本資料のうち、枠囲みの内容は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第	67号機 工事計画審査資料
資料番号	KK7 添-2-037-45-18
提出年月日	2020年 5月14日

V-2-6-7-4(18) 使用済燃料貯蔵プール監視カメラ制御架の 耐震性についての計算書

> 2020年 5月 東京電力ホールディングス株式会社

(18) 使用済燃料貯蔵プール監視カメラ制御架の耐震性についての計算書

目 次

1. 概要	1
2. 一般事項 · · · · · · · · · · · · · · · · · · ·	1
2.1 構造計画	1
3. 固有周期 · · · · · · · · · · · · · · · · · · ·	3
3.1 固有周期の算出	3
4. 構造強度評価	4
4.1 構造強度評価方法	4
4.2 荷重の組合せ及び許容応力	4
4.2.1 荷重の組合せ及び許容応力状態	4
4. 2. 2 許容応力	4
4.2.3 使用材料の許容応力評価条件	4
4.3 計算条件	4
5. 機能維持評価	8
5.1 電気的機能維持評価方法	8
6. 評価結果	9
6.1 重大事故等対処設備としての評価結果	9

1. 概要

本計算書は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、使用済燃料貯蔵プール監視カメラ制御架が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

使用済燃料貯蔵プール監視カメラ制御架は、重大事故等対処設備においては、常設耐震重要重大事故防止設備以外の常設重大事故防止設備及び常設重大事故緩和設備に分類される。以下、重大事故等対処設備としての構造強度評価及び電気的機能維持評価を示す。

なお、使用済燃料貯蔵プール監視カメラ制御架は、V-2-1-14「計算書作成の方法」に記載の 壁掛形盤であるため、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算 書作成の基本方針」に基づき評価を実施する。

2. 一般事項

2.1 構造計画

使用済燃料貯蔵プール監視カメラ制御架の構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の	概要	概略構造図
基礎・支持構造	主体構造	(N) 附件担凶
基礎・支持構造 使用済燃料貯蔵プール監 視カメラ制御架は壁に基 礎ボルトで設置する。	主体構造 壁掛形 (鋼材及び鋼板を組み合わせた壁掛閉鎖型の盤)	【使用済燃料貯蔵プール監視カメラ制御架】 L面 基礎ボルト (メカニカルアンカ) 壁 730 1200 - ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
		(正面方向) (側面方向) (単位:mm)

3. 固有周期

3.1 固有周期の算出

使用済燃料貯蔵プール監視カメラ制御架の固有周期は、構造が同等であり、同様な振動特性を持つ盤に対する振動試験(自由振動試験)の結果算定された固有周期を使用する。固有周期の算出結果を表 3-1 に示す。

表 3-1 固有周期

(単位:s)

使用済燃料貯蔵プール 監視カメラ制御架	水平	0.05以下
監況ルクノ制御来 (H11−P905)	鉛直	0.05 以下

4. 構造強度評価

4.1 構造強度評価方法

使用済燃料貯蔵プール監視カメラ制御架の構造強度評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行 う。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

使用済燃料貯蔵プール監視カメラ制御架の荷重の組合せ及び許容応力状態のうち重大事 故等対処設備の評価に用いるものを表 4-1 に示す。

4.2.2 許容応力

使用済燃料貯蔵プール監視カメラ制御架の許容応力は、V-2-1-9「機能維持の基本方針」に基づき表 4-2 のとおりとする。

4.2.3 使用材料の許容応力評価条件

使用済燃料貯蔵プール監視カメラ制御架の使用材料の許容応力評価条件のうち重大事故 等対処設備の評価に用いるものを表 4-3 に示す。

4.3 計算条件

応力計算に用いる計算条件は、本計算書の【使用済燃料貯蔵プール監視カメラ制御架(H11-P905)の耐震性についての計算結果】の設計条件及び機器要目に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

_					1	1	
	施設区分		· 区分 機器名称		機器等の区分	荷重の組合せ	許容応力状態
						$D + P_D + M_D + S s^{*3}$	IV _A S
	計測制御系統施設	その他の計測制御系統施設	使用済燃料貯蔵プール 監視カメラ制御架	常設/防止常設/緩和	*2	D D M LC	V_AS $(V_AS \ge LT)$
	.,					$D+P_{SAD}+M_{SAD}+S_{S}$	IVASの許容限界
							を用いる。)

注記*1:「常設/防止」は、常設耐震重要重大事故防止設備以外の常設重大事故防止設備、「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 4-2 許容応力 (重大事故等その他の支持構造物)

	- 日本元の (主人を取りての配の人)(旧を)	• • • • • • • • • • • • • • • • • • • •			
	許容限界*1, *2				
	(ボル	/卜等)			
許容応力状態	一次応力				
	引張り	せん断			
IV A S					
VAS	1.5 · f t	1.5 • f s			
(VASとしてIVASの	*	*			
許容限界を用いる。)					

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

K7 ① V-2-6-7-4(18) R0

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

⋽ 亚 /≖ ☆ঢ় ┼┼	++101	温度条件	#	Sу	S u	Sy(RT)			
評価部材	材料	(\mathcal{C})		(MPa)	(MPa)	(MPa)			
基礎ボルト	SUS304	周囲環境温度	50	198	504	205			

5. 機能維持評価

5.1 電気的機能維持評価方法

使用済燃料貯蔵プール監視カメラ制御架の電気的機能維持評価は、V-2-1-14「計算書作成の方法 添付資料-9 盤の耐震性についての計算書作成の基本方針」に記載の評価方法に基づき行う。

使用済燃料貯蔵プール監視カメラ制御架に設置される器具の機能確認済加速度は、V-2-1-9 「機能維持の基本方針」に基づき、同形式の器具単体の正弦波加振試験において、電気的機能 の健全性を確認した評価部位の最大加速度を適用する。

機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

X 0 1 (Mile Report	(· · · · · · · · · · · · · · · · · · ·	
評価部位	方向	機能確認済加速度
使用済燃料貯蔵プール監視カメラ制御架	水平	
(H11-P905)	鉛直	

6. 評価結果

6.1 重大事故等対処設備としての評価結果

使用済燃料貯蔵プール監視カメラ制御架の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【使用済燃料貯蔵プール監視カメラ制御架 (H11-P905) の耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

	-11 (Hz 6) vice	据付場所及び床面高さ	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動S s		周囲環境温度
機器名称	器名称 設備分類 (m)	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(℃)
使用済燃料貯蔵プー ル監視カメラ制御架 (H11-P905)	常設/防止	コントロール建屋 T. M. S. L. 17. 3 (T. M. S. L. 24. 1*)	0.05以下	0.05以下	_		Сн=2.38	Cv=1.46	50

注記*:基準床レベルを示す。

1.2 機器要目

1.2 及冊女日								
部材	m i (kg)	h i (mm)	d i (mm)	А b і (mm²)	n i	S y i (MPa)	Sui (MPa)	Syi(RT) (MPa)
基礎ボルト (i=1)		380	16 (M16)	201. 1	8	198	504	205

	0 . * 0 . *		0 .*			г.	F .*	転倒方向	
部材	ℓ _{1 i} * (mm)	ℓ_{2i}^* ℓ_{3i}^* ℓ_{mm} n_{fVi}^* n_{fHi}^*	n fні*	F i (MPa)	UMPAI	弾性設計用地震動 S d 又は静的震度	上作用 響 曲 (。		
基礎ボルト	553	1120	540	2	4		0.40		Int 7 + 4
(i =1)	553	1120	540	2	4		246	_	側面方向

注記*:各ボルトの機器要目における上段は正面方向転倒に対する評価時の要目を示し, 下段は側面方向転倒に対する評価時の要目を示す。

1.3 計算数值

1.3.1 ボルトに作用する力

(単位:N)

	F	b i	Q b i		
部材 弾性設計用地震動S d 基準地震動S s		弾性設計用地震動 S d 又は静的震度	基準地震動 S s		
基礎ボルト (i=1)	_		_		

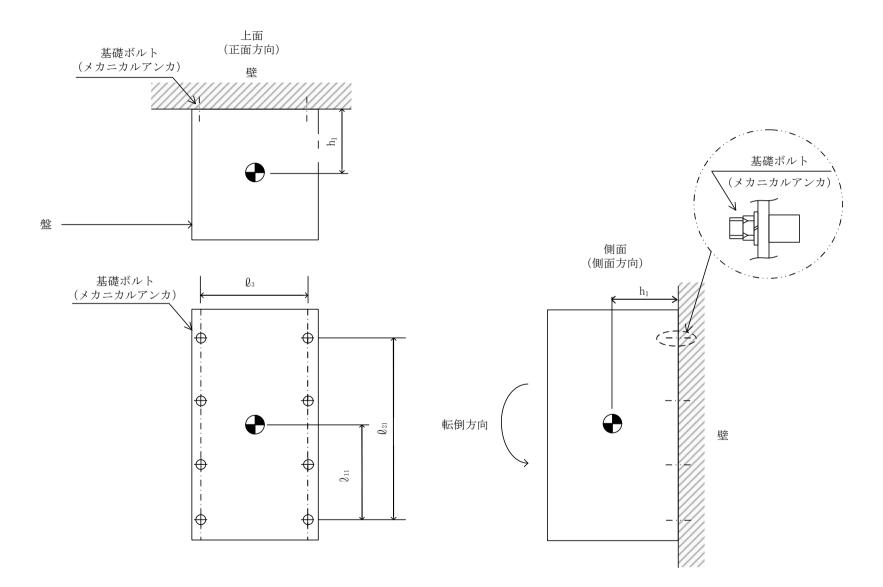
1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

部材	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
司孙	竹竹	心力	算出応力	許容応力	算出応力	許容応力
基礎ボルト (i =1)	SUS304	引張り			σ b 1 = 13	f t s 1 = 147*
		せん断			τь2=6	f s b 2=113

すべて許容応力以下である。


注記 $*: f t s i = Min[1.4 \cdot f t o i - 1.6 \cdot \tau b i, f t o i]$

1.4.2 電気的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

1:1:1	(, . O. Om , D)		
		評価用加速度	機能確認済加速度
使用済燃料貯蔵プール	水平方向	1. 98	
監視カメラ制御架 (H11-P905)	鉛直方向	1. 23	

評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

12