本資料のうち, 枠囲みの内容					
は、機密事項に属しますので					
公開できません。					

柏崎刈羽原子力発電所第7号機 工事計画審査資料					
資料番号	KK7補足-028-10-20 改2				
提出年月日	2020年8月14日				

最新知見として得られた減衰定数の採用について (使用済燃料貯蔵ラック)

2020 年 8 月 東京電力ホールディングス株式会社

目 次

1. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	1
2. 1	然料ラックの概要及び既工認と今回工認の耐震設計手法の比較	•	•	•	•••	•	•	•	•	•	•	1
2.1	燃料ラックの構造と燃料プール内の配置・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	1
2.2	燃料ラックの耐震設計手法について・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	3
2.3	既工認と今回工認の耐震設計手法の比較・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	4
3. Ì	咸衰特性の確認試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	5
3.1	実物大試験供試体の概要・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	5
3.2	燃料ラックの水中加震試験装置及び試験手法について・・・	•	•	•	•••	•	•	•	•	•	•	6
3.3	試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	16
3.4	実物大試験における試験条件の妥当性・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	20
4.	式験結果に基づく燃料ラックの設計用減衰定数の設定・・・・	•	•	•	•••	•	•	•	•	•	•	21
4.1	実機応答と供試体応答の比較・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	21
4.2	設計用減衰定数の設定・・・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	23
5. ž	法論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	•	•	•••	•	•	•	•	•	•	26

- 別紙-1 プール水及び燃料集合体の体数が減衰定数に与える影響
- 別紙-2 試験水槽の形状決定方法
- 別紙-3 試験における水深の影響について
- 別紙-4 試験方法及び減衰定数の算出方法
- 別紙-5 ハーフパワー法について
- 別紙-6 自由振動波形からの減衰定数の算出方法
- 別紙-7 正弦半波加振試験における振動台の影響について
- 別紙-8 スロッシングによる減衰への影響について
- 別紙-9 固有振動数と減衰定数の関係について

1. はじめに

使用済燃料貯蔵ラック(以下「燃料ラック」という。)の水平方向の設計用減衰定数は,既工認では,「原子力発電所耐震設計技術指針JEAG4601-1991 追補版」(以下「JEAG4601」という。)に 規定される溶接構造物の設計用減衰定数1.0%を用いている。

しかし、実際の燃料ラックは使用済燃料貯蔵プール(以下「燃料プール」という。)内の水中に 設置され、燃料集合体を貯蔵していることから、燃料集合体のガタつき、ラック内壁と燃料集合体 の衝突及び水の抵抗により、運動エネルギーの消散が大きくなり、減衰定数1.0%より大きな減衰 があると考えられる。

そのため、今回工認の耐震設計において、燃料ラックの設計用減衰定数は、実物大加振試験の結 果に基づき設定している。

本資料は、加振試験の試験方法及び今回工認の耐震設計に適用する設計用減衰定数について、まとめたものである。

2. 燃料ラックの概要及び既工認と今回工認の耐震設計手法の比較

2.1 燃料ラックの構造と燃料プール内の配置

柏崎刈羽原子力発電所第7号機の燃料プールには,角管市松型燃料ラック(以下「市松ラック」 という。)を設置している。

市松ラックは角管を溶接することで燃料集合体を貯蔵する格子状のセルを構成している。ラックの構造図を第1図に、燃料プール内における燃料ラックの配置を第2図に示す。

第1図 燃料ラックの構造図(概要)

※()内の数字はラックの貯蔵体数

第2図 燃料ラック配置図

2.2 燃料ラックの耐震設計手法について

燃料ラックの構造及び解析モデルの概要を第3図に示す。市松ラックは,角管を市松に配列し, 角管同士の角を断続的に溶接し格子状のラックセルを形成していることから,燃料ラックをシェ ル要素にてモデル化した3次元有限要素モデル(FEMモデル)としている。

燃料ラックの質量には、燃料ラック自身の質量、燃料集合体の質量、燃料ラックに含まれる水 の質量及び水中の機器の形状により排除される機器周囲の流体の質量である付加質量(排除水質 量)を考慮している。これらの燃料集合体及び燃料ラックに含まれる水の質量並びに付加質量は、 角管及び板の全長にわたって均等分布としている。

既工認の応力評価は、部材及び基礎ボルトに対して行っており、部材の応力は第3図の解析モ デルを用いて、スペクトルモーダル解析による最大応答加速度から、部材に作用する最大荷重を 算出し、応力を評価している。基礎ボルトの応力は、燃料ラック設置位置における水平・鉛直震 度を用いて、ラック基礎に生じるモーメントとせん断力から基礎ボルトに作用する最大荷重を算 出し、評価している。

なお,各部の許容応力は「原子力発電所耐震設計技術指針 JEAG4601・補-1984」に規定され ている「その他支持構造物」の許容応力を用いている。

第3図 市松ラックの概要

2.3 既工認と今回工認の耐震設計手法の比較

燃料ラックの耐震設計における既工認と今回手法の比較を第1表に示す。既工認からの変更は 設計用減衰定数のみである。

		既工認手法	今回工認手法
解析モデル		3次元有限要素モデル	同左
武雪御忙工计	水平方向	スペクトルモーダル解析	同左
展 例 十伝	鉛直方向	静的解析	同左(剛構造のため)
	水亚士向	1 0%	Ss: 7.0%
設計用減衰定数	水平力向	1.070	Sd : 5.0%
	鉛直方向	_	_
許容応力		JEAG4601	同左
地般・建長竿のる	「確実やの考慮	床応答スペクトルの周期方向への	同七
地盤・建度寺の月	、唯天での方思	±10%拡幅	μι <u>τ</u>
		剛性は燃料ラック本体の寸法及び	
モデルの考え方		ヤング率より設定。	
		質量は燃料ラック本体、燃料ラッ	同左
		ク内の燃料集合体、水及び付加質	
		量を考慮。	

第1表 燃料ラックの耐震設計法の既工認と今回手法の比較

- 3. 減衰特性の確認試験
- 3.1 実物大試験供試体の概要

既工認で考慮していなかった燃料集合体を貯蔵していること,また,燃料ラックが水中に設置 されていることによる効果を確認する試験を行った。

燃料プール内の環境(水中)及び使用状態(燃料集合体貯蔵)において,燃料ラックが加振さ れた際の減衰特性を確認することを目的に,模擬燃料集合体を貯蔵した模擬燃料ラック(以下「供 試体ラック」という。)の水槽内での加振試験を実施した(第4図)。試験は,振動台上に,供試 体ラックを設置した試験水槽を据え付け,長辺及び短辺方向に加振した。供試体ラックは,燃料 プール床との固定状態と同一とするために,水槽床に基礎ボルトで固定した自立式とした。

(1) 試験状況

- (2)供試体の水槽内設置状態
- 第4図 加振試験の実施状況

- 3.2 燃料ラックの水中加振試験装置及び試験手法について
 - (1) 供試体ラック

供試体ラックの寸法等は、実機の市松ラックと同等となるよう設定した。

また,燃料ラック全体の減衰効果は,燃料集合体の体数増加に伴い,前述の燃料集合体を貯蔵 していること及び燃料ラックが水中に設置されていることによる減衰効果が大きくなると考えら れるため,実機の市松ラック(77体~121体)に対して,貯蔵体数が小さくなるよう,供試体ラ ックの貯蔵体数は,50体とした(第5図)。

第5図 供試体の構造(市松ラック供試体)^[2]

(2) 模擬燃料集合体

供試体ラックに貯蔵する模擬燃料集合体には,実燃料模擬体と形状模擬体の2種類を用いた。 実燃料模擬体は,チャンネルボックス等は実機と同一とし,燃料ペレットの代わりに鉛で質量を 一致させたもので,実燃料模擬体自身の上端部の加速度を測定し,挙動を把握する目的で使用す る。一方,形状模擬体は,実機燃料集合体の質量及びチャンネルボックス外形を模擬したもので, 減衰定数に寄与する条件である燃料体とラックのギャップ,燃料体の付加質量を考慮し,外形寸 法及び質量をほぼ同じとしている。形状模擬体は,合理的な試験方法を行うために使用する。い ずれの模擬燃料集合体も実機燃料集合体と形状,質量及び振動特性が同様になるように作成され ている。第6図に模擬燃料集合体の内部構造を,第2表に実機燃料集合体と模擬燃料集合体仕様 の比較を示す。

なお、実機ラックに貯蔵されている燃料集合体の一部については、チャンネルファスナが取り 外されているが、チャンネルファスナを取り付けた状態の方が、ガタつきが少なくなることで減 衰が小さくなると考えられることから、試験はチャンネルファスナを全数取り付けて実施してい る。

チャンネルボックスについては、照射成長による有意な曲げの影響がないよう、炉心内の燃料 配置を管理している。ウォータ・ロッドについては他プラントにて曲がりが確認されたため、平 成25年にウォータ・ロッドに曲がりがないことを確認し、併せて、曲がりの原因となったチャン ネルボックスの装着作業の手順を見直している^[3]ため、ウォータ・ロッドには曲がりはない。

よって、模擬燃料集合体のチャンネルボックス及びウォータ・ロッドには、実機と同様に曲が りの無いものを使用している。

第6図 模擬燃料集合体の内部構造

	模擬燃料	斗集合体	柏崎刈羽 7 号機
実燃料模擬体		形状模擬体	8×8燃料*2
長さ	4469mm	4430mm	4468mm
断面寸法*1	□139.14mm	□139mm	□139.14mm
質量	質量 約 300kg 約 3		約 300kg
材質	SUS 及び Zr 材	SUS 及び SS 材	SUS 及び Zr 材

第2表 実機燃料集合体と模擬燃料集合体仕様の比較

注記*1:チャンネルボックス外形寸法

*2: 柏崎刈羽7号機に貯蔵されている燃料集合体のうち,最も質量が大きいもの

(3) 模擬燃料集合体の配置方法

本試験では第7図に示すとおり,実燃料模擬体と形状模擬体を貯蔵して試験を行なった。形状 模擬体はウェイトにて実機燃料集合体の荷重分布を模擬し,質量,外形もほぼ同様になるよう設 定しているため,実燃料模擬体と形状模擬体の配置による減衰への影響は小さいと考えられる。

模擬体自身の挙動を把握するため、実燃料模擬体を1体使用し、減衰定数に寄与する条件と合理的な試験方法を考慮して、形状燃料模擬体49体を使用した。

また,燃料集合体の貯蔵体数は,最も条件が厳しくなる100%貯蔵条件にて加振試験を行った(別 紙-1)。

なお、模擬燃料集合体と供試体ラック底部の取り合い部は、燃料ラック底部の支持板に開けら れた孔の面取り部と下部タイプレートであり、これらの寸法及び形状は実機と同様に設定したた め、実機と供試体で減衰に違いはないと考えられる(第8図)。

第7図 模擬燃料集合体の配置

第8図 模擬燃料集合体の設置状況

(4) 試験水槽

燃料プール内に設置されている状態を模擬するため試験水槽を製作し、その大きさは、燃料ラックの流体減衰に大きな影響を与えないよう流体の影響が十分小さくなる大きさに設定した(別 紙-2)。

(5) 実機と供試体等の主要諸元比較

供試体ラック及び試験水槽等(以下「供試体等」という。)と実機との主要諸元の比較を第3表に示す。

項目		実機	供試体等	実機への適用性
	ラックセルの形式	角管市松型	同左	
	燃料ラックの 支持形式	ボルトによる 床固定式	同左	実機と同一。
	XMDA	自立型	同左	
	貯蔵体数	77体(7×11) 100体(10×10) 110体(10×11) 121体(11×11)	50 体(5×10)	供試体は流体及び燃料集合体による減衰効果が実機より も小さいと考えられるラックを選定したことから、本試 験結果に基づく減衰定数は、実機の全ての燃料ラックに 適用可能と考えられる。
燃料 ラック	ラックセル頂部と 燃料集合体の 最小隙間			ラックセルと燃料集合体の隙間は実機とほぼ同等と考え られることから、その影響は小さいと考えられる。
	燃料ラックから 壁までの距離	約 250~900mm	約 470~1600mm	流体による減衰効果が最も小さくなるよう設定した(別 紙-2)。
ラックセル高さ				実機と同一。
	ラックセルのピッチ			実機ラックとほぼ同等であることから,その影響は小さ いと考えられる
	ラックセルの厚さ			実機と同一。
	ラックセルの材質	B-SUS	同左	実機と同一。
	燃料タイプ	8×8燃料	模擬燃料集合体	工認では,燃料プール共用化条件を考慮し,評価結果の 厳しくなる質量が大きい燃料条件により評価している。
Laborer	質量	約 300kg	約 300kg	実機とほぼ同等であることから、その影響は小さいと考 えられる。
燃料	外形寸法	148.4mm	同左	
果台体	チャンネルボックス 材料	ジルカロイ-4	同左	実機と同一。
	チャンネルボックス 厚さ			
燃料 プール	水深	約 12m	約 5m	高さ(水深)は実機と異なるが、燃料ラックの振動特性 に与える影響が小さいことを確認した(別紙-3)。

第3表 市松ラックと供試体等の主要諸元比較

(6) 試験方法

供試体ラックに模擬燃料集合体を設置し,試験水槽に注水した状態において,加振試験を実施 した。加振レベルの小さい範囲では正弦波による掃引試験を行い,得られた振動台上の加速度及 び供試体ラック頂部の加速度から求めた伝達関数より,ハーフパワー法を適用して減衰定数を評 価した。また,加振レベルの大きい範囲では共振させ続けることにより,供試体の振動が過大に なり,試験装置及び供試体を損傷させるおそれがあることから,正弦半波の加振試験を行い,自 由減衰波形から減衰定数を評価した(別紙-4~7)。

なお,正弦波掃引試験及び正弦半波加振試験は,弾性範囲にある事を確認しており,供試体ラックの応答は再現性があることから,各々,供試体ラックの長辺方向及び短辺方向で加速度を変 えた3ケースを1回ずつ実施した(第4表)。

No.	試験方法	加振方向	入力加速度* (m/s ²)	備考
1			0.62	減衰定数をハーフパワー法
2		短辺	0.91	により算出(別紙-5)
3	工改冰想引到醉		1.22	
4	正弦波带互讽映		0.72	
5		長辺	0.97	
6			1.22	
7			2.91	減衰定数を自由振動波形か
8		短辺	3.98	ら算出(別紙-6)
9	工改平冲加运动路		5.00	
10	正7公十夜/加1底武峡	这千次/加派武驶		
11		長辺	3. 75	
12			4.50	

第4表 減衰定数の評価に用いた試験条件

注記*:振動台上の実測加速度(最大値)

(7) 加速度の計測方法

供試体ラックの減衰定数を算出するため、供試体ラック頂部の加速度と、振動台上の加速度を 計測した。燃料ラック頂部には、短辺方向の加速度を計測する加速度センサーを5台、長辺方向 の加速度を計測する加速度センサーを5台の計10台を設置し(第9図)、振動台上には短辺方向 と長辺方向の加速度を計測する加速度センサーを4台設置した(第10図)。

また,燃料ラックの頂部,中間部及び基部のひずみにより,燃料ラックが弾性範囲内で加振さ れていることを確認した。

なお,試験水槽は剛構造で設計しており,試験水槽が剛として挙動し,供試体ラックへ影響を 与えないことを確認するため水槽周囲の加速度を計測した(第11図)。

長辺加振方向

第9図 供試体の加速度とひずみの計測位置

第10図 振動台上の加速度の計測位置

3.3 試験結果

正弦波掃引試験結果から算出した減衰定数と,正弦半波加振試験の自由減衰波形から得られた 減衰定数について,横軸を燃料ラック頂部の応答加速度で整理した結果を第12図及び第5表に 示す。

供試体ラックの減衰定数は各試験ケース最少のものであっても 6~11%であり, 既工認で適用している設計用減衰定数の 1%よりも大きな減衰効果を示すことを確認した。

正弦半波加振試験での短辺方向の結果において、応答加速度のばらつきが大きくなっている。 これは、試験方法及び加振方向の相違による影響が考えられる。

試験方法に関して,正弦波掃引試験は一定振動数・一定振幅で継続加振をおこなうため,供試 体ラック頂部の応答が安定しばらつきが小さく,正弦半波加振試験は入力レベルが大きい正弦半 波にて加振するため,最大加速度の領域では燃料のガタつきによる高次モード成分が減衰しきら ずに応答加速度に影響しばらつきが大きくなっていると考えられる(第13図)。また,加振方向 に関して,短辺方向の応答加速度は,供試体ラックの幾何形状及び応答レベルの違いにより,長 辺方向の応答加速度と比較し,振動台制御の不安定性による振動台の加振軸以外の振動成分の影 響を受けやすいため,応答加速度に比べばらつきが大きくなっている(第14図)。

燃料ラック頂部応答加速度 [m/s²]

第12図 燃料ラック頂部最大応答加速度と減衰定数の関係

	>1•) u (1)													
No.	試驗方法	加振方向	入力加速度*1	計測位置*2	頂部加速度	減衰定数											
		74F 1/4 / 7 1 · 1	(m/s^2)		(m/s^2)	(%)											
				а	1.9	9.5											
	1 正弦波掃引試験			b	1.8	9.5											
1		短辺	0.62	С	1.9	9.5											
				d	1.9	9.5											
				е	1.8	9.6											
				а	3.5	8.8											
	2 正弦波掃引試験			b	3.4	8.9											
2		短辺	0.91	С	3.5	8.8											
				d	3.8	8.9											
				е	3.4	8.9											
				а	6.1	8.6											
	3 正弦波掃引試験	短辺			b	5.7	8.8										
3			短辺	短辺	短辺	短辺	1.22	辺 1.22	С	6.1	8.6						
									Ē	d	5.5	8.8					
				е	5.6	8.8											
				a'	2.3	6.2											
					b'	2.3	6.2										
4	正弦波掃引試験	長辺	0.72	c'	2.2	6.1											
					l										d'	2.2	6.1
				e'	2.2	6.1											
				a'	3.1	6.9											
				b'	3.1	6.9											
5	正弦波掃引試験	長辺	0.97	c'	3.1	6.9											
				d'	3.1	6.9											
				e'	3.2	6.9											
				a'	3.9	7.6											
				b'	3.9	7.6											
6	正弦波掃引試験	長辺	1.22	с'	3.9	7.6											
	6 正弦波掃引試験							d'	3.9	7.6							
				e'	3.9	7.6											

第5表 加振試験結果データ一覧(1/2)

注記*1:振動台上の実測加速度(最大値)

*2:計測位置は第9図参照

	>1•			>= 、 , , ,																						
No	試驗方法	加振方向	入力加速度*1	計測位置*2	頂部加速度	減衰定数																				
		7761/22/23 1:13	(m/s^2)	TH MICHE	(m/s^2)	(%)																				
				а	7.3	10.2																				
7 正弦半波加振試				b	6.4	9.9																				
	正弦半波加振試験	短辺	2.91	С	7.2	10.2																				
				d	6.4	10.0																				
				е	6.4	10.0																				
				а	8.4	10.4																				
	8 正弦半波加振試験			b	8.1	10.6																				
8		短辺	3.98	С	8.3	10.4																				
				d	9.6	10.7																				
				е	8.1	10.6																				
				а	12.2	10.7																				
	9 正弦半波加振試験	短辺		b	10.6	10.4																				
9			短辺	短辺	短辺	5.00	短辺 5.00	С	12.2	10.7																
									d	11.9	10.6															
				е	10.6	10.4																				
				a'	6.3	10.2																				
			長辺	長辺	長辺		b'	6.3	10.1																	
10	正弦半波加振試験					長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	長辺	2.96	2.96	c'	6.3	10.2
																d'	6.3	10.2								
				e'	6.3	10.2																				
				a'	7.9	11.1																				
				b'	7.9	11.0																				
11	正弦半波加振試験	長辺	3.75	с'	8.0	11.6																				
				d'	7.9	11.6																				
				e'	8.0	11.6																				
				a'	9.3	10.9																				
12 正弦半				b'	9.3	11.4																				
	正弦半波加振試験	長辺	4.50	с'	9.4	10.9																				
	2 正弦半波加振試験					d'	9.4	10.8																		
				e'	9.4	11.3																				

第5表 加振試験結果データ一覧(2/2)

注記*1:振動台上の実測加速度(最大値)

*2:計測位置は第9図参照

3.4 実物大試験における試験条件の妥当性

実物大供試体の加振試験は、実機ラックの減衰傾向を把握することを目的とした試験であり、 3.2 で述べたように、供試体ラックの主要諸元及び試験水槽の大きさは実機及び実機環境と同等、 または実機と比較して減衰定数が小さくなるように設定した。試験水槽の水深は実機とは異なる が、燃料ラックの振動特性に与える影響が小さいことを確認している(別紙-3)。試験水槽は剛構 造とし、その寸法が供試体ラックの減衰定数に影響を与えないようにしている(別紙-2)。

試験は水槽内でスロッシングが励起されない条件で実施しており、スロッシングが供試体ラックの減衰定数に影響を与えないようにしている。一方、実機では地震動の長周期成分の大きさによっては、使用済燃料貯蔵プールでのスロッシングが励起され、スロッシングにより減衰定数が大きくなるため、スロッシングの影響を考慮していない本試験は安全側の試験条件である(別紙-8)。

実機ラック及び供試体ラックはいずれも基礎ボルトにて燃料プールまたは水槽底部と固定され ており、底部と燃料ラックに隙間ができるほど基礎ボルトが緩んだ場合には振動特性が変わり、 減衰定数への影響があると考えられる。しかし、実機ラック設置時に基礎ボルトについて規定ト ルク値による締付確認を実施しているほか、新潟県中越沖地震後の点検でも基礎ボルトに緩みが 無いこと、また、実機ラックは建屋内の使用済燃料貯蔵プール内にあり、環境が一定に管理され ている静的機器であることから、トルク低下により減衰定数へ影響を与える可能性は低いと考え られる。

なお,基礎ボルトに緩みが生じた場合,基礎ボルトと部材のガタつき等によるエネルギー消散 が増加し,減衰定数がより大きくなることから,基礎ボルトに緩みが無い状態で行った本試験に より取得した減衰定数は安全側の設定となると考えられる。

以上より、本試験で得られた減衰定数を実機へ適用することは妥当と考えられる。

- 4. 試験結果に基づく燃料ラックの設計用減衰定数の設定
- 4.1 実機応答と供試体応答の比較

「第 12 図 燃料ラック頂部最大応答加速度と減衰定数の関係」に、実機ラックの基準地震動 Ss,弾性設計用地震動 Sd に対する応答加速度を追加したものを示す(第 15 図)。なお、基準地震 動 Ss 及び弾性設計用地震動 Sd は、V-2-1-7「設計用床応答曲線の作成方針」の設計用床応答曲 線 I を使用している。第 17 図から第 18 図に使用した設計用床応答曲線を示す。

基準地震動 Ss に対する実機ラックの応答加速度レベルにおける減衰定数は,全て 10%以上であった。弾性設計用地震動 Sd に対する減衰定数は,概ね 8~10%であった。なお,一部ラックの基準地震動 Ss に対する応答加速度が供試体の最大応答加速度を上回っているが,加速度が大きい領域ではほぼ一定の減衰定数となっているため,これらのラックにおける減衰定数は 10%程度と考えられる。

燃料ラック頂部応答加速度 [m/s²]

※床応答スペクトルと実機ラックの固有周期(長辺/短辺)から求めた値の最小値~最大値を 実機応答レベルとして記載した(詳細は第6表参照)。

第15図 実機ラック頂部の最大加速度と減衰定数の関係

また,燃料ラック頂部応答加速度をそれぞれの固有周期を用い近似的に変位に換算し,減衰定 数との関係を検討した(第16図)。応答変位が1mm付近までは減衰が増加し,以降は概ね一定と なる傾向を示している。これは,変位が大きくなるとラックセル内部でチャンネルファスナがラ ックセルと衝突し,減衰効果が飽和するためと考えられ,短辺・長辺ともに同様の傾向を示すと 考えられる。

燃料ラック頂部最大変位(mm)

※床応答スペクトルと実機ラックの固有周期(長辺/短辺)から求めた値の最小値~最大値を 実機応答レベルとして記載した(詳細は第6表参照)。

第16図 実機ラック頂部の最大変位と減衰定数の関係

本試験では、以上の試験により得られた減衰定数を応答加速度及び変位により整理しており、 同一の応答加速度レベルに対して、短辺方向の変位が長辺方向の変位に比較し、大きくなってい る。これは、応答加速度が同一の場合、長辺は固有振動数が高く剛性も大きいため応答変位が小 さくなり、短辺方向の場合固有振動数が低く剛性も小さいため、応答変位が大きくなったためで ある。

実機への減衰定数を適用するにあたり、本試験で得られた減衰定数と同等の加速度及び変位で あることを確認するため、実機ラックでの加速度及び変位の計算した結果を第6表に示す。

第6表の実機の加速度及び変位と計算結果との対応について、第15図へ実機の加速度レベル

の最小値~最大値を記載し,第16図へ変位レベルの最小値~最大値を記載した。これより,減衰 定数を取得した加速度及び変位と実機の加速度及び変位が同等であることを確認した。

なお、燃料ラックの減衰定数と固有振動数の関係については、減衰の要因として、構造減衰、 燃料ラックが水中に設置されていることによる減衰、燃料集合体を貯蔵していることによる減衰 の3つに分類し、既往の知見及び試験結果を用いて検討した(別紙-9)。その結果、実機ラックの 固有振動数領域においては、明確な固有振動数依存性は確認されず、供試体ラックと実機ラック の減衰定数は同程度であると考える。

以上より,減衰定数は応答依存性が強く,実機ラックの応答との対応を評価することにより, 設計用減衰定数を設定することは,妥当であると考える。

4.2 設計用減衰定数の設定

4.1 項より,実機ラックの減衰定数は,貯蔵体数によらず,基準地震動 Ss では 7.0%以上,弾 性設計用地震動 Sd では 5.0%以上であることを確認した。ただし,耐震設計に適用する設計用減 衰定数の設定は,試験結果のばらつき,耐震設計の簡便さと余裕を考慮して,燃料ラックの貯蔵 体数によらず,基準地震動 Ss では 7.0%,弾性設計用地震動 Sd では 5.0%を設定する。

評価用 地震動	加振 方向	ラック種類*1	①固有周期 (s)	②震度 (-)	③応答加速度 (m/s ²)	④変位 (mm)
		77 体タイプ I		1.24	12.2	2.1
		77 体タイプⅡ		1.23	12.1	2.2
		100 体		1.15	11.3	1.1
	短辺	110 体タイプ I		1.15	11.3	1.1
井 沖山 天石		110 体タイプⅡ		1.16	11.4	1.1
基準地震動		121 体		1.18	11.6	1.0
SS=1∼8 減衰7_0%		77 体タイプ I <mark>*</mark> 2				
122 1. 0/0		77 体タイプⅡ <mark>*</mark> 2		_	_	_
	長辺	100 体		1.18	11.6	1.0
		110 体タイプ I		1.17	11.5	0.9
		110 体タイプⅡ		1.17	11.5	0.8
		121 体		1.18	11.6	1.0
		77 体タイプ I		0.64	6.3	1.1
		77 体タイプⅡ		0.64	6.3	1.1
	行江	100 体		0.59	5.8	0.6
	湿辺	110 体タイプ I		0.59	5.8	0.6
弾性設計用		110 体タイプⅡ		0.59	5.8	0.5
地震動		121 体		0.60	5.9	0.5
Sd-1~8		77 体タイプ I <mark>*</mark> 2		_	_	_
減衰 5.0%		77 体タイプ II <mark>*</mark> 2				
	E)TI	100 体		0.60	5.9	0.5
	女辺	110 体タイプ I		0. 59	5.8	0.4
		110 体タイプⅡ		0. 59	5.8	0.4
		121 体		0.60	5.9	0.5

第6表 実機ラックの固有周期と加速度・変位の関係

注: V-2-4-2-2「使用済燃料貯蔵ラックの耐震性についての計算書」では、裕度が一番小さくなる 77 体タイプ I を評価している。

*2:剛構造のため減衰の設定不要

③=②×g (m/s²) (重力加速度)
 ④={③/(2πf)²}×1000
 f=1/①

注記*1 : タイプ I についてはベースが長辺方向に、タイプ II については短辺方向に配置しており、重量が異なる。

5. 結論

今回工認において、柏崎刈羽原子力発電所第7号機の燃料ラックに用いる水平方向の設計用減 衰定数は、基準地震動 Ss:7.0%、弾性設計用地震動 Sd:5.0%を適用した。これらは、実機ラッ クと同等な供試体を用いて、実機と同等な試験条件により行われた加振試験で得られた結果に対 して余裕を考慮した上で設定した値であることから、設計用減衰定数として妥当であることを確 認した。

引用文献

- [1] 大型耐震実験施設(LARGE-SCALE EARTHQUAKE SIMULATOR)パンフレット, 独立行政法人 防災 科学技術研究所
- [2] 浪田他,「水中振動試験による BWR 使用済燃料貯蔵ラックの減衰比」,日本機械学会〔No. 10 8] Dynamics and Design Conference 2010 論文集 No. 417
- [3] 東京電力株式会社 当社原子力発電所における燃料集合体ウォータ・ロッドの曲がりに係る 調査結果について(最終報告)平成25年7月

別紙-1 プール水及び燃料集合体の体数が減衰定数に与える影響

(1) 燃料集合体の体数と減衰定数の関係

燃料集合体の体数による減衰定数への影響を確認するため、模擬燃料集合体の貯蔵率を変えて水 中での加振試験を行った。また、プール水の減衰定数への影響を確認するため、市松ラック単体(燃 料集合体 0%)で気中と水中それぞれで、加振試験を行った。

試験条件を第1-1表に示す。

試験方法 方向		入力加速度*	気中/水	燃料貯蔵率	備去
		(m/s^2)	中	(%)	浦石
		0.71	気中	0	減衰定数をハ
	伝知	0.61, 0.61, 0.62	水中	0, 50, 100	ーフパワー法
	7世12	0.89, 0.89, 0.91	水中	0, 50, 100	により算出
丁动冲扫司学龄		1.19, 1.22, 1.22	水中	0, 50, 100	(別紙-5)
上5公(以)带51 武)映	長辺	0.36	気中	0	
		0.45, 0.72	水中	0, 100	
		0.73, 0.97	水中	0, 100	
		0.98, 1.22	水中	0, 100	
		3. 38, 4. 25, 5. 22	気中	0	減衰定数を自
	行江	3. 13, 4. 06, 5. 10	水中	0	由振動波形よ
工社业社和任教会	宠辺	3. 05, 3. 74, 4. 91	水中	50	り算出(別紙
止弦干波加振码缺		2.91, 3.98, 5.00	水中	100	-6)
	E 'T	3. 09, 3. 85, 4. 67	気中	0	
	女辺	2. 96, 3. 75, 4. 50	水中	100	

第1-1表 プール水及び燃料集合体数の影響評価に用いた試験条件

※振動台上の実測加速度(最大値)。

試験結果から,試験を実施したいずれの燃料ラック頂部応答加速度の範囲においても,貯蔵される燃料集合体の貯蔵率の増加に伴い,減衰定数が増加する傾向があることがわかる(第1-1図)。これは,燃料の貯蔵体数の増加により,ラックセル内部での各燃料集合体とラック間の摩擦,衝突,流体減衰等よる振動エネルギーの消散が大きくなることで,減衰が大きくなったと考えられる。

また,燃料貯蔵率 0%における気中及び水中の試験結果を比較すると,流体付加減衰効果により減 衰定数が大きくなることがわかる。

第1-1図 燃料貯蔵率と減衰定数の関係

(2) 燃料集合体の体数と減衰定数及び発生応力の関係

燃料ラックの減衰定数は、模擬燃料集合体の貯蔵率の増加に伴い変化することから、燃料ラック の耐震評価で考慮すべき貯蔵率と減衰定数及び発生応力について確認した。

許容応力に対する発生応力が最も大きい 77 体ラックを対象に、燃料ラックへの発生応力を貯蔵 率と減衰定数をパラメータにし、解析にて求めた値を第1-2表に示す。

評価の結果,発生応力は燃料ラック重量による依存性が高く,100%設置の状態が最も厳しい設計 条件となることから,設計上は燃料集合体100%設置を仮定して評価すれば良いと考えられる。

貯蔵率(%)	減衰定数(%)*2	総重量(ton)	発生応力(MPa)	許容応力(MPa)
0	3	13.9	48	153
50	5	24.3	87	153
100	7	34. 3	122	153

第1-2表 燃料貯蔵率と発生応力の関係*1

注記*1:基礎ボルトの応力

*2:試験結果より仮定

別紙-2 試験水槽の形状決定方法

燃料ラックの減衰効果には、燃料ラックが流体中を振動することによる流体減衰の効果の影響が 考えられ、燃料ラックと水槽間の隙間が小さいほど流速が速くなり、より大きな流体減衰効果が生 じる。そのため、試験水槽の大きさは、流体減衰の効果が影響しないような隙間として設定した。

第 2-1 図に水槽とラックの隙間を変化させた場合の、ラックが流体から受ける減衰比を示す。今回の実物大試験供試体における水槽と試験ラックの隙間における流体の減衰効果は、試験で得られた供試体ラックの減衰に影響を与えるものではないことを確認した。

V1: 振動中のラック自身の速度

V2:水槽とラック間隙間の流速

水槽とラックの隙間

(b) 短辺方向 第 2-1 図 水槽とラック間隙間が与える流体減衰

試験水槽内で振動する供試体ラックに与える流体減衰は以下の式^[1]に従い算出した。

燃料ラックが水中を振動することによって生じる流体抵抗力によるエネルギー消費は, ラックの 単位高さあたりの流体抵抗力が速度の二乗に比例し, 次のように表される。

$$F = \frac{1}{2} C_D \rho d \int_0^L |V| V dz \cdots (1)$$

ここで、
$$V = \alpha_m \dot{X}$$

$$X = ag(z) \sin(\omega t)$$

$$\alpha_m = \frac{d}{D-d} + 1 = \frac{D}{D-d}$$

$$g(z) : ラックの高さ方向振動モードベクトル$$

流体力が一周期あたりに消費されるエネルギーは式(1)を用いると,

$$E = \int_0^T F \dot{X} dt \cdots (2)$$
$$E = \frac{4}{3} C_D \rho d\alpha_m^2 a^3 \omega^2 \beta L \cdots (3)$$

ここで,

*C*_D:角柱の流体抗力係数

 ρ :流体密度

- d: ラックの振動方向幅
- L: ラックの高さ
- a: ラックの変位振幅
- ω: ラックの固有円振動数

α_m: ラック自身の速度とラックから見た流体の相対速度の比

D:水槽の振動方向の幅

β:高さ方向の流速分布に関する係数

等価減衰として速度比例型減衰力を考えれば,減衰力によって一周期あたりに消費されるエネル ギーは次のように表される。

$$E_0 = C_{ea} a^2 \pi \omega \qquad \cdots \qquad (4)$$

ここで、流体減衰と等価な減衰として、式(3)と(4)が等しいとして等価減衰比を求めると、

$$\zeta_{eq} = \frac{C_{eq}}{2(m+m_v)\omega} = \frac{2\beta}{3\pi} \frac{1}{(m+m_v)} C_D \rho dL \alpha_m^2 a \quad \cdots \quad (5)$$

ここで,

m : ラックの質量

*m*_v:水中におけるラックの付加質量

以上の計算式から,水槽内で振動するラックの流体減衰と等価な減衰は以下となり,燃料ラックの 減衰に対し,ラックと水槽の隙間による流体減衰の影響は十分に小さい。

市松ラックの等価減衰比

長辺方向の加振: $\zeta_{eq} = 0.005\%$ 短辺方向の加振: $\zeta_{eq} = 0.203\%$

ここで,流体低抗力の計算における一様流の流速 V はラックから見た流体の相対速度 V=V₂+V₁を 用いた(第2-2図)。ここで,V₁はラック自身の速度,V₂は流路内の流速である。

一様流中に置かれた角柱で近似第 2-2 図 一様流の流速の考え方

参考文献[1]:藤本他,「流体中で振動する角柱群の減衰特性」,日本機械学会論文集(C編)51巻 471号 実機ラックは水深 11.5m のところに設置されているが,試験では試験設備の関係から試験水 槽の水深は 4.8m とした。この水深の相違が供試体ラックの振動特性に影響を与えないか確認 するため,解析モデルを作成し NASTRAN の MFLUID 機能(解析モデル上考慮している流体の付 加質量を計算する機能)を用いて水深が異なる場合の振動特性を検討した。

(1) 検討方法

供試体ラックの解析モデルを作成し、水深による振動特性への影響を評価した。

試験における地震動入力はスロッシングの影響を回避するような波を使用しているため,水 深の影響評価としての本解析においてもスロッシング効果は考慮していない。

供試体ラックの代表寸法は,幅 1584mm,奥行き 804mm,高さ 4493mm である。NASTRAN の MFLUID 機能を用いて試験水槽の水深 4.8m の場合と実機水深 11.5m の場合の固有振動数と周波数応答 を算出した。ラック外側の水平方向は無限水中とした。

- (2) 検討結果
 - (a) 固有振動数

水深 4.8m の場合と水深 11.5m の場合の固有振動数及び固有振動モードを第 3-1 表及び 第 3-1 図に示す。

この結果から,試験水槽の水深 4.8m の場合と実機水深 11.5m の場合の固有振動数の差 異は小さいことを確認した。

	水深4.8m		水深11.5m	
次数	固有振動数 [Hz]	振動モード	固有振動数 [Hz]	振動モード
1	10.25	Y方向変形	10.20	Y方向変形
2	22.43	X方向変形	22.40	X方向変形

第3-1表 固有振動数の比較

第 3-1 図 水深 4.8m と 11.5m の供試体ラック振動モード

(b) 周波数応答

固有振動数の違いは小さいことがわかったが、応答特性の違いも小さいことを確認する ために、上記の解析モデルを用いて周波数応答計算を行った。第 3-2 図に X 方向加振時の 周波数応答、Y 方向加振時の周波数応答を示す。水深が 4.8m の場合と 11.5m の場合で違い はほとんどないことがわかる。なお、減衰定数は 2% と仮定した。

第3-2図 周波数応答解析結果

(3) 検討結果のまとめ

実機ラックは水深 11.5m のところに設置されているが,試験では試験設備の関係から試験 水槽の水深は 4.8m とした。試験水槽の水深 4.8m の試験で,実機ラックの振動特性に影響を 与えないか検討するため,解析モデルを作成し NASTRAN の MFLUID 機能を用いて水深が異な る場合の振動特性を検討した。その結果,水深 4.8m 及び水深 11.5m の条件において,水位は 付加質量に対して影響を与えないため,固有振動数及び周波数応答に差異がなく,水深 4.8m の試験水槽を用いた試験で実機の振動特性を模擬できることを確認した。

なお,水位をラック高さ以下に変化させることでラックに掛かる付加質量を変化させて, 本解析モデルで指定した水深が付加質量に影響していることを確認した検討結果を以下に示 す。

(4) 水深の影響によるラックの固有値解析

本検討では水深 11.5m と水深 4.8m の固有値解析結果に対して,水位高さ 4.473m (ラック 高さ)と 2m (ラック高さ以下の水位)の 2 ケースの固有値解析を追加実施した。本解析で は、付加質量を考慮した計算を実施している。

第3-2表に供試体ラックの短辺方向及び長辺方向について,水深と固有振動数の関係を示 す。表より,水深11.5mの固有振動数に対してラック高さと同等の水深4.473mの固有振動 数はほぼ変化しないが,ラック高さ以下の水深2mの固有振動数では変化率が大きいことが わかる。ラック高さ以下のケースとして実施した水深2mの固有値解析ではラック高さの半 分程度が水中にないため,ラックに対して付加質量を受けない部分があり,固有振動数が高 くなったといえる。すなわち,本解析結果においてラック高さ以上の水位ではラックに与え る付加質量は変わらず,試験計画の水深4.8mで実機プラントでの水深11.5mの振動特性を 模擬できているといえる。

No.	→k 淴[m]	固有振動数[Hz]		備考
	小木[m]	短辺方向	長辺方向	
1	11.5	10.20	22.40	
2	4.8	10.25	22.43	
3	4.473	10.31	22.46	ラック高さ
4	2	12.10	23.86	ラック高さ以下の水位

第3-2表 水深と固有振動数

別紙-4 試験方法及び減衰定数の算出方法

本試験では、正弦波掃引試験と正弦半波加振試験の2種類の加振をおこない、正弦波掃引試験で は振動台上加速度と供試体頂部加速度から伝達関数を求め、ハーフパワー法を用い減衰定数を算定 し、正弦半波加振試験は自由減衰波形の振幅より減衰定数を算定した。いずれの方法も、一般的で 実績のある方法である。

加振試験をおこなうに当たり、ランダム波により供試体ラックの固有振動数を探索した。次に、 正弦波掃引試験にて、探索したラックの一次固有振動数を中心に±5Hz 程度の帯域を持った正弦波 による加振をおこない、固有振動数を確認するとともに、入力レベルを段階的に増加させた正弦波 掃引試験により、応答の傾向及び減衰定数を確認した。さらに、高い応答レベルの減衰傾向を取得 するため、正弦波掃引試験で得られた固有振動数を目標に正弦半波加振試験をおこない、応答の傾 向及び減衰定数を確認した。以下にそのデータ処理方法を示す。 a. 正弦波掃引試験

正弦波掃引試験にて、ハーフパワー法を適用し、減衰定数を算定するまでのデータ処理の流れは、 以下の通り。

- 正弦波掃引試験において、取得したラック頂部の加速度時刻歴データ及び振動台上加速度時 刻歴データについて、振動数解析を行う。
- ② 振動台上加速度の振動数解析データとラック頂部の振動数解析結果から、伝達関数を計算する。
- ③ ラック頂部の加速度計測点それぞれに対応する伝達関数に対し、ハーフパワー法を適用し減 衰定数を算定する(詳細は別紙-5 参照)。

*1:高速フーリエ変換処理にて,振動数に対する加速度最大値を算出する (FFT:Fast Fourier Transform,高速 フーリエ変換)。

*2:伝達関数:ラック頂部加速度 FFT 結果/振動台上加速度 FFT とした結果をプロットしたもの。 *3:ラック頂部の加速度計測点4点(KR-A-1Y~4Y)について KR-A-1Y と同様の処理を実施

第4-1図 正弦波掃引試験データの処理の例(短辺方向,目標入力加速度1.00m/s²)

b. 正弦半波加振試験

正弦半波加振試験にて,自由減衰波形から減衰定数を算定するまでのデータ処理の流れは,以下 の通り。

- ① 正弦半波加振試験にて取得したラック頂部の加速度時刻歴データを,試験体の一次モードで評価するため,ローパスフィルタ(LPF)により高周波成分を除去する。
- ② フィルタ処理後の加速度波形に対し、振動台加振時間帯を除く加速度のピーク値より減衰比を 求める(詳細は別紙-6及び別紙-7参照)。

*1:ローパスフィルタにて最低次数のモードだけの応答で評価するため、高周波成分を除去する(LPT:Low-pass Filter:ローパスフィルタ)。

*2:振動台加振時間帯を除く加速度波形のピーク値より減衰比を算定する。

*3: ラック頂部の加速度計測点4点(KR-A-1Y~4Y)についてKR-A-1Yと同様の処理を実施する。

*4:振動台上加速度が小さいことを確認する。

第4-2図 正弦半波加振試験データ処理の例(短辺方向,振動台上加速度5.00m/s²)

別紙-5 ハーフパワー法について

加振力 Fe^{iot} を受ける1自由度系の振動方程式は式(1)で表される。

$$m\ddot{x} + c\dot{x} + kx = Fe^{i\omega t} \tag{1}$$

上式の解を $x = Ae^{i\omega t}$ として,式(1)に代入すると,

$$A = \frac{F}{-m\omega^{2} + ic\omega + k} = \frac{F}{k\left\{\left(1 - \frac{m}{k}\omega^{2}\right) + i\frac{c}{k}\omega\right\}}$$

ここで、固有円振動数 $\omega_0 = \sqrt{\frac{k}{m}}$ 、減衰定数 $\zeta = \frac{c}{c_c} = \frac{c}{2\sqrt{mk}} = \frac{c\omega_0}{2k}$ とおくと

$$A = \frac{F}{k \left[\left\{ 1 - \left(\frac{\omega}{\omega_0}\right)^2 \right\} + i2\zeta \frac{\omega}{\omega_0} \right]}$$

よって,

$$x = \frac{1}{k \left[\left\{ 1 - \left(\frac{\omega}{\omega_0}\right)^2 \right\} + i2\zeta \frac{\omega}{\omega_0} \right]} F e^{i\omega t}$$

となる。

正弦波掃引試験を用いた減衰定数の算定は,別紙-4 に示す様に振動台上での正弦波入力による供 試体頂部の応答より,伝達関数(振幅及び位相)を求め,この試験で求めた伝達関数の周波数応答 曲線(第 5-1 図)に対してハーフパワー法を適用している。上式より求めた式(2)より導出される伝 達関数の振幅が,第 5-1 図の応答振幅に対応するものである。

$$A = \frac{1}{k} \frac{1}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \left(2\zeta \frac{\omega}{\omega_0}\right)^2}}$$
(2)

いま $\zeta \leq 1$ とすると式(2)の振幅曲線はピーク値付近で $\mathcal{O} = \mathcal{O}_p$ に対しほぼ対称である。

そこで \mathcal{O}_p より少し低い $_{\mathcal{O}_L}$ 点の振幅を $_{A_L}$ とする。

$$\Delta \omega/2 = \omega_P - \omega_L = \omega_0 - \omega_L (\omega_P \approx \omega_0) \pm v$$

$$A_L = \frac{1}{k} \frac{1}{\sqrt{\left(1 - (\omega_0 - \Delta \omega/2)^2 / \omega_0^2\right)^2 + 4\zeta^2 (\omega_0 - \Delta \omega/2)^2 / \omega_0^2}}$$

$$\approx \frac{1}{k} \frac{1}{\sqrt{(\Delta \omega / \omega_0)^2 + 4\zeta^2}}$$

一方,

$$A_{\max} = \frac{1}{2k\zeta\sqrt{1-\zeta^2}} \approx \frac{1}{2\zeta k}$$

となる。
$$A_{\max} \ge A_L$$
 の比Rは
$$R = \frac{A_{\max}}{A_L} = \frac{\sqrt{(\Delta \omega / \omega)^2 + 4\zeta^2}}{2\zeta}$$

となり, 整理すると

$$\zeta = \frac{1}{2} \frac{\Delta \omega / \omega_0}{\sqrt{R^2 - 1}}$$

となる。 $R = \sqrt{2}$ とすると以下のように簡単になる。

$$\zeta = \frac{1}{2} \frac{\Delta \omega}{\omega_0} = \frac{1}{2} \frac{\omega_U - \omega_L}{\omega_0} = \frac{f_U - f_L}{2f_0}$$

よって、周波数応答の $A_{\max}/\sqrt{2}$ を示す周波数 f_U と f_L 及び固有振動数 f_0 を計測すれば減衰定数 ζ を求めることができる。この減衰定数測定方法をハーフパワー法という(第 5-1 図)。

別紙-6 自由振動波形からの減衰定数の算出方法

自由減衰振動波形は,指数関数的に減衰することから,隣り合う振幅の比の対数をとると常に一 定の値となり,この隣り合う振幅の比の自然対数から対象とする構造の減衰定数を求めることがで きる(第6-1図)。

第6-1図 減衰定数の算出方法(自由振動波形からの減衰定数の算定方法)

別紙-7 正弦半波加振試験における振動台の影響について

正弦半波加振におけるラック頂部及び振動台上の加速度時刻歴波形を第7-1 図に示す。振動台上 加速度応答波形において,正弦半波加振入力後の台上応答加速度は,ラック頂部加速度に比べて無 視できるほど小さいことがわかる。なお,振動台上応答加速度がほぼゼロとなる時点からラック頂 部応答加速度の自由減衰波形として減衰定数を求めている。

第7-1図 燃料ラックの自由振動波形と減衰定数 (正弦半波加振試験,短辺方向,振動台上加速度5.00m/s²)

別紙-8 スロッシングによる減衰への影響について

本試験は、供試体ラックの固有周期を含む振動数範囲で加振試験を行なっている。試験水槽のス ロッシングの固有周期は入力振動数範囲に対し十分大きいため、本試験ではスロッシングが励起さ れない(第8-1表)。一方、実機では、地震動の長周期成分の大きさによっては燃料プールのスロ ッシングが励起される可能性が考えられるため、その影響を検討する。

実機燃料プールのスロッシングの固有周期は,実機ラックの固有周期に対し十分に大きい(第 8-2表)。地震によって実機燃料プールにスロッシングが励起された場合,燃料ラックの振動速度 に対して,スロッシングによるプール水の流速はほぼ一定とみなせる状態であると考えられ,流速 一定の流れの中で物体が振動する場合,流速に依存して減衰定数が大きくなることがあるが^[1],今 回設定する設計用減衰定数はこの影響を考慮せず設定した減衰定数であるため,スロッシングの影 響が無い試験条件で取得した減衰定数を実機の燃料ラックの耐震設計に適用できると考える。

	試験		
	試験水槽の		
	スロッシング	入刀加速度の周期	
市松ラック	1.8~2.3秒	振動台振動 0.050~0.500 秒	

第8-1表 試験水槽のスロッシングの固有周期及び加振試験周期

第8-2表 実機燃料プールのスロッシングの固有周期及び実機ラックの固有周期

	実機		
	実機燃料プール	中地与いた	
	のスロッシング	<u> </u> 夫機フック	
市松ラック	4.3~4.9秒	0. 054~0. 084 秒	

参考文献[1]:Robert D. Blevins, "Flow-Induced Vibration Second Edition", (1990), Van Nostrand Reinhold.

別紙-9 固有振動数と減衰定数の関係について

本試験に用いた供試体ラックと実機ラックは,第9-1表に示す通り,固有振動数が異なることから,実機ラックへの適用性を確認するために固有振動数と減衰定数の関係について検討する。

ラック刑式	時費休粉 (別粉)	固有振動数(Hz)	
ノック空式 「「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」「」」「」「」		短辺	長辺
角管市松型	100体(10列×10列)		
角管市松型	110 体タイプ I (10 列×11 列)		
角管市松型	110 体タイプⅡ(10 列×11 列)		
角管市松型	121 体(11 列×11 列)		
角管市松型	77 体タイプ I (7 列×11 列)		-*
角管市松型	77 体タイプⅡ(7 列×11 列)		$ \times$

第9-1表 水中・燃料貯蔵率100%における燃料ラックの固有振動数について

※: 剛構造のため

本試験より得られた減衰定数について横軸を固有振動数として整理した結果(第9-1図),同一の固有振動数に対しても減衰定数がばらついており,固有振動数との相関が不明確であることから,燃料ラックの減衰効果を細分化し,既往の知見及び試験結果を用いて減衰定数との関係を検討する。

第9-1図 固有振動数と減衰定数の関係

1. 燃料ラックの減衰効果

燃料ラックは,水中に設置された溶接構造物であり,燃料集合体を貯蔵していることから, 減衰として以下に示す効果によるものがあると考えられる。

a. 構造減衰

燃料ラックが曲げモーメント及びせん断力を受けて変形することによる減衰。

- b. 燃料ラックが水中に設置されていることによる減衰 水中で燃料ラックが振動する際の水の抵抗による減衰。
- c. 燃料集合体を貯蔵していることによる減衰 燃料ラックに貯蔵された燃料集合体のガタつきにより,振動エネルギーを吸収することによ る減衰。
- 2. 各減衰効果の振動数依存性について
 - a.構造減衰の振動数依存性について 気中・燃料貯蔵率 0%の試験結果より,構造減衰は約 1%であった(第 9-2 図)。

第9-2図 構造減衰(試験結果)

構造減衰の主要因は材料減衰,即ち材料の分子間の摩擦による減衰と考えられる。簡単のため,燃料ラックの振動モデルを第9-3図に示すような1自由度系のモデルと考え,構造減衰について検討する。

構造減衰による減衰定数 ζ_s は系全体の運動エネルギーEと摩擦による消散エネルギー ΔE との比に比例するので、 ζ_s は以下の式で表される。

$$\zeta_s \propto \frac{\Delta E}{E}$$
 (1)

ここで、Kを剛性、xを変位、 μ を摩擦係数、Nを 抗力、 μN を摩擦力とするとひずみエネルギーEは

$$E = \frac{1}{2}Kx^2 \quad (2)$$

と表される。

一方,摩擦減衰による消散エネルギーΔEは第9-4図の荷重-変位特性の囲む面積で表され,

$$\Delta E = 4\,\mu \mathrm{N}x \qquad (3)$$

となる。

抗力Nが系の剛性Kに比例すると考えて $N \propto Kx$ と すると(3)式は

$$\Delta E = 4\,\mu K x^2 \quad (4)$$

となるため,

$$\frac{\Delta E}{E} \propto \frac{4\mu Kx^2}{\frac{1}{2}Kx^2} = 8\mu \qquad (5)$$

となり、構造減衰による減衰定数は 8μ に比例し、固有振動数には依存しない。

以上より,構造減衰は固有振動数によらず一定の値となると考えられる。これは JEAG4601 に 溶接構造物の減衰定数が 1.0%と規定されていること及び試験結果(気中・燃料貯蔵率 0%の短 辺方向加振結果及び長辺方向加振結果)と矛盾しないことから,構造減衰として 1.0%を想定す ることは妥当であると考える。

第9-4図 荷重—変位特性

b. 燃料ラックが水中に設置されていることによる減衰の振動数依存性について

気中・燃料貯蔵率 0%の試験結果及び水中・燃料貯蔵率 0%の試験結果より,水の抵抗による 減衰定数は短辺方向加振で 4.0%,長辺方向加振で 4.8%であった(第 9-5 図)。

第9-5図 燃料ラックが水中に設置されていることによる減衰(試験結果)

供試体ラックの固有振動数及び減衰定数と実機ラックの固有振動数を整理した結果(第9-2 表)より以下のことがわかる。

- (a)供試体ラック短辺方向加振結果と長辺方向加振結果の減衰定数の差違は 0.6% (第 9-2 表の(a))
- (b)供試体ラック短辺方向と長辺方向加振結果の固有振動数の差違は約8Hz (第9-2表の(b))
- (c)供試体ラックの最大固有振動数と実機ラックの最大固有振動数の差違は約 2Hz (第 9-2 表の(c))

	供試体ラック	実機ラック	供試体ラック	実機ラック
	水中燃料貯蔵率 0%	水中・燃料貯蔵率 100%	水中・燃料貯蔵率 0%	水中・燃料貯蔵率 100%
	短辺方向加振	最小固有振動数	長辺方向加振	最大固有振動数
固有振動数			│	
(Hz)	•		^	(c)
減衰定数	5.1	- (1)	5. 7	—
(%)	↑	(b)	▲	
(a)				

第9-2表 各条件での固有振動数と減衰定数

上記の通り,(a)供試体ラックの短辺方向加振時と長辺方向加振時の減衰定数の差は小さく, (b)供試体ラックの短辺方向加振時と長辺方向加振時の固有振動数の差よりも(c)供試体ラック 長辺方向加振時の固有振動数と実機ラックのうち最大となる固有振動数の差の方がより小さい ことから,固有振動数による実機ラックの減衰定数への大きな影響はないと考えるが,ここで は固有振動数と流体による減衰の関係について,以下の静止流体中で振動する円柱構造物の減 衰の式^[1]を用いて検討する。

$$\zeta_f = \frac{2}{3\pi} \frac{\rho_f D^2}{M} \frac{X_d}{D} \frac{\omega}{\omega_n} C_D \tag{6}$$

ρ_f:流体の密度[kg/m³]

D:代表長さ[m]

M: 高さ方向への単位長さあたりの質量[kg/m]

 X_d :変位振幅[m]

 ω :加振円振動数[rad/s]

 ω_n :固有円振動数[rad/s]

 C_D : 抗力係数

(6)式において、右辺第一項は定数項、第二項は質量に関する項、第三項は応答変位に関す る項、第四項は振動数に関する項、第五項は抗力係数となっている。したがって、固有振動数 の影響は、第四項にて考慮することとなる。

第四項は加振円振動数と固有円振動数の比となっているが,加振試験にて減衰定数の評価を おこなう際,正弦波掃引試験では固有振動数を中心とした加振試験をおこない,伝達関数を求 めて,燃料ラックの共振状態での減衰を評価していること,正弦半波加振試験では試験体の固 有振動数成分を含む正弦半波加振をおこない,固有振動数で振動する自由減衰波形にて減衰を 評価していることから,加振円振動数と固有円振動数は同一となる。

また,実機ラックの耐震設計では,応答が最も大きくなる共振状態を想定し,床応答スペク トルを用いて固有振動数に応じた地震力を設定していることから,加振円振動数と固有円振動 数は同一となる。

以上より,加振円振動数と固有円振動数は同一となり,その比は常に1であるため,流体に よる減衰効果に対して固有振動数依存性はないと考えられる。

- c. 燃料集合体を貯蔵していることによる減衰の振動数依存性について
- (i) 燃料ラック加振時の燃料集合体の挙動について
 - 燃料集合体を貯蔵していることによる減衰について検討を行うにあたり,燃料ラック加振時 の燃料集合体の挙動について整理を行う。

燃料集合体は、燃料ラック支持板の円孔に燃料集合体の下部タイプレートが着座しており、 固定されていないため(第9-6図)、燃料ラックを振動させた場合、燃料ラックの挙動が燃料 集合体に伝わりにくく、燃料ラックと比較して燃料集合体はあまり振動しない(第9-7図

(1))。ただし、燃料ラックの応答変位が大きくなるにつれて、燃料ラックと燃料集合体の相対的な振動は徐々に増加する。

また,燃料ラックの応答変位がさらに大きくなると燃料ラックと燃料集合体頂部の最小隙間 以上に燃料ラックが振動し,ラックセルと燃料集合体頂部が衝突し,燃料集合体もラックセル に押される形で振動するものと考えられる(第9-7図(2))。

第9-6図 燃料集合体の設置状況

(1)燃料ラックの応答変位が小さいとき
 (2)燃料ラックの応答変位が大きいとき
 第 9-7 図 燃料ラックと燃料集合体の挙動

(ii) 燃料集合体を貯蔵していることによる減衰のメカニズム

(i)より,燃料集合体を貯蔵していることによる減衰としては燃料ラックの応答変位によって以下の2つのメカニズムが考えられる。

・燃料ラックの応答変位が小さい領域:

ラックセル内の燃料集合体が相対的に振動する際の燃料集合体周囲の流体による減 衰

・燃料ラックの応答変位が大きい領域:

ラックセル内の燃料集合体が相対的に振動する際の燃料集合体周囲の流体による減 衰に加え、ラックセルと燃料集合体の衝突により生じる燃料集合体のガタつきによ る減衰 (iii) 試験結果における燃料ラックの応答変位と減衰定数

(ii)における減衰のメカニズムを検討するため、水中・燃料貯蔵率100%の試験結果に応 答変位を追加したものを、第9-8 図に示す。

第9-8図 固有振動数と減衰定数の関係

本試験における供試体ラックと燃料集合体頂部の最小隙間は mm であり,供試体ラックの応答変位が mm より小さい領域(第9-8図 ①)においてはラックセルと燃料集合体が 衝突しておらず,燃料集合体が相対的に振動することによる減衰が生じており,応答変位が mm よりも大きい領域(第9-8図 ②~④)においてはラックセルと燃料集合体の衝突に より生じる燃料集合体のガタつきによってより大きな減衰が生じていると考えられる。 (iv) 燃料集合体の相対的な振動による減衰効果

供試体ラックの応答変位が小さい領域における減衰に着目すると、水中・燃料貯蔵率 0%の 試験結果及び水中・燃料貯蔵率 100%の試験結果より、燃料集合体が相対的に振動することに よる減衰定数は応答変位の増加に伴って増加しており、その増加分は 2%未満である(第 9-9 図)。

これは燃料集合体の相対的な振動により、燃料集合体周囲の流体による減衰が生じていると考えられ、流体による減衰については前述の通り固有振動数依存性はないと考えられる。

長辺方向加振

※短辺方向加振は応答変位がラックセルと燃料集合体の最小隙間 mm より小さい試験結果が存在しないため、長辺方向加振の試験結果のみを記載する。 第9-9 図 応答変位が小さい領域での燃料集合体を貯蔵していることによる減衰

(試験結果)

(v) ラックセルと燃料集合体の衝突により生じるガタつきによる減衰

実機ラックの応答変位が大きい領域における減衰に着目すると,水中・燃料貯蔵率 0%の試 験結果及び水中・燃料貯蔵率 100%の試験結果では,燃料集合体のガタつきによる減衰定数の 増加分はラックセル内の燃料集合体が相対的に振動する際の燃料集合体周囲の流体による増加 分を含めて,短辺方向加振で 3.6%,長辺方向加振で 4.5%であった(第9-10 図)。

第 9-10 図 応答変位が大きい領域での燃料集合体を貯蔵していることによる減衰 (試験結果)

前述の通り応答変位が大きい領域については、ラックセルが燃料集合体と衝突することによる燃料集合体のガタつきによって減衰効果が発生していると考えられるため、その減衰効果の 振動数依存性について検討を行う。

燃料集合体のガタつきによる減衰定数 ζ_fは,燃料集合体のガタつきによる消散エネルギー ΔEと燃料ラックのひずみエネルギーEの比であるため,ζ_fは以下の式で表される。

$$\zeta_f = \frac{\Delta E}{E} = \frac{\Delta E}{\frac{1}{2}Kx^2} \tag{7}$$

K:燃料ラックの剛性*x*:燃料ラックの変位振幅

ここで、燃料集合体のガタつきによる減衰定数の振動数依存性を検討するため、第9-11図 に示す通り供試体ラックを加振方向へn倍、加振と直交方向へm倍拡大した燃料ラック(以 下「拡大ラック」という。)を想定し、それらの減衰定数を比較検討する。

第9-11図 供試体ラックと拡大ラック(概念図)

なお、以降の検討においては以下の仮定を行う。

- ・燃料ラック断面を長方形とみなして剛性(断面二次モーメント)を算出する
- ・燃料集合体は、燃料ラックに押されて振動すると考えられることから、燃料集合体と燃料ラックの応答加速度・応答速度は同一であるとみなす
- ・燃料集合体のガタつきによる消散エネルギーは燃料集合体の運動エネルギーに比例する

拡大ラックの固有振動数 f'は、供試体ラックの剛性をK、質量をM、拡大ラックの剛性をK、 質量をM'とすると、K'は断面二次モーメントに比例し、ラック高さは供試体ラックと拡大ラ ックで一定とするとM'はラック面積に比例することから、

$$f' = \frac{1}{2\pi} \sqrt{\frac{K'}{M'}} = \frac{1}{2\pi} \sqrt{\frac{n^3 \times m \times K}{n \times m \times M}} = nf \qquad (8)$$

となる。

また、変位をx、速度をv、加速度をa、振動数をfとすれば、これらの関係は

$$x = \frac{a}{\left(2\pi f\right)^2} \qquad (9)$$

$$v = \frac{a}{2\pi f} \qquad (10)$$

であるため、拡大ラックの変位をx'、速度をv'、加速度をa'、振動数をf'とすれば、

$$x' = \frac{a'}{(2\pi f')^2} = \frac{a'}{(2\pi nf)^2}$$
(11)

$$v' = \frac{a}{2\pi f'} = \frac{a}{2\pi nf} \qquad (12)$$

となる。

ここで,拡大ラックを供試体ラックと同じ応答加速度で加振する場合を想定すると, a'= a であるため,

$$x' = \frac{a}{(2\pi nf)^2} = \frac{a}{n^2 (2\pi f)^2} = \frac{x}{n^2}$$
(13)
$$v' = \frac{a}{2\pi nf} = \frac{a}{n2\pi f} = \frac{v}{n}$$
(14)

となる。

拡大ラックにおける燃料集合体のガタつきによる消散エネルギー $\Delta E'$ は、拡大ラックの燃料集合体貯蔵体数が供試体ラックに対し nm 倍、燃料集合体1本当たりの運動エネルギーが速度の2乗に比例するため $1/n^2$ 倍となることから、

$$\Delta E' = \left(nm\right) \times \frac{1}{n^2} \times \Delta E = \frac{m}{n} \Delta E \qquad (15)$$

となる。なお、ここでは燃料集合体は燃料ラックに押されて振動するため、両者の速度は同 一であるとしている。

一方, 拡大ラックのひずみエネルギーE'は, 供試体ラックのひずみエネルギーEに対し, 剛 性と変位の2乗に比例することから,

$$E' = n^3 m \times \frac{1}{n^4} \times E = \frac{m}{n} E \qquad (16)$$

となる。

以上より、拡大ラックの減衰定数 ζ_f は、

$$\zeta_{f}' = \frac{\Delta E'}{E'} = \frac{\frac{m}{n}\Delta E}{\frac{m}{n}E} = \frac{\Delta E}{E} = \zeta_{f} \qquad (17)$$

となるため、燃料ラックの固有振動数が変化した場合(燃料ラックを加振方向へn倍,加振と 直交方向へm倍した場合)においても燃料集合体のガタつきによる減衰は一定の値となる。

(vi) 燃料集合体を貯蔵していることによる減衰の振動数依存性について

燃料集合体を貯蔵していることによる減衰は,燃料集合体が相対的に振動することによる減 衰及び燃料集合体のガタつきによる減衰であると考え,それぞれについて振動数依存性を検討 した結果,いずれもその依存性は確認されなかった。 3. 固有振動数と減衰定数の関係について

燃料ラックの減衰定数について、構造減衰、燃料ラックが水中に設置されていることによる 減衰、燃料集合体を貯蔵していることによる減衰の3つの要因に分類し、固有振動数との関係 を既往の知見及び試験結果を用いて検討した。その結果、実機ラックの固有振動数領域におい ては明確な固有振動数依存性は確認されず、供試体ラックと実機ラックの減衰定数は同程度で あると考える。

なお、参考として類似構造物(水中に設置された溶接構造物)である加圧水型軽水炉におけるキャン型燃料ラックの固有振動数と減衰定数の関係を第9-12図に示す。同図より実機ラックの固有振動数領域においては、固有振動数の増加に伴う減衰定数の変化はあまり見られず、さらに高振動数領域(20Hz以上)においては、固有振動数の増加に伴い減衰定数が低下する傾向が見られる。

第9-12図 類似構造物における減衰定数と振動数の関係^[2]

- 参考文献
- [1] 事例に学ぶ流体関連振動[第2版] 日本機械学会
- [2] 原子力発電所耐震設計技術規程 JEAC4601-2008 日本電気協会より引用(一部加筆)