実用発電用原子炉施設における警報装置の故障時への対応について (第29回原子力規制委員会資料(平成30年9月12日))

平成30年9月12日原 子 力 規 制 庁

1. 経緯

平成30年3月6日にもんじゅで発生した ANN(アナンシェータ)盤の故障事象(以下「本事象」という。)を踏まえ、同年3月14日に行われた第72回原子力規制委員会において、実用発電用原子炉施設に備えられた警報装置が故障した場合の対応について検討するよう原子力規制庁(以下「本庁」という。)に対して指示があった。

2. これまでの調査結果

(1)プラントシミュレータを用いたモデルケースによる検証

警報機能の有無により運転操作等にどのような差が生じるかを確認するため、本庁内に設置されている BWR-5 プラントシミュレータを用いて複数のケースについて検証した(別添参照)。

この結果、警報機能がない場合でも基本的にはインターロックが作用し原子炉施設は安定な状態へ移行する仕組みとなっていることを確認した。他方、警報機能が無いことで事象の特定が遅れるおそれや判断を誤るおそれがあることが確認された。

(2)事業者からの聞き取り

本年3月から6月にかけて計3回の事業者面談を行い、警報装置が故障した場合における代替手段等について確認した。主な確認内容は以下の通り。

- ① 事故時操作手順書に記載のある全ての警報について、それらが故障した場合の 代替監視手段(体制を強化し、プラント計算機のテロップや制御盤計器類を直接監 視することによる)があること。
- ② 事業者として、本事象は重要な運転経験と考えているため、警報機能喪失時における監視強化等の対応について、手順書類への記載の充実を図るとともに、必要な教育等を実施する方針であること。

3. 検討の視点

本年3月の原子力規制委員会で本庁から報告した通り、現在は警報が故障した場合でも、運転上の制限(LCO)の逸脱や事故故障等の報告には至らない。その取扱いを考える上で、以下が検討の視点となる。

- (1)警報装置が故障した場合、規制委員会がこれを把握する必要があるか。必要がある場合、どういった方法が適切か。
 - ▶ 法令に基づき、事業者から報告を求める。
 - ▶ 警報が機能することを LCO と位置付けておくことで、LCO逸脱時に通報を受ける。
 - 現場で事業者から運転検査官に通知するように求める。
 - 運転検査官が日常巡視で自ら確認する。

- (2)警報装置が故障した場合、規制委員会として何らかの対応をとる必要があるか。必要がある場合、どういった方法が適切か。
 - ➤ 警報が機能することを LCO と位置付け、LCO 逸脱時に要求される措置等を事業者が保安規定に定めておくことを求める。
 - 警報機能喪失時における監視体制強化や停止判断等の手順を事業者が整備しておくことを求める。
 - ▶ 発生した事象を踏まえて、その都度対応を検討する。

4. 今後の進め方

原子力規制委員会における議論を踏まえ、改めて事業者と意見交換することを含めて、 本件に関する今後の具体化を図っていく。

(参考資料)

別添 警報装置に関する規制委員会でのやり取り

参考1 実用発電用原子炉及びその附属施設の技術基準に関する規則(一部抜粋)

参考2-1 PWR(川内原子力発電所)の運転上の制限値(保安規定の条分類)

参考2-2 PWR(川内原子力発電所)の運転上の制限値のうち重大事故等対処設備 (第83条関係)に係るもの 別添

警報装置に関する規制委員会でのやり取り

平成30年3月14日 第72回原子力規制委員会 議事録(一部抜粋)

〇更田委員長

そもそも本件は法令報告でもLCO(運転上の制限)の逸脱でもないという位置づけらしいのですけれども、警報盤は警報盤としての役割があったからこそ警報盤なわけですね。で、警報が出ない状態になっている。警報は出ない状態になっているから、プロセス盤で各値は見えるようになっているから、警報盤はなくてもいいのですと、それではそもそも警報は何のためにあるのですか。警報出ないようになっているから、じ一っとプロセス盤を誰かが見ているのかと、そういうことになるわけだけれども、そもそも必要度、ミスがあって、こういうことが起きるのは起きるのだろうけれども、起きてなおどうであるかというところが問題なのですけれども、関心は、これ、軽水炉でどうなっているのですか。軽水炉でも同じ状況ですか。

〇片岡長官官房審議官

原子力規制庁の片岡でございます。軽水炉でも、このような警報装置が故障した場合の対応につきましては、LCOの逸脱ということにはならないという扱いで、同様でございます。

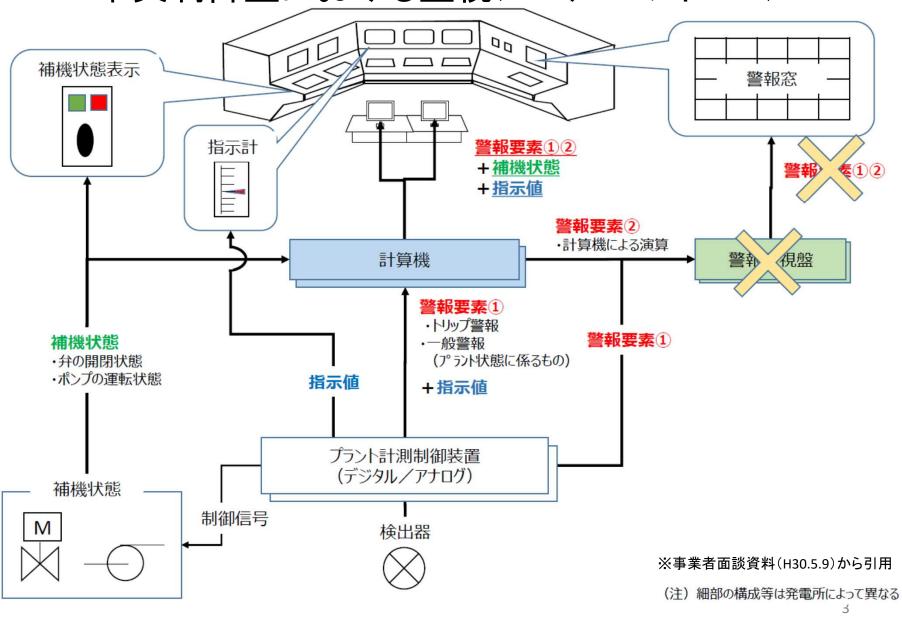
〇更田委員長

それでいいのかどうかというのは、これを機会に、警報盤の故障について、そのときの対処について、警報盤の位置づけのようなものですけれども、本件はもんじゅで起きた一件であって、担当のところではもんじゅの一件についてはきちんと聴取をしてほしいと思いますけれども、これを機会に、他の原子力発電所を含めた炉の警報盤というものについて、少し検討してみる必要があると思います。これはどうやるかということも含めて、事務局で考えてもらえませんか。

〇片岡長官官房審議官

承知いたしました。これをきっかけにしまして対応を検討したいと思います。

今回の検討の目的と前提


<今回の検討の目的>

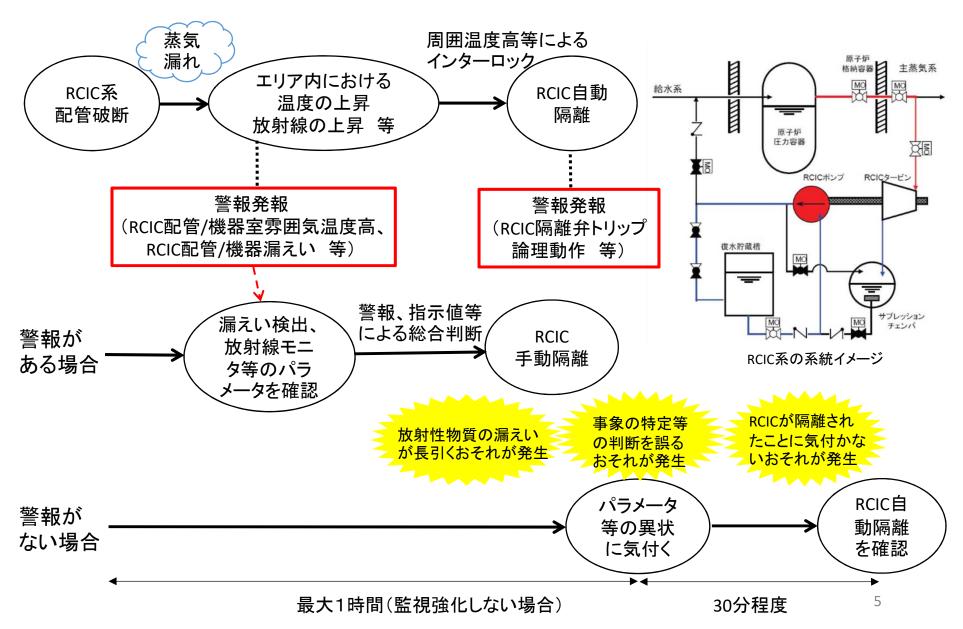
まずは、警報がどのような安全機能を担っているか、言い換えれば、警報が停止した場合に原子炉施設へどのような支障が生じるおそれがあるかについて把握を試みる。

<今回の検討の前提>

- ✓ 全ての警報が動作しなくなり、事業者がそのことに気付いている状態を想定する。
- ✓ 警報が喪失した場合でも、中央制御室のモニターで警報と同じ情報を把握できるが (次スライド参照)、それも使えないものとする。
- ✓ こうした状況で、具体例を用いて、警報がある場合と無い場合とで運転操作等にどのような差が生じるかを評価する。

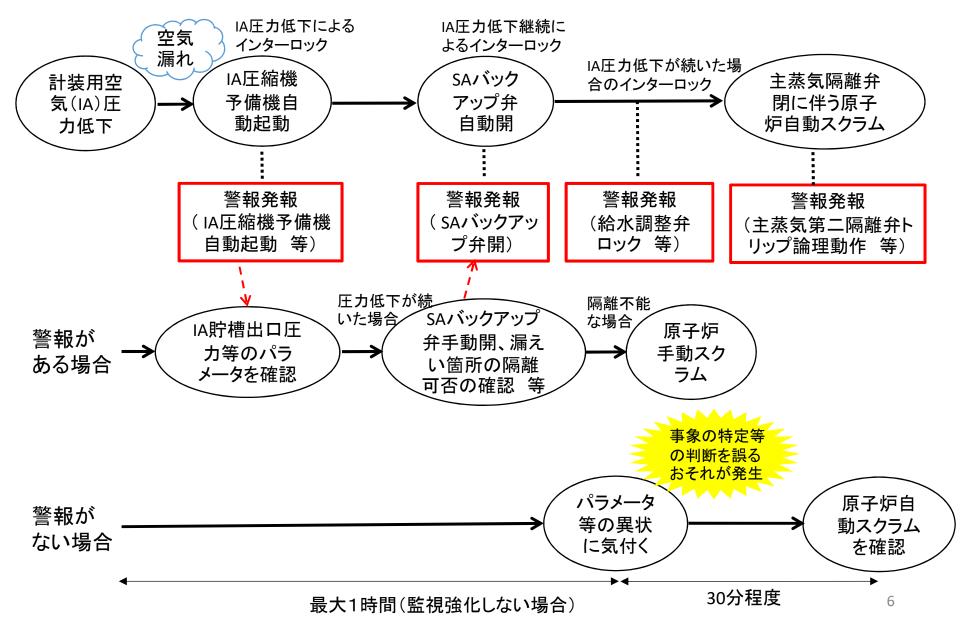
中央制御室における監視システムのイメージ

警報装置の種類の内訳について

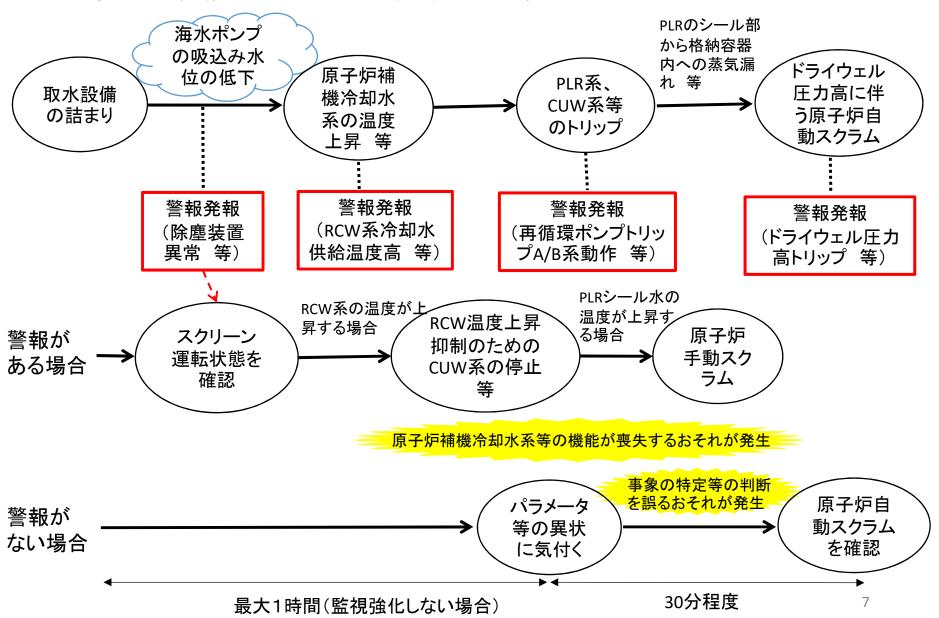

実用発電用原子炉施設の中央制御室内において、常時監視している警報装置の種類及び個数は、おおむね以下の通り。

	警報装置の種類		
異	水位などのパラメータ異状を知らせるもの		約400個
異状を知らせるもの	設備故障を知らせるもの	通常時使用する設備の故障に関するもの	約1250個
もの	改開政阵で知ららるもの	緊急時に使用する設備の故障に関 するもの	約300個
	動作を知らせるもの		

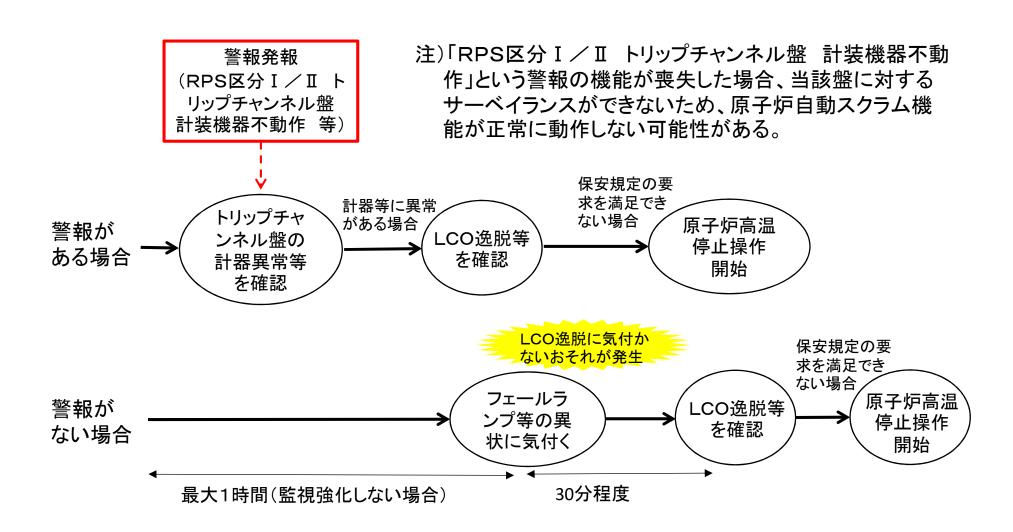
※BWR-5に設置されている警報装置の数を記載している


警報がない場合の対応例について(ケース1)

RCIC系の原子炉建屋における配管破断時における対応例は、以下の通り。


警報がない場合の対応例について(ケース2)

計装用空気喪失時における対応例は、以下の通り。


警報がない場合の対応例について(ケース3)

海水取水設備に大量のクラゲ等が詰まった場合における対応例は、以下の通り。

警報がない場合の対応例について(ケース4)

原子炉保護系の異常を知らせる警報が故障した場合における対応例は、以下の通り。

実用発電用原子炉及びその附属施設の技術基準に関する規則(一部抜粋)

(警報装置等)

第四十七条 発電用原子炉施設には、その機械又は器具の機能の喪失、誤操作その他の異常により発電 用原子炉の運転に著しい支障を及ぼすおそれが発生した場合、第三十四条第一項第九号の放射性物 質の濃度又は同条同項第十二号及び第十三号の線量当量率が著しく上昇した場合又は流体状の放射 性廃棄物を処理し、又は貯蔵する設備から流体状の放射性廃棄物が著しく漏えいするおそれが発生 した場合においてこれらを確実に検出して自動的に警報する装置を施設しなければならない。

2 略

実用発電用原子炉の設置、運転等に関する規則(一部抜粋)

(発電用原子炉の運転)

第八十七条 法第四十三条の三の二十二第一項の規定により、発電用原子炉設置者は、次の各号に掲 げる発電用原子炉の運転に関する措置を講じなければならない。ただし、法第四十三条の三の三十 三第二項の認可を受けた場合は、この限りでない。

一~八 略

九 運転上の制限(保安規定で定める発電用原子炉施設の運転に関する条件であって、当該条件を 逸脱した場合に発電用原子炉設置者が講ずべき措置が保安規定で定められているものをいう。以 下第百三十四条において同じ。)を逸脱したときは、その旨を直ちに原子力規制委員会に報告する こと。ただし、第百三十四条第五号に掲げるときを除く。

十~十一 略

(事故故障等の報告)

第百三十四条 法第六十二条の三の規定により、発電用原子炉設置者(旧発電用原子炉設置者等を含む。以下次条及び第百三十六条において同じ。)は、次の各号のいずれかに該当するときは、その旨を直ちに、その状況及びそれに対する処置を十日以内に原子力規制委員会に報告しなければならない。

ー~二 略

イ~ハ 略

三 発電用原子炉設置者が、<u>安全上重要な機器等又は常設重大事故等対処設備に属する機器等</u>の点検を行った場合において、当該<u>安全上重要な機器等が技術基準規則第十七条若しくは第十八条に定める基準に適合していないと認められたとき</u>、当該常設重大事故等対処設備に属する機器等が技術基準規則第五十五条若しくは第五十六条に定める基準に適合していないと認められたとき又は発電用原子炉施設の安全を確保するために必要な機能を有していないと認められたとき。

四~十四 略

実用発電用原子炉及びその附属施設における発電用原子炉施設保安規定の審査基準(一部抜粋)

実用炉規則第92条第1項第9号 発電用原子炉施設の運転

略

〇 発電用原子炉施設の重要な機能に関して、<u>安全機能を有する系統、機器及び重大事故等対処設備等について、運転状態に対応した運転上の制限(以下「LCO」という。)を満足していることの確認の内容(以下「サーベランス」という。)、LCOを満足していない場合に要求される措置(以下「要求される措置」という。)及び要求される措置の完了時間(以下「AOT」という。)が定められていること。</u>

本お、LCO等は、原子炉等規制法第43条の3の5による発電用原子炉施設設置許可及び同法第43条の3の8による発電用原子炉施設設置変更許可において行った安全解析の前提条件又はその他の設計条件を満足するように定められていること。

略

PWR (川内原子力発電所) の運転上の制限値(保安規定の条分類)

安全機能	条項	項目	運転上の制限
1. 原子炉の	笠10冬	店よ会 物	(1)モード2 (未臨界状態)、3及び4において、1.8%Δk/k 以上であること
緊急停止機	第19条	停止余裕	(2)モード5において、1.0%Δk/k 以上であること
能及び未臨	第20条	臨界ボロン濃度	臨界ボロン濃度の測定値と予測値の差が±100 ppm 以内であること
界維持機能	年01 夕	冰冻+ +用 库 /5***	(1) モード1及び2 (臨界状態) において、負であること
	第21条 減速材温度係数		(2)モード1、2及び3において、-78×10-5 Δk/k/°C以上であること
	## ## ############################		(1)全ての制御棒が挿入不能でないこと
	第22条	制御棒動作機能	(2)全ての制御棒が不整合でないこと
			(1) モード 1 及び2において、停止グループバンクが挿入限界以上であること
	第23条	制御棒の挿入限界	(2)モード1及び2(臨界状態)において、制御グループバンクが挿入限界以上であること及びオー
			バラップを満足していること
	第24条	制御棒位置指示	制御棒位置指示装置及びステップカウンタが動作可能であること
	第25条	炉物理検査(原子炉熱出力)	85%以下であること
	第26条	炉物理検査(停止余裕)	1.8%Δk/k 以上であること
		化学体積制御系(ほう酸濃縮	(1)ほう酸農縮に必要な系統のうち、1系統以上が動作可能であること
	第27条		(2)ほう酸タンクのほう素濃度、ほう酸水量及びほう酸水温度が表27-2で定める制限値内にあるこ
		機能)	ح
	第79条	1次冷却材中のほう素濃度	モード6において、2,700ppm 以上であること
	第80条	原子炉キャビティ水位 EL+12.70m 以上であること	
2. 原子炉の	笠20冬	原之后 数中于	モード1において、2,660MWt 以下であること。
冷却機能	第28条 原子炉熱出力 		
3. 出力監視	出力監視 第29条 熱流束熱水路係数(FQ(Z))		(1)原子炉熱出力が50%を超える場合、2.32√P×K(Z)以下であること
機能	カと 3木	KONDARIO VEDINAX VEDINAX	(2)原子炉熱出力が50%以下の場合、4.64×K(Z)以下であること
	第30条	核的エンタルピ上昇熱水路係	1.64(1+0.3(1-P))以下であること
	第00米	数 (FN∆H)	
	第3 1条	 軸方向中性子束出力偏差	(1)原子炉熱出力が50%以上の場合、目標範囲内にあること
	3,0 1%	THIS I IT I NOTE IN SHIPE	(2) 原子炉熱出力が15%を超え50%未満の場合、許容運転制限範囲内にあること
	第32条	1/4 炉心出力偏差	1.02 以下であること
	第34条	DNB比	1.42 以上であること
4. 工学的安			表33-2から表33-7に定める所要チャンネル数、系統数及び機能がそれぞれの適用モードにおい
全施設及び			て動作可能であること。
原子炉停止	第33条	 計測及び制御設備	
系への作動	210 - 2110	H I WAR TO THE THE WAR	
信号の発生			
機能			
5. 原子炉停			(1)制御棒の引抜き操作が行える状態である場合は、蒸気発生器による熱除去系2系統以上が運転中
止後の除熱	第36条	1次冷却系 ーモード3ー	であること
機能		. , , , , , , , , , , , , , , , , , , ,	(2)制御棒の引抜き操作が行える状態でない場合は、蒸気発生器による熱除去系2系統が動作可能で
			あり、そのうち1系統以上が運転中であること
	第37条	1次冷却系 ―モ―ド4-	余熱除去系又は蒸気発生器による熱除去系のうち、2系統以上が動作可能であり、そのうち1系統以
			上が運転中であること
	Andre co	1次冷却系 -モード5(1次	(1)余熱除去系1系統が運転中であること
	第38条	冷却系満水)一	(2)他の余熱除去系が動作可能又は運転中であるか、1基以上の蒸気発生器の水位(狭域)が計器ス
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	パンの5%以上であること

安全機能	条項	項目	運転上の制限	
	第39条	1次冷却系 ーモード5(1次 冷却系非満水)ー	余熱除去系2系統が動作可能であり、そのうち1系統以上が運転中であること	
	第40条	1次冷却系 ーモード6(キャ	(1)余熱除去系1系統以上が運転中であること	
		ビティ高水位)-	(2) 1 次冷却材温度が65℃以下であること	
	第4 1条	1次冷却系 ーモード6(キャ	(1)余熱除去系2系統が動作可能であり、そのうち1系統以上が運転中であること	
		ビティ低水位)-	(2) 1 次冷却材温度が 65℃以下であること	
	第60条	主蒸気安全弁	蒸気発生器ごとに表 60ー2で定める個数以上が動作可能であること	
	第6 1条	主蒸気隔離弁	閉止可能であること ロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	第62条	主給水隔離弁、主給水調節弁	別止可能であること	
		及び主給水バイパス調節弁		
	第63条	主蒸気大気放出弁	手動での開弁ができること	
			(1)モード1、2及び3において、電動補助給水ポンプによる2系統及びタービン駆動補助給水ポン	
	第64条	補助給水系	プによる1系統が動作可能であること	
			(2)モード4 (蒸気発生器が熱除去のために使用されている場合) において、電動補助給水ポンプに	
-			よる1系統以上が動作可能であること	
	第65条	復水タンク水量(有効水量)	305m3 以上であること	
6. 原子炉冷			第2項(1)号で定める原子炉容器の非延性破壊防止のための1次冷却材温度・圧力の制限範囲内にあ	
却材圧力バ	第35条		ること	
ウンダリ機		1次冷却材温度変化率	表35-2で定める制限値内にあること	
能及び原子	第42条	加圧器	(1) 加圧器の水位が計器スパンの 92%以下であること	
炉冷却材圧		(2) 所内非常用母線から受電している加圧器ヒータ2系統が動作可能であること		
カバウンダ	第43条	加圧器安全弁	全てが動作可能であること	
リの過圧防止機能	第44条	加圧器逃がし弁及び加圧器逃がし弁元弁	全てが動作可能であること	
			(1)-1 2台の加圧器逃がし弁が低圧設定で動作可能であり、2台の加圧器逃がし弁元弁が開状態で	
			あること又は	
	第45条	低温過加圧に係る機器	(1)-2 1台以上の加圧器安全弁が取り外されていること及び	
			(2) 動作可能な充てん/高圧注入ポンプが1台以下であること及び	
			(3) 蓄圧タンク全基が隔離されていること	
			(1)原子炉格納容器サンプ水位計又は凝縮液量測定装置によって測定される漏えい率のうち、原子炉	
			冷却材圧力バウンダリからの漏えいでないことが確認されていない漏えい率(以下「未確認の漏	
		 原子炉格納容器内への漏えい	えい率」という。)が0.23m3/h 以下であること	
		率	(2) 原子炉格納容器サンプ水位計又は凝縮液量測定装置によって測定される漏えい率のうち、原子炉	
	第46条		冷却材圧力バウンダリからの漏えいでないことは確認されているが1次冷却系からの漏えいでな	
), · •),		いことが確認されていない漏えい率(以下「原子炉冷却材圧力バウンダリ以外からの漏えい率」	
			という。)が2.3m3/h 以下であること	
		 原子炉格納容器内漏えい監視	(1) モード1及び2において、原子炉格納容器サンプ水位計又は凝縮液量測定装置が動作可能である	
		装置	ت د	
			(2) モード3 及び4 において、原子炉格納容器サンプ水位計が動作可能であること	
		蒸気発生器細管	漏えいがないこと	
	第47条	 蒸気発生器細管漏えい監視装	(1) モード1及び2において、復水器排気ガスモニタ、蒸気発生器ブローダウン水モニタ及び高感度	
	77.T.A	・/未 然れた工品和目標えい。重代表 置	型主蒸気管モニタのうち、2種類以上が動作可能であること	
			(2)モード3及び4において、蒸気発生器ブローダウン水モニタが動作可能であること	
	第48条	1次冷却系から余熱除去系へ の漏えい	漏えいがないこと	
		1次冷却系の耐圧・漏えい検	モード4及び5において1次冷却系の耐圧・漏えい検査※1を実施する場合、表 84-1で定める事	
	第84条	査の実施	項の適用を除外することができる。この場合、表84-2で定める事項を運転上の制限とする。	

安全機能	条項	項目	運転上の制限
	第84条	安全注入系逆止弁漏えい検査	モード3、4及び5において安全注入系逆止弁漏えい検査※1を実施する場合、表84の2-1で定
	_த ு + க 02	の実施	める事項の適用を除外することができる。この場合、表84の2-2で定める事項を運転上の制限と
	072	の夫心	する。
7. 炉心冷却			(1)ほう素濃度、ほう酸水量及び圧力が表50-2で定める制限値内にあること
機能	第50条	蓄圧タンク	(2) 出口隔離弁が全開であること
			(3) 出口隔離弁が閉止可能であること
	第5 1条	非常用炉心冷却系 ―モード	(1) 高圧注入系の2系統が動作可能であること
	あり「木	1、2及び3-	(2) 低圧注入系の2系統が動作可能であること
	笠L0冬	非常用炉心冷却系 ―モード	(1) 高圧注入系又は充てん系 1 系統以上が動作可能であること
	第5 2条	4-	(2) 低圧注入系 1 系統以上が動作可能であること
	第53条	燃料取替用水タンク	ほう素濃度及びほう酸水量が表53-2で定める制限値内にあること
	第54条	ほう酸主入タンク	ほう素濃度、ほう酸水量及びほう酸水温度が表 54-2 で定める制限値内にあること
8. 原子炉格	*** 4 0 <i>b</i>	1次冷却材中のよう素 131 濃	6.2×104Bq/cm3 以下であること
納施設によ	第49条	度	
る放射性物			(1)原子炉格納容器の機能が健全であること
質の閉じ込	hr = = A	F 7 1546/45	(2) 原子炉格納容器圧力が表 55-2 で定める制限値内にあること
め機能	第5 5条	原子炉格納容器	(3) 原子炉格納容器エアロックが動作可能であること
			(4) 原子炉格納容器隔離弁が動作可能であること
	第56条	原子炉格納容器真空逃がし系	2系統が動作可能であること
	第58条	アニュラス空気浄化系	2系統が動作可能であること
	第59条	アニュラス	アニュラスの機能が健全であること
	第70条	安全補機室空気浄化系	2系統が動作可能であること
9. 安全上特			(1) 2系統が動作可能であること
に重要な関	第5 7条	原子炉格納容器スプレイ系	(2)よう素除去薬品タンクの苛性ソーダ濃度及び苛性ソーダ溶液量が表 57-2で定める制限値内に
連機能			あること
	第66条	原子炉補機冷却水系	2系統が動作可能であること
	第67条	原子炉補機冷却海水系	2系統が動作可能であること
	第68条	制御用空気系	制御用空気圧力が表 68 — 2 で定める制限値内にあること
	第69条	中央制御室非常用循環系	中央制御室当たり2系統が動作可能であること
	~~ ¬ . / ~		(1) 3回線以上が動作可能であること
	第7 1条	外部電源	(2)(1)の外部電源のうち、1回線以上は他の回線に対して独立性を有していること
	~~ ~ ~ ~ ~	ディーゼル発電機 ーモード	(1) ディーゼル発電機2基が動作可能であること
	第7 2条	1、2、3及び4-	(2)燃料油サービスタンクの貯油量が表 72-2に定める制限値内にあること
			(1) ディーゼル発電機2基が動作可能であること
	第73条	ディーゼル発電機 ーモード 1、2、3及び4以外ー	(2)(1)のディーゼル発電機に対応する燃料油サービスタンクの貯油量が表 73-2に定める制限値内
		1、2、3及04以外一	にあること
	第フ 4 夕	ディーゼル発電機の燃料油、	所要のディーゼル発電機の燃料油貯油そう等の油量、潤滑油タンクの油量及び始動用空気だめ圧力が
	第74条	潤滑油及び始動用空気	表74-2で定める制限値内にあること
	第フ E タ	非常用直流電源 ーモード1、	2系統(蓄電池(安全防護系用)及び充電器)が動作可能であること
	第75条	2、3及び4ー	
	笠っ 0 々	非常用直流電源 ーモード5、	所要の設備の維持に必要な非常用直流母線に接続する系統(蓄電池(安全防護系用)及び充電器)が
	第76条	6及び照射済燃料移動中-	動作可能であること
		武力北党中区组 工 154	次の所内非常用母線が受電していること
	第77条	所内非常用母線 ーモード1、	(1) 2つの非常用高圧母線、(2) 2つの非常用低圧母線、(3) 2つの非常用直流母線、(4) 4つの非常用
		2、3及び4-	計装用母線
	笠 フ ロタ	所内非常用母線 ーモード5、	所要の設備の維持に必要な次の所内非常用母線が受電していること
	第78条	6及び照射済燃料移動中-	(1)非常用高圧母線、(2)非常用低圧母線、(3)非常用直流母線、(4)非常用計装用母線

安全機能	条項	項目	運転上の制限
10. 放射性			(1)機器ハッチが全ボルトで閉じられていること
物質の閉じ			(2)各原子炉格納容器エアロックが1つ以上のドアで閉止可能であること
込め機能、放	第8 1条	原子炉格納容器貫通部	(3) その他の貫通部のうち、隔離弁については閉止可能であること、隔離弁以外については閉止フラ
射線の遮へ	20 01×		ンジ又は同等なものによって閉じられていること
い及び放出			
低減機能			
11. 燃料プ			水位及び水温が表82-2で定める制限値内にあること
ール水の補	第82条	使用済燃料ピット	
給機能			
12. 重大事			表83-1で定める事項を運転上の制限とする。(<u>参考2-2/二記載</u>)
故等の対処	第83条	 重大事故等対処設備	
に必要な機	あり の木	里八争以守外处设渊	
能			
13. 運転上	第85条	運転上の制限の確認	
の制限に係	第86条	運転上の制限を満足しない場	
る運用	弗80宋	合	
	第87条	予防保全を目的とした点検・	
	あ○/ 米	補修を実施する場合	
	第88条	運転上の制限に関する記録	

参考2-2

PWR(川内原子力発電所)の運転上の制限値のうち重大事故等対処設備(第83条関係)に係るもの

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
緊急停止 失敗時に 原子炉を	多様化自動作動	(a) 多様化自動作動設備(ATWS 緩和設備)論理回路のうち 1 系統が、モード 1 及び 2 において動作可能であること。	30日	モード3にする (12 時間)。
未臨界に するため の設備	設備(ATWS 緩和 設備)	(b) 蒸気発生器水位異常低のうち3系統が、モード1及び2において動作可能であること。	30日	モード3にする(12時間)。
1 次系フィードで インドでするための 設備	1次系フィード アンドブリード による炉心冷却 系	モード1、2、3及び4(蒸気発生器が熱除去のために使用されている場合)において、 (1) 高圧注入系の2系統以上が動作可能であること (2) 加圧器逃がし弁2台による1次冷却系統の減圧系が動作可能であること・充てん/高圧注入ポンプ2台 ・加圧器逃がし弁2台 ・燃料取替用水タンク	10日(高圧注入 系) 72時間(加圧器 逃がし弁)	【モード1、2、3の場合】 モード3にする(12 時間)。 モード4にする(36 時間)。 【モード4の場合】 モード5にする(20 時間)。
	非常用炉心冷却 系	モード1、2、3、4、5及び6において、 (1)高圧注入系の1系統以上が動作可能であること (2)低圧注入系の1系統以上が動作可能であること ・充てん/高圧注入ポンプ 1台 ・余熱除去ポンプ 1台 ・燃料取替用水タンク	速やかに	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等(速やかに)。
炉心注入 をするた めの設備	充てん注入系	モード1、2、3、4、5及び6において、B充てん/高圧注入ポンプ(自己冷却)による充てん注入系が動作可能であること B充てん/高圧注入ポンプ(自己冷却) 1台 ・燃料取替用水タンク ・復水タンク	30日 (モード 1,2,3,4) 速やかに (モード 5,6)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等(速やかに)。
	代替炉心注入系	モード1、2、3、4、5及び6において、可搬型電動低圧注入ポンプ(可搬型電動ポンプ用発電機含む)又は可搬型ディーゼル注入ポンプによる代替炉心注入系2系統が動作可能であること・可搬型電動低圧注入ポンプ(可搬型電動ポンプ用発電機含む)又は可搬型ディーゼル注入ポンプ 1台×2・燃料油貯蔵タンク・タンクローリ	30日(モード 1,2,3,4) 速やかに(モード 5,6)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等(速やかに)。
	代替再循環系	モード 1、2、3、4、5及び6において、 (1) A格納容器スプレイポンプ (RHRS-CSS タイライン使用) による代替再循環系が動作可能であること (2) B余熱除去ポンプ (海水冷却) 及びC充てん/高圧注入ポンプ (海水冷却) による高圧再循環系、又はB余熱除去ポンプ (海水冷却) による低圧再	7 2 時間 (A 格納 容器スプレイポ ンプ) 3 0 日 (その他)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		循環系が動作可能であること ・ A 格納容器スプレイポンプ (RHRS-CSS タイライン使用) 1台 ・ 格納容器再循環サンプ 1基 ・ 格納容器再循環サンプスクリーン 1基 ・ B 余熱除去ポンプ (海水冷却) 1台 ・ C 充てん/高圧注入ポンプ (海水冷却) 1台		1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等 (速やかこ)。
1 次冷却 系統の減 圧をする ための設 備	窒素ボンベ及び 可搬型バッテリ を使用した加圧 器逃がし弁によ る1次冷却系統 の減圧系	・移動式大容量ポンプ車 モード1、2及び3において、窒素ボンベ(加圧器逃がし弁用)及び可搬型 バッテリ(加圧器逃がし弁用)を使用した加圧器逃がし弁による1次冷却系 統の減圧系が動作可能であること ・窒素ボンベ(加圧器逃がし弁用) 4個 ・可搬型バッテリ(加圧器逃がし弁用) 2個	10日	モード3にする(12 時間)。 モード4にする(36 時間)。
原子炉格 納容器ス	原子炉格納容器 スプレイ系	モード1、2、3、4、5及び6において、原子炉格納容器スプレイ系の1 系統以上が動作可能であること ・格納容器スプレイポンプ 1台 ・燃料取替用水タンク	速やかに	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開始等(速やかに)。
プレイを するため の設備	代替原子炉格納容器スプレイ系	モード1、2、3、4、5及び6において、常設電動注入ポンプによる代替原子炉格納容器スプレイ系が動作可能であること ・常設電動注入ポンプ 1台 ・燃料取替用水タンク ・復水タンク	3 0日(モード 1, 2, 3, 4) 速やかに(モード 5, 6)	
原子炉格 納容器内 自然対流	原子炉格納容器 内自然対流冷却 系	モード1、2、3、4、5及び6において、原子炉補機冷却水系による原子炉格納容器内自然対流冷却系が動作可能であること ・A、B格納容器再循環ユニット 2基 ・A、B原子炉補機冷却水ポンプ 2台 ・原子炉補機冷却水サージタンク 1基 ・窒素ボンベ(原子炉補機冷却水サージタンク用)2個 ・A、B海水ポンプ 2台 ・可搬型温度計測装置(格納容器再循環ユニット入口温度/出口温度(SA)用)	30日(モード 1,2,3,4) 速やかに(モード 5,6)	
冷却をするための設備	移動式大容量ポ ンプ車による原 子炉格納容器内 自然対流冷却及 び代替補機冷却 海水ポンプ又は	モード1、2、3、4、5及び6において、移動式大容量ポンプ車による海水供給系2系統が動作可能であること ・移動式大容量ポンプ車 1台×2 ・A、B格納容器再循環ユニット ・燃料油貯蔵タンク ・タンクローリ ・可搬型温度計測装置(格納容器再循環ユニット ・入口温度/出口温度(SA)用) (1) モード1、2、3、4及び5(1次冷却系満水)において、A若しくは	5, 6)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等(速やかに)。 【モード1, 2, 3の場合】

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
器2次側	復水タンクを水	B海水ポンプ又は復水タンクを水源とした電動補助給水ポンプによる蒸気		モード3にする(12時間)。
による炉	源とした補助給	発生器への給水系1系統が動作可能であること		モード4にする(36時間)。
心冷却(注	水ポンプによる	又は		
水)をする	蒸気発生器への	(2) モード1、2及び3において、A若しくはB海水ポンプ又は復水タンク		【モード4の場合】
ための設	給水系	を水源としたタービン動補助給水ポンプによる蒸気発生器への給水系1系		モード5にする(20時間)
備		統が動作可能であること		
		・A、B海水ポンプ 1台		
		・電動補助給水ポンプ 2台		
		・タービン動補助給水ポンプ 1台		
		・タービン動補助給水ポンプ蒸気入口弁(手動) 1台		
		・復水タンク		
		・大容量空冷式発電機		
蒸気発生		モード1、2、3及び4(蒸気発生器が熱除去のために使用されている場合)	7 2時間	モード3にする (12時間)
器 2 次側		において、主蒸気逃がし弁3個が手動での開弁ができること (現場手動含む)		モード4(蒸気発生器が熱除
による炉	主蒸気逃がし弁	・主蒸気逃がし弁 3個		去のために使用されている場
心冷却(蒸	による蒸気放出			合) にする (36 時間)
気放出)を	系			
するため				
の設備				
		モード1、2、3、4、5及び6において、	左記(1)に関し	【モード1, 2, 3, 4の場合】
		(1) 静的触媒式水素再結合装置の所要数が動作可能であること	て、7 2 時間、(2)	モード3にする(12時間)。
		(2) 静的触媒式水素再結合装置動作監視装置の所要数が動作可能であること	&(4)に関して	モード5にする(56時間)。
		(3) 電気式水素燃焼装置の所要数が動作可能であること	は、速やかに(モ	
	水素濃度低減	(4) 電気式水素燃焼装置動作監視装置の所要数が動作可能であること	ード1, 2, 3,	【モード5, 6の場合】
	小宋/成文包版	· 静的触媒式水素再結合装置 5基	4)	1次系の水抜きの中止、1次系
		·静的触媒式水素再結合装置動作監視装置 5個	速やかに(モード	保有水を回復させる措置の開
水素爆発		·電気式水素燃焼装置 12 個	5, 6)	始等(速やかこ)。
による原		·電気式水素燃焼装置動作監視装置 12 個		
子炉格納		・大容量空冷式発電機		
容器の破		モード1、2、3、4、5及び6において、可搬型格納容器水素濃度計測装	30日(モード	【モード1, 2, 3, 4の場合】
損を防止		置等による水素濃度監視系1系統が動作可能であること	1, 2, 3, 4)	モード3にする(12時間)。
するため		·可搬型格納容器水素濃度計測装置 1個		モード5にする(56時間)。
の設備		・可搬型ガスサンプリング冷却器用冷却ポンプ 1台	速やかに(モード	
		・可搬型代替ガスサンプリング圧縮装置 1台	5, 6)	【モード5, 6の場合】
	水素濃度監視	・Aガスサンプリング圧縮装置 1台		1次系の水抜きの中止、1次系
		・窒素ボンベ(事故後サンプリング設備弁用) 1個		保有水を回復させる措置の開
		・移動式大容量ポンプ車		始等(速やかこ)。
		- 大容量空冷式発電機		
		- 燃料油貯蔵タンク		
		・タンクローリ		
水素爆発		モード1、2、3、4、5及び6において、		【モード1, 2, 3, 4の場合】
による原		(1) Bアニュラス空気浄化系が動作可能であること	ュラス空気浄化	
子炉補助	水素排出	(2)代替空気(窒素)系統が動作可能であること	系)、10日(代替	モード5にする(56時間)。
建屋等の		・Bアニュラス空気浄化ファン 1台	空気(窒素)系統)	
損傷を防		・Bアニュラス空気浄化系フィルタユニット 1基	(モード1, 2,	
止するた		・窒素ボンベ(アニュラス空気浄化ファン弁用) 3個	3, 4)	

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じられない場合の対応
めの設備		· 大容量空冷式発電機	速やかに (モード 5, 6)	【モード5, 6の場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等 (速やかご)。
	使用済燃料ピット補給用水中ポンプによる使用 済燃料ピットへの注水系	使用済燃料ピットに燃料体を貯蔵している期間において、使用済燃料ピット 補給用水中ポンプによる使用済燃料ピットへの注水系2系統が動作可能で あること ・使用済燃料ピット補給用水中ポンプ 1台×2 ・使用済燃料ピット及び復水タンク補給用水 ・中ポンプ用発電機 1台×2 ・燃料油貯蔵タンク ・タンクローリ	速やかに	左記の通り
使用済燃 料ピッ却 のための 設備	使用済燃料ピッ トへのスプレイ 系	使用済燃料ピットに燃料体を貯蔵している期間において、(1)使用済燃料ピットへのスプレイ系のうち屋外に配備する設備について2系統が動作可能であること (2)使用済燃料ピットへのスプレイ系のうち屋内に配備する設備について1系統が動作可能であること ・可搬型電動低圧注入ポンプ(可搬型電動ポンプ用発電機含む)又は可搬型ディーゼル注入ポンプ 1台×2 ・使用済燃料ピットスプレイヘッダ 2基 ・燃料油貯蔵タンク ・タンクローリ	速やかに	左記の通り
	使用済燃料ピットの監視	使用済燃料ピットに燃料体を貯蔵している期間において、以下の設備がそれぞれ動作可能であること。 ・使用済燃料ピット水位(SA) 2個 ・使用済燃料ピット温度(SA) 2個 ・使用済燃料ピット状態監視カメラ 2個 ・使用済燃料ピット水位(広域)(使用済燃料ピット監視装置用空気供給システム含む) 2個(1号)、4個(2号) ・使用済燃料ピット周辺線量率 2個 ・大容量空冷式発電機 ・燃料油貯蔵タンク ・タンクローリ	速やかに	左記の通り
発電が対射の対象をある。	原子が存納容器 及びアニュラス 部外では、からのでは、大きながですが、大きなができますが、大きなができますが、大きなが、大きなが、大きなが、大きなが、大きなが、大きなが、大きなが、大きな	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、1号炉及び2号炉において移動式大容量ポンプ車及び放水砲による放水系1系統が動作可能であること・移動式大容量ポンプ車 1台・放水砲 2台・燃料油貯蔵タンク・タンクローリ	1, 2, 3, 4)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【その他のモードの場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開始等(速やかに)。
	海洋への拡散抑制	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、所要数が使用可能であること ・放射性物質吸着剤 1式	10日 (モード 1, 2, 3, 4)	【モード1, 2, 3, 4の場合】 モード3にする (12 時間)。 モード5にする (56 時間)。

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		・シルトフェンス 2組・小型船舶 1台	速やかに (その他 のモード)	【その他のモードの場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開 始等(速やかこ)。
	宮山池又は海水(取水ピット、取水口)から中間受槽への供給	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、取水用水中ポンプ等による中間受槽への供給系2系統が動作可能であること・中間受槽 1個×2・取水用水中ポンプ 3台×2・取水用水中ポンプ用発電機 1台×2・燃料油貯蔵タンク・タンクローリ	1 0 日 or 3 0 日 (モード 1, 2, 3, 4) 速やかに (その他 のモード)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。 【その他のモードの場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開始等(速やがこ)。
重大事故等の収束	中間受槽から復水タンクへの供給	モード1、2、3、4、5、6において、復水タンク補給用水中ポンプ等による復水タンクへの供給系2系統が動作可能であること・復水タンク補給用水中ポンプ 2台×2・使用済燃料ピット及び復水タンク補給用水中・ポンプ用発電機1台×2・中間受槽・燃料油貯蔵タンク・タンクローリ	1 0日 or 3 0日 (モード1, 2, 3, 4) 速やかに (その他 のモード)	【モード1, 2, 3, 4の場合】 モード3にする(12時間)。 モード5にする(56時間)。
に必要と なる水の 供給設備	燃料取替用水タンク(有効水量)	モード1、2、3、4、5及び6(キャビティ低水位)において、1,677m3以上であること・燃料取替用水タンク 1,677m3	7 2時間 (モード 1, 2, 3, 4) 速やかに (その他 のモード)	モード3にする (12 時間)。 モード5にする (56 時間)。
	復水タンク(有効水量)	モード1、2、3、4、5及び6において、640m3 以上であること ・復水タンク 640m3	7 2時間 (モード 1, 2, 3, 4) 速やかに (その他 のモード)	【モード1, 2, 3, 4の場合】 モード3にする (12 時間)。 モード5にする (56 時間)。
電源設備	大容量空冷式発電機からの給電	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、 (1)大容量空冷式発電機による電源系1系統が動作可能であること (2)大容量空冷式発電機用燃料タンクの油量が20kl以上あること・大容量空冷式発電機1台・大容量空冷式発電機用給油ポンプ1台・大容量空冷式発電機用燃料タンク20kl・燃料油貯蔵タンク・タンクローリ	3 0日(モード 1, 2, 3, 4) 速やかに(その他 のモード)	モード3にする (12 時間)。 モード5にする (56 時間)。

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	30日(モード	【モード1, 2, 3, 4の場合】
	号炉間電力融通	る期間において、	1, 2, 3, 4)	モード3にする(12時間)。
	ケーブル(予備	(1) 号炉間電力融通ケーブルによる電源系1系統が使用可能であること		モード5にする(56時間)。
	ケーブル(号炉	(2) 予備ケーブル(号炉間電力融通用)による電源系1系統が使用可能であ		
	間電力融通用))	ること	速やかに(その他	【その他のモードの場合】
	からの給電	・号炉間電力融通ケーブル 1本	のモード)	1次系の水抜きの中止、1次系
	からり和电	・予備ケーブル(号炉間電力融通用) 21 本		保有水を回復させる措置の開
				始等(速やかに)。
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	10日 or 30日	【モード1, 2, 3, 4の場合】
		る期間において、発電機車(中容量発電機車又は高圧発電機車)による電源	(モード1, 2,	モード3にする(12時間)。
	発電機車(中容	系2系統が動作可能であること	3, 4)	モード5にする(56時間)。
	量発電機車又は	・発電機車(中容量発電機車又は高圧発電機車) 1台×2		
	高圧発電機車)	・燃料油貯蔵タンク	速やかに(その他	【その他のモードの場合】
	からの給電	・タンクローリ	のモード)	1次系の水抜きの中止、1次系
				保有水を回復させる措置の開
				始等(速やかに)。
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	30日(モード	【モード1, 2, 3, 4の場合】
	蓄電池(安全防	る期間において	1, 2, 3, 4)	モード3にする(12時間)。
	番电池 (女主的 護系用) 及び蓄	(1) 蓄電池(安全防護系用)からの電源系1系統が動作可能であること		モード5にする(56時間)。
		(2) 蓄電池(重大事故等対処用)からの電源系1系統が動作可能であること		
	電池(重大事故	· 蓄電池(安全防護系用) 1組	速やかに(その他	【その他のモードの場合】
	等対処用)から	· 蓄電池(重大事故等対処用) 1組	のモード)	1次系の水抜きの中止、1次系
	の給電			保有水を回復させる措置の開
				始等(速やかに)。
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	10日 or 30日	【モード1, 2, 3, 4の場合】
		る期間において、直流電源用発電機及び可搬型直流変換器からの電源系2系	(モード1, 2,	モード3にする(12時間)。
	直流電源用発電	統が動作可能であること	3, 4)	モード5にする(56時間)。
	機及び可搬型直	・直流電源用発電機 1台×2		
	流変換器からの	·可搬型直流変換器 1個×2	速やかに(その他	【その他のモードの場合】
	給電	・燃料油貯蔵タンク	のモード)	1次系の水抜きの中止、1次系
		・タンクローリ		保有水を回復させる措置の開
				始等(速やかに)。
	代替所内電気設	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	30日(モード	【モード1, 2, 3, 4の場合】
	備(重大事故等	る期間において、所要数が使用可能であること	1, 2, 3, 4)	モード3にする(12時間)。
	対処用変圧器受	· 重大事故等対処用変圧器受電盤 1個		モード5にする(56時間)。
	電盤、重大事故	· 重大事故等対処用変圧器盤 1個		
	等対処用変圧器	・大容量空冷式発電機	速やかに(その他	【その他のモードの場合】
	盤、大容量空冷		のモード)	1次系の水抜きの中止、1次系
	式発電機)から			保有水を回復させる措置の開
	の給電			始等(速やかに)。
	代替所内電気設	モード1、2及び3(1次冷却材圧力が6.89MPa[gage]を超える場合)にお	10日	モード3にする(12時間)。
	備(発電機車(中	いて、所要数が使用可能であること		1次系圧力を 6.89MPa[gage]
	容量発電機車又	・変圧器車 1台		以下に下げる(18 時間)。
	は高圧発電機	·可搬型分電盤 7個		
	車)、変圧器車及	・発電機車(中容量発電機車又は高圧発電機車)		
	び可搬型分電			

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
	盤)からの給電			
	燃料油貯蔵タン ク、タンクロー リによる燃料補 給設備	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、 (1)燃料油貯蔵タンクの油量が294kl以上あること (2)タンクローリの所要数が使用可能であること ・燃料油貯蔵タンク294kl ・タンクローリ 1台	1, 2, 3, 4)	【モード1, 2, 3, 4の場合】 燃料補給を要するSA設備を動作不能とみなす(速やかに) 【その他のモードの場合】 1次系の水抜きの中止、1次系 保有水を回復させる措置の開始等(速やかに)。
	原子炉容器内の 温度	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・1次令却材高温側温度(広域) 1 c h ・1次令却材低温側温度(広域) 1 c h	機能を確認する全ての計器が動作不能である場	【モード1, 2, 3, 4の場合】 モード3にする (12 時間)。 モード5にする (56 時間)。
	原子炉容器内の 圧力	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・1次令却材圧力 1 c h	(名) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	【その他のモードの場合】
	原子炉容器内の 水位	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・加圧器水位 1 c h	メータを計測す る計器全てが動 作不能)	原子炉格納容器内での燃料の 移動の中止及び1次冷却材中 のほう素濃度が低下する操作
	原子炉容器への 注水量	モード 1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・ほう酸注入ライン流量 1 c h ・補助注入ライン流量 1 c h ・余熱除去ループ流量 1 c h ・SA 用低圧炉心注入及びスプレイ積算流量 1 c h		の全中止。(速やかに)。
計装設備(主要パラメータのみ記載)	原子炉格納容器への注水量	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・A格納容器スプレイ冷却器出口積算流量 1 c h ・ほう酸注入ライン流量 1 c h ・補助注入ライン流量 1 c h ・余熱除去ループ流量 1 c h ・SA 用低圧炉心注入及びスプレイ積算流量 1 c h		
	原子炉格納容器 内の温度	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・格納容器内温度 1 c h		
	原子炉格納容器 内の圧力	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・格納容器圧力 1ch ・AM用格納容器圧力 1ch		
	原子炉格納容器 内の水位	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・格納容器再循環サンプ広域水位 1 c h ・格納容器再循環サンプ狭域水位 1 c h ・原子炉下部キャビティ水位 1 c h ・原子炉格納容器水位 1 c h		
	原子炉格納容器 内の水素濃度	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。		

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		・格納容器水素濃度 1 c h		
	原子炉格納容器 内の放射線量率	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・格納容器内高レンジェリアモニタB(高レンジ) 1 c h ・格納容器内高レンジェリアモニタ A(低レンジ) 1 c h		
	未臨界の維持又は監視	モード1及び2において、以下の設備が動作可能であること。 ・出力領域中性子東 1 c h ・中間領域中性子東 1 c h モード2、3、4、5及び6において、以下の設備が動作可能であること。 ・中性子源領域中性子東 1 c h		
	最終ヒートシン クの確保	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・格納容器圧力 1ch ・原子炉補機令却水サージタンク水位 1ch ・格納容器再循環ユニット入口温度/出口温度(SA) 1ch ・蒸気ライン圧力 1ch ・蒸気発生器狭域水位 1ch ・蒸気発生器に域水位 1ch ・補助給水流量 1ch		
	格納容器パイパ スの監視	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・蒸気発生器狭域水位 1 c h ・蒸気ライン圧力 1 c h ・1次令却材圧力 1 c h		
	水源の確保	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・燃料取替用水タンク水位 1 c h ・復水タンク水位 1 c h ・ほう酸タンク水位 1 c h		
	可搬型計測器	モード1、2、3及び4において、以下の設備が動作可能であること。 ・温度、圧力、水位及び流量計測用 8個 モード5及び6において、以下の設備が動作可能であること。 ・圧力、水位及び流量計測用 26個		
	記録機能を有する設備	モード1、2、3、4、5及び6において、以下の設備が動作可能であること。 ・可搬型温度計測装置として格納容器再循環ユニット入口温度/出口温度 (SA) 用 1式 ・SPDS データ表示装置 1台 ・緊急時運転パラメータ伝送システム(SPDS) 1系列 10 中央制御室		
中央制御室	中央制御室非常 用循環系 居住性確保設備 汚染の持ち込み 防止設備	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵している期間において、 (1)中央制御室当たり中央制御室非常用循環系1系統以上が動作可能であること (2)可搬型照明(SA)、酸素濃度計及び二酸化炭素濃度計の所要数が使用可能	御室非常用循環 系の全系統が動 作不能である場	【モード1, 2, 3, 4の場合】 モード3にする (12 時間)。 モード5にする (56 時間)。

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		であること	濃度計等が所要	
		・中央制御室非常用循環ファン 1台	数を満足してい	
		・中央制御室空調ファン 1台	ない場合)(モー	
		・中央制御室循環ファン 1台	ド1, 2, 3, 4)	
		・中央制御室非常用循環フィルタユニット 1基		
		· 可搬型照明 (SA) 10 個	速やかに(その他	【その他のモードの場合】
		· 酸素濃度計 1個	のモード)	1次系の水抜きの中止、1次系
		・二酸化炭素濃度計 1個		保有水を回復させる措置の開
		・大容量空冷式発電機		始等(速やかに)。
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	速やかに	代替措置 (代替品の補充等) を
		る期間において、以下の設備が動作可能であること。		検討し、原子炉主任技術者の
		・モニタリングステーション及びモニタリングポスト 5台		確認を得て実施する措置の開
		・可搬型モニタリングポスト 5個		始等(速やかに)。
		・可搬型エリアモニタ 8個		
	放射性物質の濃	・可搬型よう素サンプラ 2個 _お		
	度及び放射線量	・可搬型ダストサンプラ 2個		
監視測定	の測定	・NaI シンチレーションサーベイメータ 2個 🚩 🏢		
設備		が		
		・ZnS シンチレーションサーベイメータ 2個		
		- β線サーベイメータ 2個		
		- 電離箱サーベイメータ 2個		
		- 小型船舶		
	風向、風速その	モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい		
	他の気象条件の	る期間		
	測定	· 可搬型気象観測裝置 1個		
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	10日 or 30日	【モード1, 2, 3, 4の場合】
		る期間において、代替緊急時対策所用発電機2台が動作可能であること	(モード1, 2,	モード3にする(12時間)。
		·代替緊急時対策所用発電機 1台×2	3, 4)	モード5にする(56時間)。
	代替緊急時対策	・燃料油貯蔵タンク		
	1、音楽 志 時 列 東 所用発電機	・タンクローリ	速やかに(その他	【その他のモードの場合】
	別用光电域		のモード)	代替措置 (代替品の補充等) を
				検討し、原子炉主任技術者の
				確認を得て実施する措置の開
				始等(速やかに)。
緊急時対		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	10日(モード	【モード1, 2, 3, 4の場合】
第二時列 第所		る期間において、	1, 2, 3, 4)	モード3にする(12時間)。
2011		(1)代替緊急時対策所空気浄化系1系統以上が動作可能であること		モード5にする(56時間)。
	代替緊急時対策	(2)代替緊急時対策所加圧設備(空気ボンベ)の所要数が使用可能であるこ		
	所空気浄化系	٤	速やかに(その他	【その他のモードの場合】
	代替緊急時対策	(3) 酸素濃度計及び二酸化炭素濃度計の所要数が使用可能であること	のモード)	代替措置 (代替品の補充等) を
	1、首案总时对录 所加圧設備	(4) 代替緊急時対策所エリアモニタの所要数が動作可能であること		検討し、原子炉主任技術者の
	居住性確保設備	・代替緊急時対策所空気浄化ファン 1台		確認を得て実施する措置の開
		・代替緊急時対策所空気浄化フィルタユニット 1基		始等(速やかに)。
		・代替緊急時対策所加圧設備(空気ボンベ) 400 本以上		
		·酸素濃度計 1個		
		・二酸化炭素濃度計 1個		

SA 設備	項目	LCO、所要数等	AOT	AOT 内に措置を講じら れない場合の対応
		・代替緊急時対策所エリアモニタ 1個		
		・可搬型エリアモニタ(加圧判断用)		
		モード1、2、3及び4において、以下の設備が動作可能であること。また、	10日(モード	【モード1, 2, 3, 4の場合】
		モード5、6及び使用済燃料ピットに燃料体を貯蔵している期間において	1, 2, 3, 4)	モード3にする(12時間)。
		も、動作可能であること		モード5にする(56時間)。
通信連絡		· 衛星携帯電話設備 8台		
を行うた	`系/云`击 火 示//进	·無線連絡設備 8台	速やかに(その他	【その他のモードの場合】
めに必要	通信連絡設備	·携带型通話設備 24台	のモード)	代替措置 (代替品の補充等) を
な設備		・SPDS データ表示装置 2台		検討し、原子炉主任技術者の
		・緊急時運転パラメータ伝送システム(SPDS) 1系列		確認を得て実施する措置の開
		・統合原子力防災ネットワークに接続する通信連絡設備(テレビ会議システ		始等(速やかに)。
		ム、IP 電話、衛星通信装置(電話)、IP-FAX) 1系列		
		モード1、2、3、4、5、6及び使用済燃料ピットに燃料体を貯蔵してい	10日(モード	【モード1, 2, 3, 4の場合】
		る期間において、ホイールローダの所要数が使用可能であること	1, 2, 3, 4)	モード3にする(12時間)。
		・ホイールローダ 1台		モード5にする (56 時間)。
その他の	アクセスルート			
設備	の確保		速やかに(その他	【その他のモードの場合】
			のモード)	1次系の水抜きの中止、1次系
				保有水を回復させる措置の開
				始等(速やかに)。