平成25年度 斜面の安定性に おける損傷判断基準に関する検討(試験)

平成 26 年 3 月

公益財団法人 鉄道総合技術研究所

目次

1.	. はじめに	1
2.	. 実施内容の概要	
3.	. 斜面模型の製作	5
	3.1 遠心力載荷試験	5
	3.1.1 計測機器の動作確認	8
	3.1.2 予備試験(ケース 30)	8
	3.1.3 地盤試料の作製	10
	3.1.4 摩擦低減層の設置	13
	3.1.1 基盤層・弱層・表層の作製	15
	3.2 中型振動台試験	22
	3.2.1 概要	22
	3.2.2 側壁摩擦の除去	27
	3.2.3 斜面模型の構築	28
4.	. 計測センサの選定と設置	
	4.1 遠心力載荷試験	38
	4.1.1 計測機器の設置	38
	4.1.2 遠心載荷試験装置の運転・計測	45
	4.1.3 標点の設置	
	4.2 中型振動台試験	50
	4.2.1 計測機器の設置	50
	4.2.2 標点の設置	56
	4.2.3 計測準備	58
5.	. 地盤試料の要素試験およびデータ取得	59
	5.1 概要	59

5.1.1 一軸圧縮試験	
5.1.2 三軸圧縮試験	61
5.1.3 引張試験	63
5.1.4 三軸圧縮繰返し試験	
5.2 強度確認試験結果の整理	
5.2.1 一軸圧縮試験	
5.2.2 三軸圧縮試験	
5.2.3 引張試験	
5.2.4 三軸圧縮繰返し試験	
6. 遠心力載荷試験と振動台試験およびデータ取得	221
6.1 遠心力載荷試験	
6.1.1 遠心力載荷試験における加振条件	
6.1.2 Case30	
6.1.3 Case31	
6.1.4 考察	
6.2 中型振動台試驗	
6.1.1 時刻歴図の作製	
6.1.2 Case27	
6.1.3 Case28	
6.1.4 Case29	
6.1.5 考察	
7. 解析	381
7.1 FEM 解析による斜面の応答評価	
7.1.1 解析条件	
7.1.2 固有值解析結果	

	7.1.3 初期応力解析結果	417
	7.1.4 動的解析結果	424
	7.2 すべり線の探索・安定解析	473
	7.2.1 円弧による探索 - 応力履歴	473
	7.2.2 円弧による探索 - 加速度履歴	515
	7.2.3 非円弧による探索 - 応力履歴	557
	7.2.4 非円弧による探索 - 加速度履歴	585
	7.3 ニューマーク法によるすべり土塊の変形解析	613
	7.3.1 円弧による探索 - 応力履歴	613
	7.3.2 円弧による探索 - 加速度履歴	614
	7.3.3 非円弧による探索 - 応力履歴	615
	7.3.4 非円弧による探索 - 加速度履歴	616
	7.4 考察およびまとめ	617
8.	. 粒子法による大変形解析	619
	8.1 解析ケース	619
	8.2 入力データと解析モデル作成	619
	8.2.1 解析モデル概要 (時間間隔、粒子数)	619
	8.2.2 入力加速度	619
	8.2.3 物性值	621
	8.2.4 形状、境界条件、背面格子、出力位置	626
	8.3 解析結果	630
	8.3.1 変形図(CASE27)	630
	8.3.2 変形図(CASE28)	636
	8.3.3 変形図(CASE29)	642
	8.3.4 ひずみ図(CASE27)	648

8.3.5 ひずみ図(CASE28)	654
8.3.6 ひずみ図(CASE29)	660
8.3.7 粒子時刻歷結果(CASE27)	666
8.3.8 粒子時刻歷結果(CASE28)	
8.3.9 粒子時刻歷結果(CASE29)	
8.4 実規模斜面 (軟岩斜面)	
8.4.1 入力データと解析モデル作成	
8.4.2 解析モデル概要(時間間隔、粒子数)	
8.4.3 入力地震動の算定について	
8.4.4 入力加速度	
8.4.5 物性值	
8.4.6 モデル形状、境界条件、背面格子、出力位置について	
8.5 解析結果 (軟岩斜面)	
8.5.1 基本ケースでの結果について (加速度の最大値の変更)	
8.5.2 変位図	
8.5.3 ひずみ図	
8.5.4 粒子時刻歴結果	749
8.6 実規模斜面 (硬岩斜面)	
8.6.1 入力データと解析モデル作成	
8.6.2 解析モデル概要(時間間隔、粒子数)	770
8.6.3 入力地震動の算定について	
8.6.4 入力加速度	
8.6.5 物性值	
8.6.6 モデル形状、境界条件、背面格子、出力位置について	
8.7 解析結果 (硬岩斜面)	

1(0. まとめ	821
	9.3 実斜面における基準値評価法の提案	820
	9.2 斜面の安全性評価における限界値評価法の提案	814
	9.1 地震時における斜面の安定性に係る設計・リスク評価の手引き	812
9.	. 斜面の損傷判断基準(案)	812
	8.8.2 実物大斜面の大変形解析に関するまとめ	811
	8.8.1 小型模型実験に関するまとめ	810
	8.8 粒子法による大変形解析のまとめ	810
	8.7.4 粒子時刻歷結果	795
	8.7.3 ひずみ図	789
	8.7.2 変位図	783
	8.7.1 結果について	781

卷末:工事写真集

本報告書は、公益財団法人 鉄道総合技術研究所が独立行政法 人 原子力安全基盤機構からの委託により実施した平成25年度 斜面の安定性における損傷判断基準に関する検討(試験)の成果 をとりまとめたものです。 本報告書の複製、転載、引用等には、独立行政法人 原子力安 全基盤機構の承認が必要です。

1. はじめに

平成18年9月に原子力発電所の耐震設計審査指針が改訂され、地震随伴事象として津波 と斜面安定性に対する安全性評価が要求事項として規定された。斜面安定性を検討する上 でのシナリオは、原子炉建屋周辺斜面が地震に伴い不安定化し、斜面崩壊により岩塊が滑 落し、原子炉建屋に衝突し、建屋・機器に損傷を与えるというものである(図 1.1)。原子 力発電所の安全性を確保するためには、斜面の崩壊によって施設の安全機能に重大な影響 を及ぼさないことを確認する必要がある。そのためには、斜面崩壊の発生可能性と崩壊領 域を合理的に評価することが重要となる。岩盤斜面の地震時崩壊発生およびその崩壊領域 については、従来から力のつり合いに基づくすべり安全率評価から推測されてきた。しか しながら、その手法の適用性についてはこれまで過去の被災事例を対象とした定性的な検 討が多く、定量的な検討が可能となる岩盤斜面の動的な崩壊を再現した模型実験が実施さ れた事例は少ない。また、岩盤斜面の崩壊には不連続面や弱層の存在が大きく関与するた め、その影響を適切に評価する必要がある。岩盤斜面の地震時安定性の評価手法の検討・ 高度化を行うためには、現象を再現した模型実験によるメカニズムの解明と模型実験によ り得られた結果を検証可能な数値解析による検討が重要となる。最終的には、実規模の原 子力プラントのモデル斜面に対して設計計算式または数値解析手法を用いることにより、 斜面の安全性の評価を実施することが重要である。

図 1.1 原子炉建屋周辺斜面の想定シナリオ

これまで岩盤斜面の崩壊メカニズムの解明と応答特性や変形特性の把握および対策工の 設計法高度化のため、地盤材料の要素実験とサイズの異なる斜面模型を用いた振動台実験、 遠心載荷試験や数値解析を実施してきた。平成24年度には、(公財)鉄道総合技術研究所の 中型振動台および(株)大林組技術研究所所有の大型遠心力載荷試験装置を用いて加振試験 を実施することで、対策工の地震時挙動に関して検討した。また、これまで縮小規模の模 型に関する実験で蓄積してきた知見が、実規模の応力状態における斜面模型にも適用しう るのかを検証した。 これまでの実験的検討結果と解析的検討結果から、原子炉建屋周辺斜面の安定性評価手 法が示されるとともに、アースアンカーによる対策が行なわれた斜面の設計手法を構築す るための基礎データが得られた。

しかし、ここで得られた斜面の安定性評価手法は屋内の16場で均一な弱層斜面の振動台 実験結果から定めたものであり、適用範囲が限定的であるとの課題がある。本検討では、 上記課題解決のため、強度特性の異なる弱層を有する斜面模型の小型模型実験、実規模に 近い応力状態を再現した遠心模型実験を実施し、斜面の安定性評価に関する提案手法の妥 当性の検証ならびに適用範囲の拡大を目的とする。

以上を踏まえ、平成25年度は斜面の崩壊挙動に及ぼす強度特性の異なる地盤試料の分布 の影響を確認するための小型振動台実験、実物大応力場での斜面の崩壊挙動を分析するこ とを目的として動的遠心載荷試験、関連する地盤材料の強度評価試験、実験的検討の検証 解析ならびに斜面の損傷評価基準の評価法に関する検討を行った。

2. 実施内容の概要

本業務では、以下の6項目について検討を実施した。

①斜面模型の製作(報告書 第3章)

- →遠心力載荷試験では、実規模斜面の応力場を再現した上で、斜面の地震時崩壊挙動 を評価することを目的として、高さ1mの三層斜面模型を構築し、50Gの遠心載荷を 行った上で、加振実験を実施する。試験は予備試験1ケース、本試験1ケースの計2 ケース実施する。振動台試験では弱層内に異なる強度特性を有する地盤が混在する 場合を想定した斜面模型を構築する。試験は弱層材料と配置を変えて全3ケース実施する。
- ②計測センサの選定と設置(報告書 第4章)
 - →遠心載荷試験、小型振動台試験ともに、過去の実験的検討における実績を踏まえて 計測センサを選定する。計測センサは土槽中央部だけではなく、土槽側壁付近にも 併せて設置し、側壁摩擦の影響についても評価する。また、すべり土塊の内外にも 加速度計を設置し、崩壊過程における加速度応答の変化についても分析する。

③地盤試料の要素試験とデータ取得(報告書 第5章)

→遠心模型実験では、おおよそ 50G の遠心力が載荷されるため、斜面地盤内の拘束圧が増加する。そのため、遠心場での拘束圧を再現して強度定数を設定する必要がある。また、小型模型実験では、強度特性の異なる弱層を構築するため、配合試験を 実施する必要がある。要素実験では、一軸試験、配合試験、引張試験、一面せん断 試験、高拘束圧三軸試験、高拘束圧繰返し三軸試験を実施する。

④遠心力載荷試験と振動台試験および各試験データ取得(報告書 第6章)

- →実規模に近い応力状態を再現するために、遠心模型実験装置を用いた振動台実験を 実施する。実験では、正弦波を入力し、応答特性や変形特性に関するデータを取得 する。また、小型振動台試験については、これまでの検討により斜面の振動台実験 は弱層部として均一な材料を使用した上で勾配、強度を変化させて実施し、その結 果に基づき斜面の安全性評価基準を提案した。本検討では、評価基準の適用性拡大 を図ることを目的に、弱層内で土層構成が変化し、強度特性が変化している場合を 想定した振動台試験を行う。遠心載荷試験、振動台試験ともに斜面崩壊時における ひずみの進展を画像解析により評価することで、提案手法の妥当性を検証すること を第一の目的とする。
- ⑤遠心載荷および振動台載荷試験の検証解析とデータ整理(報告書 第7章、第8章)
 - →これまでの実験的、解析的検討の成果として、非線形有限要素解析とすべり安定解 析を組み合わせた岩盤斜面の安全性評価手法および損傷評価基準値を提案した。し かし、これまで実施してきた振動台実験は、いずれも弱層が比較的均一な材料で構

成された条件下での実験であり、強度特性の異なる複数の地盤材料で構成されてい る場合についての検証は不十分であった。そこで、④にて実施した遠心実験、振動 台実験の検証解析を実施し、解析法・評価基準値の互層斜面に対する適用性を検証 する。

⑥技術資料作成(報告書 第9章)

→③~⑤の内容を整理し、技術資料を作成する。技術資料においては、提案する斜面 の損傷評価基準に基づく安定性評価の結果と、従来手法による評価結果とをする。 比較対象は過去の振動台実験とする。

3. 斜面模型の製作

3.1 遠心力載荷試験

動的遠心載荷試験では、鉄道総研が所有する剛体土槽(内寸長さ1500mm×奥行き450mm× 高さ1150mm、図3.1.1参照)の内部に高さ895mmの斜面模型を構築した。構築した斜面模 型は、遠心載荷試験装置に据え付け、遠心加速度50Gを載荷した上で、最大で約30Gの水 平加振を行った。試験ケースは、予備試験および図3.1.2に示す本試験1ケースの全2ケ ース(通番 ケース30、31)である。予備試験(ケース30)においては、本試験(ケース 31)と同じ斜面模型を構築した上で、波形確認、画像解析システムのキャリブレーション を兼ねて、CASE31と同様の手順で動的遠心載荷試験を実施した。

斜面模型完成後、載荷準備として剛体土槽を大型遠心力載荷試験装置に締結し、計測準 備を行った後に、動的遠心載荷試験を行った。

試験後、大型遠心力載荷試験装置との締結を解除し、遠心ピット外に剛体土槽を移動した。移動後、模型地盤の撤去に先立ち、斜面模型から地盤試料をサンプリングした。サンプリングした地盤試料は、土質試験を実施し、結果を「5.強度確認試験」に記載した。

*奥行きは内寸 450mm

図 3.1.1 剛体土槽の概要(単位:mm)

図 3.1.2 ケース 30、ケース 31 斜面模型概要図(単位:mm)

3.1.1 計測機器の動作確認

計測機器は、試験での使用に先立ち動作確認を行った。なお、試験で用いる計測器およびケーブルは、50Gの遠心加速度が作用した状態でも正常に動作し、大林組所有の大型遠心載荷試験装置で使用可能なものとした。

3.1.2 予備試験 (ケース 30)

予備試験(ケース 30)は、波形確認および本試験で実施する画像解析の条件設定を目的 として行った。予備試験にあたっては、本試験(ケース 31)と同一の模型を作製し、土槽 を遠心載荷試験装置に据え付けた後に、高速度カメラ 3 台を土槽および遠心載荷試験装置 のバケットに設置した。高速度カメラは、アクリル面を通じて土槽正面から斜面模型を撮 影する 1 台はバケットに治具を設置して固定し、その他の 2 台は模型の局所的な箇所の撮 影用としてのり尻部およびのり肩部を撮影可能な箇所に設置した。斜面模型の天端、のり 面を撮影するカメラは、土槽に治具を設置して固定した。カメラの固定後は、バケットや 剛土槽に照明を設置し、カメラの配線を固定した上で、遠心加速度を 50G まで増大させて 予備試験を行った。予備試験中は、主要な加振において画像解析システムにてアクリル面 に貼り付けた標点の変位を計測し、画像解析システムの精度確認を行った。

画像解析システムの精度確認後は、本試験で使用する可能性のある地震動波形について 予備加振を行い、加振波形の確認を行った。なお、本試験では実物大換算で 100gal から 200gal の増分で段階的に加速度レベルを増大させる加振を行ったが、予備試験で作成する のは 200gal、400gal、600gal 相当の 3 レベルとした。予備試験で作成した加振波形を図 3.1.3~図 3.1.5 に示す。

図 3.1.5 正弦波 1Hz 限界加振

3.1.3 地盤試料の作製

地盤試料は、表 3.1.1~表 3.1.5 に示す仕様で配合し、作製した。なお、地盤試料につ いては、可能な限り作り置きは避けるものとしたが、ケース 30 の表層試料については、工 期の都合により2日に分けて作製した。その際には、養生を厳重に行い、含水量が変化し ないよう留意した。各ケースの弱層試料作製時の含水比データを表 3.1.6 および表 3.1.7 に、ケース 30 における地盤材料の作製状況を写真 3.1.1~写真 3.1.3 に示す。

配合重量比 セメント 粒調砕石 M40 水 100 6 7

表 3.1.1 基盤層試料の配合(全ケース共通)

表 3.1.2 弱層試料の配合 (ケース 30)

配合重量比				
硅砂6号	ベントナイトU	セメント	水	
100	5	6	20	

表 3.1.3 弱層試料の配合 (ケース 31)

配合重量比				
硅砂6号	ベントナイトU	消石灰	水	
100	5	60	20	

表 3.1.4 表層試料の配合 (ケース 30)

配合重量比			
磁砂鉄	ベントナイトU	水	
100	10	15	

配合重量比				
磁砂鉄	ベントナイトU	セメント	水	
100	10	3	15	

表 3.1.5 表層試料の配合 (ケース 31)

表 3.1.6 ケース 30 弱層試料作製時の含水比

作製日	2013/11/15				
使用段数	1~3段用	4~5段用	6~7 段用	8~9 段用	10~11 段用
含水比	16.2%	16.8%	16.9%	16.7%	16.8%

表 3.1.7 ケース 31 弱層試料作製時の含水比

作製日	2014/1/15			
使用段数	1~3段用	4~6段用	7~9 段用	10~11 段用
含水比	11.2%	11.7%	11.5%	11.4%

写真 3.1.1 基盤層試料の作製

写真 3.1.2 弱層試料の作製

写真 3.1.3 表層試料の作製

3.1.4 摩擦低減層の設置

摩擦低減層として、図 3.1.6 に示す仕様でアクリル面および土槽の内壁との間に摩擦低 減層を設置した。摩擦低減層として使用するシートは、表 3.1.8 摩擦低減層シートの仕 様に記載したものを用いた。摩擦低減層シートの設置状況を写真 3.1.4 および写真 3.1.5 に示す。

図 3.1.6 摩擦低減層シート設置概要

シート①	東レフィルム加工 (株)	トヨフロン ETTE t=0.1mm
シート②	三鬼化成 (株)	サンキポリセイデンブルー t=0.1mm
テフロンシート	日東電工(株)	ニトフロン t=0.1mm

表 3.1.8 摩擦低減層シートの仕様

写真 3.1.4 摩擦低減層シート貼り1

写真 3.1.5 摩擦低減層シート貼り 2

3.1.5 基盤層・弱層・表層の作製

表 3.1.1~表 3.1.5 に示す配合に従い作製した試料を突き固めて基盤層・弱層・表層を 作製した。突き固めて作製する目標湿潤密度は、基盤層は全ケース: ρ t=1.90g/cm³、弱層 はケース 30: ρ t=1.90g/cm³・ケース 31: ρ t=1.65g/cm³、表層はケース 30: ρ t=2.50g/cm³・ ケース 31: ρ t=2.00g/cm³とした。基盤層は、加振時に変位が生じないように、土槽底面に 等辺山形鋼を剛結し、剛体土槽を反力としたアンカーによる補強を施した。補強用のアン カーは、M10mmの全ネジボルトの先端に、50mm×50mm×3mmの鉄板を固定した構造となって おり、5段×3列で設置した。なお、表層内には、弱層部の崩壊前に表層部が崩壊するのを 防止するため、補強材(ジオテキスタイル)を上部6段の中央部に上下方向の配置間隔45mm で配置した。また、弱層は、構築時の含水量を確認するために、作製日ごとに含水比を測 定した。

アンカー配置図を図 3.1.7 に、その設置状況を写真 3.1.6 および写真 3.1.7 に示し、各 層の作製状況を写真 3.1.8~写真 3.1.10 に、各層の作製密度を表 3.1.9~表 3.1.14 に示 す。また、表層部補強材(ジオテキスタイル)配置を図 3.1.8 に、その設置状況を写真 3.1.11 に示す。

図 3.1.7 基盤層内アンカー配置図(単位/mm)

写真 3.1.6 土槽底面に剛結した等辺山形鋼

写真 3.1.7 剛体土槽を反力としたアンカー補強

写真 3.1.8 基盤層の作製状況

写真 3.1.9 弱層の作製状況

写真 3.1.10 表層の作製状況

表 3.1.9 各層の作製密度

ケース名	地層名	体積 (cm ³)	投入量 (g)	湿潤密度(g/cm ³)	
	基盤層	305, 206	580, 860	1.902	
ケース 30	弱層	39, 227	74, 510	湿潤密度 (g/cm ³) 1.902 1.899 2.518 ケース 30 と同じ 1.651 2.000	
	表層	26, 721	67, 400	2.518	
	基盤層	ケース 30 と同じ	ケース 30 と同じ	ケース 30 と同じ	
ケース 31	弱層	39, 227	64, 760	1.651	
	表層	26, 721	53, 440	2.000	

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm³)	(g)	(g)	(cm)	(cm ³)	(g/cm^3)
支持基盤層	0~2.0	2.0	63.0	2833.5	1.900	5384	5380	2.0	2833.5	1.899
基盤層1	0~10.0	10.0	1160.1	52203.3	1.900	99186	99290	10.0	52203.3	1.902
基盤層2	10.0~20.0	10.0	1102.3	49605.2	1.900	94250	95000	10.0	49605.2	1.915
基盤層3	20.0~30.0	10.0	1044.6	47007.1	1.900	89314	89310	10.0	47007.1	1.900
基盤層4	30.0~40.0	10.0	986.9	44409.0	1.900	84377	84380	10.0	44409.0	1.900
基盤層5	40.0~44.5	4.5	396.0	17820.0	1.900	33858	33910	4.5	17820.0	1.903
基盤層6	44.5~49.0	4.5	360.9	16240.5	1.900	30857	30860	4.5	16240.5	1.900
基盤層7	49.0 ~ 53.5	4.5	325.8	14661.0	1.900	27856	27900	4.5	14661.0	1.903
基盤層8	53.5~58.0	4.5	290.7	13081.5	1.900	24855	24850	4.5	13081.5	1.900
基盤層9	58.0 ~ 62.5	4.5	255.6	11502.0	1.900	21854	21850	4.5	11502.0	1.900
基盤層10	62.5 ~ 67.0	4.5	220.5	9922.5	1.900	18853	18850	4.5	9922.5	1.900
基盤層11	67.0 ~ 71.5	4.5	185.4	8343.0	1.900	15852	15850	4.5	8343.0	1.900
基盤層12	71.5~76.0	4.5	150.3	6763.5	1.900	12851	12850	4.5	6763.5	1.900
基盤層13	76.0~80.5	4.5	115.2	5184.0	1.900	9850	9860	4.5	5184.0	1.902
基盤層14	80.5~85.0	4.5	80.1	3604.5	1.900	6849	6860	4.5	3604.5	1.903
基盤層15	85.0~89.5	4.5	45.0	2025.0	1.900	3848	3860	4.5	2025.0	1.906
							実測密	度平均(g/o	cm ³)	1.902

表 3.1.10 基盤層各層の密度管理結果 (ケース 30)

表 3.1.11 弱層各層の密度管理結果 (ケース 30)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm^3)
弱層1	40.0~44.5	4.5	29.3	1316.4	1.900	2501	2500	4.5	1316.4	1.899
弱層2	44.5~49.0	4.5	52.7	2369.8	1.900	4503	4500	4.5	2369.8	1.899
弱層3	49.0 ~ 53.5	4.5	76.1	3423.2	1.900	6504	6500	4.5	3423.2	1.899
弱層4	53.5 ~ 58.0	4.5	99.5	4476.6	1.900	8506	8510	4.5	4476.6	1.901
弱層5	58.0~62.5	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層6	62.5 ~ 67.0	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層7	67.0 ~ 71.5	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層8	71.5~76.0	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層9	76.0 ~ 80.5	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層10	80.5~85.0	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
弱層11	85.0~89.5	4.5	87.8	3948.8	1.900	7503	7500	4.5	3948.8	1.899
							実測密	度平均(g/g	cm ³)	1.899

表 3.1.12 弱層各層の密度管理結果 (ケース 31)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm^3)
弱層1	40.0~44.5	4.5	29.3	1316.4	1.650	2172	2170	4.5	1316.4	1.648
弱層2	44.5~49.0	4.5	52.7	2369.8	1.650	3910	3910	4.5	2369.8	1.650
弱層3	49.0 ~ 53.5	4.5	76.1	3423.2	1.650	5648	5650	4.5	3423.2	1.650
弱層4	53.5 ~ 58.0	4.5	99.5	4476.6	1.650	7386	7390	4.5	4476.6	1.651
弱層5	58.0~62.5	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層6	62.5~67.0	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層7	67.0 ~ 71.5	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層8	71.5~76.0	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層9	76.0~80.5	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層10	80.5~85.0	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
弱層11	85.0~89.5	4.5	87.8	3948.8	1.650	6515	6520	4.5	3948.8	1.651
							実測密	度平均(g/o	cm ³)	1.651

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm^3)	(g)	(g)	(cm)	(cm ³)	(g/cm^3)
表層1	58.0~62.5	4.5	35.1	1581.3	2.500	3953	3950	4.5	1581.3	2.498
表層2	62.5~67.0	4.5	58.5	2634.6	2.500	6587	6590	4.5	2634.6	2.501
表層3	67.0 ~ 71.5	4.5	82.0	3688.0	2.500	9220	9220	4.5	3688.0	2.500
表層4	71.5~76.0	4.5	102.4	4606.4	2.500	11516	11520	4.5	4606.4	2.501
表層5	76.0~80.5	4.5	105.2	4735.6	2.500	11839	11840	4.5	4735.6	2.500
表層6	80.5~85.0	4.5	105.3	4736.7	2.500	11842	11840	4.5	4736.7	2.500
表層7	85.0~89.5	4.5	105.3	4737.9	2.500	11845	12440	4.5	4737.9	2.626
							実測密	度平均(g/)	cm ³)	2.518

表 3.1.13 表層各層の密度管理結果 (ケース 30)

表 3.1.14 表層各層の密度管理結果 (ケース 31)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm^3)	(g/cm^3)	(g)	(g)	(cm)	(cm ³)	(g/cm^3)
表層1	58.0~62.5	4.5	35.1	1581.3	2.000	3163	3160	4.5	1581.3	1.998
表層2	62.5 ~ 67.0	4.5	58.5	2634.6	2.000	5269	5270	4.5	2634.6	2.000
表層3	67.0 ~ 71.5	4.5	82.0	3688.0	2.000	7376	7380	4.5	3688.0	2.001
表層4	71.5~76.0	4.5	102.4	4606.4	2.000	9213	9210	4.5	4606.4	1.999
表層5	76.0 ~ 80.5	4.5	105.2	4735.6	2.000	9471	9470	4.5	4735.6	2.000
表層6	80.5 ~ 85.0	4.5	105.3	4736.7	2.000	9473	9470	4.5	4736.7	1.999
表層7	85.0~89.5	4.5	105.3	4737.9	2.000	9476	9480	4.5	4737.9	2.001
							実測密		cm ³)	2.000

単位/mm

図 3.1.8 表層部補強材(ジオテキスタイル)配置図

写真 3.1.11 表層部補強材敷設状況

3.2 中型振動台試験

3.2.1 概要

岩盤斜面を模擬した小型斜面模型は、基盤層・弱層・表層の3層で構成されており、図 図 3.2.1~図 3.2.3 に示す寸法形状で合計3ケース製作した。表 3.2.1 に配合条件を示す。 小型斜面模型の製作過程では、模型側面に画像解析のための標点、加振時における斜面の 応答・変位を計測するための加速度計・変位計を設置した(図 3.2.4~図 3.2.7)。

模型供試体の完成後は、加振実験準備として計測機器の結線作業を行った。 加振実験では、正弦波による加振を行い、実験状況の写真・動画撮影を行った。加振実験 後には、模型供試体から室内土質試験用の試料をサンプリングした。サンプリングした試 料は、含水量等の物性が変化しないように厳重に養生を行った。

図 3.2.1 斜面模型の概要(CASE 27)(単位/mm)

図 3.2.3 斜面模型の概要(CASE 29)(単位/mm)

図 3.2.7 変位計の配置図 (CASE 29)

地層名	配合
基盤層	礫(100)、セメント(6)、水(5.3.1.)、実測含水比3.06%の礫に対する配合
弱層	A 材料: 珪砂6号 (100)、ベントナイト (1)、水 (10)
	B 材料: 珪砂8号(30)、スチールグリッド(70)、消石灰(1)、水(2)
表層	磁砂鉄(100)、ベントナイト(10)、水(15)

表 3.2.1 地盤試料の配合

3.2.2 側壁摩擦の除去

斜面模型とガラス面との摩擦を除去するため、ガラス面と模型地盤側面(弱層・表層) との間にスペーサーを設置し 4 mmの遊間を設けた。スペーサーは、表層部の構築が完成し た後に引き抜いた。スペーサー設置および引抜き状況を写真 3.2.1~写真 3.2.4 に示す。

写真 3.2.1 スペーサー製作状況

写真 3.2.2 スペーサー設置(側面)

写真 3.2.3 スペーサー設置(正面)

写真 3.2.4 スペーサー引抜き

3.2.3 斜面模型の構築

(1) 基盤層の構築

基盤層は、表 3.2.2に示す条件で配合した地盤試料を用いて構築した。基盤層の構築は、 締固め後の湿潤密度 ρ t=1.900g/cm³を目標に、プレートコンパクターを用いた転圧により行 った。基盤層の密度管理結果を表 3.2.3 および表 3.2.4に示す。また、基盤層には加振時 に変位が生じないように、剛体土槽を反力としてアンカーにより補強した。補強用のアン カーは、M10mmの全ネジボルトの先端に鋼板(100mm×100mm×6mm)を固定した構造とし、 図 3.2.8 および図 3.2.9に示すように配置した(5段×3列)(CASE 27 および CASE 28)、4 段×3列(CASE 29))。基盤層の構築概要を写真 3.2.6~写真 3.2.7に示す。

表 3.2.2 基盤層試料の配合

地層名	配合
基盤層	礫(100)、セメント(6)、水(5.21)、実測含水比 3.06%の礫に対する配合

表 3.2.3 基盤層作製密度総括表

総容積 (cm ³)	総投入量(g)	湿潤密度(g/cm ³)
797, 017	1, 513, 737	1.899

表 3.2.4 基盤層各層における密度管理結果

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
支持基盤層	0~4.0	4.0	920.0	55,200.0	1.900	104,880	107,960	4.0	55,200.0	1.956
基盤層1	4.0~14.0	10.0	1,589.7	95,384.3	1.900	181,230	181,380	10.0	95,384.3	1.902
基盤層2	14.0~24.0	10.0	1,526.6	91,596.2	1.900	174,033	174,040	10.0	91,596.2	1.900
基盤層3	24.0~34.0	10.0	1,468.9	88,132.1	1.900	167,451	167,260	10.0	88,132.1	1.898
基盤層4	34.0~42.4	8.4	1,125.6	67,536.0	1.900	128,318	127,820	8.4	67,536.0	1.893
基盤層5	42.4~50.8	8.4	1,041.6	62,496.0	1.900	118,742	118,835	8.4	62,496.0	1.901
基盤層6	50.8 ~ 59.2	8.4	957.6	57,456.0	1.900	109,166	108,520	8.4	57,456.0	1.889
基盤層7	59.2 ~ 67.6	8.4	873.6	52,416.0	1.900	99,590	99,330	8.4	52,416.0	1.895
基盤層8	67.6 ~ 76.0	8.4	789.6	47,376.0	1.900	90,014	89,020	8.4	47,376.0	1.879
基盤層9	76.0~84.4	8.4	705.6	42,336.0	1.900	80,438	80,040	8.4	42,336.0	1.891
基盤層10	84.4~92.8	8.4	621.6	37,296.0	1.900	70,862	70,660	8.4	37,296.0	1.895
基盤層11	92.8~101.2	8.4	537.6	32,256.0	1.900	61,286	61,032	8.4	32,256.0	1.892
基盤層12	101.2~109.6	8.4	453.6	27,216.0	1.900	51,710	51,420	8.4	27,216.0	1.889
基盤層13	109.6~118.0	8.4	369.6	22,176.0	1.900	42,134	42,040	8.4	22,176.0	1.896
基盤層14	118.0~126.4	8.4	302.4	18,144.0	1.900	34,474	34,380	8.4	18,144.0	1.895
						合計	1,513,737		797,016.5	1.899
							実測密	了 了一个。 「」 「」 「」 「」 「」 」 「」 」 「」」 「」」 「」」 「」」」 「」」」 「」」」 「」」」」 「」」」」」」	cm ³)	1.899

図 3.2.8 補強アンカーの配置 (CASE 27 および CASE 28)

図 3.2.9 補強アンカーの配置 (CASE 29)

写真 3.2.6 補強アンカーの設置

写真 3.2.8 締固め状況

写真 3.2.5 加速度計の設置

写真 3.2.7 完成状況 (Case27,28)
(2)弱層の構築

弱層は、表 3.2.5 に示す条件で配合した地盤試料を用いて構築した。弱層の構築は、配 合した地盤試料を用いて、湿潤密度 ρ t=1.767g/cm³ (A材料)・ ρ t=2.340g/cm³ (B材料)を 目標にハンドバイブレーター等を用いた転圧により行った。弱層の密度管理結果を表表 3.2.6~表 3.2.9 に示す。なお、弱層構築時は、構築した模型の崩壊を防ぐため斜面前面側 に土留めを設けた。

弱層の構築概要を写真 3.2.9~写真 3.2.12 に示す。

地層名	配合
记录	A 材料:珪砂6号(100)、ベントナイト(1)、水(10)
33)官	B 材料:珪砂8号(30)、スチールグリッド(70)、消石灰(1)、水(2)

表 3.2.5 弱層試料の配合

試験 CASE	材料	休穑 (cm ³)	投入量 (g)	湿潤密度
				(g/cm^3)
CASE 97	A 材料(上部)	48, 733	86,100	1.767
CASE 21	B 材料(下部)	49, 928	116, 840	2.340
CASE 99	B 材料(上部)	48, 733	114,060	2.340
CASE 28	A 材料(下部)	49, 928	88, 240	1.767
CASE 90	A 材料(上部)	48, 307	85, 340	1.767
CASE 29	B 材料(下部)	47, 933	112, 180	2.340

表 3.2.6 弱層作製密度総括表

表 3.2.7 弱層各層における密度管理結果 (CASE 27)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
弱層B1	34.0~42.4	8.4	63.6	3767.0	2.340	8,810	8,800	8.4	3767.0	2.336
弱層B2	42.4~50.8	8.4	106.9	6328.1	2.340	14,810	14,820	8.4	6328.1	2.342
弱層B3	50.8 ~ 59.2	8.4	150.2	8889.2	2.340	20,800	20,800	8.4	8889.2	2.340
弱層B4	59.2 ~ 67.6	8.4	193.4	11450.3	2.340	26,790	26,800	8.4	11450.3	2.341
弱層B5	67.6 ~ 76.0	8.4	164.6	9746.7	2.340	22,810	22,820	8.4	9746.7	2.341
弱層B6	76.0~84.4	8.4	164.6	9746.7	2.340	22,810	22,800	8.4	9746.7	2.339
						合計	116,840		49927.9	2.340
							実測密	度平均(g/o	cm ³)	2.340
弱層A7	84.4~92.8	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
弱層A8	92.8~101.2	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
弱層A9	101.2~109.6	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
弱層A10	109.6~118.0	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
弱層A11	1180~1264	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
3376	THERE I LEGIT									
3374						合計	86,100		48733.4	1.767

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm³)	(g)	(g)	(cm)	(cm ³)	(g/cm³)
弱層A1	34.0~42.4	8.4	63.6	3767.0	1.767	6,660	6,660	8.4	3767.0	1.768
弱層A2	42.4~50.8	8.4	106.9	6328.1	1.767	11,180	11,180	8.4	6328.1	1.767
弱層A3	50.8~59.2	8.4	150.2	8889.2	1.767	15,710	15,720	8.4	8889.2	1.768
弱層A4	59.2 ~ 67.6	8.4	193.4	11450.3	1.767	20,230	20,240	8.4	11450.3	1.768
弱層A5	67.6 ~ 76.0	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
弱層A6	76.0 ~ 84.4	8.4	164.6	9746.7	1.767	17,220	17,220	8.4	9746.7	1.767
						合計	88,240		49927.9	1.767
							実測密	度平均(g/g	cm ³)	1.767
弱層B7	84.4~92.8	8.4	164.6	9746.7	2.340	22,810	22,820	8.4	9746.7	2.341
弱層B8	92.8~101.2	8.4	164.6	9746.7	2.340	22,810	22,800	8.4	9746.7	2.339
弱層B9	101.2~109.6	8.4	164.6	9746.7	2.340	22,810	22,820	8.4	9746.7	2.341
弱層B10	109.6~118.0	8.4	164.6	9746.7	2.340	22,810	22,800	8.4	9746.7	2.339
弱層B11	118.0~126.4	8.4	164.6	9746.7	2.340	22,810	22,820	8.4	9746.7	2.341
						合計	114,060		48733.4	2.340
							実測密	度平均(g/o	cm ³)	2.340

表 3.2.8 弱層各層における密度管理結果 (CASE 28)

表 3.2.9 弱層各層における密度管理結果 (CASE 29)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
弱層B1	34.0~41.0	7.0	55.9	3306.6	2.340	7,740	7,740	7.0	3306.6	2.341
弱層B2	41.0~48.0	7.0	97.6	5775.8	2.340	13,520	13,520	7.0	5775.8	2.341
弱層B3	48.0 ~ 55.0	7.0	139.3	8245.1	2.340	19,290	19,300	7.0	8245.1	2.341
弱層B4	55.0 ~ 62.0	7.0	181.0	10714.3	2.340	25,070	25,080	7.0	10714.3	2.341
弱層B5	62.0~69.0	7.0	168.0	9945.6	2.340	23,270	23,280	7.0	9945.6	2.341
弱層B6	69.0 ~ 76.0	7.0	168.0	9945.6	2.340	23,270	23,260	7.0	9945.6	2.339
						合計	112,180		47933.0	2.340
							実測密	度平均(g/o	cm ³)	2.340
弱層A7	76.0~83.0	7.0	168.0	9945.6	1.767	17,570	17,580	7.0	9945.6	1.768
弱層A8	83.0~90.0	7.0	168.0	9945.6	1.767	17,570	17,560	7.0	9945.6	1.766
弱層A9	90.0~97.0	7.0	168.0	9945.6	1.767	17,570	17,580	7.0	9945.6	1.768
弱層A10	97.0~104.0	7.0	168.0	9945.6	1.767	17,570	17,560	7.0	9945.6	1.766
弱層A11	104.0~110.0	6.0	144.0	8524.8	1.767	15,060	15,060	6.0	8524.8	1.767
						合計	85,340		48307.2	1.767
							実測密	度平均(g/g	cm ³)	1.767

写真 3.2.9 弱層締固め状況

写真 3.2.11 加速度計設置状況

写真 3.2.12 標点設置状況

(3) 表層の構築

表層は、表 3.2.10に示す条件で配合した地盤試料を用いて構築した。表層の構築は、配 合した地盤試料を用いて、湿潤密度ρt=3.000g/cm³を目標にタコを用いた転圧により行った。 表層の密度管理結果を表 3.2.11~表 3.2.14 に示す。なお、表層構築時は、構築した模型 の崩壊を防ぐため、斜面前面側に土留めを設けた。さらに、加振中に表層部で崩壊が生じ ないように、表層補強材(ジオテキスタイル)(型式:KJV-3000)を図 3.2.10 および図 3.2.11 に示す位置に敷設した。

表層の構築概要を写真 3.2.13~写真 3.2.16 に示す。

地層名	配合
表層	磁砂鉄(100)、ベントナイト(10)、水(15)

表 3.2.10 表層試料の配合

	2.		
試験 CASE	体積 (cm ³)	投入量 (g)	湿潤密度(g/cm ³)
CASE 27	65, 433	179,080	2.737
CASE 28	65, 433	181, 520	2.774
CASE 29	54, 662	149, 520	2.735

表 3.2.11 表層作製密度

表 3.2.12 表層各層の密度管理結果 (CASE 27)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
表層1	67.6 ~ 76.0	8.4	72.0	4,264.8	3.000	12,790	11,700	8.4	4,264.8	2.743
表層2	76.0~84.4	8.4	115.3	6,825.9	3.000	20,480	18,680	8.4	6,825.9	2.737
表層3	84.4~92.8	8.4	158.6	9,387.0	3.000	28,160	25,680	8.4	9,387.0	2.736
表層4	92.8~101.2	8.4	192.3	11,385.6	3.000	34,160	31,220	8.4	11,385.6	2.742
表層5	101.2~109.6	8.4	194.7	11,526.9	3.000	34,580	31,440	8.4	11,526.9	2.728
表層6	109.6~118.0	8.4	194.6	11,521.5	3.000	34,560	31,600	8.4	11,521.5	2.743
表層7	118.0~126.4	8.4	177.7	10,521.6	3.000	31,560	28,760	8.4	10,521.6	2.733
						合計	179,080		65,433.3	2.737
							実測密	度平均(g/o	cm ³)	2.737

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
表層1	67.6 ~ 76.0	8.4	72.0	4,264.8	3.000	12,790	11,800	8.4	4,264.8	2.767
表層2	76.0~84.4	8.4	115.3	6,825.9	3.000	20,480	19,000	8.4	6,825.9	2.784
表層3	84.4~92.8	8.4	158.6	9,387.0	3.000	28,160	26,020	8.4	9,387.0	2.772
表層4	92.8~101.2	8.4	192.3	11,385.6	3.000	34,160	31,200	8.4	11,385.6	2.740
表層5	101.2~109.6	8.4	194.7	11,526.9	3.000	34,580	32,000	8.4	11,526.9	2.776
表層6	109.6~118.0	8.4	194.6	11,521.5	3.000	34,560	32,000	8.4	11,521.5	2.777
表層7	118.0~126.4	8.4	177.7	10,521.6	3.000	31,560	29,500	8.4	10,521.6	2.804
						合計	181,520		65,433.3	2.774
							実測密	度平均(g/o	cm ³)	2.774

表 3.2.13 表層各層の密度管理結果 (CASE 28)

表 3.2.14 表層各層の密度管理結果 (CASE 29)

層番号	高さ	計画層厚	計画断面積	計画容積	目標密度	計画投入重量	実投入重量	実測層厚	実測容積	実測密度
(下段から)	(cm)	(cm)	(cm ²)	(cm ³)	(g/cm ³)	(g)	(g)	(cm)	(cm ³)	(g/cm ³)
表層1	62.0~69.0	7.0	54.7	3,237.9	3.000	97,100	8,880	7.0	3,237.9	2.743
表層2	69.0 ~ 760	7.0	96.4	5,707.1	3.000	17,120	15,600	7.0	5,707.1	2.733
表層3	76.0~83.0	7.0	138.1	8,176.3	3.000	24,530	22,340	7.0	8,176.3	2.732
表層4	83.0~90.0	7.0	164.5	9,738.7	3.000	29,220	26,640	7.0	9,738.7	2.735
表層5	90.0~97.0	7.0	165.0	9,765.1	3.000	29,300	26,800	7.0	9,765.1	2.744
表層6	97.0~104.0	7.0	165.0	9,766.3	3.000	29,300	26,780	7.0	9,766.3	2.742
表層7	104.0~110.0	6.0	139.7	8,270.6	3.000	24,810	22,480	6.0	8,270.6	2.718
						合計	149,520		54,662.2	2.735
							実測密	度平均(g/o	cm ³)	2.735

図 3.2.10 表層補強材の敷設長(CASE 27 および CASE 28)

図 3.2.11 表層補強材の敷設長 (CASE 29)

写真 3.2.13 表層締固め状況

写真 3.2.14 補強材設置状況

写真 3.2.15 加速度計設置状況

写真 3.2.16 標点設置状況

4. 計測センサーの選定と設置

4.1 遠心力載荷試験

4.1.1 計測機器の設置

計測機器は、斜面模型の所定の場所に設置した。模型地盤内部に設置する計測機器は、 図 4.1.1 および図 4.1.2 に示す通りの配置とした。計測機器の設置位置は、ケース 30・31 とも同じ仕様とした。チャンネル表を表 4.1.1~表 4.1.4 に示す。

単位/mm

図 4.1.1 ケース 30・31 計測機器配置図 (立面図)

図 4.1.2 ケース 30・31 計測機器配置図(平面図)

JBCN	設定ch	名称	センサーNo	容	<u>=</u>	校正	E係数	収録1K該	定	入出力抵抗	設定(初)	設定(大)	フィルタ	備考
1	1	EP01	7842			2036	$\mu/kgf/cm2$	48.1827	kPa		20	20	ON	線延長
2	2	EP02	8143			24.0441	kPa/Kμ	24.0441	kPa		20	20	ON	線延長
3	3	EP03	9133			2060	$\mu/kgf/cm2$	47.6214	kPa		20	20	ON	線延長
4	4	EP04	8876			4048	$\mu/kgf/cm2$	24.2342	kPa		20	20	ON	線延長
5	5	EP05	9683			2007	$\mu/kgf/cm2$	48.8789	kPa		20	20	ON	線延長
6	6	EP06	8879			4066	$\mu/kgf/cm2$	24.1269	kPa		20	20	ON	線延長
7	7	EP07	9684			2019	$\mu/kgf/cm2$	48.5884	kPa		20	20	ON	線延長
8	8	EP08	8884			4016	$\mu/kgf/cm2$	24. 4273	kPa		20	20	ON	線延長
9	25	A04H	FL4870002	100	G	1.09	m/s2/μ	1090	m/s2	120	1	1	ON	7ピン
10	27	A12H	FL4870007	100	G	1.05	m/s2/μ	1050	m/s2	120	1	1	ON	7ピン
11	28	A13H	FL4870016	100	G	1.108	m/s2/μ	1108	m/s2	120	1	1	ON	7ピン
12	29	A15H	FL4870017	100	G	1.028	m/s2/μ	1028	m/s2	120	1	1	ON	7ピン
13	30	A16H	FL4870018	100	G	1.102	m/s2/μ	1102	m/s2	120	1	1	ON	7ピン
14	52													
15	53													
16	54													
17	33	A18H	FP6460025	980.7	m/s2	1.087	m/s2/μ	1087	m/s2	120	1	1	ON	後付
18	32	A17HW	FT4090008	980.7	m/s2	0.9148	m/s2/μ	914.8	m/s2	120	1	1	ON	後付
19	34	A19H	FQ6760009	100	G	1.112	m/s2/μ	1112	m/s2	120	1	1	ON	後付
20	35	A19HE	FT2510014	980.7	m/s2	1.116	m/s2/μ	1116	m/s2	120	1	1	ON	後付
21	36	ATEH	FU3600003	980.7	m/s2	0.9183	m/s2/μ	918.3	m/s2	120	1	1	ON	後付
22	45	ATEV	FU3600014	980.7	m/s2	0.8788	m/s2/μ	878.8	m/s2	120	1	1	ON	後付
23	31	A17H	FT4090005	980.7	m/s2	0.9055	m/s2/μ	905.5	m/s2	120	1	1	ON	後付
24	46	camX	FW4960004	980.7	m/s2	1.183	m/s2/μ	1183	m/s2	120	1	1	ON	カメラ治具加振方向
25		dummy											ON	
26	47	camY	FW4960012	980.7	m/s2	1.091	m/s2/μ	1091	m/s2	120	1	1	ON	カメラ治具加振直角方向
27	48	camZ	FU3600009	980.7	m/s2	0.9278	m/s2/μ	927.8	m/s2	120	1	1	ON	カメラ治具鉛直方向
28	49	ATEX	FU3600006	980.7	m/s2	0.9191	m/s2/μ	919.1	m/s2	120	1	1	ON	カメラ治具下加振方向
29	50	ATEY	FW4960011	980.7	m/s2	1.156	m/s2/μ	1156	m/s2	120	1	1	ON	カメラ治具下直角方向
30	51	ATEZ	FP6460023	980.7	m/s2	1.097	m/s2/μ	1097	m/s2	120	1	1	ON	カメラ治具下鉛直方向
31		dummy											ON	
32		dummy											ON	
JBch	設定ch	名称	センサーNo	容	量	校正	<u>- 係数</u>	収録1Kor1	/設定	入出力抵抗	設定(初)	設定(大)	フィルタ	備考
33	10	D02H	LKG505 (⑤)		mm	375	mm/10V	37.5	mm		10	10		斜面侧+
34		dummy						0			1	1		
35	18	D06V	180211 (3A)		mm	15	mm/5V	3	mm		5	5		Table Town -
36	17						,	J				ů.		沈下+
37	17	D05VE	LKG155(①)		mm	40	mm/10V	4	mm		10	10		<u>沈下+</u> 沈下-
	9	D05VE D01H	LKG155(①) LKG505(500-1)		mm mm	40 375	mm/10V mm/10V	4 37.5	mm mm		10 10	10 10		<u> 次下</u> - 斜面側+
38	9 12	D05VE D01H D03H	LKG155(1) LKG505(500-1) LKG505(6)		mm mm mm	40 375 375	mm/10V mm/10V mm/10V	4 37.5 37.5	mm mm mm		10 10 10	10 10 10		次下-
38 39	9 12 14	D05VE D01H D03H D04H	LKG155(①) LKG505(500-1) LKG505(⑥) LKG500(⑦)		mm mm mm mm	40 375 375 373. 5	mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35	mm mm mm mm		10 10 10 10	10 10 10 10		次 N+ 次 下- 斜面側+ 斜面側+ 斜面側+
38 39 40	9 12 14	D05VE D01H D03H D04H dummy	LKG155(①) LKG505(500-1) LKG505(⑥) LKG500(⑦)		mm mm mm mm	40 375 375 373. 5	mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35	mm mm mm mm		10 10 10 10 1	10 10 10 10 10		次下+ 次下- 斜面側+ 斜面側+ 斜面側+
38 39 40 41	9 12 14 16	D05VE D01H D03H D04H dummy D05V	LKG155(()) LKG505(500-1) LKG505(©) LKG500(7) LKG155(2)		mm mm mm mm	40 375 375 373. 5 40	mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35 4	mm mm mm mm		10 10 10 10 1 10	10 10 10 10 10 1 10		<u>沈下</u> - 斜面側+ 斜面側+ 斜面側+ 純面側+
38 39 40 41 42	9 12 14 16	D05VE D01H D03H D04H dummy D05V dummy	LKG155(①) LKG505(500-1) LKG505(⑥) LKG500(⑦) LKG155(②)		mm mm mm mm mm	40 375 375 373. 5 40	mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35 4	mm mm mm mm		10 10 10 10 1 1 10 1	10 10 10 10 10 1 10 10 1		次 K+ 流下- 斜面側+ 斜面側+ 斜面側+ 線面側+ 流下-
38 39 40 41 42 43	17 9 12 14 16 11	D05VE D01H D03H D04H dummy D05V dummy D02HE	LKG155 (①) LKG505 (500-1) LKG505 (⑥) LKG500 (⑦) LKG155 (②) LKG155 (③)		mm mm mm mm mm	40 375 375 373.5 40 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35 4 37.5	mm mm mm mm mm		10 10 10 1 1 10 1 10 1 10	10 10 10 10 10 1 10 1 10 1 10		次ト+ 決下- <u>斜面側+</u> 斜面側+ <u>決下-</u> 斜面側+
38 39 40 41 42 43 44	17 9 12 14 16 11	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy	LKG155 (①) LKG505 (500-1) LKG505 (⑥) LKG500 (⑦) LKG155 (②) LKG155 (③)		mm mm mm mm mm	40 375 375 373.5 40 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35 4 37.5	mm mm mm mm mm		10 10 10 1 1 10 1 10 1 10	10 10 10 10 10 1 10 1 10 10 1 10		次ト+ 次下- 斜面側+ 斜面側+ 斜面側+ 次下- 斜面側+
38 39 40 41 42 43 44 45 45	17 9 12 14 16 11 11 19	D05VE D01H D03H dummy D05V dummy D02HE dummy D02HE	LKG155 (①) LKG505 (500-1) LKG505 (⑥) LKG500 (⑦) LKG155 (②) LKG505 (③) 82375 (3EDLK)		mm mm mm mm mm mm	40 375 375 373.5 40 375 15	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.5 37.35 4 37.5 37.5	mm mm mm mm mm mm		10 10 10 1 1 10 1 10 1 10 1 5 5	10 10 10 10 1 10 1 10 1 10 1 5 5		次下+ 次下- 斜面倒+ 斜面倒+ 刻面倒+ <u>沈下-</u> <u>斜面倒+</u> <u>放下+</u>
38 39 40 41 42 43 44 45 46	17 9 12 14 16 11 19 13	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D07V D03HE	LK6155 (①) LK6505 (500-1) LK6505 (⑥) LK6500 (⑦) LK6155 (②) LK6505 (③) 82375 (3EDLK) LK6505 (④)		mm mm mm mm mm mm mm mm	40 375 375 373. 5 40 375 15 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	4 37. 5 37. 5 37. 35 4 37. 5 37. 5	mm mm mm mm mm mm mm		10 10 10 1 1 10 1 10 1 5 10	10 10 10 10 1 10 1 10 1 10 1 5 10		次/** 次下* 納重働+ 納重働+ 就下* 約重働+ 次下* 約重働+
38 39 40 41 42 43 44 45 46 47 47	17 9 12 14 16 11 19 13	D05VE D01H D03H D04H dummy D05V dummy D05V dummy D07V D03HE dummy D07V	LKG155 (①) LKG505 (500-1) LKG505 (⑤) LKG505 (⑥) LKG505 (⑦) LKG505 (③) LKG505 (③) LKG505 (④)			40 375 375 373.5 40 375 15 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/5V mm/10V	4 37.5 37.5 37.35 4 37.5 37.5 3 37.5	mm mm mm mm mm mm mm		10 10 10 1 10 1 10 1 10 1 5 10 1 10	10 10 10 10 10 1 10 10 1 10 1 5 10 10		次1-1 次下- 納函側+ 納函側+ 熱函側+ 刻函側+ <u>次下-</u> 斜函側+ 利函則+
38 39 40 41 42 43 44 45 46 47 47	17 9 12 14 16 11 19 13 15	D05VE D01H D03H dummy D05V dummy D02HE dummy D07V D03HE dummy D03HE	LK6155 (①) LK6505 (500-1) LK6505 (⑤) LK6505 (⑥) LK6155 (②) LK6155 (③) LK6505 (③) 82375 (3EDLK) LK6505 (④) LK6505 (④)			40 375 375 373.5 40 375 15 375 375 373.5	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	4 37.5 37.35 37.35 4 37.5 37.5 37.35	mm mm mm mm mm mm mm		10 10 10 1 1 10 1 1 10 1 5 10 1 10 1 10	10 10 10 10 1 1 10 1 1 5 10 1 10 1 10 1		次1-7 次下- 結面倒+ 斜面倒+ 結面倒+ 就面倒+ 放下- 就面倒+ 放下4 斜面倒+ 斜面倒+
38 39 40 41 42 43 44 45 46 47 47 47 JBch	17 9 12 14 16 11 19 13 15 設定ch	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D07V D03HE dummy D03HE dummy D04HE	LKG155(①) LKG505(500-1) LKG505(⑤) LKG500(⑦) LKG505(③) LKG505(③) B2375(3EDLK) LKG505(④) LKG505(④) LKG500(500-2) センサーNo		mm mm mm mm mm mm mm mm K <u>X</u>	40 375 375 373.5 40 375 15 375 375 375.5	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	3 4 37. 5 37. 5 37. 35 4 37. 5 37. 5 37. 5 37. 35 37. 35 37. 35	mm mm mm mm mm mm mm mm		10 10 10 1 1 10 1 10 1 5 10 1 10 2 設定(初)	10 10 10 10 10 1 10 1 10 1 5 10 1 10 10 設定(大)	71NS	次1-1 次下- 給面倒+ 斜面倒+ 刻面倒+ 次下- 約面倒+ 熱面倒+ 納面倒+ 個面倒+ 個面對-
38 39 40 41 42 43 44 45 46 47 47 47 JBch 49 49	17 9 12 14 16 11 11 19 13 15 設定ch 20	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D07V D03HE dummy D03HE dummy D04HE	LKG155(①) LKG505(500−1) LKG505(500−1) LKG505(50) LKG500(7) LKG155(2) LKG505(3) 82375(3EDLK) LKG505(3) LKG505(3) LKG505(3) LKG505(3) LKG505(3)	校正	mm mm mm mm mm mm mm mm 係数 mv/G	40 375 375 373.5 40 375 15 375 375 375 373.5 × 159.2532 ×	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V 100 m/s2	$\begin{array}{r} 3\\ 4\\ 37.5\\ 37.5\\ 37.35\\ 4\\ 37.5\\ 37.5\\ 37.5\\ 37.5\\ 37.35\\ \times 10\\ 1592.532\\ \end{array}$	mm mm mm mm mm mm mm mm mm		10 10 10 1 1 10 1 10 1 5 10 10 1 10 10 2 設定(初) 10	0 10 10 10 10 1 10 1 10 1 10 1 10 1 10	フィルタ ON	次11 次下- 結面側+ 結面側+ 結面側+ 就面側+ 就面側+ 放下- 斜面側+ 着面側+ 着面側+ 着面側+ 着面側+
38 39 40 41 42 43 44 45 46 47 47 JBch 49 50	17 9 12 14 16 11 11 19 13 15 設定ch 20 37	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D07V D07HE dummy D07HE dummy D04HE 名称 A01H A01V	LK6155(①) LK6505(500−1) LK6505(50)−1) LK6500(⑦) LK6500(⑦) LK6505(③) LK6505(③) LK6505(③) LK6505(④) LK6505(④) LK6500(500−2) センサーNo U462 E097	校正 3.080 0.297	mm mm mm mm mm mm mm mm fs žy mv/G mv/m/sz	40 375 375 373 5 373 5 40 375 375 375 375 373 5 × 159.2532 168.3502	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V	3 4 37. 5 37. 35 4 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 21 592. 532 1683. 502	mm mm mm mm mm mm mm mm mm mm		10 10 10 1 1 1 1 1 1 1 1 5 10 1 1 0 設定(初) 10	10 10 10 10 1 1 1 10 1 1 5 10 10 2 定(大) 10 10	フィルタ 0N 0N	次1+1- 次下- 斜面倒+ 斜面倒+ 斜面倒+ 斜面倒+ 然面倒+ 流下+ 斜面倒+ 前面倒+ 斜面倒+ 斜面倒+ 斜面倒+ 斜面倒+ 斜面倒+
38 39 40 41 42 43 44 45 46 47 47 47 47 47 50 50 51	17 9 12 14 16 11 11 19 13 15 設定ch 20 37 21	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D07V D03HE dummy D03HE dummy D03HE dummy D03HE dummy D03HE dummy D03HE dummy D03HE dummy	LK6155 (①) LK6505 (500−1) LK6505 (⑤) LK6505 (⑥) LK6505 (⑦) LK6505 (③) LK6505 (③) LK6505 (④) LK6505 (④) LK6500 (500−2) 42 > 47 − No U462 E097 E110	校正 3.080 0.297 0.282	mm mm mm mm mm mm mm mm 係数 mv/G mv/m/s2 mv/m/s2	40 375 375 373.5 40 375 375 375 375 375 5 375.5 × 159.2532 168.3502 177.3050	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V 100 mm/10V 100 mm/22 m/s2 m/s2	37.5 37.5 37.35 4 37.5 37.5 37.5 37.5 37.35 × 10 1592.532 1683.502 1773.050	mm mm mm mm mm mm mm mm mm mm mm		10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 10 10 10 10 10 10 10 10	フィルタ のN ON ON	次1-7 次下- 結面倒+ 結面例+ 結面例+ 成下- 約面例+ 約面例+ 備考
38 39 40 41 42 43 44 45 46 47 47 47 JBch 49 50 51 52	19 12 14 16 11 19 13 15 設定ch 20 37 21 26	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D07V D07V D03HE dummy D03HE dummy D03HE dumny D03HE dumny D03HE dumny D03HE dumny	LKG155(①) LKG505(500−1) LKG505(500−1) LKG505(50) LKG500(7) LKG505(3)	校正 3.080 0.297 0.282 0.312	mm mm mm mm mm mm mm mm mm mm K & w mv/m s2 mv/m/s2 mv/m/s2	40 375 375 373,5 40 375 375 375 375 375 375 375 375 373,5 × × 159,2532 168,3502 177,305	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V 100 m/s2 m/s2 m/s2 m/s2	37.5 37.5 37.35 4 37.5 37.35 37.35 37.5 37.35 × 10 1592.532 1683.602 1773.050 1602.552	mm mm mm mm mm mm mm mm mm mm ms2 m/s2 m/		10 10 10 10 1 1 1 10 1 1 10 10 10 10 10	10 10 10 10 10 1 1 10 1 1 10 10 10 10 10	フィルタ ON ON ON ON ON	次1-1 次下- 斜面倒+ 斜面倒+ 就面倒+ 就下- 斜面侧- 就下- 斜面侧- <u>就下</u> + 斜面侧- <u>就下</u> + 斜面侧- <u>就下</u> - <u>就</u> 而侧- <u>就</u>
38 39 40 41 42 43 44 45 46 47 49 50 51 52 53 53	17 9 12 14 16 11 19 13 15 設定ch 20 37 21 26 40	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D07V D03HE dummy D04H 名話称 A01H A05H A05W	LKG155(①) LKG505(500−1) LKG505(500−1) LKG500(⑦) LKG500(⑦) LKG505(③) LKG505(③) LKG505(③) LKG505(④) LKG505(④) LKG505(④) LKG505(④) LKG505(④) LKG507(500−2) センサーNo U462 E097 E110 D987 D9987 D9987	校正 3.080 0.297 0.312 0.312	mm mm mm mm mm mm mm mm mm mm mv/m/s2 mv/m/s2 mv/m/s2	40 375 373.5 373.5 40 375 375 375 375 375 375.5 × 159.2532 168.3502 177.3050 160.2564 152.9052	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/22 m/s2 m/s2 m/s2 m/s2	3 4 37. 5 37. 35 37. 35 4 37. 5 37. 5 37. 5 37. 5 x 10 1592, 532 1683, 502 1713, 050 1602, 564 1529, 052	mm mm mm mm mm mm mm mm mm mm mm ms2 m/s2 m/		10 10 10 1 1 1 10 1 1 10 1 1 10 10 10 10	10 10 10 10 1 1 1 10 1 1 10 10 10 10 10	フィルタ のN ON ON ON ON ON	次下- <u>然</u> 而覺+ 斜面覺+ 斜面覺+ 斜面覺+ 斜面覺+ 然面覺+ 然面覺+ 然面覺+ 新面覺+ 新面覺+ 新面覺+ 新面覺+ 新面覺+
38 39 40 41 42 43 44 45 46 47 47 47 47 50 51 51 52 53 54	11 14 16 11 13 15 設定ch 20 37 21 26 40 39	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D03HE dummy D03HE dummy D03HE dummy D03HE dumny D03HE dumny D03HE dumy D03H D05V dumy D03H dumy D05V dumy dumy dumy dumy dumy dumy dumy dumy	LK6155 (①) LK6505 (500−1) LK6505 (⑤) LK6505 (⑥) LK6505 (⑦) LK6505 (③) LK6505 (③) LK6505 (④) LK6505 (④) LK6505 (④) LK6505 (④) LK6505 (⑤) (○) LK6505 (○	校正 3.080 0.297 0.322 0.327 0.327 0.327	mm mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 375 375 373,5 40 373,5 373,5 375 375 375 375 375 375 375 375 375 37	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V 100 m/s2 m/s2 m/s2 m/s2	37.5 37.35 37.35 37.35 4 37.5 37.5 37.35 ×10 1592.532 1683.502 1773.050 1602.564 1529.052 1621.130	mm mm mm mm mm mm mm mm mm ms2 m/s2 m/s2		10 10 10 10 10 1 10 1 10 1 10 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1	フィルタ ON ON ON ON ON ON	次1-7 次下- 結函側+ 結函側+ 結函例+ 就函例+ 就函例+ (備考
38 39 40 41 42 43 44 45 46 47 47 47 JBch 49 50 51 52 53 54 55 55	17 9 12 14 16 11 19 13 15 設定ch 20 37 21 26 40 39 41	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D02HE dummy D07V D03HE dummy D04HE 名称 A01H A01HE A05H A05H A04W A16V	LK6155 (①) LK6505 (500−1) LK6505 (500−1) LK6500 (⑦) LK6500 (⑦) LK6505 (③) LK6505 (③) LK6505 (③) LK6505 (④) LK6505 (④) LK6500 (500−2) センサーNo U462 E097 E110 D987 D9987 D9987 E038 C196	校正 3.080 0.297 0.312 0.327 0.301 0.277	mm mv/m/sz mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 375 375 375 375 40 375 15 375 375 375 × 159.2532 168.3502 177.305 × 159.2532 160.2564 152.9052 166.1130 180.5054	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/22 m/s2 m/s2 m/s2 m/s2	37.5 37.35 37.35 37.35 37.35 37.5 37.5 3	mm mm mm mm mm mm mm mm mm mm mm msz m/s2 m/s2 m/s2 m/s2 m/s2		10 10 10 10 10 1 10 1 10 1 10 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	IO 10 10 10 10 10 10 1 10 1 10 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	フィルタ ON ON ON ON ON ON ON	次1-1 次下- 斜面倒+ 斜面倒+ 刻面倒+ 就面倒+ 就面倒+ 斜面倒+ 斜面侧+ 斜面侧+
38 39 40 41 42 43 44 45 46 47 47 47 47 47 47 50 51 52 53 54 55 56 66	9 9 12 14 16 11 19 13 15 15 20 37 21 26 40 39 41	D05VE D01H D03H D04H dummy D05V dummy D05V dummy D07V D03HE dummy D07V D03HE dummy D04H 名称 A01H A05H A05H A05H A05H A05V A04W A16V dummy dummy	LKG155(①) LKG505(500-1) LKG505(⑤) LKG505(⑥) LKG505(③) LKG505(③) LKG505(③) LKG505(③) LKG505(④) LKG505(④) LKG505(○) LKG50	校正 3.080 0.297 0.312 0.312 0.327 0.301 0.277	mm mm mm mm mm mm mm mm mm (% 20 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 40 375 375 375 375 40 375 375 375 375 375 375 375 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2	3 4 37. 5 37. 5 37. 35 4 37. 5 37. 35 37. 35 × 10 1592. 532 1683. 502 1773. 050 1602. 564 1529. 052 1661. 130 1805. 054	mm mm mm mm mm mm mm mm mm mm ms2 m/s2 m/		10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1	フィルタ ON ON ON ON ON ON ON	次下- 然活動+ 斜活動+ 斜活動+ 斜活動+ 刻活動+ 次下- 刻活動+ 利活動+ 利活動+ 利活動+ 利活動+
38 39 40 41 42 43 44 45 46 47 47 47 47 47 50 51 52 53 54 55 55 56 57 57	17 9 9 12 14 11 16 11 19 13 15 設定ch 20 37 21 26 40 39 41 22	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D07V D03HE dummy D04HE 名称 A01H A01H A05H A05H A05H A04W A16V A02H A02H A02H	LK6155 (①) LK6505 (500-1) LK6505 (⑤) LK6505 (⑥) LK6505 (③) LK6505 (③) LK6505 (③) LK6505 (③) LK6505 (④) LK6500 (500-2) ± 2 → 𝒴→No U462 E097 E110 D987 E038 C196 D186 D186	校正 3.080 0.297 0.282 0.312 0.327 0.301 0.277 0.301	mm mm mm mm mm mm mm mm mm mm mm mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 40 375 375 375 375 40 40 375 375 375 575 375 575 375 575 5	mm/10V 00 m/s2 m/s2 m/s2 m/s2 m/s2	37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5	mm mm mm mm mm mm mm mm mm mm mm msz m/sz m/		10 10 10 1 10 1 10 1 10 1 10	10 10 10 10 10 10 1 10 10 10 10 10 10 10	フィルタ ON ON ON ON ON ON ON	次1-7 次下- 結函數+ 約函數+ 於函數+ 於五數+ 於五數+ 於五數+ 納函數+ 納函數+ (備考
38 39 40 41 42 43 44 45 46 47 47 47 47 47 55 51 52 53 54 55 56 57 58 8 8 57	17 9 9 12 14 1 16 1 17 15 設定ch 20 37 21 26 40 40 39 41 22 38 82	D05VE D01H D03H D04H dummy D05V dummy D07V D03HE dummy D07V D03HE dummy D07V D03HE dummy D04H & 03HE A01W A01H A05H A05V A04V A04V A02H A02V	LK6155 (①) LK6505 (500−1) LK6505 (500−1) LK6500 (⑦) LK6500 (⑦) LK6505 (③) LK6505 (③) LK6505 (③) LK6505 (④) LK6505 (④) LK6500 (500−2) センサーNo U462 E097 E110 D987 D9987 D998 E038 C196 D186 D995 F024	校正 3.080 0.297 0.312 0.327 0.327 0.327 0.314 0.314	mm mm mm mm mm mm mm mm mm mm mm mm mx/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 40 375 375 375 375 40 375 375 375 375 375 375 375 375 375 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2	3 4 37. 5 37. 35 37. 35 4 37. 5 37. 35 × 10 1592. 532 1683. 502 1692. 564 1529. 052 1661. 130 1805. 054 1592. 357 1597. 444	mm mm mm mm mm mm mm mm mm mm mm mm ms2 m/s2 m/		10 10 10 10 10 1 10 1 10 1 10 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 1 1 10 1 1 10 10 10	211/2 0N 0N 0N 0N 0N 0N 0N 0N	次下- 結面倒+ 斜面倒+ 斜面倒+ 然面倒+ 然面倒+ 然面倒+ 結面倒+ 結面倒+ 結面倒+ 結面例+ 結面例+ 結面例+
38 39 40 41 42 43 44 45 46 47 47 JBch 49 50 51 50 51 52 53 54 55 55 55 56 57 78 58 59 59	17 9 9 12 14 11 16 11 19 13 15 設定ch 20 37 21 26 40 39 41 22 38 23 24 24	D05VE D01H D03H D04H dummy D05V dummy D05V dummy D07V D03HE dummy D07V D03HE dummy D04H 名称 A01H A01HE A05H A05H A05V A04V A16V dummy A02H A02H A02H	LK6155(①) LK6505(500-1) LK6505(⑤) LK6500(⑦) LK6505(③) LK6505(③) LK6505(③) B2375(3EDLK) LK6505(④) LK6500(500-2) t2>サ-No U462 E097 E110 D987 D998 E038 C196 D186 D995 E101 D186	校正 3.080 0.297 0.282 0.312 0.327 0.301 0.277 0.314 0.313 0.296	mm mm mm mm mm mm mm mm mm mm m m m	40 40 375 375 375 375 40 40 15 375 375 375 375 375 375 375 37	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/22 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s	3 4 37. 5 37. 5 37. 35 4 37. 5 37. 5 37. 5 37. 5 x 10 1592. 532 1683. 502 1661. 130 1805. 054 1592. 357 1592. 457 1592. 457 1592. 458 1592. 458 1693. 458 1693. 458 1693. 458 1592. 458 1	mm mm mm mm mm mm mm mm mm mm mm mm msz m/sz m/		10 10 10 10 1 10 1 10 1 10	10 10	フィルタ のN ON ON ON ON ON ON ON ON ON O	次下- 旅游量供- 熱面倒+ 熱面倒+ 就面倒+ 就面倒+ 就面倒+ 熱面倒+ 熱面例+ 備考
38 39 40 41 42 43 44 45 46 47 47 47 47 47 50 51 52 53 54 55 55 56 57 58 59 60 61	17 9 9 12 14 14 16 11 13 15 設定ch 20 37 37 221 26 40 39 41 22 38 23 24 42	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D07V D03HE dummy D04HE & 3% A01H A01HE A05H A05H A05H A04V A16V A02H A02H A02H A02H	LK6155(①) LK6505(500−1) LK65005(50) LK6500(⑦) LK6500(⑦) LK6505(③) LK6505(③) LK6505(③) LK6505(④) LK6505(④) LK6500(500−2) センサーNo U462 E097 E110 D987 D9987 D9987 D9987 D9987 D9987 D186 D995 E101 D944 E007 E101 D944 E007	校正 3.080 0.297 0.312 0.301 0.301 0.277 0.314 0.301 0.296 0.296 0.207	mm mm mm mm mm mm mm mm mm mm f\$\$\$2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 40 375 375 375 375 40 375 375 375 375 375 375 375 375	mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/10V mm/22 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s	3 4 37. 5 37. 5 37. 35 4 37. 5 37. 5 37. 5 37. 5 × 10 1592. 532 1683. 502 1773. 050 1602. 564 1529. 052 1661. 130 1805. 054 1592. 357 1597. 444 1639. 189 1639. 189 1638. 664 1639. 189 1639. 189 1638. 664 1639. 189 1639. 189 1592. 189 1639. 189 1	mm mm mm mm mm mm mm mm mm mm mm mm mm		10 10 10 10 10 1 10 1 10 1 10 1 10	10 10	フィルタ のN ON ON ON ON ON ON ON ON ON O	次1-1 次下- 斜面倒+ 斜面倒+ 就下- 斜面侧+ 次下- 斜面侧+ 道面侧+ 着面侧+
38 39 40 41 42 43 44 45 46 47 47 47 47 50 51 52 53 54 55 55 56 57 58 59 60 60 61	11 14 16 11 19 13 15 設定oh 37 21 26 40 39 21 26 40 39 21 26 40 39 24 42	D05VE D01H D03H D04H dummy D05V dummy D07V D03HE dummy D07V D03HE dummy D07V D03HE dummy D04H 名話称 A01H A01H A05V A04V A05V A04V A02H A02H A02H A02H A02H A02H A03H	LKG155(①) LKG505(500−1) LKG505(500−1) LKG505(⑤) LKG500(⑦) LKG505(③) LKG505(③) LKG505(③) LKG505(④) LKG505(④) LKG505(④) LKG505(④) LKG505(④) LKG505(④) LG505(④) LG505(⑤) LG505(⑤) LG505(⑥) LG505(\%) L	校正 3.080 0.297 0.282 0.312 0.327 0.311 0.277 0.277 0.277 0.214 0.313 0.296 0.307 0.314	mm mv/m/sz mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2 mv/m/s2	40 40 375 375 375 375 40 40 375 375 375 375 375 375 375 375	mm/10V m/s2	3 4 37. 5 37. 5 37. 35 4 37. 5 37. 35 37. 35 × 10 1592. 532 1663. 502 1663. 502 1663. 564 1529. 052 1661. 130 1805. 054 1592. 357 1597. 444 1628. 164 1592. 357 1597. 444 1628. 164 1597. 302	mm mm mm mm mm mm mm mm mm mm msz m/sz m/		10 10	10 10	フィルタ のN のN のN のN のN のN のN のN のN のN	次下- 結面倒+ 斜面例+ 斜面例+ 放下- 和面例+ 放下+ 斜面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+ 創面例+
38 39 40 41 42 43 44 45 46 47 47 47 47 47 50 51 52 53 54 55 55 55 57 57 58 59 60 61 62	17 9 12 14 16 11 11 19 13 15 設定ch 37 21 26 40 39 41 22 38 23 24 43 44 44	D05VE D01H D03H D04H dummy D05V dummy D02HE dummy D02HE dummy D07V D03HE dummy D04HE 名称 A01H A01H A05H A05H A05H A02H A02H A02H A02H A03H A18W	LKG155 (①) LKG505 (500−1) LKG505 (⑤) LKG505 (⑥) LKG505 (⑥) LKG505 (③) LKG505 (③) B2375 (3EDLK) LKG505 (④) LKG505 (④) LKG505 (△) LKG505 (△) LKG505 (○) E097 E110 D987 E098 E038 C196 D186 D995 E101 D944 E088 E052 E052 E052 E052 E052	校正 3.080 0.297 0.312 0.322 0.312 0.301 0.277 0.313 0.296 0.307 0.315 0.315 0.326	mm mm mm mm mm mm mm mm mm mm mm mm mm	40 40 375 375 375 375 40 40 15 375 375 375 375 57 375 57 57 57 57 57 57 57 57 57	mm/10V ms/2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2	3 4 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 37. 5 5 37. 5 5 37. 5 5 37. 5 5 37. 5 5 101 52 1683. 502 1773. 050 1602. 564 1529. 052 1661. 130 1805. 054 1597. 444 1587. 302 1587. 454. 390 1524. 390 1587. 342. 390 1524. 390	mm mm mm mm mm mm mm mm mm mm mm mm ms m/s2 m/s2		10 10	10 10	フィルタ のN のN のN のN のN のN のN のN のN のN	次1-1 次下- 結面倒+ 結面例+ 結面例+ 結面例+ 就面例+ 就面例+ (備考 後付 後付
38 39 40 41 42 43 44 45 46 47 47 47 38 ch 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 63 44	17 9 9 12 14 1 16 1 11 1 13 1 15 bb bb 20 37 21 26 40 39 41 22 38 23 24 43 44	D05VE D01H D03H D04H dummy D05V dummy D07V D03HE dummy D07V D03HE dummy D07V D03HE dummy D04HE 名荪 A01H A01H A05H A05H A05H A04V A04V A02H A02H A02H A02HE A03H A18V A19V	LK6155 (①) LK6505 (500−1) LK6505 (500−1) LK6505 (50) LK6505 (50) LK6505 (3) LK6505 (3) 82375 (3EDLK) LK6505 (3) LK6505 (3) LK6505 (3) LK6500 (500−2) センサーNo U462 E097 E110 D987 D998 E038 C196 E101 D944 E052 E036 E036	枝正 3.080 0.297 0.312 0.327 0.301 0.277 0.314 0.313 0.307 0.314 0.307 0.315 0.326 0.306	mm mv/m/sz mv/m/sz	40 40 375 375 375 375 40 375 375 375 375 375 375 375 375 375 375	mm/10V m/s2 m/s2	3 4 37.5 37.5 37.5 37.35 37.5 37.35 37.5 37.35 37.35 ×10 1592.532 1683.502 1662.564 1529.052 1661.130 1895.054 1805.054 1597.444 1528.332 1524.390 1628.664 1524.390 1633.987 1543.980	mm mm mm mm mm mm mm mm mm mm mm mm mm		10 10 10 10 10 1 10 1 10 1 10 1 10	$\begin{array}{c} 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\$	211/2 0N 0N 0N 0N 0N 0N 0N 0N 0N 0N 0N 0N 0N	次下- 結面倒+ 斜面倒+ 斜面倒+ 就面倒+ 就面倒+ 结面倒+ 结面倒+ 结面倒+ 铺面侧+ 铺面侧+ 铺面侧+ 铺面侧+

表 4.1.1 ケース 30・31 メイン計測システム (NR600) チャンネル表

コート	UNIT	名称	センサーNo	容	量	校正	E係数	校正係数(/μ)	NR設定	設定(初)	設定(大)	フィルタ	備考
2-1	1-1	A17H2	FQ6760010	980.7	m/s2	1.154	m/s2/μ	1.154	m/s2		1000	1000	5kHz	同期用,後付
2-2	1-2													
2-3	1-3													
2-4	1-4													
acc1	6-1	A06H	E108		m/s2	0.303	mv/m/s2				1000m/s2	1000m/s2	10kHz	圧電型加速度計
acc2	6-2	A06V	D167		m/s2	0.311	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc3	6-3	A07H	E049		m/s2	0.291	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc4	6-4	A08H	E098		m/s2	0.311	mv/m/s2				1000m/s2	1000m/s2	10kHz	"

表 4.1.2 ケース 30・31 サブシステム (NR2) チャンネル表

表 4.1.3 ケース 30・31 サブシステム (NR3) チャンネル表

⊐-ŀ*	UNIT	名称	センサーNo	容	量	校正	E係数	校正係数(/μ)	NR設定	設定(初)	設定(大)	フィルタ	備考
acc5	5-1	A08V	E100	5500	m/s2	0.295	mv/m/s2				1000m/s2	1000m/s2	10kHz	圧電型加速度計
acc6	5-2	A08HE	D960	5500	m/s2	0.309	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc7	5-3	A09H	P023	550	G	0.325	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc8	5-4	A10H	E105	5500	m/s2	0.294	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc9	6-1	A10V	A639	5500	m/s2	0.319	mv/m/s2				1000m/s2	1000m/s2	10kHz	圧電型加速度計
acc10	6-2													"
acc11	6-3	A1 1H	E070	5500	m/s2	0.320	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc12	6-4													"

表 4.1.4 ケース 30・31 サブシステム (NR4) チャンネル表

コート	UNIT	名称		容	量	校正	E係数	校正係数(/	(μ)	NR設定	設定(初)	設定(大)	フィルタ	備考
acc17	6-1	A11V	E066	5500	m/s2	0.296	mv/m/s2				1000m/s2	1000m/s2	10kHz	圧電型加速度計
acc14	6-2	A14H	E103	5500	m/s2	0.304	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc15	6-3	A14V	E065	5500	m/s2	0.319	mv/m/s2				1000m/s2	1000m/s2	10kHz	"
acc16	6-4	A13V	C980	5500	m/s2	0.310	mv/m/s2				1000m/s2	1000m/s2	10kHz	"

(1) 概要

各ケースについて、土槽の据え付け完了後に計測準備を行い、その後、動的遠心載荷試 験を実施した。計測項目は表 4.1.5 に示す通りとした。

計 測 項 目	計 測 方 法
斜面模型・土槽の応答加速	変位計、加速度計
度・変位	
模型斜面の局所変位(アクリ	ハイスピードカメラ
ル面、天端、のり面)	

表 4.1.5 計測項目

(2) 計測準備

本試験では、以下の物理量に関する計測を実施した。

(3) 斜面模型・土槽の応答加速度・変位計測

加速度応答については、地盤内および土槽に加速度計を設置したが、計測アンプチャン ネル数の制約から、圧電型およびひずみ型加速度計が混在となった。ただし、主に挙動に 着目する表層および弱層においては、圧電型加速度計を水平および鉛直方向にペアで設置 した。

変位計測については、斜面の変形量を計測するため、レーザー変位計を斜面水平および 斜面天端鉛直方向に設置した。

土圧応答は、弱層と基盤層の境界部に水平および鉛直方向に土圧計を設置して計測した。

計測に当たっては、斜面模型・土槽に設置した加速度計・変位計ケーブルの結線を行った後、遠心場においてケーブルが外れないように、土槽、バケットおよび回転腕に固定した。

計測機器の仕様を表 4.1.6 および表 4.1.7 に示す。

機器名称	加速	度計	土圧計
型式	710	AS100H	P310
メーカー	TEAC	共和電業	SSK
容量	$\pm 550g$	$\pm 100g$	500kPa
形式	圧電式	ひずみゲージ式	ひずみゲージ式

表 4.1.6 計測機器名および仕様(その1)

機器名称		変位計	
型式	LKG-500	LKG-155	LK-080
メーカー		キーエンス	
容量	± 300 mm	± 40 mm	± 15 mm
形式		CMOS レーザー式	

表 4.1.7 計測機器名および仕様 (その 2)

(4) 模型斜面の局所変位計測(画像計測)

本試験では、斜面崩壊時の変形過程を把握する目的で、高速度ビデオカメラによる撮 影を実施した。そのため、高速度ビデオカメラ収録部を遠心装置アーム内に搭載し、そ こからバケット部(土槽および振動台設置部)まで配線した。また、遠心装置アーム内 から計測室までは、スリップリングを通して制御経路を確保し、遠心装置回転中でも自 由にカメラのオペレーションや映像モニター、収録データのバックアップメモリへの転 送等ができるようにした。

カメラヘッドは、土槽側面に設置した。高精細ヘッド1台およびペンシル型ヘッド2 台を設置するため、バケット部にアルミ製の冶具を取り付けた。

(5) カメラ・ケーブル・ライト 結線・固定・撤去

ハイスピードカメラ 3 台は、バケット部のアルミ製冶具に取り付け、土槽のアクリル面 を介して斜面模型の崩壊状況を側面より撮影した。なお、高速度ビデオカメラは毎秒 1,000 コマで画像を取り込むため、撮影には大容量の照明を必要とした。そのため、バケット部 には大容量 LED ランプ(2台・側面)とハロゲンランプ(8台・上部)を取り付けた。

加振試験後は、カメラ・ケーブル・ライト・カメラ固定治具等を撤去した。カメラ・ケ ーブル・ライトの結線および固定状況を写真 4.1.1~写真 4.1.3 に示す。

写真 4.1.1 高速度ビデオカメラ・照明 (LED) 設置状況

写真 4.1.2 ケーブル配線状況

写真 4.1.3 照明 (ハロゲンランプ) 設置状況

4.1.2 遠心載荷試験装置の運転・計測

計測準備終了後、動的遠心載荷を行った。動的遠心載荷に当たっては、50G まで遠心 カを上昇させた。遠心力載荷過程においては、変位計および加速度計による計測と、ハ イスピードカメラを用いた斜面模型の変形を計測した。加振は、最大加速度を実物大換 算で100gal ずつ増大させ、斜面模型が崩壊に至るまで加振を継続した。

表 4.1.8に各ケースでの試験実施状況を示す。

表 4.1.8 試験ケースと試験実施状況

ケース名	試験実施状況
ケース 30	50G 振動試験
ケース 31	50G 振動試験

試験時に加振制御システムに入力した振動台入力地震動時刻歴を図 4.1.3 に示す。表 4.1.9 に、遠心模型実験の相似則(表 4.1.10 参照)にしたがって算定した実物振動数 を示す。加速度振幅は、試験体の変形状態をモニターしながら、実物換算 100Gal ピッ チで最大 500Gal までを振幅調整して入力した。

ケース名	振動試験時 遠心重力	入力地震動	実物換算 振動数
ケース 30	50G	Sin50Hz 10 波 Sin125Hz 10 波	1Hz 2. 5Hz
ケース 31	50G	Sin50Hz 10 波	1Hz

表 4.1.9 入力地震動

(a) Sin125Hz 10 波 (テーパー1+1 波)

(b) Sin50Hz 10 波 (テーパー3+3 波)図 4.1.3 基盤入力加速度時刻歴

実験		重力場*	遠	心力場	
物理量	模型/実物	縮尺	模型/実物	縮尺	
力学量					
長さ	$1/\lambda$	1/50	$1/\lambda$	1/50	
密度	1	1	1	1	
時間	$1/\lambda$ ^{0.75}	$1/(50)^{0.75} = 1/18.8$	1/λ	1/50	
振動数	λ ^{0.75}	18.8	λ	50	
応力	$1/\lambda$	1/50	1	1	
間隙水圧	$1/\lambda$	1/50	1	1	
変位	$1/\lambda^{1.5}$	$1/(50)^{1.5} = 1/354$	1/λ	1/50	
速度	$1/\lambda$ ^{0.75}	$1/(50)^{0.75} = 1/18.8$	1	1	
加速度	1	1	λ	50	
備考	*井合の重力場	相似則(地盤ひずみの相似	以比を 1/λ ^{0.5} と仮定):第 19 回地		
	震工学研究発表	長会, 土木学会耐震工学委員	員会, pp. 341-3	344, 1987	

表 4.1.10 相似則の比較(縮尺 1/50)

4.1.3 標点の設置

標点は、斜面模型の構築とともにアクリル面に設置した。使用した標点(φ=10mm、アルミリベット)は、黒色または白色に塗布したものと、十字型に色を塗り分けたものの3 種類とした。標点の配置間隔は、変形が集中すると考えられる箇所は25mm、基盤層深部については150mmとした。標点配置図を図4.1.4に、配置状況を写真4.1.4および写真4.1.5 に示す。

図 4.1.4 ケース 30・31 標点配置図

写真 4.1.4 ケース 30 標点配置状況

写真 4.1.5 ケース 31 標点配置状況

4.2 中型振動台試験

4.2.1 計測器の設置

斜面模型内に設置したセンサーは、加速度計および変位計である。以下に各センサーの仕様と配置を示す。

(1)加速度計

用いた加速度計の仕様を表 4.2.1 に示し、加速度計の設置位置を図 4.2.1~図 4.2.3 に 示す。

メーカー	型式	定格容量	応答周波数範 囲 (23 度)	共振 周波数
共和	ASW-2A	$\pm 19.61 \mathrm{m/s^2}$	DC~60Hz	100Hz

表 4.2.1 加速度計の仕様

図 4.2.1 加速度計の配置 (CASE 27 および CASE 28) (模型土槽)

図 4.2.2 加速度計の配置 (CASE 29) (模型土槽)

計測室側

(2) 変位計

用いた変位計の仕様を表 4.2.2 に示し、変位計の設置位置を図 4.2.4 および図 4.2.5 に 示す。

メーカー	型式	定格出力	感度
東京測器	CDP-50	5mV/V	200×10 ⁻⁶ ひずみ/mm
東京測器	CDP-100	5mV/V	100×10 ⁻⁶ ひずみ/mm
東京測器	CDP-100M	5mV/V	100×10 ⁻⁶ ひずみ/mm
キーエンス	LK-G505	5mm/V	—

表 4.2.2 変位計の仕様

図 4.2.4 変位計の配置 (CASE 27 および CASE 28)

図 4.2.5 変位計の配置 (CASE 29)

(3) チャンネル表および較正係数表

CASE 27 および CASE 28 のチャンネル表と較正係数表を表 4.2.3 および表 4.2.4 に示す。 また、CASE 29 のチャンネル表と較正係数表を表 4.2.5 および表 4.2.6 に示す。

① CASE 27 および CASE 28

表 4.2.3 チャンネル表および較正係数表 (スイッチボックス C)

	Case27 JN	ES振動台実験	(40°段切り)大型振動台小型土槽 セン	型土槽 センサーチャンネル表(スイッチボックスC)					
CH	名称	種別	設置位置	シリアル番号	校正係数	単位	結線方法		
C01	C27 A01H	加速度計	表層 水平 模型天端から-125mm	6740025	1.6860	gal/μ	4ゲージ		
C02	C27 A01V	加速度計	表層 鉛直 模型天端から-125mm	1200016	1.7380	gal∕ µ	"		
C03	C27 A02H	加速度計	弱層 西 水平 模型天端から-125mm	9490010	1.7050	gal/ µ	11		
C04	C27 A02V	加速度計	弱層 西 鉛直 模型天端から-125mm	9490011	1.6920	gal/ U	"		
C05	C27 A03H	加速度計	弱層 東 水平 模型天端から-125mm	7800011	1 7790	gal/ //	"		
C06	C27 A03V	加速度計	弱層 東 鉛直 模型天端から-125mm	7800020	1 6450	gal/ //	"		
C07	C27 A04H	加速度計	岩盤層 水平 模型天端から-300mm	1200017	1 7050	gal/ //	"		
C08	C27 A05H	加速度計	表層 水平 模型天端から-300mm	7800015	1 7430	gal/ //	"		
C09	C27_A05V	加速度計	表層 鉛直 模型天端から-300mm	7800017	1 7010	gal/ //	"		
C10	C27 A06H	加速度計	弱層 西 水平 模型天端から-300mm	7800014	1 6890	gal/ //	"		
C11	C27_A06V	加速度計	<u>弱層</u> 西鉛直模型天端から-300mm	6740024	1.6790	gal/ //	"		
C12	C27 A07H	加速度計	<u>弱層</u> 車水平模型天端から-300mm	7800008	1.6470	gal/ //	"		
C13		加速度計	- <u>弱宿_朱小丁-快空八端から 000mm</u> 弱層 東 鉛直 横型天端から-300mm	7800004	1 7310	gal/μ σal/μ			
C14	C27 A07-2H	加速度計	<u>- 弱温_朱_如直_侯主八端から 500mm</u> 	7800004	1.6340	gal/μ			
C15	$C27_A07_211$	加速度計	<u>- 衣信_小十_快至八端から 400mm</u> 素届 鉛直 横刑王端から-450mm	6740014	1,0040	gal/μ	"		
C16	C27 A08H	加速度計	<u> 祝宿_知道_快生八端から 400mm</u> 弱届 西 水亚 横刑王端から-450mm	2710014	1.7760	gal/μ			
C17	C27 4081/	加速度計	<u>33月1日-小干-決主入端がら 450mm</u> 弱届 西 鉛直 横刑王端から-450mm	6740009	1.6820	gai/μ σal/μ	.,		
C18		加速度計	3011-11-11-11-11-11-11-11-11-11-11-11-11-	2710015	1.8/10	gai/μ σal/μ			
C10	C27 A001	加速度可	3311_木_小〒-法王入畑//・5 4300000	7800012	1 / 1 10	gai/μ αal/μ	.,		
019	C27_A03V	加速度計	- 羽眉_木_虹直_候生人端から 4300000	1270015	1.4110	gai/μ	"		
020	027_A10H	加速度計		1270010	1.7070	gai/μ	"		
021		加速度計	<u>- 羽眉_町直_侯空入端から-700mm</u> – 殿屋 北亚 増刑工だから-700mm	2710012	1.3000	gai/μ	"		
022	027_ATTH	加速度計	<u>右盛層_小平_候空大响から-700mm</u>	2/10013	1.7030	gai/μ	"		
023	027_A12H	加速度計	<u>右盛層_小平_候空大响から-700mm</u>	9490004	1.7020	gai/μ	"		
024	027_AI3H	加速度計	<u>右盛唐_小平_候空大响から-700mm</u>	1200003	1.7230	gai/μ	"		
025	027_D01	<u></u>			0.010	mm/μ	"		
020	027_D02	変位計		CDP50	0.005	mm/μ	"		
027	C27_D03	変位計 一変位計		CDP50	0.005	mm/μ	"		
028	027_D04	変位計 恋任計	衣厝_水平	CDP50	0.005	mm/μ	"		
029	027_D05	変位計 恋任計		CDP50	0.005	mm/μ	"		
030	C27_D06	変位計 恋任計			0.005	mm/μ	"		
031	<u>C27_D07</u>	変位計 恋任計		CDP100	0.010	mm/μ	"		
032	C27_D08	変位計 恋任計		CDP100	0.010	mm/μ	"		
<u>C33</u>	C27_D09	変位計		CDP100	0.010	mm/μ	"		
<u>C34</u>	C27_A14H	加速度計		9490016	1./310	gal/μ	"		
035	G27_A14V	加速度計		1370008	1.6930	gal/μ	"		
036	GZ7_AT4W	加速度計		1370009	1.6990	gal/μ	"		
037	CZ7_AI5H	加速度計	小型工槽_四上_水平	8110011	1.6720	gal/ μ	"		
038	BLANK	#미 `ㅋ ┍ㅗ ᆕㅣ	小刑上捕 포 니 씨국	6740000	1.6750				
039	027_A15V	加速度計		0/40022	1.0/50	gai∕μ	"		
040	027_A15W	加速度計		1370005	1.5050	gai∕μ	"		
041	027_A16H	加速度計		13/0011	1./480	gai∕μ	"		
042	027_A16V	加速度計		6740021	1.0080	gal/μ	"		
043	027_A16W	加迷度計		0/40023	1.7010	gai∕ µ	"		
044	<u>UZ/_AI/H</u>	加速度計	振動台ケーノル」用四」水平	9490007	1.7050	gal∕ µ	"		
045	<u>UZ/_AI/V</u>	加速度計	振動台ケーノル」用四」鉛直	9490012	1./110	gal/μ	"		
046	<u>C27_A1/W</u>	加速度計		9490008	1./020	gal/μ	"		
C4/	C2/_A18H	加速度計		9490006	1.6910	gal∕μ	"		
C48	C2/_A18V	加速度計		/510014	1./450	gal∕μ	"		
C49	C27_A18W	加速度計	振動台テーフル_北西_直交	9490013	1.7540	gal/μ	"		
C50	C27_A19H	加速度計	振動台テーフル 南東 水平	6510016	1.4330	gal/μ	"		
C51	C27_A19V	加速度計	<u>振動台テーフル 南東 鉛直</u>	6510002	1.6680	gal/μ	"		
C52	C27_A19W	加速度計		7800001	1.7490	gal/μ	"		
C53	C27_A20H	加速度計		1370002	1.6910	gal/μ	"		
C54	C27_A20V	加速度計	<u>振動台テーフル_北東_鉛直</u>	1370003	1.6410	gal/μ	"		
C55	C27 A20W	加速度計	振動台テーフル 北東 直交	1370004	1.7290	gal∕ µ	"		

	Case27 JNE	ES振動台実験(40°段	ぎ切り)大型振動台小型土槽 セン・	サーチャンネル	表(スイッチホッ	ックスD)	
CH	名称	種別	設置位置	シリアル番号	校正係数	単位	結線方法
D01	C27_Laser01	レーザー変位計	弱層_下_水平	-	5	mm/V	電圧測定
D02	C27_Laser02	レーザー変位計	弱層_上_水平	-	5	mm/V	"
D03	C27_Laser03	レーザー変位計	表層_水平	-	5	mm/V	"
D04	C27_Laser04	レーザー変位計	表層_鉛直	-	5	mm/V	"
D05	C27_Laser05	レーザー変位計	弱層_西_鉛直	-	5	mm/V	"
D06	C27 Laser06	レーザー変位計	弱層 東 鉛直	-	5	mm/V	"

表 4.2.4 チャンネル表および較正係数表 (スイッチボックス D)

CASE 29

表 4.2.5 チャンネル表および較正係数表 (スイッチボックス C)

	Case29 JI	NES振動台実験	(35°段切り)大型振動台小型土槽 セン	サーチャンネル	表(スイッチボッ?	ウスC)	
CH	名称	種別	設置位置	シリアル番号	校正係数	単位	結線方法
C01	C29 A01H	加速度計	表層 水平 模型天端から-150mm	6740025	1.6860	gal/μ	4ゲージ
C02	C29 A01V	加速度計	表層 鉛直 模型天端から-150mm	1200016	1.7380	gal/μ	"
C03	C29 A02H	加速度計	弱層 西 水平 模型天端から-150mm	9490010	1.7050	gal/μ	"
C04	C29 A02V	加速度計	弱層 西 鉛直 模型天端から-150mm	9490011	1.6920	gal/μ	"
C05	C29 A03H	加速度計	弱層 東 水平 模型天端から-150mm	7800011	1.7790	gal∕ µ	"
C06	C29 A03V	加速度計	弱層 東 鉛直 模型天端から-150mm	7800020	1.6450	gal/ II	"
C07	C29 A04H	加速度計	岩盤層 水平 模型天端から-136mm	1200017	1 7050	gal/ //	"
C08	C29 A05H	加速度計	表層 水平 模型天端から-300mm	7800015	1 7430	gal/ //	"
C09	C29 A05V	加速度計	表層 鉛直 模型天端から-300mm	7800017	1 7010	gal/ //	"
C10	C29 A06H	加速度計	弱層 西水平 模型天端から-300mm	7800014	1 6890	gal/ //	"
C11	C29 A06V	加速度計	弱眉 <u>-ロ_ホー (交里)へ端から 600mm</u> 弱層 西 鉛直 横型天端から-300mm	6740024	1.6790	gal/μ σal/μ	"
C12	C29 A07H	加速度計	弱層 東水平 模型天端から-300mm	7800008	1 6470	gal/ II	"
C13	C29 A07V	加速度計	弱眉 <u>東</u> ,水丁, <u>快速</u> , <u>小</u> , <u>5</u> 000mm 弱層 車 鉛直 樟型天端から-300mm	7800004	1 7310	gal/μ σal/μ	"
C14				7000004	1.7010	gui/ µ	
C15	BLANK						
C16		加速度計		2710014	1 7260	gal / 11	"
C17	C29_A081/	加速度計	<u> 弱宿_四_小十_侯全人端から 430mm</u> 弱届 西 鉛直 横刑王端から-450mm	6740009	1.6820	gal/μ	"
017	C29_A00V	加速度計	- 羽眉-四-5-4500000	0740009	1.0020	gal/μ	"
010		加速度計	<u> 羽眉,泉,小十,候空入端から430mm</u>	2/10013	1.0410	gal/μ	"
019	029_A09V	加速度計	<u>羽宿,果,500,候空入端から4300000</u> 	1070015	1.4110	gai/μ	"
020	029_ATUH	加速度計	<u>羽唐_小平_侯空大城から-000mm</u> 	1370015	1.7070	gal/μ	"
021	029_ATUV	加速度計	- 羽宿_町直_候堂入端から-000000	13/0010	1.3000	gai/μ	"
022	C29_ATTH	加速度計	<u> 石盛僧_小平_快空大师から-530mm</u>	2/10013	1.7050	gal/μ	"
623	CZ9_AIZH	加速度計		9490004	1.7020	gal/μ	"
C24	C29_A13H	加速度計	<u> </u>	1200003	1./230	gal∕ μ	"
C25	BLANK						
C26	BLANK						
C27	BLANK						
C28	BLANK	~ (노크)	+ B	00000		,	
C29	C29_D05	<u> 変位計</u>		CDP50	0.005	mm/ μ	"
C30	C29_D06	<u> </u>		CDP50	0.005	mm/ μ	"
C31	C29_D07	変位計		CDP100	0.010	mm/ μ	"
C32	C29_D08	変位計		CDP100	0.010	mm/ μ	"
C33	C29_D09	変位計		CDP100	0.010	mm/ μ	"
C34	C29_A14H	加速度計	<u>小型土槽_中央下_水平</u>	9490016	1.7310	gal∕ µ	"
C35	C29_A14V	加速度計	<u>小型土槽_中央下_鉛直</u>	1370008	1.6930	gal/μ	"
C36	C29_A14W	加速度計	小型土槽_中央下_直交	1370009	1.6990	gal∕ µ	"
C37	C29_A15H	加速度計		8110011	1.6720	gal/μ	"
C38	BLANK	1 ++					
C39	C29_A15V	加速度計		6740022	1.6750	gal/ μ	"
C40	C29_A15W	加速度計	小型土槽_西上_直交	1370005	1.5650	gal/ μ	"
C41	C29_A16H	加速度計	<u></u>	1370011	1.7480	gal/ μ	"
C42	C29_A16V	加速度計	小型土槽_東上_鉛直	6740021	1.6680	gal/μ	"
C43	C29_A16W	加速度計	小型土槽_東上_直交	6740023	1.7010	gal/ μ	"
C44	C29_A17H	加速度計	振動台テーブル_南西_水平	9490007	1.7050	gal∕ μ	"
C45	C29_A17V	加速度計	振動台テーブル_南西_鉛直	9490012	1.7110	gal/ μ	"
C46	C29_A17W	加速度計	振動台テーブル_南西_直交	9490008	1.7020	gal/ μ	"
C47	C29_A18H	加速度計	振動台テーブル_北西_水平	9490006	1.6910	gal/ μ	"
C48	C29_A18V	加速度計	振動台テーブル_北西_鉛直	7510014	1.7450	gal/ μ	"
C49	C29_A18W	加速度計	振動台テーブル_北西_直交	9490013	1.7540	gal/ μ	"
C50	C29_A19H	加速度計	振動台テーブル_南東_水平	6510016	1.4330	gal/ μ	"
C51	C29_A19V	加速度計	振動台テーブル_南東_鉛直	6510002	1.6680	gal/ μ	"
C52	C29_A19W	加速度計	振動台テーブル_南東_直交	7800001	1.7490	gal/ μ	"
C53	C29_A20H	加速度計	振動台テーブル_北東_水平	1370002	1.6910	gal/ μ	"
C54	C29_A20V	加速度計	振動台テーブル_北東_鉛直	1370003	1.6410	gal/ μ	"
C55	C29_A20W	加速度計	振動台テーブル_北東_直交	1370004	1.7290	gal/ μ	"

	Case29 JN	NES振動台実験(35°	段切り)大型振動台小型土槽 セ	ンサーチャンネル	レ表(スイッチボック	クスD)	
CH	名称	種別	設置位置	シリアル番号	校正係数	単位	結線方法
D01	C29_Laser01	レーザー変位計	弱層_下_水平	-	5	mm/V	電圧測定
D02	C29_Laser02	レーザー変位計	弱層_上_水平	-	5	mm/V	"
D03	C29_Laser03	レーザー変位計	表層_水平	-	5	mm/V	"
D04	C29_Laser04	レーザー変位計	表層_鉛直	-	5	mm/V	"
D05	C29_Laser05	レーザー変位計	弱層_西_鉛直	-	5	mm/V	"
D06	C29 Laser06	レーザー変位計	弱層 東 鉛直	-	5	mm/V	"

表 4.2.6 チャンネル表および較正係数表 (スイッチボックス D)

4.2.2 標点の設置

基盤層、弱層、表層の構築過程で、基盤層の標点はガラス面に設置し、弱層および表層 は模型斜面とガラス面に遊間を設けているため、標点はアクリルスペーサに設置した。な お、画像解析に使用する不動点は、ガラス面と変位計設置用不動梁に設置した。 標点ならびに不動点の配置を図 4.2.6 および図 4.2.7 に示す。

図 4.2.6 標点および不動点の設置位置(CASE 27 および CASE 28)

図 4.2.7 標点および不動点の設置位置 (CASE 29)

4.2.3 計測準備

加振実験に先立ち、計測機器の結線ならびに動作確認および振動台実験の撮影準備を行った。写真 4.2.1~写真 4.2.4 は、計測機器の結線および撮影準備の状況を示したものである。なお、加振実験前の計測機器の動作確認は、以下の内容で実施した。

① 加速度計:結線後のバランス確認

② 接触型変位計・レーザー変位計:10mmのアルミ板を用いた出力確認

写真 4.2.1 結線状況その1

写真 4.2.2 結線状況その2

写真 4.2.3 結線状況その3

写真 4.2.4 撮影準備状況

5. 強度確認試験

5.1 概要

強度確認試験は、斜面模型の安定性評価に用いる強度定数を評価することを目的とし実施した。強度試験実施項目は、表 5.1.1 に示すとおりである。

強度確認試験に使用した材料は、表 5.1.2に示すとおり、合計9種類とした。

众 0.1.1 JA/文中世的时代《天元》 关口 兑							
試験名	試験	数量 (本)	備考				
UC-1~24	一軸圧縮試験	24	詳細は表 5.1.3 参照				
TC-1~134	三軸圧縮試験	134	詳細は表 5.1.5 参照				
TT-1~6	引張試験	6	詳細は表 5.1.7 参照				
CYC-1~3	三軸圧縮繰返し試験	3	詳細は表 5.1.8 参照				

表 5.1.1 強度確認試験実施項目一覧

材料	配合比(重量比)	湿潤密度 $ ho_{ m t}$ (g/cm ³)
材料 A	硅砂 6 号(100):ベントナイトクニゲル-U(1):水(10)	1. 767
材料 B	硅砂 8 号(30):スチールグリッド(70):消石灰(1):水(2)	2.340
材料 D	硅砂 6 号(100):ベントナイトクニゲル-U(5):NPC(6):水(20)	1.90
配合⑪	硅砂 6 号(100):ベントナイトクニゲル-U(5):NPC(5):水(15)	1.65
配合12		
配合⑫	硅砂 6 号(100):ベントナイトクニゲル-U(5):NPC(6):水(20)	1.80
-1		
配合⑫	 陸砂 6 長 (100) ・ ベントナイト クー ゲルーU (5) ・ NDC (6) ・ 水 (20)	1 00
-2	准初の方(100): マンドアオドクニクル=0(5): NFC(0): 水(20)	1.90
配合⑧	硅砂 6 号(100):ベントナイトクニゲル-U(5):消石灰(60):水(20)	1.65
表層	磁砂鉄(100):ベントナイトクニゲル-U(10):NPC(3):水(15)	2.00

表 5.1.2 材料一覧

5.1.1 一軸圧縮試験

ー軸圧縮試験は、斜面供試体の強度確認を目的として、表 5.1.3 に示す内容で24 ケース 実施した。土試料は、斜面供試体より実験後にサンプリングした土試料と、室内作製試料 の2種類を用いた。サンプリングした土試料の供試体寸法は、直径 ϕ =50mm、高さh=100mm を基本としたが、供試体の成形が困難な場合には直径 ϕ =35mm、高さh=70mm とした。なお、 室内作製試料(材料 D)については、表 5.1.4 に示すとおり圧密履歴による強度の影響確 認と、含水比の相違による強度の確認を行った。

封除夕	斜面供試体	十十半儿	封約の毎回	試験数量			
武歌石	CASE	17] 177	記入イイワイ里方リ	(本)			
UC-1~3	CASE27	材料 A		3			
UC-4~6	CASE28	材料 B	サンプリング試料	3			
UC-7~8	CASE29	材料 A		3			
UC-10~15	CASE30	材料 D	サンプリング試料	6			
UC-16~20	CASE31	配合⑧	サンプリング試料	5			
UC-21~24	CASE30	材料 D	室内作製試料	4			

表 5.1.3 一軸圧縮試験一覧

表	5.1.4	室内作製試料	一軸圧縮試驗詳細
1	0.1.1	王 I I I 46世 V I	

試験名	材料	確認事項	養生方法	備考	
UC-21		圧密履歴	ビニール袋内で	養生後 400kPa で 1 時間程度圧密 0kPa 戻し、試験実施	
UC-22		の家響	至外碰俏養生3日间	圧密履歴なし	
			ビニール袋内で		
UC-23	191 197 D		今水比相違	室外湿潤養生7日間後	-
		の影響	気乾養生7日間		
UC-94	UC-24	の影音	ビニール袋内で		
00-24			室外湿潤養生14日間		

5.1.2 三軸圧縮試験

三軸圧縮試験は、斜面供試体の強度特性における拘束圧依存性を確認することを目的と して、表 5.1.5 に示す内容で 134 ケース実施した。土試料は、室内作製試料、模型構築時 に作製した試料、斜面供試体より実験後にサンプリングした試料の 3 種類を用いた。供試 体寸法は、直径 φ =50mm、高さ h=100mm とした。なお、試料の養生方法と試験方法詳細につ いては、表 5.1.6 に示すとおりである。

국산표수 성	斜面供試体	***	計断の毎回	養生日数	拘束圧	試験数量
武駛名	CASE	竹科	武科(7)種別	(日間)	(kPa)	(本)
TC-1~9		材料 A	5,10,20		5,10,20	9
TC-10~18		材料 B		3,7,14	5,10,20	9
TC-19~39		材料 B		3、7	5,10,20	21
TC-40~48	-	配合⑪	室内作製試料			9
TC-49~57		配合⑫		2 10 20	50 200 400	9
TC-58~66		配合12-1		3,10,20	50,200,400	9
TC-67~75		配合12-2				9
TC-76~90	CASE97	材料 B	模型構築試料	2,3,6,7,8	E 10 90	15
TC-91~95	CASE27	材料 A	(鉄道総研より支給)	2,6	5,10,20	5
TC-96~98	CASE28	材料 A	模型構築試料	13	5 10 20	3
TC-99~107	UASE20	材料 B	(鉄道総研より支給)	7,8,10	5,10,20	9
TC-108~110	CASE20	材料 B	模型構築試料	9	F 10 20	3
TC-111~113	UASE29	材料 A	(鉄道総研より支給)	9	5,10,20	3
$TC = 114^{2}195$		キキキドロ	齿刑 構筑計約	5 7 11 14	50,100,	10
10-114 125	CASE20	17] A-7 D	候生佛条武科	5,7,11,14	200、400	12
TC-126	CASESU	材料 D	サンプリング試料	33	50	1
TC-127~128		材料 D	室内作製試料	4	50	2
TC-129~131	CASE21	配合⑧	模型構築試料	10	50 200 400	3
TC-132~134	UASESI	表層	室内作製試料	9	50,200,400	3

表 5.1.5 三軸圧縮試験一覧

	斜面供試体		*1養生方法			*2	*3クリップ	
試験名	CASE	材科	湿潤・気乾	塩ビ	場所	ペデスタル	ゲージ	
TC-1~9		材料 A	河油	-	室内	田中	421	
TC-10~18		材料 B	碰消	-	室内	回止	んし	
TC-19~21			湿潤	-	室外		あり	
TC-22~24				-	室内		あり	
TC-25~27				0	室外			
TC-28~30		材料 B	左击	0	室外	可動		
TC-31~33	-		风中	-	室内		なし	
TC-34~36				-	室外			
TC-37~39				-	室内			
TC-40~48		配合⑪						
TC-49~57		配合12	湿潤	_	空中	田中	+ 1	
TC-58~66		配合12-1			主的	回足	7£ U	
TC-67~75		配合12-2						
TC-76~90	CASE97	材料 B	左山		安丛	可動	721	
TC-91~95	CASEZ (材料 A	风中	_	£2►	りIJ	1よし	
TC-96~98		材料A		0				
TC-99~104	CASE28	++* D	気中	-	室外	可動	なし	
TC-105~107		1/1 f** D		0				
TC-108~110	CACERO	材料 B	左山	\bigcirc	会及	可制	721	
TC-111~113	CASE29	材料 A	风中	0	£2►	りIJ	7£ U	
TC-114~125			湿潤	-	現場			
TC-126	CASE30	材料 D	_	-	-	可動	あり	
TC-127~128			湿潤	-	室外			
TC-129~131	CACEDI	配合⑧		-	現場	可利	+ 1A	
TC-132~134	UA2E31	表層	征润	-	室外	り則	めり	

表 5.1.6 養生方法と試験方法詳細一覧

*1養生方法について

湿潤…密閉した容器またはビニール袋内で、水分が蒸発しないように養生

気乾…気乾状態で養生

塩ビ…供試体寸法よりやや大きめの塩ビをかぶせて養生(塩ビ上端部はビニールで密閉)

室内…23℃程度の室内で養生 室外…外気温に近い室外で養生

現場…斜面供試体作製現場で養生

*2ペデスタルについて

固定…通常の三軸試験機の仕様

可動…残留強度を精度良く計測するために可動可能なペデスタルを使用

*3クリップゲージについて

設置することで水平ひずみの計測が可能だが、計測器自体にわずかなバネ力があるため、供試体の膨張を拘束する懸念がある。強度の低い材料A、Bでは、残留強度を精度良く計測するため、 取り外したケースあり。

5.1.3 引張試験

引張試験は、斜面供試体の引張強度特性の確認することを目的として、表 5.1.7 に示す 内容で 6 ケース実施した。土試料は、室内作製試料を用いた。引張試験の供試体形状は, 図 5.1.1 に示すとおり、石膏定着部を直径 60mm、引張り部となるくびれ部分を直径 50mm、 くびれ部の高さを 50mm とした。なお、くびれ部の局所ひずみを計測するために、画像解析 処理を行った。

				JI WELH NOT	28			
封殿友	斜面供試体	けれ 学れの毎回		養生日数	養生方法			試験数量
武歌石	CASE	1/1 1/1	記入中半のノイ里方り	(日間)	湿潤・気乾	塩ビ	場所	(本)
TT-1~3	CASE30	材料 D	室内作製試料	8,9,10	与赴	\bigcirc	安瓦	3
$TT-4^{\sim}6$	CASE31	配合⑧	室内作製試料	10,11,12	×1、早乙	U	王가	3

表 5.1.7 引張試験一覧

5.1.4 三軸圧縮繰返し試験

三軸圧縮繰返し試験は、斜面模型の動的変形特性を確認することを目的として、表 5.1.8 に示す内容で3ケース実施した。土試料は、模型構築時に作製した試料、室内作製試料の2 種類を用いた。

計略々	斜面供試体	十十半儿	おお おお の 毎 回		養生方法			試験数量
武歌石	CASE	1/1 1/1	記(作者の) 利里方()	(日間)	湿潤・気乾	塩ビ	場所	(本)
CYC-1	CASE30	材料 D	模型構築試料	10				1
CYC-2	CASE21	配合⑧	模型構築試料	18	気乾	\bigcirc	室外	1
CYC-3	CASEDI	表層	室内作製試料	9				1

表 5.1.8 三軸圧縮繰返し試験一覧

5.2 強度確認試験結果の整理

試験結果は、各試験について表 5.2.1 にまとめる項目について整理した。

試験名	整理項目
一軸圧縮試験	①軸差応力 - 軸ひずみ関係
	②粘着力 c の算定
三軸圧縮試験	①軸差応力 - 軸ひずみ関係
	②軸ひずみ‐水平ひずみ関係
	③軸ひずみ - 体積ひずみ関係
	④粘着力 c,内部摩擦角 φ の算定
	⑤養生日数と粘着力、内部摩擦角の関係
引張試験	①軸差応力 - 軸ひずみ関係
三軸圧縮繰り返し試験	①せん断剛性 - せん断ひずみ関係
	②減衰率 - せん断ひずみ関係
	②ポアソン比の算定
	③初期せん断剛性の算定

表 5.2.1 強度確認試験結果の整理項目

5.2.1 一軸圧縮試験

一軸圧縮試験結果は、表 5.2.2 および図 5.2.1~図 5.2.7 に示すとおりである。

試験名	一軸圧縮応力	平均一軸圧縮応力	粘着力	供試体成形時
	q _u (kPa)	ave_q _u (kPa)	c (= $q_u/2$) (kPa)	含水比(%)
UC-1	9.6			6.4
UC-2	9.8	10.1	5.1	7.6
UC-3	11.0			7.3
UC-4	11.3			1.9
UC-5	9.9	11.3	5.7	1.8
UC-6	12.8			1.8
UC-7	4.8			9.3
UC-8	5.9	5.7	2.9	8.7
UC-9	6.5			8.8
UC-10	421.1			
UC-11	451.9			13.0
UC-12	508.6	E27 6	960 0	
UC-13	579.0	557.0	200. 0	19 5
UC-14	601.4			12. 0
UC-15	663.5			14.0
UC-16	638.8			11.9
UC-17	461.1			11. 5
UC-18	348.0	387.0	193.5	10.8
UC-19	229.6			10. 8
UC-20	257.4			11.4
UC-21	224.4	-	-	15.9
UC-22	224.8	_	_	16.4
UC-23	472.8	-	-	1.9
UC-24	527.1	-	_	16.2

表 5.2.2 一軸圧縮試験結果一覧

図 5.2.3 一軸圧縮応力 - 軸ひずみ関係_UC-7~9

図 5.2.4 一軸圧縮応力 - 軸ひずみ関係_UC-10~15

図 5.2.6 一軸圧縮応力 - 軸ひずみ関係_UC-21~22

5.2.2 三軸圧縮試験

三軸圧縮試験結果は、表 5.2.3~表 5.2.12 および図 5.2.8~図 5.2.213 に示すとおり である。なお、表 5.2.12 および図 5.2.202~図 5.2.213 については、材料 A、B において 異なる材料の破壊ひずみからピーク時の強度定数(c_d、 φ_d)を算出した。

4=		羊牛	ちまけ	ピーク	破壊	残留	pe	eak	r	es	3464公
武	材	食生	拘束庄	強度	ひずみ	強度		Å	0	4	武駅仮
· 永 夕	料	日 剱	(kP_{2})	q_{max}	ξf	$q_{\rm res}$	$(l_{t}P_{c})$	φ_{d}	$(l_{r}P_{r})$	φ_{d}	
4		(1)	(KI d)	(kPa)	(%)	(kPa)	(Kra)	(deg.)	(Kra)	(deg.)	(/0)
TC-1			5	40.9	1.51	32.6					9.40
TC-2		3	10	61.3	1.26	45.6	4.4	42.5	4.4	36.4	9.40
TC-3			20	103.1	2.26	75.9					9.40
TC-4			5	38.2	1.78	30.0					9.40
TC-5	А	7	10	59.8	1.78	46.1	4.2	41.2	3.7	37.1	9.40
TC-6			20	97.9	2.03	75.9					9.40
TC-7			5	40.0	1.75	30.9					9.40
TC-8		14	10	63.8	1.75	47.5	5.2	41.0	4.3	36.3	9.40
TC-9			20	98.0	2.25	74.9					9.40
TC-10			5	25.0	14.90	25.0					1.80
TC-11		3	10	43.7	15.15	43.7	2.1	38.8	2.2	38.8	1.80
TC-12			20	75.8	14.90	75.6					1.80
TC-13			5	27.2	14.75	27.1					1.80
TC-14	В	7	10	42.0	15.00	42.0	3.2	36.5	3.1	36.5	1.80
TC-15			20	71.3	15.00	71.3					1.80
TC-16			5	28.8	1.51	27.5					1.80
TC-17		14	10	41.3	6.25	40.6	3.5	35.9	3.4	35.6	1.80
TC-18			20	71.0	12.00	69. 2					1.80
TC-19			5	34.4	0.82	22.3					1.52
TC-20		7	10	49.3	0.96	32.6	4.6	36.6	1.5	34.6	1.59
TC-21	P		20	78.2	1.11	59.8					1.56
TC-22	В		5	38.7	0.28	22.9					0.09
TC-23		3	10	52.4	0.42	29.5	7.5	32.4	3.1	29.1	0.08
TC-24			20	72.6	0.81	48.9					0.11

表 5.2.3 三軸圧縮試験結果一覧_材料A・材料B

4€	試 養生		均古口	ピーク	破壊	残留	ре	eak	r	es	⇒₽₩分泌
武 験 名	材 料	(日)	拘束圧 σ _r (kPa)	強度 q _{max} (kPa)	ひずみ ^{を f} (%)	強度 q _{res} (kPa)	c _d (kPa)	φ _d (deg.)	c _d (kPa)	φ _d (deg.)	武鞅後 含水比 (%)
TC-25			5	30.7	0.74	21.7					1.58
TC-26		3	10	45.1	1.19	34.5	4.6	34. 9	2.5	35.9	1.56
TC-27			20	70.9	6.07	64.8					1.66
TC-28			5	38.7	0.78	20.6					1.09
TC-29		3	10	54.5	0.77	35.1	5.6	37.6	2.5	35.1	1.05
TC-30			20	86.5	1.51	62.3					1.15
TC-31			5	48.1	0.47	24.2					0.13
TC-32	В	3	10	63.1	1.58	43.0	8.5	36.3	3.2	37.6	0.12
TC-33			20	93.7	1.09	73. 7					0.12
TC-34			5	48.5	0.32	20.9					0.11
TC-35		3	10	70.2	0.41	33.2	7.1	40.5	1.7	37.3	0.10
TC-36			20	106.4	0.63	67.6					0.12
TC-37			5	57.7	0.29	25.7					0.08
TC-38		3	10	77.2	0.46	39.0	10.0	38.7	2.9	37.3	0.08
TC-39			20	108.9	0.58	70.7					0.09

表 5.2.4 三軸圧縮試験結果一覧_材料 B

45		業开	均市口	ピーク	破壊	残留	p€	ak	r	es	⇒₩睑巛
武	材	食生	791米/工	強度	ひずみ	強度	_	,	_		武映仮
炭	料	口致	$\sigma_{\rm r}$	q_{max}	٤f	$q_{\rm res}$	c_d	φ_{d}	c_d	ϕ_{d}	古小比
名		(日)	(KPa)	(kPa)	(%)	(kPa)	(KPa)	(deg.)	(KPa)	(deg.)	(%)
TC-40			50	333.4	0.8	216.3					13.30
TC-41		3	200	606.5	3.8	548.5	61.9	30.5	23.9	32.9	13.30
TC-42			400	1051.0	14.6	1047.7					13.30
TC-43			50	400.6	0.8	235.1					13.30
TC-44	1	10	200	689.7	1.8	552.4	83.0	30.5	25.4	33.4	13.30
TC-45			400	1118.9	8.8	1085.0					13.30
TC-46			50	442.3	0.8	243.7					13.30
TC-47		20	200	673.7	10.8	660.9	89.7	30.3	40.5	32.7	13.30
TC-48			400	1142.7	6.3	1069.7					13.30
TC-49			50	349.6	1.0	214.8					17.90
TC-50		3	200	681.8	4.0	615.3	64.4	32.1	22.7	34.5	17.90
TC-51			400	1143.9	11.3	1132.4					17.90
TC-52			50	509.0	0.8	214.5					17.90
TC-53	12	10	200	818.3	2.7	659.2	117.9	30.2	36.9	32.3	17.90
TC-54			400	1217.4	5.2	1016.5					17.90
TC-55			50	540.6	0.8	259.4					17.90
TC-56		20	200	903.1	2.3	623.8	118.5	32.4	37.1	33.3	17.90
TC-57			400	1349.4	4.3	1110.6					17.90

表 5.2.5 三軸圧縮試験結果一覧_配合⑪、⑫

			均古	L°. h	破壞	矿网	pe	eak	r	es	試験
試	++	養生	拘束	ヒーク	ひず	戏笛					後
験	4A	日数)土	知度	み	加皮	c_d	ϕ d	c_{d}	ϕ d	含水
名	朴	(日)	$\sigma_{\rm r}$	(LD)	٤f	Q _{res}	(kPa)	(deg.)	(kPa)	(deg.)	比
			(kPa)	(kPa)	(%)	(kPa)					(%)
TC-58			50	345.2	1.5	223.5					17.90
TC-59		3	200	675.7	3.8	564.0	63.6	32.0	22.2	33. 9	17.90
TC-60			400	1134.2	8.7	1102.1					17.90
TC-61	(1)		50	415.7	1.0	222.3					17.90
TC-62	1	10	200	777.2	3.3	594.5	92.2	30.9	24.5	34.0	17.90
TC-63	-1		400	1158.3	9.2	1109.7					17.90
TC-64			50	475.8	1.0	240.6					17.90
TC-65		20	200	797.9	3.3	673.4	109.0	30.3	30.5	35.0	17.90
TC-66			400	1190.1	10.9	1181.9					17.90
TC-67			50	390.3	1.3	232.1					17.90
TC-68		3	200	686.7	3.8	624.0	68.8	32.7	32.4	33.3	17.90
TC-69			400	1205.3	7.2	1084.9					17.90
TC-70	(19)		50	480.1	1.3	222.6					17.90
TC-71		10	200	801.7	3.3	673.5	92.2	33.3	25.9	35.3	17.90
TC-72	_2		400	1327. 2	5.9	1182.3					17.90
TC-73			50	600.1	1.3	240.3					17.90
TC-74		20	200	926.2	2.3	726.4	114.4	34.9	25.3	37.0	17.90
TC-75			400	1523.8	5.7	1298.7					17.90

表 5.2.6 三軸圧縮試験結果一覧_配合⑫-1、⑫-2

4€		差开	均古厅	ピーク	破壊	残留	ре	eak	r	es	⇒≠睡谷公
武	材	食生	拘束圧	強度	ひずみ	強度		1		4	武厥仮
家	料	口致	$\sigma_{\rm r}$	q_{max}	٤f	$q_{\rm res}$	c_d	φ_{d}	C_d	φ_{d}	古小比
伯		(日)	(KPa)	(kPa)	(%)	(kPa)	(KPa)	(deg.)	(KPa)	(deg.)	(%)
TC-76			5	39.9	0.57	20.7					0.11
TC-77		2	10	59.3	0.54	37.4	5.1	39.9	2.3	34.1	0.11
TC-78			20	93.9	0.71	59.2					0.12
TC-79			5	41.1	0.45	20.4					0.11
TC-80		3	10	61.9	0.60	30.0	5.8	39.4	1.6	33.7	0.08
TC-81			20	94.2	0.78	57.1					0.07
TC-82			5	43.7	0.43	19.3					0.08
TC-83	В	6	10	69.3	0.53	34.1	6.1	40.7	1.3	35.0	0.09
TC-84			20	100.9	0.69	59.8					0.07
TC-85			5	43.9	0.38	22.4					0.09
TC-86		7	10	65.3	0.57	35.6	5.9	40.5	2.5	33.5	0.09
TC-87			20	99.8	0.70	59.1					0.09
TC-88			5	43.0	0.57	22.0					0.04
TC-89		8	10	64.7	0.59	35.4	6.2	39.8	2.7	32.7	0.07
TC-90			20	97.4	0.78	57.6					0.06
TC-91			5	68.2	0.90	22.5					3.65
TC-92		2	10	95.7	1.03	35.0	8.7	45.7	2.8	32.5	3.56
TC-93	А		20	144.0	1.07	56.9					3.53
TC-94		6	10	679.1	0.80	69.1	01 7	55.2	24.2	0.0	0.16
TC-95		0	20	772.4	0.79	68.1	91.1	00.2	J4. J	0.0	0.16

表 5.2.7 三軸圧縮試験結果一覧_CASE27 模型構築試料

4.5		姜开	均古口	ピーク	破壊	残留	pe	eak	r	es	封驗公
武 験 名	材料	(日)	σ _r (kPa)	強度 q _{max} (kPa)	ひずみ ^{を f} (%)	強度 q _{res} (kPa)	c _d (kPa)	φ _d (deg.)	c _d (kPa)	φ _d (deg.)	武鞅伎 含水比 (%)
TC-96			5	44.2	1.30	19.8					8.85
TC-97	А	13	10	66.7	1.51	33.5	4.0	44.7	0.3	38.5	8.51
TC-98			20	114.8	1.66	68.2					8.54
TC-99			5	44.9	0.36	20.1					0.07
TC-100		7	10	66.2	0.39	32.0	7.7	37.1	2.3	31.8	0.06
TC-101			20	91.1	0.61	53.5					0.07
TC-102			5	43.4	0.34	16.9					0.10
TC-103	В	8	10	59.5	0.51	29.7	7.4	36.1	1.4	32.2	0.10
TC-104			20	87.3	0.66	51.5					0.10
TC-105			5	34.2	0.84	21.1					1.77
TC-106		10	10	49.0	1.10	31.8	5.5	34.9	2.2	33.0	1.73
TC-107			20	74.4	1.44	56.3					1.68

表 5.2.8 三軸圧縮試験結果一覧_CASE28 模型構築試料

表 5.2.9 三軸圧縮試験結果一覧_CASE29 模型構築試料

45		羊牛	わまげ	ピーク	破壊	残留	ре	eak	r	es	34番条公(
験	材 料	養生 日数 (日)	彻	強度 q _{max}	ひずみ ε _f	強度 q _{res}	C _d	φ _d	C _d	φ _d	含水比
名		(日)	(kPa)	(kPa)	(%)	(kPa)	(kPa)	(deg.)	(kPa)	(deg.)	(%)
TC-108			5	32.9	1.12	20.5					1.27
TC-109	В	9	10	48.3	1.59	34.4	4.5	36.4	2.5	32.3	1.23
TC-110			20	76.6	1.96	54.8					1.21
TC-111			5	38.0	1.47	18.5					9.01
TC-112	А	9	10	61.3	1.78	32.9	2.5	45.0	1.8	33.0	9.15
TC-113			20	110.2	1.79	54.5					9.23

45		養生	養生	均古口	ピーク	破壞	残留	pe	eak	r	es	封驗公
験名	材料	(日)	σ _r (kPa)	強度 q _{max} (kPa)	ひずみ ^{٤ f} (%)	強度 q _{res} (kPa)	c _d (kPa)	φ _d (deg.)	c _d (kPa)	φ _d (deg.)	武鞅夜 含水比 (%)	
TC-114			50	456.8	1.24	220.6					16.56	
TC-115		5	100	602.8	1.55	284.9	94.1	32.9	27.3	30.8	15.93	
TC-116			200	817.4	2.71	524.0					16.93	
TC-117			50	538.5	1.06	192.7					15.44	
TC-118		7	200	843.1	2.56	132.5	222.2	9.8	79.6	1.4	15.81	
TC-119			400	471.0	0.38	197.4					16.00	
TC-120			50	527.2	0.55	154.1					16.18	
TC-121	D	11	200	849.9	2.64	183.4	119.7	30.9	0.0	29.2	15.87	
TC-122			400	1263.9	3.60	827.3					16.34	
TC-123			50	558.4	0.87	209.6					15.82	
TC-124		14	200	917.4	2.39	501.8	208.6	13.7	93.1	9.2	15.83	
TC-125			400	526.3	0.47	195.1					16.10	
TC-126		33	50	834.7	0.59	184.8	_	_	_	_	12.61	
TC-127		4	50	475.2	1.89	264.1	_	_	_	_	17.15	
TC-128		4	50	465.9	2.00	238.6	-	-	-	-	17.23	

表 5.2.10 三軸圧縮試験結果一覧

CASE30 模型構築試料・サンプリング試料・室内作製試料

表 5.2.11 三軸圧縮試験結果一覧_CASE31 模型構築試料・室内作製試料

44		姜开	均古口	ピーク	破壊	残留	pe	eak	r	es	封驗公
殿	材	食生日数	的水庄	強度	ひずみ	強度	0.1	ф.,	6.	ф.,	武厥恆
名	料	(日)	(kPa)	Q _{max}	ε _f	q _{res}	(kPa)	φ _d (deg.)	(kPa)	φ _d (deg.)	(%)
				(kPa)	(%)	(kPa)					
TC-129			50	357.6	4.06	289.9					10.53
TC-130	8	10	200	733.9	9.97	650.2	70.1	32.3	43.4	33.5	10.52
TC-131			400	1161.2	13.33	1150.7					10.60
TC-132	Ŧ		50	166.6	14.66	165.7					13.06
TC-133	衣屋	9	200	441.4	15.00	441.4	24.5	28.0	26.2	31.0	12.87
TC-134	眉		400	786.1	12.01	717.4					11.67

⇒上時人々	斜面供試体 試験名	++*	養生日数	使用した破壊ひずみの	р	eak	网亚口
武观石	CASE	171 17-17	(日)	試験名	c _d (kPa)	$\phi_{\rm d}({ m deg.})$	凶留方
				TC-85~87			
TC-4~6	-	А	7	(材料 B_σ7day)	3.2	39.2	6. 5. 202
				(CASE27 模型構築試料)			
TC-82~84			6	TC-4~6	2.7	41.9	6.5.203
TC-85~87	CASE27	В	7	(材料 A_σ7day)	3.3	41.3	6.5.204
TC-88~90			8	(室内作製試料)	2.4	41.6	6.5.205
				TC-99~101			
				(材料 B_σ7day)	0	44.2	6.5.206
				(CASE28 模型構築試料)			
				TC-102~104			
TC-96~98		А	13	(材料 B_σ8day)	0	45.1	6.5.207
	CACERO			(CASE28 模型構築試料)			
	CASE28			TC-105~107			
				(材料 B_σ10day)	3.5	45.0	6.5.208
				(CASE28 模型構築試料)			
TC-99~101			7	TC-96~98	1.6	41.6	6. 5. 209
TC-102~104		В	8	(材料 A_σ13day)	2.7	39.0	6. 5. 210
TC-105~107			10	(CASE28 模型構築試料)	5.3	35.0	6. 5. 211
				TC-111~113			
TC-108~110		В	9	(材料 A_σ9day)	4.4	36.4	6. 5. 212
	CASE20			(CASE29 模型構築試料)			
	UASE29			TC-108~110			
TC-111~113		А	9	(材料 B_σ9day)	2.5	45.1	6. 5. 213
				(CASE29 模型構築試料)			

表 5.2.12 材料 A、B において異なる材料の破壊ひずみから算出した強度定数一覧

図 5.2.9 水平ひずみ - 軸ひずみ関係_TC-1~3

図 5.2.10 体積ひずみ - 軸ひずみ関係_TC-1~3

図 5.2.14 水平ひずみ - 軸ひずみ関係_TC-4~6

図 5.2.15 体積ひずみ - 軸ひずみ関係_TC-4~6

図 5.2.19 水平ひずみ - 軸ひずみ関係_TC-7~9

図 5.2.20 体積ひずみ - 軸ひずみ関係_TC-7~9

図 5.2.23 主応力差 - 軸ひずみ関係_TC-10~12

図 5.2.24 水平ひずみ - 軸ひずみ関係_TC-10~12

図 5.2.25 体積ひずみ - 軸ひずみ関係_TC-10~12

図 5.2.29 水平ひずみ - 軸ひずみ関係_TC-13~15

図 5.2.32 モール・クーロンの応力円_res _TC-13~15

図 5.2.34 水平ひずみ - 軸ひずみ関係_TC-16~18

図 5.2.37 モール・クーロンの応力円_res _TC-16~18

図 5.2.38 主応力差 - 軸ひずみ関係_TC-19~21

図 5.2.39 水平ひずみ - 軸ひずみ関係_TC-19~21

図 5.2.42 モール・クーロンの応力円_res_TC-19[~]21

図 5.2.44 水平ひずみ - 軸ひずみ関係_TC-22~24

図 5.2.47 モール・クーロンの応力円_res_TC-22[~]24

図 5.2.50 モール・クーロンの応力円_res_TC-25~27

図 5.2.51 主応力差 - 軸ひずみ関係_TC-28~30

図 5.2.53 モール・クーロンの応力円_res_TC-28~30

図 5.2.56 モール・クーロンの応力円_res_TC-31~33

図 5.2.59 モール・クーロンの応力円_res_TC-34~36

図 5.2.62 モール・クーロンの応力円_res_TC-37~39

図 5.2.64 水平ひずみ - 軸ひずみ関係_TC-40~42

図 5.2.69 水平ひずみ - 軸ひずみ関係_TC-43~45

図 5.2.71 モール・クーロンの応力円_peak_TC-43~45

図 5.2.74 水平ひずみ - 軸ひずみ関係_TC-46~48

図 5.2.79 水平ひずみ - 軸ひずみ関係_TC-49~51

図 5.2.84 水平ひずみ - 軸ひずみ関係_TC-52~54

図 5.2.89 水平ひずみ - 軸ひずみ関係_TC-55~57

図 5.2.94 水平ひずみ - 軸ひずみ関係_TC-58~60

図 5.2.99 水平ひずみ - 軸ひずみ関係_TC-61~63

図 5.2.104 水平ひずみ - 軸ひずみ関係_TC-64~66

図 5.2.106 モール・クーロンの応力円_peak_TC-64~66

図 5.2.109 水平ひずみ - 軸ひずみ関係_TC-67~69

図 5.2.113 主応力差 - 軸ひずみ関係_TC-70~72

図 5.2.114 水平ひずみ - 軸ひずみ関係_TC-70~72

図 5.2.119 水平ひずみ - 軸ひずみ関係_TC-73~75

図 5.2.125 モール・クーロンの応力円_res_TC-76~78

図 5.2.131 モール・クーロンの応力円_res_TC-82~84

図 5.2.134 モール・クーロンの応力円_res_TC-85~87

図 5.2.137 モール・クーロンの応力円_res_TC-88~90

図 5.2.140 モール・クーロンの応力円_res_TC-91~93

図 5.2.141 主応力差 - 軸ひずみ関係_TC-94~95

図 5.2.146 モール・クーロンの応力円_res_TC-96~98

図 5.2.149 モール・クーロンの応力円_res_TC-99~101

図 5.2.152 モール・クーロンの応力円_res_TC-102~104

図 5.2.155 モール・クーロンの応力円_res_TC-105~107

図 5.2.157 モール・クーロンの応力円_peak_TC-108~110

図 5.2.158 モール・クーロンの応力円_res_TC-108~110

図 5.2.162 主応力差 - 軸ひずみ関係_TC-114~116

図 5.2.163 水平ひずみ - 軸ひずみ関係_TC-114~116

図 5.2.164 体積ひずみ - 軸ひずみ関係_TC-114~116

図 5.2.165 モール・クーロンの応力円_peak_TC-114~116

図 5.2.168 水平ひずみ - 軸ひずみ関係_TC-117~119

図 5.2.169 体積ひずみ - 軸ひずみ関係_TC-117~119

図 5.2.170 モール・クーロンの応力円_peak_TC-117~119

図 5.2.173 水平ひずみ - 軸ひずみ関係_TC-120~122

図 5.2.177 主応力差 - 軸ひずみ関係_TC-123~125

図 5.2.178 水平ひずみ - 軸ひずみ関係_TC-123~125

図 5.2.179 体積ひずみ - 軸ひずみ関係_TC-123~125

図 5.2.180 モール・クーロンの応力円_peak_TC-123~125

図 5.2.183 水平ひずみ - 軸ひずみ関係_TC-126

図 5.2.187 主応力差 - 軸ひずみ関係_TC-127~128

図 5.2.188 水平ひずみ - 軸ひずみ関係_TC-127~128

図 5.2.190 モール・クーロンの応力円_peak_TC-127~128

図 5.2.193 水平ひずみ - 軸ひずみ関係_TC-129~131

図 5.2.197 主応力差 - 軸ひずみ関係_TC-132~134

図 5.2.198 水平ひずみ - 軸ひずみ関係_TC-132~134

図 5.2.199 体積ひずみ - 軸ひずみ関係_TC-132~134

図 5.2.202 モール・クーロンの応力円_TC-4[~]6 (破壊ひずみ TC-85[~]87)

図 5.2.203 モール・クーロンの応力円_TC-82⁸⁴(破壊ひずみ TC-4⁶)

図 5.2.204 モール・クーロンの応力円_TC-85[~]87 (破壊ひずみ TC-4[~]6)

図 5.2.205 モール・クーロンの応力円_TC-88~90 (破壊ひずみ TC-4~6)

図 5.2.206 モール・クーロンの応力円_TC-96~98 (破壊ひずみ TC-99~101)

図 5.2.207 モール・クーロンの応力円_TC-96[~]98 (破壊ひずみ TC-102[~]104)

図 5.2.208 モール・クーロンの応力円_TC-96⁹⁸(破壊ひずみ TC-105¹⁰⁷)

図 5.2.209 モール・クーロンの応力円_TC-99~101 (破壊ひずみ TC-96~98)

図 5.2.210 モール・クーロンの応力円_TC-102~104 (破壊ひずみ TC-96~98)

図 5.2.211 モール・クーロンの応力円_TC-105~107(破壊ひずみ TC-96~98)

図 5.2.212 モール・クーロンの応力円_TC-108~110 (破壊ひずみ TC-111~113)

図 5.2.213 モール・クーロンの応力円_TC-111~113 (破壊ひずみ TC-108~110)

5.2.3 引張試験

引張試験結果は、表 5.2.13 および図 5.2.214~図 5.2.231 に示すとおりである。また、 写真 5.2.1~写真 5.2.6 は、画像解析処理による載荷前と載荷中(載荷開始からおよそ 2000 秒)の処理画面である。

試験結果に示した引張応力は、ロードセルの出力値を断面積で除した「引張応力」と、「引 張応力」から試験後の試料自重分を差し引いて補正した「自重分補正後の引張応力」の2 種類とした。

なお、画像解析から求めた変位量計測データは、電子データに収録した。

試験名	材料	養生日数	引張応力	破壊ひずみ	自重分補正後の	試験後含水比
		(日)	(kPa)	ε _f (%)	引張応力(kPa)	(%)
TT-1	D	8	-11.95	-0.007	-9.52	16.01
TT-2		9	-7.27	-0.005	-4.83	15.62
TT-3		10	-6.07	-0.075	-3.64	16.07
TT-4	8	10	-9.70	-0.016	-7.18	10.95
TT-5		11	-10.02	-0. 020	-8.59	10.83
TT-6		12	-11.34	-0. 019	-9.12	10.89

表 5.2.13 引張試験結果一覧

図 5.2.215 引張応力 - 軸ひずみ関係②_TT-1

図 5.2.216 自重分補正後の引張応力 - 軸ひずみ関係_TT-1

写真 5.2.1 画像解析処理画面_TT-1 (左:載荷前、右:載荷中)

図 5.2.217 引張応力 - 軸ひずみ関係①_TT-2

図 5.2.218 引張応力 - 軸ひずみ関係②_TT-2

図 5.2.219 自重分補正後の引張応力 - 軸ひずみ関係_TT-2

写真 5.2.2 画像解析処理画面_TT-2 (左:載荷前、右:載荷中)

図 5.2.220 引張応力 - 軸ひずみ関係①_TT-3

図 5.2.221 引張応力 - 軸ひずみ関係②_TT-3

図 5.2.222 自重分補正後の引張応力 - 軸ひずみ関係_TT-3

写真 5.2.3 画像解析処理画面_TT-3 (左:載荷前、右:載荷中)

図 5.2.223 引張応力 - 軸ひずみ関係①_TT-4

図 5.2.224 引張応力 - 軸ひずみ関係②_TT-4

図 5.2.225 自重分補正後の引張応力 - 軸ひずみ関係_TT-4

写真 5.2.4 画像解析処理画面_TT-4 (左:載荷前、右:載荷中)

図 5.2.227 引張応力 - 軸ひずみ関係②_TT-5

図 5.2.228 自重分補正後の引張応力 - 軸ひずみ関係_TT-5

写真 5.2.5 画像解析処理画面_TT-5 (左:載荷前、右:載荷中)

図 5.2.230 引張応力 - 軸ひずみ関係②_TT-6

図 5.2.231 自重分補正後の引張応力 - 軸ひずみ関係_TT-6

写真 5.2.6 画像解析処理画面_TT-6 (左:載荷前、右:載荷中)

5.2.4 三軸圧縮繰返し試験

三軸圧縮繰返し試験結果は、表 5.2.14 および図 5.2.232~図 5.2.237 に示すとおりである。

⇒→較々	++*	養生日数	初期せん断剛性	初期せん断ひずみ片振幅	試験後含水比
武驶名 材料		(日)	(MPa)	$\gamma_{\rm SA}$ (%)	(%)
CYC-1	D	10	617.9	0.00071	15.78
CYC-2	8	18	452.2	0.00059	10.97
CYC-3	表層	9	130.2	0.00125	12.51

表 5.2.14 三軸圧縮繰返し試験結果一覧

図 5.2.232 せん断剛性比 - 減衰率 - せん断ひずみ片振幅関係_CYC-1

図 5.2.233 せん断剛性比 - ポアソン比 - せん断ひずみ片振幅関係_CYC-1

図 5.2.234 せん断剛性比 - 減衰率 - せん断ひずみ片振幅関係_CYC-2

図 5.2.235 せん断剛性比 - ポアソン比 - せん断ひずみ片振幅関係_CYC-2

図 5.2.236 せん断剛性比 - 減衰率 - せん断ひずみ片振幅関係_CYC-3

図 5.2.237 せん断剛性比 - ポアソン比 - せん断ひずみ片振幅関係_CYC-3

6. 遠心力載荷試験と振動台試験及びデータ取得

6.1 遠心力載荷試験

6.1.1 遠心力載荷試験における加振条件

遠心力載荷試験は、Case30 と Case31 の 2 ケースについて実施した。以下に、各ケースの 試験データー覧と試験データ整理一覧、時刻歴データー覧を示す。

時間		加振冬姓	サンプリング	ファイルタ	備老	NR2	NR3	NR4	NRサンプリング
14:04	ランダム・スイープ・	加派不日	1sec	131126s01	設定chと名称に誤りあり	-	-	-	
	ランダム・スイープ・ サイン・地震波				↓修正				
11/27	ランダム・スイープ・ サイン・地震波								
13:47	ランダム・スイープ・ サイン・地震波		1sec	131127up1		-	-	-	
15:07	ランダム・スイープ・ サイン・地震波	50Hz 100gal	500µsec/40秒	131127d1	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s1	加振後データ確認用	-	-	-	
15:17	ランダム・スイープ・ サイン・地震波	50Hz 200gal	500µsec/40秒	131127d2	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s2	加振後データ確認用	-	-	-	
15:28	ランダム・スイープ・ サイン・地震波	50Hz 300gal	500µsec/40秒	131127d3	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s3	加振後データ確認用	-	-	-	
15:47	ランダム・スイープ・ サイン・地震波	50Hz 400gal	500µsec/40秒	131127d4	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s4	加振後データ確認用	-	-	-	
16:01	ランダム・スイープ・ サイン・地震波	50Hz 限界加振	500µsec/40秒	131127d5	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s5	加振後データ確認用	-	-	-	
16:25	ランダム・スイープ・ サイン・地震波	125Hz 300gal	500µsec/40秒	131127d6	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	131127s6	加振後データ確認用	-	-	-	
16:40	ランダム・スイープ・ サイン・地震波	30Hz	500µsec/40秒	131127d7	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイーブ・ サイン・地震波		1sec	131127s7	加振後データ確認用	-	-	-	
16:48	ランダム・スイープ・ サイン・地震波	30Hz	500 <i>µ</i> sec/40秒	131127d8	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイーブ・ サイン・地震波		1sec	131127s8	加振後データ確認用	-	-	-	
16:53	ランダム・スイーブ・ サイン・地震波		1sec	131127dow	収録ミスで途中で停止	-	-	-	
16:54	ランダム・スイーブ・ サイン・地震波		1sec	131127dow1	dowから継続して計測	-	-	-	

表 6.1.1 ケース 30 試験データー覧

名称	遠心G	加振条件	サンプリング	ファイル名	NR2	NR3	NR4	NRサンプリング
CASE30_d1	50	50Hz 100gal	500 <i>µ</i> sec/40秒	131127d1	0	0	0	$500\mu{ m sec}/80000$
CASE30_d2	50	50Hz 200gal	500 <i>µ</i> sec/40秒	131127d2	0	0	0	$500\mu{ m sec}/80000$
CASE30_d3	50	50Hz 300gal	500 <i>µ</i> sec/40秒	131127d3	0	0	0	$500\mu{ m sec}/80000$
CASE30_d4	50	50Hz 400gal	500 <i>µ</i> sec/40秒	131127d4	0	0	0	$500\mu{ m sec}/80000$
CASE30_d5	50	50Hz 限界加振	500 <i>µ</i> sec/40秒	131127d5	0	0	0	$500\mu{ m sec}/80000$
CASE30_d6	50	125Hz 300gal	500 <i>µ</i> sec/40秒	131127d6	0	0	0	$500\mu{ m sec}/80000$
CASE30_d7	50	30Hz 400gal	500 <i>µ</i> sec/40秒	131127d7	0	0	0	$500\mu{ m sec}/80000$
CASE30_d8	50	30Hz200gal	500µsec/40秒	131127d8	0	0	0	$500\mu{ m sec}/80000$
					_			

表 6.1.2 ケース 30 試験データ整理一覧

データ整理メモ

・サブシステム(NR)は、メインシステムとの完全同期がとれていないため、データの 頭合わせを実施した。

名称	加振データ	加振波	加速度	変位	土圧
CASE30_d1	131127d1	Sin50Hz_100Gal	0	\bigcirc	0
CASE30_d2	131127d2	Sin50Hz_200Gal	0	\bigcirc	0
CASE30_d3	121127d3	Sin50Hz_300Gal	0	\bigcirc	0
CASE30_d4	121127d4	Sin50Hz_400Gal	\bigcirc	\bigcirc	\bigcirc
CASE30_d5	131127d5	Sin50Hz_限界加振	0	\bigcirc	0
CASE30_d6	131127d6	Sin125Hz_300Gal	0	\bigcirc	0
CASE30_d7	131127d7	Sin30Hz_400Gal	0	\bigcirc	0
CASE30_d8	131127d8	Sin30Hz_200Gal	0	0	0

表 6.1.3 ケース 30 時刻歴データー覧

時刻歴データメモ

・ケース 30 の加振試験は、全て遠心重力 50G で実施した。

・各計測値は、試験開始時(遠心載荷前0G時点)を初期値(ゼロバランス)とした。 したがって、特にひずみ型加速度計の計測値は遠心載荷の影響を受けている場合がある。

時間		加振条件	サンプリング	ファイル名	備考	NR2	NR3	NR4	NRサンプリング
13:39	ランダム・スイーブ・ サイン・地震波		1sec	140124up01					
15:14	ランダム・スイープ・ サイン・地震波	50Hz 100gal	500 <i>µ</i> sec/40秒	140124d01	モード2	0	0	0	$500\mu\mathrm{sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s01	加振後のデータ確認用				
15:21	ランダム・スイープ・ サイン・地震波	50Hz 200gal	500µsec/40秒	140124d02	モード2	0	0	0	$500\mu ext{sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s02	加振後のデータ確認用				
15:28	ランダム・スイープ・ サイン・地震波	50Hz 300gal	500µsec/40秒	140124d03	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s03	加振後のデータ確認用				
15:38	ランダム・スイープ・ サイン・地震波	50Hz 400gal	500 <i>µ</i> sec/40秒	140124d04	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s04	加振後のデータ確認用				
15:54	ランダム・スイープ・ サイン・地震波	50Hz 限界加振	500 <i>µ</i> sec/40秒	140124d05	モード2	0	0	0	$500\mu\mathrm{sec}/80000$
	ランダム・スイ <i>ー</i> プ・ サイン・地震波		1sec	140124s05	加振後のデータ確認用				
16:04	ランダム・スイープ・ サイン・地震波		1sec	140124dow					
	ランダム・スイ <i>ー</i> プ・ サイン・地震波								
17:14	ランダム・スイープ・ サイン・地震波		1sec	140124up02					
18:09	ランダム・スイーブ・ サイン・地震波	50Hz 100gal	500 µ sec/40秒	140124d06	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s06	加振後のデータ確認用				
18:13	ランダム・スイープ・ サイン・地震波	50Hz 300gal	500 µ sec/40秒	140124d07	モード2	0	0	0	$500\mu{ m sec}/80000$
	ランダム・スイープ・ サイン・地震波		1sec	140124s07	加振後のデータ確認用				
18:19	ランダム・スイーブ・ サイン・地震波	50Hz 限界加振	500 <i>µ</i> sec/40秒	140124d08	モード2	0	0	0	500 μ sec/80000
	ランダム・スイープ・ サイン・地震波		1sec	140124s08	加振後のデータ確認用				
18:23	ランダム・スイープ・ サイン・地震波		1sec	140124dow					

表 6.1.4 ケース 31 試験データー覧

表 6.1.5 ケース 31 試験データ整理一覧

名称	遠心G	加振条件	サンプリング	ファイル名	NR2	NR3	NR4	NRサンプリング
CASE31_d1	50	50Hz 100gal	500	140124d01	0	0	0	$500\mu{ m sec}/80000$
CASE31_d2	50	50Hz 200gal	500 µ sec/40秒	140124d02	0	0	0	$500\mu{ m sec}/80000$
CASE31_d3	50	50Hz 300gal	500	140124d03	0	0	0	$500\mu{ m sec}/80000$
CASE31_d4	50	50Hz 400gal	500 µ sec/40秒	140124d04	0	0	0	$500\mu{ m sec}/80000$
CASE31_d5	50	50Hz 限界加振	500	140124d05	0	0	0	$500\mu{ m sec}/80000$
CASE31_d6	50	50Hz 100gal	500	140124d06	0	0	0	$500\mu{ m sec}/80000$
CASE31_d7	50	50Hz 300gal	500µsec/40秒	140124d07	0	0	0	$500\mu{ m sec}/80000$
CASE31_d8	50	50Hz 限界加振	500 µ sec/40秒	140124d08	0	0	0	$500\mu{ m sec}/80000$

データ整理メモ

・サブシステム(NR)は、メインシステムとの完全同期がとれていないため、データの 頭合わせを実施した。

名称	加振データ	加振波	加速度	変位	土圧
CASE31_d1	140124d01	Sin50Hz_100Gal	0	0	0
CASE31_d2	140124d02	Sin50Hz_200Gal	0	0	0
CASE31_d3	140124d03	Sin50Hz_300Gal	0	0	0
CASE31_d4	140124d04	Sin50Hz_400Gal	0	0	0
CASE31_d5	140124d05	Sin50Hz_限界加振	0	0	0
CASE31_d6	140124d06	Sin50Hz_100Gal	0	0	0
CASE31_d7	140124d07	Sin50Hz_300Gal	0	0	0
CASE31_d8	140124d08	Sin50Hz_限界加振	0	0	0

表 6.1.6 ケース 31 時刻歴データー覧

時刻歴データメモ

・ケース 31 の加振試験は、全て遠心重力 50G で実施した。

・各計測値は、試験開始時(遠心載荷前0G時点)を初期値(ゼロバランス)とした。

したがって、特にひずみ型加速度計の計測値は遠心載荷の影響を受けている場合がある。

6.1.2 Case30

(1) 事前解析の結果

本年度の試験では、50Gの遠心力場において安定を満足し、試験装置の加振容量内(5Hz10 波加振の場合には、概ね30G)で斜面模型が崩壊に至るような模型を製作する必要があった。 このため、事前の配合検討、事前解析を実施した。

表 6.1.7に事前の配合検討で候補とした弱層材料の配合を、図 6.1.1に各配合における 粘着力と養生日数の関係を、図 6.1.2 に安定解析結果と配合の選定結果を示す。なお、安 定解析については、過去の遠心載荷試験において岩盤層内に埋め込んだ圧力計により計測 した水平方向の拘束圧が殆ど増加していないことから、拘束圧依存による強度増加は考慮 しなかった。安定解析の結果を①50Gの遠心加速度における自重崩壊の可能性と、②降伏震 度から評価した加振容量内での地震時崩壊の可能性より判断し、配合⑫を使用することと した。なお、配合⑫と配合⑫-1 は同一の条件であり、再現性確認のために配合試験を二回 実施した。事前の安定解析の結果、斜面の降伏震度はkh=0.195 であり、加振容量内で崩壊 させることが可能な値であった。図 6.1.3 に 50G の遠心載荷を行った際ののり肩沈下量と 遠心加速度の関係を、図 6.1.4 に昨年の実施した Case24、Case25 におけるのり肩沈下量と のり尻水平変位の関係を示す。50G まで載荷した時点におけるのり尻の沈下量は、約1.2 mm 程度であり、Case25 とほぼ同等であった。

		配合(重量比)							
配合No.		東北硅砂 6号	ベントナイ ト クニゲルu	消石灰	普通ポルト ランドセメ ント	水			
$\overline{\mathcal{O}}$	材料D	100	5	60	-	30			
9	材料E	100	5	-	6	15			
1	新規検討	100	5	-	5	15			
*1(12)	新規検討	100	5	-	6	20			
*112-1	新規検討	100	5	-	6	20			
*2①-2	新規検討	100	5	-	6	20			

表 6.1.7 事前検討における弱層材料の配合

※1 密度が 15.7kN/m3、※2 密度が 16.5kN/m3、⑫と⑫-1 は同一条件

図 6.1.1 各配合における養生日数と粘着力の関係

使用 利料	表層単位 体積重量 (kN/m3)	粘着力c(kPa)	常時 安全率(50G)	降伏震度	総合評価
材料D	30	72.1 kPa	0.802	0	×
材料E	30	191 kPa	2.123	0.77	×
配合创-1	30	102 kPa	1.133	0.092	Δ
配合00-2	25	102kPa	1.284	0.195	0
配合(1)-3	20	102kPa	1.479	0.327	Δ

※材料D:昨年度自重崩壊、材料E:昨年度崩壊せず、配合10:新規作成材料

図 6.1.2 各配合における安定解析結果

図 6.1.3 遠心加速度とのり肩沈下量の関係 (Case30)

図 6.1.4 遠心加速度のり肩沈下量、のり尻水平変位の関係(昨年度実施)

(2) 加振実験の結果

加振実験においては、写真 6.1.1~写真 6.1.3に示すように 20G 加振において表層の破壊が発生した。その後の加振レベルにおいては、表層の破壊が進行する結果となり、図 6.1.5 に 20G 加振中の時刻歴を示すように、弱層には有意な変形が確認されなかった。図 6.1.6 は弱層上部、中部、下部における応答加速度の時刻歴である。拡大した結果、応答加速度に対して若干の増幅、位相ずれが生じている。こうした挙動は弱層材料内にてひずみレベルが増大した結果、斜面の全体的な固有振動数が入力振動数(50Hz)に近づいた結果として解釈できる。一方で、計算上の降伏震度が 0.2 程度であるにも関わらず、30G (kh=0.6 相当)まで加振しても斜面が崩壊に至らなかった理由について分析するためにサンプリングした地盤試料を用いた一軸圧縮試験、三軸圧縮試験を実施した。

写真 6.1.1 斜面模型の状況【Case30 加振前】

写真 6.1.2 斜面模型の状況【Case30加振後】

写真 6.1.3 加振終了後の斜面模型

図 6.1.6 加振中の時刻歴

加振後の斜面模型について、弱層材料をサンプリングして実施した一軸圧縮試験結果を 図 6.1.7 に、図 6.1.8 に模型構築時に採取した試料について養生日数を変化させて実施し た三軸圧縮試験結果を示す。一軸圧縮試験結果によると、一軸圧縮強さ qu を用いて c=qu/2 として評価した場合、設計値 200kPa に対して、2 倍から 3 倍程度の強度が発現していた。

これに対して、三軸圧縮試験の場合には、試験結果より求めた強度定数 c、 φ は設計値と 概ね一致していた。

サンプリングした一軸圧縮試験に強度が設計値に対して過大になった理由として、土試 料が 50G まで遠心載荷されたことによる過圧密の影響や、含水量の変化などが考えられる。 そこで、三軸圧縮試験にて所定の拘束圧まで圧密した後に、等方除荷を行い、圧縮せん断 を行った場合と、養生中に含水量を変化させて実施した一軸圧縮試験結果を図 6.1.9 に示 す。同図に示すように、過圧密、含水比の変化により若干の強度変化は起こるものの、強 度変化の量としては、図 6.1.7 に示した一軸圧縮試験における設計値と試験結果ほどでは 無かった。

設計上の強度定数による斜面の降伏震度が 0.195 程度であったにもかかわらず、斜面が 崩壊に至らなかった理由として、強度定数が想定よりも大きかったことのほか、遠心場に おける斜面応答の複雑性により、弱層にせん断力が発生しなかった事が考えられる。詳細 については、6.1.4にて考察する。一方で、Case31の試験条件の設定に当たっては、斜面 安定検討WGにて、弱層材料にて想定以上の強度が発現していたと想定して実験を行うこと とした。

図 6.1.7 サンプリング試料の一軸圧縮試験結果

図 6.1.8 模型構築時採取試料における三軸圧縮試験結果

図 6.1.9 過圧密の影響と水分低下の影響を検討するために実施した一軸圧縮試験結果

また、Case30 における最終加振時の代表的な時刻歴図を図 6.1.10~図 6.1.30 に示す。 なお、時刻歴図中の計測値は、実物大換算した値である。

図 6.1.11 加速度計水平方向 (天端から-155mm)

図 6.1.12 加速度計水平方向(天端から-245mm)

図 6.1.13 加速度計水平方向(天端から-335mm)

図 6.1.15 加速度計水平方向 (天端から-745mm)

図 6.1.16 加速度計水平方向(土槽)

図 6.1.18 加速度計水平・鉛直・直交方向(テーブル東側カメラ下)

図 6.1.19 加速度計鉛直方向 (天端から-65mm)

図 6.1.20 加速度計鉛直方向 (天端から-155mm)

図 6.1.22 加速度計鉛直方向 (天端から-335mm)

図 6.1.24 加速度計鉛直方向 (天端から-745mm)

図 6.1.25 加速度計鉛直方向(土槽)

図 6.1.27 加速度計水平・鉛直・直交方向(カメラ脇治具)

図 6.1.30 レーザー変位計鉛直方向(天端)

6.1.3 Case31

(1) 事前解析の結果

前述したとおり、Case30 では加振中に表層の崩壊が弱層の変形に先立ち発生してしまったため、斜面の崩壊挙動を観察することができなかった。このため、試験条件について再検討を行った。斜面安定検討WG では以下の方針でCase31 を実施することとした。

【方針1】

- ・斜面勾配を 30 度→35 度とする
- ・表層にセメントを添加し、表層崩壊を防止

一方で、その後の地盤試料の強度試験の結果より、原因が特定には至っていないものの、 設計値よりも高い強度が実際には発現した可能性があることが示唆された。このため、【方 針1】を採用した場合、強度定数が想定よりも高く発現され、斜面が崩壊に至らない可能性 が懸念された。そこで、【方針②】を含めた二案について斜面安定検討 WG にて議論した結 果、地盤試料の強度について Case24、Case26 でほぼ同等の強度定数を得ることができた実 績とともに、遠心載荷中に自重崩壊の懸念がある場合には、Case24 の実験結果に基づき遠 心載荷を中断し、その遠心加速度で試験が実施可能であることから、【方針②】を採用する こととした。

【方針②】

- ・地盤試料は配合9(昨年度、45°斜面にて35Gで自重崩壊)を用いる。
- ・斜面勾配は30度とする。
- ・表層重量を 20kN/m3 とする。

(2) 加振実験の結果

加振実験においては、弱層に若干の変形は確認できるものの、写真 6.1.4 および写真 6.1.5 に示すように、20G から 50G 加振において表層の部分的な破壊が先行する形となり、 弱層内にすべりが入る形での崩壊を確認することは出来なかった。一方で、写真 6.1.1、 写真 6.1.2 に示した Case30 と比較すると、弱層上部において若干の変形が生じていた。表 6.1.8 に模型構築時に採取した弱層、表層試料による三軸圧縮試験結果を、図 6.1.31 に加 振後に斜面模型からサンプリングした土試料を整形して実施した一軸圧縮試験結果を示す。 Case30 と同様に、一軸圧縮試験結果は設計値(c=70kPa より、qu=140kPa 程度)を大きく上 回っているものの、表 6.1.8 に示した三軸圧縮試験結果は設計値(c=70KPa、 ϕ =30 度)と ほぼ同程度である。

これより、斜面が崩壊に至らなかった理由として、弱層で期待以上の強度が発現したこ とのほか、セメントを混ぜたにもかかわらず表層の強度が不足したことが考えられる。表 層内部には約 10cm 間隔でジオテキスタイルを敷設したため、全面的な破壊に至ることは無 いと考えたものの、ジオテキスタイルの敷設間隔の間の表層材料が抜け出すような形で崩 壊に至り、その後は弱層にせん断力が伝達されず、弱層を完全な崩壊に至らせることがで きなかったものと推測される。今後は、実験 Case の応答やひずみの発現傾向を再現できる 解析モデルを構築した上で、表層の強度を増加させることで解析を行い、斜面の崩壊挙動 を解析的に分析することと、一定の変形が生じた弱層について、画像解析による詳細検討 を進めることが必要である。

写真 6.1.4 加振前の状況【Case31】

写真 6.1.5 加振後の状況【Case31】

4€	材 料	養生 日数 (日)	拘束圧	ピーク	破壞	残留	peak		res		⇒≠睡会∕公
武				強度	ひずみ	強度		,		,	武陂仮
向央			o _r (kPa)	q_{max}	ξ f	$q_{\rm res}$	c _d (kPa)	φ _d (deg.)	c _d (kPa)	Φ _d (deg.)	百小比
名				(kPa)	(%)	(kPa)					(%)
TC-129	8	10	50	357.6	4.06	289.9	70. 1	32. 3	43.4	33. 5	10.53
TC-130			200	733.9	9.97	650.2					10.52
TC-131			400	1161.2	13.33	1150.7					10.60
TC-132	表 層	9	50	166.6	14.66	165.7	24. 5	28.0	26.2	31.0	13.06
TC-133			200	441.4	15.00	441.4					12.87
TC-134			400	786.1	12.01	717.4					11.67

表 6.1.8 三軸圧縮試験結果一覧_CASE31 模型構築試料・室内作製試料

図 6.1.31 サンプリング試料による一軸圧縮試験結果

また、Case31 における最終加振時の代表的な時刻歴図を図 6.1.32~図 6.1.53 に示す。 なお、時刻歴図中に示した計測値は、実物大換算した値として示している。 (1) CASE31_ d5_50Hz 限界加振

図 6.1.33 加速度計水平方向 (天端から-155mm)

図 6.1.34 加速度計水平方向 (天端から-245mm)

図 6.1.36 加速度計水平方向(天端から-425mm)

図 6.1.37 加速度計水平方向(天端から-745mm)

図 6.1.38 加速度計水平方向(土槽)

図 6.1.40 加速度計水平・鉛直・直交方向 (テーブル東側カメラ下)

図 6.1.41 加速度計鉛直方向 (天端から-65mm)

図 6.1.42 加速度計鉛直方向 (天端から-155mm)

図 6.1.44 加速度計鉛直方向 (天端から-335mm)

図 6.1.47 加速度計鉛直方向(土槽)

図 6.1.49 加速度計水平・鉛直・直交方向(カメラ脇治具)

図 6.1.51 レーザー変位計鉛直方向 (天端)

6.1.4 考察

6.1.2、6.1.3 で述べた通り、Case30 では弱層材料に変形が生じる前に表層が崩壊し、 Case31 では弱層に一定の変形が確認されるものの、ジオテキスタイル間での表層の破壊が 先行することで、弱層にせん断力が伝達されなくなり、最終的な弱層の崩壊には至らずに 実験を終了した。Case31 でも表層破壊が先行したものの、弱層内での変形も確認されたこ とから、図 6.1.54、写真 6.1.6 のモデルに基づき画像解析によるせん断ひずみ分布の可視 化を行った。図 6.1.55~図 6.1.73 に 20G、25G 加振時における画像解析によるせん断ひず みの分布図を示す。

せん断ひずみ分布のレンジが大きい場合には、表層内のせん断ひずみが卓越している傾向が確認できる。一方で、せん断ひずみ分布のレンジを5パーセントに設定した場合には、 弱層内でもひずみの増大が確認できることから、表層の崩壊と並行して弱層内でもせん断 変形が生じていたことが推測される。今後は、標点のすべり面方向変位量などの指標により、崩壊挙動の精緻な分析を進める必要がある。

一方で、弱層材料の物性値を使用して静的な安定解析を実施すると、50Gにおいては自重 安定すらも満足できない条件であり、斜面が崩壊に至らなかった理由については詳細な検 討が必要である。

静的な安定解析で考慮できない項目あるいは地盤試料の強度試験において未検討の項目 を列挙すると、以下の通りである。

地震動の増幅

②側壁摩擦の影響

③地盤試料の変形強度特性に及ぼすひずみ速度依存性の影響

④斜面模型内での応力状態

ここで、①の地震動の増幅については、崩壊に至らない限りは斜面上部ほど基盤層に対して応答が増幅するため、表層崩壊を助長する結果となる。

②の側壁摩擦の影響については、斜面模型の崩壊を拘束するものの、Case26(アンカー 対策)では、斜面模型が崩壊に至っており、側壁摩擦が主要因として斜面模型の崩壊が拘 束されたとは考えにくい。

③のひずみ速度依存性については、要素試験のひずみ速度がおよそ 0.1%程度であるのに 対して、遠心模型実験ではより高速でせん断されるために、ひずみ速度依存性の影響で変 形強度特性が変化する可能性がある。拘束でせん断されることにより高強度、高剛性とな る可能性もあるため、この点については詳細な検討が必要と考えられる。

④については、過去の試験において、岩盤層内に設置した土圧計の値が殆ど増大してい なかったことから、水平方向の拘束圧増大を考慮せずに設計上の安定解析を起こってきた が、緩勾配化したことにより、斜面内の応力状態が変化し、水平方向の拘束圧も増大した 可能性もある。このことは安定解析では考慮しなかったため、弱層内で想定よりも高いせ ん断強度が発揮された結果として、斜面模型が崩壊に至らなかった可能性も考えられる。

図 6.1.54 Case31 γmax 算出メッシュ

写真 6.1.6 Case31 標点配置

図 6.1.55 Case31 試番 4・50G 正弦波 1Hz400gal (加振前)

図 6.1.57 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 223 14.6185 秒)

図 6.1.59 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 243 14.6385 秒)

図 6.1.61 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 263 14.6585 秒)

図 6.1.62 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 263 14.6585 秒) 最大レンジを 5 %に変更

図 6.1.63 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 283 14.6785 秒)

図 6.1.65 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 303 14.6985 秒)

図 6.1.67 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 343 14.7385 秒)

図 6.1.68 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 343 14.7385 秒) 最大レンジを5%に変更

図 6.1.69 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 363 14.7585 秒)

図 6.1.70 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 363 14.7585 秒) 最大レンジを5%に変更

図 6.1.71 Case31 試番 4・50G 正弦波 1Hz400gal (シーン 403 14.7985 秒)

図 6.1.72 Case31 試番 5・50G 正弦波 1Hz500gal (シーン 1381 14.027 秒)

図 6.1.73 Case31 試番 5・50G 正弦波 1Hz500gal (加振後)

6.2 中型振動台試験

6.2.1 時刻歴図の作成

加振試験で得られた物理値データを使用して、加振ステップごとに時刻歴図として取り まとめた。その際に、模型地盤内部で水平方向、鉛直方向に模型地盤の応答や変形挙動の 変化を把握できる形式とした。

振動実験による加振は、表 6.2.1~表 6.2.3 に示す条件で行った。なお、加振に使用した波形は、正弦波(図 6.2.1)である。

試番	波形	加振周期 入力加速度		波数
1	正弦波	5Hz	100gal	10 波
2	正弦波	5Hz	200gal	10 波
3	正弦波	5Hz	300gal	10 波
4	正弦波	5Hz	400gal	10 波
5	正弦波	5Hz	500gal	10 波
6	正弦波	5Hz	600gal	10 波
7	正弦波	5Hz	700gal	10 波

表 6.2.1 加振条件一覧表 (CASE 27)

表 6.2.2 加振条件一覧表 (CASE 28)

試番	波形	加振周期 入力加速度		波数
1	正弦波	5Hz 100gal		10 波
2	正弦波	5Hz	200gal	10 波
3	正弦波	5Hz	300gal	10 波
4	正弦波	5Hz	400gal	10 波
5	正弦波	5Hz	500gal	10 波
6	正弦波	5Hz	600gal	10 波

試番	波形	加振周期 入力加速度		波数
1	正弦波	5Hz 100gal		10 波
2	正弦波	5Hz	200gal	10 波
3	正弦波	5Hz	300gal	10 波
4	正弦波	5Hz	400gal	10 波
5	正弦波	5Hz	500gal	10 波
6	正弦波	5Hz	600gal	10 波

表 6.2.3 加振条件一覧表 (CASE 29)

図 6.2.1 加振波形例 正弦波_5Hz_600gal

6.2.2 Case27

(1) 事前検討

Case27 ではピークひずみが小さい材料 B を弱層下部に、ピークひずみが大きな材料 A を 弱層上部に配置した。表 6.2.4 に弱層材料の配置および強度定数を示す。表層、基盤層に ついては表 6.2.5 に示す通りの材料である。

₹ 0.2.1 0d3021 初音中风内中				
構成材料		C (kPa)	ϕ (deg.)	
弱層上	材料 A	4.0	44. 7	
弱層下	材料 B	5.5	34.9	

表 6.2.4 Case27 弱層構成材料

		ピーク強度		残留強度	
層名	密度(kN/m ³)	粘着力	内部摩擦角	粘着力	内部摩擦角
		c (kPa)	φ(deg.)	c (kPa)	φ(deg.)
表層	30.0	107.4	0.0	34.4	28.4
基盤層	20.0	280.5	57.4	5.4	53.4

表 6.2.5 表層・基盤層の材料特性

上記の地盤定数を用いて 事前安定解析を行い、降伏震度を算定した。ただし、降伏震度の算定に当たっては、方法①:材料A、Bのピーク強度を用いた場合、方法②:材料A、Bの残留強度を用いた場合の二通りの方法で安定解析を実施した。図 6.2.2、図 6.2.3 に安定解析結果を示す。方法①の降伏震度は0.822、方法②の降伏震度は0.145 であった。

(2) 加振実験の結果

斜面模型には 600gal 加振において微小な変形が生じ、700gal 加振において滑落的に崩壊 した。崩壊時には材料 B を使用した弱層下部より変形が生じ、最終的にすべり面が下部か ら上部へとつながった後に、斜面模型が滑落的に崩壊する傾向が確認された。写真 6.2.1、 写真 6.2.2 に実験前後の写真を示す。

図 6.2.2 Case27 方法①での解析結果

図 6.2.3 Case27 方法②での解析結果

写真 6.2.1 Case27 加振前

写真 6.2.2 Case27 700gal 加振後

また、Case27における最終加振時の代表的な時刻歴図を図 6.2.4~図 6.2.21に示す。

(1) 試番 07 正弦波 5Hz700gal10 波

図 6.2.4 試番 07 加速度計水平方向(天端から-125mm)

図 6.2.5 試番 07 加速度計水平方向(天端から-300mm)

図 6.2.6 試番 07 加速度計水平方向(天端から-450mm)

図 6.2.7 試番 07 加速度計水平方向(天端から-700mm)

図 6.2.8 試番 07 加速度計水平方向(土槽)

図 6.2.9 試番 07 加速度計水平方向(振動台テーブル)

図 6.2.10 試番 07 加速度計鉛直方向 (天端から-125mm)

図 6.2.11 試番 07 加速度計鉛直方向 (天端から-300mm)

図 6.2.12 試番 07 加速度計鉛直方向(天端から-450mm)

図 6.2.13 試番 07 加速度計鉛直方向(天端から-700mm)

図 6.2.14 試番 07 加速度計鉛直方向(土槽)

図 6.2.15 試番 07 加速度計鉛直方向(振動台テーブル)

図 6.2.16 試番 07 加速度計直交方向(土槽)

図 6.2.17 試番 07 加速度計直交方向(振動台テーブル)

図 6.2.18 試番 07 接触式変位計水平方向(法面)

図 6.2.19 試番 07 接触式変位計鉛直方向(天端)

図 6.2.20 試番 07 レーザー式変位計水平方向(法面)

図 6.2.21 試番 07 レーザー式変位計鉛直方向(天端)

6.2.3 Case28

(1) 事前検討

Case28 ではピークひずみが小さい材料 B を弱層上部に、ピークひずみが大きな材料 A を 弱層下部に配置した。表 6.2.6 に弱層材料の配置および強度定数を示す。表層、基盤層に ついては Case27 と同様の地盤試料である。安定解析結果としては、両材料ともピーク強度 を用いる方法①では kh=0.804、両材料とも残留強度を用いる方法②では kh=0.082 であった。

3、0.2.0 Case20 33/音/丹/风//1/19				
構成材料		C (kPa)	ϕ (deg.)	
弱層上	材料 B	5.5	34.9	
弱層下	材料 A	4.0	44.7	

表 6.2.6 Case28 弱層構成材料

(2) 加振実験結果

斜面模型には 500gal 加振において微小な変形が生じ、600gal 加振において滑落的に崩壊 した。写真 6.2.3、写真 6.2.4 に実験前後の写真を示す。降伏震度が若干低下する傾向な のは実験と解析で概ね同様の傾向となったが、降伏震度の値自体を比較すると、計算と解 析とで 300gal 程度の差異があった。後述するせん断ひずみ分布によると、ひずみは斜面上 部から進展が始まっており、Case27 と同様に材料 B を配置した領域から生じる傾向にあっ た。このため、斜面の安定性評価に当たっては、変形強度特性の異なる地盤試料の分布の 影響を考慮することが重要であることが示唆された。評価法については、6.2.5 の考察にて 検討する。なお、安定解析上のすべり面位置は図 6.2.2、図 6.2.3 に示した Case27 とほぼ 同一であった。また、最終加振時における各種計測値の時刻歴を図 6.2.22~図 6.2.39 に 示す。

写真 6.2.3 Case28 加振前

写真 6.2.4 Case28 600gal 加振後

(1) 試番 06 正弦波 5Hz600gal10 波

図 6.2.22 試番 06 加速度計水平方向(天端から-125mm)

図 6.2.23 試番 06 加速度計水平方向(天端から-300mm)

図 6.2.24 試番 06 加速度計水平方向(天端から-450mm)

図 6.2.26 試番 06 加速度計水平方向(土槽)

図 6.2.27 試番 06 加速度計水平方向(振動台テーブル)

図 6.2.28 試番 06 加速度計鉛直方向(天端から-125mm)

図 6.2.29 試番 06 加速度計鉛直方向(天端から-300mm)

図 6.2.30 試番 06 加速度計鉛直方向(天端から-450mm)

図 6.2.31 試番 06 加速度計鉛直方向(天端から-700mm)

図 6.2.32 試番 06 加速度計鉛直方向(土槽)

図 6.2.33 試番 06 加速度計鉛直方向(振動台テーブル)

図 6.2.34 試番 06 加速度計直交方向(土槽)

図 6.2.35 試番 06 加速度計直交方向(振動台テーブル)

図 6.2.36 試番 06 接触式変位計水平方向(法面)

図 6.2.37 試番 06 接触式変位計鉛直方向 (天端)

図 6.2.38 試番 06 レーザー式変位計水平方向(法面)

図 6.2.39 試番 06 レーザー式変位計鉛直方向(天端)

6.2.4 Case29

(1) 事前検討

Case29 ではピークひずみが小さい材料 B を弱層上部に、ピークひずみが大きな材料 A を 弱層下部に配置した。また、斜面勾配を Case27、Case28 の 40 度勾配から 35 度勾配に変更 した。表 6.2.7 に弱層材料の配置および強度定数を示す。表層、基盤層については Case 27、 Case28 と同様の地盤試料である。安定解析結果としては、両材料ともピーク強度を用いる 方法①では kh=0.951、両材料とも残留強度を用いる方法②では kh=0.216 であった。図 6.2.40、図 6.2.41 に安定解析結果を示す。

衣 6.2.7 Case28 物層僅成材料				
構成材料		C (kPa)	ϕ (deg.)	
弱層上	材料 A	4.0	44.7	
弱層下	材料 B	5.5	34.9	

이 권 屋 排 라 카 씨

(2) 加振実験結果

Case29実験前後の斜面模型の状況を写真 6.2.5、写真 6.2.6に示す。斜面模型には500gal 加振で微小な変形が進行し、斜面模型がすべり面に沿って徐々に下部へと変位した。計算 上の降伏震度が最も高いにもかかわらず、実験ではすべり土塊が滑落には至らなかったも のの、Case27、Case28 よりも先に崩壊が生じた。こうした挙動を評価するためには、ピー クひずみレベルの差異も考慮し、検討を行うことが必要と考えられる。詳細は考察にて述 べる。また、Case29における最終加振時の代表的な時刻歴図を図 6.2.42~図 6.2.58に示 す。

図 6.2.41 Case29 方法②での解析結果

写真 6.2.5 Case29 加振前

写真 6.2.6 Case29 600gal 加振後

(1) 試番 06 正弦波 5Hz600gal10 波

図 6.2.42 試番 06 加速度計水平方向(天端から-150(-136)mm)

図 6.2.43 試番 06 加速度計水平方向(天端から-300mm)

図 6.2.44 試番 06 加速度計水平方向(天端から-450mm)

図 6.2.45 試番 06 加速度計水平方向(天端から-536(-600)mm)

図 6.2.46 試番 06 加速度計水平方向(土槽)

図 6.2.47 試番 06 加速度計水平方向(振動台テーブル)

図 6.2.48 試番 06 加速度計鉛直方向(天端から-150mm)

図 6.2.49 試番 06 加速度計鉛直方向(天端から-300mm)

図 6.2.50 試番 06 加速度計鉛直方向(天端から-450mm)

図 6.2.51 試番 06 加速度計鉛直方向(天端から-600mm)

図 6.2.52 試番 06 加速度計鉛直方向(土槽)

図 6.2.54 試番 06 加速度計直交方向(土槽)

図 6.2.55 試番 06 加速度計直交方向(振動台テーブル)

図 6.2.56 試番 06 接触式変位計鉛直方向(天端)

図 6.2.57 試番 06 レーザー式変位計水平方向(法面)

図 6.2.58 試番 06 レーザー式変位計鉛直方向(天端)

6.2.5 考察

以下に大型振動試験装置で実施した小型斜面模型の振動実験(Case27、Case28、Case29) で得られた知見、考察を示す。

① 模型の降伏震度について

表 6.2.8 に各実験ケースで斜面模型の変位が顕著になった加振試番、振動台加速度、お よび「5.強度確認試験」で得られた弱層材料 A、Bの強度(C、φ)から算定した降伏震度 の計算値を示す。また、比較のために過去に行った実験ケース(Case7、Case14)の事例を 示す。Case7 および Case14 の弱層角度は Case27、28 と同一であり、Case7 は弱層が全て材 料 A で作成されており、Case14 は材料 B で作成されている。また、ここで示す降伏震度の 計測値は、以下の4通りの方法で算出している。

方法①:材料A、Bのピーク強度を用いた場合の降伏震度
方法②:材料A、Bの残留強度を用いた場合の降伏震度
方法③:材料Aがピーク強度に至った時の材料Bの強度を用いた場合
方法④:材料Bがピーク強度に至った時の材料Aの強度を用いた場合
すべり面の計算結果を図 6.2.59~図 6.2.62に示す。

中野	弱層材料	弱層 角度	模型の変位が顕著となった時		創まの破壊	降伏震度の計算値			
夫被			加振試番	台加速度の 最大値	料面の破壊 モード	方法①	方法②	方法③	方法④
Case27	下層:材料 B 上層:材料 A	40°	700gal 加振	-667gal	滑落	0.822	0.145	0.802	0. 785
Case28	下層:材料A 上層:材料B	40°	600gal 加振時	-560gal	滑落	0.804	0.082	0. 79	0.754
Case29	下層:材料 B 上層:材料 A	35°	600gal 加振時	-582gal	進行的破壊	0.951	0.216	0.928	0.91
Case7*	材料 A	40°	500gal 加振時	-433gal	滑落	0.750	0.000	_	_
Casel4 ^{**}	材料 B	40°	500gal 加振時	-471gal	滑落	0.880	0.257	_	—

表 6.2.8 各実験ケースにおける降伏震度の実験値と計算値の比較

※過去の委託業務で実施

図 6.2.60 Case7 方法②での解析結果

この計算結果より、いずれのケースにおいても、方法①で求めた降伏震度の計算値より 低い加振加速度で模型の変位が顕著になったことが分かる。これは、方法①が仮定してい るように、弱層の全域に渡って同時にピーク強度が発揮されているわけではなく、進行的 に破壊が発生しているためである。一方、方法②で求まる降伏震度は弱層が全域に渡って 残留強度に落ちた場合を想定しているため、これがゼロあるいはゼロに漸近する場合には

(Case28、Case7)、すべり面の完全形成御に模型は自重によって「滑落」し得ることにな り、降伏震度が正の値となる場合には(Case27、14)、すべり面が完全に形成された後にで あっても、加振後に模型の変形が停止する「進行的破壊」となる。Case28、Case29、Case7 については、計算結果と実験で得られた斜面の破壊モードが一致する。しかしながら、 Case27 および14については方法②で求めた降伏震度が0.145 および0.257 であるにも関わ らず、実験では加振停止後も斜面が自重により変形が進行する様子が観察された。残留強 度を用いた安定解析結果と実験で得られた破壊モードが一致しなかった原因としては以下 が挙げられる。

- 加振中にすべり面に沿った土塊の変位量が大きくなり、せん断強度が発揮されるすべり面長が短くなったこと
- ② 加振中に弱層の先端部(のり先部)が先行して部分的に崩壊し、せん断強度が発揮 されるすべり面長が短くなったこと
- ③ 模型の作成中の弱層材料の乾燥による含水比の不均一により、弱層内の残留強度が 部分的に低下したこと

上記①、②については Case27 および Case14 において観測されている。安定解析は模型 構築時の模型諸元を用いて行っており、すべり面全域に渡ってせん断強度(方法②では残 留強度)が同時に発揮されたと仮定しているが、実際には加振による変形によりすべり面 長は1割~2割程度低減している。また、③については推定ではあるが、加振後の材料Bの 含水比と、材料Bの土質諸数値(C、 ϕ)を決定するために行った三軸試験用の供試体は完 全には合致していない。前者は1.1~1.3%程度、後者は1.7%程度であるが、別途行った三 軸圧縮試験より材料Bの残留強度は含水比の低下により大幅に低下していることが確認さ れている。これらの理由により、方法②より降伏震度が正の値を示していても、模型は加 振後に自重により滑落したと考えられる。詳細を検討するためには、(1)加振中の斜面の変 形量を考慮したすべり面長さを用いた安定解析、(2)斜面模型と同一の含水比における三軸 圧縮試験の実施(材料 B)が必要だと考えられる。

② すべり面の発生状況について

図 6.2.63~図 6.2.65にCase27~Case29において変形が顕著になる瞬間の最大せん断ひ ずみのコンター図を、写真 6.2.7~写真 6.2.9に同時刻の模型の変形状況の写真を示す。 なお、ここでは「変形が顕著になる瞬間」とは、「土塊の応答加速度が基盤加速度と比較し て初めて 20%以上低下した時刻」と定義している(写真 6.2.10、図 6.2.66 参照)。すなわち、弱層上に存在する土塊(表層)が力のつり合いを保てなくなった瞬間と言える。

まず、弱層勾配が同一である Case27 と Case28 (弱層角度 40 度) と比較すると、Case27 では下層(のり先)から、Case28 は上層においてひずみが局所化し始め、加振とともにひずみが弱層全域に広がったことが分かる。すなわち、いずれものケースもピークひずみの小さい材料Bが配置している箇所からひずみが発生している。これは、材料Bは材料Aに比べて小さいひずみレベルでピーク状態からポストピーク状態に至っており、そのひずみ軟化挙動に伴い、ひずみが進行したためだと考えられる。

次に、弱層材料の配置が同一である Case27 と Case29 (下層:材料 B、上層:材料 A) を 比較すると、いずれの実験においても弱層の先端部(のり先部)からひずみが発生してい る点が共通している。ただし、すべり面が明確に発生した後の挙動は異なり、弱層勾配が 急勾配(40度)である Case27 は「滑落モード」を示し、緩勾配(35度)である Case29 は 加振中のみ変形が進行する「進行的破壊モード」を示した。

(11.238 秒、土塊の応答加速度が基盤加速度より初めて 20%以上減少した時刻)

写真 6.2.7 Case27 変形し始める瞬間の様子(11.238 秒)

図 6.2.64 Case28 せん断ひずみコンター図

(12.04337 秒、土塊の応答加速度が基盤加速度より初めて 20%以上減少した時刻)

写真 6.2.8 Case28 変形し始める瞬間の様子(12.04337秒)

(11.03867 秒、土塊の応答加速度が基盤加速度より初めて 20%以上減少した時刻)

写真 6.2.9 Case29 変形し始める瞬間の様子(11.03867秒)

写真 6.2.10 すべり土塊 (表層)の応答加速度の計測位置 (Case27)

図 6.2.66 台加速度とすべり土塊(表層)の応答加速度の比較