平成29年度原子力施設等防災対策等委託費(内陸型地震による地震動の評価手法の検討)

業務報告書

一般財団法人 地域 地盤 環境 研究所

平成 30 年 3 月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

平成29年度原子力施設等防災対策等委託費(内陸型地震による地震動の評価手法の検討)

目 次

目次

1.	はじめに	1-1
2.	特性化震源モデルの巨視的パラメータの不確かさ評価手法の検討	
	2.1 断層長さの推定手法の検討	2.1-2
,	2.2 断層幅の推定手法の検討	2.2-1
3.	特性化震源モデルの微視的パラメータの不確かさ評価手法の検討	
	3.1 強震動記録解析による特性化震源モデル設定手法の検討	
	3.1.1 2016 年茨城県北部の地震(Mma6.3)	
	3.1.1(1) 高精度グリーン関数の作成	
	3.1.1(2) 震源インバージョン	
	3.1.1(3) 経験的グリーン関数による震源モデリング	
	3.1.2 2016 年福島県沖の地震(<i>M</i> ™A7.4)	
	3.1.2(1) 高精度グリーン関数の作成	
	3.1.2(2) 震源インバージョン	
	3.1.2(3) 経験的グリーン関数による震源モデリング	
	3.1.3 2016 年鳥取県中部の地震(MIMA6.6)	
	3.1.3(1) 高精度グリーン関数の作成	
	3.1.3(2) 震源インバージョン	
	3.1.3(3) 経験的グリーン関数による震源モデリング	
	3.1.4 経験的グリーン関数法を用いた評価手法の検討	
	3.2 震源スケーリング則の改良	
	3.2.1 巨視的・微視的スケーリング則の検討	
	3.2.2 浅部の大すべり域における震源スケーリング則の検討	
	3.2.2(1) 2016 年熊本地震(4 月 16 日 1 時 25 分 M _{JMA} 7.3)の検討	
	3.2.2(2) 浅部の大すべり域における震源スケーリング則	
-	3.3 2016 年熊本地震系列の震源特性の検討	3.3-1
4.	特性化震源モデルのパラメータの影響度の検討	4.1-1

4.1 検討対象パラメータの不確かさのモデル化...... 4.1-2

4.2	基本震源モデルの構築及び地震動評価	4.2-1
4.3	各パラメータの不確かさを考慮した地震動評価	4.3-1
4.4	パラメータの影響度分析	4.4-1
4.5	参考解析	4.5-1
4.6	不均質性を持つ特性化震源モデルによる強震動評価	4.6-1

- 5. 動力学シミュレーションによる震源特性化手法の検討...... 5.1.1-1

 - 5.1.4 動力学パラメータの整理...... 5.1.4-1
 - 5.2 動力学シミュレーションによる震源スケーリング則の検討...... 5.2-1

6.	各研究	E項目のまとめ	6.1-1
ϵ	6.1 特	性化震源モデルの巨視的パラメータの不確かさ評価手法の検討	6.1-1
ϵ	5.2 特	性化震源モデルの微視的パラメータの不確かさ評価手法の検討	6.2.1(1)-1
	6.2.1	強震動記録解析による特性化震源モデル設定手法の検討	6.2.1(1)-1
	6.2.	.1(1) 2016 年茨城県北部の地震(M _{JMA} 6.3)	6.2.1(1)-1
	6.2.	.1(2) 2016 年福島県沖の地震(M _{JMA} 7.4)	6.2.1(2)-1
	6.2.	.1(3) 2016 年鳥取県中部の地震(M _{JMA} 6.6)	6.2.1(3)-1
	6.2.2	震源スケーリング則の改良	6.2.2(1)-1
	6.2.	.2(1) 巨視的・微視的スケーリング則の検討	6.2.2(1)-1
	6.2.	.2(2) 浅部の大すべり域における震源スケーリング則の検討	6.2.2(2)-1
	6.2.3	2016 年熊本地震系列の震源特性の検討	6.2.3-1
6	5.3 特	性化震源モデルのパラメータの影響度の検討	6.3.1-1
	6.3	.1 検討対象パラメータの不確かさのモデル化	6.3.1-1
	6.3	.2 基本震源モデルの構築及び地震動評価	6.3.2-1
	6.3	.3 各パラメータの不確かさを考慮した地震動評価	6.3.3-1
	6.3	.4 パラメータの影響度分析	6.3.4-1
	6.3	.5 不均質性を持つ特性化震源モデルによる強震動評価	6.3.5-1
6	5.4 動	力学シミュレーションによる震源特性化手法の検討	6.4.1-1
	6.4	.1 震源インバージョン結果に基づいた動力学パラメータの推定	6.4.1-1
	6.4	.2 動力学シミュレーションによる震源スケーリング則の検討	6.4.2-1

付録

A.1	微動アレイおよび単点微動による地下構造モデル化.		A.1-1
A.2	不均質性を持つ特性化震源モデルによる強震動評価	(付録資料)	A.2-1

A.3 動力学シミュレーションによる震源スケーリング則の検討(付録資料) A.3-1

1. はじめに

原子力規制委員会の新規制基準では、最新知見に基づく原子力発電施設の敷地に極めて近 い断層、敷地周辺の複数の活断層の連動やプレート境界で起きた巨大地震を考慮すること、 地震動評価における各パラメータ設定の不確かさを考慮して基準地震動を策定することが 求められており、地震動評価の不確かさ評価手法を高度化する必要がある。その基準地震動 の策定においては、断層モデルを用いた手法(強震動予測手法「レシピ」として知られてお り、以下「強震動予測レシピ」と呼ぶ)の使用が原子力規制委員会によって規定されている。

強震動予測レシピは、主に強震動記録を用いた震源インバージョンにより推定された断層 震源パラメータのスケーリング則に基づいている(入倉・三宅, 2001)。このレシピの基にな ったデータは、主に 1995 年兵庫県南部地震以前に発生した M7 程度までの米国カリフォル ニアの地震の強震動記録を用いた解析結果(Somerville et al., 1999)であった。その理由は、 1995 年兵庫県南部地震の前までは日本の強震動観測体制が貧弱だったため、強震動記録を 用いた波形インバージョンによる精度よい断層破壊過程の結果が得られておらず、大きなす べりをもつアスペリティ面積や応力降下量などの強震動予測において重要な断層パラメー タの推定が困難であったためである。Miyake et al. (2003)は、主に周期2秒以上の長周期波 形をターゲットにした震源インバージョン結果によるアスペリティ領域と周期 1 秒以下の 強震動生成領域(SMGA: Strong Motion Generation Area)が一致することを示した。入倉・ 三宅 (2001)は、このような成果に基づき、アスペリティ領域(震源インバージョン結果に よるすべりの大きな領域)から広帯域(0.1秒~10秒程度)の強震動が生成される震源モデ ルを提案し、これが強震動予測レシピとなっている。レシピは、(i)特性化震源モデルの 設定、(ii)地盤構造モデルの作成、(iii)強震動計算、(iv)予測手法の検証の4項目に分 かれている。基準地震動の策定において重要な震源パラメータ設定に関しては、(i)に従 う。(i)は、さらに「巨視的断層特性」と「微視的断層特性」の二つの項目に分かれて記 述される。「巨視的断層特性」では、対象となる活断層の断層面の設定方法について、また、

「微視的断層特性」では、主に強震動生成に関わるアスペリティを規定するパラメータの設 定方法について記述されている。

日本国内では、1995年兵庫県南部地震以降、防災科学技術研究所によって強震観測ネットワークが充実し、被害地震が発生すると、すぐに強震動記録が公開されるようになった。 さらには全国の地盤構造モデルも同研究所から公開されるようになり(例えば、J-SHIS全 国深部地盤モデルV2)、震源インバージョンに必要な地下構造モデル(グリーン関数)も入 手しやすくなっている。このような現状を鑑みると、Somerville et al. (1999)で収集・整理さ れた震源インバージョン結果に比べて、国内で実施される震源インバージョン結果は質的・ 量的に向上が期待できる。特に、2011年東北地方太平洋沖地震の後、内陸地殻内地震が活 発化し、震源近傍で大加速度の強震動記録が数多く得られてれ、それらに基づく震源特性に 係る多くの研究報告がなされている。さらに、近年発生した 2016年熊本地震(Mw7.1)では、 震源近傍観測点において永久変位が観測され、地表近くまでの断層すべりが指摘されている。 このような浅部地盤における断層破壊を現す地震では、応力変化の設定が地震動評価にも大 きな影響を与えると考えられ、地表まで進展する断層破壊挙動を適切に地震動評価へ反映さ せる必要がある。しかしながら、震源断層が地表に現れるような規模の大きな地震(Mw7 ク ラス以上)の発生が少ないことを鑑み、実際の破壊現象を模擬する動力学シミュレーション を活用し、その動力学的知見から浅部地盤における断層破壊の震源特性を検討するとともに、 比較的規模の大きな地震(Mw6-7 クラス)の特性化震源モデルにおける震源パラメータのス ケーリング則を検討・検証する。このため、最新の研究動向を踏まえつつ地震の規模やその 不確実さを適切に評価するために、震源特性に係わる知見を継続的に蓄積していくことが重 要である。

そこで本研究では、地震動評価における不確かさの評価手法の高度化に資するため、2016 年熊本地震(Mw7.1)及び 2016 年福島県沖の地震(Mw7.0)を踏まえた上で、震源断層の形態・ 規模を示す巨視的震源特性に関するパラメータ(以下、「巨視的パラメータ」という。)に対 して、活断層に関する多分野情報の活用を検討すること、及びアスペリティを有する震源断 層の不均質性を示す微視的震源特性に関するパラメータ(以下、「微視的パラメータ」とい う。)に対して、数多くの内陸型地震で観測された強震動データを体系的に分析・解析する こととし、以下4項目の内容を実施する。

- (1) 特性化震源モデルの巨視的パラメータの不確かさ評価手法の検討
- (2) 特性化震源モデルの微視的パラメータの不確かさ評価手法の検討
- (3) 特性化震源モデルのパラメータの影響度の検討
- (4) 動力学シミュレーションによる震源特性化手法の検討

■参考文献 第1章

入倉孝次郎・三宅弘恵(2001):シナリオ地震の強震動予測、地学雑誌、110、849-875.

- Miyake, H., T. Iwata, and K. Irikura (2003): Source characterization for broadband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area, Bull. Seism. Soc. Am., 93, 2531–2545.
- Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999): Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seism. Res. Lett., 70, 59-80.

2. 特性化震源モデルの巨視的パラメータの不確かさ評価手法の検討

「レシピ」により構築された特性化震源モデルに基づく強震動シミュレーションでは、実 際の観測記録の再現性等が議論され、その検証事例も蓄積されている.しかしながら、予 測問題としての検証は、事例数が少ないこともあり検証やその結果得られた知見を蓄積す る必要がある. 震源断層に関する情報は震源インバージョン結果の蓄積・整理によってシ ミュレーションに関わる様々なパラメータが整理されている(例えば宮腰・他,2015). 震 源断層の位置や大きさに関わる断層長や断層幅といった巨視的パラメータについて,断層 幅は国内で発生した地震に関しては現在のところ断層タイプによって大きな違いは見られ ず,幅の平均は 18km 程度とされる.一方,予測の際には活断層の長期評価を参考に,起 震断層を設定し断層長を決め,断層幅は震源分布の統計量(90% や95% など)を基準に設 定しているが,地質学的にはおよそ平均して 15km とされる(例えば,島崎, 2016). 地震 規模を示すモーメントは断層面積と密接に関連しているので、断層長・幅の評価は断層規 模の評価につながる.地震活動が低調な地域(例えば中国地方など)では気象庁一元化震 **源カタログからは設定が難しいと考えられる. また, 起震断層の認定は活断層調査成果を** 整理した長期評価に基づいているが、重要施設は大量の水が必要な立地条件から、ほとん どが沿岸域に位置している. このため, 陸域から海域にわたる震源断層の評価も重要であ る.

本検討は以上の課題を鑑みて、巨視的パラメータに関して、断層幅の評価・国内の沿岸 域で発生した地震および、テクトニクスセッティングの異なる米国での地震発生層厚の検 討を目的とした.過年度までに検討してきた国内地震に今回新たに評価対象として加えた 表 2-1 に示す地震について、断層長および断層幅の検討を行った.国内のデータは宮腰・ 他(2015)で整理された地震を基本とした.米国は Somerville et al. (1999) で検討された地震の 中で、活断層と明瞭な対応関係のある地震を選んだ.

No	Earthquake	\mathbf{FT}	SR	Mw	MoFnt	MoInv
1	2005Fukuoka (2005FK)	SS	В	6.60	7.80e+18 ¹	1.15e+19 ¹
2	1891Nobi (1891NOB)	SS	S	7.44	$1.50e + 20^{-1}$	$1.80e + 20^{-1}$
3	2016Kumamoto (2016KUM)	SS	S	7.00	4.42e+19 ²	4.70e+19 ⁴
4	1927Kita-Tango (1927KTN)	SS	S	7.04	$4.60e + 19^{-1}$	$4.60e + 19^{-1}$
5	2008Iwate_miyagi (2008IWM)	RS	S	6.90	$2.72e + 19^{-1}$	2.75e+19 ¹
6	2004Chuetsu (2004TYU)	RS	Ι	6.60	$7.53e + 18^{-1}$	$1.07e + 19^{-1}$
7	1995Kobe (1995Hyo)	SS	S	6.90	$3.30e + 19^{-1}$	3.75e+19 ¹
8	2000Tottori (2000TOT)	SS	S	6.60	$8.62e + 18^{-1}$	2.00e+18 ¹
9	2007Noto (2007NOT)	RS	В	6.70	$1.36e + 19^{-1}$	1.34e+19 ¹
10	2011Hama-Dori (2011HMD)	NS	S	6.60	$9.58e + 18^{-1}$	$1.14e + 19^{-1}$
11	1978Izu-Kinkai (1978IZK)	SS	S	6.63	$1.10e + 19^{-1}$	$1.10e+19^{-1}$
12	1998Iwate-Nairiku (1998IWN)	RS	Ι	5.90	$7.53e + 17^{-1}$	6.09e+17 ¹
13	1987Superstition-Hills (1987SHL)	SS	S	6.60	$4.80e + 18^{-3}$	4.80e+18 ³
14	1992Landers (1992LND)	SS	S	7.20	$7.80e + 19^{-3}$	$7.80e + 19^{-3}$
15	1999Hector-Mine (1999HEC)	SS	S	7.10	$6.28e + 19^{-3}$	6.28e+19 ³
* F7	C:断層タイプ,SR:断層種別,B:伏在断層	. I:≢	相有地震	意.S: 地	电表地震断層 Mo	Fnt: F-net に

表 2-1 検討地震一覧

^{*} FT:断層タイプ, SR:断層種別, B:伏在断層, I:非固有地震, S:地表地震断層 MoFnt:F-net に よるモーメント (Nm), MoInv:インバージョンによるモーメント (Nm)

¹ 宮腰・他 (2015)

Ĩ

² F-net カタログより

3 岩城·他 (2006)

⁴ Yoshida et al. (2017)

2.1 断層長さの推定手法の検討

巨視的パラメータの中で断層長は対象とする断層によって様々な種類が存在する.図2-1 に本検討で用いている断層長の概念図を示す.地震調査研究推進本部地震調査委員会(2017) では活断層情報をもとに強震動予測を行う手法を解説しており,地震調査研究推進本部の 長期評価部会では活断層の評価を,強震動部会ではその結果に基づく強震動予測を行って いる.地震調査研究推進本部地震調査委員会長期評価部会(2010)で改訂された評価手法は, 活断層を強震動予測の際の断層モデルを設定するための手順を解説している.これは,兵 庫県南部地震直後では活断層情報に重点を置き,地表での活断層長が震源断層長と等しい と仮定して設定していたのに対して,その後に発生した地震での知見をもとに,物理探査 結果など地下構造を考慮して地中断層長として評価している点が大きく改正されている.

図 2-1 断層長について

2.1.1 変位量データとの関係

地形や地下構造より断層長を検討する場合,末端に近づくにつれて変位量が減少するため,日本のように風化・浸食作用の影響が強いところでは末端の認定が困難で,断層長を 過小評価する可能性もある.松田(1975)では,地震規模と断層長の他に,地震時の変位量 との関係も整理している.そこで,検討対象地震の地表最大変位量や地中断層の最大変位 量を整理した.さらに地震調査研究推進本部による98 断層帯の整理結果や楮原・他(2007) によるデータを参考に各活断層の平均変位量・地震の再来間隔も整理した.断層傾斜角も 長期評価で評価されている場合はその値を採用し,それ以外は横ずれ断層では90°,逆断 層・正断層では45°とした.整理した結果一覧を表2-2 に示す.

表 2-2 断層長整理結果

No	Earthquake	\mathbf{Ds}	Da	Di	Les	Dp	Linv	Winv	Dpinv	RI^{12}
1	2005Fukuoka (2005FK)	0.00	0.0	3.17 9	27	90	26 ⁹	18 ⁹	90 9	0
2	1891Nobi (1891NOB)	8.00 1	2.0	0.00	81	90	122^{9}	15 9	90 ⁹	2850
3	2016Kumamoto (2016KUM)	2.00^{-2}	0.3	5.35 10	46	60	48 11	18 11	60 11	17050
4	1927Kita-Tango (1927KTN)	3.70 ³	0.3	0.00	63	90	33 ⁹	19 ⁹	64 ⁹	12500
5	2008Iwate_miyagi (2008IWM)	0.50 4	0.0	6.07 9	40	30	39 ⁹	18 9	40 9	0
6	2004Chuetsu (2004TYU)	0.00	0.0	3.08 9	47	50	28 9	18 ⁹	50 ⁹	0
7	1995Kobe (1995Hyo)	2.10^{-5}	2.0	4.01 9	67	80	64 ⁹	21 9	90 9	1850
8	2000Tottori (2000TOT)	0.40 6	0.0	4.44 9	41	90	34 9	18 9	90 ⁹	0
9	2007Noto (2007NOT)	0.00	0.0	3.73 9	29	45	26 9	18 9	60 ⁹	0
10	2011Hama-Dori (2011HMD)	0.30 7	0.0	2.51^{9}	42	45	40 9	16 ⁹	60 ⁹	0
11	1978Izu-Kinkai (1978IZK)	1.20 8	0.0	0.00	10	90	35 9	18 9	80 ⁹	0
12	1998Iwate-Nairiku (1998IWN)	0.00	0.5	0.52 9	30	45	10 9	10 ⁹	40 ⁹	0
14	1987Superstition-Hills (1987SHL)	0.58 5	5.0	2.69 5	36	90	20 5	12 5	90 ⁵	250
15	1992Landers (1992LND)	6.00 5	1.0	6.57 5	111	90	69 ⁵	15 5	90 ⁵	6250
16	1999Hector-Mine (1999HEC)	5.25 5	1.0	7.00 5	85	90	75 5	13 5	90 ⁵	0

* Ds: 地表最大変位量 (m), Da: 活断層の平均変位量 (m/千年), Di: 震源断層の最大すべり量 (m), Les: 地震調査研究推進本部 地震調査委員会長期評価部会(2010)の手法より推定された断層長,Linv:震源断層長(km),Winv:震源断層幅(km),Dp: 断層傾斜角(°),Dpinv:震源断層傾斜角(°).

1 :松田 (1974)

 2 : Shirahama et al. (2016)

³ : 岡田 · 松田 (1997) 4 :遠田·他 (2010)

5 : 岩城 · 他 (2006)

6 :伏島·他 (2001)

7 : 丸山 · 他 (2012)

⁸ :村井·他 (1978) ⁹ :宮腰·他 (2015)

¹⁰ : Asano and Iwata (2016)

¹¹ : Yoshida et al. (2017)

¹²: 地震調査研究推進本部長期評価および Machette et al. (2004)

地表最大変位量と活断層長および震源断層長と比較した結果を図 2-2.2-3 に示す. 整理し たデータでは横ずれ断層のケースが多い. 図 2-2 では、横ずれ断層に着目すると、1978 年 伊豆近海地震を除いて地表最大変位量と活断層長との間に正の相関が見られる. 起震断層 長との関係(図 2-3)では、より顕著になる.このことから、予測問題において地表最大変 位量を見積もることが出来れば、震源断層長を設定できる可能性がある.

図 2-2 活断層から求めた断層長と地表最大変位量との関係 図中の各地震は表 2-2 を参照

図 2-3 震源断層長と地表最大変位量との関係 図中の各地震は表 2-2 を参照

松田(1975) では平均変位速度 (S, m/千年) に関連して, 地震規模 (M) と再来間隔 (R, 年) との間に(2-1) 式のような関係式を示している.

$$log R = 0.6M - 4.0 - log S$$
 (2-1)

断層長(L, km)と地震規模(M)との間には(2-2)式の関係式が求められている. (2-1)式 および(2-2)式を組み合わせることで(2-3)式が得られる.

$$logL = 0.6M - 2.9$$
 (2-2)

図 2-4 および図 2-5 には、各断層長と再来間隔との関係に、平均変位速度が 1.0m/千年と 10m/千年の時のグラフを示す.再来間隔や平均変位速度が明らかにされている地震が少な いが、平均変位速度で示される領域にプロットされており、概ね対応関係にあるようにみ える.地震後のクリープ性の変位が報告されている 1987 年 Superstition Hills の地震は 10m/ 千年のグラフに近い位置に示されている.地表最大変位量と同様、断層長を推定する一つ の指標になり得る可能性はあるが、現時点でデータ数が少ないため、平均変位速度や再来 間隔を精度良く求めるには、古地震学的な調査結果を蓄積した上で評価していく必要があ る.

図 2-4 活断層から求めた断層長と再来間隔・平均変位速度との関係 青実線は松田(1975)による平均変位速度(m/千年)を示す. 図中の各地震は表 2-2 を参照

図 2-5 震源断層長と再来間隔・平均変位速度との関係 青実線は松田(1975) による平均変位速度(m/千年)を示す. 図中の各地震は表 2-2 を参照

2.1.2 沿岸域の地震

原子力発電所は、広大な敷地が確保でき、強固な地盤と大量の冷却水が確保できるといった立地条件より、ほとんどが沿岸地域に位置している。陸域における活断層情報については空中写真判読や近年では高精度な地形情報解析をはじめとする変動地形学的な検討から各種活断層図まで整備されている。一方、海域における変動地形学的なアプローチとしては、海底地形測量や音波探査が主流となっている。現在では海域においても、敷地前面に広がる海域で稠密な音波探査が実施され、必要に応じて海上ボーリングも行われ、海域

から陸域までシームレスな活断層評価を目的として整理されている.しかしながら,これ らの調査では海上,陸上からアクセスが最も困難な沿岸近傍でのデータ取得が困難で,デ ータの空白域が生じることとなる.

沿岸域における膨大な音波探査結果をコンパイルしたデータベースも公開されている (例えば産業技術総合研究所による海底地質構造データベースや高分解能音波探査断面デ ータベースなど).物理探査においても活断層調査でよく実施されている反射法地震探査は, 受信ケーブルを陸上から海上まで連続的に配置することで,シームレスな地下断面を得る ことができるようになってきた(例えば佐藤,2017 や日本原燃株式会社・他(2015)など).

地震調査研究推進本部地震調査委員会長期評価部会(2010)の評価手法で取り上げられて いる重力異常は,海上と陸域とのデータをコンパイルしてグリッドデータとして公開され ている(地質調査総合センター(編),2013).このため沿岸部では厳密にはデータの空白 域が存在する.この空白域を埋める方法として,空中重力探査が挙げられ,国内でも沿岸 域で多数実施された(瀬川,2015).近年では重力偏差計を用いた調査も行われつつある(例 えば西島,2016).このように,調査方法によっては沿岸域において空間的に連続的にデー タ取得が可能なものが活用可能である.

昨年度まで陸域における地震の断層長を主な対象として地震調査研究推進本部地震調査 委員会長期評価部会(2010)で評価していた.今回,沿岸域の地震として 2005 年福岡県西方 沖地震と 1927 年北丹後地震を評価対象として追加して断層長の評価を行った.他の国内の 地震の断層長に関しては昨年度の検討結果があるものについてはその結果を用いた.1927 年北丹後地震では陸域の活断層の延長部で反射法地震探査が行われた(阿部・他, 2012). その結果,沿岸部から 40km 以上の断層調査推定された(図 2-6).

図 2-6 鄉村断層帯海域延長部(阿部·他, 2012)

この結果を 1927 年北丹後地震の起震断層長として採用した(図 2-7). 重力異常との関係をみると,想定された起震断層は複数の重力異常の急変帯にわたって分布しており,いくつかのセグメントに分割できる可能性がある.

図 2-7 1927 年北丹後地震の起震断層長

2005 年福岡県西方沖地震の震源域では博多湾で音波探査が行われ,活断層およびその北 側延長上に断層構造が見いだされている(岡村・他,2009).音波探査で明らかにされた活 断層分布(図 2-9)と,重力異常と比較すると,対応する急変帯はみられない.したがって, 昨年度の検討で重力異常と明瞭な対応関係が見られない断層長評価手法(図 2-8)を適用し て 1mgal/km の閾値まで延長した(図 2-10).

a) 検討対象領域の活断層

b) 地質断層や震源分布,磁気異常,既存研究成果等との比較

c) 重力異常との比較

図 2-8 断層長の評価

図 2-9 活断層分布より推定した 2005 年福岡県西方沖地震の起震断層

図 2-10 重力異常分布より推定した 2005 年福岡県西方沖地震の起震断層

沿岸域の調査データが活用可能な地震の断層長の検討を行った. 震源断層長と活断層より 推定された断層長との比較(図 2-11)では,地表地震断層を伴った地震や伴わなかった地 震,いずれのタイプでも長さの対応をみるとばらつきが大きい結果となった. 評価する地 点の活断層の成熟度等で対応関係が異なる可能性が考えられる.一方,地震調査研究推進 本部地震調査委員会長期評価部会(2010)の評価手法で推定された断層長は,非固有地震と 考えられる 1998 岩手内陸地震(1998IWN)(宮内・他,1998 や Maruyama et al., 2007)や 事後調査で震源域において活断層が見出されなかった 1978 年伊豆近海地震(1978IZK)を 除いて,概ね整合的な結果が得られた. 沿岸域にわたる震源域の断層長評価であっても, 適切なデータセットがあれば評価可能であることを示している.

図 2-11 沿岸域における震源断層長と活断層から推定された断層長との関係 縦軸は震源インバージョンで得られたモデルの断層長(km),横軸は活断層分布から推定さ れた断層長(km).図中の各地震は表 2-2 を参照

図 2-12 沿岸域における震源断層長と推本の改訂版手法で推定された断層長との関係 縦軸は震源インバージョンで得られたモデルの断層長 (km),横軸は地震調査研究推進本部 地震調査委員会長期評価部会(2010) で推定された断層長 (km). 図中の各地震は表 2-2 を参 照

2.1.3 米国の地震

アメリカの 3 地震については地震調査研究推進本部地震調査委員会長期評価部会(2010) での評価において,重力異常データ等国内に比べてグリッドの解像度が低いことから,活 断層分布 (Machette et al., 2004) より松田(1990)の考え方を参考に起震断層を推定した(図 2-13 から図 2-15).

図 2-13 1987 年 Superstition Hills 地震の起震断層

図 2-14 1992 年 Landers 地震の起震断層

図 2-15 1999 年 Hector-Mine 地震の起震断層

2.1.4 まとめ

断層長は地震調査研究推進本部地震調査委員会長期評価部会(2010)の手法で検討したものを基本とした.図 2-16 に今回推定した断層長と震源モデルの断層長を比較したグラフを示す.非固有地震を除いた地表変位が認められた地震では、1978 年伊豆大島近海地震(1978IZK)、1891 年濃尾地震(1891NOB)を除き、おおよそ同等の長さ、もしくは推定された断層長の方が長い傾向を示す.一方、推定された断層長が短い2 地震は活断層調査によって対応する活断層構造が見いだされていない.これらの2 地震における評価結果の乖離については、多角的な情報から検証する必要があり、今後の課題である.

図 2-16 断層長の比較

縦軸は震源インバージョンで得られたモデルの断層長(km),横軸は地震調査研究推進本部 地震調査委員会長期評価部会(2010)で推定された断層長(km).図中の各地震は表 2-2 を参 照

2.2 断層幅の推定手法の検討

断層幅の設定に関しては、地震の震源分布から求められる D10 や D90,速度構造などが 参考にされることが多い.近年の強震動インバージョン成果の発展・蓄積に伴い、これら のデータを整理したスケーリングも検討されている. 宮腰・他(2015) では、様々な研究者 によって求められた震源断層を同一基準で比較できるようトリミング (Somerville et al., 1999) された結果に基づいて検討されている. しかし、震源分布から求められる断層幅と 震源インバージョンで求められている断層幅には乖離があることも指摘されている (例え ば島崎, 2008).また、一般的に地震発生層は気象庁一元化震源カタログから検討されるこ とが多いが、臨時余震観測で高精度に決定された余震とは違いがあることが指摘されてい る (原子力安全委員会, 2011). この他、磁気異常から求められたキュリー点深度も D90 と の相関が指摘されており (Tanaka and Ishikawa, 2005)、地震発生層の指標の一つとして考え ることができる.

2.2.1 臨時観測・再決定による余震分布の変化

ここでは震源カタログによる余震分布の差異について検討を行った.原子力安全委員会 (2011)では、地震後の臨時観測網で得られた余震の震源分布と気象庁一元化震源を比較す ると、一元化震源より推定される D95 は臨時観測より少し深い傾向にある.2000年鳥取県 西部地震の例では、気象庁一元化震源より推定される震源分布は6kmよりも深いものが多 いのに対して、臨時観測網によって決定される余震分布は、6km以浅の浅部にも多く分布 する傾向にある(図 2-17, 2-18).

(a) 気象庁一元化震源カタログによる震源分布
(b) 臨時余震観測による震源分布
図 2-17 2000 年鳥取県西部地震(原子力安全委員会,2011)
(a)よりも(b)の方が余震分布の幅が小さく,集中する.

図 2-18 2000 年鳥取県西部地震(原子力安全委員会,2011) (a)では, D95 が 12km 程度であるが, (b)では 12km よりもやや浅い位置に D95 がある.また,余震分布は(a)では, 6km 以深に大部分の余震が分布するが, (b) では, 6km 以浅のものも多い.これは, (a)(b)図の右側に示したヒストグラムの 分布域を見ても明瞭である.

2016 年熊本地震では, Yano and Matsubara (2017); Uchide et al. (2016) により hypoDD お よび推定された 1 次元速度構造モデルにより再決定された余震分布が求められている. Uchide et al. (2016) では気象庁一 元化震源と再決定された震源との比較も示されている.

図 2-19 をみると再決定された震源の方がよりまとまって分布している.しかし,極端に 深度方向の大きな変化があるようには見られない.一元化震源からの差をプロットした図 では,浅い部分の深度は比較的深くなっている傾向にみられるが,それ以外の深度では系 統的な変化はみられない.

図 2-19 気象庁一元化震源カタログと再決定された震源カタログとの震源分布の比較 (Uchide et al., 2016). (a) 熊本・阿蘇地域の震源分布図.赤色と灰色の記号はそれ ぞれ気象庁一元化震源カタログ,再決定された震源カタログからの震源であること を示す.)(b) A-A' から I-I' 断面図.各断面図上部の茶実線は地表地震断層(中田・ 今泉, 2002)を示す.(c),(d),(e) はそれぞれ緯度方向・経度方向・深度方向に再 決定過程によって生じた変化を示す.縦軸は気象庁一元化震源カタログとの差を示 す.

地震後,2ヶ月からの観測データに対して,tomoDD による3次元速度構造に基づいた震 源分布の検討もある(青柳・木村,2016). Shito et al. (2017) では3次元速度構造と地震発生 層との関係を議論しており,カルデラから日奈久断層にかけて地震発生層が厚くなる傾向 を示唆している.3次元速度構造モデルで再決定された震源分布は,よりまとまった分布と なるとされる.

2.2.2 震源分布による地震発生層の検討

Henry and Das (2001) では再決定された震源カタログより1日の余震分布を用いて断層 長・断層幅を検討している. 逆断層の幅については余震で断層面が識別できるもの, 断層 面は明瞭では無いが, CMT 解の面を使って読み取ったもの, がある. 余震分布で節面が区 別できないものは幅を読み取っていない. 一方, 横ずれ断層は幅を識別できるだけの精度 の良い浅い地震がほとんどなかったため断層長のみの評価となっている. 逆断層では非沈 み込み帯の地震では1週間, 1ヶ月で20, 37% の拡大が確認された. 細野・他(2006) でも 地震発生前よりも浅い方・深い方それぞれに震源分布が拡大している様子が示されている.

このように再決定された震源カタログを用いても、直接断層面形状を読み取ることは困 難であり,また,本震発生により震源域が変化する可能性が示唆される.しかしながら, 検討対象地震を統一的に検討できる震源情報は気象庁一元化震源なので,ここでは気象庁 一元化震源カタログを用いて D5 から D100 までを検討した. 整理した震源データは山本・ 他(2008) を参考に、地震観測網が整備された 1996 年以降から 2016 年 10 月まで、震源深 さが 20km 以浅, マグニチュードが 2 以上のデータを対象とした. このため 1996 年以前 の地震(1891 濃尾地震, 1927 北丹後地震, 1978 伊豆近海地震, 1995 神戸地震) について は厳密に地震発生前の震源分布を用いることができない。そこで、これらの地震について は、本震発生後、次の地震までの地震活動としてとらえ、検討に用いるカタログの全期間 の震源を用いて D5 から D100 を検討した. 1996 年以降に発生した地震(1998 岩手内陸地 震, 1000 鳥取西部地震, 2004 中越地震, 2005 福岡県西方沖地震, 2008 岩手宮城内陸地震, 2011 福島県浜通地震, 2016 熊本地震) については, 地震発生の前の D5, D10, D90, D95, D100, 地震発生後の余震について地震発生後1日(24時間)のD5, D10, D90, D95 を検 討した. 震源の抽出範囲は, 余震域を参考に設定した. 震源カタログから余震域が判別で きない地震については起震断層が想定された断層線を基準に直交方向にそれぞれ 10km,走 向方向に単点から 20km 以内とした. さらに,海外事例として,アメリカの地震 (1987Superstition-Hills, 1992Landards, 1999Hecter-Mine) についても同様の検討を行った.

図 2-20 から 2-47 に震源分布および抽出した震源分布の断面図を示す.

図 2-20 1891 年濃尾地震震源分布

青●は 1996 年から 2016 年までの震源分布,黒実線は震源分布断面図の投影面,灰実線は推定された起震断層を示す.

左のグラフの青●は 1996 年から 2016 年までの震源分布を示す.右は各震源の累積頻度分布を示す. 点線はキュリー点深度(CPD),浅い方の実線は D95,深い方の実線は D100 を示す.

青●は 1996 年から 2016 年までの震源分布,黒実線は震源分布断面図の投影面,灰実線は推定された起震断層を示す.

図 2-23 1927 年北丹後地震震源分布

左のグラフの青●は 1996 年から 2016 年までの震源分布を示す.右は各震源の累積頻度分布. 点線はキュリー点深度(CPD),浅い方の実線は D95,深い方の実線は D100 を示す.

図 2-24 1978 年伊豆大島近海地震震源分布

青●は 1996 年から 2016 年までの震源分布,黒実線は震源分布断面図の投影面,灰実線は推定された起震断層を示す.

図 2-25 1978 年伊豆大島近海地震震源分布

左のグラフの青●は 1996 年から 2016 年までの震源分布を示す.右は各震源の累積頻度分布. 点線はキュリー点深度(CPD),浅い方の実線は D95,深い方の実線は D100 を示す.

青●は 1996 年から 2016 年までの震源分布,黒実線は震源分布断面図の投影面,灰実線は推定された起震断層を示す.

図 2-27 1995 年兵庫県南部地震震源分布

左のグラフの青●は 1996 年から 2016 年までの震源分布を示す.右は各震源の累積頻度分布. 点線はキュリー点深度(CPD),浅い方の実線は D95,深い方の実線は D100 を示す.

1998IwateNairiku

図 2-28 1998 年岩手内陸地震震源分布

図 2-29 1998 年岩手内陸地震震源分布

図 2-30 2000 年鳥取県西部地震震源分布

図 2-31 2000 年鳥取県西部地震震源分布

図 2-32 2004 年中越地震震源分布

図 2-33 2004 年中越地震震源分布

図 2-34 2007 年能登半島地震震源分布

図 2-35 2007 年能登半島地震震源分布

図 2-36 2008 年岩手宮城内陸地震震源分布

左のグラフの青●は地震発生前までの震源分布,赤●は地震発生後1日間の震源分布

を示す. 点線はキュリー点深度(CPD),浅い方の実線は地震発生前までのD95,深い方の実線は地震発生前までのD100を示す. 右図は各震源の累積頻度分布で,青線は地震発生前,赤線は地震発生後1日間の累積である. 点線 (AFD95)は地震発生後の余震(赤線)のD95を示す.

2.2-22

図 2-38 2011 年福島県浜通地震震源分布

図 2-39 2011 年福島県浜通地震震源分布

図 2-40 2016 年熊本地震震源分布

図 2-41 2016 年熊本地震震源分布

左のグラフの青●は地震発生前までの震源分布,赤●は地震発生後 1 日間の震源分布 を示す. 点線はキュリー点深度(CPD),浅い方の実線は地震発生前までの D95,深い方 の実線は地震発生前までの D100 を示す. 右図は各震源の累積頻度分布で,青線は地震 発生前,赤線は地震発生後 1 日間の累積である. 点線 (AFD95)は地震発生後の余震(赤 線)の D95 を示す.

なお,2005 年福岡県西方沖地震は、この地震の本震・余震しか含まれないため、Omuralieva et al. (2012) による D90 の値を D90、 D95 として用いた.

次に、国外の地震による検討で用いた Superstition Hills, Landars, Hecter-Mine 地震につい ては、米国の ANSS のサイトからダウンロードした震源カタログを気象庁一元化震源と同 様の処理を行い、D5、D10、D90 等を求めた.

図 2-42 1987 年 Superstition Hills 地震震源分布 青●は地震発生前までの震源分布,赤●は地震発生後 1 日間の震源分布,黒実線は震 源分布断面図の投影面,灰実線は推定された起震断層を示す.

図 2-43 1987 年 Superstition Hills 地震震源分布 左のグラフの青●は地震発生前までの震源分布,赤●は地震発生後 1 日間の震源分布 を示す.浅い方の実線は地震発生前までの D95,深い方の実線は地震発生前までの D100 を示す.右図は各震源の累積頻度分布で,青線は地震発生前,赤線は地震発生後 1 日 間の累積である. 点線 (AFD95)は地震発生後の余震(赤線)の D95 を示す.

図 2-45 1992 年 Landers 地震震源分布

左のグラフの青●は地震発生前までの震源分布,赤●は地震発生後1日間の震源分布 を示す.浅い方の実線は地震発生前までのD95,深い方の実線は地震発生前までのD100 を示す.右図は各震源の累積頻度分布で,青線は地震発生前,赤線は地震発生後1日 間の累積である.点線(AFD95)は地震発生後の余震(赤線)のD95を示す.

今回検討した国内外の地震の震源域は,地震後の震源域が地震前の震源域よりも大幅に 深くなっているという現象はみられなかった.

2.2.3 キュリー点深度による地震発生層厚

Tanaka and Ishikawa (2005) により磁気異常データからキュリー点深度が推定されている (図2-48).また,キュリー点深度とD90との間の相関も示唆されている(図2-49). キュリー点深度を用いた断層幅の評価を行うために,当該地域のキュリー点深度を読み取 って整理した.2005 年福岡県西方沖地震ではキュリー点深度を得ることが出来なかった.

図 2-48 キュリー点深度(Zb)分布図(Tanaka and Ishikawa, 2005)

図 2-49 キュリー点深度(Zb)と D90 との比較(Tanaka and Ishikawa, 2005)

2.2.4 高精度震源カタログによる検討

防災科学技術研究所より再決定された震源カタログが公開された(Yano et al., 2017).カ タログの期間は 2001 年から 2012 年までで、今回の対象地震全てを検討できるわけではな いが、2004 中越地震、2005 年福岡県西方沖地震、2007 年能登半島地震、2008 年岩手宮 城内陸地震、2011 福島県浜通地震の検討を行った.震源の深度は 20km 未満としたが、マ グニチュードによる選別は行わなかった(図-50~図-59).

図 2-50 2004 年中越地震震源分布

図 2-51 2004 年中越地震震源分布

図 2-54 2007 年能登半島地震震源分布

図 2-55 2007 年能登半島地震震源分布

左のグラフの青●は地震発生前までの震源分布,赤●は地震発生後 1 日間の震源分布 を示す. 点線はキュリー点深度(CPD),浅い方の実線は地震発生前までの D95,深い方 の実線は地震発生前までの D100 を示す. 右図は各震源の累積頻度分布で,青線は地震 発生前,赤線は地震発生後 1 日間の累積である. 点線 (AFD95)は地震発生後の余震(赤 線)の D95 を示す.

青●は地震発生前までの震源分布,赤●は地震発生後 1 日間の震源分布,黒実線は震源分布断面図の投影面,灰実線は推定された起震断層を示す.

図 2-59 2011 年福島県浜通地震震源分布

表 2-3 地震発生層厚

No	Earthquake	震源 D5	余震 D5	震源 D10	余震 D10	TCDP	震源 D90	余震 D90	震源 D95	余震 D95	震源 D100
1	2005Fukuoka (2005FK)	15.9	7.0	15.9	7.9		12.0	13.8	12.0	14.5	12.0
2	1891Nobi (1891NOB)	3.5		5.7		18	15.6		16.4		19.2
3	2016Kumamoto (2016KUM)	5.9	7.1	7.3	8.2	16	13.1	13.8	14.3	14.7	16.5
4	1927Kita-Tango (1927KTN)	2.0		4.0		14	14.8		16.1		19.0
5	2008Iwate_miyagi (2008IWM)	3.4	2.6	4.9	3.5	17	11.1	10.5	11.4	11.1	13.2
6	2004Chuetsu (2004TYU)	0.6	6.8	0.8	8.4	15	16.6	16.6	17.2	17.8	19.1
7	1995Kobe (1995Hyo)	7.2		8.1		16	14.9		15.7		19.3
8	2000Tottori (2000TOT)	8.3	3.3	9.4	4.9	15	13.6	12.1	14.3	13.2	18.3
9	2007Noto (2007NOT)	4.9	2.8	5.1	4.5	11	17.7	11.4	17.8	12.0	18.9
10	2011Hama-Dori (2011HMD)	3.9	5.8	4.6	6.4	19	9.8	12.7	14.6	14.4	19.3
11	1978Izu-Kinkai (1978IZK)	1.0		1.6		19	11.4		13.0		18.8
12	1998Iwate-Nairiku (1998IWN)	5.4	0.3	6.0	5.5	15	11.4	9.4	14.8	9.6	15.2
14	1987Superstition-Hills (1987SHL)	0.2	0.3	0.6	0.6	—	7.9	5.9	9.9	7.0	14.0
15	1992Landers (1992LND)	0.3	0.3	0.6	0.6		7.2	5.6	8.6	7.7	14.5
16	1999Hector-Mine (1999HEC)	1.4	0.5	2.2	0.7	_	5.1	13.7	9.3	13.9	17.6
* 震 (]	源 D5:地震発生前までの震源分布の xm), 震源 D95:地震発生前までの震	D5 (km) 源分布の D),震源D 95 (km),	10:地震発生 余震 D5:	主前までの たたまでの 思 たたの 思 た の 思	譲分布の 1日の震源	D10(km) 分布の D5	, 震源 D90 (km), 余震):地震発生 D10:地震	前までの震測 発生後1日	(分布の D9 の震源分布の

(km), 震源 D95:地震発生前までの震源分布の D95 (km), 余震 D5:地震発生後1日の震源分布の D5 (km), 余震 D10:地震発生後1日の震源分布の D10 (km), 余震 D90:地震発生後1日の震源分布の D90 (km), 余震 D95:地震発生後1日の震源分布の D95 (km). 震源 D100:地震発生前までの 震源分布の D100 (km), TCDP:キュリー点深度(km). —は今回用いたデータでは評価できなかったことを示す.

さらに高精度地震カタログを用いて検討した結果を表 2-4 に示す.

No	Earthquake	D95	D100
1	2005Fukuoka (2005FK)	15.8	17.9
2	1891Nobi (1891NOB)		
3	2016Kumamoto (2016KUM)	—	
4	1927Kita-Tango (1927KTN)		
5	2008Iwate_miyagi (2008IWM)	10.9	19.9
6	2004Chuetsu (2004TYU)	18.1	19.9
7	1995Kobe (1995Hyo)	—	_
8	2000Tottori (2000 TOT)		
9	2007Noto (2007NOT)	11.7	14.2
10	2011Hama-Dori (2011HMD)	13.7	19.7
11	1978Izu-Kinkai (1978IZK)	—	—
12	1998Iwate-Nairiku (1998IWN)	—	_
14	1987Superstition-Hills (1987SHL)		—
15	1992Landers (1992LND)	<u> </u>	
16	1999Hector-Mine (1999HEC)	—	—
* D	95:地震発生前までの高精度震源カタロク	による混	寝源分布の

D95 (km), D100: 地震発生前までの高精度震源カタログによる 震源分布の D100 (km), — は対象地震が震源カタログの期間外 であることを示す.

2.2.5 推定した巨視的パラメータの考察

震源分布より求めた D5, D10, D90, D95 を組み合わせて得られる地震発生層厚から断 層傾斜角を考慮して断層幅を求めた. 図 2-60 から図 2-63 に従来の地震発生層下端深度か ら上端深度を差し引いた地震発生層厚による断層幅と震源断層の断層幅との比較したグラ フを示す. 大幅に断層幅が過小評価となっていることがわかる.

図 2-60 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸は D90-D5 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

図 2-61 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸は D95-D5 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

図 2-62 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸は D90-D10 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

図 2-63 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸は D95-D10 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

地震調査研究推進本部による主要活断層の長期評価において、断層上端深度は地表にしている.これを参考に地震発生層厚下端深度のみから求めた断層幅と震源断層の断層幅を比較したグラフを図 2-64 および図 2-65 に示す.上端深度を差し引いた場合の断層幅よりも震源断層幅との関係は改善されているが、横ずれ断層では過小の傾向を示す.特に 1978年伊豆近海地震と 2005年福岡県西方沖地震での乖離が大きい.2005年福岡県西方沖地震は Omuralieva et al. (2012)による D90を用いていることが原因の一つと考えられる.図 2-66にはキュリー点深度より求めた断層幅と震源断層幅との関係を示す.D90や D95 で求めた断層幅よりもより過小評価になっている地震が減少している.そこでキュリー点深度と D95

の深度を比較すると(図 2-67) どちらかというと負の相関があるようにみられ, Tanaka and Ishikawa (2005) による検討結果(図 2-49) とは異なるようにみえる.みかけ負の相関を生じさせているデータをみるとキュリー点深度よりも深めに推定されている 2007 年能登半島地震(2007NOT)が挙げられる.JUICE カタログで推定できた D95 に変更したデータで同じ検討をすると(図 2-68),データ数も少ないことから明瞭な相関は見いだすことは難しいが,少なくとも負の相関はみられない.今回は,沿岸域の震源データセットのデータ数が少ないためこのような結果になったと思われるが,このことは震源分布を用いた沿岸域の断層幅の評価が陸域に比べ難しいことを示す.

図 2-64 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸 は D90 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

図 2-65 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅 (km), 縦軸 は D95 より求めた断層幅 (km). 図中の各地震は表 2-2 を参照

図 2-66 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅(km),縦軸 はキュリー点深度より求めた断層幅(km). 図中の各地震は表 2-2 を参照

図 2-67 地震発生層厚下端の比較. 横軸はキュリー点深度による地震発生層下端 (km),縦軸は D95 より求めた地震発生層下端 (km). 図中の各地震は表 2-2 を参照

図 2-68 地震発生層厚下端の比較. 横軸はキュリー点深度による地震発生層下端(km),縦軸は JUICE カタログを含んだ震源カタログの D95 より求めた地震発生層下端(km). 図中の各地震は表 2-2 を参照

今回検討した地震では、断層幅は地震発生層下端を用いると震源インバージョンで求め られている断層幅に比べて乖離が小さくなることがわかった.しかし、横ずれ断層では D95 を用いても過小評価になる地震が多い.キュリー点深度は D95 よりもより過小評価になる 地震が少なく、地震発生層厚を検討するのに有効なデータの一つであることがわかった. なお、本震発生により震源域が広がることを指摘している既存研究を前節で述べたが、今 回のデータセットで地震前後の D95 の変化を検討した(図 2-69). 地震前後で地震発生層 下端深度が深くなっている地震,浅くなっている地震の両方がみられる.また、余震によ る D95 と震源断層幅を比較すると(図 2-70)、地震発生以前の D95 による結果と同様、横 ずれ断層で断層幅が過小評価の傾向にある.

今回評価対象とした国内外における地震の震源インバージョンモデルの断層幅と震源分 布やキュリー点深度から推定される断層幅とを比較すると、地震発生層上端は地震調査研 究推進本部における長期評価で示されているように地表と設定すると、従来の評価では大 幅な過小評価と成っていた関係が改善された.しかしながら、D95 を採用しても横ずれ断 層では過小評価の地震が多い.これを改善するには、地表に活断層が認められる地震につ いては、断層上端を地表とし、D95 よりも深い指標の採用や、Rolandone et al. (2004) で検 討された d5 (深い方から 5% に含まれる震源分布の平均深度) などの適用が考えられる. より適切な評価指標については今後の課題である.

図 2-69 地震発生層厚下端の比較. 横軸は地震発生までの震源分布より推定された D95 に よる地震発生層下端 (km),縦軸は余震の D95 より求めた地震発生層下端 (km). 図中の 各地震は表 2-2 を参照

図 2-70 断層幅の比較. 横軸は震源インバージョンで得られたモデルの断層幅(km),縦軸 は余震の D95 より求めた地震発生層下端(km). 図中の各地震は表 2-2 を参照 推定した断層面積から Somerville et al. (1999) ・入倉・三宅(2001) により求めたモーメン トと F-net によるモーメントの比較を図 2-71 に示す. 地震発生層下端を D95 とし,上端 D5 を差し引いた場合と差し引かなかった場合とを示している. 断層幅の検討で述べたよう に,1978 年伊豆近海地震はキュリー点深度,2000 年福岡県西方沖地震は Omuralieva et al. (2012) による D90 を採用している. 地震発生層下端のみから求めたモーメントの方が F-net によるモーメントとの対応が良くなっているのがわかる. さらに JUICE カタログによる結 果を反映した比較結果を図 2-72 に示す.

図 2-71 評価した断層面積から求めたモーメントの比較. 白抜きのマーカーは地震発生層厚 上端深度を差し引いた場合の結果. 1978 年伊豆近海地震はキュリー点深度, 2000 年福岡 県西方沖地震は Omuralieva et al. (2012)による D90 を採用. それ以外の地震は気象庁一元化 震源カタログより求めた D95 から断層幅を求めた. 図中の各地震は表 2-2 を参照

図 2-72 評価した断層面積から求めたモーメントの比較. 白抜きのマーカーは地震発生層厚 上端深度を差し引いた場合の結果. 2004 年中越地震, 2005 年福岡県西方沖地震, 2007 年 能登半島地震, 2008 年岩手宮城内陸地震, 2011 年福島県浜通地震は JUICE カタログによ る D95 より求めた断層幅を採用. 図中の各地震は表 2-2 を参照

整理した変位量と F-net によるモーメントとの比較を図 2-73 に示す. モーメントが大き くなると松田(1975) による断層変位とモーメントとの関係式と整合的になる. しかし 2016 年熊本地震(2016KUM) は小さな断層変位量となっている. 一方, 地中最大変位量と比較 する(図 2-74) とそのような傾向は見られない.

図 2-73 F-net によるモーメントと地表最大変位量との関係.赤実線は松田(1975) および武 村(1998) による断層変位量とモーメントとの関係. 図中の各地震は表 2-2 を参照

図 2-74 F-net によるモーメントと地中最大変位量との関係.図中の各地震は表 2-2 を参照

地震調査研究推進本部が改訂した活断層評価手法により推定される断層長と、震源分布 やキュリー点深度などから推定される地震発生層厚から得られる断層幅と、震源インバー ジョンモデルによる断層長、断層幅とを比較した.2007年能登半島沖地震や2005年福岡 県西方沖地震、1927北丹後地震では震源域近傍における高分解能音波探査結果より活断層 が見いだされている.これらの情報を元に地震調査研究推進本部が改訂した活断層評価手 法により震源断層相当の断層長が推定された.1978年伊豆大島近海地震では、震源域の海 域で行われていた反射法地震探査の再解析結果でも対応する活断層は見いだされていない. この領域は島弧の沈み込みにより重力異常等でも断層長の評価が困難な地域でもある.断 層長に関しては反射法地震探査においても対応する活断層が見出されていない 1891年濃尾 地震、1978年伊豆大島近海地震を除くと、おおよそ同等の長さ、もしくは推定された断層 長の方が長い傾向を示した.

断層幅に関しては気象庁一元化震源を基本とした場合,2005 年福岡県西方沖地震,1978 年伊豆大島近海地震では震源データが D90 等を統計学的に安定して求めるほどの情報量が なかった.1978 年伊豆大島近海地震ではキュリー点深度を参照し,2005 年福岡県西方沖 地震では Omuralieva et al. (2012) による D90 を用いた断層幅を組み合わせた.さらに最近 公開された再決定震源カタログも参照した.主要活断層帯で発生した地震では長期評価の ように断層上端を地表とした場合,従来の断層上端 (D5 など)を設定した場合よりも震源 断層幅との対応関係が改善された.しかしながら,D95 を採用しても横ずれ断層では過小 評価の地震が多い.これを改善するには,地表に活断層が認められる地震については,断 層上端を地表とし、D95 よりも深い指標の採用や,Rolandone et al. (2004) で検討された d5 (深い方から 5% に含まれる震源分布の平均深度) などの適用が考えられる.より適切な 評価指標については今後の課題である.ただし,このような適用については,地球物理学

的情報等を用いた分析及び検証に基づいた上で、実施することが重要であり、より適切な 評価指標については今後の課題である.

さらに,推定された断層長・断層幅から得られる断層面積から推定したモーメントと, F-net による地震モーメントとの比較でも,主要活断層帯で発生した地震では長期評価のよ うに断層上端を地表とした場合,従来の断層上端(D5 など)を設定した時のモーメントよ りも整合的な結果が得られた.このような関係は,地震時の変位量を用いた検討でも得ら れた.

- Asano, K., and T. Iwata (2016), Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data, Earth, Planets and Space, Vol. 68, No. 1, 147.
- Henry, C., and S. Das (2001), Aftershock zones of large shallow earthquakes: fault dimensions, aftershock area expansion and scaling relations, Geophysical Journal International, Vol. 147, No. 2, 272–293.
- Machette, M. N., K. M. Haller, and L. A. Wald (2004), Quaternary fault and fold database for the nation: US Department of the Interior, US Geological Survey.
- Omuralieva, A. M., A. Hasegawa, T. Matsuzawa, J. Nakajima, and T. Okada (2012), Lateral variation of the cut off depth of shallow earthquakes beneath the Japan Islands and its implications for seismogenesis, Tectonophysics, Vol. 518–521, 93 105.
- Rolandone, F., R. Burgmann, and R. M. Nadeau (2004), The evolution of the seismic-aseismic transition during the earthquake cycle: Constraints from the time-dependent depth distribution of aftershocks, Geophysical Research Letters, Vol. 31, No. 23, L23610.
- Shirahama, Y., M. Yoshimi, Y. Awata, T. Maruyama, T. Azuma, Y. Miyashita, H. Mori, K. Imanishi, N. Takeda, T. Ochi, M. Otsubo, D. Asahina, and A. Miyakawa (2016), Characteristics of the surface ruptures associated with the 2016 Kumamoto earthquake sequence, central Kyushu, Japan, Earth, Planets and Space, Vol. 68, No. 1, 191.
- Shito, A., S. Matsumoto, H. Shimizu, T. Ohkura, H. Takahashi, S. Sakai, T. Okada, H. Miyamachi, M. Kosuga, Y. Maeda, M. Yoshimi, Y. Asano, and M. Okubo (2017), Seismic velocity structure in the source region of the 2016 Kumamoto earthquake sequence, Japan, Geophysical Research Letters, Vol. 44, No. 15, 7766–7772. 2017GL074593.
- Somerville, P., K. Irikura, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N. Smith, and A. Kowada (1999), Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion, Seismological Research Letters, Vol. 70, No. 1, 59-80.
- Tanaka, A., and Y. Ishikawa (2005), Crustal thermal regime inferred from magnetic anomaly data and its relationship to seismogenic layer thickness: The Japanese islands case study, Physics of the Earth and Planetary Interiors, Vol. 152, No. 4, 257 - 266. Thermally controlled processes and preserved thermal signatures within the Earth.
- Uchide, T., H. Horikawa, M. Nakai, R. Matsushita, N. Shigematsu, R. Ando, and K. Imanishi (2016), The 2016 Kumamoto–Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas, Earth, Planets and Space, Vol. 68, No. 1, 180, Nov.
- Yano, T. E., T. Takeda, M. Matsubara, and K. Shiomi (2017), Japan unified high-resolution relocated catalog for earthquakes (JUICE): Crustal seismicity beneath the Japanese Islands, Tectonophysics,

Vol. 702, 19 - 28.

- Yano, T. E., and M. Matsubara (2017), Effect of newly refined hypocenter locations on the seismic activity recorded during the 2016 Kumamoto Earthquake sequence, Earth, Planets and Space, Vol. 69, No. 1, 74, May.
- Yoshida, K., K. Miyakoshi, K. Somei, and K. Irikura (2017), Source process of the 2016 Kumamoto earthquake (Mj7.3) inferred from kinematic inversion of strong-motion records, Earth, Planets and Space, Vol. 69, No. 1, 64.

武村雅之(1998),日本列島における地殻内地震のスケーリング則,地震第2輯,51,2,211-228.

- 楮原京子・高橋就一・橋森公亮・山本晋也・堤 浩之・今泉俊文・中田 高(2007), 活断層 から発生する地震動の予測精度向上のための変位量・変位速度に関するデータベース, 活断層研究, 27, 55-62.
- 青柳恭平・木村治夫(2016), 稠密臨時余震観測による 2016 年熊本地震震源域の断層形状と 地殻構造,日本活断層学会 2016 年度秋季学術大会講演予稿集,O-14.
- 岩城啓美・伊藤浩子・北田奈緒子・井上直人・香川敬生・宮腰 研・竹村恵二・岡田篤正(2006), 大規模地震に伴う地表地震断層と深部起震断層に関する既存資料の整理とカタログの作 成,活断層研究, 26, 37-61.
- 宮腰 研・入倉孝次郎・釜江克宏(2015), 強震動記録を用いた震源インバージョンに基づく 国内の内陸地殻内地震の震源パラメータのスケーリング則の再検討,日本地震工学会論

文集, 15, 7, 141-156. 原子力安全委員会(2011), 地震発生層の検討, PDF 資料. 入倉孝次郎・三宅弘恵(2001), シナリオ地震の強震動予測, 地学雑誌, 110, 849-875. 細野耕司・西 政樹・吉田明夫(2006), 内陸大地震の余震活動域の深さの時間変化, 地震 第

- 2 輯, 59, 1, 29-37.
- 松田時彦(1974), 1981 年濃尾地震の地震断層, 地震研究所研究速報, 13, 85-126.
- 松田時彦(1975),活断層から発生する地震の規模と周期について,地震第2輯,28,3,269-283. 松田時彦(1990),最大地震規模による日本列島の地震分帯図,地震研究所彙報,65,1,289-

319.

- 瀬川爾朗(2015),日本列島における空中重力測定の実績と,活断層,地下密度測定を目的とした精度向上のためのいくつかの試み,測地学会誌,60,4,121-131.
- 佐藤秀幸(2017),海陸統合反射法及び屈折法地震探査による下北半島中深部の地震波速度構造,物理探査学会第136回学術講演会, P-6.
- 西島 潤(2016), 空中重力偏差法探査データから推定される霧島火山西部の密度構造, 物理 探査, 69, 1, 29-39.
- 阿部信太郎・山本博文・荒井良祐(2012),高分解能マルチチャンネル音波探査記録に基づく 郷村断層帯海域延長部の断層分布・性状について,活断層・古地震研究報告,12,195-240.
- 遠田晋次・丸山 正・吉見雅行・金田平太郎・粟田泰夫・吉岡敏和・安藤亮輔(2010), 2008 年

岩手・宮城内陸地震に伴う地表地震断層―震源過程および活断層評価への示唆―, 地震 第2 輯, 62, 4, 153-178.

宮内崇裕・今泉俊文・渡辺満久・八木浩司・澤 祥・平野信一(1998), 雫石盆地西縁断層帯(西 根断層群)の詳細位置と第四紀後期の活動性,活断層研究, 1998, 17, 26-30.

丸山 正・吉見雅行・斎藤英二・齋藤 勝(2012), 変動地形・古地震学的検討に基づく 2011 年4月11日福島県浜通りの地震に関連する断層の活動性, AFERC NEWS, 34, 1-9.

地震調査研究推進本部地震調査委員会長期評価部会(2010),「活断層の長期評価手法」報告

書(暫定版),117.

地震調査研究推進本部地震調査委員会(2017), 震源断層を特定した地震の強震動予測手法 (「レシピ」), 51.

岡田篤正・松田時彦(1997), 1927 年北丹後地震の地震断層,活断層研究, 16, 95-135. 日本原燃株式会社・東北電力株式会社・東京電力株式会社・リサイクル燃料貯蔵株式会社

(2015), 下北半島東部の地質構造調査に関する最終評価結果について, PDF 資料.

島崎邦彦(2008), 活断層で発生する大地震の長期評価:発生頻度推定の課題, 活断層研究, 28, 41-51.

- 島崎邦彦(2016),活断層で発生する地震の地震モーメント事前推定,日本活断層学会 2016 年度秋季学術大会講演予稿集,O-9.
- 村井 勇・松田時彦・中村一明(1978), 1978 年伊豆大島近海地震に伴う稲取付近の地震断層, 地震研究所彙報, 53, 3, 995-1024.
- 伏島祐一郎・吉岡敏和・水野清秀・宍倉正展・井村隆介・小松原 琢・佐々木俊法(2001),2000 年鳥取県西部地震の地震断層調査,活断層・古地震研究報告,1,1-26.
- 山本容維・宮腰 研・入倉孝次郎・釜江克宏・藤原広行(2008), 地体構造を考慮した地殻内 における地震発生層の層厚に関する検討,日本地震学会 2008 年秋季大会講演予稿集, X1-010.
- 岡村 眞・松岡裕美・中島徹也・中田 高・千田 昇・平田和彦・島崎邦彦(2009), 博多湾 における警固断層の活動履歴, 地震 第2 輯, 61, 4, 175-190.

3. 特性化震源モデルの微視的パラメータの不確かさ評価手法の検討

3.1 強震動記録解析による特性化震源モデル設定手法の検討

3.1.1 2016 年茨城県北部の地震(M_{JMA}6.3)

2016 年 12 月 28 日 21 時 38 分(日本時間)に茨城県北部において,気象庁マグニチュ ード(*M*_{JMA}) 6.3 の内陸地殻内地震が発生した(以下,2016 年茨城県北部の地震).この地 震は,2011 年東北地方太平洋沖地震以降,地殻内の地震活動が活発化している福島県浜通 りから茨城県北部地域の南端付近を震央とし,東北東-西南西方向に張力軸を持つ正断層 型のメカニズムであった(地震調査研究推進本部,2017;図 3.1.1-1).気象庁一元化震源カ タログの情報によると,震源は茨城県高萩市中戸川付近の深さ 10.84 km に推定されている. 図 3.1.1-2 に示すように,本震に伴う余震の拡がりは,北北西-南南東に走向をもつ西傾斜 の分布を示している.国立研究開発法人防災科学技術研究所(以下,防災科学技術研究所) の広帯域地震観測網 F-net が公開している Moment Tensor(MT) 解(福山・他,1998)によ ると,地震モーメントは,9.00×10¹⁷ Nm(モーメントマグニチュード*M*_w 5.9)であった. このように,地震規模は比較的小さい地震でありながら,観測された地震動は,茨城県高 萩市下手綱町で最大震度 6 弱(図 3.1.1-3)であった(気象庁,2016)他,特に,震源近傍の 強震観測点において,大きな最大加速度(Peak Ground Acceleration: PGA),最大速度記録

(Peak Ground Velocity: PGV)が観測された(図 3.1.1-4).この地震動によって生じた被害は, 死者こそ発生しなかったものの,茨城県高萩市,北茨城市にて負傷者 2 名,高萩市にて半 壊住家 1 棟,高萩市,石岡市において一部破損住家は 25 棟と報告されている(消防庁, 2017).

防災科学技術研究所の強震観測網 K-NET, KiK-net (Aoi *et al.*, 2011) に代表されるように, 近年の日本国内における稠密な強震観測網の拡充に伴い,内陸地殻内地震に対する震源近 傍の観測記録は数多く蓄積されており,同時に,大きな地震動が震源近傍において観測さ れることも多くなっている(Anderson, 2010).地震規模が比較的小さいにも関わらず,観測 地震動が大きい原因については,大分すると,震源の特性に起因する場合と観測点の地盤 特性に起因する場合とがあると考えられる.例えば,宮腰・他 (2010)によると,2004 年北 海道留萌支庁南部の地震(*M*w 5.7)で震源近傍の K-NET 港町(HKD020)観測点において得 られた最大加速度 1127 cm/s²,最大速度 75 cm/sの強震動は,震源(破壊開始点)から観測 点に対する破壊伝播の前方指向性効果(フォワードディレクティビティ効果)が大きく影 響したことが報告されている.一方で,2011 年静岡県東部の地震(*M*w 5.8)において,震源 近傍の K-NET 富士宮(SZO011)観測点において得られた 982 cm/s²,75 cm/sの強震動は, 観測点の地盤増幅特性に起因するものであることが,Somei and Miyakoshi (2012)によって明 らかにされている.

今回の 2016 年茨城県北部の地震では、図 3.1.1-5 に示すように、震源近傍の複数の観測点

3.1.1(1)-1

の加速度波形記録,速度波形記録の両方で,明瞭な 2 つの波形パケットが観測された.特に,IBRH13(KiK-net 高萩)では,2つ目の波形パケットで大きな地震動が捉えられている. この波形パケットは,K-NET,KiK-netの観測記録を震源距離順に並べたペーストアップ図

(図 3.1.1-6) においても 2 つを分離して追跡することができ、本地震の震源断層面上での 破壊が少なくとも2回生じた可能性を示唆している.これらのK-NET, KiK-netの観測PGA, 及び PGV を本地震の断層最短距離と比較した図を図 3.1.1-7 に示す. なお, 断層最短距離を 計算する断層面は,3.1.1(2)で後述する震源インバージョン結果を参考としている.地震動 予測式(司・翠川, 1999)と比較すると、震源近傍の IBRH13 の PGA, PGV は予測式の+1σ 程度大きかったことが確認できる. このような震源近傍の記録を含めて, 2016 年茨城県北 部の地震の広帯域の強震動生成メカニズムを調べることは重要な課題である.また一方で, 強震動予測レシピ(e.g., Irikura and Miyake, 2011)の有用性を検証するために, このような 規模の小さな地震においても、レシピから期待される程度の震源パラメータを有している かどうかを調べることは重要な課題である.これらの課題を解決するために、3.1.1 では2016 年茨城県北部の地震に対して,以下の3つの検討を実施する.1)震源周辺の各観測点に おける詳細な 1 次元速度構造モデルと高精度グリーン関数の作成, 2) 1)の高精度グリ ーン関数を使用した近地強震波形(0.1-1.0 Hz)インバージョンによる不均質すべりモデル の推定,3)広帯域地震動(0.3-10 Hz)を対象とした経験的グリーン関数法に基づく強震 動生成領域のモデリング.以上、1)-3)の検討項目から、広帯域地震動を説明するた めの特性化震源モデルの構築,及び震源での動力学パラメータ抽出(5.1.1)のための基本 資料となることを目指す. さらにここで得られた震源モデルに基づく巨視的, 及び微視的 震源パラメータは、特性化震源モデル設定手法の高度化の検討で使用する震源スケーリン グ則の資料の一部としても重要である.

図 3.1.1-1 福島県浜通りから茨城県北部の地域にかけての 1997 年 10 月から 2016 年 12 月 までの地震活動と規模の大きな地震のメカニズム解と震央位置(地震調査研究推進本部, 2017)

図 3.1.1-2 本震発生後 1 週間に震源周辺で発生した余震の空間分布と,解析に使用した強 震観測点の分布.赤色星印は本震の震央位置と F-net による MT 解の下半球投影図(以降, MT 解).

図 3.1.1-3 気象庁 (2016)による震度分布図 (CMT 解の加筆あり)

図 3.1.1-4 K-NET, KiK-net 観測点の左) 最大加速度 (PGA) と右) 最大速度 (PGV) 分布. 星印は本震震央位置と F-net の MT 解. 矩形の断層面は 3.1.1(2)の震源インバージョン結果 を参考に示したもの.

図 3.1.1-5 震源近傍の 5 地点(IBR002, IBR003, IBRH13, IBRH14, IBRH06) での(上段 左)観測加速度波形記録と(上段右)速度波形記録. 波形はいずれも EW 成分で, KiK-net 観測点は地表記録を示している. また,速度波形記録は 0.05-20 Hz の帯域通過フィルタ処 理を施している.(下段)上記 5 地点での EW 成分の観測疑似速度応答スペクトル(*h*=5%).

図 3.1.1-6 K-NET, KiK-net の観測記録を震源距離順に並べたペーストアップ図. 左)加速 度波形記録,右)速度波形記録(0.05-20 Hz).いずれもオリジナルの波形を回転処理し, Transverse 成分を表している.赤色と青色の矢印は,分離した2つの波形パケットの走時を 示している(S1 と S2).

図 3.1.1-7 水平最大加速度(左)及び最大速度(右)と断層最短距離との関係.青色実線は、司・翠川 (1999)の地震動予測式.青色破線は、距離減衰式の±1gの標準偏差.

3.1.1(1) 高精度グリーン関数の作成

① はじめに

波形インバージョン等の手法によって、震源近傍の強震記録から信頼性の高い震源破壊 過程を推定するためには、震源からサイトまでの適切な地下構造モデルを反映したグリー ン関数を用いる事が肝要である.実際の地下構造を最も現実的に再現するためには、構造 の空間変化に対応した3次元地下構造モデルに基づくグリーン関数(3次元グリーン関数) の使用が最良であり、 震源インバージョン解析における有効性も報告されている (例えば、 Koketsu et al., 2003, Guo et al., 2013). しかし,対象とする全領域,周期に対して,正確な3 次元地下構造モデルを構築する事は一般に困難である.Graves and Wald (2001) の震源イン バージョンの検証試験によると,良く改良された 1 次元地下構造モデルに基づくグリーン 関数(1次元グリーン関数)は、3次元グリーン関数と、ほぼ同じ解像度で断層面上でのす べり分布が再現されている. 2011 年東北地方太平洋沖地震のように震源とサイトとの間で 水平成層構造を仮定し難い場合の震源インバージョンにおいては,3次元グリーン関数は特 に有効であると考えられる(例えば、久保・他、2015)が、本地震のような震源からサイト までの距離が比較的短く、水平成層構造が仮定できる場合は、1次元速度構造モデルでも十 分に適用可能であると言える.しかしながら,震源近傍の記録においては,観測点直下の 速度構造の違いが強く影響するため,1次元速度構造モデルの改良と検証が重要である(例 えば, Asano and Iwata, 2009).

そこで、本 3.1.1(1)節は、2016 年茨城県北部の地震の震源インバージョン(3.1.1(2)節)に 使用する 1 次元グリーン関数の高精度化を目的として、インバージョン解析に使用する観 測点の速度構造モデルの高度化、及びその検証を行う.速度構造モデルの高度化は、震源 近傍の観測点で、かつ予備的な解析から初期速度構造モデルの改良が必要と考えられる 4 地点について実施した.速度構造モデルは、現地での微動アレイ観測、及び単点微動観測 に基づいて改良を行う.改良した速度構造モデルの検証は、上述の 4 地点を含み、インバ ージョンに使用する全地点に対して実施する.検証の方法は、点震源を仮定できる規模の 小さな地震(余震)の観測波形に対して、検証を行う地点の 1 次元速度構造モデルから計 算される理論波形を比較することで行う.なお、本 3.1.1(1)節においては、まず微動探査を 実施した 4 地点についての速度構造モデルの改良ついての記述(②,③)をし、その後、 それら 4 地点を含むインバージョンに使用する全地点についての速度構造モデルの検証に ついての説明を記述(④,⑤)する.微動アレイ観測、及び単点微動観測に基づく速度構 造モデルの改良についての詳細は付録 A.1 を参照されたい.

各強震観測点において,最初に仮定した速度構造モデルは,全国規模の3次元地下速度 構造モデルである防災科学技術研究所地震ハザードステーション(J-SHIS)の深部地盤構造 モデル V2(藤原・他,2012)から各観測点が位置している3次メッシュ地点の1次元速度構 造モデル(以下,J-SHIS モデル,或いは初期速度構造モデルと称する)を抽出することで 作成した.なお,減衰の特性を示すQ値は、参照モデルに情報のある層はそれを参照し、 情報の無い層はS波速度 V_s から、 $Q_s = V_s/15$ 、 $Q_p = 2Q_s$ の関係式を用いて推定した.

② 微動アレイ観測の概要

本報では、茨城県高萩市の K-NET 高萩(IBR002),同日立市の K-NET 日立(IBR003), 同常陸大宮市の K-NET 大宮(IBR004), KiK-net 山方(IBRH16)の計4地点において、微 動観測を実施した(図 3.1.1(1)-1). 基本のアレイ形状は、大きさの異なる2組の正三角形の 頂点と重心からなる二重正三角形アレイとして、各観測点の初期速度構造モデルに対応し た異なる最大半径を持つL(R=510 m), M(R=120 m), S(R=20 m)の3式のアレイを展 開した.各アレイの展開図,及び最大半径を図 3.1.1(1)-2に示す.

現地での観測は、2017 年 7 月 25 日から 7 月 28 日の期間の日中に実施した.ただし、高 萩 M, S アレイ、及び日立 L, M アレイは、交通量の少ない早朝や夜間の時間帯に実施した. 微動アレイの観測システムは、図 3.1.1(1)-3 の観測写真に示すように、固有周期 5 秒の 3 成 分速度計 LE-3D/5s(Lennartz-Electronic 製)と記録収録装置 LS-8800(A/D 変換 24bit、白山 工業製)を用いることで微動波形記録を周波数 100 Hz サンプリングで連続収録し、GNSS による時刻校正を各地点において行った.同時観測時間は、L アレイは 90 分、M アレイは 60 分、S アレイは 45 分以上を原則として確保した.

図 3.1.1(1)-1 微動アレイ観測,及び単点微動観測を実施した4強震観測点の分布(黒色四角印). 黒色星印は,本震と検証に用いる余震(2017年4月20日4時46分, *M*w4.0)の震央位置で,それぞれのF-netによる MT 解を示してある. 黒色丸印は,本震後24時間に発生した余震の震央位置である. なお,矩形の領域は, 3.1.1(2)節の震源インバージョンで仮定する断層面である.

図 3.1.1(1)-2 各観測点での微動アレイ観測の観測ポイント.L-, M-, S-の各アレイを赤色, 緑色,青色の三角形で示してある.黒色四角印は,強震観測点の位置を表す.なお,背景 の地図は国土地理院の地理院地図(https://maps.gsi.go.jp/development/ichiran.html)を使用 した.

図 3.1.1(1)-3 各観測ポイントに設置した微動アレイ観測システムの写真

③ 微動アレイ観測に基づく速度構造モデルの改良

微動観測記録の上下動成分に対して,拡張空間自己相関法(凌・岡田,1993)を用いた解 析を行い,微動中に含まれる Rayleigh 波の位相速度を推定した.山方(IBRH16)Lアレイ の各観測ポイントの観測微動波形とパワースペクトルの例を図 3.1.1(1)-4 に示す.周辺の交 通ノイズ等によってポイント毎にレベルが異なる帯域はあるが,概ね 0.6 Hz 以下の低周波 数帯域でスペクトルレベルは概ね一致していることがわかる.解析に使用したデータ長はL, M,Sアレイ共通で 40.96 秒間とし,各地点における波形,パワースペクトルを目視で確認 することで,周辺道路での交通ノイズが可能な限り混入していない区間を精査して抽出し た.

各アレイで推定された位相速度を図 3.1.1(1)-5 に示す. 例えば,高萩アレイでは,約 0.2 -10.0 Hz の範囲で 300-2200 m/s の観測位相速度が得られた. 1.5 Hz 付近を境として,低 周波数側では 1.0 Hz で 1000 m/s, 0.3 Hz で 2000 m/s まで位相速度が大きくなる一方,高周 波数側は,300-600 m/s であり,全体として正分散性を示す結果となった.

このようにして得られた観測位相速度の分散性に対して, Rayleigh 波基本モードの理論分 散曲線が一致する S 波速度構造モデルを推定した.探索パラメータは,各層の層厚,S 波速 度とする.各層の P 波速度,及び密度は,S 波速度との経験的関係(Ludwig et al., 1970)か ら決定した.モデリングにおいては,遺伝的アルゴリズム(GA)による方法(長・他, 1999) を利用した.

観測位相速度と理論分散曲線との比較を図 3.1.1(1)-5 に,S 波速度構造モデルを図 3.1.1(1)-6 に各々示す.改良したS波速度構造モデル(Rev.)に基づく理論分散曲線は観測 位相速度の分散性を良く説明している.茨城県北部の太平洋沿岸側に位置する高萩と日立 はS波速度が 3000 m/s を超える層(地震基盤相当)の上面深度がJ-SHISモデルよりも深く 推定された一方で,内陸側の山方は浅く推定された.大宮は,地震基盤深度こそ大きくは 変わらなかったが,深さ 20m から 500m 程度までの層が J-SHIS モデルよりも速く推定され た.

図 3.1.1(1)-7 に各速度構造モデルの不連続面深さを±20 % (濃色),±40 % (薄色)で変化 させた場合の理論分散曲線のばらつきを示した.この図から,今回の観測位相速度と理論 分散曲線を用いた速度構造のモデルの推定精度(感度)が確認でき,地点によって,精度 良く決まっている不連続面,決まっていない不連続面があることがわかる.このような推 定精度をみることで,他のアプローチ等からモデルの検証を行う必要がある不連続面深さ, 或いは精度を高める必要がある不連続面深さをあらかじめ知ることができる.本報では, 後述する H/V スペクトル比や地震動シミュレーションによって,得られた改良速度構造モ デルの検証を実施することで,その妥当性を確認している.

図 3.1.1(1)-4 山方 (IBRH16) L アレイの各観測ポイントでの上) 観測微動速度波形と下) パワースペクトルの比較.

1

10

10⁻¹³

パワースペクトル例

図 3.1.1(1)-5 各アレイの観測位相速度(丸印)と初期速度構造モデル(茶色破線)と改良 速度構造モデル(茶色実線)による Rayleigh 波の理論分散曲線との比較.赤色,緑色,青 色はそれぞれ L-, M-, S-アレイによる結果を表す.

図 3.1.1(1)-6 各強震観測点の初期速度構造モデル(茶色破線)と改良速度構造モデル(茶 色実線)のS波プロファイル.深さは対数軸で表示している.

図 3.1.1(1)-7 各強震観測点で推定された観測位相速度(丸印)と理論分散曲線(黒色).改 良速度構造モデルの不連続面に±20%(濃色カラー),±40%(薄色カラー)を与えた際の理 論分散曲線のばらつきを表す.

④ 単点微動観測による H/V スペクトル比の推定

推定された速度構造モデルが対象としている強震観測点直下の1 次元速度構造モデルと して妥当性を有しているかを検証するために、微動アレイ観測に加えて、強震観測点近傍 で3成分の単点微動観測を実施した.単点微動観測の観測システムは、図 3.1.1(1)-8 の観測 写真に示すように、②で述べた微動アレイ観測と同様の機材を使用し、微動アレイ観測の 期間中に併せて、強震観測点の傍で10分間から20分間の観測を行った.各地点で得られ た観測微動波形について、ノイズの影響のない40.96秒間の解析区間を10区間以上抽出し、 Fourier 振幅スペクトルを計算し、水平動と上下動のスペクトル比(観測H/V)を計算した. 図 3.1.1(1)-6 に示した J-SHIS モデル、及び改良モデルに基づく理論 Rayleigh 波基本モード の楕円率(理論 R/V)と観測 H/V との比較を図 3.1.1(1)-9 に示す.高萩、目立、大宮は、J-SHIS モデルよりも改良モデルによる理論 R/V 比が観測 H/V のスペクトル比の形状を定性的には 良く説明しており、得られた改良モデルが妥当である事が示された.山方は、観測 H/V の ピークを説明し切れてはいないが、J-SHIS よりも改良モデルの理論 R/V の方が観測 H/V に 近いと言える.山方は、設置場所の地形、地理的な条件から、L、M、S の各アレイ配置が 強震観測点よりもやや離れた場所としたことが原因かもしれない.

図 3.1.1(1)-8 単点微動観測システムの写真

図 3.1.1(1)-9 単点微動 H/V スペクトル比と理論 R/V スペクトル比の比較. 黒色実線は,強 震観測点付近での観測微動 H/V スペクトル比,茶色破線は,初期速度構造モデルの理論 R/V スペクトル比. 茶色実線は,改良速度構造モデルの理論 R/V スペクトル比をそれぞれ表す.

⑤ 速度構造モデルの検証

③において推定された改良速度構造モデル,及び 3.1.1(2)節の震源インバージョンで使用 する観測点の設定速度構造モデルの妥当性を検証するために,図 3.1.1(1)-1 に示した 2017 年4月20日4時46分の余震(*M*w 4.0)を点震源と仮定した地震動シミュレーション(0.1-1.0 Hz)を実施した.対象とした余震の諸元,及びシミュレーションに使用した震源パラメー タは表 3.1.1(1)-1 に示す.対象とした観測点は,微動アレイ観測を実施した4地点を含む計 17地点(図 3.1.1-2,及び表 3.1.1(1)-3)で,K-NETが9地点,KiK-netが8地点である.各 地点の速度構造モデルを表 3.1.1(1)-3,及び図 3.1.1(1)-10に示す.前述したように,IBR002, IBR003, IBR004, IBRH16の4地点については,本報の微動アレイ観測に基づく改良速度構 造モデルを使用した.一方で,FKS012,FKS013,IBRH06,IBRH13の4地点については, 微動アレイ観測,及びレシーバ関数解析に基づく染井・他(2014)の速度構造モデルを使用 した.それ以外の9地点については,J-SHISモデルを使用した.理論グリーン関数は,離 散化波数法(Bouchon, 1981)及び透過・反射係数行列法(Kennett and Kerry, 1979)により計 算を行った.

図 3.1.1(1)-11 に P 波から S 波を含む速度波形の比較結果を示す.上述した本報の微動ア レイ観測による改良速度構造モデルがある 4 地点,及び染井・他 (2014)の改良速度構造モ デルがある 4 地点については,初期速度構造モデル (J-SHIS モデル)による理論波形より も改良速度構造モデルによる理論波形の方が観測波形の振幅や位相を相対的に良く再現し ていることが確認できる.例えば,FKS012 の比較では,直達 S 波の到達が初期速度構造モ デルでは観測の S 波よりも早かったが,改良速度構造モデルでは,観測と同じタイミング で出現しており,その振幅も初期速度構造モデルより改良速度構造モデルの方が大きく, 観測と良い一致を示している.また,IBR002 の比較においても,同様に改良速度構造モデ ルの方が直達 S 波の到達のタイミング,及び振幅が観測記録を良く再現していることがわ かる.一方で,速度構造モデルとして,J-SHIS モデルを採用しているその他の 9 地点につ いては,例えば,震源からやや距離のある FKSH14 では振幅が過小評価であり,モデルの 改善が必要かもしれないが,その他の震源周辺の地点は,概ね J-SHIS モデルの理論波形で 観測記録を再現していることが確認できた.

以上のような検証により,全17地点について,高精度なグリーン関数が担保できたと考 えられるため,以降,3.1.1(2)節の震源インバージョンにおいて,これらの速度構造モデル を使用することとする.

表 3.1.1(1)-1 地震動シミュレーションに使用した地震の諸元,及び震源パラメータ

	Aftershock
Origin time (JST) ^{*1}	2017/04/20,04:46
Latitude (N°. WGS) *1	36.6957
Longitude (E°. WGS) ^{*1}	140.5903
Depth (km) ^{*1}	8.75
Seismic moment (Nm) *2	1.18×10 ¹⁵
${M_{ m w}}^{*2}$	4.0
Strike, Dip, Rake (deg.) *2	190, 52, -88
$V_{\rm s}$ (km/s) *3	3.4
Rise time (s)	0.1

*1 JMA, *2 F-net, *3 J-SHIS

	Station	Latitude	Longitude		
_	code	(°N: WGS)	(°E: WGS)	Network	Location
-	FKS012	36.9069	140.7929	K-NET	Nakoso
	FKS013	37.0900	140.5563	K-NET	Furudono
	FKS014	36.8683	140.4300	K-NET	Yamatsuri
	FKS015	37.0217	140.3775	K-NET	Tanagura
	FKSH14	37.0264	140.9702	KiK-net	Iwaki-E
	IBR001	36.7761	140.3569	K-NET	Daigo
	IBR002	36.7061	140.7068	K-NET	Takahagi
	IBR003	36.5915	140.6453	K-NET	Hitachi
	IBR004	36.5516	140.4102	K-NET	Ohmiya
	IBR006	36.3690	140.4528	K-NET	Mito
	IBRH06	36.8809	140.6545	KiK-net	Kitaibaraki2
	IBRH12	36.8369	140.3181	KiK-net	Daigo
	IBRH13	36.7955	140.5750	KiK-net	Takahagi
	IBRH14	36.6922	140.5484	KiK-net	Jyuuoh
	IBRH15	36.5566	140.3013	KiK-net	Gozenyama
	IBRH16	36.6405	140.3976	KiK-net	Yamagata
_	IBRH18	36.3631	140.6198	KiK-net	Hitachinaka

表 3.1.1(1)-2 解析に使用した強震観測点一覧

表 3.1.1(1)-3 検証に使用した速度構造モデル

FKS012 Ini. model

	Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{ m s}$	Depth
_	m	m/s	m/s	g/m3			m
-	6	1800	500	1900	60	60	0
	45	2400	900	2050	100	100	6
	544	3200	1500	2250	150	150	51
	1410	5500	3200	2650	300	300	595
	5000	5700	3300	2700	300	300	2005
-	œ	6000	3400	2750	300	300	7005

FKS012 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
2	260	130	1550	17	9	0
4	1600	150	1850	20	10	2
11	1600	250	1860	33	17	6
16	1600	210	1830	28	14	17
47	1970	605	1920	81	40	33
530	2360	966	2060	129	64	80
165	3120	1585	2240	211	106	610
795	4810	2760	2520	368	184	775
5489	5700	3300	2700	300	300	1570
00	6000	3400	2750	300	300	7059

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

TIZCO10	т ч 11
FK SOLA	Ini model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
4	2000	600	1900	100	100	0
6	2500	1100	2150	150	150	4
10	3000	1400	2250	150	150	10
10	3500	1700	2300	150	150	20
102	5500	3100	2600	300	300	30
2113	5500	3200	2650	300	300	132
5000	5700	3300	2700	300	300	2245
∞	6000	3400	2750	300	300	7245

FKS013 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
17	1610	205	1730	27	14	0
176	2370	985	2070	131	66	17
352	3180	1628	2260	217	109	193
1594	3920	2151	2380	287	143	545
226	5600	3220	2630	429	215	2139
5000	5700	3300	2700	300	300	2365
∞	6000	3400	2750	300	300	7365

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

F	KS	0	1	4
Т.	NO	v	т	-

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
6	1800	500	1900	60	60	0
1	2000	600	1900	100	100	6
9	2400	900	2050	100	100	7
2	2500	1100	2150	150	150	16
3	3000	1400	2250	150	150	18
98	3200	1500	2250	150	150	21
3	3500	1700	2300	150	150	119
2041	5500	3200	2650	300	300	122
5000	5700	3300	2700	300	300	2163
∞	6000	3400	2750	300	300	7163

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

F	'K	S	0	1	5
1	17	\mathbf{D}	v	т	2

Thickness	V_{p}	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
2	1800	500	1900	60	60	0
2	2000	600	1900	100	100	2
5	2400	900	2050	100	100	4
5	2500	1100	2150	150	150	9
9	3000	1400	2250	150	150	14
91	3200	1500	2250	150	150	23
9	3500	1700	2300	150	150	114
2084	5500	3200	2650	300	300	123
5000	5700	3300	2700	300	300	2207
00	6000	3400	2750	300	300	7207

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

F	KSH1	4
	TYOTT	

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{\mathtt{p}}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
5	1600	400	1850	60	60	0
17	1800	500	1900	60	60	5
3	2000	600	1900	100	100	22
48	2400	900	2050	100	100	25
97	3000	1400	2250	150	150	73
1035	3200	1500	2250	150	150	170
747	5500	3200	2650	300	300	1205
4642	5700	3300	2700	300	300	1952
∞	6000	3400	2750	300	300	6594

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
9	1800	500	1900	60	60	0
11	2400	900	2050	100	100	9
1	3000	1400	2250	150	150	20
219	3200	1500	2250	150	150	21
1875	5500	3200	2650	300	300	240
5000	5700	3300	2700	300	300	2115
∞	6000	3400	2750	300	300	7115

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBR001

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBR002 Ini. model

Thickness	V_{p}	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
9	1800	500	1900	60	60	0
31	2400	900	2050	100	100	9
407	3200	1500	2250	150	150	40
1558	5500	3200	2650	300	300	447
5000	5700	3300	2700	300	300	2005
00	6000	3400	2750	300	300	7005

IBR002 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
22	1700	300	1780	40	20	0
168	1890	505	1880	67	34	22
790	3420	1800	2300	240	120	190
1250	3880	2120	2370	283	141	980
œ	5310	3050	2580	407	203	2230

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBR003	Ini. model
101000	

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
11	1800	500	1900	60	60	0
33	2400	900	2050	100	100	11
2	2500	1100	2150	150	150	44
4	3000	1400	2250	150	150	46
108	3200	1500	2250	150	150	50
4	3500	1700	2300	150	150	158
1889	5500	3200	2650	300	300	162
5000	5700	3300	2700	300	300	2051
∞	6000	3400	2750	300	300	7051

IBR003 Rev. model

IBICOOD	Ite III IIIe	441				
Thickness	$V_{\rm p}$	Vs	ρ	$Q_{ m p}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
20	1720	330	1800	44	22	0
75	2270	895	2040	119	60	20
180	3350	1750	2280	233	117	95
288	3500	1860	2310	248	124	275
00	6120	3500	2740	467	233	563

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

T ' 1 1
Ini model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
170	1800	500	1900	60	60	0
367	2400	900	2050	100	100	170
632	3200	1500	2250	150	150	537
888	5500	3200	2650	300	300	1169
5000	5700	3300	2700	300	300	2057
∞	6000	3400	2750	300	300	7057

IBR004 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
19	1810	415	1840	55	28	0
80	2140	750	1990	100	50	19
500	2530	1160	2120	155	77	99
980	3220	1655	2260	221	110	599
∞	5820	3350	2680	447	223	1579

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	Q_{s}	Depth
m	m/s	m/s	g/m3			m
130	1800	500	1900	60	60	0
573	2400	900	2050	100	100	130
768	3200	1500	2250	150	150	703
549	5500	3200	2650	300	300	1471
5000	5700	3300	2700	300	300	2020
00	6000	3400	2750	300	300	7020

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBR006

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBRH06 Ini. model

IDICIIOO		401				
Thickness	Vp	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
7	1800	500	1900	60	60	0
2	2500	1100	2150	150	150	7
11	3000	1400	2250	150	150	9
2400	5500	3200	2650	300	300	20
5000	5700	3300	2700	300	300	2420
∞	6000	3400	2750	300	300	7420

IBRH06 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	\mathcal{Q}_{p}	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
20	2580	650	2104	87	43	0
16	2820	1260	2166	168	84	20
50	4220	1380	2468	184	92	36
54	5000	2700	2500	200	200	86
1558	5500	3200	2650	300	300	140
4740	5700	3300	2700	300	300	1698
∞	6000	3400	2750	300	300	6438

 $V_{\rm s}$ Thickness V_{p} $Q_{\rm s}$ Depth ρ Q_{p} g/m3 m/s m/sm m ∞

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBRH12

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
8	1800	500	1900	60	60	0
2	2500	1100	2150	150	150	8
10	3000	1400	2250	150	150	10
4	3500	1700	2300	150	150	20
2442	5500	3200	2650	300	300	24
5000	5700	3300	2700	300	300	2466
∞	6000	3400	2750	300	300	7466

IBRH13 Ini. model

IBRH13 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
1	250	170	1346	23	11	0
15	460	280	1426	37	19	1
8	2050	400	1956	53	27	16
10	2050	600	1956	80	40	24
10	3200	1050	2258	140	70	34
32	4900	2600	2578	347	173	44
24	4900	3000	2578	400	200	76
193	5000	2700	2500	200	200	100
3043	5500	3200	2650	300	300	293
5095	5700	3300	2700	300	300	3336
œ	6000	3400	2750	300	300	8431

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き	<u>(</u>
--------------------------------	----------

IBRH1	4
IDALL	4

Thickness	V_{p}	$V_{\rm s}$	ρ	$Q_{ m p}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
6	1800	500	1900	60	60	0
1	2400	900	2050	100	100	6
4	2500	1100	2150	150	150	7
7	3000	1400	2250	150	150	11
160	3200	1500	2250	150	150	18
7	3500	1700	2300	150	150	178
2096	5500	3200	2650	300	300	185
5000	5700	3300	2700	300	300	2281
∞	6000	3400	2750	300	300	7281

IBRH15 Thickness V_{p} $V_{\rm s}$ $Q_{\rm s}$ ρ Q_{p} Depth m/sm/sg/m3 m m ∞

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{\rm s}$	Depth
m	m/s	m/s	g/m3			m
60	1800	500	1900	60	60	0
83	2400	900	2050	100	100	60
452	3200	1500	2250	150	150	143
1450	5500	3200	2650	300	300	595
5000	5700	3300	2700	300	300	2045
00	6000	3400	2750	300	300	7045

IBRH16 Ini. model

IBRH16 Rev. model

Thickness	$V_{\rm p}$	$V_{\rm s}$	ρ	\mathcal{Q}_{p}	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
25	1850	455	1860	61	30	0
40	2380	1000	2070	133	67	25
367	3440	1815	2300	242	121	65
30	5190	2980	2560	397	199	432
∞	6070	3480	2730	464	232	462

Thickness	V_{p}	$V_{\rm s}$	ρ	$\mathcal{Q}_{\mathtt{p}}$	$Q_{ m s}$	Depth
m	m/s	m/s	g/m3			m
85	1800	500	1900	60	60	0
415	2400	900	2050	100	100	85
1238	3200	1500	2250	150	150	500
288	5500	3200	2650	300	300	1738
5000	5700	3300	2700	300	300	2026
∞	6000	3400	2750	300	300	7026

表 3.1.1(1)-3 検証に使用した速度構造モデル(続き)

IBRH18

図 3.1.1(1)-10 震源インバージョンに使用した速度構造モデル(S 波プロファイル).赤色 線は J-SHIS モデル,緑色線は改良速度構造モデル(本報,或いは染井・他,2014)を表す.

3.1.1(1)-44

図 3.1.1(1)-11 余震を用いた観測速度波形(黒色)と理論速度波形(J-SHIS モデル:赤色, 改良モデル:緑色)との比較(0.1-1.0 Hz).実線はそれぞれ P 波到達時以降を表す.波形右 の数値は,振幅の最大値(cm/s)を表す.

2016年茨城県北部の地震の震源インバージョン(3.1.1(2)節)に使用する1次元グリーン 関数の高精度化を目的として、インバージョン解析に使用する観測点の速度構造モデルの 高度化、及びその検証を行った.速度構造モデルの高度化は、震源近傍の4地点(IBR002: K-NET 高萩、IBR002:K-NET 日立、IBR004:K-NET 大宮、IBRH16:KiK-net 山方)につ いて実施した.速度構造モデルの改良は、J-SHISの全国深部地盤モデルV2を初期速度構造 モデルとして、現地での微動アレイ観測に基づいて得られた観測位相速度と理論分散曲線 とを用いることで、各地点直下の1次元速度構造モデルを逆解析によって作成した.併せ て現地で実施した強震観測点近傍での単点微動 H/V スペクトル比の結果と比較し、対象の4 地点について得られた改良速度構造モデルの妥当性を検証した.さらに、上述の4地点を 含み、インバージョンに使用する17地点全点に対して地震動シミュレーションによる速度 構造モデルの検証を実施した.地震動シミュレーションは、本震震源付近で発生した余震 (*M*w4.0)を点震源と仮定し、その観測波形と速度構造モデルから計算される理論波形とを 0.1-1.0 Hzの周波数帯域で比較した.その結果、17地点全点において、観測波形と理論波 形との一致を確認することができ、震源インバージョンに使用する速度構造モデルの妥当 性を示すことができた.

- Anderson, J. G. (2010), Source and site characteristics of earthquakes that have caused exceptional ground accelerations and velocities, Bull. Seism. Soc. Am., 100, 1-36.
- Aoi, S., Kunugi, T., Nakamura, H., and Fujiwara, H. (2011), Deployment of new strong motion seismographs of K-NET and KiK-net, in Earthquake Data in Engineering Seismology, 167-186, eds Akkar, S., Gülkan, P. & van Eck, T., Springer.
- Asano, K., and Iwata, T. (2009), Source rupture process of the 2004 Chuetsu, Mid-Niigata prefecture, Japan, earthquake inferred from waveform inversion with dense strong-motion data, Bull. Seism. Soc. Am., 99, 123–140.
- Bouchon, M. (1981), A simple method to calculate Green's functions for elastic layered media, Bull. Seism. Soc. Am. 71, 959–971.
- 長 郁夫・中西一郎・凌 甦群・岡田 広 (1999), 微動探査法への個体群探索分岐型遺伝的 アルゴリズム fGA の適用, 物理探査, 52-3, 227-246.
- 藤原広行・河合伸一・青井 真・森川信之・先名重樹・東 宏樹・大井昌弘・はお憲生・ 長谷川信介・前田宜浩・岩城麻子・若松加寿江・井元政二郎・奥村俊彦・松山尚典・ 成田 章 (2012),東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防 災科学技術研究所研究資料,第 379 号.
- 福山英一・石田瑞穂・D. S. Dreger・川井啓廉 (1998), オンライン広帯域地震データを用いた 完全自動メカニズム決定, 地震 2, 51, 149-156.
- Irikura, K., and Miyake, H. (2011), Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure Appl. Geophys., 168, 85-104.
- Graves, R. W., and Wald, D. J. (2001), Resolution analysis of finite fault source inversion using oneand three-dimensional Green's functions: 1. Strong motions, J. Geophys. Res., 106, 8745–8766.
- Guo, Y., Koketsu, K., and Ohno, T. (2013), Analysis of the rupture process of the 1995 Kobe earthquake using a 3D velocity structure, Earth, Planets and Space, 65, 1581-1586.
- 地震調査研究推進本部 (2017), 2016 年 12 月 28 日茨城県北部の地震の評価, 平成 29 年 1 月 13 日, http://www.static.jishin.go.jp/resource/monthly/2016/20161228_ibaraki_2.pdf (最終ア クセス: 2018 年 2 月 1 日).
- Kennett, B. L. N., and Kerry, N. J. (1979), Seismic waves in a stratified half space, Geophys. J. R. Astr. Soc., 57, 557–583.
- 気象庁 (2016), 平成 28 年 12 月地震・火山月報(防災編), 気象庁編, pp.182.
- Koketsu, K., Ohno, T., and Ikegami, Y. (2003), Rupture process inversion using 3-D Green's functions: the 1995 Kobe earthquake revisited, Eos Trans. AGU 84, F1109.
- 久保久彦・浅野公之・岩田知孝・青井 真 (2015), 周期帯別の震源過程逆解析から推定され る 2011 年東北地震の広帯域震源特性, 平成 26 年度京都大学防災研究所研究発表講演会,

A15.

- 凌 甦群・岡田 広 (1993), 微動探査法における空間自己相関法の拡張, 物理探査学会第 89 回学術講演会論文集, 44-48.
- Ludwig, W. J., Nafe, J. E., and Drake, C. L. (1970), Seismic refraction, in A. E. Maxwell ed., The Sea, 4, New York, Wiley Interscience, 53-84.
- 宮腰 研・前田宣浩・笹谷 努・釜江克宏・入倉孝次郎 (2010), 2004 年留萌地震(Mj6.1)に おける HKD020 の大振幅地震動の生成メカニズム,日本地球惑星科学連合 2010 年大会 講演予稿集, SSS016-P22.
- 司 宏俊・翠川三郎 (1999), 断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距 離減衰式, 日本建築学会構造系論文報告集, 523, 63-70.
- Somei, K., and Miyakoshi, K. (2012), Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations, Proc. 15th World Conf. Earthq. Eng., Paper no.1863.
- 染井一寛・宮腰 研・凌 甦群 (2014), 強震記録から推定した 2011 年 4 月 11 日福島県浜通 りの地震の震源過程, 日本地震学会 2014 年度秋季大会講演予稿集, S15-P21.
- 消防庁 (2017), 災害詳細情報, 茨城県北部を震源とする地震(第9報).

3.1.1(2) 震源インバージョン

① はじめに

本 3.1.1(2)節は、2016 年茨城県北部の地震の震源像を詳細に把握するために、断層面上で の破壊過程の様子を運動学的なアプローチから推定する.具体的には、断層面上でのモー メント解放、すべり量、すべりの継続時間、破壊伝播速度、といったパラメータの時空間 的な発展過程、すなわち震源過程を調べる.複雑な震源過程は、断層面全体を空間的に小 さな断層(小断層)によって分割し、各小断層内でのすべりを時間方向に分割することで モデル化することができる.また、このように断層面上で時空間的に離散化された有限断 層モデルは、観測波形記録を逆解析することで推定することが可能である.時空間的に離 散化された有限断層モデルを観測波形から求める逆解析の手法としては、マルチタイムウ ィンドウ線形波形インバージョン(例えば、Hartzell and Heaton, 1983)が国内外の多くの地 震に対して適用されている(例えば、Graves and Wald, 2001, Asano and Iwata, 2011, Yoshida *et al.*, 2017).本報においても、マルチタイムウィンドウ線形波形インバージョン手法を用 いて、2016 年茨城県北部の地震の近地強震波形記録から震源過程の推定を試みる.

2016 年茨城県北部の地震に対しては, 図 3.1.1(2)-1 に示すように, 気象庁 (2016)による近 地波形を用いた震源インバージョン結果が報告されている. 気象庁 (2016)が使用したデー タセットは,防災科学技術研究所の強震観測網 K-NET, KiK-net (Aoi et al., 2011),及び気 象庁震度計観測点の近地強震波形である.断層面は,気象庁 CMT 解(気象庁,2016)と余震 分布を参考に決定している.また,理論グリーン関数の計算は Koketsu *et al.* (2012)の地下速 度構造モデルを参考にしている. 推定されたすべり分布からは、主たる大きなすべり領域 は、破壊開始点の北側浅部に拡がり、最大すべり量が 0.3 m であったこと、破壊継続時間は 約 15 秒間であったことが報告されている.しかしながら,3.1.1 で示したように,広帯域な 観測波形を見ると,2 つの主要な波形パケットが確認でき,本地震が Mw 5.9 という規模で ありながら、やや複雑な震源過程を持っている可能性が示唆されている. 気象庁 (2016)の 震源モデルでは、破壊開始点からはやや離れるものの、大きなすべり領域は主として 1 つ で、比較的シンプルな震源破壊過程が推定されているが、これは 0.05-0.2 Hz のやや低周波 数帯域に寄った情報から得られたものであるためと考えられる. 従って, より広帯域な観 測波形の再現を目的として,詳細な震源過程の解析を目指す余地はあると考えられる.一 般に、高周波数側の波形を対象とするほど、地下速度構造モデルの仔細な影響を受けやす いため,高精度な地下速度構造モデル(理論グリーン関数)が必要となる.本報では,3.1.1(1) 節において, 1 Hz まで保証された高精度なグリーン関数を構築しているため, 高周波数側 1 Hz までの強震波形を用いたインバージョンが可能である. さらに, 気象庁 (2016)では, 今 回の地震で最も大きな地震動記録が得られた震源近傍の IBRH13 (KiK-net 高萩) は対象と していない.本報はデータセットの観点からも改善を図り,上述した IBRH13 を含めて,震 源周辺の17地点を対象とした震源インバージョンを実施する.

図 3.1.1(2)-1 気象庁 (2016)による近地波形インバージョン結果. 左) 推定された震源時間 関数,右) 断層面上でのすべり分布.

② データセット

本報では、K-NET 9 地点、KiK-net 8 地点の合計 17 地点で観測された 3 成分の強震波形デ ータを用いた解析を行う.使用する強震観測点を表 3.1.1(2)-1 に一覧として、その分布を図 3.1.1(2)-2 に示す.なお、KiK-net 観測点は地表センサーを使用する.最も本震震源(気象庁 一元化震源)に近い観測点は、IBRH14 (KiK-net +王)であり、最も震源から遠い観測点は FKSH14 (KiK-net いわき東)である.なお、後述するように、本報の震源インバージョン では、0.1-0.2 Hz の予備的な震源インバージョンとして STEP1、0.1-1.0 Hz の震源インバー ジョンとして STEP2 の 2 段階の震源インバージョンを実施する.このような 2 段階の震源 インバージョンは、断層面を適切にトリミングし、詳細な不均質すべり分布を推定するこ とができると報告されている(例えば、Yoshida *et al.*, 2017).STEP1の震源インバージョン では、比較的硬質なサイトで後続波の影響が少なく、かつ震源をできるだけ囲むように配 置される 8 地点を選定した解析を行い、STEP2 の震源インバージョンでは、全 17 地点を使 用した解析を行う.

K-NET, KiK-net のオリジナルの観測記録は 100 Hz サンプルの加速度波形データであり, ここでは,加速度記録を時間領域において数値積分して速度波形データと使用した.これ らの速度波形データに対して,0.1 Hzから0.2 Hz(STEP1),或いは 0.1 Hzから1.0 Hz(STEP2) の第1種チェビシェフ型帯域通過フィルター(斎藤,1978)を適用し,20 Hz でリサンプル したデータを震源インバージョンに使用した.なお,本報では,P波到達時からS波を含む 20 秒間をインバージョンの対象とし,P波到達は目視により決定した.

Station	Latitude	Longitude		
code	(°N: WGS)	(°E: WGS)	Network	Location
FKS012	36.9069	140.7929	K-NET	Nakoso
FKS013*	37.0900	140.5563	K-NET	Furudono
FKS014*	36.8683	140.4300	K-NET	Yamatsuri
FKS015*	37.0217	140.3775	K-NET	Tanagura
FKSH14	37.0264	140.9702	KiK-net	Iwaki-E
IBR001*	36.7761	140.3569	K-NET	Daigo
IBR002*	36.7061	140.7068	K-NET	Takahagi
IBR003	36.5915	140.6453	K-NET	Hitachi
IBR004	36.5516	140.4102	K-NET	Ohmiya
IBR006	36.3690	140.4528	K-NET	Mito
IBRH06*	36.8809	140.6545	KiK-net	Kitaibaraki2
IBRH12*	36.8369	140.3181	KiK-net	Daigo
IBRH13	36.7955	140.5750	KiK-net	Takahagi
IBRH14	36.6922	140.5484	KiK-net	Jyuuoh
IBRH15	36.5566	140.3013	KiK-net	Gozenyama
IBRH16 [*]	36.6405	140.3976	KiK-net	Yamagata
IBRH18	36.3631	140.6198	KiK-net	Hitachinaka

表 3.1.1(2)-1 解析に使用した強震観測点一覧

*STEP1 の震源インバージョンで使用する観測点

図 3.1.1(2)-2 黒色四角印は、震源インバージョンに使用した強震観測点(観測点コードを 付記した 17 地点)の分布.うち、灰色四角印で囲った 8 地点は、STEP1の震源インバージ ョンで使用した観測点.丸印は、本震後 24 時間に震源周辺で発生した余震の空間分布.赤 色星印は本震の震央位置と F-net による MT 解.灰色の矩形断層面は、STEP1の震源インバ ージョンで仮定した断層面、黒色の矩形断層面は、STEP2の震源インバージョンで仮定し た断層面をそれぞれ表す.橙色の線は、中田・今泉 (2002)による活断層トレースを表す.

③ 断層面の設定

震源インバージョンにおいて不均質すべりモデルを推定する際に、余震の発生領域を包 絡するように矩形の断層面を仮定する方法は広く一般的に用いられている(例えば、引間、 2012, Asano and Iwata, 2016, Lay *et al.*, 2017).本報では可能な限り信頼性の高い断層面を 設定するために、本震と本震後 24 時間以内に発生した余震を対象として震源再決定を行い、 高精度な余震分布と CMT 解で求められている幾何形状から、震源インバージョンに使用す る断層面を決定した.

本報では, Double-Difference (DD) 法(Waldhauser and Ellsworth, 2000) による本震,及 び余震の震源再決定を行った.解析を行った期間は,2016 年 12 月 28 日 21 時 38 分から 2016 年 12 月 29 日 21 時 38 分とし,M_{JMA}≧0 の地震を対象とした.読取データは,気象庁一元化 処理検測値を用いた.なお,相対的な震源決定精度の向上を目的として震源再決定を行う ため, 速度構造モデルには気象庁一元化震源と同様に JMA2001 (上野・他, 2002) を用いた. このような条件で震源が再決定された地震の数は合計で 1709 個となった. 本震と本震後 24 時間以内に発生した余震の気象庁一元化震源情報による震源位置と DD 法で再決定された 震源位置との比較を図 3.1.1(2)-3 に示す.DD 法で再決定された震源は,気象庁一元化震源 よりも全体的に浅めに、かつまとまりが良くなっていることがわかる. 表 3.1.1(2)-2 に本震 の震源情報を示す.本震は,再決定震源の方が気象庁一元化震源情報より約0.7 km 浅く推 定された. F-net(福山・他, 1998)による MT 解の断層面幾何形状と再決定震源の分布を比 較すると,本震の震源付近では,余震分布と F-net による傾斜角(62°)との対応は良いよ うにも見えるが, 震源の浅い領域や断層の北端, 南端付近では, F-net MT 解の幾何形状と の対応はあまり良くない. そこで, 傾斜角のやや緩い(46°)気象庁の CMT 解との対応を みてみると (図 3.1.1(2)-4), 再決定震源分布と CMT 解の幾何形状との整合性が良いことが 確認できた.従って,本報では走向角と傾斜角はそれぞれ気象庁 CMT 解を参考に設定する こととした.また、断層面の領域は、再決定された余震分布をやや余裕をもって包絡する ように設定した.これは、震源インバージョン解析の際に、あらかじめ設定した断層面に よって震源断層が恣意的に決定されることを避けるとともに、やや余裕をもった断層端部 がトリミングされ,より妥当性の高い断層面が推定されることを期待しているためである. 以上のような再決定余震分布と気象庁 CMT 解から震源インバージョンに使用する断層面の 幾何形状を表 3.1.1(2)-3, 図 3.1.1(2)-5 にそれぞれ示す.

表 3.1.1(2)-2 本震の震源情報

	Origin time	Latitude	Longitude	Depth
	(JST=UT+9, ymdhms)	(°N: WGS)	(°E: WGS)	(km)
JMA	2016/12/28,21:38:49.04	36.7202	140.5742	10.84
DD	2016/12/28,21:38:49.04	36.725167	140.569743	10.15

表 3.1.1(2)-3 震源インバージョンに使用する断層面の諸元

Sti	rike	deg.	N168E
D	hip	deg.	46
Lei	ngth	km	24
Wi	idth	km	14
Upper	depth*	km	1.16

*断層面上端の深さ

図 3.1.1(2)-3 本震と本震後 24 時間以内に発生した余震の震源位置(黒色:気象庁一元化震源情報,赤色:DD 法による再決定震源情報). 星印は本震の震源位置. 深さ方向の断面図は, F-netの MT 解の走向,傾斜角を基準として示す. また,上段の断面図中の破線は, F-net CMT 解の傾斜角(62°)を仮定して,本震の再決定震源位置を通るように設定した断層面を 走向軸方向から見た線である.

図 3.1.1(2)-4 本震と本震後 24 時間以内に発生した余震の震源位置(DD 法による再決定震 源情報のみ). 星印は本震の震源位置. 深さ方向の断面図は, 気象庁の CMT 解の走向, 傾 斜角を基準として示す. また, 上段の断面図中の破線は, 気象庁 CMT 解の傾斜角(46°) を仮定して, 本震の再決定震源位置を通るように設定した断層面を走向軸方向から見た線 である.

図 3.1.1(2)-5 震源インバージョンに使用する断層面.四角印は観測点,赤色星印は本震震 源位置.なお,断層上端(黒色実線)は地表に到達していない.上段の丸印は,再決定さ れた余震分布.

④ STEP1: 0.1-0.2 Hz 波形インバージョン

前述したように、本報では、断層面を適切にトリミングし、詳細な不均質すべり分布を 推定することを目的として, STEP1 として 0.1-0.2 Hz の予備的な震源インバージョンを行っ た後, STEP2 として, 0.1-1.0 Hz の震源インバージョンを実施する. また, 断層面上での破 壊の時空間発展の推定には, マルチタイムウィンドウ線形波形インバージョン法 (例えば, Hartzell and Heaton, 1983)を使用した.ここでは,STEP1の震源インバージョンについて説 明する. まず, ③で設定した断層面を一辺が 2.0 km の正方形小断層によって分割し, 長さ 方向に 12,幅方向に 7 の合計 84 個の小断層によって断層面全体を表現した (図 3.1.1(2)-6). なお,破壊開始点は,表 3.1.1(2)-2の再決定震源位置によって固定した.点震源は各小断層 の中心に配置した. 各小断層でのモーメント解放は, ライズタイム 0.8 秒の平滑化傾斜 (smoothed ramp) 関数で表現し、4 つのタイムウィンドウを 0.4 秒間隔で設定し、各小断層 で許容される震源継続時間は 2.0 秒間とした(図 3.1.1(2)-6). 各小断層でのすべり方向の変 化は,気象庁 CMT 解のすべり角を参考に-59°±45°に収めた.また,時空間的に近接するす べりを平滑化する拘束条件(Sekiguchi et al., 2000)を付加した.1 つ目のタイムウィンドウ がトリガーされるための伝播速度、すなわち、第一タイムウィンドウの破壊伝播速度(First Time Window Triggering Velocity: FTWTV) は, 1800 m/s とした. 震源域での S 波速度を 3400 m/s と仮定すると、1800 m/s は S 波速度の約 53%であり、Geller (1976)の結果(72%)に比 するとやや遅めである.しかしながら,後述する 3.1.1(3)において,観測 S 波走時と理論 S 波走時を用いて推定した強震動生成領域間の破壊伝播速度 (1200 m/s) と調和的であるため, 1800 m/s という値は妥当であると考えられる. すべりの平滑化の強さと FTWTV は, 図 3.1.1(2)-7 に示すように複数のケースを試行し、それぞれ ABIC (Akaike's Bayesian Information Criterion; Akaike, 1980) とフィッティング残差が最小となるものを選んだ. また, 各観測 点の観測波形は、それぞれの振幅の最大値で正規化し、観測点ごとの重みは均等とした. 使用する観測点は,図 3.1.1(2)-2 に示す8地点とした.グリーン関数は,3.1.1(1)で作成した 高精度グリーン関数を使用する.表 3.1.1(1)-2 に示した 1 次元速度構造モデルから,離散化 波数法(Bouchon, 1981)及び透過・反射係数行列法(Kennett and Kerry, 1979)を用いて理論 グリーン関数を計算した. インバージョンでは, 各小断層のモーメント解放の時間変化を 推定する.従って,各小断層でのすべり量は,各小断層のモーメント解放量に対して,小 断層面積(ここでは4km²)と各小断層での剛性率を除することで推定している.本報では, 防災科学技術研究所地震ハザードステーション (J-SHIS) の全国深部地盤モデル V2 (藤原・ 他, 2012)から抽出した震源での1次元速度構造モデル(図 3.1.1(2)-8)から,小断層深さ応 じた剛性率(27.1-31.8 GPa)を仮定している.

推定された最終すべり量分布を図 3.1.1(2)-9 に示す. 断層面全体の平均すべり量は 0.07 m であり,大きなすべりが生じた領域は破壊開始点より北側浅部付近に拡がり,この領域において最大すべり量 0.31 m が推定された. 断層面全体から解放された地震モーメントは,

7.17×10¹⁷ Nm (*M*_w 5.8) であり, F-net の地震モーメント (9.00×10¹⁷ Nm, *M*_w 5.9) の 80 % 程度の大きさであった. 図 3.1.1(2)-10 に観測速度波形と理論速度波形の比較を示す. 0.1-0.2 Hz の周波数帯域において両者は良い一致であることが確認できる. 図 3.1.1(2)-11 には, 断層面上の各小断層の最終すべり量の数値を示してある.

Somerville *et al.* (1999)の基準に従い,最終すべり量分布から断層面のトリミングを試みると,断層北端から走向方向に小断層 2 列分,すなわち 4 km がトリミングされた.したがって,STEP2 の 0.1-1.0 Hz の震源インバージョンでは,断層長さ 20 km,断層幅 14 km の断層面(図 3.1.1(2)-2 の黒色の断層面)を設定する.

図 3.1.1(2)-6 左) STEP1 で仮定した断層面の模式図. 星印は破壊開始点 (震源),破線コン タは,破壊伝播速度 1800 m/s の場合の第1タイムウィンドウの破壊フロント伝播時間を1 秒間隔で表示している.右) STEP1 のマルチタイムウィンドウによって表現される各小断 層の震源時間関数 (モーメントレート関数)の例.1 つのタイムウィンドウは,0.8 秒のラ イズタイムを持つ平滑化傾斜関数によって基底する.

図 3.1.1(2)-7 FTWRV を 8 ケース(V_{FT}: 1400 m/s-2800 m/s), 平滑化係数を 7 ケース(λ : 0.05-2.0) の合計 56 ケースについて震源インバージョンを実施した際の ABIC (赤色丸印), 波形フィ ッティング残差 (青色菱形印), 解放される地震モーメント量 (灰色四角印)の比較.

図 3.1.1(2)-8 本震震央位置での J-SHIS 全国深部地盤モデル V2 の1次元速度構造モデル

図 3.1.1(2)-9 0.1-0.2 Hz の震源インバージョン結果.上) 最終すべり分布の地図上投影.四 角印は観測点,星印は破壊開始点,丸印は再決定余震分布をそれぞれ表す.下) 断層面上 の最終すべり分布.各小断層でのすべり速度関数を灰色で表す.星印は破壊開始点.

図 3.1.1(2)-10 0.1-0.2 Hz の震源インバージョンによる観測速度波形(黒色)と理論速度波形(赤色)の比較. 各波形トレース左上の数値は最大値(cm/s)を表す.

	1	2	3	4	5	6	7	8	9	10	11	12	_
1	0.000	0.000	0.000	0.028	0.108	0.131	0.109	0.058	0.004	0.011	0.032	0.055	0.045
2	0.001	0.001	0.037	0.075	0.195	0.258	0.186	0.080	0.013	0.007	0.029	0.065	0.079
3	0.004	0.006	0.048	0.151	0.301	0.308	0.225	0.162	0.108	0.079	0.046	0.035	0.123
4	0.004	0.012	0.024	0.239	0.286	0.161	0.072	0.052	0.074	0.099	0.080	0.035	0.095
5	0.010	0.026	0.043	0.218	0.153	0.037	0.000	0.000	0.007	0.054	0.070	0.035	0.054
6	0.047	0.049	0.037	0.156	0.070	0.004	0.034	0.052	0.021	0.031	0.074	0.048	0.052
7	0.011	0.016	0.031	0.144	0.185	0.150	0.104	0.067	0.038	0.047	0.055	0.046	0.075
	0.011	0.016	0.031	0.144	0.185	0.150	0.104	0.067	0.038	0.047	0.055	0.046	

図 3.1.1(2)-11 0.1-0.2 Hz の震源インバージョン結果の各小断層での最終すべり量. 断層面の外側右端,及び外側下端の数値は,対応する各行列の算術平均値(行列平均すべり量)を示す. 断層面全体での平均すべり量は 0.07 m. 行列平均が平均すべり量の 0.3 倍未満(0.02 m)の行列を灰色で表し,小断層のすべり量が平均すべり量の 1.5 倍以上(0.11)の箇所は赤色で表している.

⑤ STEP2: 0.1-1.0 Hz 波形インバージョン

STEP1 の震源インバージョン結果を受けて, STEP2 では, 当初の断層面(図 3.1.1(2)-5) の北端から走向方向に4 km 分をトリミングした断層面を用いて, 0.1-1.0 Hz の震源インバ ージョンを実施する.インバージョン手法は、STEP1 と同様にマルチタイムウィンドウ線 形波形インバージョン法 (例えば, Hartzell and Heaton, 1983) を使用した. ここでは, STEP2 の震源インバージョンの条件について説明する.まず、トリミングされた断層面を一辺が 1.0 km の正方形小断層によって分割し,長さ方向に 20,幅方向に 14 の合計 280 個の小断層 によって断層面全体を表現した(図 3.1.1(2)-12). なお,破壊開始点は,表 3.1.1(2)-2の再決 定震源位置によって固定した.点震源は各小断層の中心に配置した.各小断層でのモーメ ント解放は、ライズタイム 0.8 秒の平滑化傾斜(smoothed ramp)関数で表現し、5 つのタイ ムウィンドウを 0.4 秒間隔で設定し、各小断層で許容される震源継続時間は 2.4 秒間とした (図 3.1.1(2)-12). 各小断層でのすべり方向の変化は、気象庁 CMT 解のすべり角を参考に -59°±45°に収めた. また, 時空間的に近接するすべりを平滑化する拘束条件 (Sekiguchi et al., 2000)を付加した.1つ目のタイムウィンドウがトリガーされるための伝播速度,すなわち, 第一タイムウィンドウの破壊伝播速度(First Time Window Triggering Velocity: FTWTV)は, STEP1 と同様に 1800 m/s とした. すべりの平滑化の強さは、複数のケースを試行し、F-net の地震モーメントや観測波形の再現性を参考にして,試行錯誤的に決定した.また,各観 測点の観測波形は、それぞれの振幅の最大値で正規化し、観測点ごとの重みは均等とした. 使用する観測点は,図 3.1.1(2)-2 に示す全 17 地点とした.グリーン関数は,STEP1 と同様 に 3.1.1(1)で作成した高精度グリーン関数を使用する. 各小断層での剛性率も STEP1 と同様 に、震源での J-SHIS に基づく1次元速度構造モデル(図 3.1.1(2)-8)を参考に設定した.

推定されたすべりの時空間進展のスナップショットを図 3.1.1(2)-13 に示す.大きなすべ りは震源時から 4.5 秒後から 6.0 秒後にかけて IBRH13 の直下付近に拡がり,全体の破壊は 10 秒間程度で終了していることがわかる.断層面上での最終すべり量分布,及びすべり速 度分布を図 3.1.1(2)-14 に示す.断層面全体の平均すべり量は 0.21 m であり,大きなすべり が生じた破壊開始点より北側浅部の領域において最大すべり量 0.75 m が推定された.断層 面全体から解放された地震モーメントは,1.72×10¹⁸ Nm (*M*w 6.1)であり,F-net の地震モー メント (9.00×10¹⁷ Nm, *M*w 5.9)と比するとやや大きめに求まっている.平滑化係数につい ては検討の余地があるかもしれない.図 3.1.1(2)-15 に観測速度波形と理論速度波形の比較 を示す.0.1-1.0 Hz の周波数帯域において両者は良い一致であることが確認できる.

Somerville *et al.* (1999) の基準に従うと, STEP2 の結果では断層全体面積のトリミングは 生じず, 断層面積は280 km²となった. また, 同様に Somerville *et al.* (1999) の基準によっ て特性化されるアスペリティ領域は, 図 3.1.1(2)-14 に示すように, すべり量の大きな破壊 開始点より北側浅部の領域が抽出され, その面積は32 km², アスペリティの平均すべり量 は0.46 m であった. 一方で, 吉田・宮腰 (2013)では, 断層全体での平均ピークモーメント レートの1.5倍の基準で特性化した領域を High peak-moment Rate Area (HRA 領域) と定義 し、より高周波数側の強震動生成に対応する領域である可能性を示唆している.本報にお いても、HRA 領域の抽出を試みると、図 3.1.1(2)-14 に示すように、アスペリティ領域とほ ぼ同じ場所に抽出され、その面積はアスペリティ領域よりやや小さく 24 km²、HRA の平均 すべり量は 0.50 m であった.また、アスペリティや HRA としての基準には満たなかったも のの、破壊開始点付近でやや大きめの破壊(すべり、すべり速度)があったことは図 3.1.1(2)-14 から確認できる.アスペリティ領域(大すべり域)の位置は、図 3.1.1(2)-1 の気 象庁 (2016)の結果と整合的であるが、破壊開始点付近のすべりは気象庁 (2016)のすべり分 布からは不明瞭である.これは、本報において 0.1-1.0 Hz までの周波数帯域で震源インバー ジョンを行ったことにより、微細で複雑な破壊過程を捉えることができていると考えられ る.

上述したアスペリティ領域,或いは破壊開始点付近の領域を含めて、断層面全体からの 波形の生成過程を調べるために, 図 3.1.1(2)-16 のように, 断層面を Area 1(破壊開始点付近 の大きなすべり領域), Area 2(北側浅部のアスペリティ領域), Area 3(Area 1, 2以外の領 域)の3領域に分けて,各々の領域からの生成波形と観測波形とを比較した(図3.1.1(2)-17). その結果, Area 1 から放射された波は, 震源近傍の観測点(例えば, IBR003, IBRH14) で 観測された最初のやや小さめの S 波の振幅を生成しており, Area 2 から放射された波は, 複数の地点(例えば, IBRH06, IBRH13)で観測されている最も大きな主要動を生成してい ることがわかった. さらに, Area 2, すなわちアスペリティ領域の観測主要動への影響が顕 著である IBRH06 と IBRH13 に注目して波形の生成メカニズムをより詳細に考察する. 図 3.1.1(2)-18 は, IBRH06 と IBRH13 に対しての小断層上での理論波形と断層面上での破壊伝 播、及び小断層から各観測点までの波の伝播を考慮して計算した断層面上での等時曲線を 示したものである. ここで断層面から観測点までの波の伝播速度は 3400 m/s と仮定した. この図から、IBRH06では、アスペリティ領域での等時曲線が疎になっており、各小断層か ら生成した理論波形が建設的に重なり合うことを示している. これはすなわち, アスペリ ティ領域内での破壊が IBRH06 に向かう方向に伝播したことに由来するものであり, 広義の 破壊伝播指向性効果が生じていた可能性を示唆している.一方で, IBRH13 では, アスペリ ティ領域内での等時曲線が IBRH06 のケースほど疎とはなっていない.つまり,IBRH13 は 破壊伝播指向性効果によって大きな振幅が生成されたというよりはむしろ,その地点の直 下にアスペリティ領域が存在したことが主因であると考えられる.

図 3.1.1(2)-12 左) STEP2 で仮定した断層面の模式図. 星印は破壊開始点 (震源),破線コ ンタは,破壊伝播速度 1800 m/s の場合の第1タイムウィンドウの破壊フロント伝播時間を 0.5 秒間隔で表示している.右) STEP2 のマルチタイムウィンドウによって表現される各小 断層の震源時間関数 (モーメントレート関数)の例.1 つのタイムウィンドウは,0.8 秒の ライズタイムを持つ平滑化傾斜関数によって基底する.

図 3.1.1(2)-13 0.1-1.0 Hz の震源インバージョン結果でのすべりの時空間発展の様子を 1.5 秒間隔のスナップショットで示す. 星印は破壊開始点を表す.

図 3.1.1(2)-14 0.1-1.0 Hz の震源インバージョン結果.上) 断層面上での最終すべり量分布. 矩形領域は特性化されたアスペリティ領域を表す.下) 断層面上でのすべり速度分布.矩 形領域は特性化された HRA 領域を表す.各小断層のすべり速度関数は,破壊フロントが各 小断層に到達した時刻を0として示している.星印は破壊開始点を表す.

図 3.1.1(2)-15 0.1-1.0 Hz の震源インバージョンによる観測速度波形(黒色)と理論速度波形(赤色)の比較. 各波形トレース左上の数値は最大値(cm/s)を表す.

図 3.1.1(2)-16 0.1-1.0 Hz の震源インバージョンの最終すべり量分布と領域分けをした 3 領域の場所を示す. 橙色: Area 1, 青色: Area 2, 緑色: Area 3. 星印は破壊開始点を表す.

図 3.1.1(2)-17 0.1-1.0 Hz の観測速度波形(黒色)と理論速度波形(赤色). 橙色, 青色, 緑 色の各波形は, Area 1, 2, 3 のそれぞれの領域から生成された理論波形を表す. 各波形トレ ース左上の数値は最大値(cm/s)を表す.

図 3.1.1(2)-18 0.1-1.0 Hz の震源インバージョン結果(最終すべり分布)とIBRH06(上), IBRH13(下)の各観測点に対して重ね合せを行う前の理論波形(EW 成分)を各小断層上 で表したもの.青色破線コンタは,各観測点に対しての断層面上での等時曲線を表し,等 時曲線の間隔が疎であるほど,その場所での小断層の波形は重なり合って観測点に到達す ることを表している.

2016 年茨城県北部の地震の詳細な震源過程を推定するために、震源近傍の観測点を含め て 17 地点の近地強震波形を用いた震源インバージョンを実施した.本報のインバージョン で使用する 1 次元グリーン関数は、3.1.1(1)節で作成した各観測点の高精度グリーン関数を 採用した.また、断層面(断層幾何形状)は、DD法で再決定された精度の高い余震分布を 参考にして設定した.本報では、0.1-0.2 Hzの波形を対象とした震源インバージョン結果か ら断層面をトリミングした後に、0.1-1.0 Hzの波形を対象とした震源インバージョン結果か ら断層面をトリミングした後に、0.1-1.0 Hzの波形を対象とした震源インバージョンを実施 する 2 段階のアプローチ手法を採用した.震源インバージョンによる主要な結論は以下の 通りである.1) すべりの大きな領域は、破壊開始点より北側浅部の IBRH13 直下付近に震 源時から 4.5 秒後から 6 秒後に拡がった.2) 1)の大すべり域にアスペリティ領域が抽出 されるとともに、同領域ではすべり速度も大きく、ほぼ同じ領域に HRA も抽出された.3) 0.1-1.0 Hzの震源インバージョンを実施することで、1)の大すべり域以外にも破壊開始点 付近にやや大きなすべり域が特定され、複雑な破壊過程を仔細に捉えることができた.4) 震源近傍の IBRH06 の観測主要動は、アスペリティ内の破壊伝播指向性効果によって生成さ れたと考えられる一方、同じく震源近傍の IBRH13 の観測主要動はその地点直下にアスペリ ティが存在したことが大きな地震動の主因である可能性が示唆された.

- Akaike, H. (1980), Likelihood and the Bayes procedure, in Bayesian Statistics, J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith (Editors), University Press, Valencia, Spain, 143–166.
- Aoi, S., Kunugi, T., Nakamura, H., and Fujiwara, H. (2011), Deployment of new strong motion seismographs of K-NET and KiK-net, in Earthquake Data in Engineering Seismology, 167-186, eds Akkar, S., Gülkan, P. & van Eck, T., Springer.
- Asano, K., and Iwata, T. (2011), Source-rupture process of the 2007 Noto Hanto, Japan, earthquake estimated by the joint inversion of strong motion and GPS data, Bull. Seism. Soc. Am., 101, 2467–2480.
- Asano, K., and Iwata, T. (2016), Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data, Earth, Planets and Space, 68:147, DOI 10.1186/s40623-016-0519-9.
- Bouchon, M. (1981), A simple method to calculate Green's functions for elastic layered media, Bull. Seism. Soc. Am., 71, 959–971.
- 藤原広行・河合伸一・青井 真・森川信之・先名重樹・東 宏樹・大井昌弘・はお憲生・ 長谷川信介・前田宜浩・岩城麻子・若松加寿江・井元政二郎・奥村俊彦・松山尚典・ 成田 章 (2012),東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防災 科学技術研究所研究資料,第 379 号.
- 福山英一・石田瑞穂・D. S. Dreger・川井啓廉 (1998), オンライン広帯域地震データを用いた 完全自動メカニズム決定, 地震 2, 51, 149-156.
- Geller, R. J. (1976), Scaling relations for earthquake source parameters and magnitudes, Bull. Seism. Soc. Am., 66, 1501-1523.
- Graves, R. W., and Wald, D. J. (2001), Resolution analysis of finite fault source inversion using oneand three-dimensional Green's functions: 1. Strong motions, J. Geophys. Res., 106, 8745–8766.
- Hartzell, S. H., and Heaton, T. H. (1983), Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake, Bull. Seism. Soc. Am., 73, 1553–1583.
- 引間和人 (2012), 2011 年 4 月 11 日福島県浜通りの地震(Mj7.0)の震源過程 強震波形と再決定震源による 2 枚の断層面の推定-, 地震 2, 64, 243-256.
- Kennett, B. L. N., and Kerry, N. J. (1979), Seismic waves in a stratified half space, Geophys. J. R. Astr. Soc., 57, 557–583.
- Koketsu, K., Miyake, H., and Suzuki, H. (2012), Japan Integrated Velocity Structure Model Version 1, Proc. 15th World Conf. Earthq. Eng., 24-28, paper no. 1773.
- Lay, T., Ye, L., Ammon, C. J., and Kanamori, H. (2017), Intraslab rupture triggering megathrust

rupture coseismically in the 17 December 2016 Solomon Islands M_w 7.9 earthquake, Geophys. Res. Lett., 44-3, 1286-1292.

- 中田 高・今泉俊文 (2002), 活断層詳細デジタルマップ, 東京大学出版会, pp.60.
- 気象庁 (2016), 2016 年 12 月 28 日茨城県北部の地震-近地強震波形による震源過程解析(暫定)-, http://www.data.jma.go.jp/svd/eqev/data/sourceprocess/event/2016122821384904near.pdf (最終アクセス: 2018 年 2 月 1 日).
- 斎藤正徳 (1978), 漸化式ディジタル・フィルターの自動設計, 物理探鉱, 31, 112-135.
- Sekiguchi, H., Irikura, K., and Iwata, T. (2000), Fault geometry at the rupture termination of the 1995 Hyogo-ken Nanbu earthquake, Bull. Seism. Soc. Am., 90, 117–133.
- Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., and Kowada, A. (1999), Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., 70, 59-80.
- 上野 寛・畠山信一・明田川保・舟崎 淳・浜田信生 (2002), 気象庁の震源決定方法の改善 - 浅部速度構造と重み関数の改良-, 験震時報, 65, 123-134.
- Waldhauser, F., and Ellsworth, W. L. (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353-1368.
- 吉田邦一・宮腰 研 (2013), ピークモーメントレート分布にもとづく 2011 年東北地方太平 洋沖地震の特性化震源モデル, 日本地球惑星科学連合 2013 年大会講演予稿集, SSS35-P03.
- Yoshida, K., Miyakoshi, K., Somei, K., and Irikura, K. (2017), Source process of the 2016 Kumamoto earthquake (Mj7.3) inferred from kinematic inversion of strong-motion records, Earth, Planets and Space, 69:64, DOI 10.1186/s40623-017-0649-8.

3.1.1(3) 経験的グリーン関数による震源モデリング

① はじめに

3.1.1(2)は、2016 年茨城県北部の地震の震源像を 0.1-1.0 Hz の低周波数側の波形情報を基 に断層面上での不均質なすべり分布を推定することで表現した.しかしながら、観測され た強震動を広帯域に説明するためには、さらに高周波数側までの情報を用いた震源のモデ ル化が必要不可欠である. 高周波数帯域(例えば1Hz以上)の観測波形を対象としたモデ リングを行う場合は、3.1.1(1)で作成したような高精度グリーン関数を、さらに高周波数側 (1 Hz 以上)まで適用可能なものにする必要がある.しかし実際には、数 Hz までの波形を 担保可能な理論グリーン関数、すなわち地下速度構造モデルを仔細に構築することは困難 である.そこで別の方法として、対象とする大きな地震の震源近傍で発生した小さな地震 の観測記録を高周波数側までの情報が含まれた経験的なグリーン関数として利用した震源 モデル化手法がある.この経験的グリーン関数を利用して,広帯域の強震動をシミュレー ションする手法は, Hartzell (1978)や Irikura (1986)によって体系化され, 経験的グリーン関 数法としてまとめられてきた.経験的グリーン関数法は,大地震と経験的グリーン関数に 使用する小地震との間の断層パラメータの自己相似則と ω² 震源スペクトルモデル(Aki, 1967)の概念の上に立脚しており、大地震の波形は、小地震の波形を重ね合わせることで 表現される. この際, 大地震と小地震との間のすべり速度関数の違いを補正する関数も様々 提案されており(例えば、入倉・他、1997)、広帯域の地震動を精度よく合成する手法とし て,経験的グリーン関数法は広く用いられることとなった.

Miyake et al. (2003) は,経験的グリーン関数法による強震動シミュレーションの結果に基づいて,強震動生成領域 (Strong Motion Generation Area; SMGA) によって構成される震源 モデルを提案した.強震動生成領域は,断層面上の強震動生成を司るすべり速度や応力降 下量の大きい領域を矩形のパッチ領域として表現したものであり,不均質震源モデルにお けるアスペリティ領域 (すべりの大きな領域) と対応があることが示されている (Miyake et al., 2003). この対応関係から,地震動を予測するための震源断層モデルの考え方として, 特性化震源モデルが提案され,強震動予測手法として広く用いられている強震動予測レシ ピが構築されてきた (例えば,入倉・三宅, 2001, Irikura and Miyake, 2011)

経験的グリーン関数法と強震動生成領域による強震動シミュレーションは、過去の大き な内陸地殻内地震において、数多くの成果があり(例えば,Oth *et al.*, 2007, Somei and Miyakoshi, 2012, Irikura *et al.*, 2017, Wen *et al.*, 2017), 震源近傍で観測された地震動生成の メカニズムを広帯域に説明するための震源モデルが提案されてきている.そのような強震 動生成領域のモデルパラメータについて、統計的な性質を調べる研究も近年行われており, 宮腰・他 (2016)では、強震動生成領域における応力降下量の深さ依存性に関する報告もな されている. 本 3.1.1(3)では,経験的グリーン関数法に基づく地震動シミュレーションから,2016 年茨 城県北部の地震時に観測された地震動を広帯域(0.3-10 Hz)に説明するための強震動生成 震源モデルをフォワードモデリングによって推定する.また,推定された強震動生成領域 と 3.1.1(2)で得られた不均質すべりモデルとを比較することで,本地震による広帯域の強震 動生成メカニズムについて考察を行う. ② データセット

本報では,防災科学技術研究所強震観測網(Aoi *et al.*, 2011) K-NET10 地点, KiK-net8 地 点の合計 18 地点で観測された 3 成分の強震波形データを用いた地震動シミュレーションを 行う.使用する強震観測点を表 3.1.1(3)-1 に一覧として,その分布を図 3.1.1(3)-1 に示す. なお,KiK-net 観測点は地中センサーを使用する. なお,③の強震動生成領域の破壊開始 点探索に用いる観測点は図 3.1.1(3)-1 に灰色四角印で示した 10 地点である.

K-NET, KiK-net のオリジナルの観測記録は 100 Hz サンプルの加速度波形データを使用し, 速度波形,変位波形は,加速度記録を時間領域において数値積分し,0.3Hz から 10 Hz の第 1種チェビシェフ型帯域通過フィルター(斎藤,1978)を適用することで使用した.なお, 0.3-10 Hz は,後述する経験的グリーン関数として使用する地震(要素地震)の S/N を考慮 して決定している.本報の地震動シミュレーションには,P波,S波を含む 20 秒間を対象 とした.

Station	Latitude	Longitude		
code	(°N: WGS)	(°E: WGS)	Network	Location
FKS011	37.0911	140.9035	K-NET	Iwaki
FKS012	36.9069	140.7929	K-NET	Nakoso
FKS013	37.0900	140.5563	K-NET	Furudono
FKS014	36.8683	140.4300	K-NET	Yamatsuri
FKS015	37.0217	140.3775	K-NET	Tanagura
FKSH14	37.0264	140.9702	KiK-net	Iwaki-E
IBR001	36.7761	140.3569	K-NET	Daigo
IBR002	36.7061	140.7068	K-NET	Takahagi
IBR003	36.5915	140.6453	K-NET	Hitachi
IBR004	36.5516	140.4102	K-NET	Ohmiya
IBR006	36.3690	140.4528	K-NET	Mito
IBRH06	36.8809	140.6545	KiK-net	Kitaibaraki2
IBRH12	36.8369	140.3181	KiK-net	Daigo
IBRH13	36.7955	140.5750	KiK-net	Takahagi
IBRH14	36.6922	140.5484	KiK-net	Jyuuoh
IBRH15	36.5566	140.3013	KiK-net	Gozenyama
IBRH16	36.6405	140.3976	KiK-net	Yamagata
IBRH18	36.3631	140.6198	KiK-net	Hitachinaka

表 3.1.1(3)-1 経験的グリーン関数法のシミュレーションに使用した強震観測点一覧

図 3.1.1(3)-1 経験的グリーン関数法による地震動評価に使用した強震観測点(黒色の観測 点コードを付記した 18 地点)の分布. 灰色四角印で示した 10 地点は,強震動生成領域の 破壊開始点探索に使用した観測点を表す. また,丸印は本震後 24 時間以内に震源周辺で発 生した余震の空間分布.赤色星印は本震と要素地震の震央位置とそれらの F-net CMT 解を それぞれ表す.

③ 強震動生成領域の破壊開始点の決定

3.1.1 の図 3.1.1-6 で示したように、本地震の観測加速度波形には震源由来の明瞭な 2 つの 波形パケットが確認できる.図 3.1.1-6 や図 3.1.1(3)-2 に示すように、それらの波形パケット の到達走時を早い方から順に S1, S2 と定義すると, S1 と S2 は約 5 秒間の間隔で生成され、 震央から北側の観測点と比較すると、南側の観測点の方が波形パケットの間隔が若干長く、 波形パケット自身もその位相が不明瞭となっているように見える.これらの観測加速度波 形の特徴は、本地震の高周波数側の地震波放射に関わる定性的な震源像を表していると言 える.ここでは、S1 と S2 の波形パケットが個々の強震動生成領域(以下は、SMGA とす る)から生成されていると仮定し、それらの走時情報から SMGA の破壊開始点位置と破壊 開始時間を客観的に決定することを試みる(例えば、Asano and Iwata, 2012).その際に、震 源位置は 3.1.1(2)の表 3.1.1(2)-2 に示した DD 法による本震再決定震源位置で固定する.また、 SMGA は 3.1.1(2)の震源インバージョンで設定した断層面上に存在すると仮定する.

S1とS2の走時情報を利用する観測点は、図 3.1.1(3)-1 に示す 10 地点とする. これらの観 測点は、S1とS2の到達時間が明瞭に確認でき、震源を可能な限り取り囲むように選択した 地点である. S1とS2の観測走時は、図 3.1.1(3)-2 に示すように目視にて読み取る. 一方で、 理論走時は、防災科学技術研究所地震ハザードステーション(J-SHIS)全国深部地盤モデル V2(藤原・他, 2012)の震源での1次元S波速度構造モデル(図 3.1.1(3)-3)から計算した. 仮定した速度構造モデルから計算される理論走時と実際の観測走時との系統的なずれ時間 を定量的に評価するために、ここでは、Asano and Iwata (2012)の方法に倣い、図 3.1.1(3)-1 に示した余震(2017年4月20日4時46分*M*w4.0)を参照地震として、その観測走時と理 論走時を用いた補正を行った.この際、余震の震源位置は、気象庁一元化震源で固定した. 個々のSMGAの最適な破壊開始点位置と破壊開始時間は、以下の式 3.1.1(3)-1で計算される RMS が最小となるようにグリッドサーチ手法を用いて決定する.

$$RMS = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[t_0 + \left(t_{cal}^i - \hat{t}_{cal}^i \right) - \left(t_{obs}^i - \hat{t}_{obs}^i \right) \right]^2}.$$
(3.1.1(3)-1)

ここで、 $t_{cal}^i \geq t_{obs}^i$ は *i* 番目の観測点での SMGA の理論走時と観測走時を表し、 $\hat{t}_{cal}^i \geq \hat{t}_{obs}^i$ は 参照地震の理論走時と観測走時を表す. t_0 は本震震源時と SMGA 破壊開始時の相対的な遅 れ時間を表し、*n* は使用した観測点数である.本報では、図 3.1.1(3)-4 に示すように SMGA の破壊開始点と震源からの相対的な距離*d*を走向方向に d_x 、傾斜方向に d_y として、これら d_x 、 d_y を破壊開始点位置を決める未知変数とした.一方で、破壊開始時間を決める未知変数の t_0 は断層面上での破壊伝播速度*V_r*と*d*の関数として取扱い、

$$t_0 = \sqrt{d_x^2 + d_y^2} / V_r \tag{3.1.1(3)-2}$$

と表現して, *V*,を未知変数とすることで探索を行った.未知変数の探索範囲,探索間隔を表 3.1.1(3)-2 に示す.

決定された最適解を表 3.1.1(3)-2 に、断層面上での RMS の分布をマッピングした結果を S1のケース,S2のケースに分けて図3.1.1(3)-5aと図3.1.1(3)-5bにそれぞれ示す.両図とも に断層面上での SMGA の破壊開始点位置の各ポイントで計算された RMS 値をマッピング しており、Vrの全12ケース別にそれらを示している.つまり、観測走時と理論走時との差 が大きくなる SMGA の破壊開始点位置は寒色系,差が小さくなる位置は暖色系で表示され ている. 図 3.1.1(3)-5a に注目すると, S1 を生成する SMGA(以降, SMGA1)の破壊開始点 位置は震源位置が最適で、その開始時間は0秒、すなわち、震源時が最適であることを示 している. 従って, SMGA1 は震源を破壊開始点であることがわかった. 一方, 図 3.1.1(3)-5b に注目すると、S2を生成する SMGA(以降, SMGA2)の破壊開始点位置は震源よりも北側 浅部が最適であり,その開始時間はV,=1.2 km/s のケースが最適であった. これは, t_oに換算 するとt₀=4.42 s となり、断層面上を震源から北側に 4 km、傾斜浅部方向に 5 km の地点で、 震源時から 4.42 秒後に SMGA2 の破壊が開始するということがわかった. この SMGA2 の 破壊開始点位置を 3.1.1(2)で推定した断層面上での最終すべり分布と比較すると、大きなす べり領域の下端付近に SMGA2 の破壊開始点が求まっており(図 3.1.1(3)-6), このことはア スペリティ領域の破壊開始(アスペリティ端部)付近で高周波地震波が生成されたことを 示唆しているかもしれない.このようにして得られた SMGA1と SMGA2の破壊開始点位置, 破壊開始時間を先験的な情報として,次の SMGA パラメータのモデリングへ進む.

表 3.1.1(3)-2 グリッドサーチで求める SMGA の破壊開始点位置,破壊開始時間の探索範囲 と探索間隔,及び S1, S2 について決定された最適解.

	d_x	d_y	V_r
	(km)	(km)	(km/s)
Search range*	-10-+9	-12-+1	0.6-2.8
Search interval	1	1	0.2
Estimated value for S1	0	0	**
Estimated value for S2	-4	-5	1.2

*走向, 傾斜の方向を正とする

**震源位置が最適解のため t_0 は0. 従って V_r は解を持たない

図 3.1.1(3)-2 IBR003 で観測された本震の観測加速度波形(上)と 0.05-20 Hzの速度波形(下). それぞれ上から NS, EW, UD 成分を表す.赤色と青色の実線は,目視で読み取った S1 と S2 の走時をそれぞれ表す.

図 3.1.1(3)-3 理論走時計算に用いる J-SHIS モデルから抽出した震源での1次元S波速度構造モデル.深さ方向の縦軸は対数軸で表示している.

図 3.1.1(3)-4 SMGA の破壊開始点位置を探索した断層面のグリッドポイント.

図 3.1.1(3)-5a S1 ケースの断層面上での RMS 値の分布.×印は各V,ケースでの最適な SMGA 破壊開始点位置(RMS 最小値)を表す.また,星印は震源位置を表す.

図 3.1.1(3)-5b S2 ケースの断層面上での RMS 値の分布. ×印は各V₄ケースでの最適な SMGA 破壊開始点位置(RMS 最小値)を表す.また,星印は震源位置を表す.

図 3.1.1(3)-6 3.1.1(2)で推定された断層面上での最終すべり分布と,本震後 24 時間以内の再決定余震分布(丸印). 青色×印は SMGA2 の破壊開始点位置,青色実線コンタは, RMS 最小値の 2 倍の範囲を示す.また,星印は震源位置である.

④ スケーリングパラメータの決定

経験的グリーン関数に用いる小地震(要素地震)には、2017年4月20日4時46分(日本時間)に発生した M_w 4.0の余震を選定した(表 3.1.1(3)-3,図 3.1.1(3)-1). この地震は、メカニズム解が本震と類似し、本震震源位置に近く、本震との規模の差が適当、かつ周辺の強震記録が多数得られている点で、経験的グリーン関数としての要素地震として最も適切であると判断した.

次に,波形合成のためのパラメータ N と C の値を設定する. これらの値は,経験的グリ ーン関数法による波形合成を行う際に必要なパラメータであり,N は大地震と要素地震(小 地震)の間の相似則による震源スケーリングのパラメータ(小地震の長さ,幅,時間方向 への重ね合わせ数),C は大地震と小地震の応力降下量の比である.本報では,これらのパ ラメータを三宅・他 (1999)の Source Spectral Ratio Fitting 法 (SSRF 法)を基に推定した.こ の手法では,観測震源スペクトル比を,ω² 震源スペクトルモデルに基づく理論震源スペク トル比関数によって近似することで,大地震と小地震のコーナー周波数をグリッドサーチ によって推定し,横井・入倉 (1991)の関係式を用いてN,C 値を決定する.

SSRF 法に用いた観測点は,表 3.1.1(3)-4,図 3.1.1(3)-7 に示すように,宮城県,福島県,茨城県,栃木県,群馬県,山梨県に分布する F-net (福山・他,1998)の観測点 7 地点とし, VSE-355G3 等の速度計センサーで記録されている強震記録を使用する.F-net の観測点は, 硬質岩盤上に設置されており,低周波数側までノイズが小さいことが特長であるため,こ の記録を用いることで,比較的広帯域の観測震源スペクトル比を得ることができる利点が ある.スペクトル比は本震と要素地震の Fourier 振幅スペクトルの比をとることで求める. Fourier 振幅スペクトルは,観測された速度波形記録の S 波を含む 81.92 秒間を切り出し, 開始と終了の 1 秒間に余弦関数型のテーパ処理を施すことで計算した.また,中心周波数 ±5%の移動平均をとることで平滑化処理を行い,NS 成分と EW 成分の水平 2 成分のベクト ル合成を観測スペクトルとした.本震と要素地震の観測スペクトルに対して,S/N を考慮し てスペクトル比をとり,使用した観測点 8 地点の対数平均を観測震源スペクトルとした. なお,伝播経路の補正は,Nakano *et al.* (2015)の対象領域付近の地殻内地震を対象とした Q_s 値 (Q_s = 152.5 $f^{1.32}$) と S 波速度 3400 m/s を用いた.

観測震源スペクトル比 $S_{obs}(f_i)$ と理論震源スペクトル比のフィッティング結果を図 3.1.1(3)-8に示す.なお,理論震源スペクトル比モデル $S_{syn}(f_i)$ は,

$$S_{\rm syn}(f_i) = \frac{M_0}{m_0} \cdot \frac{1 + (f_i/f_{\rm cS})^2}{1 + (f_i/f_{\rm cL})^2}$$
(3.1.1(3)-3)

を用いた. M₀/m₀は,低周波数側の平坦レベルで(大地震と小地震の地震モーメントの比)

3.1.1(3)-15

であり、ここでは F-net によって公開されている本震と要素地震の地震モーメントの値によって予め固定した. *f_{cL}*, *f_{cs}*はそれぞれ本震と要素地震のコーナー周波数を表し、以下の式 3.1.1(3)-4 の重み付き残差評価関数が最小となるように、グリッドサーチによって、これらのコーナー周波数を決定した. なお、グリッドサーチの探索範囲は、0.01-10 Hz の周波数範囲とし、0.01 Hz 間隔で最適解を探索した.

$$\sum_{i=1}^{m} \left\{ \frac{\log[S_{obs}(f_i)] - \log[S_{syn}(f_i)]}{\log S.D.(f_i)} \right\}^2 \times \Delta f_i \to \min,$$

$$\Delta f_i = \frac{\log(f_{i+1}) - \log(f_{i-1})}{2}$$
(3.1.1(3)-4)

このように推定されたコーナー周波数*f_{cL}*=0.24 Hz, *f_{cs}*=1.70 Hz と, F-net の地震モーメントから,以下の式 3.1.1(3)-5 を用いて, N と C を計算すると N=7, C=2.15 が得られる.

$$N = \frac{f_{\rm ca}}{f_{\rm cm}} , \quad C = \left(\frac{M_0}{m_0}\right) \left(\frac{f_{\rm cm}}{f_{\rm ca}}\right)^3 . \quad (3.1.1(3)-5)$$

ただし,式 3.1.1(3)-5 は SMGA が断層面上に 1 枚と仮定した場合の関係式である,2 枚の SMGA を仮定する場合は,三宅・他 (1999)で示されているように,それぞれを 0.84 倍した 値に換算する必要がある.その結果, N=6, C=1.80 となる.なお,後述する SMGA のモデ リングに際しては,重ね合わせ数 N=6 は 2 枚の SMGA で共通に取り扱うことが必ずしも良 いとは限らない.三宅・他 (1999)で議論しているように,本震の観測波形の再現性を重視 したり,震源インバージョン結果を参照したりすることで適切な SMGA をセッティングす る方が良いケースもある.特に,今回の地震の場合,SMGA2 に比べて,震源付近の SMGA1 のサイズを小さく配する方が 3.1.1(2)の震源インバージョン結果との対応が定性的に良い可 能性がある.そこで本報では,SMGA2 では N=6, C=1.80 を,SMGA1 では幾つかの予備的 なシミュレーションを踏まえて, N=3, C=1.80 をそれぞれスケーリングパラメータとして採 用することとした.

表 3.1.1(3)-3 本震と経験的グリーン関数に使用した要素地震の諸元

	Mainshock	EGF
Origin time (JST) ^{*1}	2016/12/28,21:38	2017/04/20,04:46
Latitude (N°. WGS) *2	36.725167	36.6957
Longitude (E°. WGS) *2	140.569743	140.5903
Depth (km) *2	10.15	8.75
Seismic moment (Nm) *3	9.00×10 ¹⁷	1.18×10^{15}
${M_{ m w}}^{*3}$	5.9	4.0
Strike, Dip, Rake (deg.) *4	168, 46, -59	190, 52, -88
$V_{ m s}$ (km/s) *5	3.4	3.4

^{*1} JMA, ^{*2} Mainshock: DD, EGF: JMA, ^{*3} F-net, ^{*4} Mainshock: JMA, EGF: F-net, ^{*5} J-SHIS

Station	Latitude	Longitude		
code	(°N: WGS)	(°E: WGS)	Network	Location
ASI	36.6342	139.4206	F-net	Asio
HRO	37.2246	140.8777	F-net	Hiroo
KSK	38.2585	140.5833	F-net	Kawasaki
ONS	36.1557	138.9822	F-net	Onishi
SGN	35.5096	138.9444	F-net	Tsurusugeno
TSK	36.2141	140.0898	F-net	Tsukuba
YMZ	36.9267	140.2445	F-net	Yamizo

表 3.1.1(3)-4 SSRF 法に使用した観測点一覧

図 3.1.1(3)-7 SSRF 法に用いた観測点の分布.本震と要素地震の震央位置とその CMT 解 (F-net) についても示す.

図 3.1.1(3)-8 観測震源スペクトル比(黒色)とω⁻² 震源スペクトルモデルに基づく理論震 源スペクトル比(赤色)のフィッティング.灰色は,各観測点の観測震源スペクトル比. 黒色は,それらのアンサンブル対数平均.赤色三角印は,大地震(左)と要素地震(右) のコーナー周波数をそれぞれ表す.

⑤ 推定した強震動生成領域と地震動シミュレーション

③で決定した SMGA の破壊開始点位置,時間と④で決定したスケーリングパラメータを 踏まえて,経験的グリーン関数法による地震動シミュレーションから SMGA のフォワード モデリングを実施する.モデリングに際しては、3.1.1(2)の震源インバージョンと同様の断 層面(表 3.1.1(1)-3,図 3.1.1(1)-5)を仮定した,また,断層面上の SMGA 以外の領域(背景 領域)での応力降下量はゼロであると仮定して,広帯域の SMGA のみで再現できるモデル とした.このような SMGA のみによるモデリングは,他の研究例においても多く説明され, 広帯域強震動が良好に再現されることが示されている(例えば,浅野・他,2004, Maeda and Sasatani, 2009). さらに、可能な限り単純なモデリングを目指すため、ここでの SMGA は 正方形を仮定した.すなわち、SMGA の長さ L と幅 W は等しいと仮定した.ここでモデリ ングするパラメータは、各 SMGA のグリッドサイズ(グリッド長さ I とグリッド幅 w.た だし *I* = w)、SMGA 内の破壊開始点の相対的位置(*NSL*, *NSW*)、SMGA のライズタイム (*T*,)、SMGA 内の破壊伝播速度(*V*,)である.これらのパラメータは、地震動シミュレー ションによる 18 地点の合成波形と観測波形、或いは合成 Fourier 振幅スペクトル、観測 Fourier 振幅スペクトルのフィッティングを見ながら試行錯誤的に決定した.

推定された SMGA パラメータを表 3.1.1(3)-5 に、断層面上での SMGA 位置を図 3.1.1(3)-9 にそれぞれ示す. SMGA1 は震源から北側浅部へ破壊伝播し、SMGA2 はアスペリティ領域の下端から破壊し北側浅部へ進展する様式となった. SMGA2 とアスペリティ領域は、空間的にほぼ同じ位置に存在している. SMGA1 と SMGA2 の総面積は 22 km² で解放された地震モーメントは、5.16×10¹⁷ Nm (*M*_w 5.7) と見積もられ、F-net の地震モーメント 9.00×10¹⁷ Nm

(*M*_w 5.9)の約57%となった.図 3.1.1(3)-10,図 3.1.1(3)-11,図 3.1.1(3)-12に加速度,速度,変位の各波形について、3 成分の観測と合成の比較をそれぞれ示す.観測波形は 0.3-10 Hzの周波数帯域で合成波形によって概ね良く再現されている.特に震源近傍の IBRH06 や IBRH13 といった観測点は、加速度、速度、変位について、振幅、位相といった波形の特徴を良く再現している.図 3.1.1(3)-13は代表的な地点の加速度 Fourier 振幅スペクトルを示す.スペクトルも概ねレベルは合っているように見えるが、低周波数側で過小評価となる地点もある(例えば、IBR003、IBR004).これらの過小評価は低周波数側で成分によってその傾向が異なるため、本震と要素地震のメカニズム解が若干異なることによる地震波放射特性の違いの影響を受けている可能性がある.最も大きな地震動記録が得られた IBRH13 は、図 3.1.1(3)-10,図 3.1.1(3)-11,図 3.1.1(3)-12を見ると、主として SMGA2 によって、その主要動が説明されていることがわかった.3.1.1(2)の震源インバージョン結果での考察と同様に IBRH13 の地震動が大きかったのは、その地点直下に SMGA (或いはアスペリティ領域)が存在したことが主因であると考えられる.

最後に全体の傾向を比較するために,計測震度,水平 2 成分の最大加速度(PGA),最 大速度(PGV)について,観測値と合成値との比較を示す(図 3.1.1(3)-14)とともに, Bias Plots (例えば, Graves and Pitarka, 2010)の比較を示す(図 3.1.1(3)-15). Bias Plots はモデ ルの良し悪しを判断する基準として,主として米国の Southern California Earthquake Center (SCEC)が実施している広帯域地震動予測手法の妥当性検証のために構築が進められてい るオープンソースのプロジェクト Broadband Platform (例えば, Maechling *et al.*, 2015)で採 用されている指標である. その基準は,以下の式 3.1.1(3)-6 で定義される.

$$R_{i} = \ln\left(\frac{Obs_{i}}{Syn_{i}}\right), \quad \text{Bias plots} = \frac{1}{N}\sum_{i=1}^{N}R_{i}, \quad \sigma = \left\{\frac{1}{N}\sum_{i=1}^{N}(R_{i} - Bias \ plots)^{2}\right\}^{1/2}$$
(3.1.1(3)-6)

ここでNは観測点数, Gは標準偏差を表す.本報では,Obs_iを観測加速度 Fourier 振幅スペクトル,Syn_iを合成加速度 Fourier 振幅スペクトルとする.また,Bias Plots の値がゼロに近いほど,観測と合成の一致が良いことを表し,値が大きいほど過小評価,小さいほど過大評価を表すこととなる.図 3.1.1(3)-15 の結果から,0.3-0.4 Hz 付近や 5 Hz 付近でやや過小評価ではあるが,広帯域には Bias plots はゼロ付近にあり,観測記録は広帯域に概ね再現されていると考えられる.

最後に、3.1.1(2)の震源インバージョン結果による断層面上でのすべりの時空間発展と SMGA モデルの破壊進展との比較を図 3.1.1(3)-16 に示す. この図から、すべりの大きな領 域の破壊のタイミングは SMGA と良く合っていることがわかる. アスペリティ領域が破壊 される付近(3.0-4.5 秒)を詳細に見ると、すべりの破壊フロントが到達したタイミングで SMGA2 の破壊が開始していることがわかる. また、その後のアスペリティ領域のすべりと SMGA の破壊のタイミングを比較しても、アスペリティ内でのすべりの破壊フロントで SMGA の破壊が生じていることがわかる. これは本地震の高周波地震波の放射がすべりの 始まり付近(震源時間関数の前半部)に集中している可能性を示唆している.

		SMGA1	SMGA2
Grid size	l = w (km)	0.7	0.7
Area	S (km ²)	4.4	17.6
Rise time	$T_{\rm r}\left({ m s} ight)$	0.15	0.42
Seismic moment	M_0 (Nm)	5.73×10^{16}	4.59×10^{17}
Stress drop	$\Delta\sigma$ (MPa)	15.1	15.1
Rupture velocity	$V_{\rm r}$ (km)	2.6	2.6
<i>Rupture starting grid</i> *	(NSL, NSW)	(3, 3)	(6, 6)
Rupture starting time	$t_0(\mathbf{s})$	0.00	+4.42
Source dimension ratio	N	3	6
Stress drop ratio	C	1.80	1.80

表 3.1.1(3)-5 推定された SMGA のパラメータ

*走向, 傾斜の方向を正とする

図 3.1.1(3)-9 推定された SMGA モデル (黒色矩形) と 3.1.1(2)で得られた最終すべり分布. 丸印は本震後 24 時間の余震分布.大きい星印は再決定震源,小さい星印は SMGA の破壊開 始点をそれぞれ表す.青色×印,及び青色コンタは図 3.1.1(3)-5 に同じ.

図 3.1.1(3)-10 観測加速度波形(黒色)と合成加速度波形(赤色)の比較(0.3-10 Hz). 橙 色,青色はそれぞれ SMGA1, SMGA2 からの合成波形を表す. 波形左上の数値は最大値(cm/s²) を表す.

図 3.1.1(3)-11 観測速度波形(黒色)と合成速度波形(赤色)の比較(0.3-10 Hz). 橙色, 青色はそれぞれ SMGA1, SMGA2 からの合成波形を表す. 波形左上の数値は最大値(cm/s) を表す.

図 3.1.1(3)-12 観測変位波形(黒色)と合成変位波形(赤色)の比較(0.3-10 Hz). 橙色, 青色はそれぞれ SMGA1, SMGA2 からの合成波形を表す. 波形左上の数値は最大値(cm) を表す.

図 3.1.1(3)-13 加速度 Fourier 振幅スペクトルの比較(3 成分). 観測は黒色, 合成は赤色で それぞれ示す.

図 3.1.1(3)-14 観測値と合成値の比較. 左から計測震度, PGA, PGV である.

図 3.1.1(3)-15 左) 水平成分(EW, NS のベクトル和)と右) 鉛直成分の Bias Plots (赤色線). 黄色塗りの範囲は標準偏差(o) を表す. ここでは 18 地点の結果を使用している.

図 3.1.1(3)-16 震源インバージョン結果のすべりの時空間発展と SMGA の破壊進展を時間 間隔 1.5 秒のスナップショットで比較. 灰色矩形領域は SMGA, 青色グリッドは SMGA の 破壊されたタイミング. 星印は再決定震源位置, 黒色四角印は強震観測点をそれぞれ表す.

⑥ スケーリング則との比較

3.1.1(2)の震源インバージョン結果から抽出された断層面積,アスペリティ面積,及びラ イズタイム, さらに, 3.1.1(3)の SMGA モデルの面積, ライズタイムについて, 既往のスケ ーリング則との比較を行う.図 3.1.1(3)-17aには地震モーメントとライズタイムの比較を示 す. ここで経験式は Somerville et al. (1999)を参照している. 同規模の地震に対して, アスペ リティ領域,SMGA2 のライズタイムは経験式と良く対応する結果が得られている一方で、 SMGA1 はやや小さめとなった. SMGA1 はその生成波が SMGA2 と比較するとやや小さく, ライズタイムを精度よく決めるためには、SMGA1 由来の生成波と観測記録との比較をより 詳細に検討する余地があるかもしれない.次に,図 3.1.1(3)-17b には地震モーメントとアス ペリティ面積 (SMGA 面積) の比較を示す. ここで経験式は Somerville et al. (1999)を参照し ている.これを見ると、アスペリティ領域、及び SMGA 総面積は、経験式と良く対応して いることがわかる.また、HRA 領域の面積も同様である.これらの面積を比較すると、ア スペリティ領域,HRA 領域,SMGA の順に小さくなり,高周波数側の地震波放射を司ると 考えられる HRA と SMGA の面積は良く対応していると言える.最後に,図 3.1.1(3)-17c に 地震モーメントと断層面積の比較を示す. ここで経験式は Irikura and Miyake (2011)の Three-stage scaling model 参照している.本地震の地震規模は Somerville et al. (1999)の式が利 用されている 1st stage に区分され,その断層面積は経験式よりも大きく,過去の地震のば らつきの上限付近となる. 震源インバージョンの断層面は, 3.1.1(3)の検討においてトリミ ングの過程を経てはいるが、当初設定した断層面は再決定余震分布を広めに包絡するよう に仮定しており,余震分布から期待されるほどのトリミングの大きさは得られていない. 最初に設定する断層面がやや大きすぎた可能性もあるため、トリミング、及び断層面積に ついては検討の余地があるかもしれない.しかしながら、上記で比較したパラメータは、 いずれも過去の内陸地殻内地震のばらつきの範囲程度に収まっており、平均値に近いパラ メータも存在する.従って,震源特性の観点からは,2016年茨城県北部の地震は,現行の 強震動予測レシピ(例えば,入倉・三宅, 2001,Irikura and Miyake, 2011)から作成される平 均的な特性化震源モデルのパラメータで再現が可能であると考えられる.

図 3.1.1(3)-17a 地震モーメントとライズタイムの関係. 実線は Somerville *et al.* (1999)の経 験式(破線は外挿部),丸印は, Somerville *et al.* (1999) によってコンパイルされた過去の地 殻内地震の震源インバージョン結果(アスペリティ領域),四角印は, Miyake *et al.* (2003) に よってコンパイルされた過去の地殻内地震の SMGA モデルの結果,赤色星印は本報の結果 をそれぞれ表す.

図 3.1.1(3)-17b 地震モーメントとアスペリティ面積,及び SMGA 面積の関係. 実線は Somerville *et al.* (1999)の経験式(破線は外挿部),丸印は, Somerville *et al.* (1999) によって コンパイルされた過去の地殻内地震の震源インバージョン結果(アスペリティ領域),四角 印は, Miyake *et al.* (2003) によってコンパイルされた過去の地殻内地震の SMGA モデルの 結果,赤色星印は本報の結果をそれぞれ表す.

図 3.1.1(3)-17c 地震モーメントと断層面積, SMGA 面積の関係. 実線は Irikura and Miyake(2011) の Three-stage scaling model の経験式,丸印は, Somerville *et al.* (1999) によっ てコンパイルされた過去の地殻内地震の震源インバージョン結果(断層面積),赤色星印は 本報の結果をそれぞれ表す.

⑦ おわりに

本 3.1.1(3)節では、経験的グリーン関数法に基づく地震動シミュレーションから、2016年 茨城県北部の地震時に観測された地震動を広帯域(0.3-10 Hz)に説明するための強震動生 成領域に基づく震源モデル(SMGA モデル)を推定した. SMGA の破壊開始点位置,及び 破壊開始時間は、観測走時と理論走時を利用して客観的に決定した.また、経験的グリー ン関数法の波形合成に用いるスケーリングパラメータも、SSRF 法によって客観的に決定し た. 震源近傍の観測点を含む 18 地点の観測記録を対象とした地震動シミュレーションを行 い,フォワードモデリングによって SMGA の各パラメータを推定した. 推定した SMGA モ デルは観測記録を広帯域に良く再現した. SMGA モデルの特徴は以下の通りである. 1) 震源付近に SMGA1,震源インバージョン結果のアスペリティ領域付近に SMGA2 が配され, それぞれの応力降下量は 15.1 MPa であった. 2) SMGA2 はアスペリティ内のすべりの破 壊フロントが到達するタイミングで破壊し、高周波数側の地震波放射は、断層破壊全体の 主として前半部分に集中していた可能性がある.3)最も大きな観測地震動が得られた IBRH13の主要動は主として SMGA2 によって生成されており、IBRH13の直下に SMGA が 存在していたことが大きな地震動を齎した原因と考えられる。4) スケーリング則との比 較から、本地震の震源パラメータは、過去の同規模の内陸地殻内地震と比較してばらつき の範囲内程度であり、本地震の震源特性が特異なものではなかったことが示唆される.

- Aki, K. (1967), Scaling relation of seismic spectrum, J. Geophys. Res., 72, 1217-1231.
- Aoi, S., Kunugi, T., Nakamura, H., and Fujiwara, H. (2011), Deployment of new strong motion seismographs of K-NET and KiK-net, in Earthquake Data in Engineering Seismology, 167-186, eds Akkar, S., Gülkan, P. & van Eck, T., Springer.
- 浅野公之・岩田知孝・入倉孝次郎 (2004), 2003 年 5 月 26 日に宮城県沖で発生したスラブ内 地震の震源モデルと強震動シミュレーション, 地震 2, 57, 171-185.
- Asano, K., and Iwata, T. (2012), Source model for strong ground motion generation in the frequency range 0.1-10 Hz during the 2011 Tohoku earthquake, Earth Planets Space, 64, 1111-1123.
- 藤原広行・河合伸一・青井 真・森川信之・先名重樹・東 宏樹・大井昌弘・はお憲生・ 長谷川信介・前田宜浩・岩城麻子・若松加寿江・井元政二郎・奥村俊彦・松山尚典・ 成田 章 (2012),東日本大震災を踏まえた地震ハザード評価の改良に向けた検討,防災 科学技術研究所研究資料,第 379 号.
- 福山英一・石田瑞穂・D. S. Dreger・川井啓廉 (1998), オンライン広帯域地震データを用いた 完全自動メカニズム決定, 地震 2, 51, 149-156.
- Graves, R. W., and Pitarka, A. (2010), Broadband ground-motion simulation using a hybrid approach, Bull. Seism. Soc. Am., 100, 2095–2123.
- Hartzell, S. H. (1978), Earthquake aftershocks as Green's functions, Geophys. Res. Lett., 5, 1-4.
- Irikura, K. (1986), Prediction of strong acceleration motions using empirical Green's function, Proc. 7th Japan Earthq. Eng. Symp., 151-156.
- 入倉孝次郎・関口春子・香川敬生 (1997), 経験的グリーン関数を用いた強震動予測手法の改良, 日本地震学会 1997 年秋季大会講演予稿集, B 71.
- 入倉孝次郎・三宅弘恵 (2001), シナリオ地震の強震動予測, 地学雑誌, 110, 849-875.
- Irikura, K., and Miyake, H. (2011), Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure Appl. Geophys., 168, 85-104.
- Irikura, K., Miyakoshi, K., Kamae, K., Yoshida, K., Somei, K., Kurahashi, S., and Miyake, H. (2017), Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake, Earth Planets Space, 69:10, DOI 10.1186/s40623-016-0586-y.
- Maechling, P. J., Silva, F., Callaghan, S., and Jordan, T. H. (2015), SCEC Broadband Platform: System architecture and software implementation, Seismol. Res. Lett., 86, 27–38.
- Maeda, T., and Sasatani, T. (2009), Strong ground motions from an Mj 6.1 inland crustal earthquake in Hokkaido, Japan: the 2004 Rumoi earthquake, Earth Planets Spaces, 61, 689-701.
- 三宅弘恵・岩田知孝・入倉孝次郎 (1999), 経験的グリーン関数法を用いた 1997 年 3 月 26 日 (*M*_{JMA} 6.5) および 5 月 13 日 (*M*_{JMA} 6.3) 鹿児島県北西部地震の強震動シミュレーシ

ョンと震源モデル, 地震 2,51,431-442.

- Miyake, H., Iwata, T., and Irikura, K. (2003), Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area, Bull. Seism. Soc. Am., 93, 2531-2545.
- 宮腰 研・釜江克宏・入倉孝次郎 (2016), 強震動生成領域におけるストレス・パラメータの 深さ依存性に関する検討. 日本地震学会 2016 年度秋季大会講演予稿集, S15-P08.
- Murotani, S., Matsushima, S., Azuma, T., Irikura, K., and Kitagawa, S. (2015), Scaling relations of source parameters of earthquakes occurring on inland crustal mega-fault systems, Pure Appl. Geophys., 172, 1371-1381.
- Nakano, K., Matsushima, S., and Kawase H. (2015), Statistical properties of strong ground motions from the generalized spectral inversion of data observed by K-NET, KiK-net, and the JMA Shindokei network in Japan, Bull. Seism. Soc. Am., 105, 2662-2680.
- Oth, A., Wenzel, F., and Radulian, M. (2007), Source parameters of intermediate-depth Vrancea (Romania) earthquakes from empirical Green's functions modeling, Tectonophysics, 438, 33-56.
- 斎藤正徳 (1978), 漸化式ディジタル・フィルターの自動設計, 物理探鉱, 31, 112-135.
- Somei, K., and Miyakoshi, K. (2012), Source characterization of induced earthquakes by the 2011 off Tohoku, Japan, earthquake based on the strong motion simulations, Proc. 15th World Conf. Earthq. Eng., Paper no.1863.
- Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasaki, Y., Kagawa, T., Smith, N., and Kowada, A. (1999), Characterizing crustal earthquake slip models for the prediction of strong ground motion, Seism. Res. Lett., 70, 59-80.
- Wen, Y.-Y., Chao, S.-Y., Yen, Y.-T., Wen, S. (2017), Source characteristics of moderate-to-strong earthquakes in the Nantou area, Taiwan: insight from strong ground motion simulations, Earth, Planets and Space, 69:132, DOI 10.1186/s40623-017-0720-5.
- 横井俊明・入倉孝次郎 (1991), 震源スペクトルの Scaling 則と経験的 Green 関数法, 地震 2, 44, 109-122.