本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第	第7号機 工事計画審査資料
資料番号	KK7 添-2-037-56-4 改 0
提出年月日	2020年5月14日

V-2-6-7-15(4) 通信収容架の耐震性についての計算書

2020年5月 東京電力ホールディングス株式会社 (4) 通信収容架の耐震性についての計算書

目 次

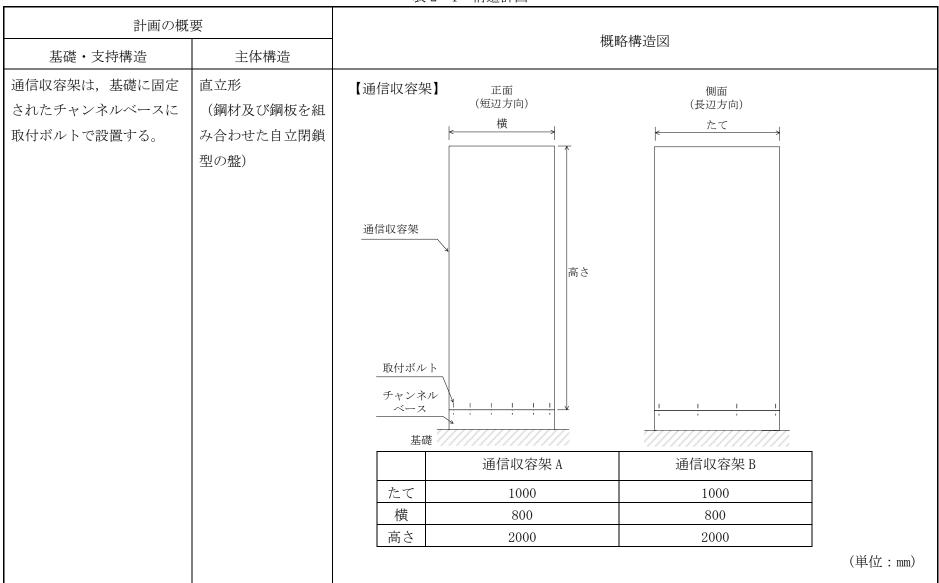
1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
3. 固有周期 · · · · · · · · · · · · · · · · · · ·	3
3.1 固有周期の算出	3
4. 構造強度評価 · · · · · · · · · · · · · · · · · · ·	4
4.1 構造強度評価方法	
4.2 荷重の組合せ及び許容応力	4
4.2.1 荷重の組合せ及び許容応力状態	4
4.2.2 許容応力	4
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.3 計算条件	4
5. 機能維持評価	8
5.1 電気的機能維持評価方法	8
6. 評価結果	9
6.1 重大事故等対処設備としての評価結果	9

1. 概要

統合原子力防災ネットワークを用いた通信連絡設備(テレビ会議システム, IP・電話機及び IP・FAX)(6,7 号機共用)のうち、通信収容架は、設計基準対象施設においてはCクラス施設に、重大事故等対処設備においては常設重大事故等対処設備(防止でも緩和でもない設備)に分類される。通信収容架の評価においては、V・1・1・11「通信連絡設備に関する説明書」に基づき、基準地震動Ssによる地震力に対して機能を維持できることを確認する。

通信収容架は重大事故時等対処設備として基準地震動Ssによる機能維持が要求されることから本計算書は、V-2-1-1「耐震設計の基本方針」の「5. 機能維持の基本方針」及びV-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針を準用し、設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

なお、通信収容架は、V-2-1-14「計算書作成の方法」に記載の直立形盤であるため、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に基づき評価を実施する。


2. 一般事項

2.1 構造計画

通信収容架の構造計画を表 2-1 に示す。

 \sim

表 2-1 構造計画

3. 固有周期

3.1 固有周期の算出

通信収容架の固有周期は、構造が同等であり、同様な振動特性を持つ盤に対する振動試験(自由振動試験)の結果算定された固有周期を使用する。

固有周期の算出結果を表 3-1 に示す。

表 3-1 固有周期

(単位:s)

名称	方向	固有周期
\Z.\=\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	水平	0.05以下
通信収容架 A	鉛直	0.05以下
	水平	0.05以下
通信収容架 B	鉛直	0.05以下

4. 構造強度評価

4.1 構造強度評価方法

通信収容架の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

通信収容架の荷重の組合せ及び許容応力状態のうち重大事故等対処設備の評価に用いる ものを表 4-1 に示す。

4.2.2 許容応力

通信収容架の許容応力は、V-2-1-9「機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

通信収容架の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-3 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【通信収容架 A の耐震性についての計算結果】及び【通信収容架 B の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分機器名称		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					D+PD+MD+S s *3	IV A S
計測制御系統施設	その他の計測制御系統施設	通信収容架	常設/その他 —*2		D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)
					D+PD+MD+Ss*3	IV A S
その他発電 用原子炉の 附属施設	緊急時対策所	通信収容架 常設/その他 -		<u>*</u> *2	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限 界を用いる。)

注記*1:「常設/その他」は常設重大事故等対処設備(防止でも緩和でもない設備)を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

	、しり他り入り併進物及り重八事以守しり他、				
許容応力状態	許容限界* ^{1,*2} (ボルト等)				
	一次応力				
	引張り	せん断			
IV a S					
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*	1.5 • f s*			

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件		Sу	S u	S y (R T)		
計111111日1277	17) 14	(°C)		(MPa)	(MPa)	(MPa)		
取付ボルト	SS400 (40mm<径)	周囲環境温度	40	215	400	_		

5. 機能維持評価

5.1 電気的機能維持評価方法

通信収容架の電気的機能維持評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐 震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

通信収容架に設置される器具の機能確認済加速度は、V-2-1-9「機能維持の基本方針」に基づき、同形式の器具単体の正弦波加振試験において、電気的機能の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

		, , ,
評価部位	方向	機能確認済加速度
汉层炉点机	水平	3. 04
通信収容架 A	鉛直	2. 03
不是你点机力	水平	3. 05
通信収容架 B	鉛直	2. 03

6. 評価結果

6.1 重大事故等対処設備としての評価結果

通信収容架の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【通信収容架Aの耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

te	据付場所及び床面高さ	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動Ss		田田連辞祖井	
機器名称	機器名称 設備分類 がり 場別及の休田高 (m)	/ \	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	— 周囲環境温度 (°C)
通信収容架 A	常設/その他	緊急時対策所 T. M. S. L. 28. 45 (T. M. S. L. 27. 8*)	0.05以下	0.05 以下	—	_	C _H =1.67	Cv = 1.45	40

注記*:基準床レベルを示す。

1.2 機器要目

部材	m i (kg)	h i (mm)	d i (mm)	Аьі (mm²)	n i	Syi (MPa)	Sui (MPa)
取付ボルト (i =2)	840	2000*1	16 (M16)	201. 1	12	215 (40mm<径)	400 (40mm<径)

	l 1 i *2	ℓ2 i *2		-	D *	転倒方向		
部材	(mm)	(mm)	n f i *2	F i (MPa)	l Fi	弾性設計用地震動 S d 又は静的震度	基準地震動S s	
取付ボルト			2		0.50		停冲士点	
(i =2)			4	_	258	— 短辺方向 — 短辺方向	超边方问	

注記*1:重心位置を保守的な位置に設定して評価する。

*2:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し,

下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	F	b i	Q b i		
部材	部材 弾性設計用地震動 S d 又は静的震度		基準地震動S s 弾性設計用地震動S d 又は静的震度 基準地震動		
取付ボルト (i=2)	_	2.068×10^4	_	1. 375×10 ⁴	

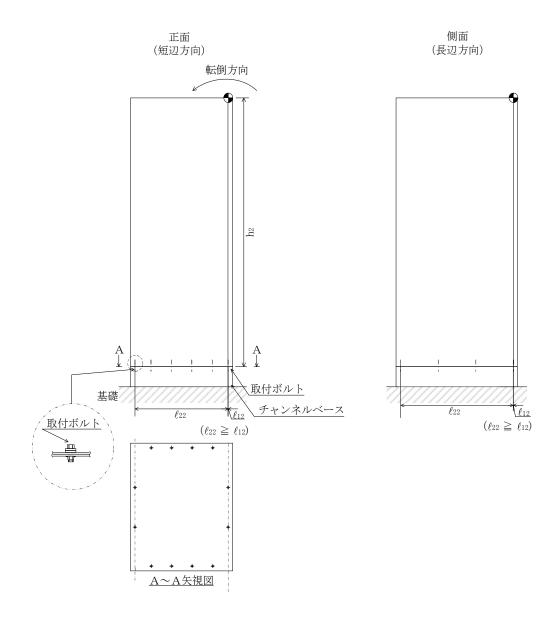
1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

\$17±± ±±±\script{1}	++*	++***	弾性設計用地震動	Sd又は静的震度	基準地震動S s		
市村	部材 材料 応力	心ン	算出応力	許容応力	算出応力	許容応力	
取付ボルト	取付ボルト	引張り	_	_	σ b i =103	$f_{\rm t\ s\ i} = 193*$	
(i =2) SS400	せん断	_	_	τы і =6	f s b i =148		

すべて許容応力以下である。


注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

1.4.2 電気的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

		評価用加速度	機能確認済加速度
通信収容架 A	水平方向	1. 39	3. 04
地口 似石木 n	鉛直方向	1. 21	2. 03

評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

$\frac{1}{3}$

【通信収容架Bの耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

		据付場所及び床面高さ	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動Ss		田田澤塔海库
機器名称	設備分類 (m)	/ \	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	- 周囲環境温度 (℃)
通信収容架 B	常設/その他	緊急時対策所 T. M. S. L. 28. 45 (T. M. S. L. 27. 8*)	0.05以下	0.05 以下	—	_	Сн=1.67	C v=1.45	40

注記*:基準床レベルを示す。

1.2 機器要目

部材	m i (kg)	h i (mm)	d i (mm)	Аьі (mm²)	n i	Syi (MPa)	Sui (MPa)
取付ボルト (i=2)	780	2000*1	16 (M16)	201. 1	12	215 (40mm<径)	400 (40mm<径)

	ℓ _{1 i} *2 (mm)	ℓ2 i *2 (mm)	n f i *2	F i (MPa)	Fi* (MPa)	転倒方向	
部材						弾性設計用地震動 S d 又は静的震度	基準地震動S s
取付ボルト	2	050					
(i =2)		4	258		短辺方向		

注記*1:重心位置を保守的な位置に設定して評価する。

*2:各ボルトの機器要目における上段は短辺方向転倒に対する評価時の要目を示し、

下段は長辺方向転倒に対する評価時の要目を示す。

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

	F	b i	Q b i		
部材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	
取付ボルト (i=2)	_	1.921×10^4	_	1. 276×10 ⁴	

1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地震動 S s		
			算出応力	許容応力	算出応力	許容応力	
取付ボルト (i =2)	SS400	引張り	_	_	σ b i =96	f t s i =193*	
		せん断	_	_	τы і =6	f _{sbi} =148	

すべて許容応力以下である。

注記 $*: f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}]$

1.4.2 電気的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

		評価用加速度	機能確認済加速度
通信収容架 B	水平方向	1. 39	3. 05
应旧 似 谷未 □	鉛直方向	1. 21	2. 03

評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。