

第6.2-9図(3) 敷地周辺におけるM5.0以下の小・微小地震の震源 鉛直分布(2012年~2015年7月)

第6.2-9図(4) 敷地周辺におけるM5.0以下の小・微小地震の震源 鉛直分布(2012年~2015年7月)

第6.3-1図 敷地周辺における活断層分布

第6.4-1図 活断層分布と過去の被害地震の震央分布

第6.4-2図 活断層分布と小・微小地震の震央分布

(7) ※「日本被害地震総覧」による。

第6.4-3図 1766 年津軽の地震の震度分布

第6.5-1図(1) PS検層結果(東西断面その1)

恒 🗎

轗

第 6. 5-1 図(2) B S 検層結果(東西断面その 2)

(b) EW-4断面

4 - 6 - 127

4 - 6 - 128

4-6-129

S	0.53	0.62	0. 82	0. 90	0. 93		雑測点で マ水平・鉛	J点で異な 点のデータ
地 層 名**2	第四系 六ヶ所層			鷹架層			設置深さは 3 地盤 なお,地震計は各 <	分。 一夕は各地盤観測 』は代表地盤観測点
地 濃計 *1	₽	€			€	₽	※1 地震計 共通。 ^{>}	(13) 133 133 133 133 133 133 133 133 133
標 (m) ^{※1}	53	28			- 70	-145	~	*

第6.5-3図 地震観測点

G. L. -125m/G. L. -200m

G.L. -2m/G. L. -200m

第6.5-4図(1) 観測記録に基づく伝達関数とはぎとり地盤モデルによる 伝達関数の比較(中央地盤)

G. L. -18m/G. L. -100m

G. L. -18m/G. L. -200m

G.L. -100m/G.L. -200m

※東側地盤観測点については、G.L.-2mの観測記録が無いため、

G.L.-18m以深の記録を用いて作成している。

第6.5-4図(2) 観測記録に基づく伝達関数とはぎとり地盤モデルによる 伝達関数の比較(東側地盤)

第6.5-4図(3) 観測記録に基づく伝達関数とはぎとり地盤モデルによる 伝達関数の比較(西側地盤)

NS方向

EW方向

第6.5-5図 2011年東北地方太平洋沖地震 3地盤のはぎとり波の応答スペクトル (標高-70m,減衰定数(h)=0.05)

第6.5-6図 微動アレー観測点位置

(a) 微動アレー探査結果から推定したS波速度構造

(b) 微動アレー探査結果に基づく地震基盤~解放基盤表面の増幅比

第6.5-7図 各微動アレー観測点のS波速度構造及び 地震基盤~解放基盤表面の増幅比の比較

第6.5-8図 観測地震の震央分布

プレート間地震

海洋プレート内地震

内陸地殻内地震

第6.5-9図(1) 地震発生様式別応答スペクトル (標高-70m, NS成分,減衰定数(h)=0.05)

プレート間地震

海洋プレート内地震

内陸地殻内地震

第6.5-9図⁽²⁾ 地震発生様式別応答スペクトル (標高-70m, EW成分,減衰定数(h)=0.05)

プレート間地震

海洋プレート内地震

内陸地殻内地震

第6.5-9図(3) 地震発生様式別応答スペクトル (標高-70m, UD成分, 減衰定数(h)=0.05)

No. 6 (2011. 3.11 2011 年東北地方太平洋沖地震 M_{*}9.0)

内陸地殻内地震

第6.5-10図(1) 地震別応答スペクトル(観測深度の比較) (NS成分,減衰定数(h)=0.05)

No.5 (2008. 7.24 岩手県沿岸北部 M6.8) 海洋プレート内地震

No.6(2011.3.11 2011年東北地方太平洋沖地震 M_{*}9.0)

内陸地殻内地震

第6.5-10図(2) 地震別応答スペクトル(観測深度の比較) (EW成分,減衰定数(h)=0.05)

No.5 (2008. 7.24 岩手県沿岸北部 M6.8) 海洋プレート内地震

No.6(2011.3.11 2011年東北地方太平洋沖地震 M_{*}9.0)

内陸地殻内地震

第6.5-10図(3) 地震別応答スペクトル(観測深度の比較) (UD成分,減衰定数(h)=0.05)

No.5 (2008. 7.24 岩手県沿岸北部 M6.8) 海洋プレート内地震

第6.5-11図 地震波の到来方向別の検討に用いた地震の分布

第6.5-12図(1) 地盤観測点(東側)の到来方向別の応答スペクトル比

第6.5-12図(2) 地盤観測点(東側)の到来方向別の応答スペクトル比

第6.5-12図(3) 地盤観測点(西側)の到来方向別の応答スペクトル比

第6.5-12図(4) 地盤観測点(西側)の到来方向別の応答スペクトル比

第6.5-13 図 深部地盤モデルによる増幅特性とスペクトルインバージョン解析の増幅特性の比較

第6.5-14図 深部地盤モデルによる増幅特性と経験的サイト増幅特性の比較

4 - 6 - 153

第6.6-3図(1) 「2011年東北地方太平洋沖地震を踏まえた地震」の断層 面の位置(三陸沖北部~宮城県沖)

第6.6-3図(2) 「2011年東北地方太平洋沖地震を踏まえた地震」の断層 面の位置(三陸沖北部〜根室沖)

 二重深発地震面	上面の地震	基本モデル	(M _j 7.2,	Xeq=87.4km)
 二重深発地震面	下面の地震	基本モデル	$(M_{j}6.8,$	Xeq=109.2km)
 沖合の浅い地震	基本モデル	(M _j 7.3, Xeq=	236.2km)

※Xeq=等価震源距離

4 - 6 - 158

(a) 地震域区分毎のD10%(km)の分布

(b) 地震域区分毎のD90%(km)の分布

第6.6-6図 原子力安全基盤機構(2004)による 地震域区分毎の地震発生上下限層分布図

第6.6-7図 敷地周辺の小・微小地震の震央分布及び震源の鉛直分布 (1997年10月~2011年12月)

第6.6-8図 敷地周辺における地震波トモグラフィ解析結果

4 - 6 - 162

第6.6-10図 選定した内陸地殻内地震の断層面の位置

4 - 6 - 164

- 出戸西方断層による地震 (M6.5, Xeq=8.1km)
 - 横浜断層による地震 (M6.8, Xeq=22km)
 - ----- 折爪断層による地震 (M7.7, Xeq=70km)

— 上原子断層~七戸西方断層による地震 (M7.7, Xeq=42km)

第6.6-11 図 敷地に影響を与えるおそれがあると考えられる地震の 応答スペクトル

 ※1:片岡ほか(2006) による。
※2:諸井ほか(2013) の1個のSMGAをここでは ひとつの地震として表示している。

第6.6-12図 短周期レベルと既往スケーリング則の比較

第6.6-13 図(1) 「2011 年東北地方太平洋沖地震を踏まえた地震」の断層モ デル(三陸沖北部~宮城県沖の連動,基本モデル)

第6.6-13 図(2) 「2011 年東北地方太平洋沖地震を踏まえた地震」の断層モ デル(三陸沖北部〜根室沖の連動,基本モデル)

第6.6-15図(1) 「2011年東北地方太平洋沖地震を踏まえた地震」の断層モ デル(三陸沖北部~宮城県沖の連動, SMGA位置の不確 かさケース)

第6.6-15 図(2) 「2011 年東北地方太平洋沖地震を踏まえた地震」の断層モ デル(三陸沖北部〜根室沖の連動, SMGA位置の不確か さケース)

(b) 観測記録の波形

第6.6-16図(1) 要素地震の震央位置及び観測記録の波形

(プレート間地震) (三陸沖北部~宮城県沖の連動)

(b) 観測記録の波形

第6.6-16図(2) 要素地震の震央位置及び観測記録の波形

(プレート間地震) (三陸沖北部~根室沖の連動)

第6.6-17図(1) 「2011年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部~宮城県沖の連動,基本モデル)(水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-17図(2) 「2011 年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部~宮城県沖の連動,基本モデル)(鉛直方向)

第6.6-17図(3) 「2011 年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部~宮城県沖の連動, SMGA位置の不確かさ ケース)(水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-17図(4) 「2011年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部~宮城県沖の連動, SMGA位置の不確かさ ケース)(鉛直方向)

第6.6-17図(5) 「2011年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部〜根室沖の連動,基本モデル)(水平方向)

第6.6-17図(6) 「2011年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部〜根室沖の連動,基本モデル)(鉛直方向)

第6.6-17 図(7) 「2011 年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部〜根室沖の連動, SMGA位置の不確かさケ ース)(水平方向)

第6.6-17図(8) 「2011年東北地方太平洋沖地震を踏まえた地震」の応答ス ペクトル(断層モデルを用いた手法) (三陸沖北部〜根室沖の連動, SMGA位置の不確かさケ ース)(鉛直方向)

第6.6-18 図 「想定海洋プレート内地震」の断層モデル (基本モデル・短周期レベルの不確かさケース)

※1 ~※6 の教式は,地震調査委員会(2016)に記載の以下の式に基づく。

※1:(31)式と同じ

※2:(34)式へ(32)式を代入した式

※2:(32)式と同じ

※4:(10)式と同じ

※5:(33)式と同じ

※6:(38)式へ(32)式,(35)式及び(36)式を代入した式

箫

(基本モデル, 短周期レベルの不確かさケース, 断層面位置の不確かさケース) 断層モデル パラメータ設定フロー (想定海洋プレート内地震) 6.6 - 19 X(1)

※1~※6の教式は,地震調査委員会(2016)に記載の以下の式に基づく。

※1:(31)式と同じ

4 - 6 - 184

※2:(34)式へ(32)式を代入した式

※3:(32)式と同じ

※4:(10)式と同じ

※5:(33)式と同じ

※6:(38)式へ(32)式,(35)式及び(36)式を代入した式

(想定海洋プレート内地震) 断層モデル パラメータ設定フロー (地震規模の不確かさケース) 第6.6-19 図(2)

第6.6-20図(1) 「想定海洋プレート内地震」の断層モデル (断層位置の不確かさケース)

第6.6-20図(2) 「想定海洋プレート内地震」の断層モデル (地震規模の不確かさケース)

注) 実線は、「Noda et al. (2002)による応答スペクトル」に対する「解放基盤表面相当位置(標高-70 m)における観測記録に基づく応答スペクトル」の比を平均したものを表す。観測記録としては、 1995 年 12 月から 2008 年 9 月の間に観測されたM5.5 以上、震源距離 250 k m以内、深さ 60 k m 以深であるプレート内地震の 5 記録を用いた。

第6.6-21図 海洋プレート内地震の観測記録に基づく補正に関する検討

基本モデル及び短周期レベルの不確かさケース(M7.2, Xeq=85.4km)
位置の不確かさケース(M7.2, Xeq=78.4km)
地震規模の不確かさケース(M7.4, Xeq=86.2km)

(cm/s) (CM) (h=0.05) 1000 1000 -500l ~90 500 200 200 -*1*00 100 \$ 0 50 20 速 度 10 (cm/s) 0 5 2 1 0.5 0.2 0.1 0.02 0.05 0.1 0.2 0.5 1 2 5 10 周 期(s)

※Xeq=等価震源距離

第6.6-22 図(1) 「想定海洋プレート内地震」の応答スペクトル (応答スペクトルに基づく手法) (水平方向)

第6.6-22 図(2) 「想定海洋プレート内地震」の応答スペクトル (応答スペクトルに基づく手法) (鉛直方向)

 破壞開始点1	NS 方向
 破壞開始点1	EW 方向
 破壞開始点2	NS 方向
 破壞開始点2	EW 方向
 破壞開始点3	NS 方向
 破壞開始点3	EW 方向

第6.6-23 図(1) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (基本モデル,水平方向)

 · 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-23 図(2) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (基本モデル,鉛直方向)

第6.6-23 図(3) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (短周期レベルの不確かさケース,水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-23 図(4) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (短周期レベルの不確かさケース,鉛直方向)

第6.6-23 図(5) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (断層位置の不確かさケース,水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-23 図(6) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (断層位置の不確かさケース,鉛直方向)

第6.6-23 図(7) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (地震規模の不確かさケース,水平方向)

 • 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向

第6.6-23 図(8) 「想定海洋プレート内地震」の応答スペクトル (断層モデルを用いた手法) (地震規模の不確かさケース,鉛直方向)

第6.6-24 図 「出戸西方断層による地震」の断層モデル (基本モデル・短周期レベルの不確かさケース)

(内陸地殻内地震) 断層モデル パラメータ設定フロー X 第6.6-25

参考文献を付記していない数式は、地震調査委員会(2016)による。

4 - 6 - 199

第6.6-26図 「出戸西方断層による地震」の断層モデル
(断層傾斜角の不確かさケース・断層傾斜角と短
周期レベルの不確かさを重畳させたケース)

第6.6-27 図(1) 「出戸西方断層による地震」の応答スペクトル (応答スペクトルに基づく手法)(基本モデル・短 周期レベルの不確かさケース,水平方向)

 第6.6-27図(2)
「出戸西方断層による地震」の応答スペクトル (応答スペクトルに基づく手法)(断層傾斜角の不 確かさケース・断層傾斜角と短周期レベルの不確 かさを重畳させたケース,水平方向)

第6.6-28図 要素地震の震央位置及び観測記録の波形(内陸地殻内地震)

(b) 観測記録の波形

(a) 要素地震の震央位置

第6.6-29図(1) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (基本モデル,水平方向)

第6.6-29図(2) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (基本モデル,鉛直方向)

第6.6-29図(3) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (短周期レベルの不確かさケース,水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向
 破壞開始点4	UD 方向

第6.6-29図(4) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (短周期レベルの不確かさケース,鉛直方向)

第6.6-29 図(5) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (断層傾斜角の不確かさケース,水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向
 破壞開始点4	UD 方向

第6.6-29図(6)

「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法) (断層傾斜角の不確かさケース,鉛直方向)

第6.6-29図(7) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法)(短周期レベルと断層傾 斜角の不確かさを重畳させたケース,水平方向)

 破壞開始点1	UD 方向
 破壞開始点2	UD 方向
 破壞開始点3	UD 方向
 破壞開始点4	UD 方向

第6.6-29図(8) 「出戸西方断層による地震」の応答スペクトル (断層モデルを用いた手法)(短周期レベルと断層傾 斜角の不確かさを重畳させたケース,鉛直方向)

第6.6-30図(1) 加藤ほか(2004)による応答スペクトル(水平方向)

第6.6-30図(2) 加藤ほか(2004)による応答スペクトル(鉛直方向)

第6.6-31図(1) 震源を特定せず策定する地震動の応答スペクトル (水平方向)

第6.6-31 図(2) 震源を特定せず策定する地震動の応答スペクトル (鉛直方向)

第6.6-32 図(1) 応答スペクトルに基づく地震動評価結果 と基準地震動Ss-Aの比較(水平方向)

第6.6-32 図(2) 応答スペクトルに基づく地震動評価結果 と基準地震動Ss-Aの比較(鉛直方向)

第6.6-33 図 継続時間及び振幅包絡線の経時的変化

(a) S s - A_H

(b) S s $-A_v$

第6.6-34図 設計用応答スペクトルに対する設計用模擬地震波の応答 スペクトルの比

第6.6-35図 Ss-A_H, Ss-A_Vの設計用模擬地震波の加速度時刻歴波形

4 - 6 - 220

基準地震動 Ss-A

第6.6-36図(1) 基準地震動Ss-B(B1~B5)の応答スペクトル (NS方向)

基準地震動 Ss-B1 出戸西方断層による地震 [短周期レベルの不確かさケース,破壊開始点 2]

基準地震動 Ss-A

第6.6-36 図⁽²⁾ 基準地震動Ss-B(B1~B5)の応答スペクトル (EW方向)

第6.6-36図(3) 基準地震動Ss-B(B1~B5)の応答スペクトル (UD方向)

時間(s)

第6.6-37図(1) 基準地震動Ss-B1の加速度時刻歴波形

時間(s)

第6.6-37図(2) 基準地震動Ss-B2の加速度時刻歴波形

時間(s)

第6.6-37図(3) 基準地震動Ss-B3の加速度時刻歴波形

時間(s)

第6.6-37図(4) 基準地震動Ss-B4の加速度時刻歴波形

4 - 6 - 227

時間(s)

第6.6-37図(5) 基準地震動Ss-B5の加速度時刻歴波形

第6.6-38図(1) 基準地震動Ss-C(C1~C4)の応答スペクトル (水平方向)

第6.6-38図(2) 基準地震動Ss-C(C1~C3)の応答スペクトル (鉛直方向)

(b) 鉛直方向

第6.6-39図(1) 基準地震動Ss-C1の加速度時刻歴波形

(a) ダム軸方向

時間(s)

(b) 上下流方向

(c) 鉛直方向

第6.6-39図(2) 基準地震動Ss-C2の加速度時刻歴波形

時間(s)

(c) UD方向

第6.6-39図(3) 基準地震動Ss-C3の加速度時刻歴波形

第6.6-39図(4) 基準地震動Ss-C4の加速度時刻歴波形

地震動評価手法:断層モデルを用いた手法による**3

※1:想定三陸沖北部の地震の平均発生間隔は,地震調査委員会(2004)^(2,1)を参考に97年とする。2011 年東北地方太平洋沖地震を踏まえた地震の発生間隔は,地震調査委員会(2013)⁽⁴³⁾における確率論的 評価において,三陸沖中部~茨城県沖の領域の連動型地震の平均発生間隔が600年とされているこ とから,敷地前面の三陸沖北部の領域における地震の平均発生間隔である97年を踏まえて,三陸 沖北部の地震活動の6回に1回は三陸沖北部~宮城県沖あるいは三陸沖北部~根室沖が連動した地 震が発生するものとする。したがって,三陸沖北部~宮城県沖の連動,三陸沖北部~根室沖の連動 は,それぞれ約1200年に1回となる。

※2:超巨大地震(17世紀型)の発生間隔は,地震調査委員会(2017) によれば340年~380年に1 回であるが,ここでは300年に1回(1200年に4回)とする。ただし,約1200年に1回,2011年 東北地方太平洋沖地震を踏まえた地震として十勝・根室沖と三陸沖北部が連動して動くため,十 勝・根室沖を震源領域に含む超巨大地震(17世紀型)の1回として数える。このため,超巨大地震 (17世紀型)として追加するのは,1200年で3回とする。

※3:超巨大地震(17世紀型)の地震動評価については、2011年東北地方太平洋沖地震を踏まえた 地震と超巨大地震(17世紀型)を比較すると、2011年東北地方太平洋沖地震を踏まえた地震がMw9.0 の規模を考慮した上で、敷地に最も近い三陸沖北部を震源領域に設定していること、そして、「超 巨大地震(17世紀型)」の震源領域は千島海溝の北東側に延びて敷地から遠くなることから、十勝 沖から根室沖を震源領域とする超巨大地震(17世紀型)よりも敷地への影響が大きいと考えられる。 よって、超巨大地震(17世紀型)の地震動評価は、2011年東北地方太平洋沖地震を踏まえた地震 (三陸沖北部〜根室沖の連動)で代用する。

第6.6-40図(1) ロジックツリー(特定震源,プレート間地震)

地震動評価手法:NGA 式^{※1} (5 式の平均) による ※1:Campbell et al. (2014), Abrahamson et al. (2014), Boore et al. (2014),

Chiou et al. (2014), Idriss(2014)による距離減衰式

(a)出戸西方断層

地震動評価手法: Noda et al. (2002)による (b) 出戸西方断層以外の活断層による地震

第6.6-40図(2) ロジックツリー(特定震源,内陸地殻内地震)

地震動評価手法: Noda et al. (2002)による

(a) プレート間地震

※1:敷地に近い震源領域③でのみ考慮

(b) 海洋プレート内地震

地震動評価手法 : Noda et al. (2002)による

※1:敷地に近い震源領域①, ②, ③, ④でのみ考慮

(c) 内陸地殼内地震

第6.6-40図(3) ロジックツリー(領域震源)

第6.6-41図(1) 基準地震動Ss-A及びSs-B(B1~B5)と
一様ハザードスペクトルの比較(水平方向)

第6.6-41図(2) 基準地震動Ss-A及びSs-B(B1~B5)と
一様ハザードスペクトルの比較(鉛直方向)

第6.6-42図(1) 基準地震動Ss-C(C1~C4)と一様ハザードスペ クトル(領域震源(内陸地殻内地震))の比較(水平方向)

第6.6-42図(2) 基準地震動Ss-C(C1~C3)と一様ハザードスペ クトル(領域震源(内陸地殻内地震))の比較(鉛直方向)

第6.6-43 図(1) 建屋底面位置における地震動(Ss-A,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43 図(2) 建屋底面位置における地震動(Ss-B1,第1ガラス固化体貯蔵建屋:西側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(3) 建屋底面位置における地震動(Ss-B2,第1ガラス固化体貯蔵建屋:西側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(4) 建屋底面位置における地震動(Ss-B3,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43 図(5) 建屋底面位置における地震動(Ss-B4,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43図(6) 建屋底面位置における地震動(Ss-B5,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43図(7) 建屋底面位置における地震動(Ss-C1,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43図(8) 建屋底面位置における地震動(Ss-C2,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43図(9) 建屋底面位置における地震動(Ss-C3,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43 図(11) 建屋底面位置における地震動(Ss-C4,第1ガラス固化体貯蔵建屋:西側地盤)

第6.6-43 図(11) 建屋底面位置における地震動(Ss-A,前処理建屋:中央地盤)

第6.6-43図(12) 建屋底面位置における地震動(Ss-B1,前処理建屋:中央地盤)

第6.6-43図(13) 建屋底面位置における地震動(Ss-B2,前処理建屋:中央地盤)

第6.6-43図(4) 建屋底面位置における地震動(Ss-B3,前処理建屋:中央地盤)

第6.6-43図(15) 建屋底面位置における地震動(Ss-B4,前処理建屋:中央地盤)

第6.6-43図(16) 建屋底面位置における地震動(Ss-B5,前処理建屋:中央地盤)

第6.6-43 図(1) 建屋底面位置における地震動(Ss-C1,前処理建屋:中央地盤)

第6.6-43 図(18) 建屋底面位置における地震動(Ss-C2,前処理建屋:中央地盤)

第6.6-43図(19) 建屋底面位置における地震動(Ss-C3,前処理建屋:中央地盤)

第6.6-43 図(2) 建屋底面位置における地震動(Ss-C4,前処理建屋:中央地盤)

第6.6-43 図(21) 建屋底面位置における地震動(Ss-A,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(22) 建屋底面位置における地震動(Ss-B1,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(23) 建屋底面位置における地震動(Ss-B2,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(24) 建屋底面位置における地震動(Ss-B3,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(5) 建屋底面位置における地震動(Ss-B4,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

※TN (True North)を基準として策定した基準地震動Ssを, PN (Plant North)を基準に変換して建屋底面位置における地震動を評価

第6.6-43 図(3) 建屋底面位置における地震動(Ss-B5,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

第6.6-43 図(27) 建屋底面位置における地震動(Ss-C1,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

第6.6-43 図(28) 建屋底面位置における地震動(Ss-C2,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

第6.6-43 図(29) 建屋底面位置における地震動(Ss-C3,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

第6.6-43 図(3)) 建屋底面位置における地震動(Ss-C4,ウラン・プルトニウム混合酸化物貯蔵建屋:東側地盤)

7. 社会環境

7.1 人口分布

敷地は,青森県上北郡六ヶ所村のほぼ中央の標高60m前後の弥栄平と呼ばれる台地に位置する。

再処理施設を中心とする100km以内の平成22年10月1日現在における (1) 人口分布を第7.1-1表に,30km以内の方位別人口分布を第7.1-1図 に示す。

30 k m以内の人口は約68,900人,10 k m以内は約7,100人,5 k m以内 は約4,100人である。

また,再処理施設から50km以内にある市町村の位置を第7.1-2図に, 同市町村とその人口及び市町村の中心部(市役所及び町村役場所在地) に至る直線距離を第7.1-2表に示す。

なお、「7. 社会環境」で記述する再処理施設からの距離は、いずれも 主排気筒からのものを示す。

距離(km)	人口(人)	人口密度(人/km ²)
$0\sim 5$	約 4,100	約 52
0~10	約 7,100	約 29
$0 \sim 30$	約 68,900	約 61
$0 \sim 50$	約 421,400	約129
0~100	約 1,546,600	約127

第7.1-1表 再処理施設から100km以内の人口分布

(平成22年国勢調査,地域メッシュ統計に基づき面積比例により求めた。)

巿	町	村	名	世帯数(世帯)	人口(人)	距離(km)
六	ケ	所	村	4, 751	11, 095	約3.8
横	ž	Ĭ	町	1, 884	4, 881	約15
野	辺	地	町	5, 766	14, 314	約20
東	1	Ł	町	6, 007	19, 106	約27
比	の 戸	< ∩⊓	町	5, 713	16, 759	約28
Ξ	ð	7	市	16, 211	41, 258	約31
平	r P	5	町	4, 198	12, 361	約31
ず	بلح ب	^{おり}	村	2,710	7, 252	約35
が	の 戸	< ∩⊓	町	3, 307	10, 241	約38
む	-	C	市	24, 775	61,066	約39
お	いら	うせ	町	8, 330	24, 211	約40
+	和	田	市	25, 554	66, 110	約40
Ĕ.	の 戸	~ 1 =	町	6, 177	18, 712	約48
はち	の 戸	< ≦ I⊓	市	91, 917	237, 615	約51
青	矛		巿	119, 413	299, 520	約51

第7.1-2表 再処理施設から50km以内の市町村別の世帯数,人口及び距離

(平成22年国勢調査報告による。)

(平成22年国勢調査,地域メッシュ統計に基づき面積比例により求めた。)

第7.1-1図 再処理施設から30km以内の方位別人口分布図

第7.1-2図 再処理施設から50km以内の市町村の位置図

7.2 付近の集落及び公共施設

再処理施設付近の集落としては,最も近い集落で再処理施設の西方向約 1.4kmに弥栄平(人口約10人)がある。また,3km以内には3集落, 5km以内には14集落があり,各集落までの距離及び人口を第7.2-1表 に示す。

学校,保育所等の公共施設としては,再処理施設から5km以内に小学 校1,中学校1,幼保連携型認定こども園1,医療機関1がある。学校, 認定こども園及び医療機関並びにその生徒数,園児数及び病床数を第7.2 -2表に示す。

再処理施設から5km以内の集落,学校,認定こども園及び医療機関の 位置を第7.2-1図に示す。

区分	市町村名	集落名	人口(人)	距離(km)
		弥 栄 平	13	約1.4
3km以内		富ノ沢	12	約2.2
		二 又	153	約2.8
		レイクタウン	1,446	約3.2
		尾駮	502	約3.4
$^{3\mathrm{km}}$ \sim	六ヶ所村	。野 附	135	約3.5
4km		室ノ久保	98	約3.7
			290	約3.8
		尾駮浜	482	約3.9
		老 部 川	347	約4.0
4km ~ 5km		幸如	0	約4.1
		$\overset{t}{\mathfrak{K}}\overset{\mathfrak{s}}{=}\overset{t}{-}\overset{t}{\mathbf{X}}$	10	約4.3
		新 町	21	約4.8
		第四雲雀平	7	約4.9

第7.2-1表 再処理施設から5km以内の集落の人口及び距離

(平成26年版六ヶ所村統計書による。)

第7.2-2表 再処理施設から5km以内の学校,認定こども園 及び医療機関並びにその生徒数,園児数及び病床数

(1) 学 校

市町村名	学校名	生徒数(人)	距離 (km)
士,正社	第一中学校	103	約3.1
ハケ別和	尾駮小学校	216	約3.2
合 計		319	

(平成 27 年度 学校一覧 青森県による。)

(2) 認定こども園

市町村名	認定こども園名	園児数(人)	距離 (km)
六ヶ所村	おぶちこども園	180	約3.2

(平成 27 年度 学校一覧 青森県,平成 27 年 12 月 1 日保育所等入所児数 六ヶ所村による。)

(3) 医療機関

市町村名	医療機関名	病床数 (床)	距離(km)
六ヶ所村	六ヶ所村地域家庭 医療センター	19	約3.3

(平成26年8月 広報ろっかしょ 六ヶ所村による。)

注:□内の名称は集落名を示す。

第7.2-1図 再処理施設から5km以内の集落,学校,認定こども園 及び医療機関の位置図 7.3 産業活動

六ヶ所村の総面積は,約253km²であり,そのうち20.4%が山林, 18.3%が雑種地,17.0%が原野,15.9%が耕地となっている。

六ヶ所村の就業者数は、平成22年の国勢調査報告によると6,250人で、 そのうち製造業が1,374人で22.0%を占めて最も多く、次いで建設業、サ ービス業、農業の順となっている。六ヶ所村における就業者数を第7.3-1表に示す。

六ヶ所村の農業の状況を平成18年の収穫量で見ると、飼料作物が 108,600 t で最も多く、次いで野菜(やまのいも、ばれいしょを含む。)、 稲の順になっている。特産品として知られるやまのいもについては、その ほとんどが出荷されている。六ヶ所村の畜産業の状況を平成22年の飼養 頭羽数で見ると、乳用牛が3,403頭で最も多く、次いで肉用牛が3,131頭と なっている。

六ヶ所村の海面漁業の状況を平成25年の漁獲量で見ると、するめい かが2,070 t で最も多く、次いで、さけ、ぶりの順になっている。また、 再処理施設周辺の内水面漁業では、漁業権が設定されている河川、湖沼と して六ヶ所村の老部川、高瀬川、市柳沼、市面木沼及び六ヶ所村に隣接す る東北町の小川原湖がある。これらの河川、湖沼では、わかさぎ、うぐい、 おいかわ等の魚類及びしじみ等の貝類を採取しており、平成24年漁業・養 殖業生産統計年報によれば、高瀬川で56 t となっている。

なお,再処理施設の東方向のむつ小川原港の港湾区域(尾駮沼,鷹架 沼の一部を含む。)は,昭和54年に漁業権が消滅され,昭和55年までに漁 業権以外の漁業に関する権利も放棄されている。ただし,尾駮沼の一部及 び港湾区域以外の鷹架沼では現在暫定的に漁業が認められている。

再処理施設近傍の二又川には漁業権は設定されていない。

4 - 7 - 10

付近の主な工業としては,敷地境界から西方向約0.9km離れた位置に むつ小川原石油備蓄株式会社が操業を実施している独立行政法人石油天然 ガス・金属鉱物資源機構のむつ小川原国家石油備蓄基地(以下「石油備蓄 基地」という。)がある。

また,敷地の北側に隣接する当社濃縮・埋設事業所において,六ヶ所ウ ラン濃縮工場及び六ヶ所低レベル放射性廃棄物埋設センターを操業してお り,敷地内には,再処理事業所廃棄物管理施設を操業し,MOX燃料加工 施設を建設している。

六ヶ所村及び青森県の農作物作付生産状況,飼養経営体数及び飼養頭羽 数並びに海産物別漁獲量を第7.3-2表,第7.3-3表及び第7.3-4表 に示し,再処理施設周辺の河川・湖沼別魚種別漁獲量を第7.3-5表に示 す。また,再処理施設付近の土地利用状況を第7.3-1図に,漁業権等状 況を第7.3-2図に示す。

業和種	另门	産 業	き 別
区分	人数(人)	区 分	人数(人)
農業・林業	616		
うち農業	605	第一次産業	872
漁業	256		
鉱業, 採石業, 砂利採取業	19		
建設業	1,050	第二次産業	2, 443
製造業	1, 374		
電気・ガス・熱供給・水道業	24		
情報通信業	45		
運輸業,郵便業	201		
卸売業,小売業	397		
金融業,保険業	38		
不動産業,物品賃貸業	51		
学術研究,専門・技術サービス業	356		
宿泊業, 飲食サービス業	234	第三次産業	2,926
生活関連サービス業,娯楽業	95		
教育,学習支援業	128		
医 療 · 福 祉	308		
複合サービス業	67		
サ ー ビ ス 業 (他に分類されないもの)	740		
公 務(他に分類される物を除く)	242		
分類不能の産業	9		9
計	6,250	計	6, 250

第7.3-1表 六ヶ所村の就業者数

(平成22年国勢調査報告による。)

第7.3-2表 農作物作付生産状況

- 畄伝	:	作付面積(ha)	٦
- -	:	収穫量(t)	

	県,村	六 ケ	所 村	青森	条 県
農作物	平成	17年	18年	17年	18年
* 陆 预	作付面積	157	152	53, 800	53, 300
小陸加	収 穫 量	766	798	322, 800	309, 700
小 丰	作付面積			2,410	2, 120
小友	収 穫 量			3, 160	3, 500
一 新	作付面積	20	10	4, 508	4,728
立 規	収 穫 量	23	12	5, 835	6,854
こ バ	作付面積	1	1	2,830	2, 780
	収 穫 量	1	0	849	778
名 *1 /左 //m	作付面積	2,620	2,665	22, 830	22, 860
时 科 11- 120	収 穫 量	114, 500	108, 600	898, 400	851,600
男 芬	作付面積	675	770	17, 126	17, 456
判 米	収 穫 量	24, 605	29, 278	457, 536	477, 252
果樹	作付面積			23, 748	23, 965
	収 穫 量			432, 975	454, 140
丁士曲作物	作付面積	20	5	244	174
上云辰 TF 彻	収 穫 量	30	8	423	320

(水陸稲,小麦,豆類,そば及び飼料作物は平成17,18年産農作物統計,野菜,果樹及び 工芸農作物は平成17,18年園芸作物統計による。)

注)「-」は事実のないことを示す。

	県, 村	六ヶ所村	青 森 県
家畜	平成	22年	22年
乳田	飼養経営体数	49	300
牛	飼養頭数	3, 403	15, 754
肉田	飼養経営体数	45	1,076
用 牛	飼養頭数	3, 131	60, 277
廢	飼養経営体数	2	106
心不	飼養頭数	х	314, 377
採	飼養経営体数	_	45
鶏	飼養羽数	_	4, 213, 400
ブロイラー	出荷した経営体数	_	40
	出荷羽数	_	38, 321, 600

第7.3-3表 飼養経営体数及び飼養頭羽数

(2010世界農林業センサス 第1巻 青森県統計書による。) 注) 「x」は秘密保護上統計数値を公表しないものを示す。 「-」は事実のないものを示す。

第7.3-4表(1) 海産物別漁獲量

())/ /L		
	•	+ 1
	٠	ι)

県,村			所村	青森県	
魚種	平成	24 年	25 年	24 年	25 年
	まいわし	0	1	4, 303	3, 638
	かたくちいわし	—	—	2,061	2,081
	かっお	2	-	85	32
	ま ぐ ろ	12	5	1,027	1,039
	か じ き	_	_	10	7
	さば	146	39	44, 277	42,109
	ぶり	192	133	9,970	6,133
	たら	15	53	3, 415	6,235
	すけとうたら	1	1	4,657	6,482
	さ め	1	1	1,876	1,772
	たい	4	2	626	436
	まがれい	2	1	96	101
	いしがれい	1	2	54	58
	そうはちがれい	—	—	60	59
	ばばがれい	9	11	362	419
魚	まこがれい	3	2	394	289
	むしがれい	11	10	190	220
	その他のかれい	7	11	785	664
	かれい計	33	37	1,941	1,809
	ひらめ	48	89	790	1,080
	ほっけ	0	0	121	217
	あ じ	0	—	100	51
	さんま	—	_	279	0
類	さけ	224	298	3,605	4, 518
	さくらます	24	20	242	379
	からふとます	0	0	4	2
	こうなご	—	2	2	9
	あいなめ	1	2	143	127
	そ い	7	9	179	201
	うすめばる	1	1	246	268
	その他のめばる	—	—	43	43
	めぬけ	0	0	39	47
	き ち じ	—	—	302	285
	かながしら	_	_	15	13
	あんこう	15	18	512	467
	さわら	21	34	100	203
	はたはた	—	—	209	796
	その他魚類	43	28	2,774	2, 150
	魚類小計	792	773	83,951	82,630

(平成24,25年青森県海面漁業に関する調査結果書(属地調査年報)による。)

注) 「-」は事実のないものを示す。

「0」は単位に満たないものを示す。

4 - 7 - 15

第7.3-4表(2) 海産物別漁獲量

(単位 : t)

県, 村		六ヶ所村		青森県	
魚種	平成	24 年	25 年	24 年	25 年
	ほたてがい(稚貝)	_	_	1,405	540
	ほたてがい(半成貝)	_	_	48, 310	17,962
	ほたてがい(新貝)	_	_	11,656	18,106
	ほたてがい(成貝)	_	_	14, 499	15, 457
只	うばがい	0	—	793	822
粘	さざえ	—	—	29	72
大只	あかがい	—	—	23	7
	あわび	1	0	52	49
	その他貝類	0	—	128	97
	貝類小計	1	_	76, 895	53, 111
T	するめいか(近海・生)	2,981	2,070	33, 020	25, 158
	するめいか(近海・船凍)	_	—	15, 157	14, 145
	するめいか(海外)	_	_	1,608	706
	やりいか	8	9	912	1,101
	あかいか(近海)	—	—	2,736	2,200
そ	あかいか(海外)	—	—	4,315	0
の Ma	その他のいか	4	2	104	28
1世 の	たこ	21	19	1,282	1,371
水	くるまえび	—	—	0	0
重動	その他のえび	—	—	39	30
物	かに	14	11	493	471
	うに	43	—	598	540
	なまこ	—	—	1,190	1,486
	ほや	—	—	407	341
	その他水産動物	—	_	29	33
	水産動物小計	3,071	2,109	61,891	47, 582
藻類	こんぶ	464	_	3, 783	1,812
	わかめ	—	—	201	120
	その他藻類	1		787	572
	藻 類 小 計	464		4,771	2,504
	合 計	4, 328	2,884	227, 507	185, 855

(斗

「一」は事実のないものを示す。

「0」は単位に満たないものを示す。

			(肖	单位:t)
	高 涷	質 川	小川	原 湖
(鳥 1里	平成23年	平成24年	平成23年	平成24年
さけ類	_	_	х	x
からふとます	_	—	х	х
さくらます	—	—	х	х
その他のさけ・ます類	_	_	х	х
わかさぎ	6	7	х	х
あゆ	_	—	х	x
しらうお	_	_	х	х
こい	1	1	х	x
ふな	0	0	х	х
うぐい・おいかわ	3	3	х	x
うなぎ	_	—	х	x
はぜ類	1	0	х	x
その他の魚類	0	0	х	x
魚類計	11	11	х	x
しじみ	49	44	х	x
その他の貝類	_	_	х	x
貝類計	49	44	X	x
えび類	_	_	Х	x
その他の水産動植物類	_	_	х	x
その他の水産動植物類計	_	_	х	x
合計	60	56	x	X

第7.3-5表 河川·湖沼別魚類別漁獲量

(平成23,24年漁業・養殖業生産統計年報による。)

注) 「-」は事実のないものを示す。

「0」は単位に満たないことを示す。

「x」は秘密保護上統計数値を公表しないものを示す。

[「]この地図の作成に当たっては,国土地理院長の承認を得て,同院発行の2万5千分1地形図を使用したものである。(承認番号 平25東使,第7号)」

第7.3-1図 再処理施設付近の土地利用状況図

(免許漁業原簿を参考にして作成した。)

第7.3-2図 再処理施設周辺の漁業権等状況図

7.4 交通運輸

再処理施設周辺の主要な道路としては、おいらせ町から太平洋岸沿いに 国道338号線、野辺地町から陸奥湾沿いに国道279号線がそれぞれ北上して むつ市に向かっている。また、東京都中央区から野辺地町を経て青森市に 至る国道4号線がある。むつ市から陸奥湾沿いに南下して七戸町に至る、 地域高規格道路である下北半島縦貫道路は、六ヶ所インターチェンジ〜野 辺地インターチェンジ間で供用されている。

そのほか地方道として県道尾駮着戸停車場線(尾駮~室ノ久保~有戸),県道横浜六ヶ所線(吹越~二又~尾駮)及び県道東北横浜線(水 喰〜室ノ久保~二又)がある。

なお,国道338号線は六ヶ所村鷹架地点で分岐し,その一方は敷地西側 の境界に沿って南北に走っている。

鉄道としては,東京を起点として八戸,七戸十和田を経て新青森に至 る東北新幹線,目時を起点として八戸,三沢,野辺地を経て青森に至る 青い森鉄道線,野辺地を起点として陸奥横浜を経て大湊に至る大湊線が ある。

また,最寄りの港湾としては,再処理施設の東方向約5kmに港湾法 に基づき重要港湾に指定(昭和52年9月)されたむつ小川原港があり, 2,000 t級の公共岸壁が7バース,15,000 t級岸壁が暫定5,000 t級で2バ ース,50,000 t級岸壁が暫定2,000 t級で1バース供用されている。

なお,むつ小川原港(鷹架地区)から当社再処理事業所及び濃縮・埋設 事業所に至る運搬専用道路がある。

航空関係としては,再処理施設の南方向約28km離れた位置に三沢空港 及び三沢基地がある。再処理施設周辺の航空路等として航空路,RNAV経 路及び直行経路があるが,再処理施設から最も近い航空路等として,中心線 が再処理施設の東方向約7kmの上空を通っている直行経路MISAWA (MIS)-CHITOSE(ZYT)があり,再処理施設上空に当該直

$$4 - 7 - 20$$

行経路が存在する。また,南方向約10km離れた位置には三沢対地訓練区 域があり,再処理施設の上空は三沢特別管制区に含まれている。

なお,航空機は原則として原子力関係施設上空を飛行しないよう規制 (13) (23) される。

三沢基地には米国空軍のF-16が最も多く配備されており,次いで航空 自衛隊のF-2が多い。三沢基地の航空機の配備状況を第7.4-1表に示 す。

なお,航空自衛隊のF-1は,平成9年3月に2個飛行隊のうち第8飛 行隊が双発のF-4EJ改に更新され,残りの第3飛行隊が,平成13年5 月に後継機であるF-2に更新された。平成20年4月から,第8飛行隊に おけるF-2の運用が開始され,平成21年3月にはF-4EJ改が退役と なっている。

三沢対地訓練区域での訓練飛行回数は、平成25年4月から1年間にわた って当社が調査した至近の結果では約2万回であり、そのうちF-16及び F-2で9割以上を占める。

なお、航空機からの視認性向上のため灯火を設置する。

再処理施設周辺の主要な道路,鉄道及び港湾を第7.4-1図に,航空路 等を第7.4-2図に示す。

	機種	機		数	備考
航空自衛隊	F-2	約	35	機	戦闘機
	F - 35		8	機	戦闘機
	T - 4	約	10	機	中等練習機
	E - 2 C		9	機	早期警戒機
	CH-47J		3	機	輸送ヘリコプター
米軍	F - 16	約	40	機	戦闘機
	P – 3 C	約	10	機	対潜哨戒機
	C - 12	約	1	機	輸送機

第7.4-1表 三沢基地の航空機の配備状況

(三沢市発行「三沢市と三沢基地」及び防衛省・自衛隊ホームペー ジを参考にして作成した。)

第7.4-1図 再処理施設周辺の主要な道路,鉄道及び港湾

(AIS-JAPANを参考にして作成した。)

第7.4-2図 再処理施設周辺の航空路等図

7.5 水の利用状況

再処理施設付近における主な水の利用形態としては,生活用,農業用及 び工業用がある。

生活用については、主に深井戸を水源とする上水道の水が用いられている。

農業用については,主に老部川,二又川,室ノ久保川及び戸鎖川の河川 の水が用いられているが,畜産用については,生活用と同様,主に上水道 の水が用いられている。

工業用については、主に二又川の河川の水が用いられている。

7.6 開発計画

再処理施設周辺における至近の開発計画としては,青森県が平成19年5 月に策定し,平成19年6月に閣議了解を得た「新むつ小川原開発基本計 」(17) 」(以下「新基本計画」という。」がある。

新基本計画は,環境,エネルギ及び科学技術の分野における研究開発機 能の展開と成長産業等の立地展開を図るとともに,森と湖に囲まれた,ア メニティあふれる新たな生活環境を整備し,多様な機能を併せ持つ,世界 に貢献する新たな「科学技術創造圏」の形成を進めることとしている。

新基本計画によれば、むつ小川原開発地区の総面積は、約5,180h a で、 その土地利用区分としては約3,290h a を開発用地に、約210h a を港湾、 道路などに供する公共用地に、約1,680h a を環境保全などのための緑地 としている。開発用地の土地利用については、環境、エネルギ及び科学技 術分野における研究開発機能の展開エリアとなる研究開発機能展開エリア、 成長産業や大規模な土地利用を必要とする産業の立地展開エリアとなる産 業立地展開エリア、生活環境の整備エリアとなる生活環境整備エリアの土 地利用エリアが想定されている。

開発の現況について見ると、研究開発機能展開エリアには核融合関連施設が立地し、産業立地展開エリアには石油備蓄基地、原子燃料サイクル施設、風力発電施設などが立地している。生活環境整備エリアには、立地企業の社宅、商業施設、文化施設などが立地し、市街地が形成されている。 再処理施設は、六ヶ所村の都市計画区域(工業専用地域)に位置する。

むつ小川原開発地区の土地利用想定図を第7.6-1図に, 六ヶ所都市 計画図を第7.6-2図に示す。

第7.6-1図 むつ小川原開発地区の土地利用想定図

六ヶ所都市計画図(平成20年)を参考にして作成した。

第7.6-2図 六ヶ所都市計画図
- 7.7 参考文献一覧
 - (1) 総務省統計局. "平成22年国勢調査". 総務省統計局ホームページ,
 2011-10-26. http://www.stat.go.jp/data/kokusei/2010/index.htm.
 - (2) 六ヶ所村 企画・防災部門 企画調整課編. 平成26年版六ヶ所村統 計書. 2015.
 - (3) 東北農政局青森統計・情報センター編. 平成17年産農作物統計. 青森農林水産統計協会, 2006.
 - (4) 東北農政局青森農政事務所編. 平成18年産農作物統計. 青森農林水 産統計協会, 2007.
 - (5) 東北農政局青森農政事務所編. 平成17年園芸作物統計. 青森農林水 産統計協会, 2006.
 - (6) 東北農政局青森農政事務所編. 平成18年園芸作物統計. 青森農林水 産統計協会, 2007.
 - (7) 農林水産省大臣官房統計部. "2010年世界農林業センサス報告書".
 農林水産省ホームページ, 2012-01-31.
 http://www.maff.go.jp/j/tokei/census/afc/about/2010.html.
 - (8) (欠番)
 - (9) 青森県農林水産部.平成24年青森県海面漁業に関する調査結果書(属地調査年報).2013.
 - (10) 青森県農林水産部.平成25年青森県海面漁業に関する調査結果書(属地調査年報).2014(2016修正).
 - (11) 農林水産省大臣官房統計部. 平成23年漁業・養殖業生産統計年報.2013.
 - (12) 農林水産省大臣官房統計部.平成24年漁業・養殖業生産統計年報.2014.

$$4 - 7 - 29$$

(13) 国土交通省. AIS JAPAN. 2016-11-10.

https://aisjapan.mlit.go.jp/Login.do, (参照 2016-11-11).

- (14) 三沢市政策財政部基地渉外課編.三沢市と三沢基地. 2011.
- (15) 防衛省・自衛隊. "防衛大臣記者会見概要,平成 30 年 6 月 8 日 (09 時 17 分~09 時 40 分)". 防衛省ホームページ.
 http://www.mod.go.jp/j/press/kisha/2018/06/08.html,
 (参照 2018 6 12).
- (16) 青森県健康福祉部保健衛生課編. 平成24年度版青森県の水道. 2014.
- (17) 青森県.新むつ小川原開発基本計画. 2007.
- (18) 六ヶ所村. "六ヶ所都市計画図". 六ヶ所都市計画道路の変更.2011.
- (19) 上北地域県民局地域整備部むつ小川原港管理所.むつ小川原港要覧.2015.
- (20) 青森県教育庁教育政策課編. 平成27年度学校一覧. 2015.
- (21) 六ヶ所村子ども支援課. 平成27年12月1日保育所等入所児数. 2015.
- (22) 六ヶ所村情報政策課編. 広報ろっかしょ. Aug. 2014.
- (23) National Geospatial-Intelligence Agency. DoD Flight Information Publication Area Planning Pacific-Australasia-Antarctica. 2016.

8. 津 波

8.1 評価概要

8.1.1 施設の立地的特徴

評価対象施設である耐震重要施設等及び常設重大事故等対処施設の設置 される敷地は,設置位置の標高が最も低い施設が標高約 50m(海岸から の距離約4km)の地点に位置し,それ以外の施設は標高約 55m及び海 岸からの距離約5kmの地点に位置している。敷地の概況を第 8.1-1図 に示す。

8.1.2 津波評価方針

太平洋側沿岸及び尾駮沼沿いに耐震重要施設等及び常設重大事故等対処 施設に該当する取水設備は設置していないことを踏まえ,津波評価は水位 上昇側のみ行う。

津波評価に当たっては、まず、既往知見を踏まえた津波の評価を行い、 想定される津波の規模観について把握した上で、施設の安全性評価として、 すべり量が既往知見を大きく上回る波源モデルによる検討を行い、津波が 耐震重要施設等及び常設重大事故等対処施設の設置される敷地に到達する 可能性がないことを確認する。

津波の到達可能性について検討する敷地高さについては,耐震重要施設 等及び常設重大事故等対処施設の設置位置の標高が最も低い施設でも標高 約 50mであることを踏まえ,保守的に標高 40mとする。なお,津波評価 結果と対比する場合には,標高に係る表記を「T.M.S.L.」とする。 8.2 既往津波に関する検討

8.2.1 文献調査

8.2.1.1 既往津波

敷地周辺に影響を及ぼしたと考えられる既往津波について,宇佐美ほか (2013),渡辺(1998)等により,文献調査を行った。

(1) 近地津波

敷地周辺に影響を及ぼしたと考えられる津波規模m(宇佐美ほか (2013))が2以上の主な既往の近地津波を第8.2-1表に,敷地周辺 における主な既往の近地津波の津波高を第8.2-2表に示す。また,主 な既往津波高とその位置を第8.2-1図に示す。

これらより,敷地周辺に影響を及ぼしたと考えられる主要な津波として,津波の大きさ,波源からの伝播距離及び津波による被害の大きさを 考慮すると,1611年の津波,1677年の津波,1856年の津波,1896年明 治三陸地震津波,1933年昭和三陸地震津波,1968年十勝沖地震に伴う 津波及び 2011年東北地方太平洋沖地震に伴う津波の7つの津波を抽出 した。これらの津波の推定波源域を第8.2-2図に示す。

2011 年東北地方太平洋沖地震に伴う津波以前において,敷地周辺にお ける主な既往の近地津波の津波高を比較すると,第 8.2-2表に示すとお り,敷地南方においては,1968 年十勝沖地震に伴う津波が三沢市塩釜で 5.1m,八戸市河原木で最大で4.8mであり,他の津波に比較して大きい。 一方,敷地北方においては,1856 年の津波が,むつ市大畑・湊で4m,函 館市函館で3mであり,他の津波に比較して大きい。さらに,相田 (1977) によれば,第 8.2-3図に示すように,数値シミュレーションに よる 200m等深線上の波高を基にした,海岸での平均的な津波高が示され ている。これによると,八戸付近より北方においては 1856 年の津波が最 大となっている(相田(1977)以降の津波を除く)。

一方,2011 年東北地方太平洋沖地震に伴う津波高は,第8.2-2表及び 第8.2-1 図に示すとおり,敷地近傍の出戸から新納屋の範囲においては, 1968 年十勝沖地震に伴う津波とほぼ同程度の津波高である。

以上より,敷地近傍に大きな影響を及ぼしたと考えられる近地津波は, 1856年の津波,1968年十勝沖地震に伴う津波及び2011年東北地方太平洋 沖地震に伴う津波と評価した。

(2) 遠地津波

敷地周辺に影響を及ぼした主な既往の遠地津波を第8.2-3表に,敷 地周辺における主な既往の遠地津波の津波高を第8.2-4表に示す。

敷地周辺に来襲した遠地津波の中では,1960 年チリ地震津波が八戸 市河原木で最大で 5.3mであり,敷地近傍の出戸から新納屋の範囲にお ける津波高は,尾駮で1.0mが記録されている。

以上より,敷地近傍に影響を及ぼしたと考えられる遠地津波は,1960 年チリ地震津波であるが,近地津波の津波高を上回るものではないと評 価した。

(3) 既往津波の評価

既往津波に関する文献調査の結果,敷地近傍に大きな影響を及ぼした と考えられる既往津波は,1856年の津波,1968年十勝沖地震に伴う津波 及び2011年東北地方太平洋沖地震に伴う津波と評価した。

8.2.1.2 潮 位

敷地近傍における潮位の観測は、国土交通省港湾局むつ小川原港で実施 されている。2008 年4月から 2013 年3月までの観測結果によると潮位は 以下のとおりである。

最高潮位	T.M.S.L.+0.999m
朔望平均満潮位	T.M.S.L.+0.670m
平均潮位	T.M.S.L.+0.049m
朔望平均干潮位	T.M.S.L0.767m
最低潮位	T.M.S.L1.04m

8.2.2 既往津波の再現性の確認

8.2.2.1 対象津波

解析モデル及び計算方法の妥当性確認のため,既往津波について数値シ ミュレーションを行い,計算結果と実際の津波痕跡高との比較による既往 津波の再現性の検討を行った。

再現性の検討においては,過去に敷地近傍に大きな影響を及ぼしたと考 えられる津波である 1856 年の津波,1968 年十勝沖地震に伴う津波及び 2011 年東北地方太平洋沖地震に伴う津波を対象とした。これらの波源モ デルのうち,1856 年の津波及び 1968 年十勝沖地震に伴う津波の波源モデ ルの位置及び諸元を第 8.2-4 図に示す。2011 年東北地方太平洋沖地震に 伴う津波の波源モデルについては,内閣府(2012) において示される波源 モデルとした。

津波に伴う水位変動の評価は,弾性体理論(Mansinha and Smylie(1971))に基づき海面変位を算定した上で,非 線形長波理論に基づき,差分法による平面二次元モデルによる津波シミュ レーションプログラムを用いて実施した。また,敷地は尾駮沼に隣接して いることから,尾駮沼からの遡上を考慮できるモデルを設定した。数値シミ ュレーションにおける主な計算条件を第8.2-5表に示す。

沿岸域及び海底地形のモデル化に当たっては,国土地理院,日本水路協会(2011)等を用いて設定し,また,計算格子分割の設定に当たっては, 土木学会(2016)を参考とし,水深と津波の周期から推定される津波の波 長を基に,最大 1,440mから最小5mまでの格子サイズを設定した。数値 シミュレーションに用いた計算領域(東西約 1,000 km, 南北約 1,300 km)とその水深及び格子分割を第 8.2-5 図に,敷地 近傍の計算領域とその水深及び格子分割を第 8.2-6 図に示す。

4 - 8 - 6

再現性の評価指標としては、相田 (1977) による既往津波高と数値シミ ュレーションにより計算された津波高との比から求める幾何平均値K及び ばらつきを表す指標 κ を用い、土木学会 (2016) に示される「0.95<K< 1.05、 κ <1.45」を再現性の目安とした。

8.2.2.2 検討結果

既往津波高と数値シミュレーションによる津波高の比較を第8.2-7図に示す。

1856 年の津波においてはK=1.01, $\kappa = 1.42$ (n = 71), 1968 年十勝 沖地震に伴う津波においてはK=0.99, $\kappa = 1.44$ (n = 313) 及び 2011 年 東北地方太平洋沖地震に伴う津波においてはK=0.952, $\kappa = 1.36$ (n = 660) が得られ,土木学会 (2016) の目安を満足していることから,解析 モデル及び計算方法の妥当性を確認した。 8.3 既往知見を踏まえた津波の評価

8.3.1 地震に起因する津波の評価

8.3.1.1 対象とする地震

地震に起因する津波の評価においては,敷地に影響を与える可能性があ る津波の波源として,プレート間地震,海洋プレート内地震及び海域の活 断層による地殻内地震について検討した。

8.3.1.2 数値シミュレーションの手法

数値シミュレーションにおける主な計算条件,計算領域,水深及び格子 分割については,第8.2-5表,第8.2-5図及び第8.2-6図に示す既 往津波の再現性の確認と同様の条件とした。

評価位置については、尾駮沼の形状を踏まえ、第 8.3-1図に示す尾駮沼 奥の地点を選定した。また、尾駮沼入り口前面には防波堤が設置されてい ることから、防波堤を考慮して検討を行った。

さらに,津波による影響を評価するに当たっては,朔望平均満潮位及び 地殻変動量を考慮した津波高について評価することとした。

8.3.1.3 プレート間地震に起因する津波の評価

プレート間地震は、地震調査委員会(2012)⁽¹⁶⁾で示されている三陸沖北部 のプレート間地震、津波地震及び 2011 年東北地方太平洋沖地震で得られ た知見を踏まえ、三陸沖北部と隣り合う領域の連動を考慮した連動型地震 について検討した。

連動型地震については,三陸沖北部から北方の千島海溝沿いの領域への 連動を考慮した連動型地震(以下「北方への連動型地震」という。)及び 三陸沖北部から南方の日本海溝沿いの領域への連動を考慮した連動型地震 (以下「南方への連動型地震」という。)が考えられるが,ここでは北方 への連動型地震の波源モデルを設定して検討を実施する。一方,南方への 連動型地震については青森県海岸津波対策検討会(2012)の結果を参照する。なお、南方への連動型地震については地震調査委員会(2019)の知見もあるが、敷地前面の三陸沖北部に超大すべり域及び大すべり域を設定した青森県海岸津波対策検討会(2012)の方が敷地への影響は大きいと評価した。

(1) 基本モデル

a. 三陸沖北部のプレート間地震

三陸沖北部のプレート間地震の波源モデルについては,1856 年の津 波が古記録より推定されていることから,同一海域で発生し各地の津波 高が数多く観測されている 1968 年十勝沖地震に伴う津波を対象とする こととし,前述の既往津波を再現する波源モデルをもとに,地震規模が 既往最大のM_w8.4 となるようにスケーリング則に基づき設定した。第 8.3-2 図に示す波源モデルの位置及び諸元に基づき実施した数値シミ ュレーションの結果,評価位置における津波高はT.M.S.L.+1.38m であった。

b. 津波地震

津波地震の波源モデルについては、土木学会 $(2002)^{(26)}$ で示されている 1896 年明治三陸地震津波の波源モデル(地震規模は既往最大の $M_W 8.3$) を設定した。第 8.3-3 図に示す波源モデルの位置及び諸元に基づき実 施した数値シミュレーションの結果、評価位置における津波高は T.M.S.L.+1.28mであった。

c. 北方への連動型地震

北方への連動型地震の波源モデルについては,日本海溝・千島海溝周 辺海溝型地震に関する専門調査会(2006),文部科学省測地学分科会 (2014)及び地震調査委員会(2017)を参考に,敷地前面の三陸沖北部 から根室沖までの領域を想定波源域として設定した。

波源モデルの設定に当たり、断層面積は地震調査委員会(2004) 及び 地震調査委員会(2012) を参考にプレート面形状を設定した上で算定し た。波源モデルの平均すべり量については、地震の規模に関するスケー リング則と地震モーメントの定義式から算定し、その際の平均応力降下 量については内閣府(2012) を参考に 3.0MP a と設定し、剛性率につ いては土木学会(2016) を参考に 5.0×10¹⁰N/m²と設定した。

すべり量の不均質性については、内閣府(2012)²を参考に、超大すべ り域及び大すべり域のすべり量をそれぞれ平均すべり量の4倍、2倍に、 面積をそれぞれ全体面積の5%程度、15%程度(超大すべり域と合わせ て 20%程度)となるように設定した。超大すべり域の位置については、 基本的には三陸沖北部及び十勝沖・根室沖の領域にそれぞれ存在すると 想定されるが、保守的に敷地前面の三陸沖北部にひとつにまとめ、内閣 府(2012) 及び青森県海岸津波対策検討会(2012)³⁵⁾を参考にプレート境 界浅部のすべりが大きくなるよう配置した。大すべり域の位置は超大す べり域を取り囲むように配置した。

さらに、上述のとおり設定したモデルに対し、超大すべり域及び大す べり域を考慮した平均応力降下量が約3MPaとなるように地震モーメ ント(すべり量)の調整を行い、Mw9.04のモデルを設定した。また、 ライズタイムについては60秒とした。

第8.3-4図に示す波源モデルの位置及び諸元に基づき実施した数値 シミュレーションの結果,評価位置における津波高はT.M.S.L. +2.32mであった。

(2) 不確かさの考慮に係る評価

三陸沖北部のプレート間地震、津波地震及び北方への連動型地震のう

ち,評価位置における津波高が最大となる北方への連動型地震について, 波源特性,波源位置及び破壊開始点の不確かさを考慮し評価を実施した。 さらに,不確かさの考慮において評価位置における津波高が最大となる ケースと,南方への連動型地震である青森県海岸津波対策検討会 (2012)の結果の比較を行い,津波高の高いケースをプレート間地震に 起因する津波の最大ケースとして評価した。

波源特性の不確かさについては、すべり量の不確かさを考慮したすべ り量割増モデル及びすべり分布の不確かさを考慮した海溝側強調モデル を設定した。第8.3-5図に示す波源モデルの位置及び諸元に基づき実 施した数値シミュレーションの結果、評価位置における津波高は、すべ り量割増モデルでT.M.S.L.+3.01m,海溝側強調モデルで T.M.S.L.+3.00mであった。

波源位置の不確かさについては、すべり量割増モデル及び海溝側強調 モデルのそれぞれについて、北へ約 50km移動させたケース並びに南 へ約 50km,約 100km及び約 150km移動させたケースを設定した。 数値シミュレーションを実施した結果、評価位置における津波高が最大 となるのは、すべり量割増モデルを南に約 100km移動させたケースで、 T.M.S.L.+3.65mであった。

破壊開始点の不確かさについては,波源位置を変動させた検討におい て評価位置における津波高が最大となるすべり量割増モデルを南に約 100km移動させたケースについて,内閣府(2012)を参考に複数設定 した。第8.3-6図に示す位置で破壊開始点を設定し数値シミュレーシ ョンを実施した結果,評価位置における津波高が最大となるのは,破壊 開始点としてP6を設定したケースで,T.M.S.L.+4.00mであった (第8.3-7図参照)。

4 - 8 - 11

南方への連動型地震については、青森県海岸津波対策検討会(2012)²によると、六ヶ所村沿岸に来襲する津波高について、敷地近傍においては T.M.S.L.+10mに達しておらず(第8.3-8図参照),公表された浸 水深分布からも、耐震重要施設等及び常設重大事故等対処施設の設置さ れる敷地に津波は到達していないことが確認できる(第8.3-9図参 照)。一方、北方への連動型地震は、第8.3-7図に示すとおり、敷地 近傍の海岸線上における津波高はT.M.S.L.+10m以上であり、北方 への連動型地震に起因する津波が南方への連動型地震に起因する津波を 上回る結果であった。

以上より、プレート間地震に起因する津波について、評価位置における津波高が最大となるのは、北方への連動型地震のすべり量割増モデル を南に約 100km移動させ破壊開始点をP6と設定したケースであり、 その津波高は評価位置においてT.M.S.L.+4.00mであった。

(3) 尾駮沼の固有周期に係る検討

評価位置は尾駮沼の奥に位置していることから,評価位置における津 波高の算出に当たり,尾駮沼の固有周期の影響が数値シミュレーション に反映されていることを確認するため,尾駮沼の固有周期に係る検討を 実施した。

尾駮沼の固有周期を確認するため,第8.2-6回に示す敷地近傍の計 算領域において,周期を変化させた正弦波を入力し,評価位置における 水位増幅率を求めた結果を第8.3-10回に示す。沖合い位置に対する評 価位置の水位増幅率は,15分程度の周期帯においてピークを示し,そ れ以外の周期帯については減衰していることから,尾駮沼の固有周期は 15分程度であると評価した。

次に、第8.3-7図に示すケースの数値シミュレーションによる水位

変動量時刻歴波形を用いて周波数分析を実施した結果を第8.3-11 図に 示す。評価位置において15分程度の周期帯が卓越しており,正弦波入 力による検討で評価した尾駮沼の固有周期の影響を捉えていることを確 認した。

なお,尾駮沼の固有周期を踏まえ,数値シミュレーションで設定して いる格子間隔の妥当性について検討した結果,第8.3-12 図に示すとお り,格子間隔が土木学会(2016)により算定される格子間隔の目安に対 して十分小さいことを確認した。

以上のことから,評価位置における津波高の結果には,数値シミュレ ーションにより尾駮沼の固有周期の影響が反映されていると評価した。 8.3.1.4 海洋プレート内地震に起因する津波の評価

海洋プレート内地震は、地震調査委員会(2012)で示されている正断層 型の地震について検討した。

海洋プレート内地震の波源モデルについては、土木学会(2002) で示さ れている 1933 年昭和三陸地震津波の波源モデルをもとに、地震規模が既 往最大のM_w8.6 となるようにスケーリング則に基づき設定した。第8.3-13 図に示す波源モデルの位置及び諸元に基づき実施した数値シミュレー ションの結果、評価位置における津波高はT.M.S.L.+1.35mであった。

以上を踏まえると,海洋プレート内地震に起因する津波は,プレート間 地震に起因する津波を上回るものではない。

8.3.1.5 海域の活断層による地殻内地震に起因する津波の評価

海域の活断層による地殻内地震に起因する津波の評価を行うに当たり, 第8.3-14 図に示す敷地周辺海域の活断層について,阿部(1989)の簡易 予測式により推定津波高を検討した。

簡易予測式による推定津波高を第8.3-1表に示す。海域の活断層によ

る地殻内地震に起因する津波の推定津波高は最大でも 0.3mであり、プレ

ート間地震に起因する津波と比べて影響は非常に小さい。

8.3.2 地震以外の要因に起因する津波の評価

8.3.2.1 地すべり等に起因する津波の評価

(1) 対象地すべりの選定

文献調査によると,敷地周辺における陸上及び海底の地すべり並びに 斜面崩壊による歴史津波の記録は知られていない。また,陸上地すべり について,防災科学技術研究所(2009) 及び防災科学技術研究所 (2013) によると,敷地周辺陸域の海岸付近において大規模な地すべり 地形は認められない。加えて,海底地すべりについても,徳山ほか (2001) によると,敷地周辺海域には海底地すべり地形は認められない。

一方,下北半島太平洋側前面海域の大陸棚部付近を対象に海底地形調 査を実施した結果,複数の地すべり地形が抽出されたことから,抽出さ れた地すべり地形に基づく数値シミュレーションにより敷地への影響を 評価した。抽出された海底地すべり地形を第8.3-15 図に示す。

抽出された海底地すべり地形のうち,地すべり地形の崩壊規模から数 値シミュレーションの対象とする地すべりとしてSLS-2を選定し, 地すべり前の海底地形を復元した。海底地すべり地形の断面を第8.3-16 図に示す。

- (2) 海底地すべりの数値シミュレーションの手法
 海底地すべりの数値シミュレーションの手法としては、二層流モデル
 (Maeno and Imamura (2007)))及びKinematic
 landslideモデル(佐竹・加藤 (2002)))を用いた。
 数値シミュレーションに用いた計算領域とその水深及び格子分割を第
 - 8.3-17 図に, 主な計算条件を第 8.3-2表に示す。
- (3) 評価結果

数値シミュレーションの結果,評価位置前面における津波高は,二層

流モデルで 0.07m, Kinematic landslideモデル で 0.20mであり、プレート間地震に起因する津波と比べて影響は非常 に小さい。

8.3.2.2 火山現象に起因する津波の評価

文献調査によると,敷地周辺に大きな影響を及ぼした,火山現象による 歴史津波の記録は知られていないことから,火山現象に起因する津波につ いては,影響は極めて小さいと評価した。 8.3.3 まとめ

既往知見を踏まえた津波の評価として,地震及び地震以外の要因に起因 する津波について評価を行った結果,評価位置における津波高が最大とな るのは,プレート間地震に起因する津波のうち,北方への連動型地震のす べり量割増モデルを南に約 100km移動させ破壊開始点をP6と設定した ケースであり,想定される津波の規模観は評価位置においてT.M.S.L. +4.00m程度であった。なお,地震以外の要因に起因する津波の影響は非 常に小さいことから,地震に起因する津波との重畳を考慮したとしても想 定される津波の規模観への影響はない。

- 8.4 施設の安全性評価
- 8.4.1 評価概要

既往知見を踏まえた津波の評価の結果,津波の規模観は評価位置におい てT.M.S.L.+4.00m程度と把握できた。そこで,耐震重要施設等及び 常設重大事故等対処施設の設置される敷地に津波が到達する可能性がない ことを確認するため,すべり量が既往知見を大きく上回る波源モデルによ る検討を実施した。

なお、本評価においては、防波堤を考慮せずに検討を実施した。

8.4.2 波源モデルの設定

すべり量が既往知見を大きく上回る波源モデルの設定に当たり、国内外の巨大地震のすべり量に関する文献調査を実施した(第 8.4-1 表参照)。

内閣府 (2012), 杉野ほか (2014) 等による文献調査の結果,既往の巨 大地震及び将来予測のモデルにおける最大すべり量については, 内閣府 (2012) の最大のモデルで 60~70m程度であった。そこで,本評 価においては,すべり量が既往知見を大きく上回る波源モデルとして,既 往知見を踏まえた津波の評価において津波高が最も高いケースの波源モデ ル (第 8.3-6 図参照) の各領域のすべり量を3倍にしたモデル (以下 「すべり量3倍モデル」という。)を設定した。その結果,超大すべり域 のすべり量は 31.19mから 93.56mとなり,内閣府 (2012) の最大すべり 量 60~70m程度に対し大きく上回る設定となっている (第 8.4-1 表参 照)。

また,既往の巨大地震及び将来予測のモデルにおけるすべり分布を見る と,超大すべり域のようなすべりの大きな領域は波源域全体には分布して おらず,全体の一部の領域のみに分布している。そこで,本評価において は,すべり量が既往知見を大きく上回るもう一つの波源モデルとして,波 源域全体を超大すべり域としたモデル(以下「全域超大すべり域モデル」 という。)を設定した。その結果,平均すべり量は 8.40mから 31.19mと なり,既往の巨大地震及び将来予測のモデルの平均すべり量に対し大きく 上回る設定となっている(第8.4-1表参照)。

「すべり量3倍モデル」及び「全域超大すべり域モデル」の波源モデル の位置及び諸元を第8.4-1図に示す。 8.4.3 評価結果

すべり量が既往知見を大きく上回る「すべり量3倍モデル」及び「全域 超大すべり域モデル」による検討の結果,第8.4-2図に示すとおり,津 波は,到達可能性について検討する敷地高さとして保守的に設定した標高 40mには到達していないことから,耐震重要施設等及び常設重大事故等対 処施設の設置される敷地に到達する可能性はない。また,津波が海洋放出 管を経路として耐震重要施設等及び常設重大事故等対処施設の設置される 敷地に到達する可能性もない。

- 8.5 参考文献一覧
 - (1) 宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律子.日本被害地震 総覧 599-2012.東京大学出版会,2013.
 - (2) 渡辺偉夫. 日本被害津波総覧 [第2版]. 東京大学出版会, 1998.
 - (3) 気象庁. "各種データ・資料". 気象庁ホームページ.
 http://www.jma.go.jp/jma/menu/menureport.html,
 (参照 2014-08-18).
 - (4) 国立天文台編. 平成 26 年 理科年表 机上版 第 87 冊. 丸善出版,2014.
 - (5) 羽鳥徳太郎. "三陸沖歴史津波の規模の再検討". 津波工学研究報告. 東北大学災害科学国際研究所(津波工学研究分野), 2000, 第 17 号.
 - (6) 中央気象台. 昭和八年三月三日三陸沖強震及津波報告. 験震時報, 1933, 第7巻, 2号別刷.
 - (7) 伊木常誠. "三陸地方津浪実況取調報告". 震災予防調査会報告, 1897, 第11号.
 - (8) 松尾春雄. "三陸津浪調査報告". 内務省土木試験所報告, 1933, 第 24 号.
 - (9) 松尾春雄. "三陸津浪調査報告(追加)". 内務省土木試験所報告, 1934, 第 27 号.
 - 10) 地震研究所. "昭和8年3月3日三陸地方津浪に関する論文及報告".
 東京帝国大学地震研究所彙報, 1934, 別冊第1号.
 - (11) 岸力. "1968 年十勝沖地震調査報告 津波-北海道東北沿岸-".
 1968 年十勝沖地震調査報告, 1968 年十勝沖地震調査委員会編, 1969.
 - (12) 東北大学大学院工学研究科附属災害制御研究センター. "第2編 調査報告". 津波工学研究報告,東北大学災害科学国際研究所(津波工)

学研究分野), 2004, 第21号.

(13) 東北地方太平洋沖地震津波合同調査グループ. "調査情報".東北地 方太平洋沖地震津波情報.http://www.coastal.jp/ttjt/,

(参照 2014-09-01).

- (14) チリ津波合同調査班. "津波の高さの測定方法および基準並に最高波 来襲時刻について". 1960年5月24日チリ地震津波に関する論文及 び報告. 東京大学地震研究所, 1961.
- (b) 気象庁. "第2章 各地の踏査および調査報告". 昭和35年5月24日チリ地震津波調査報告. 気象庁技術報告, 1961, 第8号.
- (16) 地震調査研究推進本部地震調査委員会.三陸沖から房総沖にかけての
 地震活動の長期評価(第二版)について.地震調査研究推進本部,
 2012.
- (17) 相田勇. "三陸沖の古い津波のシミュレーション". 東京大学地震研 究所彙報, 1977, 第 52 号.
- (18) 今村文彦,高橋重雄,藤間功司,富田孝史,有川太郎. "2010年チ リ地震津波の被害調査報告".土木学会附属土木図書館ホームページ 震災報告デジタルアーカイブ.

http://www.jsce.or.jp/library/eq_repo/Vol3/13/Chile.html, (参照 2014-09-01) .

- (1) 都司嘉宣,大年邦雄,中野晋,西村裕一,藤間功司,今村文彦,柿沼 太郎,中村有吾,今井健太郎,後藤和久,行谷佑一,鈴木進吾,城下 英行,松崎義孝. "2010年チリ中部地震による日本での津波被害に 関する広域現地調査".土木学会論文集 B2(海岸工学),2010, Vol. 66, No. 1.
- (20) 都司嘉宣,上田和枝,佐竹健治. "日本で記録された1700年1月

(元禄十二年十二月)北米巨大地震による津波".地震,1998,第2輯,第51巻.

- (21) 河田恵昭,小池信昭,嘉戸重仁,井上雅夫. "わが国沿岸部における 遠地津波の伝播特性について".海洋工学論文集,1998,第45巻.
- (22) 後藤智明,小川由信. Leap-frog 法を用いた津波の数値計算法. 東北 大学工学部土木工学科, 1982.
- (23) 小谷美佐,今村文彦,首藤伸夫. "GIS を利用した津波遡上計算と 被害推定法". 海岸工学論文集, 1998,第45巻.
- (24) 本間仁. "低溢流堰堤の流量係数". 土木学会誌, 1940, 第26巻.
- (25) L. Mansinha; D. E. Smylie. "The displacement fields of inclined faults". Bulletin of the seismological Society of America, 1971, Vol. 61, No. 5.
- (3) 土木学会原子力土木委員会津波評価部会.原子力発電所の津波評価技術.土木学会,2002.
- (27) 内閣府. "南海トラフの巨大地震モデル検討会(第二次報告)津波断層モデル編-津波断層モデルと津波高・浸水域等について-".内閣府ホームページ.

http://www.bousai.go.jp/jishin/nankai/model/index.html, (参照 2015-12-02).

- (28) 日本水路協会.日本近海 30 秒グリッド水深データ第二版
 M1406-M1508. Ver2.0.0,海洋情報研究センター,2011-08-04,
 (CD-ROM).
- (29) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7009 (Ver.2.0), M7010 (Ver.2.0).海洋情報研究センター,
 2008, (CD-ROM).

- (30) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7006 (Ver.2.1).海洋情報研究センター,2009, (CD-ROM).
- (31) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7004 (Ver.2.2), M7005 (Ver.2.2), M7007 (Ver.2.1). 海洋
 情報研究センター, 2012, (CD-ROM).
- (22) 海上保安庁. "東北沖海底地形データセット".海上保安庁海洋情報部, (入手 2014-09-18).
- (33) IHO・IOC. "大洋水深総図". General Bathymetric Chart of the Oceans ホームページ. http://www.gebco.net/ ,
 (入手 2014-09-25).
- (34) 国土地理院. "基盤地図 10m メッシュ(標高)". 基盤地図情報ダウンロードサービス. 国土地理院ホームページ.
 https://fgd.gsi.go.jp/download/, (入手 2014-09-25).
- (5) 青森県海岸津波対策検討会. "第4回青森県海岸津波対策検討会資料".青森県庁県土整備部河川砂防課.青森県庁ホームページ. http://www.pref.aomori.lg.jp/kotsu/build/tunami-kentokai.html, (参照 2014-09-01).
- (36) 阿部勝征. "地震と津波のマグニチュードに基づく津波高の予測".東京大学地震研究所彙報, 1989, Vol. 64.
- (37) 防災科学技術研究所.地すべり地形分布図第 42 集「野辺地・八戸」.防災科学技術研究所研究資料, 2009, 第 329 号.
- (38) 防災科学技術研究所.地すべり地形分布図第54集「浦河・広尾」.防災科学技術研究所研究資料,2013,第382号.
- (39) 徳山英一,本座栄一,木村政昭,倉本真一,芦寿一郎,岡村行信,荒戸裕之,伊藤康人,徐垣,日野亮太,野原壯,阿部寛信,坂井眞一,

向山建二郎. "日本周辺海域中新世末期以降の構造発達史". 海洋調 査技術, 2001, vol. 13, No. 1.

- (40) Fukashi Maeno; Fumihiko Imamura. "Numerical investigations of tsunamis generated by pyroclastic flows from the Kikai caldera, Japan". Geophysical Research Letters, AGU Publications, 2007, Vol. 34, L23303.
- (4) 佐竹健治,加藤幸弘. "1741年寛保津波は渡島大島の山体崩壊によって生じた". 号外 海洋,海洋出版株式会社,2002,号外28.
- (4) 杉野英治,岩渕洋子,橋本紀彦,松末和之,蛯澤勝三,亀田弘行,今
 村文彦. "プレート間地震による津波の特性化波源モデルの提案".
 日本地震工学会論文集,2014,第14巻,第5号.
- (43) Jean M. Johnson; Kenji Satake. "Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka". Pure and Applied Geophysics, 1999, 154.
- (4) Yushiro Fujii; Kenji Satake. "Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data". Pure and Applied Geophysics, 2012, 170.
- (45) Jean M. Johnson; Kenji Satake; Sanford R. Holdahl; Jeanne Sauber. "The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data". Journal of Geophysical Reserch, 1996, vol. 101, No. B1.
- (46) Yuichiro Tanioka; Yudhicara; Tomohiro Kususose; S. Kathiroli;Yuichi Nishimura; Sin-Iti Iwasaki; Kenji Satake. "Rupture

4 - 8 - 25

process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms". Earth Planets Space, 2006, 58.

- (47) 土木学会原子力土木委員会津波評価小委員会.原子力発電所の津波評価技術 2016.土木学会,2016.
- (4) 地震調査研究推進本部地震調査委員会.千島海溝沿いの地震活動の長期評価(第三版).地震調査研究推進本部,2017.
- (4) 日本海溝・千島海溝周辺海溝型地震に関する専門調査会.日本海溝・ 千島海溝周辺海溝型地震に関する専門調査会報告.内閣府中央防災会
 議,2006.
- (50) 文部科学省測地学分科会.北海道周辺の超巨大地震の発生サイクル及び震源過程の解明・プレート運動の解明による衝突帯モデルの構築.
 「地震及び火山噴火予知のための観測研究計画」平成 25 年度年次報告(機関別), 2014,課題番号 1002.
- (51) 地震調査研究推進本部地震調査委員会.千島海溝沿いの地震活動の長期評価(第二版)について.地震調査研究推進本部,2004.
- (2) 地震調査研究推進本部地震調査委員会.日本海溝沿いの地震活動の長期評価.地震調査研究推進本部,2019.

第8.2-1表 主な既往の近地津波

	水牛相正	业量	净冲	
	光生 場別	地長	 伊 (四) 世	
発生年月日	緯度	規模	規模	地震・津波の概要
	経度	М	m	
869 年	三陸沖	8.3	4	三陸沿岸:城郭・倉庫・門櫓・垣壁等崩れ落ち倒潰す
7月13日	$\phi = 37.5 \sim 39.5^{\circ}$ N	$\pm^{1}/_{4}$		るもの無数。津波が多賀城下を襲い、溺死約1千。三
(直観 11 年)	$\lambda = 143 \sim 145^{\circ}$ E	/ 1		陸沖の巨大地震とみられる。
1611 年	三陸沖	≒ 8_1	4	三陸沿岸及び北海道東岸・三陸地方で強震。震害け軽
12月2日	$\phi = 39.0^{\circ}$ N		1	く 津波の被害が大きかった 伊達領内で死 1783 南
(慶長 16 年)	$\varphi = 144 \ 4^{\circ} \ F$			・注 がで ト Eの び ス ・ ジ に ジ ・ ビ に ジ ビ ビ ビ ビ ジ ビ ジ ビ ジ ビ ジ ジ ジ
(度氏10十)	$\lambda = 111.1$ L			山山市 (中枢で)の101 小という。二座山戸で永座の
				加山が多く、北伊旦米部くも物外が多かうた。1953年
1040 年	海白地十市如		0	の二座地長伴仮に似くいる。
1640 年	促島地万東部	_		北海道噴火為:駒ケ缶噴火に伴い津波がめり、死700
7月31日	$\phi = 42.1^{\circ}$ N		$(1 \sim 2)$	余,昆布ガ流出 100 余。
(見水17年)	$\lambda = 140.7^{\circ} \text{ E}$			
1677 年	青森県東方沖	$7^{1}/_{4}\sim$	2	陸中:八戸に震害あり。震後約1時間で津波来たり。
4月13日	$\phi = 41.0^{\circ} \text{ N}$	$7^{1/2}$		家屋流潰約70軒。余震が多かった。1968年十勝沖地
(延宝5年)	$\lambda = 142^{1/4}$ E			震と似ている。
1763 年	青森県東方沖	7.4	1	陸奥八戸:11月初めより地震があり、この日大地震。
1月29日	$\phi = 41.0^{\circ}$ N		(2)	寺院・民家が破損した。平館で家潰1,死3。函館で
(宝暦 12 年)	$\lambda = 142^{1/4}$ E			も強く感じた。津波があり,余震が多かった。1968 年
				十勝沖地震と似ているので、もっと沖の大きな地震か
				もしれない。
1793 年	三陸沖	8.0~	2	陸前・陸中・磐城・仙台領内で家屋損壊1千余 死12
2月17日	$\phi = 38.5^{\circ} \text{ N}$	8 4	[2,5]	沿岸に津波が来て、大槌・両石で流滑家 71. 死 9. 気
($\gamma = 144.5^{\circ}$ F	0.1	[2:0]	伯川で満失家 300 全 全電が多かった
18/3 年	刘玖油	<u>⊷</u> 7 Б	9	御牧・根索・厚岸国素寺で被害があった 津波があり
1843 平	$\psi = 42.0^{\circ}$ N	$\rightarrow 1.5$	2	新時一低至,厚井国家守て阪告がのうた。律彼がのり, 今休で死 46 家屋破壊 76 川戸にも津波 が前・津
4月23日 (王伊14年)	$\varphi = 42.0$ N $\lambda = 146.0^{\circ}$ E			主体で死40。 豕産飯家70。八戸にも伴び。仏前・伴
(大休14平)	λ - 140.0 E		0	軽で強く感し、仕尸でも有感。 日本 明振 波泉 洗衣 志祝 高広いかれ たい
1856年	育綵県東方仲	<i>≒1.5</i>	2	日局・胆振・渡島・津軽・用部:晨吉は少なかつたか、
8月23日	$\phi = 41.0^{\circ} \text{ N}$		[2.5]	津波か二陸及び北海道の 南岸を襲った。南部潘で流失
(安政3年)	$\lambda = 142^{1/2} E$			93, 演 106, 溺死 26, 八尸潘でも死 3 等。余震か多かっ
				た。1968年十勝沖地震に津波の様子がよく似ており、
				もう少し海溝寄りの地震かもしれない。
1894 年	根室半島南西沖	7.9	2	根室沖:根室・厚岸で家屋・土蔵に被害。死1,家屋
3月22日	$\phi = 42^{1/2^{\circ}}$ N		[2.5]	潰 12, 津波は宮古 4.0m, 大船渡 1.5m等。
(明治27年)	$\lambda = 146^{\circ}$ E			
1896 年	三陸沖	$8^{1/4}$	4	『明治三陸地震津波』:震害はない。津波が北海道よ
6月15日	$\phi = 39^{1/2^{\circ}}$ N		[3.5]	り牡鹿半島にいたる海岸に襲来し,死者は青森 343,
(明治 29 年)	$\lambda = 144^{\circ}$ E			宮城 3452, 北海道 6, 岩手 18158。家屋流失全半潰 8
				~9千以上, 船の被害約7千。波高は, 吉浜24.4m, 綾
				里 38.2m, 田老 14.6m等。津波はハワイやカリフォル
				ニアに達した。Mは津波を考慮したもの。
1933年	三陸沖	8.1	3	『三陸地震津波』: 震害は少なかった。津波が太平洋岸
3月3日	$\phi = 39^{\circ} \ 07.7' \ N$	_	[3]	を襲い、三陸沿岸で被害は甚大。死・不明 3064 家屋
(昭和8年)	$\lambda = 145^{\circ} \ 07 \ 0' \ F$			流失 4034 倒潰 1817. 浸水 4018 波高け綾里湾で 98 7
				mにも達した 日本海藩付近で発生した日本か正断層
				mにしました。日本144時日建て元王した戸八は工)間 刑地雪と考うられている
1059年	上勝油	8 0	0	エルマレフィッマンジ。 『十勝油地雪』・北海沽南如・市北北如に拡まがもり
3日4日	$h = 41^{\circ} 42^{\circ} 1^{\circ} N$	0.2	 [2_5]	■ 1071740歳』・1419年旧刊中 米144日中に阪吉がのり, 津波が関東地方に及ぶ 波宣け北海道で3m前谷 三
(昭和27年)	$\lambda = 144^{\circ} 090'$ F		[2.0]	陸沿岸で1~2m, \overline{x} 28, 不明5 家屋全壊 815 半
(~u/Hu/ //				壞 1324, 流失 91。

(つづき)

	発生場所	地震	津波	
発生年月日	緯度	規模	規模	地震・津波の概要
	経度	М	m	
1958年	択捉島南東沖	8.1	1	択捉島付近:釧路地方で電信線・鉄道・道路に小被害が
11月7日	$\phi = 44^{\circ} 18.0'$ N		[2]	あった。太平洋岸各地に津波があり、小被害。
(昭和33年)	$\lambda = 148^{\circ} 30.0' E$		(2)	
1963年	択捉島南東沖	8.1	2	択捉島付近:津波があり,三陸沿岸で軽微な被害。花咲
10月13日	$\phi = 44^{\circ} \ 02.9' \ N$		[3]	で 1.2m, 八戸で 1.3m等。
(昭和38年)	$\lambda = 149^{\circ} 49.5' E$			
1963年	択捉島南東沖	6.7	2	ウルップ島沖:10月13日択捉島沖地震の余震。津波の
10月20日	$\phi = 44^{\circ} \ 05.6' \ N$		[2]	高さはウルップで10~15m,択捉島で8m。
(昭和38年)	$\lambda = 150^{\circ} 00.3' E$			
1968年	青森県東方沖	7.9	2	『1968 年十勝沖地震』:青森を中心に北海道南部・東北地
5月16日	$\phi = 40^{\circ} 41.9' \text{ N}$		[2.5]	方に被害。死 52,傷 330,建物全壊 673,半壊 3004。青
(昭和43年)	$\lambda = 143^{\circ} 35.7' E$			森県下で道路損壊も多かった。津波があり、三陸沿岸3
				~5m, 襟裳岬3m, 浸水 529, 船舶流失沈没 127。コン
				クリート造建築の被害が目立った。
1969年	北海道東方沖	7.8	0	北海道東方沖:津波により北海道東部に軽い被害あり。
8月12日	$\phi = 43^{\circ} 22.6'$ N		[2.5]	津波の高さは花咲 129cm,釧路 93cm,八戸 109cm。
(昭和44年)	$\lambda = 147^{\circ} 54.3' E$		(1)	
1973年	根室半島南東沖	7.4	0	『1973 年 6 月 17 日根室半島沖地震』: 根室・釧路地方に
6月17日	$\phi = 43^{\circ} \ 03.5' \ N$			被害。全体で傷26、家屋全壊2、一部破損1。小津波が
(昭和48年)	$\lambda = 145^{\circ} 58.2' \text{ E}$		(1)	あり,波高は花咲で2.8m,浸水275,船舶流失沈没10。
			(1)	
1994年	北海道東方沖	8.2	[3]	『平成6年(1994年)北海道東方沖地震』:北海道東部
10月4日	$\phi = 43^{\circ} 22.5'$ N		(2)	を中心に被害があり、傷 437, 住家全壊 61, 半壊 348。
(平成6年)	$\lambda = 147^{\circ} 40.4^{\circ} E$		$\langle 2 \rangle$	津波は化咲で 173 c m。震源に近い状捉島では死・不明
0000 F	1 112 24	0.0	[0 5]	
2003年	十勝冲	8.0	[2.5]	『平成15年(2003年)十勝沖地震』:太平洋フレート上
9月26日	$\phi = 41^{\circ} 46.7^{\circ} N$		$\langle 2 \rangle$	面の迎断層型フレート現界地震で1952年とはは回し場
(平成15年)	$\lambda = 144 04.7 E$			所。死1, 个明1, 傷 849, 仕家主選 116, 干選 368。 東
				人農皮 0 物 (道内 9 町村), 北海道及び本州の太平洋岸に
9011年	本 北油	MOO	ГИЛ	取入4III住及00年夜。 『亚式 22 年(2011 年) 東北地士士亚洋油地電』, 電源域
2011年	果儿們 ↓ — 20° 06 9′ №	M w 9.0	[4] (4)	『平成23年(2011年) 東北地方太平住伊地長』: 長原域
3月11日 (亚式202年)	$\varphi = 38 \ 00.2 \ N$ $2 = 149^{\circ} \ 51 \ 7' \ E$		(4)	は右于県から福島県までの東側伊台で用北に支さ 400kmになたが、日本海港付近からが豊富浜ノまで士平
(平成23年)	n = 142 31.1 E			400 K IIIにわよい、日平伊伊门辺から佰戸市辺くまで太平 洋プレートト陸側プレートの倍界面で東西に 900 L … ト
				(ホンレート) C 医関ノレートの現外面 C 未留に 200 K III C 広わった 主として大津波にトって 死老・行士不明老
				1万8,000 余と明治三陸津波に次ぐ被害が生じた

注)・「発生年月日」は、宇佐美ほか(2013) による。

・「発生場所,緯度,経度」及び「地震規模 M」は,次の値を示している。 1922 年以前の地震, 2011 年の地震:宇佐美ほか(2013) 1923年以降の地震(2011年の地震を除く):気象庁(1951-2010) による。

・「津波規模 m」は、宇佐美ほか (2013) による。

ただし, []は羽鳥による値(宇佐美ほか(2013)により引用), ()は渡辺(1998)による値, ()は 国立天文台(2014)による値で、宇佐美ほか(2013)と異なる場合のみ示している。

・「地震・津波の概要」は、宇佐美ほか(2013)」及び国立天文台(2014)を参照している。

第8.2-2表 主な既往の近地津波の津波高

(単位:m)

		1011 5	1077 5	1700 5	1050 5	1000 F	1000 /	1050 /5	1000 5	0000 5	0011 5
		1611 年	1677年	1763 年	1856年	1896年	1933 年	1952 年	1968 年	2003年	2011年
古町村夕	抽友	慶長 16	延宝5	宝暦 12	安政3	明治 29	昭和8	昭和 27	昭和 43	平成 15	平成 23
1111111111	地石	三陸沖	青森県	青森県	青森県	三陸沖	三陸沖	十勝沖	青森県	十勝沖	東北沖
			東方沖	東方沖	東方沖				東方沖		
委町	森・東森						$0.6 \sim 1.5$		0.6		$1.7 \sim 2.5$
NMC. 1	动百						$1.2 \sim 1.8$		0.0		1 2.0
	中小小	-					1.2 1.0				-
) 尾司叫 三 伝 一) 肥可)										
图館巾	日尻				3						1.9
	椴法華				3						1.1
	山背泊								1.1		1.8
	浜町										
	函館			$1 \sim 2$	3	1.8	0.9	0.3	1.0		$1.6 \sim 3.1$
北北市	上磁				1.5						1.6
大間町	<u> </u>				1.0		1.6				1.0
人间间间	大明						1.0		0.2 - 1.1		1 7
	入间								0.2/~1.1		1.7
風間浦村	易国間								2.2		1.6
	下風呂						1.8				2.1
	甲								2.6		
むつ市	木野部						1.5				
	大畑・湊				4		$1.0 \sim 1.4$		2.2		2.5 \sim 2.6
	出戸川						1.6				
	関根						1.0				2.2 \sim 2.7
東通村	入口								1.2	17	2 3~5 2
71442111	光星								1.2	1	$1.5 \sim 2.1$
	石座								1.0		1.0 2.1
	 几座								2.2	0.0	1.0
									1.0	2.0	2.3~2.6
	小田野沢								2.7		1.9
	老部								2.4		
	白糠								0.9		2.0 \sim 2.3
六ヶ所村	袖戸								$0.8 \sim 3.1$		
	泊								$0.6 \sim 2.5$	1.5	2.4
	出戸								4.2		2.8
	尾駮								$1.2 \sim 1.5$		3.5
	新納屋								3 7		
	□[1]								1.6		1.9
二泊中	01/02/11 						2.0		5.1		5.02.6.7
-0/11	塩金						0.0 0.0-1 F		0.1		5.0 - 0.7
	八川日						5.0,~4.5		2.1		4. 5, ~0. 7
							3.0~3.9		2.4		5.2~9.7
	<u>五</u> 川目						3.4		2.5		6.0~11.8
	四川目						$3.8 \sim 5.0$		2.8 \sim 4.0		7.0∼9.6
	三川目						5.0		1.7		5.8~8.1
おいらせ町	二川目						4.0		2.7		4.5~8.8
	一川目						$1.8 \sim 4.2$		$1.7 \sim 4.1$		4.8~11.0
	川口・百石				4		2.5~5.0		$3.7 \sim 4.0$		1.3~8.9
八戸市	市川・橋向						3.0~3.8				3.0~9.6
	河原木						$1.5 \sim 3.0$		$2.1 \sim 4.8$		3.3~8.4
	八戸(湊)			$1 \sim 3$	$3 \sim 4$			2.0	$1.6 \sim 3.2$		$1.9 \sim 7.1$
	鮫・蕪島					3	$2.1 \sim 4.7$		$1.5 \sim 4.4$		4 5~6 4
野田村	野田		4~ [⊑]		6	10 5~20 0	5 0~15 6	9.9	3 9~1 6		5 2~28 /
日 田 门	コモ	15 - 21	1-J		2 0 - 1	9 50 14 C	4.0~10.1	1.0	1.901 5	0.0	7 40 20 2
呂白巾	山七 古十	10.~21	2.~3	1 - 0	ა. o∼4	0. 5 ~ 14. 6	4.0~10.1	1.0	1. 4 ~ 1. 5	0.8	1.4~39.8
£6 m~	百日	0.~8 5 10	∠·~3	1.~2	2	4.0	3.0~8.2	0.1~1.3	1. 2'~2.0	1.0~~1.1	0.4~38.3
大槌町	大槌(大須賀)	b∼10	2.8 \sim 4		3~3.5	2.7~4.0	2.9~3.9		2.2~2.3		7.2~18.1
釜石市	釜石			1	3~3.7	4.5~8.2	2.7 \sim 5.4	2	2.0~3.2	1.3	4.2~30.6
											東北地方
1						中央	中央				太平洋沖
		羽鳥	羽鳥	羽鳥	羽鳥	気象台	気象台	渡辺	岸	東北大学	地震津波
3	て献	$(2000)^{(5)}$	$(2000)^{(5)}$	$(2000)^{(5)}$	$(2000)^{(5)}$	$(1933)^{(6)}$	$(1933)^{(6)}$	(1008)	(1060)	$(2004)^{(12)}$	合同調杳
1		(2000)	(2000)	(2000)	(2000)	(2) (7) (8)	(8) ~ (10)	(1530)	(1503)	(2004)	グループ
						1112	112				(0010)
1						1	1			1	(2012)

第8.2-3表 主な既往の遠地津波

		生ます		
		地辰	2th 2th	
	発生場所	規惧	津 波	
発生年月日	緯度	M	規模	地震・津波の概要
	経度	LMt」	m	
		$\langle M s \rangle$		
1586年	ペルーのリマ沖	7.7	4	津波の高さはリマで 26m, 10km内陸まで浸入。三陸
7月10日	$\phi = 12.3^{\circ}$ S			の陸前海岸で津波あり。
(天正14年)	$\lambda = 77.7^{\circ}$ W			
1687年	ペルーのカヤオ沖	76	3	カヤオ チャシカイ ピスコで津波 この津波け日本
10日20日	$4 - 15 2^{\circ}$ S	1.0	0	χ + χ , γ + γ × γ + γ + γ + γ + γ + γ = ζ + χ_0 = χ
(百百4年)	$\psi = 13.2$ 3 $\lambda = 75.0^{\circ}$ W			19_{-12} 回知し実社を 油縄でた 2 回津油が知し実社を
(貞子4中)	ルー13.5 W	0 カニフ	2 - 4	12-13 国外しませた。仲植くり3 国洋仮が外しませた。
1700年	北木北四部冲(ルス	9977A	$3 \sim 4$	本国ペルプタの沿岸にわりる律波の局さは5~7mと #皮 日本巡告を地の決地の方とは出て目空土の
1月26日	ケート地帯)	[9?]		推定。日本沿岸谷地の津波の高さは岩手県呂古3m,
(元禄12年)				同大槌と和歌山県田辺で2m, 茨城県那珂湊や静岡県
				清水(三保)で約2mと推定される。宮古と田辺で津
				波の被害があったという。
1730年	チリのバルパライ	8.7	4	バルパライソは浸水が激しく、港は破壊された。コン
7月8日	ソ沖			セプシオン全滅。津波は三陸の陸前沿岸に襲来、牡鹿
(享保15年)	$\phi = 33.1^{\circ}$ S			半島で田畑が浸水した。
	$\lambda = 71.6^{\circ}$ W			
1751年	チリのコンセプシ	8.5	3	古いコンセプシオンは全滅。津波は日本沿岸へ襲来
5月25日	オン沖	0.0	0	三陸沿岸の大槌、牡鹿及び気仙沼で床まで浸水した。
(宝暦1年)	$\phi = 36.8^{\circ}$ S			
	$\psi = 30.0^{\circ} \text{ S}$			
1700年	えー11.0 W	7 5	9	
1760平	両列両リルツノ	7.0	3	リルツノ島(単仮の同さ 10~12111。 回局米岸(ソーノ
6月29日	局用果件			ノ)に学祖中のロンノ船山上に打ち上けられた。津波
(安水9年)	$\phi = 46.0^{\circ}$ N			は北海道東岸へ襲米した。
	$\lambda = 151.0^{\circ}$ E			
1837年	チリ南部沖	8.0	3	コンセプシオン、バルデビアで大津波。津波によりハ
11月7日	$\phi = 39.8^{\circ}$ S	$[9^{1}/_{4}]$		ワイ諸島で大被害。三陸沿岸陸前の気仙沼湾,本吉,
(天保8年)	$\lambda = 73.2^{\circ}$ W			牡鹿及び宮城の3郡で潮溢れる。
1868年	チリ北部アリカ沖	8.5	4	『アリカ地震』:チリ北部(当時ペルー領)で大津波と
8月13日	$\phi = 18.5^{\circ}$ S	[9.0]		なり太平洋に波及した。アリカで津波の高さ 14m,死
(慶応4年)	$\lambda = 70.4^{\circ}$ W			者 25,000 人ともいわれている。ハワイ島で大被害。日
				本沿岸では函館で2m,宮城県本吉郡,伊豆下田,沖
				縄那覇港でも観測。
1877年	チリのイキケ沖	8.3	4	『イキケ地震』:1868 年以上のチリ大地震。太平洋沿岸
5月10日	$\phi = 19.6^{\circ}$ S	[9, 0]		全域に波及。チリ沿岸では12~24m、ハワイ諸島で
(明治10年)	$\lambda = 70^{\circ} 2^{\circ} W$	[0.0]		1.2~6.6m 日本沿岸でけ 面館 $2.4m$ 谷石 $3m$ 直
(0)1110-1-)	λ 10.2 W			1.2 0.0m。日本伯定では、茵田 2.1m,並且 0 m, 古迹 0.7m 函館 2 三陸沙岸で被害があった。また 尾公
				小時 い・1110 四阳 こ一座10斤 (似古いの) つに。まに厉応 半自で死去な今れな宝がなった
1010년	て自己自上 、 ー	0.0	0	
1918年	十局州局リルツワ	8.2 [0.5]	చ	
9月7日	局果力冲 	[8.5]		根至1m, 困距 0.5m, 二陸沿岸1m以下。父島では
(大止7年)	$\phi = 45.5^{\circ}$ N			1.4mで家屋浸水12, 橋梁流失2の被害。
	$\lambda = 151.5^{\circ}$ E			-
1922年	チリのアタカマ沖	8.3	3	『アタカマ地震』:チリ沿岸で大津波となり、太平洋沿
11月11日	$\phi = 28.5^{\circ}$ S	[8.7]		岸各地に波及した。ペルーのカヤオで 24m。日本沿岸
(大正11年)	$\lambda = 70^{\circ} W$			の津波の最大全振幅は、花咲60cm、鮎川65cm等。
				大船渡で家屋30棟が波に洗われた(高さ1~2mか)。

(つづき)

発生年月日	発生場所 緯度 経度	地震 規模 M [Mt] 〈Ms〉	津波 規模 m	地震・津波の概要
1946年	アリューシャン列	7.4	4	『アリューシャン津波』:アリューシャンのウニマク島灯
4月1日 (昭和21年)	局 東 印 $\phi = 52.8^{\circ}$ N	[9.3]		日に 30.5m, ハワイ 諸島 C 0.5~17mの 高さとなる寺太 平洋沿岸各地にかなりの 津波が襲来した。日本沿岸の津
	$\lambda = 162.5^{\circ}$ W			波の最大全振幅は鮎川56cm,八戸20cm等。
1952年	カムチャツカ半島	8.5	3	『カムチャツカ津波』:カムチャツカ半島で1~15mの津
11月4日	南東沖	[9.0]		波。ハワイ諸島で10.4mに達する等太平洋沿岸全域に影
(昭和27年)	$\phi = 52.3^{\circ}$ N $\lambda = 161.0^{\circ}$ F			響した。日本沿岸における津波の高さは 0.5~3.0m程 産 北海道 三陸汎告 下田 尾鷲笠広範囲で安居の温
	λ-101.0 Ε			水があり、三陸沿岸では漁業関係の被害があった。
1960年	チリ南部沖	8.5	4	『チリ地震津波』: チリのイスラ・モチャで 20~25mの
5月22日	$\phi = 39.5^{\circ}$ S	[9.4]		津波。太平洋沿岸各地に波及し、ハワイ諸島で10.5mに
(昭和35年)	$\lambda = 74.5^{\circ}$ W			達する。日本沿岸での波高は三陸沿岸で0.8~8.1m, その地で0.6~4.2m。日本合体で死, 不明149(らた)沖縄
				で3)、家屋全壊1500余、半壊2千余。
1964年	アラスカ湾	9.2	4	『アラスカ地震津波』:アラスカのバルディーズで6.1~
3月28日	$\phi = 61.1^{\circ}$ N	[9.1]		30mの津波。日本では三陸沿岸で漁業施設に若干の被害
(昭和39年)	$\lambda = 147.5^{\circ}$ W	$\langle 8.4 \rangle$		があった。
1965年	アリューシャン列	8.7	3	アリューシャンで 0.2~10mの津波。三陸沿岸の浅海漁
2月4日	島	[8.6]		業施設に僅かの被害があった。
(昭和140年)	$\phi = 51.3$ N $\lambda = 178.6^{\circ}$ E	(8.2)		
1996年	インドネシアのイ	(8.1)	3	インドネシアのビアック島で最大 7.7m(津波到達時の
2月17日	リアン・ジャヤ沖			潮位上)に達した。日本沿岸の津波の最大全振幅は、父
(平成8年)	$\phi = 0.950^{\circ}$ S			島で 195 c m, 串本で 170 c m。土佐清水では漁船 20 艘
	$\lambda = 137.016^{\circ}$ E			が転覆し、八丈島で漁船に被害があった。
2010年	チリ中部沖	8.5	[3]	チリ沿岸は平均5~9mの津波(遡上高さ)。最大は28
2月27日	$\phi = 36.12^{\circ}$ S			m (遡上高さ)。日本沿岸での最大は気仙沼湾奥で 3.0m
(平成22年)	$\lambda = 72.90^{\circ}$ W			(全振幅)。

注)・「発生年月日」は、宇佐美ほか(2013)」による。

「発生場所,緯度,経度」,「地震規模 M[Mt] 〈Ms〉」及び「津波規模 m」は、次の値を示している。
 2010年の地震:国立天文台 (2014) による。ただし、「津波規模 m」は宇佐美ほか (2013) による。
 2010年以外の地震:渡辺 (1998) による。

Mt は津波マグニチュードを、Ms は表面波マグニチュードを示す。

・「地震・津波の概要」は、次を参照している。

2010年の地震:今村ほか (2010) 及び都司ほか (2010) による。

2010年以外の地震:渡辺(1998) による。

第8.2-4表 主な既往の遠地津波の津波高

(出)	<u> </u>)
(早)	<u>M</u> .	•	m)

		1868 年	1877 年	1952 年	1960年
古町村々	抽友	慶応4	明治 10	昭和 27	昭和 35
1114141141	地石	チリ北部	チリの	カムチャツカ	チリ南部沖
		アリカ沖	イキケ沖	半島南東沖	
森町	森・東森				1.5
	砂原				1.5
鹿部町	鹿部				0.9
函館市	白尻				0.4
	被法華				1.0
	山背汨				1.9
	展開	0	9.4	0.5 - 1.5	1.2
业业市	国際	2	2.4	0.5 - 1.5	1.4 - 2.9
七十四町	上城 家 古				1. 5 - 1. 9
	大問				2.0
風間浦村	易国間				2.0
/	下風呂				
	甲				
むつ市	木野部				1.9~2.3
	大畑・湊				$1.4 \sim 2.1$
	出戸川				1.2
	関根				1.6
東通村	入口				1.7~1.8
	岩屋				1.3
	尻屋				1.4
	尻労				
	小田野沢				
	老部				0.0
	日禄				2.0
ハケ別和	1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	出百				
	尾駮				1.0
	新納屋				1.0
	高瀬川				2.2
三沢市	塩釜				
	六川目				2.0
	淋代				
	五川目				2.3
	四川目				1.9
	三川目				1.3
おいらせ町	二川目				1.0
	一川目				1.2
ハ戸主	川口・日石 吉川 橋白				3. 2~4. 9
八戸市	印川・間内 河百 木				$1.5 \sim 3.4$ $2.2 \sim 5.3$
	1門床小				$2.2^{\circ} = 0.3$ 2 5 \sim 4 3
	鮫・蕪鳥			1.8	3.9
野田村	野田				4.9~5.2
宮古市	田老			2.2	1.8~3.2
	宮古			0.4~1.8	1.2~2.4
大槌町	大槌(大須賀)			1.5	2.4~3.9
釜石市	釜石		3		2.1~3.3
					チリ津波
5	 衣献	渡辺(1998)	渡辺(1998)	渡辺(1998)	合同調査班
					$(1961)^{(14)}$ 他

空間格子間隔 480 160 80 40 20 10 5 1440 (1440/72)(1440/144) (1440/288) $\Delta s(m)$ (1440/3)(1440/9)(1440/18)(1440/36)時間格子間隔 0.1 $\Delta t(s)$ 後藤・小川(1982)の非線形長波式 基礎方程式 外側の大格子領域と水位・流量を接続 自由透過 沖側境界条件 小谷ほか(1998)の遡上境界条件 完全反射 陸側境界条件 本間 (1940)の 越流境界条件 越流境界条件 地震断層モデルを用いて Mansinha and Smylie (1971)の方法により 初期海面変動 計算される鉛直変位を海面上に与える マニングの粗度係数 n=0.03m^{-1/3}s(土木学会(2016)。より) 海底摩擦係数 考慮しない 水平渦動粘性係数 潮位条件 T.M.S.L. $\pm\,0.0\,\text{m}$ 計算再現時間 地震発生後4時間

第8.2-5表 主な計算条件

基礎方程式:非線形長波 [浅水理論]の連続式及び運動方程式

$$\begin{split} \frac{\partial \eta}{\partial t} + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} &= 0 \\ \frac{\partial Q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x^2}{D} \right) + \frac{\partial}{\partial y} \left(\frac{Q_x Q_y}{D} \right) + g D \frac{\partial \eta}{\partial x} + \frac{g n^2}{D^{7/3}} Q_x \sqrt{Q_x^2 + Q_y^2} = 0 \\ \frac{\partial Q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x Q_y}{D} \right) + \frac{\partial}{\partial y} \left(\frac{Q_y^2}{D} \right) + g D \frac{\partial \eta}{\partial y} + \frac{g n^2}{D^{7/3}} Q_y \sqrt{Q_x^2 + Q_y^2} = 0 \\ \text{ここで, } x, y : \text{水平座標 (m)} \qquad t : \text{時間 (s)} \\ Q_x, Q_y : x, y \text{方向の単位幅当たりの流量} (= 流速 \times 2 \text{木深)} (\text{m}^2/\text{s}) \\ \eta : 静 \text{木面からの水位 (m)} \qquad D : 2 \text{木深} (= h + \eta) (\text{m}) \\ h : 静 \text{木深 (m)} \qquad g : \text{重力加速度 (m/s^2)} \\ n : \forall = 2 \times \mathcal{I} \mathcal{O} \text{粗度係数 (m}^{-1/3}\text{s}) \end{split}$$

海域活断層	断層長 L(km)	断層幅 ₩(km)	すべり量 D(m)	地震 モーメント M ₀ (N・m)	モーメント マグニ チュード Mw	津波の 伝播距離 △(km)	推定 津波高 Ht(m)
F-a	20	12.0	2.11	1.75×10^{19}	6.8	63	0.3
F-b	15	10.0	1.58	8. 18×10^{18}	6.5	64	0.2
F-c	15	10.0	1.58	8. 18×10^{18}	6.5	38	0.3
F-d	6	4.0	0.63	5. 24×10^{17}	5.7	15	0.2

第8.3-1表 海域の活断層による地殻内地震に起因する津波の推定津波高
計算格子間隔 Δt (s)	計算時間 (h)	海底摩 (マニングの n (m ⁻	擦係数 D粗度係数) ^{1/3} s)	界面抵抗係数 f _{int}	水平渦動粘性 係数
		上層	下層		$\nu (m^2/s)$
0.15	3	0.03	0.40	0. 0	考慮しない

第8.3-2表(1) 二層流モデルの主な計算条件

第8.3-2表(2) Kinematic landslideモデルの

主な計算条件

計算格子間隔	計算時間	鉛直変位	変動伝播速度
Δt (s)	(h)	ライズタイム (s)	(m/s)
0.15	3	120	10

既往知見と「すべり量3倍モデル」及び「全域超大すべり域モデル」のすべり量の比較 第8.4-1表

		大地震のすべり量に関する文献課	直結果		評価モデル	
	2011 年東北地方太平洋沖型 地震モデル(杉野ほか (2014))	南海トラフの巨大地震の 津波断層モデル(内閣府 (2012))	世界のMw9.0 クラスの巨大津波 (M. Johnson and Satake (1999) ⁽⁴⁴⁾ (⁴⁴⁾ (⁴⁴⁾	既往知見を踏まえた 津波の評価モデル	すべり量3倍 モデル	全域超大すべり域 モデル
平均すべり量	$10.4 \mathrm{m}$	8.8~11.3m	大きいもので 11m	8.40m	$25.20\mathrm{m}$	31. 19m
最大すべり量	31.2m	最大のモデルで 「60~70m」	大きいもので 「28~32m」	31. 19m	93. 56m	31. 19m

(地震調査委員会 (2012)の図に加筆)

第8.2-2図 青森県東方沖から三陸沖で発生した津波の推定波源域

(土木学会 (2002)の諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8. 32	120	70	205	26	20	90	5. 0×10^{10}	9.00

第8.2-4図(1) 既往津波の再現性の確認に用いた波源モデルの位置及び諸元

(1856年の津波)

(1968年十勝沖地震に伴う津波)

第8.2-4図(2) 既往津波の再現性の確認に用いた波源モデルの位置及び諸元

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量		
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D		
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)		
8.36	150	100	195	12	20	76	5. 0×10^{10}	5.90		

(土木学会 (2002)の諸元を補正)

第8.2-5図 計算領域とその水深及び格子分割

[※]コンター線は,陸域5m,海域2mピッチ

第8.2-6図 敷地近傍の計算領域とその水深及び格子分割

第8.2-7図(1) 既往津波高と数値シミュレーションによる津波高の比較

(1856年の津波)

ĸ	1.44
К	0.99
地点数n	313
比較地域	花咲港~門脇

図(2) 既往津波高と数値シミュレーションによる津波高の比較

(1968 年十勝沖地震に伴う津波)

第8.2-7 図(2)

(2011年東北地方太平洋沖地震に伴う津波)

第8.2-7図(3) 既往津波高と数値シミュレーションによる津波高の比較

(第8.2-4図(2)に示す波源モデルの諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.4	157	104	195	12	20	76	5. 0×10^{10}	6.16

第8.3-2図 三陸沖北部のプレート間地震の波源モデルの位置及び諸元

(土木学会(2002)の諸元)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.3	210	50	188	1	20	75	3. 5×10^{10}	9. 70

第8.3-3図 津波地震の波源モデルの位置及び諸元

第8.3-4図 北方への連動型地震の波源モデルの位置及び諸元

(基本モデル)

第8.3-5図(1) 北方への連動型地震の波源モデルの位置及び諸元

(すべり量割増モデル)

第8.3-5図(2) 北方への連動型地震の波源モデルの位置及び諸元

(海溝側強調モデル)

第8.3-6図 破壊開始点の位置

