柏崎刈羽原子力発電所第7号機 工事計画審査資料					
資料番号	KK7添-3-014-3 改2				
提出年月日	2020年8月21日				

V-3-別添 2-1-3 タービン建屋の強度計算の方針

2020年8月 東京電力ホールディングス株式会社

V-3-別添 2-1-3 タービン建屋の強度計算の方針

目 次

1.	概要	1
2.	強度評価の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	1 評価対象施設 ·····	2
3.	構造強度設計	3
3.	1 構造強度の設計方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3. 2	2 機能維持の方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
4.	荷重及び荷重の組合せ並びに許容限界 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
4.	1 荷重及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
4. 2	2 許容限界 ·····	12
5.		14
5.	1 強度評価条件	14
5. 2	2 強度評価方法 ·····	14
6.	適用規格	15

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準規則」という。)第7条及びその「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に適合し、技術基準規則第54条及びその解釈に規定される「重大事故等対処設備」を踏まえた重大事故等対処設備に配慮する設計とするため、V-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」(以下「V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」)という。)の「4.1 構造物への荷重を考慮する施設」で設定しているタービン建屋海水熱交換器区域が、降下火砕物に対して構造健全性を維持することを確認するための強度評価方針について説明するものである。

強度評価は、V-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」の $5 \, V-1-1-3-4-1$ 「火山への配慮に関する基本方針」(以下「V-1-1-3-4-1「火山への配慮に関する基本方針」」という。)に示す適用規格を用いて実施する。

降下火砕物の影響を考慮する施設のうち、タービン建屋海水熱交換器区域の具体的な計算の方法及び結果は、V-3-別添 2-5「タービン建屋の強度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「2.1 評価対象施設」に示す評価対象施設を対象として、「4.1 荷重及び荷重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組合せ荷重により発生する応力等が、「4.2 許容限界」で示す許容限界を超えないことを、「5. 強度評価条件及び強度評価方法」で示す評価方法及び考え方を使用し、「6. 適用規格」で示す適用規格を用いて確認する。

2.1 評価対象施設

本資料における評価対象施設は、V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」で設定している構造物への荷重を考慮する施設のうち、タービン建屋海水熱交換器区域を強度評価の対象施設とする。

3. 構造強度設計

V-1-1-3-4-1「火山への配慮に関する基本方針」で設定している降下火砕物特性に対し、「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が、構造強度設計上の性能目標を達成するように、V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「5. 機能設計」で設定しているタービン建屋海水熱交換器区域が有する機能を踏まえて、構造強度の設計方針を設定する。

また、想定する荷重及び荷重の組合せを設定し、それらの荷重に対し、タービン建屋海水熱交換器区域が内包する防護すべき施設に波及的影響を及ぼさないよう機能維持の方針を設定する。

3.1 構造強度の設計方針

タービン建屋海水熱交換器区域は、V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、地震及び積雪を考慮した荷重に対し、降下火砕物堆積時の機能維持を考慮して、鉄筋コンクリート造の屋根スラブを、鉄骨大ばり及び鉄筋コンクリート造の耐震壁等で支持し、支持性能を有する基礎スラブにより支持する構造とする。降下火砕物及び積雪(以下「降下火砕物等」という。)による荷重を短期荷重とするために、降下火砕物の降灰から 30 日を目途に降下火砕物を適切に除去すること、また降灰時には除雪も併せて実施することを保安規定に定める。

3.2 機能維持の方針

V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえ、V-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」で設定している荷重条件を適切に考慮して、構造設計及びそれを踏まえた評価方針を設定する。

(1) 構造設計

タービン建屋海水熱交換器区域は、屋根スラブを鉄骨大ばり、耐震壁等で支持し、支持性能を有する基礎スラブにより支持する構造とする。タービン建屋海水熱交換器区域の屋根スラブ、鉄骨大ばり、耐震壁等は適切な強度を有する構造とする。建屋全体については、耐震壁等及び鉄骨フレームが適切な強度を有する構造とする。

降下火砕物等の堆積による鉛直荷重に対しては、降下火砕物等が堆積する屋根スラブに作用する構造とする。

タービン建屋の設置位置を図3-1に,構造計画を表3-1に示す。

(2) 評価方針

タービン建屋海水熱交換器区域は、「(1) 構造設計」を踏まえ、以下の評価方針とする。 想定する降下火砕物、地震及び積雪を考慮した荷重に対し、タービン建屋海水熱交換器区域については屋根スラブ、鉄骨大ばり、耐震壁等、建屋全体については耐震壁等及び鉄骨フレームが、「4.2 許容限界」で示す許容限界を超えないことを確認する。なお、耐震壁については、建屋全体の評価においてタービン建屋海水熱交換器区域を含むものとする。

降下火砕物,地震及び積雪を考慮した荷重に対する強度評価を,V-3-別添 2-5「タービン 建屋の強度計算書」に示す。

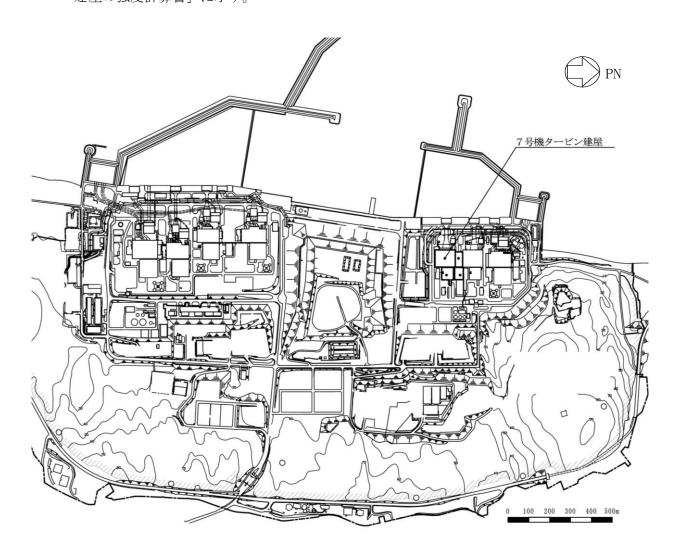


図 3-1 タービン建屋の設置位置

表 3-1 構造計画

計画の)概要	衣 3-1 件垣計画
主体構造	支持構造	説明図
	荷外る壁しをスするのす震を横に耐しブ構をととする。	T.W.S.L. 44.3

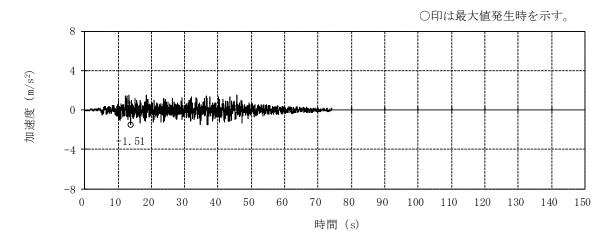
4. 荷重及び荷重の組合せ並びに許容限界

強度評価に用いる荷重の種類,荷重の組合せ及び荷重の算定方法を「4.1 荷重及び荷重の組合せ」に、許容限界を「4.2 許容限界」に示す。

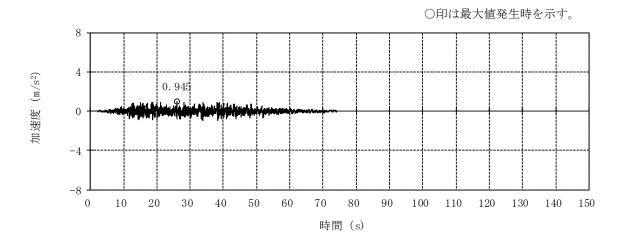
4.1 荷重及び荷重の組合せ

強度評価にて考慮する荷重及び荷重の組合せは、V-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2) 荷重の組合せ及び許容限界」を踏まえ、以下のとおり設定する。

(1) 荷重の種類


a. 常時作用する荷重 (F_d)

常時作用する荷重は、V-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.3(2)a. 荷重の種類」で設定している常時作用する荷重に従って、持続的に生じる荷重である固定 荷重及び積載荷重とする。


b. 降下火砕物による荷重 (Fa)

降下火砕物による荷重は、V-1-1-3「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」(以下「V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」」という。)の「4.1 自然現象の組合せについて」で設定している自然現象の組合せに従って、主荷重として扱うこととし、V-1-1-3-4-1「火山への配慮に関する基本方針」の「2.1.2 設計に用いる降下火砕物特性」に示す降下火砕物の特性及び「2.1.3(2)a. 荷重の種類」に示す降下火砕物による荷重を踏まえて、湿潤密度 1.5g/cm³の降下火砕物が 35cm 堆積した場合の荷重として堆積量 1cm ごとに 147.1N/m²の降下火砕物による荷重が作用することを考慮し設定する。

c. 地震荷重 (F_k)

(a) 水平方向

(b) 鉛直方向

図 4-1 加速度時刻歴波形 (年超過確率 10-2 相当地震動)

d. 積雪荷重 (F_s, F_{sb})

積雪荷重は、V-1-1-3-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」の「4.1 自然現象の組合せについて」で設定している自然現象の組合せに従って、従荷重として扱うこととし、V-1-1-3-1-1 「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」の「4.1 自然現象の組合せについて」に示す組み合わせる積雪深を踏まえて、柏崎市における 1 日当たりの積雪量の年超過確率 10^{-2} 規模の値 84.3cm が堆積した場合の荷重を主荷重に組み合わせる積雪荷重 (F_s) とする。更に、従荷重として扱う積雪荷重とは別に、ベース負荷として日最深積雪量の平均値に当たる積雪量 31.1cm による荷重を常時考慮する積雪荷重(F_{sb})として考慮する。積雪荷重については、新潟県建築基準法施行細則により、積雪量 1cm ごとに 29.4N/m² の積雪荷重が作用することを考慮し設定する。

(2) 荷重の組合せ

a. 降下火砕物による荷重,地震荷重及び積雪荷重の組合せ

降下火砕物による荷重,地震荷重及び積雪荷重については,V-1-1-3-1-1「発電用原子 炉施設に対する自然現象等による損傷の防止に関する基本方針」の「4.1 自然現象の組合 せについて」を踏まえて,それらの組合せを考慮し,自然現象の荷重として扱う。自然現 象の荷重は短期荷重として扱う。

b. 荷重の組合せ

荷重の組合せについては、自然現象の荷重及び常時作用する荷重を組み合わせる。

上記を踏まえ、タービン建屋海水熱交換器区域の強度評価における荷重の組合せの設定 については、建屋の設置状況及び構造を考慮し設定する。タービン建屋海水熱交換器区域 における荷重の組合せの考え方を表 4-1 に示す。

次II 同至V周日已								
				荷重				
	常時作用する		主荷重		ベース負荷			
考慮する 荷重の組合せ		重 'd)	降下火砕物 による荷重	地震荷重	積雪荷重	常時考慮する		
	固定荷重	積載 荷重	(F _a)	(F _k)	(F _s)	(F _{sb})		
ケース1				0	_			
ケース 2	0	0	0	_		0		

表 4-1 荷重の組合せ

注:「〇」は考慮する荷重を示す。

(3) 荷重の算定方法

降下火砕物による荷重、地震荷重及び積雪荷重の算出式及び算出方法を以下に示す。

a. 記号の定義

荷重の算出に用いる記号を表 4-2 に示す。

表 4-2 荷重の算出に用いる記号

		-
記号	単位	定義
F a	$\mathrm{N/m^2}$	湿潤状態の降下火砕物による荷重
F s	$\mathrm{N/m^2}$	従荷重として組み合わせる積雪荷重
F s b	$\mathrm{N/m^2}$	ベース負荷として組み合わせる常時考慮する積雪荷重
Fvk	Fvk N/m² 従荷重として地震荷重を組み合わせるときの降下火砕物 積による鉛直荷重	
F _{Vs}	$\mathrm{N/m^2}$	従荷重として積雪荷重を組み合わせるときの降下火砕物等の堆 積による鉛直荷重
f's	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
g	m/s^2	重力加速度
H _a	cm	降下火砕物の層厚
H _s	cm	従荷重として考慮する積雪深
H s b	cm	ベース負荷として考慮する積雪深
ρ	${\rm kg/m^3}$	降下火砕物の湿潤密度

b. 降下火砕物による荷重及び積雪荷重

湿潤状態の降下火砕物による荷重は、次式のとおり算出する。

$$F_a = \rho \cdot g \cdot H_a \cdot 10^{-2}$$

積雪荷重は、次式のとおり算出する。

$$F_s = f'_s \cdot H_s$$
 , $F_{sb} = f'_s \cdot H_{sb}$

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重は、次式のとおり算出する。

$$F_{V\,k}\!=\!F_a\!+\!F_{s\,b}$$
 , $F_{V\,s}\!=\!F_a\!+\!F_s\!+\!F_{s\,b}$

表 4-3 に入力条件を示す。

表 4-3 入力条件

$ ho$ (kg/m 3)	g (m/s^2)	H _a (cm)	f's N/(m²·cm)	H _s (cm)	H _{sb} (cm)
1500	9. 80665	35	29. 4	84. 3	31. 1

以上を踏まえ,降下火砕物等の堆積による鉛直荷重は,

c. 地震荷重

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえたタービン建屋の質点系モデルに対して、年超過確率 10⁻²相当地震動を入力して地震荷重を算出する。

4.2 許容限界

許容限界は、V-1-1-3-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを踏まえた,評価対象部位ごとの許容限界を表 4-4 に示す。

構造強度評価においては、降下火砕物、地震及び積雪を考慮した荷重に対し、評価対象部位 ごとに求められる機能が担保できる許容限界を設定する。

(1) 屋根スラブ

屋根スラブ (デッキ構造スラブ用デッキプレート) は、内包する防護すべき施設に波及的 影響を及ぼさないことを性能目標としており、「各種合成構造設計指針・同解説 (日本建築 学会、2010 改定)」(以下「合成構造指針」という。)に基づく弾性限強度を許容限界として設 定する。

(2) 鉄骨大ばり

鉄骨大ばりは、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「鋼構造設計規準―許容応力度設計法― (日本建築学会、2005 改定)」(以下「S 規準」という。)に基づく弾性限強度を許容限界として設定する。

(3) 耐震壁

耐震壁は、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「原子力発電所耐震設計技術指針 JEAG 4601-1987 (日本電気協会)」に基づき最大せん断ひずみ 4.0×10^{-3} を耐震壁の許容限界として設定する。

(4) 鉄骨フレーム

鉄骨フレームは、内包する防護すべき施設に波及的影響を及ぼさないことを性能目標としており、「震災建築物の被災度区分判定基準および復旧技術指針((財)日本建築防災協会)」を参考に層間変形角 1/30 を鉄骨フレームの許容限界として設定する。

表 4-4 許容限界

	1	1		T	
要求	機能設計上		部位	構造健全性維持	許容限界
機能	の性能目標		타/ <u>가</u>	のための考え方	(評価基準値)
	内包する防	屋根	屋根 スラブ 鉄骨	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認	「合成構造指針」 に基づく 弾性限強度* ² 「S規準」に基づく
_	護すべき施 設に波及的		大ばり		弹性限強度*3
	影響を及ぼ さないこと	Ī	I 耐震壁* ¹	最大せん断ひずみが波 及的影響を及ぼさない ための許容限界を超え ないことを確認	せん断ひずみ 4.0×10 ⁻³
			骨フレーム	最大層間変形角が波及 的影響を及ぼさないた めの許容限界を超えな いことを確認	層間変形角 1/30* ⁴

注記*1:建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。また、V-3-別添 2-5「タービン建屋の強度計算書」の「別紙 年超過確率 10⁻²相当地震動に対するタービン建屋の地震応答計算書」で補助壁を耐震要素とした地震応答解析を行っているため、評価対象部位には補助壁を含む。

*2: 弾性限強度として「合成構造指針」のF値に「2015 年版 建築物の構造関係技術基準 解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所)」(以下 「技術基準解説書」という。)に基づき1.1 倍の割り増しを考慮する。

*3:弾性限強度として「S規準」のF値に「技術基準解説書」に基づき1.1倍の割り増しを 考慮する。

*4:「震災建築物の被災度区分判定基準および復旧技術指針((財)日本建築防災協会)」を参考に許容限界を設定している。なお、被災度区分判定基準においては、柱の残留傾斜角が 1/30 を超えた場合に大破と判定しているが、保守的に最大層間変形角を用いて評価を行う。

5. 強度評価条件及び強度評価方法

5.1 強度評価条件

タービン建屋海水熱交換器区域の強度評価を行う場合、以下の条件に従うものとする。

- (1) 降下火砕物等の堆積による鉛直荷重を短期荷重として評価する。
- (2) 降下火砕物等の堆積による鉛直荷重は、F_{Vk}=6063N/m²、F_{Vs}=8542N/m²とする。
- (3) 地震荷重は、「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえたタービン 建屋の質点系モデルに対して、年超過確率 10⁻² 相当地震動を入力して算出する。

5.2 強度評価方法

(1) 屋根スラブの応力計算

2 スパンの連続ばりとした評価モデルを用いて、屋根スラブに作用する固定荷重、積載荷重及び自然現象の荷重により屋根スラブに発生する応力を求める。

(2) 鉄骨大ばりの応力計算

2次元フレームモデルによる弾性応力解析により、鉄骨大ばりに発生する応力を求める。

(3) 耐震壁の応答計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえたタービン建屋の質点系モデルによる地震応答解析により耐震壁に発生するせん断ひずみを求める。

(4) 鉄骨フレームの応答計算

「4. 荷重及び荷重の組合せ並びに許容限界」の荷重条件を踏まえたタービン建屋の質点系モデルによる地震応答解析により鉄骨フレームに発生する層間変形角を求める。

6. 適用規格

V-1-1-3-4-1「火山への配慮に関する基本方針」においては、降下火砕物の影響を考慮する施設の設計に係る適用規格を示している。

これらのうち,タービン建屋海水熱交換器区域の強度評価に用いる規格・基準等を以下に示す。

- · 建築基準法 · 同施行令
- ·新潟県建築基準法施行細則(昭和35年12月30日新潟県規則第82号)
- ·原子力発電所耐震設計技術指針 JEAG 4601-1987(日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版(日本電気協会)
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-(日本建築学会, 1999 改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説 (日本建築学会, 2005 制定)
- ・鋼構造設計規準 -許容応力度設計法- (日本建築学会, 2005 改定)
- ·原子力発電所耐震設計技術指針 重要度分類·許容応力編 JEAG 4601·補-1984(日本電気協会)
- ・各種合成構造設計指針・同解説 (日本建築学会, 2010 改定)
- ・2015 年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所 2015)

V-3-別添 2-5 タービン建屋の強度計算書

目 次

1.	概要 · · · · · · · · · · · · · · · · · · ·	\cdots 1
2.	基本方針 · · · · · · · · · · · · · · · · · · ·	2
2.	1 位置	2
2.	2 構造概要	3
2.	3 評価方針 · · · · · · · · · · · · · · · · · · ·	6
2.	4 適用規格 · · · · · · · · · · · · · · · · · · ·	8
3.	強度評価方法及び評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.		
3.	14224-142	
	3. 2. 1 荷重 · · · · · · · · · · · · · · · · · ·	
	3.2.2 荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.		
3.		
	3.4.1 モデル化の基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.4.2 解析諸元 · · · · · · · · · · · · · · · · · · ·	
3.		
	3.5.1 屋根スラブの評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.5.2 鉄骨大ばりの評価方法	
	3.5.3 耐震壁の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	3.5.4 鉄骨フレームの評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.	強度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.	— · · · · · · · · · · · · · · · · · · ·	
4.		
4.		
4.	4 鉄骨フレームの評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 29

別紙 年超過確率 10-2 相当地震動に対するタービン建屋の地震応答計算書

1. 概要

本資料は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」に示すとおり、タービン建屋海水熱交換器区域が降下火砕物及び積雪の堆積時においても、内包する防護すべき施設に降下火砕物を堆積させない機能の維持を考慮して、建屋全体及び建屋の主要な構造部材が構造健全性を維持することを確認するものである。

2. 基本方針

タービン建屋海水熱交換器区域は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ、本資料では、「2.1 位置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

タービン建屋海水熱交換器区域は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「3.2 機能維持の方針」に示す位置に設置する。タービン建屋の配置を図 2-1 に示す。

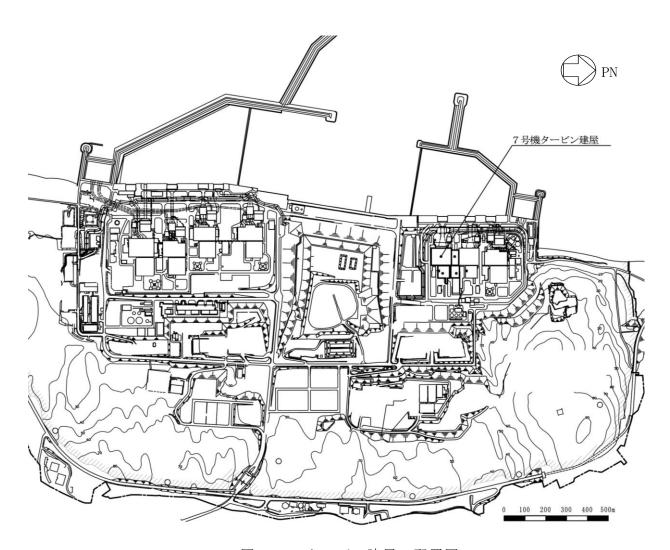
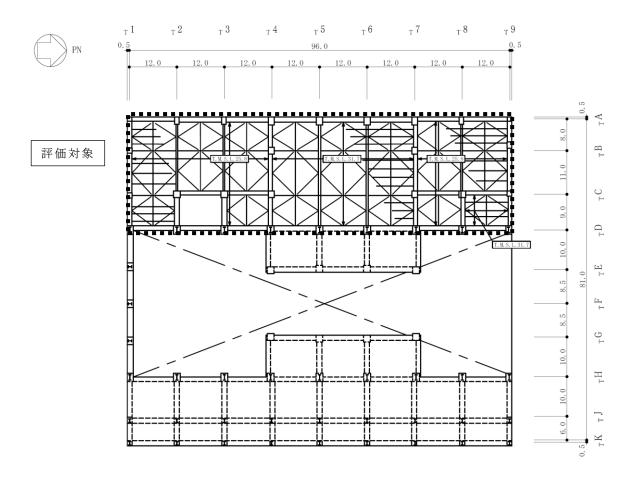
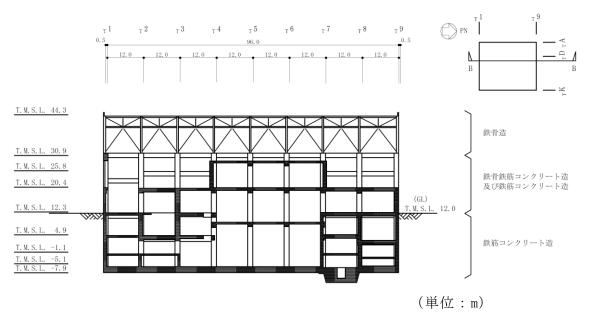


図 2-1 タービン建屋の配置図

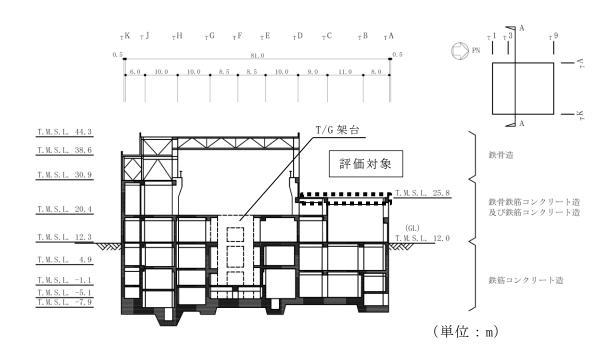

2.2 構造概要

タービン建屋海水熱交換器区域は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえて、構造を設定する。

タービン建屋は、地上2階(一部3階)、地下2階建ての鉄筋コンクリート造を主体とした建物で、屋根部分が鉄骨造となっている。


タービン建屋全体の平面は、地下部分では 97.0 m (NS 方向) $\times 82.0 \text{m}$ (EW 方向),最上階は 97.0 m (NS 方向) $\times 48.9 \text{m}$ (EW 方向) である。基礎スラブ底面からの高さは 52.2 m であり、地上高さは 32.3 m である。なお、タービン建屋海水熱交換器区域は、建屋西側の 97.0 m (NS 方向) $\times 28.5 \text{m}$ (EW 方向) である。

タービン建屋の3階及び屋根面の概略平面図を図2-2に, 概略断面図を図2-3に示す。



注:東京湾平均海面(以下「T.M.S.L.」という。) (単位:m)

図2-2 タービン建屋の概略平面図 (T.M.S.L.30.9m)

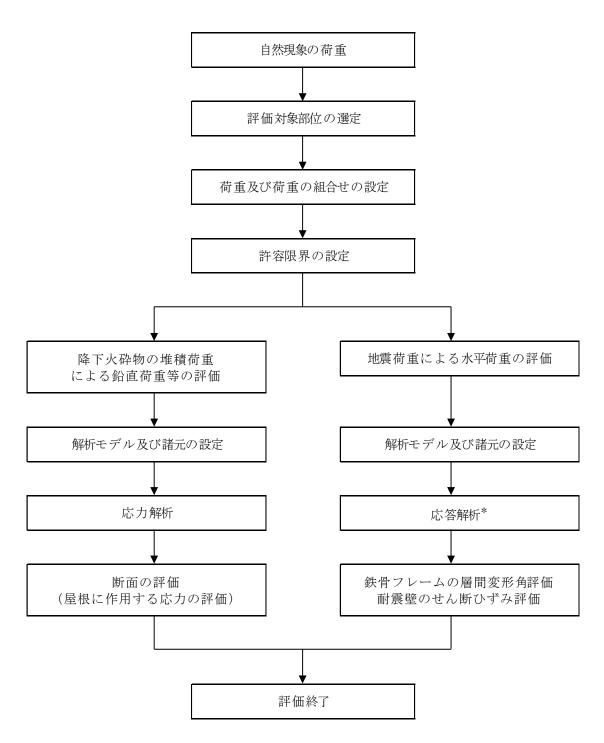
NS方向断面

EW方向断面

図2-3 タービン建屋の概略断面図

2.3 評価方針

タービン建屋海水熱交換器区域の強度評価は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」のうち「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している荷重、荷重の組合せ及び許容限界を踏まえて、建屋の評価対象部位に発生する応力等が許容限界に収まることを「3. 強度評価方法及び評価条件」に示す方法及び評価条件を用いて計算し、「4. 強度評価結果」にて確認する。強度評価フローを図 2-4に示す。


タービン建屋海水熱交換器区域の強度評価においては、その構造を踏まえて降下火 砕物堆積による鉛直荷重及びこれに組み合わせる荷重(以下「設計荷重」という。)の 作用方向及び伝達過程を考慮し、評価対象部位を選定する。

降下火砕物堆積による鉛直荷重及び設計荷重に対しては、鉛直荷重に抵抗する評価対象部位として、海水熱交換器区域上の屋根スラブ及び鉄骨大ばりを、水平荷重に抵抗する評価対象部位として耐震壁を選定した。また、建屋全体については、水平荷重に抵抗する評価対象部位として耐震壁及び鉄骨フレームを選定した。

設計荷重は、V-3 別添 2-1-3「タービン建屋の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に従い設定する。

屋根スラブ,鉄骨大ばり,耐震壁及び鉄骨フレームに作用する荷重は,V-3-別添 2-1-3「タービン建屋の強度計算の方針」のうち「5. 強度評価条件及び強度評価方法」に従い、タービン建屋の質点系モデルを用いて評価する。

許容限界は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「4.2 許容限界」に従い設定する。

注記*:別紙「年超過確率 10⁻²相当地震動に対するタービン建屋の 地震応答計算書」に示す。

図 2-4 強度評価フロー

2.4 適用規格

タービン建屋の強度評価に用いる規格・基準を以下に示す。

- · 建築基準法 · 同施行令
- ·新潟県建築基準法施行細則(昭和35年12月30日新潟県規則第82号)
- ·原子力発電所耐震設計技術指針 JEAG 4601-1987 (日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版(日本電気協会)
- ・鉄筋コンクリート構造計算規準・同解説 許容応力度設計法-(日本建築学会, 1999 改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説(日本建築学会,2005 制定) (以下「RC-N 規準」という。)
- ・鋼構造設計規準-許容応力度設計法-(日本建築学会,2005 改定)(以下「S 規準」という。)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG 460 1・補-1984(日本電気協会)
- ・各種合成構造設計指針・同解説 (日本建築学会, 2010 改定)
- ・2015 年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究 所・国立研究開発法人建築研究所)(以下「技術基準解説書」という。)

3. 強度評価方法及び評価条件

3.1 評価対象部位

タービン建屋海水熱交換器区域の評価対象部位は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」のうち「4.2 許容限界」にて示している評価対象部位に従って、屋根スラブ、鉄骨大ばり及び耐震壁とする。建屋全体については、耐震壁及び鉄骨フレームとする。

なお、屋根スラブの評価については、各断面についてのスラブのスパン、スラブに 作用する荷重等を考慮して、検定値が最も大きい部材を選定して示す。屋根スラブの 評価対象部位を図 3-1 に示す。

鉄骨大ばりについては、支持スパンが最も大きい T5 フレームを代表して示す。鉄骨大ばりの評価対象部位を図 3-1 に示す。

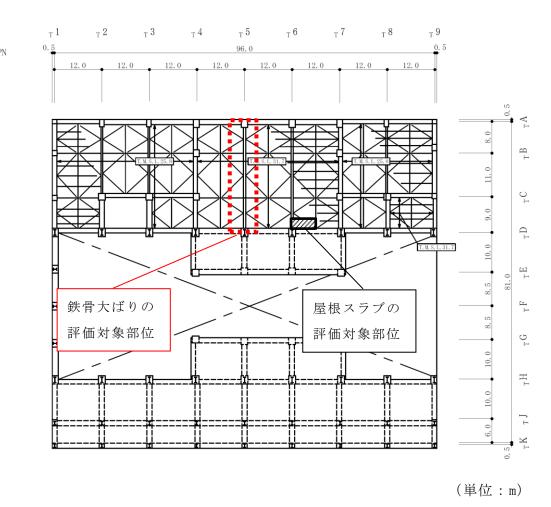


図 3-1 屋根スラブの評価対象部位 (T. M. S. L. 30.9m)

3.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用いる。

3.2.1 荷重

(1) 屋根スラブ

a. 鉛直荷重

表 3-1 に鉛直荷重の一覧を示す。屋根スラブに考慮する鉛直荷重は、常時作用する荷重(F_a)、降下火砕物による荷重(F_a)及び積雪荷重(F_s , F_{sb})を考慮する。常時作用する荷重は、固定荷重(G)及び積載荷重(P)とし、平成 3 年 8 月 23 日付け 3 資庁第 6675 号にて認可された工事計画の添付資料 IV-2-9 「タービン建屋の耐震性についての計算書」(以下「既工認」という。)に基づき設定する。

降下火砕物による荷重は、湿潤密度 $1.5 \mathrm{g/cm^3}$ の降下火砕物が $35 \mathrm{cm}$ 堆積した場合の荷重として考慮する。積雪荷重は積雪量 $1 \mathrm{cm}$ ごとに $29.4 \mathrm{N/m^2}$ とし、柏崎市における 1 日当たりの積雪量の年超過確率 10^{-2} 規模の値 $84.3 \mathrm{cm}$ が堆積した場合の荷重を主荷重である降下火砕物による荷重に組み合わせる積雪荷重(Fs)とする。また、ベース負荷として日最深積雪量の平均値に当たる $31.1 \mathrm{cm}$ による荷重を常時考慮する積雪荷重(F_{sb})として考慮する。

固定荷重 常時作用 屋根スラブ 1.817 kN/m^2 (G) する荷重 (F_d) 積載荷重 (P) 0.5884 kN/m^2 降下火砕物による荷重 (Fa) 5.148 kN/m^2 年超過確率 10⁻² (F_s) 2.478 kN/m^2 積雪荷重 常時考慮する積雪荷重 (F s b) 0.9143 kN/m^2

表 3-1 鉛直荷重一覧 (屋根スラブ T.M.S.L. 31.7m)

b. 地震荷重

屋根スラブに考慮する地震荷重(F_k)は、別紙「年超過確率 10^{-2} 相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析から得られる屋根スラブレベル (T. M. S. L. 31.7m) の鉛直方向最大応答加速度より鉛直震度を算定する。

(2) 鉄骨大ばり

a. 鉛直荷重

表 3-2 に鉛直荷重の一覧を示す。鉄骨大ばりに考慮する鉛直荷重は、常時作用する荷重(F_a)、降下火砕物による荷重(F_a)及び積雪荷重(F_s , F_{sb})を考慮する。常時作用する荷重は、固定荷重(G)及び積載荷重(P)とし、「既工認」に基づき設定する。ただし、屋根スラブはルーフブロック等を撤去したため、その重量も反映する。

降下火砕物による荷重は、湿潤密度 1.5g/cm^3 の降下火砕物が 35 cm 堆積した場合の荷重として考慮する。積雪荷重は積雪量 1 cm ごとに 29.4N/m^2 とし、柏崎市における 1 日当たりの積雪量の年超過確率 10^{-2} 規模の値 84.3 cm が堆積した場合の荷重を主荷重である降下火砕物による荷重に組み合わせる積雪荷重(F_s)とする。また、ベース負荷として日最深積雪量の平均値に当たる 31.1 cm による荷重を常時考慮する積雪荷重(F_s)として考慮する。

屋根スラブ 1.817 kN/m^2 固定荷重 常時作用 (G) する荷重 トラス鋼材 76.98 kN/m^3 (F_d) 積載荷重 (P) 0.5884 kN/m^2 5.148 kN/m^2 降下火砕物による荷重 (Fa) 年超過確率 10⁻² (F_s) 2.478 kN/m^2 積雪荷重 常時考慮する積雪荷重(Fsb) 0.9143 kN/m^2

表 3-2 鉛直荷重一覧 (鉄骨大ばり)

b. 地震荷重

屋根トラスに考慮する地震荷重(F_k)のうち、水平地震荷重は、別紙「年超過確率 10^{-2} 相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析結果により得られた最大応答せん断力を用いて設定する。また、鉛直地震荷重は、別紙「年超過確率 10^{-2} 相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析結果により得られた最大鉛直加速度より鉛直震度を算定する。

(3) 耐震壁

耐震壁の評価に考慮する荷重は,別紙「年超過確率10⁻²相当地震動に対するタービン建屋の地震応答計算書」に示す。

(4) 鉄骨フレーム

鉄骨フレームの評価に考慮する荷重は、別紙「年超過確率10⁻²相当地震動に対するタービン建屋の地震応答計算書」に示す。

3.2.2 荷重の組合せ

荷重の組合せを表 3-3 に示す。

ケース1は、従荷重として地震荷重を組み合わせ、鉛直荷重と水平荷重を用いて評価するため、屋根スラブ、鉄骨大ばり及び耐震壁を評価対象とする。ケース2は、従荷重として積雪荷重を組み合わせ、鉛直荷重のみを用いて評価するため、屋根スラブ及び鉄骨大ばりを評価対象とする。

表 3-3 荷重の組合せ

	荷重							
	常時	作用	主荷重	従春		ベース負荷		
考慮する 荷重の	する (F		降下火砕物	地震荷重	積雪荷重	常時考慮す		
組合せ	固定荷重	積載 荷重	による荷重 (F _a)	地展何里 (F _k)	傾当何里 (F _s)	る積雪荷重 (F s b)		
ケース1	0	0	0	0	_	0		
ケース 2			0	_	0	0		

注:「○」は考慮する荷重を示す。

3.3 許容限界

タービン建屋海水熱交換器区域の許容限界はV-3-別添 2-1-3「タービン建屋の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って,「3.1 評価対象部位」にて設定している建屋の評価対象部位ごとに設定する。

屋根スラブ、鉄骨大ばり及び耐震壁は、構造健全性を維持する設計とすることを構造強度設計上の性能目標としているため、終局耐力に対して妥当な安全裕度を有する 許容限界として設定する。

屋根スラブ,鉄骨大ばり,耐震壁及び鉄骨フレームの許容限界を表 3-4 に,鉄骨大ばり鋼材の弾性限強度を表 3-5 に,デッキプレートの弾性限強度を表 3-6 に示す。

表 3-4 許容限界

			10	4 计分队外	
要求	機能設計上		₩	構造健全性維持のため	許容限界
機能	の性能目標		部位	の考え方	(評価基準値)
		屋	屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ	「合成構造指針」 に基づく 弾性限強度* ²
	内包する防 護 で み を み と を まないこと	根	鉄骨 大ばり	さないために落下しないことを確認	「S規準」に基づく 弾性限強度* ³
		ないこと	計震壁* 1	最大せん断ひずみが波 及的影響を及ぼさない ための許容限界を超え ないことを確認	せん断ひずみ 4.0×10 ⁻³
		鉄帽	プフレーム	最大層間変形角が波及 的影響を及ぼさないた めの許容限界を超えな いことを確認	層間変形角 1/30* ⁴

注記*1: 建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、はり、間仕切壁等が耐震壁の変形に追従すること、また、全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの変形が抑えられるため、各層の耐震壁の最大せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能は維持される。また、「別紙 年超過確率 10⁻² 相当地震動に対するタービン建屋の地震応答計算書」で補助壁を耐震要素とした地震応答解析を行っているため、評価対象部位には補助壁を含む。

*2: 弾性限強度として「合成構造指針」のF値に「技術基準解説書」に基づき 1.1 倍の割増しを考慮する。

*3: 弾性限強度として「S 規準」の F 値に「技術基準解説書」に基づき 1.1 倍の割増しを考慮する。

*4:「震災建築物の被災度区分判定基準及び復旧技術指針((財)日本建築防災協会)」を参考に許容限界を設定している。なお、被災度区分判定基準においては、柱の残留傾斜角が 1/30 を超えた場合に大破と判定しているが、保守的に最大層間変形角を用いて評価を行う。

表 3-5 鋼材の弾性限強度

(単位: N/mm²)

		基準強度	弾性限強度		
材料	板 厚	F値	圧縮*	曲げ*	せん断
SS41 (SS400相当)	$t {\leq} 40 \text{mm}$	235	258	258	135
SM41A(SM400A相当)	$t \leq 40$ mm	235	258	258	135
SM50A(SM490A相当)	$t \leq 40 \text{mm}$	325	357	357	187

注記*:「技術基準解説書」に基づき、F値に1.1倍の割増しを考慮する。ただし、圧縮 及び曲げ終局強度に対しては上限値であり、座屈長さ等を勘案して設定する。

表 3-6 デッキプレートの弾性限強度

(単位: N/mm²)

材料	厚さ	基準強度 F値	弹性限強度*
SS400	2.3mm	235	258

注記*:「技術基準解説書」に基づき、F値に1.1倍の割増しを考慮する。

3.4 解析モデル及び諸元

3.4.1 モデル化の基本方針

(1) 屋根スラブ

屋根スラブはデッキ構造スラブ用デッキプレートにより全荷重を負担している。 このため、もやで支持された1方向スラブとして単位幅を取り出し、等分布荷重 を受ける2スパンの連続ばりとしてデッキプレートの応力を算定する。なお、屋 根スラブは、単一断面であり、屋根面に作用する等分布荷重は屋根面全体で均一 であることから、支持スパンの長い部位を対象に評価を行う。

屋根スラブの評価モデル図を図 3-2 に、評価対象部位の位置を図 3-3 に、検 討条件を表 3-7 に示す。また、デッキプレートの断面図を図 3-4 に示す。

【2スパンの連続ばり】

・中央モーメント $M_{x2} = \frac{w L^2}{8}$

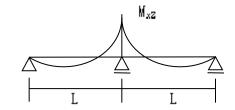


図 3-2 屋根スラブの評価モデル

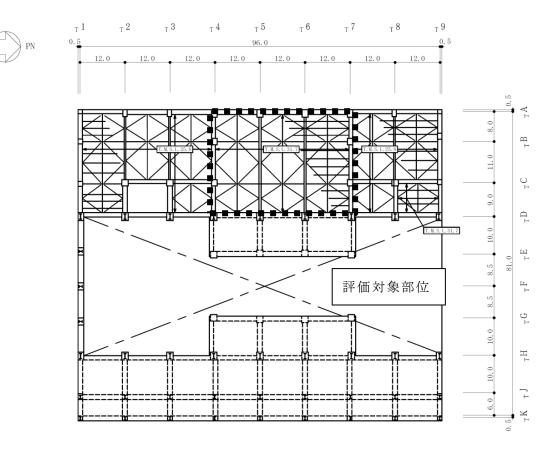


図 3-3 屋根スラブの評価部位の位置 (T.M.S.L. 30.9m)

 評価対象部位*1
 スラブ厚*2 (mm)
 支持スパン (m)
 デッキプレート厚 (mm)
 断面係数 (cm³)

 T. M. S. L. 31. 7m
 50
 2. 76
 2. 3
 70. 6

表 3-7 屋根スラブの検討条件

注記*1:支持スパンの長い部位を記載

*2: デッキ構造スラブのため、全荷重をデッキプレートで負担する。なお、コンクリートのスラブ厚は 50 mm である。

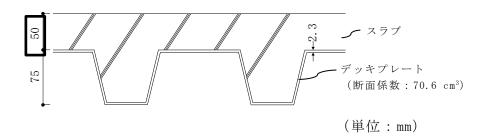


図3-4 デッキプレートの断面図

(2) 鉄骨大ばり

応力解析は、2次元フレームモデルを用いた弾性応力解析を実施する。解析に使用するコードは「HyperSD」である。なお、解析コードの検証及び妥当性確認等の概要については、V-3「強度に関する説明書 別紙 計算機プログラム (解析コード)の概要」に示す、モデル化範囲は、鉄骨大ばりのスパンが最も長くなる T5 フレームとする。

応力解析モデルは, T. M. S. L. 12. 3m より上部の耐震壁, 柱, はり, 屋根トラスをモデル化した解析モデルを用いる。

解析モデル図を図3-5に、部材リストを表3-8に示す。

解析モデルに使用する要素は、はり要素、トラス要素及び壁エレメント要素とする。また、解析モデルの脚部は固定とする。解析モデルの節点数は 71、要素数は 108 である。

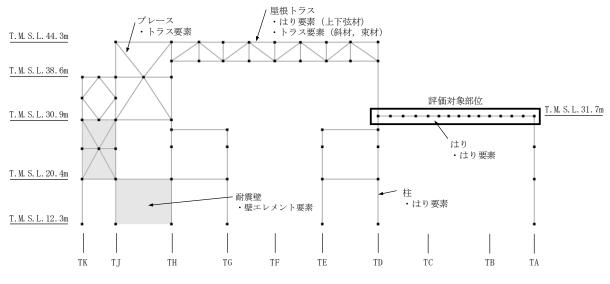


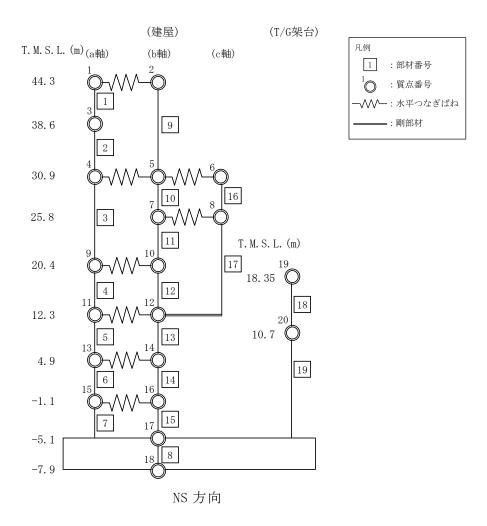
図 3-5 鉄骨大ばりの解析モデル (T5 フレーム)

表 3-8 部材リスト (評価対象部位)

部位	使用部材	材質	断面積 (×10 ² mm ²)	断面二次 モーメント (×10 ⁶ mm ⁴)
鉄骨大ばり	BH-2000×500×25×36	SM50A	842	49650

(3) 耐震壁

耐震壁は、別紙「年超過確率 10⁻² 相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析モデルを用いて評価する。地震応答解析モデルを図 3-6 に示す。また、RC 部材の部材番号を表 3-9 に示す。


(4) 鉄骨フレーム

鉄骨フレームは、別紙「年超過確率 10^{-2} 相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析モデルを用いて評価する。地震応答解析モデルを図 3-6 に示す。また、S 部材の部材番号を表 3-9 に示す。

表 3-9 各部材のモデル化*

方向	RC 部材	S部材
NS	3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15	1, 2, 9, 16
EW	3, 4, 5, 6, 7, 8, 12, 13, 16, 19, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 34, 35, 36, 39, 40, 41, 43, 44	1, 2, 10, 11, 17, 18, 29, 30, 37, 38

注記*:線形でモデル化している部材を除く。

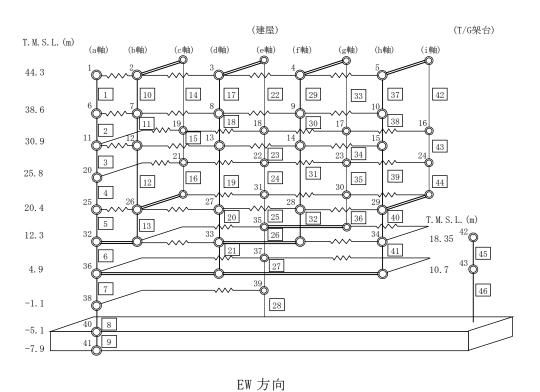


図 3-6 地震応答解析モデル (水平方向)

3.4.2 解析諸元

使用材料の物性値を表 3-10 示す。

表 3-10 使用材料の物性値

使用材料	ヤング係数 E(N/mm²)	せん断弾性係数 G(N/mm²)		
鉄筋コンクリート	28800	12000		
鉄骨	205000	79000		

3.5 評価方法

- 3.5.1 屋根スラブの評価方法
 - (1) 応力解析方法
 - a. 荷重ケース

降下火砕物堆積時の応力は、単独荷重による応力を組み合わせて求める。

単独荷重の記号を以下に示す。また、鉛直震度算定のための最大鉛直加速度は、別紙「年超過確率 10⁻²相当地震動に対するタービン建屋の地震応答計算書」に示す地震応答解析結果により設定する。最大鉛直加速度及び鉛直震度を表 3-11 に示す。

F a : 常時作用する荷重

F_a :降下火砕物による荷重

F_k : 地震荷重(鉛直方向)

F。 : 積雪荷重(地震時以外)

F_{sb}:積雪荷重(常時)

表 3-11 最大鉛直加速度及び鉛直震度

T. M. S. L. (m)	階	最大鉛直 加速度 (m/s²)	鉛直震度
31.7	RF	1. 57	0.16

b. 荷重の組合せケース

荷重の組合せケースを表 3-12 に示す。

表 3-12 荷重の組合せケース (屋根スラブ)

組合せケース	荷重の組合せ				
ケース 1	$F_d + F_a + F_k + F_{sb}$				
ケース 2	$F_d + F_a + F_s + F_{sb}$				

(2) 断面の評価方法

タービン建屋の屋根スラブはデッキ構造スラブであるため、曲げモーメントに 対してのみ評価する。

曲げモーメントに対する断面の評価は、次式をもとに計算した評価対象部位に 生じる曲げモーメントによるデッキプレートの引張応力度が、許容限界を超えな いことを確認する。

$$\sigma_t = \frac{M}{Z}$$

ここで,

 σ_t : デッキプレートの引張応力度 (N/mm²)

M : 曲げモーメント (N·mm)

Z : デッキプレートの断面係数 (mm³)

3.5.2 鉄骨大ばりの評価方法

(1) 応力解析方法

鉄骨大ばりについては、2次元フレームモデルを用いた弾性応力解析により得られた部材の応力を評価する。

a. 荷重ケース

降下火砕物堆積時の応力は、次の荷重を 2 次元フレームモデルに入力して求める。荷重の記号を以下に示す。

F d : 常時作用する荷重

F a : 降下火砕物による荷重

F_k :地震荷重(水平方向)

F_k :地震荷重(鉛直方向)

F。 : 積雪荷重(地震時以外)

F_{sb}:積雪荷重(常時)

b. 荷重の組合せケース

荷重の組合せケースを表 3-13 に示す。ケース 1 において、地震荷重の水平方向 (F_{kH}) と鉛直方向 (F_{kV}) は、組合せ係数法により組み合わせる。なお、鉛直方向地震荷重については、屋根部の応力及び変形が大きくなる下向き荷重のみを考慮する。

	11 = 1 = 1	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
組合せケース	地震荷重の組合せ係数	荷重の組合せ
	水平+1.0, 鉛直+0.4	$F_d + F_a + F_{sb} + F_{kH} + 0.4F_{kV}$
ケース 1	水平-1.0, 鉛直+0.4	$F_d + F_a + F_{sb} - F_{kH} + 0.4F_{kV}$
	水平+0.4, 鉛直+1.0	$F_d + F_a + F_{sb} + 0.4F_{kH} + F_{kV}$
	水平-0.4, 鉛直+1.0	$F_d + F_a + F_{sb} - 0.4F_{kH} + F_{kV}$
ケース 2	_	$F_d + F_a + F_s + F_{sb}$

表 3-13 荷重の組合せケース (鉄骨大ばり)

注:地震荷重の水平方向は EW 方向を示し、+は E から W への荷重、-は W から E への荷重を示す。

c. 荷重の入力方法

固定荷重及び積雪荷重は、対応する部材及び節点に分布荷重及び集中荷重と して入力する。

水平地震荷重は、別紙「年超過確率 10⁻² 相当地震動に対するタービン建屋の 地震応答計算書」に示す地震応答解析結果により得られた最大応答せん断力を 分配して、対応する節点に集中荷重として入力する。鉛直地震荷重は、別紙「年 超過確率 10⁻² 相当地震動に対するタービン建屋の地震応答計算書」に示す地震 応答解析結果により得られた最大鉛直加速度より鉛直震度を設定する。

(2) 断面の評価方法

鉄骨大ばりの評価は、2次元フレームモデルを用いた弾性応力解析により評価対象部位に生じる軸力及び曲げモーメントによる応力度が許容限界を超えないことを確認する。

なお、許容限界については、終局耐力に対し妥当な安全裕度を有する許容限界を設定し、その許容限界は、表 3-4 に示すように、弾性限強度として「S 規準」のF値に「技術基準解説書」に基づき 1.1 倍の割増しを考慮する。

(圧縮)

$$\frac{\sigma_{c}}{f_{c}} + \frac{\sigma_{b}}{f_{b}} \le 1.0$$

$$\text{ttl},$$

$$\sigma_{c} = \frac{N_{c}}{A}$$

$$\sigma_b = \frac{M}{Z}$$

ここで,

σ。 : 圧縮応力度 (N/mm²) σь : 曲げ応力度 (N/mm²)

 N_{c} : 圧縮軸力 (N) A : 軸断面積 (mm^{2})

M:曲げモーメント (N·mm) Z:断面係数 (mm³)

f。 : 圧縮応力に関する評価基準値 (N/mm²) f ь : 曲げ応力に関する評価基準値 (N/mm²)

(引張)

$$\frac{\sigma_{t}}{f_{t}} + \frac{\sigma_{b}}{f_{b}} \leq 1.0$$

$$\text{for } t = \frac{N_{t}}{A}$$

$$\sigma_{b} = \frac{M}{Z}$$

ここで,

σ_t : 引張応力度 (N/mm²) σ_b : 曲げ応力度 (N/mm²)

 N t
 : 引張軸力 (N)
 A
 : 軸断面積 (mm²)

 M
 : 曲げモーメント (N·mm)
 Z
 : 断面係数 (mm³)

f t : 引張応力に関する評価基準値 (N/mm²) f b : 曲げ応力に関する評価基準値 (N/mm²)

3.5.3 耐震壁の評価方法

耐震壁の評価は、別紙「年超過確率 10⁻² 相当地震動に対するタービン建屋の地 震応答計算書」に基づく耐震壁のせん断ひずみが許容限界を超えないことを確認 する。

3.5.4 鉄骨フレームの評価方法

鉄骨フレームの評価は、別紙「年超過確率 10⁻² 相当地震動に対するタービン建屋の地震応答計算書」に基づく鉄骨フレームの層間変形角が許容限界を超えないことを確認する。

4. 強度評価結果

4.1 屋根スラブの評価結果

「3.5 評価方法」に基づいた評価結果を表 4-1 に示す。

降下火砕物堆積による鉛直荷重等によって,評価対象部位に生じる曲げモーメント によるデッキプレートの引張応力度が許容限界を超えないことを確認した。

表 4-1 屋根スラブ評価結果* (デッキ構造スラブ)

			-			
季	価対象部位	T. M. S. L. 31.7 m				
デ	ッキプレート t=2.3mm	$Z = 70.6 cm^3/m$				
1	倹討ケース	ケース 1	ケース 2			
	発生曲げモーメント M (kN・m/m)	9.355	10.42			
出げてニマント	デッキプレート引張応力度 $\sigma_{\rm t}$ (N/mm^2)	132.5	147. 6			
曲げモーメント	許容限界 (N/mm²)	258	8			
	検定値	0.52	0.58			

注記*:屋根スラブはデッキ構造スラブ(全荷重をデッキプレートのみで負担する構造)のため、デッキプレートの発生応力を用いて評価。

4.2 鉄骨大ばりの評価結果

「3.5 評価方法」に基づいた評価結果を表 4-2 に示す。なお、ケース1 については、地震荷重の組合せ係数法による 4 ケースのうち、検定値が最大となるケースを示す。

降下火砕物堆積による鉛直荷重等によって、評価対象部位に生じる軸力及び曲げモーメントによる応力度が許容限界を超えないことを確認した。

表 4-2 鉄骨大ばりの評価結果 (T.M.S.L. 31.7m)

検討ケース	発生応力	応力度 (N/mm²)	許容限界 (N/mm²)	検定値
)	曲げモーメント	206. 9	357	0.61
ケース1	軸力	9. 757	331	0. 61
ケース 2	曲げモーメント	210.4	357	0.62
7-22	軸力	9. 139	331	0.62

4.3 耐震壁の評価結果

「3.5 評価方法」に基づいた評価結果を表 4-3 に示す。なお,各方向において, 最大せん断ひずみが生じる部材のみを示す。

年超過確率 10⁻² 相当地震動による水平荷重等によって,評価対象部位に生じるせん 断ひずみが許容限界を超えないことを確認した。

検討ケース	評価項目	方向	部材番号	せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)	
ケース 1	より 軽か ギカ	NS 方向	7	0.0450	4. 0	
	せん断ひずみ	EW 方向	32	0.0514	4. 0	

表 4-3 耐震壁の評価結果

4.4 鉄骨フレームの評価結果

「3.5 評価方法」に基づいた評価結果を表 4-4 に示す。なお、各方向において、 最大層間変形角が生じる部材のみを示す。

年超過確率 10⁻² 相当地震動による水平荷重等によって,評価対象部位に生じる層間変形角が許容限界を超えないことを確認した。

検討ケース	評価項目	方向	部材番号	層間変形角	許容限界	
ケース 1	層間変形角	NS 方向	2	1/1440	1/30*	
	喧叫炙炒用	EW 方向	33	1/623	1/30	

表 4-4 鉄骨フレームの評価結果

注記*:「震災建築物の被災度区分判定基準および復旧技術指針((財)日本建築防災協会)」を参考に許容限界を設定している。なお、被災度区分判定基準においては、 柱の残留傾斜角が 1/30 を超えた場合に大破と判定しているが、保守的に最大層間変形角を用いて評価を行う。 別紙 年超過確率 10⁻² 相当地震動に対するタービン建屋の 地震応答計算書

目 次

1.	;	概要					 	• • •	 	 	 	 • • •	 		別紙-1
2.		基本力	ī針·				 		 	 	 	 	 		別紙-1
2.	1	位置	<u> </u>				 		 	 	 	 	 		別紙-1
2.	2	構造	し概要				 		 	 	 	 	 		別紙-2
2.	3	解析	方針				 		 	 	 	 	 		別紙-7
2.	4	適用	規格				 		 	 	 	 • • •	 		別紙-9
3.		解析力	ī法 ·				 		 	 	 	 	 	•	別紙-10
3.	1	検診	用地類	震動			 		 	 	 	 • • •	 	•	別紙-10
3.	2	地震	虔応答 角	解析-	モデ	ル	 		 	 	 	 	 	•	別紙-13
	3	. 2. 1	水平	方向さ	モデ	ル	 		 	 	 	 	 	•	別紙-14
	3	. 2. 2	鉛直	方向さ	モデ	ル	 		 	 	 	 	 	•	別紙-15
3.	3	解析	方法				 		 	 	 	 	 	•	別紙-32
4.		解析紀	F果 ·				 		 	 	 	 	 	•	別紙-33
4.	1	固有	「値解	沂結 身	果		 		 	 	 	 	 	•	別紙-33
4.	2	応答	解析網	洁果			 		 	 	 	 	 		別紙-33

1. 概要

本資料は、V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示す年超過確率 10^{-2} 相当地震動に対するタービン建屋の地震応答解析について説明するものである。

2. 基本方針

2.1 位置

タービン建屋の設置位置を図2-1に示す。

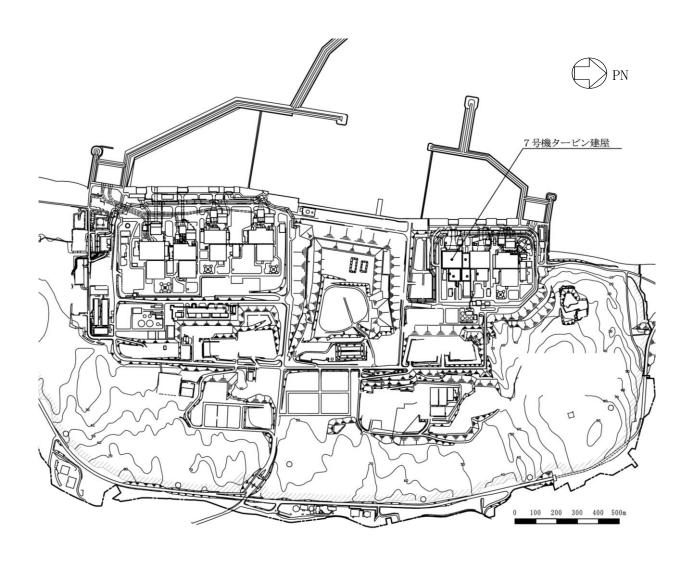
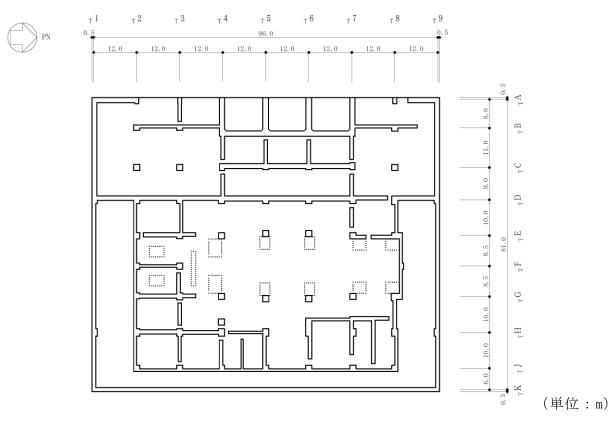


図 2-1 タービン建屋の設置位置

2.2 構造概要


タービン建屋は、地上2階(一部3階)、地下2階建ての鉄筋コンクリート造を主体とした建物で、屋根部分が鉄骨造(トラス構造)となっている。タービン建屋の概略平面図及び概略断面図を図2-2及び図2-3に示す。

タービン建屋の平面は、地下部分では 97.0m (NS 方向) \times 82.0m (EW 方向) ,最上階は 97.0m (NS 方向) \times 48.9m (EW 方向) である。基礎スラブ底面からの高さは 52.2m であり、地上高さは 32.3m である。また、タービン建屋は隣接する原子炉建屋及び廃棄物処理建屋と構造的に分離している。

タービン建屋の基礎は厚さ 2.0m (蒸気タービンの基礎のうちラーメン構造部(以下「T/G 架台」という。) 部分及びその周辺部は厚さ 2.8m) のべた基礎で,支持地盤である泥岩上に直接又はマンメイドロックを介して設置している。

蒸気タービンの基礎とは、図 2-2 及び図 2-3 に示すように、タービン建屋のほぼ中央に位置するタービン発電機を支える柱及びはりによって構成される鉄筋コンクリート造のラーメン構造部及びそれを支持する基礎スラブ部をいう。

ラーメン構造部は高さ 25.5m, 長さ 69.7m, 幅約 16.3m の大きさでタービン建屋とは 基礎スラブ部で接続する以外は構造的に分離する。

注:東京湾平均海面(以下「T.M.S.L.」という。)

図 2-2 タービン建屋の概略平面図 (B2F, T.M.S.L.-5.1m) (1/6)

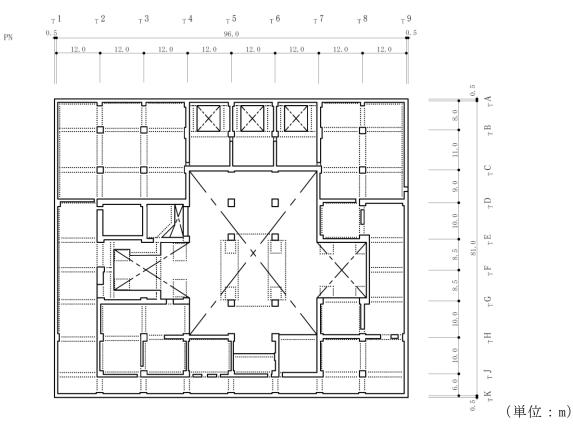


図2-2 タービン建屋の概略平面図 (B1F, T.M.S.L.4.9m) (2/6)

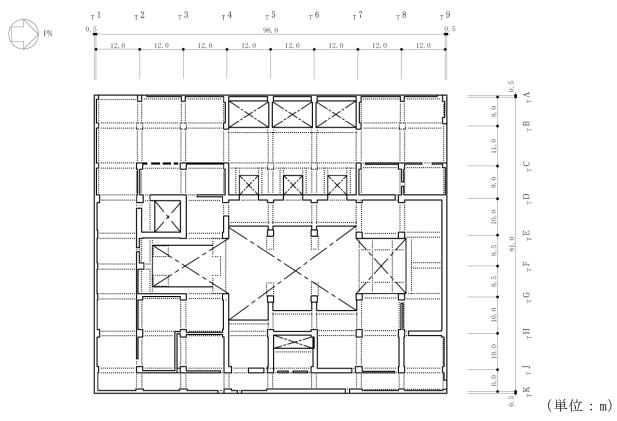


図2-2 タービン建屋の概略平面図 (1F, T.M.S.L.12.3m) (3/6)

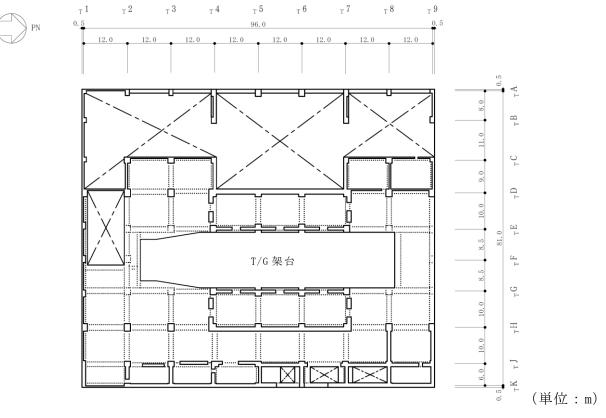
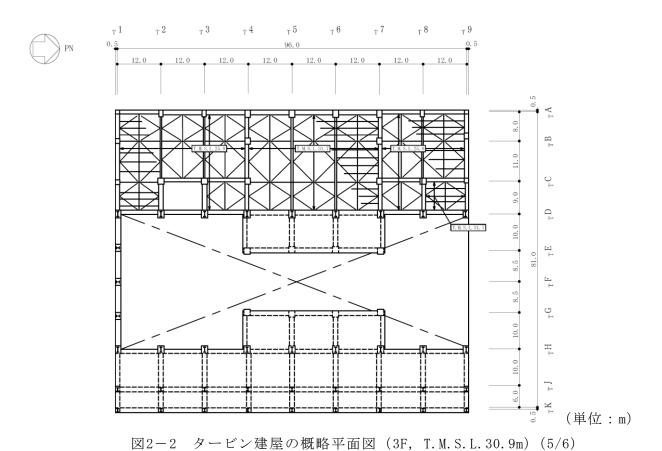



図2-2 タービン建屋の概略平面図 (2F, T.M.S.L. 20.4m) (4/6)

PN T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 96.0

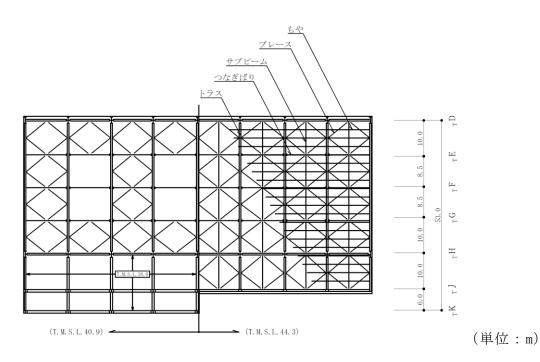
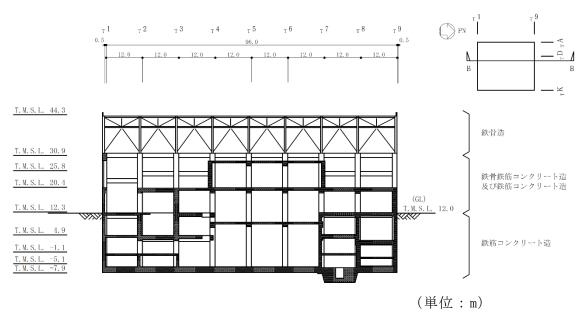
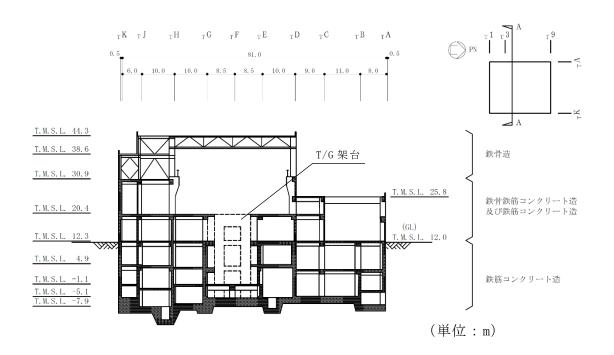




図2-2 タービン建屋の概略平面図 (RF, T.M.S.L.44.3m) (6/6)

NS 方向断面

EW方向断面

図 2-3 タービン建屋の概略断面図

2.3 解析方針

タービン建屋の地震応答解析は、V-2「耐震性に関する説明書」のうちV-2-1-6「地 震応答解析の基本方針」に基づいて行う。

図 2-4 にタービン建屋の地震応答解析フローを示す。

地震応答解析は、「3.1 検討用地震動」及び「3.2 地震応答解析モデル」において 設定した地震応答解析モデルを用いて実施することとし、「3.3 解析方法」に基づき、

「4. 解析結果」において、加速度、変位、せん断ひずみ等を含む各種応答値を算出する。

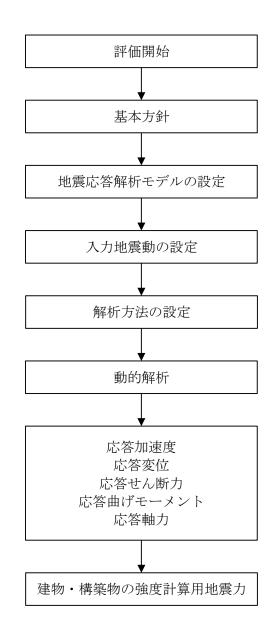
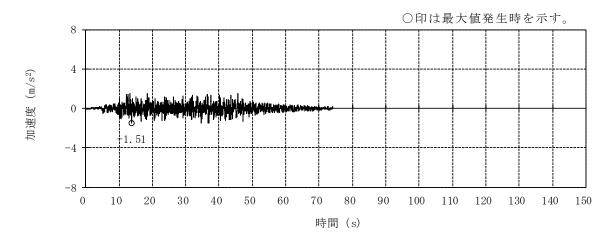


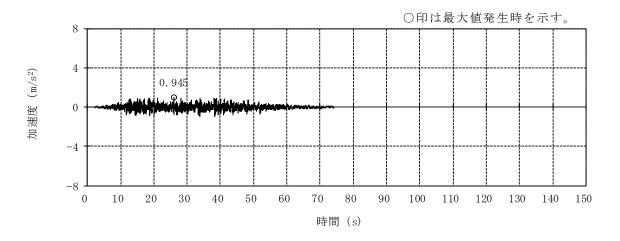
図 2-4 タービン建屋の地震応答解析フロー

2.4 適用規格

地震応答解析において適用する規格・基準等を以下に示す。

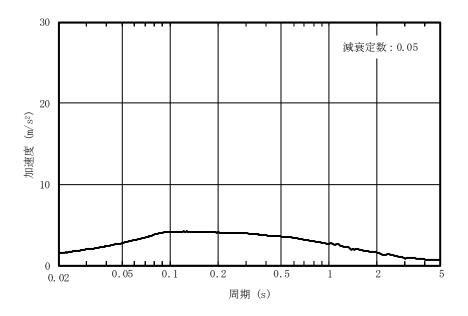

- · 建築基準法 · 同施行令
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法- (日本建築学会, 1999 改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説(日本建築学会,2005制定)
- ·原子力発電所耐震設計技術指針 JEAG 4601-1987 (日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG 4601-1991 追補版(日本電気協会)
- •鋼構造設計規準 一許容応力度設計法- (日本建築学会, 2005 改定)

3. 解析方法

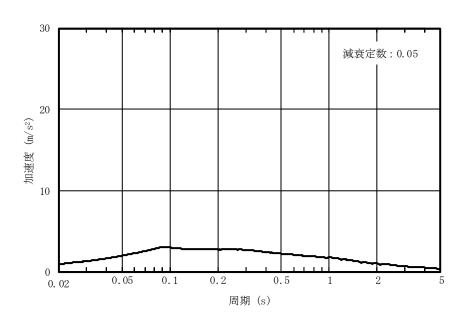

3.1 検討用地震動

タービン建屋の地震応答解析モデルは,建屋と地盤の相互作用を評価した建屋-地盤連成モデルとする。この建屋-地盤連成モデルへの入力地震動は,V-3-別添 2-1-3「タービン建屋の強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示す解放基盤表面レベルに想定する年超過確率 10^{-2} 相当地震動を用いることとする。

年超過確率 10^{-2} 相当地震動の加速度時刻歴波形と加速度応答スペクトルを図 3-1 及び図 3-2 に示す。



(a) 水平方向



(b) 鉛直方向

図 3-1 加速度時刻歴波形 (年超過確率 10-2 相当地震動)

(a) 水平方向

(b) 鉛直方向

図 3-2 加速度応答スペクトル (年超過確率 10-2相当地震動)

3.2 地震応答解析モデル

地震応答解析モデルは、V-2「耐震性に関する説明書」のうちV-2-1-6「地震応答解析の基本方針」に基づき、水平方向及び鉛直方向それぞれについて設定する。

地震応答解析モデルの設定に用いた建物・構築物の物性値を表 3-1 に示す。

ここで、コンクリート剛性については、実現象に近い応答を模擬するという観点から、建設時コンクリートの91日強度データを基に設定した実強度を用いて算定する。

表 3-1 建物・構築物の物性値

部位	使用材料	ヤング係数 E (N/mm²)	せん断弾性係数 G (N/mm²)	減衰定数 h (%)
建屋部及びT/G架台	コンクリート*: σ _C =43.1 (N/mm ²) (σ _C =440kgf/cm ²) 鉄筋: SD35 (SD345相当)	2.88×10^4	1.20×10^4	5
基礎スラブ	コンクリート*: σ _C =39.2 (N/mm ²) (σ _C =400kgf/cm ²) 鉄筋: SD35 (SD345相当)	2.79×10^4	1.16×10^4	5
	鉄骨:SS41 (SS400相当)	2.05×10^5	0.79×10^5	2
屋根トラス部	鉄骨:SM41A (SM400A相当)	2.05×10^5	0.79×10^5	2
	鉄骨:SM50A (SM490A相当)	2.05×10^5	0.79×10^5	2

注記*:実強度に基づくコンクリート強度。

3.2.1 水平方向モデル

水平方向の地震応答解析モデルは、地盤との相互作用を考慮し、曲げ及びせん 断剛性を考慮した質点系モデルとし、弾性時刻歴応答解析を行う。

建屋のモデル化は NS 方向、EW 方向それぞれについて行っている。また、実現象に近い応答を模擬するという観点から設計時には考慮していなかった補助壁を耐震要素として位置づけ、地震応答解析モデルに取り込む。地震応答解析モデルの概念図を図 3-3 及び図 3-4 に、地震応答解析モデルを図 3-5 に、地震応答解析モデルの諸元を表 3-2 及び表 3-3 に示す。

地盤は、地盤調査に基づき水平成層地盤とし、基礎底面地盤ばねについては、「原子力発電所耐震設計技術指針 JEAG 4601 – 1991 追補版」(以下「JEAG 4601 – 1991 追補版」という。)により、成層補正を行ったのち、振動アドミッタンス理論に基づき求めたスウェイ及びロッキングの地盤ばねを近似法により定数化して用いる。基礎底面地盤ばねの評価には解析コード「ST-CROSS」を用いる。

また、埋込み部分の建屋側面地盤ばねについては、建屋側面位置の地盤定数を用いて、「JEAG 4601-1991 追補版」により、Novak の方法に基づき求めた水平ばねを、基礎底面地盤ばねと同様に、近似法により定数化して用いる。なお、地盤表層部(新期砂層)については、基準地震動Ss による地盤応答レベルを踏まえ、表層部では建屋一地盤相互作用が見込めないと判断し、この部分の地盤ばねは考慮しない。建屋側面の水平ばねの評価には、解析コード「NOVAK」を用いる。

水平方向モデルへの入力地震動は、一次元波動論に基づき、解放基盤表面レベルに想定する年超過確率 10⁻² 相当地震動に対する地盤の応答として評価する。また、基礎底面レベルにおけるせん断力(以下「切欠き力」という。)を入力地震動に付加することにより、地盤の切欠き効果を考慮する。図 3-6 に、地震応答解析モデルに入力する地震動の概念図を示す。入力地震動の算定には、解析コード「TDAS」を用いる。

年超過確率 10^{-2} 相当地震動に対する地盤定数を表 3-4 に示す。なお、地盤定数は地盤のひずみ依存特性を考慮して求めた等価地盤物性値を用いる。ひずみ依存特性については、V-2 「耐震性に関する説明書」のうちV-2-1-3 「地盤の支持性能に係る基本方針」に基づく。設定した地盤定数に基づき算定した基礎底面位置(T.M.S.L.-7.9m)における入力地震動の加速度応答スペクトルを図 3-7 に示す。地震応答解析に用いる地盤ばねの記号を図 3-8 に、地盤のばね定数と減衰係数を表 3-5 に示す。

なお,水平方向の解析に用いる解析コードの検証,妥当性確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

3.2.2 鉛直方向モデル

鉛直方向の地震応答解析モデルは、耐震壁の軸剛性及び屋根トラスの曲げせん 断剛性を考慮した質点系モデルとし、弾性時刻歴応答解析を行う。水平方向モデルと同様に、補助壁を地震応答解析モデルに取り込む。鉛直方向の地震応答解析 モデルを図 3-9 に、地震応答解析モデルの諸元を表 3-6 に示す。

地盤は、地盤調査に基づき水平成層地盤とし、基礎底面地盤ばねについては、 スウェイ及びロッキングばねの定数化の方法と同様、成層補正を行ったのち、振動アドミッタンス理論に基づいて、鉛直ばねを近似法により定数化して用いる。 基礎底面地盤ばねの評価には解析コード「ST-CROSS」を用いる。

鉛直方向モデルへの入力地震動は、一次元波動論に基づき、解放基盤表面レベルに想定する年超過確率 10⁻²相当地震動に対する地盤の応答として評価したものであり、基礎底面レベルに直接入力する。図 3-10 に、地震応答解析モデルに入力する地震動の概念図を示す。入力地震動の算定には、解析コード「SHAKE」を用いる。

設定した地盤定数に基づき算定した基礎底面位置 (T. M. S. L. -7.9m) における入力地震動の加速度応答スペクトルを図 3-11 に示す。なお、地盤定数は表 3-4 に示すとおりである。地震応答解析に用いる地盤のばね定数と減衰係数を表 3-7 に示す。

なお,鉛直方向の解析に用いる解析コードの検証,妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示す。

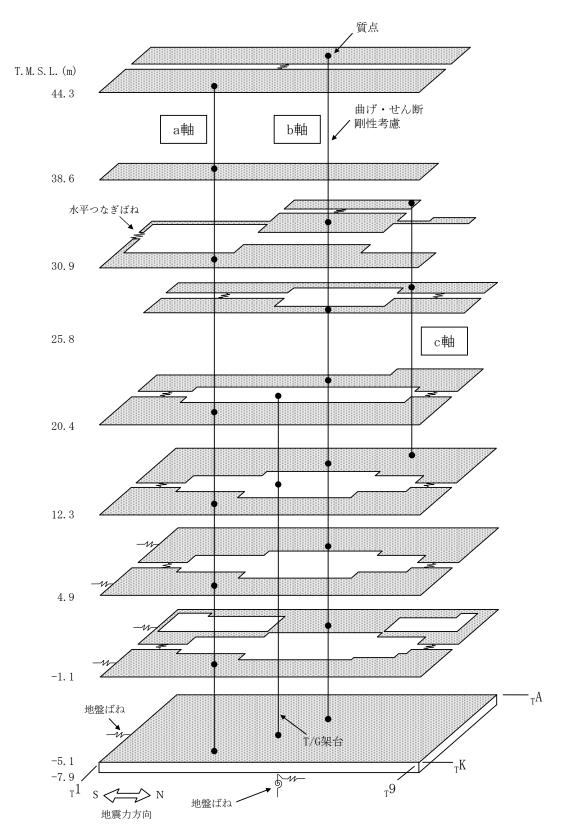


図 3-3 地震応答解析モデルの概念図 (NS 方向)

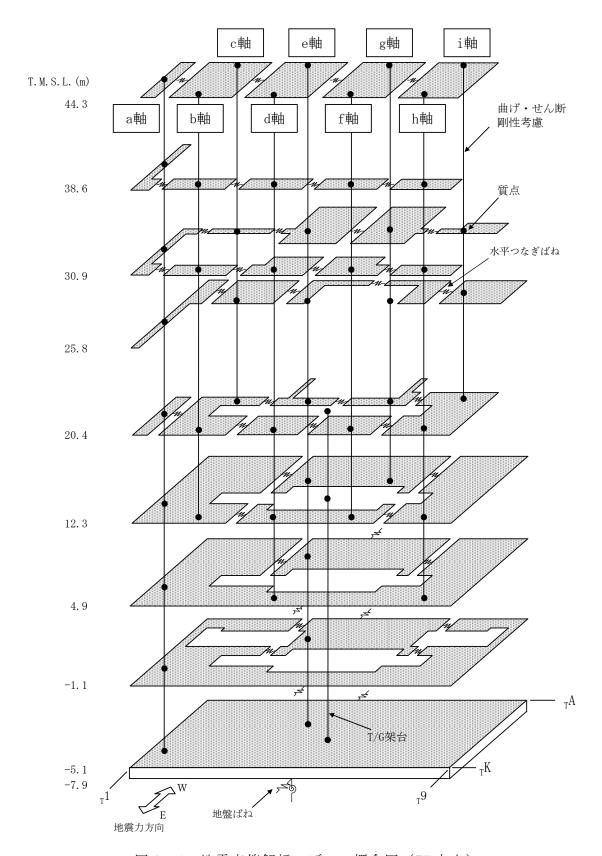
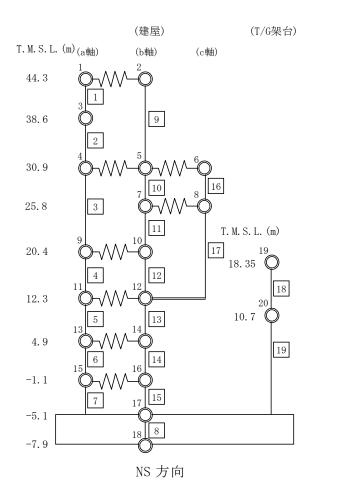



図 3-4 地震応答解析モデルの概念図 (EW 方向)

凡例

1

: 部材番号: 質点番号

√√ : 水平つなぎばね ---- : 剛部材

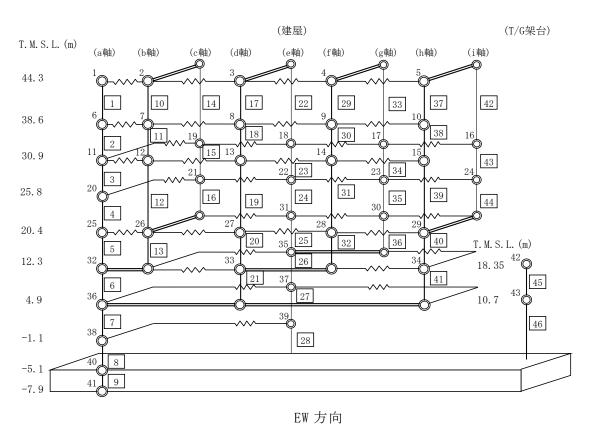


図 3-5 地震応答解析モデル (水平方向)

表 3-2 地震応答解析モデル諸元 (NS 方向)

(a) 重量·回転慣性重量

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1 43120 31. 0	2 26830 8. 6	
38. 6		3 54170 11. 7		
30. 9		4 106960 30. 6	5 43340 78. 9	6 9840 1. 6
25. 8			7 43750 467. 0	8 25830 275. 2
20. 4	19 103470 -	9 186550 347. 2	10 97680 391. 1	
12. 3	20 70210 -	11 171270 603. 2	12 204800 505. 6	
4. 9		13 163700 576. 5	14 206300 741. 4	
-1.1		15 116250 385. 3	16 148030 1020. 9	
-5. 1		17 494300 3783. 7		
-7. 9		18 264930 1487. 0		

質点番号									
重量(kN)									
回転慣性重量($\times 10^5$ kN・ m^2)									

(b) せん断断面積・断面二次モーメント

T. M. S. L. (m)	T/G架台		建屋			
44. 3		1	9			
		4.00	2. 70			
38. 6		2				
		5. 80 -	-			
30. 9		3	10	16		
		204. 1	95. 4 64600	1. 1 -		
25. 8			11	17		
		84300	120. 5 50300	4. 5		
20. 4	18	4	12			
	13.9	168.6	146.5			
	-	82200	72300	_		
12. 3	19	5	13			
		248.0	282.0			
	10. 2	148400	108300			
4. 9	10. 2	6	14			
		251.5	393.6			
		129900	178000			
-1.1	_	7	15			
			273. 8 392. 0			
		145700	171500			
-5. 1		8				
		7954. 0 -				

①コンクリート部 建屋及びT/G架台

ヤング係数E 2.88 ×10⁴ (N/mm²)

せん断弾性係数G 1.20 ×10⁴ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

②コンクリート部 基礎スラブ

ヤング係数E 2.79 ×10⁴ (N/mm²)

せん断弾性係数G 1.16 $\times 10^4$ (N/mm^2)

ポアソン比 v 0.20

減衰定数 h 5%

③鉄骨部

ヤング係数E 2.05 ×10⁵ (N/mm²)

せん断弾性係数G 7.90 ×10⁴ (N/mm²)

ポアソン比ν 0.30

減衰定数 h 2%

基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

部材番号
せん断断面積(m²)
断面二次モーメント(m ⁴)

表 3-3 地震応答解析モデル諸元 (EW 方向) (1/2)

(a) 重量·回転慣性重量

質点番号								
重量(kN)								
回転慣性重量 (×10 ⁵ kN・m ²)								

									1个) 里里 打貝	O REV III /
T. M. S. L. (m)	T/G架台					建屋				
		1	2		3		4		5	
44. 3		5430	16810		16790		16980		13940	
		0.2	8. 1		8. 1		8. 2		4. 0	
		6	7		8		9		10	
38.6		5780	13210		12950		12290		9940	
		0.4	6. 5		6.3		6. 0		2. 9	
		11	12	19	13	18	14	17	15	16
30. 9		11230	15770	2170	31100	21530	33180	21470	18760	4930
		1. 4	7.8	0.0	9. 9	6. 5	10. 7	6. 5	5. 9	0. 7
		20		21		22		23		24
25.8		11450		18680		11970		12880	1	14600
		0.8		9. 1		0.8		1. 0		4. 2
	42	25	26		27	31	28	30	29	
20.4	103470	15110	52710		47390	24990	51130	25800	67100	
	-	0.8	79. 3		24. 9	13.8	27. 2	15.6	91.6	
	43	32			33	35			34	
12.3	70210	125510			75880	83770			90910	
	-	322.6			147.8	166. 3			190.0	
		36				37				
4. 9		289670				80330				
		1049.3				163. 5				
		38				39				
-1.1		185020				79260				
		668.4				105. 3				
		40								
-5. 1		494300								
		5278.3								
		41								
-7. 9		264930								
		2079.8								

表 3-3 地震応答解析モデル諸元 (EW 方向) (2/2)

(b) せん断断面積・断面二次モーメント

部材番号
せん断断面積(m²)
断面二次モーメント(m4)

T. M. S. L. (m)	T/G架台					建屋				
44. 3		1	10	14	17	22	29	33	37	42
		1. 30 -	0. 72 -	0.06	0.72	0.09	0.72 -	0.09	0.72 -	0.09
38. 6		2	11		18		30		38	
		1.90	0. 91 -	-	0.91	-	0.91	-	0.91	-
30. 9		3	12	15	19	23	31	34	39	43
		25.3		0.3		29. 2		31. 1		14. 9
		7100	15.0	_	26.8	3800	26.8	3800	37.8	200
25.8		4		16		24		35		44
		42. 9 25100	200	9.6 100	500	26. 9 600	300	28. 2 600	1300	24. 2 1400
20.4	45	5	13		20	25	32	36	40	
	25. 3	61.4	62.8		45. 9	37.6	11.9	19. 3	107.4	
	_	38100	12000		2200	1000	200	400	27600	
12. 3	46	6			21	26			41	
		175. 5 69300			67. 3 3600	111. 4 14200			117. 1 55100	
4. 9	11.4	7			3600	27	ł		55100	
4. 9	11.4	427. 5	·			128. 3	ł			
		141700				13100				
-1. 1		8	*			28	İ			ľ
	-	495. 7 147600				154. 9 11400				
-5. 1		9								
		7954. 0								
		-								

①コンクリート部 建屋及びT/G架台

ヤング係数E 2.88 ×10⁴ (N/mm²)

せん断弾性係数G 1.20 ×10⁴ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

②コンクリート部 基礎スラブ

ヤング係数E 2.79 $\times 10^4$ (N/mm²) せん断弾性係数G 1.16 $\times 10^4$ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

③鉄骨部

ヤング係数E $2.05 \times 10^5 (N/mm^2)$

せん断弾性係数G 7.90 ×10⁴ (N/mm²)

ポアソン比ν 0.30

減衰定数 h 2%

基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

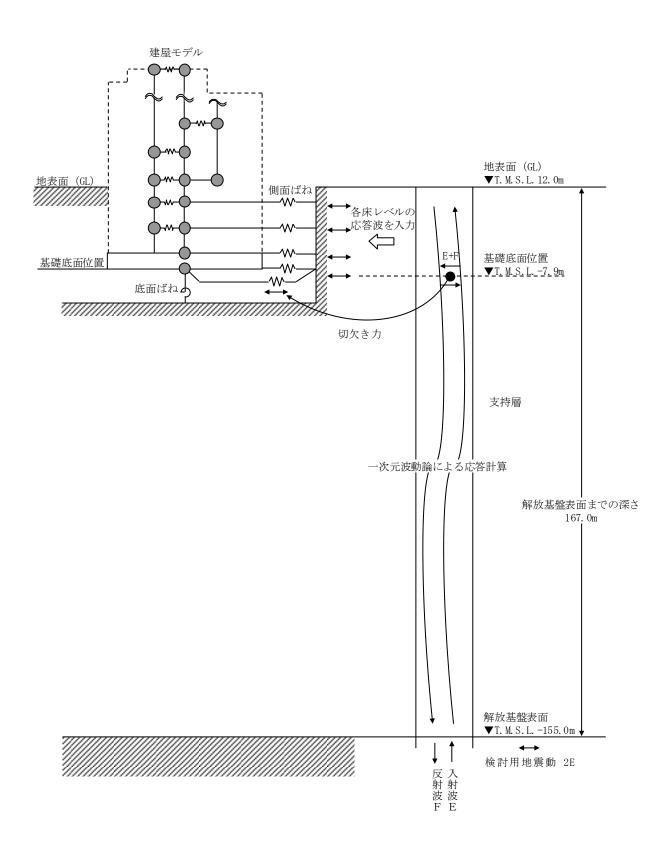
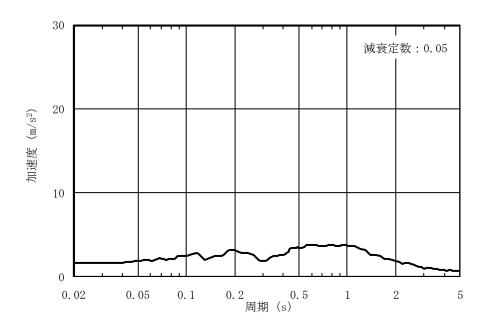
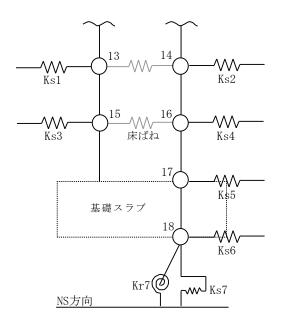


図 3-6 地震応答解析モデルに入力する地震動の概念図 (水平方向)

表 3-4 地盤定数 (年超過確率 10-2 相当地震動)

標高 T. M. S. L. (m)	地層	せん断波 速度 V _s (m/s)	単位体積 重量 γ _t (kN/m³)	ポアソン比 v	せん断 弾性係数 G (×10 ⁵ kN/m ²)	初期せん断 弾性係数 G ₀ (×10 ⁵ kN/m ²)	剛性 低下率 G/G ₀	減衰 定数 h (%)
+12.0	新期砂層	150	16. 1	0.347	0. 247	0.369	0.67	8
+8.0	利知砂眉	200	16. 1	0.308	0.374	0.657	0.57	11
+4.0	古安田層	330	17. 3	0.462	1.53	1.92	0.80	3
-6.0		490	17. 0	0. 451	4. 07	4. 16	0.98	3
-33.0	西山層	530	16. 6	0. 446	4. 60	4. 75	0.97	3
-90.0		590	17. 3	0. 432	6. 01	6. 14	0.98	3
-136. 0		650	19. 3	0. 424	8. 15	8. 32	0.98	3
−155. 0 ∞	椎谷層	720	19. 9	0. 416	10.5	10. 5	1.00	-




図 3-7 入力地震動の加速度応答スペクトル (水平方向) (年超過確率 10⁻²相当地震動, T.M.S.L.-7.9m)

凡例

-////- : 側面・並進

② : 底面・回転

: 底面•並進

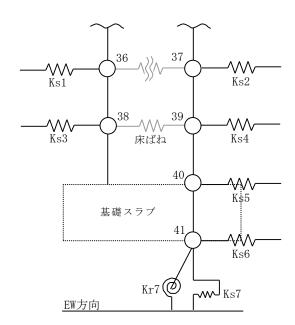
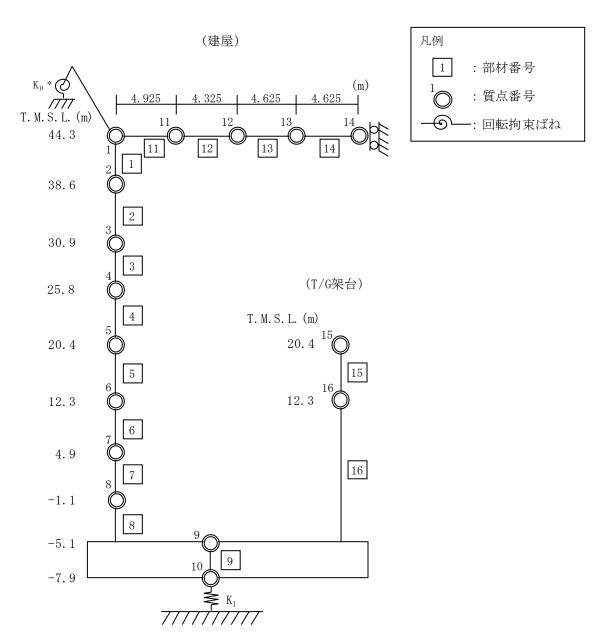


図 3-8 地盤ばねの記号

表 3-5 地盤のばね定数と減衰係数 (年超過確率 10-2 相当地震動) (a) NS 方向

ばね番号	質点 番号	地盤ばね 成分	ばね定	数*1	減ま	表係	数*2
Ks1	13	側面・並進	5.94 ×	10 5	3. 17	X	10 5
Ks2	14	側面・並進	7.97 ×	10^{-5}	4.26	X	10 5
Ks3	15	側面・並進	1.41 ×	10 6	7.56	X	10 5
Ks4	16	側面・並進	1.90 ×	10 6	1.01	X	10 6
Ks5	17	側面・並進	$2.76 \times$	10^{-6}	1.28	X	10^{-6}
Ks6	18	側面・並進	2.45 ×	10^{-6}	7.10	X	10^{-5}
Ks7	18	底面・並進	1.23 ×	10 8	7. 12	X	10 6
Kr7	18	底面・回転	3.42 ×	10^{-11}	7.83	X	10 9

注記*1:Ks1,Ks2,Ks3,Ks4,Ks5,Ks6,Ks7はkN/m Kr7はkN·m/rad


*2 : Ks1, Ks2, Ks3, Ks4, Ks5, Ks6, Ks7/ $tkN \cdot s/m$ Kr7/ $tkN \cdot m \cdot s/rad$

(b) EW 方向

ばね番号	質点 番号	地盤ばね 成分	ばね定	数*1	減ま	 長係数	数 ^{*2}
Ks1	36	側面・並進	1.05 ×	10 6	5. 47	X	10^{-5}
Ks2	37	側面・並進	3.43 ×	10^{-5}	1.79	×	10^{-5}
Ks3	38	側面・並進	2.49 ×	10^{-6}	1.30	×	10 6
Ks4	39	側面・並進	8.18 ×	10^{-5}	4.27	\times	10^{-5}
Ks5	40	側面・並進	$2.76 \times$	10^{-6}	1.25	\times	10 ⁶
Ks6	41	側面・並進	$2.45 \times$	10 6	7.02	\times	10^{-5}
Ks7	41	底面・並進	$1.25 \times$	10 8	7.39	\times	10 6
Kr7	41	底面・回転	$2.64 \times$	10^{-11}	4.84	\times	10 9

注記*1:Ks1,Ks2,Ks3,Ks4,Ks5,Ks6,Ks7はkN/m Kr7はkN·m/rad

*2 : Ks1, Ks2, Ks3, Ks4, Ks5, Ks6, Ks7/ $tkN \cdot s/m$ Kr7/ $tkN \cdot m \cdot s/rad$

注記*:屋根トラス端部回転拘束ばね

図 3-9 地震応答解析モデル (鉛直方向)

表 3-6 地震応答解析モデルの諸元(鉛直方向)

質点	番号	-	1	1	1	1	2	1	3	1	4
質点重(k		-	_	938	30	946	60	977	70	489	90
	<u>N)</u> N材番号	<u>†</u> .	1	1	1	2	1	3	1	4	
せん	ん断断面積 (×10 ⁻² m ²) 29.28			28		04		04			
断面二	次モー I _B (m ⁴)	メント	3.	19	3.	19	2.	54	2.	54	
質点	1 _B (m)		 点重量	ł		部材		車	油断面積	善善	
1	貝爪里里 36450			1			20. 70				
2	54170			2	24. 90						
3	160140			3	640. 8						
4	69580										
5	284230			4	633. 7						
6			376070			5	732. 1				
_						6			1036. 5		
7			370000			7			1211. 6		
8	264280			8							
9	494300			0	1290. 4						
10	264930			9	7954. 0						
15	103470			15			139. 2				
16			70210			16			154. 0		

 $(2.75 \times 10^7 \text{ kN·m/rad})$ 屋根トラス端部回転拘束ばねΚ_θ

①コンクリート部 建屋及びT/G架台

ヤング係数E $2.88 \times 10^4 \, (\mathrm{N/mm^2})$ せん断弾性係数G $1.20 \times 10^4 \, (\mathrm{N/mm^2})$

ポアソン比ν 0.20

減衰定数 h 5%

②コンクリート部 基礎スラブ

ヤング係数 E 2.79 $\times 10^4$ (N/mm²) せん断弾性係数 G 1.16 $\times 10^4$ (N/mm²)

ポアソン比ν 0.20 減衰定数 h 5%

③鉄骨部

ヤング係数E 2.05 ×10⁵ (N/mm²)

せん断弾性係数G 7.90 ×10⁴ (N/mm²)

ポアソン比ν 0.30

減衰定数 h 2%

基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

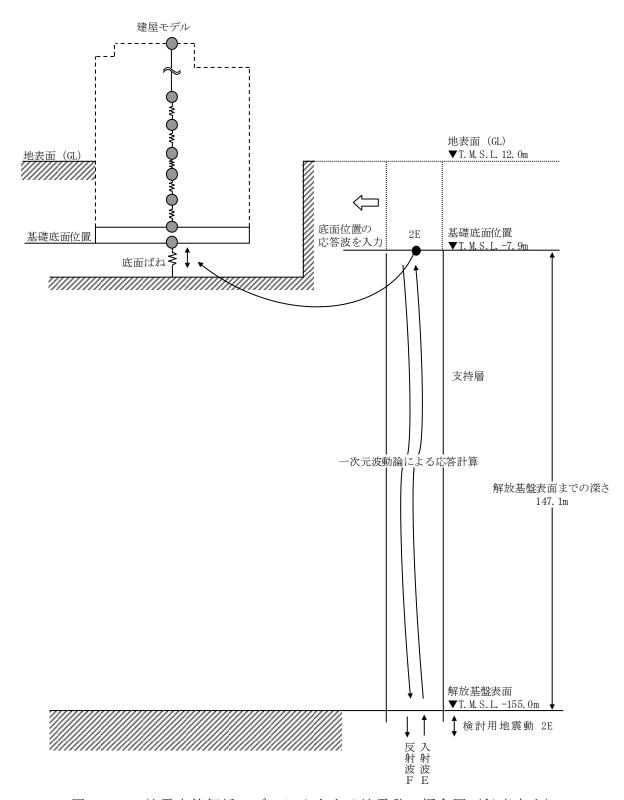


図 3-10 地震応答解析モデルに入力する地震動の概念図(鉛直方向)

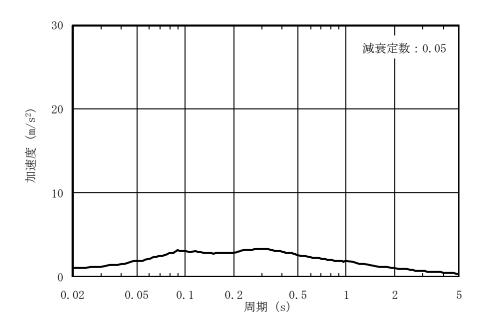


図 3-11 入力地震動の加速度応答スペクトル (年超過確率 10⁻²相当地震動,鉛直方向, T.M.S.L.-7.9m)

表 3-7 地盤のばね定数と減衰係数(鉛直方向,年超過確率 10-2 相当地震動)

ばね番号	質点	地盤ばね	ばね定数	減衰係数
	番号	成分	(kN/m)	(kN·s/m)
K1	10	底面・鉛直	$2.13~ imes~10^{-8}$	$1.80 imes 10^{7}$

3.3 解析方法

タービン建屋の地震応答解析には,解析コード「TDAS」を用いる。

タービン建屋の解析は、V-2「耐震性に関する説明書」のうちV-2-1-6「地震応答解析の基本方針」に基づき、時刻歴応答解析により実施する。なお、解析に用いる解析コードの検証、妥当性の確認等の概要については、別紙「計算機プログラム(解析コード)の概要」に示す。

4. 解析結果

4.1 固有值解析結果

固有値解析結果(固有周期及び固有振動数)を表 4-1 に示す。刺激関数図を図 4-1 に示す。

なお、刺激係数は、モードごとに固有ベクトルの最大値を1に規準化して得られる 値を示す。

4.2 応答解析結果

地震応答解析結果を図 4-2~図 4-12,表 4-2~表 4-4 に示す。

表 4-1 固有値解析結果

(a) NS 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.361	2.77	2.372	建屋-地盤連成1次
2	0. 297	3. 36	1. 106	
3	0. 225	4. 44	-1. 766	
4	0. 201	4. 97	-1. 110	
5	0. 191	5. 25	-1.796	

(b) EW 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.406	2.47	3. 198	建屋-地盤連成1次
2	0.316	3. 16	1. 513	
3	0. 256	3. 91	-2.079	
4	0. 246	4.06	-1.833	
5	0. 190	5. 27	-0.055	

(c) 鉛直方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考
1	0.495	2.02	1.659	屋根トラス1次
2	0.224	4. 46	1. 170	建屋-地盤連成1次
3	0.109	9. 20	0. 273	
4	0.073	13.63	-0.177	
5	0.061	16. 29	0.058	

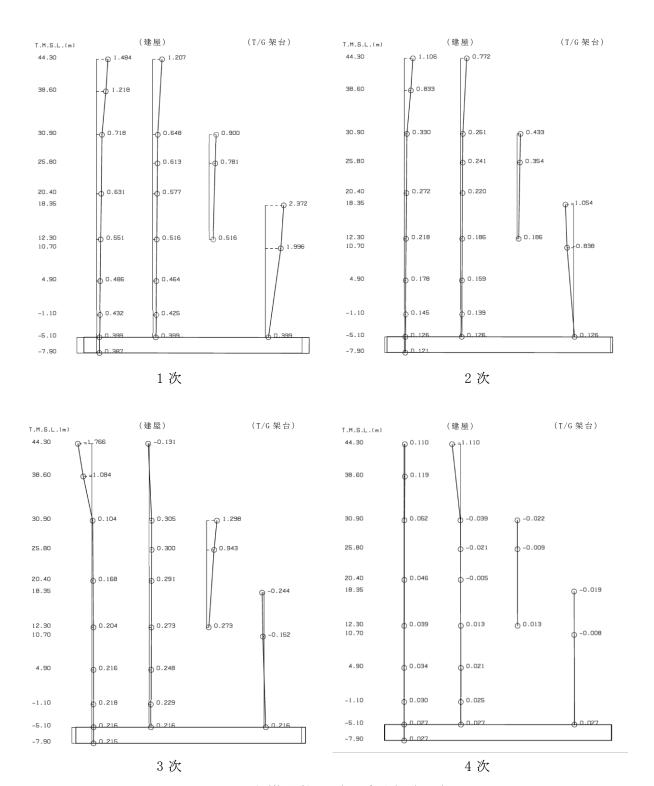
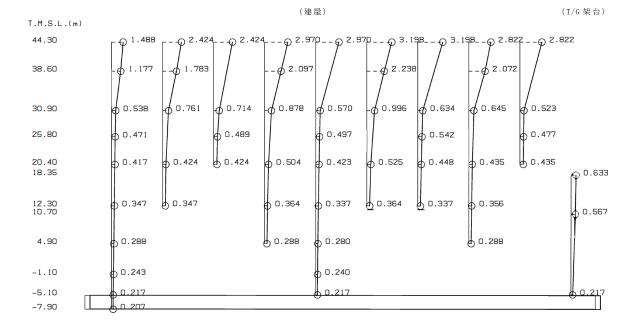
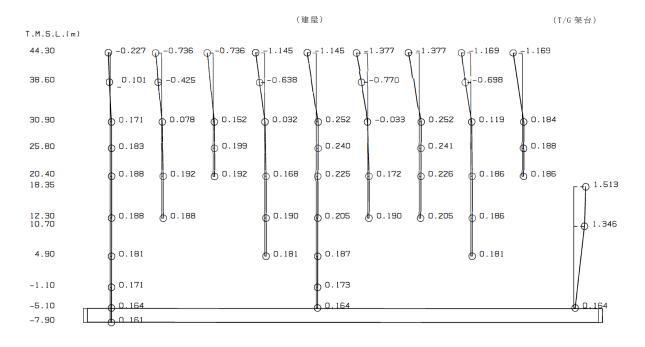
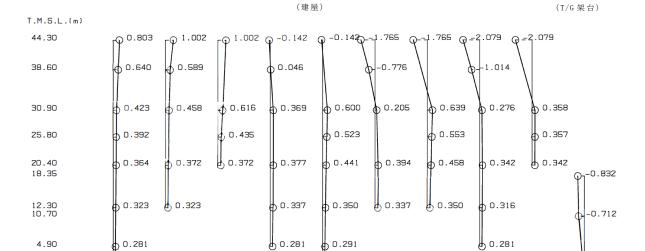




図 4-1 刺激関数図 (NS 方向) (1/4)

1 次

2次 図 4-1 刺激関数図 (EW 方向) (2/4)

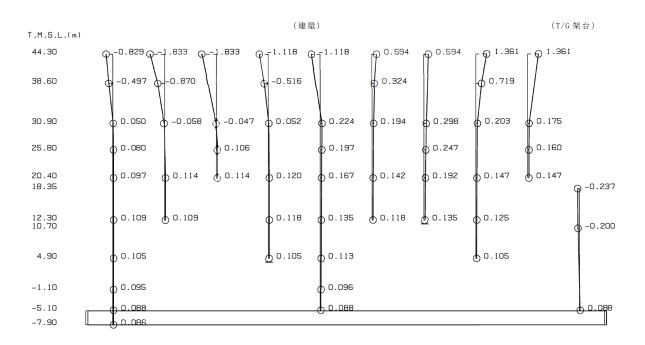

4.90

-1.10

-5.10 -7.90 0.281

0.247

0.219



0.291

0.248

3 次

0.281

4 次 図 4-1 刺激関数図 (EW 方向) (3/4)

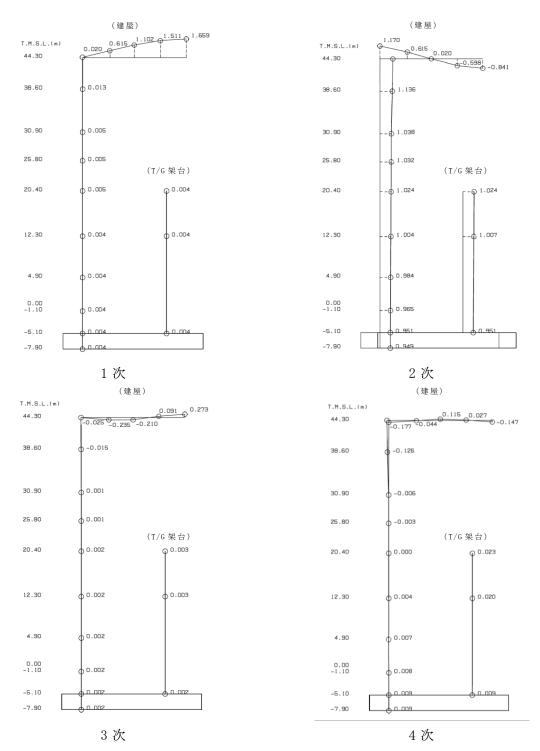


図 4-1 刺激関数図(鉛直方向)(4/4)

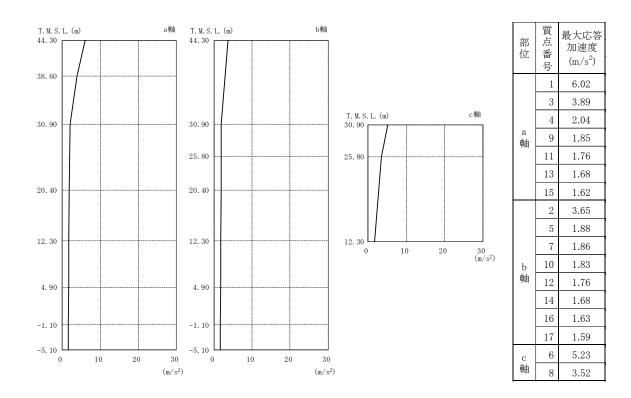


図 4-2 最大応答加速度 (NS 方向)

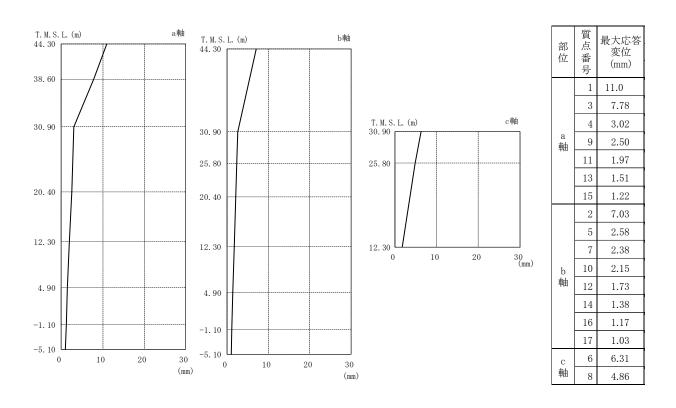


図 4-3 最大応答変位 (NS 方向)

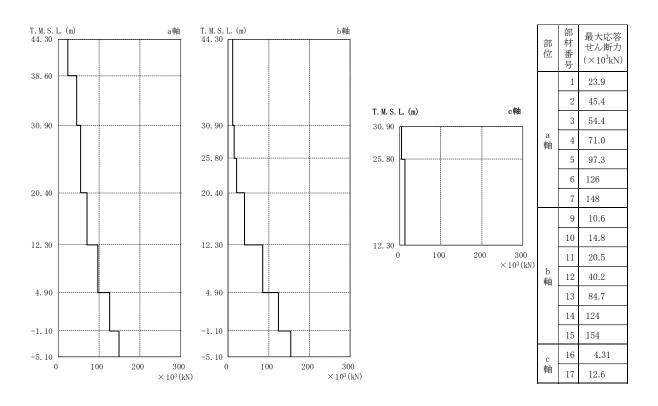


図 4-4 最大応答せん断力 (NS 方向)

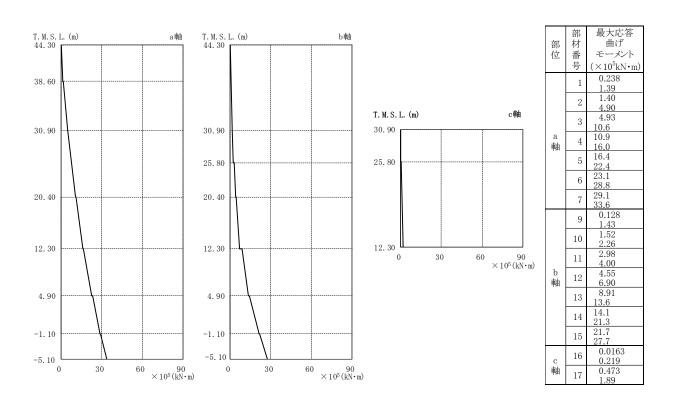


図 4-5 最大応答曲げモーメント (NS 方向)

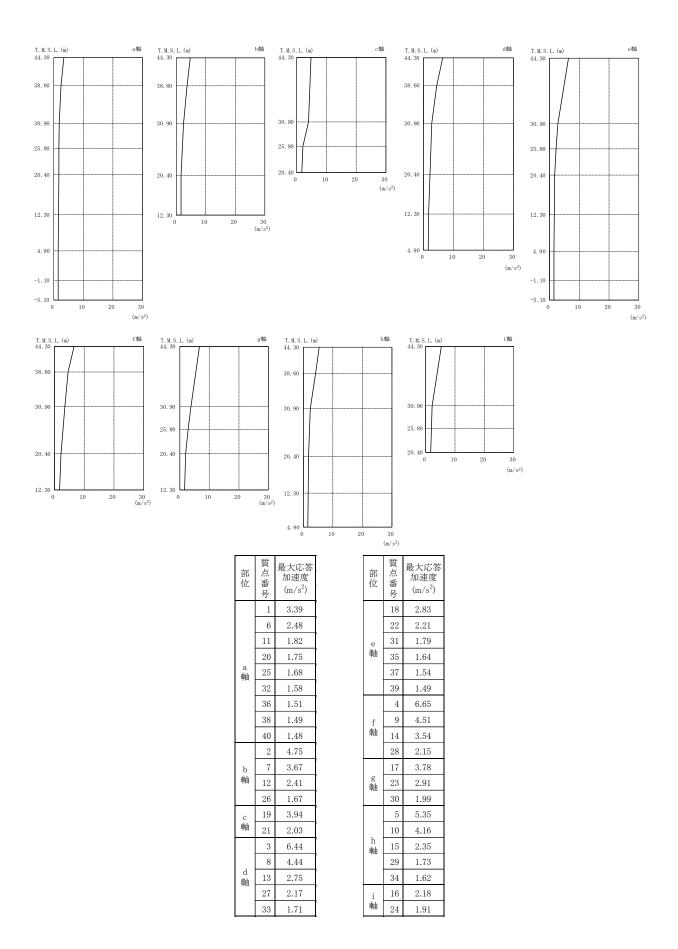


図 4-6 最大応答加速度(EW 方向)

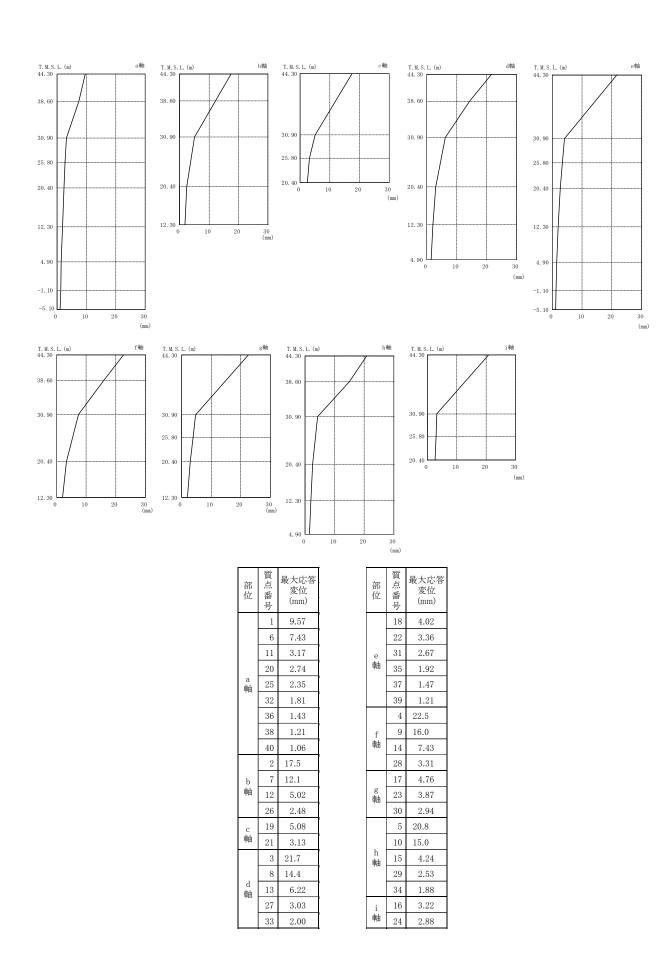


図 4-7 最大応答変位 (EW 方向)

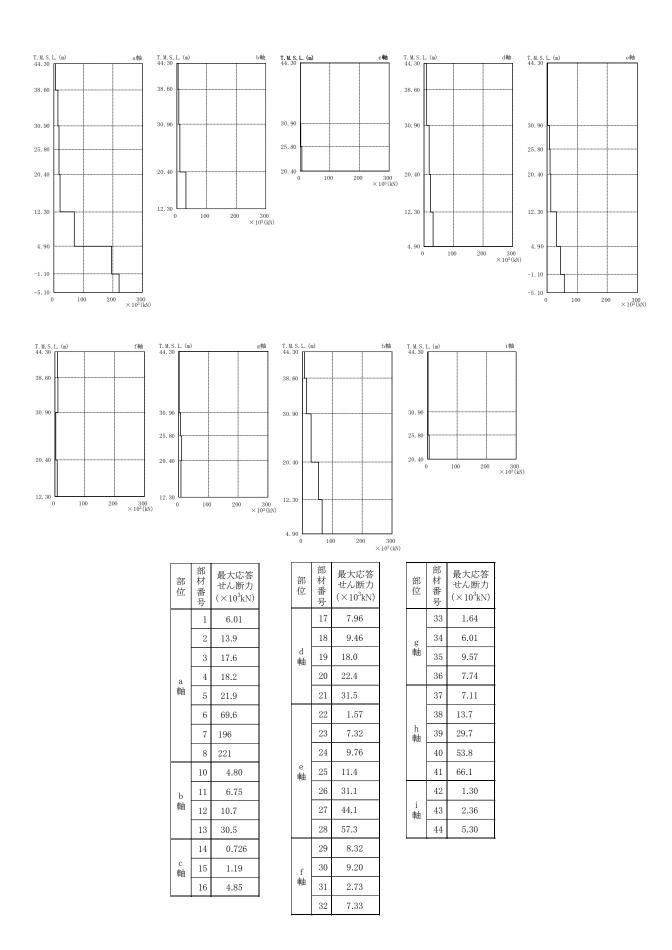


図 4-8 最大応答せん断力(EW方向)

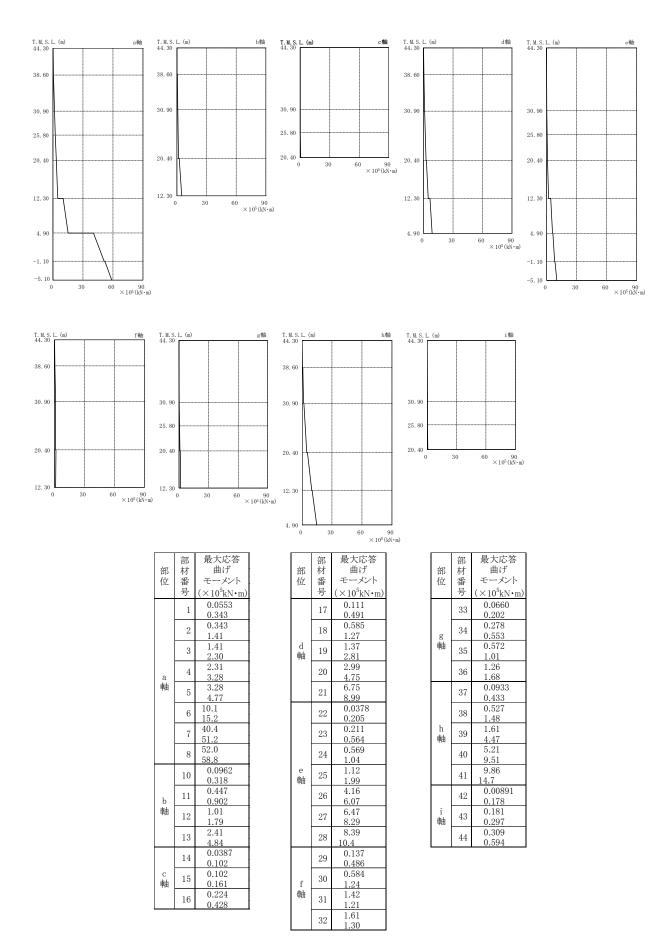
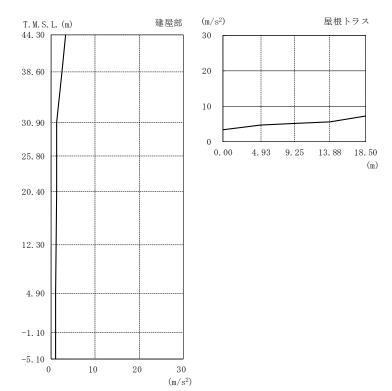
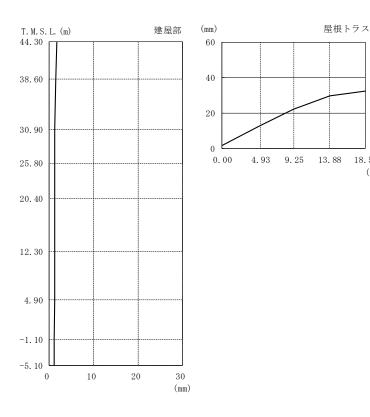
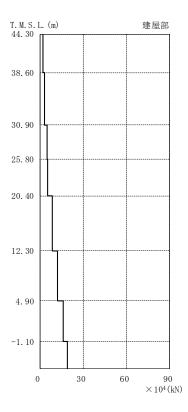




図 4-9 最大応答曲げモーメント (EW 方向)

部位	質点番号	最大応答 加速度 (m/s²)
	1	3.31
	2	2.53
	3	1.30
建	4	1.28
屋	5	1.23
部	6	1.12
	7	1.08
	8	1.06
	9	1.04
	1	3.31
屋根	11	4.62
1	12	5.16
ラス	13	5.52
	14	7.17

図 4-10 最大応答加速度(鉛直方向)



1 1.72 2 1.51 3 1.24 4 1.24 5 1.23 6 1.21 7 1.20 8 1.18 9 1.17 L 1.72 L 11 12 22.1	部位	質点番号	最大応答 変位 (mm)
3 1.24 4 1.24 5 1.23 6 1.21 7 1.20 8 1.18 9 1.17 1 1.72 Et 11 12.8		1	1.72
建屋 4 1.24 5 1.23 6 1.21 7 1.20 8 1.18 9 1.17 1 1.72 屋根 11 12.8		2	1.51
選		3	1.24
基部 5 1.23 6 1.21 7 1.20 8 1.18 9 1.17 1 1.72 基根 11 12.8	建	4	1.24
6 1.21 7 1.20 8 1.18 9 1.17 1 1.72 屋根 11 12.8	屋	5	1.23
8 1.18 9 1.17 1 1.72 屋 根 11 12.8	别	6	1.21
9 1.17 1 1.72 屋 11 12.8		7	1.20
1 1.72 屋根 11 12.8		8	1.18
屋 11 12.8		9	1.17
根 11 12.8]	1	1.72
		11	12.8
	<u>۲</u>	12	22.1
ラ ス 13 29.6	-	13	29.6
14 32.5		14	32.5

18.50

(m)

最大応答変位(鉛直方向) 図 4-11

部位	部材番号	最大応答 軸力 (×10 ⁴ kN)
	1	1.97
	2	3.33
	3	4.85
建屋	4	5.50
部	5	8.44
	6	12.2
	7	16.1
	8	18.9

図 4-12 最大応答軸力(鉛直方向)

表 4-2 耐震壁の最大せん断ひずみ (1/2)

(a) NS 方向

部位	T.M.S.L. (m)	地震応答解析 モデルの部材 番号	最大せん断 ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)	
	30.9~20.4	3	0.0222		
	20.4~12.3	4	0.0351		
a 軸	12.3~4.9	5	0.0327		
	4.9~-1.1	6	0.0418		
	-1.1~-5.1	7	<u>0.0450</u>		
	30.9~25.8	10	0.0130	4.0	
	25.8~20.4	11	0.0142		
b	20.4~12.3	12	0.0229		
軸	12.3~4.9	13	0.0251		
	4.9~-1.1	14	0.0264		
	-1.1~-5.1	15	0.0328		

注:下線部は各階の最大せん断ひずみのうち最も大きい値を表示

表 4-2 耐震壁の最大せん断ひずみ (2/2)

(b) EW 方向

部位	T.M.S.L.	地震応答解析 モデルの部材 番号	最大せん断 ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
a	20.4~12.3	5	0.0298	
	12.3~4.9	6	0.0331	
軸	4.9~-1.1	7	0.0382	
	-1.1~-5.1	8	0.0372	
b 軸	20.4~12.3	13	0.0406	
c 軸	25.8~20.4	16	0.0421	
d	20.4~12.3	20	0.0407	
軸	12.3~4.9	21	0.0391	
	25.8~20.4	24	0.0303	4.0
	20.4~12.3	25	0.0252	
e 軸	12.3~4.9	26	0.0233	
	4.9~-1.1	27	0.0287	
	-1.1~-5.1	28	0.0309	
f 軸	20.4~12.3	32	0.0514	
g	25.8~20.4	35	0.0283	
軸	20.4~12.3	36	0.0335	
h	20.4~12.3	40	0.0418	
軸	12.3~4.9	41	0.0471	
i	30.9~25.8	43	0.0133	
軸	25.8~20.4	44	0.0183	

注:下線部は各階の最大せん断ひずみのうち最も大きい値を表示

表 4-3 鉄骨の層間変形角

(a) NS 方向

部位	T. M. S. L. (m)	地震応答解析 モデル部材番号	層間変形角	許容限界
_ ##	44.3~38.6	1	1/1890	
a軸	38.6~30.9	2	1/1440	1 /20
b軸	44.3~30.9	9	1/2890	1/30
c軸	30.9~25.8	16	1/2890	

注:下線部は各階の層間変形角のうち最も大きい値を表示

(b) EW 方向

部位	T. M. S. L. (m)	地震応答解析 モデル部材番号	層間変形角	許容限界
a軸	44.3~38.6	1	1/2450	1/30
a 半田	38.6~30.9	2	1/1550	
b軸	44.3~38.6	10	1/1700	
D平田	38.6~30.9	11	1/1530	
c軸	44.3~30.9	14	1/938	
d軸	44.3~38.6	17	1/1020	
U 平田	38.6~30.9	18	1/1090	
e軸	44.3~30.9	22	1/649	1/30
f軸	44.3~38.6	29	1/982	
	38.6~30.9	30	1/1120	
g軸	44.3~30.9	33	<u>1/623</u>	
h軸	44.3~38.6	37	1/1150	
	38.6~30.9	38	1/753	
i軸	44.3~30.9	42	1/786	

注:下線部は各階の層間変形角のうち最も大きい値を表示

表 4-4 地震応答解析結果に基づく接地率

方向	最大接地圧 (kN/m²)	最大転倒モーメント (×10 ⁶ kN·m)	最小接地率 (%)
NS方向	401	7.60	100
EW方向	417	8.06	100