平成27年度放射線対策委託費 (クリアランス制度運用に向けた調査)事業 報告書

平成28年3月 株式会社日本環境調査研究所

1		概	要																																
1		1		調																															
1		2		調	査	体	制	•		•		•	•			•	•	•	•	•		•	•			•	•			•	•	•	•		1
1		3		調	査	実	施	概	要	•		•	•			•	•		•		•	•	•	•	•	•		•	•	•	•	•			2
1	•	4		Ρ	Ε	Т	用	サ	イ	ク		٢	П	ン	概	要	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
2		シ	=	ュ	レ	_	シ	3	ン	解	析																								
2		1		シ	Ξ	ュ	レ	_	シ	3	ン	計	算	条	件																				4
2		2		成	分	分	析	結	果																										10
	2		2		1		分	析	試	料	名	ع	分	析	項	目																			10
	2		2		2		分	析	方	法																									11
	2		2		3		分	析	結	果																									17
2		3		解	析	結	果																												19
	2		3		1		サ	1	ク		١		ン	本	体	の	解	析	結	果															19
	2		3		2		コ	ン	ク	IJ	_	۲	の	解	析	結	果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
3		コ	ン	ク	IJ	_	۲	及	び	金	属	の	測	定		分	析																		
3				コ																															
	3		1		1		⊐	ン	ク	IJ	_	۲	の	測	定	対	象	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	38
	3		1		2		⊐	ン	ク	IJ	_	۲	の	1	С	m	線	量	当	量	率	測	定	結	果	•	•	•	•	•	•	•	•	•	38
	3		1		3		⊐	ン	ク	IJ	_	۲	の	試	料	採	取	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
	3		1		4		試	料	前	処	理	法	及	び	測	定	方	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
	3		1		5		⊐	ン	ク	IJ	_	۲	⊐	ア	の	測	定	結	果	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	42
3		2		金	属	の	測	定		分	析																								
	3		2		1		金	属	の	測	定	対	象																						45
	3		2		2		金	属	の	1	С	m	線	量	当	量	率	測	定	結	果														45
	3		2		3		金	属	の	試	料	採	取	方	法																				47
	3		2		4		金	属	試	料	の	前	処	理	及	び	測	定	法																48
	3		2		5		金	属	試	料	の	測	定	結	果																				51
	3		2		6		ク	IJ	ア	ラ	ン	ス	測	定	に	お	け	る	適	切	な	測	定	時	間	の	検	討		•	•	•	•	•	70
3		3		コ	ン	ク	IJ	_	 	及	び	金	属	の	測	定		分	析	の	ま	ع	め												74

4		既	存	文	献	調	査																													
									に	ょ	る	文	献	調	杳	結	果																		76	
																																			76	
																																			76	
																																			77	
																						-													77	
																																			77	
																																			78	
																																			78 78	
							-						_																							
																																			78	
																																			79	
4		5		又	献	調	介	0)	課	趄	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	81	
		ま																																		
																																			82	
5		2		課	題	抽	出	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	•	•	•	٠	•	•	•	•	•	•	•	٠	•	85	
6		議	事	録	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	86	
(添	付	資	料)																															
					添	付	資	料	1		1		サ	1	ク		۲		ン	の	運	転	時	間	及	び	積	算	電	流	値	•			添付-1-	
					添	付	資	料	3		1		⊐	ン	ク	IJ	_	۲	測	定	結	果													添付-3-	
					添	付	資	料	3		2		金	属	測	定	結	果																	添付-6-	
					添	付	資	料	4		1		文	献	検	索	結	果																	添付-47-	
					添	付	資	料	4		2																								添付-125-	

1. 概要

1. 1 調査の目的

放射性同位元素等による放射線障害防止法に関する法律(以下「放射線障害防止法」という。)の一部を改正する法律(以下「改正法」という。)が平成24年4月1日に施行された。この改正法では、放射能の影響が無視できるような極めて低いレベルの放射性汚染物について、一定の手続きを経れば、再利用を可能とする制度(クリアランス制度)が導入された。

放射線発生装置を使用している大学・研究所等において、事業所の移転に伴い、使用施設の廃止を予定しているところがある。また、PET 用サイクロトロンは、導入のピーク時期からおよそ 10 年が経過しており、装置の耐久年数等から、今後 PET 用サイクロトロンの更新等に伴う廃止が進むと推測される。これらにより発生する金属くず及びコンクリート破片について、クリアランス制度を効率的かつ合理的に運用するためには、放射線発生装置の種類や性能、使用状況等に応じた、装置類及び使用施設の放射化の度合いを評価する方法や測定試料の分析方法を整理することが重要である。

このことを踏まえ本調査では、放射性発生装置本体を構成する金属類及び放射線発生装置施設のコンクリート構造物に係る放射化の程度を評価する方法及び測定の方法について調査し、原子力規制委員会・原子力規制庁によるクリアランス制度の適切な運用に資することを目的とする。

本事業の調査項目は、(1)シミュレーション解析、(2)コンクリート及び金属の測定・分析、(3)既存文献調査である。

1. 2 調査体制

本事業の調査体制は、調査に際して、専門的かつ客観的な立場からの意見を踏まえるため、6名の有識者及び3名のオブザーバーを選任し、委員会を実施した。委員の任命は、原子力規制庁の了承を得たうえで決定した。委員会の開催は、調査を実施する前に1回、調査終了後に1回の計2回実施した。

委員会のメンバーは表 1.1 の通りである。

表 1.1 委員会メンバー表

	氏名	所属
委員長	桝本 和義	大学共同利用機関法人 高エネルギー加速器研究機構
委員	上蓑 義朋	国立研究開発法人 理化学研究所
	渡部 浩司	国立大学法人 東北大学
	米内 俊祐	国立研究開発法人 放射線医学総合研究所
	仁井田 浩二	一般財団法人 高度情報科学技術研究機構
	小迫 和明	清水建設株式会社 技術研究所
オブザーバ	井原 完有	国立研究開発法人国立がん研究センター中央病院
_	永澤 直樹	国立大学法人 三重大学医学部附属病院
	田中 正博	JFE エンジニアリング株式会社

1. 3 調査実施概要

本調査は、委員会承認のもと、(1)シミュレーション解析、(2)コンクリート及び金属の測定・分析、(3)既存文献調査を行った。

(1)シミュレーション解析は、中性子輸送計算は PHITS2 を用い、放射化計算は DCHAIN-SP を用いて解析を行った。シミュレーション解析は、中性子輸送計算を PHITS2 とし、放射化計算を DCHAIN-SP を用いて解析を行った。計算体系を図 1.1 に示す。

図 1.1 計算体系

本事業でシミュレーション解析及びコンクリート及び金属の測定・分析を行ったサイクロトロンは、自己遮蔽体型 PET 用サイクロトロン装置(IBA 社製 CYCLONE 10/5)である。このサイクロトロンの使用年数は、2004 年 1 月から 2013 年 12 月までの 10 年間である。本サイクロトロンは、ターゲットポートが 8 ポートあり、No. 1,5 が F-18 用、No. 2,6 が C-11 用、No. 4,8 がビームダンプ、No,3,7 が使用していないターゲットポートである。サイクロトロンの 10 年間の使用時間は、全体で 2,597.90 時間であり、F-18 ターゲットポートで 2,153.86 時間となっており、全体の 83%を占めている。積算電流値では、全体で 84,968.04 μ A·hr であり、F-18 ターゲットポートで 75,806.29 μ A·hr となっており、全体の 89%を占めている。運転時間の詳細を添付表 1.1 に、積算電流値の詳細を添付表 1.2 に示した。

シミュレーションは、可能な限りその精度を高めるため、①実際の運転条件をすべて反映し、②サイクロトロン本体(鉄 6 検体、アルミニウム 3 検体、銅 3 検体)、自己遮蔽体コンクリート(ポリエチレン、ボロン含有)及び床コンクリートの成分分析結果を計算に用いる物質組成として輸送計算及び放射化計算を実施し、③入手可能な範囲で、サイクロトロン本体及び自己遮蔽体の形状を解析の幾何形状に反映した。シミュレーション解析の計算は、実際に採取したコンクリート及び金属の測定分析結果を比較した。

コンクリート及び金属の測定・分析は、既に施設が解体撤去されているため、解体前に

採取したコンクリートを用い、自己遮蔽体 1 検体及び床面コンクリート 1 検体とした。コンクリートコアは、厚さ 2cm 毎に切断して粉砕し、U 8 容器に充填して測定試料とした。試料は、ゲルマニウム半導体検出器を用いて放射性物質濃度を求めた。また、各コアの表層は、液体シンチレーションカウンターを用いて H-3 及び C-14 の濃度を求めた。

(2) 通常は、使用中の PET 用サイクロトロンの装置から金属の測定・分析試料を採取することは、装置の破損等となることから、非常に難しい。しかしながら、今回は、使用停止から年数を経ている PET 用サイクロトロン装置より金属試料を採取した。金属試料は、鉄(セクターマグネット、ヨーク、脚)、ステンレス(拡散ポンプ)、アルミニウム(真空箱)、銅(ディー電極、電磁石)から金属コア又はドリルによる切粉として回収した。採取箇所は、運転時間が長いことから比較的放射化されている F-18 ターゲットポート付近及び放射化がおこりにくい真空箱の中心と F-18 ターゲットポートを結ぶ線から $\pm 90^\circ$ 方向付近とした。

金属コアは、1cm 毎に細断しU8容器に入れ測定試料とした。切粉は、U8容器に詰め 圧縮処理し測定試料とした。試料は、ゲルマニウム半導体検出器を用いて放射性物質濃度 を測定した。

(3)既存文献調査は、JST(科学技術振興機構)が供給する JSTP1us を用いて、検索キーワードの基本用語を「小型」&「サイクロトロン」&「放射化」として検索、調査を行った。必要に応じて、検索用語は追加・修正を行った。また、平成 19 年度から平成 25 年度における公益財団法人原子力安全技術センター及び大学共同利用機関法人高エネルギー加速器研究機構における調査報告書、国立研究開発法人国立がん研究センター中央病院及び国立大学法人三重大学医学部附属病院のサイクロトロン廃止措置報告書並びに各学会等の報告書を調査し、整理した。

1. 4 PET用サイクロトロン概要

我が国において、サイクロトロン装置は 222 台設置されており、そのうち医療機関に設置されたものは 147 台と報告されている**。

装置の主な構成要素は、イオン発生装置、加速器、加速粒子取出装置及びターゲットであり、その周囲には様々な制御装置や遮蔽装置が取り付けられている。また、サイクロトロン装置本体の主な成分は、鉄(ヨーク、セクターマグネット等)、アルミニウム(真空箱)、銅(電磁石)である。

サイクロトロンの放射化を起こす粒子は、真空箱 (加速空洞) 内では加速する陽子または重陽子が多く、それ以外では ¹⁸0 (p,n) ¹⁸F 等にて発生する中性子である。サイクロトロン装置には、遮蔽方法により、「自己遮蔽体型」と「非自己遮蔽体型」の 2 つに分類できる。自己遮蔽体型は、サイクロトロン装置本体の周りを囲むように遮蔽材 (材質:コンクリート、ポリエチレン、ボロン、鉛等)が設置され、自己遮蔽体外へ透過する放射線を低減し、サイクロトロン室の壁厚等が軽減できる。これに対し、非自己遮蔽体型の施設では、サイクロトロン室で放射線を遮蔽する必要があることから壁厚は約 1.5m となっている。

※「放射線利用統計 2014」,公益社団法人日本アイソトープ協会,2014年,P9

2. シミュレーション解析

2. 1 シミュレーション計算条件

計算対象となる PET 用サイクロトロン装置は、IBA 社製の CYCLONE 10/5 であり、サイクロトロン本体は自己遮蔽体コンクリート構造物で囲われている。このサイクロトロンで加速された 10 MeV の陽子ビームは、液体の H_2^{18} 0 ターゲットや気体の N_2 ターゲットなどを照射し、F-18 や C-11 等の放射性薬剤に使用するための放射性核種を製造する。この陽子とターゲット物質との核反応により中性子や光子などの粒子が生成され、サイクロトロン本体と自己遮蔽体コンクリート及びその内部空間に放出される。放出された中性子は、透過性が高いためサイクロトロン本体やコンクリート中の元素と核反応を起こして放射性核種を生成する。特に放射捕獲反応による中性子吸収で多くの放射性核種が生成される。また、10 MeV の陽子の鉄中における飛程は、0.26~mm 程度である。そのため、陽子による放射化は、真空箱、ディー電極及びターゲット近傍を除き、それ以外のサイクロトロン本体には寄与しないと考えられる。

主として放射化を引き起こす中性子を生成するためには、陽子ビームとターゲット物質との核反応過程からシミュレーションを行う必要があるので、荷電粒子と中性子を取り扱える輸送計算コードが必要不可欠である。また、サイクロトロン本体は、基本的に同心円の円柱構造であるが、陽子ビームが入射するターゲットの位置が局在しているため、3次元幾何形状による取り扱いが必要である。これらの条件を満たすコードとして今回の解析作業では、3次元モンテカルロ計算コード PHITS2 を選定した。使用した PHITS2 コードのバージョンは、2.64 である。

PHITS2 計算では、陽子の最大エネルギーが 10 MeV と比較的低エネルギーであるため、断面積ライブラリが必要とされる。使用した断面積ライブラリは、中性子と陽子入射共に国産の評価済核データファイルである JENDL/HE-2007 に基づく FSXLIB-JHE2007 ライブラリを使用した。上述の自己遮蔽型サイクロトロンの計算を実施する上で、このライブラリに格納されていない重要核種として、B-10, B-11, 0-18 の 3 核種がある。B-10 と B-11 は、中性子入射に関しては、評価済核データファイルである JENDL-4.0 に基づく FSXLIB-J40 ライブラリを使用した。不足した B-10 と B-11 の陽子入射及び 0-18 の中性子と陽子入射のライブラリは、TENDL-2013 を採用した。

ットの構造は、厚さ 0.00125~cm の Ti 箔の真空窓があり、He ガス冷却層、厚さ 0.00125~cm の Harvar 箔、ガスターゲット (N2; $62.8~cm^3$)、アルミニウム製ターゲットベッセルから成っている。図 2.1 に計算に用いた N_2 ターゲットのモデルを示す。

図 2.1 想定した N_2 ターゲットの計算モデル図

 H_2^{18} 0 ターゲットにおける中性子生成反応は、放射性薬剤用の F-18 を生成するための 18 0 (p, n) 18 F 反応であり、その反応断面積の実験値、及びライブラリに含まれる値を図 2. 2 に示す (この反応は TENLD-2013 と 2014 で同じであり、実験値の区別は EXFOR の指標番号による)。 N_2 ターゲットにおける放射性薬剤用の C-11 を生成するための 14 N (p, α) 11 C 反応の反応断面積を図 2. 3、中性子生成反応である 14 N (p, n) 14 0 反応の反応断面積を図 2. 4 に示す。中性子生成量は、10 MeV 陽子に対して 18 0 (p, n) 18 F 反応が 14 N (p, n) 14 0 反応よりも 3 倍以上高いことがわかり、PHITS2 計算で使用したライブラリのデータは実験値と比較して妥当なものであると言える。

図 2.2 ¹⁸0 (p, n) ¹⁸F の反応断面積

図 2.3 ¹⁴N(p, α)¹¹C の反応断面積

図 2.4 ¹⁴N(p, n) ¹⁴0 の反応断面積

サイクロトロン本体のモデル化は、図 2.5 と図 2.6 に示すように、サイクロトロンのヨーク、電磁石、セクターマグネット、真空箱、拡散ポンプ、脚部、ターゲットポート、貫通孔を対象として行った。この計算モデルは、メーカーの限られた開示情報に基づいて設定したものであるため、詳細な部位の寸法に関しては若干異なっているかもしれないが、全体の基本構成は再現できたと考える。ヨークは純鉄であるため、ARMCOの鉄組成を使用した(不純物としてリンと硫黄が含まれるが、JENDL/HE-2007にはないため珪素として扱った)。ヨークの構造は、上下段と側部から成り、側部も上下段に分かれているが、モデルでは一体構造として扱った。また、上下段のヨークは4つの貫通孔が上下方向に貫通している。側部ヨークは、ターゲットポートの空洞が貫通している。電磁石内部は細かい銅線が樹脂で固められており、上下2段から成る。そのため、銅線の空間充填率が必要である

が開示されていない。そこで、今回のモデル化では 80%の充填率を仮定した。真空箱は、チャンバー(chamber)とも呼ばれ、図 2.5 に黄色で示した円筒状のアルミニウム製容器であり、その内部は文字通り真空になっている。ターゲットポートを設置するために、ターゲットポートの空洞が開けられている。セクターマグネット(偏向磁石)は、真空箱の内側にあり、4 つの扇型磁石で構成されている。上段と下段のセクターマグネットの間隙は、その一様磁場を用いて陽子に円形の軌道を描いて加速する真空領域であり、実際には銅製のディー電極が設置されている。しかし、ディー電極は 8 の字型の特殊形状部材であるため、放射線漏洩量を保守的に評価するようにサイクロトロン本体のモデル化からは除外した。拡散ポンプは、下段ヨークの下側に位置し、厚さ 3 cm の鉄の円筒形状でモデル化した。脚部は、厚さ 2 cm の鉄の円筒形状で 4 本を対称位置に設置した。サイクロトロンの PHITS2 計算で使用した物質の元素組成を表 2.1 に示す。この表にない鉄は、鉄 100%として扱い、密度は 7.87 g/cm^3 とした。

図 2.5 サイクロトロン本体の中心高さにおける水平断面計算モデル図

図 2.6 サイクロトロン本体の垂直断面計算モデル図 (45 度対角線方向)

表 2.1 サイクロトロンの PHITS2 計算で使用した物質組成

		—————————————————————————————————————	(質量[g/cm³])	と原子数密度(正)または重量	比(負)	
元素	空気 (0.001205)	アルミニウム (2.6989)	銅(8.93)	Harvar foil (8.3)	純鉄(7.87)	普通コンク リート, NIST (2.3)	自己遮蔽コン クリート (1.76)
Н						-0.022100	-0.032118
В							-0.006305
С				-0.002	-0.00015	-0.002484	-0.172000
N	3.9108E-05						
0	1.0492E-05					-0.574930	-0.371032
Na						-0.015208	
Mg						-0.001266	-0.003430
Al		-1.0				-0.019953	-0.037854
Si					-0.00050	-0.304627	-0.176545
K						-0.010045	-0.015093
Ca						-0.042951	-0.143359
Cr				-0.195			
Mn				-0.016	-0.00070		
Fe				-0.191	-0.99865	-0.006435	-0.006885
Со				-0.420			
Ni				-0.127			
Cu			-1.0				
Мо				-0.022			
W				-0.027			

サイクロトロン本体は、床面を除く全周を自己遮蔽体で囲われており、自己遮蔽体の外側への放射線の漏洩は低く抑えられている。自己遮蔽体は、鉄製の型枠の中にホウ化合物入りコンクリートが充填されており、ターゲットで発生してサイクロトロン本体から漏洩する中性子を遮蔽する能力が高い。図 2.7 に自己遮蔽体とサイクロトロン本体の計算モデル図を示す。床面は、サイクロトロン室の床で普通コンクリートである。自己遮蔽体の内層を計算モデルに含めることは必要不可欠である。その理由は、サイクロトロン本体から漏洩した中性子は、自己遮蔽体の内側表面で反射して低いエネルギーの中性子となってサイクロトロン本体へ再度入射するものも幾らかあると考えられるためである。

図 2.7 サイクロトロン本体と自己遮蔽体の垂直断面計算モデル図

PHITS2 計算は、サイクロトロンの運転時間の大部分を占める第1、第2、と第5と第6ターゲットについて個別に実施した。計算で使用したタリーは、円柱形状メッシュの飛跡長タリーであり、第3章で説明される測定サンプル位置に対応している(詳細は、第3章を参照)。例えば、コアボーリングしたサンプルは、同等な半径で1 cm ピッチの深さで円柱メッシュタリーを設定している。計算効率の観点からは、半径を大きく取りたいが、それによる位置依存性の効果を損なうことを避けるため、同等な半径とした。深度方向の変化を把握するために十分なメッシュ幅として1 cm を採用した。測定サンプルの有効厚さも1 cm 以上である。しかしながら、タリーのメッシュ毎の体積が小さいため、有意な統計量

を得るためには長時間計算が必要となる。全てのタリーの中性子エネルギー群構造は、VITAMIN-Jの 175 群に基づく 160 群で実施した。第 1 ターゲットの PHITS2 計算時間は、線源陽子数 32 億個で、約 37 日である(計算は、Intel Xeon E5450 の CPU を搭載した計算サーバーで 1 コアを用いて実施)。他のターゲットも同様な計算を行った。

2. 2 成分分析結果

2. 2. 1 分析試料名と分析項目

分析試料名と分析項目を下の表 2.2 に示す。この成分分析結果から PHITS2、及び DCHAIN-SP 計算で用いた物質組成を決定した。

表 2.2 分析試料名と分析項目

分析試料名	部品名	採取試料番号	組成	分析項目
鉄 A No.2	セクター	No. 2		硫黄(S)、炭素(C)、コバ
鉄 B No.4	マグネット	No. 4		ルト(Co)、アルミニウム
鉄 C No.7	マクイット	No. 7	鉄	(A1)、マンガン(Mn)
鉄 1 No.15		No. 15	妖	
鉄 2 No.18	ヨーク	No. 18		
鉄 3 No.20		No. 20		
銅 1 No.26		No. 26		コバルト(Co)、亜鉛
銅 2 No.28	電磁石	No. 28	銅	(Zn)、銀(Ag)
銅 3 No.30		No. 30		
アルミ D4		D4		コバルト(Co)、ニッケル
アルミ D8	真空箱	D8	アルミニウム	(Ni)、鉄(Fe)
アルミ D10		D10		

計 12 試料

2. 2. 2 分析方法

(1) 鉄

①分析用試料の調整

金属材料は表面を研磨し、エネルギー分散型 X 線マイクロアナリシス (EDX) により元素分析を行った。さらに、金属材料より切粉を作製し、脱脂洗浄を行い分析用試料とした。

(2)S

JIS G 1215 鉄及び鋼-硫黄定量方法により分析を実施した。

分析方法:高周波燃焼-赤外線吸収法

使用装置:LECO CSLS600型 炭素硫黄同時分析装置

標準試料:日本鉄鋼連盟 JSS1203-3 0.0097wt%

3C

JIS G 1211 鉄及び鋼ー炭素定量方法により分析を実施した。

分析方法:高周波燃烧-赤外線吸収法

使用装置: LECO CSLS600型 炭素硫黄同時分析装置

標準試料:日本鉄鋼連盟 JSS604-9 0.0122wt%

4 Co, Al, Mn

JIS G 1258 鉄及び鋼-誘導結合プラズマ発光分光分析方法 第 1 部 酸分解・二硫酸カリウム融解法等の JIS 規格に準拠し、分析を実施した。分析フロー図を図 2.8 に示す。

1)前処理

酸分解ー二硫酸カリウム融解

- 2) 測定方法
 - a.Co

誘導結合プラズマ質量分析法(ICP-MS)

使用装置:パーキンエルマー ELAN DRCⅡ ICP-MS

測定質量数: Co 59

標準試料:関東化学(株) コバルト標準液 1002mg/L (Lot No. 703H9519)

定量下限值: Co 0.0001wt%

b. Al. Mn

誘導結合プラズマ発光分光分析法(ICP-AES)

使用装置:パーキンエルマー OPTIMA 7300DV ICP-AES

測定波長: Al 308.215nm、Mn 257.610nm

標準試料:関東化学(株) アルミニウム標準液 1002mg/L(LotNo. 611H9521)

関東化学(株) マンガン標準液 1006mg/L (Lot No. 709H9515)

定量下限值: Al 0.0005wt%、Mn 0.01wt%

図 2.8 鉄の分析フロー図

(2)銅

①分析用試料の調整

金属材料は表面を研磨し、エネルギー分散型 X 線マイクロアナリシス (EDX) により元素分析を行った。さらに、金属材料より切粉を作製し、脱脂洗浄を行い分析用試料とした。

②Co、Zn、Ag

JIS H 1060 銅及び銅合金中のコバルト定量方法、JIS H 1062 銅及び銅合金中の亜鉛 定量方法等の JIS 規格に準拠し、分析を実施した。

1)概要

この方法は、分析用試料を酸による分解、融解により溶液化し、溶液を ICP 質量分析装置(ICP-MS)または ICP 発光分光分析装置(ICP-AES)により測定し、元素を定量する方法であり、分析フロー図を図 2.9 に示す。

2) 測定方法

a.Co, Ag

誘導結合プラズマ質量分析法(ICP-MS)

使用装置:パーキンエルマー ELAN DRCⅡ ICP-MS

測定質量数: Co 59、Ag 107

標準試料:関東化学(株) コバルト標準液 1002mg/L (Lot No. 703H9519)

関東化学(株) 銀標準原液 999mg/L (Lot No. 710H9535)

定量下限值: Co 0.0001wt%、Ag 0.0001wt%

b. Zn

誘導結合プラズマ発光分光分析法(ICP-AES)

使用装置:パーキンエルマー OPTIMA 7300DV ICP-AES

測定波長: Zn 206.200nm

標準試料: 関東化学(株) 亜鉛標準液 1002mg/L (Lot No. 704H9518)

定量下限值: Zn 0.0005wt%

図 2.9 銅の分析フロー図

(3) アルミニウム

①分析用試料の調整

切粉を脱脂洗浄し分析用試料とした。また、分析用試料の一部を採取し、エネルギー 分散型 X 線マイクロアナリシス(EDX)により元素分析を行った。

②Co、Ni、Fe

JIS H 1307 アルミニウム及びアルミニウム合金の誘導結合プラズマ発光分光分析方法等の JIS 規格に準拠し、分析を実施した。

1)概要

この方法は、分析用試料を酸による分解、融解により溶液化し、溶液を ICP 質量分析装置 (ICP-MS) または ICP 発光分光分析装置 (ICP-AES) により測定し、元素を定量する方法であり、分析フロー図を図 2.10 に示す。

2) 測定方法

a.Co, Ni

誘導結合プラズマ質量分析法(ICP-MS)

使用装置:パーキンエルマー ELAN DRCⅡ ICP-MS

測定質量数: Co 59、Ni 60

標準試料:関東化学(株) コバルト標準液 1002mg/L (Lot No. 703H9519)

関東化学(株) ニッケル標準液 1000mg/L (Lot No. 612H9531)

定量下限值: Co 0.0001wt%、Ni 0.0002wt%

b. Fe

誘導結合プラズマ発光分光分析法(ICP-AES)

使用装置:パーキンエルマー OPTIMA 7300DV ICP-AES

測定波長: Fe 238.204nm

標準試料:関東化学(株) 鉄標準液 1001mg/L (Lot No. 702H9523)

定量下限值:Fe 0.0005wt%

図 2.10 アルミニウムの分析フロー図

2. 2. 3 分析結果

分析は 2 回の繰返し分析 (n=2) で実施し、それぞれの分析結果と平均値を表 $2.3\sim2.5$ に示す。

表 2.3 鉄の分析結果

(単位:wt%)

	ı	1		1	
No.	試料名	n	Со	A 1	M n
	<i>₽</i> ₩ ∧	1	0.00567	0.0546	0.318
1	鉄 A	2	0.00560	0.0540	0.317
	No. 2	平均值	0.00564	0. 0543	0.318
	&# D</td><td>1</td><td>0.00561</td><td>0. 0525</td><td>0.316</td></tr><tr><td>2</td><td>鉄 B</td><td>2</td><td>0.00560</td><td>0.0530</td><td>0.315</td></tr><tr><td></td><td>No. 4</td><td>平均值</td><td>0.00560</td><td>0.0527</td><td>0.315</td></tr><tr><td></td><td>\$4. C</td><td>1</td><td>0.00556</td><td>0.0533</td><td>0.315</td></tr><tr><td>3</td><td>鉄 C</td><td>2</td><td>0.00563</td><td>0.0530</td><td>0.312</td></tr><tr><td></td><td>No. 7</td><td>平均值</td><td>0.00559</td><td>0. 0531</td><td>0.314</td></tr><tr><td></td><td><i>₽</i>₩ 1</td><td>1</td><td>0.00564</td><td>0. 0526</td><td>0.317</td></tr><tr><td>4</td><td>鉄 1</td><td>2</td><td>0.00558</td><td>0. 0528</td><td>0.317</td></tr><tr><td></td><td>No. 15</td><td>平均值</td><td>0.00561</td><td>0. 0527</td><td>0.317</td></tr><tr><td></td><td>&# O</td><td>1</td><td>0.00570</td><td>0. 0499</td><td>0.316</td></tr><tr><td>5</td><td>鉄 2</td><td>2</td><td>0.00577</td><td>0.0518</td><td>0.317</td></tr><tr><td></td><td>No. 18</td><td>平均值</td><td>0.00574</td><td>0.0508</td><td>0.316</td></tr><tr><td></td><td>£4. O</td><td>1</td><td>0.00575</td><td>0. 0515</td><td>0.315</td></tr><tr><td>6</td><td>鉄 3</td><td>2</td><td>0.00571</td><td>0. 0516</td><td>0.315</td></tr><tr><td></td><td>No. 20</td><td>平均值</td><td>0.00573</td><td>0. 0515</td><td>0.315</td></tr></tbody></table>				

表 2.4 銅の分析結果

試料名 Со Zn Ag n < 0.0001 <0.001 0.00503 1 銅1 7 2 < 0.0001 <0.001 0.00507No.26 平均值 < 0.0001 <0.001 0.005051 <0.0001 <0.001 0.00503 銅 2 2 <0.001 8 < 0.0001 0.00503 No.28 平均值 < 0.0001 < 0.001 0.00503 0.00497< 0.0001 <0.001 1 銅3 9 2 < 0.0001 <0.001 0.00500No.30 平均值 < 0.0001 <0.001 0.00498

(単位:wt%)

表 2.5 アルミニウムの分析結果 (単位:wt%)

	試料名	n	Со	Ni	Fe
		1	<0.0001	0.00122	0.120
10	アルミ D4	2	<0.0001	0.00141	0.119
	DI	平均值	<0.0001	0.00132	0.120
		1	<0.0001	0.00136	0.144
11	アルミ D8	2	<0.0001	0.00116	0.166
	D8	平均値	<0.0001	0.00126	0.155
		1	<0.0001	0.00107	0.112
12	アルミ D10	2	<0.0001	0.00102	0.111
12		平均値	<0.0001	0.00104	0.112

2. 3 解析結果

2.3.1 サイクロトロン本体の解析結果

第2.1節で述べたように、PHITS2計算で得られた測定サンプル位置における中性子エネルギースペクトルのデータを元に、放射化量計算を行った。放射化量計算は、放射化インベントリ計算コードDCHAIN-SP2001を用いて実施した。

DCHAIN-SP 計算で使用したサイクロトロンの照射履歴は、運転開始から完全停止時までの期間を1 τ 月単位で区切った。各運転時の電流値は一定ではないため 30 μ A に固定し、その1 τ 月間の運転時間を 30 μ A の電流値で規格化する操作を施すことにより、連続運転状態における陽子線源強度とした。この 118 τ 月の照射履歴のデータは、サイクロトロン運転管理記録に基づくものである。

DCHAIN-SP の放射化計算で使用した物質の元素組成は表 2.6 に示す通りである。ここでは、PHITS2 計算で輸送計算に影響を及ぼさない放射化に関わる Co などの不純物は、決定元素として考慮している。物質で複数の組成があるが、これは分析したサンプルの採取位置に依るものであり、分析による変動幅を見ることができる。鉄の No. 2, 4, 7 はセクターマグネット、鉄の No. 15, 18, 20 はヨーク、銅の No. 26, 28, 30 は電磁石、アルミニウムの D4, D8, D10 は真空箱からサンプリングしたものである。サンプリングされた位置は、この分析値をそのまま使用すれば良いが、されなかった位置については同じ段の分析値を使用し、複数ある場合は第一象限にあるものを優先する。放射化量を Bq/g 単位で導出するための密度 (g/cm^3) は、鉄が 7.87、銅が 8.93、アルミニウムが 2.6989 とした。

DCHAIN-SP で計算した完全停止後の冷却時間は停止後2年とし、第3章の測定値と比較した。測定で得られた放射性核種は、Na-22, Mn-54, Co-56, 57, 60, Zn-65, Ag-110mの7核種である。これらの放射性核種が生成される反応型式の一覧表を表2.7に示す。

サイクロトロンの入射陽子エネルギーが 10 MeV であるため、生成される二次粒子のエネルギーはそれ以下になる。そのため、反応の閾エネルギーが 10 MeV 以下のものは、〇印を付けて示した。また、陽子由来の反応は青字で示す。Na-22 の生成反応は該当するものはない。測定された放射性核種の主要な反応型式における反応断面積を図 2.11~図 2.17に示す。熱中性子と熱外中性子に高い感度を有するのは、 59 Co $(n, \gamma)^{60}$ Co、 64 Zn $(n, \gamma)^{65}$ Zn、 109 Ag $(n, \gamma)^{110m}$ Ag の反応であり、全て放射捕獲反応である。高速中性子に感度を有するのは、 54 Fe $(n, p)^{54}$ Mn、 58 Ni $(n, d)^{57}$ Co、 60 Ni $(n, p)^{60}$ Co、 63 Cu $(n, \alpha)^{60}$ Co である。

表2.6 放射化計算に使用した物質に含まれる元素組成

				1-1213		· - / - / - / - / - / - / - / - / - / -			
女一年七年七十八人				放射化計	放射化計算用の元素の重量%	重量%			
7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	A1	Mn	Fe	Co	Ni	Cu	Zn	Ag	不純物
鉄 A No. 2	0.05430	0.31800	99, 47350	0.00564					0.14900
鉄B No.4	0.05270	0.31500	99, 47112	0.00560					0.15500
鉄 C No. 7	0.05310	0.31400	99, 47243	0.00559					0.15500
鉄1 No.15	0.05270	0.31700	99, 47250	0.00561					0.15300
鉄2 No.18	0.05080	0.31600	99, 47158	0.00574					0.15500
鉄3 No.20	0.05150	0.31500	99, 47037	0.00573					0.15800
銅 1 No. 26				0.00010		99, 99385	0.00100	0.00505	
銅 2 No. 28				0.00010		99, 99387	0.00100	0.00503	
銅 3 No. 30				0.00010		99, 99392	0.00100	0.00498	
アルミ D4	86. 68858		0.12000	0.00010	0.00132				10.19000
アルミ D8	90.86364		0.15500	0.00010	0.00126				8.98000
アルミ D10	92, 31686		0.11200	0.00010	0.00104				7. 58000

表2.7 測定された放射性核種の中性子と陽子入射による生成反応一覧表

1	1 1	バーキルキエ 簡	断面積プロット図	放射性	1 1	闘エネルギーが	断面積プロット図
核種	が記述が	10MeV 以下のもの	の番号	核種	がまずる	10MeV 以下のもの	の番号
	Na-23 (n, 2n)			22	$Ni-58 (p, pn) Ni-57 \beta +$		
Na-22	Mg-24(n,t)			/c_00	$Ni-60 (p, \alpha)$	0	
	Na-23 (p, pn)				$Co-59(n, \gamma)$	0	2.3.2
	Mn-55 (n, 2n)				Ni-60(n, p)	0	2.3.3
M. FA	Fe-54 (n, p)	0	2.3.1	Co-60	Ni-61 (n, d)		
4-C_IIW	Fe-56(n,t)				Ni-62(n, t)		
	Mn-55 (p, pn)	0			$Cu-63(n, \alpha)$	0	2.3.4
93	Ni-58(n, t)				$Zn-64$ (n, γ)	0	2.3.5
00-00	Fe-56(p, n)	0		29-uZ	Zn-66 (n, 2n)		
72 27	Ni-58(n, d)	0	2.3.6		Cu-65(p, n)	0	
)c_0)	$Ni-58 (n, 2n) Ni-57 \beta +$			Ag-110m	$Ag-109(n, \gamma)$	0	2.3.7

図 2.11 ⁵⁴Fe(n, p) ⁵⁴Mn 反応断面積

図 2.13 ⁶⁰Ni (n, p) ⁶⁰Co 反応断面積

図 2.14 ⁶³Cu(n, α) ⁶⁰Co 反応断面積

図 2.15 ⁶⁴Zn(n, γ)⁶⁵Zn 反応断面積

図 2.16 ⁵⁸Ni (n, d) ⁵⁷Co 反応断面積

図 2.17 ¹⁰⁹Ag(n, γ) ^{110m}Ag 反応断面積

サイクロトロン本体からサンプリングされた試料を測定した放射化量の値を表 2.8 に示す。この表では第 3 章とは異なり、検出下限値以下のデータは全てゼロとしており、検出誤差も表示していない。放射化量の単位は Bq/g である。サンプリング位置のラベルは、 $aa_bbbb_cc_dd_ee$ の形式である。

aa は、サンプリング部材の設置位置に関する指標であり、1w は下段、up は上段、su は側部上段、s1 は側部下段を意味するが、拡散ポンプ、脚部とディー電極には付与しない。bbbb は、部材名称の略語であり、sect はセクターマグネット、yoke はヨーク、magn は電磁石、cham は真空箱(チャンバー)、pomp は拡散ポンプ、leg は脚部、delec はディー電極を意味する。cc は、円柱形状のメッシュタリーの半径方向のメッシュ番号であり、該当する半径の番号が選択されている。dd は、円柱形状メッシュタリーの軸方向のメッシュ番号であり、基本的に床側が 01 番で天井側が 30 番などの大きい番号となっている(側部のヨークは水平方向であるため、サイクロトロン内側が 01 番となっている)。ee は、サイクロトロン本体を垂直方向にセクターマグネットが内包され対称になるように 90 度で分割した時の 4 つの象限(quadrant)に付与した番号である。

図 2.5 の右上を第一象限 (q1) とし、番号は時計方向に回転する順序とした。表 2.9 に測定位置における放射化量の計算結果を示す。Na-22 と Co-56 の計算値は、全ての測定位置でゼロであった。測定値 (E) に対する計算値 (C) の比である C/E を表 2.10 に示す。C/E は、0.2 から 1.0 の範囲にばらついているが、全体的に見ると $0.2\sim0.5$ 程度であり過小評価している。

表 2.8 サイクロトロン本体からサンプリングし測定された放射化量 [Bq/g]

postact1: activity list of selected nuclide and cooling time

cyclotron 10MeV proton at NCCH

summation of 4 targets (#1, #2, #5, #6)

unit of activity: Bq/g

fixed cooling time 2 years

```
sampling position
                         Mn 54
                                     Co 60
                                                 Zn 65
                                                             Na 22
                                                                          Co 57
                                                                                      Co 56
                                                                                                  Ag110m
                      5. 110E+00
                                              8. 670E+01
                                                          0.000E+00
                                                                                               0.000E+00
lw_sect-01_30_q1
                                  1.060E+00
                                                                      6.340E-02
                                                                                   0.000E+00
lw_sect-01_28_q1
                      2. 310E+00
                                  9.880E-01
                                                                      0.000E+00
                                                                                               0.000E+00
                                              0.000E+00
                                                          0.000E+00
                                                                                   0.000E+00
lw_sect-01_24_q1
                      1.080E+00
                                  9.440E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                                          0.000E+00
lw_sect-01_20_q1
                      6.990E-01
                                  9.200E-01
                                              0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_16_q1
lw_sect-01_13_q1
                      4.750E-01
                                  8.480E-01
                                                                                   0.000E+00
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                               0.000E+00
                      3. 320E-01
                                  7.840E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_09_q1
                      2.270E-01
                                                          0.000E+00
                                                                       0.000E+00
                                  7.090E-01
                                              0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      1.310E-01
                                  5.930E-01
lw_sect-01_05_q1
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_01_q1
                      7.440E-02
                                  4.930E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_30_q4
lw_sect-01_16_q4
                      3.090E-01
                                  4.320E-01
                                              1.540E-01
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  3. 810E-01
                      3. 910E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_01_q4
                      9.770E-03
                                              0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  2.770E-01
                                                          0.000E+00
                                                                       0.000E+00
                      3.460E+00
lw_sect-01_30_q3
                                  1.090E+00
                                              1.160E+01
                                                          5.960E-03
                                                                       1.340E-02
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_16_q3
                      6.620E-01
                                  8.620E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_01_q3
lw_sect-01_30_q2
                      9.760E-02
                                  4.910E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  4. 200E-01
                      3. 990E-01
                                              1.070E-01
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_sect-01_16_q2
                                  3. 470E-01
                                                                      0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      3.440E-02
                                              0.000E+00
                                                          0.000E+00
                      1.070E-02
                                  2.490E-01
lw_sect-01_01_q2
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_01_q1
                      5.170E+00
                                  1.080E+00
                                              9.370E+01
                                                          1.260E-02
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_03_q1
up_sect-01_07_q1
                      2.390E+00
                                  9.610E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      1. 120E+00
                                  9.420E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_11_q1
                                                                                   0.000E+00
                      6.670E-01
                                  8.600E-01
                                              0.000E+00
                                                          0.000E+00
                                                                                               0.000E+00
                                                                       0.000E+00
                      4.680E-01
up_sect-01_15_q1
                                  8.240E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up sect-01 18 q1
                      3.300E-01
                                  7.350E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_22_q1
up_sect-01_26_q1
                      2.130E-01
                                  6.430E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      1. 400E-01
                                                          0.000E+00
                                  5.810E-01
                                              0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_30_q1
                                              0.000E+00
                                                          0.000E+00
                                                                                   0.000E+00
                      8. 610E-02
                                  4.880E-01
                                                                                               0.000E+00
                                                                       0.000E+00
                      3.050E-01
up_sect-01_01_q4
                                  4.260E-01
                                              1.800E-01
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_15_q4
                      3.460E-02
                                  3.530E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_30_q4
up_sect-01_01_q3
                      1. 240E-02
                                  2.490E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      4. 750E+00
                                                          1.800E-02
                                  1.050E+00
                                              6. 180E+01
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0 000E+00
up_sect-01_15_q3
                                  9.120E-01
                                              0.000E+00
                                                          0.000E+00
                      4. 470E-01
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_30_q3
up_sect-01_01_q2
                      5.640E-02
                                  4.980E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      2.560E-01
                                  4. 040E-01
                                              3.900E-02
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_sect-01_15_q2
up_sect-01_30_q2
                      2. 970E-02
                                  3.480E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      9. 880E-03
                                  2. 390E-01
                                                                                   0.000E+00
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                               0 000E+00
su_yoke-01_01_q3
                                  1.690E+00
                      9.700E+00
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_07_q3
su_yoke-01_13_q3
                      2.300E+00
                                  7.780E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      4.970E-01
                                  4.090E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_01_q2
su_yoke-01_07_q2
                      7.430E-02
                                  3.790E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                                                                   0.000E+00
                      2. 050E-02
                                  1. 430E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                               0.000E+00
su_yoke-01_13_q2
                      5. 080E-03
                                  6. 160E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_01_q4
                      8.850E-02
                                  3.980E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_07_q4
                      2.090E-02
                                  1.470E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_13_q4
su_yoke-01_01_q1
                                  6. 590E-02
                      4.650E-03
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      9. 280E+00
                                              0.000E+00
                                                          0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  1.660E+00
                                                                       0.000E+00
                      5. 220E+00
                                  1.160E+00
su_yoke-01_03_q1
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
su_yoke-01_07_q1
su_yoke-01_11_q1
                      2.150E+00
                                  7.890E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      9.150E-01
                                  5. 100E-01
                                              0.000E+00
                                                                                   0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                               0.000E+00
su_yoke-01_13_q1
                      4. 810E-01
5. 460E-03
                                  3.890E-01
                                              0.000E+00
                                                          0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                                                       0 000E+00
                                  2. 260E-01
                                                                                   0.000E+00
up_yoke-01_01_q2
                                              0.000E+00
                                                          0.000E+00
                                                                       0 000E+00
                                                                                               0 000E+00
up_yoke-01_11_q2
                      0.000E+00
                                  8. 250E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_yoke-01_20_q2
                      0.000E+00
                                  6.670E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_yoke-01_01_q3
                      6.580E-02
                                  7.210E-01
                                              0.000E+00
                                                                                   0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                               0.000E+00
up_yoke-01_11_q3
                      9.730E-03
                                              0.000E+00
                                                          0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  1.770E-01
                                                                       0.000E+00
                      3. 670E-03
                                  9. 080E-02
up_yoke-01_20_q3
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0 000E±00
                                                                                               0 000E+00
up_yoke-01_01_q4
                      0.000E+00
                                  1.550E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_yoke-01_11_q4
up_yoke-01_20_q4
                      0.000E+00
                                  6.330E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      0.000E+00
                                  6. 150E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_yoke-01_01_q1
                      5. 590E-02
                                  7.020E-01
                                                                                   0.000E+00
                                                                                               0.000E+00
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                      8. 660E-03
                                  1. 900E-01
up_yoke-01_11_q1
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
up_yoke-01_20_q1
                      0.000E+00
                                  9.090E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
lw_yoke-01_20_q3
lw_yoke-01_10_q3
                      6.580E-02
                                  7.530E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      8. 730E-03
                                  1. 790E-01
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                                  7. 300E-02
lw_yoke-01_01_q3
                                                                                               0.000E+00
                      3.660E-03
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0 000E±00
                                  1. 460E-01
                      0.000E+00
                                              0.000E+00
                                                                      0.000E+00
                                                                                   0.000E+00
lw_yoke-01_20_q4
                                                          0.000E+00
                                                                                               0.000E+00
1w_yoke-01_10_q4
                      0.000E+00
                                  5.680E-02
                                              0.000E+00
                                                          0.000E+00
                                                                       0.000E+00
                                                                                   0.000E+00
                                                                                               0.000E+00
                      0.000E+00
                                  5.170E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
lw yoke-01 01 q4
                                                                                   0.000E+00
                                                                                               0.000E+00
```

lw_yoke-01_20_q1	6. 640E-02	8. 020E-01	1.670E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
lw yoke-01 18 g1	4. 160E-02	5. 300E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
lw yoke-01 14 q1	2.270E-02	3. 230E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
lw yoke-01 10 q1	1. 190E-02	2. 080E-01	0. 000E+00	0.000E+00	0. 000E+00	0. 000E+00	0.000E+00
lw_yoke-01_10_q1	0. 000E+00	1. 080E-01	0. 000E+00	0.000E+00	0.000E+00	0.000E+00	0. 000E+00
lw_yoke-01_01_q1	0. 000E+00	7. 770E-02	0. 000E+00	0.000E+00	0.000E+00	0.000E+00	0. 000E+00
lw_yoke-01_20_q2	0.000E+00	1.410E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1w_yoke-01_10_q2	0.000E+00	5. 290E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
lw yoke-01 01 q2	2.070E-03	3.900E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_01_q1	8, 230E+00	1.800E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_07_q1	1. 990E+00	7. 920E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl yoke-01_13 q1	4. 720E-01	3. 840E-01	0. 000E+00	0. 000E+00	0. 000E+00	0. 000E+00	0.000E+00
s1_yoke 01_13_q1 s1_yoke-01_01_q2	7. 860E-02	4. 070E-01	0. 000E+00				
sl_yoke-01_07_q2	2. 380E-02	1. 420E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_13_q2	5. 900E-03	5.800E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
s1_yoke-01_01_q3	8. 700E+00	1. 700E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_07_q3	2. 150E+00	8. 140E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_13_q3	4.900E-01	4.010E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl voke-01 01 q4	9.710E-02	4. 100E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl_yoke-01_07_q4	2. 240E-02	1.570E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
sl yoke-01 13 q4	5. 160E-03	6. 580E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
up_magn=01_01_q1	0. 000E+00	1. 570E+00	0.000E+00	0. 000E+00	0. 000E+00	0. 000E+00	1. 350E-02
up_magn-01_01_q1	0. 000E+00	2. 060E-03	0. 000E+00	0.000E+00	0.000E+00	0. 000E+00	2. 390E-03
up_magn_01_01_q4							
up_magn-01_01_q3	0. 000E+00	1. 420E+00	2. 420E-02	0. 000E+00	0. 000E+00	0. 000E+00	8. 510E-03
up_magn-01_01_q2	0. 000E+00	2. 210E-03	0. 000E+00	0.000E+00	0.000E+00	0.000E+00	2. 500E-03
lw_magn-01_22_q1	0.000E+00	1. 310E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1. 320E-02
$1 \\ \text{w_magn-} 01 \\ \text{_} 22 \\ \text{_} q2$	0.000E+00	3.960E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2. 720E-03
lw_magn-01_22_q3	0.000E+00	1. 230E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	1.530E-02
1w_magn-01_22_q4	0.000E+00	3. 030E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3. 080E-03
up cham-01 01 q1	0.000E+00	1. 220E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
up cham-01 01 q2	0.000E+00	0.000E+00	0.000E+00	1.350E-02	0.000E+00	0.000E+00	0.000E+00
up cham-01 01 q3	0.000E+00	1. 240E-02	1.430E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00
up cham-01 01 q4	0.000E+00	8. 520E-03	0.000E+00	0.000E+00	0. 000E+00	0.000E+00	0.000E+00
lw_cham-01_05_q1	2. 510E-02	0. 000E+00	2. 410E-01	1. 710E+00	2. 500E-01	2. 520E-02	0.000E+00
lw cham-01 05 q2	2. 460E-02	0. 000E+00	3. 580E-01	2. 730E+00	4. 220E-01	4. 940E-02	0.000E+00
lw_cham-01_05_q2	0. 000E+00	1. 850E-02	1. 520E-01	1. 500E+00	1. 740E-01	3. 810E-02	0. 000E+00
lw_cham-01_05_q4	4. 430E-02	0. 000E+00	8. 380E-01	3. 340E+00	9. 550E-01	8. 850E-02	0. 000E+00
pomp-03_04	0. 000E+00	4. 270E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0. 000E+00
pomp-03_01	0.000E+00	1. 470E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
leg-03_02_q1	5. 280E-03	5. 950E-02	0.000E+00	9. 140E-03	0.000E+00	0.000E+00	0.000E+00
leg-03_02_q4	0.000E+00	4. 210E-02	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
leg-03_02_q3	0.000E+00	1. 120E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
leg-03_02_q2	0.000E+00	1.110E-01	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
delec-01_01_02	0.000E+00	8.810E-02	2.650E+03	0.000E+00	0.000E+00	0.000E+00	0.000E+00
delec-03 01 01	0. 000E+00	5. 640E-02	0. 000E+00	0. 000E+00	0.000E+00	0.000E+00	0.000E+00
delec-05_01_03	0. 000E+00	1. 040E-01	0.000E+00	0. 000E+00	0. 000E+00	0. 000E+00	0.000E+00
delec-07 01 02	0. 000E+00	7. 530E-02	3. 050E+03	0. 000E+00	0.000E+00	0. 000E+00	0. 000E+00
GC16C 01_01_02	0. 000L 00	1.000L 0Z	0. 000L 00				

表 2.9 サイクロトロン本体のサンプリング位置で計算した放射化量 [Bq/g]

postact1 : activity list of selected nuclide and cooling time

cyclotron 10MeV proton at NCCH

summation of 4 targets (#1, #2, #5, #6)

unit of activity: Bq/g

fixed cooling time 2 years

```
sampling position
                         Mn 54
                                      Co 60
                                                  Zn 65
                                                               Na 22
                                                                           Co 57
                                                                                       Co 56
                                                                                                    Ag110m
                                   2.507E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_30_q1
                      1.617E+00
lw_sect-01_28_q1
                      1. 269E+00
                                  2. 651E-01
2. 300E-01
                                               0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                           0.000E+00
lw_sect-01_24_q1
                      7.063E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                           0.000E+00
lw_sect-01_20_q1
                      4.509E-01
                                   2.182E-01
                                               0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_16_q1
lw_sect-01_13_q1
                      2. 887E-01
                                   2.169E-01
                                                           0.000E+00
                                                                                    0.000E+00
                                               0.000E+00
                                                                        0.000E+00
                                                                                                 0.000E+00
                      1. 811E-01
                                   1. 940E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_09_q1
                      1. 123E-01
                                                                        0.000E+00
                                   1.868E-01
                                               0.000E+00
                                                           0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      6.982E-02
                                   2.004E-01
lw_sect-01_05_q1
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      2. 679E-02
7. 073E-02
                                   1.660E-01
lw_sect-01_01_q1
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_30_q4
lw_sect-01_16_q4
                                   1.328E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      1. 493E-02
                                   1.461E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_01_q4
                      7. 203E-03
                                                                        0.000E+00
                                                                                                0.000E+00
                                   1.448E-01
                                               0.000E+00
                                                           0.000E+00
                                                                                    0.000E+00
                      2.729E+00
                                   3.252E-01
lw_sect-01_30_q3
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_16_q3
                      5. 113E-01
                                   2.388E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_01_q3
lw_sect-01_30_q2
                      6.660E-02
                                   1.581E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                   1. 776E-01
                      1. 055E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_sect-01_16_q2
                      4. 055E-02
1. 532E-02
                                   1. 542E-01
                                                                        0.000E+00
                                                                                    0.000E+00
                                               0.000E+00
                                                           0.000E+00
                                                                                                0.000E+00
                                   1.116E-01
lw_sect-01_01_q2
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_01_q1
                      2.053E+00
                                   2.729E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_03_q1
up_sect-01_07_q1
                      1.534E+00
                                   2.422E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      9. 247E-01
                                  2. 148E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_11_q1
                                                                                    0.000E+00
                      5.869E-01
                                   2.034E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                                0.000E+00
                      3.463E-01
up_sect-01_15_q1
                                   2.318E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up sect-01 18 q1
                      2.257E-01
                                   1.861E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_22_q1
up_sect-01_26_q1
                      1. 252E-01
7. 321E-02
                                   1.747E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                   2. 300E-01
                                                           0.000E+00
                                               0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_30_q1
                      4. 741E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                   1. 233E-01
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_01_q4
                      7.409E-02
                                   1.677E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_15_q4
                      2.052E-02
                                   1.366E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_30_q4
up_sect-01_01_q3
                      5.712E-03
                                   1.211E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                   2. 871E-01
                                                           0.000E+00
                      1.673E+00
                                               0.000E+00
                                                                        0 000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_15_q3
                      3. 114E-01
                                               0.000E+00
                                                           0.000E+00
                                                                                    0.000E+00
                                   2.704E-01
                                                                        0.000E+00
                                                                                                0.000E+00
up_sect-01_30_q3
up_sect-01_01_q2
                      4. 473E-02
                                   1.642E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      5.436E-02
                                   1.490E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_sect-01_15_q2
up_sect-01_30_q2
                                   1. 355E-01
                      1.896E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      4. 106E-03
                                   1. 169E-01
                                                                                    0.000E+00
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                                0 000E+00
su_yoke-01_01_q3
                                   2.920E-01
                      3. 231E+00
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_07_q3
su_yoke-01_13_q3
                      8.579E-01
                                   2.213E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      2. 205E-01
                                   1.754E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_01_q2
su_yoke-01_07_q2
                                  1. 069E-01
8. 735E-02
                      3. 253E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                                                    0.000E+00
                      9. 656E-03
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                                0 000E+00
su_yoke-01_13_q2
                                   6.073E-02
                      2.889E-03
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_01_q4
                      2.782E-02
                                   1.075E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_07_q4
                      9.002E-03
                                   8. 126E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_13_q4
su_yoke-01_01_q1
                                   5. 403E-02
                      2. 452E-03
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                  3. 156E-01
                                                                                    0.000E+00
                      3. 053E+00
                                                           0.000E+00
                                                                                                0.000E+00
                                               0.000E+00
                                                                        0.000E+00
                      1.990E+00
su_yoke-01_03_q1
                                   2.536E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
su_yoke-01_07_q1
su_yoke-01_11_q1
                      7.886E-01
                                   1.956E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      3. 261E-01
                                   1.554E-01
                                               0.000E+00
                                                           0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                                        0.000E+00
su_yoke-01_13_q1
up_yoke-01_01_q2
                      2. 072E-01
1. 369E-03
                                   1.550E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                   6. 801E-02
                                               0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                           0.000E+00
up_yoke-01_11_q2
                      1.626E-04
                                   6.612E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                                                                                0.000E+00
up_yoke-01_20_q2
                      2.578E-04
                                   5.377E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
up_yoke-01_01_q3
                      3.560E-02
                                   1.409E-01
                                               0.000E+00
                                                                                    0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                                0.000E+00
                      5. 643E-03
1. 199E-03
up_yoke-01_11_q3
                                   1. 063E-01
                                                           0.000E+00
                                               0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                                  8. 967E-02
up_yoke-01_20_q3
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0 000E+00
                      2. 050E-04
7. 303E-05
up_yoke-01_01_q4
                                   6.593E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_yoke-01_11_q4
up_yoke-01_20_q4
                                   5.459E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                 0.000E+00
                      3.785E-05
                                   4.845E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
up_yoke-01_01_q1
                      3. 098E-02
                                               0.000E+00
                                                                                                0.000E+00
                                   1.165E-01
                                                                                    0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                  9. 164E-02
                      5. 121E-03
up_yoke-01_11_q1
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                 0 000E+00
up_yoke-01_20_q1
                      6.011E-04
                                   7. 573E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_yoke-01_20_q3
lw_yoke-01_10_q3
                      3.568E-02
                                   1.320E-01
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                 0.000E+00
                      6. 280E-03
                                   9. 716E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
lw_yoke-01_01_q3
                                   4.965E-02
                                                                                    0.000E+00
                                                                                                0.000E+00
                      1.369E-03
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                      3. 359E-04
                                   6.491E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
lw_yoke-01_20_q4
                                                                                                0.000E+00
1w_yoke-01_10_q4
                      1.081E-04
                                   5. 285E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
                                                                                    0.000E+00
                                                                                                0.000E+00
                      8. 492E-05
                                  5. 233E-02
                                               0.000E+00
                                                           0.000E+00
                                                                        0.000E+00
lw yoke-01 01 q4
                                                                                    0.000E+00
                                                                                                0.000E+00
```

```
lw_yoke-01_20_q1
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      3. 267E-02
                                  1.145E-01
lw_yoke-01_18_q1
                      2.071E-02
                                  1.172E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_yoke-01_14_q1
                      1.003E-02
                                  1.068E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_yoke-01_10_q1
                      5. 792E-03
                                  8. 097E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                     1. 996E-03
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_yoke-01_05_q1
                                  6. 126E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
lw_yoke-01_01_q1
                      1. 202E-03
                                  4. 258E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_yoke-01_20_q2
lw_yoke-01_10_q2
                      8.496E-04
                                  6.431E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      7. 785E-05
                                  5.028E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_yoke-01_01_q2
                      1.894E-04
                                  5. 546E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      3.517E+00
                                  2.822E-01
                                                          0.000E+00
sl_yoke-01_01_q1
                                              0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      8.969E-01
sl_yoke-01_07_q1
                                  2.045E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
sl_yoke-01_13_q1
sl_yoke-01_01_q2
                      2.244E-01
                                  1.604E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      3.880E-02
                                  1.153E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      1.491E-02
sl_yoke-01_07_q2
                                  8. 529E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      2.591E-03
                                  5.999E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
sl_yoke-01_13_q2
sl_yoke-01_01_q3
                      3.923E+00
                                  3.316E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                                                                                              0.000E+00
sl_yoke-01_07_q3
                      1.015E+00
                                  2.349E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
sl_yoke-01_13_q3
                      2.562E-01
                                  1.897E-01
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
sl_yoke-01_01_q4
                      3.437E-02
                                                                      0.000E+00
                                  1. 112E-01
                                              0.000E+00
                                                          0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      1.298E-02
                                  7.907E-02
sl_yoke-01_07_q4
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
sl_yoke-01_13_q4
                      2.397E-03
                                  5. 457E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
up_magn-01_01_q1
up_magn-01_01_q4
                      0.000E+00
                                  7.507E-01
                                              2.672E-04
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              6.770E-03
                                                                                              2. 307E-03
                      0.000E+00
                                  1.968E-03
                                              6. 143E-05
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                      0.000E+00
up_magn-01_01_q3
                      0.000E+00
                                  6.830E-01
                                              2.890E-04
                                                          0.000E+00
                                                                                  0 000E±00
                                                                                              7. 129E-03
                                  2.390E-03
                                              6. 152E-05
up_magn-01_01_q2
                      0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              1.787E-03
lw_magn-01_22_q1
                      0.000E+00
                                  7. 233E-01
                                              2.652E-04
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              5.538E-03
1w_magn-01_22_q2
1w_magn-01_22_q3
1w_magn-01_22_q4
                                              6. 202E-05
3. 032E-04
                      0.000E+00
                                  1.990E-03
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              2. 166E-03
                                  7.469E-01
                                                                                              6.956E-03
                      0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                              5.747E-05
                                                                                  0.000E+00
                      0.000E+00
                                  2.090E-03
                                                          0.000E+00
                                                                      0.000E+00
                                                                                              2. 101E-03
up_cham-01_01_q1
                      2.091E-02
                                  6.471E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      1.955E-12
                                                                                  0.000E+00
                                                                                              0.000E+00
up_cham-01_01_q2
                      6.708E-05
                                  1.911E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      4.328E-14
                                                                                  0.000E+00
                                                                                              0.000E+00
up_cham-01_01_q3
up_cham-01_01_q4
                      4. 133E-03
                                  5. 162E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      4.876E-13
                                                                                  0.000E+00
                                                                                              0.000E+00
                      1. 589E-05
                                                          0.000E+00
                                                                      1. 359E-17
                                  1.737E-03
                                              0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_cham-01_05_q1
                                  5. 211E-03
                                              0.000E+00
                                                          0.000E+00
                      7.828E-03
                                                                                  0.000E+00
                                                                                              0.000E+00
                                                                      1. 193E-12
                      5.022E-05
lw_cham-01_05_q2
                                  1.744E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
lw cham-01 05 q3
                      3.647E-03
                                  5.397E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      5. 108E-13
                                                                                  0.000E+00
                                                                                              0.000E+00
lw_cham-01_05_q4
                      1. 232E-05
                                  2.339E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                     5. 527E-04
pomp-03_04
                                  5. 137E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      1. 319E-04
                                              0.000E+00
                                                          0.000E+00
pomp-03_01
                                  7. 439E-02
                                                                                              0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
leg-03_02_q1
                      1.875E-04
                                  5.518E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
leg-03 02 q4
                      1.620E-04
                                  5.611E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
leg-03_02_q3
leg-03_02_q2
                      2. 098E-04
                                  5. 769E-02
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
                      1. 936E-04
                                  5. 694E-02
                                                                                  0.000E+00
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                              0 000E+00
delec-01_01_02
                      2. 973E-04
                                  2. 692E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      6. 557E-19
                                                                                  0.000E+00
                                                                                              0.000E+00
delec-03_01_01
                      3.632E-05
                                  2.968E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
delec-03 01 03
                      5.443E-05
                                  3. 245E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      3.009E-16
                                                                                  0.000E+00
                                                                                              0.000E+00
                      4. 136E-05
delec-05_01_01
                                  2.941E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      0.000E+00
                                                                                  0.000E+00
                                                                                              0.000E+00
delec-05_01_03
                      5. 559E-05
                                  3. 213E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      3.580E-15
                                                                                  0 000E+00
                                                                                              0 000E+00
delec-07_01_02
                      2.635E-04
                                  2.482E-03
                                              0.000E+00
                                                          0.000E+00
                                                                      5. 429E-20
                                                                                  0.000E+00
                                                                                              0.000E+00
```

表 2.10 サイクロトロン本体のサンプリング位置での放射化量の測定値に対する計算値の比postact1: activity list of selected nuclide and cooling time cyclotron 10MeV proton at NCCH summation of 4 targets (#1, #2, #5, #6) unit of activity: Bq/g

fixed cooling time 2 years

sampling position	Mn 54	Co 60	Zn 65	Na 22	Co 57	Co 56	Ag110m
lw sect-01 30 q1	0. 3164	0. 2365	-0.0001	0.0000	-0.0001	0.0000	0.0000
lw_sect-01_28_q1	0. 5495	0. 2683	0.0000	0.0000	0.0000	0.0000	0.0000
$lw_sect-01_24_q1$	0.6540	0.2436	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_20_q1	0.6451	0.2371	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_16_q1	0.6077	0.2558	0.0000	0.0000	0.0000	0.0000	0.0000
1w_sect-01_13_q1	0. 5455	0. 2475	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_09_q1	0. 4947	0. 2634	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_05_q1	0. 5329	0.3380	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_01_q1	0.3601	0.3367	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_30_q4	0.2289	0.3073	-0.0001	0.0000	0.0000	0.0000	0.0000
lw_sect-01_16_q4	0. 3820	0. 3835	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_01_q4	0. 7373	0. 5229	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_30_q3	0. 7888	0. 2983	-0.0001	-0.0001	-0.0001	0.0000	0.0000
$lw_sect-01_16_q3$	0.7724	0.2771	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_01_q3	0.6824	0.3221	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_30_q2	0.2643	0.4228	-0.0001	0.0000	0.0000	0.0000	0.0000
lw_sect-01_16_q2	1. 1789	0. 4442	0.0000	0.0000	0.0000	0.0000	0.0000
lw_sect-01_01_q2	1. 4317	0. 4483	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_01_q1	0. 3970	0. 2527	-0.0001	-0.0001	0.0000	0.0000	0.0000
up_sect-01_03_q1	0.6418	0.2520	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_07_q1	0.8257	0.2280	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_11_q1	0.8799	0.2365	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_15_q1	0. 7399	0. 2814	0.0000	0.0000	0.0000	0.0000	0.0000
	0. 6841						
up_sect-01_18_q1		0. 2531	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_22_q1	0. 5877	0. 2716	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_26_q1	0. 5230	0. 3959	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_30_q1	0.5506	0.2526	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_01_q4	0. 2429	0.3936	-0.0001	0.0000	0.0000	0.0000	0.0000
up_sect-01_15_q4	0. 5931	0. 3869	0.0000	0.0000	0.0000	0.0000	0.0000
		0. 4862	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_30_q4	0. 4607						
up_sect-01_01_q3	0.3521	0. 2735	-0.0001	-0.0001	0.0000	0.0000	0.0000
up_sect-01_15_q3	0. 6966	0.2965	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_30_q3	0.7931	0.3298	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_01_q2	0.2123	0.3688	-0.0001	0.0000	0.0000	0.0000	0.0000
up_sect-01_15_q2	0. 6385	0. 3893	0.0000	0.0000	0.0000	0.0000	0.0000
up_sect-01_30_q2	0. 4155	0. 4891	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_01_q3	0. 3331	0. 1728	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_07_q3	0. 3730	0.2845	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_13_q3	0.4437	0.4287	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_01_q2	0.4378	0.2819	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_07_q2	0.4710	0.6108	0.0000	0.0000	0.0000	0.0000	0.0000
		0. 9859	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_13_q2	0. 5687						
su_yoke-01_01_q4	0. 3144	0. 2701	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_07_q4	0.4307	0.5528	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_13_q4	0.5274	0.8199	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_01_q1	0.3290	0.1901	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_03_q1	0. 3813	0. 2186	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_07_q1	0. 3668	0. 2479	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_11_q1	0. 3564	0. 3047	0.0000	0.0000	0.0000	0.0000	0.0000
su_yoke-01_13_q1	0.4307	0.3985	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_01_q2	0. 2508	0.3009	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_11_q2	0.0000	0.8015	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_20_q2	0.0000	0.8061	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_01_q3	0. 5410	0. 1954	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_11_q3	0. 5800	0.6006	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_20_q3	0. 3267	0. 9875	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_01_q4	0.0000	0.4254	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_11_q4	0.0000	0.8625	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_20_q4	0.0000	0. 7878	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_01_q1	0. 5541	0. 1660	0.0000	0.0000	0.0000	0.0000	0.0000
	0. 5913	0. 4823	0.0000	0.0000	0.0000	0.0000	0.0000
up_yoke-01_11_q1							
up_yoke-01_20_q1	0.0000	0.8331	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_20_q3	0.5422	0. 1753	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_10_q3	0.7194	0.5428	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_01_q3	0. 3741	0.6802	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_20_q4	0.0000	0. 4446	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_10_q4	0.0000	0. 9304	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_01_q4	0.0000	1. 0123	0.0000	0.0000	0.0000	0.0000	0.0000

lw_yoke-01_20_q1	0. 4920	0. 1428	-0.0001	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_18_q1	0. 4977	0. 2212	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_14_q1	0. 4419	0. 3306	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_10_q1	0. 4867	0.3893	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_05_q1	0.0000	0.5672	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_01_q1	0.0000	0. 5480	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_20_q2	0.0000	0. 4561	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_10_q2	0.0000	0. 9504	0.0000	0.0000	0.0000	0.0000	0.0000
lw_yoke-01_01_q2	0. 0915	1. 4220	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_01_q1	0. 4274	0. 1568	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_07_q1	0. 4507	0. 2582	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_13_q1	0. 4754	0. 4177	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_01_q2	0. 4936	0. 2832	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_07_q2	0. 6266	0.6007	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_13_q2	0. 4392	1. 0343	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_01_q3	0. 4510	0. 1950	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_07_q3	0. 4719	0. 2886	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_13_q3	0. 5228	0. 4730	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_01_q4	0. 3540	0. 2711	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_07_q4	0. 5795	0. 5036	0.0000	0.0000	0.0000	0.0000	0.0000
sl_yoke-01_13_q4	0. 4645	0.8293	0.0000	0.0000	0.0000	0.0000	0.0000
up_magn-01_01_q1	0.0000	0. 4781	0.0000	0.0000	0.0000	0.0000	0. 5015
up_magn-01_01_q4	0.0000	0. 9552	0.0000	0.0000	0.0000	0.0000	0.9654
up_magn-01_01_q3	0.0000	0. 4810	0. 0119	0.0000	0.0000	0.0000	0.8377
up_magn-01_01_q2	0.0000	1. 0815	0.0000	0.0000	0.0000	0.0000	0.7149
lw_magn-01_22_q1	0.0000	0. 5521	0.0000	0.0000	0.0000	0.0000	0. 4195
lw_magn-01_22_q2	0.0000	0. 5024	0.0000	0.0000	0.0000	0.0000	0. 7965
lw_magn-01_22_q3	0.0000	0.6073	0.0000	0.0000	0.0000	0.0000	0. 4547
lw_magn-01_22_q4	0.0000	0.6899	0.0000	0.0000	0.0000	0.0000	0.6820
up_cham-01_01_q1	0.0000	0.5304	0.0000	0.0000	0.0000	0.0000	0.0000
up_cham-01_01_q2	0.0000	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000
up_cham=01_01_q3	0.0000	0. 4163	-0.0001	0.0000	0.0000	0.0000	0.0000
up_cham=01_01_q4	0.0000	0. 2039	0.0000	0.0000	0.0000	0.0000	0.0000
lw_cham-01_05_q1	0. 3119 0. 0020	0. 0000 0. 0000	-0.0001	-0.0001 -0.0001	0.0000 0.0000	0.0000	0.0000 0.0000
lw_cham-01_05_q2 lw_cham-01_05_q3	0.0020	0.0000	-0. 0001 -0. 0001	-0. 0001 -0. 0001	0.0000	0.0000 0.0000	0.0000
lw_cham=01_05_q3	0.0000	0. 2917	-0. 0001 -0. 0001	-0. 0001 -0. 0001	0.0000	0.0000	0.0000
	0.0003	0. 1203		0. 0001	0.0000	0.0000	0.0000
pomp-03_04 pomp-03_01	0.0000	0. 1203	0.0000 0.0000	0. 0000	0.0000	0.0000	0.0000
leg-03 02 q1	0. 0000	0.0300	0.0000	-0.0001	-0.0000	-0.0001	0.0000
leg-03_02_q1 leg-03_02_q4	0.0000	1. 3327	0.0000	0. 0001	-0.0001	-0.0001	0.0000
leg-03_02_q4 leg-03_02_q3	0.0000	0. 5151	0.0000	0.0000	-0.0001	-0.0001	0.0000
leg-03 02 q2	0.0000	0. 5131	0.0000	0.0000	-0.0001	-0.0001	0.0000
delec-01 01 02	0.0000	0. 3129	-0. 0000	0. 0000	0.0001	0.0001	0.0000
delec-01_01_02 delec-03_01_01	0.0000	0.0526	0. 0001	0. 0000	0.0000	0.0000	0.0000
delec-03_01_01 delec-03_01_03	0.0000	0.0526	0.0000	0.0000	0.0000	0.0000	0.0000
delec-05 01 01	0.0000	0.0373	0.0000	0.0000	0.0000	0.0000	0.0000
delec-05_01_01 delec-05_01_03	0.0000	0. 0203	0.0000	0.0000	0.0000	0.0000	0.0000
delec-07 01 02	0.0000	0. 0309	-0.0001	0.0000	0.0000	0.0000	0.0000
uciec 01_01_02	0.0000	0. 0000	0.0001	0.0000	0.0000	0.0000	0.0000

C/E の全体的な傾向を見るために、図 2. 18 にサイクロトロン本体のサンプリング位置における Mn-54 と Co-60 の放射化量の測定値に対する計算値の比(C/E)の分布図を示す。1 \sim 36 番はセクターマグネット、37 \sim 62 番は上段のヨーク、63 \sim 89 番は下段のヨーク、90 \sim 97 番はメインコイル、98 \sim 105 番は真空箱、106 と 107 番は拡散ポンプ、108 \sim 111 番は脚部、 $112\sim$ 117 番はディー電極である。

赤線が Mn-54 の放射化量、黒線が Co-60 の放射化量の C/E を表している。Mn-54 は、ヨークと電磁石において測定値が検出限度以下のものがあるために、欠落により櫛の歯状になっている。Mn-54 は、セクター部では 0.6 程度、ヨーク部では 0.5 程度であるが、比較的安定した分布傾向となっている。これは、Mn-54 が高速中性子に感度があるので、ターゲットから近いものは割合良く計算で来ているためと思われる。これに対して Co-60 は、セクター部で 0.3 程度であるが、ヨーク部では 0.5 程度になり、電磁石部では 0.6 程度、真空箱は 0.1 程度、脚部は 0.8 程度、ディー電極は 0.04 程度になっている。

この傾向をまとめると、サイクロトロン本体の中心に近い内側領域が悪く、外側領域が良いと言える。Co-60 の C/E について、上段ヨークの第一象限の結果を抜粋して表 2.11 に示す。C/E は、内側が 0.166 であるが、外側は 0.833 と大きく変化している。計算値の内側と外側の比は 1.54 であるのに対し、測定値の比は 7.72 と約 5 倍の変化となっている。

図 2.18 サイクロトロン本体のサンプリング位置における Mn-54 と Co-60 の放射化量の測定値に対する計算値の比(C/E)の分布図

表 2.11 上段ヨークの下面からの高さと Co-60 の放射化量

上段ヨークの下面	Co-60の放射化量				
ング からの高さ[cm]	測定値 [Bq/g]	計算値 [Bq/g]	C/E		
0~1 (内側)	0.702	0.117	0.166		
10~11 (中間)	0.190	0.092	0.482		
19~20 (外側)	0.091	0.076	0.833		
内側と外側の比	7.72	1.54			

サイクロトロンの自己遮蔽体の内側空間における#1 ターゲット照射時の中性子スペクトルを図 2.19 に示す。体積を考慮していないため、図の縦軸は相対値であることに留意されたい。鉄の共鳴構造ピークを除くと、熱中性子ピークのない高速中性子場であることがわかる。

上述した上段ヨークの測定位置における中性子スペクトルを図 2.20 に示す。スペクトル形状を比較するために、定数を掛けた相対値であることに留意されたい。このスペクトル形状から見て、Co-60 の放射化量の大部分は、図 2.12 に示したように 130 eV 付近の共鳴ピークによるものと考えられる。計算ではサイクロトロン実機の内部での詳細なビームロスなどは入力条件として与えられていないため、低エネルギー側の中性子束の評価が不十分であるものと思われる。また、銅線は樹脂で固められているが、今回のモデルでは樹脂の影響は反映されていないので、樹脂による中性子の熱化の影響も考慮されていないことも、計算が過小評価する一因であると考えられる。

図 2.19 サイクロトロンの自己遮蔽体の内側空間における PHITS2 計算の中性子スペクトル

図 2.20 サイクロトロンの上段ヨーク (第一象限) の測定位置における PHITS2 計算による中性子スペクトル (比較のため定数を掛けている)

この結果を改善するために今後行うべき検討課題を以下に示す。

- ① ターゲットで生成される中性子の低エネルギースペクトルと収率の絶対値の検討。
- ② 加速中または照射時の陽子の散乱や漏洩による放射化量への寄与の検討。
- ③ 不純物量の系統誤差の検討と測定する不純物元素の再評価。

2. 3. 2 コンクリートの解析結果

前節と同様に PHITS2 計算により得られた中性子束を元に、床コンクリートの放射化量を DCHAIN-SP2001 で求めた。コンクリートコア①と②における測定値、計算値と C/M を表 2.12 に示す。基本的に $2\sim10$ 倍程度の過大評価であった。但し、Cs-134 のコア②は計算値 が過小評価している。この原因は Cs-134 の分析値が過小評価されているためと考えられる。

自己遮蔽型サイクロトロンの床コンクリート表層部分における放射化量の測定値と計算結果の比較表 (放射化量は、サイクロトロン停止後90日時点)(床コンクリートの組成は分析値) 表 2.12

					ンロ	コンクリートコア①	(I).					
コンクリート	Sc-460	Sc-46の放射化量 [Bq/g]	3q/g]	Co-600	Co-60の放射化量 [Bq/g]	3q/g]	Cs-1340	Cs-134の放射化量 [Bq/g]	Bq/g]	Eu-1520	Eu-152の放射化量 [Bq/g]	Bq/g]
<u>牧国が599</u> 深さ [cm]	測定値(M)	計算値(C)	C/M	測定値(M)	計算値(C)	C/M	測定値(M) 計算値(C)	計算値(C)	C/M	測定値(M) 計算値(C)	計算値(C)	C/M
-	0.00737	0.0326	4.42	0.00937	0.0889	9.49		0.0154		0.0176	0.1351	7.68
3		0.0473			0.1177			0.0163			0.1949	
5	0.00956	0.0500	5.23	0.0101	0.1188	11.76		0.0140		0.0183	0.2039	11.14
7		0.0468			0.1084			0.0113			0.1898	
6	0.00825	0.0402	4.88	0.0118	0.0915	7.75	0.00357	0.0088	2.45	0.0247	0.1625	6.58
11		0.0325			0.0731			0.0065			0.1307	
13	0.00828	0.0254	3.07	0.00919	0.0567	6.17		0.0048		0.0181	0.1020	5.63
15		0.0192			0.0425			0.0034			0.0767	
17	0.00725	0.0142	1.96	0.00552	0.0315	5.71		0.0025		0.0167	0.0569	3.41
19	0.00684	0.0105	1.54	0.00441	0.0232	5.25		0.0018		0.0199	0.0419	2.11

					ابا ا	コンクリートコア②	(2)					
4一/ウベニ	Sc-460	Sc-46の放射化量 [Bq/g]	Bq/g]	Co-60	Co-60の放射化量 [Bq/g]	Bq/g]	Cs-134	Cs-134の放射化量 [Bq/g]	[Bq/g]	Eu-152	Eu-152の放射化量 [Bq/g]	Bq/g]
<u>我国</u> がらの 深さ [cm]	測定値(M)	測定値(M) 計算値(C)	W/S	測定値(M)	計算値(C)	C/M	測定値(M)	計算値(C)	C/M	測定値(M)	計算値(C)	C/M
1	0.00845	0.0316	3.74	0.0287	0980'0	2.99	0.0326	0.0147	0.45	0.0273	0.1312	4.81
3	0.0136	0.0450	3.31	0.0298	0.1114	3.74	0.0364	0.0152	0.42	0.0253	0.1849	7.31
2	0.0161	0.0482	2.99	0.0228	0.1145	5.02	0.0246	0.0132	0.54	0.0241	0.1967	8.16
7	0.00753	0.0442	5.88	0.0152	0.1023	6.73	0.0165	0.0107	0.65	0.0175	0.1789	10.22
6	0.00464	0.0381	8.22	0.00722	0.0868	12.02	0.0071	0.0084	1.18		0.1538	
11	0.00431	0.0312	7.23		0.0699		0.00542	0.0062	1.14		0.1254	
13		0.0240			0.0536			0.0045			0.0963	
15		0.0182			0.0404			0.0032			0.0730	
17		0.0135			0.0298			0.0023			0.0538	
19		0.0099			0.0218			0.0017			0.0396	

3. コンクリート及び金属の測定・分析

3. 1 コンクリートの測定・分析

3. 1. 1 コンクリートの測定対象部位

コンクリート試料の測定値は、既に施設が解体撤去されているため過去のデータから引用した。測定対象は、最も放射化が起こると予想される F-18 用ターゲットポート (No.1) 正面の自己遮蔽体及びその直下の床面とし、1cm 線量当量率の最も高い箇所とした。コンクリートコア採取箇所を図 3.1 に示す。

図 3.1 コンクリートコア採取箇所 (平面図) 通常コンクリート製の自己遮蔽体はサイクロトロンを囲うように 設置されているが、ここでは前後に移動した時を示している。

3. 1. 2 コンクリートの 1cm 線量当量率測定結果

サイクロトロン停止から 241 日後、当該施設においてコンクリートコア採取箇所の 1cm 線量当量率を密着にて測定した。測定器はシンチレータ 25.4 Φ ×25.4mm のN a I (T 1) シンチレーションサーベイメータ*であり、測定時の時定数は 10 秒とした。この結果、自己遮蔽体コア採取位置表面で 0.26 μ Sv/h、床面コア採取位置表面で 0.09 μ Sv/h であった (B. G. 0.06 μ Sv/h を含む)。

[※] 日立アロカメディカル株式会社製 型式 TCS-161

3. 1. 3 コンクリートの試料採取方法

コンクリートコアは、直径 ϕ 50mm のボーリングドリルを用いて、床面は長さ 330mm のコア試料、自己遮蔽体壁面は長さ 312mm の試料を採取した。なお、自己遮蔽体は厚さ約 9mm の鉄板で覆われているため、コア抜きは近傍の鉄板を取り去って作業を行った。また、自己遮蔽体のコンクリートには、中性子を遮蔽するため、ボロン化合物、ポリエチレンビーズ等が含まれている。

3.1.4 試料前処理法および測定方法

コンクリート試料は、既に施設が解体撤去されていることから解体当時に採取した試料を用いた。測定項目は、 γ 線スペクトル測定(測定時間: 10,000 秒)と H-3 及び C-14 (測定時間: 10分) である。

(1) コンクリートコア試料の前処理と測定部位

コンクリートコア試料を床および自己遮蔽体から採取した。床のNo.1 は表層・深さ 4cm・8cm・12cm・16cm・18cm、自己遮蔽体のNo.2 は、表層・深さ 2cm・4cm・6cm・8cm・10cm の箇所を図 3.2 に示すように厚さ 2cm の断片に切断し粉砕した。ここで、コンクリートの切断にはダイヤモンドカッターを、粉砕はスタンプミルを用いた。

粉砕した試料は良く混合し、 γ 線スペクトル測定用はU 8 容器に詰め密封し測定試料とした。試料重量はNo.1 で 75.00g、No.2 で 60.00g である。H-3 及び C-14 分析試料は良く混合したものをビニール袋に入れ一時保管した。

図3.2 コンクリートコア切断筒所および測定対象筒所

(2) 測定方法

①γ線スペクトル測定方法

 γ 線スペクトル測定にはゲルマニウム半導体検出器を用い、測定時間については十分に放射化核種が検出可能な 10,000 秒とした。対象核種はコンクリートで生成される可能性がある次の 10 核種とした。

Na-22, Sc-46, Mn-54, Fe-59, Co-60, Zn-65, Cs-134, Ce-139, Eu-152, Eu-154 なお、参考として天然核種の K-40 も対象とした。表 3.1 にコンクリート中に生成する核種の一覧表を示す。

使用したゲルマニウム半導体検出器は、ORTEC 社製の GMX-20195-S で測定系の概要を以下に示す。

[概要]

① 検出器 : 53.6Φ×52.8 mm ゲルマニウム半導体検出器

② エネルギー範囲 : 3keV-10MeV

③ 相対効率 : 20 %

④ エネルギー分解能 : 1.95 keV FWHM @ 1.332MeV (Co-60)

⑤ チャンネル数 : 4096 チャンネル

⑥ 遮蔽体厚: 鉛110 mm、鉄50 mm、内張(銅5 mm, アクリル5 mm)

表 3.1 コンクリート中に生成する核種一覧

半減期	主なγ線エネ ルギー(MeV)	放出比(%)	
2.6019y	1. 275	99. 9	
00.701	0.889	100	
83. 79a	1. 121	100	
312. 03d	0.835	100	
44 4054	1.099	56. 5	
44. 4950	1. 292	43. 2	
5 9712	1. 173	99. 9	
5. 2713y	1. 332	100	
244. 06d	1. 116	50.6	
2 0649	0.605	97. 6	
2.0048y	0.796	85. 5	
137. 641d	0.106	78. 9	
19 597	0.344	26. 6	
15. 557 y	1. 408	21. 1	
8 503 7	0. 123	40.6	
o. əəəy	1. 274	35	
$1.251 \times 10^9 \mathrm{y}$	1. 461	10.7	
	2. 6019y 83. 79d 312. 03d 44. 495d 5. 2713y 244. 06d 2. 0648y 137. 641d 13. 537y 8. 593y	半減期 ルギー (MeV) 2.6019y 1.275 0.889 1.121 312.03d 0.835 44.495d 1.099 1.292 1.173 1.332 244.06d 1.116 2.0648y 0.796 137.641d 0.106 13.537y 1.408 8.593y 0.123 1.274	

出典:「放射線データブック」、村上悠紀雄編、地人書館(1982)

②H-3 及び C-14 測定方法

コンクリート中に生成する β 線放出核種であるH-3 及びC-14 は、 β 線エネルギーが低いため液体シンチレーション測定装置を用いて測定した。コンクリート試料は測定装置で測定できる試料にするため、電気炉を用いた加熱回収法により行った。分析手順の概要は次の通りである。

イ) 床No.1 で 1g、自己遮蔽体No.2 で 0.5g を粉砕した試料から分取し、分析試料とした。

- n) 床No.1 試料は加熱回収装置により 900℃以上で 60 分間加熱し、H-3 及び C-14 をモノエタノールアミン 2m1 にて捕集し試料調整した。
 - 自己遮蔽体No.2 は自己遮蔽体コンクリートにポリエチレンが混在しており、急激な燃焼を抑えるため試料温度を段階的に上昇させ最終的に 900 C以上とし合計 120 分間加熱した。H-3 はコールドトラップ法で、C-14 はモノエタノールアミン 2m1 に捕集し試料調整した。
- n) H-3, C-14 の測定は液体シンチレーション測定装置を用い、試料及び BG の測定時間はクリアランスレベルを担保できる 10 分とした。液体シンチレーション測定装置は PerkinElmer 社製 Tri-Carb 3100TR/LL を用いた。

3. 1. 5 コンクリートコアの測定結果

(1) γ 線スペクトルの測定結果

測定結果は、コア採取時(サイクロトロン停止から 89 日時点)に減衰補正した。コンクリートの深さ方向の放射性物質濃度測定結果を添付表 3.1.1 に、深さ方向の放射性物質濃度分布を添付図 3.1.1 及び添付図 3.1.2 に示す。床 No.1 で検出された核種は Sc-46, Co-60, Eu-152 で あ り 、 自 己 遮 蔽 体 No.2 で 検 出 さ れ た 核 種 は Sc-46, Co-60, Cs-134, Eu-152 であった。表 3.2 に最大、最小の放射性物質濃度を示す。

濃度分布は床 No.1 で深さ 9cm、自己遮蔽体 No.2 で深さ 3cm 程度をピークに指数関数的に減少している。Sc-46 の分布傾向が他の核種と多少の違いがあるが、これはコンクリート中の Sc を含む骨材が偏在していることによるものと考えられる。

非 39	是十	基小のコンカリー	ト中の放射性物質濃度(試料採取時)
AV .) /.	HO V	一般 ハトリナユーノーケーリー	

試 料 名	項目		放射性	生物質濃度 (Bq/g)	
时 村 右	快日	Sc-46	Co-60	Cs-134	Eu-152	K-40(参考)
床 No.1	最大	9.56E-03	1. 18E-2	検出限界未満	2. 47E-02	1.72E-01
₩ NO. 1	最小	6.84E-03	4. 41E-03	検出限界未満	1. 67E-02	1.03E-01
自己遮蔽体 No.2	最大	1.61E-02	2.98E-02	3.64E-02	2.73E-02	5. 30E-01
日 C 遮	最小	4. 31E-03	5. 22E-03	5. 42E-03	1.07E-02	4. 37E-01

(2)H-3 及び C-14 の測定結果

H-3 及び C-14 の放射性物質濃度測定結果を表 3.3 に示す。床 No. 1 の結果は全て検出されず、H-3 で 3.60E-1 Bq/g 未満、C-14 で 1.92E-1 Bq/g 未満であった。自己遮蔽体 No. 2 の結果は、深さ $0\sim2$ cm の No. 2-A で、H-3 のみ 4.26E-1 Bq/g 検出されたが、それ以外は全て検出されなかった。自己遮蔽体試料の検出限界濃度は H-3 で 3.26E-1 Bq/g、C-14 で 3.96E-1 Bq/g 未満であった。

表 3.3 H-3 及び C-14 の測定結果

試料名	核	種		放射性	物質濃度	(Bq/g)	
八件/石	炒	性	0~2 cm	4∼6 cm	8∼10 cm	12~14 cm	16∼18 cm
	11 0	測定値	検出限界未満	検出限界未満	検出限界未満	検出限界未満	検出限界未満
床	H-3	検出限界	3.60E-01	3. 58E-01	3. 46E-01	3. 54E-01	3. 49E-01
No. 1	C 14	測定値	検出限界未満	検出限界未満	検出限界未満	検出限界未満	検出限界未満
	C-14	検出限界	1.89E-01	1. 91E-01	1. 90E-01	1. 92E-01	1. 91E-01
試料名	核	種		放射性	物質濃度	(Bq/g)	
11八十十二	12/	作里	0~2 cm	$2\sim4$ cm	4∼6 cm	6∼8 cm	8∼10 cm
	H-3	測定値	4. 26E-01	検出限界未満	検出限界未満	検出限界未満	検出限界未満
自己遮蔽体	п-э	検出限界	3. 19E-01	3. 20E-01	3. 26E-01	3. 12E-01	3. 11E-01
No. 2	C-14	測定値	検出限界未満	検出限界未満	検出限界未満	検出限界未満	検出限界未満
	C-14	検出限界	3. 72E-01	3. 78E-01	3. 78E-01	3. 94E-01	3.96E-01

(3) コンクリート試料のクリアランス評価

クリアランス評価をする場合 NISA 文書 *1 では、評価に用いる放射性物質以外の放射性物質の Σ D / C *2 が 10%未満であることとされている。

H-3 及び C-14 の測定結果から、H-3 は自己遮蔽体 No. 2-A で 4.26E-1 Bq/g 検出されたが H-3 のクリアランスレベルは $100 \, \text{Bq/g}$ と高い値であるため、クリアランス指標である $\Sigma \, \text{D/C}$ に影響を及ぼさない。また、C-14 のクリアランスレベルは $1 \, \text{Bq/g}$ ではあるが、今回の測定では全て検出限界未満であり、クリアランス指標である $\Sigma \, \text{D/C}$ に影響を及ぼさない。したがって、H-3 及び C-14 はクリアランスに問題とならない核種であると判断できる。

 γ 線スペクトル測定結果から、採取時点(停止後 89 日)での床 No. 1-A の Σ D / C への寄与は、Eu-152 で 50%、Co-60 で 30%、Sc-46 で 20%程度であり、Eu-152, Co-60 で 80%占められている。1 年後では Sc-46 の半減期が 83.7 日であることから減衰して約 1/16 に減少することにより Eu-152, Co-60 が占める割合は 97%程度となる。

また、自己遮蔽体 No. 2-A で検出された核種の放射能量割合は、H-3 が 80%程度と大半を占めているが、H-3 のクリアランスレベルが $100 \mathrm{Bq/g}$ であることから D / C は $4.26 \mathrm{E}$ -3 となり Σ D / C への寄与はかなり小さくなる。以上のことから H-3 を除外すると Eu-152 で 28%、Co-60 で 30%、Cs-134 で 34%、Sc-46 で 9%程度であり、Eu-152, Co-60, Cs-134 で Σ D / C の 92%程度占められていることがわかる。1 年経過すると床 No. 1 と同様に Sc-46 が減衰して Eu-152, Co-60, Cs-134 が占める割合は 99%程度となる。

※1 放射能濃度の測定及び評価の方法の認可について (内規) 平成 18 年 1 月 30 日、経済産業省

※2 Dは放射性物質濃度 Bq/g、Cはクリアランスレベル Bq/g であり、放射性物質濃度 (D) をクリアランスレベル (C) で除した値がD/Cである。また、それぞれの放射性物質濃度 (D) をクリアランスレベル (C) で除した値 (D/C) の総和が $\Sigma D/C$ である。

クリアランスの是非を評価する場合、対象物に含まれる核種から重要核種を選定して行うことが合理的である。以上に述べたコンクリート試料中に含まれる核種の Σ D / C への寄与率を考慮すると、サイクロトロンの運転停止から 1 年経過した場合、床 No. 1 では Eu-152, Co-60、自己遮蔽体では Eu-152, Co-60, Cs-134 を重要核種とすることが妥当である。

コンクリート試料の測定結果とクリアランスレベルとを比較するため、重要核種のみから求めた Σ D / C とそれ以外に検出された核種(以下、検出核種)も含めた Σ D / C の一覧表を添付表 3.1.2 に示す。また、表 3.4 に床 No.1 及び自己遮蔽体 No.2 のそれぞれの深さにおける Σ D / C をまとめた。

この結果、床 No. 1 では重要核種の Σ D / C、検出核種も含めた Σ D / C ともにコア 採取時において深さによらずいずれも 1.0 以下であった。自己遮蔽体 No. 2 ではコア採取時の検出核種を含めた Σ D / C は、深さ 2~4cm で Sc-46 の寄与が大きく 1.05 とクリアランスレベルを僅かに上回った。ただし、冷却期間を 1 年とすると Sc-46 が減衰して Σ D / C は 0.81 となり、クリアランスレベルを下回ることがわかる。

以上のことから、コンクリートはクリアランス対象物となり得ることがわかった。

表 3.4 コア試料の深さ方向の Σ D / C (試料採取時)

로 (과 4년	亚 年 牡 色			試料採取時	ΣD/C		
試料名	評価対象	0~2 cm	4∼6 cm	8∼10 cm	12~14 cm	16∼18 cm	18~20 cm
No. 1	重要核種	2.70E-01	2.84E-01	3.65E-01	2.73E-01	2. 22E-01	2.43E-01
床	検出核種	3.43E-01	3.80E-01	4.83E-01	3.56E-01	2. 95E-01	3. 12E-01
試料名	評価対象			試料採取時	ΣD/C		
八川	計	0~2 cm	$2\sim4$ cm	4∼6 cm	6~8 cm	8∼10 cm	10~12 cm
No. 2	重要核種	5.60E-01	5.51E-01	4. 69E-01	3. 27E-01	7. 22E-02	検出限界未満
自己遮蔽体	検出核種	9.75E-01	1.05E+00	8.76E-01	5.67E-01	1.90E-01	9.73E-02

3.2 金属の測定・分析

3. 2. 1 金属の測定対象及び採取位置

測定対象は図 3.3 に示すように、サイクロトロン本体の放射化量が把握できるようセクターマグネット、ヨーク、電磁石、拡散ポンプ、真空箱、脚部及びディー電極とした。また、試料採取箇所は図 3.4 に示すように、F-18 用ターゲットポート付近(A-C)と F-18 用ターゲットポートと真空箱の中心を結ぶ線から $\pm 90^\circ$ 付近(B-D)とし、1cm 線量当量率の最も高い箇所とした。詳細な試料採取箇所を添付図 3.2.1 に示す。

 D
 F-18 用ターゲットポート(No.1)

 B
 F-18 用ターゲットポート(No.5)

図 3.3 サイクロトロン立面図

図3.4 ビームライン上の断面図

3. 2. 2 金属の 1cm 線量当量率測定結果

サイクロトロン停止から 711 日後、解体されたサイクロトロンの各部位における試料採取箇所の金属表面で 1 cm 線量当量率を密着にて測定した。測定器はシンチレータ 25. $4 \Phi \times 25.4 \text{mm}$ のNaI(T1)シンチレーションサーベイメータ**1及び検出部約 $10 \Phi \times 9.5 \text{cm}$ の電離箱式サーベイメータ**2である。また、測定時、NaI(T1)シンチレーションサーベイメータの時定数は $10 \Phi \times 9.5 \text{cm}$ の応答時間は $5 \Phi \times 9.5 \text{cm}$ のイメータの時定数は $10 \Phi \times 9.5 \text{cm}$ の応答時間は $5 \Phi \times 9.5 \text{cm}$ の

NaI(T1)シンチレーションサーベイメータを用いた測定結果、ディー電極側面が $41.5\,\mu$ Sv/h と最も高く、次いでセクターマグネットが $2.35\,\mu$ Sv/h、ヨーク 2 段目が $2.12\,\mu$ Sv/h であった (B. G. $0.05\,\mu$ Sv/h を含む)。

詳細な測定結果は添付表 3.2.1 に示した。

^{※1} 日立アロカメディカル株式会社製 型式 TCS-172B

^{※2} 日立アロカメディカル株式会社製 型式 ICS-323C

図 3.5 に材質ごとの 1cm 線量当量率の方向特性を示した。鉄製のセクターマグネットやヨーク及び銅製の電磁石ではいずれも方向特性が認められ、概ね F-18 用ターゲットポート付近の A 及び C が高く、ターゲットポートから $\pm 90^\circ$ 回転した B 及び D の位置では比較的低線量率であった。ただし、アルミニウム製の真空箱はこれらの方向特性は認められなかった。

図 3.5 材質ごとの 1cm 線量当量率方向特性 A, B, C, D の位置は図 3.4 に示した。

3.2.3 金属の試料採取方法

金属の試料採取は、コア抜きとドリリングによる方法で行った。

金属のコア抜きは、ヨーク(鉄製)、セクターマグネット(鉄製)及び電磁石(銅製)は直径 ϕ 50mmのボーリングドリルを用いて、セクターマグネットでは長さ 295mm、及び電磁石では長さ 220mm を採取した。なお、ヨークは採取方向によって厚みが 2 種類あるため長さ 135mm と 200mm の 2 種類を採取した。電磁石では 220mm の試料を採取したが、電磁石内部は細かい銅線が樹脂で固められているため、コアの採取が容易ではなく、一部の試料では長さ 40mm の試料しか得られなかった。

拡散ポンプ、真空箱、脚部及びディー電極は最大 50mm×100mm 区画内に深さ 10mm のドリル孔を数十個あけ、約 80g の切粉を採取した。採取した試料の概要を表 3.5 に、試料の採取方法を図 3.6 に示す。

表	3	5	全属	邑の	試料
1X	υ.	U	11/ /12	to V ノ	D-V/17

測定対象部位	採取方法	試料サ	イズ	材質
侧足刈豕部位	休取万伍	長さ	直径	77 貝
セクターマグネット	コア抜き	295mm	φ 50mm	鉄 (表面銅メッキ)
ヨーク	コア抜き	135mm	φ 50mm	鉄
3-7	コノ扱さ	200mm	φ 50mm	並 大
電磁石	コア抜き	40mm	φ 50mm	銅
电燃石	1 / 扱さ	220mm	φ 50mm	如山
測定対象部位	採取方法	試料サ	イズ	材質
侧足刈参部型	休取万伝	採取領域	深さ	70 貝
拡散ポンプ	ドリリング	$20\text{mm} \times 70\text{mm}$	D10mm	ステンレス
真空箱	ドリリング	40mm×100mm	D10mm	アルミニウム
脚部	ドリリング	50mm×100mm	D10mm	鉄
ディー電極	ドリリング	40mm×100mm	D10mm	銅

コア試料採取

ドリリング試料採取

図 3.6 金属の試料採取方法

3. 2. 4 金属試料の前処理及び測定法

採取した試料は、サイクロトロン本体のセクターマグネット(鉄)、ヨーク(鉄)及び電磁石(銅)よりコア試料 32 本、拡散ポンプ (ステンレス)、真空箱 (アルミニウム)、脚部 (鉄)及びディー電極 (銅)からドリリングによる切粉試料 18 検体である。コア試料の測定箇所は表層、中央部、下部の 3 箇所とし、放射化の分布を詳細に調査するためにセクターマグネット及びヨークの各 2 本を約 2 cmの間隔で 1 cm の断片試料を採取し、 γ 線スペクトル測定を行った。

(1) 金属試料の前処理及び測定部位

32本の金属コア試料は、セクターマグネット8本、ヨーク16本及び電磁石8本である。図3.7に示すように厚さ1cmの断片に切断した。ここで、金属の切断にはチップソー切断機を用いた。厚さ1cmの断片はU8容器に詰め密封した。

拡散ポンプ、真空箱、脚部及びディー電極の切粉 18 検体は、切粉を良く混合してU 8 容器に詰め圧縮処理を施し密封し測定試料とした。

測定試料数は合計 115 検体である。この時の試料重量を表 3.6 に示す。

図3.7 金属コア切断箇所および測定対象箇所

表 3.6 γ線スペクトル測定用試料重量

部 品 名	組 成	試 料 名	試料重量(g)
セクターマグネット	鉄	No.1~No.8 断片	平均 122.48
ヨーク	鉄	No.9~No.24 断片	平均 123.47
電磁石	銅	No. 25~No. 32 断片	平均 136.17
拡散ポンプ	ステンレス	D 1	42.00
が		D 2	54. 00
真空箱	アルミニウム	D 3 ~ D 1 0	27. 00
脚部	鉄	D 1 1 ~ D 1 4	42.00
ディー電極	銅	D15, D16	16.00
ノイ一电極	如何	D17, D18	66.00

(2) 測定方法

①コアの計数率・1cm線量当量率分布測定

②γ線スペクトル測定方法

 γ 線スペクトル測定にはゲルマニウム半導体検出器を用い、測定時間については十分に放射化核種が検出可能な 10,000 秒とした。対象核種としては、金属試料で生成される可能性があり、比較的半減期の長い次の 7 核種とした。表 3.7 に金属中に生成する核種の一覧表を示す。

Na-22, Mn-54, Co-56, Co-57, Co-60, Zn-65, Ag-110m

使用したゲルマニウム半導体検出器は ORTEC 社製の GMX-20195-S で測定系の概要を 以下に示す。

「概要〕

① 検出器 : 53.6Φ×52.8 mm ゲルマニウム半導体検出器

② エネルギー範囲 : 3keV-10MeV

③ 相対効率 : 20 %

④ エネルギー分解能 : 1.95 keV FWHM @ 1.332MeV (Co-60)

④ チャンネル数 : 4096 チャンネル

⑤ 遮蔽体厚: 鉛110 mm、鉄50 mm、内張(銅5 mm, アクリル5 mm)

※1 日立アロカメディカル株式会社製 型式 TGS-136

※2 日立アロカメディカル株式会社製 型式 TCS-172B

表 3.7 金属中に生成する核種一覧

核種	半減期	主なγ線	放出比
1次1里	十級粉	エネルギー(MeV)	(%)
Na-22	2.6019y	1. 275	99. 9
Mn-54	312.03d	0.835	100
C- E6	70 761	0.84675	99.9
Co-56	78. 76d	1. 23826	67
Co-57	271d	0. 12206	85.6
00-57	271u	0. 13647	10.6
Co-60	5. 2713y	1. 173	99. 9
00-00	0.2713y	1. 332	100
Zn-65	244. 06d	1. 116	50.6
A m = 1.10m	250, 4d	0.65775	94. 4
Ag-110m	200.4d	0.88467	72.8

出典:「放射線データブック」、村上悠紀雄編、地人書館(1982)

3.2.5 金属試料の測定結果

(1) 金属コア試料の計数率・1cm 線量当量率測定結果

採取された金属コアの線量率分布を調べるため、GM サーベイメータと NaI シンチレーションサーベイメータを用いて、両端及び深さ方向の側面を 5cm 毎に密着測定を行った。結果を表 3.8(1)-(3)に示す。ここで、GM サーベイメータは β 線を放出する Co-60 等を対象にし、NaI サーベイメータは γ 線を放出する Mn-54, Zn-65, Co-60 等を対象としている。深さ方向の分布は、両端と側面の測定では幾何学的効率に相違があるため、側面の BG を差し引いた正味の測定値を用いた。深さ方向の分布の代表としてセクターマグネットの No.1 とヨークの No.12 について図 3.8(1) 及び図 3.8(2) に示す。これらの計数率・1cm 線量当量率は深さ方向に指数関数的に減少し、GM サーベイメータと NaI シンチレーションサーベイメータによる傾きはほぼ一致している。しかし、放射化核種は EC 壊変をするものが多く、 γ 線を対象に測定することが望ましいので、NaI シンチレーションサーベイメータを用いて測定すべきであり、GM サーベイメータは参考値とすべきである。また、代表核種を決め、1cm 線量当量率と放射性物質濃度との関連を導き出せれば 1cm 線量当量率から放射性物質濃度の算出が可能となる。したがって、小型サイクロトロンにおける 1cm 線量当量率と放射性物質濃度との関連性について更なる調査が必要である。

表 3.8(1) セクターマグネットコアの計数率・1cm線量当量率分布

teer.e.	測定				期定	関例			o me soni	101.00
試料名	效性	直面	2,5 cm	7.5 cm	12,5 cm	17.5 cm	22.5 cm	27.5 cm	庭前	華位
No.1	GM	3.06k	275	208	175	146	141	97	99	(opm)
760.1	Nal	1.20	0.36	0.27	0.25	0.20	0.20	0.13	0.11	(g Sy/h
No.2	GM	89	98	107	86	93	82	67	. 67	(opm)
NO.2	Nal	0.10	0.12	0.12	0.12	0.11	0.10	0.08	0.08	(# Sy/h
No.3	GM	681	249	204	190	145	133	119	94	(open)
160.3	Nal	0.37	0.34	0.31	0.28	0.24	0.19	0.14	0.11	(#Sv/h
No.4	GM	99	82	102	90	. 88	65	66	75	(opm)
1686	NaI	0.10	0.10	0.11	0.11	0.11	0.10	0.08	0.08	(# Sy/h
Nos	GM	2.63k	310	212	194	146	131	107	9.0	(apm)
Nos	Nal	1.10	0.40	0.30	0.26	0.21	0.18	0.15	0.10	(# Sv/h
Mark III	GM	3.49k	376	-207	179	149	125	118	101	(cpm)
No.6	NaI	1.34	0.37	0.20	0.24	0.20	0.16	0.13	0.10	(#.5v/h
No. 7	GM	83	93	90	.97	89	91	68	67	(apm)
No.7	Nal	0.10	0.11	0.11	0.11	0.10	0.08	0.08	0.08	(g Sv/h
this die	GM	.09	92	96	74	7.5	78	87	76	(cpm)
No.B	Nal	0.10	0.11	0.11	0.11	0.10	0.09	0.09	0.07	Car Sw/h

※ GM : GMサーベイメータ Nal : Nalシンテレーションサーベイメータ 上表の値は白 G. を含んだ値である。

演定語	BOE	株出開昇値 (BG含む)			
GM (spre)	52	87			
Nat (article)	0.05	0.09			

図 3.8(1) セクターマグネット No.1 の正味(計数率・1cm 線量当量率)分布

表 3.8(2) ヨークコアの計数率・1cm 線量当量率分布

試料名	測定		Attacher	単位				
45.55.53	政策	表面	2.5.cm	7.5 cm	12.5 cm	17.5 cm	底部	華似
No.9	GM	352	281	187	100	1	94	(opm)
	Nal	0.49	0.40	0.01	0.16	I XI	0.52	(µSe/h
	GM	74	80	89	63	1 /- [49	(opm)
No.10	Nal	0.08	0.08	0.07	0.06		0.06	(# 5v/h
Market Co.	GM	.78	81	59	55		52	(opm)
No.11	Nal	0.08	0.08	0.08	0.06		0.00	(#Se/h
Mar TH	GM	327	282	183	106	1/0 1	83	(opin)
No.12	Nal	0.66	0.40	0.28	0.16		0.12	(# 5v/h
40-10	GM	60	65	70	84	.60	63	(cpm)
No.13	Nal	0.07	0.07	0.07	0.06	0.06	0.06	(#Sv/h
No. 14	GM	103	97	74	69		60	(cpm)
No.14	Nal	0.11	0.11	0.10	0.08	0.06	0.06	Sat Sw/h
41-11	GM	83	60	61	60	50	51	(opm)
No.15	NaI	0.07	0.08	0.06	0.08	0.08	0.06	(# Sv/)
N- 10	GM	94	97	73	85	65	52	(cpn)
No.16	Nal	0.11	0.11	01.0	0.08	0.06	0.06	Lu Sv/h
92/999	GM	103	94	98	81	69	70	(opm)
No.17	NaI	0.12	0.12	0.10	0.08	0.07	0.04	(µ Sv/)
N- 10	GM	62	59	51	52	55	50	(cpn)
No.18	NaI	0.07	0.07	0.06	0.06	0.06	0.06	(#Sv/h
44-30	GM	111	105	77	71	69	62	(opm)
No.19	NaI	0.12	0.12	0.10	0.08	0.07	0.06	(μSv/)
N - 90	GM	59	67	61	51	40	56	(opm)
No.20	NaI	0.06	0.06	90.0	0.06	0.04	0.06	(#Sv/h
No.21	GM	324	275	169	98	/	92	(opm)
mn Z1	NaI	0.45	0.41	0.30	0.17		0.13	(µ Sv/)
N- 99	GM	69	18	63	52		48	(cpn)
No 22	NaI	0.08	0.08	0.07	0.06		0.06	Lu Su/h
No.23	GM	289	294	185	104		104	(opm)
NO.23	Nat	0.45	0.41	0.28	0.15		0.12	(# Sv/)
N- 24	GM	74	78	56	63		59	(opm)
No.24	Nal	0.08	0.09	0.07	0.06	V .	0.06	Lu Sv/h

※ GM GMサーベイメータ Nal : Nalシンチレーションサーベイメータ 上表の値はB G を含んだ値である。

海定器	おG信	検出発育症 (BG含む)
GM (cpm)	52	87
Nel Cardwist	0.06	0.09

◆ No.12 (GM) ■ No.12 (Nal)

図 3.8(2) ヨーク No.12 の正味(計数率・1cm 線量当量率)分布

期定箇所 測定 試料名 単位 装置 表 面 2.5 cm 12.5 cm 17.5 cm 21.0 om 底 部 GM 1.69 114 80 68 68 59 53 (cpm) No.25 Nal 0.18 0.14 0.10 0.07 0.06 0.06 0.06 (#Sv/h 定箇所 試料名 単位 表面 2.0 cm 底部 GM 53 59 54 (cpm) No.25 Nal 0.06 0.06 0.06 (# Sv/h) 136 123 GM 89 (cpm) No.27 0.17 Nal 0.13 0:12 (#Sv/h) GM 56 55 46 (cpm) No 28 0.00 0.08 0.06 Nal (# Sv/h) 新定箇所 禁罪 試料名 単位 7.5 cm 12.5 cm 17.5 cm 21.0 cm 表 面 2.5 cm GM 117 78 54 1.55 53 64 (cpm) No.29 Nai 0.16 0.13 0.00 0.08 0.06 0.06 0.06 (#Sv/h) 期定箇所 默料名 禁管 単位 2.0 cm 表面 度部 GM 61 83 49 (cpm) No.30 Nal 0.06 0.06 0.05 (#Sv/h) GM 119 110 (cpm) No.31 Nal 0.13 0.11 0.16 (# Sv/h) 57 GM 60 61 (apm) No.32 Nat 0.06 0.06 0.06 (# Sv/h) No.26~28.30~32 2.0 cm 12.5 cm 17.5 cm 21.0 cm No.25.29 2.5 cm 7.5 cm 計数率·Jom棘量当量率測定箇所 表面 -底部

表 3.8(3) 電磁石コアの計数率・1cm線量当量率分布

GM : GM 9- K11-9 Nal: Nalシンチレーションサーベイメータ 上表の値はB G を含んだ値である。

海定器 BG值 検出関係値(80含む) GM (opm) 0.06 0.09 Nat (ar 5w to)

(2) 金属コア試料のγ線スペクトル測定結果

測定結果は、コア採取時(サイクロトロン停止から 711 日時点の 2015 年 12 月 1 日) に減衰補正した。金属試料の放射性物質濃度測定結果を添付表 3.2.2 から添付表 3.2.8 に示す。

①金属コアの放射性物質濃度

各部品で検出された核種は、以下に示すとおりである。

イ)セクターマグネット : Mn-54, Co-60, Zn-65, Na-22, Co-57

ロ) ヨーク : Mn-54, Co-60, Zn-65 ハ) 電磁石 : Co-60, Zn-65, Ag-110m

こ) 拡散ポンプ : Co-60

ま) 真空箱 : Mn-54, Co-60, Zn-65, Na-22, Co-57, Co-56

^) 脚部 : Mn-54, Co-60, Na-22

ト) ディー電極 : Co-60, Zn-65 セクターマグネットで検出された核種の中で、Zn-65, Na-22, Co-57 は表層のみで検出されている。これは、セクターマグネットの表層に銅メッキが施されていることと、生成反応が陽子によるものと考えられる。

クリアランス可否の判断では、前述の NISA 文書より重要核種を決定するために重要核種以外の Σ D/C が 10%未満とする。つまり、構造材中に生成する核種の内、 Σ D/C への寄与が大きい順に並べたとき、ゲルマニウム半導体検出器により測定が容易な上位 $2\sim3$ 核種を選定し、選定した核種の寄与率の合計が 90%以上であればよい。

- n) ョーク(鉄)で検出される核種はほとんど Mn-54, Co-60 であり、一部 Zn-65 が検出される。しかし、その場合であっても Mn-54, Co-60 の 2 核種を合わせると Σ D/C への寄与が 98%以上となることから、重要核種は Mn-54, Co-60 となる。
- n) 組成が銅である電磁石及びディー電極は、同じ材質であっても検出される核種 に違いが見られる。
 - 電磁石の場合、検出される核種はほとんどが Co-60 と Ag-110m である。一部で Zn-65 が検出されることがあるが、Co-60 と Ag-110m の 2 核種を合わせると Σ D / C への寄与が 98%以上となることから、重要核種は Co-60 と Ag-110m となる。 ディー電極の場合、検出される核種は Co-60 と Zn-65 のみである。よって、この 2 核種を重要核種とする。
- =) 拡散ポンプ (ステンレス) 及び脚部 (鉄) については、Co-60 のみが検出されることから Co-60 が重要核種となる。
- 本)真空箱 (アルミニウム)は、上段と下段で検出された核種や放射能濃度に違いがある。放射能濃度からみると、上段の放射化は少なく、下段では放射化が強く多くの核種が検出される。下段は陽子による放射化が顕著であり、Zn-65, Na-22, Co-57 の放射能濃度が高い。ここで、Co-57 のクリアランスレベルが 1 Bq/g であるから D/C は一桁低くなるので、これを除いて Σ D/C への寄与が大きい順に考えると、Na-22、Zn-65 となる。この 2 核種を重要核種とした場合、他の Co-60 等が検出された場合でも 2 核種の Σ D/C への寄与の合計が 94%以上となることから、Na-22、Zn-65 が重要核種となる。

以上から、各組成による重要核種は、鉄で Mn-54, Co-60、ステンレスで Co-60、銅で Co-60, Zn-65 又は Co-60, Ag-110m、アルミニウムで Zn-65, Na-22 となる。これらの重要核種を元に Σ D/Cを求めた場合、すべての構造材で 90%を超える寄与となる値が

得られることがわかった。表 3.9 に重要核種の最大、最小の放射性物質濃度を示す。

放射性物質濃度(Bq/g) 放射性物質濃度(Bq/g) 重要 重要 部品名 部品名 核種 最大 最小 核種 最大 最小 セクター 5. 17E+00 9.77E-03 拡散ポンプ(ステンレス) Mn-54 Co-60 1.47E+00 4.27E-01 マグネット (鉄) Co-60 1.09E+00 2.39E-01 真空箱 下段 Zn-65 8.38E-01 1.52E-01 Mn-54 9.70E+00 <1.92E-03 (アルミニウム) Na-22 3.34E+00 1.50E+00 ヨーク (鉄) Co-60 1.80E+00 3.90E-02 脚部 (鉄) Co-60 1.12E-01 4.21E-02 Co-60 1.57E+00 2.06E-03 Co-60 1.04E-01 5.64E-02 電磁石 (銅) ディー電極(銅) Ag-110m 1.53E-02 2.39E-03 Zn-65 3.05E+03 <8.68E-03

表 3.9 重要核種の最大、最小の放射性物質濃度

②コアの深さ方向放射化分布

各コアの深さ方向の放射性物質濃度分布を添付図 3.2.2 に示す。検出された主な核種は Mn-54 及び Co-60 である。また、放射化分布の傾向は部品とターゲットポートの距離によって相違が見受けられる。深さ方向に対し詳細に測定したセクターマグネットのターゲットポート付近とターゲットポート付近より-90°側の分布を図 3.9(1)に、ヨークのターゲットポート付近とターゲットポート付近より-90°側の分布を図 3.9(2)に示す。なお、図には検出限界未満の核種については描かれていない。

イ) セクターマグネットの分布傾向の特徴

- a. 図 3.9(1)から Mn-54 と Co-60 を比較すると、深さ方向の減少傾向に相違がある。これは Mn-54 が速中性子、Co-60 が熱中性子による生成反応で、生成反応形式の違いによるものと考えられる。また、図 3.9(1)と図 3.9(2)を比較すると Mn-54 と Co-60 の減少傾向にも相違があることがわかる。
- b. 図 3.9(1)によると Co-60 の減少割合が少なく、深さ 30cm でも 1/10 価層に達していない。
- c.-90°側の分布傾向はターゲットポート側と同じであるが、傾きに多少の違いがある。

ロ) ヨークの分布傾向の特徴

- a. 図 3.9(2) からセクターマグネットと同様に Mn-54 と Co-60 の減少傾向に相違がある。
- b.ターゲットポート側と-90°側のMn-54とCo-60の放射化濃度が逆転している。 これは、ターゲットポート側と-90°側の中性子スペクトルの違いによるもの と考えられる。
- c. セクターマグネットと同様に-90°側の分布傾向はターゲットポート側と同じであるが、傾きに多少の違いがある。

No. 1 (ターゲットポート側)

図 3.9(1) セクターマグネットの深さ方向放射化分布

No. 12 (ターゲットポート側)

図 3.9(2) ヨークの深さ方向放射化分布

ここで、全ての測定値の傾向を比較するために、コア表層 $(0\sim1\,\mathrm{cm})$ の放射性物質濃度を1として深さ方向の放射性物質濃度を規格化した。核種は Mn -54及び Co -60とし、セクターマグネットとヨークを対象にした。図 3.10に Mn -54及び Co -60の深さ毎の割合を求めたグラフを示す。特徴としては、

- イ) 図 3.10 で、Mn-54 は、指数関数的に減少しているが、傾きに関しては幾つかの傾きがあるように見える。
- n) 図 3.10 では、Co-60 も指数関数的に減少しているが、明らかに幾つかの傾きがあるのがわかる。

そこで、Mn-54 及び Co-60 の減少傾向を分割するためにセクターマグネットとヨークに分けてグラフ化したものを図 3.11(1) 及び図 3.11(2) に示す。

- イ) セクターマグネット、ヨークとも Mn-54 の成分は1つであり、指数近似で良くフィットしている。ただし、図 3.11(1)ではセクターマグネットは、深さ 8cm 付近を境界として2つの近似式に分けるとよりフィットする。
- 回 図 3.11(1)及び図 3.11(2)のように Co-60 の成分は、ターゲットポート付近とターゲットポートより $\pm 90^\circ$ 付近に分けることができる。

以上のようにサイクロトロン本体の放射化は、部品(材質)、中性子発生源からの距離及び中性子スペクトルに依存するものと考えられる。今回測定したサイクロトロン本体での深さ方向の濃度割合の傾向を近似式で求めたことにより、深さに対するスケーリングファクターとして用いることができ、表層部分の放射性物質濃度から深さ方向の放射性物質濃度を推測することが可能になる。これは同じような形式で、同種のターゲットを使用しているサイクロトロンに適用できる可能性がある。

今回の調査ではターゲットポートより±90°付近の深さ方向のデータが不足しているので、追加測定をする必要がある。また、今後は他種のサイクロトロンについても詳細な調査をする必要がある。

図 3.10 Mn-54 及び Co-60 の深さ毎放射能濃度割合

図 3.11(1) セクターマグネットの Mn-54 及び Co-60 の深さ毎放射能濃度割合

図 3.11(2) ヨークの Mn-54 及び Co-60 の深さ毎放射能濃度割合

③金属試料のクリアランス評価

クリアランスレベルと比較するため、重要核種及び検出核種の Σ D/Cの一覧表を添付表 3. 2. 9 から添付表 3. 2. 15 に示す。また、表 3. 10(1)にセクターマグネット、表 3. 10(2)にヨーク、表 3. 10(3)に電磁石・拡散ポンプ・真空箱・脚部・ディー電極の Σ D/Cをまとめたものを示す。

これらの部品のΣD/Cの特徴は、

- イ) ターゲットポート近傍の試料において Σ D / C は、他の部分に比べて桁違いに高い。例えばセクターマグネットの No. 1、No. 3、No. 5 及び No. 6 は他の試料に比べてほぼ 10 倍の値となっている。
- n) ほとんどの部品で深さ方向に対しても大きくクリアランスレベルを超え、5年後においてもクリアランスレベルを下回ることはない。
- n) セクターマグネットにおいて、銅メッキによる放射化核種の Zn-65 のD/Cが 桁違いに高く、検出核種の $\Sigma D/C$ の殆どを占めている。
- =) 部分的な測定結果からクリアランス対象物となり得るものは、真空箱 (上段)、 ターゲットポートより±90°側にある脚部2本である。

しかし、今回採取した試料は部品の一部分であり、放射化の最も高い部分である。高放射化の部分は限定的であり、総量が数百 kg あるような部品全体としては濃度分布が存在しており、他の部分は放射性物質濃度が低い可能性がある。部品としてのクリアランスをする場合、平均放射能濃度から評価する必要があり、クリアランス対象物になり得る可能性もある。ただし、NISA 文書では、評価単位内での著しい偏り (100kg 程度の測定単位でクリアランスレベルの 10 倍を超える)がないこととされていることに注意が必要である。以上から、クリアランスの評価をするためには、試料の採取方法、測定方法及び評価方法等の効率化を検討することが重要である。また、本体組成と違ったメッキ等に高放射化を生じるものが微量混在する場合、 Σ D/Cに大きな影響を与える可能性があるため、これらを簡単に除去する方法等の検討が必要である。

表 3.10(1) セクターマグネットの Σ D / C (2015 年 12 月 1 日時点)

試料名	上段: 重要核種のみ 下段: 検出核種を含む Σ D / C 1 段のみ: 重要核種のみ									
	A	С	F	I	L	О	R	U	X	
No. 1	6. 17E+01		2. 02E+01	1.62E+01	1. 32E+01		9. 36E+00	7. 24E+00		
	9. 29E+02	3. 30E+01				1. 12E+01			5. 67E+00	
N. O.	7. 41E+00	_	_	_	4 005 100	_	_	_	2. 87E+00	
No. 2	8. 95E+00	_	_	_	4. 20E+00	_	_	_		
N O	4. 55E+01	-	_	_		=	_	=	5.89E+00	
No. 3	1. 62E+02	_	_	_	1. 52E+01	_	_	_		
N 4	7. 31E+00	_	=	=	0.005.00	=	=	=	2. 61E+00	
No. 4	9. 11E+00	_	_	_	3.88E+00	_	_	_		
N F	5. 80E+01	_	_	_	1. 36E+01	_	_	_	5. 54E+00	
No. 5	6. 76E+02	_	_	_	1.36E+01	_	_	_		
N. C	6. 25E+01	0.055.01		1 500:01						
No. 6	1. 00E+03	3.35E+01	2.06E+01	1. 53E+01	1.29E+01	1.07E+01	8. 56E+00	7. 21E+00	5. 74E+00	
No. 7	6.60E+00	_	_	_		_	_	_	0.407.00	
	6. 99E+00	_	_	_	3. 78E+00	_	_	_	2. 49E+00	
N - 0	8. 19E+00	_	_	_	9 015 00	_	_	_	0.000.00	
No. 8	9.26E+00	_	_	_	3. 81E+00	_	_	_	2.60E+00	

※ 一は未測定

表 3.10(2) ヨークのΣD/C (2015年12月1日時点)

		/ (2010	, == /	*****			
					上段:	重要核種のみ	
4 M/45			下段:	下段:検出核種を含む			
試料名			1段のみ:重要核種のみ				
	A	С	F	I	К	/	
No. 9	1. 14E+02	-	3. 08E+01	_	9.06E+00		
No. 10	4. 53E+00	-	1.64E+00	_	6. 67E-01		
No. 11	4. 87E+00	-	1. 68E+00	_	7.06E-01		
No. 12	1. 09E+02	6. 38E+01	2. 94E+01	1. 43E+01	8.70E+00		
試料名	A	С	F	I	M	Р	
No. 13	2. 31E+00	_	-	8. 25E-01	_	6. 67E-01	
No. 14	7.87E+00	-	-	1.87E+00	_	9.45E-01	
No. 15	1.55E+00	_	_	6.33E-01	_	6. 15E-01	
No. 16	7. 58E+00	_	_	1. 99E+00	_	9. 09E-01	
No. 17	8. 19E+00	_	_	1.88E+00	_	7. 67E-01	
No. 18	1.46E+00	_	_	5. 68E-01	_	5. 17E-01	
N 10	8. 68E+00			0.007.00		5 550 04	
No. 19	8. 85E+00	5. 72E+00	3. 46E+00	2. 20E+00	1. 08E+00	7. 77E-01	
No. 20	1. 41E+00	-	-	5. 29E-01	_	4. 11E-01	
試料名	А	С	F	I	K	/	
No. 21	1.00E+02	_	2.78E+01	_	8.56E+00	/	
No. 22	4.86E+00	_	1.66E+00	_	6.39E-01	/	
No. 23	1. 04E+02	_	2.96E+01	_	8.91E+00	/	
No. 24	5. 07E+00	_	1.79E+00	_	7.10E-01		

※ 一は未測定

表 3.10(3) (電磁石・拡散ポンプ・真空箱・脚部・ディー電極) の Σ D / C (2015 年 12 月 1 日時点)

部品名	試料名	ΣD/C	部品名	試料名	ΣD/C	部品名	試料名	ΣD/C	
	No. 25-A	1. 58E+01		D 3	1.95E+01	脚部	D 1 1	5. 95E-01	
					2.03E+01			7. 39E-01	
	No. 26-A	4. 45E-02		D 4	3. 09E+01		D 1 2	4 91E 01	
					3. 20E+01			4. 21E-01	
	N - 97 A	1. 43E+01		Б. Г	1.65E+01		D 1 3	1. 12E+00	
承兴工	No. 27-A	1. 45E+01	古亦然	D 5	1.73E+01				
電磁石	No. 28-A	4. 71E-02	真空箱	D 6	4. 18E+01		D 1 4	1.11E+00	
					4. 41E+01				
	No. 29-A	1. 32E+01		D 7	1. 22E-01		D 1 5	2. 65E+04	
	No. 30-A	6. 68E-02		D 8	1.35E-01	ディー	D 1 6	3. 05E+04	
	No. 31-A	1. 25E+01		D 9	2.67E-01	電極	D 1 7	5. 64E-01	
	No. 32-A	6.11E-02		D 1 0	8. 52E-02		D 1 8	1.04E+00	
拡散	D 1	4.27E+00	上段: 重要核種のみ 下段: 検出核種を含む						
ポンプ	D 2	1. 47E+01	1段のみ:重要核種のみ						

(3) 現場における γ 線スペクトル測定結果

現場において取扱が容易で、パーソナルコンピュータに USB ケーブルを接続するだけで γ 線スペクトルが測定可能な CdZnTe 半導体検出器(以下、CZT 検出器)を用いて試料採取箇所の γ 線スペクトル測定を行った。CZT 検出器の性能は以下に示すとおりである。また、図 3.12 に CZT 検出器の外観を示す。

[性能]

- ① 検出器:10×10×10mm CZT 検出器
- ② エネルギー範囲:30keV to 3.0MeV
- ③ エネルギー分解能: <2.5% FWHM @ 662keV
- ④ チャンネル数:4096(12 bit)

図 3.12 CZT 検出器の外観

測定は、対象物より $2 \, \mathrm{cm}$ の距離で 1 箇所 3,000 秒測定とした。測定した結果を添付表 3.2.16 から添付表 3.2.22 に示す。CZT 検出器による γ 線スペクトル測定で検出された 核種は、Co-57, Mn-54, Zn-65, Co-60, Na-22 などであり、放射化核種を十分確認することができた。しかし、測定対象物の形状が多種多様であるため定量には至らなかった。そこで、点線源による距離別計数効率を求め、ある一定の幾何学的条件の下において得られるピーク効率と γ 線エネルギーの関係である相対ピーク効率より相対的な放射能を算出し、核種の放射能比率を求めた。相対ピーク効率は、基準となるエネルギーを $662 \, \mathrm{keV}$ (Cs-137)にして規格化したピーク効率のエネルギー依存性を表す関数である。図 3.13 に距離別の相対ピーク 効率曲線を示す。相対ピーク効率は、 γ 線エネルギーが $200 \, \mathrm{keV}$ 以上ではほぼ一定となっている。

図 3.13 距離別相対ピーク効率曲線

核種の放射能比率を算出するために、相対ピーク効率から相対放射能を算出するには(1) 式を用いる。

$$\mathbf{a} := \frac{\mathbf{N}_{\mathsf{net}}}{(\; \boldsymbol{\eta}_{\; \mathsf{i}} \times \; \mathbf{I}_{\mathsf{i}} \times \; \mathsf{T} \;)} \; \cdots (1)$$

a; : 核種 i の相対放射能

N_{net} : 核種 i の対象ピーク面積(counts)

η_i : 核種 i の対象エネルギーにおける相対ピーク効率

I: 核種iの対象エネルギーの放出割合

T : 測定時間(sec)

核種の放射能比率は、(2)式により検出された核種の相対放射能全量と核種ごとの相対放射 能との比で求めることができる。

$$\varepsilon_{i} = \frac{a_{i}}{(a_{1} + a_{2} + \cdot \cdot \cdot + a_{i})} \cdots (2)$$

ε_i: 核種ごとの放射能比率a_i: 相対放射能または放射能

核種の放射能比率をゲルマニウム半導体検出器で測定した結果と比較するために、ゲルマニウム半導体検出器で求められた対象コアの深さ 20cm 程度までの核種毎の放射性物質濃度に試料重量を乗じて核種毎に総放射能を算出し、(2)式により核種の放射能比率を算出した。

ゲルマニウム半導体検出器で求められた核種の放射能比率と、コア採取箇所を直接 CZT 検出器で測定して求められた核種の放射能比率を比較したものを表 3.11 に示す。 対象とした核種は、No. $1\sim$ No. 24 のコア試料で検出された Mn-54, Co-60, Zn-65 である。 また、横軸にゲルマニウム半導体検出器により求められた核種の放射能比率、縦軸に CZT 検出器により求められた核種の放射能比率の散布図を図 3.14 に示す。 相関は概ね 一致しており、低濃度の核種は CZT 検出器での検出は難しいが、ある程度の核種の放射能比率は、現場での CZT 検出器による γ 線スペクトル測定をすることにより求められることがわかった。

また、放射能の比率が求められれば、ターゲットホイルのような小さな部品は、点線源と見なすことができるので、1 cm線量当量率($\mu \text{Sv/h}$)と 1 cm線量当量率定数を用いて核種毎の放射能を算出することができる。

現場での測定において定量するためには、検出効率を求めておく必要があるが、対象 物の形状が多種多様に渡るため求めることは困難である。今後検出効率の算定方法及び 測定器等の開発検討が必要である。

表 3.11 ゲルマニウム半導体検出器と CdZnTe 半導体検出器測定結果からの核種比率

		Ge 測定結果	CZT 測定結果			Ge 測定結果	CZT 測定結果
試料名	核種	からの	からの	試料名	核種	からの	からの
		核種比率	核種比率			核種比率	核種比率
	Mn-54	0.0989	0. 150	No. 10	Mn-54	0. 154	検出限界未満
No. 1	Co-60	0.0498	0.0413	NO. 10	Co-60	0.846	1
NO. 1	Zn-65	0.851	0.808	N - 11	Mn-54	0. 167	検出限界未満
	Co-57	0.000622	検出限界未満	No. 11	Co-60	0.833	1
	Mn-54	0. 266	0.339	N - 10	Mn-54	0.798	0.768
No. 2	Co-60	0.616	0.661	No. 12	Co-60	0. 202	0. 232
	Zn-65	0.118	検出限界未満	N - 10	Mn-54	0.0144	検出限界未満
	Mn-54	0. 235	0. 195	No. 13	Co-60	0. 986	1
	Co-60	0. 113	0.110	N - 14	Mn-54	0.0734	検出限界未満
No. 3	Zn-65	0.651	0.695	No. 14	Co-60	0.927	1
	Na-22	0.000336	検出限界未満	No. 15	Co-60	1	1
	Co-57	0.000756	検出限界未満	N - 16	Mn-54	0.0614	検出限界未満
	Mn-54	0. 259	0. 213	No. 16	Co-60	0. 939	1
No. 4	Co-60	0.605	0.787	N - 17	Mn-54	0.0720	検出限界未満
	Zn-65	0. 137	検出限界未満	No. 17	Co-60	0.928	1
	Mn-54	0.0751	0.150	No. 18	Co-60	1	1
No. 5	Co-60	0.0275	0.0429		Mn-54	0.0642	検出限界未満
NO. 5	Zn-65	0.897	0.807	No. 19	Co-60	0.928	1
	Na-22	0.000262	検出限界未満		Zn-65	0.00748	検出限界未満
	Mn-54	0.0949	0. 121	No. 20	Mn-54	0.00927	検出限界未満
No G	Co-60	0.0459	0.0733	No. 20	Co-60	0.991	1
No. 6	Zn-65	0.859	0.806	No. 21	Mn-54	0.770	0. 738
	Na-22	0.000116	検出限界未満	NO. 21	Co-60	0.230	0. 262
	Mn-54	0. 266	0. 260	No. 99	Mn-54	0. 150	検出限界未満
No. 7	Co-60	0.698	0.740	No. 22	Co-60	0.850	1
	Zn-65	0.0362	検出限界未満	No. 92	Mn-54	0.794	0. 757
	Mn-54	0.329	0.500	No. 23	Co-60	0. 206	0. 243
No. 8	Co-60	0. 590	0.500	No. 94	Mn-54	0.162	検出限界未満
	Zn-65	0. 0811	検出限界未満	No. 24	Co-60	0.838	1
No. O	Mn-54	0.828	0.773		Ge : ゲル	マニウム半導体	· · · · · · · · · · · · · · · · · · ·
No. 9	Co-60	0.172	0. 227		CZT : CdZı	nTe 半導体検出器	
				1			

図 3.14 ゲルマニウム半導体検出器と CZT 検出器の放射能比率の散布図

3. 2. 6 クリアランス測定における適切な測定時間の検討

放射化対象物をクリアランスする場合、対象核種の Σ D/C を評価し、評価値が 1 以下とならなければならない。これを満足する測定には、ゲルマニウム半導体検出器による γ 線スペクトル測定をする必要がある。今回の調査においては、十分に放射化核種が検出できるように 10,000 秒としたが、実際のクリアランス評価の場合は迅速に行わなければならず、長時間測定は難しい。そこで、適切な測定時間を見いだすため、以下の条件で各測定時間の検出限界濃度を推定して Σ D/C を評価した。対象物は、コンクリート、鉄、銅及びアルミニウムである。

また、金属の試料採取はコア試料ではなく、切粉状のものを想定した。

[条件]

・検出器 : ゲルマニウム半導体検出器

•相対効率:20%

・遮蔽体厚: 鉛110 mm、鉄50 mm、内張(銅5 mm, アクリル5 mm)

・試料重量: コンクリート 60g、 鉄 42g

銅 66g、 アルミニウム 27g

· 試料容器: U8容器

・測定時間:1,000秒~10,000秒

上記条件より算出した各材質の検出限界濃度とD/C及び $\Sigma D/C$ を表 3.12(1)-(4)に示す。ここで、D/Cの算出方法は、D(放射性物質濃度 Bq/g)は、検出限界濃度の値に置き換えて算出した。

(1) コンクリートの測定時間

対象核種は、コンクリート中で生成される

Na-22, Sc-46, Mn-54, Fe-59, Co-60, Zn-65, Cs-134, Ce-139, Eu-152, Eu-154

とする。すべての核種を対象とした場合、表 3.12(1)より Σ D / C が 1 以下となる測定時間は 5000 秒以上となる。測定の効率化を図るため、対象核種を今回コンクリート試料で検出された Sc-46, Co-60, Cs-134, Eu-152 に絞り込むと 1,000 秒以上となる。ただし、1,000 秒測定の Σ D / C の評価値は 9.73E-01 と 1 に近いため、5.57E-01 となる 2,000 秒以上の測定が妥当である。

なお、ここでは冷却期間が長くとれないことを想定して、Sc-46 も重要核種とした。

村 京 別志時間	41. 18	報 四 助作業度 日9~8	B/C	Io/c		ID/C 重要相信	N X NEEK	M M	検 は 関邦連接 がなべま	0.40	10/0	数に出る	重要執揮 10/0	1072×3
	No. 22	2.48E-02	2.48E-01				-	Na- 22	1.01E-02	101E-01			6	0.1
	Se- ##	1.42E-02	1.42E01		0			Ser- 46	6.33E-03	£33E-02	0	0		0.1
	Mrr. 54	1.80E-02	1.80E-01					Mr-34	6.44E-03	£44E-02	0		6 3	0.1
	Fe- 18	3.35E-02	3.35E-02	2 3				Fe- 18	1.25E-02	1.25E-02	13			1
#599-e	Ca+ 40	2.14E-02	2.34E-01	* 705.00	0	a 145 m	3599-4	Ce- 60.	7.81E-03	781E-02	1 405-00	0	A 445 A	0.1
TD00 see	Zer- 65	3.22E-02	3.22E-01	2.78E+00		8.73E-01	3000 see	Dr 48	1.74E-02	1.74E-01	1.285+00		4.00E-01	0.1
	Co-184 -	1.75E-02	1.75E-81		0			Or-134	8.49E+03	8.49E-02		0		0.1
	Ce-136	8.79E-03	6.76E-03					Co-138	4.52E-03	#32E-03			8 3	1
	Er-tSt	4.22E-02	4.22E-01	1	0			Eartfd:	1.74E-02	1.74E-01		0		0.1
	Eu-194	T.02E-01	1.025+00			0		Eur 194	4.99E-02	4.99E-01	13			0.1
	Nor. 22	1,39E-02	1.39E-01					Her III	7.71E-03	7.71E-02			7	0.1
	50.00	9.49E-03	9-40E-02	3	0			Ser. 68	4.46E-03	4.46E-02	15	0		0.1
	Mar: 94	7.40E-03	7.48E-02	3				Me-Si	3.86E-03	3 86E-02				0.1
	Fe- 18	Z.04E-02	2.045-02	9			company i	Fer. 18.	8.81E-03	8815-03			6 1	1
エクリー	Co- 60	1.42E-02	7.42E-01	1 83E+00	O	5.57E-01	80-39-4	Ge+80	5.67E-03	5 67E-02	822E-01	.0	2.84E-01	0.1
3000 sec	Zer- 85	2.11E-02	2.11E-01	1.035190		2276:03	SDOO see	201 85	1.10E-02	1.105-01	# 2 SE-01		2.846:01	0.1
	Cu-124	9.50E-00	# 50E-02	0.00	0			04-134	5.47E-03	5-47E-02		0	0 1	0.1
	C+-126	581E-03	5.61E-01	i 5				Ce-139	3.58E-03	158E-03	- 5		9 9	1
	Eu-152	2.25E-02	7.25E-01	1 1	0			Eu-102	1 282-02	7.285-01	- 3	0	9 1	0.1
	Eur/194	6.22E-02	#.22E-01					Eur 154	3 00E-02	100E-01			5	0.1

表 3.12(1) コンクリート試料の検出限界濃度とΣD/C

(2) 鉄試料の測定時間

対象核種は金属中で生成され、今回検出された

Mn-54, Co-60, Zn-65, Na-22, Co-57, Co-56, Ag-110m とする。すべての核種を対象とした場合、表 3.12(2)より Σ D / C が 1 以下となる測定時間は 2,000 秒以上となる。測定時間の短縮を図るため、対象核種を今回鉄試料で検出された Mn-54, Co-60 に絞り込むと 1,000 秒以上となる。ただし、不純物の状況によっては、他の核種も検出される可能性もあるので、すべての核種において Σ D / C の評価値が 8.69E-01 となる 2,000 秒以上の測定が妥当である。

表 3.12(2) 鉄試料の検出限界濃度と Σ D / C

計 質 別定時間	4t 18	展 コ 関作業度 8g/g	D/C	10/0	単無以降	10/0	# 質 別定時期	* #	株 元 原序基度 50/g	D/C	10/c		10/G	7775X 64%
	Mrr: 34	2.20E-02	2.20E-01		0			Mint-SK	7 86E-03	7,865-02		0		0.1
	Co-161	£84E-02	2.84E-01	9 9	Ö			Co- 80	9.47E-03	9.476-02		O	ė :	0.1
	2rr 85	3.89E-02	3,88E-01	lanara (i	200	News need	0.000	26- 65	Z 10E-02	2.10E-01			been easi	0.1
1000 Mc	Nor. 22	3 05E-02	3.000-01	1.596+00		5.04E-01	M	No. 22	1.24E-02	1.242-01	8.410-01		1.735-01	0.1
	Car 57	1.04E-02	1.04E-02	a committee		100000000	140000 1400	Da+ 57	7.07E-03	7.67E-03				(1)
	Can. 58	1.83E-02	1.835-01	8 8				Oct 56	£ 45E-03	6-45E-02			6 1	0.1
	Agr110m	1.98E-02	1.885-01	8 3		U		Agritidim	6.20E-03	6.20E-02			1 3	0.1
	My= 54	9.03E-03	9,03E-02		0			Mer St	4.71E-03	4.71E-02		0		0.1
	Don 60	1,725-02	1.72E-01	2 3	0			Ce* 60	6 88E-03	Ø 88€-02		0	4 1	0.1
100	Drr. 65	2.55E-02	2.55E-01			Harrison		20- 85	1.33E-02	1.33E-81			i	0.1
2000 +++	Non-22	1.71E-02	1.71E-01	8 88E-01		2.62E-01	2000 see	Art III	9.45E-03	9.45E-02	4.74E-01		1.185-01	0.1
	Cor 57	9.25E-03	9.255-03	25-00-5		27.70	20000 140	Ce- 57	5.31E-03	5.315-03				1.1
	Cor. 06	7.84E-03	7.845-02	8 8		II I		Our 38	3.04E-03	7.046-02				0.1
	Agrittim:	\$31E-03	B 31E-02	3				Ag-110he	5 46E-03	5.48E-02		\Box		0.1

(3) 銅試料の測定時間

対象核種は、鉄試料の場合と同等とする。すべての核種を対象とした場合、表 3.12(3) より Σ D / C が 1 以下となる測定時間は 2,000 秒以上となる。 Σ D / C の評価値も 5.52E-01 で 1 以下であるので、2,000 秒以上の測定が妥当である。

測定時間を 2,000 秒としたとき、今回重要核種として選定した、Co-60、Zn-65 及び Ag-110m の 3 核種の Σ D / C は 3.30E-1 であり、十分な評価が可能となる。

表 3.12(3) 銅試料の検出限界濃度とΣD/С

計 賞 別記時間	44 14	日本 15 日本 15 日本 15 日本 15	D/C	IO/G		ID/C	材 質 測定時間	* *	株 出 総件連接 Sq/g	D/C	In/c	世帯だ様	10/G	1975)) 54%
	Mr- 54	1.40E-02	1-40E-01	4	15	TY T		Mr- 14	5.00E-03	5 00E-02			9 3	0.1
	Cor All	1.81E-02	1.81E-01	6 6	0			Cq-90	6-02E-03	±02E-02	15	Q	13 1	.0.1
2.40	Zer- 85	2,47E-02	2.475-01		0	Stepenson	100401	.2rr 65	1.34E-02	1.34E-01		0	Assessment	0.1
1000 ***	Nor. 22	1.94E-02	1.94E-01	1.015+00		5.54E-01	3000 ms	No. 12	7.91E-03	J91E-02	A DBE-DT		2.34E-01	0.1
	Oct 57	8.61E-03	6.61E-03			Spring		Ch= 57	450E-03	4.50E-03	0.000		Grander of the	-1
	Cor- 36	1.16E-02	1.16E-01	8 8				Co-16	4.10E-03	4.10E-02	- 19		6 8	0.1
	Ag-110m.	1.265-02	1,295-01	5 11	O	1.1		Agrittin	3.95E-03	3.95E-02		0	11 3	0.1
	Mort 54	5.75E-03	5,755-02					Mor- 54	2.00E-03	3 00E-02				0.1
	Op~ 60	1.09E-02	1.095-01		0	11		Oe* 60	438E-03	4.38E-07	19	0		0.1
	Zr- 65	1.62E-02	1:62E-01		00	Same.		2r-11	8.47E-03	8.47E-02		0	1	0.1
E0000 sec	No. 25	1.09E-02	1.09E-01	5.52E-01		3.30E-01	5000 HI	Na- 22	6:01E-03	5.01E-02	3 02E-01		1.838-01	0.1
2000	Der 37	5.88E-03	5.885-03			STORES !	2000 140	Ger-ST	3.38E-03	3.385-03				3.1
	Da- 56	4 99€-00	4.995-02	E 3				Gt-38	4.48E-03	4.46E-02	15		5 1	0.1
	Ag-110m	5 9 2 E - 03			0			Agrillin.	3.49E-03	3.49E-02	15	0	5 - 5	0.1

(4) アルミニウム合金試料の測定時間

対象核種は、鉄試料の場合と同等とする。すべての核種を対象とした場合、表 3.12(4) より Σ D / C が 1 以下となる測定時間は 3,000 秒以上となる。ただし、 Σ D / C の評価値は 9.97E-01 と 1 に近いため、7.38E-01 となる 5,000 秒以上の測定が妥当である。 アルミニウムに対して、今回の測定結果から選定された重要核種は Na-22 及び 2n-65 であるが、合金の種類によって含まれる金属元素の種類や濃度が異なる可能性があり、生成する放射性核種も異なることが考えられる。このことから今回アルミニウム試料で検出された 2n-650, 2n-651, 2n-651, 2n-652, 2n-653, 2n-653, 2n-653, 2n-653, 2n-654, 2n-655, 2n-657, 2n-658, 2n-659, 2n-659,

表 3.12(4) アルミニウム合金試料の検出限界濃度と $\Sigma D/C$

計 室 別定時間	41. 18	様 田 御作業度 日の/1g	n-c	10/6	田田の仕様	ID/C	計 質 製工時間	m 18	検 力 関邦選技 Ba/s	0.40	In/c	田田 だ神	重要情報 10/0	1072×3 34/3
	Mr- 34	3.43E-02	3.43E-01	. 5	0			Mer 34	7:33E-03	7.33E-02		0		0.1
	Co- 80	4.42E-02	4.42E-01	E 5			1000000000	Ca- 80	1:07E-02	1.07E-01			9 9	0.1
PRESCA	20- 65	6:05E-02	6.05E-01	lanceman's	0	House was	PRILOR.	Dr- 65	2.07E-02	2 07E-01	Service of F	0	lawa-ni	0.1
88	Nor. 12	#.74E-02	4.74E-01	2.475+00	0	1.725+00	88	Na- 22	1-67E-02	1475-01	7.38E-01	0	5.48E+01	0.1
1000 HE	Dar. 57	1-81E-02	1.61E-02	January.	0	1600000000	9000 WE	Co+37	8.26E-03	8 265-03		0	Strassage	1
	Con 58	2.85E-02	2.85E-01		0			Co- 58	1.10E-02	1.10E-01	- 0	0	9 1	.01
	Ag-110m	3-08E-02	3.08E-01					Agrittim	8.52E+03	8.52E-02	- 6		5 5	0.1
	Mon Di	1.22E-02	1.22E-01		0			Mict 34.7	4.63E-03	4.636-02		0.		0.1
	Con (0)	1.47E-02	1.47E-01	2			nevernere!	Den 60	8.07E-03	# 07E-02	0		9 3	0.1
アルモニウム	Zirr 85	3.27E-02	3.27E-01	(0	Sie and a second	アルミニウム	2n- 65	1:36E-02	1.36E-01		0	book one is	0.1
44	Nor-22	1.93E-02	1.93E-01	8.97E-01	0	7.53E-01	- 日本	Nor 22	8.81E-03	8.81E-02	4.59E-01	0	3.42E-01	0.1
0000 mm	Cor 57	1.10E-02	1.10E+02		0	Carrier Villa	10000 Hz	Ce-37	5.235-03	5.236-03		O		1
	Car St	1.00E-02	1.00E-01	F 3	0			Cur-38	6.64E-03	6 84E-02		0		0.1
	Ag-110m	9:65E-03	9 655-02	6 3		11		Agrittim:	5-63E-03	5 6 3 E - 0.2			9 3	0.1

以上、設定条件下においての測定時間を検討した。この結果、アルミニウムでは測定時間が3,000秒、その他の試料では2,000秒となった。これより、クリアランスのための測定は3,000秒とすればよいことがわかった。しかし、クリアランス測定の測定時間は、検出器の効率、対象物、対象核種および供試量に依存していることから、測定時間の設定はその時々で検討することが必要である。

3. 3 コンクリート及び金属の測定・分析のまとめ

1) コンクリートの濃度測定

自己遮蔽体及びその直下の床面からコンクリートコアを採取して、放射性物質濃度を測定した。対象核種はコンクリートで生成される可能性がある次の 10 核種とした。

Na-22, Sc-46, Mn-54, Fe-59, Co-60, Zn-65, Cs-134, Ce-139, Eu-152, Eu-154

床面では Sc-46, Co-60, Eu-152、自己遮蔽体では Sc-46, Co-60, Cs-134, Eu-152 が検出された。

2) コンクリート試料のクリアランス評価

採取時点での床の Σ D/Cへの寄与は、Eu-152 で 50%、Co-60 で 30%、Sc-46 で 20%程度であり、Eu-152, Co-60 で 80%占められていた。1 年後では Sc-46 が減衰することにより Eu-152, Co-60 が占める割合は 97%程度となる。

自己遮蔽体では Eu-152 で 28%、Co-60 で 30%、Cs-134 で 34%、Sc-46 で 9%程度であり、Eu-152, Co-60, Cs-134 で 92%程度占められていた。1 年経過すると床と同様に Sc-46 が減衰して Eu-152, Co-60, Cs-134 が占める割合は 99%程度となる。

床の Σ D/Cはコア採取時においていずれも 1.0以下であった。自己遮蔽体ではコア採取時の Σ D/Cはクリアランスレベルを僅かに上回部分があるが、1年間冷却すると 0.81となり、クリアランスレベル以下となる。以上のことから、コンクリートはクリアランス対象物となり得ることがわかった。

3) 金属の濃度測定

セクターマグネット等からコア試料 32 本、真空箱等ドリリングによる切粉試料 18 検体を採取した。対象核種は、金属試料で生成される可能性があり、比較的半減期の長い Na-22, Mn-54, Co-56, Co-57, Co-60, Zn-65, Ag-110m の 7 核種とした。

この結果、次の核種が検出された。

イ)セクターマグネット : Mn-54, Co-60, Zn-65, Na-22, Co-57

 コーク
 : Mn-54, Co-60, Zn-65

 ハ) 電磁石
 : Co-60, Zn-65, Ag-110m

こ) 拡散ポンプ : Co-60

へ) 脚部 : Mn-54, Co-60, Na-22

セクターマグネット及びヨークのコア試料で Mn-54 と Co-60 の深さ方向濃度分布を求めた結果、減少傾向に相違が見られた。表層部の濃度で規格化すると Mn-54 と Co-60 ともに指数関数的に減少していた。深さ方向の濃度割合の傾向を近似式で求めたことにより、表層部分の放射性物質濃度より深さ方向の放射性物質濃度が概ね推測できる。

4) 金属試料のクリアランス評価

 $\Sigma D/C$ への寄与率が 90%以上となるよう重要核種を選定した。

この結果、鉄でMn-54, Co-60、ステンレスでCo-60、銅でCo-60, Zn-65 又はCo-60, Ag-110m、アルミニウムでZn-65, Na-22 を重要核種とすればよいことがわかった。これらの重要核種

を元に Σ D / C を求めた場合、すべての構造材で 90%を超える寄与となる値が得られることがわかった。

電磁石・拡散ポンプ・真空箱・脚部・ディー電極の $\Sigma D/C$ を算出した結果、次のことがわかった。

- イ) ターゲットポート近傍の試料においてΣD/Cは、他の部分に比べて桁違いに高い。
- n) ほとんどの部品で深さ方向に対しても大きくクリアランスレベルを超え、5年後に おいてもクリアランスレベルを下回ることはない。
- n) セクターマグネットにおいて、銅メッキによる放射化核種の Zn-65 のD/Cが桁違いに高く、検出核種の $\Sigma D/C$ の殆どを占めている。
- =) 部分的な測定結果からクリアランス対象物となり得るものは、真空箱(上段)、ターゲットポートより±90°側にある脚部2本であった。

5) 現場におけるγ線スペクトル測定

CdZnTe 半導体検出器を用いて、試料採取箇所の γ 線スペクトルを測定した。この結果 Co-57, Mn-54, Zn-65, Co-60, Na-22 などが検出され、放射化核種を十分確認することができたが、測定対象物の形状が多種多様であるため定量には至らなかった。

しかし、点線源と仮定して求めた核種毎の濃度割合はゲルマニウム半導体検出器の結果 と概ね一致しており、低濃度の核種は CdZnTe 半導体検出器では検出できないが、ある程度 の核種割合は、現場でγ線スペクトルを測定することにより求められることがわかった。

6) クリアランス測定における適切な測定時間

実際のクリアランス評価では試料測定を迅速に行わなければならず、長時間測定は難しいため、検出限界濃度を推定して Σ D/Cを評価し、適切な測定時間を推定した。

ゲルマニウム半導体検出器を用いて、コンクリート、鉄、銅 、アルミニウムを対象に 1,000 秒~10,000 秒測定した場合を検討した。

この結果、アルミニウムでは測定時間が 3,000 秒、その他の試料では 2,000 秒となった。 これより、クリアランスのための測定は 3,000 秒とすればよいことがわかった。

4. 既存文献調査

今回の調査の特徴は、医療用のサイクロトロンに絞って学術誌の報告事例以外に、各省 庁、大学等研究法人、放射線関連学会等の情報も収集したこと、又委員会メンバー等から も資料等を頂いて網羅的に情報を収集したこと、過去の解体作業等で提出された作業報告 書等も含めたことにある。

4. 1 JST 検索による文献調査結果

検索条件は「小型」&「サイクロトロン」&「放射化」とした。公開年度には条件をつけなかった。

検索実施日は平成28年1月7日であり、この結果、75件がヒットした。このうち、今回の調査範囲から外れている、「放射化分析」、「PET用薬剤合成」、「耐放射線性試験」等に関する報告及びJST又はJDreamⅢが供給していないため入手できないものは除いた。全ての検索結果は添付資料4.1にまとめた。

上記の 75 件の内、抄録等を参考にして 21 件の文献を入手した。入手した文献リストは 添付資料 4.2 にまとめた。

入手した文献の内、解体事例報告は2件(平成15年1月廃止:兵庫県立高齢者脳機能研究センター及び平成22年9月廃止:国立精神・神経医療研究センター)であり、その他は加速器周辺の中性子東評価、放射化量評価、低放射化等に関するものであった。

なお、MEDLINEで供給されている2件は別途PDFで入手した。

4. 2 その他の文献資料等(委員等からご厚意で入手したものを含む)

4. 2. 1 高エネルギー加速器研究機構における調査報告等

文部科学省原子力利用安全対策等委託費による委託業務として、大学共同利用機関法人 高エネルギー加速器研究機構が実施した、下記の報告書4件の全文(PDF)を入手した。

H18 年度: 小規模放射線発生装置使用施設における放射化状況に関する調査報告書

H19 年度: 小規模医療用放射線発生装置使用施設におけるクリアランス制度導入に向けた 適切な放射化物の取扱いに関する調査報告書

H20 年度: 放射線治療用直線加速装置使用施設及びPET診断薬製造用サイクロトロン使用施設等における放射化評価手法並びに放射化物の発生状況及び取扱に関する調査

H21 年度: 放射線発生装置の使用に伴い生じる放射化物の安全規制に係る技術基準等に関する調査

4. 2. 2 原子力安全技術センターにおける報告書

文部科学省科学技術試験研究委託事業による委託業務又は原子力規制員会(原子力規制 庁)放射線対策委託として、財団法人原子力安全技術センターが実施した下記の3件の報 告書の全文(PDF)を入手した。

H23 年度: 放射線発生装置から発生した放射線によって汚染された物の安全規制に向けた 運用基準に関する調査

H24 年度: 放射線発生装置から発生した放射線によって汚染された物の安全規制のための 運用基準に関する調査

H25 年度: 放射線発生装置から発生した放射線によって汚染された物の安全規制に関する調査

4. 2. 3 科学研究費による研究成果報告

その他の資料として、平成 14 年度から 16 年度に実施された下記の資料の全文を入手した。

「加速器施設で発生する放射化物の放射性核種濃度評価法の研究」 (平成17年3月)研究代表 柴田徳思:高エネルギー加速器研究機構

4. 2. 4 サイクロトロン施設の廃止、解体作業報告

医療用小型サイクロトロン施設の内、本体等を解体して廃止した施設の作業報告書 3 件の作業概要全文を入手した。

平成22年9月:独立行政法人国立循環器病研究センター サイクロトロン・PET薬剤 合成装置設置工事

一撤去物の汚染検査・放射化有無確認測定・既設サイクロトロン解体撤去ー

平成 26 年 9 月: 独立行政法人国立がん研究センター中央病院サイクロトロン解体工事報告書

平成 27 年 11 月:三重大学医学部附属病院 旧病院RI棟サイクロトロン (IBA 社製 Cyclone10/5) 解体・撤去作業

なお、4.2.1 に記載した検索された文献によると、下記の2施設での廃止事例が報告されている。

平成15年1月廃止:兵庫県立姫路循環器病センター

平成22年9月廃止:国立精神・神経医療研究センター

他に数件の解体された施設があるとの情報があるが、公開されたものは入手できなかった。

4. 2. 5 海外の資料

海外の公開資料として、下記の 2 件の資料 (PDF) を入手した。ただし、IAEAの資料は中間報告である。

Evaluation of the Radiological and Economic consequences of Decommissioning Particle Accelerators, EU, Report EUR 19151 (1999)

DECOMMISSIONING OF PARTICLE ACCELERATORS, INTERNATIONAL ATOMIC

ENERGY AGENCY , VIENNA, 2014

4. 2. 6 その他の文献等

その他に参考となる資料として、下記の7件を入手した。

- 自己遮蔽型小型サイクロトロンの解体事例、平成 27 年度放射線安全取扱部会年次大会要旨集 p 105-106、栁下俊行他
- Evaluation of Radioactivity in Concrete Samples Obtained from Various Accelerator Facilities, Kazuyoshi Masumoto et.al, AOCRP-2(2006)
- 自己遮蔽体付きサイクロトロンの遮蔽効果の検証、桝本和義他、日本放射線安全管理学 会第 10 回学沭大会要旨集 p68 (2011)
- 医療用自己遮蔽型 PET サイクロトロン及び電子リニアックにおける中性子束の箔放射化 法による測定、阪間稔他、日本放射線安全管理学会誌、Vo17, No. 2、p138~p147
- 放射化と表面線量率の関連、上蓑義朋、日本放射線安全管理学会誌、Vo12, No. 11、p36~ p40
- PET サイクロトロン装置に関するアンケート調査報告、日本アイソトープ協会、 IsotopeNews、2015 年 8 月号 No. 736、p60~p65
- 医療機関における放射化物の管理と課題、藤淵俊王、日本放射線安全管理学会誌、 Vo14, No. 2、p69~71

4.3 その他の公開資料

関係省庁及び関連学会等のウェブサイトで公開されている資料のうち、特に参考となる 下記の6件について、調査し資料を入手した。

1) 放射線障害防止法に規定するクリアランスレベルについて

平成22年11月(平成24年3月一部訂正)

放射線安全規制検討会文部科学省科学技術·学術政策局

http://www.mext.go.jp/b_menu/shingi/chousa/gijyutu/004/004/sonota/1301630.htm

2) 放射線障害防止法へのクリアランス制度の導入に向けた技術的検討結果について(第2次中間報告書)(平成24年3月27日 一部訂正)平成22年1月20日 放射線安全規制検討会、文部科学省科学技術・学術政策局

http://www.mext.go.jp/b_menu/shingi/chousa/gijyutu/004/004/sonota/1290220.htm

- 3) 伊藤公輝、国立精神・神経研究センター、医療用小型サイクロトロン解体報告 http://trustrad.sixcore.jp/cyclotron_wall.html
 - *濃度等の測定結果が表示されているが不明瞭なため数値の確認は困難である。
- 4) 第54回 日本核医学会学術総会
- [110] 医療用サイクロトロン室建屋の放射化による長半減期放射能濃度分布の評価
- ○藤淵俊王1,納冨昭弘1,馬場眞吾2,小宮勲3,梅津芳幸3,佐々木雅之1,本田浩2(1.

九州大学大学院 医学研究院保健学部門, 2. 九州大学大学院 医学研究院臨床放射線科学分野, 3. 九州大学病院 医療技術部放射線部門)

http://link.springer.com/article/10.1007%2Fs12149-014-0918-6#page-2

5) 放射線治療装置における放射化物の管理に関する学会標準

初版 (平成 26 年 4 月 14 日)

クリアランスおよび放射化物に関する医療関係学会等団体合同ワーキンググループ

http://www.jart.jp/news/ib0rgt00000015ml.html

6) 全国のPET施設一覧(日本核医学PET核医学分科会

http://www.jcpet.jp/1-3-4-1

4. 4 調査結果のまとめ

今回入手した文献等において、医療用小型サイクロトロンを廃止した施設からの事例報告や文献等で、クリアランス制度を導入した施設に関するものは見当たらなかった。

原子力安全技術センターにより平成 25 年度に実施された「放射線発生装置から発生した 放射線によって汚染された物の安全規制に関する調査」の附属データ集 I では Σ D / C の 値として下記のようにまとめられている。

1)獨協医科大学病院における計算結果

非自己遮蔽型サイクロトロン室でターゲットに最も近い壁面コンクリート中の $\Sigma D/C$ を計算によって求めた結果、主に Co-60 及び Eu-152 の寄与が大きく、約 6.3 となった。

2) L施設における測定結果

自己遮蔽型サイクロトロンの床面コンクリート及び自己遮蔽体では、上記と同様に Co-60 及び Eu-152 が主な核種であった。自己遮蔽体内側の鉄表面を除いて、遮蔽壁、床面コンクリート等では Σ D / C は全て 1 以下であった。

3) C施設における測定結果

非自己遮蔽体の施設におけるコンクリートコア試料の測定結果では、同様に Co-60 及び Eu-152 の寄与が大きく、ターゲット付近の床面コンクリートで Σ D/C が 1 を超えている。

自己遮蔽体タイプの施設では、自己遮蔽体外側のコンクリート等では放射化されていないことが下記の報告からわかった。

- 1) 桝本和義らによる各種のサイクロトロン施設において採取した試料の測定結果の「自己遮蔽体付きサイクロトロンの遮蔽効果の検証」では、自己遮蔽体外側で採取された金属では放射化により生成されると想定される核種は検出されないと報告されている。
- 2) 柳下俊行らによる各種試料の測定結果をまとめた「自己遮蔽型小型サイクロトロンの解体事例」では遮蔽体外側では放射化は確認されなかったと報告がある。
- 3) 阪間稔らによる「医療用自己遮蔽型 PET サイクロトロン及び電子リニアックにおける

中性子東の箔放射化法による測定」では自己遮蔽体によって熱中性子東が 10⁻⁵ に減少しているとの報告がある。

4) 平成 26 年 9 月に報告された独立行政法人国立がん研究センター中央病院サイクロトロン解体工事報告書においても同様に、自己遮蔽体外側の床面コンクリートでは全て検出限界以下であることが記載されている。

以上のことから、自己遮蔽体外側では放射化を考慮する必要はないものとしてよい。

しかし、自己遮蔽体内部床面やサイクロトロン本体はそのほとんどが放射化されており、 医療用サイクロトロンは運転モードがほぼ同じであることから、メーカーや機種を問わず クリアランスの対象とはならないものと推定される。

ただし、運転時間の短い施設(例えば、三重大学医学部附属病院旧病院RI棟サイクロトロン)では、自己遮蔽体内側鉄板を除いて、床面コンクリート及び自己遮蔽体コンクリートで Σ D/Cは1以下であり、放射化されている領域は少ないものと判断される。このような施設ではクリアランスできる可能性が残されている。

非自己遮蔽体タイプのサイクロトロン施設については下記の報告がある。

- 1)約9年間運転した兵庫県立高齢者脳機能研究センターにおける事例が石本剛による「医療用加速器のデコミッショニング」で報告されている。この施設では本体のほとんどに放射化が確認されているが、室内の床面や壁面等のコンクリートコア試料を採取して測定した結果では、「全てのコンクリートで有意な放射能は認められなかった。」との報告がある。
- 2) 撤去作業を念頭においた齋藤享子らによる「医療用小型サイクロトロン周辺の放射化 状況の評価」では、壁面及び床面のコンクリートで Eu-152 がターゲット付近で 0.5Bq/g (D/C=5) 程度が検出されたとの報告がある。
- 3) 藤淵俊王による「医療機関における放射化物の管理と課題」において、九州大学でのコンクリートコアの測定結果では、床面表層から 5cm~10cm で Eu-152 の最大値で約0.16Bq/g (D/C=1.6) がターゲット付近で検出されている。また、藤淵俊王らによる「医療用サイクロトロン室建屋の放射化による長半減期放射能濃度分布の評価」には床面でのD/Cが3ポイントで1を超えていると記載されている。
- 4) 前述の獨協医科大学病院における計算においても、ターゲット付近のコンクリートで Eu-152 が 0.27Bq/g (D/C=2.7) 程度が生成し、この部分のコンクリートは「放射化物して扱う必要がある。」とされている。
- 5) 伊藤公輝らによる国立精神・神経医療研究センターの廃止事例では同様に本体や周辺機器が放射化されていることが報告されているが、この施設ではサイクロトロンを撤去後に管理区域を廃止せずに使用継続としているため、駆体のコンクリート等の測定は実施されていない。

以上から、非自己遮蔽タイプの施設での報告事例は少なく、必ずしも駆体コンクリート の放射化について明確な結論は得られなかった。

日本アイソトープ協会が実施した「PET サイクロトロン装置に関するアンケート調査報告」によれば、調査時(2015年2月)で、自己遮蔽無しが91台、自己遮蔽タイプのものが61台となっている。よって、非自己遮蔽の施設数のほうが台数は多く、放射化領域の詳細な調査に対する需要は高いと思われる。

4. 5 文献調査の課題

今回実施した文献資料の調査において、残された課題は次の通りである。

- 1)「PET サイクロトロン装置に関するアンケート調査報告」には「すでに廃止している施設」は 5 件、「10 年以内に廃止予定の施設」は 8 施設であったと報告されている。今回の調査では、平成 26 年 9 月に廃止された独立行政法人国立がん研究センター中央病院を含めて該当期間の 4 件の事例報告や作業報告を入手した。今後、報告されている内容をより詳細に調査し、発生した廃棄物量や採取した試料中の放射性物質濃度の評価等のデータを精査して、仮にクリアランス制度を導入した場合の Σ D/C の評価等を実施する。
- 2) サイクロトロン施設数では非自己遮蔽タイプのほうが多いことから、廃止された施設 での放射性物質濃度測定結果や稼働中施設の中性子東評価等の報告を調査し、放射化量評 価に関する情報をとりまとめる。
- 3)海外のクリアランス導入状況に関する資料を調査し、国内の導入制度との比較等を実施する。

5. まとめ

5. 1 まとめ

- 1) シミュレーション解析
 - ①サイクロトロン本体のシミュレーション解析

サイクロトロン金属のシミュレーション解析の結果、Na-22 と Co-56 の計算値は、全ての測定位置でゼロであった。測定値に対する計算値の比である C/E は、0.2 から 1.0 の範囲にばらついているが、全体的に見ると $0.2\sim0.5$ 程度であり過小評価している。 Mn-54 は、比較的安定した分布傾向となっている。これは、Mn-54 が高速中性子に感度があるので、ターゲットから近いものは割合良く計算で来ているためである。これに対して Co-60 は、熱中性子束に感度があるため、サイクロトロン本体の中心に近い内側領域が悪く、外側領域が良い結果となった。Co-60 の C/E は、内側が 0.166 であるが、外側は 0.833 と大きく変化している。計算値の内側と外側の比は 1.54 であるのに対し、測定値の比は 7.72 と約 5 倍の変化となっている。そのため、測定値を計算で再現するようにサイクロトロンの内側領域だけ中性子束を増加することは簡単ではなく、熱中性子の評価方法の検討が必要である。

②コンクリートのシミュレーション解析

コンクリートコアの測定値と計算値との比(C/E)は、基本的に $2\sim10$ 倍程度の過大評価である。但し、自己遮蔽体の Cs-134 は計算値が低くなった。この原因はセシウム分析値が過小評価されているためと考えられる。

2) コンクリート及び金属の測定・分析

①コンクリートの濃度測定

自己遮蔽体及びその直下の床面からコンクリートコアを採取して、放射性物質濃度を測定した。対象核種はコンクリートで生成される可能性がある次の10核種及びH-3,C-14とした。

Na-22, Sc-46, Mn-54, Fe-59, Co-60, Zn-65, Cs-134, Ce-139, Eu-152, Eu-154

床面では Sc-46, Co-60, Eu-152、自己遮蔽体では H-3, Sc-46, Co-60, Cs-134, Eu-152 が検出された。

②コンクリート試料のクリアランス評価

採取時点での床の Σ D / C への寄与は、Eu-152 で 50%、Co-60 で 30%、Sc-46 で 20%程度であり、Eu-152, Co-60 で 80%占められていた。1 年後では Sc-46 が減衰することにより Eu-152, Co-60 が占める割合は 97%程度となる。

採取時点での自己遮蔽体の Σ D/Cへの寄与は、Eu-152 で 28%、Co-60 で 30%、Cs-134 で 34%、Sc-46 で 9%程度であり、Eu-152, Co-60, Cs-134 で 92%程度占められていた。1 年経過すると床と同様に Sc-46 が減衰して Eu-152, Co-60, Cs-134 が占める割合は 99%程度となる。また、H-3 及び C-14 はクリアランスに問題とならない核種であると判断できた。

上記によりコンクリート試料中に含まれる核種の Σ D/Cへの寄与率を考慮すると、サイクロトロンの運転停止から 1 年経過した場合、床では Eu-152, Co-60、自己遮蔽体で

は Eu-152, Co-60, Cs-134 を重要核種とすることが妥当である。

床の Σ D/Cはコア採取時においていずれも 1.0以下であった。自己遮蔽体ではコア採取時の Σ D/Cはクリアランスレベルを僅かに上回部分があるが、1 年間冷却すると 0.81 となり、クリアランスレベル以下となる。以上のことから、コンクリートはクリアランス対象物となり得ることがわかった。

③金属の濃度測定

セクターマグネット等からコア試料 32 本、真空箱等ドリリングによる切粉試料 18 検体を採取した。対象核種は、金属試料で生成される可能性があり、比較的半減期の長い Na-22, Mn-54, Co-56, Co-57, Co-60, Zn-65, Ag-110m の 7 核種とした。

この結果、次の核種が検出された。

イ)セクターマグネット: Mn-54, Co-60, Zn-65, Na-22, Co-57

p) ヨーク : Mn-54, Co-60, Zn-65 ハ) 電磁石 : Co-60, Zn-65, Ag-110m

ニ) 拡散ポンプ : Co-60

へ) 脚部 : Mn-54, Co-60, Na-22

ト) ディー電極 : Co-60, Zn-65

セクターマグネット及びヨークのコア試料で Mn-54 と Co-60 の深さ方向濃度分布を求めた結果、減少傾向に相違が見られた。表層部の濃度で規格化すると Mn-54 と Co-60 ともに指数関数的に減少していた。これは Mn-54 が速中性子、Co-60 が熱中性子による生成反応で、生成反応形式の違いによるものと考えられる。また、深さ方向の濃度割合の傾向を近似式で求めたことにより、表層部分の放射性物質濃度より深さ方向の放射性物質濃度が概ね推測できる。

④金属試料のクリアランス評価

 $\Sigma D/C$ への寄与率が 90%以上となるよう重要核種を選定した。

この結果、鉄で Mn-54, Co-60、ステンレスで Co-60、銅で Co-60, Zn-65 又は Co-60, Ag-110m、アルミニウムで Zn-65, Na-22 を重要核種とすればよいことがわかった。 これらの重要核種を元に Σ D/Cを求めた場合、すべての構造材で 90%を超える寄与となる値が得られることがわかった。

電磁石・拡散ポンプ・真空箱・脚部・ディー電極の $\Sigma D/C$ を算出した結果、次のことがわかった。

- イ) ターゲットポート近傍の試料において Σ D / C は、他の部分に比べて桁違いに高い。
- n) ほとんどの部品で深さ方向に対しても大きくクリアランスレベルを超え、5年後に おいてもクリアランスレベルを下回ることはない。
- n) セクターマグネットにおいて、銅メッキによる放射化核種の Zn-65 のD/Cが桁違いに高く、検出核種の $\Sigma D/C$ の殆どを占めている。

=) 部分的な測定結果からクリアランス対象物となり得るものは、真空箱(上段)、ターゲットポートより±90°側にある脚部2本であった。

⑤現場におけるγ線スペクトル測定

CdZnTe 半導体検出器を用いて、試料採取箇所の γ 線スペクトルを測定した。この結果 Co-57, Mn-54, Zn-65, Co-60, Na-22 などが検出され、放射化核種を十分確認することができたが、測定対象物の形状が多種多様であるため定量には至らなかった。

しかし、点線源と仮定して求めた核種毎の濃度割合はゲルマニウム半導体検出器の結果と概ね一致しており、低濃度の核種は CdZnTe 半導体検出器では検出できないが、ある程度の核種割合は、現場で γ 線スペクトルを測定することにより求められることがわかった。

⑥クリアランス測定における適切な測定時間

実際のクリアランス評価では試料測定を迅速に行わなければならず、長時間測定は難しいため、検出限界濃度をもとに Σ D/Cを評価し、適切な測定時間を推定した。

ゲルマニウム半導体検出器を用いて、コンクリート、鉄、銅 、アルミニウムを対象 に 1,000 秒~10,000 秒測定した場合を検討した。

この結果、アルミニウムでは測定時間が 3,000 秒、その他の試料では 2,000 秒となった。これより、クリアランスのための測定は 3,000 秒とすればよいことがわかった。

3) 既存文献調查

既存文献調査の結果、今回入手した文献等において、医療用小型サイクロトロンを廃止 した施設からの事例報告や文献等で、クリアランス制度を導入した施設に関するものは見 当たらなかった。

コンクリート中の Σ D / C を計算によって求めた結果、主に Co-60 及び Eu-152 の寄与が大きいことが分かった。

自己遮蔽体タイプの施設では、自己遮蔽他外側のコンクリート等では放射化されていないことが分かった。しかし、自己遮蔽体内部床面やサイクロトロン本体はそのほとんどが放射化されており、医療用サイクロトロンは運転モードがほぼ同じであることから、メーカーや機種を問わずクリアランスの対象とはならないものと推定される。ただし、運転時間の短い施設では、放射化されている領域は少ないものと判断される。

非自己遮蔽タイプの施設での報告事例は少なく、必ずしも駆体コンクリートの放射化について明確な結論は得られなかった。

5. 2 課題抽出

本事業により各項目で以下の課題が抽出された。

- 1) シミュレーション解析
 - ①ターゲットで生成される中性子の低エネルギースペクトルと収率の絶対値の検討
 - ②加速中または照射時の陽子の散乱や漏洩による放射化量への寄与の検討
 - ③不純物量の系統誤差の検討と測定する不純物元素の再評価
- 2) コンクリート及び金属の測定分析
 - ①1 cm線量当量から放射性物質濃度の算出が可能にするため、これらの関連性を検討。
 - ②ターゲットポートより±90°付近の詳細なデータが不足しているので、追加測定の 検討
 - ③他種のサイクロトロンの詳細な調査
 - ④クリアランス制度を活用するために、本体組成と違ったメッキ等に高放射化を生じるものが微量混在する場合、 Σ D/Cに大きな影響を与える可能性があるため、これらを簡単に除去する方法等の検討

3) 既存文献調查

- ①過去の施設廃止報告で測定された放射性物質濃度によるクリアランス制度を導入した場合の Σ D / C の評価
- ②非自己遮蔽タイプのサイクロトロン施設廃止における放射化量評価に関する資料調査
- ③海外のクリアランス導入状況に関する資料調査

さらに検討が必要な項目として下記の点があげられる。

4) 評価対象単位の検討

クリアランス対象とする材質毎の重量又は体積の設定に関する検討

5) 放射性物質を含まない廃棄物 (NR) の評価方法の検討

クリアランス以外の廃棄物の評価方法の検討

6. 議事録

				RCV. 1		
提 出 先				•	·	
会 議 議 題	平成27年度放		費(クリアラン <i>ス</i> :(案)	ス制度運用に向け	けた調査)	
会議日時	平成 27 年 11 月	19日(木)	13:30~15:30			
場所	日本環境調査研	干究所 10F 会	議室 リレハン	メル		
会議出席者	所属	氏名	氏名	氏名	氏名	氏名
(敬称略)	委員長	桝本 (KEK)				
	委員	渡部 (東北大)	仁井田 (RIST)	小迫 (清水建設)		
	オブザーバー	井原	田中			
	原子力規制庁	土居	小野			
	事務局	松村	泉	大石	佐々木 (途中退席)	柳下
	丁 伤问	山谷	中林 (議事作成)			
	欠席者	上蓑	米内			

<配布資料等>

- (1) 仕様書
- (2) 平成27年度放射線対策委託費(クリアランス制度運用に向けた調査)事業提案書
- (3) 作業場所図面および 300mm 厚金属のコア抜き映像 (プロジェクタによる投影のみ)

<議事>

第一回_平成 27 年度放射線対策委託費(クリアランス制度運用に向けた調査)事業委員会を行った。その内容を以下に示す。

- 1. 委員挨拶および事務局挨拶
 - 委員会、原子力規制委員会、オブザーバーおよび事務局から挨拶が行われた。本事業の納期まで時間がないとの認識を共有し、各委員の協力を得ることとした。
- 2. 仕様書の確認【配布資料(1)】(桝本委員長)

委託業務の目的および内容を確認した。

- (1) 具体的なスケジュールは事務局から配布する。
- (2) 適宜提案書にて報告される内容について、各委員は適切にアドバイスするようすること。
- 3. 提案書の説明【配布資料(2)】

配布資料(2)に沿って事務局柳下が説明し、各項目について適宜質疑応答が行われた。

- (1) (株日本環境調査研究所および本委員会の実施体制について 【提案書 P14~P15】
- (2) 委託業務の内容および当委員会の関係について【提案書 P1】
 - ・今回、廃棄されたサイクロトロンについて、「シミュレーション解析」および「コンクリート及び金属の測定・分析」を行い、結果を取りまとめ、委員会と問題点、課題点を抽出する作業となる。
- (3) 既存文献調査について【提案書 P2】(事務局泉)

文献調査について、20年前の文献は古く、もう少し新しい文献でよいのではと考える。その他 KEK 等文献などは適宜提供をお願いしたい。過去のレポートリストがどの程度あるか、調べて報告書に記載する。

- C: クリアランス制度について原子力安全技術センターが 2 年前に受託業務で実施したリストがあるため、後日提供する。EU レポートは要約版を作成せず、規模に応じた放射化状況のデータ、Ge 半導体検出器の測定方法等を記載しているためポイントを記録すること。(桝本委員長)
- C:海外の文献等についても報告書に入れてほしい。今年度難しければ、次年度仕様に盛り込むことも 検討する。(規制庁)
- (4) シミュレーション解析について【提案書 P3^{P5}】
 - ・シミュレーション解析は、小迫委員に依頼する。

- ・提案書表現の訂正:誤「H₂O」→正「¹⁸O」(桝本委員長)
- ・コンクリートの放射化計算について、施設廃止に伴い周辺コンクリートの放射化計算は既に実施済み。 今回は、サイクロトロン本体についてシミュレーション解析を実施する。既存データを用いる。
- ・「提案書 2-(3)-③ターゲット(P4)」の N_2 ガスについて、 11 C を製造するためのものだが、0.5%若しくは 1.0%の 0_2 ガスが封入されている。充填圧力等の関連のデータをシミュレーション計算のために提供する。(田中氏)
- Q: 当該施設では、d (デュートロン) は加速行っていなかったのか? (渡部委員)
- A:dの加速は行っていない。(田中氏)

(5) コンクリート及び金属の測定・分析について (その1) 【提案書 P6~P7】

- ・CZT 検出器を1台購入し、その測定値とGe 半導体検出器の値と比較、相関性を確認する。
- Q: IP など他の測定器は使用するのか。(桝本委員長)
- A: NaI(T1)検出器を使用する。IPを使った方が良いとのご意見があれば、そちらも検討する。(事務局柳下)

(CZT 検出器)

CZT 検出器について、実際、事業者が使用するときにどういった使い方をするとメリットがある旨の内容をまとめること。

- Q:検出器の結晶の大きさはどの程度か。(桝本委員長)
- A: 1cm 四方のキューブ状。以前は CdTe 検出器のみで薄いものしかできなかったが、亜鉛を添加することによって 1cm 角大に作製できるようになった。(事務局松村)
- Q:分解能は?¹³⁷Csの分解能で何%程度となっているか。(桝本委員長)
- A:分解能の正式な値は後日提示する(公称値は 662keV で<2.5%である)。効率に関しては、検出器の大きさにもよるが、Ge 半導体検出器相対効率 20%程度のものと比べると、1/10 くらい低くなる。(事務局松村)

ドリリングポイントを探る場合使えないことはないが、(サイクロトロン) 本体が大きいので IP で測って議論をするのは難しい。

C: なんとなく放射化の雰囲気は判るが、定量的な議論は難しいと考える。(事務局泉)

(6) コンクリート及び金属の測定・分析について(その2) 【提案書 P8[~]P9】

サンプリング箇所は、提案書の通り。

Q: サンプリング箇所の特定はどのように行うのか。(桝本委員長)

A: NaI (T1) 検出器および JFE 様の助言により場所を特定する。廃棄時の写真資料があるため、事前にある程度予測を行う。また、セクターマグネットに刻印があり早々に発見できる可能性がある。当該部品は290mmと一番厚い金属のため、本作業の一番初めに取り組む。(スライド断面図にて説明)(事務局柳下)

Q:ヨークについて、どの方向からコア抜きを行うのか。(桝本委員長)

A:中心部は放射化が進んでいる可能性があるため、外側から中心方向に掘り進めていく方針であるが、 施工状況により変更する。(事務局柳下)

(セクターマグネットのコア抜き)

小迫委員より、セクターマグネットのコア抜きをした正確な位置を伝えるよう依頼があった。

(7) 作業場所図面の確認【プロジェクタ投影のみ】

搬入経路、廃棄体取出し場所等を確認した。グリーンハウスの排気は、施設の排気ダクトに接続する。

(8) コンクリート及び金属の測定・分析について (その3) 【提案書 P10^{P11}】

コンクリート躯体試料について、当該施設は既に取り壊されているため存在しない。そのため、以前当社が当該施設廃止の際に 10,000 秒測定したデータを用いる。

(成分分析)

- Q:各成分(鉄、アルミ、銅)の成分分析はどのタイミングで行うのか。(桝本委員長)
- A: γスペクトル測定後、20g を削りとり外注に成分分析を依頼する。(事務局柳下)
- Q:成分分析を行う検体数はどうなっているか。(小迫委員)
- A:鉄6検体(ヨーク3検体、セクターマグネット3検体)、アルミおよび銅各3検体。(事務局柳下)

- Q: それぞれサイクロトロンのどの部分を成分分析に依頼する予定か。(小泊委員)
- A:極力、放射能の検出されていない箇所を分析に回す。委員会で分析箇所の指定があればそれに従う。 (事務局柳下)

成分分析では、決定元素(不純物)を中心に行う。(事務局大石)

- C: 例えばヨークについて、3 検体の分析結果が異なる場合どのように対応するか検討が必要なる。(小 迫委員)
- Q:アルミニウムは何番台を使用しているのか。(桝本委員長)
- A:不明ですが、おそらく5000番台を使用している。(田中氏)

(真空箱上部の黒化箇所)

C: 真空箱上部の黒い箇所はおそらく、拡散ポンプの油。下部はビームの焦げ跡じゃない可能性が高い。 (田中氏)

(評価対象外箇所)

- Q: ターゲットチャンバー周辺は完全に取り外してあるため比較的レベルが高い。当該箇所は今回の評価対象から除くのか。(桝本委員長)
- A: 今回のターゲットとずれているため、除外する。(事務局柳下)
- Q:拡散ポンプは評価対象とするのか。(桝本委員長)
- A:対象とする。ドリリングで1試料を予定している。(事務局柳下)
- Q: ポンプのどの箇所をサンプリングするのか。(小迫委員)
- A: ポンプ上部が比較的線量が高い可能性があるため上部を採取する。(事務局柳下)

(測定時間)

- Q: Ge 半導体検出器 10,000sec の測定時間は、規格として本事業終了後も継続して設定し続けるのか。 (桝本委員長)
- A:放射化が検出されないと意味がないというところで測定時間 10,000sec を設定している。クリアランスに向けた事業を検討するためには、如何に測定時間を少なくするような検討もしていく必要があると考える。(事務局松村)
- C: 上述内容を報告書にコメントするようにして欲しい。(桝本委員長)
- (9) 作業計画の妥当性、効率性【提案書 P12】

11月30日から作業を開始し、2週間で終了する予定。次回委員会については、測定結果等が出そろったタイミングにて2月下旬を考えている。

4. 各論・その他

シミュレーションおよび試料採取方法等について報告、意見交換が行われた。

- (1) 当該施設について
 - Q:サイクロトロンの運転状況について、¹⁸0 水を使用せずに空撃ちを行ったことはあるか。(桝本委員長)
 - $A: ビームダンプ等の運転は、年数回程度であり、<math>^{18}0$ の運転が殆どである。(井原氏、田中氏)

(ターゲットソースの中性子源)

中性子のソースとして原因(線源)は 180 水だという根拠を示さなければならない。本方法でよい旨の根拠を報告書にも記載するように。例えば、「ターゲットソースは 180 水の中性子が支配的であるため、原則、 180 水ターゲットとする。しかし、使用記録を考慮して N_2 ターゲットも評価した。」など。(桝本委員長)

- C: 社内にて、ターゲットフォイルの材質が判る。後日情報を提供する。(田中氏)
- (2) 加速エネルギーについて

加速エネルギーが定格 12MeV としたときに、フィルタ等通過後には 0.1MeV 下がっていたため再計算となった事例があった。

- Q: オンターゲットにて 10MeV であるか? (桝本委員長)
- A:取り出しビームで10MeVであり、オンターゲットにて9.3MeV程度である。(田中氏)
- C:シミュレーション等で使用する情報は、提出可能なものは全て提示してほしい。(桝本委員長)
- (3) 試料採取について

(コア抜き)

テストピースでコア抜きを行った動画を確認した。

- Q:コア1本抜くのにどの程度時間が掛かるのか。(桝本委員長)
- A:300 mmのテストピースを抜くのに約1時間。今回一番厚みのあるセクターマグネットで厚さ約290mm

であり、コア採取は可能である。(事務局柳下)

(ドリリング)

Q:ドリリングはどの程度の深さまで掘るのか。(桝本委員長)

A:ドリルの刃の程度によるが1~2cmと考える。(事務局松村)

(脚部・拡散ポンプのサンプリング)

Q:この拡散ポンプの両脇の足だが、こちらは空洞になっている。(田中氏)

C: 空洞でもドリリングで行うため、周りを何周かすればそれなりの量が取れると考える。(事務局松村)

Q:拡散ポンプは周りが空洞とのことだが、厚さおよび重さはどの程度か。(小迫氏)

A: わからない。メーカも教えない。(田中氏)

A:拡散ポンプは83kg。(事務局山谷)

(4) その他(事務局柳下)

コンクリート及び金属の測定・分析の仕様書の中に、「…採取・分析を実施し、認可基準に対応した測定及び評価方法の課題等とりまとめを行うとあるので委員会メンバー等の意見等を頂きながら、最終的にはまとめていきたい。

・これはコンクリート云々に係っているようだが、提案書の方は全てにかけてとりまとめと記載がある ため、すべての項目に絡んで検討しまとめる様にする。(桝本委員長)

5. 総評

(1) 原子力規制委員会よりコメント (規制庁)

色々事務的な所でも委員の先生からご意見を頂けて、提案書の時よりも更に良い測定と調査ができるのではないかと期待しているのでよろしくお願いします。

6. その他

今回欠席した上蓑委員、米内委員については、事前に平成27年度放射線対策委託費(クリアランス制度運用に向けた調査)事業提案書をお渡しし、ご承認を頂いた。

また、上蓑委員には11月20日に打合せを行い、再度承認を頂いた。

		確認日	作成日	2015. 12. 18
回覧先	委員会、オブザーバー、原子力規制庁、事務局	2016. 2. 2	承 認	2016. 2.17
■ 承認			審査	_
□ 確認			承 認	_
□検討				

			No. 0	F-1/2 -		
			N 0. 0	Rev. 0		
提 出 先						
会 議 議 題		射線対策委託費 第2回)議事録	・(クリアランス (案)	制度運用に向け	けた調査)	
会 議 日 時	平成 28 年 2 月	17日 (水)	15:00~18:00			
場所	(株) 日本環境	意調査研究所 1	OF 会議室 シ	ドニー		
会議出席者	所属	氏名	氏名	氏名	氏名	氏名
(敬称略)	委員長	桝本(KEK)				
	委員	渡部	仁井田	小迫	米内	
	安貝	(東北大)	(RIST) _※	(清水建設)	(放医研)	
	オブザーバー	井原	田中	永澤		
	原子力規制庁	土居	小野	松本		
		松村	泉	大石	佐々木	事務局柳下
	事務局	山谷	中林 (議事録作成)			
	欠席者	上蓑		_		※涂中退席

議事

<配布資料等>

(1) 平成27年度放射線対策委託費(クリアランス制度運用に向けた調査)事業 報告書(案)

<議事>

第二回_平成 27 年度放射線対策委託費(クリアランス制度運用に向けた調査)事業委員会を行った。その内容を以下に示す。

- 1. 事務連絡(事務局柳下)
 - 委員会の出欠確認、留意事項を連絡した。
- 2. 前回議事録の修正・承認(事務局柳下)
 - (1) 「(8) コンクリート及び金属の測定・分析について(その3)」議事録 P3、成分分析に関する質疑応答について、桝本委員長からアルミニウム JIS 番号を問われた田中オブザーバーの回答を修正した。

【修正前】・・・500番台を使用している。

【修正後】・・・5,000番台を使用している。

- (2) 他、問題ないことが確認され、前回議事録は承認された。
- 3. 平成 27 年度放射線対策委託費 (クリアランス制度運用に向けた調査) 事業 報告書(案)に沿って、各項目の執筆者が説明し、順に質疑応答が行われた。以下、概要と質疑応答を示す。(進行:桝本委員長) (1)概要
 - ・「1.1 調査の目的」は、仕様の通りの記載とした。
 - ・「1.2 PET 用サイクロトロン装置概要」は、自己遮蔽体型と非自己遮蔽体型の違いを記載した。
 - 「1.3 調査実施概要」は、IBA 社製 CYCLONE 10/5 を調査対象と記載した。
 - C:財団法人原子力安全技術センター調査(報告書)の実施年度を確認、修正すること。(桝本委員長)

【修正前】・・・平成19年度から平成22年度における

【修正後】・・・平成23年度から平成25年度における

※平成25年度であることを確認すること。

- $C: \forall -\Delta x^2 b \pm 90^\circ$ という表現が判り難い。何に対して $\pm 90^\circ$ なのか明確に表現すること。(桝本委員長)
- Q:サイクロトロンがどの程度運転されたかという記録は載せないのか。(渡部委員)
- A:シミュレーション解析の項目で記載する。(事務局柳下)
- C:この施設の運転状況の多寡が不明なため、概要で述べる方が良い。(桝本委員長)
- Q:何が重要核種かの記載はするのか。記載する方がよい。(桝本委員長)
- A:記載します。(事務局柳下)

次に、具体的成果が発表されると思うが、基本的には仕様書の項目が満たされるか否かの確認をして頂き

たい。(桝本委員長)

- (2) シミュレーション解析
 - ・解析結果は途中であり、最終的な結果は出ていない。併せて報告書も具体的な記載はない。
 - ・「2.1シミュレーション計算条件」CYCLONE10/5 のターゲットポートについて、訂正を行う。

【修正前】6つ

【修正後】8つ

<成分分析の結果について>

- Q:成分分析はどこまで進んでいるのか。(桝本委員長)
- A: すべて完了し添付資料に記載している。(事務局柳下)
- Q:成分分析の被検体種類はなにか。(桝本委員長)
- A: 鉄としてセクターマグネット3ヵ所、ヨーク3ヵ所、銅として電磁石3ヵ所、アルミとして真空箱で3ヵ所の成分分析を実施した。セクターマグネットは銅メッキがなされていたが分析が出来なかったため、セクターマグネットは鉄のみの分析とした。(事務局柳下)
- C: 鉄鋼協会が出している炭素鋼成分と比較すること。Co が 50-60ppm、Mn が 3,000ppm 混入していたと思うので、放射化に影響される可能性がある。銅の放射能濃度測定結果は、ほぼ純銅という認識でいる。 (桝本委員長)
- Q:アルミ(合金)の成分分析について、アルミの生成核種は何が見えるのか。(桝本委員長)
- A: 放射能濃度測定結果(添付の表 3.2.5) より、アルミでは、Mn-54、Co-60、Zn-65、Na-22、Co-57、Co-56 が検出されている。(事務局柳下)
- C: Co-56, Co-57 は Ni から、Co-60 は Co からしか生成されない。Na-22 はアルミから生成されるものと、可能性は低いがマグネシウムから生成されるものがある。金属協会から提示されている成分表のアルミ5,000 番台と比べて、生成核種のソース(由来)を確認すること。

<シミュレーション計算結果について>

- Q: 真空ポンプのシミュレーション計算は行うのか。(桝本委員長)
- A: ポンプ表面として計算した。(小迫委員)
- Q: ポンプはサンプリングできたのか。(桝本委員長)
- A: ポンプの上・下フランジ部 (SUS 製) を採取し、分析した。(事務局松村)
- Q:可能な範囲で、SUS 種類の情報(304・316)をシミュレーション計算に提供すること。(桝本委員長)
- A:調査し報告する。(事務局柳下)
- Q:製造側で、SUSの正確な番号は判るか。(事務局柳下)
- A:わからない。関連して、成分分析表の材質について、①鉄は炭素鋼ではない。電磁軟鉄の可能性が高い。炭素鋼ならもっとカーボンが多い。②アルミは、5,000番台だともっとマグネシウムが多く、クロムも含有されている。そのため、5,000番台でない可能性もある。(オブザーバー田中)
- C: TENDL の入手はどうか。(桝本委員長)
- A: 最新ソフトは2015年版だが、2013年版のみで対応は可能である。(小迫委員)
- Q:2013年版と2015年版の違いはあるのか。(渡部委員)
- A: 大きくは変わらないが、細かな違いは不明である。(小迫委員)
- Q:運転データは何年分収集すると良いのか。(規制庁)
- A:10年以前の運転データは年オーダーで良い。直近数ヶ月分は月単位で運転データを収集すると良い。 (桝本委員長)
- Q: 具体的には、病院などで30年稼動している場合、30年分の運転データは必要か。(規制庁)
- A: Co-60 だと 6 半減期となり微量のため、評価に入れ易い。年間運転日数の単位で入力すると良い。(桝本委員長)
- C:本事業では、対象となるターゲットポートが 4 つあり、ターゲット No. 1 で、10 年間で約 3.74×10 $^{\circ}$ 6 秒となった。全ターゲットポートでは 380 時間程度(全ての照射を 30 μ A とした場合)継続運転していることが判明した。2004 年から 2013 年の年毎の運転データもあるので、適宜情報を提供していきたい。(事務局大石)
- Q:IBA 社製は、同時照射が可能か。(桝本委員長)
- A:可能だが、実務上同時照射は行っていないはず。(オブザーバー田中)
- Q:同時照射の場合、カーボンフォイルとストリッパブルの関係はどのようなものか。(桝本委員長)
- A: ストリッパーの内側に入り、磁場で校正し**て**半分ずつ取り出す。ほとんどのメーカはできるが、同時照射を実施している施設はないと考えられる。(オブザーバー田中)

C: 運転記録を施設の概要として報告に記載するように。例えば、運転時間が平均○○、年間にどの程度使用されたなどの運転時間表。書式は任せるが、施設の仕様もしくは概要を記載すること。

A:記載する。(事務局柳下)

- C:電流値によって放射化量は大きく変わるので、積算電流値を記載するように。(オブザーバー田中)
- C: 最終的に、1年毎でまとめるように。(桝本委員長)
- C:停止後のクーリング期間で、生成核種の種類が変わる、数か月で引き渡し(廃止)に移行するなら、 少なくとも運転終了前の半年間の運転記録は詳細にデータを入力する必要がある。全期間を通しては最 低5年間の運転記録は必要である。(小迫委員)
- A:報告書の概要に施設の概要が判る運転記録を記載する。(事務局柳下)
- (3) コンクリート及び金属の測定・分析(事務局松村・事務局中林)
 - ・コンクリートについて、測定対象部位、1cm線量当量率測定結果、試料前処理および測定方法、測定結果について報告書に沿って説明された。
 - ・「3.1.5 コンクリートコアの測定結果」の検出された核種について、以下のように訂正する。

【修正前】Sc-46, Co-60, Cs-137, Eu-152

【修正後】Sc-46, Co-60, Cs-134, Eu-152

- ・金属試料について、測定対象部位、1cm線量当量率測定結果、試料前処理および測定方法、測定結果 について報告書に沿って説明された。
- ・「3.2.4 金属前処理及び測定法 (1)金属試料の前処理及び測定部位」の図3.2.4 金属コア切断箇所および測定対象箇所のヨークの図について、以下のように訂正する。

【修正前】No. 12、No. 19 の測定フラクションが 3 検体と図示されている。

【修正後】No. 12、No. 19 の測定フラクションは 5 検体に図示する。

<コンクリート>

Q: 1 cm 線量当量率で測定しているが、測定方法が全く分からない。抜いたコアを測定しているのか。コアを測定しているが、何故 1 cm 線量当量率測定ができるのか判らない。例えば、床面で $0.09 \, \mu \, \text{Sv/h}$ とあるが、後に出てくる GM サーベイメータと関連しているのか。(桝本委員長)

A: NaI シンチレーションサーベイメータを用いて測定している。(事務局中林)

Q: 密着測定なのか。コアを抜いて、側面を測定しているのか。(桝本委員長)

A:コアを抜く前に測定している。(事務局中林)

「3.1.2 コンクリートの 1cm 線量当量率測定結果」の文言の修正および測定方法を、以下のように訂正する。

(文言)

【修正前】測定したコンクリートコアの 1cm 線量当量率は、…

コアを測定していないため例えば、以下例示

【修正後】図に示すサンプリングポイントにおける 1cm 線量当量率は、…

(測定方法)

【修正前】記載なし

記載がないため例えば、以下例示

【修正後】NaI シンチレーションサーベイメータを用いて、コア採取箇所の表面 1cm 線量当量率を密着させて測定した。検出器の大きさは〇〇インチなど。

Q: 0.09μ Sv/h と記載があるが、 0.06μ Sv/h の 3σ が約 0.03μ Sv/h であるため、本報告書の測定値はバックグランドの揺らぎの範囲内ではないか。この測定値は有意とみているのか。どう判定しているのか、誤差が記載されていないため不明である。決定値のように記載されているため、実際に有意なのか疑問に思う。(桝本委員長)

A:整理し、わかるように表記する。(事務局中林)

・表 3.1.1 コンクリートコア試料の概要の項目を、以下のように訂正する。

【修正前】サンプル量

【修正後】サンプルサイズ

Q:測定試料は、U-8容器に入るよう切断したのか。(桝本委員長)

A: その通りである。(事務局松村)

C: クリアランスの議論では、まず初めに重要核種(Co、Cs、Eu \cdots)を決めること。次に、検出された総放射能濃度を 1 とし、その 90%を網羅する核種についてランクを付ける。この際、重要核種が 2、3 種類に渡って並列した場合は、表記を工夫すること。

具体的には、Co-60 が存在する場合、Co-60 の放射能能濃度の何倍が総放射能濃度である、ということがおよそ判明し、その議論を行う。(桝本委員長)

C: 本事業はこのままの測定結果で良いが、最後のまとめで重要核種の議論すること。(規制庁)

C:要するに、このデータをもとにある核種群については90%検出され、約○○倍すれば総放射能濃度になるような議論をする。本報告書案では、以後、全ての核種について測定、評価しなければならないと受け止められる可能性がある。クリアランス事業にとって、ある程度判断のできる目安が示されるようにすること。(桝本委員長)

C: クリアランスの確率論的評価で濃度分布の偏在が 10 倍まで許容できるという議論がある。加えて NISA 文書では 5 倍程度までは許容できるという。これらを踏まえて、いきなり Σ D/C を表現するのでは なく、重要核種を決め、運転停止直後と(例えば)5 年後の検出核種を検証する。その上で、これらの 重要核種の何倍が総放射能濃度とみなせ、クリアランスの検討に値するという議論にするとよい。(桝 本委員長)

A:以上を踏まえて検討致します。(事務局松村)

Q: H-3 と C-14 について、クリアランス上まったく問題ないのか。(桝本委員長)

A: H-3のクリアランスレベルと比較すると、問題ありません。(事務局松村)

<金属>

Q: 測定試料は、鉄と銅メッキを混ぜて測定しているのか。(桝本委員長)

A: セクターマグネットは 1cm の断片で測定しているため、混在して測定していない。銅メッキのため、実際の効率は若干異なる可能性はある。また、メッキ厚がミクロンレベルのため Zn-65 の比放射能濃度はかなり高い。(事務局松村)

Q:「図 3.2.2 1cm 線量当量率の方向特性」は理解できたか。これは高さによって線量分布が異なると言いたいのか。(桝本委員長)

A: 方向によって線量分布が異なること示したい。(中林)

C:両サイドに比べて高いのか。(桝本委員長)

Q: 高線量率とはなにか。サンプリングした線量率なのか。どうやって測定したのか。(桝本委員長)

A: サイクロトロンは解体されているため、セクターマグネットなどをコンテナから取り出して測定した。図の表現は不明な点が多いため、掲載の有無を含めて改めて検討する。(事務局中林)

Q:「図3.2.2 コンクリート測定結果」は、コア単体の測定という理解か。(桝本委員長)

A:コア単体として測定した。(事務局松村)

Q: GM サーベイメータ (以下 $\lceil GM \rfloor$) で計数率を測定し、NaI シンチレーションサーベイメータ (以下 $\lceil NaI \rfloor$) で 1cm 線量当量率を測定したのか。 (桝本委員長)

A: その通りである。(事務局松村)

Q: 本報告書データでは、バックグランドの取扱いをどうしているのか。(桝本委員長)

A: バックグランドを含んだ測定値を表記している。(事務局松村)

C: GMと NaI を用いた測定の意義が不明。両者の測定データを掲載した意味は何か。例えば、GMで測定するとした場合、クリアランス制度の運用においてどのような役割を担うのかを明確にするように。(桝本委員長)

・重要核種を明確にするために、以下の修正をする。

【修正前】測定結果を表記

【修正後】重要核種とそれ以外の核種とに分類し、上述の議論を踏まえて表記する。

Q:中性子だけでなくプロトンが反応して生成された核種も見受けられる。シミュレーション計算に反映されているのか。(桝本委員長)

A: プロトンも加味された計算としている。(小迫委員)

C:一般論として、このようなケースでは基本的にプロトン反応を加味する。例えば、粒子線治療などの計算は、ソースになる箇所にプロトン反応の情報を計算条件に入力し、生成される核種を評価する。

(仁井田委員)

Q: ビームロスの情報はあるか。(事務局大石)

A: ある。(仁井田委員)

C:逆に、測定分析結果からプロトン反応でしか生成されない核種の種類、場所の情報を頂くと、シミュレーション計算ではその対象パーツ(対象部位)にプロトン反応を考慮することになる。生成核種の位置を明確にすると良い。(ビームロスの大きいマグネット部分で生成されたというような情報が欲しい。)サイクロトロンの廃止に加え、今後、製作されるサイクロトロンの環境評価にも大変有用な情報になる(仁井田委員)

A:サイクトロンにおいてターゲットポート付近にプロトンが照射される箇所があるが、真空箱にも 10% ほど当たる。概ね、プロトンは真空箱とターゲットの外には出ない。(オブザーバー田中)

C: クーリング期間は、計算条件の提示があれば可能と考える。(小迫委員)

C:報告書は、最終的に委員に分担して、細かく確認されること。(桝本委員長)

<後半 仁井田委員 退出>

(4) 既存文献調查(事務局泉)

・自己遮蔽体ありのサイクロトロンに限定すると、あるレベルの議論はできる。自己遮蔽体なしのものについては、今後情報を収集する必要がある。

C: 過去の委託事業(田無)では、NR の考え方を取り入れ、コンクリート中の全核種を分析した。重要核種として K-40、トリウム系列及びウラン系列に絞り、それぞれの Bq の 3σ を各コンクリートで算出した。Bq/g の 3σ を算出したが、実作業は線量で行うこともあるため、1cm 線量当量率での 3σ も算出した。重要核種は、放射能濃度で K-40、1cm 線量当量率はトリウム系列となった。結局、1cm 線量当量率の 3σ が 0.23μ v/h で原子炉発電所は NR を実施していると理解した。田無のマッピングでは、自然放射線として 0.1μ Sv/h を超えていれば放射化しているとの判断が妥当ではないかという結論を導きだした。(桝本委員長)

C: このような委託事業の調査報告書はどこに掲載されるのか。規制庁として、WEB に掲載しないのか。 (桝本委員長)

A:現状、すべての報告書を掲載していない。(一部掲載)本件の掲載は、検討中。国会図書館には納本 される。(規制庁)

C: これらのデータを全てを論文にするようにとの要望がある。可能な範囲で検討を進めている。(桝本委員長)

Q:CZT を用いて測定したが、利用できそうか。濃度測定は可能か。(桝本委員長)

A: 濃度算出は、ジオメトリーの関係から困難と考える。(事務局松村)

C: ランタンブロマイド測定等も、アイソックスでモデル化して測定しているが、測定スキームを確立できればよいと考える。(桝本委員長)

Q:サイクロトロン本体はクリアランスできないとのことだが、IBMのターゲットボックス引き出し型では、本事業と違って放射化されていないのでは。(桝本委員長)

A:引出型も同様に放射化されている。以前、兵庫県のものを解体したが、放射化されていた。(オブザーバー田中)

Q: クリアランスができない可能性がある。何か良いアイデア(救いの手)はないか。(桝本委員長)

A: 利用頻度が少ないサイクロトロンは、運転履歴別でクリアランスできるのではないか。(規制庁)

C:型式よりも利用頻度でクリアランスが可能か否かを判断するのが良いのではないか。(桝本委員長)

C:線量率、CZT、GE 検出器の結果等を相対的にまとめる、もしくは課題として提起して頂きたい。(米内委員)

C:3月31日から10日以内に報告書を提出して頂ければよい。(規制庁)

C: 計算結果は、2月中に報告できるようにしたい。(小迫委員)

<上蓑委員に対するヒアリング 2016.2.22 (月) >

C:金属試料採取箇所の図面について、採取位置を角度で表現するのも良いのではないか。(現在は、円弧にて表記)(上蓑委員)

Q: セクターマグネットの鉄から何故、Zn-65 ができるのか。

A:表面に銅メッキが施されているためである。。

・本事業のサイクロトロンは利用頻度が高く放射化がかなり進んでいた。 当装置の利用頻度では、現状、クリアランスを適用できる可能性が低いため、今後、利用頻度の少ないサイクロトロンを対象にすることも検討する。

Q: 非破壊で放射化量を測定できる方法はないか。(上蓑委員)

A:可能性は低い。(事務局佐々木)

C:数g試料採取で、測定、評価できることが理想的である。(上蓑委員)

以上

		確認日	作成日	2016. 02. 25
回覧先	委員会、オブザーバー、原子力規制庁、事務局	2016. 3. 18	承 認	2016. 3. 22
■ 承認			審査	_
□ 確認			承 認	_
□ 検討				

添付資料 1.1 サイクロトロンの運転時間及び積算電流値

添付表 1.1 運転時間

				画	運転時間 (hr)				
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	₩ √/
	F-18 用	C-11 用		للا ا ا	F-18 用	C-11 用		رز ا ا	
				ダンプ				ダンプ	
2004年1月~12月	146.72	18.21	使用なし	7.43	157.25	20.14	使用なし	0	349.75
2005年1月~12月	109.14	14.95	使用なし	1.47	126.86	22.80	使用なし	0	275.22
2006年1月~12月	96.21	48.74	使用なし	11.40	91.21	33.66	使用なし	0	281.22
2007年1月~12月	95.46	7.84	使用なし	0.95	99, 35	39.20	使用なし	0	242.80
2008年1月~12月	102.47	3.65	使用なし	3, 13	105.53	3.17	使用なし	0	217.95
2009年1月~12月	103.67	8.11	使用なし	0.27	108.89	5.61	使用なし	0	226.10
2010年1月~12月	114.96	8.37	使用なし	2.55	109.70	9.45	使用なし	0	245.03
2011年1月~12月	107.85	25.24	使用なし	2.65	107.65	25.68	使用なし	0	269.07
2012年1月~12月	95.38	31.00	使用なし	8.01	99.95	33.42	使用なし	0	168.41
2013年1月~12月	89.83	25.04	使用なし	1.09	85.79	21.25	使用なし	0	223.00
十二	1,061.68	191.16	使用なし	38.94	1, 092. 18	213.93	使用なし	0	2, 597.90

添付表 1.2 積算電流値

				積算	積算電流値 (μA・hr)	hr)			
	No. 1	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	##\/\
	F-18 用	C-11 用		رز ا ا	F-18 用	C-11 用		لاً ا ا	
				ダンプ				ダンプ	
2004年1月~12月	5, 139.89	67.19	使用なし	233.70	5, 504.60	39.10	使用なし	0	1, 0984. 48
2005年1月~12月	4, 401.05	135.9	使用なし	66.10	5,024.53	90.77	使用なし	0	9, 718.35
2006年1月~12月	4, 451.89	689.42	使用なし	318.86	4, 298. 10	420.09	使用なし	0	10, 178. 36
2007年1月~12月	3,950.45	218.86	使用なし	28.74	4, 528. 50	957.83	使用なし	0	9, 684. 38
2008年1月~12月	3, 914. 94	89.00	使用なし	77.83	3, 763.96	72.50	使用なし	0	7, 918. 23
2009年1月~12月	4, 221.84	246.01	使用なし	5.70	4, 180.64	178.71	使用なし	0	8, 832, 90
2010年1月~12月	3, 963.81	107.78	使用なし	97.85	4,097.92	104.70	使用なし	0	8, 372. 06
2011年1月~12月	2, 526. 51	662.60	使用なし	52.48	2, 528.54	669.90	使用なし	0	6, 440. 03
2012年1月~12月	2,029.34	1,001.59	使用なし	168.44	2,093.64	939.50	使用なし	0	6, 440. 03
2013年1月~12月	2, 632. 59	745.16	使用なし	3.24	2, 553.55	672.20	使用なし	0	6, 606.74
4	37, 232. 31	3, 963. 51	使用なし	1,052.94	38, 573, 98	4, 145.30	使用なし	0	84, 968. 04

添付表3.1.1 コンクリートの放射性物質濃度測定結果一覧表

		床面コン	クリート 放射性物質濃度	l 	<u> </u>	己遮蔽体=	<u>コンクリート</u> 放射性物質濃度		
試料名		核種	放别注物具滤度 Bq/g	試料名		核種	放别性物具减度 Bq/g		
	1	Na- 22	< 3.87E-03		1 1	Na- 22	< 6.39E-03		
		Sc- 46	$(7.37 \pm 1.44)E-03$			Sc- 46	(8.45±2.07)E-03		
1 — A (0–2cm)		Mn- 54	< 3.13E-03			Mn- 54	< 4.54E-03		
		Fe- 59	< 6.62E-03			Fe- 59	< 9.17E-03		
		Co- 60	(9.37±1.51)E-03		γ	Co- 60	(2.87±0.28)E-02		
		Zn- 65	< 8.92E-03		, 核	Zn- 65	< 1.57E-02		
		Cs-134	< 3.54E-03	2-A (0-2cm)	種	Cs-134	(3.26±0.25)E-02		
		Ce-139	< 2.60E-03			Ce-139	< 3.29E-03		
		Eu-152	(1.76±0.31)E−02			Eu-152	(2.73±0.47)E-02		
		Eu-154	< 1.90E-02			Eu-154	< 2.87E-02		
		K – 40	(1.72±0.18)E−01			K – 40	$(4.84 \pm 0.33)E-01$		
	350	H - 3	< 3.60E-01		β 核	H - 3	(4.26±1.11)E−01		
	種	C - 14	< 1.89E-01		種	C - 14	< 3.72E-01		
		Na- 22	< 3.28E-03			Na- 22	< 6.14E-03		
		Sc- 46	$(9.56 \pm 1.48)E-03$	2-B (2-4cm)		Sc- 46	$(1.36\pm0.22)E-02$		
		Mn- 54	< 3.08E-03			Mn- 54	< 4.60E-03		
		Fe- 59	< 7.44E-03			Fe- 59	< 1.09E-02		
		Co- 60	(1.01±0.16)E-02		Υ	Co- 60	(2.98±0.29)E-02		
1-C		Zn- 65	< 1.01E-02		核	Zn- 65	< 1.72E-02		
(4-6cm)		Cs-134	< 3.27E-03		種	Cs-134	(3.64±0.25)E-02		
		Ce-139	< 2.47E-03	,		Ce-139	< 3.43E-03 (2.52±0.46)⊑ 02		
		Eu-152	(1.83±0.33)E-02			Eu-152	(2.53±0.46)E-02		
		Eu-154 K - 40	< 1.95E-02			Eu-154	< 2.57E-02 (4.91 ± 0.25)E-01		
		K – 40	(1.13±0.15)E-01		β	K - 40	(4.81±0.35)E-01		
	核	H - 3 C - 14	< 3.58E-01 < 1.91E-01		核	H - 3 C - 14	< 3.20E-01 < 3.78E-01		
	12	C − 14 Na− 22	< 1.91E-01 < 3.55E-03	l 	種	Na- 22	< 3.78E=01 < 4.52E=03		
	_	Sc- 46	(8.25±1.50)E-03			Sc- 46	(1.61±0.21)E-02		
	_	<u>Sc− 46</u> Mn− 54	(8.25±1.50/E-03 < 3.45E-03			Mn- 54	(1.61±0.21)E-02 < 4.20E-03		
		Fe- 59	< 7.03E-03			Fe- 59	< 1.00E-02		
	_	Co- 60	(1.18±0.16)E-02		γ	Co- 60	(2.28±0.25)E-02		
		Zn- 65	< 1.05E-02		<i>,</i> 核	Zn- 65	< 1.50E-02		
1-E		Cs-134	(3.57±1.01)E-03	2-C	種	Cs-134	(2.46±0.23)E-02		
(8-10cm)		Ce-139	< 2.56E-03	(4–6cm)	-	Ce-139	< 3.42E-03		
		Eu-152	(2.47±0.33)E-02			Eu-152	(2.41±0.41)E-02		
		Eu-154	< 1.67E-02			Eu-154	< 2.76E-02		
		K – 40	(1.29±0.16)E-01			K - 40	(4.41±0.32)E−01		
	β 核	H - 3	< 3.46E-01	1	β 核	H - 3	< 3.26E-01		
	種	C - 14	< 1.90E-01		種	C - 14	< 3.78E-01		
	_	Na- 22	< 3.66E-03	2-D (6-8cm)		Na- 22	< 5.30E-03		
		Sc- 46	(8.28±1.38)E-03			Sc- 46	$(7.53 \pm 1.70)E-03$		
		Mn- 54	< 3.26E-03			Mn- 54	< 4.43E-03		
		Fe- 59	< 6.41E-03			Fe- 59	< 9.94E-03		
		Co- 60	(9.19±1.49)E−03		γ	Co- 60	(1.52±0.20)E-02		
1 – G		Zn- 65	< 9.32E-03		核	Zn- 65	< 1.35E-02		
(12-14cm)		Cs-134	< 3.28E-03		種	Cs-134	(1.65±0.19)E-02		
		<u>Ce−139</u> Eu−152	< 2.46E-03			Ce-139	< 3.44E−03 (1.75 ± 0.40)F 02		
		Eu-152 Eu-154	(1.81±0.32)E−02 < 1.92E−02			Eu-152 Eu-154	(1.75±0.40)E−02 < 2.60E−02		
		K – 40	(1.03±0.15)E-01			K - 40	(4.37±0.33)E-01		
	β	H - 3	< 3.54E-01		β	H - 3	< 3.12E−01		
	350	C - 14	< 1.92E-01		· 核 種	C - 14	< 3.94E-01		
	112	Na- 22	< 4.39E-03		-	Na- 22	< 4.90E-03		
1 — I (16–18cm)		Sc- 46	$(7.25\pm1.41)E-03$			Sc- 46	(4.64±1.51)E-03		
		Mn- 54	< 3.42E-03			Mn- 54	< 4.18E-03		
		Fe- 59	< 6.01E-03			Fe- 59	< 8.44E-03		
	γ	Co- 60	$(5.52 \pm 1.40)E-03$		γ	Co- 60	(7.22±1.85)E−03		
		Zn- 65	< 9.90E-03	2-E	核	Zn- 65	< 9.46E-03		
		Cs-134	< 2.95E-03	(8-10cm)	種	Cs-134	(7.10±1.65)E−03		
		Ce-139	< 2.46E-03	(8 10011)		Ce-139	< 3.03E-03		
		Eu-152	(1.67±0.30)E−02			Eu-152	< 1.12E-02		
		Eu-154	< 1.73E-02			Eu-154	< 2.63E-02		
		K – 40	(1.37±0.17)E−01		0	K - 40	(5.17±0.35)E-01		
	核	H - 3	< 3.49E-01		核種	H - 3	< 3.11E-01		
	種	C - 14	< 1.91E-01		種	C - 14	< 3.96E-01		
		Na- 22	< 3.99E-03			Na- 22	< 6.05E-03 (4.31 ± 1.40)E-03		
		Sc- 46	(6.84±1.50)E-03			Sc- 46	(4.31±1.40)E-03		
		Mn- 54	< 3.18E-03			Mn- 54	< 3.74E-03		
		Fe- 59	< 7.18E-03 (4.41 ± 1.34)E-03			Fe- 59	< 8.14E-03		
		Co- 60	(4.41±1.34)E-03		γ	Co- 60	< 5.22E-03		
		<u>Zn− 65</u> Cs−134	< 1.03E-02	2-F	核種	Zn- 65	< 8.23E-03 (5.42±1.32)E-03		
1 – J	7里	Cs-134 Ce-139	< 2.94E-03 < 2.52E-03	(10-12cm)	11里	Cs-134 Ce-139	(5.42±1.32)E−03 < 2.97E−03		
1 — J (18–20cm)		י פטו טע	\ Z.JZE_U3	l I	1		< 1.07E-02		
	(-u-150	(1 QQ + ∩ Q∩\⊏_∩2	1		Fil-160			
		Eu-152	(1.99±0.30)E−02 < 1.70E−02			Eu-152 Fu-154			
	 	Eu-154	< 1.70E-02			Eu-154	< 2.44E-02		
	(β 核				

添付図3.1.1 コンクリートコア No.1の深さ方向放射性物質濃度分布

添付図3.1.2 コンクリートコア No.2の深さ方向放射性物質濃度分布

添付表3.1.2 コンクリートコア No.1(床面)及びNo.2(自己遮蔽体)の Σ D/C

<u> </u>	コンクリー	1	コア NO.1(床面)及びNO.2(日1				1		
		重要				停	クリアランス レヘブル		
試料名	核種	要核	放射性物質濃度	D/C	ΣD/C	放射性物質濃度	D/C	ΣD/C	
		種	Bq/g			Bq/g			Bq/g
1 — A (0-2cm)	Sc- 46	_	7.37E-03	7.37E-02	重要核種	4.27E-09	4.27E-08	重要核種	0.1
	Co- 60	0	9.37E-03	9.37E-02	2.70E-01	5.01E-03	5.01E-02	1.87E-01	0.1
	Eu-152	0	1.76E-02	1.76E-01	検出核種	1.37E-02	1.37E-01	検出核種	0.1
		1			3.43E-01			1.87E-01	
	Sc- 46	_	9.56E-03	9.56E-02	重要核種	5.53E-09	5.53E-08	重要核種	0.1
1-C	Co- 60	0	1.01E-02	1.01E-01	2.84E-01	5.40E-03	5.40E-02	1.97E-01	0.1
(4-6cm)	Eu-152	0	1.83E-02	1.83E-01	検出核種	1.43E-02	1.43E-01	検出核種	0.1
1-E (8-10cm)		1	1		3.80E-01			1.97E-01	
	Sc- 46		8.25E-03	8.25E-02	重要核種	4.77E-09	4.77E-08	重要核種	0.1
	Co- 60	0	1.18E-02	1.18E-01	3.65E-01	6.31E-03	6.31E-02	2.56E-01	0.1
	Cs-134		3.57E-03	3.57E-02	検出核種	7.22E-04	7.22E-03	検出核種	0.1
	Eu-152	0	2.47E-02	2.47E-01	4.83E-01	1.93E-02	1.93E-01	2.63E-01	0.1
	Sc- 46		8.28E-03	8.28E-02	重要核種	4.79E-09	4.79E-08	重要核種	0.1
1-G	Co- 60	0	9.19E-03	9.19E-02	2.73E-01	4.92E-03	4.92E-02	1.90E-01	0.1
(12-14cm)	Eu-152	0	1.81E-02	1.81E-01	検出核種	1.41E-02	1.41E-01	検出核種	0.1
					3.56E-01			1.90E-01	
	Sc- 46		7.25E-03	7.25E-02	重要核種	4.20E-09	4.20E-08	重要核種	0.1
1 — I	Co- 60	0	5.52E-03	5.52E-02	2.22E-01	2.95E-03	2.95E-02	1.60E-01	0.1
(16-18cm)	Eu-152	0	1.67E-02	1.67E-01	検出核種	1.30E-02	1.30E-01	検出核種	0.1
					2.95E-01			1.60E-01	
	Sc- 46		6.84E-03	6.84E-02	重要核種	3.96E-09	3.96E-08	重要核種	0.1
1-J	Co- 60	0	4.41E-03	4.41E-02	2.43E-01	2.36E-03	2.36E-02	1.79E-01	0.1
(18-20cm)	Eu-152	0	1.99E-02	1.99E-01	検出核種	1.55E-02	1.55E-01	検出核種	0.1
					3.12E-01			1.79E-01	
	Sc- 46		8.45E-03	8.45E-02	重要核種	4.89E-09	4.89E-08	重要核種	0.1
	Co- 60	0	2.87E-02	2.87E-01	8.86E-01	1.54E-02	1.54E-01	4.33E-01	0.1
2-A (0-2cm)	Cs-134	0	3.26E-02	3.26E-01	検出核種	6.59E-03	6.59E-02	検出核種	0.1
(0 2011)	Eu-152	0	2.73E-02	2.73E-01	9.75E-01	2.13E-02	2.13E-01	4.36E-01	0.1
	H - 3		4.26E-01	4.26E-03		3.26E-01	3.26E-03		100
	Sc- 46		1.36E-02	1.36E-01	重要核種	7.87E-09	7.87E-08	重要核種	0.1
2-B	Co- 60	0	2.98E-02	2.98E-01	9.15E-01	1.59E-02	1.59E-01	4.31E-01	0.1
(2-4cm)	Cs-134	0	3.64E-02	3.64E-01	検出核種	7.36E-03	7.36E-02	検出核種	0.1
	Eu-152	0	2.53E-02	2.53E-01	1.05E+00	1.98E-02	1.98E-01	4.31E-01	0.1
	Sc- 46		1.61E-02	1.61E-01	重要核種	9.32E-09	9.32E-08	重要核種	0.1
2-C	Co- 60	0	2.28E-02	2.28E-01	7.15E-01	1.22E-02	1.22E-01	3.60E-01	0.1
(4-6cm)	Cs-134	0	2.46E-02	2.46E-01	検出核種	4.97E-03	4.97E-02	検出核種	0.1
	Eu-152	0	2.41E-02	2.41E-01	8.76E-01	1.88E-02	1.88E-01	3.60E-01	0.1
	Sc- 46	1	7.53E-03	7.53E-02	重要核種	4.36E-09	4.36E-08	重要核種	0.1
2-D	Co- 60	0	1.52E-02	1.52E-01	4.92E-01	8.13E-03	8.13E-02	2.52E-01	0.1
(6-8cm)	Cs-134	0	1.65E-02	1.65E-01	検出核種	3.34E-03	3.34E-02	検出核種	0.1
	Eu-152	0	1.75E-02	1.75E-01	5.67E-01	1.37E-02	1.37E-01	2.52E-01	0.1
	Sc- 46		4.64E-03	4.64E-02	重要核種	2.69E-09	2.69E-08	重要核種	0.1
2-E	Co- 60	0	7.22E-03	7.22E-02	1.43E-01	3.86E-03	3.86E-02	5.30E-02	0.1
(8-10cm)	Cs-134	0	7.10E-03	7.10E-02	検出核種	1.44E-03	1.44E-02	検出核種	0.1
	Eu-152	0		1.12E-01	1.90E-01	< 1.12E-02	1.12E-01	5.30E-02	0.1
	Sc- 46		4.31E-03	4.31E-02	重要核種	2.49E-09	2.49E-08	重要核種	0.1
2-F	Co- 60	0	< 5.22E-03	5.22E-02	5.42E-02	< 5.22E-03	5.22E-02	1.10E-02	0.1
(10-12cm)	Cs-134	0	5.42E-03	5.42E-02	検出核種	1.10E-03	1.10E-02	検出核種	0.1
	Eu-152	0		1.07E-01	9.73E−02	< 1.07E-02	1.07E-01	1.10E-02	0.1
			1			(検出限界未			

※ 検出限界未満の場合はΣD/Cに加算しない。

サイクロトロン停止日: 2013年12月20日

添付資料 3.2 金属測定結果

添付図 3.2.1(1) 金属試料採取箇所(1段目ヨーク)

添付図 3.2.1(2) 金属試料採取箇所(2段目ヨーク)

添付図 3.2.1(3) 金属試料採取箇所(3段目ヨーク)

添付図 3.2.1(4) 金属試料採取箇所(4段目3一ク)

添付図 3.2.1(5) 金属試料採取箇所(セクターマグネット 上段)

添付図 3.2.1(6) 金属試料採取箇所(セクターマグネット 下段)

添付図 3.2.1(7) 金属試料採取箇所(電磁石 上段)

添付図 3.2.1(8) 金属試料採取箇所(電磁石 下段)

添付図 3.2.1(9) 金属試料採取箇所(真空箱 上段)

添付図 3.2.1(10) 金属試料採取箇所(真空箱 下段)

ヨーク円弧長さ

: ドリリング

添付図 3.2.1(11) 金属試料採取箇所(拡散ポンプ・脚部)

数値:基線からサンプリングコア芯までの ョーク円弧長さ

添付図 3.2.1(12) 金属試料採取箇所(ディー電極)

添付表3.2.1 測定対処箇所の1cm線量当量率測定結果一覧表

試料	1cm線量当量率(<i>μ</i> Sv/h)	試料	1cm線量当量率(<i>μ</i> Sv/h)
No. 1-A (セクターマグネット下段)	2.10	No. 17-A (4段目3-ク)	0.35
No. 2-A (セクターマグネット下段)	0.30	No. 18-A (4段目ヨーク)	0.10
No. 3-A (セクターマグネット下段)	1.49	No. 19-A (4段目ヨーク)	0.43
No. 4-A (セクターマグネット上段)	0.34	No. 20-A (4段目3-ク)	0.11
No. 5-A (セクターマグネット上段)	1.75	No. 21-A (3段目ヨーク)	1.95
No. 6-A (セクターマグネット上段)	2.35	No. 22-A (3段目ヨーク)	0.22
No. 7-A (セクターマグネット上段)	0.25	No. 23-A (3段目ヨーク)	1.95
No. 8-A (セクターマグネット下段	0.25	No. 24-A (3段目ヨーク)	0.22
No. 9-A (2段目ヨーク)	2.05	No. 25-A (電磁石 上段)	0.52
No. 10-A (2段目ヨーク)	0.24	No. 26-A (電磁石 上段)	0.05
No. 11-A (2段目ヨーク)	0.25	No. 27-A (電磁石 上段)	0.48
No. 12-A (2段目ヨーク)	2.12	No. 28-A (電磁石 上段)	0.04
No. 13-A (1段目ヨーク)	0.22	No. 29-A (電磁石 下段)	0.47
No. 14-A (1段目ヨーク)	0.40	No. 30-A (電磁石 下段)	0.05
No. 15-A (1段目ヨーク)	0.13	No. 31-A (電磁石 下段)	0.49
No. 16-A (1段目ヨーク)	0.42	No. 32-A (電磁石 下段)	0.05
試料	1cm線量当量率(<i>μ</i> Sv/h)	試料	1cm線量当量率(<i>μ</i> Sv/h)
No. D1 (拡散ポンプ 上面)	0.30	No. D10 (真空箱 上段)	0.06
No. D2 (拡散ポンプ 下面)	0.23	No. D11 (脚部)	0.07
No. D3 (真空箱 下段)	0.22	No. D12 (脚部)	0.06
No. D4 (真空箱 下段)	0.24	No. D13 (脚部)	0.10
No. D5 (真空箱 下段)	0.16	No. D14 (脚部)	0.08
No. D6 (真空箱 下段)	0.26	No. D15 (ディー電極) [※]	38.40
No. D7 (真空箱 上段)	0.06	No. D16 (ディー電極) [※]	41.50
No. D8 (真空箱 上段)	0.08	No. D17 (ディー電極)	0.09
No. D9 (真空箱 上段)	0.06	No. D18 (ディー電極)	0.10

サイクロトロンの各部位における金属表面での1cm線量当量率は、原則、NaI(TI)シンチレーションサーベイメータ(B. G. O. 05 μ Sv/h)で測定したが、測定レンジ範囲を超えたNo. D15(ディー電極)及びNo. D16(ディー電極)は電離箱式サーベイメータを用いて測定した。

添付表3.2.2 セクターマグネット(鉄)の放射性物質濃度測定結果一覧表

			女 射 性 物 質	 [濃 度 (Bq/g		3 12:00に減衰補正
試料名	Mn− 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56
No. 1−A (下 段 0∼1.00 cm)	(5.11±0.02)E+00	(1.06±0.01)E+00	(8.67±0.01)E+01	< 5.68E-03	(6.34±0.59)E-02	< 5.0E-02
No. 1−C (下 段 2.50~3.50 cm)	(2.31±0.01)E+00	(9.88±0.10)E-01	< 1.72E-02	< 4.90E-03	< 5.47E-03	< 8.9E-03
No. 1−F (下 段 6.25∼7.25 cm)	(1.08±0.01)E+00	(9.44±0.10)E-01	< 1.69E-02	< 4.88E-03	< 4.44E-03	< 8.7E-03
No. 1−I (下段 10.00~11.00 cm)	(6.99±0.07)E−01	(9.20±0.10)E-01	< 1.64E-02	< 4.78E-03	< 4.15E-03	< 8.6E-03
No. 1−L (下段 13.75~14.75 cm)	(4.75±0.06)E-01	(8.48±0.09)E-01	< 1.62E-02	< 4.80E-03	< 3.93E-03	< 8.3E-03
No. 1−O (下段 17.25~18.25 cm)	(3.32±0.05)E-01	(7.84±0.09)E-01	< 1.60E-02	< 5.17E-03	< 3.62E-03	< 7.9E-03
No. 1-R (下段 21.00~22.00 cm)	(2.27±0.04)E-01	(7.09±0.08)E-01	< 1.48E-02	< 4.28E-03	< 3.38E-03	< 7.7E-03
No. 1-U (下段 24.75~25.75 cm)	(1.31±0.03)E-01	(5.93±0.07)E-01	< 1.34E-02	< 4.20E-03	< 2.87E-03	< 6.8E-03
No. 1-X (下段 28.50~29.50 cm)	(7.44±0.26)E-02	(4.93±0.07)E-01	< 1.18E-02	< 3.93E-03	< 2.62E-03	< 6.0E-03
No. 2-A (下 段 0~1.00 cm)	(3.09±0.05)E-01	(4.32±0.07)E-01	(1.54±0.06)E-01	< 3.85E-03	< 3.10E-03	< 6.4E-03
No. 2-L (下段 13.75~14.75 cm)	(3.91±0.22)E-02	(3.81±0.06)E-01	< 1.19E-02	< 3.58E-03	< 2.57E-03	< 6.0E-03
No. 2-X (下 段 28.50~29.50 cm)	(9.77±1.53)E-03	(2.77±0.05)E-01	< 9.89E-03	< 2.78E-03	< 2.11E-03	< 4.8E-03
No. 3−A (下 段 0~1.00 cm)	(3.46±0.02)E+00	(1.09±0.01)E+00	(1.16±0.00)E+01	(5.96±1.70)E-03	(1.34±0.28)E-02	< 2.1E-02
No. 3-L (下段 13.75~14.75 cm)	(6.62±0.07)E-01	(8.62±0.09)E-01	< 1.61E-02	< 4.78E-03	< 4.10E-03	< 8.3E-03
No. 3-X (下段 28.50~29.50 cm)	(9.76±0.29)E-02	(4.91±0.07)E-01	< 1.20E-02	< 3.90E-03	< 2.68E-03	< 6.2E-03
No. 4-A (上 段 0~1.00 cm)	(3.05±0.05)E-01	(4.26±0.07)E-01	(1.80±0.07)E-01	< 4.14E-03	< 3.17E-03	< 6.9E-03
No. 4-L (上 段 13.75~14.75 cm)	(3.46±0.20)E-02	(3.53±0.06)E-01	< 1.10E-02	< 3.57E-03	< 2.47E-03	< 5.5E-03
No. 4-X (上段 28.50~29.50 cm)	(1.24±0.14)E-02	(2.49±0.05)E-01	< 9.63E-03	< 3.28E-03	< 2.09E-03	< 5.1E-03
No. 5-A (上 段 0~1.00 cm)	(4.75±0.02)E+00	(1.05±0.01)E+00	(6.18±0.01)E+01	(1.80±0.21)E-02	< 1.35E-02	< 4.0E-02
No. 5-L (上 段 13.75~14.75 cm)	(4.47±0.06)E-01	(9.12±0.10)E-01	< 1.69E-02	< 4.98E-03	< 3.91E-03	< 8.7E-03
No. 5-X (上段 28.50~29.50 cm)	(5.64±0.25)E-02	(4.98±0.07)E-01	< 1.17E-02	< 3.48E-03	< 2.67E-03	< 6.1E-03
No. 6-A (上 段 0~1.00 cm)	(5.17±0.02)E+00	(1.08±0.01)E+00	(9.37±0.01)E+01	(1.26±0.20)E-02	< 1.64E-02	< 5.2E-02
No. 6-C (上 段 2.50~3.50 cm)	(2.39±0.01)E+00	(9.61±0.09)E-01	< 1.67E-02	< 4.61E-03	< 5.22E-03	< 8.5E-03
No. 6-F (上 段 6.25~7.25 cm)	(1.12±0.01)E+00	(9.42±0.10)E-01	< 1.74E-02	< 5.12E-03	< 4.58E-03	< 8.9E-03
No. 6-I (上段 10.00~11.00 cm)	(6.67±0.07)E-01	(8.60±0.09)E-01	< 1.52E-02	< 4.34E-03	< 3.82E-03	< 8.5E-03
No. 6-L (上段 13.75~14.75 cm)	(4.68±0.06)E-01	(8.24±0.09)E-01	< 1.62E-02	< 4.57E-03	< 3.78E-03	< 8.3E-03
No. 6-O (上段 17.25~18.25 cm)	(3.30±0.05)E-01	(7.35±0.08)E-01	< 1.54E-02	< 4.27E-03	< 3.51E−03	< 7.8E-03
No. 6-R (上 段 21.00~22.00 cm)	(2.13±0.04)E-01	(6.43±0.07)E−01	< 1.41E-02	< 4.10E-03	< 3.03E-03	< 6.8E-03
No. 6-U (上 段 24.75~25.75 cm)	(1.40±0.03)E−01	(5.81±0.07)E-01	< 1.40E-02	< 4.16E-03	< 2.95E-03	< 6.9E-03
No. 6-X (上 段 28.50~29.50 cm)	(8.61±0.28)E-02	(4.88±0.07)E−01	< 1.19E-02	< 3.58E-03	< 2.78E-03	< 6.2E-03
No. 7-A (上 段 0~1.00 cm)	(2.56±0.04)E-01	(4.04±0.06)E-01	(3.90±0.44)E-02	< 3.46E-03	< 2.91E-03	< 6.1E-03
No. 7-L (上 段 13.75~14.75 cm)	(2.97±0.20)E-02	(3.48±0.06)E-01	< 1.14E-02	< 3.37E-03	< 2.41E-03	< 5.7E-03
No. 7-X (上段 28.50~29.50 cm)	(9.88±1.36)E-03	(2.39±0.05)E-01	< 8.82E-03	< 2.98E-03	< 2.05E-03	< 4.8E-03
No. 8-A (下 段 0~1.00 cm)	(3.99±0.05)E-01	(4.20±0.06)E-01	(1.07±0.06)E-01	< 3.56E-03	< 3.13E-03	< 6.2E-03
No. 8-L (下段 13.75~14.75 cm)	(3.44±0.20)E-02	(3.47±0.06)E-01	< 1.05E-02	< 3.27E-03	< 2.36E-03	< 5.5E-03
No. 8-X (下段 28.50~29.50 cm)	(1.07±0.14)E-02	(2.49±0.05)E−01	< 9.07E−03	< 2.96E-03	< 2.02E-03	< 4.8E-03

添付表3.2.3 ヨーク(鉄)の放射性物質濃度測定結果一覧表 (1/2)

					2015年12月1日	3 12:00に減衰補正
=-4 101 47		九	女 射 性 物 質	i 濃 度 (Bq/g)		
試 料 名 	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56
No. 9-A (2段目 0~1.00 cm)	(9.70±0.03)E+00	(1.69±0.01)E+00	< 2.35E-02	< 7.00E-03	< 9.90E-03	< 1.2E-02
No. 9-F (2段目 6.25~7.25 cm)	(2.30±0.01)E+00	(7.78±0.09)E-01	< 1.59E-02	< 4.29E-03	< 5.30E-03	< 8.2E-03
No. 9-K (2段目 12.50~13.50 cm)	(4.97±0.06)E-01	(4.09±0.06)E-01	< 1.15E-02	< 3.57E-03	< 3.02E-03	< 6.1E-03
No. 10-A (2段目 0~1.00 cm)	(7.43±0.26)E-02	(3.79±0.06)E-01	< 1.14E-02	< 3.96E-03	< 2.52E-03	< 6.1E-03
No. 10-F (2段目 6.25~7.25 cm)	(2.05±0.15)E-02	(1.43±0.04)E-01	< 6.99E-03	< 2.45E-03	< 1.79E-03	< 3.9E-03
No. 10-K (2段目 12.50~13.50 cm)	(5.08±0.81)E-03	(6.16±0.23)E-02	< 4.85E-03	< 2.08E-03	< 1.42E-03	< 2.9E-03
No. 11-A (2段目 0~1.00 cm)	(8.85±0.28)E-02	(3.98±0.06)E-01	< 1.18E-02	< 3.29E-03	< 2.66E-03	< 6.3E-03
No. 11-F (2段目 6.25~7.25 cm)	(2.09±0.15)E-02	(1.47±0.04)E-01	< 8.26E-03	< 2.44E-03	< 1.88E-03	< 4.0E-03
No. 11-K (2段目 12.50~13.50 cm)	(4.65±0.85)E-03	(6.59±0.25)E-02	< 5.43E-03	< 1.86E-03	< 1.46E-03	< 2.9E-03
No. 12-A (2段目 0~1.00 cm)	(9.28±0.03)E+00	(1.66±0.01)E+00	< 2.38E-02	< 6.22E-03	< 9.78E-03	< 1.2E-02
No. 12-C (2段目 2.50~3.50 cm)	(5.22±0.02)E+00	(1.16±0.01)E+00	< 1.82E-02	< 5.13E-03	< 7.22E-03	< 9.6E-03
No. 12一F (2段目 6.25∼7.25 cm)	(2.15±0.01)E+00	(7.89±0.09)E-01	< 1.60E-02	< 4.47E-03	< 5.25E-03	< 8.5E-03
No. 12−I (2段目 10.00~11.00 cm)	(9.15±0.08)E-01	(5.10±0.07)E-01	< 1.30E-02	< 3.81E-03	< 3.88E-03	< 7.1E-03
No. 12-K (2段目 12.50~13.50 cm)	(4.81±0.06)E-01	(3.89±0.06)E-01	< 1.08E-02	< 3.16E-03	< 3.00E-03	< 5.8E-03
No. 13−A (1段目 0∼1.00 cm)	(5.46±1.22)E-03	(2.26±0.05)E-01	< 8.78E-03	< 2.65E-03	< 2.01E-03	< 4.6E-03
No. 13−I (1段目 10.00~11.00 cm)	< 2.44E-03	(8.25±0.28)E-02	< 5.67E-03	< 2.09E-03	< 1.59E-03	< 3.3E-03
No. 13-P (1段目 19.00~20.00 cm)	< 2.41E-03	(6.67±0.25)E-02	< 5.74E-03	< 2.22E-03	< 1.50E-03	< 2.9E-03
No. 14-A (1段目 0~1.00 cm)	(6.58±0.29)E-02	(7.21±0.09)E-01	< 1.57E-02	< 5.11E-03	< 3.25E-03	< 8.4E-03
No. 14−I (1段目 10.00∼11.00 cm)	(9.73±1.20)E-03	(1.77±0.04)E-01	< 7.91E-03	< 2.76E-03	< 1.94E-03	< 4.1E-03
No. 14-P (1段目 19.00~20.00 cm)	(3.67±0.83)E-03	(9.08±0.29)E-02	< 6.70E-03	< 1.98E-03	< 1.47E-03	< 3.0E-03
No. 15−A (1段目 0∼1.00 cm)	< 3.12E-03	(1.55±0.04)E-01	< 8.19E-03	< 2.83E-03	< 1.88E-03	< 4.4E-03
No. 15-I (1段目 10.00~11.00 cm)	< 2.30E-03	(6.33±0.25)E-02	< 5.81E-03	< 2.34E-03	< 1.44E-03	< 3.2E-03
No. 15-P (1段目 19.00~20.00 cm)	< 2.40E-03	(6.15±0.24)E-02	< 5.68E-03	< 1.97E-03	< 1.49E-03	< 2.9E-03
No. 16-A (1段目 0~1.00 cm)	(5.59±0.27)E-02	(7.02±0.08)E-01	< 1.53E-02	< 4.36E-03	< 3.15E-03	< 8.0E-03
No. 16-I (1段目 10.00~11.00 cm)	(8.66±1.21)E-03	(1.90±0.04)E-01	< 8.13E-03	< 3.15E-03	< 1.90E-03	< 4.6E-03
No. 16-P (1段目 19.00~20.00 cm)	< 2.53E-03	(9.09±0.30)E-02	< 6.52E-03	< 1.80E-03	< 1.59E-03	< 3.2E-03
No. 17-A (4段目 0~1.00 cm)	(6.58±0.28)E-02	(7.53±0.09)E-01	< 1.54E-02	< 4.51E-03	< 3.18E-03	< 8.4E-03
No. 17-I (4段目 10.00~11.00 cm)	(8.73±1.24)E-03	(1.79±0.04)E-01	< 7.88E-03	< 2.29E-03	< 1.87E-03	< 4.3E-03
No. 17-P (4段目 19.00~20.00 cm)	(3.66±0.84)E-03	(7.30±0.27)E-02	< 6.57E-03	< 2.13E-03	< 1.65E-03	< 3.5E-03
No. 18-A (4段目 0~1.00 cm)	< 3.23E-03	(1.46±0.04)E-01	< 7.53E-03	< 2.69E-03	< 1.89E-03	< 4.3E-03
No. 18-I (4段目 10.00~11.00 cm)	< 1.92E-03	(5.68±0.23)E-02	< 5.37E-03	< 2.07E-03	< 1.45E-03	< 2.7E-03
No. 18-P (4段目 19.00~20.00 cm)	< 2.41E-03	(5.17±0.22)E-02	< 4.51E-03	< 1.84E-03	< 1.35E-03	< 2.6E-03
						•

添付表3.2.3 ヨーク(鉄)の放射性物質濃度測定結果一覧表 (2/2)

					2015年12月1日	3 12:00に減衰補正
試 料 名			女 射 性 物 質	t 濃 度 (Bq/g	;)	
	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56
No. 19-A (4段目 0~1.00 cm)	(6.64±0.29)E-02	(8.02±0.09)E-01	(1.67±0.52)E-02	< 4.65E-03	< 3.35E-03	< 8.6E-03
No. 19-C (4段目 2.50~3.50 cm)	(4.16±0.23)E-02	(5.30±0.07)E-01	< 1.31E-02	< 3.92E-03	< 2.82E-03	< 6.9E-03
No. 19-F (4段目 6.25~7.25 cm)	(2.27±0.17)E-02	(3.23±0.06)E-01	< 1.04E-02	< 3.54E-03	< 2.27E-03	< 5.4E-03
No. 19-I (4段目 10.00~11.00 cm)	(1.19±0.13)E-02	(2.08±0.05)E-01	< 8.99E-03	< 2.73E-03	< 2.02E-03	< 4.6E-03
No. 19-M (4段目 15.25~16.25 cm)	< 2.84E-03	(1.08±0.03)E-01	< 7.34E-03	< 2.46E-03	< 1.55E-03	< 3.5E-03
No. 19-P (4段目 19.00~20.00 cm)	< 2.50E-03	(7.77±0.27)E-02	< 6.43E-03	< 1.80E-03	< 1.57E-03	< 3.1E-03
No. 20-A (4段目 0~1.00 cm)	< 3.24E-03	(1.41±0.04)E−01	< 7.54E-03	< 2.38E-03	< 1.84E-03	< 3.9E-03
No. 20-I (4段目 10.00~11.00 cm)	< 2.09E-03	(5.29±0.23)E-02	< 5.91E-03	< 1.91E-03	< 1.42E-03	< 2.6E-03
No. 20-P (4段目 19.00~20.00 cm)	(2.07±0.60)E-03	(3.90±0.19)E-02	< 4.89E-03	< 1.79E-03	< 1.36E-03	< 2.6E-03
No. 21-A (3段目 0~1.00 cm)	(8.23±0.02)E+00	(1.80±0.01)E+00	< 2.54E-02	< 7.29E-03	< 8.58E-03	< 1.3E-02
No. 21-F (3段目 6.25~7.25 cm)	(1.99±0.01)E+00	(7.92±0.09)E-01	< 1.62E-02	< 4.23E-03	< 5.05E-03	< 8.5E-03
No. 21-K (3段目 12.50~13.50 cm)	(4.72±0.06)E-01	(3.84±0.06)E-01	< 1.12E-02	< 3.51E-03	< 3.00E-03	< 6.0E-03
No. 22-A (3段目 0~1.00 cm)	(7.86±0.28)E-02	(4.07±0.06)E-01	< 1.22E-02	< 3.37E-03	< 2.76E-03	< 6.3E-03
No. 22-F (3段目 6.25~7.25 cm)	(2.38±0.15)E-02	(1.42±0.04)E-01	< 8.13E-03	< 2.44E-03	< 1.83E-03	< 4.4E-03
No. 22-K (3段目 12.50~13.50 cm)	(5.90±0.76)E-03	(5.80±0.22)E-02	< 4.64E-03	< 1.69E-03	< 1.30E-03	< 2.7E-03
No. 23-A (3段目 0~1.00 cm)	(8.70±0.02)E+00	(1.70±0.01)E+00	< 2.37E-02	< 6.27E-03	< 9.66E-03	< 1.3E-02
No. 23-F (3段目 6.25~7.25 cm)	(2.15±0.01)E+00	(8.14±0.09)E−01	< 1.66E-02	< 4.70E-03	< 5.32E-03	< 8.8E-03
No. 23-K (3段目 12.50~13.50 cm)	(4.90±0.06)E−01	(4.01 ± 0.06)E−01	< 1.19E-02	< 3.47E-03	< 3.17E−03	< 6.4E-03
No. 24-A (3段目 0~1.00 cm)	(9.71±0.31)E-02	(4.10±0.07)E−01	< 1.26E-02	< 3.59E-03	< 2.80E-03	< 6.6E-03
No. 24-F (3段目 6.25~7.25 cm)	(2.24±0.15)E-02	(1.57±0.04)E−01	< 7.23E-03	< 2.47E-03	< 1.86E-03	< 3.9E-03
No. 24-K (3段目 12.50~13.50 cm)	(5.16±0.95)E-03	(6.58±0.26)E−02	< 5.89E-03	< 2.00E-03	< 1.51E−03	< 3.2E-03

添付表3.2.4 電磁石(銅)の放射性物質濃度測定結果一覧表

試料名		力	女射性物質	t 濃 度 (Bq/g	:)	
DA 77 13	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Ag-110m
No. 25-A (上 段 0~1.00 cm)	< 9.00E-03	(1.57±0.01)E+00	< 2.11E-02	< 5.47E-03	< 5.08E-03	(1.35±0.24)E-02
No. 26-A (上 段 0~1.00 cm)	< 1.46E-03	(2.06±0.58)E-03	< 3.68E-03	< 1.46E-03	< 1.52E-03	(2.39±0.46)E-03
No. 27-A (上 段 0~1.00 cm)	< 8.45E-03	(1.42±0.01)E+00	(2.42±0.64)E-02	< 5.58E-03	< 4.67E-03	(8.51±2.20)E-03
No. 28-A (上 段 0~1.00 cm)	< 1.58E-03	(2.21±0.61)E-03	< 3.10E-03	< 1.25E-03	< 1.46E-03	(2.50±0.53)E-03
No. 29-A (下 段 0~1.00 cm)	< 8.08E-03	(1.31±0.01)E+00	< 1.90E-02	< 5.44E-03	< 4.64E-03	(1.32±0.22)E-02
No. 30-A (下 段 0~1.00 cm)	< 1.11E-03	(3.96±0.66)E-03	< 3.17E-03	< 1.50E-03	< 1.45E-03	(2.72±0.57)E-03
No. 31-A (下 段 0~1.00 cm)	< 8.00E-03	(1.23±0.01)E+00	< 1.88E-02	< 5.21E-03	< 4.54E-03	(1.53±0.22)E−02
No. 32-A (下 段 0~1.00 cm)	< 1.41E-03	(3.03±0.66)E-03	< 2.95E-03	< 1.55E-03	< 1.41E-03	(3.08±0.52)E-03

添付表3.2.5 拡散ポンプ(ステンレス)の放射性物質濃度測定結果一覧表

2015年12月1日 12:00に減衰補正

					2010-12/11	1 12.0010减级闸正			
試料名	放射性物質濃度(Bq/g)								
武 村 1	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56			
D 1 (上 部)	< 8.14E-03	(4.27±0.11)E-01	< 2.26E-02	< 6.27E-03	< 2.69E-03	< 9.4E-03			
D 2 (下 部)	< 1.26E-02	(1.47±0.02)E+00	< 2.99E-02	< 8.99E-03	< 3.58E-03	< 1.4E-02			

添付表3.2.6 真空箱(アルミニウム)の放射性物質濃度測定結果一覧表

2015年12月1日 12:00に減衰補正

	放射性物質濃度(Bg/g)									
試 料 名			X 31 IL 10 5	()成 ()C	•					
DA 14 L	Mn− 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56				
D 3 (下 段)	(2.51±0.49)E-02	< 1.28E-02	(2.41±0.17)E-01	(1.71±0.03)E+00	(2.50±0.04)E-01	(2.52±0.58)E-02				
D 4 (下 段)	(2.46±0.59)E-02	< 1.39E-02	(3.58±0.20)E−01	(2.73±0.04)E+00	(4.22±0.05)E-01	(4.94±0.73)E-02				
D 5 (下 段)	< 1.36E-02	(1.85±0.39)E-02	(1.52±0.14)E-01	(1.50±0.03)E+00	(1.74±0.04)E-01	(3.81±0.54)E-02				
D 6 (下 段)	(4.43±0.68)E-02	< 1.59E-02	(8.38±0.27)E−01	(3.34±0.04)E+00	(9.55±0.08)E-01	(8.85±0.84)E-02				
D 7 (上 段)	< 5.45E-03	(1.22±0.30)E-02	< 1.30E-02	< 8.91E-03	< 2.91E-03	< 5.7E-03				
D 8 (上 段)	< 5.04E-03	< 7.24E-03	< 1.30E-02	(1.35±0.30)E-02	< 2.70E-03	< 5.6E-03				
D 9 (上 段)	< 5.60E-03	(1.24±0.29)E-02	(1.43±0.43)E-02	< 8.70E-03	< 2.65E-03	< 5.9E-03				
D 10 (上 段)	< 5.96E-03	(8.52±2.26)E-03	< 1.06E-02	< 8.44E-03	< 2.86E-03	< 6.2E-03				

添付表3.2.7 脚部(鉄)の放射性物質濃度測定結果一覧表

						12.0010减级隔止					
試 料 名		放射性物質濃度(Bq/g)									
武 村 10	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56					
D 11 (脚部)	(5.28±1.41)E-03	(5.95±0.42)E-02	< 1.27E-02	(9.14±2.03)E-03	< 2.40E-03	< 5.5E-03					
D 12 (脚部)	< 4.85E-03	(4.21±0.36)E-02	< 1.06E-02	< 5.34E-03	< 2.38E-03	< 5.6E-03					
D 13 (脚部)	< 5.72E-03	(1.12±0.06)E-01	< 1.36E-02	< 4.03E-03	< 2.36E-03	< 6.0E-03					
D 14 (脚部)	< 5.40E-03	(1.11±0.06)E-01	< 1.27E-02	< 5.69E-03	< 2.40E-03	< 6.6E-03					

添付表3.2.8 ディー電極(銅)の放射性物質濃度測定結果一覧表

						- 12:001-1/9公計				
試料名		放射性物質濃度(Bq/g)								
武 科 石	Mn- 54	Co- 60	Zn- 65	Na- 22	Co- 57	Co- 56				
D 15 (外縁部)	< 5.06E-01	(8.81 ± 1.43)E-02	(2.65±0.00)E+03	< 4.32E-02	< 8.95E-02	< 6.0E-01				
D 16 (外縁部)	< 5.43E-01	(7.53±1.54)E-02	(3.05±0.00)E+03	< 4.85E-02	< 9.61E-02	< 6.5E-01				
D 17 (中心部)	< 3.00E-03	(5.64±0.32)E-02	< 8.68E-03	< 2.44E-03	< 1.97E-03	< 4.1E-03				
D 18 (中心部)	< 3.92E-03	(1.04±0.04)E-01	< 9.24E-03	< 3.71E-03	< 1.92E-03	< 4.4E-03				

[セクターマグネット]

添付図3.2.2 金属コア試料の深さ方向放射化分布(1/4)

添付図3.2.2 金属コア試料の深さ方向放射化分布(2/4)

添付図3.2.2 金属コア試料の深さ方向放射化分布(3/4)

添付図3.2.2 金属コア試料の深さ方向放射化分布(4/4)

添付表3.2.9 セクターマグネット(鉄)の Σ D/C (1/2)

添付表3.2.9 t	<u> インブー、</u>	くン T重	アント(鉄			_,	止日から5年経	·A	クリアランス
試 料 名	核種	要核	放射性物質濃度	<u>- 日から711日</u>		放射性物質濃度			クリアランス
		種	Bq/g	D/C	ΣD/C	Bq/g	D/C	ΣD/C	Bq/g
	Mn− 54	0	5.11E+00	5.11E+01	重要核種	4.30E-01	4.30E+00	重要核種	0.1
No. 1—A	Co- 60	0	1.06E+00	1.06E+01	6.17E+01	7.10E-01	7.10E+00	1.14E+01	0.1
(下 段 0∼1.00 cm)	Zn- 65		8.67E+01	8.67E+02	検出核種	3.66E+00	3.66E+01	検出核種	0.1
	Co- 57		6.34E-02	6.34E-02	9.29E+02	3.69E-03	3.69E-03	4.80E+01	1
No. 1-C	Mn- 54	0	2.31E+00	2.31E+01	重要核種	1.94E-01	1.94E+00	重要核種	0.1
(下段 2.50~3.50 cm)	Co- 60	0	9.88E-01	9.88E+00	3.30E+01	6.61E-01	6.61E+00	8.55E+00	0.1
No. 1-F	Mn− 54	0	1.08E+00	1.08E+01	重要核種	9.08E-02	9.08E-01	重要核種	0.1
(下 段 6.25~7.25 cm)	Co- 60	0	9.44E-01	9.44E+00	2.02E+01	6.32E-01	6.32E+00	7.23E+00	0.1
No. 1−I (下段 10.00~11.00 cm)	Mn− 54	0	6.99E-01	6.99E+00	重要核種	5.88E-02	5.88E-01	重要核種	0.1
(下 致 10.00~11.00 cm)	Co- 60	0	9.20E-01	9.20E+00	1.62E+01	6.16E-01	6.16E+00	6.75E+00	0.1
No. 1−L (下 段 13.75~14.75 cm)	Mn− 54	0	4.75E-01	4.75E+00	重要核種	4.00E-02	4.00E-01	重要核種	0.1
(下段 13.75~14.75 cm)	Co- 60	0	8.48E-01	8.48E+00	1.32E+01	5.68E-01	5.68E+00	6.08E+00	0.1
No. 1−O (下段 17.25~18.25 cm)	Mn- 54	0	3.32E-01	3.32E+00	重要核種	2.79E-02	2.79E-01	重要核種	0.1
(1: +x 17.20:=10.20 cm)	Co- 60	0	7.84E-01	7.84E+00	1.12E+01	5.25E-01	5.25E+00	5.53E+00	0.1
No. 1-R (下 段 21.00~22.00 cm)	Mn- 54	0	2.27E-01	2.27E+00	重要核種	1.91E-02	1.91E-01	重要核種	0.1
(1: FX 21.00~22.00 CM)	Co- 60	0	7.09E-01	7.09E+00	9.36E+00	4.75E-01	4.75E+00	4.94E+00	0.1
No. 1-U (下 段 24.75~25.75 cm)	Mn- 54	0	1.31E-01	1.31E+00	重要核種	1.10E-02	1.10E-01	重要核種	0.1
(FX 24.75** 25.75 CIII)	Co- 60	0	5.93E-01	5.93E+00	7.24E+00	3.97E-01	3.97E+00	4.08E+00	0.1
No. 1-X (下段 28.50~29.50 cm)	Mn- 54	0	7.44E-02	7.44E-01	重要核種	6.26E-03	6.26E-02	重要核種	0.1
(1. £X 20.30 29.30 CIII)	Co- 60	0	4.93E-01	4.93E+00	5.67E+00	3.30E-01	3.30E+00	3.36E+00	0.1
	Mn- 54	0	3.09E-01	3.09E+00	重要核種	2.60E-02	2.60E-01	重要核種	0.1
No. 2−A (下 段 0∼1.00 cm)	Co- 60	0	4.32E-01	4.32E+00	7.41E+00	2.89E-01	2.89E+00	3.15E+00	0.1
(Zn- 65		1.54E-01	1.54E+00	検出核種	6.49E-03	6.49E-02	検出核種	0.1
		1 -	1		8.95E+00			3.21E+00	
No. 2-L (下 段 13.75~14.75 cm)	Mn- 54	0	3.91E-02	3.91E-01	重要核種	3.29E-03	3.29E-02	重要核種	0.1
(½ 13.73° - 14.73 CIII)	Co- 60	0	3.81E-01	3.81E+00	4.20E+00	2.55E-01	2.55E+00	2.58E+00	0.1
No. 2-X (下段 28.50~29.50 cm)	Mn- 54	0	9.77E-03	9.77E-02	重要核種	8.22E-04	8.22E-03	重要核種	0.1
(+ +x 20.00 + 20.00 GH)	Co- 60	0	2.77E-01	2.77E+00	2.87E+00	1.85E-01	1.85E+00	1.86E+00	0.1
	Mn- 54	0	3.46E+00	3.46E+01	重要核種	2.91E-01	2.91E+00	重要核種	0.1
No. 3-A	Co- 60	0	1.09E+00	1.09E+01	4.55E+01	7.30E-01	7.30E+00	1.02E+01	0.1
(下 段 0~1.00 cm)	Zn- 65		1.16E+01	1.16E+02	検出核種	4.89E-01	4.89E+00	検出核種	0.1
	Na- 22		5.96E-03	5.96E-02	1.62E+02	2.64E-03	2.64E-02	1.51E+01	0.1
	Co- 57	_	1.34E-02	1.34E-02	壬五廿年	7.80E-04	7.80E-04	手 亜 北 廷	1
No. 3−L (下段 13.75∼14.75 cm)	Mn- 54	0	6.62E-01	6.62E+00	重要核種	5.57E-02	5.57E-01	重要核種	0.1
	Co- 60	0	8.62E-01	8.62E+00	1.52E+01	5.77E-01	5.77E+00	6.33E+00	0.1
No. 3-X (下段 28.50~29.50 cm)	Mn- 54	0	9.76E-02	9.76E-01	重要核種	8.21E-03	8.21E-02	重要核種	0.1
,	Co- 60	0	4.91E-01 3.05E-01	4.91E+00 3.05E+00	5.89E+00 重要拡張	3.29E-01 2.57E-02	3.29E+00	3.37E+00 重要拡積	0.1
	Mn- 54 Co- 60	0			重要核種 7.31E+00		2.57E-01	里要核種 211E±00	0.1
No. 4−A (上 段 0∼1.00 cm)	Zn- 65		4.26E-01 1.80E-01	4.26E+00 1.80E+00	検出核種	2.85E-01 7.59E-03	2.85E+00 7.59E-02	3.11E+00 検出核種	0.1 0.1
	211 03		1.80L 01	1.80L+00	9.11E+00	7.59L 03	7.59L 02	3.18E+00	0.1
	Mn- 54	0	3.46E-02	3.46E-01		2.91E-03	2.01E_02	重要核種	0.1
No. 4-L (上 段 13.75~14.75 cm)	Co- 60	0	3.46E-02 3.53E-01	3.53E+00	重要核種 3.88E+00	2.36E-01	2.91E-02 2.36E+00	里安核性 2.39E+00	0.1
	Mn- 54	0	1.24E-02	1.24E-01	重要核種	1.04E-03	1.04E-02	重要核種	0.1
No. 4-X (上段 28.50~29.50 cm)	Co- 60	0	2.49E-01	2.49E+00	里安核性 2.61E+00	1.04E-03 1.67E-01	1.67E+00	里安核性 1.68E+00	0.1
	Mn- 54	0	4.75E+00	4.75E+01	重要核種	4.00E-01	4.00E+00	重要核種	0.1
N = .	Co- 60	0	1.05E+00	1.05E+01	里安修理 5.80E+01	7.03E-01	7.03E+00	里安核性 1.10E+01	0.1
No. 5-A (上 段 0~1.00 cm)	Zn- 65	ڵ	6.18E+01	6.18E+02	検出核種	2.61E+00	2.61E+01	検出核種	0.1
	Na- 22		1.80E-02	1.80E-01	1央山1久1里 6.76E+02	7.98E-03	7.98E-02	1英山12作里 3.72E+01	0.1
N. 5 1	Mn- 54	0	4.47E-01	4.47E+00	重要核種	3.76E-02	3.76E-01	重要核種	0.1
No. 5-L (上段 13.75~14.75 cm)	Co- 60	0	9.12E-01	9.12E+00	里安修理 1.36E+01	6.10E-01	6.10E+00	里安/X性 6.48E+00	0.1
N. F. V	Mn- 54	0	5.64E-02	5.64E-01	重要核種	4.74E-03	4.74E-02	重要核種	0.1
No. 5-X (上段 28.50~29.50 cm)	Co- 60	0	4.98E-01	4.98E+00	里安修理 5.54E+00	3.33E-01	3.33E+00	里安修理 3.38E+00	0.1
	00 00	J	7.00∟ 01	7.50L 100	3.34L+00 **		 満の場合は Σ		

※ 検出限界未満の場合はΣD/Cに加算しない。

添付表3.2.9 セクターマグネット(鉄)の Σ D/C (2/2)

		重		- -日から711日紅		停	止日から5年経	過	クリアランス
試 料 名	核種	要核種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘ・ル Bq/g
	Mn- 54	0	5.17E+00	5.17E+01	重要核種	4.35E-01	4.35E+00	重要核種	0.1
No. 6-A	Co- 60	0	1.08E+00	1.08E+01	6.25E+01	7.23E-01	7.23E+00	1.16E+01	0.1
(上 段 0~1.00 cm)	Zn- 65		9.37E+01	9.37E+02	検出核種	3.95E+00	3.95E+01	検出核種	0.1
	Na- 22		1.26E-02	1.26E-01	1.00E+03	5.59E-03	5.59E-02	5.11E+01	0.1
No. 6-C	Mn- 54	0	2.39E+00	2.39E+01	重要核種	2.01E-01	2.01E+00	重要核種	0.1
(上 段 2.50~3.50 cm)	Co- 60	0	9.61E-01	9.61E+00	3.35E+01	6.43E-01	6.43E+00	8.44E+00	0.1
No. 6-F	Mn- 54	0	1.12E+00	1.12E+01	重要核種	9.42E-02	9.42E-01	重要核種	0.1
(上 段 6.25~7.25 cm)	Co- 60	0	9.42E-01	9.42E+00	2.06E+01	6.31E-01	6.31E+00	7.25E+00	0.1
No. 6-I	Mn- 54	0	6.67E-01	6.67E+00	重要核種	5.61E-02	5.61E-01	重要核種	0.1
(上 段 10.00~11.00 cm)	Co- 60	0	8.60E-01	8.60E+00	1.53E+01	5.76E-01	5.76E+00	6.32E+00	0.1
No. 6-L	Mn- 54	0	4.68E-01	4.68E+00	重要核種	3.94E-02	3.94E-01	重要核種	0.1
(上 段 13.75~14.75 cm)	Co- 60	0	8.24E-01	8.24E+00	1.29E+01	5.52E-01	5.52E+00	5.91E+00	0.1
No. 6-O 上 段 17.25~18.25 cm)	Mn- 54	0	3.30E-01	3.30E+00	重要核種	2.78E-02	2.78E-01	重要核種	0.1
(上 段 17.25~18.25 cm)	Co- 60	0	7.35E-01	7.35E+00	1.07E+01	4.92E-01	4.92E+00	5.20E+00	0.1
No. 6-R	Mn- 54	0	2.13E-01	2.13E+00	重要核種	1.79E-02	1.79E-01	重要核種	0.1
(上 段 21.00~22.00 cm)	Co- 60	0	6.43E-01	6.43E+00	8.56E+00	4.30E-01	4.30E+00	4.48E+00	0.1
No. 6-U	Mn- 54	0	1.40E-01	1.40E+00	重要核種	1.18E-02	1.18E-01	重要核種	0.1
(上 段 24.75~25.75 cm)	Co- 60	0	5.81E-01	5.81E+00	7.21E+00	3.89E-01	3.89E+00	4.01E+00	0.1
No. 6-X	Mn- 54	0	8.61E-02	8.61E-01	重要核種	7.24E-03	7.24E-02	重要核種	0.1
(上 段 28.50~29.50 cm)	Co- 60	0	4.88E-01	4.88E+00	5.74E+00	3.27E-01	3.27E+00	3.34E+00	0.1
	Mn- 54	0	2.56E-01	2.56E+00	重要核種	2.15E-02	2.15E-01	重要核種	0.1
No. 7-A	Co- 60	0	4.04E-01	4.04E+00	6.60E+00	2.70E-01	2.70E+00	2.92E+00	0.1
(上 段 0~1.00 cm)	Zn- 65		3.90E-02	3.90E-01	検出核種	1.64E-03	1.64E-02	検出核種	0.1
					6.99E+00			2.93E+00	
No. 7-L	Mn- 54	0	2.97E-02	2.97E-01	重要核種	2.50E-03	2.50E-02	重要核種	0.1
(上 段 13.75~14.75 cm)	Co- 60	0	3.48E-01	3.48E+00	3.78E+00	2.33E-01	2.33E+00	2.36E+00	0.1
No. 7-X	Mn- 54	0	9.88E-03	9.88E-02	重要核種	8.31E-04	8.31E-03	重要核種	0.1
(上 段 28.50~29.50 cm)	Co- 60	0	2.39E-01	2.39E+00	2.49E+00	1.60E-01	1.60E+00	1.61E+00	0.1
	Mn- 54	0	3.99E-01	3.99E+00	重要核種	3.36E-02	3.36E-01	重要核種	0.1
No. 8-A	Co- 60	0	4.20E-01	4.20E+00	8.19E+00	2.81E-01	2.81E+00	3.15E+00	0.1
(下 段 0~1.00 cm)	Zn- 65		1.07E-01	1.07E+00	検出核種	4.51E-03	4.51E-02	検出核種	0.1
					9.26E+00			3.19E+00	
No. 8-L	Mn- 54	0	3.44E-02	3.44E-01	重要核種	2.89E-03	2.89E-02	重要核種	0.1
(下段 13.75~14.75 cm)	Co- 60	0	3.47E-01	3.47E+00	3.81E+00	2.32E-01	2.32E+00	2.35E+00	0.1
No. 8-X	Mn- 54	0	1.07E-02	1.07E-01	重要核種	9.00E-04	9.00E-03	重要核種	0.1
(下 段 28.50~29.50 cm)	Co- 60	0	2.49E-01	2.49E+00	2.60E+00	1.67E-01	1.67E+00	1.68E+00	0.1

※ 検出限界未満の場合はΣD/Cに加算しない。

添付表3.2.10 ヨーク(鉄)のΣD/C (1/2)

<u> </u>	コープ(単	ス/	0) Z D / C				よりからら左紋	`G	611-7-1 P
試 料 名	核種	要	ラリカ カラリカ	- 日から711日糸		厅 放射性物質濃度	止日から5年経		クリアランス レベル
11 L	IX II	核種	Bq/g	D/C	ΣD/C	Bq/g	D/C	ΣD/C	Bq/g
No. 9-A	Mn- 54	0	9.70E+00	9.70E+01	重要核種	8.16E-01	8.16E+00	重要核種	0.1
(2段目 0~1.00 cm)	Co- 60	0	1.69E+00	1.69E+01	1.14E+02	1.13E+00	1.13E+01	1.95E+01	0.1
試 料 名 核	Mn- 54	0	2.30E+00	2.30E+01	重要核種	1.93E-01	1.93E+00	重要核種	0.1
(2段目 6.25~7.25 cm)	Co- 60	0	7.78E-01	7.78E+00	3.08E+01	5.21E-01	5.21E+00	7.14E+00	0.1
	Mn− 54	0	4.97E-01	4.97E+00	重要核種	4.18E-02	4.18E-01	重要核種	0.1
(2段目 12.50~13.50 cm)	Co- 60	0	4.09E-01	4.09E+00	9.06E+00	2.74E-01	2.74E+00	3.16E+00	0.1
No. 10-A	Mn- 54	0	7.43E-02	7.43E-01	重要核種	6.25E-03	6.25E-02	重要核種	0.1
(2段目 0~1.00 cm)	Co- 60	0	3.79E-01	3.79E+00	4.53E+00	2.54E-01	2.54E+00	2.60E+00	0.1
	Mn- 54	0	2.05E-02	2.05E-01	重要核種	1.72E-03	1.72E-02	重要核種	0.1
(2段目 6.25~7.25 cm)	Co- 60	0	1.43E-01	1.43E+00	1.64E+00	9.57E-02	9.57E-01	9.74E-01	0.1
No. 10-K	Mn- 54	0	5.08E-03	5.08E-02	重要核種	4.27E-04	4.27E-03	重要核種	0.1
(2段目 12.50~13.50 cm)	Co- 60	0	6.16E-02	6.16E-01	6.67E-01	4.12E-02	4.12E-01	4.16E-01	0.1
No. 11-A	Mn- 54	0	8.85E-02	8.85E-01	重要核種	7.44E-03	7.44E-02	重要核種	0.1
(2段目 0~1.00 cm)	Co- 60	0	3.98E-01	3.98E+00	4.87E+00	2.66E-01	2.66E+00	2.73E+00	0.1
No. 11-F	Mn- 54	0	2.09E-02	2.09E-01	重要核種	1.76E-03	1.76E-02	重要核種	0.1
No. 11-K 2段目 12.50~13.50 cm) No. 12-A (2段目 0~1.00 cm) No. 12-C	Co- 60	0	1.47E-01	1.47E+00	1.68E+00	9.84E-02	9.84E-01	1.00E+00	0.1
No. 11-K	Mn− 54	0	4.65E-03	4.65E-02	重要核種	3.91E-04	3.91E-03	重要核種	0.1
(2段目 12.50~13.50 cm)	Co- 60	0	6.59E-02	6.59E-01	7.06E-01	4.41E-02	4.41E-01	4.45E-01	0.1
No. 12-A	Mn- 54	0	9.28E+00	9.28E+01	重要核種	7.81E-01	7.81E+00	重要核種	0.1
(2段目 0~1.00 cm)	Co- 60	0	1.66E+00	1.66E+01	1.09E+02	1.11E+00	1.11E+01	1.89E+01	0.1
No. 12-C	Mn- 54	0	5.22E+00	5.22E+01	重要核種	4.39E-01	4.39E+00	重要核種	0.1
	Co- 60	0	1.16E+00	1.16E+01	6.38E+01	7.76E-01	7.76E+00	1.22E+01	0.1
No. 12-F	Mn- 54	0	2.15E+00	2.15E+01	重要核種	1.81E-01	1.81E+00	重要核種	0.1
	Co- 60	0	7.89E-01	7.89E+00	2.94E+01	5.28E-01	5.28E+00	7.09E+00	0.1
	Mn- 54	0	9.15E-01	9.15E+00	重要核種	7.70E-02	7.70E-01	重要核種	0.1
(2段目 10.00~11.00 cm)	Co- 60	0	5.10E-01	5.10E+00	1.43E+01	3.41E-01	3.41E+00	4.18E+00	0.1
(2段目 10.00~11.00 cm)	Mn- 54	0	4.81E-01	4.81E+00	重要核種	4.05E-02	4.05E-01	重要核種	0.1
(2段目 12.50~13.50 cm)	Co- 60	0	3.89E-01	3.89E+00	8.70E+00	2.60E-01	2.60E+00	3.01E+00	0.1
No. 13-Δ	Mn- 54	0	5.46E-03	5.46E-02			4.59E-03		0.1
	Co- 60	0	2.26E-01	2.26E+00			1.51E+00		0.1
No. 10	Mn- 54	0	< 2.44E-03	2.44E-02			2.44E-02		0.1
(1段目 10.00~11.00 cm)	Co- 60	0	8.25E-02	8.25E-01			5.52E-01		0.1
No. 13-P	Mn- 54	0		2.41E-02			2.41E-02		0.1
(1段目 19.00~20.00 cm)	~ 1.00 cm)	6.67E-02	6.67E-01			4.46E-01		0.1	
No. 14-Δ	Mn- 54		6.58E-02	6.58E-01	1 1.14E+02 1.13E+00 1 重要核種 1.93E-01 0 3.08E+01 5.21E-01 0 1 重要核種 4.18E-02 0 9.06E+00 2.74E-01 1 重要核種 6.25E-03 0 4.53E+00 2.54E-01 1 重要核種 1.72E-03 0 1.64E+00 9.57E-02 2 重要核種 4.27E-04 1 6.67E-01 4.12E-02 1 重要核種 7.44E-03 0 4.87E+00 2.66E-01 1 重要核種 1.76E-03 0 1.68E+00 9.84E-02 2 重要核種 3.91E-04 1 7.06E-01 4.41E-02 1 重要核種 7.81E-01 1 1.09E+02 1.11E+00 1 重要核種 4.39E-01 1 1.09E+02 1.11E+00 1 重要核種 7.70E-01 1 重要核種 1.81E-01 0 2.94E+01 5.28E-01 0 1.43E+01 3.41E-01 0 2.94E+01 5.28E-01 0 1.43E+01 3.41E-01 0 1.43E+01 3.41E-01 0 1.29Kē 4.59E-04 0 2.31E+00 2.60E-01 1 重要核種 4.05E-02 0 1.43E+01 3.41E-01 0 重要核種 4.05E-02 0 1.43E+01 3.41E-01 0 重要核種 4.05E-02 0 1.43E+01 3.41E-01 0 重要核種 4.05E-02 0 1.770E-02 0 1.870E+00 2.60E-01 2 重要核種 4.59E-04 0 2.31E+00 1.51E-01 2 重要核種 < 2.44E-03 1 8.25E-01 5.52E-02 2 重要核種 < 2.41E-03 1 6.67E-01 4.46E-02 1 重要核種 5.54E-03 0 7.87E+00 4.83E-01 2 重要核種 3.09E-04 1 9.45E-01 6.08E-02 2 重要核種 < 2.31CE-03 0 1.55E+00 1.04E-01 2 重要核種 < 2.30E-03 1 6.33E-01 4.24E-02 2 重要核種 < 2.30E-03 1 5.5E+00 1.04E-01 2 重要核種 < 2.30E-03 1 1.55E+00 1.04E-01 2 1.50E-01 1.04E-01 2 1.50E-01 1.04E-01 2 1.50E-01 1.04E-01 2 1.50E-01 1.04E-01 2 1	5.54E-02		0.1	
			7.21E-01	7.21E+00			4.83E+00		0.1
No. 14-1		-	9.73E-03	9.73E-02			8.18E-03		0.1
(1段目 10.00~11.00 cm)		Ō	1.77E-01	1.77E+00			1.18E+00	1 1.95E+01 0 重要核種 0 7.14E+00 1 重要核種 0 3.16E+00 2 重要核種 0 2.60E+00 2 重要核種 1 9.74E-01 3 重要核種 1 4.16E-01 2 重要核種 1 1.00E+00 3 重要核種 1 1.00E+00 3 重要核種 1 1.89E+01 0 重要核種 0 1.22E+01 0 重要核種 0 7.09E+00 1 重要核種 0 7.09E+00 1 重要核種 0 1.51E+00 2 重要核種 0 3.01E+00 3 重要核種 0 1.51E+00 2 重要核種 0 4.48E-01 2 重要核種 0 1.51E+00 3 重要核種 0 1.19E+00 3 重要核種 0 1.28E+00 2 重要核種	0.1
No. 12-K 2段目 10.00~11.00 cm) No. 12-K 2段目 12.50~13.50 cm) No. 13-A (1段目 0~1.00 cm) No. 13-I 1段目 10.00~11.00 cm) No. 13-P 1段目 19.00~20.00 cm) No. 14-A (1段目 0~1.00 cm) No. 14-I 1段目 10.00~11.00 cm) No. 14-I		Ō	3.67E-03	3.67E-02			3.09E-03		0.1
(1段目 19.00~20.00 cm)			9.08E-02	9.08E-01			6.08E-01	一つ2	0.1
No. 15-4			< 3.12E-03	3.12E-02			3.12E-02		0.1
			1.55E-01	1.55E+00			1.04E+00		0.1
No. 15-1			< 2.30E-03	2.30E-02			2.30E-02		0.1
No. 15-1 (1段目 10.00~11.00 cm)			6.33E-02	6.33E-01			4.24E-01		0.1
No. 15-D			< 2.40E-03	2.40E-02			2.40E-02		0.1
No. 15-A (1段目 0~1.00 cm) No. 15-I 1段目 10.00~11.00 cm) No. 15-P (1段目 19.00~20.00 cm)			6.15E-02	6.15E-01			4.12E-01		0.1
No. 16-4		-	5.59E-02	5.59E-01			4.70E-02		0.1
		_	7.02E-01	7.02E+00			4.70E+00		0.1
No. 16-1		t	8.66E-03	8.66E-02			7.28E-03		0.1
No. 16-1 (1段目 10.00~11.00 cm)			1.90E-01	1.90E+00			1.27E+00		0.1
No. 16-D			< 2.53E-03	2.53E-02			2.53E-02		0.1
No. 16-P (1段目 19.00~20.00 cm)			9.09E-02	9.09E-01			6.08E-01		0.1
	00 00		0.00L 0Z	0.002 01					

※ 検出限界未満の場合はΣD/Cに加算しない。

添付表3.2.10 ヨーク(鉄)の Σ D/C (2/2)

添付表3.2.10	<u>ヨーク(銀</u>	<u>失)</u>	<u>თ Σ D / C</u>				1 = 1 5 = 5 (7)		
試 料 名	核種	要 要	停』 放射性物質濃度	L日から711日	r	停 放射性物質濃度	止日から5年経		クリアランス レヘブル
武 社 1 2	1久 1里	核種	版初任物質脹度 Bq/g	D/C	ΣD/C	版列 E初負 振伎 Bq/g	D/C	ΣD/C	Bq/g
No. 17-A	Mn− 54	0	6.58E-02	6.58E-01	重要核種	5.54E-03	5.54E-02	重要核種	0.1
(4段目 0~1.00 cm)	Co- 60	0	7.53E-01	7.53E+00	8.19E+00	5.04E-01	5.04E+00	5.10E+00	0.1
No. 17-I	Mn− 54	0	8.73E-03	8.73E-02	重要核種	7.34E-04	7.34E-03	重要核種	0.1
(4段目 10.00~11.00 cm)	Co- 60	0	1.79E-01	1.79E+00	1.88E+00	1.20E-01	1.20E+00	1.21E+00	0.1
No. 17-P	Mn- 54	0	3.66E-03	3.66E-02	重要核種	3.08E-04	3.08E-03	重要核種	0.1
(4段目 19.00~20.00 cm)	Co- 60	0	7.30E-02	7.30E-01	7.67E-01	4.89E-02	4.89E-01	4.92E-01	0.1
No. 18-A	Mn- 54	0	< 3.23E-03	3.23E-02	重要核種	< 3.23E-03	3.23E-02	重要核種	0.1
(4段目 0~1.00 cm)	Co- 60	0	1.46E-01	1.46E+00	1.46E+00	9.77E-02	9.77E-01	9.77E-01	0.1
No. 18-I	Mn- 54	0	< 1.92E-03	1.92E-02	重要核種	< 1.92E-03	1.92E-02	重要核種	0.1
(4段目 10.00~11.00 cm)	Co- 60	0	5.68E-02	5.68E-01	5.68E-01	3.80E-02	3.80E-01	3.80E-01	0.1
No. 18-P	Mn- 54	0	< 2.41E-03	2.41E-02	重要核種	< 2.41E-03	2.41E-02	重要核種	0.1
(4段目 19.00~20.00 cm)	Co- 60	0	5.17E-02	5.17E-01	5.17E-01	3.46E-02	3.46E-01	3.46E-01	0.1
	Mn− 54	0	6.64E-02	6.64E-01	重要核種	5.59E-03	5.59E-02	重要核種	0.1
No. 19-A	Co- 60	0	8.02E-01	8.02E+00	8.68E+00	5.37E-01	5.37E+00	5.43E+00	0.1
(4段目 0~1.00 cm)	Zn- 65		1.67E-02	1.67E-01	検出核種	7.04E-04	7.04E-03	検出核種	0.1
					8.85E+00			5.43E+00	
No. 19-C	Mn- 54	0	4.16E-02	4.16E-01	重要核種	3.50E-03	3.50E-02	重要核種	0.1
(4段目 2.50~3.50 cm)	Co- 60	0	5.30E-01	5.30E+00	5.72E+00	3.55E-01	3.55E+00	3.59E+00	0.1
No. 19-F	Mn- 54	0	2.27E-02	2.27E-01	重要核種	1.91E-03	1.91E-02	重要核種	0.1
(4段目 6.25~7.25 cm)	Co- 60	0	3.23E-01	3.23E+00	3.46E+00	2.16E-01	2.16E+00	2.18E+00	0.1
No. 19-I	Mn- 54	Ō	1.19E-02	1.19E-01	重要核種	1.00E-03	1.00E-02	重要核種	0.1
(4段目 10.00~11.00 cm)	Co- 60	0	2.08E-01	2.08E+00	2.20E+00	1.39E-01	1.39E+00	1.40E+00	0.1
No. 19-M	Mn- 54	0	< 2.84E-03	2.84E-02	重要核種	< 2.84E-03	2.84E-02	重要核種	0.1
(4段目 15.25~16.25 cm)	Co- 60	0	1.08E-01	1.08E+00	1.08E+00	7.23E-02	7.23E-01	7.23E-01	0.1
No. 19-P	Mn- 54	0		2.50E-02	重要核種	< 2.50E-03	2.50E-02	重要核種	0.1
(4段目 19.00~20.00 cm)	Co- 60	0	7.77E-02	7.77E-01	7.77E-01	5.20E-02	5.20E-01	5.20E-01	0.1
No. 20-A	Mn- 54	Ō	< 3.24E-03	3.24E-02	重要核種	< 3.24E-03	3.24E-02	重要核種	0.1
(4段目 0~1.00 cm)	Co- 60	0	1.41E-01	1.41E+00	1.41E+00	9.44E-02	9.44E-01	9.44E-01	0.1
No. 20-I	Mn- 54	0	< 2.09E-03	2.09E-02	重要核種	< 2.09E-03	2.09E-02	重要核種	0.1
(4段目 10.00~11.00 cm)	Co- 60	0	5.29E-02	5.29E-01	5.29E-01	3.54E-02	3.54E-01	3.54E-01	0.1
No. 20-P	Mn- 54	Ō	2.07E-03	2.07E-02	重要核種	1.74E-04	1.74E-03	重要核種	0.1
(4段目 19.00~20.00 cm)	Co- 60	Ō	3.90E-02	3.90E-01	4.11E-01	2.61E-02	2.61E-01	2.63E-01	0.1
No. 21-A	Mn- 54	Ō	8.23E+00	8.23E+01	重要核種	6.92E-01	6.92E+00	重要核種	0.1
(3段目 0~1.00 cm)	Co- 60	0	1.80E+00	1.80E+01	1.00E+02	1.20E+00	1.20E+01	1.89E+01	0.1
No. 21-F	Mn- 54	Ō	1.99E+00	1.99E+01	重要核種	1.67E-01	1.67E+00	重要核種	0.1
(3段目 6.25~7.25 cm)	Co- 60	Ō	7.92E-01	7.92E+00	2.78E+01	5.30E-01	5.30E+00	6.97E+00	0.1
No. 21-K	Mn- 54	0	4.72E-01	4.72E+00	重要核種	3.97E-02	3.97E-01	重要核種	0.1
(3段目 12.50~13.50 cm)	Co- 60	0	3.84E-01	3.84E+00	8.56E+00	2.57E-01	2.57E+00	2.97E+00	0.1
No. 22-A	Mn- 54	0	7.86E-02	7.86E-01	重要核種	6.61E-03	6.61E-02	重要核種	0.1
(3段目 0~1.00 cm)	Co- 60	Ō	4.07E-01	4.07E+00	4.86E+00	2.72E-01	2.72E+00	2.79E+00	0.1
No. 22-F	Mn- 54	0	2.38E-02	2.38E-01	重要核種	2.00E-03	2.00E-02	重要核種	0.1
(3段目 6.25~7.25 cm)	Co- 60	0	1.42E-01	1.42E+00	1.66E+00	9.50E-02	9.50E-01	9.70E-01	0.1
No. 22-K	Mn- 54	0	5.90E-03	5.90E-02	重要核種	4.96E-04	4.96E-03	重要核種	0.1
No. 22-K (3段目 12.50~13.50 cm)	Co- 60	0	5.80E-02	5.80E-01	6.39E-01	3.88E-02	3.88E-01	3.93E-01	0.1
No. 23-A	Mn- 54	0	8.70E+00	8.70E+01	重要核種	7.32E-01	7.32E+00	重要核種	0.1
No. 23—A (3段目 0~1.00 cm)	Co- 60	0	1.70E+00	1.70E+01	1.04E+02	1.14E+00	1.14E+01	1.87E+01	0.1
No. 23-F	Mn- 54	0	2.15E+00	2.15E+01	重要核種	1.81E-01	1.81E+00	重要核種	0.1
No. 23—F (3段目 6.25~7.25 cm)	Co- 60	0	8.14E-01	8.14E+00	主女(5/至 2.96E+01	5.45E-01	5.45E+00	主义(2)至 7.26E+00	0.1
No. 23-K	Mn- 54	0	4.90E-01	4.90E+00	重要核種	4.12E-02	4.12E-01	重要核種	0.1
(3段目 12.50~13.50 cm)	Co- 60	0	4.01E-01	4.01E+00	8.91E+00	2.68E-01	2.68E+00	3.09E+00	0.1
No. 24-A	Mn- 54	0	9.71E-02	9.71E-01	重要核種	8.17E-03	8.17E-02	重要核種	0.1
No. 24—A (3段目 0~1.00 cm)	Co- 60	0	4.10E-01	4.10E+00	五女1女1至 5.07E+00	2.74E-01	2.74E+00	2.82E+00	0.1
No. 24-F	Mn- 54	0	2.24E-02	2.24E-01	重要核種	1.88E-03	1.88E-02	重要核種	0.1
No. 24—F (3段目 6.25~7.25 cm)	Co- 60	0	1.57E-01	1.57E+00	1.79E+00	1.05E-01	1.05E+00	1.07E+00	0.1
No. 24-K	Mn- 54	0	5.16E-03	5.16E-02	重要核種	4.34E-04	4.34E-03	重要核種	0.1
(3段目 12.50~13.50 cm)	Co- 60	0	6.58E-02	6.58E-01	7.10E-01	4.40E-02	4.40E-01	4.44E-01	0.1
	- 5 50		3.00L 0L	3.502 01	× ×		1.102 01 満の場合は Σ		

※ 検出限界未満の場合はΣD/Cに加算しない。

添付表3.2.11 電磁石(銅)のΣD/C

		重		- 日から711日紀	径過		止日から5年経	過	クリアランス
試料名	核種	要核種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘル Bq/g
No. 25-A	Co- 60	0	1.57E+00	1.57E+01	重要核種	1.05E+00	1.05E+01	重要核種	0.1
(上 段 0~1.00 cm)	Ag-110m	0	1.35E-02	1.35E-01	1.58E+01	6.12E-04	6.12E-03	1.05E+01	0.1
No. 26-A	Co- 60	0	2.06E-03	2.06E-02	重要核種	1.38E-03	1.38E-02	重要核種	0.1
(上 段 0~1.00 cm)	Ag-110m	0	2.39E-03	2.39E-02	4.45E-02	1.08E-04	1.08E-03	1.49E-02	0.1
	Co- 60	0	1.42E+00	1.42E+01	重要核種	9.50E-01	9.50E+00	重要核種	0.1
No. 27-A	Zn- 65		2.42E-02	2.42E-01	1.43E+01	1.02E-03	1.02E-02	9.50E+00	0.1
(上 段 0~1.00 cm)	Ag-110m	0	8.51E-03	8.51E-02	検出核種	3.86E-04	3.86E-03	検出核種	0.1
					1.45E+01			9.51E+00	
No. 28-A	Co- 60	0	2.21E-03	2.21E-02	重要核種	1.48E-03	1.48E-02	重要核種	0.1
(上 段 0~1.00 cm)	Ag-110m	0	2.50E-03	2.50E-02	4.71E-02	1.13E-04	1.13E-03	1.59E-02	0.1
No. 29-A	Co- 60	0	1.31E+00	1.31E+01	重要核種	8.77E-01	8.77E+00	重要核種	0.1
(下 段 0~1.00 cm)	Ag-110m	0	1.32E-02	1.32E-01	1.32E+01	5.98E-04	5.98E-03	8.78E+00	0.1
No. 30-A	Co- 60	0	3.96E-03	3.96E-02	重要核種	2.65E-03	2.65E-02	重要核種	0.1
(下 段 0∼1.00 cm)	Ag-110m	0	2.72E-03	2.72E-02	6.68E-02	1.23E-04	1.23E-03	2.77E-02	0.1
No. 31-A	Co- 60	0	1.23E+00	1.23E+01	重要核種	8.23E-01	8.23E+00	重要核種	0.1
(下 段 0∼1.00 cm)	Ag-110m	0	1.53E-02	1.53E-01	1.25E+01	6.93E-04	6.93E-03	8.24E+00	0.1
No. 32-A	Co- 60	0	3.03E-03	3.03E-02	重要核種	2.03E-03	2.03E-02	重要核種	0.1
(下 段 0~1.00 cm)	Ag-110m	0	3.08E-03	3.08E-02	6.11E-02	1.40E-04	1.40E-03	2.17E-02	0.1

※ 検出限界未満の場合はΣD/Cに加算しない。

サイクロトロン停止日: 2013.12.20

添付表3.2.12 拡散ポンプ(ステンレス)の Σ D/C

74,001 3 24 - 1 - 1 - 1	37	_	(.	,	• -				
		重	停山	- 日から711日	径過	停	止日から5年経	過	クリアランス
試料名	核種	要核種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘ゛ル Bq/g
D 1(上 部)	Co- 60	0	4.27E-01	4.27E+00	4.27E+00	2.86E-01	2.86E+00	2.86E+00	0.1
D 2(下 部)	Co- 60	0	1.47E+00	1.47E+01	1.47E+01	9.84E-01	9.84E+00	9.84E+00	0.1

※ 検出限界未満の場合はΣD/Cに加算しない。

添付表3.2.13 真空箱(アルミニウム)の ΣD/C

		重	L	停止日から711日経過			止日から5年経	過	クリアランス
試料名	核	種核種種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘ゛ル Bq/g
	Mn- 5	4	2.51E-02	2.51E-01	重要核種	2.11E-03	2.11E-02	重要核種	0.1
	Co- 6	0	< 1.28E-02	1.28E-01	1.95E+01	< 1.28E-02	1.28E-01	7.68E+00	0.1
D 3	Zn- 6	5 O	2.41E-01	2.41E+00	1.932101	1.02E-02	1.02E-01	7.08E+00	0.1
(下段)	Na- 2	2 0	1.71E+00	1.71E+01	検出核種	7.58E-01	7.58E+00	検出核種	0.1
	Co- 5	7	2.50E-01	2.50E-01	2.03E+01	1.46E-02	1.46E-02	7.72E+00	1
	Co- 5	6	2.52E-02	2.52E-01	2.03E+01	1.21E-06	1.21E-05	7.72E+00	0.1
	Mn- 5	4	2.46E-02	2.46E-01	重要核種	2.07E-03	2.07E-02	重要核種	0.1
	Co- 6	0	< 1.39E-02	1.39E-01	3.09E+01	< 1.39E-02	1.39E-01	1.23E+01	0.1
D 4	Zn- 6	5 O	3.58E-01	3.58E+00	3.09⊑+01	1.51E-02	1.51E-01	1.23E+01	0.1
(下段)	Na- 2	2 0	2.73E+00	2.73E+01	検出核種	1.21E+00	1.21E+01	検出核種	0.1
	Co- 5	7	4.22E-01	4.22E-01	3.20E+01	2.46E-02	2.46E-02	1.23E+01	1
	Co- 5	6	4.94E-02	4.94E-01	3.20E+01	2.37E-06	2.37E-05	1.23E+01	0.1
	Mn- 5	4	< 1.36E-02	1.36E-01	重要核種	< 1.36E-02	1.36E-01	重要核種	0.1
	Co- 6	0	1.85E-02	1.85E-01	1.65E+01	1.24E-02	1.24E-01	6.71E+00	0.1
D 5	Zn- 6	5 O	1.52E-01	1.52E+00	1.05E+01	6.41E-03	6.41E-02	6.71E+00	0.1
(下段)	Na- 2	2 0	1.50E+00	1.50E+01	検出核種	6.65E-01	6.65E+00	検出核種	0.1
	Co- 5	7	1.74E-01	1.74E-01	1.73E+01	1.01E-02	1.01E-02	6.85E+00	1
	Co- 5	6	3.81E-02	3.81E-01	1./3⊑+01	1.82E-06	1.82E-05	0.65E+00	0.1
	Mn- 5	4	4.43E-02	4.43E-01	重要核種	3.73E-03	3.73E-02	重要核種	0.1
	Co- 6	0	< 1.59E-02	1.59E-01	4.18E+01	< 1.59E-02	1.59E-01	1.52E+01	0.1
D 6	Zn- 6	5 O	8.38E-01	8.38E+00	4.18L101	3.53E-02	3.53E-01	1.52L+01	0.1
(下段)	Na- 2	2 O	3.34E+00	3.34E+01	検出核種	1.48E+00	1.48E+01	検出核種	0.1
	Co- 5	7	9.55E-01	9.55E-01	4.41E+01	5.56E-02	5.56E-02	8.17E-02	1
	Co- 5	6	8.85E-02	8.85E-01	4.41E+01	4.24E-06	4.24E-05	0.17E-02	0.1
D 7(上 段)	Co- 6	0 0	1.22E-02	1.22E-01	1.22E-01	8.17E-03	8.17E-02	8.17E-02	0.1
D 8(上 段)	Na- 2	2 O	1.35E-02	1.35E-01	1.35E-01	5.99E-03	5.99E-02	5.99E-02	0.1
D 9	Co- 6	0 0	1.24E-02	1.24E-01	重要核種	8.30E-03	8.30E-02	重要核種	0.1
(上 段)	Zn- 6	5 O	1.43E-02	1.43E-01	2.67E-01	6.03E-04	6.03E-03	8.90E-02	0.1
D 10(上 段)	Co- 6	0 0	8.52E-03	8.52E-02	8.52E-02	5.70E-03	5.70E-02	5.70E-02	0.1

※ 検出限界未満の場合はΣD/Cに加算しない。

サイクロトロン停止日: 2013.12.20

添付表3.2.14 脚部(鉄)のΣD/C

7/3/1/3 (2012)	13-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	• ,	•						
		重	停止	日から711日	径過	停	止日から5年経	過	クリアランス
試料名	核種	要核種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘ・ル Bq/g
	Mn- 54		5.28E-03	5.28E-02	重要核種	4.44E-04	4.44E-03	重要核種	0.1
D 11	Co- 60	0	5.95E-02	5.95E-01	5.95E-01	3.98E-02	3.98E-01	3.98E-01	0.1
(脚部)	Na- 22		9.14E-03	9.14E-02	検出核種	4.05E-03	4.05E-02	検出核種	0.1
					7.39E-01			4.43E-01	
D 12(脚部)	Co- 60	0	4.21E-02	4.21E-01	4.21E-01	2.82E-02	2.82E-01	2.82E-01	0.1
D 13(脚部)	Co- 60	0	1.12E-01	1.12E+00	1.12E+00	7.50E-02	7.50E-01	7.50E-01	0.1
D 14(脚部)	Co- 60	0	1.11E-01	1.11E+00	1.11E+00	7.43E-02	7.43E-01	7.43E-01	0.1
	· ·		· ·	·	\!/		# - 10 A · 1 · 5	- (01-1-55	1 1

※ 検出限界未満の場合はΣD/Cに加算しない。 サイクロトロン停止日: 2013.12.20

添付表3.2.15 ディー電極(銅)のΣD/C

// 13 1X U.Z. 1U	/ I TE									
		重		- 日から711日	圣過		止日から5年経	過	クリアランス	
試料名	核種	要核種	放射性物質濃度 Bq/g	D/C	ΣD/C	放射性物質濃度 Bq/g	D/C	ΣD/C	レヘブル Bq/g	
D 15	Co- 60	0	8.81E-02	8.81E-01	重要核種	5.90E-02	5.90E-01	重要核種	0.1	
(外縁部)	Zn- 65	0	2.65E+03	2.65E+04	2.65E+04	1.12E+02	1.12E+03	1.12E+03	0.1	
D 16	Co- 60	0	7.53E-02	7.53E-01	重要核種	5.04E-02	5.04E-01	重要核種	0.1	
(外縁部)	Zn- 65	0	3.05E+03	3.05E+04	3.05E+04	1.29E+02	1.29E+03	1.29E+03	0.1	
D 17	Co- 60	0	5.64E-02	5.64E-01	重要核種	3.78E-02	3.78E-01	重要核種	0.1	
(中心部)	Zn- 65	0	< 8.68E-03	8.68E-02	5.64E-01	< 8.68E-03	8.68E-02	3.78E-01	0.1	
D 18	Co- 60	0	1.04E-01	1.04E+00	重要核種	6.96E-02	6.96E-01	重要核種	0.1	
(中心部)	Zn- 65	0	< 9.24E-03	9.24E-02	1.04E+00	< 9.24E-03	9.24E-02	6.96E-01	0.1	

※ 検出限界未満の場合はΣD/Cに加算しない。

≕业夕	No. 1 試料名 (5.55 → 5.55			測定年月日	2015年	12月1日	1cm線量当量	率(μ Sv/h)	距離	
11八十七	(セクタ-	ーマグネット	· 下段)	1cm	線量当量率測	則定器	正味	BG	(cm)	
材質		鉄			ションサーヘ・イメータ	TCS-172B	2.05	0.05	2	
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	抜踊の协	射能比率	
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イタイ里リノルメ	初化比平	
Mn- 54	835	100		1573	0.637	0.82	23	0.150		
Zn- 65	1116	50.6	3000	2436	0.363	4.42		0.8	308	
Co- 60	1333			174	0.257	0.226		0.226 0.0		0413

セクターマグネットNo. 1 γ 線スペクトル 2015年12月1日 1cm線量当量率 (μ Sv/h) 測定年月日 距離 No. 2 試料名 (セクタ-マグネット 下段) 1cm線量当量率測定器 正味 (cm) 材 質 鉄 NaIシンチレーションサーヘ・イメータ TCS-172B 0.25 0.05 2 放出比 測定時間 Peak面積 相対 CZT結果 Energy 核種の放射能比率 核 種 相対放射能 (Bq) (keV) (%) (counts) ーク効率 (sec) 0.0785 Mn- 54 835 100 150 0.637 0.339 3000 0.153 0.661 Co- 60 1333 100 118 0.257

=士业1夕	No. 3 TRN			測定年月日	2015年	12月1日	1cm線量当量	L率(μ Sv/h)	距離
武孙石	(セクタ-	ーマグネット	、下段)	1cm	線量当量率測	剛定器	正味	BG	(cm)
材 質		鉄			ノヨンサーベイメータ	TCS-172B	1.44	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	:射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イタイ里リカス	.利肥此华
Mn- 54	835	100		1335	0.637	0.69	99	0.195	
Zn- 65	1116	50.6	3000	1374	0.363	2.49		0.695	
Co- 60	1333 100			305	0.257	0.395 0.11		10	

セクターマグネットNo. 3 γ 線スペクトル

試料名		No. 4		測定年月日	2015年	12月2日	1cm線量当量率 (μ Sv/h)		距離
በ ተተ	(セクタ-	ーマグネット	・上段)	1cm	線量当量率源	則定器	正味	BG	(cm)
材 質		鉄		NaIシンチレージ	ションサーヘ・イメーク	タ TCS-172B	0.29	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	抜踊の协	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イタイ里リノルメ	初化几年
Mn− 54	835	100		117	0.637	0.06	612	0.213	
Co- 60	60 1333 100 3000		174	0.257	0.226		0.787		
-				_	_	_		_	

於付表3	.2.16 CZ		▶検出器	-					3/
試料名	(L- 1- 1-	No. 5 ーマグネット	L FJL\	測定年月日				量率(μ Sv/h)	距離
11 EE	(セクター		` 上段)		線量当量率測		正味	BG	(cm)
材質	-	鉄	게 다 마 BB		ンョンサーヘ・イメータ		1.70	0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)		相対 ピーク効率		結果 付能 (Bq)	核種の放射	射能比率
√ln− 54	835	100		1552	0.637	0.8	12	0.15	50
Zn− 65	1116	50.6	3000	2415	0.363	4.38	3	0.80	07
Co- 60	1333	100		180	0.257	0.23	33	0.04	129
7	アイル名	5 2015120	02 1A npe					3000 sec	
	1.E+03	100	311.35			4 4			
[watersor] 神器社	1 E+02 1 E+01	200	400	800 800 7 49 T		1200 140 (km/)	0 1600	1800 2000	
	1 E+02 1 E+01	200	:_(GWW);)	ァギュ ユーマグネット	-No. 5γ線	スペクトル	RO MERCO		
1994	1 E+02	200 No. 6	セクタ	zーマグネット 測定年月日	No. 5γ線 2015年	スペクトル 12月2日	1cm線量当量	遣率 (μ Sv/h)	距離
試料名	1 E+02	2000 No. 6 ーマグネット	セクタ	7—マグネット 測定年月日 1cm#	No. 5 γ 線 2015年 線量当量率測	スペクトル 2月2日 I)定器	1cm線量当量 正味	量率(μ Sv/h) BG	距離 (cm)
試料名材質	1 E+01 1 E+00 (セクタ-	No. 6 ーマグネット 鉄	セクタ 、 上段)	マーマグネット 測定年月日 1cm編 NaIシンチレーシ	トNo. 5γ線 2015年 線量当量率浪 ションサーヘイメータ	スペクトル 12月2日 1定器 TCS-172B	1cm線量当量 正味 2.30	遣率 (μ Sv/h)	距離
試料名材質	1 E+02	2000 No. 6 ーマグネット	セクタ	マーマグネット 測定年月日 1cm編 Naiシンチレーシ Peak面積	トNo. 5γ線 2015年 線量当量率浪 ションサーヘイメータ	スペクトル 2月2日 定器 TCS-172B CZT	1cm線量当量 正味	量率(μ Sv/h) BG	距離 (cm) 2
試料名 材 質 核 種	1 E+01 1 E+00 (セクタ-	No. 6 ーマグネット 鉄 放出比	セクタ 〜 上段) 測定時間	マーマグネット 測定年月日 1cm編 Naiシンチレーシ Peak面積	トNo. 5γ線 2015年 線量当量率源 ションサーヘ・イメータ 相対	スペクトル 12月2日 別定器 TCS-172B CZT 相対放射	1cm線量当量 正味 2.30 結果 対能 (Bq)	量率 (μ Sv/h) BG 0.05 核種の放り	距離 (cm) 2 射能比率
試料名	1 E+02 1 E+01 (セクタ- Energy (keV)	No. 6 ーマグネット 鉄 放出比 (%)	セクタ 〜 上段) 測定時間	マーマグネット 測定年月日 1cm NaIシンチレーシ Peak面積 (counts)	No. 5 γ 線. 2015年 線量当量率限 タョンサーヘイメータ 相対 ピーク効率	スペクトル 12月2日 『定器 TCS-172B CZT 相対放頻	1cm線量当量 正味 2.30 結果 対能 (Bq)	量率 (μ Sv/h) BG 0.05 核種の放射	距離 (cm) 2 射能比率

試料名	No. 7 (セクターマグネット 上段)			測定年月日	2015年	12月2日	1cm線量当量率 (<i>μ</i> Sv/h)		距離
政行口	(セクタ-	ーマグネット	· 上段)	1cm	線量当量率測	則定器	正味	BG	(cm)
材 質		鉄		NaIシンチレージ	ノヨンサーベイメータ	TCS-172B	0.20	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イタイ里リノルメ	初化几年
Mn− 54	835	100		164	0.637	0.08	358	8 0.20	
Co- 60	1333	100	3000	188	0.257	0.24	14	0.7	40
_	_			_	_				

セクターマグネットNo. 7 γ 線スペクトル

計判夕	No. 8 (セクターマグネット 下段)			測定年月日	2015年	12月3日	1cm線量当量	1cm線量当量率 (μ Sv/h)	
በ ተተ	(セクタ-	ーマグネット	・下段)	1cm	線量当量率源	則定器	正味	BG	(cm)
材 質		鉄		NaIシンチレーションサーヘ・イメータ TCS-			0.20	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	抜種の协	射能比率
1久 1生	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イスイ主・ノルス	(3) REJU T
Mn− 54	835	100		276	0.637	0.144		0.500	
Co- 60	1333 100 3000			111	0.257	0.144		0.500	
-				_	_	_		_	

試料名		No. 9		測定年月日	2015年1			率(μ Sv/h)	距離
武孙石	(≡	ーク 2段	目)				正味	BG	(cm)
材 質	鉄 Naiシンチレーションサーベイメータ TCS-172B 2.00				2.00	0.05	2		
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	抜踊の物	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イダイ里リノルメ	.对 化几平
Mn- 54	835	100		4537	0.637	2.37	1	0.7	73
Co- 60	1333	100	3000	537	0.257	0.69	96	0.2	27
_	_	_		_	_		•	_	

測定年月日 2015年12月2日 1cm線量当量率 (*μ* Sv/h) 距離 No. 10 試料名 (ヨーク 2段目) 1cm線量当量率測定器 (cm) 材 質 鉄 NaIシンチレーションサーヘ・イメータ TCS-172B 0.19 0.05 Energy 放出比 測定時間 Peak面積 相対 CZT結果 核 種 核種の放射能比率 (keV) (%) (counts) -ク効率 相対放射能(Bq) (sec)

 核種
 (keV)
 (%)
 (sec)
 (counts)
 ピーク効率
 相対放射能(Bq)
 核種の放射能比率

 Co-60
 1333
 100
 99
 0.257
 0.128
 1.00

 ー

=+\/\/\		No. 11		測定年月日	2015年	12月3日	1cm線量当量	量率(μ Sv/h)	距離
試料名	(≡	ーク 2段	目)		線量当量率測	制定器	正味	BG	(cm)
材 質		鉄		NaIシンチレージ	ションサーヘ・イメータ	TCS-172B	0.20	0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)	Peak面積 (counts)	相対 ピーク効率		結果 討能 (Bq)	核種の放	射能比率
Co- 60	1333	100		129	0.257	0.10		1.0	0
_	_	_	3000	_	_	_		_	
		_		_	_			_	
2	アイル名	11,20151	203 1 A apr					3000 se	0
- Constant	1 E+02	1				(m - 0) Valuation (m - m)			
· · · · · · · · · · · · · · · · · · ·	1£+00	0 200	400	500 80 7 800		1200 140	0 1600	1800 2000	
40000000000000000000000000000000000000	1£+00		181000	フル ヨークNo. 1	エネルギー 1γ線スペク	(keV) 7トル	124 AMMSO		
	1 E+00	No. 12	181070	ョークNo. 1 測定年月日	1γ線スペク 2015年	(kmV) 7トル 12月3日	1cm線量当量	量率 (μ Sv/h)	距離
試料名	1 E+00	No. 12 Iーク 2段	181070	ヨークNo. 1 測定年月日 1cmá	1 γ 線スペク 2015年 線量当量率源	ルル 12月3日 削定器	1cm線量当量 正味	量率(μ Sv/h) BG	距離 (cm)
試料名材質	1 £+00 (Ξ	No. 12 Iーク 2段 鉄	a)	ヨークNo. 1 測定年月日 1cmf NaIシンチレーシ	1γ線スペク 2015年 線量当量率源	パール 12月3日 則定器 7 TCS-172B	1cm線量当量 正味 2.07	量率 (μ Sv/h) BG 0.05	距離 (cm) 2
試料名材質	1 £+00 (Ξ	No. 12 Iーク 2段 鉄 放出比	目)	ヨークNo. 1 測定年月日 1cmá NaIシンチレー: Peak面積	1γ線スペク 2015年 線量当量率源 /3ンサーヘイメータ	7トル 12月3日 削定器 7 TCS-172B CZT	1cm線量当 正味 2.07 結果	量率(μ Sv/h) BG	距離 (cm) 2
試料名 材 質 核 種	1 £+00 (Ξ	No. 12 Iーク 2段 鉄	a)	ヨークNo. 1 測定年月日 1cmf NaIシンチレーシ	1γ線スペク 2015年 線量当量率派 /3ンサーヘ・イメータ	7トル 12月3日 削定器 TCS-172B CZT 相対放頻	1cm線量当 正味 2.07 結果 対能 (Bq)	量率 (μ Sv/h) BG 0.05 核種の放	距離 (cm) 2 射能比率
試料名 材質 核種 Mn- 54	(Energy (keV)	No. 12 Iーク 2段 鉄 放出比 (%)	目)	ヨークNo. 1 測定年月日 1cm NaIシンチレー: Peak面積 (counts)	1 γ 線スペク 2015年 線量当量率源 (a) サーヘイメータ 相対 ピーク効率	7トル 12月3日 削定器 7 TCS-172B CZT	1cm線量当 正味 2.07 結果 討能 (Bq)	量率 (μ Sv/h) BG 0.05	距離 (cm) 2 射能比率
試料名 材質 核種 Mn- 54	(≡ Energy (keV) 835	No. 12 Iーク 2段 鉄 放出比 (%)	国) 測定時間 (sec)	ヨークNo. 1 測定年月日 1cm NaIシンチレー: Peak面積 (counts) 3861	1 γ 線スペク 2015年 線量当量率源 コンサーヘイメータ 相対 ピーク効率 0.637	7トル 12月3日 削定器 7 TCS-172B CZT 相対放射 2.02	1cm線量当 正味 2.07 結果 討能 (Bq)	量率 (μ Sv/h) BG 0.05 核種の放:	距離 (cm) 2 射能比率
試料名 材質 核種 Mn-54 Co-60	(Energy (keV) 835 1333	No. 12 H-ク 2段 鉄 放出比 (%) 100	国) 測定時間 (sec)	ヨークNo. 1 測定年月日 1cm Naiシンチレー: Peak面積 (counts) 3861 470	1γ線スペク 2015年 線量当量率源 コンサーヘイメータ 相対 ピーク効率 0.637 0.257	7トル 12月3日 削定器 7 TCS-172B CZT 相対放射 2.02	1cm線量当 正味 2.07 結果 討能 (Bq)	量率 (μ Sv/h) BG 0.05 核種の放:	距離 (cm) 2 射能比率 68 32

1 E+03 1 E+01 1 E+00 0 200 400 600 800 1000 1200 1400 1800 2000 ア細工本ルギー (keV) ヨークNo. 12 γ 線スペクトル

添付表3.	2.17 CZ	T半導体	検出器(こよる?	線スペクト	ル測定	(ヨーク)		3/8
試料名		No. 13		測定年月日		12月3日	1cm線量当量	量率(μ Sv/h)	距離
በ ተተ	(∃	一ク 1段	目)	1cm	線量当量率源	則定器	正味	BG	(cm)
材 質		鉄		NaIシンチレージ	ションサーヘ・イメーク	TCS-172B	0.17	0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)		相対 ピーク効率		結果 討能 (Bq)	核種の放	射能比率
Co- 60	1333	100	(300)	173	0.282	0.20		1.0	n
	-	—	3000		- -	0.20	00	1.0	0
			- 0000		_			_	
79-	× 11.2	13,201512	203 1					3000 sec	41
	TE+03		COOL TRANS					3000 200	
(spand) 海線社		^		2	<u> </u>	1144. — 1115 lat (6)			
試料名		No. 14		ヨークNo. 1 測定年月日	3 y 線スペク	12月3日	200 B1260.	1 800 2000 室 (μ Sv/h) BG	距離 (cm)
材質		·	-			TCS-172B			2
19 貝	Г	放出比	測定時間				<u>0.35</u> 結果	0.05	Z
核 種	Energy			Peak面積				核種の放	射能比率
0 00	(keV)	(%)	(sec)	(counts)	ピーク効率		村能 (Bq)	1.0	
Co- 60	1333	100		222	0.257	0.28	88	1.0	U
_	_	_	3000	_	_	_		_	
_	_	_		_	_	_		_	
7	アイル名	14 20151	203_1A.sp	8				3000 no	0
(agusto) 類像技	1.E+00	200	480	600 80	0 1000	1200 1e0	X 1600	1800 2000	
	7)		A STATE OF	アル ヨークNo. 1	E*##-	(NeV)	out william	- COMP (COMP)	

	3.2.17 CZ	一十号四	一位四人	-6911		/ / / / / / C	(- //		4/
試料名		No. 15		測定年月日			1cm線量当量	量率(μ Sv/h)	距離
武 者	(≡	ーク 1段	目)	1cm	線量当量率測	側定器	正味	BG	(cm)
材質		鉄		NaIシンチレージ	ションサーヘ・イメータ	TCS-172B	0.08	0.05	2
核 種	Energy	放出比		Peak面積			結果 は鉄 (D-v)	核種の放	射能比率
0 00	(keV)	(%)	(sec)		ピーク効率		付能 (Bq)	1.0	2
Co- 60	1333	100	0000	54	0.282	0.0	039	1.0	J
			3000	_	_			_	
_	_	_		_					_
9	アイル名	15_20151	203 1 npe					3000 se	0
Manual Transcript	1 E+01				· 	Marin —			
	(=	No. 16 Iーク 1段 鉄	目)	ヨークNo. 1 測定年月日 1 cmá NaIシンチレーシ	線量当量率源 ノョンサーベイメータ	7トル 12月4日 側定器 I TCS-172B	正味 0.37	量率 (μ Sv/h) BG 0.05	距離 (cm) 2
核 種	Energy	放出比	測定時間				結果	核種の放	射能比率
	(keV)	(%)	(sec)		ピーク効率		付能 (Bq)		
Co- 60	1333	100		241	0.257	0.3	12	1.0	0
_	_	_	3000	_	_	_		_	
_	_	_		_	_	_		_	
7	アイル名	18 20151	204 1A sp					3000 ne	0
	1.E+03	-							1
	~ 1 E+02	A				TO NA DE-			
1000	SEP-01	The state of the s		<u>Kein</u>	1. K				

添付表3	.2.17 CZ	ZT半導体	検出器	こよるァミ	線スペクト	ル測定	(ヨーク)		5/8
試料名		No. 17		測定年月日		12月4日	1cm線量当量	量率(μ Sv/h)	距離
በ ተለተ	(=	ヨーク 4段	目)	1cm	線量当量率源	剛定器	正味	BG	(cm)
材質		鉄		NaIシンチレージ	ションサーヘ・イメータ	TCS-172B	0.30	0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)		相対 ピーク効率		結果 付能 (Bq)	核種の放	射能比率
Co- 60	1333	100	(300)	259	0.257	0.33		1.0	n
_	-	-	3000	_	— U.237	<u> </u>	30	1.0	<u> </u>
			- 0000	_	_			_	
79	× 111.2	17 20151	204 1 A apre	4.				3000 se	4
	1E+03		CO-F-CFE-MAIN					3000 20	
- September September		^			14a.y	Hipsa - 1886			
試料名	***	No. 18 3一夕 4段		ヨークNo. 1 測定年月日	ファ線スペク	12月4日	NA 100000	1 800 2000 量率 (μ Sv/h) BG	距離 (cm)
材質	,	鉄				TCS-172B		0.05	2
核種	Energy	放出比	測定時間	Peak面積	相対	CZT	= 0.00 結果 付能 (Bq)	核種の放	
Co- 60	(keV)	(%)	(sec)	(counts)	ピーク効率	7H XV JIX 9		1.0	0
00- 00	1333	100	2000	67	0.282	0.0	132	1.0	U
	_	_	3000	_	_			_	
		_		_	_	_		_	
-	アイル名: 1E+02	18_20151	204_1 spe					3000 se	0
The state of the s	1.E+01	TO A STATE OF THE			:: <u>.:</u>	1			
	1.E+00								

添付表3	.2.17 CZ	ZT半導体	検出器(こよる?	線スペクト	ル測定	(ヨーク)		6/
試料名		No. 19		測定年月日			1cm線量当量	量率(μ Sv/h)	距離
武 个 个 一	(≡	ヨーク 4段	目)	1cm	線量当量率測	剛定器	正味	BG	(cm)
材質		鉄		NaIシンチレー	ノョンサーヘ・イメータ	TCS-172B	0.38	0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)		相対 ピーク効率		結果 付能 (Bq)	核種の放	射能比率
Co- 60	1333	100	(000)	238	0.257	0.30		1.0	0
_	_	_	3000	_	_			_	<u>- </u>
_	_	_		_	_	_		_	
フ	アイル名	19 20151	205 1 A apr					3000 no	0
(Ogen vov) 翻線十	1 E+01	0 200	400	600 80 7 80	0 1000 L*/b*	1200 TeC (ReV)	00 1600	1800 200	
試料名	(=	No. 20 Iーク 4段		測定年月日	9γ線スペク 2015年 線量当量率源	12月4日	1cm線量当量 正味	昰率(μ Sv/h) BG	上 距離 (cm)
材 質		鉄			ノョンサーヘ・イメータ			0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)	Peak面積 (counts)			結果 付能 (Bq)	核種の放	射能比率
Co- 60	1333	100	3/	46	0.257	0.0		1.0	0
_	_	_	3022	_	_	_			
	_	_		_	_			_	
7	アイル名	20 201512	204 1A spe					3022 sec	
	1.E+02		CO-12 CATALOGN					3022 30	
1480 Consents	i	A STATE OF THE STA			·	1142 lav (Gr. 16)	21		
	1.E+00	0 200	400	800 80	0 1000	1200 140	0 1600	1800 2000	

試料名		No. 21		測定年月日	2015年1	12月5日	1cm線量当量	L率(μ Sv/h)	距離
11八十七	(≡	ーク 3段	∄)				正味	BG	(cm)
材 質		鉄		NaIシンチレージ	/ョンサーヘ・イメータ	TCS-172B	1.90	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イダイ里リカル	初化比平
Mn- 54	835	100		4529	0.673	2.24	1	0.7	'38
Co- 60	1333	100	3000	671	0.282	0.79)4	0.2	262
_	_	_		_	_	_	•	_	

ヨークNo. 21 γ線スペクトル

試料名		No. 22		測定年月日	2015年	12月5日	1cm線量当量	L率(μ Sv/h)	距離
山八个十七	(≡	ーク 3段	目)	1cm	線量当量率源	則定器	正味	BG	(cm)
材 質		鉄		NaIシンチレージ	ションサーヘ・イメーク	TCS-172B	0.17	0.05	2
核種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	:射能比率
12人1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イダイ里リカル	.利肥此平
Co- 60	1333	100		140	0.257	0.18	31	1.0	0
_	_	_	3000	_	_	_		_	
_	_	_		_	_	_		_	

試料名		No. 23		測定年月日	2015年1	12月5日	1cm線量当量	率(μ Sv/h)	距離
11八十七	(≡	ーク 3段	∄)	1cm線量当量率測定器 正味			正味	BG	(cm)
材 質		鉄		NaIシンチレージ	/ョンサーヘ・イメータ	TCS-172B	1.90	0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	抜踊の物	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イダイ里リノルメ	初化比华
Mn- 54	835	100		3803	0.637	1.99)	0.7	57
Co- 60	1333	100	3000	492	0.257	0.63	38	0.2	243
_	_	_		_	_	_		_	

測定年月日 2015年12月5日 1cm線量当量率 (*μ* Sv/h) 距離 No. 24 試料名 (ヨーク 3段目) 1cm線量当量率測定器 (cm) 材質 鉄 NaIシンチレーションサーヘ・イメータ TCS-172B 0.17 0.05 Energy 放出比 測定時間 Peak面積 相対 CZT結果 核 種 核種の放射能比率 (keV) (%) (counts) -ク効率 相対放射能(Bq) (sec) 0.205 1.00 Co- 60 1333 100 173 0.282

忝付表3.2	2.18 CZ	T半導位	検出器		線スペクト				1,
試料名		No. 25		測定年月日				量率(μ Sv/h)	距離
	(1	をなる 上見	没)		線量当量率測		正味	BG	(cm)
材質		銅		NaIシンチレー	ションサーヘ・イメータ			0.05	2
核 種	Energy (keV)	放出比 (%)	測定時間 (sec)		相対 ピーク効率		·結果 射能 (Bq)	核種の放	射能比率
Co- 60	1333	100	(666)	376	0.282	0.4		1.0	0
	_	_	3000	_	_	_		_	
- 1	_	-		_	_	_		_	
ファ	イル名	25 20151	207_1 spe					3000 sec	
	TE+04								1
2	1 E+03	6				TH MY (0-90)			
stinuos) #	1 E+02	^				IIII			
事業士	1.E+01					11.11			
	125528	e Misselve		٠	: "		1 4 1 100 a sassa un	Section 1	
	1.E+00	200	400	600 BO	0 1000	1200 140	0 1600	1800 2000	, [
						(keV)	and others.		
			ŕ	電磁石No.:	25γ線スペ ₂	クトル			
=-1:1:1:1		No. 29		測定年月日			1cm線量当量	量率(μ Sv/h)	距離
試料名	(1	電磁石 下昇	设)	1cm	線量当量率測	制定器	正味	BG	(cm)
材質		銅			ションサーベイメータ			0.05	2
核種	Energy (keV)	放出比 (%)	測定時間 (sec)	Peak面積		CZT	·結果 射能 (Bq)	核種の放	
Co- 60	1333	100	(300)	299	0.257	0.3		1.0	0
_	_	_	3000	_	-			_	
	_	_		_	_	_		_	
27	イル名	20 20151	207 1A sp	e e				3000 no	0
	1.E+03	-							1
計数值 (counts)	1.E+02 1.E+01	^			C. Salar	I Trans. — Interest for the total of the tot			
		l .							

試料名		No. 32		測定年月日	2015年1	12月7日	1cm線量当量	室(μ Sv/h)	距離
政介十七	(1	電磁石 下戶	殳)	1cm	線量当量率測	側定器	正味	BG	(cm)
材 質		銅		NaIシンチレージ	ノヨンサーベイメータ	TCS-172B	0.00	0.05	2
核種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	射能比率
1久 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	イスイ里リノルス	初化比平
Co- 60	1333	100		24	0.282	0.02	284	1.0	00
-	_	_	3000	_	_	_		_	
_	_	_		_	_			_	•

添付表3219 CZT半導体検出器によるγ線スペクトル測定 (拡散ポンプ)

	1.2.19 GZ		検出器	によるア					nc ÷#
試料名	(坤:	D 1 散ポンプ 」	- 部()	測定年月日	2015年 線量当量率源	2月10日	正味	量率(μ Sv/h) BG	距離 (cm)
材質	()/Д	ステンレス	-			TCS-172B			2
材質	Engueni	放出比	測定時間			CZT		0.05	
核 種	Energy							核種の放	射能比率
0 - 60	(keV)	(%)	(sec)		ピーク効率		付能(Bq)	1.0	<u> </u>
Co- 60	1333	100	2000	56	0.257	0.0	/20	1.00	J
		_	3000		_	_		_	
_	_		A Proposition of the Control of the	_	_			_	_
9	アイル名:	01,20151	210_1A.sp	0				3000 se	0
	1 E+02					11 — 1723 bay (5-10)			
試料名		D 2 数ポンプ T	下部)	拡散ポンプ[測定年月日 1cm	D1γ線スペク 2015年1 線量当量率源	2月10日 則定器	1cm線量当量 正味	1 800 200 0 量率 (μ Sv/h) BG	距離 (cm)
材質		ステンレス		NaIシンチレー	ノョンサーヘ・イメーク	TCS-172B	0.18	0.05	2
核 種	Energy	放出比	測定時間				結果	核種の放	制能比核
1メ 1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	付能 (Bq)	1久1里リルス:	4.1 日ヒエレ <i>牛</i>
Co- 60	1333	100		89	0.257	0.1	15	1.00	0
_	_	_	3000	_	_	_		_	
_	_	_		_	_	_		_	
7	アイル名	D2 20151	210 1A sp	0				3000 ne	9
	1 E+03	-						2000 00	-9
	1 E+02	^	in the second			138.08 self (Sp. 80.)			
10011	1 E+01	į n	Per a						

エムキ rルギナや山肥に L 7 . . . 40 コ . 8 . 1 . 1 . 1 . 1 . | 古中か \

忝付表3	.2.20 CZ	ZT半導体	検出器	こよるヶ糸	泉スペクト	・ル測定	(真空箱)		
試料名	D 3 (真空箱 下段)			測定年月日 2015年12月3日 1cm線量当量率測定器			1cm線量当量率 (<i>μ</i> Sv/h) 距离		
武科石							正味	BG	(cm)
材質	アルミニウム		NaIシンチレーションサーヘ・イメータ TCS-172E		≯ TCS-172B	0.17	0.05	2	
技 括	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技様のサ	6+ 산나 나
核 種	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	寸能 (Bq)	核種の放	別 尼丘二
Co- 57	122	85.6		672	12.7	0.02	207	0.0	81
Zn- 65	1116	50.6	3000	52	0.392	0.08	373	0.3	41
Na- 22				136 0.306 0.1			48 0.578		
7	アイル名	D3_20151	203_1.spe					3000 no	0
Laborator Military					· · · · · · · · · · · · · · · · · · ·	The Part of the Pa			
試料名	3	D 7	400	真空箱D3 測定年月日	γ線スペク 2015年	12月3日	1cm線量当量	ia000 2000 ia (μ Sv/h)	距離
(具		空箱 上段)		1cm線量当量率測定器 NaIシンチレーションサーベイメータ TCS-172B			正味	BG	(cm)
材質		アルミニウム						0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT		核種の放	射能比率
	(keV)	(%)	(sec)	(counts)	ピーク効率		寸能 (Bq)		
_		_	0000	_	_	_		_	
	_	_	3000	_	_	_		_	
_									
7	アイル名 1E+02	07 20151	203_1.spe					3000 sec	9
(manufacture) ((manufacture) (manufactur		A STATE OF THE PARTY OF THE PAR		e * 8		検	比さ出	hず	
		¥ 50							

真空箱D7 γ 線スペクトル

添付表3.2.21 CZT半導体検出器によるγ線スペクトル測定 (脚部)

派刊 衣い	.2.21 62		一份山份		線スペクト		(脚部)	本 (0 / 1)	ne ±"
試料名		D 11 (脚 部)		測定年月日 2015年12月4日 1cm線量当量率測定器		1cm線量当量率 (μ Sv/h)		距離 (cm)	
++ 55							正味	BG	
材質		鉄			ンョンサーヘ・イメーク			0.05	2
核 種	Energy	放出比	測定時間	Peak面積	相対		結果 は能 (Pa)	核種の放	射能比率
Co- 60	(keV) 1333	(%) 100	(sec)		ピーク効率		付能 (Bq)	1.0	<u> </u>
Co- 60		100	38 0.282 0.0449 		449	1.00			
	300		3000				_		
	×111.4	011 2015	1204_1 spe	0.				3000 sec	90
(abused) (abused)	1 E+02	The second secon				1133 law (Gr- 00)		3000 \$60	
試料名 材質	(脚 司)			1cm線量当量率測定器 正味				量率 (μ Sv/h) 距 BG (cn	
	Energy	放出比	測定時間				0.03 結果	0.05	
核 種	(keV)	(%)	例是时间 (sec)		ピーク効率		和未 肘能 (Bq)	核種の放	射能比率
Co- 60	1333	100	(350 /	47	0.282	0.0		1.00	<u> </u>
_	_	-	3000		U.202 —	<u> </u>	J J J J	- 1.00	
		_	3000	_	_			_	
-			10051						
,	1 E+02	014(2015	1205) 1.ap	10				3000 ne	0
(approve) 無機性	7 E+01	A Part of the second se		<u></u> .	• • • • • • •	100 - 100 may to- 60 1	v		
	1.E+00	0 200	400	600 80 y 182	0 1000 L*ルギー	1200 146 (keV)	00 1600	1800 2000	.

試料名	D 15 (ディー電極)			測定年月日	2015年12月8日 1cm線		1cm線量当量	n線量当量率 (μ Sv/h)		
武科石				1cm線量当量率測定器			正味	BG	(cm)	
材 質	銅			電離箱式サーベイメータ ICS-323C			38.40	0.0	5	
核 種	ta ff Energy 放出比 測定		測定時間	Peak面積	相対	CZT	結果	核種の放射能比率		
1次 作生 (keV) (5		(%)	(sec)	(counts)ピーク効率 相対放射能		付能 (Bq)	1久1至リルス別 配比平			
Zn- 65	1116	50.6		11346	0.364	103	103		1.00	
-	_	_	600	_	_	_		_		
-	_	_		_	_	_		_		
7	アイル名	D15_2015	1208 1A.s	pe .				600 see	0	
	1.E+05								- 4	

ディー電極D15γ線スペクトル

計判夕	】 D 16 (→		測定年月日	日 2015年12月8日		1cm線量当量率 (<i>μ</i> Sv/h)		距離	
山八个十七	((ディー電極)			1cm線量当量率測定器			BG	(cm)
材 質	質 銅			電離箱式サーベイメータ ICS-323C			41.50	0.0	5
核種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	技種の物	け出い家
12人1里	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射能 (Bq)		核種の放射能比率	
Zn- 65	1116	50.6		12675	0.364	115	i	1.0	00
_	_	_	600	_	_	_		_	
_	_	_		_	_	_		_	

添削 衣る	.2.22 Gz	41 半導体	「検出器 」	による?	線スペクト	ル測定	(ディー電	.極)	2/2	
試料名		D 17		測定年月日		12月8日	1cm線量当量	量率(μ Sv/h)	距離	
武科名 (ディー電極)			1cm線量当量率測定器		正味 BG		(cm)			
材質		銅		NaIシンチレージ	ノョンサーヘ・イメー	TCS-172B		0.05	2	
核 種	Energy	放出比	測定時間	Peak面積			結果	核種の放	射能比率	
IX II	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射能 (Bq)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
_	_									
	<u> </u>				_	_		_		
		_		_	_			OCCUPATION OF	200	
-	1 E+02	017,2015	1208_1A.m	pe:				3000 se	-1	
計算機 (normal)	7 E+01		<u>=</u>	•	. 12 2 3	検	出され	つず		
試料名	80	D 18 (ディー電極		ディ一電極D 測定年月日	キルギー 17 <i>γ</i> 線スペ	12月8日	MA 179900.	1800 2000 直率 (μ Sv/h) BG	距離 (cm)	
材質		銅		NaIシンチレージ	ションサーヘ・イメー	TCS-172B	0.02	0.05	2	
核 種	Energy	放出比	測定時間	Peak面積	相対	CZT	結果	核種の放	計能比率	
1久 1生	(keV)	(%)	(sec)	(counts)	ピーク効率	相対放射	討能 (Bq)	コス『王ワノガス	ᄭᅢᄔᄔᆍ	
_	_	_]	_	_			_		
_	_	_	3000	_	_	_				
_	_	_						_		
7	アイル名	D18(2015	1208) 1 sp	ю				3000 se	0	
- Page Language						検	出され	ゖず		
	1 E+00	0 200	400	7,000	0 1000 E本ルギー 18ヶ線スペ	1200 140 (keV)	0 1800	1800 2000		

添付資料 4.1 文献検索結果 (検索結果 75 件)

検索対象ファイル

JSTPlus (1981-) 27498071 件(2016.01.06 更新/本年度 37 回)

JST7580 (1975-1980) 2140136 件(1980.12.8 更新/本年度 0 回)

L番号 検索条件 ヒット件数

L1 小型 サイクロトロン 放射化

ヒット件数 : 75

75

出力件数 : 75

ANSWER 1 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 15A0498743

和文標題: 高温超伝導線材の中性子照射特性

著者名: 宮原信幸(放医研基盤技七), 石山敦士, 道辻健太, 狩野開, 有谷友汰 (早稲田大理工学術

院)

資料名 : NIRS-M (Natl Inst Radiol Sci)

JST 資料番号 : Z0881A

巻号ページ

(発行年月日): No.271 Page.53 (2015.03) 写図表参: 写図 1, 表 1

資料種別: 技術報告(T) **記事区分**: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 高温超伝道コイルを用いた小型・高効率・高性能の次世代超伝導サイクロトロンを開発しているが、このサイクロトロンの実運転では、高温超伝導導線材は放射化されるため、放射線環境下の超伝導材料の特性変化のデータは工学的・工業的に非常に重要となる。そこで、市販のイットリウム系超伝導線材について、中性子照射による生成放射性核種、中性子照射による超伝導特性の変化、中性子照射による機械的ストレスへの耐性評価等について調べた。25年度は中性子照射の向きを変化させたときのイットリウム系線材の超伝導特性を測定した。

分類コード: BE02020X, BM04041W (621.384.63, 537.312.62:621.315.55)

シソーラス用語: *<u>高温超伝導体</u>, <u>中性子照射</u>, <u>放射線効果</u>, *<u>超伝導コイル</u>, <u>超伝導</u>, <u>超伝導体</u>, <u>サ</u>イクロトロン

準シソーラス用語: *<u>イットリウム系超伝導体</u>, *<u>高温超伝導材料</u>, *<u>高温超電導コイル</u>, <u>超伝導特性</u>

著者 ID : 宮原信幸 (200901100522134921), 石山敦士 (200901100317326664), 道辻健太 (201201100199502334), 狩野開 (201201100142180608), 有谷友汰 (201201109026504843)

ANSWER 2 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 14A1281930

和文標題 : 携帯型手持 11CO2 供給装置の設計と性能

英文標題 : The design and performance of a portable handheld 11CO2 delivery system

著者名: KIM Dohyun, ALEXOFF David L., SCHUELLER Mike, BABST Ben, FERRIERI Richard, FOWLER Joanna S., SCHLYER David J., Biosciences Dep., Brookhaven National Lab., Upton, NY 11973–5000, USA

資料名: Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0969-8043

巻号ページ

(発行年月日): Vol.94 Page.338-343 (2014.12) 写図表参: 写図 6, 参 23

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: イギリス(GBR) 言語: 英語(EN)

抄録: サイクロトロンターゲットから[11C]CO2 を効率的に捕獲し,3.7GBq(100mCi)m での線量を遠隔サイトまで安全に輸送し,液体寒剤を用いずに解放する携帯式装置を製作した。装置は重さ 11.1kg の鉛ピッグ内に置いた 180W の炉と小型分子篩トラップ(80~100mg;80~100mesh13×)からなる。装置全体の[11C]CO2 供給効率は約 82%(>99%捕獲効率)である。ピッグ表面から 30cm 離れた測定した最高 2.59GBq(70mCi)までの線量率は<43.5 μ Sv/h(5mR/h)であった。 Copyright 2014 Elsevier B.V., Amsterdam. All rights reserved. Translated from English into Japanese by JST.

分類コード : CB10030R (544.582.2)

シソーラス用語: <u>サイクロトロン</u>, <u>ターゲット</u>, *<u>供給装置</u>, 炭素同位体, *二酸化炭素, <u>効率</u>, <u>線量</u>率, *同位体製造, 放射化学, PET【トモグラフィー】, 標識化合物

準シソーラス用語: 炭素 11, 捕獲効率

著者 ID : KIM Dohyun (201401171086471768), ALEXOFF David

L. (201401171086989767), SCHUELLER Mike (201401171086480260), BABST Ben (201401171086452127), FERRIERI Richard (201201100256420331), FOWLER Joanna S. (201401171087076331), SCHLYER David J. (201401171086727274)

DOI 情報 : doi: 10.1016/j.apradiso.2014.09.008

リンク情報:

pubmedlink doilink RightFind

ANSWER 3 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレ ス不可

整理番号 : 15A0612720

和文標題 : 124 ヨウ素:長寿命ポジトロン放射性同位体 - 分子イメージングにおける新たな好機

英文標題 : 124Iodine: A Longer-Life Positron Emitter Isotope-New Opportunities in

Molecular Imaging

著者名 : CASCINI Giuseppe Lucio, RESTUCCIA Antonino (Univ. Catanzaro "Magna

Graecia", Catanzaro, ITA), ASABELLA Artor Niccoli, NOTARISTEFANO

Antonio, FERRARI Cristina, RUBINI Domenico, ALTINI Corinna, RUBINI Giuseppe (Univ.

Bari "Aldo Moro", Bari, ITA)

資料名: BioMed Res Int (Web)

JST 資料番号 : U7008A **ISSN** : 2314-6141

巻号ページ

(発行年月日): Vol.2014 No.Molecular Imaging Page.672094 (WEB ONLY) (2014) 写図表

参: 写図 1, 表 1, 参 36 資料種別: 逐次刊行物(A)

記事区分: 文献レビュー(b1)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: 半減期 4.2 日の 124 ヨウ素(124I)は,in vivo 検出や長期生物学的および生理学的プロセス の定量にとって特に魅力的である。124Iの長寿命は,高分子量化合物取込みの長期間 in vivo 研究 に特に適している。数多くの小分子と蛋白質や抗体のような大分子は,124Iで成功裏に標識され てきた。放射性核種産生の進歩は、分子イメージング目的の小型生体医療サイクロトロンに十分 量の 124I の効率的利用を可能にする。124I を用いた放射性ヨウ素化化学は,求核性および求電子 性置換反応から成る十分に確立された放射性ヨウ素標識法に依存する。124I の物理的特徴は、そ のより高い PET 画質特性の活用を可能にする。124I に標的化される新規分子の可用性は,核医学 において関心を集める興味深い理由の一つである。本レビューでは,半減期,放射線放出および安 定性に関して最も有望であり、腫瘍学および非腫瘍学の分野における様々な応用を可能にする 124Iに焦点を当てて、ヨウ素の全ての放射性同位体の応用について議論した。 (翻訳著者抄録) 分類コード: GA05020L, CB10050N, GW18010O, GW18020Z (615.472/.473, 544.582.3,

615.2:621.039.8, 615.2.03:621.039.8)

シソーラス用語: *ヨウ素同位体, 放射性同位体, *分子イメージング, in vivo 実験, サイクロトロ ン, ヨウ素化, 求核置換反応, 求電子置換反応, *PET【トモグラフィー】, 医用画像, 放射線医学, *<u>SPECT</u>, <u>放射化学</u>, *<u>X 線 CT</u>, *<u>甲状腺腫瘍</u>

準シソーラス用語: in vivo 試験, *PET/CT, PET イメージング, PET 画像, *SPECT/CT, SPECT イメージング, *ョウ素 124, ョウ素放射性同位体, 核医学, *甲状腺癌, 放射性ョウ素, 放射 性ヨウ素化

物質索引 : 123I - FP - CIT (<u>J1.178.722C</u>, 155798-07-5)

著者 ID : CASCINI Giuseppe Lucio (201401171104795061), ASABELLA Artor

Niccoli (201401100280771859), NOTARISTEFANO

Antonio (200901109003364674), RESTUCCIA Antonino (201401171106244127), FERRARI Cristina (201401100314969840), RUBINI Domenico (201401100076834914), ALTINI Corinna (200901109005600944), RUBINI Giuseppe (200901100647581547)

リンク情報:

RightFind

ANSWER 4 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 14A0643452

和文標題: 完全なマイクロ流体放射性トレーサ合成に対するオンチップ生成物精製

英文標題 : ON-CHIP PRODUCT PURIFICATION FOR COMPLETE MICROFLUIDIC

RADIOTRACER SYNTHESIS

著者名: CHEN Supin, DOORAGHI Alex A., LAZARI Mark, VAN DAM R.Michael, CHATZIIOANNOU Arion F., KIM Chang - Jin (Univ. California, Los Angeles(UCLA), USA)

資料名 : Tech Dig IEEE Micro Electro Mech Syst

JST 資料番号 : W0377A **ISSN** : 1084-6999

巻号ページ

(発行年月日): Vol.27th Vol.1 Page.284-287 (2014) 写図表参 : 写図 5, 参 9

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国: アメリカ合衆国(USA) 言語: 英語(EN)

抄録: 誘電体上の液滴駆動(EWOD)液滴操作を,放射性トレーサの多様な合成に対する有力なアプローチとして実証している。しかし,合成した放射性トレーサの精製は,オフチップで HPLC 或いは固相抽出(SPE)樹脂を充填したカートリッジで行っている。本論文では,PET トレーサの放射化学的精製のために SPE を EWOD チップに組込み,液滴内の放射性トレーサを,同じチップの機械的ろ過を用いて精製材料から分離した。[18F]ファリプリド,神経伝達物質,を SPE およびろ過に対する放射性標識化した。フッ素化反応および精製を,放射性薄層クロマトグラフィにより評価した。Cerenkov 画像化を反応収率のオンチップ定量化のために行った。オンチップ精製の追加により,1 つの EWOD チップ上の放射化学的合成の 4 つの一般ステージである,サイクロトロン生成[18F]フロライドイオンの濃縮,溶媒交換,反応および生成物単離を可能とした。

分類コード: NC03030V, CB10050N (621.382.002.2, 544.582.3)

シソーラス用語: 流体, *標識化合物, 放射性同位体, 超小形回路技術, 生成物, 精製, *界面電気現

象, 固相抽出, PET【トモグラフィー】, 放射化学, 濾過, 薄層クロマトグラフィー

準シソーラス用語: オンチップ, *マイクロ流体, 液滴駆動, 放射性トレーサー

著者 ID: CHEN Supin (201201100075263137), DOORAGHI Alex

A. (201401100100123242), LAZARI Mark (201201100133765652), VAN DAM R.

Michael (200901100629023367), CHATZIIOANNOU Arion F. (200901100401145446), KIM Chang - Jin (200901100391684106)

リンク情報:

RightFind

ANSWER 5 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 14A0932493

和文標題: 放射線障害防止法の改正と放射化物の規制 著者名: 土居亮介(久留米大医放射性同位元素施設) 資料名: 久留米大学医学部放射性同位元素施設紀要

JST 資料番号 : L6112A

巻号ページ

(発行年月日): Vol.2012 Page.1-5 (2013.03) 写図表参: 写図 2, 表 2, 参 8

資料種別: 逐次刊行物(A)

記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 平成 22 年 5 月に放射線障害防止法が改正され,活性化物が新たに規制に組入れられた。本法律は平成 24 年 4 月 1 日に施行された。活性化物を所持している事業所はその活性化物を法令に従って管理する必要がある。本報告では,Ge 半導体検出器を用いて医療用の小型サイクロトロンの部品の放射化と核種評価を行った。ここでは, $ターゲット付近に設置されているストリッパフォイルと QMA カラムに対して測定した。QMA カラムは標識化合物合成時の不純物金属イオンを捕獲するために使用される。測定した<math>\gamma$ 線スペクトルを示した。

分類コード: MB01000W (613.648)

シソーラス用語: *<u>核反応生成物</u>, *<u>法規</u>, <u>放射線障害</u>, <u>Ge 半導体検出器</u>, <u>放射能測定</u>, * $_{\gamma}$ 線スペクトル, $_{\gamma}$ 線検出, サイクロトロン, 放射化

準シソーラス用語: *放射化物, *放射線障害防止法

著者 ID : 土居亮介 (200901100377866030)

ANSWER 6 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 12A1771123

和文標題: 次世代超電導サイクロトロンの開発:高温超電導線材の中性子照射特性(放射化評価) 著者名: 宮原信幸(放医研), 狩野開, 道辻健太, 矢崎真二郎, 柄澤彰良, WANG Xudong, 石山敦士

(早稲田大), 植田浩史(大阪大)

資料名: 低温工学・超電導学会講演概要集

JST 資料番号 : G0564B **ISSN** : 0919-5998

巻号ページ

(発行年月日): Vol.86th Page.189 (2012.11.07) 写図表参 : 表 3, 参 1

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 筆者らは、小型・高効率・高性能の次世代型重粒子線がん治療用加速器の実現をめざし、YBCO 超電導コイルを用いたサイクロトロン加速器の開発を進めている。超電導線材をはじめとする YBCO 超電導コイルの各要素は放射線環境中での利用が想定される。このような環境中において、機器が放射化することは、装置のメンテナンス時のハンドリングや廃棄時の処理、被曝管理を困難にしてしまう可能性がある。したがって、YBCO 超電導コイルの加速器への応用に向けてコイルを構成する要素の放射化特性を評価する必要がある。以上の観点より、我々は基礎実験として、高温超電導線材に中性子線(14Mev、77kGy)を照射した場合の RI 生成物についての評価を行ったので報告する。(著者抄録)

分類コード: BM04041W, CB10010V (537.312.62:621.315.55, 544.58)

シソーラス用語: *<u>サイクロトロン</u>, <u>中性子照射</u>, *<u>超伝導線</u>, <u>イットリウムバリウム銅酸化物</u>, * 放射化, <u>インダクタ</u>, 放射性同位体

準シソーラス用語: <u>YBCO</u>, コイル【電気】, 超電導サイクロトロン

著者 ID : 宮原信幸 (200901100522134921), 狩野開 (201201100142180608), 道辻健

太 (201201100199502334), 矢崎真二郎 (200901100631464109), 柄澤彰

良 (200901100628440576), WANG Xudong (200901100375783048), 石山敦

士(200901100317326664), 植田浩史(200901100438079109)

ANSWER 7 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 12A1771121

和文標題: 次世代超電導サイクロトロンの開発:高温超電導線材の中性子照射特性(超電導特性) 著者名: 道辻健太, 狩野開, 矢崎真二郎, 柄澤彰良, WANG Xudong, 石山敦士 (早稲田大), 植田浩

史(大阪大), 宮原信幸(放医研)

資料名: 低温工学・超電導学会講演概要集

JST 資料番号 : G0564B **ISSN** : 0919-5998

巻号ページ

(発行年月日): Vol.86th Page.187 (2012.11.07) 写図表参: 写図 3,表 1,参 2

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 我々は次世代加速器として YBCO 超電導コイルを用いた小型・高効率・高性能の次世代 超電導サイクロトロンの開発・実現を目指し、その基礎実験を行っている。次世代超電導サイクロトロンの実運転において、YBCO線材は磁場中で放射化されることが想定される。そこで、液体 窒素浸漬冷却条件で YBCO線材に最大約 0.13T の磁場(永久磁石使用)を印加して、 $Jc - B - \theta$ 特性を測定した。また、放射線環境を想定して 14MeV 中性子を照射した線材についても上記同様に $Jc - B - \theta$ 特性を測定し、非照射の結果と比較した。以上の結果について報告する。 (著者抄録) 分類コード: BM04041W、BK16121W (537.312.62:621.315.55、539.2.09:539.12.04) シソーラス用語: *超伝導線、*中性子照射、イットリウムバリウム銅酸化物、*サイクロトロン、 ア世界

準シソーラス用語: YBCO, 超電導サイクロトロン

著者 ID : 道辻健太 (201201100199502334), 狩野開 (201201100142180608), 矢崎真二郎 (200901100631464109), 柄澤彰良 (200901100628440576), WANG Xudong (200901100375783048), 石山敦士 (200901100317326664), 植田浩史 (200901100438079109), 宮原信幸 (200901100522134921)

ANSWER 8 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 12A1771120

和文標題: 次世代超電導サイクロトロンの開発:開発課題

著者名: 石山敦士, WANG Xudong (早稲田大), 植田浩史, 福田光宏, 畑中吉治 (大阪大), 野口聡

(北大), 長屋重夫, 鹿島直二 (中部電力), 宮原信幸 (放医研)

資料名 : 低温工学・超電導学会講演概要集

JST 資料番号 : G0564B **ISSN** : 0919-5998

巻号ページ

(発行年月日): Vol.86th Page.186 (2012.11.07) 写図表参: 参17

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) 言語: 日本語(JA)

抄録: 重粒子線がん治療の普及・拡大のためには,加速器の小型・軽量化とともに高効率化,省エネルギー化が必要である。そこで,我々は,高温超電導技術を活用した小型・高効率・高性能の次世代重粒子線がん治療用超電導サイクロトロンの開発・実現を目指している。我々が提案している超電導サイクロトロンは,高温超電導技術を最大限に活かして,重粒子を高いエネルギーまで加速するために必要な磁場を,等時性磁場を発生するためのメインコイルと周方向に勾配を持つ磁場(AVF)を発生するためのスパイラルセクターコイルを組み合わせて空芯コイルシステムで実現しようとするものである。その開発課題としては,線材特性に対しては,放射化特性および耐放射線性(超電導特性,機械特性),コイル開発に対しては,空芯で高精度磁場分布を実現するために,コイル形状の最適化,高精度コイル巻線技術,高機械強度コイル製作技術の開発,高温超電導線材内の遮へい電流の影響の低減などが課題として挙げられる。本報告では,次世代超電導サイクロトロン開発の意義および上記の開発課題とその対応策についてまとめる。(著者抄録)

分類コード: BM04041W, BE02020X (537.312.62:621.315.55, 621.384.63)

シソーラス用語: *サイクロトロン, 超伝導, *超伝導線, *インダクタ, 加速器, 医療機器

準シソーラス用語: <u>コイル【電気】, 重粒子線癌治療装置, 超伝導加速器, 超電導サイクロトロ</u>

著者 ID : 石山敦士 (200901100317326664), WANG Xudong (200901100375783048), 植田浩

史 (200901100438079109), 福田光宏 (200901100316082478), 畑中吉

治 (200901100411378970), 野口聡 (200901100323346464), 長屋重

夫 (200901100599478046), 鹿島直二 (200901100412147327), 宮原信

幸(200901100522134921)

ANSWER 9 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 12A1092797

和文標題: 小型医用サイクロトロン用の硼素含有水による自己遮蔽の放射線学的評価

英文標題: Radiologic assessment of a self-shield with boron-containing water for a compact

medical cyclotron

著者名: HORITSUGI Genki, ETO Akihisa, IWAMOTO Yasuo, HASHIMOTO Hiromi, HAMADA Seiki (MI Clinic, Osaka, JPN), FUJIBUCHI Toshioh, OBARA Satoshi (Ibaraki Prefectural Univ. Health Sci., Ibaraki, JPN), YAMAGUCHI Ichiro (National Inst. Public Health, Saitama, JPN), WATANABE Hiroshi (Yokohama Rousai Hospital, Kanagawa, JPN), HATAZAWA Jun (Osaka Univ. Graduate School of Medicine, Osaka, JPN)

資料名: Radiol Phys Technol

JST 資料番号 : L7250A **ISSN** : 1865-0333

巻号ページ

(発行年月日): Vol.5 No.2 Page.129·137 (2012.07.20) 写図表参 : 写図 4, 表 4, 参 30

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) 言語: 英語(EN)

抄録: 小型サイクロトロン(PETtrace,GE 社)は硼素含有水自己遮蔽型である。運転中の遮蔽体外部の光子と中性子の線量率を測定し,硼素含有水中の誘導放射能を推定した。また,サイクロトロン室の自己遮蔽体外部のコンクリートの放射能を推定した。運転時の熱中性子束は 472cm−2s−1 と推定した。コンクリートの放射化は RS - G - 1.7(IAEA)のクリアランスレベルの約 1/1000であった。硼素含有水中の放射能は非放射性廃棄物として取扱える。

分類コード: MB04000R (62-758.35+621.039.538)

シソーラス用語: *<u>サイクロトロン</u>, *<u>自己遮蔽</u>, <u>放射線遮蔽</u>, *<u>誘導放射能</u>, <u>ホウ素</u>, <u>コンクリート</u>, <u>放射化</u>, <u>安全基準</u>, <u>放射性廃棄物</u>, <u>放射線管理</u>

準シソーラス用語: クリアランス【放射性物質】,*医用サイクロトロン

著者 ID : HORITSUGI Genki (201201109013233573), 藤淵俊王 (200901100368648666), 山口一郎 (200901100413146618), ETO Akihisa (201201109011535580), IWAMOTO

Yasuo (201301100012061655), HASHIMOTO Hiromi (201201109021257627), 浜田星紀 (200901100566493112), 小原哲 (200901100616817739), 渡辺浩 (200901100300006283), 畑澤順 (200901100411333488)

DOI 情報 : doi: 10.1007/s12194-012-0147-4

リンク情報:

pubmedlink doilink RightFind

ANSWER 10 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 12A0684119

和文標題: サイクロトロンによる Mo-99.Tc-99m の製造・薬剤供給の可能性について

英文標題 : Feasibility of Mo-99/Tc-99m Production by Using Countrywide Cyclotrons as an

Alternative

著者名: 永津弘太郎(独立行政法人放射線医学総合研究所分子イメージング研究センター)

資料名: 日本放射線技術学会雑誌

JST 資料番号 : F0884A **ISSN** : 0369-4305 **CODEN** : NIPHAP

巻号ページ

(発行年月日): Vol.68 No.4 Page.484-490 (J-STAGE) (2012) 写図表参: 写図 4, 表 4, 参 9

資料種別: 逐次刊行物(A)

記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 老朽化した少数の原子炉に依存する現在の 99mMo 製造体制は世界中で利用される 99mTc の安定供給に早晩影響を与えることが懸念されている。99Mo/99mTc は,日本国内で医療 用途に供される放射性核種供給量の 7割程度を占め,世界第 2位(約 1割)の使用国とされる。今回, 医療用小型加速器ならびに中型以上の加速度を利用した 99mTc,99Mo の製造検討を行った。原子炉ではなく加速器を製造ツールに用いる本製法は小回りが利き省廃棄物が期待される。また安定供給に対し定期点検などで運転休止する期間の短さが大きな利点である。この 99mTc micro factory 構想を実践すれば合理的ながらも脆弱性を有する従前の供給体制から脱却すると考えられた。よって真に自立した核医学検査基盤の構築に資すると思われた。

分類コード: GC04011Q, GU01020R (615.849, 615.1)

シソーラス用語: <u>テクネチウム 99m</u>, *<u>放射性医薬品</u>, *<u>サイクロトロン</u>, 供給, <u>放射線検査</u>, <u>放射</u>性同位体, *同位体製造, 大量生産, 放射化

準シソーラス用語: 100Mo, 安定供給, 核医学検査, 放射性核種, 量産

著者 ID : 永津弘太郎 (200901100541314302)

DOI 情報 : doi: 10.6009/jjrt.2012 JSRT 68.4.484

リンク情報:

<u>pubmedlink</u> <u>do</u>ilink

ANSWER 11 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 11A1032154

和文標題: 国立精神・神経医療研究センター医療用小型サイクロトロン解体作業報告

英文標題 : Decommissioning of the Medical Cyclotron in National Center of Neurology and

Psychiatry

著者名 : 伊藤公輝, 中田安浩, 佐藤典子 (国立精神・神経医療研究セ 放射線科), 伊藤公輝, 松田博

史(埼玉医大国際医療セ核医学科)

資料名: 核医学

JST 資料番号 : S0269A **ISSN** : 0022-7854 **CODEN** : KAIGB

巻号ページ

(発行年月日): Vol.48 No.2 Page.109-119 (2011.05.31) 写図表参: 写図 7, 表 2, 参 7

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : 日本(JPN) 言語 : 日本語(JA)

抄録: 近年,positron emission tomography(PET)の保険診療拡大に伴いRI製造用の医療用小型サイクロトロンを院内に設置する施設が増加している。約15年間,fluoro-2-deoxy-D-glucose(FDG)を主としたPET薬剤の製造に使用されてきた医療用小型サイクロトロンおよびその周辺機器の解体撤去作業を行った。今回解体した医療用小型サイクロトロンはOXFORD社製超電導サイクロトロンである。加速エネルギーが約10MeV以上になると放射化の問題が生じるとされ,この放射化には加速粒子によって発生する放射化と2次的に発生する中性子による放射化がある。半減期の長い放射性核種が生成することがあるため,放射線被曝の問題よりも施設解体時に問題となる場合がある。現時点では放射化物は放射線管理区域内で保管されるか,日本アイソトープ協会に引き渡すのが現状である。より厳格な規制と安全な対応が要求されていくと考えられる。

分類コード: GA05020L, GC04011Q (615.472/.473, 615.849)

シソーラス用語: *<u>サイクロトロン</u>, *<u>医療機器</u>, *<u>解体工事</u>, <u>PET【トモグラフィー】</u>, <u>放射性医薬品</u>, <u>放射性同位体</u>, <u>造影剤</u>, 除去, <u>放射線管理</u>

準シソーラス用語: *医療用小型サイクロトロン, *解体作業, 撤去, 放射化物

著者 ID : 伊藤公輝 (200901100355584871), 中田安浩 (200901100608758499), 松田博

史(200901100379714806), 佐藤典子(200901100529969140)

リンク情報: molpdflink ANSWER 12 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 13A1094454

和文標題 : 超伝導線材ならびにコイル構成材料の耐放射線性に関する研究

著者名: 石山敦士, 植田浩史, 陸旭東, 青木徹, 神林佑 (早稲田大), 宮原信幸 (放医研)

資料名 : NIRS-M (Natl Inst Radiol Sci)

JST 資料番号 : Z0881A

巻号ページ

(発行年月日): No.233 Page.61-69 (2010.07) 写図表参: 写図 8, 表 3

資料種別: 技術報告(T) 記事区分: 短報(a2)

発行国 : 日本(JPN) **言語** : 日本語(JA)

抄録: 重粒子線治療装置の小型化,高効率化のための核種機器の超伝導化を目的としている。本研究では,高温超伝導線材の加速器への応用を目指して,超伝導特性および機械特性の耐放射線性に関する評価試験を実施した。AVF930 サイクロトロンを用いイットリウム(YBCO)系超伝導線材とビスマス系(Bi - 2223)線材を試料として 14MeV 中性子照射実験を実施し,照射前後の超伝導性特性の比較を行った。77kGy×3回照射で,超伝導特性の劣化はなかった。14MeV 中性子を照射し放射化による生成核種を調査した結果,Bi 線材および YBCO 線材ともに,照射 2 週間後の表面放射線レベルは問題の無いレベルだった。また,中性子照射後の機械的歪みが超伝導特性に及ぼす影響を調査するための実験装置の設計を行い,試験装置の妥当性評価のための予備実験を実施した。

分類コード: BK16121W, BE02020X (539.2.09:539.12.04, 621.384.63)

シソーラス用語: *超伝導線, *耐放射線性, カルシウム化合物, ストロンチウム化合物, ビスマス 化合物, *高温超伝導体, イットリウムバリウム銅酸化物, *中性子照射, 歪, 劣化, 臨界電流, 照射損傷, サイクロトロン

準シソーラス用語: Bi2223

著者 ID: 石山敦士 (200901100317326664), 植田浩史 (200901100438079109), 陸旭東 (201401100147620813), 青木徹 (200901100373529756), 神林佑 (200901100613558457), 宮原信幸 (200901100522134921)

ANSWER 13 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 09A1214056

和文標題 : 医療用小型サイクロトロン周辺の放射化状況の評価

英文標題: Evaluation of Radio-activated Compounds Produced in the Walls and Adjacent Areas of a Small Medical Cyclotron

著者名: 齋藤享子, 高橋康幸 (群馬県県民健康科学大 診療放射線), 山口一郎 (国立保健医療科学院 生活環境部), 木村健一 (フジタ 技セ), 勘崎貴雄, 嶋田博孝, 大竹英則 (群馬大 医 病院 放射線部), 織内昇, 遠藤啓吾 (群馬大 大学院医学系研究科 放射線診断核医学分野)

資料名 : 医学物理

JST 資料番号 : X0867A **ISSN** : 1345-5354

巻号ページ

(発行年月日): Vol.29 No.2 Page.29-34 (2009.10.30) 写図表参: 写図 8, 表 1, 参 10

資料種別: 逐次刊行物(A)

記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 18F - 2 - deoxy - 2[18F]fluoro - D - glucose(FDG)による positron emission

tomography(PET)検診の普及に伴い,陽電子断層撮影診療用放射性同位元素を自施設で製造できる医療用小型サイクロトロン(サイクロトロン)を設置する医療機関が増加している。運転を休止したサイクロトロンとその周囲のコンクリートについて放射化物の種類やその放射能値を測定した。サイクロトロン本体の空間線量率は最小値 0.1μ Sv/h から最大値 1.0μ Sv/h であった。ターゲットボックス開口時のターゲット付近における空間線量率は 14.0μ Sv/h,デフレクター付近の線量率は 14.0μ Sv/h(測定距離はそれぞれ 10cm)と放射化が顕著であった。測定結果は、サイクロトロン本体でほぼ全域に放射化を認め、またコンクリート試料の核種解析では 8 核種が検出された。しかし、天然放射性核種である 40K のレベルが、室内で最も高値を示していた。

分類コード: MB02030K, GC04012H (614.73+614.876, 615.849-09)

シソーラス用語: <u>サイクロトロン</u>, <u>放射化</u>, <u>医療機器</u>, <u>放射線被</u>曝, <u>放射能測定</u>, *<u>線量率</u>, <u>カリウ</u>ム同位体, 高速中性子, 熱中性子, 環境, コンクリート, *放射能汚染

準シソーラス用語: カリウム 40,*空間放射線量率,周辺環境,*放射線汚染

著者 ID : 齋藤享子 (200901100499589533), 高橋康幸 (200901100417073933), 山口一

郎 (200901100413146618), 木村健一 (200901100541775210), 勘崎貴

雄 (200901100390012120), 嶋田博孝 (200901100369644877), 大竹英

則 (200901100328902438), 織内昇 (200901100428634686), 遠藤啓吾 (200901100568909898)

ANSWER 14 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 09A0854638

和文標題: 小型医用サイクロトロン周囲の 23Na 放射化を利用した熱中性子フルエンス分布の 測定

英文標題: Measurement of thermal neutron fluence distribution with use of 23Na radioactivation around a medical compact cyclotron

著者名: FUJIBUCHI Toshioh (Ibaraki Prefectural Univ., Ibaraki, JPN), FUJIBUCHI Toshioh, ISOBE Tomonori, SAKAE Takeji (Univ. Tsukuba, Ibaraki, JPN), YAMAGUCHI Ichiro (National Inst. Public Health, Saitama, JPN), KASAHARA Tetsuharu, IIMORI Takashi, MASUDA Yoshitada (Chiba Univ. Hospital, Chiba, JPN), KIMURA Ken - ichi (Fujita Corp., Kanagawa, JPN), WATANABE Hiroshi (Yokohama Rousai Hospital, Kanagawa, JPN)

資料名 : Radiol Phys Technol

JST 資料番号 : L7250A **ISSN** : 1865-0333

巻号ページ

(発行年月日): Vol.2 No.2 Page.159-165 (2009.07.20) 写図表参: 写図 7,表 2,参 16

資料種別 : 逐次刊行物(A) **記事区分** : 原著論文(a1)

発行国 : 日本(JPN) 言語 : 英語(EN)

抄録: PET 検査の普及に伴い,医療施設への小型サイクロトロンの設置が進んでいる。しかし, 日常の放射線安全管理において残留放射能の分布を測定することは病院にとって困難である。そ こで,サイクロトロン室の熱中性子を測定するための簡単で費用の安い方法を開発した。本方法 の実現可能性を検証するために,塩化ナトリウム中の 23Na の放射化を利用してサイクロトロン 周囲の熱中性子分布を測定した。24Na の光電ピークを測定し,中性子東分布を推定した。本方法 は正確であるだけでなく,誘導放射能を低減して廃止措置作業の放射線安全管理のための遮蔽設 計を最適化する。

分類コード: AD08020J (539.1.073/.074)

シソーラス用語: PET【トモグラフィー】,*サイクロトロン,医療機器,熱中性子,*中性子フルエンス,安全管理,放射線管理,ナトリウム同位体,放射化,塩化ナトリウム,廃止措置,γ線検出,断面積,誘導放射能,*残留放射能

準シソーラス用語: 医用加速器, ナトリウム 23, ナトリウム 24, 捕獲断面積

著者 ID : 藤淵俊王 (200901100368648666), 山口一郎 (200901100413146618), 笠原哲

治(200901100587570672), 飯森隆志(200901100507700929), 桝田喜

正 (200901100509066046), KIMURA Ken - ichi (201201100309874747), 渡辺

浩 (200901100300006283), 磯辺智範 (200901100459776799), 榮武二 (200901100475482266)

DOI 情報 : <u>doi : 10.1007/s12194-009-0060-7</u>

リンク情報:

doilink RightFind

ANSWER 15 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 09A0617512

和文標題: 医療用小型サイクロトロンの交換部品等における放射化物の測定と評価

著者名 : 望月真吾 (名大 院 医), 石榑信人, 緒方良至 (名大 医 保), 小林敏樹 (名古屋放射線診断ク

リニック)

資料名: 日本保健物理学会研究発表会講演要旨集

JST 資料番号 : L2502A

巻号ページ

(発行年月日): Vol.43rd Page.51 (2009.06.03) 写図表参: 写図 1, 参 1

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

分類コード: GA05020L, AD08050Q, BE02020X, MB03000K (615.472/.473, 539.16.08,

621.384.63, 621.039.5/.6:614.8)

シソーラス用語: *サイクロトロン, *医療機器, 廃棄物管理, *放射能測定, *交換

準シソーラス用語: *部品取替

著者 ID : 望月真吾 (200901100384821475), 石榑信人 (200901100497887073), 緒方良

至 (200901100595466272), 小林敏樹 (200901100538289453)

ANSWER 16 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 08A0876843

和文標題 : モンテカルロ計算による PET 用サイクロトロン周りの中性子東分布及び放射化量評

価

著者名: 延原文祥, 浜島幸子, 松村茂 (東京ニュークリアサービス), 桝本和義, 中村一, 豊田晃

弘, 萩原雅之 (KEK), 高橋克彦 (独協医大 RI セ)

資料名: 日本原子力学会秋の大会予稿集(CD-ROM)

JST 資料番号 : S0818B

巻号ページ

(発行年月日): Vol.2008 Page.H44 (2008.08.21) 写図表参 : 写図 1

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: PET 用サイクロトロン周り中性子東計算にはモンテカルロ計算コードである PHITS 及び MCNP - 5 を,放射化計算には,DCHAIN - SP2001 コードを用いた。計算は実測結果と良く一致しており,これらの小型加速器施設ではモンテカルロ計算を用いる事により,クリアランスのための事前評価が行える事が示された。(著者抄録)

分類コード: GA05020L, MB02020Z (615.472/.473, 613.648:614.89)

シソーラス用語: *<u>PET【トモグラフィー】</u>, <u>モンテカルロ法</u>, *<u>中性子東</u>, <u>クリアランス</u>, <u>サイク</u>ロトロン

著者 ID: 延原文祥 (200901100345787502), 浜島幸子 (200901100584776873), 松村茂 (200901100318735649), 增本健 (200901100368114378), 中村一 (200901100313100360), 豊田晃弘 (200901100455252264), 萩原雅之 (200901100592676454), 高橋克彦 (201301100007339491)

ANSWER 17 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 08A0419135

和文標題: PET を用いた多施設共同臨床試験によるアルツハイマー病の超早期診断法の確立と 普及 PET 診断利用を目的とした 18F - 標識 FACT 自動合成装置の開発

著者名 : 岩田錬, 石川洋一 (東北大 サイクロトロン・RI セ), 青木康, 渡辺利光 (住友重機械工業技術開発セ), 古本祥三 (東北大 先進医工学研究機構)

資料名: PET を用いた多施設共同臨床試験によるアルツハイマー病の超早期診断法の確立と普及平成19年度総括研究報告書

JST 資料番号 : N20081042

巻号ページ

(発行年月日): Page.89-92 (2008) 写図表参: 写図 7

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 本研究では,臨床利用可能な 18F - 標識アミロイドイメージング剤([18F]FACT)自動合成装置の開発を目標に,昨年度試作した[18F]フッ素イオンモジュールと 18F 標識反応モジュールに,新たに小型シリンジポンプ - 6 方切換バルブユニットを組み込んだ精製モジュールを導入して[18F]FACT 自動合成装置とした。反応と精製条件を最適化し,本装置を用いて合成試験を 3 回連続して行った。得られた[18F]FACT 注射液に対し化学的純度,放射化学的純度,比放射能,エンドトキシンおよび無菌試験を行い,すべての検査項目につき基準値を満たした。臨床利用可能な[18F]FACT 注射液を得ることができた。

分類コード: GN02000H (616.8-07)

シソーラス用語: <u>PET【トモグラフィー】</u>, 共同比較試験, 臨床試験, *<u>Alzheimer 病</u>, 早期診断, アミロイド, *造影剤, 化学合成

準シソーラス用語: 多施設共同試験,*超早期診断法,自動合成

著者 ID : 岩田錬 (200901100352799702), 青木康 (200901100373513019), 古本祥

三 (200901100551995030), 石川洋一 (200901100335118343), 渡辺利

光 (200901100300067240)

ANSWER 18 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号: 08A0145780

和文標題: 小型加速器による放射線の工業利用

著者名: 坂根仁(住重試験検査)

資料名: 住友重機械技報

JST 資料番号 : F0316A **ISSN** : 0387-1304

巻号ページ

(発行年月日): No.165 Page.33-34 (2007.12.20) 写図表参: 写図 2, 表 2, 参 4

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 住重試験検査株式会社は,370型サイクロトロンを保有し,放射線技術サービスを行なっている。また AN2500型バンドグラフ加速器による分析サービスを展開している。370型サイクロトロン及び AN2500型バンドグラフ加速器の概要を説明し,中性子ラジオグラフィ,荷電粒子放射化分析,薄層放射化磨耗測定,半導体イオン放射,粒子励起 X 線分析の概要を説明した。

分類コード: MC01060N (621.039.8+)

シソーラス用語: <u>サイクロトロン</u>, *<u>サイクロトロン放射</u>, <u>放射線</u>, *加速器, 中性子ラジオグラフ

<u>ィー,*放射化分析, PIXE 分析, イオン放出, 摩耗, イオンビーム</u>

準シソーラス用語: <u>イオン放射</u>, 荷電粒子励起 X 線分析

著者 ID : 坂根仁 (200901100571522848)

ANSWER 19 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 07A0910363

和文標題: PET 用小型サイクロトロン室における中性子束の測定

著者名: 米澤徹, 江頭智典 (日本メジフィジックス), 木村健一, 金野正晴 (フジタ)

資料名: 日本原子力学会秋の大会予稿集(CD-ROM)

JST 資料番号 : S0818B

巻号ページ

(発行年月日): Vol.2007 Page.B07 (2007.09.07) 写図表参: 写図 1, 表 1, 参 1

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 低放射化コンクリートの適用に当たり,PET 用小型サイクロトロン室における熱中性子東の評価について既に報告した。本報では Ni 箔,Fe 箔,Al 箔,Mg 箔などを用いて 1 週間から 1 年程度の期間で照射し,高速中性子束を評価した。 (著者抄録)

分類コード: GA05020L, MB03000K (615.472/.473, 621.039.5/.6:614.8)

シソーラス用語: *PET【トモグラフィー】, *サイクロトロン, *中性子線量測定, コンクリート,

金属箔

著者 ID : 米澤徹 (200901100521550204), 江頭智典 (200901100537149658), 木村健

一(200901100541735162), 金野正晴(200901100558708525)

ANSWER 20 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 06A0972785

和文標題: ビーム位相測定を用いた自動化したサイクロトロン同調

英文標題: Automated cyclotron tuning using beam phase measurements

著者名: TIMMER J.h., ROECKEN H., STEPHANI T., BAUMGARTEN C., GEISLER A. (ACCEL Instruments GmbH, Friedrich-Ebert-Str. 1, 51429 Bergisch Gladbach, DEU)

資料名 : Nucl Instrum Methods Phys Res Sect A Accel Spectrometers Detect Assoc

JST 資料番号 : D0208B **ISSN** : 0168-9002

巻号ページ

(発行年月日): Vol.568 No.2 Page.532-536 (2006.12.01) 写図表参: 写図 7, 表 1, 参 5

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: オランダ(NLD) **言語**: 英語(EN)

抄録:ACCEL K250 超伝導サイクロトロンは陽子治療系用に特に設計している。この小型の医用 250MeV 加速器は高速走査処理系のためのすべての現在及び未来のビーム要求を満たし,ターンキー系として供給され,運転者は通常は必要ない。サイクロトロンの稼働中,RF 系の放熱は鉄温度に僅かなドリフトを起こす。この温度ドリフトは僅かに磁場をデチューンし,小さな補正をしなければならない。磁場ドリフトの効果を測定し定量化するために,非破壊ビーム位相検出器(容量ピックアップ探針)を開発した。信号計算を行い,容量ピックアップ探針の設計を欲しいビーム電流領域をカバーするために最適化した。測定は計算した信号と非常に良く一致し,ビーム位相は3nAまで下げた電流で測定できた。測定した位相値を,超伝導コイルの電流を制御するフィードバックループのための入力として用いた。サイクロトロンの磁場は自動的に同調され,固定したビーム位相を保持するためにオンライン化した。その結果,引出し効率は連続的に最適化され,サイクロトロンの放射化は最小化された。引き出したビームのエネルギーと位置の安定性は仕様内で良好であった。Copyright 2006 Elsevier B.V., Amsterdam. All rights reserved.

Translated from English into Japanese by JST.

分類コード: BE02020X (621.384.63)

シソーラス用語: *<u>サイクロトロン</u>, <u>ビーム技術</u>, <u>100 - 1000MeV</u>, <u>陽子ビーム</u>, *<u>RF系</u>, <u>ビーム取</u>出し, 熱安定性, ドリフト不安定性, 静電容量, 最適化, 超伝導コイル

準シソーラス用語:*自動化制御,*周波数同調,医用加速器

著者 ID : TIMMER J.h. (200901100569926494), ROECKEN

H. (200901100369602694), STEPHANI T. (200901100469891499), BAUMGARTEN

C. (200901100586787384), GEISLER A. (200901100477333020)

DOI 情報 : doi: 10.1016/j.nima.2006.08.005

リンク情報 :

doilink RightFind

ANSWER 21 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 05A1033942

和文標題 : 放射線技術の新しい展開 II - 1 サイクロトロン工業利用の現状と今後の課題

著者名: 西原善明(住重試験検査)

資料名: 日本非破壞検査協会大会講演概要集

JST 資料番号 : L1257A

巻号ページ

(発行年月日): Vol.2005 秋季 Page.201-204 (2005.11.21) 写図表参: 写図 1, 表 2

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国 : 日本(JPN) 言語 : 日本語(JA) 分類コード : BE02020X (621.384.63)

シソーラス用語 : * $\underline{+}$ * $\underline{+}$ + $\underline{+}$

ン照射, 放射化

準シソーラス用語: 小型サイクロトロン, 摩耗測定, 薄層放射化, 電荷粒子放射化

著者 ID : 西原善明 (200901100317166500)

ANSWER 22 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 05A0573166

和文標題: サイクロトロンン U - 120M によるアスタチン 211 製造のための新しい内部ターゲットシステム

英文標題: A new internal target system for production of 211At on the cyclotron U-120M 著者名: LEBEDA O., JIRAN R., RALIS J., STURSA J. (Nuclear Physics Inst. of the Czech Acad. of Sci.s, CZ-250 68 Rez near Prague, CZE)

資料名: Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0969-8043

巻号ページ

(発行年月日): Vol.63 No.1 Page.49-53 (2005.07) 写図表参: 写図 4, 表 2, 参 12

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: 211At は有効かつ強力な小型腫ようと,転移腫ようの放射線治療薬である。新しい内部ターゲット照射システムを開発した。薄いビスマス層を軽いターゲットの裏打ち上に蒸着させ,29.5MeV の α 粒子ビームを $30\,\mu$ A までの強度で $0.5\sim1.5$ の角度で照射する。裏打ちはターゲットホルダから外し,直接アスタチンの分離のため乾留する。テフロン毛管壁上の濃縮アスタチンは $150\sim250$ ml のメタノールで溶離する。飽和時の収率は 400MBq/ μ A で,211At の放射化学純度は薬用に十分であり(210At/211At<10-3EOB において),全体の分離の収率は $65\sim75\%$ であった。 Copyright 2005 Elsevier B.V., Amsterdam.All rights reserved. Translated from English into Japanese by the JST.

分類コード: CB10030R (544.582.2)

シソーラス用語: *<u>同位体製造</u>, *<u>アスタチン</u>, <u>サイクロトロン</u>, *<u>ターゲット</u>, α 線照射, <u>放射線療</u>法

準シソーラス用語: アスタチン 211

著者 ID : LEBEDA O. (201201100140644259), JIRAN R. (200901100310564624), RALIS J. (200901100510748037), STURSA J. (201201100109884837)

DOI 情報 : <u>doi : 10.1016/j.apradiso.2005.02.006</u>

リンク情報:

pubmedlink doilink RightFind

ANSWER 23 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 05A0440016

和文標題: 医療用加速器のデコミッショニング

英文標題 : Decommissioning of the Medical Compact Cyclotron

著者名: 石本剛, 久保田晴元, 寺川仁人, 谷邦治, 石井一成 (兵庫県姫路循環器病セ), 森哲也 (福井

大)

資料名: デコミッショニング技報

JST 資料番号 : L0655A **ISSN** : 1343-3881

巻号ページ

(発行年月日): No.31 Page.21-31 (2005.03.31) 写図表参: 写図 13, 表 1, 参 5

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 兵庫県立高齢者脳機能研究センターで約9年間,主にPET薬剤の製造に使用された医療用小型サイクロン及びその周辺機器の解体撤去を行ったので,廃止措置計画,放射化評価と測定結果,放射性廃棄物の予測と実際,サイクロトロンの解体撤去作業内容について報告した。このサイクロトロン解体を含めた放射線管理区域全域の廃止作業は,作業計画の作成から,測定,解体,放射化物及び放射性廃棄物の搬出まで約1年,総額約1億円の費用を要した。

分類コード : MB05000Y, MC01020V (621.039.7, 621.384)

シソーラス用語: *<u>サイクロトロン</u>, *<u>放射性廃棄物</u>, <u>放射化</u>, <u>解体</u>, <u>安全管理</u>, <u>作業計画</u>, *<u>廃止措置</u>

著者 ID : 石本剛 (200901100311234016), 久保田晴元 (201201100119458429), 森哲也 (200901100435166612), 寺川仁人 (200901100367086877), 谷邦治 (200901100509596886), 石井一成 (200901100393933120)

ANSWER 24 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号: 05A0368269

和文標題: 医療用小型サイクロトロンの放射化と PET 薬剤中の放射性副生成物の分析

著者名 : 望月真吾,緒方良至,宮原洋(名大 大学院 医),はた野健太郎,阿部潤一郎,伊藤健吾(長

寿研), 西野正成 (名大病院)

資料名: 日本放射化学会年会·放射化学討論会研究発表要旨集

JST 資料番号 : F0139B **ISSN** : 1345-2762

巻号ページ

(発行年月日): Vol.2004-48th Page.93 (2004.10.27) 写図表参: 写図 1

資料種別: 会議録(C) **記事区分**: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

分類コード: CC06010J (543.52)

シソーラス用語: *放射性医薬品, PET【トモグラフィー】, 放射化, 放射性廃棄物, 放射性同位 体, Ge 半導体検出器, γ 線検出, γ 線スペクトル, 液体シンチレーション検出器, 残留放射能, 廃棄 物管理, 放射線被曝, 副産物, サイクロトロン, ターゲット, 部品

準シソーラス用語: 放射性核種

物質索引: 18F - FDG (<u>J373.715B</u>, 63503-12-8), [18F] - FDOPA (<u>J449.799F</u>, 92812-82-3) 著者 ID: 望月真吾 (200901100384821475), 緒方良至 (200901100595466272), はた野健太郎 (200901100438263945), 阿部潤一郎 (200901100498867025), 伊藤健吾 (200901100355556150), 西野正成 (200901100404829400), 宮原洋 (200901100522137823)

ANSWER 25 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号: 05A0289415

和文標題: 小型サイクロトロンによる工業利用

著者名: 末沢宏樹(住重試験検査)

資料名: Proc Symp Accel Relat Technol Appl JST 資料番号: L5222A ISSN: 1344-4514

巻号ページ

(発行年月日): Vol.6th Page.31-34 (2004.06.17) 写図表参: 写図 4, 表 4

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 住重試験検査株式会社が保有している二台の小型サイクロトロンの利用のうち,ビジネスとして成功している事例を紹介した。ただし,放射性同位体製造は除いた。1 号機は陽子,重陽子,3He を,2 号機はその外に 4He を加速できる。陽子は2,4,8,17MeV の加速が可能である。1)中性子透過試験では9Be(p,n)9B 反応で発生した高速中性子を減速して熱中性子にし,これを用いる。2)半導体へのイオン照射はビーム走査ラインで行う。3)荷電粒子放射化分析では放射化された元素からの放射線を測定して,主に軽元素を分析する。4)粒子励起 X 線分光(PIXE)では医学,植物,環境試料,食品の分析を行う。

分類コード: BE02020X, MC01020V, CC06010J (621.384.63, 621.384, 543.52)

シソーラス用語: *<u>サイクロトロン</u>, <u>小型</u>, <u>陽子ビーム</u>, <u>重陽子ビーム</u>, <u>ヘリウム 3 ビーム</u>, <u>ヘリウ</u>ム 4, 透過率, 熱中性子, 半導体, イオン照射, 放射化分析, *<u>PIXE</u> 分析

著者 ID : 末沢宏樹 (200901100505062143)

ANSWER 26 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 04A0444598

和文標題: 放射線利用の新たな挑戦 イオンビーム利用ー小型サイクロトロンによる工業利用ー

著者名: 末沢宏樹, 西原善明(住重試験検査)

資料名: 放射線と産業

JST 資料番号 : G0314A **ISSN** : 0286-8873

巻号ページ

(発行年月日): No.102 Page.46-57 (2004.06.01) 写図表参: 写図 13, 表 8, 参 7

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 小型サイクロトロンから発生したイオンビームを利用した応用分野を,ビジネスとして成立しているものに限定して紹介した。内容は以下の項目からなる。1)サイクロトロン施設,2)中性子透過試験(中性子源,撮影,中性子透過率測定),3)半導体へのイオン照射(イオン照射仕様,透過電流方式によるエネルギー測定,IP 露光法による面内均一性測定),4)荷電粒子放射化分析(CPAA)(原理,表面及び環境からの酸素汚染の除去),5)粒子励起 X 線分光(PIXE)(原理,PIXE の今後の展望)。

分類コード: BD02070X, MC01020V (537.533/.534.06, 621.384)

シソーラス用語: *<u>サイクロトロン</u>, <u>小型</u>, *<u>イオンビーム</u>, <u>中性子源</u>, <u>透過率</u>, <u>半導体</u>, <u>イオン注入</u>, 放射化分析, PIXE 分析

著者 ID : 末沢宏樹 (200901100505062143), 西原善明 (200901100317166500)

ANSWER 27 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 04A0264972

和文標題: 医療用小型サイクロトロンに対応した低放射化の塗装材料

著者名: 金野正晴, 木村健一, 池見拓 (フジタ)

資料名: 日本原子力学会春の年会要旨集

JST 資料番号 : G0939A

巻号ページ

(発行年月日): Vol.42nd 第 1 分冊 Page.150 (2004.03.11) 写図表参: 写図 1, 表 1, 参 1

資料種別: 会議録(C) **記事区分**: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 医療用小型サイクロトロン(p - 18MeV)に対応した低放射化の塗装材料について検討した。 (著者抄録)

(者有抄球)

分類コード : BE02020X (621.384.63)

シソーラス用語: *<u>サイクロトロン</u>, *<u>塗料</u>, <u>体質顔料</u>, <u>放射化</u>, 照射試験, <u>中性子照射</u>, <u>放射性廃棄</u>

物,無機顔料

準シソーラス用語 : <u>JRR - 4 原子炉</u>

著者 ID : 金野正晴 (200901100558708525), 木村健一 (200901100541735162), 池見

拓 (200901100575593324)

ANSWER 28 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 03A0564200

和文標題: 医療用小型サイクロトロンに対応した低放射化の補強筋及び設備材料

著者名: 金野正晴, 木村健一, 池見拓 (フジタ)

資料名: 日本原子力学会秋の大会予稿集

JST 資料番号 : S0818A

巻号ページ

(発行年月日): Vol.2003 第 1 分冊 Page.62 (2003.08.07) 写図表参: 写図 1, 参 4

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録 : 医療用小型サイクロトロン(p - 18MeV)に対応した低放射化の補強筋および設備材料の性

能を計算で評価した。(著者抄録)

分類コード: MB04000R (62-758.35+621.039.538)

シソーラス用語: <u>サイクロトロン</u>, *低放射化, 補強筋, <u>コンクリート</u>, 鉄筋, <u>安山岩</u>, <u>ポリ塩化ビニル</u>, <u>炭素鋼</u>, <u>アルミニウム</u>, <u>セラミック</u>, *放射線遮蔽, <u>医療機器</u>, <u>オーステナイト鋼</u>, <u>ステンレス</u>鋼, <u>クロム含有合金</u>, <u>ニッケル含有合金</u>, <u>芳香族ポリアミド</u>, <u>オーステナイト系ステンレス鋼</u>

準シソーラス用語: SUS304, アラミド

著者 ID : 金野正晴 (200901100558708525), 木村健一 (200901100541735162), 池見

拓 (200901100575593324)

ANSWER 29 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 03A0233485

和文標題: 医療用小型サイクロトロン対応低放射化コンクリート

著者名: 金野正晴, 木村健一(フジタ), 野中英生, 盛田琢造(住友重機械工業)

資料名: 日本原子力学会春の年会要旨集

JST 資料番号 : G0939A

巻号ページ

(発行年月日): Vol.41st 第 1 分冊 Page.164 (2003.03.05) 写図表参: 写図 1, 参 3

資料種別: 会議録(C) 記事区分: 短報(a2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録 : 医療用小型サイクロトロン(p - 18MeV)に対応した低放射化コンクリートの性能を計算で

評価した。(著者抄録)

分類コード: MB04000R, BE02020X (62-758.35+621.039.538, 621.384.63)

シソーラス用語: *低放射化, *コンクリート, サイクロトロン, *放射線遮蔽, 中性子照射, 小型

準シソーラス用語: クリアランスレベル

著者 ID : 金野正晴 (200901100558708525), 木村健一 (200901100541735162), 野中英

生 (200901100431988480), 盛田琢造 (201201100083413750)

ANSWER 30 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号: 03A0048464

和文標題: 低放射化 8Cr - 2W マルテンサイト鋼の延性 - 脆性遷移挙動に及ぼすヘリウムの効

果

英文標題: Effect of Helium on Ductile-Brittle Transition Behavior in Reduced-Activation 8Cr-2W Martensitic Steel.

著者名 : WAKAI E, FURUYA K, KATO Y, TAKADA F, SATO M, JITSUKAWA S

(JAERI), OKA K, TANAKA M, OHNUKI S (Hokkaido Univ.)

資料名: 日本原子力研究所 JAERI-Review

JST 資料番号 : L2149A レポート番号 : JAERI-REVIEW-2002-035

巻号ページ

(発行年月日): Page.127-129 (2002.11) 写図表参 : 写図 2, 参 12

資料種別: 技術報告(T) **記事区分**: 短報(a2)

発行国 : 日本(JPN) 言語 : 英語(EN)

抄録: ヘリウムの,マルテンサイト鋼の延性 - 脆性遷移挙動への効果を小型パンチ試験により調べた。F82H 低放射化 8Cr - 2W(0.2V,0.04Ta,0.1C)マルテンサイト鋼を,TIARA AVF サイクロトロン施設で50MeV ヘリウムを323K 以下の温度で照射し,100appm He 濃度を注入し,小型円板試験片により延性 - 脆性遷移温度(DBTT)を,変形モード測定及び電子顕微鏡による破面観察により決定した。ヘリウム注入試験片の DBTT は約130K であり,DBTT の変化量は+20K であった。ヘリウム注入及び非注入にかからわず脆性破壊モードとへき開破壊モードは存在したが,ヘリウム100ppm を低温で注入後にも結晶粒界脆化は認められなかった。

分類コード: BK16122N, BJ02083Z (539.2.09:539.12.04:669, 621.039.6)

シソーラス用語: *マルテンサイト鋼, クロム含有合金, タングステン含有合金, *照射損傷, 核変換, 中性子照射, イオン注入, ヘリウム, *延性・脆性遷移, 温度依存性, 破壊モード, 脆性破壊, 劈開【結晶】, 結晶粒界, 破面検査, 電子顕微鏡観察, 低放射化, 核融合材料, ターゲット, 中性子源

準シソーラス用語: F82H 鋼, 遷移温度

著者 ID : 若井栄一 (200901100550027111), 古谷一幸 (200901100547698412), 岡桂一

朗 (200901100522614273), 田中俊誠 (200901100534833710), 大貫惣

明 (200901100453970852), 加藤義章 (200901100557672519), 高田文

樹 (200901100398361442), 佐藤勝也 (200901100529971039), 実川資

朗(200901100541346247)

リンク情報:

RightFind

ANSWER 31 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 03A0086796

和文標題: 小型サイクロトロンでの 86Y 及び 88Y の製造に関連した放射化学的研究

英文標題 : Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized

cyclotron.

著者名 : KETTERN K, LINSE K - H, SPELLERBERG S, COENEN H H, QAIM S M

(Forschungszentrum Juelich GmbH, Juellich, DEU)

資料名: Radiochim Acta

JST 資料番号 : C0563A **ISSN** : 0033-8230 **CODEN** : RAACA

巻号ページ

(発行年月日): Vol.90 No.12 Page.845-849 (2002) 写図表参: 写図 4, 表 2, 参 14

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: ドイツ(DEU) 言語: 英語(EN)

抄録: natSr(p,xn)88,87m,gY 反応の励起関数をしきい値から 25MeV の範囲で積層箔技術を用いて測定した。測定した断面積から,88Y,87mY 及び 87gY の積分収率を計算した。88Y 製造の最適エネルギー範囲は $Ep=14 \rightarrow 9MeV$,88Y の収率は 1.75MBq であり 87Y 及び 87mY 不純物はそれぞれ 2.0 及び 4.4%であった。(p,n)反応を用いて,86Y 及び 88Y の中規模製造を行った。ターゲットとして前者では 96.3%濃縮 86SrCO3 を用い、後者では natSrCO3 を用いた。放射性イットリウムの分離法を改善し,La(OH)3 との共沈後に,BA イオン交換 AB 中足C をキャリア AB から放射性 AB を分離するのに用いた。88A の回分収率は AB であった。

分類コード : CB10030R (544.582.2)

シソーラス用語: *<u>同位体製造</u>, *<u>イットリウム同位体</u>, <u>核反応</u>, <u>陽子ビーム</u>, <u>ストロンチウム同位</u> 体, 1 - 10MeV, 10 - 100MeV, 励起関数, 核反応収量, 放射化学的分離

準シソーラス用語: <u>イットリウム 86</u>, <u>イットリウム 88</u>

著者 ID : KETTERN K. (200901100463466648), LINSE K -

H (200901100489418021), SPELLERBERG S. (200901100600704454), COENEN

H.h. (200901100315478505), QAIM S.m. (200901100379701763)

DOI 情報 : doi: 10.1524/ract.2002.90.12 2002.845

リンク情報:

doilink RightFind

ANSWER 32 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 02A0077898

和文標題: 低放射化フェライト/マルテンサイト鋼の疲れ強さに及ぼすヘリウム脆化の効果 英文標題: Effects of Helium Embrittlement on Fatigue Properties of Reduced Activation Ferritic/Martensitic Steel.

著者名 : HIROSE T, TANIGAWA H, ANDO M, WAKAI E, MIWA Y, JITSUKAWA S

(JAERI), KATOH Y, KOHYAMA A (Kyoto Univ.), NARUI M (Tohoku Univ.)

資料名: 日本原子力研究所 JAERI-Review

JST 資料番号 : L2149A レポート番号 : JAERI-REVIEW-2001-039

巻号ページ

(発行年月日): Page.138-140 (2001.11) 写図表参: 写図 8, 参 7

資料種別 : 技術報告(T)

記事区分 : 短報(a2)

発行国 : 日本(JPN) 言語 : 英語(EN)

抄録: 標記の鋼は将来の第一壁材およびブランケット構造材として期待され、その疲れ強さに対する中性子照射と核変換へリウムの効果は重要な問題である。本鋼を TIARA 施設の AVF サイクロトロン加速器を用いて、ヘリウムイオン注入を行った。他方、本鋼の低温中性子照射を日本原子力研究所材料試験炉により 363K 以下で行い、ヘリウム脆化を照射硬化から識別した。照射後、および注入後の疲れ試験を常温大気中で行った。 F82H 試験鋼の組成は Fe-8Cr-2W-0.2V-0.04Ta であり、熱処理後、小型試験片を作成した。試験片直径で歪制御した疲れ試験を引張-圧縮で行った。中性子照射により、本鋼は降伏点の上昇と伸び減少を伴う、著しい硬化が存在した。破壊前繰返し数は硬化により減少し、特に大歪で顕著であった。走査電子顕微鏡による破面検査によれば、この繰返し数減少には局部的な脆性破壊発生が関連していた。中性子照射は疲れ損傷した金属組織には著しい変化を与えない。

分類コード: BK16122N, BJ02083Z (539.2.09:539.12.04:669, 621.039.6)

シソーラス用語: *フェライト鋼, *マルテンサイト鋼, 低放射化, 核融合材料, 中性子照射, 核変換, *脆化, ヘリウム, 疲れ試験, *疲れ損傷, 硬化, 破面検査, 脆性破壊, *照射損傷, イオン注入

準シソーラス用語: <u>F82H 鋼</u>

著者 ID : 廣瀬貴規 (200901100494140953), 谷川博康 (200901100560974780), 安堂正

己 (200901100441374650), 若井栄一 (200901100550027111), MIWA

Y (201201100036781066), 実川資朗 (200901100541346247), 加藤雄

大 (200901100557665040), 香山晃 (200901100353470496), 鳴井実 (200901100459930682)

リンク情報:

RightFind

ANSWER 33 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 00A0740079

和文標題: 核医学に使用する,タングステンターゲットからの無担体 186Re 或いは 188Re のサーモクロマトグラフィー分離

英文標題: Thermochromatographic separation of no-carrier-added 186Re or 188Re from tungsten targets relevant to nuclear medical applications.

著者名: NOVGORODOV A F, LEBEDEV N A (JINR Dubna, Dubna,

RUS), BRUCHERTSEIFER F (TU Muenchen, Garching, DEU), BROCKMANN J, ROESCH F (Johannes Gutenberg - Univ. Mainz, Mainz, DEU)

資料名: Radiochim Acta

JST 資料番号 : C0563A ISSN : 0033-8230 CODEN : RAACA

巻号ページ

(発行年月日): Vol.88 No.3/4 Page.163-167 (2000) 写図表参: 写図 6, 参 16

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : ドイツ(DEU) 言語 : 英語(EN)

抄録: 酸素又は空気を含む乾燥または水蒸気存在下,サーモクロマトグラフィーにより大量のタングステンとレニウム同位体を含むターゲットから両者を無担体分離した。HReO4 は高揮発性なので,186,188Re は容易にタングステンから 1 時間で $65\pm15\%$ が分離できた。186W による二重中性子捕獲により,この分離過程は188W/188Re 同位体ジェネレータとして利用できる。小型サイクロトロンによる186W(p,n)或いは186W(d,2n)反応後の分離にも応用できる。Re 同位体は体腔 X 線撮影用薬品として利用される。

分類コード: CB10030R, GW18010O, CB10050N (544.582.2, 615.2:621.039.8, 544.582.3) シソーラス用語: タングステン, *レニウム同位体, *クロマトグラフィー, 放射化学的分離, ターグット, 無担体同位体, *同位体ジェネレータ, 蒸発, 造影剤, 同位体製造, 放射性医薬品, 温度依存性, X 線検査

準シソーラス用語: <u>レニウム 186, レニウム 188, タングステン 188</u>

著者 ID : NOVGORODOV A F (200901100332093595), BRUCHERTSEIFER F (200901100555963273), BROCKMANN J (200901100378811344), LEBEDEV N A (200901100350228791), ROESCH F. (200901100351397210)

リンク情報:

RightFind

ANSWER 34 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 00A0740074

和文標題: 小型サイクロトロンでの 80Kr(d,n)反応を経由する 81Rb の製造可能性

英文標題: Possibility of production of 81Rb via the 80Kr(d,n) reaction at a small cyclotron.

著者名 : DOCZI R, TAKACS S, TARKANYI F (Inst. Nuclear Res., Hungarian Acad. Sci.

(ATOMKI), Debrecen, HUN), SCHOLTEN B, QIAM S M (Forschungszentrum Juelich GmbH, Juelich, DEU)

資料名: Radiochim Acta

JST 資料番号 : C0563A **ISSN** : 0033-8230 **CODEN** : RAACA

巻号ページ

(発行年月日): Vol.88 No.3/4 Page.135-137 (2000) 写図表参 : 写図 2, 表 1, 参 14

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : ドイツ(DEU) 言語 : 英語(EN)

抄録: トレーサ用 81Rb(81mKr)同位体ジェネレータの親核種 81Rb の新しい製造法を調べた。 天然 Kr ガスターゲットにサイクロトロンで重陽子ビームを 14MeV まで照射して 81Rb の製造を行った。80Kr(d,n)81Rb の励起関数を放射化法とスタックガスセル照射技法により調べた。 $14 \rightarrow 6$ MeV 以上のエネルギー範囲で 81Rb の飽和収量は 2.86GBq/ μ A であった。通常使用されている 82Kr(p,2n)81Rb の製法と比較した。最近のアイソクロナスサイクロトロンの加速陽子のエネルギーは重陽子の 2 倍になっており,一方 80Kr の同位体濃縮には投資が必要となる。

分類コード : CB10030R (544.582.2)

シソーラス用語: ストリッピング反応, <u>重陽子ビーム</u>, *<u>同位体ジェネレータ</u>, <u>クリプトン同位体</u>, <u>サイクロトロン</u>, *<u>同位体製造</u>, <u>励起関数</u>, <u>核反応収量</u>, *<u>ルビジウム同位体</u>, <u>Q値</u>, <u>1 - 10MeV</u>, <u>10 - 100MeV</u>

準シソーラス用語: ルビジウム 81

著者 ID : DOCZI R. (200901100324171161), TAKACS

S. (200901100513288258), TARKANYI F. (200901100590446206), SCHOLTEN

B. (200901100499209013), QIAM S M (200901100321789652)

リンク情報 :

RightFind

ANSWER 35 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 99A0851485

和文標題: 小型サイクロトロンの工業利用

英文標題 : Industrial Application of Compact Cyclotrons.

著者名: 西原善明(住重試験検査)

資料名: 化学工学

JST 資料番号 : F0099A **ISSN** : 0375-9253 **CODEN** : KKGKA4

巻号ページ

(発行年月日): Vol.63 No.9 Page.517-518 (1999.09.05) 写図表参: 写図 2,表 1

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 小型サイクロトロンの工業利用分野を紹介した。小型サイクロトロン利用の有効な工業分野は製造される放射性同位元素の利用,高速イオン照射による物性改善,照射により生成する中性子や陽電子の利用,放射化を利用した元素分析やトレーサとしての利用などである。利用分野の代表的な実例は中性子ラジオグラフィー,荷電粒子放射化分析,薄層放射化摩耗測定,半導体へのイオン照射,半導体ウエハの欠陥分析などである。

分類コード: BE02020X (621.384.63)

シソーラス用語: *<u>サイクロトロン</u>, <u>イオン照射</u>, <u>中性子ラジオグラフィー</u>, <u>放射化分析</u>, 荷電粒子, 元素分析, トレーサ法, 摩耗試験, 半導体, ウエハ【IC】, 利用, 産業

著者 ID : 西原善明 (200901100317166500)

ANSWER 36 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 99A0858504

和文標題: 179Ta に関する中性子捕獲 英文標題: Neutron capture on 179Ta.

著者名: SCHUMANN M, KAEPPELER F (Forschungszentrum Karlsruhe, Karlsruhe,

DEU)

資料名: Phys Rev C Nucl Phys

JST 資料番号 : D0747A ISSN : 0556-2813 CODEN : PRVCAN

巻号ページ

(発行年月日): Vol.60 No.2 Page.025802.1-025802.7 (1999.08) 写図表参: 写図 5, 表 5, 参 17

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: Karlsruhe 小型サイクロトロンからの 27MeV 陽子ビームを用い,180Hf(p,2n)反応で 179Ta(半減期 1.82 ± 0.03 yr)を生成した。179Ta の 4ng と 20ng の薄い試料を電気スプレー法で 得,この試料の (n,γ) 断面積を放射化法によって熱エネルギーで測定した。Cd 吸収体の有無の場合の照射から,熱断面積 σ th=932 \pm 62b と相応する共鳴積分 Ires=1216 \pm 69b を決定した。

分類コード: BG04040N (539.172.12+539.172.4)

シソーラス用語: *<u>中性子捕獲</u>, <u>中性子ビーム</u>, <u>keV 領域</u>, *<u>タンタル同位体</u>, <u>y 線スペクトル</u>, <u>断</u> 面積, 共鳴, 共鳴積分, 熱中性子

準シソーラス用語 : タンタル 179

著者 ID : SCHUMANN M (200901100505280221), KAEPPELER F. (200901100495702343)

DOI 情報 : doi : 10.1103/PhysRevC.60.025802

リンク情報:

ANSWER 37 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 98A0554983

和文標題: 特集 I 核医学の最前線 PET 用サイクロトロンシステム JSW/CTI RDS111 英文標題: Special issue I. Forefront of nuclear medicine. Cyclotron system for PET.

JSW/CTI RDS111.

著者名: 山本晋一(日本製鋼所)

資料名: 先端医療

JST 資料番号 : L2742A **ISSN** : 1340-6752

巻号ページ

(発行年月日): Vol.5 No.2 Page.62-63 (1998.04) 写図表参: 写図 4,表 1

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 標記 RDS111 の基本仕様を示し,加速粒子を陽子のみ,取り出しエネルギーを 11MeV に設定し,運転時の発生放射線の低減,機器の放射化の低減,システムの単純化,低価格化と信頼性の向上を実現した概要を述べた。その特長について,自己遮蔽,電源室不要,省電力,超小型ターゲット,FDG 合成装置,コンピュータ制御を紹介した。周辺機器,施設計画について簡単にふれた。

分類コード: GC04013Y, GA05020L (615.849:616-07, 615.472/.473)

シソーラス用語: *PET【トモグラフィー】, *サイクロトロン, 標識化合物, 放射性医薬品, 医療機器, デオキシグルコース, フッ素化合物, フッ素同位体, 化学合成, 計算制御

準シソーラス用語: <u>ふっ素 18</u>, <u>RDS111</u>

著者 ID : 山本晋一(200901100526265095)

リンク情報: molpdflink ANSWER 38 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 97A0193078

和文標題: 小量放射化用高速中性子のやや強い線源

英文標題: A Rather Intense Source of Fast Neutrons for Small Scale Activation.

著者名: NICKLES R J, KULAGO A A, SCHUELLER M J, STONE C K (Univ. Wisconsin,

WI, USA)

資料名 : Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0969-8043

巻号ページ

(発行年月日): Vol.48 No.1 Page.55-58 (1997.01) 写図表参: 写図 1,表 2,参 12

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: 厚膜ベリリウムターゲットを開発し,小型プロトンサイクロトロンに設置し,放射化目的のための速中性子高強度線源とした。冷却および照射条件に配慮し,数立方センチの小型の試料を陽子ビーム衝撃表面の5mm以内にいれることができた。このように試料を近接して配置できたので,11MeVの陽子 20μ Aがベリリウム一次ターゲットに入射した時,照射試料中を1秒間に中性子1011個が通過することができた。

分類コード: MC01020V (621.384)

シソーラス用語: <u>中性子源</u>, <u>ベリリウム</u>, <u>ターゲット</u>, <u>陽子照射</u>, <u>10 - 100MeV</u>, <u>高速中性子</u>, <u>サイクロトロン</u>, <u>放射性同位体</u>, <u>放射化</u>

著者 ID : NICKLES R J (200901100467132108), KULAGO A

A (200901100509832415), SCHUELLER M J (200901100450328661), STONE C

K (200901100305300201)

DOI 情報 : doi: 10.1016/S0969-8043(96)00067-X

リンク情報:

pubmedlink doilink RightFind

ANSWER 39 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 97A0193073

和文標題 : 110Cd(3He,3n)110Sn→111mIn プロセスによるポジトロン放出 111mIn の製造 英文標題 : Production of Positron-emitting 110mIn via the 110Cd(3He,3n)110Sn→110mIn

Process.

著者名: ROESCH F, QAIM S M (Forschungszentrum Juelich GmbH, Juelich, DEU), NOVGORODOV A F (Joint Inst. Nuclear Res., Dubna, RUS), TSAI Y - M (Inst.

Nuclear Energy Res., Taipeh, TWN)

資料名 : Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0969-8043

巻号ページ

(発行年月日): Vol.48 No.1 Page.19-26 (1997.01) 写図表参: 写図 5, 表 2, 参 16

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: 高濃縮 110Cd にエネルギー範囲 36 - 25MeV の 3He 粒子を照射し 110Sn を形成させ,ターゲットから迅速に放射化学的に分離し 110Sn→111mIn ジェネレータを調製した。110Sn 分離収率は 98%を越えており,得られた溶液を小型のキューセルゲル 40 カラムに入れ,このジェネレータを調製した。110In はカラムから定量的に溶出されたが,唯一の不純物として 111In が検出された。Cd は最終溶液には全く含まれていなかった。ジェネレータ 1 台あたり 15mCi 以上の 111mIn が得られた。

分類コード: CB10030R (544.582.2)

シソーラス用語: <u>カドミウム同位体</u>, <u>ヘリウム 3</u>, <u>イオン照射</u>, <u>10 - 100MeV</u>, <u>サイクロトロン</u>, <u>サ</u>マリウム同位体, <u>インジウム同位体</u>, <u>同位体製造</u>, <u>PET【トモグラフィー】</u>, <u>陽電子消滅</u>, <u>同位体ジェネレータ</u>

著者 ID : ROESCH F. (200901100351397180), QAIM

S.m. (200901100379701763), NOVGORODOV A F (200901100332093595), TSAI Y - M (200901100446264349)

DOI 情報 : doi: 10.1016/S0969-8043(96)00041-3

リンク情報: doilink RightFind ANSWER 40 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 96A0700365

和文標題: 医学的利用のために小型サイクロトロンでのよう素 - 123 の製造

英文標題: Iodine-123 production at a small cyclotron for medical use.

著者名: MAHUNKA I, ANDO' L, MIKECZ P (Inst. Nuclear Res., Hungarian Acad. Sci., Debrecen, HUN), TCHELTSOV A N, SUVOROV I A (I.V. Kurchatov Inst. Atomic Energy, Moscow, SUN)

資料名: J Radioanal Nucl Chem

JST 資料番号 : B0949B **ISSN** : 0236-5731 **CODEN** : JRNCDM

巻号ページ

(発行年月日): Vol.213 No.2 Page.135-142 (1996.05.20) 写図表参: 写図 2, 表 3, 参 5

資料種別: 逐次刊行物(A)

記事区分: 短報(a2)

発行国: オランダ(NLD) 言語: 英語(EN)

抄録: 95.6%に濃縮した 123Te をターゲットとして 123I の製造を行った。123Te(p,n) 123I 反応の励起関数を求め,生成収率,放射化学的純度を照射エネルギー,ターゲット厚さの関数として,検討した

分類コード: CB10030R (544.582.2)

シソーラス用語: <u>ヨウ素同位体</u>, <u>同位体製造</u>, <u>サイクロトロン</u>, <u>テルル同位体</u>, <u>陽子照射</u>, <u>励起関数</u>, 核反応, 核反応収量, 純度

準シソーラス用語:よう素 123, テルル 123

著者 ID : MAHUNKA I (201201100145366206), ANDO' L (200901100384642309), MIKECZ P (200901100548592618), TCHELTSOV A N (200901100491101108), SUVOROV I A (200901100584568820)

DOI 情報 : <u>doi</u> : 10.1007/BF02165245

リンク情報:

ANSWER 41 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 94A0205125

和文標題: 6 - 13MeV 中性子による 45Sc と 55Mn のしきい値反応の励起関数

英文標題 : Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to

13MeV neutrons.

著者名 : BOSTAN M, QAIM S M (Forschungszentrum Juelich GmbH, Juelich, DEU)

資料名: Phys Rev C Nucl Phys

JST 資料番号 : D0747A ISSN : 0556-2813 CODEN : PRVCAN

巻号ページ

(発行年月日): Vol.49 No.1 Page.266-271 (1994.01) 写図表参: 写図 7, 表 4, 参 46

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: しきい値から 13MeV までの 45Sc(n,2n)44Scm,45Sc(n,2n)44Scm+g,55Mn(n,2n)54Mn 及び 6 - 13MeV の 45Sc(n,p)45Ca,45Sc(n, α)42K,55Mn(n,p)55Cr,55Mn(n, α)52V の励起関数を 測定した。実験はエネルギー可変の小型サイクロトロンを使い,放射化法及び β - 計数法を利用した。測定結果を前複合核効果を含む統計模型計算と比較した。45Sc(n, α)を除いて良く合った

分類コード: BG04040N (539.172.12+539.172.4)

シソーラス用語: 実験, 中性子ビーム, 1 - 10MeV, 10 - 100MeV, 閾値, スカンジウム同位体, マンガン同位体, 統計模型, 核反応生成物, 励起関数, 核反応, 核反応理論, モデル

準シソーラス用語: 前複合核模型

著者 ID : BOSTAN M (200901100405500348), QAIM S.m. (200901100379701763)

DOI 情報 : doi: 10.1103/PhysRevC.49.266

リンク情報:

pubmedlink doilink RightFind

ANSWER 42 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号: 94A0072094

和文標題: サイクロトロンを用いた薄層放射化による摩耗試験(RTM)

英文標題 : Abrasion test by thin layer radioactivation using cyclotron (RTM).

著者名: 田沢修一(住重試験検査)

資料名: 放射線と産業

JST 資料番号 : G0314A **ISSN** : 0286-8873

巻号ページ

(発行年月日): No.60 Page.61-63 (1993.12) 写図表参: 写図 4, 表 1, 参 8

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 放射化法を用いたシリンダライナ,エンジンブロック,ピストンリングその他の摩耗試験ではサイクロトロンの粒子線による薄層放射化が用いられるようになった。住友重機はカールスルーエ原研との技術提携により陽子 18MeV の小型サイクロトロンを用いてエンジンの摩耗試験を営業化した

分類コード: QB02010S, HB02030F, MC01040R (621.89, 620.179:669, 621.039.84 OTHERS)

シソーラス用語: <u>トライボロジー</u>, <u>サイクロトロン放射</u>, <u>摩耗試験</u>, <u>エンジン試験</u>, <u>ピストンリン</u> グ, 陽子照射, 放射化, γ 線検出, 放射線応用計測

準シソーラス用語: 薄層放射化法

著者 ID : 田沢修一 (200901100373973354)

ANSWER 43 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 94A0000402

和文標題: PET 用放射性薬剤の製造 合成装置を用いた 18F - PDG,13N - NH3,11C - パルミチン酸の合成

英文標題: Remote Synthesis of the Radiopharmaceuticals for Positron Emission Tomography. 18FDG, 13NH3 and 11C-Palmitic Acid.

著者名: 山下万寿美, 関宏恭 (金沢循環器病院), 湯浅光秋, 菅原ただす (日本製鋼所), 坂本浩 (金沢大理)

資料名: 放射化学討論会講演予稿集

JST 資料番号 : F0139B

巻号ページ

(発行年月日): Vol.37th Page.224-225 (1993.10)

資料種別 : 会議録(C)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 核医学診断の PET 法は、その半減期が非常に短いポジトロン放出核種を利用した検査法で、病院内に超小型のサイクロトロンを設置して RI の製造から始める必要がある。 当院では 11C,13N,15O,18F の製造が可能であり、ルーチン検査では 18FDG(2-デオキシ-2-[18F]-フルオロ-D-グルコース)、13NH3、11C-パルミチン酸を合成装置を用いて合成している。 今回、当院における合成法と、HPLCを用いた分析例を紹介する。 (著者抄録)

著者 ID: 山下万寿美 (200901100589055635), 関宏恭 (200901100398256614), 湯浅光 秋 (200901100505747820), 菅原ただす (200901100545391085), 坂本 浩 (200901100349058327)

ANSWER 44 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 93A0872764

和文標題: 金属材料技術研究所 筑波支所

英文標題: Natl. Res. Inst. for Metals. Tsukuba laboratory.

著者名: 永川城正(金材技研)

資料名: Isot News

JST 資料番号 : G0331A **ISSN** : 0285-5518

巻号ページ

(発行年月日): No.472 Page.63-65 (1993.10) 写図表参: 写図 3

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 平成4年度の放射線安全管理功労者を受けた標記研究所には,HID ガスクロマトグラフ, 小型サイクロトロン,RPB ラザフォード後方散乱施設があり,複雑な管理が求められている。管理 の特徴は,職務の分担・外部委託,装置の低放射化,コンピュータ利用のほか,事業規模の割には専門 部署を設けていないこともそのひとつである。16年間無事故であった

分類コード: MB03000K (621.039.5/.6:614.8)

シソーラス用語: 原子力施設, サイクロトロン, <u>Rutherford 後方散乱</u>, <u>放射線管理</u>, <u>低放射化</u>, <u>ガ</u>スクロマトグラフ, 安全性, 放射性物質取扱, 研究所

著者 ID : 永川城正 (200901100440107829)

ANSWER 45 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 93A0839932

和文標題 : 第 30 回原子動力研究会年会報告書 VIII.放射線施設デザイングループ

英文標題 : Report on the 30th nuclear power workshop annual meeting.8.Radiation

facilities design group.

著者名: 中村尚司 (東北大), 柴田徳思 (東大), 隈元芳一 (放医研), 金野正晴 (フジタ), 小寺正俊 (理研), 秋山和則 (大林組), 毛利智聡 (川崎重工業), 神谷吉男 (熊谷組), 大石晃嗣 (清水建設)

資料名: 原子動力研究会年会報告書

JST 資料番号 : S0645B

巻号ページ

(発行年月日): Vol.30th Page.VIII.1(1)-(2),VIII.1-VIII.88 (1993.08) **写図表参**: 写図 58, 表 29, 参 36

資料種別: 会議録(C) 記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 研究概要(方針,経過),及び 1)研究紹介,2)文献紹介,3)放射線施設遮蔽設計例集をまとめた。1)では超小型電子蓄積リング"オーロラ",高レベル耐放射線性塗料,14MeV 中性子によるコンクリートの放射化,FM/FF サイクロトロンの放射化と大強度ビーム施設の遮蔽実験,低放射化コンクリートを,2)では遮蔽設計,材料と放射化の 5 文献を,3)では代表的 6 施設の概要と遮蔽設計等を述べた

分類コード: MB04000R (62-758.35+621.039.538)

シソーラス用語: 電子ビーム, ストレージリング, 放射光施設, 耐放射線性, 塗料, リングサイク ロトロン, 高速中性子, 放射線遮蔽, 放射線遮蔽材, 低放射化, 重量コンクリート, 材料設計, 核設計, 陽電子ビーム, 衝突型加速器, DT 核融合炉, プラズマ加速器, 中性子照射

準シソーラス用語: オーロラリング

著者 ID : 中村尚司 (200901100313064991), 柴田徳思 (200901100362744230), 隈元芳

- 一(200901100583054840), 金野正晴(200901100539764120), 小寺正
- 俊 (200901100362100499), 秋山和則 (200901100315247031), 毛利智
- 聡 (200901100435165756), 神谷吉男 (200901100329559729), 大石晃
- 嗣(200901100549511875)

ANSWER 46 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 93A0573613

和文標題 : 小型サイクロトロンより発生する中性子による空気中 40Ar の放射化

英文標題 : Activation of 40Ar in Air Induced by Neutrons from Small Size Cyclotron.

著者名 : 吉村厚, 大崎進 (九大 アイソトープ総セ), 上原周三, 坂本弘巳 (九大 医療技短大), 入江

聖義(九大医病院)

資料名: Radioisotopes

JST 資料番号 : G0494A **ISSN** : 0033-8303 **CODEN** : RAISAB

巻号ページ

(発行年月日): Vol.42 No.6 Page.325-329 (1993.06) 写図表参 : 写図 1, 表 2, 参 5

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 小型サイクロトロンから発生する中性子により放射化される空気中の Ar の高感度測定法を研究した。円筒状ガラス容器に一定気圧の Ar を封入し,放射化して Ge 検出器で測定した。検出効率はモンテカルロ法で計算する。これを空気中濃度に換算して,空気を直接放射化するよりも約 56 倍の高感度で測定できた

分類コード: MB02030K (614.73+614.876)

シソーラス用語: <u>放射化</u>, <u>アルゴン同位体</u>, <u>空気</u>, <u>サイクロトロン</u>, <u>中性子照射</u>, <u>放射能測定</u>, <u>高純</u> 度 Ge 検出器, 検出効率

準シソーラス用語 : アルゴン 41

著者 ID : 吉村厚 (200901100308928880), 上原智 (200901100463511244), 大崎

進 (200901100500770336), 坂本弘己 (200901100349063045), 入江聖

義 (200901100414916620)

DOI 情報 : doi: 10.3769/radioisotopes.42.325

リンク情報:

doilink

ANSWER 47 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 93A0319085

和文標題: 医療用加速器より発生する中性子の検討

英文標題 : Study of Neutrons generated in Medical Accelerator.

著者名 : 坂本弘巳, 上原周三 (九大 医療技短大), 吉村厚 (九大 アイソトープ総セ), 入江聖義, 泉

隆, 斎藤高志 (九大 医 病院)

資料名: 九州大学医療技術短期大学部紀要 **JST 資料番号**: Y0924A **ISSN**: 0286-2484

巻号ページ

(発行年月日): No.20 Page.7-10 (1993.03) 写図表参: 写図 2,表 2,参 6

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 一般に小型サイクロトロンの場合,また 10kV を超える X 線を放出するリニアックの場合,種々の核反応による中性子が誘発される。それが医療用に利用されるときに生じる空気中 Ar の放射化を検討した。その結果,サイクロトロン・ターゲットの周辺では,通常の空気でも 41Ar が検出されること,Ar を増量すればそれが更に顕著となることが分かった

分類コード: GC04030V, MC01020V (616-085.849, 621.384)

シソーラス用語: <u>線形加速器</u>, <u>放射線療法</u>, <u>中性子ビーム</u>, <u>サイクロトロン</u>, <u>核反応</u>, <u>放射化</u>, <u>アル</u>ゴン同位体, <u>10 - 100keV</u>

準シソーラス用語: <u>アルゴン 41</u>

著者 ID: 坂本弘己 (200901100349063045), 吉村厚 (200901100308928880), 上原智 (200901100463511244), 入江聖義 (200901100414916620), 泉隆 (200901100497290263), 斎藤高志 (200901100499516510)

リンク情報: cinii_banner ANSWER 48 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 93A0319756

和文標題: 軽元素の日常的な荷電粒子放射化分析

英文標題 : Routine charged particle activation analysis of light elements.

著者名: KATAOKA S, HIGAKI Y, TARUMI Y, TAZAWA S (Sumitomo Heavy Ind. Ltd., Ehime, JPN), IMAI S (Sumitomo Metals Mining Co. Ltd., Ehime, JPN), NOZAKI T (Kitasato Univ., Kanagawa, JPN)

資料名 : J Radioanal Nucl Chem

JST 資料番号 : B0949B **ISSN** : 0236-5731 **CODEN** : JRNCDM

巻号ページ

(発行年月日): Vol.168 No.2 Page.377-384 (1993.02) 写図表参: 写図 1,表 4,参 6

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : オランダ(NLD) 言語 : 英語(EN)

抄録: 多目的の小型サイクロトロンを利用する標題分析法について検討した。

 $16O(3He,p)18F,16O(p,\alpha)13N,14N(p,\alpha)11C,12C(d,n)13N,12C(3He,\alpha)11C,11B(p,n)11C$ 及び 10B(d,n)14C による非破壊測定及び化学分離の組合せ技術を併用し,O,N,C 及び B を精度よく定量した。Al,AlN,木炭,Ga,InP,石英,Se - As 試料などへ適用し,ppb から%量の四元素を分析した **分類コード** : CC06021L (543.52:546)

シソーラス用語: 放射化分析, サイクロトロン, 重イオンビーム, 酸素ビーム, 窒素ビーム, 炭素 ビーム, ホウ素, ヘリウム 3, 酵素, 窒素, 炭素, ヒ化ガリウム, アルミニウム, 窒化アルミニウム, リン化ガリウム, リン化インジウム, 放射化, ルーチン分析

著者 ID : KATAOKA S (200901100503964646), HIGAKI

Y (200901100556298176), TARUMI Y (200901100580292146), TAZAWA

S (200901100373980555), IMAI S (200901100300946693), 野崎正 (200901100348422602)

DOI 情報 : <u>doi : 10.1007/BF02040517</u>

リンク情報:

ANSWER 49 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 92A0619460

和文標題: 測定範囲がフレキシブルなγ線測定器 **英文標題**: A Wide-range Flexible Gamma Probe.

著者名: NICKLES R J (Univ. Wisconsin, WI, USA), SOLIN O H (Abo Akademi, Turku,

FIN)

資料名: Int J Radiat Appl Instrum Part A

JST 資料番号 : C0201A ISSN : 0883-2889 CODEN : IJARAY

巻号ページ

(発行年月日): Vol.43 No.9 Page.1169-1170 (1992.09) 写図表参: 参 4

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: サイクロトロンの内部とその周辺施設の狭い場所で μ Ci \sim 1Ci の範囲の γ 線放出核種を測定するため標題の測定器を開発した。直径 8mm,厚さ 5mm のゲルマニウム酸ビスマスを検出器とし,これを光ファイバで光電子倍増管につないだ構造である。小型で,位置決めが容易で,磁場の影響を受けず,中性子による放射化が少なく,破損し難いなどの特徴がある

分類コード: AD08020J (539.1.073/.074)

シソーラス用語: γ 線検出, Ge 半導体検出器, ゲルマニウム酸塩, ビスマス化合物, 光ファイバ, サイクロトロン, 柔軟性

著者 ID : NICKLES R J (200901100467132515), SOLIN O H (200901100554718550)

DOI 情報 : doi: 10.1016/0883-2889(92)90063-K

リンク情報:

ANSWER 50 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 92A0619442

和文標題: しきい値の近くでの 151Eu(n,2n)150mEu および 159Tb(n,2n)158Tb 反応の断面積 英文標題: Cross Sections of 151Eu(n,2n)150mEu and 159Tb(n,2n)158Tb Reactions Near Their Thresholds.

著者名 : QAIM S M, CSERPAK F (Forschungszentrum Juelich GmbH, Juelich,

DEU), CSIKAI J (Kossuth Univ., Debrecen, HUN)

資料名: Int J Radiat Appl Instrum Part A

JST 資料番号 : C0201A **ISSN** : 0883-2889 **CODEN** : IJARAY

巻号ページ

(発行年月日): Vol.43 No.9 Page.1065-1069 (1992.09) 写図表参: 写図 3,表 3,参 16

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: 中性子エネルギー範囲 8.7 - 10.7MeV で表題の反応による 150mEu(τ =35.8y)と 158Tb(τ =180d)の生成に関する断面積をはじめて測定した。エネルギー可変小型サイクロトロンでガスターゲットによる 2H(d,n)3He 反応で準単色中性子を発生させた。高分解能 γ 線スペクトロメトリーと組合わせた放射化法を用いた。低エネルギーから高エネルギーへの断面積の変化は滑らかである

分類コード: CB10010V, BG04040N (544.58, 539.172.12+539.172.4)

シソーラス用語: <u>ユウロピウム同位体</u>, <u>テルビウム同位体</u>, <u>中性子ビーム</u>, <u>核反応</u>, <u>断面積</u>, <u>1-10MeV</u>, <u>エネルギー依存性</u>, <u>サイクロトロン</u>, <u> γ 線スペクトル</u>, <u> γ 線検出</u>, <u>放射化分析</u>, <u>閾値</u>, <u>Q値</u>, 半減期

準シソーラス用語: <u>ユウロピウム 151</u>, <u>ユウロピウム 150m</u>, <u>テルビウム 159</u>, <u>テルビウム 158</u> **著者 ID**: QAIM S.m. (200901100379701763), CSERPAK F (200901100360632019), CSIKAI J (200901100390862027)

DOI 情報 : doi: 10.1016/0883-2889(92)90045-G

リンク情報:

ANSWER 51 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 92A0523720

和文標題: 科学と技術における荷電粒子ビームの応用

英文標題: Application of Charged-Particle Beams in Science and Technology.

著者名 : VALKOVIC V (Ruder Bosckovic Inst., Zagreb, SUN), MOSCHINI G (INFN di

Legnaro, Padova, ITA)

資料名: Riv Nuovo Cimento

JST 資料番号 : A0576B **ISSN** : 0393-697X

巻号ページ

(発行年月日): Vol.15 No.3 Page.1-73 (1992) 写図表参: 写図 18, 表 5, 参 188

資料種別: 逐次刊行物(A) **記事区分**: 文献レビュー(b1)

発行国 : イタリア(ITA) 言語 : 英語(EN)

抄録: エネルギー範囲が数 MeV から数十 MeV のイオンを取上げて,その応用例を紹介している,このようなイオンビームは小型加速器で発生でき,加速器の大部分はサイクロトロンか静電型である,核反応や粒子散乱現象による物質特性解析方法の解説に続いて,イオン打込みなどによる物質改質,質量分析,放射化,陽電子放出トモグラフィー,生体関連計測,について概説している。今後は生命科学に応用されることを示唆している。同様に,新しい物質の研究や解析に有効に利用されると述べている

分類コード: BD02070X (537.533/.534.06)

シソーラス用語: イオンビーム, 利用, 核反応分析, イオン注入, <u>PIXE</u> 分析

準シソーラス用語: 荷電粒子励起 X 線分析

著者 ID : VALKOVIC V (200901100377520524), MOSCHINI G (200901100491621306)

DOI 情報 : <u>doi : 10.1007/BF02790869</u>

リンク情報:

ANSWER 52 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 89A0423658

和文標題: 自動試料採取装置の改造により完成した放射化学自動装置

英文標題: Radiochemical automation achieved through a modified autosampling device. 著者名: CHANNING M, PLASCJAK P, MEYER W JR, SIMPSON N, SHEH Y, ADAMS

R, KIESEWETTER D, DUNN B, FINN R (National Inst. Health, MD, USA)

資料名 : Nucl Instrum Method Phys Res Sect B Beam Interact Mater At

JST 資料番号 : H0899A **ISSN** : 0168-583X

巻号ページ

(発行年月日): Vol.40/41 No.2 Page.1121-1122 (1989.04) 写図表参: 写図 1, 参 6

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : オランダ(NLD) 言語 : 英語(EN)

抄録: サイクロトロンで製造された放射性核種の応用,特に陽電子放出トモグラフィーへ向けての応用の漸増により,空間と人的資源の有効利用に関し時期を得たやり方で,サイクロトロン施設に各種放射性試薬を用意するよう要求されるようになった。これに応えて,現状の化学機器とインハウス・ソフトウエアパッケージに適合する特異な方法を開発した。合成装置の中央構成機器は市販の自動試料採取注入装置であり,それを改造して化学操作の組合せが行えるようにした。この小型装置は限定されたホットセル空間を有効に利用し,かつ役立つ。このシステムは現在「担体不添加」の 18F 標識 2 - フルオロ - 2 - デオキシ - D - グルコース放射性試薬調製運転をしている。その詳細を述べた

分類コード : CB10050N (544.582.3)

シソーラス用語: 放射性医薬品, 化学合成, 自動化, 試料採取, 放射性同位体

著者 ID : CHANNING M (200901100394807098), PLASCJAK

P (200901100311970898), MEYER W JR (200901100416719570), SIMPSON

N (200901100451912910), SHEH Y (200901100567916521), ADAMS

R (200901100588606395), KIESEWETTER Dale O. (200901100406769871), DUNN

B (200901100331809520), FINN R (200901100326093630)

DOI 情報 : doi: 10.1016/0168-583X(89)90553-3

リンク情報:

ANSWER 53 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 90A0067894

和文標題: サイクロトロンによる荷電粒子放射化分析(III-V 族半導体およびアルミニウム中の軽元素の分析)

英文標題: Charged particle activation analysis with cyclotron. (light element analysis of III-V semiconductors and aluminum).

著者名: TAZAWA S, KATAOKA S (Sumitomo Heavy Industries Ltd., Ehime - ken, JPN), SASAKI K, TODA E (Sumitomo Metal Mining Co., Ehime - ken, JPN), NOZAKI T (Kitasato Univ., Kanagawa - ken, JPN)

資料名 : Proc Int Symp Adv Nucl Energy Res Near Future Chem Nucl Energy Field 1989 JST 資料番号 : K19890517

巻号ページ

(発行年月日): Page.451-456 (1989) 写図表参: 写図 10,表 5,参 3

会議: International Symposium on Advanced Nuclear Energy Research - Near-Future Chemistry in Nuclear Energy Field Oarai (Ibaraki)

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国 : 日本(JPN) 言語 : 英語(EN)

抄録: 小型サイクロトロンで加速した重陽子と 3He を用いて半導体 Si,GaP,GaAs,InP と Al 中の B,C,O のルーチン放射化分析を行い、マトリックス元素による妨害を防ぐために化学的分離を行った。 13N,11C に対しては RF 溶融による乾燥蒸発を、18F の分離には KBF4 析出を行い、 $2\sim 30$ wt-ppb の高感度が得られた

分類コード: CC06022C (543.52:546-121)

シソーラス用語: <u>化合物半導体</u>, <u>アルミニウム</u>, <u>サイクロトロン</u>, <u>放射化分析</u>, <u>イオン照射</u>, <u>重陽子ビーム</u>, <u>ヘリウム 3 ビーム</u>, <u>ケイ素</u>, <u>リン化ガリウム</u>, <u>ヒ化ガリウム</u>, <u>ホウ素</u>, <u>炭素</u>, <u>酸素</u>, <u>微量元素</u>, <u>微量分析</u>, <u>10 - 100MeV</u>, <u>窒素同位体</u>, <u>炭素同位体</u>, <u>フッ素同位体</u>, <u>リン化インジウム</u>

準シソーラス用語: 窒素 13, 炭素 11, ふっ素 18

著者 ID : 田沢修一 (200901100373973354), KATAOKA S (200901100503941093), SASAKI K (200901100330471843), TODA E (200901100475799529), 野崎正 (200901100348422602) リンク情報:

RightFind

ANSWER 54 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 89A0250765

和文標題: 特集:加速器による極微量分析 小型サイクロトロン利用による分析法

英文標題 : Nuclear analytical method using a small cyclotron.

著者名: 重松俊男, 米沢洋樹, 鹿野弘二 (NTT 光エレクトロニクス研)

資料名: 加速器科学

JST 資料番号 : Y0904A **ISSN** : 0912-7305

巻号ページ

(発行年月日): Vol.2 No.4 Page.45-56 (1988.11) 写図表参: 写図 5, 表 7, 参 9

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 荷電粒子放射化分析を目的とする専用小型サイクロトロンを開発した。更に,正確な荷電粒子放射化分析の開発を進めるとともに,エネルギーが固定のサイクロトロンを改造して,加速エネルギーが一桁程度低い荷電粒子を引出すことに成功するとともに,通常に比べて高エネルギー領域における弾性散乱分析法を開発しているので,それらの結果を中心に紹介した

分類コード: CC06024K, BE02020X (543.52:546-124, 621.384.63)

シソーラス用語: <u>サイクロトロン</u>, <u>放射化分析</u>, <u>痕跡分析</u>, <u>痕跡量成分</u>, <u>弾性散乱</u>, <u>データ解析</u>, <u>検</u>出限界, 核反応, 酸素, 炭素, ホウ素, 窒素, 半導体材料, ヒ化ガリウム, フッ化物, ガラス, 後方散乱

著者 ID: 重松俊男 (200901100499469945), 米沢洋樹 (200901100521541558), 鹿野弘

 $\equiv (200901100510515075)$

ANSWER 55 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 88A0534967

和文標題: 小型サイクロトロンを用いた荷電粒子放射化分析法 **英文標題**: Charged particle activation analysis with cyclotron.

著者名: 片岡昌治, 田沢修一, 関井良博(住友重機械工業), 垂水裕司, 矢野宗彦(住重試験検査)

資料名: 住友重機械技報

JST 資料番号 : F0316A **ISSN** : 0387-1304

巻号ページ

(発行年月日): Vol.36 No.107 Page.33-39 (1988.08) 写図表参: 写図 7, 表 7, 参 10

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) 言語: 日本語(JA)

抄録: 放射線を用いた分析として,中性子による放射化分析が一般的であるが,近年,加速器を用いたさまざまな荷電粒子分析法が行われている。荷電粒子放射分析法は核反応を用いた分析法で,加速器により加速された荷電粒子は物質中の原子核と核反応を起こし,放射性同位元素が生成され,この同位元素を計測することにより分析を行うものである。住友重機械工業(株)が行った標題分析法による GaAs 中の軽元素分析について記述

分類コード: CC06022C, BE02020X (543.52:546-121, 621.384.63)

シソーラス用語: 荷電粒子, 放射化分析, サイクロトロン, 小型, 原理, ヒ化ガリウム, 放射性同位体, 計測, 元素分析

著者 ID : 片岡昌治 (200901100503921149), 田沢修一 (200901100373973354), 関井良博 (200901100435541545), 垂水裕司 (200901100580289412), 矢野宗 彦 (200901100388794200)

ANSWER 56 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 88A0375870

和文標題: 小型サイクロトロンによる半導体分析法

英文標題: The semiconductor analysis by small type cyclotron.

著者名: 重松俊男 (NTT 光エレクトロニクス研)

資料名: 金属

JST 資料番号 : F0157A **ISSN** : 0368-6337 **CODEN** : KNZKA

巻号ページ

(発行年月日): No.Apr 臨増 Page.104-107 (1988.04) 写図表参: 写図 2, 表 2, 参 2

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) 言語: 日本語(JA)

抄録: 小型サイクロトロンを使用した荷電粒子放射化分析による半導体の軽元素分析を紹介。 荷電粒子放射化分析法では荷電粒子を試料に照射し荷電粒子と軽元素の核反応により生成する放 射性同位元素の放射能を測定し比較標準試料の放射能と比較することにより元素を定量する。バ ルク中の極微量分析に適しており 1ppp の軽元素の定量が可能である

分類コード: CC06032N (543.52:547-121)

シソーラス用語: <u>荷電粒子</u>, <u>放射化分析</u>, <u>サイクロトロン</u>, <u>小型</u>, <u>半導体材料</u>, <u>ケイ素</u>, <u>ヒ化ガリウ</u> <u>ム</u>, 酸素, ホウ素, 同時分析, 定量分析

著者 ID: 重松俊男 (200901100499469945)

ANSWER 57 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 88A0073972

和文標題: Karlsruhe 小型サイクロトロンの工業利用

英文標題: Industrial applications of the Karlsruhe compact cyclotron.

著者名 : BECHTOLD V, FEHSENFELD P, SCHWEICKERT H (Kernforschungszentrum

Karlsruhe GmbH, Karlsruhe, DEU)

資料名 : 11th Int Conf Cyclotr Their Appl 1986

JST 資料番号 : K19870599

巻号ページ

(発行年月日): Page.593-596 (1987) 写図表参: 写図8

会議: International Conference on Cyclotrons

and Their Applications(11th)Tokyo

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国: 日本(JPN) **言語**: 英語(EN)

抄録: KfK の H-型小型サイクロトロンでは $15\sim42 \mathrm{MeV}$, $120\,\mu$ A の出力で $123\mathrm{I}$, $81\mathrm{Rb}/81\mathrm{mKr}$ ジェネレータ, $81\mathrm{Rb}$ の医用ラジオアイソトープを生産するほか,機械部品の表面層深さ $0.02\mathrm{mm}\sim1\mathrm{mm}$ を放射化して摩耗や腐食を研究するための自動化装置を完成した。年間 500 部品を放射化できる容量を 3 倍に拡大する計画である

分類コード: BE02020X, MC01040R (621.384.63, 621.039.84 OTHERS)

シソーラス用語: <u>サイクロトロン</u>, 小型, <u>10 - 100MeV</u>, <u>ヨウ素同位体</u>, <u>ルビジウム同位体</u>, <u>クリプトン同位体</u>, <u>放射化</u>, <u>摩耗</u>, <u>腐食</u>, 自動化, <u>放射線検査</u>, <u>非破壊検査</u>, <u>放射性同位体</u>, <u>同位体製造</u>, <u>放</u>射化分析, イオンビーム, 同位体ジェネレータ, 核反応分析

準シソーラス用語 : <u>ルビジウム 81, よう素 123, クリプトン 81m, イオンビーム分析</u>

著者 ID : BECHTOLD V (200901100453018833), FEHSENFELD

P (200901100333481033), SCHWEICKERT H (200901100490501218)

リンク情報:

RightFind

ANSWER 58 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレ ス不可

整理番号 : 88A0054774

和文標題: イオンビーム分析

英文標題 : A small cyclotron for use in ion beam analysis.

著者名: YONEZAWA H, SHIKANO K, SHIGEMATSU T, KATOH M (NTT Electrical

Communications Lab., Ibaraki, JPN)

資料名 : 11th Int Conf Cyclotr Their Appl 1986

JST 資料番号 : K19870599

巻号ページ

(発行年月日): Page.646-649 (1987) 写図表参: 写図 5, 表 5, 参 3

会議: International Conference on Cyclotrons

and Their Applications (11th) Tokyo

資料種別 : 会議録(C) 記事区分: 原著論文(a1)

発行国: 日本(JPN) **言語**: 英語(EN)

抄録: イオンビーム分析用の小型サイクロトロンを建設し、半導体などの電子材料中の痕跡量の 軽元素の分析に用いた。 $12\mathrm{C}(d,n)13\mathrm{N},14\mathrm{N}(p,\alpha)11\mathrm{C},16\mathrm{O}(3\mathrm{He},p)18\mathrm{F}$ のような核反応を荷電粒子 放射化分析による軽元素分析に用い,非破壊法と化学分離法により確認した。化学量論以下の分 離に要する時間は N で 20 分,F で 110 分,GaAs 中の 1ppb の C と O が定量された

分類コード : CC06022C (543.52:546-121)

シソーラス用語: 痕跡分析, 炭素, 酸素, 放射化分析, イオンビーム, サイクロトロン, ヒ化ガリウ ム,半導体材料

著者 ID : YONEZAWA H (200901100521561320), SHIKANO

K (200901100510519950), SHIGEMATSU T (200901100499474094), KATOH M (200901100557906900)

リンク情報: RightFind

ANSWER 59 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 87A0466234

和文標題: 小型サイクロトロンの応用

英文標題 : Application of sub-compact cyclotron.

著者名: 田沢修一(住友重機械工業) 資料名: イオンエ学シンポジウム

JST 資料番号 : Z0828A **ISSN** : 0915-9096

巻号ページ

(発行年月日): Vol.11th Page.767-778 (1987) 写図表参: 写図 4, 表 5, 参 4

資料種別: 会議録(C) **記事区分**: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 核医学用の短寿命 RI 製造用の小型サイクロトロンとして住友・CGR MeV により共同開発された CYPRIS/325(370)型サイクロトロンの特徴を紹介する。ターゲットは外部ターゲット方式で保守点検,交換が容易であり,回転自動切替式のため他の核種による汚染を防いでいる。イオン源は水平挿入方式であるためフィラメント交換が容易である。中性子ラジオグラフィ,荷電粒子放射化分析への応用例,及び今後期待される応用分野を紹介する

分類コード: BE02020X (621.384.63)

シソーラス用語: <u>サイクロトロン</u>, <u>小型</u>, <u>利用</u>, <u>ラジオグラフィー</u>, <u>放射化分析</u>, <u>同位体製造</u>, <u>陽子</u>ビーム, <u>重陽子ビーム</u>, <u>1 - 10MeV</u>, <u>10 - 100MeV</u>

著者 ID : 田沢修一 (200901100373973354)

ANSWER 60 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 87A0466233

和文標題: ベビーサイクロトロン

英文標題 : Baby cyclotron.

著者名: 鈴川一郎, 若狭秀一郎(日本製鋼所)

資料名: イオン工学シンポジウム

JST 資料番号 : Z0828A **ISSN** : 0915-9096

巻号ページ

(発行年月日): Vol.11th Page.755-766 (1987) 写図表参 : 写図 4, 表 3

資料種別: 会議録(C) 記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 短寿命 RI を病院内で製造することを目的に開発された超小型のベビーサイクロトロンを紹介する。これは、中性子ラジオグラフィー、放射化分析、PIXE、RBS 分析への理工学利用も可能である。ベビーサイクロトロンの型式と機能を述べ、特に、BC1710型について、主な仕様及び電磁石、高周波システム、加速箱、真空排気ポンプ、イオン源、取出系、冷却系の構造の特長を紹介する。ベビーサイクロトロンの応用分野についても紹介する

分類コード: BE02020X (621.384.63)

シソーラス用語: <u>AVF サイクロトロン</u>, <u>小型</u>, <u>陽子ビーム</u>, <u>重陽子ビーム</u>, <u>10 - 100MeV</u>, <u>同位体</u>

<u>製造, ラジオグラフィー, 放射化分析, PIXE 分析</u>

準シソーラス用語: 荷電粒子励起 X 線分析

著者 ID : 鈴川一郎 (200901100407517345), 若狭秀一郎 (200901100368074490)

ANSWER 61 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 87A0283387

和文標題 : 超電導性酸化物 BaPb1-xBixO3 中の構成元素の分析

英文標題: Determination of constituent elements in superconducting oxide, BaPb1-

xBixO3.

著者名 : SHIGEMATSU T, SHIKANO K, KATOH M, YONEZAWA H, HIDAKA Y (NTT

Ibaraki Electrical Communication Lab., Ibaraki - ken, JPN)

資料名: J Radioanal Nucl Chem

JST 資料番号 : B0949B ISSN : 0236-5731 CODEN : JRNCDM

巻号ページ

(発行年月日): Vol.102 No.2 Page.359-368 (1986.12) 写図表参: 写図 6,表 7,参 10

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: オランダ(NLD) 言語: 英語(EN)

抄録: BaCO3,PbO 及び Bi2O3 から合成した標題化合物の組成比を精密測定した。小型サイクロトロンの 3He 及び中性子放射化分析による酸素及び Ba の非破壊定量:融解シリカ標準試料及び 16O(He,P)18F 反応を利用して焼結 BaTiO3 及び単結晶 SrTiO3 中の酸素含量を算出した。x の小さなセラミック試料(x;0 及び 0.25)に対する酸素の分析結果は理論値とよく一致したが,x の大きな試料では低い値がえられた。130Ba(n, γ)131Ba の γ 線スペクトロメトリーにおける自己吸収の補正法について考察した。Pb 及び Bi の定量にジチゾン試薬の不足当量一同位体希釈分析法を適用した。本法の精度は 3%以内であった。x=0.40 及び 1.00 の BaPb1-xBixO3 では酸素欠損が存在した

分類コード : CC06022C (543.52:546-121)

シソーラス用語: 超伝導体, バリウム化合物, 酸化鉛, 酸化ビスマス, サイクロトロン, ヘリウム 3, 中性子照射, 放射性同位体, 放射化分析, バリウム同位体, 炭酸塩, 芳香族化合物, ヒドラジン誘導体, ウレア化合物, 有機硫黄化合物, 分析試薬

準シソーラス用語: バリウム 131, ジチゾン

著者 ID : SHIGEMATSU T (200901100499480965), SHIKANO

K (200901100510519941), KATOH M (200901100557945752), YONEZAWA

H (200901100521561001), HIDAKA Y (200901100371729707)

DOI 情報 : doi : 10.1007/BF02047910

リンク情報:

ANSWER 62 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 87A0277260

和文標題: 99Moの製造及び核医学への応用

英文標題: Production of 99Mo and its application in nuclear medicine.

著者名 : SHIKATA E, IGUCHI A (Japan Atomic Energy Research Inst., Ibaraki - ken, JPN)

資料名 : J Radioanal Nucl Chem

JST 資料番号 : B0949B **ISSN** : 0236-5731 **CODEN** : JRNCDM

巻号ページ

(発行年月日): Vol.102 No.2 Page.533-550 (1986.12) 写図表参: 写図 7, 表 4, 参 24

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : オランダ(NLD) 言語 : 英語(EN)

抄録: 99mTc の親核種として核医学的に有用な 99Mo の大規模な製造技術について総説した。核医学における 99mTc の利用(99mTc 標識化薬剤,99mTc ゼネレータ),98Mo(n, γ)99Mo 及び U(n,f)99Mo による 99Mo の製造(原子炉照射,99Mo の放射化学分離,放射性廃液の処理)について 論述し,日本原子力研究所における製造技術の開発を紹介した。小型サイクロトロンによる放射性核種の製造は今後も核医学において中心的な役割をはたすものと期待されるが,原子炉による 99mTc の製造技術は完全に確立されており,継続的な需要の増加傾向を指摘した。日本原子力研究所における 99Mo の供給能力は 7.4TBq(200Ci)/週及び 26 週/年に達した

分類コード: CB10030R (544.582.2)

シソーラス用語: <u>モリブデン同位体</u>, <u>テクネチウム 99m</u>, <u>放射線医学</u>, <u>放射性医薬品</u>, <u>ウラン</u>, <u>核</u> 分裂生成物, <u>サイクロトロン</u>, <u>原子炉</u>, <u>中性子照射</u>

準シソーラス用語: モリブデン 99

著者 ID : SHIKATA E (201401171102214010), IGUCHI A (201401171100950615)

DOI 情報 : doi : 10.1007/BF02047928

リンク情報:

ANSWER 63 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号: 87A0006766

和文標題 : 粒子加速器を用いる軽元素の分析

英文標題: Analysis of light elements with ion accelerator.

著者名: 重松俊男 (NTT 電通研)

資料名: 応用物理

JST 資料番号 : F0252A **ISSN** : 0369-8009 **CODEN** : OYBSA

巻号ページ

(発行年月日): Vol.55 No.12 Page.1138-1144 (1986.12) 写図表参: 写図 5, 表 4, 参 32

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: 電子材料の材料特性や材料,素子製造プロセスなどにおける軽元素の分析について,荷電粒子放射化分析法の原理,加速器および化学分離法の開発状況などを解説。本法によれば 1ng/g までの酸素,炭素が定量できる。加速器として専用の超小型サイクロトロンが開発され,化学収率の補正が不要な不足当量分離法が,ふっ素,窒素について報告されている

分類コード: CC06022C, NC03010Z (543.52:546-121, 621.382)

シソーラス用語: 荷電粒子, 放射化分析, 固体素子, 酸素, 炭素, 定量分析, 化合物半導体, ヒ化ガリウム, 核反応分析, キャラクタリゼーション, 同位体希釈分析

準シソーラス用語: <u>不足当量法</u>, <u>特性化</u> **著者 ID**: 重松俊男 (200901100499469945)

DOI 情報 : doi: 10.11470/oubutsu1932.55.1138

リンク情報: jstagelink ANSWER 64 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 87A0006489

和文標題: 18F,75,76,77Br および 123I の製造における最近の進歩

英文標題 : Recent developments in the production of 18F, 75,76,77Br and 123I.

著者名 : QAIM S M (Kernforschungsanlage Juelich GmbH, Juelich, DEU)

資料名: Int J Radiat Appl Instrum Part A

JST 資料番号 : C0201A **ISSN** : 0883-2889 **CODEN** : IJARAY

巻号ページ

(発行年月日): Vol.37 No.8 Page.803-810 (1986) 写図表参: 写図 5, 表 5, 参 42

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : イギリス(GBR) 言語 : 英語(EN)

抄録: ポジトロンエミッショントモグラフィ(PET)に用いられる 18F,75Br およびその同位体 76Br,77Br と SPECT に用いられる 123I について,最近多用される生成原子核反応,収率,ターゲット,放射化学的分離精製法について総説した。さらに,原子核反応時に同時に生成される不純物についても述べた。小型サイクロトロンによる上記放射性ハロゲン製造の可能性について言及した

分類コード: CB10050N (544.582.3)

シソーラス用語: <u>フッ素同位体</u>, <u>臭素同位体</u>, <u>ョウ素同位体</u>, <u>PET【トモグラフィー】</u>, <u>SPECT</u>, サイクロトロン

著者 ID : QAIM S M (200901100379701771)

DOI 情報 : doi: 10.1016/0883-2889(86)90275-3

リンク情報:

pubmedlink doilink RightFind

ANSWER 65 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 86A0010375

和文標題: コンパクトサイクロトロンを用いた 76Se(p,2n)75Br 反応による 75Br の製造 英文標題: Production of 75Br via the 76Se(p,2n)75Br reaction at a compact cyclotron. 著者名: KOVA' CS Z, BLESSING G, QAIM S M, STOECKLIN G (Kernforschungsanlage

Juelich GmbH, FRG)

資料名: Int J Appl Radiat Isot

JST 資料番号 : C0201A ISSN : 0020-708X CODEN : IJARAY

巻号ページ

(発行年月日): Vol.36 No.8 Page.635-642 (1985.08) 写図表参: 写図 7, 表 2, 参 21

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: $76\text{Se}(p,n),(p,2n),(p,3n),(p,pn),(p,\alpha),(p,\alpha n),(p,\alpha n),(p,\alpha 2n)反応の励起関数を Ep=40MeV まで 測定。標記核反応の最適条件は <math>21.5\sim24\text{MeV},32\text{mCi}/\mu$ Ah,86Br の汚染は 2%以下,76Se 金属は くより乾式蒸留法で Br を分離し放射化学的収率 $40\sim52\%$ 。 50.2mg/cm2 の厚いターゲットを使用し、Ep= $24\text{MeV},1.25\text{h},15\,\mu$ A,300° C で 30 分蒸留で 160mCi75Br(EOB)を製造し、76Br,77Br 不純物はそれぞれ 3%以下,0.15%であった

分類コード : CB10030R (544.582.2)

シソーラス用語: 小型, サイクロトロン, 同位体製造, セレン同位体, 陽子ビーム, 核反応, 放射性同位体, 臭素同位体, 放射性医薬品, 励起関数, 蒸留, 収率, ターゲット

準シソーラス用語: <u>臭素 75</u>, セレン 76

著者 ID : KOVA'CS Z (201301100050769327), BLESSING G (200901100519457035), QAIM S M (200901100379701771), STOECKLIN G (200901100412887754)

DOI情報: doi: 10.1016/0020-708X(85)90004-3

リンク情報:

ANSWER 66 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 85A0029130

和文標題: 小形サイクロトロンで重水素ガス・ターゲットを使用することによる $5\sim10 \text{MeV}$ のエネルギー領域におけるニッケル同位体の (\mathbf{n},\mathbf{p}) 及び (\mathbf{n},α) 反応断面積の測定

英文標題: Measurement of (n,p) and (n,α) reaction cross sections on some isotopes of nickel in the energy region of 5 to 10 MeV using a deuterium gas target at a compact cyclotron.

著者名: QAIM S M, WOELFLE R, RAHMAN M M, OLLIG H (Kernforschungsanlage Juelich GmbH, Federal Republic of Germany)

資料名 : Nucl Sci Eng

JST 資料番号 : D0212A **ISSN** : 0029-5639 **CODEN** : NSENAO

巻号ページ

(発行年月日): Vol.88 No.2 Page.143-153 (1984.10) 写図表参: 写図 6, 表 4, 参 38

資料種別: 逐次刊行物(A) 記事区分: 原著論文(a1)

発行国: アメリカ合衆国(USA) 言語: 英語(EN)

抄録: 小形サイクロトロンで D(d,n)3He 反応により $5\sim10$ MeV の領域の擬似単色中性子を発生させるための重水素ガス・ターゲットを作成した。発生中性子のスペクトルの特性を調べるため、多数の金属薄膜を放射化し、反復計算コード SAND II で解析したところ、飛行時間法と定性的に類似した結果が得られた。この中性子源を利用して、58Ni (n,α) 55Fe、62Ni (n,α) 59Fe、64Ni (n,α) 61Fe、61Ni(n,p)61Co、62Ni(n,p)62mCo の各反応断面積を、このエネルギー領域では初めて測定した。使用した手法は放射化法、放射化学分離(これが必要な場合)、及び X 線・ γ 線計数法である。断面積間の系統性をも検討した

分類コード: BG04040N, MD02050M (539.172.12+539.172.4, 621.039.51)

シソーラス用語: ニッケル同位体, 中性子ビーム, 核子移行反応, ストリッピング反応, 1-10MeV, 断面積, 小型, サイクロトロン, 鉄同位体, コバルト同位体, 放射化検出器, ターゲット, 重水素, 気体, 中性子スペクトル, 金属薄膜, 測定データ, データ解析, 逐次近似, 計算機プログラム, X線検出, Y線検出, 放射化学分析, 中性子発生装置, 単色光, 計数法

準シソーラス用語: ニッケル 64, ニッケル 62, ニッケル 61, ニッケル 58

著者 ID : QAIM S M (200901100379701771), WOELFLE

R (200901100416985416), RAHMAN M M (200901100579764921), OLLIG

H (200901100302247296)

リンク情報:

RightFind

ANSWER 67 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 84A0322626

和文標題: 多分野に広がる超小型サイクロトロンの利用

著者名: 山田輝雄(日本製鋼所)

資料名: 化学経済

JST 資料番号 : G0941A **ISSN** : 0453-0683

巻号ページ

(発行年月日): Vol.31 No.7 Page.41-44 (1984.07) 写図表参: 写図 4

資料種別: 逐次刊行物(A)

記事区分: 解説(b2)

発行国: 日本(JPN) **言語**: 日本語(JA)

抄録: サイクロトロンの原理とその概要および応用分野などについて述べ,超小形化を計画した動機,医学分野での加速器利用の評価,病院用短寿命ラジオアイソトープ供給用サイクロトロン開発の意義,医学と医療用のサイクロトロンの応用と効果,診断システムのフローチャート,この技術を応用した VLSI の描画,植物の成育状況追求への応用などについて解説

分類コード: BE02010M, GA05020L (621.384.6, 615.472/.473)

シソーラス用語: <u>小型</u>, <u>サイクロトロン</u>, <u>原理</u>, <u>加速器</u>, <u>利用</u>, <u>放射性同位体</u>, <u>シンクロトロン</u>, <u>診</u>断, ラジオグラフィー, 放射化分析, 植物成長

著者 ID : 山田輝雄 (200901100444224617)

ANSWER 68 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 84A0144613

和文標題 : 16O(3He,p)18F 反応による水ターゲット中の 18F の高収率製造

英文標題: High yield production of 18F in a water target via the 16O(3He,p)18F reaction.

著者名: KNUST E J, MACHULLA H - J (Univ. Essen, FRG)

資料名: Int J Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0020-708X **CODEN** : IJARAY

巻号ページ

(発行年月日): Vol.34 No.12 Page.1627-1628 (1983.12) 写図表参: 写図 2, 参 10

資料種別 : 逐次刊行物(A)

記事区分: 短報(a2)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: 小型サイクロトロンからの 36MeV の 3He ビームで Ta はくの後方に直接還流する 15.7ml の水を照射した。照射済の 18F を含む水は冷却し,放射線分解による不純ガスを活性炭で除去後 15ml/min の流速で再還流し,照射する。還流系はステンレスパイプで,36 μ A,2.5 時間で 2.405×1010Bq(650mCi)を得た。18F の損失はない。放射化学的不純物について考察した

分類コード : CB10030R (544.582.2)

シソーラス用語: <u>フッ素同位体</u>, <u>同位体製造</u>, <u>酸素 16</u>, <u>ヘリウム 3 ビーム</u>, <u>核反応</u>, <u>水</u>, <u>ターゲッ</u> <u>ト</u>, 収率, 不純物, 流速

準シソーラス用語: ふっ素 18

著者 ID : KNUST E J (200901100492488294), MACHULLA H - J (201301100333290435)

DOI 情報 : doi: 10.1016/0020-708X(83)90010-8

リンク情報:

ANSWER 69 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 84A0173682

和文標題: Karlsruhe の新しい小型サイクロトロン装置の計算機制御

英文標題: Computer control for the new compact cyclotron-installation of Karlsruhe. 著者名: BIALY J, KAPPEL W - R, KOEGEL B, HEINZMANN H, SCHWEICKERT

H, THOUW T J (Kernforschungszentrum Karlsruhe GmbH, FRG)

資料名: 9th Int Conf Cyclotrons Their Appl 1981

JST 資料番号 : K19830490

巻号ページ

(発行年月日): Page.605-607 (1982) 写図表参: 写図 4, 参 1

会議: International Conference on Cyclotrons and Their Applications(9th)Caen

資料種別: 会議録(C) **記事区分**: 原著論文(a1)

発行国 : フランス(FRA) 言語 : 英語(EN)

抄録: Karlsruhe の新しい CP42H-小型サイクロトロンの計算機制御系の構成と現状について記述し,議論した。システムは,Nova4 コンピュータ,CAMAC 及びタッチパネルを用いている。小型サイクロトロンは,同位体の生成及び加速器部分の放射化のために使われる。サイクロトロンと外側のビームガイド系は,計算機制御され実際のサイクロトロン制御卓から操作される。制御系のハードウエアは,主に,2つの同一の制御卓,パラレル CAMAC ブランチ,2 つの NOVA4 コンピュータ及び周辺装置からなる。ソフトウエアの構成は,主に,アセンブラと FORTRAN5 で書かれた OS からなり,環境を制御,監視し,ビーム診断を行なう

分類コード: BE02020X (621.384.63)

シソーラス用語: サイクロトロン, 計算制御, 制御系, ビームモニタリング, 制御装置

著者 ID: BIALY J (200901100385722659), KAPPEL W-

R (200901100560115450), KOEGEL B (200901100421609538), HEINZMANN H (200901100430957816), SCHWEICKERT H (200901100490501250), THOUW T J (200901100367120005)

リンク情報 :

RightFind

ANSWER 70 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 81A0375206

和文標題: 小型サイクロトロンを利用した 124Te(p,2n)123I 反応による 123I 生成の技術的進

展

英文標題: Some technical improvements in the production of 123I via the 124Te(p,2n)123I reaction at a compact cyclotron.

著者名: MICHAEL H, ROSEZIN H, APELT H, BLESSING G, KNIEPER J, QAIM S M (Kernforschungsanlage Juelich GmbH, Federal Republic of Germany)

資料名 : Int J Appl Radiat Isot

JST 資料番号 : C0201A **ISSN** : 0020-708X **CODEN** : IJARAY

巻号ページ

(発行年月日): Vol.32 No.8 Page.581-587 (1981.08) 写図表参: 写図 5,表 1,参 21

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国 : アメリカ合衆国(USA) 言語 : 英語(EN)

抄録: 124Te(p,2n)123I の核反応による 123I 生成の技術的進展に関する報告。小型サイクロトロン利用に適するターゲットを作成し 123I の乾燥蒸留法を活用した。ビーム電流に対する 123I の収率決定と 124TeO2 の減少に関する依存性を調べた。種々の濃縮同位体組成をもつ 124TeO2 ターゲットを使った実験から、生成する 123I の放射化学的純度について述べた

分類コード : CB10030R (544.582.2)

シソーラス用語: <u>テルル同位体</u>, <u>ョウ素同位体</u>, <u>核反応</u>, <u>陽子ビーム</u>, <u>同位体製造</u>, <u>酸化テルル</u>, <u>乾</u> 燥, 蒸留, 収率

著者 ID : MICHAEL H (200901100516296006), ROSEZIN

H (200901100589145707), APELT H (200901100487082670), BLESSING

G (200901100519457035), KNIEPER J (200901100503063851), QAIM S

M (200901100379701771)

DOI 情報 : doi: 10.1016/0020-708X(81)90037-5

リンク情報:

doilink RightFind

ANSWER 71 OF 75 JST7580 JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 78A0285765

和文標題: サイクロトロンの医学利用

原文標題 : Die medizinischen Anwendungen des Zyklotrons.

著者名 : JEAN R, FAUCHET M

資料名: Strahlentherapie

JST 資料番号 : D0259B **ISSN** : 0039-2073 **CODEN** : STRAA

巻号ページ

(発行年月日): Vol.154 No.8 Page.526-536 (1978) 写図表参: 写図 8,表 3,参 28

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: ドイツ(DEU) **言語**: ドイツ語(DE)

抄録: 小型,中型,大型 AVF サイクロトロンは放射線治療,生体内および試験管内放射化分析,RI 生産に用いられている。それぞれの型のサイクロトロンを医学に用いる場合の得失を,医学面,費用面,結果の点から考察した

分類コード: HA030101 (621.039.83/.84)

シソーラス用語: <u>サイクロトロン</u>, <u>医学</u>, <u>利用</u>, <u>原価</u>

リンク情報: pubmedlink ANSWER 72 OF 75 JST7580 JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 78A0040127

和文標題: 純金属および合金の放射化分析のためのマイクロトロン(小型サイクロトロン)の使

用

英文標題 : The use of the microtron for the activation analysis of pure metals and alloys.

著者名 : SAMOSYUK V N, FIRSOV V I, CHAPYZHNIKOV B A, KISELEVA T

T, RODIONOV V I, SHTCHULEPNIKOV M N

資料名 : J Radioanal Chem

JST 資料番号 : B0949A ISSN : 0134-0719 CODEN : JRACB

巻号ページ

(発行年月日): Vol.37 No.1 Page.203-212 (1977) 写図表参: 写図 1,表 7,参 8

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: オランダ(NLD) **言語**: 英語(EN)

分類コード: CC060202 (543.52/.53:669)

シソーラス用語: <u>放射化分析</u>, <u>鉄</u>, <u>銅</u>, <u>ニオブ, モリブデン</u>, <u>インジウム</u>, <u>酸素</u>, <u>炭素</u>, <u>元素分析</u>, <u>制</u> 動放射, <u>中性子ビーム</u>

DOI 情報 : doi : 10.1007/BF02520526

リンク情報:

doilink RightFind

ANSWER 73 OF 75 JST7580 JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 78A0314642

和文標題: 小型サイクロトロンによる 97Ru の製造

英文標題: Ruthenium-97 preparation with a compact cyclotron.

著者名: COMAR D, CROUZEL C 資料名: Radiochem Radioanal Lett

JST 資料番号 : B0021C **ISSN** : 0079-9483

巻号ページ

(発行年月日): Vol.27 No.5/6 Page.307-312 (1976) 写図表参: 写図 1, 表 1, 参 8

資料種別: 逐次刊行物(A) 記事区分: 原著論文(a1)

発行国 : スイス(CHE) 言語 : 英語(EN)

抄録: 97Ru の半減期は 2.9 日,215keV の γ 線(91%)および電子捕集(100%)を行ない,核医学の分野での物理学,化学および生物学的に理想的なインジケータである。著者らは, $Mo(\alpha,xn)$ およびMo(3He,xn)の核反応によって,97Ru を製造した。この核反応で同時に副成する Tc を除去するため,照射して 24 時間後に溶媒抽出した。97Ru の放射化学的純度は,99.9%以上で,抽出率は 85–95%であった

分類コード: CB090103 (541.28)

シソーラス用語: <u>ルテニウム同位体</u>, <u>サイクロトロン</u>, <u>同位体製造</u>, <u>核反応生成物</u>, <u>ターゲット</u>, モリブデン, 溶媒抽出

リンク情報 : RightFind ANSWER 74 OF 75 JST7580 JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 76A0101383 **和文標題**: 放射性医薬品

英文標題: Radiopharmaceuticals.

著者名 : ATKINS H L 資料名 : Phys Rep

JST 資料番号 : A0800A **ISSN** : 0370-1573

巻号ページ

(発行年月日): Vol.21C No.6 Page.315-367 (1975) 写図表参: 写図 20, 表 4, 参 180

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: オランダ(NLD) **言語**: 英語(EN)

抄録: 放射性医薬品の歴史,調製法,核種の同定,放射化学的純度の検定,比放射能や無菌試験,ジェネレータの使用法など放射性診断薬に関する基礎的技術,ならびに神経系,肺,消化管,内分泌,血液,じん骨組織,循環器,しゅようなどへの応用について概論した。放射性医薬品は進歩が著るしい。とくに最近は加速器を用いて製造された核種によって標識化された医薬品で生物学的に特異性の高いものの開発が進んでいる。11C,13N,15O,18F などの短寿命 RI の生産のための小型サイクロトロンの普及と,511keV の消滅放射線の測定機の普及の必要性がさけばれている

分類コード: LC170104, LF025900, CB090505 (577:539.1.047, 615.2:616-07, 541.28:621.039.85)

シソーラス用語: 放射性医薬品, 調製, 純度, シンチグラフィー, 同位体製造, サイクロトロン

準シソーラス用語 : 核医学

リンク情報: RightFind ANSWER 75 OF 75 JST7580 JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号: 75A0174055

和文標題: 小型サイクロトロンで発生させた速中性子場の物理的性質

英文標題: Physical properties of compact cyclotron produced fast neutron fields. 著者名: CANADA T R, MDONALD J C, FREED B R, KUO T Y T, LAUGHLIN J S

資料名: Radiat Res

JST 資料番号 : D0484A **ISSN** : 0033-7587 **CODEN** : RAREA

巻号ページ

(発行年月日): Vol.60 No.2 Page.205-225 (1974) 写図表参: 参 24

資料種別: 逐次刊行物(A) **記事区分**: 原著論文(a1)

発行国: アメリカ合衆国(USA) 言語: 英語(EN)

抄録: 8MeV 重陽子,23MeV3He を Be に入射させ発生させた中性子を用いて,相対的再分布,鉄,鉛,ポリエチレン混合物の減衰定数,線量分布,中性子束,LET に関した線量を測定した。測定装置は組織等価電離箱,熱ルミネセンス,放射化はく,球状比例計数管である。角分布は 45° で 3He の場合 45° %,d で 35° %である。減衰定数は 3He で鉄 0.18cm-1,鉛 0.14,ポリエチ混合 0.15,d でそれぞれ 0.17,0.13,0.12 である。50%深部率の点は約 7cm である。ビームに直角方向の半影も測定した

分類コード: HA030101 (621.039.83/.84)

シソーラス用語: <u>サイクロトロン</u>, <u>高速中性子</u>, <u>線量測定</u>, <u>減衰定数</u>, <u>ヘリウム - 3 ビーム</u>, <u>重陽子</u> ビーム

DOI 情報 : doi : 10.2307/3573958

リンク情報:

doilink RightFind

添付資料 4.2 入手文献一覧

(入手件数 21 件)

ANSWER 5 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 14A0932493

和文標題 : 放射線障害防止法の改正と放射化物の規制

ANSWER 9 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 12A1092797

和文標題 : 小型医用サイクロトロン用の硼素含有水による自己遮蔽の放射線学的評価

ANSWER 11 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 11A1032154

和文標題: 国立精神・神経医療研究センター医療用小型サイクロトロン解体作業報告

ANSWER 13 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 09A1214056

和文標題 : 医療用小型サイクロトロン周辺の放射化状況の評価

ANSWER 14 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 09A0854638

和文標題 : 小型医用サイクロトロン周囲の 23Na 放射化を利用した熱中性子フルエンス分

布の測定

ANSWER 15 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 09A0617512

和文標題 : 医療用小型サイクロトロンの交換部品等における放射化物の測定と評価

ANSWER 16 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 08A0876843

和文標題 : モンテカルロ計算による PET 用サイクロトロン周りの中性子東分布及び放射

化量評価

ANSWER 19 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 07A0910363

和文標題 : PET 用小型サイクロトロン室における中性子束の測定

ANSWER 21 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 05A1033942

和文標題 : 放射線技術の新しい展開 II-1 サイクロトロン工業利用の現状と今後の課題

ANSWER 23 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 05A0440016

和文標題 : 医療用加速器のデコミッショニング

ANSWER 24 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 05A0368269

和文標題 : 医療用小型サイクロトロンの放射化と PET 薬剤中の放射性副生成物の分析

ANSWER 25 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写可能 エクスプレス不可

整理番号 : 05A0289415

和文標題 : 小型サイクロトロンによる工業利用

ANSWER 27 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 04A0264972

和文標題 : 医療用小型サイクロトロンに対応した低放射化の塗装材料

ANSWER 28 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 03A0564200

和文標題: 医療用小型サイクロトロンに対応した低放射化の補強筋及び設備材料

ANSWER 29 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エク

スプレス可能

整理番号 : 03A0233485

和文標題 : 医療用小型サイクロトロン対応低放射化コンクリート

ANSWER 37 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 98A0554983

和文標題 : 特集 I 核医学の最前線 PET 用サイクロトロンシステム JSW/CTI RDS111

ANSWER 38 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 97A0193078

和文標題: 小量放射化用高速中性子のやや強い線源

ANSWER 45 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写可能 エクスプレス可能

整理番号 : 93A0839932

和文標題 : 第30回原子動力研究会年会報告書 VIII.放射線施設デザイングループ

ANSWER 47 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写不可 JST 複写不可 エクスプレス不可

整理番号 : 93A0319085

和文標題 : 医療用加速器より発生する中性子の検討

ANSWER 48 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 93A0319756

和文標題 : 軽元素の日常的な荷電粒子放射化分析

ANSWER 49 OF 75 JSTPlus JST COPYRIGHT JDreamIII 複写可能 JST 複写不可 エクスプレス不可

整理番号 : 92A0619460

和文標題 : 測定範囲がフレキシブルなγ線測定器