- 7. 火 山
- 7.1 検討の基本方針

自然現象に対する設計上の考慮として,想定される自然現象が発生した 場合においても廃棄物管理施設(以下「7.火山」では「施設」とい う。)が安全機能を損なわないことを確認するため,火山影響の可能性に ついて検討し,施設の運用期間中における影響について確認する。

評価は, 立地評価と影響評価の2段階で行う。

立地評価では,施設に影響を及ぼし得る火山を抽出し,設計対応不可能 な火山事象が施設の運用期間中に影響を及ぼす可能性について評価を行う。 施設に影響を及ぼし得る火山のうち,設計対応不可能な火山事象の到達可 能性範囲に敷地若しくは敷地近傍が含まれ,過去に巨大噴火が発生した火 山については,「巨大噴火の可能性評価」を行った上で,「最後の巨大噴 火以降の火山活動の評価」を行う。巨大噴火の可能性が十分に小さいと評 価した場合でも,火山活動のモニタリングを行い,施設の運用期間中にお いて巨大噴火の可能性が十分に小さいと評価した根拠が維持されているこ とを確認する。

影響評価では,施設の安全性に影響を与える可能性のある火山事象について評価を行う。

7.2 調査及び検討内容

7.2.1 文献調查

第四紀に活動した火山(以下「第四紀火山」という。)のうち,施設に 影響を及ぼし得る火山を抽出し,立地評価及び影響評価を行うことを目的 として,第四紀火山について,敷地を中心とする半径 160kmの範囲(以 下「地理的領域」という。)を対象に文献調査を実施した。

地理的領域内の第四紀火山の文献調査は、年代、活動様式等が網羅的に 整理されているカタログを用いた。カタログは、「日本の火山(第3版)」 (中野ほか編、2013⁽¹⁾、「日本活火山総覧(第4版)」(気象庁編、2013⁽²⁾、 「第四紀火山岩体・貫入岩体データベース」(西来ほか編、2012⁽³⁾、「第 四紀噴火・貫入活動データベース」(西来ほか編、2014⁽⁴⁾、「日本の第四 紀火山カタログ」(第四紀火山カタログ委員会編、1999⁽⁵⁾、「1万年噴火 イベントデータ集」(産業技術総合研究所地質調査総合センター編、2017⁽⁶⁾ 及び各種「地質図幅」である。また、カタログの引用文献等についても収 集し、加えて、「海域火山データベース」(海上保安庁海洋情報部⁽⁷⁾、 「日本の主要第四紀火山の積算マグマ噴出量階段図」(山元、2015⁽⁸⁾及び 「新編 火山灰アトラス」(町田・新井、2011⁽⁹⁾についても文献調査を実 施した。さらに、文献収集の更なる網羅性向上のため、補足的に国内外の 主な科学技術系論文データベースを用いて、地理的領域内の第四紀火山に 関する論文等について文献調査を実施した。

なお,降下火砕物については,上記文献を用いて,地理的領域外の火山 についても文献調査を実施した。

また,施設に影響を及ぼし得る火山のうち,設計対応不可能な火山事象 の到達可能性範囲に敷地若しくは敷地近傍が含まれる火山については,地 球物理学的調査の知見や近い将来の巨大噴火の発生可能性についても文献

3 - 7 - 2

調査を実施した。

7.2.2 地形調查

主に国土地理院撮影の空中写真及び同院発行の地形図を使用して空中写 真判読を行い,敷地を中心とする半径30kmの範囲及びその周辺地域にお いて,第四紀火山の可能性がある地形の有無を把握した。

7.2.3 地質調査

地理的領域内の第四紀火山の噴出物を対象に地表踏査等を実施し,敷地 を中心とする半径 30 k mの範囲及びその周辺地域において,噴出物の種類, 分布,第四紀火山の活動時期等を把握した。

7.2.4 火山学的調査

地質調査において確認した降下火砕物及び火砕流堆積物を対象に,堆積 物の厚さ,空間分布等を把握した。

7.2.5 地球物理学的調查

施設に影響を及ぼし得る火山のうち,設計対応不可能な火山事象の到達 可能性範囲に敷地若しくは敷地近傍が含まれる火山を対象に,地震波速度 構造,比抵抗構造,地震活動及び地殻変動に関する検討を実施し,現在の マグマ溜まりの状況について把握した。 7.3 施設に影響を及ぼし得る火山の抽出

地理的領域内の第四紀火山の分布を第7.3-1表及び第7.3-1図に, 火山地質図を第7.3-2図に示す。地理的領域内には48の第四紀火山が分 布する。敷地が位置する下北半島は,北側は津軽海峡に,東側は太平洋に, 西側は陸奥湾にそれぞれ面している。敷地は,下北半島南部の太平洋側に 位置し,この位置は火山フロントの前弧側(東方)にある。

地理的領域内の第四紀火山の形式,活動年代及び最後の活動からの経過 期間を第7.3-2表に示す。これらの火山について,施設に影響を及ぼし 得る火山を抽出した。

7.3.1 完新世に活動を行った火山

「日本の火山(第3版)」(中野ほか編,2013)及び「日本活火山総覧 (第4版)」(気象庁編,2013)を参照し,地理的領域内の第四紀火山の うち,完新世に活動を行った火山(以下「活火山」という。)を抽出した。 その結果,北海道駒ヶ岳,恵山,恐山,岩木山,北八甲田火山群(気象 庁編(2013)による「八甲田山」に相当する。),十和田,秋田焼山, 7.3.2 完新世に活動を行っていない火山

完新世に活動を行っていない火山(38 火山)について,「日本の火山 (第3版)」(中野ほか編, 2013)等の記載年代に基づき,最後の噴火か ら現在までの経過期間の方が,全活動期間あるいは活動期間内の最大休止 期間よりも短いとみなせる場合は,将来の活動可能性が否定できない火山 と評価した。

その結果、横津岳、陸奥燧岳、田代岳、藤沢森、南八甲田火山群、八甲 田カルデラ、先十和田、玉川カルデラ、網張火山群、乳頭・高倉及び 荷葉岳の11火山を将来の活動可能性が否定できない火山として抽出した。 7.3.3 施設に影響を及ぼし得る火山

施設に影響を及ぼし得る火山として,「7.3.1 完新世に活動を行った 火山」及び「7.3.2 完新世に活動を行っていない火山」より,北海道駒 ヶ岳,恵山,恐山,岩木山,北八甲田火山群,十和田,秋田焼山,八幡平 火山群,岩手山,秋田駒ヶ岳,横津岳,陸奥燧岳,田代岳,藤沢森,南八 甲田火山群,八甲田カルデラ,先十和田,玉川カルデラ,網張火山群,乳 頭・高倉及び荷葉岳の21火山を抽出した。 7.4 施設に影響を及ぼし得る火山の火山活動に関する個別評価

7.4.1 詳細調査対象火山の抽出

施設に影響を及ぼし得る火山(21火山)について,活動履歴に関する文 献調査により,立地評価の対象となる設計対応不可能な火山事象の発生実 績,過去最大規模の噴火による火山噴出物の敷地への到達可能性等につい て第7.4-1表に整理した。

火砕物密度流については,敷地近傍では火砕流堆積物の分布は認められ ないものの,十和田及び八甲田カルデラの過去最大規模の噴火における火 砕流の到達可能性範囲に敷地若しくは敷地近傍が含まれる(第7.4-1図, 第7.4-2図参照)。一方,十和田及び八甲田カルデラ以外の施設に影響 を及ぼし得る火山については,発生実績や敷地からの離隔等より,火砕物 密度流が敷地に到達する可能性は十分に小さいと評価した。

溶岩流, 岩屑なだれ, 地滑り及び斜面崩壊については, 敷地から 50 km 以内に分布する恐山及び八甲田カルデラが評価対象火山となる。恐山につ いては, 溶岩流, 岩屑なだれ, 地滑り及び斜面崩壊に伴う堆積物は敷地周 辺には分布しない。一方, 八甲田カルデラについては, 溶岩流, 岩屑なだ れ, 地滑り及び斜面崩壊の発生実績が認められない。その他の 19 火山に ついては, 敷地から 50 km以内に分布しないことから, 評価対象外である。 したがって, これらの火山事象が敷地に到達する可能性は十分に小さいと 評価した。

新しい火ロの開口及び地殻変動については,敷地が,施設に影響を及ぼ し得る火山の過去の火口及びその近傍に位置しないこと,並びに火山フロ ントより前弧側(東方)に位置することから,これらの火山事象が敷地に おいて発生する可能性は十分に小さいと評価した。

以上のことから、施設に影響を及ぼし得る火山(21火山)の火砕物密度

流以外の設計対応不可能な火山事象は,過去最大規模の噴火を想定しても, 施設に影響を及ぼす可能性は十分小さいと評価した。

一方,火砕物密度流については,敷地及び敷地近傍が十和田及び八甲田 カルデラの火砕流の到達可能性範囲に含まれることから,十和田及び八甲 田カルデラについて,詳細な調査・検討を実施した。なお,八甲田カルデ ラについては,隣接する南八甲田火山群及び北八甲田火山群を含めて「八 甲田山」として詳細な調査・検討を実施した。

7.4.2 十和田

気象庁編(2013)によると、十和田は先カルデラ成層火山群、十和田カ ルデラ及び後カルデラ成層火山・溶岩ドームからなるとしている。その活 動は、Hayakawa (1985)によると、先カルデラ期、カルデラ形成 期及び後カルデラ期に区分されるとしている。

Hayakawa (1985) 及び工藤ほか (2011) によると,カルデラ形 成期に火砕流を伴う規模の大きな噴火を3回(十和田奥瀬火砕流,十和田 大不動火砕流,十和田八戸火砕流)起こしている(第7.4-3図参照)。

一方, Yamamoto et al. (2018) は、地球化学的特徴から
ら十和田奥瀬火砕流を噴出した噴火を先カルデラ期とみなすとしており、
見解が分かれている(第7.4-4図参照)。

Hayakawa (1985) によると、後カルデラ期に毛馬内火砕流(見かけの噴出量は約5km³)を噴出したとしている。

これらの噴火のうち巨大噴火に該当する噴火は,十和田大不動火砕流 (見かけの噴出量は約 40^{km³})及び十和田八戸火砕流(見かけの噴出量 は約 40^{km³})を噴出した噴火(以下それぞれを「噴火エピソードN」及 び「噴火エピソードL」という。)である。したがって,この2回の巨大 噴火と最後の巨大噴火(噴火エピソードL)以降の噴火を対象に評価を実 施した。

なお,十和田奥瀬火砕流(見かけの噴出量は約 10 km³)を噴出した噴 火は巨大噴火に該当しないが,噴火の様式と規模に基づきカルデラ形成期 として整理した。

7.4.2.1 巨大噴火の可能性評価

(1) 活動履歴

工藤ほか(2011)によると、現在の活動期である後カルデラ期は、高

3 - 7 - 13

頻度(噴火間隔3,400年以下)かつ一回の噴出量が2.5DREkm³以下 であり、カルデラ形成期の低頻度(噴火間隔 22,000 年~4,000 年)かつ 一回の噴出量 1.2DRE km³~20.3DRE km³とは異なるとしている (第7.4-3図参照)。一方で、十和田の10万年前以降のマグマ供給率 はほぼ一定であり、また、後カルデラ期は先カルデラ期後期と活動様式 が類似していることから、今後マグマ供給率が減少しなければ、長期的 (数万年スケール)には再びカルデラ形成期に移行する可能性が指摘さ れるとしている。しかし、過去の活動履歴から、大規模噴火の前には数 万年にわたって局在的な低噴出率期(噴火エピソードNの前は0.07DR E k m³/千年, 噴火エピソードLの前は 0.12D R E k m³/千年) が 先行するとしており、現在の活動は、約 15,000 年間にわたって高噴出 率期(0.70DREkm³/千年)にあり、噴出量1DREkm³以下の小規 模噴火も数多く発生していることから、現状ではカルデラ形成期のよう な状態に至っていないと考えられるとしている。したがって、今後も短 期的(数百年~数千年スケール)には,過去 15,000 年間と同様な活動 が継続すると推定され、仮に、今後カルデラ形成を伴う大規模噴火が発 生するとしても数万年先になると予想されるとしている。なお、工藤ほ か(2011)の「カルデラ形成を伴う大規模噴火」は、「巨大噴火」に相 当する。

一方,Yamamoto et al. (2018) において,階段ダイ アグラム(第7.4-4図参照)が示されており,これに基づき噴出率の 傾向を確認した結果,カルデラ形成期の巨大噴火前は低噴出率期(噴火 エピソードNの前は約0.11DREkm³/千年,噴火エピソードLの前 は約0.15DREkm³/千年)であるが,現在の後カルデラ期は高噴出 率期(約0.71DREkm³/千年)となっている。これは、工藤ほか(2011) による噴出率の傾向と同様である。

また、文献調査により、十和田における近い将来の巨大噴火の発生可 能性に言及した文献について調査した結果、高橋(2008)及び工藤ほか (2011)には、現状、巨大噴火の可能性が低いとする主旨の知見は認め られるが、巨大噴火が起こる可能性があるとする知見は認められない。 また、十和田火山防災協議会(2018)による十和田火山災害想定影響範 囲図においても、巨大噴火を想定していない。

(2) 地質調査及び火山学的調査

十和田における巨大噴火に伴う2回の大規模火砕流(十和田大不動火 砕流及び十和田八戸火砕流)の噴出物を対象に調査を実施し、その分布 を確認した。十和田近傍から敷地を中心とした地域にかけての地質柱状 図を第7.4-5図に示す。なお、巨大噴火には該当しないものの、十和 田奥瀬火砕流は敷地には到達していないことを確認した。

a. 十和田大不動火砕流

+和田大不動火砕流を伴う巨大噴火では、火砕流の噴出に先立って爆発的噴火に伴う降下火砕物(十和田切田テフラ)が噴出しており、火砕 流堆積物の直下に、この堆積物が認められる。十和田大不動火砕流堆積 物及び十和田切田テフラの分布を第7.4-6図に示す。

+和田大不動火砕流堆積物は、六ヶ所鷹架西(Loc. 33)及び野辺 地自ノ越1(Loc. 50)において、ローム層中に軽石混じり火山灰層 (火砕流堆積物)が層厚約16cm及び約3cmのパッチ状として認めら れる。

また,敷地を含むさらに北方の地域では,層相から火砕流堆積物と判断できないものの,ローム層中に十和田大不動火砕流起源に対比される 径約1 cm以下の軽石が認められ,敷地内(Loc. 26)においては最

3 - 7 - 15

大平均粒径約4mmの軽石が認められる(第7.4-7図参照)。

したがって、十和田大不動火砕流は敷地に到達した可能性が高いと考 えられるが、火砕流堆積物の分布及びその層相の特徴より、敷地はその 到達末端に位置すると評価した。一方、十和田切田テフラは、北方に向 かって層厚を減じ、東北淋代2(Loc. 19)、六ヶ所平沼1(Loc. 23)等において層厚約3cm~約7cmで確認した。

b. 十和田八戸火砕流

十和田八戸火砕流を伴う巨大噴火では、火砕流の噴出に先立って爆発 的噴火に伴う降下火砕物(十和田八戸テフラ)が噴出しており、火砕流 堆積物の直下に、この堆積物が認められる。十和田八戸火砕流堆積物及 び十和田八戸テフラの分布を第7.4-8図に示す。

十和田八戸火砕流堆積物は、塊状無層理で淘汰が悪く、軽石を主体と して褐灰~灰白色火山灰の基質からなる。敷地近傍では、ローム層中に 軽石混じり火山灰層(火砕流堆積物)が層厚約5cm~約20cmのパッ チ状として認められ、敷地内(Loc. 26)においても、層厚約20cm のパッチ状を呈する火砕流堆積物として確認した(第7.4-7図参照)。

また,敷地より北方の地域では,層相から火砕流堆積物と判断できないものの,ローム層中に十和田八戸火砕流起源に対比される径約1 cm 以下の軽石が認められる。

したがって、十和田八戸火砕流は敷地に到達したと考えられるが、火 砕流堆積物の分布及びその層相の特徴より、敷地はその到達末端に位置 すると評価した。一方、十和田八戸テフラは、北方に向かい急激に層厚 を減じ、三沢市野口(Loc. 17)より北方では確認できない。

(3) 地球物理学的調查

下司(2016)によると、大規模噴火が発生するためには、その火山のシ

ステムにあらかじめマグマを蓄積させておくことが必要であるとしており, この大規模噴火を引き起こすマグマシステムは,下部地殻物質の部分溶融 等による珪長質メルトの生成,発生したメルトの分離・上昇,上部地殻へ の集積等が起こり,地殻全体に広がる巨大で複雑なシステムであると考え られるとしている。また,物理探査(地球物理学的調査)によってカルデ ラ火山の地下に検出されつつある低速度領域や低比抵抗領域は,このよう な部分溶融した貫入岩体の複合体を見ていると考えられるとしており,カ ルデラの陥没量とカルデラ形成噴火の噴出量がほぼ一致するとしている。 なお,下司(2016)の「大規模噴火」の噴火規模は,「巨大噴火」の噴 火規模を包含する。

以上のことから,巨大噴火に直接寄与する上部地殻におけるマグマ溜 まりは,カルデラを超える範囲まで部分溶融域が広がっていると考えら れるため,巨大噴火が可能な量のマグマ溜まりが存在する可能性及び大 規模なマグマの移動・上昇等の活動に着目して地球物理学的調査を実施 し,現在のマグマ溜まりの状況について評価した。

地球物理学的調査として,地震波速度構造,比抵抗構造,地震活動及 び地殻変動に関する検討を実施した。流体の存在に敏感な比抵抗構造と, 流体のうちメルトか水か推定可能な地震波速度構造は相補的な関係である ため,これらより,巨大噴火が可能な量のマグマ溜まりが存在する可能性 を把握した。また,地震活動及び地殻変動に関する調査を行い,大規模な マグマの移動・上昇等の活動を把握した。

a. 地震波速度構造及び比抵抗構造

地震波速度構造について、Nakajima et al. (2001) によると、火山フロントに沿った最上部マントルの低Vp、低Vs及び 高Vp/Vsは、大量のメルトの存在を示唆するとしている。また、火 山フロントに沿った下部地殻のうち活火山の直下の低Vp,低Vs及び 高Vp/Vsは、メルトの存在を示唆するとしている。加えて、火山フ ロントに沿った上部地殻のうち活火山の直下の低Vp,低Vs及び低Vp /Vsは、水の存在を示唆するとしている(第7.4-9図参照)。中島 (2017)によると、Nakajima et al. (2001)の解析結 果等から、東北地方の火山地域の地殻にはいくつかの共通する特徴が存 在するとしており、上部地殻内には大規模な(>10km)マグマ溜まり は存在しないとしている(第7.4-10図参照)。

防災科学技術研究所HP上の「日本列島下の三次元地震波速度構造 (海域拡大 2019 年版)」(Matsubara et al., 2019)の 地震波トモグラフィ解析結果(第 7.4-11 図参照)及びHi-netや 東北大学等の観測点の観測データを用いた地震波トモグラフィ解析結果 (第 7.4-12 図参照)に基づくと、いずれの結果でも十和田直下の上部 地殻内(約 20 k m以浅)に、メルトの存在を示唆する顕著な低V p かつ高 V p / V s 領域は認められない。

一方,比抵抗構造について,Kanda and Ogawa (2014) によると、インダクションベクトルの実部は本質的に低比抵抗の方向を 指す傾向があるとしている。Kanda and Ogawa (2014)の インダクションベクトル (第7.4-13 図参照)に基づくと、16 秒周期で は、十和田に向くベクトルは認められず、顕著な低比抵抗異常は推定で きない。また、磁場3成分を用いたインバージョン解析により、インダ クションベクトルを再現できる北東北の三次元比抵抗構造が示されてお り、その解析結果 (第7.4-14 図参照)に基づくと、十和田直下の上部 地殻内にマグマ若しくは高塩濃度流体を示唆する顕著な低比抵抗領域は 認められない。 地震波速度構造及び比抵抗構造を統合的に解釈すると、十和田直下の 上部地殻内に大規模なマグマ溜まりの存在を示唆する顕著な低速度・高 Vp/Vsかつ低比抵抗領域は認められない。

b. 地震活動

気象庁一元化震源カタログ(地震月報(カタログ編)(期間:1997年 10月~2017年12月)及び気象庁一元化処理震源要素(期間:2018年1 月~2018年12月))より作成した十和田付近の震央分布及び地震活動 の時間変化を第7.4-15図に示す。地震は、十和田の後カルデラ期の最 新の噴火(十和田a)の火口である十和田湖中湖付近及びその周辺の震 源深さ5km~10km付近に集中する一方で、低周波地震はそれらより やや深い25km~35km付近で発生している。

また,「十和田の火山活動解説資料(平成 26 年1月)」(気象庁, 2014)によると,2014 年1月 27 日昼前から夜にかけて地震活動が活発 な状況になったが,27 日の夜から地震回数は減少し,2月に入ってか らは概ね静穏な状況であり,低周波地震,火山性微動は観測されていな いとしている。また,火山活動に特段の変化はなく,噴火の兆候は認め られず,2007 年 12 月1日の噴火予報(平常)の発表以降,予報警報事 項に変更はないとしている。

c. 地殼変動

国土地理院(2018)によると、平成23年(2011年)東北地方太平洋沖 地震後の余効変動が、東日本の広い範囲で見られるとしている。

国土地理院による電子基準点データから作成した十和田周辺の基準点 間の基線長(斜距離成分)の時間変化(期間:2003年1月~2018年12 月)を第7.4-16図に示す。十和田では、2011年東北地方太平洋沖地震 以降の余効変動が継続しているが、地震発生前を含め、十和田を中心と した地域では、この余効変動を超える継続的な変位の累積は認められない。

また,「十和田の火山活動解説資料(平成 26 年1月)」(気象庁, 2014)において,2014年1月に地震活動が活発化した際の地殻変動観測 結果によると,地震増加時及びその前後で十和田付近の地殻変動に変化 は認められないとしている。

加えて,第131回火山噴火予知連絡会資料(気象庁,2015)によると, +和田周辺における干渉SARの解析結果(2014年9月4日と2014年 10月16日)について,ノイズレベルを超える位相変化は認められない としており,第143回火山噴火予知連絡会資料(気象庁,2019)におい ても,+和田周辺における干渉SARの解析結果(2015年10月8日と 2018年10月18日)について,ノイズレベルを超えるような位相変化は 認められないとしている。

さらに、国土地理院による基盤地図情報及び一等水準点検測成果収録 を基に作成した、十和田付近の一等水準路線の上下変動(第7.4-17図 参照)によると、大館付近において局所的な変動はあるが、十和田に最 も近い碇ヶ関付近の一等水準点には継続的な変位の累積は認められず、 十和田を中心とした継続的な変位の累積は認められない。

d. 地球物理学的調査の評価

地震波速度構造,比抵抗構造,地震活動及び地殻変動に関する検討の 結果,現状,十和田直下の上部地殻内(約20km以浅)には,巨大噴火が 可能な量のマグマ溜まりが存在する可能性は十分小さく,大規模なマグ マの移動・上昇等の活動を示す兆候も認められない。

(4) 巨大噴火の可能性評価のまとめ

活動履歴から、巨大噴火が発生したカルデラ形成期と現在の活動期で

ある後カルデラ期は、噴火の頻度・噴出量・噴出率が異なる(巨大噴火前には数万年間の低噴出率期が先行する傾向が見られるが、後カルデラ 期は高噴出率期である)こと等から、現状ではカルデラ形成期のような 状態には至っていないと考えられる(工藤ほか、2011)。

地質調査及び火山学的調査結果から,敷地は,巨大噴火に伴う2回の 大規模火砕流であるカルデラ形成期の十和田八戸火砕流及び十和田大不 動火砕流の到達末端に位置すると評価した。

地球物理学的調査の結果,現状,十和田直下の上部地殻内(約 20 km 以浅)には,巨大噴火が可能な量のマグマ溜まりが存在する可能性は十 分小さく,大規模なマグマの移動・上昇等の活動を示す兆候も認められ ない。

文献調査の結果,十和田について,高橋(2008)⁽¹³⁾及び工藤ほか(2011)⁽¹¹⁾ には,現状,巨大噴火の可能性が低いとする主旨の知見は認められるが, 巨大噴火が起こる可能性があるとする知見は認められない。また,十和 田火山防災協議会(2018)⁽¹⁴⁾による十和田火山災害想定影響範囲図におい ても,巨大噴火を想定していない。

以上のことから、十和田の現在の活動状況は、巨大噴火が差し迫った 状態ではなく、巨大噴火の可能性を示す科学的に合理性のある具体的な 根拠が得られていないことから、施設の運用期間中における巨大噴火の 可能性は十分に小さいと評価した。

7.4.2.2 最後の巨大噴火以降の火山活動の評価

(1) 活動履歴

最後の巨大噴火(噴火エピソードL)以降の活動期である後カルデラ 期は、1,000年単位で頻繁に噴火を続けており、後カルデラ期と同規模 の活動可能性は十分小さいと判断できない。 したがって,最後の巨大噴火以降の火山活動の評価対象としては,後 カルデラ期の最大規模の火砕流を伴う噴火である,噴火エピソードAの 毛馬内火砕流(見かけの噴出量は約5⁽¹⁰⁾³)とした(第7.4-18図参 照)。

(2) 地質調査及び火山学的調査

町田・新井(2011) 及びHayakawa (1985) は,毛馬内火砕流 堆積物を十和田カルデラから主に河川沿いに図示している。また,十和 田火山防災協議会(2018) は,広井ほか(2015) 等を考慮し,毛馬内火 砕流堆積物及びOYU-2bの火砕サージ堆積物の確認地点を基に,十 和田カルデラの周囲約20kmの範囲を火砕流・火砕サージの推定到達 範囲として図示している。それらを併せて第7.4-19図に示す。

いずれの知見においても、毛馬内火砕流は、敷地には到達していない。 (3) 最後の巨大噴火以降の火山活動の評価のまとめ

活動履歴及び地質調査・火山学的調査の結果より,最後の巨大噴火以降の最大規模の毛馬内火砕流が敷地に到達していないことから,火砕物密度流が施設に影響を及ぼす可能性は十分小さいと評価した。また,火砕物密度流以外の設計対応不可能な火山事象は,「7.4.1 詳細調査対象火山の抽出」に記載するように,敷地と火山の離隔等から,施設に影響を及ぼす可能性は十分小さいと評価した。

7.4.3 八甲田山

気象庁編(2013) によると、八甲田山は、少なくとも 17 以上の成層火 山や溶岩ドームからなり、南八甲田火山群及び北八甲田火山群に区分され、 八甲田カルデラは、北八甲田火山群の直下〜北東に存在するとしている。

中野ほか編(2013) 及び宝田・村岡(2004) によると、南八甲田火山群は、八甲田カルデラの先カルデラ火山であり、約1.1Ma~0.3Maに活動したとしている。

村岡・高倉(1988) によると、八甲田カルデラの噴出物として、八甲田 第1期火砕流堆積物及び八甲田第2期火砕流堆積物が示されている。

中野ほか編(2013) 及び工藤ほか(2011) によると、八甲田山の活動を 南八甲田火山群、八甲田カルデラ及び北八甲田火山群の活動に区分し、こ のうち、八甲田カルデラにおいては、約1Ma(八甲田中里川),0.90Ma (八甲田黄瀬),0.76Ma(八甲田第1期)及び0.40Ma(八甲田第2期) に大規模火砕流を噴出したとしている。

工藤ほか(2004) によると、北八甲田火山群は、八甲田カルデラの形成 後の約 40 万年前以降に活動を開始した後カルデラ火山群であるとしてい る。

これらを踏まえた八甲田山の各火山の分布と階段ダイアグラムを第7.4 -20 図に示す。

これらの噴火のうち、巨大噴火に該当する噴火は、八甲田カルデラの八 甲田第1期火砕流(見かけの噴出量は 37 km³)及び八甲田第2期火砕流 (見かけの噴出量は 36 km³)を噴出した噴火である。したがって、この 2回の巨大噴火と最後の巨大噴火(八甲田第2期火砕流を噴出した噴火) 以降の噴火を対象に評価を実施した。

7.4.3.1 巨大噴火の可能性評価

(1) 活動履歴

八甲田山は、約 110 万年前から活動を開始し、南八甲田火山群及び八 甲田カルデラの活動後、最近 30 万年間では北八甲田火山群のみ活動が 継続している。

工藤ほか(2004)によると、北八甲田火山群は、八甲田カルデラの形 成後の約40万年前以降に活動を開始した後カルデラ火山群である。ま た、北八甲田火山群の噴出率及び活動様式の時間変化から、その火山活 動のピークは40万年前~10万年前までの間にあったと考えられ、10万 年前以降の火山活動は比較的低調になっているとしている。加えて、噴 出中心が火山群中央部に収束する傾向が認められることからも、北八甲 田火山群の活動は、長期的にみると終息へと向かいつつある状態と解釈 できるとしている(第7.4-21図参照)。

また,文献調査により,八甲田山における近い将来の巨大噴火の発生 可能性に言及した文献について調査した結果,現状,巨大噴火が起こる 可能性があるとする知見は認められず,八甲田山火山防災協議会 (2014)による火山災害予想区域図においても,巨大噴火を想定してい ない。

(2) 地質調査及び火山学的調査

八甲田山において、過去最大規模の火砕物密度流を噴出した八甲田カ ルデラの噴出物を対象に調査を実施した。

村岡・高倉(1988), 第四紀火山カタログ委員会(1999) によると, 八甲田第1期火砕流の見かけの噴出量は37km³, 八甲田第2期火砕流 の見かけの噴出量は36km³とされているが, 八甲田第1期火砕流堆積 物は,工藤ほか(2006), 工藤ほか(2011) 等によって示された年代測 定, 化学分析結果等によると, 異なる時代の複数の火砕流堆積物で構成 されている可能性があるとされている。これらのことから,2回の巨大 噴火のうち八甲田第2期火砕流が,八甲田山の過去最大規模の火砕流で あると評価した。

八甲田第2期火砕流堆積物は, 第7.4-22 図に示すように, 八甲田山 周辺に広く分布し、敷地方向では八甲田山から東北町西部にかけて分布 し,八甲田山近傍の小幌内川林道(Loc. A05)及び十和田砂土路(L oc. A01)では層厚約6m及び約4m,東北南平赤川支流(Loc. B13) では層厚約 2.5m以上の火砕流堆積物として確認した。一方,東北 ちょうじゃくぼ 長者久保西方(Loc. B01)においては、オレンジテフラ、甲地軽石 (工藤(2005)による「八甲田白ベタテフラ」に相当する。)及び複数の 降下火砕物 (袋町テフラ群:桑原 (2004)の「袋町1~13 テフラ」に 相当する。)が確認され、これらの間に挟まる袋町9 a テフラは、概ね 淘汰良好な軽石を主体とすることから,降下火砕物と評価した。また, その年代及び鉱物的特徴(石英を非常に多く含む等)は、八甲田第2期 の噴出物と類似することから,八甲田第2期の噴火に伴って噴出した降 下火砕物と考えられる。しかし、本地点では、同噴火に伴う火砕流堆積 物は確認できない。このことは、本地点には、八甲田第2期の噴火に伴 う火砕流は到達していないことを示唆している(第7.4-23図参照)。 加えて,桑原(2004)及び桑原ほか(2007)によると,野辺地町袋町地 点における露頭から、降下火砕物等の層序等に関する報告がされている が、八甲田第2期火砕流堆積物は認められていない。

以上のことから,これらの地点より北方に位置する敷地に火砕流は到 達していないと評価した。

(3) 地球物理学的調查

地球物理学的調査として、十和田と同様に、地震波速度構造、比抵抗

構造,地震活動及び地殻変動に関する検討を実施した。流体の存在に敏 感な比抵抗構造と,流体のうちメルトか水か推定可能な地震波速度構造は 相補的な関係であるため,これらより,巨大噴火が可能な量のマグマ溜ま りが存在する可能性を把握した。また,地震活動及び地殻変動に関する調 査を行い,大規模なマグマの移動・上昇等の活動を把握した。

a. 地震波速度構造及び比抵抗構造

地震波速度構造について、Nakajima et al. (2001) によると、火山フロントに沿った最上部マントルの低Vp,低Vs及び 高Vp/Vsは、大量のメルトの存在を示唆するとしている。また、火 山フロントに沿った下部地殻のうち活火山の直下の低Vp,低Vs及び 高Vp/Vsは、メルトの存在を示唆するとしている。加えて、火山フ ロントに沿った上部地殻のうち活火山の直下の低Vp,低Vs及び低Vp /Vsは、水の存在を示唆するとしている(第 7.4-9図参照)。中島 (2017)によると、Nakajima et al. (2001)の解析結 果等から、東北地方の火山地域の地殻にはいくつかの共通する特徴が存 在するとしており、上部地殻内には大規模な(>10km)マグマ溜まり は存在しないとしている(第 7.4-10 図参照)。

防災科学技術研究所HP上の「日本列島下の三次元地震波速度構造 (海域拡大 2019 年版)」(Matsubara et al., 2019)の 地震波トモグラフィ解析結果(第7.4-11 図参照)及びHi-netや 東北大学等の観測点の観測データを用いた地震波トモグラフィ解析結果 (第7.4-12 図参照)に基づくと、いずれの結果でも八甲田山直下の上 部地殻内(約20km以浅)に、メルトの存在を示唆する顕著な低Vpかつ 高Vp/Vs領域は認められない。

一方,比抵抗構造について,Kanda and Ogawa (2014)

によると、インダクションベクトルの実部は本質的に低比抵抗の方向を 指す傾向があるとしている。小川(1991)によると、周期 64 秒のイン ダクションベクトル(第 7.4-24 図参照)では津軽海峡の誘導電流の影 響で北向き成分が卓越するとしているが、調査域の東半分のインダクシ ョンベクトルの北向き成分が小さいことから深部に低比抵抗異常が存在 することを示唆しているとしている。また、小川(1991)の広域的な比 抵抗構造の影響も考慮した二次元比抵抗構造(第 7.4-25 図参照)によ ると、八甲田地域の深度 10 k m以深に低比抵抗帯が存在するとしている が、八甲田山直下の上部地設内の 10 k m以浅に顕著な低比抵抗領域は認 められない。

地震波速度構造及び比抵抗構造を統合的に解釈すると、八甲田山直下の上部地殻内の10km以深は低比抵抗領域であるが、その領域は低Vpかつ低Vp/Vsであることから、上部地殻内に大規模なマグマ溜まりの存在を示唆する顕著な低速度・高Vp/Vsかつ低比抵抗領域は認められない。

b. 地震活動

気象庁一元化震源カタログ(地震月報(カタログ編)(期間:1997年 10月~2017年12月)及び気象庁一元化処理震源要素(期間:2018年1 月~2018年12月))より作成した八甲田山付近の震央分布及び地震活 動の時間変化を第7.4-26図に示す。八甲田山においては,通常の地震 が観測期間を通じて北八甲田火山群付近の深さ10km以浅に集中してい る。

また,「八甲田山の火山活動解説資料(令和元年 10 月7日)」(気 象庁, 2019)によると,2019 年 10 月7日6時以降,大岳山頂の西約4 km,深さ約1 km付近を震源とする地震が増加し,14 時までに 61 回 発生したとしている。また,2018 年 4 月 10 日に日回数 22 回を観測する など,これまでも周辺で一時的な地震の増加がみられたが,低周波地震 及び火山性微動は観測されておらず,地震活動以外に火山活動の活発化 は認められないとし,噴火予報(噴火警戒レベル1,活火山であること に留意)の予報事項に変更は無いとしている。

加えて、「火山の状況に関する解説情報(八甲田山第3号)令和元年 10月8日16時00分」(気象庁,2019)によると、2019年10月7日6 時頃から始まった八甲田山周辺での地震は、2019年10月8日10時以降 観測されていないとしている。加えて、低周波地震や火山性微動は観測 されておらず、地殻変動に火山活動に伴う変化はみられないとしている。 また、監視カメラによる観測では、地獄沼付近及び大岳周辺に特段の変 化はみられず、火山活動の活発化を示す変化は認められないとしている。

国土地理院(2018)によると、平成23年(2011年)東北地方太平洋沖 地震後の余効変動が、東日本の広い範囲で見られるとしている。

国土地理院による電子基準点データから作成した八甲田山周辺の基準 点間の基線長(斜距離成分)の時間変化(期間:1997 年1月~2018 年 12月)を第7.4-27 図に示す。八甲田山では、2011 年東北地方太平洋沖 地震前において、十和田-黒石及び青森A-十和田の基準点間で継続的 な縮みが確認されていた。しかし、2011 年東北地方太平洋沖地震以降、 すべての基線において余効変動が継続している。

また,「八甲田山の火山活動解説資料(平成 26 年 6 月)」(気象庁, 2014)によると,2013 年 2 月頃以降わずかな膨張を示す地殻変動がみら れていたが,8 月頃から鈍化し,11 月頃からは停滞しその状態が続いて いるとしている。 加えて,第131回火山噴火予知連絡会資料(気象庁,2015)によると, 八甲田山周辺における干渉SARの解析結果(2014年9月4日と2014 年10月16日)について,ノイズレベルを超える位相変化は認められな いとしており,第143回火山噴火予知連絡会資料(気象庁,2019)にお いて,八甲田山周辺における干渉SARの解析結果(2015年10月8日 と2018年10月18日)について,山頂の西側周辺で衛星視線方向伸長の 位相変化が認められるが,気象ノイズによる可能性があるとしている。

さらに、国土地理院による基盤地図情報及び一等水準点検測成果収録 を基に作成した、八甲田山付近の一等水準路線の上下変動(第7.4-28 図参照)によると、青森及び藤崎町付近において地盤沈下による局所的 な変動はあるが、八甲田山に最も近い青森付近の一等水準点には継続的 な変位の累積は認められず、八甲田山を中心とした継続的な変位の累積 は認められない。

d. 地球物理学的調査の評価

地震波速度構造,比抵抗構造,地震活動及び地殻変動に関する検討の 結果,現状,八甲田山直下の上部地殻内(約20km以浅)には,巨大噴火 が可能な量のマグマ溜まりが存在する可能性は十分小さく,大規模なマ グマの移動・上昇等の活動を示す兆候も認められない。

(4) 巨大噴火の可能性評価のまとめ

活動履歴について,工藤ほか(2004) によると,八甲田カルデラの形 成後の約 40 万年前以降に活動を開始した後カルデラ火山群である北八 甲田火山群について,その活動のピークは 40 万年前~10 万年前までの 間にあったと考えられ,10 万年前以降の火山活動は比較的低調になって おり,長期的にみると終息へと向かっているとしている。

地質調査及び火山学的調査結果から,2回の巨大噴火のうち過去最大

規模の噴火である八甲田第2期火砕流は敷地に到達していないと評価した。

地球物理学的調査の結果,現状,八甲田山直下の上部地殻内(約20 km以浅)には,巨大噴火が可能な量のマグマ溜まりが存在する可能性 は十分小さく,大規模なマグマの移動・上昇等の活動を示す兆候も認め られない。

文献調査の結果,八甲田山について,現状,巨大噴火が起こる可能性 があるとする知見は認められず,八甲田山火山防災協議会(2014)によ る火山災害予想区域図においても,巨大噴火を想定していない。

以上のことから,八甲田山の現在の活動状況は,巨大噴火が差し迫っ た状態ではなく,巨大噴火の可能性を示す科学的に合理性のある具体的 な根拠が得られていないことから,施設の運用期間中における巨大噴火 の可能性は十分に小さいと評価した。

- 7.4.3.2 最後の巨大噴火以降の火山活動の評価
 - (1) 活動履歴

最後の巨大噴火(八甲田第2期火砕流を噴出した噴火)以降の活動に ついて,北八甲田火山群は,工藤ほか(2004)によると,八甲田カルデ ラの形成後の約 40 万年前以降に活動を開始した後カルデラ火山群であ るとしていることから,北八甲田火山群における最大規模の火山活動を 評価した。

一方, 八甲田カルデラの先カルデラ火山である南八甲田火山群については, 宝田・村岡 (2004) によると, 約 1.1Ma頃に活動を開始し八甲田カルデラ形成後の約 0.3Maまで活動したとしていることから, 最後の巨大噴火(約 40 万年前)以降, 約 30 万年前までの活動における最大規模の火山活動を評価した。

3 - 7 - 30

(2) 地質調査及び火山学的調査

工藤ほか(2004)によると、最後の巨大噴火以降の火山活動である北 八甲田火山群(40万年前以降)の活動における最大規模の噴火に伴う噴 出物は高田大岳溶岩類(3.2DREkm³)であり、その分布は噴出中心 付近に限られ、敷地が位置する北東方向では、八甲田カルデラを越えて 分布していない。なお、北八甲田火山群の全噴出物や岩屑なだれを含め、 八甲田カルデラを越えて分布していない(第7.4-29図参照)。

一方, 宝田・村岡(2004) によると, 八甲田カルデラの先カルデラ火 山である南八甲田火山群について, 最後の巨大噴火(約 40 万年前)以 降,約 30 万年前まで活動したとされるが, それらの噴出物の分布は南 八甲田火山群の山体周辺に限られ, 敷地が位置する北東方向では, 八甲 田カルデラを越えて分布していない(第 7.4-30 図参照)。

(3) 最後の巨大噴火以降の火山活動の評価のまとめ

活動履歴及び地質調査・火山学的調査の結果より,後カルデラ火山群 である北八甲田火山群の最大規模の噴火に伴う噴出物である高田大岳溶 岩類の分布は噴出中心付近に限られ,敷地が位置する北東方向では,八 甲田カルデラを越えて分布していない。一方,南八甲田火山群は最後の 巨大噴火以降,約 30 万年前まで活動したとされるが,それらの噴出物 の分布は南八甲田火山群の山体周辺に限られ,敷地が位置する北東方向 では,八甲田カルデラを越えて分布していない。

また,新しい火口の開口及び地殻変動については,「7.4.1 詳細調 査対象火山の抽出」に記載するように,敷地において発生する可能性は 十分に小さいと評価した。 以上のことから,八甲田山の最後の巨大噴火以降の火山活動に伴う設 計対応不可能な火山事象は,発生実績や敷地と火山の離隔等から,施設 に影響を及ぼす可能性は十分小さいと評価した。 7.4.4 まとめ

施設に影響を及ぼし得る火山(21火山)を対象に,設計対応不可能な火 山事象について,発生実績,過去最大規模の噴火等の知見に基づき敷地へ の到達可能性について評価した。

火砕物密度流以外の設計対応不可能な火山事象については,発生実績や 敷地と火山の離隔等から,過去最大規模の噴火を想定しても,施設に影響 を及ぼす可能性は十分小さい。

一方,火砕物密度流については,文献調査の結果,十和田及び八甲田カ ルデラの巨大噴火に伴う火砕流の到達可能性範囲に敷地若しくは敷地近傍 が含まれることから,十和田及び八甲田山について,詳細な調査・検討を 実施した。

十和田の巨大噴火の可能性評価については、地質調査及び火山学的調査の結果、敷地は巨大噴火による火砕流の末端に位置すると考えられるが、活動履歴、地震波速度構造、比抵抗構造、地震・地殻変動データ等から、巨大噴火が差し迫った状態ではなく、巨大噴火の可能性を示す科学的に合理性のある具体的な根拠が得られていないことから、施設の運用期間中における巨大噴火の可能性は十分に小さいと評価した。また、最後の巨大噴火以降の火山活動については、活動履歴及び地質調査・火山学的調査の結果より、最後の巨大噴火以降の最大規模の火砕流が敷地に到達していないことから、施設に影響を及ぼす可能性は十分小さく、火砕物密度流以外の設計対応不可能な火山事象は、敷地と火山の離隔等から、施設に影響を及ぼす可能性は十分小さいと評価した。

八甲田山の巨大噴火の可能性評価については、地質調査及び火山学的調査の結果、巨大噴火による火砕流は敷地に到達していないと考えられ、活動履歴、地震波速度構造、比抵抗構造、地震・地殻変動データ等から、巨

3 - 7 - 33

大噴火が差し迫った状態ではなく,巨大噴火の可能性を示す科学的に合理 性のある具体的な根拠が得られていないことから,施設の運用期間中にお ける巨大噴火の可能性は十分に小さいと評価した。また,最後の巨大噴火 以降の火山活動については,活動履歴及び地質調査・火山学的調査の結果 より,設計対応不可能な火山事象は,発生実績や敷地と火山の離隔等から, 施設に影響を及ぼす可能性は十分小さいと評価した。 7.5 火山活動のモニタリング

7.5.1 モニタリング対象火山

施設の運用期間中における十和田の巨大噴火の可能性は十分に小さいが, 過去の巨大噴火による火砕流が,到達末端とは考えられるものの敷地に到 達したと評価したことから,モニタリング対象火山とする。

一方,八甲田山についても,施設の運用期間中における巨大噴火の可能 性が十分に小さく,過去の巨大噴火による火砕流も敷地には到達していな いと評価したが,最近の火山活動の推移を確認することの重要性も考慮し, モニタリング対象火山とする。

以上のことから、十和田及び八甲田山を対象に、科学的知見を収集し、 更なる安全性の向上に資するため、火山活動のモニタリングを行い、施設 の運用期間中において巨大噴火の可能性が十分に小さいと評価した根拠が 維持されていることを確認する。 7.5.2 モニタリング項目

+和田及び八甲田山について,評価時からの状態の変化の検知により, 巨大噴火の可能性が十分に小さいと評価した根拠が維持されていることを 確認することを目的として,公的機関の観測網による地殻変動及び地震活 動の観測データ,公的機関による発表情報等を収集・分析し,観測点の比 高・基線長,地震の発生回数等に基づく判断基準を用いて,モニタリング を行う。また,判断基準については,データを蓄積し,最新の知見も踏ま え,火山専門家等の助言を得た上で随時更新する。加えて,干渉SARや 水準測量も実施し,モニタリング精度向上に努める。
7.5.3 定期的評価

モニタリング結果については、定期的(原則として1年に1回)又は臨 時(観測データの有意な変化の発生時)に、火山専門家等による第三者の 助言を得る。火山の状態に応じた判断基準に基づき、観測データに有意な 変化があった場合は、火山専門家の助言を踏まえ、当社が総合判断を行い、 対処内容を決定する。

なお,添付書類五「1.6.8.8 火山の状態に応じた対処方針」に記載す るように,対処にあたっては,その時点の最新の科学的知見に基づき可能 な限りの対処を行う。 7.6 施設の安全性に影響を与える可能性のある火山事象の影響評価

施設に影響を及ぼし得る火山(21火山)について,現状における活動可 能性及び規模を考慮し,施設の安全性に影響を与える可能性のある火山事 象について検討した。

なお,降下火砕物については,地理的領域外の火山を含めてその影響を 評価した。

7.6.1 降下火砕物

7.6.1.1 給源を特定できる降下火砕物

「新編 火山灰アトラス」(町田・新井,2011)等による,地理的領域 内外における降下火砕物の分布を第7.6-1図及び第7.6-2図に示す。

町田・新井(2011) 及び地質調査により,敷地及び敷地近傍において確認される主な降下火砕物として,下位より,甲地軽石,オレンジテフラ, 洞爺火山灰,鬼界葛原テフラ,阿蘇4テフラ,十和田レッドテフラ, 支笏第1テフラ,十和田切田テフラ,姶哈瓦nテフラ,十和田八戸テフラ, 濁川テフラ,十和田中撒テフラ,十和田aテフラ及び自頭山苫小牧テフ ラが挙げられる(第7.6-1表参照)。

地理的領域内の火山を給源とする降下火砕物のうち,十和田のオレンジ テフラ,十和田レッドテフラ及び十和田切田テフラは最後の巨大噴火以前 の,また十和田八戸テフラは最後の巨大噴火の噴出物であり,現在は,最 後の巨大噴火以降の活動である後カルデラ期の活動が継続していることか ら,これらの降下火砕物を評価対象外とした。加えて,濁川テフラの給源 である濁川カルデラは「7.3 施設に影響を及ぼし得る火山の抽出」にお いて,施設に影響を及ぼし得る火山ではないと評価したことから,評価対 象外とした。

一方、地理的領域外の火山を給源とする降下火砕物のうち、巨大噴火に

伴う噴出物である洞爺火山灰,鬼界葛原テフラ,阿蘇4テフラ,支笏第1 テフラ及び姶良Tnテフラを噴出した各火山は現在,後カルデラ火山の活 動を継続しており同規模噴火の可能性は十分小さいことから,これらの降 下火砕物を評価対象外とした。このうち,敷地及び敷地近傍での層厚が最 も大きい洞爺火山灰(20 cm~30 cm)を噴出した洞爺カルデラの階段ダ イアグラムを第7.6-3 図に示す。

以上のことから,評価対象となる降下火砕物は,甲地軽石,十和田中掫 テフラ,十和田 a テフラ及び白頭山苫小牧テフラである。文献調査及び地 質調査の結果,敷地における層厚が最も大きい降下火砕物は甲地軽石であ り(第7.6-1 表参照),敷地内の複数の地点で確認した(第7.6-4図 参照)。再堆積を含む層厚が最大であるKP-1孔(第7.6-5 図参照) において,軽石が比較的密に集積する主部(層厚21 cm)と,その上位に 堆積する甲地軽石を含む再堆積層(火山灰質シルト:層厚22 cm)を確認 したことから,再堆積を含む甲地軽石の層厚を43 cmと評価した。

7.6.1.2 給源不明な降下火砕物

地質調査により敷地及び敷地近傍において確認した主な給源不明な降下 火砕物として、A~Dテフラがある(第7.6-1表参照)。これらの降下 火砕物のうち、最も層厚が大きい降下火砕物はCテフラ(約12cm)であ る。

7.6.1.3 降下火砕物シミュレーション

降下火砕物シミュレーションの実施に当たって,解析可能な給源を特定 できる降下火砕物について,同規模噴火の可能性,地質調査結果(最大層 厚),敷地と火山との離隔及び噴出量を検討し,敷地に最も影響を与える 甲地軽石を対象に解析を実施した。

本解析は、移流拡散モデルを用いた解析プログラムであり、降下火砕物

が全て降下するまで,一定方向に同じ風速の風が吹き続けるという保守性 を考慮した上で実施した。

降下火砕物シミュレーションに用いる入力パラメータについては、甲地 軽石が 28 万年前~18 万年前の噴火と非常に古く、噴火に係る入力パラメ ータの情報が乏しいことから、工藤ほか(2004)の等層厚線の分布主軸方 向の風を抽出・平均した風を用いて、その等層厚線を概ね再現できる解析 結果(第 7.6-6 図参照)に基づき設定した。再現解析結果を踏まえた入 力パラメータを第 7.6-2 表に示す。

月別平年値の風を用いた解析の結果は、敷地における降下火砕物の層厚 が 6.0 cm~25 cmとなる(第 7.6-7 図参照)。

一方,不確かさの検討については,敷地が八甲田山の北東方向に位置していることから,敷地方向の風を考慮した風向の不確かさの影響が最も大きくなると考えられる。したがって,八甲田山から敷地に向かう風を抽出・平均して作成した敷地方向の風を用いた風向の不確かさケースを実施した結果,敷地での層厚が53 cmとなった(第7.6-8 図参照)。

7.6.1.4 降下火砕物の密度

軽石の密度に関する文献調査の結果,新版地学事典(2007) によると, 軽石について,火山砕屑物の一種で,多孔質で見かけ密度が小さく淡色を 呈するとしている。また,小尾ほか(2019) において,細粒火山灰との比 較検討として有史以降の噴火の軽石を対象とした堆積密度を計測しており, 乾燥状態では約 $0.4 \text{ g/cm}^3 \sim$ 約 1.2 g/cm^3 ,自然状態では約 $0.5 \text{ g/cm}^3 \sim$ 約 1.3 g/cm^3 ,湿潤状態(試料を2日間浸水させて計測し た密度)では約 $0.6 \text{ g/cm}^3 \sim$ 約 1.3 g/cm^3 の結果を示している。

層厚が最大となる甲地軽石を対象に密度試験を実施した結果,乾燥密度は 0.43g/cm³,湿潤密度は 1.16g/cm³,飽和密度は 1.25g/

c m³であり(第7.6−9図参照),文献調査結果と整合的である。
 7.6.1.5 設計に用いる降下火砕物の層厚及び密度

敷地及び敷地近傍で確認される主な降下火砕物のうち,給源を特定でき る降下火砕物については,甲地軽石の層厚が最大で,地質調査によると再 堆積を含み43cmであり,文献調査によると20cm~50cmである。ま た,給源不明な降下火砕物については,Cテフラの層厚が最大で,地質調 査の結果,約12cmである。加えて,現状における同規模の噴火の可能性, 地質調査結果及び噴出量等を踏まえ,甲地軽石を対象とした降下火砕物シ ミュレーションを実施した結果,風向の不確かさを考慮したケースにおい て,敷地での層厚は53cmとなった。

甲地軽石の密度試験の結果,乾燥密度 0.43g/cm³,湿潤密度 1.16 g/cm³,飽和密度 1.25g/cm³である。

以上のことから,設計に用いる降下火砕物の層厚を 55 c m, 密度を 1.3 g / c m³ (湿潤状態) とする。

7.6.2 その他の火山事象

その他の火山事象として,土石流,火山泥流及び洪水,火山から発生す る飛来物(噴石),火山ガス,津波,静振,大気現象,火山性地震とこれ に関連する事象,熱水系及び地下水の異常について,文献調査,地質調査 等の結果より検討した。

火山から発生する飛来物(噴石)については,敷地を中心とする半径10 kmの範囲には,施設に影響を及ぼし得る火山が分布しないことから,噴 石が敷地に到達することはなく,施設に影響を及ぼす可能性は十分小さい と評価した。

火山ガスについては,敷地は,太平洋及び陸奥湾を境にする下北半島脊 梁部の台地上に位置し,火山ガスが敷地に滞留する地形ではないことから, 施設に影響を及ぼす可能性は十分小さいと評価した。

津波については、「8. 津 波」に記載するように、敷地周辺に大き な影響を及ぼした、火山現象による歴史津波の記録は知られていないこと から、施設に影響を及ぼす可能性は十分小さいと評価した。

静振,大気現象,火山性地震とこれに関連する事象,熱水系及び地下水の異常については,火山と敷地とは十分な離隔があることから,施設に影響を及ぼす可能性は十分小さいと評価した。

- 7.7 参考文献一覧
 - (1) 中野俊,西来邦章,宝田晋治,星住英夫,石塚吉浩,伊藤順一,川 辺禎久,及川輝樹,古川竜太,下司信夫,石塚治,山元孝広,岸本 清行編. "日本の火山".第四紀火山. Ver. 2.30,産業技術総合研 究所 地質調査総合センター,2013,2019-10-21 更新. https:// /gbank.gsj.jp/volcano/Quat_Vol/index.html, (参照 2019-11-2 5).
 - (2) 気象庁編. 日本活火山総覧(第4版). 2013.
 - (3) 西来邦章,伊藤順一,上野龍之編.第四紀火山岩体・貫入岩体デー タベース 地質調査総合センター速報. No. 60,産業技術総合研究 所地質調査総合センター, 2012.
 - (4) 西来邦章,伊藤順一,上野龍之,内藤一樹,塚本斉編.第四紀噴 火・貫入活動データベース. Ver. 1.00,産業技術総合研究所 地質 調査総合センター,2014.
 - (5) 第四紀火山カタログ委員会編.日本の第四紀火山カタログ.1999.
 - (6) 産業技術総合研究所地質調査総合センター編.1万年噴火イベントデータ集.Ver.2.3,産業技術総合研究所 地質調査総合センター,2017.
 - (7) 海上保安庁海洋情報部. "海域火山データベース".
 http://www1.kaiho.mlit.go.jp/GIJUTSUKOKUSAI/kaiikiDB/list2.htm, (参照 2016-09-06).
 - (8) 山元孝広.日本の主要第四紀火山の積算マグマ噴出量階段図.地質
 調査総合センター研究資料集.No. 613,産総研地質調査総合センター,2015.
 - (9) 町田洋,新井房夫.新編 火山灰アトラス [日本列島とその周辺].

東京大学出版会, 2011.

- Yukio Hayakawa. Pyroclastic Geology of Towada Volcano.
 Bulletin of the Earthquake Research Institute University of Tokyo, 1985, Vol. 60.
- (11) 工藤崇,小林淳,山元孝広,岡島靖司,水上啓治. "十和田火山に おける噴火活動様式の時代変遷と長期的予測".日本第四紀学会講 演要旨集.徳島,2011-08-26/28,日本第四紀学会,2011.
- (12) Takahiro Yamamoto; Takashi Kudo; Osamu Isizuka. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan. Earth, Planets and Space, 2018, Vol. 70.
- (13) 高橋正樹.破局噴火-秒読みに入った人類壊滅の日.祥伝社新書,2008.
- (14) 十和田火山防災協議会. "十和田火山災害想定影響範囲図". 青森
 県防災危機管理課・秋田県総合防災課・鹿角市総務課・小坂町総務
 課. 青森県防災ホームページ.

http://www.bousai.pref.aomori.jp/DisasterFireDivision/counci 1/towadaAgreement/index.html, (参照 2018-03-27).

- (15) 下司信夫.大規模火砕噴火と陥没カルデラ:その噴火準備と噴火過程.火山. 2016, Vol. 61, No. 1.
- (16) Junichi Nakajima; Toru Matsuzawa; Akira Hasegawa; Dapeng Zhao. Three-dimensional structure of Vp, Vs and Vp/Vs and beneath northeastern Japan: Implications for arc magmatism and fluids. Journal of Geophysical Research, 2001, Vol. 106, No. B01.
- (17) 中島淳一.東北地方の火山周辺の地震波速度・減衰構造:地殻構造
 と低周波地震・S波反射面との関係.東京大学地震研究所彙報.2017,

Vol. 92.

- (18) Makoto Matsubara ; Hiroshi Sato ; Kenji Uehira ; Masashi Mochizuki ; Toshihiko Kanazawa ; Narumi Takahashi ; Kensuke Suzuki ; Shin' ichiro Kamiya. "Seismic Velocity Structure in and around the Japanese Island Arc Derived from Seismic Tomography Including NIED MOWLAS Hi-net and S-net Data". Seismic waves - Probing Earth System. Masaki Kanao, ed. IntechOpen, 2019.
- (19) Wataru Kanda; Yasuo Ogawa. Three-dimensional electromagnetic imaging of fluids and melts beneath the NE japan arc revisited by using geomagnetic transfer function data. Earth, Planets and Space, 2014, Vol. 66.
- (20) 気象庁. 地震月報(カタログ編). 気象庁ホームページ. http://www.data.jma.go.jp/svd/eqev/data/bulletin/hypo.html
 (参照 2019-03-17)
- (21) 防災科学技術研究所.気象庁一元化処理震源要素.防災 科学技術研究所ホームページ.https://hinetwww11.bosa
 i.go.jp/auth/?LANG=ja(参照 2019-03-17)
- (22) 気象庁. 十和田の火山活動解説資料(平成 26 年 1 月). 2014.
- (23) 国土地理院. 平成 30 年 5 月の地殻変動. 国土地理院ホームページ.
 http://www.gsi.go.jp/WNEW/PRESS-RELEASE/2018-goudou0608.html
 (参照 2018-06-08)
- (24) 気象庁. 第131回火山噴火予知連絡会資料. 2015-02-24.
- (35) 気象庁. 第143 回火山噴火予知連絡会資料. 2019-09-27.
- (26) 広井良美, 宮本毅, 田中倫久. 十和田火山平安噴火(噴火エピソー

3 - 7 - 45

ド A)の噴出物層序及び噴火推移の再検討.火山. 2015, Vol. 60, No. 2.

- (27) 宝田晋治,村岡洋文.八甲田山地域の地質 地域地質研究報告(5万分の1地質図幅).産業技術総合研究所 地質調査総合センター,
 2004.
- (2) 村岡洋文,高倉伸一.10万分の1八甲田地熱地域地質図説明書 特殊地質図.通商産業省 工業技術院 地質調査所,1988, No. 21.
- (2) 工藤崇,檀原徹,山下透,植木岳雪,佐藤大介. "八甲田カルデラ 起源火砕流堆積物の層序の再検討".日本第四紀学会講演要旨集.
 徳島,2011-08-26/28,日本第四紀学会,2011.
- (30) 工藤崇,宝田晋治,佐々木実.東北日本,北八甲田火山群の地質と 火山発達史.地質学雑誌. 2004, Vol. 110, No. 5.
- (31) 八甲田山火山防災協議会. "火山災害予想区域図(数値シミュレーション計算結果)". 第5回八甲田山火山防災協議会, 平成 26 年 3 月 26 日, 14p. 青森県防災ホームページ.

http://www.bousai.pref.aomori.jp/DisasterFireDivisi on/council/hakkodaAgreement/index.html (参照 2018-03-27).

- (22) 工藤崇,植木岳雪,宝田晋治,佐々木寿,佐々木実.八甲田カルデ ラ南東地域に分布する鮮新世末期~中期更新世火砕流堆積物の層序 と給源カルデラ.地学雑誌. 2006, Vol. 115, No. 1.
- (3) 工藤崇. 十和田地域の地質 地域地質研究報告(5 万分の1 地質図幅). 産業技術総合研究所 地質調査総合センター, 2005.
- (34) 桑原拓一郎.青森県東部上北平野における海成段丘構成物の層序と
 相対的海面変化.地質学雑誌. 2004, Vol. 110, No. 2.
- (35) 桑原拓一郎,檀原徹,山下透.青森県,上北平野北部に分布する袋

町 1~9 テフラの記載岩石学的特徴. 第四紀研究. 2007, Vol. 46, No. 1.

- (36) 小川康雄.八甲田火山群の深部比抵抗構造に関する考察.地質調査 所報告. 1991, No. 275.
- (37) 気象庁. 八甲田山の火山活動解説資料(令和元年 10 月 7 日). 2019.
- (38) 気象庁. "火山の状況に関する解説情報(八甲田山第3号)令和元年10月8日16時00分発表".気象庁ホームページ.http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/volinfo/VK20191008160000_203.html,(参照 2019-11-25)
- (39) 気象庁. 八甲田山の火山活動解説資料(平成 26 年 6 月). 2014.
- (4) 地学団体研究会 新版地学事典編集委員会編. 新版地学事典. 平凡 社, 2007.
- (4) 小尾亮,藤沢康弘,厚井高志,池田暁彦,堤宏徳,山本陽子. "降
 灰後の土石流発生に関わる火山灰特性(軽石の堆積密度)について". 2019 年度砂防学会研究発表会概要集. 岩手, 2019-5-21/23.
 砂防学会, 2019.
- (4) 雁澤好博,紀藤典夫,柳井清治,貞方 昇.北海道駒ケ岳の最初期テ フラの発見と初期噴火活動史の検討.地質学雑誌.2005, Vol. 111, No. 10.
- (4) 高田倫義,中川光弘. "南西北海道,横津火山群の地質と岩石:150 万年間の活動様式とマグマ化学組成の時間変遷".日本地質学会第 123年学術大会講演要旨.東京・桜上水,2016-9-10/12,日本地質学 会,2016.
- (4) 新エネルギー総合開発機構.No.13-南茅部地域- 地熱開発促進調 査報告書.1988.

- (4) 宝田晋治. 岩屑流の流動・堆積機構-田代岳火山起源の岩瀬川岩屑流の研究-. 火山. 1991, Vol. 36, No. 1.
- (4) 工藤崇. 十和田湖周辺地域における前期~中期更新世火山活動史.地質調査研究報告. 2018, Vol. 69, No. 3.
- (47) 須藤茂.5万分の1仙岩地域中心部地熱地質図説明書(21-5).地質調査所,1992.
- (4) 工藤崇,内野隆之,濱崎聡志.十和田湖地域の地質.地域地質研究 報告(5万分の1地質図幅).産業技術総合研究所 地質調査総合センター,2019.
- (4) 早川由紀夫. 十和田火山中掫テフラ層の分布, 粒度組成, 年代. 火山第2集. 1983, Vol. 28, No. 3.
- (50) 萬年一剛. 降下火山灰シミュレーションコード Tephra2 の理論と現 状-第四紀学での利用を視野に. 第四紀研究. 2013, Vol. 52, No. 4.
- (51) 内閣府(防災担当),消防庁,国土交通省水管理・国土保全局砂防部,気象庁.火山防災マップ作成指針. 2013.
- (52) 気象庁. 気象観測統計指針. 2018.
- (3) 中川久夫,中馬教允,石田琢二,松山力,七崎修,生出慶司,大池
 昭二,高橋一.十和田火山発達史概要.東北大學理學部地質學古生
 物學教室研究邦文報告. 1972, No. 73.
- (4) 土井宣夫. 盛岡市付近に分布する十和田-大不動・八戸火砕流堆積物の産状. 日本地質学会東北支部会報. 1993, No. 22.
- (55) 村岡洋文,山口靖,長谷紘和.八甲田地熱地域で見出されたカルデラ群.地質調査所報告. 1991, No. 275.
- (56) 大沢穠,三村弘二,広島俊男,中島和敏. 20 万分の1 地質図幅 青森 第2 版.通商産業省 工業技術院 地質調査所, 1993.

- (5) 大沢穠,須田芳朗. 20 万分の1 地質図幅 弘前及び深浦.工業技術院 地質調査所,1978.
- (58) 長森英明,宝田晋治,吾妻崇.青森西部地域の地質,地域地質研究 報告(5万分の1地質図幅).産業技術総合研究所 地質調査総合センター,2013.
- (9) 青森県史編さん自然部会.青森県史 自然編 地学.青森県史友の会,2001.
- (60) Yasuo Ogawa. Preliminary interpretation on detailed magnetovariational profilings in the Northern Tohoku district, Journal of geomagnetism and geoelectricity, 1987, Vol. 39.
- (61) 上嶋誠. MT 法による電気伝導度構造研究の現状. 2009, 地震第2 輯, vol. 61.
- (62) Koji Umeda; Masao Ban; Shintaro Hayashi; Tomohiro Kusano.
 Tectonic shortening and coeval volcanism during the Quaternary,
 Northeast Japan arc. Journal of Earth System Science, 2013,
 Vol. 122, No. 1.
- (6) 近藤玲介,塚本すみ子,工藤崇,遠藤邦彦,小林淳,坂本竜彦.レ
 ス堆積物の pIRIR 年代測定による十和田火山周辺におけるテフラ降
 下年代の推定.日本第四紀学会講演要旨集.埼玉,2012-08-20/22,
 日本第四紀学会,2012.
- (4) 工藤崇,小林淳.十和田火山,先カルデラ期~カルデラ形成期テフラの放射年代測定.地質調査研究報告. 2013, Vol. 64, No. 9/10.
- (6) 桑原拓一郎.青森県上北平野に分布する白ベタテフラ(WP)のジル コン・フィッション・トラック年代.第四紀研究. 2007, Vol. 45, No. 5.

- (66) リサイクル燃料貯蔵株式会社. リサイクル燃料備蓄センター 使用 済燃料貯蔵事業許可申請書 平成 19 年 3 月(平成 21 年 4 月一部補 正,平成 21 年 6 月一部補正,平成 21 年 8 月一部補正,平成 21 年 12 月一部補正,平成 22 年 4 月一部補正).
- (67) 曽屋龍典,勝井義雄,新井田清信,堺幾久子,東宮昭彦.有珠火山
 地質図(第2版).産業技術総合研究所 地質調査総合センター,
 2007.
- (68) 中川光弘,松本亜希子,田近淳,広瀬亘,大津直.有珠火山の噴火 史の再検討:寛文噴火(1663年)と明和噴火(1769年)に挟まれた
 17世紀末の先明和噴火の発見.火山.2005,Vol. 50, No. 2.

第7.3-1表 地理的領域内の第四紀火山 (中野ほか編 (2013)¹⁾に基づき作成)

水山名	位	置	敷地からの 離隔	敷地からの 離隔 水山名		位置			
ЛШЛ	北緯	東 経	(km)	ХША	北緯	東 経	(km)		
 砂蘭部岳 (さらんべだけ) 	42° 08' $21''$	140° 14′ 05″	160	25 藤沢森 (ふじさわもり)	40° 31′ 53″	140° 48′ 14″	65		
2 濁川カルデラ 2 (にごりかわ)	42° 07′ 11″	140° 26′ 47″	148	26 南八甲田火山群 (みなみはっこうだ)	40° 36′ 12″	140° 50′ 33″	57		
3 渡島毛無山 3 (おしまけなしやま)	42° 05′ 15″	140° 28′ 14″	144	27 北八甲田火山群 (きたはっこうだ)	40° 39′ 32″	140° 52′ 38″	51		
4 北海道駒ヶ岳 (ほっかいどうこまがたけ)	42° 03′ 48″	140° 40′ 38″	134	28 八甲田カルデラ (はっこうだ)	40° 41′ 00″	140° 55′ 00″	46		
5 木地挽山 (きじびきやま)	41° 57′ 07″	140° 36′ 09″	126	29 八甲田黒森 (はっこうだくろもり)	40° 38′ 51″	140° 57′ 18″	47		
6 横津岳 (よこつだけ)	41° 56′ 16″	140° 46′ 17″	118	30 八甲田八幡岳 (はっこうだはちまんだけ)	40° 42′ 11″	140° 59′ 54″	40		
7 恵山丸山 7 (えさんまるやま)	41° 51′ 07″	141° 05′ 35″	101	31 十和田 31 (とわだ)	40° 28′ 12″	140° 52′ 45″	66		
8 恵山 8 ^(えさん)	41° 48′ 16″	141° 09′ 58″	95	32 先十和田 (せんとわだ)	40° 27′ 10″	141° 00′ 05″	63		
9 <mark>銭亀</mark> (ぜにかめ)	41° 44′ 21″	140° 51′ 05″	95	33 稲庭岳 (いなにわだけ)	40° 11′ 54″	$141^{\circ} \ 02' \ 47''$	88		
10 函館山 (はこだてやま)	41° 45′ 33″	140° 42′ 14″	103	34 七時雨山 (ななしぐれやま)	40° 04′ 09″	141° 06′ 20″	101		
11 知内 11 (しりうち)	41° 32′ 33″	140° 22′ 17″	103	35 荒木田山 (あらきだやま)	40° 01′ 35″	141° 02′ 27″	107		
12 渡島小島 (おしまこじま)	41° 21′ 27″	139° 48′ 27″	135	36 高倉・黒森 (たかくら・くろもり)	40° 04′ 06″	140° 55' 23"	105		
13 陸奥燧岳 (むつひうちだけ)	41° 26′ 20″	141° 03′ 10″	58	37 秋田焼山 (あきたやけやま)	39° 57′ 49″	140° $45'$ $25''$	121		
14 大畑カルデラ (おおはた)	41° 22′ 00″	140° 59′ 00″	54	38 八幡平火山群 (はちまんたい)	39° 57′ 28″	140° 51′ 14″	118		
15 野平カルデラ (のだい)	41° 16′ 00″	140° 52′ 00″	51	39 柴倉岳 (しばくらだけ)	39° 59′ 44″	140° 42′ 49″	119		
16 於法岳 (おほうだけ)	41° 15′ 47″	140° 57′ 29″	46	40 森吉山 (もりよしざん)	39° 58′ 36″	140° 32′ 38″	128		
17 恐山 (おそれざん)	41° 16′ 42″	141° 07′ 11″	39	41 玉川カルデラ (たまがわ)	39° 54′ 00″	140° 46′ 38″	127		
18 岩木山 (いわきさん)	40° 39′ 21″	140° 18′ 11″	93	42 岩手山 (いわてさん)	39° 51′ 09″	141° 00′ 04″	126		
19 太良駒ヶ岳 (だいらこまがたけ)	40° 24′ 46″	140° 15′ 04″	109	43 網張火山群 (あみはり)	39° 51′ 03″	140° 57′ 06″	127		
20 田代岳 (たしろだけ)	40° 25′ 42″	140° 24′ 31″	98	44 乳頭・高倉 (にゅうとう・たかくら)	39° 48′ 17″	140° 50′ 18″	135		
21 碇ヶ関カルデラ (いかりがせき)	40° 30′ 35″	140° 36′ 35″	79	45 秋田駒ヶ岳 (あきたこまがたけ)	39° 45′ 40″	140° 47′ 57″	141		
22 三ツ森 (みつもり)	40° 29′ 54″	140° 41′ 49″	74	46 荷葉岳 (かようだけ)	39° 48′ 23″	140° 43′ 50″	138		
23 阿闍羅山 (あじゃらやま)	40° 29′ 37″	140° 35′ 36″	81	47 大仏岳 (だいぶつだけ)	39° 48′ 49″	140° 30′ 56″	145		
24 沖浦カルデラ (おきうら)	40° $34'$	140° 44′	67	48 田沢湖カルデラ (たざわこ)	$39^{\circ} \ 43' \ 14''$	140° 39′ 43″	149		

第7.3-2表 地理的領域内の第四紀火山における活動可能性

(中野ほか編 (2013),西来ほか編 (2012),西来ほか編 (2014)等に基づき作成)

					最後の活動	原子力施設に影響を及ぼし 動 得ろ水山(21水山)							最後の活動	原子力施設に 得る水山の	影響を及ぼし 21 水山)		
	火山名**	形式**	活動年代 [※] (千年前)		からの 経過期間	完新世に活動を	将来の活動可能性が		火山名 [※]	形式**	ĩ	舌動年代 (千年前)	*	からの 経過期間 完新世に活動を	将来の活動可能性が		
				(111)	, 	(千年間)	行った火山 (10火山)	否定できない火山 (11火山) ^{*2}				(1 + 13)			(千年間)	行った火山 (10火山)	否定できない火山 (11火山) ^{*2}
1	砂蘭部岳 (さらんべだけ)	複成火山	1,800			1,800			29	八甲田黒森 (はっこうだくろもり)	複成火山	1,750	~	1,600	1,600		
2	濁川カルデラ (にごりかわ)	カルデラー火砕流	15			15			30	人甲田八幡岳 (けっこうだけちまんだけ)	複成火山	1,800	~	1,600	1,600		
3	(はして) 渡島毛無山 (おしまけなしやま)	溶岩流	前期更新世 前半	or	前期更新世	前期更新世 後半以降			31	十和田 (とわだ)	カルデラー火砕流 溶岩ドーム	200	~	AD915	1	0	
4	北海道駒ヶ岳 (ほっかいどうこまがたけ)	複成火山	30以前 110 ^{*3}	~	AD2000	_	0		32	先十和田 (せんとわだ)	複成 (複合) 火山	620 2 530 ^{*9}	~	450	450		0
5	木地挽山 (きじびきやま)	複成火山	1, 900	or	1,900以降	約1,900			33	稲庭岳 (いなにわだけ)	複成火山	3, 000	~	2,600	2,600		
6	横津岳 (よこつだけ)	複成火山	1,100 1.710 ^{*4}	or	1,100以降 140 ^{*5}	140		0	34	七時雨山 (ななしぐれやま)	複成火山, 溶岩ドーム カルデラー火砕流	1, 100	~	900	900		
7	恵山丸山 (えさんまるやま)	複成火山	200			200			35	荒木田山 (あらきだやま)	複成火山	2, 100	~	1,900	1,900		
8	恵山 (えさん)	複成火山 溶岩ドーム	50	~	AD1874	-	0		36	高倉・黒森 (たかくら・くろもり)	複成火山	3, 200	~	2, 500	2,500		
9	銭亀 (ぜにかめ)	カルデラー火砕流	45			45			37	秋田焼山 (あきたやけやま)	複成火山 溶岩ドーム	500	~	AD1997	-	0	
10	函館山 (はこだてやま)	複成火山	1,200	~	900	900			38	八幡平火山群 (はちまんたい)	複成火山	1, 200	~	7	7	0	
11	知内 (しりうち)	複成火山 溶岩ドーム	2, 500	~	1, 400	1,400				柴倉岳		2,600	~	2, 000 ^{*10}	1 000		
12	渡島小島 (おしまこじま)	複成火山	160	~	110	110			39	(しばくらだけ)	後成(後合)火山	1, 200			1,200		
13	陸奥燧岳 (むつひうちだけ)	複成火山	1,200	~	500	500		0	40	森吉山 (もりよしざん)	複成火山 溶岩ドーム	1, 100	~	700	700		
14	大畑カルデラ (おおはた)	カルデラ	3, 000	~	1, 800	1,800			41	玉川カルデラ (たまがわ)	カルデラー火砕流	2,000	and	1,000	1,000		0
15	野平カルデラ (のだい)	カルデラ	1,900			1,900			42	岩手山 (いわてさん)	複成火山	700	~	AD1919	_	0	
16	於法岳 (おほうだけ)	複成火山	2,000			2,000			43	網張火山群 (あみはり)	複成 (複合) 火山	1,620	~	300	300		0
17	恐山 (おそれざん)	火砕丘-カルデラ 溶岩ドーム	1,300	~	20	20	O*1		44	乳頭・高倉 (にゅうとう・たかくら)	複成火山 溶岩ドーム	600	~	100	100		0
18	岩木山 (いわきさん)	複成火山 溶岩ドーム	650	~	AD1863	-	0		45	秋田駒ヶ岳 (あきたこまがたけ)	複成火山, 溶岩流 小型楯状火山	100	~	AD1971	-	0	
19	太良駒ヶ岳 (だいらこまがたけ)	複成火山	200			200			46	荷葉岳 (かようだけ)	複成火山, 溶岩流, 小型 型 橋状火山, 溶岩ドーム	2, 200	~	900	900		0
20	田代岳 (たしろだけ)	複成火山 溶岩ドーム	600	~	600以降 35~15.5 ^{*6}	$35 \sim 15.5^{*6}$		0	47	大仏岳 (だいぶつだけ)	複成火山	3, 000	~	2,100	2,100		
21	碇ヶ関カルデラ (いかりがせき)	カルデラー火砕流	2,600	~	2, 300	2, 300			48	田沢湖カルデラ (たざわこ)	カルデラ 複成火山, 溶岩ドーム	1, 800	~	1, 400	1,400		
22	三ツ森 (みつもり)	複成火山	1,900	~	1,300	1,300											
23	阿闍羅山 (あじゃらやま)	複成 (複合) 火山	1,000			1,000			*1:3	u.東庁編(2013)による活火山に該 最後の活動からの経過期間が活動期	当するため抽出 間内の最大休止期間よりも ⁵	互いとみなせるり	¢Ш				
24	沖浦カルデラ	カルデラー火砕流	1,700*7	~	1, 100*7	700*7			*3 : A	産澤ほか(2005)によれば、北海道!	駒ヶ岳起源の降下火砕物(E-	x)が洞爺火山灰	の下位に認め	られ,その年代	を 110ka と推定して	いる	
05	(ねさりち) 藤沢森	俗石トーム	900*'	~	700"	1 700			*4:r *5:\$	ヵ田・中川(2016)によれは、横津((44) 所エネルギー総合開発機構(1988)(ロのクルーフ Ιの活動は l. によれば、横津岳に含まれ・	/1MA から開始し 5熊泊山火山噴日	にとされる 占物の年代と	して 0.14±0.04M	a(フィッション・	、ラック年代)が得られてい?	5
25	(ふじさわもり) 南八田田水山群	浴宕沉	3, 500	~	1,700	1,700		0	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)								
26	(みなみはっこうだ)	複成火山	1, 100	~	300	300		0	*7:宝田・村岡 (2004) による。						*短年1 や		
27	北八甲田火山群 (きたはっこうだ)	複成火山 溶岩ドーム	400	~	0.6~0.4	0.6~0.4	0		**5:サザロ2013) によれは、プルプラ形成時期は 0.90ka、0.76kb ない 0.40kb の各中代組か 記載されているか、その活動時期を 0.90kb ~ 0.40kb と保守的に評価した (**) *9:工贏(2018) によれば、十和田淵時辺の高山溶岩・火山砕解岩で、2.53±0.07kb (k-Ar 年代)が得られている						C #T IM C /C		
28	八甲田カルデラ (はっこうだ)	カルデラー火砕流	900	~	400	400		○*8	*10: 須藤(1992) によれば、柴倉岳火山噴出物と梅森火山噴出物は識別されており、前者で2.6±0.5Maと2.0±0.2Ma, 後者で1.2±0.1Ma(K-Ar 年代)が得られている						ている		

第7.4-1表 設計対応不可能な火山事象とその噴出物の 敷地への到達可能性評価

(地理的領域内の第四紀火山の文献調査結果に基づき作成)

				設計対	す応不可能な火	山事象	
火山名		敷地から の 離隔	火砕物 溶岩流 ^常 密度流		岩屑なだれ, 地滑り及び 斜面崩壊	新しい火口 の開口	地殼変動
		(km)	1601-m DJ 内	検討対象と 501m以内	なる火山の敷地 501mm以内	からの離隔	
4	北海道駒ヶ岳 (ほっかいどうこまがたけ)	134	(7km)	- 50KIII以P1 検i	一 JOKILUPY 时不要	 O*1	0*1
6	横津岳 (よこつだけ)	118	(12km)	検言	検討不要		○*1
8	恵山 (えさん)	95	○ (4km)	検討不要		○*1	○*1
13	陸奥燧岳 (むつひうちだけ)	58) (8km)	検討不要		\bigcirc^{*1}	○*1
17	恐山 (おそれざん)	39	○ (15km)) (9km)) (15km)	○*1	○*1
18	岩木山 (いわきさん)	93) (6km)	検討不要		○*1	○*1
20	田代岳 (たしろだけ)	98	○ (12km)	検討不要		○*1	○*1
25	藤沢森 (ふじさわもり)	65	O	検討不要		\bigcirc^{*1}	\bigcirc^{*1}
26	南八甲田火山群 (みなみはっこうだ)	57	○ (13km)	検討不要		\bigcirc^{*1}	\bigcirc^{*1}
27	北八甲田火山群 (きたはっこうだ)	51	○ (10km)	検討不要		\bigcirc^{*1}	\bigcirc^{*1}
28	八甲田カルデラ (はっこうだ)	46	× (42km)	00		\bigcirc^{*1}	\bigcirc^{*1}
31	十和田 (とわだ)	66	× (100km)	検討不要		\bigcirc^{*1}	○*1
32	先十和田 (せんとわだ)	63	○ (24km)	検討不要		○*1	○*1
37	秋田焼山 (あきたやけやま)	121	○ (12km)	検討不要		○*1	○*1
38	八幡平火山群 (はちまんたい)	118	0	検討不要		\bigcirc^{*1}	○*1
41	玉川カルデラ (たまがわ)	127	○ (41km)	検討不要		○*1	0*1
42	岩手山 (いわてさん)	126	○ (20km)	検討不要		○*1	○*1
43	網張火山群 (あみはり)	127) (8km)	検討不要		○*1	○*1
44	乳頭・高倉 (にゅうとう・たかくら)	i倉 とう・たかくら) 135 © *		検言	村不要	\bigcirc^{*1}	○*1
45	秋田駒ヶ岳 (あきたこまがたけ)	駒ヶ岳 きたこまがたけ) 141 〇 (13km)		検討不要		○*1	O*1
46	荷葉岳 (かようだけ)	138	\bigcirc	検討不要		\bigcirc^{*1}	\bigcirc^{*1}

○:当該火山の活動履歴上,発生実績が認められない火山事象
 ○:当該火山の活動履歴上,発生実績は認められるが、敷地近傍への到達可能性が十分に小さい火山事象
 ×:過去の最大規模の噴火による火山噴出物が、敷地及び敷地近傍に到達した可能性のある火山事象
 ()内の距離:過去の最大規模の噴火による火山噴出物の到達距離

検討不要:敷地からの離隔による判断

*1:敷地は過去の火口及びその近傍に位置しないことによる

第7.6-1表 評価対象とする降下火砕物の選定及び諸元

	敷地と	敷地及び敷地近傍で	年代	噴出源		現状における	各降下火砕物の最大層厚		
	近日の距離	確認される 主な降下火砕物	14.11 (ka) ():該当噴火の活動時期 (○:有り、×:可能性は十分小さ				手法	敷地及び敷地近傍 最大層厚	
		十和田a	ADQ15*1	十和田 (後カルデラ期)	0	_	地質調査	約5cm以下 (バッチ状) **	
		テフラ (To-a)	AD915		Ú		文献調査	$0{ m cm} \sim 5{ m cm}^{*4*5}$	
		十和田中掫	(6.2)*2	十和田 (後カルデラ期)	0	_	地質調査	約5cm ^{※ 1}	
		テフラ(To-Cu)			Ú		文献調査	10cm以下 ^{*4*5*6}	
		甲地軽石	(280~180)	北八月田水山群	0	_	地質調査	約43cm(敷地内) ^{※2}	
		(WP)			0		文献調査	$20 \mathrm{cm} \sim 50 \mathrm{cm}^{*8}$	
		濁川テフラ	(15)*4	濁川カルデラ	×	将来の活動可能性が	地質調査	約1cm ^{※1}	
	半径 160km	(Ng)	(15)			十分に小さい火山	文献調査	ほぼなし*4	
	内	十和田八戸	(15 5)*3	十和田 (カルデラ形成期)	×	現在は後カルデラ期	地質調査	約21cm ^{※ 1}	
		テフラ(To-HP)	(15.5)		~	が継続	文献調査	$0{\rm cm}\!\sim\!10{\rm cm}^{*4*7}$	
		十和田切田	(26)*2	十和田	×	現在は後カルデラ期	地質調査	約3cm ^{※ 1}	
		テフラ(To-KR)	(30)	(カルデラ形成期)	~	が継続	文献調査	0cm~10cm*4*7	
		十和田レッド テフラ(To-Rd)	(61)*2	十和田 (カルデラ形成期)	×	現在は後カルデラ期	地質調査	約20cm (バッチ状)	
-						が継続	文献調査	$0{ m cm}{\sim}10{ m cm}^{*4*7}$	
		オレンジ テフラ(Or-P)	(約170)	十和田 (先カルデラ期)	×	現在は後カルデラ期	地質調査	約29cm	
						が継続	文献調査	30cm以下*8	
	半径 160km 外	白頭山苫小牧 テフラ	(1)*4	白頭山	0	_	地質調査	約3㎝以下 (バッチ状) *1	
各降下火砕物		(B-Tm)					文献調査	5cm~10cm*4	
の諸元		姶良Tnテフラ	(20~.28)*4	姶良カルデラ	×	現在は後カルデラ火山	地質調査	未確認	
		(AT)	(00 20)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~	の活動が継続	文献調査	$0\mathrm{cm}\sim5\mathrm{cm}^{*4}$	
		支笏第1テフラ	(44 42) *4	支笏カルデラ	×	現在は後カルデラ火山	地質調査	未確認	
		(Spfa-1)	(11 15)			の活動が継続	文献調査	0cm以上*4	
		阿蘇4テフラ	$(90\!\sim\!85)^{*4}$	阿蘇カルデラ	×	現在は後カルデラ火山	地質調査	層厚不明瞭	
						の活動が継続	文献調査	15cm以上*4	
		鬼界葛原テフラ	(95)*4	鬼界カルデラ	×	現在は後カルデラ火山	地質調査	未確認	
		(K-Tz)				の活動が継続	文献調査	$0\mathrm{cm}\sim 2\mathrm{cm}^{*4}$	
		洞爺火山灰	(115~112)*4	洞爺カルデラ	×	現在は後カルデラ火山	地質調査	約10cm	
		(Toya)		ITTAIN 2011 2		の活動が継続	文献調査	20cm~30cm*4	
		Aテフラ Bテフラ	_	給順不明	_	_	地質調査	約7cm	
				NG 105 1 1 93			文献調査	-	
	給源 不明		-	給順不明	_	_	地質調査	約11cm	
				〒11 (JR: 11) 197	_		文献調査	-	
		Cテフラ	_	給源不明	_	_	地質調査	約12cm	
							文献調査	-	
		Dテフラ	_	給源不明	_	_	地質調査	約10cm	
				NH (/R. (1 × 197)			文献調査	_	

*1:中野ほか編 (2013), *2:工藤ほか(2019), *3:工藤ほか(2011), *4:町田・新井(2011), *5: Hayakawa (1985), *6:早川(1983), *7:工藤(2005), *8:工藤ほか(2004))

※1 : 文献の等層厚線図によると敷地及び敷地近傍でも堆積が予想されるものの地質調査からは確認出来ないため、その周辺での層厚を記載 ※2 : 再堆積を含む

第7.6-2表 降下火砕物シミュレーションの主な入力パラメータ

想定 噴火規模	パ	ラメータ	単位	値	設定根拠等			
	噴	出物量	kg	8.25 \times 10 ¹²	(30) 工藤ほか (2004)の甲地軽石の噴出量: 3.3DREkm ³ ,マグマ密度:2.5t/m ³ に基づき設定			
	噴炸	亜柱高度	m	25,000	再現解析の結果に基づき設定			
	粒径	最大	ϕ $(2^{-\phi} \text{mm})$	-10 (1. 02×10 ³ mm)	Tephra2 推奨値			
		最小	ϕ $(2^{-\phi}\mathrm{mm})$	10 (9.77×10 ⁻⁴ mm)	Tephra2 推奨値			
		中央	ϕ $(2^{-\phi} \mathrm{mm})$	-3 (8mm)	再現解析の結果に基づき設定			
		標準偏差	φ	2.5	再現解析の結果に基づき設定			
	岩	片密度	t/m^3	2.6	Tephra2 推奨值			
	軽石	粒子密度	t/m^3	1.0	Tephra2 推奨値			
	渦	広散係数	m^2/s	0.04	^(5 0) 萬年(2013)に基づき設定			
	拢	散係数	m^2/s	75, 000	再現解析の結果に基づき設定			
甲地軽石	Fall Ti	me Threshold	S	3, 600	^(5 0) 萬年(2013)に基づき設定			
	給源	X 座標 (UTM : 54N)	m	489, 622				
		Y 座標 (UTM : 54N)	m	4, 500, 900	大岳山頂のUTM 座標			
		標高	m	1,584	大岳山頂の標高			
			月別平年値の	の風*	気象庁の 1981~2010 年の 30 年間の観測値 の平均をもとに算出(秋田地方気象台)			
	風	風	向の不確か	さの風	ワイオミング大学の HP 上の 1973~2018 年 の秋田地方気象台の高層気象観測データを 用いて,敷地方向の風を抽出し作成			
	標高 データ		500m メッミ	И д	国土地理院の数値地図 50m を 解析用に 500m メッシュに変換			

※ 「火山防災マップ作成指針」(内閣府ほか、2013)¹によると、シミュレーションに用いる風向・風速は、気象庁ホームページの気象庁 統計情報にある過去の気象データ検索(高層)で紹介されている月平均値を使うと良いとされており、この月平均値の風は、気象観 測統計指針(気象庁、2018)^(5,2)において「その時々の気象や天候を評価する基準」として示されている月別平年値の風に相当する。

第7.3-1図 地理的領域内の第四紀火山 (中野ほか編 (2013))に基づき作成)

測量法に基づく国土地理院長承認(使用)R1JHs1148

第7.3-2図 地理的領域内の火山地質図 (中野ほか編(2013))に基づき作成)

※到達可能性範囲は、火山を中心に過去の最大規模の噴火に伴う火砕流の最大到達距離を半径とし、円を描いた。

測量法に基づく国土地理院長承認(使用)R 1JHs 1148

第7.4-1図 十和田における過去最大規模の噴火による 火砕流堆積物の分布と到達可能性範囲 (中川ほか(1972), 土井(1993), 村岡ほか(1991), 大沢ほか (1993), 大沢・須田(1978), 町田・新井(2011), 長森ほか (2013) に基づき作成)

※到達可能性範囲は、火山を中心に過去の最大規模の噴火に伴う火砕流の最大到達距離を半径とし、円を描いた。 測量法に基づく国土地理院長承認(使用) R 1JHs 1148

第7.4-2図 八甲田カルデラにおける過去最大規模の噴火による 火砕流堆積物の分布と到達可能性範囲 (村岡・高倉(1988), 村岡ほか(1991), 大沢ほか(1993), 青森県史編さん自然部会(2001), 長森ほか(2013), 工藤ほか (2019) に基づき作成)

第7.4-3図 十和田の階段ダイアグラム及び噴火前休止期間の時間変化 (工藤ほか (2011))に基づき作成)

(各調査地点の位置は第7.4-6図及び第7.4-8図に示す)

十和田からの距離・方位

第7.4-5図(2) 巨大噴火に伴う火砕流堆積物に着目した地質柱状図 (各調査地点の位置は第7.4-6図及び第7.4-8図に示す)

(土井 (1993) 及び町田・新井 (2011) に基づき当社が作成)

第7.4-6図 十和田大不動火砕流堆積物の分布及び
 十和田切田テフラの等層厚線図
 (各調査地点の地質柱状図は第7.4-5図に示す)

露頭位置図

第7.4-7図 敷地内(Loc. 26)における十和田八戸火砕流堆積物及び十和田大不動火砕流堆積物の状況

3 - 7 - 65

(土井 (1993), 村岡ほか (1991), 大沢ほか (1993), 大沢・須田 (1978)及び町田・新井 (2011) に基づき当社が作成)

第7.4-8図 十和田八戸火砕流堆積物の分布及び
 十和田八戸テフラの等層厚線図
 (各調査地点の地質柱状図は第7.4-5図に示す)

第7.4-9図 Nakajima et al. (2001)の 地震波トモグラフィ解析結果 (Nakajima et al. (2001)に加筆)

3 - 7 - 68

第7.4-11図(1) 防災科学技術研究所 HP 上の「日本列島下の三次元地震波速度構造(海域拡大 2019 年版)」の地震波トモグラフィ解析結果

(防災科学技術研究所 HP 上の「日本列島下の三次元地震波速度構造(海域拡大 2019 年版)」地震波トモグラフィ解析結果の公開 データを基に当社が作図(解析手法等はMatsubara et al.(2019)に記載))

第7.4-11 図(2) 防災科学技術研究所 HP 上の「日本列島下の三次元地震波速度構造(海域拡大 2019 年版)」の地震波トモグラフィ解析結果

(防災科学技術研究所 HP 上の「日本列島下の三次元地震波速度構造(海域拡大 2019 年版)」地震波トモグラフィ解析結果の公開 データを基に当社が作図(解析手法等はMatsubara et al. (2019)に記載))

第7.4-12 図(1) Hi-netや東北大学等の観測点の観測データを用いた 地震波トモグラフィ解析結果

-7 - 71

 ω

第7.4-12図(2) Hi-netや東北大学等の観測点の観測データを用いた 地震波トモグラフィ解析結果

第7.4-13図 北東北における観測及びモデル化されたインダクションベクトル

(Kanda and Ogawa (2014) に加筆)

(Kanda and Ogawa (2014) に加筆)

(Kanda and Ogawa (2014) に加筆)

第7.4-15図 十和田付近における地震活動

電子基準点及び基線位置図

第7.4-16図 十和田を囲む電子基準点間の 基線長の時間変化(斜距離成分) (国土地理院の電子基準点データより作成(期間:2003年1月~2018年12月))

■水準路線

第7.4-17図 十和田付近の一等水準路線の

上下変動の期間内変動量

(国土地理院による基盤地図情報及び一等水準点検測成果収録より作成)

第7.4-18図 十和田の後カルデラ期の階段ダイアグラム

(山元 (2015) に基づき作成)

第7.4-19図 十和田毛馬内火砕流堆積物の分布及び十和田-aテフラの等層厚線図 (+和田火山防災協議会 (2018),町田・新井 (2011), Hayakawa (1985) に基づき作成)

(村岡・高倉(19 $\overset{(28)}{8}$,宝田・村岡(20 $\overset{(27)}{4}$,中野ほか編(20 $\overset{(1)}{3}$,工藤ほか(20 $\overset{(29)}{1}$, Umeda et al.(20 $\overset{(62)}{3}$,工藤ほか(20 $\overset{(30)}{4}$)に基づき作成)

第7.4-22図 八甲田第2期火砕流堆積物に着目した地質柱状図

【東北町の露頭:B01 地点】

第7.4-23図 Loc. B01 における八甲田カルデラの噴出物に着目した地質柱状図等

3 - 7 - 85

地震発生年

第7.4-26図 八甲田山付近における地震活動

(国土地理院の電子基準点データより作成(期間:1997年1月~2018年12月))

第7.4-28図 八甲田山付近の一等水準路線の

上下変動の期間内変動量

(国土地理院による基盤地図情報及び一等水準点検測成果収録より作成)

Volcano	Geological Unit*		Volume**
	Abbre	oviation	(DRE, km ³)
Odake	ODP Odake PC.		0.01
	OD	Odake L.	0.18
	SK	Shimokenashitai L.	0.27
	JN	Jigokunuma L.	0.02
	SY	Sukayu L.	0.22
	KΤ	Kotakisawa L.	0.09
	SM	Shimoyu L.	0.17
	AR	Arakawa L.	0.11
	JG	Jougakura L.	0.19
		Total	1.3
Idodake	HS	Hinangoya SF.	0.001
	IDE	Idodake Summit EB.	0.001
	IDD	Idodake Summit LD.	0.004
	ID	Idodake LP.	0.25
		Total	0.25
Kodake	KD	Kodake L.	0.45
lwodake	IW	lwodake LP.	0.23
	ST	Sakasatai L.	0.11
	ΚZ	Kozawa L.	0.09
		Total	0.43
Sen-nintai	SN	Sen-nintai LP.	0.51
Akakuradake	AK4	Akakuradake 4th-stage LP.	0.002
	AK3	Akakuradake 3rd-stage LP.	0.11 (0.02)
	AK2	Akakuradake 2nd-stage LP.	0.79 (0.23)
	AK1	Akakuradake 1st-stage LP.	0.39 (0.08)
		Total	1.6
Narusawadaichi	ND	Narusawadaichi LP.	1.3 (0.09)
		Total	1.4
Maedake	MD	Maedake LP.	0.88
	NS	Narusawa L.	0.03
		Total	0.91
Tamoyachidake	TM	Tamoyachidake L.	2.9
	KS	Kansuizawa PFL.	0.02
		Total	2.9
Takada-Odake	TDU	Takada-Odake upper LP.	0.003
	TD	Takada-Odake LP.	3.2
		Total	3.2
Hinadake	HD	Hinadake LP.	2.1
Debris	YDA	Akakuradake Younger DA.	0.03
Avalanche	ODA	Akakuradake Older DA.	0.40
Total			15

北八甲田火山群起源の噴出物

起源の噴出物 北八甲田火山群起源の設計対応不可能な火山事象の分布(赤線内)第7.4-29図 北八甲田火山群起源の設計対応不可能な火山事象の分布

(工藤ほか (2004) に加筆)

第7.4-30図 南八甲田火山群起源の設計対応不可能な火山事象の分布

(第四紀火山の位置及び名称は、中野ほか編(2013⁽¹⁾に基づき作成) (降下火砕物の名称及び等層厚線は、町田・新井(2011⁽⁹⁾,工藤ほか(2004⁽³⁰⁾及びリサイクル燃料貯蔵株式会社(2007⁽⁶⁾に基づき作成)

第7.6-1図 地理的領域内の第四紀火山起源の主な降下火砕物の分布 (敷地及び敷地近傍に分布する主な降下火砕物については地理的領域外のものも併せて示す)

(町田・新井 (2011))に基づき作成)

第7.6-2図 地理的領域外の第四紀火山起源の主な降下火砕物の分布 (敷地及び敷地近傍に分布する主な降下火砕物)

年代 (ka)	活動期,火山名		主要噴出物名	噴出量 (DRE km ³)	参考文献
AD.2000	後カル	有珠山	2000年噴火 1663年噴火(Us−b)	3.0	
20ka デ		有珠外輪山溶岩 等		中野ほか編(2013) ⁽¹⁾ 町田-新井(2011)(9)	
30ka 山		洞爺中島	中島火山噴出物	4.2	町田・新井(2011)® 曽屋ほか(2007) ⁽⁶⁷⁾
401/2	カ 火ルデラ	洞爺カルデラ	洞爺火砕流 洞爺火山匹 [※]	100	中川はか(2005)(189) 第四紀火山カタログ委員 会編(1999)(5)
140ka					

洞爺カルデラ・洞爺中島・有珠山の活動履歴

※町田・新井 (2011)⁽⁹⁾によると,

11.2~11.5万年前に噴出したテフラとしている。

第7.6-3図 洞爺カルデラの階段ダイアグラム

ボーリング 孔名	層厚	確認深度 (確認標高)	備考
KP-1 孔	43cm	2.90m∼3.33m (50.46m∼50.89m)	・火山灰質シルト(甲地軽石の再堆積含む)22cm ・甲地軽石(主部)21cm
B-3 孔	37cm	8.57m∼8.94m (50.98m∼51.35m)	 ・火山灰質シルト(甲地軽石の再堆積含む)5 c m ・甲地軽石(主部)32 c m
KP-3 孔	—	_	シルト質砂層中に散在(深度:3.50m~3.72m, 標高:51.53m~51.75m)するため層厚評価不適
<u>N2</u> -2'孔	—	—	砂層中に散在(深度:3.90m~3.92m, 標高:51.60m~51.62m)するため層厚評価不適
J-2 孔	10cm	3.60m∼3.70m (51.48m∼51.58m)	
KP-4 FL	17cm	2. 21m∼2. 38m (53. 06m∼53. 23m)	
N7-4 FL	16cm	7.50m~7.66m (53.37m~53.53m)	

敷地内で確認した甲地軽石の層厚

甲地軽石を確認した敷地内ボーリング調査位置図

第7.6-4図 甲地軽石に着目した地質調査結果

第7.6-5図 再堆積を含む甲地軽石の層厚が最大である KP-1 孔のボーリングコア写真とCT画像

敷地境界

第7.6-6図 再現解析における最も再現性が良い解析結果

層厚 (cm) 質量 (kg/m²) 8.4 \times 10¹ 8.4 × 10^{0} 6. 1 × 10¹ 6. 1×10^{0} 8.8 × 10^{1} 8.8×10⁰ 1.1×10^{2} 1.1×10^{1} 1.3×10^{2} 1.3 × 10¹ 1.1×10^{2} 1.1×10^{1} 6.7 × 10¹ 6.7 × 10⁰ 9.3 × 10¹ 9.3 × 10⁰ 2. 5 × 10^2 2.5 × 10¹ 2.5 × 10^{2} 2.5 × 10¹ 1.9×10^{2} 1.9×10^{1} 1.3×10^{2} 1.3×10^{1}

月別平年値(9時)の風の際の敷地での層厚 (1981~2010年)

第7.6-7図(1) 降下火砕物シミュレーションの解析結果(月別平年値の風:9時)

第7.6-7図(2) 降下火砕物シミュレーションの解析結果(月別平年値の風:21時) 層厚 (cm)

8.9 × 10⁰

6.5 \times 10⁰

8.6 \times 10⁰

 1.1×10^{1}

1.3 \times 10¹

9.9 \times 10⁰

6.0 × 10⁰

9.0 \times 10⁰

2.3 × 10¹

2. 4×10^{1}

1.8 \times 10¹

 1.3×10^{1}

第7.6-8図 降下火砕物シミュレーションの解析結果 (風向の不確かさの考慮)

試 料 名 試料1 試料2 試料3 平 均 乾燥密度 g∕cm³ 0.42 0.36 0.50 0.43 湿潤密度 g∕cm³ 1.14 1.20 1.14 1.16 g∕cm³ 飽 和 密 度 1.21 1.30 1.25 1.25

敷地

──KP-1 試料採取位置)

KP-1孔との位置関係

1m

(₽−1(本孔)

試料1(KP-1別孔1)
試料2(KP-1別孔2)
試料3(KP-1別孔3)

試料採取位置

I DECEMBER

CT 画像設定:

WL:500 WW:2000

スライス厚:0.5mm

試料 1

-3.30m

密度試験に用いた供試体の写真

第7.6-9図 甲地軽石の密度試験結果

8. 津 波

8.1 評価概要

8.1.1 施設の立地的特徴

評価対象施設である安全上重要な施設等の設置される敷地は、標高約55m及び海岸からの距離約5kmの地点に位置している。敷地の概況を第8.1-1図に示す。

8.1.2 津波評価方針

太平洋側沿岸及び尾駮沼沿いに安全上重要な施設等に該当する取水設備 は設置していないことを踏まえ、津波評価は水位上昇側のみ行う。

津波評価に当たっては、まず、既往知見を踏まえた津波の評価を行い、 想定される津波の規模観について把握した上で、施設の安全性評価として、 すべり量が既往知見を大きく上回る波源モデルによる検討を行い、津波が 安全上重要な施設等の設置される敷地に到達する可能性がないことを確認 する。

津波の到達可能性について検討する敷地高さについては,安全上重要な 施設等の設置位置の標高を踏まえ,標高 55mとする。なお,津波評価結 果と対比する場合には,標高に係る表記を「T.M.S.L.」とする。 8.2 既往津波に関する検討

8.2.1 文献調査

8.2.1.1 既往津波

敷地周辺に影響を及ぼしたと考えられる既往津波について,宇佐美ほか (2013),渡辺(1998)等により,文献調査を行った。

(1) 近地津波

敷地周辺に影響を及ぼしたと考えられる津波規模m(宇佐美ほか (2013))が2以上の主な既往の近地津波を第8.2-1表に,敷地周辺 における主な既往の近地津波の津波高を第8.2-2表に示す。また,主 な既往津波高とその位置を第8.2-1図に示す。

これらより,敷地周辺に影響を及ぼしたと考えられる主要な津波として,津波の大きさ,波源からの伝播距離及び津波による被害の大きさを 考慮すると,1611年の津波,1677年の津波,1856年の津波,1896年明 治三陸地震津波,1933年昭和三陸地震津波,1968年十勝沖地震に伴う 津波及び 2011年東北地方太平洋沖地震に伴う津波の7つの津波を抽出 した。これらの津波の推定波源域を第8.2-2図に示す。

2011 年東北地方太平洋沖地震に伴う津波以前において,敷地周辺に おける主な既往の近地津波の津波高を比較すると,第 8.2-2表に示す とおり,敷地南方においては,1968 年十勝沖地震に伴う津波が三沢市 塩釜で 5.1m,八戸市河原木で最大で 4.8mであり,他の津波に比較し て大きい。一方,敷地北方においては,1856 年の津波が,むつ市大 畑・湊で4m,函館市函館で3mであり,他の津波に比較して大きい。 さらに,相田 (1977) によれば,第 8.2-3回に示すように,数値シミ ュレーションによる 200m等深線上の波高を基にした,海岸での平均的 な津波高が示されている。これによると,八戸付近より北方においては

3 - 8 - 3

1856 年の津波が最大となっている(相田 (1977)以降の津波を除く)。

一方,2011 年東北地方太平洋沖地震に伴う津波高は,第8.2-2表及 び第8.2-1 図に示すとおり,敷地近傍の出戸から新納屋の範囲におい ては,1968 年十勝沖地震に伴う津波とほぼ同程度の津波高である。

以上より,敷地近傍に大きな影響を及ぼしたと考えられる近地津波は, 1856年の津波,1968年十勝沖地震に伴う津波及び2011年東北地方太平 洋沖地震に伴う津波と評価した。

(2) 遠地津波

敷地周辺に影響を及ぼした主な既往の遠地津波を第8.2-3表に,敷 地周辺における主な既往の遠地津波の津波高を第8.2-4表に示す。

敷地周辺に来襲した遠地津波の中では,1960 年チリ地震津波が八戸 市河原木で最大で 5.3mであり,敷地近傍の出戸から新納屋の範囲にお ける津波高は,尾駮で1.0mが記録されている。

以上より,敷地近傍に影響を及ぼしたと考えられる遠地津波は,1960 年チリ地震津波であるが,近地津波の津波高を上回るものではないと評 価した。

(3) 既往津波の評価

既往津波に関する文献調査の結果,敷地近傍に大きな影響を及ぼした と考えられる既往津波は,1856年の津波,1968年十勝沖地震に伴う津 波及び2011年東北地方太平洋沖地震に伴う津波と評価した。

8.2.1.2 潮 位

敷地近傍における潮位の観測は、国土交通省港湾局むつ小川原港で実施 されている。2008 年4月から 2013 年3月までの観測結果によると潮位は 以下のとおりである。

最高潮位	T.M.S.L.+0.999m
朔望平均満潮位	T.M.S.L.+0.670m
平均潮位	T.M.S.L.+0.049m
朔望平均干潮位	T.M.S.L0.767m
最低潮位	T.M.S.L1.04m

8.2.2 既往津波の再現性の確認

8.2.2.1 対象津波

解析モデル及び計算方法の妥当性確認のため,既往津波について数値シ ミュレーションを行い,計算結果と実際の津波痕跡高との比較による既往 津波の再現性の検討を行った。

再現性の検討においては,過去に敷地近傍に大きな影響を及ぼしたと考 えられる津波である 1856 年の津波,1968 年十勝沖地震に伴う津波及び 2011 年東北地方太平洋沖地震に伴う津波を対象とした。これらの波源モ デルのうち,1856 年の津波及び 1968 年十勝沖地震に伴う津波の波源モデ ルの位置及び諸元を第 8.2-4 図に示す。2011 年東北地方太平洋沖地震に 伴う津波の波源モデルについては,内閣府(2012) において示される波源 モデルとした。

津波に伴う水位変動の評価は,弾性体理論(Mansinha and Smylie(1971))に基づき海面変位を算定した上で,非線形長波理 論に基づき,差分法による平面二次元モデルによる津波シミュレーション プログラムを用いて実施した。また,敷地は尾駮沼に隣接していることか ら,尾駮沼からの遡上を考慮できるモデルを設定した。数値シミュレーシ ョンにおける主な計算条件を第8.2-5表に示す。

沿岸域及び海底地形のモデル化に当たっては,国土地理院,日本水路協会(2011)等を用いて設定し,また,計算格子分割の設定に当たっては, 土木学会(2016)を参考とし,水深と津波の周期から推定される津波の波 長を基に,最大 1,440mから最小5mまでの格子サイズを設定した。数値 シミュレーションに用いた計算領域(東西約 1,000 km, 南北約 1,300 km)とその水深及び格子分割を第 8.2-5 図に,敷地 近傍の計算領域とその水深及び格子分割を第 8.2-6 図に示す。

3 - 8 - 6

再現性の評価指標としては、相田(1977)による既往津波高と数値シミュレーションにより計算された津波高との比から求める幾何平均値K及びばらつきを表す指標 κ を用い、土木学会(2016)に示される「0.95<K<1.05、 κ <1.45」を再現性の目安とした。

8.2.2.2 検討結果

既往津波高と数値シミュレーションによる津波高の比較を第8.2-7図に示す。

1856 年の津波においてはK=1.01, $\kappa = 1.42$ (n = 71), 1968 年十勝 沖地震に伴う津波においてはK=0.99, $\kappa = 1.44$ (n = 313) 及び 2011 年 東北地方太平洋沖地震に伴う津波においてはK=0.952, $\kappa = 1.36$ (n = 660) が得られ,土木学会 (2016) の目安を満足していることから,解析 モデル及び計算方法の妥当性を確認した。
8.3 既往知見を踏まえた津波の評価

8.3.1 地震に起因する津波の評価

8.3.1.1 対象とする地震

地震に起因する津波の評価においては,敷地に影響を与える可能性があ る津波の波源として,プレート間地震,海洋プレート内地震及び海域の活 断層による地殻内地震について検討した。

8.3.1.2 数値シミュレーションの手法

数値シミュレーションにおける主な計算条件,計算領域,水深及び格子 分割については,第 8.2-5表,第 8.2-5図及び第 8.2-6図に示す既 往津波の再現性の確認と同様の条件とした。

評価位置については、尾駮沼の形状を踏まえ、第 8.3-1図に示す尾駮沼 奥の地点を選定した。また、尾駮沼入り口前面には防波堤が設置されてい ることから、防波堤を考慮して検討を行った。

さらに,津波による影響を評価するに当たっては,朔望平均満潮位及び 地殻変動量を考慮した津波高について評価することとした。

8.3.1.3 プレート間地震に起因する津波の評価

プレート間地震は、地震調査委員会(2012)⁽¹⁶⁾で示されている三陸沖北部 のプレート間地震、津波地震及び 2011 年東北地方太平洋沖地震で得られ た知見を踏まえ、三陸沖北部と隣り合う領域の連動を考慮した連動型地震 について検討した。

連動型地震については,三陸沖北部から北方の千島海溝沿いの領域への 連動を考慮した連動型地震(以下「北方への連動型地震」という。)及び 三陸沖北部から南方の日本海溝沿いの領域への連動を考慮した連動型地震 (以下「南方への連動型地震」という。)が考えられるが,ここでは北方 への連動型地震の波源モデルを設定して検討を実施する。一方,南方への 連動型地震については青森県海岸津波対策検討会(2012)の結果を参照する。なお、南方への連動型地震については地震調査委員会(2019)の知見もあるが、敷地前面の三陸沖北部に超大すべり域及び大すべり域を設定した青森県海岸津波対策検討会(2012)の方が敷地への影響は大きいと評価した。

(1) 基本モデル

a. 三陸沖北部のプレート間地震

三陸沖北部のプレート間地震の波源モデルについては、1856 年の津 波が古記録より推定されていることから、同一海域で発生し各地の津波 高が数多く観測されている 1968 年十勝沖地震に伴う津波を対象とする こととし、前述の既往津波を再現する波源モデルをもとに、地震規模が 既往最大のM_w8.4 となるようにスケーリング則に基づき設定した。第 8.3-2 図に示す波源モデルの位置及び諸元に基づき実施した数値シミ ュレーションの結果、評価位置における津波高はT.M.S.L.+1.38m であった。

b. 津波地震

津波地震の波源モデルについては、土木学会(2002) で示されている
1896 年明治三陸地震津波の波源モデル(地震規模は既往最大のM_w8.3)
を設定した。第8.3-3図に示す波源モデルの位置及び諸元に基づき実施
した数値シミュレーションの結果、評価位置における津波高は
T.M.S.L.+1.28mであった。

c. 北方への連動型地震

北方への連動型地震の波源モデルについては,日本海溝・千島海溝周 辺海溝型地震に関する専門調査会(2006),文部科学省測地学分科会 (2014)及び地震調査委員会(2017)を参考に,敷地前面の三陸沖北部 から根室沖までの領域を想定波源域として設定した。

波源モデルの設定に当たり、断層面積は地震調査委員会(2004) 及び 地震調査委員会(2012) を参考にプレート面形状を設定した上で算定し た。波源モデルの平均すべり量については、地震の規模に関するスケー リング則と地震モーメントの定義式から算定し、その際の平均応力降下 量については内閣府(2012) を参考に 3.0MP a と設定し、剛性率につ いては土木学会(2016) を参考に 5.0×10¹⁰N/m²と設定した。

すべり量の不均質性については、内閣府(2012)²を参考に、超大すべ り域及び大すべり域のすべり量をそれぞれ平均すべり量の4倍、2倍に、 面積をそれぞれ全体面積の5%程度、15%程度(超大すべり域と合わせ て 20%程度)となるように設定した。超大すべり域の位置については、 基本的には三陸沖北部及び十勝沖・根室沖の領域にそれぞれ存在すると 想定されるが、保守的に敷地前面の三陸沖北部にひとつにまとめ、内閣 府(2012) 及び青森県海岸津波対策検討会(2012)³⁵⁾を参考にプレート境 界浅部のすべりが大きくなるよう配置した。大すべり域の位置は超大す べり域を取り囲むように配置した。

さらに、上述のとおり設定したモデルに対し、超大すべり域及び大す べり域を考慮した平均応力降下量が約3MPaとなるように地震モーメ ント(すべり量)の調整を行い、Mw9.04のモデルを設定した。また、 ライズタイムについては60秒とした。

第8.3-4図に示す波源モデルの位置及び諸元に基づき実施した数値 シミュレーションの結果,評価位置における津波高はT.M.S.L.+ 2.32mであった。

(2) 不確かさの考慮に係る評価

三陸沖北部のプレート間地震, 津波地震及び北方への連動型地震のうち,

評価位置における津波高が最大となる北方への連動型地震について,波源 特性,波源位置及び破壊開始点の不確かさを考慮し評価を実施した。さら に,不確かさの考慮において評価位置における津波高が最大となるケース と,南方への連動型地震である青森県海岸津波対策検討会(2012)の結果 の比較を行い,津波高の高いケースをプレート間地震に起因する津波の 最大ケースとして評価した。

波源特性の不確かさについては、すべり量の不確かさを考慮したすべ り量割増モデル及びすべり分布の不確かさを考慮した海溝側強調モデル を設定した。第8.3-5図に示す波源モデルの位置及び諸元に基づき実 施した数値シミュレーションの結果、評価位置における津波高は、すべ り量割増モデルでT.M.S.L.+3.01m,海溝側強調モデルで T.M.S.L.+3.00mであった。

波源位置の不確かさについては、すべり量割増モデル及び海溝側強調 モデルのそれぞれについて、北へ約 50km移動させたケース並びに南 へ約 50km,約 100km及び約 150km移動させたケースを設定した。 数値シミュレーションを実施した結果、評価位置における津波高が最大 となるのは、すべり量割増モデルを南に約 100km移動させたケースで、 T.M.S.L.+3.65mであった。

破壊開始点の不確かさについては,波源位置を変動させた検討におい て評価位置における津波高が最大となるすべり量割増モデルを南に約 100km移動させたケースについて,内閣府(2012)を参考に複数設定 した。第8.3-6図に示す位置で破壊開始点を設定し数値シミュレーシ ョンを実施した結果,評価位置における津波高が最大となるのは,破壊 開始点としてP6を設定したケースで,T.M.S.L.+4.00mであった (第8.3-7図参照)。 南方への連動型地震については,青森県海岸津波対策検討会(2012) によると,六ヶ所村沿岸に来襲する津波高について,敷地近傍においては T.M.S.L.+10mに達しておらず(第8.3-8図参照),公表された浸 水深分布からも,安全上重要な施設等の設置される敷地に津波は到達し ていないことが確認できる(第8.3-9図参照)。一方,北方への連動 型地震は,第8.3-7図に示すとおり,敷地近傍の海岸線上における津 波高はT.M.S.L.+10m以上であり,北方への連動型地震に起因す る津波が南方への連動型地震に起因する津波を上回る結果であった。

以上より、プレート間地震に起因する津波について、評価位置における津波高が最大となるのは、北方への連動型地震のすべり量割増モデル を南に約 100km移動させ破壊開始点をP6と設定したケースであり、 その津波高は評価位置においてT.M.S.L.+4.00mであった。

(3) 尾駮沼の固有周期に係る検討

評価位置は尾駮沼の奥に位置していることから,評価位置における津 波高の算出に当たり,尾駮沼の固有周期の影響が数値シミュレーション に反映されていることを確認するため,尾駮沼の固有周期に係る検討を 実施した。

尾駮沼の固有周期を確認するため,第8.2-6回に示す敷地近傍の計 算領域において,周期を変化させた正弦波を入力し,評価位置における 水位増幅率を求めた結果を第8.3-10回に示す。沖合い位置に対する評 価位置の水位増幅率は,15分程度の周期帯においてピークを示し,そ れ以外の周期帯については減衰していることから,尾駮沼の固有周期は 15分程度であると評価した。

次に,第8.3-7図に示すケースの数値シミュレーションによる水位 変動量時刻歴波形を用いて周波数分析を実施した結果を第8.3-11図に 示す。評価位置において 15 分程度の周期帯が卓越しており,正弦波入 力による検討で評価した尾駮沼の固有周期の影響を捉えていることを確 認した。

なお,尾駮沼の固有周期を踏まえ,数値シミュレーションで設定して いる格子間隔の妥当性について検討した結果,第8.3-12 図に示すとお り,格子間隔が土木学会(2016)により算定される格子間隔の目安に対 して十分小さいことを確認した。

以上のことから,評価位置における津波高の結果には,数値シミュレ ーションにより尾駮沼の固有周期の影響が反映されていると評価した。 8.3.1.4 海洋プレート内地震に起因する津波の評価

海洋プレート内地震は、地震調査委員会(2012)で示されている正断層型の地震について検討した。

海洋プレート内地震の波源モデルについては、土木学会(2002) で示さ れている 1933 年昭和三陸地震津波の波源モデルをもとに、地震規模が既 往最大のM_w8.6 となるようにスケーリング則に基づき設定した。第8.3-13 図に示す波源モデルの位置及び諸元に基づき実施した数値シミュレー ションの結果、評価位置における津波高はT.M.S.L.+1.35mであった。

以上を踏まえると,海洋プレート内地震に起因する津波は,プレート間 地震に起因する津波を上回るものではない。

8.3.1.5 海域の活断層による地殻内地震に起因する津波の評価

海域の活断層による地殻内地震に起因する津波の評価を行うに当たり, 第8.3-14 図に示す敷地周辺海域の活断層について,阿部(1989)の簡易 予測式により推定津波高を検討した。

簡易予測式による推定津波高を第8.3-1表に示す。海域の活断層による地殻内地震に起因する津波の推定津波高は最大でも0.3mであり、プレ

ート間地震に起因する津波と比べて影響は非常に小さい。

8.3.2 地震以外の要因に起因する津波の評価

8.3.2.1 地すべり等に起因する津波の評価

(1) 対象地すべりの選定

文献調査によると,敷地周辺における陸上及び海底の地すべり並びに 斜面崩壊による歴史津波の記録は知られていない。また,陸上地すべり について,防災科学技術研究所(2009)及び防災科学技術研究所 (2013)によると,敷地周辺陸域の海岸付近において大規模な地すべり 地形は認められない。加えて,海底地すべりについても,徳山ほか (2001)によると,敷地周辺海域には海底地すべり地形は認められない。

一方,下北半島太平洋側前面海域の大陸棚部付近を対象に海底地形調 査を実施した結果,複数の地すべり地形が抽出されたことから,抽出さ れた地すべり地形に基づく数値シミュレーションにより敷地への影響を 評価した。抽出された海底地すべり地形を第8.3-15 図に示す。

抽出された海底地すべり地形のうち,地すべり地形の崩壊規模から数 値シミュレーションの対象とする地すべりとしてSLS-2を選定し, 地すべり前の海底地形を復元した。海底地すべり地形の断面を第8.3-16 図に示す。

(2) 海底地すべりの数値シミュレーションの手法

海底地すべりの数値シミュレーションの手法としては、二層流モデル (Maeno and Imamura $(2007)^{(40)}$)及びKinematic landslideモデル(佐竹・加藤 $(2002)^{(41)}$)を用いた。

数値シミュレーションに用いた計算領域とその水深及び格子分割を第 8.3-17 図に,主な計算条件を第8.3-2表に示す。

(3) 評価結果

数値シミュレーションの結果,評価位置前面における津波高は,二層

流モデルで 0.07m, Kinematic landslideモデル で 0.20mであり、プレート間地震に起因する津波と比べて影響は非常 に小さい。

8.3.2.2 火山現象に起因する津波の評価

文献調査によると,敷地周辺に大きな影響を及ぼした,火山現象による 歴史津波の記録は知られていないことから,火山現象に起因する津波につ いては,影響は極めて小さいと評価した。 8.3.3 まとめ

既往知見を踏まえた津波の評価として、地震及び地震以外の要因に起因 する津波について評価を行った結果、評価位置における津波高が最大とな るのは、プレート間地震に起因する津波のうち、北方への連動型地震のす べり量割増モデルを南に約 100km移動させ破壊開始点をP6と設定した ケースであり、想定される津波の規模観は評価位置においてT.M.S.L. +4.00m程度であった。なお、地震以外の要因に起因する津波の影響は非 常に小さいことから、地震に起因する津波との重畳を考慮したとしても想 定される津波の規模観への影響はない。

- 8.4 施設の安全性評価
- 8.4.1 評価概要

既往知見を踏まえた津波の評価の結果,津波の規模観は評価位置においてT.M.S.L.+4.00m程度と把握できた。そこで,安全上重要な施設等の設置される敷地に津波が到達する可能性がないことを確認するため,すべり量が既往知見を大きく上回る波源モデルによる検討を実施した。

なお、本評価においては、防波堤を考慮せずに検討を実施した。

8.4.2 波源モデルの設定

すべり量が既往知見を大きく上回る波源モデルの設定に当たっては,国 内外の巨大地震のすべり量に関する文献調査を実施した。

内閣府(2012), 杉野ほか(2014)等による文献調査の結果, 既往の巨 大地震及び将来予測のモデルにおける最大すべり量については, 内閣府 (2012)の最大のモデルで60~70m程度であった。

そこで、本評価においては、すべり量が既往知見を大きく上回る波源モ デルとして、既往知見を踏まえた津波の評価において津波高が最も高いケ ースの波源モデル(第8.3-6図参照)の各領域のすべり量を3倍にした モデル(以下「すべり量3倍モデル」という。)を設定した。既往知見と すべり量3倍モデルのすべり量を比較した結果を第8.4-1表に、すべり 量3倍モデルの波源モデルの位置及び諸元を第8.4-1図に示す。 8.4.3 評価結果

すべり量3倍モデルによる検討結果を第8.4-2図に示す。すべり量が 既往知見を大きく上回る波源モデルによる検討の結果,津波は,到達可能 性について検討する敷地高さとして設定した標高55mには到達していな いことから,安全上重要な施設等の設置される敷地に到達する可能性はな い。また,津波が再処理施設の海洋放出管を経路として安全上重要な施設 等の設置される敷地に到達する可能性もない。

- 8.5 参考文献一覧
 - (1) 宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律子.日本被害地震総覧 599-2012.東京大学出版会,2013.
 - (2) 渡辺偉夫. 日本被害津波総覧 [第2版]. 東京大学出版会, 1998.
 - (3) 気象庁. "各種データ・資料". 気象庁ホームページ.
 http://www.jma.go.jp/jma/menu/menureport.html,
 (参照 2014-08-18).
 - (4) 国立天文台編. 平成 26 年 理科年表 机上版 第 87 冊. 丸善出版,2014.
 - (5) 羽鳥徳太郎. "三陸沖歴史津波の規模の再検討". 津波工学研究報告. 東北大学災害科学国際研究所(津波工学研究分野), 2000, 第 17 号.
 - (6) 中央気象台. 昭和八年三月三日三陸沖強震及津波報告. 験震時報, 1933, 第7巻, 2号別刷.
 - (7) 伊木常誠. "三陸地方津浪実況取調報告". 震災予防調査会報告, 1897, 第11号.
 - (8) 松尾春雄. "三陸津浪調査報告". 内務省土木試験所報告, 1933, 第 24 号.
 - (9) 松尾春雄. "三陸津浪調査報告(追加)". 内務省土木試験所報告, 1934, 第27号.
 - 10) 地震研究所. "昭和8年3月3日三陸地方津浪に関する論文及報告".
 東京帝国大学地震研究所彙報, 1934, 別冊第1号.
 - (11) 岸力. "1968 年十勝沖地震調査報告 津波-北海道東北沿岸-".
 1968 年十勝沖地震調査報告, 1968 年十勝沖地震調査委員会編, 1969.
 - (12) 東北大学大学院工学研究科附属災害制御研究センター. "第2編 調査報告". 津波工学研究報告,東北大学災害科学国際研究所(津波工)

学研究分野), 2004, 第21号.

(13) 東北地方太平洋沖地震津波合同調査グループ. "調査情報".東北地 方太平洋沖地震津波情報.http://www.coastal.jp/ttjt/,

(参照 2014-09-01).

- (14) チリ津波合同調査班. "津波の高さの測定方法および基準並に最高波 来襲時刻について". 1960年5月24日チリ地震津波に関する論文及 び報告. 東京大学地震研究所, 1961.
- (b) 気象庁. "第2章 各地の踏査および調査報告". 昭和35年5月24日チリ地震津波調査報告. 気象庁技術報告, 1961, 第8号.
- (16) 地震調査研究推進本部地震調査委員会.三陸沖から房総沖にかけての
 地震活動の長期評価(第二版)について.地震調査研究推進本部,
 2012.
- (17) 相田勇. "三陸沖の古い津波のシミュレーション". 東京大学地震研 究所彙報, 1977, 第 52 号.
- (18) 今村文彦,高橋重雄,藤間功司,富田孝史,有川太郎. "2010年チ リ地震津波の被害調査報告".土木学会附属土木図書館ホームページ 震災報告デジタルアーカイブ.

http://www.jsce.or.jp/library/eq_repo/Vol3/13/Chile.html, (参照 2014-09-01) .

- (1) 都司嘉宣,大年邦雄,中野晋,西村裕一,藤間功司,今村文彦,柿沼 太郎,中村有吾,今井健太郎,後藤和久,行谷佑一,鈴木進吾,城下 英行,松崎義孝. "2010年チリ中部地震による日本での津波被害に 関する広域現地調査".土木学会論文集 B2(海岸工学),2010, Vol. 66, No. 1.
- (20) 都司嘉宣,上田和枝,佐竹健治. "日本で記録された1700年1月

(元禄十二年十二月)北米巨大地震による津波".地震,1998,第2輯,第51巻.

- (21) 河田恵昭,小池信昭,嘉戸重仁,井上雅夫. "わが国沿岸部における 遠地津波の伝播特性について".海洋工学論文集,1998,第45巻.
- (2) 後藤智明,小川由信. Leap-frog法を用いた津波の数値計算法.東北 大学工学部土木工学科, 1982.
- (23) 小谷美佐,今村文彦,首藤伸夫. "GIS を利用した津波遡上計算と 被害推定法". 海岸工学論文集, 1998,第45巻.
- (24) 本間仁. "低溢流堰堤の流量係数". 土木学会誌, 1940, 第26巻.
- (25) L. Mansinha; D. E. Smylie. "The displacement fields of inclined faults". Bulletin of the seismological Society of America, 1971, Vol. 61, No. 5.
- (3) 土木学会原子力土木委員会津波評価部会.原子力発電所の津波評価技術.土木学会,2002.
- (27) 内閣府. "南海トラフの巨大地震モデル検討会(第二次報告)津波断層モデル編-津波断層モデルと津波高・浸水域等について-".内閣府ホームページ.

http://www.bousai.go.jp/jishin/nankai/model/index.html, (参照 2015-12-02) .

- (28) 日本水路協会.日本近海 30 秒グリッド水深データ第二版
 M1406-M1508. Ver2.0.0,海洋情報研究センター,2011-08-04,
 (CD-ROM).
- (29) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7009 (Ver.2.0), M7010 (Ver.2.0).海洋情報研究センター,
 2008, (CD-ROM).

- (30) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7006 (Ver.2.1).海洋情報研究センター,2009, (CD-ROM).
- (31) 日本水路協会.海底地形デジタルデータ M7000 シリーズ
 M7004 (Ver.2.2), M7005 (Ver.2.2), M7007 (Ver.2.1). 海洋
 情報研究センター, 2012, (CD-ROM).
- (22) 海上保安庁. "東北沖海底地形データセット".海上保安庁海洋情報部, (入手 2014-09-18).
- (33) IHO・IOC. "大洋水深総図". General Bathymetric Chart of the Oceans ホームページ. http://www.gebco.net/ ,
 (入手 2014-09-25).
- (34) 国土地理院. "基盤地図 10m メッシュ(標高)". 基盤地図情報ダウンロードサービス. 国土地理院ホームページ.
 https://fgd.gsi.go.jp/download/, (入手 2014-09-25).
- (5) 青森県海岸津波対策検討会. "第4回青森県海岸津波対策検討会資料".青森県庁県土整備部河川砂防課.青森県庁ホームページ. http://www.pref.aomori.lg.jp/kotsu/build/tunami-kentokai.html, (参照 2014-09-01).
- (36) 阿部勝征. "地震と津波のマグニチュードに基づく津波高の予測".東京大学地震研究所彙報, 1989, Vol. 64.
- (37) 防災科学技術研究所.地すべり地形分布図第42集「野辺地・八戸」.防災科学技術研究所研究資料,2009,第329号.
- (38) 防災科学技術研究所.地すべり地形分布図第54集「浦河・広尾」.防災科学技術研究所研究資料,2013,第382号.
- (39) 徳山英一,本座栄一,木村政昭,倉本真一,芦寿一郎,岡村行信,荒戸裕之,伊藤康人,徐垣,日野亮太,野原壯,阿部寛信,坂井眞一,

向山建二郎. "日本周辺海域中新世末期以降の構造発達史". 海洋調 査技術, 2001, vol. 13, No. 1.

- (40) Fukashi Maeno; Fumihiko Imamura. "Numerical investigations of tsunamis generated by pyroclastic flows from the Kikai caldera, Japan". Geophysical Research Letters, AGU Publications, 2007, Vol. 34, L23303.
- (4) 佐竹健治,加藤幸弘. "1741 年寛保津波は渡島大島の山体崩壊によって生じた". 号外 海洋,海洋出版株式会社,2002, 号外 28.
- (4) 杉野英治,岩渕洋子,橋本紀彦,松末和之,蛯澤勝三,亀田弘行,今
 村文彦. "プレート間地震による津波の特性化波源モデルの提案".
 日本地震工学会論文集,2014,第14巻,第5号.
- (43) Jean M. Johnson; Kenji Satake. "Asperity Distribution of the 1952 Great Kamchatka Earthquake and its Relation to Future Earthquake Potential in Kamchatka". Pure and Applied Geophysics, 1999, 154.
- (4) Yushiro Fujii; Kenji Satake. "Slip Distribution and Seismic Moment of the 2010 and 1960 Chilean Earthquakes Inferred from Tsunami Waveforms and Coastal Geodetic Data". Pure and Applied Geophysics, 2012, 170.
- (45) Jean M. Johnson; Kenji Satake; Sanford R. Holdahl; Jeanne Sauber. "The 1964 Prince William Sound earthquake: Joint inversion of tsunami and geodetic data". Journal of Geophysical Reserch, 1996, vol. 101, No. B1.
- (46) Yuichiro Tanioka; Yudhicara; Tomohiro Kususose; S. Kathiroli;Yuichi Nishimura; Sin-Iti Iwasaki; Kenji Satake. "Rupture

3 - 8 - 25

process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms". Earth Planets Space, 2006, 58.

- (47) 土木学会原子力土木委員会津波評価小委員会.原子力発電所の津波評価技術 2016.土木学会,2016.
- (4) 地震調査研究推進本部地震調査委員会.千島海溝沿いの地震活動の長期評価(第三版).地震調査研究推進本部,2017.
- (4) 日本海溝・千島海溝周辺海溝型地震に関する専門調査会.日本海溝・ 千島海溝周辺海溝型地震に関する専門調査会報告.内閣府中央防災会
 議,2006.
- (50) 文部科学省測地学分科会.北海道周辺の超巨大地震の発生サイクル及び震源過程の解明・プレート運動の解明による衝突帯モデルの構築.
 「地震及び火山噴火予知のための観測研究計画」平成 25 年度年次報告(機関別), 2014,課題番号 1002.
- (51) 地震調査研究推進本部地震調査委員会.千島海溝沿いの地震活動の長期評価(第二版)について.地震調査研究推進本部,2004.
- (2) 地震調査研究推進本部地震調査委員会.日本海溝沿いの地震活動の長期評価.地震調査研究推進本部,2019.

第8.2-1表 主な既往の近地津波

	惑生担訴	地雪	净冲	
ず⊬左日口	先主物内	地辰	住似 担据	山倉、油油の掘田
光 生千月日	释 <u></u> 人 何 中	 規 候	規候	地長・ 律彼の 慨安
	経度	М	m	
869 年	三陸沖	8.3	4	三陸沿岸:城郭・倉庫・門櫓・垣壁等崩れ落ち倒潰す
7月13日	$\phi = 37.5 \sim 39.5^{\circ}$ N	$\pm 1/4$		るもの無数。津波が多賀城下を襲い,溺死約1千。三
(貞観11年)	$\lambda = 143 \sim 145$ ° E			陸沖の巨大地震とみられる。
1611 年	三陸沖	≒8.1	4	三陸沿岸及び北海道東岸:三陸地方で強震。震害は軽
12月2日	$\phi = 39.0^{\circ}$ N			く,津波の被害が大きかった。伊達領内で死1783,南
(慶長 16 年)	$\lambda = 144.4^{\circ}$ E			部・津軽で人馬の死3千余という。三陸沿岸で家屋の
	· · · · ·			流出が多く、北海道東部でも溺死が多かった。1933 年
				の三陸地震津波に似ている。
1640 年	· · · · · · · · · · · · · · · · · · · ·		2	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
7日31日	$ \phi = 49 1^{\circ} N $		$(1 \sim 2)$	11時度現八時・約7 □ 現八に □ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(万JI円 (宮永17年)	$\psi = 42.1$ IN $1 = 140.7^{\circ}$ F		(1 - 4)	赤, 比加加加山 100 示。
(見小1)十/	ん — 140. / Ε セポロエーン油	7 1/.		
1677年	青槑県東万州	$7'_{4} \sim$	2	陸甲:八尸に震害あり。震後約1時间で津波米にり。
4月13日	$\phi = 41.0^{\circ} \text{ N}$	$7^{1}/_{2}$		家屋流潰約70軒。余震が多かった。1968年十勝泙地
(延宝5年)	$\lambda = 142^{1/4}$ E			震と似ている。
1763 年	青森県東方沖	7.4	1	陸奥八戸:11月初めより地震があり、この日大地震。
1月29日	$\phi = 41.0^{\circ}$ N		(2)	寺院・民家が破損した。平館で家潰1,死3。函館で
(宝暦 12 年)	$\lambda = 142^{1/4^{\circ}}$ E			も強く感じた。津波があり,余震が多かった。1968 年
				十勝沖地震と似ているので、もっと沖の大きな地震か
				もしれない。
1793 年	三陸沖	8.0~	2	陸前・陸中・磐城:仙台領内で家屋損壊1千余,死12。
9月17日	$= 38.5^{\circ}$ N	8.4	[2,5]	が岸に津波が来て 大槌・両石で流遣家 71、 死 9、 気
(實政5年)	$\psi = 00.0$ I. $2 - 144.5^{\circ}$ E	0.1	L <i>4</i> • VJ	仙辺で海生家200 全 全電が多かった
【見以 ∪ ┬ / 1042 年		<u>.</u> -7 Б	0	11100 田中, 同巴民主キベ独全がなった 津波があり
	釧路裡	⇒ι.υ	Z	釧路・恨至:厚厈国豕守じ恢舌かのつに。伴似かのソ,
4月25日	$\phi = 42.0 \text{ in}$			全体で化4b。 豕座呶碳 /b。八尸にも伴奴。仏則・伴
(大保 14 平)	$\lambda = 146.0$ E			軽で強く感じ、江戸でも有感。
1856 年	青森県東方沖	≒ 7.5	2	日高・胆振・渡島・津軽・南部: 震害は少なかったか,
8月23日	$\phi = 41.0^{\circ} \text{ N}$		[2.5]	津波が三陸及び北海道の南岸を襲った。南部藩で流失
(安政3年)	$\lambda = 142^{1/2^{\circ}}$ E			93, 潰106, 溺死26, 八戸藩でも死3等。余震が多か
				った。1968 年十勝沖地震に津波の様子がよく似ており,
				もう少し海溝寄りの地震かもしれない。
1894 年	根室半島南西沖	7.9	2	根室沖:根室・厚岸で家屋・土蔵に被害。死1,家屋
3月22日	$b = 42^{1/2^{\circ}}$ N		[2.5]	清 12. 津波は宮古 4.0m. 大船渡 1.5m等。
(明治27年)	$\lambda = 146^{\circ}$ E		۲	
1896年	二味油	8 ¹ / ₄	4	『 明治 二 味 州 電 津 波 『 ・ 電 ま は た い 。 津 波 が 北 海 道 よ
6日15日	$\rightarrow P \pm 11$ $h = 20^{1}/_{\circ}^{\circ} \text{ N}$	0 / 4	 [२ 5]	1911日一座地区住区』・区口1950、「下区」にする。
(明治 90 年)	$\psi = 0.072$		[U. U]	り11比十回にいたる1曲中に表示し、20日15日40,000、 宮世 9459 北海洋6 単毛 18158 家民法失全半書8
(切石 ムショー)	$\lambda = 144$ E			呂/奴 3432, 北伊坦 U, 石丁 10100。 水圧(加八工) ほう のインリー
				~9十以上, 船() 彼吉約 (丁。 仮向は, 日供 44.4111, 1夜 四 20 0
				里 38.2m, 田老 14.6m寺。 伴彼はハワイ マルリノオル
1000/ T	→ = + \/ [.	0.1		ニアに達した。Mは津波を考慮したもの。
1933年		8.1	3	「二陸地震津波」:震害は少なかった。律波かん半行庁
3月3日	$\phi = 39^{\circ} 07.7^{\circ} N$		[3]	を襲い,三陸沿岸で被害は赴大。死・个明 3064, 家座
(昭和8年)	$\lambda = 145^{\circ} 07.0^{\prime} E$			流失 4034, 倒潰 1817, 浸水 4018。 波高は綾里湾で 28.7
				mにも達した。日本海溝付近で発生した巨大な正断層
				型地震と考えられている。
1952年	十勝沖	8.2	2	『十勝沖地震』:北海道南部・東北北部に被害があり,
3月4日	$\phi = 41^{\circ} 42.3'$ N		[2.5]	津波が関東地方に及ぶ。波高は北海道で3m前後,三
(昭和27年)	$\lambda = 144^{\circ}$ 09.0' E			陸沿岸で1~2m。死 28, 不明5, 家屋全壊 815, 半
				壊 1324, 流失 91。

(つづき)

	発生場所	地震	津波	
発生年月日	緯度	規模	規模	地震・津波の概要
	経度	М	m	
1958年	択捉島南東沖	8.1	1	択捉島付近:釧路地方で電信線・鉄道・道路に小被害が
11月7日	$\phi = 44^{\circ} 18.0'$ N		[2]	あった。太平洋岸各地に津波があり、小被害。
(昭和33年)	$\lambda = 148^{\circ} 30.0' E$		(2)	
1963年	択捉島南東沖	8.1	2	択捉島付近:津波があり,三陸沿岸で軽微な被害。花咲
10月13日	$\phi = 44^{\circ} \ 02.9' \ N$		[3]	で1.2m, 八戸で1.3m等。
(昭和38年)	$\lambda = 149^{\circ} 49.5' E$			
1963年	択捉島南東沖	6.7	2	ウルップ島沖:10月13日択捉島沖地震の余震。津波の
10月20日	$\phi = 44^{\circ} \ 05.6' \ N$		[2]	高さはウルップで10~15m,択捉島で8m。
(昭和38年)	$\lambda = 150^{\circ} 00.3' E$			
1968年	青森県東方沖	7.9	2	『1968 年十勝沖地震』:青森を中心に北海道南部・東北地
5月16日	$\phi = 40^{\circ} 41.9'$ N		[2.5]	方に被害。死 52,傷 330,建物全壊 673,半壊 3004。青
(昭和43年)	$\lambda = 143^{\circ} 35.7' E$			森県下で道路損壊も多かった。津波があり,三陸沿岸3
				~5m, 襟裳岬3m, 浸水 529, 船舶流失沈没 127。コン
				クリート造建築の被害が目立った。
1969年	北海道東方沖	7.8	0	北海道東方沖:津波により北海道東部に軽い被害あり。
8月12日	$\phi = 43^{\circ} 22.6' \text{ N}$		[2.5]	津波の高さは花咲 129cm、釧路 93cm、八戸 109cm。
(昭和44年)	$\lambda = 147^{\circ} 54.3' E$		(1)	
1973年	根室半島南東沖	7.4	0	『1973 年 6 月 17 日根室半島沖地震』:根室・釧路地方に
6月17日	$\phi = 43^{\circ} \ 03.5' \ N$		[2]	被害。全体で傷26,家屋全壊2,一部破損1。小津波が
(昭和48年)	$\lambda = 145^{\circ} 58.2' E$		(1)	あり,波高は花咲で2.8m,浸水275,船舶流失沈没10。
			$\langle 1 \rangle$	
1994年	北海道東方沖	8.2	[3]	『平成6年(1994年)北海道東方沖地震』:北海道東部
10月4日	$\phi = 43^{\circ} 22.5'$ N		(2)	を中心に被害があり,傷 437,住家全壊 61,半壊 348。
(平成6年)	$\lambda = 147^{\circ} 40.4' E$		$\langle 2 \rangle$	津波は花咲で 173 c m。震源に近い択捉島では死・不明
				10等,地震と津波で大きな被害。
2003年	十勝沖	8.0	[2.5]	『平成 15 年(2003 年)+勝沖地震』:太平洋プレート上
9月26日	$\phi = 41^{\circ} 46.7' \text{ N}$		$\langle 2 \rangle$	面の逆断層型プレート境界地震で 1952 年とほぼ同じ場
(平成15年)	$\lambda = 144^{\circ} 04.7' E$			所。死1,不明1,傷849,住家全壊116,半壊368。最
				大震度6弱(道内9町村),北海道及び本州の太平洋岸に
				最大4m程度の津波。
2011年	東北沖	Mw9.0	[4]	『平成23年(2011年)東北地方太平洋沖地震』:震源域
3月11日	$\phi = 38^{\circ} \ 06.2' \ N$		$\langle 4 \rangle$	は岩手県から福島県までの東側沖合で南北に長さ
(平成23年)	$\lambda = 142^{\circ}$ 51.7' E			400kmにおよび、日本海溝付近から沿岸部近くまで太平
				洋プレートと陸側プレートの境界面で東西に 200kmと
				広かった。主として大津波によって、死者・行方不明者
				1万8.000 余と明治三陸津波に次ぐ被害が生じた。

注)・「発生年月日」は、宇佐美ほか(2013) による。

・「発生場所,緯度,経度」及び「地震規模 M」は,次の値を示している。 1922 年以前の地震, 2011 年の地震:宇佐美ほか(2013) 1923年以降の地震(2011年の地震を除く):気象庁(1951-2010) による。

・「津波規模 m」は、宇佐美ほか (2013) による。

ただし, []は羽鳥による値(宇佐美ほか(2013)により引用), ()は渡辺(1998)による値, ()は 国立天文台(2014)による値で、宇佐美ほか(2013)と異なる場合のみ示している。

・「地震・津波の概要」は、宇佐美ほか(2013)」及び国立天文台(2014)を参照している。

第8.2-2表 主な既往の近地津波の津波高

(単位:m)

		1011 5	1077 5	1700 5	1050 5	1000 F	1000 /	1050 /5	1000 5	0000 5	0011 5
		1611 年	1677年	1763 年	1856年	1896年	1933 年	1952 年	1968 年	2003年	2011年
古町村夕	抽友	慶長 16	延宝5	宝暦 12	安政 3	明治 29	昭和8	昭和 27	昭和 43	平成 15	平成 23
1111111111	地石	三陸沖	青森県	青森県	青森県	三陸沖	三陸沖	十勝沖	青森県	十勝沖	東北沖
			東方沖	東方沖	東方沖				東方沖		
委町	森・東森						$0.6 \sim 1.5$		0.6		$1.7 \sim 2.5$
NMC. 1	动百						$1.2 \sim 1.8$		0.0		1 2.0
中 动中	110/小						1.2 -1.0				
) 尾司叫 二 伝 一	庭司										
图館巾	日尻				3						1.9
	椴法華				3						1.1
	山背泊								1.1		1.8
	浜町										
	函館			$1 \sim 2$	3	1.8	0.9	0.3	1.0		$1.6 \sim 3.1$
北头市	上磯				1.5						1.6
大間町	<u> </u>				1.0		1.6				1.0
人间间间	大明						1.0		0.2 - 1.1		1 7
	八间								0.2/~1.1		1.1
風間湘村	易国间								2.2		1.6
	下風呂						1.8				2.1
	甲								2.6		
むつ市	木野部						1.5				
	大畑・湊				4		$1.0 \sim 1.4$		2.2		2.5 \sim 2.6
	出戸川						1.6				
	関根						1.0				2.2 \sim 2.7
東通村	入口								1.2	17	2 3~5 2
71442111	光星								1.2	1	$1.5 \sim 2.1$
	石座								1.0		1.0 2.1
	 几座								2.2	0.0	1.0
									1.0	2.0	2.3~2.6
	小田野沢								2.7		1.9
	老部								2.4		
	白糠								0.9		2.0 \sim 2.3
六ヶ所村	袖戸								$0.8 \sim 3.1$		
	泊								$0.6 \sim 2.5$	1.5	2.4
	出戸								4.2		2.8
	尾駮								$1.2 \sim 1.5$		3.5
	新納屋								3 7		
	□[1]								1.6		1.9
二泊中	hug/11 指父						2.0		5.1		5.02.6.7
-0/11	塩金						0.0 0.0-1 F		0.1		5.0 - 0.7
	八川日						5.0,~4.5		2.1		4. 5, ~0. 7
							3.0~3.9		2.4		5.2~9.7
	五川日						3.4		2.5		$6.0 \sim 11.8$
	四川目						$3.8 \sim 5.0$		2.8 \sim 4.0		7.0∼9.6
	三川目						5.0		1.7		5.8~8.1
おいらせ町	二川目						4.0		2.7		4.5~8.8
	一川目						$1.8 \sim 4.2$		$1.7 \sim 4.1$		4.8~11.0
	川口・百石				4		2.5~5.0		$3.7 \sim 4.0$		1.3~8.9
八戸市	市川・橋向						3.0~3.8				3.0~9.6
	河原木						$1.5 \sim 3.0$		$2.1 \sim 4.8$		3.3~8.4
	八戸(湊)			$1 \sim 3$	$3 \sim 4$			2.0	$1.6 \sim 3.2$		$1.9 \sim 7.1$
	鮫・蕪島					3	$2.1 \sim 4.7$		$1.5 \sim 4.4$		4 5~6 4
野田村	野田		4~5		6	10.5~20.0	5 0~15 6	2.2	3 9~1 6		5 2~28 1
日 田 门	コモ	15 - 21	1-J		2 0 - 1	9 50 14 C	4.0~10.1	1.0	1.901 5	0.0	7 40 20 2
呂白巾	山七 古十	10.~21	2.~3	1.0	J. 0∼4	0. 5 ~ 14. 6	4.0~10.1	1.0	1. 4 ~ 1. 5	0.8	1.4~39.8
£6 m~	百日	0.~8 5 10	∠·~3	1.~2	4	4.0	3.0~8.2	0.1~1.3	1. 2 ~ 2. 0	1.0~~1.1	0.4~38.3
大槌町	大槌(大須賀)	$5 \sim 10$	2.8~4		3∼3.5	2.7~4.0	2.9~3.9		2.2 \sim 2.3		7.2~18.1
釜石市	釜石			1	3~3.7	4.5~8.2	2.7 \sim 5.4	2	2.0~3.2	1.3	4.2~30.6
											東北地方
1						中央	中央				太平洋沖
I .	1	羽鳥	羽鳥	羽鳥	羽鳥	気象台	気象台	渡辺	岸	東北大学	地震津波
5	て献	$(2000)^{(5)}$	$(2000)^{(5)}$	$(2000)^{(5)}$	$(2000)^{(5)}$	$(1933)^{(6)}$	$(1933)^{(6)}$	(1000)	$(1060^{(1)})^{(1)}$	$(2004)^{(12)}$	合同調查
1		(2000)	(2000)	(2000)	(2000)	(2) (7) (8)	$(8) \sim (10)$	(1590)	(1505)	(2004)	グループ
1						1也	1也				(001(13))
1				1	1		1			1	(2012)

第8.2-3表 主な既往の遠地津波

		地震		
	発生場所	規模	津波	
発生年月日	緯度	М	規模	地震・津波の概要
	経度	LM t 」	m	
15005		⟨Ms⟩	ļ	
1586年	ベルーのリマ神	7.7	4	津波の局さはリマで 26m, 10km内陸まで浸入。二陸
(月10日 (天正14年)	$\phi = 12.3$ S $\gamma = 77$ 7° W			の陸則海岸で半波めり。
1687年	ペルーのカヤオ沖	7.6	3	カヤオ チャシカイ ピスコで津波 この津波は日本
10月20日	$\phi = 15.2^{\circ}$ S	1. 0	C	沿岸にも波及し,塩釜で高さ1.5~1.6尺(約50 c m),
(貞享4年)	$\dot{\lambda} = 75.9^{\circ} \text{ W}$			12~13回押し寄せた。沖縄でも3回津波が押し寄せた。
1700年	北米北西部沖(カス	9クラス	$3 \sim 4$	米国やカナダの沿岸における津波の高さは5~7mと
1月26日	ケード地帯)	[9?]		推定。日本沿岸各地の津波の高さは岩手県宮古3m,
(元禄12年)			ĺ	同大槌と和歌山県田辺で2m,茨城県那珂湊や静岡県
				清水(三保)で約2mと推定される。宮古と田辺で津
1790年	イリのジェパライ	0.7	4	波の被害かあったという。
1/30 4+ 7日8日	アリのハルハノコ い油	8.1	4	ハルハフインは夜小小像して、 伧は収壊された。 ユイ ヤプシオン 今ば 津油け 三陸の 陸前沿岸に 龍本 牡鹿
(享保15年)	f_{1T} $h = 33 1^{\circ} S$			ビノジオン主体。伴似は二座の座前伯片に表示,11元 半島で田畑が浸水した。
	$\lambda = 71.6^{\circ} \text{ W}$			
1751年	チリのコンセプシ	8.5	3	古いコンセプシオンは全滅。津波は日本沿岸へ襲来,
5月25日	オン沖			三陸沿岸の大槌、牡鹿及び気仙沼で床まで浸水した。
(宝暦1年)	$\phi = 36.8^{\circ}$ S			
	$\lambda = 71.6^{\circ} W$			
1780年	千島列島ウルップ	7.5	3	ウルップ島で津波の高さ 10~12m。同島東岸(ワニノ
6月29日				フ)に停旧中のロシア船山上に打ち上けられた。 禈波
(女水9年)	$\phi = 46.0$ N 2 - 151.0° F			は北海道東岸へ襲米した。
1837年	X = 101.0 L チリ南部沖	8.0	3	コンヤプシオン バルデドアで大津波。津波によりハ
11月7日	$b = 39.8^{\circ}$ S	$[9^{1}/_{4}]$	U	ワイ諸島で大被害。三陸沿岸陸前の気仙沼湾、本吉、
(天保8年)	$\lambda = 73.2^{\circ}$ W	L - 7 - 2		牡鹿及び宮城の3郡で潮溢れる。
1868年	チリ北部アリカ沖	8.5	4	『アリカ地震』:チリ北部(当時ペルー領)で大津波と
8月13日	$\psi = 18.5^{\circ}$ S	[9.0]		なり太平洋に波及した。アリカで津波の高さ14m,死
(慶応4年)	$\lambda = 70.4^{\circ} W$			者 25,000 人ともいわれている。ハワイ島で大被害。日
				本沿岸では函館で2m,宮城県本吉郡,伊豆下田,沖
1077/5	イリのノナを油	0.0	4	縄那覇港でも観測。 『イントは歴史』 1000 ケロトのチリナ地震、大東洋が豊
1877年	ナリのイキク神	8.3 [0.0]	4	イキケ地震』:1808年以上のナリス地震。太平在沿岸 ムポに並及 チリが岸でけ 1 9~94m ハワイ建阜で
(明治10年)	$\phi = 19.0$ S $\lambda = 70.2^{\circ}$ W	[9.0]		王
(211010-1)	$\lambda = 10.2$ w			1.2 0.0m。日本伯子では、西田2.1m, 亜日0m, 不 京湾07m。函館と三陸沿岸で被害があった。また房総
				半島で死者を含む被害があった。
1918年	千島列島ウルップ	8.2	3	津波の高さはウルップ島東岸で 12m。日本沿岸では,
9月7日	島東方沖	[8.5]		根室1m, 函館 0.5m, 三陸沿岸1m以下。父島では
(大正7年)	$\phi = 45.5^{\circ}$ N			1.4mで家屋浸水 12, 橋梁流失2の被害。
	$\lambda = 151.5^{\circ}$ E			
1922年	チリのアタカマ沖	8.3	3	『アタカマ地震』:チリ沿岸で大津波となり、太平洋沿
11月11日 (七正11年)	$\phi = 28.5^{\circ} S$	[8.7]		岸谷地に波及した。ヘルーのカヤオで24m。日平石序 の港油の県十全垣紀は一花咲60 cm 転回65 cm 等
(八正11平)	$\lambda = 10$ vv			の律彼の取入主派幅は、北京ので加、四川ので加守。 大船渡で家屋30棟が波に洗われた(高さ1~2mか)。

(つづき)

発生年月日	発生場所 緯度 経度	地震 規模 M [M t] 〈M s 〉	津波 規模 m	地震・津波の概要
1946年 4月1日 (昭和21年)	アリューシャン列 島東部 $\phi = 52.8^{\circ}$ N $\lambda = 162.5^{\circ}$ W	7.4 [9.3]	4	『アリューシャン津波』:アリューシャンのウニマク島灯 台で 30.5m,ハワイ諸島で 0.5~17mの高さとなる等太 平洋沿岸各地にかなりの津波が襲来した。日本沿岸の津 波の最大全振幅は鮎川 56 cm,八戸 20 cm等。
1952年 11月4日 (昭和27年)	カムチャツカ半島 南東沖 $\phi = 52.3^{\circ}$ N $\lambda = 161.0^{\circ}$ E	8.5 [9.0]	3	『カムチャツカ津波』:カムチャツカ半島で1~15mの津 波。ハワイ諸島で10.4mに達する等太平洋沿岸全域に影 響した。日本沿岸における津波の高さは0.5~3.0m程 度。北海道,三陸沿岸,下田,尾鷲等広範囲で家屋の浸 水があり,三陸沿岸では漁業関係の被害があった。
1960年 5月22日 (昭和35年)	チリ南部沖 $\phi = 39.5^{\circ}$ S $\lambda = 74.5^{\circ}$ W	8.5 [9.4]	4	『チリ地震津波』: チリのイスラ・モチャで 20~25mの 津波。太平洋沿岸各地に波及し,ハワイ諸島で10.5mに 達する。日本沿岸での波高は三陸沿岸で0.8~8.1m,そ の他で0.6~4.2m。日本全体で死・不明142(うち沖縄 で3),家屋全壊1500余,半壊2千余。
1964年 3月28日 (昭和39年)	アラスカ湾 φ=61.1°N λ=147.5°W	9.2 [9.1] (8.4)	4	『アラスカ地震津波』:アラスカのバルディーズで6.1~ 30mの津波。日本では三陸沿岸で漁業施設に若干の被害 があった。
1965年 2月4日 (昭和40年)	アリューシャン列 島 $\phi = 51.3^{\circ}$ N $\lambda = 178.6^{\circ}$ E	8.7 [8.6] (8.2)	3	アリューシャンで 0.2~10mの津波。三陸沿岸の浅海漁 業施設に僅かの被害があった。
1996年 2月17日 (平成8年)	インドネシアのイ リアン・ジャヤ沖 φ=0.950°S λ=137.016°E	(8.1)	3	インドネシアのビアック島で最大 7.7m(津波到達時の 潮位上)に達した。日本沿岸の津波の最大全振幅は、父 島で195 cm,串本で170 cm。土佐清水では漁船20艘 が転覆し、八丈島で漁船に被害があった。
2010年 2月27日 (平成22年)	チリ中部沖 $\phi = 36.12^{\circ} S$ $\lambda = 72.90^{\circ} W$	8.5	[3]	チリ沿岸は平均5~9mの津波(遡上高さ)。最大は28 m(遡上高さ)。日本沿岸での最大は気仙沼湾奥で3.0m (全振幅)。

注)・「発生年月日」は、宇佐美ほか(2013)」による。

「発生場所,緯度,経度」,「地震規模 M[Mt] 〈Ms〉」及び「津波規模 m」は、次の値を示している。
 2010 年の地震:国立天文台 (2014) による。ただし、「津波規模 m」は宇佐美ほか (2013) による。
 2010 年以外の地震:渡辺 (1998) による。

Mtは津波マグニチュードを, Msは表面波マグニチュードを示す。

・「地震・津波の概要」は、次を参照している。

2010年の地震:今村ほか、(2010) 及び都司ほか、(2010) による。

2010年以外の地震:渡辺(1998) による。

第8.2-4表 主な既往の遠地津波の津波高

11111		\
	٠	ml
\ /.		1117
		/

		1868 年	1877 年	1952 年	1960年
市町村名	地名	慶応4	明治 10	昭和 27	昭和 35
111-1112	жш×ц	チリ北部	チリの	カムチャツカ	チリ南部沖
		アリカ沖	イキケ沖	半島南東沖	
森町	森・東森				1.5
rdet date made	砂原				1.5
鹿部町	 鹿部				0.9
函館市	日尻				0.4
	椴法華				1.0
	山首伯				1.9
	丙始	2	2.4	0.5~1.5	1.2 $1.4 \sim 2.0$
北北市	上磁	2	2.1	0.0 1.0	1.4 2.9
大問町	上版 				1.5 -1.5
入[1]1]1]	大間				2.0
風間浦村	易国間				2.0
/2010/10110	下風呂				
	甲				
むつ市	木野部				1.9~2.3
	大畑・湊				$1.4 \sim 2.1$
	出戸川				1.2
	関根				1.6
東通村	入口				1.7~1.8
	岩屋				1.3
	尻屋				1.4
	尻労				
	小田野沢				
	七部 白梅				2.0
六ヶ所村	加尿				2.0
2 1 2 12 12 13	泊				
	出戸				
	尾駮				1.0
	新納屋				
	高瀬川				2.2
三沢市	塩釜				
	六川目				2.0
	淋代				
	五川目				2.3
	四川自				1.9
ታእኑ እ <u>ስ ነ</u> ትመታ	二川日				1.3
わいりゼ町					1.0
	川口・古石				$3 2 \sim 4 9$
八戸市	市川・橋向				1.5~3.4
2.87 114	河原木				$2, 2 \sim 5, 3$
	八戸 (湊)				$2.5 \sim 4.3$
	鮫・蕪島			1.8	3.9
野田村	野田				4.9~5.2
宮古市	田老			2.2	1.8~3.2
	宮古			0.4~1.8	1.2~2.4
大槌町	大槌(大須賀)			1.5	2.4~3.9
釜石市	釜石		3		2.1~3.3
		(2)	(2)	(2)	チリ津波
1	文献	渡辺(1998)	渡辺(1998)	渡辺(1998)	台同調査班 (14)(15)
					(1961) 他

空間格子間隔 480 160 80 40 20 10 5 1440 (1440/72)(1440/144) (1440/288) $\Delta s(m)$ (1440/3)(1440/9)(1440/18)(1440/36)時間格子間隔 0.1 $\Delta t(s)$ 後藤・小川(1982)の非線形長波式 基礎方程式 外側の大格子領域と水位・流量を接続 自由透過 沖側境界条件 小谷ほか(1998)の遡上境界条件 完全反射 陸側境界条件 本間 (1940) の 越流境界条件 越流境界条件 地震断層モデルを用いて Mansinha and Smylie (1971)の方法により 初期海面変動 計算される鉛直変位を海面上に与える マニングの粗度係数 n=0.03m^{-1/3}s(土木学会(2016)より) 海底摩擦係数 考慮しない 水平渦動粘性係数 潮位条件 T.M.S.L. ±0.0m 計算再現時間 地震発生後4時間

第8.2-5表 主な計算条件

基礎方程式:非線形長波 [浅水理論] の連続式及び運動方程式

$$\begin{aligned} \frac{\partial \eta}{\partial t} + \frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} &= 0 \\ \frac{\partial Q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x^2}{D} \right) + \frac{\partial}{\partial y} \left(\frac{Q_x Q_y}{D} \right) + g D \frac{\partial \eta}{\partial x} + \frac{g n^2}{D^{7/3}} Q_x \sqrt{Q_x^2 + Q_y^2} = 0 \\ \frac{\partial Q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_x Q_y}{D} \right) + \frac{\partial}{\partial y} \left(\frac{Q_y^2}{D} \right) + g D \frac{\partial \eta}{\partial y} + \frac{g n^2}{D^{7/3}} Q_y \sqrt{Q_x^2 + Q_y^2} = 0 \\ \text{= Core, } x, y : \text{ x-mereze (m)} \qquad t : \text{ Bell (s)} \\ Q_x, Q_y : x, y \text{ from Delive in a book in (m)} \qquad D : \text{ extrems (m)} \quad m^2/\text{ s)} \\ \eta : \text{ Book in a book in (m)} \qquad D : \text{ extrems (m)} \\ h : \text{ Book in a book in (m)} \qquad g : \text{ for a book in (m)} \\ n : \nabla = \nu f \text{ on a trees (m)} \end{aligned}$$

海域活断層	断層長 L(km)	断層幅 ₩(km)	すべり量 D(m)	地震 モーメント M ₀ (N・m)	モーメント マグニ チュード Mw	津波の 伝播距離 △(km)	推定 津波高 Ht(m)
F-a	20	12.0	2.11	1.75×10^{19}	6.8	63	0.3
F-b	15	10.0	1.58	8. 18×10^{18}	6.5	64	0.2
F-c	15	10.0	1.58	8. 18×10^{18}	6.5	38	0.3
F-d	6	4.0	0.63	5. 24×10^{17}	5.7	15	0.2

第8.3-1表 海域の活断層による地殻内地震に起因する津波の推定津波高

計算格子間隔 Δt (s)	計算時間 (h)	海底摩 (マニングの n (m ⁻	擦係数 D粗度係数) ^{1/3} s)	界面抵抗係数 f _{int}	水平渦動粘性 係数	
		上層	下層		$\nu (m^2/s)$	
0.15	3	0.03	0.40	0. 0	考慮しない	

第8.3-2表(1) 二層流モデルの主な計算条件

第8.3-2表(2) Kinematic landslideモデルの

主な計算条件

計算格子間隔	計算時間	鉛直変位	変動伝播速度
Δt (s)	(h)	ライズタイム (s)	(m/s)
0.15	3	120	10

比較
量の
5
100J
H K H
∎3倍
雪のシ
) T
主知見
照
- 1 表
8.4-
箫

1震のすべり量に関する文献調査結果	海トラフの巨大地震の 世界のMw9.0クラスの巨大津波 (M. Johnson and Satake (1999) (2012)) $(44) \frac{(43)}{2}$	大きいもので 8.8~11.3m 11m 11m	最大のモデルで 「60~70m」 「98~39m」
巨大地	1 年東北地方太平洋沖型 南 地震モデル(杉野ほか (2014))	10. 4m	31. 2m
デル	201 すべり量3倍モデル ¹	25. 20m	93. 56m
きした。	既往知見を踏まえた 津波の評価モデル	8. 40 m	31. 19m
		平均すべり量	最大すべり量

第8.1-1図 敷地の概況図

(地震調査委員会 (2012)の図に加筆)

第8.2-2図 青森県東方沖から三陸沖で発生した津波の推定波源域

(土木学会 (2002)の諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8. 32	120	70	205	26	20	90	5. 0×10^{10}	9.00

第8.2-4図(1) 既往津波の再現性の確認に用いた波源モデルの位置及び諸元

3 - 8 - 41

(1856年の津波)

(土木学会 (2002)の諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.36	150	100	195	12	20	76	5. 0×10^{10}	5. 90

第8.2-4図(2) 既往津波の再現性の確認に用いた波源モデルの位置及び諸元

(1968年十勝沖地震に伴う津波)

3 - 8 - 42

第8.2-5図 計算領域とその水深及び格子分割

3 - 8 - 43

[※]コンター線は,陸域5m,海域2mピッチ

第8.2-6図 敷地近傍の計算領域とその水深及び格子分割

第8.2-7図(1) 既往津波高と数値シミュレーションによる津波高の比較(1856年の津波)

ĸ	1.44
К	0.99
地点数n	313
比較地域	花咲港~門脇

7図(2) 既往津波高と数値シミュレーションによる津波高の比較

(1968 年十勝沖地震に伴う津波)

第8.2-7 図(2)

(2011年東北地方太平洋沖地震に伴う津波)

第8.2-7図(3) 既往津波高と数値シミュレーションによる津波高の比較

(第8.2-4図(2)に示す波源モデルの諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.4	157	104	195	12	20	76	5. 0×10^{10}	6. 16

第8.3-2図 三陸沖北部のプレート間地震の波源モデルの位置及び諸元

(土木学会 (2002)の諸元)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.3	210	50	188	1	20	75	3. 5×10^{10}	9. 70

第8.3-3図 津波地震の波源モデルの位置及び諸元

第8.3-4図 北方への連動型地震の波源モデルの位置及び諸元

(基本モデル)

第8.3-5図(1) 北方への連動型地震の波源モデルの位置及び諸元

(すべり量割増モデル)

第8.3-5図(2) 北方への連動型地震の波源モデルの位置及び諸元

(海溝側強調モデル)

第8.3-6図 破壊開始点の位置

青森県津波浸水予道図(六ヶ所村 4/2)

第8.3-10図 正弦波入力による検討結果

土木学会(2016) により算定される格子間隔の目安は、尾駮沼奥で31m以下、尾駮沼入りロ~ 尾駮沼中央部で111m程度である。一方、当該領域の格子間隔は5mに設定している。

 $\Delta x(m)$

第8.3-12図 格子間隔の妥当性に係る検討結果

(土木学会 (2002)の諸元を補正)

モーメント	断層長さ	断層幅	走向	上縁深さ	傾斜角	すべり角	剛性率	すべり量
マク゛ニチュート゛	L	W	θ	d	δ	λ	μ	D
M_{W}	(km)	(km)	(°)	(km)	(°)	(°)	(N/m^2)	(m)
8.6	283	50	180	1	45	270	7. 0×10^{10}	10.10

第8.3-13図 海洋プレート内地震の波源モデルの位置及び諸元

(正断層型の地震)

3-8-61

第8.3-14図 敷地周辺海域の活断層分布

3-8-63

(黒線:現地形,赤線:復元地形)

第8.3-16図 海底地すべり地形の断面

第8.3-17図 計算領域とその水深及び格子分割

第8.4-1図 すべり量3倍モデルの位置及び諸元

第8.4-2図 すべり量3倍モデルによる検討結果

9. 竜 巻

基準竜巻及び設計竜巻の設定は「原子力発電所の竜巻影響評価ガイド」 (平成 25 年 6 月 19 日 原規技発第 13061911 号 原子力規制委員会決定) (以下「竜巻ガイド」という。)を参考に実施する。

基準竜巻及び設計竜巻の設定は、竜巻検討地域の設定、基準竜巻の最大 風速の設定及び設計竜巻の最大風速の設定の流れで実施する。 9.1 竜巻検討地域の設定

竜巻検討地域は、竜巻ガイドを参考に廃棄物管理施設が立地する地域、 気象条件の類似性の観点から検討し設定する。

(1) 廃棄物管理施設が立地する地域の気候

廃棄物管理施設が立地する地域は、竜飛岬から奥羽山脈の分水嶺より 東側にあり、その地域の気候は、日本海側の気候と太平洋側の気候の両 面の特徴を合わせもっている。東北地方を気温、降水及び風により詳細 に区分した気候区分を第 9.1−1図に示す。これによると、廃棄物管理 施設が立地する地域は、区分Ⅲ(青森県北部及び東部地域)のうち区分 Ⅲ b (太平洋側にあるが冬は日本海側の気候型でやませの影響が強い) に属している。

(2) 廃棄物管理施設が立地する地域の竜巻発生の観点での特徴

第9.1-2図に示すとおり,廃棄物管理施設が立地する地域周辺においては,もともと竜巻の発生数は少なく,独立行政法人原子力安全基盤 機構が東京工芸大学に委託した研究の成果(以下「東京工芸大学委託成 果」という。)で示されている,全国 19 個の竜巻集中地域からも離れている。

⁽²⁾ 竜巻発生時の総観場は,東京工芸大学委託成果を参考に,気象庁「竜 巻等の突風データベース」の総観場を,竜巻を発生させる親雲の発生要 因を考慮して,7種に再編した総観場を用い,竜巻の発生要因別の地域 分布の特徴を把握した。竜巻の発生要因別地域分布を第9.1-3図に, その特徴を第9.1-1表に示す。

立地地域周辺における竜巻の発生状況は、日本海側や、茨城県以西の 太平洋側における発生状況とも特徴が異なり、日本海側に特徴的な寒候 期の竜巻の発生はほとんどなく、暖候期に竜巻が発生している。

3 - 9 - 2

また,茨城県以西の太平洋側で特徴的な台風起源の竜巻の発生はなく, 太平洋海岸付近及び海上での竜巻の発生はほとんどない。

(3) 竜巻検討地域

竜巻検討地域の設定は、竜巻ガイドを参考に、廃棄物管理施設が立地 する地域の気候及び竜巻発生の観点での特徴を踏まえて実施する。当該 地域はもともと竜巻の発生数が少ないため、以下のa.~d.に示す条 件を考慮して、青森県から岩手県の太平洋側(竜飛岬から御崎岬)及び 北海道地方の南側(白神岬から襟裳岬)の海岸線に沿った海側5km及 び陸側10kmの範囲を竜巻検討地域に設定する(面積約18,000km²)。 第9.1-4図に竜巻検討地域を示す。

- a. 立地地域の気候及び竜巻発生の観点での特徴を踏まえ,青森県(竜飛 岬より太平洋側)から岩手県を基本とする。
- b. IAEAの基準を参考に、廃棄物管理施設を中心とする 10 万km² (半径約 180 km)の範囲を目安とし、その範囲に掛かる北海道南西部 は、立地地域と同じ太平洋側に面していることを考慮して、竜巻検討地 域に含める。
- c. 竜巻検討地域は, 分水嶺及び関口武による気候区分(1959)を参考に 設定する。
- d.廃棄物管理施設が海岸線から約5kmの位置に立地していること及び
 竜巻の発生がほとんど海岸線付近であることから、海岸線に沿った海側
 5km及び陸側10kmの範囲を考える。

ここで,設定した竜巻検討地域の妥当性を確認するために, 竜巻検討 地域における竜巻の発生要因の出現比率と,日本海側及び太平洋側にお ける出現比率とを比較した結果を第 9.1-5回に示す。竜巻検討地域に おける竜巻の発生要因の出現比率は,日本海側及び太平洋側の出現比率 とも傾向が異なっていることが確認できる。

また,藤田スケール3以上の竜巻の発生しやすさの地域性の検討とし て、「突風関連指数」による解析を行う。突風関連指数として、積乱雲 を発生させる上昇流の強さの目安であるCAPE(Convectiv e Available Potential Energy:対流有 効位置エネルギ)及び積乱雲がスーパーセルに発達しやすいかどうかの 指標となるSReH(Storm Relative Helicit y:ストームの動きに相対的なヘリシディ)を算出する。これらの指数 は、竜巻発生の環境場との関連付けで、国内外で広く利用され知見が蓄 積されている。CAPEの概念を第 9.1-6回に、SReHの概念を第 9.1-7回に示す。

$$CAPE = \int_{LFC}^{EL} g \frac{\dot{\theta}(z) - \theta(z)}{\theta(z)} dz \qquad (a)$$

$$SReH = \int_{\substack{b \\ b \\ b \\ b}}^{\underline{a}\underline{b}\underline{c}_{3km}} (\mathbf{V} - \mathbf{C}) \cdot \boldsymbol{\omega} \, dz \qquad (b)$$

ここで、式(a)のgは重力加速度、 θ はストーム周囲の温位、 θ 'は 下層の空気塊を上空に持ち上げた際の温位であり、dzは鉛直方向の層 厚である。LFCは自由対流高度、ELは平衡高度である。式(b)のV は水平風速ベクトル、 ω は鉛直シアに伴う水平渦度、Cはストームの移 動速度である。

各指数の計算は、ヨーロッパ中期予報センター(ECMWF)の再解 析データECMWF-Interim (1989年以降:水平分解能約70 km)及びERA40 (1989年まで:水平分解能約250km)を基に、水 平分解能5km、時間分解能1時間に解析した気象データセットを用い て、1961年~2010年までの50年間について行い、それに基づいて両指 数が同時に閾値を超過する頻度を計算する。同時超過頻度の算出に当たっては、竜巻発生時には少なからず降水がもたらされるため、降水量の 閾値(4mm/h)を設定する。また、CAPEは降水過程により安定 化し小さくなり得るため、周辺のCAPEの大きな空気塊が当該メッシ ュに向かって流入することを考慮した方法を参考に、当該メッシュの風 上側半径 25 kmの扇状範囲内のCAPEの最大値を算出する。

CAPEについては、緯度及び季節で絶対値が大きく変動するため、 暖候期(5月~10月)及び寒候期(11月~4月)に分けて、それぞれ 閾値を設定する。藤田スケール3以上の竜巻が発生し得る環境場として 以下の閾値を用いる。

[暖候期(5月~10月)]

CAPE:1,200 J∕kg, SReH:350 m²/s²
[寒侯期 (11月~4月)]

CAPE: 500 J/kg, SReH: 350 m²/s²

暖候期及び寒候期に対する同時超過頻度分布の算出結果を第9.1-8 図に示す。暖候期においては、太平洋側及び東シナ海から対馬海峡にか けては比較的大きな値となっている。また、沿岸域では、茨城県東海岸 から西の本州太平洋側、九州太平洋側及び東シナ海側で高く、特に宮崎 平野沿岸では大きい値となっている。それに比べて、日本海側及び茨城 県以北の太平洋側の値は1~2桁以上小さな値であり、藤田スケール3 規模の竜巻の発生が未だ確認されていないことと対応している。

本手法による解析により,藤田スケール3以上の竜巻の発生しやすさ の地域性を特定でき,竜巻検討地域において藤田スケール3以上の竜巻 は極めて発生し難いといえる。 9.2 基準竜巻の最大風速の設定

基準竜巻の最大風速は、竜巻ガイドを参考に、過去に発生した竜巻による最大風速(V_{B1})及び竜巻最大風速のハザード曲線による最大風速 (V_{B2})のうち、大きな風速を設定する。

(1) 過去に発生した竜巻による最大風速(V_{B1})

過去に発生した竜巻による最大風速(V_{B1})の設定に当たっては、日本で過去(1961年~2013年12月)に発生した最大の竜巻は藤田スケール3であり、藤田スケール3における風速は70m/s~92m/sであることから、その最大風速を基に V_{B1} を92m/sとする。第9.2-1表に日本で過去に発生した藤田スケール3の竜巻の一覧を示す。

(2) 竜巻最大風速のハザード曲線による最大風速(V_{B2})

竜巻最大風速のハザード曲線は, 竜巻ガイドを参考とした既往の算定 方法に基づき, 具体的には, 東京工芸大学委託成果を参考に算定する。 本評価は, 竜巻データの分析, 竜巻風速, 被害幅及び被害長さの確率密 度分布の算定, 相関係数の算定並びにハザード曲線の算定によって構成 される。

a. 竜巻の発生頻度の分析

気象庁「竜巻等の突風データベース」に掲載されている竜巻年別発生確 認数(第9.2-1図)を基に, 竜巻検討地域(海岸線から陸側に10km, 海側に5kmの計15km幅の範囲)における1961年~2013年12月ま での53年間の統計量を藤田スケール別に算出する。また, 観測体制の 変遷による観測データ品質のばらつきを踏まえ,以下の(a)~(c)の基本的 な考え方に基づいて整理を行う。

(a) 被害が小さくて見過ごされやすい藤田スケール0及び藤田スケール不 明の竜巻に対しては,観測体制が強化された 2007 年以降の年間発生数 や標準偏差を用いる。

- (b) 被害が比較的軽微な藤田スケール1竜巻に対しては、観測体制が整備 された1991年以降の年間発生数や標準偏差を用いる。
- (c) 被害が比較的大きく見逃されることがないと考えられる藤田スケール
 2及び藤田スケール3竜巻に対しては、観測記録が整備された 1961 年
 以降の全期間の年間発生数や標準偏差を用いる。

また、藤田スケール不明の竜巻については、以下の取扱いを行う。

陸上で発生した竜巻及び海上で発生して陸上へ移動した竜巻について は,被害があって初めてその藤田スケールが推定されるため,陸上での 藤田スケール不明の竜巻は,被害が少ない藤田スケール0竜巻とみなす。

一方,海上で発生しその後上陸しなかった竜巻については,その竜巻 の藤田スケールを推定することは困難であることから,「沿岸部近傍で の竜巻の発生特性は,陸上と海上とで類似している」という仮定に基づ いて各藤田スケールに分類する。

以上を踏まえて,第9.2-2表のとおり,観測データから53年間の 推定データを評価する。

竜巻は気象事象の中でも極めて稀に発生する事象であり,発生数の変動(標準偏差)が大きい分布となり,東京工芸大学委託成果にポリヤ分布への適合性が良いことが示されている。以上より,ハザード曲線の評価に当たって使用する竜巻の年発生数の確率分布は,第9.2-2図に示すとおりポリヤ分布を採用する。

b. 竜巻風速, 被害幅及び被害長さの確率密度分布並びに相関係数

竜巻検討地域における 53 年間の竜巻の発生数,被害幅及び被害長さを基に,確率密度分布については竜巻ガイド及び竜巻ガイドが参考としている東京工芸大学委託成果を参考に,第 9.2-3 図~第 9.2-5 図に

示すとおり対数正規分布に従うものとする。

また,53年間の推定データの作成に伴う被害幅又は被害長さの情報 がない竜巻には,被害幅又は被害長さを有する竜巻の観測値を与える。 その際は,被害幅又は被害長さが長いほうから優先的に用いることで, 被害幅又は被害長さの平均値が大きくなるように評価を行う。

さらに、1961年以降の観測データのみを用いて、第9.2-3表に示す とおり竜巻風速、被害幅及び被害長さについて相関係数を求める。

c. 竜巻影響エリアの設定

廃棄物管理施設の設計対処施設を包含する円を設置面積とみなし,第 9.2-6図に示すとおり竜巻影響エリアとして設定する。

なお, 竜巻影響エリアを円形とするため, 竜巻の移動方向には依存性 は生じない。

d. ハザード曲線の算定

T年以内にいずれかの竜巻に遭遇し,かつ,竜巻風速がV₀以上となる確率を求め,ハザード曲線を求める。

前述のとおり, 竜巻の年発生数の確率分布としてポリヤ分布の適合性 が高い。ポリヤ分布は式(a) で示される(Wen and Chu)。

$$P_T(N) = \frac{(\nu T)^N}{N!} (1 + \beta \nu T)^{-N-1/\beta} \prod_{k=1}^{N-1} (1 + \beta k)$$
 (a)

ここで、Nは竜巻の年発生数、νは竜巻の年平均発生数、Tは年数で ある。βは分布パラメータであり、式(b)で示される。

$$\beta = \left(\frac{\sigma^2}{\nu} - 1\right) \times \frac{1}{\nu} \tag{b}$$

ここで, σは竜巻の年発生数の標準偏差である。

Dを竜巻影響評価の対象構造物が風速V₀以上の竜巻に遭遇する事象

と定義し、対象構造物が1つの竜巻に遭遇し、その竜巻の風速が V_0 以上となる確率をR(V_0)としたとき、T年以内にいずれかの竜巻に遭遇し、かつ、竜巻風速が V_0 以上となる確率は式(c)で示される。

$$P_{V_0,T}(D) = 1 - \left[1 + \beta \nu R(V_0)T\right]^{-1/\beta}$$
 (c)

このR (V_0) は、竜巻影響評価の対象地域の面積を A_0 (すなわち、 竜巻検討地域の面積約 1.8×10⁴ k m²)、1つの竜巻の風速が V_0 以上 となる面積をDA (V_0)とすると式 (d)で示される。

$$R(V_0) = \frac{E[DA(V_0)]}{A_0} \tag{d}$$

ここで、 $E[DA(V_0)]$ は $DA(V_0)$ の期待値を意味する。

本評価では、以下のようにしてDA(V₀)の期待値を算出し、式 (d)によりR(V₀)を推定して、式(c)により $P_{V_0,r}(D)$ を求める。 風速をV、被害幅をw、被害長さを1、移動方向を α とし、同時確率密 度関数を用いると、DA(V₀)の期待値は式(e)で示される(Ga

$$E[DA(V_0)] = \int_{0}^{\infty} \int_{0}^{\infty} \int_{V_0}^{\infty} W(V_0) l f(V, w, l) dV dw dl$$

+
$$\int_{0}^{2\pi} \int_{0}^{\infty} \int_{V_0}^{\infty} H(\alpha) l f(V, l, \alpha) dV dl d\alpha$$

+
$$\int_{0}^{2\pi} \int_{0}^{\infty} \int_{V_0}^{\infty} W(V_0) G(\alpha) f(V, w, \alpha) dV dw d\alpha$$

+
$$S \int_{V_0}^{\infty} f(V) dV$$
 (e)

ここで, H(α)及びG(α)はそれぞれ, 竜巻の被害長さ及び被害 幅方向に沿った面に対象構造物を投影したときの長さである。竜巻影響 エリアを円形で設定しているため, H(α), G(α)ともに竜巻影響 エリアの直径 180mで一定となる(竜巻の移動方向に依存しない)。 S は竜巻影響エリアの面積(直径 180mの円の面積:約 2.54×10⁴ m²)を 表す。竜巻影響エリアの直径を D_0 とした場合の計算式は式(f)で示 される。

$$E[DA(V_0)] = \int_{0}^{\infty} \int_{0}^{\infty} W(V_0) l f(V, w, l) dV dw dl + D_0 \int_{0}^{\infty} \int_{0}^{\infty} l f(V, l) dV dl + D_0 \int_{0}^{\infty} \int_{0}^{\infty} W(V_0) f(V, w) dV dw + (D_0^2 \pi / 4) \int_{V_0}^{\infty} f(V) dV$$
(f)

風速の積分範囲の上限値は、ハザード曲線の形状が不自然にならない 程度に大きな値として 120m/s に設定する。

また、W(V₀)は、竜巻の被害幅のうち風速がV₀を超える部分の幅 であり、式(g)で示される。この式により、被害幅内の風速分布に応 じて被害様相に分布がある(被害幅の端ほど風速が小さくなる)ことが 考慮されている(Garson et al.)。

$$W(V_0) = \left(\frac{V_{\min}}{V_0}\right)^{1/1.6} w$$
 (g)

ここで、係数の 1.6 について、既往の研究では例えば 0.5 や 1.0 など の値も提案されている。竜巻ガイドが参考としている文献(Garso n et $a^{(10)}$)では、観測値が不十分であるため、より厳しい評価 となるよう 1.6 を用いることが推奨されており、本検討でも 1.6 を用い る。また、廃棄物管理施設の竜巻影響評価では、ランキン渦モデルによ る竜巻風速分布に基づいて設計竜巻の特性値を設定する。ランキン渦モ デルは高さ方向によって風速及び気圧が変化しないため、地表から上空 まで式(g)を適用できる。なお、式(g)において係数を 1.0 とした 場合がランキン渦モデルに該当する。

また、 V_{min} は、gale intensity velocity と呼ばれ、被害が発生し始める風速に位置付けられる。米国気象局NW S (National Weather Service)では、ga le intensity velocityは 34~47 ノット (17.5 ~24.2m/s)とされている。また、気象庁が使用している風力階級で は、風力8は疾強風(gale:17.2~20.7m/s)、風力9は大強風 (strong gale:20.8~24.4m/s)と分類されており、風 力9では「屋根瓦が飛ぶ。人家に被害が出始める。」とされている。以 上を参考に、本評価においては、 $V_{min}=25m/s$ とする。なお、この 値は藤田スケール0(17~32m/s)のほぼ中央値に相当する。

以上より, 竜巻検討地域を対象に算定したハザード曲線を第 9.2-7 図に示す。

e. 竜巻最大風速のハザード曲線による最大風速(V_{B2})

竜巻最大風速のハザード曲線により設定する最大風速V_{B2}は、竜巻ガ イドを参考に年超過確率10⁻⁵に相当する風速とし、39m/sとする。

f.1km範囲ごとの評価(参考評価)

竜巻検討地域を海岸線に沿って1 k m範囲ごとに細分化した短冊状の 範囲を対象にハザード曲線を求める。評価の条件として,発生数は,短 冊状の範囲を通過した竜巻もカウントしている。被害幅及び被害長さは, それぞれ1 k m範囲内の被害幅及び被害長さを用いる。以上に基づいて, 竜巻検討地域の評価と同様の方法で算定したハザード曲線を第 9.2-8 図に示す。これより,年超過確率 10⁻⁵に相当する風速を求めると,海 岸線から陸側1 k mを対象とした場合の 56m/s が最大となる。ただ し,廃棄物管理施設は海岸線から陸側1 k mの範囲にないため,本評価 は参考とする。

(3) 基準竜巻の最大風速

過去に発生した竜巻による最大風速 $V_{B1}=92m/s$ 及び竜巻最大風速 のハザード曲線による最大風速 $V_{B2}=39m/s$ より,廃棄物管理施設に おける基準竜巻の最大風速 V_B は 92m/sとする。風速 92m/sに相当 する年超過確率は、ハザード曲線より 1.86×10^{-8} である。
9.3 設計竜巻の最大風速の設定

廃棄物管理施設が立地する地域の特性を考慮して、基準竜巻の最大風速 の割り増しを検討し、設計竜巻の最大風速を設定する。

廃棄物管理施設では、敷地が平坦であり、竜巻の増幅を考慮する必要の (14) (15) ある地形はないと考えられるため、基準竜巻の最大風速に対する割り増し は行わず、設計竜巻の最大風速は 92m/sとなるが、竜巻に対する設計 に当たっては、蓄積されている知見の少なさといった不確定要素を考慮し、 将来の竜巻発生に関する不確実性を踏まえ、基準竜巻の最大風速を安全側 に切り上げて、設計竜巻の最大風速を 100m/sとする。風速 100m/s に相当する年超過確率は、ハザード曲線より 6.66×10⁻⁹である。

- 9.4 参考文献一覧
 - 日本地誌研究所.日本地誌 第3巻:東北地方総論:青森県・岩手県・ 秋田県,1975-01.
 - (2) 東京工芸大学.平成 21~22 年度原子力安全基盤調査研究(平成 22 年
 度): 竜巻による原子力施設への影響に関する調査研究. 2011-02.
 - (3) 関口武. "日本の気候区分".東京教育大学地理学研究報告.東京教 育大学理学部地理学教室, 1959-03.
 - (4) Davis-Jones, R. P. , D. Burgess, and M. Foster. "Test of helicity as a tornado forecast parameter". 16th Conf. on Severe Local Storms, Kananaskis Park, AB., Canada, Amer. Meteor. Soc. , 1990.
 - (5) M. W. Moncrieff and M. J. Miller. "The dynamics and simulation of tropical cumulonimbus and squall lines". Quarterly Journal of the Royal Meteorological Society, 1976-04, Vol. 102, Issue 432.
 - (6) 橋本篤,平口博丸,豊田康嗣,中屋耕.温暖化に伴う日本の気候変化 予測(その1):気象予測・解析システム NuWFAS の長期気候予測への適 用性評価.電力中央研究所報告.2011-06,N10044.
 - (7) Erik N. Rasmussen and David O. Blanchard. "A Baseline Climatology of Sounding-Derived Supercell and Tornado Forecast Parameters". Weather and Forecasting, 1998-07, Vol. 13.
 - (8) Yi-Kwei Wen and Shih-Lung Chu. "Tornado Risks and Design Wind Speed". Journal of the Structural Division, ASCE, 1973-12, Vol. 99, No. 12.
 - (9) Robert C. Garson, C. Allin Cornell and Jose Morla Catalan.

3 - 9 - 14

"Tornado Design Winds Based on Risk" .Journal of the Structural Division, ACSE, 1975-09, Vol. 101, No.9.

- Robert C. Garson, C. Allin Cornell and Jose Morla Catalan.
 "Tornado Risk Evaluation Using Wind Speed Profiles". Journal of the Structural Division, ASCE, 1975-05, Vol. 101, No. 5.
- (11) 瀧下洋一. "竜巻発生確度ナウキャスト・竜巻注意情報について:突 風に関する防災気象情報の改善". 測候時報 2011, 78.3.
- (12) IAEA Safety Standards Series No. SSG-18: 2011. Meteorological and Hydrological Hazards in Site Evaluation for Nuclear Installations. IAEA.
- (13) 大野久雄. 雷雨とメソ気象. 東京堂出版, 2001.
- (14) Christopher D. Karstens. "Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions".
 Graduate these and dissertations of Iowa State University, 2012.
- (15) D. C. Lewellen. "Effects of Topography on Tornado Dynamics: A Simulation Study". 26th Conference on Severe Local Storms American Meteorological Society, 4B.1, 2012.

第9.1-1表 竜巻の発生要因別の地域分布の特徴

総観場注)	気象庁竜巻データベースの分類	発生分布の特徴
台風	台風	関東以西の太平洋側(特に東~南方向 に開けた地域)で発生頻度が高く, F 2, F3スケールの強い竜巻も多 い。
温带低気圧	南岸低気圧,日本海低気圧,二つ玉低 気圧,東シナ海低気圧,オホーツク海 低気圧,その他(低気圧),寒冷前線, 温暖前線,閉塞前線	全国的に発生頻度が高く, F2, F 3スケールの竜巻も見られる。特 に, 南~西方向に開けた地域はより 頻度が高い。
季節風(夏)	暖気の移流,熱帯低気圧,湿舌,太平 洋高気圧	太平洋側や内陸を中心に,全国的に 多くみられる。
季節風(冬)	寒気の移流,気圧の谷,大陸高気圧, 季節風	日本海側や関東以北で発生頻度が高い。
停滞前線	停滞前線,梅雨前線,前線帯,不安定 線,その他(前線)	関東以西でみられる。
局地性	局地性擾乱, 雷雨(熱雷), 雷雨(熱雷 を除く), 地形効果, 局地性降水	地形的な影響によるものであり,全 国で発生している。
その他	移動性高気圧,中緯度高気圧,オホー ツク海高気圧,帯状高気圧,その他 (高気圧),大循環異常,その他	全国的に発生数が少なく,地域差は みられない。

注)東京工芸大学委託成果を参考に、気象庁「竜巻等の突風データベース」の総観場を、竜巻 を発生させる親雲の発生要因を考慮して、7種に再編した。

第9.2-1表 日本で過去に発生したF3竜巻

<u> </u>	発生場所						
光 尘口时	緯度	経度	都道府県	市町村			
1971年07年07日07時50分	35度54分20秒	139度40分45秒	埼玉県	大宮市			
1990年12月11日19時13分	35度28分39秒	140度18分57秒	千葉県	茂原市			
1999年09月24日11時07分	34度42分4秒	137度23分5秒	愛知県	豊橋市			
2006年11月07日13時23分	43度59分20秒	143度42分25秒	北海道 網走支庁	佐呂間町			
2012年05月06日12時35分	36度6分38秒	139度56分44秒	茨城県	つくば市			

(気象庁「竜巻等の突風データベース」より作成)

発生数の統計		(陸上+上陸) 竜巻						海上竜巻	公公 米 レ	
		F0	F1	F2	F3	F4	不明	小計	不明	花叙
1961/1~2013/12 (53 年間)	期間内総数(個)	6	9	4	0	0	1	20	5	25
	年平均 (個)	0.11	0.17	0.08	0.00	0.00	0.02	0.38	0.09	0.47
	標準偏差(個)	0.58	0.51	0.27	0.00	0.00	0.14	0.97	0.41	1.08
	期間内総数(個)	6	9	2	0	0	1	18	5	23
1991/1~2013/12 (23 年間)	年平均 (個)	0.26	0.39	0.09	0.00	0.00	0.04	0.78	0.22	1.00
	標準偏差(個)	0.86	0.72	0.29	0.00	0.00	0.21	1.35	0.60	1.48
	期間内総数(個)	5	3	0	0	0	0	8	4	12
2007/1~2013/12 (7 年間)	年平均 (個)	0.71	0.43	0.00	0.00	0.00	0.00	1.14	0.57	1.71
	標準偏差(個)	1.50	0.53	0.00	0.00	0.00	0.00	1.86	0.98	2.06
推定データ	期間内総数(個)	57	32	6	0	0	0			95
(53 年間) (按分後)	年平均 (個)	1.07	0.58	0.11	0.00	0.00	0.00			1.76
	標準偏差(個)	1.83	0.88	0.33	0.00	0.00	0.00			2.06
推定データ (53年間) (全竜巻)	期間内総数(個)	57	32	6	0	0	0			95
	年平均(個)	1.08	0.60	0.11	0.00	0.00	0.00			1. 79
	標準偏差 (個)	1.83	0.88	0. 33	0.00	0.00	0. 00			2.06

第9.2-2表 竜巻発生数の分析結果

相関係数(対数)	風速(m/s)	被害幅 (m)	被害長さ(m)
風速(m/s)	1.0000	0.0800	0.4646
被害幅 (m)	0. 0800	1.0000	0.2418
被害長さ(m)	0. 4646	0.2418	1.0000

第9.2-3表 竜巻風速,被害幅及び被害長さの相関係数

第9.1-1図 吉野正敏(1967~)による東北地方の気候区分

第9.1-2図 竜巻の発生地点と竜巻が集中する19個の地域

第9.1-3図 竜巻の発生要因別地域分布

(3) 関口武(1959): 日本の気候区分を基に作成

◆竜巻検討地域

- ・「温帯低気圧」を起源とする竜巻が多い。
- 太平洋側で多くみられる「台風」を起源とする竜
 巻は確認されていない。

- ◆北海道~山口県の日本海側(223 事例)
 - ・「季節風(冬)」を起源とする竜巻が多い。
 - 「台風」を起源とする竜巻は確認されていない。

- ◆茨城県以西の太平洋側(372事例)
- ・ 竜巻検討地域と比較して、「台風」、「季節風
 (夏)」、「停滞前線」を起源とする竜巻が多い。
- 太平洋側から暖かく湿った気流が、竜巻の親雲の発達を促すと考えられる。

第9.1-5図 竜巻検討地域等における竜巻の発生要因の出現比率

第9.1-6図 CAPEの概念

第9.1-7図 SReHの概念

暖候期(5月-10月)における CAPE≧1200 J/kg かつ SReH≧350 m²/s²

寒候期(11月-4月)における CAPE≧500 J/kg かつ SReH≧350 m²/s²

第9.1-8図 同時超過頻度分布の算出結果

第9.2-1図 竜巻年別発生確認数

第9.2-2図 竜巻検討地域における竜巻発生数の確率分布と累積確率

第9.2-3図 風速の確率密度分布(左)と超過確率(右)

第9.2-4図 被害幅の確率密度分布(左)と超過確率(右)

第9.2-5図 被害長さの確率密度分布(左)と超過確率(右)

第9.2-6図 竜巻影響エリア

第9.2-7図 竜巻最大風速のハザード曲線(竜巻検討地域)

第9.2-8図 竜巻最大風速のハザード曲線(1km範囲)(参考)

- 10. 生物
- 10.1 生物の生息状況

廃棄物管理施設が立地する地域の周辺における生物の生息状況について は、「新むつ小川原開発基本計画素案に係る環境影響評価書」及び「六ヶ 所事業所再処理工場及び廃棄物管理施設に係る環境保全調査報告書」にて 報告されている。これらの報告書で確認されている生物の生息状況を第 10.1-1表に示す。

- 10.2 生物学的事象で考慮する対象生物
 - (1) 鳥類及び昆虫類

廃棄物管理施設が立地する地域では,鳥類及び昆虫類の生息が多く確認されており,換気設備等の外気取入口からの侵入が考えられるため, 鳥類及び昆虫類を生物学的事象で考慮する対象生物(以下 10.では「対象生物」という。)とする。

(2) その他の動物種

大型の動物については,周辺監視区域の境界及び廃棄物管理施設周辺 にフェンスを設置しており,廃棄物管理施設近傍まで侵入することは想 定し難いため,対象生物としない。しかし,小動物(ネズミ類,両生類, 爬虫類等)については,廃棄物管理施設近傍まで侵入することが考えら れるため,対象生物とする。

- 10.3 参考文献一覧
 - (1) 青森県. "7.3 生物の多様性の確保及び自然環境の体系的保全に係る項目".新むつ小川原開発基本計画素案に係る環境影響評価書, 2007-03.
 - (2) 青森県. "資料2 調査、予測及び評価に係る参考資料 7.動物".
 新むつ小川原開発基本計画素案に係る環境影響評価書,2007-03.
 - (3) 日本原燃サービス. "Ⅳ. 地域環境の現況 8. 生物". 六ヶ所事業 所再処理工場及び廃棄物管理施設に係る環境保全調査報告書, 1989-03 (1992-4一部変更).

第10.1-1表 廃棄物管理施設が立地する地域の周辺における生物の生息状況について

新むつ小川原開発基本計画素案に係る環境影響評価書 青森県 平成 19 年 3 月 :			六ヶ所事業所再処理工場及び廃棄物管理施設に係る環境保全調査報告書 日本原燃サービス株式会社 平成元年3月(平成4年4月一部変更				
鳥類	資料調査	282 種	オジロワシ,オオワシ,ミサゴ,オオタカ,	鳥類	文献調査	285 種	オオハクチョウ, コガモ, セグロカモメ, カッコウ, ウグイス, シジュウカラ 等
	現地調査	猛禽類:9種	ノスリ,コミミズク,トビ,カッコウ 等		現地調査	184 種	A
		一般的な鳥類:149 種					
昆虫類	資料調査	トンボ類:43種	イトトンボ,モノサシトンボ,アオイトトンボ,				
	現地調査	トンボ類:26種	カワトンボ, バッタ, ハサミムシ, カメムシ 等				
		その他昆虫類:221種					
その他動物種	資料調査	20 種以上	アマガエル,ヤマアカガエル,カナヘビ,シマヘ				
(両生類・爬虫類)	現地調査	6種	ビ,アオダイショウ 等				
その他動物種	資料調查	27 種以上	カモシカ,ツキノワグマ,キツネ,タヌキ,ネズ	哺乳類	文献調査	17 種	ジネズミ,ヒミズ,モグラ,ノウサギ,ニホンリス,トウホクヤチネズミ,ツキノ
(哺乳類)	現地調査	7種	ミ類, モグラ類 等		現地調査	24 種	ワグマ,カモシカ 等
その他動物種	資料調査	54 種	ヤツメウナギ, ウナギ, サケ, アユ, コイ, ドジ	水生動物	二又川(現地	調査)	
(魚類)		(田面木沼・市柳沼:16種,	ョウ, ナマズ, ボラ 等		 ・底生生物: 	春季 15 種,夏季 2 種	・節足動物のキブネタニガワカゲロウ,ガガンボ科の一種,ユスリカの一種 等
		鷹架沼:21種,尾駮沼:44種)				秋季4種,冬季10種	
					 魚類:未確 	認	
		六ヶ所村の河川に生息している主な魚類	Į		尾駮沼(現地調査)		
		上流域:イワナ,エゾイワナ,ヤマメ	等		·潮間帯生物	: 春季 16 種, 夏季 19 種	・環形動物のゴカイ,軟体動物のカワザンショウガイ 等
		中流域:アユ,ウグイ,マルタ 等				秋季 21 種, 冬季 25 種	
		下流域:コイ,フナ,タナゴ,カジカ	, ナマズ 等		 ・底生生物:春季22種,夏季22種 		・軟体動物のカワグチツボ,ホトトギスガイ 等
		河口付近:マハゼ,ワカサギ,サケ,	ヌマガレイ 等		秋季 30 種, 冬季 35 種		
その他動物種	資料調査	尾駮沼:甲殻類(ケフサイソガニ, アリアケモドキ等	5),昆虫類(ユスリカの一種),節足動物(カワグチツボ等),		 ・魚類:春季10種,夏季3種 		・ワカサギ,サヨリ,ヌマガレイ 等
(底生生物)		二枚貝(シラトリガイ等),多毛類((ヤマトスピオ等),貧毛目(イトミミズ等)		秋季5種,冬季4種		
		鷹架沼:甲殼類 (ミズムシ等), 昆虫類 (オオ	コスリカ等),二枚貝(カラスガイ等),貧毛目(イトミミズ等),		 ・卵, 稚仔:春季3種, 		 ・コノシロの卵、ヨウジウオ及びハゼ亜目の稚仔
		線形動物				夏季~冬季 木確認	
		高瀬川周辺:環形動物(ゴカイ等),軟体動	動物(カワザンショウ等),節足動物(ウミナナフシ等),脊椎動物		・動物プランクトン:春季23種,夏季27種		・腹足綱の幼生等
		(マハセ*)				秋季 32 種, 冬季 26 種	
L et labele	Versiol -tert_la						
水生植物	資料調査	尾駮沼及び鷹架沼の植物	s. In the standard of the standard of the	水生植物	二义川 (現地	調査) 20.任 五千 10.任	ri- th
		主な水生植物:マコモ,ヨシ, ツルヨ	シ, クサヨシ, ボタルイ, サンカクイ 等		澡 類:春学	23 種, 复学 19 種	• 珪藻
		湖岸の湿原:ヤナヤナキ,ヤナハンノ	キ、アセスケ、カモノハン等		秋学	28 種, 冬孚 20 種	
		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	イメイ 寺		毛駁沼 (現地	調査) 本禾の毎、百禾の毎	、 伝達 毎7は肺のコマーチ 始
		田田不沼及の印柳沼の植物			御澡早類:	存学り裡, 夏学り裡	・ 深深, 惶丁恒初 の コ ア マ 七 寺
		毛取俗及い鷹朱裕の土な植物と類似 言志明はどらの技施			おおけかつ。こいり)	(外学り種, 令学/種)	
		「「御知川村近の恒物」			10.4007 727ト	/: 香学 23 裡, 复学 47 裡,	・
		リミミドリ, ビメモンホワゲ, イヌイ	, オオンハブ 等			朳学 38 種,冬学 31 種	

(添付書類四)

添付書類四 変更に係る廃棄物管理施設の場所の中心から五キロメートル以内の地域を含む縮尺 五万分の一の地図を以下のとおり補正する。

ページ	行	補正前	補正後
_	_	添付書類四を右記のとおり変 更する。	別紙-1のとおり変更する。

別紙-1

添 付 書 類 四

変更に係る廃棄物管理施設の場所の中心から五キロメートル 以内の地域を含む縮尺五万分の一の地図

