本資料のうち、枠囲みの内容は、機密事項に属しますので公開できません。

| 柏崎刈羽原子力発電展 | 所第7号機 工事計画審査資料   |
|------------|------------------|
| 資料番号       | KK7添-2-041-37 改1 |
| 提出年月日      | 2020年 8月20日      |

V-2-10-1-4-17 直流 125V HPAC MCC の耐震性についての計算書

2020 年 8 月 東京電力ホールディングス株式会社 V-2-10-1-4-17 直流 125V HPAC MCC の耐震性についての計算書

# 目 次

| 1. 概要                                         | 1 |
|-----------------------------------------------|---|
| 2. 一般事項 · · · · · · · · · · · · · · · · · · · | 1 |
| 2.1 構造計画                                      | 1 |
| 3. 固有周期 · · · · · · · · · · · · · · · · · · · | 3 |
| 3.1 固有周期の確認                                   | 3 |
| 4. 構造強度評価                                     | 4 |
| 4.1 構造強度評価方法                                  | 4 |
| 4.2 荷重の組合せ及び許容応力                              | 4 |
| 4.2.1 荷重の組合せ及び許容応力状態                          | 4 |
| 4.2.2 許容応力                                    | 4 |
| 4.2.3 使用材料の許容応力評価条件                           | 4 |
| 4.3 計算条件                                      | 4 |
| 5. 機能維持評価                                     | 8 |
| 5.1 電気的機能維持評価方法                               | 8 |
| 6. 評価結果                                       | 9 |
| 6.1 重大事故等対処設備としての評価結果                         | 9 |

## 1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、直流 125V HPAC MCC が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

直流 125V HPAC MCC は、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお、直流 125V HPAC MCC は、V-2-1-14「計算書作成の方法」に記載の直立形盤であるため、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に基づき評価を実施する。

#### 2. 一般事項

## 2.1 構造計画

直流 125V HPAC MCC の構造計画を表 2-1 に示す。

表 2-1 構造計画

| 計画の                                                                                             | 概要                            | 次 2 1 特坦山岡                                        |               |         |
|-------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------|---------------|---------|
| 基礎・支持構造                                                                                         | 主体構造                          | 概略構造図                                             |               |         |
| 基礎・支持構造<br>直流 125V HPAC MCC は、<br>取付ボルトにてチャンネ<br>ルベースに固定する。<br>チャンネルベースは基礎<br>ボルトにて基礎に固定す<br>る。 | 主体構造直立形(鋼材及び鋼板を組み合わせた自立閉鎖型の盤) | 正面 2700 <u>***</u> **  **  **  **  **  **  **  ** | 側面<br>700<br> |         |
|                                                                                                 |                               |                                                   |               | (単位:mm) |

# 3. 固有周期

# 3.1 固有周期の確認

プラスチックハンマ等により、当該装置に振動を与え自由減衰振動を固有振動数測定装置(圧電式加速度ピックアップ、振動計、分析器)により記録解析する。試験の結果、剛であることを確認した。固有周期の確認結果を表 3-1 に示す。

| 表 3-1 | 固有周期 | (単位:s) |
|-------|------|--------|
| 水平    |      |        |
| 鉛直    |      |        |

## 4. 構造強度評価

#### 4.1 構造強度評価方法

直流 125V HPAC MCC の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐 震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

## 4.2 荷重の組合せ及び許容応力

#### 4.2.1 荷重の組合せ及び許容応力状態

直流 125V HPAC MCC の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価 に用いるものを表 4-1 に示す。

#### 4.2.2 許容応力

直流 125V HPAC MCC の許容応力は、V-2-1-9 「機能維持の基本方針」に基づき表 4-2 のとおりとする。

#### 4.2.3 使用材料の許容応力評価条件

直流 125V HPAC MCC の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に 用いるものを表 4-3 に示す。

## 4.3 計算条件

応力計算に用いる計算条件は、本計算書の【直流 125V HPAC MCC の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

| 施設         | 区分               | 機器名称             | 設備分類*1       | 機器等の区分         | 荷重の組合せ              | 許容応力状態         |
|------------|------------------|------------------|--------------|----------------|---------------------|----------------|
|            |                  |                  |              |                | D+PD+MD+S s *3      | IV A S         |
| その他発電用原子炉の | 非常用  <br>  用原子炉の | 直流 125V HPAC MCC | 常設耐震/防止常設/緩和 | *2             |                     | VAS<br>(VASとして |
| 附属施設       |                  | 市以入办交生           |              | D+Psad+Msad+Ss | IVASの許容限<br>界を用いる。) |                |

注記\*1:「常設耐震/防止」は常設耐震重要重大事故防止設備、「常設/緩和」は常設重大事故緩和設備を示す。

\*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

\*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

|                               | 許容限界* <sup>1,*2</sup><br>(ボルト等) |            |  |  |
|-------------------------------|---------------------------------|------------|--|--|
| 許容応力状態                        | 一次応力                            |            |  |  |
|                               | 引張り                             | せん断        |  |  |
| IV A S                        |                                 | 1.5 • f s* |  |  |
| VAS<br>(VASとしてIVASの許容限界を用いる。) | 1.5 · f t*                      |            |  |  |

注記\*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

\*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

3

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

| ₹₩ <b>₩</b> | ++\\$\                 | 温度条件                       |    | S y   | S u   | Sy (RT) |
|-------------|------------------------|----------------------------|----|-------|-------|---------|
| 評価部材        | 材料                     | $({}^{\circ}\!\mathbb{C})$ |    | (MPa) | (MPa) | (MPa)   |
| 基礎ボルト       | SS400<br>(40mm<径)      | 周囲環境温度                     | 50 | 211   | 394   | _       |
| 取付ボルト       | SS400<br>(16mm<径≦40mm) | 周囲環境温度                     | 50 | 231   | 394   | _       |

## 5. 機能維持評価

# 5.1 電気的機能維持評価方法

直流 125V HPAC MCC の電気的機能維持評価は、V-2-1-14「計算書作成の方法 添付 資料-9 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行 う。

直流 125V HPAC MCC に設置される器具の機能確認済加速度は、V-2-1-9「機能維持の基本方針」に基づき、同形式の器具及び当該器具と類似の器具単体の正弦波加振試験において、電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$ 

| 評価部位             | 方向 | 機能確認済加速度 |
|------------------|----|----------|
|                  | 水平 |          |
| 直流 125V HPAC MCC | 鉛直 |          |

## 6. 評価結果

6.1 重大事故等対処設備としての評価結果

直流 125V HPAC MCC の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果 構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果 電気的機能維持評価の結果を次頁以降の表に示す。

## 【直流 125V HPAC MCCの耐震性についての計算結果】

## 1. 重大事故等対処設備

## 1.1 設計条件

| 据付場所及び床面高さ       |              | 固有周期(s)                     |      | 弾性設計用地震動Sd又は静的震度 |              | 基準地震動S s     |              | 周囲環境温度       |      |
|------------------|--------------|-----------------------------|------|------------------|--------------|--------------|--------------|--------------|------|
| 機器名称             | 設備分類         | (m)                         | 水平方向 | 鉛直方向             | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | 水平方向<br>設計震度 | 鉛直方向<br>設計震度 | (°C) |
| 直流 125V HPAC MCC | 常設耐震/防止常設/緩和 | 原子炉建屋<br>T. M. S. L. 31. 7* |      |                  |              |              | Сн=1.71      | Cv = 1.41    | 50   |

注記\*:基準床レベルを示す。

#### 1.2 機器要目

| 11 0 0 m × n   |             |             |             |                         |     |                      |                      |
|----------------|-------------|-------------|-------------|-------------------------|-----|----------------------|----------------------|
| 部材             | m i<br>(kg) | h i<br>(mm) | d i<br>(mm) | $A$ b i $(\text{mm}^2)$ | n i | Syi<br>(MPa)         | Sui<br>(MPa)         |
| 基礎ボルト<br>(i=1) |             | 1300        | 16<br>(M16) | 201. 1                  | 18  | 211<br>(40mm<径)      | 394<br>(40mm<径)      |
| 取付ボルト<br>(i=2) |             | 1200        | 16<br>(M16) | 201. 1                  | 50  | 231<br>(16mm<径≦40mm) | 394<br>(16mm<径≦40mm) |

|         | *                       |                            | *    | 転倒方向         |             |                          |              |
|---------|-------------------------|----------------------------|------|--------------|-------------|--------------------------|--------------|
| 部材      | ℓ <sub>1 i</sub> * (mm) | ℓ <sub>2 i</sub> *<br>(mm) | nfi* | F i<br>(MPa) | Fí<br>(MPa) | 弾性設計用<br>地震動Sd又は<br>静的震度 | 基準地震動<br>S s |
| 基礎ボルト   | 305                     | 305                        | 9    |              | 050         | _                        | 長辺方向         |
| ( i =1) | 1145                    | 1355                       | 2    | _            | 253         |                          |              |
| 取付ボルト   | 305                     | 305                        | 17   |              | 076         | - :                      | 1.<br>1.     |
| ( i =2) | 1210                    | 1420                       | 4    | _            | 276         |                          | 長辺方向         |

注記\*:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、 下段は長辺方向転倒に対する評価時の要目を示す。

## 1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

|                | F                        | b i      | Q b i                    |          |  |
|----------------|--------------------------|----------|--------------------------|----------|--|
| 部材             | 弾性設計用<br>地震動Sd又は<br>静的震度 | 基準地震動S s | 弾性設計用<br>地震動Sd又は<br>静的震度 | 基準地震動S s |  |
| 基礎ボルト<br>(i=1) | _                        |          | _                        |          |  |
| 取付ボルト<br>(i=2) | -                        |          | _                        |          |  |

## 1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

| 部材             | 材料    | 応力  | 弾性設計用地震動Sd又は静的震度 |      | 基準地震動 S s |                |
|----------------|-------|-----|------------------|------|-----------|----------------|
|                |       |     | 算出応力             | 許容応力 | 算出応力      | 許容応力           |
| 基礎ボルト<br>(i=1) | SS400 | 引張り | _                | _    | σы1=56    | f t s 1 = 152* |
|                |       | せん断 |                  | _    | τ ы 1=10  | f s b 1 = 117  |
| 取付ボルト<br>(i=2) | SS400 | 引張り |                  | _    | σь2=24    | f t s 2=207*   |
|                |       | せん断 |                  | _    | τь2=4     | f s b 2=159    |

すべて許容応力以下である。

注記 $*: f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}]$ 


#### 1.4.2 電気的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$ 

|                  |      | 機能維持評価用加速度* | 機能確認済加速度 |
|------------------|------|-------------|----------|
| 直流 125V HPAC MCC | 水平方向 | 1. 42       |          |
|                  | 鉛直方向 | 1. 17       |          |

注記\*:基準地震動Ssにより定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。



12