-D)第6表参照)。

(a) F-c断層

奥田 (1993)⁽¹²⁾は,東通村東方沖の大陸斜面に,NE-SW走向,長さ約11.5kmの南東落ちの伏在断層を示している(添3-ロ(ロ)第132図参照)。

音波探査記録の解析結果によると、文献により断層が示されてい る位置付近において、C_P層以下の地層に断層及び撓曲の推定が可 能であり、B_P層に変形が認められる(添3- $\mu(\mu)$ 第133図(2)~ 添3- $\mu(\mu)$ 第133図(7)参照)。一方、No. c-6測線では、 B_P層に変形は認められず(添3- $\mu(\mu)$ 第133図(1)参照)、J S73-1測線では、G層上面の強い反射面が連続的に確認され、 変位・変形は認められない(添3- $\mu(\mu)$ 第133図(8)参照)。な お、断層中央の一部において変形が海底面付近まで及んでいる可 能性がある(添3- $\mu(\mu)$ 第133図(4)参照)。

以上のことから, F-c 断層については第四紀後期更新世以降に おける活動性を考慮することとし, その長さをB_P層に断層活動に よる変位・変形が認められないNo.C-6測線からJS73-1 測線までの約15kmと評価した。

(b) F-a断層

活断層研究会編(1991)⁽⁷⁾は、八戸市北東沖の大陸棚に、NNW -SSE走向、長さ約11kmの東落ちの活断層を示している。また、 海上保安庁水路部(1973b)⁽¹⁵⁾は、活断層研究会編(1991)⁽⁷⁾とほ ぼ同位置に、長さ約8kmの東落ちの断層を示している(添3-ロ(ロ) 第134図参照)。

音波探査記録の解析結果によると、文献により断層が示されて いる位置付近において、E層中に断層が推定され、B_P層に変位 若しくは変形が及んでいる可能性を否定できない(添3- α (α) 第135図(2)~添3- α (α)第135図(5)参照)。一方、文献により 断層が示されている位置の北方延長のGh33測線及び南方延長の H-263測線では、E層中に断層活動による変位・変形は認められ ない(添3- α (α)第135図(1)及び添3- α (α)第135図(6)参 照)。

以上のことから、F-a断層については第四紀後期更新世以降 における活動性を考慮することとし、その長さをE層以上の地層 に断層活動による変位・変形が認められないGh33測線からH-263測線までの約20kmと評価した。

(c) F-b断層

活断層研究会編(1991)⁽⁷⁾は、八戸市北東沖の大陸斜面の約21km 間に、NNW-SSE方向に断続する3条の東落ちの活断層を示 している(添3-ロ(ロ)第136図参照)。

音波探査記録の解析結果によると、文献により断層が示され

ている位置付近において、断層の存在を否定できない区間が認 められる(添3- $\mu(\mu)$ 第137図(2)~添3- $\mu(\mu)$ 第137図(7) 参照)が、同区間北側のGh36測線及び同区間南側のGh32測線 では、断層は推定されず、C_P層及びB_P層に変位・変形は認め られない(添3- $\mu(\mu)$ 第136図(1)及び添3- $\mu(\mu)$ 第136図 (8)参照)。

以上のことから、F-b断層については第四紀後期更新世以降 における活動性を考慮することとし、その長さをB_P層に断層活 動による変位・変形が認められないGh36測線からGh32測線ま での約15kmと評価した。

(d) その他の断層

敷地を中心とする半径30km以遠には,前述の断層の他に,奥田(1993)⁽¹²⁾,海上保安庁水路部(1975)⁽¹⁷⁾,活断層研究会編(1991)⁽⁷⁾等によると,多くの断層が示されているが(添3-ロ(ロ)第126図参照),音波探査記録の解析結果によると,B_P層あるいはB₂部層に変位・変形が認められる延長の長い断層は存在しないものと判断した。

- (ハ)敷地近傍の地質・地質構造
 - (1) 調査内容
 - ① 文献調査

敷地近傍の地形及び地質・地質構造に関する主要な文献としては, 工業技術院地質調査所(現 国立研究開発法人産業技術総合研究所地 質調査総合センター)発行の山崎ほか(1986)⁽³⁾の「50万分の1活 構造図「青森」」,青森県発行の北村ほか(1972)⁽⁴⁾の「20万分の1 青森県地質図及び地質説明書」,同じく箕浦ほか(1998)⁽⁵⁾の「20 万分の1青森県地質図及び地質説明書」,活断層研究会編(1980)⁽⁶⁾ の「日本の活断層-分布図と資料」及び同(1991)⁽⁷⁾の「新編 日本 の活断層-分布図と資料」,今泉ほか編(2018)⁽⁸⁾の「活断層詳細デ ジタルマップ[新編]」,北村編(1986)⁽⁹⁾の「新生代東北本州弧地 質資料集」,独立行政法人産業技術総合研究所地質調査総合センター 編(2013)⁽²²⁾の「日本重力データベースDVD版」等があり,これら の文献により敷地近傍の地形及び地質・地質構造の概要を把握した。

文献調査の結果を踏まえ,敷地を中心とする半径約5kmの範囲及び その周辺において,変動地形学的調査及び物理探査を含む地質・地質 構造に関する各種調査を実施した。

変動地形学的調査としては、主に国土地理院で撮影された縮尺4万分の1の空中写真に加え、必要に応じて縮尺2万分の1及び縮尺1万分の 1の空中写真並びに同院発行の縮尺2万5千分の1の地形図を使用し て空中写真判読を行い、その結果に基づいて、敷地を中心とする半径 約5kmの範囲の原縮尺2万5千分の1の地形面区分図、リニアメント・ 変動地形の分布図等を作成した。 地質・地質構造に関する調査としては、地形調査に使用した空中写 真及び地形図を使用して地表踏査等を行ったほか、必要に応じてボー リング調査及びトレンチ調査を組み合わせた調査を行い、それらの結 果に基づいて敷地近傍の地質平面図、地質断面図等を作成した。

物理探査としては、地下深部の大局的な地質構造あるいは活断層の 存否及び連続性を確認するため、敷地を中心とする半径約5kmの範囲 において重力探査及び反射法地震探査を実施した。重力探査結果につ いては、独立行政法人産業技術総合研究所地質調査総合センター編

(2013)⁽²²⁾によるデータと併せて解析を行い,重力異常図等を作成した。反射法地震探査については,深部及び浅部の地下構造を把握するため,深度断面図等を作成した。反射法地震探査と併せて,地下深部の速度構造を把握するために,一部の測線において屈折法地震探査を実施した。

また,地質・地質構造について詳細な検討を行うために,一部でボ ーリング調査を実施した。

- (2) 調査結果
 - 敷地近傍の地形

敷地近傍の地形図を添3-ロ(ハ)第1図に、地形面区分図を添3-ロ(ハ)第2図に示す。

敷地は下北半島南部の六ヶ所地域に位置し,敷地を中心とする半径約5kmの範囲は,主に標高80m以下の台地からなる。一部の河川の下流部,湖沼及び海岸沿いには低地がみられ,台地上及び海岸沿いの一部に砂丘地が局所的にみられる。また,北部の一部に標高200m以下の丘陵地がみられる。

台地は、主に段丘からなる地形であり、高位面、中位面及び低位面

の3面に区分される。さらに、地形面の標高、火山灰層との累重関係 等から、高位面はH₃面、H₄面及びH₅面に、中位面はM₁面、M₂面及 びM₃面に、低位面はL₁面、L₂面及びL₃面にそれぞれ細区分される。 また、本地域には、M₂面よりも若干低い平坦面(M₂'面)及びM₃面 よりも若干低い平坦面(M₃'面)が認められる。M₂'面は、その堆 積物の上部に渦爺火山灰(11.2~11.5万年前)が挟まれることから、 MIS5e~MIS5dに対比される。

② 敷地近傍の地質

敷地近傍の地質層序表を添3-ロ(ハ)第1表に,地質平面図及び地 質断面図を,それぞれ添3-ロ(ハ)第3図及び添3-ロ(ハ)第4図に 示す。

敷地を中心とする半径約5kmの範囲には、下位より新第三系中新統 の泊層及び鷹架層、新第三系鮮新統の砂子又層下部層及び中部層、第 四系下部~中部更新統の六ヶ所層、第四系中部~上部更新統の古期低 地堆積層、段丘堆積層及び火山灰層並びに第四系完新統の沖積低地堆 積層、砂丘砂層及び岸錐堆積層がそれぞれ分布している。

a. 新第三系中新統

泊層は,敷地近傍北端の六ヶ所村出戸付近より北方に分布しており,北村編(1986)⁽⁹⁾の泊安山岩に相当し,安山岩溶岩,凝灰角礫 岩,軽石凝灰岩等からなる。

鷹架層は,敷地近傍の台地斜面に露出している。鷹架層は,柴崎 ほか(1958)⁽²⁹⁾の鷹架層,青森県(1970)⁽³⁰⁾及び同(1970)⁽³¹⁾の鷹 架層並びに北村編(1986)⁽⁹⁾の鷹架層に相当し,泥岩,砂岩,軽石 凝灰岩,軽石質砂岩等からなる。鷹架層は,層相及び累重関係から, 下位より下部層,中部層及び上部層の3層に細区分される。鷹架層 下部層は, 泥岩, 細粒砂岩等からなり, 一部に凝灰岩を挟む。鷹架 層中部層は, 礫岩, 礫混り砂岩, 軽石質砂岩, 軽石凝灰岩, 凝灰岩 等からなる。鷹架層上部層は, 泥岩, 細粒砂岩等からなり, 一部に 凝灰岩を挟む。

六ヶ所村の老部川(南)中流付近より北方における泊層と鷹架層 の地質構造及び累重関係から,両者は指交関係にあるものと判断し た。

b. 新第三系鮮新統

砂子又層は,敷地近傍の丘陵地及び台地に広く分布しており,青森 県(1970)⁽³⁰⁾及び同(1970)⁽³¹⁾の浜田層,北村ほか(1972)⁽⁴⁾及び箕 浦ほか(1998)⁽⁵⁾の砂子又層及び甲地層,北村編(1986)⁽⁹⁾の砂子 又層及び甲地層並びに日本地質学会編(2017)⁽¹⁰⁾の砂子又層に相当 する。砂子又層は,砂岩,凝灰質砂岩,シルト岩,軽石凝灰岩等か らなり,下位層を不整合に覆う。砂子又層は,層相及び累重関係か ら,下位より下部層及び中部層の2層に細区分される(添3-ロ(ロ) 第5図参照)。砂子又層下部層は,主に凝灰質粗粒砂岩からなり, 一部に凝灰質細粒砂岩等を挟む。砂子又層中部層は,主にシルト岩 からなり,一部に細粒砂岩を挟む。

鷹架沼南岸において,砂子又層下部層に挟まれる凝灰岩を対象に 年代測定を実施したところ,フィッション・トラック法では3.7±0.3 Ma,3.8±0.4Ma及び3.9±0.4Maの年代値が得られ,ウランー 鉛法では4.0±0.1Maの年代値が得られた。これらから,砂子又層 下部層は新第三系鮮新統であると判断した。(添3-ロ(ロ)第5図 参照) c. 第四系下部~中部更新統

六ヶ所層は,敷地近傍の丘陵地及び台地に分布しており,北村ほか (1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾が野辺地町周辺に図示する野 辺地層,北村編(1986)⁽⁹⁾が下北半島の基部から八戸市周辺にかけ て図示する三沢層に相当する。六ヶ所層は主に細粒砂,シルト等か らなり,下位の砂子又層下部層を不整合に覆い,古期低地堆積層と は指交関係であり,高位段丘堆積層に不整合に覆われ,一部指交関 係にあるものと判断した。

鷹架沼南岸において、六ヶ所層に挟まれる火山灰を対象に年代測 定を実施したところ、フィッション・トラック法では1.3±0.2M a 及び0.5±0.1M a の年代値が得られ、ウランー鉛法では378±3k a の年代値が得られたことから、六ヶ所層は第四系下部~中部更新統 であると判断した(添3-ロ(ロ)第5図参照)。

d. 第四系中部~上部更新統

古期低地堆積層は、尾駮沼の北岸沿い等に小規模に分布しており、 岩井(1951)⁽³⁶⁾の野辺地層並びに北村ほか(1972)⁽⁴⁾及び箕浦ほか (1998)⁽⁵⁾の野辺地層にほぼ相当し、主にシルト、砂及び礫からな る。古期低地堆積層は、下位の六ヶ所層を不整合に覆い(添3-ロ (ニ)第22図(1)及び添3-ロ(ニ)第22図(2)参照)、六ヶ所層とは 一部指交関係であり、上位の高位段丘堆積層に不整合に覆われるこ とから、同層の地質年代は中期更新世と判断した。

段丘堆積層は,敷地近傍の台地に広く分布しており,北村ほか (1972)⁽⁴⁾及び箕浦ほか(1998)⁽⁵⁾の段丘堆積物に相当し,主に 砂及び礫からなる。段丘堆積層は,分布標高,堆積物の層相,火 山灰層との関係等から,高位段丘堆積層,中位段丘堆積層及び低 位段丘堆積層に3区分され,それぞれ高位面,中位面及び低位面 を形成する(添3-ロ(ロ)第2表参照)。

火山灰層は,敷地近傍の丘陵地及び台地上に広く分布し,主に褐 色の粘土質火山灰からなる。火山灰層中には,主な示標テフラとし て甲地軽石,オレンジ軽石,洞爺火山灰,阿蘇4火山灰,十和田レ ッド火山灰,十和田大不動火山灰及び十和田八戸火山灰が認められ る。

e. 第四系完新統

沖積低地堆積層は、老部川(南),二又川から下流の尾駮沼、戸鎖 川から下流の鷹架沼等,河川沿いの低地等に分布しており,主に礫, 砂及び粘土からなる。

砂丘砂層は,敷地近傍東端の太平洋側の海岸沿いあるいは段丘面 上の一部に分布しており,主に砂からなる。

崖錐堆積層は,敷地近傍北方の山麓斜面等に分布しており,主に 礫,砂及び粘土からなる。

③ 敷地近傍のリニアメント・変動地形

空中写真判読によるリニアメント・変動地形の判読基準を添3-ロ (ロ)第3表に,敷地近傍のリニアメント・変動地形の分布図を添3-ロ(ハ)第5図に示す。

敷地近傍には、六ヶ所村泊南方の棚沢川右岸から老部川(南)右岸 にかけて、ほぼN-S方向のL_B、L_c及びL_Dリニアメントが判読さ れる。また、六ヶ所村二又の北西付近には、ほぼE-W方向のL_Dリ ニアメント及びNW-SE方向のL_Dリニアメントが判読され、六ヶ 所村戸鎖南方に、ほぼE-W方向のL_Dリニアメントが判読される。

④ 敷地近傍の地質構造

a. 敷地近傍の地質構造

敷地近傍の地質構造として,尾駮沼付近から鷹架沼付近にかけて, NE-SW方向の軸をもつ非対称な向斜構造が認められ,南方の市 柳沼付近まで認められる。この非対称な向斜構造は,新第三系中新 統の鷹架層及び新第三系鮮新統の砂子又層下部層に認められるが, これより上位の第四系下部~中部更新統の六ヶ所層及びこれより上 位の堆積物には認められない。(添3-ロ(ハ)第3図及び添3-ロ(ハ) 第4図参照)

老部川(南)左岸付近から棚沢川付近にかけて、ほぼN-S方向の軸をもつ背斜構造が認められる。この背斜構造は、新第三系中新統の鷹架層及び泊層に認められるが、これより上位の第四系中部更新統の段丘堆積層及びこれより上位の堆積物には認められない。

敷地近傍の重力異常図(ブーゲー異常図)を添3-ロ(ハ)第6図 に示す。

敷地近傍では、大局的に、敷地の北東の丘陵地において相対的に 高重力異常を示し、これより南西に向かって緩やかに低重力異常を 示している。顕著な重力異常の急変部は認められず、地下深部の大 きな地質構造の変化は推定されない。また、敷地近傍に認められる 褶曲構造及びリニアメント・変動地形に対応するような線状の重力 異常の急変部も認められない。

敷地近傍の反射法地震探査の測線位置を添3-ロ(ハ)第3図に, 反射法地震探査結果を添3-ロ(ハ)第7図に示す。

これによると、西側低下の正断層の形態を示す反射面の不連続が認められ、その位置、走向、断層形態等から、敷地内で確認されて

いるf-2断層と判断される。また、出戸西方断層が、西上がりの 逆断層の形態を示す反射面の不連続として認められる。さらに、後 述の地表地質調査によって明らかとなった尾駮沼付近から鷹架沼付 近にかけて認められるNE-SW方向の軸をもつ非対称な向斜構造 の位置に対応して、鷹架層相当層からなる緩やかで非対称な向斜構 造が認められ、その西縁部でやや急傾斜となる。この向斜構造は、 北東に位置する尾駮沼口付近で、さらに緩やかになりながらも認め られ、反射面の形状やその方向性、地表部における鷹架層の走向・ 傾斜等から、これらは連続した一連の構造であると判断した(添3 - ロ(ハ)第8図参照)。

この向斜構造の直上部では、中位段丘堆積層(M₁面堆積物及び M₂面堆積物)が形成する中位面(M₁面及びM₂面)にリニアメン ト・変動地形は判読されず、急傾斜に対応する高度差も認められな い。

反射法地震探査結果では、f-2断層、出戸西方断層及び向斜構 造の他には、顕著な反射面の不連続は認められない。

屈折法地震探査結果によると、最下位速度層 (V_P =5.5km/s相当層) 上面が深度 2km付近にあり、この深度以深に広く先新第三系の尻屋層 の分布が想定される。

b. 敷地を中心とする半径約5km範囲の断層及びリニアメント・変動 地形

文献調査結果に基づく,敷地近傍の活断層分布図(半径約5km範囲)を添3-ロ(ハ)第9図に示す。

活断層研究会編(1991)⁽⁷⁾によると,敷地を中心とする半径約 5kmの範囲には、六ヶ所村出戸付近に1条(出戸西方断層)、六ヶ 所村二又付近に2条,六ヶ所村戸鎖付近に1条及び老部川(南)上 流付近に1条の合計5条のリニアメントが図示されており,いずれ も「活断層の疑のあるリニアメント(確実度III)」とされている。 今泉ほか編(2018)⁽⁸⁾によると,六ヶ所村泊付近から同村尾駮付近 に1条(出戸西方断層帯)を図示している。山崎ほか(1986)⁽³⁾ は,敷地近傍の半径約5km範囲には,活断層又は推定活断層を図示 していない。

変動地形学的調査結果によると、添3-ロ(ハ)第5図に示すよう に、活断層研究会編(1991)⁽⁷⁾による出戸付近のリニアメントにほ ぼ対応する位置及び今泉ほか編(2018)⁽⁸⁾による活断層の一部に対 応する位置に、L_B、L_C及びL_Dリニアメントが判読される。同じ く二又付近及び戸鎖付近に、それぞれL_Dリニアメントが判読され る。また、老部川(南)上流付近には、リニアメント・変動地形は 判読されない。

(a) 出戸西方断層

i. 文献調査結果

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村泊南方の棚沢川付近から同村出戸新町南方にかけて、ほぼN-S方向、長さ4km、活動度B、「活断層の疑のあるリニアメント(確実度III)」の出戸 西方断層を図示・記載し、下末吉面相当に低断層崖がみられるとしている。また、低断層崖状の崖が旧海食崖の可能性もあり、低断 層崖とする証拠がないので確実度をIIIとしたと記載している。

今泉ほか編(2018)⁽⁸⁾は、六ヶ所村泊の中山崎付近から同村尾駮 の老部川(南)左岸にかけて、長さ約20km(図読では約13km)、ほ ぼ南北方向に延びる西側隆起の逆断層帯として出戸西方断層帯を 図示・記載し,南部の老部川の北岸では,後期更新世の海岸段丘 面を変位させる断層露頭が確認され,北部では,海岸沿いの段丘 面が本断層帯に向かって西向きに傾動しており,平均上下変位速 度や活動履歴は不明であるとしている。

渡辺ほか(2008)⁽⁶⁰⁾及び渡辺(2016)⁽⁶¹⁾は、六ヶ所村周辺に分 布する段丘面上に撓曲崖を図示しており、この変形は西傾斜の逆 断層によるものであるとしている。また、この逆断層は第四紀後 期まで活動を繰り返している活断層であるとし、NNE-SSW 方向に連続し、陸上部での延長は少なくとも15kmであるとしてい る。

山崎ほか(1986)⁽³⁾は当該断層を図示していない。

ii. 変動地形学的調查結果

出戸西方断層周辺の空中写真判読図(当社判読図)を添3-ロ (ハ)第10図(1)に,空中写真判読図(今泉ほか編(2018)の活断 層図と当社判読図との重ね図)を添3-ロ(ハ)第10図(2)に,及 び赤色立体地図(今泉ほか編(2018)の活断層図と当社判読図と の重ね図)を添3-ロ(ハ)第10図(3)に示す。

六ヶ所村泊の馬門川右岸付近から同村棚沢川を経て同村老部川(南) 右岸付近までの約11km間に、ほぼN-S方向のL_B、L_c及びL_Dリニア メントが判読される。

棚沢川の北方には、御宿山東方の馬門川右岸付近に至る約4km間の山地内に、ほぼN-S方向のL_Dリニアメントが断続的に判読される。このリニアメントは、連続性の非常に悪い鞍部と直線状の谷・急斜面からなる。

六ヶ所村石川南方の棚沢川右岸から,同村出戸新町を経て老部川(南)

右岸付近に至る約6km間に、ほぼN-S方向のL_B、L_c及びL_Dリニア メントが判読される。

このうち、棚沢川右岸から出戸新町南方に至る約4km間では、 L_B リニアメントが連続する。 L_B リニアメントは、主に中位面 (M_2 ' 面) にみられる東側が低い低崖、若しくは中位面 (M_1 面) と中 位面 (M_2 面, M_2 ' 面及び M_3 面) との境界からなる。

出戸新町南方から老部川(南)左岸にかけて,L_cリニアメントが連続する。このL_cリニアメントは、中位面(M₂面)の急傾 斜部及び中位面(M₂面)と中位面(M₃面)を境する低崖からなる。

老部川(南)右岸付近には、L_Dリニアメントが判読される。 このL_Dリニアメントは、中位面(M₂面)とその東側の低地を 境する崖からなる。

これらのリニアメント・変動地形のうち,棚沢川右岸から出戸 新町南方付近に至る約4km間が活断層研究会編(1991)⁽⁷⁾の出戸 西方断層に,また,棚沢川右岸から老部川(南)左岸付近に至る 約5km間が今泉ほか編(2018)⁽⁸⁾の出戸西方断層帯の南部に対応 する。

今泉ほか編(2018)⁽⁸⁾が図示・記載する出戸西方断層帯の北部 (棚沢川右岸から中山崎に至る約8km間)は、大局的には西側の 山地斜面と東側の台地との境をなす遷緩線と判読され、微視的に みても山地斜面裾部から台地にかけての扇状地面分布域を含めて リニアメント・変動地形は判読されない。

棚沢川北方の馬門川右岸付近に判読されるL_Dリニアメントより北 方には、リニアメント・変動地形は認められない。また、同リニア メント南方延長位置における北川左岸に判読される高位段丘面 (H_2 面)に顕著な高度不連続は認められない。なお、棚沢川右岸 の低位段丘面 (L_1 面) 及び棚沢川左岸の中位段丘面 (M_1 面, M_2 面 及び M_2 , 面)には、リニアメント・変動地形は判読されない。

断層南方延長の老部川(南)右岸付近以南にあたる六ヶ所村尾 駮地区の中位面(M₁面, M₂面及びM₂'面)には、リニアメン ト・変動地形は判読されない。

地形面の分布及び変動地形を詳細に把握することを目的として 作成した, DEMに基づく出戸西方断層周辺の空中写真判読図(鳥 瞰図)及び地形断面図を添3-ロ(ハ)第11図及び添3-ロ(ハ)第 12図に示す。

棚沢川以南のリニアメント・変動地形が判読される位置に対応し て、低崖及び地形の撓みが認められる。低崖の標高差は、六ヶ所村 出戸西方の村営放牧場北付近で最大であり、北方及び南方に向かっ て徐々に減少する。この低崖を挟んだ東西で段丘面が異なり、西側 には主にM₁面が分布し、東側にはM₂面、M₂'面及びM₃面が分布 していることから、活断層研究会編(1991)⁽⁷⁾が指摘するとおり、 崖は海水準変動に伴う段丘崖である可能性が高いと判断した。一 方で、この段丘崖に沿ってリニアメント・変動地形が判読され、 老部川(南)左岸のD-1 露頭(H16)において、中位段丘堆積 層(M₂面堆積物)に西上がりの変位を与える逆断層を確認したこ とから、崖の標高差には出戸西方断層の活動による西上がりの成 分も含まれているものと考えられる。

また,出戸西方断層周辺の中位段丘面の勾配は,リニアメント・変動地形が判読される近傍を除き,現在の海底地形勾配と同等で

あり,段丘面の傾動を示唆する地形は認められない。ただし,一 部の中位段丘面の勾配が周辺の段丘面及び海底地形の勾配よりも 大きい地点がいくつかある。勾配が大きい理由については,これ らの地点におけるボーリング調査の結果から,出戸西方断層によ る変形を除き,

・表層を覆う扇状地性堆積物によって海成段丘が埋没している
 こと

・段丘構成層が河成堆積物からなること

といった2つの要因が考えられる。(添3-ロ(ハ)第13図及び添 3-ロ(ハ)第46図参照)

出戸西方断層周辺の旧汀線高度分布図を添3-ロ(ハ)第14図に 示す。

中位段丘面の旧汀線高度分布を検討した結果によると、棚沢川 右岸から老部川(南)右岸付近にかけて、M₁面に代表される中 位段丘面の高まりが認められるものの、この範囲より北側あるい は南側においては、このような傾向は認められない。

iii. 物理探查結果

重力探査結果に基づく、出戸西方断層周辺の残差重力分布図を 添3-ロ(ハ)第15図に示す。

出戸西方断層周辺では、大局的に、北方の丘陵地及び山地にお いて相対的に高重力異常を示し、これより南方に向かって低重力 異常を示している。出戸西方断層に対応するような重力異常の急 変部は認められない。

出戸西方断層南方の反射法地震探査結果によると,老部川(南) 付近の出戸西方断層の位置に,西上がりの高角度な逆断層の形態 を示す反射面の不連続が認められる(添3-ロ(ハ)第7図(1)参 照)。反射面の不連続は、深部の泊層相当層から浅部の鷹架層相 当層まで認められ、西側隆起の変位が地表付近まで及んでいると 推定されるが、出戸西方断層の南方延長には、このような地表付 近まで達する反射面の不連続は認められない(添3-ロ(ハ)第7 図(2)参照)。

iv. 地表地質調查結果等

出戸西方断層周辺の地質平面図を添3-ロ(ハ)第16図に,地質 断面図を添3-ロ(ハ)第17図に示す。

断層周辺には,新第三系中新統の泊層及び鷹架層,第四系上部 更新統の中位段丘堆積層,低位段丘堆積層等が分布する。

泊層は,凝灰角礫岩,安山岩溶岩等からなり,主に出戸新町以 北に分布している。鷹架層は,泥岩,砂岩,軽石凝灰岩等からな り,棚沢川付近より南方に分布し,特に出戸新町以南に広く分布 している。

(i) 断層主部の地質調査結果

出戸新町以南の鷹架層には、ほぼN-S~NNE-SSW走 向で東急傾斜する地質構造が認められる。東急傾斜の地質構造 は、判読されるリニアメント・変動地形の位置にほぼ一致して いる。

断層中央部にあたる出戸川では、L_Bリニアメントに対応す る位置において、断層露頭が認められる(DW-1露頭及び DW-2露頭:添3-ロ(ハ)第18図及び添3-ロ(ハ)第19図参 照)。本露頭においては、被覆層との関係は確認できないもの の、泊層の凝灰角礫岩と砂質凝灰岩を境する明瞭かつシャープ
な断層面が認められ、断層面にはフィルム状の粘土状破砕部が 認められる。

老部川(南)左岸のLcリニアメントに対応する位置において、 断層露頭が認められる(D-1露頭全体の調査位置及びD-1露 頭(H16):添3-ロ(ハ)第20図及び添3-ロ(ハ)第21図参照)。 D-1 露頭(H16)においては、鷹架層とその上位を不整合に 覆う中位段丘堆積層(M₂面堆積物)に西上がりの逆断層が認め られ、中位段丘堆積層(M2面堆積物)の上面に約4mの鉛直変 位が認められる。本露頭においては、十和田レッド火山灰(約 8万年前)及びその上位の十和田大不動火山灰(約3.2万年前) に断層変位が及んでいるものの, さらに上位の十和田八戸火 山灰 (約1.5万年前) には変位・変形が及んでいない。また, D-1 露頭前トレンチの地質観察結果によると、鷹架層を覆う 第四紀の地層に西側隆起の変位・変形を与える逆断層が認めら れ、断層は概ね南北走向で70°西傾斜を示す(添3-ロ(ハ)第 22図参照)。D-1露頭は平成8年から平成14年を経て平成 16年にかけて造成され、各段階における露頭観察結果によると、 断層トレースは湾曲した分布形態を示し、直線的に南方へ連続 する(添3-ロ(ハ)第20図及び添3-ロ(ハ)第23図参照)。な お, D-1 露頭西側法面の地質観察結果によると, 鷹架層の 地質構造はE-W走向、高角度北傾斜を示し、破砕部を伴う ような断層は認められない(添3-ロ(ハ)第24図参照)。ま た、D-1 露頭(H16)の観察結果から、第四紀後期更新世 の累積的活動が明らかであり、平均変位速度は約4m/10万 年と見積もられる(添3-ロ(ハ)第25図参照)。

(ii) 断層南端付近の地質調査結果

出戸西方断層の南方への連続性,南方の地質構造把握等を目 的にボーリング調査及び反射法地震探査を実施した。出戸西方 断層南方の鷹架層上限面図を添3-ロ(ハ)第26図に,地質断面 図を添3-ロ(ハ)第27図に,反射法地震探査結果を添3-ロ(ハ) 第28図に示す。

ボーリング調査結果によると,出戸西方断層南方の基盤は主 に鷹架層中部層粗粒砂岩層,軽石凝灰岩層,軽石混り砂岩層及 び礫混り砂岩層並びに鷹架層上部層泥岩層が分布する。

D-1露頭における出戸西方断層の走向・傾斜から想定され る南方延長では、老部川(南)左岸から老部川(南)河床付近 のX測線、Y測線及びA測線において高角度西傾斜の出戸西方 断層を確認した。確認した出戸西方断層は、いずれも幅1cm~ 3cmの粘土状破砕部を伴い、最新面の変位センスは逆断層であ る。しかし、老部川(南)右岸の L_D リニアメント位置に対応す るZ測線以南では、出戸西方断層と同様の特徴を持つ断層は確 認されない。なお、X測線、Y測線、A測線及びZ測線の出戸 西方断層の西側にみられ、濃縮・埋設事業所敷地に連続すると 想定されるsf断層(sf-b断層及びsf-c断層)は、ボ ーリング調査結果等から、断層面は固結・ゆ着し、断層面及び 周辺にせん断面や破砕部は認められないことから、鷹架層堆積 当時~堆積直後の未固結時の断層であると判断した。また、s f断層(sf-b断層及びsf-c断層)は、中位段丘堆積層 (M_1 面堆積物)に変位・変形を与えていないことから、第四紀

後期更新世以降の活動はないものと判断した。

鷹架層の地質構造は、C測線付近以北ではN-S走向、東に 急傾斜する構造が認められ、Z測線付近以北では一部傾斜が逆 転している。C測線付近以南ではNE-SW走向を示し、出戸 西方断層沿いに認められる急傾斜構造は、南方に向かって傾斜 が緩くなることから、C測線付近を境に鷹架層の地質構造に差 異が認められる。

反射法地震探査結果によると,老部川(南)左岸(X測線) 付近では,明瞭な反射面がみられる深度300m付近まで西上がり の高角度な逆断層の形態を示す反射面の不連続が認められ,ボ ーリング調査結果等に基づく出戸西方断層の地表トレース位置 と一致する(添3-ロ(ハ)第28図(2)参照)。また,尾駮沼北 方(F測線)付近では,南東に緩く傾斜する反射面が認められ, ボーリング調査結果等に基づく地質構造と整合する(添3-ロ (ハ)第28図(1)参照)。

老部川(南)右岸のL_Dリニアメントの南方延長位置におい て、出戸西方断層の南端の地質構造を詳細に確認することを目 的として、B測線付近において東西方向423m区間のトレンチ調 査(以下、「断層南方延長トレンチ」という。)を実施した(添 3-ロ(ハ)第29図参照)。断層南方延長トレンチ付近の地形標 高は、西端が標高24m程度、東端が標高17m程度であり、標高 20m付近に傾斜変換点が認められる。なお、傾斜変換点の基盤 標高は、西側で高く、東側で低い。断層南方延長トレンチ内で 確認される地質は、鷹架層、中位段丘堆積層、火山灰層等であ る。鷹架層は、中部層礫混り砂岩層及び上部層泥岩層が分布す る。礫混り砂岩層は、凝灰岩、礫岩、礫混り砂岩及び砂岩に細 分される。中位段丘堆積層は、淘汰が良い中粒砂、シルト等からなり、堆積相から大きく4層(砂層1,砂層2,砂層3及び砂層4)に区分される(添3-ロ(ハ)第30図参照)。火山灰層は、洞爺火山灰(11.2~11.5万年前)、十和田レッド火山灰(約8万年前)等を挟む。洞爺火山灰(11.2~11.5万年前)は、傾斜変換点の西側の標高21m以上の範囲では火山灰層の最下部付近に風成で堆積しており、東側の標高20m以下の範囲では砂層4の下位に挟まれることから、断層南方延長トレンチ西側と東側では離水時期が異なる段丘面であると判断した。

鷹架層は、全体にNNE-SSW走向、30°~70°東傾斜の 構造を有し、西側から東側に向かって上位の地層が出現する。 鷹架層の上限面は浸食面であり、岩質の影響を受けて、礫質部 で高く、砂質部で低い。出戸西方断層と同様の特徴を有する高 角度西傾斜、西上がりの断層は認められない。ただし、複数の 小規模な断層が認められ、基盤上面及び第四系に変位・変形を 与える構造として、NNE-SSW走向、東傾斜及び東上がり の断層が3条(イ断層、ロ1断層及びロ2断層)認められる(添 3-ロ(ハ)第31図参照)。これら断層は、いずれも断層面が平 滑であり、断層面に沿って軟質細粒物を挟む特徴を有する。い ずれの断層も連続性が乏しく、活動に累積性は認められないも のの、基盤岩上面及び第四系に変位・変形を与えていることか ら、これら断層を出戸西方断層の副次的な断層として安全側に 評価した。

B測線におけるボーリング調査結果によると、A測線以北で 認められる明瞭な西傾斜の断層は認められない。また、断層南 方延長トレンチ付近の中位段丘堆積層はほぼ水平に堆積しており,西側隆起の傾向は認められない。B測線付近で実施した反射法地震探査結果によると,東に急傾斜する反射面が認められ, 断層を示唆するような不連続は認められず,ボーリング調査結 果等に基づく地質構造と整合する(添3-ロ(ハ)第28図(3)参 照)。

また、イ断層、ロ1断層及びロ2断層と同様に軟質細粒物を 挟む断層の有無を確認することを目的として、出戸西方断層南 方のボーリングコア等に認められる断層の性状分類を行い(添 3-ロ(ハ)第32図参照)、確認された断層を対象に針貫入試験 を実施した(添3-ロ(ハ)第2表参照)。出戸西方断層及び軟 質細粒物を挟む断層の針貫入試験結果は測定下限値以下であり、 軟質細粒物を挟む断層はB測線以北では確認されるが、C測線 以南では認められない。なお、C測線以南においても測定下限 値以下の箇所が認められるが、せん断面及び破砕部を伴わない こと、断層部だけではなく周辺の母岩でも測定下限値以下を確 認したこと、また、D測線及びE測線の同層準では測定下限値 以下を確認していないことから、断層の影響によるものではな く、また、連続的に分布するものではないと判断した。

断層南方延長トレンチ東端の調査結果に加え,同トレンチ東 側の低位段丘面(L₁面)にみられる低崖において実施した地 形調査結果及びボーリング調査結果によると,低崖の西側に砂 丘砂層が認められること及び,鷹架層中に出戸西方断層と同様 の特徴を持つ断層は認められないことを確認した。このことか ら,低位段丘面(L₁面)にみられる低崖は砂丘砂層の高まり によるものと判断した。

さらに、出戸川南方の海上音波探査記録の検討結果より、出 戸西方断層南方からF-d断層に連続するような活構造は認め られないことを確認した。

(iii) 断層南方の向斜構造に係る地質調査結果

尾駮沼付近から鷹架沼付近にかけて認められるNE-SW方 向の軸をもつ非対称な向斜構造の上載地層である六ヶ所層の分 布を把握することを目的として,尾駮沼南岸及び鷹架沼南岸に おいて,地表地質調査,ボーリング調査及び地質年代測定を実 施した。調査位置を添3-ロ(ハ)第16図に示す。

尾駮沼南岸において実施したボーリング調査結果によると, 鷹架層上部層は、それに挟まれる鍵層(砂岩)の分布から、向 斜軸の北西側で急傾斜を示し、南東側で緩傾斜を示しており、 向斜軸を挟んで非対称な特徴を示す(添3-ロ(ハ)第33図参照)。 尾駮沼南岸の向斜構造西縁部において実施したボーリング調査 結果によると、南東に傾斜して分布する鷹架層上部層及び砂子 又層下部層を、不整合に覆って六ヶ所層がほぼ水平に分布する (添3-ロ(ハ)第34図参照)。

鷹架沼南岸において実施した地表地質調査結果によると、地 質は下位より鷹架層上部層、砂子又層下部層、六ヶ所層、中位 段丘堆積層等からなる(添3-ロ(ハ)第35図参照)。向斜軸か ら西翼部にかけて重点的に実施したボーリング調査及び地表地 質調査結果によると、ボーリングコア及び複数の露頭において 砂子又層下部層と六ヶ所層との不整合を確認した(添3-ロ(ハ) 第36図及び添3-ロ(ハ)第37図参照)。砂子又層下部層の地質 構造は、北西から南東に向かうにつれて傾斜を減じ、ボーリン グ地点及びTkh露頭付近で約40°~30°南東傾斜を示し,露 頭3及び露頭4で約20° 南東傾斜を示す (添3-ロ(ハ)第38図 (1), 添3-ロ(ハ)第38図(4)及び添3-ロ(ハ)第38図(5)参 照)。向斜軸の南東の露頭5、露頭1及び露頭2では傾斜方向 を転じ、1°~4°の緩い北西傾斜を示す(添3-ロ(ハ)第38 参照)。すなわち、砂子又層下部層は向斜軸の北西側で急傾斜 を示し、南東側で緩傾斜を示しており、向斜軸を挟んで非対称 な特徴を示す。六ヶ所層は、下位の砂子又層下部層を不整合に 覆い、大局的には約15m~20mのほぼ一定の層厚で東に緩く傾 斜しており、向斜構造を形成する下位層とは非調和な分布を示 している(添3-ロ(ハ)第35図参照)。六ヶ所層の内部構造に 着目すると,最下位に基底礫を伴うシルト・砂互層が分布し, その上位にシルトが累重しており、このシルトを削り込んで礫 混り砂(非海成層)が分布し,その上位に細粒砂,粗粒砂及び シルトが累重している。これらはチャネル状に分布すると解 釈される礫混り砂(非海成層)を除いて,いずれもほぼ水平 に分布しており、向斜構造を形成した構造運動の影響を受け ていないものと判断される(添3-ロ(ハ)第37図参照)。ま た, Tkh露頭と露頭1の標高データ等から算出される中位段 丘堆積層(M1面堆積物)基底面の勾配は約1.2%であり、添3 - ロ(ハ)第33図に示す印測線の中位面(M1面)の勾配1.1%と 調和的である。

Tkh露頭及び露頭3において,砂子又層下部層に挟まれる凝

灰岩を対象に年代測定を実施したところ、フィッション・トラッ ク法では3.7±0.3Ma, 3.8±0.4Ma及び3.9±0.4Maの年代値 が得られ、ウランー鉛法では4.0±0.1Maの年代値が得られた。 これらから、砂子又層下部層は、新第三系鮮新統であると判断し た。また、Tkh露頭において、六ヶ所層の標高26.5m付近に挟 まれる粗粒火山灰を対象に年代測定を実施したところ、フィッ ション・トラック法では0.5±0.1Maの年代値が得られ、ウラ ンー鉛法では378±3kaの年代値が得られた。さらに、露頭1 において、六ヶ所層の標高10.5m付近に挟まれる軽石質粗粒火 山灰を対象にフィッション・トラック法による年代測定を実施 したところ、1.3±0.2Maの年代値が得られた。これらから、 六ヶ所層は第四系下部~中部更新統であると判断した。

以上のことから,尾駮沼付近から鷹架沼付近にかけて認められ るNE-SW方向の軸をもつ非対称な向斜構造を形成した構造運 動は六ヶ所層の堆積中及び堆積後には認められないと判断した。 また,同構造は、出戸西方断層とは方向及び活動時期が異なるこ とから、一連の構造ではないことが明らかとなった。

(iv) 断層北端付近の地質調査結果

棚沢川左岸から御宿山東方の馬門川付近にかけて、泊層の地質 分布から、ほぼN-S走向及びNNE-SSW走向の2条の西落 ちの正断層が推定される。このうち、東側に位置するN-S走向 の断層沿いには、 L_D リニアメントが断続的に判読される。

棚沢川以北においては、一部の尾根筋にL_Dリニアメントが 断続的に判読されるが、北川左岸に分布する高位段丘面(H₂ 面)付近で実施した地表地質調査及びボーリング調査の結果に よると、リニアメントを挟んだ東西の高位段丘面に高度不連続 は認められず、被覆層の境界にも不連続は認められない(添3 - ロ(ハ)第16図及び添3-ロ(ハ)第39図参照)。

棚沢川北方の断層沿いには、OT-1露頭及びOT-2露頭 が認められる(添3-ロ(ハ)第40図(1)及び添3-ロ(ハ)第40 図(2)参照)。北川左岸付近に確認されるOT-2露頭の地質 観察結果によると、被覆層との関係は確認できないものの、泊 層の凝灰角礫岩とセピオライト脈とを境するシャープな断層面 が認められ、破砕幅は約15cmであり、断層面には軟質で直線的 な粘土状破砕部が認められる。OT-2露頭から定方位でブロ ックサンプリングを行い、採取した試料の研磨片観察結果及び CT画像観察結果を添3-ロ(ハ)第41図(2)に、薄片観察結果 を添3-ロ(ハ)第42図(2)にそれぞれ示す。これらの結果から、 最新活動を示す断層面の変位センスは逆断層である。

馬門川右岸付近に確認されるOT-1 露頭の地質観察結果に よると、被覆層との関係は確認できないものの、泊層の安山岩 溶岩とセピオライト脈とを境する断層面が認められ、破砕幅は 約1 cmであり、顕著な破砕部は認められず、断層面は固結して いる。OT-1 露頭から定方位でブロックサンプリングを行い、 採取した試料の研磨片観察結果及びCT画像観察結果を添3-ロ(ハ)第41図(1)に、薄片観察結果を添3-ロ(ハ)第42図(1) にそれぞれ示す。これらの結果から、最新活動を示す断層面の 変位センスは正断層であり、出戸西方断層の変位センスとは一 致しない。なお、OT-1 露頭以北にはリニアメント・変動地 形は判読されない。

 $3 - \Box - 111$

さらに、棚沢川から物見崎付近の海上音波探査記録の検討結 果より、出戸西方断層北端付近から太平洋側に連続するような 活構造は認められないことを確認した。

(v) 棚沢川北方の平野部を対象にした地質調査結果

棚沢川北方の平野部を対象に実施したボーリング調査結果等 によると、段丘面構成層は主に砂礫からなる河成層であり、段 丘面構成層の層相分布は東西方向に連続し、その勾配は原地形 と概ね整合的である(添3-ロ(ハ)第13図参照)。また、東京 電力株式会社(2010)⁵⁸が実施した地形・地質調査結果による と、扇状地面及び中位段丘面が単調に東方へ緩く傾斜しており、 リニアメント・変動地形は判読されず、河川沿いに確認される 泊層も緩傾斜を示しており、断層及びその構造を示唆する地質 構造は認められない(添3-ロ(ハ)第43図参照)。

vi. 文献が指摘する出戸西方断層帯の北部を対象にした地質調査結 果

今泉ほか編(2018)⁽⁸⁾が棚沢川右岸から中山崎にかけて図示・ 記載する出戸西方断層帯の北部における「活断層」の存否を把握 することを目的として,馬門川周辺に2本の測線(MK測線及び IB測線)を配して地表地質調査及びボーリング調査を実施した。

馬門川左岸において今泉ほか編(2018)⁽⁸⁾が最も確実とする「断 層崖」直近の平坦面上にて、断層線の走向と概ね直交するように MK測線を配し、斜めボーリング、鉛直ボーリング及び地表地質 調査を実施した。その結果、地質は大局的に緩い西傾斜を示す泊 層の安山岩溶岩、火山角礫岩等からなり、それらに出戸西方断層 の存在を示唆する断層及び地質構造は認められない。(添3-ロ (ハ)第44図(1)参照)

馬門川南方において今泉ほか編 (2018)⁽⁸⁾ が最も確実とする 「断 | 層崖| を横断するように I B 測線を配し、ボーリング調査を実施 した。その結果,地質は泊層の安山岩溶岩,中位段丘堆積層(M₂ 面堆積物)等からなり、中位段丘堆積層(M2面堆積物)の上位に は洞爺火山灰(11.2~11.5万年前), 十和田レッド火山灰(約8) 万年前)等を挟むローム層、扇状地堆積物が分布する。洞爺火山 灰 (11.2~11.5万年前) は今泉ほか編 (2018)⁽⁸⁾ が図示する「断 |層崖||を横断する東西でほぼ水平に連続しており, IB-1孔か らIB-4孔間の泊層と中位段丘堆積層(M2面堆積物)との不整 |合面の勾配(3.7%)と洞爺火山灰(11.2~11.5万年前)の勾配(3.6%)| はほぼ平行に連続していることから、出戸西方断層の存在を示唆す るような断層は推定されない。なお、今泉ほか編(2018)⁽⁸⁾が図 |示する「断層崖||の西側には、礫混りシルトからなる扇状地堆積 物が最大層厚5m程度で分布しており、この東側には分布してい ないことから、この「断層崖」は扇状地堆積物の堆積状況を判読 したものと判断される。(添3-ロ(ハ)第44図(2)参照)

vii. 文献が指摘する出戸西方断層帯の北端付近に係る地質調査結果 今泉ほか編(2018)⁽⁸⁾図示する出戸西方断層帯の北端付近の 中位段丘面の旧汀線高度を把握することを目的として、中山崎周 辺に9本の測線(北からNKf測線,NKa測線,NKb測線, NKN測線,NKc測線,NK加線,NKd[']測線,NKS測線, NKg測線)を配してボーリング調査を実施した。その結果、地 質は基盤をなす泊層の玄武岩溶岩,安山岩溶岩,凝灰角礫岩等と, これを不整合で覆う中位段丘堆積層(M1面堆積物)等からなる。 中位段丘面(M₁面)の構成層は分布しないか極めて薄い砂や円 礫層等からなる。特にNK測線においては,泊層を直接覆う風成 の火山灰層の下部に洞爺火山灰(11.2~11.5万年前)を挟んでお り,段丘面は波食台の様相を呈している。NK c 測線以北では中 位段丘面は古期扇状地堆積物に広く覆われており,その下位に中 位段丘面が埋没していることから、中位段丘面(M₁面)の旧汀線 高度(地形面)は古期扇状地堆積層の厚さに対応して異なってい る。一方,旧汀線高度(泊層上限)は概ね標高26m前後で一定で あり,今泉ほか編(2018)⁽⁸⁾の出戸西方断層帯の北端付近を境と して系統的な高度不連続は認められない。(添3-ロ(ハ)第45図 及び添3-ロ(ハ)第46図参照)

今泉ほか編(2018)⁽⁸⁾はNK測線及びNKS測線付近の中 位段丘面上に西向きの傾動を図示している。これらについて, NK測線の調査結果によると,NK-4孔付近における中位 段丘面(M₁面)の浸食地形と古砂丘堆積物の高まりからなる, やや西傾斜の地形面範囲を判読したものと判断される(添3 - ロ(ハ)第46図(2)参照)。NKS測線の調査結果によると, NKS-3孔及びNKS-4孔とこれより西側にみられるよう な古期扇状地堆積物の層厚の違いによる段丘面の傾斜が,みかけ 緩傾斜になっている範囲を判読したものと判断される(添3-ロ (ハ)第46図(3)参照)。

NKN測線では、西側が高く、東側が低い泊層上限高度の不連続が崖状に認められる。崖の東側には石英粒子を多く含む円礫混り砂が泊層を直接覆っており、阿蘇4火山灰(8.5~9万年前)を挟む湿地堆積物に覆われることから中位段丘堆積物(M3面堆

積物)と判断される。崖の西側は段丘堆積物が分布しないものの, NK測線のテフラ層序から標高23m付近の平坦面をMIS5eの M₁面とした。この結果から,崖はMIS5eから5cにかけての 海水準変動に伴う段丘崖と判断されるが,断層崖の可能性について 確認するため,NKN-8孔及びNKN-9孔により崖直下におけ る泊層中の地質確認を行った結果,断層は認められない。(添3-ロ(ハ)第46図(2)参照)

以上のことから、今泉ほか編(2018)⁽⁸⁾が指摘する出戸西方断 層帯の北端付近には出戸西方断層の存在を示唆する断層及び地質 構造は存在しないと判断した。

v. 総合評価

出戸西方断層周辺には、六ヶ所村泊馬門川右岸付近から同村棚 沢川を経て同村老部川(南)右岸付近までの約11km間にL_B、L_C 及びL_Dリニアメントが判読される。

地表地質調査結果によると、老部川(南)左岸のL_cリニア メントに対応する位置において、中位段丘堆積層(M₂面堆積 物)に西上がりの変位を与える逆断層が認められる(D-1露 頭(H16))。D-1露頭(H16)では、中位段丘堆積層(M₂ 面堆積物)の上面に、約4mの鉛直変位が認められ、その上位の 十和田レッド火山灰(約8万年前)及び十和田大不動火山灰(約 3.2万年前)に断層変位が及んでいる。

老部川(南)右岸のL_Dリニアメント位置に対応するZ測線よ り南には、リニアメント・変動地形は判読されず、出戸西方断層 と同じ西傾斜の逆断層は認められない。

断層南方延長トレンチにおいて確認されるイ断層, ロ1断層及

びロ2断層については、連続性が乏しく、累積性が認められない ものの、基盤岩上面及び第四系に変位・変形を与えていることから、 これら断層を出戸西方断層の副次的な断層として安全側に評価した。 これら副次的な断層は、断層南方延長トレンチ位置と概ね一致する B測線から南へ約245mの位置であるC測線以南には確認されず、 鷹架層の地質構造は、C測線付近以北ではN-S走向、C測線付 近以南ではNE-SW走向を示し、出戸西方断層沿いに認められ る急傾斜構造は、南方に向かって傾斜が緩くなることから、C測 線付近を境に鷹架層の地質構造に差異がみられる。(添3-ロ(ハ) 第47図参照)

なお、尾駮沼南岸及び鷹架沼南岸における地質調査結果による と、尾駮沼付近から鷹架沼付近にかけて認められるNE-SW方 向の軸をもつ非対称な向斜構造を形成した構造運動は、六ヶ所層 の堆積中及び堆積後には認められない。また、同構造は、出戸西 方断層とは方向及び活動時期が異なることから、一連の構造では ない。

棚沢川北方の北川左岸付近に確認されるOT-2露頭における 断層の破砕幅は約15cmであり、断層面には軟質で直線的な粘土状 破砕部が認められ、薄片観察の結果、最新活動を示す断層面の変 位センスは逆断層である。しかし、馬門川右岸付近に確認される OT-1露頭における断層の破砕幅は約1cmであり、顕著な破砕 部は認められず、断層面は固結している。薄片観察の結果、最新 活動を示す断層面の変位センスは正断層であり、出戸西方断層の 変位センスとは異なる。なお、OT-1露頭以北にリニアメント・ 変動地形は判読されない。 なお、今泉ほか編(2018)⁽⁸⁾が図示する出戸西方断層帯北部及 び北端付近で実施した地質調査結果によると、棚沢川右岸から中 山崎に至る同(2018)⁽⁸⁾の出戸西方断層帯の北部に対応した出戸 西方断層の存在を示唆する断層及び地質構造は存在しない。

さらに,海上音波探査記録の検討結果等から,出戸西方断層は, 海側に連続しないことを確認した。

以上のように、出戸西方断層及び出戸西方断層の副次的な断層 は、第四紀後期更新世に形成された中位段丘堆積層に変位・変形 を与えていることから、第四紀後期更新世以降の活動性を考慮す ることとし、その長さをOT-1露頭からC測線までの約11kmと 評価した。

(b) 二又付近のリニアメント・変動地形

i. 文献調査結果

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村二又の北西付近に、長 さ約2.3km, E-W方向のリニアメント及び長さ約1.8km, NNW -SSE方向のリニアメントを図示し、「活断層の疑のあるリニ アメント(確実度III)」としている。

山崎ほか(1986)⁽³⁾及び今泉ほか編(2018)⁽⁸⁾は当該リニア メントを図示していない。

ii. 変動地形学的調査結果

六ヶ所村二又周辺の空中写真判読図を添3-ロ(ハ)第48図に示す。

六ヶ所村二又の北西付近には、E−W方向のL_Dリニアメント (以下、「二又西方リニアメント」という。)及びNW−SE方 向のL_Dリニアメント(以下、「二又北方リニアメント」という。) が判読される。

二又西方リニアメントは、長さが約1.5kmで、高位面(H₄面) 上にみられる北側が低い撓み状の崖からなる。リニアメントは、 二又川を挟んで西側と東側に分かれ、両者の直線性はよくない。 このうち、東側のL_Dリニアメントが、活断層研究会編(1991)⁽⁷⁾ による確実度Ⅲのリニアメントにほぼ対応する。

二又北方リニアメントは、長さが約2kmで、山腹斜面上にみられる南西側が低い傾斜変換部の断続からなる。なお、活断層研究 会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニアメントは、二又北方 リニアメントの南西側の直線状の谷にほぼ位置している。

iii. 地表地質調查結果

六ヶ所村二又周辺の地質平面図を添3-ロ(ハ)第49図に示す。

二又周辺には,新第三系中新統の泊層及び鷹架層,新第三系鮮 新統の砂子又層下部層が分布する。また,これらを不整合に覆っ て第四系下部~中部更新統の六ヶ所層及び第四系中部更新統の高 位段丘堆積層が広く分布し,沢沿いの一部に第四系上部更新統の 低位段丘堆積層が局所的に分布する。

(i) 二又西方リニアメント

六ヶ所村雲雀平付近では、砂子又層下部層を覆って高位段丘 堆積層(H₄面堆積物)が分布する。高位面(H₄面)上からの ハンドオーガーボーリング調査結果によると、二又西方リニア メント及び活断層研究会編(1991)⁽⁷⁾による確実度Ⅲのリニア メントを挟んで、高位段丘堆積層(H₄面堆積物)上面がほぼ 水平に分布しており、高度不連続は認められない(添3-ロ(ハ) 第50図参照)。 また,雲雀平付近の高位面(H₄面)上では,風成砂からなる砂丘状の地形的な高まりが多くみられる。

(ii) 二又北方リニアメント

六ヶ所村第三二又付近では、砂子又層下部層及び六ヶ所層が 同斜構造をなして分布する。二又北方リニアメントを横断する 沢の両岸には、砂子又層下部層の露頭が断続的に分布しており、 粗粒砂岩中に挟まれる軽石質砂岩、礫岩、軽石密集層等の地層 がリニアメント位置を横断して連続的に分布している。判読さ れるL_Dリニアメントの位置は、砂子又層下部層の粗粒砂岩と、 これに挟まれる硬質な礫岩又は含礫砂岩の岩相境界にほぼ対応 している。(添3-ロ(ハ)第51図参照)

なお、二又北方リニアメントの南西側にある直線状の谷に、 活断層研究会編(1991)⁽⁷⁾による確実度Ⅲのリニアメントが位 置するが、リニアメントの両側で砂子又層下部層中の軽石密集 層が連続して分布しており、両岸に狭小に分布する中位段丘堆 積層(M₂面堆積物)の下面にも高度差が認められない(添3 - - ロ(ハ)第52図参照)。

iv. 総合評価

(i) 二又西方リニアメント

二又西方リニアメントは、活断層研究会編(1991)⁽⁷⁾が図示 する確実度IIIのリニアメントと概ね対応する。

地表地質調査の結果,二又西方リニアメント及び活断層研究 会編(1991)⁽⁷⁾による確実度Ⅲのリニアメントを挟んで,高位 段丘堆積層(H₄面堆積物)上面に高度不連続は認められない ことから,第四紀後期更新世以降に活動した断層は存在しない ものと判断した。

また,L_Dリニアメントの位置は,高位面(H₄面)上に認め られる砂丘状の高まりにほぼ対応していることから,二又西方 リニアメントは,風成砂による砂丘状の高まりが撓み状の崖と 類似した地形を呈しているものであると判断した。

(ii) 二又北方リニアメント

二又北方リニアメントの両側では,砂子又層下部層の地質構 造に不連続は認められないことから,第四紀後期更新世以降に 活動した断層は存在しないものと判断した。

また, L_Dリニアメントの位置は, 砂子又層下部層中の岩相 境界にほぼ対応していることから, 二又北方リニアメントは岩 質の差を反映した浸食地形であると判断した。

なお、この南西側にある直線状の谷に、活断層研究会編 (1991)⁽⁷⁾による確実度IIIのリニアメントが位置するが、リニ アメントの両側で砂子又層下部層の地質構造に不連続は認めら れず、中位段丘堆積層(M₂面堆積物)の下面に高度差が認め られないことから、第四紀後期更新世以降に活動した断層は存 在しないものと判断した。

- (c) 戸鎖付近のリニアメント・変動地形
 - i. 文献調査結果

活断層研究会編(1991)⁽⁷⁾は, 六ヶ所村戸鎖付近に, 長さ約2.2km, E-W方向の「活断層の疑のあるリニアメント(確実度Ⅲ)」を 図示している。

山崎ほか(1986)⁽³⁾及び今泉ほか編(2018)⁽⁸⁾は当該リニア メントを図示していない。 ii. 変動地形学的調查結果

六ヶ所村戸鎖周辺の空中写真判読図を添3-ロ(ハ)第53図に示す。

六ヶ所村戸鎖南方には、E-W方向のL_Dリニアメント(以下,

「戸鎖南方リニアメント」という。)が断続的に判読される。

戸鎖南方リニアメントは、長さが約3kmで、高位面(H₄面) と高位面(H₅面)とを境する北側が低い崖、高位面(H₅面)上 を開析する北側が低い崖等の連続性のよい配列からなる。

なお,活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニア メントは,戸鎖南方リニアメントの約1km南方の直線状の谷にほ ぼ位置している。

iii. 地表地質調査結果

六ヶ所村戸鎖周辺の地質平面図を添3-ロ(ハ)第54図に示す。

戸鎖周辺には,主に新第三系中新統の鷹架層,新第三系鮮新統 の砂子又層下部層,第四系下部~中部更新統の六ヶ所層,第四系 中部更新統の高位段丘堆積層,第四系上部更新統の中位段丘堆積 層等が分布する。

六ヶ所村戸鎖の南には、砂子又層下部層とこれを覆う中位段丘 堆積層(M₂面堆積物)等からなる露頭が認められる。本露頭に おいては、戸鎖南方リニアメントの位置を挟んで、砂子又層下部 層が連続して分布しており、断層は認められない。リニアメント 位置では、洞爺火山灰(11.2~11.5万年前)を挟む中位段丘堆積 層(M₂面堆積物)が、砂子又層下部層を削り込んで傾斜不整合 で接している。(添3-ロ(ハ)第55図参照)

この露頭の東方では、戸鎖南方リニアメントの位置を挟んで、

高位段丘堆積層(H₅面堆積物)下面がほぼ水平に連続して分布 しており、リニアメントは風成砂からなる砂丘状の地形的な高ま りに対応している。さらにこの東方で判読される L_D リニアメン トは高位面(H₄面)と高位面(H₅面)とを境する段丘崖に対応 している。(添3- μ (ハ)第56図参照)

なお、戸鎖南方リニアメントの約1km南に、活断層研究会編 (1991)⁽⁷⁾による確実度IIIのリニアメントが位置するが、リニア メントの両側に分布するオレンジ軽石(約17万年前)はほぼ水平 に分布しており、高位段丘堆積層(H₄面堆積物)の下面にも高 度不連続は認められない(添3-ロ(ハ)第57図参照)。

iv. 総合評価

六ヶ所村戸鎖の南の露頭では、戸鎖南方リニアメントの位置を 挟んで、砂子又層下部層が連続して分布しており、断層は認めら れない。リニアメントは、M₂面形成期における旧汀線地形を反 映したものであると判断した。また、この露頭の東方では、L_D リニアメントの位置を挟んで、高位段丘堆積層(H₅面堆積物) 下面がほぼ水平に連続して分布しており、第四紀後期更新世以降 に活動した断層は存在しないものと判断した。さらにこの東方で 判読されるL_Dリニアメントは高位面(H₄面)と高位面(H₅面) とを境する段丘崖に対応している。リニアメントは、風成砂から なる砂丘状の地形的な高まり及び段丘崖の形態を反映したもので あると判断した。

また、この約1km南の直線状の谷に、活断層研究会編(1991)⁽⁷⁾ による確実度Ⅲのリニアメントが位置するが、リニアメントの両側 に分布する高位段丘堆積層(H₄面堆積物)の下面に高度不連続は認 められないことから、第四紀後期更新世以降に活動した断層は存在 しないものと判断した。

(d) 老部川(南)上流付近のリニアメント・変動地形

i. 文献調査結果

活断層研究会編(1991)⁽⁷⁾は、六ヶ所村の老部川(南)上流付 近に、長さ約2.8km、NW-SE方向の「活断層の疑のあるリニア メント(確実度III)」を図示している。

山崎ほか(1986)⁽³⁾及び今泉ほか編(2018)⁽⁸⁾は当該リニア メントを図示していない。

ii. 変動地形学的調查結果

老部川(南)上流付近には、リニアメント・変動地形は判読されない。

なお,活断層研究会編(1991)⁽⁷⁾が図示する確実度Ⅲのリニア メントは,老部川(南)沿いの直線状の谷にほぼ位置している。

iii. 地表地質調査結果

六ヶ所村老部川(南)上流周辺の地質平面図及び地質断面図を 添3-ロ(ハ)第58図に示す。

老部川(南)上流周辺には,主に新第三系中新統の鷹架層及び 泊層と,これを覆う第四系中部更新統の高位段丘堆積層等が分布 する。泊層は,主に凝灰角礫岩及び安山岩溶岩からなる。老部川

(南)の両岸には泊層の安山岩溶岩が層状に分布するが, リニア メント位置を挟んで不連続は認められない。

また,老部川(南)上流の河床部には,リニアメント位置を横断して,凝灰角礫岩を主体とする泊層の連続露頭が認められるが, この泊層中に断層は認められない(添3-ロ(ハ)第59図参照)。 iv. 総合評価

活断層研究会編(1991)⁽⁷⁾が老部川(南)上流付近に図示して いる確実度IIIのリニアメント周辺には、リニアメント・変動地形 は判読されない。

確実度Ⅲのリニアメントは、直線状の谷にほぼ位置し、泊層の 連続露頭に断層は認められず、泊層の安山岩溶岩もリニアメント 位置を挟んで不連続は認められない。

以上のことから,老部川(南)上流付近の確実度Ⅲのリニアメ ント周辺には,第四紀後期更新世以降に活動した断層は存在しな いものと判断した。

- (ニ) 敷地内の地質・地質構造
 - (1) 調査内容
 - ① 地表地質調査

敷地内の地形,地質・地質構造及びリニアメント・変動地形を把握 するため,詳細な地表地質調査を実施し,これに併せて文献調査,空 中写真判読等を実施した。これらの調査結果から,地質平面図及び空 中写真判読図を作成して検討した。

② 地表弹性波探查

敷地内の基礎地盤の弾性波速度及び速度層の深度分布を把握するため、16測線、総延長約14kmの地表弾性波探査を実施した。

探査は、測線上の地表に5m又は2.5m間隔で受振点を設け、地中発 破による微振動(P波)を測定した。各受振記録から作成した走時曲 線を解析して、敷地内の基礎地盤の弾性波速度及び速度層の深度分布 を求めた。

探査位置を添3-ロ(ニ)第1図に示す。

③ ボーリング調査

敷地内の地質・地質構造について直接試料を得るとともに,耐震重 要施設等及び常設重大事故等対処施設の基本配置を地質学的見地及び 工学的見地から検討するため,ボーリング調査を実施した。

ボーリング調査は、原則として一定間隔の格子状配列の各交点において実施した。格子間隔は、原則27.25m~250mとした。掘削深度は、 平均約82m、最大337mであり、実施した孔数は462孔で、総延長は約 37800mである。

掘削に当たってはロータリ型ボーリングマシンを使用し,掘削孔径 66mm~194mmのオールコアボーリングとした。 採取したボーリングコアについて詳細な観察を行い,他の調査結果 と併せて地質柱状図及び地質断面図を作成し,敷地内の基礎地盤の地 質特性及び地質構造について検討した。

調査位置を添3-ロ(ニ)第1図に示す。

- ④ 試掘坑調査
 - a. 地質観察

地表地質調査,ボーリング調査等で把握した敷地内の地質・地質 構造を直接確認することを目的として,試掘坑調査を実施した。

試掘坑は,添3-ロ(ニ)第1図に示すように,3箇所で掘削した。 このうち耐震重要施設等及び常設重大事故等対処施設周辺の試掘坑 として,再処理施設の耐震重要施設等及び常設重大事故等対処施設 である「精製建屋」近傍の標高約35mに延長約95m(以下,「東部 試掘坑」という。)掘削した。

試掘坑において,地層の分布,岩質,割れ目の分布等を直接観察 し,試掘坑地質展開図を作成した。

b. 岩盤試験

基礎地盤の力学特性及び動的特性を明らかにし,耐震重要施設等 及び常設重大事故等対処施設の設計及び施工上の基礎資料を得るた め,添3-ロ(ニ)第2図に示す試掘坑内において,岩盤変形試験, 岩盤支持力試験,岩盤せん断試験,岩盤クリープ試験,弾性波試験, 平均速度法による弾性波速度測定及びシュミットロックハンマの反 発度測定を実施した。

(a) 岩盤変形試験及び岩盤支持力試験

基礎地盤の変形特性及び強度特性を把握するため、岩盤変形試験及び岩盤支持力試験を実施した。

変形試験は、直径60cmの鋼製円形載荷板に荷重を段階的に増減 させて載荷し、応力と変位との関係から、基礎地盤の変形係数及 び弾性係数を求めた。

支持力試験は、直径30cmの鋼製円形載荷板に荷重を段階的に増加させて載荷し、応力と変位との関係から、基礎地盤の強度特性を求めた。

試験装置を添3-ロ(ニ)第3図に,載荷パターンを添3-ロ(ニ) 第4図に示す。

(b) 岩盤せん断試験

基礎地盤の強度定数を求めるため、岩盤せん断試験を実施した。

試験は、異なる垂直荷重を加えた4個のブロックにせん断荷重 を載荷し、破壊時の垂直応力とせん断応力との関係から、基礎地 盤のせん断強度及び破壊包絡線を求めた。なお、初期垂直応力は、

0.05MPa, 0.10MPa, 0.29MPa及び0.49MPaとした。

試験装置を添3-ロ(ニ)第5図に,載荷パターンを添3-ロ(ニ) 第6図に示す。

(c) 岩盤クリープ試験

基礎地盤のクリープ特性を求めるため、岩盤クリープ試験を実施した。

試験は,直径60cmの鋼製円形載荷板に0.49MPaの応力を載荷し, 応力を一定に保持しつつ,変位の時間変化を測定し,時間と変位 との関係から,基礎地盤のクリープ係数を求めた。

試験装置を添3-ロ(ニ)第7図に示す。

(d) 弾性波試験及び平均速度法による弾性波速度測定 基礎地盤の基礎面付近における動的特性を把握し、基礎地盤物 性の異方性を検討するため、添3-ロ(ニ)第2図に示す試掘坑内 において、屈折法による弾性波試験及び平均速度法による弾性波 速度測定を実施した。測線長は約80mである。

起振は板たたき法により、受振点間隔は2mとした。

試験及び測定結果からP波及びS波の伝播速度を求め、動弾性 係数及び動ポアソン比を算出するとともに、地盤物性の異方性に ついて検討した。

(e) シュミットロックハンマの反発度測定

基礎地盤物性の場所的変化を検討するため、添3-ロ(ニ)第2 図に示す試掘坑内において、シュミットロックハンマの反発度測 定を実施した。

測定は、試掘坑内の側壁について50cm間隔で行い、1箇所当たりの測定点数は9点とした。

測定により得られた反発度から,地盤物性の場所的変化につい て検討した。

⑤ 基礎掘削工事に伴う地質調査

地表地質調査,ボーリング調査,試掘坑調査等で把握した敷地内の 基礎地盤の地質・地質構造を直接確認することを目的として,再処理 施設,廃棄物管理施設及びMOX燃料加工施設の基礎掘削工事に伴う 地質調査を実施した。

基礎掘削工事に伴う地質調査は、添3-ロ(ニ)第1図に示す基礎掘 削工事範囲内の主要な切取面を対象に実施した。また、他の調査結果 と併せて、敷地内の基礎地盤の詳細な地質・地質構造について検討し た。 ⑥ 孔内載荷試験

基礎地盤の深さ方向の強度特性及び変形特性を把握するため、孔内載荷試験を実施した。

試験は、ゴムチューブに圧力水を送り、孔壁に等分布荷重を加え、 これによって生じる孔壁の変位を測定し、応力と変位との関係を求めた。

試験の概略を添3-ロ(ニ)第8図に示す。

⑦ 透水試験

基礎地盤の透水性を把握するため、ボーリング孔を利用して透水試験を実施した。

試験は、標高約34m~約-103mの範囲で、原則として5mの試験区間で実施し、その結果から透水係数を求めた。

- (2) 調査結果
 - 敷地内の地形

敷地内の原地形及び空中写真判読図を添3-ロ(ニ)第9図に示す。

耐震重要施設等及び常設重大事故等対処施設の設置される敷地は, 六ヶ所地域北東部の尾駮沼と鷹架沼との間の台地に位置している。台 地は,標高60m前後の平坦面からなり,東に向かって緩やかに高度を 減じている。この平坦面は,主に敷地周辺及び敷地近傍の高位面(H₅ 面)に相当し,一部,中位面(M₁面及びM₂面)に相当する。また, 敷地北部には南から北へ流下する沢が分布し,敷地東部や南東部には 西から東へ流下する沢が分布している。なお,耐震重要施設等及び常 設重大事故等対処施設設置位置付近は,標高50m~55mに造成されて いる。

敷地造成以前に撮影された空中写真判読の結果によると、敷地南東

部の沢の斜面には地すべり地形が認められ、「燃料加工建屋」(耐震 重要施設等と常設重大事故等対処施設を兼ねる施設)設置位置に及ん でいる。しかしながら、「ロ.(ニ)(2)④c.敷地南東部の地すべり 構造」に後述するように、地すべりは「燃料加工建屋」の基礎地盤で ある鷹架層には及んでいないことを確認した。

敷地内の地質

地表地質調査,ボーリング調査等の結果から作成した敷地内の原 縮尺5千分の1の地質平面図を添3-ロ(ニ)第10図に,地質断面図 を添3-ロ(ニ)第11図に示す。また,地質層序表を添3-ロ(ニ)第1 表に示す。

敷地内の地質は,新第三系中新統の鷹架層,新第三系鮮新統の砂子 又層下部層,第四系下部~中部更新統の六ヶ所層,第四系中部更新統 の高位段丘堆積層(H₅面堆積物)及び第四系上部更新統の中位段丘 堆積層(M₁面堆積物及びM₂面堆積物)並びにこれらの上位の火山 灰層,第四系完新統の沖積低地堆積層,崖錐堆積層等からなる。

各地層の概要は、以下のとおりである。

a. 鷹架層

鷹架層は、主に、敷地の二又川下流、尾駮沼南岸及び小規模な沢 沿いの台地斜面に露出しており、敷地全域に分布する。鷹架層は、 砂岩、泥岩、凝灰岩等の堆積岩及び火山砕屑岩からなり、層相及び 累重関係から、下位より下部層、中部層及び上部層の3層に区分さ れる。鷹架層下部層と同層中部層及び鷹架層中部層と同層上部層は それぞれ整合に累重しているが、一部では鷹架層下部層と同層中部 層との間が不整合関係にあることが推定される。

鷹架層下部層は、二又川下流から尾駮沼南岸北西部にかけての台

地斜面等に露出しており,敷地中央部に分布しているほか,敷地西 部で鷹架層上部層及び同層中部層の下位に,敷地東部で鷹架層中部 層の下位に分布する。鷹架層下部層は,層相及び累重関係から,下 位より泥岩層及び細粒砂岩層に細区分される。泥岩層は,塊状無層 理で暗灰色を呈する泥岩からなり,一部に凝灰質砂岩及び砂質軽石 凝灰岩を挟む。細粒砂岩層は,ほぼ塊状無層理で暗灰色を呈する細 粒砂岩からなり,一部に粗粒砂岩を挟む。下位の泥岩層との境界は 漸移である。

鷹架層中部層は、尾駮沼南岸東部及び小規模な沢沿いの台地斜面 等に露出しており、敷地東部に分布しているほか、敷地西部でも鷹 架層上部層の下位に分布する。鷹架層中部層は、層相及び累重関係 から、下位より粗粒砂岩層、軽石凝灰岩層、軽石混り砂岩層及び礫 混り砂岩層に細区分される。粗粒砂岩層は、塊状無層理で灰白色又 は灰色を呈する砂質軽石凝灰岩、葉理がみられる暗灰色の粗粒砂岩 等からなる。軽石凝灰岩層は、ほぼ塊状無層理で灰白色を呈する凝 灰岩、径1 cm~10cmの白色軽石を多く含む軽石凝灰岩、径0.2cm~ 0.5cmの白色軽石を含む軽石質砂岩、礫岩等からなる。軽石混り砂岩 層は、砂岩・凝灰岩互層、葉理がみられる礫混り砂岩、砂岩・泥岩 互層、軽石混り砂岩、砂質軽石凝灰岩等からなる。礫混り砂岩層は、 主に葉理がみられる黄褐色~黄灰色を呈する礫混り砂岩からなる。

鷹架層上部層は、二又川下流の台地斜面等に露出しており、敷地 西部に分布する。鷹架層上部層は、主に、塊状無層理で暗灰色を呈 する泥岩からなり、一部に凝灰岩を挟む。

b. 砂子又層下部層

砂子又層下部層は,主に,敷地北西部の台地斜面に露出しており,

敷地西部に分布し,主に黄灰色~黄褐色を呈する中粒の凝灰質砂岩 からなる。

砂子又層下部層は、下位の鷹架層を不整合に覆い、鷹架層上限面 の谷部で厚く分布する。

c. 六ヶ所層

六ヶ所層は、ほぼ敷地全域に分布し、主に黄褐色を呈する細粒砂 ~中粒砂及び暗青灰色を呈するシルトからなる。

六ヶ所層は,下位の鷹架層及び砂子又層下部層を不整合に覆う。 d. 高位段丘堆積層

高位段丘堆積層(H₅面堆積物)は、敷地全域の台地部に分布し、 主に石英粒子からなる淘汰の良い中粒砂〜粗粒砂からなり、一部に 礫及びシルトを挟む。

高位段丘堆積層(H₅面堆積物)は、下位の鷹架層、砂子又層下 部層及び六ヶ所層を不整合に覆う。なお、下位層上面の谷部を埋積 するように、主に砂、礫及びシルトからなる古期低地堆積層が局所 的に分布する。

e. 中位段丘堆積層

中位段丘堆積層(M₁面堆積物及びM₂面堆積物)は,敷地東部に 小規模に分布し,主に石英粒子からなる淘汰の良い中粒砂〜粗粒砂 からなり,一部に礫及びシルトを挟む。

中位段丘堆積層(M₁面堆積物及びM₂面堆積物)は、下位の鷹架 層及び六ヶ所層を不整合に覆う。

f. 火山灰層

火山灰層は、台地(高位面及び中位面)の原地形に従って、ほぼ 敷地全域に分布する。火山灰層は、火山灰を含むレスであり、主に 褐色の粘土質火山灰からなる。火山灰層中には,示標テフラとして オレンジ軽石,洞爺火山灰等が認められる。

g. 沖積低地堆積層

沖積低地堆積層は,敷地北部の二又川河口,敷地内の沢沿い等に 分布し,主に礫,砂及び粘土からなる。

h. 崖錐堆積層

崖錐堆積層は、斜面裾部及び沢部に局所的に分布し、主に礫、砂 及び粘土からなる。

③ 敷地内のリニアメント・変動地形

空中写真判読によるリニアメント・変動地形の判読基準を添3-ロ (ロ)第3表に示す。

敷地内の空中写真判読結果によると、耐震重要施設等及び常設重大 事故等対処施設の設置される敷地にはリニアメント・変動地形は認め られない(添3-ロ(ニ)第9図参照)。

敷地内の地質構造

地表地質調査,ボーリング調査,基礎掘削工事に伴う地質調査等の 結果から作成した鷹架層の地質構造及び上限面等高線図を添3-ロ (ニ)第12図に示す。また,f-1断層,f-2断層及びこれらの派生 断層確認地点位置図を添3-ロ(ニ)第13図に,sf系断層確認地点位 置図を添3-ロ(ニ)第14図に,各断層の性状一覧表を添3-ロ(ニ)第 2表に示す。

各地質調査結果に基づく敷地内の地質構造は,以下のとおりである。

a. 鷹架層の地質構造

添3-ロ(ニ)第12図に示すように、敷地内の鷹架層中には、

NE-SW走向の断層と、E-W~ENE-WSW走向の断層が認 められる。敷地をNE-SW走向で縦断する断層のうち、東側の断 層をf-1断層、西側の断層をf-2断層とし、これらの断層から 派生する断層をそれぞれf-1a断層、f-1b断層及びf-2a 断層とする(これらを総称して「f系断層」と称する)。また、 f-1断層、f-2断層及びこれらの派生断層に切られるE-W~ ENE-WSW走向の断層を、それぞれsf-1断層、sf-2断 層、sf-3断層、sf-4断層、sf-5断層及びsf-6断層 と称し、これらを総称して「sf系断層」と称する。

f-1断層の東側の地域では、主に鷹架層下部層及び同層中部層 が分布する。堆積構造は、E-W~ENE-WSW走向のsf系断 層によって境されるものの、大局的にはNNE-SSW走向で、5° ~10°南東に緩く傾斜している。

f-1断層とf-2断層とに挟まれた地域では、主に鷹架層下部 層及び同層中部層が分布する。堆積構造は、E-W走向のsf系断 層によって境されるものの、大局的にはNNE-SSW走向で、5° ~10°南東に緩く傾斜している。

f-2断層の西側の地域では、主に鷹架層中部層及び同層上部層 が分布する。堆積構造は、鷹架層中部層のみENE-WSW走向の sf系断層によって境されるものの、大局的にはNNE-SSW走 向で、3°~5°北西に緩く傾斜している。なお、f-2断層近傍 では、地層が40°~50°北西に傾斜している。

(a) f-1 断層及びf-2 断層

f-1断層は、N40°~50°Eの走向で、60°~85°南東に傾 斜する正断層であり、落差は最大約140mと推定される。破砕部は、 幅3cm~145cmで、一部に断層粘土を伴う。

添3- α (ニ)第15図に示すトレンチ調査の結果によると, f-1断層は,鷹架層中部層軽石凝灰岩層と同層下部層細粒砂岩 層とを境する断層であり、これらを不整合に覆って分布する高位 段丘堆積層(H₅面堆積物)に変位を与えていない。なお、添3 - α (ニ)第15図(1)に示すように、トレンチ内の高位段丘堆積層

(H₅面堆積物)中には、小断層が認められる。これらの小断層 は、f-1断層から離れた位置にあること、高位段丘堆積層中で 消滅し鷹架層中には連続しないこと及び走向・傾斜がf-1断層 と異なることから、f-1断層の活動とは関連のない小断層と判 断した。

また、添3- α (ニ)第16図(1)に示す基礎掘削工事に伴う地質 調査結果によると、f-1断層は、鷹架層中部層軽石凝灰岩層中の 断層であり、これらを不整合に覆って分布する六ヶ所層に変位を与 えていない。さらに、添3- α (ニ)第16図(2)に示す基礎掘削工事 に伴う地質調査結果によると、f-1断層は、鷹架層中部層軽石凝 灰岩層と同層下部層細粒砂岩層とを境する断層であり、これらを不 整合に覆って分布する六ヶ所層に変位を与えていない。

f-2断層は、N10°~55°Eの走向で、50°~70°北西に傾 斜する正断層であり、落差は最大約330mと推定される。破砕部は、 幅10cm~138cmで、一部に断層粘土を伴う。

添3-ロ(ニ)第17図に示すトレンチ調査の結果によると、 f-2断層は、鷹架層中部層軽石凝灰岩層と同層上部層泥岩層と を境する断層であり、これらを不整合に覆って分布する砂子又層 下部層に変位を与えていない。 また、添3- $-\alpha$ (ニ)第18図(1)に示す基礎掘削工事に伴う地質 調査結果によると、f - 2断層は、鷹架層中部層軽石凝灰岩層と 同層上部層泥岩層とを境する断層であり、これらを不整合に覆っ て分布する六ヶ所層に変位を与えていない。一方、添3- $-\alpha$ (ニ) 第18図(2)に示す基礎掘削工事に伴う地質調査結果によると、f - 2断層は、鷹架層下部層細粒砂岩層と同層上部層泥岩層とを境 する断層であり、これらを不整合に覆う六ヶ所層に、見かけの変 位が1 cm~6 cm程度の西落ちの正断層センスや東上がりの逆断層 センスの変位を与えているが、これをさらに不整合に覆って分布 する高位段丘堆積層(H₅面堆積物)に変位を与えていない。

以上のことから, f-1断層及びf-2断層は, 第四紀中期更 新世以降に活動していないと考えられることから, 震源として考 慮する活断層ではないと判断した。

(b) f-1 a 断層, f-1 b 断層及び f-2 a 断層

f-1 a 断層, f-1 b 断層及び f-2 a 断層は, 基礎掘削工 事に伴う地質調査において連続性が確認された断層である。

f-1a 断層は、N25°~70°Eの走向で、65°~80°南東に 傾斜する正断層であり、落差は最大約20mと推定される。断層面 はゆ着している箇所が多く、破砕部を伴わないが、一部で断層面 沿いに幅0.5cm~3 cmの細粒化した硬質部が認められる。

東部試掘坑で確認された f - 1 a 断層は、N40°~50°Eの走 向で、70°~75°南東に傾斜している。断層面は、一部にせん断 面が認められるが、挟在物質は固結しており、密着している。 f - 1 a 断層の連続性については、南側では f - 1 断層と会合し、 北側では基礎掘削工事の範囲外で消滅するものと推定した。 東部試掘坑内で認められた f - 1 a 断層と六ヶ所層との関係を 確認するため,試掘坑内から上方に斜坑(追跡坑)を掘削し,断 層を追跡した。添 3 - α (二)第19図に示す追跡坑先端の切羽スケ ッチによると,f - 1 a 断層は,鷹架層中部層軽石凝灰岩層と同 層中部層軽石混り砂岩層とを境する断層であり,N25°Eの走向 で,75°南東に傾斜している。f - 1 a 断層にはせん断面が認め られるが,その一部はゆ着しており,鷹架層を不整合に覆って分 布する六ヶ所層に変位を与えていない。

f-1b断層は、N40°~70°Eの走向で、55°~85°南東に 傾斜する正断層であり、落差は最大約30mと推定される。断層面 はゆ着しており、破砕部は認められない。f-1b断層の連続性 については、北側では基礎掘削面においてf-1断層と会合する ことを確認しており、南側ではf-2断層に切られるものと推定 した。

添3-ロ(ニ)第20図に示す基礎掘削工事に伴う地質調査結果によると, f-1b断層は, 鷹架層下部層細粒砂岩層と同層中部層軽石 凝灰岩層とを境する断層であり, これらを不整合に覆って分布する 六ヶ所層に変位を与えていない。

f-2a 断層は、N45°~60° Eの走向で、50°~80° 北西に 傾斜する正断層であり、落差は最大約45mと推定される。破砕部 は幅1 cm~94 cmで、一部に断層粘土を伴う。

添3-ロ(ニ)第21図に示すトレンチ調査の結果によると、 f-2 a 断層は、鷹架層下部層細粒砂岩層中の断層であり、 これを不整合に覆って分布する六ヶ所層に、見かけの変位が10cm 程度の北西上がりの逆断層センスの変位を与えている。その変位 は六ヶ所層最上部まで連続するが,これらをさらに不整合に覆っ て分布する古期低地堆積層の基底面及び堆積構造に変位を与えて いない。

また, 添3-ロ(ニ)第22図に示すトレンチ調査の結果による と、f-2 a 断層は, 鷹架層下部層細粒砂岩層中の断層であり, これを不整合に覆って分布する六ヶ所層に,見かけの変位が10cm 程度の北西上がりの逆断層センスの変位を与えている。その変 位は六ヶ所層最上部まで連続するが、これらをさらに不整合に 覆って分布する古期低地堆積層の基底面及び堆積構造に変位を与 えていない。なお,古期低地堆積層を不整合に覆う高位段丘堆積 層(H₅面堆積物)中には、見かけの変位が2cm前後の北西落ち の正断層センス及び北西上がりの逆断層センスを示す小断層が認 められる。これら小断層の下方は、高位段丘堆積層(H₅面堆積 物)中で消滅しており、高位段丘堆積層(H₅面堆積物)の最下 部及び下位の古期低地堆積層に変位・変形を与えていない。さら に、添3-ロ(ニ)第22図(3)に示すブロック試料の観察結果及び CT画像観察結果によると、f-2 a 断層と高位段丘堆積層中の 小断層とが連続するような構造は認められない。また,添3-ロ(ニ) 第23図に示すf-2a断層トレンチ(南)北側の上面底盤観察 結果及び周辺法面の観察結果によると、高位段丘堆積層中の小 断層の位置は、f-2a断層トレンチ(南)から北に向かうに 従い f-2 a 断層と乖離する。さらに、f-2 a 断層トレンチ(南) から北側約50mに位置する f-2 a 断層トレンチ及び南側約80m に位置する基礎掘削法面のいずれにおいても、 f-2 a 断層周辺 の高位段丘堆積層中に小断層は分布しない。したがって、高位段
丘堆積層中の小断層は、f-2 a 断層沿いには連続しないと判断した。

これらから、f - 2 a 断層トレンチ(南) で認められた高位段 丘堆積層中の小断層は、f - 2 a 断層の活動とは関連がないと判 断した。

以上のことから、f - 1 a 断層、f - 1 b 断層及びf - 2 a 断層は、第四紀中期更新世以降に活動していないと考えられることから、震源として考慮する活断層ではないと判断した。

(c) s f 系断層

s f 系断層は, s f -1断層, s f -2断層, s f -3断層,

sf-4断層, sf-5断層及びsf-6断層が確認されており,

いずれも固結・ゆ着した断層面を有する逆断層である。

添 $3 - \alpha(=)$ 第14図及び添 $3 - \alpha(=)$ 第 2表に示すように, s f 系断層は複数のボーリング孔とトレンチで確認した断層であ る。s f 系断層は、いずれもE-W~ENE-WSW走向を示す断層 であり、s f-1)時層、s f-2)断層及びs f-6)時層は、40°~65°南に 傾斜する逆断層、s f-3)断層、s f-4)断層及び s f-5)断層 は、20°~70°北に傾斜する逆断層である。鉛直変位量は25m~ 145m程度と推定される。断層面は、全ての確認箇所において固結・ ゆ着しており、せん断面や破砕部は伴わない。また、断層面及び断 層近傍では、断層面が軽石や礫に沿って凹凸する箇所、断層の上下 盤の地質が構成粒子の破砕を伴わずに混在する箇所、断層面と平行 に断層近傍の軽石が配列する箇所等、地層が十分に固結していない 状態での変形構造の特徴が認められる。

s f 系断層の性状を把握するために, s f − 3 断層及び

s f − 4 断層を対象にトレンチ調査を実施し, s f − 6 断層を対象に断層部の詳細観察を実施した。

添3- α (二)第24図に示すトレンチ調査の結果によると, sf-3断層は,鷹架層中部層軽石凝灰岩層と同層中部層軽石混 り砂岩層とを境する断層である。断層面は、固結・ゆ着しており、 せん断面は認められない。断層部には、幅5cm~10cm程度で、断 層の上下盤の地層が構成粒子の破砕を伴わずに混在し、固結する 箇所が認められる。また、sf-3断層は、f-1断層近傍で f-1断層と同系統の固結・ゆ着した断層に切られることを確認 した。

添3-n(=)第25図に示すトレンチ調査の結果によると, sf-4断層は,鷹架層下部層細粒砂岩層と同層中部層軽石凝灰 岩層とを境する断層である。断層面は,固結・ゆ着しており,せ ん断面は認められない。断層部には,幅1 $cm\sim5cm程度$ で,断層 の上下盤の地層が構成粒子の破砕を伴わずに混在し,固結する箇 所が認められる。また,sf-4断層は,f-1b断層と同系統 の固結・ゆ着した小断層によって1 $cm\sim10cm程度$ の変位を受けて いる。

添3-ロ(ニ)第26図に示す断層部のボーリングコア観察結果及 びCT画像観察結果によると, sf-6断層は, 鷹架層中部層軽 石凝灰岩層と同層中部層軽石混り砂岩層とを境する断層である。 断層面は, 固結・ゆ着しており, せん断面は認められない。断層 部には, 幅15cm程度で, 断層の上下盤の地層が構成粒子の破砕を 伴わずに混在し, 固結する箇所が認められる。

敷地内の鷹架層の地質分布によると、添3-ロ(ニ)第12図に

示すように, s f 系断層は, f - 1 断層, f - 2 断層及びこれ らの派生断層に切られるものと判断した。また, ボーリング調 査結果によると, 添3-ロ(ニ)第11図に示すように, s f - 5 断層は, 鷹架層上部層泥岩層の基底及び同層中の鍵層である凝 灰岩に変位を与えていないと判断した。

以上のことから、sf系断層は、それぞれの走向や断層面の性 状が類似すること等から、一連の活動で生じた断層と考えられる。 また、sf系断層の活動時期については、断層面が固結・ゆ着し ており、地層が十分に固結していない状態での変形構造が認めら れ、鷹架層の堆積当時~直後の未固結時の断層であること、 f-1断層、f-2断層及びこれらの派生断層に切られること、 鷹架層上部層泥岩層の基底及び同層中の鍵層である凝灰岩に変位 を与えていないこと等から、f系断層の活動以前に活動を終えた 断層であり、震源として考慮する活断層ではないと判断した。

b. 砂子又層下部層の地質構造

砂子又層下部層は,主に敷地西部に分布し,ほぼN-S走向で, 西に向かって緩く傾斜している。

c. 六ヶ所層の地質構造

六ヶ所層は、ほぼ敷地全域に分布し、ほぼ水平に堆積している。 d.敷地南東部の地すべり構造

「ロ.(ニ)(2)① 敷地内の地形」で記載した地すべり地形が判 読された範囲で行ったDEMによる地形の詳細判読結果を添3-ロ (ニ)第27図(1)に示す。地すべり地形の頭部にみられる凹地(鞍部) は、谷底の幅が広く箱型を呈することから、地すべり頭部の溝状凹 地と考えられる。地すべり地形の末端部は東方へ流下する沢付近に 位置することから、沢の下刻による台地斜面の滑動と考えられる。

地すべり地形判読範囲内は、すべて表土に覆われており、露頭で すべり面を確認できる箇所は認められないため、地すべり構造の把 握を目的とした地表地質調査、ボーリング調査等を行った。その結 果、添3-ロ(ニ)第27図(2)に示すように、地すべり地形が判読さ れた範囲では、鷹架層中及び六ヶ所層の基底面には、せん断面や堆 積構造の乱れなどの変形構造は認められない。一方、六ヶ所層中の 層状構造を呈するシルト層及びその上部では、せん断面や堆積構造 の乱れが認められることから、地すべりは、六ヶ所層中の層状のシ ルト層をすべり面とした層面すべりで生じたものであると判断した。

地すべりの発生時期は、滑動の原因である東方に流下する沢の谷 頭が高位段丘面(H₅面)内に位置するという地形の特徴から、高 位段丘面離水後と判断した。ただし、移動土塊の末端部が現河床よ りも高い位置にあること、滑落崖の冠頂あるいは移動土塊の開析が 進んでいることから最近の滑動ではないと判断した。

地すべり地形が判読された「燃料加工建屋」(耐震重要施設等と 常設重大事故等対処施設を兼ねる施設)設置位置では,基礎掘削時 に実施した地質観察の結果によると,鷹架層には地すべりと関連す るような変形構造は認められない。

e. 基礎地盤の安定性を検討する上で考慮すべき断層

これらの調査結果に基づけば、f - 1断層及びf - 2断層については、敷地内の地質構造を大きく規制し、破砕部を伴っていることから、敷地内において基礎地盤の安定性を検討する上で考慮する断層とする。また、基礎掘削面で確認されたこれらの派生断層であるf - 1 a 断層、f - 1 b 断層及びf - 2 a 断層については、f - 1

断層及びf-2断層と比べて,変位量や破砕部の規模は小さいもの の、十分な評価を行うため、基礎地盤の安定性を検討する上で考慮 する断層とする。なお、sf系断層については、断層面が固結・ゆ 着しており、破砕部を伴わないこと、鷹架層の堆積当時~直後の未 固結時に活動した断層と判断されることから、基礎地盤の安定性を 検討する上で考慮すべき断層としない。

⑤ 試掘坑内の調査結果

試掘坑調査の結果から作成した試掘坑地質展開図を添3-ロ(ニ)第 28図に示す。

a. 東部試掘坑地質調査

試掘坑内の地質は,鷹架層中部層軽石凝灰岩層及び同層中部層軽 石混り砂岩層からなる。

鷹架層中部層軽石凝灰岩層は、軽石凝灰岩及び凝灰岩からなる。 軽石凝灰岩は、灰白色を呈し、軽石を多量に含み、塊状無層理であ る。凝灰岩は、灰白色を呈し、細粒で、ほぼ塊状無層理である。鷹 架層中部層軽石混り砂岩層は、灰色を呈する砂質軽石凝灰岩からな り、軽石を含み、一部に弱い葉理が認められる。また、鷹架層中部 層軽石凝灰岩層及び同層中部層軽石混り砂岩層は、N40°~50°E の走向で、70°~75°南東に傾斜しているf-1 a 断層により境さ れる。これらの地層は、NNE-SSW~NE-SW走向で、約10° 南東に緩く傾斜している。なお、f-1 a 断層は、前述のとおり、 断層面の一部にせん断面が認められるが、挟在物質は固結し、断層 面は密着しており、鷹架層を不整合に覆って分布する六ヶ所層に変 位を与えていない。

節理は、鷹架層中部層軽石混り砂岩層にはほとんど認められず、

主として同層中部層軽石凝灰岩層に認められる。節理は, NE-SW~ENE-WSW走向で70°~90°南東に傾斜するもの が多く,節理面は平滑で密着している。

- b. 岩盤試験
- (a) 岩盤変形試験

試掘坑内で実施した岩盤変形試験から得られた応力と変位との 関係を添3-ロ(ニ)第29図に示す。

これらから次の諸数値を求めた。

- E_s: 応力-変位曲線において,最終荷重段階の始点と0.98 MPaの点とを結んだ割線弾性係数
- D: 全曲線の包絡勾配として求めた変形係数
- *E_t*: 応力-変位曲線において,最終荷重段階の比較的直線 状の部分から求めた接線弾性係数

岩盤変形試験から得られたこれらの諸数値は, 添3-ロ(ニ)第 3表に示すとおりであり, 割線弾性係数の平均値は, 763MPaであ る。

(b) 岩盤支持力試験

試掘坑内で実施した岩盤支持力試験から得られた応力と変位との関係を添3-ロ(ニ)第30図に示す。

ここでは、岩盤支持力試験結果に基づいて、応力-変位曲線の 初期及び終局部分の接線の交点を上限降伏値とし、急速な変位増 加により荷重が保持できなくなるところを最大荷重とした。

試験結果は,添3-ロ(ニ)第4表のとおりであり,上限降伏値の平均値は,2.9MPaであり,最大荷重の平均値は,7.5MPaである。

(c) 岩盤せん断試験

試掘坑内で実施した岩盤せん断試験の結果を添3-ロ(ニ)第5 表及び添3-ロ(ニ)第31図に示す。岩盤せん断試験の結果から、 破壊包絡線を直線で近似すると添3-ロ(ニ)第32図に示すとおり であり、

 $\tau = 0.53 + \sigma \tan 39.1^{\circ}$ (MPa)

で表される。

(d) 岩盤クリープ試験

試掘坑内で実施した岩盤クリープ試験結果から得られた時間と 変位量との関係を添3-ロ(ニ)第33図に示す。

この変位一時間曲線を

 $W = W_e + W_c$

 $= W_e \{ 1 + \alpha \ (1 - e^{-\beta t}) \}$

で近似させクリープ係数を算出すると、添3-ロ(ニ)第6表に示す

ように, αが0.08, βが0.87 d⁻¹である。

(e) 弾性波試験及び平均速度法による弾性波速度測定

試掘坑内で実施した屈折法による弾性波試験結果を添3-ロ (ニ)第34図に示す。これによると、鷹架層中部層の弾性波速度 の平均値は、P波が1.76km/s、S波が0.61km/sであり、弾性波速 度から求めた動弾性係数の平均値は1580MPa、動ポアソン比の 平均値は0.43である。

また, 試掘坑内で実施した平均速度法による弾性波速度測定 結果を添3-ロ(ニ)第7表及び添3-ロ(ニ)第35図に示す。こ れによると, 弾性波速度の平均値は, P波が1.76km/s, S波が 0.62km/sである。 P波速度及びS波速度の平均値は、NE-SW方向及びNW-SE 方向それぞれで有意な差がないことから、異方性は認められない。

(f) シュミットロックハンマの反発度測定

試掘坑内で実施したシュミットロックハンマの反発度測定結果 を添3-ロ(ニ)第8表に示す。

反発度の変動係数は、21.7%であり、地盤物性の場所的変化は 小さい。

⑥ 地表弹性波探查結果

地表弾性波探査の結果から求めた P 波速度は、地表地質調査及びボ ーリング調査の結果と比較して判断すると、以下のとおりである。

- 0.2km/s~0.3km/s:主に、火山灰層及び沖積低地堆積層からなる第 四系
- 0.5km/s~0.8km/s:主に、高位段丘堆積層(H₅面堆積物)からな る第四系
- 1.5km/s~1.7km/s:主に,砂子又層下部層及び六ヶ所層からなる新 第三系~第四系

1.8km/s~2.2km/s:鷹架層からなる新第三系

地表弾性波探査の結果から得られた速度層分布と各地層は、比較的良 く対応している。特に、耐震重要施設等及び常設重大事故等対処施設周 辺では1.5km/s~1.7km/sの速度層と1.8km/s~2.2km/sの速度層との境界 は、鷹架層上限面とほぼ一致しており、同境界の標高は約40mである。

なお、鷹架層中に規模の大きな破砕部、風化変質部等を示唆する低 速度層は認められない。 ⑦ 孔内載荷試験結果

ボーリング孔を利用して実施した孔内載荷試験の結果は、添3-ロ (ニ)第9表に示すとおりである。

孔内載荷試験から得られた応力-変位曲線の変曲点から求めた降伏 圧*Py* の平均値は、凝灰岩が1.8MPa,軽石凝灰岩が3.3MPa,軽石質 砂岩が7.0MPa,砂質軽石凝灰岩が2.8MPaである。また、応力-変位 曲線の包絡線勾配として求めた変形係数Dの平均値は、凝灰岩が215 MPa,軽石凝灰岩が387MPa,軽石質砂岩が1280MPa,砂質軽石凝灰岩 が329MPaである。

⑧ 透水試験結果

ボーリング孔を利用して実施した透水試験の結果は、添3-ロ(ニ) 第10表に示すとおりであり、透水係数の平均値は、凝灰岩が9.1×10⁻⁸ m/s,軽石凝灰岩が4.3×10⁻⁸m/s,軽石質砂岩が3.8×10⁻⁸m/s,細粒 砂岩が2.7×10⁻⁹m/sである。

- (ホ) MOX燃料加工施設の耐震重要施設等及び常設重大事故等対処施設設置置位置付近の地質・地質構造及び地盤
 - (1) 調査内容
 - ① ボーリング調査

耐震重要施設等及び常設重大事故等対処施設設置位置付近の基礎地 盤の地質・地質構造を把握するための資料を得るとともに、岩石試験 供試体の採取及びボーリング孔を利用しての原位置試験を実施するた めに、耐震重要施設等及び常設重大事故等対処施設設置位置付近でボ ーリング調査を実施した。掘削に当たっては、ロータリ型ボーリング マシンを使用し、掘削孔径76mm~86mmのオールコアボーリングとした。

採取したボーリングコアについては詳細な観察を行い,地質柱状図 を作成した。また,他の調査結果と併せて原縮尺千分の1の地質図を 作成し,耐震重要施設等及び常設重大事故等対処施設設置位置付近の 基礎地盤の地質・地質構造について検討を行った。

調査位置を添3-ロ(ホ)第1図に示す。

② 岩石試験

耐震重要施設等及び常設重大事故等対処施設の基礎地盤の物理特性 及び力学特性を明らかにし、施設の設計及び施工の基礎資料を得るた め、基礎地盤から採取した試料を用いて、物理試験及び力学試験を実 施した。

試料の採取は、添3-ロ(ホ)第1図に示すボーリング孔位置及び試 掘坑内で実施した。

試験は、日本工業規格、地盤工学会等^{(62)~(66)}に準拠して実施した。 a. 試験項目

物理特性を明らかにする試験として、湿潤密度、含水比、土粒子

密度等を計測する物理試験を実施した。また,強度特性及び変形特 性を明らかにする試験として,引張強度試験,三軸圧縮試験,ポア ソン比測定,圧密試験,三軸クリープ試験,繰返し三軸試験(変形 特性)及び繰返し三軸試験(強度特性)を実施した。

- b. 試験方法
- (a) 引張強度試験

圧裂試験を実施し、引張強度を求めた。供試体寸法は、原則として直径約5cm、長さ約5cmとした。

(b) 三軸圧縮試験

三軸圧縮試験を実施するにあたり,試料の採取深度の有効土被 り圧相当で圧密を行い,非排水状態のもと軸荷重を載荷する方法 (以下,「CU条件」という。)で実施し,強度定数及び変形係 数を求めた。なお,一部の岩種については非排水状態で所定の側 圧のもとで軸荷重を載荷する方法(以下,「UU条件」という。) も実施した。

軸荷重の載荷は一定のひずみ速度で実施した。供試体寸法は, 直径約5cm,高さ約10cmとした。

(c) ポアソン比測定

ポアソン比は、三軸圧縮試験実施時に2重セル法を用いて計測 し、算出した。

(d) 圧密試験

0.10MPa, 0.29MPa, 0.49MPa, 0.98MPa, 1.96MPa, 3.92MPa, 7.85MPa, 15.7MPa, 31.4MPa及び62.8MPaの10段階の圧密圧力 で実施し、圧密降伏応力を求めた。供試体寸法は、直径約4cm, 高さ約2cmとした。

(e) 三軸クリープ試験

供試体に所定の側圧を負荷し,次いで,0.49MPaの軸差応力を 約30日間負荷する方法で三軸クリープ試験を実施した。試験は, 所定の圧密応力で圧密した後,排水状態のもと軸荷重を載荷する 方法(以下,「CD条件」という。)で実施し,クリープ係数を 求めた。

側圧は、0.05MPa、0.10MPa、0.49MPa及び0.98MPaの4種類 とした。供試体寸法は、直径約5cm、高さ約10cmとした。

(f) 繰返し三軸試験(変形特性)

供試体を採取深度の有効土被り圧相当の圧密応力で圧密した後, 非排水状態で周波数1Hzの一定振幅の繰返し荷重(正弦波)を段 階的に加える方法で繰返し三軸試験を実施した。試験結果から, 正規化せん断弾性係数*G/G*の及び減衰率*h*(%)のひずみ依存性 を求めた。供試体寸法は,原則として直径約5cm,高さ約10cmと した。

(g) 繰返し三軸試験(強度特性)

供試体を採取深度の有効土被り圧相当の圧密応力で圧密した後, 非排水状態で周波数0.5Hzの一定振幅の繰返し荷重(正弦波) を10波を1段階として,軸差応力及び振幅を段階的に増加させな がら加える方法で繰返し三軸試験を実施した。添3-ロ(ホ)第1 表に試験条件,添3-ロ(ホ)第2図に載荷パターンを示す。供試 体寸法は,直径約5 cm,高さ約10 cmと,直径約12.5 cm,高さ約25 cm の2種類とした。

PS検層

耐震重要施設等及び常設重大事故等対処施設の基礎地盤及び設置位

置付近の力学特性を明らかにし、施設の設計及び施工の基礎資料を得るため、添3-ロ(ホ)第1図に示すボーリング孔において、延長約13600mのPS検層を実施した。試験は、土質工学会(1989)⁶⁷⁾及び地盤工学会(2013)⁶⁸⁾に準拠し、原則として2m間隔に孔中受振器を設け、地上で重錘落下及び板たたき法によって起振する方法で測定を実施した。得られた各深度の受振記録から走時曲線を作成し、基礎地盤及び設置位置付近のP波及びS波の伝播速度を求めた。

PS検層の概略を添3-ロ(ホ)第3図に示す。

④ 土質試験

f-1断層,f-2断層,新第三系鮮新統(以下,「PP1」という。),第四系下部~中部更新統(以下,「PP2」という。),第 四系中部更新統~完新統(以下,「PH」という。),造成盛土,埋 戻し土及び流動化処理土(A)の物理特性及び力学特性を明らかにす るため,以下の土質試験を実施した。試料の採取は,添3-ロ(ホ)第 1図に示すボーリング孔位置で実施した。

試験は,日本工業規格,地盤工学会等^{(62),(64),(69)}に準拠して実施した。 a.試験項目

物理特性を明らかにする試験として,湿潤密度,含水比,土粒子 密度等を計測する物理試験を実施した。また,強度特性及び変形特 性を明らかにする試験として,三軸圧縮試験,ポアソン比測定,繰 返し三軸試験(変形特性),繰返し単純せん断試験及び超音波速度 測定を実施した。

b. 試験方法

(a) 三軸圧縮試験

三軸圧縮試験はCU条件で実施し、強度定数及び変形係数を求

めた。なお、PP1については、採取深度の有効土被り圧相当の 圧密応力で圧密した後、分布深度を考慮した側圧のもとUU条件 で実施した。

軸荷重の載荷は一定のひずみ速度で実施した。供試体寸法は, 原則として、直径約5cm、高さ約10cmとした。

(b) ポアソン比測定

ポアソン比は,三軸圧縮試験実施時に2重セル法を用いて計測 し,算出した。

(c) 繰返し三軸試験(変形特性)

供試体を採取深度の有効土被り圧相当の圧密応力で圧密した後, 非排水状態で周波数1Hzの一定振幅の繰返し荷重(正弦波)を段 階的に加える方法で繰返し三軸試験を実施した。試験結果から, 正規化せん断弾性係数*G/G*の及び減衰率*h*(%)のひずみ依存性 を求めた。供試体寸法は,直径約5 cm,高さ約10 cmとした。

(d) 繰返し単純せん断試験

上載圧を与えた後,周波数1Hzの一定振幅の繰返しせん断荷重 (正弦波)を段階的に加える方法で繰返し単純せん断試験を実施 した。試験結果から,正規化せん断弾性係数*G/G*の及び減衰率 *h*(%)のひずみ依存性を求めた。

上載圧は、試料採取地点の有効土被り圧及び分布深度を考慮して選択した。供試体寸法は、直径約10cm、高さ約4cmと、直径約5cm、高さ約2cmの2種類とした。

(e) 超音波速度測定

三軸圧縮状態で圧密応力を段階的に増加させながら、P波速度 及びS波速度の測定を実施した。試験結果から、f-1断層及び f-2断層の動せん断弾性係数及び動ポアソン比を求めた。

圧密応力は、0.05MPa~3.00MPaの範囲の5段階又は6段階と

した。供試体寸法は、直径約5cm、高さ約5cmとした。

(2) 調査結果

耐震重要施設等及び常設重大事故等対処施設設置位置付近における 地質・地質構造及び力学特性を以下に記載する。

- 耐震重要施設等及び常設重大事故等対処施設設置位置付近の地 質・地質構造
 - a. 地質

ボーリング調査結果等を基に作成した原縮尺千分の1の地質図を 添3-ロ(ホ)第4図に,主な地質柱状図を添3-ロ(ホ)第5図に示 す。

耐震重要施設等及び常設重大事故等対処施設設置位置付近の地質 は、「ロ.(ニ)(2)② 敷地内の地質」に記載のとおり、鷹架層下 部層、同層中部層及び同層上部層からなる。また、各施設の基礎底 面付近の地質は、f-1断層の東側では鷹架層中部層が分布し、f -1断層とf-2断層に挟まれた地域では鷹架層下部層及び同層中 部層が分布し、f-2断層の西側では主に鷹架層上部層が分布する。

鷹架層下部層は,下位より泥岩層及び細粒砂岩層に区分される。 泥岩層は,堆積岩である泥岩及び凝灰質砂岩並びに火山砕屑岩であ る砂質軽石凝灰岩からなる。細粒砂岩層は,堆積岩である細粒砂岩 からなる。

鷹架層中部層は、下位より粗粒砂岩層、軽石凝灰岩層及び軽石混り砂岩層に区分される。粗粒砂岩層は、堆積岩である礫岩及び粗粒砂岩並びに火山砕屑岩である砂質軽石凝灰岩からなる。軽石凝灰岩

層は, 堆積岩である礫岩及び軽石質砂岩並びに火山砕屑岩である軽 石凝灰岩及び凝灰岩からなる。軽石混り砂岩層は, 堆積岩である軽 石混り砂岩, 砂岩・泥岩互層, 礫混り砂岩及び砂岩・凝灰岩互層並 びに火山砕屑岩である砂質軽石凝灰岩からなる。なお, これらのう ち礫岩及び軽石混り砂岩は, 他の岩種に比べて不均質である。

鷹架層上部層は、泥岩層からなり、鷹架層下部層の泥岩に比べて やや軟質な堆積岩である泥岩からなる。

鷹架層は各岩種とも節理が少なく,耐震重要施設等及び常設重大 事故等対処施設設置位置のボーリングコアの採取率は100%で, *R. Q. D.* の平均は99.5%である。

なお,鷹架層上限面付近では,風化の影響により健岩部に比べて やや軟質な部分,あるいは節理がやや多い部分が認められる。

b. 岩盤分類

耐震重要施設等及び常設重大事故等対処施設設置位置付近の岩盤が鷹架層の火山砕屑岩及び堆積岩からなることから、日本電気協会

(1987)⁽⁷⁰⁾の軟質岩盤分類基準案に示されている考え方に基づき岩 盤分類を行った。

火山砕屑岩及び不均質な堆積岩については、不均質軟岩(軟岩Ⅲ 類)の岩盤分類の考え方に基づき、岩種・岩相による区分を基本と した岩盤分類を行った。

上記以外の堆積岩については、準硬質軟岩(軟岩 I 類)に区分されるものの、節理が少なく、風化の影響も鷹架層上限面付近に限定されるため、岩種・岩相による区分を基本とした岩盤分類を行った。

以上の岩盤分類の結果,鷹架層の火山砕屑岩は,凝灰岩,軽石凝 灰岩及び砂質軽石凝灰岩に区分した。また,鷹架層の堆積岩は,泥 岩(上部層),泥岩(下部層),細粒砂岩,凝灰質砂岩,軽石質砂 岩,粗粒砂岩,砂岩・泥岩互層,砂岩・凝灰岩互層,礫混り砂岩, 軽石混り砂岩及び礫岩に区分した。なお,鷹架層上限面付近の風化 部は,新鮮な岩石とは異なることから,独立した岩盤分類上の区分 とした。

以上のとおり、本地点の岩盤については、岩種・岩相による区分 を基本として、以下に示す15種類の岩種・岩相名とした。

上記の岩盤分類にPP1, PP2, PH, 断層(f系断層),造 成盛土,埋戻し土,流動化処理土及びマンメイドロック(以下, 「MMR」という。)を含めた解析用地盤分類を用いて,岩盤分類 図を添3-ロ(ホ)第6図に示す。

c. 地質構造

耐震重要施設等及び常設重大事故等対処施設設置位置付近に分布

する鷹架層中には、敷地をNE-SW~NNE-SSW走向で 縦断するf-1断層,f-2断層,これらの断層から派生する断 層であるf-1a断層,f-1b断層及びf-2a断層並びにこれ らの断層に切られるE-W~ENE-WSW走向のsf系断層が分布 する。また、常設重大事故等対処施設のうち、「第2保管庫・貯水 所(第2軽油貯槽含む)」の基礎地盤にはsf-6断層が存在する が、この断層は、「ロ.(二)(2)④ 敷地内の地質構造」に記載の とおり、f系断層に切られること等から、将来活動する可能性のあ る断層等ではない(添3- α (二)第12図参照)。

2 岩石試験結果

耐震重要施設等及び常設重大事故等対処施設の基礎地盤である鷹架層から採取した試料による岩石試験結果を以下に示す。

a. 物理特性

ボーリングコアから標高46m~標高-209mの範囲で採取した4123 個の試料について、物理試験を実施した。

湿潤密度と標高Z(m)の関係を添3-ロ(ホ)第2表(1)~添3 -ロ(ホ)第2表(3),添3-ロ(ホ)第7図(1)及び添3-ロ(ホ)第 7図(2)に示す。また、含水比、土粒子密度及び間隙比の試験結果 を添3-ロ(ホ)第3表に示す。

b. 引張強度

物理試験と同様の範囲から採取した640個の供試体について,引張 強度試験を実施した。

引張強度と標高Z(m)の関係を添3-ロ(ホ)第4表及び添3-ロ(ホ) 第8図に示す。 c. 三軸圧縮試験結果(強度特性)

物理試験と同様の範囲で採取した314個の供試体について,三軸圧 縮試験(CU条件)を実施した。

原則として採取深度の有効土被り圧相当の圧密応力で実施した試 験結果の最大主応力差をもとに求めた非排水せん断強度 s_u と標高 Z(m)の関係を添3-u(ホ)第2表(1)~添3-u(ホ)第2表(3),添3-u(ホ)第9図(1)及び添3-u(ホ)第9図(3)に示す。また,応力-ひずみ曲線において最大主応力差を過ぎた後,一定値に収束 $した時点の主応力差をもとに残留強度を設定し,残留強度 <math>s_{ur}$ と標 高Z(m)の関係を添3-u(ホ)第2表(1)~添3-u(ホ)第2表 (3),添3-u(ホ)第9図(2)及び添3-u(ホ)第9図(3)に示す。

d. 三軸圧縮試験結果(変形特性)

三軸圧縮試験(CU条件)による初期変形係数 E_o と標高Z(m)の関係を添3- μ (ホ)第2表(1)~添3- μ (ホ)第2表(3),添3- μ (ホ)第10図(1)及び添3- μ (ホ)第10図(3)に示す。

e. ポアソン比

三軸圧縮試験(CU条件)によるポアソン比と標高Z(m)の関係を添3-ロ(ホ)第2表(1)~添3-ロ(ホ)第2表(3),添3-ロ(ホ)第10図(2)及び添3-ロ(ホ)第10図(3)に示す。

f. 圧密降伏応力

耐震重要施設等及び常設重大事故等対処施設の基礎面付近から採取した凝灰岩3個及び軽石凝灰岩3個の供試体について、凝灰岩では圧密圧力62.8MPaまで、軽石凝灰岩では圧密圧力31.4MPaまでの 圧密試験を行った。この結果は、添3-ロ(ホ)第5表及び添3-ロ (ホ)第11図に示すとおりである。 間隙比-圧密圧力曲線からCasagrandeの方法により求めた圧密降 伏応力 p_cの平均値は、凝灰岩が10.8MPa、軽石凝灰岩が4.2MPaで ある。

g. クリープ係数

耐震重要施設等及び常設重大事故等対処施設の基礎面付近から採取した凝灰岩4個及び軽石凝灰岩4個の供試体について、軸差応力 0.49MPaで三軸クリープ試験(CD条件)を行った。この結果は、 添3-ロ(ホ)第6表及び添3-ロ(ホ)第12図に示すとおりである。 ひずみ-時間曲線を

 $\varepsilon = \varepsilon_e + \varepsilon_c$

 $= \varepsilon_{e} \{ 1 + \alpha (1 - e^{-\beta t}) \}$

で近似させて算出したクリープ係数の平均値は、凝灰岩で α が0.17, β が0.33 d⁻¹,軽石凝灰岩で α が0.16, β が0.23 d⁻¹である。

h. 動的変形特性(ひずみ依存性)

ボーリングコアから採取した134個の供試体について,繰返し三軸 試験(変形特性)を実施した。この結果の正規化せん断弾性係数 G/G_o とせん断ひずみ γ (%)の関係及び減衰率h(%)とせん断 ひずみ γ (%)の関係は添3- μ (ホ)第13図(1)~添3- μ (ホ)第 13図(15)に示すとおりであり,正規化せん断弾性係数 G/G_o とせん 断ひずみ γ (%)の関係及び減衰率h(%)とせん断ひずみ γ (%) の関係の近似式をそれぞれ求め添3- μ (ホ)第2表(1)~添3- μ (ホ)第2表(3)に示す。

i. 繰返し三軸試験結果(強度特性)

ボーリングコアから採取した供試体について,繰返し三軸試験(強度特性)を実施した。この試験結果から求めた動的強度と同一ボー

リング孔の同一深度の三軸圧縮試験による静的強度の関係は添3-ロ(ホ)第14図に示すとおりであり、動的強度は静的強度を下回って いない。

③ PS検層結果

耐震重要施設等及び常設重大事故等対処施設の基礎地盤及び設置位 置付近で実施した岩盤試験結果を以下に示す。

a. PS検層による弾性波速度

ボーリング孔を利用して実施したPS検層によるP波及びS波速 度を添3-ロ(ホ)第7表に,主なボーリング孔でのPS検層結果を 添3-ロ(ホ)第15図に示す。

弾性波速度は深度方向に増大する傾向を示す。

b. 動せん断弾性係数

PS検層によるS波速度 V_s 及び同一ボーリング孔の各深度の供 試体の湿潤密度 ρ_t から次式により動せん断弾性係数 G_o を求めた。

 $G_0 = \rho_t \times V_S^2$

動せん断弾性係数 G_o と標高Z(m)の関係を添3--(ホ)第2 表(1)~添3---(ホ)第2表(3),添3---(ホ)第16図(1)及び添 3---(ホ)第16図(3)に示す。

c. 動ポアソン比

動せん断弾性係数 G_0 を求めたボーリング孔のPS検層によるP 波速度 V_P 及びS波速度 V_S から次式により動ポアソン比 ν_d を求めた。

$$\nu_{\rm d} = \frac{(V_P/V_S)^2 - 2}{2\{(V_P/V_S)^2 - 1\}}$$

動ポアソン比 ν_d と標高Z(m)の関係を添3 $-\alpha(\pi)$ 第2表(1) ~添3 $-\alpha(\pi)$ 第2表(3),添3 $-\alpha(\pi)$ 第16図(2)及び添3 $-\alpha(\pi)$ 第16図(3)に示す。

④ 土質試験結果

耐震重要施設等及び常設重大事故等対処施設設置位置付近のf-1 断層, f-2断層, PP1, PP2, PH, 造成盛土, 埋戻し土及び 流動化処理土(A)を対象にした土質試験結果を以下に示す。

a. 物理特性

ボーリングコアから採取したPP1, PP2, PH, 造成盛土, 埋戻し土及び流動化処理土(A)の336個の試料について,また,ト レンチ近傍からブロックサンプリングにより採取したf-1断層及 びf-2断層の36個の試料について物理試験を実施した。湿潤密度 と標高Z(m)又は地表からの深度D(G.L.-m)の関係を添 $3-u(\pi)第2表(4)$,添 $3-u(\pi)$ 第2表(5),添 $3-u(\pi)$ 第 7図(2)及び添 $3-u(\pi)$ 第7図(3)に示す。含水比,土粒子密度 及び間隙比の試験結果を添 $3-u(\pi)$ 第8表に示す。

b. 三軸圧縮試験結果(強度特性)

物理試験と同様の範囲から採取した238個の供試体について,三軸 圧縮試験(CU条件)を実施した。三軸圧縮試験結果から求めた非排 水せん断強度 s_u と圧密応力p(MPa)の関係を添3 $-u(\pi)$ 第2表(4), 添3 $-u(\pi)$ 第2表(5)及び添3 $-u(\pi)$ 第9図(4)~添3 $-u(\pi)$ 第9図(6)に示す。また、応力–ひずみ曲線において最大非排水せん 断強度を過ぎた後、一定値に収束した時点の主応力差をもとに残留強 度を設定し、残留強度 s_{ur} と圧密応力p(MPa)の関係を添3 $-u(\pi)$ 第2表(4)、添3 $-u(\pi)$ 第2表(5)及び添3 $-u(\pi)$ 第9図(4)~ 添3-ロ(ホ)第9図(6)に示す。

また、PP1については、三軸圧縮試験結果からモール・クーロンの破壊規準で設定した強度定数と標高Z(m)の関係を添3-ロ(ホ)第2表(4)及び添3-ロ(ホ)第9図(7)に示す。

c. 三軸圧縮試験結果(変形特性)

三軸圧縮試験による初期変形係数 E_o と土被り圧から静水圧を差 し引いた圧密応力p(MPa)又は標高Z(m)の関係を添3-口(ホ) 第2表(4),添3-口(ホ)第2表(5)及び添3-口(ホ)第10図(4) ~添3-口(ホ)第10図(7)に示す。

d. ポアソン比

三軸圧縮試験(CU条件)実施時にポアソン比測定を実施した。 ポアソン比 ν と標高Z(m)の関係を添3-ロ(ホ)第2表(4),添 3-ロ(ホ)第2表(5)及び添3-ロ(ホ)第10図(4)~添3-ロ(ホ) 第10図(7)に示す。

e. 動的変形特性(ひずみ依存性)

ボーリングコアから採取したPP1, PP2, PH, 造成盛土, 埋戻し土及び流動化処理土(A)の72個の供試体について, 繰返し 三軸試験(変形特性)を実施した。また, ボーリングコアから採取 したPP2及びPHの4個の供試体並びにトレンチ近傍からブロッ クサンプリングにより採取したf-1断層及びf-2断層の12個の 供試体について, 繰返し単純せん断試験を実施した。

これらの結果の正規化せん断弾性係数 G/G_o とせん断ひずみ $\gamma(\%)$ の関係及び減衰率h(%)とせん断ひずみ $\gamma(\%)$ の関係は添 $3-\mu(\pi)$ 第13図(16)~添 $3-\mu(\pi)$ 第13図(23)に示すとおりであり、正規化せん断弾性係数 G/G_o とせん断ひずみ $\gamma(\%)$ の関係及び減衰率h(%)

とせん断ひずみ γ (%)の関係の近似式をそれぞれ求め,添3- μ (ホ) 第2表(4)及び添3- μ (ホ)第2表(5)に示す。

f. 超音波速度

トレンチ近傍からブロックサンプリングにより採取したf-1断 層及びf-2断層の4個の供試体について,超音波速度測定を実施 した。この結果は,添3-ロ(ホ)第9表に示すとおりである。

圧密応力0.05MPa~3.00MPaの範囲で実施した測定結果によると、 圧密応力の増加に伴い増大する傾向が認められる。

g. 動せん断弾性係数

f - 1断層及びf - 2断層を対象として実施した超音波速度測定 によるS波速度 V_s 及び供試体の湿潤密度 ρ_t から動せん断弾性係数 G_o を求めた。この結果を添3- $\mu(\pi)$ 第2表(4),添3- $\mu(\pi)$ 第9表及び添3- $\mu(\pi)$ 第16図(4)に示す。

一方, PP1, PP2, PH, 造成盛土, 埋戻し土及び流動化処 理土(A)については, 動せん断弾性係数 G_o はPS検層によるS 波速度 V_s 及び同一ボーリング孔の供試体の湿潤密度 ρ_t より求めた。 この結果を添3- $\mu(\pi)$ 第2表(4),添3- $\mu(\pi)$ 第2表(5)及び 添3- $\mu(\pi)$ 第16図(5)~添3- $\mu(\pi)$ 第16図(8)に示す。

h. 動ポアソン比

f-1断層及びf-2断層については,超音波速度測定によるP 波速度 V_P 及びS波速度 V_s から動ポアソン比 ν_d を求めた。この結 果を添3- $\mu(\pi)$ 第2表(4),添3- $\mu(\pi)$ 第9表及び添3- $\mu(\pi)$ 第16図(4)に示す。また,PP1,PP2,PH,造成盛土,埋戻 し土及び流動化処理土(A)については、動ポアソン比 ν_d はPS 検層によるP波速度 V_P 及びS波速度 V_s より求めた。この結果を添 3-ロ(ホ)第2表(4), 添3-ロ(ホ)第2表(5)及び添3-ロ(ホ) 第16図(5)~添3-ロ(ホ)第16図(8)に示す。

- (へ) 基礎地盤及び周辺斜面の安定性評価
 - (1) 基礎地盤の安定性評価

基礎地盤の安定性評価について,評価対象施設として添3-ロ(へ) 第1図に示す耐震重要施設等及び常設重大事故等対処施設に対し,以 下の検討を行い評価した。

- 地震力に対する基礎地盤の安定性評価
 - a. 評価手法

基礎地盤のすべり,基礎地盤の支持力及び基礎底面の傾斜に関す る安全性については,2次元有限要素法による動的解析により検討 した。

有限要素法による動的解析では,動せん断弾性係数及び減衰定数 のひずみ依存性を考慮するため,等価線形化法による周波数応答解 析手法を用いた。なお,常時応力は,地盤の自重計算により求まる 初期応力,建屋基礎掘削に伴う解放力及び建屋・埋戻し土の荷重を 考慮した有限要素法による静的解析により求めた。各評価項目にお ける詳細な評価手法は以下のとおりである。

(a) 基礎地盤のすべりに対する評価手法

地盤のすべりに対する安全性については、常時応力と動的解析 により求まる地震時増分応力を重ね合わせた地震時応力に基づき、 想定すべり面上の応力状態を考慮し、すべり面上のせん断抵抗力 の和をせん断力の和で除した値が評価基準値1.5以上を満足してい ることを確認した。

なお,想定すべり面は,評価対象施設直下のすべり面及び評価 対象施設と隣接する施設の直下を連続して通るすべり面に加え, 断層を通るすべり面を設定した。 (b) 基礎地盤の支持力に対する評価手法

基礎地盤の支持力については,常時応力と動的解析により求ま る地震時増分応力を重ね合わせた地震時応力から算出した接地圧 が、岩盤支持力試験における最大荷重から設定した評価基準値を 下回っていることより、接地圧に対して十分な支持力を有してい ることを確認した。

(c) 基礎底面の傾斜に対する評価手法

基礎底面の傾斜に対する安全性については,動的解析により求 まる地震時の評価対象施設基礎底面の傾斜が,評価基準値の目安 である1/2000を下回っていることを確認した。

なお、地殻変動による基礎地盤の影響評価については、「ロ. (へ)(1)③ 地殻変動による基礎地盤の影響評価」に評価手法を 記載する。

- b. 評価条件
- (a) 解析用物性値の設定

解析用物性値は、岩石試験、PS検層及び土質試験から得られ た各種物性値に基づいて設定した。解析用物性値を添3-ロ(へ) 第1表に示す。

(b) 解析対象断面

評価対象施設のうち、小規模施設(「重油貯槽」、「第1軽油 貯槽」及び「第2軽油貯槽」)については、近接する評価対象施 設と同様に直接又はMMRを介して岩盤に支持されており、規模・ 接地圧が小さいことから、近接する評価対象施設の評価に代表さ せることとし、評価対象施設から上記の小規模施設を除いた施設 を解析対象施設とした(添3-ロ(~)第2表参照)。 解析対象断面の設定に当たっては,解析対象施設に直交する2 断面を基本とし,近接する建屋の影響を考慮するため,複数の建 屋が含まれる断面を解析対象断面として選定した。解析対象断面 位置図を添3-ロ(へ)第1図に示す。

(c) 解析モデル及び境界条件

ボーリング調査等の結果を用いて作成した岩盤分類図に基づき, 日本電気協会(2008)⁽⁷¹⁾に準拠し,添3-ロ(へ)第2図に示す解 析用要素分割図を作成した。モデル下端深さは,建屋底面幅の1.5 倍~2倍以上である標高-150mまで,側方境界は建屋幅の2.5倍 以上としてモデル化を行った。要素分割に当たっては,地盤のせ ん断波速度,解析で考慮する最大周波数等を勘案した。また,f 系断層についてはジョイント要素を用い,土木学会(2009)⁽⁷²⁾ に準拠し,以下の式を用いてせん断バネ定数及び垂直バネ定数を 設定した。

$$k_{s} = \frac{G}{t}$$
$$k_{n} = \frac{2(1 - v_{d})}{1 - 2v_{d}} \frac{G}{t}$$

k_s: せん断バネ定数 (N/mm³)

k_n: 垂直バネ定数 (N/mm³)

G: 断層のせん断弾性係数 (N/mm²)

t: 断層モデル化の幅 (mm)

*v*_d: 断層の動ポアソン比

評価対象施設の建屋モデルは、土木学会(2009)⁽⁷²⁾を参考に、 質点系モデルと等価な振動特性の有限要素モデルとした。

解析モデルの境界条件を添3-ロ(へ)第3図に示す。常時解析

における境界条件は、モデル下端を固定境界、側方を鉛直ローラ ー境界とした。また、地震時解析における境界条件は、モデル下 端を粘性境界、側方をエネルギー伝達境界とした。

(d) 地下水位の設定

解析用地下水位は、保守的に地表面あるいは建屋基礎上端に設 定した。

(e) 地震力

動的地震力としては、「ニ.(\wedge)(3) 基準地震動Ss」に示 す基準地震動Ss(Ss-A, Ss-B1~B5及びSs-C1 ~C4)を用いた。なお、水平方向のみ設定されている基準地震 動(Ss-C4)の鉛直動として、添付書類五「ホ.(\wedge)(3)② 一関東評価用地震動(鉛直)」に示す工学的に水平方向の地震動 から設定した鉛直方向の評価用地震動(以下、「一関東評価用地 震動(鉛直)」という。)を用いた。

入力地震動は,解放基盤表面で定義される基準地震動を,1次 元波動論による地震応答解析により,2次元解析モデルの入力位 置で評価したものを用いた。入力地震動の考え方を添3-ロ(へ) 第4図に示す。また,Ss-Aについては水平地震動及び鉛直地 震動の位相反転,Ss-C1~C4については水平地震動の位相 反転を考慮した場合についても検討した。

c. 評価結果

(a) 基礎地盤のすべり

各断面における最小すべり安全率一覧表を添3-ロ(へ)第3表 に示す。評価対象施設のうち耐震重要施設等(常設重大事故等対 処施設を兼ねる施設を含む)の最小すべり安全率はE-E断面で 4.0(「燃料加工建屋」下部かつ断層を通るすべり)であり、また、 常設重大事故等対処施設の最小すべり安全率はC-C断面で3.7

(「緊急時対策建屋」の底面を通るすべり)であることから、す べり安全率の評価基準値1.5以上を十分に満足している。また、各 断面における想定すべり面ごとのすべり安全率一覧表を添3-ロ (へ)第4表に示す。

地盤物性のばらつきを考慮した場合(強度について「平均値– 1.0×標準偏差(σ)」とした)についても、すべり安全率の評 価基準値1.5以上を十分に満足している。

Ss-C4については、解析対象施設の基礎地盤のすべり安全 率に影響を与える0.3秒~0.5秒の周期帯において、Ss-C1に 包絡されていることから、Ss-C1の評価をもって十分なすべ り安全裕度を確保していると工学的に判断した。さらに、Ss-C4(水平)と一関東評価用地震動(鉛直)を同時入力した解析 の結果、添3-ロ(へ)第5図に示すとおり、Ss-C1が支配的 な地震動であり、添3-ロ(へ)第5表に示すとおり、耐震重要施 設等(常設重大事故等対処施設を兼ねる施設を含む)の最小すべ り安全率はA-A断面及びE-E断面で6.2(「燃料加工建屋」下 部かつ断層を通るすべり)であり、また、常設重大事故等対処施 設の最小すべり安全率はC-C断面で4.9(「緊急時対策建屋」の 底面を通るすべり)であることから、すべり安全率の評価基準値 1.5以上を十分に満足している。

以上のことから,評価対象施設の基礎地盤は,地震力によるす べりに対して十分な安全性を有している。 (b) 基礎地盤の支持力

基礎底面の支持力に対する解析結果を添3-ロ(へ)第6表に示 す。解析対象施設の基礎底面における耐震重要施設等(常設重大 事故等対処施設を兼ねる施設を含む)の地震時最大接地圧は、「燃 料加工建屋」で2.6MPaであり、また、常設重大事故等対処施設の 地震時最大接地圧は「第1保管庫・貯水所」で1.3MPaであること から、評価基準値である7.5MPaを大きく下回っている。

Ss-C4(水平)と一関東評価用地震動(鉛直)による解析 結果を添3-ロ(へ)第7表に示す。解析対象施設の基礎底面にお ける耐震重要施設等(常設重大事故等対処施設を兼ねる施設を含 む)の地震時最大接地圧は,「燃料加工建屋」で2.1MPaであり, また,常設重大事故等対処施設の地震時最大接地圧は「第1保管 庫・貯水所」で1.2MPaであることから,評価基準値である7.5MPa を大きく下回っている。

以上のことから,評価対象施設の基礎地盤は,接地圧に対して 十分な支持力を有している。

(c) 基礎底面の傾斜

基礎底面の相対変位と傾斜に対する解析結果を添3-ロ(へ)第 8表に示す。解析対象施設の基礎底面における耐震重要施設等(常 設重大事故等対処施設を兼ねる施設を含む)の最大傾斜は、「燃 料加工建屋」で1/4800(底面両端の最大相対変位は18.4mm)であ り、また、常設重大事故等対処施設の最大傾斜は「緊急時対策建 屋」で1/10400(底面両端の最大相対変位は5.5mm)であることか ら、評価基準値の目安である1/2000を下回っている。

Ss-C4(水平)と一関東評価用地震動(鉛直)による解析

結果を添3-ロ(へ)第9表に示す。解析対象施設の基礎底面にお ける耐震重要施設等(常設重大事故等対処施設を兼ねる施設を含 む)の最大傾斜は、「燃料加工建屋」で1/8600であり、また、常 設重大事故等対処施設の最大傾斜は「緊急時対策建屋」で1/16200 であることから、評価基準値の目安である1/2000を下回っている。

以上のことから,評価対象施設の基礎地盤は,傾斜に対して十 分な安全性を有している。

② 周辺地盤の変状による施設への影響評価

耐震重要施設等及び常設重大事故等対処施設については、岩盤に直 接又はMMRを介して支持されていることから、周辺地盤の変状(不 等沈下、液状化及び揺すり込み沈下)の影響を受けるおそれはない。

③ 地殻変動による基礎地盤の影響評価

敷地近傍の断層(出戸西方断層)の活動に伴い生ずる地盤の傾斜に ついて、食い違い弾性論に基づき算定し、解析対象施設の基礎底面に おける傾斜を評価した。なお、評価に用いる断層パラメータは、添3 ーロ(へ)第10表に示す地震動評価に用いたパラメータとし、地殻変動 量は0kada(1992)⁽⁷³⁾の手法により算出した。地殻変動による基礎底 面の傾斜に対する解析結果を添3-ロ(へ)第11表に示す。解析対象施 設の基礎底面における耐震重要施設等(常設重大事故等対処施設を兼 ねる施設を含む)の最大傾斜は「燃料加工建屋」で1/17900,常設重大 事故等対処施設の最大傾斜は「第2保管庫・貯水所」で1/15400である。 出戸西方断層に起因する地震動(Ss-A及びSs-B1~B5)に よる傾斜との重畳を考慮した場合においても、解析対象施設の基礎底 面における耐震重要施設等(常設重大事故等対処施設を兼ねる施設を 含む)の最大傾斜は「燃料加工建屋」で1/5100であり、また、常設重 大事故等対処施設の最大傾斜は「緊急時対策建屋」の1/7500であることから、評価基準値の目安である1/2000を下回っている。

以上のことから,評価対象施設の基礎地盤は,地殻変動による傾斜 に対して十分な安全性を有している。

(2) 周辺斜面の安定性評価

地震力により評価対象施設に重大な影響を与える周辺斜面は存在しない(添3-ロ(ニ)第10図参照)。

- (ト) 地質調査に関する実証性
 - (1) 各種調査・試験の実施会社の選定

敷地周辺,敷地近傍及び敷地内の地質調査・試験工事の実施会社は, 事前に会社経歴書,技術者名簿,工事実績等を検討し,この種の調査・ 試験に対する技術レベルが高く,過去に多数の実績を有する専門会社 を選定した。

主な地質調査・試験の実施年度及び実施会社名は、添3-ロ(ト) 第1表のとおりである。

(2) 地質調査の計画

地質調査に当たっては、地域特性を踏まえ、総合的かつ体系的な調 査計画書を策定した。

調査計画の主要なものについては、一般財団法人電力中央研究所及 び社外の学識経験者から必要に応じて意見を聴取し、内容を固めた。

- (3) 調査・試験工事実施に当たっての管理体制
 - 実施会社の作業管理体制

調査・試験工事の実施に当たっての実施会社の作業管理体制は,現 場代理人,災害防止責任者及び主任技術者を現場に常駐させ,現場代 理人は工事施工の総括を,災害防止責任者は工事施工における災害防 止及び環境保全を,主任技術者は施工に関する技術上の管理を行った。

現場代理人,災害防止責任者及び主任技術者については,工事着手 前に各々の経歴書を添付して当社に届け出ており,当社はそれを審査 し,適任者であることを確認して承認した。

当社の作業管理体制

当社における地質調査・試験工事の作業期間中における作業管理体制は、本店、若しくは本社及び現場に担当者を置いて、地質調査・試

験工事の管理を行った。

地質調査・試験工事の施工計画,作業実施状況及び検査,工事報告 等については文書により担当者経由で提出させ,検討のうえ承認をし た。また,施工方法,工程等についての打合せを行い,工事が適切に 実施されるように実施会社を指導した。

③ 施工管理·指導

地質調査・試験工事の実施に当たっては、工事着手に先立ち工事の 施工方法、使用機械、作業員名簿、工程等を記載した工事施工計画書 を実施会社から提出させ、当社で検討し、承認後に工事を実施した。

工事中は,現場作業については工事日報を提出させ,また,室内試 験等は試験日誌等を記入させ,随時確認することにより作業内容を管 理するとともに,必要に応じて当社担当者が立会い検査を実施した。 また,作業状況,ボーリングコア等の記録及び写真撮影を行った。

工事報告書の内容についても,逐一当社で検討するとともに,試験 等の生データも併せて提出させ,報告書記載内容との整合について確 認した。さらに,調査・試験結果については,必要に応じて一般財団 法人電力中央研究所及び社外の学識経験者からの意見聴取による検討 を加えた。

④ 地質調査結果の評価・とりまとめ

地質調査終了後,諸資料については,一般財団法人電力中央研究所 及び社外の学識経験者からの助言を得て検討し,十分な評価を経て申 請書としてとりまとめを行った。 参考文献

- (1) 今井功. 5万分の1地質図幅「近川」及び説明書.工業技術院地質調査所, 1961.
- (2) 上村不二雄.地域地質研究報告(5万分の1地質図幅):浅虫地域の 地質.工業技術院地質調査所, 1983.
- (3) 山崎晴雄,粟田泰夫,加藤碵一,衣笠善博. 50万分の1活構造図「青森」.工業技術院地質調査所, 1986.
- (4) 北村信,岩井武彦,多田元彦. 20万分の1青森県地質図及び地質説明書.青森県, 1972.
- (5) 箕浦幸治,小菅正裕,柴正敏,根本直樹,山口義伸.20万分の1青森県地質図及び地質説明書.青森県,1998.
- (6) 活断層研究会編.日本の活断層-分布図と資料.東京大学出版会, 1980.
- (7) 活断層研究会編.新編 日本の活断層-分布図と資料.東京大学出版会,1991.
- (8) 今泉俊文,宮内崇裕,堤浩之,中田高編.活断層詳細デジタルマップ[新編].東京大学出版会,2018.
- (9) 北村信編. 新生代東北本州弧地質資料集. 宝文堂, 1986.
- (10) 日本地質学会編. 日本地方地質誌2 東北地方. 朝倉書店, 2017.
- (11) 玉木賢策. 20万分の1八戸沖海底地質図及び説明書. 工業技術院地質 調査所, 1978.
- (12) 奥田義久. 20万分の1下北半島沖海底地質図及び説明書.工業技術院 地質調査所, 1993.
- (13) 国土地理院.10万分の1沿岸域広域地形図及び土地条件図「陸奥湾」.建設省国土地理院,1982.
- (14) 海上保安庁水路部. 20万分の1海底地形図「八戸沖」. 海上保安庁水路部, 1973.
- (15) 海上保安庁水路部.20万分の1海底地質構造図「八戸沖」.海上保安庁水路部,1973.
- (16) 海上保安庁水路部.20万分の1海底地形図「下北半島沖」.海上保安庁水路部,1974.
- (17) 海上保安庁水路部.20万分の1海底地質構造図「下北半島沖」.海上 保安庁水路部,1975.
- (18) 海上保安庁水路部.5万分の1海底地形図:5万分の1海底地質構造図及び調査報告「むつ小川原」.海上保安庁水路部,1982.
- (19) 海上保安庁水路部.5万分の1海底地形図:5万分の1海底地質構造図及び調査報告「八戸」.海上保安庁水路部,1996.
- (20) 海上保安庁水路部.5万分の1海底地形図:5万分の1海底地質構造図及び調査報告「尻屋崎」.海上保安庁水路部,1998.
- (21) 徳山英一,本座栄一,木村政昭,倉本真一,芦寿一郎,岡村行信, 荒戸裕之,伊藤康人,徐垣,日野亮太,野原壯,阿部寛信,坂井眞 一,向山建二郎.日本周辺海域中新世最末期以降の構造発達史.海
 洋調査技術, 2001, vol. 13, no. 1.
- (22) 産業技術総合研究所地質調査総合センター.数値地図P-2「日本重力 データベースDVD版」.独立行政法人産業技術総合研究所地質調査総 合センター,2013.
- (23) 中塚正,大熊茂雄.日本空中磁気DBによる対地 1,500m 平滑面での 磁気異常分布データの編集:地質調査総合センター研究資料集.独 立行政法人産業技術総合研究所地質調査総合センター,2009, no. 516.

- (24) 地震調査委員会. 日本の地震活動. 1999.
- (25) 気象庁. 「気象庁地震カタログ」, 1951~2015年.
- (26) 岡村行信. 音波探査プロファイルに基づいた海底活断層の認定. 地 質調査所月報, 2000, Vol. 51.
- (27) 多田隆治,水野達也,飯島東.青森県下北半島北東部新第三系の地 質とシリカ・沸石続成作用.地質学雑誌,1988, vol. 94.
- (28) 芳賀正和,山口寿之.下北半島東部の新第三系-第四系の層序と珪 藻化石.国立科学博物館研究報告,1990,vol.16.
- (29) 柴崎達雄,青木滋,小松直幹,大森隆一郎,藤田至則.青森県下北半島南部の地質と地下水.藤本教授記念論文集,1958.
- (30) 青森県. 土地分類基本調査5万分の1表層地質図「陸奥横浜」. 青森県, 1970.
- (31) 青森県. 土地分類基本調査5万分の1表層地質図「平沼」. 青森県, 1970.
- (32) Kanazawa, K. . Early Pleistocene glacio-eustatic sea-level fluctuations as deduced from periodic changes in cold- and warm-water molluscan associations in the Shimokita Peninsula, North-east Japan. Palaeogeo, Palaeocli, Palaeoecology, 1990, 79.
- (33) 村岡洋文,高倉伸一.10万分の1八甲田地熱地域地質図及び説明書:特殊地質図(21-4).工業技術院地質調査所,1988.
- (34) 工藤崇,檀原徹,山下透,植木岳雪,佐藤大介. "八甲田カルデラ 起源火砕流堆積物の層序の再検討".日本第四紀学会講演要旨集, 2011, no. 41.

- (35) 高島勲,本多朔郎,納谷宏.青森県八甲田地域の火砕流堆積物のTL年代.岩石鉱物鉱床学雑誌,1990, vol. 85.
- (36) 岩井淳一.青森県東部の更新統.東北大学理学部地質学古生物学教 室研究邦文報告, 1951, vol. 40.
- (37) 宮内崇裕.東北日本北部における後期更新世海成面の対比と編年.地理学評論, 1988, vol. 61.
- (38) 町田洋,新井房夫.新編 火山灰アトラス [日本列島とその周辺].東京大学出版会,2011.
- (39) 東北地方第四紀研究グループ.東北地方における第四紀海水準変化:日本の第四系.地学団体研究会専報, 1969, no. 15.
- (40) 土木学会.原子力発電所の立地多様化技術-断層活動性評価技術-(C級活断層の分類と電子スピン共鳴法による断層年代測定).土木 学会原子力土木委員会,1999.
- (41) 井上大榮,宮腰勝義,上田圭一,宮脇明子,松浦一樹. 2000年鳥取県西部地震震源域の活断層調査. 地震第2輯, 2002, vol. 54, no. 4.
- (42) 長崎康彦. 岩石磁気と磁気異常から得られる地質情報, A Case
 Study:東北日本前弧陸棚における岩石磁気測定と地磁気異常解析:石油の開発と備蓄.石油公団, 1997, vol. 30, no. 6.
- (43) Chinzei, K. Younger Tertiary geology of the Mabechi River Valley, Northeast Honshu, Japan. Journal of the Faculty of Science, University of Tokyo, 1966.
- (44) 工藤崇. 5万分の1地質図幅「十和田」. 独立行政法人産業技術総合 研究所地質調査総合センター, 2005.

- (45) 藤田至則,宮城一男,松山力,木村千恵子.「むつ小川原・石油備 蓄基地建設予定地」における"活断層"問題 –特に"島弧変動論" の立場からー.新潟大災害研年報, 1980, vol. 2.
- (46) 北村信,藤井敬三.下北半島東部の地質構造について-とくに下北 断層の意義について-.東北大学理学部地質学古生物学教室研究邦 文報告,1962, vol.56.
- (47) 青森県.津軽山地西縁断層帯及び野辺地断層帯に関する調査:平成7年度地震調査研究交付金成果報告書(概要版).青森県,1996.
- (48) 小池一之,町田洋編.日本の海成段丘アトラス.東京大学出版会, 2001.
- (49) 東北電力株式会社.東通原子力発電所原子炉設置許可申請書,平成8年8月(平成9年7月一部補正,平成10年5月一部補正),1998.
- (50) 宮内崇裕,佐藤比呂志,八木浩司,越後智雄,佐藤尚登.1:25,000都市圏活断層図「青森」.国土地理院技術資料,2001,D・1-No.388.
- (51) 池田安隆, 今泉俊文, 東郷正美, 平川一臣, 宮内崇裕, 佐藤比呂志編. 第四紀逆断層アトラス. 東京大学出版会, 2002.
- (52) 地震調査委員会. 折爪断層の長期評価について. 2004.
- (53) 地震調査委員会. 津軽山地西縁断層帯の長期評価について. 2004.
- (54) 地震調査委員会. 青森湾西岸断層帯の長期評価について. 2004.
- (55) 大和伸友. "五戸川流域の地形面". 駒沢大学大学院地理学研究, 1989,no. 19.
- (56) 青森県.入内断層及び折爪断層に関する調査,平成8・9年度地震調 査研究交付金成果報告書(概要版).青森県,1998.
- (57) 青池寛.「ちきゅう」下北半島沖慣熟航海掘削コアについて.月刊地球,2008, vol. 30.

- (58) 東京電力株式会社.東通原子力発電所原子炉設置許可申請書 平成18
 年9月(平成19年3月一部補正,平成21年4月一部補正,平成21年12
 月一部補正,平成22年4月一部補正),2010.
- (59) 池田安隆. "下北半島沖の大陸棚外縁断層". 科学, 2012, vol. 82.
- (60) 渡辺満久,中田高,鈴木康弘. "下北半島南部における海成段丘の 撓曲変形と逆断層運動".活断層研究, 2008, no. 29.
- (61) 渡辺満久."六ヶ所断層周辺における海成段丘面の変形と地形発達".活断層研究, 2016, no. 44.
- (62) 土質工学会. 土質試験法(第2回改訂版). 土質工学会, 1979.
- (63) 土質工学会. 土質試験の方法と解説. 土質工学会, 1990.
- (64) 地盤工学会. 地盤材料試験の方法と解説. 地盤工学会, 2009.
- (65) 土木学会岩盤力学委員会. 軟岩の調査・試験の指針(案) -1991年 版-, 土木学会, 1991.
- (66) 地盤工学会.新規制定地盤工学会基準・同解説(2013年度版).地 盤工学会,2014.
- (67) 土質工学会. 岩の調査と試験. 土質工学会, 1989.
- (68) 地盤工学会. 地盤調査の方法と解説. 地盤工学会, 2013.
- (69) 物理探鉱技術協会.物理探鉱第15巻第1号.物理探鉱技術協会,1962.
- (70) 日本電気協会電気技術基準調査委員会. JEAG 4601-1987. 原子力発 電所耐震設計技術指針. 日本電気協会, 1987.
- (71) 日本電気協会原子力規格委員会. JEAG 4601-2008. 原子力発電所耐 震設計技術指針. 日本電気協会, 2008.
- (72) 土木学会原子力土木委員会.原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料>.土木学会,2009.

(73) Okada, Y. . Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1992, vol. 82-2.

添3-ロ(ロ) 第1表

敷地周辺陸域の地質層序表

注) ——— は, 整合関係を示す。

- ~~~~ は、不整合関係を示す。
- -----は、下位層との関係が未確認であることを示す。
- ・表中の「火山灰層」は、火山灰を含むレスからなり、上部 に土壌化がみられる風成層を表す名称として用いている。

【注】従来「砂子又層上部層」としていた地層のうち,敷地近傍の 第四系下部~中部更新統について,「六ヶ所層」と仮称する。

添3-ロ(ロ)第2表 段丘堆積層と示標テフラの層位関係

年代 (万年前)	敷地周辺の示標テフラ	段丘面区分	段丘面 区分	主な分布形態	主な旧汀線 高度(m)	主な層相	※7 示標テフラとの関係	宮内(1988) による区分	小池・町田 (2001)による 区分	海洋酸素 同位体ステージ
1 2	※1 十和田八戸火山灰(To-H)約1.5万年前	L ₃ m	— L3面	東岳・八幡岳地域の現河川沿いに分布する。 原面の保存は良く、L2面より低い平滑面をなす。	-	砂礫を主とする河成礫層からなる。 軽石礫を含む。	L3面堆積物を覆う火山灰層の下部に十和田八 戸火山灰を挟む。	三本木面		
3 4 5	※1 十和田大不動火山灰(To-Of)約3.2万年前	L2面	L2面	現河川沿いに分布する。 原面の保存は良く、L1面より低い平滑面をなす。	-	砂礫を主とする河成礫層からなる。	L2面堆積物を覆う火山灰層の下部に十和田大 不動火山灰を挟む。	七戸面		MIS3
6 7 8	*2 +和田レッド火山灰(To-Rd)約8万年前		L1面	一部の海岸付近,及び現河川沿いに分布する。 原面の保存は良く,平滑面をなす。	約5~10	沿岸部では細粒〜中粒砂を主とする海成砂層か らなる。 河川沿いでは砂礫を主とする河成礫層からなる。	L1面堆積物を覆う火山灰層の最下部に十和田 レッド火山灰を挟む。	柴山面		MIS5a
9	阿蘇4火山灰(Aso-4)8.5万年~9万年前		M3'面	太平洋側の一部の谷沿いに分布する。	-	沿岸部では細粒~中粒砂を主とする海成砂層か	M3面堆積物を覆う火山灰層の下部に阿蘇4火	101.67	me (me	
10			M3面	M1面あるいはM2面の海側に分布する。 原面の保存は良く、M2面より低い平坦面をなす。	約10~20	ちなる。 河川沿いでは砂礫を主とする河成礫層からなる。	山灰を挟む。	根城面	m15c/f15c	MISSC
11	※1 洞爺火山灰(Toya)11.2万年~11.5万年前	Main K	M2'面	山地の縁辺部の河川沿いに分布する。	-	砂礫を主とする河成礫層からなる。 シルトを挟む。	M2' 面堆積物中に洞鏡火山灰を挟む。			MIS5d~ MIS5e
19		M200 K	M2面	M1面の海側に分布する。 原面の保存は良く、M1面より低い平坦面をなす。	約25~40	細粒~中粒砂を主とする海成砂層からなる。 細礫~中礫を挟む。	M2面堆積物を覆う火山灰層の最下部に洞爺火 山灰を挟む。	多質台面	me (me	MIS5e (後期)
12 13 14 15		M₁m ←	M ₁ 面	現海岸線と並行に連続良く分布する。 原面の保存は良く、平坦面をなす。	約30~50	細粒~中粒砂を主とする海成砂層からなる。 細礫~中礫を挟む。	M1面堆積物を覆う火山灰層の下部に洞爺火山 灰を挟む。洞爺火山灰の下位の火山灰層が厚く 他のテフラを挟む場合がある(M2面に比べて離 水後の経過時間が長い)。	高舘面	mT5e/fT5e	MIS5e
	^{※3} オレンジ軽石(OrP)約17万年前 ※4 マカミン駅石(NP)17万年~18万年前	H ₆ m	H6面	陸奥湾側の河川沿いに分布する。	-	砂礫を主とする河成礫層からなる。	H6面堆積物を覆う火山灰層の下部にオレンジ 軽石を挟む。			MIS6
20	甲地輕石(KP)18万年~28万年前 ※5		H ₅ 面	吹越地域では山地の縁辺部に、六ヶ所地域では 台地の頂部を取り巻くように分布する。 原面の保存はやや悪く、やや起伏がみられる。	約50~70	中粒〜粗粒砂を主とする海成砂層からなる。 風化した安山岩及びチャートの中礫〜大礫を挟 む。	日5面堆積物を覆う火山灰層の下部にオレンジ 軽石及び甲地軽石を挟む。	天狗岱面	mT7/fT7	MIS7
30 :	BoP輕石 (BoP) 28万年~33万年前 ^{※6} /		H4面	次越地域では山地の縁辺部に,六ヶ所地域では な地の変がはいいなささ。	約60~110	中粒〜粗粒砂を主とする海成砂層からなる。	H4面堆積物を覆う火山灰層にオレンジ軽石及 び甲地軽石を挟む(H5面より1段高い)。	七百面	mT9	MIS9
		H3面	—— H ₃ 面	戸理の頃部ワ虹に分布する。 原面の保存は悪く,尾根状を呈する。	約90~150	m16しに女山岩及いナヤートの甲標~大標を挟む。	H3面堆積物を覆う火山灰層にオレンジ軽石及 び甲地軽石を挟む(H4面より1段高い)。	高位面	mT11/fT11	MIS11

※1:町田・新井(2011)より引用。

※2:町田・新井(2011)及び層位関係から判断。 ※3:放射性年代値及び層位関係から判断。

※4:層位関係から判断。

※5:放射性年代値, 桑原(2007), Matsu'ura et. al.(2014)等の文献値, 及び層位関係から判断。

※6:放射性年代値,宮内(1988),及び層位関係から判断。

※7:文中の「火山灰層」は、火山灰を含むレスからなり、上部に土壌化がみられる 風成層を表す名称として用いている。

添3-ロ(ロ)第3表 リニアメント・変動地形の判読基準

	L. L	山地·丘陵内	段丘面,扇状地等	停の平坦面上
リニアメントのランク	崖·鞍部等	尾根・水系の屈曲	崖·溝状凹地等	撓み・傾斜面
L _A 変動地形である可能性が高い	新鮮な崖, 鞍部等の連続の良い規 則的な配列からなり, 連続区間が長 く, 両側の地形形態が類似し, 一様 な高度差が認められ, かつ, 延長上 の段丘面に同方向の崖が認められ るもの。	尾根・水系が長い区間で同方向に屈曲し、か つ、 (1)屈曲は鮮明であり、河川の規模と屈曲 量との相関 あるいは、 (2)閉塞丘、風隙等の特異な地形 のいずれかが認められるもの。	崖, 溝状凹地等の連続の良い配列からなり, 方向が 水系の側刻方向と異なり, 延長が長く, かつ, (1)時代の異なる複数の段丘面に連続し, 古い 段丘面ほど比高が大きい (2)崖面が山地, 丘陵側に向き段丘面の傾斜 方向とは逆向きを示す (3)山地, 丘陵内の明瞭な崖, 鞍部等に連続 する のいずれかが認められるもの。	 a. 撓み状の形態が鮮明であり、その量が 大きいもの。 b. 平坦面の傾斜角が大きいもの。 上記a, bのうち,量や傾斜角に累積性があり、 かつ、延長が長いもの。
L _B 変動地形である可能性がある	 崖, 鞍部等の連続の良い規則的な 配列からなり,連続区間が長く,両 側の地形形態が類似し,一様な高 度差が認められ,かつ, (1)地形形態は鮮明であるもの。 あるいは, (2)地形形態はやや不鮮明であ るが,延長上の段丘面に同 方向の崖が認められるもの。 	尾根・水系が同方向に屈曲し, 屈曲は鮮明であ り, かつ, (1)連続区間は長いが, 河川の規模と屈曲 量との相関, あるいは, 閉塞丘, 風隙 等の特異な地形のいずれも認められ ないもの。 あるいは, (2)連続区間は短いが, 河川の規模と屈曲 量との相関, あるいは, 閉塞丘, 風隙 等の特異な地形が認められるもの。	 崖、溝状凹地等の連続の良い配列からなり、延長は短いが方向が水系の側刻方向と異なるもの、あるいは、方向が水系の側刻方向であるが延長が長いもののうち、 (1)時代の異なる複数の段丘面に連続し、古い段丘面ほど比高が大きい (2)崖面が山地・丘陵側に向き段丘面の傾斜方向とは逆向きを示す (3)山地・丘陵内の明瞭な崖、鞍部等に連続するのいずれかが認められるもの。 	上記a, bのうち, 延長は短いが, 量や傾斜角に 累積性があり, 段丘面の傾斜方向とは逆向き であるもの, あるいは, 累積性は認められない が, 延長の長いもの。 携み状の形態が鮮明であり, その量が小さい が, 延長が長く, 傾斜方向が段丘面の傾斜方 向とは逆向きのもの。
L _C 変動地形である可能性が低い	崖, 鞍部等の規則的な配列からなり, 両側で一様な高度差があるが, 地形形態は一部で不鮮明, 不連続か, あるいは, 延長上の段丘面に崖が認められないもの。	尾根・水系が同方向に屈曲し,かつ, (1)連続区間は長いが,屈曲は不鮮明で あり,屈曲量も小さく,河川の規模と 屈曲量との相関が認められないもの。 あるいは, (2)連続区間は短いが,屈曲は鮮明で あり,河川の規模と屈曲量との相関 が認められるもの。	崖, 溝状凹地等の配列からなり, かつ, (1)方向が水系の側刻方向とやや異なり, 時代 の異なる複数の段丘面に連続するが, 延 長が短いもの。 あるいは, (2)方向が水系の側刻方向であるが, 延長が 長いもの。	携み状の形態が鮮明なもののうち、上記以外 のもの。 携み状の形態が不鮮明であり、平坦面の傾斜 角も小さいが、延長が長いもの、あるいは、延 長が短いが段丘面の傾斜方向とは逆向きであ るもの。
L _D 変動地形である可能性は非常に低い	崖, 鞍部等の規則的な配列からなる が、連続が断続的か、あるいは地形 形態が不鮮明であり, 両側の高度差 が一様ではないもの。	尾根・水系が同方向に屈曲しているが,連続区 間が短く,屈曲が不鮮明であり,屈曲量が小さ いもの。	崖,溝状凹地等の配列からなるが,延長が短いもの。	携み状の形態が不鮮明なもの及び平坦面の傾 斜角が小さいもののうち、上記以外のもの。 携み状の形態、傾斜面のその角度が,段丘崖 あるいは砂丘、火砕流などの堆積面との区別 が困難であるものの、比較的連続するもの。

地质	層名	陸奥湾側	津軽海峡側	太平洋側	地層名
A	層	ほぼ全域に分布している。上 部は比較的弱い反射パターン, 下部は縞状パターンを示す。	大陸棚上に分布し,顕著な谷 を埋めて堆積する。比較的弱い 反射パターンを示す。	大陸棚上に分布し,顕著な侵食 面を覆う。上部は比較的弱い反射 パターン,下部は縞状パターンを 示す。	A層
	B ₁ 部 層	沿岸部を除いて分布する。波 状パターン〜縞状パターンを示 す。	主として大陸斜面に分布し, 沿岸部では大陸棚外縁部にも分 布する。主として縞状パターン を示し,海底水道付近から海峡 中央部の平坦面にかけては細か い回折波が卓越するパターンを 示す。	主として大陸斜面に分布し,南 部では大陸棚にも分布する。波状 パターン〜縞状パターン〜比較的 弱い反射パターンを示す。	Вг層
	B ₂	沿岸部を除いて分布する。主 として縞状パターンを示し,沿 岸部ではフォアセットラミナ状	大陸斜面,沿岸部の大陸棚及 び尻屋海脚西側の大陸棚外縁部 に分布する。主として縞状パタ		
B 唐 部		パターンを示すところがある。	ーンを示し,沿岸部の大陸棚外 縁部ではフォアセットラミナ状 パターンを示す。	主として入陸斜面に分布し、南 部では大陸棚にも分布する。主と して縞状パターンを示し、北部で は回折波が卓越するパターンを示 す部分が多くなる	
	B₃ 部 層	東部及び南部の沿岸部の一部 を除いて分布する。主として縞 状パターンを示し,沿岸部では 回折波が卓越したパターンを示 す。	大陸斜面から沿岸部の大陸棚 に分布するが,海岸付近では欠 如する。大陸棚ではフォアセッ トラミナ状パターンを示し,大 陸斜面では縞状パターンを示す。		C P 層
		ほぼ全域に分布する。縞状パ ターン〜波状パターンを示す。	大陸斜面,尻屋海脚西側の大 陸棚外縁部及び沿岸部の大陸棚 に分布する 線状パターンを示		
	/18		す。 す。	主として大陸斜面に分布し,南 部では大陸棚にも分布する。縞状 パターンを示す。	
D	層	ほぼ全域に分布する。縞状パ ターンを示す。	主として大陸斜面及び沿岸部 の大陸棚に分布し,尻屋海脚西 側の大陸棚外縁部の一部にも分 布する。縞状パターンを示す。		Dp層
Е	層	ほぼ全域に分布する。夏泊半 島北方付近では縞状パターンを 示し,湾中央部では内部反射が 不明瞭である。	大陸斜面から大陸棚に広く分 布する。縞状パターン〜波状パ ターンを示すが,西部では上面 の反射が強く,内部反射があま り認められなくなる。	大陸斜面から大陸棚に広く分布 する。大陸棚では回折波を伴う傾 斜した弱い縞状パターンを示し, 大陸斜面では縞状パターン〜波状 パターンを示す。	E層
F	層		大陸斜面から大陸棚に広く分 布するが,西部での分布状況は 不明である。回折波が卓越する パターンを示す。	大陸斜面から大陸棚に広く分布 する。沿岸部では回折波が卓越す るパターンを示し,沖合では一般 に稿状パターン~波状パターンを 示すが,敷地東方沖では回折波が 卓越するパターンを示す。	F層
G	層	·	尻屋海脚西部に分布が認めら れる。内部反射はあまり認めら れない。	大陸斜面及び南部の大陸棚に分 布が認められる。一般に上面の反 射が強く,内部反射は認められな いが,大陸斜面の沖合側では傾斜 した縞状パターンを示す。	G層

添3-ロ(ロ)第4表 敷地周辺海域の地層区分

「六ヶ所層」と仮称する。

-----は、下位層との関係が未確認であることを示す。

派3-ロ(ロ)第6表 敷地周辺海域の主要断層一覧表

F-b断層	ハ戸市北東沖の 大陸斜面上部	NNW-SSE	ENE	断層は示されていない	約21㎞間に3条の活断層	地層は示されていない	区郭範囲外	文献により断層が示され ている位置の一部において 断層の存在を否定できない。	第四紀後期更新世以降における活動性を考慮することとし、その長さを約15km ととし、その長さを約15km と評価する。
F-a 断層	八戸市北東沖の 大陸棚	NNW-SSE	ENE	長さ約 8 kmの断層	長さ約11kmの活断層	断層は示されていない	図郭範囲外	文献により断層が示され ている位置付近においてE 層中に断層が推定され、Bp 層に変位もしくは変形が及 んでいる可能性は否定でき ない。	第四紀後期更新世以降における活動性を考慮することとし、その長さを約20km ととし、その長さを約20km と評価する。
F-c断層	下北半島東方沖の 大陸斜面上部	NE-SW	SE	断層は示されていない	断層は示されていない	長さ約11.5kmの伏在断層	断層は示されていない	文献により断層が示され ている位置付近においてCp 層以下の地層に断層・撓曲 が推定され、Bp層に変形が 認められる。	第四紀後期更新世以降に おける活動性を考慮するこ ととし、その長さを約15km と評価する。
F-d断層	下北半島南端部の 大陸棚	N-S	Э	断層は示されていない	断層は示されていない	断層は示されていない	約344m間に14条の伏在断層	文献により伏在断層が示されている位置の一部にお されている位置の一部にお いて、C p層以下の地層に断 層・撓曲が推定され、B p 層 に変形が認められる。	第四紀後期更新世以降に おける活動性を考慮するこ ととし、その長さを約 6 km と評価する。
大陸棚外縁断層	尻屋海脚東縁の大陸棚外緑 ~下北半島北部の大陸棚外縁 ~下北半島南部の大陸棚	NNE-SSW	ESE	北側に長さ約45kmの断層 南側に長さ約37kmの断層	長さ約84kmの活断層	北部に長さ約23.5kmの断層 (約19.5km間は伏在断層) 南部に長さ約 6 kmの伏在断層	断層は示されていない	全区間においてCp層下部 に変位あるいは変形が認め られるものの、いずれの測 線においても、少なくとも Bp/Cp境界に変位及び変 形は認められない。	第四紀後期更新世以降の 活動はないものと判断され る。
項 目	地形的位置	走向	相対的落下側	文 20万分の1海底地質構造図 「人戸沖」 海上保安庁水路部(1973) に 下北半島沖」 海上保安庁水路部(1975)	い て 名 「 1 1 1 1 1 1 1 1 1 1 1 1 1	状 20万分の1海洋地質図 5 「八戸沖海底地質図」 長 下北半島沖海底地質図」 奥田(1993)	5万分の1海底地質構造図 「むつ小川原」 海上保安庁水路部(1982) 「尻屋埼」 海上保安庁水路部(1998)	音波探查記録解析結果	評 価

添3-ロ(ハ) 第1表

注) — - は, 整合関係を示す。 ~~~~ は,不整合関係を示す。

----- は、一部指交関係を示す。 ----- は、下位層との関係が未確認であることを示す。

・表中の「火山灰層」は、火山灰を含むレスからなり、上部 に土壌化がみられる風成層を表す名称として用いている。

敷地近傍の地質層序表

【注】従来「砂子又層上部層」としていた地層のうち,敷地近傍の 第四系下部~中部更新統について,「六ヶ所層」と仮称する。

添3-ロ(ハ)第2表 出戸西方断層南端付近の針貫入試験結果一覧

	1	針貫入試驗結果										針貫入試驗	結果							針貫入試驗結果		
	测緯	孔名	対象部	換算一軸日	E縮強さ(×	100kN/m²)	C 測線以南 C T 観察		測線	孔名	対象部	換算一軸日	E縮強さ(×	100kN/m²)	C 測線以南 C T 観察		測線	孔名	対象部	換算一軸圧縮強さ($\times 100$ kN/m ²)	C 測線以南 C T 観察
	ount	76-6	試験深度 (m)	上盤	対象部	下盤	実施箇所				試験深度 (m)	上盤	対象部	下盤	実施箇所			0.000	試験深度 (m)	上盤 対象部	下盤	実施箇所
		1. 1 all 155 date	粘土状破砕部		(町/檀寺) 0.9以下		-	-			26.07	76.1	(町層等) 253.6	87.4	-	-		K-2	14.70	63.8 122.9	47.2	-
一戸	Х	D-1露頭削 トレンチ	固結した角礫状破砕部	3.8	8.2	7.4	-				66.02		65.4		-			K-4	15.61	45.1 45.	48.5	
西			回結した砂状敏好部 128.95(緑色変質部)		20.2		-				66.20		79.5		-				8.30	4.9 8.1	5.5	-
万断	Y	K-19	128.98 (固結破砕部)	91.0	149.9	41.8	-				66.30	-	80.3			断			14.43	41.7 33.	42.9	-
層			129.07 (粘土状破砕部) 129.15 (砂~角礫北破砕部)		0.9以下		-				66.40	1	74.0		-	部	E		24.13	39.0 170.	34.5	_
	A	K-10	39.85	101.5	0.9以下	51.7	-			П -5	66.58	1	101.5		-	1		K-6	98.53	62.4 10.	37.1	-
載	Z	K-30	141.02	54.0	0.9以下	150.5	-			1 5	66.70	60.8	95.5	137.3	-	地區			108.24	12 2 10	20.8	-
び無		B-12	13.05	20.0	0.9以下	15.0	-				66.90	1	93.7		-	0)			108.63	3.	5	-
断老	В	断層南方	断層問	21.5	6.9	11.2	-				67.02	-	86.7		-	乱れ			108.83	37.7 8.1	14.2	-
層や		延長トレンチ	回転した町層部	8.2	0.9以下	9.0	_				67.20		93.8		-	75			59.20	38.4 45.4	43.1	-
			口2断層	4.2	0.9以下	4.2	-		C-D間		67.28	-	116.2		-	想		17 - 0	82.88	51.7 46.	63.6	-
		G4-50	26.82	184.4	40.7	25.4	-				7.39	52.8	26.1	42.0	-	さ		v -0	107.49	74.0 158.1	80.1	_
			25. 50		135.8		-				7.53	39.7	37.8	49.9	-	n			107.57	14.0 170.1	89.1	-
			25.60		97 3		-			П-4	11.24	14.2 43.3	16.2 41.8	<u>19.5</u> 41.3	-	る箇	F		33.29	2.4 6.1	4.9	_
			25.83		28.7		-				36.94	84.6	232.7	107.9	-	所			47.66	1.3 0.9以下	0.9以下	実施
			25.90	59.0	25.4	97.2					38.70	143.8	336.4	149.9	-			0N-5	47.80	0 901 F 0 901 F	2.4	実施 実施
		40-50	26.15		170.8		-	MF		Ш-5	68.75	38.6	212.4	98.3	-				70.60	0.911 0.9117	0.911 F	実施
		10 30	26.25		64.4		-	層			69.30	93.7	212.4	64.3				5	70.77	0.917		実施
			26. 45		78.2		-	部		W-4	13.69	30.0	44.4	52.0	-							
			31.66	118.4	84.6	107.9	-	地		ш-4	13.78	114.0	26.0	74.0	-							
			33.81 33.94	107.9	112.0	139.3	_	層の		64-24	49.52	68.6	80.3	95.1	-	100	*					
			34.25	70.7	90.5	98.3	-	乱		04-54	118.94	95.1	137.3	87.4	-	ING	~					
断			35.30	43, 3	95.1 212.4	58.3	_	n		<u>N-1</u>	11.84	(1. (22.7	91.0	-	0.	9以下	0.9×100kN/m ²	以下:針貫入試験。	の測定下限以下の箇所		
層		П-1	27.47	81.1	10.9	64.4	-	が想			11.86	54.2	12.2	75.9	-	_						
#P			32.65	78.2	122.9 測定不能	78.2	実施	定			40.12	97.3	7.8	93, 8	_	测	定不能	割れ目のため多	+貫入試験が実施で	きない箇所		
地			16.64	52.5	测定不能	62.4	実施	n		Ш-1	45.82	116.1	253.5	253.5	-	-						
層の			16.75		14.9		-	3			47.90	131.3	253.5	47.5	-							
乱			20. 56	74.0	20.2	78.2	-	面所			48.43	74.0	274.4	91.0	-							
れが	С	¥-7	32.08	78.2	170.8	74.0	-		D		48.61	6.2	62 3	11.5	-							
想		K I	38.90	78.2	测定不能	78.2	実施				59.70	33.9	51.7	13.6	-							
定さ			43.25	78.2	84.6 測定不能	91.0	一家族				62.14	6.9 50.8	10.9	31.9	-							
n			48.00	84.6	84.6	78.2	-				70.78	25.4	74.6	33.3	-							
る節			55.62	13.5	10.9	19.5	-			K-5	85.57	76.1	65.9	39.9	-							
所			11. 85		49.4		-			R J	105.62	1	55.1		-							
			11.86		測定不能		実施				105.78	30.7	37.1	45.8	-							
			11. 89	30.4	6.7	22.1	<u>天間</u> 一				105. 86	33.1	19.1	45.0	-							
			12.03		39.1		-				106.55		29.3		-							
			12. 10		28.0		-			07. 2	37.62	10.0	2.6	10.0	_							
		× 0	12.30		35.2		-			QF-3	37.77	18.8	14.2	16.2	-							
		K-8	14. 68 22. 70	26.1	20.8	26.0	-				84.43	E7 .	30.0	50 5	-							
			22.75	15.6	14.9	36.5	-		D-E間		84.66	51.1	39.1	52.5	-							
			22.85	6,9	8.9 測定不能	2.4	実施			QP-4	84.85	57.1	5.1	39.7	-							
			31.90	9.5	測定不能	6.9	実施				105.52	-	128.9		-							
			33.75	3.3	0.9以下 11.6	0.9以下 6.2	実施				105.60	35.8	8.2	34.5	-							
			34. 41	10.2	10.2	15.5	-				1 100.00		00.2									
	1		36, 67	0.9以下	0.9以下	0.9以下	実施															

添3-ロ(ニ)第1表 敷地内地質層序表

地	質	時亻	ť		地層	 了名	記号	主な層相及び岩相
		学	2	崖	錐堆	推積層	dt	礫,砂,粘土
	第	ー ポート 世	۳ ۲	沖	積低地	也堆積層	al	礫,砂,粘土,腐植土
			後	火	~~~~~ 山	灰層	1m	褐色の粘土質火山灰
	四	更	期	4	中位段	丘堆積層	M 2, M 1	主に石英粒子からなる淘汰の良い中粒砂〜粗粒砂
		新	中	高	位段 E	企堆積層	H 5	主に石英粒子からなる淘汰の良い中粒砂〜粗粒砂
	ý7	201	期	六	ケ	【注】	R	砂, シルト, 礫
新	术亡	世	前	~~~~	~~~~			
			期					
		鮮親	所世	いいの		下部層	S 1	
生			後期					
	新				上 部 (T ₃)	泥岩層	Тзms	泥岩 一部に凝灰岩を挟む。
						礫混り 砂岩層	T 2 SS	礫混り砂岩
代	第三	中新	中	鷹架	中部層	軽石混り 砂岩層	T 2ps	砂岩・凝灰岩互層 礫混り砂岩 砂岩・泥岩互層 軽石混り砂岩(3) 砂質軽石凝灰岩(2) 軽石混り砂岩(2) 砂質軽石凝灰岩(1) 軽石混り砂岩(1)
	紀	世	别	層	(T ₂)	軽石 凝灰岩層	T 2pt	凝灰岩 軽石凝灰岩 軽石質砂岩 礫岩
						粗粒 砂岩層	T 2cs	砂質軽石凝灰岩 粗粒砂岩
					~~下 部	細粒 砂岩層	Tıfs	細粒砂岩 一部に粗粒砂岩を挟む。
					層 (T1)	泥岩層	T 1 ms	泥岩 一部に凝灰質砂岩,砂質軽石凝灰岩を挟む。

注) は,整合関係を示す。 ・・・・ は,不整合関係を示す。
 主な層相及び岩相の上下順序は,層位関係を示す。
 【注】: 従来「砂子又層上部層」としていた地層のうち,敷地近傍の

第四系下部~中部更新統について,「六ヶ所層」と仮称する。

敷地内の断層性状一覧表 孫3−□(二)第2表

									r		
活動性	六ヶ所層に変位を与えない。	敷地北部では砂子又層下部層に変位を与え ない。 敷地南部では六ヶ所層に見かけ 1 ~ 6 cm 程度の逆断層センスの変位を与えるが,高 位段丘堆積層に変位を与えない。	六ヶ所層に変位を与えない。	六ヶ所層に変位を与えない。	六ヶ所層に見かけ 10cm程度の西上がり逆 断層センスの変位を与えるが,古期低地堆 積層及び高位段丘堆積層に変位を与えな い。	西側が f - 2 断層に切られる。** ²	西側が f ー 2 断層に切られる。** ²	f - 1 断層に切られる。**2	f - 1 断層に切られる。※2	鷹 架層上部層泥岩層に変位を与えない。 ^{※2}	f - 2 断層に切られる。** ²
主な性状	断層面は密着する。鱗片状〜角礫状のセピオライト を有する。同系統の断層が数条分布する。	断層面には鏡肌,条線が見られる。葉片状のセピオ ライトを有する。同系統の断層が数条分布する。	断層面は密着し,条線が見られる。断層面付近は細 粒化し周辺よりも硬質である。	断層面は密着し,鏡肌,条線が見られる。	断層面は密着し,鏡肌,条線が見られる。鱗片状~ 角礫状のセピオライトを有する。	断層面は固結・ゆ着し、軽石に沿って凹凸する。 断層の上下盤の地質が構成粒子の破砕を伴わずに混 在する。	断層面は固結・ゆ着する。 固結した細粒物を挟在する。	断層面は固緒・ゆ着する。断層の上下盤の地質が構 成粒子の破砕を伴わずに混在する。断層近傍の軽石 が断層面と平行に配列する。	断層面は固結・ゆ着する。断層の上下盤の地質が構 成粒子の破砕を伴わずに混在する。	断層面は固結・ゆ着する。 断層の上下盤の地質が構成粒子の破砕を伴わずに混 在する。	断層面は固結・ゆ着する。 断層の上下盤の地質が構成粒子の破砕を伴わずに混 在する。
破砕部 最大幅 (cm)	145	138	なし	なし	94	なし	なし	なし	なし	なし	なし
最大鉛直 変位量 (m)	140	330	20	30	45	85	25	145	70	90 以上	70
たいよ	東港ち	周 市 ち	東 王 ち	東 市 む	西落正ち	南上がり 逆	南上がり 逆	北上がり 逆	北上がり 逆	北上がり 桜	南上がり 逆
主領	60°~85° 南東	50°~70°	65°~~80° 南東	55°~85° 南東	50°~~80°	50°~60° 南	40°~65° 南	30°~70° 北	50°~70° 北	$20^\circ \sim 50^\circ$ \pm	50°~60° 南
主な 走向	$ m N40^\circ E \ \sim 50^\circ E$	\sim 55 $^{\circ}$ E	$N25\degree E$ $\sim 70\degree E$	$N40^{\circ} E \sim 70^{\circ} E$	$ m N45\degree E$ $\sim 60\degree E$	N80°W ∼EW	N70° W	${ m E}{ m W}\sim$ N 55 $^{\circ}$ E	$\sim EW$	${\rm E}{\rm W}\sim$ N75° E	$N60^{\circ} \sim 70^{\circ} E$
確認位置	ボーリング トレンチ 基礎掘削面*1	ボーリング トレンチ 基礎掘削面*1	ボーリング 基礎掘削面 ^{※1} 試掘坑	ボーリング 基礎掘削面※1	ボーリング トレンチ 基礎掘削面*1	ボーリング	ボーリング	ボーリング トレンチ	ボーリング トレンチ	ボーリング	ボーリング
断層名	f — 1 断層	f - 2 断層	f - 1 a 断層	f-1b 断層	f - 2 a 断層	s f — 1 断層	s f - 2 断層	s f — 3 断囓	s f - 4 断層	s f — 5 断層	s f - 6 断層

3-1-190

添3-口(二)第3表 岩盤変形試験結果

(単位:MPa)

封驗位票	当船 凸粄夕	割線弾性係数	性係数 変形係数		接線弾性係数		
武贵们立直	石盈万短石	E _s	D	適用範囲	E_t	適用範囲	
J — 1	軽石凝灰岩	490	461	0. 20 \sim 0. 98	510	0.39~0.98	
J - 2	軽石凝灰岩	1050	892	0. 20 \sim 0. 98	981	0. 20 \sim 0. 98	
J — 3	砂質軽石凝灰岩	843	804	0. 20 \sim 1. 18	814	0.00 \sim 0.78	
J - 4	砂質軽石凝灰岩	667	667	0.39 \sim 0.98	765	0. 39 \sim 0. 98	
	平 均	763	706	_	768	_	

添3-口(二)第4表 岩盤支持力試験結果

(単位:MPa)

		And the second design of the second	
試験位置	岩盤分類名	上限降伏值	最大荷重
J B−1	軽石凝灰岩	2. 9	7.4
J B−2	軽石凝灰岩	3. 4	9.8
JB-3	砂質軽石凝灰岩	2.5	6.4
JB-4	砂質軽石凝灰岩	2. 6	6.4
平	均	2. 9	7.5

		初期垂直応力	破	衷 時	強 度	定数	
試験位置	岩盤分類名	σγ	垂直応力 σ	せん断応力 τ	τ_0	φ	
		(MPa)	(MPa)	(MPa)	(MPa)	(°)	
S = 1		0.05	0.24	0.70			
	軽石 凝灰岩	0.10	0.28	0.71	0.49	42.2	
3-1		0.29	0.59	1.09	0.40		
		0.49	0.80	1. 17			
		0.05	0.25	0.74			
S - 2	砂質軽石	0.10	0.32	0.84	0.60	25 0	
5-2	凝灰岩	0.29	0.57	1.03	0.00	əə. U	
		0. 49	0. 79	1. 13			
平均		_	_	_	0. 53	39.1	

添3-口(二)第5表 岩盤せん断試験結果

添3-ロ(二)第6表 岩盤クリープ試験結果

		載荷応力	弾性変位量	最終変位量	クリー	プ係数
地層名	岩盤分類名	σ	W_{e}	W_{0}	α	β
		(MPa)	$(imes 10^{-3} \mathrm{mm})$	$(imes 10^{-3} \mathrm{mm})$		(1/d)
鷹架層 中部層	砂質軽石 凝灰岩	0. 49	241	261	0. 08	0.87

注)弾性変位量*W_e*は,近似曲線から求めている。 最終変位量*W_o*は,近似曲線の収束値から求めている。

添3-ロ(二)第7表 平均速度法による弾性波速度測定結果

		向		P波速度			S波速度		
地層名	方		平均値 (km/s)	標準偏差 (km/s)	変動係数 (%)	平均值 (km/s)	標準偏差 (km/s)	変動係数 (%)	測定数
鷹架層 中部層	全	体	1.76	0.07	3. 9	0.62	0.06	9. 2	103
	NE -	-SW	1. 77	0.08	4. 7	0.61	0.07	12.1	52
	NW-	- SE	1.75	0.05	2.8	0.62	0.03	4. 8	51

添3-ロ(二)第8表 シュミットロックハンマの反発度測定結果

地層名	平均值	標準偏差	変動係数(%)	測定数
鷹架層 中部層	15. 1	3. 3	21.7	180

添3-口(二)第9表 孔内載荷試験結果

(単位:MPa)

十二世的司夕	地园夕	此 层 女 岩 盤 分 類		地 屋 岩盤分類 降伏圧 Py		変形係	試験数
ホーリング 孔石	地眉石	名	平均值	標準偏差	平均值	標準偏差	(点)
		凝灰岩	1. 8	-	215	Ι	3
	鷹架層	軽石 凝灰岩	3. 3	1. 1	387	192	6
g — 1 1L	中部層	軽石質 砂岩	7.0	_	1280	Ι	2
		砂質軽石 凝灰岩	2. 8	_	329		1

添3-口(二)第10表 透水試驗結果

ボーリング 孔名	地表からの深度 (m)	地 層 名	岩盤分類名	透水係数 (m/s)
	53.00 ~ 55.00	鷹架層中部層	凝灰岩	9. 1 ×10 -8
	117. 20 \sim 122. 20	鷹架層中部層	軽石凝灰岩	7.3 $\times 10^{-8}$
	$157.90 \sim 162.90$	鷹架層中部層	軽石凝灰岩	1. 2 $\times 10^{-8}$
g – I IL	$25.00 \sim 30.00$	鷹架層中部層	軽石質砂岩	3.8 $\times 10^{-8}$
	94.00 ~ 99.00	鷹架層下部層	細粒砂岩	4. 9 $\times 10^{-9}$
	$124.00 \sim 129.00$	鷹架層下部層	細粒砂岩	5. 0 $\times 10^{-10}$
			凝灰岩	9. 1 $\times 10^{-8}$
	亚梅梅	5	軽石凝灰岩	4. 3 $\times 10^{-8}$
		<u>±</u>	軽石質砂岩	3. 8 $\times 10^{-8}$
<u>.</u>			細粒砂岩	2. 7 $\times 10^{-9}$

添3-ロ(ホ)第1表 繰返し三軸試験(強度特性)の試験条件

試験条件		压密非排水条件(CU条件)
側圧		試料採取深度の有効土被り圧相当
供試体寸法		直径約5cm×高さ約10cm, 直径約12.5cm×高さ約
		25 cm
載荷方法		応力制御法
静的載荷	載荷荷重	各段階の前に繰返し載荷の最大軸差応力の 1/2 の
		軸差応力を載荷
	載荷速度	0.5~1.0MPa/min 程度
多段階	波形	正弦波 (0.5Hz)
繰返し載荷	載荷回数	各段階で 10 回
	載荷荷重	最大軸差応力を段階的に増加

添3-ロ(ホ)第2表(1) 岩石試験結果及び土質試験結果

	区分		泥岩(上部層) Tmss	泥岩(下部層) Tms	細粒砂岩 Tfs	凝灰質砂岩 Tts	軽石質砂岩 Tpps
物:特	理 生 湿潤密度	ρ_{t} (g/cm ³)	$1.60-2.02 \times 10^{-4} \cdot Z$	1.70	$1.85 - 1.55 \times 10^{-4} \cdot Z$	1.67	1. 91
強度	ピ 非排水 ク せん断強度	S _u (MPa)	1.63	2.82 $-1.18 \times 10^{-2} \cdot Z$	2. 22-1. $45 \times 10^{-2} \cdot Z$	-	2. 64-1. 13 \times 10 ⁻² · Z
特性	残 非 排水 留 せん 断強度	S _{ur} (MPa)	$1.05 - 3.87 \times 10^{-3} \cdot Z$	$1.67 - 3.20 \times 10^{-3} \cdot Z$	$1.55-8.17 \times 10^{-3} \cdot Z$	=	$1.96-9.44 \times 10^{-3} \cdot Z$
静	初期 変形係数	Е ₀ (MPa)	551-2.75 <i>Z</i>	938–2. 64 <i>Z</i>	939-8.69 <i>Z</i>	_	982-7.30 <i>Z</i>
发) 特	世 ポアソン比	ν	$0.48+1.9 \times 10^{-4} \cdot Z$	$0.47 + 1.6 \times 10^{-4} \cdot Z$	$0.47+2.6 \times 10^{-4} \cdot Z$	_	$0.47+1.1 \times 10^{-4} \cdot Z$
	動せん断 弾性係数	<i>G</i> ₀ (мРа)	502–2. 47 Z	986–1. 59 Z	1220-5.88 <i>Z</i>	1290	1410-7.59 <i>Z</i>
動	動ポア ウ ソン比	Ψd	$0.44+2.8 \times 10^{-4} \cdot Z$	$0.40+1.1 \times 10^{-4} \cdot Z$	$0.40+2.8 \times 10^{-4} \cdot Z$	0. 39	$0.38+2.0 \times 10^{-4} \cdot Z$
爱) 特(生 正規化せん 断弾性係数	G/G_{0} ~ γ (%)	$\frac{1}{1+1.35 \cdot \gamma^{0.912}}$	$\frac{1}{1+0.904\cdot \gamma^{0.933}}$	$\frac{1}{1+1.87\cdot\gamma^{0.819}}$	$\frac{1}{1+1.59\cdot \gamma^{1.03}}$	$\frac{1}{1+6.07\cdot\gamma^{1.04}}$
	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.219\gamma + 0.0551} + 1.42$	$\frac{\gamma}{0.412\gamma+0.0752} + 1.25$	$\frac{\gamma}{0.\ 207\ \gamma + 0.\ 0249} + 1.\ 29$	$\frac{\gamma}{0.0305 \gamma + 0.0628} + 1.06$	$\frac{\gamma}{0.0940 \gamma + 0.0145} + 0.826$

Z は標高(m)を示す。

添3-ロ(ホ)第2表(2) 岩石試験結果及び土質試験結果

	区分		粗粒砂岩 Tcs	砂岩・泥岩互層 Talsm	砂岩・凝灰岩互層 Talst	凝灰岩 Ttf	軽石凝灰岩 Tpt
物特	理 生 湿潤密度	ρ_{t} (g/cm ³)	2.05	1.92	$1.72 - 8.29 \times 10^{-4} \cdot Z$	$1.64-2.86 \times 10^{-4} \cdot Z$	1. 54–2. 45×10 ⁻⁴ \cdot Z
強度	ピ 非排水 せん断強度	S _u (MPa)	1. 19	2. 09	1. 73	1.99	$1.34 - 4.82 \times 10^{-3} \cdot Z$
特性	残 留 せん断強度	S _{ur} (MPa)	0. 88	1.46	1.73	1.69	$0.95 - 3.96 \times 10^{-3} \cdot Z$
静亦	初期 変形係数	<i>Е</i> ₀ (MPa)	574	876	327	696-6.60Z	757—2. 19 <i>Z</i>
変 特	サポアソン比	ν	0. 48	0. 48	0. 48	$0.48+2.4 \times 10^{-4} \cdot Z$	$0.48+2.6 \times 10^{-4} \cdot Z$
	動せん断 弾性係数	G ₀ (MPa)	1860	1330	780–4. 88 <i>Z</i>	761-3.89 <i>Z</i>	848-1.70 <i>Z</i>
動	動ポア カン比	νd	0. 39	0. 39	$0.43 + 5.3 \times 10^{-4} \cdot Z$	$0.42 + 1.1 \times 10^{-4} \cdot Z$	$0.41+1.3 \times 10^{-4} \cdot Z$
変特	ド 生 正規化せん 断弾性係数	$\frac{G/G_0}{\sim \gamma(\%)}$	$\frac{1}{1+3.37\cdot\gamma^{0.663}}$	$\frac{1}{1+3.08 \cdot \gamma^{0.919}}$	$\frac{1}{1+2.77 \cdot \gamma^{0.856}}$	$\frac{1}{1+3.78\cdot \gamma^{0.904}}$	$\frac{1}{1+2.02\cdot \gamma^{0.768}}$
	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.121\gamma + 0.00752} + 1.58$	$\frac{\gamma}{0.0664 \gamma + 0.0404} + 0.963$	$\frac{\gamma}{0.0935 \gamma + 0.0144} + 2.04$	$\frac{\gamma}{0.0682 \gamma + 0.0127} + 1.47$	$\frac{\gamma}{0.\ 163\ \gamma + 0.\ 0192} + 1.\ 34$

Z は標高(m)を示す。

添3-ロ(ホ)第2表(3) 岩石試験結果及び土質試験結果

		区分		砂質軽石凝灰岩 Tspt	礫混り砂岩 Tss	軽石混り砂岩 Tps	礫岩 Tcg	風化岩 T(W)
物特	理性	湿潤密度	$ ho_{t}$ (g/cm^{3})	$1.62 - 1.52 \times 10^{-4} \cdot Z$	$1.91 - 1.35 \times 10^{-4} \cdot Z$	$1.69 - 1.78 \times 10^{-3} \cdot Z$	2. 12	1.56
強度	ピーク	非排水 せん断強度	S _u (MPa)	$1.23 - 3.95 \times 10^{-3} \cdot Z$	1.95	$1.23-6.72 \times 10^{-3} \cdot Z$	2. 62	0.035+0.315 <i>p</i>
特性	残留	非排水 せん断強度	S _{ur} (MPa)	$0.85 - 2.03 \times 10^{-3} \cdot Z$	1. 37	$0.94 - 6.47 \times 10^{-3} \cdot Z$	1.62	0.034+0.314 <i>p</i>
静亦	的	初期 変形係数	<i>E</i> ₀ (MPa)	697—3. 32 Z	754	537	1170	38.0+78.8 <i>p</i>
多 特	性	ポアソン比	ν	$0.48+2.3 \times 10^{-4} \cdot Z$	0.48	0. 48	-	0. 47
		動せん断 弾性係数	G 0 (МРа)	880-2.58Z	773—7.85 <i>Z</i>	959-4.51Z	2520	123
動	的	動ポア ソン比	νd	$0.41+1.3 \times 10^{-4} \cdot Z$	$0.43+4.7 \times 10^{-4} \cdot Z$	$0.41+3.3 \times 10^{-4} \cdot Z$	0. 35	0. 40
发 特	性	正規化せん 断弾性係数	$\frac{G/G_{\theta}}{\sim \gamma^{(\%)}}$	$\frac{1}{1+2.46\cdot\gamma^{0.885}}$	$\frac{1}{1+3.25\cdot\gamma^{0.833}}$	$\frac{1}{1+3.52\cdot\gamma^{0.829}}$	$\frac{1}{1+4.72 \cdot \gamma^{0.900}}$	$\frac{1}{1+2.53\cdot\gamma^{0.773}}$
		減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.119\gamma + 0.0302} + 1.48$	$\frac{\gamma}{0.0902 \gamma + 0.0157} + 1.08$	$\frac{\gamma}{0.0734\gamma + 0.0214} + 1.48$	$\frac{\gamma}{0.0973\gamma + 0.00991} + 0.274$	$\frac{\gamma}{0.\ 114\ \gamma + 0.\ 0189} + 0.\ 911$

Z は標高(m)を示す。

・ p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

添3-ロ(ホ)第2表(4) 岩石試験結果及び土質試験結果

	区分		f - 1 断層	f - 2 断層		区分		新第三系鮮新統	区乡	}	第四系下部~ 中部更新統 PP2	第四系 中部更新統 ~完新統 pu
44-199			1-1, 1-18, 1-10	1-2, 1-2a	Ada 200			III			112	III
初理特性	湿潤密度	(g/cm^3)	1.28	1. 32	物理特性	湿潤密度	(g/cm^3)	2. 12-3. 12×10 ⁻³ · Z	湿潤密度	(g/cm^3)	1. 73	1.89
Ľ	非排水	Su	0.050 ± 0.404-	0 108 - 0 206 -	Ľ	粘着力	с (MPa)	$0.902 - 9.14 \times 10^{-3} \cdot Z$	非排水	Su	0 115±0 2415	0.766±0.8265
強ク度	せん断強度	(MPa)	$0.059 \pm 0.494p$	$0.108 \pm 0.296p$	強ク	内部摩擦角	ф (°)	13. 8	せん断強度	(MPa)	$0.115 \pm 0.341p$	0.100 + 0.820p
特性残	非排水	Sur	0.054.1.0.497-	0.005 0.208-	特性残	残留粘着力	с. (MPa)	$0.853 - 8.47 \times 10^{-3} \cdot Z$	非排水	Sur	0 102 ± 0 241 5	0 728 ± 0 852 5
留	せん断強度	(MPa)	$0.054 \pm 0.487p$	0.095+0.298p	留	残留 内部摩擦角	φ _r (°)	14. 8	せん断強度	(MPa)	$0.102\pm0.341p$	0.126+0.652p
静的	初期 変形係数	E ₀ (MPa)	34.9+73.3p	50. 4+63. 1p	静的	初期 変形係数	E ₀ (MPa)	377-3.90 <i>Z</i>	初期 変形係数	<i>Е</i> о (MPa)	29.0+262p	74.6+434p
変形特性	ポアソン比	ν	0. 47	0. 49	愛形 特性	ポアソン比	ν	$0.48+1.3 \times 10^{-4} \cdot Z$	ポアソン比	γ	0. 49	0. 49
	動せん断 弾性係数	G ₀ (MPa)	$356p^{0.164}$	$326p^{0.151}$		動せん断 弾性係数	G ₀ (MPa)	1000-5.50Z	動せん断 弾性係数	G ₀ (MPa)	303	189
動的	動ポア ソン比	νd	0. 43	0.45	動的	動ポア ソン比	νd	$0.39+6.5 \times 10^{-4} \cdot Z$	動ポア ソン比	νd	0. 41	0. 45
爱形特性	正規化せん 断弾性係数	G/G o ~ y (%)	$\frac{1}{1+4.90\cdot\gamma^{0.857}}$	$\frac{1}{1+3.46\cdot\gamma^{1.03}}$	爱形特性	正規化せん 断弾性係数	G/G o ~ y (%)	$\frac{1}{1+5.32\cdot\gamma^{0.776}}$	正規化せん 断弾性係数	G/G_{0} ~ γ (%)	$\frac{1}{1+5.91\cdot\gamma^{0.758}}$	$\frac{1}{1+15.4\cdot\gamma^{0.891}}$
	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0300 \gamma + 0.0213} + 4.26$	$\frac{\gamma}{0.0301 \gamma + 0.0295} + 2.86$		減衰率	h ^(%) ~ γ ^(%)	$\frac{\gamma}{0.0786 \gamma + 0.00692} + 1.26$	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0829\gamma+0.00582}+1.18$	$\frac{\gamma}{0.0570\gamma + 0.00824} + 1.81$

Z は標高(m)を示す。

・ p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

添3-ロ(ホ)第2表(5) 岩石試験結果及び土質試験結果

	区分			造成盛土	埋戻し土	流動化処理土(A)
				fl	bk	
物特	理性	湿潤密度	$\rho_{\rm t}$ (g/cm ³)	$1.66+3.3 \times 10^{-3} \cdot D$	$1.82+2.8 \times 10^{-3} \cdot D$	1.63
強度	ピーク	非排水 せん断強度	Su (MPa)	0.042+0.436p	0.049+0.761 <i>p</i>	0.347+0.242 <i>p</i>
特性	残留	非排水 せん断強度	S _{ur} (MPa)	0.042+0.432 <i>p</i>	0.043+0.764 <i>p</i>	0.291+0.016 <i>p</i>
静亦	的形	初期 変形係数	<i>Е</i> ₀ (MPa)	9.96+289 <i>p</i>	22.1+266p	143 + 448p
~ 特	性	ポアソン比	ν	0. 48	0. 48	0. 46
		動せん断 弾性係数	G ₀ (MPa)	32.4+4.02 <i>D</i>	60.7+8.20 <i>D</i>	380
動亦	的	動ポア ソン比	νd	0. 42	0. 39	0. 42
及特	性	正規化せん 断弾性係数	G/G_{0} ~ $\gamma(\%)$	$\frac{1}{1+9.27\cdot\gamma^{0.992}}$	$\frac{1}{1+12.7\cdot\gamma^{0.914}}$	$\frac{1}{1+9.63\cdot\gamma^{1.01}}$
		減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0438\gamma+0.0150}+1.74$	$\frac{\gamma}{0.\ 0631\ \gamma + 0.\ 00599} + 1.\ 29$	$\frac{\gamma}{0.0798 \cdot \gamma + 0.0150} + 1.48$

D は深度(G.L.-m)を示す。

・ p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

添3-口(ホ)第3表 物理試験結果(鷹架層)

		含水比	土粒子密度	間 隙 比
X	分	W	ρ	е
6		(%)	(g/cm^3)	
	平均 值	59 4	2 50	1 50
泥」岩	標準偏差	8 9	0.06	0.22
(上部層)	試驗個数	595	93	595
	亚 均 值	47 2	2 56	1 23
泥 岩	標準偏差	6.6	0.07	0.18
(下部層)	試驗個数	843	169	8/13
	亚均值	33.8	2 62	0.89
細粒砂岩	標準偏差	2 7	0.05	0.05
	試驗個数	1161	179	1161
	平均值	48 0	2 59	1 30
凝灰質砂岩	標準偏差	3.6	0.12	0 14
	討驗個数	16	0. 12 1	16
	平均 值	27.0	2 50	0.73
軽石質砂岩	標準偏差	7 1	0.07	0.16
	試験個数	203	31	203
	平均值	21.8	2.81	0.67
粗粒砂岩	標準偏差	1. 3	0, 03	0.04
	試験個数	12	3	12
	平均值	29.2	2, 78	0.88
砂岩・泥岩	標準偏差	5.0	0.05	0.16
旦. 僧	試験個数	23	6	23
	平均值	38.2	2.55	0.98
砂石・艇火石	標準偏差	11.1	0.16	0. 27
日、間	試験個数	46	10	46
	平均值	47.9	2.37	1.15
凝灰岩	標準偏差	6.5	0.06	0.15
	試験個数	170	24	170
	平均值	62.5	2. 40	1.56
軽石凝灰岩	標準偏差	13.6	0.09	0.34
	試験個数	477	83	477
砂质起工	平均值	54. 3	2.54	1. 43
	標準偏差	14. 9	0. 08	0.37
	試験個数	390	79	390
	平均值	29.7	2. 79	0.90
礫混り砂岩	標準偏差	8. 2	0.06	0. 23
	試験個数	90	21	90
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	平均值	47.6	2.65	1. 36
軽石混り砂岩	標準偏差	16. 4	0. 07	0. 44
	試験個数	82	21	82
	平均值	14. 5	2. 70	0.46
礫 岩	標準偏差	1. 8	0.01	0.01
	試験個数	7	2	7
	平均值	70.9	2. 70	1.96
風 化 岩	標準偏差	9.6		0.26
	試験個数	8	2	8

 $3 - \Box - 202$

添3-口(ホ) 第4表 引張強度試験結果

区分	引張強度σ _t (MPa)
泥岩(上部層)	0. 528 - 8. 44 \times 10 ⁻⁴ • Z
泥岩(下部層)	1. $01 - 2.63 \times 10^{-3} \cdot Z$
細粒砂岩	0. $614 - 5.15 \times 10^{-3} \cdot Z$
凝灰質砂岩	0.41
軽石質砂岩	0. $424 - 3.97 \times 10^{-3} \cdot Z$
粗粒砂岩	0.06
砂岩・泥岩互層	0.41
砂岩・凝灰岩互層	0.22
凝灰岩	0.25
軽石凝灰岩	0. 275 - 1. 47 \times 10 ⁻⁴ • Z
砂質軽石凝灰岩	0. $234 - 4.31 \times 10^{-4} \cdot Z$
礫混り砂岩	$0.011 - 1.40 \times 10^{-3} \cdot Z$
軽石混り砂岩	0.15
礫岩	0.33

Z は標高(m)を示す。

添3-口(ホ)第5表 圧密試験結果(基礎底面付近)

	王密降伏応力	рс (MPa)
	各供試体の値	平均值
	10. 9	
凝灰岩	11. 0	10.8
	10.6	
	4. 1	
軽石凝灰岩	4. 1	4.2
	4. 5	

添3-ロ(ホ)第6表 三軸クリープ試験結果(基礎底面付近)

(CD条件)

	軸差応力	側圧	弾性ひずみ	最終ひずみ	クリー	プ係数
区 分	$\sigma_1 - \sigma_3$	σ_3	ε _e	٤ ₀	0	β
	(MPa)	(MPa)	(%)	(%)	ά	(d ⁻¹)
- ×	0.49	0.05	0.591	0.674	0.14	0.40
	0.49	0.10	0.691	0.822	0.19	0.39
凝灰岩	0.49	0.49	0.339	0.398	0.17	0.23
	0.49	0.98	0.321	0.384	0.19	0.30
	Z	下	均	値	0.17	0.33
	0.49	0.05	0.186	0.205	0.10	0.24
	0.49	0.10	0.106	0.124	0.18	0.25
軽石凝灰岩	0.49	0.49	0.110	0.129	0.18	0.21
	0.49	0.98	0.230	0.273	0.19	0.23
	Σ	F	均	値	0.16	0.23

注)弾性ひずみε_eは,近似曲線から求めている。

最終ひずみευは,近似曲線の収束値から求めている。

添3-口(ホ)第7表 PS検層結果

区分	標 高 (m)	P波速度 V _P (km/s)	S波速度 V _S (km/s)
泥岩(上部層)	41. 99 ∼	$1.59 \sim 1.83$	$0.27 \sim 0.78$
泥岩(下部層)	38. 19 \sim -205. 15	1.82 ~ 2.13	$0.\ 70\ \sim\ 0.\ 98$
細粒砂岩	41. 68 \sim -142. 64	$1.46 \sim 2.31$	0.50 ~ 1.13
凝灰質砂岩	-132.58 \sim -141.54	2.08	$0.87 \sim 0.89$
軽 石 質 砂 岩	46.08 \sim -173.41	$1.61 \sim 2.40$	0.40 ~ 1.13
粗 粒 砂 岩	-54. 33 ~ -79. 87	2. 10 \sim 2. 36	$0.83 \sim 1.02$
砂岩・泥岩互層	20. 82 \sim -27. 41	1.83 ~ 2.00	$0.69 \sim 0.97$
砂岩・凝灰岩互層	1.85 \sim -110.04	1.80 ~ 1.97	0.63 ~ 0.88
凝灰岩	31. 36 \sim -39. 21	1.58 ~ 1.98	$0.55 \sim 0.78$
軽 石 凝 灰 岩	33. 04 \sim -198. 92	1.58 ~ 2.10	$0.\ 42\ \sim\ 0.\ 95$
砂質軽石凝灰岩	42.70 \sim -195.21	0.84 \sim 2.10	$0.23 \sim 0.97$
礫混り砂岩	29. 27 \sim -137. 01	$1.70 \sim 2.28$	$0.58 \sim 1.06$
軽石混り砂岩	39.30 \sim -121.79	$1.70 \sim 2.00$	0.56 \sim 0.97
礫 岩	$-46.69 \sim -47.00$	2.28	1.10
風化岩	46.00 ∼ 44.56	0.68	0.28
P P 1	38.56 \sim -11.79	1.45 ~ 1.84	$0.58 \sim 0.70$
P P 2	51.96 ~ 42.09	$0.56 \sim 1.96$	$0.24 \sim 0.64$
РН	55. 10 ∼ 51. 08	0.84 ~ 1.43	0. 26 \sim 0. 41
造成盛土	$50.40 \sim 37.48$	$0.32 \sim 0.71$	0. 13 \sim 0. 22
埋戻し土	52. 67 ∼ 37. 53	0.39 ~ 0.91	0.15 ~ 0.35
流動化処理土	48. 91 ∼ 39. 56	1.30 ~ 1.40	$0.42 \sim 0.55$

添3-ロ(ホ)第8表 物理試験結果(断層部及び表層部)

		含水比	土粒子密度	間 隙 比
区	分	W	ρ _s	е
		(%)	(g/cm^3)	
£ 1	平均值	128.1	2.61	3.70
	標準偏差	13.0	0.11	0.66
四月月	試験個数	24	5	24
f D	平均值	141.6	2.53	3.62
	標準偏差	18.9	0.04	0.44
四 眉	試験個数	12	3	12
	平均值	19.6	2.84	0.64
P P 1	標準偏差	3. 2	0.02	0.10
	試験個数	38	8	38
	平均值	41.5	2.70	1.24
P P 2	標準偏差	19.2	0.05	0.47
	試験個数	82	19	82
	平均值	21.0	2.67	0.71
P H	標準偏差	3. 7	0.04	0.06
	試験個数	26	5	26
	平均值	52.2	2.69	1.46
造成盛土	標準偏差	11.3	0.03	0.32
	試験個数	73	21	73
	平均值	28.4	2.70	0.86
埋戻し土	標準偏差	6. 1	0.02	0.12
	試験個数	93	29	86
法 毛 ル	平均值	59.3	2.70	1.65
流 野 1L 加 田 十	標準偏差	14. 1	0.01	0.39
龙垤上	試験個数	24	4	24

添3-ロ(ホ)第9表 f-1断層及びf-2断層の超音波速度測定結果

	供試体	圧密応力	P波速度	S波速度	動せん断 弾性係数	動ポア ソン比
	番号	р	V_{P}	$V_{\rm S}$	G_0	$\nu_{ m d}$
		(MPa)	(km/s)	(km/s)	(MPa)	
		0.20	0.87	0.375	173	0.39
		0.39	1.21	0.478	290	0.41
	1	0.78	1.39	0.499	339	0.43
		1.47	1. 43	0.571	473	0.41
		2.94	1. 43	0.578	501	0.40
		0.05	1.29	0.411	225	0.44
		0.20	1.28	0. 433	257	0.44
6 1	2	0.40	1.39	0.438	270	0.45
	2	0.80	1.44	0. 433	273	0.45
		1.50	1.50	0.448	302	0.45
		3.00	1.51	0.456	324	0.45
	3	0.05	1.32	0.449	291	0.44
		0.20	1. 32	0.452	305	0.43
		0.40	1. 45	0.476	348	0.44
		0.80	1.50	0.483	371	0.44
		1.50	1.57	0.504	418	0.44
		3.00	1.65	0.517	457	0.45
		0. 20	1. 42	0.418	245	0.45
f O		0.39	1. 49	0.459	297	0.45
	1	0.78	1.50	0.463	309	0.45
		1.47	1.83	0.492	351	0.45
		2.94	1.71	0.507	379	0.45

添3-ロ(へ)第1表(1) 解析用物性値

区分			泥岩(上部層) Tmss	泥岩(下部層) Tms	細粒砂岩 Tfs	凝灰質砂岩 Tts	軽石質砂岩 Tpps	
物特	理性	湿潤密度	ρ_{t} (g/cm^{3})	$1.60-2.02 \times 10^{-4} \cdot Z$	1.70	$1.85 - 1.55 \times 10^{-4} \cdot Z$	1.67	1. 91
強度	ピーク	非排水 せん断強度	S _u (MPa)	1.63 (1.42)	2. 82-1. $18 \times 10^{-2} \cdot Z$ (2. 23-1. $18 \times 10^{-2} \cdot Z$)	2. 22-1. $45 \times 10^{-2} \cdot Z$ (1. 80-1. $45 \times 10^{-2} \cdot Z$)	$\begin{array}{c} 1.23 - 3.95 \times 10^{-3} \cdot Z_{\underline{*}1} \\ (0.97 - 3.95 \times 10^{-3} \cdot Z) \end{array}$	2. $64-1. 13 \times 10^{-2} \cdot Z$ (1. $95-1. 13 \times 10^{-2} \cdot Z$)
特性	残留	非排水 せん断強度	S _{ur} (MPa)	1. 05-3. 87×10 ⁻³ · Z (0. 92-3. 87×10 ⁻³ · Z)	1. 67-3. $20 \times 10^{-3} \cdot Z$ (1. 23-3. $20 \times 10^{-3} \cdot Z$)	1. 55-8. $17 \times 10^{-3} \cdot Z$ (1. 33-8. $17 \times 10^{-3} \cdot Z$)	$\begin{array}{c} 0.85 - 2.03 \times 10^{-3} \cdot Z_{\bigstar 1} \\ (0.62 - 2.03 \times 10^{-3} \cdot Z) \end{array}$	1. 96-9. $44 \times 10^{-3} \cdot Z$ (1. 42-9. $44 \times 10^{-3} \cdot Z$)
静的 変形 特性		初期 変形係数	<i>E</i> ₀ (MPa)	551-2.75 <i>Z</i>	938–2. 64 <i>Z</i>	939-8.69 <i>Z</i>	697 - 3.32 Z $*1$	982-7. 30 Z
		ポアソン比	ν	$0.48+1.9 \times 10^{-4} \cdot Z$	$0.47+1.6 \times 10^{-4} \cdot Z$	$0.47+2.6 \times 10^{-4} \cdot Z$	$0.48+2.3 \times 10^{-4} \cdot Z^{*1}$	$0.47+1.1 \times 10^{-4} \cdot Z$
		動せん断 弾性係数	G ₀ (MPa)	502-2.47 <i>Z</i>	986–1.59 <i>Z</i>	1220-5.88Z	1290	1410-7.59 <i>Z</i>
動的 変形 特性	的	動ポア ソン比	νd	$0.44+2.8 \times 10^{-4} \cdot Z$	$0.40+1.1 \times 10^{-4} \cdot Z$	$0.40+2.8 \times 10^{-4} \cdot Z$	0. 39	0.38+2.0×10 ⁻⁴ · Z
	形性	正規化せん 断弾性係数	$\frac{G/G_0}{\sim \gamma(\%)}$	$\frac{1}{1+1.35 \cdot \gamma^{0.912}}$	$\frac{1}{1+0.904\cdot \gamma^{0.933}}$	$\frac{1}{1+1.87 \cdot \gamma^{0.819}}$	$\frac{1}{1+1.59\cdot\gamma^{1.03}}$	$\frac{1}{1+6.07\cdot\gamma^{1.04}}$
		減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.219\gamma + 0.0551} + 1.42$	$\frac{\gamma}{0.412\gamma+0.0752} + 1.25$	$\frac{\gamma}{0.\ 207\ \gamma + 0.\ 0249} + 1.\ 29$	$\frac{\gamma}{0.0305 \gamma + 0.0628} + 1.06$	$\frac{\gamma}{0.0940 \gamma + 0.0145} + 0.826$

Z は標高(m)を示す。

物性値下段の()は、ばらつき-1gを考慮した値を示す。

※1: 凝灰質砂岩はCU試験を実施していないため、同じ鷹架層下部層泥岩中に狭在する鍵層であり、UU試験で強度が低い砂質軽石凝灰岩の物性値を流用

添3-ロ(へ)第1表(2) 解析用物性値

区分			粗粒砂岩 Tcs	砂岩・泥岩互層 Talsm	砂岩・凝灰岩互層 Talst	凝灰岩 Ttf	軽石凝灰岩 Tpt
物特	理 湿潤密度	$ \begin{array}{c} \rho_{t} \\ (g/cm^{3}) \end{array} $	2.05	1.92	$1.72 - 8.29 \times 10^{-4} \cdot Z$	$1.64 - 2.86 \times 10^{-4} \cdot Z$	1. 54 $-2.45 \times 10^{-4} \cdot Z$
強度	ピ	S _u (MPa)	1. 19 (0. 82)	2.09 (1.52)	$\begin{array}{c} 1.32 - 7.39 \times 10^{-3} \cdot Z^{*3} \\ (0.78 - 7.39 \times 10^{-3} \cdot Z)^{*2} \end{array}$	1. 99 (1. 55)	1. $34-4.82 \times 10^{-3} \cdot Z$ (0. $97-4.82 \times 10^{-3} \cdot Z$)
特性	残 非排水 留 せん断強度	S _{ur} (MPa)	0.88 (0.54) ※2	1.46 (1.15)	$\begin{array}{c} 0.\ 66 - 3.\ 70 \times 10^{-3} \cdot Z^{*4} \\ (0.\ 32 - 3.\ 70 \times 10^{-3} \cdot Z)^{*2} \end{array}$	1.69 (1.26)	$0.95 - 3.96 \times 10^{-3} \cdot Z$ (0.62-3.96×10 ⁻³ · Z)
静亦	初期 変形係数	E ₀ (MPa)	574	876	327	696-6.60Z	757—2. 19 <i>Z</i>
※特	性ポアソン比	ν	0. 48	0. 48	0. 48	$0.48+2.4 \times 10^{-4} \cdot Z$	$0.48+2.6 \times 10^{-4} \cdot Z$
	動せん断 弾性係数	G ₀ (MPa)	1860	1330	780–4. 88 Z	761–3. 89 <i>Z</i>	848-1.70 <i>Z</i>
動的 変形 特性	動ポア 的 ソン比	νd	0. 39	0. 39	$0.43 + 5.3 \times 10^{-4} \cdot Z$	$0.42+1.1 \times 10^{-4} \cdot Z$	$0.41+1.3 \times 10^{-4} \cdot Z$
	作 正規化せん 断弾性係数	$\begin{array}{c} G/G_{0} \\ \sim \gamma^{(\%)} \end{array}$	$\frac{1}{1+3.37\cdot\gamma^{0.663}}$	$\frac{1}{1+3.08 \cdot \gamma^{0.919}}$	$\frac{1}{1+2.77\cdot\gamma^{0.856}}$	$\frac{1}{1+3.78 \cdot \gamma^{0.904}}$	$\frac{1}{1+2.02 \cdot \gamma^{0.768}}$
	減衰率	$ \begin{array}{c} h(\%) \sim \\ \gamma(\%) \end{array} $	$\frac{\gamma}{0.\ 121\ \gamma \ +0.\ 00752} +1.\ 58$	$\frac{\gamma}{0.0664 \gamma + 0.0404} + 0.963$	$\frac{\gamma}{0.0935\gamma + 0.0144} + 2.04$	$\frac{\gamma}{0.0682 \gamma + 0.0127} + 1.47$	$\frac{\gamma}{0.\ 163\ \gamma + 0.\ 0192} + 1.\ 34$

Z は標高(m)を示す。

・ 物性値下段の()は、ばらつき-1σを考慮した値を示す。

※2 : 他岩種に比べばらつきの大きい軽石混り砂岩の変動係数(ピーク 0.315,残留 0.390)を用いて保守的に設定
 ※3 : 砂岩・凝灰岩互層はCU試験の実施が1深度のみであることから,UU試験の結果を用いて深度依存(標高)を設定

※4:砂岩・凝灰岩互層の残留強度はピーク強度と同等であることから、残留強度をピーク強度の1/2として設定
添3-ロ(へ)第1表(3) 解析用物性値

	区分		砂質軽石凝灰岩 Tspt	礫混り砂岩 Tss	軽石混り砂岩 Tps	礫岩 Tcg	風化岩 T (W)
物	里 湿潤密度	ρ_t (g/cm ³)	1. 62-1. 52×10 ⁻⁴ · Z	$1.91 - 1.35 \times 10^{-4} \cdot Z$	1. 69-1. 78×10 ⁻³ · Z	2. 12	1. 56
強度	ピ ク 非排水 せん断強度	S _u (MPa)	1. $23-3.95 \times 10^{-3} \cdot Z$ (0. $97-3.95 \times 10^{-3} \cdot Z$)	1.95 (1.33)	1. $23-6.72 \times 10^{-3} \cdot Z$ (0. $88-6.72 \times 10^{-3} \cdot Z$)	2.62 (1.79) ×5	$\begin{array}{c} 0. \ 0.35 + 0. \ 315p \\ (0. \ 008 + 0. \ 315p) \end{array}$
特性	残 非 排 水 留 せ ん 断 強 度	S _{ur} (MPa)	0. $85-2.03 \times 10^{-3} \cdot Z$ (0. $62-2.03 \times 10^{-3} \cdot Z$)	1. 37 (1. 09)	0. 94-6. 47×10 ⁻³ · Z (0. 62-6. 47×10 ⁻³ · Z)	$\begin{array}{c} 1. \ 62 \\ (0. \ 99) \qquad \approx 5 \end{array}$	0. 034+0. 314 <i>p</i> (0. 007+0. 314 <i>p</i>)
静	初期 変形係数	Е ₀ (мРа)	697 – 3. 32 Z	754	537	1170	38. 0+78. 8 <i>p</i>
发行	* ポアソン比	ν	0. 48+2. $3 \times 10^{-4} \cdot Z$	0. 48	0. 48	0. 46 × 6	0. 47
	動せん断 弾性係数	G ₀ (MPa)	880-2.58Z	773 – 7.85 Z	959-4.51Z	2520	123
動的	動ポア リン比	νd	$0.41 + 1.3 \times 10^{-4} \cdot Z$	0. 43+4. 7×10 ⁻⁴ · Z	$0.41 + 3.3 \times 10^{-4} \cdot Z$	0.35	0. 40
変形 特性	正規化せん断弾性係数	G/G ₀ ~γ(%)	$\frac{1}{1+2.\ 46\cdot\ \gamma^{\ 0.\ 885}}$	$\frac{1}{1+3.25 \cdot \gamma^{0.833}}$	$\frac{1}{1+3.52\cdot \gamma^{0.829}}$	$\frac{1}{1+4.72 \cdot \gamma^{0.900}}$	$\frac{1}{1+2.53\cdot \gamma^{0.773}}$
	減衰率	$h(\%) \sim \gamma(\%)$	$\frac{\gamma}{0.\ 119\ \gamma + 0.\ 0302} + 1.\ 48$	$\frac{\gamma}{0.\ 0902\ \gamma + 0.\ 0157} + 1.\ 08$	$\frac{\gamma}{0.\ 0734\ \gamma + 0.\ 0214} + 1.\ 48$	$\frac{\gamma}{0.\ 0973\ \gamma + 0.\ 00991} + 0.\ 274$	$\frac{\gamma}{0.\ 114\ \gamma + 0.\ 0189} + 0.\ 911$

Z は標高(m)を示す。

• p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

物性値下段の()は、ばらつき-1σを考慮した値を示す。

※5 :他岩種に比べばらつきの大きい軽石混り砂岩の変動係数(ピーク 0.315,残留 0.390)を用いて保守的に設定

※6 : 礫岩のポアソン比はUU試験結果を流用

添3-ロ(へ)第1表(4) 解析用物性値

区分			f — 1 断層	f — 2 断層		区分		新第三系鮮新統	区分		第四系下部~ 中部更新統	第四系 中部更新統 ~完新統
			f-1, f-1a, f-1b	f-2, f-2a				PP1			PP2	РН
物理 特性	湿潤密度	$ ho_{t}$ (g/cm ³)	1.28	1. 32	物理 特性	湿潤密度	ρ_{t} (g/cm ³)	2. 12-3. 12×10 ⁻³ · Z	湿潤密度	ρ_{t} (g/cm ³)	1.73	1. 89
ש ש	非排水	Su	$0.059 \pm 0.494p$	0.108+0.296p	ビ 粘着力 C 0.902-9.14×10 ⁻³ ・Z (MPa) (0.743-9.14×10 ⁻³ ・Z) 非排水	非排水 su	$0.115 \pm 0.341p$	0				
強ク度	せん断強度	(MPa)	(0. 480 <i>p</i>) <u>%</u> 7	(0.064+0.296p)	強ク度	内部摩擦角	ф (°)	13.8 (8.3)	せん断強度 (MPa)	(MPa)	(0.041+0.341p)	0 %9
特性残	非排水	s _{ur}	0.054+0.487p	0.095+0.296 <i>p</i>	特性残	残留粘着力	с _г (MPa)	0. 853-8. 47×10 ⁻³ · Z (0. 707-8. 47×10 ⁻³ · Z)	非排水	s _{ur}	$0.102 \pm 0.341p$	0 ***
留	せん断強度	(MPa)	$(0.468p) \times 7$	(0.050+0.296p)	留	残留 内部摩擦角	φ _r (°)	$ \begin{array}{c} 13.8 \\ (8.3) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	せん断強度	(MPa)	(0.025+0.341p)	0 %9
静的	初期 変形係数	<i>E</i> ₀ (MPa)	34.9+73.3p	50. 4+63. 1p	静的	初期 変形係数	<i>E</i> ₀ (MPa)	377-3.90 <i>Z</i>	初期 変形係数	<i>E</i> ₀ (MPa)	29.0+262 <i>p</i>	74. 6+434 <i>p</i>
特性	ポアソン比	ν	0. 47	0. 49	特性	ポアソン比	ν	$0.48+1.3 \times 10^{-4} \cdot Z$	ポアソン比	ν	0. 49	0. 49
	動せん断 弾性係数	<i>G</i> ₀ (MPa)	$356p^{0.164}$	$326p^{0.151}$		動せん断 弾性係数	<i>G</i> ₀ (MPa)	1000-5.50Z	動せん断 弾性係数	<i>G</i> ₀ (MPa)	303	189
動的 変形 特性	動ポア ソン比	Ψd	0. 43	0. 45	動的	動ポア ソン比	νd	$0.39+6.5 \times 10^{-4} \cdot Z$	動ポア ソン比	γd	0. 41	0. 45
	正規化せん 断弾性係数	G/G o ~ γ (%)	$\frac{1}{1+4.90\cdot\gamma^{0.857}}$	$\frac{1}{1+3.46\cdot\gamma^{1.03}}$	変形特性	正規化せん 断弾性係数	G/G_{0} ~ γ (%)	$\frac{1}{1+5.32\cdot\gamma^{0.776}}$	正規化せん 断弾性係数	G/G o ~γ(%)	$\frac{1}{1+5.91\cdot\gamma^{0.758}}$	$\frac{1}{1+15.4\cdot\gamma^{0.891}}$
	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0300\gamma + 0.0213} + 4.26$	$\frac{\gamma}{0.0301 \gamma + 0.0295} + 2.86$		減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0786\gamma+0.00692}+1.26$	減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	$\frac{\gamma}{0.0829\gamma + 0.00582} + 1.18$	$\frac{\gamma}{0.0570\gamma + 0.00824} + 1.81$

Z は標高(m)を示す。

・ p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。

・ 物性値下段の ()は,ばらつき-1σを考慮した値を示す。

※7 : -1σ で切片が負となるため, 原点を通る直線で設定

※8 : ピーク強度を上回らないように低減して設定

※9 :保守的に強度特性を0と設定

添3-ロ(へ)第1表(5) 解析用物性値

	区分		造成盛土 埋戻し土		流動化処理土(A)		区分		流動化処理土(B) ※11	MMR	※ 13
			fl	bk			Vs 1200	設計基準強度	14.8MPa		
物理 特性	湿潤密度	$ ho_{t}$ (g/cm ³)	$1.66+3.3 \times 10^{-3} \cdot D$	$1.82+2.8\times 10^{-3} \cdot D$	1.63	物理特性	湿潤密度	ρ_{t} (g/cm ³)	1.85	2.35	
Ľ	非排水	s _u	0 ×10	0	0.347+0.242p	2	粘着力	с (MPa)	0. 95 (0. 95)	:-	₩14
強ク度	せん断強度	(MPa)	0 %10	0 %10	(0.189+0.242p) 強ク 度	内部摩擦角	¢ (°)	30. 0 (30. 0)	- 	₩14	
特性残	非排水	s _{ur}	0	0	(0.291+0.016p) (0.168+0.016p)	0.291+0.016p 特性 残	残留粘着力	с, (MPa)	0 ※12	-	₩14
留	せん断強度	(MPa)	0 *10	0 %10	(0.168+0.016p)	留	残留 内部摩擦角	φ _r (°)	0	2 II.	*********
静的	初期 変形係数	E ₀ (MPa)	9.96+289 p	22. 1+266 p	143+448p	静的	初期 変形係数	Е ₀ (MPa)	1050	21000	
教性	ポアソン比	ν	0. 48	0. 48	0. 46	教性	ポアソン比	ν	0. 33	0. 167	
	動せん断 弾性係数	G ₀ (MPa)	32. 4+4. 02 <i>D</i>	60.7+8.20 <i>D</i>	380		動せん断 弾性係数	<i>G</i> ₀ (MPa)	2750	9000	
動的 変形 特性	動ポア ソン比	νd	0. 42	0. 39	0. 42	動的	動ポア ソン比	νd	0, 33	0. 167	
	正規化せん 断弾性係数	G/G o ~ y(%)	$\frac{1}{1+9.27 \cdot \gamma^{0.992}}$	$\frac{1}{1+12.7\cdot\gamma^{0.914}}$	$\frac{1}{1+9.63\cdot\gamma^{1.01}}$	東市 特性	正規化せん 断弾性係数	G/G o ~ y(%)	$\frac{1}{1+5.87\cdot\gamma^{0.974}}$	線形	
	減衰率	$h(\%) \sim \gamma(\%)$	$\frac{\gamma}{0.0438 \gamma + 0.0150} + 1.74$	$\frac{\gamma}{0.\ 0631\ \gamma \ +0.\ 00599} +1.\ 29$	$\frac{\gamma}{0.0798 \cdot \gamma + 0.0150} + 1.48$		減衰率	$h^{(\%)} \sim \gamma^{(\%)}$	0.83 ($\gamma \leq 0.01\%$) 0.83+2.59 log($\gamma/0.01$) ($\gamma > 0.01\%$)	5.0	

D は深度(G.L.-m)を示す。

- · p は土被り圧から静水圧を差し引いた圧密応力(MPa)を示す。
- 物性値下段の()は、ばらつき-1σを考慮した値を示す。
- ※10 : 保守的に強度特性を0と設定
- ※11 : 流動化処理土の管理値(qu=3.4MPa)に基づき設定しており,ガラス固化体貯蔵建屋B棟周辺のみ施工
- ※12 : 一軸圧縮試験結果に基づき設定しており,残留強度は0と設定
- ※13 : コンクリート標準示方書(1980, 2007)を参照し設定
- ※14 : MMR は鷹架層と比べても十分な強度を有しており,評価においてすべり面を通さないことから,強度特性は設定しない

添3-ロ(へ)第2表 評価対象施設一覧表

番号	評価対象施設	分類 ^{※1}	施設の重量 (kN)	規模 NS(m)×EW(m)
1	燃料加工建屋	*	4640000	87.3×88.3
2	緊急時対策建屋(重油貯槽 ^{※2, ※4} 含む)	* *	1140000	58. 0×74.0
3	第1保管庫・貯水所(第1軽油貯槽 ^{※3,※4} 含む)	* *	1300000	52.0×113.0
4	第2保管庫・貯水所(第2軽油貯槽 ^{※3,※4} 含む)	* *	1300000	52.0×113.0

※1 * : 耐震重要施設等と常設重大事故等対処施設を兼ねる施設
 ** : 常設重大事故等対処施設

※2 重油貯槽は小規模施設となる。(施設の重量:57400kN,規模:18.0m (NS) ×19.0m (EW))

※3 第1軽油貯槽及び第2軽油貯水槽は小規模施設となる。
 (施設の重量:115600kN,規模:19.0m(NS)×18.0m(EW)×2)
 ※4 総重量が隣接する施設と比して十分に小さいこと,地中構造物であり土の重量とほぼ同等

であること、及び建屋など地上にある構造物と異なり振動特性が地盤に支配されることから、 地盤扱いとしている。

添3-ロ(へ)第3表 各断面における最小すべり安全率一覧表(基準地震動)

断面	解析対象施設	地震動 *1	すべり安全率 *2
A – A	燃料加工建屋*	Ss-C1 (-, +)	4.4 [7.70]
В — В	緊急時対策建屋 ^{**} 第1保管庫・貯水所 ^{**}	Ss-C1 (-, +)	4.5 [7.66]
С — С	緊急時対策建屋**	Ss-C1 (+, +)	3.7[7.67]
D – D	第1保管庫·貯水所 ^{**}	Ss-C1 (-, +)	5.8 [7.66]
E — E	燃料加工建屋*	Ss-C1 (-, +)	4.0 [7.70]
F - F	第2保管庫·貯水所 ^{**}	Ss-C1 (-, +)	6.6 [7.66]
G – G	第2保管庫·貯水所**	Ss-A (+, +)	5.5 [19.39]

※1(+,+)位相反転なし (+,-)鉛直位相反転
 (-,+)水平位相反転 (-,-)水平鉛直位相反転

※2 [] は発生時刻(秒)

* 耐震重要施設等と常設重大事故等対処施設を兼ねる施設

** 常設重大事故等対処施設

 すべり面
 すべり安全率の最小値 凡例: -※1 (+, +) 位相反転なし (+, -) 鉛直位相反転 (-, +) 水平位相反転 (-, -) 水平鉛直位相反転 ₩2)は物性のばらつきを考慮したすべり安全率 (] は発生時刻(秒) ſ

添3-ロ(へ)第4表(2) すべり安全率一覧表(B-B)

 $3 - \Box - 216$

] は発生時刻(秒)

[

 凡例: → すべり面 ○ すべり安全率の最小値
 ※1 (+, +) 位相反転なし (+, -) 鉛直位相反転 (-, +) 水平位相反転 (-, -) 水平鉛直位相反転
 ※2 () は物性のばらつきを考慮したすべり安全率
 [] は発生時刻(秒)

添3-ロ(へ)第4表(6) すべり安全率一覧表(F-F)

添3-ロ(へ)第4表(7) すべり安全率一覧表(G-G)

凡例: → すべり面 ○ すべり安全率の最小値
 ※1 (+, +) 位相反転なし (+, -) 鉛直位相反転
 (-, +) 水平位相反転 (-, -) 水平鉛直位相反転
 ※2 () は物性のばらつきを考慮したすべり安全率
 []は発生時刻(秒)

添3-ロ(へ)第5	5表 各	·断面における最小すべりst	安全率一覧表
(Ss-C4	(水平)	及び一関東評価用地震動	(鉛直))

断面	対象建屋名称	地震動 *1	すべり安全率 *2
A – A	★	Ss-C4 EW	6. 2
	燃料加工建屋	(+, +)	[8. 40]
В — В	** 緊急時対策建屋 第1保管庫・貯水所	Ss-C4 EW (+, +)	5. 4 [8. 41]
С – С	* *	Ss-C4 EW	4. 9
	緊急時対策建屋	(-, +)	[8. 40]
D – D	**	Ss-C4 EW	6.8
	第1保管庫・貯水槽	(+, +)	[8.41]
E — E	* 燃料加工建屋	Ss-C4 EW (+, +)	$\begin{array}{c} 6. \ 2 \\ [8. \ 41] \end{array}$
F - F	第2保管庫・貯水所 **	Ss-C4 EW (+, +)	8. 2 [8. 41]
G – G	**	Ss-C4 EW	7.3
	第2保管庫・貯水所	(+, +)	[8.40]

※1(+,+)位相反転なし (-,+)水平位相反転※2[]は発生時刻(秒)

* 耐震重要施設等と常設重大事故等対処施設を兼ねる施設

** 常設重大事故等対処施設

添3-ロ(へ)第6表 基礎底面の支持力に対する解析結果(基準地震動)

番号	対象建屋名称	断面方向	地震動 *1	接地圧 (MPa) _{※2}	設置地盤	評価基準値 (MPa)
	燃料加工建垦 [*]	N S	Ss-C1 (+, +)	2.2 [7.68]	東側	7.5
1		EW	Ss-C1 (-, +)	2.6 [7.68]	東側	7.5
	緊急時対策建屋 ^{**}	N S	Ss-A (+, -)	0.8 [36.13]	束側	7.5
2		EW	Ss-C1 (-, +)	1.1 [7.66]	東側	7.5
	第1保管庫・貯水所 **	N S	Ss-A (+, +)	0.6 [19.61]	東側	7.5
3		EW	Ss-B5 (+, +)	1. 3 [24. 26]	束側	7.5
	第2保管庫,貯水所 ^{**}	N S	Ss-A (+, +)	0.8 [36.25]	東側	7.5
4		EW	Ss-C1 (+, +)	0.7 [7.70]	束侧	7.5

※1(+,+)位相反転なし(+,-)鉛直位相反転
 * 耐震重要施設等と常設重大事故等対処施設を兼ねる施設
 (-,+)水平位相反転(-,-)水平鉛直位相反転
 ** 常設重大事故等対処施設
 ※2[]は発生時刻(秒)

添3-ロ(へ)第7表 基礎底面の支持力に対する解析結果 (Ss-C4(水平)及び一関東評価用地震動(鉛直))

番号	対象建屋名称	断面方向	地震動 *1	接地圧 (MPa) _{※2}	設置地盤	評価基準値 (MPa)
	燃料加工建屋 [*]	N S	Ss-C4 EW (+, +)	1.9 [7.42]	束側	7.5
1		ΕW	Ss-C4 EW (-, +)	2. 1 [8. 19]	東側	7.5
0	緊急時対策建屋 ^{**}	N S	Ss-C4 NS (+, +)	0.8 [7.36]	東側	7. 5
2		ΕW	Ss-C4 EW (+, +)	1. 1 [7. 38]	東側	7.5
0	** 第1保管庫・貯水所	N S	Ss-C4 EW (+, +)	0.5 [7.17]	束側	7.5
3		EW	Ss-C4 NS (-, +)	1. 2 [9. 70]	東側	7.5
4	第2保管庫·貯水所 ^{**}	N S	Ss-C4 NS (+, +)	0.7 [7.65]	東側	7.5
		EW	Ss-C4 EW (-, +)	0.6 [7.45]	東側	7.5

※1(+,+)位相反転なし (-,+)水平位相反転※2[]は発生時刻(秒)

耐震重要施設等と常設重大事故等対処施設を兼ねる施設 * ** 常設重大事故等対処施設

添3-ロ(へ)第8表 基礎底面の相対変位と傾斜に対する解析結果(基準地震動)

番号	解析対象施設	断面方向	地震動 *1	モデル建屋幅 (cm)	最大相対変位量 (mm) _{*2}	傾斜
	燃料加工建屋 *	N S	Ss-C1 (+, +)	8730	16. 1 [7. 71]	1/5400
1		EW	Ss-C1 (+, +)	8830	18.4 [7.72]	1/4800
0	緊急時対策建屋 * *	N S	Ss-C1 (-, +)	5800	5.5 [7.68]	1/10400
2		EW	Ss-C1 (-, +)	7400	6.6 [7.67]	1/11100
0	** 第1保管庫・貯水所	N S	Ss-A (+, +)	5200	3.5 [50.09]	1/15000
0		EW	Ss-C1 (-, +)	11300	6.5 [8.25]	1/17400
4	第2保管庫・貯水所 **	N S	Ss-C1 (-, +)	5200	2.5 [7.65]	1/20700
4		EW	Ss-C1 (+, +)	11300	6. 0 [7. 87]	1/18700

 ※1(+,+)位相反転なし (+,-)鉛直位相反転 (-,+)水平位相反転 (-,-)水平鉛直位相反転
 ※2[]」は発生時刻(秒)

* 耐震重要施設等と常設重大事故等対処施設を兼ねる施設
 ** 常設重大事故等対処施設

添3-ロ(へ)	第9表	基礎底面の傾斜に対する	解析結果
(Ss-C4	(水平)	及び一関東評価用地震動	(鉛直))

-				
番号	解析対象施設	断面方向	地震動 *1	傾斜 *2
1	* 燃料加工建屋	N S	Ss-C4 EW (+, +)	1/9500 [8.44]
		ΕW	Ss-C4 EW (-, +)	1/8600 [8.45]
0	** 緊急時対策建屋	N S	Ss-C4 EW (-, +)	1/16200 [8. 20]
2		ΕW	Ss-C4 EW (+, +)	1/18800 [7.42]
2	** 第1保管庫・貯水所	N S	Ss-C4 NS (-, +)	1/16700 [7.80]
J		ΕW	Ss-C4 EW (-, +)	1/25700 [8.95]
4	4 4	N S	Ss-C4 NS (-, +)	1/25700 [7.67]
	第2保管庫·貯水所	EW	Ss-C4 EW (-, +)	1/43300 [8. 57]
立相反転	たなし (一、+)水平位相反転	*	耐震重要施設	いなと常設重大

※1(+,+)位相反転なし (-,+)水平位相反転※2[]は発生時刻(秒)

* 耐震重要施設等と常設重大事故等対処施設を兼ねる施設 ** 常設重大事故等対処施設

添3-ロ(へ)第10表 地殻変動による影響評価に用いる断層パラメータ

		基本 ケース	傾斜角の不確かさ 考慮ケース
ſ	項斜角 (°)	70	45
断	層長さ (km)	28.7	28.7
ß	所層幅 (km)	12.8	17.0
(M ₀ (N · m)	7. 51E+18 1. 32E+19	
ផ្	刚性率 (Pa)	2.94E+10	2.94E+10
平均	平均 アスペリティ 139.7	185.5	
(cm)	背景領域	58.3	73.8

添3-ロ(へ)第11表 地殻変動による基礎底面の傾斜に対する解析

番号	対象建屋名称	 ①地震動による 最大傾斜 	②地殻変動による最大傾斜	1+2
1	燃料加工建屋*	1/7200	1/17900	1/5100
2	緊急時対策建屋 **	1/13200	1/17400	1/7500
3	第1保管庫・貯水所 **	1/15000	1/17700	1/8100
4	第2保管庫・貯水所 **	1/21700	1/15400	1/9000

* 耐震重要施設等と常設重大事故等対処施設を兼ねる施設

** 常設重大事故等対処施設

添3-ロ(ト)第1表 地質調査会社一覧表

F)	第1表	地質調査会社一覧表

調査名	実施年度	会社名	概要	調査名
	昭和60年度	中央開発(株)	敷 地 内	
	昭和60年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	昭和61年度	サンコーコンサルタント(株)	海 域	
	昭和62年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	昭和63年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成元年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成6年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	岩 盤 試
	平成7年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成12年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
ホーリング	平成18年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成19年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成21年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成22年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成23年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成24年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成25年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	
	平成26年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	-
	平成27年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内	1.
The lat hat long the	昭和60年度	日本物理探鑛(株)	敷 地 内	
弹性波探查	平成元年度	日本物理探鑛(株)	敷 地 内	
	昭和62年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	昭和62年度	(株)新日本技術コンサルタント	試掘坑ブロック試料	
	昭和63年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料及び	地質調
			試掘坑ブロック試料	
	平成元年度	(株)新日本技術コンサルタント	試掘坑ブロック試料	
	平成元年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料,	1 - 1
		Contraction of the second sec second second sec	試掘坑ブロック試料及び	
			トレンチブロック試料	
	平成4年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成5年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
岩石試験	平成6年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
土質試験	平成7年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	R. B. S. S. S.
	平成12年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	- 05 - 0 - S
	平成15年度	東電設計(株)	ボーリングコア試料	試掘坑瓢
	平成18年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成19年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成19年度	鹿島建設(株)	ボーリングコア試料	100
	平成21年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成23年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	1
	平成24年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成26年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	海域調
	平成27年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア試料	
	平成26年度 平成27年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体 応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリングコア 試料 ボーリングコア 試料	海域課

調査名	実施年度	会社名	概要
	昭和62年度	(株)新日本技術コンサルタント	試 掘 坑 内
	昭和62年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	昭和63年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔及び試掘坑内
-	平成元年度	(株)新日本技術コンサルタント	試 掘 坑 内
	平成元年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔及び試掘坑内
	平成6年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
盤試験	平成7年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	平成12年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
1	平成18年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	平成19年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	平成21年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	平成23年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
	平成24年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	ボーリング孔内
6.000	昭和60年度	応用地質(株)	敷地周辺及び敷地内
	昭和61年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内
× 31	昭和62年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内
	昭和63年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 内
	平成6年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷地周辺及び敷地内
	平成8年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷地周辺及び敷地内
	平成15年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地 周 辺
	平成18年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷地周辺及び敷地近傍
	平成18年度	(株) 阪神コンサルタンツ	敷 地 周 辺
質 調 杏	平成18年度	(株)地球科学総合研究所	敷 地 近 傍
~	平成20年度	広田地質(株)・(株)ダイヤコンサルタント共同企業体	敷 地周辺及び敷 地近傍
	平成20年度	(株) 阪油コンサルタンツ	敷 地 周 辺
	平成20年度	に田地質(株)・(株)ダイヤコンサルタント共同企業体	<u>款</u> 地 内
	平成23年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	
	平成24年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	业 新地内 新地国辺及75新地
	+1420+12		近俸
	亚虎96年度	広田地質(株)・(株)ダイヤコンサルタント共同企業体	動地周辺及7%動地近傍
	平成20年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	敷地周辺及び敷地近傍 敷地周辺及び敷地近傍
	平 成21年度 今 和元年度	応用地質(株)・(株)ダイヤコンサルタントサ同企業体	敷地周辺及び敷地近傍
	四和61年度		<u>新地尚之伏り</u> 永地姓()
揭 访 調 杰	昭和61年度	応用地質(株)・(株)ダイヤコンサルタント共同正乗降	敖 地 P1
MA OL AM EL	昭和05年度 亚武三年度	応用地質(株)・(株)ダイヤコンサルタント共同企業体	<u>家</u> 地内
	平成九年度	応用地員(林)・(林)タイイコンリルランド共同正来平 (松へ地所調素(株)	京 地 門
	昭和62年度		百政休宜記駅の所引
1.11	昭和62年度	口平彻理保護(休)	供 上 百 政 休 宜 主 述 概 本 わ 品 の 初 托
	昭和63年度	総合地質調査(株)	首波採室記録の解析
	平成7年度	総合地質調査(休)	首政保宜記録の解析
**********	平成8年度	総合地質調査(休)	首政保宜記録の解析
域 調 査	平成13年度	総合地員調査(株)	百辺派賞記録の解析
	平成19年度	川雨地與(休)	御上首波探査
	平成21年度	総合理員調査(株)	官 波 採 堂 記 録 の 解 析
	平成26年度	(株) 阪伊コンサルタンツ	御上首波探査
	平成26年度	(3四) 海汗研究開発機構	一 本 ー リ ン グ
	半成26年度	応用地質(株)・(株)タイヤコンサルタント共同企業体	分

添3-ロ(ロ)第4図 敷地周辺陸域の地質断面図

添3-ロ(ロ)第5図 六ヶ所層及び砂子又層の地質年代測定結果図

添3-ロ(ロ)第8図 敷地周辺の重力異常図(ブーゲー異常図)

添3-ロ(ロ)第9図 敷地周辺の磁気異常図

添3-ロ(ロ)第10図(1) 敷地周辺の小・微小地震分布図(東西方向)

(東経140°57'~141°33',北緯40°40'~41°15' 2009年1月1日~2015年7月31日,M≦5,震源深さ≦30km)

添3-ロ(ロ)第10図(2) 敷地周辺の小・微小地震分布図(南北方向)

 添3-ロ(ロ)第14図(1) 横浜断層周辺の地質断面図
 3-ロ-238

添3-ロ(ロ)第17図 横浜町林崎川左岸の断層露頭スケッチ図(Y-1露頭) 3-ロ-242

N ____

高位段丘堆積層(H5面堆積物)に変位を与える逆断層である。 H5面堆積物中の砂・シルト互層に約40cmの北西上がりの変位が認められるが、その上位の中位段丘堆積層(M2面堆積物)下面に変位・変形は認められない。

S

添3-ロ(ロ)第18図 横浜町林崎川右岸の断層露頭スケッチ図(Y-2露頭) 3-ロ-243

孫 3 - ロ (ロ) 第19図 横浜町林崎川の断層露頭周辺A - A' 断面図
 3 - ロ - 244

調査地点位置図

 $3 - \Box - 247$

 $^{3 - \}Box - 248$

 $^{3 - \}Box - 250$