島根原子力発電所2号炉 審査資料					
資料番号	PLM-03 改 04				
提出年月日	平成 30 年 8 月 29 日				

島根原子力発電所2号炉 高経年化技術評価

(コンクリートおよび鉄骨構造物)

補足説明資料

平成 30 年 8 月 29 日

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

1. はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 基本方針 ····································
 3. 評価対象と評価手法
4. 代表構造物の技術評価 11 4.1 コンクリートの強度低下 11 4.2 コンクリートの遮へい能力低下 21 4.3 現状保全 22 4.4 総合評価 22 4.5 高経年化への対応 22
5. 代表構造物以外の技術評価 ・・・・・ 23
 6. まとめ
別紙1. 点検手順書における目視点検の項目, 方法および判定基準について

	別紙2.	島根2号炉周辺地域の凍害危険度について
	別紙3.	鉄骨構造物の金属疲労評価の計算過程および結果について
	別紙4.	評価に用いる温度の考え方について
	別紙5.	温度測定方法,測定位置および測定結果について
	別紙6.	放射線照射量の算出方法,評価モデル,過程および結果について
	別紙7.	空気環境測定方法および位置について
_	別紙8.	中性化深さの推定値の算定過程について
r L	別紙9.	塩分浸透における鉄筋の腐食減量の算定過程について
_	別紙10.	機械振動の評価対象および評価点の選定過程について

別紙11. 熱による遮へい能力低下の評価に用いた温度分布解析について

1. はじめに

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規定に基づき実施した高経年化技術評価のうち、コンクリート構造物の強度低下,遮へい能力低下および鉄骨構造物の強度低下の評価結果について、補足説明するものである。

コンクリートおよび鉄骨構造物の経年劣化事象,劣化要因を表1に示す。

構造物	経年劣化 事象	劣化要因				
		熱	コンクリートが熱を受けると、温度条件によってはコンクリート中の水分の 逸散に伴う乾燥に起因する微細なひび割れ、あるいは水分の移動 に起因する空隙の拡大等により、強度が低下する可能性がある。			
		放射線 照射	コンクリートが中性子照射やガンマ線照射を受けると,照射量によって は、コンクリートの強度が低下する可能性がある。			
		コンクリートは,空気 にそのアルカリ性を 鉄筋を保護する の作用により腐 び割れやはく離れ ろ可能性がある	コンクリートは、空気中の二酸化炭素の作用を受けると、表面から徐々 にそのアルカリ性を失い中性化する。中性化がコンクリートの内部に進行し、 鉄筋を保護する能力が失われると、鉄筋はコンクリート中の水分、酸素 の作用により腐食し始め、腐食に伴う体積膨張によりコンクリートにひ び割れやはく離が生じ、コンクリート構造物としての健全性が損なわれ る可能性がある。			
コンクリート	強度低下	塩分浸透	コンクリート中に塩化物インが浸透し、鉄筋位置まで達すると、鉄筋の 腐食が徐々に進行し、鉄筋の膨張によりコンクリートにひび割れやはく 離が生じ、コンクリート構造物としての健全性が損なわれる可能性があ る。			
		7ル加骨材 反応	アルカリ骨材反応は、コンクリート中に存在するアルカリ溶液と、骨材中に含まれる反応性のシリカ鉱物の化学反応である。このとき生成されたア ルカリ・シリカゲルが周囲の水を吸収し膨張すると、コンクリート表面にひび割れが生じ、コンクリート構造物としての健全性が損なわれる可能性がある。			
		機械振動	コンクリート構造物は、長期間にわたって機械振動による繰返し荷重 を受けるとひび割れが発生し、コンクリート構造物としての健全性が損 なわれる可能性がある。			
		凍結融解	コンクリート中の水分が凍結し、それが気温の上昇や日射を受けること等により融解する凍結融解を繰り返すことでコンクリートにひび割れが生じ、コンクリート構造物としての健全性が損なわれる可能性がある。			
	遮へい 能力低下	熱	コンクリートは,周辺環境からの伝達熱および放射線照射に起因する コンクリート内部の温度上昇により,コンクリート中の水分が逸散し,放射線 に対する遮へい能力が低下する可能性がある。			
	強度低下	腐食	一般的に,鋼材は大気中の酸素および水分と化学反応を起こし て腐食する。腐食は,海塩粒子等により促進され,進行すると鋼 材の断面欠損に至り,鉄骨構造物としての健全性が損なわれる可 能性がある。			
		金属疲労	繰返し荷重が継続的に鉄骨構造物にかかることにより,疲労に よる損傷が蓄積され,鉄骨の強度低下につながる可能性がある。			
鉄骨	制震装置 強度低下 ——	腐食	一般的に,鋼材は大気中の酸素および水分と化学反応を起こし て腐食する。腐食は,海塩粒子等により促進され,進行すると制 震装置(粘性ダンパ)の断面欠損に至り,制震装置(粘性ダンパ) の強度低下につながる可能性がある。			
		畑皮似下	摩耗	制震装置(粘性ゲンパ)の摺動部に長期間の使用により摩耗が発 生すると,動作不良に至り,制震装置(粘性ゲンパ)の強度低下に つながる可能性がある。		

表1 コンクリートおよび鉄骨構造物の経年劣化事象および劣化要因

2. 基本方針

評価対象構造物において表1の経年劣化事象の発生の可能性について評価し、その発生の可能 性が将来にわたって否定できない場合は、その発生または進展に係る健全性評価を行い、実用発 電用原子炉施設における高経年化対策審査ガイドに定める要求事項に適合することを確認する。

コンクリートおよび鉄骨構造物の経年劣化事象を評価するにあたっての要求事項を表 2 に整理 する。

カ゛イト゛	要求事項
実用発電用原子炉施設 における高経年化対策 審査ガイド	 (1)高経年化技術評価の審査 ②健全性の評価 実施が小、3.1⑤に規定する期間の満了日までの期間について、高経年化対策上着目すべき経年劣化事象の発生又は進展に係る健全性を評価していることを審査する。 ③現状保全の評価 健全性評価結果から現状の保全策の妥当性が評価されていることを審査する。 ④追加保全策の抽出 現状保全の評価結果から、現状保全に追加する必要のある新たな保全策が抽出されていることを審査する。
	 (2)長期保守管理方針の審査 ①長期保守管理方針の策定 すべての追加保全策について長期保守管理方針として策定されているかを審査する。

表2(1/2) コンクリートおよび鉄骨構造物評価についての要求事項

表2(2/2) コンクリートおよび鉄骨構造物評価についての要求事項

カ゛イト゛	要求事項				
	3.1 高経年化技術評価の実施及び見直し				
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、				
	以下に規定する期間の満了日までの期間について機器・構造物				
	の健全性評価を行うとともに、必要に応じ現状の保守管理に追				
	加すべき保全策(以下「追加保全策」という。)を抽出すること。				
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価				
	プラントの運転を開始した日から 60 年間				
	3.2 長期保守管理方針の策定及び変更				
	長期保守管理方針の策定及び変更に当たっては、以下の要求事				
実用発電用原子炉施設	項を満たすこと。				
における高経年化対策	①高経年化技術評価の結果抽出された全ての追加保全策(発電用				
実施ガイド	原子炉の運転を断続的に行うことを前提として抽出されたもの				
	及び冷温停止状態が維持されることを前提として抽出されたも				
	の全て。)について、発電用原子炉ごとに、保守管理の項目及び				
	当該項目ごとの実施時期を規定した長期保守管理方針を策定す				
	ること。				
	なお、高経年化技術評価の結果抽出された追加保全策について、				
	発電用原子炉の運転を断続的に行うことを前提とした評価から				
	抽出されたものと冷温停止状態が維持されることを前提とした				
	評価から抽出されたものの間で、その対象の経年劣化事象及び				
	機器・構造物の部位が重複するものについては、双方の追加保				
	全策を踏まえた保守的な長期保守管理方針を策定すること。				

- 3. 評価対象と評価手法
 - 3.1 代表構造物の選定

コンクリートおよび鉄骨構造物の強度低下,遮へい能力低下が想定される構造物は多数存 在するため,高経年化技術評価では,評価対象となる構造物の中から代表構造物を選定して 評価を行う。評価対象構造物,代表構造物は以下の手順にて選定する。

3.1.1 評価対象構造物の抽出とグループ化

安全上重要な構造物「重要度分類審査指針における PS-1,2 および MS-1,2 に該当する構造物または該当する機器・構造物を支持する構造物」「高温・高圧の環境下にある PS-3, MS-3 の機器を支持する構造物」「常設重大事故等対処設備に該当する構造物または該当する機器・構造物を支持する構造物」「浸水防護施設に属する構造物」に該当する構造物を抽出し、コンクリート構造物と鉄骨構造物にグループ化を実施した。その結果を表3に示す。

3.1.2. 代表構造物の選定

グループ化した評価対象構造物について,使用条件等を考慮して代表構造物を選定した。 コンクリート構造物における代表構造物選定結果を表 4,鉄骨構造物における代表構造物 選定結果を表 5 に示す。

対象構造物	重要度*1	コンクリート構造物	鉄骨構造物
原子炉建物	PS-1	0	○ (鉄骨部)
タービン建物	MS-1	0	○ (鉄骨部)
廃棄物処理建物	MS-1	0	
制御室建物	MS-1	0	
排気筒(制震装置付)	MS-1	0	0
サイトバンカ建物	高*2	0	
補助ボイラ室	高*2	0	0
9-L [*] ン建物水密扉	記*3 記		0
復水貯蔵タンク基礎	MS-1	0	
非常用ガス処理系配管ダクト	MS-1	0	
取水構造物	MS-1	0	
防波壁	武 *3	0	

表3 評価対象構造物の抽出とグループ化

*1:最上位の重要度を示す。

*2:最高使用温度が 95℃を超え、または最高使用圧力が 1,900kPa を超える環境下にある原子炉 格納容器外の重要度クラス3の機器を支える構造物を示す。

*3:設計基準対象施設として評価対象とした機器および構造物を示す。

	使用条件等							培	
対象構造物 (コンクリート構造物)	運転開始後 高温語		高温部 放射線		設置現	環境	供給	速定	選定理由
	経過年数	の有無	の有無	有無	屋内	屋外	塩化物量	/2	
原子炉建物	29 年	0	0	\bigtriangleup	一部 仕上げ無し	仕上げ有り	\bigtriangleup	0	高温部、放射線の影響
タービン建物	29 年	\bigtriangleup	\bigtriangleup	0	一部 仕上げ無し	仕上げ有り	\bigtriangleup	0	振動の影響
廃棄物処理建物	29 年	\bigtriangleup	\bigtriangleup		一部 仕上げ無し ^{*2}	仕上げ有り	Δ		
制御室建物	43 年	—			一部 仕上げ無し	仕上げ有り	\bigtriangleup	\odot	運転開始後経過年数
排気筒基礎	29 年					埋設*1	\bigtriangleup		
サイトバンカ建物	33年	\bigtriangleup	\bigtriangleup	_	一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
補助ボイラ室	31年 20年	\bigtriangleup			一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
復水貯蔵タンク基礎	29 年			·		埋設*1	\bigtriangleup		
非常用ガス処理系配 管ダクト	29 年					埋設*1	_		
取水構造物	29 年	_	_	_		仕上げ無し	 (海水と接触)	0	供給塩化物量の影響
防波壁	4年					仕上げ無し*3	\bigtriangleup		

表4 コンクリート構造物における代表構造物選定結果

*1:環境条件の区分として、土中埋設は一般の環境として区分されることから、他の屋外で仕上げがない構造物で代表させる。

*2:他の屋内で仕上げがない構造物で代表させる。

*3:他の屋外で仕上げがない構造物で代表させる。

…グループ内代表構造物とする使用条件等

【凡例】	
○:影響大	
△:影響小	
—:影響極小,	または無し

対象構造物		使用条件等			
	運転開始後	設置	 環境	選定	選定理由
	経過年数	屋内	屋外		
原子炉建物 (鉄骨部)	29 年	仕上げ有り*1			
タービン建物 (鉄骨部)	29 年	仕上げ有り*1			
排気筒	29 年		仕上げ有り	O	屋外環境
補助ボイラ室	31 年	仕上げ有り		O	屋内環境
タービン建物水密 扉	5年	仕上げ有り*1			

表5 鉄骨構造物における代表構造物選定結果

*1:他の屋内で仕上げがある構造物で代表させる。

…グループ内代表構造物とする使用条件等

- 3.2 高経年化対策上着目すべき経年劣化事象の抽出
 - 3.2.1 高経年化対策上着目すべき経年劣化事象

高経年化対策上着目すべき経年劣化事象を表6に示す。また,表1に示した経年劣化事 象のうち,以下①と②以外について,高経年化対策上着目すべき経年劣化事象として抽出 した。

構造物	経年劣化事象	高経年化対策上着目すべき経年劣化要因
コンクリート		熱
		放射線照射
	強度低下	中性化
		塩分浸透
		機械振動
	遮へい能力低下	熱

表6 高経年化対策上着目すべき経年劣化事象

①高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

表7に示す経年劣化事象については、想定した劣化傾向等に基づき適切な保全活動を行っていることから、高経年化対策上着目すべき経年劣化事象ではない事象と判断した。なお、コンクリートおよび鉄骨構造物の保全活動は、保全計画に基づく頻度、「QMS7-06-N16-16 島根原子力発電所土木建築関係設備点検手順書」(以下、「点検手順書」という)に定めた 点検方法により、実施している。具体的な点検および補修の実績を表8に示す。また、点 検手順書における目視点検の項目、方法および判定基準について、別紙1に示す。

構造物	経年劣化事象	劣化要因	理由
コンクリート	強度低下	アルカリ骨材反応	定期的(1回/年)に点検手順書に基づく目視点検 を行っているが, アルカリ骨材反応に起因すると判断され るひび割れは確認されていない。 また,試験によりコンクリート構造物の健全性に影響を与 えるような反応性がないことを確認している。試験結 果を表9に示す。 今後も使用環境が急激に変化することはないこと から, アルカリ骨材反応の進展傾向は極めて小さいと考え られる。
鉄骨	強度低下	腐食	定期的(1回/年)に点検手順書に基づく目視点検 を行い,鋼材の腐食に影響する塗膜の劣化等が認めら れた場合には,補修塗装を施すことによって健全性を 確保している。
	制震装置 強度低下	腐食	定期的(1回/年)に点検手順書に基づく目視点検 を行い,有意な塗膜の劣化等が認められた場合には, 補修塗装を施すことによって健全性を確保している。
		摩耗	定期的(1回/年)に点検手順書に基づく目視点検 を行い、有意な摩耗が認められた場合には、新品への 取替え等を行うことにより、健全性を確保している。

表7 日常劣化管理事象

経年劣化事象	劣化要因	対象構造物	点検方法	点検頻度	点検結果	補修実績
コンクリートの強度低 下	アルカリ骨材 反応	原子炉建物, タービン 建物, 廃棄物処理 建物, 制御室建物, 排気筒基礎, サイトバ ンカ建物, 補助ボイラ 室, 復水貯蔵タンク基 礎, 非常用ガス処理 系配管ダクト, 取水 構造物, 防波壁	目視点検	1回/年	アルカリ骨材反応 に起因すると 判断されるひ び割れは確認 されていない	補修実績なし
鉄骨の強度低下	腐食	原子炉建物, タービン 建物, 排気筒, 補 助ボイラ室, タービン建 物水密扉	目視点検	1回/年	有害な腐食は 認められない	補修実績なし
制震装置の強度 低下	腐食	排気筒	目視点検	1回/年	有害な腐食は 認められない	補修実績なし
	摩耗	排気筒	目視点検	1回/年	有害な摩耗は 認められない	補修実績なし

表8 アルカリ骨材反応,鉄骨腐食および摩耗に関する点検および補修の実績

表9 アルカリ骨材反応に関する試験結果

対象構造物	試験方法 (試験実施年)	骨材	測定値	判定基準	結果
		八雲村産 粗骨材	0.024%		
原子炉建物ほか 主要構造物	モルタルバー法 (昭和 59 年)	古志町産 粗骨材	0.068%		
		加茂町産 細骨材	0.013%		
		広瀬町産 ルタルハ [・] ー法 細骨材 0.008% 服	膨張率が6か月で0.1%	ter ctor	
		横田町産 細骨材	0.017%	以下が無害	— 燕吉
		仁多町産 細骨材	0.013%		
		大島町産 細骨材	0.019%		
		西園町産 細骨材	0. 013%		

②高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

表 10 に示す経年劣化事象については、今後も経年劣化事象の進展が考えられない、また は進展傾向が極めて小さいと考えられることから、高経年化対策上着目すべき経年劣化事 象ではない事象と判断した。

構造物	経年劣化事象	劣化要因	理由
コンクリート	強度低下	凍結融解	日本建築学会「高耐久性鉄筋コンクリート造設計施工指針(案)・同 解説(1991)」によると、凍害危険度が2以上の地域は、凍結融 解を含む凍害を考慮する必要がある地域とある。 日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コ ンクリート工事(2015)」に示されている解説図26.1(凍害危険度の 分布図)によると、島根2号炉の周辺地域は凍結融解の危険性 がない地域に該当している。 あらためて、気象条件から島根2号炉の周辺地域の凍害危険 度を確認すると、凍結融解の危険性がない地域に該当していた。 島根2号炉周辺地域の凍害危険度について別紙2に示す。
鉄骨	強度低下	金属疲労	鉄骨構造物のうち,風による繰返し荷重を受ける排気筒が対 象構造物と考えられる。 島根2号炉の排気筒は,その耐震裕度を向上させるために鉄 塔支持型(制震装置付)に変更し,2015年4月に完了している。 鉄骨構造物の風等による繰返し荷重に対する評価は,(社)日 本建築学会「鋼構造設計規準(2005)」に示されている評価式を 用いて,発電所近傍で計測された風に基づき算定した応力範囲 が,運転開始後60年時点においても,許容疲労強さよりも小さ いことを確認し,疲労を考慮する必要はないと評価した。排気 筒の疲労評価について別紙3に示す。 島根2号炉の排気筒は鉄塔支持型であり,自立型よりも共振 現象が起きにくいとされている。また排気筒の主要構造部材は, これまでの目視点検でも共振による疲労割れは確認されておら ず,今後もこれらの共振現象による疲労割れは確認されておら ず,今後もこれらの共振現象による疲労が大きく変化する要因 があるとは言い難い。 以上から,鉄骨の金属疲労については,高経年化対策上着目 すべき経年劣化事象ではないと判断する。

表 10 日常劣化管理事象以外

3.3 劣化要因毎の評価対象部位の選定結果

経年劣化事象に対する劣化要因毎の評価対象部位について、選定した結果を表 11 に示す。

3.4 評価手法

高経年化対策上着目すべき経年劣化事象について,劣化要因毎に評価対象部位の材料およ び構造部条件並びに使用および環境条件に基づき,その進展の程度が大きいと考えられる評 価点について,材料面の性能を確認する。

性能を確認する方法としては,学会基準等による既往の健全性評価または国内外の研究成 果による健全性評価とした。

表 11	経年劣化事象に対す	る要因毎の評価対象部位

	構造種別		ョンクリート構造物					鉄骨棒	構造物					
彩	隆年劣化事象	強度低下 遮へい 制震装置 強度低下 能力 強度低下 低下 強度低下				装置 低下								
	要因	熱	放射線照射	中 性 化	塩分浸透	骨材反応	機械振動	凍結融解	熱	腐食	金属疲労	腐食	摩耗	備考
	原子炉建物	○*1	○*1	○*2	0	\triangle	0		○*5					*1:一次遮へい 壁
	ターヒン建物	0	0	○*2	0	\bigtriangleup	○*4		0					*2:内壁 *3:壁面
代表	制御室建物			○*2	0	\bigtriangleup								*4:タービン発電機 架台
件造物	排気筒									\bigtriangleup		\bigtriangleup	\bigtriangleup	*5:ガンマ線遮へ い辟
	補助ボイラ室									\triangle				
	取水構造物			○*3	○*3	\bigtriangleup								

○:高経年化対策上着目すべき経年劣化事象

△:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

▲:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

* :評価対象部位

- 4. 代表構造物の技術評価
 - 4.1 コンクリートの強度低下
 - 4.1.1 熱による強度低下
 - (1) 評価の概要

評価対象部位は、対象構造物のうち、通常運転時に雰囲気温度が高く、高温の原子炉圧 力容器近傍に位置する一次遮へい壁とし、評価点は一次遮へい壁内側とした(図1参照)。 評価については、別紙4に示す評価に用いる温度の考え方に基づき、通常運転時におけ る周辺の温度測定結果と、コンクリートの温度制限値を比較した。通常運転時における温 度測定の方法、位置および結果を別紙5に示す。

図1 原子炉格納容器概要

(2) 評価結果

コンクリートの温度制限値は設計基準強度確保の観点から,局部では 90℃,一般部では 65℃と定められている^{※1}。

評価温度は、一次遮へい壁に対して温度条件の厳しくなる原子炉格納容器内の雰囲気温 度とし、測定値の最高温度は62℃(測定位置は、原子炉圧力容器に近く温度の高くなるガ ンマ線遮へい壁近傍)であり、コンクリートの温度制限値以下である。

以上から、熱による強度低下に対しては、長期健全性評価上問題とならない。

※1:日本建築学会「原子炉建屋構造設計指針·同解説(1988)」

- 4.1.2 放射線照射による強度低下
- (1) 評価の概要

評価対象部位は,対象構造物のうち,原子炉圧力容器近傍に位置し,運転時に中性子照 射量およびガンマ線照射量の最も大きい一次遮へい壁とし,評価点を一次遮へい壁内側と した。

評価については,評価点における運転開始後 60 年時点で予想される中性子照射量および ガンマ線照射量を解析により算出した。放射線照射量の算出方法,条件,過程および結果 を別紙 6 に示す。

(2) 評価結果

運転開始後 60 年時点で予想される中性子照射量 (E>0.1MeV) は,放射線照射量解析の 結果,評価点において 1.32×10¹⁴ n/cm²,運転開始後 60 年時点で予想されるガンマ線照射 量は,放射線照射量解析の結果,評価点において 2.81×10⁶ rad であった。Hilsdorf 他の 文献^{※2}や日本建築学会「原子力施設における建築物の維持管理指針・同解説 (2015)」等を 踏まえ,コンクリート強度に影響を及ぼす可能性のある放射線照射量ではないことを確認 した (図 2,3参照)。

以上から、放射線照射による強度低下に対しては、長期健全性評価上問題とならない。

※2 : Hilsdorf, Kropp, and Koch, "The Effects of Nuclear Radiation on the Mechanical Properties of Concrete, "American Concrete Institute Publication, SP-55, Paper 10. (1977)

図 2 中性子照射したコンクリートの圧縮強度 (f_{cu}) と照射しない コンクリートの圧縮強度 (f_{cu0})の変化^{*2}

図3 ガンマ線照射したコンクリートの圧縮強度 (f_{cu}) と照射しない コンクリートの圧縮強度 (f_{cu0})の変化^{*2}

4.1.3 中性化による強度低下

(1) 評価の概要

中性化の進展度合いは,環境条件(温度,相対湿度,二酸化炭素濃度)の影響を受ける ため,空気環境測定を実施した。空気環境測定方法および位置を別紙7に示す。

中性化の評価対象部位は,屋外と屋内では,鉄筋位置に対する中性化深さと鉄筋腐食の 開始の関係が異なることから,各々に対して評価対象部位を抽出することとし,空気環境 の影響を遮断するコンクリートの塗装仕上げの有無,環境条件(温度,相対湿度,二酸化 炭素濃度)に基づく中性化に及ぼす影響度,かぶり厚さを考慮して選定した。

仕上げの状況については、対象構造物のうち、仕上げが無い箇所がある構造物を選定し、 設置環境が屋内の構造物と屋外の構造物に分類する。屋外の構造物については、対象とな る構造物が取水構造物のみであることから、取水構造物を評価対象として選定した。屋内 については、対象構造物のうち、原子炉建物、タービン建物および制御室建物の内壁を選 定した。

評価点については、屋内の各評価対象構造物で鉄筋腐食開始年数が最小となった、原子 炉建物3階非常用ガス処理装置室、タービン建物3階タービン室、制御室建物1階1D非常 用電気室、1C非常用電気室の内壁とした。なお、鉄筋腐食開始年数については、各環境条 件(温度、相対湿度、二酸化炭素濃度)が入力値となる森永式^{*3}を用いて算出した。表12 に各評価対象部位での森永式から算出される鉄筋腐食開始年数を示す。

また,屋外の構造物については海水によりコンクリート表面が湿潤とならず,空気環境 の影響を受ける取水構造物の壁面(気中帯)とした。

対象構造物		調査部位	測定面 種類	鉄筋が腐食し 始める時点の 中性化深さ ^{*1} (cm)	60 年時点 ^{*2} における 中性化深さ (cm)	鉄筋腐食 開始年数 ^{*3} (年)
		B2 階(東面)	塗装面	7.0	0.88	3, 837
		B1 階(西面)	塗装面	7.0	1.10	2,430
貭		1階(西面)	塗装面	7.0	1.04	2,770
小子 炉	内	。此(末二)	塗装面	8.0	0.93	4, 444
建	壁	2 隋(東囬)	未塗装面	8.0	2.39	674
物		3階(北面)	塗装面	7.0	0.97	3, 136
		非常用ガス処理装置室	未塗装面	7.0	2.50	472
		4階(北面)	塗装面	7.0	0.93	3, 460
			塗装面	7.0	0.57	9, 194
		BI 隋(北山)	未塗装面	7.0	1.46	1,386
タ		1 胜 (北王)	塗装面	8.0	0.98	4,031
 ビ	内		未塗装面	8.0	2.51	609
ン 建	壁		塗装面	6.0	0.89	2,770
物			未塗装面	6.0	2.27	422
		3階(北面)	塗装面	6.0	0. 91	2,629
		ターヒン室	未塗装面	6.0	2.34	397
制	制御室建	1 階(東面) 1C 非常用電気室	未塗装面	7.0	4.53	177
御室建		1 階(北面) 廊下	塗装面	7.0	1.29	2, 207
地物	1 階 1D 非常用電気室	未塗装面	7.0	4.53	177	

表 12 森永式による中性化の鉄筋腐食開始年数の比較

*1:かぶり厚さから評価した値(屋内ではかぶり厚さに2cmを加えた値)

*2:島根2号炉運転開始より60年時点

*3:森永式によって算出される中性化深さが,鉄筋が腐食し始める時点の中性化深さに達する年数

森永式

$$x = \sqrt{\frac{c}{5}} \cdot 2.44 \cdot R \cdot (1.391 - 0.017 \cdot RH + 0.022 \cdot T) \cdot (4.6 \cdot w/c - 1.76) \cdot \sqrt{t}$$

· DCHX/V · MX/X (/0)
H:相対湿度(%)
:温度 (℃)
: 仕上げ材による係数

評価については以下の手順にて実施した。算定過程を別紙8に示す。

①中性化深さの推定

中性化深さの推定式(岸谷式^{**4},依田式^{**5},森永式^{**3}および中性化深さの実測値に基づく√t式^{**6})により,運転開始後 60 年経過時点の中性化深さを算出

②最大中性化深さ推定値の抽出

中性化深さの推定式により得られる中性化深さのうち、最大値となる中性化深さを抽出

③鉄筋が腐食し始める時点の中性化深さの算出

鉄筋が腐食し始める時点の中性化深さとして,屋内はかぶり厚さに 2cm を加えた値, 屋外はかぶり厚さの値をそれぞれ算出

④運転開始後 60 年経過時点の中性化深さの評価

②が③よりも小さいことを確認

※4:日本建築学会「高耐久性鉄筋コンクリート造設計施工指針(案)・同解説(1991)」
 ※5:技報堂出版「コンクリート構造物の耐久性シリーズ 中性化(1986)」
 ※6:土木学会「コンクリート標準示方書 維持管理編(2013)」

(2) 評価結果

評価対象部位の運転開始後 60 年経過時点における中性化深さの推定値は表 13 に示すと おり、いずれの評価点においても鉄筋が腐食し始める時点の中性化深さを十分に下回って いることを確認した。

また,定期的に目視点検を実施しているが,中性化による鉄筋腐食に起因する有害なひ び割れ等は確認されていない。

以上から、中性化による強度低下に対しては、長期健全性評価上問題とならない。

表 13 運転開始後 60 年時点と鉄筋が腐食し始める時点の中性化深さの比較

())/L		```
(田村丁	•	cm)
<++)亚	•	$C_{\rm III}$

評価点		調査時点の	中性化深さ			
		調査時期 実測値 運転開始後 60 年時 (経過年数) (最大値) 通の中性化深さ*1		■鉄筋が腐食し始める ■時点の中性化深さ ^{≈2}		
	原子炉建物 3 階内壁	2016 年 (27 年)	0.65 (2.2)	3.57 (岸谷式)	7.0	
屋内	タービン建物 3階内壁	2016 年 (27 年)	0.36 (1.2)	3.57 (岸谷式)	6. 0	
	制御室建物 1 階内壁	2013 年 (39 年)	0.0 (0.1)	5.24 (岸谷式)	7.0	
屋 外	取水構造物 気中帯	2016 年 (27 年)	$ \begin{array}{c} 0.0\\ (0.0) \end{array} $	1.68 (岸谷式)	4. 0	

*1:岸谷式,依田式,森永式および中性化深さの実測値に基づく√t式による評価結果のうち 最大値を記載

*2:かぶり厚さから評価した値

4.1.4 塩分浸透による強度低下

(1) 評価の概要

塩分浸透の評価対象部位は,対象構造物のうち飛来塩分および海水とその飛沫の影響に より最も厳しい塩分浸透環境下にあり,塗装等の仕上げが施されていない部位がある取水 構造物とした。塩分浸透の測定結果を表 14 に示す。

評価点については,評価対象構造物(取水構造物)のうち,「高経年化技術評価審査マニ ュアル(JNES-RE-2013-9012)」に基づき,塩分浸透環境を考慮し,図4に示すとおり,環 境条件が異なる取水構造物の気中帯,干満帯および海中帯をそれぞれ評価点として選定し た。

気中帯…飛沫の影響を受ける朔望平均満潮位 T.P.+0.46m以上

干満帯…潮位変動を考慮し,朔望平均満潮位
 T.P.+0.46m 未満,朔望平均干潮位
 T.P.-0.02m以上

海中帯…海水に常時接している朔望平均干潮位 T.P.-0.02m 未満

※朔望平均満潮位および朔望平均干潮位については,1995年9月から1996年8月までの観測記録による。

図4 取水構造物の概要

対象の	表面からの		塩化物イオン量(kg/m³)	
コンクリート構造物	(mm)	気中帯	干満帯	海中帯
	0~10	0.510	0.360	0.371
	10~20	0.533	0. 473	0.371
	20~30	0. 324	0.518	0.348
	30~40	0.324	0. 496	0.348
	40~50	0.232	0.518	0. 418
	$50 \sim 60$	0.301	0. 428	0.302
取水構造物	60~70	0.209	0. 451	0. 325
	70~80	0. 301	0.406	0. 395
	80~90	0.324	0.383	0.371
	90~100	0.301	0.406	0.348
	100~120	0.185	0. 451	0.279
	120~140	0. 301	0.406	0.302
	140~160	0.324	0.293	0.371
点検年月日 ()内はデータ採取日		2016年8月1日 (2016年6月29日)	2016年9月5日 (2016年6月29日)	2016年9月20日 (2016年6月28日)

表14 塩分浸透の測定結果

評価については、以下の手順にて実施した。算定過程を別紙9に示す。

①運転開始後60年時点における鉄筋の腐食減量の算出

・拡散方程式により塩化物イオン濃度の測定結果をもとに、運転開始経過年毎のコン クリート表面からの塩化物イオンの浸透を予測し、鉄筋位置における塩化物イオン量 を算出

・森永式^{**3}により鉄筋位置における塩化物イオン量を用いて,運用開始経過年数毎の 鉄筋の腐食減量を算出

②かぶりコンクリートにひび割れが発生する時点における鉄筋の腐食減量の算出

森永式により鉄筋径およびかぶり厚さを用いて,かぶりコンクリートにひび割れが発 生する時点における鉄筋の腐食減量を算出

③運転開始後 60 年時点における鉄筋の腐食減量の評価

①が②より小さいことを確認

(2) 評価結果

評価対象部位の運転開始後 60 年経過時点における鉄筋の腐食減量の推定値は表 15 に示 すとおり、かぶりコンクリートにひび割れが発生する時点の鉄筋の腐食減量を十分に下回 っていることを確認した。

また,定期的に目視点検を実施しているが,塩分浸透による鉄筋腐食に起因する有害な ひび割れ等は確認されていない。

以上から、塩分浸透による強度低下に対しては、長期健全性評価上問題とならない。

評価点				鉄筋の腐食減量(×10 ⁻⁴ g/cm ²)			
		調査時期 (経過年数)	鉄筋位置での 塩化物イオン濃度 (%)	調査時点	運転開始後 60 年時点	かぶりコンクリート にひび割れが 発生する時点	
取	気中帯	2016 年 (27 年)	$\begin{array}{c} 0.\ 015 \ (0.\ 36) \end{array} *$	12.4	28.0	59.9	
水構造物	干満帯	2016 年 (27 年)	$\begin{array}{c} 0.\ 020 \ (0.\ 45) \end{array} *$	0.0	0.0	59.9	
	海中帯	2016 年 (27 年)	$\begin{array}{c} 0.\ 015 \ (0.\ 35) \end{array} *$	0.0	0.0	85.0	

表15 鉄筋の腐食減量

*:()内は塩化物イオン量(kg/m³)

- 4.1.5 機械振動による強度低下
- (1) 評価の概要

評価対象部位は、プラント運転中常時振動を受ける代表構造物のうち、最も大きな機械 振動を受けるタービン建物のタービン発電機架台とし、評価点については、機械振動荷重 を直接受ける機器支持部付近(基礎ボルト周辺のコンクリート)を選定した。

機械振動の評価対象および評価点の選定過程は別紙10に示す。

(2) 評価結果

タービン発電機については、「QMS7-02-N28-42 2号機巡視点検要領書」に基づき異常振動の有無を日常的なパトロールで確認している。タービン発電機架台については定期的(1回/年)に点検手順書に基づき目視点検を行い、コンクリート表面において強度に支障をきたす可能性のある欠陥がないことを確認している。

また,仮に機械振動により機器のコンクリート基礎への定着部の支持力が失われるよう な場合,機器の異常振動が発生するものと考えられるが,「QMS7-02-N01-77 運転管理手順 書」に基づき日常的な巡視点検やタービン監視計器により軸振動の測定値を中央制御室に おいて連続監視しており,異常の兆候は検知可能である。

以上から、機械振動による強度低下に対しては、長期健全性評価上問題とならない。

4.2 コンクリートの遮へい能力低下

4.2.1 熱による遮へい能力低下

(1) 評価の概要

評価対象部位は,放射線の遮へい能力が要求されるガンマ線遮へい壁および一次遮へ い壁のうち,原子炉圧力容器近傍に位置し,周辺環境からの伝達熱および運転時に照射 量の最も大きいガンマ線遮へい壁とする。評価点は,ガンマ線遮へい壁の炉心領域部と する。評価に用いる温度の考え方について,別紙4に示す。

(2) 評価結果

放射線防護の観点から、コンクリート遮へい体の設計に適用されている「コンクリー ト遮へい体設計基準」(R.G. Jaeger et al. 「Engineering Compendium on Radiation Shielding (ECRS) VOL.2」)には、周辺および内部最高温度の制限値が示されており、 「コンクリートに対しては中性子遮へいで 88℃以下、ガンマ線遮へいで 177℃以下」と なっている。

これに対し、評価対象部位の最高温度は、工事計画認可申請書添付書類「生体しゃへい装置の放射線のしゃへい及び熱除去についての計算書」によると、コンクリート中の 全ガンマ線束による発熱を考慮して温度分布解析を行った結果は78℃であり、コンクリ ート温度制限値を下回っていることから、運転開始後 60 年時点においても遮へい能力へ の影響はないと判断する。なお、評価に用いた温度分布解析の詳細については別紙 11 に 示す。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射線量が 上昇するものと考えられるが,放射線量は日常的に監視しており,異常の兆候は検知可 能である。

以上から,熱によるコンクリートの遮へい能力低下に対しては,長期健全性評価上問 題とならない。

4.3 現状保全

コンクリート構造物の強度低下については、定期的(1回/年)に点検手順書に基づくコ ンクリート表面の目視点検を実施している。目視点検の結果、ひび割れ等の補修が必要とな る損傷が確認された場合、即時補修が必要な場合を除き、その経過を継続的に監視しつつ、 点検実施後数年以内を目途に補修を計画、実施している。

コンクリート構造物の遮へい能力低下については、ガンマ線遮へいコンクリートについて は、鉄板で覆われているため、ガンマ線遮へいコンクリートに近く、他の部位より熱の影響 を受けていると思われる一次遮へい壁において構造物の健全性維持の観点から定期的(1 回 /年)に点検手順書に基づくコンクリート表面の目視点検を実施している。また、放射線量 を日常的に監視している。

4.4 総合評価

コンクリート構造物の強度低下については,健全性評価結果から判断して,今後,強度低 下が急激に発生する可能性は小さい。

また,定期的(1回/年)な点検手順書に基づく目視点検により補修対象となったひび割 れ等の補修を計画,実施しており,現状の保全方法は,コンクリート構造物の健全性を維持 する上で適切である。

コンクリート構造物の遮へい能力低下については,健全性評価結果から判断して,現状に おいて問題はなく,今後,遮へい能力低下が急激に発生する可能性は小さい。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射線量が上昇 するものと考えられるが,放射線量は日常的に監視しており,異常の兆候は検知可能である。

4.5 高経年化への対応

コンクリート構造物の強度低下および遮へい能力低下に対しては,高経年化対策の観点から現状の保全内容に対して追加すべき項目はなく,今後も現状保全を継続していく。

5. 代表構造物以外の技術評価

コンクリートおよび鉄骨構造物の技術評価については、代表構造物について各経年劣化事象に 影響を及ぼす要因毎に使用条件を考慮して実施しており、グループ内構造物の使用条件は代表構 造物に包含されているため、技術評価結果も代表構造物に包含された結果となる。 6. まとめ

6.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果,すべての要求を満足して おり,審査ガイドに適合していることを確認した。コンクリートおよび鉄骨構造物についての 要求事項との対比を表 16 に示す。

6.2 保守管理に関する方針として策定する事項

今後も現状の保全方法により健全性を確認していくものとし,現状保全項目に高経年化対策 の観点から追加すべきものはなく,保守管理に関する方針として策定する事項はない。

以 上

表 16 (1/2)) コンクリー	トおよび鉄骨構造物につい	ヽ ての要求事項との対比
------------	---------	--------------	---------------------

カ゛イト゛	要求事項	技術評価結果
	(1) 高経年化技術評価の審査	「4. 代表構造物の技術評価」に示すとおり,
	⑫健全性の評価	代表構造物について運転開始後60年時点を想
	実施ガイド 3.1⑤に規定する期間の満了日までの期間について、高経年	定した健全性評価を実施した。
	化対策上着目すべき経年劣化事象の発生又は進展に係る健全性を評価し	
	ていることを審査する。	
実用発電用原子炉施 設における高経年化	③現状保全の評価 健全性評価結果から現状の保全策の妥当性が評価されていることを審 査する。	「4.3 現状保全」に示すとおり,健全性評価 結果から,現状の保全策が妥当であることを 確認した。
対策審査ガイド	④追加保全策の抽出 現状保全の評価結果から、現状保全に追加する必要のある新たな保全 策が抽出されていることを審査する。	「4.5 高経年化への対応」に示すとおり,現 状保全項目に,高経年化対策の観点から追加 すべき新たな保全策はなかった。
	(2)長期保守管理方針の審査①長期保守管理方針の策定すべての追加保全策について長期保守管理方針として策定されている	「4.5 高経年化への対応」に示すとおり,現 状保全項目に,高経年化対策の観点から追加 すべきものはなく,保守管理に関する方針と
	かを審査する。	して策定する事項はなかった。

カ゛イト゛	要求事項	技術評価結果
	3.1 高経年化技術評価の実施及び見直し	「4.5 高経年化への対応」に示すとおり、現
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に規	状保全項目に、高経年化対策の観点から追加
	定する期間の満了日までの期間について機器・構造物の健全性評価を行	する新たな保全策はなかった。
	うとともに、必要に応じ現状の保守管理に追加すべき保全策(以下「追	
	加保全策」という。)を抽出すること。	
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価 プラントの	
	運転を開始した日から 60 年間	
	3.2 長期保守官理方針の東正及び変更	14.5 高栓牛化への対応」に示すとおり、現
実用発電用原子炉施	長期保守官理力針の東正及び変更に当たっては、以下の要求事項を満た	次保全項目に、高栓牛化対束の観点から追加 し、たよっ、たち、但古佐和に開えてたり。
設における高経年化		すべきものはなく、保守管理に関する万針と
対策実施ガイド	①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子炉の	して策定する事項はなかった。
	運転を断続的に行うことを前提として抽出されたもの及び冷温停止状態	
	が維持されることを前提として抽出されたもの全て。)について、発電用	
	原子炉ごとに、保守管理の項目及び当該項目ごとの実施時期を規定した	
	長期保守管理方針を策定すること。	
	なお、高経年化技術評価の結果抽出された追加保全策について、発電用	
	原子炉の運転を断続的に行うことを前提とした評価から抽出されたもの	
	と冷温停止状態が維持されることを前提とした評価から抽出されたもの	
	の間で、その対象の経年劣化事象及び機器・構造物の部位が重複するも	
	のについては、双方の追加保全策を踏まえた保守的な長期保守管理方針	
	を策定すること。	

表16(2/2) コンクリートおよび鉄骨構造物についての要求事項との対比

26

1. はじめに

コンクリート中の水分が凍結し、それが気温の上昇や日射を受けること等により融解する凍結 融解を繰り返すことでコンクリートにひび割れが生じ、コンクリート構造物としての健全性が損 なわれる可能性がある。

図-別紙 2-1 に示す日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工 事(2015)」(以下,「JASS5」という)解説図 26.1 (凍害危険度の分布図)によると,島根 2 号炉 の周辺地域は凍結融解の危険性がない地域に該当している。

なお,凍害危険度の分布図にある凍害危険度は,気象資料を用いて外気温上の凍結融解作用の 強さに日射等の影響と含水程度を考慮して算出したものである。

あらためて、気象資料から島根2号炉周辺地域の凍害危険度を確認した結果を以下に示す。

図-別紙 2-1 JASS5 凍害危険度の分布図

2. 凍結融解作用を受けるコンクリート

JASS5「26節 凍結融解作用を受けるコンクリート」に、寒冷地に建設する建築物の激しい凍結融解作用を受ける部分に使用するコンクリートの仕様が示されている。

26節の適用にあたっては,解説に「凍結融解作用が激しくない場合,本節を適用する必要はない」とされ,同節の適用にあたっての目安が表により示されている。表-別紙 2-1 に, JASS5 26節適用の目安を示す。

表-別紙 2-1 JASS5 26 節適用の目安

3. 島根2号炉周辺地域の凍害危険度

最新の平滑平年値(1981~2010年の観測値)により,島根2号炉の周辺地域である松江地方気 象台の鹿島および松江の2地点の最低気温を確認すると,それぞれ0.4℃および0.5℃であった。

表-別紙 2-1 によると,新潟の最低気温-0.7℃に対して,凍害危険度は0である。これに対し, 島根 2 号炉の周辺地域である鹿島および松江の最低気温は0.4℃および0.5℃であり,新潟よりも 最低気温が高いことから,凍害危険度は0となり,凍結融解作用を受ける危険性はない地域と判 断した。

なお,JASS5 解説に「わが国の多くの地域で最低気温と凍結融解回数が対応している」ことか ら,「凍結融解作用の温度条件の厳しさを最低気温によって表している」とされており,最低気温 から凍害危険度を確認することは妥当と考える。

<鉄骨構造物の金属疲労評価の計算過程および結果について>

1. はじめに

風などの繰返し荷重が継続的に鉄骨に作用することにより,疲労による損傷が蓄積され,鉄骨 部材あるいは接合部の健全性が損なわれる可能性がある。

島根2号炉の機器・構造物のうち、風による繰返し荷重を受ける排気筒の鉄骨構造物を評価対象とし、排気筒を直接支持している鉄塔の主柱材および排気筒の筒身について疲労の検討を行う。

排気筒の疲労評価は、(社)日本建築学会「鋼構造設計規準-許容応力度設計法-2005」(以下, 「S規準」という)に示される疲労損傷評価法を参照し、疲労評価を実施している。

S 規準の「7.1 適用範囲」には、「1×10⁴回を超える繰返し応力を受ける部材,および接合部 に対して疲労の検討を行う」と規定されており、日本鋼構造協会編「鋼構造物の疲労設計指針・ 同解説 1993」等の最新知見を取り入れた上で、建築鋼構造の各種継手形式に対応する疲労設計 曲線を定め、応力の繰返し数に応じた許容疲労強さを規定するとともに、変動応力振幅や組合せ 応力の繰返しに対する疲労の検討を可能としている。

疲労設計曲線には、応力範囲の打切り限界(疲労限)が設定されており、打切り限界以下の繰 返し応力範囲は疲労を考慮する必要はないとされているため、本評価においては、応力の繰返し 数および繰返し応力範囲を算定し、許容疲労強さ並びに打切り限界と比較することにより、疲労 を考慮する必要性の有無を評価する。

なお、検討条件は工事計画届出書の条件を用いる。

- 2. 排気筒の疲労評価
 - 2.1 評価条件
 - (1) 評価対象

風による繰返し荷重を受ける排気筒の鉄骨構造部を対象とした。

(2) 評価内容

①使用材料

排気筒の使用材料は、以下の通りである。

- ・鉄 塔(主柱材):STK400 一般構造用炭素鋼鋼管
- ・筒 身:SMA400A 溶接構造用耐候性熱間圧延鋼材

②検討用風速および発生日数

風に関する記録として、気象庁 HP および国立天文台編「理科年表 平成 30 年第 91 冊」(以下、「理科年表」という)には、日最大風速(「10 分間の風速の平均値)を表す)10m/s 以上および 15m/s 以上の日数の月別平均値(1981~2010 年までの平均値)が掲載されている。これらのうち、島根2号炉近傍の気象官署地点として鹿島、松江を選定する。また、理科年表に記載されている山陰地方の気象官署地点である、鳥取、浜田も選定する。

各気象官署における風に関する記録を表-別紙 3-1 に示す。

項目	鹿島	松江	鳥取	浜田
日最大風速 10m/s 以上の日数の年間平均値(日)	11.7	65.9	30.3	66.4
日最大風速 15m/s 以上の日数の年間平均値(日)	0.1	5.6	1.8	9.7

表-別紙 3-1 発電所近傍の気象官署における風に関する記録

これらを踏まえ,島根2号炉近傍の観測点として松江気象官署の記録を,また,保守的評価の観点から各風速で最も発生回数の多い浜田気象官署の記録を用いて,以下の4ケースで検討を行う。

・ケース1:検討用風速 V₁=10.0 (m/s),年間平均日数65.9 (日)

- ・ケース2:検討用風速 V₂=15.0 (m/s),年間平均日数5.6 (日)
- ・ケース3:検討用風速 V₃=10.0 (m/s),年間平均日数66.4 (日)
- ・ケース4:検討用風速 V₄=15.0 (m/s),年間平均日数9.7 (日)

(3) 応力の繰返し数

気象庁 HP および理科年表より求められた年間平均日数を評価年数60年分の累積時間(秒) に換算し、各ケースに対する累積時間を下式のように算定する。

・累積時間:発生日数×1日中(24時間×3,600秒)×評価年数(60年間)

この累積時間を工事計画届出書に示される排気筒の一次固有周期で除した値を,応力の繰返し数として求める。各ケースの応力の繰返し数の算出結果を表-別紙 3-2 に示す。

		累積時間の算定				一次因有周期	広力の
ケース	(m/s)	発生 日数	評価 年数	累積 日数	累積秒数	(秒)	繰返し数(回)
1	10.0	65.9	60 年	3, 954	3. 42×10^8	1. 165	2. 93×10^8
2	15.0	5.6		336	2.90 $\times 10^{7}$		2. 49×10^7
3	10.0	66.4		3, 984	3. 44×10^8		2. 95×10^8
4	15.0	9.7		582	5.03 $\times 10^{7}$		4. 32×10^7

表-別紙 3-2 各ケースの応力の繰返し数

(4) 基準疲労強さおよび応力の打切り限界(変動振幅)

鉄塔(主柱材)および筒身の母材は、S 規準の表 7.1 における「圧延材,引抜き材」に該当するが、鉄塔、補強材接合部は高力ボルトとしていること、および筒身は縦横方向に完全溶込み溶接されていることを考慮し、基準疲労強さ $\Delta \sigma_F$ および変動振幅の応力範囲の打切り限界 $\Delta \sigma_{vL}$ を表-別紙 3-3 に示す通りとする。

表-別紙 3-3 鉄塔(主柱材)および筒身の基準疲労強さおよび応力範囲の打切り限界

項目	鉄塔(主柱材)	筒身
基準疲労強さ: Δ σ _F (N/mm ²)	100	80
応力範囲の打切り限界: $\Delta \sigma_{VL}$ (N/mm ²)	39	29

(5) 許容疲労強さ

許容疲労強さは、荷重の繰返し数(N)に応じて応力範囲で示され、S規準の7.1式により以下のように示される。

・垂直応力範囲の許容疲労強さ:Δ σ a = (126 / ³√N)×Δ σ F

N:総繰返し数

Δ σ_F: 垂直応力範囲の基準疲労強さ

(6) 検討用応力

工事計画届出書の風荷重に対する応力解析結果は,基準風速 V₀=30.0 (m/s*)を用いて算定 された数値であるため,風荷重が風速の2乗に比例することから,本検討においては(2)の 各検討用風速と基準風速 V₀との比α(観測記録の最大風速の2乗/基準風速の2乗)を算定 し,係数倍した応力を風荷重に対する検討用応力とする。

- ・ケース1: $\alpha_1 = V_1^2 / V_0^2 = 10.0^2 / 30.0^2 \Rightarrow 0.11$
- ・ケース2: $\alpha_2 = V_2^2 / V_0^2 = 15.0^2 / 30.0^2 = 0.25$
- ・ケース3: $\alpha_3 = V_3^2 / V_0^2 = 10.0^2 / 30.0^2 \Rightarrow 0.11$
- ・ケース4: $\alpha_4 = V_4^2 / V_0^2 = 15.0^2 / 30.0^2 = 0.25$
- *: 基準風速 V₀は,各地域における風の性状に応じて 30~46(m/s)の範囲で国土交通大臣が定め る風速を示す。

2.2 評価内容

(1) 検討用応力の算定

検討用応力は、工事計画届出書に記載される設計用風荷重による曲げモーメント M₁を用い て算定する。検討用応力の算定結果について表-別紙 3-4, 3-5 に示す。

・検討用風荷重による曲げモーメント: M₂= α M₁

			風荷重			
4-7	標高	寸法	設計用応力	検	;討用応力	
<i>9</i> -X	GL. (m)	(mm)	曲げモーメント	板粉	曲げモーメント	
			M_1 (kN • m)	侨奴 α	M_2 (kN · m)	
1,3	52 7	508.0 ϕ	19.8	0.11	2.2	
2,4	55.7	33.7×9.5	19.8	0.25	5.0	

表-別紙 3-4 検討用応力の算定(鉄塔(主柱材))

表-別紙 3-5 検討用応力の算定(筒身)

			風荷重			
5.7	標高	寸法	設計用応力 検討用応力		:討用応力	
1) - 1	GL. (m)	(mm)	曲げモーメント	版粉	曲げモーメント	
			M_1 (kN • m)	侨奴 α	M_2 (kN · m)	
1, 3	70.4	3, 320 <i>\phi</i>	4, 840. 1	0.11	532.5	
2,4	19.4	$\times 10$	4,840.1	0.25	1,210.1	

(2) 検討用応力範囲の算定

検討用応力範囲Δσは、工事計画届出書に記載される断面算定結果を用いて、最大風速が 正負交番荷重(完全両振り)として作用した場合を想定し、以下のように算定する。なお、 排気筒から排出される気体による腐食の可能性は少ないことから、筒身の算定に用いる断面 係数は腐食代を考慮しない。検討用応力範囲の算定結果について、表-別紙 3-6、3-7 に示す。

・検討用応力範囲: $\Delta \sigma = (M_2/Z) \times 2$

表-別紙 3-6 検討用応力範囲の算定結果(鉄塔(主柱材))

ケース	標高 GL.(m)	寸法 (mm)	断面係数 Z (×10³mm³)	検討用応力 曲げモーメント M ₂ (kN・m)	曲げ応力度 M ₂ /Z (N/mm ²)	検討用応力 範囲Δσ (N/mm ²)
1,3	52 7	508. 0 φ	1,820	2.2	1.3	2.6
2,4	55.7	$\times 9.5$	1,820	5.0	2.8	5.6

表-別紙 3-7 検討用応力範囲の算定結果(筒身)

ケース	標高 GL.(m)	寸法 (mm)	断面係数 Z (×10 ³ mm ³)	検討用応力 曲げモーメント M ₂ (kN・m)	曲げ応力度 M ₂ /Z (N/mm ²)	検討用応力 範囲Δσ (N/mm ²)
1,3	70.4	3, 320 ϕ	85, 700	532.5	6.3	12.6
2,4	19.4	$\times 10.0$	85,700	1, 210. 1	14.2	28.4

2.3 評価結果

算定した検討用応力範囲 $\Delta \sigma$ と許容疲労強さ $\Delta \sigma_a$ の比較を行い許容疲労強さおよび打切り限界(疲労限)以下であることを確認する。2.2 で算定した検討用応力範囲 $\Delta \sigma$ と許容疲労強さ $\Delta \sigma_a$ の比較結果を表-別紙 3-8, 3-9 に示す。

また, S 規準の図 7.1.1 を参考に, 検討結果をプロットしたものを, 図−別紙 3-1, 3-2 に示す。

したがって、いずれの部材も許容疲労強さおよび打切り限界(疲労限)以下となっている。

基準疲労強さ 総繰返し数 許容疲労強さ 検討用応力範囲 ΔσζΔσα ケース との比較 $\Delta \sigma_{\rm F}$ (N/mm²) (回) $\Delta \sigma_{\rm a}$ (N/mm²) $\Delta \sigma$ (N/mm²) 2.6 0.07 2.93 $\times 10^{8}$ 39.0* 1 2 2. 49×10^7 43.1 5.6 0.13 100 0.07 2.6 3 2.95 $\times 10^{8}$ 39.0* 4. 32×10^{7} 39.0* 5.6 0.15 4

表-別紙 3-8 検討用応力範囲の比較結果(鉄塔(主柱材))

表-別紙 3-9 検討用応力範囲の比較結果(筒身)

ケース	基準疲労強さ $\Delta \sigma_{\rm F}$ (N/mm ²)	総繰返し数 (回)	許容疲労強さ $\Delta \sigma_{\rm a}$ (N/mm ²)	検討用応力範囲 $\Delta \sigma$ (N/mm^2)	Δ σ と Δ σ _a との比較
1		2. 93×10^8	29.0*	12.6	0.44
2	20	2. 49×10^7	34.5	28.4	0.83
3	80	2.95 $\times 10^{8}$	29.0*	12.6	0.44
4		4. 32×10^7	29.0*	28.4	0.98

*: 打切り限界値を示す(図-別紙 3-1, 3-2 参照)

図-別紙 3-1 垂直応力範囲の繰返しによる疲労設計曲線(鉄塔(主柱材))

図-別紙 3-2 垂直応力範囲の繰返しによる疲労設計曲線(筒身)

〈塩分浸透における鉄筋の腐食減量の算定過程について〉

鉄筋の腐食減量の算定過程(方法,条件,パラメータ)を以下に示す。

	取水構造物			(共 大)	
	気中帯	干満帯	海中帯	佩考	
x : かぶり厚さ (mm)	40	40	70		
C:鉄筋位置における塩化物(オン量 (kg/m³)	0.36 0.32	0. 45 0. 50	0.35 0.33	上段:塩分浸透の測定結果(調査時点の推定値) 下段:鉄筋位置近傍こおける塩化物(水量試験結果	
C_0 : コンクリート表面の塩化物(オン量(kg/m³)	0.41	0.49	0.37	拡散方程式の Geと D を未知数として、測定値の回帰分 析を行った。Levenberg-marquardt 法により、 か2 乗が 最小となる Geを求めた。	
D:コンパート中の塩化物(れの見かけ上の 拡散係数 (cm²/年)	10.89	41.96	197.23	拡散方程式の Geと Dを未知数として、測定値の回帰分 析を行った。Levenberg-marquardt 法により、 カイ2 乗が 最小となる Dを求めた。	
 G : 鉄筋位置における塩化物(オン量 (kg/m³) (推定値) 	0.00~0.37	0.00~0.46	0.00~0.36	運転開始から60年経過時点までの各年の推定値	
x : かぶり厚さ (mm)	40	40	70		
d : 鉄筋径 (mm)	38	38	38		
W: 単位水量 (kg/m ³)	171	171	171		
W/C:水地小比 (比)	0.53	0.53	0.53		
N:練り混ぜ水の塩分濃度(%)	0.00~0.36	0.00~0.45	0.00~0.34	運転開始から60年経過時点までの各年の推定値	
T:温度 (°C)	17.0	18.9	18.9	気中帯:2016年7月30日から2017年7月29日の期間 で、1時間間隔で連続測定した結果の平均値 干満帯、海中帯:沿岸定点の海水温の調査結果	
RH:相対湿度(%)	69.4	100	100	気中帯:2016年7月30日から2017年7月29日の期間 で、1時間間隔で連続則定した結果の平均値 干満帯、海中帯:海水との接触こより100%(森永論文 ^{**})	
0:酸素濃度(比)	0.21	0.0062	0.0062	気中帯:一般大気中の酸素濃度(理科年表) 干満帯,海中帯:土木学会「原子力発電所屋外重要土木 構造物の耐震性能照査指針・モュアル (2005)」引用	
q_l :調査時点の鉄筋の腐食減量 ($\times 10^{-4}$ g/cm ²)	12.4	0.0	0.0		
q1: 運転開始60 年経過時点の鉄筋の腐食減量(× 10 ⁻⁴ g/cm ²)	28.0	0.0	0.0		
Qcr:かぶりコンクリートにひび割れが発生する時点の鉄筋の腐食減量 推定値(×10 ⁻⁴ g/cm ²)	59.9	59.9	85.0		

※森永他「腐食による鉄筋コンクリート構造物の寿命予測」 - コンクリート工学論文集(1990)

: 予測結果

: 拡散方程式により、コンクリート表面からの塩化物イオンの浸透を予測するのに必要なパラメータ

: 森永式により,鉄筋の腐食減量の評価を実施するのに必要なパラメータ

: 推定結果

拡散方程式

$$C = C_0 \left[1 - erf\left(\frac{0.1x}{2\sqrt{D \cdot t}}\right) \right]$$

C:鉄筋位置における塩化物イオン量(kg/m³) $C_0:$ コンクリート表面における塩化物イオン量 (kg/m^3) erf:誤差関数

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

x:かぶり厚さ (mm) D:コンクリート中の塩化物イオンの見かけの拡散係数 (cm²/年) t: 材齢(年)

 $q=q_1\cdot \frac{q_2}{q_2'}$

 $q_1 = \frac{d}{c^2} [-0.51 - 7.60N + 44.97(W/C)^2 + 67.95N(W/C)^2]$

 $q_2 = 2.59 - 0.05T - 6.89H - 22.87O - 0.99N + 0.14TH$

+ 0.51TO + 0.01TN + 60.81HO + 3.36HN + 7.32ON

 $q_2' = 0.56528 + 1.4304N$

q:鉄筋の腐食速度(×10⁻⁴g/cm²/年)
q₁:塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
q₂:寿命予測対象部位で,塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
q'₂:寿命予測対象部位で,標準環境下(温度15℃,湿度69%, 酸素濃度20%)での腐食速度(×10⁻⁴g/cm²/年)
d:鉄筋径(nm)
c:かぶり厚さ(nm)
N:練り混ぜ水の塩分濃度(%)
W/C:水セメント比(比)
T:温度(℃)
H:湿皮に関する項 H = (RH - 45)/100
RH:相対湿度(%)
O:酸素濃度(比)

$$Q_{cr}=0.602\left(1+\frac{2c}{d}\right)^{0.85}\times d$$

 Q_{cr}:鉄筋腐食でかぶりコンクリートにひび割れが生じる時点での 腐食減量 (×10⁻⁴g/cm²)
 c:かぶり厚さ (mm)
 d:鉄筋径 (mm)

2. 拡散方程式の回帰分析結果

(気中帯)

3. 調査時点,運転開始後 60 年時点及びかぶりコンクリートにひび割れが発生する時点の前後 5 年の鉄筋の腐食減量

気	気中帯		満帯	海中帯		
	5		5		7	
経過年致	$\angle q$		$\angle q$		$\angle q$	
(年)	(×10 ⁻ *g/cm²)	(年)	(×10 ⁻ *g/cm²)	(年)	(×10 ⁻⁺ g/cm ²)	
22	10.1	22	0.0	22	0.0	
23	10.6	23	0.0	23	0.0	
24	11.0	24	0.0	24	0.0	
25	11.5	25	0.0	25	0.0	
26	12.0	26	0.0	26	0.0	
27	12.4	27	0.0	27	0.0	
28	12.9	28	0.0	28	0.0	
29	13.4	29	0.0	29	0.0	
30	13.9	30	0.0	30	0.0	
31	14.3	31	0.0	31	0.0	
32	14.8	32	0.0	32	0.0	
55	25.7	55	0.0	55	0.0	
56	26.1	56	0.0	56	0.0	
57	26.6	57	0.0	57	0.0	
58	27.1	58	0.0	58	0.0	
59	27.6	59	0.0	59	0.0	
60	28.0	60	0.0	60	0.0	
61	28.5	61	0.0	61	0.0	
62	29.0	62	0.0	62	0.0	
63	29.5	63	0.0	63	0.0	
64	29.9	64	0.0	64	0.0	
65	30.4	65	0.0	65	0.0	
122	57.5	9995	0.0	9995	0.0	
123	58.0	9996	0.0	9996	0.0	
124	58.5	9997	0.0	9997	0.0	
125	59.0	9998	0.0	9998	0.0	
126	59.5	9999	0.0	9999	0.0	
12/	59.9	10000	0.0	10000%	× <u>0.0</u>	
128	60.4	10001	0.0	10001	0.0	
129	60.9	10002	0.0	10002	0.0	
130	61.4	10003	0.0	10003	0.0	
131	8.10	10004	0.0	10004	0.0	
132	02.3		0.0	10005	0.0	

※上記の算定結果を踏まえると、干満帯および海中帯については、塩分浸透における鉄筋の腐食 減量は10,000 年経過時点においても0g/cm²であり、コンクリートにひび割れは発生しないも のと考えられる。

別紙 11

〈熱による遮へい能力低下の評価に用いた温度分布解析について〉

ガンマ線遮へい壁のガンマ発熱による温度分布は,別紙6に示す2次元輸送計算コード DORT に より算出したガンマ線束を用いてガンマ線発熱量を算出し,熱伝導方程式を解いてガンマ線遮へ い壁内の温度分布を求めた。

1. 解析条件

(1) 内部発熱量

ガンマ線束 (cm⁻²・s⁻¹) に吸収線量率換算係数 ((Gy/h)/(cm⁻²・s⁻¹)) を乗じて、ガンマ線吸 収線量率 (Gy/h) を算出し、これよりコンクリート内部の発熱量 Q(kJ/m³・h) を求めた。

(2) 境界条件

原子炉圧力容器保温材表面温度	T1	(°C)
原子炉圧力容器保温材~ガンマ線遮へい壁間雰囲気温度	T2	62 (°C)
ガンマ線遮へい壁~原子炉格納容器壁間雰囲気温度	T3	62 (°C)

(3)物性值

|--|

2. 温度分布解析

1. の評価条件を用いて,熱伝導方程式を解いて温度分布を求めた結果,ガンマ線遮へい壁の 最高温度は,図-別紙 11-1 に示す通り 71.6℃であった。

$$\lambda \cdot \frac{d^2T}{dx^2} + Q(x) = 0$$

 $\lambda : 熱伝導率$

Q(x):内部発熱量

図-別紙11-1 ガンマ線遮へい壁の温度分布

3. 評価に用いるガンマ線遮へい壁の最高温度

温度分布解析結果は71.6℃であるが、建設時の工事計画認可申請書添付書類「生体しゃへい 装置の放射線のしゃへい及び熱除去についての計算書」では78℃としていることから、熱によ るコンクリートの遮へい能力低下の評価に用いるガンマ線遮へい壁の温度は、保守的な評価と なる工事計画認可申請書の値を用いることとし、78℃とした。