女川原子力発電所第 2 号機	工事計画審査資料
資料番号	02 －工－D－13－0001＿改 0
提出年月日	2020 年 8 月 31 日

工事計画に係る説明資料

（浸水防護施設の基本設計方針のらち外郭浸水防護設備）

2020年8月
東北電力株式会社

O 2 （1）II R 0

8．5． 3 浸水防護施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

	変更前	変更後
	－	用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則」並びにこれらの解釈による。
$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \omega \\ & \bullet \\ & 1 \end{aligned}$	－	第1章 共通項目 浸水防護施設の共通項目である「1．地盤等， 2 ．自然現象（ 2.2 津波による損傷の防止を除く。），3．火災，5．設備に対する要求（5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件， 5.8 電気設備の設計条件を除く。），6．その他（6．4 放射性物質による汚染の防止を除 く。）」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」に基づく設計とする。
	－	第2章 個別項目 1．津波による損傷の防止 1．1 耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が設置（変更）許可を受け た基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれるおそれがないよう，遡上への影響要因及び浸水経路等 を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとと もに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。

O 2 (1) II R 0

O 2 (1) II R 0

\circlearrowleft

O 2 (1) II R 0

O 2 (1) II R 0

\sim

O 2 （1）II R 0

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & 1 \\ & \omega \\ & 1 \\ & \vdots \end{aligned}$	（	る。 評価の結果，流入する可能性のある経路が特定されたことから，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するた め，津波防護施設として，第 2 号機海水ポンプ室スクリーンエリ ア，第 3 号機海水ポンプ室スクリーンエリア，第 2 号機放水立坑，第 3 号機放水立坑及び第 3 号機海水熱交換器建屋取水立坑の開口部に防潮壁を設置，第 1 号機取水路及び第 1 号機放水路に取放水路流路縮小工を設置する設計とする。また，浸水防止設備として，第 2 号機補機冷却海水系放水路の防潮壁横断部及び屋外排水路の防潮堤横断部に逆流防止設備，第 3 号機海水熱交換器建屋補機ポ ンプエリアから海水熱交換器建屋取水立坑へのアクセス用入口に水密扉，第 3 号機海水熱交換器建屋補機ポンプエリアの床開口部，第 2 号機海水ポンプ室スクリーンエリアから補機冷却系トレンチ へのアクセス用入口，第 2 号機海水ポンプ室防潮壁及び第 3 号機海水ポンプ室防潮壁区画内の揚水井戸，第 3 号機補機冷却海水系放水ピットの開口部に浸水防止蓋，第 2 号機海水ポンプ室補機ポ ンプエリア及び第 3 号機海水熱交換器建屋補機ポンプエリアの床開口部に逆止弁付ファンネルを設置し，第 2 号機海水ポンプ室ス クリーンエリア及び第 2 号機放水立坑エリアの防潮壁下部貫通部，第 3 号機海水ポンプ室スクリーンエリア及び第 3 号機放水立坑エ リアの防潮壁下部貫通部，防潮堤下部貫通部に止水処置を実施する設計とする。 防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉止する

O 2 (1) II R

O 2 （1）II R1

	変更前	変更後
$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	－	貯留するための貯留堰を設置することで，取水性を確保する設計と する。 なお，引き波による水位低下に対して，非常用海水ポンプの取水性を確保するため，循環水ポンプを停止する手順を保安規定に定め て管理する。 非常用海水ポンプについては，津波による上昇側の水位変動に対 しても，取水機能が保持できる設計とする。 大容量送水ポンプ（タイプII）及び大容量送水ポンプ（タイプII） についても，入力津波の水位に対して，取水性を確保できるものを用いる設計とする。 （2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ （タイプI）及び大容量送水ポンプ（タイプII）の機能保持確認基準津波による水位変動に伴ら海底の砂移動•堆積に対して，取水口，取水路及び海水ポンプ室が閉塞することなく取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。 非常用海水ポンプは，取水時に浮遊砂が軸受に混入した場合にお いても，軸受部の異物逃がし溝から浮遊砂を排出することで，機能 を保持できる設計とする。 大容量送水ポンプ（タイプII）及び大容量送水ポンプ（タイプII） についても，浮遊砂の混入に対しても取水機能が保持できるものを用いる設計とする。 漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•設備を抽出し，抽出された漂流物となる可能性のあ る施設•設備が漂流した場合に，非常用海水ポンプへの衝突並びに

変更前	変更後
－	（3）津波監視設備 津波監視設備は，津波の襲来状況を監視可能な設計とする。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット水位計は波力及び漂流物の影響を受けにくい位置に設置し，津波監視機能が十分に保持できる設計とする。また，基準地震動 S s に対 して，機能を喪失しない設計とする。設計に当たつては，自然条件 （積雪，風荷重）との組合せを適切に考慮する。 津波監視設備のうち津波監視カメラは，非常用電源から給電し，赤外線撮像機能を有したカメラにより，昼夜にわたり中央制御室か ら監視可能な設計とする。 津波監視設備のらち取水ピット水位計は，非常用電源から給電 し，O．P．$-11.25 \mathrm{~m} ~ 0$. P．+19.00 m を測定範囲として，非常用海水ポ ンプが設置された海水ポンプ室補機ポンプエリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。 1．4．2 荷重の組合せ及び許容限界 津波防護施設，浸水防止設備及び津波監視設備の設計に当たつて は，津波による荷重及び津波以外の荷重を適切に設定し，それらの組合せを考慮する。また，想定される荷重に対する部材の健全性や構造安定性について適切な許容限界を設定する。 （1）荷重の組合せ 津波と組み合わせる荷重については，原子炉冷却系統施設の基本設計方針「第 1 章 共通項目」のうち「 2.3 外部からの衝撃によ る損傷の防止」で設定している自然条件（積雪，風荷重）及び余震

G

	変更前	変更後
$\begin{aligned} & \infty \\ & 0 \\ & \uparrow \\ & \omega \\ & 1 \\ & \omega \\ & \hline \end{aligned}$	－	として考えられる地震に加え，漂流物による荷重を考慮する。津波 による荷重の設定に当たっては，各施設•設備の機能損傷モードに対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度 を検討した上で安全側の設定を行う。 （2）許容限界 津波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後の再使用性や，津波の繰返し作用を想定し，施設•設備を構成する材料がおおむね弾性状態に留まることを基本とする。
		2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 設計基準対象施設が，発電用原子炉施設内における溢水が発生した場合においても，その安全性を損ならおそれがない設訣とする。 そのために，溢水防護に係る設計時に発電用原子炬施設内で発生が想定される溢水の影響を評価（以下「溢水評晒」という。）し，運転状態 にある場合は発電用原子炉施設内に少ける溢水が発生した場合におい ても，発電用原子炉を高温停止及も゙，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持できる設計とする。また，停止状態にある場合は，引老続きその状態を維持できる設計とする。更に使用済燃料プールにおいては，使用済燃料プールの泠却機能及び使用済燃料プール～g給水機能を維持できる設計とする。 「発電用軽水型原子炉施設の安全評価に関する審査指針」を踏まえ，溢水により発生し得る原子炉外乱及び溢水の原因となり得る原子炉外乱を抽出し，主給水流量喪失，冷却材喪失等の運転時の異常な過渡変化

	変更前	変更後
$$		溢水防護区画及び溢水経路の設定並びに溢水評価において期待する浸水防護施設の構造強度設計は，以下のとおりとする。 浸水防護施設が要求される機能を維持するため，計画的に保守管理，点検を実施するとともに必要に応じ補修を実施する。 壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置の今ち，地震に起因する機器の破損等により生じる溢水（使用済燃料プール等のスロッシ ングにより発生する溢水を含む。）から防護する設備については，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損なうおそれがない設計とする。ただし，放射性物質を含む液体が管理区域外に伝播す／ることを防止するために設置する堰については，要求される地震力次対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。 漏えい蒸気影響を緩和みる保護カバーの設計においては，配管の破断 により発生する荷重に对し，蒸気影響を緩和する機能を損なうおそれが ない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損個所からの溢水量を低減する循環水系隔離システム及びタービン補機冷却海水系隔離シスプムの設計においては，基準地震動 S s による地震力に対し，地震暏及び地震後においても，溢水量を低減する機能を損ならおそれがな い設計とする。
	－	3．主要対象設備 浸水防護施設の対象となる主要な設備について，「表 1 浸水防護施設 の主要設備リスト」に示す。

O 2 （1）II R 0

表1浸水防護施設の主要設備リスト $(1 / 10)$

O 2 （1）II R 0

表1浸水防放施設の主要設備リスト $(2 / 10)$

O 2 （1）II R 0

表1浸水防隻施設の主要設備少スト $(3 / 10)$

O 2 （1）II R 0

表1浸水防護施設の主要設備リスト（10／10）

（原子炉本体の基本設計方針，適用基準及び適用規格」の1表1原子炉本体の主要設備リスト 付表1」による。
没水防止設作としての耐震重要度を示す。
（注3）溢水の伝播を防止する設備としての耐震重要度を示す。

