本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第	育7号機 工事計画審査資料
資料番号	KK7 補足-025-2 改 3
提出年月日	2020年7月1日

タービン建屋の地震応答計算書に関する補足説明資料

2020年7月 東京電力ホールディングス株式会社 1. 工事計画添付書類に係る補足説明資料

V-2-2-5「タービン建屋の地震応答計算書」の記載内容を補足するための資料を以下に示す。

別紙1 地震応答解析における既工認と今回工認の解析モデル及び手法の比較

別紙 1-1 タービン建屋の地震応答解析モデルの変更点について

別紙2 地震応答解析における耐震壁及び鉄骨部のせん断スケルトン曲線の設定

別紙3 地震応答解析における材料物性の不確かさに関する検討

別紙3-1 材料物性の不確かさを考慮した検討に用いる地震動の選定について

別紙3-2 材料物性の不確かさを考慮した地震応答解析

別紙4 タービン建屋のねじれによる影響について

別紙 5 水平つなぎばねの諸元及び非線形性を考慮した解析

下線部:今回ご提示資料

別紙1-1 タービン建屋の地震応答解析モデルの変更点について

目 次

1.	概要	別紙1-1-1
2.	タービン建屋の地震応答解析モデルの変更について ・・・・・・・・・・・・・・・・	別紙1-1-1
2.1	補助壁の考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-1
2.2	コンクリート実剛性の考慮 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-2
2.3	表層地盤ばねの変更 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙1-1-3
2.4	既工認モデルと今回工認モデルの諸元の比較 ・・・・・・・・・・・・・・・・	別紙1-1-4

1. 概要

今回工認におけるタービン建屋の水平方向の地震応答解析モデル(以下「今回工認モデル」という。)は基本的には既工認時の地震応答解析モデル(以下「既工認モデル」という。)に基づいて設定しているが、解析モデルの精緻化を目的とし、既工認モデルから変更を行っている。本資料では、変更の概要を示す。

2. タービン建屋の地震応答解析モデルの変更について

2.1 補助壁の考慮

今回工認においては、地震時の挙動をより実応答に近い形で評価するため、動的 地震荷重算定時の地震応答解析において使用する建屋剛性の評価に関して、既工認モ デルでは耐震要素として考慮しなかったが、実際には耐震壁として考慮可能であると 考えられる壁を補助壁として、その分の剛性を考慮する。

補助壁の選定基準の設定に当たっては,「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005制定)」を参考にした。図2-1に一例としてB2F(T.M.S.L.-5.1m~T.M.S.L.-1.1m)の補助壁として剛性を考慮する範囲を示す。

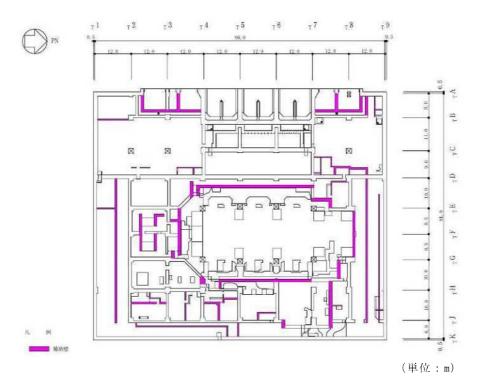


図2-1 補助壁の考慮範囲 (B2F, T.M.S.L.-5.1m)

2.2 コンクリート実剛性の考慮

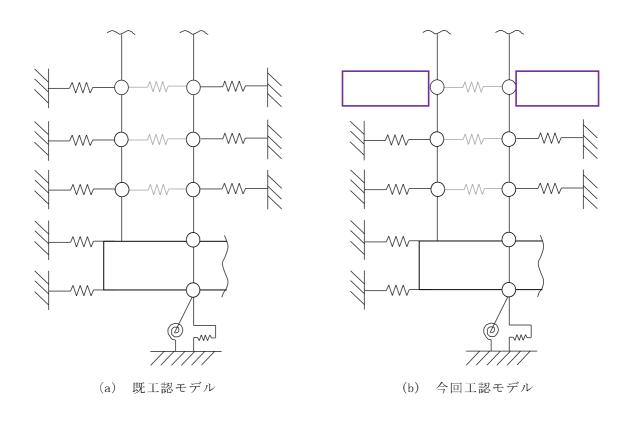

今回工認においては、地震時の挙動をより実応答に近い形で評価するため、動的 地震荷重算定時の地震応答解析において使用する建屋剛性の評価に関して、コンク リート実強度に基づき評価される実剛性を用いる。ただし、許容値の算定に当たって は、設計基準強度(330kgf/cm²: 32.3N/mm²)を用いる。表2-1に既工認モデル及び 今回工認モデルで用いるコンクリートの材料物性値を示す。

表2-1 地震応答解析に用いるコンクリートの材料物性値の設定

材料物性値	既工認モデル	今回工認モデル
	設計基準強度	実強度
コンクリート	建屋部, T/G架台:32.3(N/mm²)	建屋部, T/G架台:43.1(N/mm²)
強度	(330(kgf/cm ²))	(440(kgf/cm ²))
Fc	基礎スラブ:29.4(N/mm²)	基礎スラブ:39.2(N/mm²)
	$(300(kgf/cm^2))$	(400(kgf/cm²))
コンクリートの 単位体積重量 γ	22.6(kN/m ³) (2.3(tf/m ³))	23.5(kN/m³) (2.4(tf/m³))
ヤング係数 E	$2.1 \times 10^{5} \times \left(\frac{\gamma}{2.3}\right)^{1.5} \times \sqrt{\frac{\text{F c}}{200}}$ (kgf/cm^{2})	$3.35 \times 10^{4} \times \left(\frac{\gamma}{24}\right)^{2} \times \left(\frac{F \text{ c}}{60}\right)^{\frac{1}{3}}$ (N/mm^{2})
せん断弾性係数 G	$\frac{\mathrm{E}}{2 \ (1+v)}$	$\frac{\mathrm{E}}{2 \ (1+\nu \)}$
ポアソン比 ν	0. 167	0.2
適用規準	鉄筋コンクリート構造計算規準・同解説 ((社)日本建築学会,1988改定)	原子力施設鉄筋コンクリート構造 計算規準・同解説 ((社)日本建 築学会,2005制定)

2.3 表層地盤ばねの変更

既工認モデルでは地盤表層部 (新期砂層) についても地盤ばねとして考慮していたが、今回工認モデルでは、基準地震動Ssによる地盤応答レベルを踏まえ、表層部では建屋—地盤相互作用が見込めないと判断し、地震時の挙動をより実応答に近い形で評価するため、この部分の地盤ばねを考慮しない。図2-2に地震応答解析モデルにおける表層地盤ばねの変更の概念図を示す。

:表層地盤ばねの変更箇所

図2-2 表層地盤ばねの変更 (概念図)

2.4 既工認モデルと今回工認モデルの諸元の比較 表2-2に既工認モデルと今回工認モデルの諸元の比較を示す。

表2-2 既工認モデルと今回工認モデルの諸元の比較 (NS方向) (1/4)

(a) 既工認モデル

T. M. S. L. (m)	T/G架台		建屋	
44. 3		(1) 3,490 2,510	(2) 2, 132 681	
38. 6		(3) 5,335 1,157		
30. 9		(4) 10,907 3,123	(5) 4, 207 7, 658	(6) 845 140
25. 8		,	(7) 4, 221 45, 062	(8) 2, 365 25, 191
20. 4	(19) 10, 551 –	(9) 19, 023 35, 409	(10) 9, 960 39, 879	
12. 3	(20) 7, 159	(11) 17, 465 61, 510	(12) 20, 883 51, 560	
4. 9		(13) 16, 692 58, 791	(14) 21, 037 75, 605	
-1.1		(15) 11, 854 39, 286	(16) 15, 095 104, 103	
-5.1		(17) 50, 405 385, 830		
-7.9		(18) 27, 015 151, 634		

	T/G架台	建屋					
44. 3		(1) 4. 0	(2)				
	<u> </u> 	- (3)	2. 7				
38. 6		5.8	_				
	1	(4)	(5)	(6)			
30. 9		200. 0	94. 6 64, 644	1. 1 -			
	1		(7)	(8)			
25.8		04.000	115.0				
	(19)	84, 328 (9)	50, 284 (10)	4. 5			
20.4	13. 9	153. 2	133. 7				
20. 1	-	82, 226	72, 329	_			
	(20)	(11)	(12)				
12.3		235, 7	255, 6				
	1	148, 356	108, 286				
	10. 2	(13)	(14)				
4. 9		220. 5	349.1				
	1	129, 870 (15)	178, 046 (16)				
-1.1	_	241. 9	327.9				
***		145, 704	171, 477				
		(17)	,				
-5.1		7, 954					
		_					

部材番号 せん断断面積(m²) 面二次モーメント(

(質点番号) 重量(t) 回転慣性重量 (×10²t・m²)

②コンクリート部 基礎スラブ

①コンクリート部 建屋及びT/G架台 ャング係数E 2.7 $\times 10^6$ (t/m^2) せん断弾性係数G 1.2 $\times 10^6$ (t/m^2) ヤング係数E2.6 $\times 10^6$ (t/m^2) せん断弾性係数G1.1 $\times 10^6$ (t/m^2) ポアソン比ν 0.167 ポアソン比v 0.167 減衰定数 h 5% 減衰定数 h 5%

基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(NS方向)(2/4)

(b) 今回工認モデル

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1 34230 24. 6	2 20910 6. 7	
38. 6		3 52320 11. 3		
30. 9		4 106960 30. 6	5 41250 75. 1	6 8290 1. 4
25. 8			7 41390 441. 9	8 23190 247. 0
20. 4	19 103470 -	9 186550 347. 2	10 97680 391. 1	
12. 3	20 70210	11 171270 603. 2	12 204800 505. 6	
4. 9		13 163700 576. 5	14 206300 741. 4	
-1.1		15 116250 385. 3	16 148030 1020. 9	
-5. 1		17 494300 3783, 7		
-7. 9		18 264930 1487. 0		
,	•		質点番号 重量(kN	

T. M. S. L. (m)	T/G架台		建屋		
44.3		1	9		
		4.00 -	2.70		
38. 6		2			
		5. 80 -	1		
30. 9	1	3	10	16	
			95. 4	1.1	
		204. 1	64600	-	
25.8			11	17	
		84300	120. 5		
			50300	4.5	
20.4	18	4	12		
	13.9	168.6	146.5	_	
	_	82200	72300		
12. 3	19	5	13		
		248.0	282. 0		
	10. 2	148400	108300		
4. 9	10.2	6	14		
		251.5	393.6		
		129900	178000		
-1.1	_	7	15		
		273.8	392.0		
		145700	171500		
-5.1		8			
		7954. 0 -			

部材番号
せん断断面積(m²)
販売ニルエーイント(m [±])

①コンクリート部 建屋及びT/G架台

②コンクリート部 基礎スラブ

ヤング係数E 2.88 ×10⁴ (N/mm²) せん断弾性係数G 1.20 ×10⁴ (N/mm²) ポアソン比 v 0.20

回転慣性重量(×10⁵kN・m²)

ブクリート部 基礎スプノ ヤング係数E 2.79 ×10⁴ (N/mm²) せん断弾性係数G 1.16 ×10⁴ (N/mm²) ポアソン比ν 0.20 減衰定数h 5%

減衰定数 h 5% 基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(EW方向)(3/4)

(a) 既工認モデル

T. M. S. L. (m)	T/G架台	建屋								
		(1)	(2)		(3)		(4)		(5)	
44.3		451	1, 341		1, 339		1, 358		1, 133	
		17	645		644		653		325	
		(6)	(7)		(8)		(9)		(10)	
38.6		577	1,300		1.274		1.207		977	ļļ
		36	637		624		590		288	
00.0		(11)	(12)	(19)	(13)	(18)	(14)	(17)	(15)	(16)
30.9		1, 145	1,609	221	3,171	2,029	3, 384	2, 023	1,913	464
		146 (20)	794	(21)	1,010	617 (22)	1,088	615 (23)	606	69 (24)
25. 8		1,113		1,705		1, 171		1, 263		1, 334
20.0		73		827		81		95		388
	(42)	(25)	(26)	021	(27)	(31)	(28)	(30)	(29)	300
20.4	10, 551	1, 541	5, 375		4, 832	2,548	5, 214	2,631	6,842	
	-	79	8, 085		2, 537	1, 409	2, 776	1, 588	9, 342	
	(43)	(32)			(33)	(35)			(34)	
12.3	7, 159	12,798			7, 738	8,542			9,270	
	-	32, 897			15, 075	16, 960			19, 378	
		(36)				(37)				
4. 9		29, 538				8, 191				
		107, 002				16, 673				,
-1.1		(38)				(39)				
1. 1		18, 867 68, 159				8, 082 10, 738				
		(40)				10, 130				
-5. 1		50, 405								
		538, 238								
		(41)								
-7.9		27, 015								
		212, 080								

(質点:	番号)
重量	(t)
回転慣性重量	$(\times 10^{2} \cdot m^{2})$

T. M. S. L. (m)	T/G架台		建屋							
		(1)	(2)		(3)		(4)		(5)	
44. 3		1, 30 -	0. 72 -	0, 06	0, 72 -	0.09	0, 72 -	0.09	0, 72 -	0.09
		(6)	(7)		(8)		(9)		(10)	
38. 6	,	1.90 -	<u>0.91</u> -	-	0.21	=	0.91	=	0-21	_
		(11)	(12)	(19)	(13)	(18)	(14)	(17)	(15)	(16)
30. 9		25, 3 7, 074	14. 4	<u>0.3</u> -	26.8	29. 2 3, 772	26.8	29, 2 3, 772	35. 2	13, 0 233
		(20)		(21)		(22)		(23)		(24)
25.8		42. 2		8.4		26. 4		26.4		24.2
	(40)	25, 111	222	99	452	559	294	559	1, 318	1, 436
20.4	(42)	(25) 59. 9	(26) 57, 2		(27)	(31)	(28)	(30) 16, 2	(29) 101, 0	
20.4	25, 3	59, 9 38, 110	57.2 12,036		45.9 2,247	1,022	11.9 157	16. Z 372	27, 633	
	(43)	(32)	12,000	l	(33)	(35)	(33)	(35)	(34)	
12.3	(10)	153. 0			60, 7	109. 5	(60)	(00)	97. 9	
	'	69, 335			3, 640	14, 180			55, 072	
		(36)			(36)	(37)			(36)	
4.9	11.4	357.4				108.7				
		141,670				13, 128				
		(38)				(39)				
-1.1	-	376, 7 147, 630				132, 2 11, 394				
		(40)								
-5.1		7, 954 –								

部材番号 せん断断面積(m²) 断面二次モーメント(m⁴)

①コンクリート部 建屋及びT/G架台

②コンクリート部 基礎スラブ

ヤング係数E $2.7 \times 10^6 \text{ (t/m}^2\text{)}$ せん断弾性係数G $1.2 \times 10^6 \text{ (t/m}^2\text{)}$ ポアソン比 $_{V}$ 0.167 ヤング係数E 2.6 ×10⁶ (t/m²) せん断弾性係数G 1.1 ×10⁶ (t/m²)

ポアソン比v 0.167

減衰定数 h 5%

減衰定数 h 5%

基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

表2-2 既工認モデルと今回工認モデルの諸元の比較(EW方向)(4/4)

(b) 今回工認モデル

T. M. S. L. (m)	T/G架台	建屋								
		1	2		3		4		5	
44. 3		4430	13150		13130		13320		11110	
		0. 2 6	6.3		6.3	1	6. 4 9		3. 2 10	1
38. 6		5660	12750	1	12490	+		+	9580	+
30, 0		0, 4	6, 2		6, 1		11840 5.8	1	2.8	1
	†	11	12	19	13	18	14	17	15	16
30. 9		11230	15770	2170	31100	19900	33180	19840	18760	4550
]	1.4	7.8	0.0	9. 9	6. 1	10. 7	6.0	5. 9	0.7
	1	20		21		22		23		24
25. 8		10920		16720		11480		12390		13070
	10	0.7		8.1	0.5	0.8		0.9		3.8
00.4	42	25	26		27	31	28	30	29	
20. 4	103470	15110 0, 8	52710 79. 3		47390 24, 9	24990 13, 8	51130 27, 2	25800 15, 6	67100 91, 6	
	43	32	10.0		33	35	515	10.0	34	
12. 3	70210	125510			75880	83770			90910	
	-	322.6			147.8	166.3			190.0	
		36				37				
4. 9		289670 1049. 3				80330				
	-					163. 5				
-1. 1		38				70260				
-1.1		185020 668, 4				79260 105. 3				
		40								
-5. 1		494300								
		5278.3								
		41								
-7. 9		264930								
		2079.8								

質点	番号	
重量	(kN)	
回転慣性重量	$(\times 10^6 kN \cdot$	m^2)

T. M. S. L. (m)	T/G架台					建屋				
44. 3		1	10	14	17	22	29	33	37	42
		1.30 -	0.72 -	0.06	0, 72 -	0.09	0.72 -	0.09	0.72	0.09
38. 6		2 1.90	0, 91 		18 0, 91	_	30 0.91	_	38 0.91	-
30. 9		3 25, 3	12	15 0, 3	19	23 29, 2	31	34 31. 1	39	43 14, 9
25. 8		7100 4 42, 9	15. 0	- 16 9, 6	26.8	3800 24 26, 9	26.8	3800 35 28, 2	37.8	200 44 24.2
		25100	200	100	500	600	300	600	1300	1400
20.4	45	5	13		20	25	32	36	40	
	25. 3	61.4	62.8		45. 9	37. 6	11.9	19. 3	107.4	ļ
		38100	12000		2200	1000	200	400	27600	
12. 3	46	6 175, 5 69300			21 67. 3 3600	26 111, 4 14200			41 117. 1 55100	
4. 9	11.4	7 427. 5				27 128, 3			00100	ı
-1.1	-	141700 8 495, 7 147600				13100 28 154, 9				
-5. 1		9 7954. 0				11100				

部材番号 せん断断面積(m²) 断面二次モーメント(m²)

①コンクリート部 建屋及びT/G架台ヤング係数E 2.88 ×10⁴ (N/mm²)

②コンクリート部 基礎スラブ ヤング係数 E 2.79 ×10⁺ (N/mm²)

ヤンク係数E 2.88 ×10' (N/mm²) せん断弾性係数G 1.20 ×10⁴ (N/mm²) <u>ポアソン比ャ 0.20</u> ャンク係数E 2.79×10^4 (N/mm²) せん断弾性係数G 1.16×10^4 (N/mm²) ポアソン比 ν 0.20

減衰定数h 5%

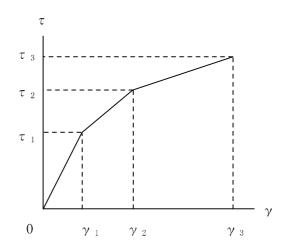
減衰定数 h 5%

基礎形状 97.0m(NS方向)×82.0m(EW方向)×2.0m又は2.8m(厚さ)

:「2.1 補助壁の考慮」による変更箇所

別紙2 地震応答解析における耐震壁及び鉄骨部の せん断スケルトン曲線の設定

目 次


1.	根	要						 	別紙 2-1
2.	而	付震星	きの非線形特性	の設定につ	いて・・			 	別紙 2-2
2	. 1	第 1	折点の設定					 	別紙 2-3
2	. 2	第 2	折点の設定					 	別紙 2-3
2	. 3	終月	引点の設定 ・					 	別紙 2-4
3.	補	前助母	産の非線形特性	の設定につ	いて・・			 	別紙 2-6
3	. 1	第 1	折点の設定					 	別紙 2-7
4.	釸	卡骨音	『の非線形特性	の設定につ	いて・・			 	別紙 2-8
4	. 1	第 1	折点の設定					 	別紙 2-9
5.	t	けん圏	〒スケルトン曲	線の設定に	ついて			 	別紙 2-11
5	. 1	ター	・ビン建屋 ・					 	別紙 2-11
	5.	1.1	水平方向モテ	・ル ・・・・・・				 	別紙 2-11
	5.	1.2	使用材料の物	1性値 ・・・・				 	別紙 2-17
	5.	1.3	RC 造耐震壁の	つせん断スク	ルトン曲	曲線の諸数	値 …	 	別紙 2-18
	5.	1.4	RC 造補助壁の	りせん断スク	ルトン曲	曲線の諸数	値	 	別紙 2-31
	5.	1.5	鉄骨部のせん	断スケルト	ン曲線の	諸数値 ・		 	別紙 2-33
6.	ŧ	ミとめ)					 	別紙 2-34

1. 概要

柏崎刈羽原子力発電所のタービン建屋については、鉄筋コンクリート造の耐震壁を主体とした構造物で、屋根部分が鉄骨造(トラス構造)となっている。このため、これらの建物・構築物の地震応答解析においては、鉄筋コンクリート造耐震壁(以下「RC造耐震壁」という。)、鉄筋コンクリート造補助壁(以下「RC造補助壁」という。)及び鉄骨部の非線形特性を考慮している。本資料は、これらの耐震壁、補助壁及び鉄骨部のせん断スケルトン曲線の設定について説明するものである。

2. 耐震壁の非線形特性の設定について

RC造耐震壁のせん断応力度-せん断ひずみ関係($\tau - \gamma$ 関係)は,「原子力発電所耐震設計技術指針 $J \, E \, A \, G \, 4 \, 6 \, 0 \, 1 \, -1991$ 追補版((社)日本電気協会)」(以下「 $J \, E \, A \, G \, 4 \, 6 \, 0 \, 1 \, -1991$ 追補版」という。)に基づき,トリリニア型スケルトン曲線とする。せん断応力度-せん断ひずみ関係を図2-1に示す。

τ1: 第1折点のせん断応力度

τ2:第2折点のせん断応力度

τ3:終局点のせん断応力度

γ1:第1折点のせん断ひずみ

γ2:第2折点のせん断ひずみ

γ₃:終局点のせん断ひずみ (4.0×10⁻³)

図 2-1 せん断応力度-せん断ひずみ関係

2.1 第1折点の設定

RC造耐震壁におけるせん断スケルトン曲線の第1折点は、JEAG4601-1991追補版に基づき、以下の式より算出している。

$$\tau_1 = \sqrt{\sqrt{F~c}~\left(\sqrt{F~c} + \sigma_{_{\rm V}}\right)}$$

$$\gamma_1 = \tau_1 \diagup G$$

ここで,

F c : コンクリートの圧縮強度(kgf/cm²)

G : コンクリートのせん断弾性係数 (kgf/cm^2) σ_v : 縦軸応力度 (kgf/cm^2) (圧縮を正とする。)

2.2 第2折点の設定

RC造耐震壁におけるせん断スケルトン曲線の第2折点は、JEAG4601-1991追補版に基づき、以下の式より算出している。

$$\tau_2 = 1.35 \tau_1$$

$$\gamma_2 = 3\gamma_1$$

2.3 終局点の設定

RC造耐震壁におけるせん断スケルトン曲線の終局点は、JEAG4601-1991追補版に基づき、以下の式より算出している。

$$\tau_3 = \left(I - \frac{\tau_S}{4.5\sqrt{F~c}}\right) \tau_0 + \tau_S$$

τ_s>4.5√F c の場合

$$\tau_3 = 4.5 \sqrt{F \ c}$$

$$\gamma_3 = 4.0 \times 10^{-3}$$

ここで.

$$\tau_0 = \left(3 - \frac{1.8M}{QD}\right) \sqrt{Fc}$$

ただし、M/QD>1のとき M/QD=1

$$\tau_{\mathrm{S}} = \frac{\left(\mathrm{P_{\mathrm{V}}} + \mathrm{P_{\mathrm{H}}}\right) \cdot \ _{\mathrm{s}}\sigma_{\mathrm{y}}}{2} + \frac{\left(\sigma_{\mathrm{V}} + \sigma_{\mathrm{H}}\right)}{2}$$

ここで,

F c : コンクリートの圧縮強度(kgf/cm²)

P_v, P_H : 縦, 横筋比(実数)

 σ_{v} , σ_{H} :縦,横軸応力度(kgf/cm²) (圧縮を正とする。)

 $_{s}\sigma_{v}$: 鉄筋降伏応力度(kgf/cm²)

M/QD :シアスパン比

ただし、耐震壁のうち内壁の終局せん断強度は、以下の式により算定している。

$$\tau_{3} = \frac{0.068 \, p_{\text{te}}^{-0.23} \, (\, F \, \, c \, + 18)}{\sqrt{M / (\, Q \, D) + 0.12}} + 0.85 \sqrt{p_{\text{wh}} \, \sigma_{\text{wh}}} + 0.1 \, \sigma_{0}$$

$$\gamma_{3} = 4.0 \times 10^{-3}$$

ここで,

F c : コンクリートの圧縮強度(N/mm²)

p_{te} : 等価引張鉄筋比(%)

Pwh : beを厚さと考えた場合の水平せん断補強筋比 (実数)

ただし、Pwhの値が1.2%以上の場合は、1.2%として計算する。

b。 : I型断面と長さ及び断面積が等しい矩形断面の幅 (mm)

ただし、b。は壁厚tの1.5倍以下とする。

σwh : 水平せん断補強筋の材料強度(N/mm²)

M/QD :シアスパン比

σ₀:耐震壁の全断面積に対する平均軸方向応力度(N/mm²)

3. 補助壁の非線形特性の設定について

RC造補助壁のせん断応力度-せん断ひずみ関係($\tau - \gamma$ 関係)は, $J \, E \, A \, G \, 4 \, 6 \, 0 \, 1$ -1991追補版で評価される第1折点で降伏する,完全弾塑性型のスケルトン曲線として評価する方針とする。終局点を与えるせん断ひずみについても $J \, E \, A \, G \, 4 \, 6 \, 0 \, 1 \, -1991$ 追補版の記載による値を採用する。せん断応力度-せん断ひずみ関係を図3-1に示す。

τ1: 第1折点のせん断応力度

τ3:終局点のせん断応力度 (τ3=τ1)

γ1:第1折点のせん断ひずみ

γ₃:終局点のせん断ひずみ (4.0×10⁻³)

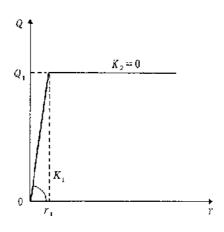
図3-1 せん断応力度-せん断ひずみ関係

3.1 第1折点の設定

RC造補助壁におけるせん断スケルトン曲線の第1折点は、JEAG4601-1991追補版に基づき、以下の式より算出している。

$$\tau_{1} = \sqrt{\sqrt{F \ c} \left(\sqrt{F \ c} \ + \sigma_{V}\right)}$$

$$\gamma_{1} = \tau_{1} / G$$


ここで,

F c : コンクリートの圧縮強度(kgf/cm²)

G : コンクリートのせん断弾性係数 (kgf/cm^2) σ_V : 縦軸応力度 (kgf/cm^2) (圧縮を正とする。)

4. 鉄骨部の非線形特性の設定について

鉄骨部のせん断力ーせん断ひずみ関係($Q-\gamma$ 関係)は、JEAG4601-1991追補版に基づき、バイリニア型スケルトン曲線とする。せん断力ーせん断ひずみ関係を図4-1に示す。

Q1: 第1折点のせん断力

γ1:第1折点のせん断ひずみ

K₁:第1せん断剛性K₂:第2せん断剛性

図 4-1 せん断力-せん断ひずみ関係

4.1 第1折点の設定

鉄骨造におけるせん断スケルトン曲線の第 1 折点は、 J E A G 4 6 0 1 -1991 追補版に基づき、以下の式より算出している。

$$Q_{1} = \frac{2 F A \cos \theta}{0.710 + 1.12 \lambda_{e}}$$
$$\gamma_{1} = Q_{1} / K_{1}$$

CC, $Q_1 \leq 2A F \cos \theta$

F:ブレースの許容応力度を決定する場合の基準値(tf/cm²)

A : ブレースの断面積(cm²)

 θ : ブレースとはりのなす角度 (rad)

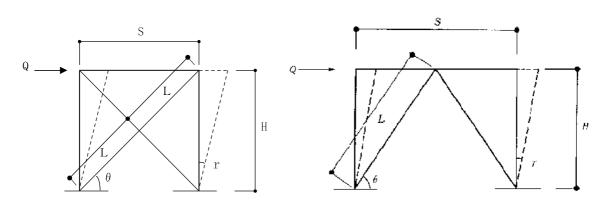
 $\bar{\lambda}$ 。 : ブレースの一般化細長比= λ 。 $\sqrt{\frac{F}{\pi^2 E}}$

 λ_e :有効細長比= $\alpha \cdot \lambda$

α :座屈長さ係数

 λ : ブレースの端部及び中央交差部をピンとした場合の細長比= L/i_y

L : ブレースの端部及び中央交差部の節点間距離 $=\frac{1}{2}\sqrt{S^2+H^2}$


S :架構の柱間の距離(cm)

H : 架構の階高(cm)

iv:ブレースの弱軸についての断面二次半径(cm)

E : 鋼材のヤング係数(tf/cm²)

K₁ : 第1せん断剛性(tf/rad)K₂ : 第2せん断剛性(tf/rad)

(a) X型ブレース

(b) K型ブレース

図 4-2 ブレース付きラーメン架構

前述で設定したスケルトン曲線を完全弾塑性型モデルのバイリニア型スケルトン 曲線と,スリップ型モデルのバイリニア型スケルトン曲線に分離する。

両者への分離は、分配率 β_1 により定める。なお、 β_1 はブレースの一般化細長比の関数により、次式で算定する。

$$\beta_1 = 1.29 - 1.12 \bar{\lambda}_e$$

完全弾塑性型モデルのスケルトン曲線は、次式により算定する(図4-3参照)。

$$Q_{P1} = Q_1 \cdot \beta_1$$

 $\gamma_{P1} = \gamma_1$

スリップ型モデルのスケルトン曲線は、次式により算定する(図4-4参照)。

$$Q_{S1} = Q_1 (1 - \beta_1)$$

 $\gamma_{S1} = \gamma_1$

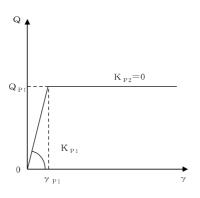


図 4-3 完全弾塑性型モデルのスケルトン曲線

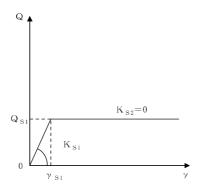
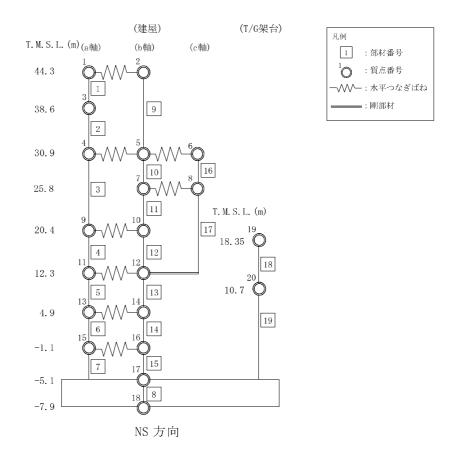



図 4-4 スリップ型モデルのスケルトン曲線

- 5. せん断スケルトン曲線の設定について
- 5.1 タービン建屋
 - 5.1.1 水平方向モデル

水平方向は、地盤との相互作用を考慮し、耐震壁等の曲げ及びせん断剛性を評価した多質点系モデルとしている。地震応答解析モデルを図5-1に、解析モデルの諸元を表5-1及び表5-2に示す。

また、各部材のモデル化について表5-3に示す。なお、基礎部、TG架台及びモデル化範囲に耐震壁・鉄骨ブレースのない部材は線形でモデル化している。

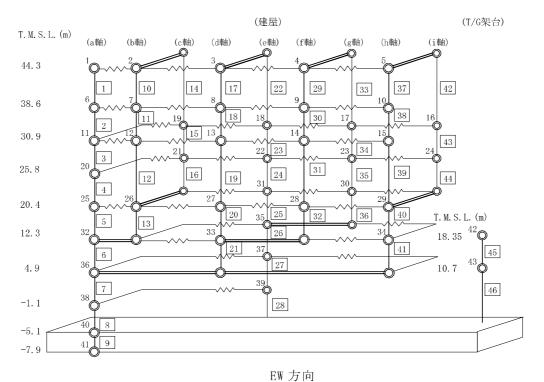


図 5-1 地震応答解析モデル (水平方向)

別紙 2-12

表 5-1 地震応答解析モデル諸元 (NS 方向)

(a) 重量·回転慣性重量

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1 34230 24. 6	2 20910 6. 7	
38. 6		3 52320 11.3		
30. 9		4 106960 30.6	5 41250 75. 1	6 8290 1.4
25. 8			7 41390 441. 9	8 23190 247. 0
20. 4	19 103470 -	9 186550 347. 2	10 97680 391. 1	
12.3	20 70210	11 171270 603. 2	12 204800 505. 6	
4.9		13 163700 576. 5	14 206300 741. 4	
-1.1		15 116250 385. 3	16 148030 1020. 9	
-5. 1		17 494300 3783. 7		
-7. 9		18 264930 1487. 0		

質点番号							
重量(kN)							
回転慣性重量 (×10 ⁵ kN・m ²)							

(b) せん断断面積・断面二次モーメント

T. M. S. L. (m)	T/G架台		建屋	
44. 3		1	9	
		4.00		
		-	2. 70	
38. 6		2		
		5. 80		
		_	-	
30. 9		3	10	16
			95.4	1. 1
		204. 1	64600	-
25.8			11	17
		84300	120. 5	
		01000	50300	4.5
20.4	18	4	12	
	13. 9	168.6	146. 5	_
	=	82200	72300	
12. 3	19	5	13	
		248.0	282. 0	
	10. 2	148400	108300	
4.9	10. 2	6	14	
		251. 5	393. 6	
		129900	178000	
-1.1	_	7	15	
		273.8	392. 0	
		145700	171500	
-5. 1		8		
		7954. 0		
		_		

①コンクリート部 建屋及びT/G架台

ヤング係数E 2.88 $\times 10^4$ (N/mm²) せん断弾性係数G 1.20 $\times 10^4$ (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5% ②コンクリート部 基礎スラブ

ヤング係数 E 2.79 $\times 10^4$ (N/mm²) せん断弾性係数 G 1.16 $\times 10^4$ (N/mm²)

ポアソン比ν 0.20 減衰定数 h 5%

③鉄骨部

ヤング係数E 2.05 ×10⁵ (N/mm²)

せん断弾性係数G 7.90 ×10⁴ (N/mm²)

ポアソン比ν 0.30 減衰定数h 2%

> 基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

部材番号
せん断断面積(m²)
断面二次モーメント(m4)

表 5-2 地震応答解析モデル諸元 (EW 方向) (1/2)

(a) 重量·回転慣性重量

質点番号
重量(kN)
回転慣性重量 (×10 ⁵ kN・m ²)

								15140	慣性車量 (XI	O KN - III)
T. M. S. L. (m)	T/G架台		建屋							
		1	2		3		4		5	
44.3		4430	13150		13130		13320		11110	
		0.2	6. 3		6.3		6.4		3. 2	
		6	7		8		9		10	
38.6		5660	12750		12490	Ī	11840		9580	
		0.4	6. 2	'	6. 1	1	5.8		2.8	
	Ī	11	12	19	13	18	14	17	15	16
30.9		11230	15770	2170	31100	19900	33180	19840	18760	4550
		1.4	7.8	0.0	9.9	6. 1	10.7	6. 0	5. 9	0. 7
		20		21		22		23		24
25.8		10920		16720		11480		12390		13070
		0.7		8. 1		0.8		0. 9		3. 8
	42	25	26		27	31	28	30	29	
20.4	103470	15110	52710		47390	24990	51130	25800	67100	
	-	0.8	79. 3		24. 9	13.8	27. 2	15.6	91.6	
	43	32			33	35			34	
12.3	70210	125510			75880	83770			90910	
	_	322.6			147.8	166. 3			190. 0	
		36				37				
4. 9		289670				80330				
		1049.3				163. 5				
		38				39				
-1.1		185020				79260				
		668.4				105. 3				
		40								
-5. 1		494300								
		5278. 3								
		41								
-7.9		264930								
		2079.8								

表 5-2 地震応答解析モデル諸元 (EW 方向) (2/2)

(b) せん断断面積・断面二次モーメント

部材番号
せん断断面積(m²)
断面二次モーメント(m⁴)

T. M. S. L. (m)	T/G架台					建屋				
44. 3		1	10	14	17	22	29	33	37	42
		1, 30 -	0, 72 -	0.06	0, 72 -	0.09	0, 72 -	0. 09	0.72 -	0. 09
38. 6		2	11		18		30		38	
		1, 90	0.91	-	0.91		0.91	-	0.91	
30, 9	1	3	12	15	19	23	31	34	39	43
30.5		25. 3	12	0.3	10	29. 2	01	31. 1	00	14.9
		7100	15.0	_	26.8	3800	26.8	3800	37.8	200
25. 8		4		16		24		35		44
		42. 9 25100	200	9. 6 100	500	26. 9 600	300	28. 2 600	1300	24. 2 1400
20. 4	45	5	13		20	25	32	36	40	
	25. 3	61.4	62.8		45.9	37.6	11.9	19.3	107.4	
	-	38100	12000		2200	1000	200	400	27600	
12. 3	46	6			21	26			41	ļ
		175. 5 69300			67. 3 3600	111. 4 14200			117. 1 55100	
4, 9	11. 4	7			3600	27			29100	l
4. 9	11.4	427.5				128. 3				
		427. 5 141700				13100				
-1.1		8				28				
	_	495. 7 147600				154. 9 11400				
-5. 1		9								
		7954.0								
		-								

①コンクリート部 建屋及びT/G架台

ャング係数E $2.88 \times 10^4 \, (\text{N/mm}^2)$ せん断弾性係数G $1.20 \times 10^4 \, (\text{N/mm}^2)$

ポアソン比ν 0.20

減衰定数 h 5% ②コンクリート部 基礎スラブ

ャング係数 E 2.79 × 10^4 (N/mm²) せん断弾性係数 G 1.16 × 10^4 (N/mm²)

ポアソン比ν 0.20

減衰定数 h 5%

③鉄骨部

ヤング係数E 2.05 $\times 10^5$ (N/mm²) せん断弾性係数G 7.90 $\times 10^4$ (N/mm²)

ポアソン比_ν 0.30

減衰定数 h 2%

基礎形状 97.0m(NS方向)×82.0m(EW方向) ×2.0m又は2.8m(厚さ)

表 5-3 各部材のモデル化

	せん断スケル	線形でモデル化			
	設定して	している部材			
	RC 部材	S部材	RC 部材	S部材	
NS 方向	3, 4, 5, 6, 7, 10, 11,	1, 2, 9, 16	8, 17, 18, 19	_	
1/2 \(\) [h]	12, 13, 14, 15	1, 2, 9, 10	8, 17, 18, 19		
	3, 4, 5, 6, 7, 8, 12, 13,				
	16, 19, 20, 21, 23, 24,	1, 2, 10, 11, 17, 18,			
EW方向	25, 26, 27, 28, 31, 32,	29, 30, 37, 38	9, 15, 45, 46	14, 22, 33, 42	
	34, 35, 36, 39, 40, 41,	29, 30, 31, 30			
	43, 44				

5.1.2 使用材料の物性値

地震応答解析に用いるタービン建屋の使用材料の物性値を表5-4及び表5-5に 示す。

表 5-4 使用材料の物性値 (コンクリート)

使用材料	ヤング係数 E (N/mm²)	せん断弾性係数 G(N/mm²)	減衰定数 h(%)
コンクリート*1: $\sigma_{C} = 43.1 (\text{N/mm}^2)$ $(\sigma_{C} = 440 \text{kgf/cm}^2)$	2.88×10^4	1.20×10^4	5

注記*1:実強度に基づくコンクリート強度

表 5-5 使用材料の物性値(鉄筋)

使用材料	降伏応力度 s σ y (N/mm²)		
鉄筋:SD35 (SD345相当*²)	345		

注記*2:建設当時の鉄筋の種類はSD35であるが,現在の規格 (SD345) に読み替えた降伏応力度を示す。

- 5.1.3 RC造耐震壁のせん断スケルトン曲線の諸数値
 - (1) 第1折点

RC造耐震壁の各要素におけるせん断スケルトン曲線の第1折点の設定根拠を表5-6に示す。

表 5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第 1 折点)(1/3) (a) NS方向

部材	77 to	コンクリート	せん断弾性	断面積	縦軸応力度		
番号	通り	強度 F _C (N/mm ²)	係数 G (×10 ⁴ N/mm ²)	A _S (m ²)	σ _V (N/mm ²)	τ_1 (N/mm^2)	$(\times 10^{-3})$
	TG (T4~T7)	43. 1	1. 20	32. 3	0.21	2. 16	0. 180
	TH (T4~T7)	43. 1	1. 20	47. 0	0. 21	2. 10	0. 180
3	TJ (T3~T9)	43. 1	1. 20	62. 6	0.51	2. 30	0. 192
5	TK (T1~T5)	43. 1	1. 20	45. 8	0. 29	2. 20	0. 183
	TK (T8~T9)	43. 1	1. 20	5. 4	0. 34	2. 22	0. 186
	TG (T2~T3)	43. 1	1. 20	11. 0	0.31	2. 21	0. 185
	TH (T3~T6)	43. 1	1. 20	23. 8	0. 77	2. 41	0. 202
4	TH (T8~T9)	43. 1	1. 20	15. 1	0.60	2. 34	0. 195
	TJ (T3~T5)	43. 1	1. 20	29. 8	0.67	2. 37	0. 198
	TK (T1~T9)	43. 1	1. 20	73, 5	0.72	2. 39	0, 200
	TG (T2~T4)	43. 1	1. 20	30. 4	0. 12	2. 29	0. 192
	TII (T3~T5)	43. 1	1. 20	21. 8	1. 39	2. 66	0. 192
5	TH (T7~T9)	43. 1	1. 20	38. 6	1. 47	2. 70	0. 225
9	TJ (T2~T7)	43. 1	1. 20	52. 7	1. 27	2. 62	0. 223
							†
	TK (T1~T9)	43. 1	1. 20	92. 2	0.88	2. 46	0. 205
	TG (T2~T3)	43. 1	1. 20	9. 6	0.99	2. 51	0. 209
C	TG (T8~T9)	43. 1	1. 20	10. 7	0.74	2. 40	0. 200
6	TH (T2~T5)	43, 1	1, 20	26, 4	1.56	2. 73	0, 228
	TJ (T2~T8)	43. 1	1. 20	52. 6	1. 47	2. 69	0. 225
	TK (T1~T9)	43. 1	1. 20	106.6	1.01	2. 51	0. 210
	TF (T2~T3)	43. 1	1. 20	5. 9	0. 31	2. 21	0. 185
	TG (T2~T3)	43. 1	1. 20	16. 8	1. 27	2. 62	0.219
7	TH (T2~T5)	43. 1	1. 20	34. 6	1.64	2. 76	0. 231
	TH (T7~T8)	43. 1	1. 20	16. 0	0.00	2. 06	0. 172
	TJ (T2∼T9)	43. 1	1. 20	64. 3	1.71	2. 78	0. 233
	TK (T1~T9)	43, 1	1. 20	104. 3	1. 19	2. 58	0, 216
	TC (T8~T9)	43. 1	1. 20	3.8	0.09	2. 10	0. 176
10	TD (T1~T9)	43. 1	1. 20	58. 5	0.34	2. 22	0. 186
	TE (T4~T7)	43. 1	1. 20	32. 3	0. 13	2. 12	0. 177
	TC (T2~T4)	43, 1	1. 20	7.6	0.18	2. 14	0, 179
11	TC (T7~T9)	43. 1	1. 20	10.0	0. 20	2. 15	0. 180
	TD (T2~T9)	43. 1	1. 20	65. 1	0.38	2. 24	0. 187
	TE (T4~T7)	43. 1	1. 20	32. 3	0. 22	2. 16	0. 181
	TC (T2~T4)	43. 1	1. 20	7.3	0. 23	2. 17	0.181
	TC (T7~T9)	43. 1	1. 20	9. 6	0.37	2. 23	0. 187
12	TD (T2~T4)	43. 1	1. 20	42. 5	0.45	2. 27	0. 190
	TD (T7~T9)	43. 1	1. 20	52. 4	0. 61	2. 34	0. 196
	TE (T2∼T3)	43. 1	1. 20	21.9	0.13	2. 12	0.177
	TA (T1∼T9)	43. 1	1. 20	91.7	0, 36	2. 23	0. 187
	TB (T1∼T2)	43. 1	1. 20	3. 7	0.39	2. 24	0. 188
	TC (T4~T7)	13. 1	1. 20	56. 7	0.25	2. 18	0. 182
13	TD (T1~T4)	43. 1	1. 20	46. 5	0.76	2. 41	0. 201
	TD (T7~T9)	43. 1	1. 20	24. 5	1.10	2. 55	0.213
	TE (T2∼T3)	43. 1	1. 20	19.5	0.57	2. 32	0. 194
	TE (T7∼T8)	43. 1	1. 20	13. 0	0.89	2.46	0. 206
	TA (T1∼T9)	43. 1	1. 20	114.1	0.48	2. 28	0. 191
	TB (T2∼T8)	43. 1	1. 20	78. 1	0.51	2.30	0. 192
	TC (T4~T7)	43. 1	1. 20	55. 6	0.52	2.30	0. 193
14	TD (T1~T4)	43. 1	1. 20	39. 2	1. 23	2.60	0. 217
	TD (T7~T9)	43. 1	1.20	26. 0	1. 22	2.60	0. 217
	TE (T2∼T3)	43. 1	1. 20	13.6	1. 12	2.56	0.214
	TE (T7∼T9)	43. 1	1. 20	22. 5	0.90	2.47	0. 206
	TA (T1~T2)	43. 1	1. 20	18. 3	0. 33	2. 22	0. 185
	TA (T8∼T9)	43. 1	1. 20	12.8	0.32	2. 21	0. 185
15	TB (T2∼T8)	43. 1	1. 20	89, 2	0.52	2.30	0, 193
	TC (T4~T7)	43. 1	1. 20	56. 6	0.77	2. 41	0. 202
	TD (T1~T9)	43. 1	1. 20	114. 4	1. 31	2. 63	0. 220
	TE (T2∼T3)	43. 1	1. 20	16.8	1.27	2.62	0. 219
	TE (T7∼T8)	43. 1	1. 20	13. 4	1.34	2.64	0. 221
	TF (T2∼T3)	43. 1	1.20	5. 9	0.31	2. 21	0.185

表5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第1折点)(2/3) (b) EW方向

(D) EW/J [H]								
44.44		コンクリート	せん断弾性	断面積	縦軸応力度			
部材 番号	通り	強度 F _C	係数 G	A _S	σν	τ_{1}	γ,	
田力		(N/mm ²)	$(\times 10^4 \text{N/mm}^2)$	(m ²)	(N/mm ²)	(N/mm^2)	(×10 ⁻³)	
3	T1 (TD∼TK)	43. 1	1. 20	25. 3	0.38	2. 24	0. 187	
4	T1 (TA∼TK)	43. 1	1. 20	42. 2	0. 69	2. 38	0. 199	
5	T1 (TA∼TK)	43. 1	1.20	59. 9	0.51	2.30	0. 192	
6	T1 (TA∼TK)	43, 1	1.20	80. 4	0.73	2.40	0.200	
	T2 (TD∼TH)	43. 1	1. 20	47. 6	0.76	2. 41	0. 201	
0	T3 (TD∼TE)	43. 1	1. 20	15. 1	0.42	2. 26	0. 189	
	ТЗ (ТН∼ТЈ)	43. 1	1. 20	7.1	0.80	2. 42	0. 203	
	T1 (TA∼TK)	43. 1	1. 20	98.8	0.85	2.44	0.204	
	T2 (TE∼TJ)	43. 1	1. 20	32. 2	1. 23	2.60	0. 217	
	T3 (TG∼TJ)	43. 1	1. 20	19. 5	1. 15	2. 57	0. 215	
	T4 (TH∼TJ)	43. 1	1.20	16.8	1.35	2.65	0. 221	
_	Т5 (ТН∼ТЈ)	43. 1	1.20	11.9	1.47	2. 70	0. 225	
7	T6 (TH~TJ)	43. 1	1. 20	16.8	2.00	2.89	0. 241	
	T7 (TH~TJ)	43. 1	1. 20	15. 3	2. 15	2. 94	0. 246	
	T8 (TD∼TE)	43. 1	1. 20	11. 5	0. 94	2. 48	0. 208	
	T8 (TG~TJ)	43. 1	1. 20	19. 1	2.11	2. 93	0, 245	
	T9 (TA∼TK)	43. 1	1. 20	97. 5	0.78	2. 42	0. 202	
	T1 (TA~TK)	43. 1	1. 20	98. 8	1.00	2. 51	0. 209	
	T2 (TD~TJ)	43. 1	1. 20	39. 1	1.54	2. 72	0. 227	
	T3 (TD~TJ)	43. 1	1. 20	37. 2	1. 07	2. 54	0. 212	
	T4 (TH~TJ)	43. 1	1. 20	15. 3	1. 51	2. 71	0. 226	
8	T5 (TH~TJ)	43. 1	1. 20	11. 9	1.66	2. 76	0. 231	
	T6 (TH~TJ)	43. 1	1. 20	16. 0	2. 14	2. 94	0. 246	
	T8 (TD~TE)	43. 1	1. 20	11.9	1. 38	2. 66	0. 222	
	T8 (TG~TJ)	43. 1	1. 20	19. 6	2. 59	3. 09	0. 258	
	T9 (TA~TK)	43. 1	1. 20	98. 8	1. 13	2. 56	0. 214	
	T2 (TJ~TK)	43. 1	1. 20	7. 2	0.49	2. 29	0. 191	
12	T3 (TJ~TK)	43. 1	1. 20	7. 2	0. 38	2. 24	0. 187	
	T2 (TC~TJ)	43. 1	1. 20	31. 1	0. 81	2. 43	0. 203	
13	T3 (TD~TE)	43. 1	1. 20	19. 0	0. 31	2. 19	0. 183	
13	` '	43. 1		7. 1	0. 28	2. 43	0. 183	
1.0	T3 (TII~TJ) T2 (TC~TD)	43. 1	1. 20 1. 20	8.4	0. 81	2. 43	0. 203	
16								
10	T4 (TG~TH)	43. 1	1. 20	12. 4	0.44	2. 27	0. 189	
19	T4 (TJ~TK)	43. 1	1. 20	7. 2	0. 27	2. 19	0. 183	
	T5 (TJ~TK)	43. 1	1. 20	7. 2	0. 28	2. 19	0. 183	
20	T4 (TG~TJ)	43. 1	1. 20	30. 4	0.71	2. 39	0. 200	
	T5 (TH~TJ)	43. 1	1. 20	15. 5	0. 91	2. 47	0. 207	
	T4 (TG~TJ)	43. 1	1. 20	12. 9	0. 79	2. 42	0. 202	
21	T5 (TH~TJ)	43. 1	1. 20	7.1	1. 13	2. 56	0. 214	
	T6 (TH~TJ)	43. 1	1. 20	16.8	1. 17	2. 58	0. 215	
00	T7 (TG~TJ)	43. 1	1. 20	23. 9	0.89	2. 46	0. 206	
23	T4 (TA~TE)	43. 1	1. 20	29. 2	0. 55	2. 32	0. 194	
24	T4 (TA~TB)	43. 1	1. 20	7.5	0. 25	2. 18	0. 182	
	T4 (TC~TE)	43. 1	1. 20	18. 9	0.34	2. 22	0. 185	
25	T4 (TA~TB)	43. 1	1. 20	7. 4	0.31	2. 20	0, 184	
	T4 (TC~TE)	43. 1	1. 20	23. 0	0. 72	2. 39	0. 200	
	T4 (TA~TD)	43. 1	1.20	32, 2	0, 69	2. 38	0. 199	
26	T5 (TA~TC)	43. 1	1.20	16. 0	0. 27	2. 19	0. 183	
	T6 (TA~TC)	43. 1	1. 20	16. 0	0. 26	2. 18	0. 182	
	T7 (TA∼TE)	43. 1	1. 20	38. 7	0.75	2. 40	0. 201	
	T4 (TA~TD)	43. 1	1.20	31. 5	0.88	2. 46	0, 205	
27	T5 (TA~TC)	43. 1	1. 20	15. 6	0. 25	2. 18	0. 182	
	T6 (TA∼TC)	43. 1	1. 20	15, 6	0. 26	2. 18	0. 183	
	T7 (TA∼TE)	43. 1	1. 20	39. 4	0. 92	2. 47	0. 207	
	T4 (TA∼TD)	13. 1	1.20	35, 8	0. 92	2. 47	0, 207	
90	T5 (TA~TC)	43. 1	1.20	25. 0	0. 62	2. 35	0. 196	
28	T6 (TA∼TC)	43. 1	1. 20	25, 0	0.62	2. 35	0. 196	
	T7 (TA∼TD)	43. 1	1.20	39. 8	0.86	2. 45	0. 205	
	'		-					

表5-6 せん断スケルトン曲線($\tau-\gamma$ 関係,第1折点)(3/3)

(b) EW方向

部材番号		コンクリート	せん断弾性	断面積	縦軸応力度		
	通り	強度 Fc	係数 G	A _S	σν	τ_1	γ 1
		(N/mm^2)	$(\times 10^4 \text{N/mm}^2)$	(m ²)	(N/mm^2)	(N/mm^2)	(×10 ⁻³)
31	T6 (TJ∼TK)	43. 1	1. 20	7.2	0.30	2. 20	0.184
	T7 (TG~TH)	43. 1	1. 20	12. 4	0.43	2. 26	0. 189
	T7 (TJ∼TK)	43. 1	1.20	7.2	0. 26	2. 19	0. 183
32	T6 (TH∼TJ)	43. 1	1. 20	11.9	1. 28	2. 62	0.219
34	T7 (TA∼TE)	43. 1	1. 20	29. 2	0. 57	2. 33	0. 194
35	T7 (TA∼TB)	43. 1	1. 20	7. 5	0. 25	2. 18	0.182
35	T7 (TC∼TE)	43. 1	1.20	18.9	0.38	2. 24	0. 187
	T7 (TA∼TB)	43. 1	1. 20	7.5	0.30	2. 20	0.184
36	T7 (TC∼TD)	43. 1	1. 20	8. 7	0. 63	2. 35	0. 196
39	T8 (TH∼TK)	43. 1	1.20	17.6	0.45	2. 27	0. 190
39	T9 (TH∼TK)	43. 1	1. 20	17.6	0.63	2. 35	0. 197
40	T8 (TC∼TD)	43. 1	1. 20	6.8	0.16	2.14	0.179
	T8 (TG∼TJ)	43. 1	1. 20	20. 5	0. 95	2.49	0. 208
	T9 (TA∼TB)	43. 1	1. 20	5	0.31	2. 21	0, 185
	T9 (TC∼TJ)	43. 1	1. 20	68.7	0.37	2. 24	0. 187
41	T8 (TG∼TH)	43. 1	1. 20	11.6	1. 19	2.58	0.216
	T9 (TA∼TK)	43. 1	1. 20	80. 4	0.74	2. 40	0. 201
43	T8 (TC∼TD)	43. 1	1.20	6.5	0.16	2. 14	0.179
	T9 (TC∼TD)	43. 1	1. 20	6. 5	0. 13	2. 12	0. 177
44	T8 (TC∼TD)	43. 1	1. 20	6.5	0.16	2. 14	0.179
	T9 (TA∼TD)	43. 1	1. 20	17. 7	0. 24	2. 18	0. 182

(2) 第2折点

RC造耐震壁の各要素におけるせん断スケルトン曲線の第2折点の設定根拠を表5-7に示す。

表 5-7 せん断スケルトン曲線($\tau-\gamma$ 関係,第 2 折点)(1/3) (a) NS方向

±17.4-4			
部材 番号	通り	τ 2	γ 2
ш ,		(N/mm^2)	(×10 ⁻³)
	TG (T4~T7)	2. 91	0.541
	TH (T4~T7)	3, 20	0.594
3	TJ (T3~T9)	3. 10	0.576
	TK (T1~T5)	2. 96	0.550
	TK (T8~T9)	3.00	0.557
	TG (T2~T3)	2. 98	0.554
4	TH (T3~T6)	3. 26	0.605
4	TH (T8~T9) TJ (T3~T5)	3. 15	0. 586 0. 594
	TJ (T3~T5) TK (T1~T9)	3, 23	0.594
	TG (T2~T4)	3, 10	0.575
	TII (T3~T5)	3. 59	0.668
5	TH (T7~T9)	3. 64	0.676
Ü	TJ (T2~T7)	3, 53	0.656
	TK (T1~T9)	3. 32	0.616
	TG (T2~T3)	3. 38	0.628
	TG (T8~T9)	3. 24	0.601
6	TH (T2~T5)	3. 68	0.684
	TJ (T2~T8)	3. 64	0.675
	TK (T1~T9)	3. 39	0.630
	TF (T2~T3)	2. 98	0.554
	TG (T2~T3)	3. 53	0.656
	TH (T2~T5)	3. 72	0, 692
7	TH (T7~T8)	2. 78	0, 516
	TJ (T2~T9)	3. 76	0.698
	TK (T1~T9)	3.49	0.648
	TC (T8~T9)	2. 84	0. 527
10	TD (T1~T9)	3. 00	0. 557
	TE (T4~T7)	2. 87	0.532
	TC (T2~T4)	2. 90	0.538
	TC (T7∼T9)	2. 91	0.540
11	TD (T2~T9)	3. 02	0. 561
	TE (T4∼T7)	2. 92	0.542
	TC (T2∼T4)	2. 93	0.543
	TC (T7∼T9)	3.02	0.560
12	TD (T2~T4)	3.06	0.569
	TD (T7~T9)	3. 16	0.587
	TE (T2∼T3)	2.86	0.532
	TA (T1∼T9)	3.01	0.560
	TB (T1∼T2)	3. 03	0.563
	TC (T4~T7)	2. 94	0.546
13	TD (T1~T4)	3. 25	0.604
	TD (T7~T9)	3. 44	0.639
	TE (T2∼T3)	3. 14	0.583
	TE (T7∼T8)	3. 32	0.617
	TA (T1~T9)	3.08	0.573
	TB (T2∼T8)	3. 10	0.576
	TC (T4~T7)	3. 11	0.578
14	TD (T1~T4)	3, 51	0, 652
	TD (T7~T9)	3. 51	0.651
	TE (T2~T3)	3. 45	0.641
	TE (T7~T9)	3, 33	0.619
	TA (T1~T2)	2, 99	0, 556
			0.555
	TA (T8~T9)	2. 99	
	TB (T2∼T8)	3. 11	0.578
15	TB (T2~T8) TC (T4~T7)	3. 11 3. 26	0. 578 0. 605
15	TB (T2~T8) TC (T4~T7) TD (T1~T9)	3. 11 3. 26 3. 56	0. 578 0. 605 0. 660
15	TB (T2~T8) TC (T4~T7)	3. 11 3. 26	0. 578 0. 605

表5-7 せん断スケルトン曲線 $(\tau - \gamma 関係, 第2折点)$ (2/3)

(b) EW方向

部材番号	通り	τ 2	γ ₂
3	T1 (TD~TK)	(N/mm ²) 3. 02	$(\times 10^{-3})$ 0. 561
4	T1 (TA~TK)	3. 21	0.596
5	T1 (TA~TK)	3. 10	0.577
-	T1 (TA~TK)	3, 24	0.601
	T2 (TD~TH)	3. 25	0.604
6	T3 (TD~TE)	3. 05	0.566
	T3 (TH~TJ)	3. 27	0.608
	T1 (TA~TK)	3, 30	0.613
	T2 (TE~TJ)	3. 51	0, 652
	T3 (TG~TJ)	3. 47	0.644
	T4 (TH~TJ)	3. 57	0.664
_	T5 (TH~TJ)	3.64	0.676
7	T6 (TH~TJ)	3. 90	0.724
	T7 (TH~TJ)	3. 97	0.738
	T8 (TD∼TE)	3. 35	0.623
	T8 (TG∼TJ)	3. 95	0.734
	T9 (TA∼TK)	3. 26	0.606
	T1 (TA~TK)	3. 38	0.628
	T2 (TD~TJ)	3. 67	0.682
	T3 (TD~TJ)	3. 42	0.636
	T4 (TH∼TJ)	3.66	0.679
8	T5 (TH~TJ)	3. 73	0.693
	T6 (TH∼TJ)	3. 97	0.737
	T8 (TD∼TE)	3.59	0.667
	T8 (TG∼TJ)	4. 17	0.775
	T9 (TA∼TK)	3.46	0.642
12	T2 (TJ∼TK)	3.09	0.574
12	Т3 (ТЈ∼ТК)	3.02	0.561
	T2 (TC∼TJ)	3, 28	0.609
13	T3 (TD∼TE)	2. 96	0.549
	T3 (TII~TJ)	3. 28	0.609
16	T2 (TC∼TD)	2. 93	0.545
	T4 (TG~TH)	3.06	0.568
19	T4 (TJ~TK)	2. 95	0.549
	T5 (TJ~TK)	2. 96	0.549
20	T4 (TG~TJ)	3. 22	0.599
	T5 (TH~TJ)	3. 34	0,620
	T4 (TG~TJ)	3. 27	0.607
21	T5 (TH~TJ)	3. 45	0.642
	T6 (TH~TJ)	3. 48	0.646
00	T7 (TG~TJ)	3, 32	0.617
23	T4 (TA~TE)	3. 13	0.581
24	T4 (TA~TB)	2. 94	0.546
	(/	20.00	0.556
25	T4 (TA~TB)	2, 98 3, 22	0, 553 0, 599
	T4 (TC~TE)		
	T4 (TΛ~TD)	3, 21	0.596
26	T5 (TA~TC) T6 (TA~TC)	2. 95 2. 95	0. 549 0. 547
	T7 (TA~TE) T4 (TA~TD)	3. 24	0. 602 0. 616
	T5 (TΛ~TC)	2. 94	0.546
27	T6 (TA~TC)	2. 94	0.546
	T7 (TA~TE)	3.34	0. 548
		3. 34	
			0.620
28	T5 (TA~TC) T6 (TA~TC)	3. 17	0. 588 0. 588
		3. 31	0. 614
	T7 (TA~TD)	3. 31	V. 014

表5-7 せん断スケルトン曲線($\tau-\gamma$ 関係,第2折点)(3/3)

(b) EW方向

部材番号	通り	$ au_2$ (N/mm^2)	γ ₂ (×10 ⁻³)
	T6 (TJ~TK)	2. 98	0.553
31	T7 (TG~TH) T7 (TJ~TK)	3, 05 2, 95	0. 567 0. 548
32	T6 (TH~TJ)	3. 54	0.657
34	T7 (TA∼TE)	3. 14	0. 583
35	T7 (TA∼TB)	2. 94	0.546
39	T7 (TC∼TE)	3. 02	0.561
36	T7 (TA∼TB)	2. 97	0.552
	T7 (TC∼TD)	3. 17	0. 589
39	T8 (TH∼TK)	3, 07	0, 570
	T9 (TH∼TK)	3. 18	0.590
	T8 (TC~TD)	2. 89	0. 536
40	T8 (TG~TJ)	3. 36	0.623
	T9 (TA~TB)	2. 98	0.554
	T9 (TC~TJ)	3. 02	0.561
41	T8 (TG~TH)	3, 49	0.648
	T9 (TA~TK)	3. 24	0.602
43	TS (TC~TD)	2, 88	0.536
	T9 (TC∼TD) T8 (TC∼TD)	2. 86 2. 88	0.532
44	18 (TC~TD) T9 (TA~TD)	2. 88	0, 536 0, 545
	19 (14~1D)	2.94	0.040

(3) 終局点

RC造耐震壁の終局点は、「2.3 終局点の設定」に基づき、各層の終局せん断応力度を算出する。 σ_H は安全側に0.0としている。

RC造耐震壁の各要素におけるせん断スケルトン曲線の終局点の設定根拠を表5-8に示す。また、タービン建屋のT. M. S. L. 12.3 m \sim T. M. S. L. 20.4 mについて、各耐震壁の配筋(一例)を示したものを図5-2に示す。

表 5-8 せん断スケルトン曲線($\tau-\gamma$ 関係,終局点)(1/3) (a) NS方向

部材		P_{V}	PII	縦軸応力度	,		
番号	通り	(p .*)	(p _{wh} *)	σv	M/QD	τ 3	γ 3
	(>			(N/mm ²)		(N/mm ²)	(×10 ⁻³
	TG (T4~T7) *	0.00073	0.00296	0. 21	0.400	4. 05	4.000
	TH (T4~T7) *	0.00065	0.00303	0.67	0.784	3. 29	4.000
3	13 (13 13)	0.00036	0.00360	0.51	0.400	3. 71	4.000
	TK (T1~T5)	0.00509	0.00455	0. 29	0.400	5, 66	4.000
	TK (T8~T9)	0.00347	0.00497	0.34	1.000	3. 76	4.000
	10 (12 -13)	0.00195	0.00281	0.31	0.400	4. 84	4.000
4	111 (13 10)	0.00183	0.00298 0.00274	0.77	1. 917	2. 93	4.000
4	111 (10 10)	0.00156		0.60	1. 915	2. 81	4.000
	13 (10 10)		0.00431	0.67	0. 920	3, 57 5, 18	
	TK (T1~T9) TG (T2~T4) *	0. 00556 0. 00085	0. 00484 0. 00306	0. 72 0. 50	0. 635 0. 400	4. 21	4. 000 4. 000
	TH (T3~T5) *			1.39			4.000
5	TH (T7~T9) *	0. 00122 0. 00097	0.00334 0.00273	1. 47	1. 071 1. 100	3, 42 3, 19	4. 000
Ð	TJ (T2~T7) *	0.00097	0.00273	1. 27	0. 400	3. 19	4.000
	TK (T1~T9)	0.00760	0.00534	0.88	0.400	6. 11	4. 000
	TG (T2~T3) *	0.00700	0.00303	0. 88	0. 400	3. 80	4.000
	TG (T8~T9) *	0.00211	0.00303	0. 74	2. 153	2, 87	4. 000
6	TH (T2~T5) *	0.00207	0.00291	1. 56	0. 795	3. 84	4. 000
0	TJ (T2~T8) *	0.00102	0.00506	1. 47	0. 400	4. 17	4.000
	TK (T1~T9)	0.00657	0.00461	1. 01	0, 400	5. 98	4, 000
	TF (T2~T3) *	0. 00195	0.00281	0. 31	0. 422	4. 76	4, 000
	TG (T2~T3) *	0.00170	0.00432	1. 27	1. 032	3, 77	4, 000
	TH (T2~T5) *	0. 00079	0.00447	1. 64	0. 770	3. 71	4. 000
7	TH (T7~T8) *	0.00143	0.00458	0.00	2. 232	2. 84	4. 000
	TJ (T2~T9) *	0. 00035	0.00508	1.71	0. 400	3, 99	4. 000
	TK (T1~T9)	0, 00657	0,00461	1. 19	0. 400	6. 02	4. 000
	TC (T8~T9) *	0. 00281	0.00387	0.09	0.400	5. 31	4. 000
10	TD (T1~T9) *	0.00050	0.00482	0.34	0.400	4.05	4.000
10	TE (T4~T7) *	0.00073	0.00296	0. 13	0. 400	4. 05	4. 000
	TC (T2~T4) *	0.00210	0.00422	0.18	0.400	5. 09	4. 000
	TC (T7~T9) *	0.00157	0.00391	0. 20	0.400	4. 79	4.000
11	TD (T2~T9) *	0.00042	0.00468	0.38	0.400	3. 93	4. 000
	TE (T4~T7) *	0.00073	0.00296	0. 22	0.400	4.06	4.000
	TC (T2~T4) *	0.00300	0.00319	0. 23	0.889	4.07	4.000
	TC (T7~T9) *	0.00157	0.00564	0.37	0. 477	4. 77	4.000
12	TD (T2~T4) *	0.00102	0.00392	0.45	0.751	3. 69	4.000
	TD (T7~T9) *	0.00080	0.00340	0.61	0. 763	3. 48	4.000
	TE (T2∼T3) *	0.00123	0.00312	0.13	0.656	3. 83	4. 000
	TA (T1~T9)	0.00868	0.00533	0.36	0.400	6.09	4.000
	TB (T1∼T2) *	0.00300	0.00460	0.39	0. 553	4. 97	4. 000
	TC (T4~T7) *	0.00044	0.00424	0, 25	0. 400	3, 89	4. 000
13	TD (T1~T4) *	0.00060	0.00384	0.76	0. 709	3. 47	4. 000
	TD (T7~T9) *	0.00104	0.00392	1. 10	1.050	3. 41	4. 000
	TE (T2~T3) *	0.00143	0.00277	0.57	0.899	3. 54	4. 000
	TE (T7~T8) *	0.00173	0.00244	0.89	0.819	3. 75	4. 000
	TA (T1~T9)	0.00804	0.00429	0.48	0.400	5. 96	4.000
	TB (T2~T8) *	0.00032	0.00446	0.51	0.400	3. 75	4. 000
1.4	TC (T4~T7) *	0.00044	0.00424	0. 52	0. 478	3. 73	4. 000
14	TD (T1~T4) *	0.00067	0.00539	1, 23	0.741	3. 72	4. 000
	TD (T7~T9) *	0.00097	0.00523	1. 22	1.096	3. 50	4. 000
	15 (12 10)	0.00211	0.00408	1. 12	1. 220	3, 66	4.000
	12 (11 13)	0.00094	0.00346	0.90	0. 539	4. 01	4.000
	TA (T1~T2)	0.00552	0.00459	0.33	1.000	3. 99	4.000
	TA (T8~T9) TB (T2~T8) *	0.00599	0.00459	0.32	1.000	4. 05	4.000
	12 (12 10)	0.00032	0. 00402 0. 00424	0.52	0.400	3. 69	4. 000 4. 000
15	TC (T4~T7) * TD (T1~T9) *	0.00044		0.77	0. 555	3. 60	
	TE (T2~T3) *	0.00034	0. 00446 0. 00432	1.31 1.27	0. 400 1. 486	3, 86 3, 38	4. 000 4. 000
	TE (T7~T8) *	0.00170	0.00432	1.34	1, 486	3. 64	4. 000
				1.04	1.090		

注記*:内壁を示す。

表5-8 せん断スケルトン曲線 ($\tau - \gamma$ 関係,終局点) (2/3) (b) EW方向

				縦軸応力度			
部材	通り	P_{V}	P_{II}	O V	M/QD	τ 3	γ 3
番号	, /	(p te*)	(p _{wh} *)	(N/mm ²)	My QD	(N/mm ²)	(×10 ⁻³)
3	T1 (TD∼TK)	0.00893	0.00423	0.38	0. 400	6. 01	4.000
4	T1 (TA~TK)	0.00593	0.00562	0.69	0. 400	5. 94	4.000
5	T1 (TA~TK)	0, 00355	0.00392	0.51	0.400	5, 51	4.000
	T1 (TA~TK)	0.00781	0.00517	0.73	0. 400	6.08	4.000
	T2 (TD∼TH) *	0.00129	0.00271	0.76	1. 581	2. 91	4.000
6	T3 (TD∼TE) *	0.00161	0.00271	0.42	3. 000	2, 43	4.000
	ТЗ (ТН∼ТЈ) *	0.00242	0.00301	0.80	2. 618	2. 78	4.000
	T1 (TA∼TK)	0.00684	0.00422	0.85	0.400	5. 93	4.000
	T2 (TE∼TJ) *	0.00134	0.00513	1. 23	2. 479	2. 92	4.000
	T3 (TG~TJ) *	0.00123	0.00382	1. 15	0.750	3. 87	4.000
	T4 (TH∼TJ) *	0.00188	0.00316	1.35	3.000	2.65	4.000
7	T5 (T∐~TJ) *	0.00188	0.00316	1.47	3.000	2.66	4.000
'	T6 (TH∼TJ) *	0.00188	0.00414	2.00	2. 273	3. 08	4.000
	T7 (TII~TJ) *	0.00188	0.00316	2. 15	3.000	2. 73	4.000
	T8 (TD∼TE) *	0.00188	0.00316	0.94	0. 985	3. 70	4. 000
	T8 (TG∼TJ) *	0.00123	0. 00284	2. 11	1. 302	3. 23	4. 000
	T9 (TA∼TK)	0.00572	0.00422	0.78	0. 400	5. 81	4. 000
	T1 (TA~TK)	0.00684	0.00422	1.00	0.400	5. 97	4. 000
	T2 (TD~TJ) *	0.00064	0.00445	1.54	0. 570	3. 89	4. 000
	T3 (TD~TJ) *	0.00090	0.00428	1.07	1. 325	3. 16	4.000
	T4 (TH~TJ) *	0.00188	0.00414	1.51	3. 000	2. 80	4. 000
8	10 (111 -11)	0.00192	0.00535	1.66	3.000	2. 97	4. 000
	10 (111 - 13)	0.00188	0.00525	2. 14	2. 405	3. 18	4. 000
	T8 (TD~TE) *	0.00191	0.00517	1.38	1. 025	3. 96	4. 000
	10 (10 137	0.00123	0.00392	2. 59	1. 164	3, 54 5, 90	4. 000
	T9 (TA∼TK) T2 (TJ∼TK) *	0. 00572 0. 00253	0. 00422 0. 00405	1. 13 0. 49	0. 400 2. 482	2. 96	4. 000 4. 000
12	T3 (T.J~TK) *	0.00253	0.00405	0, 38	3, 000	2, 79	4. 000
	T2 (TC~TJ) *	0.00137	0.00366	0.81	1. 233	3, 33	4. 000
13	T3 (TD~TE) *	0.00141	0.00311	0. 28	1. 368	3. 10	4. 000
10	T3 (TH~TJ) *	0. 00242	0.00209	0.81	3. 000	2. 52	4. 000
16	T2 (TC~TD) *	0. 00255	0.00203	0. 24	0. 806	3. 90	4. 000
	T4 (TG∼TH) *	0. 00225	0.00455	0. 44	1. 548	3. 42	4.000
19	T4 (TJ∼TK) *	0.00253	0.00512	0. 27	2. 340	3. 12	4.000
	T5 (TJ~TK) *	0. 00253	0.00405	0. 28	3. 000	2. 78	4.000
0.0	T4 (TG∼TJ) *	0.00087	0.00267	0.71	2, 655	2.34	4.000
20	T5 (TH∼TJ) *	0.00161	0.00271	0.91	3.000	2. 48	4.000
	T4 (TG∼TJ) *	0.00163	0.00258	0.79	3.000	2.46	4.000
21	T5 (TH~TJ) *	0.00242	0.00251	1. 13	3.000	2. 62	4.000
21	T6 (TH∼TJ) *	0.00188	0.00316	1. 17	1. 782	3. 08	4. 000
	T7 (TG~TJ) *	0.00106	0.00282	0.89	3.000	2.36	4. 000
23	T4 (TA∼TE) *	0.00093	0.00396	0. 55	0. 400	4. 41	4. 000
24	T4 (TA~TB) *	0.00257	0.00374	0. 25	1. 150	3. 71	4. 000
	T4 (TC∼TE) *	0.00131	0,00419	0.34	0. 522	4. 33	4. 000
25	T4 (TA~TB) *	0.00257	0.00277	0.31	1. 603	3. 20	4. 000
	T4 (TC~TE) *	0.00102	0.00340	0.72	0. 727	3. 69	4. 000
	T4 (TA~TD) *	0.00086	0.00360	0.69	0.670	3. 70	4.000
26	10 (111 10)	0.00141	0.00301	0. 27	0.531	4. 19	4. 000
	10 (171 10)	0.00141	0.00301	0. 26	0. 559	4. 12	4. 000
	T7 (TA~TE) * T4 (TA~TD) *	0. 00066 0. 00086	0. 00368 0. 00360	0. 75 0. 88	0.438	4. 03 3. 56	4. 000 4. 000
	T5 (TA~TC) *	0.00086	0.00360	0. 88	0. 771 0. 684	4. 14	4. 000
27	T6 (TA~TC) *	0.00134	0.00543	0. 26	0. 683	4. 14	4. 000
	T7 (TA~TE) *	0.00141	0.00368	0. 20	0. 508	3. 88	4. 000
	T4 (TA~TD) *	0.00065	0.00308	0. 92	0. 857	3. 46	4. 000
	T5 (TA~TC) *	0.00084	0.00492	0. 62	0.666	3. 85	4. 000
28	T6 (TA~TC) *	0.00084	0.00492	0.62	0. 666	3, 85	4. 000
	T7 (TA~TD) *	0.00065	0. 00505	0.86	0. 764	3. 60	4. 000

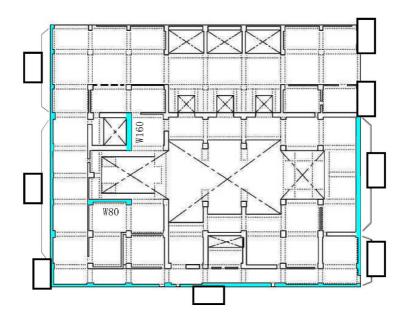

注記*:内壁を示す。

表5-8 せん断スケルトン曲線 ($\tau - \gamma$ 関係,終局点) (3/3) (b) EW方向

部材番号	通り	P _V (p _{te} *)	P _H (p _{wh} *)	縦軸応力度 σ _V (N/mm ²)	M/QD	$ au_3$ (N/mm 2)	γ ₃ (×10 ⁻³)
	T6 (TJ∼TK) *	0.00239	0.00425	0.30	3, 000	2. 79	4.000
31	T7 (TG∼TII) *	0.00225	0.00455	0.43	1. 571	3. 41	4.000
	T7 (TJ∼TK) *	0.00253	0.00512	0, 26	2, 379	3. 11	4.000
32	T6 (TH∼TJ) *	0.00188	0.00316	1. 28	1. 523	3. 25	4.000
34	T7 (TA∼TE) *	0.00093	0.00396	0. 57	0.400	4.41	4.000
35	T7 (TA∼TB) *	0.00257	0.00374	0, 25	1. 188	3. 67	4.000
35	T7 (TC∼TE) *	0.00131	0.00419	0.38	0.540	4. 29	4.000
36	T7 (TA∼TB) *	0.00257	0.00374	0.30	1. 583	3. 35	4.000
36	T7 (TC∼TD) *	0.00216	0. 00363	0.63	1. 365	3. 44	4.000
39	T8 (TH∼TK) *	0.00115	0.00450	0.45	1. 257	3. 29	4.000
39	T9 (TH∼TK)	0. 01185	0.00794	0.63	1.000	5. 44	4.000
	T8 (TC∼TD) *	0.00255	0.00203	0. 16	3, 000	2. 47	4.000
40	T8 (TG∼TJ) *	0.00123	0. 00287	0. 95	3. 000	2. 42	4.000
40	T9 (TA∼TB)	0.00395	0.00478	0.31	1.000	3. 79	4.000
	T9 (TC∼TJ)	0.00479	0.00247	0. 37	0.400	5. 46	4.000
41	T8 (TG∼TH) *	0.00188	0.00235	1. 19	3.000	2. 51	4.000
41	T9 (TA∼TK)	0.00644	0.00517	0. 74	0.400	5. 95	4.000
43	T8 (TC∼TD) *	0.00255	0. 00203	0.16	1. 194	3. 39	4.000
43	T9 (TC∼TD)	0.00312	0.00478	0.13	1.000	3. 61	4. 000
44	T8 (TC∼TD) *	0.00255	0. 00203	0.16	1. 194	3, 39	4.000
44	T9 (TA∼TD)	0.00346	0.00478	0. 24	1.000	3. 70	4. 000

注記*:内壁を示す。

記号*	縦筋	横筋
	内:D16@200 外:D16@200	内:D16@200 外:D16@200
	内: D19@200 外: D19@200	内: D19@200 外: D19@200
	内:D19@200 外:D19@200	内: D19@200 外: D19@200
	内:D22@200 外:D22@200	内: D22@200 外: D22@200
	内:D22@200 外:D22@200	内:D22@200 外:D22@200
	内:D29@200 外:D29@200	内: D29@200 外: D29@200
W160	内:D25@200 外:D25@200	内: D25@200 外: D25@200

注記*:記号に含まれる数値は壁厚(cm)を表す。

(例:_____

図 5-2 耐震壁の配筋図 (T.M.S.L.12.3m~T.M.S.L.20.4m)

- 5.1.4 RC造補助壁のせん断スケルトン曲線の諸数値
 - (1) 第1折点

RC造補助壁の各要素におけるせん断スケルトン曲線の第1折点の設定根拠を表5-9に示す。

表 5-9 せん断スケルトン曲線($\tau-\gamma$ 関係,第 1 折点)

/ \	110 1.	
(a)	NS方	Ħ

部材番号	コンクリート 強度 F _C (N/mm²)	せん断弾性 係数 G (×10 ⁴ N/mm ²)	当該部分が 支える重量 (kN)	断面積 (m²)	縦軸応力度 σ _V * (N/mm ²)	τ ₁ (N/mm ²)	γ ₁ (×10 ⁻³)
3	43. 1	1.20	64580	633.7	0.10	2.11	0.176
4	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
5	43. 1	1, 20	376070	1036.5	0.36	2. 23	0, 186
6	43. 1	1. 20	370000	1211.6	0.31	2. 20	0.184
7	43. 1	1. 20	264280	1290.4	0.20	2. 16	0.180
10	43. 1	1. 20	156500	640.8	0.24	2. 18	0. 181
11	43. 1	1, 20	64580	633.7	0.10	2. 11	0, 176
12	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
13	43. 1	1. 20	376070	1036.5	0.36	2. 23	0.186
14	43. 1	1. 20	370000	1211.6	0.31	2. 20	0. 184
15	43. 1	1. 20	264280	1290. 4	0.20	2. 16	0.180

注記*:縦軸応力度 σ v=当該部分が支える重量/断面積。

(b) EW方向

			. ,				
部材	コンクリート 強度 F _C	せん断弾性 係数 G	当該部分が	断面積	縦軸応力度 σν*	_	
番号	THA F C (N/mm ²)	一	支える重量 (kN)	(m^2)	σ _V (N/mm ²)	τ _ι (N/mm ²)	$(\times 10^{-3})$
4	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
5	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
6	43. 1	1. 20	376070	1036. 5	0.36	2. 23	0. 186
7	43. 1	1. 20	370000	1211.6	0.31	2. 20	0. 184
8	43. 1	1. 20	264280	1290.4	0. 20	2. 16	0. 180
12	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
13	43. 1	1, 20	284230	732.1	0.39	2. 24	0. 187
16	43. 1	1. 20	64580	633.7	0.10	2. 11	0. 176
21	43. 1	1. 20	376070	1036.5	0.36	2. 23	0.186
24	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
25	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
26	43. 1	1. 20	376070	1036.5	0.36	2. 23	0. 186
27	43. 1	1. 20	370000	1211.6	0.31	2. 20	0. 184
28	43. 1	1. 20	264280	1290. 4	0. 20	2. 16	0. 180
34	43. 1	1. 20	156500	640.8	0.24	2. 18	0. 181
35	43. 1	1. 20	64580	633. 7	0.10	2. 11	0. 176
36	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
39	43. 1	1.20	64580	633.7	0.10	2. 11	0. 176
40	43. 1	1. 20	284230	732. 1	0.39	2. 24	0. 187
41	43. 1	1.20	376070	1036.5	0.36	2. 23	0.186
43	43. 1	1. 20	156500	640.8	0. 24	2. 18	0. 181

注記*:縦軸応力度 σ ν=当該部分が支える重量/断面積。

5.1.5 鉄骨部のせん断スケルトン曲線の諸数値

(1) 第1折点

鉄骨部の各要素におけるせん断スケルトン曲線の第1折点の諸数値を表5-10に示す。

表 5-10 せん断スケルトン曲線 (Q- γ 関係, 第 1 折点)

(a) NS方向

₩	第1折点					
部材 番号	Q ₁ (kN)	Q _{P1} (kN)	Q _{S1} (kN)	γ_1 $(\times 10^{-3})$		
1	102152	68434	33719	2. 267		
2	144630	81384	63245	2. 210		
9	39258	23165	16093	1. 345		
16	10695	6087	4607	0.860		

(b) EW方向

☆ 17 + +	第1折点						
部材 番号	Q ₁ (kN)	Q _{P 1} (kN)	Q _{S1} (kN)	γ_1 $(\times 10^{-3})$			
1	51436	34029	17407	3. 474			
10	25094	15399	9695	3. 088			
17	25094	15399	9695	3. 088			
29	25094	15399	9695	3. 088			
37	25094	15399	9695	3. 088			
2	73864	45701	28163	3, 442			
11	54999	39973	15026	5. 351			
18	54999	39973	15026	5. 351			
30	54999	39973	15026	5. 351			
38	54999	39973	15026	5. 351			

6. まとめ

柏崎刈羽原子力発電所のタービン建屋におけるせん断スケルトン曲線の設定について整理した。耐震壁及び補助壁について算出したせん断スケルトン曲線の諸数値を表6-1に、鉄骨部について算出したせん断スケルトン曲線の諸数値を表6-2に示す。

表 6-1 せん断スケルトン曲線($\tau-\gamma$ 関係)(1/2) (a) NS 方向

	第1	折点	第2	折点	終局点	
部材 番号	$ au_1 \ (ext{N/mm}^2)$	$(\times 10^{-3})$	$ au_2$ (N/mm 2)	$^{\gamma}_{2}$ (×10 ⁻³)	$ au_3$ $({ m N/mm}^2)$	$^{\gamma}_{3}$ (×10 ⁻³)
3	2. 19	0.182	2. 94	0. 541	3. 95	4.000
4	2. 36	0. 197	3. 11	0. 554	4.08	4.000
5	2. 51	0. 210	3. 36	0. 575	4. 54	4.000
6	2. 38	0. 199	3. 12	0.601	4. 35	4.000
7	2.57	0. 214	3. 38	0. 516	4. 45	4, 000
10	2. 18	0.182	2. 94	0. 527	4.09	4.000
11	2. 20	0. 183	2. 94	0. 538	4. 02	4.000
12	2. 26	0.189	2. 99	0.532	3.60	4.000
13	2. 29	0. 191	3. 02	0. 546	4. 32	4. 000
14	2. 35	0.196	3. 09	0. 573	4. 20	4.000
15	2. 41	0. 201	3. 13	0. 554	3. 50	4.000

表 6-1 せん断スケルトン曲線($\tau-\gamma$ 関係)(2/2) (b) EW方向

	第1	折点	第2	折点	終局点	
部材番号	$ au_1 ag{N/mm}^2$	$(\times 10^{-3})$	$ au_2 \ (ext{N/mm}^2)$	$\gamma_{2} \times 10^{-3}$)	$ au_3$ (N/mm^2)	$(\times 10^{-3})$
3	2.24	0.187	3. 02	0. 561	6.01	4. 000
4	2. 37	0. 198	3. 19	0. 596	5. 87	4. 000
5	2.30	0.191	3. 08	0. 577	5. 43	4. 000
6	2. 33	0. 194	3. 04	0. 566	4. 18	4. 000
7	2. 39	0. 199	3. 09	0.606	4. 09	4. 000
8	2. 36	0. 197	3. 01	0. 628	3. 92	4. 000
12	2. 26	0.188	3. 02	0. 561	2.85	4. 000
13	2.34	0. 195	3. 09	0. 549	3. 07	4. 000
16	2. 16	0.180	2. 83	0. 545	3. 68	4. 000
19	2. 22	0.185	3.00	0. 549	3. 17	4. 000
20	2. 42	0. 201	3. 26	0. 599	2. 39	4. 000
21	2. 47	0.206	3. 26	0. 607	2. 57	4. 000
23	2. 32	0. 193	3. 13	0. 581	4. 41	4. 000
24	2. 20	0.184	2. 96	0. 546	4. 12	4. 000
25	2. 32	0. 194	2. 99	0. 553	3. 31	4. 000
26	2. 19	0.182	2. 94	0. 547	3. 70	4. 000
27	2. 23	0.186	2. 89	0. 546	3.41	4. 000
28	2. 27	0. 190	2. 96	0. 588	3. 28	4. 000
31	2. 23	0.185	3. 01	0. 548	3. 16	4. 000
32	2. 62	0.218	3. 54	0. 657	3. 25	4. 000
34	2.32	0. 193	3. 08	0. 583	4. 28	4. 000
35	2.21	0.184	2. 94	0. 546	3. 99	4. 000
36	2. 28	0. 190	2. 94	0. 552	3. 21	4. 000
39	2.30	0. 192	3. 05	0. 570	4. 21	4. 000
40	2. 28	0. 190	3. 03	0. 536	4. 42	4. 000
41	2. 27	0. 189	2. 94	0.602	4. 70	4. 000
43	2. 13	0.178	2. 79	0. 532	3. 33	4. 000
44	2. 16	0.180	2. 92	0. 536	3. 61	4. 000

表 6-2 せん断スケルトン曲線($Q-\gamma$ 関係)

(a) NS方向

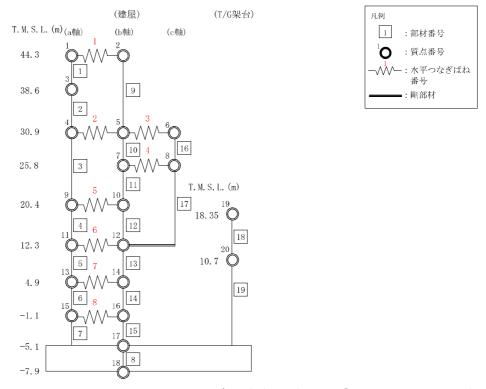
₩		第1折点							
部材 番号	Q ₁ (kN)	Q _{P1} (kN)	Q _{S1} (kN)	γ_1 $(\times 10^{-3})$					
1	102152	68434	33719	2. 267					
2	144630	81384	63245	2. 210					
9	39258	23165	16093	1. 345					
16	10695	6087	4607	0.860					

(b) EW方向

47 l-l-		第1:	折点	
部材 番号	Q ₁ (kN)	Q _{P 1} (kN)	Q _{S1} (kN)	γ_1 $(\times 10^{-3})$
1	51436	34029	17407	3. 474
10	25094	15399	9695	3. 088
17	25094	15399	9695	3. 088
29	25094	15399	9695	3. 088
37	25094	15399	9695	3. 088
2	73864	45701	28163	3. 442
11	54999	39973	15026	5. 351
18	54999	39973	15026	5. 351
30	54999	39973	15026	5. 351
38	54999	39973	15026	5. 351

別紙 5 水平つなぎばねの諸元及び非線形性を考慮した解析

目 次


1. 机	既要	別紙 5-1
1.1	水平つなぎばねの諸元について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-1
1.2	水平つなぎばねの応答結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-5
2. 身	F線形ばねを用いた妥当性確認 ····・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-8
2.1	概要	別紙 5-8
2.2	検討用地震動及び地震応答解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-8
2.3	非線形特性の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-8
2.4	水平つなぎばねに非線形を考慮した応答結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 5-9

1. 概要

本資料は、タービン建屋の地震応答解析モデルに設定している水平つなぎばねに関し、 機能維持エリアである鉄筋コンクリート造部における水平つなぎばねの諸元及び応答結 果を確認するものである。

1.1 水平つなぎばねの諸元について

タービン建屋の地震応答解析モデル(水平方向)を図 1-1 に示す。水平つなぎばねのせん断応力度-せん断ひずみ関係($\tau-\gamma$ 関係)は弾性でモデル化しており、平成 3 年 8 月 23 日付け 3 資庁第 6675 号にて認可された工事計画の添付資料「IV-2-9 タービン建屋の耐震性についての計算書」(以降、建設工認と称す)から変更せず、表 1-1 及び表 1-2 のとおり設定している。

注:東京湾平均海面(以下,「T.M.S.L.」という。) NS 方向

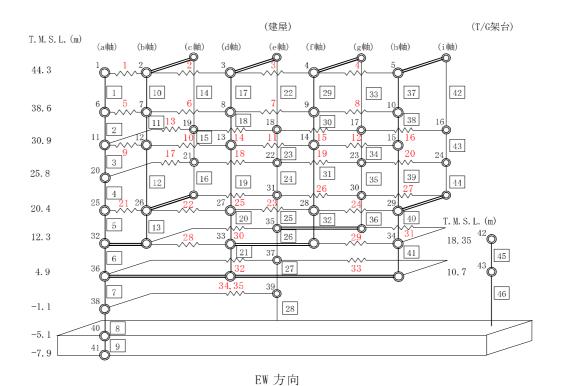


図 1-1 地震応答解析モデル (水平方向)

別紙 5-2

表 1-1 水平つなぎばねのばね定数 (NS 方向)

T. M. S. L.	水平つなぎ	せん断ばね
(m)	ばね番号	$(\times 10^4 \mathrm{t/m})$
44. 3	1	4.6*1
20.0	2	0.0*2
30.9	3	1.6*1
25. 8	4	2.4*1
20.4	5	66. 4
12. 3	6	78.6
4.9	7	58.9
-1. 1	8	41.5

注記*1:鉄骨水平ブレースを示す。

注記*2:モデル図上はばねを示しているが、ばね剛性を考慮していない。

表 1-2 水平つなぎばねのばね定数 (EW 方向)

T. M. S. L.	水平つなぎ	せん断ばね
(m)	ばね番号	$(\times 10^4 \mathrm{t/m})$
	1	5.6*1
44.0	2	3.7*1
44.3	3	3.7*1
	4	3.9*1
	5	12.3
00.0	6	17.4
38.6	7	13.8
	8	17. 3
	9	14.8
	10	36.6
	11	53.8
00.0	12	41.2
30.9	13	0.0*2
	14	0.0*2
	15	17.7
	16	0.0*2
	17	2.8*1
25.8	18	1.4*1
20.0	19	0.0*2
	20	1.3*1
	21	134.0
	22	100.4
	23	94. 1
20.4	24	64.8
	25	66. 5
	26	24.0
	27	76.6
12.3	28	37. 3
	29	64. 7
	30	34. 9
	31	45.0
4.9	32	13.6
	33	15. 2
-1.1	34	21.2
1.1	35	40.0

注記*1:鉄骨水平ブレースを示す。

注記*2:モデル図上はばねを示しているが、ばね剛性を考慮していない。

1.2 水平つなぎばねの応答結果

 $Ss-1\sim Ss-8$ の基本ケースにおける水平つなぎばねの最大せん断ひずみを算出し、表 1-3 及び表 1-4 に示す。また、「原子力発電所耐震設計技術指針 J E A G 4 6 0 1-1991 追補版((社)日本電気協会)」(以下「J E A G 4 6 0 1-1991 追補版」という。)に基づき設定した、せん断スケルトン曲線の第 1 折点を算出し、 $Ss-1\sim Ss-8$ の基本ケースにおける最大せん断ひずみと比較を行った結果を表 1-5 及び表 1-6 に示す。

表 1-5 より、NS 方向における Ss-1~Ss-8 の最大せん断ひずみは、すべての水平つなぎばねにおいて γ_1 (0.171×10⁻³) と比較して小さいことを確認した。

また、表 1-6 より、EW 方向における 20.4m の一部の水平つなぎばねにおいて、 γ (0.171×10⁻³) を上回るせん断ひずみが生じていることを確認した。

表 1-3 水平つなぎばねの最大せん断ひずみ (NS 方向)

T. M. S. L.	水平つなぎ		最大せん断ひずみ (×10 ⁻³)						
(m)	ばね番号	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
20.4	5	<u>0.116</u>	0.082	0.076	0.046	0.035	0.048	0.036	0.059
12.3	6	<u>0.051</u>	0.036	0.028	0.020	0.016	0.022	0.016	0.029
4. 9	7	<u>0.027</u>	0.019	0.015	0.010	0.009	0.011	0.009	0.016
-1.1	8	<u>0.009</u>	0.008	0.006	0.004	0.004	0.005	0.004	0.006

注:下線部は各Ssのうち最も大きい値を示す。

表 1-4 水平つなぎばねの最大せん断ひずみ (EW 方向)

T. M. S. L.	水平つなぎ			最大	せん断ひ	ずみ (×10)-3)		
(m)	ばね番号	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8
	21	<u>0.120</u>	0.080	0.052	0.059	0.057	0.058	0.065	0.044
	22	<u>0. 252</u>	0.215	0.147	0.182	0. 182	0. 199	0.190	0. 225
	23	<u>0.110</u>	0.085	0.102	0.096	0.078	0.101	0.093	0.104
20.4	24	<u>0. 204</u>	0.190	0.145	0.179	0. 165	0. 196	0.169	0. 195
	25	<u>0.720</u>	0. 281	0.326	0.335	0.360	0.365	0.447	0. 267
	26	<u>0.306</u>	0.055	0.047	0.055	0.050	0.048	0.049	0.029
	27	<u>0.667</u>	0.335	0.365	0.370	0.406	0.401	0.472	0.303
	28	<u>0. 036</u>	0.023	0.019	0.021	0.020	0.022	0.024	0.022
12. 3	29	<u>0. 055</u>	0.035	0.029	0.036	0.033	0.036	0.035	0.032
12. 5	30	<u>0.084</u>	0.038	0.026	0.028	0.041	0.030	0.042	0.038
	31	<u>0. 095</u>	0.046	0.032	0.037	0.053	0.040	0.052	0.046
4. 9	32	<u>0.041</u>	0.019	0.012	0.013	0.022	0.015	0.021	0.020
4. 9	33	<u>0.055</u>	0.026	0.016	0.018	0.030	0.020	0.029	0.027
-1. 1	34	<u>0.008</u>	0.004	0.003	0.004	0.005	0.004	0.005	0.005
1. 1	35	<u>0.010</u>	0.005	0.004	0.005	0.007	0. 005	0.006	0.006

注:下線部は各Ssのうち最も大きい値を示す。

表 1-5 せん断スケルトン曲線($\tau-\gamma$ 関係,第 1 折点)との比較(NS 方向)

T. M. S. L. (m)	水平つなぎ ばね番号	コンクリート 強度 F c (N/mm²)	せん断 弾性係数 G (×10 ⁴ N/mm ²)	断面積 As (m²)	τ_1 (N/mm ²)	$\gamma_{1} \times 10^{-3}$	Ss-1~Ss-8 基本ケースの 最大せん断ひずみ (×10 ⁻³)
20.4	5			22.0			0. 116
12.3	6	43. 1	1. 20	37. 2	2.06	0. 171	0.051
4. 9	7	45.1	1. 20	30.9	2.00	0.171	0.027
-1.1	8			19.7			0.009

表 1-6 せん断スケルトン曲線 $(\tau - \gamma)$ 関係, 第 1 折点) との比較 (EW) 方向)

T. M. S. L. (m)	水平つなぎ ばね番号	コンクリート 強度 Fc (N/mm²)	せん断 弾性係数 G (×10 ⁴ N/mm²)	断面積 As (m²)	$ au_1$ (N/mm ²)	$(\times 10^{-3})$	Ss-1~Ss-8 基本ケースの 最大せん断ひずみ (×10 ⁻³)	
	21			17.6			0.120	
	22			19.4			<u>0.252</u>	
	23			16. 2			0.110	
20.4	24			17.9			<u>0. 204</u>	
	25			9. 58			<u>0.720</u>	
	26			7. 50			<u>0.306</u>	
	27			11.7			<u>0.667</u>	
	28	43. 1	1. 20	18.3	2.06	0.171	0.036	
12.3	29				17.5			0.055
12.0	30			16.4			0.084	
	31			15. 1			0.095	
4.9	32			6. 40			0.041	
4. 9	33			5. 25			0.055	
-1.1	34			9. 27			0.008	
1.1	35			13.9			0.010	

注:下線部は、γ1を上回るケースを示す。

2. 非線形ばねを用いた妥当性確認

2.1 概要

今回工認モデルにおける水平つなぎばねの妥当性を確認する目的で,非線形性を考慮した水平つなぎばねを用いた応答解析を行い,その応答結果を確認する。

2.2 検討用地震動及び地震応答解析モデル

表 1-5 及び表 1-6 より,EW 方向の水平つなぎばねにおいて第 1 折れ点を超える最大せん断ひずみが生じていることを確認した。また,表 1-6 より $Ss-1\sim Ss-8$ の最大せん断ひずみは 0.720×10^{-3} (Ss-1, 水平つなぎばね番号 25) であり,Ss-1 において生じていることから,非線形ばねを用いた応答解析を Ss-1 基本ケースの EW 方向モデルに対して実施する。このとき,すべての水平つなぎばねで非線形ばねを考慮する。

2.3 非線形特性の設定

RC スラブの非線形特性は、J E A G 4 6 0 1 - 1991 追補版の RC 耐震壁のせん断スケルトンの評価式を基に設定し、評価結果を表 2-1 に示す。

表 2-1 せん断スケルトン曲線 $(\tau - \gamma 関係, EW 方向)$

T. M. S. L. (m)	水平つなぎ ばね番号	$ au_2$ $({ m N/mm}^2)$	$\gamma_{2} \times 10^{-3}$	$ au_3$ $({ m N/mm}^2)$	$\gamma_{3} \times 10^{-3}$
	21				
	22				
	23				
20.4	24			3. 36	
	25				
	26				
	27				
	28	2. 78	0.514		4.00
12.3	29			3. 29	
12.5	30			J. 49	
	31				
4.9	32			3. 35	
4. 9	33			J. JJ	
-1.1	34			3. 35	
1, 1	35			J. 33	

2.4 水平つなぎばねに非線形を考慮した応答結果

今回工認モデル及び水平つなぎばねに非線形性を考慮した場合の比較結果を示す。 最大応答加速度,最大応答変位,最大応答せん断力,最大応答曲げモーメント,水平 つなぎばねの最大応答せん断ひずみ,スケルトンプロット,床応答スペクトルを表 2 $-2\sim$ 表 2-6 及び図 $2-1\sim$ 図 2-6 に示す。

最大応答加速度及び最大応答変位については、20.4mの一部で①今回工認モデルと比較して②水平つなぎばね非線形モデルの方が大きいことを確認した。ただし、最大応答せん断力及び最大応答曲げモーメントは20.4m以下において概ね同等であることから、タービン建屋の耐震性に与える影響はないことを確認した。

水平つなぎばねの最大せん断ひずみは,表 2-6 より,12.3m 以下において弾性範囲にあることを確認した。20.4m では,一部の水平つなぎばねが第 2 折れ点を超えるものの,最大せん断ひずみは 1.097×10^{-3} (水平つなぎばね番号 25) であり,耐震性に与える影響はないことを確認した。

床応答スペクトルについては、20.4mの一部で①今回工認モデルと比較して②水平つなぎばね非線形モデルの方が大きくなるが、設計に用いている床応答スペクトルとの大小関係や、当該フロアに設置される機器の固有周期を考慮すると耐震性に与える影響はないことを確認した。

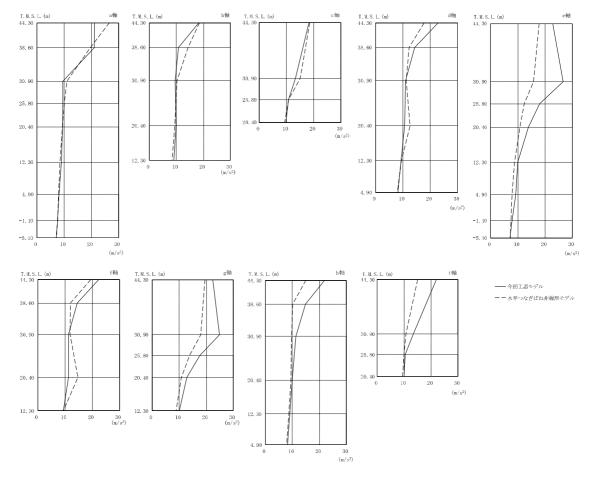


図 2-1 最大応答加速度 (EW 方向, Ss-1 (基本ケース))

表 2-2 最大応答加速度 (EW 方向, Ss-1 (基本ケース))

部位	質点	最大応答加速度 一覧表	
	番	(m/s^2)	
	号	1	2
	1	21.2	26.7
	6	21.0	19.6
	11	9.53	11.0
	20	9.55	10.1
a 軸	25	9.42	9.29
	32	9.02	8.51
	36	8.19	7.90
	38	7.50	7.52
	40	7.10	7.23
	2	18.3	18.6
b	7	10.7	14.4
軸	12	9.57	10.3
	26	9.85	9.37
с	19	13.3	15.1
軸	21	10.7	10.7
	3	22.8	17.8
	8	14.3	12.3
d 軸	13	11.0	11.2
+414	27	10.6	12.7
	33	9.34	9.42
	18	26.6	15.8
	22	18.1	12.3
е	31	13.9	10.8
軸	35	9.98	8.83
	37	9.22	7.93
	39	7.98	7.45
	4	22.4	19.5
f	9	14.5	12.0
軸	14	11.3	11.9
	28	11.3	14.7
	17	24.9	18.0
g 軸	23	17.6	13.8
710	30	12.8	10.7
	5	21.9	14.9
	10	14.8	10.1
h 軸	15	11.4	9.68
710	29	9.90	9.40
	34	9.12	8.69
i	16	13.4	10.6
軸	24	10.4	9.93
注.	ΩA	同工級チラ	- J

注: ①今回工認モデル

②水平つなぎばね非線形モデル

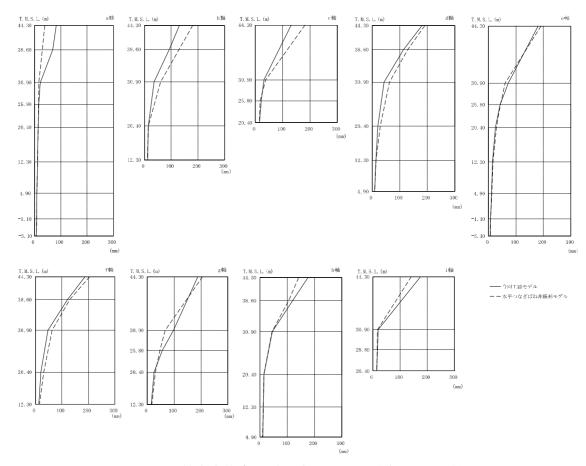


図 2-2 最大応答変位 (EW 方向, Ss-1 (基本ケース))

表 2-3 最大応答変位 (EW 方向, Ss-1 (基本ケース))

	質	最大応答変位	
部位			
,	号	(1)	2
	1	83.1	39.2
	6	69.2	29.8
	11	22.3	16.6
	20	16.3	15.0
a 軸	25	14.4	13.7
牛田	32	12.0	11.8
	36	9.72	9.58
	38	7.84	7.67
	40	6.65	6.48
	2	131	181
b	7	93.0	130
軸	12	36.5	61.5
	26	15.2	14.6
С	19	32.2	36.9
軸	21	20.7	18.2
	3	180	191
	8	114	129
d 軸	13	43.8	63.0
ти	27	20.8	30.1
	33	13.5	14.9
	18	72.4	60.4
	22	42.6	43.8
е	31	24.6	29.9
軸	35	14.1	17.1
	37	10.8	12.1
	39	8.03	8.16
	4	188	206
f	9	122	130
軸	14	47.7	63.1
	28	21.4	32.7
	17	96.8	66.1
g 軸	23	55.8	46.6
	30	25.0	29.5
	5	175	142
1	10	121	105
h 軸	15	44.9	44.4
	29	15.0	14.5
	34	12.2	12.0
i	16	19.5	17.5
軸	24	17.0	16.1
注:①今回丁認モデル			

注: ①今回工認モデル

②水平つなぎばね非線形モデル

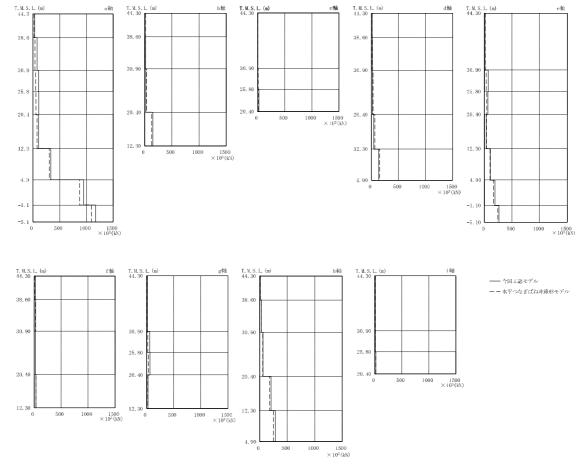


図 2-3 最大応答せん断力 (EW 方向, Ss-1 (基本ケース))

表 2-4 最大応答せん断力 (EW 方向, Ss-1 (基本ケース))

部位	部材番	最大応答せん断力 一覧表 (×10 ³ kN)	
1	号	①	2
	1	35.1	25.0
	2	74.2	40.2
	3	105	52.2
а	4	110	57.2
軸	5	108	77.4
	6	335	305
	7	946	869
	8	1170	1090
	10	9.14	17.2
b	11	14.5	11.8
軸	12	21.4	33.0
	13	156	132
	14	4.56	6.40
c 軸	15	5.56	8.10
	16	20.2	19.0
	17	16.6	13.4
	18	24.1	17.8
d 軸	19	22.6	35.2
	20	49.4	63.5
	21	134	156
	22	10.9	11.9
	23	65.3	33.6
	24	63.8	42.5
e 軸	25	32.8	38.7
	26	109	102
	27	188	165
	28	261	244
	29	20.5	16.7
f	30	28.4	26.1
軸	31	25.7	25.5
	32	33.8	38.1
	33	19.6	12.9
g	34	59.8	23.1
軸	35	62.8	35.9
	36	30.8	23.1
	37	18.4	13.9
	38	31.3	31.8
h 軸	39	60.7	55.9
7111	40	212	181
	41	285	252
	42	12.0	9.56
i 軸	43	14.4	12.7
	44	22.0	20.0
注:	①今	回工認モラ	ジル

注: ①今回工認モデル ②水平つなぎばね非線形モデル

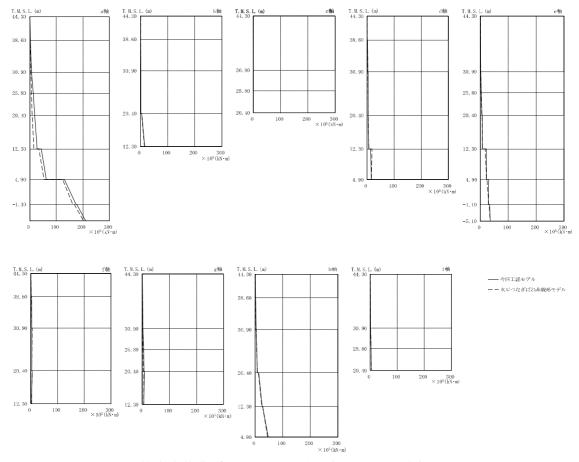


図 2-4 最大応答曲げモーメント (EW 方向, Ss-1 (基本ケース))

表 2-5 最大応答曲げモーメント (EW 方向, Ss-1 (基本ケース))

				(
		部	最大応答 曲げモーメント	
	部位	材	一覧表 (×10 ⁵ kN·m)	
	1	号	(X10	(2)
		1	0.323	0.230
			2.00	1.43
		2	7.71 7.71	4.31 4.32
		3	13.0	6.98
	a	4	13.0 18.9	6.98 10.1 10.1
	軸	5	18.9 27.3	10.1 15.2
		6	43.0 62.7	34.5 54.1
		7	130	123
		8	174 177	162 167
			0.555	202 0.435
		10	0.611 1.28	0.829 1.29
	b	11	1.68	1.47
	軸	12	2.61 2.16	2.12 2.27
Į		13	4.87 16.0	4.97 15.2
		14	0.190 0.640	0.215 0.775
	C state	15	0.640	0.775 1.11
	軸	16	0.847 1.12	1.21
		17	1.36 0.606	1.39 0.563
			1.17 1.89	1.07 1.70
	d	18	3.08	2.50 3.47
	軸	19	3.84 3.94	4.09
		20	4.65 6.95	4.65 6.99
		21	13.1 15.5	18.2 15.6
		22	0.461 1.36	0.314 1.45
		23	1.79	1.47 2.80
		24	3.55 3.61	2.87
	е	25	6.27 7.57	4.51 5.61
	軸		6.99 21.4	7.07 17.3
		26	22.4 29.8	21.4 24.4
		27	29.2	29.7
		28	33.2 35.6	30.9 35.8
		29	0.583 1.27	0.739 1.28
	f	30	2.05 3.62	2.39 3.40
	軸	31	4.38 3.35	5.43 3.78
Į		32	4.81	5.18
Į		33	2.53 0.591	3.09 0.357
Į			2.21 1.95	1.63 1.50
	g 軸	34	4.28 4.36	2.39
	нц	35	7.35	3.80
		36	8.38 6.08	5.37 5.46
		37	0.316 1.14	0.254 0.883
Į		38	1.42 3.56	1.18 3.01
	h 軸	39	3.97	3.36 8.10
	車由	40	8.16 12.9	11.8
		41	25.7 27.0	24.9 26.6
			47.4 0.0819	44.7 0.0520
	i	42	1.62 1.65	1.33 1.35
	軸	43	2.26	1.98
ļ	NA-	44	2.32 3.45	2.02 3.05
	注:	山今	回工認モラ	ドル ドわま線形

②水平つなぎばね非線形モデル

表 2-6 水平つなぎばねの最大せん断ひずみ (EW 方向, Ss-1 (基本ケース))

T. M. S. L.	水平つなぎ	最大せん断ひずみ
(m)	ばね番号	$(\times 10^{-3})$
	21	0.070
	22	0.827
	23	0.151
20.4	24	0.645
	25	1.097
	26	0.094
	27	1.094
	28	0.084
12.3	29	0.142
12. 3	30	0.105
	31	0.140
4.9	32	0.051
4. 9	33	0.070
-1. 1	34	0.012
1.1	35	0.015

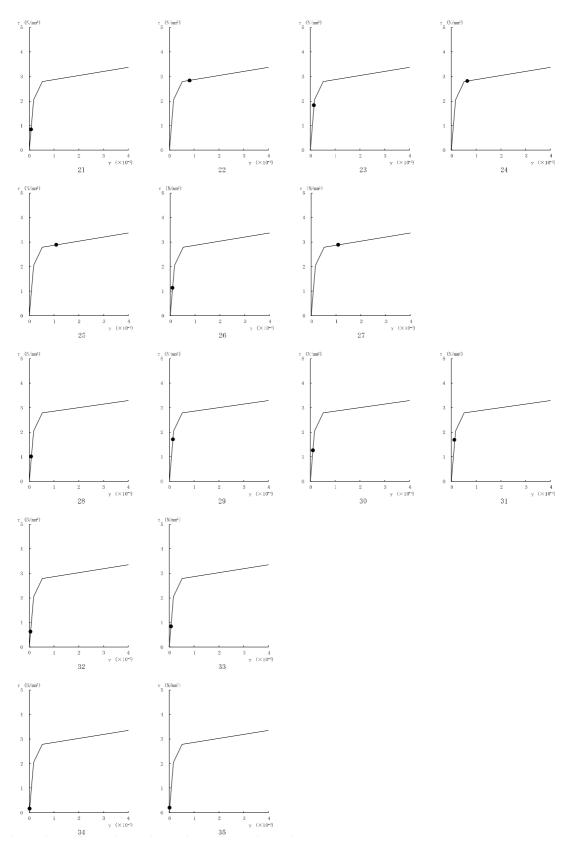


図 2-5 水平つなぎばねのせん断スケルトンプロット (EW 方向, Ss-1 (基本ケース))

減衰定数:0.01 減衰定数:0.01 100 100 80 加速度 (m/s²) 加速度 (m/s²) 60 40 20 0.2 0.5 周期 (s) 0.2 0.5 周期 (s) (a) 質点 25 (T.M.S.L. 20.4m) (b) 質点 26 (T.M.S.L. 20.4m) 120 減衰定数: 0.01 減衰定数:0.01 100 100 80 加速度 (m/s²) 60 40 20 0.05 0.2 0.5 周期 (s) 0.02 0.05 0.2 0.5 周期 (s) (c) 質点 27 (T.M.S.L. 20.4m) (d) 質点 28 (T.M.S.L. 20.4m) 120 120 減衰定数:0.01 減衰定数:0.01 100 80 加速度 (m/s²) 加速度 (m/s²) 60 60 40 20 0.2 周期 (s) 0.2 0.5 周期 (s) 0.02 0.05 0.1 0.02 0.05

--- 水平つなぎばね非線形モデル

- 今回工認モデル

図 2-6 床応答スペクトル (EW 方向, Ss-1 (基本ケース)) (1/3)

(f) 質点 30 (T.M.S.L. 20.4m)

(e) 質点 29 (T.M.S.L. 20.4m)

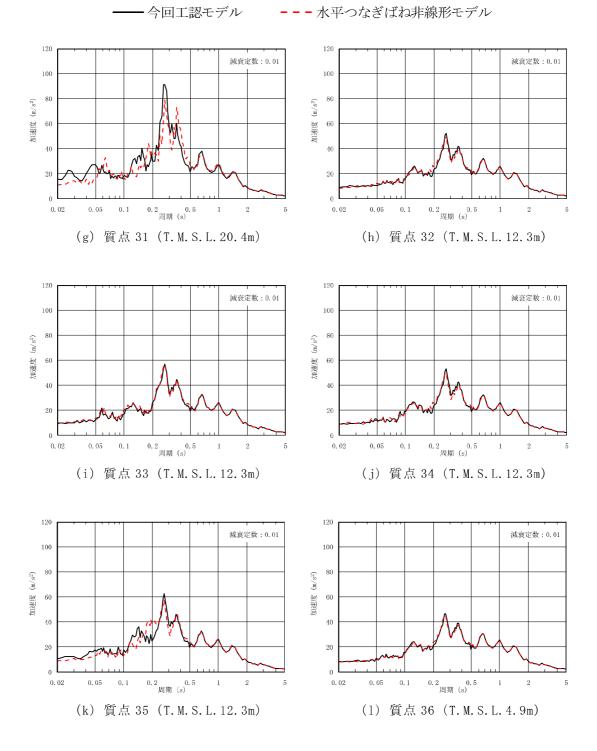
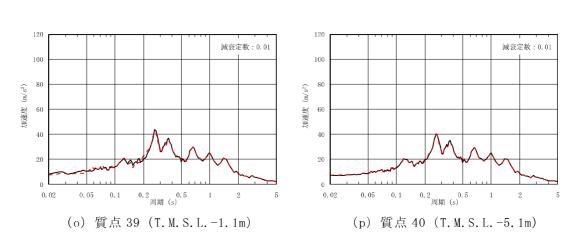



図 2-6 床応答スペクトル (EW 方向, Ss-1 (基本ケース)) (2/3)

120 減衰定数:0.01 100 100 80 加速度 (m/s²) 加速度 (m/s²) 60 40 40 20 0.2 0.5 周期 (s) 0.2 0.5 周期 (s) 0.02 (m) 質点 37 (T.M.S.L.4.9m) (n) 質点 38 (T.M.S.L.-1.1m)

- 今回工認モデル

--- 水平つなぎばね非線形モデル

減衰定数:0.01

図 2-6 床応答スペクトル (EW 方向, Ss-1 (基本ケース)) (3/3)