柏崎刈羽原子力発電所第7号機 工事計画審査資料			
資料番号	KK7添-3-010-1 改2		
提出年月日	2020年 6月 4日		

V-3-3-7-2-1-1 ろ過水タンクの強度計算書

2020年 6月 東京電力ホールディングス株式会社

まえがき

本計算書は、V-3-1-4「クラス3機器の強度計算の基本方針」及びV-3-2-6「クラス3容器の強度計算方法」に基づいて計算を行う。 なお、適用規格の選定結果について以下に示す。適用規格の選定に当たって使用する記号及び略語については、V-3-2-1「強度計算方法の概要」に定義したものを使用する。

· 評価条件整理表

	既	施設時の技		クラスアッ	ップするか	,		条件ア	ップする	カュ		既工認に				
機器名	設 or	術基準に対 象とする施	クラス	施設時	DB	SA	条件	DB 豸	⊱件	SA ∮	条件	おける評価対象の	施設時の 適用規格	評価区分	同等 性評価	評価 クラス
	新設	設の規定が あるか	アップ の有無	の機器 クラス	クラス	クラス	アップ の有無	圧力 (MPa)	温度 (℃)	圧力 (MPa)	温度 (℃)	価結果の 有無	週 用		区分	
ろ過水タンク	既設	有	有	Non	DB-3	_	無	静水頭	66	_	_	_	設計・建 設規格	設計・建設規格	_	DB-3

目 次

1.	設計	条件·····	l
1.	1 書	算部位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・]	1
1.	2 青	算条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	強度	計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.	1 N	3 ろ過水タンクの強度計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	2. 1.	開放タンクの胴の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
	2. 1.	開放タンクの底板の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
	2. 1.	開放タンクの管台の厚さの計算・・・・・・・10)
	2. 1.	開放タンクの胴の穴の補強計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2.	2 N	4 ろ過水タンクの強度計算・・・・・・・・・・・・・・・・・・・34	1
	2. 2.	開放タンクの胴の厚さの計算・・・・・・・・・・・・・・・・・34	1
	2. 2.	開放タンクの底板の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)
	2. 2.	開放タンクの管台の厚さの計算・・・・・・・・・・・・・・・・・・・・・・・・41	1
	2. 2.	開放タンクの胴の穴の補強計算······47	7

1. 計算条件

1.1 計算部位

概要図に強度計算箇所を示す。

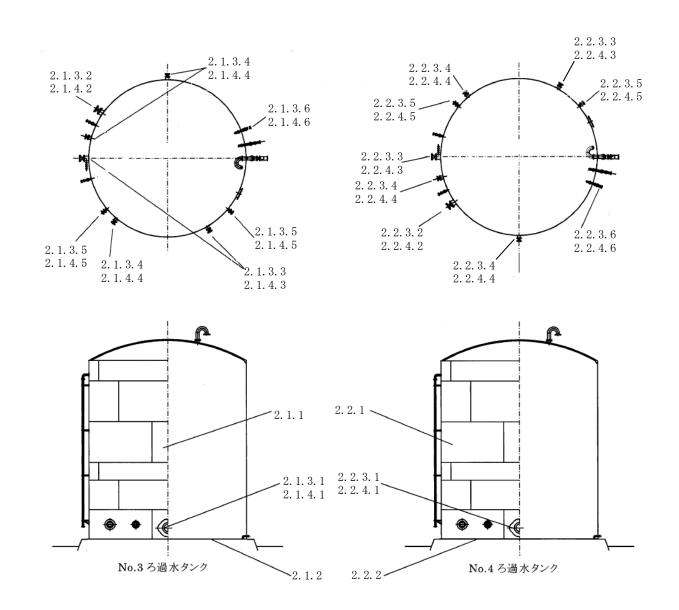


図 1-1 No. 3 ろ過水タンク 概要図

図 1-2 No. 4 ろ過水タンク 概要図

図中の番号は次ページ以降の 計算項目番号を示す。

1.2 設計条件

表 1-1 No. 3 ろ過水タンク 設計条件

最高使用圧力	(MPa)	静水頭
最高使用温度	(\mathcal{C})	66

表 1-2 No. 4 ろ過水タンク 設計条件

最高使用圧力	(MPa)	静水頭
最高使用温度	(\mathcal{C})	66

2. 強度計算

- 2.1 No.3 ろ過水タンクの強度計算
 - 2.1.1 開放タンクの胴の厚さの計算設計・建設規格 PVD-3010 (PVC-3920 準用)

2.1.1.1 側板最下段

胴板名称			側板最下段
材料			SS400
水頭	Н	(m)	11. 2700
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	8.40
必要厚さ	tз	(mm)	4. 50
tı, t₂, t₃の大きい値	t	(mm)	8.40
呼び厚さ	t s o	(mm)	9.00
最小厚さ(tso-JIS公差)	t s*	(mm)	8.80
又は実際の厚さ (検査記録)			
評価: $t s \ge t$,よって十分である。			

注記*: t sは実際の厚さ(検査記録)とする。

2.1.1.2 側板2段目

胴板名称			側板2段目
材料			SS400
水頭	Н	(m)	9. 2700
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	6. 91
必要厚さ	tз	(mm)	4. 50
tı, t2, t3の大きい値	t	(mm)	6. 91
呼び厚さ	t s o	(mm)	9.00
最小厚さ(tso-JIS 公差)	t s *	(mm)	8.35
又は実際の厚さ (検査記録)			
評価: $t s \ge t$,よって十分である。		•	

注記*:tsは最小厚さ(tso-JIS 公差)とする。

2.1.1.3 側板3段目

			/mith o cut in
			側板3段目
材料			SS41
水頭	Н	(m)	7. 2700
最高使用温度		(℃)	66
胴の内径	D i	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	5. 42
必要厚さ	tз	(mm)	4.50
tı, t2, t3の大きい値	t	(mm)	5. 42
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS公差)	t s*	(mm)	5.80
又は実際の厚さ (検査記録)			
評価 : $t_s \ge t$,よって十分である。)	•	

注記*: t sは実際の厚さ(検査記録)とする。

2.1.1.4 側板4段目

胴板名称			側板4段目
材料			SS41
水頭	Н	(m)	6. 0800
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3. 00
必要厚さ	t 2	(mm)	4. 54
必要厚さ	tз	(mm)	4. 50
tı, t2, t3の大きい値	t	(mm)	4. 54
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS 公差)	t s*	(mm)	5. 25
又は実際の厚さ (検査記録)			
評価: $t_s \ge t$,よって十分である。			

注記*: t sは最小厚さ(t so-JIS公差)とする。

2.1.1.5 側板5段目

胴板名称			側板 5 段目
材料			SS41
水頭	Н	(m)	3. 3200
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	2. 48
必要厚さ	tз	(mm)	4. 50
tı, t2, t3の大きい値	t	(mm)	4.50
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS公差)	t s*	(mm)	5. 25
又は実際の厚さ(検査記録)			
評価: $t_s \ge t$,よって十分である。		<u>.</u>	

注記*:tsは最小厚さ(tso-JIS 公差)とする。

2.1.1.6 側板6段目

胴板名称			側板6段目
材料			SS41
水頭	Н	(m)	0.5600
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	0.42
必要厚さ	tз	(mm)	4.50
tı, t2, t3の大きい値	t	(mm)	4.50
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS公差)	t s*	(mm)	5. 50
又は実際の厚さ (検査記録)			
評価: t s ≧ t, よって十分である。			

注記*:tsは最小厚さ(tso-JIS 公差)とする。

2.1.2 開放タンクの底板の厚さの計算 設計・建設規格 PVD-3010 (PVC-3960, PVC-3970 準用)

(1) 設計·建設規格 PVC-3960

平板

(2) 設計・建設規格 PVC-3970

底板名称			平板
材料			SS400
必要厚さ	t	(mm)	3.00
呼び厚さ	t b o	(mm)	12.00
最小厚さ	tь	(mm)	11.35
評価: t b ≧ t , よって十分である。			

2.1.3 開放タンクの管台の厚さの計算 設計・建設規格 PVD-3010 (PVC-3980 準用)

2.1.3.1 側マンホール

管台名称			側マンホール
材料			SS400
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	D i	(m)	0. 6100
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t 1	(mm)	0.34
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	9.00
最小厚さ	t n	(mm)	8. 35
評価: t n ≥ t, よって十分	である。		

2.1.3.2 350A 変圧器防災用ノズル

管台名称			変圧器防災用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(℃)	66
管台の内径	Dі	(m)	0. 3176
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 19
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	19.00
最小厚さ	t n	(mm)	16. 62
評価: t n ≥ t, よって十分で	: : : : : : : : :		

2.1.3.3 300A 消火用ノズル, 工事用水用ノズル

然			消火用ノズル
管台名称 			工事用水用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(℃)	66
管台の内径	Dі	(m)	0. 2837
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 17
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	17. 40
最小厚さ	t n	(mm)	15. 22
評価: t n ≧ t , よって十分で	<u></u> ある。		

2.1.3.4 200A 雑用水用ノズル, 予備用ノズル, タンク連絡用ノズル

			雑用水用ノズル
管台名称			予備用ノズルタンク
			タンク連絡用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 1909
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 12
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	12.70
最小厚さ	t n	(mm)	11. 11
評価: t n ≥ t, よって十分であ	る。		

2.1.3.5 150A 工事用水用ノズル, 予備用ノズル

管台名称			工事用水用ノズル
2			予備用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 1432
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.09
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	tno	(mm)	11.00
最小厚さ	t n	(mm)	9. 62
評価: t n ≧ t , よって十分であ	る。		

2.1.3.6 100A ドレンノズル

管台名称			ドレンノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 0971
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.06
必要厚さ	t 2	(mm)	3.50
t ₁ , t ₂ の大きい値	t	(mm)	3.50
呼び厚さ	t n o	(mm)	8.60
最小厚さ	t n	(mm)	7. 52
評価: t n ≥ t, よって十分で	<u></u>		

2.1.4 開放タンクの胴の穴の補強計算 設計・建設規格 PVD-3010, PVD-3510 (PVC-3160, PVC-3950 準用)

2.1.4.1 側マンホール

参照附図 WELD-12

管台名称			側マンホール
胴板材料			SS400
管台材料			SS400
強め板材料			SS400
最高使用圧力	Р	(MPa)	0.11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	100
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	611. 30
管台が取付く穴の径	d w	(mm)	640.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	8. 35
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	t n r	(mm)	0.34
穴の補強に必要な面積	A r	(mm ²)	5.135×10^3
補強の有効範囲	X 1	(mm)	611. 30
補強の有効範囲	X 2	(mm)	611. 30
補強の有効範囲	X	(mm)	1222. 60
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	1370.00
管台の外径	D o n	(mm)	628.00
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			側マンホール
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	334.4
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	4.965×10^{3}
補強に有効な総面積	A0	(mm^2)	5.335×10^{3}
補強: Ao>Ar, よって十分である	<i>,</i>		

管台名称			側マンホール
大きい穴の補強		•	
補強を要する穴の限界径	d ј	(mm)	1000.00
評価: $d \le d_j$, よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W_1	(N)	5.335×10^{5}
溶接部にかかる荷重	W_2	(N)	5.376×10^{5}
溶接部の負うべき荷重	W	(N)	5.335×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	70
応力除去の有無			無
すみ肉溶接の許容せん断応力係数	女	F 1	0.46
突合せ溶接の許容せん断応力係数	女	F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	2.723×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	3.315×10^{5}
突合せ溶接部の引張力	W e 6	(N)	5.766×10^{5}
突合せ溶接部の引張力	W e 7	(N)	5.876×10^{5}
管台のせん断力	W e 10	(N)	5.689×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	8.488×10^{5}
予想される破断箇所の強さ	Webp2	(N)	5.876×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	9.080×10^{5}
予想される破断箇所の強さ	Webp4	(N)	9.004×10^{5}
予想される破断箇所の強さ	Webp5	(N)	8. 412×10 ⁵

評価:Webp1≧W, Webp2≧W, Webp3≧W, Webp4≧W, Webp5≧W 以上より十分である。

2.1.4.2 350A 変圧器防災用ノズル

参照附図 WELD-12

管台名称			変圧器防災用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0.11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	322. 36
管台が取付く穴の径	d w	(mm)	368.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	16.62
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10.64
胴板の計算上必要な厚さ	tsr	(mm)	8. 40
管台の計算上必要な厚さ	tnr	(mm)	0.20
穴の補強に必要な面積	Αr	(mm ²)	2.727×10^3
補強の有効範囲	X 1	(mm)	322. 36
補強の有効範囲	X 2	(mm)	322. 36
補強の有効範囲	X	(mm)	644. 72
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	750.00
管台の外径	Don	(mm)	355. 60
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
	Lз	(mm)	0.00

管台名称			変圧器防災用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	637. 5
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	2.414×10^{3}
補強に有効な総面積	A_0	(mm^2)	3.088×10^3
補強: A ₀ >Ar, よって十分である。			

管台名称			変圧器防災用ノズル
大きい穴の補強		1	
補強を要する穴の限界径	d j	(mm)	1000.00
評価: $d \le d$ j , よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W 1	(N)	3.088×10^{5}
溶接部にかかる荷重	W_2	(N)	3.091×10^{5}
溶接部の負うべき荷重	W	(N)	3.088×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	$S \le 2$	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0.46
突合せ溶接の許容せん断応力係数	•	F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	1.542×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W е з	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.939×10^{5}
突合せ溶接部の引張力	W e 6	(N)	3.265×10^{5}
突合せ溶接部の引張力	W e 7	(N)	3.379×10^{5}
管台のせん断力	W e 10	(N)	5.761×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	4.807×10^{5}
予想される破断箇所の強さ	Webp2	(N)	3.379×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	5.204×10^{5}
予想される破断箇所の強さ	Webp4	(N)	7.700×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	7. 303×10^5
		I	

評価:Webp1≧W, Webp2≧W, Webp3≧W, Webp4≧W, Webp5≧W 以上より十分である。

2.1.4.3 300A 消火用ノズル, 工事用水用ノズル

参照附図 WELD-12

kh 1. h 11.			消火用ノズル
管台名称			工事用水用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0.11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	288. 06
管台が取付く穴の径	d w	(mm)	331.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	15. 22
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	t n r	(mm)	0.18
穴の補強に必要な面積	Αr	(mm ²)	2.438×10^{3}
補強の有効範囲	X 1	(mm)	288. 06
補強の有効範囲	X 2	(mm)	288.06
補強の有効範囲	X	(mm)	576. 12
補強の有効範囲	Y 1	(mm)	20.88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	686.00
管台の外径	D o n	(mm)	318. 50
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			消火用ノズル
			工事用水用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	584. 0
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	2.151×10^{3}
補強に有効な総面積	A_0	(mm^2)	2.771×10^3
補強: A ₀ >A _r , よって十分である。			

			消火用ノズル
管台名称			工事用水用ノズル
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: $d \le d_j$,よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W_1	(N)	2.771×10^5
溶接部にかかる荷重	W_2	(N)	2.780×10^{5}
溶接部の負うべき荷重	W	(N)	2.771×10^5
すみ肉溶接の許容せん断応力	S w 1	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数	Ź	F 1	0.46
突合せ溶接の許容せん断応力係数	ά	F 2	0.56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	1.381×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W е з	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.751×10^{5}
突合せ溶接部の引張力	W e 6	(N)	2.924×10^{5}
突合せ溶接部の引張力	W e 7	(N)	3.039×10^{5}
管台のせん断力	W e 10	(N)	4.720×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	4. 305×10^5
予想される破断箇所の強さ	Webp2	(N)	3.039×10^{5}
予想される破断箇所の強さ	W e b p з	(N)	4.675×10^{5}
予想される破断箇所の強さ	Webp4	(N)	6.471×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	6.101×10^{5}
評価:Webp1 \ge W, Webp2 \ge	W, Webp	o 3 ≧W, Webp4	a≧W, Webp5≧W

以上より十分である。

2.1.4.4 200A 雑用水用ノズル, 予備用ノズル, タンク連絡用ノズル

参照附図 WELD-12

			参照附図 WELD-12
			雑用水用ノズル
管台名称			予備用ノズル
			タンク連絡用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(\mathcal{C})	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	194. 08
管台が取付く穴の径	d w	(mm)	228.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	11.11
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10. 64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	tnr	(mm)	0. 12
穴の補強に必要な面積	Ar	(mm^2)	1.643×10^{3}
補強の有効範囲	X 1	(mm)	194. 08
補強の有効範囲	X 2	(mm)	194. 08
補強の有効範囲	X	(mm)	388. 16
補強の有効範囲	Y 1	(mm)	20.88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	484.00
管台の外径	Don	(mm)	216. 30
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

			雑用水用ノズル
管台名称			予備用ノズル
			タンク連絡用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	426. 7
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	1.435×10^{3}
補強に有効な総面積	A_0	(mm^2)	1.898×10^{3}
補強: A ₀ >Ar, よって十分である。			

管台名称			雑用水用ノズル 予備用ノズル タンク連絡用ノズル
 大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: d ≦ d j , よって大きい穴(の補強計算	は必要ない。	
溶接部にかかる荷重	W 1	(N)	1.898×10^{5}
溶接部にかかる荷重	W 2	(N)	1.915×10^{5}
溶接部の負うべき荷重	W	(N)	1.898×10^{5}
すみ肉溶接の許容せん断応力	S w 1	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0.46
突合せ溶接の許容せん断応力係数		F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	9.377×10^4
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.113×10^{5}
突合せ溶接部の引張力	W e 6	(N)	1.986×10^{5}
突合せ溶接部の引張力	W e 7	(N)	2.093×10^{5}
管台のせん断力	W e 10	(N)	2.331×10^{5}
	Webpı	(N)	2.924×10^{5}
予想される破断箇所の強さ	Webp2	(N)	2.093×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	3.099×10^{5}
予想される破断箇所の強さ	Webp4	(N)	3.444×10^{5}
予想される破断箇所の強さ	Webp5	(N)	3.269×10^{5}

評価: Webp1 Webp2 W, Webp3 W, Webp4 W, Webp5 W 以上より十分である。

2.1.4.5 150A 工事用水用ノズル, 予備用ノズル

参照附図 WELD-12

			参照的図 WELD 12
<u></u> 			工事用水用ノズル
管台名称			予備用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	145. 96
管台が取付く穴の径	d w	(mm)	177. 00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	9. 62
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8.40
管台の計算上必要な厚さ	tnr	(mm)	0.09
穴の補強に必要な面積	A r	(mm ²)	1.237×10^{3}
補強の有効範囲	X 1	(mm)	145. 96
補強の有効範囲	X 2	(mm)	145. 96
補強の有効範囲	X	(mm)	291. 92
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	402.00
管台の外径	Don	(mm)	165. 20
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			工事用水用ノズル 予備用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	370.0
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	1.058×10^3
補強に有効な総面積	A_0	(mm^2)	1.464×10^{3}
補強: A ₀ >A _r , よって十分である。			

管台名称			工事用水用ノズル 予備用ノズル
			VIIIVIV
補強を要する穴の限界径	d j	(mm)	1000.00
評価: d≦dj, よって大きい穴の	の補強計算	は必要ない。	
溶接部にかかる荷重	W 1	(N)	1.464×10^{5}
溶接部にかかる荷重	W 2	(N)	1.487×10^{5}
溶接部の負うべき荷重	W	(N)	1.464×10^{5}
すみ肉溶接の許容せん断応力	S w 1	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0.46
突合せ溶接の許容せん断応力係数		F 2	0.56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	7. 162×10^4
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	8.574×10^4
突合せ溶接部の引張力	W e 6	(N)	1.517×10^{5}
突合せ溶接部の引張力	W e 7	(N)	1.625×10^{5}
管台のせん断力	W e 10	(N)	1.530×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	2.233×10^{5}
予想される破断箇所の強さ	Webp2	(N)	1.625×10^{5}
予想される破断箇所の強さ	Wе b р з	(N)	2.374×10^{5}
予想される破断箇所の強さ	Webp4	(N)	2.388×10^{5}
予想される破断箇所の強さ	Webp5	(N)	2.247×10^{5}
評価:Webp1≧W, Webp2≧V			

評価: $Webp1 \ge W$, $Webp2 \ge W$, $Webp3 \ge W$, $Webp4 \ge W$, $Webp5 \ge W$ 以上より十分である。

2.1.4.6 100A ドレンノズル

参照附図 WELD-18

管台名称			ドレンノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0.11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	99. 26
管台が取付く穴の径	d w	(mm)	127. 00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	7. 52
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10.64
胴板の計算上必要な厚さ	tsr	(mm)	8.40
管台の計算上必要な厚さ	tnr	(mm)	0.06
穴の補強に必要な面積	Ar	(mm^2)	842. 6
補強の有効範囲	X 1	(mm)	99. 26
補強の有効範囲	X 2	(mm)	99. 26
補強の有効範囲	X	(mm)	198. 52
補強の有効範囲	Y 1	(mm)	20.88
補強の有効範囲	Y 2	(mm)	18. 80
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	306.00
管台の外径	D o n	(mm)	114. 30
溶接寸法	L 1	(mm)	6. 00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	6. 00

管台名称			ドレンノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	552. 6
すみ肉溶接部の有効補強面積	Аз	(mm^2)	72.00
強め板の有効補強面積	A 4	(mm^2)	703. 2
補強に有効な総面積	A_0	(mm^2)	1.328×10^{3}
補強: A₀>A r, よって十分である) _o		

管台名称			ドレンノズル
大きい穴の補強			
補強を要する穴の限界径	d ј	(mm)	1000.00
評価: d \leq d $_{\rm j}$, よって大きい穴の補強計算は必要ない。			
溶接部にかかる荷重	W_1	(N)	1.328×10^{5}
溶接部にかかる荷重	W_2	(N)	1.067×10^{5}
溶接部の負うべき荷重	W	(N)	1.067×10^{5}
すみ肉溶接の許容せん断応力	S w 1	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数	ζ	F 1	0.46
突合せ溶接の許容せん断応力係数	τ	F 2	0.56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	4.955×10^4
すみ肉溶接部のせん断力	W e 2	(N)	4.955×10^4
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	6. 385×10^4
突合せ溶接部の引張力	W e 6	(N)	1.049×10^{5}
突合せ溶接部の引張力	W e 7	(N)	1. 166×10^5
管台のせん断力	W e 10	(N)	8. 211×10^4
予想される破断箇所の強さ	W e b p 1	(N)	2.041×10^{5}
予想される破断箇所の強さ	Webp2	(N)	1.166×10^{5}
予想される破断箇所の強さ	W еbрз	(N)	2.183×10^{5}
予想される破断箇所の強さ	Webp4	(N)	1.460×10^{5}
予想される破断箇所の強さ	Webp5	(N)	1.317×10^{5}
		L	

評価: $Webp1 \ge W$, $Webp2 \ge W$, $Webp3 \ge W$, $Webp4 \ge W$, $Webp5 \ge W$ 以上より十分である。

2.2 No.4 ろ過水タンクの強度計算

2.2.1 開放タンクの胴の厚さの計算 設計・建設規格 PVD-3010 (PVC-3920 準用)

2.2.1.1 側板最下段

胴板名称			側板最下段
材料			SS400
水頭	Н	(m)	11. 2700
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	8. 40
必要厚さ	tз	(mm)	4.50
t 1 , t 2, t 3の大きい値	t	(mm)	8. 40
呼び厚さ	t s o	(mm)	9.00
最小厚さ(tso-JIS公差)	t s *	(mm)	8. 50
又は実際の厚さ (検査記録)			
評価: t s≥ t , よって十分である。		_	

注記*: t sは実際の厚さ(検査記録)とする。

2.2.1.2 側板2段目

		<u> </u>	Indian and the
胴板名称			側板2段目
材料			SS400
水頭	Н	(m)	9. 2700
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	6. 91
必要厚さ	tз	(mm)	4.50
tı, t2, t3の大きい値	t	(mm)	6. 91
呼び厚さ	t s o	(mm)	9.00
最小厚さ(tso-JIS公差)	t s*	(mm)	8. 35
又は実際の厚さ (検査記録)			
評価: t s ≧ t , よって十分である。		·	

注記*: t sは最小厚さ(t so-JIS公差)とする。

2.2.1.3 側板3段目

胴板名称			 側板 3 段目
材料			SS41
水頭	Н	(m)	7. 2700
最高使用温度		(℃)	66
胴の内径	Di	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	5. 42
必要厚さ	tз	(mm)	4. 50
t ₁ , t ₂ , t ₃ の大きい値	t	(mm)	5. 42
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS 公差)	t s*	(mm)	5.80
又は実際の厚さ (検査記録)			
評価: t s ≥ t , よって十分である	0	•	

注記*: t sは実際の厚さ(検査記録)とする。

2.2.1.4 側板4段目

胴板名称			側板4段目
材料			SS41
水頭	Н	(m)	6. 0800
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	4. 54
必要厚さ	tз	(mm)	4.50
tı, t², t³の大きい値	t	(mm)	4. 54
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS 公差)	t s*	(mm)	5. 25
又は実際の厚さ (検査記録)			
評価: t s \geq t , よって十分である	0	·	

注記*: t sは最小厚さ(t so-JIS公差)とする。

2.2.1.5 側板5段目

胴板名称			側板5段目
材料			SS41
水頭	Н	(m)	3. 3200
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	2.48
必要厚さ	tз	(mm)	4.50
tı, t2, t3の大きい値	t	(mm)	4.50
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS公差)	t s*	(mm)	5. 25
又は実際の厚さ (検査記録)			
評価: $t_s \ge t$,よって十分である。			

注記*:tsは最小厚さ(tso-JIS 公差)とする。

2.2.1.6 側板6段目

胴板名称			側板6段目
材料			SS41
水頭	Н	(m)	0.5600
最高使用温度		(℃)	66
胴の内径	Dі	(m)	10.64
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		0.70
継手の種類			突合せ両側溶接
放射線検査の有無			無し
必要厚さ	t 1	(mm)	3.00
必要厚さ	t 2	(mm)	0.42
必要厚さ	tз	(mm)	4.50
tı, t2, t3の大きい値	t	(mm)	4. 50
呼び厚さ	t s o	(mm)	6.00
最小厚さ(tso-JIS公差)	t s*	(mm)	5. 50
又は実際の厚さ (検査記録)			
評価: $t s \ge t$, よって十分である。			

注記*: t sは最小厚さ(t so-JIS公差)とする。

2.2.2 開放タンクの底板の厚さの計算 設計・建設規格 PVD-3010 (PVC-3960, PVC-3970 準用)

(1) 設計·建設規格 PVC-3960

底板の形状	平板
-------	----

(2) 設計·建設規格 PVC-3970

底板名称			平板
材料			SS400
必要厚さ	t	(mm)	3.00
呼び厚さ	t b o	(mm)	12.00
最小厚さ	tь	(mm)	11.35
評価: t b ≧ t,	よって十分でも	ある。	

2.2.3 開放タンクの管台の厚さの計算設計・建設規格 PVD-3010 (PVC-3980 準用)

2.2.3.1 側マンホール

管台名称			側マンホール
材料			SS400
水頭	Н	(m)	11. 2700
最高使用温度		(℃)	66
管台の内径	D i	(m)	0. 6100
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	100
継手効率	η		1.00
継手の種類			突合せ両側溶接
放射線検査の有無			有り
必要厚さ	t 1	(mm)	0.34
必要厚さ	t 2	(mm)	3.50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	tno	(mm)	9.00
最小厚さ	t n	(mm)	8. 35
評価: t n ≥ t, よって十分で	である。	·	

2.2.3.2 350A 変圧器防災用ノズル

管台名称			変圧器防災用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 3176
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 19
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	19. 00
最小厚さ	t n	(mm)	16. 62
評価: t n ≥ t,よって十分である。		·	

2.2.3.3 300A 消火用ノズル,工事用水ノズル

管台名称			消火用ノズル
			工事用水用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 2837
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 17
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	17. 40
最小厚さ	t n	(mm)	15. 22
評価: t n ≥ t, よって十分である。	0		

2.2.3.4 200A 雑用水用ノズル, 予備用ノズル, タンク連絡用ノズル

			雑用水用ノズル
管台名称			予備用ノズルタンク
			タンク連絡用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 1909
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0. 12
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	tno	(mm)	12.70
最小厚さ	t n	(mm)	11.11
評価: t n ≥ t,よって十分である。	0		

2.2.3.5 150A 工事用水用ノズル, 予備用ノズル

管台名称			工事用水用ノズル
			予備用ノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	Dі	(m)	0. 1432
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.09
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	tno	(mm)	11.00
最小厚さ	t n	(mm)	9. 62
評価: t n ≥ t,よって十分である。	0		

2.2.3.6 100A ドレンノズル

管台名称			ドレンノズル
材料			STPG370-S
水頭	Н	(m)	11. 2700
最高使用温度		(\mathcal{C})	66
管台の内径	D i	(m)	0. 0971
液体の比重	ρ		1.00
許容引張応力	S	(MPa)	93
継手効率	η		1.00
継手の種類			継手無し
放射線検査の有無			無し
必要厚さ	t 1	(mm)	0.06
必要厚さ	t 2	(mm)	3. 50
t ₁ , t ₂ の大きい値	t	(mm)	3. 50
呼び厚さ	t n o	(mm)	8.60
最小厚さ	t n	(mm)	7. 52
評価: t n ≥ t, よって十分である	5.		

2.2.4 開放タンクの胴の穴の補強計算

設計・建設規格 PVD-3010, PVD-3510 (PVC-3160, PVC-3950 準用)

2.2.4.1 側マンホール

参照附図 WELD-12

管台名称			側マンホール
胴板材料			SS400
管台材料			SS400
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(\mathcal{C})	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	100
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	611. 30
管台が取付く穴の径	d w	(mm)	640.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	8. 35
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	t n r	(mm)	0. 34
穴の補強に必要な面積	A r	(mm^2)	5. 135×10^3
補強の有効範囲	X 1	(mm)	611. 30
補強の有効範囲	X 2	(mm)	611. 30
補強の有効範囲	X	(mm)	1222. 60
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	1370.00
管台の外径	D o n	(mm)	628. 00
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			側マンホール
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	334. 4
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	4.965×10^{3}
補強に有効な総面積	A_0	(mm^2)	5.335×10^3
補強: A ₀ >A _r , よって十分である) ₀		

管台名称			側マンホール
大きい穴の補強			
補強を要する穴の限界径	d ј	(mm)	1000.00
評価: $d \le d_j$, よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W_{1}	(N)	5.335×10^{5}
溶接部にかかる荷重	W_{2}	(N)	5.376×10^{5}
溶接部の負うべき荷重	W	(N)	5.335×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	70
応力除去の有無			無
すみ肉溶接の許容せん断応力係数	•	F 1	0.46
突合せ溶接の許容せん断応力係数	•	F 2	0.56
突合せ溶接の許容引張応力係数		F 3	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	2.723×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	3.315×10^{5}
突合せ溶接部の引張力	W e 6	(N)	5.766×10^{5}
突合せ溶接部の引張力	W e 7	(N)	5.876×10^{5}
管台のせん断力	W e 10	(N)	5.689×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	8.488×10^{5}
予想される破断箇所の強さ	Webp2	(N)	5.876×10^{5}
予想される破断箇所の強さ	W е b р з	(N)	9.080×10^{5}
予想される破断箇所の強さ	Webp4	(N)	9.004×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	8.412×10^5
			•

評価:Webp1≧W, Webp2≧W, Webp3≧W, Webp4≧W, Webp5≧W 以上より十分である。

2.2.4.2 350A 変圧器防災用ノズル

参照附図 WELD-12

管台名称			変圧器防災用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	S n	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	322. 36
管台が取付く穴の径	d w	(mm)	368.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	16. 62
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10.64
胴板の計算上必要な厚さ	tsr	(mm)	8. 40
管台の計算上必要な厚さ	tnr	(mm)	0. 20
穴の補強に必要な面積	Αr	(mm^2)	2.727×10^{3}
補強の有効範囲	X 1	(mm)	322. 36
補強の有効範囲	X 2	(mm)	322. 36
補強の有効範囲	X	(mm)	644. 72
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	750.00
管台の外径	D o n	(mm)	355. 60
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	L 3	(mm)	0.00

管台名称			変圧器防災用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	637. 5
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36. 00
強め板の有効補強面積	A 4	(mm^2)	2.414×10^3
補強に有効な総面積	A_0	(mm^2)	3.088×10^{3}
補強: A ₀ >Ar, よって十分である。			

管台名称			変圧器防災用ノズル
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: d ≦ d j, よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W 1	(N)	3.088×10^{5}
溶接部にかかる荷重	W_2	(N)	3.091×10^{5}
溶接部の負うべき荷重	W	(N)	3.088×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	$S \le 2$	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	$S \le 4$	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0. 46
突合せ溶接の許容せん断応力係数		F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	1.542×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e з	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.939×10^{5}
突合せ溶接部の引張力	W e 6	(N)	3.265×10^{5}
突合せ溶接部の引張力	W e 7	(N)	3.379×10^{5}
管台のせん断力	W e 10	(N)	5.761×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	4.807×10^{5}
予想される破断箇所の強さ	Webp2	(N)	3.379×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	5.204×10^{5}
予想される破断箇所の強さ	Webp4	(N)	7.700×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	7.303×10^{5}
			1

評価: Webp1 Wy, Webp2 Wy, Webp3 Wy, Webp4 Wy, Webp5 Wy上より十分である。

2.2.4.3 300A 消火用ノズル, 工事用水用ノズル

参照附図 WELD-12

hata I. I. Al			 消火用ノズル
管台名称			工事用水用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0.11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	288. 06
管台が取付く穴の径	d w	(mm)	331.00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	15. 22
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8.40
管台の計算上必要な厚さ	t n r	(mm)	0.18
穴の補強に必要な面積	A r	(mm^2)	2.438×10^3
補強の有効範囲	X 1	(mm)	288. 06
補強の有効範囲	X 2	(mm)	288. 06
補強の有効範囲	X	(mm)	576. 12
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	686.00
管台の外径	D o n	(mm)	318. 50
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			消火用ノズル
			工事用水用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	584. 0
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	2.151×10^{3}
補強に有効な総面積	A_0	(mm^2)	2.771×10^{3}
補強: A₀>Ar, よって十分である。			

			消火用ノズル
管台名称			工事用水用ノズル
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: d \leq d $_{\rm j}$, よって大きい穴の	の補強計算	は必要ない。	
溶接部にかかる荷重	W_1	(N)	2.771×10^{5}
溶接部にかかる荷重	W_2	(N)	2.780×10^{5}
溶接部の負うべき荷重	W	(N)	2.771×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	$S\le 2$	(MPa)	56
突合せ溶接の許容引張応力	$S\le 3$	(MPa)	70
管台壁の許容せん断応力	$S\le 4$	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数	·	F 1	0.46
突合せ溶接の許容せん断応力係数		F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	1.381×10^{5}
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.751×10^{5}
突合せ溶接部の引張力	W e 6	(N)	2.924×10^{5}
突合せ溶接部の引張力	W e 7	(N)	3.039×10^5
管台のせん断力	W e 10	(N)	4.720×10^5
予想される破断箇所の強さ	W e b p 1	(N)	4.305×10^{5}
予想される破断箇所の強さ	W e b p 2	(N)	3.039×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	4.675×10^{5}
予想される破断箇所の強さ	Webp4	(N)	6.471×10^5
予想される破断箇所の強さ	W e b p 5	(N)	6.101×10^{5}
評価:Wеbр1 \(\) Wеbр2 \(\) \(\)	W, Webp	o 3 ≧W, Web	p 4 ≧ W, W e b p 5 ≧ W

評価: $Webp1 \ge W$, $Webp2 \ge W$, $Webp3 \ge W$, $Webp4 \ge W$, $Webp5 \ge W$ 以上より十分である。

2.2.4.4 200A 雑用水用ノズル, 予備用ノズル, タンク連絡用ノズル

参照附図 WELD-12

			参照的図 WELD-I2 T
管台名称			雑用水用ノズル 予備用ノズル タンク連絡用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(\mathcal{C})	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	194. 08
管台が取付く穴の径	d w	(mm)	228. 00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	11. 11
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10. 64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	tnr	(mm)	0. 12
穴の補強に必要な面積	Ar	(mm^2)	1.643×10^{3}
補強の有効範囲	X 1	(mm)	194. 08
補強の有効範囲	X 2	(mm)	194. 08
補強の有効範囲	X	(mm)	388. 16
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8.35
強め板の外径	Ве	(mm)	484.00
管台の外径	Don	(mm)	216. 30
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00
			1

管台名称			雑用水用ノズル 予備用ノズル タンク連絡用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A_2	(mm^2)	426.7
すみ肉溶接部の有効補強面積	Аз	(mm^2)	36.00
強め板の有効補強面積	A 4	(mm^2)	1.435×10^{3}
補強に有効な総面積	A_0	(mm^2)	1.898×10^{3}
補強: A ₀ >A _r , よって十分である。	•		

			雑用水用ノズル
管台名称			予備用ノズル
			タンク連絡用ノズル
大きい穴の補強			
補強を要する穴の限界径	d ј	(mm)	1000.00
評価: $d \le d_j$, よって大きい穴の	の補強計算	は必要ない。	
溶接部にかかる荷重	W_1	(N)	1.898×10^{5}
溶接部にかかる荷重	W_2	(N)	1.915×10^{5}
溶接部の負うべき荷重	W	(N)	1.898×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	$S\le 2$	(MPa)	56
突合せ溶接の許容引張応力	$S\le 3$	(MPa)	70
管台壁の許容せん断応力	$S\le 4$	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0. 46
突合せ溶接の許容せん断応力係数		F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	9.377×10^4
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	1.113×10^{5}
突合せ溶接部の引張力	W e 6	(N)	1.986×10^{5}
突合せ溶接部の引張力	W e 7	(N)	2.093×10^{5}
管台のせん断力	W e 10	(N)	2.331×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	2.924×10^{5}
予想される破断箇所の強さ	Webp2	(N)	2.093×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	3.099×10^{5}
予想される破断箇所の強さ	Webp4	(N)	3.444×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	3.269×10^{5}
評価:Webp1 Webp2 V	W Webr		$h n_4 \ge W W \in h n_5 \ge W$

評価: Webp1 Webp2 W, Webp3 W, Webp4 W, Webp5 W 以上より十分である。

2.2.4.5 150A 工事用水用ノズル,予備用ノズル

参照附図 WELD-12

tote 1. to 41.			工事用水用ノズル
管台名称			予備用ノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	145. 96
管台が取付く穴の径	d w	(mm)	177. 00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	9. 62
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	D i	(m)	10. 64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	t n r	(mm)	0.09
穴の補強に必要な面積	A r	(mm^2)	1.237×10^{3}
補強の有効範囲	X 1	(mm)	145. 96
補強の有効範囲	X 2	(mm)	145. 96
補強の有効範囲	X	(mm)	291. 92
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	0.00
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	402.00
管台の外径	D o n	(mm)	165. 20
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
溶接寸法	Lз	(mm)	0.00

管台名称			工事用水用ノズル 予備用ノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	370.0
すみ肉溶接部の有効補強面積	Аз	(mm ²)	36.00
強め板の有効補強面積	A 4	(mm^2)	1.058×10^{3}
補強に有効な総面積	A_0	(mm^2)	1.464×10^{3}
補強: Ao>Ar, よって十分である。			

管台名称			工事用水用ノズル 予備用ノズル
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: $d \le d_j$, よって大きい穴の	の補強計算	は必要ない。	
溶接部にかかる荷重	W 1	(N)	1.464×10^{5}
溶接部にかかる荷重	W_2	(N)	1.487×10^{5}
溶接部の負うべき荷重	W	(N)	1.464×10^{5}
すみ肉溶接の許容せん断応力	S w 1	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0.46
突合せ溶接の許容せん断応力係数		F 2	0.56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	7.162×10^4
すみ肉溶接部のせん断力	W e 2	(N)	0.000
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	8.574×10^4
突合せ溶接部の引張力	W e 6	(N)	1.517×10^{5}
突合せ溶接部の引張力	W e 7	(N)	1.625×10^{5}
管台のせん断力	W e 10	(N)	1.530×10^{5}
予想される破断箇所の強さ	W e b p 1	(N)	2.233×10^{5}
予想される破断箇所の強さ	W e b p 2	(N)	1.625×10^{5}
予想される破断箇所の強さ	W е b р з	(N)	2.374×10^{5}
予想される破断箇所の強さ	W e b p 4	(N)	2.388×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	2.247×10^{5}

評価: $Webp1 \ge W$, $Webp2 \ge W$, $Webp3 \ge W$, $Webp4 \ge W$, $Webp5 \ge W$ 以上より十分である。

2.2.4.6 100A ドレンノズル

参照附図 WELD-18

管台名称			ドレンノズル
胴板材料			SS400
管台材料			STPG370-S
強め板材料			SS400
最高使用圧力	Р	(MPa)	0. 11
最高使用温度		(℃)	66
胴板の許容引張応力	S s	(MPa)	100
管台の許容引張応力	Sn	(MPa)	93
強め板の許容引張応力	S e	(MPa)	100
穴の径	d	(mm)	99. 26
管台が取付く穴の径	d w	(mm)	127. 00
胴板の最小厚さ	t s	(mm)	8. 35
管台の最小厚さ	t n	(mm)	7. 52
胴板の継手効率	η		1.00
係数	F		1.00
胴の内径	Dі	(m)	10.64
胴板の計算上必要な厚さ	t s r	(mm)	8. 40
管台の計算上必要な厚さ	t n r	(mm)	0.06
穴の補強に必要な面積	Ar	(mm^2)	842.6
補強の有効範囲	X 1	(mm)	99. 26
補強の有効範囲	X 2	(mm)	99. 26
補強の有効範囲	X	(mm)	198. 52
補強の有効範囲	Y 1	(mm)	20. 88
補強の有効範囲	Y 2	(mm)	18.80
強め板の最小厚さ	t e	(mm)	8. 35
強め板の外径	Ве	(mm)	306.00
管台の外径	Don	(mm)	114. 30
溶接寸法	L 1	(mm)	6.00
溶接寸法	L 2	(mm)	0.00
	L 3	(mm)	6. 00

管台名称			ドレンノズル
胴板の有効補強面積	A 1	(mm^2)	0.000
管台の有効補強面積	A 2	(mm^2)	552. 6
すみ肉溶接部の有効補強面積	Аз	(mm ²)	72. 00
強め板の有効補強面積	A 4	(mm^2)	703. 2
補強に有効な総面積	A_0	(mm^2)	1. 328×10^3
補強: A ₀ >Ar, よって十分である	る。		

管台名称			ドレンノズル
大きい穴の補強			
補強を要する穴の限界径	d j	(mm)	1000.00
評価: $d \le d_j$, よって大きい穴	の補強計算	は必要ない。	
溶接部にかかる荷重	W_1	(N)	1.328×10^{5}
溶接部にかかる荷重	W_2	(N)	1.067×10^{5}
溶接部の負うべき荷重	W	(N)	1.067×10^{5}
すみ肉溶接の許容せん断応力	$S \le 1$	(MPa)	46
突合せ溶接の許容せん断応力	S w 2	(MPa)	56
突合せ溶接の許容引張応力	S w 3	(MPa)	70
管台壁の許容せん断応力	S w 4	(MPa)	65
応力除去の有無			無
すみ肉溶接の許容せん断応力係数		F 1	0.46
突合せ溶接の許容せん断応力係数		F 2	0. 56
突合せ溶接の許容引張応力係数		Fз	0.70
管台壁の許容せん断応力係数		F 4	0.70
すみ肉溶接部のせん断力	W e 1	(N)	4.955×10^4
すみ肉溶接部のせん断力	W e 2	(N)	4.955×10^4
すみ肉溶接部のせん断力	W e 3	(N)	0.000
突合せ溶接部のせん断力	W e 4	(N)	6.385×10^4
突合せ溶接部の引張力	W e 6	(N)	1.049×10^{5}
突合せ溶接部の引張力	W e 7	(N)	1.166×10^{5}
管台のせん断力	W e 10	(N)	8. 211×10 ⁴
予想される破断箇所の強さ	W e b p 1	(N)	2.041×10^{5}
予想される破断箇所の強さ	Webp2	(N)	1.166×10^{5}
予想される破断箇所の強さ	Wеbрз	(N)	2.183×10^{5}
予想される破断箇所の強さ	Webp4	(N)	1.460×10^{5}
予想される破断箇所の強さ	W e b p 5	(N)	1.317×10^{5}
			1

評価:Webp1≧W, Webp2≧W, Webp3≧W, Webp4≧W, Webp5≧W 以上より十分である。