平成 29 年度原子力規制庁委託成果報告書

火山影響評価に係る技術知見の整備

国立研究開発法人 産業技術総合研究所

平成 30 年 3 月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

はじめに

本業務は、火山の特性、地下構造、地球物理学的及び地球化学的調査手法等の最新の知見に基 づく火山活動に起因する事象調査から、原子力施設に影響を与える火山活動の可能性をより定量 的に評価するための評価基準・指標、火山活動のモニタリング評価基準・指標に関する知見を整 備することを目的としている.その達成のため、以下の3項目の調査研究を実施した.

(1) 火山活動評価のための調査研究

将来の火山活動の可能性評価のためには,過去に大規模噴火を起こした火山や主要な活火山の 活動履歴情報を整備し,評価基準・指標を策定する必要がある.今年度は巨大噴火の事例調査と して,支笏カルデラ・十和田カルデラ・大山火山・阿蘇カルデラを対象とした調査研究を実施し ている.また,過去1千年間に3回のカルデラ形成噴火を起こしたインドネシアでの事例調査に ついては,これまでの成果を総括した.

- 1)支笏火山は約6万年前の大規模噴火の後,約4万年前にカルデラ形成噴火を起こして現カル デラを形成した火山である.今年度は、支笏-洞爺火山地域のテフラ層序をその給源火山ごと に見直してテフラ名を再定義したほか、給源火山ごとのテフラの岩石学的特徴や、支笏-洞爺 火山地域の全体の噴火史とマグマ噴出率について検討した.また支笏火山の約6万年前の社 台噴火および約4万年前の支笏カルデラ形成噴火については、その噴火推移を取りまとめた. 特に、支笏カルデラ形成噴火については、追加の地表調査を行い噴火推移と時間間隙を再検 討して新たなユニット区分を提唱したほか、最初期噴火堆積物・降下軽石堆積物・火砕流堆積 物・火砕サージ堆積物の分布や多様性について検討を行った.
- 2) 十和田カルデラでは 6.1~1.5 万年前に大型カルデラを形成した火山活動が起きており、その後の最新期の火山活動でも、小型のカルデラ形成を含む比較的規模の大きな火山活動が発生している.今年度は、前年度に引き続き、カルデラ形成準備期にあたる 6.1 万年前以前の先カルデラ期について、噴出物の火山ガラス化学組成分析を実施し、そのデータを用いることで給源近傍相と遠方相の対比を試みた.また、今年度は、平成 25 年度以降実施してきた十和田火山の研究成果を取りまとめ、噴火活動史について総括を行なうとともに、十和田火山での大規模カルデラ噴火準備段階におけるマグマ供給系発達過程を検討した.すなわち、十和田火山では、大規模カルデラ噴火に先行する低マグマ噴出率・低噴火頻度期の存在と、大規模カルデラ噴火の 2~4 千年前に先駆的に発生する小規模ブルカノ式噴火が認められる.十和田火山では、噴出量 15 km³を超える大規模カルデラ噴火の前には、2 万年間程度の低マグマ噴出率・低噴火頻度期が先行する傾向にある.
- 3) 大山火山では、約6万年前に国内で最大規模のプリニー式噴火である大山倉吉降下火砕物が 噴出している.また、大山火山のマグマは、沈み込んだスラブの溶解物(スラブメルト)と熱 源となるマントルとの相互作用で生じており、日本列島の他地域とは異なる成因を持ってい る.今年度は全岩主及び微量成分の追加分析を行い倉吉軽石の全岩組成の推定を行った.ま た、ストロンチウム・ネオジム・鉛の同位体比に着目し、倉吉軽石との比較を行った.特に鉛 同位体比は西南本州のスラブ由来マグマと北九州のマントル由来マグマで異なることが知ら れており、倉吉軽石はマントル由来、溶岩はスラブ由来に近い.また鉛同位体比²⁰⁸Pb/²⁰⁶Pb

は 8 万年前に低下した後,時間と共に増加し,2 万年前で元のレベルに回復し噴火活動を終 えている.このことは,スラブメルトに対する熱源マントルの寄与が減少したものと解釈さ れ,大山火山の活動度の低下を示している.

- 4) 阿蘇カルデラでは約9万年前に阿蘇4火砕流噴火を噴出し、現在のカルデラが形成されている.今年度は阿蘇4火砕流堆積物とその直前の噴出物について野外調査を実施するとともに、 阿蘇4火砕流を構成する各サブユニットの全岩化学組成分析を集中的に行った.その結果、 苦鉄質から珪長質に至る混合トレンドに加えて、従来知られていない斜長石に富むマッシュ との混合と判断されるトレンドが確認できた.このマッシュとの混合物は、阿蘇4噴火最初 期と、最盛期に噴出したことが明らかとなった.
- 5) 歴史時代に大規模噴火を繰り返したインドネシアのカルデラ火山では、これまでの研究により成層火山体を建設するステージからカルデラ形成噴火に至る数千年間で噴出率、噴火様式、マグマ組成、火口位置に変化が見られることが指摘できる.今年度は、これまでの噴火履歴についての調査結果を総括するとともに、1883年にカルデラ形成噴火を起こしたクラカタウ火山と1815年にカルデラ形成噴火を起こしたスンバワ島タンボラ火山の噴火推移をとりまとめた.また、西暦1258年?にカルデラ形成噴火を起こしたロンボク島リンジャニ火山について、後カルデラ火山最新期噴出物のサンプルを対象に岩石記載・全岩化学組成分析・鉱物化学組成分析を行い、先カルデラ噴出物・カルデラ形成噴火噴出物のものと比較検討した.その結果、リンジャニ火山では、それぞれの活動期ごとにマグマが消費され、カルデラ形成後は新たなマグマ供給系が構築されていると考えられる.

(2) 噴火規模及び影響範囲推定のための調査研究

短時間のうちに膨大な量のマグマを噴出し大規模火砕流となるカルデラ形成噴火に関する知見 を整備することは、最重要課題である.カルデラ火山のマグマ供給系における噴火準備状況の把 握に向けた物理探査や、カルデラ火山の活動将来予測のシミュレーションを行うためには、大規 模噴火のマグマ溜まりの物理化学条件、構造、それらの時間変化に関する現状の正確な把握と、 そのような時間変化が生じる理由を合理的に説明するモデルに関する知見の整備が必要不可欠で ある.今年度も、支笏・阿蘇・姶良・鬼界カルデラ形成噴出物を対象とした以下の検討を実施し た.

1)約4万年前の支笏カルデラ噴出物の岩石学的検討では、カルデラ形成期のマグマ供給系を構成するサブマグマシステムの特徴と混合・成因関係をこれまでに検討してきた。今年度も同噴出物の岩石学的データを、カルデラ形成期の新たな区分に基づいて精査・追加し、マグマ供給系の構造とマグマプロセスを検討した。また、マグマ蓄積の時間スケールをより詳細に検討するため、鉱物組成累帯構造の観察・解析を進めた。その結果、噴出物の大半を構成する斑晶に乏しい珪長質マグマ系のマグマ滞留時間は100年~1600年(100年~500年)と見積もられた。この時間は、タウポカルデラのOruanui噴火の場合と同スケールであり、大規模珪長質マグマ系における一般的な長期噴火準備プロセスの時間が約500年前には開始していると考えられる。さらに今年度は、カルデラ形成期や社台期噴出物の含水量を推定するため、反射法を利用したガラス中の揮発性成分量分析法の開発を新たに試みた。

- 2) 阿蘇火山の一連の活動の中でも最大規模かつ最後の火砕流噴火ステージである阿蘇4の珪長 質端成分マグマを対象に、マグマ溜まりの温度・圧力・含水量・酸素雰囲気を決定するために 高温高圧実験を行った. 斑晶の組み合わせ・組成を再現するのは、圧力がおよそ200MPaか それ以下、全岩含水量がおよそ1.5~3wt%、温度が880℃前後であることがわかった. ただ し、実験では角閃石斑晶が晶出せず、その起源を考えるためにはさらなる検討が必要となる. また、最新の珪長質マグマである阿蘇中央火口丘第一軽石を対象に岩石学的検討を行い、こ れが苦鉄質・珪長質のマグマ混合の産物であることを明らかにした. 斑晶ガラス包有物の含 水量は比較的苦鉄質なものが1~2wt%程度で、流紋岩質なものは2~6wt%程度と示された. 水の飽和圧力から見積った深さは、苦鉄質マグマは地下2~4kmと浅く、珪長質マグマは地 下4~12kmと深いことが示された. さらに、阿蘇火山噴出物に観察されるストロンチウム・ ネオジム・鉛の同位体の変動範囲は、同位体的に枯渇したマントルと、4~12%程度の地殻 物質の部分溶融液によって、ほぼ説明できることを示した.
- 3)約3万年前の姶良カルデラ形成噴火過程の詳細化を目的として、カルデラ陥没に先行した大 隅降下火砕物の堆積物層厚と粒径を使って数値計算から噴煙パラメータの推定を行った。その結果、この堆積物はカルデラ内で同時発生した複数のプリニー式噴火の産物であることを 明確にしている。噴出物の岩石学的検討では、約10万年前に姶良カルデラ北東部から噴出し た福山降下軽石以降の主要な噴出物を網羅的に採取し、その全岩組成・鉱物化学組成および 斑晶に含まれるメルト包有物の含水量の組成を測定した。得られた岩石学的データから、約 3万年前のカルデラ形成噴火である入戸火砕流噴火までのマグマ溜まりの温度圧力条件の推 測を行った。その結果、姶良カルデラから入戸火砕流として噴出した流紋岩マグマと組成が ほぼ一致する流紋岩マグマが、岩戸火砕流噴火以降の約5万年間、姶良カルデラ下のほぼ一 定の圧力条件(天井深さ約4~5km)に貯留していたことが推測された。
- 4) 鬼界カルデラを形成した約7千年前の鬼界アカホヤ噴火降下軽石及び火砕流堆積物中の軽石について岩石学的解析を行い,同噴火の流紋岩マグマの化学的特徴と温度・圧力条件を再検討した.今年度は,不足していた温度データを補うため輝石および鉄チタン鉱物を電子線マイクロアナライザーで分析し,流紋岩マグマについては輝石温度計で902±15℃,鉄チタン鉱物温度計で874±6℃,安山岩マグマについては輝石温度計で975±5℃が得られた.これらの温度推定結果とメルト包有物のH2Oおよび CO2 濃度を用いてマグマのガス飽和圧力を見積もったところ,流紋岩マグマは146±53MPa,安山岩マグマは115±27MPaの圧力下にあったと推定された.両マグマのガス飽和圧力の平均値は133±46MPaであることから,鬼界アカホヤ噴火マグマ溜まりの主体は深さ5±2kmにあったと推定できる.また,鬼界アカホヤ噴火に至るマグマ供給系の発達過程を検討するために,9.5千年前の噴火噴出物(籠港降下スコリア)と95千年前のカルデラ噴火(鬼界葛原噴火)の噴出物(長瀬火砕流堆積物)について岩石学的解析を実施した.籠港降下スコリアに含まれるメルト包有物を電子線マイクロアナライザーで分析し,その主成分化学組成とS,Cl 濃度を把握した.長瀬火砕流堆積物について蛍光X線分析装置による全岩化学分析を行い,鬼界葛原噴火マグマが流紋岩組成であること,鬼界アカホヤ噴火流紋岩マグマとは異なった化学組成を持つ可能性を明らかにした.
- 5) カルデラ形成を伴う大規模噴火の噴出量は、火山の活動履歴情報の基本データであり、マグ

マ噴出量時間階段図の高精度化,長期的噴火予測のためにも重要である.今年度は,洞爺カル デラ起源の洞爺火砕流堆積物(106 ka),屈斜路カルデラ起源の屈斜路 IV 火砕流堆積物(115 ~120ka)及び屈斜路 I 火砕流堆積物(40 ka)を対象に,噴火直後の復元分布図と噴出量推定 を行った.その結果,洞爺火砕流堆積物の総噴出量は,見かけ体積 80~160 km³(岩石換算 体積 38~77 km³ DRE)となった.屈斜路火砕流堆積物 IV の総噴出量は,見かけ体積 320~ 660 km³(岩石換算体積 180~370km³ DRE),屈斜路火砕流堆積物 I の総噴出量は,見かけ 体積 94~180km³(岩石換算体積 45~87km³ DRE)となった.

(3) 火山モニタリング評価のための調査研究

大規模なカルデラ形成噴火のマグマ噴出量は数十~数百km³程度であり,同様な規模の噴火が 起こるためには,噴火準備過程でこれと同等以上の規模のマグマ溜まりが地下に形成されるもの と考えられる.このような大規模噴火を想定した火山活動モニタリングに求められるマグマの蓄 積に伴う広域地殻変動を評価するためのシミュレーション技術開発と,実際のカルデラにおける マグマだまりの位置確認のための地下構造調査を実施した.

① カルデラ噴火前兆評価シミュレーション技術開発

カルデラ噴火の前兆を地殻変動観測の中に捉えていく手法の確立を目的として3次元並列有限 要素コード OREGANO_VE を用いた地殻内におけるマグマの移動・蓄積に対する地殻・マント ルの粘弾性応答,つまりマグマの挙動が生み出す地殻変動とそれにともなう応力場の時空間変化 をこれまで検討してきた.今年度は、地殻の中に箱型の低粘性領域(LVZ; Low Viscosity Zone)を 置いた3次元有限要素モデルを用いて、北海道東部の屈斜路カルデラにおける InSAR データを もとに、地殻内の第一近似的な粘性率の空間不均質性をイメージングすることを試みた.変形域 の中心(変位量が最も大きい地点)における変位の時間変化は、LVZ の粘性率を~4·5×10¹⁷ Pa s, そしてその空間的な広がりは、弾性層直下から、幅 10 km 以上の広がり持って、少なくとも地殻 中部の深さにまで及んでいなければならないことを制約した.そのように制約されたモデルは、 変動域の他の全ての地点での変位の時間変化を2 cm 程度の誤差で説明できる.本研究で制約さ れた LVZ は、マグマの存在に影響をうけていることが示唆され、地球物理学的にイメージされた カルデラ下の地殻構造に力学的な意義を与える.また、マグマの存在を、地殻上部へのマグマ貫 入後の表面変動それ自体から捉えていける可能性が示された.

② 活動的カルデラ火山の地下構造調査

本調査は前記の広域地殻変動パターンの数値シミュレーションモデルを検証するため,活動的 カルデラの地下構造の調査を行うもので,阿蘇カルデラと姶良カルデラを対象とした探査を実施 した.

1) 阿蘇カルデラの地下構造を求めるため、昨年度実施した比抵抗構造解析に引き続き、深度方向への感度を高めつつより詳細な構造を求める目的で、平成 27~28 年度の合計 101 地点のデータを対象にした 3 次元インバージョンを実施し、約 20km の深さに至るカルデラの地下比抵抗構造を求めた.さらに、広帯域 MT 法では探査が困難な 20km 以深の比抵抗構造を明らかにすることを目的にし、ネットワーク MT 法の阿蘇カルデラでの適用可能性の検証を開始した.ネットワーク MT 法は電話回線設備を利用した長基線の電磁探査法である.1993~

1998年の期間に観測・取得されたネットワーク MT 法データを使用した試みとして, 阿蘇カ ルデラを中心に分布する 50 の電位差観測線を使用した 3 次元比抵抗インバージョン解析に よって,予備的な約 50km までの深度の地下比抵抗構造を求めた.また,阿蘇カルデラのマ グマ供給系の空間的広がりとマグマ起源揮発性物質のフラックスを明らかにするため,昨年 度に引き続き地下水, 湧水, 温泉水, 河川水の地球化学的調査を実施した.その結果,地下水 系を介して河川水系に供給されるマグマ起源物質の塩素,イオウのフラックス量を求めるこ とが出来た.イオウ同位体比を検討した結果,マグマから放出された火山ガスにより高硫化 系の熱水系が形成され,現在その一部がカルデラ内北部に湧出している可能性が指摘できる. さらに,主成分分析を用いたマグマ起源熱水組成の検討の結果,阿蘇カルデラの内部におい て,深層から CO2が供給されており,その流体上昇に地域特性があると考えられること等が 明らかになった.このほか,カルデラ噴火を引き起こす珪長質マグマが地下に存在している かどうかを判別するため、マントルから供給された苦鉄質マグマが結晶分化を行いつつ,珪 長質マグマが生成する各過程において放出される熱水の組成(特に C/CI 比)について単純な モデルを用いて計算を行っている.その結果は,阿蘇カルデラの地下には苦鉄質マグマが存 在し,珪長質マグマは存在していない可能性を強く示唆している.

- 2) 姶良カルデラの地下構造調査では、平成 27 年度に整備した地震観測網を用いて、地震波トモ グラフィー手法による地下の 3 次元的な P 波および S 波の伝搬速度構造の解析を実施した. 昨年度の解析では 10 km の深さ分解能であったのでカルデラ中央部の低速度域は深さ 20 km に求められたが、今年度は分解能を 5 km に向上させることにより 15 km という値が得られ た.少なくともカルデラ内の 10 km 以浅には、顕著な速度異常は存在しない、遠地地震を使 ったレシーバー関数による地下構造境界の検出では、昨年度以上の解析結果は得られていな い、地下構造の異常に対応する場所においてマグマの蓄積による地盤の隆起・膨張が地表面 に現れるかどうかを検討することを目的とし設置した全地球測位システム連続観測では、昨 年度と同様に大きな変動は見られていない、また、深部マグマの動態と関連している可能性 がある深部低周波地震の検知能力の向上試験を地震計アレイ観測で実施したが、検知力に改 善はみられなかった。
- 3) 海底カルデラである鬼界カルデラを対象に、海底下に存在する可能性があるマグマ起源の低抵抗体の検出が可能かどうかを検討するために、海底電位差磁力計の投入と回収を行い、海底での電磁場の時間変動のデータを取得した.また、これまで取得した電磁場時系列データを、地磁気地電流法に基づいて初期的に解析した.取得データの確認と処理、陸上の地磁気観測データとの比較の後、取得した電磁場時系列データから、海底下の比抵抗構造分布、および海底地形の起伏や海水・地下構造の比抵抗値コントラストによって変化する周波数領域の電磁場応答関数を推定した.

1 火山活動評価のための調査研究

1.1支笏カルデラの事例調査

【実施内容】

支笏火山は約6万年前の大規模噴火の後,約4万年前にカルデラ形成噴火を起こして現カルデ ラを形成した火山である.平成26~28年度にカルデラ形成噴火とその直前の噴出物を対象にし たボーリング掘削,トレンチ調査,地表調査を実施し,大規模噴火前の休止期から準備期へと至 る事例を調査した.その結果,支笏-洞爺火山地域では中期更新世から続いた安山岩質の火山活動 が0.6~0.5 Maには終了し,その後約40万年間の休止期を経て,約13万年前に洞爺火山,約12 万年前には羊蹄火山南東の尻別火山が珪長質火山活動を開始したことが明らかになった.その後 活動は東へ広がり,クッタラ火山は約9万年前,支笏火山は約8.5万年前に噴火を開始し,続い て羊蹄火山も約7.5万年前には活動を始めた.支笏・洞爺火山地域の火山活動は,数万年程度の休止 期をはさんで13~11万年前,9.5~7.5万年前,6~4万年前の大きく3つに区分される.このう ち支笏火山の活動は,約6万年前にVEI=6の大噴火を起こした活動(社台期),約4万年前の VEI=7の支笏カルデラ形成噴火(カルデラ形成期),そしてそれ以降現在まで続く後カルデラ期 の3活動期に大別されており,社台期大規模火砕噴火噴出物は,その噴火様式と構成物の違いか ら5つのユニットに分けられること,またカルデラ形成期は時間間隙をはさんで2つの噴火ステ ージに分けられ,さらに5つの噴火フェーズに分けられることが明らかになっている.

平成 29 年度は、支笏-洞爺火山地域のテフラ層序をその給源火山ごとに見直してテフラ名を再 定義したほか、給源火山ごとのテフラの岩石学的特徴や、支笏-洞爺火山地域の全体の噴火史とマ グマ噴出率について検討した.また支笏火山の約6万年前の社台噴火および約4万年前の支笏カ ルデラ形成噴火については、その噴火推移を取りまとめた.特に、カルデラ形成噴火については、 追加の地表調査を行い噴火推移と時間間隙を再検討して新たなユニット区分を提唱したほか、最 初期噴火堆積物・降下軽石堆積物・火砕流堆積物・火砕サージ堆積物の分布や多様性について検 討を行った.

【研究成果】

(1) 支笏-洞爺火山地域のテフラ層序

支笏・洞爺火山地域(図1.1-1)のテフラ層序を再検討したところ,昨年度までに,尻別火山の 噴火開始年代が従来の約5万年前から12万年前,羊蹄火山と支笏火山が約5~6万年前から約 8万年前まで遡ることが明らかになった.今年度は支笏・洞爺火山地域のテフラ層序を給源火山 ごとに見直すとともに,いくつかのテフラについてはテフラ名を再定義した.テフラの岩石学的 特徴,噴火年代および噴出量などについてさらに検討した結果,本地域では約40万年間の休止 期間の後に約13万年前から5つの火山が相次いで珪長質火山活動を開始し,火山ごとに異なる マグマを噴出していることが明らかになった.本項では昨年度からの変更点を中心に,全体の概 要を報告する.

図 1.1-1 調査地域. ★:K-Ar 年代測定試料, ◆:14C 年代測定試料, ●,●:調査地点

1) 石狩低地帯におけるテフラ層序とテフラ名の再定義

従来の研究では、土壌や火山灰土によって区分される一連の噴出物をテフラと定義し、各テフ ラの同定は、層厚・粒径変化のほか、記載岩石学的特徴(斑晶量・斑晶組み合わせなど)、ガラス や苦鉄質鉱物の屈折率を利用して行われていた(勝井、1959;春日井ほか、1980;曽屋・佐藤、 1980;山縣、1994;町田・新井、2003).本研究では、主に支笏湖東方においてボーリング調査、 トレンチ調査、地表調査を行い、まずは野外においてその堆積様式から大きく3種類の堆積物に 分類した(降下テフラ堆積物、火砕流堆積物、火砕サージ堆積物).なお、降下テフラ堆積物はさ らにその構成物により、降下軽石堆積物、降下スコリア堆積物、降下火山灰堆積物に細分した. その後、層厚・粒径変化、記載岩石学的特徴(斑晶量・斑晶組み合わせなど)、ガラス組成によっ て、各地点における堆積物の対比を行った.さらに、土壌や火山灰土によって区分される一連の 堆積物、あるいは薄い土壌や火山灰土・浸食間隙を含む場合であってもその岩石学的特徴が同じ ものを含む堆積物を、一連の噴火による噴出物としてテフラと定義した.その結果、本地域では 新たに発見された6つのテフラを含む少なくとも28のテフラが観察されることが明らかになっ た(図 1.1-2).

*¹Furukawa and Nakagawa (2010), *²Uesawa et al. (2016), *³Miyabuchi et al. (2014), ^{*4} this study, ^{*5} Sase et al. (2004) # not calibrated

図 1.1-3 給源火山ごとのテフラ層序と噴火年代. 赤字は支笏火山の活動期区分.

図 1.1-3 はこれらのテフラを給源火山ごとに示した図であるが、本研究では町田・新井 (2003) に取りまとめられている従来の給源火山と岩相に基づくテフラ名に替えて、給源火山 ごとに一連の噴火による噴出物について新たな名称を付した.本研究では、洞爺カルデラ形成噴 火噴出物(Toya)をTp,支笏カルデラ形成噴火噴出物(Spfa-1 および Spfl)をSp-1,支笏火山由来 の降下軽石堆積物 Spfa-5, Spfa-6 をそれぞれ Sp-2, Sp-3, 支笏火山由来の降下スコリア堆積物 および火砕流堆積物(Ssfa および Ssfl)を Sp-4 と再定義した. さらに、新しく発見した羊蹄火山 由来の2つのテフラについては従来のテフラよりも明らかに下位に存在するためY>43, また尻 別火山由来の3つのテフラについては従来のテフラ(50-70kaのKm-1, Km-2; Uesawa et al. 2016b)との対比が不明であるため上位から Srb-1~Srb-3,また Sp-4 よりも下位の支笏火山由来 のテフラについては Sp-5 と命名した. 各テフラの噴火年代については、従来の研究による年代 値(図 2-1-3 の*1, *2, *3, *5)と本研究で得られた ¹⁴C 年代値(図 1.1-3 * 4 の Sp-1, Kt-1, Kt-3)を用いて、その層序関係と土壌の厚さから推定した.その結果、尻別火山の噴火開始年 代が従来の約 50-70ka から 120ka,支笏火山が約 60ka から約 85ka,羊蹄火山が 54ka から 75ka 以前まで遡ることが明らかになった.なお、本研究では支笏火山の活動を 1-2.5 万年程度 の休止期間によって、小規模噴火期(Sp-5)、先カルデラ期(Sp-4~Sp-2)、カルデラ形成期 (Sp-1), 後カルデラ期 (nEn-b~Ta-a) に区分した (図 1.1-3 赤字).

2) 給源火山ごとのテフラの岩石学的特徴

本地域では、130ka 以降 5 つの火山からテフラが繰り返し供給されていることが明らかに なったが、これらのテフラは、その給源火山ごとに岩石学的特徴が異なる(表 1.1-1).

羊蹄火山のテフラは、13~38kaのY1-Y31についてはほとんど角閃石を含まないが、Y32 ~Y43のテフラはほぼすべてが角閃石を含む.またガラス組成は他の火山由来のテフラに比べてSiO2に乏しくNa2Oに富むことで特徴づけられる.本研究で発見した2枚のY>43テフラはいずれもローム中に散在する軽石であるが、角閃石斑晶に富みガラスのNa2O含有量が高いことから、Y43より古い羊蹄火山由来のテフラ起源と判断した.

尻別火山のテフラは,近傍で確認されている Km-1,Km-2 は石英斑晶や角閃石斑晶に富み, Km-2 では黒雲母斑晶も認められる.これらは他のテフラと比べて最も K₂O が高く容易に識 別できる.石狩低地帯において発見された Srb-1~Srb-3 は分布域が限られているが,石英斑晶 と角閃石斑晶が共存する斑晶鉱物組み合わせとガラス組成から尻別火山由来であると考えた.

洞爺火山のテフラは、テフラごとに斑晶組み合わせ・ガラス組成ともに異なっている.洞爺カ ルデラ形成噴火 Tp は石英および角閃石斑晶を含む斑晶に乏しいテフラ、後カルデラ火山の うち中島火山由来のテフラは斑晶量が高く角閃石斑晶に富むが、有珠火山由来のテフラは角 閃石斑晶をほとんど含まず斑晶に乏しい.これらの洞爺火山由来のテフラは、一般的に SiO₂ に富みかつ Na₂O に富むという特徴がある.

•																	
source	volcano	tephra	sample location	phenocryst content	phenocryst assemblage	n (w	vt%) tot:	ıl Si(), TiC	, Al ₂ O	3 FeO	MnO	MgO	CaO	Na ₂ O	K20	P_2O_5
		Y1-Y31	proximal	poor(-intermediate)*6	$pl > opx > cpx^{*6}$	31	3.86	2 61.	21 1.0	6 16.3	5 6.61	0.22	2.00	5.90	4.82	1.28	0.55
							1.2	5 1.3	7 0.2	1 1.64	1.46	0.05	0.63	0.71	0.26	0.25	0.12
	I	Y32-Y43	proximal	rich(-poor)*6	$pl > opx > cpx$, ho, $\pm qt^{*6}$	55)''26	7 72.0	0.4	3 14.2	5 2.54	0.13	0.62	2.81	5.04	2.06	0.11
Va							2.0	5 1.8	4 0.1	0 1.12	0.33	0.03	0.24	0.74	0.45	0.28	0.07
H	- Ian	Y>43?	DS5	intermediate	pl > ho > opx > cpx	18	96.3	4 75.0	0.2	7 13.4	1 1.88	0.13	0.38	2.08	4.77	1.96	0.04
		(new)					1.5	5 0.5	4 0.0	3 0.40	0.18	0.02	0.02	0.17	0.29	0.17	0.03
	I	Y>43?	P2	poor	pl > ho > opx > cpx	14	95.4	5 74.	11 0.1	9 14.0	8 1.81	0.16	0.38	2.08	4.97	1.86	0.07
		(new)					1.3	4 1.5	6 0.0	5 0.70	0.32	0.02	0.13	0.46	0.19	0.19	0.04
		Km-1	proximal	rich	pl > qz > ho, cpx > opx	15	67.6	<i>- 11.</i>	1.0 81	4 12.4	1 1.02	0.05	0.17	1.19	3.73	3.79	0.03
							1.7	1 0.5	1 0.0	2 0.56	0.07	0.02	0.01	0.08	0.12	0.12	0.03
	I	Km-2	proximal	rich	$pl > qz > ho, cpx > opx, \pm bt$	<u>29</u>	93.9	4 76.	79 0.1	6 12.7	4 0.78	0.04	0.18	1.47	3.50	4.29	0.04
							2.1	5 2.5	0 0.1	1 0.89	0.83	0.04	0.24	96.0	0.26	0.76	0.04
CL1.	-	Srb-1	DS5		(pl, qt, opx, ho, cpx)	~	95.4	8 78.	0.1	3 12.2	1 0.97	0.04	0.16	1.16	3.24	3.86	0.03
	DelSu	(Km-1?)					6.0	0.8	3 0.0	2 0.17	0.06	0.02	0.02	0.11	0.73	0.19	0.03
	I	Srb-2	P2	ı	(pl, qt, bt?)	14	97.8	0 76.9	95 0.0	8 12.4	5 1.02	0.06	0.06	0.68	3.84	4.84	0.02
		(Km-2?)					1.7	1 0.4	8 0.0	4 0.22	0.32	0.03	0.04	0.21	0.42	0.36	0.02
	I	Srb-3	P3, DS5		(pl, qt, ho, opx, cpx)	42	-96	17 T.	52 0.1	1 12.2	2 0.93	0.06	0.13	1.04	3.75	4.12	0.03
		(Km-2?)					1.5	9 0.3	5 0.0	2 0.15	0.08	0.02	0.02	0.06	0.23	0.15	0.03
	Usu	Us-b	proximal	poor*4	$pl > opx >> cpx, \pm ho^{*4}$	19	.86	.92 9.	1 0.1	3 13.3	2 1.89	0.15	0.25	1.86	4.87	1.26	0.06
							2.3	6 0.2	5 0.0	3 0.11	0.06	0.03	0.03	0.05	0.19	0.05	0.03
	Nakajima	Nj-Os	proximal	intermediate	pl > opx > ho > cpx >> qz	12	96.9	4 78.	0 0.2	1 11.8	8 1.25	0.06	0.28	1.73	3.99	2.47	0.02
Town							0.8′	7 0.1	8 0.0	2 0.17	0.02	0.02	0.01	0.07	0.13	0.07	0.02
TUYA		Тр	proximal	poor(-intermediate)	pl > qz > opx, ±ho, cpx	37	96.5	3 78.	12 0.1	0 12.4	3 1.01	0.08	0.0	0.78	5.04	2.32	0.02
							0.9	4 1.2	8 0.0	4 0.81	0.29	0.04	0.06	0.43	0.55	0.74	0.02
		Osr	proximal	intermediate	pl > opx > cpx	18	94.6	3 77.	36 0.2	1 12.4	7 1.66	0.07	0.29	2.64	4.21	1.04	0.04
							2.2	2 2.0	3 0.0	5 1.01	0.58	0.03	0.26	0.65	0.34	0.31	0.03
rich: >15 vo	ol%, intermedi	ate: 5-15 vol6	‰, poor: <5 v	01%													

pl: plagioclase, opx: orthopyroxene, cpx: clinopyroxene, opq: opaque minerals, hb: hornblende, qt: quartz, ol: olivine, bt: biotite, af: alkali felsper

Petrographic features and glass compositions of each eruption episode of each volcano in Shikotsu-Toya volcanic field.

Table 2

表 1.1-1 各テフラの岩石学的特徴.

Table 2 (c	ontinued)																
source	e volcano	tephra	sample location	phenocryst content	phenocryst assemblage	u	(wt%) to	otal	SiO ₂ 7	ПО2 А	l₂O₃ Fe	0 W	nO Mg	O CaO) Na	0 K ₂ (P ₂ O ₅
		Kt-1	near P3	rich	pl, qt > opx > cpx	40	94	.24	00.77	0.17 1	2.40 1.5	55 0.	05 0.2	2 1.88	8 4.0	7 2.6	1 0.02
							1	.73	1.85 (0.03	.0 60.	27 0.	02 0.1	0 0.64	1 0.1	7 0.1	7 0.02
	I	Kt-Tk	proximal	intermediate	pl > cpx, opx, ±ho	20	67	.33	75.84 ().25 1	2.79 1.5	89 0.	06 0.3	2 2.42	2 4.0	8 2.3	2 0.03
							1.	69	2.83 (.08	.38 0.	74 0.	03 0.1	4 1.17	0.2	8 0.6	5 0.03
	I	Kt-3	DS2	intermediate	pl > opx > cpx	30	67	. 67	74.80 ().35 1	2.87 2.7	76 0.	10 0.4	6 2.68	3 4.3	5 1.5	0.06
							1	.71	0.19 (0.02 (.12 0.	06 0.	02 0.0	2 0.09	0.1	1 0.0	5 0.03
		Kt-Hy	proximal	intermediate	pl > opx > cpx	46	95	.40	75.68 (.31 1	2.75 2.3	24 0.	07 0.3	0 2.52	2 4.2	9 1.7	3 0.06
К'n	ttare						1	51	1.79 (.06	.17 0.	56 0.	03 0.1	5 0.56	0.2	7 0.2	4 0.04
N	- mara	Kt-4	proximal	poor	pl > opx > cpx	17	95	.05	76.00 (.31 1	2.40 2.	38 0.	07 0.3	7 2.44	4.3	7 1.6	2 0.04
							5	20	0.64 (0.02	.49 0.	10 0.	02 0.0	2 0.27	0.1	3 0.0	0.02
	ı	Kt-6	proximal	poor	pl > opx > cpx	29	95	. 09	76.08 (0.29 1	2.51 2.3	39 0.	08 0.3	5 2.45	5 4.3	5 1.4	5 0.04
		(+Kt-5)					1	.85	0.28 (0.02 (.21 0.	16 0.	02 0.0	5 0.11	0.1	6 0.0	5 0.03
	I	Kt-7	proximal	intermediate	pl > opx > cpx, ±qt	86	96	.80	74.74 ().33 1	3.10 2.	32 0.	08 0.4	8 2.94	4.1	7 1.7	90.06
							1	.75	4.47 (0.12	.63 1.	46 0.	04 0.5	2 1.60	0.2	1 0.6	3 0.05
	I	Kt-8?	P3	intermediate	pl > opx > cpx	33	96	.82	6.03 (.31 1	2.64 2.	28 0.	08 0.4	4 2.65	4.4	0 1.1	2 0.05
							2	.33	1.88 (.06 (.0 09.	63 0.	03 0.1	7 0.39	0.2	4 0.1	2 0.03
	Tarumai	Ta-a	proximal	rich	pl > opx > cpx, ±ol	18	6	9.38	76.33 (.31 1	2.39 1.	83 0.	05 0.3	7 2.21	3.9	3 2.5	1 0.04
							0	.85	0.77 (.02 (.56 0.	10 0.	02 0.0	2 0.42	0.1	0 0.1	0.03
	Tarumai	Ta-b		rich	pl > opx > cpx, ±ol												
	Tarumai	Ta-c	ı	rich	pl > opx > cpx, ±ol												
	Tarumai	Ta-d	proximal	poor-rich	pl > opx > cpx, ±ol	15	6	7.80 (51.83 (0.73 1	7.26 6.	72 0.	16 1.8	0 6.92	3.5	7 0.8	7 0.15
							2	.88	2.12 (0.15	.67 1.	04 0.	04 0.5	11.1	0.2	6 0.1	0.04
	Eniwa	En-a	proximal	intermediate	pl > opx > cpx	20	96	5.01	76.13 (.33 1	2.41 1.	90 0.	06 0.3	7 2.03	3 4.0	9 2.6	3 0.04
							1	.76	0.21 (0.02 (.16 0.	10 0.	02 0.0	1 0.09	0.1	0.0 0	5 0.03
	Fuppushi	nEn-b	proximal	rich	pl > opx > cpx	18	96	5.82	73.74 (.43 1	3.31 2.	47 0.	0.5 0.5	1 2.96	5 4.2	6 2.1	3 0.06
Chikoten							2	.88	1.55 (.04	.13 0.	14 0.	02 0.0	4 0.85	0.1	9 0.1	8 0.04
nshoving		Sp-1	P4, near P3	poor(-rich)	pl > opx > cpx, ±ho, ol, qt	45	96	. 66.9	77.46 (0.15 1	2.22 1.	46 0.	07 0.1	7 1.47	4.2	2 2.7	7 0.02
	I	(Spfa-1, Spfl)					1	.83	0.15 (0.02 (.12 0.	05 0.	02 0.0	2 0.05	0.0	0.0 6	0.03
	I	Sp-2	DS2	rich	pl > opx > cpx	15	96	.15	73.29 (.48 1	3.26 2.7	79 0.	08 0.6	8 3.03	3.9	6 2.3	1 0.08
		(Spfa-5)					6	.66	0.57 (0.02 (.28 0.	15 0.	02 0.0	6 0.20	0.1	2 0.0	8 0.04
	I	Sp-3	DS2	rich	pl > opx > cpx	19	66	.26 (59.82 (.61 1	4.18 4.	03 0.	10 1.1	0 4.04	1 3.9	9 1.9	7 0.16
		(Spfa-6)					1	.17	0.94 (0.04 (.36 0.	34 0.	02 0.1	6 0.36	0.2	5 0.0	0.04
	I	Sp-4	P2	rich	pl > opx > cpx, ±ol	47	67	.49	72.00 ().52 1	3.39 3.	36 0.	8.0 60	0 3.64	1 3.8	8 2.2	7 0.07
		(Ssfa, Ssfl)					6	.03	6.43 (0.26	.83 2.	22 0.	06 0.7	2 2.55	0.3	7 0.7	5 0.05
	I	Sp-5	P2	rich	pl > opx > cpx	15	95	.83	75.55 (.41 1	2.15 2.2	20 0.	07 0.4	6 2.21	4.0	4 2.8	t 0.07
		(unknown)					1	23	0.84 (.03 (.35 0.	25 0.	03 0.1	5 0.29	0.1	8 0.1	1 0.04
K	teharo	Kp-4	DS5		(pl, opx, cpx, ho)	15	62	.01	77.06 (.32 1	2.38 1.	66 0.	08 0.3	8 1.92	4.0	9 2.0	0.04
2		(Kc-Hb)					1	27	0.69 (.02 (.37 0.	12 0.	03 0.0	6 0.35	0.2	8 0.1	0.03

表 1.1-1 (続き)

13

クッタラ火山と支笏火山由来のテフラの斑晶組み合わせは、ほぼ斜長石・斜方輝石・単斜輝石 のみからなるが、Kt-1には石英が、Kt-Tkには角閃石斑晶が多く認められ、Sp-4 はかんらん石 を含むことによって特徴づけられる. Kt-1 と Kt-Tk を除けばその他のクッタラ火山由来のテフ ラのガラス組成は、支笏火山に比べて K₂O が低いことで識別できる. またクッタラ火山由来の テフラは時間とともに K₂O が増加する傾向が認められる. 一方で、支笏火山由来のテフラのガラ ス組成は、全体として一本の直線トレンドを形成しており、噴出物ごとに SiO₂の組成範囲が異な っている. 本研究で発見した Sk-5 テフラは、斜長石・斜方輝石・単斜輝石の斑晶に富み、そのガ ラス組成は支笏火山由来のテフラがなすトレンド上にプロットされることから、支笏火山由来と 判断した.

このように、給源火山ごとにテフラの岩石学的特徴が異なることから、本地域では火山ごとに 異なる珪長質マグマが生成されており、それらが同時期に共存していると考えられる.

3) 支笏-洞爺火山地域のマグマの噴出率と噴火史

支笏・洞爺火山地域で認識されたテフラについて、それぞれ噴出量を概算した(図1.1-4).降下 テフラ堆積物については、アイソパックが描かれたテフラ(町田・新井,2003によるクッタラ火 山の Kt-1, Kt-3, Kt-6, Yamagata,2000による支笏火山の Sp-1,本研究による Sp-4)について は Hayakawa(1985)に従って算出した.その他の降下テフラ堆積物については、同露頭または給 源火山からの等距離露頭において、同じ給源火山由来で噴出量のわかっている堆積物との層厚の 比を用いて体積を概算した.火砕流堆積物については、分布域を給源からの同心円で近似し、層 厚を乗じて求めた.なお、降下テフラ堆積物と火砕流堆積物の密度はそれぞれ1000 kg/m³,2500 kg/m³と仮定した.その結果、本地域の最近12万年間の総噴出量は700 km³ DRE 程度に達する こと、その噴出率は5.8km³ DRE/kyr と世界の他事例(White et al., 2006)と比較しても非常に 高いことが明らかになった.

図 1.1-5 は本地域の火山活動史をまとめた図である.支笏・洞爺火山地域の安山岩質火山活動 は、50万年前頃までに終了したと考えられる.その後約 40万年間の休止期を経て、12万年前 頃に洞爺火山,尻別火山で珪長質噴火が始まった.11万年前には洞爺火山で大規模な珪長質噴 火が起きて、本地域で最初のカルデラが形成された.その後活動域は次第に東方へ移動し、2万 年程度の休止期の後、クッタラ火山、支笏火山が約 9万前頃から、また羊蹄火山は約 7 万 5 千 年前頃から噴火し始めたと考えられる.約6万年前~約4万年前頃にはクッタラ火山・支笏火 山で VEI=5 以上の噴火が相次いで発生し、最後に支笏火山でカルデラが形成された.その後 は、羊蹄火山とともに、洞爺カルデラの後カルデラ火山である中島火山や有珠火山、支笏カルデ ラの後カルデラ火山である不風死火山、恵庭火山、樽前火山が VEI=3-4 程度の噴火を繰り返し ている.

図 1.1-4 支笏・洞爺火山地域の噴出量階段ダイアグラム.

図 1.1-5 支笏・洞爺火山地域の噴火史.

(2) 支笏火山社台噴火の噴火推移

60 ka の社台噴火は,支笏火山の活動期区分(図 1.1-3)のうち先カルデラ期の最も規模の大き な噴火である.これは図 1.1-2の Sp-4 に相当し,噴出体積は 10~15km³ DRE と見積もられてい る.昨年度はこの 60 ka 社台噴火噴出物について,支笏湖東方約 20 km の地点でのボーリングコ ア試料(図 1.1-1の P2),支笏湖東方 40 km(図 1.1-1の DC)および支笏湖北東 40 km(図 1.1-1の DN5)におけるトレンチ調査試料を採取し,その噴出物を山縣(1994)にほぼ従って 5 つの ユニットに区分し解析を行った.今年度は、これらの噴出物についてユニット区分を再検討し構 成物分析を行った結果,60 ka 社台噴火は 3 つの噴火フェーズに分けられること、Phase 1 では 軽石質プリニー式噴火の後噴出率が急減、Phase 2 では新たにスコリア質プリニー式噴火が始ま り、Phase 2 前期では噴出率の増減を繰り返した後、後期に噴出率が上昇、Phase 3 では軽石に 富む火砕流噴火へ移行したことが明らかになった.

1) 60ka 社台噴火噴出物の層序とユニット区分

本研究では 60 ka 社台噴火噴出物を, 堆積構造および噴出物の構成物から, A から C の大きく 3 つの地質ユニットに区分した(図 1.1-6~図 1.1-9).

最下位の Unit A は軽石主体の降下火砕堆積物で, 茶褐色土壌を直接覆う軽石堆積物 (A1, A2) とその上位の火山灰堆積物 (A3) からなる. E20 地点 (図 1.1-1 の P2) では, A1 は淡灰色~暗 灰色軽石層, A2 は黄褐色~淡灰色軽石層, A3 は赤褐色~淡褐色の火山灰層で, 厚さ 1-2cm の色 調の異なる層の集合体である (図 1.1-7). A1 と A2 は山縣 (1994) の Ssfa 10 に, A3 は Ssfa 9 に相当する.

Unit Bは、Unit Aを直接覆うスコリア主体の降下火砕堆積物で全体的に層状構造が発達して おり、粒径や色彩の異なる層が成層している部分をB1-B4、黒色部分と赤黒色部分が繰り返し累 重する部分をB5とした(図1.1-8、図1.1-9). E40地点(図1.1-1のDC), NE40地点(図1.1-1の DN5)では、B1は暗赤褐色~淡赤褐色スコリア層、B2は遊離結晶に富む粗粒火山灰層、B3は赤 褐色の細粒スコリア層、B4は粒径変化の大きい赤褐色~黒褐色のスコリア層、B5は黒色~赤黒 色の粗粒スコリア層である. このうちB1-B3が山縣(1994)のSsfa8に、B4とB5がSsfa7に 相当すると考えられる.

さらに最上位の Unit C はスコリア主体の火砕流堆積物 C1 とその後の降下火砕堆積物 C2 からなる (図 1.1-7,図 1.1-9). C1 は E20 地点(図 1.1-1 の P2)では細粒物に富む淘汰の悪い灰色塊状 火山灰層, C2 は NE40 地点(図 1.1-1 の DN5)では火山灰基質に富むスコリア層である.火砕流 堆積物 C1 は山縣 (1994)の Ssfl の一部であると考えられる.

16

図 1.1-6 60 ka 社台噴火噴出物の対比柱状図. E20, E40, NE40 はそれぞれ図 2-1-1 の DC, DN5, P2 地点.

2) 60ka 社台噴火噴出物の粒度および構成物の時間変化

本研究では、60 ka 社台噴火における粒径および構成物の時間変化を定量的に明らかにするた めに、給源に最も近い E20 地点(図 1.1-1 の P2)において採取した試料を 4 mm, 2 mm の篩で ふるった後、各粒度の乾燥重量を測定した.また 2 mm 以上のすべての粒子については肉眼で、 軽石、スコリア、縞状軽石・灰色軽石、岩片の 4 種類に分類しそれぞれの乾燥重量を測定した. なお、本質物質の分類は、全体が淡黄色~淡桃色のものを軽石、全体が黒色~暗灰色のものをス コリア、白色~淡黄色軽石部分とスコリア部分が肉眼で識別できるものを縞状軽石、全体が灰色 ~淡灰色のものを灰色軽石とした.軽石は SiO₂=60~63wt%程度の両輝石デイサイト、スコリア は SiO₂=53~56wt%程度のかんらん石含有両輝石安山岩で、縞状軽石・灰色軽石は両者の中間的 な岩石学的特徴を示す.

図 1.1-7 E20 地点 (図 1.1-1 の P2)の掘削コア写真.

図 1.1-8 E40 地点(図 1.1-1 の DC)の露頭写真.

図 1.1-9 NE40 地点 (図 1.1-1 の DN5) の露頭写真.

図 1.1-10 E20 地点における堆積物の粒径および構成物の時間変化.

図 1.1-10 は粒径ごとの重量比および構成物重量比を示した図である.すると、Unit A では4 mm 以上の粒子の割合が 30%以下であるが、Unit B では次第に増加し最上部では 80%になり、Unit C では再び細粒物が増加し 2 mm 以下の粒子が約 70%を占めている.また構成物重量比は、Unit A では軽石が 80%以上であるのに対して、Unit B では 20%以下に急減し、Unit C では再び 60%程度に増加している.また Unit B より上位ではすべての構成物が共存しており、特に B5 では全体の 50~90%をスコリアが占めるようになる.また岩片量比は、Unit A に比べてUnit B、Unit C で高い.Unit A 最上部・Unit B 最下部では、その前後に比べて明らかに岩片量比の高い堆積物が噴出しており、その時期から縞状軽石・灰色軽石やスコリアが出現し始めることが明らかになった.

3) 60ka 社台噴火の噴火推移

本研究では、60 ka 社台噴火噴出物を Unit A から Unit C の 3 つに区分したが、その堆積構造、堆積物の粒度および構成物の時間変化から、それぞれが異なる噴火フェーズ(Phase 1: 軽石質のプリニー式噴火、Phase 2: スコリア質のプリニー式噴火、Phase 3: 火砕流噴火)に相当することが明らかになった(図 1.1-11).

Phase 1 では安定的な噴煙柱から降下軽石堆積物が供給されたが(A1, A2), この噴煙柱は A3 で衰退したと考えられる. Phase 2 では噴煙柱高度が一定ではなく噴出率の増減を繰り返しなが ら(B1-B4)次第に噴出率が上昇していった. B5 で噴煙柱高度は最大になったが, この時期は間 欠的な噴火を繰り返して色調の異なる成層構造が形成された可能性が考えられ, その後 Phase 3 の火砕流噴火(C1)に至った. 火砕流堆積物を覆う降下火砕堆積物(C2)は、Phase 2 後期(B5) より明らかに規模の小さな噴煙柱から供給されたと考えられる. 60 ka 社台噴火では, Phase 2 以 降で安山岩質マグマ(スコリア), 混合マグマ(編状軽石・灰色軽石)が噴出しはじめるが, デイ サイト質マグマ(軽石)は 10~15 km³DRE の噴火初期から末期まで消滅することなく常に噴出 し続けており, 珪長質マグマ(苦鉄質マグマ)から苦鉄質マグマ(珪長質マグマ)へ時間ととも に置き換わっていくという他の火山で一般的に見られるものとは異なっている(Pallister et al., 1996 など).この特徴は, 安山岩質マグマとデイサイト質マグマからなる成層マグマ溜まりから, 少なくともデイサイト質マグマはその他のマグマとは別の火道を通って噴出した可能性を示唆し ている.

20

図 1.1-11 60ka 社台噴火の推移.

(3) 支笏カルデラ形成噴火の噴火推移

支笏カルデラ形成噴火は図 1.1-2 の Sp-1 に相当し,噴火年代は 43.8 ka,噴出体積は 100~130 km³DRE と見積もられている.昨年度までの研究によって支笏カルデラ形成噴火は大きく 5 つの 噴火フェーズに分類され (PhaseI:マグマ水蒸気噴火期,PhaseII:大規模なプリニー式噴火によ る降下軽石堆積物卓越層から火砕流堆積物卓越層への移行期,PhaseIII:大規模火砕流堆積物噴出 期,PhaseIV:厚い岩片濃集層を伴う火砕流堆積物噴出期,PhaseV:大規模噴火終息期),これらは 時間間隙をはさんで,Stage1 (従来の Spfa-1:PhaseI,II) と Stage 2 (従来の Spf1:PhaseIII~V) の大きく 2 つに区分されていた.また,特に PhaseI 噴出物は 3 つのユニットに分けられ噴火最 初期には薄く広く高温のブラスト状堆積物が覆ったと考えられること, PhaseII 噴出物は遠方で は 2 つのユニットのみが認められることが確認された.今年度は,模式露頭において特に時間間 隙の証拠について再検討し構成物分析を行った結果,支笏カルデラ形成噴火堆積物を新たに 6 つ のユニット (Unit A~Unit F) に再区分し,時間間隙に注目して噴火推移を見直した.また,こ のうちの最初期噴火堆積物 (Unit A),降下軽石堆積物 (いわゆる Spfa-1),火砕流堆積物 (いわ ゆる Spfl) については,それらの広域的な分布についても検討した.

1) 支笏カルデラ形成噴火の噴火推移と時間間隙の再検討

本研究では、支笏湖南方の模式露頭(図 1.1-1 の P3)において、層相、構成物の変化および時 間間隙に注目して、支笏カルデラ形成噴火噴出物を A から F の 6 つのユニットに再区分した(図 1.1-12). Unit A の下位および Unit F の上位には土壌が存在するが、A から F の間には土壌は認 められない. 一方で、Unit B-C、Unit C-D、Unit E-F 間には明瞭な時間間隙が存在することが 明らかになった(図 1.1-13).

Unit A は層厚約 70 cm で, A1, A2 の 2 つのサブユニットに区分される. A1 は最下部に炭化物の薄層を伴う粗粒砂サイズの火砕サージ堆積物, A2 は火山豆石を含む火砕サージ堆積物と降下軽石堆積物の互層でマグマ水蒸気噴火に伴う堆積物であると考えられる.

Unit B は下位から降下軽石堆積物(B1),火砕サージおよび火砕流堆積物と降下軽石堆積物の 互層(B2),そして2枚の火砕流堆積物(B3)の3つのサブユニットに細分され,全体の層厚は 約10m である.Unit B と Unit C の境界には,明瞭な侵食間隙が認められ,その侵食面上位には 再堆積層が認められる(図 2-3-2).

Unit C は非溶結な塊状の大規模な火砕流堆積物であり,層厚は約30mに達する.本質物質主体の下位(C1)と岩片に富む上位(C2)の2つのサブユニットに区分され,C1とC2との境界部は不規則で火炎状構造を示している(図2-3-1).また別の地点では,C2の火砕流堆積物中にC2の岩片が入り込んでいる場所も確認されており(図2-3-2),C1とC2の間には大きな時間関係はなかったことを示唆している.一方で,Unit C-Unit D 境界部には,C2が侵食されて生じた再堆積層が存在しており,その上部は基質・岩片ともに風化していることから比較的長い時間間隙が示唆される(図1.1-13).

Unit D は, 層厚約 3m の塊状・非溶結の小規模火砕流堆積物である.上部にはガス抜けパイプ が多く観察されるが,これらが上位の Unit E に到達することはない.このことから,火砕流か らのガス抜けが収まってから Unit E が堆積したと考えられる.

Unit E は, 層厚約2mの非溶結な小規模火砕流堆積物である.この火砕流堆積物の上位には 斜交成層した再堆積層が見られ,その再堆積層の最上部はやや風化している.このことから,Unit C-Unit D 境界と同様, Unit E-Unit F 境界には比較的長い時間間隙が存在していたと考えられ る.

Unit F は2つのサブユニットに区分され, F1 は降下軽石堆積物, F2 は火山豆石を含む火砕サージ堆積物であり,全体の層厚は約50 cm である. F2 は昨年度新たに見出した火砕サージ堆積物である.

22

図 1.1-12 模式露頭(図 1.1-1 の P3)の全体写真.

ユニット境界部の産状.

本研究では、上記の新たな区分に従って支笏カルデラ形成噴火噴出物の構成物分析を行った (図 1.1-14;本質物質 2 種類と岩片の 3 区分).カルデラ形成噴火噴出物の本質物質は、斑晶に 乏しい軽石(Crystal-poor type: CP タイプ)と、斑晶に富む軽石およびスコリア(Crystal-rich type: CR タイプ)からなる. CP タイプの斑晶量は 5%以下,SiO2 量が 67%以上であり、CR タ イプ(斑晶量 20%以上,SiO2 量 67%以下)とは明瞭に区別できる.

すると、ユニットAでは本質物質が80~90%を占めるのに対して、Unit Bでは増減を繰り返しつつ次第に岩片量が増加する. C1 で岩片量は急減するが、C2 では全体の80%以上を岩片が占めるようになる. その後は増減を繰り返しつつ岩片量は40%未満となる. 一方で、本質物質のタイプに注目すると、Unit A~Unit C では CP タイプが主体であるが、Unit C の末期には少量のCR タイプが噴出しはじめ、Unit D~Unit F では両者が共存することが明らかになった.

図 1.1-14 構成物分析結果.

Unit A~Unit C と Unit D 以降で本質物タイプの比率が大きく変化し、この間に風化面を形成 するだけの時間間隙が存在することから、Unit A~Unit C と Unit D 以降でそれぞれを別の噴火 として区分できる可能性が考えられる.しかしながら、本研究では主要な珪長質マグマである CP タイプの本質物が全てのユニットで認められることから、Unit A~Unit F を一括して支笏カル デラ形成噴火と定義し、その堆積物区分および時間間隙の有無に基づいて、本噴火を5つの噴火 フェーズに区分した(図 1.1-15). Phase 1 はマグマ水蒸気噴火および phreatoplinian 噴火で始 まった(Unit A). その後,時間間隙をおかずにマグマ噴火に移行し, Phase 2 ではプリニー式噴 火が開始した(Unit B). Phase 2 後期には噴煙柱が不安定になり、火砕サージ堆積物や火砕流堆 積物を噴出した. 侵食間隙をおいて, Phase 3 では爆発的な噴火により大量の火砕流堆積物を噴 出し、最後にラグブレッチャが堆積した(Unit C). さらにその後休止期をおいて、Phase 4 では 小規模な火砕流堆積物が間欠的に噴出した(Unit D, Unit E). 最後の Phase 5 では,火砕サージ を伴う小規模なプリニー式噴火が発生した(Unit F). 岩片量の時間変化から、カルデラの崩壊は Unit B で始まり, Unit C 末期のラグブレッチャ噴出によって現在のカルデラがほぼ形成された と考えられる.このような噴火推移は、カルデラ陥没に伴う lag breccia が放出された後に、大規 模な火砕噴火が発生し火砕流が堆積するという Druitt and Sparks (1984)のカルデラ形成噴火の モデルとは異なっている.

Tim	ne											\leq
Eruptive phase	e		1		2		:	3		4	:	5
		,	Ą		В			0	D	E	F	=
Eruptive unit		A1	A2	B1	B2	B3	C1	C2	D	E	F1	F2
Eruption style		blast?	phreato- plinian & base surge	plinian	plinian & pyroclastic flow	pyroclastic flow	pyroclastic flow	pyroclastic flow with lag breccia	pyroclastic flow	pyroclastic flow	sub- plinian?	pyro- clastic surge
CD to												
Juvenile	pe		1				1)	1		
CR-ty	pe									·		
					↑	†		↑	↑		1	
(wt.%)				e~30	~30	.		*100	Q~30		~40	
Remarks				largest scale			largest scale					
				stable	unstable				gas-rich			
				eruption	eruption				pyroclastic			
				column	column				flow			
					<u>→</u>	caldera		caldera formation?	new crater?		new crater?	
				enlarging	of crater(s)	br	eak	br	 eak bri	eak br	eak	

図 1.1-15 支笏カルデラ形成噴火の噴火推移.

2) 最初期堆積物 (Unit A) の層相・分布と岩石学的特徴

今年度は,支笏湖南方の模式露頭でのユニット区分を元に,支笏湖周辺の広範囲において分布 調査を行った(図 1.1-16).

支笏湖南南東約15 km にある模式露頭 (PS3)の Unit A 堆積物は層厚約70 cm で,最下部に 炭化物の薄層を伴う粗粒砂サイズの火砕サージ堆積物である A1 と,火山豆石を含む火砕サージ 堆積物と降下軽石堆積物の互層からなる A2 の大きく 2 つに分けられ,A2 はさらに A2a と A2b に細分された (図 1.1-17).これらの層相を遠方で見ていくと,A1 最下部の炭化物の薄層は,不 連続ながらもほぼすべての露頭に存在する (図 1.1-18).その上位にある A1 の粗粒砂サイズの火 砕サージ堆積物は,支笏湖西側では認められないが北東側でやや層厚が厚く,南西約 60 km の PS7 地点でも 5 mm ほどの厚さで確認できた.一方で A2 については,模式露頭において確認さ れた火砕サージ堆積物と降下軽石堆積物の互層が場所によって異なる.支笏湖南西の DS5~DS7 では,火砕サージ堆積物と降下軽石堆積物の互層がすべて見られるものの,それより北側に行く につれて A2a の下部層,A2a の上部層,A2b の下部層,A2b の上部層が次第に消滅していき, DN5~DN7, PN2, PW2, PW3 では A2 は確認できなくなる.

図 1.1-16 Unit A 堆積物の分布図.

図 1.1-17 模式露頭(図 1.1-16の PS3)の Unit A 堆積物.

図 1.1-18 Unit A 堆積物の露頭写真地点は(露頭地点は図 1.1-16 を参照).

図 1.1-19 は、A1 の粗粒砂サイズ火砕サージ堆積物の薄片写真であるが、粒子の大部分は斜長 石・両輝石の遊離結晶で、わずかに軽石や岩片、角閃石の遊離結晶も含まれる.本研究では、こ れらの軽石質粒子のほか、A2 降下軽石堆積物中の本質物質について、ガラス組成を測定した.そ の結果、Unit A 堆積物のガラス組成は、SiO₂=66~78%と非常に幅広いことが明らかになった(図 1.1-20).その他のカルデラ形成噴火噴出物を構成する本質物質のうち、CP タイプは SiO₂=77~ 79%、CR タイプは SiO₂=67~79%となっており、Unit A 堆積物には CP タイプ、CR タイプの それぞれ FeO に富む組成が共存しているように見える.また、Unit A 堆積物と Unit B 堆積物の ガラス SiO₂組成の時間変化に注目すると、A1、A2、B と噴火の進行とともに珪長質側に収束し ていく(図 1.1-21).前項で述べたように、支笏カルデラ形成噴火の本質物質は、Unit A~Unit C では CP タイプが主体であるが、Unit C の末期から CR タイプが噴出しはじめて Unit D~Unit F では両者が共存する.この結果は、噴火の後半期だけでなく、噴火の最初期にもより苦鉄質な マグマが関与していたことを示唆している.今後は、噴火最初期の苦鉄質マグマと噴火後半期の 苦鉄質マグマとの関係を検討する予定である.

図 1.1-19 A1 火砕サージ堆積物の薄片写真. ←:本質物質

図 1.1-20 Unit A 堆積物とその他のカルデラ形成噴火噴出物に含まれる本質物質のガラス組成.

図 1.1-21 Unit A~Unit B 堆積物に含まれる本質物質のガラス SiO₂ 量の変化.

3) 降下軽石堆積物(いわゆる Spfa-1)の層相・分布

今年度は、支笏カルデラ形成噴火の降下軽石堆積物(いわゆる Spfa-1)について、支笏湖周 辺の広範囲において分布調査を行った(図 1.1-22).

支笏湖南南東約15 km にある模式露頭 (PS3) の Unit B 堆積物は,下位から降下軽石堆積物 (B1),火砕サージおよび火砕流堆積物と降下軽石堆積物の互層 (B2),そして2枚の火砕流堆 積物 (B3)からなる (図 1.1-23).一方で,この Unit B 堆積物と同じ層準に認められる降下軽 石堆積物 (いわゆる Spfa-1)は、遠方では色調や粒径変化によって多数の層からなる (図 1.1-24,図 1.1-25).見た目の色調の違いは岩片の量比や構成物の粒径の違いを反映している.本研 究では、岩片が多くかつ構成物の粒径が小さい2枚の薄層を境界として、これらの層を含む成 層構造が発達する部分を上部ユニット、それより下位を下部ユニットと区分した (図 1.1-25). 上部ユニットは、下部ユニットに比べて構成物変化・粒径変化に大きく、かつ淘汰の悪い層が多 い (図 1.1-24).上部ユニットの最上部は多くの露頭で侵食されており (図 1.1-24 の DC, DS3 など)層厚空間変化は不明であるが、支笏湖からの距離が近い PN2 を除けば、上部ユニットは 北側で、下部ユニット南側で岩片に富む層の枚数が多い傾向がある (図 1.1-25).

図 1.1-22 降下軽石堆積物(いわゆる Spfa-1)の分布図.

図 1.1-23 模式露頭(図 1.1-22 の PS3)の Unit B 堆積物.

図 1.1-24 降下軽石堆積物(いわゆる Spfa-1)の露頭写真(露頭地点は図 1.1-22 を参照).

本研究では、遠方地域でのいわゆる Spfa-1 の層序を模式露頭における Unit B 堆積物のユニット区分と対比するため、まずは模式露頭の Unit B 堆積物について岩片構成比を測定した(図 1.1-26). 岩片を堆積岩、火山岩、深成岩、結晶片、変質岩の5つに区分したところ、B1の岩片はほぼ堆積岩、火山岩、変質岩からなり最上部の B1c で堆積岩の量比が最大になること、B2, B3 では堆積岩量が減少し深成岩質岩片がどのユニットでも見られるようになることが明らかになった. 今後は、このような岩片構成比の変化から、模式露頭の Unit B 堆積物といわゆる Spfa-1 の対比を行い、噴火の推移をより詳細に検討していく予定である.

図 1.1-25 降下軽石堆積物(いわゆる Spfa-1)の対比柱状図(地点は図 1.1-22 を参照).

図 1.1-26 模式露頭における Unit B 堆積物の岩片種構成比分析結果.

4) 火砕流堆積物(いわゆる Spfl)の層相・分布

支笏火砕流堆積物(いわゆる Spfl)は、CP タイプのみからなる下部ユニット(図 1.1-27 の青線で囲まれた範囲)と CR タイプを普通に含む上部ユニット(図 1.1-27 の赤点線で囲まれた範囲)に区分でき、上部ユニットは下部ユニットに比べかなりアスペクト比が高く分布範囲が狭い. 本研究では、この火砕流堆積物について分布調査を行い(図 1.1-27)、模式露頭でのユニット区分との対比を試みるとともに、火砕流堆積物に空間変化が認められるかどうかを検討した.

図 1.1-27 火砕流堆積物の分布図(青線,赤点線は中川ほか, 2006).

支笏湖南南東約 15km にある模式露頭(図 1.1・27の PS3)の Unit C~Unit E 堆積物はすべて 火砕流堆積物からなり,Unit C は CP タイプ主体の大規模な火砕流堆積物,Unit D および Unit E は CP タイプと CR タイプが共存する小規模な火砕流堆積物である(図 1.1・28).本研究では, これらに対比できると考えられる火砕流堆積物を追跡したところ,PS3のほか PS1, PE1, PE2, PE4, PN1 周辺の上位層では CP タイプと CR タイプが共存しているのが確認されたが,その他 の地点ではほぼ CP のみからなる火砕流堆積物であった(図 1.1・29).また,火砕流堆積物は支笏 湖東方 30km にある丘陵地帯を越えて流走していたことが明らかになった(図 1.1・27 の赤実線, 図 1.1・29 の DC).このことは,従来の下部ユニットは模式露頭の Unit C,上部ユニットは Unit D,Unit E にほぼ対比できることを示唆している.そこで本研究では,従来の下部ユニット(模式 露頭の Unit C)を大規模火砕流堆積物,下部ユニット(模式露頭の Unit D,Unit E)を小規模火 砕流堆積物と呼称する.

図 1.1-29 火砕流堆積物の露頭写真(露頭地点は図 1.1-27 を参照).

図 1.1-30 火砕流堆積物のガラス組成.

(大規模火砕流堆積物は図 1.1-27 の PE3,小規模火砕流堆積物は同じく PE4 から採取した)

図 1.1-31 火砕流堆積物の CP ガラス組成(採取地点は図 1.1-27 参照).

図 1.1-30 は, 大規模火砕流堆積物の代表露頭 (PE3) と小規模火砕流堆積物の代表露頭 (PE4) で採取した本質物質のガラス組成を示した図である.その結果, PE3 の大規模火砕流堆積物では CP タイプしか認められずその組成は SiO₂=77~78%で非常に均質であること, PE4 の小規模火 砕流堆積物では SiO₂=77~79%の CP タイプと SiO₂=66.5~78.5%の CR タイプとが共存してい ることが確認された.また,大規模火砕流堆積物の CP タイプと小規模火砕流堆積物の CP タイ プとは,SiO₂-FeO 図で異なるトレンドを描いている.さらに,模式露頭を含むその他の地点に おける大規模火砕流堆積物と小規模火砕流堆積物の CP タイプ軽石のガラス組成をプロットする と,大規模火砕流堆積物ではどの地点においてもほぼ均質な組成を示すのに対して,小規模火砕 流堆積物の CP タイプは場所によって組成が異なっている (図 1.1-31).こののとは,支笏カル デラ形成後に組成の異なる何枚もの小規模火砕流堆積物が噴出したことを示唆している.

(4) まとめと今後の課題

- 支笏-洞爺火山地域のテフラ層序を再検討した結果,新たに6つのテフラが発見されたため、本研究では給源火山ごとにテフラ名を再定義した.本地域では、安山岩質火山活動後に約40万根間の休止期をおいて約12万年前には珪長質火山活動が始まったこと、活動域は次第に東側へ広がって5火山からそれぞれ異なる珪長質マグマを噴出したこと、本火山地域の噴出率は他の珪長質火山地域に比べて非常に高いことなどが明らかになった.
- 2. 60ka 社台噴火は 3 つの噴火フェーズに分けられ, Phase 1 では軽石質プリニー式噴火の 後噴出率が急減, Phase 2 では新たにスコリア質プリニー式噴火が始まり, Phase 2 前期 では噴出率の増減を繰り返した後,後期に噴出率が上昇, Phase 3 では軽石に富む火砕流 噴火へ移行したことが明らかになった. 60ka 社台噴火では,デイサイト質マグマが 10~ 15 km³DRE の噴火初期から末期まで消滅することなく常に噴出し続けており,珪長質マ グマ(苦鉄質マグマ)から苦鉄質マグマ(珪長質マグマ)へ時間とともに置き換わってい くという他の火山で一般的に見られる噴火推移とは異なっている. このことは,少なくと もデイサイト質マグマはその他のマグマとは別の火道を通って噴出した可能性を示唆し ている.
- 3. 支笏カルデラ形成噴火は5つの噴火フェーズに区分される. Phase 1 はマグマ水蒸気噴火 および phreatoplinian 噴火で始まり (Unit A), その後,時間間隙をおかずにマグマ噴火 に移行し, Phase 2 ではプリニー式噴火が開始した (Unit B). Phase 2 後期には噴煙柱 が不安定になり,火砕サージ堆積物や火砕流堆積物を噴出した. 侵食間隙をおいて, Phase 3 では爆発的な噴火により大量の火砕流堆積物を噴出し,最後にラグブレッチャが堆積し た (Unit C). さらにその後休止期をおいて, Phase 4 では小規模な火砕流堆積物が間欠 的に噴出した (Unit D, Unit E). 最後の Phase 5 では,火砕サージを伴う小規模なプリ ニー式噴火が発生した (Unit F). 支笏カルデラ形成噴火では, Unit C 末期のラグブレッ チャ噴出によって現在のカルデラがほぼ形成されたと考えられ,このような噴火推移は従 来のカルデラ形成噴火のモデルとは異なっている.
- 4. 支笏カルデラ形成噴火のうち、最初期堆積物(Unit A)、降下軽石堆積物(いわゆる Spfa-1)、火砕流堆積物(いわゆる Spfl)について、支笏湖周辺の広範囲において分布調査を行

った. その結果,最初期堆積物(Unit A)のうちより下位のA1堆積物と上位のA2堆積物でそれぞれ分布域が異なり,これらのガラス組成から噴火の最初期にも苦鉄質マグマが関与していたこと,降下軽石堆積物(いわゆる Spfa-1)は遠方地域では成層構造が発達する上部ユニットとそれより下位の下部ユニットに分けられること,火砕流堆積物(いわゆる Spfl)は下位の大規模火砕流堆積物と上位の小規模火砕流堆積物に分けられ,大規模火砕流堆積物はどの地点においてもほぼ均質な組成を示すのに対して,小規模火砕流堆積物は場所によって組成が異なることなどが明らかになった.

来年度の課題としては、カルデラ形成噴火の地質学的研究では、まずは降下軽石堆積物と火砕 流堆積物のユニット区分を模式露頭と遠方地域で対比し、ユニットごとの分布域や層厚、粒径や 構成物の違いを明らかにする.これらの結果をふまえて、カルデラ形成噴火の火口域の変遷につ いても考察を行う予定である.

引用文献

- Druitt, T.H., Sparks, R.S.J. (1984). On the formation of calderas during ignimbrite eruptions. Nature, 310, 679-681.
- 古川竜太・中川光弘 (2010). 樽前火山地質図 1:30,000. 産業技術総合研究所致死調査総合 センター.
- Hayakawa, Y. (1985). Pyroclastic geology of Towada volcano. Bulletin of the Earthquake Research Institute University of Tokyo 60, 507-592.
- 春日井昭・藤田 亮・細川貢史朗・岡村 聰・佐藤博之・矢野牧夫(1980). 南部石狩低地帯 の後期更新世のテフラ・斜方輝石の屈折率と Mg-Fe 比との比較研究・地球科学, 34, 1-15.
- 勝井義雄(1959). 支笏降下軽石堆積物について,特に支笏カルデラ形成直前の活動について.火山, 2,33-48.
- 町田 洋・新井房夫 (2003). 新編 火山灰アトラス[日本列島とその周辺]. 東京大学出版会, 336p.
- Miyabuchi, Y., Okuno, M., Torii, M., Yoshimoto, M. & Kobayashi, T. (2014). Tephrostratigraphy and eruptive history of post-caldera stage of Toya Volcano, Hokkaido, northern Japan. Journal of Volcanology and Geothermal Research 281, 34–52.
- Pallister, J.S., Hoblitt, R.P., Meeker, G.P., Knight, R.J., Siems, D.F. (1996). Magma mixing at Mount Pinatubo: Petrographic and chemical evidence from the 1991 deposits. in Fire and Mud: Eruptions and Lahars of Mt. Pinatubo edited by C.Newhall and R. Punonhbayan, University of Washington press, 687-731.
- Uesawa, S., Nakagawa, M., Umetsu, A. (2016a). Explosive eruptive activity and temporal magmatic changes at Yotei Volcano during the last 50,000 years, southwest Hokkaido, Japan. Journal of Volcanology and Geothermal Research 325, 27-44.

- Uesawa, S., Nakagawa, M. (2016b). Tephrostratigraphy and geochemisty of tephras from Yotei and Shiribetsu-dake volcanoes. IWCC 6 Excursion Guide Book, 26-33.
- White, S.M., Crisp, J.A., Spera, F.J. (2006). Long-term volumetric eruption rates and magma budgets. Geochemistry Geophysics Geosystems 7:3.
- 山縣耕太郎(1994). 支笏およびクッタラ火山のテフラクロノジー. 地学雑誌, 103, 268-285.
- Yamagata, K. (2000). The Bigness of the 40 ka caldera forming eruption of the Shikotsu volcano, Japan. Bulletin of Joetsu University of Education 19, 445-460.

1.2 十和田カルデラの事例調査

【実施内容】

十和田カルデラでは 6.1~1.5 万年前に大型カルデラを形成した火山活動が起きており,その後 の最新期の火山活動でも、小型のカルデラ形成を含む比較的規模の大きな火山活動が発生してい る.平成 29 年度は、前年度に引き続き、カルデラ形成準備期にあたる 6.1 万年前以前の先カル デラ期について、噴出物の火山ガラス化学組成分析を実施し、そのデータを用いることで給源近 傍相と遠方相の対比を試みた.また、本年度は、平成 25 年度以降実施してきた十和田火山の研 究成果を取りまとめ、噴火活動史について総括を行なうとともに、十和田火山での大規模カルデ ラ噴火準備段階におけるマグマ供給系発達過程を考察した.

【研究成果】

(1) 先カルデラ期噴火活動史の詳細化

1) はじめに

十和田火山先カルデラ期噴出物の給源近傍相については、本委託研究によるこれまでの調査及 び5万分の1地質図幅「十和田湖」作成のための調査結果により、従来よりも詳細な地質層序が 明らかにされつつある.他方、給源遠方(上北平野)におけるテフラ層序については、既に詳細 が判明しており(大池・中川,1979; Hayakawa,1985; 松山・大池,1986; 中川ほか,1986), その堆積年代についても比較的精度良く決定されつつある(Matsu'ura *et al.*, 2014; Ito *et al.*, 2017; 工藤未公表データ).しかしながら、先カルデラ期噴出物の給源近傍相と遠方テフラの対 比については、未だ十分な検討は行われていない.十和田火山の階段ダイアグラムの高精度化の ためには、給源近傍相と遠方相の対比を行ない、年代データの乏しい給源近傍相に年代軸を入れ るとともに、給源近傍相と遠方相を合わせて噴出量を見積もり直すことが必要である.そこで今 回、先カルデラ期噴出物の給源近傍相(特に火砕流堆積物)と遠方相の対比を目的として、前々 年度、前年度から引き続き、火山ガラスの主成分元素分析を行なった.

2) 分析対象

給源近傍相からは、"最下部火山灰流堆積物(仮名)"と小幌内火砕流堆積物を、遠方相からは、 QP, T-4, T-3(上部と下部の2試料)を分析に供した.

"最下部火山灰流堆積物"は、十和田カルデラ北東壁(青橅山付近)において、先カルデラ期 噴出物の基底部に挟まれる火砕流堆積物である(図 1.2-1).本火山灰流堆積物は、非溶結塊状で、 褐灰色火山灰を主体とし、長径 2 cm 以下の黄色軽石と石質岩片をまばらに含む.層厚は最も厚 い場所で 8 m 以上ある.斑晶サイズの結晶として、斜長石、斜方輝石、単斜輝石、かんらん石及 び鉄鉱物を含む.本火砕流堆積物は、Toya より古いことは層序から明らかである(図 1.2-1).本 火砕流堆積物と遠方テフラの対比を明らかにすることで、給源付近における先カルデラ期溶岩の 噴出時期に制約を与えることができると期待される.

小幌内火砕流堆積物は、5万分の1地質図幅「十和田湖」作成の過程において、今年度新たに 発見された火砕流堆積物である.図1.2-2に十和田カルデラ北東、小幌内川沿いの露頭で得られ た地質柱状図を示す.本火砕流堆積物は、非溶結塊状で、基質の褐灰色火山灰と長径20cm以下 の淡灰色軽石と石質岩片で構成される.層厚は6m以上である.斑晶サイズの結晶として,斜長 石,斜方輝石,単斜輝石及び鉄鉱物を含む.本火砕流堆積物は,今のところ,この露頭付近でし か確認できていない.本火砕流堆積物の上位には,下から順に T-6, ZP2, Toya, T-15,養老沢 火砕流堆積物が確認される.下位層との関係は,露出していないため不明である.

QP, T-4, T-3 (大池・中川, 1979) は、十和田火山東方の上北平野に分布する降下テフラである. いずれもこれまでに分析ができていないテフラである. QP は、Toya よりも上位にあるテフラであり、滝ノ沢火砕流堆積物(図 1.2-1)の対比候補になり得るものである. T-4, T-3 については、Toya よりも下位にあるテフラであり、層準的には"最下部火山灰流堆積物"と小幌内火砕流堆積物の対比候補になり得るものである.

図 1.2-1 十和田カルデラ北東壁(青橅山付近)の地質層序.5万分の1地質図幅「十和田湖」の調査 による未公表データを含む.左上の位置図に国土地理院発行の2万5千分の1地形図「十和田湖東部」 「陸奥焼山」を利用した.

図 1.2-2 十和田カルデラ北東,小幌内川沿いの露頭で得られた地質柱状図.

3) 分析手法

火山ガラス主成分元素分析は、(株) 古澤地質に依頼した. 前処理は、古澤(2003)の方法を 基本とした. 試料を粉砕した後、ナイロン製使い捨て#255メッシュシート(糸径 43 µm,オープ ニングワイド 57 µm)を用い、流水中で洗浄した. 残渣を#125メッシュシート(糸径 70 µm,オ ープニングワイド 133 µm)を用い水中で篩い分けした. これにより 1/8~1/16 mm に粒度調整 した試料を超音波洗浄機を用いて洗浄し、表面に付着した粘土分などを洗い流した. 次に、偏光 顕微鏡を用いて試料から火山ガラスのみを手選し、これをエポキシ樹脂を用いてスライドグラス 上に包埋し、#3000カーボランダムで研磨、1 µm のダイヤモンドペーストにて鏡面研磨した薄 片を作成した. 主成分元素分析には、エネルギー分散型X線マイクロアナライザー(EDX)を用 いた. 加速電圧は 15 kV、試料電流は 0.3 nA である. 4µm 四方の範囲を約 150 nm のビーム径 にて走査させて測定した. スタンダードには高純度人工酸化物結晶(純度 99.99%以上の SiO₂, Al₂O₃, TiO₂, MnO, MgO), 純度 99.99%以上の単結晶 NaCl, KCl, CaF₂を用いた. これを, アメリカ標準局 NIST620 ガラス, 旧 NISTK-961 ガラスおよび glass-D (沢田ほか, 1997) を用 いてチェックした. また, ASTIMEX, Taylor などのいわゆる EPMA 用標準物質などでもその 精度をチェックした. K についてはニチカ製高純度 Adularia (沢田ほか, 1997) を用い, ダブ ルチェックした. ワーキングスタンダードには AT テフラの火山ガラスを用い, 測定時毎に値を チェックした.

図1.2-3 十和田火山先カルデラ期噴出物の火山ガラス主成分元素ハーカー図.

4)分析結果と対比検討

分析結果を前々年度,前年度に分析したものと合わせて,図1.2-3のハーカー図に示す.

"最下部火山灰流堆積物"は、これまでに分析した先カルデラ期噴出物の中でも SiO₂ 量が最 も低い部類に入る. T-22 と類似した組成を示すが、T-22 よりも若干 K₂O 量が高い特徴を示す. 両者は組成が類似するものの、T-22 は Toya よりも上位、"最下部火山灰流堆積物"は Toya より も下位なので、層位が一致せず、両者は対比されない. 今のところ組成が一致する遠方テフラは 他に見つからない.

小幌内火砕流堆積物は、先カルデラ期噴出物の中でも SiO₂ 量が高い部類に入る.本火砕流体 積物についても、組成が一致する遠方テフラは見つからなかった.SiO₂幅はT-3と類似するもの の、Al₂O₃ や K₂O 量では明瞭な差が認められる.

QP については、滝ノ沢火砕流堆積物に対比される可能性があったため今回分析に供した.しかし、両者は CaO で明瞭な組成差があり、対比されないことが判明した.滝ノ沢火砕流堆積物 もこれまでに対比可能な遠方テフラは見つかっていない.

5) まとめと今後の課題

前々年度・前年度に引き続いて,先カルデラ期噴出物の給源近傍相と遠方相の対比を目的とし て,火山ガラスの主成分元素分析を行なった.今年度は,給源近傍相の"最下部火山灰流堆積物", 小幌内火砕流堆積物,滝ノ沢火砕流堆積物と遠方テフラの対比に重点を置いて検討進めた.しか し,今のところ対比可能な遠方テフラは見出せていない.

滝ノ沢火砕流堆積物については、今回分析に供した QP を含め、これまでに相当する層準の遠 方テフラ全てを分析したことになるが、対比候補は見つかっていない、滝ノ沢火砕流堆積物は直 下に降下軽石堆積物を伴うことから、この噴火で降下テフラがもたらされたことは確実ではある が、少なくとも上北平野には分布していないと考えられる.

"最下部火山灰流堆積物"と小幌内火砕流堆積物については, Toya より下位層準にあることが 判明している. Toya より下位層準にある遠方テフラについては, 現時点では今年度分析に供した T-4 と T-3 のデータしか得られておらず, 未測定のテフラが多数存在する(ZP1, T-6, T-5, NP, Or-P など). 来年度はこれらのテフラの分析を行ない, 更に対比検討を進める必要がある.

小幌内火砕流堆積物は、十和田カルデラの北東方において、今年度新たに発見された火砕流堆 積物である.この付近は、5万分の1地質図幅「十和田湖」の範囲外にあたり、まだ十分な密度 では野外調査ができていない地域である.この地域について、来年度野外調査を行い、小幌内火 砕流堆積物のより詳細な層序関係と分布を明らかにする必要がある.

(2) 十和田火山活動史の総括

1) はじめに

本委託研究では平成 25 年度以降, 十和田火山の事例研究を進めてきた. それと平行して, 5 万分の1地質図幅「十和田湖」による調査研究も進めてきた. 両研究プロジェクトは, 十和火山 活動史の高精度化という目標において, 相補的な関係にある. 一部の研究成果については既に論 文として公表した(工藤, 2016; 印刷中). ここでは, これまでに得られた研究成果を取りまと め、十和田火山活動史の総括を行う.また、十和田火山で認められる大規模カルデラ噴火の予兆 的事象についても言及する.

図1.2-4 十和田湖周辺地域の地質図.

2) 十和田火山活動開始前

本委託研究では、十和田火山活動開始以前の第四紀火山についても調査・研究を実施した.そ の理由としては、以下の2点が挙げられる.1)十和田火山活動開始以前の第四紀火山について、 これらを対象とした詳細な研究例が無く、その層序や分布の実態は不明なままであったこと.2) 層序や分布の実態が不明であったため、研究報告によっては、これらを「十和田火山」として一 括するものもあり(村岡.高倉、1988; Hunter & Blake、1995;中野ほか、2013;山元、2015 など)、どこからを十和田火山とするのか、十和田火山の定義に混乱が生じていたこと.これらの 問題を解決することを目的として、本委託研究では、十和田火山活動開始以前の火山岩類を対象 に、地質調査及び各種放射年代測定を実施した.以下では、それらによる研究成果の要点のみを 述べる.

+和田湖周辺地域における主要な火山活動は,鮮新世における火山活動停滞期(+和田湖図幅 のデータによる)を経て,2.5 Ma頃に開始した.2.5 Ma以降~十和田火山活動開始までの火山 活動は,大きく前期(2.5~1.6 Ma)と後期(1.6~0.6 Ma)に区分される.図1.2-4に十和田湖 周辺地域の地質図を,図1.2-5に第四系層序を表すブロックダイアグラムを示す.

前期(2.5~1.6 Ma):本地域南東部において火山活動が開始された. 複数の噴出中心より安山 岩~デイサイトマグマが噴出し,高山溶岩・火砕岩,宇樽部川火砕岩・溶岩,十和田山溶岩,三 ツ岳溶岩が形成された(図 1.2-4,図 1.2-5). 堆積物は,水冷破砕溶岩,陸上溶岩,火砕流堆積 物,降下火砕堆積物からなる.堆積環境は,当初は湖水底であったが,次第に埋め立てられ,陸 上へと変化した.これらの火山活動は,1.7~1.6 Ma頃の十和田山や三ツ岳の溶岩ドーム群の形 成によって一旦終了した.

後期(1.6~0.6 Ma):本地域南東部で火山活動が終了した後,北西部において火山活動が開始 された.複数の噴出中心より玄武岩質安山岩~デイサイトマグマが噴出し,温川沢溶岩,爺倉岬 溶岩・火砕岩,岩岳溶岩・火砕岩,堀切沢溶岩が形成された(図1.2-4,図1.2-5).堆積環境は, 当初は湖水底で一部陸上環境にあったが,その後,陸上環境へと変化した.これらの活動と同時 期に,北東部では湖水底で奥入瀬川火砕岩が形成された.おそらく単成火山の活動とみられる.

0.6 Ma 以降:本地域を給源とする 0.6~0.2 Ma の顕著な火山噴出物は認められない. 十和田火山の活動開始(0.2 Ma)までには,約40万年間の活動間隙(あるいは停滞期)が存在したと考えられる(図 1.2-5).

従来の研究では、十和田火山活動開始以前の噴火史が不明確であったため、どこからを十和田 火山の活動とするか、いつから十和田火山の活動が始まったのかについて、明確な見解が得られ ていなかった.今回の一連の調査研究により、十和田火山の活動開始時期が 0.2 Ma 付近である こと、それ以前には 40 万年間の火山活動休止期が存在することが判明した. 0.6 Ma 以前の火山 活動については、十和田火山とは別の火山として扱うべきと考える.

3) 十和田火山先カルデラ期

先カルデラ期噴出物の概要

+和田火山は 0.22 Ma 以降に活動を開始した(工藤, 2016).活動開始以降, +和田火山最初の大規模噴火である噴火エピソード Q 直前までの間が, 先カルデラ期と定義される(Hayakawa, 1985).噴火エピソード Q の年代は, OSL 年代測定によると 61 ka である(Ito *et al.*, 2017:本委託研究による成果). 先カルデラ期の期間は, 220~61 ka の約 16 万年間である.

+和田火山先カルデラ期噴出物は,溶岩及び火砕物で構成され,主にカルデラ北〜北東側(青 橅山地域)と南西〜南側(発荷地域)に分布する(図1.2-4).青橅山地域に分布する先カルデラ 期噴出物は,火砕物を主体とし,中位に広域テフラの洞爺火山灰(106 ka: Matsu' ura *et al.*, 2014) を挟む(図1.2-1;工藤,印刷中).発荷地域に分布する先カルデラ期噴出物は,溶岩を主体とし, 火砕物を伴う(図1.2-6).発荷地域では,洞爺火山灰の挟在は認められない.

図 1.2-6 発荷地域における先カルデラ期噴出物の地質層序.5万分の1地質図幅「十和田湖」の調 査による未公表データによる.

青橅山地域では膨大な枚数の火砕物が認められる(図 1.2-1). Toya (106 ka) と養老沢火砕流 堆積物 (88.3 ka)の間では、一部の露頭において連続的な層序を確認できる. この連続層序では、 噴火休止期を示すローム層で区分される、少なくとも 10 回の噴火堆積物が認められる(図 1.2-1). 他方、上北平野における遠方テフラ層序では、同じ堆積区間に 6 枚の降下テフラが認められる. このことは、先カルデラ期においては、遠方テフラ層序のみでは認識できない小規模な噴火も実 際には多数発生していたことを示す. 106~88.3 ka の噴火発生頻度を計算すると、1800 年に 1 回の噴火発生頻度となる. これは、後カルデラ期後期の噴火発生頻度(1400 年に 1 回; 工藤, 2008) とほぼ同程度である.

先カルデラ期の火砕流堆積物

先カルデラ期噴出物には、少なくとも7枚の火砕流堆積物が認められる(図 1.2-1,図 1.2-2, 図 1.2-6). それらは、Toya より下位の未命名火砕流堆積物3枚,小幌内川火砕流堆積物、青橅 火砕流堆積物、養老沢火砕流堆積物、滝ノ沢火砕流堆積物である.これらのうち、Toya よりも上 位の青橅火砕流堆積物、養老沢火砕流堆積物、滝ノ沢火砕流堆積物については、比較的詳細な分 布が判明している(図 1.2-7).分布と平均層厚から、各火砕流堆積物の体積は、それぞれ 0.07 km³, 0.48 km³, 0.18 km³ (DRE)と求められる.いずれもカルデラ形成期の火砕流の規模(数 km³ 以上)は超えない.これらの火砕流堆積物について、遠方テフラとの対比を試みたところ、青橅 火砕流堆積物は T-15 (90.5 ka)、養老沢火砕流堆積物は AP(アオスジパミス:88.3 ka)に対比 された.他の火砕流堆積物については、現時点では対比可能なテフラは見つかっていない.この うち、88.3 ka に発生した噴火(養老沢火砕流・AP)は、総噴出量が 2.4 km³と見積もられ、こ れまでに知られている中では先カルデラ期最大規模の噴火である.この噴火による堆積物は、カ ルデラ壁のほぼ全周にわたって追跡可能である(図 1.2-1,図 1.2-6,図 1.2-7).

これまで先カルデラ期噴出物は、カルデラ北東壁付近に分布するものに対して「青橅火山」、カ ルデラ南西壁付近に分布するものに対して「発荷火山」という名称で呼ばれ、それぞれが別々の 噴出中心によるものと見なされてきた(Hayakawa, 1985).しかし、両者は上記の88.3 ka の噴 出物を挟有することから(図 1.2-1、図 1.2-6)、同時期の火山活動による産物とみなされる.さ らに、少なくとも一部は同じ給源からの噴出物である。両者は全岩化学組成でも目立った差は認 められないことから、今のところ別々の噴出中心を想定すべき積極的な根拠は何も見出せない. 今後は、青橅火山・発荷火山の区分は用いるべきではないと考える.

49

図 1.2-7 先カルデラ期火砕流堆積物の分布.5万分の1地質図幅「十和田湖」の調査による未公表データを含む.

図 1.2-8 十和田火山の階段ダイアグラム. Hayakawa (1985), 中川ほか (1986), 工藤 (未公表 データ) 等を用いて作成した.

現状の到達点と残された課題

図 1.2-8 に十和田火山の階段ダイアグラムを示す.現状の先カルデラ期階段ダイアグラムは, 遠方テフラ及びそれらと対比された火砕流堆積物のデータで作成したものである. 給源近傍のみ で産する溶岩と火砕物については、階段ダイアグラムには反映できていない.その要因は、給源 近傍相において未だ十分な精度で年代制約を与えられていない点にある. これまでの調査研究に より、給源近傍相の一部には年代制約を与えることができた.しかし、カルデラ形成期以降と同 じ精度での噴火史構築には、未だほど遠い状況にある.特に、青橅山地域ではZP1(118 ka)よ り下位層準,発荷地域では養老沢火砕流堆積物(88.3 ka)より下位層準において,精度の良い年 代指標が見つかっていない.特に、遠方テフラとの対比については、多くの課題が残されている. 遠方テフラにおいて、ZP1(118 ka)よりも下位の層準では、普通角閃石を含む十和田系テフラ が多数認められている(T-6, T-4, NP, Or-P など).一方, 給源近傍においては, ZP1 より下位 の層準において、普通角閃石を含む噴火堆積物はほとんど認められない、このギャップの要因と しては,1)たまたま給源近傍で普通角閃石を含む噴出物が見つかっていないだけで同時代の堆積 物である可能性,2) 給源近傍で見られる溶岩・火砕物のほとんどが,普通角閃石を含む最後のテ フラである T-6 (137 ka) 以降の噴出物である可能性,が考えられる.いずれにしろ,先カルデ ラ期階段ダイアグラムの高精度化のためには、この問題を解決する必要がある.現状の階段ダイ アグラムによれば、10万年前ごろから噴出率が1桁増加しているように見える.新たに認識され た3回の火砕流噴火も、この時期に発生している.ただし、より詳細な議論をするためには、上 記課題を解決する必要がある.

また,階段ダイアグラムによれば,噴火エピソードQ以前に約2万年間の低噴出率期があるように見える.これが事実であれば,大規模噴火の前の予兆を示している可能性がある.しかし残 念ながら,給源近傍相においては,養老沢火砕流堆積物と噴火エピソードQの間は連続的な地質 記録が欠如する傾向にある.そのため,噴火エピソードQに先行する時期については,十分な精 度で噴火史が構築できていない状況にある.現時点では低噴出率期が存在していたか否かについて,十分な根拠に基づいて検証することは不可能である.

4) 十和田火山カルデラ形成期

はじめに

カルデラ形成期は,噴火エピソード Q (61 ka) から L (15.5 ka) までの間と定義される (Hayakawa, 1985). その期間は, 61~15.5 ka の約4万6千年間である. カルデラ形成期噴出 物は,火砕物のみからなり,溶岩は確認されていない. カルデラ形成期は,噴出量数 km³以上 (DRE) に及ぶ,複数回の火砕流噴火の発生で特徴付けられる. このような大規模噴火は,それ 以前の十和田火山(先カルデラ期)では認められないタイプの噴火である. 比較的規模の大きな 火砕流噴火は,噴火エピソード Q (61 ka, 4.8 km³), N (36 ka, 17.9 km³), L (15.5 ka, 20.3 km³) の3回発生した. これらの3回の火砕流噴火の間にも,噴出量数 km³以下の噴火が複数回 発生している. 本委託研究では,給源近傍における,大規模噴火間の噴火堆積物に注目して調査・ 研究を進めた.

図 1.2-9 カルデラ形成期噴出物の地質柱状図(噴火エピソード Q~N 噴出物). 5万分の1地質図 幅「十和田湖」の調査による未公表データを含む.

図 1.2-10 カルデラ形成期噴出物の地質柱状図(噴火エピソード N~L 噴出物).5万分の1地質図幅「十和田湖」の調査による未公表データを含む.

新たに見つかった噴火堆積物

給源近傍でのカルデラ形成期噴出物の柱状図を,図1.2-9及び図1.2-10に示す.本委託研究及 び5万分の1地質図幅「十和田湖」の調査により、下位から順に新たに O'火山灰(仮名)、N'火 山灰(仮名), 雲井火砕流堆積物, カラタマ沢軽石, 小惣辺沢火山灰の 5 枚の噴火堆積物を新た に見出した. これらの噴出物は、十和田湖の周囲半径 14 km 以内に分布する(図 1.2-11). この うち,雲井火砕流堆積物とカラタマ沢軽石は,層位,14C年代値,全岩化学組成,火山ガラス化 学組成により、これまで上北平野で米田テフラ(噴火エピソード M; 21.2 ka)と呼ばれてきた テフラに対比される. O'火山灰, N'火山灰, 小惣辺沢火山灰は, いずれも小規模な降下テフラで あり, 既知のテフラには対比されない. これらの火山灰層をもたらした噴火を, Hayakawa (1985) に倣い、それぞれ噴火エピソード O', N', M'と呼ぶことにする. これらの火山灰層は、いずれも 青灰色を呈する火山灰層で、ブロック状の新鮮なデイサイト~流紋岩岩片で主に構成されること から、ブルカノ式噴火による堆積物と考えられる. N'火山灰、小惣辺沢火山灰の年代は、14C年 代値より, 23 ka, 17.2 ka と見積もられる (図 1.2-10). O'火山灰の年代は、年代既知のテフラ とローム層の厚さから、約40 ka と見積もられる. 噴出量は、Havakawa (1985)の方法により、 O'火山灰が 0.09 km³, 小惣辺沢火山灰が 0.05 km³ と見積もられる. N'火山灰は, 1 地点でしか 見つかっていないので、噴出量の見積もりが困難である.ここでは、小惣辺沢火山灰と同規模と 推定して, 0.05 km³とした.

図 1.2-11 新たに認識されたカルデラ形成期噴出物の分布.5万分の1地質図幅「十和田湖」の調査 による未公表データを含む.

噴火エピ		□····································	年代	噴出量	斑晶鉱物組合せ					
ソード名 ^{ナノラ石}		₩ <u>9</u> 次惊式•推移	(ka)	(km³, DRE)	PI	Орх	Срх	Hb	01	Opq
L	八戸	水蒸気プリニー式→火砕流発生	15.5	20.3	0	0	0	0	tr	0
M'	小惣辺沢	ブルカノ式	17.2	0.05	0	0	0	0		0
м	雲井、米田、カラタマ沢	マグマ水蒸気・プリニー式・火砕流発生	21.2	3.1	0	0	0		tr	0
N'	(N'火山灰)	ブルカノ式	23	(0.05)*	0	0	0			0
N	大不動, 切田	水蒸気プリニー式→火砕流発生	36	17.9	0	0	0			0
O'	(0'火山灰)	ブルカノ式	40	0.09	0	0	0			0
0	合同	プリニー式	53	1.4	0	0	0			0
P'	T-25	マグマ水蒸気	55.2	0.06	0	0	0			0
Р	キビダンゴ	プリニー式	58	1.2	0	0	0			0
Q	奥瀬, レッド	プリニー式→マグマ水蒸気→火砕流発生	61	4.8	0	0	0		tr	0

表1.2-1 カルデラ形成期の噴火エピソード一覧表

*一地点のみでしか見つかっていないため. 噴出量の見積もりが困難である. ここでは小惣辺沢火山灰と同規模と推定した.

カルデラ形成期の噴火史

表 1.2-1 にカルデラ形成期の各噴火エピソードについて,噴火様式・推移,年代,噴出量,斑 晶鉱物組合せの一覧表を示す.カルデラ形成期最初の噴火は,61 ka の噴火エピソード Q である. 噴火エピソード Q では,最初にプリニー式噴火が発生し,降下軽石・スコリアが堆積した.引き 続いて,マグマ水蒸気噴火が発生し,火山豆石を含む降下火山灰層が堆積した.その後,火砕流 が発生し,周囲に広く流れ下った.火砕流堆積物の体積は,Hayakawa (1985)によると 4 km³

(DRE)である.ただし、これは過小見積もりの可能性がある.5万分の1地質図幅「十和田湖」の調査では、従来考えられていたよりも広域において、火砕流堆積物の分布を確認している.そのため、実際の規模はもう少し大きかった可能性が高い.そのため、今後、噴出量の再見積もり行う必要がある.噴火エピソード Q の時に、最初のカルデラが形成されたと考えられている

(Hayakawa, 1985).

その後,58 ka に噴火エピソード P,55.2 ka に噴火エピソード P',53 ka に噴火エピソード O が発生した.噴火エピソード P,Q では,プリニー式噴火が発生して,降下軽石が堆積した.噴 火エピソード P'では,マグマ水蒸気噴火が発生して,軽石火山礫混じりの火山灰層が堆積した. 40 ka の噴火エピソード O'では,ブルカノ式噴火により青灰色火山灰が堆積した.

36 ka の噴火エピソードNは、その当時では十和田火山史上最大の噴火であった.水蒸気プリ ニー式噴火が発生し、火砕サージ堆積物、降下軽石・火山灰が堆積した後、大規模な火砕流が発 生して、十和田火山を中心とした半径 50~100 km の地域に火砕流が流れ下った.この時もカル デラの陥没が起こったと推定される.その後、23 ka に噴火エピソードN'が発生した.ごく小規 模なブルカノ式噴火であり、青灰色火山灰が堆積した.21.2 ka には噴火エピソード M が発生し た.この噴火は、カルデラ形成期では4番目に規模の大きな噴火である.噴火推移の順番は不明 であるが、水蒸気プリニー式噴火、プリニー式噴火により、降下火砕物がもたらされ、火砕流も 発生した.

17.2 kaには噴火エピソード M'が発生した.小規模なブルカノ式噴火であり,青灰色火山灰が 堆積した.特記すべき特徴として,この火山灰層には普通角閃石が含まれることが挙げられる(表 1.2.1).十和田火山噴出物に普通角閃石が含まれるのは稀である.カルデラ形成期では,噴火エ ピソード L, M'堆積物にのみ,普通角閃石が認められる.噴火エピソード L の約2千年前に,L と同一の斑晶鉱物組合せの火山灰が噴出していたことは,両者のマグマが共通していることを示 唆する.噴火エピソード M'は,カルデラ噴火の先駆的噴火として位置付けられる可能性がある.

15.5 ka の噴火エピソードLは、規模の面でNをやや上回る、十和田火山最大規模の噴火である.水蒸気プリニー式噴火が発生し、火砕サージ堆積物、降下軽石・火山灰が堆積した後、大規模な火砕流が発生して、十和田火山を中心とした半径 50~100 km の地域に火砕流が流れ下った. この噴火により、現在見られる直径約 11 km の十和田カルデラの原形が完成した.

カルデラ形成期全体を通してみると、その最初期以降(53 ka の噴火エピソード O 以降)は、 小規模なブルカノ式噴火(O', N', M')と比較的規模の大きな軽石噴火(N, M, L)が交互に 発生する傾向がある.噴火エピソード O' N', M'の火山灰層は、新鮮で緻密なブロック状のデイ サイト~流紋岩で構成されており、これらの噴火では溶岩ドームの形成を伴った可能性が高い. おそらくこの時期には、カルデラ内部に溶岩ドームからなる火山体が存在しており、軽石噴火(N, M, L)の度に火山体が破壊されることを繰り返していた可能性がある.また,いずれのブルカノ式噴火(O', N', M')も,軽石噴火(N, M, L)が発生する2~4千年前に起こっていることは興味深い.これらのセットは,記載岩石学的特徴が一致する.特に,M'とLについては,十和田火山では珍しい普通角閃石を含む点で一致する.これらのブルカノ式噴火(O', N', M')は,軽石噴火(N, M, L)の先駆的噴火として位置付けられる可能性がある.

図 1.2-12 カルデラ形成期の階段ダイアグラム. Hayakawa (1985), 中川ほか (1986), 工藤 (未 公表データ) 等を用いて作成した.

階段ダイアグラムの特徴

図 1.2-12 にカルデラ形成期の階段ダイアグラムを示す.カルデラ形成期では、大規模カルデラ 噴火の発生以外に、他の活動時期では見られない特徴が認められる.それは、大規模カルデラ噴 火に先行する数万年間の低マグマ噴出率期の存在である.カルデラ形成期は、全体としてみれば 1.1 km³/千年と高マグマ噴出率であり、先カルデラ期や後カルデラ期よりも噴出率は高い(図 1.2-8).しかしながら、大規模カルデラ噴火間の時期に注目すると、噴火エピソード Q-N 間が 25,000 年間でマグマ噴出率が 0.11 km³/千年、噴火エピソード N-L 間が 20,500 年間でマグマ噴 出率が 0.15 km³/千年であり(図 1.2-12)、先カルデラ期後期(約4万年間)や後カルデラ期(1 万5千年間)と比較してもマグマ噴出率が低い(図 1.2-8).また,火砕噴火の頻度についても, 噴火エピソード Q-N 間が 0.16回/千年,噴火エピソード N-L 間が 0.15回/千年であり,後カルデ ラ期の 1.2回/千年よりも有意に低頻度である.以上のように,大規模カルデラ噴火の前には,2 万年間程度の低マグマ噴出率・低噴火頻度期が先行する傾向にある.大規模カルデラ噴火間の時 期は,マグマ噴出率も低く,噴火発生頻度も低頻度で,噴火活動が相対的に不活発な時期であっ たと考えられる.このことは,大規模カルデラ噴火を起こすためには,それに応じて地下にマグ マを蓄積する時間が必要であることを示唆する.なお,噴火エピソード Q 以前にも約2万年間の 低噴出率期があるように見えるが(図 1.2-8),その不確実性については,前節にて説明した通り である.

図 1.2-7 カルデラ形成期~後カルデラ期噴出物の全岩 SiO2 量時代変化図.5万分の1地質図幅「十和田湖」の調査による未公表データを含む.

全岩 Si02 量の時間変化

図1.2-7にカルデラ形成期からら後カルデラ期にかけての噴出物の全岩SiO2時代変化図を示す. カルデラ形成期では、噴火エピソードQで安山岩~デイサイトマグマが噴出した後、全岩SiO2 が時代とともに微増し、NとMでは流紋岩マグマが噴出するに至った.その後、Lではやや苦鉄 質になるものの、デイサイト~流紋岩に至る比較的幅広い組成のマグマが噴出した.このように、 カルデラ形成期においては、一貫してデイサイト~流紋岩マグマ主体の活動となっている.組成 変化も顕著ではないので、比較的安定したマグマ系の存在が示唆される.しかし、後カルデラ期 に入ると、マグマ組成は急激に玄武岩質安山岩へと変化し、その後、多少のぶれがあるものの、 1万5千年間かけて徐々に玄武岩質安山岩から流紋岩へと変化する傾向を示す.カルデラ形成期 ~後カルデラ期を通して見てみると、カルデラ形成期直後に大きな不整合があり、後カルデラ期 では短期間で急速な組成変化が起こっている.このことから,カルデラ形成期と後カルデラ期で は、マグマ系そのものが別物になっている可能性が高い.その要因としては、噴火エピソード L の大規模カルデラ噴火において、カルデラ形成期に持続していた珪長質マグマ溜まりが完全崩壊 することにより、浅部マグマ系が劇的に変化し、玄武岩質安山岩マグマが上昇できるようになっ たことが考えられる.ただしその後、マグマ組成は急速に珪長質化していることから、マグマ溜 まりの崩壊に関わらず、珪長質マグマの生成・供給は連続的に続いてきた可能性がある.今後、 地下からのマグマ供給率が変わらなければ、新たにカルデラ形成期のようなシステムを再建する 可能性も考えられる.

5) まとめ

+和田火山は 22 万年前以降に活動を開始した. +和田湖周辺地域ではそれ以前の 2.5~0.6 Ma にも火山活動が起こっていたが、+和田火山の活動との間には約 40 万年間の休止期が存在する ことから、+和田火山とは別の火山として扱うのが妥当と考えられる. +和田火山の大規模カル デラ噴火を起こすシステムは、22 万年前以降から準備され、先カルデラ期の 16 万年間を経て、 61 ka の噴火エピソード Q で確立されたと見ることができる. そのシステムは、カルデラ形成期 の間は持続していたが、15.5 ka の噴火エピソード L にて、それまでの珪長質マグマ溜まりが崩 壊することにより、一旦リセットされた可能性がある. しかしながら、後カルデラ期において、 マグマ組成が玄武岩質安山岩から流紋岩へと 1 万 5 千年間で急速に珪長質化していることから、 珪長質マグマの生成・供給は、マグマ溜まりの崩壊に関わらず連続的に続いてきた可能性がある. 今後、地下からのマグマ供給率が変わらなければ、新たにカルデラ形成期のようなシステムを再 建する可能性も考えられよう. このような見方に立てば、現在の後カルデラ期の活動は、マグマ 溜まりが完全崩壊したことによる一次的な現象と解釈することも可能である.

+和田火山では、大規模カルデラ噴火に先行する時期に、その準備過程とみられる事象が共通 して認められる.それは、大規模カルデラ噴火に先行する低マグマ噴出率・低噴火頻度期の存在 と、大規模カルデラ噴火の 2~4 千年前に先駆的に発生する小規模ブルカノ式噴火である.+和 田火山では、噴出量 15 km³を超える大規模カルデラ噴火の前には、2 万年間程度の低マグマ噴出 率・低噴火頻度期が先行する傾向にある.これは、大規模カルデラ噴火を起こすためには、それ に応じて地下にマグマを蓄積する時間が必要であることを示唆する.また、カルデラ形成期にお いては、噴出量 3 km³以上の軽石噴火(計 3 回、2 回の大規模カルデラ噴火を含む)が発生する 2~4 千年前には、いずれも小規模なブルカノ式噴火が発生している.これらのブルカノ式噴火と 軽石噴火のセットは、記載岩石学的特徴が一致する.特に、M'とLについては、十和田火山では 珍しい普通角閃石を含む点でも一致することから、Lの大規模カルデラ噴火をもたらした珪長質 マグマが、約 2 千年前の M'で一部噴出していた可能性が考えられる.これらの小規模なブルカノ 式噴火は、大規模噴火の先駆的噴火として位置付けられる可能性がある.

(3) 今後の課題

今後の課題として、実現性が低いものを含め、以下のものを挙げておく.

1) 先カルデラ期噴火史と階段ダイアグラムの高精度化

階段ダイアグラムに給源近傍の溶岩・火砕物を反映させる必要がある.そのためには,給源近 傍相に対して,より多くの年代指標を入れることが必要である.その手法として最も有効なのは, 給源近傍相と年代の確定している遠方テフラの対比である.本件については,来年度の委託研究 において引き続き実施する予定である.

2) 噴火エピソードQに先行する低マグマ噴出率期の検証

現状の階段ダイアグラムによれば、噴火エピソードQ以前に約2万年間の低噴出率期があるように見える.これを検証するためには、給源近傍におけるこの時期の噴出物層序を確認する必要がある.しかし、要因は不明であるが、この時期の連続的な地質記録は欠如する傾向にあり、確認は非常に困難と予想される.したがって、本件の解決は特に来年度計画の課題とはしない.1)の課題の解決のための野外調査において、相当層準の調査も行うので、その際に良好な露出の発見に期待するのみである.

3) 奥瀬火砕流堆積物(噴火エピソードQ)の体積再見積もり

5万分の1地質図幅「十和田湖」の出版により(時期は来年度以降),奥瀬火砕流堆積物の分布 が大幅に改訂され,より広域に広がる見込みである.これにより,噴火エピソードQの噴出量は 現在の見積もり値よりも大きくなる可能性が高い.

引用文献

古澤 明(2003)洞爺火山灰降下以降の岩手火山のテフラの識別.地質雑,109,1-19.

- Hayakawa, Y. (1985) Pyroclastic geology of Towada volcano. *Bull. Earthq. Res. Inst.* **60**, 507-592.
- Hunter, A. G. and Blake, S. (1995) Petrogenetic evolution of a transitional tholeiitic calc-alkaline series: Towada volcano, Japan. *J. Petrol.*, **36**, 1579–1605.
- Ito, K., Tamura, T., Kudo, T. and Tsukamoto, S. (2017) Optically stimulated luminescence dating of Late Pleistocene tephric loess intercalated with Towada tephra layers in northeastern Japan. *Quaternary International*, 456, 154-162.
- Matsu'ura, T., Furusawa, A., Shimogama, K., Goto, N. and Komatsubara, J. (2014) Late Quaternary tephrostratigraphy and cryptotephrostratigraphy of deep-sea sequences (Chikyu C9001C cores) as tools for marine terrace chronology in NE Japan. *Quaternary Geochronology*, 23, 63–79.

松山 力・大池昭二(1986) 十和田火山噴出物と火山活動. 十和田科学博物館, no.4, 1-64.

村岡洋文・高倉伸一 (1988) 10 万分の1八甲田地熱地域地質図説明書. 特殊地質図 no.21-4, pp.27, 地質調査所, 27 p.

工藤 崇(2008) 十和田火山,噴火エピソードE及びG噴出物の放射性炭素年代.火山,53, 193-199.

工藤 崇(2016) 十和田火山, 先カルデラ期溶岩の K-Ar 年代. 地質調査研究報告, 67, 209-215. 工藤 崇(印刷中) 十和田火山先カルデラ期噴出物に挟まれる洞爺火山灰. 地質調査研究報告. 中川久夫・松山 力・大池昭二(1986) 十和田火山噴出物の分布と性状. 東北農政局計画部, 48p. 中野 俊・西来邦章・宝田晋治・星住英夫・石塚吉浩・伊藤順一・川辺禎久・及川輝樹・古川竜 太・下司信夫・石塚 治・山元孝広・岸本清行(2013)200万分の1地質編集図 no.11日本 の火山(第3版). 産総研地質調査総合センター.

大池昭二・中川久夫(1979)三戸地域広域農業開発基本調査「地形並びに表層地質調査報告書」. 東北農政局計画部. 103p.

沢田順弘・中村唯史・楳田禎久・Yoon Sun・徳岡隆夫(1997)島根県大田市の掘削コアから発 見された鬱陵島の完新世初期火山活動由来の漂着軽石.第四紀研究, **36**, 1-16.

山元孝広(2014)日本の主要第四紀火山の積算マグマ噴出量階段図.地質調査総合センター研究 資料集, no.613, 産総研地質調査総合センター.

1.3 大山火山の事例調査

【実施内容】

大山火山は山陰地方に位置する大型のデイサイト質成層火山である. この火山は、約6万年前 の大山倉吉降下火砕堆積物 (DKP) や8万年前の大山生竹降下火砕堆積物 (DNP) のに代表され るような大規模な火砕物を日本列島沿いに降下させる噴火を更新世に度々起こしたことで知られ ている. 大山火山の既存研究には層序学的な問題や評価手法上の問題が残されていたため、平成 27 年度はこの火山の過去約 20 万年間の噴火層序の見直しとマグマ噴出量の再計測を行い、新た に積算マグマ噴出量階段図を作成している(山元, 2017).また,大山火山のマグマは,沈み込ん だスラブの溶解物(スラブメルト)と熱源となるマントルとの相互作用で生じており、日本列島 の他地域とは異なる成因を持っている(Morris, 1995; Kimura et al., 2005; 2013). そこで,平 成 28 年度は溶岩のスラブメルト指標(Sr/Y 比)に着目し、高噴出期には指標が低く、反対に低 噴出期には高くなり、2 万年前の高 Sr/Y 溶岩で噴火活動を終えていることを明らかにした. 今年 度は全岩主及び微量成分の追加分析を行い DKP や DNP 軽石の全岩組成の推定を行った.また, Pb, Sr, Nd 同位体比に着目し, DKP や DNP 軽石との比較を行った. 特に Pb 同位体比は西南 本州のスラブ由来マグマと北九州のマントル由来マグマで異なることが知られており、DNP・ DKP はマントル由来, 溶岩はスラブ由来に近い. また ²⁰⁸Pb/²⁰⁶Pb は 8 万年前の DNP で低下し た後,時間と共に増加し,2万年前で元のレベルに回復し噴火活動を終えている.このことは, スラブメルトに対する熱源マントルの寄与が減少したものと解釈され、大山火山の活動度の低下 を示している.

【研究成果】

(1) 放射性炭素年代の追加測定

平成 27 年度に, 桝水原堆積物が模式的に露出する鳥取県西伯郡伯耆町金屋谷(35 度 22 分 10.35 秒 133 度 28 分 27.39 秒)において, その基底から炭化木片(DS201)を採取し, 26,570-26,280 calBC の暦年代を示す放射性炭素年代を得ている(山元, 2017).その後,道路法面の工事が進 んだことにより,同じ露頭の同堆積物最上部のフローユニットが観察できるようになった.下部 は緻密な溶岩片に富む岩相であるのに対して,上部は軽石に富む岩相へと漸移し,さらに最上部 は灰色の中粒〜粗粒火山灰を挟んで,再び緻密な溶岩片に富む岩相へと変化している(図 1.3-1). この最上部は炭化木片を含んでおり,試料 DS202 として(株)加速器研究所に放射性炭素年代測 定を依頼した.

DS202の測定結果は良好で、25,747-25,572 calBC の暦年代が得られた(表 1.3-1). この年代 は基底部の DS201 よりも 500~1000 年若く、有意に違いがある.しかし、露頭内のフローユニ ット間には土壌の形成はないので、この違いは桝水原火砕流-弥山溶岩噴火の継続時間を示して いるものとみられる.桝水原火砕流-弥山溶岩の同時異相である東大山降下火砕堆積物は多数の 降下ユニットから構成されるので、この間に噴火は断続的に爆発的噴火を繰り返していたものと 考えられる.一方で、桝水原火砕流-弥山溶岩噴火よりも若い阿弥陀川火砕流-三鈷峰溶岩噴火の 基底部からの暦年代は 18,971-18,749 calBC であるので(山元, 2017)、両噴火の間には約7千 年の休止期間が存在している.

図 1.3-1 桝水火砕流堆積物最上部の岩相. 鳥取県西伯郡伯耆町金屋谷. DS202 は測年炭化木片

測定番号	試料名	松ҧ椙正	試料	処理	δ ¹³ C (‰)	δ ¹³ C 補正あり				
		1本4×物171	形態	方法	(AMS)	Libby Age (yrBP)	pMC (%)			
IAAA-171235	DS202	鳥取県西伯郡伯耆町金屋谷	木炭	AaA	-21.68 ± 0.51	23,410 ± 80	5.42 ± 0.05			

測定番号	δ ¹³ C 補	前正なし	展年誌工用(DB)	1- 展在冶绘画	2- 两年少效田	
	Age (yrBP)	pMC (%)	眉中耿正用(yīBr)	167百年11年1日出	26 倍牛1 印西	
IAAA-171235	23,360 ± 80	5.46 ± 0.05	23,411 ± 80	25747calBC - 25572calBC (68.2%)	25824calBC - 25481calBC (95.4%)	

表 1.3-1 DS202 放射性炭素年代測定結果

(2) 大規模噴火軽石の全岩主成分組成

平成 28 年度は、大山火山の溶岩もしくは火砕流堆積物中の本質溶岩岩片の全岩化学組成分析 を実施し、噴火ユニット毎に組成が異なることを明らかにしている。特に K₂O 量や Sr・Ba 量 で違いが大きく、同一 SiO₂ 量で異なる組成トレンドを形成している。この組成トレンドの違い は、マグマの起源が異なることを意味していよう。今年度も追加の溶岩等試料の全岩化学組成分 析を行うとともに、前年度は分析できなかった軽石全岩組成を、火山ガラスの主成分組成から推 定した.なお、全岩主成分分析は Activation Laboratories 社に依頼している。また、火山ガラ スの主成分元素分析は、産総研の EDX を用いている。

第 1.3-2 図大山火山噴出物の SiO₂-K₂O 図. DKP 火山ガラスの組成は本研究による. DKP 及び DNP の斑晶組成は Tsukui (1985), DNP の火山ガラス(ガラス包有物)の組成は古澤(2008)によ る. 160ka 以前の古期溶岩(低噴出期)と名和・槙原・弥山噴出物(高噴出期)の組成トレンドは, 明瞭に異なっている.火山ガラスと斑晶組成から推定される DKP と DNP の全岩組成は後者のトレ ンドと一致する.

大山火山噴出物の化学組成分析で問題となるのは、6万年前のDKPや8万年前のDNPの軽 石が著しく風化作用しており、全岩化学組成分析が不可能なことである。特に軽石の基質を構成 する火山ガラスについては、完全に粘土化したものがほとんどであるため、テフラの対比も斑晶 鉱物の特徴により区別されてきた(町田・新井, 1979). 一方で, 平成 28 年度に示した溶岩で 確認できた化学組成の時系列変化の特徴が、はたして DKP や DNP のような大規模プリニー式 噴火にも認められるのかは、大山火山の長期評価を行うためには極めて重要である。そこで、火 砕物として破砕された粒子毎に主成分元素濃度を求め、粒子のモードから軽石の全岩主成分元素 組成を復元する手法を採用した.軽石中の斑晶鉱物の主要元素組成については,ほとんど変質し ておらず測定が容易なことから、既にTsukui(1985)により明らかにされている.また、近年 になり湖成堆積物やボーリングコアなどから保存の良い火山ガラスを含んだテフラ試料が見出さ れ, その組成の特徴が明らかになってきている(長橋ほか, 2007; 2016; Smith et al., 2013). 今回, 本研究で分析した DKP テフラ(HOB-1-15.76) も, 産総研が活断層調査のため に富山県で実施したボーリングコア(丸山・齋藤, 2014)から得られた試料である. 軽石の全岩主成分組成は、ハーカー図上で個々の斑晶(斜長石+角閃石+斜方輝石+黒雲母+鉄 鉱)のモード比合算組成値と火山ガラスの組成値を直線で結んだ混合直線上に求めることが出来 る(図 1.3-2). 分析した DKP テフラにおける火山ガラスの含有量は 60%強であるので, DKP の全岩 SiO2 量は 65~66%となる.特に K2O 量については、高噴出期の名和火砕流や桝水原火 砕流-弥山溶岩と160ka以前の低噴出期溶岩や最末期溶岩とでは明瞭な違いがあり,DKPの組 成は前者の高噴出期トレンドと一致している. 図 1.3-2 では DNP の火山ガラス組成も表示して いるが、この値は古澤(2008)による斑晶中のガラス包有物の分析値である.ガラス包有物が 軽石基質の火山ガラスと同じ組成である保証はなく、また DNP の火山ガラス含有量も明らかで はないため、DNPの全岩主成分は特定できていない.それでも、DNPの火山ガラス包有物と 斑晶モード合算値の混合直線は DKP と同様に高噴出期トレンドに近く, 類似の組成を持つこと が期待できる.

(3) 全岩微量元素分析結果

大山火山噴出物のような典型的アダカイトは,火山弧の下に沈み込んだ若くて熱い海洋スラブ が部分融解して形成した火山岩である(Defant and Drummond, 1990). 一般に斜長石,角閃 石, 黒雲母を含むデイサイトであものの,Yに乏しくSrに富み,希土類元素(REE)パター ンでは重希土ほど枯渇し,Eu異常を欠くなどの特徴がある(Defant and Drummond, 1990; Martin, 1999 など). これらの記載的特徴は,ざくろ石±角閃石が安定で斜長石が不安定な高圧 化において玄武岩質の岩石が融解することに由来すると考えられている(Kay, 1978 など).平成 28年度は,スラブメルト指標(Sr/Y比)に着目し,大山火山では高噴出期には指標が低く,反 対に低噴出期には高くなり,2万年前の高Sr/Y 溶岩で活動を終えていることを明らかにした. ただし,昨年度分析はActivation Laboratories 社のICP-MS による依頼分析であり,一部元素 (特に重希土,Y,Nbなど)の測定感度は必ずしも高くはない.そこで,今年度は産総研の

Agilent 社製 7900 型 ICP-MS を使用し, 試料の再測定を実施した.分析方法は Ishizuka et al. (2003, 2007)に準じている.分析対象の元素は, Li, Be, V, Cr, Ni, Rb, Sr, Y, Zr, Nb, Cs, Ba, La,

64

Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, U である(表 1.3-2). 試 料は 2%HNO3溶液として測定し、希釈率は約 6000 倍とした.検量線作成は、岩石標準試料を 分析することにより行った.通常用いた標準試料は、JB2, JB3, JGb1, JA1, JB1A, AGV1, BCR1, BRR1(in-house standard of University of Southampton)である.測定中のマシンのド リフト補正には、外部補正法、内部補正法の両方を用いた.内部標準として In, Re を測定溶液 に添加した.希土類元素(REE)の一部と Ta については、必要な妨害元素の補正を行った.分析 誤差(2s.d.)は、通常 REE 元素で 4%、それ以外の元素で 6%程度あるいはそれより小さい.分析 値の再現性をチェックするために、検量線に用いた溶液とは別途、試料を分解して用意した JB2, JB3, BHVO2を、未知試料とともに毎回測定した.また、DKP については、水簸とハンド ピッキングにより火山ガラスを分離し、約 0.1g の試料を酸と炭酸ナトリウムで溶解を行った. 試料の微量元素測定は北海道大学の LA-ICP-MS を使用している(表 1.3-3)

第 1.3-3 図 大山火山噴出物の Sr/Y-Y 図及び Nb/Y-Ba 図. 北九州地域火山岩の分析値は Hoang and Uto (2003), 東北日本弧の分析値は Kimura and Yoshida (2006)による.

Sample	V	51	Cr52	Ni60	Rb 85	Sr 88	Y 89	Zr 91	Nb 93	Cs 133	Ba 135	La 139	Ce 140	Pr 141	Nd 146
MAK-02		50.29	21.64	13.0	38.9	4 677.7	8.21	8 72.2	8 7.28	2.43	402.7	18.95	33.91	3.964	14.56
NAW-07		65.87	14.51	14.6	50.9	6 815.1	7.98	4 90.1	5 10.15	2.67	470.8	22.17	44.85	4.579	16.74
NAW-08		63.54	13.53	13.5	49.0	7 892.4	7.37	3 91.0	7 10.01	2.36	469.0	21.66	43.12	4.263	15.43
NAW-09		67.98	15.20	14.9	49.8	1 922.8	9.16	4 102.5	8 10.68	2.79	488.8	23.57	48.52	5.037	18.83
NAW-10		72.81	14.48	16.4	50.3	6 1104.6	8.30	9 70.1	0 10.42	2.76	486.5	25.31	50.74	5.579	20.66
NOD-01		57.83	14.56	15.6	51.5	1026.0	8.95	1 91.6	8 11.42	2.82	503.7	30.06	58.12	5.945	21.44
NOD-02		60.24	14.98	13.8	425	9 938.4	6.66	8 93.4	7 10.72	0.98	460.6	22.34	44.41	4 371	15.89
NOD-02		63.97	20.84	14.9	45.0	7 0010	8.01	1 70.3	1 10.72	1.64	468.1	21.09	44.52	4.577	16.79
NOD-03		03.07	20.04	14.30	40.0	7 901.9	7.00	1 79.3	1 10.27	2.42	400.1	21.30	44.52	4.527	10.79
SAS-01		00.12	12.21	12.30	52.7	5 748.6	7.98	4 82.3	10.51	3.13	431.7	20.56	38.52	3.964	14.39
SAS-02		62.65	17.58	13.7	49.6	3 803.9	8.46	3 87.8	1 9.42	1.21	484.5	40.46	72.14	6.851	22.40
SAS-04		62.13	16.19	8.06	46.2	5 702.0	8.21	7 84.6	0 6.98	1.50	420.2	16.93	32.50	3.333	12.27
SAN-01		66.24	13.53	15.7	45.4	1 1032.3	7.41	6 75.7	4 10.16	2.64	480.1	23.80	46.67	4.938	18.34
SAN-02		61.09	13.38	14.03	\$ 49.6	8 879.8	6.48	1 56.3	1 9.57	2.67	459.7	19.77	37.23	3.766	13.94
SAN-03		83.52	17.79	10.46	i 31.0	1 721.1	8.04	5 124.	7 8.24	1.63	379.6	18.91	38.11	3.780	13.80
SIM-03		62.95	13.74	14.09	51.4	8 811.5	7.38	9 86.8	3 10.02	2.09	473.6	19.57	37.39	3.859	14.30
SIM-04		64.66	12.47	14.24	52.0	6 905.4	7.22	1 88.9	9 9.75	3.10	465.3	20.62	40.14	4.046	14.88
MAS-03		59.43	14.37	8.5	55.6	0 632.3	7.63	5 66.3	5 7.46	3.01	450.9	18.20	36.73	3.603	12.89
MAS-06		58.64	11.32	9.6	56.3	2 702.2	7.31	2 64.3	2 7.78	3.25	415.1	18.58	35.03	3.514	13.08
MAS-10		61.32	11.39	10.2	45.1	7 734.0	7.84	5 70.4	8 8.14	3.03	445.4	18.41	35.19	3.747	13.66
NAW-02		52.92	12.24	10.6	37.4	4 710.2	5.70	9 77.8	9 5.20	0.49	377.9	14.30	25.83	2.766	10.08
DAJ-01		64 71	15.20	13.9	47.3	7 963.2	8.00	6 81.6	11.36	1.60	478.6	27.19	48.62	5.320	18.96
MAK-03		63.70	18.97	12.8	40.8	1 732.0	7.10	4 75.9	1 7.03	2.64	400.8	15.86	30.59	3 278	12.16
MAK-05		65.72	20.99	13.5	7 20.7	3 762.0	6.02	2 84.7	7.00	1 34	451.4	17.21	28.98	3 286	12.10
MAR-00		67.55	20.99	13.5	20.7	7 601.1	0.92	7 07.1	1.48	1.34	431.4	17.21	20.98	3.200	12.03
MAS-02		07.00	17.07	8.5	46.5	091.1	6.43	r 6/.4	10.00	1.36	429.7	17.37	33.14	3.467	12.79
MAS-04		08.67	12.54	16.10	51.5	/ /55.2	6.89	0 39.4	10.83	2.29	426.1	20.17	37.58	3.835	13.93
MAS-07		59.83	11.22	9.5	54.9	1 692.7	7.28	/ 65.2	8.10	3.31	419.4	17.61	33.48	3.424	12.35
MAS-08		59.65	11.04	9.94	55.4	2 691.7	7.60	4 63.0	5 8.24	3.26	414.5	18.18	34.72	3.544	12.87
MAS-09		62.69	11.12	10.13	57.0	2 712.2	7.48	9 66.0	2 8.35	3.34	420.5	18.42	35.01	3.529	13.18
MIS-02		61.68	15.65	8.3	47.6	9 687.8	7.94	2 86.6	4 7.12	1.64	420.4	16.81	32.39	3.327	12.34
MIS-03		60.46	15.18	7.9	46.4	3 717.3	8.01	8 79.7	9 6.77	1.94	406.4	16.67	31.87	3.270	12.16
MIS-06		62.23	14.10	9.3	49.7	5 706.5	6.97	2 77.9	6 6.75	2.35	401.0	15.76	29.97	3.058	11.35
MIS-07		66.98	16.17	8.8	45.6	4 684.5	8.45	9 88.6	5 7.34	1.39	425.4	16.74	32.38	3.332	12.47
NAW-01		61.85	13.47	12.3	47.3	0 658.3	6.17	8 78.2	5 6.12	1.44	398.8	11.40	23.02	2.308	9.14
NAW-03		47.13	12.31	11.10	42.0	6 750.5	5.80	2 64.8	6 5.62	0.94	395.6	13.81	28.47	2.950	11.31
NAW-06		69.51	15.19	15.7	48.1	7 939.4	8.25	0 111.5	8 11.05	1.88	500.3	25.91	48.07	5.026	18.11
	_	00.01	10.10				0.20			1.00	000.0	20.01	40.01	0.020	10.11
BHVO-2_170	0822	334.1	307.6	\$ 117.	2 9.3	1 392.0	28.2	26 174.8	5 18.8	2 0.09	130.3	15.14	37.87	5.134	24.49
JB-2_1712	20	575.25	26.67	12.5	7 6.3	1 176.6	5 25.5	57 47.4	4 0.5	1 0.79	217.7	2.24	6.55	1.089	6.18
JB-3_17122	20	393.97	64.72	36.6	3 14.8	6 410.9	28.6	96.1	1 2.1	6 0.94	238.8	8.40	21.43	3.128	15.60
C= 147		04.45	7 7.4	50 D.	100 14	105 5-	100 7	- 100	(h 470 l)	. 475	470	- 101	Dh 200	Th 000	11.000
Sm 147 E	LU 151	Gd 15	7 101	59 Dy	162 HG	0 165 Er	100 1	m 169 1	01/2	.u 175 H	11/8	a 181	PD 208	IN 232	0 238
2.410	0.73	0 1.	786 0	J.250	1.360	0.272	0.725	0.108	0.687	0.109	2.055	0.537	8.368	5.281	1.285
2.670	0.81	0 1.	842 0	0.261	1.372	0.270	0.707	0.103	0.666	0.102	2.388	0.688	7.791	5.796	1.449
2.427	0.79	4 1.	665	0.225	1.233	0.235	0.648	0.092	0.610	0.096	2.312	0.670	7.172	5.778	1.438
3.011	0.85	9 2.	092	0.286	1.508	0.288	0.780	0.113	0.731	0.106	2.558	0.695	7.348	6.155	1.514
3.113	0.92	9 2.	145	0.283	1.459	0.270	0.699	0.097	0.606	0.092	2.095	0.670	5.944	5.054	1.050
3.245	0.88	7 2.	201	0.295	1.599	0.293	0.798	0.113	0.708	0.107	2.312	0.706	23.04	6.497	1.722
2,548	0.81	6 1.	640 (0.232	1.229	0.227	0.623	0.089	0.588	0.090	2,188	0.712	6.310	6.101	1,416
2 765	0.84	1 1	934	0.269	1.422	0.270	0.727	0.105	0.683	0.099	2 148	0.661	7 289	5.617	1 376
2.705	0.04		722	0.245	1.922	0.270	0.727	0.103	0.003	0.000	2.140	0.001	7.203	6.065	1.070
2.359	0.71	0 1.	132	J.245	1.301	0.259	0.710	0.103	0.002	0.103	2.151	0.000	7.794	0.200	1.441
2.988	0.83	6 1.	904 0	J.262	1.412	0.276	0.714	0.106	0.700	0.104	2.188	0.649	10.34	9.046	1.667
2.130	0.70	6 1.	610 0	J.230	1.321	0.253	0.706	0.105	0.688	0.103	2.142	0.518	8.657	4.544	1.198
2.871	0.89	5 1.	959 (0.268	1.349	0.252	0.693	0.100	0.623	0.088	2.200	0.697	4.563	5.103	1.067
2.264	0.79	4 1.	548	0.217	1.151	0.215	0.592	0.085	0.545	0.087	1.657	0.649	6.996	4.724	0.880
2.366	0.77	9 1.	690	0.243	1.351	0.265	0.722	0.101	0.685	0.108	2.890	0.499	6.493	4.880	0.986
2.358	0.79	6 1/	.657	0.235	1.310	0.253	0.690	0.099	0.643	0.098	2.269	0.672	8.952	6.034	1.417
2.357	0.80	6 1	687	0.237	1.234	0.240	0.634	0.091	0.607	0.092	2.290	0.659	7.260	5.728	1.305
2.074	0.64	4 1	523	0.222	1,257	0.247	0.669	0.102	0.666	0.099	1.825	0.542	8,839	5.440	1.520
2.011	0.00	2 1	E 9 E	0.000	1.026	0.220	0.624	0.006	0.615	0.000	1 709	0.592	0.000	5.005	1 466
2.123	0.06		700	0.220	1.2.30	0.230	0.034	0.096	0.015	0.096	1.798	0.582	9.659	5.695	1.400
2.268	0.73	2 1.	739 0	J.241	1.330	0.263	0.703	0.097	0.658	0.098	1.934	0.590	9.566	5.842	1.533
1.805	0.67	/ 1.	336	J.186	1.020	0.194	0.539	0.075	0.501	0.071	2.146	0.381	7.239	4.280	1.004
2.800	0.85	9 1.	977 (0.264	1.377	0.262	0.701	0.100	0.643	0.092	2.158	0.712	7.043	5.817	1.493
2.108	0.71	0 1.	548	0.217	1.228	0.238	0.640	0.094	0.619	0.098	1.991	0.491	8.167	5.049	1.368
1.992	0.71	9 1.	467	0.206	1.162	0.222	0.618	0.095	0.612	0.092	2.153	0.527	8.800	5.440	1.390
2.177	0.69	8 1/	697	0.242	1.344	0.275	0.720	0.110	0.705	0.109	2.183	0.534	8.499	4.472	1.233
2.280	0.76	3 1.	672 (0.233	1.211	0.236	0.610	0.085	0.527	0.079	1.085	0.689	7.382	3.485	0.582
2.088	0.66	7 1	535	0.215	1 195	0.228	0.612	0.094	0.602	0.091	1 764	0.560	14 690	5.486	1 4 9 0
2.000	0.00	6 4	587	0.227	1 220	0.240	0.660	0.004	0.600	0.000	1.704	0.500	0.100	5.400 E.440	1 404
2.169	0.67	0 1.	507	J.ZZ1	1.239	0.240	0.002	0.094	0.600	0.095	1.760	0.560	9.122	5.449	1.401
2.146	0.66	<u>4 1.</u>	588 (J.228	1.210	0.240	0.666	0.095	U.618	0.093	1.808	0.569	9.738	5.445	1.442
2.113	0.67	8 1.	654 0	0.236	1.287	0.258	0.713	0.108	0.699	0.104	2.156	0.532	7.554	4.459	1.262
2.085	0.70	4 1.	601 0	0.228	1.293	0.248	0.711	0.108	0.683	0.108	2.026	0.506	7.185	4.235	1.181
1.879	0.62	2 1.	420	0.208	1.169	0.229	0.614	0.090	0.595	0.088	2.010	0.491	7.370	4.811	1.255
2.142	0.70	2 1.	699	0.245	1.363	0.272	0.763	0.109	0.731	0.109	2.230	0.528	9.022	4.415	1.217
1.777	0.67	3 1.	396	0.200	1.123	0.220	0.583	0.085	0.538	0.081	2.132	0.411	6.685	4.358	1.018
1.912	0.63	7 1	399	0.185	1.001	0.190	0.486	0.071	0.445	0.066	1,770	0,396	7.364	3.806	0.866
2 783	0.84	2 1	904	0.262	1.445	0.269	0.750	0.106	0.692	0.105	2.683	0.710	9.342	6.202	1.627
2.703	0.04					0.200	5.7 50	0.100	0.002	0.105	2.000	0.710	0.042	0.203	1.027
		-	105	0.053		0.001	0.455		4			4.4.11	. =		
6.160	2.04	19 6	.195	0.953	5.210	0.984	2.490	0.334	1.959	0.283	4.412	1.349	1.707	1.208	0.413
2.303	0.79	18 3	.155	0.585	3.900	0.854	2.500	0.385	2.457	0.380	1.426	0.040	5.446	0.252	0.147
4.234	1.30	J2 4	.565	0.759	4.515	0.948	2.643	0.389	2.488	0.383	2.741	0.152	5.361	1.294	0.467

表 1.3-2 大山火山噴出物の全岩微量元素分析結果. 単位は ppm.

7Li	45Sc	51V	59Co	66Zn	71Ga	85Rb	88Sr	89Y	90Zr	93Nb	133Cs	137Ba	139La	140Ce	141Pr	146Nd
ppm																
50	6	198	4.8	244.3	18.8	45	782.9	5	76.9	4.5	3.6	337.1	12.7	23	2.3	7.8
147Sm	153Eu	157Gd	159Tb	163Dy	165Ho	166Er	169Tm	172Yb	175Lu	178Hf	181Ta	182W	208Pb	232Th	238U	
ppm																
1.2	0.5	1	0.1	0.8	0.2	0.4	0.1	0.4	0.1	1.8	0.5	0.1	10.1	4.8	1.4	

表 1.3-3 DKP 火山ガラス(HOB-1-15.76)の微量元素分析結果. 単位は ppm.

図 1.3-4 大山火山噴出物のコンドライト規格化(La/Yb)n 値及び Nb/Y 値の時系列変化.

今年度の測定結果(表 1.3-2)を、スラブメルト指標である Sr/Y-Y 図とメルトー流体指標である Nb/Y-Ba 図にプロットしている(図 1.3-3). Sr/Y-Y では分析精度を向上させた結果、高噴 出期と低噴出期では噴出物が異なる組成トレンドを持つことが明瞭になった.すなわち、両者は 異なる Sr/Y 比を持つ親マグマから分化したことが確実である.一方、今回新たに着目する Nb はスラブ脱水による流体に入りにくい元素の代表であり、スラブ流体の影響を強く受ける東北日 本弧の火山では値が低くなる.反対に Ba は流体に入りやすい元素の代表である.Nb/Y-Ba 図 においても,高噴出期と低噴出期の噴出物は明瞭に異なる領域にプロットされ,DKP も含め高 噴出期のものは,北九州地域のマントル由来玄武岩の領域に,低噴出期のものはさらに Nb/Y 比 の大きな領域に分布している.

昨年度は大山火山噴出物の化学組成時系列変化を Sr/Y 比を用いて提示した.しかし,精度の 向上により Sr/Y 値の重なりが大きくなったので,結果的に変化が示しにくくなってしまう.そ こで,今年度は Sr/Y 比と同様にスラブメルト指標として用いられる(La/Yb) n 比(コンドラ イト値で規格化した La/Yb 比; Martin, 1999)を用いる.この値は REE パターン図における軽 希土から重希土の傾きを示すもので,値が大きいほど重希土の枯渇度が大きくなる.(La/Yb) n 比と Nb/Y 比の時間変化パターンの対応は良く,どちらの元素比も,高噴出期に特徴的に低くな り,最末期に再び低噴出期と同等まで上昇して噴火活動を停止している(図 1.3-4).

(4) Sr · Nd · Pb 同位体比分析

大山火山マグマの起源物質を推定するために,噴出物の Sr, Nd, Pb 同位体比分析を行なっ た. 試料の前処理は産総研で実施し,その方法は Hoang and Uto (2003) に従っている. すなわ ち,粉砕試料からのイオン交換樹脂による元素の分離には,TAMA-Pure AA-10 級の酸及び水を 用いている.また,取り分けられた約 30 ミリグラムの試料粉末を,濃硝酸およびフッ化水素酸 (比率は1:2) で溶解後,再び硝酸を用いて完全に溶解している. Sr, Nd, Pb 同位体比分析 は,琉球大学の熱イオン化方式のマルチコレクター質量分析計を用いた.

		normalized to 0.71025 for NIST							normalized to 0	.51186 for La Jol	a Nd std
	87Sr/86Sr		Sr	2SE					143Nd/144Nd	2SE	
NOD 04		0.7	04806	0.	000008		NOD 04		0.512783	0.000010	
HOJ 01		0.7	04779	0.	000009	000009		OJ 01	0.512754	0.000008	
NAW 05	5	0.7	04759	0.	000014	000014		AW 05	0.512793	0.000008	
MAK 01		0.7	'04918	0.0		000009		AK 01	0.512752	0.000010	
SAS 03		0.7	04816	0.	000009		S	AS 03	0.512758	0.000014	
MAS 02		0.7	04947	0.	800000)8		AS 02	0.512752	0.000007	
MIS 01	301 0.705		05113	0.000017			MIS 01		0.512683	0.000009	
AMI 01	AMI 01 0.		04828	0.	000010		AMI 01		0.512773	0.000010	
	206F		206Pb/2	204Pb	207Pb/2	207Pb/204Pb		208Pb/204Pb	208Pb/206Pb	20Pb7/206Pb	7
	NOD 04		,	18.2793		15.561		38.441	0 2.103	0 0.8513	1
	HOJ 01		18.2726		15.5563		63	38.421	9 2.102	7 0.8513]
	NAW 05		18.2650		15.5570		70	38.410	6 2.103	0 0.8517	
	MAK 01		18.2887		15.5592		92	38.434	0 2.101	5 0.8508	
	SAS 03		18.2837		15.5602		02	38.442	8 2.102	6 0.8510	
	MAS 02		18.2941		15.567		79 38.461		7 2.1024	4 0.8510	
	MIS 01			18.3035	1	5.56	60 38.470		8 2.101	8 0.8504	
	AMI 01			18.2802	5.55	97	38.438	7 2.102	8 0.8512	1	

表 1.3-4 大山火山噴出物の Sr, Nd, Pb 同位体比分析結果.

今年度の測定結果(表 1.3-4)を, ¹⁴³Nd/¹⁴⁴Nd-⁸⁷Sr/⁸⁶Sr 図及び ²⁰⁸Pb/²⁰⁶Pb-²⁰⁷Pb/²⁰⁶Pb 図に 示している(図 1.3-5). Tamura (2000, 2003)は大山火山のアダカイトとこれに先行したマン トル由来玄武岩では Nd-Sr 同位体比が異なり,前者の方が同位体的に枯渇していることを既に 明らかにしている.今回のアダカイトの分析結果は,その大半が Tamira (2003)の領域にプロ ットされるものの,一部の試料(MIS01)は Tamira (2000)の玄武岩の玄武岩領域にはずれて いる.これを ⁸⁷Sr/⁸⁶Sr 比の時系列変化で示すと、そのパターンは Nb/Y 比のパターンと連動し ており、高噴出期の弥山溶岩で最も小さくなり、最末期で再び低噴出期と同等なまでに上昇する ような変化を示している(図 1.3-6).また、Kimura et al. (2015)は、Pb 同位体比が西南本州 のスラブ由来マグマと北九州のマントル由来マグマで異なり、DNP・DKP の火山ガラスは大山 火山溶岩よりはマントル由来マグマ寄りの傾向を示すことを既に報告している.今回の Pb 同位 体比分析結果は、Kimura et al. (2015)の結果と調和的である(図 1.3-5).²⁰⁸Pb/²⁰⁶Pb 比の時 系列変化では、DNP 噴火時に ²⁰⁸Pb/²⁰⁶Pb 比が大きく下がり、その後、最末期に向かって比が上 昇し、低噴出期と同等なまでに枯渇するような変化を示している(図 1.3-6).すなわち、この パターンは Nb/Y 比や ⁸⁷Sr/⁸⁶Sr 比の時系列変化と連動している.

図 1.3-5 大山火山噴出物の ⁴³Nd/¹⁴⁴Nd⁻⁸⁷Sr/⁸⁶Sr 図及び ²⁰⁸Pb/²⁰⁶Pb⁻²⁰⁷Pb/²⁰⁶Pb 図. 大山地域玄武岩 及びデイサイトの Sr-Nd 同位体比は Tamira (2000, 2003)による. DKP・DNP 火山ガラスの Pb 同 位体比および北九州・南西本州の領域は Kimura et al. (2015)による.

図 1.3-5 大山火山噴出物の ⁸⁷Sr/⁸⁶Sr 比及び ²⁰⁸Pb/²⁰⁶Pb 比の時系列変化. DKP・DNP 火山ガラス の Pb 同位体比は Kimura et al. (2015)による.

(5) マグマ供給系とマグマ組成変化の関係

アダカイトマグマを繰り返し噴出した点で、大山火山は日本列島の他地域の火山とは大きく異なっている. すなわち大山を含む山陰地域は、南海トラフからフィリピン海プレートのうち、比較的年代の若い冷え切っていない四国海盆 (30~15Ma) が沈み込んでいるため、スラブが溶融し易い造構場にあるものと考えられている (Morris, 1995; Kimura et al., 2005; 2014; 第1.3-6 図). ただし、山陰地域でも大山火山のようなアダカイトの火山はスポット的にしか出現しておらず、スラブ自体は自発的に溶融している訳ではない. 大山火山の場合も周辺に玄武岩の単成火山群を伴うなど (Tamira, 2000; 2003)、マントル内の高温領域がスラブ融解に関与し両者の反応が起きていることは間違いないであろう. 従って、本研究で示した大山火山アダカイトの多様性は、このマントルースラブメルト反応の違いを反映したものである可能性が大きい.

図 1.3-6 東北日本と西南日本の沈み込み帯の違いを示す概念図.西南日本では若く温かい四国海盆の沈み込みによりスラブメルトが形成されるが、東北日本では古く冷たい太平洋プレートが沈み込み スラブの溶融は起こらない. Kimura et al. (2015) による.

今年度の微量元素測定により、DKP を含む高噴出期と低噴出期・最末期のスラブメルト指標 である Sr/Y 比の違いが異なる組成トレンドを反映したものであることが明瞭になった(図 1.3・ 3). すなわち、両者を同一親マグマからの結晶分化で導くことは困難である. この場合、Sr/Y 比のより大きい後者の方が、スラブメルトの寄与の大きな親マグマに由来すると言えよう. ま た、Nb/Y-Ba 図でも前者は北九州地域のマントル由来玄武岩の領域に、後者はさらに Nb/Y 比 の大きな領域に分布している. 沈み込んでいるスラブの組成に大きな変化がないとすると、前者 はスラブメルトに対してより Sr や Nb の乏しい物質、おそらく高温マントルの寄与が大きくな り、スラブメルト本来の特性が弱められた親マグマに由来するものと考えられる. 親マグマの物 質的な違いは、同位体比の違いにも明瞭に現れている. ⁸⁷Sr/⁸⁶Sr 比の時系列変化は低噴出期か ら高噴出期に上昇し、マントル由来玄武岩と同等にまで達した後、最末期で再び低下している (図 1.3・5). これと連動して ²⁰⁸Pb/²⁰⁶Pb 比も変化しており、特に既報の DKP・DNP 火山ガラ スの同位体比とも調和的な結果が得られた(図 1.3・5). マグマ組成の変化と噴出量の関係からは、以下の様な定性的なモデルが考えられよう.南海ト ラフから沈み込んだ四国海盆スラブは四国から山陽地域下で大量に脱水した後、山陰地域下でエ クロジャイト安定領域に達して、スラブメルトが生成可能な状態になっている(第1.3・6 図). このような場で高温マントルの寄与が少ない場合、生産されるスラブメルトの量は少なくなり、 メルト中の含水量も乏しくならざるを得ない.反対に高温マントルの寄与が大きな場合は、スラ ブメルトの寄与は相対的に小さくなるものの、生産されるメルトの量自体は大きくなることやマ ントルからの流体の付加も期待できる.高噴出期の DKP や DNP の様な巨大なプリニー式噴火 が起きるためには、含水量の高い大量のマグマの存在が不可欠であり、この期にスラブメルト指 標が揃って低下することは、マントルースラブメルト反応が進行したことの表れであろう.一 方、大山火山では最末期に噴出量が急減するとともに、スラブメルト指標が上昇して、噴火活動 を停止している.このことは、約10万年前から始まった高温マントルの関与が2万年前にはほ とんどなくなり、噴火が継続できなくなったものと理解できよう.

(6) まとめと今後の展開

大山火山噴出物の化学組成分析と同位体比測定を行い,マグマ供給系の定性的な時系列変化モ デルを構築した.大規模プリニー式噴火の頻発した高噴出期のマグマは,それ以前のものよりも 高温マントルの寄与が大きく,異なる組成特性を持っている.また,最末期の2万年前には高 温マントルの寄与が小さくなり,噴火活動の停止に至っている.重要な点は,噴出率の変化に連 動して微量元素が示す各種の指標や同位体比が変化していることで,この関係を用いることによ り火山活動の長期評価が可能となることを事例研究として提示できた.来年度は,微量元素及び 同位体のモデル計算を追加して,マグマ供給系定性モデルの改良を行う予定である.

引用文献

- Defant M.J., Drummond M.S. (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. *Nature*, 347, 662-665.
- 古澤 明 (2008) ガラス包有物の主成分分析によるテフラ識別の試み:大山テフラ DKP, DSP, DNP の識別を例として.地質雑, 114, 618-631.
- Hoang, N. and Uto, K. (2003) Geochemistry of Cenozoic basalts in the Fukuoka district (northern Kyushu, Japan): implications for asthenosphere and lithosphere mantle interaction. *Chem. Geol.*, **198**, 249-268.
- Ishizuka, O., Taylor, R. N., Milton, J. A., Nesbitt, R. W. (2003) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. *Earth Planet.Sci. Lett.* **211**, 221-236.
- Ishizuka, O., Taylor, R. N., Yuasa, M., Milton, J. A., Nesbitt, R. W., Uto, K., Sakamoto, I. (2007) Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc. *Geochem. Geophys. Geosys.* Q06008, doi:10.1029/2006GC001475.
- Kay, R.W. (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. *Jour. Volcanol. Geotherm. Res.*, 4, 117–132.
- Kimura, J.-I., Yoshida, T. (2006) Contributions of Slab Fluid, Mantle Wedge and Crust to the Origin of

Quaternary Lavas in the NE Japan Arc. Jour. Petrol., 47, 2185-2232.

- Kimura, J.-I., Tateno, M., Osaka, I. (2005) Geology and geochemistry of Karasugasen lava dome, Daisen– Hiruzen Volcano Group, southwest Japan. *Island Arc*, **14**, 115-136.
- Kimura, J.-I., Gill, J.B., Kunikiyo, T., Osaka, I., Shimoshioiri, Y., Katakuse, M., Kakubuchi, S., Nagao, T., Furuyama, K., Kamei, A., Kawabata, H., Nakajima, J., Keken, P.E.v., Stern, R.J. (2014) Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling. *Geochem. Geophy. Geosyst.*, 15, 691–739.
- Kimura, J.-I., Nagahashi, Y., Satoguchi, Y., Chang, Q. (2015) Origins of felsic magmas in Japanese subduction zone: Geochemical characterizations of tephra from caldera-forming eruptions <5 Ma. *Geochem. Geophy. Geosyst.*, 16, 2147-2174.
- 町田 洋・新井房夫(1979)大山倉吉軽石層-分布の広域性と第四紀編年上の意義.地学雑, 88, 313-330.
- 丸山 正・齋藤 勝(2014) 富山県南砺市法林寺地区のボーリングコアにおける火山ガラスを含む大山倉吉テフラ(DKP)の認定とその北陸地域の活断層の活動性評価における意義.地調研報, 65, 1-9.
- Martin, H. (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411-429.
- Morris, P.A. (1995) Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. *Geology*, **23**, 395-398.
- 長橋良隆・佐藤孝子・竹下欣宏・田原敬治・公文富士夫(2007)長野県,高野層ボーリングコア (YKN-2004)に挟在する広域テフラ層の層序と編年.第四紀研究,46,305-325.
- 長橋良隆・深谷桃子・木村純一・常 青・佐川拓也・中川 毅・池原 研・KR15-10 乗船研究者 一同・SG06 プロジェクトメンバー一同(2016)大山倉吉テフラと山陰 1 テフラの層序と年 代:若狭湾沖堆積物コアと水月湖 SG06 コアによる検討. 日本地質学会第 123 年学術大会講 演要旨, 154.
- Smith, V.C., Staff, R.A., Blockley, S.P.E., Bronk Ramsey, C., Nakagawa, T., Mark, D.F., Takemura, K. and Danhara, T. (2013) Identification and correlation of visible tephras in the Lake Suigetsu SG06 sedimentary archive, Japan: chronostratigraphic markers for synchronising of east Asian/west Pacific palaeoclimatic records across the last 150 ka. *Quatern. Sci. Rev.*, 67, 121–137.
- Tamura, Y. (2003) Andesites and Dacites from Daisen Volcano, Japan: Partial-to-Total Remelting of an Andesite Magma Body. *Jour. Petrol.*, **44**, 2243-2260.
- Tamura, Y., Yuhara, M., Ishii, T. (2000) Primary Arc Basalts from Daisen Volcano, Japan: Equilibrium Crystal Fractionation versus Disequilibrium Fractionation during Supercooling. *Jour. Petrol.*, 41, 431-448.
- Tsukui, M. (1985) Temporal variation in chemical composition of phenocrysts and magmatic temperature at Daisen volcano, southwest Japan. *Jour. Volcanol. Geotherm. Res*, **26**, 317-336.

山元孝広 (2017) 大山火山噴火履歴の再検討. 地調研報, 68, 1-16.

1.4 阿蘇カルデラ噴の事例調査

【実施内容】

平成 29 年度は、主に阿蘇カルデラ最大の火砕流噴火である阿蘇 4 火砕流堆積物とその直前の 噴出物について野外調査を実施するとともに、阿蘇 4 火砕流を構成する各サブユニットの全岩化 学組成分析を集中的に行った.また、阿蘇 4/3 間テフラから阿蘇 4 火砕流にかけての噴出物の火 山ガラス組成分析を行った.今年度調査では、阿蘇 4 火砕流噴火の最初期噴出部として、下位か ら黒雲母を含む降下軽石と小規模な火砕流(阿蘇 4X)、細粒降下火山灰(阿蘇 4L)、小規模な火 砕流(阿蘇 4S)を新たに認定した.これらは、阿蘇 4 火砕流のグランドレイヤー(ラグブレッチ ャ)や阿蘇 4 火砕流本体に覆われる.また、阿蘇 4 火砕流の東西の各ユニットから採取した本質 物(軽石及びスコリア)の全岩化学組成分析を行った結果、苦鉄質から珪長質に至る混合トレン ドに加えて、従来知られていない斜長石に富むマッシュとの混合と判断されるトレンドが確認で きた.このマッシュとの混合物は、阿蘇 4 噴火最初期と、最盛期に噴出したことが明らかとなっ た.

【研究成果】

(1) 阿蘇 4/3 間テフラの特徴

阿蘇カルデラは、4回の大規模火砕流の噴出と、火砕流の前後や間のより小規模な多数の噴火 活動を行ってきた.今年度成果も含めこれまでに知られているユニットやサブユニットを表 1.4-1 に示す.阿蘇4火砕流堆積物と阿蘇3火砕流堆積物の間には、多数の降下軽石や降下スコリア、 降下火山灰からなる比較的小規模な噴火堆積物(阿蘇4/3間テフラ)が知られている(小野ほか、 1977;星住、1990).平成28年度報告書ではこれらの全岩化学組成を示し、SiO₂-K₂Oトレンド が阿蘇3から阿蘇4に向かって低下したことを示した.今回、火山ガラスの組成をEDSで分析 し、その結果、火山ガラスSiO₂-K₂Oトレンドも全岩化学組成と同様に阿蘇3から阿蘇4に向か って低下していることを明らかにした(図1.4-1).また、阿蘇4直前では、YからXを経て阿蘇 4に近づく変化を示す.なお、一部のテフラ(Z6,Z2)の火山ガラスは、阿蘇3よりもK₂Oに富 む.これらの試料は若干変質しているため、今後他の露頭から採取した試料を測定するなど、分 析値が妥当かどうか検討する必要がある.

4/3 間テフラの最上部に位置する X, Y 降下軽石層は黒雲母斑晶を含むことが特徴的である.こ れらとは別にカルデラ東方には、阿蘇4 火砕流直下に黒雲母を含む火砕流/降下軽石があり、平 成 28 年度報告書ではこれらを磁鉄鉱化学組成から Y 降下軽石層に対比した.今年度新たな露頭 を確認したこと、複数露頭での EDS による火山ガラス化学組成分析を行い、層序と対比につい て再検討した結果、阿蘇4 火砕流直下の黒雲母を含む火砕流/降下軽石は、Y 降下軽石層ではな く X 降下軽石層に対比されることが明らかとなった(図 1.4-2).また、複数の地点で土壌を挟ま ず阿蘇4 火砕流と連続的に累重していることが分かったため、これらは阿蘇4 火砕流噴火最初期 の堆積物であると見なしてよい.以降、阿蘇4X 降下軽石層、阿蘇4X 火砕流堆積物とそれぞれ 呼ぶこととする.

噴火サイクル	年代	サブユニット	本質物	全岩化学組成(SiO2)
阿蘇中央火口丘	<90 ka	溶岩, 降下火砕物	溶岩,スコリア>軽石	49-72%
		阿蘇4B火砕流堆積物	軽石>>スコリア	64-70, 54%
	90 ka	阿蘇4KS火砕流堆積物(九ノ峰スコリア流)	スコリア	50-52%
		阿蘇4T火砕流堆積物	軽石	67-69%
阿蘇4		阿蘇4BS火砕流堆積物(弁利スコリア流)	スコリア>軽石	51-67%
		阿蘇4M火砕流堆積物(用木軽石流)	軽石	67-70%
		阿蘇4Y火砕流堆積物(八女軽石流)	軽石	67-70%
		阿蘇4H火砕流堆積物(鳩平軽石流)	<u></u> 軽石	
		阿蘇4K火砕流堆積物(肥猪火山灰流)	軽石	
		阿蘇40火砕流堆積物(小谷軽石流)	軽石>>スコリア	64-69 52%
			軽石>>>スコリア	67-70 52%
			軽石>>スコリア	50 60%
			軽石	67-71%
			ᄮᄔᄧ	07 7170
			スロ人	68-60%
士修业山	00 ka	下於中心在很多的一种一种有些	<u> 荘山</u>	62-6506
	30 Ka	<u></u>	<u> 府石, 荘石, ハコリア</u> 軽石	6806
			転石	62-6506
			ᄡᄑ	02-0 <u>3</u> %0 67-7104
			ᇵᅎ	6604
			ᄡᄑ	0070 65 6604
			虹口 あ 五	00-00%0
			ᄣᄭ	04-00%0
阿蘇4/3		MIN阵下牲口厝 20陈玉载元展	ᄣᄭ	00%0
			ᄬᄭ	09%
			1111111111111111111111111111111111111	00%
		213 降下スコリア 唐	スコリア	
		220 降下スコリア 唐	スコリア	50%
		227 降下スコリア 唐	スコリア	56%
		228降トスコリア層	スコリア	51%
				53%
	120 ka	阿穌3C火碎流堆積物		55-56%
阿蘇3		阿穌3B火碎流堆積物	スコリアン軽石	5/-6/%
F 37W1-		阿穌3A火碎流堆積物	軽石>>スコリア	63-69%
			<u>軽石</u>	69%
			軽 石	
阿蘇3/2		OPQ降下軽石·火山火層	軽石	68%
		R降下軽石層	軽石 	66%
		S降下軽石層	軽石	64%
阿蘇2	140ka	阿蘇2T降下スコリア層	スコリア	57%
		阿蘇2B火砕流堆積物	スコリア	56-60%
		阿蘇2A火砕流堆積物	スコリア>>軽石	66%
		阿蘇2TL降下軽石層	軽石	63-66%
		阿蘇2R火砕流堆積物		
		阿蘇2V降下スコリア層	スコリア	61%
赤井火山	150 ka	赤井火砕丘,砥川溶岩	溶岩,スコリア	58-59%
阿蘇2/1 阿蘇1		玉来川溶岩、秋田溶岩、的石溶岩など	溶岩	54-63%
			スコリア	
	270 ka	阿穌1C降下軽石層	幹白	
		阿蘇1B火砕流堆積物	スコリア, 軽石	50%
		阿蘇1A火砕流堆積物	軽石	65-68%
		阿蘇1P降下軽石層	軽石	
先阿蘇1	270 ka	古閑溶岩	溶岩	55-57%

全岩化学組成は、本報告、松本(1974)、宮縁ほか(2004)、水田ほか(1990)、小野・渡辺(1985)、小野ほか (1977)、田島ほか(2017)による.*は新称(仮称).

表 1.4-1 阿蘇カルデラ,大峰,赤井火山の主要噴出物の層序と特徴

図 1.4-1 阿蘇 4/3 間テフラの火山ガラス組成

分析は,SEM/EDSによった.テフラの記号と分析値は同じ色で表示.X及びYはそれぞれ複数地点で採取した試料の測定値を違う色で表示した.

3W:Aso-3W, A:Aso-4/3ABCD \mathcal{O} A, D: Aso-4/3ABCD \mathcal{O} D, E: Aso-4/3EF \mathcal{O} E, F: Aso-4/3EF \mathcal{O} F, G: Aso-4/3G, I: Aso-4/3HI \mathcal{O} I, K: Aso-4/3JKL \mathcal{O} K, N: Aso-4/3MN \mathcal{O} N, X:Aso-4X, Y: Aso-4/3Y, Z2: Aso-4/3Z2, Z6: Aso-Z6.

阿蘇4火砕流の基底部には,異質角礫(先阿蘇火山岩類や花崗岩類,変成岩類など)に富み細 粒物に乏しい部分を伴うことが知られている(小野ほか,1977;星住ほか,1988;高木ほか, 2007 など). これらは異質角礫火砕流,ラグブレッチャやグランドレイヤーなどとも呼ばれるが ここではグランドレイヤーと呼ぶこととする. これまで阿蘇4火砕流は最下部にグランドレイヤ ーがあると考えられていたが,カルデラ近傍の複数地点ではさらに下位に小規模な火砕流がある ことが判明した. この小規模な火砕流は,非溶結で白色軽石と灰白色火山灰からなり,軽石には 斑晶として少量の斜長石,角閃石,輝石を含む. カルデラ南東方猿丸付近や,カルデラ東方滝室 坂付近では massive な岩相を示すが. 箱石峠北方のカルデラ縁では下半部は成層し細粒物に乏し い. この火砕流を阿蘇4S火砕流堆積物(猿丸火砕流堆積物)と呼ぶこととする(新称).阿蘇4S 火砕流堆積物の基底には細粒でやや粘土質で青灰色の降下火山灰層を伴う. これを阿蘇4L降下 火山灰層と呼ぶ(新称). 阿蘇 4L 降下火山灰層は, 阿蘇 4S 火砕流堆積物と阿蘇 4X 火砕流堆積 物の間に挟まれる(図 1.4-2) ほか, 土壌と阿蘇 4S 火砕流堆積物の間や, 阿蘇 4S 火砕流堆積物 中の取り込みブロックとして含まれる.

カルデラ南東方の高尾野付近には,軽石と少量のスコリアと結晶片の多い火山灰基質からなる 火砕流がある.他のサブユニットとの層序関係は不明であるが,角閃石斑晶を含むことと全岩化 学組成から阿蘇4噴火堆積物の一部であると判断される.これを阿蘇4Tk火砕流(高尾野火砕流) と呼ぶ(仮称).全岩化学組成では,軽石は安山岩質,スコリアは玄武岩質である.

pfa:降下軽石層, pfl:火砕流堆積物

(2) 阿蘇4最初期ユニットの全岩化学組成

東側で新たに確認されたサブユニット区分と西側のサブユニット区分層序をまとめたものが図 1.4-3 である.西側のサブユニット区分は,Watanabe (1978, 1979)による.これらのサブユニッ トの軽石やスコリアについて XRF による全岩化学組成分析を行った.試料は主なサブユニット から 10~20 個採取するとともに適宜そのほかの産地の試料を追加した.試料 10~40g 程度を洗 浄乾燥してからメノウ乳鉢で粉砕し,四ホウ酸リチウムにより 10 倍希釈のガラスビードを作成 した.分析装置は,産業技術総合研究所の蛍光 X 線分析装置(PANalytical 社製 Axios PW4400) を用いた.結果を図 1.4-4 に示す.

SiO₂-Al₂O₃ハーカー図(図1.4-4b)では、従来から知られていた苦鉄質端成分と珪長質端成分 をむすぶ混合トレンド(以下単に混合トレンドと呼ぶ)に加えて、右下から急傾斜で左上へと伸 びるトレンドが確認できた.このトレンドは、斜長石の濃集によるものと判断される(斜長石濃 集トレンドと呼ぶ).混合トレンドは、カルデラ西側の阿蘇 4BS 火砕流と阿蘇 4O 火砕流(小谷 軽石流)のほか、カルデラ東側の阿蘇 4Tk 火砕流(高尾野火砕流)と阿蘇 4A, 4B にごく少量含 まれるスコリアによって構成される.斜長石濃集トレンドを構成するのは、カルデラ西側の阿蘇 4Y 火砕流(八女軽石流),阿蘇 4M 火砕流(用木軽石流)やカルデラ東側の阿蘇 4A 火砕流など、 阿蘇 4 噴火の主体をなすもののほか、阿蘇 4 基底の阿蘇 4S 火砕流(猿丸火砕流)である.以上 から、阿蘇 4 火砕流噴火では、斜長石濃集トレンドを構成する部分を出す時期と混合トレンドを 構成する部分を出す時期があったらしい.カルデラ東側では、阿蘇 4Tk 火砕流を除いて斜長石濃 集トレンドを構成する流下堆積し、カルデラ西側では、混合トレンド→斜長石濃集トレンド→混 合トレンドと変化したことになる.

SiO₂-K₂O ハーカー図(図 1.4-4-10)では,阿蘇4全体として単調な混合トレンドを示すが詳細にみると K₂O の高いものと低いものがあることがわかる.カルデラ東側にサブユニットでは阿蘇4S,阿蘇4A グランドレイヤー,阿蘇4A,阿蘇4Bと時間経過とともに K₂O が若干低くなる(図 1.4-4-11). その一方で西側では阿蘇4BS が若干高いものの明瞭な変化は認められない.

◇ Aso-4KS pfl (九ノ峰scfl)		♦ Aso-4B pfl
Aso-4T pfl (鳥栖pmfl)		🔶 Aso-4T pfl
O Aso−4BS pfl (弁利scfl)		
O Aso−4M pfl (用木pmfl)		
O Aso−4Y pfl (八女pmfl)		🛑 Aso-4A pfl
Aso-4H pfl (鳩平pmfl)		
Aso-4K pfl (肥猪afl)		
O Aso−4O pfl (小谷pmfl)	?	Aso-4A GL
		● Aso-4Tk pfl (高尾野pfl)
		● Aso-4S pfl (猿丸pfl)
		Aso-4L afa
		Aso-4X pfl
		🔺 Aso-4X pmfa

カルデラ西側

カルデラ東側

図1.4-3 阿蘇4火砕流堆積物のサブユニット区分

記号は、図 1.4-4の XRF 全岩化学組成分析値での記号

afa:降下火山灰層, GL:グランドレイヤー, pfl:火砕流堆積物, pmfa:降下軽石層, pmfl:軽石流堆積物, scfl:スコリア流堆積物

なお、火砕流のサブユニット区分については、検討を要する部分がある。例えば阿蘇 4BS 火砕 流直下には阿蘇 4M 火砕流があるとされる(Watanabe, 1978).ただし、この地点の阿蘇 4M 火 砕流は他の地点とはことなり少量のスコリアを含む。ここでは、関ほか(2016)と同様に、阿蘇 4BS の一部と判断した(関ほか、2016).本報告で阿蘇 4M 火砕流として採取した地点は、スコ リアを含まない非溶結の軽石流堆積物である。また、阿蘇 4O 火砕流は模式地で少量のスコリア を含み、その化学組成や岩相は阿蘇 4BS 火砕流直下の阿蘇 4M 火砕流と類似する。可能性として これまで阿蘇 4M とされたものの一部は阿蘇 4O 火砕流の可能性があり、層序関係を再検討する 必要がある。

図 1.4-4a 阿蘇 4 火砕流堆積物の本質物全岩化学組成

略号は図 1.4-3 参照. Open はカルデラ西側, Closed はカルデラ東側のサブユニット(以下同様)

図 1.4-4b 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4d 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4e 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4f 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4g 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図1.4-4h 阿蘇4火砕流堆積物の本質物全岩化学組成

図 1.4-4i 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4j 阿蘇 4 火砕流堆積物の本質物全岩化学組成

図 1.4-4k 阿蘇4火砕流堆積物の本質物全岩化学組成 SiO₂-K₂O. 阿蘇4は東側のサブユニットのみ

図1.4-4m 阿蘇4火砕流堆積物の本質物全岩化学組成

図1.4-4n 阿蘇4火砕流堆積物の本質物全岩化学組成

文 献

- 星住英夫(1990)阿蘇-4/3 降下火砕物−阿蘇-4 噴出以前の阿蘇火山活動史.火山学会講演予稿集, 1990, 1, 92.
- 星住英夫・小野晃司・三村弘二・野田徹郎(1988)別府地域の地質.地域地質研究報告(5万分の 1地質図幅),地質調査所,131p.
- 鎌田浩毅(1997)宮原地域の地質.地域地質研究報告(5万分の1地質図幅),地質調査所,127p. 松本幡郎(1974)砥川溶岩について.火山,第2集,19,19-24.
- 宮縁育夫・増田直朗・渡辺一徳(2004) 溶岩流とテフラとの層序関係からみた阿蘇火山中央火口 丘群西部地域の発達史.火山,49,267-282.
- 水田敏夫・小畑正明・江上桂子(1990)砥川安山岩溶岩中の気泡の形態と分布.火山,第2集, 35,249-262.
- 小野晃司・渡辺一徳(1985) 阿蘇火山地質図(5万分の1).火山地質図4,地質調査所.
- 小野晃司・松本徰夫・宮久三千年・寺岡易司・神戸信和(1977)竹田地域の地質.地域地質研究 報告(5万分の1図幅),地質調査所,145p.
- 関 琢磨・荒川洋二・新村太郎・大鹿淳也・森 康・池端 慶 (2016) 阿蘇火山北西部に分布する Aso-4 火砕流堆積物, 弁利サブユニットの層序と岩石学的特徴.火山, **61**, 429-448.
- 田島靖久・星住英夫・松本哲一・廣田明成・小屋口剛博(2017) 阿蘇火山, Aso-1 火砕流堆積物 に関する新知見と Aso-1 噴火に先駆けて噴出した古閑溶岩.火山, 62, 177-188.
- 高木秀雄・石井 徹・戸邉恵里・曽田祐介・鈴木和博・岩野英樹・檀原 徹(2007) Aso-4 火砕流 堆積物中の花崗岩マイロナイト異質礫の岩石学と放射年代および荷尾杵花崗岩との対比. 地質学雑誌, 113, 1-14.
- Watanabe, K. (1978) Studies on the Aso pyroclastic flow deposits in the region to the west of Aso caldera, southwest Japan, I: Geology. Memories of the Faculty of Education, Kumamoto University, Natural Science, 27, 97-120.
- Watanabe, K. (1979) Studies on the Aso pyroclastic flow deposits in the region to the west of Aso caldera, southwest Japan, II: Petrology of the Aso-4 pyroclastic flow deposits. Memories of the Faculty of Education, Kumamoto University, Natural Science, 28, 75-112.

1.5インドネシアでのカルデラ火山事例調査

【実施内容】

歴史時代に大規模噴火を繰り返したインドネシアのカルデラ火山では、これまでの研究により 成層火山体を建設するステージからカルデラ形成噴火に至る数千年間で噴出率、噴火様式、マグ マ組成、火口位置に変化が見られることが指摘できる。今年度は、これまでの噴火履歴について の調査結果を総括するとともに、1883年にカルデラ形成噴火を起こしたクラカタウ火山と1815 年にカルデラ形成噴火を起こしたスンバワ島タンボラ火山の噴火推移をとりまとめた。また、西 暦 1258年?にカルデラ形成噴火を起こしたロンボク島リンジャニ火山について、後カルデラ火 山最新期噴出物のサンプルを対象に岩石記載・全岩化学組成分析・鉱物化学組成分析を行い、先 カルデラ噴出物・カルデラ形成噴火噴出物のものと比較検討した。その結果、リンジャニ火山で は、それぞれの活動期ごとにマグマが消費され、カルデラ形成後は新たなマグマ供給系が構築さ れていると考えられる。

【研究成果】

(1) インドネシアにおけるカルデラ火山履歴調査の総括

日本列島では、カルデラ形成噴火は約7千年前の鬼界アカホヤ噴火が最後である.しかし、 朝鮮半島では、10世紀に白頭山がカルデラ噴火を起こし、日本列島北部には火山灰が降下した. アジア太平洋地域では、過去2000年間に多くのカルデラ形成噴火が発生している(図1.5-1). Siebert et al. (2010)の統計によれば、同噴火の頻度は世界平均で、2000年間に27回、1.35回 /100年である(図1.5-2).そのうち、特に全長5000km以上に及ぶインドネシア島弧では、多 くのカルデラ火山が存在し(図1.5-3)、過去1000年間に3回のカルデラ噴火を経験している.

図1.5-1 過去2000年間のカルデラ形成を含む大規模噴火の地理的分布図, カルデラ噴火の基礎データは, Siebert et al.(2010)による. カルデラ噴火は, インドネシア周辺の島弧に多く発生している.

図 1.5-3 インドネシア島弧のカルデラ火山の分布.地形図(上),応力場と地殻構造模式図(下)
 (Carrey et al.,1977; Hamiltona,1979; Foden and Varne,1980).西へ行くほど大陸地殻が発達し、大きいカルデラが見られる.

大規模なカルデラ形成噴火を起こす過程として、①地殻内で大規模マグマの形成と蓄積、②カ ルデラ噴火への準備過程、③カルデラ噴火の経緯である.カルデラ形成噴火を起こすマグマは、 玄武岩質マグマに比べて、より低密度でより高粘性のマグマである.地殻内で蓄積が進む高粘性 マグマは動きにくく、①の過程では、一般に約 10,000 年のスケールで、マグマ蓄積による中長期 噴出率の低下が期待される.②のカルデラ形成噴火の準備過程では、約 1,000 年スケールで起こ る過程である.一般に、カルデラ形成噴火の結果、大規模な地形改変が起こるため、カルデラ形 成噴火直前の②の情報が消されてしまうことが多いと予想される.しかし、インドネシアの有史 のカルデラ形成噴火の情報は、②の過程が、有史記録として文書など残されている.また、イン ドネシアには、カルデラ形成噴火を経験した火山と経験していない火山とがあり、前者は、複数 回のカルデラ形成噴火を起こす可能性があるか、また、経験していない火山は今後カルデラ噴火 を起こす可能性があるかという、長期の将来予測の検討事例となり得よう.

平成 26~28 年度は、カルデラ形成噴火を経験する火山と、経験してない火山の違いを明らかに するため、インドネシアのカルデラ火山について、①から②に至る過程に注目し、噴火推移やマ グマ過程について調査検討を行った.前者の例として、13 世紀にカルデラ噴火を起こしたリンジ ャニ火山の噴火史(Takada et al., 2003; Nasution et al. 2003)を再検討し、カルデラ形成噴火へ 至る岩石学的特徴を明らかにした.後者の例として、歴史時代に噴火記録がない大型成層火山と して中部ジャワのスンドロ火山を対象に、噴火履歴調査を行い、中長期的活動傾向を評価した. すなわち、スンドロ火山は、最近 3 万年間に 9 回の活動期があり、もっとも最近のマグマ噴火は およそ 1,000 年前であることがわかった(Oktory et al., 2016).最近 3 万年間の噴出率は 0.3~ 0.01 km³/千年の範囲と見積もられ、1 万年年以上にわたって比較的低い低活動期が続いている. さらに、マグマ組成の変化などのカルデラ形成噴火前に予想される兆候は、現在のところないこ とがわかった.一方、カルデラ噴火を起こしたタンボラ火山(1815 年カルデラ噴火)やリンジャ ニ火山(1257 年カルデラ噴火)は、10~1万年間の高噴出期(活動期)(数 km³/千年)の後、カ ルデラ形成に先行する低噴出率期(0.1~0.2 km³/千年)へ移行しており(Takada et al., 2000a; 高田・山元、2008; 高田, 2010)、スンドロ火山の活動史と対照的である.

東ジャワでの既存調査結果(Takada et al. 2000b) も合わせて,インドネシア島弧のカルデラ 火山全体の発達史とその結果の山体規模の特徴をまとめると,以下のようになる.カルデラ形成 噴火を起こした火山は,長期間,高噴出を維持した結果全体として大きな山体を形成し,その活 動期の後半にカルデラ形成噴火に至っている.大きい山体には,大きいカルデラが形成される傾 向があり,拡散した火山群をなす場合は,カルデラは見られなかった(図 1.5-4,-5).大規模噴 火に至る中長期の準備過程として,約 10 万年間,高噴出率の維持により大きな山体を形成した こと,カルデラ噴火の1 万年から数千年前には,噴出率が激減し,噴火様式が爆発的になり,山 腹噴火火口が形成される範囲が縮小し,中心から火山周辺に移動したことなどの特徴を見出すこ とができる.また,カルデラ噴火に先立ち,火山周辺に脱ガスした溶岩流や溶岩ドームの形成が 発生することもある.このような特徴は 1991 年の Pinatubo 噴火でも見られた(Harlow et al,1991).

図1.5-4 カルデラのある火山とない火山. バリ島, ロンボク島(上)から東ジャワ(下). 赤色図(ア ジア航測提供)の上にプロット.

Volcanoes with calderas and without calderas

図1.5-5 カルデラ有無と山体形状,大きい山体にカルデラ.火山群にはカルデラなし.

(2) クラカラウ火山 1883 年カルデラ形成噴火の推移

日本では有史に記録がないカルデラ噴火への②の準備過程としての活動推移について,1883 年にカルデラ形成噴火を起こしたクラカタウ火山の噴火経緯を例として検討した.

クラカタウ火山はジャワ島とスマトラ島のスンダ海峡に位置する火山島である(図 1.5-6). クラカタウ火山では、カルデラ噴火が 1883 年を含めて2回発生したと考えられている.単 ーの大きな成層火山で大噴火により最初のカルデラ陥没が起き、その後、ラカタ、ダナン、 ペルボエワタンの3つの小型火山がカルデラ内に形成され大きな島に成長したと考えられて いる(Williams, 1941).そのうちペブワタン火山では 1680 年に噴火が起きたことが記録 されているが(図 1.5-7、-8).それ以後、火山は静穏を続け、1883 年当時島は樹木に被われ ていた.最初のカルデラ形成がいつであるのかは明確になっていないが、ジャワの列王記に 416 年に山が轟音とともに崩壊して海底下に沈み海が盛り上がって陸に押し寄せたとの記録 があり、これがクラカタウ火山の最初のカルデラ形成に対応するのかもしれない

(Winchester, 2003).

1883 年のカルデラ形成噴火に至る経緯は,Simkin and Fiske (1983) により詳細にまとめ られ、3 ヶ月に及ぶ小・中規模噴火の継続と噴気活動域の拡大が顕著に読みとれる(図 1.5-9). この期間には、噴火孔、噴気孔や熱水爆発孔の数や活動する範囲が、カルデラ形成の破局 的噴火に向けて拡大し、2 km から 5 km 以上の広範囲に拡大する特徴が見られた. 拡大部 分がその直後に陥没したカルデラの縁に沿っている事実は、先行現象として重要である.

図 1.5-6 Krakatau 火山の活動史(Williams, 1941). 2回のカルデラ形成噴火が起こった.

注意. 文献が, 北を下にしてあるので, そのまま使用. 右上の地図は, 北が上..

図 1.5-7 クラカタウ火山 1883 年カルデラ形成噴火以前の情報.

Krakatau 1883噴火以前の情報

1815年のTamboraに比べて噴火前の情報が残っている (Pinatuboほどではないが).しかし、火山島であり、情報量は決して多くない.

 416年噴火:ジャワ版「列王記」->1回目のカルデラ噴火か??
 Mt. Kapi(現在のKrakatauか)噴火

 轟音とともに粉々に崩壊,海底沈下, 海が盛り上がり陸に押し寄せる

1596年:東側からのスケッチ(右下)

図1.5-8 クラカタウ火山1883年噴火以前の情報(Winchester, 2003)

図1.5-9 クラカタウ火山1883年噴火の前兆(Winchester, 2003)

カルデラ形成噴火の経緯は, Rampino and Self (1982) にまとめられている.まず,1883年5 月9日から有感地震が起こり始めた.5月20日に,地震とともに中規模な噴火を開始した.噴煙 柱は約11kmの高度に達した.5月27日まで黒い噴煙が上がっていた.6月24日には2回目 の噴煙柱が立ち上った.28日まで爆発的噴火が続いた.7月に入ると,2ヶ所で噴火が起こって いることが記述されている.小規模な噴火が間欠的に起こったと言われている.8月11日にはお もに噴煙が立ち上る場所が3ヶ所になり,その他1ヶ所から水蒸気が立ち上っていると報告され ている.噴煙や噴気はラカタ島の5kmの範囲に及んだ(図1.5-8).これ以後,22日には、巨大 な噴煙柱が報告された.26日1.5時には26kmの噴煙柱が上がった.17時にも大きな爆発があ った.

8月27日の破局的な噴火は、5時30分、6時44分、8時20分、10時2分の4回あった. プリニアン噴火の噴煙柱は38km に達し、破局的な噴火に伴う津波により、36,000人が犠牲 となった.津波の高さは最大で約40mにも達したといわれている.10時2分の噴火では、火 砕流も発生した.火砕流の希薄な部分は、火砕サージとして時速100kmの速さで海を渡り、 北側のスマトラ島や北東のジャワ島の海岸まで到達した(Carey et a al.,1996; Mandeville et al., 1996a,b).火砕サージは、最大で80km 流走したとされている.約1000人が高温の火砕 サージにより死亡した.一方、大爆発の音は、4800km 離れたインド洋のロドリゲス諸島まで 聞こえた.衝撃波は地球を7周したといわれている.27日の23時に最後の大きな爆発があっ た.同年9月はじめまで降灰活動があった.地震は1884年まで観測された.噴火で噴出された 火山灰は、ジェット気流にのり地球を回った.アメリカでは、日の出・日の入りに空が真っ赤に 染まった.以上は、Simkin and Fiske (1983)による.1883年の噴火では、径数 km のカル デラが形成された. 噴出量は,約12.4 km³と見積もられている(Mandeville et al., 1996a). 噴出したマグマ組成は,SiO₂=67~71 wt%である(Mandeville et al., 1996b).

(3) タンボラ火山 1815 年カルデラ形成噴火の推移

タンボラ火山はスンバワ島にあるアルカリ岩を主体とする成層火山である(高田・山元, 2008).カルデラ形成噴火の推移は、Self et al. (1984)にまとめられている.カルデラ形成噴火 の3年前の1812年から小噴火が始まり、成層した火山灰が山腹に堆積していた(F1).1815年 4月5日の夕方に噴煙柱高度が30kmを超える最初のプリニー式噴火が発生し、約2時間で終 わるとともにF2降下軽石(図1.5-10)を堆積させた.その後、5日間は小規模噴火を繰り返 し、F3火山灰が堆積した.4月10日18時頃、最大級のプリニー式噴火が発生し、噴煙柱高度 は40kmを超えたという.また、東からは3本の火柱が山頂に見えたといい、この噴火でF4降 下軽石(図1.5-11)が堆積した.同日夜には火砕流噴火へと移行し、海に流れ込んだ火砕流が 津波を発生させている.火砕流噴火は翌11日まで継続し、12日にかけて次第に活動が弱まり、 活動が完全に終息したのは7月15日であった.山頂部のカルデラ形成は火砕流噴火の末期と考 えられている.また、マグマの総噴出量は約50km³DREと推定されている.

図 1.5-10 タンボラ火山 1815 年噴火 F2 の層厚分布.単位は cm。山元・高田の未公表資料による.

図 1.5-11 タンボラ火山 1815 年噴火 F4 の層厚分布.単位は cm. 山元・高田の未公表資料による.

図 1.5-12 タンボラ火山 1815 年噴火 F2 と F4 の粒径分布.オレンジ色が軽石・火山ガラス片,黄 色が結晶片,緑が異質岩片.山元・高田の未公表資料による. 横軸は φ スケールで縦軸は重量%.